
Section 1.1

C01S01.001: If f(x) =
1
x

, then:

(a) f(−a) =
1
−a = − 1

a
;

(b) f(a−1) =
1
a−1

= a;

(c) f (
√
a ) =

1√
a

=
1
a1/2

= a−1/2;

(d) f(a2) =
1
a2

= a−2.

C01S01.002: If f(x) = x2 + 5, then:

(a) f(−a) = (−a)2 + 5 = a2 + 5;

(b) f(a−1) = (a−1)2 + 5 = a−2 + 5 =
1
a2

+ 5 =
1 + 5a2

a2
;

(c) f (
√
a ) = (

√
a )2 + 5 = a+ 5;

(d) f(a2) = (a2)2 + 5 = a4 + 5.

C01S01.003: If f(x) =
1

x2 + 5
, then:

(a) f(−a) =
1

(−a)2 + 5
=

1
a2 + 5

;

(b) f(a−1) =
1

(a−1)2 + 5
=

1
a−2 + 5

=
1 · a2

a−2 · a2 + 5 · a2
=

a2

1 + 5a2
;

(c) f (
√
a ) =

1

(
√
a )2 + 5

=
1

a+ 5
;

(d) f(a2) =
1

(a2)2 + 5
=

1
a4 + 5

.

C01S01.004: If f(x) =
√

1 + x2 + x4, then:

(a) f(−a) =
√

1 + (−a)2 + (−a)4 =
√

1 + a2 + a4;

(b) f(a−1) =
√

1 + (a−1)2 + (a−1)4 =
√

1 + a−2 + a−4 =

√
(a4) · (1 + a−2 + a−4)

a4

=

√
a4 + a2 + 1

a4
=
√
a4 + a2 + 1√

a4
=
√
a4 + a2 + 1

a2
;

(c) f (
√
a ) =

√
1 + (

√
a )2 + (

√
a )4 =

√
1 + a+ a2;

(d) f(a2) =
√

1 + (a2)2 + (a4)2 =
√

1 + a4 + a8.

C01S01.005: If g(x) = 3x+ 4 and g(a) = 5, then 3a+ 4 = 5, so 3a = 1; therefore a = 1
3 .

C01S01.006: If g(x) =
1

2x− 1
and g(a) = 5, then:
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1
2a− 1

= 5;

1 = 5 · (2a− 1);

1 = 10a− 5;

10a = 6;

a =
3
5
.

C01S01.007: If g(x) =
√
x2 + 16 and g(a) = 5, then:

√
a2 + 16 = 5;

a2 + 16 = 25;

a2 = 9;

a = 3 or a = −3.

C01S01.008: If g(x) = x3 − 3 and g(a) = 5, then a3 − 3 = 5, so a3 = 8. Hence a = 2.

C01S01.009: If g(x) = 3
√
x+ 25 = (x+ 25)1/3 and g(a) = 5, then

(a+ 25)1/3 = 5;

a+ 25 = 53 = 125;

a = 100.

C01S01.010: If g(x) = 2x2 − x+ 4 and g(a) = 5, then:

2a2 − a+ 4 = 5;

2a2 − a− 1 = 0;

(2a+ 1)(a− 1) = 0;

2a+ 1 = 0 or a− 1 = 0;

a = − 1
2

or a = 1.

C01S01.011: If f(x) = 3x− 2, then

f(a+ h)− f(a) = [3(a+ h)− 2]− [3a− 2]

= 3a+ 3h− 2− 3a+ 2 = 3h.

C01S01.012: If f(x) = 1− 2x, then
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f(a+ h)− f(a) = [1− 2(a+ h)]− [1− 2a] = 1− 2a− 2h− 1 + 2a = −2h.

C01S01.013: If f(x) = x2, then

f(a+ h)− f(a) = (a+ h)2 − a2

= a2 + 2ah+ h2 − a2 = 2ah+ h2 = h · (2a+ h).

C01S01.014: If f(x) = x2 + 2x, then

f(a+ h)− f(a) = [(a+ h)2 + 2(a+ h)]− [a2 + 2a]

= a2 + 2ah+ h2 + 2a+ 2h− a2 − 2a = 2ah+ h2 + 2h = h · (2a+ h+ 2).

C01S01.015: If f(x) =
1
x

, then

f(a+ h)− f(a) =
1

a+ h
− 1
a

=
a

a(a+ h)
− a+ h

a(a+ h)

=
a− (a+ h)
a(a+ h)

=
−h

a(a+ h)
.

C01S01.016: If f(x) =
2

x+ 1
, then

f(a+ h)− f(a) =
2

a+ h+ 1
− 2
a+ 1

=
2(a+ 1)

(a+ h+ 1)(a+ 1)
− 2(a+ h+ 1)

(a+ h+ 1)(a+ 1)

=
2a+ 2

(a+ h+ 1)(a+ 1)
− 2a+ 2h+ 2

(a+ h+ 1)(a+ 1)
=

(2a+ 2)− (2a+ 2h+ 2)
(a+ h+ 1)(a+ 1)

=
2a+ 2− 2a− 2h− 2
(a+ h+ 1)(a+ 1)

=
−2h

(a+ h+ 1)(a+ 1)
.

C01S01.017: If x > 0 then

f(x) =
x

|x| =
x

x
= 1.

If x < 0 then

f(x) =
x

|x| =
x

−x = −1.

We are given f(0) = 0, so the range of f is {−1, 0, 1}. That is, the range of f is the set consisting of the
three real numbers −1, 0, and 1.

C01S01.018: Given f(x) = [[3x]], we see that
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f(x) = 0 if 0 � x < 1
3 ,

f(x) = 1 if 1
3 � x < 2

3 ,

f(2) = 2 if 2
3 � x < 1;

moreover,

f(x) = −3 if − 1 � x < − 2
3 ,

f(x) = −2 if − 2
3 � x < − 1

3 ,

f(x) = −1 if − 1
3 � x < 0.

In general, if m is any integer, then

f(x) = 3m if m � x < m+ 1
3 ,

f(x) = 3m+ 1 if m+ 1
3 � x < m+ 2

3 ,

f(x) = 3m+ 2 if m+ 2
3 � x < m+ 1.

Because every integer is equal to 3m or to 3m + 1 or to 3m + 2 for some integer m, we see that the range
of f includes the set Z of all integers. Because f can assume no values other than integers, we can conclude
that the range of f is exactly Z.

C01S01.019: Given f(x) = (−1)[[x]], we first note that the values of the exponent [[x]] consist of all the
integers and no other numbers. So all that matters about the exponent is whether it is an even integer or
an odd integer, for if even then f(x) = 1 and if odd then f(x) = −1. No other values of f(x) are possible,
so the range of f is the set consisting of the two numbers −1 and 1.

C01S01.020: If 0 < x � 1, then f(x) = 34. If 1 < x � 2 then f(x) = 34 + 21 = 55. If 2 < x � 3 then
f(x) = 34+2 · 21 = 76. We continue in this way and conclude with the observation that if 11 < x < 12 then
f(x) = 34 + 11 · 21 = 265. So the range of f is the set

{34, 55, 76, 97, 118, 139, 160, 181, 202, 223, 244, 265}.

C01S01.021: Given f(x) = 10 − x2, note that for every real number x, x2 is defined, and for every such
real number x2, 10− x2 is also defined. Therefore the domain of f is the set R of all real numbers.

C01S01.022: Given f(x) = x3 + 5, we note that for each real number x, x3 is defined; moreover, for each
such real number x3, x3 + 5 is also defined. Thus the domain of f is the set R of all real numbers.

C01S01.023: Given f(t) =
√
t2, we observe that for every real number t, t2 is defined and nonnegative,

and hence that
√
t2 is defined as well. Therefore the domain of f is the set R of all real numbers.

C01S01.024: Given g(t) =
(√
t
)2

, we observe that
√
t is defined exactly when t � 0. In this case,

(√
t
)2

is also defined, and hence the domain of g is the set [0, +∞) of all nonnegative real numbers.

C01S01.025: Given f(x) =
√

3x− 5, we note that 3x − 5 is defined for all real numbers x, but that its
square root will be defined when and only when 3x − 5 is nonnegative; that is, when 3x − 5 � 0, so that
x � 5

3 . So the domain of f consists of all those real numbers x in the interval
[
5
3 , +∞

)
.
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C01S01.026: Given g(t) = 3
√
t+ 4 = (t+ 4)1/3, we note that t+ 4 is defined for every real number t and

the cube root of t+ 4 is defined for every possible resulting value of t+ 4. Therefore the domain of g is the
set R of all real numbers.

C01S01.027: Given f(t) =
√

1− 2t, we observe that 1− 2t is defined for every real number t, but that its
square root is defined only when 1− 2t is nonnegative. We solve the inequality 1− 2t � 0 to find that f(t)
is defined exactly when t � 1

2 . Hence the domain of f is the interval
(
−∞, 1

2

]
.

C01S01.028: Given

g(x) =
1

(x+ 2)2
,

we see that (x + 2)2 is defined for every real number x, but that g(x), its reciprocal, will be defined only
when (x+ 2)2 �= 0; that is, when x+ 2 �= 0. So the domain of g consists of those real numbers x �= −2.

C01S01.029: Given

f(x) =
2

3− x,

we see that 3− x is defined for all real values of x, but that f(x), double its reciprocal, is defined only when
3− x �= 0. So the domain of f consists of those real numbers x �= 3.

C01S01.030: Given

g(t) =

√
2

3− t ,

it is necessary that 3 − t be both nonzero (so that its reciprocal is defined) and nonnegative (so that the
square root is defined). Thus 3− t > 0, and therefore the domain of g consists of those real numbers t < 3.

C01S01.031: Given f(x) =
√
x2 + 9, observe that for each real number x, x2 +9 is defined and, moreover,

is positive. So its square root is defined for every real number x. Hence the domain of f is the set R of all
real numbers.

C01S01.032: Given

h(z) =
1√

4− z2
,

we note that 4 − z2 is defined for every real number z, but that its square root will be defined only if
4 − z2 � 0. Moreover, the square root cannot be zero, else its reciprocal will be undefined, so we need to
solve the inequality 4− z2 > 0; that is, z2 < 4. The solution is −2 < z < 2, so the domain of h is the open
interval (−2, 2).

C01S01.033: Given f(x) =
√

4−
√
x , note first that we require x � 0 in order that

√
x be defined. In

addition, we require 4−
√
x � 0 so that its square root will be defined as well. So we solve [simultaneously]

x � 0 and
√
x � 4 to find that 0 � x � 16. So the domain of f is the closed interval [0, 16].

C01S01.034: Given

f(x) =

√
x+ 1
x− 1

,
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we require that x �= 1 so that the fraction is defined. In addition we require that the fraction be nonnegative
so that its square root will be defined. These conditions imply that both numerator and denominator be
positive or that both be negative; moreover, the numerator may also be zero. But if the denominator is
positive then the [larger] numerator will be positive as well; if the numerator is nonpositive then the [smaller]
denominator will be negative. So the domain of f consists of those real numbers for which either x− 1 > 0
or x+ 1 � 0; that is, either x > 1 or x � −1. So the domain of f is the union of the two intervals (−∞, −1]
and (1, +∞). Alternatively, it consists of those real numbers x not in the interval (−1, 1].

C01S01.035: Given:

g(t) =
t

|t| .

This fraction will be defined whenever its denominator is nonzero, thus for all real numbers t �= 0. So
the domain of g consists of the nonzero real numbers; that is, the union of the two intervals (−∞, 0) and
(0, +∞).

C01S01.036: If a square has edge length x, then its area A is given by A = x2 and its perimeter P is given
by P = 4x. To express A in terms of P :

x = 1
4P ;

A = x2 =
(

1
4P

)2 = 1
16P

2.

Thus to express A as a function of P , we write

A(P ) = 1
16P

2, 0 � P < +∞.

(It will be convenient later in the course to allow the possibility that P , x, and A are zero. If this produces
an answer that fails to meet real-world criteria for a solution, then that possibility can simply be eliminated
when the answer to the problem is stated.)

C01S01.037: If a circle has radius r, then its circumference C is given by C = 2πr and its area A by
A = πr2. To express C in terms of A, we first express r in terms of A, then substitute in the formula for C:

A = πr2; r =

√
A

π
;

C = 2πr = 2π

√
A

π
= 2

√
π2A

π
= 2
√
πA.

Therefore to express C as a function of A, we write

C(A) = 2
√
πA, 0 � A < +∞.

It is also permissible simply to write C(A) = 2
√
πA without mentioning the domain, because the “default”

domain is correct. In the first displayed equation we do not write r = ±
√
A/π because we know that r is

never negative.

C01S01.38: If r denotes the radius of the sphere, then its volume is given by V = 4
3πr

3 and its surface
area by S = 4πr2. Hence
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r =
1
2

√
S

π
;

V =
4
3
πr3 =

4
3
π · 1

8

(
S

π

)3/2

=
1
6
π

(
S

π

)3/2

.

Answer: V (S) =
1
6
π

(
S

π

)3/2

, 0 � S < +∞.

C01S01.039: To avoid decimals, we note that a change of 5◦C is the same as a change of 9◦F, so when
the temperature is 10◦C it is 32 + 18 = 50◦F; when the temperature is 20◦C then it is 32 + 2 · 18 = 68◦F.
In general we get the Fahrenheit temperature F by adding 32 to the product of 1

10C and 18, where C is the
Celsius temperature. That is,

F = 32 +
9
5
C,

and therefore C = 5
9 (F − 32). Answer:

C(F ) =
5
9
(F − 32), F > −459.67.

C01S01.040: Suppose that a rectangle has base length x and perimeter 100. Let h denote the height of
such a rectangle. Then 2x+2h = 100, so that h = 50−x. Because x � 0 and h � 0, we see that 0 � x � 50.
The area A of the rectangle is xh, so that

A(x) = x(50− x), 0 � x � 50.

C01S01.041: Let y denote the height of such a rectangle. The rectangle is inscribed in a circle of diameter
4, so the bottom side x and the left side y are the two legs of a right triangle with hypotenuse 4. Consequently
x2 + y2 = 16, so y =

√
16− x2 (not −

√
16− x2 because y � 0). Because x � 0 and y � 0, we see that

0 � x � 4. The rectangle has area A = xy, so

A(x) = x
√

16− x2, 0 � x � 4.

C01S042.042: We take the problem to mean that current production is 200 barrels per day per well, that
if one new well is drilled then the 21 wells will produce 195 barrels per day per well; in general, that if x new
wells are drilled then the 20 + x wells will produce 200 − 5x barrels per day per well. So total production
would be p = (20 + x)(200 − 5x) barrels per day. But because 200 − 5x � 0, we see that x � 40. Because
x � 0 as well (you don’t “undrill” wells), here’s the answer:

p(x) = 4000 + 100x− 5x2, 0 � x � 40, x an integer.

C01S01.043: The square base of the box measures x by x centimeters; let y denote its height (in centime-
ters). Because the volume of the box is 324 cm3, we see that x2y = 324. The base of the box costs 2x2 cents,
each of its four sides costs xy cents, and its top costs x2 cents. So the total cost of the box is

C = 2x2 + 4xy + x2 = 3x2 + 4xy. (1)
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Because x > 0 and y > 0 (the box has positive volume), but because y can be arbitrarily close to zero (as
well as x), we see also that 0 < x < +∞. We use the equation x2y = 324 to eliminate y from Eq. (1) and
thereby find that

C(x) = 3x2 +
1296
x

, 0 < x < +∞.

C01S01.044: If the rectangle is rotated around its side S of length x to produce a cylinder, then x will also
be the height of the cylinder. Let y denote the length of the two sides perpendicular to S; then y will be the
radius of the cylinder; moreover, the perimeter of the original rectangle is 2x+ 2y = 36. Hence y = 18− x.
Note also that x � 0 and that x � 18 (because y � 0). The volume of the cylinder is V = πy2x, and so

V (x) = πx(18− x)2, 0 � x � 18.

C01S01.045: Let h denote the height of the cylinder. Its radius is r, so its volume is πr2h = 1000. The
total surface area of the cylinder is

A = 2πr2 + 2πrh (look inside the front cover of the book);

h =
1000
πr2

, so

A = 2πr2 + 2πr · 1000
πr2

= 2πr2 +
2000
r

.

Now r cannot be negative; r cannot be zero, else πr2h �= 1000. But r can be arbitrarily small positive as
well as arbitrarily large positive (by making h sufficiently close to zero). Answer:

A(r) = 2πr2 +
2000
r

, 0 < r < +∞.

C01S01.046: Let y denote the height of the box (in centimeters). Then

2x2 + 4xy = 600, so that y =
600− 2x2

4x
. (1)

The volume of the box is

V = x2y =
(600− 2x2) · x2

4x
=

1
4
(600x− 2x3) =

1
2
(300x− x3)

by Eq. (1). Also x > 0 by Eq. (1), but the maximum value of x is attained when Eq. (1) forces y to be zero,
at which point x =

√
300 = 10

√
3. Answer:

V (x) =
300x− x3

2
, 0 < x � 10

√
3.

C01S01.047: The base of the box will be a square measuring 50− 2x in. on each side, so the open-topped
box will have that square as its base and four rectangular sides each measuring 50− 2x by x (the height of
the box). Clearly 0 � x and 2x � 50. So the volume of the box will be

V (x) = x(50− 2x)2, 0 � x � 25.
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C01S01.048: Recall that A(x) = x(50− x), 0 � x � 50. Here is a table of a few values of the function A
at some special numbers in its domain:

x 0 5 10 15 20 25 30 35 40 45 50
A 0 225 400 525 600 625 600 525 400 225 0

It appears that when x = 25 (so the rectangle is a square), the rectangle has maximum area 625.

C01S01.049: Recall that the total daily production of the oil field is p(x) = (20 + x)(200 − 5x) if x new
wells are drilled (where x is an integer satisfying 0 � x � 40). Here is a table of all of the values of the
production function p:

x 0 1 2 3 4 5 6 7
p 4000 4095 4180 4255 4320 4375 4420 4455

x 8 9 10 11 12 13 14 15
p 4480 4495 4500 4495 4480 4455 4420 4375

x 16 17 18 19 20 21 22 23
p 4320 4255 4180 4095 4000 3895 3780 3655

x 24 25 26 27 28 29 30 31
p 3520 3375 3220 3055 2880 2695 2500 2295

x 32 33 34 35 36 37 38 39
p 2080 1855 1620 1375 1120 855 580 295

and, finally, p(40) = 0. Answer: Drill ten new wells.

C01S01.050: The surface area A of the box of Example 8 was

A(x) = 2x2 +
500
x
, 0 < x <∞.

The restrictions x � 1 and y � 1 imply that 1 � x �
√

125. A small number of values of A, rounded to
three places, are given in the following table.

x 1 2 3 4 5 6 7 8 9 10 11
A 502 258 185 157 150 155 169 191 218 250 287

It appears that A is minimized when x = y = 5.

C01S01.051: If x is an integer, then Ceiling(x) = x and −Floor(−x) = −(−x) = x. If x is not an
integer, then choose the integer n so that n < x < n+ 1. Then Ceiling(x) = n+ 1, −(n+ 1) < −x < −n,
and

−Floor(−x) = −[−(n+ 1)] = n+ 1.

In both cases we see that Ceiling(x) = −Floor(−x).

C01S01.052: The range of Round(x) is the set Z of all integers. If k is a nonzero constant, then as x
varies through all real number values, so does kx. Hence the range of Round(kx) is Z if k �= 0. If k = 0
then the range of Round(kx) consists of the single number zero.
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C01S01.053: By the result of Problem 52, the range of Round(10x) is the set of all integers, so the range
of g(x) = 1

10Round(10x) is the set of all integral multiple of 1
10 .

C01S01.054: What works for π will work for every real number; let Round2(x) = 1
100Round(100x). To

be certain that this is correct (we will verify it only for positive numbers), write the [positive] real number
x in the form

x = k +
t

10
+

h

100
+

m

1000
+ r,

where k is a nonnnegative integer, t (the “tenths” digit) is a nonnegative integer between 0 and 9, h (the
“hundredths” digit) is a nonnegative integer between 0 and 9, as is m, and 0 � r < 0.001. Then

Round2(x) = 1
100Floor(100x+ 0.5)

= 1
100Floor(100k + 10t+ h+ 1

10 (m+ 5) + 100r).

If 0 � m � 4, the last expression becomes

1
100

(100k + 10t+ h) = k +
t

10
+

h

100
,

which is the correct two-digit rounding of x. If 5 � m � 9, it becomes

1
100

(100k + 10t+ h+ 1) = k +
t

10
+
h+ 1
100

,

also the correct two-digit rounding of x in this case.

C01S01.055: Let Round4(x) = 1
10000Round(10000x). To verify that Round4 has the desired property

for [say] positive values of x, write such a number x in the form

x = k +
d1

10
+

d2

100
+

d3

1000
+

d4

10000
+

d5

100,000
+ r,

where k is a nonnegative integer, each di is an integer between 0 and 9, and 0 � r < 0.00001. Application
of Round4 to x then produces

1
10000

Floor(10000k + 1000d1 + 100d2 + 10d3 + d4 + 1
10 (d5 + 5) + 10000r).

Then consideration of the two cases 0 � d5 � 4 and 5 � d5 � 9 will show that Round4 produces the correct
four-place rounding of x in both cases.

C01S01.056: Let Chop4(x) = 1
10000Floor(10000x). Suppose that x > 0. Write x in the form

x = k +
d1

10
+

d2

100
+

d3

1000
+

d4

10000
+ r,

where k is a nonnegative integer, each of the di is an integer between 0 and 9, and 0 � r < 0.0001. Then
Chop4(x) produces

1
10000Floor(10000k + 1000d1 + 100d2 + 10d3 + d4 + 10000r)

= 1
10000 (10000k + 1000d1 + 100d2 + 10d3 + d4)
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because 10000r < 1. It follows that Chop4 has the desired effect.

C01S01.057:

x 0.0 0.2 0.4 0.6 0.8 1.0
y 1.0 0.44 −0.04 −0.44 −0.76 −1.0

The sign change occurs between x = 0.2 and x = 0.4.

x 0.20 0.25 0.30 0.35 0.40
y 0.44 0.3125 0.19 0.0725 −0.04

The sign change occurs between x = 0.35 and x = 0.40.

x 0.35 0.36 0.37 0.38 0.39 0.40
y 0.0725 0.0496 0.0269 0.0044 −0.0179 −0.04

From this point on, the data for y will be rounded.

x 0.380 0.382 0.384 0.386 0.388 0.390
y 0.0044 −0.0001 −0.0045 −0.0090 −0.0135 −0.0179

Answer (rounded to two places): 0.38. The quadratic formula yields the two roots 1
2

(
3±
√

5
)
; the smaller

of these is approximately 0.381966011250105151795.

Problems 58 through 66 are worked in the same way as Problem 57.

C01S01.058: The sign change intervals are [2, 3], [2.6, 2.8], [2.60, 2.64], and [2.616, 2.624]. Answer:
1
2

(
3 +
√

5
)
≈ 2.62.

C01S01.059: The sign change intervals are [1, 2], [1.2, 1.4], [1.20, 1.24], [1.232, 1.240], and [1.2352, 1.2368].
Answer: −1 +

√
5 ≈ 1.24.

C01S01.060: The sign change intervals are [−4, −3], [−3.4, −3.2], [−3.24, −3.20], [−3.240, −3.232], and
[−3.2368, −3.2352]. Answer: −1−

√
5 ≈ −3.24.

C01S01.061: The sign change intervals are [0, 1], [0.6, 0.8], [0.68, 0.72], [0.712, 0.720], and [0.7184, 0.7200].
Answer: 1

4

(
7−
√

17
)
≈ 0.72.

C01S01.062: The sign change intervals are [2, 3], [2.6, 2.8], [2.76, 2.80], [2.776, 2.784], and [2.7792, 2.7808].
Answer: 1

4

(
7 +
√

17
)
≈ 2.78.

C01S01.063: The sign change intervals are [3, 4], [3.2, 3.4], [3.20, 3.24], [3.208, 3.216], and [3.2080, 3.2096].
Answer: 1

2

(
11−

√
21

)
≈ 3.21.

C01S01.064: The sign change intervals are [7, 8], [7.6, 7.8], [7.76, 7.80], [7.784, 7.792], and [7.7904, 7.7920].
Answer: 1

2

(
11 +

√
21

)
≈ 7.79.

C01S01.065: The sign change intervals are [1, 2], [1.6, 1.8], [1.60, 1.64], [1.608, 1.616], [1.6144, 1.6160],
and [1.61568, 1.61600]. Answer: 1

6

(
−23 +

√
1069

)
≈ 1.62.

C01S01.066: The sign change intervals are [−10, −9], [−9.4, −9.2], [−9.32, −9.28], [−9.288, −9.280], and
[−9.2832, −9.2816]. Answer: 1

6

(
−23−

√
1069

)
≈ −9.28.
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Section 1.2

C01S02.001: The slope of L is m = (3− 0)/(2− 0) = 3
2 , so L has equation

y − 0 =
3
2
(x− 0); that is, 2y = 3x.

C01S02.002: Because L is vertical and (7, 0) lies on L, every point on L has Cartesian coordinates (7, y)
for some number y (and every such point lies on L). Hence an equation of L is x = 7.

C01S02.003: Because L is horizontal, it has slope zero. Hence an equation of L is

y − (−5) = 0 · (x− 3); that is, y = −5.

C01S02.004: Because (2, 0) and (0, −3) lie on L, it has slope (0 + 3)/(2− 0) = 3
2 . Hence an equation of

L is

y − 0 = 3
2 (x− 2); that is, y = 3

2x− 3.

C01S02.005: The slope of L is (3− (−3))/(5− 2) = 2, so an equation of L is

y − 3 = 2(x− 5); that is, y = 2x− 7.

C01S02.006: An equation of L is y − (−4) = 1
2 (x− (−1)); that is, 2y + 7 = x.

C01S02.007: The slope of L is tan(135◦) = −1, so L has equation

y − 2 = −1 · (x− 4); that is, x+ y = 6.

C01S02.008: Equation: y − 7 = 6(x− 0); that is, y = 6x+ 7.

C01S02.009: The second line’s equation can be written in the form y = −2x+10 to show that it has slope
−2. Because L is parallel to the second line, L also has slope −2 and thus equation y − 5 = −2(x− 1).

C01S02.010: The equation of the second line can be rewritten as y = − 1
2x+ 17

2 to show that it has slope
− 1

2 . Because L is perpendicular to the second line, L has slope 2 and thus equation y − 4 = 2(x+ 2).

C01S02.011: x2 − 4x+ 4 + y2 = 4: (x− 2)2 + (y − 0)2 = 22. Center (2, 0), radius 2.

C01S02.012: x2 + y2 + 6y + 9 = 9: (x− 0)2 + (y + 3)2 = 32. Center (0,−3), radius 3.

C01S02.013: x2 + 2x+ 1 + y2 + 2y + 1 = 4: (x+ 1)2 + (y + 1)2 = 22. Center (−1, −1), radius 2.

C01S02.014: x2 + 10x+ 25 + y2 − 20y + 100 = 25: (x+ 5)2 + (y − 10)2 = 52. Center (−5, 10), radius 5.

C01S02.015: x2 + y2 +x− y = 1
2 : x2 +x+ 1

4 + y2− y+ 1
4 = 1; (x+ 1

2 )2 +(y− 1
2 )2 = 1. Center: (− 1

2 ,
1
2 ),

radius 1.

C01S02.016: x2 + y2− 2
3x−

4
3y = 11

9 : x2− 2
3x+ 1

9 + y2− 4
3y+ 4

9 = 16
9 ; (x− 1

3 )2 +(y− 2
3 )2 = ( 4

3 )2. Center
( 1
3 ,

2
3 ), radius 4

3 .

1



C01S02.017: y = (x− 3)2: Opens upward, vertex at (3, 0).

C01S02.018: y − 16 = −x2: Opens downward, vertex at (0, 16).

C01S02.019: y − 3 = (x+ 1)2: Opens upward, vertex at (−1, 3).

C01S02.020: 2y = x2 − 4x+ 4 + 4: y − 2 = 1
2 (x− 2)2. Opens upward, vertex at (2, 2).

C01S02.021: y = 5(x2 + 4x+ 4) + 3 = 5(x+ 2)2 + 3: Opens upward, vertex at (−2, 3).

C01S02.022: y = −(x2 − x) = −(x2 − x+ 1
4 ) + 1

4 : y − 1
4 = −(x− 1

2 )2. Opens downward, vertex at (1
2 ,

1
4 ).

C01S02.023: x2 − 6x+ 9 + y2 + 8y + 16 = 25: (x− 3)2 + (y + 4)2 = 55. Circle, center (3,−4), radius 5.

C01S02.024: (x− 1)2 + (y + 1)2 = 0: The graph consists of the single point (1,−1).

C01S02.025: (x+ 1)2 + (y + 3)2 = −10: There are no points on the graph.

C01S02.026: x2 + y2 − x+ 3y + 2.5 = 0: x2 − x+ 0.25 + y2 + 3y + 2.25 = 0: (x− 0.5)2 + (y + 1.5)2 = 0.
The graph consists of the single point (0.5,−1.5).

C01S02.027: The graph is the straight line segment connecting the two points (−1, 7) and (1,−3)
(including those two points).

C01S02.028: The graph is the straight line segment connecting the two points (0, 2) and (2,−8), including
the first of these two points but not the second.

C01S02.029: The graph is the parabola that opens downward, symmetric around the y-axis, with vertex
at (0, 10) and x-intercepts ±

√
10.

C01S02.030: The graph of y = 1 + 2x2 is a parabola that opens upwards, is symmetric around the y-axis,
and has vertex at (0, 1).

C01S02.031: The graph of y = x3 can be visualized by modifying the familiar graph of the parabola with
equation y = x2: The former may be obtained by multiplying the y-coordinate of the latter’s point (x, x2)
by x. Thus both have flat spots at the origin. For 0 < x < 1, the graph of y = x3 is below that of y = x2.
They cross at (1, 1), and for x > 1 the graph of y = x2 is below that of y = x3, with the difference becoming
arbitrarily large as x increases without bound. If the graph of y = x3 for x � 0 is rotated 180◦ around the
point (0, 0), the graph of y = x3 for x < 0 is the result.

C01S02.032: The graph of f(x) = x4 can be visualized by first visualizing the graph of y = x2. If the
y-coordinate of each point on this graph is replaced with its square (x4), the result is the graph of f . The
effect on the graph of y = x2 is to multiply the y-coordinate by x2, which is between 0 and 1 for 0 < |x| < 1
and which is larger than 1 for |x| > 1. Thus the graph of f superficially resembles that of y = x2, but is
much closer to the x-axis for |x| < 1 and much farther away for |x| > 1. The two graphs cross at (0, 0)
(where each has a flat spot) and at (±1, 1), but the graph of f is much steeper at the latter two points.

C01S02.033: To graph y = f(x) =
√

4− x2, note that y � 0 and that y2 = 4− x2; that is, x2 + y2 = 4.
Hence the graph of f is the upper half of the circle with center (0, 0) and radius 2.

C01S02.034: To graph y = f(x) = −
√

9− x2, note that y � 0 and that y2 = 9 − x2; that is, that
x2 + y2 = 9. Hence the graph of f is the lower half of the circle with center (0, 0) and radius 3.

2



-4 -2 2 4 6

-4

-2

2

4

C01S02.035: To graph f(x) =
√
x2 − 9, note that there is no graph for −3 < x < 3, that f(±3) = 0, and

that f(x) > 0 for x < −3 and for x > 3. If x is large positive, then
√
x2 − 9 ≈

√
x2 = x, so the graph of f

has x-intercept (3, 0) and rises as x increases, nearly coinciding with the graph of y = x for x large positive.
The case x < −3 is trickier. In this case, if x is a large negative number, then f(x) =

√
x2 − 9 ≈

√
x2 = −x

(Note the minus sign!). So for x � −3, the graph of f has x-intercept (−3, 0) and, for x large negative,
almost coincides with the graph of y = −x. Later we will see that the graph of f becomes arbitrarily steep
as x gets closer and closer to ±3.

C01S02.036: As x increases without bound—either positively or negatively—f(x) gets arbitrarily close
to zero. Moreover, if x is large positive then f(x) is negative and close to zero, so the graph of f lies just
below the x-axis for such x. Similarly, the graph of f lies just above the x-axis for x large negative. If x
is slightly less than 1 but very close to 1, then f(x) is the reciprocal of a tiny positive number, hence is a
large positive number. So the graph of f just to the left of the vertical line x = 1 almost coincides with the
top half of that line. Similarly, just to the right of the line x = 1, then graph of f almost coincides with the
bottom half of that line. There is no graph where x = 1, so the graph resembles the one in the next figure.
The only intercept is the y-intercept (0, 1). The graph correctly shows that the graph of f is increasing for
x < 1 and for x > 1.

C01S02.037: Note that f(x) is positive and close to zero for x large positive, so that the graph of f is just
above the x-axis—and nearly coincides with it—for such x. Similarly, the graph of f is just below the x-axis
and nearly coincides with it for x large negative. There is no graph where x = −2, but if x is slightly greater
than −2 then f(x) is the reciprocal of a very small positive number, so f(x) is large and nearly coincides
with the upper half of the vertical line x = −2. Similarly, if x is slightly less than −2, then the graph of
f(x) is large negative and nearly coincides with the the lower half of the line x = −3. The graph of f is
decreasing for x < −2 and for x > −2 and its only intercept is the y-intercept

(
0, 1

2

)
.

C01S02.038: Note that f(x) is very small but positive if x is either large positive or large negative. There
is no graph for x = 0, but if x is very close to zero, then f(x) is the reciprocal of a very small positive
number, and hence is large positive. So the graph of f is just above the x-axis and almost coincides with it
if |x| is large, whereas the graph of f almost coincides with the positive y-axis for x near zero. There are no
intercepts; the graph of f is increasing for x < 0 and is decreasing for x > 0.

3



C01S02.039: Note that f(x) > 0 for all x other than x = 1, where f is not defined. If |x| is large, then
f(x) is near zero, so the graph of f almost coincides with the x-axis for such x. If x is very close to 1, then
f(x) is the reciprocal of a very small positive number, hence f(x) is large positive. So for such x, the graph
of f(x) almost coincides with the upper half of the vertical line x = 1. The only intercept is (0, 1).

C01S02.040: Note first that f(x) is undefined at x = 0. To handle the absolute value symbol, we look at
two cases: If x > 0, then f(x) = 1; if x < 0, then f(x) = −1. So the graph of f consists of the part of the
horizontal line y = 1 for which x > 0, together with the part of the horizontal line y = −1 for which x < 0.

C01S02.041: Note that f(x) is undefined when 2x+ 3 = 0; that is, when x = − 3
2 . If x is large positive,

then f(x) is positive and close to zero, so the graph of f is slightly above the x-axis and almost coincides
with the x-axis. If x is large negative, then f(x) is negative and close to zero, so the graph of f is slightly
below the x-axis and almost coincides with the x-axis. If x is slightly greater than − 3

2 then f(x) is very
large positive, so the graph of f almost coincides with the upper half of the vertical line x = − 3

2 . If x is
slightly less than − 3

2 then f(x) is very large negative, so the graph of f almost coincides with the lower half
of that vertical line. The graph of f is decreasing for x < − 3

2 and also decreasing for x > − 3
2 . The only

intercept is at
(
0, 1

3

)
.

C01S02.042: Note that f(x) is undefined when 2x + 3 = 0; that is, when x = − 3
2 . If x is large positive

or large negative, then f(x) is positive and close to zero, so the graph of f is slightly above the x-axis and
almost coincides with the x-axis for |x| large. If x is close to − 3

2 then f(x) is very large positive, so the
graph of f almost coincides with the upper half of the vertical line x = − 3

2 . The graph of f is increasing for
x < − 3

2 and decreasing for x > − 3
2 . The only intercept is at

(
0, 1

9

)
.

C01S02.043: Given y = f(x) =
√

1− x, note that y � 0 and that y2 = 1− x; that is, x = 1− y2. So the
graph is the part of the parabola x = 1− y2 for which y � 0. This parabola has horizontal axis of symmetry
the y-axis, opens to the left (because the coefficient of y2 is negative), and has vertex (1, 0). Therefore the
graph of f is the upper half of this parabola.

C01S02.044: Note that the interval x < 1 is the domain of f , so there is no graph for x � 1. If x is a large
negative number, then the denominator is large positive, so that its reciprocal f(x) is very small positive.
As x gets closer and closer to 1 (while x < 1), the denominator approaches zero, so its reciprocal f(x) takes
on arbitrarily large positive values. So the graph of f is slightly above the x-axis and almost coincides with
that axis for x large negative; the graph of f almost coincides with the upper half of the vertical line x = 1
for x near (and less than) 1. The graph of f is increasing for all x < 1 and (0, 1) is the only intercept.

C01S02.045: Note that f(x) is defined only if 2x + 3 > 0; that is, if x > − 3
2 . Note also that f(x) > 0

for all such x. If x is large positive, then f(x) is positive but near zero, so the graph of f is just above the
x-axis and almost coincides with it. If x is very close to − 3

2 (but larger), then the denominator in f(x) is
very tiny positive, so the graph of f almost coincides with the upper half of the vertical line x = − 3

2 for
such x. The graph of f is decreasing for all x > − 3

2 .

C01S02.046: Given: f(x) = |2x − 2|. Case 1: x � 1. Then 2x − 2 � 0, so that f(x) = 2x − 2. Because
f(1) = 0, the graph of f for x � 1 consists of the part of the straight line through (1, 0) with slope 2. Case
2: x < 1. Then 2x − 2 < 0, so that f(x) = −2x + 2. The line y = −2x + 2 passes through (1, 0), so the
graph of f for x < 1 consists of the part of the straight line through (1, 0) with slope −2.

C01S02.047: Given: f(x) = |x|+ x. If x � 0 then f(x) = x+ x = 2x, so if x � 0 then the graph of f is
the part of the straight line through (0, 0) with slope 2 for which x � 0. If x < 0 then f(x) = −x+ x = 0,
so the rest of the graph of f coincides with the negative x-axis.
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C01S02.048: Given: f(x) = |x− 3|. If x � 0 then f(x) = x− 3, so the graph of f consists of the straight
line through (3, 0) with slope 1 for x � 3. If x < 0 then f(x) = −x + 3, so the graph of f consists of that
part of the straight line with slope −3 and y-intercept (0, 3). These two line segments fit together perfectly
at the point (3, 0); there is no break or gap or discontinuity in the graph of f .

C01S02.049: Given: f(x) = |2x + 5|. The two cases are determined by the point where 2x + 5 changes
sign, which is where x = − 5

2 . If x � − 5
2 , then f(x) = 2x + 5, so the graph of f consists of the part of the

line with slope 2 and y-intercept 5 for which x � − 5
2 . If x < − 5

2 , then the graph of f is the part of the
straight line y = −2x− 5 for which x < − 5

2 .

C01S02.050: The graph consists of the part of the line y = −x for which x < 0 together with the part of
the parabola y = x2 for which x � 0. The two graphs fit together perfectly at the point (0, 0); there is no
break, gap, jump, or discontinuity there. The graph is shown next.

C01S02.051: The graph consists of the horizontal line y = 0 for x < 0 together with the horizontal line
y = 1 for x � 0. As x moves from left to right through the value zero, there is an abrupt and unavoidable
“jump” in the value of f from 0 to 1. That is, f is discontinuous at x = 0. To see part of the graph of f ,
enter the Mathematica commands

f [ x ] := If [ x < 0, 0, 1]

Plot [ f [ x ], {x, −3.5, 3.5 }, AspectRatio −> Automatic, PlotRange −> { { −3.5, 3.5 }, {−1.5, 2.5 }} ];

C01S02.052: The graph of f consists of the open intervals . . . , (−2,−1), (−1, 0), (0, 1), (1, 2), (2, 3),
. . . on the x-axis together with the isolated points . . . , (−1, 1), (0, 1), (1, 1), (2, 1), (3, 1), . . . . There is a
discontinuity at every integral value of x. A Mathematica plot of

f [ x ] := If [IntegerQ[x], 1, 0 ]

will produce a graph that’s completely different because Mathematica, like most plotting programs, “connects
the dots,” in effect assuming that every function is continuous at every point in its domain.

C01S02.053: Because the graph of the greatest integer function changes at each integral value of x, the
graph of f(x) = [[2x]] changes twice as often—at each integral multiple of 1

2 . So as x moves from left to
right through such points, the graph jumps upward one unit. Thus there is a discontinuity at each integral
multiple of 1

2 . Because f is constant otherwise, these are the only discontinuities. To see something like the
graph of f , enter the Mathematica commands

5



f [ x ] := Floor [ 2∗x ];

Plot [ f [ x ], {x, −3.5, 3.5 }, AspectRatio −> Automatic, PlotRange −> { { −3.5, 3.5 }, {−4.5, 4.5 }} ];

Mathematica will draw vertical lines connecting points that it shouldn’t, making the graph look like treads
and risers of a staircase, whereas only the treads are on the graph.

C01S02.054: The function f is undefined at x = 1. The graph consists of the horizontal line y = 1 for
x > 1 together with the horizontal line y = −1 for x < 1. There is a discontinuity at x = 1.

C01S02.055: Given: f(x) = [[x]]. If n is an integer and n � x < n + 1, then express x as x = n + ((x))
where ((x)) = x− [[x]] is the fractional part of x. Then f(x) = n−x = n− [n+((x))] = −((x)). So f(x) is the
negative of the fractional part of x. So as x ranges from n up to (but not including) n+ 1, f(x) begins at 0
and drops linearly down not quite to −1. That is, on the interval (n, n + 1), the graph of f is the straight
line segment connecting the two points (n, 0) and (n+ 1,−1) with the first of these points included and the
second excluded. There is a discontinuity at each integral value of x.

C01S02.056: Given: f(x) = [[x]] + [[−x]] + 1. If x is an integer, then f(x) = x+ (−x) + 1 = 1. If x is not
an integer, then choose the integer n such that n < x < n+ 1. Then −(n+ 1) < −x < −n, so

f(x) = [[x]] + [[−x]] + 1 = n− (n+ 1) + 1 = 0.

So f is the same function as the one defined in Problem 52 and has the same discontinuities: one at each
integral value of x.

C01S02.057: Because y = 2x2 − 6x+ 7 = 2(x2 − 3x+ 3.5) = 2(x2 − 3x+ 2.25 + 1.25) = 2(x− 1.5)2 + 2.5,
the vertex of the parabola is at (1.5, 2.5).

C01S02.058: Because y = 2x2−10x+11 = 2(x2−5x+5.5) = 2(x2−5x+6.25−0.75) = 2(x−2.5)2−1.5,
the vertex of the parabola is at (2.5,−1.5).

C01S02.059: Because y = 4x2 − 18x+ 22 = 4(x2 − (4.5)x+ 5.5) = 4(x2 − (4.5)x+ 5.0625 + 0.4375)
= 4(x− 2.25)2 + 1.75, the vertex of the parabola is at (2.25, 1.75).

C01S02.060: Because y = 5x2 − 32x+ 49 = 5(x2 − (6.4)x+ 9.8) = 5(x2 − (6.4)x+ 10.24− 0.44)
= 5(x− 3.2)2 − 2.2, the vertex of the parabola is at (3.2,−2.2).

C01S02.061: Because y = −8x2 + 36x− 32 = −8(x2 − (4.5)x+ 4) = −8(x2 − (4.5)x+ 5.0625− 1.0625)
= −8(x− 2.25)2 + 8.5, the vertex of the parabola is at (2.25, 8.5).

C01S02.062: Because y = −5x2 − 34x− 53 = −5(x2 + (6.8)x+ 10.6) = −5(x2 + (6.8)x+ 11.56− 0.96)
= −5(x+ 3.4)2 + 4.8, the vertex of the parabola is at (−3.4, 4.8).

C01S02.063: Because y = −3x2−8x+3 = −3
(
x2 + 8

3x− 1
)

= −3
(
x2 + 8

3x+ 16
9 −

25
9

)
= −3

(
x+ 4

3

)2+ 25
3 ,

the vertex of the parabola is at
(
− 4

3 ,
25
3

)
.

C01S02.064: Because y = −9x2 + 34x− 28 = −9
(
x2 − 34

9 x+ 28
9

)
= −9

(
x2 − 34

9 x+ 289
81 −

37
81

)
= −9

(
x− 17

9

)2 + 37
9 , the vertex of the parabola is at

(
17
9 ,

37
9

)
.

C01S02.065: To find the maximum height y = −16t2 + 96t of the ball, we find the vertex of the parabola:
y = −16(t2 − 6t) = −16(t2 − 6t+ 9− 9) = −16(t− 3)2 + 144. The vertex of the parabola is at (3, 144) and
therefore the maximum height of the ball is 144 ft.
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C01S02.066: Recall that the area of the rectangle is given by y = A(x) = x(50−x). To maximize A(x) we
find the vertex of the parabola: y = 50x−x2 = −(x2− 50x) = −(x2− 50x+625− 625) = −(x− 25)2 +625.
Because the vertex of the parabola is at (25, 625) and x = 25 is in the domain of the function A, the maximum
value of A(x) occurs at x = 25 and is A(25) = 625 (ft2).

C01S02.067: If two positive numbers x and y have sum 50, then y = 50− x and x < 50 (because y > 0).
To maximize their product p(x) we find the vertex of the parabola

y = p(x) = x(50− x) = −(x2 − 50x)

= −(x2 − 50x+ 625− 625) = −(x− 25)2 + 625,

which is at (25, 625). Because 0 < 25 < 50, x = 25 is in the domain of the product function p(x) = x(50−x),
and hence the maximum value of the product of x and y is p(25) = 625.

C01S02.068: Recall that if x new wells are drilled, then the resulting total production p is given by
p(x) = 4000 + 100x− 5x2. To maximize p(x) we find the vertex of the parabola

y = p(x) = −5x2 + 100x+ 4000 = −5(x2 − 20x− 800)

= −5(x2 − 20x+ 100− 900) = −5(x− 10)2 + 4500.

The vertex of the parabola y = p(x) is therefore at (10, 4500). Because x = 10 is in the domain of p (it is
an integer between 0 and 40) and because the parabola opens downward (the coefficient of x2 is negative),
x = 10 indeed maximizes p(x).

C01S02.069: The graph looks like the graph of y = |x| because the slope of the left-hand part is −1 and
that of the right-hand part is 1; but the vertex is shifted to (−1, 0), so—using the translation principle—the
graph in Fig. 1.2.29 must be the graph of f(x) = |x+ 1|, −2 � x � 2.

C01S02.070: Because the graph in Fig. 1.2.30 is composed of three straight-line segments, it can be
described most easily using a “three-part” function:

f(x) =




2x+ 6 if −3 � x < −2;
2 if −2 � x < 2;
1
3 (10− 2x) if 2 � x � 5.

C01S02.071: The graph in Fig. 1.2.31 is much like the graph of the greatest integer function—it takes
on only integral values—but the “jumps” occur twice as often, so this must be very like—indeed, it is
exactly—the graph of f(x) = [[2x[], −1 � x < 2.

C01S02.072: The graph in Fig. 1.2.32 resembles the graph of the greatest integer function in that it takes
on all integral values and only those, but it is decreasing rather than increasing and the “jumps” occur
only at the even integers. Thus it must be the graph of something similar to f(x) = −[[ 12x]], −4 � x < 4.
Comparing values of f at x = −4, −3, −2.1, −2, −1, −0.1, 0, 1, 1.9, 2, 3, and 3.9 with points on the graph
is sufficient evidence that the graph of f is indeed that shown in the figure.

C01S02.073: Clearly x(t) = 45t for the first hour; that is, for 0 � t � 1. In the second hour the graph
of x(t) must be a straight line (because of constant speed) of slope 75, thus with equation x(t) = 75t + C

for some constant C. The constant C is determined by the fact that 45t and 75t+C must be equal at time
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t = 1, as the automobile cannot suddenly jump from one position to a completely different position in an
instant. Hence 45 = 75 + C, so that C = −30. Therefore

x(t) =
{

45t if 0 � t � 1;
75t− 30 if 1 < t � 2.

To see the graph of x(t), plot in Mathematica

x[t ] := If[t < 1, 45∗t, 75∗t − 30 ]

on the interval 0 � t � 2.

C01S02.074: The graph of x(t) will consist of three straight-line segments (because of the constant speeds),
the first of slope 60 for 0 � t � 1, the second of slope zero for 1 � t � 1.5, and the third of slope 60 for
1.5 � t � 2.5. The first pair must coincide when t = 1 and the second pair must coincide when t = 1.5
because the graph of x(t) can have no discontinuities. So if we write x(t) = 60 for 0 � t � 1, we must have
x(t) = 60 for 1 � t � 1.5. Finally, x(t) = 60t+ C for some constant C if 1.5 � t � 2.5, but the latter must
equal 60 when t = 1.5, so that C = −30. Hence

x(t) =




60t if 0 � t � 1,
60 if 1 < t � 1.5,
60t− 30 if 1.5 < t � 2.5.

The graph of x(t) is shown next.

C01S02.075: The graph must consist of two straight-line segments (because of the constant speeds). The
first must have slope 60, so we have x(t) = 60t for 0 � t � 1. The second must have slope −30, negative
because you’re driving in the reverse direction, so x(t) = −30t + C for some constant C if 1 � t � 3. The
two segments must coincide when t = 1, so that 60 = −30 + C. Thus C = 90 and thus a formula for x(t) is

x(t) =
{

60t if 0 � t � 1,
90− 30t if 1 < t � 3.

C01S02.076: We need three straight line segments, the first of slope 60 for 0 � t � 0.5, the second of
slope −60 for 0.5 � t � 1, and the third of slope 60 for 1 � t � 3. Clearly the first must be x(t) = 60t
for 0 � t � 0.5. The second must have the form x(t) = −60t + C for some constant C, and the first and
second must coincide when t = 0.5, so that 30 = −30 + C, and thus C = 60. The third segment must have
the form x(t) = 60t+K for some constant K, and the second and third must coincide when t = 1, so that
0 = 60 +K, and so K = −60. Therefore a formula for x(t) is
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x(t) =




60t if 0 � t � 0.5,
60− 60t if 0.5 < t � 1,
60t− 60 if 1 < t � 3.

The graph of x(t) is shown next.

C01S02.077: Initially we work in units of pages and cents (to avoid decimals and fractions). The graph
of C, as a function of p, must be a straight line segment, and its slope is (by information given)

C(79)− C(34)
79− 34

=
305− 170
79− 34

=
135
45

= 3.

Thus C(p) = 3p+K for some constant K. So 3·34+K = 170, and it follows that K = 68. So C(p) = 3p+68,
1 � p � 100, if C is to be expressed in cents. If C is to be expressed in dollars, we have

C(p) = (0.03)p+ 0.68, 1 � p � 100.

The “fixed cost” is incurred regardless of the number of pamphlets printed; it is $0.68. The “marginal cost”
of printing each additional page of the pamphlet is the coefficient $0.03 of p.

C01S02.078: We are given C(x) = a+ bx where a and b are constants; we are also given

99.45 = C(207) = a+ 207b and

79.15 = C(149) = a+ 149b.

Subtraction of the second equation from the first yields 20.3 = 58b, so that b = 0.35. Substitution of this
datum in the first of the preceding equations then yields

99.45 = a+ 207 · 0.35 = a+ 72.45, so that a = 27.

Therefore C(x) = 27 + (0.35)x, 0 � x < +∞. Thus if you drive 175 miles on the third day, the cost for
that day will be C(175) = 88.25 (in dollars). The slope b = 0.35 represents a cost of $0.35 per mile. The
C-intercept a = 27 represents the daily base cost of renting the car. In civil engineering and in some branches
of applied mathematics, the intercept a = 27 is sometimes called the offset, representing the vertical amount
by which C(0) is “offset” from zero.

C01S02.079: Suppose that the letter weighs x ounces, 0 < x � 16. If x � 8, then the cost is simply 8
(dollars). If 8 < x � 9, add $0.80; if 9 < x � 10, add $1.60, and so on. Very roughly, one adds $0.80 if
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[[x− 8]] = 1, $1.60 if [[x− 8]] = 2, and so on. But this isn’t quite right—we are using the Floor function of
Section 1.1, whereas we should really be using the Ceiling function. By the result of Problem 51 of that
section, we see that instead of cost

C(x) = 8 + (0.8)[[x− 8]]

for 8 < x � 16, we should instead write

C(x) =
{

8 if 0 < x � 8,
8− (0.8)[[−(x− 8)]] if 8 < x � 16.

The graph of the cost function is shown next.

C01S02.080: Solve this problem like Problem 79 (but it is more complicated). Result:

C(x) =




3 if 0 < x � 2;
3− 0.5[[−2(x− 2)]] if 2 < x � 10;
11− 0.5[[−(x− 10)]] if 10 < x � 20.

The graph of C is shown below.

C01S02.081: Boyle’s law states that under conditions of constant temperature, the product of the pressure
p and the volume V of a fixed mass of gas remains constant. If we assume that pV = c, a constant, for the
given data, we find that the given five data points yield the values c = 1.68, 1.68, 1.675, 1.68, and 1.62. The
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average of these is 1.65 (to two places) and should be a good estimate of the true value of c. Alternatively,
you can use a computer algebra program to find c; in Mathematica, for example, the command Fit will fit
given data points to a sum of constant multiples of functions you specify. We used the commands

data = {{0.25, 6.72}, {1.0, 1.68}, {2.5, 0.67}, {4.0, 0.42}, {6.0, 0.27}};
Fit [ data, { 1/p }, p ]

to find that

V (p) =
1.67986

p

yields the best least-squares fit of the given data to a function of the form V (p) = c/p. We rounded the
numerator to 1.68 to find the estimates V (0.5) ≈ 3.36 and V (5) ≈ 0.336 (L). The graph of V (p) is shown
next.

C01S02.082: It seems reasonable to assume that the maximum average temperature occurs on July 15
and the minimum on January 15, so that a multiple of a cosine function should fit the given data if we take
t = 0 on July 15. So we assume a solution of the form

T (t) = c1 + c2 cos
(

2πt
365

)
.

Also assuming that the average year-round daily temperature is the average of the minimum and the max-
imum, we find that c1 = 61.25, so we could find c2 by the averaging method of Problem 81. Alternatively,
we could use the Fit command in Mathematica to find both c1 and c2 simultaneously as follows:

data = {{0, 79.1}, {62, 70.2}, {123, 52.3}, {184, 43.4}, {224, 52.2}, {285, 70.1}};
Fit [ data, { 1, Cos[2∗Pi∗t/365] }, t ]

The result is the formula

T (t) = 62.9602 + (17.437) cos
(

2πt
365

)
.

The values predicted by this function at the six dates in question are [approximately] 80.4, 71.4, 53.9, 45.5,
49.8, and 66.3. Not bad, considering we are dealing with weather, a most unpredictable phenomenon. The
graph of T (t) is shown next. Units on the horizontal axis are days, measured from July 15. Units on
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the vertical axis are degrees Fahrenheit. Remember that these are average daily temperatures; it is not
uncommon for a winter low in Athens to be below 28◦F and for a summer high to be as much as 92◦F.
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Section 1.3

C01S03.001: The domain of f is R, the set of all real numbers; so is the domain of g, but g(x) = 0 when
x = 1 and when x = −3. So the domain of f + g and f · g is the set R and the domain of f/g is the set of
all real numbers other than 1 and −3. Their formulas are

(f + g)(x) = x2 + 3x− 2,

(f · g)(x) = (x+ 1)(x2 + 2x− 3) = x3 + 3x2 − x− 3, and
(
f

g

)
(x) =

x+ 1
x2 + 2x− 3

.

C01S03.002: The domain of f consists of all real numbers other than 1 and the domain of g consists of
all real numbers other than − 1

2 . Hence the domain of f + g, f · g, and f/g consists of all real numbers other
than − 1

2 and 1. For such x,

(f + g)(x) =
1

x− 1
+

1
2x+ 1

=
3x

(x− 1)(2x+ 1)
,

(f · g)(x) =
1

(x− 1)(2x+ 1)
, and

(
f

g

)
(x) =

2x+ 1
x− 1

.

Note that, in spite of the last equation, the domain of f/g does not include the number − 1
2 .

C01S03.003: The domain of f is the interval [0, +∞) and the domain of g is the interval [2, +∞). Hence
the domain of f + g and f · g is the interval [2, +∞), but because g(2) = 0, the domain of f/g is the open
interval (2, +∞). The formulas for these combinations are

(f + g)(x) =
√
x+
√
x− 2,

(f · g)(x) =
√
x
√
x− 2 =

√
x2 − 2x, and

(
f

g

)
(x) =

√
x√

x− 2
=

√
x

x− 2
.

C01S03.004: The domain of f is the interval [−1, +∞) and the domain of g is the interval (−∞, 5].
Hence the domain of f + g and f · g is the closed interval [−1, 5], but because g(5) = 0, the domain of f/g
is the half-open interval [−1, 5). Their formulas are

(f + g)(x) =
√
x+ 1 +

√
5− x, (f · g)(x) =

√
x+ 1

√
5− x =

√
5 + 4x− x2, and

(
f

g

)
(x) =

√
x+ 1√
5− x

=

√
x+ 1
5− x .

C01S03.005: The domain of f is the set R of all real numbers; the domain of g is the open interval (−2, 2).
Hence the domain of f + g and f · g is the open interval (−2, 2); because g(x) is never zero, the domain of
f/g is the same. Their formulas are
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(f + g)(x) =
√
x2 + 1 +

1√
4− x2

, (f · g)(x) =
√
x2 + 1√
4− x2

, and

(
f

g

)
(x) =

√
x2 + 1

√
4− x2 =

√
4 + 3x2 − x4.

C01S03.006: The domain of f is the set of all real numbers other than 2 and the domain of g is the set
of all real numbers other than −2. Hence the domain of f + g and f · g is the set of all real numbers other
than ±2. But because g(−1) = 0, −1 does not belong to the domain of f/g, which therefore consists of all
real numbers other than −2, −1, and 2. The formulas of these combinations are

(f + g)(x) =
x− 1
x− 2

+
x+ 1
x+ 2

=
2x2 − 4
x2 − 4

, (f · g)(x) =
x− 1
x− 2

· x+ 1
x+ 2

=
x2 − 1
x2 − 4

, and

(
f

g

)
(x) =

x− 1
x− 2

· x+ 2
x+ 1

=
x2 + x− 2
x2 − x− 2

.

C01S03.007: f(x) = x3 − 3x+ 1 has 1, 2, or 3 zeros, approaches +∞ as x does, and approaches −∞ as
x does. Because f(0) �= 0, the graph does not match Fig. 1.3.26, so it must match Fig. 1.3.30.

C01S03.008: f(x) = 1+4x−x3 has one, two, or three zeros, approaches −∞ as x→ +∞ and approaches
+∞ as x→ −∞. Hence its graph must be the one shown in Fig. 1.3.28.

C01S03.009: f(x) = x4−5x3 +13x+1 has four or fewer zeros and approaches +∞ as x approaches either
+∞ or −∞. Hence its graph must be the one shown in Fig. 1.3.31.

C01S03.010: f(x) = 2x5 − 10x3 + 6x − 1 has between one and five zeros, approaches +∞ as x does,
and approaches −∞ as x does. So its graph might be the one shown in Fig. 1.3.26, the one in Fig. 1.3.29,
or the one in Fig. 1.3.30. But f(0) �= 0, so Fig. 1.3.26 is ruled out, and we have already found that the
graph in Fig. 1.3.30 matches the function in Problem 7. Therefore the graph of f must be the one shown
in Fig. 1.3.29. Alternatively, the observation that f(x) changes sign on the five intervals [−3, −2], [−1, 0],
[0, 0.5], [0.5, 1], and [2, 3] shows that f(x) has five zeros; therefore the graph must be the one shown in
Fig. 1.3.29.

C01S03.011: f(x) = 16 + 2x2− x4 approaches −∞ as x approaches either +∞ or −∞, so its graph must
be the one shown in Fig. 1.3.27.

C01S03.012: f(x) = x5 +x approaches +∞ as x does and approaches −∞ as x does. Moreover, f(x) > 0
if x > 0 and f(x) < 0 if x < 0, which rules out every graph except for the one shown in Fig. 1.3.26.

C01S03.013: The graph of f has vertical asymptotes at x = −1 and at x = 2, so its graph must be the
one shown in Fig. 1.3.34.

C01S03.014: The graph of f(x) has vertical asymptotes at x = ±3, so its graph must be the one shown
in Fig. 1.3.32.

C01S03.015: The graph of f has no vertical asymptotes and has maximum value 3 when x = 0. Hence
its graph must be the one shown in Fig. 1.3.33.

C01S03.016: The denominator x3 − 1 = (x − 1)(x2 + x + 1) of f(x) is zero only when x = 1 (because
x2 + x+ 1 > x2 + x+ 1

4 =
(
x+ 1

2

)2 � 0 for all x), so its graph must be the one shown in Fig. 1.3.35.
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C01S03.017: The domain of f(x) = x
√
x+ 2 is the interval [−2, +∞), so its graph must be the one

shown in Fig. 1.3.38.

C01S03.018: The domain of f(x) =
√

2x− x2 consists of those numbers for which 2x − x2 � 0; that is,
x(2− x) � 0. This occurs when x and 2− x have the same sign and also when either is zero. If x > 0 and
2 − x > 0, then 0 < x < 2. If x < 0 and 2 − x < 0, then x < 0 and x > 2, which is impossible. Hence the
domain of f is the closed interval [0, 2]. So the graph of f must be the one shown in Fig. 1.3.36.

C01S03.019: The domain of f(x) =
√
x2 − 2x consists of those numbers x for which x2 − 2x � 0; that

is, x(x − 2) � 0. This occurs when x and x − 2 have the same sign and also when either is zero. If x > 0
and x− 2 > 0, then x > 2; if x < 0 and x− 2 < 0, then x < 0. So the domain of f is the union of the two
intervals (−∞, 0] and [2, +∞). So the graph of f must be the one shown in Fig. 1.3.39.

C01S03.020: The domain of f(x) = 2(x2 − 2x)1/3 is the set R of all real numbers because every real
number has a [unique] cube root. By the analysis in the solution of Problem 19, x2 − 2x < 0 if 0 < x < 2
and x2 − 2x � 0 otherwise. Hence f(x) < 0 if 0 < x < 2 and f(x) � 0 otherwise. This makes it certain that
the graph of f is the one shown in Fig. 1.3.37.

C01S03.021: Good viewing window: −2.5 � x � 2.5. Three zeros, approximately −1.88, 0.35, and 1.53.

C01S03.022: Good viewing window: −3 � x � 3. Two zeros: −2 and 1.

C01S03.023: Good viewing window: −3.5 � x � 2.5. One zero, approximately −2.10.

C01S03.024: Good viewing window: −1.6 � x � 2.8. Four zeros, approximately −1.28, 0.61, 1.46, and
2.20.

C01S03.025: Good viewing window: −1.6 � x � 2.8. Three zeros: approximately −1.30, exactly 1, and
approximately 2.30.

C01S03.026: Good viewing window: −1.6 � x � 2.8. Two zeros, approximately −1.33 and 2.37.

C01S03.027: Good viewing window: −7.5 � x � 8.5. Three zeros: Approximately −5.70, −2.22, and
7.91.

C01S03.028: Good viewing window: None; it takes three: −22 � x � 8 shows that there is a zero near
−20 and that the graph crosses the x-axis somewhere in the vicinity of x = 0. The window −3 � x � 3
shows that something interesting happens near x = −1 and that there is a zero near 1.8. The window
−1.4 � x � 0.4 shows that there are zeros near −1.1 and −0.8. Closer approximations to these four zeros
are −19.88, −1.09, −0.79, and 1.76.

C01S03.029: The viewing window −11 � x � 8 shows that there are five zeros, although the two near 2.5
may be only one. The window 1.5 � x � 3.5 shows that there are in fact two zeros near 2.5. Approximate
values of the five zeros are −10.20, −7.31, 1.98, 3.25, and 7.28.

C01S03.030: The viewing window −16 � x � 16 shows that there are zeros near ±15 and perhaps a few
more near x = 0. The window −4 � x � 4 shows that there are in fact four zeros near x = 0. Approximate
values of the six are ±15.48, ±3.04, and ±1.06.

C01S03.031: Every time c increases by 1, the graph is raised 1 unit (in the positive y-direction), but there
is no other change.
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C01S03.032: The graph starts with two “bends” when c = −5. As c increases the bends become narrower
and narrower and disappear when c = 0. Then the graph gets steeper and steeper. See the following figure.

C01S03.033: The graph always passes through (0, 0) and is tangent to the x-axis there. When c = −5
there is another zero at x = 5. As c increases this zero shifts to the left until it coincides with the one at
x = 0 when c = 0. At this point the “bend” in the graph disappears. As c increases from 1 to 5, the bend
reappears to the left of the x-axis and the second zero reappears at −c.

C01S03.034: The graph is always tangent to the x-axis at x = 0 and is always symmetric around the
y-axis. When c = −5 there is another pair of zeros near ±2.2. As c increases these zeros move closer to
x = 0 and the bends in the graph get smaller and smaller. They disappear when c = 0 and, at the same
time, the zeros merge with the one at x = 0. Thereafter the graph simply becomes steeper and steeper. See
the following figure.

C01S03.035: The graph is always symmetric around the origin (and, consequently, always passes through
the origin). When c = −5 there is another pair of zeros near ±2.2. As c increases the graph develops positive
slope at x = 0, two more bends, and two more zeros on either side of the origin. They move outward and,
when c = −2, they coincide with the outer pair of zeros, which have also been moving toward the origin.
They reach the origin when c = 0 and thereafter the graph simply becomes steeper and steeper.

C01S03.036: As c increases the “mountain” around the y-axis gets narrower and steeper. See the following
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figure.

C01S03.037: As c increases the graph becomes wider and taller; its shape does not seem to change very
much.

C01S03.038: The length of the airfoil is approximately 1.0089 and its width is approximately 0.200057.
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Section 1.4

C01S04.001: Because g(x) = 2x increases—first slowly, then rapidly—on the set of all real numbers, with
values in the range (0, +∞), the given function f(x) = 2x − 1 must increase in the same way, but with
values in the range (−1, +∞). Therefore its graph is the one shown in Fig. 1.4.29.

C01S04.002: Given: f(x) = 2 − 3−x. The graph of g(x) = 3x increases, first slowly, then rapidly, on its
domain the set R of all real numbers. Hence h(x) = 3−x decreases, first rapidly, then slowly, on R, with
values in the interval (0, +∞). Hence j(x) = −3−x increases, first rapidly, then slowly, on R, with values
in the interval (−∞, 0). Therefore f(x) = 2− 3−x increases, first rapidly, then slowly, on R, with values in
the interval (−∞, 2). Therefore its graph must be the one shown in Fig. 1.4.33.

C01S04.003: The graph of f(x) = 1 + cosx is simply the graph of the ordinary cosine function raised 1
unit—moved upward 1 unit in the positive y-direction. Hence its graph is the one shown in Fig. 1.4.27.

C01S04.004: The graph of g(x) = 2 sinx resembles the graph of the ordinary sine function, but with
values ranging from −2 to 2. The graph of h(x) = −2 sinx is the same, but turned “upside down.” Add 2
to get f(x) = 2 − 2 sinx and the graph of h is raised 2 units, thus taking values in the range [0, 4]. So the
graph of f is the one shown in Fig. 1.4.32.

C01S04.005: The graph of g(x) = 2 cosx resembles the graph of the cosine function, but with all values
doubled, so that its range is the interval [−2, 2]. Add 1 to get f(x) = 1 + 2 cosx and the range is now the
interval [−1, 3]. So the graph of f is the one shown in Fig. 1.4.35.

C01S04.006: Turn the graph of the sine function upside down, then add 2 to get f(x) = 2 − sinx, with
range the interval [1, 3]. Hence the graph of f is the one shown in Fig. 1.4.28.

C01S04.007: The graph of g(x) = 2x increases, first slowly, then rapidly, on the set of all real numbers,
with range the interval (0, +∞). So its reciprocal h(x) = 2−x decreases, first rapidly, then slowly, with the
same domain and range. Multiply by x to obtain f(x) = x·2−x. The effect of multiplication by x is to change
large positive values into large negative values for x < 0, to cause f(0) to be zero, and to multiply very small
positive values (of 2−x) by somewhat large positive values (of x) for x > 0, resulting in values that are still
small and positive, even when x is quite large. So the graph of f must increase rapidly through negative
values, pass through (0, 0), rise to a maximum, then decrease rapidly through positive values toward zero.
Hence the graph of f must be the one shown in Fig. 1.4.31.

C01S04.008: The graph of g(x) = log x has domain the set (0, +∞) of all positive real numbers; it rises,
first rapidly, then more slowly, with range the set of all real numbers, and its graph passes through the point
(1, 0). Division by x > 0 will have little effect if x is near zero, as this will merely multiply large negative
values of log x by large positive numbers. But when x is large positive, it will be much larger than log x,
and thus the graph of f(x) will rise to a maximum somewhere to the right of x = 1, then decreases fairly
rapidly toward zero. So the graph of f is the one shown in Fig. 1.4.36.

C01S04.009: The graph of g(x) = 1 + cos 6x will resemble the graph of the cosine function, but raised 1
unit (so that its range is the interval [0, 2]) and with much more “activity” on the x-axis (because of the
factor 6). Division by 1 + x2 will have little effect until x is no longer close to zero, and then the effect will
be to divide values of g(x) by larger and larger positive numbers, so that the cosine oscillations have a much
smaller range that 0 � x � 2; they will range from 0 to smaller and smaller positive values as |x| increases.
So the graph of f is the one shown in Fig. 1.4.34.
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C01S04.010: The graph of g(x) = sin 10x resembles that of the sine function, but with much more
“activity” because of the factor 10. Multiply by the rapidly decreasing positive numbers 2−x and you will
see the sine oscillations decreasing from the range [−1, 1] when x is near zero to very small oscillations—near
zero—as x increases. So the graph of f is the one shown in Fig. 1.4.30.

C01S04.011: Given f(x) = 1− x2 and g(x) = 2x+ 3,

f(g(x)) = 1− (g(x))2 = 1− (2x+ 3)2 = −4x2 − 12x− 8 and

g(f(x)) = 2f(x) + 3 = 2(1− x2) + 3 = −2x2 + 5.

C01S04.012: Given f(x) = −17 and g(x) = |x|,

f(g(x)) = −17 and

g(f(x)) = |f(x)| = | − 17| = 17.

The first result is a little puzzling until one realizes that to obtain f(g(x)), one substitutes g(x) for x for every
occurrence of x in the formula for f . No x there means there’s no place to put g(x). Indeed, f(h(x)) = −17
no matter what the formula of h.

C01S04.013: If f(x) =
√
x2 − 3 and g(x) = x2 + 3, then

f(g(x)) =
√

(g(x))2 − 3 =
√

(x2 + 3)2 − 3 =
√
x4 + 6x2 + 6 and

g(f(x)) = (f(x))2 + 3 =
(√

x2 − 3
)2

+ 3 = x2 − 3 + 3 = x2.

The domain of f(g) is the set R of all real numbers, but the domain of g(f) is the same as the domain of f ,
the set of all real numbers x such that x2 � 3.

C01S04.014: If f(x) = x2 + 1 and g(x) =
1

x2 + 1
, then

f(g(x)) = (g(x))2 + 1 =
1

(x2 + 1)2
+ 1 =

x4 + 2x2 + 2
x4 + 2x2 + 1

and

g(f(x)) =
1

(f(x))2 + 1
=

1
(x2 + 1)2 + 1

=
1

x4 + 2x2 + 2
.

C01S04.015: If f(x) = x3 − 4 and g(x) = (x+ 4)1/3, then

f(g(x)) = (g(x))3 − 4 =
(
(x+ 4)1/3

)3

− 4 = x+ 4− 4 = x and

g(f(x)) = (f(x) + 4)1/3 =
(
x3 − 4 + 4

)1/3
=

(
x3

)1/3
= x.

The domain of both f(g) and g(f) is the set R of all real numbers, so here is an example of the highly
unusual case in which f(g) and g(f) are the same function.

C01S04.016: If f(x) =
√
x and g(x) = cosx, then
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f(g(x)) = f(cosx) =
√

cosx and

g(f(x)) = g
(√
x

)
= cos

(√
x

)
.

C01S04.017: If f(x) = sinx and g(x) = x3, then

f(g(x)) = f
(
x3

)
= sin

(
x3

)
= sinx3 and

g(f(x)) = g(sinx) = (sinx)3 = sin3 x.

We note in passing that sinx3 and sin3 x don’t mean the same thing!

C01S04.018: If f(x) = sinx and g(x) = cosx, then f(g(x)) = f(cosx) = sin(cosx) and g(f(x)) =
g(sinx) = cos(sinx).

C01S04.019: If f(x) = 1 + x2 and g(x) = tanx, then f(g(x)) = f(tanx) = 1 + (tanx)2 = 1 + tan2 x and
g(f(x)) = g(1 + x2) = tan(1 + x2).

C01S04.020: If f(x) = 1− x2 and g(x) = sinx, then

f(g(x)) = f(sinx) = 1− (sinx)2 = 1− sin2 x = cos2 x and

g(f(x)) = g(1− x2) = sin(1− x2).

Note: The answers to Problems 21 through 30 are not unique. We have generally chosen the simplest and
most natural answer.

C01S04.021: h(x) = (2 + 3x)2 = (g(x))k = f(g(x)) where f(x) = xk, k = 2, and g(x) = 2 + 3x.

C01S04.022: h(x) = (4− x)3 = (g(x))3 = f(g(x)) where f(x) = xk, k = 3, and g(x) = 4− x.

C01S04.023: h(x) = (2x− x2)1/2 = (g(x))1/2 = f(g(x)) where f(x) = xk, k = 1
2 , and g(x) = 2x− x2.

C01S04.024: h(x) = (1 + x4)17 = (g(x))17 = f(g(x)) where f(x) = xk, k = 17, and g(x) = 1 + x4.

C01S04.025: h(x) = (5− x2)3/2 = (g(x))3/2 = f(g(x)) where f(x) = xk, k = 3
2 , and g(x) = 5− x2.

C01S04.026: h(x) =
[
(4x− 6)1/3

]4
= (4x − 6)4/3 = (g(x))4/3 = f(g(x)) where f(x) = xk, k = 4

3 , and
g(x) = 4x− 6. Alternatively, h(x) = (g(x))4 = f(g(x)) where f(x) = xk, k = 4, and g(x) = (4x− 6)1/3.

C01S04.027: h(x) = (x+ 1)−1 = (g(x))−1 = f(g(x)) where f(x) = xk, k = −1, and g(x) = x+ 1.

C01S04.028: h(x) = (1 + x2)−1 = (g(x))−1 = f(g(x)) where f(x) = xk, k = −1, and g(x) = 1 + x2.

C01S04.029: h(x) = (x+ 10)−1/2 = (g(x))−1/2 = f(g(x)) where f(x) = xk, k = − 1
2 , and g(x) = x+ 10.

C01S04.030: h(x) = (1+x+x2)−3 = (g(x))−3 = f(g(x)) where f(x) = −xk, k = −3, and g(x) = 1+x+x2.

C01S04.031: Recommended window: −2 � x � 2. The graph makes it evident that the equation has
exactly one solution (approximately 0.641186).
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C01S04.032: Recommended window: −5 � x � 5. The graph makes it evident that the equation has
exactly three solutions (approximately −3.63796, −1.86236, and 0.88947).

C01S04.033: Recommended window: −5 � x � 5. The graph makes it evident that the equation has
exactly one solution (approximately 1.42773).

C01S04.034: Recommended window: −6 � x � 6. The graph makes it evident that the equation has
exactly three solutions (approximately −3.83747, −1.97738, and 1.30644).

C01S04.035: Recommended window: −8 � x � 8. The graph makes it evident that the equation has
exactly five solutions (approximately −4.08863, −1.83622, 1.37333, 5.65222, and 6.61597).

C01S04.036: Recommended window: 0.1 � x � 20. The graph makes it evident that the equation has
exactly one solution (approximately 1.32432).

C01S04.037: Recommended window: 0.1 � x � 20. The graph makes it evident that the equation has
exactly three solutions (approximately 1.41841, 5.55211, and 6.86308).

C01S04.038: Recommended window: −4 � x � 4. The graph makes it evident that the equation has
exactly two solutions (approximately ±1.37936).

C01S04.039: Recommended window: −11 � x � 11. The graph makes it evident that the equation has
exactly six solutions (approximately −5.92454, −3.24723, 3.04852, 6.75738, 8.59387, and [exactly] 0).

C01S04.040: Recommended window: 0.1 � x � 20. The graph makes it evident that the equation has
exactly six solutions (approximately 0.372968, 1.68831, 4.29331, 8.05637, 11.1288, and 13.6582).

C01S04.041: Graphical methods show that the solution of 10 · 2t = 100 is slightly less than 3.322. We
began with the viewing window 0 � t � 6 and gradually narrowed it to 3.321 � t � 3.323.

C01S04.042: Under the assumption that the interest is compounded continuously at a rate of 7.696%
(for an annual yield of 8%), we solved the equation 5000 · (1.07696)t = 15000 for t ≈ 14.8176. We began
with the viewing window 10 � t � 20 and gradually narrowed it to 14.81762 � y � 14.81763. Under
the assumption that the interest is compounded yearly at an annual rate of 8%, we solved the equation
A(t) = 5000 · (1.08)t = 15000 by evaluating A(14) ≈ 14686 and A(15) ≈ 15861. Thus in this case you’d have
to wait a full 15 years for your money to triple.

C01S04.043: Graphical methods show that the solution of (67.4)·(1.026)t = 134.8 is approximately 27.0046.
We began with the viewing window 20 � t � 30 and gradually narrowed it to 27.0045 � t � 27.0047.

C01S04.044: Graphical methods show that the solution of A(t) = (0.9975)t = 0.5 is approximately 276.912.
We began with the viewing window 200 � t � 300 and gradually narrowed it to 276.910 � t � 276.914.

C01S04.045: Graphical methods show that the solution of A(t) = 12 ·(0.975)t = 1 is approximately 98.149.
We began with the viewing window 50 � t � 250 and gradually narrowed it to 98.148 � t � 98.150.

C01S04.046: Graphical methods show that the negative solution of x2 = 2x is approximately −0.76666.
We began with the viewing window −1 � x � 0 and gradually narrowed it to −0.7667 � t � −0.7666.

C01S04.047: We plotted y = log10 x and y = 1
2x

1/5 simultaneously. We began with the viewing window
1 � x � 10 and gradually narrowed it to 4.84890 � x � 4.84892. Answer: x ≈ 4.84891.
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C01S04.048: We began with the viewing window −2 � x � 2, which showed the two smaller solutions but
not the larger solution. We first narrowed this window to −0.9054 � x � −0.9052 to get the first solution,
x ≈ −0.9053. We returned to the original window and narrowed it to 1.1324 � x � 1.1326 to get the second
solution, x ≈ 1.1325. We looked for a solution in the window 20 � x � 30 but there was none. But the
exponential graph was still below the polynomial graph, so we checked the window 30 � x � 32. A solution
was evident, and we gradually narrowed this window to 31.3636 � x � 31.3638 to discover the third solution,
x ≈ 31.3637.

5



Chapter 1 Miscellaneous Problems

C01S0M.001: The domain of f(x) =
√
x− 4 is the set of real numbers x for which x− 4 � 0; that is, the

interval [4, +∞).

C01S0M.002: The domain of f consists of those real numbers x for which 2− x �= 0; that is, the set of all
real numbers other than 2.

C01S0M.003: The domain of f consists of those real numbers for which the denominator is nonzero; that
is, the set of all real numbers other than ±3.

C01S0M.004: Because x2 + 1 is never zero, the domain of f is the set R of all real numbers.

C01S0M.005: If x � 0, then
√
x exists; there is no obstruction to adding 1 to

√
x nor to cubing the sum.

Hence the domain of f is the set [0, +∞) of all nonnegative real numbers.

C01S0M.006: Given:

f(x) =
x+ 1
x2 − 2x

.

The only obstruction to computing the number f(x) is the possibility that the denominator is zero. Thus we
must eliminate from the set of all real numbers those for which x2− 2x = 0; that is, x(x− 2) = 0. Therefore
the domain of f is the set of all real numbers other than 0 and 2.

C01S0M.07: The function f(x) =
√

2− 3x is defined whenever the radicand is nonnegative; that is,
whenever

2− 3x � 0;

3x � 2;

x � 2
3 .

Hence the domain of f is the interval
(
−∞, 2

3

]
.

C01S0M.008: In order that the square root is defined, we require 9−x2 � 0; we also need the denominator
in f(x) to be nonzero, so we further require that 9 − x2 �= 0. Hence 9 − x2 > 0; that is, x2 < 9, so that
−3 < x < 3. Hence the domain of f is the open interval (−3, 3).

C01S0M.009: Regardless of the value of x, it’s always possible to subtract 2 from x, to subtract x from
4, and to multiply the results. Hence the domain of f is the set R of all real numbers.

C01S0M.010: The domain of f consists of those real numbers x for which (x− 2)(4− x) is nonnegative.
That is, x− 2 and 4− x are both positive, or x− 2 and 4− x are both negative, or either is zero. First case:
x − 2 > 0 and 4 − x > 0. Then 2 < x < 4, so the interval (2, 4) is part of the domain of f . Second case:
x − 2 < 0 and 4 − x < 0. These inequalities imply that x < 2 and 4 < x. No real numbers satisfy both
these inequalities. So the second case contributes no numbers to the domain of f . Third case: x− 2 = 0 or
4− x = 0. That is, x = 2 or x = 4. Therefore the domain of f is the closed interval [2, 4].

C01S0M.011: Because 100 � V � 200 and p > 0, it follows that 100p � pV � 200p. Because pV = 800,
we see that 100p � 800 � 200p, so that p � 8 � 2p. That is, p � 8 and 4 � p, so that 4 � p � 8. This is the
range of possible values of p.
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C01S0M.012: If 70 � F � 90, then 70 � 32 + 9
5C � 90. Hence

70− 32 � 9
5C � 90− 32;

38 � 9
5C � 58;

190 � 9C � 290;
190
9 � C � 290

9 .

Answer: The Celsius temperature ranged from a low of about 21.1◦C to a high of about 32.2◦C.

C01S0M.013: Because 25 < R < 50, 25I < IR < 50I, so that

25I < E < 50I;

25I < 100 < 50I;

I < 4 < 2I;

I < 4 and 2 < I.

Therefore the current I lies in the range 2 < I < 4.

C01S0M.014: Because 3 < L < 4, we see that

3
32

<
L

32
<

4
32

;

√
3
32

<

√
L

32
<

√
1
8

;

2π

√
3
32

< 2π

√
L

32
< 2π

√
1
8

;

π

2

√
3
2
< T < π

√
1
2
.

In approximate terms, 1.923825 < T < 2.221441.

C01S0M.015: If a cube has edge length x, then its volume is V = x3 and its total surface area is S = 6x2

(because each of its six faces has area x2). Hence x =
√
S/6 , and therefore

V (S) =

(√
S

6

)3

=
(
S

6

)3/2

, 0 < S < +∞.

Under certain circumstances it would be both permissible and desirable to let the domain of V be the interval
[0, +∞).

C01S0M.016: Let r denote the radius, and h the height, of the cylinder. Then its volume V and total
surface area A are given by

V = πr2h and A = 2πrh+ 2πr2

(look inside the front cover of the textbook). In this problem we are given h = r, so that V = πr3 and
A = 4πr2. Therefore
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T

h

x

2x

r =
(
V

π

)1/3

and so A = 4π
(
V

π

)2/3

.

Answer: A(V ) = 4π
(
V

π

)2/3

, 0 < V < +∞.

It is permissible, and sometimes desirable, to use instead the domain 0 � V < +∞.

C01S0M.017: The following figure shows an equilateral triangle with sides of length 2x and an altitude
of length h. Because T is a right triangle, we see that

x2 + h2 = (2x)2, so that h = x
√

3.

The area of this triangle is A = hx and its perimeter is P = 6x. So

A = x2
√

3 and x =
P

6
.

Therefore A(P ) =
P 2
√

3
36

, 0 < P <∞.

C01S0M.018: The square has perimeter x and thus edge length y = 1
4x. The circle has circumference

100 − x. Thus if z is the radius of the circle, then 2πz = 100 − x, so that z = (100 − x)/(2π). The area of
the square is y2 and the area of the circle is πz2, so that the sum of the areas of the square and the circle is
given by

A(x) =
x2

16
+ π

(
100− x

2π

)2

, 0 < x < 100.

Looking ahead to Chapter 3, it will be advantageous to use the closed interval [0, 100] for the domain of the
function A.

C01S0M.019: The slope of L is
13− 5

1− (−3)
= 2, so an equation of L is

y − 5 = 2(x+ 3); that is, y = 2x+ 11.

C01S0M.020: An equation of L is y − (−1) = −3(x− 4); that is, 3x+ y = 11.

C01S0M.021: The point (0, −5) lies on L, so an equation of L is
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y − (−5) =
1
2
(x− 0); alternatively, 2y + 10 = x.

C01S0M.022: The equation 3x−2y = 4 of the other line may be written in the form y = 3
2x−2, revealing

that it and L have slope 3
2 . Hence an equation of L is

y − (−3) =
3
2
(x− 2); that is, y =

3
2
x− 6.

C01S0M.023: The equation y − 2x = 10 may be written in the form y = 2x + 10, showing that it has
slope 2. Hence the perpendicular line L has slope − 1

2 . Therefore an equation of L is

y − 7 = − 1
2
(x− (−3)); that is, x+ 2y = 11.

C01S0M.024: The segment S joining (1, −5) and (3, −1) has slope (−1− (−5))/(3−1) = 2 and midpoint
(2, −3), and hence L has slope − 1

2 and passes through (2, −3). So an equation of L is

y − (−3) = − 1
2
(x− 2); that is, x+ 2y = −4.

C01S0M.025: The graph of y = f(x) = 2−2x−x2 is a parabola opening downward. The only such graph
is shown in Fig. 1.MP.6.

C01S0M.026: Given: f(x) = x3 − 4x2 + 5. Because f(−1) = 0, f(1) = 2 > 0 > −3 = f(2), and
f(3) = −4 < 0 < 5 = f(4), the graph of f crosses the x-axis at x = −1, between x = 1 and x = 2, and
between x = 3 and x = 4. Hence the graph of f is the one shown in Fig. 1.MP.9.

C01S0M.027: Given: f(x) = x4 − 4x3 + 5. Because the graph of f has no vertical asymptotes and
because f(x) approaches +∞ as x approaches either +∞ or −∞, the graph of f must be the one shown in
Fig. 1.MP.4.

C01S0M.028: Given:

f(x) =
5

x2 − x− 6
=

5
(x− 3)(x+ 2)

.

The denominator in f(x) is zero when x = 3 and when x = −2 (and the numerator is not zero), so the graph
of y = f(x) has vertical asymptotes at x = −2 and at x = 3. Also f(x) approaches zero as x approaches
either +∞ or −∞. Therefore the graph of y = f(x) must be the one shown in Fig. 1.MP.11.

C01S0M.029: Given:

f(x) =
5

x2 − x+ 6
=

20
4x2 − 4x+ 1 + 23

=
20

(2x− 1)2 + 23
.

The algebra displayed here shows that the denominator in f(x) is never zero, so there are no vertical
asymptotes. It also shows that the maximum value of f(x) occurs when the denominator is minimal; that
is, when x = 1

2 . Finally, f(x) approaches zero as x approaches either +∞ or −∞. So the graph of y = f(x)
must be the one shown in Fig. 1.MP.3.

C01S0M.030: If y = f(x) =
√

8 + 2x− x2, then
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y2 = 8 + 2x− x2;

x2 − 2x+ 1 + y2 = 9;

(x− 1)2 + (y − 0)2 = 32.

The last is the equation of a circle with center (1, 0) and radius 3. But y � 0, so the graph of f is the upper
half of that circle, and it is shown in Fig. 1.MP.10.

C01S0M.031: Given: f(x) = 2−x − 1. The graph of y = 2x is an increasing exponential function, so the
graph of y = 2−x is a decreasing exponential function, approaching 0 as x approaches +∞. So the graph of
f approaches −1 as x approaches +∞. Moreover, f(0) = 0. Therefore the graph of f is the one shown in
Fig. 1.MP.7.

C01S0M.032: The graph of f(x) = log10(x+1) is obtained from the graph of g(x) = log10 x by translation
one unit to the left; note also that f(0) = 0. Therefore the graph of f is the one shown in Fig. 1.MP.2.

C01S0M.033: The graph of y = 3 sinx oscillates between its minimum value −3 and its maximum value
3, so the graph of f(x) = 1 + 3 sinx oscillates between −2 and 4. This graph is shown in Fig. 1.MP.8.

C01S0M.034: The graph of f(x) = x+ 3 sinx viewed at a great distance resembles the graph of y = x. A
closer view shows oscillations, due to the sine function, superposed on the graph of y = x. Thus the graph
of f is the one shown in Fig. 1.MP.5.

C01S0M.035: The graph of 2x− 5y = 7 is the straight line with x-intercept 7
2 and y-intercept − 7

5 .

C01S0M.036: If |x− y | = 1, then x− y = 1 or x− y = −1. The graph of the first of these is the straight
line y = x − 1 with slope 1 and y-intercept −1; the graph of the second is the straight line y = x + 1 with
slope 1 and y-intercept 1. So the graph of |x− y | = 1 consists of these two parallel lines.

C01S0M.037: We complete the square: x2 − 2x+ 1 + y2 = 1, so that (x− 1)2 + (y − 0)2 = 12. Thus the
graph of the given equation is the circle with center (1, 0) and radius 1.

C01S0M.038: We complete the square in x and in y to obtain

x2 + 6x+ 9 + y2 − 4y + 4 = 16;

(x+ 3)2 + (y − 2)2 = 42.

Therefore the graph of the given equation is the circle with center (−3, 2) and radius 4.

C01S0M.039: The graph is a parabola opening upward. To find its vertex, we complete the square:

y = 2
(
x2 − 2x− 1

2

)
= 2

(
x2 − 2x+ 1− 3

2

)
= 2(x− 1)2 − 3.

So the vertex of this parabola is at the point (1, −3).

C01S0M.040: The graph is a parabola opening downward. To find its vertex, we complete the square:

y = 4x− x2 = −(x2 − 4x) = −(x2 − 4x+ 4− 4) = 4− (x− 2)2.
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Thus the vertex of this parabola is at the point (2, 4).

C01S0M.041: The graph has a vertical asymptote at x = −5 and is shown next.

C01S0M.042: The graph has vertical asymptotes at x = ±2 and is shown next.

C01S0M.043: The graph of f is obtained by shifing the graph of g(x) = |x| three units to the right, so
that the graph of f has its “vertex” at the point (3, 0).

C01S0M.044: Given: f(x) = |x − 3| + |x + 2|. If x � 3 then f(x) = x − 3 + x + 2 = 2x − 1, so the
graph is the unbounded line segment with slope 2 and endpoint (3, 5) for x � 3. If −2 � x � 3 then
f(x) = 3 − x + x + 2 = 5, so another part of the graph is the horizontal line segment joining (−2, 5) with
(3, 5). If x � −2 then f(x) = 3−x−x−2 = −2x+1, so the rest of the graph is the unbounded line segment
with slope −2 and endpoint (−2, 5) for x � −2. The graph is shown next.
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C01S0M.045: Suppose that a, b, and c are arbitrary real numbers. Then

|a+ b+ c| = |(a+ b) + c| � |a+ b|+ |c| � |a|+ |b|+ |c| .

.

C01S0M.046: Suppose that a and b are arbitrary real numbers. Then |a| = |(a− b) + b| � |a− b| + |b|.
Therefore |a| − |b| � |a− b|.

C01S0M.047: If x− 3 > 0 and x+ 2 > 0, then x > 3 and x > −2, so x > 3. If x− 3 < 0 and x+ 2 < 0,
then x < 3 and x < −2, so x < −2. Answer: (−∞,−2) ∪ (3,∞).

C01S0M.048: (x− 1)(x− 2) < 0: x− 1 and x− 2 have opposite signs, so either x < 1 and x > 2 (which
leads to no values of x) or x > 1 and x < 2. Answer: (1, 2).

C01S0M.049: (x− 4)(x+ 2) > 0: Either x > 4 and x > −2 (so that x > 4) or x < 4 and x < −2 (so that
x < −2). Answer: (−∞, −2) ∪ (4, +∞).

C01S0M.050: 2x � 15− x2: x2 + 2x− 15 � 0, so (x− 3)(x+ 5) � 0. Now x+ 5 > x− 3, so x− 3 � 0 or
x+ 5 � 0. Thus x � 3 or x � −5. Answer: (−∞, −5 ] ∪ [ 3, +∞).

C01S0M.051: The viewing window −3 � x � 8 shows a solution near −1 and another near 5. Gradual
magnification of the region near −1 shows a solution between −1.1405 and −1.1395. Similarly, the other
solution is between 6.1395 and 6.1405. So the solutions are approximately −1.140 and 6.140.

C01S0M.052: The viewing window −2 � x � 5 shows a solution near −1 and another near 4. To
approximate the first more closely, we used the method of repeated tabulation on [−1.0, −0.8], then on
[−0.88, −0, 86], then on [−0.872, −0.870]. To approximate the second, we used the interval [4.1, 4.3], then
[4.20, 4.22], then [4.204, 4.206]. To three places, the solutions are −0.872 and 4.205.

C01S0M.053: The viewing window 0.5 � x � 3 shows one solution near 1.2 and another near 2.3. The
method of repeated tabulation with successive intervals [1.1, 1.3], [1.18, 1.20], and [1.190, 1.192] yields the
approximation 1.191 to the first solution. The successive intervals [2.2, 2.4], [2.30, 2.32], and [2.308, 2.310]
yield the approximation 2.309 to the second solution.

C01S0M.054: The viewing window −7 � x � 2 shows one solution near −6 and another near 1. The
method of repeated tabulation with successive intervals [−6.1, −5.9], [−5.98, −5.96], and [−5.974, −5.970]
yield the approximation−5.972 to the first solution. Simlarly, we find the second solution to be approximately
1.172.

C01S0M.055: The viewing window −6 � x � 2 shows one solution near −5 and another near 1. The
method of repeated tabulation with successive intervals [−5.1, −4.9], [−5.04, −5.02], and [−5.022, −5.020],
then with the intervals [0.8, 1.0], [0.88, 0.90], and [0.896, 0.898], yields the two approximations −5.021 and
0.896 to the two solutions.

C01S0M.056: The viewing window −11 � x � 3 shows one solution near −10 and another near 1.7. The
method of repeated tabulation, first with the intervals [−10.0,−9.9], [−9.97, −9.96], and [−9.963, −9.962],
then with [1.7, 1.8], [1.73, 1.74], and [1.739, 1.741], yields the two approximations −9.962 and 1.740 to the
two solutions.
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C01S0M.057: The viewing window 2 � x � 3 shows the low point with x-coordinate near 2.5. The method
of repeated tabulation, using the successive intervals [2.4, 2.6], [2.48, 2.52], and [2.496, 2.504], indicates that
the low point is very close to (2.5, 0.75).

C01S0M.058: The viewing window −1 � x � 4 shows the low point with x-coordinate near 1.7. The
method of repeated tabulation, with the successive intervals [1.6, 1.8], [1.64, 1.68], and [1.664, 1.672], shows
that the low point is quite close to (1.66, 2.67).

C01S0M.059: The viewing window −0.5 � x � 4 shows that the low point has x-coordinate near 1.8. The
method of repeated tabulation, with the successive intervals [1.7, 1.9], [1.72, 1.78], and [1.744, 1.756], shows
that the low point is very close to (1.75, −1.25).

C01S0M.060: The viewing window −5 � x � 1 shows that the low point has x-coordinate near −2.5. The
method of repeated tabulation indicates that the low point is very close to (−2.4, 6.2).

C01S0M.061: The viewing window −5 � x � 1 show that the x-coordinate of the low point is close to
−2. The method of repeated tabulation shows that the low point is very close to (−2.0625, 0.96875).

C01S0M.062: The viewing window −7 � x � 1 shows that the x-coordinate of the low point is close to
−4. The method of repeated tabulation indicates that the low point is very close to (−4.111, 3.889).

C01S0M.063: The small rectangle has dimensions 10 − 4x by 7 − 2x; (7)(10) − (10 − 4x)(7 − 2x) = 20,
which leads to the quadratic equation 8x2 − 48x + 20 = 0. One solution of this equation is approximately
5.5495, which must be rejected; it is too large. The value of x is the other solution: x ≈ 0.4505.

C01S0M.064: After shrinking, the tablecloth has dimensions 60− x by 35− x. The area of this rectangle
is 93% of the area of the original tablecloth, so (60−x)(35−x) = (0.93)(35)(60). The larger solution of this
quadratic equation is approximately 93.43, which we reject as too large. Answer: x ≈ 1.573.

C01S0M.065: The viewing window −4 � x � 4 shows three solutions (and there can be no more).

C01S0M.066: The viewing window −3 � x � 3 shows two solutions, and there can be no more because
x4 > | − 3x2 + 4x− 5| if |x| > 3.

C01S0M.067: We plotted y = sinx and y = x3 − 3x + 1 simultaneously to see where they crossed. The
viewing window −2.2 � x � 2.2 shows three solutions, and there can be no more because |x3 − 3x+ 1| > 1
if |x| > 2.2.

C01S0M.068: We plotted y = cosx and y = x4−x simultaneously to see where they crossed. The viewing
window −2 � x � 2 shows two solutions, and there can be no more because x4 − x > 1 if |x| > 2.

C01S0M.069: We plotted y = cosx and y = log10 x simultaneously to see where they crossed. The viewing
window 0.1 � x � 14 shows three solutions, and there can be no more because log10 x < −1 if 0 < x < 0.1
and log10 x > 1 if x > 14.

C01S0M.070: We plotted y = 10−x and y = log10 x simultaneously to see where they crossed. The
viewing window 0.1 � x � 3 shows one solution, and there can be no more because the exponential function
is decreasing for all x and the logarithm function is increasing for all x > 0.
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Section 2.1

C02S01.001: f(x) = 0 · x2 + 0 · x+ 5, so m(a) = 0 · 2 · a+ 0 ≡ 0. In particular, m(2) = 0, so the tangent
line has equation y − 5 = 0 · (x− 0); that is, y ≡ 5.

C02S01.002: f(x) = 0 · x2 + 1 · x+ 0, so m(a) = 0 · 2 · a+ 1 ≡ 1. In particular, m(2) = 1, so the tangent
line has equation y − 2 = 1 · (x− 2); that is, y = x.

C02S01.003: Because f(x) = 1 · x2 + 0 · x+ 0, the slope-predictor is m(a) = 2 · 1 · a+ 0 = 2a. Hence the
line L tangent to the graph of f at (2, f(2)) has slope m(2) = 4. So an equation of L is y− f(2) = 4(x− 2);
that is, y = 4x− 4.

C02S01.004: Because f(x) = −2x2+0 ·x+1, the slope-predictor for f is m(a) = 2 ·(−2)a+0 = −4a. Thus
the line L tangent to the graph of f at (2, f(2)) has slope m(2) = −8 and equation y − f(2) = −8(x − 2);
that is, y = −8x+ 9.

C02S01.005: Because f(x) = 0 ·x2 +4x−5, the slope-predictor for f is m(a) = 2 ·0 ·a+4 = 4. So the line
tangent to the graph of f at (2, f(2)) has slope 4 and therefore equation y−3 = 4(x−2); that is, y = 4x−5.

C02S01.006: Because f(x) = 0 · x2 − 3x+ 7, the slope-predictor for f is m(a) = 2 · 0 · a− 3 = −3. So the
line tangent to the graph of f at (2, f(2)) has slope −3 and therefore equation y − 1 = −3(x − 2); that is,
y = −3x+ 7.

C02S01.007: Because f(x) = 2x2 − 3x + 4, the slope-predictor for f is m(a) = 2 · 2 · a − 3 = 4a − 3. So
the line tangent to the graph of f at (2, f(2)) has slope 5 and therefore equation y − 6 = 5(x− 2); that is,
y = 5x− 4.

C02S01.008: Because f(x) = (−1) ·x2−3x+5, the slope-predictor for f is m(a) = 2 ·(−1) ·a−3 = −2a−3.
So the line tangent to the graph of f at (2, f(2)) has slope −7 and therefore equation y + 5 = −7(x − 2);
that is, y = −7x+ 9.

C02S01.009: Because f(x) = 2x2 + 6x, the slope-predictor for f is m(a) = 4a + 6. So the line tangent
to the graph of f at (2, f(2)) has slope m(2) = 14 and therefore equation y − 20 = 14(x − 2); that is,
y = 14x− 8.

C02S01.010: Because f(x) = −3x2 + 15x, the slope-predictor for f is m(a) = −6a + 15. So the line
tangent to the graph of f at (2, f(2)) has slope m(2) = 3 and therefore equation y − 18 = 3(x− 2); that is,
y = 3x+ 12.

C02S01.011: Because f(x) = − 1
100x

2 + 2x, the slope-predictor for f is m(a) = − 2
100a + 2. So the line

tangent to the graph of f at (2, f(2)) has slopem(2) = − 1
25+2 = 49

25 and therefore equation y− 99
25 = 49

25 (x−2);
that is, 25y = 49x+ 1.

C02S01.012: Because f(x) = −9x2 − 12x, the slope-predictor for f is m(a) = −18a − 12. So the line
tangent to the graph of f at (2, f(2)) has slope m(2) = −48 and therefore equation y + 60 = −48(x − 2);
that is, y = −48x+ 36.

C02S01.013: Because f(x) = 4x2 + 1, the slope-predictor for f is m(a) = 8a. So the line tangent to the
graph of f at (2, f(2)) has slope m(2) = 16 and therefore equation y− 17 = 16(x− 2); that is, y = 16x− 15.

C02S01.014: Because f(x) = 24x, the slope-predictor for f is m(a) = 24. So the line tangent to the graph
of f at (2, f(2)) has slope m(2) = 24 and therefore equation y − 48 = 24(x− 2); that is, y = 24x.
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C02S01.015: If f(x) = −x2 + 10, then the slope-predictor for f is m(a) = −2a. A line tangent to the
graph of f will be horizontal when m(a) = 0, thus when a = 0. So the tangent line is horizontal at the point
(0, 10) and at no other point of the graph of f .

C02S01.016: If f(x) = −x2 + 10x, then the slope-predictor for f is m(a) = −2a + 10. A line tangent to
the graph of f will be horizontal when m(a) = 0, thus when a = 5. So the tangent line is horizontal at the
point (5, 25) and at no other point of the graph of f .

C02S01.017: If f(x) = x2 − 2x+ 1, then the slope-predictor for f is m(a) = 2a− 2. A line tangent to the
graph of f will be horizontal when m(a) = 0, thus when a = 1. So the tangent line is horizontal at the point
(1, 0) and at no other point of the graph of f .

C02S01.018: If f(x) = x2 + x− 2, then the slope-predictor for f is m(a) = 2a+ 1. A line tangent to the
graph of f will be horizontal when m(a) = 0, thus when a = − 1

2 . So the tangent line is horizontal at the
point

(
− 1

2 , −
9
4

)
and at no other point of the graph of f .

C02S01.019: If f(x) = − 1
100x

2 + x, then the slope-predictor for f is m(a) = − 1
50a+ 1. A line tangent to

the graph of f will be horizontal when m(a) = 0, thus when a = 50. So the tangent line is horizontal at the
point (50, 25) and at no other point of the graph of f .

C02S01.020: If f(x) = −x2 + 100x, then the slope-predictor for f is m(a) = −2a+ 100. A line tangent to
the graph of f will be horizontal when m(a) = 0, thus when a = 50. So the tangent line is horizontal at the
point (50, 2500) and at no other point of the graph of f .

C02S01.021: If f(x) = x2 − 2x − 15, then the slope-predictor for f is m(a) = 2a − 2. A line tangent to
the graph of f will be horizontal when m(a) = 0, thus when a = 1. So the tangent line is horizontal at the
point (1, −16) and at no other point of the graph of f .

C02S01.022: If f(x) = x2 − 10x+ 25, then the slope-predictor for f is m(a) = 2a− 10. A line tangent to
the graph of f will be horizontal when m(a) = 0, thus when a = 5. So the tangent line is horizontal at the
point (5, 0) and at no other point of the graph of f .

C02S01.023: If f(x) = −x2 + 70x, then the slope-predictor for f is m(a) = −2a + 70. A line tangent to
the graph of f will be horizontal when m(a) = 0, thus when a = 35. So the tangent line is horizontal at the
point (35, 1225) and at no other point of the graph of f .

C02S01.024: If f(x) = x2 − 20x + 100, then the slope-predictor for f is m(a) = 2a − 20. A line tangent
to the graph of f will be horizontal when m(a) = 0, thus when a = 10. So the tangent line is horizontal at
the point (10, 0) and at no other point of the graph of f .

C02S01.025: If f(x) = x2, then the slope-predictor for f is m(a) = 2a. So the line tangent to the graph
of f at the point P (−2, 4) has slope m(−2) = −4 and the normal line at P has slope 1

4 . Hence an equation
for the line tangent to the graph of f at P is y − 4 = −4(x+ 2); that is, y = −4x− 4. An equation for the
line normal to the graph of f at P is y − 4 = 1

4 (x+ 2); that is, 4y = x+ 18.

C02S01.026: If f(x) = −2x2−x+5, then the slope-predictor for f is m(a) = −4a−1. So the line tangent
to the graph of f at the point P (−1, 4) has slope m(−1) = 3 and the normal line at P has slope − 1

3 . Hence
an equation for the line tangent to the graph of f at P is y− 4 = 3(x+ 1); that is, y = 3x+ 7. An equation
for the line normal to the graph of f at P is y − 4 = − 1

3 (x+ 1); that is, x+ 3y = 11.

C02S01.027: If f(x) = 2x2 + 3x− 5, then the slope-predictor for f is m(a) = 4a+ 3. So the line tangent
to the graph of f at the point P (2, 9) has slope m(2) = 11 and the normal line at P has slope − 1

11 . Hence
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an equation for the line tangent to the graph of f at P is y − 9 = 11(x − 2); that is, y = 11x − 13. An
equation for the line normal to the graph of f at P is y − 9 = − 1

11 (x− 2); that is, x+ 11y = 101.

C02S01.028: If f(x) = x2, then the slope-predictor for f is m(a) = 2a. Hence the line L tangent
to the graph of f at the point (x0, y0) has slope m(x0) = 2x0. Because y0 = x2

0, an equation of L is
y − x2

0 = 2x0(x− x0). To find where L meets the x-axis, we substitute y = 0 in the equation of L and solve
for x:

0− x2
0 = 2x0(x− x0);

x− x0 = − 1
2x0 (if x0 �= 0);

x = x0 − 1
2x0 = 1

2x0.

Therefore if x0 �= 0, L meets the x-axis at the point
(

1
2x0, 0

)
. If x0 = 0, then L is the x-axis and therefore

meets the x-axis at
(

1
2x0, 0

)
= (0, 0) as well as at every other point.

C02S01.029: If the ball has height y(t) = −16t2 + 96t (feet) at time t (s), then the slope-predictor for
y is m(a) = −32a + 96. Assuming that the maximum height of the ball occurs at the point on the graph
of y where the tangent line is horizontal, we find that point by solving m(a) = 0 and find that a = 3. So
the highest point on the graph of y is the point (3, y(3)) = (3, 144). Therefore the ball reaches a maximum
height of 144 (ft).

C02S01.030: The slope-predictor for A(x) = −x2 + 50x is m(a) = −2a + 50. The highest point on the
graph of A occurs where the tangent line is horizontal; that is, when 2a = 50, so that a = 25. (We know it’s
the high point rather than the low point because the graph of y = A(x) is a parabola that opens downward.)
So the highest point on the graph of A is the point (25, A(25)) = (25, 625). Because a = 25 is in the domain
[0, 50] of the function A, the maximum possible area of the rectangle is 625 (ft2).

C02S01.031: If the two positive numbers x and y have sum 50, then y = 50 − x, x > 0, and x < 50
(because y > 0). So the product of two such numbers is given by

p(x) = x(50− x), 0 < x < 50.

The graph of p(x) = −x2 + 50x has a highest point because the graph of y = p(x) is a parabola that opens
downward. The slope-predictor for the function p is m(a) = −2a+ 50. The highest point on the graph of p
will occur when the tangent line is horizontal, so that m(a) = 0. This leads to a = 25, which does lie in the
domain of p. Therefore the highest point on the graph of p is (25, p(25)) = (25, 625). Hence the maximum
possible value of p(x) is 625. So the maximum possible product of two positive numbers with sum 50 is 625.

C02S01.032: If y = f(x) = − 1
625x

2 + x, then the slope predictor for f is m(a) = − 2
625a + 1. (a) The

projectile hits the ground at that point x for which f(x) = 0; that is, x2 = 625x, so that x = 0 (which we
reject; this is where the projectile leaves the ground) or x = 625. Because the projectile travels from x = 0
to x = 625, the horizontal distance it travels is 625 (ft). (b) To find the maximum height of the projectile,
we find where the line tangent to the graph of f is horizontal. This occurs when m(a) = 0, so that a = 312.5.
So the maximum height of the projectile is f(312.5) = 156.25 (ft). (It’s a maximum rather than a minimum
because the graph of y = f(x) is a parabola that opens downwards and x = 312.5 does lie in the domain
[0, 625] of the function f .)

C02S01.033: Suppose that the “other” line L is tangent to the parabola at the point (a, a2). The slope-
predictor for y = f(x) = x2 is m(a) = 2a, so the line L has slope m(a) = 2a. (Note that a changes from
a variable to a constant in the last sentence. This is dangerous but the notation has forced this situation

3



upon us.) Using the two-point formula for slope, we can compute the slope of L in another way and equate
our two results:

a2 − 0
a− 3

= 2a;

a2 = 2a(a− 3);

a = 2a− 6; (because a �= 0);

a = 6.

Therefore L has slope m(6) = 12. Because L passes through (3, 0), an equation of L is y − 0 = 12(x − 3);
that is, y = 12x− 36.

C02S01.034: If y = f(x) = −x2 + 4x, then the slope-predictor for f is m(a) = −2a+ 4. Suppose that the
line L passes through the point P (2, 5) and is tangent to the graph of f . Let Q(c, f(c)) = (c, 4c − c2) be
the point of tangency. We can use the two points P and Q to compute the slope of L. We can also use the
slope-predictor. We do so and equate the results:

4c− c2 − 5
c− 2

= −2c+ 4;

4c− c2 − 5 = (c− 2)(−2c+ 4) = −2c2 + 8c− 8;

c2 − 4c+ 3 = 0;

(c− 1)(c− 3) = 0.

Therefore c = 1 or c = 3. We have discovered that there are two points at which L may be tangent to the
graph of f : (1, f(1)) = (1, 3) and (3, f(3)) = (3, 3). Thus one tangent line has slope 2 and the other has
slope −2; their equations may be written as

y − 5 = 2(x− 2) and y − 5 = −2(x− 2).

C02S01.035: Suppose that (a, a2) is the point on the graph of y = x2 closest to (3, 0). Let L be the
line segment from (3, 0) to (a, a2). Under the plausible assumption that L is normal to the tangent line at
(a, a2), we infer that the slope m of L is −1/(2a) because the slope of the tangent line is 2a. Because we
can also compute m by using the two points known to lie on it, we find that

m = − 1
2a

=
a2 − 0
a− 3

.

This leads to the equation 0 = 2a3 + a− 3 = (a− 1)(2a2 + 2a+ 3), which has a = 1 as its only real solution
(note that the discriminant of 2a2 + 2a + 3 is negative). Intuitively, it’s clear that there is a point on the
graph nearest (3 , 0), so we have found it: That point is (1, 1).

Alternatively, if (x, x2) is an arbitrary point on the given parabola, then the distance from (x, x2) to
(3, 0) is the square root of f(x) = (x2 − 0)2 + (x− 3)2 = x4 + x2 − 6x+ 9. A positive quantity is minimized
when its square is minimized, so we minimize the distance from (x, x2) to (3, 0) by minimizing f(x). The
slope-predictor for f is m(a) = 4a3 + 2a− 6 = 2(a− 1)(2a2 + 2x+ 3), and (as before) the equation m(a) = 0
has only one real solution, a = 1. Again appealing to intuition for the existence of a point on the parabola
nearest to (3, 0), we see that it can only be the point (1, 1). In Chapter 3 we will see how the existence of
the closest point can be established without an appeal to the intuition.

C02S01.036: Given: f(x) = x2 and a = −1. We computed
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f(a+ h)− f(a− h)
2h

(1)

for h = 10−1, 10−2, . . . , and 10−10. The values of the expression in (1) were all −2.00000000000000000000
(to twenty places). The numerical evidence overwhelmingly suggests that the slope of the tangent line is
exactly −2 and thus that it has equation y = −2x− 1. The graph of this line and y = f(x) are shown next.

C02S01.037: Given: f(x) = x3 and a = 2. We computed

f(a+ h)− f(a− h)
2h

(1)

for h = 10−1, 10−2, . . . , 10−10. The values of the expression in (1) were 12.01, 12.0001, 12.000001, . . . ,
12.00000000000000000001. The numerical evidence overwhelmingly suggests that the slope of the tangent
line is 12 and thus that it has equation y = 12x− 16. The graph of this line and y = f(x) are shown next.

C02S01.038: Using the techniques in the previous solution produced strong evidence that the slope of the
tangent line is 3, so that its equation is y = 3x+ 2. The graphs of f(x) = x3 and the tangent line are shown
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next.

C02S01.039: The numerical evidence suggests that the slope of the tangent line is 1
2 , so that its equation

is y = 1
2 (x+ 1). The graph of the tangent line and the graph of f(x) =

√
x are shown next.

C02S01.040: The numerical evidence suggests that the slope of the tangent line is 1
4 , so that its equation

is y = 1
4 (x+ 4). The graph of the tangent line and the graph of f(x) =

√
x are shown next.

C02S01.041: The numerical evidence suggests that the slope of the tangent line is −1, so that its equation
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is y = −x+ 2. The graph of the tangent line and the graph of f(x) = 1/x are shown next.

C02S01.042: The numerical evidence suggests that the slope of the tangent line is −4, so that its equation
is y = −4x− 4. The graph of the tangent line and the graph of f(x) = 1/x are shown next.

C02S01.043: The numerical evidence suggests that the slope of the tangent line is 0, so that its equation
is y = 1. The graph of the tangent line and the graph of f(x) = cosx are shown next.

C02S01.044: The numerical evidence suggests that the slope of the tangent line is 10π, so that its equation
is y = 10πx. The graph of the tangent line and the graph of f(x) = 10πx are shown next.
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C02S01.045: The numerical evidence suggests that the slope of the tangent line is −1/
√

2, so that its
equation is

y −
√

2
2

= −
√

2
2

(
x− π

4

)
.

The graph of the tangent line and the graph of f(x) = cosx are shown next.

C02S01.046: The numerical evidence suggests that the tangent line is horizontal, so that its equation is
y ≡ 1. The graph of the tangent line and the graph of f(x) = sin 10πx are shown next.
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C02S01.047: The numerical evidence suggests that the tangent line is horizontal, so that its equation is
y ≡ 5. The graph of the tangent line and the graph of f(x) =

√
25− x2 are shown next.

C02S01.048: The numerical evidence suggests that the tangent line has slope − 3
4 , so that its equation is

3x+ 4y = 25. The graph of the tangent line and the graph of f(x) =
√

25− x2 are shown next.
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Section 2.2

C02S02.001: lim
x→3

(3x2 + 7x− 12) = 3
(

lim
x→3

x
)2

+ 7
(

lim
x→3

x
)
− lim
x→3

12 = 3 · 32 + 7 · 3− 12 = 36.

C02S02.002: lim
x→−2

(
x3 − 3x2 + 5

)
= lim
x→−2

x3 − 3 lim
x→−2

x2 + lim
x→−2

5 = −15.

C02S02.003: lim
x→1

(
x2 − 1

) (
x7 + 7x− 4

)
= lim
x→1

(
x2 − 1

)
· lim
x→1

(
x7 + 7x− 4

)
= 0 · 4 = 0.

C02S02.004: lim
x→−2

(
x3 − 3x+ 3

)(
x2 + 2x+ 5

)
= lim
x→−2

(
x3 − 3x+ 3

)
· lim
x→−2

(
x2 + 2x+ 5

)
= 1 · 5 = 5.

C02S02.005: lim
x→1

x+ 1
x2 + x+ 1

=
lim
x→1

(x+ 1)

lim
x→1

(x2 + x+ 1)
=

2
3
.

C02S02.006: lim
t→−2

t+ 2
t2 + 4

=
lim
t→−2

(t+ 2)

lim
t→−2

(t2 + 4)
=

0
8

= 0.

C02S02.007: lim
x→3

(
x2 + 1

)3

(x3 − 25)3
=

lim
x→3

(
x2 + 1

)3

lim
x→3

(
x3 − 25

)3 =

(
lim
x→3

(
x2 + 1

))3

(
lim
x→3

(
x3 − 25

))3 =
103

23
=

1000
8

= 125.

C02S02.008: lim
z→−1

(
3z2 + 2z + 1

)10
(z3 + 5)5

=
lim
z→−1

(
3z2 + 2z + 1

)10
lim
z→−1

(
z3 + 5

)5 =

(
lim
z→−1

(
3z2 + 2z + 1

))10

(
lim
z→−1

(
z3 + 5

))5 =
210

45
= 1.

C02S02.009: lim
x→1

√
4x+ 5 =

√
lim
x→1

(4x+ 5) =
√

9 = 3.

C02S02.010: lim
y→4

√
27−√y =

√
lim
y→4

(27−√y ) =
√

25 = 5.

C02S02.011: lim
x→3

(
x2 − 1

)3/2
=

(
lim
x→3

(
x2 − 1

))3/2

= 83/2 = 16
√

2.

C02S02.012: lim
t→−4

√
t+ 8

25− t2 =

√
lim
t→−4

(t+ 8)
√

lim
t→−4

(
25− t2

) =
√

4√
9

=
2
3
.

C02S02.013: lim
z→8

z2/3

z −
√

2z
=

lim
z→8

z2/3

lim
z→8

(
z −
√

2z
) =

4
4

= 1.

C02S02.014: lim
t→2

3
√

3t3 + 4t− 5 = 3

√
lim
t→2

(3t3 + 4t− 5) = 3.

C02S02.015: lim
w→0

√
(w − 2)4 =

√
lim
w→0

(w − 2)4 =
√

(−2)4 = 4.

C02S02.016: lim
t→−4

3
√

(t+ 1)6 = 3

√
lim
t→−4

(t+ 1)6 = 9.

1



C02S02.017: lim
x→−2

3

√
x+ 2

(x− 2)2
= 3

√
lim
x→−2

(x+ 2)
(x− 2)2

= 0.

C02S02.018: lim
y→5

(
2y2 + 2y + 4

6y − 3

)1/3

=
(

64
27

)1/3

=
4
3
.

C02S02.019: lim
x→−1

x+ 1
x2 − x− 2

= lim
x→−1

x+ 1
(x+ 1)(x− 2)

= lim
x→−1

1
x− 2

= −1
3
.

C02S02.020: lim
t→3

t2 − 9
t− 3

= lim
t→3

(t− 3)(t+ 3)
t− 3

= lim
t→3

(t+ 3) = 6.

C02S02.021: lim
x→1

x2 + x− 2
x2 − 4x+ 3

= lim
x→1

(x+ 2)(x− 1)
(x− 3)(x− 1)

= lim
x→1

x+ 2
x− 3

= −3
2
.

C02S02.022: lim
y→−1/2

4y2 − 1
4y2 + 8y + 3

= lim
y→−1/2

(2y − 1)(2y + 1)
(2y + 3)(2y + 1)

= lim
y→−1/2

2y − 1
2y + 3

= −2
2

= −1.

C02S02.023: lim
t→−3

t2 + 6t+ 9
t2 − 9

= lim
t→−3

(t+ 3)(t+ 3)
(t+ 3)(t− 3)

= lim
t→−3

t+ 3
t− 3

= 0.

C02S02.024: lim
x→2

x2 − 4
3x2 − 2x− 8

= lim
x→2

(x− 2)(x+ 2)
(x− 2)(3x+ 4)

= lim
x→2

x+ 2
3x+ 4

=
2
5
.

C02S02.025: lim
z→−2

(z + 2)2

z4 − 16
= lim
z→−2

(z + 2)(z + 2)
(z + 2)(z − 2)(z2 + 4)

= lim
z→−2

z + 2
(z − 2)(z2 + 4)

= 0.

C02S02.026: lim
t→3

t3 − 9t
t2 − 9

= lim
t→3

t(t2 − 9)
t2 − 9

= 3.

C02S02.027: lim
x→1

x3 − 1
x4 − 1

= lim
x→1

(x− 1)(x2 + x+ 1)
(x− 1)(x+ 1)(x2 + 1)

= lim
x→1

x2 + x+ 1
(x+ 1)(x2 + 1)

=
3
4
.

C02S02.028: lim
y→−3

y3 + 27
y2 − 9

= lim
y→−3

(y + 3)(y2 − 3y + 9)
(y + 3)(y − 3)

= lim
y→−3

y2 − 3y + 9
y − 3

= −27
6

= −9
2
.

C02S02.029: lim
x→3

1
x
− 1

3
x− 3

= lim
x→3

(
3− x
3x

)(
1

x− 3

)
= lim
x→3

−1
3x

= −1
9
.

C02S02.030: lim
t→0

1
2 + t

− 1
2

t
= lim
t→0

(
2− (2 + t)
2(2 + t)

)(
1
t

)
= lim
t→0

(
2− 2− t)
2(2 + t)

)(
1
t

)
= lim
t→0

−1
2(2 + t)

= −1
4
.

C02S02.031: lim
x→4

x− 4√
x− 2

= lim
x→4

(
√
x− 2)(

√
x+ 2)√

x− 2
= lim
x→4

√
x+ 2 = 4.

C02S02.032: lim
x→9

3−
√
x

9− x = lim
x→9

3−
√
x

(3−
√
x )(3 +

√
x )

= lim
x→9

1
3 +
√
x

=
1
6
.
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C02S02.033: lim
t→0

√
t+ 4 − 2

t
= lim
t→0

(√
t+ 4 − 2

t

)
·
(√

t+ 4 + 2√
t+ 4 + 2

)

= lim
t→0

t+ 4− 4
t
(√
t+ 4 + 2

)
= lim
t→0

t

t
(√
t+ 4 + 2

) = lim
t→0

1√
t+ 4 + 2

=
1
4
.

C02S02.034: lim
h→0

1
h

(
1√

9 + h
− 1

3

)
= lim
h→0

3−
√

9 + h

3h
√

9 + h

= lim
h→0

(
3−
√

9 + h

3h
√

9 + h

)
·
(

3 +
√

9 + h

3 +
√

9 + h

)

=
9− (9 + h)

3h
√

9 + h
(
3 +
√

9 + h
) = lim

h→0

−1
3
√

9 + h
(
3 +
√

9 + h
) = − 1

54
.

C02S02.035: lim
x→4

x2 − 16
2−
√
x

= lim
x→4

(x+ 4)(
√
x− 2)(

√
x+ 2)

2−
√
x

= lim
x→4

[
−(x+ 4)(

√
x+ 2)

]
= −32.

C02S02.036: lim
x→0

√
1 + x −

√
1− x

x
= lim
x→0

(√
1 + x −

√
1− x

x

)
·
(√

1 + x +
√

1− x√
1 + x +

√
1− x

)

= lim
x→0

(1 + x)− (1− x)
x

(√
1 + x +

√
1− x

)
= lim
x→0

2(√
1 + x +

√
1− x

) = 1.

C02S02.037:
f(x+ h)− f(x)

h
=

(x+ h)3 − x3

h
=
x3 + 3x2h+ 3xh2 + h3 − x3

h
= 3x2 +3xh+h2 → 3x2 as

h→ 0. When x = 2, y = f(2) = x3 = 8 and the slope of the tangent line to this curve at x = 2 is 3x2 = 12,
so an equation of this tangent line is y = 12x− 16.

C02S02.038:
f(x+ h)− f(x)

h
=

(
1

x+ h

)
−

(
1
x

)

h
=
x− (x+ h)
hx(x+ h)

=
−1

x(x+ h)
→ − 1

x2
as h → 0. When

x = 2, y = f(2) = 1
2 and the slope of the line tangent to this curve at x = 2 is − 1

4 , so an equation of this
tangent line is y − 1

2 = − 1
4 (x− 2); that is, y = − 1

4 (x− 4).

C02S02.039:
f(x+ h)− f(x)

h
=

1
(x+ h)2

− 1
x2

h
=
x2 − (x+ h)2

hx2(x+ h)2
=
−2x− h
x2(x+ h)2

→ − 2
x3

as h→ 0. When

x = 2, y = f(2) = 1
4 and the slope of the line tangent to this curve at x = 2 is − 1

4 , so an equation of this
tangent line is y − 1

4 = − 1
4 (x− 2); that is, y = − 1

4 (x− 3).

C02S02.040:
f(x+ h)− f(x)

h
=

(
1

x+ h+ 1

)
−

(
1

x+ 1

)

h
=

x+ 1− x− h− 1
h(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ h+ 1)
.

This approaches − 1
(x+ 1)2

as h approaches 0. When x = 2, y = f(2) = 1
3 and the slope of the line tangent

to this curve at x = 2 is − 1
9 , so an equation of this tangent line is y− 1

3 = − 1
9 (x−2); that is, y = − 1

9 (x−5).

C02S02.041:
f(x+ h)− f(x)

h
=

(
2

x+ h− 1

)
−

(
2

x− 1

)

h
=

2(x− 1− x− h+ 1)
h(x− 1)(x+ h− 1)

=
−2

(x− 1)(x+ h− 1)
.
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This approaches
−2

(x− 1)2
as h approaches 0. When x = 2, y = f(2) = 2 and the slope of the line tangent to

this curve at x = 2 is −2, so an equation of this tangent line is y−2 = −2(x−2); alternatively, y = −2(x−3).

C02S02.042:
f(x+ h)− f(x)

h
=

(
x+ h

x+ h− 1

)
−

(
x

x− 1

)

h
=

(x− 1)(x+ h)− x2 − xh+ x

h(x− 1)(x+ h− 1)

=
−1

(x− 1)(x+ h− 1)
→ −1

(x− 1)2
as h→ 0.

When x = 2, y = f(2) = 2 and the slope of the line tangent to this curve at x = 2 is −1, so an equation of
this tangent line is y − 2 = −1(x− 2); that is, y = −x+ 4.

C02S02.043:
f(x+ h)− f(x)

h
=

(
1√

x+ h+ 2

)
−

(
1√
x+ 2

)

h

=
(√

x+ 2 −
√
x+ h+ 2

h
√
x+ 2

√
x+ h+ 2

)
·
(√

x+ 2 +
√
x+ h+ 2√

x+ 2 +
√
x+ h+ 2

)

=
−h

h
√
x+ 2

√
x+ h+ 2

(√
x+ 2 +

√
x+ h+ 2

) → −1
(x+ 2)

(
2
√
x+ 2

)
as h→ 0. When x = 2, y = f(2) = 1

2 and the slope of the line tangent to this curve at x = 2 is − 1
16 , so an

equation of this tangent line is y − 1
2 = − 1

16 (x− 2); that is, y = − 1
16 (x− 10).

C02S02.044:
f(x+ h)− f(x)

h
=

(x+ h)2 +
3

x+ h
− x2 − 3

x
h

= (2x+ h) +
−3

x(x+ h)
→ 2x− 3

x2
as h→ 0.

When x = 2, y = f(2) = 11
2 and the slope of the line tangent to this curve at x = 2 is 13

4 , so an equation of
this tangent line is y − 11

2 = 13
4 (x− 2).

C02S02.045:
f(x+ h)− f(x)

h
=

√
2(x+ h) + 5 −

√
2x+ 5

h

=

(√
2(x+ h) + 5 −

√
2x+ 5

h

)
·
(√

2(x+ h) + 5 +
√

2x+ 5√
2(x+ h) + 5 +

√
2x+ 5

)

=
2√

2(x+ h) + 5 +
√

2x+ 5
→ 1√

2x+ 5
as h→ 0.

When x = 2, y = f(2) = 3 and the slope of the line tangent to this curve at x = 2 is 1
3 , so an equation of

this tangent line is y − 3 = 1
3 (x− 2); if you prefer, y = 1

3 (x+ 7).

C02S02.046:
f(x+ h)− f(x)

h
=

(
(x+ h)2

x+ h+ 1

)
−

(
x2

x+ 1

)

h
=

(x+ 1) (x+ h)2 − (x+ h+ 1)
(
x2

)
h(x+ 1)(x+ h+ 1)

=
x2 + xh+ 2x+ h

(x+ 1)(x+ h+ 1)
→ x2 + 2x

(x+ 1)2
as h→ 0.

When x = 2, y = f(2) = 4
3 and the slope of the line tangent to this curve at x = 2 is 8

9 , so an equation of
this tangent line is y − 4

3 = 8
9 (x− 2); that is, 9y = 8x− 4.
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C02S02.047:

The limit appears to be 2.

x 10−2 10−4 10−6 10−8 10−10

f(x) 2.01 2.001 2. 2. 2.

x −10−2 −10−4 −10−6 −10−8 −10−10

f(x) 1.99 1.9999 2. 2. 2.

C02S02.048:

The limit appears to be 4.

x 1 + 10−2 1 + 10−4 1 + 10−6 1 + 10−8 1 + 10−10

f(x) 4.0604 4.0006 4.00001 4. 4.

x 1− 10−2 1− 10−4 1− 10−6 1− 10−8 1− 10−10

f(x) 3.9404 3.9994 3.99999 4. 4.

C02S02.049:

The limit appears to be 1
6 .

x 10−2 10−4 10−6 10−8 10−10

f(x) 0.16662 0.166666 0.166667 0.166667 0.166667

x −10−2 −10−4 −10−6 −10−8 −10−10

f(x) 0.166713 0.166667 0.166667 0.166667 0.166667

C02S02.050:

The limit appears to be 3.

x 4 + 10−2 4 + 10−4 4 + 10−6 4 + 10−8 4 + 10−10

f(x) 3.00187 3.00002 3. 3. 3.

x 4− 10−2 4− 10−4 4− 10−6 4− 10−8 4− 10−10

f(x) 2.99812 2.99998 3. 3. 3.

C02S02.051:

The limit appears to be − 3
8 .

x 10−2 10−4 10−6 10−8 10−10

f(x) −0.37128 −0.374963 −0.375 −0.375 −0.375

x −10−2 −10−4 −10−6 −10−8 −10−10

f(x) −0.378781 −0.375038 −0.375 −0.375 −0.375
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C02S02.052:

Limit: − 2
9 .

x 10−2 10−4 10−6 10−8 10−10

f(x) −0.222225 −0.222222 −0.222222 −0.222225 −0.222222

x −10−2 −10−4 −10−6 −10−8 −10−10

f(x) −0.222225 −0.222222 −0.222222 −0.222222 −0.222222

C02S02.053:

The limit appears to be 1.

x 10−2 10−4 10−6 10−8 10−10

f(x) 0.999983 1. 1. 1. 1.

x −10−2 −10−4 −10−6 −10−8 −10−10

f(x) 0.999983 1. 1. 1. 1.

C02S02.054:

Beware of round-off errors.
The limit is 0.5.

x 10−2 10−4 10−6 10−8 10−10

f(x) 0.49996 0.5 0.5 0.499817 0

x −10−2 −10−4 −10−6 −10−8 −10−10

f(x) 0.499996 0.5 0.5 0.499817 0

C02S02.055:

The limit appears to be 1
6 .

x 10−2 10−3 10−4 10−5 10−6

f(x) 0.166666 0.166667 0.166667 0.166667 0.166667

x −10−2 −10−3 −10−4 −10−5 −10−6

f(x) 0.166666 0.166667 0.166667 0.166667 0.166667

C02S02.056:

The limit appears to be 1.

x 10−2 10−4 10−6 10−8 10−10

f(x) 1.04723 1.00092 1.00001 1. 1.

x −10−2 −10−4 −10−6 −10−8 −10−10

f(x) .954898 .999079 .999986 1. 1.

C02S02.057:

x 2−1 2−5 2−10 2−15 2−20

(1 + x)1/x 2.25 2.67699 2.71696 2.71824 2.71828

x −2−1 −2−5 −2−10 −2−15 −2−20

(1 + x)1/x 4. 2.76210 2.71961 2.71832 2.71828
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-0.01 -0.005 0.005 0.01

0.999985

0.999987

0.99999

0.999992

0.999995

0.999997

-0.00001 0.00001

0.00001

0.000015

0.00002

C02S02.058: The graph of y = (sinx)/x on the interval [−0.01, 0.01] is next.

C02S02.059: lim
x→0

x− tanx
x3

= −1
3
. Answer: −0.3333.

C02S02.060: lim
x→0

sin 2x
tan 5x

=
2
5
.

C02S02.061: sin
( π

2−n
)

= sin
(
2π · 2(n−1)

)
= 0 for every positive integer n. Therefore lim

x→0
sin

(π
x

)
, if it

were to exist, would be 0. Notice however that sin
(
3n · π

2

)
alternates between +1 and −1 for n = 1, 2, 3, . . . .

Therefore lim
x→0

sin
(π
x

)
does not exist.

C02S02.062: The graph of f(x) = sinx + 10−5 cosx on the interval [−0.00001, 0.00001] is shown next.
The graph makes it clear that the limit is certainly not zero and almost certainly is 10−5.

C02S02.063: The graph of f(x) = (log10 (1/|x|) )−1/32 is shown next, as well as a table of values of f(x)
for x very close to zero. The table was generated by Mathematica, version 3.0, but virtually any computer
algebra system will produce similar results.
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-0.00001 0.00001

0.938

0.942

0.944

0.946

0.948

0.95

x f(x) x f(x) x f(x) x f(x)

10−1 1.0000 10−6 0.9455 10−11 0.9278 10−16 0.9170

10−2 0.9786 10−7 0.9410 10−12 0.9253 10−17 0.9153

10−3 0.9663 10−8 0.9371 10−13 0.9230 10−18 0.9136

10−4 0.9576 10−9 0.9336 10−14 0.9208 10−19 0.9121

10−5 0.9509 10−10 0.9306 10−15 0.9189 10−20 0.9106

C02S02.064: The slope of the line tangent to the graph of y = 10x at the point (0, 1) is

L = lim
h→0

100+h − 100

h
= lim

h→0

10h − 1
h

.

With h = 0.1, 0.01, 0.001, . . . , 0.000001, a calculator reports that the corresponding values of (10h − 1)/h
are (approximately) 2.58925, 2.32930, 2.30524, . . . , and 2.30259. This is fair evidence that L = ln 10 ≈
2.302585. The slope-predictor for y = 10x is

m(x) = lim
h→0

10x+h − 10x

h
= 10x ·

(
lim
h→0

10h − 1
h

)
= L · 10x.

The line tangent to the graph of y = 10x at the point P (a, 10a) has predicted equation

y − 10a = L · 10a · (x− a).

To see the graph of y = 10x near P and the line predicted to be tangent to that graph at P , enter the
Mathematica commands

a = 2; (* or any other value you please *)

Plot[ { 10∧x, 10∧a + (10∧a)∗Log[ 10 ]∗(x − a) }, { x, a − 1, a + 1 } ];
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Section 2.3

C02S03.001: θ · θ

sin θ
→ 0 · 1 = 0 as θ → 0.

C02S03.002:
sin θ
θ
· sin θ

θ
→ 1 · 1 = 1 as θ → 0.

C02S03.003: Multiply numerator and denominator by 1+cos θ (the conjugate of the numerator) to obtain

lim
θ→0

1− cos2 θ
θ2(1 + cos θ)

= lim
θ→0

sin θ
θ
· sin θ

θ
· 1
1 + cos θ

= 1 · 1 · 1
2

=
1
2
.

C02S03.004:
tan θ
θ

=
sin θ
θ cos θ

=
sin θ
θ
· 1
cos θ

→ 1 · 1
1

= 1 as θ → 0.

C02S03.005: Divide each term in numerator and denominator by t. Then it’s clear that the denominator
is approaching zero whereas the numerator is not, so the limit does not exist. Because the numerator is
positive and the denominator is approaching zero through negative values, the answer −∞ is also correct.

C02S03.006: As θ → 0, so does ω = θ2, and

sin 2ω
ω

=
2 sinω cosω

ω
=

sinω
ω
· 2 cosω → 1 · 2 · 1 = 2.

C02S03.007: Let z = 5x. Then z → 0 as x→ 0, and
sin 5x
x

=
5 sin z
z
→ 5 · 1 = 5.

C02S03.008:
sin 2z
z cos 3z

=
2 sin z cos z
z cos 3z

=
2 cos z
cos 3z

· sin z
z
→ 2 · 1

1
· 1 = 2 as z → 0.

C02S03.009: This limit does not exist because
√
x is not defined for x near 0 if x < 0. But

lim
x→0+

sinx√
x

= lim
x→0+

(√
x

)
·
(

sinx
x

)
= 0 · 1 = 0.

C02S03.010: Using the identity sin2 x = 1
2 (1− cos 2x) (inside the front cover), we obtain

lim
x→0

1− cos 2x
x

= lim
x→0

2(1− cos 2x)
2x

= lim
x→0

2 sin2 x

x
= lim
x→0

(2 sinx)
sinx
x

= 2 · 0 · 1 = 0.

Alternatively, you could multiply numerator and denominator by 1+cos 2x (the conjugate of the numerator).

C02S03.011: Let x = 3z. Then x→ 0 is equivalent to z → 0, and therefore

lim
x→0

1
x

sin
x

3
= lim
z→0

1
3z

sin z = lim
z→0

1
3
· sin z

z
=

1
3
· 1 =

1
3
.

C02S03.012: Let x = 3θ. Then θ = 1
3x and θ → 0 is equivalent to x→ 0. Hence

lim
θ→0

(sin 3θ)2

θ2 cos θ
= lim
x→0

(sinx)2
1
9x

2 cos
(

1
3x

) = lim
x→0

9 · sinx
x
· sinx

x
· 1
cos

(
1
3x

) = 9 · 1 · 1 · 1
1

= 9.

C02S03.013: Multiply numerator and denominator by 1+cosx (the conjugate of the numerator) to obtain
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lim
x→0

(1− cosx)(1 + cosx)
(sinx)(1 + cosx)

= lim
x→0

1− cos2 x
(sinx)(1 + cosx)

= lim
x→0

sin2 x

(sinx)(1 + cosx)
= lim
x→0

sinx
1 + cosx

=
0

1 + 1
= 0.

C02S03.014: By Problem 4, (tanx)/x→ 1 as x→ 0. This observation implies that

lim
x→0

tan kx
kx

= 1 and lim
x→0

kx

tan kx
= 1

for any nonzero constant k. Hence

lim
x→0

tan 3x
tan 5x

= lim
x→0

3
5
· tan 3x

3x
· 5x
tan 5x

=
3
5
· 1 · 1 =

3
5
.

C02S03.015: Recall that secx =
1

cosx
and cscx =

1
sinx

. Hence

lim
x→0

x secx cscx = lim
x→0

1
cosx

· x

sinx
=

1
1
· 1 = 1.

We also used the fact that

lim
x→0

x

sinx
= lim
x→0

1
sinx
x

=
1
1

= 1.

C02S03.016: lim
θ→0

sin 2θ
θ

= lim
θ→0

2 sin θ cos θ
θ

= lim
θ→0

(2 cos θ) · sin θ
θ

= 2 · 1 · 1 = 2.

C02S03.017: Multiply numerator and denominator by 1+cos θ (the conjugate of the numerator) to obtain

lim
θ→0

(1− cos θ)(1 + cos θ)
(θ sin θ)(1 + cos θ)

= lim
θ→0

sin2 θ

(θ sin θ)(1 + cos θ)
= lim
θ→0

sin θ
θ(1 + cos θ)

= lim
θ→0

sin θ
θ
· 1
1 + cos θ

= 1 · 1
1 + 1

=
1
2
.

C02S03.018: lim
θ→0

sin2 θ

θ
= lim
θ→0

sin θ
θ
· sin θ = 1 · 0 = 0.

C02S03.019: lim
z→0

tan z
sin 2z

= lim
z→0

sin z
(cos z)(2 sin z cos z)

= lim
z→0

1
2 cos2 z

=
1

2 · 12
=

1
2
.

C02S03.020: lim
x→0

tan 2x
3x

= lim
x→0

2
3
· tan 2x

2x
=

2
3
· 1 =

2
3

(with the aid of Problem 4).

C02S03.021: lim
x→0

x cot 3x = lim
x→0

x cos 3x
sin 3x

= lim
x→0

3x
sin 3x

· cos 3x
3

= 1 · 1
3

=
1
3

(see Problem 15, last line).

C02S03.022: lim
x→0

x− tanx
sinx

= lim
x→0

(
x

x
− tanx

x

)
(

sinx
x

) =
1− 1

1
= 0 (with the aid of Problem 4).

C02S03.023: Let x = 1
2 t. Then x→ 0 is equivalent to t→ 0, so
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lim
t→0

sin
(
t

2

)

t

2

= lim
x→0

sinx
x

= 1.

Therefore

lim
t→0

1
t2

sin2

(
t

2

)
= lim
t→0

1
4
· 4
t2

sin2

(
t

2

)
= lim
t→0

1
4
·




sin
(
t

2

)

t

2



2

=
1
4
· 12 =

1
4
.

C02S03.024: Because
sinx
x
→ 1 as x→ 0, it follows that

lim
x→0

sin kx
kx

= 1 and lim
x→0

kx

sin kx
= 1

for any nonzero constant k. Hence

lim
x→0

sin 2x
sin 5x

= lim
x→0

2
5
· sin 2x

2x
· 5x
sin 5x

=
2
5
· 1 · 1 =

2
5
.

C02S03.025: Because −1 � cos 10x � 1 for all x, −x2 � x2 cos 10x � x2 for all x. But both −x2 and x2

approach zero as x→ 0. Therefore lim
x→0

x2 cos 10x = 0. The second inequality is illustrated next.

C02S03.026: Because −1 � sinx � 1 for all x, also −x2 � x2 sin
1
x

� x2 for all x �= 0. Because both −x2

and x2 approach zero as x→ 0, it follows from the squeeze law that lim
x→0

x2 sin
1
x

= 0. The second inequality
is illustrated next.
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C02S03.027: First, −1 � cosx � 1 for all x. Therefore

−x2 � x2 cos
1
3
√
x

� x2

for all x �= 0. Finally, both x2 and −x2 approach zero as x→ 0. Therefore, by the squeeze law,

lim
x→0

x2 cos
1
3
√
x

= 0.

C02S03.028: Because −1 � sinx � 1 for all x,

−
∣∣ 3
√
x

∣∣ � 3
√
x sin

1
x

�
∣∣ 3
√
x

∣∣
for all x �= 0. Because both − | 3

√
x | and | 3

√
x | approach zero as x→ 0, it follows from the squeeze law that

lim
x→0

3
√
x sin

1
x

= 0.

C02S03.029: lim
x→0+

(
3−
√
x

)
= 3−

√
lim
x→0+

x = 3− 0 = 3.

C02S03.030: lim
x→0+

(
4 + 3x3/2

)
= 4 + 3 ·

(
lim
x→0+

x

)3/2

= 4− 3 · 0 = 4.

C02S03.031: lim
x→1−

√
x− 1 does not exist because if x < 1, then x− 1 < 0.

C02S03.032: Because x→ 4−, x < 4, so that
√

4− x is defined for all such x. Therefore the limit exists
and lim

x→4−

√
4− x =

√
4− 4 = 0.

C02S03.033: Because x → 2+, x > 2, so that x2 > 4. Hence
√
x2 − 4 is defined for all such x and

lim
x→2+

√
x2 − 4 =

√
4− 4 = 0.

C02S03.034: Because x → 3+, x > 3, so that 9 − x2 < 0 for all such x. Thus the given limit does not
exist.
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C02S03.035: Because x → 5−, x < 5 and x > 0 for x sufficiently close to 5. Therefore x(5 − x) > 0 for
such x, so that

√
x(5− x) exists for such x. Therefore

lim
x→5−

√
x(5− x) =

√(
lim
x→5−

x

)(
5− lim

x→5−
x

)
=
√

5 · 0 = 0.

C02S03.036: As x→ 2−, x < 2, and x > −2 for x sufficiently close to 2. For such x, 4− x2 > 0, so that√
4− x2 exists. Therefore lim

x→2−

√
4− x2 =

√
4− 22 =

√
0 = 0.

C02S03.037: As x → 4+, x > 4, so that both 4x and x − 4 are positive. Hence the radicand is positive
and the square root exists. But the denominator in the radicand is approaching zero through positive values
while the numerator is approaching 16. So the fraction is approaching +∞. Therefore

lim
x→4+

√
4x
x− 4

= +∞.

It is also correct to say that this limit does not exist.

C02S03.038: First, 6− x− x2 = (3 + x)(2− x), so that as x→ −3+, x > −3, and thus 3 + x > 3− 3 = 0.
Also x < 2 if x is sufficiently close to −3, so that 2− x > 0. Therefore (3 + x)(2− x) > 0, and so the square
root is defined. Finally,

lim
x→−3+

√
6− x− x2 = lim

x→−3+

√
(3 + x)(2− x) =

√
0 · 5 =

√
0 = 0.

C02S03.039: If x < 5, then x− 5 < 0, so
x− 5
|x− 5| =

x− 5
−(x− 5)

= −1. Therefore the limit is −1.

C02S03.040: If −4 < x < 4, then 16− x2 > 0, so
16− x2

√
16− x2

=
√

16− x2 → 0 as x→ −4+.

C02S03.041: If x > 3, then x2−6x+9 = (x−3)2 > 0 and x−3 > 0, so
√
x2 − 6x+ 9
x− 3

=
|x− 3|
x− 3

=
x− 3
x− 3

→ 1

as x→ 3+.

C02S03.042:
x− 2

x2 − 5x+ 6
=

x− 2
(x− 2)(x− 3)

=
1

x− 3
→ −1 as x→ 2+. Indeed, the two-sided limit exists

and is equal to −1.

C02S03.043: If x > 2 then x− 2 > 0, so
2− x
|x− 2| =

2− x
x− 2

= −1. Therefore the limit is also −1.

C02S03.044: If x < 7 then x− 7 < 0, so
7− x
|x− 7| =

7− x
−(x− 7)

= 1. So the limit is 1.

C02S03.045:
1− x2

1− x =
(1 + x)(1− x)

1− x = 1 + x, so the limit is 2.

C02S03.046: As x→ 0−, x < 0, so that x− |x| = x− (−x) = 2x. Therefore

lim
x→0−

x

x− |x| = lim
x→0−

x

2x
= lim
x→0−

1
2

=
1
2
.
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C02S03.047: Recall first that
√
z2 = |z | for every real number z. Because x → 5+, x > 5, so 5 − x < 0.

Therefore
√

(5− x)2 = |5− x| = −(5− x) = x− 5. Therefore

lim
x→5+

√
(5− x)2
5− x = lim

x→5+

x− 5
5− x = lim

x→5+
(−1) = −1.

C02S03.048: Recall that
√
z2 = |z | for every real number z. Because x → −4−, we know that x < −4.

Hence 4 + x < 4 + (−4) = 0. Therefore

lim
x→−4−

4 + x√
(4 + x)2

= lim
x→−4−

4 + x

|4 + x| = lim
x→−4−

4 + x

−(4 + x)
= lim
x→−4−

(−1) = −1.

C02S03.049: The right-hand and left-hand limits both fail to exist at a = 1. The behavior of f near a is
best described by observing that

lim
x→1+

1
x− 1

= +∞ and lim
x→1−

1
x− 1

= −∞.

C02S03.050: The right-hand and left-hand limits both fail to exist at a = 3. The behavior of f near a is
best described by observing that

lim
x→3+

2
3− x = −∞ and lim

x→3−

2
3− x = +∞.

C02S03.051: The right-hand and left-hand limits both fail to exist at a = −1. The behavior of f near a
is best described by observing that

lim
x→−1+

x− 1
x+ 1

= −∞ and lim
x→−1−

x− 1
x+ 1

= +∞.

C02S03.052: The right-hand and left-hand limits both fail to exist at a = 5. The behavior of f near a is
best described by observing that

lim
x→5+

2x− 5
5− x = −∞ and lim

x→5−

2x− 5
5− x = +∞.

C02S03.053: The right-hand and left-hand limits both fail to exist at a = −2. If x is slightly greater than
−2, then 1 − x2 is close to 1 − 4 = −3, while x + 2 is a positive number close to zero. In this case f(x) is
a large negative number. Similarly, if x is slightly less than −2, then 1− x2 is close to −3, while x+ 2 is a
negative number close to zero. In this case f(x) is a large positive number. The behavior of f near −2 is
best described by observing that

lim
x→−2+

1− x2

x+ 2
= −∞ and lim

x→−2−

1− x2

x+ 2
= +∞.

C02S03.054: The right-hand and left-hand limits fail to exist at a = 5. If x is close to 5 but x �= 5, then
x− 5 is close to zero, so that (x− 5)2 is a positive number still very close to zero. Its reciprocal is therefore
a very large positive number. That is,

lim
x→5+

1
(x− 5)2

= lim
x→5−

1
(x− 5)2

= +∞. (1)
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Unlike the previous problems of this sort, we may in this case also write

lim
x→5

1
(x− 5)2

= +∞.

Nevertheless, Eq. (1) implies that neither the left-hand nor the right-hand limit of f(x) exists (is a real
number) at x = 5.

C02S03.055: The left-hand and right-hand limits both fail to exist at x = 1. To simplify f(x), observe
that

f(x) =
|1− x|
(1− x)2 =

|1− x|
|1− x|2 =

1
|1− x| .

Therefore we can describe the behavior of f(x) near a = 1 in this way:

lim
x→1

f(x) = lim
x→1

1
|1− x| = +∞.

C02S03.056: Because x2 + 6x + 9 = (x + 3)2, the denominator in f(x) is zero when x = −3, and so the
left-hand and right-hand limits fail to exist at a = −3. When x is close to −3 but x �= −3, (x + 3)2 is a
positive number very close to zero, while the numerator x+ 1 is close to −2. Therefore f(x) is a very large
negative number. That is,

lim
x→−3

x+ 1
x2 + 6x+ 9

= −∞.

C02S03.057: First simplify f(x): If x2 �= 4 (that is, if x �= ±2), then

f(x) =
x− 2
4− x2

=
x− 2

(2 + x)(2− x) =
−1

2 + x
.

So even though f(2) does not exist, there is no real problem with the limit of f(x) as x→ 2:

lim
x→2

f(x) = lim
x→2

−1
2 + x

= − 1
4
.

But the left-hand and right-hand limits of f(x) fail to exist at x = −2, because

lim
x→−2+

f(x) = lim
x→−2+

−1
2 + x

= −∞ and lim
x→−2−

f(x) = lim
x→−2−

−1
2 + x

= +∞.

C02S03.058: First simplify:

f(x) =
x− 1

x2 − 3x+ 2
=

x− 1
(x− 1)(x− 2)

=
1

x− 2

if x �= 1 and x �= 2. But even though f(1) is undefined,

lim
x→1

f(x) = lim
x→1

1
x− 2

=
1

1− 2
= −1.

But the one-sided limits fail to exist at x = 2:

lim
x→2+

f(x) = lim
x→2+

1
x− 2

= +∞ and lim
x→2−

f(x) = lim
x→2−

1
x− 2

= −∞.
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C02S03.059: lim
x→2+

x2 − 4
|x− 2| = 4 and lim

x→2−

x2 − 4
|x− 2| = −4. The two-sided limit does not exist. The graph is

shown next.

C02S03.060: Because lim
x→2+

x4 − 8x+ 16
|x− 2| = +∞ and lim

x→2−

x4 − 8x+ 16
|x− 2| = +∞, the two-sided limit also

fails to exist. The graph is shown next.

C02S03.061: If x is an even integer then f(x) = 3, if x is an odd integer then f(x) = 1, and lim
x→a

f(x) = 2
for all real number values of a. The graph of f is shown next.

C02S03.062: If n is any integer then f(x)→ n as x→ n. Note: lim
x→a

f(x) = a for all real number values
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of a. The graph of f is shown next.

C02S03.063: For any integer n, lim
x→n−

f(x) = 10n− 1 and lim
x→n+

f(x) = 10n. Note: lim
x→a

f(x) exists if and

only if 10a is not an integer. The graph is shown next.

C02S03.064: If n is an odd integer, then f(x) = n− 1, an even integer, for n− 1 � x < n and f(x) = n,
an odd integer, for n � x < n+ 1. Therefore

lim
x→n−

f(x) = 1 and lim
x→n+

f(x) = −1.

Similarly, if n is an even integer, then

lim
x→n−

f(x) = −1 and lim
x→n+

f(x) = 1.

Finally, lim
x→a

f(x) exists if and only if a is not an integer. The graph of f is shown next.
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C02S03.065: If n is an integer and n < x < n + 1, then write x = n + t where 0 < t < 1. Then
f(x) = n+ t− n− 1

2 = t− 1
2 . Moreover, x→ n+ is equivalent to t→ 0+. Therefore

lim
x→n+

f(x) = lim
x→n+

(
t− 1

2

)
= lim
t→0+

(
t− 1

2

)
= −1

2
.

Similar reasoning, with n− 1 < x < n, shows that if n is an integer, then

lim
x→n−

f(x) =
1
2
.

Finally, if a is a real number other than an integer, then lim
x→a

f(x) exists. The graph of f is next.

C02S03.066: Given the real number x, there is a [unique] integer n such that 2n � x < 2n + 2. Thus
n � 1

2x < n+ 1, and in this case f(x) = n. So if m = 2n is an even integer, then f(x)→ m as x→ m+ and
x→ a for every real number a strictly between 2n and 2n+2. But if 2n− 2 < x < 2n, then n− 1 < 1

2x < n,
so that f(x) = n− 1; in this case f(x)→ n− 1 as x→ m−. Therefore:

If k is an odd integer, then lim
x→k

f(x) = 1
2 (k − 1).

If k is an even integer, then lim
x→k+

f(x) = 1
2k and lim

x→k−
f(x) = 1

2 (k − 2).

Finally, lim
x→a

f(x) exists if and only if a is not an even integer. The graph of f is next.
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C02S03.067: If x is an integer, then f(x) = x− x = 0. If x is not an integer, choose the [unique] integer
n such that n < x < n+ 1. Then −(n+ 1) < −x < −n, so f(x) = n− (n+ 1) = −1. Therefore

lim
x→a

f(x) = lim
x→a

(−1) = −1

for every real number a. In particular, for every integer n,

lim
x→n−

f(x) = −1 and lim
x→n+

f(x) = −1.

The graph of f is shown next.

C02S03.068: If n is a positive integer, then

lim
x→n−

f(x) =
n− 1
n

and lim
x→n+

f(x) = 1.

For any integer n < 0,

lim
x→n−

f(x) =
n+ 1
n

and lim
x→n+

f(x) = 1.

Also,

lim
x→0−

f(x) = +∞ and lim
x→0+

f(x) = 0.
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Note: lim
x→a

f(x) exists if and only if a is not an integer. The graph of f is next.

C02S03.069: The values of a for which lim
x→a

g(x) exists are those real numbers not integral multiples of
1
10 . If b is an integral multiple of 1

10 , then

lim
x→b−

g(x) = b− 1
10 and lim

x→b+
g(x) = b.

The graph of g is shown next.

C02S03.070: Let f(x) = sgn(x) and g(x) = −sgn(x). Clearly neither f(x) nor g(x) has a limit as x→ 0
(for example, f(x)→ 1 as x→ 1+ but f(x)→ −1 as x→ 1−). But

f(x) + g(x) =




1− 1 if x > 0,
−1 + 1 if x < 0,
0 + 0 if x = 0,

so that f(x) + g(x) ≡ 0, and therefore f(x) + g(x)→ 0 as x→ 0. Also,

f(x) · g(x) =
{ −1 if x �= 0,

0 if x = 0.

Therefore lim
x→0

f(x) · g(x) = −1.

C02S03.071: Because −x2 � f(x) � x2 for all x and because −x2 → 0 and x2 → 0 as x → 0, it follows
from the squeeze law for limits that lim

x→0
f(x) = 0 = f(0).
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C02S03.072: As x→ 0+, 1/x→ +∞, so 1 + 21/x → +∞ as well. Therefore

lim
x→0+

1
1 + 21/x

= 0.

As x→ 0−, 1/x→ −∞, so 21/x → 0. Consequently,

lim
x→0−

1
1 + 21/x

= 1.

Therefore lim
x→0

f(x) does not exist. This function approaches its one-sided limits at x = 0 very rapidly. For
example,

f(0.01) ≈ 7.888609052× 10−31 and f(−0.01) ≈ 1− 7.888601052× 10−31.

The graph of f for x near zero is next.

C02S03.073: Given: f(x) = x · [[1/x]]. Let’s first study the right-hand limit of f(x) at x = 0. We need
consider only values of x in the interval (0, 1), and if 0 < x < 1 then

1 <
1
x
, so that n � 1

x
< n+ 1

for some [unique] positive integer n. Moreover, if so then

1
n+ 1

< x � 1
n
.

Therefore f(x) = x · n, so that

n

n+ 1
< f(x) � n

n
= 1. (1)

As x→ 0+, n→ ∞, so the bounds on f(x) in (1) both approach 1. Therefore

lim
x→0+

f(x) = 1.

A similar (but slightly more delicate) argument shows that f(x)→ 1 as x→ 0− as well. Therefore lim
x→0

f(x)
exists and is equal to 1. The graph of f is next.
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C02S03.074: Here, f(x) is obtained from the function in Problem 73 by multiplication by x. Therefore,
because the function in Problem 73 had limit 1 as x → 0, the product rule for limits implies that f(x) →
0 · 1 = 0 as x→ 0. The graph of f near zero is next.

C02S03.075: Given ε > 0, let δ = ε/7. Suppose that

0 < |x− (−3)| < δ.

Then

|x+ 3| < ε

7
;

|7x+ 21| < ε;

|7x− 9 + 30| < ε;

|(7x− 9)− (−30)| < ε.

Therefore, by definition, lim
x→−3

(7x− 9) = −30.

C02S03.076: Given ε > 0, let δ = ε/17. Suppose that 0 < |x− 5| < δ. Then

14



|17x− 85| < 17δ;

|(17x− 35)− 50| < ε.

Therefore, by definition, lim
x→5

(17x− 35) = 50.

C02S03.077: Definition: We say that the number L is the right-hand limit of the function f at x = a

provided that, for every ε > 0, there exists δ > 0 such that, if 0 < |x−a| < δ and x > a, then |f(x)−L| < ε.

To prove that lim
x→0+

√
x = 0, suppose that ε > 0 is given. Let δ = ε2. Suppose that |x − 0| < δ and

that x > 0. Then 0 < x < δ = ε2. Hence
√
x < ε, and therefore

|
√
x − 0| < ε.

So, by definition, lim
x→0+

√
x = 0.

C02S03.078: Let ε > 0 be given. Let δ =
√
ε . Suppose that 0 < |x − 0| < δ. Then 0 < x2 < δ2 = ε.

Hence |x2 − 0| < ε. Therefore, by definition,

lim
x→0

x2 = 0.

C02S03.079: Suppose that ε > 0 is given. Let δ be the minimum of the two numbers 1 and ε/5 and
suppose that 0 < |x− 2| < δ. Then

|x− 2| < 1;

− 1 < x− 2 < 1;

3 < x+ 2 < 5;

|x+ 2| < 5.

Therefore

|x2 − 4| = |x+ 2| · |x− 2| < 5 · δ � 5 · ε
5

= ε.

Hence, by definition, lim
x→2

x2 = 4.

C02S03.080: Given ε > 0, choose δ to be the minimum of 1 and ε/10. Suppose that 0 < |x−7| < δ. Then

|x− 7| < 1;

− 1 < x− 7 < 1;

8 < x+ 2 < 10;

|x+ 2| < 10.

Therefore

|(x2 − 5x− 4)− 10| = |x+ 2| · |x− 7| < 10 · δ � 10 · ε
10

= ε.

15



Thus, by definition, lim
x→7

(x2 − 5x− 4) = 10.

C02S03.081: Given ε > 0, let δ be the minimum of 1 and ε/29. Suppose that 0 < |x− 10| < δ. Then

0 < |x− 10| < 1;

− 1 < x− 10 < 1;

− 2 < 2x− 20 < 2;

25 < 2x+ 7 < 29;

|2x+ 7| < 29.

Thus

|(2x2 − 13x− 25)− 45| = |2x+ 7| · |x− 10| < 29 · δ � 29 · ε
29

= ε.

Therefore, by definition, lim
x→10

(2x2 − 13x− 25) = 45.

C02S03.082: Given ε > 0, choose δ to be the minimum of 1 and ε/19. Suppose that 0 < |x−2| < δ. Then

0 < |x− 2| < 1;

− 1 < x− 2 < 1;

1 < x < 3;

1 < x2 < 9 and 2 < 2x < 6;

3 < x2 + 2x < 15;

7 < x2 + 2x+ 4 < 19;

|x2 + 2x+ 4| < 19.

Consequently,

|x3 − 8| = |x2 + 2x+ 4| · |x− 2| < 19 · δ � 19 · ε
19

= ε.

Therefore, by definition, lim
x→2

x3 = 8.

C02S03.083: In Problem 78 we showed that if a = 0, then

lim
x→a

x2 = lim
x→0

x2 = 0 = 02 = a2,

so the result we are to prove here holds when a = 0. Next case: Suppose that a > 0. Let ε > 0 be given.
Choose δ to be the minimum of the numbers 1 and ε/(2a+1). Note that δ > 0. Suppose that 0 < |x−a| < δ.
Then

|x− a| < 1;

− 1 < x− a < 1;

16



2a− 1 < x+ a < 2a+ 1;

|x+ a| < 2a+ 1.

Thus

|x2 − a2 | = |x+ a| · |x− a| < (2a+ 1) · ε

2a+ 1
= ε.

Therefore, by definition, lim
x→a

x2 = a2 if a > 0.

Final case: a < 0. Given ε > 0, let

δ = min
{

1,
ε

|2a− 1|

}
.

Note that δ > 0. Suppose that 0 < |x− a| < δ. Then

|x− a| < 1;

− 1 < x− a < 1;

2a− 1 < x+ a < 2a+ 1;

|x+ a| < |2a− 1|

(because |2a− 1| > |2a+ 1| if a < 0). It follows that

|x2 − a2 | = |x+ a| · |x− a| < |2a− 1| · ε

|2a− 1| = ε.

Therefore, by definition, lim
x→a

x2 = a2 if a < 0.

C02S03.084: Suppose that ε > 0 is given. Case (1): a = 0. Let δ = 3
√
ε and proceed much as in the

solution of Problem 78. Case (2): a > 0. Let

δ = min
{
a

2
,

4ε
19a2

}
.

Note that δ > 0. Suppose that 0 < |x− a| < δ. Then:

|x− a| < a

2
;

− a

2
< x− a < a

2
;

a

2
< x <

3a
2

;

a2

4
< x2 <

9a2

4
(because x > 0);

a2

2
< ax <

3a2

2
;

3a2

4
< x2 + ax <

15a2

4
;
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7a2

4
< x2 + ax+ a2 <

19a2

4
;

|x2 + ax+ a2 | < 19a2

4
.

Therefore

|x3 − a2 | = |x2 + ax+ a2 | · |x− a| < 19a2

4
· 4ε
19a2

= ε.

Thus, by definition, lim
x→a

x2 = a2 if a > 0. Case (3), in which a < 0, is similar.
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Section 2.4

C02S04.001: Suppose that a is a real number. Then

lim
x→a

f(x) = lim
x→a

(2x5 − 7x2 + 13) =
(

lim
x→a

2x5
)
−

(
lim
x→a

7x2
)

+
(

lim
x→a

13
)

=
(

lim
x→a

2
)(

lim
x→a

x
)5

−
(

lim
x→a

7
)(

lim
x→a

x
)2

+ 13 = 2a5 − 7a2 + 13 = f(a).

Therefore f is continuous at x for every real number x.

C02S04.002: Suppose that a is a real number. Then

lim
x→a

f(x) =
(

lim
x→a

7x3
)
−

(
lim
x→a

(2x + 1)5
)

=
(

lim
x→a

7
)(

lim
x→a

x
)3

−
(

lim
x→a

(2x + 1)
)5

= 7a3 −
[ (

lim
x→a

2
)(

lim
x→a

x
)

+
(

lim
x→a

1
) ]5

= 7a3 − (2a + 1)5 = f(a).

Therefore f is continuous at x for every real number x.

C02S04.003: Suppose that a is a real number. Then

lim
x→a

g(x) = lim
x→a

2x− 1
4x2 + 1

=
lim
x→a

(2x− 1)

lim
x→a

(4x2 + 1)

=

(
lim
x→a

2
)(

lim
x→a

x
)
−

(
lim
x→a

1
)

(
lim
x→a

4
)(

lim
x→a

x
)2

+
(

lim
x→a

1
) =

2a− 1
4a2 + 1

= g(a).

Therefore g is continuous at x for every real number x.

C02S04.004: Suppose that a is a fixed real number. Then

lim
x→a

g(x) =
limx→a x3

limx→a x2 + 2 limx→a x + 5

=
(limx→a x)3

(limx→a x)2 + 2 limx→a x + 5
=

a3

a2 + 2a + 5
= g(a).

Therefore g is continuous at x for all real x.

C02S04.005: Suppose that a is a fixed real number. Then a2 +4a+5 = (a+2)2 +1 > 0, so h(a) is defined.
Moreover,

lim
x→a

h(x) = lim
x→a

√
x2 + 4x + 5 =

(
lim
x→a

(x2 + 4x + 5)
)1/2

=
[(

lim
x→a

x
)2

+
(

lim
x→a

4
)(

lim
x→a

x
)

+
(

lim
x→a

5
) ]1/2

=
√

a2 + 4a + 5 = h(a).

Therefore, by definition, h is continuous at x = a. Because a is arbitrary, h is continuous at x for every real
number x.
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C02S04.006: Suppose that a is a real number. Then h(a) exists because x1/3 is defined for every real
number x. Moreover,

lim
x→a

h(x) = lim
x→a

(1− 5x)1/3 =
(

lim
x→a

(1− 5x)
)1/3

=
[(

lim
x→a

1
)
−

(
lim
x→a

5
)(

lim
x→a

x
) ]1/3

= (1− 5a)1/3 = h(a).

Therefore h is continuous at x = a, and thus continuous at every real number x.

C02S04.007: Suppose that a is a real number. Then 1+cos2 a �= 0, so that f(a) is defined. Note also that

lim
x→a

sinx = sin a and lim
x→a

cosx = cos a

because the sine and cosine functions are continuous at every real number (Theorem 1). Moreover,

lim
x→a

f(x) = lim
x→a

1− sinx

1 + cos2 x
=

lim
x→a

(1− sinx)

lim
x→a

(1 + cos2 x)

=

(
lim
x→a

1
)
−

(
lim
x→a

sinx
)

(
lim
x→a

1
)

+
(

lim
x→a

cosx
)2 =

1− sin a

1 + cos2 a
= f(a).

Therefore f is continuous at a. Because a is arbitrary, f is continuous at x for every real number x.

C02S04.008: Suppose that a is a real number. Then 0 � sin2 a � 1, so that 1 − sin2 a � 0, and thus
g(a) = (1− sin2 a)1/4 exists. Because the sine function is continuous on the set of all real numbers (Theorem
1), we know also that sinx→ sin a as x→ a. Therefore

lim
x→a

g(x) = lim
x→a

(1− sin2 x)1/4 =
(

lim
x→a

(1− sin2 x)
)1/4

=
[(

lim
x→a

1
)
−

(
lim
x→a

sinx
)2

]1/4
=

(
1− sin2 a

)1/4
= g(a).

Therefore g is continuous at a for every real number a.

C02S04.009: If a > −1, then f(a) exists because a �= −1. Moreover,

lim
x→a

f(x) = lim
x→a

1
x + 1

=
lim
x→a

1(
lim
x→a

x
)

+
(

lim
x→a

1
) =

1
a + 1

= f(a).

Therefore f is continuous on the interval x > −1.

C02S04.010: If −2 < a < 2, then f(a) exists because a2 − 4 �= 0. Moreover,

lim
x→a

f(x) = lim
x→a

x− 1
x2 − 4

=

(
lim
x→a

x
)
−

(
lim
x→a

1
)

(
lim
x→a

x
)2

−
(

lim
x→a

4
) =

a− 1
a2 − 4

= f(a).

Therefore f is continuous at x if −2 < x < 2.
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C02S04.011: Because − 3
2 � t � 3

2 , 0 � 4t2 � 9, so that the radicand in g(t) is never negative. Therefore
g(a) is defined for every real number a in the interval

[
− 3

2 ,
3
2

]
, and

lim
t→a

g(t) = lim
t→a

(9− 4t2)1/2 =
(

lim
t→a

(9− 4t2)
)1/2

=
[(

lim
t→a

9
)
− 4

(
lim
t→a

t
)2

]1/2
= (9− 4a2)1/2 = g(a).

Therefore g is continuous at a for every real number a in
[
− 3

2 ,
3
2

]
.

C02S04.012: If 1 � z � 3, then 0 � z− 1 � 2, −3 � −z � −1, and 0 � 3− z � 2. So the radicand in h(z)
is nonnegative for such values of z, and therefore if 1 � a � 3 then

lim
z→a

h(z) = lim
z→a

[(z − 1)(3− z) ]1/2 =
[
lim
z→a

(z − 1)(3− z)
]1/2

=
[([

lim
z→a

z
]
−

[
lim
z→a

1
])([

lim
z→a

3
]
−

[
lim
z→a

z
])]1/2

= [ (a− 1)(3− a) ]1/2 = h(a).

Therefore h is continuous at a for all real numbers a in the interval [1, 3].

C02S04.013: If − 1
2π < x < 1

2π, then cosx �= 0, so f(x) is defined for all such x. In addition, cosx→ cos a
as x→ a because the cosine function is continuous everywhere (Theorem 1). Therefore

lim
x→a

f(x) = lim
x→a

x

cosx
=

lim
x→a

x

lim
x→a

cosx
=

a

cos a
= f(a).

Therefore f is continuous at x if − 1
2π < x < 1

2π.

C02S04.014: If − 1
6π < t < 1

6π, then − 1
2 < sin t < 1

2 , so that 1− 2 sin t > 0 for such values of t. Therefore
g(a) is defined if − 1

6π < a < 1
6π. Moreover, for such values of a, we have

lim
t→a

g(t) = lim
t→a

(1− 2 sin t)1/2 =
(

lim
t→a

(1− 2 sin t)
)1/2

=
[ (

lim
t→a

1
)
−

(
lim
t→a

2
)(

lim
t→a

sin t
) ]1/2

= (1− 2 sin a)1/2 = g(a).

Therefore g is continuous at a for each real number a in the interval
(
− 1

6π,
1
6π

)
.

C02S04.015: The root law of Section 2.2 implies that g(x) = 3
√
x is continuous on the set R of all real

numbers. We know that the polynomial h(x) = 2x is continuous on R (Section 2.4, page 88). Hence the
sum f(x) = h(x) + g(x) is continuous on R.

C02S04.016: The polynomial f(x) = x2 is continuous on R (the set of all real numbers) and the quotient

h(x) =
1
x

of continuous functions is continuous where its denominator is not zero. Hence the sum g(x) = f(x) + h(x)
is continuous on its domain, the set of all nonzero real numbers.

C02S04.017: Because f(x) is the quotient of continuous functions (the numerator and denominator are
polynomials, continuous everywhere), f is continuous wherever its denominator is nonzero. Therefore f is
continuous on its domain, the set of all real numbers other than −3.
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C02S04.018: Because f(t) is the quotient of continuous functions (the numerator and denominator are
polynomials, continuous everywhere), f is continuous wherever its denominator is nonzero. Therefore f is
continuous on its domain, the set of all real numbers other than 5.

C02S04.019: Because f(x) is the quotient of continuous functions (the numerator and denominator are
polynomials, continuous everywhere), f is continuous wherever its denominator is nonzero. Therefore f is
continuous on its domain, the set of all real numbers.

C02S04.020: Because g(z) is the quotient of continuous functions (the numerator and denominator are
polynomials, continuous everywhere), g is continuous wherever its denominator is nonzero. Therefore g is
continuous on its domain, the set of all real numbers other than ±1.

C02S04.021: Note that f(x) is not defined at x = 5, so it is not continuous there. Because f(x) = 1 for
x > 5 and f(x) = −1 for x < 5, f is a polynomial on the interval (5, +∞) and a [another] polynomial on
the interval (−∞, 5). Therefore f is continuous on its domain, the set of all real numbers other than 5.

C02S04.022: Because h(x) is the quotient of continuous functions (the numerator and denominator are
polynomials, continuous everywhere), h is continuous wherever its denominator is nonzero. Therefore h is
continuous on its domain, the set of all real numbers.

C02S04.023: Because f(x) is the quotient of continuous functions (the numerator and denominator are
polynomials, continuous everywhere), f is continuous wherever its denominator is nonzero. Therefore f is
continuous on its domain, the set of all real numbers other than 2.

C02S04.024: Because g(t) = 4 + t4 is a polynomial, it is continuous everywhere (and never negative).
Because h(t) = 4

√
t is a root function, it is continuous wherever t � 0. Therefore (by Theorem 2) the

composition f(t) = h(g(t)) is continuous everywhere.

C02S04.025: Let

h(x) =
x + 1
x− 1

.

Because h(x) is the quotient of continuous functions (the numerator and denominator are polynomials,
continuous everywhere), h is continuous wherever its denominator is nonzero. Therefore h is continuous on
its domain, the set of all real numbers other than 1. Now let g(x) = 3

√
x. By the root rule of Section 2.2,

g is continuous everywhere. Therefore the composition f(x) = g(h(x)) is continuous on the set of all real
numbers other than 1.

C02S04.026: Here, F (u) = g(h(u)) where g(u) = 3
√
u and h(u) = 3− u3. Now g is continuous everywhere

by the root rule of Section 2.2; h is continuous everywhere because h(u) is a polynomial. Therefore the
composition F (u) = g(h(u)) of continuous functions is continuous where defined; namely, on the set R of all
real numbers.

C02S04.027: Because f(x) is the quotient of continuous functions (the numerator and denominator are
polynomials, continuous everywhere), f is continuous wherever its denominator is nonzero. Therefore f is
continuous on its domain, the set of all real numbers other than 0 and 1.

C02S04.028: The domain of f is the interval −3 � z � 3, and on that domain f(z) is the composition of
continuous functions, thus f is continuous there. Because f(z) is not defined if |z | > 3, it is not continuous
for z < −3 nor for z > 3. But it is still correct to say simply that “f is continuous” (see the definition of
continuous on page 88).
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C02S04.029: Let h(x) = 4− x2. Then h is continuous everywhere because h(x) is a polynomial. The root
function g(x) =

√
x is continuous for x � 0 by the root rule of Section 2.2. Hence g(h(x)) =

√
4− x2 is

continuous wherever x2 � 4; that is, on the interval [−2, 2]. The quotient

f(x) =
x√

4− x2
=

x

g(h(x))

is continuous wherever the numerator is continuous (that’s everywhere) and the denominator is both contin-
uous and nonzero (that’s the open interval (−2, 2)). Therefore f is continuous on the open interval (−2, 2).
That is, f is continuous on its domain.

C02S04.030: Because f(x) is formed by the composition and quotient of continuous functions (polynomials
and root functions), it will be continuous wherever the denominator in the fraction is nonzero and the fraction
is nonnegative. So continuity of f will occur when both

4− x2 �= 0 and
1− x2

4− x2
� 0.

The first inequality is equivalent to x �= ±2 and the second will hold when 1− x2 and 4− x2 have the same
sign (both positive or both negative) or the numerator is zero. If both are positive, then x2 < 1 and x2 < 4,
so that −1 < x < 1. If both are negative, then x2 > 1 and x2 > 4, so that x2 > 4; that is, x < −2 or x > 2.
Finally, 1− x2 = 0 when x = ±1. Therefore f is continuous on its domain, (−∞, −2) ∪ [−1, 1] ∪ (2, +∞).

C02S04.031: Because f(x) is the quotient of continuous functions, it is continuous where its denominator
is nonzero; that is, if x �= 0. Thus f is continuous on its domain and not continuous at x = 0 (because it is
undefined there).

C02S04.032: Given:

g(θ) =
θ

cos θ
.

Because g(θ) is the quotient of continuous functions, it is continuous wherever its denominator is nonzero;
that is, at every real number x not an odd integral multiple of π/2. That is, g is discontinuous (because it
is undefined) at

. . . , − 5π
2

, − 3π
2

, − π

2
,
π

2
,

3π
2

,
5π
2

,
7π
2

, . . . .

Therefore g is continuous on its domain, the set

· · · ∪
(
− 5

2π, −
3
2π

)
∪

(
− 3

2π, −
1
2π

)
∪

(
− 1

2π,
1
2π

)
∪

(
1
2π,

3
2π

)
∪

(
3
2π,

5
2π

)
∪

(
5
2π,

7
2π

)
∪ · · · .

C02S04.033: Given:

f(x) =
1

sin 2x
.

The numerator in f(x) is a polynomial, thus continuous everywhere. The denominator is the composition of
a function continuous on the set of all real numbers (the sine function) with another continuous function (a
polynomial), hence is also continuous everywhere. Thus because f(x) is the quotient of continuous functions,
it is continuous wherever its denominator is nonzero; that is, its only discontinuities occur when sin 2x = 0.
Thus f is continuous at every real number other than an integral multiple of π/2.

5



C02S04.034: Because f(x) =
√

sinx is the composition of continuous functions, it is continuous wherever
it is defined; that is, wherever sinx � 0. Hence f is continuous on its domain, the set

· · · ∪ [−4π, −3π] ∪ [−2π, −π] ∪ [0, π] ∪ [2π, 3π] ∪ [4π, 5π] ∪ · · · .

C02S04.035: Given: f(x) = sin |x|. The sine function is continuous on the set of all real numbers, as is
the absolute value function. Therefore their composition f is continuous on the set R of all real numbers.

C02S04.036: Given:

G(u) =
1√

1 + cosu
.

Because G(u) is the sum, composition, and quotient of continuous functions, it is continuous where it is
defined. There is no obstruction to computing

√
1 + cosu because 1 + cosu � 0 for every real number u.

Hence G will be undefined, and thus not continuous, exactly when its denominator is zero, which is exactly
when 1 + cosu = 0. Therefore G is continuous except at the odd integral multiples of π. Put another way,
G is continuous on the union of open intervals of the form ([2n− 1]π, [2n + 1]π) where n runs through all
integral values.

C02S04.037: The function

f(x) =
x

(x + 3)3

is not continuous when x = −3. This discontinuity is not removable because f(x) → −∞ as x → −3+, so
that the limit of f(x) at x = −3 does not exist.

C02S04.038: The function

f(t) =
t

t2 − 1

is not continuous when t = ± 1 because t2 − 1 = 0 then. These discontinuities are not removable because
f(t)→ +∞ as t→ 1+ and as t→ −1+, so that f has no limit at either t = 1 or t = −1.

C02S04.039: First simplify f(x):

f(x) =
x− 2
x2 − 4

=
x− 2

(x + 2)(x− 2)
=

1
x + 2

if x �= 2.

Now f(x) is not defined at x = ±2 because x2 − 4 = 0 for such x. The discontinuity at −2 is not removable
because f(x) → +∞ as x → −2+. But f(x) → 1

4 as x → 2, so the discontinuity at x = 2 is removable; f

can be made continuous at x = 2 by defining its value there to be its limit there, 1
4 .

C02S04.040: First try to simplify the formula of G:

G(u) =
u + 1

u2 − u− 6
=

u + 1
(u− 3)(u + 2)

.

This computation shows that G is not continuous at u = 3 and at u = −2. It also shows that these
discontinuities are not removable because G(u)→ +∞ as u→ 3+ and as u→ −2+, so that G has no limit
at either of its discontinuities.
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C02S04.041: Given:

f(x) =
1

1− |x| .

The function f is not continuous at ±1 because its denominator is zero if x = −1 and if x = 1. Because
f(x)→ +∞ as x→ 1− and as x→ −1+ (consider separately the cases x > 0 and x < 0), these discontinuities
are not removable; f(x) has no limit at −1 or at 1.

C02S04.042: If x > 1, then

h(x) =
|x− 1|
(x− 1)3

=
x− 1

(x− 1)3
=

1
(x− 1)2

.

Therefore h is discontinuous at x = 1 and, because h(x) → +∞ as x → 1+, this discontinuity is not
removable.

C02S04.043: If x > 17, then x− 17 > 0, so that

f(x) =
x− 17
|x− 17| =

x− 17
x− 17

= 1.

But if x < 17, then x− 17 < 0, and thus

f(x) =
x− 17
|x− 17| =

x− 17
−(x− 17)

= −1.

Therefore h(x) has no limit as x → 17 because its left-hand and right-hand limits there are unequal. Thus
the discontinuity at x = 17 is not removable.

C02S04.044: First simplify:

g(x) =
x2 + 5x + 6

x + 2
=

(x + 2)(x + 3)
x + 2

= x + 3 if x �= −2.

Therefore, although g is discontinuous at x = −2 (because it is not defined there), this discontinuity is
removable; simply define g(−2) to be 1, the limit of g(x) as x→ −2.

C02S04.045: Although f(x) is not continuous at x = 0 (because it is not defined there), this discontinuity
is removable. For it is clear that f(x)→ 0 as x→ 0+ and as x→ 0−, so defining f(0) to be 0, the limit of
f(x) at x = 0, will make f continuous there.

C02S04.046: Although f(x) is not continuous at x = 1 (because it is not defined there), this discontinuity
is removable. For it is clear that f(x)→ 2 as x→ 1+ and as x→ 1−, so defining f(1) to be 2, the limit of
f(x) at x = 1, will make f continuous there.

C02S04.047: Although f(x) is not continuous at x = 0 (because it is not defined there), this discontinuity
is removable. For it is clear that f(x)→ 1 as x→ 0+ and as x→ 0−, so defining f(0) to be 1, the limit of
f(x) at x = 0, will make f continuous there.

C02S04.048: Although f(x) is not continuous at x = 0 (because it is not defined there), this discontinuity
is removable. For

lim
x→0−

f(x) = lim
x→0−

1− cosx
x

= lim
x→0−

sin2 x

x(1 + cosx)
= lim
x→0−

sinx

x
· sinx

1 + cosx
= 1 · 0

1 + 1
= 0,

7



and it is clear that f(x) → 0 as x → 0+. So defining f(0) to be 0, the limit of f(x) at x = 0, will make f

continuous there.

C02S04.049: The given function is clearly continuous for all x except possibly for x = 0. For continuity
at x = 0, the left-hand and right-hand limits of f(x) must be the same there. But

lim
x→0−

f(x) = lim
x→0−

(x + c) = c

and f(x) → 4 as x → 0+. So continuity of f at x = 0 can occur only if c = 4. Moreover, if c = 4, then
(as we have seen) f(x) → 4 as x → 0 and f(0) = 4, so f will be continuous at x = 0 if and only if c = 4.
Answer: c = 4.

C02S04.050: Clearly f is continuous if x �= 3, for if x < 3 or if x > 3, then f(x) is a polynomial, regardless
of the value of c. For continuity at x = 3, we require that the one-sided limits of f(x) at x = 3 be equal.
But f(x)→ 6 + c as x→ 3− and f(x)→ 2c− 3 as x→ 3+. Equality of the one-sided limits is equivalent to

6 + c = 2c− 3; that is, c = 9.

Finally, if c = 9, then the two-sided limit of f(x) at x = 3 is 15 and f(3) = 2 · 3 + 9 = 15, so f will be
continuous at x = 3 if c = 9. Answer: c = 9.

C02S04.051: Note that f is continuous at x if x �= 0, because f(x) is a polynomial for x < 0 and for x > 0
regardless of the value of c. To be continuous at x = 0, it’s necessary that the left-hand and right-hand
limits exist and are equal there. Now

lim
x→0−

f(x) = lim
x→0−

(c2 − x2) = c2 and lim
x→0+

f(x) = lim
x→0+

2(x− c)2 = 2c2,

and therefore continuity at x = 0 will hold if and only if c2 = 2c2; that is, if c = 0. And if so, then
f(0) = lim

x→0
f(x) as well, so f will be continuous at x = 0. Answer: c = 0.

C02S04.052: Note that f is continuous if x < π because f(x) is a polynomial for such x; also, f is
continuous for x > π because (regardless of the value of c) f(x) is a constant multiple of a continuous
function. For continuity of f at x = π, the left-hand and right-hand limits must be equal there. But

lim
x→π−

f(x) = lim
x→π−

(c3 − x3) = c3 − π3 and lim
x→π+

f(x) = lim
x→π+

c sinx = lim
x→π+

c sinπ = 0.

So continuity of f at x = π requires c3−π3 = 0; that is, c = π. And if so, then f(π) = π3−π3 = 0 = lim
x→π

f(x),
so f will be continuous at x = π. Answer: c = π.

C02S04.053: Let f(x) = x2− 5. Then f is continuous everywhere because f(x) is a polynomial. So f has
the intermediate value property on the interval [2, 3]. Also f(2) = −1 < 0 < 4 = f(3), so f(c) = 0 for some
number c in [2, 3]. That is, c2 − 5 = 0. Hence the equation x2 − 5 = 0 has a solution in [2, 3].

C02S04.054: Let f(x) = x3 + x+ 1. Then f is continuous everywhere because f(x) is a polynomial. So f

has the intermediate value property on the interval [−1, 0]. Also f(−1) = −1 < 0 < 1 = f(0), so f(c) = 0
for some number c in [−1, 0]. That is, c3 + c + 1 = 0. Hence the equation x3 + x + 1 = 0 has a solution in
[−1, 0].

C02S04.055: Let f(x) = x3− 3x2 + 1. Then f is continuous everywhere because f(x) is a polynomial. So
f has the intermediate value property on the interval [0, 1]. Also f(0) = 1 > 0 > −1 = f(1), so f(c) = 0 for
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some number c in [0, 1]. That is, c3 − 3c2 + 1 = 0. Hence the equation x3 − 3x2 + 1 = 0 has a solution in
[0, 1].

C02S04.056: Let f(x) = x3− 5. Then f is continuous everywhere because f(x) is a polynomial. So f has
the intermediate value property on the interval [1, 2]. Also f(1) = −4 < 0 < 3 = f(2), so f(c) = 0 for some
number c in [1, 2]. That is, c3 − 5 = 0. Hence the equation x3 = 5 has a solution in [1, 2].

C02S04.057: Let f(x) = x4 + 2x− 1. Then f is continuous everywhere because f(x) is a polynomial. So
f has the intermediate value property on the interval [0, 1]. Also f(0) = −1 < 0 < 2 = f(1), so f(c) = 0 for
some number c in [0, 1]. That is, c4 +2c− 1 = 0. Hence the equation x4 +2x− 1 = 0 has a solution in [0, 1].

C02S04.058: Let f(x) = x5− 5x3 + 3. Then f is continuous everywhere because f(x) is a polynomial. So
f has the intermediate value property on the interval [−3, −2]. Also f(−3) = −105 < 0 < 11 = f(−2), so
f(c) = 0 for some number c in [−3, −2]. That is, c5 − 5c3 + 3 = 0. Hence the equation x5 − 5x3 + 3 = 0 has
a solution in [−3, −2].

C02S04.059: Given: f(x) = x3 − 4x + 1. Values of f(x):

x −3 −2 −1 0 1 2 3
f(x) −14 1 4 1 −2 1 16

So f(xi) = 0 for x1 in (−3,−2), x2 in (0, 1), and x3 in (1, 2). Because these intervals do not overlap, the
equation f(x) = 0 has at least three real solutions. Because f(x) is a polynomial of degree 3, that equation
also has at most three real solutions. Therefore the equation x3−4x+1 = 0 has exactly three real solutions.

C02S04.060: Given: f(x) = x3 − 3x2 + 1. Values of f(x):

x −3 −2 −1 0 1 2 3
f(x) −53 −19 −3 1 −1 −3 1

So f(xi) = 0 for x1 in (−1, 0), x2 in (0, 1), and x3 in (2, 3). Because these intervals do not overlap, the
equation f(x) = 0 has at least three real solutions. Because f(x) is a polynomial of degree 3, that equation
also has at most three real solutions. Therefore it has exactly three real solutions.

C02S04.061: At time t, [[t]] years have elapsed, and at that point your starting salary has been multiplied
by 1.06 exactly t times. Thus it is S(t) = 25 · (1.06)[[t]]. Of course S is discontinuous exactly when t is an
integer between 1 and 5. The graph is next.
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C02S04.062: The salary function is P (t) = 25 · (1.015)[[4t]]. It is discontinuous at the end of every three-
month period; that is, at integral multiples of 1

4 . You will accumulate more money with three-month raises
of 1.5% than with yearly raises of 6%; the total salary received by the end of the first five years with yearly
raises would be $140,930 but with quarterly raises it would be $144,520. The graphs of the function S(t) of
Problem 61 and P (t) are shown next. Although the graphs do not make it perfectly clear, it turns out that
P (t) > S(t) if t � 1

4 , so that the quarterly raise is better for you financially after the first three months and
continues to outpace the yearly raise as long as you keep the job.

C02S04.063: The next figure shows the graphs of two such functions f and g, with [a, b] = [1, 3], p = 2,
and q = 5. Because f and g are continuous on [a, b], so is h = f − g. Because p �= q, h(a) = p − q and
h(b) = q − p have opposite signs, so that 0 is an intermediate value of the continuous function h. Therefore
h(c) = 0 for some number c in (a, b). That is, f(c) = g(c). This concludes the proof. To construct the
figure, we used (the given coefficients are approximate)

f(x) = 1.53045 + (0.172739)ex and g(x) = 2.27857 + (2.05)x + (1.36429)x2 − (0.692857)x3.

C02S04.064: Let f(t) denote your distance from Estes Park during your trip today, with f measured in
kilometers and t in hours, t = 0 corresponding to time 1 p.m. Let g(t) denote your distance from Estes Park
during your trip tomorrow, with g in kilometers, t in hours, and t = 0 corresponding to 1 p.m. tomorrow.
Assuming that both f and g are continuous, we use the facts that f(0) = 0, f(1) = M (where M is the
distance from Estes Park to Grand Lake), g(0) = M , and g(1) = 0 and apply the result of Problem 63 to
conclude that f(c) = g(c) for some number c in (0, 1). That is, at time t = c tomorrow you will be at exactly
the same spot (at distance g(c) from Estes Park) as you will be at the same time t = c today at distance
f(c) = g(c) from Estes Park.

10



The 1999 National Geographic Road Atlas indicates that M ≈ 101 (km). Making this trip in a single
hour is unforgivable given the magnificent scenery (and probably impossible as well given the dozens of tight
turns on the highway).

C02S04.065: Given a > 0, let f(x) = x2 − a. Then f is continuous on [0, a + 1] because f(x) is a
polynomial. Also f(a + 1) > 0 because

f(a + 1) = (a + 1)2 − a = a2 + a + 1 > 1 > 0.

So f(0) = −a < 0 < f(a + 1). Therefore, because f has the intermediate value property on the interval
[0, a + 1], there exists a number r in (0, a + 1) such that f(r) = 0. That is, r2 − a = 0, so that r2 = a.
Therefore a has a square root.

Our proof shows that a has a positive square root. Can you modify it to show that a also has a negative
square root? Do you see why we used the interval [0, a + 1] rather than the simpler [0, a]?

C02S04.066: Clearly a = 0 has a cube root. Suppose first that a > 0. Let f(x) = x3 − a. Then f has the
intermediate value property on [0, a + 1] because f(x) is a polynomial. Moreover,

f(a + 1) = (a + 1)3 − a = a3 + 3a2 + 2a + 1 > 1 > 0 > −a = f(0).

Therefore there exist a number c in [0, a + 1] such that f(c) = 0. That is, c3 − a = 0, so that c3 = a. Thus
the positive real number a has a cube root. Moreover, (−c)3 = −(c3) = −a, so that every negative real
number has a cube root as well.

C02S04.067: Given the real number a, we need to show that

lim
x→a

cosx = cos a.

Let h = x− a, so that x = a + h. Then x→ a is equivalent to h→ 0; also, cosx = cos(a + h). Thus

lim
x→a

cosx = lim
h→0

cos(a + h) = lim
h→0

(cos a cosh− sin a sinh) = (cos a) · 1− (sin a) · 0 = cos a.

Therefore the cosine function is continuous at x = a for every real number a.

C02S04.068: If x is not an integer, choose that [unique] integer n = [[x]] such that n < x < n + 1. Then
f(x) = x + n on the interval (n, n + 1), thus f(x) is effectively a polynomial on that interval. So f is
continuous at x. But if m is an integer, then

lim
x→m−

f(x) = lim
x→m−

(x + [[x]]) = lim
x→m−

(x + m− 1) = m + m− 1 = 2m− 1,

whereas

lim
x→m+

f(x) = lim
x→m+

(x + [[x]]) = lim
x→m+

(x + m) = m + m = 2m.

Because the left-hand and right-hand limits of f(x) differ at m, f is not continuous there. Thus f is
discontinuous at each integer and continuous at every other real number.

C02S04.069: Suppose that a is a real number. We appeal to the formal definition of the limit in Section
2.2 (page 74) to show that f(x) has no limit as x → a. Suppose by way of contradiction that f(x) → L as
x→ a. Then, for every ε > 0, there exists a number δ > 0 such that |f(x)−L| < ε for every number x such
that 0 < |x− a| < δ. So this statement must hold if ε = 1

4 .
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Case 1: L = 0. Then there must exist a number δ > 0 such that

|f(x)− 0| < 1
4

if 0 < |x − a| < δ. But, regardless of the value of δ, there exist irrational values of x satisfying this last
inequality. (We’ll explain why in a moment.) Choose such a number x. Then

|f(x)− 0| = |1− 0| = 1 < 1
4 .

This is impossible. So L �= 0.

Case 2: L = 1. Proceed exactly as in Case 1, except choose a rational value of x such that 0 < |x−a| < δ.
Then

|f(x)− 1| = |0− 1| = 1 < 1
4 .

This, too, is impossible. So L �= 1.

Case 3: L is neither 0 nor 1. Let ε = 1
3 |L|. Note that ε > 0. Then suppose that there exists δ > 0 such

that,

if 0 < |x− a| < δ, then |f(x)− L| < ε. (1)

Choose a rational number x satisfying the left-hand inequality. Then

|f(x)− L| = |0− L| = |L| = 3ε.

It follows from (1) that 3ε < ε, which is impossible because ε > 0.

In summary, L cannot be 0, nor can it be 1, nor can it be any other real number. Therefore f(x) has
no limit as x→ a. Consequently f is not continuous at x = a.

In this proof we relied heavily on the fact that if a is any real number, then we can find both rational
and irrational numbers arbitrarily close to a. Rather than providing a formal proof, we illustrate how to do
this in the case that

a = 1.23456789101112131415 · · · .

(It doesn’t matter whether a is rational or irrational.) To produce rational numbers arbitrarily close to a,
use

1.2, 1.23, 1.234, 1.2345, 1.23456, 1.234567, . . . . (2)

The numbers in (2) are all rational because they all have terminating decimal expansions, and the nth
number in (2) differs from a by less than 10−n, so there are rational numbers arbitrarily close to a. To get
irrational numbers with the same properties, use

1.20100100010000100000100 · · · , 1.230100100010000100000100 · · · ,

1.2340100100010000100000100 · · · , 1.23450100100010000100000100 · · · , . . . .

These numbers are irrational because every one of them has a nonrepeating decimal expansion.

C02S04.070: You can modify the argument in the solution of Problem 69 to show that f(x) has no limit
at x = a if a �= 0. Simply use a2 in place of 1 in that argument. Because 0 � f(x) � x2 for all x, and
because 0→ 0 and x2 → 0 as x→ 0, it follows from the squeeze theorem that
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lim
x→0

f(x) = 0 = f(0).

Therefore f is continuous at x = 0.

C02S04.071: Let g(x) = x − cosx. Then g(x) is the sum of continuous functions, thus continuous
everywhere, and in particular on the interval

[
0, 1

2π
]
. So g has the intermediate value property there. Also

g(0) = −1 < 0 and g(1) = 1 > 0. Therefore there exists a number c in
(
0, 1

2π
)

such that g(c) = 0. Thus
c − cosx = 0, so that c = cos c. Thus the equation x = cosx has a solution in

(
0, 1

2π
)
. (This solution is

approximately 0.7390851.)

C02S04.072: Let h(x) = x + 5 cosx. Then h(x) is the sum and product of continuous functions, thus is
continuous everywhere, including the intervals [−π, 0], [0, π], and [π, 2π]. Moreover,

h(−π) = −π − 5 < 0 < 5 = h(0), h(0) = 5 > 0 > π − 5 = h(π),

and h(π) = π − 5 < 0 < 2π + 5 = h(2π).

By the intermediate value property of continuous functions, h(a) = 0 for some number a in I = (−π, 0),
h(b) = 0 for some number b in J = (0, π), and h(c) = 0 for some number c in K = (π, 2π). Because no two
of I, J , and K have any points in common, the numbers a, b, and c are distinct. Therefore the equation
h(x) = 0 three distinct solutions; in other words, the equation x = −5 cosx has three distinct solutions. (We
have not shown that there are no additional solutions, but this was not required.) Finally, a ≈ −1.30644,
b ≈ 1.97738, and c ≈ 3.83747.

C02S04.073: Because

lim
x→0+

21/x = +∞,

f is not right continuous at x = 0. Because

lim
x→0−

21/x = lim
u→−∞

2u = lim
z→+∞

1
2z

= 0 = f(0),

f is left continuous at x = 0.

C02S04.074: Because

lim
x→0

2−1/x2
= 0 = f(0),

the function f is both left and right continuous—thus continuous—at x = 0.

C02S04.075: Because

lim
x→0+

1
1 + 21/x

= 0 �= f(0),

f is not right continuous at x = 0. But

lim
x→0−

1
1 + 21/x

=
1

1 + 0
= 1 = f(0),

f is left continuous at x = 0.
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C02S04.076: Because

lim
x→0

1
1 + 2−1/x2 =

1
1 + 0

= 1 = f(0),

the function f is both left and right continuous at x = 0—thus it is continuous there.

C02S04.077: We consider only the discontinuity at x = a = π/2; the behavior of f is the same near all of
its discontinuities (the odd integral multiples of a). Because

lim
x→a+

1
1 + 2tan x

=
1

1 + 0
= 1 = f(1),

the function f is right continuous at x = a. But

lim
x→a−

1
1 + 2tan x

= 0 �= f(0),

so f is not left continuous at x = a.

C02S04.078: We consider only the discontinuities at x = 0 and x = π, because the behavior of f at
every even integral multiple of π is the same as its behavior at x = 0, and its behavior at every odd integral
multiple of π is the same as its behavior at x = π. We first note that

lim
x→0+

1
1 + 21/ sin x

= 0 = f(0),

so that f is right continuous at x = 0. But

lim
x→0−

1
1 + 21/ sin x

= 1 �= f(0),

and thus f is not left continuous at x = 0. The situation is reversed at π, as one might gather from examining
the graph of the sine function:

lim
x→π−

1
1 + 21/ sin x

= 0 = f(π),

so that f is left continuous at x = π, but

lim
x→π+

1
1 + 21/ sin x

= 1 �= f(π).

Therefore f is not right continuous at x = π.
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Chapter 2 Miscellaneous Problems

C02S0M.001: lim
x→0

(x2 − 3x+ 4) =
(

lim
x→0

x
)2
− 3 ·

(
lim
x→0

x
)

+ 4 = 02 − 3 · 0 + 4 = 4.

C02S0M.002: lim
x→−1

(3− x+ x3) = 3−
(

lim
x→−1

x

)
+

(
lim
x→−1

x

)3

= 3− (−1) + (−1)3 = 3.

C02S0M.003: lim
x→2

(4− x2)10 =
[
4−

(
lim
x→2

x
)2 ]10

=
(
4− 22

)10
= 010 = 0.

C02S0M.004: lim
x→1

(x2 + x− 1)17 =
[(

lim
x→1

x
)2

+
(

lim
x→1

x
)
− 1

]17
= (12 + 1− 1)17 = 1.

C02S0M.005: lim
x→2

1 + x2

1− x2
=

1 +
(

lim
x→2

x
)2

1−
(

lim
x→2

x
)2 =

1 + 22

1− 22
=

1 + 4
1− 4

= −5
3
.

C02S0M.006: lim
x→3

2x
x2 − x− 3

=
2 ·

(
lim
x→3

x
)

(
lim
x→3

x
)2
−

(
lim
x→3

x
)
− 3

=
2 · 3

32 − 3− 3
=

6
3

= 2.

C02S0M.007:
x2 − 1
1− x = − (x+ 1)(x− 1)

x− 1
= −(x+ 1)→ −2 as x→ 1.

C02S0M.008:
x+ 2

x2 + x− 2
=

x+ 2
(x+ 2)(x− 1)

=
1

x− 1
→ − 1

3
as x→ −2.

C02S0M.009:
t2 + 6t+ 9

9− t2 = − (t+ 3)2

(t+ 3)(t− 3)
= − t+ 3

t− 3
→ −−3 + 3

−3− 3
= 0 as t→ −3.

C02S0M.010:
4x− x3

3x+ x2
=
x(4− x2)
x(3 + x)

=
4− x2

3 + x
→ 4− 0

3 + 0
=

4
3

as x→ 0.

C02S0M.011: lim
x→3

(x2 − 1)2/3 =
[(

lim
x→3

x
)2
− 1

]2/3
= (32 − 1)2/3 = 82/3 =

(
81/3

)2

= 22 = 4.

C02S0M.012: lim
x→2

(
2x2 + 1

2x

)1/2

=


2 ·

(
lim
x→2

x
)2

+ 1

2 ·
(

lim
x→2

x
)



1/2

=
(

2 · 4 + 1
2 · 2

)1/2

=
(

9
4

)1/2

=
3
2
.

C02S0M.013: lim
x→3

(
5x+ 1
x2 − 8

)3/4

=


5 ·

(
lim
x→3

x
)

+ 1
(

lim
x→3

x
)2
− 8



3/4

=
(
161/4

)3

= 8.

C02S0M.014:
x4 − 1

x2 + 2x− 3
=

(x2 + 1)(x+ 1)(x− 1)
(x+ 3)(x− 1)

=
(x2 + 1)(x+ 1)

x+ 3
→ 2 · 2

4
= 1 as x→ 1.

C02S0M.015: First multiply numerator and denominator by
√
x+ 2+3 (the conjugate of the numerator)

to obtain

1



lim
x→7

√
x+ 2− 3
x− 7

= lim
x→7

x+ 2− 9
(x− 7)

(√
x+ 2 + 3

) = lim
x→7

x− 7
(x− 7)

(√
x+ 2 + 3

)

= lim
x→7

1√
x+ 2 + 3

=
lim
x→7

1

lim
x→7

(√
x+ 2 + 3

) =
1(

2 + lim
x→7

x
)1/2

+ lim
x→7

3
=

1
3 + 3

=
1
6
.

C02S0M.016: Note that x > 1 as x→ 1+, so that
√
x2 − 1 is defined for such x. Therefore

lim
x→1+

(
x−

√
x2 − 1

)
=

(
lim
x→1+

x

)
−

[(
lim
x→1+

x

)2

−
(

lim
x→1+

1
)]1/2

= 1−
√

12 − 1 = 1− 0 = 1.

C02S0M.017: First simplify:

1√
13 + x

− 1
3

x+ 4
=

1
x+ 4

· 3−
√

13 + x

3
√

13 + x
=

3−
√

13 + x

3(x+ 4)
√

13 + x
.

Then multiply numerator and denominator by 3 +
√

13 + x, the conjugate of the numerator, to obtain

9− (13 + x)
3(x+ 4)

(√
13 + x

)(
3 +
√

13 + x
) =

−(x+ 4)
3(x+ 4)

(√
13 + x

)(
3 +
√

13 + x
) = − 1

3
(√

13 + x
)(

3 +
√

13 + x
) .

Now let x→ −4 to obtain the limit − 1
3 · 3 · (3 + 3)

= − 1
54

.

C02S0M.018: Because x→ 1+, x > 1, so that 1− x < 0. Therefore

lim
x→1+

1− x
|1− x| = lim

x→1+

1− x
−(1− x) = lim

x→1+
(−1) = −1.

C02S0M.019: First, 4− 4x+ x2 = (2− x)2 = (x− 2)2. Because x→ 2+, x > 2, so that x− 2 > 0. Hence√
4− 4x+ x2 =

√
(x− 2)2 = |x− 2| = x− 2. Therefore

lim
x→2+

2− x√
4− 4x+ x2

= lim
x→2+

2− x
x− 2

= lim
x→2+

(−1) = −1.

C02S0M.020: As x→ −2−, x < −2, so that x+ 2 < 0. Hence |x+ 2| = −(x+ 2). Thus

lim
x→−2−

x+ 2
|x+ 2| = lim

x→−2−

x+ 2
−(x+ 2)

= lim
x→−2−

(−1) = −1.

C02S0M.021: As x→ 4+, x > 4, so that x− 4 > 0. Therefore |x− 4| = x− 4, and thus

lim
x→4+

x− 4
|x− 4| = lim

x→4+

x− 4
x− 4

= lim
x→4+

1 = 1.

C02S0M.022: As x→ 3−, x < 3, so that x2 − 9 < 0 for −3 < x < 3. Therefore
√
x2 − 9 is undefined for

such x, and consequently lim
x→3−

√
x2 − 9 does not exist.
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C02S0M.023: As x → 2+, x > 2, so that 4− x2 < 0. Therefore
√

4− x2 is undefined for all such x, and
consequently lim

x→2+

√
4− x2 does not exist.

C02S0M.024: As x → −3, (x + 3)2 → 0 whereas the numerator x approaches −3. Therefore this limit
does not exist. Because (x+ 3)2 is approaching zero through positive values, it is also correct to write

lim
x→−3

x

(x+ 3)2
= −∞.

C02S0M.025: As x → 2, the denominator (x − 2)2 is approaching zero, while the numerator x + 2 is
approaching 4. So this limit does not exist. Because the denominator is approaching zero through positive
values, it is also correct (and more informative) to write

lim
x→2

x+ 2
(x− 2)2

= +∞.

C02S0M.026: As x→ 1−, the denominator x−1 is approaching zero, but the numerator x is not. Therefore
this limit does not exist. Because the numerator is approaching 1 and the denominator is approaching zero
through negative values, it is also correct to write

lim
x→1−

x

x− 1
= −∞.

C02S0M.027: Because x → 3+, the denominator x − 3 is approaching zero, but the numerator x is not.
Therefore this limit does not exist. Because the denominator is approaching zero through positive values
while the numerator is approaching 3, it is also correct to write

lim
x→3+

x

x− 3
= +∞.

C02S0M.028: Because

x− 2
x2 − 3x+ 2

=
x− 2

(x− 1)(x− 2)
=

1
x− 1

if x �= 2, the limit of this fraction as x → 1− does not exist: The numerator is approaching 1 while the
denominator is approaching zero. Because the denominator is approaching zero through negative values, it
is also correct to write

lim
x→1−

x− 2
x2 − 3x+ 2

= −∞.

C02S0M.029: As x → 1−, the numerator of the fraction is approaching 2, but the denominator is
approaching zero. Therefore this limit does not exist. Because the denominator is approaching zero through
negative values, it is also correct to write

lim
x→1−

x+ 1
(x− 1)3

= −∞.

C02S0M.030: Note first that

3



25− x2

x2 − 10x+ 25
=

(5 + x)(5− x)
(x− 5)2

=
(5 + x)(5− x)

(5− x)2 =
5 + x

5− x.

Thus as x→ 5+, the numerator approaches 10 while the denominator is approaching zero through negative
values. Therefore this limit does not exist. It is also correct to write

lim
x→5+

25− x2

x2 − 10x+ 25
= −∞.

C02S0M.031: Let u = 3x. Then x = 1
3u; also, x→ 0 is equivalent to u→ 0. Thus

lim
x→0

sin 3x
x

= lim
u→0

sinu
1
3u

= lim
u→0

3 sinu
u

=
(

lim
u→0

3
)
·
(

lim
u→0

sinu
u

)
= 3 · 1 = 3.

C02S0M.032: Let u = 5x; then x = 1
5u; moreover, x→ 0 is equivalent to u→ 0. Therefore

lim
x→0

tan 5x
x

= lim
u→0

tanu
1
5u

= lim
u→0

5 sinu
u cosu

= 5 ·
(

lim
u→0

sinu
u

)
·
(

lim
u→0

1
cosu

)
= 5 · 1 · 1

1
= 5.

C02S0M.033: The substitution u = kx shows that if k �= 0, then

lim
x→0

sin kx
kx

= 1.

It also follows that lim
x→0

kx

sin kx
= 1. Therefore

lim
x→0

sin 3x
sin 2x

= lim
x→0

sin 3x
3x

· 2x
sin 2x

· 3x
2x

= lim
x→0

sin 3x
3x

· 2x
sin 2x

· 3
2

= 1 · 1 · 3
2

=
3
2
.

C02S0M.034: We saw in the solution of Problem C02S03.014 that if k is a nonzero constant, then

lim
x→0

tan kx
kx

= 1 = lim
x→0

kx

tan kx
.

Therefore

lim
x→0

tan 2x
tan 3x

= lim
x→0

tan 2x
2x

· 3x
tan 3x

· 2x
3x

= lim
x→0

tan 2x
2x

· 3x
tan 3x

· 2
3

= 1 · 1 · 2
3

=
2
3
.

C02S0M.035: Let x = u2 where u > 0. Then x→ 0+ is equivalent to u→ 0+. Hence

lim
x→0+

x

sin
√
x

= lim
u→0+

u2

sinu
= lim
u→0+

u · u

sinu
= 0 · 1 = 0.

C02S0M.036: First multiply numerator and denominator by the conjugate 1 + cos 3x of the numerator:

1− cos 3x
2x

=
(1− cos 3x)(1 + cos 3x)

2x(1 + cos 3x)
=

1− cos2 3x
2x(1 + cos 3x)

=
sin2 3x

2x(1 + cos 3x)

=
sin 3x

2x
· sin 3x
1 + cos 3x

=
sin 3x

3x
· 3x
2x
· sin 3x
1 + cos 3x

=
sin 3x

3x
· 3
2
· sin 3x
1 + cos 3x

.
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Now let x→ 0 to obtain the limit 1 · 3
2
· 0
1 + 1

= 0.

C02S0M.037: First multiply numerator and denominator by the conjugate 1 + cos 3x of the numerator:

1− cos 3x
2x2

=
(1− cos 3x)(1 + cos 3x)

2x2(1 + cos 3x)
=

1− cos2 3x
2x2(1 + cos 3x)

=
sin2 3x

2x2(1 + cos 3x)

=
sin 3x

2x
· sin 3x

x
· 1
1 + cos 3x

=
sin 3x

3x
· 3x
2x
· sin 3x

3x
· 3x
x
· 1
1 + cos 3x

=
sin 3x

3x
· 3
2
· sin 3x

3x
· 3
1
· 1
1 + cos 3x

.

Now let x→ 0 to obtain the limit 1 · 3
2
· 1 · 3

1
· 1
1 + 1

=
9
4
.

C02S0M.038: Express the cotangent and cosecant functions in terms of the sine and cosine functions to
obtain

lim
x→0

x3 cotx cscx = lim
x→0

(x3) · cosx
sinx

· 1
sinx

= lim
x→0

x · x

sinx
· (cosx) · x

sinx
= 0 · 1 · 1 · 1 = 0.

C02S0M.039: Let u = 2x; then x = 1
2u, and x → 0 is then equivalent to u → 0. Also express the secant

and tangent functions in terms of the sine and cosine functions. Result:

lim
x→0

sec 2x tan 2x
x

= lim
u→0

secu tanu
1
2u

= lim
u→0

2 sinu
u cos2 u

= lim
u→0

2
cos2 u

· sinu
u

=
2
1
· 1 = 2.

C02S0M.040: Let u = 3x; then x = 1
3u, and x → 0 is then equivalent to u → 0. Also express the

cotangent function in terms of sines and cosines. Result:

lim
x→0

x2 cot2 3x = lim
x→0

x2 cos2 3x
sin2 3x

= lim
u→0

1
9u

2 cos2 u
sin2 u

= lim
u→0

cos2 u
9
· u

sinu
· u

sinu
=

1
9
· 1 · 1 =

1
9
.

C02S0M.041: Given f(x) = 2x2 + 3, a slope-predictor for f is m(x) = 4x. The slope of the line tangent
to the graph of f at (1, f(1)) = (1, 5) is therefore m(1) = 4. So an equation of that line is y− 5 = 4(x− 1);
that is, y = 4x+ 1.

C02S0M.042: Given f(x) = −5x2 + x, a slope-predictor for f is m(x) = −10x + 1. The slope of the
line tangent to the graph of f at (1, f(1)) = (1, −4) is therefore m(1) = −9. So an equation of that line is
y + 4 = −9(x− 1); that is, y = −9x+ 5.

C02S0M.043: Given f(x) = 3x2 + 4x − 5, a slope-predictor for f is m(x) = 6x + 4. The slope of the
line tangent to the graph of f at (1, f(1)) = (1, 2) is therefore m(1) = 10. So an equation of that line is
y − 2 = 10(x− 1); that is, y = 10x− 8.

C02S0M.044: Given f(x) = −3x2 − 2x+ 1, a slope-predictor for f is m(x) = −6x− 2. The slope of the
line tangent to the graph of f at (1, f(1)) = (1, −4) is therefore m(1) = −8. So an equation of that line is
y + 4 = −8(x− 1); that is, y = −8x+ 4.
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C02S0M.045: Given f(x) = (x− 1)(2x− 1) = 2x2− 3x+ 1, a slope-predictor for f is m(x) = 4x− 3. The
slope of the line tangent to the graph of f at (1, f(1)) = (1, 0) is therefore m(1) = 1. So an equation of that
line is y = x− 1.

C02S0M.046: Given f(x) = 1
3x−

(
1
4x

)2 = − 1
16x

2 + 1
3x, a slope-predictor for f is m(x) = − 1

8x+ 1
3 . The

slope of the line tangent to the graph of f at (1, f(1)) =
(
1, 13

48

)
is therefore m(1) = − 1

8 + 1
3 = 5

24 . So an
equation of that line is y − 13

48 = 5
24 (x− 1); that is, 48y = 10x+ 3.

C02S0M.047: If f(x) = 2x2 + 3x, then the slope-predicting function for f is

m(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

2(x+ h)2 + 3(x+ h)− (2x2 + 3x)
h

= lim
h→0

2x2 + 4xh+ 2h2 + 3x+ 3h− 2x2 − 3x
h

= lim
h→0

4xh+ 2h2 + 3h
h

= lim
h→0

h(4x+ 2h+ 3)
h

= lim
h→0

(4x+ 2h+ 3) = 4x+ 3.

C02S0M.048: If f(x) = x− x3, then the slope-predicting function for f is

m(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

(x+ h)− (x+ h)3 − (x− x3)
h

= lim
h→0

x+ h− (x3 + 3x2h+ 3xh2 + h3)− x+ x3

h
= lim
h→0

x+ h− x3 − 3x2h− 3xh2 − h3 − x+ x3

h

= lim
h→0

h− 3x2h− 3xh2 − h3

h
= lim
h→0

h(1− 3x2 − 3xh− h2)
h

= lim
h→0

(1− 3x2 − 3xh− h2) = 1− 3x2.

C02S0M.049: If f(x) =
1

3− x , then the slope-predicting function for f is

m(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
3− (x+ h)

− 1
3− x

h
= lim
h→0

1
h
· (3− x)− (3− x− h)

(3− x− h)(3− x)

= lim
h→0

1
h
· 3− x− 3 + x+ h

(3− x− h)(3− x) = lim
h→0

h

h(3− x− h)(3− x)

= lim
h→0

1
(3− x− h)(3− x) =

1
(3− x)2 .

C02S0M.050: If f(x) =
1

2x+ 1
, then the slope-predicting function for f is
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m(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
2(x+ h) + 1

− 1
2x+ 1

h
= lim
h→0

1
h
· (2x+ 1)− (2x+ 2h+ 1)

(2x+ 2h+ 1)(2x+ 1)

= lim
h→0

2x+ 1− 2x− 2h− 1
h(2x+ 2h+ 1)(2x+ 1)

= lim
h→0

−2h
h(2x+ 2h+ 1)(2x+ 1)

= lim
h→0

−2
(2x+ 2h+ 1)(2x+ 1)

= − 2
(2x+ 1)2

.

C02S0M.051: If f(x) = x− 1
x

, then the slope-predicting function for f is

m(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

(x+ h)− 1
x+ h

−
(
x− 1

x

)

h

= lim
h→0

1
h
·
(
x+ h− 1

x+ h
− x+

1
x

)
= lim
h→0

1
h
·
(
h+

1
x
− 1
x+ h

)

= lim
h→0

1
h
·
(
h+

x+ h− x
x(x+ h)

)
= lim
h→0

(
1 +

h

hx(x+ h)

)

= lim
h→0

(
1 +

1
x(x+ h)

)
= 1 +

1
x2

=
x2 + 1
x2

.

C02S0M.052: If f(x) =
x

x+ 1
, then the slope-predicting function for f is

m(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
h
·
(

x+ h

x+ h+ 1
− x

x+ 1

)

= lim
h→0

1
h
· (x+ h)(x+ 1)− (x+ h+ 1)(x)

(x+ h+ 1)(x+ 1)
= lim
h→0

1
h
· (x

2 + x+ hx+ h)− (x2 + xh+ x)
(x+ h+ 1)(x+ 1)

= lim
h→0

x2 + x+ hx+ h− x2 − xh− x
h(x+ h+ 1)(x+ 1)

= lim
h→0

h

h(x+ h+ 1)(x+ 1)

= lim
h→0

1
(x+ h+ 1)(x+ 1)

=
1

(x+ 1)2
.

C02S0M.053: If f(x) =
x+ 1
x− 1

, then the slope-predicting function for f is
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m(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
h
·
(
x+ h+ 1
x+ h− 1

− x+ 1
x− 1

)

= lim
h→0

1
h
· (x+ h+ 1)(x− 1)− (x+ h− 1)(x+ 1)

(x+ h− 1)(x− 1)

= lim
h→0

(x2 + hx+ x− x− h− 1)− (x2 + hx− x+ x+ h− 1)
h(x+ h− 1)(x− 1)

= lim
h→0

x2 + hx− h− 1− x2 − hx− h+ 1
h(x+ h− 1)(x− 1)

= lim
h→0

−2h
h(x+ h− 1)(x− 1)

= lim
h→0

−2
(x+ h− 1)(x− 1)

= − 2
(x− 1)2

.

C02S0M.054: We must deal with |2x+3|, and to do so we need to know when 2x+3 changes sign: When
2x+ 3 = 0; that is, when x = − 3

2 . If x > − 3
2 , then 2x+ 3 > 0, so that

f(x) = 3x− x2 + (2x+ 3) = −x2 + 5x+ 3 if x > − 3
2 .

By the theorem on page 58 (Section 2.1), the slope-predicting function for f will be m1(x) = −2x + 5 if
x > − 3

2 . But if x < − 3
2 , then 2x+ 3 < 0, so that

f(x) = 3x− x2 − (2x+ 3) = −x2 + x− 3 if x < − 3
2 .

By the theorem just cited, the slope-predicting function for f will be m2(x) = −2x+1 if x < − 3
2 . Therefore

the general slope-predicting function for f will be

m(x) =
{ −2x+ 5 if x > − 3

2 ,

−2x+ 1 if x < − 3
2 .

There will be no tangent line at x = − 3
2 . The reason is that

lim
x→−1.5−

f(x+ h)− f(x)
h

= 4 whereas lim
x→−1.5+

f(x+ h)− f(x)
h

= 8.

Therefore there is no tangent line at the point
(
− 3

2 , −
27
4

)
. But f is continuous at that point; indeed, f is

continuous on the set R of all real numbers. The graph of f is shown next on the left; the part of the graph
near the corner point at

(
− 3

2 , −
27
4

)
is shown magnified on the right.
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C02S0M.055: Following the suggestion, the line tangent to the graph of y = x2 at (a, a2) has slope 2a
(because the slope-predicting function for f(x) = x2 is m(x) = 2x). But using the two-point formula for
slope, this line also has slope

a2 − 4
a− 3

= 2a,

so that a2−4 = 2a2−6a; that is, a2−6a+4 = 0. The quadratic formula yields the two solutions a = 3±
√

5,
so one of the two lines in question has slope 2

(
3 +
√

5
)

and the other has slope 2
(
3−
√

5
)
. Both lines pass

through (3, 4), so their equations are

y − 4 = 2
(
3 +
√

5
)

(x− 3) and y − 4 = 2
(
3−
√

5
)

(x− 3).

C02S0M.056: The given line has equation y = −x − 3, so its slope is −1. The radius of the circle from
its center (2, 3) to the point (a, b) of tangency is perpendicular to that line, so has slope 1. So the radius
lies on the line y − 3 = x− 2; that is, y = x+ 1. We solve y = x+ 1 and y = −x− 3 simultaneously to find
the point of tangency (a, b) to be (−2, −1). The distance from the center of the circle to this point is 4

√
2.

Therefore an equation of the circle is (x− 2)2 + (y − 3)2 = 32.

C02S0M.057: First simplify f(x):

f(x) =
1− x
1− x2

=
1− x

(1 + x)(1− x) =
1

1 + x
(1)

if x �= 1. Every rational function is continuous wherever it is defined, so f is continuous except at ±1. The
computations in (1) show that f(x) has no limit as x → −1, so f cannot be made continuous at x = −1.
But the discontinuity at x = 1 is removable; if we redefine f at x = 1 to be its limit 1

2 there, then f will be
continuous there as well.

C02S0M.058: Every rational function is continuous where it is defined; that is, where its denominator is
nonzero. So

f(x) =
1− x

(2− x)2

is continuous except at x = 2. This discontinuity is not removable because f(x) has no limit at x = 2.

C02S0M.059: First simplify f(x):

f(x) =
x2 + x− 2
x2 + 2x− 3

=
(x− 1)(x+ 2)
(x− 1)(x+ 3)

=
x+ 2
x+ 3

(1)

provided that x �= 1. Note that f is a rational function, so f is continuous wherever it is defined: at every
number other than 1 and −3. The computations in (1) show that f(x) has no limit at x = −3, so it cannot
be redefined in such a way to be continuous there. But the discontinuity at x = 1 is removable; if we redefine
f at x = 1 to be its limit 3

4 there, then f will be continuous everywhere except at x = −3.

C02S0M.060: Note that f(x) = 1 if x2 > 1; that is, if x > 1 or x < −1. But if x2 < 1, so that −1 < x < 1,
then f(x) = −1. Hence f is continuous on (−∞, −1)∪(−1, 1)∪(1, +∞). But f cannot be made continuous
at either x = 1 or x = −1, because its left-hand and right-hand limits are unequal at each of these points.
In any case, f is continuous wherever it is defined.
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C02S0M.061: Let f(x) = x5 +x− 1. Then f(0) = −1 < 0 < 1 = f(1). Because f(x) is a polynomial, it is
continuous on [0, 1], so f has the intermediate value property there. Hence there exists a number c in (0, 1)
such that f(c) = 0. Thus c5 + c− 1 = 0, and so the equation x5 + x− 1 = 0 has a solution. (The value of c
is approximately 0.754877666.)

C02S0M.062: Let f(x) = x5 − 4x2 + 1. Here are some values of f(x):

x −1 0 1 2
f(x) −4 1 −2 17

Because f(x) is a polynomial, it is continuous everywhere. Therefore f(x1) = 0 for some number x1 in
(−1, 0), f(x2) = 0 for some number x2 in (0, 1), and f(x3) = 0 for some number x3 in (1, 2). The
numbers x1, x2, and x3 are distinct because they lie in nonoverlapping intervals. Therefore the equation
x5 − 4x2 + 1 = 0 has at least three real solutions. (The actual values are x1 ≈ 0.50842209, x2 ≈ 1.52864292,
and x3 ≈ −0.49268877.)

C02S0M.063: Let g(x) = x − cosx. Then g(0) = −1 < 0 < π/2 = g(π/2). Because g is continuous,
g(c) = 0 for some number c in (0, π/2). That is, c− cos c = 0, so that c = cos c.

C02S0M.064: Let h(x) = x + tanx. Then h(π) = π > 0 and h(x) → −∞ as x approaches π/2 from
above (from the right). This implies that h(r) < 0 for some number r slightly larger than π/2. Because h is
continuous on the interval [r, π], h has the intermediate value property there, so h(c) = 0 for some number
c between r and π, and thus between π/2 and π. That is, c + tan c = 0, so that tan c = −c, and c does lie
in the required interval

(
1
2π, π

)
.

C02S0M.065: Suppose that L is a straight line through
(
12, 15

2

)
that is normal to the graph of y = x2 at

the point (a, a2). The line tangent to the graph of y = x2 at that point has slope 2a, and the slope of L is
then −1/(2a). We can equate this to the slope of L found by using the two-point formula:

a2 − 15
2

a− 12
= − 1

2a
;

2a
(
a2 − 15

2

)
= −(a− 12);

2a3 − 15a = −a+ 12;

2a3 − 14a− 12 = 0;

a3 − 7a− 6 = 0.

By inspection, one solution of the last equation is a = −1. By the factor theorem of algebra, we know that
a− (−1) = a+ 1 is a factor of the polynomial a3 − 7a− 6, and division of the former into the latter yields

a3 − 7a− 6 = (a+ 1)(a2 − a− 6) = (a+ 1)(a− 3)(a+ 2).

So the equation a3 − 7a − 6 = 0 has the three solutions a = −1, a = 3, and a = −2. Therefore there are
three lines through

(
12, 15

2

)
that are normal to the graph of y = x2, and their slopes are 1

4 , 1
2 , and − 1

6 .

C02S0M.066: Let (0, c) be the center of a too-big circle, r its radius, and (a, a2) the point in the first
quadrant where the too-big circle and the parabola are tangent. The idea is to solve for a in terms of c and
(possibly) r, then to impose the condition that there is exactly one solution for a! This means that the circle
just reaches to the bottom of the parabola and not beyond.
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Consider the radius of the circle connecting (0, c) with (a, a2). The circle and the parabola are mutually
tangent at (a, a2), so this radius must be normal not only to the circle, but also to the parabola at the point
(a, a2). We compute the slope of this radius in two ways to find that

a2 − c
a− 0

= − 1
2a

;

a2 − c = − 1
2
;

a2 = c− 1
2
.

Now we impose the condition that there is only one point at which the circle and the parabola meet. The
last equation will have exactly one solution when c = 1

2 , and in this case the radius of the circle—because it
touches the parabola only at (0, 0)—will also be r = 1

2 . Answer: 1
2 .
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Section 3.1

C03S01.001: Given f(x) = 4x− 5, we have a = 0, b = 4, and c = −5, so f ′(x) = 2ax+ b = 4.

C03S01.002: Given g(t) = −16t2 + 100, we have a = −16, b = 0, and c = 100, so g′(t) = 2at+ b = −32t.

C03S01.003: If h(z) = z(25−z) = −z2+25z, then a = −1, b = 25, and c = 0, so h′(z) = 2az+b = −2z+25.

C03S01.004: If f(x) = −49x+ 16, then a = 0, b = −49, and c = 16, so f ′(x) = −49.

C03S01.005: If y = 2x2 + 3x− 17, then a = 2, b = 3, and c = −17, so
dy

dx
= 2ax+ b = 4x+ 3.

C03S01.006: If x = −100t2 + 16t, then a = −100, b = 16, and c = 0, so
dx

dt
= 2at+ b = −200t+ 16.

C03S01.007: If z = 5u2 − 3u, then a = 5, b = −3, and c = 0, so
dz

du
= 2au+ b = 10u− 3.

C03S01.008: If v = −5y2 + 500y, then a = −5, b = 500, and c = 0, so
dv

dy
= 2ay + b = −10y + 500.

C03S01.009: If x = −5y2 + 17y + 300, then a = −5, b = 17, and c = 300, so
dx

dy
= 2ay + b = −10y + 17.

C03S01.010: If u = 7t2 + 13t, then a = 7, b = 13, and c = 0, so
du

dt
= 2at+ b = 14t+ 13.

C03S01.011: f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

2(x+ h)− 1− (2x− 1)
h

= lim
h→0

2x+ 2h− 1− 2x+ 1
h

= lim
h→0

2h
h

= lim
h→0

2 = 2.

C03S01.012: f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

2− 3(x+ h)− (2− 3x)
h

= lim
h→0

2− 3x− 3h− 2 + 3x
h

= lim
h→0

−3h
h

= lim
h→0

(−3) = −3.

C03S01.013: f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

(x+ h)2 + 5− (x2 + 5)
h

= lim
h→0

x2 + 2xh+ h2 + 5− x2 − 5
h

= lim
h→0

2xh+ h2

h
= lim
h→0

(2x+ h) = 2x.

C03S01.014: f(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

3− 2(x+ h)2 − (3− 2x2)
h

= lim
h→0

3− 2x2 − 4xh− 2h2 − 3 + 2x2

h
= lim
h→0

−4xh− 2h2

h
= lim
h→0

(−4x− 2h) = −4x.

C03S01.015: f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
2(x+ h) + 1

− 1
2x+ 1

h

= lim
h→0

2x+ 1− (2x+ 2h+ 1)
h(2x+ 2h+ 1)(2x+ 1)

= lim
h→0

2x+ 1− 2x− 2h− 1
h(2x+ 2h+ 1)(2x+ 1)

= lim
h→0

−2h
h(2x+ 2h+ 1)(2x+ 1)

1



= lim
h→0

−2
(2x+ 2h+ 1)(2x+ 1)

=
−2

(2x+ 1)2
.

C03S01.016: f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
3− (x+ h)

− 1
3− x

h

= lim
h→0

(3− x)− (3− x− h)
h(3− x− h)(3− x) = lim

h→0

3− x− 3 + x+ h

h(3− x− h)(3− x) = lim
h→0

h

h(3− x− h)(3− x)

= lim
h→0

1
(3− x− h)(3− x) =

1
(3− x)2 .

C03S01.017: f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

√
2(x+ h) + 1−

√
2x+ 1

h

= lim
h→0

(√
2x+ 2h+ 1−

√
2x+ 1

)(√
2x+ 2h+ 1 +

√
2x+ 1

)
h

(√
2x+ 2h+ 1 +

√
2x+ 1

) = lim
h→0

(2h+ 2h+ 1)− (2x+ 1)
h

(√
2x+ 2h+ 1 +

√
2x+ 1

)

= lim
h→0

2h
h

(√
2x+ 2h+ 1 +

√
2x+ 1

) = lim
h→0

2√
2x+ 2h+ 1 +

√
2x+ 1

=
2

2
√

2x+ 1
=

1√
2x+ 1

.

C03S01.018: f ′(x) = lim
h→0

1
h

(f(x+ h)− f(x)) = lim
h→0

1
h

(
1√

x+ h+ 1
− 1√

x+ 1

)

= lim
h→0

√
x+ 1−

√
x+ h+ 1

h
√
x+ h+ 1

√
x+ 1

= lim
h→0

(√
x+ 1−

√
x+ h+ 1

)(√
x+ 1 +

√
x+ h+ 1

)
h

(√
x+ h+ 1

√
x+ 1

)(√
x+ 1 +

√
x+ h+ 1

)

= lim
h→0

(x+ 1)− (x+ h+ 1)
h

(√
x+ h+ 1

√
x+ 1

)(√
x+ 1 +

√
x+ h+ 1

)

= lim
h→0

−h
h

(√
x+ h+ 1

√
x+ 1

)(√
x+ 1 +

√
x+ h+ 1

)

= lim
h→0

−1(√
x+ h+ 1

√
x+ 1

)(√
x+ 1 +

√
x+ h+ 1

) =
−1(√

x+ 1
)2 (

2
√
x+ 1

) = − 1
2(x+ 1)3/2

.

C03S01.019: f ′(x) = lim
h→0

1
h

(f(x+ h)− f(x)) = lim
h→0

1
h

(
x+ h

1− 2(x+ h)
− x

1− 2x

)

= lim
h→0

1
h
· (x+ h)(1− 2x)− (1− 2x− 2h)(x)

(1− 2x− 2h)(1− 2x)
= lim
h→0

(x− 2x2 + h− 2xh)− (x− 2x2 − 2xh)
h(1− 2x− 2h)(1− 2x)

= lim
h→0

x− 2x2 + h− 2xh− x+ 2x2 + 2xh
h(1− 2x− 2h)(1− 2x)

= lim
h→0

h

h(1− 2x− 2h)(1− 2x)

= lim
h→0

1
(1− 2x− 2h)(1− 2x)

=
1

(1− 2x)2
.

C03S01.020: f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
h

(
x+ h+ 1
x+ h− 1

− x+ 1
x− 1

)

= lim
h→0

1
h
· (x+ h+ 1)(x− 1)− (x+ h− 1)(x+ 1)

(x+ h− 1)(x− 1)

= lim
h→0

(x2 − x+ hx− h+ x− 1)− (x2 + x+ hx+ h− x− 1)
h(x+ h− 1)(x− 1)

2



= lim
h→0

x2 − x+ hx− h+ x− 1− x2 − x− hx− h+ x+ 1
h(x+ h− 1)(x− 1)

= lim
h→0

−2h
h(x+ h− 1)(x− 1)

= lim
h→0

−2
(x+ h− 1)(x− 1)

= − 2
(x− 1)2

.

C03S01.021: The velocity of the particle at time t is
dx

dt
= v(t) = −32t, so v(t) = 0 when t = 0. The

position of the particle then is x(0) = 100.

C03S01.022: The velocity of the particle at time t is
dx

dt
= v(t) = −32t + 160, so v(t) = 0 when t = 5.

The position of the particle then is x(5) = 425.

C03S01.023: The velocity of the particle at time t is
dx

dt
= v(t) = −32t + 80, so v(t) = 0 when t = 2.5.

The position of the particle then is x(2.5) = 99.

C03S01.024: The velocity of the particle at time t is
dx

dt
= v(t) = 200t, so v(t) = 0 when t = 0. The

position of the particle then is x(0) = 50.

C03S01.025: The velocity of the particle at time t is
dx

dt
= v(t) = −20 − 10t, so v(t) = 0 when t = −2.

The position of the particle then is x(−2) = 120.

C03S01.026: The ball reaches its maximum height when its velocity v(t) =
dy

dt
= −32t+ 160 is zero, and

v(t) = 0 when t = 5. The height of the ball then is y(5) = 400 (ft).

C03S01.027: The ball reaches its maximum height when its velocity v(t) =
dy

dt
= −32t + 64 is zero, and

v(t) = 0 when t = 2. The height of the ball then is y(2) = 64 (ft).

C03S01.028: The ball reaches its maximum height when its velocity v(t) =
dy

dt
= −32t+ 128 is zero, and

v(t) = 0 when t = 4. The height of the ball then is y(4) = 281 (ft).

C03S01.029: The ball reaches its maximum height when its velocity v(t) =
dy

dt
= −32t + 96 is zero, and

v(t) = 0 when t = 3. The height of the ball then is y(3) = 194 (ft).

C03S01.030: Figure 3.1.22 shows a graph first increasing, then with a horizontal tangent at x = 0, then
decreasing. Hence its derivative must be first positive, then zero when x = 0, then negative. This matches
Fig. 3.1.28(c).

C03S01.031: Figure 3.1.23 shows a graph first decreasing, then with a horizontal tangent where x = 1,
then increasing thereafter. So its derivative must be negative for x < 1, zero when x = 1, and positive for
x > 1. This matches Fig. 3.1.28(e).

C03S01.032: Figure 3.1.24 shows a graph increasing for x < −1.5, decreasing for −1.5 < x < 1.5, and
increasing for 1.5 < x. So its derivative must be positive for x < −1.5, negative for −1.5 < x < 1.5, and
positive for 1.5 < x. This matches Fig. 3.1.28(b).

C03S01.033: Figure 3.1.25 shows a graph decreasing for x < −1.5, increasing for −1.5 < x < 0, decreasing
for 0 < 1 < 1.5, and increasing for 1.5 < x. Hence its derivative is negative for x < −1.5, positive for
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−1.5 < x < 0, negative for 0 < x < 1.5, and positive for 1.5 < x. Only the graph in Fig. 3.1.28(f) shows
these characteristics.

C03S01.034: Figure 3.1.26 shows a graph with horizontal tangents near where x = −3, x = 0, and
x = 3. So the graph of the derivative must be zero near these three points, and this behavior is matched by
Fig. 3.1.28(a).

C03S01.035: Figure 3.1.27 shows a graph that increases, first slowly, then rapidly. So its derivative must
exhibit the same behavior, and thus its graph is the one shown in Fig. 3.1.28(d).

C03S01.036: Note that

C(F ) =
5
9
F − 160

9
and so F (C) =

9
5
C + 32.

So the rate of change of C with respect to F is

C ′(F ) =
dC

dF
=

5
9

and the rate of change of F with respect to C is

F ′(C) =
dF

dC
=

9
5
.

C03S01.037: Let r note the radius of the circle. Then A = πr2 and C = 2πr. Thus

r =
C

2π
, and so A(C) =

1
4π
C2, C > 0.

Therefore the rate of change of A with respect to C is

A′(C) =
dA

dC
=

1
2π
C.

C03S01.038: Let r denote the radius of the circular ripple in feet at time t (seconds). Then r = 5t, and
the area within the ripple at time t is A = πr2 = 25πt2. The rate at which this area is increasing at time t
is A′(t) = 50πt, so at time t = 10 the area is increasing at the rate of A′(10) = 50π · 10 = 500π (ft2/s).

C03S01.039: The velocity of the car (in feet per second) at time t (seconds) is v(t) = x′(t) = 100 − 10t.
The car comes to a stop when v(t) = 0; that is, when t = 10. At that time the car has traveled a distance
x(10) = 500 (ft). So the car skids for 10 seconds and skids a distance of 500 ft.

C03S01.040: Because V (t) = 10 − 1
5 t + 1

1000 t
2, V ′(t) = − 1

5 + 1
500 t and so the rate at which the water is

leaking out one minute later (t = 60) is V ′(60) = − 2
25 (gal/s); that is, −4.8 gal/min. The average rate of

change of V from t = 0 until t = 100 is

V (100)− V (0)
100− 0

=
0− 10
100

= − 1
10
.

The instantaneous rate of change of V will have this value when V ′(t) = − 1
10 , which we easily solve for

t = 50.

C03S01.041: First, P (t) = 100 + 30t + 4t2. The initial population is 100, so doubling occurs when
P (t) = 200; that is, when 4t2+30t−100 = 0. The quadratic formula yields t = 2.5 as the only positive solution
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of this equation, so the population will take two and one-half months to double. Because P ′(t) = 30 + 8t,
the rate of growth of the population when P = 200 will be P ′(2.5) = 50 (chipmunks per month).

C03S01.042: In our construction, the tangent line at 1989 passes through the points (1984, 259) and
(1994, 423), and so has slope 16.4; this yields a rate of growth of approximately 16.4 thousand per year in
1989. Alternatively, using the Mathematica function Fit to fit the given data to a sixth-degree polynomial,
we find that P (in thousands) is given in terms of t (as a four-digit year) by

P (t) ≈(1.0453588× 10−14)x6 − (4.057899× 10−11)x5 + (3.9377735× 10−8)x4

+ (5.93932556× 10−11)x3 + (5.972176× 10−14)x2 + (5.939427× 10−17)x+ (3.734218× 10−12),

and that P ′(1989) ≈ 16.4214. Of course neither method is exact.

C03S01.043: On our graph, the tangent line at the point (20, 810) has slope m1 ≈ 0.6 and the tangent
line at (40, 2686) has slope m2 ≈ 0.9. A line of slope 1 on our graph corresponds to a velocity of 125 ft/s
(because the line through (0, 0) and (10, 1250) has slope 1), and thus we estimate the velocity of the car at
time t = 20 to be about (0.6)(125) = 75 ft/s, and at time t = 40 it is traveling at about (0.9)(125) = 112.5
ft/s. The method is crude; the answer in the back of the textbook is quite different simply because it was
obtained by someone else. When we used the Mathematica function Fit to fit the data to a sixth-degree
polynomial, we obtained

x(t) ≈ 0.0000175721 + (6.500002)x+ (1.112083)x2 + (0.074188)x3

− (0.00309375)x4 + (0.0000481250)x5 − (0.000000270834)x6,

which yields x′(20) ≈ 74.3083 and x′(40) ≈ 109.167. Of course neither method is exact.

C03S01.044: With volume V and edge x, the volume of the cube is given by V (x) = x3. Now
dV

dx
= 3x2,

which is indeed half the total surface area 6x2 of the cube.

C03S01.045: With volume V and radius r, the volume of the sphere is V (r) = 4
3πr

3. Then
dV

dr
= 4πr2,

and this is indeed the surface area of the sphere.

C03S01.046: A right circular cylinder of radius r and height h has volume V = πr2h and total surface
area S obtained by adding the areas of its top, bottom, and curved side: S = 2πr2 + 2πrh. We are given
h = 2r, so V (r) = 2πr3 and S(r) = 6πr2. Also dV/dr = 6πr2 = S(r), so the rate of change of volume with
respect to radius is indeed equal to total surface area.

C03S01.047: We must compute dV/dt when t = 30; V (r) = 4
3πr

3 is the volume of the balloon when its

radius is r. We are given r =
60− t

12
, and thus

V (t) =
4
3
π

(
60− t

12

)3

=
π

1296
(216000− 10800t+ 180t2 − t3).

Therefore

dV

dt
=

π

1296
(−10800 + 360t− 3t2),

and so V ′(t) = −25π
12

in.3/s; that is, air is leaking out at approximately 6.545 in.3/s.
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C03S01.048: From V (p) =
1.68
p

we derive V ′(p) = −1.68
p2

. The rate of change of V with respect to p

when p = 2 (atm) is then V ′(2) = −0.42 (liters/atm).

C03S01.049: Let V (t) denote the volume (in cm3) of the snowball at time t (in hours) and let r(t) denote
its radius then. From the data given in the problem, r = 12− t. The volume of the snowball is

V =
4
3
πr3 =

4
3
π(12− t)3 =

4
3
π

(
1728− 432t+ 36t2 − t3

)
,

so its instantaneous rate of change is

V ′(t) =
4
3
π

(
−432 + 72t− 3t2

)
.

Hence its rate of change of volume when t = 6 is V ′(6) = −144π cm3/h. Its average rate of change of volume
from t = 3 to t = 9 in cm3/h is

V (9)− V (3)
9− 3

=
36π − 972π

6
= −156π (cm3/h).

C03S01.050: The velocity of the ball at time t is
dy

dt
= −32t+96, which is zero when t = 3. So the maximum

height of the ball is y(3) = 256 (ft). It hits the ground when y(t) = 0; that is, when −16t2 + 96t+ 112 = 0.
The only positive solution of this equation is t = 7, so the impact speed of the ball is |y′(7)| = 128 (ft/s).

C03S01.051: The spaceship hits the ground when 25t2 − 100t + 100 = 0, which has solution t = 2. The
velocity of the spaceship at time t is y′(t) = 50t−100, so the speed of the spaceship at impact is (fortunately)
zero.

C03S01.052: Because P (t) = 100+4t+ 3
10 t

2, we have P ′(t) = 4+ 3
5 t. The year 1986 corresponds to t = 6,

so the rate of change of P then was P ′(6) = 7.6 (thousands per year). The average rate of change of P from
1983 (t = 3) to 1988 (t = 8) was

P (8)− P (3)
8− 3

=
151.2− 114.7

5
= 7.3 (thousands per year).

C03S01.053: The average rate of change of the population from January 1, 1990 to January 1, 2000 was

P (10)− P (0)
10− 0

=
6
10

= 0.6 (thousands per year).

The instantaneous rate of change of the population (in thousands per year, again) at time t was

P ′(t) = 1− (0.2)t+ (0.018)t2.

Using the quadratic formula to solve the equation P ′(t) = 0.6, we find two solutions:

t =
50− 10

√
7

9
≈ 2.6158318766 and t =

50 + 10
√

7
9

≈ 8.4952792345.

These values of t correspond to August 12, 1992 and June 30, 1998, respectively.

C03S01.054: (a) If f(x) = |x|, then
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f ′−(0) = lim
h→0−

|h| − 0
h

= lim
h→0−

−h
h

= −1;

similarly, f ′+(0) = 1. (b) The function f(x) = |2x − 10| is not differentiable at x = 5. Its right-hand
derivative there is

f ′+(5) = lim
h→0+

|2 · (5 + h)− 10| − 0
h

= lim
h→0+

10 + 2h− 10
h

= 2.

Similarly, f ′−(5) = −2.

C03S01.055: The graphs of the function of part (a) is shown next, on the left; the graph of the function
of part (b) is on the right.

(a) f ′−(0) = 1 while f ′+(0) = 2. Hence f is not differentiable at x = 0. (b) In contrast,

f ′−(0) = lim
h→0−

(0 + h)2 − 2 · 02

h
= 0

and

f ′+(0) = lim
h→0+

2 · (0 + h)2 − 2 · 02

h
= 0;

therefore f is differentiable at x = 0 and f ′(0) = 0.

C03S01.056: The function f is clearly differentiable except possibly at x = 1. But

f ′−(1) = lim
h→0−

2 · (1 + h) + 1− 3
h

= 2

and

f ′+(1) = lim
h→0+

4 · (1 + h)− (1 + h)2 − 3
h

= lim
h→0+

4 + 4h− 1− 2h− h2 − 3
h

= lim
h→0+

(2− h) = 2.
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Therefore f is differentiable at x = 1 as well.

C03S01.057: Clearly f is differentiable except possibly at x = 3. Moreover,

f ′−(3) = lim
h→0−

11 + 6 · (3 + h)− (3 + h)2 − 20
h

= lim
h→0−

11 + 18 + 6h− 9− 6h− h2 − 20
h

= lim
h→0−

−h2

h
= 0

and

f ′+(3) = lim
h→0+

(3 + h)2 − 6 · (3 + h) + 29− 20
h

= lim
h→0+

9 + 6h+ h2 − 18− 6h+ 29− 20
h

= lim
h→0+

h2

h
= 0.

Therefore the function f is also differentiable at x = 3; moreover, f ′(3) = 0.

C03S01.058: The graph of f(x) = x · |x| is shown next.

Because f(x) = x2 if x > 0 and f(x) = −x2 if x < 0, f is differentiable except possibly at x = 0. But

f ′−(0) = lim
h→0−

(0 + h) · |0 + h|
h

= lim
h→0−

−h2

h
= 0

and

f ′+(0) = lim
h→0+

(0 + h) · |0 + h|
h

= lim
h→0+

h2

h
= 0.

Therefore f is differentiable at x = 0 and f ′(0) = 0. Because

f ′(x) =




2x if x > 0,
0 if x = 0,
−2x if x < 0,

we see that f ′(x) = 2|x| for all x.
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C03S01.059: The graph of f(x) = x+ |x| is shown next.

Because f(x) = 0 if x < 0 and f(x) = 2x if x > 0, clearly f is differentiable except possibly at x = 0. Next,

f ′−(0) = lim
h→0−

0 + h+ |0 + h|
h

= lim
h→0−

h− h
h

= 0,

whereas

f ′+(0) = lim
h→0+

0 + h+ |0 + h|
h

= lim
h→0+

2h
h

= 2 �= 0.

Therefore f is not differentiable at x = 0. In summary, f ′(x) = 2 if x > 0 and f ′(x) = 0 if x < 0. For a
“single-formula” version of the derivative, consider

f ′(x) = 1 +
|x|
x
.

C03S01.060: The graph of f(x) = x · (x+ |x|), is shown next.

Because f(x) = 2x2 if x > 0 and f(x) = 0 if x < 0, f ′(x) exists except possibly at x = 0. But

f ′−(0) = lim
h→0−

(0 + h) · (0 + h+ |0 + h|)
h

= lim
h→0−

h · (h− h)
h

= 0

and
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f ′+(0) = lim
h→0+

(0 + h) · (0 + h+ |0 + h|)
h

= lim
h→0+

h · (h+ h)
h

= 0.

Therefore f is differentiable at x = 0 and f ′(0) = 0. Finally, f ′(x) = 4x if x > 0 and f ′(x) = 0 if x < 0. For
a “single-formula” version of the derivative, consider f ′(x) = 2 · (x+ |x|).
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Section 3.2

C03S02.001: Given: f(x) = 3x2 − x + 5. We apply the rule for differentiating a linear combination and
the power rule to obtain

f ′(x) = 3Dx(x2)−Dx(x) + Dx(5) = 3 · 2x− 1 + 0 = 6x− 1.

C03S02.002: Given: g(t) = 1 − 3t2 − 2t4. We apply the rule for differentiating a linear combination and
the power rule to obtain

g′(t) = Dt(1)− 3Dt(t2)− 2Dt(t4) = 0− 3 · 2t− 2 · 4t3 = −6t− 8t3.

C03S02.003: Given: f(x) = (2x + 3)(3x− 2). We apply the product rule to obtain

f ′(x) = (2x + 3)Dx(3x− 2) + (3x− 2)Dx(2x + 3) = (2x + 3) · 3 + (3x− 2) · 2 = 12x + 5.

C03S02.004: Given: g(x) = (2x2 − 1)(x3 + 2). We apply the product rule, the rule for differentiating a
linear combination, and the power rule to obtain

g′(x) = (2x2 − 1)Dx(x3 + 2) + (x3 + 2)Dx(2x2 − 1) = (2x2 − 1)(3x2) + (x3 + 2)(4x) = 10x4 − 3x2 + 8x.

C03S02.005: Given: h(x) = (x + 1)3. We rewrite h(x) in the form

h(x) = (x + 1)(x + 1)(x + 1)

and then apply the extended product rule in Eq. (16) to obtain

h′(x) = (x + 1)(x + 1)Dx(x + 1) + (x + 1)(x + 1)Dx(x + 1) + (x + 1)(x + 1)Dx(x + 1)

= (x + 1)(x + 1)(1) + (x + 1)(x + 1)(1) + (x + 1)(x + 1)(1) = 3(x + 1)2.

Alternatively, we could rewrite h(x) in the form

h(x) = x3 + 3x2 + 3x + 1

and then apply the power rule and the rule for differentiating a linear combination to obtain

h′(x) = Dx(x3) + 3Dx(x2) + 3Dx(x) + Dx(1) = 3x2 + 6x + 3.

The first method gives the answer in a more useful form because it is easier to determine where h′(x) is
positive, where negative, and where zero. Zeugma!

C03S02.006: Given: g(t) = (4t − 7)2 = (4t − 7) · (4t − 7). We apply the product rule and the rule for
differentiating a linear combination to obtain

g′(t) = (4t− 7)Dt(4t− 7) + (4t− 7)Dt(4t− 7) = 4 · (4t− 7) + 4 · (4t− 7) = 8 · (4t− 7) = 32t− 56.

C03S02.007: Given: f(y) = y(2y − 1)(2y + 1). We apply the extended product rule in Eq. (16) to obtain
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f ′(y) = (2y − 1)(2y + 1)Dy(y) + y(2y + 1)Dy(2y − 1) + y(2y − 1)Dy(2y + 1)

= (2y − 1)(2y + 1) · 1 + y(2y + 1) · 2 + y(2y − 1) · 2 = 4y2 − 1 + 4y2 + 2y + 4y2 − 2y = 12y2 − 1.

Alternatively, we could first expand: f(y) = 4y3 − y. Then we could apply the rule for differentiating a
linear combination and the power rule to obtain f ′(y) = 4Dy(y3)−Dy(y) = 12y2 − 1.

C03S02.008: Given: f(x) = 4x4 − 1
x2

. We apply various rules, including the reciprocal rule, to obtain

f ′(x) = 4Dx(x4)−
(
−Dx(x2)

(x2)2

)
= 4 · 4x3 +

2x
x4

= 16x3 +
2
x3

.

Alternatively, we could rewrite: f(x) = 4x4 − x−2. Then we could apply the rule for differentiating a linear
combination and the power rule (both for positive and for negative integral exponents) to obtain

f ′(x) = 4Dx(x4)−Dx(x−2) = 4 · 4x3 − (−2)x−3 = 16x3 + 2x−3 = 16x3 +
2
x3

.

C03S02.009: We apply the rule for differentiating a linear combination and the reciprocal rule (twice) to
obtain

g′(x) = Dx

(
1

x + 1

)
−Dx

(
1

x− 1

)

= −Dx(x + 1)
(x + 1)2

+
Dx(x− 1)
(x− 1)2

= − 1
(x + 1)2

+
1

(x− 1)2
.

Looking ahead to later sections and chapters—in which we will want to find where g′(x) is positive, negative,
or zero—it would be good practice to simplify g′(x) to

g′(x) =
(x + 1)2 − (x− 1)2

(x + 1)2(x− 1)2
=

4x
(x + 1)2(x− 1)2

.

C03S02.010: We apply the reciprocal rule to f(t) =
1

4− t2
to obtain

f ′(t) = −Dt(4− t2)
(4− t2)2

= − −2t
(4− t2)2

=
2t

(4− t2)2
.

C03S02.011: First write (or think of) h(x) as

h(x) = 3 · 1
x2 + x + 1

,

then apply the rule for differentiating a linear combination and the reciprocal rule to obtain

h′(x) = 3 ·
(
−Dx(x2 + x + 1)

(x2 + x + 1)2

)
=
−3 · (2x + 1)
(x2 + x + 1)2

.

Alternatively apply the quotient rule directly to obtain

h′(x) =
(x2 + x + 1)Dx(3)− 3Dx(x2 + x + 1)

(x2 + x + 1)2
=
−3 · (2x + 1)
(x2 + x + 1)2

.
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C03S02.012: Multiply numerator and denominator in f(x) by x to obtain

f(x) =
1

1− 2
x

=
x

x− 2
.

Then apply the quotient rule to obtain

f ′(x) =
(x− 2)Dx(x)− xDx(x− 2)

(x− 2)2
=

(x− 2) · 1− x · 1
(x− 2)2

=
−2

(x− 2)2
.

C03S02.013: Given g(t) = (t2 + 1)(t3 + t2 + 1), apply the product rule, the rule for differentiating a linear
combination, and the power rule to obtain

g′(t) = (t2 + 1)Dt(t3 + t2 + 1) + (t3 + t2 + 1)Dt(t2 + 1) = (t2 + 1)(3t2 + 2t + 0) + (t3 + t2 + 1)(2t + 0)

= (3t4 + 2t3 + 3t2 + 2t) + (2t4 + 2t3 + 2t) = 5t4 + 4t3 + 3t2 + 4t.

Alternatively, first expand: g(t) = t5 + t4 + t3 + 2t2 + 1, then apply the rule for differentiating a linear
combination and the power rule.

C03S02.014: Given f(x) = (2x3 − 3)(17x4 − 6x + 2), apply the product rule, the rule for differentiating a
linear combination, and the power rule to obtain

f ′(x) = (2x3 − 3)(68x3 − 6) + (6x2)(17x4 − 6x + 2)

= (136x6 − 216x3 + 18) + (102x6 − 36x3 + 12x2) = 238x6 − 252x3 + 12x2 + 18.

Alternatively, first expand f(x), then apply the linear combination rule and the power rule.

C03S02.015: The easiest way to find g′(z) is first to rewrite g(z):

g(z) =
1
2z
− 1

3z2
=

1
2
z−1 − 1

3
z−2.

Then apply the linear combination rule and the power rule (for negative integral exponents) to obtain

g′(z) =
1
2
(−1)z−2 − 1

3
(−2)z−3 = − 1

2z2
+

2
3z3

=
4− 3z
6z3

.

The last step is advisable should it be necessary to find where g′(z) is positive, where it is negative, and
where it is zero. Hypozeuxis!

C03S02.016: The quotient rule yields

f ′(x) =
x2Dx(2x3 − 3x2 + 4x− 5)− (2x3 − 3x2 + 4x− 5)Dx(x2)

(x2)2

=
(x2)(6x2 − 6x + 4)− (2x3 − 3x2 + 4x− 5)(2x)

x4
=

(6x4 − 6x3 + 4x2)− (4x4 − 6x3 + 8x2 − 10x)
x4

=
6x4 − 6x3 + 4x2 − 4x4 + 6x3 − 8x2 + 10x

x4
=

2x4 − 4x2 + 10x
x4

=
2x3 − 4x + 10

x3
.

3



But if the objective is to obtain the correct answer as quickly as possible, regardless of its appearance,
you could proceed as follows (using the linear combination rule and the power rule for negative integral
exponents):

f(x) = 2x− 3 + 4x−1 − 5x−2, so f ′(x) = 2− 4x−2 + 10x−3.

C03S02.017: Apply the extended product rule in Eq. (16) to obtain

g′(y) = (3y2 − 1)(y2 + 2y + 3)Dy(2y) + (2y)(y2 + 2y + 3)Dy(3y2 − 1) + (2y)(3y2 − 1)Dy(y2 + 2y + 3)

= (3y2 − 1)(y2 + 2y + 3)(2) + (2y)(y2 + 2y + 3)(6y) + (2y)(3y2 − 1)(2y + 2)

= (6y4 + 12y3 + 18y2 − 2y2 − 4y − 6) + (12y4 + 24y3 + 36y2) + (12y4 − 4y2 + 12y3 − 4y)

= 30y4 + 48y3 + 48y2 − 8y − 6.

Or if you prefer, first expand g(y), then apply the linear combination rule and the power rule to obtain

g(y) = (6y3 − 2y)(y2 + 2y + 3) = 6y5 + 12y4 + 16y3 − 4y2 − 6y, so

g′(y) = 30y4 + 48y3 + 48y2 − 8y − 6.

C03S02.018: By the quotient rule,

f ′(x) =
(x2 + 4)Dx(x2 − 4)− (x2 − 4)Dx(x2 + 4)

(x2 + 4)2
=

(x2 + 4)(2x)− (x2 − 4)(2x)
(x2 + 4)2

=
16x

(x2 + 4)2
.

C03S02.019: Apply the quotient rule to obtain

g′(t) =
(t2 + 2t + 1)Dt(t− 1)− (t− 1)Dt(t2 + 2t + 1)

(t2 + 2t + 1)2
=

(t2 + 2t + 1)(1)− (t− 1)(2t + 2)
[ (t + 1)2]2

=
(t2 + 2t + 1)− (2t2 − 2)

(t + 1)4
=

3 + 2t− t2

(t + 1)4
= − (t + 1)(t− 3)

(t + 1)4
=

3− t

(t + 1)3
.

C03S02.020: Apply the reciprocal rule to obtain

u′(x) = −Dx(x2 + 4x + 4)
(x + 2)4

= − 2x + 4
(x + 2)4

= − 2
(x + 2)3

.

C03S02.021: Apply the reciprocal rule to obtain

v′(t) = −Dt(t3 − 3t2 + 3t− 1)
(t− 1)6

= − 3t2 − 6t + 3
(t− 1)6

= − 3(t− 1)2

(t− 1)6
= − 3

(t− 1)4
.

C03S02.022: The quotient rule yields
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h(x) =
(2x− 5)Dx(2x3 + x2 − 3x + 17)− (2x3 + x2 − 3x + 17)Dx(2x− 5)

(2x− 5)2

=
(2x− 5)(6x2 + 2x− 3)− (2x3 + x2 − 3x + 17)(2)

(2x− 5)2

=
(12x3 − 26x2 − 16x + 15)− (4x3 + 2x2 − 6x + 34)

(2x− 5)2

=
12x3 − 26x2 − 16x + 15− 4x3 − 2x2 + 6x− 34

(2x− 5)2
=

8x3 − 28x2 − 10x− 19
(2x− 5)2

.

C03S02.023: The quotient rule yields

g′(x) =
(x3 + 7x− 5)(3)− (3x)(3x2 + 7)

(x3 + 7x− 5)2
=

3x3 + 21x− 15− 9x3 − 21x
(x3 + 7x− 5)2

= − 6x3 + 15
(x3 + 7x− 5)2

.

C03S02.024: First expand the denominator, then multiply numerator and denominator by t2, to obtain

f(t) =
1(

t +
1
t

)2 =
1

t2 + 2 +
1
t2

=
t2

t4 + 2t2 + 1
.

Then apply the quotient rule to obtain

f ′(t) =
(t4 + 2t2 + 1)(2t)− (t2)(4t3 + 4t)

[ (t2 + 1)2]2
=

2t5 + 4t3 + 2t− 4t5 − 4t3

(t2 + 1)4
=

2t− 2t5

(t2 + 1)4
.

A modest simplification is possible:

f ′(t) = − 2t(t4 − 1)
(t2 + 1)4

= − 2t(t2 + 1)(t2 − 1)
(t2 + 1)4

= − 2t(t2 − 1)
(t2 + 1)3

.

C03S02.025: First multiply each term in numerator and denominator by x4 to obtain

g(x) =
x3 − 2x2

2x− 3
.

Then apply the quotient rule to obtain

g′(x) =
(2x− 3)(3x2 − 4x)− (x3 − 2x2)(2)

(2x− 3)2
=

(6x3 − 17x2 + 12x)− (2x3 − 4x2)
(2x− 3)2

=
4x3 − 13x2 + 12x

(2x− 3)2
.

It is usually wise to simplify an expression before differentiating it.

C03S02.026: First multiply each term in numerator and denominator by x2 + 1 to obtain

f(x) =
x3(x2 + 1)− 1
x4(x2 + 1) + 1

=
x5 + x3 − 1
x6 + x4 + 1

.

Then apply the quotient rule to obtain
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f ′(x) =
(x6 + x4 + 1)(5x4 + 3x2)− (x5 + x3 − 1)(6x5 + 4x3)

(x6 + x4 + 1)2

=
(5x10 + 8x8 + 3x6 + 5x4 + 3x2)− (6x10 + 10x8 + 4x6 − 6x5 − 4x3)

(x6 + x4 + 1)2

=
5x10 + 8x8 + 3x6 + 5x4 + 3x2 − 6x10 − 10x8 − 4x6 + 6x5 + 4x3

(x6 + x4 + 1)2

=
−x10 − 2x8 − x6 + 6x5 + 5x4 + 4x3 + 3x2

(x6 + x4 + 1)2
.

C03S02.027: If y(x) = x3 − 6x5 + 3
2x

−4 + 12, then the linear combination rule and the power rules yield
h′(x) = 3x2 − 30x4 − 6x−5.

C03S02.028: Given:

x(t) =
3
t
− 4

t2
− 5 = 3t−1 − 4t−2 − 5,

it follows from the linear combination rule and the power rule for negative integral exponents that

x′(t) = −3t−2 + 8t−3 =
8
t3
− 3

t2
=

8− 3t
t3

.

C03S02.029: Given:

y(x) =
5− 4x2 + x5

x3
=

5
x3
− 4x2

x3
+

x5

x3
= 5x−3 − 4x−1 + x2,

it follows from the linear combination rule and the power rules that

y′(x) = −15x−4 + 4x−2 + 2x = 2x +
4
x2
− 15

x4
=

2x5 + 4x2 − 15
x4

.

C03S02.030: Given

u(x) =
2x− 3x2 + 2x4

5x2
=

2
5
x−1 − 3

5
+

2
5
x2,

it follows from the linear combination rule and the power rules that

u′(x) = − 2
5
x−2 +

4
5
x =

4x3 − 2
5x2

.

C03S02.031: Because y(x) can be written in the form y(x) = 3x− 1
4x

−2, the linear combination rule and
the power rules yield y′(x) = 3 + 1

2x
−3.

C03S02.032: We use the reciprocal rule, the linear combination rule, and the power rule for positive
integral exponents:

f ′(z) = −Dz(z3 + 2z2 + 2z)
z2(z2 + 2z + 2)2

= − 3z2 + 4z + 2
z2(z2 + 2z + 2)2

.
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C03S02.033: If we first combine the two fractions, we will need to use the quotient rule only once:

y(x) =
x

x− 1
+

x + 1
3x

=
3x2 + x2 − 1

3x(x− 1)
=

4x2 − 1
3x2 − 3x

,

and therefore

y′(x) =
(3x2 − 3x)(8x)− (4x2 − 1)(6x− 3)

(3x2 − 3x)2
=

24x3 − 24x2 − 24x3 + 12x2 + 6x− 3
(3x2 − 3x)2

=
−12x2 + 6x− 3

(3x2 − 3x)2
.

C03S02.034: First multiply each term in numerator and denominator by t2 to obtain

u(t) =
1

1− 4t−2
=

t2

t2 − 4
,

then apply the quotient rule:

u′(t) =
(t2 − 4)(2t)− (t2)(2t)

(t2 − 4)2
= − 8t

(t2 − 4)2
.

C03S02.035: The quotient rule (and other rules, such as the linear combination rule and the power rule)
yield

y′(x) =
(x2 + 9)(3x2 − 4)− (x3 − 4x + 5)(2x)

(x2 + 9)2

=
3x4 + 23x2 − 36− 2x4 + 8x2 − 10x

(x2 + 9)2
=

x4 + 31x2 − 10x− 36
(x2 + 9)2

.

C03S02.036: Expand w(z) and take advantage of negative exponents:

w(z) = z2

(
2z3 − 3

4z4

)
= 2z5 − 3

4
z−2,

and so

w′(z) = 10z4 +
3
2
z−3 = 10z4 +

3
2z3

=
20z7 + 3

2z3
.

C03S02.037: First multiply each term in numerator and denominator by 5x4 to obtain

y(x) =
10x6

15x5 − 4
.

Then apply the quotient rule (among others):

y′(x) =
(15x5 − 4)(60x5)− (10x6)(75x4)

(15x5 − 4)2
=

900x10 − 240x5 − 750x10

(15x5 − 4)2
=

150x10 − 240x5

(15x5 − 4)2
=

30x5(5x5 − 8)
(15x5 − 4)2

.

C03S02.038: First rewrite

z(t) = 4 · 1
t4 − 6t2 + 9

,
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then apply the linear combination rule and the reciprocal rule to obtain

z′(t) = −4 · 4t3 − 12t
(t4 − 6t2 + 9)2

=
48t− 16t3

(t2 − 3)4
= − 16t(t2 − 3)

(t2 − 3)4
= − 16t

(t2 − 3)3
.

C03S02.039: The quotient rule yields

y′(x) =
(x + 1)(2x)− (x2)(1)

(x + 1)2
=

2x2 + 2x− x2

(x + 1)2
=

x(x + 2)
(x + 1)2

.

C03S02.040: Use the quotient rule, or if you prefer write h(w) = w−1 + 10w−2, so that

h′(w) = −w−2 − 20w−3 = −
(

1
w2

+
20
w3

)
= −w + 20

w3
.

C03S02.041: Given f(x) = x3 and P (2, 8) on its graph, f ′(x) = 3x2, so that f ′(2) = 12 is the slope of the
line L tangent to the graph of f at P . So L has equation y − 8 = 12(x− 2); that is, 12x− y = 16.

C03S02.042: Given f(x) = 3x2 − 4 and P (1, −1) on its graph, f ′(x) = 6x, so that f ′(1) = 6 is the slope
of the line L tangent to the graph of f at P . So L has equation y + 1 = 6(x− 1); that is, 6x− y = 7.

C03S02.043: Given f(x) = 1/(x− 1) and P (2, 1) on its graph,

f ′(x) = −Dx(x− 1)
(x− 1)2

= − 1
(x− 1)2

,

so that f ′(2) = −1 is the slope of the line L tangent to the graph of f at P . So L has equation y−1 = −(x−2);
that is, x + y = 3.

C03S02.044: Given f(x) = 2x − x−1 and P (0.5, −1) on its graph, f ′(x) = 2 + x−2, so that f ′(0.5) = 6
is the slope of the line L tangent to the graph of f at P . So L has equation y + 1 = 6

(
x− 1

2

)
; that is,

6x− y = 4.

C03S02.045: Given f(x) = x3 + 3x2 − 4x − 5 and P (1, −5) on its graph, f ′(x) = 3x2 + 6x − 4, so that
f ′(1) = 5 is the slope of the line L tangent to the graph of f at P . So L has equation y + 5 = 5(x− 1); that
is, 5x− y = 10.

C03S02.046: Given

f(x) =
(

1
x
− 1

x2

)−1

=
(
x− 1
x2

)−1

=
x2

x− 1
,

and P (2, 4) on its graph,

f ′(x) =
(x− 1)(2x)− x2

(x− 1)2
=

x2 − 2x
(x− 1)2

,

so that f ′(2) = 0 is the slope of the line L tangent to the graph of f at P . So L has equation y−4 = 0·(x−2);
that is, y = 4.

C03S02.047: Given f(x) = 3x−2 − 4x−3 and P (−1, 7) on its graph, f ′(x) = 12x−4 − 6x−3, so that
f ′(−1) = 18 is the slope of the line L tangent to the graph of f at P . So L has equation y − 7 = 18(x + 1);
that is, 18x− y = −25.
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C03S02.048: Given

f(x) =
3x− 2
3x + 2

and P (2, 0.5) on its graph,

f ′(x) =
(3x + 2)(3)− (3x− 2)(3)

(3x + 2)2
=

12
(3x + 2)2

,

so that f ′(2) = 3
16 is the slope of the line L tangent to the graph of f at P . So L has equation y− 1

2 = 3
16 (x−2);

that is, 3x− 16y = −2.

C03S02.049: Given

f(x) =
3x2

x2 + x + 1

and P (−1, 3) on its graph,

f ′(x) =
(x2 + x + 1)(6x)− (3x2)(2x + 1)

(x2 + x + 1)2
=

3x2 + 6x
(x2 + x + 1)2

,

so that f ′(−1) = −3 is the slope of the line L tangent to the graph of f at P . So an equation of the line L

is y − 3 = −3(x + 1); that is, 3x + y = 0.

C03S02.050: Given

f(x) =
6

1− x2

and P (2, −2) on its graph,

f ′(x) = −6 · −2x
(1− x2)2

=
12x

(1− x2)2
,

so that f ′(2) = 8
3 is the slope of the line L tangent to the graph of f at P . So L has equation y+2 = 8

3 (x−2);
that is, 8x− 3y = 22.

C03S02.051: V = V0(1 + αT + βT 2 + γT 3) where α ≈ −0.06427 × 10−3, β ≈ 8.5053 × 10−6, and
γ ≈ −6.79×10−8. Now dV/dt = V0(α+2βT +3γT 2); V = V0 = 1000 when T = 0. Because V ′(0) = αV0 < 0,
the water contracts when it is first heated. The rate of change of volume at that point is V ′(0) ≈ −0.06427
cm3 per ◦C.

C03S02.052: W =
2× 109

R2
= (2 × 109)R−2, so

dW

dR
= −4× 109

R3
; when R = 3960,

dW

dR
= − 62500

970299
(lb/mi). Thus W decreases initially at about 1.03 ounces per mile.

C03S02.053: Draw a cross section of the tank through its axis of symmetry. Let r denote the radius of the
(circular) water surface when the height of water in the tank is h. Draw a typical radius, label it r, and label
the height h. From similar triangles in your figure, deduce that h/r = 800/160 = 5, so r = h/5. The volume
of water in a cone of height h and radius r is V = 1

3πr
2h, so in this case we have V = V (h) = 1

75πh
3. The rate

of change of V with respect to h is dV/dh = 1
25πh

2, and therefore when h = 600, we have V ′(600) = 14400π;
that is, approximately 45239 cm3 per cm.
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C03S02.054: Because y′(x) = 3x2+2x+1, the slope of the tangent line at (1, 3) is y′(1) = 6. The equation
of the tangent line at (1, 3) is y − 3 = 6(x − 1); that is, y = 6x − 3. The intercepts of the tangent line are
(0, −3) and

(
1
2 , 0

)
.

C03S02.055: The slope of the tangent line can be computed using dy/dx at x = a and also by using the
two points known to lie on the line. We thereby find that

3a2 =
a3 − 5
a− 1

.

This leads to the equation (a+ 1)(2a2 − 5a+ 5) = 0. The quadratic factor has negative discriminant, so the
only real solution of the cubic equation is a = −1. The point of tangency is (−1, −1), the slope there is 3,
and the equation of the line in question is y = 3x + 2.

C03S02.056: Let (a, a3) be a point of tangency. The tangent line therefore has slope 3a2 and, because it
passes through (2, 8), we have

3a2 =
a3 − 8
a− 2

; that is, 3a2(a− 2) = a3 − 8.

This leads to the equation 2a2 − 2a − 4 = 0, so that a = −1 or a = 2. The solution a = 2 yields the line
tangent at (2, 8) with slope 12. The solution a = −1 gives the line tangent at (−1, −1) with slope 3. The
two lines have equations y − 8 = 12(x− 2) and y + 1 = 3(x + 1); that is, y = 12x− 16 and y = 3x + 2.

C03S02.057: Suppose that some straight line L is tangent to the graph of f(x) = x2 at the points (a, a2)
and (b, b2). Our plan is to show that a = b, and we may conclude that L cannot be tangent to the graph of
f at two different points. Because f ′(x) = 2x and because (a, a2) and (b, b2) both lie on L, the slope of L is
equal to both f ′(a) and f ′(b); that is, 2a = 2b. Hence a = b, so that (a, a2) and (b, b2) are the same point.
Conclusion: No straight line can be tangent to the graph of y = x2 at two different points.

C03S02.058: Let (a, 1/a) be a point of tangency. The slope of the tangent there is −1/a2, so −1/a2 = −2.
Thus there are two possible values for a: ± 1

2

√
2. These lead to the equations of the two lines: y = −2x+2

√
2

and y = −2x− 2
√

2.

C03S02.059: Given f(x) = xn, we have f ′(x) = nxn−1. The line tangent to the graph of f at the point
P (x0, y0) has slope that we compute in two ways and then equate:

y − (x0)n

x− x0
= n(x0)n−1.

To find the x-intercept of this line, substitute y = 0 into this equation and solve for x. It follows that the

x-intercept is x =
n− 1
n

x0.

C03S02.060: Because dy/dx = 5x4 + 2 � 2 > 0 for all x, the curve has no horizontal tangent line. The
minimal slope occurs when dy/dx is minimal, and this occurs when x = 0. So the smallest slope that a line
tangent to this graph can have is 2.

C03S02.061: Dx[f(x)]3 = f ′(x)f(x)f(x) + f(x)f ′(x)f(x) + f(x)f(x)f ′(x) = 3[f(x)]2f ′(x).

C03S02.062: Suppose that u1, u2, u3, u4, and u5 are differentiable functions of x. Let primes denote
derivatives with respect to x. Then
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Dx[u1u2u3u4] = Dx[(u1u2u3)u4] = (u1u2u3)′u4 + (u1u2u3)u′
4

= (u′
1u2u3 + u1u

′
2u3 + u1u2u

′
3)u4 + (u1u2u3)u′

4

= u′
1u2u3u4 + u1u

′
2u3u4 + u1u2u

′
3u4 + u1u2u3u

′
4.

Next, using this result,

Dx[u1u2u3u4u5] = Dx[(u1u2u3u4)u5] = (u1u2u3u4)′u5 + (u1u2u3u4)u′
5

= (u′
1u2u3u4 + u1u

′
2u3u4 + u1u2u

′
3u4 + u1u2u3u

′
4)u5 + (u1u2u3u4)u′

5

= u′
1u2u3u4u5 + u1u

′
2u3u4u5 + u1u2u

′
3u4u5 + u1u2u3u

′
4u5 + u1u2u3u4u

′
5.

C03S02.063: Let u1(x) = u2(x) = u3(x) = · · · = un−1(x) = un(x) = f(x). Then the left-hand side of
Eq. (16) is Dx[ (f(x))n] and the right-hand side is

f ′(x)[f(x)]n−1 + f(x)f ′(x)[f(x)]n−2 + [f(x)]2f ′(x)[f(x)]n−3 + · · ·+ [f(x)]n−1f ′(x) = n[f(x)]n−1 · f ′(x).

Therefore if n is a positive integer and f ′(x) exists, then

Dx[ (f(x))n] = n(f(x))n−1 · f ′(x).

C03S02.064: Substitution of f(x) = x2 + x + 1 and n = 100 in the result of Problem 63 yields

Dx[ (x2 + x + 1)100] = Dx[ (f(x))n] = n(f(x))n−1 · f ′(x) = 100(x2 + x + 1)99 · (2x + 1).

C03S02.065: Let f(x) = x3 − 17x + 35 and let n = 17. Then g(x) = (f(x))n. Hence, by the result in
Problem 63,

g′(x) = Dx[ (f(x))n] = n(f(x))n−1 · f ′(x) = 17(x3 − 17x + 35)16 · (3x2 − 17).

C03S02.066: We begin with f(x) = ax3 + bx2 + cx + d. Then f ′(x) = 3ax2 + 2bx + c. The conditions in
the problem require that (simultaneously)

1 = f(0) = d,

0 = f ′(0) = c,

0 = f(1) = a + b + c + d,

and 0 = f ′(1) = 3a + 2b + c.

These equations have the unique solution a = 2, b = −3, c = 0, and d = 1. Therefore f(x) = 2x3 − 3x2 + 1
is the only possible solution. It is easy to verify that f(x) satisfies the conditions required in the problem.

C03S02.067: If n is a positive integer and

f(x) =
xn

1 + x2
,

then

f ′(x) =
(1 + x2)(nxn−1)− (2x)(xn)

(1 + x2)2
=

nxn−1 + nxn+1 − 2xn+1

(1 + x2)2
=

xn−1[n + (n− 2)x2]
(1 + x2)2

. (1)

11



If n = 0, then (by the reciprocal rule)

f ′(x) = − 2x
(1 + x2)2

.

If n = 2, then by Eq. (1)

f ′(x) =
2x

(1 + x2)2
.

In each case there can be but one solution of f ′(x) = 0, so there is only one horizontal tangent line. If n = 0
it is tangent to the graph of f at the point (0, 1); if n = 2 it is tangent to the graph of f at the point (0, 0).

C03S02.068: If n = 1, then Eq. (1) of the solution of Problem 67 yields

f ′(x) =
1− x2

(1 + x2)2
.

The equation f ′(x) = 0 has the two solutions x = ±1, so there are two points on the graph of f where the
tangent line is horizontal:

(
−1, − 1

2

)
and

(
1, 1

2

)
.

C03S02.069: If n is a positive integer and n � 3, f ′(x) = 0 only when the numerator is zero in Eq. (1)
of the solution of Problem 67; that is, when xn−1(n + [n− 2]x2) = 0. But this implies that x = 0 (because
n � 3) or that n + [n − 2]x2 = 0. The latter is impossible because n > 0 and [n − 2]x2 � 0. Therefore the
only horizontal tangent to the graph of f is at the point (0, 0).

C03S02.070: By Eq. (1) in the solution of Problem 67, if

f(x) =
x3

1 + x2
, then f ′(x) =

x2(3 + x2)
(1 + x2)2

.

So f ′(x) = 1 when

x2(3 + x2)
(1 + x2)2

= 1;

x2(3 + x2) = (1 + x2)2;

x4 + 3x2 = x4 + 2x2 + 1;

x2 = 1.

Therefore there are two points where the line tangent to the graph of f has slope 1; they are
(
−1, − 1

2

)
and(

1, 1
2

)
.

C03S02.071: If

f(x) =
x3

1 + x2
, then f ′(x) =

x2(3 + x2)
(1 + x2)2

=
x4 + 3x2

(1 + x2)2
,

by Eq. (1) in the solution of Problem 67. A line tangent to the graph of y = f ′(x) will be horizontal when
the derivative f ′′(x) of f ′(x) is zero. But

12



-1.5 -1 -0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

Dx [f ′(x) ] = f ′′(x) =
(1 + x2)2(4x3 + 6x)− (x4 + 3x2)(4x3 + 4x)

(1 + x2)4

=
(1 + x2)2(4x3 + 6x)− (x4 + 3x2)(4x)(x2 + 1)

(1 + x2)4
=

(1 + x2)(4x3 + 6x)− (x4 + 3x2)(4x)
(1 + x2)3

=
4x3 + 6x + 4x5 + 6x3 − 4x5 − 12x3

(1 + x2)3
=

6x− 2x3

(1 + x2)3
=

2x(3− x2)
(1 + x2)3

.

So f ′′(x) = 0 when x = 0 and when x = ±
√

3. Therefore there are three points on the graph of y = f ′(x)
at which the tangent line is horizontal: (0, 0),

(
−
√

3, 9
8

)
, and

(√
3, 9

8

)
.

C03S02.072: (a) Using the quadratic formula, V ′(T ) = 0 when

T = Tm =
170100− 20

√
59243226

4074
≈ 3.96680349529363770572 (in ◦C)

and substitution in the formula for V (T ) (Example 5) yields

Vm = V (Tm) ≈ 999.87464592037071155281 (cm3).

(b) The Mathematica command

Solve[ V(T) == 1000, T ]

yielded three solutions, the only one of which is close to T = 8 was

T =
85050− 10

√
54879293

1358
≈ 8.07764394099814733845 (in ◦C).

C03S02.073: The graph of f(x) = |x3 | is shown next.

Clearly f is differentiable at x if x �= 0. Moreover,

f ′
−(0) = lim

h→0−

|(0 + h)3 | − 0
h

= lim
h→0−

−h3

h
= 0

and f+(0) = 0 by a similar computation. Therefore f is differentiable everywhere.
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C03S02.074: The graph of f(x) = x3 + |x3 | is shown next.

Clearly f is differentiable except possibly at x = 0. Moreover,

f ′
−(0) = lim

h→0−

(0 + h)3 + |(0 + h)3 |
h

= lim
h→0−

h3 − h3

h
= 0

and

f+(0) = lim
h→0+

(0 + h)3 + |(0 + h)3 |
h

= lim
h→0+

2h3

h
= 0.

Therefore f is differentiable at x for all x in R.

C03S02.075: The graph of

f(x) =
{

2 + 3x2 if x < 1,
3 + 2x3 if x � 1,

is shown next.

Clearly f is differentiable except possibly at x = 1. But

f ′
−(1) = lim

h→0−

2 + 3(1 + h)2 − 5
h

= lim
h→0−

6h + 3h2

h
= 6
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and

f ′
+(1) = lim

h→0+

3 + 2(1 + h)3 − 5
h

= lim
h→0+

6h + 6h2 + 2h3

h
= 6.

Therefore f ′(1) exists (and f ′(1) = 6), and hence f ′(x) exists for every real number x.

C03S02.076: The graph of

f(x) =

{
x4 if x < 1,

2− 1
x4

if x � 1

is shown next.

Clearly f is differentiable except possibly at x = 1. But here we have

f ′
−(1) = lim

h→0−

(1 + h)4 − 1
h

= lim
h→0−

4h + 6h2 + 4h3 + h4

h
= 4

and

f ′
+(1) = lim

h→0+

1
h
·
(

2− 1
(1 + h)4

− 1
)

= lim
h→0+

1
h
·
(

1− 1
(1 + h)4

)

= lim
h→0+

4h + 6h2 + 4h3 + h4

h(1 + h)4
= lim
h→0+

4 + 6h + 4h2 + h3

(1 + h)4
=

4
1

= 4.

Therefore f is differentiable at x = 1 as well.

C03S02.077: The graph of

f(x) =




1
2− x

if x < 1,

x if x � 1
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is shown next.

Clearly f is differentiable except possibly at x = 1. But

f ′
−(1) = lim

h→0−

1
h
·
(

1
2− (1 + h)

− 1
)

= lim
h→0+

1
h
·
(

1
1− h

− 1
)

= lim
h→0−

h

h(1− h)
= lim

h→0−

1
1− h

= 1

and

f ′
+(1) = lim

h→0+

1 + h− 1
h

= 1.

Thus f is differentiable at x = 1 as well (and f ′(1) = 1).

C03S02.078: The graph of the function

f(x) =




12
(5− x)2

if x < 3,

x2 − 3x + 3 if x � 3

is next.

Clearly f is differentiable except possibly at x = 3. But

f ′
−(3) = lim

h→0−

1
h
·
(

12
(5− 3− h)2

− 3
)

= lim
h→0−

12− 3(2− h)2

h(2− h)2
= lim

h→0−

12h− 3h2

h(2− h)2
= lim

h→0−

12− 3h
(2− h)2

= 3
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and

f ′
+(3) = lim

h→0+

(3 + h)2 − 3(3 + h) + 3− 3
h

= lim
h→0+

6h + h2 − 3h
h

= 3.

Thus f is differentiable at x = 3 as well.
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Section 3.3

C03S03.001: Given y = (3x+ 4)5, the chain rule yields

dy

dx
= 5 · (3x+ 4)4 ·Dx(3x+ 4) = 5 · (3x+ 4)4 · 3 = 15(3x+ 4)4.

C03S03.002: Given y = (2− 5x)3, the chain rule yields

dy

dx
= 3 · (2− 5x)2 ·Dx(2− 5x) = 3 · (2− 5x)2 · (−5) = −15(2− 5x)2.

C03S03.003: Rewrite the given function in the form y = (3x− 2)−1 in order to apply the chain rule. The
result is

dy

dx
= (−1)(3x− 2)−2 ·Dx(3x− 2) = (−1)(3x− 2)−2 · 3 = −3(3x− 2)−2 = − 3

(3x− 2)2
.

C03S03.004: Rewrite the given function in the form y = (2x+ 1)−3 in order to apply the chain rule. The
result is

dy

dx
= (−3)(2x+ 1)−4 ·Dx(2x+ 1) = (−3)(2x+ 1)−4 · 2 = −6(2x+ 1)−4 = − 6

(2x+ 1)4
.

C03S03.005: Given y = (x2 + 3x+ 4)3, the chain rule yields

dy

dx
= 3(x2 + 3x+ 4)2 ·Dx(x2 + 3x+ 4) = 3(x2 + 3x+ 4)2(2x+ 3).

C03S03.006:
dy

dx
= −4·(7−2x3)−5 ·Dx(7−2x3) = −4·(7−2x3)−5 ·(−6x2) = 24x2(7−2x3)−5 =

24x2

(7− 2x3)5
.

C03S03.007: We use the product rule, and in the process of doing so must use the chain rule twice: Given
y = (2− x)4(3 + x)7,

dy

dx
= (2− x)4 ·Dx(3 + x)7 + (3 + x)7 ·Dx(2− x)4

= (2− x)4 · 7 · (3 + x)6 ·Dx(3 + x) + (3 + x)7 · 4(2− x)3 ·Dx(2− x)

= (2− x)4 · 7 · (3 + x)6 · 1 + (3 + x)7 · 4(2− x)3 · (−1) = 7(2− x)4(3 + x)6 − 4(2− x)3(3 + x)7

= (2− x)3(3 + x)6(14− 7x− 12− 4x) = (2− x)3(3 + x)6(2− 11x).

The last simplifications would be necessary only if you needed to find where y′(x) is positive, where negative,
and where zero.

C03S03.008: Given y = (x + x2)5(1 + x3)2, the product rule—followed by two applications of the chain
rule—yields
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dy

dx
= (x+ x2)5 ·Dx(1 + x3)2 + (1 + x3)2 ·Dx(x+ x2)5

= (x+ x2)5 · 2 · (1 + x3) ·Dx(1 + x3) + (1 + x3)2 · 5 · (x+ x2)4 ·Dx(x+ x2)

= (x+ x2)5 · 2 · (1 + x3) · 3x2 + (1 + x3)2 · 5 · (x+ x2)4 · (1 + 2x)

= · · · = x4(x+ 1)6(x2 − x+ 1)(16x3 − 5x2 + 5x+ 5).

Sometimes you have to factor an expression as much as you can to determine where it is positive, negative,
or zero.

C03S03.009: We will use the quotient rule, which will require use of the chain rule to find the derivative
of the denominator:

dy

dx
=

(3x− 4)3Dx(x+ 2)− (x+ 2)Dx(3x− 4)3

[ (3x− 4)3]2

=
(3x− 4)3 · 1− (x+ 2) · 3 · (3x− 4)2 ·Dx(3x− 4)

(3x− 4)6

=
(3x− 4)3 − 3(x+ 2)(3x− 4)2 · 3

(3x− 4)6
=

(3x− 4)− 9(x+ 2)
(3x− 4)4

= − 6x+ 22
(3x− 4)4

.

C03S03.010: We use the quotient rule, and need to use the chain rule twice along the way:

dy

dx
=

(4 + 5x+ 6x2)2 ·Dx(1− x2)3 − (1− x2)3 ·Dx(4 + 5x+ 6x2)2

(4 + 5x+ 6x2)4

=
(4 + 5x+ 6x2)2 · 3 · (1− x2)2 ·Dx(1− x2)− (1− x2)3 · 2 · (4 + 5x+ 6x2) ·Dx(4 + 5x+ 6x2)

(4 + 5x+ 6x2)4

=
(4 + 5x+ 6x2)2 · 3 · (1− x2)2 · (−2x)− (1− x2)3 · 2 · (4 + 5x+ 6x2) · (5 + 12x)

(4 + 5x+ 6x2)4

=
(4 + 5x+ 6x2) · 3 · (1− x2)2 · (−2x)− (1− x2)3 · 2 · (5 + 12x)

(4 + 5x+ 6x2)3
= − 2(x2 − 1)2(6x3 + 10x2 + 24x+ 5)

(4 + 5x+ 6x2)3
.

C03S03.011: Here is a problem in which use of the chain rule contains another use of the chain rule. Given
y = [1 + (1 + x)3]4,

dy

dx
= 4[1 + (1 + x)3]3 ·Dx[1 + (1 + x)3] = 4[1 + (1 + x)3]3 · [0 +Dx(1 + x)3]

= 4[1 + (1 + x)3]3 · 3 · (1 + x)2 ·Dx(1 + x) = 12[1 + (1 + x)3]3(1 + x)2.

C03S03.012: Again a “nested chain rule” problem:
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dy

dx
= −5 ·

[
x+ (x+ x2)−3

]−6 ·Dx

[
x+ (x+ x2)−3

]

= −5 ·
[
x+ (x+ x2)−3

]−6 [
1 + (−3) · (x+ x2)−4 ·Dx(x+ x2)

]

= −5 ·
[
x+ (x+ x2)−3

]−6 [
1 + (−3) · (x+ x2)−4 · (1 + 2x)

]
.

C03S03.013: Given: y = (u+ 1)3 and u =
1
x2

. The chain rule yields

dy

dx
=
dy

du
· du
dx

= 3(u+ 1)2 · −2
x3

= − 6
x3

(
1
x2

+ 1
)2

= − 6(x2 + 1)2

x7
.

C03S03.014: Write y = 1
2u

−1 − 1
3u

−2. Then, with u = 2x+ 1, the chain rule yields

dy

dx
=
dy

du
· du
dx

=
(
−1

2
u−2 +

2
3
u−3

)
· 2 = −2

(
1

2u2
− 2

3u3

)

= −2
(

1
2(2x+ 1)2

− 2
3(2x+ 1)3

)
= · · · = 1− 6x

3(1 + 2x)3
.

C03S03.015: Given y = (1 + u2)3 and u = (4x− 1)2, the chain rule yields

dy

dx
=
dy

du
· du
dx

= 6u(1 + u2)2 · 8 · (4x− 1)

= 48 · (4x− 1)2(1 + (4x− 1)4)2(4x− 1) = 48(4x− 1)3(1 + (4x− 1)4)2.

Without the chain rule, our only way to differentiate y(x) would be first to expand it:

y(x) = 8− 192x+ 2688x2 − 25600x3 + 181248x4 − 983040x5 + 4128768x6

− 13369344x7 + 32636928x8 − 57671680x9 + 69206016x10 − 50331648x11 + 16777216x12.

Then we could differentiate y(x) using the linear combination and power rules:

y′(x) = −192 + 5376x− 76800x2 + 724992x3 − 4915200x4 + 24772608x5 − 93585408x6

+ 261095424x7 − 519045120x8 + 692060160x9 − 553648128x10 + 201326592x11.

Fortunately, the chain rule is available—and even if not, we still have Maple, Derive, Mathematica, and
MATLAB.

C03S03.016: If y = u5 and u =
1

3x− 2
, then the chain rule yields

dy

dx
=
dy

du
· du
dx

= 5u4 ·
(
−Dx(3x− 2)

(3x− 2)2

)
= − 5

(3x− 2)4
· 3
(3x− 2)2

= − 15
(3x− 2)6

.

C03S03.017: If y = u(1− u)3 and u =
1
x4

, then the chain rule yields

dy

dx
=
dy

du
· du
dx

=
[
(1− u)3 − 3u(1− u)2

]
·
(
−4x−5

)
=

[
(1− x−4)3 − 3x−4(1− x−4)2

]
·
(
−4x−5

)
,
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which a very patient person can simplify to

dy

dx
=

16− 36x4 + 24x8 − 4x12

x17
.

C03S03.018: If y =
u

u+ 1
and u =

x

x+ 1
, then

dy

dx
=
dy

du
· du
dx

=
(u+ 1) · 1− u · 1

(u+ 1)2
· (x+ 1) · 1− x · 1

(x+ 1)2
=

1
(u+ 1)2

· 1
(x+ 1)2

=
1(

x

x+ 1
+ 1

)2 ·
1

(x+ 1)2
=

1(
2x+ 1
x+ 1

)2 ·
1

(x+ 1)2
=

1
(2x+ 1)2

.

C03S03.019: If y = u2(u− u4)3 and u = x−2, then

dy

dx
=
dy

du
· du
dx

=
[
2u(u− u4)3 + 3u2(u− u4)2(1− 4u3)

]
· (−2x−3)

=
[
2x−2(x−2 − x−8)3 + 3x−4(x−2 − x−8)2(1− 4x−6)

]
· (−2x−3) = · · · = 28− 66x6 + 48x12 − 10x18

x29
.

C03S03.020: If y =
u

(2u+ 1)4
and u = x− 2x−1, then

dy

dx
=
dy

du
· du
dx

=
(2u+ 1)4 − 8u(2u+ 1)3

(2u+ 1)8
· (1 + 2x−2) =

2u+ 1− 8u
(2u+ 1)5

· (1 + 2x−2)

=
1− 6u

(2u+ 1)5
· x

2 + 2
x2

=
1− 6x+

12
x(

2x− 4
x

+ 1
)5 ·

x2 + 2
x2

=
x− 6x2 + 12

x

(
2x2 − 4 + x

x

)5 ·
x2 + 2
x2

=
x4(12 + x− 6x2)
(2x2 + x− 4)5

· x
2 + 2
x2

=
x2(12 + x− 6x2)(x2 + 2)

(2x2 + x− 4)5

=
x2(12x2 + x3 − 6x4 + 24 + 2x− 12x2)

(2x2 + x− 4)5
=
x2(24 + 2x+ x3 − 6x4)

(2x2 + x− 4)5
.

C03S03.021: Let u(x) = 2x− x2 and n = 3. Then f(x) = un, so that

f ′(x) = nun−1 · du
dx

= 3u2 · (2− 2x) = 3(2x− x2)2(2− 2x).

C03S03.022: Let u(x) = 2 + 5x3 and n = −1. Then f(x) = un, so that

f ′(x) = nun−1 · du
dx

= (−1)u−2 · 15x2 = − 15x2

(2 + 5x3)2
.

C03S03.023: Let u(x) = 1− x2 and n = −4. Then f(x) = un, so that
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f ′(x) = nun−1 · du
dx

= (−4)u−5 · (−2x) =
8x

(1− x2)5
.

C03S03.024: Let u(x) = x2 − 4x+ 1 and n = 3. Then f(x) = un, so

f ′(x) = nun−1 · du
dx

= 3u2 · (2x− 4) = 3(x2 − 4x+ 1)2(2x− 4).

C03S03.025: Let u(x) =
x+ 1
x− 1

and n = 7. Then f(x) = un, and therefore

f ′(x) = nun−1 · du
dx

= 7u6 · (x− 1)− (x+ 1)
(x− 1)2

= 7
(
x+ 1
x− 1

)6

· −2
(x− 1)2

= −14 · (x+ 1)6

(x− 1)8
.

C03S03.026: Let n = 4 and u(x) =
x2 + x+ 1
x+ 1

. Thus

f ′(x) = nun−1 · du
dx

= 4
(
x2 + x+ 1
x+ 1

)3

· (x+ 1)(2x+ 1)− (x2 + x+ 1)
(x+ 1)2

=
4(x2 + x+ 1)3

(x+ 1)3
· 2x

2 + 3x+ 1− x2 − x− 1
(x+ 1)2

=
4(x2 + x+ 1)3

(x+ 1)3
· x

2 + 2x
(x+ 1)2

=
4(x2 + x+ 1)3(x2 + 2x)

(x+ 1)5
.

C03S03.027: g′(y) = 1 + 5(2y − 3)4 · 2 = 1 + 10(2y − 3)4.

C03S03.028: h′(z) = 2z(z2 + 4)3 + 3z2(z2 + 4)2 · 2z = (2z3 + 8z + 6z3)(z2 + 4)2 = 8z(z2 + 1)(z2 + 4)2.

C03S03.029: If F (s) = (s− s−2)3, then

F ′(s) = 3(s− s−2)2(1 + 2s−3) = 3
(
s− 1

s2

)2

·
(

1 +
2
s3

)
= 3

(
s3 − 1
s2

)2

· s
3 + 2
s3

= 3 · (s
3 − 1)2(s3 + 2)

s7
= 3 · (s

6 − 2s3 + 1)(s3 + 2)
s7

=
3(s9 − 3s3 + 2)

s7
.

C03S03.030: If G(t) =
(
t2 + 1 +

1
t

)2

, then

G′(t) = 2
(

2t− 1
t2

)
·
(
t2 + 1 +

1
t

)
= 4t3 + 4t+ 2− 2

t2
− 2
t3

=
4t6 + 4t4 + 2t3 − 2t− 2

t3
.

C03S03.031: If f(u) = (1 + u)3(1 + u2)4, then

f ′(u) = 3(1 + u)2(1 + u2)4 + 8u(1 + u)3(1 + u2)3 = (1 + u)2(1 + u2)3(11u2 + 8u+ 3).

C03S03.032: If g(w) = (w2 − 3w + 4)(w + 4)5, then

g′(w) = 5(w + 4)4(w2 − 3w + 4) + (w + 4)5(2w − 3) = (w + 4)4(7w2 − 10w + 8).
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C03S03.033: If h(v) =

[
v −

(
1− 1

v

)−1
]−2

, then

h′(v) = (−2)

[
v −

(
1− 1

v

)−1
]−3 [

1 +
(

1− 1
v

)−2 (
1
v2

) ]
=

2(v − 1)(v2 − 2v + 2)
v3(2− v)3 .

C03S03.034: If p(t) =
(

1
t

+
1
t2

+
1
t3

)−4

, then

p′(t) = 4
(

1
t

+
1
t2

+
1
t3

)−5( 1
t2

+
2
t3

+
3
t4

)
= 4

(
t2 + t+ 1

t3

)−5(
t2 + 2t+ 3

t4

)

= 4
(

t3

t2 + t+ 1

)5(
t2 + 2t+ 3

t4

)
=

4t15(t2 + 2t+ 3)
(t2 + t+ 1)5t4

=
4t11(t2 + 2t+ 3)

(t2 + t+ 1)5
.

C03S03.035: If F (z) = (5z5 − 4z + 3)−10, then

F ′(z) = −10(5z5 − 4z + 3)−11(25z4 − 4) =
40− 250z4

(5z5 − 4z + 3)11
.

C03S03.036: Given G(x) = (1 + [x+ (x2 + x3)4]5)6,

G′(x) = 6(1 + [x+ (x2 + x3)4]5)5 · 5[x+ (x2 + x3)4]4 · [1 + 4(x2 + x3)3(2x+ 3x2)].

When G′(x) is expanded completely (written in polynomial form), it has degree 359 and the term with
largest coefficient is 74313942135996360069651059069038417440x287.

C03S03.037: Chain rule:
dy

dx
= 4(x3)3 · 3x2. Power rule:

dy

dx
= 12x11.

C03S03.038: Chain rule:
dy

dx
= (−1)

(
1
x

)−2(
− 1
x2

)
. Power rule:

dy

dx
= 1.

C03S03.039: Chain rule:
dy

dx
= 2(x2 − 1) · 2x. Without chain rule:

dy

dx
= 4x3 − 4x.

C03S03.040: Chain rule:
dy

dx
= −3(1− x)2. Without chain rule:

dy

dx
= −3 + 6x− 3x2.

C03S03.041: Chain rule:
dy

dx
= 4(x+ 1)3. Without chain rule:

dy

dx
= 4x3 + 12x2 + 12x+ 4.

C03S03.042: Chain rule:
dy

dx
= −2(x+ 1)−3. Reciprocal rule:

dy

dx
= − 2x+ 2

(x2 + 2x+ 1)2
.

C03S03.043: Chain rule:
dy

dx
= −2x(x2 + 1)−2. Reciprocal rule:

dy

dx
= − 2x

(x2 + 1)2
.

C03S03.044: Chain rule:
dy

dx
= 2(x2 + 1) · 2x. Product rule:

dy

dx
= 2x(x2 + 1) + 2x(x2 + 1).
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C03S03.045: If f(x) = sin(x3), then f ′(x) =
[
cos(x3)

]
·Dx(x3) = 3x2 cos(x3) = 3x2 cosx3.

C03S03.046: If g(t) = (sin t)3, then g′(t) = 3(sin t)2 ·Dt sin t = (3 sin2 t)(cos t) = 3 sin2 t cos t.

C03S03.047: If g(z) = (sin 2z)3, then

g′(z) = 3(sin 2z)2 ·Dz(sin 2z) = 3(sin 2z)2(cos 2z) ·Dz(2z) = 6 sin2 2z cos 2z.

C03S03.048: If k(u) = sin(1+ sinu), then k′(u) = [ cos(1 + sinu) ] ·Du(1+ sinu) = [ cos(1 + sinu) ] · cosu.

C03S03.049: The radius of the circular ripple is r(t) = 2t and its area is a(t) = π(2t)2; thus a′(t) = 8πt.
When r = 10, t = 5, and at that time the rate of change of area with respect to time is a′(5) = 40π (in.2/s).

C03S03.050: If the circle has area A and radius r, then A = πr2, so that r =
√
A/π. If t denotes time in

seconds, then the rate of change of the radius of the circle is

dr

dt
=

dr

dA
· dA
dt

=
1

2
√
πA
· dA
dt
. (1)

We are given the values A = 75π and dA/dt = −2π; when we substitute these values into the last expression

in Eq. (1), we find that
dr

dt
= − 1

15

√
3. Hence the radius of the circle is decreasing at the rate of − 1

15

√
3

(cm/s) at the time in question.

C03S03.051: Let A denote the area of the square and x the length of each edge. Then A = x2, so
dA/dx = 2x. If t denotes time (in seconds), then

dA

dt
=
dA

dx
· dx
dt

= 2x
dx

dt
.

All that remains is to substitute the given data x = 10 and dx/dt = 2 to find that the area of the square is
increasing at the rate of 40 in.2/s at the time in question.

C03S03.052: Let x denote the length of each side of the triangle. Then its altitude is 1
2x
√

3, and so its
area is A = 1

4x
2
√

3. Therefore the rate of change of its area with respect to time t (in seconds) is

dA

dt
=

(
1
2
x
√

3
)
· dx
dt
.

We are given x = 10 and dx/dt = 2, so at that point the area is increasing at 10
√

3 (in.2/s).

C03S03.053: The volume of the block is V = x3 where x is the length of each edge. So
dV

dt
= 3x2 dx

dt
. We

are given dx/dt = −2, so when x = 10 the volume of the block is decreasing at 600 in.3/h.

C03S03.054: By the chain rule, f ′(y) = h′(g(y)) ·g′(y). Then substitution of the data given in the problem
yields f ′(−1) = h′(g(−1)) · g′(−1) = h′(2) · g′(−1) = −1 · 7 = −7.

C03S03.055: G′(t) = f ′(h(t)) · h′(t). Now h(1) = 4, h′(1) = −6, and f ′(4) = 3, so G′(1) = 3 · (−6) = −18.

C03S03.056: The derivative of f(f(f(x))) is the product of the three expressions f ′(f(f(x))), f ′(f(x)),
and f ′(x). When x = 0, f(x) = 0 and f ′(x) = 1. Thus when x = 0, each of those three expressions has
value 1, so the answer is 1.
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C03S03.057: The volume of the balloon is given by V = 4
3πr

3, so

dV

dt
=
dV

dr
· dr
dt

= 4πr2
dr

dt
.

Answer: When r = 10, dV/dt = 4π · 102 · 1 = 400π ≈ 1256.64 (cm3/s).

C03S03.058: Let V denote the volume of the balloon and r its radius at time t (in seconds). We are given
dV/dt = 200π. Now

dV

dt
=
dV

dr
· dr
dt

= 4πr2
dr

dt
.

When r = 5, we have 200π = 4π · 25 · (dr/dt), so dr/dt = 2. Answer: When r = 5 (cm), the radius of the
balloon is increasing at 2 cm/s.

C03S03.059: Given:
dr

dt
= −3. Now

dV

dt
= −300π = 4πr2 · (dr

dt
). So 4πr2 = 100π, and thus r = 5 (cm) at

the time in question.

C03S03.060: Let x denote the radius of the hailstone and let V denote its volume. Then

V =
4
3
πx3, and so

dV

dt
= 4πx2 dx

dt
.

When x = 2,
dV

dt
= −0.1, and therefore − 1

10
= 4π · 22 · dx

dt
. So

dx

dt
= − 1

160π
. Answer: At the time in

question, the radius of the hailstone is decreasing at
1

160π
cm/s —that is, at about 0.002 cm/s.

C03S03.061: Let V denote the volume of the snowball and A its surface area at time t (in hours). Then

dV

dt
= kA and A = cV 2/3

(the latter because A is proportional to r2, whereas V is proportional to r3). Therefore

dV

dt
= αV 2/3 and thus

dt

dV
= βV −2/3

(α and β are constants). From the last equation we may conclude that t = γV 1/3 + δ for some constants γ
and δ, so that V = V (t) = (Pt+Q)3 for some constants P and Q. From the information 500 = V (0) = Q3

and 250 = V (1) = (P + Q)3, we find that Q = 5 3
√

4 and that P = −5 · ( 3
√

4 − 3
√

2). Now V (t) = 0 when
PT +Q = 0; it turns out that

T =
3
√

2
3
√

2− 1
≈ 4.8473.

Therefore the snowball finishes melting at about 2:50:50 P.M. on the same day.

C03S03.062: Let V denote the volume of the block, x the length of each of its edges. Then V = x3. In 8
hours x decreases from 20 to 8, and dx/dt is steady, so t hours after 8:00 a.m. have

x = 20− 3
2
t.

Also
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dV

dt
=
dV

dx
· dx
dt

= 3x2 · (−3
2
) = −9

2
·
(

20− 3
2
t

)2

.

At 12 noon we have t = 4, so at noon
dV

dt
= − 9

2 (20− 6)2 = −882. Answer: The volume is decreasing at 882

in.3/h then.

C03S03.063: By the chain rule,

dv

dx
=

dv

dw
· dw
dx

, and therefore
du

dx
=
du

dv
· dv
dx

=
du

dv
· dv
dw
· dw
dx

.

C03S03.064: Given: n is a fixed integer, f is differentiable, f(1) = 1, F (x) = f(xn), and G(x) = [ f(x) ]n.
Then

F (1) = f(1n) = f(1) = 1 = 1n = [ f(1) ]n = G(1).

Next,

F ′(x) = Dxf(xn) = f ′(xn) · nxn−1 and G′(x) = Dx [ f(x) ]n = n [ f(x) ]n−1 · f ′(x).

Therefore

F ′(1) = f ′(1n) · n · 1 = nf ′(1) = n · 1n−1 · f ′(1) = n · [ f(1) ]n−1 · f ′(1) = G′(1).

C03S03.065: If h(x) =
√
x+ 4 , then

h′(x) =
1

2
√
x+ 4

·Dx (x+ 4) =
1

2
√
x+ 4

· 1 =
1

2
√
x+ 4

.

C03S03.066: If h(x) = x3/2 = x ·
√
x , then

h′(x) = 1 ·
√
x + x ·Dx

(√
x

)
=
√
x +

x

2
√
x

=
√
x +

1
2
√
x =

3
2
√
x .

C03S03.067: If h(x) = (x2 + 4)3/2 = (x2 + 4)
√
x2 + 4 , then

h′(x) = 2x
√
x2 + 4 + (x2 + 4) · 1

2
√
x2 + 4

· 2x = 2x
√
x2 + 4 + x

√
x2 + 4 = 3x

√
x2 + 4 .

C03S03.068: If h(x) = |x| =
√
x2 , then

h′(x) =
1

2
√
x2
·Dx

(
x2

)
=

2x
2
√
x2

=
x

|x| .
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Section 3.4

C03S04.001: Write f(x) = 4x5/2 + 2x−1/2 to find

f ′(x) = 10x3/2 − x−3/2 = 10x3/2 − 1
x3/2

=
10x3 − 1
x3/2

.

C03S04.002: Write g(t) = 9t4/3 − 3t−1/3 to find

g′(t) = 12t1/3 + t−4/3 = 12t1/3 +
1
t4/3

=
12t5/3 + 1

t4/3
.

C03S04.003: Write f(x) = (2x+ 1)1/2 to find

f ′(x) =
1
2
(2x+ 1)−1/2 · 2 =

1√
2x+ 1

.

C03S04.004: Write h(z) = (7− 6z)−1/3 to find that

h′(z) = − 1
3
(7− 6z)−4/3 · (−6) =

2
(7− 6z)4/3

.

C03S04.005: Write f(x) = 6x−1/2 − x3/2 to find that f ′(x) = −3x−3/2 − 3
2
x1/2 = − 3(x2 + 2)

2x3/2
.

C03S04.006: Write φ(u) = 7u−2/3 + 2u1/3 − 3u10/3 to find that

φ′(u) = − 14
3
u−5/3 +

2
3
u−2/3 − 10u7/3 = − 2(15u4 − u+ 7)

3u5/3
.

C03S04.007: Dx(2x+ 3)3/2 =
3
2
(2x+ 3)1/2 · 2 = 3

√
2x+ 3.

C03S04.008: Dx(3x+ 4)4/3 =
4
3
(3x+ 4)1/3 · 3 = 4(3x+ 4)1/3 = 4 3

√
3x+ 4.

C03S04.009: Dx(3− 2x2)−3/2 = − 3
2
(3− 2x2)−5/2 · (−4x) =

6x
(3− 2x2)5/2

.

C03S04.010: Dy(4− 3y3)−2/3 = − 2
3
(4− 3y3)−5/3 · (−9y2) =

6y2

(4− 3y3)5/3
.

C03S04.011: Dx(x3 + 1)1/2 =
1
2
(x3 + 1)−1/2 · (3x2) =

3x2

2
√
x3 + 1

.

C03S04.012: Dz(z4 + 3)−2 = −2(z4 + 3)−3 · 4z3 = − 8z3

(z4 + 3)3
.

C03S04.013: Dx(2x2 + 1)1/2 =
1
2
(2x2 + 1)−1/2 · 4x =

2x√
2x2 + 1

.

C03S04.014: Dt

(
t(1 + t4)−1/2

)
= (1 + t4)−1/2 − 1

2
t(1 + t4)−3/2 · 4t3 =

1
(1 + t4)1/2

− 2t4

(1 + t4)3/2

1



=
1− t4

(1 + t4)3/2
.

C03S04.015: Dt

(
t3/2
√

2
)

=
3
2
t1/2
√

2 =
3
√
t√

2
.

C03S04.016: Dt

(
1√
3
· t−5/2

)
= − 5

2
√

3
· t−7/2 = − 5

2t7/2
√

3
.

C03S04.017: Dx(2x2 − x+ 7)3/2 =
3
2
(2x2 − x+ 7)1/2 · (4x− 1) =

3
2
(4x− 1)

√
2x2 − x+ 7.

C03S04.018: Dz(3z2 − 4)97 = 97(3z2 − 4)96 · 6z = 582z(3z2 − 4)96.

C03S04.019: Dx(x− 2x3)−4/3 = − 4
3
(x− 2x3)−7/3 · (1− 6x2) =

4(6x2 − 1)
3(x− 2x3)7/3

.

C03S04.020: Dt

[
t2 + (1 + t)4

]5
= 5

[
t2 + (1 + t)4

]4 ·Dt

[
t2 + (1 + t)4

]
= 5

[
t2 + (1 + t)4

]4 · [ 2t+ 4(1 + t)3 · 1
]

= 5
[
t2 + (1 + t)4

]4 · [ 2t+ 4(1 + t)3
]
.

C03S04.021: If f(x) = x(1− x2)1/2, then (by the product rule and the chain rule, among others)

f ′(x) = 1 · (1− x2)1/2 + x · 1
2
(1− x2)−1/2 ·Dx(1− x2)

= (1− x2)1/2 + x · 1
2
(1− x2)−1/2 · (−2x) =

√
1− x2 − x2

√
1− x2

=
1− 2x2

√
1− x2

.

C03S04.022: Write g(x) =
(2x+ 1)1/2

(x− 1)1/2
to find

g′(x) =
(x− 1)1/2 · 1

2 (2x+ 1)−1/2 · 2− 1
2 (x− 1)−1/2 · (2x+ 1)1/2[

(x− 1)1/2
]2

=
2(x− 1)1/2(2x+ 1)−1/2 − (x− 1)−1/2(2x+ 1)1/2

2(x− 1)

=
2(x− 1)− (2x+ 1)

2(x− 1)(x− 1)1/2(2x+ 1)1/2
= − 3

2(x− 1)3/2
√

2x+ 1
.

C03S04.023: If f(t) =

√
t2 + 1
t2 − 1

=
(
t2 + 1
t2 − 1

)1/2

, then

f ′(t) =
1
2

(
t2 + 1
t2 − 1

)−1/2

· (t
2 − 1)(2t)− (t2 + 1)(2t)

(t2 − 1)2
=

1
2

(
t2 − 1
t2 + 1

)1/2

· −4t
(t2 − 1)2

= − 2t
(t2 − 1)3/2

√
t2 + 1

.

C03S04.024: If h(y) =
(
y + 1
y − 1

)17

, then

h′(y) = 17
(
y + 1
y − 1

)16

· (y − 1) · 1− (y + 1) · 1
(y − 1)2

= 17
(
y + 1
y − 1

)16

· −2
(y − 1)2

= − 34(y + 1)16

(y − 1)18
.
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C03S04.025: Dx

(
x− 1

x

)3

= 3
(
x− 1

x

)2(
1 +

1
x2

)
= 3

(
x2 − 1
x

)2

· x
2 + 1
x2

=
3(x2 − 1)2(x2 + 1)

x4
.

C03S04.026: Write g(z) = z2(1 + z2)−1/2, then apply the product rule and the chain rule to obtain

g′(z) = 2z(1 + z2)−1/2 + z2 ·
(
− 1

2

)
(1 + z2)−3/2 · 2z =

2z
(1 + z2)1/2

− z3

(1 + z2)3/2
=

z3 + 2z
(1 + z2)3/2

.

C03S04.027: Write f(v) =
(v + 1)1/2

v
. Then

f ′(v) =
v · 1

2 (v + 1)−1/2 − 1 · (v + 1)1/2

v2
=
v · (v + 1)−1/2 − 2(v + 1)1/2

2v2
=

v − 2(v + 1)
2v2(v + 1)1/2

= − v + 2
2v2(v + 1)1/2

.

C03S04.028: h′(x) =
5
3

(
x

1 + x2

)2/3

· (1 + x2) · 1− x · 2x
(1 + x2)2

=
5
3

(
x

1 + x2

)2/3

· 1− x2

(1 + x2)2
.

C03S04.029: Dx(1− x2)1/3 =
1
3
(1− x2)−2/3 · (−2x) = − 2x

3(1− x2)2/3
.

C03S04.030: Dx(x+ x1/2)1/2 =
1
2
(x+ x1/2)−1/2

(
1 +

1
2
x−1/2

)
=

1 + 2
√
x

4
√
x

√
x+
√
x

.

C03S04.031: If f(x) = x(3− 4x)1/2, then (with the aid of the product rule and the chain rule)

f ′(x) = 1 · (3− 4x)1/2 + x · 1
2
(3− 4x)−1/2 · (−4) = (3− 4x)1/2 − 2x

(3− 4x)1/2
=

3(1− 2x)√
3− 4x

.

C03S04.032: Given g(t) =
t− (1 + t2)1/2

t2
,

g′(t) =
t2

(
1− 1

2 (1 + t2)−1/2 · 2t
)
− 2t

(
t− (1 + t2)1/2

)
(t2)2

=
t
(
1− t(1 + t2)−1/2

)
− 2

(
t− (1 + t2)1/2

)
t3

=
t− t2(1 + t2)−1/2 − 2t+ 2(1 + t2)1/2

t3
=
−t(1 + t2)1/2 − t2 + 2(1 + t2)

t3(1 + t2)1/2
=
t2 + 2− t(1 + t2)1/2

t3(1 + t2)1/2
.

C03S04.033: If f(x) = (1− x2)(2x+ 4)1/3, then the product rule (among others) yields

f ′(x) = −2x(2x+ 4)1/3 +
2
3
(1− x2) · (2x+ 4)−2/3

=
−6x(2x+ 4) + 2(1− x2)

3(2x+ 4)2/3
=
−12x2 − 24x+ 2− 2x2

3(2x+ 4)2/3
=

2− 24x− 14x2

3(2x+ 4)2/3
.

C03S04.034: If f(x) = (1− x)1/2(2− x)1/3, then

f ′(x) = 1
2 (1− x)−1/2(−1) · (2− x)1/3 + 1

3 (2− x)−2/3(−1) · (1− x)1/2 = −
(

(2− x)1/3
2(1− x)1/2 +

(1− x)1/2
3(2− x)2/3

)

= − 3(2− x) + 2(1− x)
6(2− x)2/3(1− x)1/2 =

5x− 8
6(2− x)2/3(1− x)1/2 .
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C03S04.035: If g(t) =
(

1 +
1
t

)2

(3t2 + 1)1/2, then

g′(t) =
(

1 +
1
t

)2

· 1
2
(3t2 + 1)−1/2(6t) + 2·

(
1 +

1
t

)(
− 1
t2

)
(3t2 + 1)1/2

= 3t · (t+ 1)2

t2(3t2 + 1)1/2
− 2
t2
· t+ 1

t
(3t2 + 1)1/2 =

3t2(t+ 1)2

t3(3t2 + 1)1/2
− 2(t+ 1)(3t2 + 1)

t3(3t2 + 1)1/2
=

3t4 − 3t2 − 2t− 2
t3
√

3t2 + 1
.

C03S04.036: If f(x) = x(1 + 2x+ 3x2)10, then

f ′(x) = (1 + 2x+ 3x2)10 + 10x(1 + 2x+ 3x2)9(2 + 6x) = (3x2 + 2x+ 1)9(63x2 + 22x+ 1).

C03S04.037: If f(x) =
2x− 1

(3x+ 4)5
, then

f ′(x) =
2(3x+ 4)5 − (2x− 1) · 5(3x+ 4)4 · 3

(3x+ 4)10
=

2(3x+ 4)− 15(2x− 1)
(3x+ 4)6

=
23− 24x
(3x+ 4)6

.

C03S04.038: If h(z) = (z − 1)4(z + 1)6, then

h′(z) = 4(z−1)3(z+1)6 +6(z+1)5(z−1)4 = (z−1)3(z+1)5(4(z+1)+6(z−1)) = (z−1)3(z+1)5(10z−2).

C03S04.039: If f(x) =
(2x+ 1)1/2

(3x+ 4)1/3
, then

f ′(x) =
(3x+ 4)1/3(2x+ 1)−1/2 − (2x+ 1)1/2(3x+ 4)−2/3

(3x+ 4)2/3

=
(3x+ 4)− (2x+ 1)

(3x+ 4)4/3(2x+ 1)1/2
=

x+ 3
(3x+ 4)4/3(2x+ 1)1/2

.

C03S04.040: If f(x) = (1− 3x4)5(4− x)1/3, then

f ′(x) = 5(1− 3x4)4(−12x3)(4− x)1/3 + (1− 3x4)5 · 1
3
(4− x)−2/3(−1)

= −60x3(1− 3x4)4(4− x)1/3 − (1− 3x4)5

3(4− x)2/3 =
−180x3(1− 3x4)4(4− x)

3(4− x)2/3 − (1− 3x4)5

3(4− x)2/3

=

[
(180x4 − 720x3)− (1− 3x4)

]
(1− 3x4)4

3(4− x)2/3 =
(183x4 − 720x3 − 1)(1− 3x4)4

3(4− x)2/3 .

C03S04.041: If h(y) =
(1 + y)1/2 + (1− y)1/2

y5/3
, then
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h′(y) =
y5/3

[
1
2 (1 + y)−1/2 − 1

2 (1− y)−1/2
]
− 5

3y
2/3

[
(1 + y)1/2 + (1− y)1/2

]
y10/3

=
y

[
1
2 (1 + y)−1/2 − 1

2 (1− y)−1/2
]
− 5

3

[
(1 + y)1/2 + (1− y)1/2

]
y8/3

=
y

[
3(1 + y)−1/2 − 3(1− y)−1/2

]
− 10

[
(1 + y)1/2 + (1− y)1/2

]
6y8/3

=
y

[
3(1− y)1/2 − 3(1 + y)1/2

]
− 10

[
(1 + y)(1− y)1/2 + (1− y)(1 + y)1/2

]
6y8/3(1− y)1/2(1 + y)1/2

=
(7y − 10)

√
1 + y − (7y + 10)

√
1− y

6y8/3
√

1− y
√

1 + y
.

C03S04.042: If f(x) = (1− x1/3)1/2, then

f ′(x) =
1
2
(1− x1/3)−1/2

(
−1

3
x−2/3

)
= − 1

6x2/3
√

1− x1/3
.

C03S04.043: If g(t) =
[
t+ (t+ t1/2)1/2

]1/2
, then

g′(t) =
1
2

[
t+ (t+ t1/2)1/2

]−1/2

·
[
1 +

1
2
(t+ t1/2)−1/2

(
1 +

1
2
t−1/2

)]
.

It is possible to write the derivative without negative exponents. The symbolic algebra program Mathematica

yields

g′(t) = −
(t+ (t+ t1/2)1/2)1/2

[
1− 4t3/2 − 4t2 + 3t1/2

(
1 + (t+ t1/2)1/2

)
+ 2t

(
1 + (t+ t1/2)1/2

) ]
8t(1 + t1/2)(t3/2 − t1/2 − 1)

.

But the first answer that Mathematica gives is

g′(t) =
1 +

1 +
1

2
√
t

2
√
t+
√
t

2
√
t+

√
t+
√
t

.

C03S04.044: If f(x) = x3

√
1− 1

x2 + 1
, then

f ′(x) = 3x2

√
1− 1

x2 + 1
+

1
2
x3

(
1− 1

x2 + 1

)−1/2

· 2x
(x2 + 1)2

.

The symbolic algebra program Mathematica simplifies this to

f ′(x) = (3x2 + 4)
(

x2

x2 + 1

)3/2

.

C03S04.045: Because
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y′(x) =
dy

dx
=

2
3x1/3

is never zero, there are no horizontal tangents. Because y(x) is continuous at x = 0 and |y′(x)| → +∞ as
x→ 0, there is a vertical tangent at (0, 0).

C03S04.046: If f(x) = x
√

4− x2, then

f ′(x) =
√

4− x2 − x2

√
4− x2

=
2(2− x2)√

4− x2
.

Hence there are horizontal tangents at
(
−
√

2, −2
)

and at
(√

2, 2
)
. Because f is continuous at ±2 and

lim
x→−2+

|f(x)| = +∞ = lim
x→2−

|f(x)|,

there are vertical tangents at (−2, 0) and (2, 0).

C03S04.047: If g(x) = x1/2 − x3/2, then

g′(x) =
1
2
x−1/2 − 3

2
x1/2 =

1
2
√
x
− 3
√
x

2
=

1− 3x
2
√
x
.

Thus there is a horizontal tangent at
(

1
3 ,

2
9

√
3

)
. Also, because g is continuous at x = 0 and

lim
x→0+

|g′(x)| = lim
x→0+

1− 3x
2
√
x

= +∞,

the graph of g has a vertical tangent at (0, 0).

C03S04.048: If h(x) = (9− x2)−1/2, then

h′(x) = − 1
2
(9− x2)−3/2 · (−2x) =

x

(9− x2)3/2
.

So the graph of h has a horizontal tangent at
(
0, 1

3

)
. There are no vertical tangents because, even though

|h′(x)| → +∞ as x→ 3− and as x→ −3+, h is not continuous at 3 or at −3, and there are no other values
of x at which |h′(x)| → +∞.

C03S04.049: If y(x) = x(1− x2)−1/2, then

y′(x) =
dy

dx
= (1− x2)−1/2 − 1

2
x(1− x2)−3/2 · (−2x) =

1
(1− x2)1/2

+
x2

(1− x2)3/2
=

1
(1− x2)3/2

.

Thus the graph of y(x) has no horizontal tangents because y′(x) is never zero. The only candidates for
vertical tangents are at x = ±1, but there are none because y(x) is not continuous at either of those two
values of x.

C03S04.050: If f(x) =
√

(1− x2)(4− x2) = (x4 − 5x2 + 4)1/2, then

f ′(x) =
1
2
(x4 − 5x2 + 4)−1/2 · (4x3 − 10x) =

x(2x2 − 5)√
(1− x2)(4− x2)

.

There are no horizontal tangents where 2x2 = 5 because the two corresponding values of x are not in the
domain (−∞, −2] ∪ [−1, 1] ∪ [2, +∞) of f . There is a horizontal tangent at (0, 2). There are vertical
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tangents at (−2, 0), (−1, 0), (1, 0), and (2, 0) because the appropriate one-sided limits of |f ′(x)| are all
+∞.

C03S04.051: Let f(x) = 2
√
x. Then f ′(x) = x−1/2, so an equation of the required tangent line is

y − f(4) = f ′(4)(x− 4); that is, y = 1
2 (x+ 4). The graph of f and this tangent line are shown next.

C03S04.052: If f(x) = 3x1/3 then f ′(x) = x−2/3, so an equation of the required tangent line is y− f(8) =
f ′(8)(x− 8); that is, y = 1

4 (x+ 16). A graph of f and this tangent line are shown next.

C03S04.053: If f(x) = 3x2/3, then f ′(x) = 2x−1/3. Therefore an equation of the required tangent line is
y − f(−1) = f ′(−1)(x+ 1); that is, y = −2x+ 1. A graph of f and this tangent line are shown next.
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C03S04.054: If f(x) = 2(1− x)1/2, then f ′(x) = −(1− x)−1/2, and therefore an equation of the required
tangent line is y − f

(
3
4

)
= f ′

(
3
4

)(
x− 3

4

)
; that is, y = −2x + 5

2 . The graph of f and this tangent line are
shown next.

C03S04.055: If f(x) = x(4− x)1/2, then

f ′(x) = (4− x)1/2 − 1
2
x(4− x)−1/2 = (4− x)1/2 − x

2(4− x)1/2 =
8− 3x

2
√

4− x
.

So an equation of the required tangent line is y− f(0) = f ′(0)(x− 0); that is, y = 2x. A graph of f and this
tangent line are shown next.

C03S04.056: If f(x) = x1/2 − x3/2, then (as in the solution of Problem 47)

f ′(x) =
1− 3x
2
√
x
.

Therefore an equation of the required tangent line is y−f(4) = f ′(4)(x−4); that is, y = − 11
4 x+5. A graph

8



1 2 3 4 5 6 7

-15

-10

-5

5

of f and this tangent line are shown next.

C03S04.057: If x < 0 then f ′(x) < 0; as x→ 0−, f ′(x) appears to approach −∞. If x > 0 then f ′(x) > 0;
as x→ 0+, f ′(x) appears to approach +∞. So the graph of f ′ must be the one shown in Fig. 3.4.13(d).

C03S04.058: If x 	= 0, then f ′(x) > 0; moreover, f ′(x) appears to be approaching zero as |x| increases
without bound. In contrast, f ′(x) appears to approach +∞ as x → 0. Hence the graph of f ′ must be the
one shown in Fig. 3.4.13(f).

C03S04.059: Note that f ′(x) > 0 if x < 0 whereas f ′(x) < 0 if x > 0. Moreover, as x→ 0, |f ′(x)| appears
to approach +∞. So the graph of f ′ must be the one shown in Fig. 3.4.13(b).

C03S04.060: We see that f ′(x) > 0 for x < 1.4 (approximately), that f(x) = 0 when x ≈ 1.4, and that
f ′(x) < 0 for 1.4 < x < 2; moreover, f ′(x)→ −∞ as x→ 2−. So the graph of f ′ must be the one shown in
Fig. 3.4.13(a).

C03S04.061: We see that f ′(x) < 0 for −2 < x < −1.4 (approximately), that f ′(x) > 0 for −1.4 < x < 1.4
(approximately), and that f ′(x) < 0 for 1.4 < x < 2. Also f ′(x) = 0 when x ≈ ±1.4. Therefore the graph
of f must be the one shown in Fig. 3.4.13(e).

C03S04.062: Figure 3.4.12 shows a graph whose derivative is negative for x < −1, positive for −1 < x <

−0.3 (approximately), negative for −0.3 < x < 0, positive for 0 < x < 0.3 (approximately), negative for
0.3 < x < 1, and positive for 1 < x. Moreover, f ′(x) = 0 when x = ±1 and when x ≈ ±0.3. Finally,
f ′(x)→ −∞ as x→ 0− whereas f ′(x)→ ∞ as x→ 0+. Therefore the graph of f ′ must be the one shown
in Fig. 3.4.13(c).

C03S04.063: L =
P 2g

4π2
, so

dL

dP
=

Pg

2π2
, and hence

dP

dL
=

2π2

Pg
. Given g = 32 and P = 2, we find the value

of the latter to be 1
32π

2 ≈ 0.308 (seconds per foot).

C03S04.064: dV/dA = 1
4

√
A/π, and A = 400π when the radius of the sphere is 10, so the answer is 5 (in

appropriate units, such as cubic meters per square meter).

C03S04.065: Whether y = +
√

1− x2 or y = −
√

1− x2, it follows easily that dy/dx = −x/y. The slope of
the tangent is −2 when x = 2y, so from the equation x2 + y2 = 1 we see that x2 = 4/5, so that x = ± 2

5

√
5.

Because y = 1
2x, the two points we are to find are

(
− 2

5

√
5, − 1

5

√
5

)
and

(
2
5

√
5, 1

5

√
5

)
.
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C03S04.066: Using some of the results in the preceding solution, we find that the slope of the tan-
gent is 3 when x = −3y, so that y2 = 1

10 . So the two points of tangency are
(
− 3

10

√
10, 1

10

√
10

)
and(

3
10

√
10, − 1

10

√
10

)
.

C03S04.067: The line tangent to the parabola y = x2 at the point Q(a, a2) has slope 2a, so the normal
to the parabola at Q has slope −1/(2a). The normal also passes through P (18, 0), so we can find its slope
another way—by using the two-point formula. Thus

− 1
2a

=
a2 − 0
a− 18

;

18− a = 2a3;

2a3 + a− 18 = 0.

By inspection, a = 2 is a solution of the last equation. Thus a−2 is a factor of the cubic, and division yields

2a3 + a− 18 = (a− 2)(2a2 + 4a+ 9).

The quadratic factor has negative discriminant, so a = 2 is the only real solution of 2a3 + a − 18 = 0.
Therefore the normal line has slope − 1

4 and equation x+ 4y = 18.

C03S04.068: Let Q(a, a2) be a point on the parabola y = x2 at which some line through P (3, 10) is
normal to the parabola. Then, as in the solution of Problem 67, we find that

a2 − 10
a− 3

= − 1
2a
.

This yields the cubic equation 2a3 − 19a − 3 = 0, and after a little computation we find one of its small
integral roots to be r = −3. So a + 3 is a factor of the cubic; by division, the other factor is 2a2 − 6a − 1,
which is zero when a = 1

2

(
3±
√

11
)
. So the three lines have slopes

1
6
, − 1

3−
√

11
, and − 1

3 +
√

11
.

Their equations are

y − 10 =
1
6
(x− 3), y − 10 = − 1

3−
√

11
(x− 3), and y − 10 = − 1

3 +
√

11
(x− 3).

C03S04.069: If a line through P
(
0, 5

2

)
is normal to y = x2/3 at Q(a, a2/3), then it has slope − 3

2a
1/3. As

in the two previous solutions, we find that

a2/3 − 5
2

a
= −3

2
a1/3,

which yields 3a4/3 + 2a2/3 − 5 = 0. Put u = a2/3; we obtain 3u2 + 2u− 5 = 0, so that (3u+ 5)(u− 1) = 0.
Because u = a2/3 > 0, u = 1 is the only solution, so a = 1 and a = −1 yield the two possibilities for the
point Q, and therefore the equations of the two lines are

y − 5
2

= − 3
2
x and y − 5

2
=

3
2
x.

10



C03S04.070: Suppose that P = P (u, v), so that u2 + v2 = a2. Then the slope of the radius OP is
mr = v/u if u 	= 0; if u = 0 then OP lies on the y-axis. Also, whether y = +

√
a2 − x2 or y = −

√
a2 − x2, it

follows that

dy

dx
= ± −x√

a2 − x2
= ±−x±y = −x

y
. (1)

Thus if u 	= 0 and v 	= 0, then the slope of the line tangent L to the circle at P (u, v) is mt = −u/v. In this
case

mr ·mt =
v

u
·
(
− u
v

)
= −1,

so that OP is perpendicular to L if u 	= 0 and v 	= 0. If u = 0 then Eq. (1) shows that L has slope 0, so that
L and OP are also perpendicular in this case. Finally, if v = 0 then OP lies on the x-axis and L is vertical,
so the two are also perpendicular in this case. In every case we see that L and OP are perpendicular.

C03S04.071: Equation (3) is an identity, and if two functions have identical graphs on an interval, then
their derivatives will also be identically equal to each other on that interval. (That is, if f(x) ≡ g(x) on an
interval I, then f ′(x) ≡ g′(x) there.) There is no point in differentiating both sides of an algebraic equation.

C03S04.072: If f(x) = x1/2 and a > 0, then

f ′(a) = lim
x→a

x1/2 − a1/2

x− a = lim
x→a

x1/2 − a1/2

(x1/2 − a1/2)(x1/2 + a1/2)
= lim

x→a

1
x1/2 + a1/2

=
1

2a1/2
.

Therefore Dx x
1/2 =

1
2
x−1/2 if x > 0.

C03S04.073: If f(x) = x1/3 and a > 0, then

f ′(a) = lim
x→a

x1/3 − a1/3

x− a = lim
x→a

x1/3 − a1/3

(x1/3 − a1/3)(x2/3 + x1/3a1/3 + a2/3)

= lim
x→a

1
x2/3 + x1/3a1/3 + a2/3

=
1

a2/3 + a2/3 + a2/3
=

1
3a2/3

.

Therefore Dx x
1/3 =

1
3
x−2/3 if x > 0.

This formula is of course valid for x < 0 as well. To show this, observe that the previous argument is
valid if a < 0, or—if you prefer—you can use the chain rule, laws of exponents, and the preceding result, as
follows. Suppose that x < 0. Then −x > 0; also, x1/3 = −(−x)1/3. So

Dx(x1/3) = Dx

[
−(−x)1/3

]
= −Dx (−x)1/3 = −

[
1
3

(−x)−2/3 · (−1)
]

=
1
3

(−x)2/3 =
1
3
x−2/3.

Therefore Dx(x1/3) =
1
3
x−2/3 if x 	= 0.

C03S04.074: If f(x) = x1/5 and a > 0, then

f ′(a) = lim
x→a

x1/5 − a1/5

x− a = lim
x→a

x1/5 − a1/5

(x1/5 − a1/5)(x4/5 + x3/5a1/5 + x2/5a2/5 + x1/5a3/5 + a4/5)

= lim
x→a

1
x4/5 + x3/5a1/5 + x2/5a2/5 + x1/5a3/5 + a4/5

=
1

a4/5 + a4/5 + a4/5 + a4/5 + a4/5
=

1
5a4/5

.
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Therefore Dx(x1/5) =
1
5
x−4/5 if x > 0.

As in the concluding paragraph in the previous solution, it is easy to show that this formula holds for
all x 	= 0.

C03S04.075: The preamble to Problems 72 through 75 implies that if q is a positive integer and x and a
are positive real numbers, then

x− a = (x1/q − a1/q)(x(q−1)/q + x(q−2)/qa1/q + x(q−3)/qa2/q + · · ·+ x1/qa(q−2)/q + a(q−1)/q).

Thus if f(x) = x1/q and a > 0, then

f ′(a) = lim
x→a

x1/q − a1/q

x− a

= lim
x→a

x1/q − a1/q

(x1/q − a1/q)(x(q−1)/q + x(q−2)/qa1/q + x(q−3)/qa2/q + · · ·+ x1/qa(q−2)/q + a(q−1)/q)

= lim
x→a

1
x(q−1)/q + x(q−2)/qa1/q + x(q−3)/qa2/q + · · ·+ a(q−1)/q

(q terms in the denominator)

=
1

a(q−1)/q + a(q−1)/q + a(q−1)/q + · · ·+ a(q−1)/q
(still q terms in the denominator)

=
1

qa(q−1)/q
=

1
q
a−(q−1)/q.

Therefore Dx(x1/q) =
1
q
x−(q−1)/q if x > 0 and q is a positive integer. This result is easy to extend to the

case x < 0. Therefore if q is a positive integer and x 	= 0, then

Dx(x1/q) =
1
q
x(1/q)−1.
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Section 3.5

C03S05.001: Because f(x) = 1− x is decreasing everywhere, it can attain a maximum only at a left-hand
endpoint of its domain and a minimum only at a right-hand endpoint of its domain. Its domain [−1, 1) has
no right-hand endpoint, so f has no minimum value. Its maximum value occurs at −1, is f(−1) = 2, and is
the global maximum value of f on its domain.

C03S05.002: Because f(x) = 2x+ 1 is increasing everywhere, it can have a minimum only at a left-hand
endpoint of its domain and a maximum only at a right-hand endpoint of its domain. But its domain [−1, 1)
has no right-hand endpoint, so f has no maximum. It has the global minimum value f(−1) = −1 at the
left-hand endpoint of its domain.

C03S05.003: Because f(x) = |x| is decreasing for x < 0 and increasing for x > 0, it can have a maximum
only at a left-hand or a right-hand endpoint of its domain (−1, 1). But its domain has no endpoints, so f
has no maximum value. It has the global minimum value f(0) = 0.

C03S05.004: Because g(x) =
√
x is increasing on (0, 1], its reciprocal f(x) = 1/

√
x is decreasing there.

But

lim
x→0+

1√
x

= +∞,

so f has no maximum value. It has the global minimum value f(1) = 1 at the right-hand endpoint of its
domain.

C03S05.005: Given: f(x) = |x− 2| on (1, 4]. If x > 2 then f(x) = x− 2, which is increasing for x > 2; if
x < 2 then f(x) = 2 − x, which is decreasing for x < 2. So f can have a maximum only at an endpoint of
its domain; the only endpoint is at x = 4, where f(x) has the maximum value f(4) = 2. Because f(x)→ 1
as x → 1+, the extremum at x = 4 is in fact a global maximum. Finally, f(2) = 0 is the global minimum
value of f .

C03S05.006: If f(x) = 5 − x2, then f ′(x) = −2x, so x = 0 is the only critical point of f . We note that
f is increasing for x < 0 and decreasing for x > 0, so f(0) = 5 is the global maximum value of f . Because
f(−1) = 4 and f(x)→ 1 as x→ 2−, the minimum at x = −1 is local but not global.

C03S05.007: Given: f(x) = x3 + 1 on [−1, 1]. The only critical point of f occurs where f ′(x) = 3x2 is
zero; that is, at x = 0. But f(x) < 1 = f(0) if x < 0 whereas f(x) > 1 = f(0) if x > 0, so there is no
extremum at x = 0. By Theorem 1 (page 142), f must have a global maximum and a global minimum.
The only possible locations are at the endpoints of the domain of f , and therefore f(−1) = 0 is the global
minimum value of f and f(1) = 2 is its global maximum value.

C03S05.008: If

f(x) =
1

x2 + 1
, then f ′(x) = − 2x

(x2 + 1)2
,

so x = 0 is the only critical point of f . Because g(x) = x2 + 1 is increasing for x > 0 and decreasing for
x < 0, we may conclude that f is decreasing for x > 0 and increasing for x < 0. Therefore f has the global
maximum value f(0) = 1 at x = 0 and no other extrema of any kind.

C03S05.009: If

1



f(x) =
1

x(1− x) , then f ′(x) =
2x− 1

x2(1− x)2 ,

which does not exist at x = 0 or at x = 1 and is zero when x = 1
2 . But none of these points lies in the domain

[2, 3] of f , so there are no extrema at those three points. By Theorem 1 f must have a global maximum
and a global minimum, which therefore must occur at the endpoints of its domain. Because f(2) = − 1

2 and
f(3) = − 1

6 , the former is the global minimum value of f and the latter is its global maximum value.

C03S05.010: If

f(x) =
1

x(1− x) , then f ′(x) =
2x− 1

x2(1− x)2 ,

which does not exist at x = 0 or at x = 1 and is zero when x = 1
2 . But the domain (0, 1) of f includes only

the last of these three points. We note that

f
(

1
2

)
= 4 and that lim

x→0+
f(x) = +∞ = lim

x→1−
f(x),

and therefore f has no global maximum value. The reciprocal of f(x) is

g(x) = x− x2 = −(x2 − x) = −
(
x2 − x+ 1

4

)
+ 1

4 = 1
4 −

(
x− 1

2

)2
,

which has the global maximum value 1
4 at x = 1

2 . Therefore f(x) has the global minimum value 4 at x = 1
2 .

C03S05.011: f ′(x) = 3 is never zero and always exists. Therefore f(−2) = −8 is the global minimum
value of f and f(3) = 7 is its global maximum value.

C03S05.012: f ′(x) = −3 always exists and is never zero. Therefore f(5) = −11 is the global minimum
value of f and f(−1) = 7 is its global maximum value.

C03S05.013: h′(x) = −2x always exists and is zero only at x = 0, which is not in the domain of h.
Therefore h(1) = 3 is the global maximum value of h and h(3) = −5 is its global minimum value.

C03S05.014: f ′(x) = 2x always exists and is zero only at x = 0, an endpoint of the domain of f . Therefore
f(0) = 3 is the global minimum value of f and f(5) = 28 is its global maximum value.

C03S05.015: g′(x) = 2(x − 1) always exists and is zero only at x = 1. Because g(−1) = 4, g(1) = 0,
and g(4) = 9, the global minimum value of g is 0 and the global maximum is 9. If −1 < x < 0 then
g(x) = (x− 1)2 < 4, so the extremum at x = −1 is a local maximum.

C03S05.016: h′(x) = 2x + 4 always exists and is zero only at x = −2. Because h(−3) = 4, h(−2) = 3,
and h(0) = 7, the global minimum value of h is 3 and its global maximum is 7. Because the graph of h is a
parabola opening upward, h(−3) = 4 is a local (but not global) maximum value of h.

C03S05.017: f ′(x) = 3x2 − 3 = 3(x + 1)(x − 1) always exists and is zero when x = −1 and when x = 1.
Because f(−2) = −2, f(−1) = 2, f(1) = −2, and f(4) = 52, the latter is the global maximum value of f
and −2 is its global minimum value—note that the minimum occurs at two different points on the graph.
Because f is continuous on [−2, 2], it must have a global maximum there, and our work shows that it occurs
at x = −1. But because f(4) = 52 > 2 = f(−1), f(−1) = 2 is only a local maximum for f on its domain
[−2, 4]. Summary: Global minimum value −2, local maximum value 2, global maximum value 52.
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C03S05.018: g′(x) = 6x2 − 18x + 12 = 6(x − 1)(x − 2) always exists and is zero when x = 1 and when
x = 2. Because g(0) = 0, g(1) = 5, g(2) = 4, and g(4) = 32, the global minimum value of g is g(0) = 0 and
its global maximum is g(4) = 32. Because g is continuous on [0, 2], it must have a global maximum there,
so g(1) = 5 is a local maximum for g on [0, 4]. Because g is continuous on [1, 4], it must have a global
minimum there, so g(2) = 4 is a local minimum for g on [0, 4].

C03S05.019: If

h(x) = x+
4
x
, then h′(x) = 1− 4

x2
=
x2 − 4
x2

.

Therefore h is continuous on [1, 4] and x = 2 is the only critical point of h in its domain. Because h(1) = 5,
h(2) = 4, and h(4) = 5, the global maximum value of h is 5 and its global minimum value is 4.

C03S05.020: If f(x) = x2 +
16
x
, then f ′(x) = 2x− 16

x2
=

2x3 − 16
x2

=
2(x− 2)(x2 + 2x+ 4)

x2
. So f is

continuous on its domain [1, 3] and its only critical point is x = 2. Because f(1) = 17, f(2) = 12, and
f(3) = 43

3 ≈ 14.333, the global maximum value of f is 17 and its global minimum value is 12. Because f
is continuous on [2, 3], it must have a global maximum there, and therefore f(3) = 43

3 is a local maximum
value of f on [1, 3].

C03S05.021: f ′(x) = −2 always exists and is never zero, so f(1) = 1 is the global minimum value of f
and f(−1) = 5 is its global maximum value.

C03S05.022: f ′(x) = 2x− 4 always exists and is zero when x = 2, which is an endpoint of the domain of
f . Hence f(2) = −1 is the global minimum value of f and f(0) = 3 is its global maximum value.

C03S05.023: f ′(x) = −12− 18x always exists and is zero when x = − 2
3 . Because f(−1) = 8, f

(
− 2

3

)
= 9,

and f(1) = −16, the global maximum value of f is 9 and its global minimum value is −16. Consideration of
the interval

[
−1, − 2

3

]
shows that f(−1) = 8 is a local minimum of f .

C03S05.024: f ′(x) = 4x − 4 always exists and is zero when x = 1. Because f(0) = 7, f(1) = 5, and
f(2) = 7, the global maximum value of f is 7 and its global minimum value is 5.

C03S05.025: f ′(x) = 3x2 − 6x − 9 = 3(x + 1)(x − 3) always exists and is zero when x = −1 and when
x = 3. Because f(−2) = 3, f(−1) = 10, f(3) = −22, and f(4) = −15, the global minimum value of f is
−22 and its global maximum is 10. Consideration of the interval [−2, −1] shows that f(−2) = 3 is a local

minimum of f ; consideration of the interval [3, 4] shows that f(4) = −15 is a local maximum of f .

C03S05.026: f ′(x) = 3x2 + 1 always exists and is never zero, so f(−1) = −2 is the global minimum value
of f and f(2) = 10 is its global maximum value.

C03S05.027: f ′(x) = 15x4 − 15x2 = 15x2(x + 1)(x − 1) always exists and is zero at x = −1, at x = 0,
and at x = 1. We note that f(−2) = −56, f(−1) = 2, f(0) = 0, f(1) = −2, and f(2) = 56. So the global
minimum value of f is −56 and its global maximum value is 56. Consideration of the interval [−2, 0] shows
that f(−1) = 2 is a local maximum of f on its domain [−2, 2]. Similarly, f(1) = −2 is a local minimum of
f there. Suppose that x is near, but not equal, to zero. Then f(x) = x3(3x2 − 5) is negative if x > 0 and
positive if x < 0. Therefore there is no extremum at x = 0.

C03S05.028: Given: f(x) = |2x− 3| on [1, 2]. If x > 3
2 then f(x) = 2x− 3, so that f ′(x) = 2. If x < 3

2

then f(x) = 3−2x, so that f ′(x) = −2. Therefore f ′(x) is never zero. But it fails to exist at x = 3
2 . Because

f(1) = 1, f
(

3
2

)
= 0, and f(2) = 1, the global maximum value of f is 1 and its global minimum value is 0.
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C03S05.029: Given: f(x) = 5 + |7− 3x| on [1, 5]. If x < 7
3 , then −3x > −7, so that 7− 3x > 0; in this

case, f(x) = 12 − 3x and so f ′(x) = −3. Similarly, if x > 7
3 , then f(x) = 3x − 2 and so f ′(x) = 3. Hence

f ′(x) is never zero, but it fails to exist at x = 7
3 . Now f(1) = 9, f

(
7
3

)
= 5, and f(5) = 13, so 13 is the global

maximum value of f and 5 is its global minimum value. Consideration of the continuous function f on the
interval

[
1, 7

3

]
shows that f(1) = 9 is a local maximum of f on its domain.

C03S05.030: Given: f(x) = |x+1|+ |x− 1| on [−2, 2]. If x < −1 then f(x) = −(x+1)− (x− 1) = −2x,
so that f ′(x) = −2. If x > 1 then f(x) = x + 1 + x − 1 = 2x, so that f ′(x) = 2. If −1 � x � 1 then
f(x) = x+ 1− (x− 1) = 2, so that f ′(x) = 0. But f ′(x) does not exist at x = −1 or at x = 1. We note that
f(−2) = 4, f(x) = 2 for all x such that −1 � x � 1, and that f(2) = 4. So 4 is the global maximum value
of f and 2 is its global minimum value. Observe that f has infinitely many critical points: every number in
the interval [−1, 1].

C03S05.031: f ′(x) = 150x2 − 210x + 72 = 6(5x − 3)(5x − 4) always exists and is zero at x = 3
5 and at

x = 4
5 . Now f(0) = 0, f

(
3
5

)
= 16.2, f

(
4
5

)
= 16, and f(1) = 17. Hence 17 is the global maximum value of

f and 0 is its global minimum value. Consideration of the intervals
[
0, 4

5

]
and

[
3
5 , 1

]
shows that 16.2 is a

local maximum value of f on [0, 1] and that 16 is a local minimum value of f there.

C03S05.032: If f(x) = 2x+
1
2x
, then f ′(x) = 2− 1

2x2
=

4x2 − 1
2x2

. Therefore f ′(x) exists for all x in

the domain [1, 4] of f and there are no points in the domain of f at which f ′(x) = 0. Thus the global
minimum value of f is f(1) = 2.5 and its global maximum value is f(4) = 8.125.

C03S05.033: If

f(x) =
x

x+ 1
, then f ′(x) =

1
(x+ 1)2

,

so f ′(x) exists for all x in the domain [0, 3] of f and is never zero there. Hence f(0) = 0 is the global
minimum value of f and f(3) = 3

4 is its global maximum value.

C03S05.034: If f(x) =
x

x2 + 1
, then f ′(x) =

1− x2

(1 + x2)2
, so f ′(x) exists for all x; the only point in the

domain of f at which f ′(x) = 0 is x = 1. Now f(0) = 0, f(1) = 1
2 , and f(3) = 3

10 , so 0 is the global minimum
value of f and 1

2 is its global maximum value. By the usual argument, there is a local minimum at x = 3.

C03S05.035: If

f(x) =
1− x
x2 + 3

, then f ′(x) =
(x+ 1)(x− 3)

(x2 + 3)2
,

so f ′(x) always exists and is zero when x = −1 and when x = 3. Now f(−2) = 3
7 , f(−1) = 1

2 , f(3) = − 1
6 ,

and f(5) = − 1
7 . So the global minimum value of f is − 1

6 and its global maximum value is 1
2 . Consideration

of the interval [−2, −1] shows that 3
7 is a local minimum value of f ; consideration of the interval [3, 5] shows

that − 1
7 is a local maximum value of f .

C03S05.036: If f(x) = 2− x1/3, then

f ′(x) = − 1
3x2/3

,

so f ′(x) is never zero and f ′(x) does not exist when x = 0. Nevertheless, f is continuous on its domain
[−1, 8]. And f(−1) = 3, f(0) = 2, and f(8) = 0, so the global maximum value of f is 3 and its global
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minimum value is 0. Because g(x) = x1/3 is an increasing function, f(x) = 2 − x1/3 is decreasing on its
domain, and therefore there is no extremum at x = 0.

C03S05.037: Given: f(x) = x(1− x2)1/2 on [−1, 1]. First,

f ′(x) = (1− x2)1/2 + x · 1
2
(1− x2)−1/2 · (−2x) = (1− x2)1/2 − x2

(1− x2)1/2
=

1− 2x2

√
1− x2

.

Hence f ′(x) exists for −1 < x < 1 and not otherwise, but we will check the endpoints ±1 of the domain of f
separately. Also f ′(x) = 0 when x = ± 1

2

√
2. Now f(−1) = 0, f

(
− 1

2

√
2

)
= − 1

2 , f
(

1
2

√
2

)
= 1

2 , and f(1) = 0.
Therefore the global minimum value of f is − 1

2 and its global maximum value is 1
2 . Consideration of the

interval
[
−1, − 1

2

√
2

]
shows that f(−1) = 0 is a local maximum value of f on [−1, 1]; similarly, f(1) = 0 is

a local minimum value of f there.

C03S05.038: Given: f(x) = x(4− x2)1/2 on [0, 2]. Then

f ′(x) = (4− x2)1/2 + x · 1
2
(4− x2)−1/2 · (−2x) = (4− x2)1/2 − x2

(4− x2)1/2
=

4− 2x2

√
4− x2

,

so f ′(x) exists if 0 � x < 2 and is zero when x =
√

2. Now f(0) = 0 = f(2) and f
(√

2
)

= 2, so the former
is the global minimum value of f on [0, 2] and the latter is its global maximum value there.

C03S05.039: Given: f(x) = x(2− x)1/3 on [1, 3]. Then

f ′(x) = (2− x)1/3 + x · 1
3
(2− x)−2/3 · (−1) = (2− x)1/3 − x

3(2− x)2/3 =
6− 4x

3(2− x)2/3 .

Then f ′(2) does not exist and f ′(x) = 0 when x = 3
2 . Also f is continuous everywhere, and f(1) = 1,

f
(

3
2

)
≈ 1.19, and f(3) = −3. Hence the global minimum value of f is −3 and its global maximum value is

f
(

3
2

)
= 3 · 2−4/3 ≈ 1.190551. Consideration of the interval

[
1, 3

2

]
shows that f(1) = 1 is a local minimum

value of f .

C03S05.040: Given: f(x) = x1/2 − x3/2 on [0, 4]. Then

f ′(x) =
1
2
x−1/2 − 3

2
x1/2 =

1
2x1/2

− 3x1/2

2
=

1− 3x
2
√
x
.

Then f ′(x) does not exist when x = 0, although f is continuous on its domain; also, f ′(x) = 0 when x = 1
3 .

Now f(0) = 0, f
(

1
3

)
= 2

9

√
3, and f(4) = −6. So −6 is the global minimum value of f and its global maximum

value is 2
9

√
3. Consideration of the interval

[
0, 1

3

]
shows that f(0) = 0 is a local minimum value of f .

C03S05.041: If A 	= 0, then f ′(x) ≡ A is never zero, but because f is continuous it must have global
extrema. Therefore they occur at the endpoints. If A = 0, then f is a constant function, and its maximum
and minimum value B occurs at every point of the interval, including the two endpoints.

C03S05.042: The hypotheses imply that f has no critical points in (a, b), but f must have global extrema.
Therefore they occur at the endpoints.

C03S05.043: f ′(x) = 0 if x is not an integer; f ′(x) does not exist if x is an integer (we saw in Chapter 2
that f(x) = [[x]] is discontinuous at each integer).

C03S05.044: If f(x) = ax2 + bx + c and a 	= 0, then f ′(x) = 2ax + b. Clearly f ′(x) exists for all x,
and f ′(x) = 0 has the unique solution x = −b/(2a). Therefore f has exactly one critical point on the real
number line.
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C03S05.045: If f(x) = ax3 + bx2 + cx + d and a 	= 0, then f ′(x) = 3ax2 + 2bx + c exists for all x, but
the quadratic equation 3ax2 + 2bx+ c = 0 has two solutions if the discriminant ∆ = 4b2 − 12ac is positive,
one solution if ∆ = 0, and no [real] solutions if ∆ < 0. Therefore f has either no critical points, exactly one
critical point, or exactly two. Examples:

f(x) = x3 + x has no critical points,

f(x) = x3 has exactly one critical point, and

f(x) = x3 − 3x has exactly two critical points.

C03S05.046: A formula for f is

f(x) = min{x− [[x]], 1 + [[x]]− x}. (1)

If you are not comfortable with the idea that “min” is a “function,” an equivalent way of defining f is this:

f(x) =
1
2

(
1−

∣∣2x− 1− 2[[x]]
∣∣).

To verify that f performs as advertised, suppose that x is a real number and that n = [[x]], so that n � x <

n+ 1. Case (1): n � x � n+ 1
2 . Then

x− [[x]] = x− n � 1
2

and 1 + [[x]]− x = 1 + n− x = 1− (x− n) � 1
2
,

so that Eq. (1) yields f(x) = x − n, which is indeed the distance from x to the nearest integer, because in
Case (1) the nearest integer is n. Case (2), in which n+ 1

2 < x < n+ 1, is handled similarly.

The graph of f is shown next. It should be clear that f ′(x) fails to exist at every integral multiple of 1
2

and that its derivative is either +1 or −1 otherwise. Hence its critical points are the integral multiples of 1
2 .

C03S05.047: The derivative is positive on (−∞, −1.3), negative on (−1.3, 1.3), and positive on (1.3, +∞).
So its graph must be the one in Fig. 3.5.15(c). (Numbers with decimal points are approximations.)

C03S05.048: The derivative is negative on (−∞, −1.0), positive on (−1.0, 1.0), negative on (1.0, 3.0), and
positive on (3.0, +∞). So its graph must be the one shown in Fig. 3.5.15(f). (Numbers with decimal points
are approximations.)

C03S05.049: The derivative is positive on (−∞, 0.0), negative on (0.0, 2.0), and positive on (2.0, +∞).
So its graph must be the one shown in Fig. 3.5.15(d). (Numbers with decimal points are approximations.)
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C03S05.050: The derivative is positive on (−∞, −2.0), negative on (−2.0, 0.0), positive on (0.0, 2.0), and
negative on (2.0,+∞). So its graph must be the one shown in Fig. 3.5.15(b). (Numbers with decimal points
are approximations.)

C03S05.051: The derivative is negative on (−∞, −2.0), positive on (−2.0, 1.0), and negative on (1.0, +∞).
Therefore its graph must be the one shown in Fig. 3.5.15(a). (Numbers with decimal points are approxima-
tions.)

C03S05.052: The derivative is negative on (−∞, −2.2), positive on (−2.2, 2.2), and negative again on
(2.2, +∞). So its graph must be the one shown in Fig. 3.5.15(e). (Numbers with decimal points are
approximations.)

Note: In Problems 53 through 60, we used Mathematica 3.0 and Newton’s method (when necessary),
carrying 40 decimal digits throughout all computations. Answers are correct or correctly rounded to the
number of digits shown. Your answers may differ in the last (or last few) digits beause of differences in
hardware or software. Using a graphing calculator or computer to zoom in on solutions has more limited
accuracy when using certain machines.

C03S05.053: Global maximum value 28 at the left endpoint x = −2, global minimum value approximately
6.828387610996 at the critical point where x = −1 + 1

3

√
30 ≈ 0.825741858351, local maximum value 16 at

the right endpoint x = 2.

C03S05.054: Local minimum value 22 at the left endpoint x = −4, global maximum value approximately
31.171612389004 at the critical point x = −1− 1

3

√
30 ≈ −2.825741858351, global minimum value approxi-

mately 6.828387610996 at the critical point x = −1 + 1
3

√
30 ≈ 0.825741858351, local maximum value 16 at

the right endpoint x = 2.

C03S05.055: Global maximum value 136 at the left endpoint x = −3, global minimum value approximately
−8.669500829438 at the critical point x ≈ −0.762212740507, local maximum value 16 at the right endpont
x = 3.

C03S05.056: Global maximum value 160 at the left endpoint x = −3, global minimum value approxi-
mately −16.048632589199 at the critical point x ≈ −0.950838582066, local maximum value approximately
8.976226903748 at the critical point x ≈ 1.323417756580, local minimum value −8 at the right endpoint
x = 3.

C03S05.057: Global minimum value −5 at the left endpoint x = 0, global maximum value approximately
8.976226903748 at the critical point x ≈ 1.323417756580, local minimum value 5 at the right endpoint x = 2.

C03S05.058: Local maximum value 3 at the left endpoint x = −1, global minimum value approxi-
mately −5.767229705222 at the critical point x ≈ −0.460141424682, global maximum value approximately
21.047667292488 at the critical point x ≈ 0.967947424014, local minimum value 21 at the right endpoint
x = 1.

C03S05.059: Local minimum value −159 at the left endpoint x = −3, global maximum value ap-
proxiately 30.643243080334 at the critical point x ≈ −1.911336401963, local minimum value approxi-
mately −5.767229705222 at the critical point x ≈ −0.460141424682, local maximum value approximately
21.047667292488 at the critical point x ≈ 0.967947424014, global minimum value −345 at the right endpoint
x = 3.
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C03S05.060: Local minimum value 0 at the left endpoint x = 0, local maximum value approximately
21.047667292488 at the critical point x ≈ 0.967947424014, global minimum value approximately
−1401.923680667600 at the critical point x ≈ 5.403530402632, global maximum value 36930 at the right
endpoint x = 10.
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Section 3.6

C03S06.001: With x > 0, y > 0, and x + y = 50, we are to maximize the product P = xy.

P = P (x) = x(50− x) = 50x− x2, 0 < x < 50

(x < 50 because y > 0.) The product is not maximal if we let x = 0 or x = 50, so we adjoin the endpoints to
the domain of P ; thus the continuous function P (x) = 50x−x2 has a global maximum on the closed interval
[0, 50], and the maximum does not occur at either endpoint. Because f is differentiable, the maximum must
occur at a point where P ′(x) = 0: 50− 2x = 0, and so x = 25. Because this is the only critical point of P ,
it follows that x = 25 maximizes P (x). When x = 25, y = 50 − 25 = 25, so the two positive real numbers
with sum 50 and maximum possible product are 25 and 25.

C03S06.002: If two parallel sides of the rectangle both have length x and the other two sides both have
length y, then we are to maximize the area A = xy given that 2x + 2y = 200. So

A = A(x) = x(100− x), 0 � x � 100.

Clearly the maximum value of A occurs at a critical point of A in the interval (0, 100). But A′(x) = 100−2x,
so x = 50 is the location of the maximum. When x = 50, also y = 50, so the rectangle of maximal area is a
square of area 502 = 2500 ft2.

C03S06.003: If the coordinates of the “fourth vertex” are (x, y), then y = 100 − 2x and the area of the
rectangle is A = xy. So we are to maximize

A(x) = x(100− 2x) 0 � x � 50.

By the usual argument the solution occurs where A′(x) = 0, thus where x = 25, y = 50, and the maximum
area is 1250.

C03S06.004: If the side of the pen parallel to the wall has length x and the two perpendicular sides both
have length y, then we are to maximize area A = xy given x + 2y = 600. Thus

A = A(y) = y(600− 2y), 0 � y � 300.

Adjoining the endpoints to the domain is allowed because the maximum we seek occurs at neither endpoint.
Therefore the maximum occurs at an interior critical point. We have A′(y) = 600− 4y, so the only critical
point of A is y = 150. When y = 150, we have x = 300, so the maximum possible area that can be enclosed
is 45000 m2.

C03S06.005: If x is the length of each edge of the base of the box and y denotes the height of the box,
then its volume is given by V = x2y. Its total surface area is the sum of the area x2 of its bottom and four
times the area xy of each of its vertical sides, so x2 + 4xy = 300. Thus

V = V (x) = x2 · 300− x2

4x
=

300x− x3

4
, 1 � x � 10

√
3.

Hence

V ′(x) =
300− 3x2

4
,

1



so V ′(x) always exists and V ′(x) = 0 when x = 10 (we discard the solution x = −10; it’s not in the domain
of V ). Then

V (1) =
299
4

= 74.75, V (10) = 500, and V
(
10
√

3
)

= 0,

so the maximum possible volume of the box is 500 in.3.

C03S06.006: The excess of the number x over its square is f(x) = x− x2. In this problem we also know
that 0 � x � 1. Then f(x) = 0 at the endpoints of its domain, so the maximum value of f(x) must occur
at an interior critical point. But f ′(x) = 1− 2x, so the only critical point of f is x = 1

2 , which must yield a
maximum because f is continuous on [0, 1]. So the maximum value of x− x2 for 0 � x � 1 is 1

4 .

C03S06.007: If the two numbers are x and y, then we are to minimize S = x2 + y2 given x > 0,
y > 0, and x + y = 48. So S(x) = x2 + (48 − x)2, 0 � x � 48. Here we adjoin the endpoints to the
domain of S to ensure the existence of a maximum, but we must test the values of S at these endpoints
because it is not immediately clear that neither S(0) nor S(48) yields the maximum value of S. Now
S′(x) = 2x − 2(48 − x); the only interior critical point of S is x = 24, and when x = 24, y = 24 as well.
Finally, S(0) = (48)2 = 2304 = S(48) > 1152 = S(24), so the answer is 1152.

C03S06.008: Let x be the length of the side around which the rectangle is rotated and let y be the length
of each perpendicular side. Then 2x + 2y = 36. The radius of the cylinder is y and its height is x, so its
volume is V = πy2x. So

V = V (y) = πy2(18− y) = π(18y2 − y3),

with natural domain 0 < y < 18. We adjoin the endpoints to the domain because neither y = 0 nor y = 18
maximizes V (y), and deduce the existence of a global maximum at an interior critical point. Now

V ′(y) = π(36y − 3y2) = 3πy(12− y).

So V ′(y) = 0 when y = 0 and when y = 12. The former value of y minimizes V (y), so the maximum possible
volume of the cylinder is V (12) = 864π.

C03S06.009: Let x and y be the two numbers. Then x + y = 10, x � 0, and y � 0. We are to minimize
the sum of their cubes,

S = x3 + y3 : S(x) = x3 + (10− x)3, 0 � x � 10.

Now S′(x) = 3x2−3(10−x)2, so the values of x to be tested are x = 0, x = 5, and x = 10. At the endpoints,
S = 1000; when x = 5, S = 250 (the minimum).

C03S06.010: Draw a cross section of the cylindrical log—a circle of radius r. Inscribe in this circle a
cross section of the beam—a rectangle of width w and height h. Draw a diagonal of the rectangle; the
Pythagorean theorem yields x2 + h2 = 4r2. The strength S of the beam is given by S = kwh2 where k is a
positive constant. Because h2 = 4r2 − w2, we have

S = S(w) = kw(4r2 − w2) = k(4wr2 − w3)

with natural domain 0 < w < 2r. We adjoin the endpoints to this domain; this is permissible because S = 0 at
each, and so is not maximal. Next, S′(w) = k(4r2−3w2); S′(w) = 0 when 3w2 = 4r2, and the corresponding
(positive) value of w yields the maximum of S (we know that S(w) must have a maximum on [0, 2r ] because
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of the continuity of S on this interval, and we also know that the maximum does not occur at either endpoint,
so there is only one possible location for the maximum). At maximum, h2 = 4r2−w2 = 3w2−w2, so h = w

√
2

describes the shape of the beam of greatest strength.

C03S06.011: As in Fig. 3.6.18, let y denote the length of each of the internal dividers and of the two sides
parallel to them; let x denote the length of each of the other two sides. The total length of all the fencing is
2x + 4y = 600 and the area of the corral is A = xy. Hence

A = A(y) =
600− 4y

2
· y = 300y − 2y2, 0 � y � 150.

Now A′(y) = 0 only when y = 75, and A(0) = 0 = A(150), and therefore the maximum area of the corral is
A(75) = 11250 yd2.

C03S06.012: Let r denote the radius of the cylinder and h its height. We are to maximize its volume
V = πr2h given the constraint that the total surface area is 150π:

2πr2 + 2πrh = 150π, so that h =
75− r2

r
.

Thus

V = V (r) = πr(75− r2) = π(75r − r3), 0 < r <
√

75.

We may adjoin both endpoints to this domain without creating a spurious maximum, so we use
[
0, 5
√

3
]

as the domain of V . Next, V ′(r) = π(75− 3r2). Hence V ′(r) always exists and its only zero in the domain
of V occurs when r = 5 (and h = 10). But V is zero at the two endpoints of its domain, so V (5) = 250π is
the maximum volume of such a cylinder.

C03S06.013: If the rectangle has sides x and y, then x2 + y2 = 162 by the Pythagorean theorem. The
area of the rectangle is then

A(x) = x
√

256− x2 , 0 � x � 16.

A positive quantity is maximized exactly when its square is maximized, so in place of A we maximize

f(x) = (A(x))2 = 256x2 − x4.

The only solutions of f ′(x) = 0 in the domain of A are x = 0 and x = 8
√

2. But A(0) = 0 = A(16), so
x = 8

√
2 yields the maximum value 128 of A.

C03S06.014: If the far side of the rectangle has length 2x (this leads to simpler algebra than length x),
and the sides perpendicular to the far side have length y, then by the Pythagorean theorem, x2 + y2 = L2.
The area of the rectangle is A = 2xy, so we maximize

A(x) = 2x
√

L2 − x2 , 0 � x � L

by maximizing

f(x) = (A(x))2 = 4(L2x2 − x4).

Now f ′(x) = 4(2L2x − 4x3) = 8x(L2 − 2x2) is zero when x = 0 (rejected; A(0) = 0) and when x = 1
2L
√

2.
Note also that A(L) = 0. By the usual argument, x = 1

2L
√

2 maximizes f(x) and thus A(x). The answer is
A

(
1
2L
√

2
)

= L2.
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C03S06.015: V ′(T ) = −0.06426 + (0.0170086)T − (0.0002037)T 2. The equation V ′(T ) = 0 is quadratic
with the two (approximate) solutions T ≈ 79.532 and T ≈ 3.967. The formula for V (T ) is valid only in
the range 0 � T � 30, so we reject the first solution. Finally, V (0) = 999.87, V (30) ≈ 1003.763, and
V (3.967) ≈ 999.71. Thus the volume is minimized when T ≈ 3.967, and therefore water has its greatest
density at about 3.967◦C.

C03S06.016: Let P (x, 0) be the lower right-hand corner point of the rectangle. The rectangle then has
base 2x, height 4− x2, and thus area

A(x) = 2x(4− x2) = 8x− 2x3, 0 � x � 2.

Now A′(x) = 8 − 6x2; A′(x) = 0 when x = 2
3

√
3. Because A(0) = 0, A(2) = 0, and A

(
2
3

√
3

)
> 0, the

maximum possible area is A
(

2
3

√
3

)
= 32

9

√
3.

C03S06.017: Let x denote the length of each edge of the base and let y denote the height of the box. We
are to maximize its volume V = x2y given the constraint 2x2 + 4xy = 600. Solve the latter for y to write

V (x) = 150x− 1
2
x3, 1 � x � 10

√
3.

The solution of V ′(x) = 0 in the domain of V is x = 10. Because V (10) = 1000 > V (1) = 149.5 >

V
(
10
√

3
)

= 0, this shows that x = 10 maximizes V and that the maximum value of V is 1000 cm3.

C03S06.018: Let x denote the radius of the cylinder and y its height. Then its total surface area is
πx2 + 2πxy = 300π, so x2 + 2xy = 300. We are to maximize its volume V = πx2y. Because

y =
300− x2

2x
, it follows that V = V (x) =

π

2
(300x− x3), 0 � x � 10

√
3.

It is then easy to show that x = 10 maximizes V (x), that y = x = 10 as well, and thus that the maximum
possible volume of the can is 1000π in.3

C03S06.019: Let x be the length of the edge of each of the twelve small squares. Then each of the three
cross-shaped pieces will form boxes with base length 1 − 2x and height x, so each of the three will have
volume x(1− 2x)2. Both of the two cubical boxes will have edge x and thus volume x3. So the total volume
of all five boxes will be

V (x) = 3x(1− 2x)2 + 2x3 = 14x3 − 12x2 + 3x, 0 � x � 1
2
.

Now V ′(x) = 42x2 − 24x + 3; V ′(x) = 0 when 14x2 − 8x − 1 = 0. The quadratic formula gives the two
solutions x = 1

14

(
4±
√

2
)
. These are approximately 0.3867 and 0.1847, and both lie in the domain of V .

Finally, V (0) = 0, V (0.1847) ≈ 0.2329, V (0.3867) ≈ 0.1752, and V (0.5) = 0.25. Therefore, to maximize V ,
one must cut each of the three large squares into four smaller squares of side length 1

2 each and form the
resulting twelve squares into two cubes. At maximum volume there will be only two boxes, not five.

C03S06.020: Let x be the length of each edge of the square base of the box and let h denote its height.
Then its volume is V = x2h. The total cost of the box is $144, hence

4xh + x2 + 2x2 = 144 and thus h =
144− 3x2

4x
.

Therefore
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V = V (x) =
x

4
(
144− 3x2

)
= 36x− 3

4
x3.

The natural domain of V is the open interval
(
0, 4
√

3
)
, but we may adjoin the endpoints as usual to obtain

a closed interval. Also

V ′(x) = 36− 9
4
x2,

so V ′(x) always exists and is zero only at x = 4 (reject the other root x = −4). Finally, V (x) = 0 at the
endpoints of its domain, so V (4) = 96 (ft3) is the maximum volume of such a box. The dimensions of the
largest box are 4 ft square on the base by 6 ft high.

C03S06.021: Let x denote the edge length of one square and y that of the other. Then 4x + 4y = 80, so
y = 20− x. The total area of the two squares is A = x2 + y2, so

A = A(x) = x2 + (20− x)2 = 2x2 − 40x + 400,

with domain (0, 20); adjoin the endpoints as usual. Then A′(x) = 4x − 40, which always exists and which
vanishes when x = 10. Now A(0) = 400 = A(20), whereas A(10) = 200. So to minimize the total area of the
two squares, make two equal squares. To maximize it, make only one square.

C03S06.022: Let r be the radius of the circle and x the edge of the square. We are to maximize total area
A = πr2 + x2 given the side condition 2πr + 4x = 100. From the last equation we infer that

x =
100− 2πr

4
=

50− πr

2
.

So

A = A(r) = πr2 +
1
4
(50− πr)2 =

(
π +

1
4
π2

)
r2 − 25πr + 625

for 0 � r � 50/π (because x � 0). Now

A′(r) = 2
(
π +

1
4
π2

)
r − 25π;

A′(r) = 0 when r =
25

2 +
π

2

=
50

π + 4
;

that is, when r ≈ 7. Finally,

A(0) = 625, A

(
50
π

)
≈ 795.77 and A

(
50

π + 4

)
≈ 350.06.

Results: For minimum area, construct a circle of radius 50/(π+4) ≈ 7.00124 (cm) and a square of edge length
100/(π + 4) ≈ 14.00248 (cm). For maximum area, bend all the wire into a circle of radius 50/π ≈ 15.91549
(cm).

C03S06.023: Let x be the length of each segment of fence perpendicular to the wall and let y be the length
of each segment parallel to the wall.
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Case 1: The internal fence is perpendicular to the wall. Then y = 600− 3x and the enclosure will have
area A(x) = 600x− 3x2, 0 � x � 200. Then A′(x) = 0 when x = 100; A(100) = 30000 (m2) is the maximum
in Case 1.

Case 2: The internal fence is parallel to the wall. Then y = 300 − x, and the area of the enclosure is
given by A(x) = 300x − x2, 0 � x � 300. Then A′(x) = 0 when x = 150; A(150) = 22500 (m2) is the
maximum in Case 2.

Answer: The maximum possible area of the enclosure is 30000 m2. The divider must be perpendicular to
the wall and of length 100 m. The side parallel to the wall is to have length 300 m.

C03S06.024: See Fig. 3.6.22 of the text. Suppose that the pen measures x (horizontal) by y (vertical).
Then it has area A = xy.

Case 1: x � 10, y � 5. Then

x + (x− 10) + y + (y − 5) = 85, so x + y = 50.

Therefore

A = A(x) = x(50− x) = 50x− x2, 10 � x � 45.

Then A′(x) = 0 when x = 25; A(25) = 625. Note that A(10) = 400 and that A(45) = 225.

Case 2: 0 � x � 10, y � 5. Then

x + y + (y − 5) = 85, so x + 2y = 90.

Therefore

A = A(x) = x
90− x

2
=

1
2
(90x− x2), 0 � x � 10.

In this case, A′(x) = 0 when x = 45, but 45 doesn’t lie in the domain of A. Note that A(0) = 0 and that
A(10) = 400.

Case 3: x � 10, 0 � y � 5. Then

x + (x− 10) + y = 85, so 2x + y = 95.

Therefore

A = A(x) = x(95− 2x) = 95x− 2x2, 45 � x � 47.5.

In this case A′(x) = 0 when x = 23.75, not in the domain of A. Note that A(45) = 225 and that A(47.5) = 0.

Conclusion: The area of the pen is maximized when the pen is square, 25 m on each side (the maximum
from Case 1).

C03S06.025: Let the dimensions of the box be x by x by y. We are to maximize V = x2y subject to some
conditions on x and y. According to the poster on the wall of the Bogart, Georgia Post Office, the length

of the box is the larger of x and y, and the girth is measured around the box in a plane perpendicular to its
length.

Case 1: x < y. Then the length is y, the girth is 4x, and the mailing constraint is 4x + y � 100. It is
clear that we take 4x + y = 100 to maximize V , so that

V = V (x) = x2(100− 4x) = 100x2 − 4x3, 0 � x � 25.
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Then V ′(x) = 4x(50 − 3x); V ′(x) = 0 for x = 0 and for x = 50/3. But V (0) = 0, V (25) = 0, and
V (50/3) = 250000/27 ≈ 9259 (in.3). The latter is the maximum in Case 1.

Case 2: x � y. Then the length is x and the girth is 2x+ y, although you may get some argument from
a postal worker who may insist that it’s 4x. So 3x + 2y = 100, and thus

V = V (x) = x2

(
100− 3x

2

)
= 50x2 − 3

2
x3, 0 � x � 100/3.

Then V ′(x) = 100x − 9
2x

2; V ′(x) = 0 when x = 0 and when x = 200/9. But V (0) = 0, V (100/3) = 0, and
V (200/9) = 2000000/243 ≈ 8230 (in.3).

Case 3: You lose the argument in Case 2. Then the box has length x and girth 4x, so 5x = 100; thus
x = 20. To maximize the total volume, no calculus is needed—let y = x. Then the box of maximum volume
will have volume 203 = 8000 (in.3).

Answer: The maximum is
250000

27
in.3

C03S06.026: In this problem the girth of the package is its circumference; no one would interpret “girth”
in any other way. So suppose that the package has length x and radius r. Then it has volume V = πr2x

where x + 2πr = 100. We seek to maximize

V = V (r) = πr2(100− 2πr) = π(100r2 − 2πr3), 0 � r � 50
π

.

Now

V ′(r) = π(200r − 6πr2) = 2πr(100− 3πr);

V ′(r) = 0 when r = 0 and when r = 100/(3π). But

V (0) = 0, V

(
50
π

)
= 0, and V

(
100
3π

)
=

1000000
27π

≈ 11789 (in.3),

and the latter is clearly the maximum of V .

C03S06.027: Suppose that n presses are used, 1 � n � 8. The total cost of the poster run would then be

C(n) = 5n + (10 + 6n)
(

50000
3600n

)
= 5n +

125
9

(
10
n

+ 6
)

dollars. Temporarily assume that n can take on every real number value between 1 and 8. Then

C ′(n) = 5− 125
9
· 10
n2

;

C ′(n) = 0 when n = 5
3

√
10 ≈ 5.27 presses. But an integral number of presses must be used, so the actual

number that will minimize the cost is either 5 or 6, unless the minimum occurs at one of the two endpoints.
The values in question are C(1) ≈ 227.2, C(5) ≈ 136.1, C(6) ≈ 136.5, and C(8) ≈ 140.7. So to minimize
cost and thereby maximize the profit, five presses should be used.

C03S06.028: Let x denote the number of workers hired. Each worker will pick 900/x bushels; each worker
will spend 180/x hours picking beans. The supervisor cost will be 1800/x dollars, and the cost per worker
will be 8 + (900/x) dollars. Thus the total cost will be

C(x) = 8x + 900 +
1800
x

, 1 � x.
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It is clear that large values of x make C(x) large, so the global minimum of C(x) occurs either at x = 1 or
where C ′(x) = 0. Assume for the moment that x can take on all real number values in [1, +∞), not merely
integral values, so that C ′ is defined. Then

C ′(x) = 8− 1800
x2

; C ′(x) = 0 when x2 = 225.

Thus C ′(15) = 0. Now C(1) = 2708 and C(15) = 1140, so fifteen workers should be hired; the cost to pick
each bushel will be approximately $1.27.

C03S06.029: We are to minimize the total cost C over a ten-year period. This cost is the sum of the
initial cost and ten times the annual cost:

C(x) = 150x + 10
(

1000
2 + x

)
, 0 � x � 10.

Next,

C ′(x) = 150− 10000
(2 + x)2

; C ′(x) = 0 when 150 =
10000

(2 + x)2
,

so that (2 + x)2 = 200
3 . One of the resulting values of x is negative, so we reject it. The other is x =

−2 +
√

200/3 ≈ 6.165 (in.). The problem itself suggests that x must be an integer, so we check x = 6 and
x = 7 along with the endpoints of the domain of C. In dollars, C(0) = 5000, C(6) ≈ 2150, C(7) ≈ 2161,
and C(10) ≈ 2333. Result: Install six inches of insulation. The annual savings over the situation with no
insulation at all then will be one-tenth of 5000− 2150, about $285 per year.

C03S06.030: We assume that each one-cent increase in price reduces sales by 50 burritos per night. Let
x be the amount, in cents, by which the price is increased. The resulting profit is

P (x) = (50 + x)(5000− 5x)− 25(5000− 50x)− 100000

= (25 + x)(5000− 50x)− 100000

= 25000 + 3750x− 50x2, −50 � x.

Because P (x) < 0 for large values of x and for x = −50, P will be maximized where P ′(x) = 0:

P ′(x) = 3750− 100x; P ′(x) = 0 when x = 37.5.

Now P (37) = 953, P (37.5) ≈ 953.13, and P (38) = 953. Therefore profit is maximized when the selling price
is either 87/c or 88/c, and the maximum profit will be $953.

C03S06.031: Let x be the number of five-cent fare increases. The resulting revenue will be

R(x) = (150 + 5x)(600− 40x), −15 � x � 15

(the revenue is the product of the price and the number of passengers). Now

R(x) = 90000− 3000x− 200x2;

R′(x) = −3000− 400x; R′(x) = 0 when x = −7.5.
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h
2R

2r

Because the fare must be an integral number of cents, we check R(−7) = 1012 = R(−8) (dollars). Answer:
The fare should be either $1.10 or $1.15; this is a reduction of 40 or 35 cents, respectively, and each results
in the maximum possible revenue of $1012 per day.

C03S06.032: The following figure shows a central cross section of the sphere and inscribed cylinder. The
radius of the cylinder is r and its height is h; the radius of the sphere is R. From the Pythagorean theorem
we see that 4r2 + h2 = 4R2. The volume of the cylinder is V = πr2h, and therefore we find that

V = V (h) = π

(
R2 − 1

4
h2

)
h

=
π

4
(4R2h− h3), 0 � h � 2R.

Then

V ′(h) =
π

4
(4R2 − 3h2),

so V (h) = 0 when 3h2 = 4R2, so that h = 2
3R
√

3. This value of h maximizes V because V (0) = 0 and
V (2R) = 0. The corresponding value of r is 1

3R
√

6, so the ratio of the height of the cylinder to its radius is
h/r =

√
2. The volume of the maximal cylinder is 4

9πR
3
√

3 and the volume of the sphere is 4
3πR

3; the ratio
of the volume of the sphere to that of the maximal inscribed cylinder is thus

√
3.

C03S06.033: The following figure shows a cross section of the cone and inscribed cylinder. Let x be the
radius of the cylinder and y its height. By similar triangles in the figure,

H

R
=

y

R− x
, so y =

H

R
(R− x).

We are to maximize the volume V = πx2y of the cylinder, so we write

V = V (x) = πx2H

R
(R− x)

= π
H

R
(Rx2 − x3), 0 � x � R.
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x
R

y

H

Because V (0) = 0 = V (r), V is maximized when V ′(x) = 0; this leads to the equation 2xR = 3x2 and thus
to the results x = 2

3R and y = 1
3H.

C03S06.034: Let the circle have equation x2 + y2 = 1 and let (x, y) denote the coordinates of the upper
right-hand vertex of the trapezoid (Fig. 3.6.25). Then the area A of the trapezoid is the product of its
altitude y and the average of the lengths of its two bases, so

A =
1
2
y(2x + 2) where y2 = 1− x2.

A positive quantity is maximized when its square is maximized, so we maximize instead

f(x) = A2 = (x + 1)2(1− x2)

= 1 + 2x− 2x3 − x4, 0 � x � 1.

Because f(0) = 0 = f(1), f is maximized when f ′(x) = 0:

0 = 2− 6x2 − 4x3 = 2(1 + x)2(1− 2x).

But the only solution of f ′(x) = 0 in the domain of f is x = 1
2 . Finally, f

(
1
2

)
= 27

16 , so the maximum possible
area of the trapezoid is 3

4

√
3. This is just over 41% of the area of the circle, so the answer meets the test of

plausibility.

C03S06.035: Draw a circle in the plane with center at the origin and with radius R. Inscribe a rectangle
with vertical and horizontal sides and let (x, y) be its vertex in the first quadrant. The base of the rectangle
has length 2x and its height is 2y, so the perimeter of the rectangle is P = 4x + 4y. Also x2 + y2 = R2, so

P = P (x) = 4x + 4
√

R2 − x2 , 0 � x � R.

P ′(x) = 4− 4x√
R2 − x2

;

P ′(x) = 0 when 4
√

R2 − x2 = 4x;

R2 − x2 = x2;

x2 =
1
2
R2.
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Because x > 0, x = 1
2R
√

2. The corresponding value of P (x) is 4R
√

2, and P (0) = 4R = P (R). So the
former value of x maximizes the perimeter P . Because y2 = R2−x2 and because R2−x2 = x2 at maximum,
y = x at maximum. Therefore the rectangle of largest perimeter that can be inscribed in a circle is a square.

C03S06.036: Let (x, y) be the coordinates of the vertex of the rectangle in the first quadrant. Then, by
symmetry, the area of the rectangle is A = (2x)(2y) = 4xy. But from the equation of the ellipse we find that

y = 3
5

√
25− x2, so

A = A(x) = 12
5 x

√
25− x2 , 0 � x � 5.

We can simplify the algebra by maximizing instead

f(x) = 25
144A

2 = 25x2 − x4;

f ′(x) = 50x− 4x3;

f ′(x) = 0 when x = 0 and when x = 5
2

√
2.

Now A(0) = 0 = A(5), whereas A
(

5
2

√
2

)
= 30. So the rectangle of maximum area has base 2x = 5

√
2 and

height 2y = 3
√

2.

C03S06.037: We are to maximize volume V = 1
3πr

2h given r2 + h2 = 100. The latter relation enables us
to write

V = V (h) =
1
3
π(100− h2)h =

1
3
π(100h− h3), 0 � h � 10.

Now V ′(h) = 1
3π(100 − 3h2), so V ′(h) = 0 when 3h2 = 100, thus when h = 10

3

√
3. But V (h) = 0 at the

endpoints of its domain, so the latter value of h maximizes V , and its maximum value is 2000
27 π
√

3.

C03S06.038: Put the bases of the poles on the x-axis, one at the origin and the other at x = 10. Let the
rope touch the ground at the point x. Then the rope reaches straight from (0, 10) to (x, 0) and straight
from (x, 0) to (10, 10). In terms of x, its length is

L(x) =
√

100 + x2 +
√

100 + (10− x)2

=
√

100 + x2 +
√

200− 20x + x2, 0 � x � 10.

So

L′(x) =
x√

100 + x2
+

x− 10√
200− 20x + x2

;

L′(x) = 0 when

x
√

200− 20x + x2 = (10− x)
√

x2 + 100 ;

x2(x2 − 20x + 200) =
(
100− 20x + x2

) (
x2 + 100

)
;

x4 − 20x3 + 200x2 = x4 − 20x3 + 200x2 − 2000x + 10000;

2000x = 10000;
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and thus when x = 5. Now L(0) = L(10) = 10
(
1 +
√

2
)
, which exceeds L(5) = 10

√
5. So the latter is the

length of the shortest possible rope.

C03S06.039: Let x and y be the two numbers. Then x � 0, y � 0, and x + y = 16. We are to find both
the maximum and minimum values of x1/3 + y1/3. Because y = 16− x, we seek the extrema of

f(x) = x1/3 + (16− x)1/3, 0 � x � 16.

Now

f ′(x) =
1
3
x−2/3 − 1

3
(16− x)−2/3

=
1

3x2/3
− 1

3(16− x)2/3
;

f ′(x) = 0 when (16−x)2/3 = x2/3, so when 16−x = x, thus when x = 8. Now f(0) = f(16) = 161/3 ≈ 2.52,
so f(8) = 4 maximizes f whereas f(0) and f(16) yield its minimum.

C03S06.040: If the base of the L has length x, then the vertical part has length 60 − x. Place the L
with its corner at the origin in the xy-plane, its base on the nonnegative x-axis, and the vertical part on the
nonnegative y-axis. The two ends of the L have coordinates (0, 60− x) and (x, 0), so they are at distance

d = d(x) =
√

x2 + (60− x)2 , 0 � x � 60.

A positive quantity is minimized when its square is minimal, so we minimize

f(x) = (d(x))2 = x2 + (60− x)2, 0 � x � 60.

Then f ′(x) = 2x − 2(60 − x) = 4x − 120; f ′(x) = 0 when x = 30. Now f(0) = f(60) = 3600, whereas
f(30) = 1800. So x = 30 minimizes f(x) and thus d(x). The minimum possible distance between the two
ends of the wire is therefore d(30) = 30

√
2.

C03S06.041: If (x, x2) is a point of the parabola, then its distance from (0, 1) is

d(x) =
√

x2 + (x2 − 1)2 .

So we minimize

f(x) = (d(x))2 = x4 − x2 + 1,

where the domain of f is the set of all real numbers. But because f(x) is large positive when |x| is large, we
will not exclude a minimum if we restrict the domain of f to be an interval of the form [−a, a] where a is a
large positive number. On the interval [−a, a], f is continuous and thus has a global minimum, which does
not occur at ±a because f(±a) is large positive. Because f ′(x) exists for all x, the minimum of f occurs at
a point where f ′(x) = 0:

4x3 − 2x = 0; 2x(2x2 − 1) = 0.

Hence x = 0 or x = ± 1
2

√
2. Now f(0) = 1 and f

(
± 1

2

√
2

)
= 3

4 . So x = 0 yields a local maximum value for
f(x), and the minimum possible distance is

√
0.75 = 1

2

√
3.

C03S06.042: It suffices to minimize x2 + y2 given y = (3x− 4)1/3. Let f(x) = x2 + (3x− 4)2/3. Then
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f ′(x) = 2x + 2(3x− 4)−1/3.

Then f ′(x) = 0 when

2x +
2

(3x− 4)1/3
= 0;

2x(3x− 4)1/3 = −2;

x(3x− 4)1/3 = −1;

x3(3x− 4) = −1;

x3(3x− 4) + 1 = 0;

3x4 − 4x3 + 1 = 0;

(x− 1)2(3x2 + 2x + 1) = 0.

Now x = 1 is the only real solution of the last equation, f ′(x) does not exist when x = 4
3 , and f(1) = 2 >

16
9 = f

(
4
3

)
. So the point closest to the origin is

(
4
3 , 0

)
.

C03S06.043: Examine the plank on the right on Fig. 3.6.10. Let its height be 2y and its width (in the
x-direction) be z. The total area of the four small rectangles in the figure is then A = 4 · z · 2y = 8yz. The
circle has radius 1, and by Problem 35 the large inscribed square has dimensions

√
2 by

√
2. Thus

(
1
2

√
2 + z

)2

+ y2 = 1.

This implies that

y =

√
1
2
− z
√

2− z2 .

Therefore

A(z) = 8z

√
1
2
− z
√

2− z2 , 0 � z � 1− 1
2

√
2.

Now A(z) = 0 at each endpoint of its domain and

A′(z) =
4
√

2
(
1− 3z

√
z − 4z2

)
√

1− 2z
√
z − 2z2

.

So A′(z) = 0 when z = 1
8

(
−3
√

2±
√

34
)
; we discard the negative solution, and find that when A(z) is

maximized,

z =
−3
√

2 +
√

34
8

≈ 0.198539,

2y =

√
7−
√

17
2

≈ 0.848071, and

A(z) =

√
142 + 34

√
17

2
≈ 0.673500.
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The four small planks use just under 59% of the wood that remains after the large plank is cut, a very
efficient use of what might be scrap lumber.

C03S06.044: Place the base of the triangle on the x-axis and its upper vertex on the y-axis. Then its
lower right vertex is at the point

(
1
2 , 0

)
and its upper vertex is at

(
0, 1

2

√
3

)
. It follows that the slope of the

side of the triangle joining these two vertices is −
√

3. So this side lies on the straight line with equation

y =
√

3
(

1
2
− x

)
.

Let (x, y) be the coordinates of the upper right-hand vertex of the rectangle. Then the rectangle has area
A = 2xy, so

A(x) =
√

3 (x− 2x2), 0 � x � 1
2
.

Now A′(x) = 0 when x = 1
4 , and because A(x) = 0 at the endpoints of its domain, it follows that the

maximum area of such a rectangle is A
(

1
4

)
= 1

8

√
3.

C03S06.045: Set up a coordinate system in which the island is located at (0, 2) and the village at (6, 0),
and let (x, 0) be the point at which the boat lands. It is clear that 0 � x � 6. The trip involves the land
distance 6− x traveled at 20 km/h and the water distance (4 + x2)1/2 traveled at 10 km/h. The total time
of the trip is then given by

T (x) =
1
10

√
4 + x2 +

1
20

(6− x), 0 � x � 6.

Now

T ′(x) =
x

10
√

4 + x2
− 1

20
.

Thus T ′(x) = 0 when 3x2 = 4; because x � 0, we find that x = 2
3

√
3. The value of T there is

1
10

(
3 +
√

3
)
≈ 0.473,

whereas T (0) = 0.5 and T (6) ≈ 0.632. Therefore the boater should make landfall at 2
3

√
3 ≈ 1.155 km from

the point on the shore closest to the island.

C03S06.046: Set up a coordinate system in which the factory is located at the origin and the power station
at (L ,W ) in the xy-plane—L = 4500, W = 2000. Part of the path of the power cable will be straight along
the river bank and part will be a diagonal running under water. It makes no difference whether the straight
part is adjacent to the factory or to the power station, so we assume the former. Thus we suppose that the
power cable runs straight from (0, 0) to (x, 0), then straight from (x, 0) to (L, W ), where 0 � x � L. Let y

be the length of the diagonal stretch of the cable. Then by the Pythagorean theorem,

W 2 + (L− x)2 = y2, so y =
√

W 2 + (L− x)2 .

The cost C of the cable is C = kx + 3ky where k is the cost per unit distance of over-the-ground cable.
Therefore the total cost of the cable is

C(x) = kx + 3k
√

W 2 + (L− x)2 , 0 � x � L.

It will not change the solution if we assume that k = 1, and in this case we have
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C ′(x) = 1− 3(L− x)√
W 2 + (L− x)2

.

Next, C ′(x) = 0 when x2 + (L− x)2 = 9(L− x)2, and this leads to the solution

x = L− 1
4
W
√

2 and y =
3
4
W
√

2.

It is not difficult to verify that the latter value of x yields a value of C smaller than either C(0) or C(L).
Answer: Lay the cable x = 4500 − 500

√
2 ≈ 3793 meters along the bank and y = 1500

√
2 ≈ 2121 meters

diagonally across the river.

C03S06.047: The distances involved are |AP | = |BP | =
√
x2 + 1 and |CP | = 3− x. Therefore we are to

minimize

f(x) = 2
√

x2 + 1 + 3− x, 0 � x � 3.

Now

f ′(x) =
2x√
x2 + 1

− 1; f ′(x) = 0 when
2x√

x2 + 1
= 1.

This leads to the equation 3x2 = 1, so x = 1
3

√
3. Now f(0) = 5, f(3) ≈ 6.32, and at the critical point,

f(x) = 3 +
√

3 ≈ 4.732. Answer: The distribution center should be located at the point P ( 1
3

√
3, 0).

C03S06.048: (a) T =
1
c

√
a2 + x2 +

1
v

√
(s− x)2 + b2 .

(b) T ′(x) =
x

c
√
a2 + x2

− s− x

v
√

(s− x)2 + b2
.

T ′(x) = 0 when
x

c
√
a2 + x2

=
s− x

v
√

(s− x)2 + b2
;

x√
a2 + x2

·
√

(x− s)2 + b2

s− x
=

c

v
;

sinα cscβ =
c

v
sinα

sinβ
=

c

v
= n.

C03S06.049: We are to minimize total cost

C = c1
√

a2 + x2 + c2
√

(L− x)2 + b2 .

C ′(x) =
c1x√

a2 + x2
− c2(L− x)√

(L− x)2 + b2
;

C ′(x) = 0 when
c1x√

a2 + x2
=

c2(L− x)√
(L− x)2 + b2

.

The result in Part (a) is equivalent to the last equation. For Part (b), assume that a = b = c1 = 1, c2 = 2,
and L = 4. Then we obtain
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x√
1 + x2

=
2(4− x)√

(4− x)2 + 1
;

x2

1 + x2
=

4(16− 8x + x2)
16− 8x + x2 + 1

;

x2(17− 8x + x2) = (4 + 4x2)(16− 8x + x2);

17x2 − 8x3 + x4 = 64− 32x + 68x2 − 32x3 + 4x4.

Therefore we wish to solve f(x) = 0 where

f(x) = 3x4 − 24x4 + 51x2 − 32x + 64.

Now f(0) = 64, f(1) = 62, f(2) = 60, f(3) = 22, and f(4) = −16. Because f(3) > 0 > f(4), we interpolate
to estimate the zero of f(x) between 3 and 4; it turns out that interpolation gives x ≈ 3.58. Subsequent
interpolation yields the more accurate estimate x ≈ 3.45. (The equation f(x) = 0 has exactly two solutions,
x ≈ 3.452462314 and x ≈ 4.559682567.)

C03S06.050: Because x3 + y3 = 2000, y = (2000 − x3)1/3. We want to maximize and minimize total
surface area A = 6x2 + 6y2;

A = A(x) = 6x2 + 6(2000− x3)2/3, 0 � x � 10 3
√

2.

A′(x) =
−12[x2 − x(2000− x3)1/3]

(2000− x3)1/3
.

Now A′(x) = 0 at x = 0 and at x = 10; A′(x) does not exist at x = 10 3
√

2, the right-hand endpoint of the
domain of A (at that point, the graph of A has a vertical tangent). Also A(0) = 600 · 22/3 ≈ 952.441 and
A

(
10 3
√

2
)

is the same; A(10) = 1200. So the maximum surface area is attained when each cube has edge
length 10 and the minimum is attained when there is only one cube, of edge length 10 3

√
2 ≈ 12.5992.

C03S06.051: Let r be the radius of the sphere and x the edge length of the cube. We are to maximize
and minimize total volume

V =
4
3
πr3 + x3 given 4πr2 + 6x2 = 1000.

The latter equation yields

x =

√
1000− 4πr2

6
,

so

V = V (r) =
4
3
πr3 +

(
500− 2πr2

3

)3/2

, 0 � r � r1 = 5

√
10
π

.

Next,

V ′(r) = 4πr2 − 2πr

√
500− 2πr2

3
,
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and V ′(r) = 0 when

4πr2 = 2πr

√
500− 2πr2

3
.

So r = 0 or

2r =

√
500− 2πr2

3
.

The latter equation leads to

r = r2 = 5

√
10

π + 6
.

Now V (0) ≈ 2151.66, V (r1) ≈ 2973.54, and V (r2) ≈ 1743.16. Therefore, to minimize the sum of the
volumes, choose r = r2 ≈ 5.229 in. and x = 2r2 ≈ 10.459 in. To maximize the sum of their volumes, take
r = r1 ≈ 8.921 in. and x = 0 in.

C03S06.052: Let the horizontal piece of wood have length 2x and the vertical piece have length y + z

where y is the length of the part above the horizontal piece and z the length of the part below it. Then

y =
√

4− x2 and z =
√

16− x2 .

Also the kite area is A = x(y + z);
dA

dx
= 0 implies that

y + z =
x2

y
+

x2

z
.

Multiply each side of the last equation by yz to obtain

y2z + yz2 = x2z + x2y,

so that

yz(y + z) = x2(y + z);

x2 = yz;

x4 = y2z2 = (4− x2)(16− x2);

x4 = 64− 20x2 + x4;

20x2 = 64;

x =
4
5

√
5, y =

2
5

√
5, z =

8
5

√
5.

Therefore L1 = 8
5

√
5 ≈ 3.5777 and L2 = 2

√
5 ≈ 4.47214 for maximum area.
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C03S06.053: The graph of V (x) is shown next. The maximum volume seems to occur near the point
(4, V (4)) ≈ (4, 95.406), so the maximum volume is approximately 95.406 cubic feet.

C03S06.054: The graph of V (x) is shown next. The maximum volume seems to occur near the point
(8 , V (8)) ≈ (8, 269.848), so the maximum volume is approximately 269.848 cubic feet.

C03S06.055: Let V1 and V2 be the volume functions of problems 53 and 54, respectively. Then

V ′
1(x) =

20
√

5
(
4x− x2

)
3
√

5− x
,

which is zero at x = 0 and at x = 4, and

V ′
2(x) =

10
√

5
(
8x− x2

)
3
√

10− x
,

which is zero at x = 0 and at x = 8, as expected. Finally,
V2(8)
V1(4)

= 2
√

2.

C03S06.056: Let x denote the length of each edge of the base of the box; let y denote its height. If the
box has total surface area A, then 2x2 + 4xy = A, and hence

y =
A− 2x2

4x
. (1)

The box has volume V = x2y, so its volume can be expressed as a function of x alone:
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V (x) =
Ax− 2x3

4
, 0 � x �

√
A/2 .

Then

V ′(x) =
A− 6x2

4
; V ′(x) = 0 when x =

√
A/6 .

This critical point clearly lies in the interior of the domain of V , and (almost as clearly) V ′(x) is increasing
to its left and decreasing to its right. Hence this critical point yields the box of maximal volume. Moreover,
when x =

√
A/6 , we have—by Eq. (1)—

y = =
A− (A/3)
4
√

A/6
=

2A
3
·
√

6
4
√
A

=
√

6
6
·
√
A =

√
A√
6

.

Therefore the closed box with square base, fixed surface area, and maximal volume is a cube.

C03S06.057: Let x denote the length of each edge of the square base of the box and let y denote its height.
Given total surface area A, we have x2 + 4xy = A, and hence

y =
A− x2

4x
. (1)

The volume of the box is V = x2y, and therefore

V (x) =
Ax− x2

4
, 0 � x �

√
A .

Next,

V ′(x) =
A− 3x2

4
; V ′(x) = 0 when x =

√
A/3 .

Because V ′(x) > 0 to the left of this critical point and V ′(x) < 0 to the right, it yields the global maximum
value of V (x). By Eq. (1), the corresponding height of the box is 1

2

√
A/3 . Therefore the open box with

square base and maximal volume has height equal to half the length of the edge of its base.

C03S06.058: Let r denote the radius of the base of the closed cylindrical can, h its height, and A its total
surface area. Then

2πr2 + 2πrh = A, and hence h =
A− 2πr2

2πr
. (1)

The volume of the can is V = πr2h, and thus

V (r) =
Ar − 2πr3

2
, 0 � r �

(
A

2π

)1/2

.

Next,

V ′(r) =
A− 6πr2

2
; V ′(r) = 0 when r =

(
A

6π

)1/2

.

Because V ′(r) > 0 to the left of this critical point and V ′(r) < 0 to the right, it determines the global
maximum value of V (r). By Eq. (1), it follows that the can of maximum volume has equal height and
diameter.
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C03S06.059: Let r denote the radius of the base of the open cylindrical can and let h denote its height.
Its total surface area A then satisfies the equation πr2 + 2πrh = A, and therefore

h =
A− πr2

2πr
. (1)

Thus the volume of the can is given by

V (r) =
Ar − πr3

2
, 0 � r �

(
A

π

)1/2

.

Next,

V ′(r) =
A− 3πr2

2
; V ′(r) = 0 when r =

(
A

3π

)1/2

.

Clearly V ′(r) > 0 to the left of this critical point and V ′(r) < 0 to the right, so it determines the global
maximum value of V (r). By Eq. (1) the corresponding value of h is the same, so the open cylindrical can of
maximum volume has height equal to its radius.

C03S06.060: Let r denote the interior radius of the cylindrical can and h its interior height. Because the
thickness t of the material of the can will be very small in comparison with r and h, the total amount of
material M used to make the can will be very accurately approximated by multiplying the thickness of the
bottom by its area, the thickness of the curved side by its area, and the thickness of the top by its area.
That is,

πr2t + 2πrht + 3πr2t = M, so that h =
M − 4πr2t

2πrt
. (1)

Thus the volume of the can will be given by (the very accurate approximation)

V (r) =
Mr − 4πr3t

2t
, 0 � r �

(
M

4πt

)1/2

.

Next,

V ′(r) =
M − 12πr2t

2t
; V ′(r) = 0 when r =

1
2
·
(

M

3πt

)1/2

.

Because V ′(r) > 0 to the left of this critical point and V ′(r) < 0 to the right, it yields the global maximum
value of V (r). By (1), the height of the corresponding can is four times as great, so the can of maximum
volume has height twice its diameter (approximately, but quite accurately).

To solve this problem exactly, first establish that

4πt(r + t)2 + πht2(2 ∗ r + t) = M,

then that

V (r) =
Mr2 + 4πtr2(r + t)2

t2(2 ∗ r + t)
.

Then show that V ′(r) = 0 when

12πtr4 + 24πt2r3 + (16πt3 −M)r2 + (4πt4 −Mt)r = 0,
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and that the relevant critical point is

r =
−3πt2 +

√
3πt(M − πt3)
6πt

.

C03S06.061: Let

f(t) =
1

1 + t2
, so that f ′(t) = − 2t

(1 + t2)2
.

The line tangent to the graph of y = f(t) at the point (t, f(t)) then has x-intercept and y-intercept

1 + 3t2

2t
and

1 + 3t2

(1 + t2)2
,

respectively. The area of the triangle bounded by the part of the tangent line in the first quadrant and the
coordinate axes is

A(t) =
1
2
· 1 + 3t2

2t
· 1 + 3t2

(1 + t2)2
, (1)

and

A′(t) =
−9t6 + 9t4 + t2 − 1

4t2(1 + t2)3
.

Next, A′(t) = 0 when

(t− 1)(t + 1)(3t2 − 1)(3t2 + 1) = 0,

and the only two critical points of A in the interval [0.5, 2] are

t1 = 1 and t2 =
√

3
3
≈ 0.57735.

Significant values of A(t) are then

A(0.5) = 0.98, A(0.57735) ≈ 0.97428, A(1) = 1, and A(2) = 0.845.

Therefore A(t) has a local maximum at t = 0.5, a local minimum at t2, its global maximum at t = 1, and
its global minimum at t = 2.

To answer the first question in Problem 61, Eq. (1) makes it clear that A(t)→ +∞ as t→ 0+ and, in
addition, that A(t)→ 0 as t→ +∞.

C03S06.062: If 0 � x < 1, then the cost of the power line will be

C(x) = 40x + 100
√

1 + (1− x)2

(in thousand of dollars). If x = 1, then the cost will be 80 thousand dollars because there is no need to use
underground cable. Next,

C ′(x) =
100x− 100 + 40

√
x2 − 2x + 2√

x2 − 2x + 2
,

and C ′(x) = 0 when
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x = x0 =
21− 2

√
21

21
≈ 0.563564219528.

The graph of C(x) (using a computer algebra system) establishes that x0 determines the global minimum for
C(x) on the interval [0, 1), yielding the corresponding value C(x0) ≈ 131.651513899117. Hence the global
minimum for C(x) on [0, 1] is C(1) = 80 (thousand dollars). It is neither necessary to cross the park nor to
use underground cable.
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Section 3.7

C03S07.001: If f(x) = 3 sin2 x = 3(sinx)2, then f ′(x) = 6 sinx cosx.

C03S07.002: If f(x) = 2 cos4 x = 2(cosx)4, then f ′(x) = 8(cosx)3(− sinx) = −8 cos3 x sinx.

C03S07.003: If f(x) = x cosx, then f ′(x) = 1 · cosx+ x · (− sinx) = cosx− x sinx.

C03S07.004: If f(x) = x1/2 sinx, then f ′(x) = 1
2x

−1/2 sinx+ x1/2 cosx =
sinx+ 2x cosx

2
√
x

.

C03S07.005: If f(x) =
sinx
x

, then f ′(x) =
x cosx− sinx

x2
.

C03S07.006: If f(x) =
cosx
x1/2

, then f ′(x) =
x1/2(− sinx)− 1

2x
−1/2 cosx

x
= − 2x sinx+ cosx

2x
√
x

.

C03S07.007: If f(x) = sinx cos2 x, then

f ′(x) = cosx cos2 x+ (sinx)(2 cosx)(− sinx) = cos3 x− 2 sin2 x cosx.

C03S07.008: If f(x) = cos3 x sin2 x, then

f ′(x) = (3 cos2 x)(− sinx)(sin2 x) + (2 sinx cosx)(cos3 x) = −3 cos2 x sin3 x+ 2 sinx cos4 x.

C03S07.009: If g(t) = (1 + sin t)4, then g′(t) = 4(1 + sin t)3 · cos t.

C03S07.010: If g(t) = (2− cos2 t)3, then g′(t) = 3(2− cos2 t)2 · (2 cos t sin t) = 6(2− cos2 t)2(sin t cos t).

C03S07.011: If g(t) =
1

sin t+ cos t
, then (by the reciprocal rule) g′(t) = − cos t− sin t

(sin t+ cos t)2
=

sin t− cos t
(sin t+ cos t)2

.

C03S07.012: If g(t) =
sin t

1 + cos t
, then (by the quotient rule)

g′(t) =
(1 + cos t)(cos t)− (sin t)(− sin t)

(1 + cos t)2
=

sin2 t+ cos2 t+ cos t
(1 + cos t)2

=
1 + cos t

(1 + cos t)2
=

1
1 + cos t

.

C03S07.013: If f(x) = 2x sinx− 3x2 cosx, then (by the product rule)

f ′(x) = 2 sinx+ 2x cosx− 6x cosx+ 3x2 sinx = 3x2 sinx− 4x cosx+ 2 sinx.

C03S07.014: If f(x) = x1/2 cosx− x−1/2 sinx,

f ′(x) =
1
2
x−1/2 cosx− x1/2 sinx+

1
2
x−3/2 sinx− x−1/2 cosx =

(1− 2x2) sinx− x cosx
2x
√
x

.

C03S07.015: If f(x) = cos 2x sin 3x, then f ′(x) = −2 sin 2x sin 3x+ 3 cos 2x cos 3x.

C03S07.016: If f(x) = cos 5x sin 7x, then f ′(x) = −5 sin 5x sin 7x+ 7 cos 5x cos 7x.
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C03S07.017: If g(t) = t3 sin2 2t = t3(sin 2t)2, then

g′(t) = 3t2(sin 2t)2 + t3 · (2 sin 2t) · (cos 2t) · 2 = 3t2 sin2 2t+ 4t3 sin 2t cos 2t.

C03S07.018: If g(t) =
√
t cos3 3t = t1/2(cos 3t)3, then

g′(t) =
1
2
t−1/2(cos 3t)3 + t1/2 · 3(cos 3t)2 · (−3 sin 3t) =

cos3 3t
2
√
t
− 9
√
t cos2 3t sin 3t.

C03S07.019: If g(t) = (cos 3t+ cos 5t)5/2, then g′(t) = 5
2 (cos 3t+ cos 5t)3/2(−3 sin 3t− 5 sin 5t).

C03S07.020: If g(t) =
1√

sin2 t+ sin2 3t
= (sin2 t+ sin2 3t)−1/2, then

g′(t) = − 1
2
(sin2 t+ sin2 3t)−3/2(2 sin t cos t+ 6 sin 3t cos 3t) = − sin t cos t+ 3 sin 3t cos 3t

(sin2 2t+ sin2 3t)3/2
.

C03S07.021: If y = y(x) = sin2√x = (sinx1/2)2, then

dy

dx
= 2(sinx1/2)(cosx1/2) · 1

2
x−1/2 =

sin
√
x cos

√
x√

x
.

C03S07.022: If y = y(x) =
cos 2x
x

, then
dy

dx
=
x · (−2 sin 2x)− 1 · cos 2x

x2
= − 2x sin 2x+ cos 2x

x2
.

C03S07.023: If y = y(x) = x2 cos(3x2 − 1), then

dy

dx
= 2x cos(3x2 − 1)− x2 · 6x · sin(3x2 − 1) = 2x cos(3x2 − 1)− 6x3 sin(3x2 − 1).

C03S07.024: If y = y(x) = sin3 x4 = (sinx4)3, then

dy

dx
= 3(sinx4)2 ·Dx(sinx4) = 3(sinx4)2 · (cosx4) ·Dx(x4) = 12x3 sin2 x4 cosx4.

C03S07.025: If y = y(x) = sin 2x cos 3x, then

dy

dx
= (sin 2x) ·Dx(cos 3x) + (cos 3x) ·Dx(sin 2x) = −3 sin 2x sin 3x+ 2 cos 3x cos 2x.

C03S07.026: If y = y(x) =
x

sin 3x
, then

dy

dx
=

(sin 3x) · 1− x ·Dx(sin 3x)
(sin 3x)2

=
sin 3x− 3x cos 3x

sin2 3x
.

C03S07.027: If y = y(x) =
cos 3x
sin 5x

, then

dy

dx
=

(sin 5x)(−3 sin 3x)− (cos 3x)(5 cos 5x)
(sin 5x)2

= − 3 sin 3x sin 5x+ 5 cos 3x cos 5x
sin2 5x

.

C03S07.028: If y = y(x) =
√

cos
√
x = (cosx1/2)1/2, then
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dy

dx
=

1
2
(cosx1/2)−1/2(− sinx1/2) · 1

2
x−1/2 = − sin

√
x

4
√
x

√
cos
√
x
.

C03S07.029: If y = y(x) = sin2 x2 = (sinx2)2, then

dy

dx
= 2(sinx2) ·Dx(sinx2) = 2(sinx2) · (cosx2) ·Dx(x2) = 4x sinx2 cosx2.

C03S07.030: If y = y(x) = cos3 x3 = (cosx3)3, then

dy

dx
= 3(cosx3)2 ·Dx(cosx3) = 3(cosx3)2 · (− sinx3) ·Dx(x3) = −9x2 cos2 x3 sinx3.

C03S07.031: If y = y(x) = sin 2
√
x = sin(2x1/2), then

dy

dx
=

[
cos(2x1/2)

]
·Dx(2x1/2) = x−1/2 cos(2x1/2) =

cos 2
√
x√

x
.

C03S07.032: If y = y(x) = cos 3 3
√
x = cos(3x1/3), then

dy

dx
=

[
− sin(3x1/3)

]
·Dx(3x1/3) = (− sin 3x1/3) · (x−2/3) = − sin 3 3

√
x

3
√
x2

.

C03S07.033: If y = y(x) = x sinx2, then
dy

dx
= 1 · sinx2 + x · (cosx2) · 2x = sinx2 + 2x2 cosx2.

C03S07.034: If y = y(x) = x2 cos
(

1
x

)
, then

dy

dx
= 2x cos

(
1
x

)
+ x2

[
− sin

(
1
x

)]
·Dx

(
1
x

)

= 2x cos
(

1
x

)
− x2

[
sin

(
1
x

)]
·
(
− 1
x2

)
= 2x cos

(
1
x

)
+ sin

(
1
x

)
.

C03S07.035: If y = y(x) =
√
x sin

√
x = x1/2 sinx1/2, then

dy

dx
=

1
2
x−1/2 sinx1/2 + x1/2(cosx1/2) · 1

2
x−1/2 =

sin
√
x

2
√
x

+
cos
√
x

2
=

sin
√
x+
√
x cos

√
x

2
√
x

.

C03S07.036: If y = y(x) = (sinx− cosx)2, then

dy

dx
= 2(sinx− cosx)(cosx+ sinx) = 2(sin2 x− cos2 x) = −2 cos 2x.

C03S07.037: If y = y(x) =
√
x (x− cosx)3 = x1/2(x− cosx)3, then
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dy

dx
=

1
2
x−1/2(x− cosx)3 + 3x1/2(x− cosx)2(1 + sinx)

=
(x− cosx)3

2
√
x

+ 3
√
x (x− cosx)2(1 + sinx) =

(x− cosx)3 + 6x(x− cosx)2(1 + sinx)
2
√
x

.

C03S07.038: If y = y(x) =
√
x sin

√
x+
√
x = x1/2 sin(x+ x1/2)1/2, then

dy

dx
=

1
2
x−1/2 sin(x+ x1/2)1/2 + x1/2

[
cos(x+ x1/2)1/2

]
· 1
2
(x+ x1/2)−1/2

(
1 +

1
2
x−1/2

)
.

The symbolic algebra program Mathematica simplifies this to

dy

dx
=

(2x+
√
x ) cos

√
x+
√
x + 2

(√
x+
√
x

)
sin

√
x+
√
x

4
√
x

√
x+
√
x

.

C03S07.039: If y = y(x) = cos(sinx2), then
dy

dx
=

[
− sin(sinx2)

]
·(cosx2) ·2x = −2x

[
sin(sinx2)

]
cosx2.

C03S07.040: If y = y(x) = sin
(
1 +
√

sinx
)
, then

dy

dx
=

[
cos

(
1 +
√

sinx
)]
· 1
2
(sinx)−1/2 · cosx =

(cosx) cos
(
1 +
√

sinx
)

2
√

sinx
.

C03S07.041: If x = x(t) = tan t7 = tan(t7), then
dx

dt
=

(
sec t7

)2 ·Dt(t7) = 7t6 sec2 t7.

C03S07.042: If x = x(t) = sec t7 = sec(t7), then
dx

dt
= (sec t7 tan t7) ·Dt(t7) = 7t6 sec t7 tan t7.

C03S07.043: If x = x(t) = (tan t)7 = tan7 t, then

dx

dt
= 7(tan t)6 ·Dt tan t = 7(tan t)6 sec2 t = 7 tan6 t sec2 t.

C03S07.044: If x = x(t) = (sec 2t)7 = sec7 2t, then

dx

dt
= 7(sec 2t)6 ·Dt(sec 2t) = 7(sec 2t)6(sec 2t tan 2t) ·Dt(2t) = 14 sec7 2t tan 2t.

C03S07.045: If x = x(t) = t7 tan 5t, then
dx

dt
= 7t6 tan 5t+ 5t7 sec2 5t.

C03S07.046: If x = x(t) =
sec t5

t
, then

dx

dt
=
t · (sec t5 tan t5) · 5t4 − sec t5

t2
=

5t5 sec t5 tan t5 − sec t5

t2
.

C03S07.047: If x = x(t) =
√
t sec
√
t = t1/2 sec(t1/2), then
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dx

dt
=

1
2
t−1/2 sec(t1/2) + t1/2

[
sec(t1/2) tan(t1/2)

]
· 1
2
t−1/2 =

sec
√
t+
√
t sec

√
t tan

√
t

2
√
t

.

C03S07.048: If x = x(t) = sec
√
t tan

√
t = sec t1/2 tan t1/2, then

dx

dt
=

(
sec t1/2

)(
1
2
t−1/2 sec2 t1/2

)
+

(
1
2
t−1/2 sec t1/2 tan t1/2

)(
tan t1/2

)
=

sec3
√
t+ sec

√
t tan2

√
t

2
√
t

.

C03S07.049: If x = x(t) = csc
(

1
t2

)
, then

dx

dt
=

[
− csc

(
1
t2

)
cot

(
1
t2

)]
·
(
− 2
t3

)
=

2
t3

csc
(

1
t2

)
cot

(
1
t2

)
.

C03S07.050: If x = x(t) = cot
(

1√
t

)
= cot t−1/2, then

dx

dt
= −

(
csc t−1/2

)2

·Dt

(
t−1/2

)
=

1
2
t−3/2 csc2 t−1/2 =

2
t
√
t

csc2

(
1√
t

)
.

C03S07.051: If x = x(t) =
sec 5t
tan 3t

, then

dx

dt
=

5 tan 3t sec 5t tan 5t− 3 sec 5t sec2 3t
(tan 3t)2

= 5 cot 3t sec 5t tan 5t− 3 csc2 3t sec 5t.

C03S07.052: If x = x(t) = sec2 t− tan2 t, then
dx

dt
= (2 sec t)(sec t tan t)− (2 tan t)(sec2 t) ≡ 0.

C03S07.053: If x = x(t) = t sec t csc t, then

dx

dt
= sec t csc t+ t sec t tan t csc t− t sec t csc t cot t = t sec2 t+ sec t csc t− t csc2 t.

C03S07.054: If x = x(t) = t3 tan3 t3 = t3(tan t3)3, then

dx

dt
= 3t2(tan t3)3 + t3 · 3(tan t3)2(sec t3)2 · 3t2 = 3t2 tan3 t3 + 9t5 sec2 t3 tan2 t3.

C03S07.055: If x = x(t) = sec(sin t), then
dx

dt
= [sec(sin t) tan(sin t)] · cos t.

C03S07.056: If x = x(t) = cot(sec 7t), then
dx

dt
=

[
− csc2(sec 7t)

]
· 7 sec 7t tan 7t.

C03S07.057: If x = x(t) =
sin t
sec t

= sin t cos t, then
dx

dt
= cos2 t− sin2 t = cos 2t.

C03S07.058: If x = x(t) =
sec t

1 + tan t
, then

dx

dt
=

(1 + tan t) sec t tan t− sec t sec2 t

(1 + tan t)2
=

sec t tan t+ sec t tan2 t− (1 + tan2 t) sec t
(1 + tan t)2

=
sec t tan t− sec t

(1 + tan t)2
.
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C03S07.059: If x = x(t) =
√

1 + cot 5t = (1 + cot 5t)1/2, then

dx

dt
=

1
2
(1 + cot 5t)−1/2(−5 csc2 5t) = − 5 csc2 5t

2
√

1 + cot 5t
.

C03S07.060: If x = x(t) =
√

csc
√
t = (csc t1/2)1/2, then

dx

dt
=

1
2
(csc t1/2)−1/2(− csc t1/2 cot t1/2) · 1

2
t−1/2 = −

(
cot
√
t
) √

csc
√
t

4
√
t

= −
(
csc
√
t
)3/2

cos
√
t

4
√
t

.

C03S07.061: If f(x) = x cosx, then f ′(x) = −x sinx + cosx, so the slope of the tangent at x = π is
f ′(π) = −π sinπ + cosπ = −1. Because f(π) = −π, an equation of the tangent line is y + π = −(x − π);
that is, y = −x. The graph of f and this tangent line are shown next.

C03S07.062: If f(x) = cos2 x then f ′(x) = −2 cosx sinx, so the slope of the tangent at x = π/4 is
f ′(π/4) = −2 cos(π/4) sin(π/4) = −1. Because f(π/4) = 1

2 , an equation of the tangent line is y − 1
2 =

−(x− π/4); that is, 4y = −4x+ 2 + π. The graph of f and this line are shown next.

C03S07.063: If f(x) =
4
π

tan
(πx

4

)
, then f ′(x) = sec2

(πx
4

)
, so the slope of the tangent at x = 1 is

f ′(1) = sec2
(π

4

)
= 2. Because f(1) =

4
π

, an equation of the tangent line is y − 4
π

= 2 (x− 1); that is,
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y = 2x− 2 +
4
π

. The graph of f and this tangent line are shown next.

C03S07.064: If f(x) =
3
π

sin2
(πx

3

)
, then f ′(x) = 2 sin

(πx
3

)
cos

(πx
3

)
, so the slope of the tangent

at x = 5 is f ′(5) = 2 sin
5π
3

cos
5π
3

= − 1
2

√
3. Because f(5) =

9
4π

, an equation of the tangent line is

y − 9
4π

= − 1
2

√
3 (x− 5); that is, y = −x

√
3

2
+

9 + 10π
√

3
4π

. The graph of f and this tangent line are shown
next.

C03S07.065:
dy

dx
= −2 sin 2x. This derivative is zero at all values of x for which sin 2x = 0; i.e., values of

x for which 2x = 0, ±π, ±2π, ±3π, . . . . Therefore the tangent line is horizontal at points with x-coordinate
an integral multiple of 1

2π. These are points of the form (nπ, 1) for any integer n and
(

1
2mπ, −1

)
for any

odd integer m.

C03S07.066:
dy

dx
= 1− 2 cosx, which is zero for x =

(
1
3π

)
+ 2kπ and for x = −

(
1
3π

)
+ 2kπ for any integer

k. The tangent line is horizontal at all points of the form
(
± 1

3π + 2kπ, y
(
± 1

3π + 2kπ
))

where k is an
integer.

C03S07.067: If f(x) = sinx cosx, then f ′(x) = cos2 x− sin2 x. This derivative is zero at x = 1
4π+nπ and

at x = 3
4π + nπ for any integer n. The tangent line is horizontal at all points of the form

(
nπ + 1

4π,
1
2

)
and

at all points of the form
(
nπ + 3

4π, −
1
2

)
where n is an integer.

C03S07.068: If
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f(x) =
1

3 sin2 x+ 2 cos2 x
, then f ′(x) = − sin 2x(

2 + sin2 x
)2 .

This derivative is zero at all values of x for which sin 2x = 0; i.e., values of x for which 2x = 0, ±π, ±2π,
±3π, . . . . Therefore the tangent line is horizontal at points with x-coordinate an integral multiple of 1

2π.
These are points of the form

(
nπ, 1

2

)
for any integer n and

(
1
2mπ,

1
3

)
for any odd integer m.

C03S07.069: Let f(x) = x− 2 cosx. Then f ′(x) = 1 + 2 sinx, so f ′(x) = 1 when 2 sinx = 0; that is, when
x = nπ for some integer n. Moreover, if n is an integer then f(nπ) = nπ − 2 cosnπ, so f(nπ) = nπ + 2 if
n is even and f(nπ) = nπ − 2 if n is odd. In particular, f(0) = 2 and f(π) = π − 2. So the two lines have
equations y = x+ 2 and y = x− 2, respectively.

C03S07.070: If

f(x) =
16 + sinx
3 + sinx

, then f ′(x) = − 13 cosx
(3 + sinx)2

,

so that f ′(x) = 0 when cosx = 0; that is, when x is an odd integral multiple of 1
2π. In particular,

f
(

1
2π

)
=

16 + 1
3 + 1

=
17
4

;

similarly, f
(

3
4π

)
= 15

2 . Hence equations of the two lines are y ≡ 17
4 and y ≡ 15

2 .

C03S07.071: To derive the formulas for the derivatives of the cotangent, secant, and cosecant functions,
express each in terms of sines and cosines and apply the quotient rule (or the reciprocal rule) and various
trigonometric identities (see Appendix C). Thus

Dx cotx = Dx
cosx
sinx

=
− sin2 x− cos2 x

sin2 x
−− 1

sin2 x
= − csc2 x,

Dx secx = Dx
1

cosx
= −− sinx

cos2 x
=

1
cosx

· sinx
cosx

= secx tanx, and

Dx cscx = Dx
1

sinx
= − cosx

sin2 x
= − 1

sinx
· cosx

sinx
= − cscx cotx.

C03S07.072: If g(x) = cosx, then

g′(x) = lim
h→0

g(x+ h)− g(x)
h

= lim
h→0

cosx cosh− sinx sinh− cosx
h

= lim
h→0

1− cosh
h

(− cosx)− lim
h→0

sinh
h

(sinx)

= 0 · (− cosx)− 1 · sinx = − sinx.

C03S07.073: Write R = R(α) =
1
32
v2 sin 2α. Then

R′(α) =
1
16
v2 cos 2α,
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which is zero when α = π/4 (we assume 0 � α � π/2). Because R is zero at the endpoints of its domain, we
conclude that α = π/4 maximizes the range R.

C03S07.074: Let h be the altitude of the balloon (in feet) at time t (in seconds) and let θ be its angle of
elevation with respect to the observer. From the obvious figure, h = 300 tan θ, so

dh

dt
= (300 sec2 θ)

dθ

dt
.

When θ = π/4 and
dθ

dt
= π/180, we have

dh

dt
= 300 · 2 · π

180
=

10π
3
≈ 10.47 (ft/s)

as the rate of the balloon’s ascent then.

C03S07.075: Let h be the altitude of the rocket (in miles) at time t (in seconds) and let α be its angle of
elevation then. From the obvious figure, h = 2 tanα, so

dh

dt
= (2 sec2 α)

dα

dt
.

When α = 5π/18 and dα/dt = 5π/180, we have dh/dt ≈ 0.4224 (mi/s; about 1521 mi/h).

C03S07.076: Draw a figure in which the airplane is located at (0, 25000) and the fixed point on the ground
is located at (x, 0). A line connecting the two produces a triangle with angle θ at (x, 0). This angle is also
the angle of depression of the pilot’s line of sight, and when θ = 65◦, dθ/dt = 1.5◦/s. Now

tan θ =
25000
x

, so x = 25000
cos θ
sin θ

,

thus

dx

dθ
= −25000

sin2 θ
.

The speed of the airplane is

−dx
dt

=
25000
sin2 θ

· dθ
dt
.

When θ =
13
36
π,

dθ

dt
=

π

120
. So the ground speed of the airplane is

25000

sin2

(
13π
36

) · π

120
≈ 796.81 (ft/s).

Answer: About 543.28 mi/h.

C03S07.077: Draw a figure in which the observer is located at the origin, the x-axis corresponds to the
ground, and the airplane is located at (x, 20000). The observer’s line of sight corrects the origin to the point
(x, 20000) and makes an angle θ with the ground. Then

tan θ =
20000
x

,

so that x = 20000 cot θ. Thus
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dx

dt
= (−20000 csc2 θ)

dθ

dt
.

When θ = 60◦, we are given
dθ

dt
= 0.5◦/s; that is,

dθ

dt
= π/360 radians per second when θ = π/3. We

evaluate dx/dt at this time with these values to obtain

dx

dt
= (−20000)

1

sin2
(π

3

) · π

360
= −2000π

27
,

approximately −232.71 ft/s. Answer: About 158.67 mi/h.

C03S07.078: The area of the rectangle is A = 4xy, but x = cos θ and y = sin θ, so

A = A(θ) = 4 sin θ cos θ, 0 � θ � π/2.

Now A′(θ) = 4(cos2 θ − sin2 θ) = 4 cos 2θ, so A′(θ) = 0 when cos 2θ = 0. Because 0 � 2θ � π, it follows that
2θ = π/2, so θ = π/4. But A(0) = 0 = A(π/2) and A(π/4) = 2, so the latter is the largest possible area of
a rectangle inscribed in the unit circle.

C03S07.079: The cross section of the trough is a trapezoid with short base 2, long base 2 + 4 cos θ, and
height 2 sin θ. Thus its cross-sectional area is

A(θ) =
2 + (2 + 4 cos θ)

2
· 2 sin θ

= 4(sin θ + sin θ cos θ), 0 � θ � π/2

(the real upper bound on θ is 2π/3, but the maximum value of A clearly occurs in the interval [0, π/2]).

A′(θ) = 4(cos θ + cos2 θ − sin2 θ)

= 4(2 cos2 θ + cos θ − 1)

= 4(2 cos θ − 1)(cos θ + 1).

The only solution of A′(θ) = 0 in the given domain occurs when cos θ = 1
2 , so that θ = 1

3π. It is easy to
verify that this value of θ maximizes the function A.

C03S07.080: In the situation described in the problem, we have D = 20 sec θ. The illumination of the
walkway is then

I = I(θ) =
k

400
sin θ cos2 θ, 0 � θ � π/2.

dI

dθ
=
k cos θ
400

(cos2 θ − 2 sin2 θ);

dI/dθ = 0 when θ = π/2 and when cos2 θ = 2 sin2 θ. The solution θ in the domain of I of the latter equation
has the property that sin θ =

√
3/3 and cos θ =

√
6/3. But I(0) = 0 and I(θ) → 0 as θ → (π/2)−, so

the optimal height of the lamp post occurs when sin θ =
√

3/3. This implies that the optimal height is
10
√

2 ≈ 14.14 m.

C03S07.081: The following figure shows a cross section of the sphere-with-cone through the axis of the
cone and a diameter of the sphere. Note that h = r tan θ and that
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θ

θ

r

R

h

cos θ =
R

h−R.

Therefore

h = R+R sec θ, and thus r =
R+R sec θ

tan θ
.

Now V = 1
3πr

2h, so for θ in the interval (0, π/2), we have

V = V (θ) =
1
3
πR3 · (1 + sec θ)3

tan2 θ
.

Therefore

V ′(θ) =
πR3

3 tan4 θ

[
3(tan2 θ)(1 + sec θ)2 sec θ tan θ − (1 + sec θ)3(2 tan θ sec2 θ)

]
.

If V ′(θ) = 0 then either sec θ = −1 (so θ = π, which we reject), or sec θ = 0 (which has no solutions), or
tan θ = 0 (so either θ = 0 or θ = π, which we also reject), or (after replacement of tan2 θ with sec2 θ − 1)

sec2 θ − 2 sec θ − 3 = 0.

It follows that sec θ = 3 or sec θ = −1. We reject the latter as before, and find that sec θ = 3, so θ ≈ 1.23095
(radians). The resulting minimum volume of the cone is 8

3πR
3, twice the volume of the sphere!

C03S07.082: Let L be the length of the crease. Then the right triangle of which L is the hypotenuse has
sides L cos θ and L sin θ. Now 20 = L sin θ + L sin θ cos 2θ, so

L = L(θ) =
20

(sin θ)(1 + cos 2θ)
, 0 < θ � π

4
.

Next,
dL

dθ
= 0 when
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(cos θ)(1 + cos 2θ) = (sin θ)(2 sin 2θ);

(cos θ)(2 cos2 θ) = 4 sin2 θ cos θ;

so cos θ = 0 (which is impossible given the domain of L) or

cos2 θ = 2 sin2 θ = 2− 2 cos2 θ; cos2 θ =
2
3
.

This implies that cos θ = 1
3

√
6 and sin θ = 1

3

√
3. Because L → +∞ as θ → 0+, we have a minimum either

at the horizontal tangent just found or at the endpoint θ = 1
4π. The value of L at 1

4π is 20
√

2 ≈ 28.28 and
at the horizontal tangent we have L = 15

√
3 ≈ 25.98. So the shortest crease is obtained when cos θ = 1

3

√
6;

that is, for θ approximately 35◦15′ 52′′. The bottom of the crease should be one-quarter of the way across
the page from the lower left-hand corner.

C03S07.083: Set up coordinates so the diameter is on the x-axis and the equation of the circle is x2+y2 = 1;
let (x , y) denote the northwest corner of the trapezoid. The chord from (1, 0) to (x, y) forms a right triangle
with hypotenuse 2, side z opposite angle θ, and side w; moreover, z = 2 sin θ and w = 2 cos θ. It follows that

y = w sin θ = 2 sin θ cos θ and

−x = 1− w cos θ = − cos 2θ.

Now
A = y(1− x) = (2 sin θ cos θ)(1− cos 2θ) = 4 sin θ cos θ sin2 θ,

and therefore

A = A(θ) = 4 sin3 θ cos θ,
π

4
� θ � π

2
.

A′(θ) = 12 sin2 θ cos2 θ − 4 sin4 θ

= (4 sin2 θ)(3 cos2 θ − sin2 θ).

To solve A′(θ) = 0, we note that sin θ 	= 0, so we must have 3 cos2 θ = sin2 θ; that is tan2 θ = 3. It follows
that θ = 1

3π. The value of A here exceeds its value at the endpoints, so we have found the maximum value
of the area—it is 3

4

√
3.

C03S07.084: Let θ = α/2 (see Fig. 3.7.18 of the text) and denote the radius of the circular log by r. Using
the technique of the solution of Problem 82, we find that the area of the hexagon is

A = A(θ) = 8r2 sin3 θ cos θ, 0 � θ � π

2
.

After some simplifications we also find that

dA

dθ
= 8r2(sin2 θ)(4 cos2 θ − 1).

Now dA/dθ = 0 when sin θ = 0 and when cos θ = 1
2 . When sin θ = 0, A = 0; also, A(0) = 0 = A

(
1
2π

)
.

Therefore A is maximal when cos θ = 1
2 : θ = 1

3π. When this happens, we find that α = 2
3π and that

β = π − θ = 2
3π. Therefore the figure of maximal area is a regular hexagon.
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C03S07.085: The area in question is the area of the sector minus the area of the triangle in Fig. 3.7.19
and turns out to be

A =
1
2
r2θ − r2 cos

θ

2
sin

θ

2

=
1
2
r2(θ − sin θ) =

s2(θ − sin θ)
2θ2

because s = rθ. Now

dA

dθ
=
s2(2 sin θ − θ cos θ − θ)

2θ3
,

so dA/dθ = 0 when θ(1 + cos θ) = 2 sin θ. Let θ = 2x; note that 0 < x � π because 0 < θ � 2π. So the
condition that dA/dθ = 0 becomes

x =
sin θ

1 + cos θ
= tanx.

But this equation has no solution in the interval (0, π ]. So the only possible maximum of A must occur
at an endpoint of its domain, or where x is undefined because the denominator 1 + cos θ is zero—and this
occurs when θ = π. Finally,

A(2π) =
s2

4π
and A(π) =

s2

2π
,

so the maximum area is attained when the arc is a semicircle.

C03S07.086: The length of the forest path is 2 csc θ. So the length of the part of the trip along the road
is 3− 2 csc θ cos θ. Thus the total time for the trip is given by

T = T (θ) =
2

3 sin θ
+

3− 2 cos θ
sin θ
8

.

Note that the range of values of θ is determined by the condition

3
√

13
13

� cos θ � 0.

After simplifications, we find that

T ′(θ) =
3− 8 cos θ
12 sin2 θ

.

Now T ′(θ) = 0 when cos θ = 3
8 ; that is, when θ is approximately 67◦58′ 32′′. For this value of θ, we find that

sin θ = 1
8

√
55. There’s no problem in verifying that we have found the minimum. Answer: The distance to

walk down the road is

(
3− 2

cos θ
sin θ

) ∣∣∣∣
sin θ= 1

8

√
55

= 3− 6
√

55
55

≈ 2.19096 (km).

C03S07.087: Following the Suggestion, we note that if n is a positive integer and

h =
2

(4n+ 1)π
,
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then

f(h)− f(0)
h

=
(4n+ 1)π sin 1

2 (4n+ 1)π
(4n+ 1)π

= 1,

and that if

h =
2

(4n− 1)π
,

then

f(h)− f(0)
h

=
(4n− 1)π sin 1

2 (4n− 1)π
(4n− 1)π

= −1.

Therefore there are values of h arbitrarily close to zero for which

f(0 + h)− f(0)
h

= +1

and values of h arbitrarily close to zero for which

f(0 + h)− f(0)
h

= −1.

It follows that

lim
h→0

f(0 + h)− f(0)
h

does not exist;

that is, f ′(0) does not exist, and so f is not differentiable at x = 0.

C03S07.088: f ′(0) = lim
h→0

f(0 + h)− f(0)
h

= lim
h→0

h2 sin
1
h

h
= lim
h→0

h sin
1
h

.

It now follows from the Squeeze Law of Section 2.3 (page 79) that

f ′(0) = lim
h→0

h sin
1
h

= 0

because −|h| � h sin
1
h

� |h| if h 	= 0.
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Section 3.8

C03S08.001: If f(x) = e2x, then f ′(x) = e2x ·Dx(2x) = 2e2x.

C03S08.002: If f(x) = e3x−1, then f ′(x) = e3x−1 ·Dx(3x− 1) = 3e3x−1.

C03S08.003: If f(x) = exp(x2), then f ′(x) =
[
exp(x2)

]
·Dx(x2) = 2x exp(x2).

C03S08.004: If f(x) = e4−x
3
, then f ′(x) = e4−x

3 ·Dx(4− x3) = −3x2e4−x
3
.

C03S08.005: If f(x) = e1/x
2
, then f ′(x) = e1/x

2 ·Dx(1/x2) = − 2
x3
e1/x

2
.

C03S08.006: If f(x) = x2 exp(x3), then f ′(x) = 2x exp(x3) + x2 · 3x2 exp(x3) = (2x+ 3x4) exp(x3).

C03S08.007: If g(t) = t exp(t1/2), then g′(t) = exp(t1/2) + t · 1
2
t−1/2 exp(t1/2) =

2 +
√
t

2
exp(t1/2).

C03S08.008: If g(t) = (e2t + e3t)7, then g′(t) = 7(e2t + e3t)6(2e2t + 3e3t).

C03S08.009: If g(t) = (t2 − 1)e−t, then g′(t) = 2te−t − (t2 − 1)e−t = (1 + 2t− t2)e−t.

C03S08.010: If g(t) = (et − e−t)1/2, then g′(t) =
1
2

(et − e−t)−1/2 (et + e−t).

C03S08.011: If g(t) = ecos t = exp(cos t), then g′(t) = (− sin t) exp(cos t).

C03S08.012: If f(x) = xesin x = x exp(sinx), then

f ′(x) = exp(sinx) + (x cosx) exp(sinx) = esin x(1 + x cosx).

C03S08.013: If g(t) =
1− e−t

t
, then g′(t) =

te−t − (1− e−t)
t2

=
te−t + e−t − 1

t2
.

C03S08.014: If f(x) = e−1/x, then f ′(x) =
1
x2
e−1/x.

C03S08.015: If f(x) =
1− x
ex

, then

f ′(x) =
(−1)ex − (1− x)ex

(ex)2
=
−1− 1 + x

ex
=
x− 2
ex

.

C03S08.016: If f(x) = exp (
√
x ) + exp (−

√
x ), then

f ′(x) =
1
2
x−1/2 exp

(√
x

)
− 1

2
x−1/2 exp

(
−
√
x

)
=

exp (
√
x )− exp (−

√
x )

2
√
x

.

C03S08.017: If f(x) = exp (ex), then f ′(x) = ex exp (ex).

C03S08.018: If f(x) =
(
e2x + e−2x

)1/2, then

f ′(x) =
1
2

(
e2x + e−2x

)−1/2 (
2e2x − 2e−2x

)
=

e2x − e−2x

√
e2x + e−2x

.
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C03S08.019: If f(x) = sin (2ex), then f ′(x) = 2ex cos (2ex).

C03S08.020: If f(x) = cos (ex + e−x), then f ′(x) = (e−x − ex) sin (ex + e−x).

C03S08.021: If f(x) = ln(3x− 1), then f ′(x) =
1

3x− 1
·Dx(3x− 1) =

3
3x− 1

.

C03S08.022: If f(x) = ln(4− x2), then f ′(x) =
2x

x2 − 4
.

C03S08.023: If f(x) = ln
[
(1 + 2x)1/2

]
, then f ′(x) =

1
2 · 2(1 + 2x)−1/2

(1 + 2x)1/2
=

1
1 + 2x

.

C03S08.024: If f(x) = ln
[
(1 + x)2

]
, then f ′(x) =

2(1 + x)
(1 + x)2

=
2

1 + x
.

C03S08.025: If f(x) = ln
[
(x3 − x)1/3

]
=

1
3

ln(x3 − x), then f ′(x) =
3x2 − 1

3(x3 − x) .

C03S08.026: If f(x) = ln
[
(sinx)2

]
= 2 ln(sinx), then f ′(x) =

2 cosx
sinx

= 2 cotx.

C03S08.027: If f(x) = cos(lnx), then f ′(x) = − sin(lnx)
x

.

C03S08.028: If f(x) = (lnx)3, then f ′(x) =
3(lnx)2

x
.

C03S08.029: If f(x) =
1

lnx
, then (by the reciprocal rule) f ′(x) = − 1

x(lnx)2
.

C03S08.030: If f(x) = ln(lnx), then f ′(x) =
1

x lnx
.

C03S08.031: If f(x) = ln
[
x(x2 + 1)1/2

]
, then

f ′(x) =
(x2 + 1)1/2 + x2(x2 + 1)−1/2

x(x2 + 1)1/2
=

2x2 + 1
x(x2 + 1)

.

C03S08.032: If g(t) = t3/2 ln(t+ 1), then

g′(t) =
3
2
t1/2 ln(t+ 1) +

t3/2

t+ 1
=
t1/2 [2t+ 3 ln(t+ 1) + 3t ln(t+ 1) ]

2(t+ 1)
.

C03S08.033: If f(x) = ln cosx, then f ′(x) =
− sinx
cosx

= − tanx.

C03S08.034: If f(x) = ln(2 sinx) = (ln 2) + ln(sinx), then f ′(x) =
cosx
sinx

= cotx.

C03S08.035: If f(t) = t2 ln(cos t), then f ′(t) = 2t ln(cos t)− t2 sin t
cos t

= t [2 ln(cos t)− t tan t ].

C03S08.036: If f(x) = sin(ln 2x), then f ′(x) = [cos(ln 2x) ] · 2
2x

=
cos(ln 2x)

x
.
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C03S08.037: If g(t) = t(ln t)2, then

g′(t) = (ln t)2 + t · 2 ln t
t

= (2 + ln t) ln t.

C03S08.038: If g(t) = t1/2 [cos(ln t) ]2, then

g′(t) =
1
2
t−1/2 [cos(ln t) ]2 + 2t1/2 [cos(ln t) ] · − sin(ln t)

t
=

[cos(ln t) ] [cos(ln t)− 4 sin(ln t) ]
2t1/2

.

C03S08.039: Because f(x) = 3 ln(2x+ 1) + 4 ln(x2 − 4), we have

f ′(x) =
6

2x+ 1
+

8x
x2 − 4

=
22x2 + 8x− 24
(2x+ 1)(x2 − 4)

.

C03S08.040: If

f(x) = ln
(

1− x
1 + x

)1/2

=
1
2

ln(1− x)− 1
2

ln(1 + x),

then

f ′(x) = − 1
2(1− x) −

1
2(1 + x)

=
1

(x+ 1)(x− 1)
.

C03S08.041: If

f(x) = ln
(

4− x2

9 + x2

)1/2

=
1
2

ln(4− x2)− 1
2

ln(9 + x2),

then

f ′(x) = − x

4− x2
− x

9 + x2
=

13x
(x2 − 4)(x2 + 9)

.

C03S08.042: If

f(x) = ln
√

4x− 7
(3x− 2)3

=
1
2

ln(4x− 7)− 3 ln(3x− 2),

then

f ′(x) =
2

4x− 7
− 9

3x− 2
=

59− 30x
(3x− 2)(4x− 7)

.

C03S08.043: If

f(x) = ln
x+ 1
x− 1

= ln(x+ 1)− ln(x− 1), then f ′(x) =
1

x+ 1
− 1
x− 1

= − 2
(x− 1)(x+ 1)

.

C03S08.044: If
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f(x) = x2 ln
1

2x+ 1
= −x2 ln(2x+ 1), then f ′(x) = − 2x2

2x+ 1
− 2x ln(2x+ 1).

C03S08.045: If

g(t) = ln
t2

t2 + 1
= 2 ln t− ln(t2 + 1), then g′(t) =

2
t
− 2t
t2 + 1

=
2

t(t2 + 1)
.

C03S08.046: If

f(x) = ln
√
x+ 1

(x− 1)3
=

1
2

ln(x+ 1)− 3 ln(x− 1), then f ′(x) =
1

2(x+ 1)
− 3
x− 1

= − 5x+ 7
2(x− 1)(x+ 1)

.

C03S08.047: Given: y = 2x. Then

ln y = ln (2x) = x ln 2;

1
y
· dy
dx

= ln 2;

dy

dx
= y(x) · ln 2 = 2x ln 2.

C03S08.048: Given: y = xx. Then

ln y = ln (xx) = x lnx;

1
y
· dy
dx

= 1 + lnx;

dy

dx
= y(x) · (1 + lnx) = xx(1 + lnx).

C03S08.049: Given: y = xln x. Then

ln y = ln
(
xln x

)
= (lnx) · (lnx) = (lnx)2 ;

1
y
· dy
dx

=
2 lnx
x

;

dy

dx
= y(x) · 2 lnx

x
=

2xln x lnx
x

.

C03S08.050: Given: y = (1 + x)1/x. Then

ln y = ln(1 + x)1/x =
1
x

ln(1 + x);

1
y
· dy
dx

=
1

x(1 + x)
− ln(1 + x)

x2
=
x− ln(1 + x)− x ln(1 + x)

x2(1 + x)
;

dy

dx
= y(x) · x− ln(1 + x)− x ln(1 + x)

x2(1 + x)
=

[x− ln(1 + x)− x ln(1 + x) ] · (1 + x)1/x

x2(1 + x)
.

4



C03S08.051: Given: y = (lnx)
√
x. Then

ln y = ln (lnx)
√
x = x1/2 ln (lnx) ;

1
y
· dy
dx

=
1
2
x−1/2 ln (lnx) +

x1/2

x lnx
;

dy

dx
= y(x) ·

[
ln (lnx)
2x1/2

+
1

x1/2 lnx

]
;

dy

dx
=

2 + (lnx) ln (lnx)
2x1/2 lnx

· (lnx)
√
x
.

C03S08.052: Given: y = (3 + 2x)x. Then

ln y = ln (3 + 2x)x = x ln (3 + 2x) ;

1
y
· dy
dx

=
x · 2x · ln 2

3 + 2x
+ ln (3 + 2x) ;

dy

dx
= y(x) · x · 2

x · (ln 2) + 3 ln (3 + 2x) + 2x ln (3 + 2x)
3 + 2x

;

dy

dx
=
x · 2x · (ln 2) + 3 ln (3 + 2x) + 2x ln (3 + 2x)

3 + 2x
· (3 + 2x)x .

C03S08.053: If y = (1 + x2)3/2(1 + x3)−4/3, then

ln y =
3
2

ln(1 + x2)− 4
3

ln(1 + x3);

1
y
· dy
dx

=
3x

1 + x2
− 4x2

1 + x3
=

3x− 4x2 − x4

(1 + x2)(1 + x3)
;

dy

dx
= y(x) · 3x− 4x2 − x4

(1 + x2)(1 + x3)
=

3x− 4x2 − x4

(1 + x2)(1 + x3)
· (1 + x2)3/2

(1 + x3)4/3
;

dy

dx
=

(3x− 4x2 − x4)(1 + x2)1/2

(1 + x3)7/3
.

C03S84.054: If y = (x+ 1)x, then

ln y = ln(x+ 1)x = x ln(x+ 1);

1
y
· dy
dx

=
x

x+ 1
+ ln(x+ 1);

dy

dx
=

[
x

x+ 1
+ ln(x+ 1)

]
· (x+ 1)x.

C03S08.055: If y = (x2 + 1)x
2
, then
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ln y = ln(x2 + 1)x
2

= x2 ln(x2 + 1);

1
y
· dy
dx

=
2x3

x2 + 1
+ 2x ln(x2 + 1);

dy

dx
= y(x) ·

[
2x3

x2 + 1
+ 2x ln(x2 + 1)

]
=

[
2x3

x2 + 1
+ 2x ln(x2 + 1)

]
· (x2 + 1)x

2
.

C03S08.056: If y =
(

1 +
1
x

)x
, then

ln y = ln
(

1 +
1
x

)x
= x ln

(
1 +

1
x

)
= x ln(x+ 1)− x lnx;

1
y
· dy
dx

=
x

x+ 1
+ ln(x+ 1)− 1− lnx;

dy

dx
=

[
x

x+ 1
+ ln(x+ 1)− 1− lnx

]
·
(

1 +
1
x

)x
.

C03S08.057: Given: y = (
√
x )

√
x. Then

ln y = ln
(√
x

)√x = x1/2 ln
(
x1/2

)
=

1
2
x1/2 lnx;

1
y
· dy
dx

=
1

2x1/2
+

lnx
4x1/2

=
2 + lnx

4
√
x

;

dy

dx
=

(2 + lnx) (
√
x )

√
x

4
√
x

.

C03S08.058: If y = xsin x, then

ln y = (sinx) lnx;

1
y
· dy
dx

=
sinx
x

+ (cosx) lnx;

dy

dx
=

sinx+ x (cosx) lnx
x

·
(
xsin x

)
.

C03S08.059: If f(x) = xe2x, then f ′(x) = e2x + 2xe2x, so the slope of the graph of y = f(x) at (1, e2) is
f ′(1) = 3e2. Hence an equation of the line tangent to the graph at that point is y− e2 = 3e2(x− 1); that is,
y = 3e2x− 2e2.

C03S08.060: If f(x) = e2x cosx, then f ′(x) = 2e2x cosx−e2x sinx, so the slope of the graph of y = f(x) at
the point (0, 1) is f ′(0) = 2. So an equation of the line tangent to the graph at that point is y−1 = 2(x−0);
that is, y = 2x+ 1.

C03S08.061: If f(x) = x3 lnx, then f ′(x) = x2+3x2 lnx, so the slope of the graph of y = f(x) at the point
(1, 0) is f ′(1) = 1. Hence an equation of the line tangent to the graph at that point is y − 0 = 1 · (x − 1);
that is, y = x− 1.
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1.11832 1.11832 1.11833 1.11833 1.11834 1.11834

3.0594

3.0596

3.0598

C03S08.062: If

f(x) =
lnx
x2

, then f ′(x) =
x− 2x lnx

x4
=

1− 2 lnx
x3

.

Hence the slope of the graph of y = f(x) at the point
(
e, e−2

)
is f ′(e) = −1/e3. Therefore an equation of

the line tangent to the graph at that point is

y − 1
e2

= − 1
e3

(x− e); that is, y =
2e− x
e3

.

C03S08.063: If f(x) = e2x, then

f ′(x) = 2e2x, f ′′(x) = 4e2x, f ′′′(x) = 8e2x, f (4)(x) = 16e2x, and f (5)(x) = 32e2x.

It appears that f (n)(x) = 2ne2x.

C03S08.064: If f(x) = xex, then

f ′(x) = (x+1)ex, f ′′(x) = (x+2)ex, f ′′′(x) = (x+3)ex, f (4)(x) = (x+4)ex, and f (5)(x) = (x+5)ex.

It appears that f (n)(x) = (x+ n)ex.

C03S08.065: If f(x) = e−x/6 sinx, then

f ′(x) = −1
6
e−x/6 sinx+ e−x/6 cosx =

6 cosx− sinx
6ex/6

.

Hence the first local maximum point for x > 0 occurs when x = arctan 6 and the first local minimum point
occurs when x = π + arctan 6. The corresponding y-coordinates are, respectively,

6
e(arctan 6)/6

√
37

and − 6
e(π+arctan 6)/6

√
37

.

C03S08.066: Given f(x) = e−x/6 sinx, let g(x) = e−x/6 and h(x) = −e−x/6. We solve the equation
f(x) = g(x) by hand; the x-coordinate of the first point of tangency is π/2. Similarly, the x-coordinate of
the second point of tangency is 3π/2. These are not the same as arctan 6 and π + arctan 6.

C03S08.067: The viewing window 1.11831 � x � 1.11834 shows the intersection of the two graphs near
1.11833 (see the figure that follows this solution). Thus, to three decimal places, the indicated solution of
ex = x10 is 1.118.

C03S08.068: The viewing rectangle with 35.771515 � x � 35.771525 reveals a solution of ex = x10

near x = 35.75152. Therefore this solution is approximately 3.58 × 101. Newton’s method applied to
f(x) = ex − x10 reveals the more accurate approximation 35.7715206396.
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C03S08.069: We first let

f(k) =
(

1 +
1

10k

)10k

.

Then Mathematics yields the following approximations:

k f(k) (rounded)

1 2.593742460100

2 2.704813829422

3 2.716923932236

4 2.718145926825

5 2.718268237174

6 2.718280469319

7 2.718281692545

8 2.718281814868

9 2.718281827100

10 2.718281828323

11 2.718281828445

12 2.718281828458

13 2.718281828459

14 2.718281828459

15 2.718281828459

16 2.718281828459045099

17 2.719291929459045222

18 2.718281828459045234

19 2.718281828459045235

20 2.718281828459045235

21 2.718281828459045235

C03S08.070: If y = uv where all are differentiable functions of x, then ln y = v lnu. With u′(x) denoted
simply by u′, etc., we now have

1
y
y′ = v′ lnu+

vu′

u
.

Thus y′ = uv v′ lnu+
uvvu′

u
= vuv−1u′ + uv(lnu)v′.

(a) If u is constant, this implies that
dy

dx
= uv(x)(lnu)v′(x).
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(b) If v is constant, this implies that
dy

dx
= v (u(x))v−1

u′(x).

C03S08.071: Solution:

ln y = lnu+ ln v + lnw − ln p− ln q − ln r;

1
y
· dy
dx

=
1
u
· du
dx

+
1
v
· dv
dx

+
1
w
· dw
dx
− 1
p
· dp
dx
− 1
q
· dq
dx
− 1
r
· dr
dx

;

dy

dx
= y ·

(
1
u
· du
dx

+
1
v
· dv
dx

+
1
w
· dw
dx
− 1
p
· dp
dx
− 1
q
· dq
dx
− 1
r
· dr
dx

)
.

The solution makes the generalization obvious.

C03S08.072: Suppose by way of contradiction that log2 3 is a rational number. Then log2 3 = p/q where p
and q are positive integers (both positive because log2 3 > 0). Thus 2p/q = 3, so that 2p = 3q. But if p and
q are positive integers, then 2p is even and 3q is odd, so they cannot be equal. Therefore the assumption
that log2 3 is rational leads to a contradiction, and thus log2 3 is irrational.

C03S08.073: (a): If f(x) = log10 x, then the definition of the derivative yields

f ′(1) = lim
h→0

f(1 + h)− f(1)
h

= lim
h→0

1
h

log10(1 + h) = lim
h→0

log10(1 + h)1/h.

(b): When h = 0.1 the value of log10(1 + h)1/h is approximately 0.4139. With h = 0.01 we get 0.4321, with
h = 0.001 we get 0.4341, and with h = ±0.0001 we get 0.4343.

C03S08.074: Because exp(lnx) = x, we see first that

10x = exp(ln 10x) = exp(x ln 10) = ex ln 10.

Hence

Dx 10x = Dx

(
ex ln 10

)
= ex ln 10 ln 10 = 10x ln 10.

Thus, by the chain rule, if u is a differentiable function of x, then

Dx10u = (10u ln 10)
du

dx
.

Finally, if u(x) = log10 x, so that 10u ≡ x, then differentiation of this last identity yields

(10u ln 10)
du

dx
≡ 1, so that

du

dx
= Dx log10 x =

1
x ln 10

≈ 0.4343
x

.
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Section 3.9

C03S09.001: 2x− 2y
dy

dx
= 0, so

dy

dx
=
x

y
. Also, y = ±

√
x2 − 1 , so

dy

dx
= ± x√

x2 − 1
=

x

±
√
x2 − 1

=
x

y
.

C03S09.002: x
dy

dx
+ y = 0, so

dy

dx
= −y

x
. By substituting y = x−1 here, we get

dy

dx
= −x

−1

x
= −x−2,

which is the result obtained by explicit differentiation.

C03S09.003: 32x + 50y
dy

dx
= 0;

dy

dx
= −16x

25y
. Substituting y = ± 1

5

√
400− 16x2 into the derivative, we

get
dy

dx
= ∓ 16x

5
√

400− 16x2
, which is the result obtained by explicit differentiation.

C03S09.004: 3x2 +3y2 dy

dx
= 0, so

dy

dx
= −x

2

y2
. y = 3

√
1− x3 , so substitution results in

dy

dx
= − x2

(1− x3)2/3
.

Explicit differentiation yields the same answer.

C03S09.005: 1
2x

−1/2 + 1
2y

−1/2 dy

dx
= 0:

dy

dx
= −

√
y

x
.

C03S09.006: 4x3+2x2y
dy

dx
+2xy2+4y3 dy

dx
= 0: (2x2y+4y3)

dy

dx
= −(4x3+2xy2);

dy

dx
= −4x3 + 2xy2

2x2y + 4y3
.

C03S09.007: 2
3x

−1/3 + 2
3y

−1/3 dy

dx
= 0:

dy

dx
= −

(
x

y

)−1/3

= −
(y
x

)1/3

.

C03S09.008: y2 + 2(x− 1)y
dy

dx
= 1, so

dy

dx
=

1− y2

2y(x− 1)
.

C03S09.009: Given: x3 − x2y = xy2 + y3:

3x2 − x2 dy

dx
− 2xy = y2 + 2xy

dy

dx
+ 3y2 dy

dx
;

3x2 − 2xy − y2 = (2xy + 3y2 + x2)
dy

dx
;

dy

dx
=

3x2 − 2xy − y2

3y2 + 2xy + x2
.

C03S09.010: Given: x5 + y5 = 5x2y2:

5x4 + 5y4 dy

dx
= 10x2y

dy

dx
+ 10xy2;

dy

dx
=

10xy2 − 5x4

5y4 − 10x2y
.

C03S09.011: Given: x sin y + y sinx = 1:

x cos y
dy

dx
+ sin y + y cosx+ sinx

dy

dx
= 0;

dy

dx
= − sin y + y cosx

x cos y + sinx
.
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C03S09.012: Given: cos(x+ y) = sinx sin y:

− sin(x+ y)(1 +
dy

dx
) = sinx cos y

dy

dx
+ sin y cosx;

dy

dx
= − sin y cosx+ sin(x+ y)

sin(x+ y) + sinx cos y
.

C03S09.013: Given: 2x+3ey = ex+y. Differentiation of both sides of this equation (actually, an identity)
with respect to x yields

2 + 3ey
dy

dx
= ex+y

(
1 +

dy

dx

)
, and so

dy

dx
=

ex+y − 2
3ey − ex+y =

3ey + 2x− 2
(ex − 3)ey

.

C03S09.014: Given: xy = e−xy. Differentiation of both sides with respect to x yields

x
dy

dx
+ y = −exy

(
x
dy

dx
+ y

)
, and so (1 + e−xy)x

dy

dx
= −(1 + e−xy)y.

Because 1 + e−xy > 0 for all x and y, it follows that

dy

dx
= − y

x
.

Another way to solve this problem is to observe that the equation e−z = z has exactly one real solution
a ≈ 0.5671432904. Hence if e−xy = xy, then xy = a, so that y = a/x. Hence

dy

dx
= − a

x2
= − xy

x2
= − y

x
.

C03S09.015: 2x + 2y
dy

dx
= 0:

dy

dx
= −x

y
. At (3, −4) the tangent has slope 3

4 and thus equation

y + 4 = 3
4 (x− 3).

C03S09.016: x
dy

dx
+ y = 0:

dy

dx
= −y

x
. At (4, −2) the tangent has slope 1

2 and thus equation

y + 2 = 1
2 (x− 4).

C03S09.017: x2 dy

dx
+ 2xy = 1, so

dy

dx
=

1− 2xy
x2

. At (2, 1) the tangent has slope − 3
4 and thus equation

3x+ 4y = 10.

C03S09.018: 1
4x

−3/4 + 1
4y

−3/4 dy

dx
= 0:

dy

dx
= −(y/x)3/4. At (16, 16) the tangent has slope −1 and thus

equation x+ y = 32.

C03S09.019: y2 + 2xy
dy

dx
+ 2xy + x2 dy

dx
= 0:

dy

dx
= −2xy + y2

2xy + x2
. At (1, −2) the slope is zero, so an

equation of the tangent there is y = −2.

C03S09.020: − 1
(x+ 1)2

− 1
(y + 1)2

· dy
dx

= 0, so
dy

dx
= − (y + 1)2

(x+ 1)2
. At (1, 1) the tangent line has slope

−1 and thus equation y − 1 = −(x− 1).
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C03S09.021: 24x + 24y
dy

dx
= 25y + 25x

dy

dx
:

dy

dx
=

25y − 24x
24y − 25x

. At (3, 4) the tangent line has slope 4
3

and thus equation 4x = 3y.

C03S09.022: 2x+ y + x
dy

dx
+ 2y

dy

dx
= 0:

dy

dx
= −2x+ y

x+ 2y
. At (3, −2) the tangent line has slope 4 and

thus equation y + 2 = 4(x− 3).

C03S09.023:
dy

dx
=

3e2x + 2ey

3e2x + ex+2y
, so the tangent line at (0, 0) has slope 5

4 and equation 4y = 5x.

C03S09.024:
dy

dx
=

12e2x − ye3y
18e2x + xe3y

, so the tangent line at (3, 2) has slope 10
21 and equation 10x+12 = 21y.

C03S09.025: 2
3x

−1/3 + 2
3y

−1/3 dy

dx
= 0:

dy

dx
= −y

1/3

x1/3
. At (8, 1) the tangent line has slope − 1

2 and thus

equation y − 1 = − 1
2 (x− 8); that is, x+ 2y = 10.

C03S09.026: 2x− xdy
dx
− y + 2y

dy

dx
= 0:

dy

dx
=
y − 2x
2y − x . At (3, −2) the tangent line has slope 8

7 and thus

equation y + 2 = 8
7 (x− 3); that is, 7y = 8x− 38.

C03S09.027: 2
(
x2 + y2

)(
2x+ 2y

dy

dx

)
= 50x

dy

dx
+ 50y:

dy

dx
= − 2x3 − 25y + 2xy2

−25x+ 2x2y + 2y3
.

At (2, 4) the tangent line has slope 2
11 and thus equation y − 4 = 2

11 (x− 2); that is, 11y = 2x+ 40.

C03S09.028: 2y
dy

dx
= 3x2 + 14x:

dy

dx
=

3x2 + 14x
2y

. At (−3, 6) the tangent line has slope − 5
4 and thus

equation y − 6 = − 5
4 (x+ 3); alternatively, 4y = 9− 5x.

C03S09.029: 3x2 + 3y2 dy

dx
= 9x

dy

dx
+ 9y:

dy

dx
=

3y − x2

y2 − 3x
.

(a): At (2, 4) the tangent line has slope 4
5 and thus equation y − 4 = 4

5 (x− 2); that is, 5y = 4x+ 12.

(b): At a point on the curve at which
dy

dx
= −1, 3y − x2 = −y2 − 3x and x3 + y3 = 9xy. This pair of

simultaneous equations has solutions x = 0, y = 0 and x = 9
2 , y = 9

2 , but the derivative does not exist at
the point (0, 0). Therefore the tangent line with slope −1 has equation y − 9

2 = −
(
x− 9

2

)
.

C03S09.030: First, 2x2 − 5xy + 2y2 = (y − 2x)(2y − x).

(a): Hence if 2x2 − 5xy + 2y2 = 0, then y − 2x = 0 or 2y − x = 0. This is a pair of lines through the
origin; the first has slope 2 and the second has slope 1

2 .

(b): Differentiating implicitly, we obtain 4x−5x
dy

dx
−5y+4y

dy

dx
= 0, which gives

dy

dx
=

5y − 4x
4y − 5x

, which

is 2 if y = 2x and − 1
2 if y = − 1

2x.

C03S09.031: Here
dy

dx
=

2− x
y − 2

, so horizontal tangents can occur only if x = 2 and y �= 2. When x = 2,

the original equation yields y2 − 4y − 4 = 0, so that y = 2 ±
√

8. Thus there are two points at which the
tangent line is horizontal:

(
2, 2−

√
8

)
and

(
2, 2 +

√
8

)
.
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C03S09.032: First,
dy

dx
=
y − x2

y2 − x and
dx

dy
=
y2 − x
y − x2

. Horizontal tangents require y = x2, and the equation

x3 + y3 = 3xy of the folium yields x3(x3 − 2) = 0, so either x = 0 or x = 3
√

2. But dy/dx is not defined at
(0, 0), so only at

(
3
√

2, 3
√

4
)

is there a horizontal tangent. By symmetry or by a similar argument, there is
a vertical tangent at

(
3
√

4, 3
√

2
)

and nowhere else.

C03S09.033: By direct differentiation, dx/dy = (1 + y)ey. By implicit differentiation,
dy

dx
=

1
(1 + y)ey

,

and the results are equivalent.

(a): At (0, 0), dy/dx = 1, so an equation of the line tangent to the curve at (0, 0) is y = x.

(b): At (e, 1), dy/dx = 1/(2e), so an equation of the line tangent to the curve at (e, 1) is x+ e = 2ey.

C03S09.034: (a): By direct differentiation, dx/dy = (1 + y)ey, so there is only one point on the curve
where the tangent line is vertical (dx/dy = 0): (−1/e, −1).

(b): Because
dy

dx
=

1
(1 + y)ey

is never zero, the graph has no horizontal tangents.

C03S09.035: From 2(x2 + y2)
(

2x+ 2y
dy

dx

)
= 2x− 2y

dy

dx
it follows that

dy

dx
=
x[1− 2(x2 + y2)]
y[1 + 2(x2 + y2)]

.

So dy/dx = 0 when x2 + y2 = 1
2 , but is undefined when x = 0, for then y = 0 as well. If x2 + y2 = 1

2 , then
x2 − y2 = 1

4 , so that x2 = 3
8 , and it follows that y2 = 1

8 . Consequently there are horizontal tangents at all
four points where |x| = 1

4

√
6 and |y| = 1

4

√
2.

Also dx/dy = 0 only when y = 0, and if so, then x4 = x2, so that x = ±1 (dx/dy is undefined when
x = 0). So there are vertical tangents at the two points (−1, 0) and (1, 0).

C03S09.036: Base edge of block: x. Height: y. Volume: V = x2y. We are given dx/dt = −2 and
dy/dt = −3. Implicit differentiation yields

dV

dt
= x2 dy

dt
+ 2xy

dx

dt
.

When x = 20 and y = 15, dV/dt = (400)(−3) + (600)(−2) = −2400. So the rate of flow at the time given is
2400 in.3/h.

C03S08.037: Suppose that the pile has height h = h(t) at time t (seconds) and radius r = r(t) then. We
are given h = 2r and we know that the volume of the pile at time t is

V = V (t) =
π

3
r2h =

2
3
πr3. Now

dV

dt
=
dV

dr
· dr
dt
, so 10 = 2πr2

dr

dt
.

When h = 5, r = 2.5; at that time
dr

dt
=

10
2π(2.5)2

=
4
5π
≈ 0.25645 (ft/s).

C03S09.038: Draw a vertical cross section through the center of the tank. Let r denote the radius of the
(circular) water surface when the depth of water in the tank is y. From the drawing and the Pythagorean
theorem derive the relationship r2 + (10− y)2 = 100. Therefore

2r
dr

dt
− 2(10− y)dy

dt
= 0, and so r

dr

dt
= (10− y)dy

dt
.
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We are to find dr/dt when y = 5, given dy/dt = −3. At that time, r2 = 100− 25, so r = 5
√

3. Thus

dr

dt

∣∣∣∣
y=5

=
10− y
r
· dy
dt

∣∣∣∣
y=5

=
5

5
√

3
(−3) = −

√
3.

Answer: The radius of the top surface is decreasing at
√

3 ft/s then.

C03S09.039: We assume that the oil slick forms a solid right circular cylinder of height (thickness) h and
radius r. Then its volume is V = πr2h, and we are given V = 1 (constant) and dh/dt = −0.001. Therefore

0 = πr2
dh

dt
+ 2πrh

dr

dt
. Consequently 2h

dr

dt
=

r

1000
, and so

dr

dt
=

r

2000h
. When r = 8, h =

1
πr2

=
1

64π
. At

that time,
dr

dt
=

8 · 64π
2000

=
32π
125
≈ 0.80425 (m/h).

C03S09.040: Let x be the distance from the ostrich to the street light and u the distance from the base of
the light pole to the tip of the ostrich’s shadow. Draw a figure and so label it; by similar triangles you find

that
u

10
=
u− x

5
, and it follows that u = 2x. We are to find du/dt and Dt(u − x) = du/dt − dx/dt. But

u = 2x, so

du

dt
= 2

dx

dt
= (2)(−4) = −8;

du

dt
− dx

dt
= −8− (−4) = −4.

Answers: (a): +8 ft/s; (b): +4 ft/s.

C03S09.041: Let x denote the width of the rectangle; then its length is 2x and its area is A = 2x2. Thus
dA

dt
= 4x

dx

dt
. When x = 10 and dx/dt = 0.5, we have

dA

dt

∣∣∣∣
x=10

= (4)(10)(0.5) = 20 (cm2/s).

C03S09.042: Let x denote the length of each edge of the triangle. Then the triangle’s area is A(x) =(
1
4

√
3

)
x2, and therefore

dA

dt
=

(
1
2

√
3

)
x
dx

dt
. Given x = 10 and

dx

dt
= 0.5, we find that

dA

dt

∣∣∣∣
x=10

=
√

3
2
· 10 · (0.5) =

5
√

3
2

(cm2/s).

C03S089.043: Let r denote the radius of the balloon and V its volume at time t (in seconds). Then

V =
4
3
πr3, so

dV

dt
= 4πr2

dr

dt
.

We are to find dr/dt when r = 10, and we are given the information that dV/dt = 100π. Therefore

100π = 4π(10)2
dr

dt

∣∣∣∣
r=10

,

and so at the time in question the radius is increasing at the rate of dr/dt = 1
4 = 0.25 (cm/s).

C03S09.044: Because pV = 1000, V = 10 when p = 100. Moreover, p
dV

dt
+ V

dp

dt
= 0. With p = 100,

V = 10, and dp/dt = 2, we find that

dV

dt

∣∣∣∣
p=100

= −V
p
· dp
dt

∣∣∣∣
p=100

= − 10
100
· 2 = −1

5
.
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Therefore the volume is decreasing at 0.2 in.3/s.

C03S09.045: Place the person at the origin and the kite in the first quadrant at (x, 400) at time t, where
x = x(t) and we are given dx/dt = 10. Then the length L = L(t) of the string satisfies the equation

L2 = x2 + 160000, and therefore 2L
dL

dt
= 2x

dx

dt
. Moreover, when L = 500, x = 300. So

1000
dL

dt

∣∣∣∣
L=500

= 600 · 10,

which implies that the string is being let out at 6 ft/s.

C03S09.046: Locate the observer at the origin and the balloon in the first quadrant at (300, y), where
y = y(t) is the balloon’s altitude at time t. Let θ be the angle of elevation of the balloon (in radians) from
the observer’s point of view. Then tan θ = y/300. We are given dθ/dt = π/180 rad/s. Hence we are to find
dy/dt when θ = π/4. But y = 300 tan θ, so

dy

dt
= (300 sec2 θ)

dθ

dt
.

Substitution of the given values of θ and dθ/dt yields the answer

dy

dt

∣∣∣∣
θ=45◦

= 300 · 2 · π

180
=

10π
3
≈ 10.472 (ft/s).

C03S09.047: Locate the observer at the origin and the airplane at (x, 3), with x > 0. We are given
dx/dt where the units are in miles, hours, and miles per hour. The distance z between the observer and the
airplane satisfies the identity z2 = x2 + 9, and because the airplane is traveling at 8 mi/min, we find that
x = 4, and therefore that z = 5, at the time 30 seconds after the airplane has passed over the observer. Also

2z
dz

dt
= 2x

dx

dt
, so at the time in question, 10

dz

dt
= 8 · 480. Therefore the distance between the airplane and

the observer is increasing at 384 mi/h at the time in question.

C03S09.048: In this problem we have V = 1
3πy

2(15 − y) and (−100)(0.1337) =
dV

dt
= π(10y − y2)

dy

dt
.

Therefore
dy

dt
= − 13 · 37

πy(10− y) . Answers: (a): Approximately 0.2027 ft/min; (b): The same.

C03S09.049: We use a = 10 in the formula given in Problem 42. Then

V =
1
3
πy2(30− y).

Hence (−100)(0.1337) =
dV

dt
= π(20y − y2)

dy

dt
. Thus

dy

dt
= − 13 · 37

πy(20− y) . Substitution of y = 7 and y = 3

now yields the two answers:

(a): − 191
1300π

≈ −0.047 (ft/min); (b): − 1337
5100π

≈ −0.083 (ft/min).

C03S09.050: When the height of the water at the deep end of the pool is 10 ft, the length of the water
surface is 50 ft. So by similar triangles, if the height of the water at the deep end is y feet (y � 10), then
the length of the water surface is x = 5y feet. A cross section of the water perpendicular to the width of
the pool thus forms a right triangle of area 5y2/2. Hence the volume of the pool is V (y) = 50y2. Now

133.7 =
dV

dt
= 100y

dy

dt
, so when y = 6 we have

6



dy

dt

∣∣∣∣
y=6

=
133.7
600

≈ 0.2228 (ft/min).

C03S09.051: Let the positive y-axis represent the wall and the positive x-axis the ground, with the top of
the ladder at (0, y) and its lower end at (x, 0) at time t. Given: dx/dt = 4, with units in feet, seconds, and

feet per second. Also x2 + y2 = 412, and it follows that y
dy

dt
= −xdx

dt
. Finally, when y = 9, we have x = 40,

so at that time 9
dy

dt
= −40 · 4. Therefore the top of the ladder is moving downward at 160

9 ≈ 17.78 ft/s.

C03S09.052: Let x be the length of the base of the rectangle and y its height. We are given dx/dt = +4
and dy/dt = −3, with units in centimeters and seconds. The area of the rectangle is A = xy, so

dA

dt
= x

dy

dt
+ y

dx

dt
= −3x+ 4y.

Therefore when x = 20 and y = 12, we have dA/dt = −12, so the area of the rectangle is decreasing at the
rate of 12 cm2/s then.

C03S09.053: Let r be the radius of the cone, h its height. We are given dh/dt = −3 and dr/dt = +2, with
units in centimeters and seconds. The volume of the cone at time t is V = 1

3πr
2h, so

dV

dt
=

2
3
πrh

dr

dt
+

1
3
πr2

dh

dt
.

When r = 4 and h = 6,
dV

dt
=

2
3
· 24π · 2 +

1
3
· 16π · (−3) = 16π, so the volume of the cone is increasing at

the rate of 16π cm3/s then.

C03S09.054: Let x be the edge length of the square and A = x2 its area. Given:
dA

dt
= 120 when x = 10.

But dA/dt = 2x(dx/dt), so dx/dt = 6 when x = 10. Answer: At 6 in./s.

C03S09.055: Locate the radar station at the origin and the rocket at (4, y) in the first quadrant at time
t, with y in miles and t in hours. The distance z between the station and the rocket satisfies the equation

y2 + 16 = z2, so 2y
dy

dt
= 2z

dz

dt
. When z = 5, we have y = 3, and because dz/dt = 3600 it follows that

dy/dt = 6000 mi/h.

C03S09.056: Locate the car at (x, 0), the truck at (0, y) (x, y > 0). Then at 1 p.m. we have x = 90 and
y = 80. We are given that data dx/dt = 30 and dy/dt = 40, with units in miles, hours, and miles per hour.
The distance z between the vehicles satisfies the equation z2 = x2 + y2, so

z
dz

dt
= x

dx

dt
+ y

dy

dt
.

Finally, at 1 p.m. z2 = 8100 + 6400 = 14500, so z = 10
√

145 then. So at 1 p.m.

dz

dt
=

2700 + 3200
10
√

145
=

590√
145

mi/h—approximately 49 mi/h.

C03S09.057: Put the floor on the nonnegative x-axis and the wall on the nonnegative y-axis. Let x denote
the distance from the wall to the foot of the ladder (measured along the floor) and let y be the distance from
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the floor to the top of the ladder (measured along the wall). By the Pythagorean theorem, x2 + y2 = 100,
and we are given dx/dt = 22

15 (because we will use units of feet and seconds rather than miles and hours).
From the Pythagorean relation we find that

2x
dx

dt
+ 2y

dy

dt
= 0,

so that
dy

dt
= − x

y
· dx
dt

= − 22x
15y

.

(a): If y = 4, then x =
√

84 = 2
√

21. Hence when the top of the ladder is 4 feet above the ground, it
is moving a a rate of

dy

dt

∣∣∣∣∣
y=4

= − 44
√

21
60

= −11
√

21
15

≈ −3.36

feet per second, about 2.29 miles per hour downward.

(b): If y = 1
12 (one inch), then

x2 = 100− 1
144

=
14399
144

, so that x ≈ 9.99965.

In this case,

dy

dt

∣∣∣∣∣
y=1/12

= −22 · (9.99965)
15 · 1

12

= −88
5
· (9.99965) ≈ −176

feet per second, about 120 miles per hour downward.

(c): If y = 1 mm, then x ≈ 10 (ft), and so

dy

dt
≈ −22

15
· (3048) ≈ 4470

feet per second, about 3048 miles per hour.

The results in parts (b) and (c) are not plausible. This shows that the assumption that the top of the
ladder never leaves the wall is invalid

C03S09.058: Let x be the distance between the Pinta and the island at time t and y the distance between
the Niña and the island then. We know that x2 + y2 = z2 where z = z(t) is the distance between the two
ships, so

2z
dz

dt
= 2x

dx

dt
+ 2y

dy

dt
. (1)

When x = 30 and y = 40, z = 50. It follows from Eq. (1) that dz/dt = −25 then. Answer: They are
drawing closer at 25 mi/h at the time in question.

C03S09.059: Locate the military jet at (x, 0) with x < 0 and the other aircraft at (0, y) with y � 0. With
units in miles, minutes, and miles per minute, we are given dx/dt = +12, dy/dt = +8, and when t = 0,
x = −208 and y = 0. The distance z between the aircraft satisfies the equation x2 + y2 = z2, so

dz

dt
=

1√
x2 + y2

(
x
dx

dt
+ y

dy

dt

)
=

12x+ 8y√
x2 + y2

.
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The closest approach will occur when dz/dt = 0: y = −3x/2. Now x(t) = 12t − 208 and y(t) = 8t. So at
closest approach we have

8t = y(t) = −3
2
x(t) = −3

2
(12t− 208).

Hence at closest approach, 16t = 624 − 36t, and thus t = 12. At this time, x = −64, y = 96, and
z = 32

√
13 ≈ 115.38 (mi).

C03S09.060: Let x be the distance from the anchor to the point on the seabed directly beneath the
hawsehole; let L be the amount of anchor chain out. We must find dx/dt when L = 13 (fathoms), given

dL/dt = −10. Now x2 + 144 = L2, so 2L
dL

dt
= 2x

dx

dt
. Consequently,

dx

dt
=
L

x
· dL
dt

. At the time in question

in the problem, x2 = 132 − 122, so x = 5. It follows that dx/dt = −26 then. Thus the ship is moving at 26
fathoms per minute—about 1.77 mi/h.

C03S09.061: Let x be the radius of the water surface at time t and y the height of the water remaining at
time t. If Q is the amount of water remaining in the tank at time t, then (because the water forms a cone)

Q = Q(t) = 1
3πx

2y. But by similar triangles,
x

y
=

3
5
, so x =

3y
5

. So

Q(t) =
1
3
π

9
25
y3 =

3
25
πy3.

We are given dQ/dt = −2 when y = 3. This implies that when y = 3, −2 =
dQ

dt
=

9
25
πy2 dy

dt
. So at the time

in question,

dy

dt

∣∣∣∣
y=3

= − 50
81π

≈ −0.1965 (ft/s).

C03S09.062: Given V = 1
3π(30y2 − y3), find dy/dt given V , y, and dy/dt. First,

dV

dt
=

1
3
π(60y − 3y2)

dy

dt
= π(20y − y2)

dy

dt
.

So
dy

dt
=

1
π(20y − y2)

· dV
dt

. Therefore, when y = 5, we have

dy

dt

∣∣∣∣
y=5

=
(200)(0.1337)
π(100− 25)

≈ 0.113488 (ft/min).

C03S09.063: Let r be the radius of the water surface at time t, h the depth of water in the bucket then.
By similar triangles we find that

r − 6
h

=
1
4
, so r = 6 +

h

4
.

The volume of water in the bucket then is

V =
1
3
πh(36 + 6r + r2)

=
1
3
π

(
36 + 36 +

3
2
h+ 36 + 3h+

1
16
h2

)

=
1
3
πh

(
108 +

9
2
h+

1
16
h2

)
.
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Now
dV

dt
= −10; we are to find dh/dt when h = 12.

dV

dt
=

1
3
π(108 + 9h+

3
16
h2)

dh

dt
.

Therefore
dh

dt

∣∣∣∣
h=12

=
3
π
· −10

108 + 9 · 12 +
3 · 122

16

= − 10
81π

≈ −0.0393 (in./min).

C03S09.064: Let x denote the distance between the ship and A, y the distance between the ship and B,
h the perpendicular distance from the position of the ship to the line AB, u the distance from A to the foot
of this perpendicular, and v the distance from B to the foot of the perpendicular. At the time in question,
we know that x = 10.4, dx/dt = 19.2, y = 5, and dy/dt = −0.6. From the right triangles involved, we see
that u2 + h2 = x2 and (12.6− u)2 + h2 = y2. Therefore

x2 − u2 = y2 − (12.6− u)2. (1)

We take x = 10.4 and y = 5 in Eq. (1); it follows that u = 9.6 and that v = 12.6− u = 3. From Eq. (1), we
know that

x
dx

dt
− udu

dt
= y

dy

dt
+ (12.6− u)du

dt
,

so

du

dt
=

1
12.6

(
x
dx

dt
− y dy

dt

)
.

From the data given, du/dt ≈ 16.0857. Also, because h =
√
x2 − u2 , h = 4 when x = 10.4 and y = 9.6.

Moreover, h
dh

dt
= x

dx

dt
− udu

dt
, and therefore

dh

dt

∣∣∣∣
h=4

≈ 1
4

[(10.4)(19.2)− (9.6)(16.0857)] ≈ 11.3143.

Finally,
dh/dt

du/dt
≈ 0.7034, so the ship is sailing a course about 35◦7′ north or south of east at a speed of√

(du/dt)2 + (dh/dt)2 ≈ 19.67 mi/h. It is located 9.6 miles east and 4 miles north or south of A, or 10.4
miles from A at a bearing of either 67◦22′ 48′′ or 112◦37′ 12′′.

C03S09.065: Set up a coordinate system in which the radar station is at the origin, the plane passes
over it at the point (0, 1) (so units on the axes are in miles), and the plane is moving along the graph of
the equation y = x + 1. Let s be the distance from (0, 1) to the plane and let u be the distance from the
radar station to the plane. We are given du/dt = +7 mi/min. We may deduce from the law of cosines that
u2 = s2 + 1 + s

√
2. Let v denote the speed of the plane, so that v = ds/dt. Then

2u
du

dt
= 2sv + v

√
2 = v

(
2s+

√
2

)
, and so v =

2u
2s+

√
2
· du
dt
.

When u = 5, s2 + s
√

2 − 24 = 0. The quadratic formula yields the solution s = 3
√

2, and it follows that
v = 5

√
2 mi/min; alternatively, v ≈ 424.26 mi/h.

C03S09.066: V (y) = 1
3π(30y2 − y3) where the depth is y. Now

dV

dt
= −k√y =

dV

dy
· dy
dt

, and therefore
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dy

dt
= −

k
√
y

dV

dy

= −
k
√
y

π(20y − y2)
.

To minimize dy/dt, write F (y) = dy/dt. It turns out (after simplifications) that

F ′(y) =
k

2π
· 20y − 3y2

(20y − y2)2
√
y
.

So F ′(y) = 0 when y = 0 and when y = 20
3 . When y is near 20, F (y) is very large; the same is true for y

near zero. So y = 20
3 minimizes dy/dt, and therefore the answer to part (b) is 6 ft 8 in.

C03S09.067: Place the pole at the origin in the plane, and let the horizontal strip 0 � y � 30 represent the
road. Suppose that the person is located at (x, 30) with x > 0 and is walking to the right, so dx/dt = +5.
Then the distance from the pole to the person will be

√
x2 + 900 . Let z be the length of the person’s shadow.

By similar triangles it follows that 2z =
√
x2 + 900 , so 4z2 = x2 + 900, and thus 8z

dz

dt
= 2x

dx

dt
. When

x = 40, we find that z = 25, and therefore that

100
dz

dt

∣∣∣∣
z=25

= 40 · 5 = 200.

Therefore the person’s shadow is lengthening at 2 ft/s at the time in question.

C03S09.068: Set up a coordinate system in which the officer is at the origin and the van is moving in the
positive direction along the line y = 200 (so units on the coordinate axes are in feet). When the van is at

position (x, 200), the distance from the officer to the van is z, where x2 + 2002 = z2, so that x
dx

dt
= z

dz

dt
.

When the van reaches the call box, x = 200, z = 200
√

2, and dz/dt = 66. It follows that

dx

dt

∣∣∣∣
x=200

= 66
√

2,

which translates to about 63.6 mi/h.
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Section 3.10

Note: Your answers may differ from ours in the last one or two decimal places because of differences in
hardware or in the way the problem was solved. We used Mathematica 3.0 and carried 40 decimal digits
throughout all calculations, and our answers are correct or correctly rounded to the number of digits shown
here. In most of the first 20 problems the initial guess x0 was obtained by linear interpolation. Finally, the
equals mark is used in this section to mean “equal or approximately equal.”

C03S10.001: With f(x) = x2 − 5, a = 2, b = 3, and

x0 = a− (b− a)f(a)
f(b)− f(a)

= 2.2,

we used the iterative formula

xn+1 = xn −
f(xn)
f ′(xn)

for n � 0.

Thus we obtained x1 = 2.236363636, x2 = 2.236067997, and x3 = x4 = 2.236067977. Answer: 2.2361.

C03S10.002: x0 = 1.142857143; we use f(x) = x3 − 2. Then x1 = 1.272321429, x2 = 1.260041515,
x3 = 1.259921061, and x4 = x5 = 1.259921050. Answer: 1.2599.

C03S10.003: x0 = 2.322274882; we use f(x) = x5 − 100. Then x1 = 2.545482651, x2 = 2.512761634,
x3 = 2.511887041, and x4 = x5 = 2.511886432. Answer: 2.5119.

C03S10.004: Let f(x) = x3/2 − 10. Then x0 = 4.628863603. From the iterative formula

x←− x− x3/2 − 10
3
2x

1/2

we obtain x1 = 4.641597575, x2 = 4.641588834 = x3. Answer: 4.6416.

C03S10.005: 0.25, 0.3035714286, 0.3027758133, 0.3027756377. Answer: 0.3028.

C03S10.006: 0.2, 0.2466019417, 0.2462661921, 0.2462661722. Answer: 0.2463.

C03S10.007: x0 = −0.5, x1 = −0.8108695652, x2 = −0.7449619516, x3 = −0.7402438226,
x4 = −0.7402217826 = x5. Answer: 0.7402.

C03S10.008: Let f(x) = x3 + 2x2 + 2x − 10. With initial guess x0 = 1.5 (the midpoint of the interval),
we obtain x1 = 1.323943661972, x2 = 1.309010783652, x3 = 1.308907324710, x4 = 1.308907319765, and
x5 = 1.308907319765. Answer: 1.3089.

C03S10.009: With f(x) = x − cosx, f ′(x) = 1 + sinx, and calculator set in radian mode, we obtain
x0 = 0.5854549279, x1 = 0.7451929664, x2 = 0.7390933178, x3 = 0.7390851332, and x4 = x3. Answer:
0.7391.

C03S10.010: Let f(x) = x2 − sinx. Then f ′(x) = 2x − cosx. The linear interpolation formula yields
x0 = 0.7956861008, and the iterative formula

x←− x− x2 − sinx
2x− cosx

1



(with calculator in radian mode) yields the following results: x1 = 0.8867915207, x2 = 0.8768492470,
x3 = 0.8767262342, and x4 = 0.8767262154 = x5. Answer: 0.8767.

C03S10.011: With f(x) = 4x − sinx − 4 and calculator in radian mode, we get the following results:
x0 = 1.213996400, x1 = 1.236193029, x2 = 1.236129989 = x3. Answer: 1.2361.

C03S10.012: x0 = 0.8809986055, x1 = 0.8712142932, x3 = 0.8712215145, and x4 = x3. Answer: 0.8712.

C03S10.013: With x0 = 2.188405797 and the iterative formula

x←− x− x4(x+ 1)− 100
x3(5x+ 4)

,

we obtain x1 = 2.360000254, x2 = 2.339638357, x3 = 2.339301099, and x4 = 2.339301008 = x5. Answer:
2.3393.

C03S10.014: x0 = 0.7142857143, x1 = 0.8890827860, x2 = 0.8607185590, x3 = 0.8596255544, and
x4 = 0.8596240119 = x5. Answer: 0.8596.

C03S10.015: The nearest discontinuities of f(x) = x− tanx are at π/2 and at 3π/2, approximately 1.571
and 4.712. Therefore the function f(x) = x− tanx has the intermediate value property on the interval [2, 3].
Results: x0 = 2.060818495, x1 = 2.027969226, x2 = 2.028752991, and x3 = 2.028757838 = x4. Answer:
2.0288.

C03S10.016: As 7
2π ≈ 10.9956 and 9

2pi ≈ 14.1372 are the nearest discontinuities of f(x) = x− tanx, this
function has the intermediate value property on the interval [11, 12]. Because f(11) ≈ −214.95 and f(12) ≈
11.364, the equation f(x) = 0 has a solution in [11, 12]. We obtain x0 = 11.94978618 by interpolation, and
the iteration

x←− x− x+ tanx
1 + sec2 x

of Newton’s method yields the successive approximations

x1 = 7.457596948, x2 = 6.180210620, x3 = 3.157913273, x4 = 1.571006986;

after many more iterations we arrive at the answer 2.028757838 of Problem 15. The difficulty is caused by the
fact that f(x) is generally a very large number, so the iteration of Newton’s method tends to alter the value of
x excessively. A little experimentation yields the fact that f(11.08) ≈ −0.736577 and f(11.09) ≈ 0.531158.
We begin anew on the better interval [11.08, 11.09] and obtain x0 = 11.08581018, x1 = 11.08553759,
x2 = 11.08553841, and x3 = x2. Answer: 11.0855.

C03S10.017: x− e−x = 0; [0, 1]: x0 = 0.5, x1 ≈ 0.5663, x2 ≈ 0.5671, x3 ≈ 0.5671.

C03S10.018: x0 = 2.058823529, x1 = 2.095291459, x2 = 2.094551790, x3 = 2.094551482 = x4. Answer:
2.0946.

C03S10.019: ex + x− 2 = 0; [0, 1]: x0 = 0.5, x1 ≈ 0.4439, x2 ≈ 0.4429, x3 ≈ 0.4429.

C03S10.020: e−x − lnx = 0; [1, 2]: x0 = 1.5, x1 ≈ 1.2951, x2 ≈ 1.3097, x3 ≈ 1.3098 ≈ x4.

C03S10.021: Let f(x) = x3 − a. Then the iteration of Newton’s method in Eq. (6) takes the form
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xn+1 = xn −
f(xn)
f ′(xn)

= xn −
(xn)3 − a
3(xn)2

=
2(xn)3 + a

3(xn)2
=

1
3

(
2xn +

a

(xn)2

)
.

Because 1 < 3
√

2 < 2, we begin with x0 = 1.5 and apply this formula with a = 2 to obtain x1 = 1.296296296,
x2 = 1.260932225, x3 = 1.259921861, and x4 = 1.259921050 = x5. Answer: 1.25992.

C03S10.022: The formula in Eq. (6) of the text, with f(x) = xk − a, takes the form

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
(xn)k − a
k(xn)k−1

=
(k − 1)(xn)k + a

k(xn)k−1
=

1
k

[
(k − 1)xn +

a

(xn)k−1

]
.

We take a = 100, k = 10, and x0 = 1.5 and obtain x1 = 1.610122949, x2 = 1.586599871, x3 = 1.584901430,
x4 = 1.584893193, and x5 = 1.584893192 = x6. Answer: 1.58489.

C03S10.023: We get x0 = 0.5, x1 = 0.4387912809, x2 = 0.4526329217, x3 = 0.4496493762, . . . ,
x14 = 0.4501836113 = x15. The method of repeated substitution tends to converge much more slowly than
Newton’s method, has the advantage of not requiring that you compute a derivative or even that the functions
involved are differentiable, and has the disadvantage of more frequent failure than Newton’s method when
both are applicable (see Problems 24 and 25).

C03S10.024: Our results using the first formula: x0 = 1.5, x1 = 1.257433430, x2 = 1.225755182,
x3 = 1.221432153, . . . , x10 = 1.220745085 = x11. When we use the second formula, we obtain x1 = 4.0625,
x2 = 271.3789215, x3 = 5423829645, and x4 has 39 digits to the left of the decimal point. It frequently
requires some ingenuity to find a suitable way to put the equation f(x) = 0 into the form x = G(x).

C03S10.025: Beginning with x0 = 0.5, the first formula yields x0 = 0.5, x1 = −1, x2 = 2, x3 = 2.75,
x4 = 2.867768595, . . . , x12 = 2.879385242 = x13. Wrong root! At least the method converged. If your
calculator or computer balks at computing the cube root of a negative number, then you can rewrite the
second formula in Problem 25 in the form

x = Sgn(3x2 − 1) · |3x2 − 1|1/3.

The results, again with x0 = 0.5, are x1 = −0.629960525, x2 = 0.575444686, x3 = −0.187485243,
x4 = −0.963535808, . . . , x25 = 2.877296053, x26 = 2.877933902, . . . , and x62 = 2.879385240 = x63.
Not only is convergence extremely slow, the method of repeated substitution again leads to the wrong root.
Finally, the given equation can also be written in the form

x =
1√

3− x
,

and in this case, again with x0 = 0.5, we obtain x1 = 0.632455532, x2 = 0.649906570, x3 = 0.652315106,
x4 = 0.652649632, . . . , and x12 = 0.652703645 = x13.

C03S10.026: If f(x) =
1
x
− a, then Newton’s method uses the iteration

x←− x−
1
x
− a

− 1
x2

= x+ x2

(
1
x
− a

)
= 2x− ax2.

C03S10.027: Let f(x) = x5 + x − 1. Then f(x) is a polynomial, thus is continuous everywhere, and
thus has the intermediate value property on every interval. Also f(0) = −1 and f(1) = 1, so f(x) must
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assume the intermediate value 0 somewhere in the interval [0, 1]. Thus the equation f(x) = 0 has at least

one solution. Next, f ′(x) = 5x4 + 1 is positive for all x, so f is an increasing function. Because f is
continuous, its graph can therefore cross the x-axis at most once, and so the equation f(x) = 0 has at

most one solution. Thus it has exactly one solution. Incidentally, Newton’s method yields the approximate
solution 0.75487766624669276. To four places, 0.7549.

C03S10.028: Let f(x) = x2−cosx. The graph of f on [−1, 1] shows that there are two solutions, one near
−0.8 and the other near 0.8. With x0 = 0.8, Newton’s method yields x1 = 0.824470434, x2 = 0.824132377,
and x3 = 0.824132312 = x4. Because f(−x) = f(x), the other solution is −0.824132312. Answer: ±0.8241.

C03S10.029: Let f(x) = x−2 sinx. The graph of f on [−2, 2] shows that there are exactly three solutions,
the largest of which is approximately x0 = 1.9. With Newton’s method we obtain x1 = 1.895505940, and
x2 = 1.895494267 = x3. Because f(−x) = −f(x), the other two solutions are 0 and −1.895494267. Answer:
±1.8955 and 0.

C03S10.030: Let f(x) = x+ 5 cosx. The graph of f on the interval [−5, 5] shows that there are exactly
three solutions, approximately −1.3, 2.0, and 3.9. Newton’s method then yields

n First xn Second xn Third xn
1 −1.306444739 1.977235450 3.839096917

2 −1.306440008 1.977383023 3.837468316

3 −1.306440008 1.977383029 3.837467106

4 −1.306440008 1.977383029 3.837467106

Answers: −1.3064, 1.9774, and 3.8375.

C03S10.031: Let f(x) = x7 − 3x3 + 1. Then f(x) is a polynomial, so f is continuous on every interval
of real numbers, including the intervals [−2, −1], [0, 1], and [1, 2]. Also f(−2) = −103 < 0 < 3 = f(−1),
f(0) = 1 > 0 > −1 = f(1), and f(1) = −1 < 0 < 105 = f(2). Therefore the equation f(x) = 0 has one
solution in (−2, −1), another in (0, 1), and a third in (1, 2). (It has no other real solutions.) The graph of
f shows that the first solution is near −1.4, the second is near 0.7, and the third is near 1.2. Then Newton’s
method yields

n First xn Second xn Third xn
1 −1.362661201 0.714876604 1.275651936

2 −1.357920265 0.714714327 1.258289744

3 −1.357849569 0.714714308 1.256999591

4 −1.357849553 0.714714308 1.256992779

5 −1.357849553 0.714714308 1.256992779

Answers: −1.3578, 0.7147, and 1.2570.

C03S10.032: Let f(x) = x3 − 5. Use the iteration

x←− x− x3 − 5
3x2

.

With x0 = 2, we obtain the sequence of approximations 1.75, 1.710884354, 1.709976429, 1.709975947,
and 1.709975947. Answer: 1.7100.

C03S10.033: There is only one solution of x3 = cosx for the following reasons: x3 < −1 � cosx if
x < −1, x3 < 0 < cosx if −1 < x < 0, x3 is increasing on [0, 1] whereas cosx is decreasing there (and their
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graphs cross in this interval as a consequence of the intermediate value property of continuous functions),
and x3 > 1 � cosx for x > 1. The graph of f(x) = x3− cosx crosses the x-axis near x0 = 0.9, and Newton’s
method yields x1 = 0.866579799, x2 = 0.865475218, and x3 = 0.865474033 = x4. Answer: Approximately
0.8654740331016145.

C03S10.034: The graphs of y = x and y = tanx show that the smallest positive solution of the equation
f(x) = x−tanx = 0 is between π and 3π/2. With initial guess x = 4.5 we obtain 4.493613903, 4.493409655,
4.493409458, and 4.493409458. Answer: Approximately 4.493409457909064.

C03S10.035: With x0 = 3.5, we obtain the sequence x1 = 3.451450588, x2 = 3.452461938, and finally
x3 = 3.452462314 = x4. Answer: Approximately 3.452462314057969.

C03S10.036: To find a zero of f(θ) = θ − 1
2 sin θ − 17

50π, we use the iteration

θ ←− θ −
θ − 1

2 sin θ − 17
50π

1− 1
2 cos θ

.

The results, with θ0 = 1.5 (86◦56′ 37′′), are: θ1 = 1.569342 (89◦55′ 00′′), θ2 = 1.568140 (89◦50′ 52′′),
θ3 = 1.568140.

C03S10.037: If the plane cuts the sphere at distance x from its center, then the smaller spherical segment
has height h = a− x = 1− x and the larger has height h = a+ x = 1 + x. So the smaller has volume

V1 =
1
3
πh2(3a− h) =

1
3
π(1− x)2(2 + x)

and the larger has volume

V2 =
1
3
πh2(3a− h) =

1
3
π(1 + x)2(2− x) = 2V1.

These equations leads to

(1 + x)2(2− x) = 2(1− x)2(2 + x);

(x2 + 2x+ 1)(x− 2) + 2(x2 − 2x+ 1)(x+ 2) = 0;

x3 − 3x− 2 + 2x3 − 6x+ 4 = 0;

3x3 − 9x+ 2 = 0.

The last of these equations has three solutions, one near −1.83 (out of range), one near 1.61 (also out
of range), and one near x0 = 0.2. Newton’s method yields x1 = 0.225925926, x2 = 0.226073709, and
x3 = 0.226073714 = x4. Answer: 0.2261.

C03S10.038: This table shows that the equation f(x) = 0 has solutions in each of the intervals (−3, −2),
(0, 1), and (1, 2).

x −3 −2 −1 0 1 2 3

f(x) −14 1 4 1 −2 1 16

The next table shows the results of the iteration of Newton’s method:
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n xn xn xn

0 1.5 0.5 −2.5
1 2.090909091 0.2307692308 −2.186440678
2 1.895903734 0.2540002371 −2.118117688
3 1.861832371 0.2541016863 −2.114914461
4 1.860806773 0.2541016884 −2.114907542
5 1.860805853 0.2541016884 −2.114907541
6 1.860805853 −2.114907541

Answer: −2.1149, 0.2541, and 1.8608.

C03S10.039: We iterate using the formula

x←− x− x+ tanx
1 + sec2 x

.

Here is a sequence of simple Mathematica commands to find approximations to the four least positive solu-
tions of the given equation, together with the results. (The command list=g[list] was executed repeatedly,
but deleted from the output to save space.)

list={2.0, 5.0, 8.0, 11.0}
f[x ]:=x+Tan[x]

g[x ]:=N[x−f[x]/f ′[x], 10]

list=g[list]

2.027314579, 4.879393859, 7.975116372, 11.00421012

2.028754298, 4.907699753, 7.978566616, 11.01202429

2.028757838, 4.913038110, 7.978665635, 11.02548807

2.028757838, 4.913180344, 7.978665712, 11.04550306

2.028757838, 4.913180439, 7.978665712, 11.06778114

2.028757838, 4.913180439, 7.978665712, 11.08205766

2.028757838, 4.913180439, 7.978665712, 11.08540507

2.028757838, 4.913180439, 7.978665712, 11.08553821

2.028757838, 4.913180439, 7.978665712, 11.08553841

Answer: 2.029 and 4.913.

C03S10.040: Plot the graph of f(x) = 4x3−42x2−19x−28 on [−3, 12] to see that the equation f(x) = 0
has exactly one real solution neear x = 11. The initial guess x0 = 0 yields the solution x = 10.9902 after
20 iterations. The initial guess x0 = 10 yields the solution after three iterations. The initial guess x0 = 100
yields the solution after ten iterations.

C03S10.041: Similar triangles show that

x

u+ v
=

5
v

and
y

u+ v
=

5
u
,
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so that

x = 5 · u+ v

v
= 5(1 + t) and y = 5 · u+ v

u
= 5

(
1 +

1
t

)
.

Next, w2 + y2 = 400 and w2 + x2 = 225, so that:

400− y2 = 225− x2;

175 + x2 = y2;

175 + 25(1 + t)2 = 25
(

1 +
1
t

)2

;

175t2 + 25t2(1 + t)2 = 25(1 + t)2;

7t2 + t4 + 2t3 + t2 = t2 + 2t+ 1;

t4 + 2t3 + 7t2 − 2t− 1 = 0.

The graph of f(t) = t4+2t3+7t2−2t−1 shows a solution of f(t) = 0 near x0 = 0.5. Newton’s method yields
x1 = 0.491071429, x2 = 0.490936940, and x3 = 0.490936909 = x4. It now follows that x = 7.454684547,
that y = 15.184608052, that w = 13.016438772, that u = 4.286063469, and that v = 8.730375303. Answers:
t = 0.4909 and w = 13.0164.

C03S010.042: We let f(x) = 3 sinx − lnx. The graph of f on the interval [1, 22] does not make it
clear whether there are no solutions of f(x) = 0 between 20 and 22, or one solution, or two. But the
graph on [20, 21] makes it quite clear that there is no solution there: The maximum value of f(x) there is
approximately −0.005 and occurs close to x = 20.4. The iteration of Newton’s method,

xn+1 = xn −
f(xn)
f ′(xn)

,

beginning with the initial values x0 = 7, x0 = 9, x0 = 13.5, and x0 = 14.5, yielded the following (rounded)
results:

n xn xn xn xn

1 6.9881777136 8.6622012723 13.6118476398 14.6151381365

2 6.9882410659 8.6242919485 13.6226435579 14.6025252483

3 6.9882410677 8.6236121268 13.6227513693 14.6023754151

4 6.9882410677 8.6236119024 13.6227513801 14.6023753939

5 6.9882410677 8.6236119024 13.6227513801 14.6023753939

The last line in the table gives the other four solutions to ten-place accuracy.

C03S010.043: Let f(θ) = (100 + θ) cos θ − 100. The iterative formula of Newton’s method is

θi+1 = θi −
f(θi)
f ′(θi)

(1)
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where, of course, f ′(θ) = cos θ− (100 + θ) sin θ. Beginning with θ0 = 1, iteration of the formula in (1) yields

0.4620438212, 0.2325523723, 0.1211226155, 0.0659741863,

0.0388772442, 0.0261688780, 0.0211747166, 0.0200587600,

0.0199968594, 0.0199966678, 0.0199966678, 0.0199966678.

We take the last value of θi to be sufficiently accurate. The corresponding radius of the asteriod is thus
approximately 1000/θ12 ≈ 50008.3319 ft, about 9.47 mi.

C03S010.044: The length of the circular arc is 2Rθ = 5281; the length of its chord is 2R sin θ = 5280
(units are radians and feet). Division of the second of these equations by the first yields

sin θ
θ

=
5280
5281

.

To solve for θ by means of Newton’s method, we let f(θ) = 5281 sin θ − 5280θ. The iterative formula of
Newton’s method is

θi+1 = θi −
5281 sin θ − 5280θ
5281 cos θ − 5280

. (1)

Beginning with the [poor] initial guess θ0 = 1, iteration of the formula in (1) yields these results:

0.655415, 0.434163, 0.289117, 0.193357, 0.130147,

0.0887267, 0.0621344, 0.0459270, 0.0373185, 0.0341721,

0.0337171, 0.0337078, 0.0337078, 0.0337078, 0.0337078.

Hence the radius of the circular arc is

R ≈ 5281
2θ15

≈ 78335.1,

and its height at its center is

x = R(1− cos θ) ≈ 44.4985.

That is, the maximum height is about 44.5 feet! Surprising to almost everyone.
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Chapter 3 Miscellaneous Problems

C03S0M.001: If y = y(x) = x2 + 3x−2, then
dy

dx
= 2x− 6x−3 = 2x− 6

x3
.

C03S0M.002: Given y2 = x2, implicit differentiation with respect to x yields

2y
dy

dx
= 2x, so that

dy

dx
=
x

y
.

C03S0M.003: If y = y(x) =
√
x+

1
3
√
x

= x1/2 + x−1/3, then

dy

dx
=

1
2
x−1/2 − 1

3
x−4/3 =

1
2x1/2

− 1
3x4/3

=
3x5/6 − 2

6x4/3
.

C03S0M.004: Given y = y(x) = (x2 + 4x)5/2, the chain rule yields
dy

dx
=

5
2
(x2 + 4x)3/2(2x+ 4).

C03S0M.005: Given y = y(x) = (x− 1)7(3x+ 2)9, the product rule and the chain rule yield

dy

dx
= 7(x− 1)6(3x+ 2)9 + 27(x− 1)7(3x+ 2)8 = (x− 1)6(3x+ 2)8(48x− 13).

C03S0M.006: Given y = y(x) =
x4 + x2

x2 + x+ 1
, the quotient rule yields

dy

dx
=

(x2 + x+ 1)(4x3 + 2x)− (x4 + x2)(2x+ 1)
(x2 + x+ 1)2

=
2x5 + 3x4 + 4x3 + x2 + 2x

(x2 + x+ 1)2
.

C03S0M.007: If y = y(x) =
(

3x− 1
2x2

)4

=
(
3x− 1

2x
−2

)4
, then

dy

dx
= 4

(
3x− 1

2x
−2

)3 · (3 + x−3
)

= 4
(

3x− 1
2x2

)3

·
(

3 +
1
x3

)
.

C03S0M.008: Given y = y(x) = x10 sin 10x, the product rule and the chain rule yield

dy

dx
= 10x9 sin 10x+ 10x10 cos 10x = 10x9(sin 10x+ x cos 10x).

C03S0M.009: Given xy = 9, implicit differentiation with respect to x yields

x
dy

dx
+ y = 0, so that

dy

dx
= − y

x
.

Alternatively, y = y(x) =
9
x

, so that
dy

dx
= − 9

x2
.

C03S0M.010: y = y(x) = (5x6)−1/2:
dy

dx
= −1

2
(5x6)−3/2(30x5) = − 3

x
√

5x6
= −3

√
5

5x4
.

C03S0M.011: Given y = y(x) =
1√

(x3 − x)3
= (x3 − x)−3/2,
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dy

dx
= − 3

2
(x3 − x)−5/2(3x2 − 1) = − 3(3x2 − 1)

2(x3 − x)5/2 .

C03S0M.012: Given y = y(x) = (2x+ 1)1/3(3x− 2)1/5,

dy

dx
=

2
3
(2x+ 1)−2/3(3x− 2)1/5 +

3
5
(3x− 2)−4/5(2x+ 1)1/3

=
10(3x− 2) + 9(2x+ 1)

15(2x+ 1)2/3(3x− 2)4/5
=

48x− 11
15(2x+ 1)2/3(3x− 2)4/5

.

C03S0M.013:
dy

dx
=
dy

du
· du
dx

=
−2u

(1 + u2)2
· −2x
(1 + x2)2

. Now 1 + u2 = 1 +
1

(1 + x2)2
=
x4 + 2x2 + 2

(1 + x2)2
.

So
dy

du
=

−2u
(1 + u2)2

=
−2

1 + x2
· (1 + x2)4

(x4 + 2x2 + 2)2
=
−2(1 + x2)3

(x4 + 2x2 + 2)2
.

Therefore
dy

dx
=
−2(1 + x2)3

(x4 + 2x2 + 2)2
· −2x
(1 + x2)2

=
4x(1 + x2)

(x4 + 2x2 + 2)2
.

C03S0M.014: 3x2 = 2
dy

dx
sin y cos y, so

dy

dx
=

3x2

2 sin y cos y
.

C03S0M.015: Given y = y(x) =
(
x1/2 + 21/3x1/3

)7/3
,

dy

dx
=

7
3

(
x1/2 + 21/3x1/3

)4/3

·
(

1
2
x−1/2 +

21/3

3
x−2/3

)
.

C03S0M.016: Given y = y(x) =
√

3x5 − 4x2 = (3x5 − 4x2)1/2,

dy

dx
=

1
2
(3x5 − 4x2)−1/2 · (15x4 − 8x) =

15x4 − 8x
2
√

3x5 − 4x2
.

C03S0M.017: If y =
u+ 1
u− 1

and u = (x+ 1)1/2, then

dy

dx
=
dy

du
· du
dx

=
(u− 1)− (u+ 1)

(u− 1)2
· 1
2
(x+ 1)−1/2 = − 2

(u− 1)2
· 1
2
√
x+ 1

= − 1(√
x+ 1− 1

)2√
x+ 1

.

C03S0M.018: Given y = y(x) = sin(2 cos 3x),

dy

dx
= [cos(2 cos 3x) ] · (−6 sin 3x) = −6(sin 3x) cos(2 cos 3x).

C03S0M.019: Given x2y2 = x+ y, we differentiate (both sides) implicitly with respect to x and obtain
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2xy2 + 2x2y
dy

dx
= 1 +

dy

dx
;

2x2y
dy

dx
− dy
dx

= 1− 2xy2;

dy

dx
=

1− 2xy2

2x2y − 1
;

dy

dx
=
y

x
· x− 2x2y2

2x2y2 − y ;

dy

dx
=
y

x
· x− 2(x+ y)
2(x+ y)− y ;

dy

dx
=
y

x
· −x− 2y

2x+ y
= − (x+ 2y)y

(2x+ y)x
.

Of course you may stop with the third line, but to find horizontal and vertical lines tangent to the graph of
x2y2 = x+ y, the last line is probably the most convenient.

C03S0M.020: Given y = y(x) =
(
1 + sinx1/2

)1/2
,

dy

dx
=

1
2

(
1 + sinx1/2

)−1/2(
cosx1/2

)
· 1
2
x−1/2 =

cos
√
x

4
√
x

√
1 + sin

√
x
.

C03S0M.021: Given y = y(x) =
√
x+

√
2x+

√
3x =

(
x+

[
2x+ (3x)1/2

]1/2)1/2

,

dy

dx
=

1
2

(
x+

[
2x+ (3x)1/2

]1/2
)−1/2

·
(

1 +
1
2

[
2x+ (3x)1/2

]−1/2

·
[
2 +

3
2
(3x)−1/2

] )
.

The symbolic algebra program Mathematica writes this answer without exponents as follows:

dy

dx
=

1 +
2 +

√
3

2
√
x

2
√

2x+
√

3x

2
√
x+

√
2x+

√
3x

.

C03S0M.022:
dy

dx
=

(x2 + cosx)(1 + cosx)− (x+ sinx)(2x− sinx)
(x2 + cosx)2

=
1− x2 − x sinx+ cosx+ x2 cosx

(x2 + cosx)2
.

C03S0M.023: Given x1/3 + y1/3 = 4, differentiate both sides with respect to x:

1
3
x−2/3 +

1
3
y−2/3 dy

dx
= 0, so

dy

dx
= −

(y
x

)2/3

.

C03S0M.024: Given x3 + y3 = xy, differentiate both sides with respect to x to obtain

3x2 + 3y2
dy

dx
= x

dy

dx
+ y, so that

dy

dx
=
y − 3x2

3y2 − x.

C03S0M.025: Given y = (1 + 2u)3 where u = (1 + x)−3:

3



dy

dx
=
dy

du
· du
dx

= 6(1 + 2u)2 · (−3)(1 + x)−4 = − 18(1 + 2u)2

(1 + x)4
= − 18(1 + 2(1 + x)−3 )2

(1 + x)4

= − 18(1 + x)6(1 + 2(1 + x)−3)2

(1 + x)10
= − 18((1 + x)3 + 2)2

(1 + x)10
= −18 · (x

3 + 3x2 + 3x+ 3)2

(x+ 1)10
.

C03S0M.026:
dy

dx
=

(
− 2 cos(sin2 x) sin(sin2 x)

)
·
(
2 sinx cosx

)
.

C03S0M.027: Given y = y(x) =
(

sin2 x

1 + cosx

)1/2

,

dy

dx
=

1
2

(
sin2 x

1 + cosx

)−1/2

· (1 + cosx)(2 sinx cosx) + sin3 x

(1 + cosx)2

=
(

1 + cosx
sin2 x

)1/2

· 2 sinx cosx+ 2 sinx cos2 x+ sin3 x

2(1 + cosx)2
.

C03S0M.028:
dy

dx
=

3 (1 +
√
x )2

2
√
x

(1− 2 3
√
x )4 + 4 (1− 2 3

√
x )3

(
− 2

3x
−2/3

)
(1 +

√
x )3.

C03S0M.029: Given: y = y(x) =
cos 2x√
sin 3x

= (cos 2x)(sin 3x)−1/2,

dy

dx
= (−2 sin 2x)(sin 3x)−1/2 + (cos 2x)

(
− 1

2
(sin 3x)−3/2

)
(3 cos 3x)

= − 2 sin 2x√
sin 3x

− 3 cos 2x cos 3x
2(sin 3x)3/2

= − 4 sin 2x sin 3x+ 3 cos 2x cos 3x
2(sin 3x)3/2

.

C03S0M.030: 3x2 − x2 dy

dx
− 2xy + y2 + 2xy

dy

dx
− 3y2

dy

dx
= 0:

dy

dx
=

3x2 − 2xy + y2

3y2 − 2xy + x2
.

C03S0M.031:
dy

dx
= ex(cosx− sinx).

C03S0M.032:
dy

dx
= e−2x(3 cos 3x− 2 sin 3x).

C03S0M.033:
dy

dx
= − 3ex

(2 + 3ex)5/2
[
1 + (2 + 3ex)−3/2

]1/3 .

C03S0M.034:
dy

dx
= 5(ex + e−x)4(ex − e−x).

C03S0M.035:
dy

dx
= −

cos2
(
[1 + lnx]1/3

)
sin

(
[1 + lnx]1/3

)
x[1 + lnx]2/3

.

C07S0M.036: If f(x) = cos(1− e−x), then f ′(x) = −e−x sin(1− e−x).

C03S0M.037: If f(x) = sin2(e−x) = [sin(e−x)]2, then f ′(x) = −2e−x sin(e−x) cos(e−x).
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C03S0M.038: If f(x) = ln(x+ e−x), then f ′(x) =
1− e−x
x+ e−x

.

C03S0M.039: If f(x) = ex cos 2x, then f ′(x) = ex cos 2x− 2ex sin 2x.

C03S0M.040: If f(x) = e−2x sin 3x, then f ′(x) = 3e−2x cos 3x− 2e−2x sin 3x.

C03S0M.041: If g(t) = ln(tet
2
) = (ln t) + t2 ln e = (ln t) + t2, then

g′(t) =
1
t

+ 2t =
1 + 2t2

t
.

C03S0M.042: If g(t) = 3(et − ln t)5, then g′(t) = 15(et − ln t)4
(
et − 1

t

)
.

C03S0M.043: If g(t) = sin(et) cos(e−t), then

g′(t) = et cos(et) cos(e−t) + e−t sin(et) sin(e−t).

C03S0M.044: If f(x) =
2 + 3x
e4x

, then

f ′(x) =
3e4x − 4(2 + 3x)e4x

(e4x)2
=

3− 8− 12x
e4x

= − 12x+ 5
e4x

.

C03S0M.045: If g(t) =
1 + et

1− et , then g′(t) =
(1− et)et + (1 + et)et

(1− et)2 =
2et

(1− et)2 .

C03S0M.046: Given xey = y, we apply Dx to both sides and find that

ey + xey
dy

dx
=
dy

dx
; (1− xey) dy

dx
= ey;

dy

dx
=

ey

1− xey ;
dy

dx
=

ey

1− y .

In the last step we used the fact that xey = y to simplify the denominator.

C03S0M.047: Given sin (exy) = x, we apply Dx to both sides and find that

[cos (exy) ] · exy ·
(
y + x

dy

dx

)
= 1; xexy [cos (exy) ] · dy

dx
= 1− yexy cos (exy) ;

dy

dx
=

1− yexy cos (exy)
xexy cos (exy)

.

C03S0M.048: Given ex + ey = exy, we apply Dx to both sides and find that

ex + ey
dy

dx
= exy

(
y + x

dy

dx

)
; (ey − xexy) dy

dx
= yexy − ex;

dy

dx
=
yexy − ex
ey − xexy .
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C03S0M.049: Given x = yey, we apply Dx to both sides and obtain

1 = ey
dy

dx
+ yey

dy

dx
;

dy

dx
=

1
ey + yey

=
y

yey + y2ey
=

y

x+ xy
.

We used the fact that yey = x in the simplification in the last step.

Here is an alternative approach to finding dy/dx. Beginning with x = yey, we differentiate with respect
to y and find that

dx

dy
= ey + yey, so that

dy

dx
=

1
ey + yey

.

C03S0M.050: Given ex−y = xy, we apply Dx to both sides and find that

ex−y
(

1− dy
dx

)
= y + x

dy

dx
;

(
x+ ex−y

) dy
dx

= ex−y − y;

dy

dx
=
ex−y − y
ex−y + x

;
dy

dx
=
xy − y
xy + x

=
(x− 1)y
(y + 1)x

.

We used the fact that ex−y = xy to make the simplification in the last step.

C03S0M.051: Given x ln y = x+ y, we apply Dx to both sides and find that

ln y +
x

y
· dy
dx

= 1 +
dy

dx
;

(
x

y
− 1

)
· dy
dx

= 1− ln y;

x− y
y
· dy
dx

= 1− ln y;

dy

dx
=
y(1− ln y)
x− y .

C03S0M.052: Given: y =
√

(x2 − 4)
√

2x+ 1 . Thus

ln y = ln
[
(x2 − 4)(2x+ 1)1/2

]1/2

=
1
2

ln
[
(x2 − 4)(2x+ 1)1/2

]
=

1
2

[
ln(x2 − 4) +

1
2

ln(2x+ 1)
]
.

Therefore

1
y
· dy
dx

=
x

x2 − 4
+

1
2(2x+ 1)

=
5x2 + 2x− 4

2(x2 − 4)(2x+ 1)
,

and so

dy

dx
= y(x) · 5x2 + 2x− 4

2(x2 − 4)(2x+ 1)
=

(5x2 + 2x− 4)
√

(x2 − 4)
√

2x+ 1

2(x2 − 4)(2x+ 1)
.

C03S0M.053: Given: y = (3− x2)1/2(x4 + 1)−1/4. Thus
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ln y =
1
2

ln(3− x2)− 1
4

ln(x4 + 1),

and therefore

1
y
· dy
dx

= − x

3− x2
− x3

x4 + 1
=

x(3x2 + 1)
(x2 − 3)(x4 + 1)

.

Thus

dy

dx
= y(x) · x(3x2 + 1)

(x2 − 3)(x4 + 1)
= − x(3x2 + 1)(3− x2)1/2

(3− x2)(x4 + 1)(x4 + 1)1/4
= − x(3x2 + 1)

(3− x2)1/2(x4 + 1)5/4
.

C03S0M.054: Given: y =
[

(x+ 1)(x+ 2)
(x2 + 1)(x2 + 2)

]1/3

. Then

ln y =
1
3

[
ln(x+ 1) + ln(x+ 2)− ln(x2 + 1)− ln(x2 + 2)

]
;

1
y
· dy
dx

=
1
3

(
1

x+ 1
+

1
x+ 2

− 2x
x2 + 1

− 2x
x2 + 2

)
;

dy

dx
= y(x) · 6− 8x− 9x2 − 8x3 − 9x4 − 2x5

3(x+ 1)(x+ 2)(x2 + 1)(x2 + 2)
;

dy

dx
=

6− 8x− 9x2 − 8x3 − 9x4 − 2x5

3(x+ 1)(x+ 2)(x2 + 1)(x2 + 2)
·
[

(x+ 1)(x+ 2)
(x2 + 1)(x2 + 2)

]1/3

;

dy

dx
=

6− 8x− 9x2 − 8x3 − 9x4 − 2x5

3(x+ 1)2/3(x+ 2)2/3(x2 + 1)4/3(x2 + 2)4/3
.

C03S0M.055: If y = (x+ 1)1/2(x+ 2)1/3(x+ 3)1/4, then

ln y =
1
2

ln(x+ 1) +
1
3

ln(x+ 2) +
1
4

ln(x+ 3);

1
y
· dy
dx

=
1

2(x+ 1)
+

1
3(x+ 2)

+
1

4(x+ 3)
;

dy

dx
= y(x) · 13x2 + 55x+ 54

12(x+ 1)(x+ 2)(x+ 3)
=

13x2 + 55x+ 54
12(x+ 1)1/2(x+ 2)2/3(x+ 3)3/4

.

C03S0M.056: If y = x(ex), then

ln y = ex lnx;
1
y
· dy
dx

=
ex

x
+ ex lnx;

dy

dx
= y(x) · (1 + x lnx)ex

x
;

dy

dx
=

(1 + x lnx)ex

x
·
(
x(ex)

)
.

C03S0M.057: Given: y = (lnx)ln x, x > 1. Then
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ln y = (lnx) ln (lnx) ;

1
y
· dy
dx

=
1
x

ln (lnx) +
lnx
x lnx

=
1 + ln (lnx)

x
;

dy

dx
=

1 + ln (lnx)
x

· (lnx)ln x .

C03S0M.058:
dy

dx
=

(x− 1)− (x+ 1)
(x− 1)2

= − 2
(x− 1)2

; the slope of the line tangent at (0, −1) is −2; an

equation of the tangent line is y + 1 = −2x; that is, 2x+ y + 1 = 0.

C03S0M.059: 1 = (2 cos 2y)
dy

dx
, so

dy

dx
=

1
2 cos 2y

. Because
dy

dx
is undefined at (1, π/4), there may well

be a vertical tangent at that point. And indeed there is:
dx

dy
= 0 at (1, π/4). So an equation of the tangent

line is x = 1.

C03S0M.060:
dy

dx
=

3y − 2x
4y − 3x

; at (2, 1) the slope is 1
2 . So an equation of the tangent is y− 1 = 1

2 (x− 2);

that is, x = 2y.

C03S0M.061:
dy

dx
=

2x+ 1
3y2

; at (0, 0),
dx

dy
= 0, so the tangent line is vertical. Its equation is x = 0.

C03S0M.062: V (x) = 1
3π(36x2 − x3): V ′(x) = πx(24 − x). Now

dV

dt
=
dV

dx
· dx
dt

; when x = 6,

36π = −108π
dx

dt
, so

dx

dt
= − 1

3 (in./s) when x = 6.

C03S0M.063: Let r be the radius of the sandpile, h its height, each a function of time t. We know that
2r = h, so the volume of the sandpile at time t is

V =
1
3
πr2h =

2
3
πr3.

So 25π =
dV

dt
= 2πr2

dr

dt
;

substitution of r = 5 yields the answer: dr/dt = 1
2 (ft/min) when r = 5 (ft).

C03S0M.064: Divide each term in the numerator and denominator by sinx to obtain

lim
x→0

x

sinx
− lim
x→0

1
cosx

= 1− 1 = 0.

C03S0M.065: x cot 3x =
1
3
· 3x
sin 3x

→ 1
3
· 1 =

1
3

as x→ 0.

C03S0M.066:
sin 2x
sin 5x

=
2
5
· sin 2x

2x
· 5x
sin 5x

→ 2
5

as x→ 0.

C03S0M.067: x2 csc 2x cot 2x =
1
4
· 2x
sin 2x

· 2x
sin 2x

· cos 2x→ 1
4
· 1 · 1 · 1 =

1
4

as x→ 0.

8



C03S0M.068: −1 � sinu � 1 for all u. So

−x2 � x2 sin
1
x2

� x2

for all x �= 0. But x2 → 0 as x→ 0, so the limit of the expression caught in the squeeze is also zero.

C03S0M.069: −1 � sinu � 1 for all u. So

−
√
x �
√
x sin

1
x

�
√
x

for all x > 0. But
√
x→ 0 as x→ 0+, so the limit is zero.

C03S0M.070: h(x) = (x + x4)1/3 = f(g(x)) where f(x) = x1/3 and g(x) = x + x4. Therefore
h′(x) = f ′(g(x)) · g′(x) = 1

3 (x+ x4)−2/3 · (1 + 4x3).

C03S0M.071: h(x) = (x2 + 25)−1/2 = f(g(x)) where f(x) = x−1/2 and g(x) = x2 + 25. Therefore
h′(x) = f ′(g(x)) · g′(x) = − 1

2 (x2 + 25)−3/2 · 2x.

C03S0M.072: First,

h(x) =
√

x

x2 + 1
=

(
x

x2 + 1

)1/2

= f(g(x)) where f(x) = x1/2 and g(x) =
x

x2 + 1
.

Therefore

h′(x) =
1
2

(
x

x2 + 1

)−1/2

· x
2 + 1− 2x2

(x2 + 1)2
=

(
x2 + 1
x

)1/2

· 1− x2

2(x2 + 1)2
=

1− x2

2x1/2 (x2 + 1)3/2
.

C03S0M.073: One solution: h(x) = (x − 1)5/3 = f(g(x)) where f(x) = x5/3 and g(x) = x − 1.
Therefore h′(x) = f ′(g(x)) ·g′(x) = 5

3 (x−1)2/3 ·1 = 5
3 (x−1)2/3. You might alternatively choose f(x) = x1/3

and g(x) = (x− 1)5.

C03S0M.074: If

h(x) =
(x+ 1)10

(x− 1)10
, then h(x) = f(g(x)) where f(x) = x10 and g(x) =

x+ 1
x− 1

.

Hence

h′(x) = f ′(g(x)) · g′(x) = 10
(
x+ 1
x− 1

)9

· (x+ 1)− (x− 1)
(x− 1)2

= 10
(
x+ 1
x− 1

)9

· 2
(x− 1)2

=
20(x+ 1)9

(x− 1)11
.

C03S0M.075: h(x) = cos(x2 + 1) = f(g(x)) where f(x) = cosx and g(x) = x2 + 1. Therefore
h′(x) = f ′(g(x)) · g′(x) = −2x sin(x2 + 1).

C03S0M.076: T = 2π

√
L

32
;
dT

dL
=
π

32

√
32
L

. So
dT

dL

∣∣∣∣
L=4

=
π
√

2
16

. Hence when L = 4, T is changing

at approximately 0.27768 seconds per foot.
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C03S0M.077: Of course r denotes the radius of the sphere. First,
dV

dA
· dA
dr

=
dV

dr
. Now V =

4
3
πr3 and

A = 4πr2, so
dV

dA
· 8πr = 4πr2, and therefore

dV

dA
=
r

2
=

1
4

√
A

π
.

C03S0M.078: Let (a, b) denote the point of tangency; note that

b = a+
1
a
, a > 0, and h′(x) = 1− 1

x2
.

The slope of the tangent line can be computed using the two-point formula for slope and by using the
derivative. We equate the results to obtain

a+
1
a
− 0

a− 1
= 1− 1

a2
=
a2 − 1
a2

.

It follows that a3 + a = (a− 1)(a2 − 1) = a3 − a2 − a+ 1. Thus a2 + 2a− 1 = 0, and so a = −1 +
√

2 (the
positive root because a > 0). Consequently the tangent line has slope −2

(
1 +
√

2
)

and thus equation

y = −2
(
1 +
√

2
)

(x− 1).

C03S0M.079: Let y = y(t) denote the altitude of the rocket at time t; let u = u(t) denote the angle of
elevation of the observer’s line of sight at time t. Then tanu = y/3, so that y = 3 tanu and, therefore,

dy

dt
= (3 sec2 u)

du

dt
.

When u = 60◦, we take du/dt =
π

3
and find that the speed of the rocket is

dy

dt

∣∣∣∣
u=60◦

=
3

cos2(π/3)
· π
30

=
2
5
π ≈ 1.2566 (mi/s),

about 4524 mi/h, or about 6635 ft/s.

C03S0M.080: Current production per well: 200 (bbl/day). Number of new wells: x (x � 0). Production
per well: 200− 5x. Total production:

T = T (x) = (20 + x)(200− 5x), 0 � x � 40.

Now T (x) = 4000 + 100x − 5x2, so T ′(x) = 100 − 10x. T ′(x) = 0 when x = 10. T (0) = 4000, T (40) = 0,
and T (10) = 4500. So x = 10 maximizes T (x). Answer: Ten new wells should be drilled, thereby increasing
total production from 4000 bbl/day to 4500 bbl/day.

C03S0M.081: Let the circle be the one with equation x2 + y2 = R2 and let the base of the triangle lie on
the x-axis; denote the opposite vertex of the triangle by (x, y). The area of the triangle A = Ry is clearly
maximal when y is maximal; that is, when y = R. To solve this problem using calculus, let θ be the angle
of the triangle at (−R, 0). Because the triangle has a right angle at (x, y), its two short sides are 2R cos θ
and 2R sin θ, so its area is

A(θ) = 2R2 sin θ cos θ = R2 sin 2θ, 0 � θ � π

2
.

Then A′(θ) = 2R2 cos 2θ; A′(θ) = 0 when cos 2θ = 0; because θ lies in the first quadrant, θ = 1
4π. Finally,

A(0) = 0 = A(π/2), but A(π/4) = R2 > 0. Hence the maximum possible area of such a triangle is R2.
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C03S0M.082: Let x be the length of the edges of each of the 20 small squares. The first five boxes measure
210− 2x by 336− 2x by x. The total volume is then

V (x) = 5x(210− 2x)(336− 2x) + 8x3, 0 � x � 105.

Thus V (x) = 28x3 − 5460x2 + 352800x, and so

V ′(x) = 84x2 − 10290x+ 352800 = 84(x2 − 130x+ 4200) = 84(x− 60)(x− 70).

So V ′(x) = 0 when x = 60 and when x = 70. But V (0) = 0, V (60) = 7,560,000, V (70) = 7,546,000, and
V (105) = 9,261,000. Answer: For maximal volume, make x as large as possible: 105 cm. This yields the
maximum volume, 9,261,000 cm3. Note that it is attained by constructing one large cubical box and that
some material is wasted.

C03S0M.083: Let one sphere have radius r; the other, s. We seek the extrema of A = 4π(r2 + s2) given
4
3π(r

3 + s3) = V, a constant. We illustrate here the method of auxiliary variables:

dA

dr
= 4π

(
2r + 2s

ds

dr

)
;

the condition dA/dr = 0 yields ds/dr = −r/s. But we also know that 4
3π(r

3 + s3) = V ; differentiation of
both sides of this identity with respect to r yields

4
3
π

(
3r2 + 3s2

ds

dr

)
= 0, and so

3r2 + 3s2
(
−r
s

)
= 0;

r2 − rs = 0.

Therefore r = 0 or r = s. Also, ds/dr is undefined when s = 0. So we test these three critical points. If r = 0
or if s = 0, there is only one sphere, with radius (3V/4π)1/3 and surface area (36πV 2)1/3. If r = s, then
there are two spheres of equal size, both with radius 1

2 (3V/π)1/3 and surface area (72πV 2)1/3. Therefore,
for maximum surface area, make two equal spheres. For minimum surface area, make only one sphere.

C03S0M.084: Let x be the length of the edge of the rectangle on the side of length 4 and y the length of
the adjacent edges. By similar triangles, 3/4 = (3− y)/x, so x = 4− 4

3y. We are to maximize A = xy; that
is,

A = A(y) = 4y − 4
3
y2, 0 � y � 3.

Now dA/dy = 4− 8
3y; dA/dy = 0 when y = 3

2 . Because A(0) = A(3) = 0, the maximum is A(2) = 3 (m2).

C03S0M.085: Let r be the radius of the cone; let its height be h = R + y where 0 � y � R. (Actually,
−R � y � R, but the cone will have maximal volume if y � 0.) A central vertical cross section of the
figure (draw it!) shows a right triangle from which we read the relation y2 = R2 − r2. We are to maximize
V = 1

3πr
2h, so we write

V = V (r) =
1
3
π

[
r2

(
R+

√
R2 − r2

)]
, 0 � r � R.

The condition V ′(r) = 0 leads to the equation r
(
2R2 − 3r2 + 2R

√
R2 − r2

)
= 0, which has the two solutions

r = 0 and r = 2
3R
√

2. Now V (0) = 0, V (R) = 1
3πR

3 (which is one-fourth the volume of the sphere), and
V

(
2
3R
√

2
)

= 32
81πR

3 (which is 8/27 of the volume of the sphere). Answer: The maximum volume is 32
81πR

3.
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C03S0M.086: Let x denote the length of the two sides of the corral that are perpendicular to the wall.
There are two cases to consider.

Case 1: Part of the wall is used. Let y be the length of the side of the corral parallel to the wall. Then
y = 400− 2x, and we are to maximize the area

A = xy = x(400− 2x), 150 � x � 200.

Then A′(x) = 400− 4x; A′(x) = 0 when x = 100, but that value of x is not in the domain of A. Note that
A(150) = 15000 and that A(200) = 0.

Case 2: All of the wall is used. Let y be the length of fence added to one end of the wall, so that the
side parallel to the wall has length 100 + y. Then 100 + 2y+ 2x = 400, so y = 150− x. We are to maximize
the area

A = x(100 + y) = x(250− x), 0 � x � 150.

In this case A′(x) = 0 when x = 125. And in this case A(150) = 15000, A(0) = 0, and A(125) = 15625.

Answer: The maximum area is 15625 ft2; to attain it, use all the existing wall and build a square corral.

C03S0M.087: First, R′(x) = kM − 2kx; because k �= 0, R′(x) = 0 when x = M/2. Moreover, because
R(0) = 0 = R(M) and R(M/2) > 0, the latter is the maximum value of R(x). Therefore the incidence of
the disease is the highest when half the susceptible individuals are infected.

C03S0M.088: The trapezoid is shown next. It has altitude h = L cos θ and the length of its longer base
is L+ 2L sin θ, so its area is

A(θ) = L2(1 + sin θ) cos θ, − π
6

� θ � π

2
.

Now dA/dθ = 0 when

1− sin θ − 2 sin2 θ = 0;

(2 sin θ − 1)(sin θ + 1) = 0;

the only solution is θ = π/6 because sin θ cannot equal −1 in the range of A. Finally, A(π/2) = 0,
A(−π/6) = 1

4L
2
√

3, and A(π/6) = 3
4L

2
√

3. The latter maximizes A(θ), and the fourth side of the
trapezoid then has length 2L.

C03S0M.089: Let x be the width of the base of the box, so that the base has length 2x; let y be the height
of the box. Then the volume of the box is V = 2x2y, and for its total surface area to be 54 ft2, we require
2x2 + 6xy = 54. Therefore the volume of the box is given by
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V = V (x) = 2x2

(
27− x2

3x

)
=

2
3
(27x− x3), 0 < x � 3

√
3.

Now V ′(x) = 0 when x2 = 9, so that x = 3. Also V (x)→ 0 as x→ 0+ and V
(
3
√

3
)

= 0, so V (3) = 36
(ft3) is the maximum possible volume of the box.

C03S0M.090: Suppose that the small cone has radius x and height y. Similar triangles that appear in a

vertical cross section of the cones (draw it!) show that
x

H − y =
R

H
. Hence y = H − H

R
x, and we seek to

maximize the volume V = 1
3πx

2y. Now

V = V (x) =
πH

3R
(Rx2 − x3), 0 � x � R.

So V ′(x) =
πH

3R
x(2R − 3x). V ′(x) = 0 when x = 0 and when x = 2

3R (in this case, y = H/3). But

V (0) = 0 and V (R) = 0, so x = 2
3R maximizes V . Finally, it is easy to find that Vmax =

4
27
· π
3
R2H, so

the largest fraction of the large cone that the small cone can occupy is 4/27.

C03S0M.091: Let (x, y) be the coordinates of the vertex of the trapezoid lying properly in the first
quadrant and let θ be the angle that the radius of the circle to (x, y) makes with the x-axis. The bases of
the trapezoid have lengths 4 and 4 cos θ and its altitude is 2 sin θ, so its area is

A(θ) =
1
2
(4 + 4 cos θ)(2 sin θ) = 4(1 + cos θ) sin θ, 0 � θ � π

2
.

Now

A′(θ) = 4(cos θ + cos2 θ − sin2 θ)

= 4(2 cos2 θ + cos θ − 1)

= 4(2 cos θ − 1)(cos θ + 1).

The only zero of A′ in its domain occurs at θ = π/3. At the endpoints, we have A(0) = 0 and A(π/2) = 4.
But A(π/3) = 3

√
3 ≈ 5.196, so the latter is the maximum possible area of such a trapezoid.

C03S0M.092: The square of the length of PQ is a function of x, G(x) = (x− x0)2 + (y− y0)2, which we
are to maximize given the constraint C(x) = y − f(x) = 0. Now

dG

dx
= 2(x− x0) + 2(y − y0)

dy

dx
and

dC

dx
=
dy

dx
− f ′(x).

When both vanish, f ′(x) =
dy

dx
= −x− x0

y − y0
. The line containing P and Q has slope

y − y0
x− x0

= − 1
f ′(x)

,

and therefore this line is normal to the graph at Q.

C03S0M.093: If Ax+By+C = 0 is an equation of a straight line L, then not both A and B can be zero.

Case 1: A = 0 and B �= 0. Then L has equation y = −C/B and thus is a horizontal line. So the shortest
segment from P (x0, y0) to Q on L is a vertical segment that therefore meets L in the point Q(x0, −C/B).
Therefore, because A = 0, the distance from P to Q is
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∣∣∣∣y0 +
C

B

∣∣∣∣ =
|By0 + C |
|B | =

|Ax0 +By0 + C |√
A2 +B2

.

Case 2: A �= 0 and B = 0. Then L has equation x = −C/A and thus is a vertical line. So the shortest
segment from P (x0, y0) to Q on L is a horizontal segment that therefore meets L in the point Q(−C/A, y0).
Therefore, because B = 0, the distance from P to Q is

∣∣∣∣x0 +
C

A

∣∣∣∣ =
|Ax0 + C |
|A| =

|Ax0 +By0 + C |√
A2 +B2

.

Case 3: A �= 0 and B �= 0. Then L is neither horizontal nor vertical, and the segment joining P (x0, y0)
to the nearest point Q(u, v) on L is also neither horizontal nor vertical. The equation of L may be written
in the form

y = −A
B
− C
B
,

so L has slope −A/B. Thus the slope of PQ is B/A (by the result in Problem 70), and therefore PQ lies
on the line K with equation

y − y0 =
B

A
(x− x0).

Consequently A(v − y0) = B(u− x0). But Q(u, v) also lies on L, and so Au+Bv = −C. Thus we have the
simultaneous equations

Au+Bv = −C;

Bu−Av = Bx0 −Ay0.

These equations may be solved for

u =
−AC +B2x0 −ABy0

A2 +B2
and v =

−BC −ABx0 +A2y0
A2 +B2

,

and it follows that

u− x0 =
A(−C −Ax0 −By0)

A2 +B2
and v − y0 =

B(−C −Ax0 −By0)
A2 +B2

.

Therefore

(u− x0)2 + (v − y0)2 =
A2(−C −Ax0 −By0)2

(A2 +B2)2
+
B2(−C −Ax0 −By0)2

(A2 +B2)2

=
(A2 +B2)(−C −Ax0 −By0)2

(A2 +B2)2
=

(Ax0 +By0 + C)2

A2 +B2
.

The square root of this expression then gives the distance from P to Q as

|Ax0 +By0 + C |√
A2 +B2

,

and the proof is complete.
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1

2

6 – x

C03S0M.094: Let r be the radius of each semicircle and x the length of the straightaway. We wish to
maximize A = 2rx given C = 2πr+ 2x− 4 = 0. We use the method of auxiliary variables (as in the solution
of Problem 83):

dA

dx
= 2r + 2x

dr

dx
and

dC

dx
= 2π

dr

dx
+ 2.

When both derivatives are zero, −r/x = dr/dx = −1/π, and so x = πr. Also 2πr + 2x = 4, and it follows

that r =
1
π

and that x = 1. Answer: Design the straightaway 1 km long with semicircles of radius
1
π

at
each end.

C03S0M.095: As the following diagram suggests, we are to minimize the sum of the lengths of the two
diagonals. Fermat’s principle of least time may be used here, so we know that the angles at which the roads

meet the shore are equal, and thus so are the tangents of those angles:
x

1
=

6− x
2

. It follows that the pier
should be built two miles from the point on the shore nearest the first town. To be sure that we have found
a minimum, consider the function that gives the total length of the two diagonals:

f(x) =
√
x2 + 1 +

√
(6− x)2 + 4, 0 � x � 6.

(The domain certainly contains the global minimum value of f .) Moreover, f(0) = 1 +
√

40 ≈ 7.32,
f(6) = 2 +

√
37 ≈ 8.08, and f(2) =

√
5 +
√

20 ≈ 6.71. This establishes that x = 2 yields the global
minimum of f(x).

C03S0M.096: The length of each angled path is
2

sin θ
. The length of the roadway path is 10− 4 cos θ

sin θ
. So

the total time of the trip will be

T = T (θ) =
5
4

+
32− 12 cos θ

24 sin θ
.

Note that cos θ varies in the range 0 � cos θ � 5
29

√
29, so 21.80◦ � θ◦ � 90◦. After simplifications,

T ′(θ) =
12− 32 cos θ

24 sin2 θ
;

T ′(θ) = 0 when cos θ = 3
8 , so θ◦ ≈ 67.98◦. With this value of θ, we find that the time of the trip is

T =
2
√

55 + 15
12

≈ 2.486 (hours).
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Because T ≈ 3.590 with θ◦ ≈ 21.80◦ and T ≈ 2.583 when θ◦ ≈ 90◦, the value θ◦ ≈ 69.98◦ minimizes T , and
the time saved is about 50.8 minutes.

C03S0M.097: Denote the initial velocity of the arrow by v. First, we have

dy

dx
= m− 32x

v2
(m2 + 1);

dy/dx = 0 when mv2 = 32x(m2 +1), so that x =
mv2

32(m2 + 1)
. Substitution of this value of x in the formula

given for y in the problem yields the maximum height

ymax =
m2v2

64(m2 + 1)
.

For part (b), we set y = 0 and solve for x to obtain the range

R =
mv2

16(m2 + 1)
.

Now R is a continuous function of the slope m of the arrow’s path at time t = 0, with domain 0 � m < +∞.
Because R(m) = 0 and R(m) → 0 as m → +∞, the function R has a global maximum; because R is
differentiable, this maximum occurs at a point where R′(m) = 0. But

dR

dm
=
v2

16
· (m

2 + 1)− 2m2

(m2 + 1)2
,

so dR/dm = 0 when m = 1 and only then. So the maximum range occurs when tanα = 1; that is, when
α = 1

4π.

C03S0M.098: Here we have

R = R(θ) =
v2
√

2
16

(cos θ sin θ − cos2 θ) for 1
4π � θ � 1

2π.

Now

R′(θ) =
v2
√

2
16

(cos2 θ − sin2 θ + 2 sin θ cos θ);

R′(θ) = 0 when cos 2θ + sin 2θ = 0, so that tan 2θ = −1. It follows that θ = 3π/8 (67.5◦). This yields the
maximum range because R(π/4) = 0 = R(π/2).

C03S0M.099: With initial guess x0 = 2.5 (the midpoint of the given interval [2, 3]), the iteration

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
(xn)2 − 7

2xn

of Newton’s method yields x1 = 2.65, x2 = 2.645754717, and x3 = 2.645751311. Answer: 2.6458.

C03S0M.100: We get x0 = 1.5, x1 = 1.444444444, x2 = 1.442252904, and x3 = 1.442249570. Answer:
1.4422.

C03S0M.101: With x0 = 2.5, we obtain x1 = 2.384, x2 = 2.371572245, x3 = 2.371440624, and
x4 = 2.371440610. Answer: 2.3714.
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C03S0M.102: With x0 = 5.5 we get x1 = 5.623872512, x2 = 5.623413258, and x3 = 5.623413252.
Answer: 5.6234. If your calculator won’t raise numbers to fractional powers, you could solve instead the
equation x4 − 1000 = 0. With x0 = 5.5 the results should be x1 = 5.627629602, x2 = 5.623417988, and
x3 = 5.623413252.

C03S0M.103: With x0 = −0.5 we obtain x1 = −0.333333333, x2 = −0.347222222, x3 = −0.347296353,
and x4 = −0.347296355. Answer: −0.3473.

C03S0M.104: With x0 = −0.5 we obtain x1 = −0.230769231, x2 = −0.254000237, x3 = −0.254101686,
and x4 = −0.254101688. Answer: −0.2541.

C03S0M.105: With f(x) = e−x−sinx and initial guess x0 = 0.6, five iterations of the formula of Newton’s
method yields the approximate solution 0.588532744 of the equation f(x) = 0.

C03S0M.106: With f(x) = cosx−lnx and initial guess x0 = 1.3, four iterations of the formula of Newton’s
method yield the approximate solution 1.302964001 of the equation f(x) = 0.

C03S0M.107: With x0 = −1.0 we obtain x1 = −0.750363868, x2 = −0.739112891, x3 = −0.739085133,
and x4 = −0.739085133. Answer: −0.7391.

C03S0M.108: With x0 = −0.75, we obtain x1 = −0.905065774, x2 = −0.877662556, x3 = −0.876727303,
x4 = −0.876726215, and x5 = −0.876726215. Answer: −0.8767.

C03S0M.109: With x0 = −1.5, we obtain x1 = −1.244861806, x2 = −1.236139793, x3 = −1.236129989,
and x4 = −1.236129989. Answer: −1.2361.

C03S0M.110: With x0 = −0.5 we obtain x1 = −0.858896298, x2 = −0.871209876, x3 = −0.871221514,
and x4 = −0.871221514. Answer: −0.8712.

C03S0M.111: The volume of a spherical segment of height h is

V =
1
3
πh2(3r − h)

if the sphere has radius r. If ρ is the density of water and the ball sinks to the depth h, then the weight of
the water that the ball displaces is equal to the total weight of the ball, so

1
3
πρh2(3r − h) =

4
32
πρr3.

Because r = 2, this leads to the equation p(h) = 3h3− 18h2 + 32 = 0. This equation has at most three [real]
solutions because p(h) is a polynomial of degree 3, and it turns out to have exactly three solutions because
p(−2) = −64, p(−1) = 11, p(2) = −16, and p(6) = 32. Newton’s method yields the three approximate
solutions h = −1.215825766, h = 1.547852572, and h = 5.667973193. Only one is plausible, so the answer is
that the ball sinks to a depth of approximately 1.54785 ft, about 39% of the way up a diameter.

C03S0M.112: The iteration is

x←− x− x
2 + 1
2x

=
x2 − 1

2x
.

With x0 = 2.0, the sequence obtained by iteration of Newton’s method is 0.75, −0.2917, 1.5685, 0.4654,
−0.8415, 0.1734, −2.7970, −1.2197, −0.1999, 2.4009, 0.9922, −0.0078, 63.7100, . . . .
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C03S0M.113: Let f(x) = x5 − 3x3 + x2 − 23x + 19. Then f(−3) = −65, f(0) = 19, f(1) = −5, and
f(3) = 121. So there are at least three, and at most five, real solutions. Newton’s method produces three
real solutions, specifically r1 = −2.722493355, r2 = 0.8012614801, and r3 = 2.309976541. If one divides
the polynomial f(x) by (x− r1)(x− r2)(x− r3), one obtains the quotient polynomial x2 + (0.38874466)x+
3.770552031, which has no real roots—the quadratic formula yields the two complex roots −0.194372333±
(1.932038153)i. Consequently we have found all three real solutions.

C03S0M.114: Let f(x) = tanx− 1
x

. We iterate

x←− x−
tanx− 1

x

sec2 x+
1
x2

.

The results are shown in the following table. The instability in the last one or two digits is caused by machine
rounding and is common. Answers: To three places, α1 = 0.860 and α2 = 3.426.

f[x ]:=Tan[x]−1/x

g[x ]:=N[x−f[x]/f ′[x], 20]

list={1.0,4.0};
g[list]

0.8740469203219249386, 3.622221245370322529

0.8604001629909660496, 3.440232462677783381

0.8603335904117901655, 3.425673797668214504

0.8603335890193797612, 3.425618460245614115

0.8603335890193797636, 3.425618459481728148

0.8603335890193797608, 3.425618459481728146

0.8603335890193797634, 3.425618459481728148

C03S0M.115: The number of summands on the right is variable, and we have no formula for finding its
derivative. One thing is certain: Its derivative is not 2x2.

C03S0M.116: We factor:

z3/2 − x3/2 = (z1/2)3 − (x1/2)3 = (z1/2 − x1/2)(z + z1/2x1/2 + x)

and z − x = (z1/2)2 − (x1/2)2 = (z1/2 − x1/2)(z1/2 + x1/2). Therefore

z3/2 − x3/2

z − x =
z + z1/2x1/2 + x
z1/2 + x1/2

→ 3x
2x1/2

=
3
2
x1/2 as z → x.

C03S0M.117: We factor:

z2/3 − x2/3 = (z1/3)2 − (x1/3)2 = (z1/3 − x1/3)(z1/3 + x1/3) and

z − x = (z1/3)3 − (x1/3)3 = (z1/3 − x1/3)(z2/3 + z1/3x1/3 + x2/3).

Therefore
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z2/3 − x2/3

z − x =
z1/3 + x1/3

z2/3 + z1/3x1/3 + z2/3
→ 2x1/3

3x2/3
=

2
3
x−1/3 as x→ x.

C03S0M.118: The volume of the block is V = x2y, and V is constant while x and y are functions of time
t (in minutes). So

0 =
dV

dt
= 2xy

dx

dt
+ x2 dy

dt
. (1)

We are given dy/dt = −2, x = 30, and y = 20, so by Eq. (1) dx/dt = 3
2 . Answer: At the time in question

the edge of the base is increasing at 1.5 cm/min.

C03S0M.119: The balloon has volume V = 4
3πr

3 and surface area A = 4πr2 where r is its radius and V ,
A, and r are all functions of time t. We are given dV/dt = +10, and we are to find dA/dt when r = 5.

dV

dt
= 4πr2

dr

dt
, so 10 = 4π · 25 · dr

dt
.

Thus
dr

dt
=

10
100π

=
1

10π
.

Also
dA

dt
= 8πr

dr

dt
, and therefore

dA

dt

∣∣∣∣
r=5

= 8π · 5 · 1
10π

= 4.

Answer: At 4 in.2/s.

C03S0M.120: Let the nonnegative x-axis represent the ground and the nonnegative y-axis the wall. Let
x be the distance from the base of the wall to the foot of the ladder; let y be the height of the top of the
ladder above the ground. From the Pythagorean theorem we obtain x2 + y2 = 100, so

x
dx

dt
+ y

dy

dt
= 0.

Thus
dy

dt
= −x

y
· dx
dt

. We are given
dx

dt
=

5280
3600

=
22
15

ft/s, and at the time when y = 1, we have

x =
√

100− (0.01)2 =
√

99.9999 .

At that time,

dy

dt

∣∣∣∣
y=0.01

= −
√

99.9999
0.01

· 22
15
≈ −1466.666 (ft/s),

almost exactly 1000 mi/h. This shows that in reality, the top of the ladder cannot remain in contact with
the wall. If it is forced to do so by some latching mechanism, then a downward force much greater than that
caused by gravity will be needed to keep the bottom of the latter moving at the constant rate of 1 mi/h.

C03S0M.121: Let Q be the amount of water in the cone at time t, r the radius of its upper surface, and
h its height. From similar triangles we find that h = 2r, so
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Q =
1
3
πr2h =

2
3
πr3 =

1
12
πh3.

Now

−50 =
dQ

dt
=

1
4
πh2 dh

dt
, so

dh

dt
= − 200

36π
.

Therefore
dh

dt
= − 50

9π
≈ −1.7684 (ft/min).

C03S0M.122: Let x denote the distance from plane A to the airport, y the distance from plane B to the
airport, and z the distance between the two aircraft. Then

z2 = x2 + y2 + (3− 2)2 = x2 + y2 + 1

and dx/dt = −500. Now

2z
dz

dt
= 2x

dx

dt
+ 2y

dy

dt
,

and when x = 2, y = 2. Therefore z = 3 at that time. Therefore,

3 · (−600) = 2 · (−500) + 2 · dy
dt

∣∣∣∣
x=2

,

and thus
dy

dt

∣∣∣∣
x=2

= −400. Answer: Its speed is 400 mi/h.

C03S0M.123:
dV

dt
= 3
√
y
dy

dt
= −3

√
y, so

dy

dt
= −1. Answer: At 1 in./min—a constant rate. The tank

is a clock!

C03S0M.124: As in the solution of Problem 121, we find that when the height of water in the tank is y,
its volume is V = 1

12πy
3. For part (a), we have

+50− 10
√
y =

dV

dt
=

1
4
πy2

dy

dt
.

So when y = 5,

50− 10
√

5 =
25
4
π
dy

dt

∣∣∣∣
y=5

,

and therefore
dy

dt

∣∣∣∣
y=5

=
1
5π

(40− 8
√

5) ≈ 1.40766 (ft/min). In part (b),

dV

dt
= 25− 10

√
y =

1
4
πy2

dy

dt
; (1)

dy/dt = 0 when 25 = 10
√
y, so that y = 6.25 (ft) would seem to be the maximum height ever attained by the

water. What actually happens is that the water level rises more and more slowly as time passes, approaching
the limiting height of 6.25 ft as a right-hand limit, but never reaching it. This is not obvious; you must
solve the differential equation in (1) (use the substitution y = u2) and analyze the solution to establish this
conclusion.
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C03S0M.125: The straight line through P (x0, y0) and Q(a, a2) has slope
a2 − y0
a− x0

= 2a, a consequence

of the two-point formula for slope and the fact that the line is tangent to the parabola at Q. Hence
a2 − 2ax0 + y0 = 0. Think of this as a quadratic equation in the unknown a. It has two real solutions when
the discriminant is positive: (x0)2 − y0 > 0, and this establishes the conclusion in part (b). There are no
real solutions when (x0)2 − y0 < 0, and this establishes the conclusion in part (c). What if (x0)2 − y0 = 0?
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Section 4.2

C04S02.001: y = y(x) = 3x2 − 4x−2:
dy

dx
= 6x+ 8x−3, so dy =

(
6x+

8
x3

)
dx.

C04S02.002: y = y(x) = 2x1/2 − 3x−1/3:
dy

dx
= x−1/2 + x−4/3, so

dy =
(
x−1/2 + x−4/3

)
dx =

1 + x5/6

x4/3
dx.

C04S02.003: y = y(x) = x− (4− x3)1/2:
dy

dx
= 1− 1

2
(4− x3)−1/2 · (−3x2), so

dy =
(

1 +
3x2

2
√

4− x3

)
dx =

3x2 + 2
√

4− x3

2
√

4− x3
dx.

C04S02.004: y = y(x) =
1

x−
√
x

: dy = −
1− 1

2x
−1/2

(x−
√
x )2

dx =
1− 2

√
x

2
√
x (x−

√
x )2

dx.

C04S02.005: y = y(x) = 3x2(x− 3)3/2, so

dy =
[
6x(x− 3)3/2 +

9
2
x2(x− 3)1/2

]
dx =

3
2

(7x2 − 12x)
√
x− 3 dx.

C04S02.006: y = y(x) =
x

x2 − 4
, so dy =

(x2 − 4)− 2x2

(x2 − 4)2
dx = − x2 + 4

(x2 − 4)2
dx.

C04S02.007: y = y(x) = x(x2 + 25)1/4, so

dy = (x2 + 25)1/4 +
1
4
x(x2 + 25)−3/4 · 2x dx =

3x2 + 50
2(x2 + 25)3/4

dx.

C04S02.008: y = y(x) = (x2 − 1)−4/3, so dy = − 8x
3(x2 − 1)7/3

dx.

C04S02.009: y = y(x) = cos
√
x, so dy = − sin

√
x

2
√
x

dx.

C04S02.010: y = y(x) = x2 sinx, so dy = (x2 cosx+ 2x sinx) dx.

C04S02.011: y = y(x) = sin 2x cos 2x, so dy = (2 cos2 2x− 2 sin2 2x) dx.

C04S02.012: y = y(x) = (cos 3x)3, so dy = −9 cos2 3x sin 3x dx.

C04S02.013: y = y(x) =
sin 2x

3x
, so dy =

2x cos 2x− sin 2x
3x2

dx.

C04S02.014: dy = (3x2 − 2x3)e−2x dx.

C04S02.015: y = y(x) =
1

1− x sinx
, so dy =

x cosx+ sinx
(1− x sinx)2

dx.
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C04S02.016: dy =
1− lnx
x2

dx.

C04S02.017: f ′(x) =
1

(1− x)2 , so f ′(0) = 1. Therefore

f(x) =
1

1− x ≈ f(0) + f ′(0)(x− 0) = 1 + 1 · x = 1 + x.

C04S02.018: f ′(x) = − 1
2(1 + x)3/2

, so f ′(0) = −1
2
. Therefore

f(x) =
1√

1 + x
≈ f(0) + f ′(0)(x− 0) = 1− 1

2
x.

C04S02.019: f ′(x) = 2(1 + x), so f ′(0) = 2. Therefore f(x) = (1 + x)2 ≈ f(0) + f ′(0)(x− 0) = 1 + 2x.

C04S02.020: f ′(x) = −3(1−x)2, so f ′(0) = −3. Therefore f(x) = (1−x)3 ≈ f(0)+f ′(0)(x−0) = 1−3x.

C04S02.021: f ′(x) = −3
√

1− 2x, so f ′(0) = −3; f(x) = (1− 2x)3/2 ≈ f(0) + f ′(0)(x− 0) = 1− 3x.

C04S02.022: f ′(0) = −1, so L(x) = 1− x.

C04S02.023: If f(x) = sinx, then f ′(x) = cosx, so that f ′(0) = 1. Therefore

f(x) = sinx ≈ f(0) + f ′(0)(x− 0) = 0 + 1 · x = x.

C04S02.024: f ′(0) = 1, so L(x) = x.

C04S02.025: Choose f(x) = x1/3 and a = 27. Then f ′(x) =
1

3x2/3
, so that f ′(a) =

1
27

. So the linear

approximation to f(x) near a = 27 is L(x) = 2 +
1
27
x. Hence

3
√

25 = f(25) ≈ L(25) =
79
27
≈ 2.9259.

A calculator reports that f(25) is actually closer to 2.9240, but the linear approximation is fairly accurate,
with an error of only about −0.0019.

C04S02.026: Choose f(x) =
√
x and a = 100. Then f ′(x) =

1
2
√
x

, so that f ′(a) =
1
20

. So the linear

approximation to f(x) near a = 100 is L(x) = 5 +
1
20
x. Hence

√
102 = f(102) ≈ L(102) =

101
10

= 10.1000.

A calculator reports that f(25) is actually closer to 10.0995, but the linear approximation is quite accurate,
with an error of only about −0.0005.

C04S02.027: Choose f(x) = x1/4 and a = 16. Then f ′(x) =
1

4x3/4
, so that f ′(a) =

1
32

. So the linear

approximation to f(x) near a = 16 is L(x) =
3
2

+
1
32
x. Hence
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4
√

15 = f(15) ≈ L(15) =
63
32

= 1.96875.

A calculator reports that f(15) is actually closer to 1.96799.

C04S02.028: Choose f(x) =
√
x and a = 81. Then f ′(x) =

1
2
√
x

, so that f ′(a) =
1
18

. So the linear

approximation to f(x) near a = 81 is L(x) =
9
2

+
1
18
x. Hence

√
80 = f(80) ≈ L(80) =

161
18
≈ 8.9444.

A calculator reports that f(15) is actually closer to 8.9443.

C04S02.029: Choose f(x) = x−2/3 and a = 64. Then f ′(x) = − 2
3x5/3

, so that f ′(a) = − 1
1536

. So the

linear approximation to f(x) near a = 64 is L(x) =
5
48
− 1

1536
x. Hence

65−2/3 = f(65) ≈ L(65) =
95

1536
≈ 0.06185.

A calculator reports that f(65) is actually closer to 0.06186.

C04S02.030: Choose f(x) = x3/4 and a = 81. Then f ′(x) =
3

4x1/4
, so that f ′(a) =

1
4
. So the linear

approximation to f(x) near a = 81 is L(x) =
27
4

+
1
4
x. Hence

803/4 = f(80) ≈ L(80) =
107
4

= 26.7500.

A calculator reports that f(80) is actually closer to 26.7496.

C04S02.031: Choose f(x) = cosx and a =
45
180

π =
1
4
π. Then f ′(x) = − sinx, so that f ′(a) = − 1

2

√
2. So

the linear approximation to f(x) near a is L(x) =
1
2

√
2

(
1
4
π + 1

)
− 1

2
x
√

2. Hence

cos 43◦ = f

(
43
180

π

)
≈ L

(
43
180

π

)
=
π + 90
90
√

2
≈ 0.7318.

A calculator reports that cos 43◦ is actually closer to 0.7314.

C04S02.032: Choose f(x) = sinx and a =
30
180

π =
1
6
π. Then f ′(x) = cosx, so that f ′(a) =

1
2

√
3. So the

linear approximation to f(x) near a is

L(x) =
6− π

√
3

12
+

1
2
x
√

3.

Hence

sin 32◦ = f

(
32
180

π

)
≈ L

(
32
180

π

)
=

90 + π
√

3
180

≈ 0.5302.

C04S02.033: Choose f(x) = ex and a = 0. Then f ′(x) = ex, so that f ′(a) = 1. So the linear
approximation to f(x) near a is L(x) = x+ 1. Thus e0.1 = f(0.1) ≈ L(0.1) = 1.1. A calculator reports that
e0.1 ≈ 1.105171.
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C04S02.034: Let f(x) = lnx and choose a = 1. Then the linear approximation to f near a is L(x) = x−1,
and L(1.1) = 0.1. (The actual value of f(1.1) is approximately 0.095310.)

C04S02.035: Given x2 + y2 = 1, we compute the differential of both sides and obtain

2x dx+ 2y dy = 0;

y dy = −x dx;

dy

dx
= − x

y
.

C04S02.036: ey dx+ xey dy = 0, but ey is never zero, so x dy = −dx. Therefore
dy

dx
= − 1

x
.

C04S02.037: Given x3 + y3 = 3xy, we compute the differential of each side and obtain

3x2 dx+ 3y2 dy = 3y dx+ 3x dy;

(y2 − x) dy = (y − x2) dx;

dy

dx
=
y − x2

y2 − x.

C04S02.038: Given: x ln y = 1. Then
x

y
dy + (ln y) dx = 0, so

dy

dx
= − y ln y

x
= −y(ln y)2 = − y

x2
= − exp(1/x)

x2
.

C04S02.039: If f(x) = (1 + x)k, then f ′(x) = k(1 + x)k−1, and so f ′(0) = k. Hence the linear
approximation to f(x) near zero is L(x) = 1 + kx.

C04S02.040: If C is the circumference of the circle and r its radius, then C = 2πr. Thus dC = 2π dr, and
so ∆C ≈ 2π∆r. With r = 10 and ∆r = 0.5, we obtain ∆C ≈ 2π(0.5) = π ≈ 3.1416. This happens to be the
exact value as well (because C is a linear function of r).

C04S02.041: If the square has edge length x and area A, then A = x2. Therefore dA = 2x dx, and so
∆A ≈ 2x ∆x. With x = 10 and ∆x = −0.2, we obtain ∆A ≈ 2 · 10 · (−0.2) = −4. So the area of the square
decreases by 4 in.2.

C04S02.042: The relationship between the surface area A and the radius r of the sphere is A = 4πr2, and
hence dA = 8πr dr. Thus ∆A ≈ 8πr∆r. With r = 5 and ∆r = 0.2 we obtain ∆A ≈ 8π(5)(0.2) = 8π ≈
25.1327 square inches. The true value is approximately 25.6354 square inches.

C04S02.043: A [right circular] cylinder of base radius r and height h has volume V = πr2h, and hence
dV = πr2 dh+2πrh dr. Therefore ∆V ≈ πr2 ∆h+2πrh∆r. With r = h = 15 and ∆r = ∆h = −0.3 we find
that ∆V ≈ (225π)(−0.3) + (450π)(−0.3) = 405

2 π, so the volume of the cylinder decreases by approximately
636.17 cm3.

C04S02.044: With volume V , height h, and radius r, we have V = 1
3πr

2h. Because r = 14 is constant,
we may think of V as a function of r alone, so that
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dV =
1
3
πr2 dh.

With r = 14, h = 7, and dh = 0.1, we find that

dV =
1
3
π(196)(0.1) ≈ 20.5251.

The true value is exactly the same because V is a linear function of h.

C04S02.045: Because θ = 45◦, the range R of the shell is a function of its initial velocity v alone, and
R = 1

16v
2. Hence dR = 1

8v dv. With v = 80 and dv = 1, we find that dR = 1
8 · 80 = 10, so the range is

increased by approximately 10 ft.

C04S02.046: Because v is constant, R is a function of the angle of inclination θ alone, and hence

dR =
1
8
v2(cos 2θ) dθ.

With θ = π/4, dθ = π/180 (1◦), and v = 80, we obtain

∆R ≈ 1
8
(6400)(0)

π

180
= 0.

The true value of ∆R is approximately −0.2437 (ft).

C04S02.047: Technically, if W = RI2, then dW = I2 dR + 2IR dI. But in this problem, R remains
constant, so that dR = 0 and hence dW = 2IR dI. We take R = 10, I = 3, and dI = 0.1, and find that
dW = 6. So the wattage increases by approximately 6 watts.

C04S02.048: With circumference C and radius r, we have C = 2πr. Therefore, given ∆r = +10,
∆C = 2π ∆r ≈ 20π (feet). Thus the wire should be lengthened by approximately 63 feet.

C04S02.049: Let V be the volume of the ball and let r be its radius, so that V = 4
3πr

3. Then the calculated
value of the volume is Vcalc = 4

3 (1000π) ≈ 4188.7902 in.3, whereas ∆V ≈ 4π(10)2 1
16 = 25π ≈ 78.5398 in.3

(the true value of ∆V is approximately 79.0317).

C04S02.050: With volume V and radius r, we have V = 4
3πr

3, and thus dV = 4πr2 dr. For |∆V | � 1, we
require that 4πr2 |∆r| � 1, so

|∆r| � 1
4π(10)2

≈ 0.0008

inches. Thus the radius must be measured with error not exceeding 0.0008 inches.

C04S02.051: With surface area S and radius r, we have S = 2πr2 (half the surface area of a sphere of
radius r), so that dS = 4πr dr ≈ 4π(100)(0.01) = 4π. That is, ∆S ≈ 12.57 square meters.

C04S02.052: With the notation of the preceding solution, we now require that

|dS|
S

� 0.0001;

thus, at least approximately,
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|4πr dr|
|2πr2| � 0.0001.

Hence

2
∣∣∣∣drr

∣∣∣∣ � 0.0001,

which implies that
|dr|
r

� 0.00005. Answer: With percentage error not exceeding 0.005%.

C04S02.053: We plotted f(x) = x2 and its linear approximation L(x) = 1 + 2(x − 1) on the interval
[0.5, 1.5], and it was clear that the interval I = (0.58, 1.42) would be an adequate answer to this problem.
We then used Newton’s nethod to find a “better” interval, which turns out to be I = (0.5528, 1.4472).

C04S02.054: We plotted f(x) =
√
x and its linear approximation L(x) = 1 + 1

2 (x − 1) on the interval
[0.3, 2.15], and it was clear that the interval I = (0.32, 1.98) would be adequate. We then used Newton’s
method to “improve” the answer to I = (0.3056, 2.0944).

C04S02.055: We plotted f(x) = 1/x and its linear approximation L(x) = 1
2 + 1

4 (2 − x) on the interval
[1.73, 2.32], and it was clear that the interval was a little too large to be a correct answer. We used Newton’s
method to find more accurate endpoints, and came up with the answer I = (1.7365, 2.3035). Of course, any
open subinterval of this interval that contains a = 2 is also a correct answer.

C04S02.056: We plotted f(x) = x1/3 and its linear approximation L(x) = 1
12 (x + 16) on the interval

[6.3, 9.9] and it was thereby clear that the interval (6.5, 9.5) would suffice. We then used Newton’s method
to find “better” endpoints and found (6.4023, 9.7976).

C04S02.057: We plotted f(x) = sinx and its linear approximation L(x) = x on the interval [−2.8, 2.8]
and it was clear that the interval (−0.5, 0.5) would suffice. We then used Newton’s method to find “better”
endpoints and found that (−0.6746, 0.6745) would suffice.

C04S02.058: Graphically we find that |f(x) − (x + 1)| < 0.05 provided that −0.3339 < x < 0.3004, so
I = (−0.3339, 0.3004).

C04S02.059: We plotted f(x) = sinx and its linear approximation

L(x) =
√

2
2

(
1− π

4
+ x

)

on the interval [0.5, 1.1], and it was clear that the interval (0.6, 0.95) would be adequate. We then used
Newton’s method to “improve” the endpoints and found that the interval (0.5364, 1.0151) would suffice.

C04S02.060: We plotted f(x) = tanx and its linear approximation L(x) = 1
2 (2− π + 4x) on the interval

[0.7, 0.9], from which it was clear that the interval (0.7, 0.85) would suffice. We then used Newton’s method
to find “better” endpoints, with the result that the interval (0.6785, 0.8789) was nearly the best possible
result.
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Section 4.3

C04S03.001: f ′(x) = −2x; f is increasing on (−∞, 0) and decreasing on (0, +∞). Matching graph: (c).

C04S03.002: f ′(x) = 2x− 2; f is increasing on (1, +∞), decreasing on (−∞, 1). Matching graph: (b).

C04S03.003: f ′(x) = 2x + 4; f is increasing on (−2, +∞), decreasing on (−∞, −2). Matching graph:
(f).

C04S03.004: f ′(x) = 3
4x

2 − 3; f ′(x) = 0 when x = ±2; f is increasing on (−∞, −2) and on (2, ∞),
decreasing on (−2, +2). Matching graph: (a).

C04S03.005: f ′(x) = x2−x−2 = (x+1)(x−2); f ′(x) = 0 when x = −1 and when x = 2; f is increasing
on (−∞, −1) and on (2, +∞), decreasing on (−1, 2). Matching graph: (d).

C04S03.006: f ′(x) = 2 − 1
3x −

1
3x

2 = − 1
3 (x2 + x − 6) = − 1

3 (x + 3)(x − 2); f ′(x) = 0 when x = −3 and
when x = 2. f is increasing on (−3, 2) and decreasing on (−∞, −3) and on (2, +∞). Matching graph: (e).

C04S03.007: f(x) = 2x2 + C; 5 = f(0) = C: f(x) = 2x2 + 5.

C04S03.008: f(x) = 2x3/2 + C; 4 = f(0) = C: f(x) = 2x3/2 + 4.

C04S03.009: f(x) = − 1
x

+ C; 1 = f(1) = C − 1: f(x) = − 1
x

+ 2.

C04S03.010: f(x) = −2e−3x + C; the condition f(0) = 3 yields C = 5.

C04S03.011: f ′(x) ≡ 3 > 0 for all x, so f is increasing for all x.

C04S03.012: f ′(x) ≡ −5 < 0 for all x, so f is decreasing for all x.

C04S03.013: f ′(x) = −4x, so f is increasing on (−∞, 0) and decreasing on (0, +∞). The graph of
y = f(x) is shown next.

C04S03.014: f ′(x) = 8x+ 8 = 8(x+ 1). Therefore f is increasing for x > −1 and decreasing for x < −1.
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C04S03.015: f ′(x) = 6− 4x. Therefore f is increasing for x < 3
2 and decreasing for x > 3

2 . The graph of
y = f(x) is shown next.

C04S03.016: f ′(x) = 3x2 − 12 = 3(x2 − 4) = 3(x + 2)(x − 2). Hence f is increasing for x > 2 and for
x < −2, decreasing for x in the interval (−2, 2).

C04S03.017: f ′(x) = 4x3 − 4x = 4x(x + 1)(x − 1). The intervals on which f ′(x) cannot change sign are
x < −1, −1 < x < 0, 0 < x < 1, and 1 < x. Because f ′(−2) = −24, f ′(−0.5) = 1.5, f ′(0.5) = −1.5, and
f ′(2) = 24, we may conclude that f is increasing if −1 < x < 0 or if x > 1, decreasing for x < −1 and for
0 < x < 1. The graph of y = f(x) is shown next.

C04S03.018: Because f ′(x) =
1

(x+ 1)2
, f ′(x) > 0 for all x other than x = −1. Hence f is increasing for

x > −1 and for x < −1.

C04S03.019: f ′(x) = 12x3 + 12x2 − 24x = 12x(x+ 2)(x− 1), so the only points where f ′(x) can change
sign are −2, 0, and 1. If 0 < x < 1 then 12x > 0, x + 2 > 0, and x − 1 < 0, and therefore f ′(x) < 0 if
0 < x < 1. Therefore f is decreasing on the interval (0, 1). A similar analysis shows that f is also decreasing
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on (−∞, −2) and is increasing on (−2, 0) and on (1, +∞). The graph of y = f(x) is shown next.

C04S03.020: Note that f is continuous for all x, as is f ′(x) =
2x2 + 1

(x2 + 1)1/2
; also, f ′(x) > 0 for all x. Hence

f is increasing for all x.

C04S03.021: After simplifications,

f ′(x) =
2− x
2ex/2

.

Hence f(x) can change sign only at x = 2. Therefore f is increasing if x < 2 and is decreasing if x > 2. The
graph of y = f(x) is next.

C04S03.022: Because

f ′(x) =
2x(1− x)

e2x
,

f(x) can change sign only at x = 0 and at x = 1. Because f ′(−1) < 0, f ′(0.5) > 0, and f ′(2) < 0, f is
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decreasing on (−∞, 0), increasing on (0, 1), and decreasing on (1, +∞). The graph of y = f(x) is next.

C04S03.023: Because

f ′(x) = − (x− 1)(x− 3)
ex

,

f(x) can change sign only at x = 1 and at x = 3. Also f(0) < 0, f(2) < 0, and f(4) < 0, so f is decreasing
on (−∞, 1), increasing on (1, 3), and decreasing on (3, +∞). The graph of y = f(x) is next.

C04S03.024: After simplifications,

f ′(x) =
1− ln(2x)

x2
.

Note that f(x) (and f ′(x)) are defined only for x > 0. Next, f ′(x) = 0 when

ln 2x = 1; 2x = e; x =
e

2
.

Hence f ′(x) can change sign only when x = e/2 (x > 0). Because f ′(1) > 0 and f ′(3) < 0, f is increasing
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on (0, e/2) and decreasing on (e/2, +∞). The graph of y = f(x) is next.

C04S03.025: f(0) = 0, f(2) = 0, f is continuous for 0 � x � 2, and f ′(x) = 2x−2 exists for 0 < x < 2.
To find the numbers c satisfying the conclusion of Rolle’s theorem, we solve f ′(c) = 0 to find that c = 1 is
the only such number.

C04S03.026: f(−3) = 81−81 = 0 = f(3), f is continuous everywhere, and f ′(x) = 18x−4x3 exists for all
x, including all x in the interval (−3, 3). Thus f satisfies the hypotheses of Rolle’s theorem. To find what
value or values c might assume, we solve the equation f ′(x) = 0 to obtain the three values c = 0, c = 3

2

√
2,

and c = − 3
2

√
2. All three of these numbers lie in the interval (−3, 3), so these are the three possible values

for the number c whose existence is guaranteed by Rolle’s theorem.

C04S03.027: Given: f(x) = 2 sinx cosx on the interval I = [0, π ]. Then

f ′(x) = 2 cos2 x− 2 sin2 x = 2 cos 2x,

and it is clear that all the hypotheses of Rolle’s theorem are satisfied by f on the interval I. Also f ′(x) = 0
when 2x = π/2 and when 2x = 3π/2, so the numbers whose existence is guaranteed by Rolle’s theorem are
c = π/4 and c = 3π/4.

C04S03.028: Here,

f ′(x) =
10
3
x−1/3 − 5

3
x2/3 =

10− 5x
3x1/3

;

f ′(x) exists for all x in (0, 5) and f is continuous on the interval 0 � x � 5 (the only point that might cause
trouble is x = 0, but the limit of f and its value there are the same). Because f(0) = 0 = f(5), there is a
solution c of f(x) = 0 in (0, 5), and clearly c = 2.

C04S03.029: On the interval (−1, 0), f ′(x) = 1; on the interval (0, 1), we have f ′(x) = −1. Because f is
not differentiable at x = 0, it does not satisfy the hypotheses of Rolle’s theorem, so there is no guarantee
that the equation f ′(x) = 0 has a solution—and, indeed, it has no solution in (−1, 1).

C04S03.030: Because

f ′(x) =
2

3(2− x)1/3 for x �= 2,

f ′(x) can never be zero, so the conclusion of Rolle’s theorem does not hold here. The reason is that f is not
differentiable at every point of the interval 1 � x � 3; specifically, f ′(x) is undefined at x = 2.

C04S03.031: If f(x) = xex, then f(1) = e �= 0, so f does not satisfy the hypotheses of Rolle’s theorem on
[0, 1]. Because f ′(x) = (x+ 1)ex is zero only when x = −1, f also does not satisfy the conclusion of Rolle’s
theorem there.
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C04S03.032: It is clear that f satisfies the hypotheses of the mean value theorem, because every polynomial
is continuous and differentiable everywhere. To find c, we solve

f ′(c) =
f(1)− f(−1)

1− (−1)
; that is, 3c2 =

1 + 1
1 + 1

.

Thus 3c2 = 1, with the two solutions c = 1
3

√
3 and c = − 1

3

√
3. Both these numbers lie in the interval

−1 � x � 1, so each is an answer to this problem.

C04S03.033: Here, f ′(x) = 6x+ 6; f(−2) = −5 and f(1) = 4. So we are to solve the equation

6(c+ 1) =
4− (−5)
1− (−2)

= 3. It follows that c = − 1
2
.

C04S03.034: Here we note that

f ′(x) =
1

2(x− 1)1/2

exists for all x > 1, so f satisfies the hypotheses of the mean value theorem for 2 � x � 5. To find c, we
solve

1
2(c− 1)1/2

=
(4)1/2 − (1)1/2

5− 2
;

thus 2(c− 1)1/2 = 3, and so c = 13
4 = 3.25. Note that 2 < c < 5.

C04S03.035: First, f ′(x) = 2
3 (x − 1)−1/3 is defined on (1, 2); moreover, f is continuous for 1 � x � 2

(the only “problem point” is x = 1, but the limit of f there is equal to its value there). To find c, we solve

f ′(c) =
2

3(c− 1)1/3
=
f(2)− f(1)

2− 1
=

1− 0
1

= 1.

This leads to the equation (c− 1)1/3 = 2
3 , and thereby c = 35

27 . Note that c does lie in the interval (1, 2).

C04S03.036: Because f(x) can be expressed as a rational function with denominator never zero if x �= 0,
it is both continuous and differentiable on (2, 3). Next,

f ′(c) = 1− 1
c2

=
3 + 1

3 −
(
2 + 1

2

)
3− 2

=
5
6

yields the information that c2 = 6, and thus that c = +
√

6 (not −
√

6; it’s not in the interval (2, 3)).

C04S03.037: First, f(x) = |x− 2| is not differentiable at x = 2, so does not satisfy the hypotheses of the
mean value theorem on the given interval 1 � x � 4. Wherever f ′(x) is defined, its value is 1 or −1, but

f(4)− f(1)
4− 1

=
2− 1

3
=

1
3

is never a value of f ′(x). So f satisfies neither the hypotheses nor the conclusion of the mean value theorem
on the interval 1 � x � 4.

C04S03.038: Because f is not differentiable at x = 1, the hypotheses of the mean value theorem do not
hold. The only values of f ′(x) are 1 (for x > 1) and −1 (for x < 1). Neither of these is equal to the everage
slope of f on the interval 0 � x � 3:
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f(3)− f(0)
3− 0

=
3− 2

3
=

1
3
,

so the conclusion of the mean value theorem also fails to hold.

C04S03.039: The greatest integer function is continuous at x if and only if x is not an integer. Consequently
all the hypotheses of the mean value theorem fail here: f is discontinuous at −1, 0, and 1, and also f ′(0)
does not exist because (for one reason) f is not continuous at x = 0. Finally, the average slope of the graph
of f is 1, but f ′(x) = 0 wherever it is defined. Thus the conclusion of the mean value theorem also fails to
hold.

C04S03.040: The function f(x) = 3x2/3 is continuous everywhere, but its derivative f ′(x) = 2x−1/3 does
not exist at x = 0. Because f ′(x) does not exist for all x in (−1, 1), an essential hypothesis of the mean
value theorem is not satisfied. Moreover, f ′(x) is never zero (the average slope of the graph of f on the
interval −1 � x � 1), so the conclusion of the mean value theorem also fails to hold.

C04S03.041: Let f(x) = x5 + 2x − 3. Then f ′(x) = 5x4 + 2, so f ′(x) > 0 for all x. This implies that f
is an increasing continuous function, and therefore f(x) can have at most one zero in any interval. To show
that f has at least one zero in the interval 0 � x � 1, it is sufficient to notice that f(1) = 0. Therefore the
equation f(x) = 0 has exactly one solution in [0, 1].

C04S03.042: Let f(x) = e−x−x+1. Then f ′(x) = −e−x− 1, so f(x) is decreasing and continuous on the
interval [1, 2]. Therefore the equation f(x) = 0 has at most one solution in that interval. But f(1) = e−1 > 0
and f(2) = e−2−1 < 0. Because f is continuous, it has the intermediate value property, so f(x) has at least
one zero in [1, 2]. Therefore the equation f(x) = 0 has exactly one solution there. That is, e−x = x− 1 for
exactly one number x in [1, 2].

C04S03.043: Let f(x) = −3+x lnx. Note that 1
2 < ln 2 < 1 because ln 2 ≈ 0.693147. Hence 1 < 2 ln 2 < 2,

so f(2) < 0. Also ln 4 = 2 ln 2, so 1 < ln 4 < 2, and hence 4 < 4 ln 4 < 8. Therefore f(4) > 0. Because
f is differentiable on [2, 4], it is continuous there. Hence, by the intermediate value property of continuous
functions, f(c) = 0 for some number c in [2, 4]. Thus c ln c = 3, and therefore the equation x lnx = 3 as
at least one solution in [2, 4].

Next, f ′(x) = 1 + lnx is positive on [2, 4] (use inequalities similar to those in the previous paragraph if
this is not perfectly clear), and therefore f is increasing on that interval. Hence the equation f(x) = 0 has
at most one solution in [2, 4]. In conclusion, the equation x lnx = 3 has exactly one solution in [2, 4]. (By
Newton’s method, the solution is approximately 2.85739078.)

C04S03.044: Let f(x) = sinx− 3x+ 1. Because f ′(x) = −3 + cosx is always negative, the graph of f is
decreasing on every interval of real numbers, and in particular is decreasing on [−1, 1]. Hence the equation
f(x) = 0 can have at most one solution in that interval. Moreover, f(−1) ≈ 3.16 > 0 and f(1) ≈ −1.16 < 0.
Because f is continuous on [−1, 1], the intermediate value property of continuous functions guarantees that
the equation f(x) = 0 has at least one solution in [−1, 1]. So the equation f(x) = 0 has exactly one solution
there.

C04S03.045: The car traveled 35 miles in 18 minutes, which is an average speed of 250
3 ≈ 83.33 miles per

hour. By the mean value theorem, the car must have been traveling over 83 miles per hour at some time
between 3:00 p.m. and 3:18 p.m.

C04S03.046: A change of 15 miles per hour in 10 minutes is an average change of 1.5 miles per hour
per minute, which is an average change of 90 miles per hour per hour. By the mean value theorem, the

7



instantaneous rate of change of velocity must have been exactly 90 miles per hour per hour at some time in
the given 10-minute interval.

C04S03.047: Let f(t) be the distance that the first car has traveled from point A on its way to point B
at time t, with t measured in hours and with t = 0 corresponding to 9:00 a.m. (so that t = 1 corresponds to
10:00 a.m.). Let g(t) be the corresponding function for the second car. Let h(t) = f(t)− g(t). We make the
very plausible assumption that the functions f and g are differentiable on (0, 1) and continuous on [0, 1],
so h has the same properties. In addition, h(0) = f(0)− g(0) = 0 and h(1) = 0 as well. By Rolle’s theorem,
h′(c) = 0 for some c in (0, 1). But this implies that f ′(c) = g′(c). That is, the velocity of the first car is
exactly the same as that of the second car at time t = c.

C04S03.048: Because f ′(0) does not exist, the function f(x) = x2/3 does not satisfy the hypotheses of the
mean value theorem on the given interval. But consider the equation

f ′(c) =
f(27)− f(−1)

27− (−1)
; (1)

that is,

2
3c1/3

=
9− 1
28

=
2
7
,

which leads to c1/3 = 7/3, and thus to c = 343
27 ≈ 12.7. Because −1 < c < 27, there is indeed a number c

satisfying Eq. (1).

C04S03.049: Because

f ′(x) =
3
2
(1 + x)1/2 − 3

2
=

3
2

(√
1 + x − 1

)
,

it is clear that f ′(x) > 0 for x > 0. Also f(0) = 0; it follows that f(x) > 0 for all x > 0. That is,

(1 + x)3/2 > 1 +
3
2
x for x > 0.

C04S03.050: Proof: Suppose that f ′(x) is the constant K on the interval a � x � b. Let

g(x) = Kx+ f(a)−Ka.

Then the graph of g is a straight line, and g′(x) = K for all x. Consequently f and g differ by a constant
on the interval a � x � b. But g(a) = Ka + f(a) −Ka = f(a), so g(x) = f(x) for all x in that interval.
Therefore the graph of f is a straight line.

C04S03.051: Proof: Suppose that f ′(x) is a polynomial of degree n− 1 on the interval I = [a, b]. Then
f ′(x) has the form

f ′(x) = an−1x
n−1 + an−2x

n−2 + . . .+ a2x
2 + a1x+ a0

where an−1 �= 0. Note that f ′(x) is the derivative of the function

g(x) =
1
n
an−1x

n +
1

n− 1
an−2x

n−1 + . . .+
1
3
a2x

3 +
1
2
a1x

2 + a0x.
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By Corollary 2, f(x) and g(x) can differ only by a constant, and this is sufficient to establish that f(x) must
also be a polynomial, and one of degree n because the coefficient of xn in f(x) is the same as the coefficient
of xn in g(x), and that coefficient is nonzero.

C04S03.052: Suppose that f(x) = 0 for x = x1, x2, . . . , xk in the interval [a, b]. By Rolle’s theorem,
f ′(x) = 0 for some c1 in (x1, x2), some c2 in (x2, x3), . . . , and some ck−1 in (xk−1, xk). The numbers
c1, c2, . . . , ck−1 are distinct because they lie in nonoverlapping intervals, and this proves the desired result.

C04S03.053: First note that f ′(x) = 1
2x

−1/2, and that the hypotheses of the mean value theorem are all
satisfied for the given function f on the given interval [100, 101]. Thus there does exist a number c between
100 and 101 such that

1
2c1/2

=
f(101)− f(100)

101− 100
=
√

101−
√

100.

Therefore 1/ (2
√
c ) =

√
101− 10, and thus we have shown that

√
101 = 10 + 1/ (2

√
c ) for some number c in

(100, 101).

Proof for part (b): If 0 � √c � 10, then 0 � c � 100; because c > 100, we see that 0 � √c � 10 is
impossible. If 10.5 � √c then 110.25 � c, which is also impossible because c < 110. So we may conclude
that 10 <

√
c < 10.5. Finally,

10 <
√
c < 10.5 implies that 20 < 2

√
c < 21.

Consequently

1
21

<
1

2c1/2
<

1
20
, so 10 +

1
21

<
√

101 < 10 +
1
20
.

The decimal expansion of 1/21 begins 0.047619047619 . . . , and therefore 10.0476 <
√

101 < 10.05.

C04S03.054: Let f(x) = x7 +x5 +x3 +1. Then f(−1) = −2, f(1) = 4, and f ′(x) = 7x6 +5x4 +3x2. Now
f ′(x) > 0 for all x except that f ′(0) = 0, so f is increasing on the set of all real numbers. This information
together with the fact that f (continuous) has the intermediate value property establishes that the equation
f(x) = 0 has exactly one [real] solution (approximately −0.79130272).

C04S03.055: Let f(x) = (tanx)2 and let g(x) = (secx)2. Then

f ′(x) = 2(tanx)(sec2 x) and g′(x) = 2(secx)(secx tanx) = f ′(x) on (−π/2, π/2).

Therefore there exists a constant C such that f(x) = g(x) + C for all x in (−π/2, π/2). Finally, f(0) = 0
and g(0) = 1, so C = f(0)− g(0) = −1.

C04S03.056: The mean value theorem does not apply here because f ′(0) does not exist.

C04S03.057: The average slope of the graph of f on the given interval [−1, 2] is

f(2)− f(−1)
2− (−1)

=
5− (−1)

3
= 2

and f satisfies the hypotheses of the mean value theorem there. Therefore f ′(c) = 2 for some number c,
−1 < c < 2. This implies that the tangent line to the graph of f at the point (c, f(c)) has slope 2 and is
therefore parallel to the line with equation y = 2x because the latter line also has slope 2.
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C04S03.058: To show that the graph of f(x) = x4 − x3 + 7x2 + 3x − 11 has a horizontal tangent line,
we must show that its derivative f ′(x) = 4x3 − 3x2 + 14x + 3 has the value zero at some number c. Now
f ′(x) is a polynomial, thus is continuous everywhere, and so has the intermediate value property; moreover,
f ′(−1) = −18 and f ′(0) = 3, so f ′(c) = 0 for some number c in (−1, 0). (The value of c is approximately
−0.203058.)

C04S03.059: Use the definition of the derivative:

g′(0) = lim
h→0

g(0 + h)− g(0)
h

= lim
h→0

[
1
2

+
1
h
h2 sin

(
1
h

)]

= lim
h→0

[
1
2

+ h sin
(

1
h

)]

=
1
2

+ 0 (by the squeeze law)

=
1
2
> 0.

If x �= 0 then

g′(x) =
1
2

+ 2x sin
(

1
x

)
− cos

(
1
x

)
.

Because cos(1/x) oscillates between +1 and −1 near x = 0 and 2x sin(1/x) is near zero for x close to zero, it
follows that every interval about x = 0 contains subintervals on which g′(x) > 0 and subintervals on which
g′(x) < 0. They are not clearly visible near x = 0 in the graph of y = g(x) (shown next) because they are
very short intervals.

C04S03.060: To prove a mathematical result it is frequently very helpful to restate exactly what it is that
you must prove. In this case, to show that f is increasing on the unbounded open interval (2, +∞), we need
to show that if 2 < x1 < x2, then f(x1) < f(x2). Suppose that 2 < x1 < x2. Let

a =
2 + x1

2
and b = 1 + x2.

Then [a, b] is a closed interval, and by hypothesis f is increasing there. Moreover, a < x1 (because a is the
midpoint of the interval (2, x1)), x1 < x2, and x2 < b. So x1 and x2 are two numbers in [a, b] for which
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x1 < x2. Therefore f(x1) < f(x2). This is what we have agreed that it means for f to be increasing on the
unbounded interval (2, +∞). This concludes the proof.

C04S03.061: Let h(x) = 1− 1
2x

2− cosx. Then h′(x) = −x+ sinx. By Example 8, sinx < x for all x > 0,

so h′(x) < 0 for all x > 0. If x > 0, then
h(x)− 0
x− 0

= h′(c) for some c > 0, so h(x) < 0 for all x > 0; that is,

cosx > 1− 1
2x

2 for all x > 0.

C04S03.062: (a): Let j(x) = sinx− x+ 1
6x

3. Then

j′(x) = cosx− 1 +
1
2
x2.

By the result in Problem 61, j′(x) > 0 for all x > 0. Also, if x > 0, then
j(x)− 0
x− 0

= j′(c) for some c > 0.

Hence j(x) > 0 for all x > 0; that is, sinx > x− 1
6x

3 for all x > 0.

(b) By part (a) and Example 8 of the text,

x− 1
6
x3 < sinx < x

for all x > 0. So

π

36
− 1

6

( π

36

)3
< sin

π

36
<

π

36
;

0.0871557 < sin 5◦ < 0.0872665;

sin 5◦ ≈ 0.087.

C04S03.063: (a): Let K(x) = 1− 1
2x

2 + 1
24x

4 − cosx. Then

K ′(x) = −x+
1
6
x3 + sinx = sinx− (x− 1

6
x3).

By Problem 62, part (a), K ′(x) > 0 for all x > 0. So if x > 0,
K(x)− 0
x− 0

= K ′(c) for some c > 0. Therefore

K(x) > 0 for all x > 0. That is,

cosx < 1− 1
2
x2 +

1
24
x4 for all x > 0.

(b): By Problem 61 and part (a),

1− 1
2
x2 < cosx < 1− 1

2
x2 +

1
24
x4

for all x > 0. In particular,

1− 1
2

( π

18

)2

< cos
π

18
< 1− 1

2

( π

18

)2
+

1
24

( π

18

)4
;

hence 0.984769 < cos 10◦ < 0.984808. So cos 10◦ ≈ 0.985.

C04S03.064: (a) Let h(x) = e−x − (1− x) = e−x + x− 1 for x � 0. Then h′(x) = −e−x + 1 > 0 if x > 0
because e−x < 1 if x > 0. Hence h(x) is increasing for x > 0. But h(0) = 0 and h is continuous for all
x � 0, so h(x) > 0 if x > 0. That is, e−x > p1(x) = 1− x if x > 0.
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(b) Let j(x) = 1− x+ 1
2 x

2 − e−x for x � 0. Then

j′(x) = −1 + x+ e−x = e−x − (1− x),

which was shown positive for x > 0 in part (a). Because j(0) = 0 and j is continuous for x � 0, it now
follows that j(x) > 0 if x > 0. That is,

e−x < p2(x) = 1− x+
1
2
x2 if x > 0.

(c) Let k(x) = e−x −
(
1− x+ 1

2 x
2 − 1

6 x
3
)

for x � 0. Then

k′(x) = −e−x + 1− x+
1
2
x2 = p2(x)− e−x.

By the result in part (b), k′(x) > 0 if x > 0. But k is continuous for x � 0 and k is increasing for x > 0.
Therefore k(x) > 0 for all x > 0. That is,

e−x > p3(x) = 1− x+
1
2
x2 − 1

6
x3 if x > 0.

(d) Continue in like fashion, or use induction to show that

p2n−1(x) < e−x < p2n(x)

for every positive integer n and all x > 0. Substitution of x = 1 and n = 4 yields

p7(1) <
1
e
< p8(1),

and thus (because all quantities involved are positive)

1
p8(1)

< e <
1

p7(1)
.

With the aid of a calculator (round up on the left, down on the right) we find thereby that

2.718263331 < e < 2.718446603.

Therefore e ≈ 2.718 to three places. With the aid of a powerful computer and a symbolic algebra program
you could use this method to show that e ≈ 2.71828182845904523536.
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Section 4.4

C04S04.001: f ′(x) = 2x− 4; x = 2 is the only critical point. Because f ′(x) > 0 for x > 2 and f ′(x) < 0
for x < 2, it follows that f(2) = 1 is the global minimum value of f(x). The graph of y = f(x) is shown
next.

C04S04.002: f ′(x) = 6 − 2x, so x = 3 is the only critical point. If x < 3 then f is increasing, whereas f
is decreasing for x > 3, so f(3) = 9 is the global maximum value of f(x).

C04S04.003: f ′(x) = 3x2 − 6x = 3x(x− 2), so x = 0 and x = 2 are the only critical points. If x < 0 or if
x > 2 then f ′(x) is positive, but f ′(x) < 0 for 0 < x < 2. So f(0) = 5 is a local maximum and f(2) = 1 is a
local minimum. The graph of y = f(x) is shown next.

C04S04.004: f ′(x) = 3x2 − 3 = 3(x + 1)(x − 1), so x = 1 and x = −1 are the only critical points. If
x < −1 or if x > 1, then f ′(x) > 0, whereas f ′(x) < 0 on (−1, 1). So f(−1) = 7 is a local maximum value
and f(1) = 3 is a local minimum value.

C04S04.005: f ′(x) = 3x2 − 6x+ 3 = 3(x− 1)2, so x = 1 is the only critical point of f . f ′(x) > 0 if x �= 1,
so the graph of f is increasing for all x; so f has no extrema of any sort. The graph of y = f(x) is shown
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next.

C04S04.006: f ′(x) = 6x2 + 6x− 36 = 6(x+ 3)(x− 2), so x = −3 and x = 2 are the only critical points. If
x < −3 or if x > 2 then f ′(x) > 0, but f ′(x) < 0 on the interval (−3, 2). So f(−3) = 98 is a local maximum
value of f(x) and f(2) = −27 is a local minimum value.

C04S04.007: f ′(x) = −6(x− 5)(x+ 2); f ′(x) < 0 if x < −2 and if x > 5, but f ′(x) > 0 for −2 < x < 5.
Hence f(−2) = −58 is a local minimum value of f and f(5) = 285 is a local maximum value. The graph of
y = f(x) is shown next.

C04S04.008: f ′(x) = −3x2, so x = 0 is the only critical point. But f ′(x) < 0 if x �= 0, so f is decreasing
everywhere. Therefore there are no extrema.

C04S04.009: f ′(x) = 4x(x− 1)(x+ 1); f ′(x) < 0 for x < −1 and on the interval (0, 1), whereas f ′(x) > 0
for x > 1 and on the interval (−1, 0). Consequently, f(−1) = −1 = f(1) is the global minimum value of
f(x) and f(0) = 0 is a local maximum value. Note that the [unique] global minimum value occurs at two
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different points on the graph of f , which is shown next.

C04S04.010: f ′(x) = 15x2(x + 1)(x − 1), so f ′(x) > 0 if x < −1 and if x > 1, but f ′(x) < 0 on (−1, 0)
and on (0, 1). Therefore f(0) = 0 is not an extremum of f(x), but f(−1) = 2 is a local maximum value and
f(1) = −2 is a local minimum value. The graph of y = f(x) is shown next.

C04S04.011: f ′(x) = 1− 9x−2, so the critical points occur where x = −3 and x = 3 (horizontal tangents);
note that f is not defined at x = 0. If x2 > 9 then f ′(x) > 0, so f is increasing if x > 3 and if x < −3.
If x2 < 9 then f ′(x) < 0, so f is decreasing on (−3, 0) and on (0, 3). Therefore f(−3) = −6 is a local
maximum value and f(3) = 6 is a local minimum value for f(x). The graph of y = f(x) is next.

C04S04.012: Here,

3



-4 -2 2 4

-40

-20

20

40

-0.5 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

f ′(x) = 2x− 2
x2

=
2(x3 − 1)

x2
=

2(x− 1)(x2 + x+ 1)
x2

.

Because x2 + x + 1 > 0 for all x, the only critical point is x = 1; note that f is not defined at x = 0. Also
f ′(x) has the sign of x− 1, so f ′(x) > 0 for x > 1 and f ′(x) < 0 for 0 < x < 1 and for x < 0. Consequently
f(1) = 3 is a local minimum value of f(x). It is not a global minimum because f(x)→ −∞ as x→ 0−. The
graph of y = f(x) is shown next.

C04S04.013: If f(x) = xe−2x, then

f ′(x) = e−2x − 2xe−2x =
1− 2x
e2x

.

The only critical point occurs when x = 1
2 . The graph of f is increasing to the left of this point and

decreasing to the right, so f has a global maximum there. The graph of y = f(x) is next.

C04S04.014: If f(x) = x2e−x/3, then

f ′(x) = 2xe−x/3 − 1
3
x2e−x/3 =

x(6− x)
3ex/3

.

Hence there are critical points at x = 0 and at x = 6. Because f ′(−2) ≈ −10.3879 < 0, f ′(3) ≈ 1.10364 > 0,
and f ′(8) ≈ −0.37058 < 0, the graph of f is decreasing for x < 0 and for x > 6, increasing on (0, 6). Because
f(x) � 0 for all x and f(x) = 0 only if x = 0, there is a global minimum at (0, 0). Because f(x)→ +∞ as
x→ −∞, the maximum where x = 6 is local but not global.

C04S04.015: If f(x) = (x+ 4)2e−x/5, then
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f ′(x) =
1
5
(24 + 2x− x2)e−x/5 =

(6− x)(4 + x)
5ex/5

.

Therefore the only critical points occur where x = −4 and x = 6. Because f ′(−5) ≈ −5.98022 < 0,
f ′(0) = 4.8 > 0, and f ′(7) ≈ −0.54251 < 0, the graph of f is decreasing if x < −4 and if x > 6, increasing
on (−4, 6). Because f(x) � 0 for all x and f(x) = 0 only if x = −4, there is a global minimum at (−4, 0).
Because f(x)→ +∞ as x→ −∞, the maximum where x = 6 is local but not global. The graph of y = f(x)
is next.

C04S04.016: If

f(x) =
1− lnx

x
, then f ′(x) =

−2 + lnx
x2

.

So the only critical point occurs where x = e2 ≈ 7.38906. Because f ′(3) ≈ −0.10015 < 0 and f ′(12) ≈
0.00337 > 0, the graph of f is decreasing if 0 < x < e2 and increasing if x > e2. Hence there is a global
extremum where x = e2.

C04S04.017: f ′(x) = 2 sinx cosx; f ′(x) = 0 when x is any integral multiple of π/2. In (0, 3), f ′(x) = 0
when x = π/2. Because f ′(x) > 0 if 0 < x < π/2 and f ′(x) < 0 if π/2 < x < 3, f(x) has the global
maximum value f(π/2) = 1.

C04S04.018: f ′(x) = −2 sinx cosx; f ′(x) = 0 when x = 0 and when x = π/2. f is increasing on (−1, 0)
and on (π/2, 3), whereas f is decreasing on (0, π/2). So f has a global maximum at (0, 1) and a global
minimum at (π/2, 0).

C04S04.019: f ′(x) = 3 sin2 x cosx; f ′(x) = 0 when x = −π/2, 0, or π/2. f is decreasing on (−3, −π/2)
and on (π/2, 3), but increasing on (−π/2, π/2). So f has a global minimum at (−π/2, −1) and a global
maximum at (π/2, 1); there is no extremum at the critical point (0, 0).

C04S04.020: f ′(x) = −4 cos3 x sinx vanishes at π/2 and at π. f is decreasing on (0, π/2) and on (π, 4),
but increasing on (π/2, π). Hence there is a global minimum at (π/2 , 0) and a global maximum at (π, 1).

C04S04.021: f ′(x) = x sinx; f ′(x) = 0 at −π, 0, and π. f ′(x) > 0 on (−π, π), f ′(x) < 0 on (−5, −π) and
on (π, 5). So f has a global maximum at (π, π) and a global minimum at (−π, −π). Note that the critical
point (0, 0) is not an extremum.

C04S04.022: Given: f(x) = cosx + x sinx on I = (−5, 5). First, f ′(x) = x cosx, so f ′(x) = 0 (for x in
I) when
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Hence f ′(x) < 0 on (−5, −3π/2), (−π/2, 0), and (π/2, 3π/2); f ′(x) > 0 on (−3π/2, −π/2), (0, π/2), and
on (3π/2, 5). Therefore there are global minima at (−3π/2, −3π/2) and (3π/2, −3π/2), global maxima at
(−π/2, π/2) and (π/2, π/2), and a local minimum at (0, 1). The global minima are global rather than local
because f(±5) ≈ −4.510959.

C04S04.023: If

f(x) =
lnx
x2

, then f ′(x) =
1− 2 lnx

x3
.

So f ′(x) = 0 when lnx = 1
2 ; that is, x = e1/2. Because f ′(x) < 0 if 0 < x < e1/2 and f ′(x) > 0 when

x > e1/2, the critical point at x = e1/2 is a global maximum. The graph of y = f(x) is next.

C04S04.024: If

f(x) =
ln(1 + x)

1 + x
, then f ′(x) =

1− ln(1 + x)
(1 + x)2

.

The only critical point, which occurs where f ′(x) = 0, is (e − 1, 1/e). Because f ′(1) ≈ 0.07671 > 0 and
f ′(2) ≈ −0.01096 < 0, there is a global maximum at this critical point and there are no other extrema.

C04S04.025: If f(x) = ex sinx, then f ′(x) = ex(cosx + sinx). Hence f ′(x) = 0 in (−3, 3) when
tanx = −1, thus at x = a = −π/4 and at x = b = 3π/4. Because f ′(x) < 0 if −3 < x < a and if b < x < 3,
the graph of f is decreasing on these intervals; it is increasing on (a, b). Inspection of the values of f(x) near
−3 and near 3 shows that f(x) has a global minimum value at x = a and a global maximum value at x = b.

C04S04.026: If f(x) = x3 exp(−x−x2), then f ′(x) = x2(1−x)(3+2x) exp(−x−x2). Hence f ′(x) = 0 when
x = − 3

2 , when x = 0, and when x = 1. The corresponding values of f(x) are − 27
8 e

−3/4, 0, and e−2. We
note that f ′(−2) ≈ −1.62402 < 0, f ′(−1) = 2 > 0, f ′(0.5) ≈ 0.23618 > 0, and that f ′(1.5) ≈ −15875 < 0.
Hence the graph of f is decreasing on (−3, −1.5), increasing on (−1.5, 1), and decreasing on (1, 3). Because
f(x) is near zero near the endpoints of its domain, there is a global minimum where x = −1.5 and a global
maximum where x = 1. The point (0, 0) is not an extremum.

C04S04.027: Let x be the smaller of the two numbers; then the other is x + 20 and their product is
f(x) = x2 + 20x. Consequently f ′(x) = 2x + 20, so x = −10 is the only critical point of f . The graph of
f is decreasing for x < −10 and increasing for x > −10. Therefore (−10, −100) is the lowest point on the
graph of f . Answer: The two numbers are −10 and 10.
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C04S04.028: We assume that the length turned upward is the same on each side—call it y. If the width
of the gutter is x, then we have the constraint xy = 18, and we are to minimize the width x + 2y of the
strip. Its width is given by the function

f(x) = x+
36
x
, x > 0,

for which

f ′(x) = 1− 36
x2
.

The only critical point in the domain of f is x = 6, and if 0 < x < 6 then f ′(x) < 0, whereas f ′(x) > 0 for
x > 6. Thus x = 6 yields the global minimum value f(6) = 12 of the function f . Answer: The minimum
possible width of the strip is 12 inches.

C04S04.029: Let us minimize

g(x) = (x− 3)2 + (3− 2x− 2)2 = (x− 3)2 + (1− 2x)2,

the square of the distance from (x, y) on the line 2x+ y = 3 to the point (3, 2). We have

g′(x) = 2(x− 3)− 4(1− 2x) = 10x− 10,

so x = 1 is the only critical point of g(x). If x > 1 then g′(x) > 0, but g′(x) < 0 for x < 1. Thus x = 1
minimizes g(x), and so the point on the line 2x+y = 3 closest to the point (3, 2) is (1, 1). As an independent
check, note that the slope of the line segment joining (3, 2) and (1, 1) is 1

2 , whereas the slope of the line
2x+ y = 3 is −2, so the segment and the line are perpendicular; see Miscellaneous Problem 70 of Chapter 3.

C04S04.030: Base of box: x wide, 2x long. Height: y. Then the box has volume 2x2y = 576, so
y = 288x−2. Its total surface area is A = 4x2 + 6xy, so we minimize

A = A(x) = 4x2 +
1728
x

, x > 0.

Now

A′(x) = 8x− 1728
x2

,

so the only critical point of A(x) occurs when 8x3 = 1728; that is, when x = 6. It is easy to verify that
A′(x) < 0 for 0 < x < 6 and A′(x) > 0 for x > 6. Therefore A(6) is the global minimum value of A(x). Also,
when x = 6 we have y = 8. Answer: The dimensions of the box of minimal surface area are 6 inches wide
by 12 inches long by 8 inches high.

C04S04.031: Base of box: x wide, 2x long. Height: y. Then the box has volume 2x2y = 972, so
y = 486x−2. Its total surface area is A = 2x2 + 6xy, so we minimize

A = A(x) = 2x2 +
2916
x

, x > 0.

Now

A′(x) = 4x− 2916
x2

,
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so the only critical point of A(x) occurs when 4x3 = 2916; that is, when x = 9. It is easy to verify that
A′(x) < 0 for 0 < x < 9 and that A′(x) > 0 for x > 9. Therefore A(9) is the global minimum value of A(x).
Answer: The dimensions of the box are 9 inches wide, 18 inches long, and 6 inches high.

C04S04.032: If the radius of the base of the pot is r and its height is h (inches), then we are to minimize
the total surface area A given the constraint πr2h = 125. Thus h = 125/(πr2), and so

A = πr2 + 2πrh = A(r) = πr2 +
250
r
, r > 0.

Now

A′(r) = 2πr − 250
r2

;

A′(r) = 0 when r3 = 125/π, so that r = 5/ 3
√
π. The latter point is the only value of r at which A′(r) can

change sign (for r > 0), and it is easy to see that A′(r) is positive when r is large positive, whereas A′(r)
is negative when r is near zero. Therefore we have located the global minimum of A(r), and it occurs when
the pot has radius r = 5/ 3

√
π inches and height h = 5/ 3

√
π inches. Thus the pot will have its radius equal to

its height, each approximately 3.414 inches.

C04S04.033: Let r denote the radius of the pot and h its height. We are given the constraint πr2h = 250,
so h = 250/(πr2). Now the bottom of the pot has area πr2, and thus costs 4πr2 cents. The curved side of
the pot has area 2πrh, and thus costs 4πrh cents. So the total cost of the pot is

C = 4πr2 + 4πrh; thus C = C(r) = 4πr2 +
1000
r

, r > 0.

Now

C ′(r) = 8πr − 1000
r2

;

C ′(r) = 0 when 8πr3 = 1000, so that r = 5/ 3
√
π. It is clear that this is the only (positive) value of r at which

C ′(r) can change sign, and that C ′(r) < 0 for r positive and near zero, but C ′(r) > 0 for r large positive.
Therefore we have found the value of r that minimizes C(r). The corresponding value of h is 10/ 3

√
π, so the

pot of minimal cost has height equal to its diameter, each approximately 6.828 centimeters.

C04S04.034: If (x, y) = (x, 4− x2) is a point on the parabola y = 4− x2, then the square of its distance
from the point (3, 4) is

h(x) = (x− 3)2 + (4− x2 − 4)2 = (x− 3)2 + x4.

We minimize the distance by minimizing its square:

h′(x) = 2(x− 3) + 4x3;

h′(x) = 0 when 2x3 +x−3 = 0. It is clear that h′(1) = 0, so x−1 is a factor of h′(x); h′(x) = 0 is equivalent
to (x − 1)(2x2 + 2x + 3) = 0. The quadratic factor in the last equation is always positive, so x = 1 is the
only critical point of h(x). Also h′(x) < 0 if x < 1, whereas h′(x) > 0 for x > 1, so x = 1 yields the global
minimum value h(1) = 5 for h(x). When x = 1 we have y = 3, so the point on the parabola y = 4 − x2

closest to (3, 4) is (1, 3), at distance
√

5 from it.

C04S04.035: If the sides of the rectangle are x and y, then xy = 100, so that y =
100
x

. Therefore the
perimeter of the rectangle is
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P = P (x) = 2x+
200
x
, x > 0.

Then

P ′(x) = 2− 200
x2

;

P ′(x) = 0 when x = 10 (−10 is not in the domain of P (x)). Now P ′(x) < 0 on (0, 10) and P ′(x) > 0 for
x > 10, and so x = 10 minimizes P (x). A little thought about the behavior of P (x) for x near zero and for
x large makes it clear that we have found the global minimum value for P : P (10) = 40. When x = 10, also
y = 10, so the rectangle of minimal perimeter is indeed a square.

C04S04.036: Let x denote the length of each side of the square base of the solid and let y denote its
height. Then its total volume is x2y = 1000. We are to minimize its total surface area A = 2x2 + 4xy. Now

y =
1000
x2

, so

A = A(x) = 2x2 +
4000
x

, x > 0.

Therefore

dA

dx
= 4x− 4000

x2
.

The derivative is zero when 4x3 = 4000; that is, when x = 10. Also A(x) is decreasing on (0, 10) and
increasing for x > 10. So x = 10 yields the global minimum value of A(x). In this case, y = 10 as well, so
the solid is indeed a cube.

C04S04.037: Let the square base of the box have edge length x and let its height be y, so that its total
volume is x2y = 62.5 and the surface area of this box-without-top will be A = x2 + 4xy. So

A = A(x) = x2 +
250
x
, x > 0.

Now

A′(x) = 2x− 250
x2

,

so A′(x) = 0 when x3 = 125: x = 5. In this case, y = 2.5. Also A′(x) < 0 if 0 < x < 5 and A′(x) > 0 if
x > 5, so we have found the global minimum for A(x). Answer: Square base of edge length 5 inches, height
2.5 inches.

C04S04.038: Let r denote the radius of the can and h its height (in centimeters). We are to minimize its
total surface area A = 2πr2 + 2πrh given the constraint πr2h = V = 16π. First we note that h = V/(πr2),
so we minimize

A = A(r) = 2πr2 +
2V
r
, r > 0.

Now

A′(r) = 4πr − 2V
r2

;

9



A′(r) = 0 when 4πr3 = 2V = 32π—that is, when r = 2. Now A(r) is decreasing on (0, 2) and increasing for
r > 2, so the global minimum of A(r) occurs when r = 2, for which h = 4.

C04S04.039: Let x denote the radius and y the height of the cylinder (in inches). Then its cost (in cents)
is C = 8πx2 + 4πxy, and we also have the constraint πx2y = 100. So

C = C(x) = 8πx2 +
400
x
, x > 0.

Now dC/dx = 16πx − 400/(x2); dC/dx = 0 when x = (25/π)1/3 (about 1.9965 inches) and consequently,
when y = (1600/π)1/3 (about 7.9859 inches). Because C ′(x) < 0 if x3 < 25/π and C ′(x) > 0 if x3 > 25/π,
we have indeed found the dimensions that minimize the total cost of the can. For simplicity, note that y = 4x
at minimum: The height of the can is twice its diameter.

C04S04.040: If the print width is x and its height is y (in inches), then the page area is A = (x+2)(y+4).
We are to minimize A given xy = 30. Because y = 30/x,

A = A(x) = 4x+ 38 +
60
x
, x > 0.

Now

A′(x) = 4− 60
x2

;

A′(x) = 0 when x =
√

15. But A′(x) > 0 for x >
√

15 whereas A′(x) < 0 for 0 < x <
√

15. Therefore
x =
√

15 yields the global minimum value of A(x), which is 38 + 8
√

15, approximately 68.98 square inches.

C04S04.041: Let (x, y) = (x, x2) denote an arbitrary point on the curve. The square of its distance from
(0, 2) is then

f(x) = x2 + (x2 − 2)2.

Now f ′(x) = 2x(2x2 − 3), and therefore f ′(x) = 0 when x = 0, when x = −
√

3/2, and when x = +
√

3/2.
Now f ′(x) < 0 if x < −

√
3/2 and if 0 < x <

√
3/2; f ′(x) > 0 if −

√
3/2 < x < 0 and if x >

√
3/2. Therefore

x = 0 yields a local maximum for f ; the other two zeros of f ′(x) yield its global minimum. Answer: There
are exactly two points on the curve that are nearest (0, 2); they are (+

√
3/2, 3/2) and (−

√
3/2, 3/2).

C04S04.042: Let (a, 0) and (0, b) denote the endpoints of the segment and denote its point of tangency
by (c, 1/c). The segment then has slope −1/c2, and therefore

b− 0
0− a = − 1

c2
=

(1/c)− 0
c− a .

It follows that b = a/c2 and that c = a− c, so a = 2c and b = 2/c. The square of the length of the segment
is then

f(c) = 4c2 +
4
c2
, c > 0.

Now

f ′(c) = 8c− 8
c3

;
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f ′(c) = 0 when c = −1 and when c = 1. We reject the negative solution. On the interval (0, 1), f
is decreasing; f is increasing for c > 1. Therefore c = 1 gives the segment of minimal length, which is
L =

√
f(1) = 2

√
2.

C04S04.043: If the dimensions of the rectangle are x by y, and the line segment bisects the side of length
x, then the square of the length of the segment is

f(x) =
(x

2

)2

+ y2 =
x2

4
+

4096
x2

, x > 0,

because y = 64/x. Now

f ′(x) =
x

2
− 8192

x3
.

When f ′(x) = 0, we must have x = +8
√

2, so that y = 4
√

2. We have found the minimum of f because if
0 < x < 8

√
2 then f ′(x) < 0, and f ′(x) > 0 if x > 8

√
2. The minimum length satisfies L2 = f

(
8
√

2
)
, so

that L = 8 centimeters.

C04S04.044: Let y be the height of the cylindrical part and x the length of the radii of both the cylinder
and the hemisphere. The total surface area is

A = πx2 + 2πxy + 2πx2 = 3πx2 + 2πxy.

But the can must have volume V = πx2y + 2
3πx

3, so

y =
1000− 2

3πx
3

πx2
.

Therefore

A = A(x) =
5
3
πx2 +

2000
x

, x > 0.

Thus

dA

dx
=

10
3
πx− 2000

x2
.

Now dA/dx = 0 when x = (600/π)1/3 ≈ 5.7588. Because dA/dx < 0 for smaller values of x and dA/dx > 0
for larger values, we have found the point at which A(x) attains its global minimum value. After a little
arithmetic, we find that y = x, so the radius of the hemisphere and the radius and height of the cylinder
should all be equal to (600/π)1/3 to attain minimal surface area.

This argument contains the implicit assumption that y > 0. If y = 0, then

x = (1500/π)1/3 ≈ 7.8159, for which

A = (150)(18π)1/3 ≈ 575.747 cubic inches.

But with x = y = (600/π)1/3, we have

A = (100)(45π)1/3 ≈ 520.940 cubic inches.

So the solution in the first paragraph indeed yields the dimensions of the can requiring the least amount of
material.
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C04S04.045: If the end of the rod projects the distance y into the narrower hall, then we have the
proportion y/2 = 4/x by similar triangles. So y = 8/x. The square of the length of the rod is then

f(x) = (x+ 2)2 +
(

4 +
8
x

)2

, x > 0.

It follows that

f ′(x) = 4 + 2x− 64
x2
− 128

x3
,

and that f ′(x) = 0 when (x + 2)(x3 − 32) = 0. The only admissible solution is x = 3
√

32, which indeed
minimizes f(x) by the usual argument (f(x) is very large positive if x is either large positive or positive and
very close to zero). The minimum length is

L =
(
20 + 12 3

√
4 + 12 3

√
16

)1/2

≈ 8.323876 (meters).

C04S04.046: By similar triangles, y/1 = 8/x, and

L1 + L2 = L =
[
(x+ 1)2 + (y + 8)2

]1/2
.

We minimize L by minimizing

f(x) = L2 = (x+ 1)2 +
(

8 +
8
x

)2

, x > 0.

f ′(x) = 2 + 2x− 128
x3
− 128

x2
;

f ′(x) = 0 when 2x3 + 2x4 − 128− 128x = 0, which leads to the equation

(x+ 1)(x− 4)(x2 + 4x+ 16) = 0.

The only relevant solution is x = 4. Because f ′(x) < 0 for x in the interval (−1, 4) and f ′(x) > 0 if x > 4,
we have indeed found the global minimum of f . The corresponding value of y is 2, and the length of the
shortest ladder is L = 5

√
5 feet, approximately 11 ft 2 in.

C04S04.047: If the pyramid has base edge length x and altitude y, then its volume is V = 1
3x

2y. From
Fig. 4.4.30 we see also that

2y
x

= tan θ and
a

y − a = cos θ

where θ is the angle that each side of the pyramid makes with its base. It follows, successively, that
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(
a

y − a

)2

= cos2 θ;

sin2 θ = 1− cos2 θ =
(y − a)2 − a2

(y − a)2

=
y2 − 2ay
(y − a)2 =

y(y − 2a)
(y − a)2 .

sin θ =

(
y(y − 2a)

)1/2
y − a .

y =
x

2
sin θ
cos θ

=
(
x

2

)((
y(y − 2a)

)1/2
y − a

)(
y − a
a

)
;

2y =
x

a

√
y(y − 2a) ;

x2 =
4a2y2

y(y − 2a)
.

Therefore

V =
1
3
x2y = V (y) =

4a2y2

3(y − 2a)
, y > 2a.

Now

dV

dy
=

24a2y(y − 2a)− 12a2y2

9(y − 2a)2
.

The condition dV/dy = 0 then implies that 2(y−2a) = y, and thus that y = 4a. Consequently the minimum
volume of the pyramid is

V (4a) =
(4a2)(16a2)

(3)(2a)
=

32
3
a3.

The ratio of the volume of the smallest pyramid to that of the sphere is then

32/3
4π/3

=
32
4π

=
8
π
.

C04S04.048: Let x denote the distance from the noisier of the two discos. Let K be the “noise propor-
tionality” constant. The noise level at x is then

N(x) =
4K
x2

+
K

(1000− x)2 .

N ′(x) = −8K
x3

+
2K

(1000− x)3 .

Now N ′(x) = 0 when 4(1000− x)3 = x3; if so, it follows that

x =
(1000)41/3

1 + 41/3
≈ 613.512.
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Because the noise level is very high when x is near zero and when x is near 1000, the last value of x minimizes
the noise level—the quietest point is about 613.5 feet from the noisier of the two discos.

C04S04.049: Let z be the length of the segment from the top of the tent to the midpoint of one side of
its base. Then x2 + y2 = z2. The total surface area of the tent is

A = 4x2 + (4)( 1
2 )(2x)(z) = 4x2 + 4xz = 4x2 + 4x(x2 + y2)1/2.

Because the [fixed] volume V of the tent is given by

V =
1
3
(4x2)(y) =

4
3
x2y,

we have y = 3V/(4x2), so

A = A(x) = 4x2 +
1
x

(16x6 + 9V 2)1/2.

After simplifications, the condition dA/dx = 0 takes the form

8x
(
16x6 + 9V 2

)1/2 − 1
x2

(
16x6 + 9V 2

)
+ 48x4 = 0,

which has solution x = 2−7/6 3
√

3V . Because this is the only positive solution of the equation, and because
it is clear that neither large values of x nor values of x near zero will yield small values of the surface area,
this is the desired value of x.

C04S04.050: By similar triangles in Fig. 4.4.28, we have y/a = b/x, and thus y = ab/x. If L denotes the
length of the ladder, then we minimize

L2 = f(x) = (x+ a)2 + (y + b)2 = (x+ a)2 + b2
(
1 +

a

x

)2

, x > 0.

Now

f ′(x) = 2(x+ a) + 2b2
(
1 +

a

x

) (
− a

x2

)
;

f ′(x) = 0 when x3 = ab2, so that x = a1/3b2/3 and y = a2/3b1/3. It’s clear that f is differentiable on its
domain and that f(x) → +∞ as x → 0+ and as x → +∞. Therefore we have minimized L. With these
values of x and y, we find that

L =
(
a2 + y2

)1/2
+

(
x2 + b2

)1/2
=

(
a2 + a4/3b2/3

)1/2

+
(
a2/3b4/3 + b2

)1/2

= a2/3
(
a2/3 + b2/3

)1/2

+ b2/3
(
a2/3 + b2/3

)1/2

=
(
a2/3 + b2/3

) (
a2/3 + b2/3

)1/2

=
(
a2/3 + b2/3

)3/2

.

Note that the answer is dimensionally correct.

C04S04.051: Let x denote the length of each edge of the square base of the box and let y denote the height
of the box. Then x2y = V where V is the fixed volume of the box. The surface total area of this closed box
is

A = 2x2 + 4xy, and hence A(x) = 2x2 +
4V
x
, 0 < x < +∞.
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Then

A′(x) = 4x− 4V
x2

=
4(x3 − V )

x2
,

so A′(x) = 0 when x = V 1/3. This is the only critical point of A, and A′(x) < 0 if x is near zero while
A′(x) > 0 if x is large positive. Thus the global minimum value of the surface area occurs at this critical
point. And if x = V 1/3, then the height of the box is

y =
V

x2
=

V

V 2/3
= V 1/3 = x,

and hence the closed box with square base, fixed volume, and minimal surface area is a cube.

C04S04.052: Let x denote the length of each edge of the square base of the box and let y denote its height.
Then the box has fixed volume V = x2y. The total surface area of the open box is A = x2 + 4xy, and hence

A(x) = x2 +
4V
x
, 0 < x < +∞.

Next,

A′(x) = 2x− 4V
x2

=
2(x3 − 2V )

x2
.

Thus A′(x) = 0 when x = (2V )1/3. This critical point yields the global minimum value of A(x) because
A′(x) < 0 when x is small positive and A′(x) > 0 when x is large positive. And at this critical point, we
have

y =
V

x2
=

2V
2 · (2V )2/3

=
1
2

(2V )1/3 =
1
2
x.

Therefore the box with square base, no top, and fixed volume has minimal surface area when its height is
half the edge length of its base.

C04S04.053: Let r denote the radius of the base (and top) of the closed cylindrical can and let h denote
its height. Then its fixed volume is V = πr2h and its total surface area is A = 2πr2 + 2πrh. Hence

A(r) = 2πr2 + 2πr · V
πr2

= 2πr2 +
2V
r
, 0 < r < +∞.

Then

A′(r) = 4πr − 2V
r2

=
4πr3 − 2V

r2
;

A′(r) = 0 when r = (V/2π)1/3. This critical point minimizes total surface area A(r) because A′(r) < 0 when
r is small positive and A′(r) > 0 when r is large positive. And at this critical point we have

h =
V

πr2
=

V

π(V/2π)2/3
=

2 · (V/2π)
(V/2π)2/3

= 2(V/2π)1/3 = 2r.

Therefore the closed cylindrical can with fixed volume and minimal total surface area has height equal to
the diameter of its base.
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C04S04.054: Let r denote the radius of the circular base of the cylindrical can and let h denote its height.
Then its fixed volume is V = πr2h and the total surface area of the open cylindrical can is A = πr2 + 2πrh.
Therefore

A(r) = πr2 + 2πr · V
πr2

= πr2 +
2V
r
, 0 < r < +∞.

Now

A′(r) = 2πr − 2V
r2

=
2πr3 − 2V

r2
,

so A′(r) = 0 when r = (V/π)1/3. This critical point yields the global minimum value of A(r) because
A′(r) < 0 when r is small positive and A′(r) > 0 when r is large positive. Moreover, at this critical point
we have

h =
V

πr2
=

V

π(V/π)2/3
=

V/π

(V/π)2/3
= (V/π)1/3 = r.

Therefore the open cylindrical can with fixed volume and minimal total surface area has height equal to the
radius of its base.

C04S04.055: Finding the exact solution of this problem is quite challenging. In the spirit of mathemat-
ical modeling we accept the very good approximation that—if the thickness of the material of the can is
small in comparison with its other dimensions—the total volume of material used to make the can may be
approximated sufficiently accurately by multiplying the area of the bottom by its thickness, the area of the
curved side by its thickness, the area of the top by its thickness, then adding these three products. Thus let
r denote the radius of the inside of the cylindrical can, let h denote the height of the inside, and let t denote
the thickness of its bottom and curved side; 3t will be the thickness of its top. The total (inner) volume of
the can is the fixed number V = πr2h. The amount of material to make the can will (approximately, but
accurately)

M = πr2t+ 2πrht+ 3πr2t = 4πr2t+ 2πrht, (1)

so that

M(r) = 4πr2t+ 2πrt · V
πr2

=
(

4πr2 +
2V
r

)
· t, 0 < r < L,

where L is some rather large positive number that we don’t actually need to evaluate. (You can find L from
Eq. (1) by setting h = 0 there and solving for r in terms of M and t.) Next,

M ′(r) =
(

8πr − 2V
r2

)
· t =

2t(4πr3 − V )
r2

;

M ′(r) = 0 when r = (V/4π)1/3. This critical point yields the global minimum value of M(r) because
M ′(r) < 0 when r is small positive and M ′(r) > 0 when (V/2π)1/3 < r < L. (You need to verify that, under
reasonable assumptions about the relative sizes of the linear measurements, L > (V/4π)1/3.) And at this
critical point, we have

h =
V

πr2
=

4 · (V/4π)
(V/4π)2/3

= 4 · (V/4π)1/3 = 4r.
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Therefore the pop-top soft drink can of fixed internal volume V , with thickness as described in the problem,
and using the minimal total volume of material for its top, bottom, and curved side, will have height
(approximately) twice the diameter of its base.

In support of this conclusion, the smallest commonly available pop-top can of a popular blend of eight
vegetable juices has height about 9 cm and base diameter about 5 cm. Most of the 12-oz pop-top soft drink
cans we measured had height about 12.5 cm and base diameter about 6.5 cm.

C04S04.056: Let each edge of the square base of the box have length x and let y denote the height of the
box. Then the fixed volume of the box is V = x2y. The cost of its six faces is then (2x2 + 4xy) · a and the
cost to glue the edges together is (8x+ 4y) · b. Hence the total cost of material and construction will be

C = (2x2 + 4xy) · a+ (8x+ 4y) · b.

Because y = V/x2, we have

C(x) =
(

2x2 + 4x · V
x2

)
· a+

(
8x+ 4 · V

x2

)
· b =

(
2x2 +

4V
x

)
· a+

(
8x+

4V
x2

)
· b, 0 < x < +∞.

Next,

C ′(x) =
(

4x− 4V
x2

)
· a+

(
8− 8V

x3

)
· b =

4ax(x3 − V ) + 8b(x3 − V )
x3

=
4(ax+ 2b)(x3 − V )

x3
.

Because x > 0, the only significant critical point of C(x) occurs when x = V 1/3. Clearly C ′(x) < 0 when x

is small positive and C ′(x) > 0 if x > V 1/3. Therefore we have found the value of x that yields the global
minimum value of the cost of the box. The corresponding value of the height of the box is

y =
V

x2
=

V

V 2/3
= V 1/3 = x.

Therefore the box of Problem 56 of minimal cost is a cube. It is remarkable and quite unexpected that the
(positive) values of a and b do not affect the answer.
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Section 4.5

C04S05.001: f(x)→ +∞ as x→ +∞, f(x)→ −∞ as x→ −∞. Matching graph: 4.5.13(c).

C04S05.002: f(x)→ +∞ as x→ +∞, f(x)→ +∞ as x→ −∞. Matching graph: 4.5.13(a).

C04S05.003: f(x)→ −∞ as x→ +∞, f(x)→ +∞ as x→ −∞. Matching graph: 4.5.13(d).

C04S05.004: f(x)→ −∞ as x→ +∞, f(x)→ −∞ as x→ −∞. Matching graph: 4.5.13(b).

C04S05.005: y′(x) = 4x − 10, so the only critical point is
(

5
2 , −

39
2

)
, the lowest point on the graph of y

because y′(x) < 0 if x < 5
2 and y′(x) > 0 if x > 5

2 .

C04S05.006: The only critical point occurs where x = 3
2 . The graph is increasing if x < 3

2 , decreasing if
x > 3

2 .

C04S05.007: y′(x) = 12x2 − 6x− 90 is zero when x = − 5
2 and when x = 3. The graph of y is increasing

if x < − 5
2 , decreasing if − 5

2 < x < 3, and increasing if x > 3. Consequently there is a local maximum at
(−2.5, 166.75) and a local minimum at (3, −166).

C04S05.008: The only critical points occur where x = − 7
2 and where x = 5

3 . The graph is increasing
between them and decreasing otherwise.

C04S05.009: y′(x) = 12x3 + 12x2 − 72x = 12(x− 2)x(x+ 3), so there are critical points at P (−3, −149),
at Q(0, 40), and R(2, −24). The graph is decreasing to the left of P and between Q and R; it is increasing
otherwise.

C04S05.010: The critical points occur where x = − 8
3 , where x = 0, and where x = 5

2 . The graph is
increasing on

(
−∞, − 8

3

)
and on

(
0, 5

2

)
. The graph is decreasing on

(
− 8

3 , 0
)

and on
(

5
2 , +∞

)
.

C04S05.011: y′(x) = 15x4 − 300x2 + 960 = 15(x+ 4)(x+ 2)(x− 2)(x− 4), so there are critical points at
P (−4, −512), Q(−2, −1216), R(2, 1216), and S(4, 512). The graph is increasing to the left of P , between
Q and R, and to the right of S; it is decreasing otherwise.

C04S05.012: The critical points occur at x = −5, x = −2, x = 0, x = 2, and x = 5. The graph of y is
decreasing on (−∞, −5), on (−2, 0), and on (2, 5). The graph is increasing on (−5, −2), on (0, 2), and on
(5, +∞).

C04S05.013: y′(x) = 21x6−420x4 +1344x2 = 21(x+4)(x+2)x2(x−2)(x−4), so there are critical points
at P (−4, 8192), Q(−2,−1280), R(0, 0), S(2, 1280), and T (4, −8192). The graph is increasing to the left of
P , between Q and S (there is no extremum at R), and to the right of T ; it is decreasing otherwise.

C04S05.014: The critical points occur where x = −3, x = −2, x = 0, x = 2, and x = 3. The graph of y is
decreasing on (−∞, −3), on (−2, 0), and on (2, 3). It is increasing on (−3, −2), on (0, 2), and on (3, +∞).
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C04S05.015: f ′(x) = 6x−6, so there is a critical point at (1, 2). Because f ′(x) < 0 if x < 1 and f ′(x) > 0
if x > 1, there is a global minimum at the critical point. The graph of y = f(x) is shown next.

C04S05.016: f ′(x) = −8−4x is positive for x < −2, negative for x > −2. The graph is a parabola opening
downward, with vertical axis, and vertex (and global maximum) at (−2, 13).

C04S05.017: f ′(x) = 3(x2 − 4). There is a local maximum at (−2, 16) and a local minimum at (2, −16);
neither is global. The graph of y = f(x) is shown next.

C04S05.018: The function f is increasing on the set of all real numbers because f ′(x) = 3x2 +3 is positive
for all x. Thus f has no extrema of any kind.

C04S05.19: f ′(x) = 3x2− 12x+ 9 = 3(x− 1)(x− 3), so f is increasing for x < 1 and for x > 3, decreasing
for 1 < x < 3. It has a local maximum at (1, 4) and a local minimum at (3, 0). Its graph is shown next.

C04S05.020: f ′(x) = 3x2 + 12x + 9 = 3(x + 1)(x + 3) is positive for x > −1 and for x < −3, negative
for −3 < x < −1. So there is a local maximum at (−3, 0) and a local minimum at (−1, −4). There are
intercepts at (−3, 0) and (0, 0).

C04S05.021: f ′(x) = 3(x2 + 2x + 3) is positive for all x, so the graph of f is increasing on the set of all
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real numbers; there are no extrema. The graph of f is shown next.

C04S05.022: f ′(x) = 3(x+ 3)(x− 3): Local maximum at (−3, 54), local minimum at (3, −54).

C04S05.023: f ′(x) = 2(x − 1)(x + 2)(2x + 1); there are global minima at (−2, 0) and (1, 0) and a local
maximum at

(
− 1

2 ,
81
16

)
. The minimum value 0 is global because [clearly] f(x) = (x− 1)2(x+ 2)2 � 0 for all

x. The maximum value is local because f(x)→ +∞ as x→ ±∞. The graph of y = f(x) is next.

C04S05.024: f ′(x) = 2(x− 2)(2x+ 3)(4x− 1): Global minimum value 0 at x = −1.5 and at x = 2, local
maximum at (0.25, 37.515625).

C04S05.025: f ′(x) =
3(1− x)

2
√
x

, so f ′(x) > 0 if 0 < x < 1 and f ′(x) < 0 if x > 1. Therefore there is a

local minimum at (0, 0) and a global maximum at (1, 2). The minimum is only local because f(x) → −∞
as x→ +∞. The graph of y = f(x) is shown next.

C04S05.026: Given: f(x) = x2/3(5− x):

f ′(x) =
2
3
x−1/3(5− x)− x2/3 =

2(5− x)
3x1/3

− x2/3 =
10− 2x− 3x

3x1/3
=

5(2− x)
3x1/3

.

Hence f ′(x) can change sign only at x = 2 and at x = 0. It’s clear that f is increasing for 0 < x < 2,
decreasing for x < 0 and for x > 2. Thus there is a local maximum at (2, f(2)) and a local minimum at
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(0, 0). Note that f ′(0) does not exist, but that f is continuous at x = 0. Neither extremum is global because
f(x)→ +∞ as x→ −∞ and f(x)→ −∞ as x→ +∞.

C04S05.027: f ′(x) = 15x2(x − 1)(x + 1), so f is increasing for x < −1 and for x > 1, decreasing for
−1 < x < 1. Hence there is a local maximum at (−1, 2) and a local minimum at (1, −2). The critical point
at (0, 0) is not an extremum. The graph of y = f(x) is shown next.

C04S05.028: f ′(x) = 4x2(x + 3) is positive for x > −3 and negative for x < −3; there is a horizontal
tangent but no extremum at x = 0. There is a minimum at (−3, −27); it is global because

f(x) = x4 + 4x3 = x4

(
1 +

4
x

)
→ +∞ as x→ ±∞.

C04S05.029: f ′(x) = 4x(x− 2)(x+ 2), so the graph of f is decreasing for x < −2 and for 0 < x < 2; it is
increasing if −2 < x < 0 and if x > 2. Therefore the global minimum value −9 of f(x) occurs at x = ±2
and the extremum at (0, 7) is a maximum, but not global because f(x) → +∞ as x → ±∞. The graph of
y = f(x) is shown next.

C04S05.030: Given

f(x) =
1
x

= x−1, we see that f ′(x) = −x−2 = − 1
x2
.

Therefore f ′(x) is negative for all x �= 0, so f(x) is decreasing for all x �= 0; there is an infinite discontinuity
at x = 0. There are no extrema and no intercepts. Note that as x increases without bound, f(x) approaches
zero. In sketching the graph of f it is very helpful to note that

lim
x→0−

1
x

= −∞ and that lim
x→0+

1
x

= +∞.

C04S05.031: Because f ′(x) = 4x− 3, there is a critical point at
(

3
4 , −

81
8

)
= (0.75, −10.125). The graph

of f is decreasing to the left of this point and increasing to its right, so there is a global minimum at this
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critical point and no other extrema. The graph of y = f(x) is shown next.

C04S05.032: The graph is a parabola, opening downward, vertical axis, vertex at
(
− 5

12 ,
169
24

)
, which is

thus the highest point on the graph.

C04S05.033: f ′(x) = 6(x− 1)(x+ 2), so the graph of f is increasing for x < −2 and for x > 1, decreasing
if −2 < x < 1. Hence there is a local maximum at (−2, 20) and a local minimum at (1, −7). The
first is not a global maximum because f(10) = 2180 > 20; the second is not a global minimum because
f(−10) = −1580 < −7. The graph of y = f(x) is shown next.

C04S05.034: f ′(x) = 3x2 + 4 is positive for all x, so f(x) is increasing for all x; there are no extrema and
(0, 0) is the only intercept.

C04S05.035: f ′(x) = 6(5x− 3)(5x− 4), so there are critical points at (0.6, 16.2) and (0.8, 16). The graph
of f is increasing for x < 0.6 and for x > 0.8; it is decreasing between these two points. Hence there is a
local maximum at the first and a local minimum at the second. Neither is global because

lim
x→∞

f(x) = lim
x→∞

x3

(
50− 105

x
+

72
x2

)
= +∞

and, similarly, f(x)→ −∞ as x→ −∞. A graph of y = f(x) is shown next.
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C04S05.036: f ′(x) = 3(x − 1)2 is positive except at x = 1, so the graph is increasing for all x; there are
no extrema, and the intercepts are at (0, −1) and (1, 0).

C04S05.037: f ′(x) = 12x(x − 2)(x + 1), so f is decreasing for x < −1 and for 0 < x < 2, increasing for
−1 < x < 0 and for x > 2. There is a local minimum at (−1, 3), a local maximum at (0, 8), and a global
minimum at (2, −24). The latter is global rather than local because f(x) → +∞ as x → ±∞. The graph
of f is shown next.

C04S05.038: f(x) = (x2 − 1)2; f ′(x) = 4x(x + 1)(x − 1). So f(x) is increasing for −1 < x < 0 and for
x > 1, decreasing if x < −1 or if 0 < x < 1. The global minimum value is 0 = f(−1) = f(1) and there is a
local maximum at (0, 1).

C04S05.039: f ′(x) = 15x2(x− 2)(x+ 2), so f is increasing if |x| > 2 and decreasing if |x| < 2.There is a
local maximum at (−2, 64) and a local minimum at (2, −64); the critical point at (0, 0) is not an extremum.
The graph of y = f(x) appears next.

C04S05.040: f ′(x) = 15(x + 1)(x − 1)(x + 2)(x − 2), so f is increasing if x < −2, if −1 < x < 1, and if
x > 1, decreasing if −2 < x < −1 and if 1 < x < 2. So there are local maxima at (−2, −16) and (1, 38) and
local minima at (−1, −38) and (2, 16). The only intercept is (0, 0). None of the extrema is global because

lim
x→∞

f(x) = lim
x→∞

(3x5 − 25x3 + 60x) = lim
x→∞

x5

(
3− 25

x2
+

60
x4

)
= +∞

and, similarly, f(x)→ −∞ as x→ −∞.

C04S05.041: f ′(x) = 6(x2 + x + 1) is positive for all x, so the graph of f is increasing everywhere, with

6
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no critical points and thus no extrema. The only intercept is (0, 0). The graph of f is shown next.

C04S05.042: f ′(x) = 4x2(x − 3), so f is increasing for x > 3 and decreasing for x < 3. Therefore there
is a local (and global) minimum at (3, −27); (0, 0) and (4, 0) are the only intercepts. There is a horizontal
tangent at (0, 0) but no extremum there.

C04S05.043: f ′(x) = 32x3 − 8x7 = −8x3(x2 + 2)(x2 − 2), so the graph of f is increasing if x < −
√

2
and if 0 < x <

√
2 but decreasing if −

√
2 < x < 0 and if x >

√
2. The global maximum value of f(x) is

16 = f
(√

2
)

= f
(
−
√

2
)

and there is a local minimum at (0, 0). The graph of f is shown next.

C04S05.044: Here we have

f ′(x) = − 1
3x2/3

,

which is negative for all x �= 0. Though f ′(0) is not defined, f is continuous at x = 0; careful examination
of the behavior of f and f ′ near zero shows that the graph has a vertical tangent at (0, 1); there are no
extrema.

C04S05.045: Given f(x) = x1/3(4− x), we find that

f ′(x) =
1
3
x−2/3(4− x)− x1/3 =

4(1− x)
3x2/3

.

Therefore f is increasing if x < 0 and if 0 < x < 1, decreasing if x > 1. Because f is continuous everywhere,
including the point x = 0, it is also correct to say that f is increasing on (−∞, 1). The point (1, 3) is the
highest point on the graph and there are no other extrema. Careful examination of the behavior of f(x) and
f ′(x) for x near zero shows that there is a vertical tangent at the critical point (0, 0). The point (4, 0) is an
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x-intercept. The graph of y = f(x) appears next.

C04S05.046: In this case

f ′(x) =
8(x+ 2)(x− 2)

3x1/3
,

which is positive for x > 2 and for −2 < x < 0, negative for x < −2 and for 0 < x < 2. Note that f is
continuous at x = 0 even though f ′(0) does not exist. Moreover, for x near zero, we have

f(x) ≈ −16x2/3 and f ′(x) ≈ − 32
3x1/3

.

Consequently f ′(x) → −∞ as x → 0+, whereas f ′(x) → +∞ as x → 0−. This is consistent with the
observation that f(x) < 0 for all x near (but not equal to) zero. The origin is a local maximum and there
are global minima where |x| = 2.

C04S05.047: Given f(x) = x(x− 1)2/3, we find that

f ′(x) = (x− 1)2/3 +
2
3
x(x− 1)−1/3 =

5x− 3
3(x− 1)1/3

.

Thus f ′(x) = 0 when x = 3
5 and f ′(x) does not exist when x = 1. So f is increasing for x < 3

5 and for x > 1,
decreasing if 3

5 < x < 1. Thus there is a local maximum at
(

3
5 , 0.3257

)
(y-coordinate approximate) and a

local minimum at (1, 0). Examination of f(x) and f ′(x) for x near 1 shows that there is a vertical tangent
at (1, 0). There are no global extrema because f(x)→ +∞ as x→ +∞ and f(x)→ −∞ as x→ −∞. The
graph of f is shown next.

C04S05.048: After simplifications, we find that

f ′(x) =
2− 3x

3x2/3(2− x)1/3 .

So f ′(x) = 0 when x = 2
3 and f ′(x) does not exist at x = 0 and at x = 2. Nevertheless, f is continuous

everywhere. Its graph is increasing for x < 2
3 and for x > 2, decreasing for 2

3 < x < 2. There is a

8
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vertical tangent at (0, 0), which is not an extremum. There’s a horizontal tangent at
(

2
3 , 1.058

)
(ordinate

approximate), which is a local maximum. There is a cusp at (2, 0), which is also a local minimum. Note
that f(x) ≈ x for |x| large; this aids in constructing the global sketch of the graph.

C04S05.049: The graph of f(x) = 2x3 + 3x2 − 36x− 3 is shown next.

C04S05.050: The graph of f(x) = 2x3 − 6x2 − 48x+ 50 is shown next.

C04S05.051: The graph of f(x) = −2x3 − 3x2 + 36x+ 15 is shown next.

C04S05.052: The graph of f(x) = 3x4 + 8x3 − 18x2 + 5 appears next.
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C04S05.053: The graph of f(x) = 3x4 − 8x3 − 30x2 + 72x+ 45 is next.

C04S05.054: The graph of f(x) = 12x5 − 45x4 − 200x3 + 720x2 + 17 is shown next.

C04S05.055: Let f(x) = x3 − 3x + 3. For part (a), we find that if we let x = −2.1038034027, then
f(x) ≈ 7.58× 10−9. For part (b), we find that

f(x) ≈ (x+ 2.1038034027)(x2 − (2.1038034027)x+ 1.4259887573).

And in part (c), we find by the quadratic formula that the complex conjugate roots of f(x) = 0 are
approximately 1.0519017014 + 0.5652358517i and 1.0519017014− 0.5652358517i.

C04S05.056: Let f(x) = x3 − 3x + q. Then f ′(x) = 3(x2 − 1), so the graph of y = f(x) will always
have a local maximum at (−1, f(−1)) = (−1, q + 2) and a local minimum at (1, f(1)) = (1, q − 2). If the
ordinates of these points have the same sign then the equation f(x) = 0 will have only one [real] solution—see
Figs. 4.5.9 through 4.5.11. And this situation is equivalent to q + 2 < 0 or q − 2 > 0; that is, q < −2 or
q > 2. If the ordinates have opposite signs, then the equation f(x) = 0 will have three real solutions, and
this will occur if q − 2 < 0 < q + 2; that is, if −2 < q < 2. If q = ±2, then there will be exactly two real
solutions because

x3−3x+2 = (x−1)(x2 +x−2) = (x−1)2(x+2) and x3−3x−2 = (x+1)(x2−x−2) = (x+1)2(x−2).

C04S05.057: If f(x) = [x(x− 1)(2x− 1)]2, then

f ′(x) = 2x(x− 1)(2x− 1)(6x2 − 6x+ 1),

so the critical points of the graph of f will be (0, 0),
(

1
2 , 0

)
, (1, 0),

(
1
6

[
3−
√

3
]
, 0.009259259

)
(ordinate

approximate), and
(

1
6

[
3 +
√

3
]
, 0.009259259

)
. The graph of f will be

10



decreasing for x < 0,

increasing for 0 < x < 1
6

(
3−
√

3
)
,

decreasing for 1
6

(
3−
√

3
)
< x < 1

2 ,

increasing for 1
2 < x < 1

6

(
3 +
√

3
)
,

decreasing for 1
6

(
3 +
√

3
)
< x < 1, and

increasing for 1 < x.

There will be global minima at x = 0, x = 1
2 , and x = 1 and [equal] local maxima at x = 1

6

(
3−
√

3
)

and
x = 1

6

(
3 +
√

3
)
.

C04S05.058: A Mathematica solution:

poly = x∧3 − 3∗x + 1;

r = (−1 + Sqrt[3])/2;

x1 = r∧(−1/3) + r∧(1/3);
x2 = r∧(4/3) + r∧(5/3);
x3 = r∧(2/3) + r∧(7/3);

(poly /. x → x1) // Expand // Simplify

(poly /. x → x2) // Expand // Simplify

(poly /. x → x3) // Expand // Simplify

0

0

0

N[x1] // chop

N[x2] // chop

N[x3] // chop

1.53209

−1.87939

0.347296

Thus we see three distinct real roots.

C04S05.059: Given f(x) =
[
1
6 x(9x− 5)(x− 1)

]4, the Mathematica command

Plot[ f[x], { x, −1, 2 }, PlotPoints → 97,

PlotRange → {{ −0.8, 1.8 }, { −0.1, 1.0 }} ];
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generated the graph shown next. As predicted, the graph seems to have a “flat spot” on the interval [0, 1].

Then we modified the Plot command to restrict the range of y-values to the interval [−0.00001, 0.00008]:

Plot[ f[x], { x, −1, 2 }, PlotPoints → 197,

PlotRange → {{ −0.18, 1.18 }, { −0.00001, 0.00008 }} ];

the graph generated by this command is next.

Then we used Mathematica to identify the extrema:

soln = Solve[ f′[x] == 0, x ]

{{ x → 0 }, { x → 0 }, { x → 0 }, { x → 5
9
}, { x → 5

9
},

{ x → 5
9
}, { x → 1 }, { x → 1 }, { x → 1 },

{ x → 14− Sqrt[61]
27

}, { x → 14 + Sqrt[61]
27

}}

{ x1 = soln[[1,1,2]], x2 = soln[[4,1,2]], x3 = soln[[7,1,2]],

x4 = N[soln[[10,1,2]], 20], x5 = N[soln[[11,1,2]], 20] }

{ 0,
5
9
, 1, 0.22925001200345724466, 0.8077870250335797924 }

{ y1 = f[x1], y2 = f[x2], y3 = f[x3], y4 = f[x4], y5 = f[x5] }

{ 0, 0, 0, 0.0000559441164359303138, 0.0000119091402810978625 }

12



The second graph makes it clear that (x1, 0), (x2, 0), and (x3, 0) are local (indeed, global) minima, while
(x4, y4) and (x5, y5) are local (not global) maxima.

C04S05.060: After constructing the functions

f(x) = x4 − 55x3 + 505x2 + 11000x− 110000

and

g(x) = f(x) + ex2

where e = 1, we used Mathematica to find the zeros of these polynomials:

NSolve[ f[x] == 0, x ]

{{ x → −13.4468 }, { x → 9.38408 }, { x → 28.6527 }, { x → 30.4143 }}

NSolve[ g[x] == 0, x ]

{{ x → −13.4468 }, { x → 9.38459 }, { x → 29.5361 − 0.480808 I },
{ x → 29.5371 + 0.480808 I }}

In part (b), by changing the value of e, working up from e = 0 and down from e = 1, we bracketed the
transition point.

e = 0.7703;

h[x ] := f[x] + e∗x∧2;
NSolve[ h[x] == 0, x ]

{{ x → −13.4478 }, { x → 9.37677 }, { x → 29.528 }, { x → 29.543 }

e = 0.7704;

h[x ] := f[x] + e∗x∧2;
NSolve[ h[x] == 0, x ]

{{ x → −13.4478 }, { x → 9.37676 }, { x → 29.5355 − 0.00665912 I },
{ x → 29.5355 + 0.00665912 I }}
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Section 4.6

C04S06.001: f ′(x) = 8x3 − 9x2 + 6, f ′′(x) = 24x2 − 18x, f ′′′(x) = 48x− 18.

C04S06.002: f ′(x) = 10x4+ 3
2x

1/2+ 1
2x

−2, f ′′(x) = 40x3+ 3
4x

−1/2−x−3, f ′′′(x) = 120x2− 3
8x

−3/2+3x−4.

C04S06.003: f ′(x) = −8(2x− 1)−3, f ′′(x) = 48(2x− 1)−4, f ′′′(x) = −384(2x− 1)−5.

C04S06.004: g′(t) = 2t+ 1
2 (t+ 1)−1/2, g′′(t) = 2− 1

4 (t+ 1)−3/2, g′′′(t) = 3
8 (t+ 1)−5/2.

C04S06.005: g′(t) = 4(3t− 2)1/3, g′′(t) = 4(3t− 2)−2/3, g′′′(t) = −8(3t− 2)−5/3.

C04S06.006: f ′(x) = (x+ 1)1/2 + 1
2x(x+ 1)−1/2, f ′′(x) = (x+ 1)−1/2 − 1

4x(x+ 1)−3/2,

f ′′′(x) = − 3
4 (x+ 1)−3/2 + 3

8x(x+ 1)−5/2.

C04S06.007: h′(y) = (y + 1)−2, h′′(y) = −2(y + 1)−3, h′′′(y) = 6(y + 1)−4.

C04S06.008: f ′(x) = 3
2x

−1/2 + 3 + 3
2x

1/2, f ′′(x) = − 3
4x

−3/2 + 3
4x

−1/2, f ′′′(x) = 9
8x

−5/2 − 3
8x

−3/2.

C04S06.009: g′(t) = t(1 + 2 ln t), g′′(t) = 3 + 2 ln t, g′′′(t) =
2
t
.

C04S06.010: h′(z) =
(2z − 1)ez

2z3/2
, h′′(z) =

(4z2 − 4z + 3)ez

4z5/2
, h′′′(z) =

(8z3 − 12z2 + 18z − 15)ez

8z7/2
.

C04S06.011: f ′(x) = 3 cos 3x, f ′′(x) = −9 sin 3x, f ′′′(x) = −27 cos 3x.

C04S06.012: f ′(x) = −4 sin 2x cos 2x, f ′′(x) = 8 sin2 2x− 8 cos2 2x, f ′′′(x) = 64 sin 2x cos 2x.

C04S06.013: f ′(x) = cos2 x− sin2 x, f ′′(x) = −4 sinx cosx, f ′′′(x) = 4 sin2 x− 4 cos2 x.

C04S06.014: f ′(x) = 2x cosx− x2 sinx, f ′′(x) = 2 cosx− 4x sinx− x2 cosx,

f ′′′(x) = −2 sinx− 4 sinx− 6x cosx+ x2 sinx.

C04S06.015: f ′(x) =
x cosx− sinx

x2
, f ′′(x) =

(2− x2) sinx− 2x cosx
x3

,

f ′′′(x) =
(6− x2)x cosx+ (3x2 − 6) sinx

x4
.

C04S06.016: Given: x2 + y2 = 4.

2x+ 2yy′(x) = 0, so y′(x) = −x
y
.

y′′(x) = −y − xy
′(x)

y2
= −

y +
x2

y

y2
= −y

2 + x2

y3
= − 4

y3
.

C04S06.017: Given: x2 + xy + y2 = 3.
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2x+ y + x
dy

dx
+ 2y

dy

dx
= 0, so y′(x) = − 2x+ y

x+ 2y
.

y′′(x) = − 2(1 + y′(x) + [y′(x)]2)
x+ 2y

= − 6(x2 + xy + y2)
x+ 2y

= − 18
(x+ 2y)3

.

C04S06.018: Given: x1/3 + y1/3 = 1.

1
3
x−2/3 +

1
3
y−2/3 dy

dx
= 0, so y′(x) = −

(y
x

)2/3
.

y′′(x) = − 2
3

(y
x

)−1/3

· xy
′(x)− y
x2

=
2
3

( y

x5

)1/3
.

C04S06.019: Given: y3 + x2 + x = 5.

3y2 dy

dx
+ 2x+ 1 = 0, so y′(x) = − 2x+ 1

3y2
.

y′′(x) = − 2(1 + 3y(x)[y′(x)]2)
3[y(x)]2

= − 2[(2x+ 1)2 + 3y3 ]
9y5

.

C04S06.020: Given:
1
x

+
1
y

= 1.

− 1
x2
− 1
y2

dy

dx
= 0, so y′(x) = −

(y
x

)2
.

y′′(x) = −2
(y
x

)
· xy

′(x)− y(x)
x2

=
2y2(x+ y)

x4
= 2

(y
x

)3
.

The last step is a consequence of the fact that, by the original equation, x+ y = xy.

C04S06.021: Given: sin y = xy.

(cos y)
dy

dx
= y + x

dy

dx
, so y′(x) = − y

x− cos y
.

y′′(x) = − [x− cos y(x)]y′(x)− y(x)[1 + y′(x) sin y ]
(x− cos y)2

= − (y sin y + 2 cos y − 2x)y
(x− cos y)3

.

C04S06.022: sin2 x+ cos2 y = 1: 2 sinx cosx− 2y′(x) sin y cos y = 0; y′(x) =
sinx cosx
sin y cos y

.

d2y

dx2
can be simplified (with the aid of the original equation) to

d2y

dx2
=

cos2 x sin2 y − sin2 x cos2 y
sin3 y cos3 y

≡ 0 if y is not an integral multiple of π/2.

C04S06.023: f ′(x) = 3x2−6x−45 = 3(x+3)(x−5), so there are critical points at (−3, 81) and (5,−175).
f ′′(x) = 6(x− 1), so the inflection point is located at (1, −47).

C04S06.024: Critical points: (−3, 389) and (6, −340); inflection point: (1.5, 24.5).
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C04S06.025: f ′(x) = 12x2 − 12x− 189 = 3(2x+ 7)(2x− 9), so there are critical points at (−3.5, 553.5)
and (4.5, −470.5). f ′′(x) = 24x− 12, so the inflection point is located at (0.5, 41.5).

C04S06.026: Critical points: (−6.25, −8701.56) and (3.4, 9271.08); inflection point: (−1.425, 284.76).

C04S06.027: f ′(x) = 4x3 − 108x = 4x(x2 − 27), so there are critical points at (0, 237),
(
−3
√

3, −492
)
,

and
(
3
√

3, −492
)
. Next, f ′′(x) = 12x2 − 108 = 12(x− 3)(x+ 3), so the inflection points are at (−3, −168)

and (3, −168).

C04S06.028: Critical point: (7.5, −1304.69); inflection points: (0, −250) and (5, −875).

C04S06.029: f ′(x) = 15x4−80x3 = 5x3(3x−16), so there are critical points at (0, 1000) and
(

16
3 , −

181144
81

)
(approximately (5.333333, −2236.345679)). f ′′(x) = 60x3−240x2 = 60x2(x−4), so the inflection points are
at (0, 1000) and (4, −1048).

C04S06.030: Critical points:
(
−4
√

2, 8192
√

2
)

and
(
4
√

2, −8192
√

2
)
; inflection points: (0, 0), (−4, 7168),

and (4, −7168).

C04S06.031: f ′(x) = 2x− 4 and f ′′(x) ≡ 2, so there is a critical point at (2, −1) and no inflection points.
Because f ′′(2) = 2 > 0, there is a local minimum at the critical point. The first derivative test shows that
it is in fact a global minimum.

C04S06.032: f ′(x) = −6 − 2x; f ′′(x) = −2. The only critical point is at (−3, 14), and it is a local
maximum point because f ′′(−3) = −2 < 0. There are no inflection points because f ′′(x) never changes sign.
The critical point is actually a global maximum by the first derivative test.

C04S06.033: f ′(x) = 3(x+ 1)(x− 1) and f ′′(x) = 6x. f(−1) = 3 and f ′′(−1) = −6, so the critical point
at (−1, 3) is a local maximum. Similarly, the critical point at (1, −1) is a local minimum. The point (0, 1)
is an inflection point because f ′′(x) < 0 for x < 0 and f ′′(x) > 0 for x > 0. The extrema are not global
because f(x)→ +∞ as x→ +∞ and f(x)→ −∞ as x→ −∞.

C04S06.034: f ′(x) = 3x(x − 2); f ′′(x) = 6(x − 1). There is a critical point at (0, 0) and one at (2, −4).
Now f ′′(0) = −6 < 0, so there is a local maximum at (0, 0); f ′′(2) = 6 > 0, so there is a local minimum at
(2, −4). The only possible inflection point is (1, −2), and it is indeed an inflection point because f ′′ changes
sign there. The extrema are not global.

C04S06.035: If f(x) = xe−x, then f ′(x) = (1− x)e−x and f ′′(x) = (x− 2)e−x. Hence f is increasing for
x < 1 and decreasing for x > 1; its graph is concave downward for x < 2 and concave upward for x > 2.
Hence there is a global maximum at (1, e−1) and an inflection point at (2, 2e−2). The graph of y = f(x) is
next.

C04S06.036: If
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f(x) =
lnx
x
, then f ′(x) =

1− lnx
x2

and f ′′(x) =
−3 + 2 lnx

x3
.

Then f ′(x) = 0 when x = e and f ′′(x) = 0 when x = e3/2. Hence the graph of f is increasing for 0 < x < e,
decreasing for x > e, concave downward for 0 < x < e3/2 and concave upward for x > e3/2. Therefore there
is a global maximum at (e, e−1) and an inflection point at

(
e3/2, 3

2e
−3/2

)
. The graph of f is shown next.

C04S06.037: f ′(x) = 5x4 + 2 and f ′′(x) = 20x3, so there are no critical points (f ′(x) > 0 for all x) and
(0, 0) is the only possible inflection point. And it is an inflection point because f ′′(x) changes sign at x = 0.

C04S06.038: f ′(x) = 4x(x + 2)(x − 2); f ′′(x) = 12x2 − 16. The critical points are located at (−2,−16),
(0, 0), and (2, −16). Now f ′′(−2) > 0 and f ′′(2) > 0, so (−2, −16) and (2, −16) are local minimum points.
But f ′′(0) < 0, so (0, 0) is a local maximum point. The only possible inflection points are where 3x2−4 = 0;
x = 2

3

√
3 and x = − 2

3

√
3. Because f ′′(x) = 4(3x2 − 4), it is clear that f ′′(x) changes sign at each of these

two points, so the corresponding points on the graph are inflection points. The local minima are actually
global by a careful application of the first derivative test.

C04S06.039: f ′(x) = 2x(x − 1)(2x − 1) and f ′′(x) = 2(6x2 − 6x + 1). So the critical points are (0, 0),(
1
2 ,

1
16

)
, and (1, 0). The second derivative test indicates that the first and third are local minima and that the

second is a local maximum. The only possible inflection points are
(

1
6

(
3−
√

3
)
, 1

36

)
and

(
1
6

(
3 +
√

3
)
, 1

36

)
.

Why are they both inflection points? The graph of f ′′(x) = 2(6x2 − 6x+ 1) is a parabola opening upward
and with its vertex below the x-axis (because f ′′(x) = 0 has two real solutions). The possible inflection
points are located at the zeros of f ′′(x), so it should now be clear that f ′′(x) changes sign at each of the two
possible inflection points. Because f(x) is never negative, the two local minima are actually global, but the
local maximum is not (because f(x)→ +∞ as x→ ±∞).

C04S06.040: f ′(x) = x2(x+ 2)(5x+ 6) and f ′′(x) = 4x(5x2 + 12x+ 6). So the critical points occur where
x = 0, x = −2, and x = − 6

5 . Now f ′′(0) = 0, so the second derivative test fails here, but f ′(x) > 0 for x
near zero but x �= 0, so (0, 0) is not an extremum. Next, f ′′(−2) = −16 < 0, so (−2, 0) is a local maximum
point; f ′′(−1.2) = 5.76 > 0, so

(
− 6

5 ,
3456
3125

)
is a local minimum point. The possible inflection points occur at

x = 0, x = 1
5

(
−6 +

√
6

)
, and x = 1

5

(
−6−

√
6

)
.

In decimal form these are x = 0, x ≈ −0.710, and x ≈ −1.690. Because f ′′(−2) = −16 < 0, f ′′(−1) = 4 > 0,
f ′′(−0.5) = −2.5 < 0, and f ′′(1) = 92 > 0, each of the three numbers displayed above is the abscissa of
an inflection point of the graph of f . None of the extrema is global because f(x) → +∞ as x → +∞ and
f(x)→ −∞ as x→ −∞.

C04S06.041: f ′(x) = cosx and f ′′(x) = − sinx. f ′(x) = 0 when x = π/2 and when x = 3π/2;
f ′′(π/2) = −1 < 0 and f ′′(3π/2) = 1 > 0, so the first of these critical points is a local maximum and
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the second is a local minimum. Because | sinx| � 1 for all x, these extrema are in fact global. f ′′(x) = 0
when x = π and clearly changes sign there, so there is an inflection point at (π, 0).

C04S06.042: Local (indeed, global) maximum point: (0, 1); no inflection points.

C04S06.043: f ′(x) = sec2 x � 1 for −π/2 < x < π/2, so there are no extrema. f ′′(x) = 2 sec2 x tanx, so
there is a possible inflection point at (0, 0). Because tanx changes sign at x = 0 (and 2 sec2 x does not),
(0, 0) is indeed an inflection point.

C04S06.044: f ′(x) = secx tanx and f ′′(x) = sec3 x + secx tan2 x = (secx)(sec2 x + tan2 x). So (0, 1) is
the only critical point and there are no possible inflection points. f ′′(0) = 1, so the second derivative test
shows that (0, 1) is a local minimum point. The first derivative test identifies (0, 1) as a global minimum
point.

C04S06.045: f ′(x) = −2 sinx cosx and f ′′(x) = 2 sin2 x− 2 cos2 x. Hence (0, 1), (π/2, 0), and (π, 1) are
critical points. By the second derivative test the first and third are local maxima and the second is a local
minimum. (Because 0 � cos2 x � 1 for all x, these extrema are all global.) There are possible inflection
points at (−π/4, 1/2), (π/4, 1/2), (3π/4, 1/2), and (5π/4, 1/2). A close examination of f ′′(x) reveals that
it changes sign at all four of these points, so each is an inflection point.

C04S06.046: f(x) = sin3 x, −π < x < π:

f ′(x) = 3 sin2 x cosx, f ′′(x) = 6 sinx cos2 x− 3 sin3 x = 3(2 cos2 x− sin2 x) sinx.

Global minimum at (−π/2, −1); global maximum at (π/2, 1); inflection points at x = 0 and at the four
solutions of tan2 x = 2 in (−π, π): approximately (−2.186276, −0.544331), (−0.955317, −0.544331), (0, 0),
(0.955317, 0.544331), and (2.186276, 0.544331).

C04S06.047: If f(x) = 10(x− 1)e−2x, then

f ′(x) = 10(3− 2x)e−2x and f ′′(x) = 40(x− 2)e−2x.

Thus the graph of f is increasing for 0 < x < 3
2 and decreasing for x > 3

2 . It is concave downward for
0 < x < 2 and concave upward if x > 2. Hence there is a global maximum at (1.5, 5e−3) ≈ (1.5, 0.248935)
and an inflection point at (2, 10e−4) ≈ (2, 0.183156). The graph of f is next.

C04S06.048: If f(x) = (x2 − x)e−x, then

f ′(x) = −(x2 − 3x+ 1)e−x and f ′′(x) = (x− 1)(x− 4)e−x.

So the graph of f is decreasing for x < 1
2

(
3−
√

5
)

and for x > 1
2

(
3 +
√

5
)
, increasing otherwise; it is

concave upward for x < 1 and for x > 4 and concave downward otherwise. Therefore there is a global
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minimum at
(

1
2

(
3−
√

5
)
, −0.161121

)
, a local maximum at

(
1
2

(
3 +
√

5
)
, 0.309005

)
, and inflection points

at (1, 0) and (4, 12e−4) ≈ (4, 0.219788). The graph of y = f(x) is next.

C04S06.049: If f(x) = (x2 − 2x− 1)e−x, then

f ′(x) = −(x2 − 4x+ 1)e−x and f ′′(x) = (x− 1)(x− 5)e−x.

Thus the graph of f is decreasing for x < 2 −
√

3 and for x > 2 +
√

3, increasing otherwise; it is concave
upward for x < 1 and for x > 5 and concave downward otherwise. Thus there is a global minimum near(
2−
√

3, −1.119960
)
, a local maximum near

(
2 +
√

3, 0.130831
)
, and inflection points at (1, −2e−1) and

(5, 14e−5). The graph of f is next.

C04S06.050: If f(x) = x exp(−x2), then

f ′(x) = (1− 2x2) exp(−x2) and f ′′(x) = 2x(2x2 − 3) exp(−x2).

Thus the graph of f is decreasing for x < − 1
2

√
2 and for x > 1

2

√
2, increasing otherwise; it is concave

downward for x < − 1
2

√
6 and for 0 < x < 1

2

√
6, concave upward otherwise. Therefore there is a global

minimum at
(
− 1

2

√
2, −(2e)−1/2

)
, a global maximum at

(
1
2

√
2, (2e)−1/2

)
, and inflection points at (0, 0) and

near (−1.224745, −0.273278) and (1.224745, 0.273278). The graph of f is next.

C04S06.051: We are to minimize the product of two numbers whose difference is 20; thus if x is the
smaller, we are to minimize f(x) = x(x + 20). Now f ′(x) = 20 + 2x, so f ′(x) = 0 when x = −10. But
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f ′′(x) ≡ 2 is positive when x = −10, so there is a local minimum at (−10, −100). Because the graph of f is
a parabola opening upward, this local minimum is in fact the global minimum. Answer: The two numbers
are −10 and 10.

C04S06.052: We assume that the length turned upward is the same on each side—call it y. If the width
of the gutter is x, then we have the constraint xy = 18, and we are to minimize the width x + 2y of the
strip. Its width is given by the function

f(x) = x+
36
x
, x > 0,

for which

f ′(x) = 1− 36
x2

and f ′′(x) =
72
x3
.

The only critical point in the domain of f is x = 6, and f ′′(x) > 0 on the entire domain of f . Consequently
the graph of f is concave upward for all x > 0. Because f is continuous for such x, f(6) = 12 is the global
minimum of f .

C04S06.053: Let us minimize

g(x) = (x− 3)2 + (3− 2x− 2)2 = (x− 3)2 + (1− 2x)2,

the square of the distance from the point (x, y) on the line 2x + y = 3 to the point (3, 2). We have
g′(x) = 2(x − 3) − 4(1 − 2x) = 10x − 10; g′′(x) ≡ 10. So x = 1 is the only critical point of g. Because
g′′(x) is always positive, the graph of g is concave upward on the set IR of all real numbers, and therefore
(1, g(1)) = (1, 1) yields the global minimum for g. So the point on the given line closest to (3, 2) is (1, 1).

C04S06.054: Base of box: x wide, 2x long. Height: y. Then the box has volume 2x2y = 576, so
y = 288x−2. Its total surface area is A = 4x2 + 6xy, so we minimize

A = A(x) = 4x2 +
1728
z

, x > 0.

Now

A′(x) = 8x− 1728
x2

and A′′(x) = 8 +
3456
x3

.

The only critical point of A(x) occurs when 8x3 = 1728; that is, when x = 6. But A′′(x) > 0 for all x > 0,
so the graph of y = A(x) is concave upward for all x > 0. Therefore A(6) is the global minimum value of
A(x). Also, when x = 6 we have y = 8. Answer: The dimensions of the box of minimal surface area are 6
inches wide by 12 inches long by 8 inches high.

C04S06.055: Base of box: x wide, 2x long. Height: y. Then the box has volume 2x2y = 972, so
y = 486x−2. Its total surface area is A = 2x2 + 6xy, so we minimize

A = A(x) = 2x2 +
2916
x

, x > 0.

Now

A′(x) = 4x− 2916
x2

and A′′(x) = 4 +
5832
x3

.
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The only critical point of A occurs when x = 9, and A′′(x) is always positive. So the graph of y = A(x) is
concave upward for all x > 0; consequently, (9, A(9)) is the lowest point on the graph of A. Answer: The
dimensions of the box are 9 inches wide, 18 inches long, and 6 inches high.

C04S06.056: If the radius of the base of the pot is r and its height is h (inches), then we are to minimize
the total surface area A given the constraint πr2h = 125. Thus h = 125/(πr2), and so

A = πr2 + 2πrh = A(r) = πr2 +
250
r
, r > 0.

Hence

A′(r) = 2πr − 250
r2

and A′′(r) = 2π +
500
r3

.

Now A′(r) = 0 when r3 = 125/π, so that r = 5/ 3
√
π. This is the only critical point of A, and A′′(r) > 0 for

all r, so the graph of y = A(r) is concave upward for all r in the domain of A. Consequently we have located
the global minimum, and it occurs when the pot has radius r = 5/ 3

√
π inches and height h = 5/ 3

√
π inches.

Thus the pot will have its radius equal to its height, each approximately 3.414 inches.

C04S06.057: Let r denote the radius of the pot and h its height. We are given the constraint πr2h = 250,
so h = 250/(πr2). Now the bottom of the pot has area πr2, and thus costs 4πr2 cents. The curved side of
the pot has area 2πrh, and thus costs 4πrh cents. So the total cost of the pot is

C = 4πr2 + 4πrh = C(r) = 4πr2 +
1000
r

, r > 0.

Now

C ′(r) = 8πr − 1000
r2

and C ′′(r) = 8π +
2000
r3

.

C ′(r) = 0 when 8πr3 = 1000, so that r = 5/ 3
√
π. Because C ′′(r) > 0 for all r > 0, the graph of y = C(r)

is concave upward on the domain of C. Therefore we have found the value of r that minimizes C(r).
The corresponding value of h is 10/ 3

√
π, so the pot of minimal cost has height equal to its diameter, each

approximately 6.828 centimeters.

C04S06.058: Let x denote the length of each side of the square base of the solid and let y denote its
height. Then its total volume is x2y = 1000. We are to minimize its total surface area A = 2x2 + 4xy. Now
y = 1000/(x2), so

A = A(x) = 2x2 +
4000
x

, x > 0.

Therefore

A′(x) = 4x− 4000
x2

and A′′(x) = 4 +
8000
x3

.

The only critical point occurs when x = 10, and A′′(x) > 0 for all x in the domain of A, so x = 10 yields
the global minimum value of A(x). In this case, y = 10 as well, so the solid is indeed a cube.

C04S06.059: Let the square base of the box have edge length x and let its height be y, so that its total
volume is x2y = 62.5 and the surface area of this box-without-top will be A = x2 + 4xy. So

A = A(x) = x2 +
250
x
, x > 0.
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Now

A′(x) = 2x− 250
x2

and A′′(x) = 2 +
500
x3

.

The only critical point occurs when x = 5, and A′′(x) > 0 for all x in the domain of A, so x = 5 yields the
global minimum for A. Answer: Square base of edge length x = 5 inches, height y = 2.5 inches.

C04S06.060: Let r denote the radius of the can and h its height (in centimeters). We are to minimize its
total surface area A = 2πr2 + 2πrh given the constraint πr2h = V = 16π. First we note that h = V/(πr2),
so we minimize

A = A(r) = 2πr2 +
2V
r
, r > 0.

Now

A′(r) = 4πr − 2V
r2

and A′′(r) = 4π +
4V
r3
.

The only critical point of A occurs when 4πr3 = 2V = 32π—that is, when r = 2. Now A′′(r) > 0 for all
r > 0, so the graph of y = A(r) is concave upward for all r > 0. Thus the global minimum occurs when
r = 2 centimeters, for which h = 4 centimeters.

C04S06.061: Let x denote the radius and y the height of the cylinder (in inches). Then its cost (in cents)
is C = 8πx2 + 4πxy, and we also have the constraint πx2y = 100. So

C = C(x) = 8πx2 +
400
x
, x > 0.

Now

C ′(x) = 16πx− 400
x2

and C ′′(x) = 16π +
800
x3

.

The only critical point in the domain of C is x = 3
√

25/π (about 1.9965 inches) and, consequently, when
y = 3

√
1600/π (about 7.9859 inches). Because C ′′(x) > 0 for all x in the domain of C, we have indeed found

the dimensions that minimize the cost of the can. For simplicity, note that y = 4x at the minimum: The
height of the can is twice its diameter.

C04S06.062: Let x denote the width of the print. Then 30/x is the height of the print, x+ 2 is the width
of the page, and (30/x) + 4 is the height of the page. We minimize the area A of the page, where

A = A(x) = (x+ 2)
(

30
x

+ 4
)

= 4x+ 38 +
60
x
, 0 < x <∞.

Now

A′(x) = 4− 60
x2

and A′′(x) =
120
x3

.

A′(x) = 0 when x =
√

15 and A′′ (√15
)

= 120/
(
15
√

15
)
> 0, so x =

√
15 yields a local minimum of A(x).

In fact, A′(x) < 0 if 0 < x <
√

15 and A′(x) > 0 if
√

15 > x, so x =
√

15 yields the global minimum value of
A(x); this minimum value is 4

√
15 + 38 + 60/

√
15 = 8

√
15 + 38 ≈ 68.983867 in.2

C04S06.063: Given: f(x) = 2x3 − 3x2 − 12x+ 3. We have
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f(x) = 6(x− 2)(x+ 1) and f ′′(x) = 12x− 6.

Hence (−1, 10) and (2, −17) are critical points and (0.5, −3.5) is a possible inflection point. Because
f ′′(x) > 0 if x > 0.5 and f ′′(x) < 0 if x < 0.5, the possible inflection point is an actual inflection point,
there is a local maximum at (−1, 10), and a local minimum at (2, −17). The extrema are not global because
f(x)→ +∞ as x→ +∞ and f(x)→ −∞ as x→ −∞. The graph of f is next.

C04S06.064: Given: f(x) = 3x4 − 4x3 − 5. Then

f ′(x) = 12x3 − 12x2 = 12x2(x− 1) and f ′′(x) = 36x2 − 24x = 12x(3x− 2).

So the graph of f is increasing for x > 1 and decreasing for x < 1 (even though there’s a horizontal tangent
at x = 0), concave upward for x < 0 and x > 2

3 , concave downward on
(
0, 2

3

)
. There is a global minimum at

(1, −6), inflection points at (0, −5) and at
(

2
3 , −

151
27

)
. The x-intercepts are approximately −0.906212 and

1.682971. The graph of y = f(x) is next.

C04S06.065: If f(x) = 6 + 8x2 − x4, then f ′(x) = −4x(x + 2)(x − 2) and f ′′(x) = 16 − 12x2. So f is
increasing for x < −2 and for 0 < x < 2, decreasing otherwise; its graph is concave upward on

(
− 2

3

√
3, 2

3

√
3

)
and concave downward otherwise. Therefore the global maximum value of f is f(−2) = f(2) = 22 and there
is a local minimum at f(0) = 6. There are inflection points at

(
− 2

3

√
3, 134

9

)
and at

(
2
3

√
3, 134

9

)
. The graph

of f is next.

C04S06.066: Given: f(x) = 3x5 − 5x3. Then

10
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f ′(x) = 15x4 − 15x2 = 15x2(x+ 1)(x− 1) and

f ′′(x) = 60x3 − 30x = 60x(x+ r)(x− r) where r =
1
2

√
2.

The graph is increasing for x < −1 and for x > 1, decreasing for −1 < x < 1 (although there is a horizontal
tangent at the origin). It is concave upward on (−r, 0) and on (r, +∞), concave downward on (−∞, −r)
and on (0, r). Thus there is a local maximum at (−1, 2), a local minimum at (1, −2), and inflection points at
(−r, 7r/4), (0, 0), and (r, −7r/4) (the last ordinate is approximately −1.237437). Finally, the x-intercepts
are 0, −

√
5/3 , and

√
5/3 ≈ 1.29099. The graph of y = f(x) is shown next.

C04S06.067: If f(x) = 3x4 − 4x3 − 12x2 − 1, then

f ′(x) = 12x3 − 12x2 − 24x = 12x(x− 2)(x+ 1) and f ′′(x) = 36x2 − 24x− 24 = 12(3x2 − 2x− 2).

So the graph of f is decreasing for x < −1 and for 0 < x < 2 and increasing otherwise; it is concave upward
for x < 1

3

(
1−
√

7
)

and for x > 1
3

(
1 +
√

7
)

and concave downward otherwise. So there is a local minimum
at (−1, −6), a local maximum at (0, −1), and a global minimum at (2, −33). There are inflection points at(

1
3

(
1−
√

7
)
, 1

27

(
−311 + 80

√
7

))
and at

(
1
3

(
1 +
√

7
)
, 1

27

(
−311− 80

√
7

))
. The graph of y = f(x) is next.

C04S06.068: Given: f(x) = 3x5 − 25x3 + 60x. Then

f ′(x) = 15x4 − 75x2 + 60 = 15(x2 − 4)(x2 − 1) and f ′′(x) = 60x3 − 150x = 30x(2x2 − 5).

There are local maxima where x = −2 and x = 1, local minima where x = −1 and x = 2. Inflection points

11
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occur where x = 0, x = −
√

5/2 , and x =
√

5/2 . The graph is next.

C04S06.069: If f(x) = x3(x− 1)4, then

f ′(x) = 3x2(x− 1)4 + 4x3(x− 1)3 = x2(x− 1)3(7x− 3) and

f ′′(x) = 6x(x− 1)4 + 24x2(x− 1)3 + 12x3(x− 1)2 = 6x(x− 1)2(7x2 − 6x+ 1).

Hence the graph of f is increasing for x < 3
7 and for x > 1, decreasing otherwise; concave upward for

0 < x < 1
7

(
3−
√

2
)

and for x > 1
7

(
3 +
√

2
)
. So there is a local maximum at

(
3
7 ,

6912
823543

)
and a local

minimum at (1, 0). Also there are inflection points at (0, 0) and at the two points with x-coordinates
1
7

(
3±
√

2
)
. The graph of y = f(x) is shown next. Note the scale on the y-axis.

C04S06.070: Given: f(x) = (x− 1)2(x+ 2)3. Then

f ′(x) = (x− 1)(x+ 2)2(5x+ 1) and f ′′(x) = 2(x+ 2)(10x2 + 4x− 5).

The zeros of f ′′(x) are x = −2, x ≈ 0.535, and x ≈ −0.935. It follows that (1, 0) is a local minimum (from
the second derivative test), that (−0.2, 8.39808) is a local maximum, and that (−2, 0) is not an extremum.
Also, the second derivative changes sign at each of its zeros, so each of these three zeros is the abscissa of
an inflection point on the graph. The graph is next.

C04S06.071: If f(x) = 1 + x1/3 then

12
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f ′(x) =
1
3
x−2/3 =

1
3x2/3

and f ′′(x) = − 2
9
x−5/3 = − 2

9x5/3
.

Therefore f ′(x) > 0 for all x �= 0; because f is continuous even at x = 0, the graph of f is increasing for
all x, but (0, 1) is a critical point. Because f ′′(x) has the sign of −x, the graph of f is concave upward for
x < 0 and concave downward for x > 0. Thus there is an inflection point at (0, 1). Careful examination of
the first derivative shows also that there is a vertical tangent at (0, 1). The graph is next.

C04S06.072: Given: f(x) = 2− (x− 3)1/3. Then

f ′(x) = − 1
3(x− 3)2/3

and f ′′(x) =
2

9(x− 3)5/3
.

There is a vertical tangent at (3, 2) but there are no other critical points. The graph is decreasing for all x,
concave down for x < 3, and concave up for x > 3. Because f is continuous for all x, there is an inflection
point at (3, 2). The y-intercept is at (0, 3.44225) (ordinate approximate) and the x-intercept is at (11, 0).

C04S06.073: Given f(x) = (x+ 3)
√
x,

f ′(x) =
3(x+ 1)

2
√
x

and f ′′(x) =
3(x− 1)
4x
√
x

.

Note that f(x) has domain x � 0. Hence f ′(x) > 0 for all x > 0; in fact, because f is continuous (from
the right) at x = 0, f is increasing on [0, +∞). It now follows that (1, 4) is an inflection point, but it’s not
shown on the following figure for two reasons: First, it’s not detectable; second, the behavior of the graph
near x = 0 is of more interest, and that behavior is not clearly visible when f is graphed on a larger interval.
The point (0, 0) is, of course, the location of the global minimum of f and is of particular interest because
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f ′(x)→ +∞ as x→ 0+. The graph of y = f(x) is next.

C04S06.074: Given: f(x) = x2/3(5− 2x). Then

f ′(x) =
10− 10x

3x1/3
and f ′′(x) = −20x+ 10

9x4/3
.

If |x| is large, then f(x) ≈ −2x5/3, which (because the exponent 5/3 has odd numerator and odd denominator)
acts rather like −2x3 for |x| large (at least qualitatively). This aids in determining the behavior of f(x) for
|x| large. The graph is decreasing for x < 0 and for x > 1, increasing on the interval (0, 1). It is concave
upward for x < −0.5, concave downward for x > 0 and on the interval (−0.5, 0). There is a vertical tangent
and a local minimum at the origin, a local maximum at (1, 3), an inflection point where x = −0.5, a dual
intercept at (0, 0), and an x-intercept at x = 2.5. The graph is next.

C04S06.075: Given f(x) = (4− x)x1/3, we have

f ′(x) =
4(1− x)
3x2/3

and f ′′(x) = − 4(x+ 2)
9x5/3

.

There is a global maximum at (1, 3), a vertical tangent, dual intercept, and inflection point at (0, 0), an
x-intercept at (4, 0), and an inflection point at

(
−2, −6 3

√
2

)
. The graph of f is next.
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C04S06.076: Given: f(x) = x1/3(6− x)2/3. Then

f ′(x) =
2− x

x2/3(6− x)1/3 and f ′′(x) = − 8
x5/3(6− x)4/3 .

If |x| is large, then (6− x)2/3 ≈ x2/3, so f(x) ≈ x for such x. This aids in sketching the graph, which has a
local maximum where x = 2, a local minimum at (6, 0), vertical tangents at (6, 0) and at the origin. It is
increasing for x < 2 and for x > 6, decreasing on the interval (2, 6), concave upward for x < 0, and concave
downward on (0, 6) and for x > 6. All the intercepts have been mentioned, too. The figure on the left shows
a “close-up” of the graph and the figure on the right gives a more distant view.

C04S06.077: Figure 4.6.34 shows a graph that is concave downward, then concave upward, so its second
derivative is negative, then zero, then positive. This matches the graph in (c).

C04S06.078: Figure 4.6.35 shows a graph that is concave upward, then downward, so the second derivative
will be positive, then zero, then negative. This matches the graph in (e).

C04S06.079: Figure 4.6.36 shows a graph that is concave upward, then downward, then upward again, so
the second derivative will be positive, then negative, then positive again. This matches the graph in (b).

C04S06.080: Figure 4.6.37 shows a graph that is concave downward, then upward, then downward, so the
second derivative is negative, then positive, then negative. This matches the graph in (f).

C04S06.081: Figure 4.6.38 shows a graph that is concave upward, then almost straight, then strongly
concave downward, so the second derivative must be positive, then close to zero, then large negative. This
matches the graph in (d).

C04S06.082: Figure 4.6.39 shows a graph that is concave upward, then downward, then upward, then
downward. So the second derivative must be positive, then negative, then positive, and then negative. This
matches the graph in (a).

C04S06.083: (a): Proof: The result holds when n = 1. Suppose that it holds for n = k where k � 1.
Then f (k)(x) = k! if f(x) = xk. Now if g(x) = xk+1, then g(x) = xf(x). So by the product rule,

g′(x) = xf ′(x) + f(x) = x (kxk−1) + xk = (k + 1)xk.

Thus

g(k+1)(x) = (k + 1)D k
x (xk) = (k + 1)f (k)(x) = (k + 1)(k!) = (k + 1)!.

15



That is, whenever the result holds for n = k, it follows for n = k + 1. Therefore, by induction, it holds for
all integers n � 1.

(b): Because the nth derivative of xn is constant, any higher order derivative of xn is zero. The result
now follows immediately.

C04S06.084: f ′(x) = cosx, f ′′(x) = − sinx, f (3) = − cosx, and f (4) = sinx = f(x). It is now clear that

f (n+4)(x) = f (n)(x) for all n � 0

(we interpret f (0)(x) to mean f(x)).

C04S06.085:
dz

dx
=
dz

dy
· dy
dx

. So
d2z

dx2
=
dz

dy
· d

2y

dx2
+
dy

dx
· d

2z

dy2
· dy
dx

.

C04S06.086: If f(x) = Ax2 + Bx + C, then A �= 0. So f ′′(x) = 2A �= 0. Because f ′′(x) never changes
sign, the graph of f(x) can have no inflection points.

C04S06.087: If f(x) = ax3 + bx2 + cx + d with a �= 0, then both f ′(x) and f ′′(x) exist for all x and
f ′′(x) = 6ax + 2b. The latter is zero when and only when x = −b/(3a), and this is the abscissa of an
inflection point because f ′′(x) changes sign at x = −b/(3a). Therefore the graph of a cubic polynomial has
exactly one inflection point.

C04S06.088: If f(x) = Ax4 + Bx3 + Cx2 +Dx+ E, then both f ′(x) and f ′′(x) are continuous for all x,
and f ′′(x) = 12Ax2 + 6Bx + 2C. In order for f ′′(x) to change sign, we must have f ′′(x) = 0. If so, then
(because f ′′(x) is a quadratic polynomial) either the graph of f ′′(x) crosses the x-axis in two places or is
tangent to it at a single point. In the first case, f ′′(x) changes sign twice, so there are two points of inflection
on the graph of f . In the second case, f ′′(x) does not change sign, so f has no inflection points. Therefore
the graph of a polynomial of degree four has either exactly two inflection points or else none at all.

C04S06.089: First, p = p(V ) =
RT

V − b −
a

V 2
, so

p′(V ) =
2a
V 3
− RT

(V − b)2 and p′′(V ) =
2RT

(V − b)3 −
6a
V 4

.

From now on, use the constant values p = 72.8, V = 128.1, and T = 304; we already have n = 1. Then

p =
RT

V − b −
a

V 2
,

2a
V 3

=
RT

(V − b)2 , and
3a
V 4

=
RT

(V − b)3 .

The last two equations yield

RTV 3

a(V − b)2 = 2 =
3(V − b)

V
,

and thus b = 1
3V and V − b = 2

3V . Next,

a =
V 3RT

2(V − b)2 =
V 3RT

2(2V/3)2
=

9V 3RT

8V 2
=

9
8
VRT.

Finally,
RT

V − b = p+
a

V 2
, so

R =
2V
3T

(
p+

a

V 2

)
=

2V
3T

(
p+

9RT
8V

)
=

2V p
3T

+
3R
4
.
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Therefore R =
8V p
3T

. We substitute this into the earlier formula for a, in order to determine that a =
9
8VRT = 3V 2p. In summary, and using the values given in the problem, we find that

b =
1
3
V = 42.7, a = 3V 2p ≈ 3,583,859, and R =

8V p
3T
≈ 81.8.

C04S06.090: (a): If f ′′(c) > 0 and h > 0, then

f ′(c+ h)
h

> 0

if h is close to zero. Thus f ′(c+ h) > 0 for such h. Similarly, if f ′′(c) > 0 and h < 0, then again

f ′(c+ h)
h

> 0

if h is near zero, so f ′(c+ h) < 0 for such h. So f ′(x) > 0 for x > c (but close to c) and f ′(x) < 0 for x < c

(but close to c). By the first derivative test, f(c) is a local minimum for f . The proof in part (b) is very
similar.

C04S06.091: If f(x) = 1000x3 − 3051x2 + 3102x+ 1050, then

f ′(x) = 3000x2 − 6102x+ 3102 and f ′′(x) = 6000x− 6102.

So the graph of f has horizontal tangents at the two points (1, 2101) and (1.034, 2100.980348) (coordinates
exact) and there is a possible inflection point at (1.017, 2100.990174) (coordinates exact). Indeed, the usual
tests show that the first of these is a local maximum, the second is a local minimum, and the third is an
inflection point. The Mathematica command

Plot[ f[x], { x, 0.96, 1.07 } ];

produces a graph that shows all three points clearly; it’s next.

C04S06.092: If f(x) = [x(1− x)(9x− 7)(4x− 1)]4, then

f ′(x) = 4x3(4x− 1)3(x− 1)3(9x− 7)3(144x3 − 219x2 + 88x− 7)

and
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f ′′(x) = 4x2(4x−1)2(x−1)2(9x−7)2(77760x6−236520x5 +274065x4−150400x3 +39368x2−4312x+147).

Next, the graph of y = f(x) has horizontal tangents at the points

(0, 0), (0.1052, 0.0119),
(

1
4 , 0

)
, (0.5109, 0.1539),

(
7
9 , 0

)
, (0.9048, 0.0044), and (1, 0)

(all four-place decimals shown here are rounded approximations). The usual tests show that the first, third,
fifth, and seventh of these are global minima and the other three are local maxima. Moreover, there are
possible inflection points at

(0, 0), (0.0609, 0.0061), (0.1499, 0.0069),
(

1
4 , 0

)
, (0.4246, 0.0865),

(0.5971, 0.0870),
(

7
9 , 0

)
, (0.8646, 0.0026), (0.9446, 0.0023), and (1, 0)

(again, all four-place decimals are rounded approximations). The usual tests show that the six of these
points not extrema are indeed inflection points. The Mathematica command

Plot[ f[x], { x, −0.05, 0.05 } ];

clearly shows the global minimum at (0, 0). The command

Plot[ f[x], { x, 0.02, 0.1 } ];

clearly shows the inflection point near (0.0609, 0.0061). These graphs are shown next.

To see the other extrema and inflection points, plot y = f(x) on the intervals [0.08, 0.14], [0.12, 0.2],
[0.23, 0.27], [0.3, 0.5], [0.48, 0.56], [0.54, 0.68], [0.76, 0.8], [0.8, 0.9], [0.87, 0.94], [0.92, 0.98], and (fi-
nally) [0.98, 1.04].
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Section 4.7

C04S07.001: It is almost always a good idea, when evaluating the limit of a rational function of x as
x→ ±∞, to divide each term in numerator and denominator by the highest power of x that appears there.
This technique occasionally succeeds with more complicated functions. Here we obtain

lim
x→∞

x

x+ 1
= lim
x→∞

x

x
x

x
+

1
x

= lim
x→∞

1

1 +
1
x

=
1

1 + 0
= 1.

C04S07.002:
x2 + 1
x2 − 1

=
1 + (1/x2)
1− (1/x2)

→ 1 + 0
1− 0

= 1 as x→ −∞.

C04S07.003:
x2 + x− 2
x− 1

=
(x+ 2)(x− 1)

x− 1
= x+ 2 for x �= 1, so

x2 + x− 2
x− 1

→ 1 + 2 = 3 as x→ 1.

C04S07.004: The numerator approaches −2 as x → −1, whereas the denominator approaches zero.
Therefore this limit does not exist.

C04S07.005:
2x2 − 1
x2 − 3x

=
2− (1/x2)
1− (3/x)

→ 2− 0
1− 0

= 2 as x→ +∞.

C04S07.006: Divide each term in numerator and denominator by e2x to obtain

lim
x→∞

1 + ex

2 + 32x
= lim

x→∞

e−2x + e−x

2e−2x + 1
=

0 + 0
0 + 1

= 0.

C04S07.007: The numerator is equal to the denominator for all x �= −1, so the limit is 1. If you’d prefer
to write the solution more symbolically, try this:

lim
x→−1

x2 + 2x+ 1
(x+ 1)2

= lim
x→−1

x2 + 2x+ 1
x2 + 2x+ 1

= lim
x→−1

1 = 1.

C04S07.008:
5x3 − 2x+ 1
7x3 + 4x2 − 2

=
5− (2/x2) + (1/x3)
7 + (4/x)− (2/x3)

→ 5− 0 + 0
7 + 0− 0

=
5
7

as x→ +∞.

C04S07.009: Factor the numerator: x − 4 = (
√
x + 2)(

√
x − 2). Thus the fraction is equal to

√
x + 2 if

x �= 4. Therefore as x→ 4, the fraction approaches
√

4 + 2 = 4. Alternatively, for a more symbolic solution,
write

lim
x→4

x− 4√
x− 2

= lim
x→4

(
√
x+ 2)(

√
x− 2)√

x− 2
= lim
x→4

(√
x+ 2

)
=
√

4 + 2 = 2 + 2 = 4.

For another approach, use the conjugate (as discussed in Chapter 2):

lim
x→4

x− 4√
x− 2

= lim
x→4

(x− 4) (
√
x+ 2)

(
√
x− 2)(

√
x+ 2)

= lim
x→4

(x− 4) (
√
x+ 2)

x− 4
= lim
x→4

(√
x+ 2

)
=
√

4 + 2 = 4.

C04S07.010: Divide each term in numerator and denominator by x3/2, the highest power of x that appears
in any term. (This works well for evaluating limits of rational functions as x→ ±∞, and sometimes works for

1



more complicated functions.) The numerator then becomes 2x−1/2 +x−3/2, which approaches 0 as x→ +∞;
the denominator becomes x−1/2 − 1, which approaches −1 as x→ +∞. Therefore the limit is 0.

C04S07.011: Divide each term in numerator and denominator by x to obtain
(

8
x

)
−

(
1

3
√
x2

)
(

2
x

)
+ 1

→ 0− 0
0 + 1

= 0 as x→ −∞.

C04S07.012: Divide each term in numerator and denominator by e6x. Then

lim
x→∞

4e6x + 5 sin 6x
(1 + 2e2x)3

= lim
x→∞

4 + 5e−6x sin 6x
(e−2x + 2)3

=
4 + 0

(0 + 2)3
=

1
2
.

Note: | sin 6x| � 1 for all x, so −e−6x � e−6x sin 6x � e−6x for all x � 0. Hence e−6x sin 6x→ 0 as x→ +∞
by the squeeze law.

C04S07.013: Ignoring the radical for a moment, we divide each term in numerator and denominator by
x2, the higest power of x that appears in either. (Remember that this technique is effective with limits as
x→ ±∞ but is not likely to be productive in other cases.) Result:

lim
x→+∞

√
4x2 − x
x2 + 9

= lim
x→+∞

√
4− (1/x)
1 + (9/x2)

=

√
4− 0
1 + 0

=
√

4 = 2.

C04S07.014: Divide each term in numerator and denominator by x, because in effect the “term of largest
degree” in the numerator is x. Of course in the numerator we must divide each term under the radical by
x3; the result is that

3

√
1− 8

x2
+

1
x3

3− 4
x

→ 1
3

as x→ −∞.

C04S07.015: As x → −∞, x2 + 2x = x(x + 2) is the product of two very large negative numbers, so
x2 + 2x→ +∞. Therefore

lim
x→−∞

√
x2 + 2x = +∞

as well. If the large positive number −x is added to
√
x2 + 2x, then the resulting sum also approaches +∞.

But arguments such as this are sometimes misleading (this subject will be taken up in detail in Sections 4.8
and 4.9), so it is more reliable to reason analytically, as follows:

lim
x→−∞

(√
x2 + 2x − x

)
= lim
x→−∞

(√
x2 + 2x − x

)(√
x2 + 2x + x

)
√
x2 + 2x + x

= lim
x→−∞

x2 + 2x− x2

√
x2 + 2x + x

= lim
x→−∞

2x√
x2 + 2x + x

= lim
x→−∞

2x
x√

x2 + 2x + x

x

= lim
x→−∞

2

x

x
−

√
x2 + 2x
x2

(see Note 1)

= lim
x→−∞

2

1−
√

1 +
2
x

= +∞

2



because, if x is large negative, then 1 +
2
x

is slightly smaller than 1, so that

1−
√

1 +
2
x

is a very small positive number, approaching zero through positive values as x→ −∞.

Note 1: The minus sign is necessary because x < 0, and therefore
√
x2 = −x, not x. It’s important

not to miss this detail because the other sign will give the incorrect limit 1.

Note 2: There are so many dangers associated with minus signs and negative numbers in this problem
that it would probably be better to let u = −x and recast the problem in the form

lim
x→−∞

(√
x2 + 2x − x

)
= lim
u→+∞

(√
u2 − 2u + u

)
,

then multiply numerator and denominator by the conjugate of the numerator as in the previous calculation.

C04S07.016: The following computation is correct:

lim
x→−∞

(
2x−

√
4x2 − 5x

)
= lim
x→−∞

4x2 − (4x2 − 5x)
2x+

√
4x2 − 5x

= lim
x→−∞

5x
2x+

√
4x2 − 5x

= lim
x→−∞

5

2 +

(√
4x2 − 5x
−
√
x2

) = lim
x→−∞

5

2−
√

4− 5
x

= −∞.

See the Notes for the solution of Problem 15. Following the second note, we let u = −x and proceed as
follows:

lim
x→−∞

(
2x−

√
4x2 − 5x

)
= lim
u→+∞

(
−2u−

√
4u2 + 5u

)
= −

[
lim

u→+∞

(
2u+

√
4u2 + 5u

) ]
= −∞

with little difficulty with negative numbers or minus signs.

C04S07.017: Matches Fig. 4.7.20(g), because f(x) → +∞ as x → 1+, f(x) → −∞ as x → 1−, and
f(x)→ 0 as x→ ±∞.

C04S07.018: Matches Fig. 4.7.20(i), because f(x) → −∞ as x → 1+, f(x) → +∞ as x → 1−, and
f(x)→ 0 as x→ ±∞.

C04S07.019: Matches Fig. 4.7.20(a), because f(x)→ +∞ as x→ 1 and f(x)→ 0 as x→ ±∞.

C04S07.020: Matches Fig. 4.7.20(d), because f(x)→ −∞ as x→ 1 and f(x)→ 0 as x→ ±∞.

C04S07.021: Matches Fig. 4.7.20(f), because f(x) → +∞ as x → 1+, f(x) → −∞ as x → 1−,
f(x)→ +∞ as x→ −1−, f(x)→ −∞ as x→ −1+, and f(x)→ 0 as x→ ±∞.

C04S07.022: Matches Fig. 4.7.20(c), because f(x) → −∞ as x → 1+, f(x) → +∞ as x → 1−,
f(x)→ −∞ as x→ −1−, f(x)→ +∞ as x→ −1+, and f(x)→ 0 as x→ ±∞.

C04S07.023: Matches Fig. 4.7.20(j), because f(x) → +∞ as x → 1+, f(x) → −∞ as x → 1−,
f(x)→ −∞ as x→ −1−, f(x)→ +∞ as x→ −1+, and f(x)→ 0 as x→ ±∞.
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C04S07.024: Matches Fig. 4.7.20(h), because f(x) → −∞ as x → 1+, f(x) → +∞ as x → 1−,
f(x)→ +∞ as x→ −1−, f(x)→ −∞ as x→ −1+, and f(x)→ 0 as x→ ±∞.

C04S07.025: Matches Fig. 4.7.20(l), because f(x) → +∞ as x → 1+, f(x) → −∞ as x → 1−, and
f(x)→ 1 as x→ ±∞.

C04S07.026: Matches Fig. 4.7.20(b), because f(x) → +∞ as x → 1+, f(x) → −∞ as x → 1−,
f(x)→ +∞ as x→ −1−, f(x)→ −∞ as x→ −1+, and f(x)→ 1 as x→ ±∞.

C04S07.027: Matches Fig. 4.7.20(k), because f(x) → +∞ as x → 1+, f(x) → −∞ as x → 1−, and
because

f(x) =
x2

x− 1
= x+ 1 +

1
x− 1

if x �= 1,

the graph of f has the slant asymptote with equation y = x+ 1.

C04S07.028: Matches Fig. 4.7.20(e), because f(x) → +∞ as x → 1+, f(x) → −∞ as x → 1−,
f(x)→ −∞ as x→ −1−, f(x)→ +∞ as x→ −1+, and because

f(x) =
x3

x2 − 1
= x+

x

x2 − 1
,

the graph of f has the slant asymptote y = x.

C04S07.029: Given f(x) =
2

x− 3
, we find that

f ′(x) = − 2
(x− 3)2

and f ′′(x) =
4

(x− 3)3
.

So there are no extrema or inflection points, the only intercept is
(
0, − 2

3

)
, and f(x) → +∞ as x → 3+

whereas f(x) → −∞ as x → 3−. So the line x = 3 is a vertical asymptote. Also f(x) → 0 as x → ±∞, so
the line y = 0 is a [two-way] horizontal asymptote. A Mathematica-generated graph of y = f(x) is next.

C04S07.030: Given f(x) =
4

5− x , we find that

f ′(x) =
4

(5− x)2 and f ′′(x) =
8

(5− x)3 .
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So there are no extrema or inflection points, the only intercept is
(
0, 4

5

)
, x = 5 is a vertical asymptote, and

the x-axis is a horizontal asymptote. A Mathematica-generated graph of y = f(x) is next.

C04S07.031: Given f(x) =
3

(x+ 2)2
, we find that

f ′(x) = − 6
(x+ 2)3

and f ′′(x) =
18

(x+ 2)4
.

So there are no extrema or inflection points, the only intercept is
(
0, 3

4

)
, the line x = −2 is a vertical

asymptote, and the x-axis is a horizontal asymptote. A Mathematica-generated graph of y = f(x) is shown
next.

C04S07.032: Given f(x) = − 4
(3− x)2 , we find that

f ′(x) = − 8
(3− x)3 and f ′′(x) = − 24

(3− x)4 .

So there are no extrema or inflection points, the only intercept is
(
0, − 4

9

)
, the line x = 3 is a vertical

asymptote, and the line y = 0 is a horizontal asymptote. A Mathematica-generated graph of y = f(x) is
next.

C04S07.033: If f(x) =
1

(2x− 3)3
, it follows that

f ′(x) = − 6
(2x− 3)4

and f ′′(x) =
48

(2x− 3)5
.

5



 

-1 1 2 3 4

-3

-2

-1

1

2

3

-2 2 4

-10

-7.5

-5

-2.5

2.5

5

7.5

10

-4 -2 2 4

0.2

0.4

0.6

0.8

So there are no extrema or inflection points, the only intercept is
(
0, − 1

27

)
, the line x = 3

2 is a vertical
asymptote, and the x-axis is a horizontal asymptote. A Mathematica-generated graph of y = f(x) is next.

C04S07.034: Given: f(x) =
x+ 1
x− 1

. Then

f ′(x) = − 2
(x− 1)2

and f ′′(x) =
4

(x− 1)3
.

Thus there are no extrema or inflection points, the only intercepts are (−1, 0) and (0, −1), the line x = 1
is a vertical asymptote, and the line y = 1 is a [two-way] horizontal asymptote. A Mathematica-generated
graph of y = f(x) is next.

C04S07.035: Given: f(x) =
x2

x2 + 1
. Then

f ′(x) =
2x

(x2 + 1)2
and f ′′(x) =

2(1− 3x2)
(x2 + 1)3

.

Thus the only intercept is (0, 0), where there is a global minimum, there are inflection points at
(
± 1

3

√
3, 1

4

)
,

and the line y = 1 is a horizontal asymptote. A Mathematica-generated graph of y = f(x) is shown next
(without the asymptote).

C04S07.036: Given: f(x) =
2x

x2 + 1
, we find that
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f ′(x) =
2(1− x2)
(x2 + 1)2

and f ′′(x) =
4x(x2 − 3)
(x2 + 1)3

.

There is a global minimum at (−1, −1), a global maximum at (1, 1), and the three points
(
−
√

3, − 1
2

√
3

)
,

(0, 0), and
(√

3, 1
2

√
3

)
are inflection points. Because f(x) → 0 as x → ±∞, the y-axis is a horizontal

asymptote. A Mathematica-generated graph of y = f(x) is shown next.

C04S07.037: If f(x) =
1

x2 − 9
, then

f ′(x) = − 2x
(x2 − 9)2

and f ′′(x) =
6(x2 + 3)
(x2 − 9)3

.

So there is a local maximum at
(
0, − 1

9

)
, which is also the only intercept; there are vertical asymptotes at

x = −3 and at x = 3, and the x-axis is a horizontal asymptote. A Mathematica-generated graph of y = f(x)
is shown next

C04S07.038: Given: f(x) =
x

4− x2
. Then

f ′(x) =
x2 + 4

(x2 − 4)2
and f ′′(x) = − 2x(x2 + 12)

(x2 − 4)3
.

Thus there are no extrema, the origin is the only intercept and the only inflection point, there are vertical
asymptotes at x = ±2, and the x-axis is a horizontal asymptote. A Mathematica-generated graph of y = f(x)
is next.
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C04S07.039: Given f(x) =
1

x2 + x− 6
=

1
(x− 2)(x+ 3)

, we find that

f ′(x) = − 2x+ 1
(x2 + x− 6)2

and f ′′(x) =
2(x2 + 3x+ 7)
(x2 + x− 6)3

.

Thus there is a local maximum at
(
− 1

2 , −
4
25

)
and the only intercept is at

(
0, − 1

6

)
. The lines x = −3 and

x = 2 are vertical asymptotes and the x-axis is a horizontal asymptote. A Mathematica-generated graph of
y = f(x) is shown next.

C04S07.040: If f(x) =
2x2 + 1
x2 − 2x

=
2x2 + 1
x(x− 2)

, then

f ′(x) = − 2(2x2 + x− 1)
x2(x− 2)2

and f ′′(x) =
2(4x3 + 3x2 − 6x+ 4)

x3(x− 2)3
.

So there is a local minimum at (−1, 1), a local maximum at
(

1
2 , −2

)
, and an inflection point close to

(−1.851708, 1.101708). There are no intercepts, the lines x = 0 and x = 2 are vertical asymptotes, and the
line y = 2 is a horizontal asymptote (not shown in the figure). A Mathematica-generated graph of y = f(x)
is next.

C04S07.041: Given: f(x) = x+
1
x

=
x2 + 1
x

, we find that

f ′(x) =
x2 − 1
x2

and that f ′′(x) =
2
x3
.

Hence there is a local maximum at (−1, −2), a local minimum at (1, 2), and no inflection points or intercepts.
The y-axis is a vertical asymptote and the line y = x is a slant asymptote (not shown in the figure). A
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Mathematica-generated graph of y = f(x) is next.

C04S07.042: If f(x) = 2x+ e−x, then

f ′(x) =
2ex − 1
ex

and f ′′(x) = e−x.

Therefore the graph of f is decreasing for x < − ln 2 and increasing otherwise; it is concave upward for all x.
Thus there is a global minimum at (− ln 2, 2 − 2 ln 2), no inflection points, and the only intercept is (0, 1).
The line y = 2x is a slant asymptote to the right; there is no asymptote to the left. The graph of f is next.

C04S07.043: If f(x) =
x2

x− 1
= x+ 1 +

1
x− 1

, then

f ′(x) =
x(x− 2)
(x− 1)2

and f ′′(x) =
2

(x− 1)3
.

So (0, 0) is a local maximum and the only intercept, there is a local minimum at (2, 4), the line x = 1 is a
vertical asymptote, and the line y = x+ 1 is a slant asymptote (not shown in the figure). A Mathematica-
generated graph of y = f(x) is shown next.

C04S07.044: Given:

f(x) =
2x3 − 5x2 + 4x
x2 − 2x+ 1

=
x(2x2 − 5x+ 4)

(x− 1)2
= 2x− 1 +

1
(x− 1)2

,
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we first compute

f ′(x) =
2(x− 2)(x2 − x+ 1)

(x− 1)3
and f ′′(x) =

6
(x− 1)4

.

So there is a local minimum at (2, 4), (0, 0) is the only intercept, there are no inflection points, the line
x = 1 is a vertical asymptote, and the line y = 2x − 1 is a slant asymptote (not shown in the figure). A
Mathematica-generated graph of y = x(f) is next.

C04S07.045: If f(x) =
1

(x− 1)2
, then

f ′(x) = − 2
(x− 1)3

and f ′′(x) =
6

(x− 1)4
.

Hence there are no extrema or inflection points, the only intercept is (0, 1), the line x = 1 is a vertical
asymptote, and the x-axis is a horizontal asymptote. A Mathematica-generated graph of y = f(x) is next.

C04S07.046: Given f(x) =
1

(1 + ex)2
, we first find that

f ′(x) = − 2ex

(1 + ex)3
and f ′′(x) =

2ex(2ex − 1)
(1 + ex)4

.

Thus f ′(x) < 0 for all x, so the graph of f is decreasing everywhere. Next, f ′′(x) = 0 exactly when ex = 1
2 ;

that is, when x = − ln 2. It is no trouble to verify that

(
− ln 2, 4

9

)
≈ (−0.693147, 0.444444)

is an inflection point of the graph of y = f(x). There can be no x-intercept, but
(
0, 1

4

)
is the y-intercept.

There are two horizontal asymptotes, y = 1 and y = 1, because

lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) = 0,
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and no other asymptotes. A graph of y = f(x), generated by Mathematica,shown next.

C04S07.047: If

f(x) =
ex

1 + ex
, then f ′(x) =

ex

(1 + ex)2
and f ′′(x) =

ex(1− ex)
(1 + ex)3

.

Therefore the graph of f is increasing everywhere, concave upward for x < 0, and concave downward for
x > 0. So there are no extrema, an inflection point at

(
0, 1

2

)
, and two horizontal asymptotes: the line y = 1

to the right, the line y = 0 to the left. The graph of f is next.

C04S07.048: If

f(x) =
1

ex + e−x
, then f ′(x) =

ex(1− ex)(1 + ex)
(1 + e2x)2

and f ′′(x) =
ex(e2x − 2ex − 1)(e2x + 2ex − 1)

(1 + e2x)3
.

It follows that f is increasing for x < 0, decreasing for x > 0, concave downward for ln
(√

2− 1
)
< x <

ln
(√

2 + 1
)
, and concave upward otherwise. Thus there is a global maximum at

(
0, 1

2

)
and inflection points

where the concave structure changes (the y-coordinates of these points are about 0.353553). The x-axis is a
horizontal asymptote and the graph is shown next.
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C04S07.049: If f(x) =
1

x2 − x− 2
=

1
(x− 2)(x+ 1)

, then

f ′(x) =
1− 2x

(x2 − x− 2)2
and f ′′(x) =

6(x2 − x+ 1)
(x2 − x− 2)3

.

Therefore
(

1
2 , −

4
9

)
is a local maximum and the only extremum,

(
0, − 1

2

)
is the only intercept, the lines x = −1

and x = 2 are vertical asymptotes, and the x-axis is a horizonal asymptote. A Mathematica-generated graph
of y = f(x) is next.

C04S07.050: If f(x) =
1

(x− 1)(x+ 1)2
, then

f ′(x) =
1− 3x

(x− 1)2(x+ 1)3
and f ′′(x) =

4(3x2 − 2x+ 1)
(x− 1)3(x+ 1)4

.

Therefore (0, −1) is the only intercept,
(

1
3 , −

27
32

)
is a local maximum and the only extremum, the lines

x = −1 and x = 1 are vertical asymptotes, and the x-axis is a horizontal asymptote. A Mathematica-
generated graph of y = f(x) is shown next.

C04S07.051: Given: f(x) =
x2 − 4
x

= x− 4
x

, we find that

f ′(x) =
x2 + 4
x2

and that f ′′(x) = − 8
x3
.

Therefore (−2, 0) and (2, 0) are the only intercepts, there are no inflection points or extrema, the y-axis is
a vertical asymptote, and the line y = x is a slant asymptote (not shown in the figure). A Mathematica-
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generated graph of y = f(x) is next.

C04S07.052: If f(x) =
ex − e−x
ex + e−x

, then

f ′(x) =
4e2x

(1 + e2x)2
and f ′′(x) =

8e2x(1− ex)(1 + ex)
(1 + e2x)3

.

Therefore the graph of f is increasing for all x, concave upward if x < 0, and concave downward if x > 0.
Thus there are no extrema and (0, 0) is an inflection point. The line y = 1 is a horizontal asymptote to the
right and the line y = −1 is a horizontal asymptote to the left. The graph is next.

C04S07.053: If f(x) =
x3 − 4
x2

= x− 4
x2

, then

f ′(x) =
x3 + 8
x3

and f ′′(x) = − 24
x4
.

Thus
(

3
√

4, 0
)

is the only intercept, there is a local maximum at (−2, −3) and no other extrema, and there
are no inflection points. The y-axis is a vertical asymptote and the line y = x is a slant asymptote (not
shown in the figure). A Mathematica-generated graph of y = f(x) is next.

C04S07.054: If f(x) =
x2 + 1
x− 2

= x+ 2 +
5

x− 2
, then

f ′(x) =
x2 − 4x− 1

(x− 2)2
and f ′′(x) =

10
(x− 2)3

.
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Therefore the only intercept is
(
0, − 1

2

)
and there are no inflection points. There is a local maximum at(

2−
√

5, 4− 2
√

5
)

and a local minimum at
(
2 +
√

5, 4 + 2
√

5
)
. The line x = 2 is a vertical asymptote

and the line y = x + 2 is a slant asymptote (not shown in the figure). A Mathematica-generated graph of
y = f(x) is next.

C04S07.055: The x-axis is a horizontal asymptote, and there are vertical asymptotes at x = 0 and x = 2.
There are local minima at (−1.9095, −0.3132) and (1.3907, 3.2649) and a local maximum at (4.5188, 0.1630)
(all coordinates approximate, of course), and inflection points at (−2.8119, −0.2768) and (6.0623, 0.1449).
A Mathematica-generated graph of y = f(x) is next.

A “close-up” of the graph for 3 � x � 8 is next, on the left, and another for −7 � x � −1 is on the right.

C04S07.056: The line y = 1 is a horizontal asymptote (not shown in the figures) and the lines x = 0 and
x = 4 are vertical asymptotes. There is a local minimum at (−1, 0) and inflection points at (−1.5300, 0.0983)
and (2.1540, 0.9826) (numbers with decimal points are approximations). A Mathematica-generated graph
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of y = f(x) is next, on the left; a close-up of the graph for −7.5 � x � −0.5 is on the right.

C04S07.057: The x-axis is a horizontal asymptote and there are vertical asymptotes at x = 0 and
x = 2. There are local minima at (−2.8173, −0.1783) and (1.4695, 5.5444) and local maxima at (−1, 0) and
(4.3478, 0.1998). There are inflection points at the three points (−4.3611, −0.1576), (−1.2569, −0.0434),
and (5.7008, 0.1769). (Numbers with decimal points are approximations.) A Mathematica-generated graph
of y = f(x) is next.

A “close-up” of the graph for −12 � x � −0.5 is shown next, on the left; the graph for 3 � x � 10 is on the
right.

C04S07.058: The horizontal line y = 1 is an asymptote, as are the vertical lines x = 0 and x = 2.
There are local maxima at (−5.6056, 1.1726) and (1.6056, −8.0861), local minima at (−1, 0), and (3, 0).
(Numbers with decimal points are approximations.) There are inflection points at (−8.54627, 1.15324),
(−1.29941, 0.228917), and (3.67765, 0.120408). A Mathematica-generated graph of y = f(x) is shown next,
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on the left; the graph for −10 � x � −0.5 is on the right along with the horizontal asymptote.

The graph for 2.5 � x � 10 is next, on the left; the graph for 10 � x � 60 is on the right.

C04S07.059: The horizontal line y = 0 is an asymptote, as are the vertical lines x = 0 and x = 2. There
are local minima at (−2.6643, −0.2160), (1.2471, 14.1117), and (3, 0); there are local maxima at (−1, 0) and
(5.4172, 0.1296). There are inflection points at (−4.0562, −0.1900), (−1.2469, −0.0538), (3.3264, 0.0308),
and (7.4969, 0.1147). (Numbers with decimal points are approximations.) A Mathematica-generated graph
of y = f(x) is shown next.
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The graph for −10 � x � −0.5 is next, on the left; the graph for 2.5 � x � 10 is on the right.

C04S07.060: The horizontal line y = 0 is an asymptote, as are the vertical lines x = 0 and x = 2. There
are local minima at (−1.5125, −1.4172) and (3, 0), local maxima at (1.2904, −25.4845) and (9.2221, 0.0519)
and inflection points at (−2.0145, −1.2127), (4.2422, 0.0145), and (14.2106, 0.0460). (Numbers with decimal
points are approximations.) A Mathematica-generated graph of y = f(x) is next, on the left; the graph for
−10 � x � −0.75 is on the right.

The graph for 2.5 � x � 10 is next, on the left; the graph for 5 � x � 25 is on the right.

C04S07.061: The x-axis is a horizontal asymptote; there are vertical asymptotes at x = −0.5321, x =
0.6527, and x = 2.8794. There is a local minimum at (0, 0) and a local maximum at ( 3

√
2, −0.9008). There

are no inflection points (Numbers with decimal points are approximations.) A Mathematics-generated graph
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of y = f(x) is next.

C04S07.062: The x-axis is a horizontal asymptote; there is a vertical asymptote at x = −1.1038. There
is a local minimum at (0, 0) and a local maximum at (2.1544, 4.3168). There are inflection points at
(1.8107, 2.9787) and (2.4759, 3.4299). (Numbers with decimal points are approximations.) A Mathematica-
generated graph of y = f(x) is next.

C04S07.063: The line y = x + 3 is a slant asymptote in both the positive and negative directions;
thus there is no horizontal asymptote. There is a vertical asymptote at x = −1.1038. There are local
maxima at (−2.3562, −1.8292) and (2.3761, 18.5247), local minima at (0.8212, 0.6146) and (5.0827, 11.0886).
There are inflection points at (1.9433, 11.3790) and (2.7040, 16.8013). (Numbers with decimal points are
approximations.) A Mathematica-generated graph of y = f(x) is next, on the left; on the right the graph is
shown on a wider scale, together with its slant asymptote.

C04S07.064: The line 2y = x is a slant asymptote in both the positive and negative directions; thus
there is no horizontal asymptote. There is a vertical asymptote at x = −1.4757. There is a local max-
imum at (−2.9821, −2.1859) and a local minimum at (0.7868, −2.8741). There are inflection points at
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(−0.2971, 0.7736), (0.5713, 0.5566), (1, −2), and (9.1960, 4.6515). (Numbers with decimal points are ap-
proximations.) A Mathematica-generated graph of y = f(x) is shown next, on the left; the graph is also
shown on the right, on a wider scale, along with its slant asymptote.

C04S07.065: Given f(x) =
x5 − 4x2 + 1
2x4 − 3x+ 2

, we first find that

f ′(x) =
2x8 + 4x5 + 10x4 − 8x3 + 12x2 − 16x+ 3

(2x4 − 3x+ 2)2
and

f ′′(x) = − 2(30x8 + 24x7 − 40x6 + 90x5 − 102x4 − 28x3 + 24x2 + 7)
(2x4 − 3x+ 2)3

.

The line 2y = x is a slant asymptote in both the positive and negative directions; thus there is no horizontal
asymptote. There also are no vertical asymptotes. There is

a local maximum at (0.2200976580, 0.6000775882),

a local minimum at (0.8221567934, −2.9690453671),

and inflection points at

(−2.2416918017, −1.2782199626), (−0.5946286318, −0.1211409770),

(0.6700908810, −1.6820255735), and (0.96490314661, −2.2501145861).

(Numbers with decimal points are approximations.) A Mathematica-generated graph of y = f(x) is next.

C04S07.066: The line 2y = x is a slant asymptote in both the positive and negative directions; thus there
is no horizontal asymptote. There also are no vertical asymptotes (the denominator in f(x) is never zero).
There are x-intercepts where

x = −2.05667157818, x = 0.847885655376, and x = 1.929095045219

19



-2 -1 1 2

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

-6 -4 -2 2 4 6

-3

-2

-1

1

2

3

-4 -2 2 4

-4

-2

2

4

-1 1 2 3 4 5

0.5

1

1.5

2

2.5

and
(
0, 2

5

)
is the y-intercept. (Numbers with decimal points are approximations throughout.) There are

local maximum at

(−1.137867740647, 0.426255896993) and (0.472659729564, 0.585125167363)

and local minima at

(−0.394835802615, 0.318479939692) and (1.203561740743, −0.770172527937).

There are inflection points at

(−2.381297805169, −0.253127890429), (−0.775152255017, 0.373332211612),

(0.189601709800, 0.486606037763), (0.890253166310, −0.145751465654),

and (1.553505928225, −0.444592872637).

A Mathematica-generated graph of y = f(x) is shown next, on the left; a wider view is on the right, along
with the slant asymptote.

C04S07.067: The line 2y = x is a slant asymptote in both the positive and negative directions; thus
there is no horizontal asymptote. There is a vertical asymptote at x = −1.7277. There are local maxima at
(−3.1594, −2.3665) and (1.3381, 1.7792), local minima at (−0.5379, −0.3591) and (1.8786, 1.4388). There
are inflection points at (0, 0), (0.5324, 0.4805), (1.1607, 1.4294), and (1.4627, 1.6727). (Numbers with deci-
mal points are approximations.) A Mathematica-generated graph of y = f(x) is next, on the left; the figure
on the right shows the graph for −1.5 � x � 5.

C04S07.068: The line 6x+10 = 9y is a slant asymptote in both the positive and negative directions; thus
there is no horizontal asymptote. There is a vertical asymptote at x = −0.8529. There are local maxima at
(−1.3637, −0.0573) and (0.7710, 1.5254), local minima at

(
0, 3

2

)
and (1.1703, 1.4578). There are inflection

points at (0.5460, 1.5154), (1.0725, 1.4793), (1.3880, 1.9432), and (1.8247 , 2.6353). (Numbers with decimal
points are approximations.) A Mathematica-generated graph of y = f(x) is shown next, on the left (with
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the vertical asymptote but without the slant asymptote). The figure on the right shows the graph of f for
−0.5 � x � 1.5.

C04S07.069: Sketch the parabola y = x2, but modify it by changing its behavior near x = 0: Let y → +∞
as x→ 0+ and let y → −∞ as x→ 0−. Using calculus, we compute

f ′(x) =
2(x3 − 1)

x2
and f ′′(x) =

2(x3 + 2)
x3

.

It follows that the graph of f is decreasing for 0 < x < 1 and for x < 0, increasing for x > 1. It is concave
upward for x < − 3

√
2 and also for x > 0, concave downward for − 3

√
2 < x < 0. The only intercept is at(

− 3
√

2, 0
)
; this is also the only inflection point. There is a local minimum at (1, 3). The y-axis is a vertical

asymptote. A Mathematica-generated graph of y = f(x) is shown next.

C04S07.070: Because f(x) ≈ x3 when |x| is large, we obtain the graph of f by making “modifications” in
the graph of y = x3 at and near the discontinuity of f(x) at x = 1. We are aided in sketching the graph of f
by finding its x-intercepts—these are approximately −1.654 and 2.172—as well as its y-intercept 12 and its
inflection points (2.22, 1.04) and (−0.75, 6.44) (also approximations). A Mathematica-generated graph of f
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Section 4.8

C04S08.001: You don’t need l’Hôpital’s rule to evaluate this limit, but you may use it:

lim
x→1

x− 1
x2 − 1

= lim
x→1

1
2x

=
1
2
.

C00S08.002: You don’t need l’Hôpital’s rule to evaluate this limit, but you may use it:

lim
x→∞

3x− 4
2x− 5

= lim
x→∞

3
2

=
3
2
.

C04S08.003: You don’t need l’Hôpital’s rule to evaluate this limit, but you may use it (twice):

lim
x→∞

2x2 − 1
5x2 + 3x

= lim
x→∞

4x
10x+ 3

= lim
x→∞

4
10

=
2
5
.

C04S08.004: You don’t need l’Hôpital’s rule to evaluate this limit (apply the definition of the derivative
to the evaluation of f ′(0) where f(x) = e3x), but you may use it:

lim
x→0

e3x − 1
x

= lim
x→0

3e3x

1
= 3.

C04S08.005: Without l’Hôpital’s rule:

lim
x→0

sinx2

x
= lim
x→0

x · sinx
2

x2
= 0 · 1 = 0.

(We used Theorem 1 of Section 2.3, lim
x→0

sinx
x

= 1, and the product law for limits.)

With l’Hôpital’s rule:

lim
x→0

sinx2

x
= lim
x→0

2x cosx2

1
= 2 · 0 · 1 = 0.

C04S08.006: You don’t need l’Hôpital’s rule to evaluate this limit (see the solution to Problem 3 of Section
2.3), but you may use it:

lim
x→0+

1− cos
√
x

x
= lim
x→0+

1
2x

−1/2 sinx1/2

1
= lim
x→0+

sinx1/2

2x1/2
=

1
2

by Theorem 1 of Section 2.3. If you prefer a “pure” l’Hôpital’s rule solution, you should substitute x = u2

to obtain

lim
x→0+

1− cos
√
x

x
= lim
u→0

1− cosu
u2

= lim
u→0

sinu
2u

= lim
u→0

cosu
2

=
1
2
.

Note that it was necessary to apply l’Hôpital’s rule twice in the second solution.

C04S08.007: You may not use l’Hôpital’s rule! The numerator is approaching zero but the denominator
is not. Hence use the quotient law for limits (Section 2.2):

lim
x→1

x− 1
sinx

=
lim
x→1

(x− 1)

lim
x→1

sinx
=

0
sin 1

= 0.
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Note that illegal use of l’Hôpital’s rule in this problem will result in the incorrect value sec 1 ≈ 1.8508157177
for the limit.

C04S08.008: The numerator and denominator of the fraction are both approaching zero, so you may try
using l’Hôpital’s rule (twice):

lim
x→0

1− cosx
x3

= lim
x→0

sinx
3x2

= lim
x→0

cosx
6x

.

But the latter limit does not exist (the left-hand limit is −∞ and the right-hand limit is +∞). So the
hypotheses of Theorem 1 of Section 4.8 are not satisfied; this is a case in which l’Hôpital’s rule (as stated in
Theorem 1) has failed. Other measures are needed. By l’Hôpital’s rule (or by Problem 3 of Section 2.3), we
have

lim
x→0

1− cosx
x2

= lim
x→0

sinx
2x

= lim
x→0

cosx
2

=
1
2
.

Therefore

1− cosx
x3

≈ 1
2x

if x is close to zero. Consequently lim
x→0

1− cosx
x3

does not exist.

C04S08.009: Without l’Hôpital’s rule we might need to resort to the Taylor series methods of Chapter 9
to evaluate this limit. But l’Hôpital’s rule may be applied (twice):

lim
x→0

ex − x− 1
x2

= lim
x→0

ex − 1
2x

= lim
x→0

ex

2
=

1
2
.

C04S08.010: You may not apply l’Hôpital’s rule: The numerator is approaching zero but the denominator
is not. But this means that the quotient law of limits (Section 2.2) may be applied instead:

lim
z→π/2

1 + cos 2z
1− sin 2z

=
lim

z→π/2
(1 + cos 2z)

lim
z→π/2

(1− sin 2z)
=

1− 1
1− 0

= 0.

This problem would be more interesting if the denominator were 1− sin z.

C04S08.011: The numerator and denominator are both approaching zero, so l’Hôpital’s rule may be
applied:

lim
u→0

u tanu
1− cosu

= lim
u→0

tanu+ u sec2 u

sinu

= lim
u→0

(
secu+

u

sinu
· sec2 u

)
= 1 + 1 · 12 = 2.

Note that we used the sum law for limits (Section 2.2) and the fact that

lim
u→0

u

sinu
= 1,

a consequence of Theorem 1 of Section 2.3 and the quotient law for limits.
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C04S08.012: Numerator and denominator are both approaching zero, so l’Hôpital’s rule may be applied
(twice):

lim
x→0

x− tanx
x3

= lim
x→0

1− sec2 x

3x2

= lim
x→0

(
− 2 sec2 x tanx

6x

)
= − 1

3

(
lim
x→0

sec2 x

cosx
· sinx

x

)
= − 1

3
· 1

2

1
· 1 = −1

3
.

C04S08.013: lim
x→∞

lnx
x1/10

= lim
x→∞

1
x · 1

10 x
−9/10

= lim
x→∞

10
x1/10

= 0.

C04S08.014: Several applications of l’Hôpital’s rule yield

lim
r→∞

er

(r + 1)4
= lim
r→∞

er

4(r + 1)3
= lim
r→∞

er

12(r + 1)2
= lim
r→∞

er

24(r + 1)
=
er

24
= +∞.

Even though the limit does not exist, the hypotheses of Theorem 1 of Section 4.8 are all satisfied, so the
answer is correct.

C04S08.015: lim
x→10

ln(x− 9)
x− 10

= lim
x→10

1
1 · (x− 9)

= 1.

C04S08.016: lim
t→∞

t2 + 1
t ln t

= lim
t→∞

2t
1 + ln t

= lim
t→∞

2
t−1

= lim
t→∞

(2t) = +∞.

C04S08.017: Always verify that the hypotheses of l’Hôpital’s rule are satisfied.

lim
x→0

ex + e−x − 2
x sinx

= lim
x→0

ex − e−x
x cosx+ sinx

= lim
x→0

ex + e−x

2 cosx− x sinx
=

1 + 1
2− 0

= 1.

C04S08.018: As x→ (π/2)−, tanx→ +∞ and cosx→ 0+, so that ln(cosx)→ −∞. Hence l’Hôpital’s
rule may be tried:

lim
x→(π/2)−

tanx
ln(cosx)

= lim
x→(π/2)−

sec2 x cosx
− sinx

= lim
x→(π/2)−

− secx
sinx

= −∞

because sinx→ 1 and secx→ +∞ as x→ (π/2)−.

C04S08.019: Methods of Section 2.3 may be used, or l’Hôpital’s rule yields

lim
x→0

sin 3x
tan 5x

= lim
x→0

3 cos 3x
5 sec2 5x

=
3 · 1
5 · 1 =

3
5
.

C04S08.020: lim
x→0

ex − e−x
x

= lim
x→0

ex + e−x

1
= 2.

C04S08.021: The factoring techniques of Section 2.2 work well here, or l’Hôpital’s rule yields

lim
x→1

x3 − 1
x2 − 1

= lim
x→1

3x2

2x
=

3
2
.

C04S08.022: lim
x→2

x3 − 8
x4 − 16

= lim
x→2

3x2

4x3
=

12
32

=
3
8
.
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C04S08.023: Both numerator and denominator approach +∞ as x does, so we may attempt to find the
limit with l’Hôpital’s rule:

lim
x→∞

x+ sinx
3x+ cosx

= lim
x→∞

1 + cosx
3− sinx

,

but the latter limit does not exist (and so the equals mark in the previous equation is invalid). The reason:
As x → +∞, x runs infinitely many times through numbers of the form nπ where n is a positive even
integer. At such real numbers the value of

f(x) =
1 + cosx
3− sinx

is 2
3 . But x also runs infinitely often through numbers of the form nπ where n is a positive odd integer. At

these real numbers the value of f(x) is 0. Because f(x) takes on these two distinct values infinitely often as
x→ +∞, f(x) has no limit as x→ +∞.

This does not imply that the limit given in Problem 22 does not exist. (Read Theorem 1 carefully.)
In fact, the limit does exist, and we have here the rare phenomenon of failure of l’Hôpital’s rule. Other
techniques must be used to solve this problem. Perhaps the simplest is this:

lim
x→∞

x+ sinx
3x+ cosx

= lim
x→∞

1 +
sinx
x

3− cosx
x

=
1 + 0
3− 0

=
1
3
.

C04S08.024: First we try l’Hôpital’s rule:

lim
x→∞

(x2 + 4)1/2

x
= lim
x→∞

1
2 (x2 + 4)−1/2 · 2x

1
= lim
x→∞

x

(x2 + 4)1/2

= lim
x→∞

1
1
2 (x2 + 4)−1/2 · 2x

= lim
x→∞

(x2 + 4)1/2

x
.

Another failure of l’Hôpital’s rule! Here are two ways to find the limit.

(
lim
x→∞

(x2 + 4)1/2

x

)2

= lim
x→∞

(
(x2 + 4)1/2

x

)2

= lim
x→∞

x2 + 4
x2

= lim
x→∞

2x
2x

= lim
x→∞

1
1

= 1.

Therefore the original limit is also 1. Second method:

lim
x→∞

(x2 + 4)1/2

x
= lim
x→∞

(
x2 + 4
x2

)1/2

= lim
x→∞

(
1 +

4
x2

)1/2

=
√

1 = 1.

C04S08.025: lim
x→0

2x − 1
3x − 1

= lim
x→0

2x ln 2
3x ln 3

=
ln 2
ln 3
≈ 0.6309297536.

C04S08.026: You may apply l’Hôpital’s rule, but watch what happens:

lim
x→∞

2x

3x
= lim
x→∞

2x ln 2
3x ln 3

= lim
x→∞

2x(ln 2)2

3x(ln 3)2
= lim
x→∞

2x(ln 2)3

3x(ln 3)3
= · · · .

If we knew that the original limit existed and was finite, we could conclude that it must be zero, but we
don’t even know that it exists. But
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(
3
2

)3x

=
(

27
8

)x
> 3x > ex,

so

lim
x→∞

(
3
2

)x
= +∞, and therefore lim

x→∞

2x

3x
= lim
x→∞

(
2
3

)x
= 0.

C04S08.027: You can work this problem without l’Hôpital’s rule, but if you intend to use it you should
probably proceed as follows:

lim
x→∞

√
x2 − 1√
4x2 − x

= lim
x→∞

(
x2 − 1
4x2 − x

)1/2

=
(

lim
x→∞

x2 − 1
4x2 − x

)1/2

=
(

lim
x→∞

2x
8x− 1

)1/2

=
(

lim
x→∞

2
8

)1/2

=
(

1
4

)1/2

=
1
2
.

C04S08.028: As in the previous solution,

lim
x→∞

√
x3 + x√
2x3 − 4

=
(

lim
x→∞

x3 + x

2x3 − 4

)1/2

=
(

lim
x→∞

3x2 + 1
6x2

)1/2

=
(

lim
x→∞

6x
12x

)1/2

=
(

1
2

)1/2

=
1√
2
.

C04S08.029: lim
x→0

ln(1 + x)
x

= lim
x→0

1
1 · (1 + x)

= 1.

C04S08.030: It would be easier to establish first that

lim
x→∞

ln(lnx)
lnx

= 0,

and it would follow immediately that the given limit is zero as well. But let’s see how well a direct approach
succeeds.

lim
x→∞

ln(lnx)
x lnx

= lim
x→∞

1
x lnx

1 + lnx
= lim
x→∞

1
(1 + lnx)(x lnx)

= 0

because

1
(1 + lnx)(x lnx)

<
1
x

if x > 1.8554

and 1/x→ 0 as x→ ∞.

C04S08.031: Three applications of l’Hôpital’s rule yield

lim
x→0

2ex − x2 − 2x− 2
x3

= lim
x→0

2ex − 2x− 2
3x2

= lim
x→0

2ex − 2
6x

= lim
x→0

2ex

6
=

1
3
.

C04S08.032: Three applications of l’Hôpital’s rule yield
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lim
x→0

sinx− tanx
x3

= lim
x→0

cosx− sec2 x

3x2
= lim
x→0

− sinx− 2 sec2 x tanx
6x

= lim
x→0

− cosx− 4 sec2 x tan2 x− 2 sec4 x

6
=
−1− 0− 2

6
= − 1

2
.

C04S08.033: lim
x→0

2− ex − e−x
2x2

= lim
x→0

e−x − ex
4x

= lim
x→0

−e−x − ex
4

= − 1
2
.

C04S08.034: lim
x→0

e3x − e−3x

2x
= lim
x→0

3e3x + 3e−3x

2
= 3.

C04S08.035: lim
x→π/2

2x− π
tan 2x

= lim
x→π/2

2
2 sec2 2x

=
1

sec2 π
= 1.

C04S08.036: The “direct approach” yields

lim
x→π/2

secx
tanx

= lim
x→π/2

secx tanx
sec2 x

= lim
x→π/2

tanx
secx

= lim
x→π/2

sec2 x

secx tanx
= lim
x→π/2

secx
tanx

= · · · .

Proceed instead as follows (without l’Hôpital’s rule):

lim
x→π/2

secx
tanx

= lim
x→π/2

1
cosx

· cosx
sinx

= lim
x→π/2

1
sinx

=
1
1

= 1.

C04S08.037: lim
x→2

x− 2 cosπx
x2 − 4

= lim
x→2

1 + 2π sinπx
2x

=
1 + 0

4
=

1
4
.

C04S08.038: lim
x→1/2

2x− sinπx
4x2 − 1

= lim
x→1/2

2− π cosπx
8x

=
2− π · 0

4
=

1
2
.

C04S08.039: We first simplify (using laws of logarithms), then apply l’Hôpital’s rule:

lim
x→0+

ln(2x)1/2

ln(3x)1/3
= lim

x→0+

1
2 (ln 2 + lnx)
1
3 (ln 3 + lnx)

=
3
2


 lim
x→0+

1
x
1
x


 =

3
2
.

C04S08.040: One application of l’Hôpital’s rule yields

lim
x→0

ln(1 + x)
ln(1− x2)

?
= lim

x→0

x− 1
2x

.

The limit on the right-hand side does not exist, so we use left-hand and right-hand limits:

lim
x→0+

ln(1 + x)
ln(1− x2)

= lim
x→0+

x− 1
2x

= −∞ and lim
x→0−

ln(1 + x)
ln(1− x2)

= lim
x→0−

x− 1
2x

= +∞.

Therefore the original limit does not exist.

C04S08.041: Two applications of l’Hôpital’s rule yield
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lim
x→0

exp(x3)− 1
x− sinx

= lim
x→0

3x2 exp(x3)
1− cosx

= lim
x→0

(6x+ 9x4) exp(x3)
sinx

= lim
x→0

(6 + 9x3) exp(x3)
sinx
x

=
(6 + 0) · 1

1
= 6.

Alternatively, three applications of l’Hôpital’s rule yield

lim
x→0

exp(x3)− 1
x− sinx

= lim
x→0

3x2 exp(x3)
1− cosx

= lim
x→0

(6x+ 9x4) exp(x3)
sinx

= lim
x→0

(6 + 54x3 + 27x6) exp(x3)
cosx

=
(6 + 54 · 0 + 27 · 0) · 1

1
= 6.

C04S08.042: The technique of multiplying numerator and denominator by the conjugate of the numerator
succeeds just as it did in Sections 2.2 and 2.3. Use of l’Hôpital’s rule yields

lim
x→0

(1 + 3x)1/2 − 1
x

= lim
x→0

1
2 (1 + 3x)−1/2 · 3

1
= lim
x→0

3
2(1 + 3x)1/2

=
3
2
.

C04S08.043: lim
x→0

(1 + 4x)1/3 − 1
x

= lim
x→0

1
3 (1 + 4x)−2/3 · 4

1
= lim
x→0

4
3(1 + 4x)2/3

=
4
3
.

C04S08.044: Multiplication of numerator and denominator by the conjugate of the numerator is one way
to find this limit; l’Hôpital’s rule yields

lim
x→0

(3 + 2x)1/2 − (3 + x)1/2

x
= lim
x→0

1
2 (3 + 2x)−1/2 · 2− 1

2 (3 + x)−1/2

1

= lim
x→0

[
1

(3 + 2x)1/2
− 1

2(3 + x)1/2

]
=

1√
3
− 1

2
√

3
=

1
2
√

3
.

C04S08.045: If you want to use the conjugate technique to find this limit, you need to know that the
conjugate of a1/3− b1/3 is a2/3 + a1/3b1/3 + b2/3, and the algebra becomes rather long. Here l’Hôpital’s rule
is probably the easy way:

lim
x→0

(1 + x)1/3 − (1− x)1/3
x

= lim
x→0

1
3 (1 + x)−2/3 + 1

3 (1− x)−2/3

1

= lim
x→0

[
1

3(1 + x)2/3
+

1
3(1− x)2/3

]
=

1
3

+
1
3

=
2
3
.

C04S08.046: lim
x→π/4

1− tanx
4x− π = lim

x→π/4

− sec2 x

4
=
−

(√
2

)2

4
= − 1

2
.

C04S08.047: lim
x→0

ln(1 + x2)
ex − cosx

= lim
x→0

2x
(1 + x2)(ex + sinx)

=
0

(1 + 0)(1 + 0)
= 0.

C04S08.048: Because the numerator and denominator are both approaching zero as x → 2, it should be
possible to factor x − 2 out of each, cancel, and proceed without l’Hôpital’s rule. But if we use l’Hôpital’s
rule, the result is
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lim
x→2

x5 − 5x2 − 12
x10 − 500x− 24

= lim
x→2

5x4 − 10x
10x9 − 500

=
80− 20

5120− 500
=

60
4620

=
1
77
.

The factor-and-cancel technique yields

lim
x→2

x5 − 5x2 − 12
x10 − 500x− 24

= lim
x→2

(x− 2)(x4 + 2x3 + 4x2 + 3x+ 6)
(x− 2)(x9 + 2x8 + 4x7 + 8x6 + 16x5 + 32x4 + 64x3 + 128x2 + 256x+ 12)

= lim
x→2

x4 + 2x3 + 4x2 + 3x+ 6
x9 + 2x8 + 4x7 + 8x6 + 16x5 + 32x4 + 64x3 + 128x2 + 256x+ 12

=
16 + 16 + 16 + 6 + 6

512 + 512 + 512 + 512 + 512 + 512 + 512 + 512 + 512 + 12
=

60
4620

=
1
77
.

In this problem l’Hôpital’s rule seems the better choice.

C04S08.049: If f(x) =
sin2 x

x
, then

lim
x→0

f(x) = lim
x→0

2 sinx cosx
1

= 2 · 0 · 1 = 0.

The graph of y = f(x) is next.

C04S08.050: We don’t need l’Hôpital’s rule—we could use Theorem 1 in Section 2.3—but we’ll use the
rule anyway:

lim
x→0

sin2 x

x2
= lim
x→0

2 sinx cosx
2x

=
(

lim
x→0

sinx
x

) (
lim
x→0

cosx
)

=
(

lim
x→0

cosx
1

)
· 1 = 1 · 1 = 1.

The graph is next.

C04S08.051: Here we have
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lim
x→π

sinx
x− π = lim

x→π

cosx
1

= cosπ = −1.

The graph is next.

C04S08.052: One application of l’Hôpital’s rule yields

lim
x→π/2

cosx
2x− π = lim

x→π/2

− sinx
2

= − 1
2
.

The graph is next.

C04S08.053: Two applications of l’Hôpital’s rule yield

lim
x→0

1− cosx
x2

= lim
x→0

sinx
2x

= lim
x→0

cosx
2

=
1
2
.

The graph is next.

C04S08.054: Three applications of l’Hôpital’s rule yield

lim
x→0

x− sinx
x3

= lim
x→0

1− cosx
3x2

= lim
x→0

sinx
6x

= lim
x→0

cosx
6

=
1
6
.
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The graph is next.

C04S08.055: As x→ −∞, f(x) = xe−x → −∞, but

lim
x→∞

f(x) = lim
x→∞

x

ex
= lim
x→∞

1
ex

= 0.

Also f ′(x) = (1 − x)e−x and f ′′(x) = (x − 2)e−x. It follows that the graph of f is increasing for x < 1,
decreasing for x > 1, concave downward for x < 2, and concave upward for x > 2. The positive x-axis is a
horizontal asymptote and the only intercept is (0, 0). The graph of y = f(x) is shown next.

C04S08.056: Given f(x) = x1/2e−x, we first use l’Hôpital’s rule:

lim
x→∞

f(x) = lim
x→∞

x1/2

ex
= lim
x→∞

1
2x1/2ex

= 0.

Next,

f ′(x) =
1− 2x
2x1/2ex

and f ′′(x) =
4x2 − 4x− 1

4x3/2ex
.

So the graph of f is increasing for 0 < x < 1
2 and decreasing for x > 1

2 . There is an inflection point
where x = 1

2

(
1 +
√

2
)
; the y-coordinate is approximately 0.3285738758. The positive x-axis is a horizontal

asymptote and the only intercept is (0, 0). The graph of y = f(x) is shown next.
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C04S08.057: If f(x) = x exp
(
−x1/2

)
, then

lim
x→∞

f(x) = lim
x→∞

x

exp
(
x1/2

) = lim
x→∞

2x1/2

exp
(
x1/2

) = lim
x→∞

2x1/2

x1/2 exp
(
x1/2

) = lim
x→∞

2
exp

(
x1/2

) = 0.

Thus the positive x-axis is a horizontal asymptote. Next,

f ′(x) =
2− x1/2

2 exp
(
x1/2

) and f ′′(x) =
x1/2 − 3

4x1/2 exp
(
x1/2

) .
Hence the graph of f is increasing for 0 < x < 4 and decreasing for x > 4; it is concave downward if 0 < x < 9
and concave upward if x > 9. The only intercept is (0, 0). The graph of y = f(x) is shown next.

C04S08.058: Given: f(x) = x2e−2x. By l’Hôpital’s rule,

lim
x→∞

f(x) = lim
x→∞

x2

e2x
= lim
x→∞

2x
2e2x

= lim
x→∞

2
4e2x

= 0.

So the positive x-axis is a horizontal asymptote. Also note that f(x)→ +∞ as x→ −∞. Next,

f ′(x) = 2x(1− x)e−2x and f ′′(x) = 2(2x2 − 4x+ 1)e−2x,

and it follows that the graph of f is decreasing if x < 0 and if x > 1, increasing if 0 < x < 1; it is concave
upward for x < a = 1

2

(
2−
√

2
)

and for x > b = 1
2

(
2 +
√

2
)
. It is concave downward for a < x < b, so there

are inflection points where x = a and where x = b. The graph of y = f(x) is next.

C04S08.059: Given: f(x) =
lnx
x

. So

lim
x→0+

f(x) = lim
x→0+

lnx
x

= −∞

because the numerator is approaching −∞ and the denominator is approaching 0 through positive values.
Next, using l’Hôpital’s rule,
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lim
x→∞

f(x) = lim
x→∞

lnx
x

= lim
x→∞

1
1 · x = 0,

so the positive y-axis is a horizontal asymptote and the negative y-axis is a vertical asymptote. Moreover,

f ′(x) =
1− lnx
x2

and f ′′(x) =
−3 + 2 lnx

x3
,

and thus the graph of f is increasing if 0 < x < e, decreasing if x > e, concave downward for 0 < x < e3/2,
and concave upward if x > e3/2. The inflection point where x = e3/2 is not visible because the curvature of
the graph is very small for x > 3. The graph of y = f(x) is next.

C04S08.060: Given:

f(x) =
lnx

x1/2 + x1/3
.

We used Mathematica to find f ′(x) and solve f ′(x) = 0, and thus discovered that there is a global maximum
near (10.094566, 0.433088). Similarly, we found an inflection point near (20.379823, 0.416035). Clearly
f(x)→ −∞ as x→ 0+, so the negative y-axis is a vertical asymptote. Also

lim
x→∞

f(x) = lim
x→∞

lnx
x1/2 + x1/3

= lim
x→∞

1
x

(
1
2x

−1/2 + 1
3x

−2/3
) = lim

x→∞

1
1
2x

1/2 + 1
3x

1/3
= 0,

so the positive x-axis is a horizontal asymptote. The graph of y = f(x) is next.

C04S08.061: The computation in the solution of Problem 55 establishes that

lim
x→∞

xn

ex
= 0 (1)

in the case n = 1. Suppose that Eq. (1) holds for n = k, a positive integer. Then (by l’Hôpital’s rule)

lim
x→∞

xk+1

ex
= lim
x→∞

(k + 1)xk

ex
= (k + 1)

(
lim
x→∞

xk

ex

)
= (k + 1) · 0 = 0.
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Therefore, by induction, Eq. (1) holds for every positive integer n. Now suppose that k > 0 (a positive
number not necessarily an integer). Let n be an integer larger than k. Then, for x large positive, we have

0 <
xk

ex
<

xn

ex
.

Therefore, by the squeeze law for limits, lim
x→∞

xk

ex
= 0 for every positive number k.

C03S08.062: Suppose that k is a positive real number. Then (by l’Hôpital’s rule)

lim
x→∞

lnx
xk

= lim
x→∞

1
kxk−1 · x = lim

x→∞

1
kxk

= 0.

C04S08.063: Given: f(x) = xne−x where n is a positive integer larger than 1. Then

lim
x→∞

f(x) = lim
x→∞

xn

ex
= 0

by the result in Problem 61. So the positive x-axis is a horizontal asymptote. Next,

f ′(x) =
(n− x)xn−1

ex
and f ′′(x) =

(x2 − 2nx+ n2 − n)xn−2

ex
.

Therefore f ′(x) = 0 at the two points (0, 0) and (n, nne−n). We consider only the part of the graph for
which x > 0, and the graph of f is increasing for 0 < x < n and decreasing if x > n, so there is a local
maximum at x = n. Next, f ′′(x) = 0 when x = a = n −

√
n and when x = b = n +

√
n. It is easy to

establish that f ′′(x) > 0 if 0 < x < a and if x > b, but that f ′′(x) < 0 if a < x < b. (Use the fact that
the graph of g(x) = x2 − 2nx + n2 − n is a parabola opening upward.) Therefore the graph of f has two
inflection points for x > 0.

C04S08.064: Given: f(x) = x−k lnx where k is a positive constant. Then

f ′(x) =
1− k lnx
xk+1

,

and the sign of f ′(x) is the same as the sign of 1 − k lnx, which is positive if 0 < x < e1/k but negative if
x > e1/k. Hence the graph of f will have a single local maximum where x = e1/k. Next,

f ′′(x) =
k2 lnx+ k lnx− 2k − 1

xk+2
,

so f ′′(x) = 0 when

x = exp
(

2k + 1
k2 + k

)
,

so the graph of f has at most one inflection point. Moreover, if x is near zero then f ′′(x) < 0, whereas
f ′′(x) > 0 if x is large positive. Therefore the graph of f has exactly one inflection point. Finally, the result
in Problem 62 shows that the positive x-axis is a horizontal asymptote.

C04S08.065: The substitution y =
1
x

yields

lim
x→0+

xk lnx = lim
y→∞

− ln y
yk

= −
(

lim
y→∞

1
kyk

)
= 0.
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C04S08.066: First suppose that n = −k < 0 where k is a positive integer. Then

lim
x→∞

(lnx)n

x
= lim

x→∞

1
x(lnx)k

= 0.

Next suppose that n = 0. Then

lim
x→∞

(lnx)n

x
= lim

x→∞

1
x

= 0.

Moreover, if n = 1, then by l’Hôpital’s rule,

lim
x→∞

(lnx)n

x
= lim

x→∞

lnx
x

= lim
x→∞

1
x

= 0.

Assume that

lim
x→∞

(lnx)k

x
= 0

for some positive integer k. Then, by l’Hôpital’s rule,

lim
x→∞

(lnx)k+1

x
= lim

x→∞

(k + 1)(lnx)k

x
= (k + 1) lim

x→∞

(lnx)k

x
= (k + 1) · 0 = 0.

Therefore, by induction for positive n, lim
x→∞

(lnx)n

x
= 0 for every integer n.

C04S08.067: In the following computations we take derivatives with respect to h in the first step. By
l’Hôpital’s rule,

lim
h→0

f(x+ h)− f(x− h)
2h

= lim
h→0

f ′(x+ h) + f ′(x− h)
2

=
2f ′(x)

2
= f ′(x).

The continuity of f ′(x) is needed for two reasons: It implies that f is also continuous, so the first numerator
approaches zero as h → 0; moreover, continuity of f ′(x) is needed to ensure that f ′(x + h) and f ′(x − h)
both approach f ′(x) as h→ 0.

C04S08.068: In the following computations we take derivatives with respect to h in the first two steps.
By l’Hôpital’s rule,

lim
h→0

f(x+ h)− 2f(x) + f(x− h)
h2

= lim
h→0

f ′(x+ h)− f ′(x− h)
2h

= lim
h→0

f ′′(x+ h) + f ′′(x− h)
2

=
2f ′′(x)

2
= f ′′(x).

The continuity of f ′′(x) is needed for the following reasons: We needed to know that f ′′(x+h) and f ′′(x−h)
both approach f ′′(x) as h→ 0. We also needed to know that f ′ was continuous so that the second numerator
approaches zero as h→ 0. There is a third reason, which you will see when you discover the reason for the
presence of the term −2f(x) in the first numerator.

C04S08.069: If

f(x) =
(2x− x4)1/2 − x1/3

1− x4/3
,
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then both the numerator n(x) = (2x− x4)1/2− x1/3 and the denominator d(x) = 1− x4/3 approach zero as
x→ 1, and both are differentiable, so l’Hôpital’s rule may be applied. After simplifications we find that

n′(x) =
3x2/3 − 6x11/3 − (2x− x4)1/2

3x2/3(2x− x4)1/2
and d′(x) = − 4x1/3

3
.

Therefore

lim
x→1

f(x) = lim
x→1

n′(x)
d′(x)

= lim
x→1

−3x2/3 + 6x11/3 + (2x− x4)1/2

4x(2x− x4)1′2
=
−3 + 6 + 1

4 · 1 =
4
4

= 1.

C04S08.070: We are to show that if f(x) and g(x) both approach zero as x→ +∞, both f ′(x) and g′(x)
exist for arbitrarily large values of x, and the second limit in the next line exists, then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

.

Following the Suggestion, we let F (t) = f(1/t) and G(t) = g(1/t). Then, with t = 1/x, we have

lim
x→∞

f(x)
g(x)

= lim
t→0+

F (t)
G(t)

= lim
t→0+

F ′(t)
G′(t)

provided that the last limit exists. Note that F and G are differentiable if t > 0 and t is close to zero. Hence

lim
x→∞

f(x)
g(x)

= lim
t→0+

F ′(t)
G′(t)

= lim
x→∞

f ′(x)
g′(x)

.

C04S08.071: lim
x→∞

(x
e

)x
� lim

x→∞

(
e2

e

)x
= lim

x→∞
ex = +∞.

C04S08.072: The graph of C(t) for the case A = 1, k = 1, and x = 2 is next.

Next,

dC

dt
=

A√
kπt

(
x2

4kt2
− 1

2t

)
exp

(
− x2

4kt

)
.

Now dC/dt = 0 when 2x2t = 4kt2, so t = 0 or t = x2/(2k). The general shape of the graph shown here makes
it clear that the former yields the minimum of C(t) (define C(0) = 0 and C will be continuous on [0, +∞])
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2

and the latter yields the maximum, and the maximum pollutant concentration is the corresponding value of
C(t); that is,

Cmax =
A

x

√
2
πe

.

C04S08.073: If f(x) = xne−x (with n a fixed positive integer), then f ′(x) = (n − x)xn−1e−x. Because
f(x) � 0 for x � 0, f(0) = 0, and f(x)→ 0 as x→ +∞, f(x) must have a maximum value, and the critical
point where x = n is the sole candidate. Hence the global maximum value of f(x) is f(n) = nne−n.

Next, f(n− 1) = (n− 1)ne−(n−1) < nne−n, so

(
n− 1
n

)n
<

en−1

en
=

1
e
.

Therefore

e <

(
n

n− 1

)n
=

(
n− 1
n

)−n
=

(
1− 1

n

)−n
.

Also f(n+ 1) = (n+ 1)ne−(n+1) <
nn

en
. Therefore, by similar computations,

(
1 +

1
n

)n
< e.

When we substitute n = 106 (using a computer algebra program, of course) we find that

2.7182804690 < e < 2.7182831877

(round down on the left, up on the right). Thus, to five places, e = 2.71828.

C04S08.074: We used Mathematica 3.0 to plot the graphs of y = lnx and y = x1/10 on the interval [1, 10].
The result is shown next.

The graph makes it clear that a solution of lnx = x1/10 is close to x0 = 3.1. With this initial estimate, a
few iterations of Newton’s method yields the approximate solution x1 ≈ 3.05972667962080885461.
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0.002

0.004

0.006

0.008

Next we let f(x) = (lnx) − x1/10 and followed the suggestion in Problem 74. The graph of f finally
crossed the x-axis when viewed on the interval [1015, 1016 ]. A few magnifications yielded the graph shown
next.

The scale on the x-axis ranges from 3.42×1015 to 3.44×1015. Thus we have x2 ≈ 3.43×1015. A few iterations
of Newton’s method soon yielded the more accurate approximation x2 ≈ 3.43063112140780120278× 1015.
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Section 4.9

C00S09.001: We use Theorem 1 of Section 2.3 and the quotient and product laws for limits in Section 2.2:

lim
x→0

x cotx = lim
x→0

x

sinx
· cosx = 1 · 1 = 1.

C04s09.002: lim
x→0

(
1
x
− cosx

sinx

)
= lim
x→0

sinx− x cosx
x sinx

= lim
x→0

x sinx
x cosx+ sinx

= lim
x→0

x cosx+ sinx
2 cosx− x sinx

= 0.

C04S09.003: Both the “numerator” ln
7x+ 8
4x+ 8

and the denominator x approach zero as x→ 0, so l’Hôpital’s

rule may be applied. The trick is to use a law of logarithms to make the “numerator” easier to differentiate.

lim
x→0

1
x
· ln 7x+ 8

4x+ 8
= lim
x→0

1
x
· [ln(7x+ 8)− ln(4x+ 8)]

= lim
x→0

1
1

(
7

7x+ 8
− 4

4x+ 8

)
= lim
x→0

24
(7x+ 8)(4x+ 8)

=
24
64

=
3
8
.

C04S09.004: lim
x→0+

(sinx)(ln sinx) = lim
x→0+

ln sinx
cscx

= lim
x→0+

cosx
− cscx cotx sinx

= lim
x→0+

(− sinx) = 0.

C04S09.005: lim
x→0

x2 csc2 x = lim
x→0

( x

sinx

)2
= 12 = 1.

C04S09.006: lim
x→∞

e−x lnx = lim
x→∞

lnx
ex

= lim
x→∞

1
xex

= 0.

C04S09.007: lim
x→∞

x
(
e1/x − 1

)
= lim
x→∞

e1/x − 1
x−1

= lim
x→∞

−(x−2e1/x)
−(x−2)

= lim
x→∞

e1/x = 1.

C04S09.008: Combine into a single fraction, then apply l’Hôpital’s rule twice:

lim
x→2

(
1

x− 2
− 1

ln(x− 1)

)
= lim
x→2

ln(x− 1)− (x− 2)
(x− 2) ln(x− 1)

= lim
x→2

− x− 2
x− 1

x− 2
x− 1

+ ln(x− 1)
= lim
x→2

− 1
(x− 1)2
x

(x− 1)2
= − 1

2
.

C04S09.009: lim
x→0+

x lnx = lim
x→0+

lnx
x−1

= lim
x→0+

1
−x · x−2

= lim
x→0+

(−x) = 0.

C04S09.010: lim
x→π/2

(tanx)(cos 3x) = lim
x→π/2

cos 3x
cotx

= lim
x→π/2

−3 sin 3x
− csc2 x

=
3
−1

= −3.

C04S09.011: lim
x→π

(x− π) cscx = lim
x→π

x− π
sinx

= lim
x→π

1
cosx

= −1.

C04S09.012: lim
x→∞

(x− sinx) exp(−x2) = lim
x→∞

x− sinx
exp(x2)

= lim
x→∞

1− cosx
2x exp(x2)

= 0.

1



The last equality results from the observation that 0 � 1−cosx � 2 for all x, whereas 2x exp(x2)→ +∞
as x→ +∞.

C04S09.013: First combine terms to form a single fraction, apply l’Hôpital’s rule once, then multiply each
term in numerator and denominator by 2x1/2. Result:

lim
x→0+

(
1√
x
− 1

sinx

)
= lim
x→0+

(cosx)− 1
2 x

−1/2

x1/2 cosx+ 1
2 x

−1/2 sinx

= lim
x→0+

(2x1/2 cosx)− 1
2x cosx+ sinx

= −∞.

The last limit follows because the numerator is approaching −1 as x → 0+, while the denominator is
approaching zero through positive values.

C04S09.014: First combine terms to form a single fraction, then apply l’Hôpital’s rule twice:

lim
x→0

(
1
x
− 1
ex − 1

)
= lim
x→0

ex − 1− x
x(ex − 1)

= lim
x→0

ex − 1
ex − 1 + xex

= lim
x→0

ex

2ex + xex
=

1
2
.

C04S09.015: First combine terms to form a single fraction, then apply l’Hôpital’s rule:

lim
x→1+

(
x

x2 + x− 2
− 1
x− 1

)
= lim
x→1+

2
(1− x)(2 + x)

= −∞.

Note that l’Hôpital’s rule is not actually required.

C04S09.016: First multiply numerator and denominator (the denominator is 1) by the conjugate of the
numerator; l’Hôpital’s rule is not required.

lim
x→∞

(√
x+ 1−

√
x

)
= lim
x→∞

√
x+ 1−

√
x

1
·
√
x+ 1 +

√
x√

x+ 1 +
√
x

= lim
x→∞

x+ 1− x√
x+ 1 +

√
x

= lim
x→∞

1√
x+ 1 +

√
x

= 0.

C04S09.017: In this solution we first combine the two terms into a single fraction, apply l’Hôpital’s rule
a first time, make algebraic simplifications, then apply the rule a second time.

lim
x→0

(
1
x
− 1

ln(1 + x)

)
= lim
x→0

ln(1 + x)− x
x ln(1 + x)

= lim
x→0

1
1 + x

− 1
x

1 + x
+ ln(1 + x)

= lim
x→0

1− (1 + x)
x+ (1 + x) ln(1 + x)

= lim
x→0

−x
x+ (1 + x) ln(1 + x)

= lim
x→0

−1
1 + 1 + ln(1 + x)

= − 1
2

C04S09.018: First multiply the “numerator” and the denominator (which is 1) by the conjugate of the
numerator.
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lim
x→∞

(√
x2 + x−

√
x2 − x

)
= lim
x→∞

√
x2 + x−

√
x2 − x

1
·
√
x2 + x+

√
x2 − x√

x2 + x+
√
x2 − x

= lim
x→∞

(x2 + x)− (x2 − x)√
x2 + x+

√
x2 − x

= lim
x→∞

2x√
x2 + x+

√
x2 − x

= lim
x→∞

2√
1 +

1
x

+
√

1− 1
x

=
2

1 + 1
= 1.

The transition from the second line to the third did not involve l’Hôpital’s rule. Instead we divided each
term in numerator and denominator by x, which becomes x2 when moved under the radical because x > 0.

C04S09.019: The conjugate of a1/3 − b1/3 is a2/3 + a1/3b1/3 + b2/3 because

(a1/3 − b1/3)(a2/3 + a1/3b1/3 + b2/3) = a− b.

Therefore we multiply “numerator” and denominator (which is 1) by the conjugate of the numerator. The
result:

lim
x→∞

[
(x3 + 2x+ 5)1/3 − x

]

= lim
x→∞

[
(x3 + 2x+ 5)1/3 − x

]
·
[
(x3 + 2x+ 5)2/3 + x(x3 + 2x+ 5)1/3 + x2

]
(x3 + 2x+ 5)2/3 + x(x3 + 2x+ 5)1/3 + x2

= lim
x→∞

x3 + 2x+ 5− x3

(x3 + 2x+ 5)2/3 + x(x3 + 2x+ 5)1/3 + x2

= lim
x→∞

2x+ 5
(x3 + 2x+ 5)2/3 + x(x3 + 2x+ 5)1/3 + x2

= lim
x→∞

2
x

+
5
x2(

1 +
2
x

+
5
x2

)2/3

+
(

1 +
2
x

+
5
x2

)1/3

+ 1

=
0

1 + 1 + 1
= 0.

There was no need—certainly, no temptation—to use l’Hôpital’s rule.

C04S09.020: Apply the natural logarithm function:

ln
(

lim
x→0+

xx
)

= lim
x→0+

ln(xx) = lim
x→0+

x lnx

= lim
x→0+

lnx
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

(−x) = 0.

Therefore lim
x→0+

xx = e0 = 1.

C04S09.021: Apply the natural logarithm function:

3



ln
(

lim
x→0+

xsin x

)
= lim
x→0+

ln
(
xsin x

)
= lim
x→0+

(sinx)(lnx)

= lim
z→0+

lnx
cscx

= lim
x→0+

1
−x cscx cotx

= lim
x→0+

tanx

− x

sinx

=
0
−1

= 0.

Therefore lim
x→0+

xsin x = e0 = 1.

C04S09.022: Apply the natural logarithm function:

ln
(

lim
x→∞

[
2x− 1
2x+ 1

]x)
= lim

x→∞

[
x ln

(
2x− 1
2x+ 1

)]
= lim

x→∞

ln(2x− 1)− ln(2x+ 1)
1
x

= lim
x→∞

(
−2x2

2x− 1
+

2x2

2x+ 1

)
= lim

x→∞

−4x3 − 2x2 + 4x3 − 2x2

4x2 − 1
= lim

x→∞

−4x2

4x2 − 1
= −1.

Therefore lim
x→∞

[
2x− 1
2x+ 1

]x
= e−1 =

1
e
.

C04S09.023: Apply the natural logarithm function:

ln
(

lim
x→∞

(lnx)1/x
)

= lim
x→∞

ln(lnx)1/x = lim
x→∞

ln(lnx)
x

= lim
x→∞

1
x lnx

= 0.

Therefore lim
x→∞

(lnx)1/x = e0 = 1.

C04S09.024: Apply the natural logarithm function:

ln
(

lim
x→∞

(
1− 1

x2

)x )
= lim
x→∞

ln
(

1− 1
x2

)x
= lim
x→∞

x ln
(

1− 1
x2

)

= lim
x→∞

ln
(
x2 − 1
x2

)

1
x

= lim
x→∞

ln(x2 − 1)− 2 lnx
1
x

= lim
x→∞

2x
x2 − 1

− 2
x

− 1
x2

= lim
x→∞

2x
1− x2

= lim
x→∞

2
−2x

= 0.

Therefore lim
x→∞

(
1− 1

x2

)x
= e0 = 1.

C04S09.025: Apply the natural logarithm function:

ln

(
lim
x→0

(
sinx
x

)1/x2 )
= lim
x→0

ln
(

sinx
x

)1/x2

= lim
x→0

1
x2

ln
sinx
x

= lim
x→0

ln(sinx)− lnx
x2

= lim
x→0

cosx
sinx

− 1
x

2x
= lim
x→0

x cosx− sinx
2x2 sinx

= lim
x→0

−x sinx
2x2 cosx+ 4x sinx

= lim
x→0

− sinx
x

2 cosx+
4 sinx
x

= − 1
2 · 1 + 4 · 1 = − 1

6
.
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Therefore lim
x→0

(
sinx
x

)1/x2

= e−1/6 ≈ 0.8464817249.

C04S09.026: Apply the natural logarithm function:

ln
(

lim
x→0+

(1 + 2x)1/(3x)
)

= lim
x→0+

ln(1 + 2x)1/(3x) = lim
x→0+

ln(1 + 2x)
3x

= lim
x→0+

2
1 + 2x

3
=

2
3
.

Therefore lim
x→0+

(1 + 2x)1/(3x) = e2/3 ≈ 1.9477340411.

C04S09.027: Apply the natural logarithm function:

ln

(
lim
x→∞

(
cos

1
x2

)(x4)
)

= lim
x→∞

ln
(

cos
1
x2

)(x4)

= lim
x→∞

x4 ln
(

cos
1
x2

)

= lim
x→∞

ln
(

cos
1
x2

)

x−4
= lim
x→∞

2 tan
1
x2

−4x−5 · x3
= lim
x→∞

tan
1
x2

−2x−2

= lim
x→∞

− 2
x3

sec2 1
x2

4x−3
= lim
x→∞

− sec2 1
x2

2
= − 1

2
.

Therefore lim
x→∞

(
cos

1
x2

)(x4)

= e−1/2 ≈ 0.6065306597.

C04S09.028: As x→ 0+, sinx→ 0 through positive values and secx→ 1. So this is not an indeterminate
form, and lim

x→0+
(sinx)sec x = 0.

C04S09.029: Apply the natural logarithm function:

ln
(

lim
x→0+

(x+ sinx)x
)

= lim
x→0+

ln(x+ sinx)x = lim
x→0+

x ln(x+ sinx)

= lim
x→0+

ln(x+ sinx)
x−1

= lim
x→0+

1 + cosx
x+ sinx
−(x−2)

= lim
x→0+

−x2(1 + cosx)
x+ sinx

= lim
x→0+

x2 sinx− 2x(1 + cosx)
1 + cosx

=
0 · 0− 2 · 0 · 2

1 + 1
= 0.

Therefore lim
x→0+

(x+ sinx)x = e0 = 1.

C04S09.030: lim
x→π/2

(tanx− secx) = lim
x→π/2

(sinx)− 1
cosx

= lim
x→π/2

cosx
− sinx

=
0
−1

= 0.

C04S09.031: Apply the natural logarithm function:

ln
(

lim
x→1

x1/(1−x)
)

= lim
x→1

lnx1/(1−x) = lim
x→1

lnx
1− x = lim

x→1

1
−x = −1.

Therefore lim
x→1

x1/(1−x) = e−1 ≈ 0.3678795512.
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C04S09.032: Apply the natural logarithm function:

ln
(

lim
x→1+

(x− 1)ln x
)

= lim
x→1+

ln(x− 1)ln x = lim
x→1+

(lnx) ln(x− 1)

= lim
x→1+

ln(x− 1)
(lnx)−1

= lim
x→1+

1
x− 1

− 1
x

(lnx)−2
= lim
x→1+

x(lnx)2

1− x

= lim
x→1+

(lnx)2 + 2 lnx
−1

=
02 + 2 · 0
−1

= 0.

Therefore lim
x→1+

(x− 1)ln x = e0 = 1.

C04S09.033: First combine the two terms to form a single fraction, then apply l’Hôpital’s rule, and finally
simplify:

lim
x→2+

(
1

(x2 − 4)1/2
− 1
x− 2

)
= lim
x→2+

x− 2− (x2 − 4)1/2

(x2 − 4)1/2(x− 2)
= lim
x→2+

1− x(x2 − 4)−1/2

x(x2 − 4)−1/2(x− 2) + (x2 − 4)1/2

= lim
x→2+

(x2 − 4)1/2 − x
x(x− 2) + (x2 − 4)

= −∞

because, in the last limit, the numerator is approaching −2 while the denominator is approaching zero
through positive values.

C04S09.034: Let Q = x5 − 3x4 + 17. We plan to multiply by the conjugate of Q1/5 − x.

lim
x→∞

[
(x5 − 4x4 + 17)1/5 − x

]
= lim
x→∞

(Q1/5 − x)

= lim
x→∞

Q− x5

Q4/5 +Q3/5x+Q2/5x2 +Q1/5x3 + x4

= lim
x→∞

17− 3x4

Q4/5 +Q3/5x+Q2/5x2 +Q1/5x3 + x4
.

Now carefully divide each term in numerator and denominator by x4. The numerator becomes

17
x4
− 3,

which approaches −3 as x→ +∞. The first term in the denominator becomes

(x5 − 3x4 + 17)4/5

x4
=

(
x5 − 3x4 + 17

x5

)4/5

=
(

1− 3
x

+
17
x5

)4/5

,

which approaches 1 as x→ +∞. The second term in the denominator becomes

x · (x5 − 3x4 + 17)3/5

x4
=

(
x5 − 3x4 + 17

x5

)3/5

=
(

1− 3
x

+
17
x5

)3/5

,

which also approaches 1 as x→ +∞, as do the third, fourth, and fifth terms in the demoninator. Therefore
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2.71825 2.7183 2.71835 2.7184

1.44467

1.44467

1.44467

1.44467

1.44467

lim
x→∞

[
(x5 − 4x4 + 17)1/5 − x

]
= − 3

5
.

C04S09.035: Given: f(x) = x1/x for x > 0. We plotted the graph of y = f(x) on the interval 10−6 � x � 1
and obtained strong evidence that f(x) approaches zero as x→ 0+. We also plotted y = f(x) on the interval
100 � x � 1000 and obtained some evidence that f(x)→ 1 as x→ +∞. Then we verified these limits with
l’Hôpital’s rule as follows:

ln
(

lim
x→∞

x1/x
)

= lim
x→∞

1
x

lnx = lim
x→∞

1
x

= 0,

so that lim
x→∞

x1/x = e0 = 1.

But lim
x→0+

x1/x is not indeterminate, because the exponent is approaching +∞; this limit is clearly zero.

The graph that follows this solution indicates that the global maximum value of f(x) occurs close to
2.71828 (surely no coincidence). We found that

f ′(x) =
x1/x(1− lnx)

x2
,

and it follows that the maximum value of f(x) is f(e) = e1/e ≈ 1.4446678610.

C04S09.036: Given: f(x) = x1/(x2) for x > 0. We plotted f(x) on the interval 0.01 � x � 1 and obtained
strong evidence that f(x) → 0 as x → 0+. We plotted f(x) for 10 � x � 100 and obtained some evidence
that f(x) → 1 as x → +∞. The first conjecture is correct because, as x → 0+, the exponent in f(x) is
approaching +∞ and therefore this limit is not an indeterminate form; it is clearly zero. Then

ln
(

lim
x→∞

f(x)
)

= lim
x→∞

lnx
x2

= lim
x→∞

1
2x · x = 0,

and therefore lim
x→∞

f(x) = e0 = 1.

Next we plotted y = f(x) for 1 � x � 4 and saw a clear maximum near where x = 1.65. We found that

f ′(x) =
(1− 2 lnx)x1/(x2)

x3
,

and it follows that the maximum is f (
√
e ) = e1/(2e) ≈ 1.2019433685.
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C04S09.037: Given: f(x) = (x2)1/x for x > 0. We plotted y = f(x) for 0.01 � x � 1 and obtained
strong evidence that f(x)→ 0 as x→ 0+. We plotted f(x) for 100 � x � 1000 and obtained weak evidence
that f(x) → 1 as x → +∞. (These two graphs follow this solution.) The first limit is clear because x2 is
approaching zero while the exponent 1/x is approaching +∞. For the second limit, we found

ln
(

lim
x→∞

f(x)
)

= lim
x→∞

2 lnx
x

= lim
x→∞

2
x

= 0,

so that lim
x→∞

f(x) = e0 = 1.

Next we plotted f(x) for 2.71827 � x � 2.71829 (by the “method of successive zooms”) and saw a clear
maximum near where x = 2.71828. (The graph follows this solution.) We found that

f ′(x) =
(2− 2 lnx)(x2)1/x

x2
,

and it follows that the maximum value of f(x) is f(e) = e2/e ≈ 2.0870652286.

C04S09.038: Given: f(x) = x−x, x > 0. We plotted y = f(x) for 0.001 � x � 1; the graph is strong
evidence that f(x) → 1 as x → 0+. Then we plotted y = f(x) for 10 � x � 20; the graph is very strong
evidence that f(x)→ 0 as x→ +∞. To be sure, we computed

ln
(

lim
x→0+

f(x)
)

= lim
x→0+

(−x lnx) = lim
x→0+

− lnx
x−1

= lim
x→0+

x = 0.

It is clear that lim
x→∞

1
xx

= 0; we are not dealing with an indeterminate form here.

The first graph showed a global maximum near the point where x = 0.4. We found that

f ′(x) = − 1 + lnx
xx

,

and therefore the global maximum value of f(x) is f(e−1) = e1/e ≈ 1.44466678610.
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C04S09.039: We graphed f(x) = (1 + x2)1/x for 0.001 � x � 1; the graph is extremely strong evidence
that f(x) → 1 as x → 0+. Then we graph y = f(x) for 100 � x � 1000; the graph is weak evidence that
f(x)→ 1 as x→ +∞. These two graphs are shown next.

To be sure about these limits, we computed

ln
(

lim
x→0+

f(x)
)

= lim
x→0+

ln(1 + x2)
x

= lim
x→0+

2x
1 + x2

= 0,

and therefore f(x)→ e0 = 1 as x→ 0+. Next,

ln
(

lim
x→∞

f(x)
)

= lim
x→∞

ln(1 + x2)
x

= lim
x→∞

2x
1 + x2

= 0,

and therefore f(x)→ e0 = 1 as x→ +∞.

Then we used the “method of successive zooms” and thereby found that the graph of y = f(x) for
1.9802 � x � 1.9804 shows a maximum near where x = 1.9803. (The graph follows this solution.) Then we
found that

f ′(x) =
(1 + x2)1/x

[
2x2 − (1 + x2) ln(1 + x2)

]
x2(1 + x2)

but could not solve the transcendental equation 2x2 = (1 + x2) ln(1 + x2) exactly. So we used Newton’s
method to solve f ′(x) = 0, and our conclusion is that the global maximum value of f(x) is approximately
2.2361202715 ≈ f(1.9802913004).

C04S09.040: Given:

f(x) =
(

1 +
1
x2

)x
for x > 0.
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We plotted y = f(x) for 0.001 � x � 0.2; the graph is very strong evidence that f(x)→ 1 as x→ 0+. Then
we plotted y = f(x) for 10 � x � 1000; the graph is good evidence that f(x)→ 1 as x→ +∞. Both these
limits are indeterminate, so we used l’Hôpital’s rule:

ln
(

lim
x→0+

(
1 +

1
x2

)x)
= lim
x→0+

x ln
(
x2 + 1
x2

)
= lim
x→0+

ln(x2 + 1)− 2 lnx
x−1

= lim
x→0+

2x
x2 + 1

− 2
x

−(x−2)

= lim
x→0+

x2 ·
(

2
x
− 2x
x2 + 1

)
= lim
x→0+

x2(2x2 + 2− 2x2)
x(x2 + 1)

= lim
x→0+

2x
x2 + 1

= 0.

Repeat these computations with x → 0+ replaced with x → +∞ to discover the same limit, zero. Thus
f(x)→ e0 = 1 as x→ 0+ and as x→ +∞.

Next we used the method of successive zooms to find that f(x) has a global maximum just a little to
the right of the point where x = 0.5. Solving f ′(x) = 0 exactly seemed hopeless; we used Newton’s method
to solve f ′(x) = 0 to find that the global maximum value of f(x) is approximately

f(0.5049762122) ≈ 2.2361202715.

C04S09.041: Given: f(x) = (x + sinx)1/x. The graph of y = f(x) for 0.01 � x � 1 provides strong
evidence that f(x)→ 0 as x→ 0+. The graph of y = f(x) for 10 � x � 1000 provides fairly good evidence
that f(x)→ 1 as x→ +∞. These graphs are shown next.

Next, we verified these limits as follows:

ln
(

lim
x→∞

(x+ sinx)1/x
)

= lim
x→∞

ln(x+ sinx)
x

= lim
x→∞

1 + cosx
x+ sinx

= 0,

and therefore lim
x→∞

(x+ sinx)1/x = e0 = 1.

But (x+sinx)1/x is not indeterminate as x→ 0+ because if x is very small and positive, then x+sinx
is positive and near zero while 1/x is very large positive. Therefore lim

x→0+
(x+ sinx)1/x = 0.

Then a plot of y = f(x) for 0.5 � x � 2 revealed a global maximum near where x = 1.2. A plot of f for
1.2095 � x � 1.2097 (by the “method of repeated zooms”) showed the maximum near the midpoint of that
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interval. That graph is shown next. The equation f ′(x) = 0 appeared to be impossible to solve exactly, so
we used Newton’s method to find that the maximum of f(x) is very close to (1.2095994645, 1.8793598343).

C04S09.042: Given: f(x) =
[
exp(1/x2)

](cos x−1). A plot of y = f(x) for 0.01 � x � 1 indicated that as
x→ 0+, f(x) approaches a number between 0.60 and 0.61. A plot of y = f(x) for 10 � x � 1000 indicated
oscillations between 0.9999 and 1.0, but dying out very rapidly while maintaining an upper bound of 1.0.
Thus there is evidence that f(x)→ 1 as x→ +∞. Analytically, we compute these limits as follows:

ln
(

lim
x→0+

[
exp(1/x2)

](cos x−1)
)

= lim
x→0+

(cosx− 1) ln
(
exp(1/x2)

)

= lim
x→0+

cosx− 1
x2

= lim
x→0+

− sinx
2x

= − 1
2
.

Therefore f(x)→ e−1/2 ≈ 0.6065306597 as x→ 0+. As x→ +∞, cosx− 1 varies between 0 and −2 while
exp(1/x2) → 1 from above (and quite rapidly). Hence f(x) → 1 as x → +∞; note that f(x) � 1 for all
x > 0.

Moreover, when cosx− 1 = 0 (which happens at each integral multiple of 2π), f(x) = 1, and this is the
maximum value of f(x). Examination of

f ′(x) = − 2f(x)(cosx− 1)
x3

− f(x) sinx
x2

makes it clear that f ′(2nπ) = 0 for every positive integer n, although this does not establish that there are
no other locations of maxima. What is clear is that 1 is the maximum value of f(x) for x > 0.

C04S09.043: Note that in using l’Hôpital’s rule we are computing derivatives with respect to h.

ln
(

lim
h→0

(1 + hx)1/h
)

= lim
h→0

ln(1 + hx)
h

= lim
h→0

x

1 + hx
= x,

and therefore lim
h→0

(1 + hx)1/h = ex.

C04S09.044: The implication (through the notation) is that n → +∞ while assuming only positive
integral values. We need to differentiate with respect to n, thus we let n run through positive real values.
Then if n is later restricted to positive integral values, the limit will be the same.
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ln
(

lim
n→∞

(
1 +

x

n

)n )
= lim
n→∞

ln
(
1 +

x

n

)
1
n

= lim
n→∞

ln
n+ x

n
1
n

= lim
n→∞

ln(n+ x)− lnn
1
n

= lim
n→∞

1
n+ x

− 1
n

− 1
n2

= lim
n→∞

nx

n+ x
= lim
n→∞

x

1 +
x

n

= x.

Therefore lim
n→∞

(
1 +

x

n

)n
= ex.

C04S09.045: We let f(x) = xtan x and applied Newton’s method to the equation f ′(x) = 0 with initial guess
x0 = 0.45. Results: x1 = 0.4088273642, x2 = 0.4099763617, x3 = x4 = 0.4099776300; f(x4) = 0.6787405265.

C04S09.046: Suppose that n � 2. Let Q = [p(x)]1/n. Then

[p(x)]1/n − x = Q− x

=
Qn − xn

Qn−1 +Qn−2x+Qn−3x2 + · · ·+Qxn−2 + xn−1

=
a1 +

a2

x
+
a3

x2
· · ·+ an

xn−1

Qn−1

xn−1
+
Qn−2

xn−2
+ · · ·+ 1

.

Note that there are n terms in the last denominator and, apart from the last, each has the form

Qn−k

xn−k
=

[p(x)](n−k)/n

xn−k
=

[
p(x)
xn

](n−k)/n

where k is an integer and 1 � k � n− 1. It now follows that, for each such k,

Qn−k

xn−k
=

(
1 +

a1

x
+
a2

x2
+ · · ·+ an

xn

)(n−k)/n
→ 1

as x→ +∞. Therefore

lim
x→∞

(
[p(x)]1/n − x

)
= lim
x→∞

a1 +
a2

x
+
a3

x2
+ · · ·+ an

xn−1

n
=
a1

n
.

If n = 1, then

lim
x→∞

(
[p(x)]1/n − x

)
= lim
x→∞

(x+ a1 − x) = a1 =
a1

1
=
a1

n
.

This concludes the proof.

C04S09.047: Replace b with x to remind us that it’s the only variable in this problem; note also that
0 < x < a. The surface area of the ellipsoid is then
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A(x) = 2πax
[
x

a
+

a

(a2 − x2)1/2
arcsin

(a2 − a2)1/2

a

]

= 2πx2 + 2πa2 ·
x arcsin

(a2 − x2)1/2

a
(a2 − x2)1/2

.

Therefore

lim
x→a−

A(x) = 2πa2 + 2πa2


 lim
x→a−

x

a
·
arcsin

(a2 − x2)1/2

a
(a2 − x2)1/2

a


 .

Let u =
(a2 − x2)1/2

a
. Then u→ 0+ as x→ a−. Hence

lim
x→a−

A(x) = 2πa2 + 2πa2

(
lim
x→a−

x

a

)
·
(

lim
u→0+

arcsinu
u

)

= 2πa2 + 2πa2

(
lim
u→0+

1√
1− u2

)
= 4πa2.

C04S09.048: Part (a): We plan to show that dA/dn > 0, so it will follow that A is an increasing function
of n. We assume throughout that A0 > 0, that 0 < r � 1, and that n � 1. For the purpose of computing
dA/dn, we let n take on all real values in its range, not merely positive integral values. Now

lnA = lnA0 + nt ln
(
1 +

r

n

)
,

so

1
A
· dA
dn

= t ln
(
n+ r

n

)
+ nt

(
1

n+ r
− 1
n

)
= t ln

(
n+ r

n

)
− rt

n+ r
.

Because A and t are positive, it suffices to show that the function defined by

f(n) =
1

n+ r

[
−r + (n+ r) ln

(
n+ r

n

)]
(1)

is positive-valued for r > 0 and n � 1. We substitute n = rx to simplify f ; the right-hand side in Eq. (1)
takes the form

g(x) =
1

r + rx

[
−r + (r + rx) ln

(
r + rx

rx

)]
= − 1

1 + x
+ ln

(
1 +

1
x

)
.

It remains to show that g(x) is positive-valued. If n is a positive integer and r � 1, then x > 1, so
g(x) “starts” with the positive value g(1) ≈ 0.193147. Moreover, g(x) thenceforth decreases because its
derivative,

g′(x) = − 1
x(1 + x)2

,

is negative for all x > 0. Finally, it is obvious from the definition of g that g(x)→ 0 as x→ +∞. Therefore
g(x) remains positive, because if it once took on the value zero, it would thereafter attain a negative value
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z, and then (continuing to decrease) would remain forever less than z—in which case it could not approach
zero as x→ +∞.

Part (b): L’Hôpital’s rule yields

ln
(

lim
n→∞

[
1 +

r

n

]nt)
= lim

n→∞

(
nt ln

n+ r

n

)
= lim

n→∞
t · ln(n+ r)− lnn

1
n

= lim
n→∞

(
−tn2

n+ r
+
tn2

n

)
= lim

n→∞

−tn3 + tn3 + tn2r

n(n+ r)

= lim
n→∞

tnr

n+ r
= lim

n→∞

rt

1 +
r

n

= rt.

Therefore

lim
n→∞

(
1 +

r

n

)nt
= ert,

and the result in Part (b) follows immediately.

C04S09.049: Given: f(x) = | lnx|1/x for x > 0. The graph of y = f(x) for 0.2 � x � 0.3 shows f(x)
taking on values in excess of 1028, so it seems quite likely that f(x) → +∞ as x → 0+. Indeed, this is the
case, because as x→ 0+, we see that | lnx| → +∞ and also the exponent 1/x is increasing without bound.

Next we show the graph of y = f(x) for 0.5 � x � 1 (on the left) and for 0.9 � x � 1.1 (on the right).
The first indicates an inflection point near where x = 0.8 and the second shows a clear global minimum at
(1, 0). To find the inflection point, we redefined f(x) = (− lnx)1/x and computed

f ′′(x) =
f(x)

x4(lnx)2
(
1− x− 3x lnx− 2(lnx) ln(− lnx) + 2x(lnx)2 ln(− lnx) + (lnx)2(ln(− lnx))2

)

(assisted by Mathematica, of course). We let

g(x) = 1− x− 3x lnx− 2(lnx) ln(− lnx) + 2x(lnx)2 ln(− lnx) + (lnx)2(ln(− lnx))2

and applied Newton’s method to solve the equation g(x) = 0. With initial guess x0 = 0.8, six itera-
tions yielded over 20 digits of accuracy, and the inflection point shown in the figure is located close to
(0.8358706352, 0.1279267691).

It is clear that f(x) > 0 if 0 < x < 1 and if x > 1, so the graph of f has a global minimum at (1, 0).
Still using f(x) = (− lnx)1/x, we computed
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f ′(x) =
f(x)(1− (lnx)(ln(− lnx)))

x2 lnx
,

and thereby found that

lim
x→1−

f ′(x) = −1.

Then we redefined f(x) = (lnx)1/x and computed

f ′(x) =
f(x)
x2 lnx

(1− (lnx) ln(lnx)) .

Then we found that

lim
x→1+

f ′(x) = 1.

Thus the shape of the graph of f near (1, 0) is quite similar to the shape of y = |x| near (0, 0).

Next we plotted the graph of y = f(x) for 1 � x � 2 (shown next, on the left) and for 4 � x � 10 (next,
on the right). The first of these indicates an inflection point near where x = 1.2 and the second shows a
clear local maximum near where x = 5.8. To locate the inflection point more accurately, we computed

f ′′(x) =
f(x)

x4(lnx)2
(
1− x− 3x lnx− 2(lnx) ln(lnx) + 2x(lnx)2 ln(lnx) + (lnx)2(ln(lnx))2

)

and applied Newton’s method to the solution of g(x) = 0, where

g(x) = 1− x− 3x lnx− 2(lnx) ln(lnx) + 2x(lnx)2 ln(lnx) + (lnx)2(ln(lnx))2.

Beginning with the initial guess x0 = 1.2, seven iterations yielded more than 20 digits of accuracy; the
inflection point is located close to (1.1163905964, 0.1385765415).

To find the local maximum, we applied Newton’s method to the equation g(x) = 0, where

g(x) = 1− (lnx) ln(lnx).

Beginning with the initial guess x0 = 5.8, six iterations yielded more than 20 digits of accuracy; the local
maximum is very close to (5.8312001357, 1.1021470392).

Finally, we plotted y = f(x) for 10 � x � 1000 (shown after this solution). The change in concavity
indicates that there must be yet another inflection point near where x = 9. Newton’s method again yielded
its approximate coordinates as (8.9280076968, 1.0917274397). The last graph also suggests that f(x) → 1
as x→ +∞. This is indeed the case;
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ln
(

lim
x→∞

f(x)
)

= lim
x→∞

ln(lnx)
x

= lim
x→∞

1
x lnx

= 0,

and therefore f(x)→ e0 = 1 as x→ +∞.

C04S09.050: We applied the techniques of the previous solution to f(x) = | lnx|1/| ln x |, x > 0. The graph
of y = f(x) for 0.0001 � x � 0.4 shows a maximum near where x = 0.06. We redefined f(x) = (− lnx)−1/ ln x

and found that

f ′(x) =
f(x)(−1 + ln(− lnx))

x(lnx)2
,

and it is easy to solve the equation f ′(x) = 0 for x = e−e. Hence there is a local maximum at (e−e, e1/e) ≈
(0.0659880358, 1.4446678610). The limit of f(x) as x→ 0+ is not clear from the graph, but

ln
(

lim
x→0+

f(x)
)

= lim
x→0+

−x
x lnx

= 0,

and therefore f(x)→ e0 = 1 as x→ 0+. The graph of y = f(x) also indicates an inflection point near where
x = 0.5, and application of Newton’s method to the equation f ′′(x) = 0 with initial guess x0 = 0.5 reveals
that its coordinates are very close to (0.5070215891, 0.5657817947).

The graph of y = f(x) for 0.5 � x � 1.5 suggests a horizontal tangent and global minimum at (1, 0),
but f(1) is not defined. Nevertheless, as x → 1, the base | lnx| approaches zero through positive values
while the exponent 1/| lnx| approaches +∞, so f(x) → 0 as x → 1. We collected graphical and numerical
evidence that f ′(x)→ 0 as x→ 1 but have no formal proof.

The graph of y = f(x) for 1.2 � x � 2 indicates an inflection point near where x = 1.7. We rewrote
f in the form f(x) = (lnx)1/ ln x and applied Newton’s method to the equation f ′′(x) = 0 to find that the
inflection point is close to (1.6903045007, 0.2929095074). The graph also indicates a local maximum near
where x = 15. Because

f ′(x) =
f(x)(1− ln(lnx))

x(lnx)2
,

it is easy to solve f ′(x) = 0 for x = ee, so that extremum is located at (ee, e1/e) ≈ (15.154262, 1.444668).
Hence both local maxima are global maxima. The graph also shows an inflection point near where x = 26,
and Newton’s method reveals its approximate coordinates to be (26.5384454497, 1.4364458579). The graph
of y = f(x) for 400 � x � 4000 did not indicate any particular limit as x→ +∞, but

ln
(

lim
x→∞

f(x)
)

= lim
x→∞

−x
x lnx

= 0,

and therefore f(x)→ 1 as x→ +∞.
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C04S09.051: Given: f(x) = | lnx|| ln x | for x > 0. The graph of y = f(x) for 0.01 � x � 0.1 indicates
that f(x)→ +∞ as x→ 0+, and this is clear. (That graph is next, on the left.) The graph also indicates
a local minimum near where x = 0.7 (that graph is next, on the right.)

We rewrote f(x) in the form f(x) = (− lnx)− ln x for 0 < x < 1 and found that

f ′(x) = − (− lnx)− ln x(1 + ln(− lnx))
x

. (1)

Then it is easy to solve f ′(x) = 0 for x = e−1/e. So the graph of y = f(x) has a local minimum at
(e−1/e, e−1/e). Both the abscissa and the ordinate are approximately 0.6922006276. Next, the graph shows
a cusp at the point (1, 1); there is a local maximum at that point, and |f ′(x)| → +∞ as x→ 1. To see why,
rewrite f(x) = (lnx)ln x for x > 1. Then

f ′(x) =
(lnx)ln x(1 + ln(lnx))

x
, (2)

and it is clear that f ′(x)→ −∞ as x→ 1+. You can also use Eq. (1) to show that f ′(x)→ +∞ as x→ 1−.
This is not apparent from the graph of y = f(x) for 0.9 � x � 1.1, shown next (on the left).

Next we plotted y = f(x) for 1 � x � 2 and found another local minimum near where x = 1.4. (The
graph is next, on the right.) It is easy to solve f ′(x) = 0 (use Eq. (2)), and you’ll find that the coordinates
of this point are (e1/e, e−1/e), so the two local minima are actually global minima. Finally, it’s clear that
f(x)→ +∞ as x→ +∞.

C04S09.052: If α is a fixed real number, then

ln

(
lim
x→0

[
exp

(
− 1
x2

)]αx2)
= lim
x→0

αx2 ln
(

exp
(
− 1
x2

))
= lim
x→0

−αx2

x2
= −α.

Therefore

lim
x→0

[
exp

(
− 1
x2

)]αx2

= e−α.
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This means that the indeterminate form 00 may take on any positive real number value because that is the
range of values of e−α.

The only way that

lim
x→a

[f(x)]g(x)

could be negative would be if f(x) were negative for all x near a, but then g(x) would take on irrational
values and therefore the expression [f(x)]g(x) would be undefined. Hence the limit of a 00 indeterminate
form cannot be negative.

The 00 form

lim
x→0+

x1/| ln x|1/2
(1)

has the value zero because

ln
(

lim
x→0+

x1/| ln x|1/2
)

= lim
x→0+

lnx
| lnx|1/2 = lim

x→0+
− − lnx

(− lnx)1/2
= lim
x→0+

−(− lnx)1/2 = −∞.

The 00 form

lim
x→0+

x−1/(− ln x)1/3
(2)

has the value +∞ because

ln
(

lim
x→0+

x−1/(− ln x)1/3
)

= lim
x→0+

− lnx
(− lnx)1/3

= lim
x→0+

(− lnx)2/3 = +∞.

Our thanks to Ted Shifrin for the examples in (1) and (2).

C04S09.053: The figure on the left shows the graph of y = f(x) on the interval [−1, 1]. The figure on the
right shows the graph of y = f(x) on the interval [−0.00001, 0.00001]. It is clear from the second figure that
e ≈ 2.71828 to five places. When the removable discontinuity at x = 0 is removed in such a way to make f
continuous there, the y-intercept will be e because

ln
[

lim
x→0

(
1 +

1
x

)x]
= lim
x→0

x ln
(
x+ 1
x

)
= lim
x→0

ln(x+ 1)− lnx
1
x

= lim
x→0

(
−x2

x+ 1
+
x2

x

)

= lim
x→0

−x3 + x2 + x2

x(x+ 1)
= lim

x→0

x2

x(x+ 1)
= lim

x→0

x

x+ 1
= 1,
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and therefore lim
x→0

(
1 +

1
x

)x
= e1 = e.

C04S09.054: Part (c): If v(t) =
mg

k

(
1− e−kt/m

)
, then

lim
m→∞

v(t) = lim
m→∞

g

k
· 1− e

−kt/m

1
m

= lim
m→∞

g

k
·
− kt

m2
e−kt/m

− 1
m2

= lim
m→∞

g

k
· kte−kt/m = lim

m→∞
gte−kt/m = gt · 1 = gt

because k > 0 and t > 0.
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Chapter 4 Miscellaneous Problems

C04S0M.001: dy = 3
2 (4x− x2)1/2(4− 2x) dx.

C04S0M.002: dy = [24x2(x2 + 9)1/2 + 4x3(x2 + 9)−1/2(2x) ] dx.

C04S0M.003: dy = − 2
(x− 1)2

dx.

C04S0M.004: dy = 2x cos(x2) dx = 2x cosx2 dx.

C04S0M.005: dy =
(
2x cos

√
x− 1

2x
3/2 sin

√
x

)
dx.

C04S0M.006: dy =
sin 2x− 2x cos 2x

sin2 2x
dx.

C04S0M.007: Let f(x) = x1/2; f ′(x) = 1
2x

−1/2. Then

√
6401 = f(6400 + 1) ≈ f(6400) + 1 · f ′(6400)

= 80 +
1

160
=

12801
160

= 80.00625.

(A calculator reports that
√

6401 ≈ 80.00624976.)

C04S0M.008: Choose f(x) =
1
x

; f ′(x) = − 1
x2

. Choose x = 1 and ∆x = 0.000007. Then

1
1.000007

= f(x+ ∆x) ≈ f(x) + f ′(x) ∆x

= 1− 0.000007 = 0.999993.

C04S0M.009: Let f(x) = x10; then f ′(x) = 10x9. Choose x = 2 and ∆x = 0.0003. Then

(2.0003)10 = f(x+ ∆x) ≈ f(x) + f ′(x) ∆x

= 210 + 10 · 29 · (0.0003) = 1024 + (5120)(0.0003) = 1024 + 1.536 = 1025.536.

A calculator reports that (2.0003)10 ≈ 1025.537.

C04S0M.010: Let f(x) = x1/3; then f ′(x) = 1
3x

−2/3. Choose x = 1000 and ∆x = −1. Then

3
√

999 = f(x+ ∆x) ≈ f(x) + f ′(x) ∆x

= (1000)1/3 +
1

3 · (1000)2/3
· (−1) = 10− 1

3 · 100
=

2999
300

≈ 9.996667.

A calculator reports that 3
√

999 ≈ 9.996665.

C04S0M.011: Let f(x) = x1/3; then f ′(x) = 1
3x

−2/3. Choose x = 1000 and ∆x = 5. Then

3
√

1005 = f(x+ ∆x) ≈ f(x) + f ′(x) ∆x

= (1000)1/3 +
1

3(1000)2/3
· 5 = 10 +

5
3 · 100

=
601
60
≈ 10.0167.
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A calculator reports that 3
√

1005 ≈ 10.0166.

C04S0M.012: Take f(x) = x1/3; then f ′(x) = 1
3x

−2/3. Take x = 64 and ∆x = −2. Thus

(62)1/3 = f(x+ ∆x) ≈ f(x) + f ′(x) ∆x

= (64)1/3 + (−2)
(

1
3

)
(64)−2/3 =

95
24
≈ 3.958.

C04S0M.013: Let f(x) = x3/2; then f ′(x) = 3
2x

1/2. Let x = 25 and let ∆x = 1. Then

263/2 = f(x+ ∆x) ≈ f(x) + f ′(x) ∆x

= (25)3/2 +
3
2
· (25)1/2 · 1 = 125 + 7.5 = 132.5.

C04S0M.014: Take f(x) = x1/5; then f ′(x) = 1
5x

−4/5. Take x = 32 and ∆x = −2. Then

(30)1/5 = f(x+ ∆x) ≈ f(x) + f ′(x) ∆x

= (32)1/5 + (−2)
(

1
5

)
(32)−4/5 = 2− 1

40
=

79
40

= 1.975.

C04S0M.015: Let f(x) = x1/4; then f ′(x) = 1
4x

−3/4. Let x = 16 and ∆x = 1. Then

4
√

17 = (17)1/4 = f(x+ ∆x) ≈ f(x) + f ′(x) ∆x

= (16)1/4 +
1

4 · (16)3/4
· 1 = 2 +

1
4 · 8 =

65
32

= 2.03125.

C04S0M.016: With f(x) = x1/10, f ′(x) = 1
10x

−9/10, x = 1024, and ∆x = −24, we obtain

(1000)1/10 = f(x+ ∆x) ≈ f(x) + f ′(x) ∆x

= (1024)1/10 + (−24)
(

1
10

)
(1024)−9/10 = 2− 3

640
=

1277
640

≈ 1.9953.

C04S0M.017: The volume V of a cube of edge s is given by V (s) = s3. So dV = 3s2 ds, and thus with
s = 5 and ∆s = 0.1 we obtain ∆V ≈ 3(5)2(0.1) = 7.5 (cubic inches).

C04S0M.018: With radius r and area A = πr2, we have dA = 2πr dr. We take r = 10 and ∆r = −0.2 to
obtain ∆A ≈ (2π)(10)(−0.2) = −4π (cm2).

C04S0M.019: The volume V of a sphere of radius r is given by V (r) = 4
3πr

3. Hence dV = 4πr2 dr, so
with r = 5 and Deltar = 1

10 we obtain

∆V ≈ 4π · 25 · 1
10

= 10π (cm3).

C04S0M.020: Given V =
1000
p

, it follows that dV = − 1000
p2

dp. Therefore, with p = 100 and ∆p = −1,

we obtain

2



∆V ≈ − 1000
(100)2

· (−1) = 0.1 (cubic inches).

C04S0M.021: If

T = 2π

√
L

32
= 2π

(
L

32

)1/2

, then dT = π

(
L

32

)−1/2

· 1
32

dL =
π

32

(
32
L

)1/2

dL.

Therefore if L = 2 and ∆L = 1
12 , we obtain

∆T ≈ dT =
π

32

(
32
2

)1/2

· 1
12

=
π

32
· 4
12

=
π

96
≈ 0.0327 (seconds).

C04S0M.022: Here, dL = (−13)(1030)E−14 dE. We take E = 110 and ∆E = +1 and obtain

∆L ≈ (−13)(1030)
(
110−14

)
(+1) ≈ −342 (hours).

The actual decrease is L(110)− L(111) ≈ 2896.6− 2575.1 ≈ 321.5 (hours).

C04S0M.023: First, f ′(x) = 1 +
1
x2

, so f ′(x) exists for 1 < x < 3 and f is continuous for 1 � x � 3. So
we are to solve

f(3)− f(1)
3− 1

= f ′(c);

that is,

3− 1
3 − 1 + 1

2
= 1 +

1
c2
.

After simplifications we find that c2 = 3. Therefore, because 1 < c < 3, c = +
√

3.

C04S0M.024: Every polynomial is continuous and differentiable everywhere, so all hypotheses are met.

f(3)− f(−2)
3− (−2)

=
26− (−14)

5
= 8 = f ′(c) = 3c2 + 1,

so c2 = 7/3. Both roots lie in (−2, 3), so both +
√

7/3 and −
√

7/3 are solutions.

C04S0M.025: Every polynomial is continuous and differentiable everywhere, so all hypotheses of the mean
value theorem are satisfied. Then

f(2)− f(−1)
2− (−1)

=
8 + 1

3
= 3 = f ′(c) = 3c2,

so c2 = 1. But −1 does not lie in the interval (−1, 2), so the number whose existence is guaranteed by the
mean value theorem is c = 1.

C04S0M.026: Every polynomial is continuous and differentiable everywhere, so all hypotheses of the mean
value theorem are satisfied. Then

f(1)− f(−2)
1− (−2)

=
1 + 8

3
= 3 = f ′(c) = 3c2,

3
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so c2 = 1. But 1 does not lie in the interval (−2, 1), so the number whose existence is guaranteed by the
mean value theorem is c = −1.

C04S0M.027: Given: f(x) = 11
5 x

5 on the interval [−1, 2]. Because f(x) is a polynomial, it is continuous
and differentiable everywhere, so the hypotheses of the mean value theorem are satisfied on the interval
[−1, 2]. Moreover,

f(2)− f(−1)
2− (−1)

=
11
5 · 32 + 11

5

3
=

11 · 33
5 · 3 =

121
5

= f ′(c) = 11c4.

It follows that c4 = 11
5 , so that c = ±

(
11
5

)1/4. Only the positive root lies in the interval [−1, 2], so the

number whose existence is guaranteed by the mean value theorem is c =
(

11
5

)1/4.
C04S0M.028: Because f(x) =

√
x is differentiable on (0, 4) and continuous on [0, 4], the hypotheses of

the mean value theorem are satisfied. Moreover,

f(4)− f(0)
4− 0

=
2
4

=
1
2

= f ′(c) =
1

2c1/2
,

and it follows that c = 1.

C04S0M.029: f ′(x) = 2x − 6, so f ′(x) = 0 when x = 3; f ′′(x) ≡ 2 is always positive, so there are no
inflection points and there is a global minimum at (3, −5). The y-intercept is (0, 4) and the x-intercepts are(
3±
√

5 , 0
)
. The graph of f is shown next.

C04S0M.030: f ′(x) = 6(x−3)(x+2), so there are critical points at (−2, 44) and (3, −81). f ′′(x) = 12x−6,
so there is an inflection point at

(
1
2 , −

37
2

)
. The origin (0, 0) is a dual intercept and there are two other

x-intercepts. The graph of y = f(x) is next.

C04S0M.031: f(x) = (3x4 − 5x2 + 60)x and f ′(x) = 15(x4 − x2 + 4), so f ′(x) > 0 for all x and hence
(0, 0) is the only intercept. f ′′(x) = 30x(2x2−1), so there are inflection points at

(
− 1

2

√
2, − 233

8

√
2

)
, (0, 0),

and
(

1
2

√
2, 233

8

√
2

)
. The graph is actually concave upward between the first and second of these inflection

4
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points and concave downward between the second and third, but so slightly that this is not visible on the
graph of f that is shown next.

C04S0M.032: Given f(x) = (3− x)
√
x, we have

f ′(x) =
3(1− x)

2
√
x

and f ′′(x) = − 3(x+ 1)
4x
√
x

.

So there is a critical point at (1, 2), intercepts at (0, 0) and (3, 0), and the graph of f is concave down on
the entire domain [0, +∞) of f . Thus the critical point is a global maximum, there are no inflection points,
and there is a local minimum at (0, 0). The graph of f is shown next.

C04S0M.033: Given f(x) = (1− x)x1/3, we find that

f ′(x) =
1− 4x
3x2/3

and f ′′(x) = − 2(2x+ 1)
9x5/3

.

So there are intercepts at (0, 0) and (1, 0) and a critical point at
(

1
4 ,

3
8

3
√

2
)
. There is an inflection point

at
(
− 1

2 , −
3
4

3
√

4
)
; the graph of f is actually concave upward between this point and (0, 0) and concave

downward to its left, but the latter is not visible in the scale of the accompanying figure. The origin is also
an inflection point and there is a vertical tangent there too.

C04S0M.034: Let g(x) = x5 + x − 5. Then g(2) = 29 > 0 while g(1) = −3 < 0. Because g(x) is a
polynomial, it has the intermediate value property. Therefore the equation g(x) = 0 has at least one solution
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in the interval 1 � x � 2. Moreover, g′(x) = 5x4 + 1, so g′(x) > 0 for all x. Consequently g is increasing
on the set of all real numbers, and so takes on each value—including zero—at most once. We may conclude
that the equation g(x) = 0 has exactly one solution, and hence that the equation x5 +x = 5 has exactly one
solution. (The solution is approximately 1.299152792.)

C04S0M.035: f ′(x) = 3x2 − 2, f ′′(x) = 6x, and f ′′′(x) ≡ 6.

C04S0M.036: f ′(x) = 100(x+ 1)99, f ′′(x) = 9900(x+ 1)98, and f ′′′(x) = 970200(x+ 1)97.

C04S0M.037: Given g(t) =
1
t
− 1

2t+ 1
,

g′(t) =
2

(2t+ 1)2
− 1
t2
, g′′(t) =

2
t3
− 8

(2t+ 1)3
, and g′′′(t) =

48
(2t+ 1)4

− 6
t4
.

C04S0M.038: h′(y) = 3
2 (3y − 1)−1/2, h′′(y) = − 9

4 (3y − 1)−3/2, and h′′′(y) = 81
8 (3y − 1)−5/2.

C04S0M.039: f ′(t) = 3t1/2 − 4t1/3, f ′′(t) = 3
2 t

−1/2 − 4
3 t

−2/3, and f ′′′(t) = 8
9 t

−5/3 − 3
4 t

−3/2.

C04S0M.040: g′(x) = − 2x
(x2 + 9)2

, g′′(x) =
6x2 − 18
(x2 + 9)3

, and g′′′(x) =
216x− 24x3

(x2 + 9)4
.

C04S0M.041: h′(t) = − 4
(t− 2)2

, h′′(t) =
8

(t− 2)3
, and h′′′(t) = − 24

(t− 2)4
.

C04S0M.042: f ′(z) = 1
3z

−2/3− 3
5z

−6/5, f ′′(z) = − 2
9z

−5/3 + 18
25z

−11/5, and f ′′′(z) = 10
27z

−8/3− 198
125z

−16/5.

C04S0M.043: g′(x) = − 4
3(5− 4x)2/3

, g′′(x) = − 32
9(5− 4x)5/3

, and g′′′(x) = − 640
27(5− 4x)8/3

.

C04S0M.044: g′(t) = 12(3− t)−5/2, g′′(t) = 30(3− t)−7/2, and g′′′(t) = 105(3− t)−9/2.

C04S0M.045: x−2/3 + y−2/3 dy

dx
= 0, so

dy

dx
= −(y/x)2/3.

d2y

dx2
= −2

3
(y/x)−1/3 · x(dy/dx)− y

x2
= −2

3
· x(dy/dx)− y

x5/3y1/3

=
2
3
· y + x1/3y2/3

x5/3y1/3
=

2
3
y2/3 · x

1/3 + y1/3

x5/3y1/3
=

2
3
(y/x5)1/3.

C04S0M.046: Given 2x2 − 3xy + 5y2 = 25, we differentiate both sides with respect to x and obtain

4x− 3y − 3x
dy

dx
+ 10y

dy

dx
= 0, so that

dy

dx
=

3y − 4x
10y − 3x

.

We differentiate both sides of the second of these equations, again with respect to x, and find that

d2y

dx2
=

(10y − 3x)(3y′(x)− 4)− (3y − 4x)(10y′(x)− 3)
(10y − 3x)2

.

Then replacement of y′(x) with
3y − 4x
10y − 3x

yields

6



d2y

dx2
= − 1550

(10y − 3x)3

after simplifications that use the original equation.

C04S0M.047: Given y5− 4y+1 = x1/2, we differentiate both sides of this equation (actually, an identity)
with respect to x and obtain

5y4 dy

dx
− 4

dy

dx
=

1
2x1/2

, so that
dy

dx
= y′(x) =

1
2(5y4 − 4)

√
x
. (1)

Another differentiation yields

d2y

dx2
= − 1 + 80x3/2y3[y′(x)]3

4(5y4 − 4)x3/2
,

then substitution of y′(x) from Eq. (1) yields

y′′(x) =
40y4 − 25y8 − 20x1/3y3 − 16

4x3/2(5y4 − 4)3
.

C04S0M.048: Given: sin(xy) = xy. The only solution of sin z = z is z = 0. Therefore xy = 0. Thus
x = 0 or y = 0. This means that the graph of the equation sin(xy) = xy consists of the coordinate axes. The
y-axis is not the graph of a function, so the derivative is defined only for x �= 0, and dy/dx = 0 for x �= 0.
Therefore also d2y/dx2 = 0 for x �= 0.

C04S0M.049: Given x2 + y2 = 5xy + 5, we differentiate both sides with respect to x to obtain

2x+ 2y
dy

dx
= 5y + 5x

dy

dx
, so that

dy

dx
= y′(x) =

2x− 5y
5x− 2y

. (1)

Another differentiation yields

y′′(x) =
2[(y′(x))2 − 5y′(x) + 1]

5x− 2y
,

then substitution of y′(x) from Eq. (1) yields

y′′(x) = − 42(x2 − 5xy + y2)
(5x− 2y)3

= − 210
(5x− 2y)3

.

In the last step we used the original equation in which y is defined implicitly as a function of x.

C04S0M.050: x5 + xy4 = 1: 5x4 + y4 + 4xy3 dy

dx
= 0, so

dy

dx
= −5x4 + y4

4xy3
.

d2y

dx2
= −

4xy3(20x3 + 4y3 dy

dx
)− (5x4 + y4)(4y3 + 12xy2 dy

dx
)

16x2y6

=
20x4y3 + 4y7 + (60x5y2 + 12xy6)

dy

dx
− 80x4y3 − 16xy6 dy

dx
16x2y6

=
4y7 − 60x4y3 + (60x5y2 − 4xy6)

dy

dx
16x2y6
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=
4y5 − 60x4y + (60x5 − 4xy4)

dy

dx
16x2y4

=
4y5 − 60x4y + (4xy4 − 60x5) ·

(
5x4 + y4

4xy3

)

16x2y4

=
16xy8 − 240x5y4 + 20x5y4 + 4xy8 − 300x9 − 60x5y4

64x3y7

=
20xy8 − 280x5y4 − 300x9

64x3y7
=

5y8 − 70x4y4 − 75x8

16x2y7

=
5(y8 − 14x4y4 − 15x8)

16x2y7
=

5(y4 + x4)(y4 − 15x4)
16x2y7

.

But x4 + y4 =
1
x

, so
d2y

dx2
=

5(y4 − 15x4)
16x3y7

.

C04S0M.051: Given: y3 − y = x2y:

dy

dx
= y′(x) = − 2xy

x2 + 1− 3y2
. (1)

Then

y′′(x) = − 2[y + 2xy′(x)− 3y(y′(x))2 ]
x2 + 1− 3y2

. (2)

Substitution of y′(x) from Eq. (1) in the right-hand side of Eq. (2) then yields

y′′(x) =
2y [3x4 − 9y4 + 6(x2 + 1)y2 + 2x2 − 1]

(x2 + 1− 3y2)3
.

C04S0M.052: (x2 − y2)2 = 4xy:

2(x2 − y2)(2x− 2y
dy

dx
) = 4x

dy

dx
+ 4y;

(x2 − y2) · x− (x2 − y2) · y dy
dx

= x
dy

dx
+ y;

(x+ x2y − y3)
dy

dx
= x3 − xy2 − y;

dy

dx
=
x(x2 − y2)− y
x+ y(x2 − y2)

=
x3 − xy2 − y
x+ x2y − y3

;

d2y

dx2
=

(
x+ x2y − y3

) (
3x2 − 2xy

dy

dx
− y2 − dy

dx

)
−

(
x3 − xy2 − y

) (
1 + x2 dy

dx
+ 2xy − 3y2 dy

dx

)

(x+ x2y − y3)2
,

which upon simplification and substitution for dy/dx becomes

d2y

dx2
=

3xy(2− xy)
(x+ x2y − y3)3

.

8



-2 -1 1 2 3 4

-50

-25

25

50

75

100

125

-4 -2 2 4

-150

-100

-50

50

-2 -1 1 2

-1

-0.5

0.5

1

1.5

C04S0M.053: f ′(x) = 4x3 − 32, so there is a critical point at (2, −48). f ′′(x) = 12x2, but there is no
inflection point at (0, 0) because the graph of f is concave upward for all x. But (0, 0) is a dual intercept,
and there is an x-intercept at

(
3
√

32, 0
)
. The graph of y = f(x) is shown next.

C04S0M.054: f(x) = 18x2−x4 = x2(18−x2); f ′(x) = 36x−4x3 = 4x(3+x)(3−x); f ′′(x) = 12(3−x2).
There are global maxima at (−3, 81) and (3, 81) and a local minimum at (0, 0). The other two x-intercepts
are at

(
−3
√

2, 0
)

and
(
3
√

2, 0
)
. There are inflection points at

(
−
√

3, 45
)

and
(√

3, 45
)
. The graph of f is

next.

C04S0M.055: f ′(x) = 2x3(3x2− 4) and f ′′(x) = 6x2(5x2− 4). There are global minima at
(
− 2

3

√
3, − 32

27

)
and

(
2
3

√
3, − 32

27

)
and a local maximum at (0, 0), which is also a dual intercept. There are inflection points

at
(
− 2

5

√
5, − 95

125

)
and

(
2
5

√
5, − 95

125

)
but not at (0, 0). There are x-intercepts at

(
−
√

2, 0
)

and
(√

2, 0
)
.

The graph of y = f(x) is shown next.

C04S0M.056: If f(x) = x
√
x− 3, then

f ′(x) =
3(x− 2)
2
√
x− 3

and f ′′(x) =
3(x− 4)

4(x− 3)3/2
.

Therefore the graph of f is increasing for all x (the domain of f is [3, +∞)), concave downward for x < 4,
and concave upward for x > 4; there is an inflection point at (4, 4). The only intercept is (3, 0), which is

9
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also a global minimum and the location of a vertical tangent. The graph of f is next.

C04S0M.057: If f(x) = x(4− x)1/3, then

f ′(x) =
4(3− x)

3(4− x)2/3
and f ′′(x) =

4(x− 6)
9(4− x)5/3

.

So there is a global maximum at (3, 3) intercepts at (0, 0) and (4, 0), a vertical tangent and inflection point
at the latter, and an inflection point at

(
6, −6 3

√
2

)
. The graph is next.

C04S0M.058: If (x) =
x− 1
x+ 2

= 1− 3
x+ 2

, then

f ′(x) =
3

(x+ 2)2
and f ′′(x) = − 6

(x+ 2)3
.

There are no critical points and no inflection points. The graph is increasing except at the discontinuity at
x = −2. It is concave upward for x < −2 and concave downward if x > −2. The vertical line x = −2 and
the horizontal line y = 1 are asymptotes, and the intercepts are

(
0, − 1

2

)
and (1, 0). The graph of y = f(x)

is next.

C04S0M.059: If f(x) =
x2 + 1
x2 − 4

= 1 +
5

x2 − 4
, then

f ′(x) = − 10x
(x2 − 4)2

and f ′′(x) =
10(3x2 + 4)
(x2 − 4)3

.
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Thus there is a local maximum at
(
0, − 1

4

)
, no other extrema, no inflection points, and no intercepts. The

lines x = −2 and x = 2 are vertical asymptotes and y = 1 is a horizontal asymptote; the graph is next.

C04S0M.060: If f(x) =
x

(x− 2)(x+ 1)
, then

f ′(x) = − x2 + 2
(x2 − x− 2)2

and f ′′(x) =
2(x3 + 6x− 2)

(x+ 1)3(x− 2)3
.

There are no critical points; there is an inflection point with the approximate coordinates (0.3275, −0.1475).
The graph is decreasing for all x other than −1 and 2, is concave upward on the intervals (−1, 0.3275) and
(2, +∞), and is concave downward on the intervals (0.3275, 2) and (−∞, −1). The asymptotes are y = 0,
x = 2, and x = −1 and (0, 0) is the only intercept. The graph of y = f(x) is shown next.

C04S0M.061: If f(x) =
2x2

(x− 2)(x+ 1)
, then

f ′(x) = − 2x(x+ 4)
(x− 2)2(x+ 1)2

and f ′′(x) =
4(x3 + 6x2 + 4)
(x2 − x− 2)3

.

Thus (0, 0) is a local maximum and the only intercept; there is a local minimum at
(
−4, 16

9

)
. There is an

inflection point with the approximate coordinates (−6.107243, 1.801610). The lines x = −1 and x = 2 are
vertical asymptotes and the line y = 2 is a horizontal asymptote. The graph of y = f(x) for −12 < x < −2
is next, on the left; the graph for −2 < x < 4 is on the right.
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C04S0M.062: Given: f(x) =
x3

x2 − 1
= x+

1
2(x+ 1)

+
1

2(x− 1)
. First,

f ′(x) =
x2(x2 − 3)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.

Inflection point and sole intercept: (0, 0). There is a local minimum where x =
√

3 and a local maximum
where x = −

√
3. The graph is concave downward on the intervals (0, 1) and (−∞, −1), concave upward

on the intervals (−1, 0) and (1, +∞). The graph is increasing if x < −
√

3 and if x >
√

3 and is decreasing
otherwise. The lines x = −1, x = 1, and y = x are asymptotes. The graph of y = f(x) is next.

C04S0M.063: Here we have f(x) = x3(3x − 4), f ′(x) = 12x2(x − 1), and f ′′(x) = 12x(3x − 2). Hence
there are intercepts at (0, 0) and

(
4
3 , 0

)
; the graph is increasing for x > 1 and decreasing for x < 1; it is

concave upward for x > 2
3 and for x < 0, concave downward on the interval

(
0, 2

3

)
. Consequently there is a

global minimum at (1, −1) and inflection points at (0, 0) and
(

2
3 , −

16
27

)
. There are no asymptotes, no other

extrema, and f(x)→ +∞ as x→ +∞ and as x→ −∞. The graph of f is shown next.

C04S0M.064: Here we have f(x) = x2(x2 − 2), f ′(x) = 4x(x + 1)(x − 1), and f ′′(x) = 4(3x2 − 1). So
there are intercepts at

(
−
√

2, 0
)
, (0, 0), and

(√
2, 0

)
. The graph is increasing on the intervals (1, +∞) and

(−1, 0), decreasing on the intervals (−∞, −1) and (0, 1). It is concave upward where x2 > 1
3 and concave

downward where x2 < 1
3 . There are global minima at (−1, −1) and (1, −1) and a local maximum at the

12
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origin. There are inflection points at the two points where x2 = 1
3 . The graph is next.

C04S0M.065: If f(x) =
x2

x2 − 1
, then

f ′(x) = − 2x
(x2 − 1)2

and f ′′(x) =
2(3x2 + 1)
(x2 − 1)3

.

Thus (0, 0) is the only intercept and is a local maximum; there are no inflection points, the lines x = −1
and x = 1 are vertical asymptotes, and the line y = 1 is a horizontal asymptote. The graph of y = f(x) is
next.

C04S0M.066: First, f(x) = x(x2− 12), f ′(x) = 3(x+2)(x− 2), and f ′′(x) = 6x. So there are intercepts
at

(
2
√

3, 0
)
, (0, 0), and

(
−2
√

3, 0
)
. The graph is increasing for x > 2 and for x < −2; it is decreasing on the

interval (−2, 2). It is concave upward for x > 0 and concave downward for x < 0. There is a local maximum
at (−2, 16), a local minimum at (2, −16), and an inflection point at the origin. The graph of y = f(x) is
shown next.

C04S0M.067: If f(x) = −10 + 6x2 − x3, then f ′(x) = 3x(4− x) and f ′′(x) = 6(2− x). It follows that
there is a local minimum at (0, −10), a local maximum at (4, 22), and an inflection point at (2, 6). The
intercepts are approximately (−1.180140, 0), (1.488872, 0), (5.691268, 0), and [exactly] (0, −10). The graph
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of f is next.

C04S0M.068: If f(x) =
x

1 + x2
, then

f ′(x) =
1− x2

(x2 + 1)2
and f ′′(x) =

2x(x2 − 3)
(x2 + 1)3

.

There is a global maximum at
(
1, 1

2

)
and a global minimum at

(
−1, − 1

2

)
. The origin is the only intercept

and an inflection point; there are also inflection points at
(√

3, 1
4

√
3

)
and

(
−
√

3, − 1
4

√
3

)
. The x-axis is the

only asymptote. The graph of y = f(x) is shown next.

C04S0M.069: If f(x) = x3 − 3x, then f ′(x) = 3(x + 1)(x − 1) and f ′′(x) = 6x. So there is a local
maximum at (−1, 2), a local minimum at (1, −2), and an inflection point at (0, 0). There are also intercepts
at

(
−
√

3, 0
)

and
(√

3, 0
)

but no asymptotes. The graph is next.

C04S0M.070: If f(x) = x4 − 12x2 = x2(x2 − 12), then f ′(x) = 4x(x2 − 6) and f ′′(x) = 12(x2 − 2).
Hence there are global minima at

(
−
√

6, −36
)

and
(√

6, −36
)

and a local maximum at (0, 0). There are
also intercepts at

(
−2
√

3, 0
)

and
(
2
√

3, 0
)
. There are inflection points at

(
−
√

2, −20
)

and
(√

2, −20
)

and

14



-4 -2 2 4

-20

20

40

60

-4 -3 -2 -1 1 2 3

-10

10

20

 

-2 -1 1 2

-20

-15

-10

-5

5

10

15

20

-14 -12 -10 -8 -6 -4 -2

-0.25

-0.2

-0.15

-0.1

-0.05

no asymptotes. The graph of y = f(x) is shown next.

C04S0M.071: If f(x) = x3+x2−5x+3 = (x−1)2(x+3), then f ′(x) = (3x+5)(x−1) and f ′′(x) = 6x+2.
So there is a local maximum at

(
− 5

3 ,
256
27

)
and a local minimum at (1, 0). There is an inflection point at(

− 1
3 ,

128
27

)
. A second x-intercept is (−3, 0) and there are no asymptotes. The graph of y = f(x) is next.

C04S0M.072: f(x) =
x+ 1
x2

, f ′(x) = −x+ 2
x3

, f ′′(x) =
2(x+ 3)

x4
. The graph is decreasing for x > 0 and

for x < −2, increasing on the interval (−2, 0). It is concave downward for x < −3, concave upward for x > 0
and on the interval (−3, 0). The only intercept is (−1, 0) and there is a discontinuity where x = 0. There
is a global minimum at (−2, −0.25) and an inflection point at

(
−3, − 2

9

)
. As x → 0, f(x) → +∞, so the

y-axis is a vertical asymptote. As |x| → +∞, f(x)→ 0, so the x-axis is a horizontal asymptote. The graph
of y = f(x) for −2 < x < 2 is next, on the left; the graph for −15 < x < −1 is on the right.

C04S0M.073: The given function f(x) is expressed as a fraction with constant numerator, so we maximize
f(x) by minimizing its denominator (x + 1)2 + 1. It is clear that x = −1 does the trick, so the maximum
value of f(x) is f(−1) = 1.

C04S0M.074: Let k be the proportionality constant for cost; if the pot has radius r and height h, we are
to minimize total cost

C = k
[
(5)(πr2) + (1)(2πrh)

]

15



subject to the constraint πr2h = 1. Then h = 1/
(
πr2

)
, so

C = C(r) = k

(
5πr2 +

2
r

)
, r > 0.

Now

C ′(r) = k

(
10πr − 2

r2

)
;

C ′(r) = 0 when

r =
(

1
5π

)1/3

and h =
(

25
π

)1/3

.

It’s easy to establish in the usual way that these values minimize C, and it’s worth noting that when C is
minimized, we also have h = 5r.

C04S0M.075: Let x represent the width of the base of the box. Then the length of the base is 2x and,
because the volume of the box is 4500, the height of the box is 4500/

(
2x2

)
. We minimize the surface area

of the box, which is given by

f(x) = 2x2 + 4x · 4500
2x2

+ 2x · 4500
2x2

= 2x2 +
13500
x

, 0 < x <∞.

Now f ′(x) = 4x− (13500/x2), so f ′(x) = 0 when x = 3
√

3375 = 15. Note that f ′′(15) > 0, so surface area is
minimized when x = 15. The box of minimal surface area is 15 cm wide, 30 cm long, and 10 cm high.

C04S0M.076: Let x represent the edge length of the square base of the box. Because the volume of the
box is 324, the box has height 324/x2. We minimize the cost C of materials to make the box, where

C = C(x) = 3x2 + 4 · x · 324
x2

= 3x2 +
1296
x

, 0 < x <∞.

Now C ′(x) = 6x − (1296/x2), so C(x) = 0 when x = 3
√

1296/6 = 6. Because C ′′(6) > 0, the cost C is
minimized when x = 6. The box we seek has a square base 6 in. on a side and height 9 in.

C04S0M.077: Let x represent the width of the base of the box. Then the box has base of length 2x and
height 200/x2. We minimize the cost C of the box, where

C = C(x) = 7 · 2x2 + 5 ·
(

6x · 200
x2

)
+ 5 · 2x2 = 24x2 +

6000
x

, 0 < x <∞.

Now C ′(x) = 48x − (6000/x2), so C ′(x) = 0 when x = 3
√

125 = 5. Because C ′′(5) > 0, the cost C is
minimized when x = 5. The box of minimal cost is 5 in. wide, 10 in. long, and 8 in. high.

C04S0M.078: If the zeros of f(x) are at a, b, and c (with a < b < c), apply Rolle’s theorem to f ′ on the
two intervals [a , b] and [b, c].

C04S0M.079: If the speed of the truck is v, then the trip time is T = 1000/v. So the resulting cost is

C(v) =
10000
v

+ (1000)
(
1 + (0.0003)v3/2

)
,
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so that

C(v)
1000

=
10
v

+ 1 + (0.0003)v3/2.

Thus

C ′(v)
1000

= −10
v2

+
3
2
(0.0003)

√
v.

Then C ′(v) = 0 when v = (200, 000/9)2/5 ≈ 54.79 mi/h. This clearly minimizes the cost, because C ′′(v) > 0
for all v > 0.

C04S0M.080: The sum in question is

S(x) = (x− a1)2 + (x− a2)2 + . . .+ (x− an)2.

Now S′(x) = 2(x− a1) + 2(x− a2) + . . .+ 2(x− an); S′(x) = 0 when nx = a1 + a2 + . . .+ an, so that

x =
1
n

(a1 + a2 + . . .+ an) (1)

—the average of the n fixed numbers. It is clear that S is continuous and that S(x) → +∞ as |x| → +∞,
so S(x) must have a global minimum value. Therefore the value of x in Eq. (1) minimizes the sum of the
squares of the distances.

C04S0M.081: First, given y2 = x(x− 1)(x− 2), we differentiate implicitly and find that

2y
dy

dx
= 3x2 − 6x+ 2, so

dy

dx
=

3x2 − 6x+ 2
2y

.

The only zero of dy/dx in the domain is 1− 1
3

√
3 , so there are two horizontal tangent lines (the y-coordinates

are approximately ±0.6204). Moreover, dx/dy = 0 when y = 0; that is, when x = 0, when x = 1, and when
x = 2. So there are three vertical tangent lines. After lengthy simplifications, one can show that

d2y

dx2
=

3x4 − 12x3 + 12x2 − 4
4y3

.

The only zero of y′′(x) in the domain is about 2.4679, and there the graph has the two values y ≈ ±1.3019.
These are the two inflection points. The graph of the given equation is shown next.

C04S0M.082: Let x represent the length of the internal divider. Then the field measures x by 2400/x ft.
We minimize the total length of fencing, given by:

17



f(x) = 3x+
4800
x

, 0 < x <∞.

Now f ′(x) = 3 − 4800x−2, which is zero only when x =
√

1600 = 40. Verification: f ′(x) > 0 if x > 40 and
f ′(x) < 0 if x < 40, so f(x) is minimized when x = 40. The minimum length of fencing required for this
field is f(40) = 240 feet.

C04S0M.083: Let x represent the length of each of the dividers. Then the field measures x by 1800/x ft.
We minimize the total length of fencing, given by:

f(x) = 4x+
3600
x

, 0 < x <∞.

Now f ′(x) = 4− 3600x−2, which is zero only when x = 30. Verification: f ′(x) > 0 if x > 30 and f ′(x) < 0
if x < 30, so f(x) is minimized when x = 30. The minimum length of fencing required for this field is
f(30) = 240 ft.

C04S0M.084: Let x represent the length of each of the dividers. Then the field measures x by 2250/x
meters. We minimize the total length of fencing, given by:

f(x) = 5x+
4500
x

, 0 < x <∞.

Now f ′(x) = 5− 4500x−2, which is zero only when x = 30. Verification: f ′(x) > 0 if x > 30 and f ′(x) < 0
if x < 30, so f(x) is minimized when x = 30. The minimum length of fencing required for this field is
f(30) = 300 meters.

C04S0M.085: Let x represent the length of each of the dividers. Then the field measures x by A/x ft.
We minimize the total length of fencing, given by:

f(x) = (n+ 2)x+
2A
x
, 0 < x <∞.

Now f ′(x) = n + 2 − 2Ax−2, which is zero only when x =
√

2A/(n+ 2). Verification: f ′(x) > 0 if
x >

√
2A/(n+ 2) and f ′(x) < 0 if x <

√
2A/(n+ 2), so f(x) is minimized when x =

√
2A/(n+ 2). The

minimum length of fencing required for this field is

f

(√
2A
n+ 2

)
= (n+ 2)

√
2A
n+ 2

+
2A
√
n+ 2√
2A

=
√

2A(n+ 2) +
√

2A(n+ 2) = 2
√

2A(n+ 2) (ft).

C04S0M.086: Let L be the line segment with endpoints at (0, c) and (b, 0) on the coordinate axes and
suppose that L is tangent to the graph of y = 1/x2 at (x, 1/x2). We will minimize S, the square of the
length of L, where S = b2 + c2. We compute the slope of L in several ways: as the value of dy/dx at the
point of tangency, as the slope of the line segment between (x, 1/x2) and (b, 0), and as the slope of the line
segment between (x, 1/x2) and (0, c):

− 2
x3

=

1
x2
− 0

x− b , so x = −2(x− b), hence b =
3
2
x.

− 2
x3

=

1
x2
− c

x− 0
; −2x = x3(

1
x2
− 3), cx2 = 3, hence c =

3
x2
.
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Therefore

S(x) =
9
x4

+
9x2

4
; S′(x) = −36

x5
+

9
2
x,

which is zero only when x =
√

2. Verification: S′(x) < 0 if x <
√

2 and S′(x) > 0 if x >
√

2. So S, hence
the length of L, is minimized when x =

√
2. The length of this shortest line segment is 3

2

√
3.

C04S0M.087: Let L be the line segment with endpoints at (0, c) and (b, 0) on the coordinate axes and
suppose that L is tangent to the graph of y = 1/x2 at (x, 1/x2). We compute the slope of L in several ways:
as the value of dy/dx at the point of tangency, as the slope of the line segment between (x, 1/x2) and (b, 0),
and as the slope of the line segment between (x, 1/x2) and (0, c):

− 2
x3

=

1
x2
− 0

x− b , so x = −2(x− b), hence b =
3
2
x.

− 2
x3

=

1
x2
− c

x− 0
; −2x = x3(

1
x2
− 3), cx2 = 3, hence c =

3
x2
.

Now the length of the base of the right triangle is b and its height is c, so its area is given by

A(x) =
1
2
· 3x

2
· 3
x2

=
9
4x
, 0 < x < +∞.

Clearly A is a strictly decreasing function of x, so it has neither a maximum nor a minimum—not even any
local extrema.

C04S0M.088: Let L be the line segment in the first quadrant that is tangent to the graph of y = 1/x at
(x, 1/x) and has endpoints (0, c) and (b, 0). Compute the slope of L in several ways: as the value of dy/dx
at the point of tangency, as the slope of the line segment between (x, 1/x) and (b, 0), and as the slope of
the line segment between (x, 1/x) and (0, c):

− 1
x2

=

1
x
− 0

x− b so b = 2x.

− 1
x2

=

1
x
− c
x

: c− 1
x

=
1
x
, so c =

2
x
.

Therefore the area A of the triangle is

A = A(x) =
1
2
· 2x · 1

x
≡ 1.

Because A is a constant function, every such triangle has both maximal and minimal area.

C04S0M.089: Let x be the length of the shorter sides of the base and let y be the height of the box. Then
its volume is 3x2y, so that y = 96/x2. The total surface area of the box is 6x2 + 8xy, thus is given as a
function of x by

A(x) = 6x2 + 8x · 96
x2

= 6x2 +
768
x
, 0 < x < +∞.
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So A′(x) = 12x − 768x−2; A′(x) = 0 when x3 = 64, so that x = 4. Because A′′(x) > 0 for all x > 0, we
have found the value of x that yields the global minimum value of A, which is A(4) = 288 (in.2). The fact
that 288 is also the numerical value of the volume is a mere coincidence.

C04S0M.090: Let x be the length of the shorter sides of the base and let y be the height of the box. Then
its volume is 4x2y, so that y = 200/x2. The total surface area of the box is 8x2 + 10xy, thus is given as a
function of x by

A(x) = 8x2 + 10x · 200
x2

= 8x2 +
2000
x

, 0 < x < +∞.

So A′(x) = 16x − 2000x−2; A′(x) = 0 when x3 = 125, so that x = 5. Because A′′(x) > 0 for all x > 0, we
have found the value of x that yields the global minimum value of A, which is A(5) = 600 (in.2).

C04S0M.091: Let x be the length of the shorter sides of the base and let y be the height of the box. Then
its volume is 5x2y, so that y = 45/x2. The total surface area of the box is 10x2 + 12xy, thus is given as a
function of x by

A(x) = 10x2 + 12x · 45
x2

= 10x2 +
540
x
, 0 < x < +∞.

So A′(x) = 20x − 540x−2; A′(x) = 0 when x3 = 27, so that x = 3. Because A′′(x) > 0 for all x > 0, we
have found the value of x that yields the global minimum value of A, which is A(3) = 270 (cm2).

C04S0M.092: Let x represent the width of the box. Then the length of the box is nx and its height is
V/(nx2). We minimize the surface area A of the box, where

A = A(x) = 2nx2 +
V

nx2
· 2(n+ 1)x = 2nx2 +

2(n+ 1)V
nx

, 0 < x <∞.

Now

A′(x) = 4nx− 2(n+ 1)V
nx2

, and A′(x) = 0 when x = 3

√
(n+ 1)V

2n2
.

Verification: A′(x) > 0 for x >
3

√
(n+ 1)V

2n2
and A′(x) < 0 for x <

3

√
(n+ 1)V

2n2
, so this critical point

minimizes A. The value of A(x), simplified, at this minimum point is 3
(

2(n+ 1)2V 2

n

)1/3

.

C04S0M.093: First,

m = lim
x→±∞

f(x)
x

= lim
x→±∞

(1− x)2/3

x2/3

= lim
x→±∞




1
x
− 1

1



2/3

= +1.

Then
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b = lim
x→∞

[f(x)−mx] = lim
x→∞

(
x1/3(1− x)2/3 − x

)

= lim
x→∞

(
x1/3(1− x)2/3 − x

) (
x2/3(1− x)4/3 + x4/3(1− x)2/3 + x2

)
x2/3(1− x)4/3 + x4/3(1− x)2/3 + x2

= lim
x→∞

x(1− x)2 − x3

x2/3(1− x)4/3 + x4/3(1− x)2/3 + x2

= lim
x→∞

x− 2x2

x2/3(1− x)4/3 + x4/3(1− x)2/3 + x2

= lim
x→∞

1
x
− 2

(
1− x
x

)4/3

+
(

1− x
x

)2/3

+ 1

=
0− 2

1 + 1 + 1
= −2

3
.

The limit is the same as x→ −∞. So the graph of f(x) = x1/3(1−x)2/3 has the oblique asymptote y = x− 2
3 .

C04S0M.094: Let θ be the angle between your initial path and due north, so that 0 � θ � π/2, and if
θ = π/2 then you plan to jog around a semicircle and not swim at all. Suppose that you can swim with
speed v (in miles per hour). Then you will swim a length of 2 cos θ miles at speed v and jog a length of 2θ
miles at speed 2v, for a total time of

T (θ) =
2 cos θ
v

+
2θ
2v

=
1
v
(θ + 2 cos θ), 0 � θ � π/2.

It’s easy to verify that this formula is correct even in the extreme case θ = π/2. It turns out that although
T ′(θ) = 0 when θ = π/6, this value of θ actually maximizes T (θ); this function has an endpoint minimum
not even at θ = 0, but at θ = π/2. Answer: Jog all the way.

C04S0M.095: By l’Hôpital’s rule,

lim
x→2

x− 2
x2 − 4

= lim
x→2

1
2x

=
1
4
.

Without l’Hôpital’s rule,

lim
x→2

x− 2
x2 − 4

= lim
x→2

x− 2
(x+ 2)(x− 2)

= lim
x→2

1
x+ 2

=
1
4
.

C04S0M.096: By l’Hôpital’s rule, lim
x→0

sin 2x
x

= lim
x→0

2 cos 2x
1

=
2 · 1
1

= 2.

C04S0M.097: By l’Hôpital’s rule, lim
x→π

1 + cosx
(x− π)2

= lim
x→π

− sinx
2(x− π)

= lim
x→π

− cosx
2

=
1
2
.

C04S0M.098: By l’Hôpital’s rule (applied three times),

lim
x→0

x− sinx
x3

= lim
x→0

1− cosx
3x2

= lim
x→0

sinx
6x

= lim
x→0

cosx
6

=
1
6
.

C04S0M.099: By l’Hôpital’s rule (applied three times),
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lim
t→0

tan t− sin t
t3

= lim
t→0

sec2 t − cos t
3t2

= lim
t→0

2 sec2 t tan t+ sin t
6t

= lim
t→0

4 sec2 t tan2 t+ 2 sec4 t+ cos t
6

=
1
2
.

C04S0M.100: By l’Hôpital’s rule, lim
x→∞

ln(lnx)
lnx

= lim
x→∞

1
lnx

= 0.

C04S0M.101: By l’Hôpital’s rule,

lim
x→0

(cotx) ln(1 + x) = lim
x→0

ln(1 + x)
tanx

= lim
x→0

1
(1 + x) sec2 x

=
1

1 · 1 = 1.

C04S0M.102: By l’Hôpital’s rule and the product rule for limits,

lim
x→0+

(e1/x − 1) tanx = lim
x→0+

e1/x − 1
cotx

= lim
x→0+

e1/x

x2 csc2 x
= lim
x→0+

(
sinx
x

)2

e1/x = 1 ·
(

lim
x→0+

e1/x
)

= +∞.

Recall that l’Hôpital’s rule is valid even if the resulting limit is +∞ or −∞, although we are stretching the
hypotheses of the product rule a little here. We need a lemma.

Lemma: If

lim
x→a+

f(x) = p > 0 and lim
x→a+

g(x) = +∞,

then lim
x→a+

f(x) · g(x) = +∞.

Proof: Given M > 0, choose δ > 0 such that, if x − a < δ then f(x) > p/2 and g(x) > 2M/p. Then,
for such x, f(x) · g(x) > (p/2) · 2M/p = M . Because M may be arbitrarily large positive, this implies that
f(x) · g(x) takes on arbitrarily large values if x > a and x is near a. That is,

lim
x→a+

f(x) · g(x) = +∞.

C04S0M.103: After combining the two fractions, we apply l’Hôpital’s rule once, then use a little algebra:

lim
x→0

(
1
x2
− 1

1− cosx

)
= lim
x→0

1− cosx− x2

x2(1− cosx)
= lim
x→0

(sinx)− 2x
2x(1− cosx) + x2 sinx

= lim
x→0

sinx
x
− 2

2(1− cosx) + x sinx
.

Now if x is close to (but not equal to) zero, (sinx)/x ≈ 1, so the numerator in the last limit is near −1.
Moreover, for such x, cosx < 1 and x and sinx have the same sign, so the denominator in the last limit is
close to zero and positive. Therefore the limit is −∞.

C04S0M.104: We don’t need l’Hôpital’s rule here, although it may be applied. Without it we obtain

lim
x→∞

(
x2

x+ 2
− x3

x2 + 3

)
= lim
x→∞

3x2 − 2x3

x3 + 2x2 + 3x+ 6
= lim
x→∞

3
x
− 2

1 +
2
x

+
3
x2

+
6
x3

=
0− 2

1 + 0 + 0 + 0
= −2.

Using l’Hôpital’s rule (three times) we find that
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lim
x→∞

(
x2

x+ 2
− x3

x2 + 3

)
= lim
x→∞

3x2 − 2x3

x3 + 2x2 + 3x+ 6

= lim
x→∞

6x− 6x2

3x2 + 4x+ 3
= lim
x→∞

6− 12x
6x+ 4

= lim
x→∞

−12
6

= −2.

C04S0M.105: Here it is easier not to use l’Hôpital’s rule:

lim
x→∞

(√
x2 − x− 1 −

√
x

)
= lim
x→∞

x2 − x− 1− x√
x2 − x− 1 +

√
x

= lim
x→∞

x2 − 2x− 1√
x2 − x− 1 +

√
x

= lim
x→∞

x− 2− 1
x√

1− 1
x
− 1
x2
−

√
1
x

= +∞.

C04S0M.106: ln
(

lim
x→∞

x1/x
)

= lim
x→∞

ln
(
x1/x

)
= lim
x→∞

lnx
x

= lim
x→∞

1
x

= 0. Therefore lim
x→∞

x1/x = 1.

C04S0M.107: First we need an auxiliary result:

lim
x→∞

2xe−2x = lim
x→∞

2x
e2x

= lim
x→∞

2
2e2x

= 0.

Then

ln
(

lim
x→∞

(e2x − 2x)1/x
)

= lim
x→∞

ln(e2x − 2x)1/x = lim
x→∞

ln(e2x − 2x)
x

= lim
x→∞

2e2x − 2
e2x − 2x

= lim
x→∞

2− 2e−2x

1− 2xe−2x
=

2− 0
1− 0

= 2.

Therefore lim
x→∞

(e2x − 2x)1/x = e2.

C04S0M.108: Given: lim
x→∞

[
1− exp(−x2)

]1/x2

.

ln
(

lim
x→∞

[
1− exp(−x2)

]1/x2)
= lim
x→∞

ln
[
1− exp(−x2)

]1/x2

= lim
x→∞

ln
(
1− exp(−x2)

)
x2

= lim
x→∞

2x exp(−x2)
2x [1− exp(−x2)]

= lim
x→∞

exp(−x2)
1− exp(−x2)

=
0

1− 0
= 0.

Therefore lim
x→∞

[
1− exp(−x2)

]1/x2

= e0 = 1.

C04S0M.109: This is one of the most challenging problems in the book. We deeply regret publication of
this solution. First let u = 1/x. Then

L = lim
x→∞

x ·
[(

1 +
1
x

)x
− e

]
= lim
u→0+

(1 + u)1/u − e
u

.

Apply l’Hôpital’s rule once:
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L = lim
u→0+

(1 + u)1/u
(
u− (1 + u) ln(1 + u)

u2(1 + u)

)
.

Now apply the product rule for limits!

L = e ·
(

lim
u→0+

u− (1 + u) ln(1 + u)
u2(1 + u)

)
.

Finally apply l’Hôpital’s rule twice:

L = e ·
(

lim
u→0+

1− 1− ln(1 + u)
2u+ 3u2

)
= e ·

(
lim
u→0+

−1
(1 + u)(2 + 6u)

)
= e · −1

1 · 2 = − e
2
.

Most computer algebra programs cannot evaluate the original limit.

C04S0M.110: First replace b with x to remind us what the variable in this problem is. Thus

A(x) = 2πax

[
x

a
+

a√
x2 − a2

ln

(
x+
√
x2 − a2

a

)]
.

Then

lim
x→a

A(x) = lim
x→a+

[
2πx2 +

2πa2x

(x2 − a2)1/2
ln

(
x+ (x2 − a2)1/2

a

)]

= 2πa2 + 2πa2

[
lim
x→a+

x

(x2 − a2)1/2
ln

(
x+ (x2 − a2)1/2

a

)]
.

Then apply l’Hôpital’s rule to the limit that remains:

lim
x→a

x ln(x+ (x2 − a2)1/2)− x ln a
(x2 − a2)1/2

= lim
x→a

ln
(
x+ (x2 − a2)1/2

)
+

x

x+ (x2 − a2)1/2
·
(

1 +
1
2
(x2 − a2)−1/2 · 2x

)
− ln a

1
2

(x2 − a2)−1/2 · 2x

= lim
x→a+

(x2 − a2)1/2 ln
(
x+ (x2 − a2)1/2

)
+

x

x+ (x2 − a2)1/2
·
(
(x2 − a2)1/2 + x

)
− (x2 − a2)1/2 ln a

x

= lim
x→a+

(x2 − a2)1/2 ln
(
x+ (x2 − a2)1/2

)
+ x− (x2 − a2)1/2 ln a

x
= 1.

Therefore A(b)→ 4πa2 as b→ a+.
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Section 5.2

C05S02.001:
∫

(3x2 + 2x+ 1) dx = x3 + x2 + x+ C.

C05S02.002:
∫

(3t4 + 5t− 6) dt = 3
5 t

5 + 5
2 t

2 − 6t+ C.

C05S02.003:
∫

(1− 2x2 + 3x3) dx = 3
4x

4 − 2
3x

3 + x+ C.

C05S02.004:
∫ (
− 1
t2

)
dt =

1
t

+ C.

C05S02.005:
∫

(3x−3 + 2x3/2 − 1) dx = − 3
2x

−2 + 4
5x

5/2 − x+ C.

C05S02.006:
∫ (

x5/2 − 5
x4
−
√
x

)
dx =

∫
(x5/2 − 5x−4 − x1/2) dx = 2

7x
7/2 + 5

3x
−3 − 2

3x
3/2 + C.

C05S02.007:
∫ (

3
2 t

1/2 + 7
)
dt = t3/2 + 7t+ C.

C05S02.008:
∫ (

2
x3/4

− 3
x2/3

)
dx =

∫
(2x−3/4 − 3x−2/3) dx = 8x1/4 − 9x1/3 + C.

C05S02.009:
∫

(x2/3 + 4x−5/4) dx = 3
5x

5/3 − 16x−1/4 + C.

C05S02.010:
∫ (

2x
√
x− 1√

x

)
dx =

∫
(2x3/2 − x−1/2) dx = 4

5x
5/2 − 2x1/2 + C.

C05S02.011:
∫

(4x3 − 4x+ 6) dx = x4 − 2x2 + 6x+ C.

C05S02.012:
∫ (

1
4
t5 − 5

t2

)
dt =

∫ (
1
4 t

5 − 5t−2
)
dt = 1

24 t
6 + 5t−1 + C.

C05S02.013:
∫

7ex/7 dx = 49ex/7 + C.

C05S02.014:
∫

1
7x

dx =
∫

1
7
· 1
x
dx =

1
7

ln |x|+ C. Another correct answer is

∫
1
7x

dx =
1
7

ln |7x|+ C1 =
1
7

ln |x|+ 1
7

ln 7 + C1 =
1
7

ln |x|+ C2,

the last step because the constant C2 is simply the constant C1 + 1
7 ln 7.

C05S02.015:
∫

(x+ 1)4 dx = 1
5 (x+ 1)5 + C. Note that many computer algebra systems give the answer

C + x+ 2x2 + 2x3 + x4 +
x5

5
.
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C05S02.016:
∫

(t+ 1)10 dt = 1
11 (t+ 1)11 + C.

C05S02.017:
∫

1
(x− 10)7

dx =
∫

(x− 10)−7 dx = − 1
6 (x− 10)−6 + C = − 1

6(x− 10)6
+ C.

C05S02.018:
∫ √

z + 1 dz =
∫

(z + 1)1/2 dz = 2
3 (z + 1)3/2 + C.

C05S02.019:
∫ √

x (1− x)2 dx =
∫

(x1/2 − 2x3/2 + x5/2) dx = 2
3x

3/2 − 4
5x

5/2 + 2
7x

7/2 + C.

C05S02.020:
∫

3
√
x (x+ 1)3 dx =

∫
(x10/3+3x7/3+3x4/3+x1/3) dx = 3

13x
13/3+ 9

10x
10/3+ 9

7x
7/3+ 3

4x
4/3+C.

C05S02.021:
∫

2x4 − 3x3 + 5
7x2

dx =
∫ (

2
7x

2 − 3
7x+ 5

7x
−2

)
dx = 2

21x
3 − 3

14x
2 − 5

7x
−1 + C.

C05S02.022:
∫

(3x+ 4)2√
x

dx =
∫
x−1/2

(
9x2 + 24x+ 16

)
dx =

∫ (
9x3/2 + 24x1/2 + 16x−1/2

)
dx

= 18
5 x

5/2 + 16x3/2 + 32x1/2 + C.

C05S02.023:
∫

(9t+ 11)5 dt = 1
54 (9t+ 11)6 + C. Mathematica gives the answer

C + 161051t+
658845t2

2
+ 359370t3 +

441045t4

2
+ 72171t5 +

19683t6

2
.

C05S02.024:
∫

1
(3z + 10)7

dz =
∫

(3z + 10)−7 dz = − 1
18 (3z + 10)−6 + C.

C05S02.025:
∫

(e2x + e−2x) dx =
1
2
e2x − 1

2
e−2x + C.

C05S02.026:
∫

(ex + e−x)2 dx =
∫

(e2x + 2 + e−2x) dx =
1
2
e2x + 2x− 1

2
e−2x + C.

C05S02.027:
∫

(5 cos 10x− 10 sin 5x) dx = 1
2 sin 10x+ 2 cos 5x+ C.

C05S02.028:
∫

(2 cosπx+ 3 sinπx) dx =
2
π

sinπx− 3
π

cosπx+ C.

C05S02.029:
∫

(3 cosπt+ cos 3πt) dt =
3
π

sinπt+
1
3π

sin 3πt+ C.

C05S02.030:
∫

(4 sin 2πt− 2 sin 4πt) dt = − 2
π

cos 2πt+
1
2π

cos 4πt+ C.

C05S02.031: Dx

(
1
2 sin2 x+ C1

)
= sinx cosx = Dx

(
− 1

2 cos2 x+ C2

)
. Because

1
2

sin2 x+ C1 = − 1
2

cos2 x+ C2, it follows that C2 − C1 =
1
2

sin2 x+
1
2

cos2 x =
1
2
.
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C05S02.032: F ′
1(x) =

1
(1− x)2 , F ′

2(x) =
1− x+ x

(1− x)2 =
1

(1− x)2 . F1(x) − F2(x) = C1 for some constant

C1 on (−∞, 1); F1(x)− F2(x) = C2 for some constant C2 on (1,+∞). On either interval, F1(x)− F2(x) =
1− x
1− x = 1.

C05S02.033:
∫

sin2 x dx =
∫ (

1
2 −

1
2 cos 2x

)
dx = 1

2x−
1
4 sin 2x+ C and

∫
cos2 x dx =

∫ (
1
2 + 1

2 cos 2x
)
dx = 1

2x+ 1
4 sin 2x+ C.

C05S02.034: (a): Dx tanx = sec2 x; (b):
∫

tan2 x dx =
∫ (

sec2 x− 1
)
dx = (tanx)− x+ C.

C05S02.035: y(x) = x2 + x+ C; y(0) = 3, so y(x) = x2 + x+ 3.

C05S02.036: y(x) = 1
4 (x− 2)4 + C and y(2) = 1, so y(x) = 1

4 (x− 2)4 + 1.

C05S02.037: y(x) = 2
3x

3/2 + C and y(4) = 0, so y(x) = 2
3x

3/2 − 16
3 .

C05S02.038: y(x) = − 1
x

+ C and y(1) = 5, so y(x) = − 1
x

+ 6.

C05S02.039: y(x) = 2
√
x+ 2 + C and y(2) = −1, so y(x) = 2

√
x+ 2− 5.

C05S02.040: y =
∫ √

x+ 9 dx = 2
3 (x+ 9)3/2 + C; 0 = y(−4) = 2

3 (−4 + 9)3/2 + C = 2
3 · 5
√

5 + C;

y(x) = 2
3 (x+ 9)3/2 − 10

3

√
5.

C05S02.041: y(x) = 3
4x

4 − 2x−1 + C; y(1) = 1, so y(x) = 3
4x

4 − 2x−1 + 9
4 .

C05S02.042: y(x) =
1
5
x5 − 3

2
x2 − 3

2x2
+ C =

1
5
x5 − 3

2
x2 − 3

2x2
+

9
5
.

C05S02.043: y(x) = 1
4 (x− 1)4 + C; y(0) = 2 = 1

4 + C, so C = 7
4 .

C05S02.044: y(x) = 2
3 (x+ 5)3/2 + C and y(4) = −3, so y(x) = 2

3 (x+ 5)3/2 − 21.

C05S02.045: y(x) = 3e2x + C; y(0) = 10, so C = 7.

C05S02.046: y(x) = C + 3 lnx; y(1) = 7, so C = 7.

C05S02.047: v(t) = 6t2 − 4t+C; v(0) = −10, so v(t) = 6t2 − 4t− 10. Next, x(t) = 2t3 − 2t2 − 10t+K;
x(0) = 0, so K = 0.

C05S02.048: v(t) = 10t−15t2 +C; v(0) = −5, so v(t) = 10t−15t2−5. Next, x(t) = 5t2−5t3−5t+K;
x(0) = 5, so K = 5.

C05S02.049: v(t) = 2
3 t

3 + C; v(0) = 3, so v(t) = 2
3 t

3 + 3. Next, x(t) = 1
6 t

4 + 3t +K; x(0) = −7, so
K = −7.

C05S02.050: v(t) = 10t3/2 + C; v(0) = 7, so v(t) = 10t3/2 + 7. Next, x(t) = 4t5/2 + 7t+K; x(0) = 5,
so K = 5.
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C05S02.051: v(t) = C − cos t; v(0) = 0, so v(t) = 1 − cos t. Next, x(t) = t − sin t +K; x(0) = 0, so
K = 0.

C05S02.052: v(t) = 4 sin 2t + C; v(0) = 4, so v(t) = 4 + 4 sin 2t. Next, x(t) = 4t − 2 cos 2t + K;
x(0) = −2, so K = 0.

C05S02.053: Note that v(t) = 5 for 0 � t � 5 and that v(t) = 10− t for 5 � t � 10. Hence x(t) = 5t+C1

for 0 � t � 5 and x(t) = 10t− 1
2 t

2 +C2 for 5 � t � 10. Also C1 = 0 because x(0) = 0 and continuity of x(t)
requires that 5t+ C1 and 10t− 1

2 t
2 + C2 agree when t = 5. This implies that C2 = − 25

2 . The graph of x is
next.

C05S02.054: First note that v(t) = t for 0 � t � 5 and that v(t) = 5 for 5 � t � 10. Hence x(t) = 1
2 t

2 +C1

for 0 � t � 5 and x(t) = 5t+ C2 for 5 � t � 10. The condition x(0) = 0 implies that C1 = 0; continuity of
x(t) implies that 1

2 t
2 +C1 and 5t+C2 agree when t = 5, and this implies that C2 = − 25

2 . The graph of x(t)
is next.

C05S02.055: First, v(t) = t if 0 � t � 5 and v(t) = 10− t if 5 � t � 10. Hence x(t) = 1
2 t

2 +C1 if 0 � t � 5
and x(t) = 10t − 1

2 t
2 + C2 if 5 � t � 10. Finally, C1 = 0 because x(0) = 0 and continuity of x(t) requires

that 1
2 t

2 + C1 = 10t− 1
2 t

2 + C2 when t = 5, so that C2 = −25. The graph of x(t) is next.

C05S02.056: The graph indicates that v(t) = 2t if 0 � t � 2.5, v(t) = 5 if 2.5 � t � 7.5, and v(t) = 20−2t
if 7.5 � t � 10. Thus x(t) = t2 + C1 if 0 � t � 2.5, x(t) = 5t+ C2 if 2.5 � t � 7.5, and x(t) = 20t− t2 + C3
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if 7.5 � t � 10. Next, C1 = 0 because x(0) = 0, C2 = 6.25 because x(t) must be continuous when t = 2.5,
and C3 = −62.5 because x(t) must be continuous at t = 7.5. The graph of x(t) is next.

In the solutions for Problems 57–78, unless otherwise indicated, we will take the upward direction to
be the positive direction, s = s(t) for position (in feet) at time t (in seconds) with s = 0 corresponding to
ground level, and v(t) velocity at time t in feet per second, a = a(t) acceleration at time t in feet per second
per second. The initial position will be denoted by s0 and the initial velocity by v0.

C05S02.057: Here, a = −32, v(t) = −32t+ 96, s(t) = −16t2 + 96t. The maximum height is reached when
v = 0, thus when t = 3. The maximum height is therefore s(3) = 144. The ball remains aloft until s(t) = 0
for t > 0; t = 6. So it remains aloft for six seconds.

C05S02.058: With initial velocity v0, here we have

a(t) = −32, v(t) = −32t+ v0, and s(t) = −16t2 + v0t

(because s0 = 0). The maximum altitude is attained when v = 0, which occurs when t = v0/32. Therefore

400 = s(v0/32) = (−16)(v0/32)2 + (v0)2/32.

It follows that 1
64 (v0)2 = 400, and therefore that v0 = 160 (ft/s).

C05S02.059: Here it is more convenient to take the downward direction as the positive direction. Thus

a(t) = +32, v(t) = +32t (because v0 = 0), and s(t) = 16t2 (because s0 = 0).

The stone hits the bottom when t = 3, and at that time we have s = s(3) = 144. Answer: The well is 144
feet deep.

C05S02.060: We have v(t) = −32t + v0 and s(t) = −16t2 + v0t. Also 0 = s(4), so 4v0 = 256: v0 = 64.
Thus

v(t) = −32t+ 64 and s(t) = −16t2 + 64t.

The height of the tree is the maximum value of s(t), which occurs when v(t) = 0; that is, when t = 2.
Therefore the height of the tree is s(2) = 64 (feet).

C05S02.061: Here, v(t) = −32t + 48 and s(t) = −16t2 + 48t + 160. The ball strikes the ground at that
value of t > 0 for which s(t) = 0:

0 = s(t) = −16(t− 5)(t+ 2), so t = 5.
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Therefore the ball remains aloft for 5 seconds. Its velocity at impact is v(5) = −112 (ft/s), so the ball strikes
the ground at a speed of 112 ft/s.

C05S02.062: First ball: v0 = 0, s0 = 576. So s(t) = −16t2 + 576. The first ball strikes the ground at that
t > 0 for which s(t) = 0; t = 6. Second ball: The second ball must remain aloft from time t = 3 until time
t = 6, thus for 3 seconds. Reset t = 0 as the time it is thrown downward. Then with initial velocity v0, the
second ball has velocity and position

v(t) = −32t+ v0 and s(t) = −16t2 + v0t+ 576

at time t. We require that s(3) = 0; that is, 0 = s(3) = −144 + 3v0 + 576, so that v0 = −144. Answer: The
second ball should be thrown straight downward with an initial velocity of 144 ft/s.

C05S02.063: One solution: Take s0 = 960, v0 = 0. Then

v(t) = −32t and s(t) = −16t2 + 960.

The ball hits the street for that value of t > 0 for which s(t) = 0—that is, when t = 2
√

15. It therefore
takes the ball approximately 7.746 seconds to reach the street. Its velocity then is v(2

√
15) = −64

√
15

(ft/s)—approximately 247.87 ft/s (downward), almost exactly 169 miles per hour.

C05S02.064: Here we have v(t) = −32t+ 320 and s(t) = −16t2 + 320t. After three seconds have elapsed
the height of the arrow will be s(3) = 816 (ft). The height of the arrow will be 1200 feet when s(t) = 1200:

16t2 − 320t+ 1200 = 0;

16(t− 5)(t− 15) = 0;

t = 5 and t = 15 are both solutions. So the height of the arrow will be 1200 feet both when t = 5 (the arrow
is still rising) and when t = 15 (the arrow is falling). The arrow strikes the ground at that value of t > 0 for
which s(t) = 0: t = 20. So the arrow will strike the ground 20 seconds after it is released.

C05S02.065: With v(t) = −32t + v0 and s(t) = −16t2 + v0t, we have the maximum altitude s = 225
occurring when v(t) = 0; that is, when t = v0/32. So

225 = s(v0/32) = (−16)(v0/32)2 + (v0)2/32 = (v0)2/64.

It follows that v0 = +120. So the initial velocity of the ball was 120 ft/s.

C05S02.066: Note that the units are meters and seconds. It is also more convenient to take the downward
direction as the positive direction here. Thus

v(t) = 9.8t and s(t) = 4.9t2.

The rock reaches the water when s(t) = 98: t = +2
√

5. So it takes the rock 2
√

5 seconds to reach the water.
Its velocity as it penetrates the water surface is v(2

√
5) ≈ 43.8 (m/s).

C05S02.067: In this problem, v(t) = −32t + v0 = −32t and s(t) = −16t2 + s0 = −16t2 + 400. The
ball reaches the ground when s = 0, thus when 16t2 = 400: t = +5. Therefore the impact velocity is
v(5) = (−32)(5) = −160 (ft/s).

C05S02.068: Here s0 will be the height of the building, so

6



v(t) = −32t− 25 and s(t) = −16t2 − 25t+ s0.

The velocity at impact is −153 ft/s, so we can obtain the time of impact t by solving v(t) = −153: t = 4.
At this time we also have s = 0:

0 = s(4) = (−16)(16)− (25)(4) + s0,

so that s0 = 356. Answer: The building is 356 feet high.

C05S02.069: For this problem, we take s(t) = −16t2 + 160t and v(t) = −32t+ 160. Because s = 0 when
t = 0 and when t = 10, the time aloft is 10 seconds. The velocity is zero at maximum altitude, and that
occurs when 32t = 160: t = 5. So the maximum altitude is s(5) = 400 (ft).

C05S02.070: Let f(t) be the altitude of the sandbag at time t. Then f(t) = −16t2 + h, so the altitude of
the sandbag will be h/2 when f(t) = h/2:

t2 =
h

32
, so t =

1
8

√
2h.

Let the ball have initial velocity v0 and altitude s(t) at time t. Then s(t) = −16t2 + v0t. We require that
s(t) = h/2 at the preceding value of t. That is,

h

2
= (−16)

(
h

32

)
+ (v0)

(
1
8

√
2h

)
.

Solution of this equation yields v0 = 4
√

2h.

C05S02.071: Because v0 = −40, v(t) = −32t − 40. Thus s(t) = −16t2 − 40t + 555. Now s(t) = 0 when
t = 1

4

(
−5 + 2

√
145

)
≈ 4.77 (s). The speed at impact is |v(t)| for that value of t; that is, 16

√
145 ≈ 192.6655

(ft/s), over 131 miles per hour.

C05S02.072: In this problem, v(t) = −gt and s(t) = − 1
2gt

2+h. The rock strikes the ground when s(t) = 0,
so that t =

√
2h/g. The speed of the rock then is | − g

√
2h/g | =

√
2gh.

C05S02.073: Bomb equations: a = −32, v = −32t, sB = s = −16t2 +800. Here we have t = 0 at the time
the bomb is released. Projectile equations: a = −32, v = −32(t− 2) + v0, and

sP = s = 16(t− 2)2 + v0(t− 2), t � 2.

We require sB = sP = 400 at the same time. The equation sB = 400 leads to t = 5, and for sP (5) = 400,
we must have v0 = 544/3 ≈ 181.33 (ft/s).

C05S02.074: Let x(t) denote the distance the car has traveled t seconds after the brakes are applied; let
v(t) denote its velocity and a(t) its acceleration at time t during the braking. Then we are given a = −40,
so v(t) = −40t+ 88 (because 60 mi/h is the same speed as 88 ft/s). The car comes to a stop when v(t) = 0;
that is, when t = 2.2. The car travels the distance x(2.2) ≈ 96.8. Answer: 96.8 feet.

C05S02.075: The deceleration a = k > 0 is unknown at first. But the velocity of the car is v(t) = −kt+88,
and so the distance it travels after the brakes are applied at time t = 0 is

x(t) = −1
2
kt2 + 88t.
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But x = 176 when v = 0, so the stopping time t1 is 88/k because that is the time at which v = 0. Therefore

176 = −1
2
k

(
88
k

)2

+ (88)
(

88
k

)
=

3872
k

.

It follows that k = 22 (ft/s2), about 0.69g.

C05S02.076: Let x(t) be the altitude (in miles) of the spacecraft at time t (hours), with t = 0 corresponding
to the time at which the retrorockets are fired; let v(t) = x′(t) be the velocity of the spacecraft at time t.
Then v0 = −1000 and x0 is unknown. But the acceleration constant is a = +20000, so

v(t) = (20000)t− 1000 and x(t) = (10000)t2 − 1000t+ x0.

We want v = 0 exactly when x = 0—call the time then t1. Then 0 = (20000)t1 − 1000, so t1 = 1/20. Also
x(t1) = 0, so

0 = (10000)
(

1
400

)
− (1000)

(
1
20

)
+ x0.

Therefore x0 = 50− 25 = 25 miles. (Also t1 = 1/20 of an hour; that is, exactly three minutes.)

C05S02.077: (a): With the usual coordinate system, the ball has velocity v(t) = −32t+ v0 (ft/s) at time
t (seconds) and altitude y(t) = −16t2 + v0t (ft). We require y(T ) = 144 when v(T ) = 0: v0 = 32T , so

144 = −16T 2 + 32T 2 = 16T 2,

and thus T = 3 and v0 = 96. Answer: 96 ft/s.

(b): Now v(t) = − 26
5 t+ 96, y(t) = − 13

5 t
2 + 96t. Maximum height occurs when v(t) = 0: t = 240

13 . The
maximum height is

y

(
240
13

)
= −13

5
· 2402

132
+ 96 · 240

13
=

11520
13

≈ 886 ft.

C05S02.078: Set up a coordinate system in which the Diana moves along the x-axis in the positive

direction, with initial position x0 = 0 and initial velocity v0 = 0. Then
dv

dt
= +0.032 feet per second per

second, so

v(t) = (0.032)t+ v0 = (0.032)t.

Thus

x(t) = (0.016)t2 + x0 = (0.016)t2.

The units are in feet, seconds, and feet per second. After one minute we take t = 60 to find that x(60) = 57.6
(feet). After one hour we take t = 3600 to find that x(3600) = 207360 (ft)—over 39 miles. After one day we
take t = 86400; x(86400) = 119,439,360 (feet), approximately 22621 miles! At this point the speed of the
Diana would be v(86400) = 2764.8 feet per second, approximately 1885 miles per hour! After 30 days, the
Diana will have traveled well over 20 million miles and will be speeding along in excess of 56000 miles per
hour.

C05S02.079: Let a denote the deceleration constant of the car when braking. In the police experiment,
we have the distance the car travels from x0 = 0 at time t to be

8



x(t) = − 1
2
at2 + 25 · 22

15
t

(the factor 22
15 converts 25 miles per hour to feet per second). When we solve simultaneously the equations

x(t) = 45 and x′(t) = 0, we find that a = 1210
81 ≈ 14.938. When we use this value of a and substitute data

from the accident, we find the position function of the car to be

x(t) = − 1
2
· 1210

81
t2 + v0t

where v0 is its initial velocity. Now when we solve simultaneously x(t) = 210 and x′(t) = 0, we find that
v0 = 110

9

√
42 ≈ 79.209 feet per second, almost exactly 54 miles per hour.
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Section 5.3

C05S03.001:
5∑
i=1

3i = 31 + 32 + 33 + 34 + 35 = 3 + 9 + 27 + 81 + 243.

C05S03.002:
6∑
i=1

√
2i =

√
2 +
√

4 +
√

6 +
√

8 +
√

10 +
√

12.

C05S03.003:
5∑
j=1

1
j + 1

=
1
2

+
1
3

+
1
4

+
1
5

+
1
6
.

C05S03.004:
6∑
j=1

(2j − 1) = 1 + 3 + 5 + 7 + 9 + 11.

C05S03.005:
6∑
k=1

1
k2

= 1 +
1
4

+
1
9

+
1
16

+
1
25

+
1
36

.

C05S03.006:
6∑
k=1

(−1)k+1

j2
=

1
1
− 1

4
+

1
9
− 1

16
+

1
25
− 1

36
.

C05S03.007:
5∑

n=1

xn = x+ x2 + x3 + x4 + x5.

C05S03.008:
5∑

n=1

(−1)n+1x2n−1 = x− x3 + x5 − x7 + x9.

C05S03.009: 1 + 4 + 9 + 16 + 25 =
5∑

n=1

n2.

C05S03.010: 1− 2 + 3− 4 + 5− 6 =
6∑

n=1

n · (−1)n+1.

C05S03.011: 1 +
1
2

+
1
3

+
1
4

+
1
5

=
5∑
k=1

1
k

.

C05S03.012: 1 +
1
4

+
1
9

+
1
16

+
1
25

=
5∑
i=1

1
i2

.

C05S03.013:
1
2

+
1
4

+
1
8

+
1
16

+
1
32

+
1
64

=
6∑

m=1

1
2m

.

C05S03.014:
1
3
− 1

9
+

1
27
− 1

81
+

1
243

=
5∑

n=1

(−1)n+1

3n
.

1



C05S03.015:
2
3

+
4
9

+
8
27

+
16
81

+
32
243

=
5∑

n=1

(
2
3

)n
.

C05S03.016: 1 +
√

2 +
√

3 + 2 +
√

5 +
√

6 +
√

7 + 2
√

2 + 3 =
9∑
j=1

√
j.

C05S03.017: x+
x2

2
+
x3

3
+ · · ·+ x10

10
=

10∑
n=1

1
n
xn.

C05S03.018: x− x3

3
+
x5

5
− x7

7
+ · · · − x19

19
=

10∑
n=1

(−1)n+1

2n− 1
x2n−1.

C05S03.019: Using Eqs. (3), (4), (6), and (7), we find that

10∑
i=1

(4i− 3) = 4 ·
10∑
i=1

i− 3 ·
10∑
i=1

1 = 4 · 10 · 11
2
− 3 · 10 = 190.

C05S03.020: We use Eqs. (3), (4), (6), and (7) to obtain

8∑
j=1

(5− 2j) = 5 ·
8∑
j=1

1− 2 ·
8∑
j=1

j = 5 · 8− 2 · 8 · 9
2

= −32.

C05S03.021: We use Eqs. (3), (4), (6), and (8) to obtain

10∑
i=1

(3i2 + 1) = 3 ·
10∑
i=1

i2 +
10∑
i=1

1 = 3 · 10 · 11 · 21
6

+ 10 = 1165.

C05S03.022: We use Eqs. (3), (4), (7), and (8) and find thereby that

6∑
k=1

(2k − 3k2) = 2 ·
6∑
k=1

k − 3 ·
6∑
k=1

k2 = 2 · 6 · 7
2
− 3 · 6 · 7 · 13

6
= −231.

C05S03.023: First expand, then use Eqs. (3), (4), (6), (7), and (8):

8∑
r=1

(r − 1)(r + 2) =
8∑
r=1

(r2 + r − 2) =
8∑
r=1

r2 +
8∑
r=1

r − 2 ·
8∑
r=1

1 =
8 · 9 · 17

6
+

8 · 9
2
− 2 · 8 = 224.

C05S03.024: We use Eqs. (3), (4), (6), (7), and (9) to find that

5∑
i=1

(i3 − 3i+ 2) =
5∑
i=1

i3 − 3 ·
5∑
i=1

i+ 2 ·
5∑
i=1

1 =
25 · 36

4
− 3 · 5 · 6

2
+ 2 · 5 = 190.

C05S03.025:
6∑
i=1

(
i3 − i2

)
=

62 · 72

4
− 6 · 7 · 13

6
= 32 · 72 − 7 · 13 = 441− 91 = 350.

2



C05S03.026:
10∑
k=1

(4k2 − 4k + 1) = 4 · 10 · 11 · 21
6

− 4 · 10 · 11
2

+ 10 = 1330.

C05S03.027:
100∑
i=1

i2 =
100 · 101 · 201

6
= 50 · 101 · 67 = 338350.

C05S03.028:
100∑
i=1

i3 =
108

4
+

106

2
+

104

4
= 25502500.

C05S03.029: lim
n→∞

12 + 22 + · · ·+ n2

n3
= lim
n→∞

n(n+ 1)(2n+ 1)
6n3

= lim
n→∞

(
1
3

+
1
2n

+
1

6n2

)
=

1
3
.

C05S03.030: lim
n→∞

13 + 23 + · · ·+ n3

n4
= lim
n→∞

n2(n+ 1)2

4n4
= lim
n→∞

(
1
4

+
1
2n

+
1

4n2

)
=

1
4
.

C05S03.031:
n∑
i=1

(2i− 1) = 2 · n(n+ 1)
2

− n = n2.

C05S03.032:
n∑
i=1

(2i−1)2 =
n∑
i=1

(4i2−4i+1) = 4 · n(n+ 1)(2n+ 1)
6

−4 · n(n+ 1)
2

+n =
n(2n− 1)(2n+ 1)

3
.

C05S03.033: A 5 =
5∑
i=1

i− 1
5
· 1
5

=
2
5
, A 5 =

5∑
i=1

i

5
· 1
5

=
3
5
.

C05S03.034: A 5 =
5∑
i=1

2i+ 3
5
· 2
5

=
18
5

, A 5 =
5∑
i=1

2i+ 5
5
· 2
5

=
22
5

.

C05S03.035: A 6 =
6∑
i=1

[
2

(
i− 1

2

)
+ 3

]
· 3
6

=
33
2

, A 6 =
6∑
i=1

[
2 · i

2
+ 3

]
· 3
6

=
39
2

.

C05S03.036: A 6 =
6∑
i=1

[
13− 3 · i

2

]
· 3
6

=
93
4

, A 6 =
6∑
i=1

[
13− 3 · i− 1

2

]
· 3
6

=
111
4

.

C05S03.037: A 5 =
5∑
i=1

(
i− 1

5

)2

· 1
5

=
6
25

, A 5 =
5∑
i=1

(
i

5

)2

· 1
5

=
11
25

.

C05S03.038: A 5 =
5∑
i=1

(
2i+ 3

5

)2

· 2
5

=
178
25

, A 5 =
5∑
i=1

(
2i+ 5

5

)2

· 2
5

=
258
25

.

C05S03.039: A 5 =
5∑
i=1

[
9−

(
3i
5

)2
]
· 3
5

=
378
25

, A 5 =
5∑
i=1

[
9−

(
3i− 3

5

)2
]
· 3
5

=
513
25

.

C05S03.040: A 8 =
8∑
i=1

[
9−

(
i

4
+ 1

)2
]
· 2
8

=
133
16

, A 8 =
8∑
i=1

[
9−

(
i− 1

4
+ 1

)2
]
· 2
8

=
165
16

.
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C05S03.041: A 10 =
10∑
i=1

(
i− 1
10

)3

· 1
10

=
81
400

, A 10 =
10∑
i=1

(
i

10

)3

· 1
10

=
121
400

.

C05S03.042: A 10 =
10∑
i=1

√
i− 1
10
· 1
10
≈ 0.610509, A 10 =

10∑
i=1

√
i

10
· 1
10
≈ 0.710509.

C05S03.043: When we add the two given equations, we obtain

2 ·
n∑
i=1

i = (n+ 1) + (n+ 1) + · · ·+ (n+ 1) (n terms)

= n(n+ 1), and therefore
n∑
i=1

i =
n(n+ 1)

2
.

C05S03.044: Following the directions in the problem, we get

23 − 13 = 3 · 12 + 3 · 1 + 1,

33 − 23 = 3 · 22 + 3 · 2 + 1,

43 − 33 = 3 · 32 + 3 · 3 + 1,

53 − 43 = 3 · 42 + 3 · 4 + 1,

...

n3 − (n− 1)3 = 3(n− 1)2 + 3(n− 1) + 1,

(n+ 1)3 − n3 = 3n2 + 3n+ 1.

When we add these equations, we get

(n+ 1)3 − 1 = 3 ·
n∑
k=1

k2 + 3 · n(n+ 1)
2

+ n,

so that

3 ·
n∑
k=1

k2 = n3 + 3n2 + 3n− 3
2
n2 − 3

2
n− n = n3 +

3
2
n2 +

1
2
n.

Therefore

n∑
k=1

k2 =
2n3 + 3n2 + n

6
=
n(n+ 1)(2n+ 1)

6
.

C05S03.045:
n∑
i=1

i

n2
=
n(n+ 1)

2n2
→ 1

2
as n→∞.

C05S03.046:
n∑
i=1

(
2i
n2

)2

· 2
n

=
8n(n+ 1)(2n+ 1)

6n3
→ 8

3
as n→∞.
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C05S03.047:
n∑
i=1

(
3i
n

)3

· 3
n

=
81n2(n+ 1)2

4n4
→ 81

4
as n→∞.

C05S03.048:
n∑
i=1

(
2i
n

+ 2
)
·
(

2
n

)
=

4n(n+ 1)
2n2

+ 2n · 2
n
→ 6 as n→∞.

C05S03.049:
n∑
i=1

(
5− 3i

n

)
·
(

1
n

)
= 5n · 1

n
− 3n(n+ 1)

2n2
→ 7

2
as n→∞.

C05S03.050:
n∑
i=1

(
9−

(
3i
n

)2
)
· 3
n

= 9n · 3
n
− 27n(n+ 1)(2n+ 1)

6n3
→ 27− 9 = 18 as n→∞.

C05S03.051:
n∑
i=1

f(xi) ∆x =
n∑
i=1

h

b
· bi
n
· b
n

=
bh

n2
· n(n+ 1)

2
→ 1

2
bh as n→∞.

C05S03.052: Let y be the length of the top half of the side of the polygon shown in Fig. 5.3.20 and let x
be the distance from the center of the circle to the midpoint of that side. Then

y

r
= sin

π

n
and

x

r
= cos

π

n
.

Hence the area of the large triangle in the figure is

A =
1
2
(x)(2y) = xy = r2 sin

(π
n

)
cos

(π
n

)
,

and therefore the total area of the regular n-sided polygon consisting of all n such triangles is

An = nr2 sin
(π
n

)
cos

(π
n

)
.

The length of the side of the polygon shown in the figure is

2y = 2r sin
π

n
,

and so the perimeter of the n-sided polygon is

Cn = 2ny = 2nr sin
(π
n

)
.

C05S03.053: Using the formulas derived in the solution of Problem 52, we have

lim
n→∞

An
Cn

= lim
n→∞

r

2
cos

π

n
=
r

2
.

Thus A = 1
2rC. Hence if A = πr2, then C = 2πr.
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Section 5.4

C05S04.001: lim
n→∞

n∑
i=1

(2xi − 1) ∆x =
∫ 3

1

(2x− 1) dx.

C05S04.002: lim
n→∞

n∑
i=1

(2− 3xi−1) ∆x =
∫ 2

−3

(2− 3x) dx.

C05S04.003: lim
n→∞

n∑
i=1

(x2
i + 4) ∆x =

∫ 10

0

(x2 + 4) dx.

C05S04.004: lim
n→∞

n∑
i=1

(x3
i − 3x2

i + 1) ∆x =
∫ 3

0

(x3 − 3x2 + 1) dx.

C05S04.005: lim
n→∞

n∑
i=1

√
mi ∆x =

∫ 9

4

√
x dx.

C05S04.006: lim
n→∞

n∑
i=1

√
25− x2

i ∆x =
∫ 5

0

√
25− x2 dx.

C05S04.007: lim
n→∞

n∑
i=1

1√
1 +mi

∆x =
∫ 8

3

1√
1 + x

dx.

C05S04.008: lim
n→∞

n∑
i=1

(cos 2xi−1) ∆x =
∫ π/2

0

cos 2x dx.

C05S04.009: lim
n→∞

n∑
i=1

(sin 2πmi) ∆x =
∫ 1/2

0

sin 2πx dx.

C05S04.010: lim
n→∞

n∑
i=1

exp(2xi) ∆x =
∫ 1

0

e2x dx.

C05S04.011:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

(
i

5

)2

·
(

1
5

)
=

1
125
· 5
6
· 6 · 11 =

11
25

.

C05S04.012:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

(
i

5

)3

·
(

1
5

)
=

1
625
· 1
4
· 25 · 36 =

9
25

.

C05S04.013:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

1
1 + i

=
29
20

.

C05S04.014:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

√
i ≈ 8.382332347442.

C05S04.015:
n∑
i=1

f(x�i ) ∆x =
6∑
i=1

[
2
(

1 +
i

2

)
+ 1

]
· 1

2
=

39
2

.

1



C05S04.016:
n∑
i=1

f(x�i ) ∆x =
6∑
i=1

[(
1 +

i

2

)2

+ 2
(

1 +
i

2

)]
· 1
2

=
331
8

.

C05S04.017:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

[(
1 +

3i
5

)3

− 3
(

1 +
3i
5

)]
· 3
5

=
294
5

.

C05S04.018:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

[
1 + 2

(
2 +

i

5

)1/2
]
· 1
5
≈ 4.220102178480.

C05S04.019:
n∑
i=1

f(x�i ) ∆x =
6∑
i=1

(
cos

iπ

6

)
· π

6
= − π

6
.

C05S04.020: With a = 1, b = 6, n = 5, ∆x = 1, f(x) = lnx, xi = 1 + i ·∆x, and x�i = xi, we obtain

n∑
i=1

f(x�i ) ∆x =
5∑
i=1

ln(1 + i) = ln 2 + ln 3 + ln 4 + ln 5 + ln 6 ≈ 6.579251212.

C05S04.021:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

(
i− 1

5

)2

·
(

1
5

)
=

6
25

.

C05S04.022:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

(
i− 1

5

)3

·
(

1
5

)
=

4
25

.

C05S04.023:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

1
1 + (i− 1)

=
137
60

.

C05S04.024:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

√
i− 1 ≈ 6.146264369942.

C05S04.025:
n∑
i=1

f(x�i ) ∆x =
6∑
i=1

[
2
(

1 +
i− 1

2

)
+ 1

]
· 1
2

=
33
2

.

C05S04.026:
n∑
i=1

f(x�i ) ∆x =
6∑
i=1

[(
1 +

i− 1
2

)2

+ 2
(

1 +
i− 1

2

)]
· 1
2

=
247
8

.

C05S04.027:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

[(
1 +

3(i− 1)
5

)3

− 3
(

1 +
3(i− 1)

5

)]
· 3
5

=
132
5

.

C05S04.028:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

[
1 + 2

(
2 +

i− 1
5

)1/2
]
· 1
5
≈ 4.092967280401.

C05S04.029:
n∑
i=1

f(x�i ) ∆x =
6∑
i=1

(
cos

(i− 1)π
6

)
· π

6
=
π

6
.

C05S04.030: With a = 1, b = 6, n = 5, ∆x = 1, f(x) = lnx, xi = 1 + i ·∆x, and x�i = xi−1, we obtain

2



n∑
i=1

f(x�i ) ∆x =
5∑
i=1

ln(i) = 0 + ln 2 + ln 3 + ln 4 + ln 5 ≈ 4.787491743.

C05S04.031:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

(
2i− 1

10

)2

·
(

1
5

)
=

33
100

.

C05S04.032:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

(
2i− 1

10

)3

·
(

1
5

)
=

49
200

.

C05S04.033:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

2
1 + 2i

=
6086
3465

.

C05S04.034:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

(
2i− 1

2

)1/2

≈ 7.505139519609.

C05S04.035:
n∑
i=1

f(x�i ) ∆x =
6∑
i=1

[
2
(

1 +
2i− 1

4

)
+ 1

]
· 1
2

= 18.

C05S04.036:
n∑
i=1

f(x�i ) ∆x =
6∑
i=1

[(
1 +

2i− 1
4

)2

+ 2
(

1 +
2i− 1

4

)]
· 1
2

=
575
16

.

C05S04.037:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

[(
1 +

6i− 3
10

)3

− 3
(

1 +
6i− 3

10

)]
· 3
5

=
1623
40

.

C05S04.038:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

[
1 + 2

(
2 +

2i− 1
10

)1/2
]
· 1
5
≈ 4.157183161049.

C05S04.039:
n∑
i=1

f(x�i ) ∆x =
6∑
i=1

(
cos

(2i− 1)π
12

)
· π

6
= 0.

C05S04.040: With a = 1, b = 6, n = 5, ∆x = 1, f(x) = lnx, mi = 1 +
(
i− 1

2

)
· ∆x, and x�i = mi, we

obtain

n∑
i=1

f(x�i ) ∆x =
5∑
i=1

ln
(
i+

1
2

)
= ln

3
2

+ ln
5
2

+ ln
7
2

+ ln
9
2

+ ln
11
2
≈ 5.783344297.

C05S04.041:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

5
5i+ 2

=
259775
141372

≈ 1.837527940469.

C05S04.042:
n∑
i=1

f(x�i ) ∆x =
5∑
i=1

√
3i− 1

3
≈ 7.815585306501.

C05S04.043:
n∑
i=1

(
2i
n

)2

· 2
n

=
8n(n+ 1)(2n+ 1)

6n3
→ 8

3
as n→∞.
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C05S04.044:
n∑
i=1

(
4i
n

)3

· 4
n

=
256n2(n+ 1)2

4n4
→ 64 as n→∞.

C05S04.045:
n∑
i=1

(
2 · 3i

n
+ 1

)
· 3
n

=
18n(n+ 1)

2n2
+ n · 3

n
= 12 +

9
n
→ 12 as n→∞.

C05S04.046:
n∑
i=1

[
4− 3

(
1 +

4i
n

)]
· 4
n

=
16
n
· n− 12

n
· n− 48n(n+ 1)

2n2
→ 4− 24 = −20 as n→∞.

C05S04.047:
n∑
i=1

[
3 ·

(
3i
n

)2

+ 1

]
· 3
n

=
81n(n+ 1)(2n+ 1)

6n3
+ n · 3

n
→ 27 + 3 = 30 as n→∞.

C05S04.048:
n∑
i=1

[(
4i
n

)3

− 4i
n

]
· 4
n

=
256n2(n+ 1)2

4n4
− 16n(n+ 1)

2n2
→ 64− 8 = 56 as n→∞.

C05S04.049: Choose x�i = xi =
bi

n
and ∆x =

b

n
. Then

∫ b

0

x2 dx = lim
n→∞

n∑
i=1

(
bi

n

)2

· b
n

= lim
n→∞

n(n+ 1)(2n+ 1)
6n3

b3 =
1
3
b3.

C05S04.050: Choose x�i = xi =
bi

n
and ∆x =

b

n
. Then

∫ b

0

x3 dx = lim
n→∞

n∑
i=1

(
bi

n

)3

· b
n

= lim
n→∞

n2(n+ 1)2

4n4
· b4 =

1
4
b4.

C05S04.051: If x�i = 1
2 (xi−1 + xi) for each i, then x�i is the midpoint of each subinterval of the partition,

and hence {x�i } is a selection for the partition. Moreover, ∆xi = xi − xi−1 for each i. So

n∑
i=1

x�i ∆xi =
n∑
i=1

1
2 (xi + xi−1)(xi − xi−1)

= 1
2

n∑
i=1

(
x2
i − x2

i−1

)

= 1
2

(
x2

1 − x2
0 + x2

2 − x2
1 + x2

3 − x2
2 + · · ·+ x2

n − x2
n−1

)
= 1

2

(
x2
n − x2

0

)
= 1

2 (b2 − a2).

Therefore
∫ b

a

x dx = lim
n→∞

m∑
i=1

x�i ∆xi = 1
2b

2 − 1
2a

2.

C05S04.052: Let P = {x0, x1, x2, . . . , xn} be a partition of [a, b] and let {x�i } be a selection for P. Then

∫ b

a

kf(x) dx = lim
n→∞

n∑
i=1

kf(x�i ) ∆xi

= k

(
lim
n→∞

n∑
i=1

f(x�i ) ∆xi

)
= k

∫ b

a

f(x) dx.

4



C05S04.053: Suppose that a < b. Let P = {x0, x1, x2, . . . , xn} be a partition of [a, b] and let {x�i } be a
selection for P. Then

∫ b

a

c dx = lim
n→∞

n∑
i=1

c ∆xi

= lim
n→∞

c · (x1 − x0 + x2 − x1 + x3 − x2 + · · ·+ xn − xn−1)

= lim
n→∞

c(xn − x0) = c(b− a).

The proof is similar in the case b < a.

C05S04.054: Given any partition P = {x0, x1, x2, . . . , xn} of [0, 1] and any positive integer M , there is
a selection {x�i } for P in which x�1 = 1/M . The corresponding Riemann sum then satisfies the inequality

n∑
i=1

f (x�i ) ∆xi � f

(
1
M

)
· (x1 − x0) = M(x1 − x0),

which can be made artibrarily large by choosing M sufficiently large. Hence some Riemann sums remain
arbitrariliy large as n → +∞ and |P | → 0. Therefore the limit of Riemann sums for this function on this
interval does not exist. There is no contradiction to Theorem 1 because f is not continuous on [0, 1].

C05S04.055: Whatever partition P is given, a selection {x�i } with all x�i irrational can be made because
irrational numbers can be found in any interval of the form [xi−1, xi ] with xi−1 < xi. (An explanation of
why this is possible is given after the solution of Problem C02S04.069 of this manual.) For such a selection,
we have

n∑
i=1

f (x�i ) ∆xi =
n∑
i=1

1 ·∆xi = 1

regardless of the choice of P or n. Similarly, by choosing x�i rational for all i, we get

n∑
i=1

f (x�i ) ∆xi =
n∑
i=1

0 ·∆xi = 0

regardless of the choice of P or n. Therefore the limit of Riemann sums for f on [0, 1] does not exist, and
therefore

∫ 1

0

f(x) dx does not exist.

C05S04.056: With ∆x = 5/n and xi = i ∆x = 5i/n, we have

∫ 5

0

ex dx = lim
n→∞

exp(xi) ·
5
n

= lim
n→∞

5
n

(
e5/n + e10/n + e15/n + ·+ e5n/n

)

= lim
n→∞

5e5/n

n

(
1 + e5/n + e10/n + · · ·+ e5(n−1)/n

)

5



= lim
n→∞

5r
n

(1 + r + r2 + ·+ rn−1)

where r = e5/n. By Eq. (17),

∫ 5

0

ex dx = lim
n→∞

5r
n
· r

n − 1
r − 1

= lim
n→∞

5e5/n

n
· e5 − 1
e5/n − 1

= lim
n→∞

5(e5 − 1)
n(1− e−5/n)

.

As n→ +∞, the denominator in the last fraction has the indeterminate form 0 · ∞. By l’Hôpital’s rule,

lim
n→∞

n ·
(
1− e−5/n

)
= lim

n→∞

1− e−5/n

1
n

= lim
n→∞

− 5
n2
e−5/n

− 1
n2

= lim
n→∞

5e−5/n = 5.

Therefore

∫ 5

0

ex dx =
5
5
· (e5 − 1) = e5 − 1.

C05S04.057: Choose x�i = xi =
3i
n

and ∆x =
3
n

. Then

n∑
i=1

exp (x�i ) ∆x =
n∑
i=1

e−3i/n · 3
n

=
3
n

(
e−3/n + e−6/n + e−9/n + · · ·+ e−3n/n

)

=
3e−3/n

n

(
1 + e−3/n + e−6/n + · · ·+ e−3(n−1)/n

)

=
3r
n

(
1 + r + r2 + · · ·+ rn−1

)
(where r = e−3/n)

=
3r
n
· r

n − 1
r − 1

=
3e−3/n

n
· e−3 − 1
e−3/n − 1

=
3(e−3 − 1)
n(1− e3/n) =

3(1− e−3)
n(e3/n − 1)

.

Now by l’Hôpital’s rule,

lim
n→∞

n · (e3/n − 1) = lim
n→∞

e3/n − 1
1
n

= lim
n→∞

− 3
n2
e3/n

− 1
n2

= lim
n→∞

3e3/n = 3.

Therefore

∫ 3

0

e−x dx = lim
n→∞

n∑
i=1

exp (x�i ) ∆x = lim
n→∞

3(1− e−3)
n(e3/n − 1)

=
3(1− e−3)

3
= 1− e−3.

C05S04.058: Let x�i = xi = 2 +
3i
n

and let ∆x =
3
n

. Then

n∑
i=1

exp (x�i ) ∆x =
n∑
i=1

exp
(

2 +
3i
n

)
· 3
n

=
3
n

(
e2+(3/n) + e2+(6/n) + e2+(9/n) + · · ·+ e2+(3n/n)

)

=
3
n

(
e2 · e3/n + e2 · e6/n + e2 · e9/n + · · ·+ e2 · e3n/n

)

6



=
3e2e3/n

n

(
1 + e3/n + e6/n + · · ·+ e3(n−1)/n

)
=

3e2e3/n

n
· e3 − 1
e3/n − 1

=
3e2(e3 − 1)
n(1− e−3/n)

.

By l’Hôpital’s rule,

lim
n→∞

n ·
(
1− e−3/n

)
= lim

n→∞

1− e−3/n

1
n

= lim
n→∞

− 3
n2
e−3/n

− 1
n2

= lim
n→∞

3e−3/n = 3.

Therefore

∫ 5

2

ex dx = lim
n→∞

n∑
i=1

exp (x�i ) ∆x = lim
n→∞

3e2(e3 − 1)
n(1− e−3/n)

=
3e2(e3 − 1)

3
= e5 − e2.

C05S04.059: Let x�i = xi =
kπ

n
and ∆x =

π

n
. Then

∫ π

0

sinx dx = lim
n→∞

n∑
k=1

sin (x�i ) ∆x = lim
n→∞

π

n

n∑
k=1

sin
(
kπ

n

)
= lim

n→∞

π

n
cot

( π

2n

)
,

which is of the indeterminate form 0 · ∞. Hence (no need for l’Hôpital’s rule)

∫ π

0

sinx dx = lim
n→∞

2 · π
2n
· cos

π

2n
sin

π

2n

= lim
n→∞

(
2 cos

π

2n

)
·

π

2n
sin

π

2n

= 2 · 1 · 1 = 2.

C05S04.060: Let x�i = xi = a+ i · b− a
n

and ∆x =
b− a
n

. Then

n∑
i=1

exp (x�i ) ∆x =
n∑
i=1

exp
(
a+ i · b− a

n

)
· b− a

n

=
b− a
n
·
(
eae(b−a)/n + eae2(b−a)/n + eae3(b−a)/n + · · ·+ eaen(b−a)/n

)

=
b− a
n
· eae(b−a)/n

(
1 + e(b−a)/n + e2(b−a)/n + · · ·+ e(n−1)(b−a)/n

)

=
b− a
n
· eae(b−a)/n · eb−a − 1

e(b−a)/n − 1
=

(b− a)eae(b−a)/n
(
eb−a − 1

)
n

(
e(b−a)/n − 1

)

=
(b− a)ea

(
eb−a − 1

)
n ·

(
1− e−(b−a)/n

) =
(b− a)

(
eb − ea

)
n ·

(
1− e−(b−a)/n

) .
But by l’Hôpital’s rule,

lim
n→∞

n ·
(
1− e−(b−a)/n

)
= lim

n→∞

1− e−(b−a)/n

1
n

= lim
n→∞

− b− a
n2
· e−(b−a)/n

− 1
n2

= lim
n→∞

(b− a)e−(b−a)/n = b− a.

7



Therefore

∫ b

a

ex dx = lim
n→∞

n∑
i=1

exp (x�i ) ∆x = lim
n→∞

(b− a)
(
eb − ea

)
n ·

(
1− e−(b−a)/n

) =
(b− a)

(
eb − ea

)
b− a = eb − ea.

C05S04.061: Let h = b− a, x�i = xi = a+
ih

n
, and ∆x =

h

n
. Then

n∑
i=1

sin (x�i ) ∆x =
h

n

n∑
i=1

sin
(
a+

ih

n

)
.

According to Mathematica 3.0,

n∑
i=1

sin
(
a+

ih

n

)
= csc

h

2n
sin

h

2
sin

(
1
2

[
2a+ h+

h

n

] )
= csc

b− a
2n

sin
b− a

2
sin

(
1
2

[
b+ a+

b− a
n

])
.

But then,

b− a
n

n∑
i=1

sin
(
a+ i · b− a

n

)
=

b− a
n

csc
b− a
2n

sin
b− a

2
sin

(
1
2

[
b+ a+

b− a
n

])

=

2(b− a)
2n

sin
b− a
2n

·
(

sin
b− a

2

)
· sin

(
1
2

[
b+ a+

b− a
n

])
→ 2 ·

(
sin

b− a
2

)
·
(

sin
b+ a

2

)

as n → +∞. But using one of the trigonometric identities that immediately precede Problems 59 through
62 in Section 7.4, we find that

2 ·
(

sin
b− a

2

)
·
(

sin
b+ a

2

)
= cos

(
b+ a

2
− b− a

2

)
− cos

(
b+ a

2
+
b− a

2

)
= cos a − cos b.

Therefore

∫ b

a

sinx dx = cos a − cos b.

C05S04.062: Let x�i = xi = a+ i · b− a
n

and let ∆x =
b− a
n

. Then

∫ b

a

cosx dx = lim
n→∞

n∑
i=1

cos (x�i ) ∆x = lim
n→∞

[
b− a
n

n∑
i=1

cos
(
a+ i · b− a

n

)]
.

According to Mathematica 3.0,

b− a
n

n∑
i=1

cos
(
a+ i · b− a

n

)
=

b− a
n

csc
a− b
2n

sin
a− b

2
cos

b− a+ n(b+ a)
2n

=
2 · b− a

2n

sin
b− a
2n

sin
b− a

2
cos

b− a+ n(b+ a)
2n

→ 2 ·
(

sin
b− a

2

)
·
(

cos
b+ a

2

)

8



as n→ +∞. Next, using one of the trigonometric identities that precede Problems 59 through 62 in Section
7.4, we find that

2 ·
(

sin
b− a

2

)
·
(

cos
b+ a

2

)
= sin b + sin(−a) = sin b − sin a.

Therefore

∫ b

a

cosx dx = sin b − sin a.

9



Section 5.5

C05S05.001:
∫ 1

0

(
3x2 + 2

√
x+ 3 3

√
x

)
dx =

[
x3 + 4

3x
3/2 + 9

4x
4/3

]1

0
= 55

12 .

C05S05.002:
∫ 3

1

6
x2

dx =
[
− 6
x

]3

1

= −2 + 6 = 4.

C05S05.003:
∫ 1

0

x3(1 + x)2 dx =
[

1
4x

4 + 2
5x

5 + 1
6x

6
]1

0
= 49

60 .

C05S05.004:
∫ −1

−2

1
x4

dx =
[
− 1

3x3

]−1

−2

=
7
24

.

C05S05.005:
∫ 1

0

(x4 − x3) dx =
[

1
5x

5 − 1
4x

4
]1

0
= − 1

20 .

C05S05.006:
∫ 2

1

(x4 − x3) dx =
[

1
5x

5 − 1
4x

4
]2

1
= 49

20 = 2.45.

C05S05.007:
∫ 0

−1

(x+ 1)3 dx =
[

1
4 (x+ 1)4

]0

−1
= 1

4 .

C05S05.008:
∫ 3

1

x4 + 1
x2

dx =
[

1
3
x3 − 1

x

]3

1

=
28
3

.

C05S05.009:
∫ 4

0

√
x dx =

[
2
3x

3/2
]4

0
= 16

3 .

C05S05.010:
∫ 4

1

1√
x
dx =

[
2
√
x

]4

1
= 2
√

4− 2
√

1 = 2.

C05S05.011:
∫ 2

−1

(3x2 + 2x+ 4) dx =
[
x3 + x2 + 4x

]2

−1
= 20− (−4) = 24.

C05S05.012:
∫ 1

0

x99 dx =
[

1
100x

100
]1

0
= 1

100 .

C05S05.013:
∫ 1

−1

x99 dx =
[

1
100x

100
]1

−1
= 0.

C05S05.014:
∫ 4

0

(7x5/2 − 5x3/2) dx =
[
2x7/2 − 2x5/2

]4

0
= 192.

C05S05.015:
∫ 3

1

(x− 1)5 dx =
[

1
6 (x− 1)6

]3

1
= 32

3 .

C05S05.016:
∫ 2

1

(x2 + 1)3 dx =
∫ 2

1

(x6 + 3x4 + 3x2 + 1) dx =
[

1
7x

7+ 3
5x

5+x3+x
]2

1
= 1566

35 ≈ 44.742857.

C05S05.017:
∫ 0

−1

(2x+ 1)3 dx =
∫ 0

−1

(8x3 + 12x2 + 6x+ 1) dx =
[
2x4 + 4x3 + 3x2 + x

]0

−1
= 0− 0 = 0.

1



C05S05.018:
∫ 3

1

10
(2x+ 3)2

dx =
[
− 5

2x+ 3

]3

1

=
4
9
.

C05S05.019:
∫ 8

1

x2/3 dx =
[

3
5x

5/3
]8

1
= 93

5 .

C05S05.020:
∫ 9

1

(
1 +
√
x

)2
dx =

∫ 9

1

(1 + 2
√
x+ x) dx =

[
x+ 4

3x
3/2 + 1

2x
2
]9

1
= 248

3 .

C05S05.021:
∫ 1

−1

(
ex − e−x

)
dx =

[
ex + e−x

]1

−1

=
(
e+

1
e

)
−

(
1
e

+ e

)
= 0.

C05S05.022:
∫ 4

0

√
3t dt =

[
2
3 t

3/2
√

3
]4

0
= 16

3

√
3.

C05S05.023:
∫ 2

0

√
e3t dt =

∫ 2

0

e3t/2 dt =
[

2
3
e3t/2

]2

0

=
2
3
e3 − 2

3
=

2
3

(e3 − 1) ≈ 12.723691282.

C05S05.024:
∫ 3

2

du

u2
=

[
− 1
u

]3

2

= −1
3

+
1
2

=
1
6
.

C05S05.025:
∫ 2

1

1
t
dt =

[
ln t

]2

1

= ln 2− 0 = ln 2 ≈ 0.6931471805599453094.

C05S05.026:
∫ 10

5

1
x
dx =

[
lnx

]10

5

= ln 10− ln 5 = ln
10
5

= ln 2.

C05S05.027:
∫ 1

0

(ex − 1)2 dx =
∫ 1

0

(e2x − 2ex + 1) dx =
[

1
2
e2x − 2ex + x

]1

0

=
1
2
e2 − 2e+ 1 +

3
2

=
e2 − 4e+ 5

2
=

1
2
e2 − 2e+

5
2
≈ 0.7579643925.

C05S05.028:
∫ π/2

0

cos 2x dx =
[

1
2 sin 2x

]π/2
0

= 0.

C05S05.029:
∫ π/4

0

sinx cosx dx =
[

1
2 (sinx)2

]π/4
0

= 1
4 .

C05S05.030:
∫ π

0

sin2 x cosx dx =
[

1
3 sin3 x

]π
0

= 0.

C05S05.031:
∫ π

0

sin 5x dx =
[
− 1

5 cosx
]π
0

= 2
5 .

C05S05.032:
∫ 2

0

cosπt dt =
[

1
π

sinπt
]2

0

= 0.

C05S05.033:
∫ π/2

0

cos 3x dx =
[

1
3 sin 3x

]π/2
0

= − 1
3 .

2



C05S05.034:
∫ 5

0

sin
πx

10
dx =

[
−10
π

cos
πx

10

]5

0

=
10
π

.

C05S05.035:
∫ 2

0

cos
πx

4
dx =

[
4
π

sin
πx

4

]2

0

=
4
π

.

C05S05.036:
∫ π/8

0

sec2 2t dt =
[

1
2 tan 2t

]π/8
0

= 1
2 .

C05S05.037: Choose xi = i/n, ∆x = 1/n, x0 = 0, and xn = 1. Then the limit in question is the limit of
a Riemann sum for the function f(x) = 2x− 1 on the interval 0 � x � 1, and its value is therefore

∫ 1

0

(2x− 1) dx =
[
x2 − x

]1

0
= 1− 1 = 0.

C05S05.038: Choose xi = i/n, ∆x = 1/n, x0 = 0, and xn = 1. Then the limit in question is the limit of
a Riemann sum for the function f(x) = x2 on the interval 0 � x � 1, and therefore

lim
n→∞

n∑
i=1

i2

n3
=

∫ 1

0

x2 dx =
1
3
.

C05S05.039: Choose xi = i/n, ∆x = 1/n, x0 = 0, and xn = 1. Then the limit in question is the limit of
a Riemann sum for the function f(x) = x on the interval 0 � x � 1, and therefore

lim
n→∞

1 + 2 + 3 + · · ·+ n

n2
= lim
n→∞

n∑
i=1

i

n2
=

∫ 1

0

x dx =
1
2
.

C05S05.040: Choose xi = i/n, ∆x = 1/n, x0 = 0, and xn = 1. Then the limit in question is the limit of
a Riemann sum for the function f(x) = x3 on the interval 0 � x � 1, and therefore

lim
n→∞

13 + 23 + 33 + · · ·+ n3

n4
= lim
n→∞

n∑
i=1

i3

n4
=

∫ 1

0

x3 dx =
1
4
.

C05S05.041: Choose xi = i/n, ∆x = 1/n, x0 = 0, and xn = 1. Then the given limit is the limit of a
Riemann sum for the function f(x) =

√
x on the interval 0 � x � 1, and therefore

lim
n→∞

√
1 +
√

2 +
√

3 + · · ·+
√
n

n
√
n

= lim
n→∞

n∑
i=1

√
i

n
√
n

=
∫ 1

0

√
x dx =

2
3
.

C05S05.042: Choose xi = i/n, ∆x = 1/n, x0 = 0, and xn = 1. Then the given limit is the limit of a
Riemann sum for f(x) = sinπx on the interval 0 � x � 1, and therefore

lim
n→∞

n∑
i=1

1
n

sin
πi

n
=

∫ 1

0

sinπx dx =
2
π
.

3
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C05S05.043: The graph is shown next. The region represented by the integral consists of two triangles
above the x-axis, one with base 3 and height 3, the other with base 1 and height 1. So the value of the
integral is the total area 9

2 + 1
2 = 5.

C05S05.044: The graph is next. The region represented by the integral consists of two triangles above the
x-axis, one with base 11

3 and height 11, the other with base 7
3 and height 7, for a total area of 121

6 + 49
6 = 85

3 .

C05S05.045: The graph is next. The region represented by the integral consists of two triangles, one above
the x-axis with base 2 and height 2, the other below the x-axis with base 3 and height 3, so the total value
of the integral is 2− 9

2 = − 5
2 .

C05S05.046: The graph is next. The region represented by the integral consists of two triangles, one above
the x-axis with base 5

2 and height 5, the other below the x-axis with base 7
2 and height 7, so the total value

4
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of the integral is 25
4 −

49
4 = −6.

C05S05.047: If y =
√

25− x2 for 0 � x � 5, then

x2 + y2 = 25, 0 � x � 5, and 0 � y � 5.

Therefore the region represented by the integral consists of the quarter of the circle x2 + y2 = 25 that lies
in the first quadrant. This circle has radius 5, and therefore the value of the integral is 25

4 π. The region is
shown next.

C05S05.048: If y =
√

6x− x2 for 0 � x � 6, then

x2 − 6x+ y2 = 0; that is, (x− 3)2 + y2 = 9 where 0 � x � 6, 0 � y � 3.

So the region represented by the integral consists of the half of the circle (x− 3)2 + y2 = 9 (radius 3, center
(3, 0)) that lies on and above the x-axis. The circle has radius 3, and therefore the value of the integral is
9
2π. The semicircle is shown next.

5



C05S05.049: 0 � x2 � x if 0 � x � 1. Hence 1 � 1 + x2 � 1 + x for such x. Therefore

1 �
√

1 + x2 �
√

1 + x

if 0 � x � 1. Hence, by the comparison property, the inequality in Problem 49 follows.

C05S05.050: x � x3 � 8 if 1 � x � 2. Hence 1 + x � 1 + x3 � 9 for such x. Therefore

√
1 + x �

√
1 + x3 � 3

if 1 � x � 2. The inequality in Problem 50 now follows from the comparison property.

C05S05.051: x2 � x and x � √x if 0 � x � 1. So 1 + x2 � 1 +
√
x for such x. Therefore

1
1 +
√
x

� 1
1 + x2

if 0 � x � 1. The inequality in Problem 51 now follows from the comparison property for definite integrals.

C05S05.052: x2 � x5 if x � 1. So 1 + x2 � 1 + x5 if 2 � x � 5. Therefore

1
1 + x5

� 1
1 + x2

if 2 � x � 5. The inequality in Problem 52 now follows from the comparison property.

C05S05.053: sin t � 1 for all t. Therefore
∫ 2

0

sin
(√
x

)
dx �

∫ 2

0

1 dx = 2.

C05S05.054: If 0 � x � 1
4π, then

√
2

2
� cosx � 1.

Thus 1
2 � cos2 x � 1 for such x, and therefore 3

2 � 1 + cos2 x � 2 if 0 � x � 1
4π. Hence

1
2

� 1
1 + cos2 x

� 2
3

if 0 � x � 1
4π. So

1
2
· π

4
�

∫ π/4

0

1
1 + cos2 x

dx � 2
3
· π

4
,

and the inequality in Problem 54 follows immediately.

C05S05.055: If 0 � x � 1, then

1 � 1 + x � 2;

1
2

� 1
1 + x

� 1;

1
2
· (1− 0) �

∫ 1

0

1
1 + x

dx � 1 · (1− 0).

6



So the value of the integral lies between 0.5 and 1.0.

C05S05.056: If 4 � x � 9, then

2 �
√
x � 3;

3 � 1 +
√
x � 4;

1
4

� 1
1 +
√
x

� 1
3
;

1
4
· (9− 4) �

∫ 9

4

1
1 +
√
x
dx � 1

3
· (9− 4).

Hence the value of the given integral lies between 5
4 and 5

3 .

C05S05.057: If 0 � x � 1
6π, then

√
3

2
� cosx � 1;

3
4

� cos2 x � 1;

3
4
·
(π

6
− 0

)
�

∫ π/6

0

cos2 x dx � 1 ·
(π

6
− 0

)
.

Therefore

π

8
�

∫ π/6

0

cos2 x dx � π

6
.

C05S05.058: If 0 � x � 1
4π, then

0 � sinx �
√

2
2

;

0 � sin2 x � 1
2
;

0 � 2 sin2 x � 1;

16 � 16 + 2 sin2 x � 17;

4 �
√

16 + 2 sin2 x �
√

17;

4 · π
4

�
∫ π/4

0

√
16 + 2 sin2 x dx � π

√
17

4
.

Therefore

3.14159 �
∫ π/4

0

√
16 + 2 sin2 x dx � 3.2384.

C05S05.059: Suppose that f is integrable on [a, b] and that c is a constant. Then

7



∫ b

a

cf(x) dx = lim
∆x→0

n∑
i=1

cf(x	i ) ∆x = lim
∆x→0

c ·
n∑
i=1

f(x	i ) ∆x

= c ·
(

lim
∆x→0

n∑
i=1

f(x	i ) ∆x

)
= c

∫ b

a

f(x) dx.

C05S05.060: Suppose that f and g are integrable on [a, b] and that f(x) � g(x) for all x in [a, b]. Suppose
by way of contradiction that

I1 =
∫ b

a

f(x) dx >
∫ b

a

g(x) dx = I2.

Let ε = I1 − I2. Choose n a positive integer so large that every Riemann sum for f based on a regular
partition with n or more subintervals lies within ε/3 of I1 and every Riemann sum for g based on a regular
partition with n or more subintervals lies within ε/3 of I2. (This can be done by determining n1 for I1, n2

for I2, and letting n be the maximum of n1 and n2.) Then every Riemann sum for f based on a regular
partition with n or more subintervals exceeds every Riemann sum for g based on a regular partition with n
or more subintervals. Let P be such a partition and let {x	i } be a selection for P. Then

n∑
i=1

f(x	i ) ∆x >
n∑
i=1

g(x	i ) ∆x.

But this is impossible because f(x	i ) � g(x	i ) for all i, 1 � i � n. This contradiction shows that I1 � I2 and
establishes the first comparison property of the definite integral.

C05S05.061: Suppose that f is integrable on [a, b] and that f(x) � M for all x in [a, b]. Let g(x) ≡ M .
Then by the first comparison property,

∫ b

a

f(x) dx �
∫ b

a

g(x) dx =
[
Mx

]b
a

= M(b− a).

The proof of the other inequality is similar.

C05S05.062: Suppose that a < c < b and that f is integrable on [a, b]. Then f is integrable on [a, c] and
on [c, b]. Let {Rn} and {Sn} be sequences of Riemann sums, the former for f on [a, c], the latter for f
on [c, b], such that, for each positive integer n, Rn and Sn each have norm less than (b− a)/n. Then

lim
n→∞

Rn =
∫ c

a

f(x) dx and lim
n→∞

Sn =
∫ b

c

f(x) dx.

Then because Rn + Sn is a Riemann sum of norm less than (b− a)/n for f on [a, b], we have

∫ c

a

f(x) dx +
∫ b

c

f(x) dx =
(

lim
n→∞

Rn

)
+

(
lim
n→∞

Sn

)
= lim
n→∞

(Rn + Sn) =
∫ b

a

f(x) dx.

C05S05.063: 1000 +
∫ 30

0

V ′(t) dt = 1000 +
[
(0.4)t2 − 40t

]30

0
= 160 (gallons). Alternatively, the tank

contains

V (t) = (0.4)t2 − 40t+ 1000

8



gallons at time t � 0, so at time t = 30 it contains V (30) = 160 gallons.

C05S05.064: In 1990 the population in thousands was

125 +
∫ 20

t=0

(
8 + (0.5)t+ (0.03)t2

)
dt = 125 +

[
8t+ (0.25)t2 + (0.01)t3

]20

0

= 125 + 160 + 100 + 80 = 465 (thousands).

C05S05.065: In Fig. 5.5.11 of the text we see that

12− 4x
9

� 1
x

� 3− x
2

.

Therefore

2
3

�
∫ 2

1

1
x
dx � 3

4
.

Another way to put it would be to write

∫ 2

1

1
x
dx = 0.708333± 0.041667.

For a really sophisticated answer, you could point out that, from the figure, it appears that the low estimate
of the integral is about twice as accurate as (has half the error of) the high estimate. So

∫ 2

1

1
x
dx ≈ 2

3
· 2
3

+
1
3
· 3
4
≈ 0.6944.

C05S05.066: Because L(x) � f(x) � L(x) + 0.07 if 0 � x � 1, it follows that

∫ 1

0

L(x) dx �
∫ 1

0

f(x) dx �
∫ 1

0

[L(x) + 0.07] dx.

That is,

3
4

�
∫ 1

0

1
1 + x2

dx � 41
50
.

Another way to put it would be to write

∫ 1

0

1
1 + x2

dx = 0.785± 0.035.

Or, for the reasons given in the solution of Problem 65,

∫ 1

0

1
1 + x2

dx ≈ 1
3
· 41
50

+
2
3
· 3
4
≈ 0.7733.
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Section 5.6

C05S06.001:
1

2− 0

∫ 2

0

x4 dx =
1
2
·
[

1
5
x5

]2

0

=
16
5

.

C05S06.002:
1

4− 1

∫ 4

1

√
x dx =

1
3
·
[

2
3
x3/2

]4

1

=
14
9

.

C05S06.003:
1

2− 0

∫ 2

0

3x2(x3 + 1)1/2 dx =
1
2
·
[

2
3

(x3 + 1)3/2
]2

0

=
26
3

.

C05S06.004:
1

4− 0

∫ 4

0

8x dx =
1
4
·
[
4x2

]4

0
= 16.

C05S06.005:
1

4− (−4)

∫ 4

−4

8x dx =
1
4
·
[
4x2

]4

−4
= 0.

C05S06.006:
1

4− (−4)

∫ 4

−4

x2 dx =
1
8
·
[

1
3
x3

]4

−4

=
16
3

.

C05S06.007:
1

5− 0

∫ 5

0

x3 dx =
1
5
·
[

1
4
x4

]5

0

=
125
4

.

C05S06.0008:
1

4− 1

∫ 4

1

x−1/2 dx =
1
3
·
[
2x1/2

]4

1
=

2
3
.

C05S06.009:
1

3− 0

∫ 3

0

√
x+ 1 dx =

1
3
·
[

2
3

(x+ 1)3/2
]3

0

=
14
9

.

C05S06.010:
2
π

∫ π/2

0

sin 2x dx =
2
π
·
[
− 1

2
cos 2x

]π/2
0

=
2
π

.

C05S06.011:
1

π − 0

∫ π

0

sin 2x dx =
1
π
·
[
− 1

2
cos 2x

]π
0

= 0.

C05S06.012:
1

1− (−1)

∫ 1

−1

e2t dt =
1
2

[
1
2
e2t

]1

−1

=
1
2

(
1
2
e2 − 1

2
e−2

)
=
e4 − 1
4e2

≈ 1.8134302039.

C05S06.013:
∫ 3

−1

1 dx =
[
x
]3

−1
= 3− (−1) = 4.

C05S06.014:
∫ 2

1

(y5 − 1) dy =
[

1
6y

6 − y
]2

1
=

19
2

.

C05S06.015:
∫ 4

1

1√
9x3

dx =
∫ 4

1

1
3
x−3/2 dx =

[
− 2

3
x−1/2

]4

1

= − 2
3
·
(

1
2
− 1

)
=

1
3
.

C05S06.016:
∫ 1

−1

(x3 + 2)2 dx =
∫ 1

−1

(x6 + 4x3 + 4) dx =
[

1
7
x7 + x4 + 4x

]1

−1

=
58
7

.

1



C05S06.017:
∫ 3

1

3t− 5
t4

dt =
∫ 3

1

(3t−3 − 5t−4) dt =
[

5
3t3
− 3

2t2

]3

1

= − 22
81

.

C05S06.018:
∫ −1

−2

x2 − x+ 3
3
√
x

dx =
∫ −1

−2

(x5/3 − x2/3 + 3x−1/3) dx =
[

3
8
x8/3 − 3

5
x5/3 +

9
2
x2/3

]−1

−2

=
(

3
8

+
3
5

+
9
2

)
−

(
12
8

+
6
5

+
9
2

)
· 22/3 =

219
40
− 36 3

√
4

5
=

3
40

(
73− 96 3

√
4

)
≈ −5.95428758.

C05S06.019:
∫ π

0

sinx cosx dx =
[

1
2

sin2 x

]π
0

= 0.

C05S06.020:
∫ 2

−1

|x| dx =
∫ 0

−1

(−x) dx+
∫ 2

0

x dx =
5
2
. Alternatively,

∫ 2

−1

|x| dx =
[

1
2
x · |x|

]2

−1

=
5
2
.

C05S06.021:
∫ 2

1

(
t− 1

2
t−1

)2

dt =
∫ 2

1

(
t2 − 1 +

1
4
t−2

)
dt =

[
1
3
t3 − t− 1

4
t−1

]2

1

=
35
24

.

C05S06.022:
∫ 1

0

e2x−1 dx =
[

1
2
e2x−1

]1

0

=
1
2
e− 1

2
e−1 =

e2 − 1
2e

≈ 1.1752011936.

C05S06.023:
∫ 1

0

e2x − 1
ex

dx =
∫ 1

0

(ex−e−x) dx =
[
ex+e−x

]1

0

=
(
e+

1
e

)
−(1+1) =

(e− 1)2

e
≈ 1.086161.

C05S06.024:
∫ 2

0

∣∣x−√x ∣∣ dx =
∫ 1

0

(√
x − x

)
dx+

∫ 2

1

(
x−
√
x

)
dx =

7− 4
√

2
3

≈ 0.44771525.

C05S06.025: Because x2 − 1 � 0 if |x| � 1 and x2 − 1 < 0 if |x| < 1, we split the integral into three:

∫ 2

−2

∣∣x2 − 1
∣∣ dx =

∫ −1

−2

(x2 − 1) dx+
∫ 1

−1

(1− x2) dx+
∫ 2

1

(x2 − 1) dx =
4
3

+
4
3

+
4
3

= 4.

C05S06.026:
∫ π/3

0

sin 3x dx =
[
− 1

3
cos 3x

]π/3
0

=
2
3
.

C05S06.027:
∫ 8

4

1
x
dx =

[
lnx

]8

4

= ln 8− ln 4 = ln
8
4

= ln 2 ≈ 0.6931471805599453094.

C05S06.028:
∫ 11

6

1
x− 1

dx =
[

ln(x− 1)
]11

6

= ln 10− ln 5 = ln
10
5

= ln 2.

C05S06.029:
∫ 0

−1

(
1− x4

)
dx+

∫ 1

0

(
1− x3

)
dx =

[
x− 1

5
x5

]0

−1

+
[
x− 1

4
x4

]1

0

= 1− 1
5

+ 1− 1
4

=
31
20

.

C05S06.030:
∫ π/2

0

1
4
π2 sinx dx+

∫ π

π/2

(
πx− x2

)
dx =

[
−1

4
π2 cosx

]π/2
0

+
[

1
2
πx2 − 1

3
x3

]π
π/2

=
1
4
π2 +

1
2
π3 − 1

3
π3 − 1

8
π3 +

1
24
π3 =

1
4
π2 +

1
12
π3 =

3π2 + π3

12
.
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C05S06.031:
∫ 0

−3

(
x3 − 9x

)
dx−

∫ 3

0

(
x3 − 9x

)
dx =

[
1
4
x4 − 9

2
x2

]0

−3

−
[

1
4
x4 − 9

2
x2

]3

0

=
81
4

+
81
4

=
81
2

.

C05S06.032:
∫ 0

−3

(
x3 − 2x2 − 15x

)
dx−

∫ 5

0

(
x3 − 2x2 − 15x

)
dx

=
[

1
4
x4 − 2

3
x3 − 15

2
x2

]0

−3

−
[

1
4
x4 − 2

3
x3 − 15

2
x2

]5

0

=
117
4

+
1375
12

=
863
6

.

C05S06.033: Height: s(t) = 400 − 16t2. Velocity: v(t) = −32t. Time T of impact occurs when T 2 = 25,
so that T = 5. Average height:

1
5

∫ 5

0

s(t) dt =
1
5

[
400t− 16

3
t3

]5

0

=
800
3
≈ 266.666667 (ft).

Average velocity:

1
5

∫ 5

0

v(t) dt =
1
5

[
− 16t2

]5

0
= −80 (ft/s).

C05S06.034: The average value of P (t) over the time interval [0, 10] is

1
10

∫ 10

0

P (t) dt =
1
10

[
1

150
t3 + 5t2 + 100t

]10

0

=
452
3
≈ 150.666667.

As an independent check,

P (0) + P (2) + P (4) + P (6) + P (8) + P (10)
6

≈ 100 + 120.08 + 140.32 + 160.72 + 181.28 + 202
6

≈ 150.733.

C05S06.035: Clearly the tank empties itself in the time interval [0, 10]. So the average amount of water
in the tank during that time interval is

1
10

∫ 10

0

V (t) dt =
1
10

[
50
3
t3 − 500t2 + 5000t

]10

0

=
5000

3
≈ 1666.666667 (L).

As an independent check,

V (0) + V (2) + V (4) + V (6) + V (8) + V (10)
6

=
5000 + 3200 + 1800 + 800 + 200 + 0

6
≈ 1833.333.

C05S06.036: Noon corresponds to t = 12 and 6 p.m. corresponds to t = 18. So the average temperature
over that time interval was

1
6

∫ 18

12

T (t) dt =
1
6

[
40
π

(
2π(t− 10)− 3 cos

π(t− 10)
12

)]18

12

=
10

(
1 +
√

3 + 8π
)

π
≈ 88.69638782.

As an independent check,

T (12) + T (14) + T (16) + T (18)
4

≈ 85 + 88.6603 + 90 + 88.6603
4

≈ 88.08.

C05S06.037: The average temperature of the rod is
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1
10

∫ 10

0

T (x) dx =
1
10

[
20x2 − 4

3
x3

]10

0

=
200
3
≈ 66.666667.

As an independent check,

T (0) + T (2) + T (4) + T (6) + T (8) + T (10)
6

=
0 + 64 + 96 + 96 + 64 + 0

6
≈ 53.33.

C05S06.038: Because r2 + x2 = 1, the radius of the circular cross section at x is r =
√

1− x2 . Hence its
area is A(x) = π(1− x2), so the average area of such a cross section is

1
1

∫ 1

0

A(x) dx = π

[
x− 1

3
x3

]1

0

=
2
3
π ≈ 2.0943951024.

C05S06.039: Similar triangles yield y/r = 2/1, so r = y/2. So the area of the cross section at y is
A(y) = π(y/2)2, and thus the average area of such a cross section is

1
2

∫ 2

0

A(y) dt =
1
2

[ π
12
y3

]2

0
=
π

3
.

C05S06.040: The velocity of the sports car at time t is v(t) = at, so its final velocity is v(T ) = aT and its
average velocity is

1
T

∫ T

0

v(t) dt =
1
T

[
1
2
at2

]T
0

=
1
2
aT.

The position of the sports car at time t is x(t) = 1
2at

2, so its final position is x(T ) = 1
2aT

2 and its average
position is

1
T

∫ T

0

x(t) dt =
1
T

[
1
6
at3

]t
0

=
1
6
aT 2.

C05S06.041: First, A(x) = 3(9− x2) for −3 � x � 3. Hence the average value of A on that interval is

1
6

∫ 3

−3

A(x) dx =
1
6

[
27x− x3

]3

−3
= 18.

Next, A(x) = 18 has the two solutions x = ±
√

3 in the interval [−3, 3], so there are two triangles having

4
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the same area as the average. One is shown next.

C05S06.042: First, A(x) = x(10− x) for 0 � x � 10. So the average value of A on that interval is

1
10

∫ 10

0

A(x) dx =
1
10

[
5x2 − 1

3
x3

]10

0

=
50
3
.

The equation A(x) = 50
3 has the two solutions 5

3

(
3±
√

3
)
, so there are exactly two rectangles with the same

area as the average rectangle. One of them is shown next.

C05S06.043: The area function is A(x) = 2x
√

16− x2 for 0 � x � 4, so the average value of A is

1
4

∫ 4

0

A(x) dx =
1
4

[
− 2

3
(16− x2)3/2

]4

0

=
32
3
.

The equation A(x) = 32
3 has the two solutions x = 2

√
2
3

(
3±
√

5
)
, so there are two rectangles having the

5
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same area as the average. One is shown next.

C05S06.044: The area is A(x) = 2x(16− x2) and its average value on [0, 4] is

1
4

∫ 4

0

A(x) dx =
1
4

[
16x2 − 1

2
x4

]4

0

= 32.

The equation A(x) = 32 has three solutions, but only two lie in the domain 0 � x � 4 of A; they are
approximately 1.07838 and 3.35026. So there are two rectangles having the same area as the average area.
Both are shown next.

C05S06.045: f ′(x) = (x2 + 1)17.

C05S06.046: g′(t) =
√
t2 + 25 .

C05S06.047: h′(z) = (z − 1)1/3.

C05S06.048: A′(x) =
1
x

.

C05S06.049: Because

f(x) = −
∫ x

10

(et − e−t) dt,

6



part (1) of the fundamental theorem of calculus (Section 5.6) implies that

f ′(x) = −(ex − e−x) = e−x − ex.

To use part (2) of the fundamental theorem of calculus, first compute

f(x) =
∫ 10

x

(et − e−t) dt = −ex − e−x + e10 − e−10,

and differentiation now shows that f ′(x) = e−x − ex.

C05S06.050: G(x) =
∫ x

2

f(t) dt, so G′(x) = f(x) =
x

x2 + 1
.

C05S06.051: G(x) =
∫ x

0

f(t) dt, so G′(x) = f(x) =
√
x+ 4 .

C05S06.052: G(x) =
∫ x

0

f(t) dt, so G′(x) = f(x) = sin3 x.

C05S06.053: G(x) =
∫ x

1

f(t) dt, so G′(x) = f(x) =
√
x3 + 1 .

C05S06.054: Let u(x) = x2. Then

f(x) =
∫ x2

0

√
1 + t3 dt = g(u) =

∫ u

0

√
1 + t3 dt.

Therefore

f ′(x) = Dx g(u) = g′(u) · u′(x) = 2x
√

1 + u3 = 2x
√

1 + x6 .

C05S06.055: Let u(x) = 3x. Then

f(x) =
∫ 3x

2

sin t2 dt = g(u) =
∫ u

2

sin t2 dt.

Therefore

f ′(x) = Dx g(u) = g′(u) · u′(x) = 3 sinu2 = 3 sin 9x2.

C05S06.056: Let u(x) = sinx. Then

f(x) =
∫ sin x

0

√
1− t2 dt = g(u) =

∫ u

0

√
1− t2 dt.

Therefore

f ′(x) = Dx g(u) = g′(u) · u′(x) = (cosx)
√

1− u2 = (cosx)
√

1− sin2 x = (cosx)| cosx|.

C05S06.057: Let u(x) = x2. Then

7



f(x) =
∫ x2

0

sin t dt = g(u) =
∫ u

0

sin t dt.

Therefore

f ′(x) = Dx g(u) = g′(u) · u′(x) = 2x sinu = 2x sinx2.

For an independent verification, note that

f(x) =
[
− cos t

]x2

0
= 1− cosx2,

and therefore that f ′(x) = 2x sinx2.

C05S06.058: Let u(x) = sinx. Then

f(x) =
∫ sin x

1

(t2 + 1)3 dt = g(u) =
∫ u

1

(t2 + 1)3 dt.

Therefore

f ′(x) = Dx g(u) = g′(u) · u′(x) = (cosx)(u2 + 1)3 = (cosx)(1 + sin2 x)3.

C05S06.059: Let u(x) = x2 + 1. Then

f(x) =
∫ x2+1

1

1
t
dt = g(u) =

∫ u

1

1
t
dt.

Therefore

f ′(x) = Dx g(u) = g′(u) · u′(x) = 2x · 1
u

= 2x · 1
x2 + 1

.

C05S06.060: Let u(x) = ex. Then

f(x) =
∫ ex

1

ln(1 + t2) dt = g(u) =
∫ u

1

ln(1 + t2) dt.

Therefore

f ′(x) = Dx g(u) = g′(u) · u′(x) =
[
ln(1 + u2)

]
· ex = ex ln(1 + e2x).

C05S06.061: y(x) =
∫ x

1

1
t
dt.

C05S06.062: y(x) =
π

4
+

∫ x

1

1
1 + t2

dt.

C05S06.063: y(x) = 10 +
∫ x

5

√
1 + t2 dt.

C05S06.064: y(x) = 2 +
∫ x

1

tan t dt.

8
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C05S06.065: The fundamental theorem does not apply because the integrand is not continuous on [−1, 1].
We will see how to handle integrals such as the one in this problem in Section 9.8. One thing is certain: Its
value is not −2.

C05S06.066: Suppose that f is differentiable on [a, b]. Then the average value of f ′(x) on [a, b] is

1
b− a

∫ b

a

f ′(x) dx =
1

b− a ·
[
f(x)

]b
a

=
f(b)− f(a)

b− a ,

the average rate of change of f on [a, b].

C05S06.067: If 0 � x � 2, then

g(x) =
∫ x

0

f(t) dt =
∫ x

0

2t dt = x2.

Thus g(0) = 0 and g(2) = 4. If 2 � x � 6, then continuity of g at x = 2 implies that

g(x) = g(2) +
∫ x

2

f(t) dt = 4 +
∫ x

2

(8− 2t) dt = 4 +
[
8t− t2

]x
2

= 4 + 8x− x2 − 16 + 4 = 8x− x2 − 8.

Therefore g(4) = 8 and g(6) = 4. If 6 � x � 8, then continuity of g at x = 6 implies that

g(x) = g(6) +
∫ x

6

f(t) dt = 4 +
∫ x

6

(−4) dt = 4− 4x+ 24 = 28− 4x.

Thus g(8) = −4. Finally, if 8 � x � 10, then

g(x) = g(8) +
∫ x

8

(2t− 20) dt = −4 +
[
t2 − 20t

]x
8

= −4 + x2 − 20x− 64 + 160 = x2 − 20x+ 92,

and therefore g(10) = −8. Next, g(x) is increasing where f(x) > 0 and decreasing where f(x) < 0, so g is
increasing on (0, 4) and decreasing on (4, 10). The global maximum of g will therefore occur at (4, 8) and
its global minimum at (10, −8). The graph of y = g(x) is next.

C05S06.068: If 0 � x � 2, then

g(x) =
∫ x

0

f(t) dt =
∫ x

0

(t+ 1) dt =
[

1
2
t2 + t

]x
0

=
1
2
x2 + x.

Therefore g(0) = 0 and g(2) = 4. Continuity of g at x = 2 then requires that if 2 � x � 4, then
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g(x) = g(2) +
∫ x

2

3 dt = 4 +
[
3t

]x
2

= 3x− 2,

and therefore g(4) = 10. Then if 4 � x � 6,

g(x) = g(4) +
∫ x

4

(15− 3t) dt = 10 +
[
15t− 3

2
t2

]x
4

= 10 + 15x− 3
2
x2 − 60 + 24 = 15x− 3

2
x2 − 26.

Thus g(6) = 10. If 6 � x � 8, then

g(x) = 10 +
∫ x

6

− 1
2
t dt = 10−

[
1
4
t2

]x
6

= 10− 1
4
x2 + 9 = 19− 1

4
x2,

and so g(8) = 3. And if 8 � x � 10, then

g(x) = 3 +
∫ x

8

(
3
2
t− 16

)
dt =

3
4
x2 − 16x+ 83,

and it follows that g(10) = −2. Next, g is increasing where f(x) > 0 and decreasing where f(x) < 0, so g
is increasing on (0, 5) and decreasing on (5, 10). The global maximum of g will therefore occur at (5, 11.5)
and its global minimum is at (10, −2). The graph of y = f(x) is shown next.

C05S06.069: The local extrema of g(x) occur only where g′(x) = f(x) = 0, thus at π, 2π, and 3π, and
at the endpoints 0 and 4π of the domain of g. Figure 5.6.19 shows us that g is increasing on (0, π) and
(2π, 3π), decreasing on (π, 2π) and (3π, 4π), so there are local minima at (0, 0), (2π, −2π), and (4π, −4π);
there are local maxima at (π, π) and (3π, 3π). The global maximum occurs at (3π, 3π) and the global
minimum occurs at (4π, −4π). To find the inflection points, we used Newton’s method to solve the equation
f ′(x) = 0 and found the x-coordinates of the inflection points—it’s clear from the graph that there are four
of them—to be approximately 2.028758, 4.913180, 7.978666, and 11.085538. (The values of f(x) at these
four points are approximately 1.819706, −4.814470, 7.916727, and −11.040708.) The graph of y = g(x) is

10
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shown next.

C05S06.070: By reasoning similar to that in the solution of Problem 69, g has a global minimum at (0, 0)
(not shown on the following graph), a global maximum at (π, 1.851937) (numbers given in decimal form are
approximations), a local minimum at (2π, 1.418152), a local maximum at (3π, 1.674762), and a local mini-
mum at (4π, 1.492161). Newton’s method gives the approximate coordinates of the points on the graph of
f where g has inflection points to be (4.493409, 0.017435), (7.725252, 0.017400), and (10.904122, 0.017348).
The graph of y = g(x) is next.
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Section 5.7

C05S07.001: Let u = 3x− 5. Then du = 3 dx, so dx = 1
3 du. Thus

∫
(3x− 5)17 dx =

∫
1
3
u17 du =

1
54
u18 + C =

1
54

(3x− 5)18 + C.

C05S07.002: Let u = 4x+ 7. Then dx = 1
4 du. Thus

∫
1

(4x+ 7)6
dx =

1
4

∫
u−6 du = − 1

20
u−5 + C = − 1

20(4x+ 7)5
+ C.

C05S07.003: The given substitution yields
∫

1
2
u1/2 du =

1
3
u3/2 + C =

1
3

(
x2 + 9

)3/2
+ C.

C05S07.004: The given substitution yields
∫

1
6
u−1/3 du =

1
4
u2/3 + C =

1
4

(
2x3 − 1

)2/3
+ C.

C05S07.005: The given substitution yields
∫

1
5

sinu du = −1
5

cosu+ C = −1
5

cos 5x+ C.

C05S07.006: The given substitution yields
∫

1
k

cosu du =
1
k

sinu+ C =
1
k

sin kx+ C.

C05S07.007: The given substitution yields
∫

1
4

sinu du = −1
4

cosu+ C = −1
4

cos
(
2x2

)
+ C.

C05S07.008: Let u = x1/2; then x = u2 and dx = 2u du. So

∫
e
√
x

√
x
dx =

∫
eu

u
· 2u du = 2eu + C = 2 exp

(√
x

)
+ C.

C05S07.009: The given substitution yields
∫
u5 du =

1
6
u6 + C =

1
6

(1− cosx)6 + C.

C05S07.010: Let u = 5 + 2 sin 3x. Then du = 6 cos 3x dx, so that cos 3x dx = 1
6 du. Thus

∫
cos 3x

5 + 2 sin 3x
dx =

∫ 1
6

u
du =

1
6

lnu+ C =
1
6

ln(5 + 2 sin 3x) + C.

C05S07.011: If necessary, let u = x+ 1. In any case,
∫

(x+ 1)6 dx =
1
7
(x+ 1)7 + C.

C05S07.012: If necessary, let u = 2− x. In any case,
∫

(2− x)5 dx = −1
6

(2− x)6 + C.

C05S07.013: If necessary, let u = 4− 3x. In any case,
∫

(4− 3x)7 dx = − 1
24

(4− 3x)8 + C.

C05S07.014: If necessary, let u = 2x+ 1. In any case,
∫ √

2x+ 1 dx =
1
3

(2x+ 1)3/2 + C.
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C05S07.015: If necessary, let u = 7x+ 5. In any case,
∫

1√
7x+ 5

dx =
2
7

(7x+ 5)1/2 + C.

C05S07.016: If necessary, let u = 3− 5x. In any case,
∫

dx

(3− 5x)2
=

1
5(3− 5x)

+ C.

C05S07.017: If necessary, let u = πx+ 1. In any case,
∫

sin(πx+ 1) dx == − 1
π

cos(πx+ 1) + C.

C05S07.018: If necessary, let u =
πt

3
. In any case,

∫
cos

πt

3
dt =

3
π

sin
πt

3
+ C.

C05S07.019: If necessary, let u = 2θ. In any case,
∫

sec 2θ tan 2θ dθ =
1
2

sec 2θ + C.

C05S07.020: If necessary, let u = 5x. In any case,
∫

csc2 5x dx = − 1
5

cot 5x+ C.

C05S07.021:
∫
e1−2x dx = − 1

2
e1−2x + C.

C05S07.022:
∫
x exp

(
x2

)
dx =

1
2

exp
(
x2

)
+ C.

C05S07.023:
∫
x2 exp

(
3x3 − 1

)
dx =

1
9

exp
(
3x3 − 1

)
+ C.

If you prefer integration by substitution, let u = 3x3 − 1.

C05S07.024:
∫
x1/2 exp

(
2x3/2

)
dx =

1
3

exp
(
2x3/2

)
+ C.

C05S07.025:
∫

1
2x− 1

dx =
1
2

ln |2x− 1|+ C.

C05S07.026:
∫

1
3x+ 5

dx =
1
3

ln |3x+ 5|+ C.

C05S07.027:
∫

1
x

(lnx)2 dx =
1
3
(lnx)3 + C.

C05S07.028:
∫

1
x lnx

dx = ln | lnx|+ C.

C05S07.029:
∫

x+ e2x

x2 + e2x
dx =

1
2

ln
(
x2 + e2x

)
+ C. For integration by substitution, let u = x2 + e2x.

C05S07.030:
∫ (

ex + e−x
)2
dx =

∫ (
e2x + 2 + e−2x

)
dx = 2x+

e2x − e−2x

2
+ C.

Mathematica version 3.0 returns the antiderivative in the form

C − (e−x + ex)2

2 (1 + e2x)2
+
e4x (e−x + ex)2

2 (1 + e2x)2
+

2e2x (e−x + ex)2 x
(1 + e2x)2

.

Then the successive commands Together and Expand simplify it to the form we first gave here.
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C05S07.031: If necessary, let u = x2 − 1, so that du = 2x dx; that is, x dx = 1
2 du. Then

∫
x
√
x2 − 1 dx =

∫
1
2
u1/2 du =

1
3
u3/2 + C =

1
3

(x2 − 1)3/2 + C.

Editorial Comment (DEP): In my opinion a much better, faster, shorter, and more reliable method runs as
follows. Given

∫
x
√
x2 − 1 dx,

it should be evident that the antiderivative involves (x2 − 1)3/2. Because

Dx (x2 − 1)3/2 =
3
2

(x2 − 1)1/2 · 2x = 3x
√
x2 − 1,

the fact that if c is constant then Dx cf(x) = cf ′(x) now allows us to modify the initial guess (x2− 1)3/2 for
the antiderivative by multiplying it by 1

3 . Therefore
∫

x
√
x2 − 1 dx =

1
3

(x2 − 1)3/2 + C.

All that’s necessary is to remember the constant of integration. Note that this technique is self-checking,
requires less time and space, and is immune to the dangers of various illegal substitutions. The computation
of the “correction factor” (in this case, 1

3 ) can usually be done mentally.

C05S07.032: If necessary, let u = 1− 2t2. In any case,
∫

3t
(
1− 2t2

)10
dt = − 3

44
(
1− 2t2

)11 + C.

C05S07.033: If necessary, let u = 2− 3x2. In any case,
∫
x(2− 3x2)1/2 dx = − 1

9
(2− 3x2)3/2 + C.

C05S07.034: If necessary, let u = 2t2 + 1. In any case,
∫

t√
2t2 + 1

dt =
1
2
(2t2 + 1)1/2 + C.

C05S07.035: If necessary, let u = x4 + 1. In any case,
∫
x3(x4 + 1)1/2 dx =

1
6

(x4 + 1)3/2 + C.

C05S07.036: If necessary, let u = x3 + 1. In any case,
∫
x2(x3 + 1)−1/3 dx =

1
2

(x3 + 1)2/3 + C.

C05S07.037: If necessary, let u = 2x3. In any case,
∫
x2 cos(2x3) dx =

1
6

sin(2x3) + C.

C05S07.038: If necessary, let u = t2. In any case,
∫
t sec2 t2 dt =

1
2

tan t2 + C.

C05S07.039: If necessary, let u = −x2 or let u = x2. In the latter case du = 2x dx, so that x dx = 1
2 du.

In any case,
∫
x exp(−x2) dx = − 1

2
exp(−x2) + C.

C05S07.040: If necessary, let u = x2 or let u = 1+x2. In the latter case, du = 2x dx, so that x dx = 1
2 du.

In either case,
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∫
x

1 + x2
dx =

1
2

ln(1 + x2) + C.

C05S07.041: If necessary, let u = cosx. In any case,
∫

cos3 x sinx dx = − 1
4

cos4 x+ C.

C05S07.042: There are two choices for the substitution. The substitution u = 3z results in
∫

sin5 3z cos 3z dz =
∫

1
3

sin5 u cosu du =
1
18

sin6 u+ C =
1
18

sin6 3z + C.

Alternatively, the substitution u = sin 3z yields du = 3 cos 3z dz, so that cos 3z dz = 1
3 du. Then

∫
sin5 3z cos 3z dz =

∫
1
3
u5 du =

1
18
u6 + C =

1
18

sin6 3z + C.

C05S07.043: If necessary, let u = tan θ. In any case,
∫

tan3 θ sec2 θ dθ =
1
4

tan4 θ + C.

C05S07.044: If necessary, let u = sec θ. Then du = sec θ tan θ dθ, and hence
∫

sec3 θ tan θ dθ =
∫

(sec2 θ) · sec θ tan θ dθ =
∫
u2 du =

1
3
u3 + C =

1
3

sec3 θ + C.

C05S07.045: If necessary, let u =
√
x. In any case,

∫
x−1/2 cos

(
x1/2

)
dx = 2 sin

(
x1/2

)
+ C.

C05S07.046: If necessary, let u = 1 +
√
x. In any case,

∫
dx

√
x (1 +

√
x )2

=
−2

1 +
√
x

+ C.

C05S07.047: If necessary, let u = x2 + 2x+ 1. This yields
∫

(x2 + 2x+ 1)4(x+ 1) dx =
∫

1
2
u4 du =

1
10
u5 + C =

1
10

(x2 + 2x+ 1)5 + C.

Alternatively,
∫

(x2 + 2x+ 1)4(x+ 1) dx =
∫

(x+ 1)9 dx =
1
10

(x+ 1)10 + C.

C05S07.048: If necessary, let u = x2 + 4x+ 3. In any case,
∫

(x+ 2) dx
(x2 + 4x+ 3)3

= − 1
4

(x2 + 4x+ 3)−2 +C.

C05S07.049: If necessary, let u = x2 + 4x+ 3, so that du = (2x+ 4) dx. Thus (x+ 2) dx = 1
2 du. In any

case,
∫

x+ 2
x2 + 4x+ 3

dx =
1
2

ln(x2 + 4x+ 3) + C,

although, because the quadratic can be negative, a better answer is
1
2

ln |x2 + 4x+ 3|+ C.

C05S07.050: If necessary, let u = x2 + ex + 1, so that du = (2x+ ex) dx. In any case,
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∫
2x+ ex

(x2 + ex + 1)2
dx = − 1

x2 + ex + 1
+ C.

C05S07.051:
∫ 2

1

dt

(t+ 1)3
=

[
− 1

2(t+ 1)2

]2

1

= − 1
18
−

(
− 1

8

)
=

5
72

.

C05S07.052:
∫ 4

0

dx√
2x+ 1

=
[
(2x+ 1)1/2

]4

0
= 3− 1 = 2.

C05S07.053:
∫ 4

0

x
√
x2 + 9 dx =

[
1
3

(x2 + 9)3/2
]4

0

=
125
3
− 9 =

98
3

.

C05S07.054: Given: I =
∫ 4

1

(1 +
√
x )4√

x
dx. Let u = 1 +

√
x. Then

du =
1
2
x−1/2 dx, so 2 du =

dx√
x
.

Thus

∫
(1 +

√
x )4√

x
dx =

∫
2u4 du =

2
5
u5 + C =

2
5

(
1 +
√
x

)5 + C.

Therefore I =
486
5
− 64

5
=

422
5

.

C05S07.055: Given: J =
∫ 8

0

t
√
t+ 1 dt. Let u = t+ 1. Then du = dt, and so

J =
∫ 8

t=0

(u− 1)u1/2 du =
∫ 8

t=0

(
u3/2 − u1/2

)
du =

[
2
5
u5/2 − 2

3
u3/2

]8

t=0

=
[

2
5

(t+ 1)5/2 − 2
3

(t+ 1)3/2
]8

0

=
396
5
−

(
− 4

15

)
=

1192
15

.

Alternatively,

J =
∫ 9

u=1

(u− 1)u1/2 du =
∫ 9

1

(
u3/2 − u1/2

)
du =

[
2
5
u5/2 − 2

3
u3/2

]9

1

=
396
5
−

(
− 4

15

)
=

1192
15

.

Thus you have at least two options:

1. Make the substitution for u in place of t, find the antiderivative, then express the antiderivative in
terms of t before substituting the original limits of integration, or

2. Make the substitution for u in place ot t, find the antiderivative, then substitute the new limits of
integration in terms of u.

Whichever option you use, be sure to use the notation correctly (as shown here).

C05S07.056:
∫ π/2

0

sinx cosx dx =
[

1
2

sin2 x

]π/2
0

=
1
2
− 0 =

1
2
.
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C05S07.057:
∫ π/6

0

sin 2x cos3 2x dx =
[
− 1

8
cos2 2x

]π/6
0

= − 1
128
−

(
− 1

8

)
=

15
128

.

C05S07.058:
∫ √

π

0

t sin
t2

2
dt =

[
− cos

t2

2

]√π
0

= 0− (−1) = 1.

C05S07.059:
∫ π/2

0

(1 + 3 sin θ)3/2 cos θ dθ =
[

2
15

(1 + 3 sin θ)5/2
]π/2
0

=
64
15
− 2

15
=

62
15

.

C05S07.060:
∫ π/2

0

sec2 x

2
dx =

[
2 tan

x

2

]π/2
0

= 2− 0 = 2.

C05S07.061: Given: K =
∫ π/2

0

exp(sinx) cosx dx. Let u = sinx. Then du = cosx dx. Hence

K =
∫ 1

0

eu du =
[
eu

]1

0

= e− 1 ≈ 1.71828182845904523546.

C05S07.062: Given: I =
∫ 2

1

1 + lnx
x

dx. Let u = 1 + lnx. Then du =
1
x
dx, and so

I =
∫ 1+ln 2

1

u du =
[

1
2
u2

]1+ln 2

1

=
1
2
(1 + ln 2)2 − 1

2
=

(ln 2)2 + 2 ln 2
2

≈ 0.9333736875.

C05S07.063: Let u =
1
x

. Then du = − 1
x2

dx, and therefore

∫ 2

1

e−1/x

x2
dx = −

∫ 1/2

1

e−u du =
[
e−u

]1/2

1

= e−1/2 − e−1 =
√
e − 1
e

≈ 0.2386512185.

C05S07.064:
∫ π2

π2/4

sin
√
x cos

√
x√

x
dx =

[ (
sin
√
x

)2
]π2

π2/4

= 0− 1 = −1.

C05S07.065:
∫

sin2 x dx =
∫

1− cos 2x
2

dx =
1
2
x− 1

4
sin 2x+ C =

1
2
x− 1

2
sinx cosx+ C.

C05S07.066:
∫

cos2 x dx =
∫

1 + cos 2x
2

dx =
1
2
x+

1
4

sin 2x+ C =
1
2
x+

1
2

sinx cosx+ C.

C05S07.067:
∫ π

0

sin2 3t dt =
∫ π

0

1− cos 6t
2

dt =
[
t

2
− 1

12
sin 6t

]π
0

=
π

2
− 0 =

π

2
.

C05S07.068:
∫ 1

0

cos2 πt dt =
[
t

2
+

1
4π

sin 2πt
]1

0

=
1
2
− 0 =

1
2
.

C05S07.069:
∫

tan2 x dx =
∫ (

sec2 x− 1
)
dx = −x+ tanx+ C.

C05S07.070:
∫

tan2 3t dt =
∫ (

sec2 3t− 1
)
dt = −t+

1
3

tan 3t+ C.
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C05S07.071:
∫

sin3 x dx =
∫ (

sinx− cos2 x sinx
)
dx = − cosx+

1
3

cos3 x+ C.

C05S07.072:
∫ π/2

0

cos3 x dx =
∫ π/2

0

(
cosx− sin2 x cosx

)
dx =

[
sinx− 1

3
sin3 x

]π/2
0

=
2
3
− 0 =

2
3
.

C05S07.073: If you solve the equation

1
2

sin2 θ + C1 = − 1
2

cos2 θ + C2

for C2 − C1, you will find its value to be 1
2 . That is, cos2 θ + sin2 θ = 1. Two functions with the same

derivative differ by a constant; in this case sin2 θ − (− cos2 θ) = 1. The graphs of f(x) = 1
2 sin2 x and

g(x) = − 1
2 cos2 x are shown next.

C05S07.074: If you solve the equation 1
2 tan2 θ+C1 = 1

2 sec2 θ+C2 for C1 −C2, you will find its value to
be 1

2 . That is, sec2 θ = 1 + tan2 θ. The graphs of f(x) = 1
2 tan2 x and g(x) = 1

2 sec2 x are shown next.

C05S07.075: First, if f(x) =
x

1− x , then

f ′(x) =
(1− x) · 1− x · (−1)

(1− x)2 =
1

(1− x)2 .

Next, if u = 1− x then x = 1− u and dx = − du, so

∫
dx

(1− x)2 =
∫ − du

u2
=

1
u

+ C2 =
1

1− x + C2.
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If g(x) =
1

1− x , then

g(x)− f(x) =
1

1− x −
x

1− x =
1− x
1− x ≡ 1.

As expected, because g(x) and f(x) have the same derivative on (1, +∞), they differ by a constant there.
(This also holds on the interval (−∞, 1).) The graphs of y = f(x) and y = g(x) are shown next.

C05S07.076: The substitution u = x2 involves du = 2x dx, so that x dx = 1
2 du. Thus

∫
x dx

(1− x2)2
=

∫ 1
2 du

(1− u)2 =
1
2
· u

1− u + C1 =
x2

2(1− x2)
+ C1.

Next, if we let u = 1− x2, then du = −2x dx, so that x dx = − 1
2 du. This yields

∫
x dx

(1− x2)2
=

∫ − 1
2 du

u2
=

1
2u

+ C2 =
1

2(1− x2)
+ C2.

To reconcile these results, let

f(x) =
x2

2(1− x2)
and g(x) =

1
2(1− x2)

.

Then

g(x)− f(x) =
1

2(1− x2)
− x2

2(1− x2)
=

1− x2

2(1− x2)
≡ 1

2
.

That is, because f ′(x) = g′(x) on the interval (−1, 1), f(x) and g(x) differ by a constant there. (This result
also holds on the interval (1, +∞) and on the interval (−∞, −1).) The graphs of y = f(x) and y = g(x)
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are shown next.

C05S07.077: Suppose that f is continuous and odd. The substitution u = −x requires dx = − du, so that

∫ 0

−a
f(x) dx =

∫ 0

a

−f(−u) du =
∫ a

0

f(−u) du = −
∫ a

0

f(u) du = −
∫ a

0

f(x) dx.

(The last equality follows because in the next-to-last integral, u is merely a “dummy” variable of integration,
and can simply be replaced with x.) Therefore

∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx +

∫ a

0

f(x) dx = −
∫ a

0

f(x) dx +
∫ a

0

f(x) dx = 0.

C05S07.078: If f is even and continuous, then the substitution u = −x yields

∫ 0

−a
f(x) dx =

∫ 0

a

−f(−u) du =
∫ a

0

f(−u) du =
∫ a

0

f(u) du =
∫ a

0

f(x) dx.

(The last equality is merely replacement of the dummy variable of integration by a different dummy variable.)
Therefore

∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx +

∫ a

0

f(x) dx =
∫ a

0

f(x) dx +
∫ a

0

f(x) dx = 2
∫ a

0

f(x) dx.

C05S07.079: Because the tangent function is continuous and odd on [−1, 1], it follows from the result in
Problem 77 that

∫ 1

−1

tanx dx = 0.

Next, f(x) = x1/3 is continuous and odd on [−1, 1] while g(x) = (1 + x2)7 is continuous and even there, so
(Exercise!) their quotient is odd. Thus

∫ 1

−1

x1/3

(1 + x2)7
dx = 0.

Finally, h(x) = x17 is continuous and odd on [−1, 1] while j(x) = cosx is continuous and even there, so
(Exercise!) their product is odd. Thus

9



∫ 1

−1

x17 cosx dx = 0.

C05S07.080: Both f(x) = x10 sinx and g(x) = x5
√

1 + x4 are continuous and odd on [−5, 5], so

∫ 5

−5

(
−x10 sinx+ x5

√
1 + x4

)
dx = 0

by the result in Problem 77. Hence, using the result in Problem 68,

∫ 5

−5

(
3x2 − x10 sinx+ x5

√
1 + x4

)
dx =

∫ 5

−5

3x2 dx = 2
∫ 5

0

3x2 dx = 2
[
x3

]5

0

= 2 · 125 = 250.

C05S07.081: Given

I =
∫ b

a

f(x+ k) dx,

let u = x+ k. Then x = u− k, dx = du, u = a+ k when x = a, and u = b+ k when x = b. Hence

I =
∫ b+k

a+k

f(u) du =
∫ b+k

a+k

f(x) dx

(because it doesn’t matter whether the variable of integration is called u or x).

C05S07.082: Given

J = k

∫ b

a

f(kx) dx,

let u = kx. Then du = k dx, u = ka when x = a, and u = kb when x = b. Hence

J = k

∫ kb

ka

1
k
f(u) du =

∫ kb

ka

f(x) dx.

C05S07.083: (a) Du [eu(u−1)] = eu(u−1)+eu ·1 = ueu. (b) Let u = x1/2. Then x = u2, dx = 2u du,
u = 0 when x = 0, and u = 1 when x = 1. Therefore

∫ 1

0

exp
(√
x

)
dx =

∫ 1

0

2ueu du =
[
2eu(u− 1)

]1

0

= 0 − (−2e0) = 2.

C05S07.084: (a) Du (sinu − u cosu) = cosu − 1 · cosu + u sinu = u sinu. (b) Let u =
√
x . Then

x = u2, dx = 2u du, u = 0 when x = 0, and u = π when x = π2. Therefore

∫ π2

0

sin
√
x dx =

∫ π

0

2u sinu du = 2 ·
[

sinu − u cosu
]π
0

= 2 · (−π cosπ)− 2 · 0 = 2π.
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Section 5.8

C05S08.001: To find the limits of integration, we solve 25− x2 = 9 for x = ±4. Hence the area is

∫ 4

−4

(25− x2 − 9) dx =
[
16x− 1

3
x3

]4

−4

=
128
3
−

(
− 128

3

)
=

256
3
.

C05S08.002: To find the limits of integration, we solve 16− x2 = −9 for x = ±5. Thus the area is

∫ 5

−5

(16− x2 + 9) dx =
[
25x− 1

3
x3

]5

−5

=
250
3
−

(
− 250

3

)
=

500
3
.

C05S08.003: To find the limits of integration, we solve x2 − 3x = 0 for x = 0, x = 3. Hence the area is

∫ 3

0

(3x− x2) dx =
[
3
2
x2 − 1

3
x3

]3

0

=
9
2
− 0 =

9
2
.

C05S08.004: To find the limits of integration, we solve x3 − 9x = 0 for x = −3, x = 0, and x = 3.
Therefore the area of the region shown in Fig. 5.8.18 is

∫ 3

0

(9x− x3) dx =
[
9
2
x2 − 1

4
x4

]3

0

=
81
4
− 0 =

81
4
.

C05S08.005: To find the limits of integration, we solve 12− 2x2 = x2 for x = ±2. Therefore the area is

∫ 2

−2

(12− 3x2) dx =
[
12x− x3

]2

−2

= 16− (−16) = 32.

C05S08.006: To find the limits of integration, we solve 2x − x2 = 2x2 − 4x for x = 0, x = 2. Therefore
the area of the figure is

∫ 2

0

(6x− 3x2) dx =
[
3x2 − x3

]2

0

= 4− 0 = 4.

C05S08.007: To find the limits of integration, we solve 4− x2 = 3x2 − 12 for x = ±2. So the area is

∫ 2

−2

(16− 4x2) dx =
[
16x− 4

3
x3

]2

−2

=
64
3
−

(
− 64

3

)
=

128
3
.

C05S08.008: To find the limits of integration, we solve 12− 3x2 = 4− x2 for x = ±2. So the area of the
region is

∫ 2

−2

(8− 2x2) dx =
[
8x− 2

3
x3

]2

−2

=
32
3
−

(
− 32

3

)
=

64
3
.

C05S08.009: To find the limits of integration, we solve x2 − 3x = 6 for x = a = 1
2

(
3−
√

33
)

and
x = b = 1

2

(
3 +
√

33
)
. So the area is

1



∫ b

a

(6− x2 + 3x) dx =
[
6x+

3
2
x2 − 1

3
x3

]b
a

=
45 + 11

√
33

4
− 45− 11

√
33

4
=

11
√

33
2

.

C05S08.010: To find the limits of integration, we solve x2 − 3x = x for x = 0, x = 4. So the area is

∫ 4

0

(x− x2 + 3x) dx =
[
2x2 − 1

3
x3

]4

0

=
32
3
− 0 =

32
3
.

C05S08.011:
∫ 1

0

(x− x3) dx =
[

1
2
x2 − 1

4
x4

]1

0

=
1
4
.

C05S08.012:
∫ 3

1

1
(x+ 1)2

dx =
[
−1
x+ 1

]3

1

=
1
4
.

C05S08.013:
∫ 1

0

(x3 − x4) dx =
[

1
4
x4 − 1

5
x5

]1

0

=
1
20

.

C05S08.014:
∫ 2

−1

(
x2 − (−1)

)
dx =

[
1
3
x3 + x

]2

−1

=
14
3
−

(
− 4

3

)
= 6.

C05S08.015:
∫ 2

0

1
x+ 1

dx =
[

ln(x+ 1)
]2

0

= ln 3− ln 1 = ln 3 ≈ 1.0986122887.

C05S08.016: To find the limits of integration, we first solve 4x− x2 = 0 for x = 0 and x = 4. Hence the
area of R is

∫ 4

0

(4x− x2) dx =
[
2x2 − 1

3
x2

]4

0

=
32
3
.

C05S08.017: To find the limits of integration, we first solve y2 = 4 for y = ±2. So the area of the region
R is

∫ 2

−2

(4− y2) dy =
[
4y − 1

3
y3

]2

−2

=
16
3
−

(
− 16

3

)
=

32
3
.

C05S08.018: To find the limits of integration, we first solve x4 − 4 = 3x2 for x = ±2. So the area of R is

∫ 2

−2

(3x2 − x4 + 4) dx =
[
4x+ x3 − 1

5
x5

]2

−2

=
48
5
−

(
− 48

5

)
=

96
5
.

C05S08.019: To find the limits of integration, we first solve 8 − y2 = y2 − 8 for y = a = −2
√

2 and
y = b = 2

√
2. So the area of R is

∫ b

a

(16− 2y2) dy =
[
16y − 2

3
y3

]b
a

=
64
√

2
3
−

(
− 64
√

2
3

)
=

128
√

2
3

.
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C05S08.020: To find the limits of integration, we solve x1/3 = x3 for x = −1, x = 0, and x = 1. Thus the
region R comes in two parts, one in the first quadrant and one in the third. The area of the first is

∫ 1

0

(
x1/3 − x3

)
dx =

[
3
4
x4/3 − 1

4
x4

]1

0

=
1
2
.

The area of the second is

∫ 0

−1

(
x3 − x1/3

)
dx =

[
1
4
x4 − 3

4
x4/3

]0

−1

= 0−
(
− 1

2

)
=

1
2
.

Therefore R has area 1.

C05S08.021: The area of the region—shown next—is

A =
∫ 2

0

(
2x− x2

)
dx =

[
x2 − 1

3
x3

]2

0

=
4
3
.

C05S08.022:
∫ 2

−2

(
8− 2x2

)
dx =

[
8x− 2

3
x3

]2

−2

=
32
3
−

(
− 32

3

)
=

64
3

.

C05S08.023: We find the limits of integration by solving y2 = 25 for y = ±5. The area of the region—
shown next—is therefore

∫ 5

−5

(
25− y2

)
dy =

[
25y − 1

3
y3

]5

−5

=
250
3
−

(
− 250

3

)
=

500
3
.

C05S08.024: Area:
∫ 4

−4

(
32− 2y2

)
dy =

[
32y − 2

3
y3

]4

−4

=
256
3
−

(
− 256

3

)
=

512
3

.

C05S08.025: We find the limits of integration by solving x2 = 2x+ 3 for x = −1, x = 3. Thus the area of
the region—shown next—is

3
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A =
∫ 3

−1

(
2x+ 3− x2

)
dx =

[
3x+ x2 − 1

3
x3

]3

−1

= 9−
(
− 5

3

)
=

32
3
.

C05S08.026: We find the limits of integration by solving x2 = 2x+ 8 for x = −2, x = 4. The area is

∫ 4

−2

(
2x+ 8− x2

)
dx =

[
8x+ x2 − 1

3
x3

]4

−2

=
80
3
−

(
− 28

3

)
= 36.

C05S08.027: We first find the limits of integration by solving y2 = y + 6 for y = −2, y = 3. The area of
the region—shown next—is therefore

A =
∫ 3

−2

(
y + 6− y2

)
dy =

[
6y +

1
2
y2 − 1

3
y3

]3

−2

=
27
2
−

(
− 22

3

)
=

125
6
.

C05S08.028: Solving y2 = 8 − 2y for y = −4, y = 2 yields the limits of integration, and the area of the
region is

A =
∫ 2

−4

(8− 2y − y2) dy =
[
8y − y2 − 1

3
y3

]2

−4

=
28
3
−

(
− 80

3

)
= 36.

C05S08.029: The two graphs meet at the right-hand endpoint of the given interval, where x = π/4.
Therefore the area of the region they bound—shown next—is

A =
∫ π/4

0

(cosx − sinx) dx =
[

sinx + cosx
]π/4
0

=
√

2 − 1 ≈ 0.414213562373.
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C05S08.030: The two graphs meet at the left-hand endpoint x = −3π/4 of the given interval. The area
they bound over that interval is

A =
∫ 0

−3π/4

(cosx− sinx) dx =
[

sinx + cosx
]0

−3π/4

= 1 +
√

2 ≈ 2.414213562373.

C05S08.031: Solution of 4y2 + 12y + 5 = 0 yields the limits of integration y = a = − 5
2 and y = b = − 1

2 .
Hence the area of the region bounded by the two given curves—shown next—is

A =
∫ b

a

(
−12y − 5− 4y2

)
dy =

[
−5y − 6y2 − 4

3
y3

]b
a

=
7
6
−

(
− 25

6

)
=

16
3
.

C05S08.032: Solution of x2 = 3 + 5x − x2 yields the limits of integration x = a = − 1
2 and x = b = 3.

Hence the area bounded by the gives curves is

A =
∫ b

a

(3 + 5x− 2x2) dx =
[
3x+

5
2
x2 − 2

3
x3

]b
a

=
27
2
−

(
− 19

24

)
=

343
24

.

C05S08.033: Solution of 3y2 = 12y − y2 − 5 yields the limits of integration y = a = 1
2 and y = b = 5

2 .
Hence the area of the region bounded by the given curves—shown next—is

A =
∫ b

a

(−5 + 12y − 4y2) dy =
[
−5y + 6y2 − 4

3
y3

]b
a

=
25
6
−

(
− 7

6

)
=

16
3
.
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C05S08.034: We solve x2 = 4(x− 1)2 for x = a = 2
3 and x = b = 2 to find the limits of integration. The

area of the region bounded by the two given curves is

A =
∫ b

a

(8x− 4− 3x2) dx =
[
4x2 − 4x− x3

]b
a

= 0−
(
− 32

27

)
=

32
27
.

C05S08.035: The only solution of x + 1 = 1/(x + 1) in the given interval I = [0, 1] is x = 0. The area
between the two curves over I is thus

A =
∫ 1

0

(
x+ 1− 1

x+ 1

)
dx =

[
x+

1
2
x2 − ln(x+ 1)

]1

0

=
3
2
− ln 2 ≈ 0.80685281944005469.

The region bounded by the two curves over the interval I is shown next.

C05S08.036: It’s clear that the first two curves cross only at (0, 1). Hence the area of the region bounded
by all three—shown below—is

A =
∫ 1

0

(x+ 1− e−x) dx =
[

1
2
x2 + x+ e−x

]1

0

=
3
2

+
1
e
− 1 =

e+ 2
2e
≈ 0.8678794412.

6



-0.2 0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

-0.2 0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

2.5

3

3.5

2 4 6 8 10

0.25

0.5

0.75

1

1.25

1.5

1.75

C05S08.037: It’s clear that the first two curves cross only at (0, 1). Thus the area of the region bounded
by all three—shown next—is

A =
∫ 1

0

(ex − e−x) dx =
[
ex + e−x

]1

0

= e+
1
e
− 2 =

(e− 1)2

e
≈ 1.0861612696.

C05S08.038: It is clear that the first two curves cross only at (0, 1). Hence the area bounded by all
three—shown next—is

A =
∫ 10

0

(
1

x+ 1
− 1

10x+ 1

)
dx =

[
ln(x+ 1)− 1

10
ln(10x+ 1)

]10

0

= ln 11− 1
10

ln 101 ≈ 1.936383221.
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C05S08.039: The following figure makes it clear that the area bounded by the three curves is

A =
∫ 1

0

x exp(−x2) dx =
[
− 1

2
exp(−x2)

]1

0

= − 1
2e

+
1
2

=
e− 1
2e
≈ 0.3160602794.

C05S08.040: Solving

8
x+ 2

= 4− x

shows that the two curves cross where x = 0 and where x = 2. Hence the area between them is

A =
∫ 2

0

(
4− x− 8

x+ 2

)
dx =

[
4x− 1

2
x2 − 8 ln(x+ 2)

]2

0

= 6− 8 ln 2 ≈ 0.4548225555.

C05S08.041: The curves meet where x = −1 and where x = 1, so the area of the region they bound—shown
next—is

∫ 1

−1

(1− x3 − x2 + x) dx =
[
x+

1
2
x2 − 1

3
x3 − 1

4
x4

]1

−1

=
11
12
−

(
− 5

12

)
=

4
3
.

C05S08.042: First we solve
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x3 − x = 1− x4:

x4 + x3 − x− 1 = 0;

x3(x+ 1)− (x+ 1) = 0;

(x+ 1)(x3 − 1) = 0;

(x+ 1)(x− 1)(x2 − x+ 1) = 0;

x = −1 or x = 1

(x2 − x+ 1 = 0 has no real solutions). Hence the two curves meet at (−1, 0) and (1, 0). Therefore the area
of the region they bound is

A =
∫ 1

−1

(1− x4 − x3 + x) dx =
[
x+

1
2
x2 − 1

4
x4 − 1

5
x5

]1

−1

=
21
20
−

(
− 11

20

)
=

8
5
.

The region itself is shown next.

C05S08.043: We solve x2 = x3 − 2x to find x = −1, x = 0, and x = 2. So the two given curves meet at
(−1, 1), (0, 0), and (2, 4), as shown in the following figure. The area of the region on the left is

A1 =
∫ 0

−1

(x3 − 2x− x2) dx =
[

1
4
x4 − 1

3
x3 − x2

]0

−1

= 0−
(
− 5

12

)
=

5
12
.

The area of the region on the right is

A2 =
∫ 2

0

(2x+ x2 − x3) dx =
[
x2 +

1
3
x3 − 1

4
x4

]2

0

=
8
3
.

Therefore the total area bounded by the two regions is A1 +A2 =
37
12

.
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C05S08.044: We solve x3 = 2x3 + x2 − 2x for x = −2, x = 0, and x = 1, indicating that the two given
curves meet at the three point (−2, −8), (0, 0), and (1, 1), as shown in the following figure. The area of the
region on the left is

A1 =
∫ 0

−2

(x3 + x2 − 2x) dx =
[

1
4
x4 +

1
3
x3 − x2

]0

−2

= 0−
(
− 8

3

)
=

8
3
.

The area of the region on the right is

A2 =
∫ 1

0

(2x− x2 − x3) dx =
[
x2 − 1

3
x3 − 1

4
x4

]1

0

=
5
12
.

Therefore the total area of the two regions is A1 +A2 =
37
12

.

C05S08.045: The first integral is

I1 =
∫ 3

−3

4x(9− x2)1/2 dx =
[
− 4

3
(9− x2)3/2

]3

−3

= 0.

The second is

I2 =
∫ 3

−3

5
√

9− x2 dx = 5
∫ 3

−3

√
9− x2 dx.

Because the graph of y =
√

9− x2 is a semicircle of radius 3, centered at the origin, and lying in the first
and second quadrants, I2 is thus five times the area of such a semicircle, so that

I2 = 5 · 1
2
· π · 32 =

45
2
π,

and because I1 = 0, this is also the value of the integral given in Problem 45.

C05S08.046: Let u = x2, so that du = 2x dx and x dx = 1
2 du. Then

I =
∫ 3

0

x(81− x4)1/2 dx =
1
2

∫ 9

0

(81− u2)1/2 du =
1
2

∫ 9

0

(81− x2)1/2 dx. (1)

The graph of y =
√

81− x2 is a quarter circle of radius 9 centered at (0, 0) and lying in the first quadrant,
so the last expression in Eq. (1) is half the area of that quarter circle. Therefore

I =
1
2
· 1
4
· π · 92 =

81
8
π.
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C05S08.047: We solve the equation of the ellipse for

y =
b

a
(a2 − x2)1/2,

and hence the area of the ellipse is given by

A = 4
∫ a

0

b

a
(a2 − x2)1/2 dx =

4b
a

∫ a

0

√
a2 − x2 dx. (1)

The last integral in Eq. (1) is the area of the quarter-circle in the first quadrant with center at the origin
and radius a, and therefore

A =
4b
a
· 1
4
πa2 = πab.

C05S08.048: The area bounded by the parabolic segment is

∫ 1

−1

(1− x2) dx =
[
x− 1

3
x3

]1

−1

=
2
3
−

(
− 2

3

)
=

4
3
.

The triangle has base 2 and height 1, so its area is 1, and the area of the parabolic segment is indeed 4
3 times

the area of the triangle.

C05S08.049: By solving the equations of the line and the parabola simultaneously, we find that A = (−1, 1)
and B = (2, 4). The slope of the tangent line at C is the same as the slope 1 of the line through A and B,
and it follows that C has x-coordinate 1

2 and thus y-coordinate 1
4 . It now follows that the distance from A

to B is AB = 3
√

2, the distance from B to C is BC = 3
4

√
29, and the distance from A to C is AC = 3

4

√
5.

Heron’s formula then allows us to find the area of triangle ABC; it is the square root of the product of

3
8

(
4
√

2 +
√

5 +
√

29
)
, −3

√
2 +

3
8

(
4
√

2 +
√

5 +
√

29
)
,

− 3
4

√
5 +

3
8

(
4
√

2 +
√

5 +
√

29
)
, and − 3

4

√
29 +

3
8

(
4
√

2 +
√

5 +
√

29
)
.

The product can be simplified to 729
64 , so the area of triangle ABC is 27

8 . The area of the parabolic segment
is

∫ 2

−1

(x+ 2− x2) dx =
9
2

=
4
3
· 27

8
,

exactly as Archimedes proved in more general form over 2000 years ago. Mathematica did the arithmetic
for us in this problem. If you prefer to do it by hand, show that the line through C perpendicular to the
tangent line there has equation y = 3

4 − x. Show that this line meets the line through AB at the point(
− 5

8 ,
11
8

)
. Show that the perpendicular from C to that line has length h = 9

8

√
2. Show that AB has length

3
√

2. Then triangle ABC has base AB and height h, so its area is

1
2
·
(

9
8

√
2

)
· 3
√

2 =
27
8
.

C05S08.050: The area of the part of the region R lying over [1, b] is

11



∫ b

1

1
x2

dx =
[
− 1
x

]b
1

= 1− 1
b
.

When we evaluate the limit of this expression as b → +∞, we find that the area of R is 1. We will return
to this and related topics in Section 9.8.

C05S08.051: The graph of the cubic y = 2x3 − 2x2 − 12x meets the x-axis at x = −2, x = 0, and x = 3.
The graph is above the x-axis for −2 < x < 0 and below it for 0 < x < 3, so the graph of the cubic and the
x-axis form two bounded plane regions. The area of the one on the left is

A1 =
∫ 0

−2

(2x3 − 2x2 − 12x) dx =
[

1
2
x4 − 2

3
x3 − 6x2

]0

−2

=
32
3

and the area of the one on the right is

A2 =
∫ 3

0

(12x+ 2x2 − 2x3) dx =
[
6x2 +

2
3
x3 − 1

2
x4

]3

0

=
63
2
.

Therefore the total area required in Problem 51 is A1 +A2 =
253
6

.

C05S08.052: On the one hand, the area in question is

A =
∫ h

−h
(px2 + qx+ r) dx =

[
1
3
px3 +

1
2
qx2 + rx

]h
−h

=
2
3
ph3 + 2rh.

But

1
3
h [f(−h) + 4f(0) + f(h) ] =

1
3
h

[
ph2 − qh+ r + 4r + ph2 + qh+ r

]
=

1
3
h(2ph2 + 6r) =

2
3
ph3 + 2rh,

and this establishes the result sought in Problem 52. This problem figures significantly in the subsection on
parabolic approximations in Section 5.9.

C05S08.053: Given y2 = x(5 − x)2, the loop lies above and below the interval [0, 5], so by symmetry
(around the x-axis) its area is

2
∫ 5

0

(5− x)x1/2 dx = 2
[

2
15

(25x3/2 − 3x5/2)
]5

0

= 2 · 20
3

√
5 =

40
3

√
5.

C05S08.054: Given y2 = x2(x + 3), the loop lies above and below the interval [−3, 0], so by symmetry
(around the x-axis) its area is

A = 2
∫ 0

−3

−x
√
x+ 3 dx.

The minus sign is required because x < 0 and
√
x+ 3 > 0 for −3 < x < 0. Next, the substitution u = x+ 3

yields

A = 2
∫ 3

0

(3− u)u1/2 du = 2
[
2u3/2 − 2

5
u5/2

]3

0

= 2 ·
(

2 · 3
√

3− 2
5
· 9
√

3
)

=
24
5

√
3.
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C05S08.055: We applied Newton’s method to the equation x2 − cosx = 0 to find that the two curves
y = x2 and y = cosx meet at the two points (−0.824132, 0.679194) and (0.824132, 0.679194) (numbers
involving decimals are approximations). Let a = −0.824132 and b = 0.824132. The region between the two
curves (shown next) has area

∫ b

a

(cosx − x2) dx =
[
sinx − 1

3
x3

]b
a

≈ 1.09475.

C05S08.056: We applied Newton’s method to f(x) = sinx − x2 + 2x to find the positive solution b =
2.316934 of f(x) = 0 (numbers involving decimals are approximations). Clearly a = 0 is the other solution;
the points of intersection of the two graphs are (0, 0) and (2.316934, 0.734316). The area bounded by the
two graphs is

∫ b

a

(sinx − x2 + 2x) dx =
[
x2 − 1

3
x3 − cosx

]b
a

≈ 2.90108.

The region bounded by the two curves is shown next.

C05S08.057: We used Newton’s method to solve f(x) = 0 where

f(x) =
1

1 + x2
− x2 + 1,

and found the points at which the two curves intersect to be (−1.189207, 0.414214) and (1.189207, 0.414214)
(numbers involving decimals are approximations). With b = 1.189207 and a = −b, the area bounded by the
two curves (shown next) is

A =
∫ b

a

(
1

1 + x2
− x2 + 1

)
dx =

[
arctan(x)− 1

3
x3 + x

]b
a

≈ 3.00044
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(the antiderivative was computed with the aid of Formula 17 of the endpapers).

C05S08.058: We used Newton’s method with f(x) = 2x−x2−x4 +16 to find the negative solution x = a

of f(x) = 0; it turns out that the corresponding point where the two curves meet is (−1.752172, −6.574449)
(numbers involving decimals are approximations). The other solution is b = 2, so the curves also meet at
(2, 0). The area between them is thus

∫ b

a

(2x− x2 − x4 + 16) dx =
[
x2 − 1

3
x3 − 1

5
x5 + 16x

]b
a

≈ 46.8018.

The region bounded by the two curves is shown next.

C05S08.059: The curves y = x2 and y = k − x2 meet at the two points where x = a = −(k/2)1/2 and
x = b = (k/2)1/2. So the area between the two curves is

∫ b

a

(k − 2x2) dx =
[
kx− 2

3
x3

]b
a

=
2
√

2
3

k3/2.

When we set the last expression equal to 72, we find that k = 18.

C05S08.060: By symmetry, it is sufficient to work in the first quadrant. Then the curves y = k and
y = 100− x2 cross at the point x = b =

√
100− k . When we solve the equation

∫ b

0

(
100− x2 − k

)
dx = kb+

∫ 10

b

(
100− x2

)
dx

for k, we find that k = 50
(
2− 21/3

)
.

C05S08.061: We are interested in the region (or regions) bounded by the graphs of the two functions
f(x) = x and g(x) = x(x − 4)2. First we plot the two curves, using Mathematica 3.0, to guide our future
computations.
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Plot[ { f[x], g[x] }, { x, −1, 6 }, PlotRange → { −1, 11 } ];

It is easy to see that the curves cross where x = 0, x = 3, and x = 5. Note that g(x) � f(x) if 0 � x � 3
and that f(x) � g(x) if 3 � x � 5. Hence we compute the values of two integrals and add the results to get
the total area of the (bounded) regions bounded by the two curves.

a1 = Integrate[ g[x] - f[x], { x, 0, 3 } ]

63
4

a2 = Integrate[ g[x] - f[x], { x, 3, 5 } ]

16
3

a1 + a2

253
12

N[ %, 20 ]

21.083333333333333333

C05S08.062: With f(x) = x2 and g(x) = x(x− 4)2, we can easily use Mathematica 3.0 to find where the
graphs cross and to plot the graphs.

Solve[ f[x] == g[x], x ]

{{ x→ 0 }, { x→ 9−
√

17
2

}, { x→ 9 +
√

17
2

}}
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Plot[ { f[x], g[x] }, {x, −2, 8 }, PlotRange → { −4, 54 } ];

As in the solution of Problem 61, two integrals are required to find the total area bounded by the two curves.

r1 = 0; r2 = (9 − Sqrt[17])/2; r3 = (9 + Sqrt[17])/2;

a1 = Integrate[ g[x] - f[x], { x, r1, r2 } ]

51
√

17 − 107
8

a2 = Integrate[ f[x] - g[x], { x, r2, r3 } ]

51
√

17
4

a1 + a2 // Together

153
√

17 − 107
8

N[ %, 20 ]

65.479395089937758902

C05S08.063: We are given f(x) = (x− 2)2 and g(x) = x(x− 4)2. We begin by plotting the graphs of both
functions.

Plot[ { f[x], g[x] }, { x, −2, 6 }, PlotRange → { −4, 20 } ];
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The Solve command in Mathematica returns exact solutions all of which include the number i =
√
−1 , but

their numerical values are numbers such as 5.48929 + 10−51i, so all solutions are pure real, as indicated in
the preceding graph. We entered the numerical approximations to the roots:

r1 = 0.22154288174161126812; r2 = 3.28916854644830996908;

r3 = 5.48928857181007876279;

Then we computed two integrals and added the results to find the total area bounded by the two curves.

a1 = Integrate[ g[x] − f[x], { x, r1, r2 } ]

17.96479813911499075801

a2 = Integrate[ f[x] − g[x], { x, r2, r3 } ]

7.39746346656350500268

a1 + a2

25.36226160567849576069

C05S08.064: Given f(x) = 5 lnx− 2x+ 3, we first plotted the graph of f :

Plot[ f[x], { x, 0.5, 7 } ];

Beginning with initial estimates x0 = 7
10 and x0 = 6, we then applied Newton’s method, initially carrying

40 significant figures, to approximate the solutions of f(x) = 0 very accurately. Five iterations produced the
results

r1 = 0.73696591726375532670; r2 = 5.96460858839295659664;

(accurate to the number of digits shown) and a single integral yielded the (approximate) value of the area:

Integrate[ f[x], { x, r1, r2 } ]

8.89522349387660371502

C05S08.065: Given f(x) = 10 lnx and g(x) = (x− 5)2, we first plotted the graphs of both functions:
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Plot[ { f[x], g[x] }, { x, 0.7, 10.5 } ];

We then applied Newton’s method, carrying 50 digits initially, to approximate the solutions of f(x) = g(x).
The initial guesses x0 = 2.1 and x0 = 9.8 produced (after seven iterations) the following solutions, accurate
to the number of digits shown:

r1 = 2.19561040829474667642305282648227; r2 = 9.77472510546165546062557839624217;

and a single integral yields a very good approximation to the area bounded by the two curves:

Integrate[ f[x] − g[x], { x, r1, r2 } ]

86.148905476732141854653048449271365936

C05S08.066: Let f(x) = ex and g(x) = 10(1 + 5x− x2). First we plotted the graphs of f and g:

Plot[ { f[x], g[x] }, { x, −1, 4.5 } ];

Clearly the graphs cross near x = −0.2 and near x = 4.0. Using these numbers as initial estimates of the
solutions of f(x) = g(x), seven iterations of Newton’s method—carrying 60 digits initially—yielded the two
solutions, accurate to the number of digits shown here:

r1 = −0.17697970125714609944601323479679; r2 = 3.94429748860047291454039853228598;

Finally, a single integration yields a very accurate approximation to the area bounded by the two curves:
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Integrate[ g[x] − f[x], { x, r1, r2 } ]

174.00159869810014633984111106677060

C05S08.067: Given f(x) = e−x/2 and g(x) = x4 − 6x2 − 2x+ 4, we first plotted the graphs of f and g:

Plot[ { f[x], g[x] }, { x, −2.5, 2.7 } ];

Clearly the graphs cross at four points, near where x = −2.2, −0.9, 0.6, and 2.5. Using these estimates as
initial values, seven iterations of Newton’s method (carrying 60 digits initially) yields these four solutions of
f(x) = g(x), accurate to the number of digits shown here:

r1 = −2.21286965649560596689486746473117; r2 = −0.90416380610482135626736226590897;
r3 = 0.60360685508638066445123518977576; r4 = 2.49090865808642591763321220641991;

Then three integrations, followed by the sum of the results, gives a very accurate approximation to the total
area bounded by the graphs of f and g:

a1 = Integrate[ f[x] − g[x], { x, r1, r2 } ]

3.29201409095125227617309525829577

a2 = Integrate[ g[x] − f[x], { x, r2, r3 } ]

3.03877187423119505551620253633379

a3 = Integrate[ f[x] − g[x], { x, r3, r4 } ]

10.50223144411747460353190208812036

a1 + a2 + a3

16.83301740929992193522119988274992
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Section 5.9

C05S09.001: With ∆x = 1, f(x) = x, n = 4, and xi = i ·∆x, we have

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
= 8,

which is also the true value of the given integral.

C05S09.002: With ∆x = 0.2, f(x) = x2, n = 5, and xi = 1 + i ·∆x, we have

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
=

117
50

= 2.34.

The exact value of the integral is
7
3
≈ 2.333333.

C05S09.003: With ∆x = 0.5, f(x) =
√
x, n = 5, and xi = i ·∆x, we have

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
≈ 0.6497385976 ≈ 0.65.

The exact value of the integral is
2
3
≈ 0.666667.

C05S09.004: With ∆x = 0.5, f(x) =
1
x2

, n = 4, and xi = 1 + i ·∆x, we have

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
=

141
200

= 0.705000 ≈ 0.71.

The exact value of the integral is
2
3
≈ 0.666667.

C05S09.005: With ∆x = π/6, f(x) = cosx, n = 3, and xi = i ·∆x, we have

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
=

π

12

(
2 +
√

3
)
≈ 0.9770486167 ≈ 0.98.

The exact value of the integral is 1.

C05S09.006: With ∆x = π/4, f(x) = sinx, n = 4, and xi = i ·∆x, we have

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
=
π

4

(
1 +
√

2
)
≈ 1.8961188979 ≈ 1.90.

The exact value of the integral is 2.

C05S09.007: With ∆x = 1, f(x) = x, n = 4, and mi =
(
i− 1

2

)
·∆x, we have

Mn = (∆x) ·
n∑
i=1

f(mi) = 8.

1



The exact value of the integral is also 8.

C05S09.008: With ∆x = 0.2, f(x) = x2, n = 5, and mi = 1 +
(
i− 1

2

)
·∆x, we have

Mn = (∆x) ·
n∑
i=1

f(mi) =
233
100

= 2.33.

The exact value of the integral is
7
3
≈ 2.333333.

C05S09.009: With ∆x = 0.2, f(x) =
√
x, n = 5, and mi =

(
i− 1

2

)
·∆x, we have

Mn = (∆x) ·
n∑
i=1

f(mi) ≈ 0.6712800859 ≈ 0.67.

The exact value of the integral is
2
3
≈ 0.666667.

C05S09.010: With ∆x = 0.5, f(x) =
1
x2

, n = 4, and mi = 1 +
(
i− 1

2

)
·∆x, we have

Mn = (∆x) ·
n∑
i=1

f(mi) =
7781792
12006225

≈ 0.65.

The exact value of the integral is
2
3
≈ 0.666667.

C05S09.011: With ∆x = π/6, f(x) = cosx, n = 3, and mi =
(
i− 1

2

)
·∆x, we have

Mn = (∆x) ·
n∑
i=1

f(mi) =
π

12

(√
2 +
√

6
)
≈ 1.01.

The exact value of the integral is 1.

C05S09.012: With ∆x = π/4, f(x) = sinx, n = 4, and mi =
(
i− 1

2

)
·∆x, we have

Mn = (∆x) ·
n∑
i=1

f(mi) =
π

4

(
sin

π

8
+ sin

3π
8

+ sin
5π
8

+ sin
7π
8

)
≈ 2.05.

The exact value of the integral is 2.

C05S09.013: With ∆x = 0.5, n = 4, f(x) = x2, and xi = 1 + i ·∆x, we have

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
=

35
4

= 8.75

and

Sn =
∆x
3
· [f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn) ] =

26
3
≈ 8.67.

The true value of the integral is also
26
3

(see Problem 29).

C05S09.014: With a = 1, b = 5, n = 4, ∆x = 1, xi = 1 + i ·∆x, and f(x) =
1
x

, we obtain

2



Tn =
∆x
2
·
[
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

]
=

101
60
≈ 1.6833333333

and

Sn =
∆x
3
· [ f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + f(x4) ] =

73
45
≈ 1.6222222222.

The true value is
∫ 5

1

1
x
dx =

[
lnx

]5

1

= ln 5 ≈ 1.6094379124.

C05S09.015: With a = 0, b = 2, n = 4, ∆x = 0.5, f(x) = e−x, and xi = i ·∆x, we obtain

Tn =
∆x
2
·
[
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

]
≈ 0.8826039513

and

Sn =
∆x
3
· [ f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + f(x4) ] ≈ 0.8649562408.

The true value of the integral is
∫ 2

0

e−x dx =
[
− e−x

]2

0

= 1− 1
e2
≈ 0.8646647168.

C05S09.016: With ∆x = 0.25, n = 4, f(x) =
√

1 + x, and xi = i ·∆x, we have

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
≈ 1.2181903242 ≈ 1.22

and

Sn =
∆x
3
· [f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn) ] ≈ 1.2189451569 ≈ 1.22

The true value of the integral is
2
3

(
2
√

2− 1
)
≈ 1.2189514165 ≈ 1.22.

C05S09.017: With ∆x =
1
3
, n = 6, f(x) =

√
1 + x3, and xi = i ·∆x, we have

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
≈ 3.2598849023 ≈ 3.26

and

Sn =
∆x
3
· [f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn) ] ≈ 3.2410894400 ≈ 3.24.

The true value of the integral is approximately 3.24131. The antiderivative of f is known to be a nonele-
mentary function.

C05S09.018: With ∆x = 0.5, n = 6, f(x) =
1

1 + x4
, and xi = i ·∆x, we have
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Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
=

22392745
20394056

≈ 1.0980035065 ≈ 1.10

and

Sn =
∆x
3
· [f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn) ] =

192249939
173349476

≈ 1.1090309786 ≈ 1.11.

The true value of the integral is approximately 1.0984398680. The antiderivative of f is an elementary
function but is not easy to find by hand; techniques of the later sections of Chapter 7 are required.

C05S09.019: With a = 1, b = 5, n = 8, ∆x = 0.5, f(x) = (1 + lnx)1/3, and xi = 1 + i ·∆x, we obtained

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
≈ 5.0139700316

and

Sn =
∆x
3
· [f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn) ] ≈ 5.0196759933.

The true value of the integral is approximately 5.02005.

C05S09.020: With a = 0, b = 1, n = 10, ∆x = 0.1, f(x) =
ex − 1
x

if 0 < x � 1, f(0) = 1, and xi = i ·∆x,
we obtained

Tn =
∆x
2
·
(
f(x0) + f(xn) + 2 ·

n−1∑
i=1

f(xi)

)
≈ 1.3183187746

and

Sn =
∆x
3
· [f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn) ] ≈ 1.3179023254.

The true value of the integral is approximately 1.31790.

C05S09.021: With ∆x = 0.25 and n = 6, we have

Tn =
∆x
2

[3.43 + 2 · (2.17 + 0.38 + 1.87 + 2.65 + 2.31) + 1.97 ] = 3.02

and

Sn =
∆x
3

[3.43 + 4 · (2.17 + 1.87 + 2.31) + 2 · (0.38 + 2.65) + 1.97 ] ≈ 3.07167.

C05S09.022: With ∆x = 1 and n = 10, we have

Tn =
∆x
2

[23 + 2 · (8− 4 + 12 + 35 + 47 + 53 + 50 + 39 + 29) + 5 ] = 283

and

Sn =
∆x
3

[23 + 4 · (8 + 12 + 47 + 50 + 29) + 2 · (−4 + 35 + 53 + 39) + 5 ] = 286.
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C05S09.023: We read the following data from Fig. 5.9.16:

0 1 2 3 4 5 6 7 8 9 10

250 300 320 327 318 288 250 205 158 110 80

With ∆x = 1 and n = 10, we have

Tn =
∆x
2

[250 + 2 · (300 + 320 + 327 + 318 + 288 + 250 + 205 + 158 + 110) + 80 ] = 2441

and

Sn =
∆x
3

[250 + 4 · (300 + 327 + 288 + 205 + 110) + 2 · (320 + 318 + 250 + 158) + 80 ] =
7342

3
≈ 2447.33.

C05S09.024: We read the following data from Fig. 5.9.17:

0 3 6 9 12 15 18 21 24 27 30

19 15 13 20 24 18 13 8 4 9 16

With ∆x = 3 and n = 10, we have

Tn =
∆x
2

[19 + 2 · (15 + 13 + 20 + 24 + 18 + 13 + 8 + 4 + 9) + 16 ] =
849
2
.

Divide by 30 to obtain an approximation to the average value of the temperature over the 30-day period;
the result is 14.15. Next,

Sn =
∆x
3

[19 + 4 · (15 + 20 + 18 + 8 + 9) + 2 · (13 + 24 + 13 + 4) + 16 ] = 423;

Divide by 30 to get an average temperature of 14.10.

C05S09.025: With ∆x = 50 and n = 12, we find

Tn =
∆x
2

[0 + 2 · (165 + 192 + 146 + 63 + 42 + 84 + 155 + 224 + 270 + 267 + 215) + 0 ] = 91150.

This result is in square feet. Divide by 9 to convert to square yards, then divide by 4840 to convert to acres;
the result is approximately 2.093 acres. Next,

Sn =
∆x
3

[0 + 4 · (165 + 146 + 42 + 155 + 270 + 215) + 2 · (192 + 63 + 84 + 224 + 267) + 0 ] =
281600

3
.

As before, divide by 9 and by 4840 to obtain the estimate 2.155 acres.

C05S09.026: With a = 1, b = 2.7, n = 100, ∆x = (b− a)/n, xi = 1 + i ·∆x, and f(x) =
1
x

, we find that

Sn =
∆x
3

[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 4f(xn−1) + f(xn) ] ≈ 0.993252 < 1.

The same computation with b = 2.8 yields Sn ≈ 1.02962 > 1, and this is enough to show that 2.7 < e < 2.8.
We can be sure of both inequalities because Simpson’s error estimate indicates that in each case the error is
less than

24 · (2.8− 1)5

180 · 1004
≈ 2.52× 10−8.
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C05S09.027: We have f ′′(x) =
2
x3

, so the constant in the error estimate is K2 = 2. With a = 1, b = 2,
and n subintervals, we require

K2(b− a)3
12n2

< 0.0005,

which implies that n2 > 333.33 and thus that n > 18.2; n = 19 will suffice. (In fact, with only n = 13
subintervals, the trapezoidal estimate of 0.6935167303 differs from the true value of ln 2 by less than 0.00037.)

C05S09.028: We have f (4)(x) = 24x−5, so the constant in Simpson’s error estimate is K4 = 24. With
a = 1, b = 2, and n subintervals, we require

K4(b− a)5
180n4

< 0.000005,

which implies that n2 > 26666.7 and thus that n > 12.78. Because n must be even, the answer is that n
should be 14. (With n = 14 subintervals, the difference between S14 ≈ 0.6931479839 and the true value of
ln 2 is less than 8.1× 10−7.)

C05S09.029: If p(x) = ax3 + bx2 + cx + d is a polynomial of degree 3 or smaller, then p(4)(x) ≡ 0, so
the constant K4 in Simpson’s error estimate is zero, which implies that the error will also be zero no matter
what the value of the even positive integer n may be.

C05S09.030: Let f(x) = (4−2x)−(6x2−7x) = 4+5x−6x2. Choose a = − 1
2 , b = 4

3 , n = 2, ∆x = (b−a)/n,
and xi = i ·∆x. Then

S2 =
∆x
3

[f(x0) + 4f(x1) + f(x2) ] =
1331
216

.

C05S09.031: With the usual meanings of the notation, we have

Mn + Tn = (∆x) · [f(m1) + f(m2) + f(m3) + · · ·+ f(mn) ]

+
∆x
2
· [f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn) ]

=
∆x
2
· [f(x0) + 2f(m1) + 2f(x1) + 2f(m2) + 2f(x2) + · · ·+ 2f(xn−1) + 2f(mn) + f(xn) ] = 2T2n.

The result in Problem 31 follows immediately.

C05S09.032: With α = 10◦ (which we convert to radians) and

f(x) =
1√

1− (k sinx)2
,

we use n = 10, a = 0, b = π/2, ∆x = (b− a)/n, and xi = i ·∆x and obtain

Sn =
∆x
3
· [f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 4f(xn−1) + f(xn) ] ≈ 1.5737921309.

We multiply by 4(L/g)1/2 to find the period T of the pendulum to be approximately 2.0109178213 (seconds).
The same computation with α = 50◦ yields T ≈ 2.1070088018 (seconds). The limiting value of T as α→ 0
is approximately 2.00709.
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C05S09.033: Suppose first that f(x) > 0 and f ′′(x) > 0 for a � x � b. Then the graph of f is concave
upward on [a, b]. Now examine Fig. 5.9.11, where it is shown that the midpoint approximation is the same
as the tangent approximation. The tangent line will lie under the graph of f because the graph is concave
upward; the chord connecting (xi−1, f(xi−1)) and (xi, f(xi)) will lie over the graph. Hence every term in
the midpoint sum will underestimate the area under the graph of f and every term in the trapezoidal sum
will overestimate it. Thus

Mn <

∫ b

a

f(x) dx < Tn

no matter what the choice of n. If f ′′(x) < 0 on [a, b], then Figs. 5.9.11 and 5.9.12 show that the inequalities
will be reversed.

C05S09.034: Simpson’s approximation to the given integral is

S2 =
1
6

(
e0 + 4e1/2 + e1

)
=

1 + 4
√
e+ e

6
.

Therefore

1 + 4
√
e+ e

6
≈ e− 1,

and this leads to the approximation 5e− 4
√
e− 7 ≈ 0. We solve for e:

5e− 7 ≈ 4
√
e;

25e2 − 70e+ 49 ≈ 16e;

25e2 − 86e+ 49 ≈ 0;

e ≈ 1
50

(
86 +

√
2496

)
= 1

25

(
43 + 4

√
39

)
;

e ≈ 2.71919967974.

Therefore e ≈ 2.7192. In Chapter 9 you will see ways to approximate e with much more precision and with
very little additional work.

C05S09.035: We estimate the integral
∫ 100000

90000

1
lnx

dx first with the midpoint rule:

10000
ln(95000)

≈ 872.476;

then with the trapezoidal rule:

(5000)
(

1
ln(90000)

+
1

ln(100000)

)
≈ 872.600.

The first is an underestimate and the second is an overestimate because the graph of y = 1/(lnx) is concave
upward for x > 0. The true value of the integral, incidentally, is approximately 872.5174045.

7



Chapter 5 Miscellaneous Problems

C05S0M.001:
∫

(5x−3 − 2x−2 + x2) dx = − 5
2
x−2 + 2x−1 +

1
3
x3 + C.

C05S0M.002:
∫

(x1/2 + 3x+ 3x3/2 + x2) dx =
2
3
x3/2 +

3
2
x2 +

6
5
x5/2 +

1
3
x3 + C.

C05S0M.003:
∫

(1− 3x)9 dx = − 1
30

(1− 3x)10 + C.

C05S0M.004:
∫

7(2x+ 3)−3 dx = − 7
4

(2x+ 3)−2 + C.

C05S0M.005:
∫

(9 + 4x)1/3 dx =
3
16

(9 + 4x)4/3 + C.

C05S0M.006:
∫

24(6x+ 7)−1/2 dx = 8(6x+ 7)1/2 + C.

C05S0M.007:
∫

x3(1 + x4)5 dx =
1
24

(1 + x4)6 + C.

C05S0M.008:
∫

3x2(4 + x3)1/2 dx =
2
3

(4 + x3)3/2 + C.

C05S0M.009:
∫
x(1− x2)1/3 dx = − 3

8
(1− x2)4/3 + C.

C05S0M.010:
∫

3x(1 + 3x2)−1/2 dx = (1 + 3x2)1/2 + C.

C05S0M.011:
∫

(7 cos 5x− 5 sin 7x) dx =
1
35

(25 cos 7x+ 49 sin 5x) + C.

C05S0M.012:
∫

5 sin3 4x cos 4x dx =
5
16

sin4 4x+ C.

C05S0M.013: If u = x4, then du = 4x3 dx, so that x3 dx =
1
4
du. Hence

∫
x3(1 + x4)1/2dx =

∫
1
4

(1 + u)1/2 du =
1
4
· 2
3

(1 + u)3/2 + C =
1
6

(1 + x4)3/2 + C.

C05S0M.014: If u = sinx then du = cosx dx. Hence
∫

sin2 x cosx dx =
∫
u2 du =

1
3
u3 + C =

1
3

sin3 x+ C.

C05S0M.015: If u = 1 + x1/2 then du =
1
2
x−1/2 dx, so that x−1/2 dx = 2 du. Therefore

∫
x−1/2(

1 + x1/2
)2 dx =

∫
2
u2

du =
∫

2u−2 du = −2u−1 + C = − 2
1 +
√
x

+ C.
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C05S0M.016: If u = x1/2 then du =
1
2
x−1/2 dx, so that x−1/2 dx = 2 du. Hence

∫
x−1/2(

1 + x1/2
)2 dx =

∫
2

(1 + u)2
du =

∫
2(1 + u)−2 du = −2(1 + u)−1 + C = − 2

1 +
√
x

+ C.

C05S0M.017: If u = 4x3 then du = 12x2 dx, so that x2 dx =
1
12

du. Hence
∫
x2 cos 4x3 dx =

∫
1
12

cosu du =
1
12

sinu+ C =
1
12

sin 4x3 + C.

C05S0M.018: If u = x+ 1, then x = u− 1 and dx = du. Hence

∫
x(x+1)14 dx =

∫
(u−1)u14 du =

∫
(u15−u14) du =

1
16
u16− 1

15
u15 +C =

1
16

(x+1)16− 1
15

(x+1)15 +C.

C05S0M.019: If u = x2 + 1, then du = 2x dx, so that x dx =
1
2
du. Thus

∫
x(x2 + 1)14 dx =

∫
1
2
u14 du =

1
30
u15 + C =

1
30

(x2 + 1)15 + C.

An unpleasant alternative is to expand (x2 + 1)14 using the binomial formula, multiply by x, then integrate
the resulting polynomial to obtain

1
30
x30 +

1
2
x28 +

7
2
x26 +

91
6
x24 +

91
2
x22 +

1001
10

x20 +
1001

6
x18

+
429
2
x14 +

1001
6

x12 +
1001
10

x10 +
91
2
x8 +

91
6
x6 +

7
2
x4 +

1
2
x2 + C.

C05S0M.020: If u = x4, then du = 4x3 du, so that x3 dx =
1
4
du. Then

∫
x3 cosx4 dx =

∫
1
4

cosu du =
1
4

sinu+ C =
1
4

sinx4 + C.

C05S0M.021: If u = 4− x then x = 4− u and dx = − du. Hence

∫
x(4− x)1/2 dx =

∫
(u− 4)u1/2 du =

∫
(u3/2 − 4u1/2) du

=
2
5
u5/2 − 8

3
u3/2 + C =

2
5

(4− x)5/2 − 8
3

(4− x)3/2 + C.

C05S0M.022: If u = x4 + x2, then du = (4x3 + 2x) dx, so that (x+ 2x3) dx =
1
2
du. Thus

∫
(x+ 2x3)(x4 + x2)−3 dx =

∫
1
2
u−3 du = − 1

4
u−2 + C = − 1

4(x4 + x2)2
+ C.

C05S0M.023: If u = x4, then du = 4x3 dx, so that 2x3 dx =
1
2
du. Therefore
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∫
2x3(1 + x4)−1/2 dx =

∫
1
2
(1 + u)−1/2 du = (1 + u)1/2 + C =

√
1 + x4 + C.

C05S0M.024: If u = x2 + x, then du = (2x+ 1) dx, so that
∫

(x2 + x)−1/2(2x+ 1) dx =
∫
u−1/2 du = 2u1/2 + C = 2

√
x2 + x + C.

C05S0M.025: y(x) =
∫ x

0

(3t2 + 2t) dt+ 5 =
[
t3 + t2

]x
0

+ 5 = x3 + x2 + 5.

C05S0M.026: y(x) =
∫ x

4

3t1/2 dt+ 20 =
[
2t3/2

]x
4

+ 20 = 2x3/2 − 16 + 20 = 2x3/2 + 4.

C05S0M.027: If
dy

dx
= (2x+ 1)5, then y(x) =

1
12

(2x+ 1)6 + C. Then

2 = y(0) =
1
12

+ C implies that C =
23
12
,

and therefore y(x) =
1
12

(2x+ 1)6 +
23
12

.

C05S0M.028: y(x) =
∫ x

4

2(t+ 5)−1/2 dt+ 3 =
[
4(t+ 5)1/2

]x
4

+ 3 = 4(x+ 5)1/2 − 12 + 3 = 4
√
x+ 5 − 9.

C05S0M.029: y(x) =
∫ x

1

t−1/3 dt+ 1 =
[

3
2
t2/3

]x
1

+ 1 =
3
2
x2/3 − 3

2
+ 1 =

3x2/3 − 1
2

.

C05S0M.030: y(x) =
∫ x

0

(1− cos t) dt =
[
t− sin t

]x
0

= x− sinx.

C05S0M.031: First convert 90 mi/h to 132 ft/s (just multiply by 22
15 ). Let x(t) denote the distance (in

feet) the automobile travels after its brakes are first applied at time t = 0 (s). Then x(t) = −11t2 + 132t,
so the automobile first comes to a stop when v(t) = x′(t) = −22t+ 132 = 0; that is, when t = 6. Therefore
the total distance it travels while braking will be x(6) = 396 (ft).

C05S0M.032: If the stone is dropped at time t = 0 (s), then its altitude at time t will be

y(t) = −11250t2 + 450 (ft).

The stone reaches the ground when y(t) = 0, so that t = 1
5 . Its impact velocity will be x′(t) = v(t) = −22500t

evaluated when t = 1
5 ; that is, v

(
1
5

)
= −4500 (ft/s). Thus the stone remains aloft for 0.2 s and its impact

speed will be 4500 ft/s.

C05S0M.033: Let v0 denote the initial velocity of the automobile and let x(t) denote the distance it has
skidded since its brakes were applied at time t = 0 (units are in feet and seconds). Then x(t) = −20t2 + v0t.
Let T denote the time at which the automobile first comes to a stop. Then

x(T ) = 180 and x′(T ) = 0.

That is,
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−20T 2 + v0T = 180 and − 40T + v0 = 0.

The second of these equations implies that v0 = 40T , and substitution of this datum in the first of these
equations yields −20T 2 + 40T 2 = 180, so that T 2 = 9. Thus T = 3, and therefore v0 = 120. Hence the
initial velocity of the automobile was 120 feet per second, slightly less than 82 miles per hour (slightly less
than 132 kilometers per hour).

C05S0M.034: Assume that the car begins its journey at time t = 0 and at position x = 0 (units are in
feet and seconds). Then x(t) = 4t2 because both initial position and initial velocity are zero. It will reach
a speed of 60 miles per hour—that is, 88 feet per second—when x′(t) = 88; that is, when y = 11. At that
point the car will have traveled a distance of x(11) = 484 feet.

C05S0M.035: Let q denote the acceleration of gravity on the planet Zorg. First consider the ball dropped
from a height of 20 feet. Then its altitude at time t will be y(t) = − 1

2qt
2 + 20 (because its initial velocity

is v0 = 0). Then the information that x(2) = 0 yields the information that q = 10. Now suppose that the
ball is dropped from an initial height of 200 feet. Then its altitude at time t will be y(t) = −5t2 + 200, so
the ball will reach then ground when 5t2 = 200; that is, when t = 2

√
10. Its velocity during its descent will

be v(t) = y′(t) = −10t, so its impact velocity will be v
(
2
√

10
)

= −20
√

10 feet per second. Thus its impact
speed will be |v

(
2
√

10
)
| = 20

√
10 ≈ 63.25 feet per second.

C05S0M.036: First we need to find the initial velocity v0 you can impart to the ball that you throw
straight upward. Let y(t) denote the altitude of the ball at time t (units are in feet and seconds), with
the throw occurring at time t = 0. Then y(t) = −16t2 + v0t (we make the simplifying assumption that
y0 = y(0) = 0). The ball reaches its maximum height when its velocity v(t) = y′(t) = −32t+ v0 is zero; let
T denote the time at which that event occurs. Then

x(T ) = 144 when v(T ) = 0;

that is, we must solve simultaneously the equations

−16T 2 + v0T = 144 and − 32T + v0 = 0.

The second of these equations yields v0 = 32T , and substitution in the first yields −16T 2 + 32T 2 = 144, so
that T = 3, and thus v0 = 96.

We now assume that you can impart the same initial velocity to the ball on both Zorg and Mesklin
(the latter assumption is surely invalid, but it’s clearly the intent of the problem). On Zorg, the altitude
function of the ball will be y(t) = −5t2 + 96t, so its velocity will be v(t) = −10t + 96. The ball will reach
its maximum altitude when v(t) = 0, thus when t = 9.6. Thus the maximum altitude reached by the ball
will be y(9.6) = 460.8 (feet). On Mesklin, the altitude function of the ball will be y(t) = −11250t2 + 96t, so
its velocity at time t will be v(t) = −22500t + 96. The ball reaches its maximum altitude when v(t) = 0,
so that t = 8

1875 ≈ 0.004267 (seconds). Its maximum altitude will therefore be y
(

8
1875

)
= 128

625 = 0.2048 feet;
that is, only 2.4576 inches, a little less than 6.25 centimeters.

C05S0M.037: First we need to find the deceleration constant a of the car. Let x(t) denote the distance (in
feet) the car has skidded at time t (in seconds) if its brakes are applied at time t = 0. Then x(t) = − 1

2at
2+44t.

(We converted 30 miles per hour to 44 feet per second.) Thus in the first skid, if the car first comes to a
stop at time T , then both

x(T ) = 44 and x′(T ) = 0.
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Because the velocity of the car is v(t) = x′(t) = −at+ 44, we must solve simultaneously the equations

− 1
2
aT 2 + 44T = 44 and − aT + 44 = 0.

The second of these equations yields T =
44
a

, then substitution in the first equation yields

− 1
2
· 442

a
+

442

a
= 44;

− 22
a

+
44
a

= 1;

22
a

= 1; a = 22.

Now suppose that the initial velocity of the car is 60 miles per hour; that is, 88 feet per second. With the
same meaning of x(t) as before, we now have x(t) = −11t2 + 88t. Thus v(t) = x′(t) = −22t+ 88, so the car
comes to a stop when t = 4. The distance it now skids will be x(t) = 176 feet. The point of the problem is
that doubling the initial speed of the car quadruples the stopping distance.

C05S0M.038: When the fuel is exhausted, the acceleration of the rocket is that solely due to gravity, so
the velocity stops increasing and begins to decrease. In Fig. 5.MP.1 this appears to occur about at time
t = 1.8. When the parachute opens, the velocity stops decreasing because of the upward force due to the
parachute; this appears to occur close to time t = 3.2. The rocket reached its maximum altitude when its
velocity was zero, close to time t = 2.8. The rocket landed at time t = 5. Its maximum height was about
240 feet and the pole atop which it landed was about 110 feet high. One of the more interesting aspects of
this problem is that during the free fall of the rocket, its velocity changed from about 200 feet per second at
time t = 1.8 to about −80 feet per second at time t = 3.2, implying that the acceleration of gravity on the
planet where this all took place is about 200 feet per second per second.

C05S0M.039:
100∑
i=1

17 = 17 ·
100∑
i=1

1 = 17 · 100 = 1700.

C05S0M.040:
100∑
k=1

(
1
k
− 1
k + 1

)
=

(
1− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+ · · ·+

(
1
99
− 1

100

)
+

(
1

100
− 1

101

)

= 1− 1
101

=
100
101

.

C05S0M.041:
10∑
n=1

(3n− 2)2 = 9 ·
10∑
n=1

n2− 12 ·
10∑
n=1

n+4 ·
10∑
n=1

1 = 9 · 10 · 11 · 21
6

− 12 · 10 · 11
2

+4 · 10 = 2845.

C05S0M.042:
16∑
n=1

sin
nπ

2
= 4 · (1 + 0− 1 + 0) = 0.

C05S0M.043: On [1, 2], we have lim
n→∞

n∑
i=1

∆x√
x�i

=
∫ 2

1

1√
x

dx =
[
2
√
x

]2

1

= 2
√

2− 2.

C05S0M.044: On [0, 3], we have lim
n→∞

n∑
i=1

[
(x�i )

2 − 3x�i
]
∆x =

∫ 3

0

(x2 − 3x) dx =
[

1
3
x3 − 3

2
x2

]3

0

= − 9
2
.
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C05S0M.045: On [0, 1], we have lim
n→∞

n∑
i=1

2πx�i
√

1 + (x�i )2 ∆x =
∫ 1

0

2πx
√

1 + x2 dx

=
[

2π
3

(1 + x2)3/2
]1

0

=
2π
3

(
2
√

2− 1
)
.

C05S0M.046: First note that

lim
n→∞

110 + 210 + 310 + 410 + · · ·+ n10

n11
= lim
n→∞

n∑
k=1

(
k

n

)10

· 1
n

(1)

is the limit of Riemann sums for f(x) = x10 on [0, 1] with x�i = i/n and ∆x = 1/n. Hence the value of the
limit in Eq. (1) is

∫ 1

0

x10 dx =
[

1
11
x11

]1

0

=
1
11
.

Alternatively, one can show that

n∑
k=1

k10 =
n(n+ 1)(2x+ 1)(n2 − n+ 1)(3n6 + 9n5 + 2n4 − 11n3 + 3n2 + 10n− 5)

66
.

Then division by n11 yields

5
66n10

− 1
2n8

+
1
n6
− 1
n4

+
5

6n2
+

1
2n

+
1
11
,

and the value of the limit as n→ +∞ is now clear.

C05S0M.047: If f(x) ≡ c (a constant), then for every partition of [a, b] and every selection for each such
partition, we have f(x�i ) = c. Therefore

n∑
i=1

f(x�i ) ∆x =
n∑
i=1

c · b− a
n

= c(b− a) ·
n∑
i=1

1
n

= c(b− a) · n · 1
n

= c(b− a).

Then, because every Riemann sum is equal to c(b−a), this is also the limit of those Riemann sums. Therefore,
by definition,

∫ b

a

f(x) dx = c(b− a).

C05S0M.048: Because f is continuous on [a, b], the definite integral of f exists there; that is, the
appropriate Riemann sums have a limit as ∆x → 0. For every partition of [a, b] and every selection for
every such partition, we have f(x�i ) � 0, so every Riemann sum is a sum of nonnegative numbers. Therefore
their limit is nonnegative (if the limit were negative, then at least one Riemann sum would have to be
negative). Therefore

∫ b

a

f(x) dx � 0.

C05S0M.049: Given: f continuous on [a, b] and f(x) > 0 there. Let m be the global minimum value of
f on [a, b]; then m > 0. Hence, by the second comparison property (Section 5.5),
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∫ b

a

f(x) dx � m(b− a) > 0.

C05S0M.050:
∫ 1

0

(1− x2)3 dx =
∫ 1

0

(1− 3x2 + 3x4 − x6) dx =
[
x− x3 +

3
5
x5 − 1

7
x7

]1

0

=
3
5
− 1

7
=

16
35

.

C05S0M.051:
∫ [

(2x)1/2 − (3x3)−1/2
]
dx =

∫ (
x1/2
√

2−
√

3
3
x−3/2

)
dx =

2
√

2
3

x3/2 +
2
√

3
3x1/2

+ C.

C05S0M.052:
∫ (

1 + x1/3
)2

x1/2
dx =

∫
(x−1/2 + 2x−1/6 + x1/6) dx = 2x1/2 +

12
5
x5/6 +

6
7
x7/6 + C.

C05S0M.053:
∫

4− x3

2x2
dx =

∫ (
2x−2 − 1

2
x

)
dx = −2x−1 − 1

4
x2 + C.

C05S0M.054:
∫ 1

0

dt

(3− 2t)2
=

[
1

2(3− 2t)

]1

0

=
1
2
− 1

6
=

1
3
.

C05S0M.055:
∫
x1/2 cosx3/2 dx =

2
3

sinx3/2 + C.

C05S0M.056:
∫ 2

0

x2(9− x3)1/2 dx =
[
− 2

9
(9− x3)3/2

]2

0

= − 2
9
− (−6) =

52
9

.

C05S0M.057:
∫

1
t2

sin
1
t
dt = cos

1
t

+ C.

C05S0M.058:
∫ 2

1

2t+ 1
(t2 + t)1/2

dt =
[
2(t2 + t)1/2

]2

1

= 2
√

6 − 2
√

2 .

C05S0M.059:
∫

u1/3

(1 + u4/3)3
du = − 3

8
(1 + u4/3)−2 + C.

C05S0M.060:
∫ π/4

0

(cos t)−1/2 sin t dt =
[
− 2(cos t)1/2

]π/4
0

= −(23/4)− (−2) = 2− 23/4.

C05S0M.061:
∫ 4

1

(1 + t1/2)2

t1/2
dt =

∫ 4

1

(t1/2 + 2 + t−1/2) dt =
[

2
3
t3/2 + 2t+ 2t1/2

]4

1

=
52
3
− 14

3
=

38
3

.

C05S0M.062:
∫

1
u2

(
1− 1

u

)1/3

du =
3
4

(
1− 1

u

)4/3

+ C.

C05S0M.063: Let u =
1
x

, so that x =
1
u

and dx = − 1
u2

du. Then

I =
∫

(4x2 − 1)1/2

x4
dx =

∫
−u

4

u2

(
4
u2
− 1

)1/2

du = −
∫
u2

(
4
u2
− 1

)1/2

du.

Next move one copy of u from outside the square root to inside, where it becomes u2, and we see
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I = −
∫
u(4− u2)1/2 du =

1
3

(4− u2)3/2 + C =
1
3

(
4− 1

x2

)3/2

+ C.

To make this answer more appealing, multiply numerator and denominator by x3; when the x3 in the
numerator is moved into the 3/2-power, it becomes x2 and the final version of the answer is

I =
(4x2 − 1)3/2

3x3
+ C.

C05S0M.064: The area is
∫ 1

−1

(1− x3) dx =
[
x− 1

4
x4

]1

−1‘

=
3
4
−

(
− 5

4

)
= 2.

C05S0M.065: The area is
∫ 1

0

(x4 − x5) dx =
[

1
5
x5 − 1

6
x6

]1

0

=
1
5
− 1

6
=

1
30

.

C05S0M.066: Solve 3y2− 6 = y2 to find that the two curves cross where y = a = −
√

3 and y = b =
√

3.
Hence the area between them is

∫ b

a

(6− 2y2) dy =
[
6y − 2

3
y3

]b
a

= 4
√

3−
(
−4
√

3
)

= 8
√

3.

C05S0M.067: Solve x4 = 2− x2 to find that the two curves cross where x = ±1. Hence the area between
them is

∫ 1

−1

(2− x2 − x4) dx =
[
2x− 1

3
x3 − 1

5
x5

]1

−1

=
22
15
−

(
− 22

15

)
=

44
15
.

C05S0M.068: Solve x4 = 2x2 − 1 for x = ±1 to find where the curves cross. The area between them is
then

∫ 1

−1

(x4 − 2x2 + 1) dx =
[

1
5
x5 − 2

3
x3 + x

]1

−1

=
8
15
−

(
− 8

15

)
=

16
15
.

C05S0M.069: Solve (x− 2)2 = 10− 5x to find that the two curves cross where x = −3 and where x = 2.
The area between them is

∫ 2

−3

(10− 5x− (x− 2)2) dx =
[
6x− 1

2
x2 − 1

3
x3

]2

−3

=
22
3
−

(
− 27

2

)
=

125
6
.

C05S0M.070: Solve x2/3 = 2−x2 to find that the two curves cross where x = ±1. Thus the area between
them is

∫ 1

−1

(2− x2 − x2/3) dx =
[
2x− 1

3
x3 − 3

5
x5/3

]1

−1

=
16
15
−

(
− 16

15

)
=

32
15
.

C05S0M.071: If y =
√

2x− x2, then y � 0 and x2 − 2x + y2 = 0, so that (x − 1)2 + y2 = 1. Therefore
the graph of the integrand is the top half of a circle of radius 1 centered at (1, 0), and so the value of the
integral is the area of that semicircle:
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∫ 2

0

√
2x− x2 dx =

1
2
· π · 12 =

π

2
.

C05S0M.072: If y =
√

6x− 5− x2, then y � 0 and x2− 6x+5+ y2 = 0, so that (x− 3)2 + y2 = 4. Hence
the graph of the integrand is the top half of a circle of radius 2 centered at (3, 0), and so the value of the
integral is the area of that semicircle:

∫ 5

1

√
6x− 5− x2 dx =

1
2
· π · 22 = 2π.

C05S0M.073: If

x2 = 1 +
∫ x

1

√
1 + [f(t)]2 dt,

then differentiation of both sides of this identity with respect to x (using Part 1 of the fundamental theorem
of calculus, Section 5.6) yields

2x =
√

1 + [f(x)]2 ,

so that 4x2 = 1 + [f(x)]2. Therefore if x > 1, one solution is f(x) =
√

4x2 − 1 .

C05S0M.074: Let

F (x) =
∫ x

a

φ(t) dt.

Then G(x) = F (h(x)), so that G′(x) = F ′(h(x)) · h′(x). But F ′(x) = φ(x) by the fundamental theorem of
calculus (Section 5.6). Therefore G′(x) = φ(h(x)) · h′(x).

C05S0M.075: Because f(x) =
√

1 + x2 is increasing on [0, 1], the left-endpoint approximation will be an
underestimate of the integral and the right-endpoint approximation will be an overestimate. With n = 5,
∆x = 1

5 , and xi = i ·∆x, we find the left-endpoint approximation to be

5∑
i=1

f(xi−1) ∆x ≈ 1.10873

and the right-endpoint approximation is

5∑
i=1

f(xi) ∆x ≈ 1.19157.

The average of the two approximations is 1.15015 and half their difference is 0.04142, and therefore

∫ 1

0

√
1 + x2 dx = 1.15015± 0.04143.

The true value of this integral is approximately 1.1477935747. When we used n = 4 subintervals the error
in the approximation was larger than 0.05.

C05S0M.076: With n = 6, a = 0, b = π, ∆x = (b− a)/n, and xi = i ·∆x, the trapezoidal approximation
is
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T6 =
1
12


√2 + 2


1 +

1
2

√
6 +

1
2

√
2 +

√
1−
√

3
2

+

√
1 +
√

3
2





π ≈ 2.8122538625.

Simpson’s approximation is

S6 =
1
18


4 + 2

√
2 +
√

6 + 4

√
1−
√

3
2

+ 4

√
1 +
√

3
2


π ≈ 2.8285015468.

The exact value of the integral is

∫ π

0

√
1− cosx dx =

√
2

∫ π

0

√
1− cosx

2
dx =

√
2

∫ π

0

√
sin2 x

2
dx

=
√

2
∫ π

0

∣∣∣sin x
2

∣∣∣ dx =
√

2
∫ π

0

sin
x

2
dx =

[
−

(
2
√

2
)

cos
x

2

]π
0

= 2
√

2.

C05S0M.077: M5 ≈ 0.2866736772 and T5 ≈ 0.2897075147. Because the graph of the integrand is concave
upward on the interval [1, 2],

M5 <

∫ 2

1

1
x+ x2

dx < T5

for the reasons given in the solution of Problem 33 of Section 5.9.

C05S0M.078: First,

(xi−1)
2 � 1

3

(
(xi−1)

2 + xi−1xi + (xi)
2
)

� (xi)
2
.

Therefore xi−1 � x�i � xi. Then

(x�i )
2 (xi − xi−1) =

1
3

(
(xi−1)

2 + xi−1xi + (xi)
2
)

(xi − xi−1) =
1
3

(
(xi)

3 − (xi−1)
3
)
,

and when such expressions are summed for i = 1, 2, 3, . . . , n, the result is
1
3

(
b3 − a3

)
.

Because all Riemann sums for f(x) = x2 on [a, b] have the same limit, this must be the same limit as
the limit of the particular Riemann sums of this problem. This shows that

∫ b

a

x2 dx =
1
3
(b3 − a3).

C05S0M.079: Suppose that 0 < a < b, that n is a positive integer, that P = {x0, x1, x2, . . . , xn} is
a partition of [a, b], and that ∆xi = xi − xi−1 for 1 � i � n. Let x�i = √xi−1xi for 1 � i � n. Then
S = {x�1, x�2, . . . , x�n} is a selection for P because

xi−1 =
√

(xi−1)2 <
√
xi−1xi <

√
(xi)2 = xi

for 1 � i � n. Next,
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n∑
i=1

1
(x�i )2

∆xi =
n∑
i=1

xi − xi−1

xi−1xi
=

n∑
i=1

(
1

xi−1
− 1
xi

)

=
(

1
x0
− 1
x1

)
+

(
1
x1
− 1
x2

)
+

(
1
x2
− 1
x3

)
+ · · ·+

(
1

xn−2
− 1
xn−1

)
+

(
1

xn−1
− 1
xn

)

=
1
x0
− 1
xn

=
1
a
− 1
b
.

Therefore

n∑
i=1

1
(x�i )2

∆xi →
1
a
− 1
b

as |P | → 0. But

n∑
i=1

1
(x�i )2

∆xi is a Riemann sum for
∫ b

a

1
x2

dx.

Because f is continuous on [a, b], all such Riemann sums converge to the same limit, which must therefore
be the same as the particular limit just computed. Therefore

∫ b

a

1
x2

dx =
1
a
− 1
b
.

C05S0M.080: Suppose that 0 < a < b, that n is a positive integer, that P = {x0, x1, x2, . . . , xn} is a
partition of [a, b], and that ∆xi = xi − xi−1 for 1 � i � n. Let

√
x�i =

2
3

[
(xi)

3/2 − (xi−1)
3/2

]
xi − xi−1

for 1 � i � n. Then S = {x�1, x�2, . . . , x�n} is a selection for P because

√
x�i =

2
3

[(√
xi

)3 −
(√
xi−1

)3
]

(√
xi

)2 −
(√
xi−1

)2

=
2
3
·
√
xi −

√
xi−1√

xi −
√
xi−1

·
(√
xi

)2 +√xixi−1 +
(√
xi−1

)2

√
xi +√xi−1

=
2
3
·
xi +√xixi−1 + xi−1√

xi +√xi−1
.

At this point we’d like to be able to claim that the last term in the last equation is less than

2
3
· xi + xi + xi

2
√
xi

=
xi√
xi

=
√
xi ,

because this would establish that x�i < xi. But while we increase the numerator by replacing xi−1 with the
larger xi, we are also increasing the denominator. So we need a technical lemma whose proof you may prefer
to ignore.

Lemma: If 0 < a < b, then
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b+
√
ab+ a√

b+
√
a

<
3b

2
√
b

=
3
√
b

2
.

Proof: Suppose that 0 < a < b. Then

√
a <

√
b;

a <
√
ab;

2a < a+
√
ab < b+

√
ab;

2b+ 2
√
ab+ 2a < 3b+ 3

√
ab;

2(b+
√
ab+ a) < 3

√
b

(√
b+
√
a

)
;

b+
√
ab+ a√

b+
√
a

<
3
√
b

2
.

This concludes the proof of the lemma.

Therefore, if 0 < xi−1 < xi, then

xi +√xixi−1 + xi−1√
xi +√xi−1

<
3
2
√
xi.

It now follows that
√
x�i <

√
xi, and thus that x�i < xi for 1 � i � n. In much the same way, one can

establish that xi−1 < x�i for 1 � i � n. Hence S is indeed a selection for P.

Consequently,

n∑
i=1

√
x�i ∆xi =

2
3
·
n∑
i=1

[
(xi)

3/2 − (xi−1)
3/2

]

=
2
3

[
(x1)3/2 − (x0)3/2 + (x2)3/2 − (x1)3/2 + · · ·+ (xn)3/2 − (xn−1)3/2

]

=
2
3
·
(
b3/2 − a3/2

)
.

Finally, because f(x) =
√
x is continuous on [a, b], all the Riemann sums for f there converge to the same

limit. Some of these sums have been shown to converge to 2
3

(
b3/2 − a3/2

)
. Therefore they all converge to

that limit, and thus

∫ b

a

√
x dx =

2
3

(
b3/2 − a3/2

)
.
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Section 6.1

C06S01.001: With a = 0 and b = 1, lim
n→∞

n∑
i=1

2x�i ∆x =
∫ 1

0

2x dx =
[
x2

]1

0

= 1.

C06S01.002: With a = 1 and b = 2, lim
n→∞

n∑
i=1

∆x

(x�i )
2 =

∫ 2

1

1
x2

dx =
[
− 1

x

]2

1

=
1
2
.

C06S01.003: With a = 0 and b = 1, lim
n→∞

n∑
i=1

(sinπx�i ) ∆x =
∫ 1

0

sinπx dx =
[
− 1

π
cosπx

]1

0

=
2
π

.

C06S01.004: With a = −1 and b = 3, lim
n→∞

n∑
i=1

[
3 (x�i )

2 − 1
]

∆x =
∫ 3

−1

(3x2 − 1) dx =
[
x3 − x

]3

−1

= 24.

C06S01.005: With a = 0 and b = 4,

lim
n→∞

n∑
i=1

x�i

√
(x�i )

2 + 9 ∆x =
∫ 4

0

x
√

x2 + 9 dx =
[

1
3

(x2 + 9)3/2
]4

0

=
125
3
− 9 =

98
3
.

C06S01.006: The limit is
∫ 4

2

1
x

dx =
[

lnx

]4

2

= ln 4 − ln 2 = 2 ln 2 − ln 2 = ln 2.

C06S01.007: The limit is
∫ 1

0

e−x dx =
[
−e−x

]1

0

= e0 − e−1 = 1− 1
e
.

C06S01.008: The limit is
∫ 4

0

√
2x + 1 dx =

[
1
3

(2x + 1)3/2
]4

0

= 9− 1
3

=
26
3

.

C06S01.009: The limit is
∫ 6

0

x

x2 + 9
dx =

[
1
2

ln(x2 + 9)
]6

0

=
1
2

ln 45 − 1
2

ln 9 =
1
2

ln 5.

C06S01.010: The limit is
∫ 1

0

2x exp(−x2) dx =
[
− exp(−x2)

]1

0

= e0 − e−1 = 1− 1
e
.

C06S01.011: With a = 1 and b = 4, lim
n→∞

n∑
i=1

2πx�i f (x�i ) ∆x =
∫ 4

1

2πxf(x) dx. Compare this with

Eq. (2) in Section 6.3.

C06S01.012: With a = −1 and b = 1, lim
n→∞

n∑
i=1

[f (x�i )]
2 ∆x =

∫ 1

−1

[f(x) ]2 dx.

C06S01.013: With a = 0 and b = 10, lim
n→∞

n∑
i=1

√
1 + [f (x�i ) ]2 ∆x =

∫ 10

0

√
1 + [f(x) ]2 dx.

C06S01.014: With a = −2 and b = 3, we have

lim
n→∞

n∑
i=1

2πmi

√
1 + [f(mi) ]2 ∆x =

∫ 3

−2

2πx
√

1 + [f(x) ]2 dx.

1



C06S01.015: M =
∫ 100

0

1
5
x dx =

[
1
10

x2

]100

0

= 1000− 0 = 1000 (grams).

C06S01.016: M =
∫ 25

0

(60− 2x) dx =
[
60x− x2

]25

0

= 875− 0 = 875 (grams).

C06S01.017: M =
∫ 10

0

x(10− x) dx =
[
5x2 − 1

3
x3

]10

0

=
500
3
− 0 =

500
3

(grams).

C06S01.018: M =
∫ 10

0

10 sin
πx

10
dx =

[
− 100

π
cos

πx

10

]10

0

=
100
π
−

(
− 100

π

)
=

200
π

(grams).

C06S01.019: The net distance is

∫ 10

0

(−32) dt =
[
− 32t

]10

0

= −320

and the total distance is 320.

C06S01.020: The net distance is

∫ 5

1

(2t + 10) dt =
[
t2 + 10t

]5

1

= 75− 11 = 64

and because v(t) = 2t + 10 � 0 for 1 � t � 5, this is the total distance as well.

C06S01.021: The net distance is

∫ 10

0

(4t− 25) dt =
[

2t2 − 25t
]10

0

= 200− 250 = −50.

Because v(t) = 4t− 25 � 0 for 0 � t � 6.25 and v(t) � 0 for 6.25 � t � 10, the total distance is

−
∫ 6.25

0

v(t) dt +
∫ 10

6.25

v(t) dt =
625
8

+
225
8

=
425
4

= 106.25.

C06S01.022: Because v(t) � 0 for 0 � t � 5, the net and total distance are both equal to

∫ 5

0

|2t− 5| dt =
∫ 2.5

0

(5− 2t) dt +
∫ 5

2.5

(2t− 5) dt =
25
4

+
25
4

=
25
2

= 12.5.

C06S01.023: The net distance is

∫ 3

−2

4t3 dt =
[
t4

]3

−2

= 81− 16 = 65.

Because v(t) � 0 for −2 � t � 0, the total distance is

−
∫ 0

−2

4t3 dt +
∫ 3

0

4t3 dt = 16 + 81 = 97.

C06S01.024: The net distance is
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∫ 1

0.1

(
t− 1

t2

)
dt =

[
1
2
t2 +

1
t

]1

0.1

=
3
2
− 2001

200
= − 1701

200
= −8.505.

Because v(t) � 0 for 0.1 � t � 1, the total distance is 8.505.

C06S01.025: Because v(t) = sin 2t � 0 for 0 � t � π/2, the net distance and the total distance are both
equal to

∫ π/2

0

sin 2t dt =
[
− 1

2
cos 2t

]π/2
0

=
1
2
−

(
− 1

2

)
= 1.

C06S01.026: The net distance is

∫ π/2

0

cos 2t dt =
[

1
2

sin 2t
]π/2
0

= 0− 0 = 0.

Because v(t) = cos 2t � 0 for π/4 � t � π/2, the total distance is

∫ π/4

0

cos 2t dt−
∫ π/2

π/4

cos 2t dt =
1
2

+
1
2

= 1.

C06S01.027: The net distance is

∫ 1

−1

cosπt dt =
[

1
π

sinπt

]1

−1

= 0− 0 = 0.

Because v(t) = cosπt � 0 for −1 � t � −0.5 and for 0.5 � t � 1, the total distance is

−
∫ −0.5

−1

cosπt dt +
∫ 0.5

−0.5

cosπt dt−
∫ 1

0.5

cosπt dt =
1
π

+
2
π

+
1
π

=
4
π
.

C06S01.028: The net distance is

∫ π

0

(sin t + cos t) dt =
[

sin t− cos t
]π
0

= 1− (−1) = 2.

But v(t) = sin t + cos t � 0 for 3π/4 � t � π, so the total distance is

∫ 3π/4

0

(sin t + cos t) dt−
∫ π

3π/4

(sin t + cos t) dt = 1 +
√

2 +
√

2− 1 = 2
√

2.

C06S01.029: The net distance is

∫ 10

0

(t2 − 9t + 14) dt =
[

1
3
t3 − 9

2
t2 + 14t

]10

0

=
70
3
≈ 23.333333,

but because v(t) = t2 − 9t + 14 � 0 for 2 � t � 7, the total distance is

∫ 2

0

v(t) dt−
∫ 7

2

v(t) dt +
∫ 10

7

v(t) dt =
38
3

+
125
6

+
63
2

= 65.

3



C06S01.030: The net distance is

∫ 6

0

(t3 − 8t2 + 15t) dt =
[

1
4
t4 − 8

3
t3 +

15
2

t2
]6

0

= 18− 0 = 18.

Because v(t) = t3 − 8t2 + 15t < 0 for 3 � t � 5, the total distance is

∫ 3

0

(t3 − 8t2 + 15t) dt−
∫ 5

3

(t3 − 8t2 + 15t) dt +
∫ 6

5

(t3 − 8t2 + 15t) dt =
63
4

+
16
3

+
91
12

=
86
3
≈ 28.666667.

C06S01.031: If v(t) = t3 − 7t + 4 for 0 � t � 3, then v(t) < 0 for α = 0.602705 < t < β = 2.29240
(numbers with decimal points are approximations), so the net distance is

∫ 3

0

(t3 − 7t + 4) dt =
[

1
4
t4 − 7

2
t2 + 4t

]3

0

=
3
4

but the total distance is approximately

∫ α

0

(t3 − 7t + 4) dt−
∫ β

α

(t3 − 7t + 4) dt +
∫ 3

β

(t3 − 7t + 4) dt ≈ 1.17242 + 3.49165 + 3.06923 = 7.73330.

C06S01.032: Because v(t) = t3 − 5t2 + 10 < 0 if α = 1.175564 < t < β = 4.50790 (numbers with decimal
points are approximations), the net distance is

∫ 5

0

(t3 − 5t2 + 10) dt =
[

1
4
t4 − 5

3
t3 + 10t

]5

0

= − 25
12
≈ −2.083333,

but the total distance is

∫ α

0

(t3−5t2 +10) dt−
∫ β

α

(t3−5t2 +10) dt+
∫ 5

β

(t3−5t2 +10) dt ≈ 10.9126+15.2724++2.27654 ≈ 28.4615.

C06S01.033: Here, v(t) = t sin t − cos t is negative for 0 � t < α = 0.860333589019 (numbers with
decimals are approximations), so the net distance is

∫ π

0

(t sin t− cos t) dt =
[
−t cos t

]π
0

= π

but the total distance is

−
∫ α

0

(t sin t− cos t) dt +
∫ π

α

(t sin t− cos t) dt ≈ 0.561096338191 + 3.702688991781 = 4.263785329972.

C06S01.034: The velocity v(t) = sin t + t1/2 cos t is negative for α = 2.167455 < t < β = 5.128225
(numbers with decimals are approximations), so the net distance is

∫ 2π

0

(sin t + t1/2 cos t) dt = −0.430408

and the total distance is
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∫ α

0

(sin t + t1/2 cos t) dt−
∫ β

α

(sin t + t1/2 cos t) dt +
∫ 2π

β

(sin t + t1/2 cos t) dt

≈ 2.02380 + 4.05657 + 1.60236 = 7.68273.

We used Mathematica’s NIntegrate command for all four definite integrals. The numbers α and β were
found using Newton’s method.

C06S01.035: If n is a large positive integer, ∆x = r/n, xi = i · ∆x, and x�i is chosen in the interval
[xi−1, xi ] for 1 � i � n, then the area of the annular ring between xi−1 and xi is approximately 2πx�i ∆x

and its average density is approximately ρ (x�i ), so a good approximation to the total mass of the disk is

n∑
i=1

2πx�i ρ (x�i ) ∆x.

But this is a Riemann sum for
∫ r

0

2πxρ(x) dx,

and therefore such sums approach this integral as ∆x → 0 and n → +∞ because 2πxρ(x) is (we presume)
continuous for 0 � x � r. But such Riemann sums also approach the total mass M of the disk and this
establishes the equation in Problem 35.

C06S01.036: The mass is M =
∫ 10

0

2πx2 dx =
[

2
3
πx3

]10

0

=
2000π

3
≈ 2094.395102.

C06S01.037: The mass is M =
∫ 5

0

2πx(25− x2) dx =
[
− 1

2
π(x4 − 50x2)

]5

0

=
625π

2
≈ 981.747704.

C06S01.038: The maximum height will be

∫ 5

0

(160− 32t) dt =
[

160t− 16t2
]5

0

= 400 (feet).

C06S01.039: The amount of water that flows into the tank from time t = 10 to time t = 20 is

∫ 20

10

(100− 3t) dt =
[

100t− 3
2
t2

]20

10

= 1400− 850 = 550 (gallons).

C06S01.040: Answer:
∫ 20

0

1000(16 + t) dt =
[

16000t + 500t2
]20

0

= 520000.

C06S01.041: Answer:

375000 +
∫ 20

0

[
(1000(16 + t)− 1000

(
5 +

1
2
t

)]
dt = 375000 +

[
11000t + 250t2

]20

0

= 695000.

C06S01.042: Let n be a positive integer, let P = {t0, t1, t2, . . . , tn} be a partition of the interval [0, 365],
let ∆t = 365/n, and let t�i be a point in [ti−1, ti ] for 1 � i � n. Then the approximate rainfall in Charleston
in the time interval ti−1 � t � ti will be r (t�i ) ∆t. Hence the total rainfall in a year will be approximately
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n∑
i=1

r (t�i ) ∆t.

But this is a Riemann sum for

R =
∫ 365

0

r(t) dt,

and if r(t) is piecewise continuous (I’ve lived there; I can assure you that r(t) is not continuous, but merely
piecewise continuous) then these Riemann sums approach R as a limit (as n → +∞). Thus R gives the
average total annual rainfall in Charleston.

C06S01.043: We solved r(0) = 0.1 and r(182.5) = 0.3 for a = 0.2 and b = 0.1. Then we found that

∫ 365

0

r(t) dt =
[

73
4π
·
(

4πt
365
− sin

2πt
365

) ]365

0

= 73

inches per year, average annual rainfall.

C06S01.044: Let n be a positive integer, let ∆t = (b − a)/n, let P = {t0, t1, t2, . . . , tn} be a regular
partition of [a, b], and let t�i be a number in [ti−1, ti ] for 1 � i � n. Then the amount of water that flows
into the tank in the interval [ti−1, ti ] will be approximately r (t�i ) ∆t. Hence the total amount of water that
flows into the tank between times t = a and t = b will be approximately

n∑
i=1

r (t�i ) ∆t.

The error in this approximation will approach zero as t→ +∞, and the sum itself is a Riemann sum for r(t)
on [a, b], and therefore—if r is piecewise continuous (physical considerations dictate that it must be)—the
amount of water that flows into the tank during that interval must be

Q =
∫ b

a

r(t) dt.

C06S01.045: If f(x) = x1/3 on [0, 1], n is a positive integer, ∆x = 1/n, and xi = x�i = i ·∆x, then

lim
n→∞

n∑
i=1

i1/3

n4/3
= lim
n→∞

n∑
i=1

f (x�i ) ∆x =
∫ 1

0

x1/3 dx =
[

3
4
x4/3

]1

0

=
3
4
.

C06S01.046: Let r denote the radius of the spherical ball and partition the interval [0, r ] into n subintervals
all having the same length ∆x = r/n. Let xi = i ·∆x, so that P = {x0, x1, x2, . . . , xn} is a regular partition
of [0, r ]. Let x�i be the midpoint of [xi−1, xi ], so that {x�i } is a selection for P. Then the volume of the
spherical shell with inner radius xi−1 and outer radius xi will be approximately 4π (x�i )

2 ∆x, so that the
total volume of the spherical ball will be closely approximated (if n is large) by

n∑
i=1

4π (x�i )
2 ∆x.

But this sum is a Riemann sum for f(x) = 4πx2 on the interval [0, r ]. The error in this approximation to
the volume V of the spherical ball will approach zero as n→ +∞, but it also approaches the integral shown
next, and therefore

6



V =
∫ r

0

4πx2 dx =
[

4
3
πx3

]r
0

=
4
3
πr3.

C06S01.047: Let n be a large positive integer, let ∆x = 1/n, and let xi = i · ∆x. Then P =
{x0, x1, x2, . . . , xn} is a regular partition of [0, 1]. Let x�i be the midpoint of the interval [xi−1, xi ].
Then the weight of the spherical shell with inner radius xi−1 and outer radius xi will be approximately

100 (1 + x�i ) · 4π (x�i )
2 ∆x

(the approximate volume of the shell multiplied by its approximate average density). Therefore the total
weight of the ball will be approximately

n∑
i=1

100 (1 + x�i ) · 4π (x�i )
2 ∆x.

This is a Riemann sum for f(x) = 100(1 + x) · 4πx2 on [0, 1], and such sums approach the total weight W

of the ball as n→ +∞. Therefore

W =
∫ 1

0

100(1 + x) · 4πx2 dx =
[

400
3

πx3 + 100πx4

]1

0

=
700
3

π ≈ 733.038286 (pounds).

C06S01.048: Given v(x) = k cos
(πx

2r

)
, the flow rate is

F =
∫ r

0

2πkx cos
(πx

2r

)
dx =

4
π
·
[
2kr2 cos

(πx

2r

)
+ πkrx sin

(πx

2r

)]r
0

= 4kr2 − 8kr2

π
=

4k(π − 2)r2

π
.

C06S01.049: Because the pressure P is inversely proportional to the fourth power of the radius r, the
values r = 1.00, 0.95, 0.90, 0.85, 0.80, and 0.75 yield the values r−4 = 1.00, 1.22774, 1.52416, 1.91569,
2.44141, and 3.16049. We subtract 1 from each of the latter and then multiply by 100 to obtain percentage

increase in pressure (and multiply each value of r by 100 to convert to percentages). Result:

100 0.000
95 22.774
90 52.416
85 91.569
80 144.141
75 216.049

C06S01.050: The amount of dye injected is A = 4 (in milligrams) and the concentration function is
c(t) = 40te−t, 0 � t � 10 (t in seconds). Then

∫
c(t) dt =

[
(−40− 40t)e−t

]10

0

= 40− 440e−10.

Thus the patient’s cardiac output is approximately

7
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0
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8

10

12

c(t)
(mg/L)

t  (seconds)

F =
60A

40− 440e−10
=

6e10

e10 − 11
≈ 6.003

liters per minute (the factor of 60 in the first fraction converts seconds to minutes).

C06S01.051: Given: A = 4.5 (mg). Simpson’s rule applied to the concentration data

c = 0, 2.32, 9.80, 10.80, 7.61, 4.38, 2.21, 1.06, 0.47, 0.18, 0.0

measured at the times t = 0, 1, 2, . . . , 10 (seconds) yields

∫ 10

0

c(t) dt ≈ S10 =
1
3
[
1 · 0 + 4 · (2.32) + 2 · (9.8) + 4 · (10.8) + 2 · (7.61) + 4 · (4.38)

+ 2 · (2.21) + 4 · (1.06) + 2 · (0.47) + 4 · (0.18) + 1 · 1
]

=
1919
50

= 38.38.

Hence—multiplying by 60 to convert second to minutes—the cardiac output is approximately

F ≈ 60A
38.38

≈ 7.0349

L/min (liters per minute).

The Mathematica code is straightforward, although you must remember that an array’s initial subscript is
1 rather than zero (unless you decree it otherwise):

c = {0, 232/100, 98/10, 108/10, 761/100, 438/100, 221/100, 106/100, 47/100, 18/100, 0};

c[[1]] + c[[11]] + 4∗Sum[c[[i]], {i, 2, 10, 2}] + 2∗Sum[c[[i]], {i, 3, 9, 2}]

5757
50

N[ 5757/(3∗50), 12 ]

38.3800000000

N[ (60*45/10)/(3838/100), 12 ]

7.03491401772

C06S01.052: Here we have A = 5.5, a = 200, b = 8, c = 7.1, d = 0.5, and f(t) = atb exp(−ctd) yielding
the graph of concentration (in mg/L) as a function of t (in seconds). Result:
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Next,

I =
∫ 20

0

f(t) dt ≈ 67.4709,

so the cardiac output of the patient is

F ≈ 60A
I
≈ 4.891

liters per minute.
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Section 6.2

C06S02.001: The volume is V =
∫ 1

0

πx4 dx =
[

1
5
πx5

]1

0

=
π

5
.

C06S02.002: The volume is V =
∫ 4

0

πx dx =
[

1
2
πx2

]4

0

= 8π − 0 = 8π.

C06S02.003: The volume is V =
∫ 4

0

πy dy =
[

1
2
πy2

]4

0

= 8π.

C06S02.004: The volume is V =
∫ 1

0.1

π

x2
dx =

[
− π
x

]1

0.1
= −π − (−10π) = 9π.

C06S02.005: The volume is V =
∫ π

0

π sin2 x dx = π

∫ π

0

1− cos 2x
2

dx = π

[
1
2
x− 1

4
sin 2x

]π
0

=
1
2
π2.

C06S02.006: The volume is V =
∫ 3

−3

π(9− x2)2 dx = π

[
1
5
x5 − 6x3 + 81x

]3

−3

=
1296π

5
≈ 814.300816.

C06S02.007: Rotation of the given figure around the x-axis produces annular rings of inner radius y = x2

and outer radius y =
√
x (because x2 � √x if 0 � x � 1). Hence the volume of the solid is

V =
∫ 1

0

π
[(√

x
)2 − x4

]
dx = π

[
1
2
x2 − 1

5
x5

]1

0

= π

(
1
2
− 1

5

)
=

3
10
π.

C06S02.008: Rotation of the given region around the vertical line x = 5 produces annular rings with inner
radius 5−√y and outer radius 5− 1

4y. Hence the volume of the solid is

V =
∫ 16

0

π

[ (
5− 1

4
y

)2

− (5−√y )2
]
dy = π

∫ 16

0

(
10y1/2 − 7

2
y +

1
16
y2

)
dy

=
π

48

[
320y3/2 − 84y2 + y3

]16

0

= 64π − 0 = 64π ≈ 201.062.

C06S02.009: The volume is
∫ 5

1

π

x
dx =

[
π lnx

]5

1

= π ln 5 ≈ 5.05619832.

C06S02.010: Rotation of the region between the given curves around the y-axis produces annular rings
with outer radius y+6 and inner radius y2; solution of the equation y+6 = y2 yields the limits of integration
y = −2 and y = 3. Hence the volume of the solid in question is

V =
∫ 3

−2

π
[
(y + 6)2 − y4

]
dy = π

∫ 3

−2

(36 + 12y + y2 − y4) dy

= π

[
36y + 6y2 +

1
3
y3 − 1

5
y5

]3

−2

=
612π

5
−

(
− 664π

15

)
=

500π
3
≈ 523.598776.

C06S02.011: Volume: V =
∫ 1

−1

π(1− x2)2 dx = π

[
x− 2

3
x3 +

1
5
x5

]1

−1

=
16π
15
≈ 3.351032.
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C06S02.012: Volume: V =
∫ 1

0

π(x− x3)2 dx = π

[
1
3
x3 − 2

5
x5 +

1
7
x7

]1

0

=
8π
105
≈ 0.2393594403.

C06S02.013: A horizontal cross section “at” y has radius x =
√

1− y, so the volume of the solid is

∫ 1

0

π(1− y) dy = π

[
y − 1

2
y2

]1

0

=
π

2
.

C06S02.014: The volume is
∫ 1

0

e2x dx =
[

1
2
e2x

]1

0

=
1
2

(e2 − 1) ≈ 3.19452805.

C06S02.015: The region between the two curves extends from y = 2 to y = 6 and the radius of a horizontal
cross section “at” y is x =

√
6− y. Therefore the volume of the solid is

V =
∫ 6

2

π(6− y) dy = π

[
6y − 1

2
y2

]6

2

= 18π − 10π = 8π.

C06S02.016: The region bounded by the two curves extends from y = 0 to y = 1. When it is rotated
around the vertical line x = 2, it generates annular regions with outer radius 2 +

√
1− y and inner radius

2−
√

1− y. Hence the volume of the solid is

V =
∫ 1

0

π

[(
2 +

√
1− y

)2

−
(
2−

√
1− y

)2
]
dy = π

∫ 1

0

8(1− y)1/2 dy

= π

[
− 16

3
(1− y)3/2

]1

0

= 0−
(
− 16π

3

)
=

16π
3
≈ 16.755161.

C06S02.017: When the region bounded by the given curves is rotated around the horizontal line y = −1,
it generates annular regions with outer radius x− x3 + 1 and inner radius 1. Hence the volume of the solid
thereby generated is

V =
∫ 1

0

π
[
(x− x3 + 1)2 − 12

]
dx = π

∫ 1

0

(2x+ x2 − 2x3 − 2x4 + x6) dx

= π

[
x2 +

1
3
x3 − 1

2
x4 − 2

5
x5 +

1
7
x7

]1

0

=
121π
210

− 0 =
121π
210

≈ 1.8101557671.

C06S02.018: When the region bounded by the given curves is rotated around the x-axis, it generates
annular regions with outer radius ex and inner radius e−x. Hence the volume of the solid thereby generated
is

V =
∫ 1

0

(πe2x − πe−2x) dx = π

[
1
2
e2x +

1
2
e−2x

]1

0

=
1
2
π(e2 + e−2 − e0 − e0) =

1
2
π

(
e− 1

e

)2

≈ 8.67769369.

C06S02.019: When the region bounded by the given curves is rotated around the y-axis, it generates
circular regions; the one “at” y has radius x =

√
y, so the volume generated is

V =
∫ 4

0

πy dy = π

[
1
2
y2

]4

0

= 8π.
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C06S02.020: When the region bounded by the given curves is rotated around the x-axis, it generates
circular regions; the one “at” x has radius y =

√
16− x, so the volume generated is

V =
∫ 16

0

π(16− x) dx = π

[
16x− 1

2
x2

]16

0

= 128π.

C06S02.021: When the region bounded by the given curves is rotated around the horizontal line y = −2,
it generates annular regions with outer radius

√
x − (−2) and inner radius x2 − (−2). Hence the volume of

the solid thereby generated is

V =
∫ 1

0

π
[(√

x+ 2
)2 − (2 + x2)2

]
dx = π

∫ 1

0

(4x1/2 + x− 4x2 − x4) dx

= π

[
8
3
x3/2 +

1
2
x2 − 4

3
x3 − 1

5
x5

]1

0

=
49π
30
≈ 5.1312680009.

C06S02.022: When the region bounded by the given curves is rotated around the horizontal line y = −1,
it generates annular regions with outer radius 8− x2 + 1 and inner radius x2 + 1, and therefore the volume
of the solid thus generated is

V =
∫ 2

−2

π
[
(9− x2)2 − (x2 + 1)2

]
dx = 2π

∫ 2

0

(80− 20x2) dx

= 2π
[
80x− 20

3
x3

]2

0

=
640π

3
≈ 670.206433.

C06S02.023: When the region bounded by the given curves is rotated around the vertical line x = 3, it
generates annular regions with outer radius 3− y2 and inner radius 3−√y. Hence the volume of the solid
thereby generated is

V =
∫ 1

0

π
[
(3− y2)2 − (3−√y )2

]
dy = π

∫ 1

0

(6y1/2 − y − 6y2 + y4) dy

= π

[
4y3/2 − 1

2
y2 − 2y3 +

1
5
y5

]1

0

=
17π
10
≈ 5.340708.

C06S02.024: When the region bounded by the given curves is rotated around the horizontal line y = −1,
it generates annular regions with outer radius 3 and inner radius 2e−x+1 with locations varying from x = 0
to x = 1. Therefore the volume of the solid thereby generated is

V =
∫ 1

0

[
π · 32 − π · (2e−x + 1)2

]
dx = π

∫ 1

0

(9− 4e−2x − 4e−x − 1) dx

= π

[
8x+ 2e−2x + 4e−x

]1

0

= π(8 + 2e−2 + 4e−1 − 2− 4) = 2π
(

1 +
1
e

)2

≈ 11.7564313695185460.

C06S02.025: The volume generated by rotation of R around the x-axis is

V =
∫ π

0

π sin2 x dx = π

∫ π

0

1− cos 2x
2

dx = π

[
1
2
x− 1

4
sin 2x

]π
0

=
π2

2
≈ 4.9348022005.
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C06S02.026: The volume is

V =
∫ 1

−1

π cos2
πx

2
dx = π

∫ 1

−1

1 + cosπx
2

dx = π

[
1
2
x+

1
2

sinπx
]1

−1

=
π

2
−

(
− π

2

)
= π.

C06S02.027: The curves y = cosx and y = sinx cross at π/4 and the former is above the latter for
0 � x < π/4. So the region between them, when rotated around the x-axis, generates annular regions with
outer radius cosx and inner radius sinx. Therefore the volume of the solid generated will be

V =
∫ π/4

0

π(cos2 x− sin2 x) dx = π

∫ π/4

0

cos 2x dx = π

[
1
2

sin 2x
]π/4
0

=
π

2
.

C06S02.028: The curve y = cosx and the horizontal line y = 1
2 cross where x = − 1

3 π and where x = 1
3 π,

and the curve is above the line between those two points. So when the region they bound is rotated around
the x-axis, it generates annular regions with outer radius cosx and inner radius 1

2 . So the volume of the
solid thereby generated will be

V =
∫ π/3

−π/3
π

(
cos2 x − 1

4

)
dx = π

∫ π/3

−π/3

1 + 2 cos 2x
4

dx = π

[
1
4

(x+ sin 2x)
]π/3
−π/3

=
π

24

(
3
√

3 + 2π
)
−

[
− π

24

(
3
√

3 + 2π
)]

=
π

12

(
3
√

3 + 2π
)
≈ 3.0052835900.

C06S02.029: The volume is

V =
∫ π/4

0

π tan2 x dx = π

∫ π/4

0

sin2 x

cos2 x
dx = π

∫ π/4

0

1− cos2 x
cos2 x

dx

= π

∫ π/4

0

(sec2 x− 1) dx = π

[
(tanx)− x

]π/4
0

=
π(4− π)

4
≈ 0.6741915533.

C06S02.030: When the region bounded by the given curves is rotated around the x-axis, it produces
annular regions with outer radius 1 and inner radius tanx. Hence the volume of the solid generated is

V =
∫ π/4

0

π
(
1− tan2 x

)
dx = π

∫ π/4

0

(
1− sec2 x+ 1

)
dx

= π

[
2x− tanx

]π/4
0

=
π(π − 2)

2
≈ 1.7932095470.

C06S02.031: The two curves cross near a = −0.532089, b = 0.652704, and c = 2.87939. When the region
between the curves for a � x � b is rotated around the x-axis, the solid it generates has approximate volume

V1 =
∫ b

a

π
[
(x3 + 1)2 − (3x2)2

]
dx ≈ 1.68838− (−1.39004) = 2.99832.

When the region between the curves for b � x � c is rotated around the x-axis, the solid it generates has
approximate volume

V2 =
∫ c

b

π
[
(3x2)2 − (x3 + 1)2

]
dx ≈ 265.753− (−1.68838) ≈ 267.442.
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The total volume generated is thus V1 + V2 ≈ 270.440.

C06S02.032: The two curves cross near a = −1.28378 and b = 1.53375. When the region between the
curves is rotated around the x-axis, the volume of the solid it generates is

V =
∫ b

a

π
[
(x+ 4)2 − (x4)2

]
dx = π

[
16x+ 4x2 +

1
3
x3 − 1

9
x9

]b
a

≈ 94.0394− (−42.7288) ≈ 136.768.

C06S02.033: The two curves cross near a = −0.8244962453 and b = 0.8244962453. When the region
between them is rotated around the x-axis, the volume of the solid it generates is

V ≈
∫ b

a

π
[
(cos2 x)− x4

]
dx =

π

20

[
10x− 4x5 + 5 sin 2x

]b
a

≈ 1.83871− (−1.83871) ≈ 3.67743.

C06S02.034: The two curves cross near a = 0.3862368706 and b = 1.9615690350. When the region between
them is rotated around the x-axis, the volume of the solid generated is approximately

V =
∫ b

a

π
[
sin2 x− (x− 1)4

]
dx

=
π

20

[
40x2 − 10x− 40x3 + 20x4 − 4x5 − 5 sin 2x

]b
a

≈ 2.48961− (−0.51503) ≈ 3.00464.

C06S02.035: The two curves cross at the two points where x = 6, and the one on the right meets the x-axis
at (3, 0). When the region they bound is rotated around the x-axis, the volume of the solid it generates is

V =
∫ 6

0

πx dx−
∫ 6

3

2π(x− 3) dx = π

[
1
2
x2

]6

0

− π
[
x2 − 6x

]6

3

= (18π − 0)− (0 + 9π) = 9π.

C06S02.036: The top half of the ellipse is the graph of the function

f(x) =
b

a

√
a2 − x2, −a � x � a.

Hence when the region bounded above by the graph of y = f(x) and below by the x-axis is rotated around
the x-axis, the volume of the ellipsoid thereby swept out will be

V =
∫ a

−a
π [f(x) ]2 dx = π

[
b2x(3a2 − x2)

3a2

]a
−a

=
4
3
πab2.

C06S02.037: The right half of the ellipse is the graph of the function

g(y) =
a

b

√
b2 − y2, −b � y � b.

Hence when the region bounded on the right by the graph of x = g(y) and on the left by the y-axis is rotated
around the y-axis, the volume of the ellipsoid thereby swept out will be

V =
∫ b

−b
π [g(y) ]2 dy = π

[
a2y(3b2 − y2)

3b2

]a
−a

=
4
3
πa2b.
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C06S02.038: Part (a): The volume of the part of the solid from x = 1 to x = b is

V (b) =
∫ b

1

πe−2x dx =
[
−1

2
πe−2x

]b
1

=
1
2
π(e−2 − e−2b).

Hence the volume of the unbounded solid is

lim
b→∞

V (b) =
π

2e2
≈ 0.21258417.

Part (b): The volume of the part of the solid from x = 1 to x = b is

V (b) =
∫ b

1

π

x
dx =

[
π lnx

]b
1

= π ln b.

Therefore the volume of the unbounded solid is

lim
b→∞

V (b) = lim
b→∞

π ln b = +∞.

C06S02.039: Locate the base of the observatory in the xy-plane with the center at the origin and the
diameter AB on the x-axis. Then the boundary of the base has equation x2 + y2 = a2. A typical vertical
cross-section of the observatory has as its base a chord of that circle perpendicular to the x-axis at [say] x,
so that the length of this chord is 2

√
a2 − x2. The square of this length gives the area of that vertical cross

section, and it follows that the volume of the observatory is

V =
∫ a

−a
4(a2 − x2) dx =

[
4
3

(3a2x− x3)
]a
−a

=
8
3
a3 −

(
− 8

3
a2

)
=

16
3
a3.

C06S02.040: Locate the base of the solid in the xy-plane with the center at the origin and the diameter
AB on the x-axis. Then the boundary of the base has equation x2 +y2 = a2. A typical vertical cross-section
of the solid has as its base a chord of that circle perpendicular to the x-axis at [say] x, so that the length of
this chord is 2

√
a2 − x2. This chord is the diameter of that semicircular cross section, which therefore has

radius
√
a2 − x2 and thus area 1

2π(a2 − x2). Hence the volume of the solid is

∫ a

−a

π

2
(a2 − x2) dx = π

[
x(3a2 − x2)

6

]a
−a

=
2
3
πa3,

exactly as expected, for after all the solid is a hemisphere of radius a.

C06S02.041: Locate the base of the solid in the xy-plane with the center at the origin and the diameter
AB on the x-axis. Then the boundary of the base has equation x2 +y2 = a2. A typical vertical cross-section
of the base has as its base a chord of that circle perpendicular to the x-axis at [say] x, so that the length of
this chord is 2

√
a2 − x2. This chord is one of the three equal sides of the vertical cross section—which is an

equilateral triangle—and it follows that this triangle has

Base: b = 2
√
a2 − x2 and height: h =

√
3
2

b =
√

3a2 − 3x2.

So the area of this triangle is 1
2 bh =

(√
3

)
(a2 − x2), and therefore the volume of the solid is

∫ a

−a

(√
3

)
(a2 − x2) dx =

[√
3
3

(3a2x− x3)

]a
−a

=
4
√

3
3

a3.
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C06S02.042: A cross section of the solid perpendicular to the x-axis at x has base of length
√
x − x2, so

its area is
(√

x − x2
)2 = x− 2x5/2 + x4. So the volume of the solid is

∫ 1

0

(
x− 2x5/2 + x4

)
dx =

[
1
2
x2 − 4

7
x7/2 +

1
5
x5

]1

0

=
9
70
.

C06S02.043: The volume of the paraboloid is

Vp =
∫ h

0

2πpx dx =
[
πpx2

]h
0

= πph2.

If r is the radius of the cylinder, then the equation y2 = 2px yields r2 = 2ph, so the volume of the cylinder
is Vc = πr2h = 2πph2 = 2Vp.

C06S02.044: Consider a cross section of the pyramid parallel to its base and at distance x from the vertex
of the pyramid. Similar triangles show that the length y and width z of this cross section are proportional
to x, so that its area is f(x) = kx2. Moreover, f(h) = A, so that kh2 = A, and therefore k = A/(h2). Thus
the total volume of the pyramid will be

V =
∫ h

0

f(x) dx =
∫ h

0

A

h2
· x2 dx =

[
Ax3

3h2

]h
0

=
Ah3

3h2
=

1
3
Ah.

C06S02.045: Consider a cross section of the pyramid parallel to its base and at distance x from the vertex
of the pyramid. Similar triangles show that the lengths of the edges of this triangular cross section are
proportional to x. If the edges have lengths p, q, and r, then Heron’s formula tells us that the area of this
triangular cross section is

1
4

√
(p+ q + r)(p+ q − r)(p− q + r)(q + r − p) ,

and thus the area g(x) of this triangular cross section is proportional to x2; that is, g(x) = kx2 for some
constant k. But g(h) = A, which tells us that kh2 = A and thus that k = A/(h2). So the total volume of
the pyramid will be

V =
∫ h

0

g(x) dx =
∫ h

0

A

h2
· x2 dx =

[
Ax3

3h2

]h
0

=
Ah3

3h2
=

1
3
Ah.

C06S02.046: Set up a coordinate system in which the origin is at the center of the sphere and the
sphere-with-hole is symmetric around the y-axis. Then a horizontal cross section of the solid “at” location
y is an annular region with inner radius 3 and outer radius x =

√
25− y2. Therefore the volume of the

sphere-with-hole is

V =
∫ 5

−4

π(25− y2 − 9) dy = 2π
[

1
3

(48y − y3)
]4

0

=
256π

3
≈ 268.082573.

As an independent check, the volume of the sphere-without-hole is about 523.598776.

C06S02.047: Set up a coordinate system in which one cylinder has axis the x-axis and the other has axis
the y-axis. Introduce a z-axis perpendicular to the xy-plane and passing through (0, 0). We will find the
volume of the eighth of the intersection that lies in the first octant, where x, y, and z are nonnegative, then
multiply by 8 to find the answer.

7



A cross section of the eighth perpendicular to the z-axis (thus parallel to the xy-plane) is a square; if
this cross section meets the z-axis at z, then one of its edges lies in the yz-plane and reaches from the z-axis
(where y = 0) to the side of the cylinder symmetric around the x-axis. That cylinder has equation the same
as the equation as the circle in which it meets the yz-plane: y2 + z2 = a2. Hence the edge of the square
under consideration has length y =

√
a2 − z2. So the area of the square cross section “at” z is a2 − z2. So

the volume of the eighth of the solid in the first octant is

∫ a

0

(a2 − z2) dz =
[
a2z − 1

3
z3

]a
0

= a3 − 1
3
a3 =

2
3
a3.

Therefore the total volume of the intersection of the two cylinders is
16
3
a3.

As an independent check, it’s fairly easy to see that the sphere of radius a centered at the origin is
enclosed in the intersection and occupies most of the volume of the intersection; the ratio of the volume of
the intersection to the volume of that sphere is

16
3 a

3

4
3 πa

3
=

4
π
≈ 1.273240,

a very plausible result.

C06S02.048: Set up a coordinate system in which the center of the sphere is located at the origin and
the flat part of the spherical segment is perpendicular to the y-axis. Now consider a cross section of the
spherical segment, lying between y = r − h and y = r on the y-axis, and “at” location y. This cross section
is a circular disk of radius x =

√
r2 − y2, so its has cross-sectional area π(r2 − y2). Therefore the volume of

the spherical segment will be

V (h) =
∫ r

r−h
π(r2 − y2) dy = π

[
r2y − 1

3
y3

]r
r−h

= π

[
2
3
r3 − 1

3
(r − h)(3r2 − (r − h)2)

]
=

1
3
πh2(3r − h).

Note that the answer is dimensionally correct (the product of three lengths; see page 156 of the text). It also
meets the “test of extremes,” known in the past as “the exception that proves the rule,” which in modern
translation would be “the exceptional case that tests the rule.” Specifically, V (0) = 0, V (r) = 2

3πr
3, and

V (2r) = 4
3πr

3, exactly as should be the case.

C06S02.049: The cross section of the torus perpendicular to the y-axis “at” y is an annular ring with
outer radius x = b+

√
a2 − y2 and inner radius x = b−

√
a2 − y2, a consequence of the fact that the circular

disk that generates the torus has equation (x− b)2 + y2 = a2. So the cross section has area

π

[(
b+

√
a2 − y2

)2

−
(
b−

√
a2 − y2

)2
]

= 4πb
√
a2 − y2.

Therefore the volume of the torus is

V = 4πb
∫ a

−a

√
a2 − y2 dy = 4πb · 1

2
πa2

because the integral is the area of a semicircle of radius a centered at the origin. Therefore V = 2π2a2b.

C06S02.050: Simpson’s approximation is

S4 =
25π
3
·
(
602 + 4 · 552 + 2 · 502 + 4 · 352 + 02

)
=

640000π
3

≈ 670206.433.
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C06S02.051: First, r is the value of y = R− kx2 when x = 1
2h, so r = R− 1

4kh
2 = R− δ where 4δ = kh2.

Next, the volume of the barrel is

V = 2
∫ h/2

0

π(R− kx2)2 dx = 2π
∫ h/2

0

(
R2 − 2Rkx2 + k2x4

)
dx

= 2π
[
R2x− 2

3
Rkx3 +

1
5
k2x5

]h/2
0

= 2π
(

1
2
R2h− 1

12
Rkh3 +

1
160

k2h5

)

= πh

(
R2 − 1

6
Rkh2 +

1
80
k2h4

)
= πh

(
R2 − 1

6
R · 4δ +

1
80
· 16δ2

)

= πh

(
R2 − 2

3
Rδ +

1
5
δ2

)
=
πh

3
·
(

3R2 − 2Rδ +
3
5
δ2

)

=
πh

3
·
(

2R2 +R2 − 2Rδ + δ2 − 2
5
δ2

)
=
πh

3
·
(

2R2 + (R− δ)2 − 2
5
δ2

)
=
πh

3
·
(

2R2 + r2 − 2
5
δ2

)
.

C06S02.052: Suppose that the depth of water in the clepsydra is h. A horizontal cross section of the water
“at” y, 0 � y � h, is a circular disk of radius x = (y/k)1/4, so the total volume of water in the clepsydra
will be

V (h) =
∫ h

0

π · y
1/2

k1/2
dy =

2πh3/2

3k1/2
.

Thus if the depth of water is y, we find that its volume is

V (y) =
2πy3/2

3k1/2
.

But even without this computation the fundamental theorem of calculus tells us that

dV

dy
=

π

k1/2
· y1/2.

Therefore—using Torricelli’s law—

−cy1/2 =
dV

dt
=
dV

dy
· dy
dt

=
π

k1/2
· y1/2 · dy

dt
,

and now it follows that

dy

dt
= − c

√
k

π
,

which is a constant. That is, the water level falls at a constant rate. To use the clepsydra as a clock (as it was
used in ancient Egypt, Greece, and Rome), put a ruler vertically in the clepsydra. The ancient Egyptians
were so sophisticated with these clocks that they had different rulers for different water temperatures, as
the less viscous warm water would run out at a slightly greater (but still constant) rate. According to the
American Heritage Dictionary of the English Language (Boston: Houghton Mifflin, 1969, 1970), the name of
the device is derived from the Greek word klepsudra, “water stealer” (from the “stealthy” flow of the water),
from the words kleptein, “to steal” (an English relative is kleptomania) and hudor, “water” (an English
relative is hydrosphere).

9



C06S02.053: The factors 27 and 3.3 in the following computations convert cubic feet to cubic yards and
cubic yards to dollars. The trapezoidal approximation gives

T6 =
(10)(3.3)
(2)(27)

· (1513 + 2 · 882 + 2 · 381 + 2 · 265 + 2 · 151 + 2 · 50 + 0) ≈ 3037.83

and Simpson’s approximation gives

S6 =
(10)(3.3)
(3)(27)

· (1513 + 4 · 882 + 2 · 381 + 4 · 265 + 2 · 151 + 4 · 50 + 0) ≈ 3000.56.

To the nearest hundred dollars, each answer rounds to $3000.

C06S02.054: Please don’t give this solution away, particularly to a differential equations student. Note
first that if V (t) is the volume of water in the bowl at time t, then dV/dt = −k · A(t) where k is a positive
constant. Let y(t) be the depth of water in the bowl at time t. Consider the time interval [t, t+∆t]. Assume
that the water level drops by the amount ∆y. Then the change in the volume of water in the bowl is

∆V ≈ A(t) ∆y

where A(t) is the area of the water surface at time t. Thus

∆V

∆t
≈ A(t) · ∆y

∆t
,

and if we let ∆t→ 0, the error in this approximation will approach zero; therefore

A(t) · dy
dt

=
dV

dt
;

A(t) · dy
dt

= −kA(t);

dy

dt
= −k.

That is, the water level in the bowl drops at a constant rate.

C06S02.055: First “finish” the frustum; that is, complete the cone of which it is a frustum. We measure
all distances from the vertex of the completed cone and perpendicular to the bases of the frustum. Let H be
the height of the cone and suppose that H−h � y � H, so that a cross section of the cone at distance y from
its vertex is a circular cross section of the frustum. The area A(y) of such a cross section is proportional to
the square of its radius, which is proportional to y2, so that A(y) = ky2 where k is a positive proportionality
constant. By similar triangles,

H − h
r

=
H

R
, and so H =

hR

R− r .

Also, A(H) = kH2 = πR2, and it follows that

k =
πR2

H2
, so that A(y) =

πR2y2

H2
.

Therefore the volume of the frustum is

V =
∫ H

H−h

πR2y2

H2
dy =

πR2

3H2
·
(
H3 − (H − h)3

)
.
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(a,0)

x = c
Radius a

Radius b < a

x

y

Next note that A(H − h) = πr2 =
πR2

H2
(H − h)2. Therefore

V =
πR2

3H2

(
3H2h− 3Hh2 + h3

)
=

πR2

3h2R2
(R− r)2

(
3h3R2

(R− r)2 −
3h3R

R− r + h3

)

=
π

3h2

(
3h3R2 − 3h3R(R− r) + h3(R− r)2

)
=
πh

3

(
3R2 − 3R(R− r) + (R− r)2

)

=
πh

3
(3R2 − 3R2 + 3rR+R2 − 2Rr + r2) =

πh

3
(R2 +Rr + r2).

C06S02.056: The solid is formed by rotating around the x-axis the plane region above the x-axis and
common to the two circular disks bounded by the two circles with equations

(
x+ 1

2a
)2 + y2 = a2 and

(
x− 1

2a
)2 + y2 = a2.

Let R denote the half of that region that lies in the first quadrant. Then the solid of Problem 56 has volume
V double that obtained when R is revolved around the x-axis. The curve that forms the upper boundary of
R has equation

y = f(x) =
1
2

√
3a2 − 4ax− 4x2 ,

and therefore

V = 2
∫ a/2

0

π [f(x) ]2 dx = 2π
[

3
4
a2x− 1

2
ax2 − 1

3
x3

]a/2
0

=
5
12
πa3.

Note that the answer is dimensionally correct. Moreover, the solid occupies 31.25% of the volume of either
sphere, and thus the answer also passes the test of plausibility (see page 155 of the text).

C06S02.057: The solid of intersection of the two spheres can be generated by rotating around the x-axis
the region R common to the two circles shown in the following figure.

The circle on the left, of radius a and centered at the origin, has equation x2 + y2 = a2. The circle on the
right, of radius b < a and centered at (a, 0), has equation (x− a)2 + y2 = b2. The x-coordinate of their two
points of intersection can be found by solving

x2 − a2 = (x− a)2 − b2 for x =
2a2 − b2

2a
= c.
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The part of R above the x-axis is comprised of two smaller regions, one to the left of the vertical line x = c

and one to its right. The width of the region R1 on the left—measured along the x-axis—is

h1 = c− (a− b) =
2a2 − b2

2a
− a+ b =

b(2a− b)
2a

.

The width of the region R2 on the right is

h2 = a− c =
b2

2a
.

One formula will tell us the volume of the solid generated by rotation of either R1 or R2 around the x-axis.
Suppose that C is the circle of radius r centered at the origin and that 0 < h < r. Let us find the volume
generated by rotation of the region above the x-axis, within the circle, and to the right of the vertical line
x = r − h around the x-axis. It is

V (r, h) =
∫ r

r−h
π(r2 − x2) dx = π

[
r2x− 1

3
x3

]r
r−h

= · · · = πh2

3
(3r − h)

(we worked this problem by hand—it is not difficult, merely tedious—but checked our results with Mathe-

matica 3.0). Hence the volume of intersection of the two original spheres is

V (b, h1) + V (a, h2) = · · · =
πb3

12a
(8a− 3b)

(also by hand, tedious but not difficult, and checked with Mathematica).

C06S02.058: As n→∞, xi−1 → xi. Continuity of f then implies that f(xi−1)→ f(xi), so that

lim
n→∞

n∑
i=1

π

3

{
[f(xi−1)]

2 + f(xi−1)f(xi) + [f(xi)]
2
}

∆x = lim
n→∞

n∑
i=1

π

3
· 3 [f(xi)]

2 ∆x

=
∫ b

a

π [f(x)]2 dx.

12
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Section 6.3

C06S03.001: The region R, bounded by the graphs of y = x2, y = 0, and x = 2, is shown next. If we
rotate R around the y-axis, then the vertical strip in R “at” x will move around a circle of radius x and the
height of the strip will be y = x2, so the volume generated will be

∫ 2

0

2πx3 dx = 2π
[

1
4
x4

]2

0

= 8π ≈ 25.1327412287.

C06S03.002: The region R to be rotated around the y-axis is bounded above by the graph of y =
√
x and

below by the graph of y = −
√
x. Hence the vertical strip “at” x has height 2

√
x and is rotated around a

circle of radius x, so the volume swept out by R is

V =
∫ 4

0

4πx3/2 dx =
[

8
5
πx5/2

]4

0

=
256π

5
≈ 160.8495438638.

C06S03.003: To obtain all the cylindrical shells, we need only let x range from 0 to 5, so the volume of
the solid is

V =
∫ 5

0

2πx(25− x2) dx = π

[
25x2 − 1

2
x4

]5

0

=
625π

2
≈ 981.7477042468.

C06S03.004: The volume is
∫ 2

0

2πx(8− 2x2) dx = 2π
[
4x2 − 1

2
x4

]2

0

= 16π ≈ 50.2654824574.

C06S03.005: The volume is
∫ 2

0

2πx(8− 2x2) dx = 2π
[
4x2 − 1

2
x4

]2

0

= 16π ≈ 50.2654824574.

C06S03.006: The volume is
∫ 3

0

2πy(9− y2) dy = π

[
9y2 − 1

2
y4

]3

0

=
81π
2
≈ 127.2345024704.

C06S03.007: A horizontal strip of the region R (shown next) “at” y stretches from x = y to x = 3 − 2y
and thus has length 3− 3y. Hence the volume swept out by rotation of R around the x-axis is

V =
∫ 1

0

2πy(3− 3y) dy = π

[
3y2 − 2y3

]1

0

= π ≈ 3.1415926536.

1
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C06S03.008: The horizontal strip of the region R “at” y moves around a circle of radius 5 − y and has
length y1/2 − 1

2y, so the volume swept out by R is

V =
∫ 4

0

2π(5− y)
(
y1/2 − 1

2
y

)
dy = 2π

[
10
3
y3/2 − 5

4
y2 − 2

5
y5/2 +

1
6
y3

]4

0

= 2π
(

80
3
− 20− 64

5
+

32
3

)
=

136π
15
≈ 28.4837733925.

C06S03.009: A horizontal strip of the region R “at” y (0 � y � 2) stretches from y2/4 to x = (y/2)1/2

and is rotated around a circle of radius y, so the volume swept out when R is rotated around the x-axis is

V =
∫ 4

0

2πy
[(y

2

)1/2
− y2

4

]
dy = 2π

∫ 4

0

(√
2
2
y3/2 − 1

4
y3

)
dy

= 2π

[√
2
5
y5/2 − 1

16
y4

]2

0

=
6π
5
≈ 3.7699111843.

C06S03.010: The volume is
∫ 3

0

2πx(3x− x2) dx = 2π
[
x3 − 1

4
x4

]3

0

=
27π
2
≈ 42.4115008235.

C06S03.011: The graph of y = 4x − x3 crosses the x-axis at x = −2, x = 0, and x = 2. It is below the
x-axis for −2 < x < 0 and above it for 0 < x < 2. A vertical strip “at” x for 0 � x � 2 has height 4x− x3

and moves around a circle of radius x, whereas a vertical strip “at” x for −2 � x � 0 has height −(4x− x3)
and moves around a circle of radius −x. Therefore the total volume swept out when the given region is
rotated around the y-axis is

V =
∫ 2

0

2πx(4x− x3) dx+
∫ 0

−2

(−2πx)(x3 − 4x) dx =
∫ 2

−2

2πx(4x− x3) dx

= 2π
[

4
3
x3 − 1

5
x5

]2

−2

=
256π
15
≈ 53.6165146213.

C06S03.012: A horizontal strip “at” y of the given region has length x = y3 − y4 and is rotated around a
circle of radius y− (−2) = y+ 2, so the volume swept out when this region is rotated around the horizontal
line y = −2 is

2



V =
∫ 1

0

2π(y + 2)(y3 − y4) dy = 2π
[

1
2
y4 − 1

5
y5 − 1

6
y6

]1

0

=
4π
15
≈ 0.8377580410.

C06S03.013: The volume is
∫ 1

0

2πx(x− x3) dx = 2π
[

1
3
x3 − 1

5
x5

]1

0

=
4π
15
≈ 0.8377580410.

C06S03.014: The volume is
∫ 4

0

2πy(16− y2) dy = 2π
[
8y2 − 1

4
y4

]4

0

= 128π ≈ 402.1238596595.

C06S03.015: A vertical strip “at” x of the given region has height y = x− x3 and moves around a circle
of radius 2− x, so the volume the region sweeps out is

V =
∫ 1

0

2π(2− x)(x− x3) dx = 2π
[
x2 − 1

3
x3 − 1

2
x4 +

1
5
x5

]1

0

=
11π
15
≈ 2.3038346126.

C06S03.016: The volume is
∫ 2

0

2πx · x3 dx = 2π
[

1
5
x5

]2

0

=
64π
5
≈ 40.2123859659.

C06S03.017: If 0 � x � 2, then a vertical strip of the given region “at” x has height x3 and moves around
a circle of radius 3− x, so the volume swept out is

V =
∫ 2

0

2π(3− x)x3 dx = 2π
[

3
4
x4 − 1

5
x5

]2

0

=
56π
5
≈ 35.1858377202.

C06S03.018: If 0 � y � 8, then a horizontal strip of the given region “at” y has length 2− y1/3 and moves
around a circle of radius y, so the volume generated by rotation of that region around the x-axis is

V =
∫ 8

0

2πy(2− y1/3) dy = 2π
[
y2 − 3

7
y7/2

]8

0

= 2π
(

64− 384
7

)
=

128π
7
≈ 57.4462656656.

C06S03.019: If −1 � x � 1, then a vertical strip of the given region “at” x has height x2 and moves
around a circle of radius 2−x, so the volume generated by rotating the given region around the vertical line
x = 2 is

V =
∫ 1

−1

2π(2− x)x2 dx = 2π
[

2
3
x3 − 1

4
x4

]1

−1

= 2π
(

5
12

+
11
12

)
=

8π
3
≈ 8.3775804096.

C06S03.020 The volume is
∫ 1

0

2πx(x− x2) dx = 2π
[

1
3
x3 − 1

4
x4

]1

0

=
π

6
≈ 0.5235987756.

C06S03.021: The volume is
∫ 1

0

2πy(y1/2 − y) dy = 2π
[

2
5
y5/2 − 1

3
y3

]1

0

=
2π
15
≈ 0.4188790205.

C06S03.022: The volume is
∫ 1

0

2π(2− y)(y1/2 − y) dy = 2π
∫ 1

0

(2y1/2 − 2y − y3/2 + y2) dy

= 2π
[

4
3
y3/2 − y2 − 2

5
y5/2 +

1
3
y3

]1

0

= 2π
(

4
3
− 1− 2

5
+

1
3

)
=

8π
15
≈ 1.6755160819.
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C06S03.023: If 0 � x � 1, then a vertical strip of the given region “at” x has height x − x2 and moves
around a circle of radius x−(−1) = x+1, so the volume swept out by rotating the region around the vertical
line x = −1 is

V =
∫ 1

0

2π(x+ 1)(x− x2) dx = 2π
∫ 1

0

(x− x3) dx = 2π
[

1
2
x2 − 1

4
x4

]1

0

=
π

2
≈ 1.5707963268.

C06S03.024: If 1 � x � 2, then a vertical strip of the given region “at” x has height 1/x2 and moves
around a circle of radius x, so the volume generated by rotating the region around the y-axis is

∫ 2

1

2πx · 1
x2

dx = 2π
∫ 2

1

1
x
dx = 2π

[
lnx

]2

1

= 2π ln 2 ≈ 4.3551721806.

C06S03.025: The volume is

V =
∫ 1

0

2πx exp(−x2) dx =
[
− π exp(−x2)

]1

0

= − π
e
− (−π) =

π(e− 1)
e

≈ 1.9858653038.

C06S03.026: The volume is
∫ 2

0

2πx
1 + x2

dx =
[
π ln(1 + x2)

]2

0

= π ln 5 ≈ 5.0561983221.

C06S03.027: If 0 � x � √π, then a vertical strip of the given region “at” x has height 2 sinx2 and is
rotated around a circle of radius x. Hence the volume thereby generated is

V =
∫ √

π

0

4πx sinx2 dx =
[
− 2π cosx2

]√
π

0

= 2π − (−2π) = 4π ≈ 12.5663706144.

C06S03.028: The volume is
∫ 2

1

2π(x+ 1) · 1
x2

dx = 2π
∫ 2

1

(
1
x

+
1
x2

)
dx = 2π

[
− 1
x

+ lnx
]2

1

= −π + 2π ln 2− (−2π) = π(1 + 2 ln 2) ≈ 7.4967648342.

C06S03.029: The curves cross to the right of the y-axis at the points x = a = 0.17248 and x = b = 1.89195
(numbers with decimals are approximations). The quadratic is above the cubic if a < x < b, so the volume
of the region generated by rotation of R around the y-axis is

V =
∫ b

a

2πx(6x− x2 − x3 − 1) dx = 2π
[
−1

5
x5 − 1

4
x4 + 2x3 − 1

2
x2

]b
a

≈ 23.2990983139.

C06S03.030: The curves cross at x = a = 0.506586 and x = b = 1.95208 (numbers with decimals are
approximations). The linear function is above the quartic for a < x < b, so the volume generated by rotation
of r around the y-axis is

V =
∫ b

a

2πx(10x− 5− x4) dx = 2π
[

10
3
x3 − 5

2
x2 − 1

6
x6

]b
a

≈ 39.3184699459.

C06S03.031: We used Newton’s method to find that the two curves cross at x = a = −0.8241323123 and
x = b = −a. But because the region R is symmetric around the y-axis, the interval of integration must be
[0, b]. Also cosx � x2 on this interval, so the volume generated by rotation of R around the y-axis is
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∫ b

0

2πx(cosx − x2) dx = 2π
[
cosx + x sinx − 1

4
x4

]b
0

≈ 1.0602688478.

C06S03.032: The two curves clearly cross where x = 0. We used Newton’s method to find that they also
cross where x = b = 1.4055636328 (numbers with decimals are approximations). Because cosx � (x − 1)2

on [0, b], the volume generated by rotation of R around the y-axis is

∫ b

0

2πx[cosx − (x− 1)2 ] dx = 2π
[
cosx+ x sinx − 1

4
x4 +

2
3
x3 − 1

2
x2

]b
0

≈ 2.7556103644.

C06S03.033: We used Newton’s method to find that the two curves cross where x = a = 0.1870725959
and x = b = 1.5758806791. Because cosx � 3x2 − 6x + 2 on [a, b], the volume generated by rotation of R
around the y-axis is

V =
∫ b

a

2πx(cosx − 3x2 + 6x− 2) dx = 2π
[
cosx + x sinx − x2 + 2x3 − 3

4
x4

]b
a

≈ 8.1334538068.

C06S03.034: The region R is symmetric around the y-axis and the two curves cross to the right of the y-axis
where x = b = 1.7878717268 (numbers with decimal points are approximations). Because 3 cosx � − cos 4x
for 0 < x < b, the volume generated when R is rotated around the y-axis is

V =
∫ b

0

2πx(3 cosx+ cos 4x) dx = 2π
[
3 cosx+

1
16

cos 4x+ 3x sinx+
1
4
x sin 4x

]b
0

≈ 12.0048972158.

C06S03.035: The slant side of the cone is the graph of

f(x) = h− hx

r
for 0 � x � r.

Therefore the volume of a cone of radius r and height h is

V =
∫ r

0

2πxf(x) dx = 2π
[

1
2
hx2 − hx3

3r

]r
0

=
1
3
πr2h.

C06S03.036: The volume of the paraboloid is

V =
∫ √2ph

0

2πy
(
h− y2

2p

)
dy = 2π

[
1
2
hy2 − y4

8p

]√2ph

0

= 2π
(
ph2 − 1

2
ph2

)
= πph2.

C06S03.037: The top half of the ellipse is the graph of

y = f(x) =
b

a
(a2 − x2)1/2, −a � x � a.

The height of a vertical cross section of the ellipse “at” the number x is therefore 2f(x), so the volume of
the ellipsoid will be

V =
∫ a

0

4πxf(x) dx =
4πb
a

∫ a

0

x(a2 − x2)1/2 dx =
4πb
a

[
−1

3
(a2 − x2)3/2

]a
0

=
4πb
3a
· a3 =

4
3
πa2b.
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Note the lower limit of integration: zero, not −a.

C06S03.038: Place the sphere of radius r with its center at the origin in the vertical xy-plane, so that
the sphere intersects the xy-plane in the circle with equation x2 + y2 = r2. We will find the volume of the
spherical segment that occupies the region for which r − h � y � r where 0 � h � 2r. Note first that if
the horizontal line y = r − h meets the circle at the point where x = a > 0, then a2 + (r − h)2 = r2, and it
follows that a =

√
2rh− h2. So if x is between 0 and a, then the vertical strip above x from y = r − h to

the top of the sphere (where y =
√
r2 − x2) has length

(r2 − x2)1/2 − (r − h)

and will be rotated around a circle of radius x. Hence the volume of the spherical segment is

V = 2π
∫ a

0

x
[√

r2 − x2 − (r − h)
]
dx =

π

3

[
(r2 − x2)

(
3(r − h)− 2

√
r2 − x2

) ]a
0

=
π

3

[
(r2 − 2rh+ h2)

(
3(r − h)− 2

√
r2 − 2rh+ h2

)
− r2

(
3(r − h)− 2r

) ]

=
π

3

[
(r − h)2

(
3(r − h)− 2(r − h)

)
− 3r2(r − h) + 2r3

]
=
π

3

[
(r − h)3 − 3r3 + 3r2h+ 2r3

]

=
π

3
(r3 − 3r2h+ 3rh2 − h3 − r3 + 3r2h) =

π

3
(3rh2 − h3) =

πh2

3
(3r − h).

C06S03.039: The torus is generated by rotating the circular disk D in the xy-plane around the y-axis;
the boundary of D has equation (x− b)2 + y2 = a2 where 0 < a � b. Thus D has its center at (b, 0) on the
positive x-axis. If b − a � x � b + a, then a vertical slice through D at x has height 2

√
a2 − (x− b)2, and

so the volume of the torus is

V =
∫ b+a

b−a
2πx · 2

√
a2 − (x− b)2 dx.

The substitution u = x− b, with x = u+ b and dx = du, transforms this integral into

V =
∫ a

−a
2π(u+ b) · 2

√
a2 − u2 du = 4π

∫ a

−a

[
u(a2 − u2)1/2 + b(a2 − u2)1/2

]
du

= 4π
[
−1

3
(a2 − u2)3/2

]a
−a

+ 4πb
∫ a

−a

√
a2 − u2 du = 0 + 4πb · 1

2
πa2 = 2π2a2b

because the last integral represents the area of a semicircle of radius a.

C06S03.040: The two curves meet at (−1, 1) and (2, 4) and the graph of the linear equation is above that
of the quadratic for −1 < x < 2. If a vertical strip of the region R they bound, above the point x on the
x-axis, is rotated around the vertical line x = −2, then it has height x + 2 − x2 and moves around a circle
of radius x+ 1. Hence the volume of the solid generated in part (a) is

V =
∫ 2

−1

2π(x+ 2)(x+ 2− x2) dx = 2π
∫ 2

−1

(4 + 4x− x2 − x3) dx

= 2π
[
4x+ 2x2 − 1

3
x3 − 1

4
x4

]2

−1

= 2π
(

28
3

+
23
12

)
=

45π
2
≈ 70.6858347058.
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a

b h/2

But if that vertical strip is rotated around the vertical line x = 3, then the radius of its circular path is now
3− x, and therefore the volume of the solid generated in part (b) is

V =
∫ 2

−1

2π(3− x)(x+ 2− x2) dx = 2π
∫ 2

−1

(6 + x− 4x2 + x3) dx

= 2π
[
6x+

1
2
x2 − 4

3
x3 +

1
4
x4

]2

−1

= 2π
(

22
3

+
47
12

)
=

45π
2
≈ 70.6858347058.

The equality of the answers in parts (a) and (b) is merely a coincidence.

C06S03.041: If −a � x � a, then the vertical cross section through the disk “at” x has length 2
√
a2 − x2

and moves through a circle of radius a−x, so the volume of the so-called pinched torus the disk generates is

V =
∫ a

−a
2π(a− x) · 2(a2 − x2)1/2 dx

= 4πa
∫ a

−a
(a2 − x2)1/2 dx− 4π

[
−1

3
(a2 − x2)3/2

]a
−a

= 4πa · 1
2
πa2 + 0 = 2π2a3.

The value of the last integral is 1
2πa

2 because it represents the area of a semicircle of radius a.

C06S03.042: First, Dx (x− 1)ex = (x− 1)ex + ex = xex, and therefore
∫
xex dx = (x− 1)ex + C.

Therefore the volume of the solid of part (b) is

V =
∫ 1

0

2πxex dx = 2π
[
(x− 1)ex

]1

0

= 0− (−2π) = 2π.

C06S03.043: The next figure shows the central cross section of the sphere-with-hole; the radius of the hole
is a, its height is h, and the radius of the sphere is b.

The figure shows that 1
2h =

√
b2 − a2, and substitution in the volume formula V = 4

3π(b2−a2)3/2 of Example
2 yields
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V =
4
3
π ·

(
h

2

)3

=
π

6
h3,

quite independent of the values of a or b.

C06S03.044: The method of cross sections yields volume

V =
∫ 16

0

π(25− y − 9) dy = π

[
16y − 1

2
y2

]16

0

= 128π ≈ 402.1238596595.

The method of cylindrical shells yields volume

V =
∫ 5

3

2πx(25− x2) dx = 2π
[

25
2
x2 − 1

4
x4

]5

3

=
625π

2
− 369π

2
= 128π.

C06S03.045: (a) The method of cross sections yields volume

V =
∫ 5

0

πx(5− x)2 dx =
π

12

[
3x4 − 40x3 + 150x2

]5

0

=
625π
12
≈ 163.6246173745.

(b) The method of cylindrical shells yields volume

V =
∫ 5

0

4πx3/2(5− x) dx = 2π
[
4x5/2 − 4

7
x7/2

]5

0

=
400π

√
5

7
≈ 401.4179846309.

(c) The method of cylindrical shells yields volume

V =
∫ 5

0

4πx1/2(5− x)2 dx = 4π
[

50
3
x3/2 − 4x5/2 +

2
7
x7/2

]5

0

=
1600π

√
5

21
≈ 535.2239795079.

C06S03.046: (a) The method of cross sections yields volume

V =
∫ 0

−3

πx2(x+ 3) dx = π

[
x3 +

1
4
x4

]0

−3

=
27π
4
≈ 21.2057504117.

(b) In the method of parallel slabs, we must note that the radius of the vertical strip “at” x is −x and that√
x2 = −x because x � 0. Thus the volume is

V =
∫ 0

−3

(−2πx)(−2x)(x+ 3)1/2 dx = 4π
∫ 0

−3

x2(x+ 3)1/2 dx.

The substitution u = x+ 3 converts the last integral into

V = 4π
∫ 3

0

(u− 3)2u1/2 du = 4π
∫ 3

0

(9u1/2 − 6u3/2 + u5/2) du

= 4π
[
6u3/2 − 12

5
u5/2 +

2
7
u7/2

]3

0

= 4π · 144
√

3
35

=
576π

√
3

35
≈ 89.5498657542.

(c) The method of cylindrical shells yields volume
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V =
∫ 0

−3

2π(x+ 3)(−2x)(x+ 3)1/2 dx = −4π
∫ 0

−3

x(x+ 3)3/2 dx.

Then the substitution u = x+ 3 transforms the last integral into

V = −4π
∫ 3

0

(u− 3)u3/2 du = −4π
∫ 3

0

(u5/2 − 3u3/2) du

= −4π
[

2
7
u7/2 − 6

5
u5/2

]3

0

=
432π

√
3

35
≈ 67.1623993156.

C06S03.047: Given

f(x) = 1 +
x2

5
− x4

500
and g(x) =

x4

10000
,

the curves cross where f(x) = g(x). The Mathematica command

Solve[ f[x] == g[x], x ]

returns two complex conjugate solutions and two real solutions, x = ±10. Hence the volume of the solid
obtained by rotating the region between the two curves around the y-axis can be computed in this way (we
include extra steps for the reader’s benefit):

Integrate[ 2∗Pi∗x∗(f[x] - g[x]), x ]

πx2 +
πx4

10
− 7πx6

10000

(% /. x → 10) − (% /. x → 0)

400π

N[%, 20]

1256.6370614359172954

To find the volume of water the birdbath will hold when full, we need to find the highest points on the graph
of y = f(x).

Solve[ D[ f[x], x] == 0, x ]

{{ x→ 0 }, { x→ −5
√

2 }, { x→ 5
√

2 }}

f[ 5∗Sqrt[2] ]

6

Thus the amount of water the birdbath will hold can be found as follows:

Integrate[ 2∗Pi∗x∗(6 - f[x]), x ]

5πx2 − πx4

10
+

πx6

1500

9



(% /. x → 5∗Sqrt[2]) - (% /. x → 0)

250π
3

N[%, 20]

261.79938779914943654
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Section 6.4

Note: In problems 1–20, we will also provide the exact answer (when the antiderivative is elementary) and
an approximation to the exact answer (in every case). This information is not required of students working
these problems, but it provides an opportunity for extra practice for them in techniques of integration (after
they complete Chapter 7) and in numerical integration (which most of them have already completed). The
approximations are accurate to the number of decimal places given.

C06S04.001: The length is
∫ 1

0

√
1 + 4x2 dx =

1
4

(
2
√

5 + sinh−1 2
)
≈ 1.4789428575.

C06S04.002: The length is
∫ 3

1

1
2
(4 + 25x3)1/2 dx ≈ 14.7554. (The antiderivative is nonelementary.)

C06S04.003: The length is
∫ 2

0

[
1 + 36x2(x− 1)2

]1/2
dx ≈ 6.6617.

C06S04.004: The length is
∫ 1

−1

1
3

[
9 + 16x2/3

]1/2
dx ≈ 2.85552.

C06S04.005: The length is
∫ 100

0

(1 + 4x2)1/2 dx = 50
√

40001 +
1
4

sinh−1 200 ≈ 10001.6228669180.

C06S04.006: The length is
∫ 1

0

[
1 + 4(y − 2)2

]1/2
dy

=
√

17 +
1
2

(
sinh−1 4− sinh−1 2− 2

√
5

)
≈ 3.1678409049.

C06S04.007: The length is
∫ 2

−1

(1 + 16y6)1/2 dy ≈ 18.2471.

C06S04.008: The arc length is
∫ 1

0

√
1 + e2x dx

= tanh−12− tanh−1
√

1 + e2 −
√

2 +
√

1 + e2 ≈ 2.0034971116.

C06S04.009: The arc length is
∫ 2

1

(
1 +

1
x2

)1/2

dx

=
√

5−
√

2 + ln
(
1 +
√

2
)

+ ln 2− ln
(
1 +
√

5
)
≈ 1.2220161771.

C06S04.010: First, ds =
√

1 + tan2 x dx = secx dx because secx > 0 on the interval 0 � x � π/4. Hence
the arc length is

∫ π/4

0

secx dx =
[

ln | secx + tanx|
]π/4
0

= ln
(
1 +
√

2
)
≈ 0.8813735870.

C06S04.011: The surface area is
∫ 4

0

2πx2(1+4x2)1/2 dx =
π

32

(
1032

√
65 − sinh−1 8

)
≈ 816.5660537285.

C06S04.012: The surface area is
∫ 4

0

2πx(1 + 4x2)1/2 dx =
π

6

(
653/2 − 1

)
≈ 273.8666397863.

1



C06S04.013: The surface area is
∫ 1

0

2π(x− x2)(4x2 − 4x+ 2)1/2 dx

=
π

16

(√
2 + 5 sinh−1 1

)
≈ 1.1429666793.

C06S04.014: The surface area is
∫ 1

0

2π(4− x2)(1 + 4x2)1/2 dx

=
5π
32

(
22
√

5 + 13 sinh−1 2
)
≈ 33.3601584259.

C06S04.015: The surface area is
∫ 1

0

2π(2− x)(1 + 4x2)1/2 dx

=
π

6

(
7
√

5 + 1 + 6 sinh−1 2
)
≈ 13.2545305651.

C06S04.016: The surface area is
∫ 1

0

2π(x− x3)(9x4 − 6x2 + 2)1/2 dx

=
π

27

(
5
√

2 +
√

5 + 3 sinh−1 1 + 3 sinh−1 2
)
≈ 1.8945156885.

C06S04.017: Given f(x) = ln(x2 − 1),

1 + [f ′(x)]2 = 1 +
4x2

(x2 − 1)2
=

(x2 + 1)2

(x2 − 1)2
.

Hence the surface area of revolution around the y-axis is

A =
∫ 3

2

2πx · x
2 + 1
x2 − 1

dx = π(5 + 6 ln 2− 2 ln 3) ≈ 21.8706952193.

C06S04.018: The surface area is
∫ 4

1

2πx
(

1 +
1
4x

)1/2

dx = π

∫ 4

1

(4x2 + x)1/2 dx

=
π

32

(
132
√

17− 18
√

5 + sinh−1 2− sinh−1 4
)
≈ 49.4162355383.

C06S04.019: If f(x) = ln(x+ 1), then

1 + [f ′(x)]2 = 1 +
1

(x+ 1)2
=
x2 + 2x+ 2

(x+ 1)2
.

Therefore the surface area of revolution around the line x = −1 is

A =
∫ 1

0

2π(x+ 1) ·
√
x2 + 2x+ 2
x+ 1

dx = π
(
2
√

5−
√

2 + sinh−1 2− sinh−1 1
)
≈ 11.3731443412.

C06S04.020: The surface area is
∫ 4

1

π(2 + x5/2)(4 + 25x3)1/2 dx ≈ 3615.28.

C06S04.021: The length is
∫ 2

0

(1 + 2x2) dx =
[
x+

2
3
x3

]2

0

=
22
3

.
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C06S04.022: The length is
∫ 5

1

y1/2 dy =
[

2
3
y3/2

]5

1

=
10
√

5 − 2
3

≈ 6.7868932583.

C06S04.023: First let f(x) =
1
6
x3 +

1
2x

. Then

1 + [f ′(x)]2 = 1 +
(

1
2
x2 − 1

2
x−2

)2

= 1 +
1
4
x4 − 1

2
+

1
4
x−4 =

1
4
x4 +

1
2

+
1
4
x−4 =

(
1
2
x2 +

1
2
x−2

)2

.

Therefore the length is

1
2

∫ 3

1

(x2 + x−2) dx =
1
2

[
1
3
x3 − 1

x

]3

1

=
13
3
−

(
− 1

3

)
=

14
3
.

C06S04.024: First let g(y) =
1
8
y4 +

1
4y2

. Then

1 + [g′(y)]2 = 1 +
(

1
2
y3 − 1

2
y−3

)2

= 1 +
1
4
y6 − 1

2
+

1
4
y−6 =

1
4
y6 +

1
2

+
1
4
y−6 =

(
1
2
y3 +

1
2
y−3

)2

.

Therefore the length is

1
2

∫ 2

1

(y3 + y−3) dy =
1
2

[
1
4
y4 − 1

2
y−2

]2

1

=
31
16
−

(
− 1

8

)
=

33
16

= 2.0625.

C06S04.025: First solve for y = f(x) =
2x6 + 1

8x2
=

1
4
x4 +

1
8
x−2. Then

1 + [f ′(x)]2 = 1 +
(
x3 − 1

4
x−3

)2

= 1 + x6 − 1
2

+
1
16
x−6 = x6 +

1
2

+
1
16
x−6 =

(
x3 +

1
4
x−3

)2

.

Therefore the length is

∫ 2

1

(
x3 +

1
4
x−3

)
dx =

[
1
4
x4 − 1

8
x−2

]2

1

=
127
32
− 1

8
=

123
32

= 3.84375.

C06S04.026: First solve for x = g(y) =
3 + 4y4

12y
=

1
4
y−1 +

1
3
y3. Then

1 + [g′(y)]2 = 1 +
(
y2 − 1

4
y−2

)2

= 1 + y4 − 1
2

+
1
16
y−4 = y4 +

1
2

+
1
16
y−4 =

(
y2 +

1
4
y−2

)2

.

Therefore the length is

∫ 2

1

(
y2 +

1
4
y−2

)
dy =

[
1
3
y3 − 1

4
y−1

]2

1

=
61
24
− 1

12
=

59
24
≈ 2.4583333333.

C06S04.027: Given f(x) = 1
2 (ex + e−x),

1 + [f ′(x)]2 = 1 +
1
4

(
ex − e−x

)2 =
[

1
2

(
ex + e−x

)]2
.

Therefore the length of the given arc is
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L =
∫ 1

0

1
2

(
ex + e−x

)
dx =

[
1
2

(
ex − e−x

)]1

0

=
e2 − 1

2e
≈ 1.1752011936.

C06S04.028: If f(x) = 1
8x

2 − lnx, then

1 + [f ′(x)]2 = 1 +
(
x

4
− 1
x

)2

=
(x2 + 4)2

16x2
.

Therefore the length of the given arc is

L =
∫ 2

1

x2 + 4
4x

dx =
[

1
8
x2 + lnx

]2

1

=
3
8

+ ln 2 ≈ 1.0681471806.

C06S04.029: Because

1 + [f ′(x)]2 = 1 +
(

1
2
x−1/2

)2

=
4x+ 1

4x
,

the surface area is

∫ 1

0

1
2
πx1/2

(
4x+ 1
x

)1/2

dx =
∫ 1

0

π(4x+ 1)1/2 dx =
[

1
6
π(4x+ 1)3/2

]1

0

=
5
√

5 − 1
6

π ≈ 5.3304135003.

C06S04.030: Because 1 + [f ′(x)]2 = 1 + 9x4, the surface area is

∫ 2

1

2πx3(1 + 9x4)1/2 dx =
[

1
27
π(1 + 9x4)3/2

]2

1

=
145
√

145 − 10
√

10
27

π ≈ 199.4804797017.

C06S04.031: First,

1 + [f ′(x)]2 = 1 +
(
x4 − 1

4x4

)2

= x8 +
1
2

+
1

16x8
=

(
x4 +

1
4x4

)2

.

Therefore the surface area of revolution is

∫ 2

1

2πx
(
x4 +

1
4x4

)
dx = π

∫ 2

1

(
2x5 +

1
2
x−3

)
dx

= π

[
1
3
x6 − 1

4
x−2

]2

1

=
339
16

π ≈ 66.5624943479.

C06S04.032: Let g(y) =
1
8
y4 +

1
4
y−2. Then

1 + [g′(y)]2 =
1
4

(
y6 + 2 + y−6

)
=

1
4

(
y3 + y−3

)2
.

Therefore the surface area is

∫ 2

1

π
(
y4 + y−2

)
dy = π

[
1
5
y5 − y−1

]2

1

=
67π
10
≈ 21.0486707791.

4



C06S04.033: Let f(x) = (3x)1/3. Then

√
1 + [f ′(x)]2 =

(
1 +

1
(3x)4/3

)1/2

.

Therefore the surface area of revolution is

∫ 9

0

2πx
(

1 +
1

(3x)4/3

)1/2

dx =
[
π

27x

(
9x2 + (3x)2/3

)3/2
]9

0

=
82
√

82 − 1
9

π ≈ 258.8468426921.

C06S04.034: Given f(x) = 1
2 (ex + e−x),

1 + [f ′(x)]2 = 1 +
1
4

(
ex − e−x

)2 =
[

1
2

(
ex + e−x

)]2
= [f(x)]2 .

Therefore the surface area of revolution around the x-axis is

A =
∫ 1

0

2π [f(x)]2 dx =
π

4

[
e2x + 4x− e−2x

]1

0

=
π

4
(
e2 + 4− e−2

)
≈ 8.8386516600.

C06S04.035: Given f(x) = x2 − 1
8 lnx, 1 � x � 2,

1 + [f ′(x)]2 = 1 +
(

2x− 1
8x

)2

=
(16x2 + 1)2

64x2
.

Therefore the surface area of revolution around the y-axis is

A =
∫ 2

1

2πx · 16x2 + 1
8x

dx = π

[
1
4
x+

4
3
x3

]2

1

=
115π
12
≈ 30.1069296.

C06S04.036: The length of one arch of the sine curve is

L1 =
∫ π

0

(
1 + cos2 x

)1/2
dx.

To find the arc length L2 of half the ellipse, we take y =
(
2− 2x2

)1/2, −1 � x � 1. Then

dy

dx
= − 2x

(2− 2x2 )1/2
, so 1 +

(
dy

dx

)2

=
1 + x2

1− x2
.

Thus

L2 =
∫ 1

−1

(
1 + x2

1− x2

)1/2

dx.

Let x = cosu. Then dx = − sinu du, and

L2 =
∫ 0

π

(
1 + cos2 u

sin2 u

)1/2

(− sinu) du =
∫ π

0

(
1 + cos2 u

)1/2
du = L1.

This concludes the solution, but an additional comment is appropriate. The Mathematica command
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Integrate[ Sqrt[ 1 + (Cos[u])∧2 ], {u, 0, Pi} ]

elicits the response(
2
√

2
)

EllipticE
(

1
2

)
.

Because elliptic integrals are involved, this strongly suggests that the antiderivative of
√

1 + cos2 u is nonele-
mentary. In this case none of the techniques of Chpater 7 will produce an antiderivative; y ou should therefore,
if necessary, approximate the value of L1 by using Simpson’s approximation. Your result should be close to
Mathematica’s approximation 3.820197789027712017904762.

C06S04.037: We take f(x) =
√

1 + cos2 x, ∆x = π/6, xi = i ·∆x, and compute

S6 =
∆x
3

[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + 4f(x5) + f(x6)]

=
π

18

(
4 + 2

√
2 + 2

√
5 + 4

√
7

)
≈ 3.8194031934.

C06S04.038: We take f(x) =
√

1 + 4x2 , ∆x = 1/10, xi = i ·∆x, and compute

S10 =
∆x
3

[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(x8) + 4f(x9) + f(x10)]

=
1
30

[
1 +
√

5 +
2
5

(√
29 +

√
41 +

√
61 +

√
89

)
+

4
5

(
5
√

2 +
√

26 +
√

34 +
√

74 +
√

106
)]

≈ 1.4789423874.

The exact value of the arc length is

∫ 1

0

√
1 + 4x2 dx =

2
√

5 + sinh−1 2
4

≈ 1.4789428575.

C06S04.039: The line segment from (r1, 0) to (r2, h) is part of the line with equation

y = f(x) =
h(x− r1)
r2 − r1

,

and

√
1 + [f ′(x)]2 =

√
1 +

h2

(r2 − r1)2
.

Therefore the area of the conical frustum is

∫ r2

r1

2πx
√

1 + [f ′(x)]2 dx = π

[
x2

(
(r2 − r1)2 + h2

(r2 − r1)2

)1/2
]r2
r1

= π(r1 + r2)
√
h2 + (r2 − r1)2 .

With r = (r1 + r2)/2 the “average radius” of the frustum and L =
√
h2 + (r2 − r1)2 its slant height, this

yields the result in Eq. (6) of the text.

C06S04.040: The spherical surface S of radius r centered at the origin may be generated by rotating the
graph of f(x) =

√
r2 − x2 around the x-axis for −r � x � r. Because
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√
1 + [f ′(x)]2 =

r√
r2 − x2

,

the surface area of S is

∫ r

−r
2π(r2 − x2)1/2 · r

(r2 − x2)1/2
dx =

∫ r

−r
2πr dx =

[
2πrx

]r
−r

= 2πr2 − (−2πr2) = 4πr2.

A perceptive student may notice that we have glossed over a problem with an improper integral here (Section
7.8). Perhaps such a student could be informed that the first simplification is valid for −r < x < r, and that
changing the value of an integrable function at two points cannot change the fact of its integrability nor can
it change the value of the definite integral.

C06S04.041: Let f(x) = (1− x2/3)3/2 for 0 � x � 1. Then the graph of f is the part of the astroid that
lies in the first quadrant in Fig. 6.4.16. Next,

√
1 + [f ′(x)]2 =

1
x1/3

,

so it would appear that the total length of the astroid is

4
∫ 1

0

1
x1/3

dx.

But this integral is not a Riemann integral—the integrand approaches +∞ as x → 0+. (It is an improper

integral, the topic of Section 9.8.) But we can avoid the difficulty at x = 0 by integrating from the midpoint

of the graph of f to x = 1. That midpoint occurs where y = x, so that 2x2/3 = 1, and thus x = a = 1
4

√
2.

Therefore the total length of the astroid is

L = 8
∫ 1

a

1
x1/3

dx = 8
[

3
2
x2/3

]1

a

= 8 ·
(

3
2
− 3

4

)
= 6.

C06S04.042: The surface area is

2
∫ 1

0

2πx
x1/3

dx = 2
∫ 1

0

2πx2/3 dx =
[

12
5
πx5/3

]1

0

=
12π
5
≈ 7.5398223686.

The integral is improper, but see the remarks attached to the solution of Problem 40.

C06S04.043: We will solve this problem by first rotating Fig. 6.4.18 through an angle of 90◦. Let f(x) =
(r2−x2)1/2. Think of the sphere as generated by rotation of the graph of f around the x-axis for −r � x � r.
Suppose that the spherical zone Z of height h is the part of the sphere between x = a and x = a+ h, where

−r � a � a+ h � r.

Also,

2πf(x)
√

1 + [f ′(x)]2 = 2π(r2 − x2)1/2 · r

(r2 − x2)1/2
= 2πr.

Therefore the area of the spherical zone Z is

A =
∫ a+h

a

2πr dx =
[
2πrx

]a+h
a

= 2πr(a+ h)− 2πra = 2πrh.

7



As noted in the statement of the problem, the area of Z depends only on the radius r of the sphere and the
height (width) h of the zone and not on the location of the two planes (at a and a+ h) that determine the
zone. You can also “test” the answer by substituting the value 2r for h.

C06S04.044: The top half of the loop is the graph of

f(x) =
x
√

4− x2

4
√

2

for 0 � x � 2. Next,

√
1 + [f ′(x)]2 =

√
(6− x2)2

8(4− x2)
=
√

2
4
· 6− x2

(4− x2)1/2
.

Thus

2πf(x)
√

1 + [f ′(x)]2 =
πx(6− x2)

8
,

and therefore the surface area generated by rotating the loop of Fig. 6.4.17 around the x-axis is

A =
∫ 2

0

πx(6− x2)
8

dx =
[ π
32
x2(12− x2)

]2

0
= π − 0 = π.

C06S04.045: The right-hand endpoint of the cable is located at the point (S, H), so that H = kS2. It
follows that

y(x) =
H

S2
x2, so that

dy

dx
=

2H
S2

x.

Therefore the total length of the cable is

L =
∫ S

−S

√
1 +

(
dy

dx

)2

dx = 2
∫ S

0

√
1 +

4H2

S4
x2 dx.

C06S04.046: The following Mathematica computations yield Simpson’s approximation to the integral in
question. We used s in place of S and h in place of H, and first let

s = 8000; h = 380;

and then we set up the integrand

f(x) = 2

√
1 +

4h2x2

s4
.

f[x ] := 2*Sqrt[1 + 4∗h∗h∗x∗x/(s∗s∗s∗s)]

n = 20; delta = s/n; x[i ] := i∗delta

(delta/3)∗(N[f[x[0]],20] + N[f[x[n]],20] +

4∗Sum[N[f[x[i]],20], { i, 1, n − 1, 2 } ] +

2∗Sum[N[f[x[i]],20], { i, 2, n − 2, 2 } ])

16024.034190838711974
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Next, n = 40 yielded the (probably) better approximation 16024.034190963156976. We repeated with n = 80,
n = 160, n = 320, n = 640, and n = 1280. The last two agreed in the first eleven digits to the right of the
decimal; with n = 1280 we obtained 16024.034190971453043.

If you prefer exact results,

∫
f(x) dx = x

√
s4 + 4h2x2

s4
+

s2

2h
sinh−1

(
2hx
s2

)
+ C,

and (with the given values of s and h)

∫ s

0

f(x) dx =

√
1 +

4h2

s2
+

s2

2h
sinh−1

(
2h
s

)

= 40
√

40361 +
1600000

19
sinh−1

(
19
200

)
≈ 16024.03419097145305045313786697.
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Section 6.5

C06S05.001: The work is W =
∫ b

a

F (x) dx =
∫ 1

−2

10 dx =
[
10x

]1

−2

= 30.

C06S05.002: The work is W =
∫ b

a

F (x) dx =
∫ 5

1

(3x− 1) dx =
[

3
2
x2 − x

]5

1

=
65
2
− 1

2
= 32.

C06S05.003: The work is W =
∫ b

a

F (x) dx =
∫ 10

1

10x−2 dx =
[
− 10
x

]10

1

= −1− (−10) = 9.

C06S05.004: The work is W =
∫ b

a

F (x) dx =
∫ 4

0

−3x1/2 dx =
[
− 2x3/2

]4

0

= −16− 0 = −16.

C06S05.005: The work is W =
∫ b

a

F (x) dx =
∫ 1

−1

sinπx dx =
[
− 1
π

cosπx
]1

−1

=
1
π
− 1
π

= 0.

C06S05.006: The spring constant is 10 N/m, so the force function for this spring is F (x) = 10x. Hence
the work done is

W =
∫ −2/5

0

10x dx =
[
5x2

]−2/5

0

=
4
5

= 0.8 (N·m).

C06S05.007: The spring constant is 30 lb/ft, so the force function for this spring is F (x) = 30x. Hence
the work done is

W =
∫ 1

0

30x dx =
[
15x2

]1

0

= 15 (ft·lb).

C06S05.008: The force function is F (x) ≡ 100, so the work done is

W =
∫ 10

0

100 dx =
[
100x

]10

0

= 1000 (ft·lb).

C06S05.009: With k = 16× 109, we find that the work done is

W =
∫ 6000

5000

k

x2
dx =

[
− k
x

]6000

5000

=
k

30000
=

16
3
× 105 (mi·lb).

We multiply by 5280 to convert the answer to 2.816× 109 ft·lb.

C06S05.010: With water density ρ = 62.4 (lb/ft3) and cross-sectional area function A(y) ≡ 25π, we find
that the work done to fill the tank is

W =
∫ 10

0

ρyA(y) dy =
[
780πy2

]10

0

= 78000π ≈ 245044.226980 (ft·lb).

C06S05.011: By similar triangles, if the height of water in the tank is y and the radius of the circular
water surface is r, then r = 1

2 (10 − y). Hence the area of the water surface is A(y) = 1
4π(10 − y)2. With

water density ρ = 62.4 (lb/ft3), the work done to fill the tank is

1



W =
∫ 10

0

ρyA(y) dy =
[
13
10
π(3y4 − 80y3 + 600y2)

]10

0

= 13000π ≈ 40840.704497 (ft·lb).

C06S05.012: By similar triangles, if the height of water in the tank is y and the radius of the circular
water surface is r, then r = 1

2 y. Hence the area of the water surface is A(y) = 1
4πy

2. With water density
ρ = 62.4 (lb/ft3), the work done to fill the tank is

W =
∫ 10

0

ρyA(y) dy =
[

39
10
πy4

]10

0

= 39000π ≈ 122522.113490 (ft·lb).

C06S05.013: The work is
∫ 5

0

50(y+10)·5πy dy = π

[
250
3
y3 + 1250y2

]5

0

=
125000π

3
≈ 130899.694 (ft·lb).

C06S05.014: Suppose that the bottom of the tank is located where y = a and the top where y = b.
Let n be a positive integer and let P = {y0, y1, y2, . . . , yn} be a partition of the interval [a, b]. Let
S = {y�1 , y�2 , . . . , y�n} be a selection for P. Consider the liquid in the tank between the levels yi−1 and yi
where 1 � i � n. Let A(y�i ) be the cross-sectional area of the liquid at level y�i Then the weight of the liquid
between yi−1 and yi will be approximately ρA(y�i ) ∆yi (where ∆yi = yi − yi−1) and this liquid must be
lifted the approximate distance h − y�i in pumping all the liquid in the tank to the level y = h. Hence the
total work done will be approximately

n∑
i=1

ρ(h− y�i )A(y�i ) ∆yi.

But the error in these approximations will approach zero as n→ +∞ and the maximum of the ∆yi approaches
zero. Because this sum is a Riemann sum, it has as its limit the following integral; therefore the work to
pump all the liquid in the tank to the level y = h will be

W =
∫ b

a

ρ(h− y)A(y) dy.

C06S05.015: W =
∫ 10

0

ρ(15− y) · 25π dy = π

[
23400y − 780y2

]10

0

= 156000π ≈ 490088.454 (ft·lb).

C06S05.016: Set up the following coordinate system: The x-axis and y-axis cross at the center of one end
of the tank, so that the equation of the circular (vertical) cross section of the tank is x2 + y2 = 9. Then the
gasoline must be lifted to the level y = 10. A horizontal cross section of the tank at level y is a rectangle
of length 10 and width 2x where x and y satisfy the equation x2 + y2 = 9 of the end of the tank, and thus
2x = 2(9− y2)1/2. Thus the amount of work required to pump all the gasoline in the tank into automobiles
will be

W =
∫ 3

−2

(
2
√

9− y2
)
· 10 · (10− y) · 45 dy

= 900
∫ 3

−3

(
10

√
9− y2 − y

√
9− y2

)
dy

= 9000 · 1
2
· π · 9 + 900

[
1
3
(9− y2)3/2

]3

−3

= 40500π ≈ 127234.5 (ft·lb).
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Now assume that the tank uses a 1.341 hp motor. If it were to operate at 100% efficiency, it would
pump all the gasoline in

40500π
33000 · 1.341

≈ 2.875161

minutes, using 1 kW for 2.875161 minutes. This would amount to 0.047919356 kWh, costing about 0.345
cents. Assuming that the pump is only 30% efficient, the actual cost would be about 1.15 cents.

C06S05.017: With water density ρ = 62.4 lb/ft3, the work will be

∫ 10

−10

ρ(50 + y) · π(100− y2) dy =
26
5
π

[
60000y + 600y2 − 200y3 − 3y4

]10

−10

= 4160000π ≈ 13069025 (ft·lb).

C06S05.018: Place the origin at the center of the base of the hemisphere, at indicated in Fig. 6.6.16. Then
the cross-sectional area at y is A(y) = π(100− y2) for 0 � y � 10 and the oil that ends up at level y is lifted
a total distance 60 + y, so the work is

∫ 10

0

50(y + 60)A(y) dy = π

[
300000y + 2500y2 − 1000y3 − 25

2
y4

]10

0

= 2125000π ≈ 6675884 (ft·lb).

C06S05.019: Let y = 0 at the surface of the water in the well, so the top of the well is at y = 100. The
weight of water in the bucket is 100− 1

4y when the bucket is at level y, so the total work done in lifting the
water to the top of the well is

W =
∫ 100

0

(
100− y

4

)
dy =

[
100y − 1

8
y2

]100

0

= 8750 (ft·lb).

C06S05.020: Set up a coordinate system in which the bottom of the rope is initially located at y = 0 and
the top of the building at y = 100. When the bottom of the rope has been lifted to position y (0 � y � 100),
then the weight of the part of the rope still dangling from the top is (100−y)/4 (pounds). The work required
to lift the rope a short distance ∆y is approximately 1

4 (100− y) ∆y, and therefore the total work to lift the
rope to the top of the building will be

W =
∫ 100

0

1
4
(100− y) dy =

[
25y − 1

8
y2

]100

0

= 1250 (ft·lb). (1)

This solution in effect partitions the process of lifting the rope to the top of the building. You may
prefer the alternative of partitioning the rope. Imagine a short section of the rope near position y and of
length ∆y. This section of rope weighs 1

4 ∆y pounds and will be lifted the distance 100 − y to the top of
the building, so the work to lift this short section of rope will be 1

4 (100− y) ∆y. So the total work to lift all
such short sections of the rope will be exactly the same as that shown in Eq. (1).

Finally, the answer may be checked in the following way: Stiffen the rope and turn it 90◦ around its
center (where y = 50). This requires no net work as the rope will balance at its center. Then lift the 25-lb
rope 50 feet to the top of the building, requiring 25 · 50 = 1250 ft·lb of work.

C06S05.021: The weight of the rope and the water will be w(y) = 100 + (100− y)/4 when the bucket is y
feet above the water surface. So the work to lift the rope and the water to the top of the well will be

W =
∫
w(y) dy =

[
125y − 1

8
y2

]100

0

= 11250 (ft·lb).
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C06S05.022: The work is W =
∫ x2

x1

A · p(Ax) dx. Let V = Ax; then dV = A dx. Therefore

W =
∫ V2

V1

pV dV.

C06S05.023: Given: pV 1.4 = c. When p1 = 200, V1 = 50. Hence

c = 200 · 507/5 = 200 · 507/5, so p =
c

V 7/5
= 200 ·

(
50
V

)7/5

.

Therefore the work done by the engine in each cycle is

W =
∫ 500

50

200 ·
(

50
V

)7/5

dV =
[
200 · 507/5 ·

(
− 5

2
V −2/5

) ]500

50

= 2500(10− 103/5) ≈ 15047.320736.

The answer is in “inch-pounds” (in.·lb); divide by 12 to convert the answer into W ≈ 1253.94339468 foot-
pounds.

C06S05.024: Set up a coordinate system in which the center of the hemisphere is at the origin, with
a diameter lying on the x-axis and the y-axis perpendicular to the base, so that the highest point of the
hemisphere has coordinates (0, 60). Now imagine a horizontal thin circular slice of its contents at position
y and having radius x, so that x2 + y2 = 3600. If the thickness of this slice is dy, then its volume is
dV = π

(
3600− y2

)
dy, so its weight is 40π

(
3600− y2

)
dy. This is the force acting on the slice, which is

to be lifted a distance 60− y, so the work used in lifting this slice is 40π
(
3600− y2

)
(60− y) dy. Therefore

the total work to pump all the liquid to the level of the top of the tank is

W =
∫ 60

0

40π
(
3600− y2

)
(60− y) dy = 216000000π ≈ 6.78584× 108 (ft·lb).

C06S05.025: W =
∫ 1

0

60π(1− y)√y dy = 16π ≈ 50.265482 (ft·lb).

C06S05.026: Set up a coordinate system in which the center of the tank is at the origin and the ground
surface coincides with the horizontal line y = −3. Imagine a horizontal cross section of the tank at position
y, −3 � y ≤ 3. The equation of the circle x2 + y2 = 9 gives us the width 2x of this rectangular cross section:
2x = 2

(
9− y2

)1/2. The length of the cross section is 20, so if we denote its thickness by dy then its volume

is 40
(
9− y2

)1/2
dy. To fill this slab with gasoline weighing 40 pounds per cubic foot, which is to be lifted

the distance y + 3 feet, requires dW = 1600(y + 3)
(
9− y2

)1/2
dy ft·lb of work. So the work required to fill

the tank is

W =
∫ 3

−3

1600(y + 3)
(
9− y2

)1/2
dy

= 1600
∫ 3

−3

y
(
9− y2

)1/2
dy + 4800

∫ 3

−3

(
9− y2

)1/2
dy.

The first integral is zero because it involves the evaluation of
(
9− y2

)3/2 at y = 3 and at y = −3. The
second is the product of 4800 and the area of a semicircle of radius 3, so the answer is that the total work
is 21600π ≈ 67858.401318 ft·lb.
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C06S05.027: It is convenient to set up a coordinate system in which the center of the tank is at the
origin, the x-axis horizontal, and the y-axis vertical. A horizontal cross section at y is circular with radius
x satisfying x2 + y2 = 144, so the work to fill the tank is

W =
∫ 12

−12

(50π)(y + 12)
(
144− y2

)
dy = π

[
86400y + 3600y2 − 200y3 − 25

2
y4

]12

−12

= 950400π − (−432000π) = 1382400π ≈ 4.342938× 106 (ft·lb).

C06S05.028: Set up a coordinate system in which the y-axis is vertical, y = 0 corresponds to the bottom
of the cage, and y = 40 to its top. The work done in lifting the monkey from y = 0 to y = 40 is 20 · 40 = 800
ft·lb. Now we compute the work done in lifting the chain.

Suppose that the free end of the chain is lifted from y = 0 to y = 10 and is at position y. Then the
length of chain lifted is y, so its weight is 1

2 y. Then the free end of the chain is lifted from y = 10 to y = 40.
When the free end is at position y, part of the chain is doubled; let z denote the length of each part that is
doubled. The length of the part of the chain not doubled is 40− y. So 40− y + 2z = 50, and it follows that
z = 5 + 1

2y. So the weight of the chain lifted is 1
2z = 5

2 + 1
4y. Hence the work done to lift the chain is

∫ 10

0

1
2
y dy +

∫ 40

10

(
5
2

+
1
4
y

)
dy = 25 + 262.5 = 287.5 (ft·lb).

Therefore the total amount of work done in lifting monkey and chain is 800 + 287.5 = 1087.5 ft·lb.

C06S05.029: Let the string begin its journey stretched out straight along the x-axis from x = 0 to
x = 500

√
2. Imagine it reaching its final position by simply pivoting at the origin up to a 45◦ angle while

remaining straight. A small segment of the string initially at location x and of length dx is lifted from y = 0
to the final height y = x/

√
2, so the total work done in lifting the string is

W =
∫ 500

√
2

0

x

16
√

2
dx =

[
1

32
√

2
x2

]500
√

2

0

=
15625

√
2

2
(ft·oz).

Divide by 16 to convert the answer into ft·lb. Answer: Approximately 690.533966 ft·lb. To check the answer
without using calculus, note that the string is lifted an average distance of 250 feet. Multiply this by the
weight of the string in pounds to obtain the answer in ft·lb.

C06S05.030: Set up a coordinate system in which the center of the sphere is located at the origin. The
cross section of the liquid in the tank “at” position y (−R � y � R) is circular with radius x =

√
R2 − y2.

Hence the work to fill the tank is

W =
∫ R

−R
(y +H) ρπ

(
R2 − y2

)
dy

= ρπ

[
R2Hy +

1
2
R2y2 − 1

3
Hy3 − 1

4
y4

]R
−R

= ρπ

(
2R3H − 2

3
R3H

)
=

4
3
πρR3H.

This is the product of the volume 4
3πR

3 of the tank, the weight density ρ of the liquid, and the distance H
from the ground to the center of the tank, and the result in Problem 30 now follows.

5



C06S05.031: Set up a coordinate system with the y-axis vertical and the x-axis coinciding with the bottom
of one end of the trough. A horizontal section of the trough at y is 2 − y feet below the water surface, so
the total force on the end of the trough is given by

F =
∫ 2

0

(2)(2− y)ρ dy = ρ

[
4y − y2

]2

0

= 4ρ = 249.6 (lb).

C06S05.032: Set up a coordinate system in which the origin is at the lowest point of the triangular end of
the trough and the y-axis is vertical. A narrow horizontal strip at height y has width 2x = 2

3y
√

3. Therefore
the total force on the end of the trough is given by

F =
∫ 3

2

√
3

0

ρ

(
3
2

√
3− y

) (
2
3
y
√

3
)
dy = ρ

∫ 3
2

√
3

0

(
3y − 2

3
y2
√

3
)
dy

= ρ

[
3
2
y2 − 2

√
3

9
y3

] 3
2

√
3

0

=
27
8
ρ = 210.6 (lb).

C06S05.033: Set up a coordinate system in which one end of the trough lies in the [vertical ] xy-plane
with its base on the x-axis and bisected by the y-axis. Thus the trapezoidal end of the trough has vertices
at the points (1, 0), (−1, 0), (2, 3), and (−2, 3). Because the width of a horizontal section at height y is
2x = 2

3 (y + 3), the total force on the end of the trough is

F =
∫ 3

0

ρ
2
3
(y + 3)(3− y) dy = ρ

[
6y − 2

9
y3

]3

0

= 12ρ = 748.8 (lb).

C06S05.034: Describe the end of the tank by the inequality x2 + y2 � 16, so that a horizontal section at
level y has width 2x = 2

(
16− y2

)1/2. Note that ρ = 50 in this problem. Then the total force on the end of
the tank is

F =
∫ 4

−4

ρ(2)(4− y)
(
16− y2

)1/2
dy = 2ρ

∫ 4

−4

4
(
16− y2

)1/2
dy − 2ρ

∫ 4

−4

y
(
16− y2

)1/2
dy.

The last integral involves the evaluation of (16 − y2)3/2 at y = 4 and at y = −4, so its value is zero. The
next-to-last is the product of 8ρ and the area of a semicircle of radius 4, so its value is

(8ρ)(8π) = 64ρπ = 3200π ≈ 10053.1 (lb).

C06S05.035: Let ρ = 62.4 lb/ft3 and set up a coordinate system in which the y-axis is vertical and y = 0
is the location of the bottom of the square gate. Then the pressure at a horizontal cross section of the plate
at location y will be (15 − y)ρ and the area of the cross section will be 5 dy, so the total force on the gate
will be

F =
∫ 5

0

5ρ(15− y) dy = ρ

[
75y − 5

2
y2

]5

0

= 19500 (lb).

C06S05.036: Let ρ = 62.4, as usual. Put the origin at the center of the circle. Then the force on the gate
is
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F =
∫ 3

−3

2ρ(13− y)
(
9− y2

)1/2
dy = 26ρ

∫ 3

−3

(
9− y2

)1/2
dy − 2ρ

∫ 3

−3

y
(
9− y2

)1/2
dy.

The last integral involves the evaluation of (9 − y2)1/2 at y = 3 and at y = −3, so its value is zero. The
next-to-last is the product of 26ρ and the area of a semicircle of radius 3, so its value is the product of 26ρ
and 9

2 π: 117πρ ≈ 22936.139645 (lb).

C06S05.037: Let ρ denote the density of water, as usual. Place the origin at the low vertex of the triangular
gate with the y-axis vertical. Then a horizontal cross section of the gate at y has width 8

5y and depth 15−y,
so the total force on the gate will be

F =
∫ 5

0

8
5
ρy(15− y) dy = ρ

[
12y2 − 8

15
y3

]5

0

= 14560 (lb).

C06S05.038: Place the origin at the center of the diameter of the gate with the y-axis vertical; let ρ = 62.4
lb/ft3 denote the density of water. The equation of the semicircle is x2 + y2 = 16, y � 0. So the force on
the gate is

F =
∫ 0

−4

2ρ(10− y)
(
16− y2

)1/2
dy = 20ρ

∫ 0

−4

(
16− y2

)1/2
dy − 2ρ

∫ 0

−4

y
(
16− y2

)1/2
dy.

The next-to-last integral is the product of 20ρ and the area of a quarter-circle of radius 4, so its value is
80πρ. Therefore

F = 80πρ− 2ρ
[
−1

3
(16− y2)3/2

]0

−4

= 80πρ+
128
3
ρ ≈ 18345.230527 (lb).

C06S05.039: Set up a coordinate system in which the bottom of the vertical face of the dam lies on the
x-axis and the y-axis is vertical, with the origin at the center of the bottom of the vertical face of the dam.
The vertical face occupies the interval 0 � y � 100; form a regular partition of this interval and suppose
that [yi−1, yi ] is one of the subintervals in this partition. Horizontal lines perpendicular to the vertical face
through the endpoints of this interval determine a strip on the slanted face of length 200 (units are in feet)
and (by similar triangles) width

√
1002 + 302

100
(yi − yi−1) =

√
1002 + 302

100
∆y.

If y�i lies in this interval, then the strip on the slanted face opposite [yi−1, yi ] has approximate depth 100−y�i .
So the total force of water on this strip—acting normal to the slanted face—is

200ρ(100− y�i ) ·
√

1002 + 302

100
∆y

where ρ = 62.4 lb/ft3 is the density of the water. Therefore the total force the water exerts on the slanted
face of the dam—normal to that face—is

F =
∫ 100

0

200ρ(100− y) ·
√

1002 + 302

100
dy

= ρ(109)1/2
[
2000y − 10y2

]100

0

= 100000ρ
√

109 ≈ 6.514721× 107 (lb).
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The horizontal component of this force can be found by multiplying the total force by 10/
√

109, and is thus
6.24× 107 (lb).

C06S05.040: Given

f(x) = 1 +
1
5
x2 − 1

500
x4,

water filling the birdbath occupies the space region S generated by rotation around the y-axis of the plane
region R bounded on the left by the y-axis, above by the line y = 6, and below and on the right by the graph
of f(x) for 0 � x � α = 5

√
2 . With measurements in inches, fresh water has weight density

ρ =
62.4
1728

pounds per cubic inch; we will convert to ft·lb at the end of the solution.

Solution (a): By the method of nested cylindrical shells. Such a shell, with centerline the y-axis and meeting
the positive x-axis at x, has radius x, height 6− f(x) and the water comprising it has been lifted an average
distance of

40 + f(x) +
6− f(x)

2

inches. Hence the work to lift all the water from ground level to fill the space region S is

W =
∫ α

0

2πρx [6− f(x)] ·
[
40 + f(x) +

6− f(x)
2

]
dx

= π ·
[

377x2

48
− 533x4

3600
+

403x6

540000
+

13x8

3600000
− 13x10

900000000

]α
0

=
28925π

216
.

We divide by 12 to convert the answer to

28925π
2592

≈ 35.058089315233 (ft·lb).

Solution (b): By the method of parallel slabs. A horizontal slab “at” location y, 1 � y � 6, has radius

x =
√

50− 10
√

30− 5y .

Hence the work to pump water originally at ground level to fill the region S will be

W =
∫ 6

1

πρ(40 + y) ·
(
50− 10

√
30− 5y

)
dy

= π ·
[

650y
9

+
65y2

72
+

(
2756
45
− 1261y

135
− 13y2

90

) √
30− 5y

]6

1

=
28925π

216
,

and this solution concludes in the same way, and with the same result, as the previous solution.
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Section 6.6

C06S06.001: By symmetry, the centroid is located at (2, 3).

C06S06.002: By symmetry, the centroid is at (2, 3).

C06S06.003: By symmetry, the centroid is at (1, 1).

C06S06.004: The area of the triangle is
9
2

and

My =
∫ 3

0

x(3− x) dx =
[

3
2
x2 − 1

3
x3

]3

0

=
27
2
− 18

2
=

9
2
.

Hence x = 1, and by symmetry y = 1 as well.

C06S06.005: The area of the triangular region is A = 4, and

My =
∫ 4

0

x

(
2− 1

2
x

)
dx =

[
x2 − 1

6
x3

]4

0

= 16− 32
3

=
16
3
.

Hence x =
4
3
. Next,

Mx =
∫ 4

0

1
2
·
(

4− x
2

)2

dx =
1
8

∫ 4

0

(16− 8x+ x2) dx =
1
8

[
16x− 4x2 +

1
3
x3

]4

0

=
8
3
,

and therefore y =
2
3
.

C06S06.006: The area of the triangular region is A = 1. Moreover, x = 1 by symmetry. Using additivity
of moments,

Mx = 2
∫ 1

0

1
2
x2 dx =

1
3
.

Therefore y =
1
3
.

C06S06.007: The area of the region is

A =
∫ 2

0

x2 dx =
[

1
3
x3

]2

0

=
8
3
.

Next,

My =
∫ 2

0

x3 dx =
[

1
4
x4

]2

0

= 4 and

Mx =
1
2

∫ 2

0

x4 dx =
[

1
10
x5

]2

0

=
16
5
.

Therefore (x, y) =
(

3
2
,

6
5

)
.

C06S06.008: The area of the region is

1



A = 2
∫ 3

0

(9− x2) dx = 2
[
9x− 1

3
x3

]3

0

= 2 · (27− 9) = 36.

Also x = 0 by symmetry. Finally,

Mx =
1
2

∫ 3

−3

(92 − x4) dx =
[
81x− 1

5
x5

]3

0

= 243− 243
5

=
972
5
.

Therefore y =
972

5 · 36
=

27
5

.

C06S06.009: The area of the region is

A = 2
∫ 2

0

(4− x2) dx = 2
[
4x− 1

3
x3

]2

0

= 2 ·
(

8− 8
3

)
=

32
3
.

Now x = 0 by symmetry, but

Mx = −1
2

∫ 2

−2

(4− x2)2 dx = −
∫ 2

0

(x2 − 4)2 dx = −
∫ 2

0

(x4 − 8x2 + 16) dx

= −
[

1
5
x5 − 8

3
x3 + 16x

]2

0

= −
(

32
5
− 64

3
+ 32

)
= − 256

15
.

Therefore y = − 256
15
· 3
32

= − 8
5
.

C06S06.010: By symmetry, x = 0. Next,

Mx =
1
2

∫ 2

−2

(x2 + 1)2 dx =
206
15

.

The area of the region is
28
3

, and hence y =
103
70

.

C06S06.011: The area of the region is

A = 2
∫ 2

0

(4− x2) dx =
32
3
, and

Mx =
∫ 2

−2

1
2
(4− x2)2 dx =

256
15

.

Therefore y =
256 · 3
15 · 32

=
8
5
; x = 0 by symmetry.

C06S06.012: The area of the region is

A =
∫ 3

0

(18− 2x2) dx = 36 and

Mx =
∫ 3

0

1
2
· 18 · (18− 2x2) dx = 324.

Therefore (x, y) = (0, 9). Alternatively, you can find the centroid by symmetry.
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C06S06.013: The area of the region is A = 1. Moreover,

My =
∫ 1

0

3x3 dx =
3
4

and Mx =
∫ 1

0

9
2
x4 dx =

9
10
.

Therefore (x, y) =
(

3
4
,

9
10

)
.

C06S06.014: The area of the region is

A =
∫ 4

0

√
x dx =

16
3
,

My =
∫ 4

0

x3/2 dx =
64
5
, and

Mx =
∫ 2

0

y(4− y2) dy = 4.

Therefore (x, y) =
(

12
5
,

3
4

)
.

C06S06.015: The parabola and the line meet at the two points P (−3, −3) and Q(2, 2). Hence

A =
∫ 2

−3

(6− x− x2) dx =
125
6
,

My =
∫ 2

−3

(6x− x2 − x3) dx = − 125
12

, and

Mx =
∫ 2

−3

[
1
2
(6− x2)2 − 1

2
x2

]
dx =

125
3
.

Therefore the centroid is located at the point
(
− 1

2
, 2

)
.

C06S06.016: First note that x = y by symmetry. Next,

A =
∫ 1

0

(√
x − x2

)
dx =

1
3

and

My =
∫ 1

0

(
x3/2 − x3

)
dx =

3
20
.

Therefore the centroid is located at the point
(

9
20
,

9
20

)
.

C06S06.017: The region has area A =
1
12

. Next,

My =
∫ 1

0

(x3 − x4) dx =
1
20

and

Mx =
1
2

∫ 1

0

(x4 − x6) dx =
1
35
.
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Thus (x, y) =
(

3
5
,

12
35

)
.

C06S06.018: By symmetry, x =
π

2
. Next,

A =
∫ π

0

sinx dx = 2 and

Mx =
∫ π

0

1
2

sin2 x dx =
π

4
.

Therefore y =
π

8
.

C06S06.019: First note that y = x by symmetry. Next,

My =
∫ r

0

x(r2 − x2)1/2 dx =
[
−1

3
(r2 − x2)3/2

]r
0

=
1
3
r3

and the area of the quarter circle is
1
4
πr2. Therefore the centroid is at

(x, y) =
(

4r
3π
,

4r
3π

)
.

C06S06.020: By Pappus’s first theorem,
(

1
4
πr2

)
· (2πx) =

2
3
πr3.

Therefore x =

1
3
r3

1
4
πr2

=
4r
3π

. By symmetry, y = x.

C06S06.021: By symmetry, y = x. Because y = (r2 − x2)1/2,

1 +
(
dy

dx

)2

=
r2

r2 − x2
.

So

My =
∫ r

0

rx

(r2 − x2)1/2
dx =

[
− r(r2 − x2)1/2

]r
0

= r2.

The length of the quarter circle is
1
2
πr, so x =

2r
π

.

C06S06.022: By Pappus’s second theorem,
(

1
2
πr

)
· (2πx) = 2πr2.

Therefore—with the aid of symmetry—x =
2r
π

= y.

C06S06.023: First,
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My =
∫ r

0

x

(
h− hx

r

)
dx =

1
6
hr2 and A =

1
2
rh.

Therefore x = r/3. By interchanging the roles of x and y, we find that y = x.

Next, the midpoint of the hypotenuse is (r/2, h/2) and its slope is −h/r. The line L from (0, 0) to the
midpoint has equation

y =
h

r
x.

If x = r/3, then y = h/3, so (r/3, h/3) lies on the line L. The distance from (0, 0) to (r/3, h/3) is

D1 =
1
3

(r2 + h2)1/2;

the distance from (0, 0) to (r/2, h/2) is

D2 =
1
2

(r2 + h2)1/2.

Therefore

D1

D2
=

2
3
,

and this concludes the proof.

C06S06.024: V =
(
2π

r

3

)
·
(

1
2
rh

)
=

1
3
πr2h.

C06S06.025: A =
(
2 · πr

2

) √
r2 + h2 = πr(r2 + h2)1/2 = πrL.

C06S06.026: (a) Part (1): the rectangle. Its area is A = r2h, and thus

My =
∫ r2

0

xh dx =
1
2
hr22;

Mx =
∫ r2

0

1
2
h2 dx =

1
2
h2r2.

Part (2): the triangle. Its area is A =
1
2
h(r2 − r1). By the result in Problem 23,

x = r2 +
1
3
(r1 − r2) =

1
3
(r1 + 2r2),

and y = h/3. Therefore

My = Ax =
h

6
(r1 + 2r2)(r1 − r2) and

Mx = Ay =
h2

6
(r1 − r2).

Part (3): the trapezoid. By additivity of moments,

My =
1
2
hr22 +

h

6
(r1 + 2r2)(r1 − r2) =

h

6
(r21 + r1r2 + r22);
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Mx =
1
2
h2r2 +

h2

6
(r1 − r2) =

h2

6
(r1 + 2r2).

Answer to (a):

x =
1
A
My =

r21 + r1r2 + r22
3(r1 + r2)

,

y =
1
A
Mx =

h(r1 + 2r2)
3(r1 + r2)

.

Answer to (b): By Pappus’s first theorem,

V = 2πxA = 2πMy =
πh

3
(r21 + r1r2 + r22).

C06S06.027: The radius of revolution is
1
2

(r1 + r2), so the lateral area is

A = 2π ·
(
r1 + r2

2

)[
(r2 − r1)2 + h2

]1/2
= π(r1 + r2)L.

C06S06.028: The lateral surface is generated by rotating around the axis of the cylinder a vertical line of
length h. Its midpoint is at (r, h/2) and the radius of the circle around which the midpoint moves is r, so
the lateral surface area is A = (2πr)h. Alternatively, from Problem 27,

A = π(r1 + r2)L = 2πrh.

C06S06.029: The semicircular region has centroid (x, y) where x = 0 (by symmetry) and y = b+
4a
3π

(by

earlier work). So, for the semicircular region,

Mx =
(
b+

4a
3π

)
·
(

1
2
πa2

)
.

For the rectangle, we have

Mx =
b

2
· 2ab = ab2.

The sum of these two moments is the moment of the entire region:

Mx =
2
3
a3 +

π

2
a2b+ ab2.

When we divide this moment by the area 2ab+
1
2
πa2 of the entire region, we find that

y =
4a2 + 3πab+ 6b2

12b+ 3πa
.

Of course x = 0 by symmetry.

For Part (b), we use the fact that the radius of the circle of rotation is y, so the volume generated by
rotation around the x-axis is

V = 2πyA = 2πy
(

2ab+
1
2
πa2

)
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= πy(4ab+ πa2) = πay(4b+ πa) =
1
3
πay(12b+ 3πa);

that is,

V =
1
3
πa(4a2 + 3πab+ 6b2).

C06S06.030: (a) First note that

A =
∫ h

0

√
2py dy =

2
3
h3/2

√
2p .

Now r2 = 2ph, so

A =
2
3
h
√

2ph =
2
3
rh. But

My =
∫ h

0

1
2
(2py) dy =

1
2
ph2,

so x =
ph2/2
2rh/3

=
3ph
4r

. But ph =
1
2
r2, so x = 3

8 r.

Part (b): V = 2πxA = 2πMy = πph2. But ph =
1
2
r2, so

V =
1
2
πr2h.

C06S06.031: Because y =
√

1− x2 , as in Example 6 of this section we have

ds =
1√

1− x2
dx.

Hence the moment with respect to the y-axis is

Mx = 2
∫ sinα

0

y√
1− x2

dx =
[
2x

]sinα

0

= 2 sinα.

Clearly the arc length is s = 2α, and therefore the y-coordinate of the centroid is

y =
sinα
α

.

C06S06.032: Because

d = 1− sinα
α

and h = 1− cosα,

three applications of l’Hôpital’s rule then produce the value of the limit:

lim
α→0

d

h
= lim

α→0

α− sinα
α− α cosα

= lim
α→0

1− cosα
1− cosα+ α sinα

= lim
α→0

sinα
α cosα+ 2 sinα

= lim
α→0

cosα
3 cosα− α sinα

=
1
3
.
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C06S06.033: Let f(x) = x and g(x) = x2. The area of the region bounded by the graphs of f and g is

A =
∫ 1

0

(x− x2) dx =
1
2
− 1

3
=

1
6
.

The moments with respect to the coordinate axes are

My =
∫ 1

0

(x2 − x3) dx =
1
3
− 1

4
=

1
12

and

Mx =
∫ 1

0

1
2
(x2 − x4) dx =

1
2
·
(

1
3
− 1

5

)
=

1
15
.

Therefore the centroid is located at the point

(x, y) = C

(
1
2
,

2
5

)
.

The axis L of rotation is the line y = x; the line through the centroid perpendicular to L has equation

y =
9
10
− x

and this perpendicular meets L at the point P

(
9
20
,

9
20

)
. The distance from P to C is

d =

√(
1
2
− 9

20

)2

+
(

2
5
− 9

20

)2

=
√

2
20

.

Because d is the radius of the circle through which C is rotated, the volume generated is (by the first
theorem of Pappus)

V = 2πdA = 2π ·
√

2
20
· 1
6

=
π
√

2
60

≈ 0.07404804897.

C06S06.034: We let f(x) = xm and g(x) = xn. Then we used Mathematica 3.0:

A = Integrate[ f[x] − g[x], { x, 0, 1 } ]

1
1 +m

− 1
1 + n

Then we compute the moments:

My = Integrate[ x∗(f[x] − g[x]), { x, 0, 1 } ];

Mx = Integrate[ (1/2)∗( (f[x])∧2 − (g[x])∧2 ), { x, 0, 1 } ];

Thus the centroid has coordinates

{ xc, yx } = { My/A, Mx/A } // Simplify

{ (1 +m)(1 + n)
(2 +m)(2 + n)

,
1 +m+ n+mn

1 + 2m+ 2n+ 4mn
}
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For selected values of m and with n = m + 1 we check to see if it’s True that the centroid lies within the
region:

m = 1; n = m + 1;

yc < xc∧m

yc > xc∧n

True

True

m = 2; n = m + 1;

yc < xc∧m

yc > xc∧n

True

True

m = 3; n = m + 1;

yc < xc∧m

yc > xc∧n

False

True

Therefore if m = 3 and n = 4, then the centroid does not lie within the region.
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Section 6.7

C06S07.001: If f(x) = 10x, then f ′(x) = 10x ln 10 by Eq. (28).

C06S07.002: If f(x) = 21/x2
, then f ′(x) = − 2

x3
·
(
21/x2

ln 2
)

by Eq. (29).

C06S07.003: If f(x) =
3x

4x
=

(
3
4

)x
, then f ′(x) =

(
3
4

)x
ln

3
4

by Eq. (28).

C06S07.004: If f(x) = log10 cosx, then f ′(x) = − sinx
(ln 10) cosx

by Eq. (40).

C06S07.005: If f(x) = 7cos x, then f ′(x) = − (7cos x ln 7) · sinx by Eq. (29).

C06S07.006: If f(x) = 2x · 3x2
, then

f ′(x) = (2x ln 2) · 3x2
+

(
3x

2
ln 3

)
· 2x · 2x

by the product rule and Eq. (29).

C06S07.007: If f(x) = 2x
√
x = 2x

3/2
, then f ′(x) =

3
2
x1/2

(
2x

3/2
ln 2

)
.

C06S07.008: If f(x) = log100 10x = x log100 10 =
1
2
x, then f ′(x) ≡ 1

2
.

C06S07.009: If f(x) = 2ln x, then f ′(x) =
1
x

(
2ln x ln 2

)
.

C06S07.010: If f(x) = 78x

= 7(8x), then f ′(x) = 78x · 8x · (ln 7) · (ln 8).

C06S07.011: If f(x) = 17x, then f ′(x) = 17x ln 17.

C06S07.012: If f(x) = 2
√
x, then f ′(x) =

1
2
x−1/2

(
2
√
x ln 2

)
.

C06S07.013: If f(x) = 101/x, then f ′(x) = − 1
x2

(
101/x ln 10

)
.

C06S07.014: If f(x) = 3
√

1−x2 , then f ′(x) = −x(1− x2)−1/2
(
3
√

1−x2 ln 3
)
.

C06S07.015: If f(x) = 22x

= 2(2x), then f ′(x) = 22x · 2x · (ln 2)2.

C06S07.016: If f(x) = log2 x, then f ′(x) =
1

x ln 2
by Eq. (39).

C06S07.017: If f(x) = log3

√
x2 + 4 =

1
2

log3(x
2 + 4), then by Eq. (40) we find that

f ′(x) =
1
2
· 1
(x2 + 4) ln 3

· 2x =
x

(x2 + 4) ln 3
.

C06S07.018: If f(x) = log10 (ex) = x log10 e, then f ′(x) = log10 e =
1

ln 10
(by Eq. (40)).
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C06S07.019: If f(x) = log3 (2x) = x log3 2, then f ′(x) = log3 2 =
ln 2
ln 3

(by Eq. (40)).

C06S07.020: If f(x) = log10 (log10 x), then by Eq. (40)

f(x) = (log10 e) ln (log10 x) = (log10 e) ln [(log10 e) lnx] = (log10 e) [ln (log10 e) + ln (lnx)] .

Therefore

f ′(x) = (log10 e)
(

1
x lnx

)
=

1
(x lnx) ln 10

.

C06S07.021: If f(x) = log2 (log3 x), then by Eq. (35)

f(x) = (log2 e) ln (log3 x) = (log2 e) ln [(log3 e) lnx] = (log2 e) [ln (log3 e) + ln (lnx)] .

Therefore

f ′(x) = (log2 e)
(

1
x lnx

)
=

1
(x lnx) ln 2

.

C06S07.022: If f(x) = πx + xπ + ππ, then f ′(x) = πx lnπ + πxπ−1.

C06S07.023: If f(x) = exp (log10 x), then f ′(x) =
exp (log10 x)

x ln 10
. Mathematica reports that

f ′(x) =
x−1+(1/ ln 10)

ln 10
,

but a moment’s work shows that the two answers are the same.

C06S07.024: If f(x) = πx
3

= π(x3), then f ′(x) = (3x2)πx
3
lnπ by Eq. (29).

C06S07.025:
∫

32x dx =
32x

2 ln 3
+ C by Eq. (30).

C06S07.026:
∫
x · 10−x

2
dx = − 10−x

2

2 ln 10
+ C.

C06S07.027:
∫

2
√
x

√
x

dx =
2 · 2

√
x

ln 2
+ C.

Comment: The easiest way to find an antiderivative such as this is to make an “educated guess” as to
the form of the answer, differentiate it, and then modify the guess so it becomes correct. Here, for example,
we guess 2

√
x for the antiderivative. Then

Dx

(
2
√
x
)

=
(
2
√
x ln 2

)
·Dx

(
x1/2

)
=

(
2
√
x ln 2

)
· 1
2
√
x

=
ln 2
2
· 2

√
x

√
x
.

Thus we should multiply 2
√
x by

2
ln 2

to correct it.

Of course this technique will succeed only if the correction consists of multiplication by a constant. If
something else is needed, make a better guess or try integration by substitution.
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C06S07.028:
∫

101/x

x2
dx = − 101/x

ln 10
+ C.

C06S07.029: Given:
∫
x2 · 7x3+1 dx. Let u = x3 + 1. Then du = 3x2 dx, so that x2 dx =

1
3
du. Thus

∫
x2 · 7x3+1 dx =

∫
1
3

7u du =
7u

3 ln 7
+ C =

7x
3+1

3 ln 7
+ C.

C06S07.030: First, x log10 x = x (log10 e) lnx =
x lnx
ln 10

. Thus

∫
1

x log10 x
dx =

∫
ln 10
x lnx

dx = (ln 10)
∫

1
x lnx

dx = (ln 10) · ln (lnx) + C.

C06S07.031:
∫

log2 x

x
dx =

∫
(log2 e) lnx

x
dx =

1
ln 2

∫
lnx
x

dx =
1

2 ln 2
(lnx)2 + C.

C06S07.032: If necessary, use the substitution u = 2x. In any case,

∫
(2x) 3(2x) dx =

3(2x)

(ln 3)(ln 2)
+ C.

C06S07.033: Taking logarithms transforms the equation R = kWm into lnR = ln k+m lnW , an equation
linear in the two unknown coefficients ln k and m. We put the data given in Fig. 6.7.13 into the array

datapoints = { {25, 131}, {67, 103}, {127, 88}, {175, 81}, {240, 75}, {975, 53} },

then entered the Mathematica command

logdatapoints = N[Log[datapoints], 10]

to obtain the logarithms of the values of W and R to ten significant figures. We then set up the graph

pts = ListPlot[ logdatapoints ];

to see if the data points lay on a straight line. They very nearly did. Next we used Mathematica’s Fit

command to find the coefficients of the equation of the straight line that best fit the data points (by mini-
mizing the sum of the squares of the deviations of the data points from the straight line—see Miscellaneous
Problem 51 of Chapter 13). The command

Fit[ logdatapoints, {1, x}, x ]

finds the best-fitting linear combination a · 1 + b · x to the given data. The result was

5.67299196 − 0.24730011 x

which told us that ln k ≈ 5.67299, so that k ≈ 290.903, and that m ≈ −0.2473. Thus we obtained the
formula R = (290.903) ·W−0.2473. This formula predicts the following values for R:

predicted experimental

W R R

25 131.231 131

67 102.839 103

127 87.7966 88

3
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175 81.1045 81

240 75.0105 75

975 53.0356 53

The agreement between the predicted and experimental results is quite good. The graph of the logarithms
of the data points and the line y = 5.67299− (0.2473)x is shown next.

C06S07.034: We solved this problem in the same way as Problem 33. The straight line that best fit the
logarithms of the data points had equation y = 3.87045−(1.39711)x, so that k = exp(3.87045) ≈ 47.9640 and
m ≈ −1.39711. Thus we found the formula p = (47.9640)V −1.39711. The agreement with the experimental
data was even better than in Problem 33. The best-fitting straight line and the logarithms of the data points
are shown next.

C06S07.035: If f(x) = x ·2−x, then f ′(x) = (1−x ln 2) ·2−x, so f ′(x) = 0 when x = a = 1/ ln 2. Because
f ′(x) > 0 if x < a and f ′(x) < 0 if x > a, we have found the highest point on the graph of f ; it is

(
1

ln 2
,

1
21/(ln 2) ln 2

)
≈ (1.4426950409, 0.5307378454) .

C06S07.036: Clearly the graphs of f(x) = 2−x and g(x) = (x − 1)2 cross at the point (0, 1). When
the graphs of f and g are plotted with the same coordinate axes, it becomes evident that the other point
of intersection has x-coordinate near x0 = 1.6. We applied Newton’s method to h(x) = f(x) − g(x) and
found the sequence x1 = 1.5789150927, x2 = 1.5786206934, and x3 = x4 = a = 1.5786206361 of improving
approximations. Because f(x) > g(x) if 0 < x < a, the area bounded by the graphs of f and g is
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A =
∫ a

0

[f(x)− g(x) ] dx =
[
x2 − x− 1

3
x3 − 2−x

ln 2

]a
0

≈ 0.5617703346.

C06S07.037: Let f(x) = 2−x and g(x) = (x− 1)2. We saw in the solution of Problem 36 that the graphs
meet where x = 0 and where x = a ≈ 1.5786206361 (obtained by applying Newton’s method to the equation
f(x) − g(x) = 0 with initial estimate x0 = 1.6). There we saw also that f(x) > g(x) if 0 < x < a. So the
method of parallel cross sections gives the volume of revolution around the x-axis as

V =
∫ a

0

π
[
2−2x − (x− 1)4

]
dx = π

[
2x2 − x− 2x3 + x4 − 1

5
x5 − 2−2x

2 ln 2

]a
0

≈ 1.343088216395.

C06S07.038: Let f(x) = 32−x and g(x) = (3x − 4)2. We plotted the graphs of f and g for 0.5 � x � 2
and saw that the graphs cross near where x = 0.6 and near where x = 1.7. We applied Newton’s method to
the equation f(x)− g(x) = 0 using these values as initial estimates and obtained the following results:

n First xn Second xn
1 0.622814450454 1.722194918580

2 0.623229033865 1.721721015948

3 0.623229171888 1.721720799346

4 0.623229171888 1.721720799346

Let a be the first x4 and b the second. Note that f(x) > g(x) for a < x < b. So the area of the region
bounded by the graphs of f and g is approximately

A =
∫ b

a

[f(x)− g(x)] dx =
[
12x2 − 16x− 3x3 − 32−x

ln 3

]b
a

≈ 1.645167893979.

C06S07.039: By definition of z, x, and y, respectively, we have

az = c, ax = b, and by = c.

Therefore axy = by = c = az. Because a > 0 and a �= 1, it now follows that z = xy.

C06S07.040: lim
x→0+

1
1 + 21/x

= lim
k→∞

1
1 + 2k

= 0; lim
x→0−

1
1 + 21/x

= lim
k→−∞

1
1 + 2k

= 1.

C06S07.041: Beginning with the equation xy = 2, we first write y · lnx = ln 2, then differentiate implicitly
with respect to x to obtain

y

x
+
dy

dx
lnx = 0.

Thus

dy

dx
= − y

x lnx
= − ln 2

x(lnx)2
.
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Section 6.8

C06S08.001: arcsin
(

1
2

)
=
π

6
because sin

(π
6

)
=

1
2

and − π
2

� π

6
� π

2
. Similarly,

arcsin
(
− 1

2

)
= − π

6
, arcsin

(
1
2

√
2

)
=
π

4
, and arcsin

(
− 1

2

√
3

)
= − π

3
.

C06S08.002: arccos
(

1
2

)
=
π

3
because cos

(π
3

)
=

1
2

and 0 � π

3
� π. Similarly,

arccos
(
− 1

2

)
=

2π
3
, arccos

(
1
2

√
2

)
=
π

4
, and arccos

(
− 1

2

√
3

)
=

5π
6
.

C06S08.003: arctan(0) = 0 because tan(0) = 0 and − π
2
< 0 <

π

2
. Similarly,

arctan(1) =
π

4
, arctan(−1) = − π

4
, and arctan

(√
3

)
=
π

3
.

C06S08.004: arcsec(1) = 0 because sec(0) = 1 and 0 � 0 � π. Similarly,

arcsec(−1) = π, arcsec(2) =
π

3
, and arcsec

(
−
√

2
)

=
3π
4
.

C06S08.005: If f(x) = sin−1
(
x100

)
, then f ′(x) =

100x99

√
1− x200

.

C06S08.006: If f(x) = arctan(ex), then f ′(x) =
ex

1 + e2x
.

C06S08.007: If f(x) = sec−1(lnx), then f ′(x) =
1

x | lnx|
√

(lnx)2 − 1
.

C06S08.008: If f(x) = ln
(
tan−1 x

)
, then f ′(x) =

1
(1 + x2) arctanx

.

C06S08.009: If f(x) = arcsin(tanx), then f ′(x) =
sec2 x√

1− tan2 x
.

C06S08.010: If f(x) = x arctanx, then f ′(x) =
x

1 + x2
+ arctanx.

C06S08.011: If f(x) = sin−1 ex, then f ′(x) =
ex√

1− e2x
.

C06S08.012: If f(x) = arctan
√
x, then f ′(x) =

1
2(1 + x)

√
x
.

C06S08.013: If f(x) = cos−1 x+ sec−1

(
1
x

)
and 0 < x < 1, then

1



f ′(x) = − 1√
1− x2

− 1

x2 · 1
x
·

√(
1
x

)2

− 1

= − 1√
1− x2

− 1
x
√
x−2 − 1

= − 2√
1− x2

.

But if −1 < x < 0, then

f ′(x) = − 1√
1− x2

− 1

x2 ·
∣∣∣∣ 1
x

∣∣∣∣ ·
√
x−2 − 1

= − 1√
1− x2

+
1

x2 · 1
x
·
√
x−2 − 1

= − 1√
1− x2

− 1
(−x)

√
x−2 − 1

= − 2√
1− x2

.

In the last line in the second derivation, we needed to replace x < 0 with −x > 0 in order to move it under
the radical.

C06S08.014: If f(x) = arccot
(
x−2

)
, then

f ′(x) = − 1
1 + x−4

·
(
−2x−3

)
=

1
1 + x−4

· 2x
x4

=
2x

x4 + 1
.

C06S08.015: If f(x) = csc−1 x2, then

f ′(x) = − 2x
|x2|
√
x4 − 1

= − 2x
x2
√
x4 − 1

= − 2
x
√
x4 − 1

.

C06S08.016: If f(x) = arccos
(
x−1/2

)
, then

f ′(x) = − 1√
1− x−1

·
(
− 1

2
x−3/2

)
=

1
2x
√
x
√

1− x−1
=

1
2x
√
x− 1

.

C06S08.017: If f(x) =
1

arctanx
= (arctanx)−1, then f ′(x) = − 1

(1 + x2)(arctanx)2
.

C06S08.018: If f(x) = (arcsinx)2, then f ′(x) =
2 arcsinx√

1− x2
.

C68S08.019: If f(x) = tan−1 (lnx), then

f ′(x) =
1

1 + (lnx)2
· 1
x

=
1

x
[
1 + (lnx)2

] .

C06S08.020: If f(x) = arcsec
√
x2 + 1, then

f ′(x) =
1∣∣√x2 + 1

∣∣ √
(x2 + 1)− 1

· 1
2

(x2 + 1)−1/2 · 2x =
x

(x2 + 1)
√
x2

=
x

(x2 + 1)|x| .

2



C06S08.021: If f(x) = tan−1 ex + cot−1 e−x, then f ′(x) =
ex

1 + e2x
− −e−x

1 + e−2x
=

2ex

1 + e2x
.

C06S08.022: If f(x) = exp(arcsinx), then f ′(x) =
exp(arcsinx)√

1− x2
.

C06S08.023: If f(x) = sin(arctanx), then

f ′(x) =
cos(arctanx)

1 + x2
.

But this problem has a twist. A reference right triangle with acute angle θ = arctanx, adjacent side 1,
opposite side x, and hypotenuse

√
1 + x2 shows that

sin(arctanx) =
x√

1 + x2
.

Therefore, by the quotient rule,

f ′(x) =
(1 + x2)1/2 − x2(1 + x2)−1/2

1 + x2
=

1 + x2 − x2

(1 + x2)3/2
=

1
(1 + x2)3/2

.

The second version of the derivative is potentially more useful than the first version.

C06S08.024: If f(x) = sec(sec−1 ex), then f(x) = ex wherever it is defined (for x � 0), so f ′(x) = ex

(if x > 0).

C06S08.025: If f(x) =
arctanx
(1 + x2)2

, then

f ′(x) =
(1 + x2)2 · 1

1 + x2
− 4x(1 + x2) arctanx

(1 + x2)4
=

1− 4x arctanx
(1 + x2)3

.

C06S08.026: If f(x) = (sin−1 2x2)−2, then

f ′(x) = (−2)(sin−1 2x2)−3 · 1√
1− 4x4

· 4x = − 8x
(sin−1 2x2)3

√
1− 4x4

.

C06S08.027: Given: tan−1 x+ tan−1 y =
π

2
:

1
1 + x2

+
1

1 + y2
· dy
dx

= 0, so
dy

dx
= −1 + y2

1 + x2
.

So the slope of the line tangent to the graph at P (1, 1) is −1, and therefore an equation of that line is
y − 1 = −(x− 1); that is, y = 2− x.

C06S08.028: Given: sin−1 x+ sin−1 y =
π

2
:

1√
1− x2

+
1√

1− y2
· dy
dx

= 0, so
dy

dx
= −

√
1− y2

√
1− x2

.

So the slope of the line tangent to the graph at P
(

1
2 ,

1
2

√
3

)
is − 1

3

√
3, and therefore an equation of that

line is

3



y −
√

3
2

= −
√

3
3

(
x− 1

2

)
; that is, y = −

√
3

3
x+

2
√

3
3
.

C06S08.029: Given: (sin−1 x)(sin−1 y) =
π2

16
:

sin−1 y√
1− x2

+
sin−1 x√
1− y2

· dy
dx

= 0, so
dy

dx
= − (1− y2)1/2 sin−1 y

(1− x2)1/2 sin−1 x
.

So the slope of the line tangent to the graph at P
(

1
2

√
2, 1

2

√
2

)
is −1, and therefore an equation of that line

is

y − 1
2

√
2 = −

(
x− 1

2

√
2

)
; that is, y = −x+

√
2 .

C06S08.030: Given: (sin−1 x)2 + (sin−1 y)2 =
5π2

36
:

2 sin−1 x√
1− x2

+
2 sin−1 y√

1− y2
· dy
dx

= 0, so
dy

dx
= − (1− y2)1/2 sin−1 x

(1− x2)1/2 sin−1 y
.

So the slope of the line tangent to the graph at P
(

1
2 ,

1
2

√
3

)
is − 1

6

√
3. Therefore an equation of that line is

y − 1
2

√
3 = − 1

6

√
3

(
x− 1

2

)
; that is, y =

√
3

12
(7− 2x).

C06S08.031:
∫ 1

0

1
1 + x2

dx =
[

arctanx
]1

0

=
π

4
− 0 =

π

4
.

C06S08.032:
∫ 1/2

0

1√
1− x2

dx =
[

arcsinx
]1/2

0

=
π

6
− 0 =

π

6
.

C06S08.033:
∫ 2

√
2

1
x
√
x2 − 1

dx =
[

arcsecx
]2

√
2

=
π

3
− π

4
=

π

12
≈ 0.261799387799.

In comparison, Mathematica 3.0 yields the result

∫ 2

√
2

1
x
√
x2 − 1

dx =
[
− arctan

(
1√

x2 − 1

) ]2

√
2

= − π
6

+
π

4
=

π

12
.

C06S08.034:
∫ −2/

√
3

−2

1
x
√
x2 − 1

dx =
[

arcsec |x|
]−2/

√
3

−2

=
π

6
− π

3
= − π

6
.

The answer is negative because the integrand is negative for −2 � x � − 2√
3

.

C06S08.035: Let x = 3u. Then dx = 3 du, and as x ranges from 0 to 3, u ranges from 0 to 1. Therefore

∫ 3

0

1
9 + x2

dx =
∫ 1

0

3
9 + 9u2

du =
1
3

∫ 1

0

1
1 + u2

du =
1
3

[
arctanu

]1

0

=
π

12
− 0 =

π

12
≈ 0.261799387799.
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Alternatively, the antiderivative can be expressed as a function of x before evaluation:

∫ 3

0

1
9 + x2

dx =
∫ 1

0

3
9 + 9u2

du =
1
3

∫ 1

0

1
1 + u2

du =
1
3

[
arctanu

]1

0

=
1
3

[
arctan

(x
3

) ]3

0

=
π

12
− 0 =

π

12
≈ 0.261799387799.

Note that in the latter case the original x-limits of integration must be restored before evaluation of the
antiderivative.

C06S08.036: Let x = 4u. Then dx = 4 du, and as x ranges from 0 to
√

12 = 2
√

3, u ranges from 0 to
1
2

√
3. Thus

∫ √
12

0

1√
16− x2

dx =
∫ √

3/2

0

4√
16− 16u2

du =
∫ √

3/2

0

1√
1− u2

du =
[

arcsinu
]√

3/2

0

=
π

3
− 0 =

π

3
.

C06S08.037: Let u = 2x, so that 4x2 = u2 and dx = 1
2 du. Then

∫
1√

1− 4x2
dx =

1
2

∫
1√

1− u2
du =

1
2

arcsinu + C =
1
2

arcsin 2x + C.

C06S08.038: Let u = 3
2 x. Then x = 2

3 u, dx = 2
3 du, and 9x2 + 4 = 4u2 + 4. Thus

∫
1

9x2 + 4
dx =

2
3

∫
1

4u2 + 4
du =

1
6

arctanu + C =
1
6

arctan
3x
2

+ C.

C06S08.039: Let x = 5u. Then dx = 5 du and x2 − 25 = 25u2 − 25 = 25(u2 − 1). Thus
∫

1
x
√
x2 − 25

dx =
∫

5
5 · 5u

√
u2 − 1

du =
1
5

arcsec |u| + C =
1
5

arcsec
|x|
5

+ C.

Mathematica 3.0 reports that
∫

1
x
√
x2 − 25

dx = C − 1
5

arctan
(

5√
x2 − 25

)
.

C06S08.040: Let u = 2
3 x, so that 2x = 3u and dx = 3

2 du. Then

∫
1

x(4x2 − 9)1/2
dx =

3
2

∫
1

3
2 u(9u

2 − 9)1/2
du

=
∫

1
3u(u2 − 1)1/2

du =
1
3

arcsec |u| + C =
1
3

arcsec
2 |x|

3
+ C.

C06S08.041:
∫

ex

1 + e2x
dx =

∫
ex

1 + (ex)2
dx = arctan (ex) + C.

If you prefer integration by substitution, use u = ex, so that du = ex dx. Then
∫

ex

1 + e2x
dx =

∫
1

1 + u2
du = arctanu + C = arctan (ex) + C.

5



C06S08.042: Let u = 1
5 x

3. Then x3 = 5u, 3x2 dx = 5 du, and x6 + 25 = 25(u2 + 1). Thus

∫
x2

x6 + 25
dx =

5
3

∫
1

25(u2 + 1)
du =

1
15

arctanu + C =
1
15

arctan
(

1
5
x3

)
+ C.

C06S08.043: Let u = 1
5 x

3. Then 5u = x3, 3x2 dx = 5 du, and x6 − 25 = 25(u2 − 1). So

∫
1

x
√
x6 − 25

dx =
∫

3x2

3x3(x6 − 25)1/2
dx =

∫
5

3 · 5u [25(u2 − 1)]1/2
du

=
1
15

∫
1

u(u2 − 1)1/2
du =

1
15

arcsec |u| + C =
1
15

arcsec
|x3 |
5

+ C.

Mathematica 3.0 gives the answer in the form C +
1
15

arctan
(

1
5

√
x6 − 25

)
.

C06S08.044: Let u = x3/2. Then du = 3
2 x

1/2 dx, so x1/2 dx = 2
3 du and

∫
x1/2

1 + x3
dx =

2
3

∫
1

1 + u2
du =

2
3

arctanu + C =
2
3

arctan
(
x3/2

)
+ C.

C06S08.045: The radicand is

x(1− x) = x− x2 = −(x2 − x) = − 1
4

(4x2 − 4x)

= − 1
4

(4x2 − 4x+ 1) +
1
4

=
1
4

[
1− (2x− 1)2

]
=

1
4

(1− u2)

if we let u = 2x− 1. If so, du = 2 dx, and then
∫

1√
x(1− x)

dx =
1
2

∫
2√

1− u2
du = arcsinu + C = arcsin(2x− 1) + C.

The more “obvious” substitution x = u2, so that u = x1/2 and dx = 2u du, leads to

∫
1√

x(1− x)
dx =

∫
2u√

u2(1− u2)
du = 2

∫
u

|u|
√

1− u2
du

= 2
∫

1√
1− u2

du = 2 arcsinu + C = 2 arcsin
√
x + C.

Replacement of |u| with u here is permitted because u =
√
x > 0. Test your skill at trigonometry by showing

that f(x) = arcsin(2x− 1) and g(x) = 2 arcsin
√
x differ by a constant (if 0 � x � 1).

C06S08.046: Let u = secx, so that du = secx tanx dx. Then
∫

secx tanx
1 + sec2 x

dx =
∫

1
1 + u2

du = arctanu + C = arctan(secx) + C.

Mathematica 3.0 returns the amazing answer C − [arctan(cosx)] (3 + cos 2x) sec2 x

2(1 + sec2 x)
.

C06S09.047: Let u = x50, so that du = 50x49 dx. Then
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∫
x49

1 + x100
dx =

1
50

∫
1

1 + u2
du =

1
50

arctanu + C =
1
50

arctan
(
x50

)
+ C.

C06S08.048: Let u = x5, so that du = 5x4 dx. Then

∫
x4

√
1− x10

dx =
1
5

∫
1√

1− u2
du =

1
5

arcsinu + C =
1
5

arcsin
(
x5

)
+ C.

C06S08.049:
∫

1
x [1 + (lnx)2 ]

dx = arctan(lnx) + C. (Use u = lnx if necessary.)

C06S08.050:
∫

arctanx
1 + x2

dx =
1
2

(arctanx)2 + C. (Use u = arctanx if necessary.)

C06S08.051:
∫ 1

0

1
1 + (2x− 1)2

dx =
[

1
2

arctan(2x− 1)
]1

0

=
π

8
−

(
− π

8

)
=
π

4
≈ 0.7853981634.

If integration by substitution is preferred, let u = 2x− 1, du = 2 dx, and do not forget to change the limits
of integration to u = −1 and u = 1.

C06S08.052:
∫ 1

0

x3

1 + x4
dx =

1
4

∫ 1

0

4x3

1 + x4
dx =

1
4

[
ln(1+x4)

]1

0

=
1
4

(ln 2− ln 1) =
ln 2
4
≈ 0.1732867951.

If integration by substitution is preferred, let u = 1 + x4, du = 4x3 dx, and do not forget to change the
limits of integration to u = 1 and u = 2.

C06S08.053: Let u = lnx (if necessary) to find that

∫ e

1

1
x
√

1− (lnx)2
dx =

[
arcsin(lnx)

]e
1

=
π

2
− 0 =

π

2
.

C06S08.054:
∫ 2

1

1
x
√
x2 − 1

dx =
[

arcsecx
]2

1

=
π

3
− 0 =

π

3
.

C06S08.055: If u = x1/2, then du = 1
2 x

−1/2 dx. . Moreover, u = 1 when x = 1 and u =
√

3 when x = 3.
Therefore

∫ 3

1

1
2x1/2(1 + x)

dx =
∫ 3

1

1
2 x

−1/2

1 + (x1/2)2
dx =

∫ √
3

1

1
1 + u2

du

=
[

arctanu
]√

3

1

=
[

arctan
(√
x

) ]3

1

=
π

3
− π

4
=

π

12
≈ 0.2617993878.

C06S08.056: First note that cos−1 x = C − sin−1 x for some constant C for all x in the interval (0, 1). In
particular,

C = cos−1

(
1
2

)
+ sin−1

(
1
2

)
=
π

3
+
π

6
=
π

2
.
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Therefore sin−1 x+ cos−1 x = π/2 if 0 < x < 1. This formula also holds if x = 0 and if x = 1, and therefore
it holds for all x in the closed interval 0 � x � 1.

C06S08.057: Suppose that u < −1 and let x = −u. Then x > 0, so

y = arcsec |u| = arcsecx,

and then the chain rule yields

dy

du
=
dy

dx
· dx
du

=
1

|x|
√
x2 − 1

· (−1) =
−1

x
√

(−x)2 − 1
=

1
(−x)

√
(−x)2 − 1

=
1

u
√
u2 − 1

.

C06S08.058: If a > 0 and u = ax, then

du = a dx, a2 − u2 = a2 − a2x2 = a2(1− x2), and
√
a2 − u2 = a

√
1− x2.

Therefore
∫

1√
a2 − u2

du =
∫

a

a
√

1− x2
dx = arcsinx + C = arcsin

(u
a

)
+ C.

C06S08.059: If a > 0 and u = ax, then du = a dx and a2 + u2 = a2 + a2x2 = a2(1 + x2). So
∫

1
a2 + u2

du =
∫

a

a2(1 + x2)
dx =

1
a

arctanx + C =
1
a

arctan
(u
a

)
+ C.

C06S08.060: If a > 0 and u = ax, then

du = a dx, u2 − a2 = a2x2 − a2 = a2(x2 − 1), and
√
u2 − a2 = a

√
x2 − 1 .

Therefore
∫

1
u
√
u2 − a2

du =
∫

a

a2x
√
x2 − 1

dx =
1
a

arcsec |x| + C =
1
a

arcsec
∣∣∣ u
a

∣∣∣ + C.

C06S08.061: If x > 1, then

f ′(x) =
1

x2

√
1− 1

x2

=
1

x

√
x2 − x2

x2

=
1

|x|
√
x2 − 1

.

If x < −1, then

f ′(x) =
1

x2

√
1− 1

x2

=
1

(−x)2
√

1− 1
x2

=
1

(−x)
√

(−x)2 − (−x)2
x2

=
1

|x|
√
x2 − 1

.

C06S08.062: If x > 1 or if x < −1, then

Dx cos−1

(
1
x

)
= − 1√

1− 1
x2

·
(
− 1
x2

)
=

1

x2

√
1− 1

x2

.
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Now apply the result in Problem 61. But at this point you can conclude only that

sec−1 x = cos−1

(
1
x

)
+ Ci

for some constant C1 if x > 1 and for some possibly different constant C2 if x < −1. Substitute x = 2 and
then x = −2 in the last equation to verify that Ci = 0 in each case.

C06S08.063: Let g denote the “alternative secant function,” so that y = g(x) if and only if sec y = x and
either 0 � y < π/2 or π � y < 3π/2. We differentiate implicitly the identity sec y = x on both the intervals
0 < y < π/2 and π < y < 3π/2 and find that

(sec y tan y)
dy

dx
= 1, so that g′(x) =

1
sec y tan y

= ± 1

x
√

sec2 y − 1
= ± 1

x
√
x2 − 1

.

Then Fig. 6.8.13 shows that g′(x) < 0 if x < −1 and that g′(x) > 0 if x > 1. Therefore the choice of the
plus sign in the previous equation is correct in both cases:

g′(x) =
1

x
√
x2 − 1

.

C06S08.064: We begin with the identity

tan(A+B) =
tanA+ tanB

1− tanA tanB
. (1)

Let x = tanA, y = tanB, and suppose that xy < 1. We will treat only the case in which x and y are both
positive; the other three cases are similar. In this case, Eq. (1) implies that 0 < A + B < π/2, so we may
apply the inverse tangent function to both sides of the identity in (1) to obtain

A+B = arctan
x+ y

1− xy ,

and therefore

arctanx+ arctan y = arctan
x+ y

1− xy .

Now we turn to part (b). We have

9



12

4

x

θ

arctan

1
2

+
1
3

1− 1
6

= arctan

5
6
5
6

= arctan 1 =
π

4
.

arctan

1
3

+
1
3

1− 1
9

+ arctan
1
7

= arctan

2
3
8
9

+ arctan
1
7

= arctan
3
4

+ arctan
1
7

= arctan

3
4

+
1
7

1− 3
28

= arctan
25
25

=
π

4
.

arctan

120
119
− 1

239

1 +
120
119
· 1
239

= arctan

28561
28441
28561
28441

=
π

4
.

2 arctan
1
5

= arctan

2
5

1− 1
25

= arctan
10
24

= arctan
5
12

;

4 arctan
1
5

= arctan

10
12

1− 25
144

= arctan
120
119

;

4 arctan
1
5
− arctan

1
239

= arctan
120
119
− arctan

1
239

=
π

4
(by (iii)).

C06S08.065: See the following figure for the meanings of the variables.

We are required to maximize the angle θ, and from the figure and the data given in the problem we may
express θ as a function of the distance x of the billboard from the motorist:

θ = θ(x) = arctan
16
x
− arctan

4
x
, 0 < x < +∞.

After simplifications we find that

dθ

dx
=

4
x2 + 16

− 16
x2 + 256

.
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y

h

W

L

θ

θ

1

2

The solution of θ′(x) = 0 certainly maximizes θ because θ is near zero if x is near zero and if x is large
positive. We solve θ′(x) = 0:

4(x2 + 16) = x2 + 256; 3x2 = 192;

x2 = 64; x = 8.

Answer: The billboard should be placed so that it will be 8 meters (horizontal distance) from the eyes of
passing motorists. Many alert students have pointed out that such a billboard wouldn’t be visible long
enough to be effective. This illustrates that once you have used mathematics to solve a problem, you must
interpret the results!

C06S08.066: As in the figure that follows this solution, assume that the observer’s eyes are at the height
L above the floor and at horizontal distance W from the painting. Let h be the height of the painting and
let y be the distance from the floor to the bottom of the painting. We are to maximize the angle θ = θ1 + θ2
where

θ1 = arctan
y + h− L

W
and θ2 = arctan

L− y
W

.

With the aid of the arctangent addition formula (part (a) of Problem 64) we find—after simplifications—that

θ(y) = arctan
Wh

W 2 + (y − L)(y − L+ h)
. (1)

Now θ is maximized when tan θ is maximized (because the tangent function is increasing on (0, π/2)), and
this occurs when the denominator of the fraction in Eq. (1) is minimal. So we let f(y) = W 2+(y−L)(y−L+h)
and apply calculus:

f ′(y) = y − L+ y − L+ h = 2y − 2L+ h;

f ′(y) = 0 when y = L− h

2
.

This value of y clearly minimizes f(y), and the center of the painting is then at height

y +
h

2
= L− h

2
+
h

2
= L

above the floor—exactly at the height of the observer’s eyes.
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C06S08.067: If f(x) = (a2 − x2)1/2, then

1 + [f ′(x)]2 = 1 +
x2

a2 − x2
=

a2

a2 − x2
,

so the circumference of a circle of radius a is

C = 8
∫ a/

√
2

0

a√
a2 − x2

dx = 8 ·
[
a arcsin

(x
a

)]a/√2

0
= 8

(πa
4
− 0

)
= 2πa.

The integration was carried out by using the result in Problem 58.

C06S08.068: By the method of nested cylindrical shells, the volume is

V =
∫ 1

0

2πx
1 + x4

dx =
[
π arctan(x2)

]1

0

=
π2

4
− 0 =

π2

4
≈ 2.4674011003.

C06S08.069: Let Aa denote the area under the graph of y(x) for 0 � x � a. Therefore

Aa =
∫ a

0

1
1 + x2

dx =
[

arctanx
]a
0

= arctan a.

Then lim
a→∞

Aa =
π

2
by Eq. (2) and Fig. 6.8.4.

C06S08.070: Let y be the height of the elevator (measured upward from ground level) and let θ be the
angle that your line of sight to the elevator makes with the horizontal (θ > 0 if you are looking up, θ < 0 if

down). You’re to maximize
dθ

dt
given

dy

dt
= −25.

tan θ =
y − 100

50
, so θ = tan−1

(
y − 100

50

)
.

Therefore

dθ

dt
=
dθ

dy
· dy
dt

= −25 · 1/50
1 + [(y − 100)/50]2

=
−25 · 50

2500 + (y − 100)2
. (1)

To find the value of y that maximizes f(y) = dθ/dt, we need only minimize the last denominator in Eq. (1):
y = 100. Answer: The elevator has maximum apparent speed when it’s at eye level.

C06S08.071: For x > 1: f(x) = arcsec x+A:

1 = f(2) =
π

3
+ 1, so A = 1− π

3
.

For x < −1: f(x) = −arcsec x+B;

1 = f(−2) = −2π
3

+B, so B = 1 +
2π
3
.
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Therefore f(x) = arcsec x+ 1− π

3
if x > 1, f(x) = −arcsec x+ 1 +

2π
3

if x < −1. The graph of y = f(x)
is next.

C06S08.072: If |x| < 1, then

Dx arctan
(

x√
1− x2

)
=

1

1 +
x2

1− x2

· (1− x
2)1/2 + x2(1− x2)−1/2

1− x2
=

1√
1− x2

.

Therefore

arctan
(

x√
1− x2

)
= C + arcsinx

for some constant C if −1 < x < 1. Now substitute x = 0 to show that C = 0.

C06S08.073: If

f(x) = arctan(x2 − 1)1/2 for x > 1,

then

f ′(x) =
1

1 + (x2 − 1)
· 1
2
(x2 − 1)−1/2 · 2x =

x

x2(x2 − 1)1/2
=

1
x
√
x2 − 1

.

Therefore arcsecx = C + arctan(x2 − 1)1/2 for some constant C for all x > 1. Now substitute x =
√

2 to
show that C = 0.

If

g(x) = π − arctan(x2 − 1)1/2 for x < −1,

then (using the earlier result)

g′(x) = − 1
x
√
x2 − 1

.

Therefore

arcsecx = C + π − arctan
(√

x2 − 1
)

for some constant C for all x < −1. Now substitute x = −
√

2 to show that C = 0.

C06S08.074: The graph of f on [0.001, 5] indicates a global maximum near x = 1.4. We used Newton’s
method to show that its location is close to (1.3917452003, 0.8033644570).
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C06S08.075: The graph of f on [0, 8] (following this solution) indicates a global maximum near x = 2.7.
We used Newton’s method to show that its location is close to (2.6892200292, 0.9283427321).

C06S08.076: The graph of f on [1, 30] indicates a global maximum near x = 8.3. We used Newton’s
method to show that its location is close to (8.3332645728, 1.3345303526).
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Section 6.9

C06S09.001: If f(x) = cosh(3x− 2), then f ′(x) = 3 sinh(3x− 2).

C06S09.002: If f(x) = sinh
√
x, then f ′(x) =

(
coshx1/2

)
·Dx

(
x1/2

)
=

cosh
√
x

2
√
x

.

C06S09.003: If f(x) = x2 tanh
(

1
x

)
, then

f ′(x) = 2x tanh
(

1
x

)
+

[
x2 sech2

(
1
x

)]
·
[
− 1
x2

]
= 2x tanh

(
1
x

)
− sech2

(
1
x

)
.

C06S09.004: If f(x) = sech e2x, then f ′(x) = −2e2x sech e2x tanh e2x.

C06S09.005: If f(x) = coth3 4x = (coth 4x)3, then

f ′(x) = 4 · (3 coth 4x)2
[
−(csch 4x)2

]
= −12 coth2 4x csch2 4x.

C06S09.006: If f(x) = ln sinh 3x, then

f ′(x) =
1

sinh 3x
(cosh 3x) · 3 =

3 cosh 3x
sinh 3x

= 3 coth 3x.

C06S09.007: If f(x) = ecsch x, then f ′(x) = ecsch x ·Dx cschx = −ecsch x cschx cothx.

C06S09.008: If f(x) = cosh lnx = cosh (lnx), then

f ′(x) = (sinh lnx) ·Dx (lnx) =
sinh(lnx)

x
=
x− x−1

2x
=
x2 − 1
2x2

.

C06S09.009: If f(x) = sin (sinhx), then

f ′(x) = [cos (sinhx)] ·Dx (sinhx) = (coshx) cos (sinhx) .

C06S09.010: If f(x) = tan−1 (tanhx), then

f ′(x) =
1

1 + tanh2 x
·Dx (tanhx) =

sech2 x

1 + tanh2 x
=

1− tanh2 x

1 + tanh2 x
=

sech2 x

2− sech2 x
.

C06S09.011: If f(x) = sinhx4 = sinh(x4), then f ′(x) = 4x3 coshx4.

C06S09.012: If f(x) = sinh4 x = (sinhx)4, then f ′(x) = 4 sinh3 x coshx.

C06S09.013: If f(x) =
1

x+ tanhx
, then (by the reciprocal rule)

f ′(x) = − 1 + sech2 x

(x+ tanhx)2
=

(tanh2 x)− 2
(x+ tanhx)2

.
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C06S09.014: If f(x) = cosh2 x− sinh2 x, then f(x) ≡ 1 by Eq. (4), and therefore f ′(x) ≡ 0. Alternatively,
f ′(x) = 2 coshx sinhx− 2 sinhx coshx ≡ 0.

C06S09.015: If necessary, use the substitution u = x2, du = 2x dx to show that
∫
x sinhx2 dx =

1
2

coshx2 + C.

C06S09.016: By Eq. (11), cosh2 3u = 1
2 (cosh 6u+ 1). Therefore

∫
cosh2 3u dx =

1
12

sinh 6u+
1
2
u+ C =

1
6

sinh 3u cosh 3u+
1
2
u+ C

(the last equality by Eq. (9)).

C06S09.017: By Eq. (5) we have
∫

tanh2 3x dx =
∫ (

1− sech2 3x
)
dx = x− 1

3
tanh 3x + C.

C06S09.018: Let u =
√
x = x1/2. Then x = u2, so dx = 2u du. Therefore (with the aid of Eq. (17))

∫
sech
√
x tanh

√
x√

x
dx =

∫
sechu tanhu

u
· 2u du = −2 sechu + C = −2 sech

√
x + C.

C06S09.019: Let u = sinh 2x. Then du = 2 cosh 2x dx, so
∫

sinh2 2x cosh 2x dx =
∫

1
2
u2 du =

1
6
u3 + C =

1
6

sinh3 2x + C.

C06S09.020:
∫

tanh 3x dx =
∫

sinh 3x
cosh 3x

dx =
1
3

ln (cosh 3x) + C.

C06S09.021:
∫

(coshx)−3 sinhx dx =
(coshx)−2

−2
+ C = − 1

2
sech2 x + C.

C06S09.022: By Eqs. (11) and (12),

sinh4 x =
(
sinh2 x

)2
=

[
1
2

(cosh 2x − 1)
]2

=
1
4

(
cosh2 2x− 2 cosh 2x+ 1

)

=
1
4

[
1
2

(cosh 4x + 1)− 2 cosh 2x+ 1
]

=
3
8
− 1

2
cosh 2x+

1
8

cosh 4x.

Therefore
∫

sinh4 x dx =
1
32

(sinh 4x− 8 sinh 2x+ 12x) + C.

C06S09.023: Let u = cothx. Then du = − csch2 x dx. So
∫

cothx csch2 x dx = −
∫
u du = − 1

2
u2 + C = − 1

2
coth2 x+ C = − 1

2
csch2 x+ C1.
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C06S09.024: This is not easy. Here’s one solution:
∫

sechx dx =
∫

2
ex + e−x

dx =
∫

2ex

1 + (ex)2
dx = 2 arctan (ex) + C.

If multiplication of numerator and denominator by ex seems artificial, try a substitution: Let u = ex, so
that du = ex dx, and thus dx = e−x du = u−1 du. Then

∫
sechx dx =

∫
2

ex + e−x
dx =

∫
2u−1

u+ u−1
du =

∫
2

u2 + 1
du = 2 arctanu+ C = 2 arctan (ex) + C.

Mathematica 3.0 apparently uses a rationalizing substitution like that found in the discussion following
Miscellaneous Problem 134 of Chapter 7 (but adapted to hyperbolic rather than trigonometric integrals); it
obtains

∫
sechx dx = 2 arctan

(
tanh

x

2

)
+ C.

C68S09.025: If necessary, let u = 1 + coshx or let u = coshx. But simply “by inspection,”
∫

sinhx
1 + coshx

dx = ln (1 + coshx) + C.

C06S09.026: Let u = lnx. Then du =
1
x
dx. So

∫
sinh(lnx)

x
dx =

∫
sinhu du = coshu + C = cosh(lnx) + C.

Alternatively, first simplify the integrand:

sinh(lnx)
x

=
exp(lnx)− exp(− lnx)

2x
=
x− x−1

2x
=
x2 − 1
2x2

=
1
2

(
1− 1

x2

)
.

Then ∫
sinh(lnx)

x
dx =

1
2

∫ (
1− 1

x2

)
dx =

1
2

(
x+

1
x

)
+ C =

x2 + 1
2x

+ C.

C06S09.027: One solution:

∫
1

(ex + e−x)2
dx =

1
4

∫ (
2

ex + e−x

)2

dx =
1
4

∫
sech2 x dx =

1
4

tanhx + C.

Another solution: Let u = ex, so that du = ex dx; thus dx = e−x du =
1
u
du. Then

∫
1

(ex + e−x)2
dx =

∫
u−1

(u+ u−1)2
du =

∫
u−1

u2 + 2 + u−2
dx

=
∫

u

u4 + 2u2 + 1
dx =

∫
u(u2 + 1)−2 du = −1

2
(u2 + 1)−1 + C

= −1
2
· 1
e2x + 1

+ C = −1
2
· e−x

ex + e−x
+ C = − 1

4ex
· 2
ex + e−x

+ C = − sechx
4ex

+ C.
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The two answers appear quite different, but they are both correct (although they differ by the constant 1
4 ).

C06S09.028: Let u = ex − e−x if you wish, but by inspection we find
∫
ex + e−x

ex − e−x dx = ln
∣∣ex − e−x ∣∣ + C.

You may also continue the previous calculations as follows:

· · · = ln
∣∣ex − e−x ∣∣− ln 2 + C1 = ln

∣∣∣∣ e
x − e−x

2

∣∣∣∣ + C1 = ln | sinhx|+ C1.

Mathematica 3.0 obtains
∫
ex + e−x

ex − e−x dx = −x+ ln |−1 + e2x |+ C.

C06S09.029: f ′(x) =
1√

1 + 4x2
·Dx (2x) =

2√
1 + 4x2

.

C06S09.030: f ′(x) =
1√

(x+ 1)2 − 1
·Dx

(
x2 − 1

)
=

2x√
x4 + 2x2

=
2x

|x|
√
x2 + 2

.

C06S09.031: f ′(x) =
1

1− (
√
x )2

·Dx

(
x1/2

)
=

1
2(1− x)

√
x

.

C06S09.032: If f(x) = coth−1
(
x2 + 1

)1/2, then

f ′(x) =
1

1−
[
(x2 + 1)1/2

]2 ·Dx

(
x2 + 1

)1/2

=
1

1− x2 − 1
· 1
2

(x2 + 1)−1/2 · 2x = − 1
x2
· x√

x2 + 1
= − 1

x
√
x2 + 1

.

(Compare this result with Eq. (33).)

C06S09.033: If f(x) = sech−1

(
1
x

)
, then

f ′(x) = − 1

1
x

√
1− 1

x2

·Dx

(
1
x

)

= − x√
1− 1

x2

·
(
− 1
x2

)
=

x

x2

√
1− 1

x2

=
x

|x|
√
x2 − 1

.

(You need to write x2 in the form |x|2 in order to move one copy of |x| underneath the radical, where it
becomes x2. Compare this result with Eq. (29).)

C06S09.034: If f(x) = csch−1 ex, then

f ′(x) = − 1
|ex |
√

1 + e2x
· ex = − 1√

1 + e2x
.
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C06S09.035: If f(x) =
(
sinh−1 x

)3/2
, then

f ′(x) =
3
2

(
sinh−1 x

)1/2 ·Dx

(
sinh−1 x

)
=

3
(
sinh−1 x

)1/2

2(1 + x2)1/2
.

C06S09.036: If f(x) = sinh−1 (lnx), then

f ′(x) =
1√

1 + (lnx)2
·Dx (lnx) =

1

x

√
1 + (lnx)2

.

C06S09.037: If f(x) = ln
(
tanh−1 x

)
, then

f ′(x) =
1

tanh−1 x
·Dx

(
tanh−1 x

)
=

1
(1− x2) tanh−1 x

.

C06S09.038: If f(x) =
1

tanh−1 3x
, then

f ′(x) = − 1(
tanh−1 3x

)2 ·Dx

(
tanh−1 x

)
= − 3

(1− 9x2)
(
tanh−1 3x

)2 .

C06S09.039: Let x = 3u. Then dx = 3 du, so
∫

1√
x2 + 9

dx =
∫

3√
9u2 + 9

du =
∫

1√
u2 + 1

du = arcsinh u + C = arcsinh
x

3
+ C.

C06S09.040: Let y =
3
2
u. Then dy =

3
2
du, so

∫
1√

4y2 − 9
dy =

3
2

∫
1√

9u2 − 9
du =

1
2

∫
1√

u2 − 1
du =

1
2

arccosh u + C =
1
2
arccosh

(
2
3
y

)
+ C.

C06S09.041: Let x = 2u. Then dx = 2 du, so

I =
∫ 1

1/2

1
4− x2

dx =
∫ 1

x=1/2

2
4− 4u2

du =
1
2

∫ 1

x=1/2

1
1− u2

du

=
1
2

[
tanh−1 u

]1

x=1/2

=
1
2

[
tanh−1

(x
2

) ]1

1/2

=
1
2

[
tanh−1

(
1
2

)
− tanh−1

(
1
4

)]
.

Now use Eq. (36) to transform the answer into a more familiar form:

I =
1
4

(
ln

1 + 1
2

1− 1
2

− ln
1 + 1

4

1− 1
4

)
=

1
4

(
ln 3− ln

5
3

)
=

1
4

ln
9
5
≈ 0.1469466662.

C06S09.042: Use the substitution in the solution of Problem 41, but now we must use Eq. (42b) rather
than Eq. (42a):

5



I =
∫ 10

5

1
4− x2

dx =
1
2

[
coth−1

(x
2

) ]10

5

=
1
2

[
coth−1(5)− coth−1

(
5
2

)]

=
1
4

(
ln

5 + 1
5− 1

− ln
5
2 + 1
5
2 − 1

)
=

1
4

(
ln

3
2
− ln

7
3

)
=

1
4

ln
9
14
≈ −0.1104581881.

C06S09.043: Let x =
2
3
u. Then

√
4− 9x2 =

√
4− 4u2 and dx =

2
3
du. Therefore

∫
1

x
√

4− 9x2
dx =

2
3

∫
1

4
3 u
√

1− u2
du

=
1
2

∫
1

u
√

1− u2
du = − sech−1 |u|+ C = − 1

2
sech−1

∣∣∣∣ 3
2
x

∣∣∣∣ + C.

C06S09.044: Let x = 5u: dx = 5 du,
√
x2 + 25 = 5

√
u2 + 1. So

∫
1

x
√
x2 + 25

dx =
∫

5
25u
√
u2 + 1

du

=
1
5

∫
1

u
√
u2 + 1

du = − 1
5

csch−1 |u|+ C = − 1
5

csch−1
∣∣∣ x
5

∣∣∣ + C.

C06S09.045: Let u = ex: du = ex dx. Hence
∫

ex√
e2x + 1

dx =
∫

1√
u2 + 1

du = sinh−1 u+ C = sinh−1 (ex) + C.

C06S09.046: Let u = x2: du = 2x dx and
√
x4 − 1 =

√
u2 − 1. So

∫
x√

x4 − 1
dx =

1
2

∫
1√

u2 − 1
du =

1
2

cosh−1 u+ C =
1
2

cosh−1
(
x2

)
+ C.

C06S09.047: Let u = ex: x = lnu and ds =
1
u
du. Thus

∫
1√

1− e2x
dx =

∫
1

u
√

1− u2
du = − sech−1 |u|+ C = − sech−1 (ex) + C.

C06S09.048: Let u = sinx: du = cosx dx. Therefore
∫

cosx√
1 + sin2 x

dx =
∫

1√
1 + u2

du = sinh−1 u+ C = sinh−1(sinx) + C.

C06S09.049: sinhx cosh y + coshx sinh y − sinh(x+ y)

=
ex − e−x

2
· e

y + e−y

2
+
ex + e−x

2
· e

y − e−y
2

− ex+y − e−x−y
2

=
1
4

(
ex+y + ex−y − e−x+y − e−x−y + ex+y − ex−y + e−x+y − e−x−y − 2ex+y + 2e−x−y

)
= 0.

Therefore sinh(x+ y) = sinhx cosh y + coshx sinh y.
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C06S09.050: Given cosh2 x− sinh2 x = 1 (for all x), we divide both sides by cosh2 x (which is never zero)
to find that

cosh2 x

cosh2 x
− sinh2 x

cosh2 x
=

1
cosh2 x

; that is, 1− tanh2 x = sech2 x

(for all x). If we instead divide by sides by sinh2 x (which is zero only when x = 0), we find that

cosh2 x

sinh2 x
− sinh2 x

sinh2 x
=

1
sinh2 x

; that is, coth2 x− 1 = csch2 x

if x �= 0.

C06S09.051: Substitute y = x in the identity

cosh(x+ y) = coshx cosh y + sinhx sinh y

to prove that cosh 2x = cosh2 x+ sinh2 x. Then, with the aid of Eq. (4), we find that

cosh 2x = 2 cosh2 x− 1, so that cosh2 x =
1
2

(1 + cosh 2x) .

C06S09.052: First, x′(t) = kA sinh kt+ kB cosh kt, and therefore

x′′(t) = k2A cosh kt+ k2B sinh kt = k2x(t).

C06S09.053: The length is

L =
∫ a

0

√
1 + sinh2 x dx =

∫ a

0

coshx dx =
[

sinhx
]a
0

= sinh a.

C06S09.054: The volume is

V =
∫ π

0

π sinh2 x dx =
π

4

∫ π

0

(
e2x − 2 + e−2x

)
dx =

π

4

[
1
2
e2x − 2x− 1

2
e−2x

]π
0

=
π

4

(
1
2
e2π − 2π − 1

2
e−2π − 1

2
+

1
2

)
=
π

4
(−2π + sinh 2π) ≈ 205.3515458383.

C06S09.055: Beginning with the equation

A(θ) =
1
2

cosh θ sinh θ −
∫ cosh θ

1

(x2 − 1)1/2 dx,

we take the derivative of each side with respect to θ (using the fundamental theorem of calculus on the
right-hand side). The result is

A′(θ) =
1
2

cosh2 θ +
1
2

sinh2 θ −
[
(cosh2 θ − 1)1/2 sinh θ

]

=
1
2

cosh2 θ +
1
2

sinh2 θ − sinh2 θ =
1
2

(
cosh2 θ − sinh2 θ

)
=

1
2
.
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Therefore A(θ) = 1
2 θ + C for some constant C. Evaluation of both sides of this equation when θ = 0 yields

the information that C = 0, and therefore

A(θ) =
1
2
θ.

C06S09.056: By l’Hôpital’s rule,

lim
x→0

sinhx
x

= lim
x→0

coshx
1

= cosh 0 = 1.

We do not require l’Hôpital’s rule for the other two limits:

lim
x→∞

tanhx = lim
x→∞

ex − e−x
ex + e−x

= lim
x→∞

1− e−2x

1 + e−2x
=

1− 0
1 + 0

= 1;

lim
x→∞

coshx
ex

= lim
x→∞

ex + e−x

2ex
= lim
x→∞

1− e−2x

2
=

1− 0
2

=
1
2
.

C06S09.057: Let y = sinh−1 1. Then

1 = sinh y =
ey − e−y

2
; ey − e−y = 2;

e2y − 2ey − 1 = 0; u2 − 2u− 1 = 0 where u = ey;

u =
2±
√

4 + 4
2

= 1±
√

2.

But u = ey > 0, so u = 1 +
√

2. Hence

sinh−1 1 = y = lnu = ln
(
1 +
√

2
)
≈ 0.8813735870.

C06S09.058: If x �= 0, then by Eq. (34),

sinh−1 1
x

= ln

(
1
x

+

√
1
x2

+ 1

)
= ln

(
1
x

+
√
x2 + 1
|x|

)
= csch−1 x

by Eq. (39).

C06S09.059: Let y = sinh−1 x and remember that cosh y > 0 for all y. Hence

sinh y = x; (cosh y)
dy

dx
= 1;

dy

dx
=

1
cosh y

=
1√

cosh2 y
=

1√
1 + sinh2 y

=
1√

1 + x2
.

C06S09.060: Let y = sech−1 x, 0 < x � 1. Recall that sech y > 0 for all y. Hence:

sech y = x; (− sech y tanh y)
dy

dx
= 1;
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dy

dx
= − 1

sech y tanh y
= ± 1

x
√

1− sech2 y
= ± 1

x
√

1− x2
.

Now x > 0 but
dy

dx
< 0 (because y = sech−1 x is decreasing on (0, 1)). Therefore

dy

dx
= − 1

x
√

1− x2
, 0 < x < 1.

C06S09.061: Let

f(x) = tanh−1 x and g(x) =
1
2

ln
(

1 + x

1− x

)

for −1 < x < 1. Equation (36) states that f(x) = g(x). To prove this, note that

f ′(x) =
1

1− x2

and g(x) =
1
2

ln(1 + x)− 1
2

ln(1− x), so that

g′(x) =
1
2

(
1

1 + x
+

1
1− x

)
=

1− x+ 1 + x

2(1− x2)
=

1
1− x2

,

and therefore f ′(x) = g′(x). Hence f(x) = g(x)+C for some constant C and for all x in (−1, 1). To evaluate
C, note that

0 = f(x) = tanh−1 0 = g(0) + C =
1
2

ln 1 + C = 0 + C = C.

Therefore f(x) = g(x) if −1 < x < 1.

C06S09.062: Given: x = sinh y =
ey − e−y

2
:

ey − e−y = 2x; e2y − 2xey − 1 = 0;

u2 − 2xu− 1 = 0 where u = ey; u =
2x±

√
4x2 + 4
2

= x±
√
x2 + 1;

u = x+
√
x2 + 1 because ey > 0.

Therefore y = lnu = ln
(
x+
√
x2 + 1

)
for all real x.

C06S09.063: Let u = ey. Then

x = coth y =
ey + e−y

ey − e−y =
e2y + 1
e2y − 1

=
u2 + 1
u2 − 1

.

Therefore

u2 + 1 = xu2 − x; (x− 1)u2 = x+ 1; u2 =
x+ 1
x− 1

.

Therefore y = lnu =
1
2

lnu2 =
1
2

ln
x+ 1
x− 1

for all x such that |x| > 1.

9



C06S09.064: Let f(x) = coth−1 x and g(x) =
1
2

ln
(
x+ 1
x− 1

)
for |x| > 1. Then

f ′(x) =
1

1− x2

and g(x) =
1
2

ln(x+ 1)− 1
2

ln(x− 1), so

g′(x) =
1
2

(
1

x+ 1
− 1
x− 1

)
=

(x− 1)− (x+ 1)
2(x2 − 1)

= − 1
x2 − 1

=
1

1− x2
.

Therefore there are constants C1 and C2 such that

f(x) = g(x) + C1 if x > 1 and f(x) = g(x) + C2 if x < −1.

Let us now express y = coth−1 2 in a more manageable form.

coth y = 2;
ey + e−y

ey − e−y = 2;

ey + e−y = 2ey − 2e−y; 3e−y = ey;

e2y = 3; 2y = ln 3;

y =
1
2

ln 3; coth−1 2 =
1
2

ln 3.

Thus

C1 = f(2)− g(2) =
1
2

ln 3− 1
2

ln
2 + 1
2− 1

= 0.

Therefore Eq. (37) holds for all x > 1. Repeat this argument, unchanged except for a few minus signs, with
y = coth−1 2 to show that C2 = 0 as well. This establishes Eq. (37).

C06S09.065: Let

f(x) = csch−1 x and g(x) = ln

(
1
x

+
√

1 + x2

|x|

)

for x �= 0. Then

f ′(x) = − 1
|x|
√

1 + x2
.

If x > 0, then g(x) = ln

(
1 +
√

1 + x2

x

)
. Thus

g′(x) =
x

1 + (1 + x2)1/2
·
x · 1

2 (1 + x2)−1/2 · 2x− 1− (1 + x2)1/2

x2

=
1

1 + (1 + x2)1/2
· x

2(1 + x2)−1/2 − 1− (1 + x2)1/2

x

=
1

1 + (1 + x2)1/2
· x

2 − (1 + x2)1/2 − 1− x2

x(1 + x2)1/2

= − 1
x(1 + x2)1/2

= − 1
|x|
√

1 + x2
.
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But if x < 0, then g(x) = ln

(
1−
√

1 + x2

x

)
, and hence

g′(x) =
x

1− (1 + x2)1/2
·
−x · 1

2 (1 + x2)−1/2 · 2x− 1 + (1 + x2)1/2

x2

=
1

1− (1 + x2)1/2
· −x

2(1 + x2)−1/2 − 1 + (1 + x2)1/2

x

=
1

1− (1 + x2)1/2
· −x

2 − (1 + x2)1/2 + 1 + x2

x(1 + x2)1/2

=
1

x(1 + x2)1/2
= − 1

|x|
√

1 + x2
.

Therefore there exist constants C1 and C2 such that

f(x) = g(x) + C1 if x > 0 and f(x) = g(x) + C2 if x < 0.

Let us now express u = csch−1 1 in a more useful way.

cschu = 1;
2

eu − e−u = 1;

eu − e−u = 2; e2u − 1 = 2eu;

e2u − 2eu − 1 = 0; eu =
2±
√

4 + 4
2

= 1±
√

2 .

Therefore eu = 1 +
√

2, and so f(1) = csch−1 1 = u = ln
(
1 +
√

2
)
. But

g(1) = ln

(
1
1

+
√

2
1

)
= ln

(
1 +
√

2
)
.

Therefore C1 = 0, and so

csch−1 x = ln

(
1
x

+
√

1 + x2

|x|

)

if x > 0. This argument may be repeated for u = csch−1(−1) with few changes other than minus signs here
and there, and it follows that C2 = 0 as well. This establishes Eq. (39).

C06S09.066: A plot of f(x) = x+2 and g(x) = coshx for −1 � x � 2.5 reveals intersections near x = −0.7
and x = 2.1. We applied Newton’s method to the equation f(x)− g(x) = 0 and found that the curves cross
very close to the two points

(−0.7252637249, 1.2747362751) and (2.0851860142, 4.0851860142).

With a the abscissa of the first of these points and b the abscissa of the second, the area between the two
curves is

A =
∫ b

a

[f(x)− g(x)] dx =
[

1
2

(4x+ x2 − 2 sinhx)
]b
a

≈ 2.7804546672.
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C06S09.067: Given: f(x) = e−2x tanhx. First,

lim
x→∞

f(x) = lim
x→∞

ex − e−x
e2x(ex + e−x)

= lim
x→∞

1− e−2x

e2x + 1
= 0.

Next, a plot of y = f(x) for 0 � x � 1 reveals a local maximum near where x = 0.45. We applied Newton’s
method to solve f ′(x) = 0 numerically and after seven iterations found that the maximum is close to the
point (0.4406867935, 0.1715728753). Indeed,

f ′(x) = − e
4x − 2e2x − 1

2e2x(e2x + 1)2
,

so f ′(x) = 0 when e4x − 2e2x − 1 = 0; that is, when

e2x =
2±
√

4 + 4
2

= 1±
√

2, so that x =
1
2

ln
(
1 +
√

2
)
≈ 0.4406867935.

C06S09.068: If f(x) = e−x sinh−1 x, then by l’Hôpital’s rule,

lim
x→∞

f(x) = lim
x→∞

sinh−1 x

ex
= lim
x→∞

1
ex
√

1 + x2
= 0.

Next, a plot of y = f(x) for 0 � x � 2 reveals a local maximum near where x = 0.85. The equation f ′(x) = 0
is transcendental and we were unable to solve it exactly, but Newton’s method revealed that the high point
on the graph of f is close to (0.8418432341, 0.3296546569). Note: To solve f ′(x) = 0 you must solve

1
2

ln(x2 + 1) = x+
1√

x2 + 1
.

The graph of y = f(x) for 0 � x � 10 is next. It provides convincing evidence that the extremum we found
is a global maximum.

C06S09.069: Given: y(x) = y0 +
1
k

(−1 + cosh kx). Then

dy

dx
= sinh kx and

d2y

dx2
= k cosh kx.

So

k

√
1 + [y′(x)]2 = k

√
1 + sinh2 kx = k

√
cosh2 kx = k cosh kx.

Therefore
d2y

dx2
= k

√
1 +

(
dy

dx

)2

. Moreover,
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y(0) = y0 +
1
k

(−1 + cosh 0) = y0 +
0
k

= y0

and

y′(0) = sinh(k · 0) = sinh(0) = 0.

C06S09.070: Using the coordinate system in Fig. 6.9.4 with units in feet, the cable has the shape of the
graph of

y(x) = 30 +
1
k

(−1 + cosh kx).

We also know that

50 = y(100) = 30 +
1
k

(−1 + cosh 100k),

and it follows that g(k) = 0 where g(k) = cosh(100k)− 20k − 1. A plot of y = g(x) reveals a solution near
x = 0.004, and Newton’s method reveals the more accurate approximation k ≈ 0.003948435453. We then
found that the approximate length of the high-voltage line is

L = 2
∫ 100

0

√
1 + [y′(x)]2 dx = 2

∫ 100

0

cosh kx dx = 2 ·
[

1
k

sinh kx
]100

0

≈ 205.2373736258 (ft).
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Chapter 6 Miscellaneous Problems

C06S0M.001: The net distance is

∫ 3

0

v(t) dt =
[

1
3
t3 − 1

2
t2 − 2t

]3

0

= − 3
2
− 0 = − 3

2
.

Because v(t) < 0 for 0 < t < 2, the total distance is

−
∫ 2

0

v(t) dt+
∫ 3

2

v(t) dt =
(

10
3
− 0

)
+

(
− 3

2
+

10
3

)
=

31
6
≈ 5.166667.

C06S0M.002: Because t2−4 < 0 for 1 < t < 2 but t2−4 > 0 for 2 < t < 4, whereas v(t) � 0 for 1 � t � 4,
the net and total distance are both

−
∫ 2

1

(t2 − 4) dt+
∫ 4

2

(t2 − 4) dt = −
[

1
3
t3 − 4t

]2

1

+
[

1
3
t3 − 4t

]4

2

=
5
3

+
32
3

=
37
3
≈ 12.333333.

C06S0M.003: Because v(t) < 0 for 0 < t < 1
2 but v(t) > 0 for 1

2 < t <
3
2 , the net distance is

∫ 3/2

0

v(t) dt =
[
− cos

(
1
2
π(2t− 1)

) ]3/2

0

= 1− 0 = 1

and the total distance is

−
∫ 1/2

0

v(t) dt+
∫ 3/2

1/2

v(t) dt = (1− 0) + (1− (−1)) = 3.

C06S0M.004: The volume is
∫ 1

0

x3 dx =
[

1
4
x4

]1

0

=
1
4
− 0 =

1
4
.

C06S0M.005: The volume is
∫ 4

1

x1/2 dx =
[

2
3
x3/2

]4

1

=
16
3
− 2

3
=

14
3
≈ 4.666667.

C06S0M.006: The volume is
∫ 2

1

x3 dx =
[

1
4
x4

]2

1

= 4− 1
4

=
15
4

= 3.75.

C06S0M.007: The volume is
∫ 1

0

π(x2 − x4) dx = π
[

1
3
x3 − 1

5
x5

]1

0

=
2π
15
≈ 0.4188790205.

C06S0M.008: The volume is
∫ 1

−1

x100 dx =
[

1
101
x101

]1

−1

=
2

101
≈ 0.0198019802.

C06S0M.009: Between time t = 0 and time t = 12, the rainfall in inches is

∫ 12

0

1
12

(t+ 6) dt =
[

1
2
t+

1
24
t2

]12

0

= 12− 0 = 12.

C06S0M.010: The curves meet at (0, 0) and at (1, 1), and the quadratic is higher than the cubic between
those points. A cross section of the solid perpendicular to the x-axis is a square of base length 2x− x2 − x3
and thus the cross section has area A(x) = (2x− x2 − x3)2. Hence the volume of the solid is

1



V =
∫ 1

0

A(x) dx =
[

4
3
x3 − x4 − 3

5
x5 +

1
3
x6 +

1
7
x7

]1

0

=
22
105
≈ 0.2095238095.

C06S0M.011: The region R of Problem 10 is bounded above by the graph of f(x) = 2x − x2 and below
by the graph of g(x) = x3 for 0 � x � 1. A cross section of the solid S of Problem 11 perpendicular to the
x-axis at x is an annular region with outer radius f(x) and inner radius g(x), thus of cross-sectional area
A(x) = π [f(x) ]2 − π [g(x) ]2. Therefore the volume of S is

V =
∫ 1

0

A(x) dx = π
[

4
3
x3 − x4 +

1
5
x5 − 1

7
x7

]1

0

=
41
105
π − 0 ≈ 1.2267171314.

C06S0M.012: The region R of this problem is bounded above by the graph of f(x) = x2 + 1 and below
by the graph of g(x) = 2x4 for −1 � x � 1 and (important) is symmetric around the y-axis. If R is rotated
around the x-axis, the solid S that it generates has as cross sections perpendicular to the x-axis at x annular
regions with outer radius f(x) and inner radius g(x), thus of cross-sectional area A(x) = π [f(x) ]2−π [g(x) ]2.
Therefore the volume of S is

V1 =
∫ 1

−1

A(x) dx = π
[
x+

2
3
x3 +

1
5
x5 − 4

9
x9

]1

−1

=
64π
45
−

(
−64π

45

)
=

128π
45
≈ 8.9360857702.

If R is rotated around the y-axis to form the solid T , then (using the symmetry of R around the y-axis) the
method of cylindrical shells yields the volume of T as

V2 =
∫ 1

0

2πx [f(x)− g(x) ] dx = π
[
x2 +

1
2
x4 − 2

3
x6

]1

0

=
5π
6
≈ 2.6179938780.

C06S0M.013: Each cross section perpendicular to the x-axis has area A(x) = 1
16π, so the total mass of

the helix is

m =
∫ 20

0

(8.5) ·A(x) dx =
[

17π
32
x

]20

0

=
85π
8
≈ 33.3794219444 (grams).

C06S0M.014: Most of the natural ways to solve this problem involve algebraic difficulties. For example,
the side of the frustum should not be part of the graph of y = mx, even though this would seem to yield the
simplest choice. In each case, both the method of cross sections and the method of cylindrical shells lead
to difficulties. Here’s the simplest solution we’ve found. Write r for r1 and s for r2. Sketch a trapezoid in
the first quadrant with vertices at (0, 0), (h, 0), (h, s), and (0, r). Then an equation of the top edge of the
trapezoid is

y = r +
s− r
h
x.

The frustum is produced by rotating the trapezoidal region around the x-axis, and its volume is

V =
∫ h

0

π

(
r +
s− r
h
x

)2

dx = π
∫ h

0

[
r2 +

2r(s− r)
h

x+
(
s− r
h

)2

x2

]
dx

= π

[
r2x+

r(s− r)
h

x2 +
1
3

(
s− r
h

)2

x3

]h
0

= π
(
r2h+ r(s− r)h+

1
3
(s− r)2h

)

=
1
3
πh(3r2 + 3rs− 3r2 + s2 − 2rs+ r2) =

πh

3
(
r2 + rs+ s2

)
=
πh

3
(
r21 + r1r2 + r22

)
.
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C06S0M.015: Let z denote the distance from P to the origin. A horizontal cross-section of the elliptical
cone “at” z (thus at distance z from P ) is an ellipse with major axis and minor axis each proportional to z.
So the area A(z) of this cross section is proportional to z2: A(z) = kz2 where k is a positive constant. But

A(h) = kh2 = πab

by the result of Problem 47 of Section 5.8, and hence k = πab/h2. Therefore A(z) = πabz2/h2. So the
volume of the elliptical cone is

V =
∫ h

0

πab

h2
z2 dz =

[
πab

3h2
z3

]h
0

=
1
3
πabh,

one-third the product of the area of the base and the height of the elliptical cone.

C06S0M.016: Because (a − h, r) lies on the ellipse,
(
a− h
a

)2

+
(r
b

)2

= 1. Therefore r2 =
2ah− h2

a2
b2.

And so

V =
∫ a

a−h
πy2 dx =

∫ a

a−h
πb2

(
1− x

2

a2

)
dx = π

b2h2

3a2
(3a− h) .

But r2 =
b2

a2
h(2a− h), so

b2

a2
h =

r2

2a− h . Therefore

V = 1
3πr

2h
3a− h
2a− h.

C06S0M.017: Because (a+ h, r) lies on the hyperbola,

(a+ h)2

a2
− r

2

b2
= 1.

It follows that

r2 =
b2(2ah+ h2)

a2
. (1)

Moreover, the equation of the hyperbola may be written in the form

y2 =
b2

a2
(x2 − a2).

Therefore the “segment of the hyperboloid” has volume

V =
∫ a+h

a

πy2 dx =
πb2

a2

∫ a+h

a

(x2 − a2) dx =
πb2

a2

[
1
3
x3 − a2x

]a+h
a

=
πb2

3a2

[
x3 − 3a2x

]a+h
a

=
πb2

3a2
(
a3 + 3a2h+ 3ah2 + h3 − 3a3 − 3a2h− a3 + 3a3

)

=
1
3
π
b2

a2
h2(3a+ h).

But by Eq. (1), b2 =
a2r2

2ah+ h2
. So V =

1
3
π
h2

a2
(3a+ h)

a2r2

h(2a+ h)
=

1
3
πr2h

3a+ h
2a+ h

.
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C06S0M.018: V (t) =
∫ t

1

π (f(x))2 dx = π
(

1− 1
t

)
, so V ′(t) = π (f(t))2 =

π

t2
. Therefore f(x) =

1
x

.

C06S0M.019: V =
∫ t

1

π (f(x))2 dx =
π

6
[
(1 + 3t)2 − 16

]
. Thus

π (f(x))2 =
π

6
[(2)(1 + 3x)(3)] = π(1 + 3x).

Therefore f(x) =
√

1 + 3x .

C06S0M.020: V (t) =
∫ t

1

2πxf(x) dx = 2
9π

((
1 + 3t2

)3/2 − 8
)
, so

V ′(t) = 2πtf(t) = 2
9π

(
3
2

√
1 + 3t3 (6t)

)
= 2πt

√
1 + 3t2 .

Therefore f(x) =
√

1 + 3x2 .

C06S0M.021: The graphs of f(x) = sin
(

1
2πx

)
and g(x) = x cross at (0, 0) and (1, 1), and g(x) < f(x) if

0 < x < 1. When the region they bound is rotated around the y-axis, the method of cylindrical shells yields
the volume of the solid thus generated to be

V =
∫ 1

0

2πx [f(x)− g(x) ] dx = 2π
∫ 1

0

[ (
x sin

πx

2

)
− x2

]
dx.

Now let u =
πx

2
, so that x =

2u
π

. This substitution yields

V = 2π
∫ π/2

0

(
2
π
u sinu − 4

π2
u2

)
· 2
π
du =

∫ π/2

0

(
8
π
u sinu− 16

π2
u2

)
du

=
[

8
π

(sinu − u cosu) − 16
3π2
u3

]π/2
0

=
8
π
− 16

3π2
· π

3

8
=

8
π
− 2π

3
≈ 0.4520839871.

C06S0M.022: If −1 � x � 2, then a thin vertical strip of the region above x is rotated in a circle of radius
x+ 2. Therefore the volume generated is

V =
∫ 2

−1

2π(x+ 2)(x+ 2− x2) dx = π
[
8x+ 4x2 − 2

3
x3 − 1

2
x4

]2

−1

=
56π
3
−

(
−23π

6

)
=

45π
2
≈ 70.6858347058.

C06S0M.023:
dy

dx
= 1

2x
1/2 − 1

2x
−1/2, so

1 +
(
dy

dx

)2

=
(

1
2x

1/2 + 1
2x

−1/2
)2

. (1)

So the length of the curve is

L =
∫ 4

1

(
1
2
x1/2 +

1
2
x−1/2

)
dx =

[
x1/2 +

1
3
x3/2

]4

1

=
14
3
− 4

3
=

10
3
.
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C06S0M.024: We use the result in Eq. (1) in the solution of Problem 23: ds =
(

1
2x

−1/2 + 1
2x

1/2
)
dx. The

graph of f(x) = 1
3x

3/2 − x1/2 lies below the x-axis for 1 � x � 3 and above it for 3 � x � 4. Hence the
radius of the cirle of rotation is −f(x) in the former case and f(x) in the latter case. So the area of the
left-hand part of the surface is

AL = −
∫ 3

1

2πf(x) ds = 2π
∫ 3

1

(
1
2

+
1
3
x− 1

6
x2

)
dx

= 2π
[

1
2
x+

1
6
x2 − 1

18
x3

]3

1

= 2π
(

3
2

+
3
2
− 3

2
− 1

2
− 1

6
+

1
18

)
=

16π
9
.

The area of the right-hand part of the surface is

AR =
∫ 3

1

2πf(x) ds = 2π
[

1
18
x3 − 1

6
x2 − 1

2
x

]4

3

= 2π
(

32
9
− 8

3
− 2− 3

2
+

3
2

+
3
2

)
=

7π
9
.

Therefore the total area of the surface of revolution around the x-axis is

AL +AR =
16π
9

+
7π
9

=
23π
9
≈ 8.0285145592.

There is no such difficulty in part (b), in which the graph of f is rotated around the y-axis. The area
of the surface thereby generated is

A =
∫ 4

1

2πx ds = 2π
∫ 4

1

(
1
2
x1/2 +

1
2
x3/2

)
dx

= 2π
[

1
3
x3/2 +

1
5
x5/2

]4

1

= 2π
(

8
3

+
32
5
− 1

3
− 1

5

)
=

256π
15
≈ 53.6165146213.

C06S0M.025: Let x = f(y) = 3
8 (y4/3 − 2y2/3). Then

1 + [f ′(y) ]2 = 1 +
9
64

(
4
3
y1/3 − 4

3
y−1/3

)2

=
1
4
y2/3 +

1
2

+
1
4
y−2/3 =

(1 + y2/3)2

4y2/3
,

and therefore ds = 1
2 (y1/3 + y−1/3) dy. Hence the length of the graph of g from y = 1 to y = 8 is

L =
∫ 8

1

1 ds =
∫ 8

1

1
2
(y1/3 + y−1/3) dy =

[
3
8
y4/3 +

3
4
y2/3

]8

1

= 9− 9
8

=
63
8

= 7.875.

C06S0M.026: Let x = g(y) = 3
8 (y4/3 − 2y2/3), 1 � y � 8. As in the solution of Problem 25, we find that

ds = 1
2 (y1/3 + y−1/3) dy. So the surface area generated by revolving the graph of g around the x-axis will be

A =
∫ 8

1

2πy ds = π
∫ 8

1

(y4/3 + y2/3) dy = π
[

3
7
y7/3 +

3
5
y5/3

]8

1

=
2592π

35
− 36π

35
=

2556π
35

≈ 229.4260235022.

But the graph of x = g(y) crosses the y-axis where y = a = 2
√

2, so two integrals are required to find the
surface area generated by rotating the graph around the y-axis. They are
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A1 = −
∫ a

1

2πg(y) ds = − 3π
8

∫ a

1

(y5/3 − y − 2y1/3) dy = −π
[

9
64
y8/3 − 3

16
y2 − 9

16
y4/3

]a
1

=
57π
64

and

A2 =
∫ 8

a

2πg(y) ds =
3π
8

∫ 8

a

(y5/3 − y − 2y1/3) dy = π
[

9
64
y8/3 − 3

16
y2 − 9

16
y4/3

]8

a

=
33π
2
.

Therefore the answer in part (b) is A1 +A2 =
1113π

64
≈ 54.63425974.

C06S0M.027: Let f(x) = 1
3x

3/2 − x1/2, 1 � x � 4. Then

1 + [f ′(x)]2 = 1 +
(

1
2
x1/2 − 1

2
x−1/2

)2

=
1
4
x+

1
2

+
1
4
x−1 =

(
1
2
x1/2 +

1
2
x−1/2

)2

.

Therefore ds = 1
2

(
x1/2 + x−1/2

)
dx. Therefore the area of the surface generated when the graph of f is

rotated around the vertical line x = 1 is

A =
∫ 4

1

2π(x− 1) ds = π
∫ 4

1

(x3/2 − x−1/2) dx = π
[

2
5
x5/2 − 2x1/2

]4

1

=
44π
5
−

(
−8π

5

)
=

52π
5
≈ 32.6725635973.

C06S0M.028:
dy

dx
= − x√

r2 − x2
, so 1 +

(
dy

dx

)2

=
r2

r2 − x2 . Therefore

A =
∫ b

a

2π
√
r2 − x2 r√

r2 − x2
dx =

∫ b

a

2πr dx =
[
2πrx

]b
a

= 2πr(b− a) = 2πrh.

C06S0M.029: This is merely a matter of substituting 2r for h in the area formula A = 2πrh derived in
Problem 28. Thus the area of a sphere of radius r is A = 2πr · 2r = 4πr2.

C06S0M.030: Let f(x) = 2x3 and g(x) = 2
√
x. The region R bounded by the graphs of f and g lies in

the first quadrant and the two curves cross at the origin and at (1, 2). The graph of f is also the graph of
x = h(y) = (y/2)1/3 and the graph of g is also the graph of x = j(y) = (y/2)2. The graph of g is above
the graph of f on the interval 0 � x � 1 and the graph of j is to the left of the graph of h on the interval
0 � y � 2.

Part (a): R is rotated around the x-axis, generating a solid of volume V1. To find V1 by the method of cross
sections, we first simplify

[g(x)]2 − [f(x)]2 = 4x− 4x6,

and therefore

V1 = π
∫ 1

0

(4x− 4x6) dx = π
[
2x2 − 4

7
x7

]1

0

=
10π
7
≈ 4.4879895051.

To find V1 by the method of cylindrical shells, we evaluate
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∫ 2

0

2πy [h(y)− j(y)] dy = π
∫ 2

0

(
22/3y4/3 − 1

2
y3

)
dy = π

[
3 · 22/3

7
y7/3 − 1

8
y4

]2

0

=
10π
7
.

Part (b): R is rotated around the y-axis, generating a solid of volume V2. To find V2 by the method of
cylindrical shells, we evaluate

V2 =
∫ 2

0

2πx [g(x)− f(x)] dx = π
∫ 1

0

(4x3/2 − 4x4) dx = π
[

8
5
x5/2 − 4

5
x5

]1

0

=
4π
5
≈ 2.5132741229.

To find V2 by the method of cross sections, we first simplify

[h(y)]2 − [j(y)]2 =
y2/3

22/3
− y

4

16
=

1
16

(
8 · 21/3y2/3 − y4

)
.

Then

V2 =
∫ 2

0

π · 1
16

(
8 · 21/3y2/3 − y4

)
dy =

π

80

[
24 · 21/3y5/3 − y5

]2

0

=
4π
5
.

Part (c): R is rotated around the horizontal line y = −1, generating a solid of volume V3. To find V3 by
the method of cross sections, we simplify

[g(x) + 1]2 − [f(x) + 1]2 = 4x1/2 + 4x− 4x3 − 4x6.

Then

V3 =
∫ 1

0

π(4x1/2 + 4x− 4x3 − 4x6) dx =
π

21

[
56x3/2 + 42x2 − 21x4 − 12x7

]1

0
=

65π
21
≈ 9.7239772611.

To find V3 by the method of cylindrical shells, we first simplify the integrand:

2π(y + 1) [h(y)− j(y)] =
1
2
π(y + 1)(2 · 22/3y1/3 − y2) = π

(
22/3y1/3 + 22/3y4/3 − 1

2
y2 − 1

2
y3

)
.

Then

V3 = π
∫ 2

0

(
22/3y1/3 + 22/3y4/3 − 1

2
y2 − 1

2
y3

)
dy

= π
[

3 · 22/3

4
y4/3 +

3 · 22/3

7
y7/3 − 1

6
y3 − 1

8
y4

]2

0

=
65π
21
.

Part (d): Finally, R is rotated around the vertical line x = 2, thereby generating a solid of volume V4. To
evaluate V4 by the method of cross sections, we first simplify

[2− j(y)]2 − [2− h(y)]2 = 25/3y1/3 − y
2/3

22/3
− y2 +

y4

16
.

Then
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V4 = π
∫ 2

0

(
25/3y1/3 − y

2/3

22/3
− y2 +

y4

16

)
dy

= π
[

3 · 22/3

2
y4/3 − 3 · 21/3

10
y5/3 − 1

3
y3 +

1
80
y5

]2

0

=
38π
15
≈ 7.9587013891.

To evaluate V4 by the method of cylindrical shells, we first simplify

(2− x) [g(x)− f(x)] = 4x1/2 − 2x3/2 − 4x3 + 2x4.

Then

V4 = 2π
∫ 1

0

(
4x1/2 − 2x3/2 − 4x3 + 2x4

)
dx = 2π

[
8
3
x3/2 − 4

5
x5/2 − x4 +

2
5
x5

]1

0

=
38π
15
.

C06S0M.031: Denote the spring constant by K. The information given in the problem yields

∫ 5

2

K(x− L) dx = 5
∫ 3

2

K(x− L) dx;

∫ 5

2

(x− L) dx = 5
∫ 3

2

(x− L) dx;

[
1
2
(x− L)2

]5

2

= 5
[

1
2
(x− L)2

]3

2

;

(5− L)2 − (2− L)2 = 5(3− L)2 − 5(2− L)2;

25− 10L+ L2 − 4 + 4L− L2 = 45− 30L+ 5L2 − 20 + 20L− 5L2;

4L = 4.

Therefore the natural length of the spring is L = 1 (ft).

C06S0M.032: Set up a coordinate system in which y = 50 is the position of the windlass and the lowest
point P of the cable is initially at y = 0. When P is at location y (0 � y � 50), the length of the cable is
50− y, so the total weight on the windlass is 1000 + 5 · (50− y) (lb). Therefore the work to wind in 25 feet
of the cable is

W =
∫ 25

0

(1000 + 250− 5y) dy =
[
1250y − 5

2
y2

]25

0

= 29687.5 (ft·lb).

C06S0M.033: Set up a coordinate system in which the center of the tank is at the origin and the y-
axis is vertical. A horizontal cross section of the oil at positive y (−R � y � R) is circular with radius
x =

√
R2 − y2, so its area is π(R2 − y2). Hence the work to pump the oil to its final position y = 3R is

W =
∫ R

−R
(3R− y)πρ(R2 − y2) dy = πρ

∫ R

−R
(y3 − 3Ry2 −R2y + 3R3) dy

= πρ
[

1
4
y4 −Ry3 − 1

2
R2y2 + 3R3y

]R
−R

= πρ
(

7
4
R4 +

9
4
R4

)
= 4πρR4.
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C06S0M.034: Set up a coordinate system with the axis of the cone lying on the y-axis and with a diameter
of the base of the cone lying on the x-axis. Now a horizontal slice of the cone at height y has radius given
by x = 1

2 (1− y); the units here are in feet. Therefore the work done in building the anthill is

W =
∫ 1

0

1
4

(150y)π(1− y)2 dy =
π

4

[
75
2
y4 − 100y3 + 75y2

]1

0

=
25
8
π ≈ 9.82 (ft·lb).

C06S0M.035: Set up a coordinate system in which the center of the earth is at the origin and the hole
extends upward along the vertical y-axis, with its top where y = R, the radius of the earth in feet. A 1-pound
weight at position y (0 � y � R) weighs y/R pounds, so the total work to lift the weight from y = 0 to
y = R is

W =
∫ R

0

y

R
dy =

[
y2

2R

]R
0

=
R

2
=

3960 · 5280
2

= 10454400 (ft·lb).

The assumption of constant density of the earth is required to draw the conclusion that the gravitational
force is proportional to the distance from the center of the earth.

C06S0M.036: Set up a coordinate system in which the center of the earth is at the origin and the hole
extends along the nonnegative y-axis from y = 0 to y = R = 3960 · 5280, the radius of the earth in feet.
Imagine a thin cylindrical horizontal slab of dirt (or basalt, or whatever) in the hole at distance y from the
center of the earth. As it moves from its initial position y to its final position R, its weight varies: If it is at
position u, y � u � R, then its weight will be

(350π) ·
( u
R

)
du

where du denotes its thickness. The total work required to lift this slab from its initial position (u = y) to
the surface (u = R) is then

∫ R

y

350π
u

R
du = 350π

[
u2

2R

]R
y

=
350π
2R

(
R2 − y2

)
.

Therefore the total work required to lift all the dirt (or basalt, or whatever) from the hole to the surface of
the earth is

W =
∫ R

0

350π
2R

(
R2 − y2

)
dy =

350π
2R

[
R2y − 1

3
y3

]R
0

=
350πR2

3
≈ 1.6023407560× 1017 (ft·lb).

It is intriguing to note that the answer may be written in the form

W =
∫ R

0

(∫ R

y

350π
u

R
du

)
dy.

C06S0M.037: If the coordinate system is chosen with the origin at the midpoint of the bottom of the dam
and with the x-axis horizontal, then the equation of the slanted edge of the dam is y = 2x− 200 (with units
in feet). Therefore the width of the dam at level y is 2x = y + 200. Let ρ = 62.4 be the density of water in
pounds per cubic foot. Then the total force on the dam is

F =
∫ 100

0

ρ(100− y)(y + 200) dy = ρ
[
20000y − 50y2 − 1

3
y3

]100

0

=
3500000ρ

3
= 72800000 (lb).
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C06S0M.038: The answer may be obtained from the answer to Problem 37 by multiplying the latter by
sec 30◦: The force is 2/

√
3 times as great, or approximately 8.4062199194 × 107 pounds. The analytical

approach here is to introduce the additional factor sec(π/6) into the integral in the solution of Problem 37,
but because this factor is a constant, one may as well simply multiply the answer by the same factor.

C06S0M.039: The volume of the solid is

V =
∫ c

0

2π
(
y +

1
c

)
2
c

√
y dy =

4π
c
·
[

2
5
y5/2 +

2
3c
y3/2

]c
0

= 8π
(

1
5
c3/2 +

1
3
c−1/2

)
.

It is clear that there is no maximum volume, because V → +∞ as c → 0+. But V → +∞ as c → +∞ as
well, so there is a minimum volume; V ′(c) = 0 when c = 1

3

√
5, so this value of c minimizes V .

C06S0M.040: Here we have

1 +
(
dy

dx

)2

=
(
x4 +

1
4x4

)2

.

Therefore

L =
∫ 2

1

(
x4 +

1
4x4

)
dx =

3011
480
,

My =
∫ 2

1

(
x5 +

1
4x3

)
dx =

339
32
, and

Mx =
∫ 2

1

(
1
5
x5 +

1
12x3

)
·
(
x4 +

1
4x4

)
dx =

∫ 2

1

(
x9

5
+
x

20
+
x

12
+

1
48x7

)
dx

=
[
x10

50
+
x2

40
+
x2

24
− 1

288x6

]2

1

=
1057967
51200

= 20.66341796875.

Therefore

x =
My

L
=

5085
3011

≈ 1.68880770508 and y =
Mx

L
=

3173901
963520

≈ 3.294− 6862388.

C06S0M.041: Here,

L =
∫ 2

1

1
2
(y3 + y−3) dy =

33
16
,

My =
∫ 2

1

1
2
·
(

1
8
y4 +

1
4
y−2

)
· (y3 + y−3) dy =

1179
512
, and

Mx =
∫ 2

1

1
2
(y4 + y−2) dy =

67
20
.

Therefore

x =
393
352

≈ 1.116477 and y =
268
165

≈ 1.624242.

C06S0M.042: First,
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1 +
(
dy

dx

)2

=
(

1
2
x1/2 +

1
2
x−1/2

)2

.

Therefore

L =
∫ 4

1

1
2
(x1/2 + x−1/2) dx =

10
3
,

My =
∫ 4

1

1
2
(x3/2 + x1/2) dx =

128
15
, and

Mx =
∫ 4

1

1
2
·
(

1
3
x3/2 − x1/2

)
· (x1/2 + x−1/2) dx = − 1

2
.

Therefore

x =
128
15
· 3
10

=
64
25

and y = − 1
2
· 3
10

= − 3
20
.

C06S0M.043: To begin with,

1 +
(
dx

dy

)2

=
(

1
2
y1/3 +

1
2
y−1/3

)2

;

it follows that the length of the curve is L =
63
8

. Next,

My =
∫ 8

1

3
8
· 1
2
· (y4/3 − 2y2/3) · (y1/3 + y−1/3) dy =

999
128

= 7.8046875 and

Mx =
∫ 8

1

1
2
(y4/3 + y2/3) dy =

1278
35

≈ 36.51428571.

Therefore

x =
111
112

≈ 0.991071427 and y =
1136
245

≈ 4.636734694.

C06S0M.044: The two curves meet at (0, 0) and at (1, 1). So

A =
∫ 1

0

(2x− x2 − x3) dx =
5
12
,

My =
∫ 1

0

(2x2 − x3 − x4) dx =
13
60
, and

Mx =
∫ 1

0

1
2
(2x− x2 − x3)2 dx =

41
210
.

Therefore

x =
13
25

= 0.52 and y =
82
175

≈ 0.4685714286.
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C06S0M.045: The curves meet at (2, 1), at (0, 0), and at (2, −1). It follows that y = 0 by symmetry and
that we may compute x by using only the upper half of the figure. In that case we have

A =
∫ 1

0

(y2 + 1− 2y4) dy =
14
15

and

My =
∫ 1

0

1
2

[
(y2 + 1)2 − (2y4)2

]
dy =

32
45
.

Therefore x =
16
21
≈ 0.7619047619.

C06S0M.046: Given a triangle in the plane, set up a coordinate system in such a way that the lowest
vertex of the triangle is at the origin, there is a vertex in the first quadrant at (a, b), and a vertex in the
second quadrant at (−a, c). Thus the y-axis passes through the midpoint of the side opposite the vertex at
the origin, and hence a median of the triangle lies on the y-axis. We will show that the y-coordinate of the
centroid also lies on the y-axis. Then, by rotating the triangle to plane the other two vertices at the origin
in a similar way, we may conclude that y lies on all three medians. Then interchange the roles of x and y to
conclude that x lies on the intersection of the medians as well.

The left side of the triangle has equation y = h(x) = −cx/a, the right side has equation y = g(x) = bx/a,
and the top side has equation

y = f(x) = b+
b− c
2a

(x− a).

Hence the moment of the triangle with respect to the y-axis is Mx = ML +MR where ML denotes its
moment to the left of the y-axis and MR its moment to the right. Now

MR =
∫ a

0

(
bx+

b− c
2a
x2 − b− c

2
x− b

a
x2

)
dx

=
[

1
2
bx2 +

b− c
6a
x3 − b− c

4
x2 − b

3a
x3

]a
0

=
1
2
ba2 +

b− c
6
a2 − b− c

4
a2 − b

3
a2

=
6b+ 2b− 2c− 3b+ 3c− 4b

12
a2 =

b+ c
12
a2.

Moreover,

ML = −
∫ 0

−a

(
bx+

b− c
2a
x2 − b− c

2
x+

c

a
x2

)
dx = · · · =

b+ c
12
a2

by extremely similar computations. Thus the triangle balances on the y-axis, and therefore y = 0. In light
of the opening remarks, this completes the proof.

C06S0M.047: 2πy · πab
2

=
4
3
πab2, and it follows that y =

4b
3π

.

C06S0M.048: Note that x = y. The area of the quarter ring is

A =
1
4
(πb2 − πa2) =

π

4
(b2 − a2),

and the volume generated by rotating it around the x-axis is

V =
2
3
πb3 − 2

3
πa3.
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Therefore V =
2
3
π(b3 − a3) = (2πy) · π

4
· (b2 − a2).

Part (a): Consequently

y =
2
3π(b

3 − a3)
1
2π

2(b2 − a2)
=

4(b2 + ab+ a2)
3π(b+ a)

= x.

Part (b): lim
b→a

x =
12a2

(3π)(2a)
=

2a
π

= lim
b→a

y.

C06S0M.049: (a) The area A of the triangle T can be computed in several ways; we chose the most direct
which, elementary, is easy to do by hand. Let O denote the vertex of the triangle at (0, 0), C = C(c, 0),
A = A(a, 0), B = B(a, b), and D = D(c, d). Then A is the area of triangle OCD plus the area of trapezoid
CABD minus the area of triangle OAB:

A =
cd

2
+

(a− c)(b+ d)
2

− ab
2

=
cd

2
+
ab

2
+
ad

2
− bc

2
− cd

2
− ab

2
=
ad− bc

2
.

(b) In Problem 46 we saw that the centroid of a triangle lies on the intersection of its medians. From
plane geometry we also know that the point of intersection is two-thirds of the way from any vertex to the
midpoint of the opposite side. The midpoint of L has y-coordinate (b+ d)/2, and hence

y =
2
3
· b+ d

2
=
b+ d

3
.

(c) V = 2πyA = 2π · b+ d
3
· ad− bc

2
=

1
3
π(b+ d)(ad− bc).

(d)
1
2
pw = A =

ad− bc
2

, so p =
ad− bc
w

.

(e) S = 2π · b+ d
2
· w = πw(b+ d).

(f) V = 2πyA = 2π · b+ d
3
· 1
2
pw = πpw · b+ d

3
=

1
3
pS.

C06S0M.050: Let n = 2k. Inscribe the 2k-gon with opposite vertices on the x-axis. Let T be one of the
triangles formed by a side of the polygon and two radii of the circle. The perpendicular from the origin to
the midpoint of the side of the polygon has length (in the notation of Problem 49)

p = r cos
(π
k

)
.

By part (f) of Problem 49,

V =
1
3

(
r cos

π

k

)
S.

Now let k → +∞ and replace S with 4πr2 to obtain Archimedes’ result

V =
4
3
πr3.

C06S0M.051: A Mathematica solution: First let f(x) = xm and g(x) = xn where m and n are positive
integers and n > m.
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a = Integrate[ f[x] - g[x], { x, 0, 1 } ]

1
m+ 1

− 1
n+ 1

area = a /. m → 1

1
2
− 1
n+ 1

Formulas (11) and (12) in the text give the moments

my = Integrate[ x∗(f[x] - g[x]), { x, 0, 1 } ];

mx = Integrate[ (1/2)*((f[x])∧2 - (g[x])∧2), { x, 0, 1 } ];

My = my /. m → 1

n− 1
3(n+ 2)

Mx = mx /. m → 1

1
3
− 1

2n+ 1
2

Hence the centroid has coordinates

{ xc, yc } = { My/area, Mx/area } // Simplify

{ (n+ 1)
3(n+ 2)

,
2(n+ 1)
3(2n+ 1)

}

Limit[ { xc, yc }, n → Infinity ]

{ 2
3
,

1
3
}

Obviously this is the centroid of the triangle with vertices (0, 0), (1, 0), and (1, 1)—which the area of the
region bounded by the graphs of f and g “exhausts” as n→ +∞.

C06S0M.052: By Example 1 in Section 6.6, the semicircular disk has area and centroid

a1 = 9∗Pi/2;
c1 = { 0, 4/Pi };

Hence its moment with respect to the x-axis is

mx1 = a1∗c1[[2]]

18

(Recall that the Mathematica command list[[n]] extracts the nth entry from the k-dimensional array
list = { a1, a2, a3, . . . , ak }.)

The square are area and centroid

a2 = 4;
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c2 = { 0, −1 };

so its moment with respect to the x-axis is

mx2 = a2∗c2[[2]]

−4

Therefore the region R has area and x-moment

a = a1 + a2

4 +
9π
2

mx = mx1 + mx2

14

So the y-coordinate of its centroid is

yc - mx/a // Simplify

28
8 + 9π

A numerical approximation to this result is

N[yc]

0.771896

The radius of revolution around the line y = −4 is

r = 4 + yc // Together

12(5 + 3π)
8 + 9π

So the volume of revolution is

v = 2∗Pi∗r∗a // Simplify

12π(3π + 5)

C06S0M.053: Let u = 1− 2x. Then dx = − 1
2 du, and so

∫
dx

1− 2x
= − 1

2

∫
1
u
du = − 1

2
ln |u|+ C = − 1

2
ln |1− 2x|+ C.

C06S0M.054: Let u = 1 + x3/2. Then du = 3
2 x

1/2 dx, so that x1/2 dx = 2
3 du. Hence

∫
x1/2

1 + x3/2
dx =

2
3

∫
1
u
du =

2
3

lnu+ C =
2
3

ln
(
1 + x3/2

)
+ C.

C06S0M.055: Let u = 1 + 6x− x2. Then du = (6− 2x) dx, so that (3− x) dx = 1
2 du. Thus
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∫
3− x

1 + 6x− x2 dx =
1
2

∫
1
u
du =

1
2

ln |u|+ C =
1
2

ln |1 + 6x− x2 |+ C.

C06S0M.056: Let u = ex + e−x. Then du = (ex − e−x) dx, so that

∫
ex − e−x
ex + e−x

dx =
∫

1
u
du = (lnu) + C = ln

(
ex + e−x

)
+ C.

C06S0M.057: Let u = 2 + cosx. Then du = − sinx dx, and thus
∫

sinx
2 + cosx

dx = −
∫

1
u
du = −(lnu) + C = − ln(2 + cosx) + C.

C06S0M.058:
∫
e−1/x2

x3
dx =

1
2
e−1/x2

+ C. (Optional substitution: u = −1/x2.)

C06S0M.059: Let u = 10
√
x. Then

du = (10
√
x ln 10) · 1

2
x−1/2 dx =

10
√
x

√
x
· ln 10

2
dx.

Therefore

∫
10

√
x

√
x
dx =

∫
2

ln 10
du =

2u
ln 10

+ C =
2 · 10

√
x

ln 10
+ C.

C06S0M.060: Let u = lnx. Then du =
1
x
dx, so that

∫
1

x(lnx)2
dx =

∫
1
u2
du = − 1

u
+ C = − 1

lnx
+ C.

C06S0M.061: Let u = 1 + ex. Then du = ex dx, and thus
∫
ex(1 + ex)1/2 dx =

∫
u1/2 du =

2
3
u3/2 + C =

2
3

(1 + ex)3/2 + C.

C06S0M.062: Let u = 1 + lnx. Then du =
1
x
dx, and therefore

∫
1
x

(1 + lnx)1/2 dx =
∫
u1/2 du =

2
3
u3/2 + C =

2
3

(1 + lnx)3/2 + C.

C06S0M.063:
∫

2x · 3x dx =
∫

6x dx =
6x

ln 6
+ C.

C06S0M.064: Let u = 1 + x2/3. Then du =
2
3
x−1/3 dx. Hence

∫
dx

x1/3(1 + x2/3)
=

3
2

∫
1
u
du =

3
2

(lnu) + C =
3
2

ln(1 + x2/3) + C.
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C06S0M.065: The revenue realized upon selling after t months will be

f(t) = B ·
(

2 +
t

12

)
· 2−t/12, for which f ′(t) = B · 12− 24 ln 2− t ln 2

144 · 2t/12 .

Thus f ′(t) = 0 when

t =
12− 24 ln 2

ln 2
≈ −6.68765951.

But this value of t is negative, and in addition f ′(t) < 0 for all larger values of t. Thus the revenue is a
decreasing function of t for all t � 0. Therefore the grain should be sold immediately.

C06S0M.066: The profit will be

f(t) = 800 exp
(

1
2

√
t
)
− 1000 exp

(
1
10 t

)
.

Now

f ′(t) =
100

[
2 exp

(
1
2

√
t
)
− t1/2 exp

(
1
10 t

) ]
t1/2

,

We used Newton’s method to solve f ′(t) = 0 and found the solution to be approximately 11.7519277504.
To make sure that this value of t maximizes the profit, we graphed f(t) for 0 � t � 21 (the graph is shown
following this solution). The profit upon cutting and selling after about 11.75 years will be approximately
$1202.37.

C06S0M.067: If lots composed of x pooled samples are tested, there will be 1000/x lots, so there will be
1000/x tests. In addition, if a lot tests positive, there will be x additional tests. The probability of a lot
testing positive is 1−(0.99)x, so the expected number of lots that require additional tests will be the product
of the number of lots and the probability 1 − (0.99)x that a lot tests positive. Hence the total number of
tests to be expected will be

f(x) =
1000
x

+
1000
x

[1− (0.99)x ] · x =
1000
x

+ 1000− 1000(0.99)x

if x � 2. Next,

f ′(x) = −1000
x2
− 1000(0.99)x ln(0.99);

f ′(x) = 0 when
1
x2

= (0.99)x ln(100/99);

x2 =
(0.99)−x

ln(100/99)
;

x =
(0.99)−x/2√
ln(100/99)

.
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The form of the last equation is exactly what we need to implement the method of repeated substitution
(see Problems 23 through 25 of Section 3.9 of the regular edition, Section 3.10 of the early transcendentals
version, of the text). We substitute our first “guess” x0 = 10 into the right-hand side of the last equation,
thus obtaining a “better” (we hope) value x1 and continue this process until the digits in these successive
approximations stabilize. Results: x1 = 10.488992, x2 = 10.514798, x3 = 10.516161, x4 = 10.516233, and
x5 = 10.516237 = x6. The method is not as fast as Newton’s method but the formula is simpler. (The
graph of y = f(x) follows this solution to convince you that we have actually found the minimum value of
f .) We must use an integral number of samples, so we find that f(10) ≈ 195.618 and f(11) = 195.571, so
there should be 90 lots of 11 samples each and one lot of 10 for the most economical results. Alternatively,
it might be simpler to use 10 samples in every lot; the extra cost would be only about 24 cents. The total
cost of the batch method will be about $978, significantly less than the $5000 cost of testing each sample
individually.

C06S0M.068: If f(x) = 1
2 x

2 − 1
4 lnx, then

1 + [f ′(x) ]2 = 1 +
(
x− 1

4x

)2

= x2 +
1
2

+
1

16x2
=

(
x+

1
4x

)2

.

Therefore the arc length is

∫ e

1

(
x+

1
4x

)
dx =

[
1
2
x2 +

1
4

lnx
]e
1

=
1
4

+
1
2
e2 − 1

2
=

2e2 − 1
4

≈ 3.4445280495.

C06S0M.069: If f(x) = sin−1 3x, then f ′(x) =
1√

1− (3x)2
·Dx (3x) =

3√
1− 9x2

.

C06S0M.070: If f(x) = tan−1 7x, then f ′(x) =
7

1 + 49x2
.

C06S0M.071: If g(t) = sec−1 t2, then

g′(t) =
1

|t2 |
√

(t2)2 − 1
·Dt

(
t2

)
=

2t
t2
√
t4 − 1

=
2

t
√
t4 − 1

.

C06S0M.072: If g(t) = tan−1 et, then g′(t) =
et

1 + e2t
.

C06S0M.073: If f(x) = sin−1 (cosx), then

f ′(x) =
1√

1− (cosx)2
·Dx (cosx) = − sinx√

1− cos2 x
= − sinx

| sinx| .
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C06S0M.074: If f(x) = sinh−1 2x, then f ′(x) =
2√

1 + 4x2
.

C06S0M.075: If g(t) = cosh−1 10t, then g′(t) =
1√

(10t)2 − 1
·Dt (10t) =

10√
100t2 − 1

, t > 1
10 .

C06S0M.076: If h(u) = tanh−1

(
1
u

)
, then

h′(u) =
1

1−
(

1
u

)2 ·Du
(

1
u

)
= − u2

u2 − 1
· 1
u2

= − 1
u2 − 1

=
1

1− u2

provided that |u| > 1.

C06S0M.077: If f(x) = sin−1

(
1
x2

)
, then

f ′(x) =
1√

1−
(

1
x2

)2
·Dx

(
1
x2

)
=

1√
1− 1
x4

· −2
x3

= − 2
x
√
x4 − 1

.

C06S0M.078: If f(x) = tan−1

(
1
x

)
, then

f ′(x) =
1

1 +
1
x2

·Dx
(

1
x

)
=

x2

x2 + 1
· −1
x2

= − 1
x2 + 1

provided that x = 0.

C06S0M.079: If f(x) = arcsin
√
x, then

f ′(x) =
1√

1− (
√
x )2

·Dx
(
x1/2

)
=

1√
1− x

· 1
2
x−1/2 =

1
2
√

1− x
√
x
.

C06S0M.080: If f(x) = x sec−1 x2, then

f ′(x) =
x

|x2 |
√

(x2)2 − 1
·Dx

(
x2

)
+ sec−1 x2 =

2√
x4 − 1

+ sec−1 x2

C06S0M.081: If f(x) = tan−1(x2 + 1), then

f ′(x) =
1

1 + (x2 + 1)2
·Dx(x2 + 1) =

2x
x4 + 2x2 + 2

.

C06S0M.082: If f(x) = sin−1
√

1− x2 , then

f ′(x) =
1√

1− (1− x2)
·Dx(1− x2)1/2 =

1√
x2
· 1
2

(1− x2)−1/2 · (−2x) = − x

|x|
√

1− x2
.

C06S0M.083: If f(x) = ex sinh ex, then f ′(x) = e2x cosh ex + ex sinh ex.
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C06S0M.084: If f(x) = ln coshx, then f ′(x) =
sinhx
coshx

= tanhx.

C06S0M.085: If f(x) = tanh2 3x+sech2 3x, then f(x) ≡ 1 by Eq. (5) in Section 6.9. Therefore f ′(x) ≡ 0.
Alternatively, f ′(x) = 6 tanh 3x sech2 3x− 6 sech 3x sech 3x tanh 3x ≡ 0.

C06S0M.086: If f(x) = sinh−1
√
x2 − 1, then

f ′(x) =
1√

1 +
(√
x2 − 1

)2
·Dx(x2 − 1)1/2 =

1√
1 + x2 − 1

· 1
2

(x2 − 1)−1/2 · 2x =
x

|x|
√
x2 − 1

.

C06S0M.087: If f(x) = cosh−1
√
x2 + 1, then

f ′(x) =
1√(√

x2 + 1
)2 − 1

·Dx(x2 + 1)1/2 =
1√
x2
· 1
2

(x2 + 1)−1/2 · 2x =
x

|x|
√
x2 + 1

.

C06S0M.088: If f(x) = tanh−1(1− x2), then

f ′(x) =
1

1− (1− x2)2 · (−2x) =
−2x

2x2 − x4 =
2

x3 − 2x
.

C06S0M.089: Let u = 2x. Then du = 2 dx, so
∫

1√
1− 4x2

dx =
1
2

∫
1√

1− u2
du =

1
2

sin−1 u+ C =
1
2

sin−1 2x + C.

C06S0M.090: Let u = 2x. Then du = 2 dx, so
∫

1
1 + 4x2

dx =
1
2

∫
1

1 + u2
du =

1
2

arctanu+ C =
1
2

arctan 2x + C.

C06S0M.091: Let x = 2u. Then dx = 2 du and
√

4− x2 =
√

4− 4u2 = 2
√

1− u2. Therefore
∫

1√
4− x2

dx =
∫

2
2
√

1− u2
du = arcsinu + C = arcsin

(x
2

)
+ C.

C06S0M.092: Let x = 2u. Then dx = 2 du and 4 + x2 = 4(1 + u2). Thus
∫

1
4 + x2

dx =
∫

2
4(1 + u2)

du =
1
2

∫
1

1 + u2
du =

1
2

arctanu + C =
1
2

arctan
(x

2

)
+ C.

C06S0M.093: Let u = ex. Then du = ex dx and
√

1− e2x =
√

1− u2 . Hence
∫

ex√
1− e2x

dx =
∫

1√
1− u2

du = arcsinu + C = arcsin ex + C.

C06S0M.094: Let u = x2. Then du = 2x dx and 1 + x4 = 1 + u2. Therefore
∫

x

1 + x4
dx =

1
2

∫
1

1 + u2
du =

1
2

arctanu + C =
1
2

arctanx2 + C.
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Mathematica 3.0 returns the answer

− 1
2

arctan
(

1
x2

)
+ C,

demonstrating that your intelligence and knowledge are still required to interpret what the computer tells
you.

C06S0M.095: Let u = 2
3 x, so that x = 3

2 u. Then dx = 3
2 du and

√
9− 4x2 =

√
9− 9u2 = 3

√
1− u2 . So

∫
1√

9− 4x2
dx =

3
2
· 1
3

∫
1√

1− u2
du =

1
2

arcsinu + C =
1
2

arcsin
(

2x
3

)
+ C.

C06S0M.096: Let u = 2
3 x, so that x = 3

2 u. Then dx = 3
2 du and 9 + 4x2 = 9 + 9u2 = 9(1 + u2). Thus

∫
1

9 + 4x2
dx =

3
2
· 1
9

∫
1

1 + u2
du =

1
6

arctanu + C =
1
6

arctan
(

2x
3

)
+ C.

C06S0M.097: The integrand resembles the derivative of the inverse tangent of something, so we let u = x3.
Then du = 3x2 dx, so that x2 dx = 1

3 du. Then

∫
x2

1 + x6
dx =

1
3

∫
1

1 + u2
du =

1
3

arctanu + C =
1
3

arctanx3 + C.

C06S0M.098: If necessary, use the substitution u = sinx, but by inspection,
∫

cosx
1 + sin2 x

dx = arctan(sinx) + C.

Note that while expressions such as sin(arctanx) can be simplified to algebraic functions, expressions such
as arctan(sinx) normally cannot be further simplified.

C06S0M.099: Let u = 2x. Then du = 2 dx and
√

4x2 − 1 =
√
u2 − 1. Thus

∫
1

x
√

4x2 − 1
dx =

1
2

∫
1

1
2 u
√
u2 − 1

du =
∫

1
u
√
u2 − 1

du = arcsec |u|+ C = arcsec |2x|+ C.

Mathematica 3.0 returns the equivalent alternative answer

∫
1

x
√

4x2 − 1
dx = − arctan

(
1√

4x2 − 1

)
+ C,

which in turn is equal to arctan
(√

4x2 − 1
)

+ C.

C06S0M.100: The integrand resembles the derivative of the inverse secant function, so we try the substi-
tution u = x2. Then du = 2x dx and

√
x4 − 1 =

√
u2 − 1, and thus

∫
1

x
√
x4 − 1

dx =
1
2

∫
2x

x2
√
x4 − 1

dx =
1
2

∫
1

u
√
u2 − 1

du =
1
2

arcsec |u| + C =
1
2

arcsecx2 + C.

Mathematica 3.0 returns the equivalent answer
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∫
1

x
√
x4 − 1

dx = − 1
2

arctan
(

1√
x4 − 1

)
+ C,

which itself is equal to
1
2

arctan
(√
x4 − 1

)
+ C.

C06S0M.101: The integrand is slightly evocative of the derivative of the inverse secant function, so we
try the substitution u = ex, so that

√
e2x − 1 =

√
u2 − 1 . Then du = ex dx, so

∫
1√

e2x − 1
dx =

∫
ex

ex
√
e2x − 1

dx =
∫

1
u
√
u2 − 1

du = arcsec |u|+ C = arcsec (ex) + C.

Mathematica 3.0 returns the equivalent answer arctan
(√
e2x − 1

)
+ C.

C06S0M.102: Use the substitution u = x3 if necessary, but by inspection
∫
x2 coshx3 dx =

1
3

sinhx3 + C.

C06S0M.103: Let u =
√
x if necessary, but by inspection an antiderivative is f(x) = k coshx1/2 for some

constant k. Because

f ′(x) =
(
k sinhx1/2

)
·Dx

(
x1/2

)
=
k sinhx1/2

2x1/2
,

it follows that k = 2 and therefore that

∫
sinh
√
x√
x

dx = 2 cosh
√
x + C.

C06S0M.104: Let u = 3x− 2 if necessary, but by inspection an antiderivative is f(x) = k tanh(3x− 2) for
some constant k. Because f ′(x) = 3k sech2(3x− 2), it follows that k = 1

3 , and thus that
∫

sech2(3x− 2) dx =
1
3

tanh(3x− 2) + C.

Mathematica 3.0 returns the equivalent answer
∫

sech2(3x− 2) dx = − 1
3

tanh(2− 3x) + C.

Figure 6.9.3 shows why the two answers are really the same.

C06S0M.105: Let u = arctanx if necessary, but evidently
∫

arctanx
1 + x2

dx =
1
2

(arctanx)2 + C.

C06S0M.106: Let u = 2x, so that
√

4x2 − 1 =
√
u2 − 1 and du = 2 dx. Then

∫
1√

4x2 − 1
dx =

1
2

∫
1√
u2 − 1

du =
1
2

cosh−1 u + C =
1
2

cosh−1 2x + C.
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C06S0M.107: Let u = 2
3 x, so that x = 3

2 u. Then dx = 3
2 du and

√
4x2 + 9 =

√
9u2 + 9 = 3

√
u2 + 1.

Therefore
∫

1√
4x2 + 9

dx =
3
2
· 1
3

∫
1√
u2 + 1

du =
1
2

sinh−1 u + C =
1
2

sinh−1

(
2x
3

)
+ C.

C06S0M.108: We expect to see an integrand containing
√
u2 + 1, so let u = x2. Then du = 2x dx, and

thus
∫

x√
x4 + 1

dx =
1
2

∫
1√
u2 + 1

du =
1
2

sinh−1 u + C =
1
2

sinh−1 x2 + C.

C06S0M.109: The volume is

V =
∫ 1/

√
2

0

2πx√
1− x4

dx.

Let u = x2. Then du = 2x dx, and hence
∫

2πx√
1− x4

dx = π
∫

1√
1− u2

du = π arcsinu + C = π arcsinx2 + C.

Therefore V =
[
π arcsinx2

]1/
√

2

0

=
π2

6
≈ 1.6449340668.

C06S0M.110: The volume is

V =
∫ 1

0

2πx√
x4 + 1

dx.

Let u = x2. Then du = 2x dx, and therefore
∫

2πx√
x4 + 1

dx =
∫

π√
u2 + 1

du = π sinh−1 u + C = π sinh−1 x2 + C.

Thus V =
[
π sinh−1 x2

]1

0

= π sinh−1 1 = π ln
(
1 +
√

2
)
≈ 2.7689167860.

C06S0M.111: By Eq. (36) of Section 6.9,

tanh−1

(
1
x

)
=

1
2

ln
1 +

1
x

1− 1
x

=
1
2

ln
x+ 1
x− 1

= coth−1 x

by Eq. (37) (provided that |x| > 1). By Eq. (35), if 0 < x � 1 then

cosh−1

(
1
x

)
= ln

(
1
x

+

√
1
x2
− 1

)
= ln

(
1
x

+
√

1− x2√
x2

)
= ln

(
1 +
√

1− x2
x

)
= sech−1 x

by Eq. (38). Note that
√
x2 = x because x > 0.

C06S0M.112: If k = 0 and x(t) = A cosh kt+B sinh kt, then
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1 2 3 4 5 6

-1

-0.5

0.5

1

x′(t) = kA sinh kt+ kB cosh kt and x′′(t) = k2A cosh kt+ k2B sinh kt = k2x(t).

If x(0) = 1 and x′(0) = 0, then A = 1 and kB = 0, so A = 1 and B = 0. If x(0) = 0 and x′(0) = 1, then
A = 0 and kB = 1, so A = 0 and B = 1/k.

C06S0M.113: The graphs of y = cosx and y = sechx are shown following this solution, graphed for
0 � x � 6. One wonders if there is a solution of cosx = sechx in the interval (0, π/2). We graphed
y = f(x) = sechx − cosx for 0 � x � 1 and it was clear that f(x) > 0 if x > 0.25. We graphed y = f(x)
for 0 � x � 0.25 and it was clear that f(x) > 0 if x > 0.06. We repeated this process several times and
could see that f(x) > 0 if x > 0.0002. Instability in the hardware or software made further progress along
these lines impossible. Methods of Section 7.8 can be used to show the desired inequality, but Ted Shifrin
provided the following elegant argument.

First, sechx � 1 � secx if x is in I = [0, π/2). Moreover, sechx = secx only for x = 0 in that interval;
otherwise, sechx < secx for x in J = (0, π/2). So sech2 x < sec2 x if x is in J .

But tanhx = tanx if x = 0. Therefore tanhx < tanx for x in J because Dx tanhx < Dx tanx for
such x. That is,

sinhx
coshx

<
sinx
cosx

if x is in J . All the expressions involved here are positive, so

sinhx cosx < coshx sinx

if x is in J . That is,

− coshx sinx+ sinhx cosx < 0

for x in J . But coshx cosx = 1 if x = 0, and we have now shown that Dx(coshx cosx) < 0 if x is in J .
Therefore

coshx cosx < 1

for x in J . In other words, sechx � cosx for x in I and sechx > cosx for x in J .
Because cosx � 0 < sechx for π/2 < x < 3π/2 and because cosx is increasing, while sechx is

decreasing, for 3π/2 � x < 2π, it follows that the least positive solution of f(x) = 0 is slightly larger than
3π/2, about 4.7, exactly as the figure suggests.

We then applied Newton’s method to the solution of f(x) = 0 with x0 = 4.7, with the following results:
x1 ≈ 4.7300338216, x2 ≈ 4.7300407449, x3 ≈ 4.7300407449. Thus x3 is a good approximation to the least
positive solution of cosx coshx = 1.
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C06S0M.114: If f(x) = sinh−1(tanx), then

f ′(x) =
sec2 x√

1 + tan2 x
=

sec2 x√
sec2 x

=
sec2 x

| secx| = | secx|.

Therefore
∫

secx dx = sinh−1(tanx) + C

if secx > 0; that is, if k is an odd integer and kπ/2 < x < (k + 2)π/2. On the intervals where secx < 0, we
find that

∫
secx dx = − sinh−1(tanx) + C.

Next, if g(x) = tan−1(sinhx), then

g′(x) =
coshx

1 + sinh2 x
=

coshx
cosh2 x

= sechx,

and therefore
∫

sechx dx = tan−1(sinhx) + C

for all x.

C06S0M.115: Given f(x) = x1/2, let F (x) = f(x)− lnx. Then

F ′(x) =
1

2x1/2
− 1
x

=
x1/2 − 2

2x
,

so F ′(x) = 0 when x = 4. Clearly F is decreasing on (0, 4) and increasing on (0, +∞), so the global
minimum value of F (x) is

F (4) = 2− ln 4 = 2− 2 ln 2 > 2− 2 · 1

because ln 2 < 1. Therefore f(x) > lnx for all x > 0.

For part (b), we need to solve x1/3 − lnx = 0. The iteration of Newton’s method takes the form

x←− x− x
1/3 − lnx

1
3
x−2/3 − 1

x

.

Beginning with x0 = 100, we get x5 ≈ 93.354461.

For part (c), suppose that j(x) = x1/p is tangent to the graph of g(x) = lnx at the point (q, ln q). Then
q1/p = ln q and j′(q) = g′(q). Hence

1
p
q(1/p)−1 =

1
q
; q1/p = p;

p = ln q = ln pp = p ln p; ln p = 1, so p = e.
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Section 7.2

C07S02.001: Let u = 2− 3x. Then du = −3 dx, and so

∫
(2− 3x)4 dx = − 1

3

∫
(2− 3x)4(−3) dx = − 1

3

∫
u4 du = − 1

3
· 1
5
u5 + C = − 1

15
(2− 3x)5 + C.

C07S02.002: Let u = 1 + 2x. Then x = 1
2 (u− 1) and dx = 1

2 du, so that
∫

1
(1 + 2x)2

dx =
1
2

∫
u−2 du = − 1

2u
+ C = − 1

2(1 + 2x)
+ C.

C07S02.003: Let u = 2x3 − 4. Then du = 6x2 dx, so that

∫
x2(2x3 − 4)1/2 dx =

1
6

∫
(2x3 − 4)1/2 · 6x2 dx =

1
6

∫
u1/2 du =

1
6
· 2
3
u3/2 + C =

1
9

(2x3 − 4)3/2 + C.

C07S02.004: Let u = 5 + 2t2. Then du = 4t dt, and so
∫

5t
5 + 2t2

dt =
5
4

∫
4t

5 + 2t2
dt =

5
4

∫
1
u
du =

5
4

ln |u|+ C =
5
4

ln(5 + 2t2) + C.

C07S02.005: Let u = 2x2 + 3. Then du = 4x dx, and so

∫
2x(2x2 + 3)−1/3 dx =

1
2

∫
(2x2 + 3)−1/3 · 4x dx =

1
2

∫
u−1/3 du =

1
2
· 3
2
u2/3 + C =

3
4

(2x2 + 3)2/3 + C.

C07S02.006: Let u = x2. Then du = 2x dx, and therefore

∫
x sec2 x2 dx =

1
2

∫ (
secx2

)2 · 2x dx =
1
2

∫
(secu)2 du =

1
2

tanu+ C =
1
2

tan(x2) + C =
1
2

tanx2 + C.

C07S02.007: Let u = y1/2, so that du = 1
2 y

−1/2 dy. Then
∫
y−1/2

(
cot y1/2

)(
csc y1/2

)
dy = 2

∫
cotu cscu du = −2 cscu + C = −2 csc

√
y + C.

C07S02.008: Let u = π(2x+ 1). Then du = 2π dx, and hence
∫

sinπ(2x+ 1) dx =
1
2π

∫
sinu du = − 1

2π
cosu + C = − 1

2π
cosπ(2x+ 1) + C.

C07S02.009: Let u = 1 + sin θ. Then du = cos θ dθ, and therefore
∫

(1 + sin θ)5 cos θ dθ =
∫
u5 du =

1
6
u6 + C =

1
6

(1 + sin θ)6 + C.

C07S02.010: Let u = 4 + cos 2x. Then du = −2 sin 2x dx, and thus

∫
sin 2x

4 + cos 2x
dx = − 1

2

∫ −2 sin 2x
4 + cos 2x

dx = − 1
2

∫
1
u
du = − 1

2
ln |u|+ C = − 1

2
ln(4 + cos 2x) + C.
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C07S02.011: Let u = − cotx. Then du = csc2 x dx. So
∫
e− cot x csc2 x dx =

∫
eu du = eu + C = e− cot x + C = exp (− cotx) + C.

C07S02.012: Let u = (x+ 4)1/2. Then du = 1
2 (x+ 4)−1/2 dx. Thus

∫
exp

(
(x+ 4)1/2

)
(x+ 4)1/2

dx = 2
∫
eu du = 2eu + C = 2 exp

(
(x+ 4)1/2

)
+ C.

C07S02.013: Let u = ln t. Then du =
1
t
dt, so

∫
(ln t)10

t
dt =

∫
u10 du =

1
11
u11 + C =

1
11

(ln t)11 + C.

C07S02.014: Let u = 1− 9t2. Then du = −18t dt. Hence

∫
t√

1− 9t2
dt = − 1

18

∫
(1−9t2)−1/2 ·(−18t) dt = − 1

18

∫
u−1/2 du = − 1

18
·2u1/2+C = − 1

9

√
1− 9t2 +C.

C07S02.015: Let u = 3t, so that du = 3 dt. Then

∫
1√

1− 9t2
dt =

1
3

∫
1√

1− 9t2
· 3 dt =

1
3

∫
1√

1− u2
du =

1
3

arcsinu + C =
1
3

arcsin (3t) + C.

C07S02.016: Let u = 1 + e2x. Then du = 2e2x dx and thus

∫
e2x

1 + e2x
dx =

1
2

∫
2e2x

1 + e2x
dx =

1
2

∫
1
u
du =

1
2

ln |u|+ C =
1
2

ln
(
1 + e2x

)
+ C.

C07S02.017: Let u = e2x. Then du = 2e2x dx. Therefore

∫
e2x

1 + e4x
dx =

1
2

∫
2e2x

1 + (e2x)2
dx =

1
2

∫
1

1 + u2
du =

1
2

arctanu+ C =
1
2

arctan
(
e2x

)
+ C.

C07S02.018: Let u = arctanx. Then du =
1

1 + x2
dx, so that

∫
exp (arctanx)

1 + x2
dx =

∫
eu du = eu + C = exp (arctanx) + C.

C07S02.019: Let u = x2, so that du = 2x dx, and so

∫
3x√

1− x4
dx =

3
2

∫
2x√

1− x4
dx =

3
2

∫
1√

1− u2
du =

3
2

arcsinu+ C =
3
2

arcsin
(
x2

)
+ C.

C07S02.020: Let u = sin 2x. Then du = 2 cos 2x dx, and thus
∫

sin3 2x cos 2x dx =
1
2

∫
u3 du =

1
8
u4 + C =

1
8

sin4 2x + C.
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C07S02.021: Let u = tan 3x. Then du = 3 sec2 3x dx. Hence

∫
(tan 3x)4 sec2 3x dx =

1
3

∫
(tan 3x)4(3 sec2 3x) dx =

1
3

∫
u4 du =

1
15
u5 + C =

1
15

tan5 3x + C.

C07S02.022: Let u = 2t. Then du = 2 dt, so that

∫
1

1 + 4t2
dt =

1
2

∫
1

1 + 4t2
· 2 dt =

1
2

∫
1

1 + u2
du =

1
2

arctanu+ C =
1
2

arctan (2t) + C.

C07S02.023: Let u = sin θ. Then du = cos θ dθ. Thus
∫

cos θ
1 + sin2 θ

dθ =
∫

1
1 + u2

du = arctanu+ C = arctan (sin θ) + C.

C07S02.024: Let u = 1 + tan θ. Then du = sec2 θ dθ, so that

∫
sec2 θ

1 + tan θ
dθ =

∫
1
u
du = ln |u|+ C = ln |1 + tan θ |+ C.

C07S02.025: Let u = 1 + x1/2. Then du = 1
2 x

−1/2 dx, and so

∫
(1 + x1/2)4 · x−1/2 dx = 2

∫
(1 + x1/2)4 · 1

2
x−1/2 dx = 2

∫
u4 du =

2
5
u5 + C =

2
5

(
1 +
√
x

)5 + C.

C07S02.026: Let u = t2/3 − 1: du = 2
3 t

−1/3 dt and

∫
t−1/3(t2/3 − 1)1/2 dt =

3
2

∫
(t2/3 − 1)1/2 · 2

3
t−1/3 dt =

3
2

∫
u1/2 du =

3
2
· 2
3
u3/2 + C = (t2/3 − 1)3/2 + C.

C07S02.027: Let u = arctan t. Then du =
1

1 + t2
dt, and thus

∫
1

(1 + t2) arctan t
dt =

∫
1
u
du = ln |u|+ C = ln | arctan t |+ C.

C07S02.028: Let u = 1 + sec 2x. Then du = 2 sec 2x tan 2x dx. Therefore

∫
sec 2x tan 2x

(1 + sec 2x)3/2
dx =

1
2

∫
2 sec 2x tan 2x
(1 + sec 2x)3/2

dx =
1
2

∫
u−3/2 du =

1
2
· (−2)u−1/2 + C = − 1√

1 + sec 2x
+ C.

C07S02.029: Let u = ex. Then du = ex dx. The first equality that follows is motivated by the similarity
of the integrand to part of the derivative of the inverse secant function:

∫
1√

e2x − 1
dx =

∫
ex

|ex |
√

(ex)2 − 1
dx =

∫
1

|u|
√
u2 − 1

du

= arcsecu+ C = arcsec (ex) + C = arctan
(√

e2x − 1
)

+ C.

To obtain the last equality, and thus the answer in the form given by Mathematica 3.0, draw a right triangle
and label an acute angle θ. Let the hypotenuse have length ex and the side adjacent θ have length 1. Then
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sec θ = ex, so that θ = arcsec (ex). By the Pythagorean theorem, the side opposite θ has length
√
e2x − 1 ,

and it follows that θ = arctan
(√
e2x − 1

)
.

C07S02.030: Let u = exp
(
x2

)
= e(x

2). Then du = 2x exp
(
x2

)
dx = 2xe(x

2) dx, and so

∫
x√

e(2x2) − 1
dx =

1
2

∫
2xe(x

2)

∣∣e(x2)
∣∣ √(

e(x2)
)2 − 1

dx =
1
2

∫
1

|u|
√
u2 − 1

du

=
1
2

arcsecu+ C =
1
2

arcsec
(
exp(x2)

)
+ C.

C07S02.031: Let u = x− 2; then x = u+ 2 and dx = du. Thus

∫
x2(x− 2)1/2 dx =

∫
(u+ 2)2u1/2 du =

∫ (
u5/2 + 4u3/2 + 4u1/2

)
du

=
2
7
u7/2 +

8
5
u5/2 +

8
3
u3/2 + C =

2
7

(x− 2)7/2 +
8
5

(x− 2)5/2 +
8
3

(x− 2)3/2 + C.

The answer is quite acceptable in this form, but simplifications are possible; for example, before replacing u
with x− 2 in the last line, we could proceed as follows:

· · · = 2u3/2

105
(
15u2 + 84u+ 140

)
+ C =

2
105

(x− 2)3/2
[
15(x2 − 4x+ 4) + 84(x− 2) + 140

]
+ C

=
2

105
(x− 2)3/2

(
15x2 − 60x+ 60 + 84x− 168 + 140

)
+ C =

2
105

(x− 2)3/2(15x2 + 24x+ 32) + C.

C07S02.032: Let u = x+ 3: x = u− 3, dx = du, and

∫
x2(x+ 3)−1/2 dx =

∫
(u− 3)2u−1/2 du =

∫ (
u3/2 − 6u1/2 + 9u−1/2

)
du

=
2
5
u5/2 − 4u3/2 + 18u1/2 + C =

2
5

(x+ 3)5/2 − 4(x+ 3)3/2 + 18(x+ 3)1/2 + C.

The answer is quite acceptable in this form, but simplification are possible; for example, before replacing u
with x+ 3 in the last line, we could proceed as follows:

· · · = 2
5
u1/2(u2 − 10u+ 45) + C =

2
5

(x+ 3)1/2
[
(x+ 3)2 − 10(x+ 3) + 45

]
+ C

=
2
5

(x+ 3)1/2
(
x2 + 6x+ 9− 10x− 30 + 45

)
+ C =

2
5

(x+ 3)1/2(x2 − 4x+ 24) + C.

C07S02.033: Let u = 2x+ 3, so that x = 1
2 (u− 3) and ds = 1

2 du. Then

∫
x(2x+ 3)−1/2 dx =

1
2

∫
x(2x+ 3)−1/2 · 2 dx =

1
2

∫
1
2

(u− 3)u−1/2 du

=
1
4

∫ (
u1/2 − 3u−1/2

)
du =

1
4

(
2
3
u3/2 − 6u1/2

)
+ C =

1
6

(2x+ 3)3/2 − 3
2

(2x+ 3)1/2 + C.

If you need further simplifications, proceed as follows before replacing u with 2x+ 3:
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· · · = 1
6
u1/2(u− 9) + C =

1
6

(2x+ 3)1/2(2x− 6) + C =
1
3

(x− 3)
√

2x+ 3 + C.

C07S02.034: Let u = x− 1. Then x = u+ 1 and dx = du. Thus

∫
x(x− 1)1/3 dx =

∫
(u+ 1)u1/3 du =

∫ (
u4/3 + u1/3

)
du

=
3
7
u7/3 +

3
4
u4/3 + C =

3
7

(x− 1)7/3 +
3
4

(x− 1)4/3 + C.

If you desire additional simplifications, proceed as follows before replacing u with x− 1 in the last line:

· · · = 3
28
u4/3(4u+ 7) + C =

3
28

(x− 1)4/3(4x+ 3) + C.

C07S02.035: Let u = x+ 1, so that x = u− 1 and dx = du. Then

∫
x(x+ 1)−1/3 dx =

∫
(u− 1)u−1/3 du =

∫ (
u2/3 − u−1/3

)
du

=
3
5
u5/3 − 3

2
u2/3 + C =

3
5

(x+ 1)5/3 − 3
2

(x+ 1)2/3 + C.

If additional simplifications are required, proceed as follows before replacing u with x+ 1 in the last line:

· · · = 3u2/3

(
1
5
u− 1

2

)
+ C =

3
10
u2/3(2u− 5) + C =

3
10

(x+ 1)2/3(2x− 3) + C.

C07S02.036: Let u = 3x. Then du = 3 dx, and thus

I =
∫

1
100 + 9x2

dx =
1
3

∫
1

102 + u2
du =

1
3

(
1
10

arctan
u

10

)
+ C =

1
30

arctan
(

3x
10

)
+ C.

Mathematica 3.0 returns an identical answer.

C07S02.037: Let u = 3x. Then du = 3 dx, and thus

I =
∫

1
100− 9x2

dx =
1
3

∫
1

102 − u2
du =

1
3

(
1
20

ln
∣∣∣∣ u+ 10
u− 10

∣∣∣∣
)

+ C =
1
60

ln
∣∣∣∣ 3x+ 10
3x− 10

∣∣∣∣ + C.

Mathematica 3.0 returns the answer

I = C − 1
60

ln(−10 + 3x) +
1
60

ln(10 + 3x).

The only difference is that Mathematica 3.0 omits the absolute value symbols.

C07S02.038: Let u = 2x. Then du = 2 dx, and thus

∫
(9− 4x2)1/2 =

1
2

∫
(32 − u2)1/2 du

=
1
2

[
u

2
(32 − u2)1/2 +

32

2
arcsin

u

3

]
+ C =

1
2
x
√

9− 4x2 +
9
4

arcsin
(

2x
3

)
+ C.

5



Mathematica 3.0 returns exactly the same answer.

C07S02.039: Let u = 3x, so that du = 3 dx. Then

J =
∫

(4 + 9x2)1/2 dx =
1
3

∫
(4 + u2)1/2 du

=
1
3

[
1
2
u(4 + u2)1/2 + 2 ln

∣∣∣u+ (4 + u2)1/2
∣∣∣
]

=
1
2
x(4 + 9x2)1/2 +

2
3

ln
(
3x+ (4 + 9x2)1/2

)
+ C.

Mathematica 3.0 returns instead

J = C +
1
2
x
√

4 + 9x2 +
2
3
arcsinh

(
3x
2

)
.

But Eq. (34) in Section 6.9 makes it clear that the two answers agree. Here’s how: Eq. (34) tells us that

sinh−1 x = ln
(
x+

√
x2 + 1

)

for all x. Thus

sinh−1

(
3x
2

)
= ln


3x

2
+

√(
3x
2

)2

+ 1


 = ln

(
3x
2

+

√
9x2 + 4

4

)

= ln

(
3x+

√
9x2 + 4
2

)
= ln

(
3x+

√
4 + 9x2

)
− ln 2.

Therefore the two answers differ by a constant, as expected.

C07S02.040: Let u = 4x. Then du = 4 dx, and thus

K =
∫

1
(16x2 + 9)1/2

dx =
1
4

∫
1

(u2 + 9)1/2
du =

1
4

ln
∣∣∣u+

√
u2 + 9

∣∣∣ + C =
1
4

ln
(
4x+

√
16x2 + 9

)
+ C.

Mathematica 3.0 returns instead the equivalent answer

K = C +
1
4

arcsinh
(

4x
3

)
;

see the solution of Problem 39 for an explanation of why the two are equivalent.

C07S02.041: Let u = 4x; then du = 4 dx and we obtain

I =
∫

x2

√
16x2 + 9

dx =
1
4

∫ 1
16 u

2

√
u2 + 9

du =
1
64

∫
u2

√
u2 + 9

du

=
1
64

(
1
2
u
√
u2 + 9− 9

2
ln

∣∣∣u+
√
u2 + 9

∣∣∣
)

+ C

=
1
32
x
√

16x2 + 9 − 9
128

ln
(
4x+

√
16x2 + 9

)
+ C.

Mathematica 3.0 returns the equivalent answer
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I = C +
1
32
x
√

9 + 16x2 − 9
128

arcsinh
(

4x
3

)
.

See the solution of Problem 39 for an explanation of why the two antiderivatives are equivalent (that is, they
differ by a constant).

C07S02.042: Let u = 4x. Then du = 4 dx and thus

J =
∫

x2

√
25 + 16x2

dx =
1
4

∫ 1
16 u

2

√
25 + u2

du =
1
64

∫
u2

√
25 + u2

du

=
1
64

(
1
2
u
√

25− u2 − 25
2

ln
∣∣∣u+

√
25 + u2

∣∣∣
)

+ C

=
1
32
x
√

25 + 16x2 − 25
128

ln
(
4x+

√
25 + 16x2

)
+ C.

Mathematica 3.0 returns the equivalent answer

J = C +
1
32
x
√

25 + 16x2 − 25
128

arcsinh
(

4x
5

)
.

See the solution of Problem 39 for an explanation of why the two answers differ only by a constant.

C07S02.043: Let u = 4x, so that du = 4 dx. Thus

∫
x2

√
25− 16x2 dx =

1
4

∫
1
16
u2

√
25− u2 du

=
1
64

[
1
8
u(2u2 − 25)

√
25− u2 +

625
8

arcsin
u

5

]
+ C

=
1

128
x(32x2 − 25)

√
25− 16x2 +

625
512

arcsin
(

4x
5

)
+ C.

Mathematica 3.0 returns an almost identical answer.

C07S02.044: Let u = x2. Then du = 2x dx, and therefore

∫
x(4− x4)1/2 dx =

1
2

∫
(4− u2)1/2 du =

1
2

(
1
2
u
√

4− u2 + 2 arcsin
u

2

)
+ C

=
1
4
x2

√
4− x4 + arcsin

(
x2

2

)
+ C.

Mathematica 3.0 returns an almost identical answer.

C07S02.045: Let u = ex. Then du = ex dx, and thus

K =
∫
ex

√
9 + e2x dx =

∫ √
9 + u2 du =

1
2
u
√

9 + u2 +
9
2

ln
∣∣∣u+

√
9 + u2

∣∣∣ + C

=
1
2
ex

√
9 + e2x +

9
2

ln
(
ex +

√
9 + e2x

)
+ C.

Mathematica 3.0 returns the equivalent answer
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K = C +
1
2
ex

√
9 + e2x +

9
2
arcsinh

(
ex

3

)
.

See the solution of Problem 39 for the reason that the two answers differ only by a constant.

C07S02.046: Let u = sinx, so that du = cosx dx. Then

I =
∫

cosx

(sin2 x)
√

1 + sin2 x
dx =

∫
1

u2
√

1 + u2
du = −

√
1 + u2

u
+ C = −(1 + sin2 x)1/2 cscx+ C.

Mathematica 3.0 returns instead

I = C −
√

3− cos 2x√
2

cscx.

But the two answers are exactly the same because

(1 + sin2 x)1/2 − (3− cos 2x)1/2√
2

= (1 + sin2 x)1/2 −
(

3− cos 2x
2

)1/2

= (1 + sin2 x)1/2 −
(

1 +
1− cos 2x

2

)1/2

= (1 + sin2 x)1/2 − (1 + sin2 x)1/2 = 0.

C07S02.047: Let u = x2, so that du = 2x dx. Then

J =
∫

(x4 − 1)1/2

x
dx =

1
2

∫
(x4 − 1)1/2

x2
· 2x dx =

1
2

∫
(u2 − 1)1/2

u
du

=
1
2

(√
u2 − 1 − arcsecu

)
+ C =

1
2

√
x4 − 1 − 1

2
arcsec

(
x2

)
+ C.

Mathematica 3.0 returns the antiderivative in the form

J = C +
1
2

√
−1 + x4 +

1
2

arctan
(

1√
−1 + x4

)
.

Derive 2.56 returns the antiderivative in the form

J =
1
2

√
x4 − 1 − 1

2
arctan

(√
x4 − 1

)

(like most computer algebra programs, Derive omits the constant of integration). Because

arctan
(

1
x

)
= π − arctanx

if x �= 0, the last two answers differ by a constant. See the solution to Problem 29 for an explanation of why
our answer is the same as the one given by Derive.

C07S02.048: Let u = 4ex. Then du = 4ex dx, and therefore
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K =
∫

e3x√
25 + 16e2x

dx =
1
4

∫
e2x√

25 + 16e2x
· 4ex dx =

1
64

∫
u2

√
25 + u2

du

=
1
64

(
1
2
u
√

25 + u2 − 25
2

ln
∣∣∣u+

√
25 + u2

∣∣∣
)

+ C

=
1
32
ex

√
25 + 16e2x − 25

128
ln

(
4ex +

√
25 + 16e2x

)
+ C.

Mathematica 3.0 reports that

K = C +
1
32
ex

√
25 + 16e2x − 25

128
arcsinh

(
4ex

5

)
.

See the solution to Problem 39 for the reason why this answer differs from the first only by a constant.
Derive 2.56 yields an antiderivative essentially the same as ours.

C07S02.049: Let u = lnx. Then du =
1
x
dx, and hence

I =
∫

(lnx)2

x

√
1 + (lnx)2 dx =

∫
u2

√
1 + u2 du =

1
8
u(2u2 + 1)

√
1 + u2 − 1

8
ln

∣∣∣u+
√

1 + u2
∣∣∣ + C

=
1
8

(lnx)
[
2(lnx)2 + 1

]√
1 + (lnx)2 − 1

8
ln

(
lnx+

√
1 + (lnx)2

)
+ C.

Mathematica 3.0 and Derive 2.56 both yield

I = C − 1
8
arcsinh(lnx) +

√
1 + (lnx)2

[
1
8

lnx+
1
4
(lnx)3

]
,

which differs from the first only by a constant (see the explanation in the solution of Problem 39).

C07S02.050: Let u = 2x3, so that du = 6x2 dx. Then

J =
∫
x8(4x6 − 1)1/2 dx =

1
6

∫
x6(4x6 − 1)1/2 · 6x2 dx =

1
6

∫
1
4
u2(u2 − 1)1/2 du =

1
24

∫
u2(u2 − 1)1/2 du

=
1
24

(
1
8
u(2u2 − 1)

√
u2 − 1 − 1

8
ln

∣∣∣u+
√
u2 − 1

∣∣∣
)

+ C

=
1
96
x3(8x6 − 1)

√
4x6 − 1 − 1

192
ln

(
2x3 +

√
4x6 − 1

)
+ C.

Derive 2.56 returns the same answer in slightly expanded form. Mathematica 3.0 yields

J = C +
√
−1 + 4x6

(
− 1

96
x3 +

1
12
x9

)
− 1

192
ln

(
4x3 + 2

√
−1 + 4x6

)
,

which differs from the others only by the constant ln 2, because

ln
(
4x3 + 2

√
−1 + 4x6

)
= ln

(
2

[
2x3 +

√
4x6 − 1

])
= ln 2 + ln

(
2x3 +

√
4x6 − 1

)
.

C07S02.051: The substitution is illegal: x =
√
u � 0, but x < 0 for many x in [−1, 1]. To use this

substitution correctly, let
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x = u1/2, dx =
1

2u1/2
du, 0 � x � 1.

Then

∫ 1

0

x2 dx =
∫ 1

0

1
2
u1/2 du =

1
2

[
2
3
u3/2

]1

0

=
1
3
.

Then let

x = −u1/2, dx = − 1
2u1/2

du, −1 � x � 0.

Then

∫ 0

−1

x2 dx =
∫ 0

1

− 1
2
u1/2 du =

1
2

[
2
3
u3/2

]1

0

=
1
3
.

And, finally,

∫ 1

−1

x2 dx =
∫ 0

−1

x2 dx+
∫ 1

0

x2 dx =
1
3

+
1
3

=
2
3
.

C07S02.052: The substitution u = x+ 2, x = u− 2, dx = du yields

∫
1

x2 + 4x+ 5
dx =

∫
1

1 + (x+ 2)2
dx =

∫
1

1 + u2
du = arctanu + C = arctan(x+ 2) + C.

C07S02.053: The substitution u = x− 1, x = u+ 1, dx = du yields

∫
1√

2x− x2
dx =

∫
1√

1− (x− 1)2
dx =

∫
1√

1− u2
du = arcsinu + C = arcsin(x− 1) + C.

C07S02.054: The binomial theorem yields

1
6

(1 + lnx)6 =
1
6

[
1 + 6 lnx+ 15(lnx)2 + 20(lnx)3 + 15(lnx)4 + 6(lnx)5 + (lnx)6

]

=
1
6

+ lnx+
5
2

(lnx)2 +
10
3

(lnx)3 +
5
2

(lnx)4 + (lnx)5 +
1
6

(lnx)6,

which differs from the machine’s answer by exactly
1
6
, a constant.

C07S02.055: First note that

Dx

(
1
2

tan−1 x2

)
=

x

1 + x4

for all x and that

Dx

(
− 1

2
tan−1 x−2

)
= − 1

2
· 1
1 + x−4

· (−2x−3) =
x4 · x−3

x4 + 1
=

x

1 + x4

provided that x �= 0. Therefore
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1
2

tan−1 x2 +
1
2

tan−1 x−2 = C1,

a constant, for all x > 0 and

1
2

tan−1 x2 +
1
2

tan−1 x−2 = C2,

a constant, for all x < 0. Moreover, substitution of x = 1 yields

C1 =
1
2

tan−1 1 +
1
2

tan−1 1 =
π

2

and substitution of x = −1 yields

C2 =
1
2

tan−1(−1)2 +
1
2

tan−1(−1)2 =
π

2
.

Therefore

1
2

tan−1 x2 =
π

2
− 1

2
tan−1 x−2

for all x �= 0.

C07S02.056: Equation (34) in Section 6.9 tells us that sinh−1 x = ln
(
x+

√
x2 + 1

)
for all x.

C07S02.057: Here is a Mathematica solution:

G = (x/2)∗Sqrt[x∧2 + 1] + (1/2)∗Log[x + Sqrt[x∧2 + 1]];

D[G,x]

x2

2
√

1 + x2
+
√

1 + x2

2
+

1 +
x√

1 + x2

2
(
x+
√

1 + x2
)

% // Together√
1 + x2

H = (1/8)∗((x + Sqrt[x∧2 + 1])∧2 + 4∗Log[x + Sqrt[x∧2 + 1]]

− (x + Sqrt[x∧2 + 1])∧(−2))

1
8

[
−

(
x+

√
1 + x2

)−2

+
(
x+

√
1 + x2

)2
+ 4 ln

(
x+

√
1 + x2

)]

DH = D[H,x]

1
8




2
(

1 +
x√

1 + x2

)
(
x+

√
1 + x2

)
3

+
4

(
1 +

x√
1 + x2

)

x+
√

1 + x2
+ 2

(
1 +

x√
1 + x2

)(
x+

√
1 + x2

)



DH // Together
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1 + 3x2 + 2x4 + 2x
√

1 + x2 + 2x3
√

1 + x2(
x+

√
1 + x2

)2 √
1 + x2

DH // FullSimplify
√

1 + x2

The only thing we might add is that because G(0) = H(0), it now follows that G(x) = H(x) for all x.
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Section 7.3

C07S03.001: Let u = x and dv = e2x dx: du = dx and choose v = 1
2 e

2x. Then
∫
xe2x dx =

1
2
xe2x −

∫
1
2
e2x dx =

1
2
xe2x − 1

4
e2x + C.

C07S03.002: Let u = x2 and dv = e2x dx: du = 2x dx and choose v = 1
2 e

2x. Then
∫
x2e2x dx =

1
2
x2e2x −

∫
xe2x dx =

1
2
x2e2x − 1

2
xe2x +

1
4
e2x + C.

The last equality follows from the result in Problem 1.

C07S03.003: Let u = t and dv = sin t dt: du = dt and choose v = − cos t. Then
∫
t sin t dt = −t cos t+

∫
cos t dt = −t cos t+ sin t+ C.

C07S03.004: Let u = t2 and dv = sin t dt: du = 2t dt and choose v = − cos t. Then
∫
t2 sin t dt = −t2 cos t+ 2

∫
t cos t dt.

Next, let u = t and dv = cos t dt: du = dt and choose v = sin t. Then
∫
t2 sin t dt = −t2 cos t+ 2

(
t sin t−

∫
sin t dt

)
= −t2 cos t+ 2t sin t+ 2 cos t+ C.

C07S03.005: Let u = x and dv = cos 3x dx: du = dx and choose v =
1
3

sin 3x. Then

∫
x cos 3x dx =

1
3
x sin 3x− 1

3

∫
sin 3x dx =

1
3
x sin 3x+

1
9

cos 3x+ C.

C07S03.006: Let u = lnx and dv = x dx: du =
1
x
dx and choose v =

1
2
x2. Then

∫
x lnx dx =

1
2
x2 lnx−

∫
1
2
x dx =

1
2
x2 lnx− 1

4
x2 + C.

C07S03.007: Let u = lnx and dv = x3 dx: du =
1
x
dx and choose v =

1
4
x4. Then

∫
x3 lnx dx =

1
4
x4 lnx− 1

4

∫
x3 dx =

1
4
x4 lnx− 1

16
x4 + C.

C07S03.008: Let u = cos 3z and dv = e3z dz: du = −3 sin 3z dz and choose v =
1
3
e3z. Then

∫
e3z cos 3z dz =

1
3
e3z cos 3z +

∫
e3z sin 3z dz.

Next let u = sin 3z and dv = e3z dz: du = 3 cos 3z dz and choose v =
1
3
e3z. Then

1



∫
e3z cos 3z dz =

1
3
e3z cos 3z +

1
3
e3z sin 3z −

∫
e3z cos 3z dz;

2
∫
e3z cos 3z dz =

1
3
e3z cos 3z +

1
3
e3z sin 3z + 2C;

∫
e3z cos 3z dz =

1
6
e3z(cos 3z + sin 3z) + C.

C07S03.009: Let u = arctanx and dv = dx: du =
1

1 + x2
dx and choose v = x. Then

∫
arctanx dx = x arctanx−

∫
x

1 + x2
dx = x arctanx− 1

2
ln(1 + x2) + C.

C07S03.010: Let u = lnx and dv =
1
x2

dx: du =
1
x
dx and choose v = − 1

x
. Then

∫
lnx
x2

dx = − 1
x

lnx+
∫

1
x2

dx = − 1
x

lnx− 1
x

+ C.

C07S03.011: Let u = ln y and dv = y1/2 dy: du =
1
y
dy and choose v =

2
3
y3/2. Then

∫
y1/2 ln y dy =

2
3
y3/2 ln y − 2

3

∫
y1/2 dy =

2
3
y3/2 ln y − 4

9
y3/2 + C.

C07S03.012: Let u = x and dv = sec2 x dx: du = dx and choose v = tanx. Then
∫
x sec2 x dx = x tanx−

∫
sinx
cosx

dx = x tanx+ ln |cosx|+ C.

C07S03.013: Let u = (ln t)2 and dv = dt: du =
2 ln t
t

dt and choose v = t. Then

∫
(ln t)2 dt = t(ln t)2 − 2

∫
ln t dt.

Next let u = ln t and dv = dt: du =
1
t
dt and choose v = t. Thus

∫
(ln t)2 dt = t(ln t)2 − 2

(
t ln t−

∫
1 dt

)
= t(ln t)2 − 2t ln t+ 2t+ C.

C07S03.014: Let u = (ln t)2 and dv = t dt. Then du =
2 ln t
t

dt; choose v =
1
2
t2. Thus

∫
t(ln t)2 dt =

1
2
(t ln t)2 −

∫
t ln t dt =

1
2

(t ln t)2 − 1
2
t2 ln t+

1
4
t2 + C.

(The last equality follows from the result in Problem 6.)

C07S03.015: Let u = x and dv = (x+ 3)1/2 dx: du = dx and choose v =
2
3

(x+ 3)3/2. Then

2



∫
x(x+ 3)1/2 dx =

2
3
x(x+ 3)3/2 − 2

3

∫
(x+ 3)3/2 dx =

2
3
x(x+ 3)3/2 − 4

15
(x+ 3)5/3 + C

= (x+ 3)3/2
(

2
3
x− 4

15
x− 4

5

)
+ C = (x+ 3)3/2

(
6x− 12

15

)
+ C

=
2
5

(x− 2)(x+ 3)3/2 + C =
2
5
(x2 + x− 6)

√
x+ 3 + C.

C07S03.016: Let u = x2 and dv = x(1− x2)1/2: du = 2x dx; choose v = − 1
3
(1− x2)3/2. Then

∫
x3(1− x2)1/2 dx = − 1

3
x2(1− x2)3/2 +

2
3

∫
x(1− x2)3/2 dx

= − 1
3
x2(1− x2)3/2 − 2

15
(1− x2)5/2 + C = −(1− x2)3/2

(
1
3
x2 +

2
15

(1− x2)
)

+ C

= −(1− x2)3/2
(

3x2 + 2
15

)
+ C =

1
15

(3x4 − x2 − x)
√

1− x2 + C.

C07S03.017: Let u = x3 and dv = x2(x3 + 1)1/2 dx: du = 3x2 dx and choose v =
2
9
(x3 + 1)3/2. Then

∫
x5(x3 + 1)1/2 dx =

2
9
x3(x3 + 1)3/2 − 2

3

∫
x2(x3 + 1)3/2 dx =

2
9
x3(x3 + 1)3/2 − 4

45
(x3 + 1)5/2 + C

=
1
45

(x3 + 1)3/2
[
10x3 − 4(x3 + 1)

]
+ C =

1
45

(x3 + 1)3/2(6x3 − 4) + C

=
2
45

(x3 + 1)3/2(3x3 − 2) + C =
2
45

(x3 + 1)1/2(3x6 + x3 − 2) + C.

C07S03.018: Let u = sin θ and dv = sin θ dθ: du = cos θ dθ and choose v = − cos θ. Then

∫
sin2 θ dθ = − sin θ cos θ +

∫
cos2 θ dθ

= − sin θ cos θ +
∫

(1− cos2 θ) dθ = − sin θ cos θ + θ −
∫

sin2 θ dθ;

2
∫

sin2 θ dθ = θ − sin θ cos θ + 2C;

∫
sin2 θ dθ =

1
2

(θ − sin θ cos θ) + C.

C07S03.019: Let u = csc θ and dv = csc2 θ dθ: du = − csc θ cot θ and choose v = − cot θ. Then

∫
csc3 θ dθ = − csc θ cot θ −

∫
csc θ cot2 θ dθ

= − csc θ cot θ −
∫

(csc θ)(csc2 θ − 1) dθ = − csc θ cot θ −
∫

csc3 θ dθ +
∫

csc θ dθ;

2
∫

csc3 θ dθ = − csc θ cot θ + ln |csc θ − cot θ |+ 2C;

∫
csc3 θ dθ = − 1

2
csc θ cot θ +

1
2

ln |csc θ − cot θ |+ C.

3



Mathematica 3.0 returns the antiderivative in the form

C − 1
2

cot θ csc θ − 1
2

ln
(

cos
θ

2

)
+

1
2

ln
(

sin
θ

2

)
.

C07S03.020: Let u = sin(ln t) and dv = dt: du =
1
t

cos(ln t) and choose v = t. Then

∫
sin(ln t) dt = t sin(ln t)−

∫
cos(ln t) dt.

Now let u = cos(ln t) and dv = dt: du = − 1
t

sin(ln t) dt, and choose v = t. Thus

∫
sin(ln t) dt = t sin(ln t)− t cos(ln t)−

∫
sin(ln t) dt;

∫
sin(ln t) dt =

1
2
t sin(ln t)− 1

2
t cos(ln t) + C.

C07S03.021: Let u = arctanx and dv = x2 dx: du =
1

1 + x2
dx and choose v =

1
3
x3. Then

∫
x2 arctanx dx =

1
3
x3 arctanx− 1

3

∫
x3

x2 + 1
dx

=
1
3
x3 arctanx− 1

3

∫ (
x− x

x2 + 1

)
+ C =

1
3
x2 arctanx− 1

6
x2 +

1
6

ln(x2 + 1) + C.

C07S03.022: Let u = ln(1 + x2) and dv = dx: du =
2x

1 + x2
dx and choose v = x. Then

∫
ln(1 + x2) dx = x ln(1 + x2)−

∫
2x2

1 + x2
dx

= x ln(1 + x2)−
∫ (

2− 2
1 + x2

)
dx = x ln(1 + x2)− 2x+ 2 arctanx + C.

C07S03.023: Let u = arcsec(x1/2) and dv = dx: du =
1

2x(x− 1)1/2
dx and choose v = x. Then

∫
arcsec(x1/2) dx = x arcsec(x1/2)− 1

2

∫
(x− 1)−1/2 dx = x arcsec(x1/2)− (x− 1)1/2 + C.

C07S03.024: Let u = arctan(x1/2) and dv = x dx: then du =
1

2(1 + x)x1/2
dx; choose v =

1
2
x2 − 1

2
(for

a sly reason). Then

∫
x arctan(x1/2) dx =

x2 − 1
2

arctan(x1/2)− 1
4

∫
x2 − 1

(x+ 1)x1/2
dx

=
x2 − 1

2
arctan(x1/2)− 1

4

∫
x− 1
x1/2

dx =
x2 − 1

2
arctan(x1/2)− 1

4

∫
(x1/2 − x−1/2) dx

=
x2 − 1

2
arctan(x1/2)− 1

6
x3/2 +

1
2
x1/2 + C.
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C07S03.025: Let u = arctan(x1/2) and dv = dx: du =
1

2(x+ 1)x1/2
dx and cleverly choose v = x + 1.

Then

∫
arctan(x1/2) dx = (x+ 1) arctan(x1/2)− 1

2

∫
x−1/2 dx = (x+ 1) arctan(x1/2)− x1/2 + C.

C07S03.026: Let u = x2 and dv = cos 4x dx: du = 2x dx and choose v =
1
4

sin 4x. Then

∫
x2 cos 4x dx =

1
4
x2 sin 4x− 1

2

∫
x sin 4x dx.

Next let u = x and dv = sin 4x dx. Then du = dx; choose v = − 1
4

cos 4x. Hence

∫
x2 cos 4x dx =

1
4
x2 sin 4x− 1

2

(
− 1

4
x cos 4x+

1
4

∫
cos 4x dx

)

=
1
4
x2 sin 4x+

1
8
x cos 4x− 1

32
sin 4x+ C.

C07S03.027: Let u = x and dv = csc2 x dx: du = dx; choose v = − cotx. Then
∫
x csc2 x dx = −x cotx+

∫
cosx
sinx

dx = −x cotx+ ln |sinx|+ C.

C07S03.028: Let u = arctanx and dv = x dx: du =
1

1 + x2
dx; choose v =

1
2
x2 +

1
2
. Then

∫
x arctanx dx =

x2 + 1
2

arctanx−
∫

1
2
dx =

x2 + 1
2

arctanx− 1
2
x+ C.

C07S03.029: Let u = x2 and dv = x cosx2 dx: du = 2x dx and choose v =
1
2

sinx2. Then

∫
x3 cosx2 dx =

1
2
x2 sinx2 −

∫
x sinx2 dx =

1
2
x2 sinx2 +

1
2

cosx2 + C.

C07S03.030: Suppose that a and b are nonzero real constants. Choose u = eax and dv = sin bx dx. Then

du = aeax dx; choose v = − 1
b

cos bx. Then

I =
∫
eax sin bs dx = − 1

b
eax cos bx+

a

b

∫
eax cos bx dx.

Now let u = eax and dv = cos bx dx. Then du = aeax dx; choose v =
1
b

sin bx. Thus

I = − 1
b
eax cos bx+

a

b2
eax sin bx− a2

b2
I;

a2 + b2

b2
I =

aeax sin bx− beax cos bx
b2

+ C1;

I =
∫
eax sin bx dx =

a sin bx− b cos bx
a2 + b2

eax + C.

So
∫
e−3x sin 4x dx = − 3 sin 4x+ 4 cos 4x

25
e−3x + C.
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C07S03.031: Let u = lnx and dv = x−3/2 dx: du =
1
x
dx and choose v = −2x−1/2. Then

∫
lnx
x3/2

dx = − 2 lnx
x1/2

+ 2
∫
x−3/2 dx = − 2 lnx

x1/2
− 4
x1/2

+ C.

C07S03.032: Let u = x4 and dv =
x3

(1 + x4)3/2
dx: du = 4x3 dx and choose v = − 1

2
(1 + x4)−1/2. Then

∫
x7

(1 + x4)3/2
dx = − 1

2
x4(1 + x4)−1/2 + 2

∫
x3

(1 + x4)1/2
dx

= − x4

2
√

1 + x4
+

√
1 + x4 + C =

2(1 + x4)− x4

2
√

1 + x4
+ C =

x4 + 2
2
√
x4 + 1

+ C.

C07S03.033: Let u = x and dv = coshx dx: du = dx and choose v = sinhx. Then
∫
x coshx dx = x sinhx−

∫
coshx dx = x sinhx− coshx+ C.

C07S03.034: First method:

∫
ex coshx dx = 1

2

∫ (
e2x + 1

)
dx = 1

4e
2x + 1

2x+ C1

= 1
4

(
e2x + 1

)
− 1

4 + 1
2x+ C1 = 1

4e
x

(
ex + e−x

)
+ 1

2x+ C

= 1
2e
x coshx+ 1

2x+ C.

Second method: Presented because no integration by parts is used in the first method, although what follows
is somewhat artificial.
[
u= ex dv= coshx dx
du= ex dx v= sinhx

]
J =

∫
ex coshx dx = ex sinhx−

∫
ex sinhx dx.

Now ex sinhx = 1
2

(
e2x − 1

)
= 1

2

(
e2x + 1

)
− 1 = ex coshx− 1. Therefore

J = ex sinhx− J +
∫

1 dx; it follows that
∫
ex coshx dx = 1

2e
x sinhx+ 1

2x+ C.

Third method: Mathematica 3.0 simply writes coshx in exponential form and returns the antiderivative as

C + 1
4 e

2x + 1
2 x.

C07S03.035: Let t = x2. Then dt = 2x dx, so 1
2 t dt = x3 dx. This substitution transforms the given

integral into

I = 1
2

∫
t sin t dt.

Then integrate by parts: Let u = t, dv = sin t dt. Thus du = dt and v = − cos t, and hence

2I = −t cos t+
∫

cos t dt = −t cos t+ sin t+ C.
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Therefore
∫

x3 sinx2 dx = 1
2

(
−x2 cosx2 + sinx2

)
+ C.

C07S03.036: Let t = x4. Then dt = 4x3 dx, so x7 = 1
4 t dt. Thus the given integral becomes

I = 1
4

∫
t cos t dt.

Now let u = t and dv = cos t dt, so that du = dt and v = sin t. Hence

4I = t sin t−
∫

sin t dt = t sin t+ cos t+ C.

Therefore I = 1
4

(
x4 sinx4 + cosx4

)
+ C.

C07S03.037: Let t =
√
x, so that x = t2 and dx = 2t dt. Thus

I =
∫

exp
(
−
√
x

)
dx =

∫
2t exp(−t) dt.

Now let u = 2t and dv = exp(−t) dt. Then du = 2 dt and v = − exp(−t). Hence

I = −2t exp(−t) +
∫

2 exp(−t) dt = −2t exp(−t)− 2 exp(−t) + C.

Therefore

I = −2
√
x exp

(
−
√
x

)
− 2 exp

(
−
√
x

)
+ C.

C07S03.038: Let t = x3/2. Then dt = 3
2x

1/2 dx, so t dt = 3
2x

2 dx. Therefore

I =
∫
x2 sinx3/2 dx = 2

3

∫
t sin t dt = 2

3 (−t cos t+ sin t) + C.

(The integration by parts is the same as in the solution of Problem 35.) Therefore

I = 2
3

(
−x3/2 cosx3/2 + sinx3/2

)
+ C.

C07S03.039: The volume is

V =
∫ π/2

0

2πx cosx dx = 2π
∫ π/2

0

x cosx dx.

Let u = x and dv = cosx dx: du = dx and choose v = sinx. Then
∫
x cosx dx = x sinx−

∫
sinx dx = x sinx+ cosx+ C.

Therefore

V = 2π
[
x sinx+ cosx

]π/2
0

= 2π
(π

2
− 1

)
= π2 − 2π ≈ 3.5864190939.
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C07S03.040: The volume is

V =
∫ π

0

2πx sinx dx = 2π
∫ π

0

x sinx dx.

Let u = x and dv = sinx dx: du = dx and choose v = − cosx. Then
∫
x sinx dx = −x cosx+

∫
cosx dx = −x cosx+ sinx+ C.

Therefore

V = 2π
[
−x cosx+ sinx

]π
0

= 2π (π + 0− 0− 0) = 2π2 ≈ 19.7392088022.

C07S03.041: The volume is

V =
∫ e

1

2πx lnx dx = 2π
∫ e

1

x lnx dx.

Let u = lnx and dv = x dx: du =
1
x
dx and choose v =

1
2
x2. Then

∫
x lnx dx =

1
2
x2 lnx−

∫
1
2
x dx =

1
2
x2 lnx− 1

4
x2 + C.

Therefore

V = 2π
[

1
2
x2 lnx− 1

4
x2

]e
1

= 2π
(

1
2
e2 − 1

4
e2 +

1
4

)
=
π

2
(e2 + 1) ≈ 13.1774985055.

C07S03.042: The volume is

V =
∫ 1

0

2πxe−x dx = 2π
∫ 1

0

xe−x dx.

Let u = x and dv = e−x dx: du = dx and choose v = −e−x. Then
∫
xe−x dx = −xe−x +

∫
e−x dx = −xe−x − e−x + C.

Therefore

V = 2π
[
−(x+ 1)e−x

]1

0

= 2π
(

1− 2
e

)
=

2π(e− 2)
e

≈ 1.6602759080.

C07S03.043: The curves intersect at the point (a, b) in the first quadrant for which a ≈ 0.824132312. The
volume is

V =
∫ a

0

2πx
[
(cosx)− x2

]
dx = 2π

∫ a

0

(x cosx− x3) dx.

To find the antiderivative of x cosx, let u = x and dv = cosx dx. Then du = dx; choose v = sinx. Thus
∫
x cosx dx = x sinx−

∫
sinx dx = x sinx+ cosx+ C.
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Therefore

V = 2π
[
x sinx+ cosx− 1

4
x4

]a
0

≈ 1.06027.

C07S03.044: The curves intersect where x = 0 and where x = a ≈ 3.110367680. The volume is

V =
∫ a

0

2πx(10x− x2 − ex + 1) dx = 2π
∫ a

0

(10x2 − x3 − xex + x) dx.

Let u = x and dv = ex dx. Then du = dx; choose v = ex. Then
∫
xex dx = xex −

∫
ex dx = xex − ex + C = (x− 1)ex + C.

Therefore

V = 2π
[

10
3
x3 − 1

4
x4 − (x− 1)ex +

1
2
x2

]a
0

≈ 209.907.

C07S03.045: The curves intersect where x = 0 and where x = a ≈ 2.501048238. The volume is

V =
∫ a

0

2πx
[
2x− x2 + ln(x+ 1)

]
dx = 2π

∫ a

0

[
2x2 − x3 + x ln(x+ 1)

]
dx.

Let u = ln(x+ 1) and dv = x dx. Then du =
1

x+ 1
dx; choose v =

1
2
x2 − 1

2
. Then

∫
x ln(x+ 1) dx =

x2 − 1
2

ln(x+ 1)− 1
2

∫
x2 − 1
x+ 1

dx =
x2 − 1

2
ln(x+ 1)− 1

4
x2 +

1
2
x+ C.

Therefore

V = 2π
[

2
3
x3 − 1

4
x4 +

1
2

(x2 − 1) ln(x+ 1)− 1
4
x2 +

1
2
x

]a
0

≈ 22.7894.

C07S03.046: Let u = arctanx and dv = 2x dx: du =
1

1 + x2
dx and choose v = x2 + 1. Then

∫
2x arctanx dx = (x2 + 1) arctanx− x+ C.

Such a choice of v is permitted for the following reason. Suppose that K is a constant. Then if we use
v(x) +K rather than v(x), the result is

u · (v +K)−
∫

(v +K) du = uv +Ku−
∫
v du−

∫
K du

= uv +Ku−
∫
v du−Ku = uv −

∫
v du =

∫
u dv.

C07S03.047: First choose u = xex and dv = cosx dx. This yields

I =
∫
xex cosx dx = xex sinx−

∫
(x+ 1) ex sinx dx.
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Now choose u = (x+ 1) ex and dv = sinx dx;

I = xex sinx+ (x+ 1) ex cosx−
∫

(x+ 2) ex cosx dx

= xex sinx+ (x+ 1) ex cosx− 2
∫
ex cosx dx− I.

Thus

2I = xex sinx+ (x+ 1) ex cosx− 2
∫
ex cosx dx. (1)

Compute the right-hand integral by parts separately: Let u = ex and dv = cosx dx. Then du = ex dx;
choose v = sinx. Thus

J =
∫
ex cosx dx = ex sinx−

∫
ex sinx dx.

Now let u = ex and dv = sinx dx. So du = ex dx; choose v − cosx. Thus

J = ex sinx−
(
−ex cosx+

∫
ex cosx dx

)

= ex sinx+ ex cosx− J.

Thus J = 1
2 (sinx+ cosx)ex + C. Substitute this result in Eq. (1), then solve for I:

I = 1
2xe

x cosx+ 1
2 (x− 1) ex sinx+ C.

C07S03.048: Given: Constants A and B, neither zero, A �= B, and J =
∫

sinAx cosBx dx. Let

u = sinAx and dv = cosBxdx. Result:

J =
1
B

sinAx sinBx+
A

B

∫
cosAx sinBx dx.

In the second integral, let u = cosAx and dv = sinBx dx (the other choice doesn’t work). You will find that

J =
1
B

sinAx sinBx+
A

B2
cosAx cosBx+

A2

B2
J.

Now solve for J to obtain

J =
B

B2 −A2
sinAx sinBx+

A

B2 −A2
cosAx cosBx+ C.

In particular, we get the integral in Problem 48 by choosing A = 3 and B = 1, thus obtaining
∫

sin 3x cosx dx = − 1
8 sin 3x sinx− 3

8 cos 3x cosx+ C.

See Problems 49–52 of Section 9.4 for a “better” way, which yields the antiderivative in the alternative form
− 1

8 cos 4x− 1
4 cos 2x+ C, as does Mathematica 3.0.

C07S03.049: Let u = xn and dv = ex dx: du = nxn−1 dx and choose v = ex. Then
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∫
xnex dx = xnex − n

∫
xn−1ex dx, n � 1.

C07S03.050: Let u = xn−1 and dv = xe−x
2
dx: du = (n− 1)xn−2 dx; choose v = − 1

2e
−x2

. Then
∫
xne−x

2
dx = − 1

2
xn−1e−x

2
+
n− 1

2

∫
xn−2e−x

2
dx, n � 2.

C07S03.051: Let u = (lnx)n and dv = dx: du =
n(lnx)n−1

x
dx; choose v = x. Then

∫
(lnx)n dx = x(lnx)n − n

∫
(lnx)n−1 dx, n � 1.

C07S03.052: Let u = xn and dv = cosx dx: du = nxn−1 dx; choose v = sinx. Then
∫
xn cosx dx = xn sinx− n

∫
xn−1 sinx dx, n � 1.

C07S03.053: Let u = (sinx)n−1 and dv = sinx dx. Then du = (n − 1)(sinx)n−2 cosx dx; choose
v = − cosx. Then

In =
∫

(sinx)n dx = −(sinx)n−1 cosx+ (n− 1)
∫

(sinx)n−2 cos2 x dx

= −(sinx)n−1 cosx+ (n− 1)
∫

(sinx)n−2 dx− (n− 1)
∫

(sinx)n dx;

nIn = −(sinx)n−1 cosx+ (n− 1)In−2;

In = − 1
n

(sinx)n−1 cosx+
n− 1
n

In−2, n � 2.

C07S03.054: Let

Jn =
∫

(cosx)n dx, n � 2.

Then let u = (cosx)n−1 and dv = cosx dx: du = −(n− 1)(cosx)n−2 sinx dx; choose v = sinx. Hence

Jn = (cosx)n−1 sinx+ (n− 1)
∫

(cosx)n−2 sin2 x dx

= (cosx)n−1 sinx+ (n− 1)
∫

(cosx)n−2 dx− (n− 1)
∫

(cosx)n dx;

nJn = (cosx)n−1 sinx+ (n− 1)Jn−2;

Jn =
1
n

(cosx)n−1 sinx+
n− 1
n

Jn−2.

C07S03.055: The formula in Problem 49 yields
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∫ 1

0

x3ex dx =
[
x3ex

]1

0

− 3
∫ 1

0

x2ex dx = e− 3

([
x2ex

]1

0

− 2
∫ 1

0

xex dx

)

= e− 3e+ 6

([
xex

]1

0

−
∫ 1

0

ex dx

)
= −2e+ 6e− 6

[
ex

]1

0

= 4e− 6e+ 6 = 6− 2e ≈ 0.5634363431.

C07S03.056: Let Jn =
∫ 1

0

xne−x
2
dx. Then from the solution of Problem 50 we conclude that

Jn = − 1
2e

+
n− 1

2
Jn−2.

Therefore

J5 = − 1
2e

+ 2J3 = − 1
2e
− 2

2e
+ 2

∫ 1

0

xe−x
2
dx

= − 1
2e
− 1
e

+ 2
[
−1

2
e−x

2
]1

0

= − 3
2e

+ 1− 1
e

=
2e− 5

2e
≈ 0.0803013971.

C07S03.057:
∫

(lnx)3 dx = x(lnx)3 − 3
∫
x(lnx)2 dx− 2

∫
x lnx dx−

∫
1 dx. Therefore

∫ e

1

(lnx)3 dx =
[
x(lnx)3 − 3x(lnx)2 + 6x(lnx)− 6x

]e
1

= e− 3e+ 6e− 6e+ 6 = 6− 2e ≈ 0.5634363431.

C07S03.058: Let In =
∫ π/2

0

(sinx)n dx for n � 0. By the result in Problem 53,

I2n =
[
− (sinx)2n−1 cosx

2n

]π/2
0

+
2n− 1

2n
I2n−2

=
2n− 1

2n
I2n−2 =

2n− 1
2n

· 2n− 3
2n− 2

· I2n−4

=
2n− 1

2n
· 2n− 3
2n− 2

· 2n− 5
2n− 4

· · · 3
4
· 1
2

∫ π/2

0

1 dx

=
2n− 1

2n
· 2n− 3
2n− 2

· 2n− 5
2n− 4

· · · 3
4
· 1
2
· π

2
.

Again using the result in Problem 53,
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I2n+1 =
[
− (sinx)2n cosx

2n

]π/2
0

+
2n

2n+ 1
I2n−1 =

2n
2n+ 1

I2n−1 =
2n

2n+ 1
· 2n− 2
2n− 1

I2n−3

=
2n

2n+ 1
· 2n− 2
2n− 1

· 2n− 4
2n− 3

· · · 4
5
· 2
3
·
∫ π/2

0

sinx dx

=
2n

2n+ 1
· 2n− 2
2n− 1

· 2n− 4
2n− 3

· · · 4
5
· 2
3
·
[
− cosx

]π/2
0

=
2n

2n+ 1
· 2n− 2
2n− 1

· 2n− 4
2n− 3

· · · 4
5
· 2
3
.

C07S03.059: Part (a): Let u = x+ 10: x = u− 10, dx = du. Thus

∫
ln(x+ 10) dx =

∫
lnu du = u lnu− u+ C1

= (x+ 10) ln(x+ 10)− (x+ 10) + C1 = (x+ 10) ln(x+ 10)− x+ C.

Part (b): Let u = ln(x+ 10) and dv = dx: du =
1

x+ 10
dx; choose v = x. Then

∫
ln(x+ 10) dx = x ln(x+ 10)−

∫
x

x+ 10
dx = x ln(x+ 10)−

∫ (
1− 10

x+ 10

)
dx

= x ln(x+ 10)− x+ 10 ln(x+ 10) + C = (x+ 10) ln(x+ 10)− x+ C.

Part (c): Let u = ln(x+ 10) and dv = dx: du =
1

x+ 10
dx; choose v = x+ 10. Then

∫
ln(x+ 10) dx = (x+ 10) ln(x+ 10)−

∫
1 dx = (x+ 10) ln(x+ 10)− x+ C.

C07S03.060: Let u = arctanx and dv = x3 dx: du =
1

1 + x2
dx; choose v =

x4 − 1
4

. Then

∫
x3 arctanx dx =

1
4

(x4 − 1) arctanx− 1
4

∫
x4 − 1
x2 + 1

dx

=
1
4

(x4 − 1) arctanx− 1
4

∫
(x2 − 1) dx =

1
4

(x4 − 1) arctanx− 1
12
x3 +

1
4
x+ C.

C07S03.061: Part (a):

J0 =
∫ 1

0

e−x dx =
[
− e−x

]1

0

= 1− 1
e
.

If n � 1, then let u = xn and dv = e−x dx. Then du = nxn−1 dx; choose v = −e−x. Thus

Jn =
[
− xne−x

]1

0

+ n

∫ 1

0

xn−1e−x dx = nJn−1 −
1
e
.

Part (b): If n = 1, then

13



0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

α

n!− n!
e

n∑
k=0

1
k!

= 1− 1
e

(
1
0!

+
1
1!

)
= 1− 2

e

and

J1 = 1 · J0 −
1
e

= 1− 2
e
.

Therefore the formula in part (b) holds if n = 1. Assume that

Jm = m!− m!
e

m∑
k=0

1
k!

for some integer m � 1. Then

Jm+1 = (m+ 1)Jm −
1
e

= m!(m+ 1)− m!(m+ 1)
e

m∑
k=0

1
k!
− 1
e

= (m+ 1)!−
[

(m+ 1)!
e

m∑
k=0

1
k!

+
(m+ 1)!
(m+ 1)!e

]

= (m+ 1)!− (m+ 1)!
e

[
1

(m+ 1)!
+

m∑
k=0

1
k!

]
= (m+ 1)!− (m+ 1)!

e

m+1∑
k=0

1
k!
.

Therefore, by induction,

Jn = n!− n!
e

n∑
k=0

1
k!

for every integer n � 1.

Part (c): The next figure will aid in understanding the following proof.

The curve represents the graph of y = xne−x on [0, 1]. (It really isn’t; it’s the graph of y = 1
10 x

3+ 10
13 x

30e−x.)
Given the positive integer k, choose the real number α, 0 < α < 1, so close to 1 that

1− α
e

<
1
2k
.
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Because αn → 0 as n→∞, choose the positive integer N so large that

αN+1 <
1
2k
.

Then

xNe−x � αN if 0 � x � α and xNe−x � 1
e

if α � x � 1. (1)

The area of the short wide rectangle in the figure is

α · αNe−α < α · αN = αN+1

and the area of the tall narrow rectangle there is (1− α)/e. The inequalities in (1) show that the graph of
y = xNe−x is enclosed in the two rectangles, and hence

∫ 1

0

xNe−x dx � αN+1 +
1− α
e

<
1
2k

+
1
2k

=
1
k
.

Moreover, if n � N and 0 � x � 1, then xne−x � xNe−x. Therefore, for every positive integer k, there
exists a positive integer N such that

0 �
∫ 1

0

xne−x dx <
1
k

if n � N . Let k →∞. By the squeeze law for limits,

lim
n→∞

∫ 1

0

xne−x dx = 0.

Therefore Jn → 0 as n→ +∞. �

Part (d): By part (c),

lim
n→∞

eJn
n!

= 0 = lim
n→∞

(
e−

n∑
k=0

1
k!

)
.

Therefore e = lim
n→∞

n∑
k=0

1
k!

. (See Eq. (20) in Section 9.4.)

C07S03.062: Let u = (lnx)n and dv = xm dx. Then du =
n(lnx)n−1

x
dx; we choose v =

xm+1

m+ 1
. Thus

∫
xm(lnx)n dx =

xn+1

m+ 1
(lnx)n − n

m+ 1

∫
xm(lnx)n−1 dx.

C07S03.063: The expansion of (k lnx−2x3 +3x2 +b)4 is a sum of 35 terms, including terms as formidable
to antidifferentiate as

−32kx9 lnx, 54k2x4(lnx)2, and k4(lnx)4,

as well as several polynomial terms. The reduction formula of Problem 62 handles the three shown here as
follows:
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∫
x9 lnx dx =

x10

10
lnx− 1

10

∫
x9 dx =

x10

10
lnx− 1

100
x10 + C,

∫
x4(lnx)2 dx =

x5

5
(lnx)2 − 2

5

∫
x4 lnx dx

=
x5

5
(lnx)2 − 2

5

[
x5

5
lnx− 1

5

∫
x4 dx

]
=
x5

5
(lnx)2 − 2

5

[
x5

5
lnx− x5

25

]
+ C

=
x5

5
(lnx)2 − 2x5

25
lnx+

2x5

125
+ C,

and

∫
(lnx)4 dx = x(lnx)4 − 4

∫
(lnx)3 dx

= x(lnx)4 − 4
[
x(lnx)3 − 3

∫
(lnx)2 dx

]

= x(lnx)4 −−4x(lnx)3 + 12
[
x(lnx)2 − 2

∫
lnx dx

]

= x(lnx)4 − 4x(lnx)3 + 12x(lnx)2 − 24
[
x lnx−

∫
1 dx

]

= x(lnx)4 − 4x(lnx)3 + 12x(lnx)2 − 24x lnx+ 24x+ C.

A very patient person can in this way discover that the engineer’s antiderivative is

(b4 − 4b3k + 12b2k2 − 24bk3 + 24k4)x+
4
9
(9b3 − 9b2k + 6bk2 − 2k3)x3 +

1
16

(−32b3 + 24b2k − 12bk2

+ 3k3)x4 +
54
125

(25b2 − 10bk + 2k2)x5 − 2
3
(18b2 − 6bk + k2)x6 +

12
343

(441b+ 98b2 − 63k − 28bk + 4k2)x7

− 27
8

(8b− k)x8 +
1
9
(81 + 144b− 16k)x9 − 4

25
(135 + 20b− 2k)x10 +

216
11

x11 − 8x12 +
16
13
x13

− 1
14700

kx(−58800b3 + 176400b2k − 352800bk2 + 352800k3 − 176400b2x2 + 117600bkx2 − 39200k2x2

+ 88200b2x3 − 44100bkx3 + 11025k2x3 − 317520bx4 + 63504kx4 + 352800bx5 − 58800kx5 − 226800x6

− 100800bx6 + 14400kx6 + 396900x7 − 235200x8 + 47040x9) lnx+
1
70
k2x(420b2 − 840bk + 840k2 + 840bx2

− 280kx2 − 420bx3 + 105kx3 + 756x4 − 840x5 + 240x6)(lnx)2 − 2k3x(−2b+ 2k − 2x2 + x3)(lnx)3

+ k4x(lnx)4 + C.

C07S03.064: Area:

A =
∫ π

0

1
2x

2 sinx dx =
[

1
2

(
−x2 cosx+ 2

∫
x cosx dx

)]π
0
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=
[
− 1

2x
2 cosx+ x sinx−

∫
sinx dx

]π
0

=
[
− 1

2x
2 cosx+ x sinx+ cosx

]π
0

= 1
2π

2 − 1− 1 =
π2 − 4

2
.

Volume:

V =
∫ π

0

2πx · 1
2x

2 sinx dx = π

∫ π

0

x3 sinx dx

= π
[
− x3 cosx+ 3

∫
x2 cosx dx

]π
0

= π

[
− x3 cosx+ 3

(
x2 sinx− 2

∫
x sinx dx

) ]π
0

= π
[
− x3 cosx+ 3x2 sinx− 6 (−x cosx+ sinx)

]π
0

= π
[
− x3 cosx+ 3x2 sinx+ 6x cosx− 6 sinx

]π
0

= π
(
π3 − 6π

)
= π4 − 6π2 = π2

(
π2 − 6

)
.

C07S03.065: Volume: V =
∫ π

0

π
(

1
2x

2 sinx
)2
dx =

π

4

∫ π

0

x4 sin2 x dx =
π

8

∫ π

0

x4(1− cos 2x) dx.

Let u = 2x: x = 1
2u, dx = 1

2 du.

V =
π

8

∫ 2π

0

u4

16
(1− cosu) · 1

2 du

=
π

256

∫ 2π

0

(
u4 − u4 cosu

)
du

=
π

256

([
1
5u

5
]2π

0
−

∫ 2π

0

u4 cosu du
)

=
π

256

(
32
5 π

5 −
[
u4 sinu− 4

∫
u3 sinu du

]2π

0

)

=
π6

40
− π

256

[
u4 sinu− 4

(
− u3 cosu+ 3

{
u2 sinu− 2 [−u cosu+ sinu]

})]2π

0

=
π6

40
− π

256

[
4(2π)3 − 24(2π)

]

=
π6

40
− π4

8
+

3π2

16
=
π2

80

(
2π4 − 10π2 + 15

)
.

C07S03.066: A Mathematica solution. Part (a):

a = 100∗E∧(−t);
v = 100 + Integrate[a,t] // Together

100(−1 + et)
et
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x = Integrate[v,t] − 100 // Together

100(1− et + tet)
et

Limit[x, t → Infinity]

+∞

That is, the particle moves arbitrarily far to the right along the x-axis. Part (b):

a = 100∗(1 − t)∗E∧(−t);
v = Integrate[a,t]

100t
et

x = 100 + Integrate[v,t] // Together

10(−1 + et − t)
et

Limit[x, t → Infinity]

100

Thus, because x is an increasing function of t, x(t) always remains less than 100; the particle moves only a
finite distance to the right before effectively coming to a stop (because v → 0 as t→ +∞).

C07S03.067: A Mathematica solution:

f = x∧2; g = 2∧x;
R = Plot[ { f, g }, { x, 1.5, 4.5 },
PlotStyle → { RGBColor[0,0,1], RGBColor[1,0,0] } ];

The different colors enable us to more easily distinguish the graphs. Area:

A = Integrate[ f − g, { x, 2, 4 } ]

−4 · −9 ln 2 + 6(ln 2)2 + 12 ln 8− 16(ln 2)(ln 8)
3(ln 2)(ln 8)

A = A /. { Log[8] → 3∗Log[2] }

−4
[
27 ln 2− 42(ln 2)2

]
9(ln 2)2

(Mathematica writes Log[x] where we write lnx.)

A = A // Simplify

−36 + 56 ln 2
ln 8

A = A /. { Log[8] → 3∗Log[2] }
−36 + 56 ln 2

3 ln 2
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Next we find the x-coordinate of the centroid.

xc = (1/A)∗Integrate[ x∗(f − g), { x, 2, 4 } ]

12
[
3 + 2 ln 2 + 15(ln 2)2 − 4 ln 16

]
(−36 + 56 ln 2)(ln 2)

xc = xc /. { Log[16] → 4∗Log[2] }

12
[
3− 14 ln 2 + 15(ln 2)2

]
(−36 + 56 ln 2)(ln 2)

Finally, we find the y-coordinate of the centroid.

yc = (1/A)∗(1/2)∗Integrate[ f∧2 − g∧2, { x, 2, 4 } ]

24 · 25 ln 2− 10(ln 2)(ln 4)− 40 ln(1024) + 64(ln 2)(ln 1024)
5(−36 + 56 ln 2)(ln 1024)

yc = yc /. { Log[4] → 2∗Log[2], Log[1024] → 10∗Log[2] }

12
[
−375 ln 2 + 620(ln 2)2

]
(−36 + 56 ln 2)(25 ln 2)

yc = yc // Simplify

225− 372 ln 2
45− 70 ln 2

Thus the centroid of the region has approximate coordinates (3.0904707864762604, 9.3317974433586819).

C07S03.068: Part (a): If m is a positive integer, then (because 0 < sinx < 1 if 0 < x < π/2), we have
(sinx)m > (sinx)m+1 if 0 < x < π/2. Therefore by the comparison property for definite integrals,

In2 � I2n+1 � I2n+2

for every positive integer n. Part (b): By the result in Problem 58,

I2n+2

I2n
=

(
π

2
· 1
2
· 3
4
· 5
6
· · · 2n− 1

2n
· 2n+ 1
2n+ 2

)
·
(
π

2
· 2
1
· 4
3
· 6
5
· 2n
2n− 1

)
=

2n+ 1
2n+ 2

.

Therefore

lim
n→∞

I2n+2

I2n
= lim

n→∞

2n+ 1
2n+ 2

= 1.

Part (c): Because I2n+2 � I2n+1 � I2n for each positive integer n, we have

I2n+2

I2n
� I2n+1

I2n
� I2n
I2n

for each positive integer n. Therefore, by the squeeze law for limits,

lim
n→∞

I2n+1

I2n
= 1.

Part (d): But then, by the result in Problem 58,
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I2n+1

I2n
=

(
2
3
· 4
5
· 6
7
· · · 2n− 2

2n− 1
· 2n
2n+ 1

)
·
(

2
π
· 2
1
· 4
3
· 6
5
· 8
7
· · · 2n− 2

2n− 3
· 2n
2n− 1

)

=
2
π
· 2
1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· · · 2n− 2

2n− 3
· 2n− 2
2n− 1

· 2n
2n− 1

· 2n
2n+ 1

.

Hence, by Part (c),

lim
n→∞

2
1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· · · 2n

2n− 1
· 2n
2n+ 1

=
π

2
.
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Section 7.4

C07S04.001:
∫

sin2 x dx =
∫

1− cos 2x
2

dx =
1
2
x− 1

4
sin 2x+ C =

1
2

(x− sinx cosx) + C.

C07S04.002:
∫

cos2 5x dx =
∫

1 + cos 10x
2

dx =
1
2

+
1
20

sin 10x+ C =
1
2
x+

1
10

sin 5x cos 5x+ C.

C07S04.003:
∫

sec2 x

2
dx = 2 tan

x

2
+ C.

C07S04.004:
∫

tan2 x

2
dx =

∫ (
sec2 x

2
− 1

)
dx = 2 tan

x

2
− x+ C.

C07S04.005:
∫

tan 3x dx =
∫

sin 3x
cos 3x

dx = − 1
3

ln |cos 3x|+ C =
1
3

ln |secx|+ C.

C07S04.006:
∫

cot 4x dx =
∫

cos 4x
sin 4x

dx =
1
4

ln |sin 4x|+ C.

C07S04.007:
∫

sec 3x dx =
1
3

ln |sec 3x+ tan 3x|+ C.

C07S04.008:
∫

csc 2x dx =
1
2

ln |csc 2x− cot 2x|+ C.

C07S04.009:
∫

1
csc2 x

dx =
∫

sin2 x dx =
1
2

(x− sinx cosx) + C (by Problem 1).

C07S04.010:
∫

sin2 x cot2 x dx =
∫

sin2 x cos2 x
sin2 x

dx =
∫

cos2 x dx =
∫

1 + cos 2x
2

dx

=
1
2
x+

1
4

sin 2x+ C =
1
2

(x+ sinx cosx) + C.

C07S04.011:
∫

sin3 x dx =
∫

(1− cos2 x) sinx dx =
∫

(sinx− cos2 x sinx) dx =
1
3

cos3 x− cosx+ C.

C07S04.012: We use the reduction formula in Problem 53 of Section 7.3:

∫
sin4 x dx = − sin3 x cosx

4
+

3
4

∫
sin2 x dx

= − sin3 x cosx
4

+
3
4

(
− sinx cosx

2
+

1
2

∫
1 dx

)
= − 1

4
sin3 x cosx− 3

8
sinx cosx+

3
8
x+ C.

C07S04.013:
∫

sin2 θ cos3 θ dθ =
∫

(sin2 θ)(1− sin2 θ) cos θ dθ =
∫

(sin2 θ cos θ − sin4 θ cos θ) dθ

=
1
3

sin3 θ − 1
5

sin5 θ + C.

C07S04.014:
∫

sin3 t cos3 t dt =
∫

(sin t)(1− cos2 t) cos3 t dt =
∫

(cos3 t sin t− cos5 t sin t) dt

=
1
6

cos6 t− 1
4

cos4 t+ C. Alternatively,
∫

sin3 t cos3 t dt =
∫

(sin3 t)(1− sin2 t) cos t dt

1



=
∫

(sin3 t cos t− sin5 t cos t) dt =
1
4

sin4 t− 1
6

sin6 t+ C.

C07S04.015:
∫

cos5 x dx =
∫

(1− sin2 x)2 cosx dx =
∫

(sin4 x cosx− 2 sin2 x cosx+ cosx) dx

=
1
5

sin5 x− 2
3

sin3 x+ sinx+ C.

C07S04.016:
∫

(cos t)−3 sin t dt =
1
2

(cos t)−2 + C =
1
2

sec2 t+ C. Alternatively,
∫

sin t
cos3 t

dt

=
∫

sec2 t tan t dt =
∫

(sec t)(sec t tan t) dt =
1
2

sec2 t+ C.

C07S04.017:
∫

(sin3 x)(cosx)−1/2 dx =
∫

(1− cos2 x)(cosx)−1/2 sinx dx

=
∫ [

(cosx)−1/2 sinx− (cosx)3/2 sinx
]
dx =

2
5

(cosx)5/2 − 2(cosx)1/2 + C.

C07S04.018:
∫

sin3 φ cos4 φ dφ =
∫

(cos4 φ)(1− cos2 φ) sinφ dφ =
∫

(cos4 φ sinφ− cos6 φ sinφ) dφ

=
1
7

cos7 φ− 1
5

cos5 φ+ C.

C07S04.019:
∫

sin5 2z cos2 2z dz =
∫

(1− cos2 2z)2 cos2 2z sin 2z dz

=
∫

(cos6 2z sin 2z − 2 cos4 2z sin 2z + cos2 2z sin 2z) dz = − 1
14

cos7 2z +
1
5

cos5 2z − 1
6

cos3 2z + C.

The computer algebra program Derive 2.56 returns the answer

− 1
14

sin4 2z cos3 2z − 2
35

sin2 2z cos3 2z − 4
105

cos3 2z.

C07S04.020:
∫

(sinx)3/2 cos3 x dx =
∫

(sinx)3/2(1− sin2 x) cosx dx

=
∫ [

(sinx)3/2 cosx− (sinx)7/2 cosx
]
dx =

2
5

(sinx)5/2 − 2
9

(sinx)9/2 + C.

C07S04.021:
∫

sin3 4x
cos2 4x

dx =
∫

(1− cos2 4x) sin 4x
cos2 4x

dx

=
∫ [

(cos 4x)−2 sin 4x− sin 4x
]
dx =

1
4

(cos 4x)−1 +
1
4

cos 4x+ C =
1
4

(sec 4x+ cos 4x) + C.

C07S04.022:
∫

cos6 4θ dθ =
∫ (

1 + cos 8θ
2

)3

dθ =
1
8

∫
(1 + 3 cos 8θ + 3 cos2 8θ + cos3 8θ) dθ

=
1
8

∫ [
1 + 3 cos 8θ +

3
2

(1 + cos 16θ) + (1− sin2 8θ) cos 8θ
]
dθ

=
1
8

∫ (
5
2

+ 4 cos 8θ +
3
2

cos 16θ − sin2 8θ cos 8θ
)
dθ

=
1
8

(
5
2
θ +

1
2

sin 8θ +
3
32

sin 16θ − 1
24

sin3 8θ
)

+C =
5
16
θ+

1
16

sin 8θ+
3

256
sin 16θ− 1

192
sin3 8θ+C.
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C07S04.023:
∫

sec4 t dt =
∫

(sec2 t)(1 + tan2 t) dt =
∫

(sec2 t+ sec2 t tan2 t) dt = tan t+
1
3

tan3 t+ C.

C07S04.024:
∫

tan3 x dx =
∫

(sec2 x− 1) tanx dx =
∫ [

(secx)(secx tanx)− sinx
cosx

]
dx

=
1
2

sec2 x+ ln |cosx|+ C.

C07S04.025:
∫

cot3 2x dx =
∫

(csc2 2x− 1) cot 2x dx =
∫ [

(csc 2x)(csc 2x cot 2x)− cos 2x
sin 2x

]
dx

= − 1
4

csc2 2x− 1
2

ln |sin 2x|+ C.

C07S04.026:
∫

tan θ sec4 θ dθ =
∫

(sec3 θ)(sec θ tan θ) dθ =
1
4

sec4 θ + C. Alternatively,

∫
tan θ sec4 θ dθ =

∫
(tan θ)(1 + tan2 θ) sec2 θ dθ

=
∫

(tan θ sec2 θ + tan3 θ sec2 θ) dθ =
1
2

tan2 θ +
1
4

tan4 θ + C.

C07S04.027:
∫

tan5 2x sec2 2x dx =
1
12

tan6 2x+ C. Alternatively,

∫
tan5 2x sec2 2x dx =

∫
(sec2 2x− 1)2 sec2 2x tan 2x dx =

∫
(sec6 2x− 2 sec4 2x+ sec2 2x) tan 2x dx

=
∫

(sec5 2x− 2 sec3 2x+ sec 2x)(sec 2x tan 2x) dx =
1
12

sec6 2x− 1
4

sec4 2x+
1
4

sec2 2x+ C.

C07S04.028:
∫

cot3 x csc2 x dx = − 1
4

cot4 x+ C.

C07S04.029:
∫

csc6 2t dt =
∫

(1 + cot2 2t)2 csc2 2t dt

=
∫

(cot4 2t csc2 2t+ 2 cot2 2t csc2 2t+ csc2 2t) dt = − 1
10

cot5 2t− 1
3

cot3 2t− 1
2

cot 2t+ C.

C07S04.030:
∫

sec4 t

tan2 t
dt =

∫
(1 + tan2 t) sec2 t

tan2 t
dt =

∫ [
(tan t)−2 sec2 t+ sec2 t

]
dt

= −(tan t)−1 + tan t+ C = tan t− cot t+ C.

C07S04.031:
∫

tan3 θ

sec4 θ
dθ =

∫
sin3 θ cos4 θ

cos3 θ
dθ =

∫
sin3 θ cos θ dθ =

1
4

sin4 θ + C. Alternatively,

∫
tan3 θ

sec4 θ
dθ =

∫
(sec2 θ − 1) tan θ

sec4 θ
dθ =

∫
sec2 θ − 1

sec5 θ
sec θ tan θ dθ

=
∫ [

(sec θ)−3 sec θ tan θ − (sec θ)−5 sec θ tan θ
]
dθ

= − 1
2

(sec θ)−2 +
1
4

(sec θ)−4 + C =
1
4

cos4 θ − 1
2

cos2 θ + C.
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C07S04.032:
∫

cot3 x
csc2 x

dx =
∫

cos3 x sin2 x

sin3 x
dx =

∫
1− sin2 x

sinx
cosx dx

=
∫ [

(sinx)−1 cosx− sinx cosx
]
dx = ln |sinx| − 1

2
sin2 x+ C.

C07S04.033:
∫

tan3 t√
sec t

dt =
∫

(sec t)−1/2(sec2 t− 1) tan t dt =
∫ [

(sec t)3/2 tan t− (sec t)−1/2 tan t
]
dt

=
∫ [

(sec t)1/2(sec t tan t)− (sec t)−3/2(sec t tan t)
]
dt =

2
3

(sec t)3/2 + 2(sec t)−1/2 + C

=
2
3

(sec t)3/2 + 2(cos t)1/2 + C.

C07S04.034:
∫

1
cos4 2x

dx =
∫

sec4 2x dx =
∫

(1 + tan2 2x) sec2 2x dx =
1
2

tan 2x+
1
6

tan3 2x+ C.

C07S04.035:
∫

cot θ
csc3 θ

dθ =
∫

cos θ sin3 θ

sin θ
dθ =

∫
sin2 θ cos θ dθ =

1
3

sin3 θ + C.

C07S04.036:
∫

sin2 3α cos2 3α dα =
1
4

∫
(2 sin 3α cos 3α)2 dα =

1
4

∫
sin2 6α dα =

1
4

∫
1− cos 12α

2
dα

=
1
8

(
α− 1

12
sin 12α

)
+ C =

1
8
α− 1

96
sin 12α+ C.

C07S04.037:
∫

cos3 5t dt =
∫

(1− sin2 5t) cos 5t dt =
1
5

sin 5t− 1
15

sin3 5t+ C.

C07S04.038:
∫

tan4 x dx =
∫

(sec2 x− 1) tan2 x dx =
∫ [

sec2 x tan2 x− (sec2 x− 1)
]
dx

=
1
3

tan3 x− tanx+ x+ C. Also see Problem 67.

C07S04.039:
∫

cot4 3t dt =
∫

(csc2 3t− 1) cot2 3t dt =
∫ [

cot2 3t csc2 3t− (csc2 3t− 1)
]
dt

= − 1
9

cot3 3t+
1
3

cot 3t+ t+ C.

C07S04.040:
∫

tan2 2t sec4 2t dt =
∫

(tan2 2t)(1 + tan2 2t) sec2 2t dt =
1
6

tan3 2t+
1
10

tan5 2t+ C.

C07S04.041:
∫

sin5 2t (cos 2t)3/2 dt =
∫

(1− cos2 2t)2(cos 2t)3/2 sin 2t dt

=
∫ [

(cos 2t)3/2 − 2(cos 2t)7/2 + (cos 2t)11/2
]

sin 2t dt

= − 1
5

(cos 2t)5/2 +
2
9

(cos 2t)9/2 − 1
13

(cos 2t)13/2 + C.

C07S04.042:
∫

(cot3 ξ)(csc ξ)3/2 d ξ =
∫

(csc2 ξ − 1)(csc ξ)3/2 cot ξ d ξ

4
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=
∫ [

(csc ξ)5/2 − (csc ξ)1/2
]
csc ξ cot ξ d ξ = − 2

7
(csc ξ)7/2 +

2
3

(csc ξ)3/2 + C.

C07S04.043:
∫

tanx+ sinx
secx

dx =
∫

(sinx+ sinx cosx) dx =
1
2

sin2 x− cosx+ C.

C07S04.044:
∫

cotx+ cscx
sinx

dx =
∫

(cotx cscx+ csc2 x) dx = − cscx− cotx+ C.

C07S04.045: The area is

A =
∫ π

0

sin3 x dx =
∫ π

0

(1− cos2 x) sinx dx =
[
− cosx+

1
3

cos3 x
]π
0

= 1− 1
3

+ 1− 1
3

=
4
3
.

C07S04.046: The area is A = 2
∫ π/4

0

(cos2 x− sin2 x) dx = 2
∫ π/4

0

cos 2x dx =
[

sin 2x
]π/4
0

= 1.

C07S04.047: The area is

A =
∫ π

π/4

(sin2 x− sinx cosx) dx =
∫ π

π/4

(
1− cos 2x

2
− sinx cosx

)
dx

=
[

1
2
x− 1

4
sin 2x− 1

2
sin2 x

]π
π/4

=
π

2
− π

8
+

1
4

+
1
2
· 1
2

=
3π + 4

8
.

C07S04.048: The area is

A =
∫ 5π/4

π/4

(sin3 x− cos3 x) dx =
∫ 5π/4

π/4

[
(1− cos2 x) sinx− (1− sin2 x) cosx

]
dx

=
[
− cosx+

1
3

cos3 x− sinx+
1
3

sin3 x

]5π/4

π/4

= 4

(√
2
2
− 2
√

2
24

)
=

5
√

2
3

.

C07S04.049: The following graph makes it appear that the value of the integral is zero.

Sure enough,

∫ 2π

0

sin3 x cos2 x dx =
∫ 2π

0

(1− cos2 x) cos2 x sinx dx =
[
−1

3
cos3 x+

1
5

cos5 x
]2π

0

= 0.
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C07S04.050: The following graph makes it appear that the value of the integral is zero.

Sure enough,

∫ π

0

sin5 2x dx =
∫ π

0

(1− cos2 2x)2 sin 2x dx =
∫ π

0

(1− 2 cos2 2x+ cos4 2x) sin 2x dx

=
[
−1

2
cos 2x+

1
3

cos3 2x− 1
10

cos5 2x
]π
0

= −1
2

+
1
3
− 1

10
+

1
2
− 1

3
+

1
10

= 0.

C07S04.051: The volume is

V =
∫ π

0

π sin4 x dx = 2π
∫ π/2

0

sin4 x dx = 2π · π
2
· 1
2
· 3
4

=
3π2

8

(we used the result in Problem 58 of Section 7.3 to evaluate the definite integral).

C07S04.052: The volume is

V = 2
∫ π/4

0

π
[
(cos2 x)2 − (sin2 x)2

]
dx = 2π

∫ π/4

0

(cos4 x− sin4 x) dx

= 2π
∫ π/4

0

(cos2 x+ sin2 x)(cos2 x− sin2 x) dx = 2π
∫ π/4

0

cos 2x dx = π

[
sin 2x

]π/4
0

= π.

C07S04.053: The volume is

V = 2π
∫ π/3

0

(4− sec2 x) dx = 2π
[
4x− tanx

]π/3
0

=
2π
3

(
4π − 3

√
3

)
≈ 15.4361488842.

C07S04.054: The volume is

V = 2π
∫ π/3

0

(16 cos2 x− sec2 x) dx = 2π
∫ π/3

0

(8 + 8 cos 2x− sec2 x) dx

= 2π
[
8x+ 4 sin 2x− tanx

]π/3
0

= 2π
(

8π
3

+ 2
√

3−
√

3
)

=
2π
3

(
8π + 3

√
3

)
≈ 63.5206863245.

C07S04.055: Part (a): The area is

A =
∫ π/4

0

(sec2 x− tan2 x) dx =
∫ π/4

0

1 dx =
π

4
.

6



Part (b): The volume is

V = π

∫ π/4

0

(sec4 x− tan4 x) dx = π

∫ π/4

0

(sec2 x+ tan2 x)(sec2 x− tan2 x) dx

= π

∫ π/4

0

(sec2 x+ tan2 x) dx = π

∫ π/4

0

(2 sec2 x− 1) dx

= π

[
2 tanx− x

]π/4
0

=
π

4
(8− π) ≈ 3.8157842069.

C07S04.056: If y = ln(cosx), then

dy

dx
= − tanx, so 1 +

(
dy

dx

)2

= sec2 x.

Therefore the length of the graph is

L =
∫ π/4

0

secx dx =
[

ln(secx+ tanx)
]π/4
0

= ln
(
1 +
√

2
)
≈ 0.8813735870.

C07S04.057: First way:
∫

tanx sec4 x dx =
∫

(sec3 x)(secx tanx) dx =
1
4

sec4 x+ C1.

Second way:

∫
tanx sec4 x dx =

∫
(tanx)(1 + tan2 x) sec2 x dx =

1
2

tan2 x+
1
4

tan4 x+ C2

=
1
2

(sec2 x− 1) +
1
4

(sec2 x− 1)2 + C2 =
1
2

sec2 x− 1
2

+
1
4

sec4 x− 1
2

sec2 x+
1
4

+ C2

=
1
4

sec4 x+ C1 where C1 = C2 −
1
4
.

C07S04.058: First way:

∫
cot3 x dx =

∫
(csc2 x− 1) cotx dx =

∫ (
cotx csc2 x− cosx

sinx

)
dx = −1

2
cot2 x− ln |sinx|+ C1.

Second way:

∫
cot3 x dx =

∫
(csc2 x− 1) cotx dx =

∫ [
(cscx)(cscx cotx)− cosx

sinx

]
dx

= −1
2

csc2 x− ln |sinx|+ C2 = −1
2

(1 + cot2 x)− ln |sinx|+ C2

= −1
2

cot2 x− ln |sinx|+ C1 where C1 = C2 −
1
2
.

C07S04.059: First, sin 3x cos 5x =
1
2

[sin(3x− 5x) + sin(3x+ 5x)] =
1
2

sin 8x− 1
2

sin 2x. Thus
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∫
sin 3x cos 5x dx =

1
4

cos 2x− 1
16

cos 8x+ C.

Because Mathematica 3.0 gives identical answers in this and the next two problems, it appears that it uses
the same formulas for integrating such products.

C07S04.060: First, sin 2x sin 4x =
1
2

[cos(2x− 4x)− cos(2x+ 4x)] =
1
2

cos 2x− 1
2

cos 6x. Thus

∫
sin 2x sin 4x dx =

1
4

sin 2x− 1
12

sin 6x+ C.

C07S04.061: First, cosx cos 4x =
1
2

[cos(x− 4x) + cos(x+ 4x)] =
1
2

cos 3x+
1
2

cos 5x. Thus

∫
cosx cos 4x dx =

1
6

sin 3x+
1
10

sin 5x+ C.

C07S04.062: Part (a): sinmx sinnx =
1
2

[cos(m− n)x− cos(m+ n)x]. Therefore

∫ 2π

0

sinmx sinnx dx =
1
2

[
sin(m− n)x
m− n − sin(m+ n)x

m+ n

]2π

0

= 0

because the sine of an integral multiple of π is zero.

Part (b): cosmx sinnx =
1
2

[sin(n−m)x+ sin(n+m)x]. Therefore

∫ 2π

0

cosmx sinnx dx =
1
2

[
cos(n−m)x

m− n − cos(n+m)x
n+m

]2π

0

= 0

because the cosine of an integral multiple of 2π is 1.

Part (c): cosmx cosnx =
1
2

[cos(m− n)x+ cos(m+ n)x]. Thus

∫ 2π

0

cosmx cosnx dx =
1
2

[
sin(m− n)x
m− n +

sin(m+ n)x
m+ n

]2π

0

= 0

because the sine of an integral multiple of π is zero.

C07S04.063:
∫

secx cscx dx =
∫

sec2 x

tanx
dx = ln |tanx|+ C.

C07S04.064: First note that

cscx =
1

sinx
=

1
sin(2 · x/2)

=
1

2 sin(x/2) cos(x/2)
=

1
2

csc(x/2) sec(x/2).

Therefore
∫

cscx dx =
1
2

∫
csc(x/2) sec(x/2) dx.

Let u = x/2 : du = 1
2 dx. Thus

8



∫
cscx dx =

∫
cscu secu du = ln |tanu|+ C = ln

∣∣∣tan
x

2

∣∣∣ + C.

C07S04.065: We use the substitution x = 1
2π − u, dx = −du. Because (from Problem 64)

∫
cscx dx = ln

∣∣∣tan
x

2

∣∣∣ + C,

we have

−
∫

csc
(

1
2
π − u

)
du = ln

∣∣∣tan
(π

4
− u

2

)∣∣∣ + C.

But

sin
(

1
2
π − u

)
= cosu and so csc

(
1
2
π − u

)
= secu.

Therefore

−
∫

secu du = ln
∣∣∣tan

(π
4
− u

2

)∣∣∣C;

∫
secu du = ln

∣∣∣tan
(π

4
− u

2

)∣∣∣−1

+ C;

∫
secx dx = ln

∣∣∣cot
(π

4
− x

2

)∣∣∣ + C.

C07S04.066: The following computation is sufficient:

cot
(π

4
− x

2

)
=

cos
(π

4
− x

2

)

sin
(π

4
− x

2

) =
cos

π

4
cos

x

2
+ sin

π

4
sin

x

2
sin

π

4
cos

x

2
− cos

π

4
sin

x

2

=
cos

x

2
+ sin

x

2
cos

x

2
− sin

x

2

=
cos2

x

2
+ 2 cos

x

2
sin

x

2
+ sin2 x

2
cos2

x

2
− sin2 x

2

=
1 + sinx

cosx
= secx+ tanx.

C07S04.067: The reduction formula in Eq. (12) tells us that if n is an integer and n � 2, then

∫
tann x dx =

(tanx)n−1

n− 1
−

∫
(tanx)n−2dx.

Hence

∫
tan4 x dx =

1
3

tan3 x−
∫

tan2 x

=
1
3

tan3 x− tanx+
∫

1 dx =
1
3

tan3 x− tanx+ x+ C.

9



Mathematica 3.0 gives the antiderivative in the form

1
12

(sec3 x)(9x cosx+ 3x cos 3x− 4 sin 3x).

Now

cos 3x = cos 2x cosx− sin 2x sinx = cos3 x− sin2 x cosx− 2 sin2 x cosx

= cos3 x− 3(1− cos2 x) cosx = cos3 x+ 3 cos3 x− 3 cosx = 4 cos3 x− 3 cosx

and

sin 3x = sin 2x cosx+ cos 2x sinx = 2 sinx cos2 x+ cos2 x sinx− sin3 x

= 3 sinx cos2 x− (1− cos2 x) sinx = 4 sinx cos2 x− sinx.

Therefore

1
12

(sec3 x)(9x cosx+ 3x cos 3x− 4 sin 3x)

=
1
12

(sec3 x)(9x cosx+ 12x cos3 x− 9x cosx− 16 sinx cos2 x+ 4 sinx)

=
1
12

(12x− 16 tanx+ 4 sec2 x tanx) =
1
12

(12x− 16 tanx+ 4(1 + tan2 x) tanx)

=
1
12

(12x− 16 tanx+ 4 tanx+ 4 tan3 x) = x− tanx+
1
3

tan3 x.

The two antiderivatives are exactly the same.

C07S04.068: Example 9 shows that
∫

tan6 x dx =
1
5

tan5 x− 1
3

tan3 x+ tanx− x+ C.

Mathematica 3.0 gives the antiderivative in the form

1
240

(sec5 x)(−150x cosx− 75x cos 3x− 15x cos 5x+ 50 sinx+ 25 sin 3x+ 23 sin 5x).

To reconcile the two answers, we use two formulas from the solution of Problem 67:

cos 3x = 4 cos3 x− 3 cosx and sin 3x = 4 sinx cos2 x− sinx.

We will also need two more:

cos 5x = cos 3x cos 2x− sin 3x sin 2x

= (4 cos3 x− 3 cosx)(2 cos2 x− 1)− (4 sinx cos2 x− sinx)(2 sinx cosx)

= 8 cos5 x− 6 cos3 x+ 4 cos3 x+ 3 cosx− 8 sin2 x cos3 x+ 2 sin2 x cosx

= 8 cos5 x− 10 cos3 x+ 3 cosx− 8(1− cos2 x) cos3 x+ 2(1− cos2 x) cosx

= 8 cos5 x− 10 cos3 x+ 3 cosx− 8 cos3 x+ 8 cos5 x+ 2 cosx− 2 cos3 x

= 16 cos5 x− 20 cos3 x+ 5 cosx

10



and

sin 5x = sin 2x cos 3x+ cos 2x sin 3x

= (2 sinx cosx)(4 cos3 x− 3 cosx) + (2 cos2 x− 1)(4 sinx cos2 x− sinx)

= 8 sinx cos4 x− 6 sinx cos2 x+ 8 sinx cos4 x− 2 sinx cos2 x− 4 sinx cos2 x+ sinx

= 16 sinx cos4 x− 12 sinx cos2 x+ sinx.

Therefore the third factor in Mathematica’s answer becomes

− 150x cosx− 75x(4 cos3 x− 3 cosx)− 15x(16 cos5 x− 20 cos3 x+ 5 cosx)

+ 50 sinx+ 25(4 sinx cos2 x− sinx) + 23(15 sinx cos4 x− 12 sinx cos2 x+ sinx)

= −150x cosx− 300x cos3 x+ 225x cosx− 240x cos5 x+ 300x cos3 x− 75x cosx

+ 50 sinx+ 100 sinx cos2 x− 25 sinx+ 368 sinx cos4 x− 276 sinx cos2 x+ 23 sinx

= −240x cos5 x+ 48 sinx− 176 sinx cos2 x+ 368 sinx cos4 x.

Now multiply by sec5 x. The result is

− 240x+ 48 sec4 x tanx− 176 sec2 x tanx+ 368 tanx

= −240x+ 48(1 + tan2 x)2 tanx− 176(1 + tan2 x) tanx+ 368 tanx

= −240x+ 48 tanx+ 96 tan3 x+ 48 tan5 x− 176 tanx− 176 tan3 x+ 368 tanx

= −240x+ 240 tanx− 80 tan3 x+ 48 tan5 x.

Finally, divide by 240. Thus Mathematica’s antiderivative turns out to equal

−x+ tanx− 1
3

tan3 x+
1
5

tan5 x,

exactly the same as the result from Example 9. And, in conclusion, Derive 2.56 gives the antiderivative in
exactly the same form as in Example 9; Maple V Release 5 returns

1
5

tan5 x− 1
3

tan3 x+ tanx− arctan(tanx).
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Section 7.5

C07S05.001:
x2

x+ 1
= x− 1 +

1
x+ 1

, so
∫

x2

x+ 1
dx =

1
2
x2 − x+ ln |x+ 1|+ C.

C07S05.002:
x3

2x− 1
=

1
2
x2 +

1
4
x+

1
8

+
1

8(2x− 1)
, so

∫
x3

2x− 1
dx =

1
6
x3 +

1
8
x2 +

1
8
x+

1
16

ln |2x− 1|+ C.

C07S05.003: Given:

1
x2 − 3x

=
1

x(x− 3)
=
A

x
+

B

x− 3
,

so Ax− 3A+Bx = 1, and thus A+B = 0 and −3A = 1. So

1
x2 − 3x

=
− 1

3

x
+

1
3

x− 3
,

and therefore
∫

1
x2 − 3x

dx =
1
3

(ln |x− 3| − ln |x|) + C =
1
3

ln
∣∣∣∣ x− 3

x

∣∣∣∣ + C.

C07S05.004:
x

x2 + 4x
=

1
x+ 4

, so
∫

x

x2 + 4x
dx = ln |x+ 4|+ C.

C07S05.005: x2 + x− 6 = (x− 2)(x+ 3), so

1
x2 + x− 6

=
A

x− 2
+

B

x+ 3
.

Therefore Ax+ 3A+Bx− 2B = 1, so that A+B = 0 and 3A− 2B = 1. Thus

∫
1

x2 + x− 6
dx =

∫ ( 1
5

x− 2
−

1
5

x+ 3

)
dx =

1
5

(ln |x− 2| − ln |x+ 3|) + C.

C07S05.006: Division of numerator by denominator yields

x3

x2 + x− 6
= x− 1 +

7x− 6
x2 + x− 6

.

Next,

7x− 6
x2 + x− 6

=
A

x− 2
+

B

x+ 3

leads to Ax+ 3A+Bx− 2B = 7x− 6, so that A+B = 7 and 3A− 2B = −6. Thus

∫
x3

x2 + x− 6
dx =

∫ (
x− 1 +

8
5

x− 2
+

27
5

x+ 3

)
dx =

1
2
x2 − x+

8
5

ln |x− 2|+ 27
5

ln |x+ 3|+ C.

C07S05.007:
1

x3 + 4x
=
A

x
+
Bx+ C

x2 + 4
leads to Ax2 + 4A+Bx2 + Cx = 1. Thus

1



A+B = 0, C + 0, and 4A = 1.

It follows that A = 1
4 , B = − 1

4 , and C = 0. Hence

∫
1

x3 + 4x
dx =

∫ ( 1
4

x
−

1
4 x

x2 + 4

)
dx =

1
4

ln |x| − 1
8

ln(x2 + 4) + C.

C07S05.008:
1

(x+ 1)(x2 + 1)
=

A

x+ 1
+
Bx+ C

x2 + 1
leads to Ax2 +A+Bx2 +Bx+Cx+C = 1, and hence

A+B = 0, B + C = 0, and A+ C = 1.

Therefore

∫
1

(x+ 1)(x2 + 1)
dx =

∫ ( 1
2

x+ 1
−

1
2x

x2 + 1
+

1
2

x2 + 1

)
dx =

1
2

ln |x+ 1| − 1
4

ln(x2 + 1) +
1
2

arctanx+ C.

C07S05.009: Division of denominator into numerator leads to

x4

x2 + 4
= x2 − 4 +

16
x2 + 4

,

and therefore

∫
x4

x2 + 4
dx =

1
3
x3 − 4x+ 8 arctan

(x
2

)
+ C.

C07S05.010:
1

(x2 + 1)(x2 + 4)
=
Ax+B

x2 + 1
+
Cx+D

x2 + 4
leads to

Ax3 + 4Ax+Bx2 + 4B + Cx3 + Cx+Dx2 +D = 1,

so that

A+ C = 0, B +D = 0, 4A+ C = 0, and 4B +D = 1.

Thus

∫
1

(x2 + 1)(x2 + 4)
dx =

∫ ( 1
3

x2 + 1
−

1
3

x2 + 4

)
dx =

1
3

arctanx− 1
6

arctan
(x

2

)
+ C.

C07S05.011: Division of denominator into numerator yields

∫
x− 1
x+ 1

dx =
∫ (

1− 2
x+ 1

)
dx = x− 2 ln |x+ 1|+ C.

C07S05.012: Division of denominator into numerator yields

∫
2x3 − 1
x2 + 1

dx =
∫ (

2x− 2x+ 1
x2 + 1

)
dx = x2 − ln(x2 + 1)− arctanx+ C.
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C07S05.013: Division of denominator into numerator yields

∫
x2 + 2x
(x+ 1)2

dx =
∫ (

1− 1
(x+ 1)2

)
dx = x+

1
x+ 1

+ C.

C07S05.014:
2x− 4
x2 − x =

A

x
+

B

x− 1
leads to Ax−A+Bx = 2x− 4, so that

A+B = 2 and A = 4. Thus B = −2.

Therefore
∫

2x− 4
x2 − x dx =

∫ (
4
x
− 2
x− 1

)
dx = 4 ln |x| − 2 ln |x− 1|+ C.

C07S05.015:
1

x2 − 4
=

A

x− 2
+

B

x+ 2
, so that Ax+ 2A+Bx− 2B = 1. So

∫
1

x2 − 4
dx =

∫ ( 1
4

x− 2
−

1
4

x+ 2

)
dx =

1
4

ln |x− 2| − 1
4

ln |x+ 2|+ C =
1
4

ln
∣∣∣∣ x− 2
x+ 2

∣∣∣∣ + C.

C07S05.016: Division of denominator into numerator yields

x4

x2 + 4x+ 4
= x2 − 4x+ 12− 32x+ 48

(x+ 2)2
.

Next,

32x+ 48
(x+ 2)2

=
A

x+ 2
+

B

(x+ 2)2
,

so that Ax+ 2A+B = 32x+ 48. It now follows that

A = 32 and 2A+B = 48. So B = −16.

Therefore

∫
x4

x2 + 4x+ 4
dx =

∫ (
x2 − 4x+ 12− 32

x+ 2
+

16
(x+ 2)2

)
dx

=
1
3
x3 − 2x2 + 12x− 16

x+ 2
− 32 ln |x+ 2|+ C.

C07S05.017:
x+ 10

2x2 + 5x− 3
=

A

x+ 3
+

B

2x− 1
yields 2Ax−A+Bx+ 3B = x+ 10. Thus

∫
x+ 10

2x2 + 5x− 3
dx =

∫ (
3

2x− 1
− 1
x+ 3

)
dx =

3
2

ln |2x− 1| − ln |x+ 3|+ C.

C07S05.018:
x+ 1
x3 − x2

=
A

x
+
B

x2
+

C

x− 1
yields Ax2 −Ax+Bx−B + Cx2 = x+ 1. Hence

A+ C = 0, −A+B = 1, and −B = 1.
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Therefore B = −1, A = −2, and C = 2. Thus

∫
x+ 1
x3 − x2

dx =
∫ (

2
x− 1

− 2
x
− 1
x2

)
dx = 2 ln |x− 1| − 2 ln |x|+ 1

x
+ C.

C07S05.019:
x2 + 1

x3 + 2x2 + x
=
A

x
+

B

x+ 1
+

C

(x+ 1)2
yields A(x+ 1)2 +Bx(x+ 1) + Cx = x2 + 1. So

A+B = 1, 2A+B + C = 0, and A = 1.

Hence B = 0 and C = −2. Therefore

∫
x2 + 1

x3 + 2x2 + x
dx =

∫ (
1
x
− 2

(x+ 1)2

)
dx =

2
x+ 1

+ ln |x|+ C.

C07S05.020:
x2 + x

x3 − x2 − 2x
=

x(x+ 1)
(x− 2)x(x+ 1)

=
1

x− 2
. Therefore

∫
x2 + x

x3 − x2 − 2x
dx =

∫
1

x− 2
dx = ln |x− 2|+ C.

C07S05.021:
4x3 − 7x

x4 − 5x2 + 4
=

A

x− 2
+

B

x− 1
+

C

x+ 1
+

D

x+ 2
yields

A(x3 + 2x2 − x− 2) +B(x3 + x2 − 4x− 4) + C(x3 − x2 − 4x+ 4) +D(x3 − 2x2 − x+ 2) = 4x3 − 7x.

Thus

A+B + C +D = 4,

2A+B − C − 2D = 0,

−A− 4B − 4C −D = −7,

−2A− 4B + 4C + 2D = 0.

This system of equations has the solution A = 3
2 , B = 1

2 , C = 1
2 , D = 3

2 . Therefore

∫
4x3 − 7x

x4 − 5x2 + 4
=

1
2

∫ (
3

x− 2
+

1
x− 1

+
1

x+ 1
+

3
x+ 2

)
dx

=
1
2

(3 ln |x− 2|+ ln |x− 1|+ ln |x+ 1|+ 3 ln |x+ 2|) + C.

C07S05.022:
2x2 + 3

x4 − 2x2 + 1
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 1
+

D

(x+ 1)2
yields

A(x3 + x2 − x− 1) +B(x2 + 2x+ 1) + C(x3 − x2 − x+ 1) +D(x2 − 2x+ 1) = 2x3 + 3.

Thus
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A+ C = 2,

A+B − C +D = 0,

−A+ 2B − C − 2D = 0,

−A+B + C +D = 3.

This system has solution A = − 1
4 , B = 5

4 , C = 1
4 , D = 5

4 . Therefore

∫
2x2 + 3

x4 − 2x2 + 1
dx =

1
4

∫ [
5

(x− 1)2
− 1
x− 1

+
1

x+ 1
+

5
(x+ 1)2

]
dx

=
1
4

[
ln |x+ 1| − ln |x− 1| − 5

x+ 1
− 5
x− 1

]
+ C.

C07S05.023:
x2

(x+ 2)3
=

A

x+ 2
+

B

(x+ 2)2
+

C

(x+ 2)3
yields

A(x2 + 4x+ 4) +B(x+ 2) + C = x2,

so that A = 1, 4A+B = 0, and 4A+ 2B + C = 0. It follows that B = −4 and C = 4. Hence

∫
x2

(x+ 2)3
dx =

∫ (
1

x+ 2
− 4

(x+ 2)2
+

4
(x+ 2)3

)
dx =

4
x+ 2

− 2
(x+ 2)2

+ ln |x+ 2|+ C.

C07S05.024:
x2 + x

(x2 − 4)(x+ 4)
=

A

x− 2
+

B

x+ 2
+

C

x+ 4
yields

A(x2 + 6x+ 8) +B(x2 + 2x− 8) + C(x2 − 4) = x2 + x,

so that A+B+C = 1, 6A+ 2B = 1, and 8A− 8B− 4C = 0. It follows that A = 1
4 , B = − 1

4 , and C = 1.
Therefore

∫
x2 + x

(x2 − 4)(x+ 4)
dx =

1
4

∫ (
1

x− 2
− 1
x+ 2

+
4

x+ 4

)
dx =

1
4

(ln |x− 2| − ln |x+ 2|+ 4 ln |x+ 4|) + C.

C07S05.025:
1

x3 + x
=
A

x
+
Bx+ C

x2 + 1
, so Ax2 +A+Bx2 +Cx = 1. Thus A+B = 0, C = 0, and A = 1.

Therefore

∫
1

x3 + x
dx =

∫ (
1
x
− x

x2 + 1

)
dx = ln |x| − 1

2
ln(x2 + 1) + C =

1
2

ln
(

x2

x2 + 1

)
+ C.

C07S05.026:
6x3 − 18x

(x2 − 1)(x2 − 4)
=

A

x− 2
+

B

x− 1
+

C

x+ 1
+

D

x+ 2
leads to

A(x3 + 2x2 − x− 2) +B(x3 + x2 − 4x− 4) + C(x3 − x2 − 4x+ 4) +D(x3 − 2x2 − x+ 2) = 6x3 − 18x.

Thus
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A+B + C +D = 6,

2A+B − C − 2D = 0,

−A− 4B − 4C −D = −18,

−2A− 4B + 4C + 2D = 0.

It follows that A = 1, B = 2, C = 2, and D = 1. Therefore

∫
6x3 − 18x

(x2 − 1)(x2 − 4)
dx =

∫ (
1

x− 2
+

2
x− 1

+
2

x+ 1
+

1
x+ 2

)
dx

= ln |x− 2|+ 2 ln |x− 1|+ 2 ln |x+ 1|+ ln |x+ 2|+ C.

C07S05.027:
x+ 4
x3 + 4x

=
A

x
+
Bx+ C

x2 + 4
leads to Ax2 + 4A+Bx2 + Cx = x+ 4. So

A+B = 0, C = 1, and 4A = 4. So A = 1, B = −1.

Thus

∫
x+ 4
x3 + 4x

dx =
∫ (

1
x
− x

x2 + 4
+

1
x2 + 4

)
dx = ln |x| − 1

2
ln(x2 + 4) +

1
2

arctan
(x

2

)
+ C.

C07S05.028:
4x4 + x+ 1
x5 + x4

=
A

x
+
B

x2
+
C

x3
+
D

x4
+

E

x+ 1
implies that

A(x4 + x3) +B(x3 + x2) + C(x2 + x) +D(x+ 1) + Ex4 = 4x4 + x+ 1.

Thus

A+ E = 4,

A+B = 0,

B + C = 0,

C +D = 1,

D = 1.

These equations are easily solve from the bottom up: D = 1, C = 0, B = 0, A = 0, and E = 4. Therefore

∫
4x4 + x+ 1
x5 + x4

dx =
∫ (

1
x4

+
4

x+ 1

)
dx = − 1

3x3
+ 4 ln |x+ 1|+ C.

C07S05.029:
x

(x+ 1)(x2 + 1)
=

A

x+ 1
+
Bx+ C

x2 + 1
yields Ax2 +A+Bx2 +Bx+ Cx+ C = x. Thus

A+B = 0, B + C = 1, and A+ C = 0.

It follows that A = − 1
2 , B = 1

2 , and C = 1
2 . Therefore

∫
x

(x+ 1)(x2 + 1)
dx =

1
2

∫ (
− 1
x+ 1

+
x+ 1
x2 + 1

)
dx = −1

2
ln |x+ 1|+ 1

4
ln(x2 + 1) +

1
2

arctanx+ C.
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C07S05.030: Rather than searching for unknown coefficients, we note that

(
x+ 2
x2 + 4

)2

=
x2 + 4x+ 4
(x2 + 4)2

=
x2 + 4

(x2 + 4)2
+

4x
(x2 + 4)2

=
1

x2 + 4
+

4x
(x2 + 4)2

.

Therefore

∫ (
x+ 2
x2 + 4

)2

dx =
∫

1
x2 + 4

dx+
∫

4x
(x2 + 4)2

dx =
1
2

tan−1
(x

2

)
− 2
x2 + 1

+ C.

C07S05.031:
x2 − 10

2x4 + 9x2 + 4
=

A

x2 + 4
+

B

2x2 + 1
implies that 2Ax2 +A+Bx2 + 4B = x2− 10, and thus

2A+B = 1 and A+ 4B = −10, so that A = 2 and B = −3.

Therefore

∫
x2 − 10

2x4 + 9x2 + 4
dx =

∫ (
2

x2 + 4
− 3

2x2 + 1

)
dx = arctan

(x
2

)
− 3
√

2
2

arctan
(
x
√

2
)

+ C.

A substitution to integrate the second fraction is u = x
√

2.

C07S05.032:
x2

x4 − 1
=

A

x− 1
+

B

x+ 1
+
Cx+D

x2 + 1
, so that

A(x3 + x2 + x+ 1) +B(x3 − x2 + x− 1) + C(x3 − x) +D(x2 − 1) = x2.

Therefore

A+B + C = 0,

A−B +D = 1,

A+B − C = 0,

A−B −D = 0.

It follows that A = 1
4 , B = − 1

4 , C = 0, and D = 1
2 . Thus

∫
x2

x4 − 1
dx =

1
4

∫ (
1

x− 1
− 1
x+ 1

+
2

x2 + 1

)
dx =

1
4

ln |x− 1| − 1
4

ln |x+ 1|+ 1
2

arctanx+ C.

C07S05.033:
x3 + x2 + 2x+ 3
x4 + 5x2 + 6

=
Ax+B

x2 + 2
+
Cx+D

x2 + 3
, and so

Ax3 + 3Ax+Bx2 + 3B + Cx3 + 2Cx+Dx2 + 2D = x3 + x2 + 2x+ 3.

Therefore

A+ C = 1, B +D = 1,

3A+ 2C = 2, 3B + 2D = 3.

It follows that A = 0, B = 1, C = 1, and D = 0. Hence
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∫
x3 + x2 + 2x+ 3
x4 + 5x2 + 6

dx =
∫ (

1
x2 + 2

+
x

x2 + 3

)
dx =

√
2
2

arctan

(
x
√

2
2

)
+

1
2

ln(x2 + 3) + C.

C07S05.034:
x2 + 4

(x2 + 1)2(x2 + 2)
=
Ax+B

x2 + 2
+
Cx+D

x2 + 1
+

Ex+ F

(x2 + 1)2
yields

A(x5 + 2x3 + x) +B(x4 + 2x2 + 1) +C(x5 + 3x3 + 2x) +D(x4 + 3x2 + 2) +E(x3 + 2x) +F (x2 + 2) = x2 + 4.

Therefore

A+ C = 0, B +D = 0, 2A+ 3C + E = 0,

2B + 3D + F = 1, A+ 2C + 2E = 0, B + 2D + 2F = 4.

Note how the equations involving A, C, and E “separate” from those involving B, D, and F . This makes
it easy to solve them for A = 0, B = 2, C = 0, D = −2, E = 0, and F = 3. Therefore

∫
x2 + 4

(x2 + 1)2(x2 + 2)
dx =

∫ (
2

x2 + 2
− 2
x2 + 1

+
3

(x2 + 1)2

)
dx

=
√

2 arctan

(
x
√

2
2

)
− 1

2
arctanx+

3x
2(x2 + 1)

+ C.

(Part of the solution of Problem 30 was used to integrate the third fraction.)

C07S05.035: Expand the denominator to x4 − 2x3 + 2x2 − 2x+ 1 and then divide it into the numerator
to find that

x4 + 3x2 − 4x+ 5
(x2 + 1)(x− 1)2

= 1 +
2x3 + x2 − 2x+ 4
(x2 + 1)(x− 1)2

.

Then

2x3 + x2 − 2x+ 4
(x2 + 1)(x− 1)2

=
A

x− 1
+

B

(x− 1)2
+
Cx+D

x2 + 1

leads to

A(x3 − x2 + x− 1) +B(x2 + 1) + C(x3 − 2x2 + x) +D(x2 − 2x+ 1) = 2x3 + x2 − 2x+ 4.

Therefore

A+ C = 2, −A+B − 2C +D = 1,

A+ C − 2D = −2, −A+B +D = 4;

the solution is A = 1
2 , B = 5

2 , C = 3
2 , D = 2. Therefore

∫
x4 + 3x2 − 4x+ 5
(x2 + 1)(x− 1)2

dx =
∫ (

1 +
1
2

x− 1
+

5
2

(x− 1)2
+

3
2 x

x2 + 1
+

2
x2 + 1

)
dx

= x+
1
2

ln |x− 1| − 5
2(x− 1)

+
3
4

ln(x2 + 1) + 2 arctanx+ C.
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C07S05.036:
2x3 + 5x2 − x+ 3

(x2 + x− 2)2
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 2
+

D

(x+ 2)2
yields

A(x− 1)(x2 + 4x+ 4) +B(x2 + 4x+ 4) + C(x+ 2)(x2 − 2x+ 1) +D(x2 − 2x+ 1) = 2x3 + 5x2 − x+ 3;

A(x3 + 3x2 − 4) +B(x2 + 4x+ 4) + C(x3 − 3x+ 2) +D(x2 − 2x+ 1) = 2x3 + 5x2 − x+ 3.

Thus

A+ C = 2, 3A+B +D = 5,

4B − 3C − 2D = −1, −4A+ 4B + 2C +D = 3.

It follows that A = B = C = D = 1, and therefore

∫
2x3 + 5x2 − x+ 3

(x2 + x− 2)2
dx =

∫ (
1

x− 1
+

1
(x− 1)2

+
x

x+ 2
+

1
(x+ 2)2

)
dx

= ln |x− 1| − 1
x− 1

+ ln |x+ 2| − 1
x+ 2

+ C.

C07S05.037: Let x = e2t; then dx = 2e2t dt. Thus

∫
e4t

(e2t − 1)3
dt =

1
2

∫
x

(x− 1)3
dx.

Then
x

(x− 1)3
=

A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3
leads to A(x2 − 2x+ 1) +B(x− 1) + C = x, and so

A = 0, −2A+B = 1, and A−B + C = 0.

Therefore B = C = 1. Hence

∫
x

(x− 1)3
dx =

∫ (
1

(x− 1)2
+

1
(x− 1)3

)
dx = − 1

x− 1
− 1

2(x− 1)2
+ C.

Finally,

∫
e4t

(e2t − 1)3
dt = − 1

2(x− 1)
− 1

4(x− 1)2
+ C = − 1

2(e2t − 1)
− 1

4(e2t − 1)2
+ C.

C07S05.038: Let u = sin θ; then du = cos θ dθ. So

I =
∫

cos θ
sin2 θ − sin θ − 6

dθ =
∫

1
u2 − u− 6

du =
1
5

∫ (
1

u− 3
− 1
u+ 2

)
du

=
1
5

(ln |u− 3| − ln |u+ 2| ) + C =
1
5

(ln | − 3 + sin θ | − ln |2 + sin θ | ) + C.

C07S05.039: Let u = ln t; then du =
1
t
dt. Therefore
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J =
∫

1 + ln t
t(3 + 2 ln t)2

dt =
∫

u+ 1
(2u+ 3)2

du =
1
2

∫ (
1

2u+ 3
− 1

(2u+ 3)2

)
du

=
1
4

ln |2u+ 3|+ 1
4
· 1
2u+ 3

+ C =
1
4

ln |3 + 2 ln t|+ 1
4(3 + 2 ln t)

+ C.

C07S05.040: Let u = tan t. Then du = sec2 t dt. Hence

K =
∫

sec2 t

tan3 t+ tan2 t
dt =

∫
1

u3 + u2
du =

∫ (
− 1
u

+
1
u2

+
1

u+ 1

)
du

= − ln |u| − 1
u

+ ln |1 + u|+ C = ln
∣∣∣∣ 1 + tan t

tan t

∣∣∣∣− cot t+ C

= ln
∣∣∣∣ cos t+ sin t

sin t

∣∣∣∣− cot t+ C = ln | sin t+ cos t| − ln | sin t| − cot t+ C.

C07S05.041:
x− 9
x2 − 3x

=
3
x
− 2
x− 3

. So

∫ 2

1

x− 9
x2 − 3x

dx =
[
3 ln |x| − 2 ln |x− 3|

]2

1

= 3 ln 2− (−2 ln 2) = 5 ln 2 ≈ 3.4657359028.

C07S05.042:
x+ 5

3 + 2x− x2
=

1
x+ 1

− 2
x− 3

. Hence

∫ 2

0

x+ 5
3 + 2x− x2

dx =
[

ln |x+ 1| − 2 ln |x− 3|
]2

0

= ln 3− (−2 ln 3) = 3 ln 3 ≈ 3.2958368660.

C07S05.043:
3x− 15− 2x2

x3 − 9x
=

1
3

(
5
x
− 7
x+ 3

− 4
x− 3

)
. Hence

∫ 2

0

3x− 15− 2x2

x3 − 9x
dx =

1
3

[
5 ln |x| − 7 ln |x+ 3| − 4 ln |x− 3|

]2

0

=
1
3

(5 ln 2− 7 ln 5 + 4 ln 2 + 7 ln 4) =
1
3

(23 ln 2− 7 ln 5) ≈ 1.5587732553.

C07S05.044:
x2 + 10x+ 16
x3 + 8x2 + 16x

=
1
x

+
2

(x+ 4)2
. Thus

∫ 5

2

x2 + 10x+ 16
x3 + 8x2 + 16x

dx =
[

ln |x| − 2
x+ 4

]5

2

= −2
9

+ ln 5 +
1
3
− ln 2 =

1
9
− ln 2 + ln 5 ≈ 1.0274018430.

C07S05.045: x · x− 9
x2 − 3x

= 1− 6
x− 3

. Hence the volume is

V = 2π
∫ 2

1

(
1− 6

x− 3

)
dx = 2π

[
x− 6 ln |x− 3|

]2

1

= 2π(1 + 6 ln 2) ≈ 32.4142183908.
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C07S05.046: x · x+ 5
3 + 2x− x2

= −1− 6
x− 3

− 1
x+ 1

. So the volume is

V = 2π
∫ 2

0

(
−1− 6

x− 3
− 1
x+ 1

)
dx = 2π

[
− x− 6 ln |x− 3| − ln |x+ 1|

]2

0

= 2π(−2 + 5 ln 3) ≈ 21.9475523379.

C07S05.047: x · 3x− 15− 2x2

x3 − 9x
= −2− 4

x− 3
+

7
x+ 3

. So the volume is

V = 2π
∫ 2

1

(
−2− 4

x− 3
+

7
x+ 3

)
dx

= 2π
[
−2x− 4 ln |x− 3|+ 7 ln |x+ 3|

]2

1

= 2π(7 ln 5− 2− 10 ln 2) ≈ 14.66868411.

C07S05.048: x · x
2 + 10x+ 16

x3 + 8x2 + 16x
= 1 +

2
x+ 4

− 8
(x+ 4)2

. So the volume is

V = 2π
∫ 5

2

(
1 +

2
x+ 4

− 8
(x+ 4)2

)
dx

= 2π
[
x+ 2 ln |x+ 4|+ 8

x+ 4

]5

2

=
2π
9

(23 + 18 ln 9− 18 ln 6) ≈ 21.1522539380.

C07S05.049:
(

x− 9
x2 − 3x

)2

=
4
x

+
9
x2
− 4
x− 3

+
4

(x− 3)2
. So the volume is

V = π

∫ 2

1

(
x− 9
x2 − 3x

)2

dx = π

[
4 ln |x| − 9

x
− 4 ln |x− 3| − 4

x− 3

]2

1

=
π

2
(13 + 16 ln 2) ≈ 37.8410409708.

C07S05.050:
(

x+ 5
3 + 2x− x2

)2

=
1

x+ 1
+

1
(x+ 1)2

− 1
x− 3

+
4

(x− 3)2
. So the volume is

V = π

∫ 2

0

(
x+ 5

3 + 2x− x2

)2

dx

= π

[
ln |x+ 1 | − 1

x+ 1
− ln |x− 3| − 4

x− 3

]2

0

=
2π
3

(5 + ln 3) ≈ 17.3747601024.

C07S05.051: The volume is V =
∫ 1

0

πy2 dx. Now y2 =
1− x
1 + x

x2 = −x2 + 2x− 2 +
2

x+ 1
, and so

V = π

∫ (
−x2 + 2x− 2 +

2
x+ 1

)
dx

= π

[
−1

3
x3 + x2 − 2x+ 2 ln |x+ 1|

]1

0

=
π

3
(−4 + 6 ln 2) ≈ 0.1663819758.
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C07S05.052: Let f(x) =
x2(1− x)

1 + x
for 0 � x � 1.

Part (a): [f(x)]2 = x4 − 4x3 + 8x2 − 12x+ 16− 20
x+ 1

+
4

(x+ 1)2
. So the volume is

V = π

∫ 1

0

[f(x)]2 dx

= π

[
1
5
x5 − x4 +

8
3
x3 − 6x2 + 16x− 20 ln |x+ 1| − 4

x+ 1

]1

0

=
4π
15

(52− 75 ln 2) ≈ 0.0116963237.

Part (b): x · f(x) = 2− 2x+ 2x2 − x3 − 2
x+ 1

, so the volume is

V = 2π
∫ 1

0

2x · f(x) dx

= 4π
[
2x− x2 +

2
3
x3 − 1

4
x4 − 2 ln |x+ 1|

]1

0

=
π

3
(17− 24 ln 2) ≈ 0.381669647913.

C07S05.053: f(x) =
A

x− 7
+

B

x− 5
+
C

x
+
D

x2
=

93
x− 7

+
49
x− 5

− 44
x

+
280
x2

. Thus

∫
f(x) dx = 93 ln |x− 7|+ 49 ln |x− 5| − 44 ln |x| − 280

x
+ C,

both by Mathematica 3.0 and by hand (except that Mathematica omits the absolute value symbols).

C07S05.054: f(x) =
A

x+ 3
+

B

(x+ 3)2
+

C

x+ 7
+

D

(x+ 7)2
=

323
x+ 3

− 384
(x+ 3)2

− 291
x+ 7

− 1324
(x+ 7)2

. Thus

∫
f(x) dx = 323 ln |x+ 3|+ 384

x+ 3
− 291 ln |x+ 7|+ 1324

x+ 7
+ C,

both by Mathematica 3.0 and by hand (except that Mathematica omits the absolute value symbols).

C07S05.055: f(x) =
A

x− 4
+

B

(x− 4)2
+

C

x− 3
+

D

x+ 5
+

E

(x+ 5)2

= −
104
3

x− 4
+

48
(x− 4)2

+
567
16

x− 3
−

37
48

x+ 5
−

39
2

(x+ 5)2
. Therefore

∫
f(x) dx = −104

3
ln |x− 4| − 48

x− 4
+

567
16

ln |x− 3| − 37
48

ln |x+ 5|+ 39
2(x+ 5)

+ C,

both by hand and by Mathematica 3.0 (except that Mathematica omits the absolute value symbols).

C07S05.056: f(x) =
A

x− 2
+

B

(x− 2)2
+

C

(x− 2)3
+

D

(x− 2)4
+

E

x+ 2
+

F

(x+ 2)2

=
375
4

x− 2
+

26375
16

(x− 2)2
+

2625
2

(x− 2)3
− 375

(x− 2)4
−

375
4

x+ 2
−

375
16

(x+ 2)2
. Thus

∫
f(x) dx =

375
4

ln |x− 2| − 26375
16(x− 2)

− 2625
4(x− 2)2

+
125

(x− 2)3
− 375

4
ln |x+ 2|+ 375

16(x+ 2)
+ C,
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both by hand and by Mathematica 3.0 (except that Mathematica omits the absolute value symbols).

C07S05.057: Mathematica yields the partial fraction decomposition

4
2x− 1

+
6

3x− 1
+

3
(3x− 1)2

+
2x

x2 + 25
+

5
x2 + 25

and the antiderivative

− 1
3x− 1

− arctan
5
x

+ 2 ln(1− 3x) + 2 ln(1− 2x) + ln(25 + x2).

By hand, we get

− 1
3x− 1

+ arctan
x

5
+ 2 ln |3x− 1|+ 2 ln |2x− 1|+ ln(x2 + 25) + C.

Mathematica normally omits the absolute value symbols in logarithmic integrals as well as the constant of
integration; of course,

− arctan
5
x

= arctan
x

5
+ C,

so the two answers are basically the same.

C07S05.058: The partial fraction decomposition of the integrand (using Mathematica) is

1
x− 2

+
1

x+ 2
+

5
25x2 + 1

+
100x

25x2 + 1
− 100x

(25x2 + 1)2
,

and according to the computer algebra system, the antiderivative is

2
25x2 + 1

+ arctan(5x) + ln(x2 − 4) + 2 ln(25x2 + 1);

by hand, we obtained

2
25x2 + 1

+ arctan(5x) + ln |x− 2|+ ln |x+ 2|+ 2 ln(25x2 + 1) + C.

C07S05.059: Mathematica yields

∫
ax2 + bx+ c

x2(x− 1)
dx =

c

x
+ (a+ b+ c) ln(x− 1)− (b+ c) lnx+ C.

The term including lnx drops out if we let c = −b, and then the term including ln(x− 1) drops out if a = 0.
Thus to obtain a rational antiderivative, let a = 0, b �= 0 (but otherwise arbitrary), and c = −b.

C07S05.060: According to Mathematica,

∫
ax2 + bx+ c

x3(x− 1)2
= (a+ 2b+ 3c) lnx− (a+ 2b+ 3c) ln(x− 1)− a+ b+ c

x− 1
− c

2x2
− b+ 2c

x
+ C.

The logarithmic terms drop out if a+2b+3c = 0. Thus choose a and b not both zero and let c = −(a+2b)/3.
For example, if a = 1, b = 1, and c = −1, then the antiderivative is

− 1
x− 1

+
1

2x2
+

1
x

+ C.
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C07S05.061: According to Mathematica,

∫
ax2 + bx+ c

x3(x− 4)4
dx

= −16a+ 4b+ c

192(x− 4)3
+

16a+ 8b+ 3c
512(x− 4)2

− 8a+ 6b+ 3c
512(x− 4)

− c

512x2
− b+ c

256x

− (8a+ 8b+ 5c) ln(x− 4)
2048

+
(8a+ 8b+ 5c) lnx

2048
+ C.

The logarithmic terms drop out if 8a + 8b + 5c = 0. Hence choose a and b not both zero (but otherwise
arbitrary) and let c = −(8a+ 8b)/5. For example, if a = b = 5 and c = −16, then the antiderivative is

− 7
16(x− 4)3

+
9

64(x− 4)2
− 11

256(x− 4)
+

1
32x2

+
11

256x
+ C.
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Section 7.6

C07S06.001: Let x = 4 sin θ. Then

√
16− x2 =

√
16− 16 sin2 θ =

√
16 cos2 θ = 4 cos θ and dx = 4 cos θ dθ.

Therefore

∫
1√

16− x2
dx =

∫
1

4 cos θ
· 4 cos θ dθ =

∫
1 dθ = θ + C = arcsin

(x
4

)
+ C.

C07S06.002: Let x =
2
3

sinu. Then

4− 9x2 = 4− 4 sin2 u = 4 cos2 u and dx =
2
3

cosu du.

Thus

∫
1√

4− 9x2
dx =

2
3

∫
cosu

2
cosu du =

1
3
u+ C =

1
3

arcsin
(

3x
2

)
+ C.

C07S06.003: Let x = 2 sinu. Then dx = 2 cosu du and

x2
√

4− x2 = (4 sin2 u)
√

4− 4 sin2 u = 8 sin2 u cosu.

Thus

I =
∫

1
x2
√

4− x2
dx =

2 cosu
8 sin2 u cosu

du =
1
4

csc2 u du = − 1
4

cotu + C.

The reference triangle with acute angle u, opposite side x, and hypotenuse 2 has adjacent side of length√
4− x2 , and thus

I = − 1
4
·
√

4− x2

x
+ C = −

√
4− x2

4x
+ C.

C07S06.004: Let x = 5 secu. Then dx = 5 secu tanu du and x2
√
x2 − 25 , = 125 sec2 u tanu. So

J =
∫

1
x2
√
x2 − 25

dx =
∫

5 secu tanu
125 sec2 u tanu

du =
1
25

∫
cosu du =

1
25

sinu + C.

A reference triangle with acute angle u, adjacent side 5, and hypotenuse x has opposite side
√
x2 − 25 , and

hence

J =
√
x2 − 25
25x

+ C.

C07S06.005: Let x = 4 sinu. Then dx = 4 cosu du and
x2

√
16− x2

=
16 sin2 u

4 cosu
. Therefore

1



K =
∫

x2

√
16− x2

dx =
∫

16 sin2 u du = 8
∫

(1− cos 2u) du

= 8
(
u− 1

2
sin 2u

)
+ C = 8(u− sinu cosu) + C.

A reference triangle with acute angle u, opposite side x, and hypotenuse 4 has adjacent side
√

16− x2 , and
therefore

K = 8

[
arcsin

(x
4

)
− x

4
·
√

16− x2

4

]
+ C = 8 arcsin

(x
4

)
− x
√

16− x2

2
+ C.

C07S06.006: Let x =
3
2

sinu. Then dx =
3
2

cosu du and

x2

√
9− 4x2

=
9
4 sin2 u√

9− 9 sin2 u
=

3 sin2 u

4 cosu
;

I =
∫

x2

√
9− 4x2

dx =
9
8

∫
sin2 u du =

9
16

∫
(1− cos 2u) u =

9
16

(u− sinu cosu) + C.

The reference triangle with acute angle u, opposite side 2x, and hypotenuse 3 has adjacent side
√

9− 4x2

and thus

I =
9
16

[
arcsin

(
2x
3

)
− 2x

3
·
√

9− 4x2

3

]
+ C =

9
16

arcsin
(

2x
3

)
− x
√

9− 4x2

8
+ C.

C07S06.007: Let x =
3
4

sinu: dx =
3
4

cosu du, (9− 16x2)3/2 = (9− 9 sin2 u)3/2 = 27 cos3 u. Hence

J =
∫

1
(9− 16x2)3/2

dx =
3
4

∫
cosu

27 cos3 u
du =

1
36

∫
sec2 u du =

1
36

tanu+ C.

The reference triangle with acute angle u, opposite side 4x, and hypotenuse 3 has adjacent side
√

9− 16x2 ,
and hence

J =
1
36
· 4x√

9− 16x2
+ C =

x

9
√

9− 16x2
+ C.

C07S06.008: Let x =
5
4

tanu: 25 + 16x2 = 25 sec2 u and dx =
5
4

sec2 u du. Thus

K =
∫

1
(25 + 16x2)3/2

dx =
∫

1
125 sec3 u

· 5
4

sec2 u du =
1

100

∫
cosu du =

1
100

sinu + C.

The reference triangle with acute angle u has opposite side 4x and adjacent side 5, and thus hypotenuse√
25 + 16x2. Therefore

K =
1

100
· 4x√

25 + 16x2
+ C =

x

25
√

25 + 16x2
+ C.

C07S06.009: Let x = sec θ:
√
x2 − 1 = tan θ, dx = sec θ tan θ dθ. Thus
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I =
∫ √

x2 − 1
x2

dx =
∫

tan θ
sec2 θ

sec θ tan θ dθ =
∫

tan2 θ

sec θ
dθ

=
∫

sec2 θ − 1
sec θ

dθ =
∫

(sec θ − cos θ) dθ = ln | sec θ + tan θ | − sin θ + C.

The reference triangle with acute angle θ, adjacent side x, and hypotenuse x has opposite side
√
x2 − 1 .

Therefore

I = ln
∣∣∣x+

√
x2 − 1

∣∣∣−
√
x2 − 1
x

+ C.

C07S06.010: Let x = 2 sinu:
√

4− x2 =
√

4− 4 sin2 u = 2 cosu, dx = 2 cosu du. Thus

J =
∫
x3

√
4− x2 dx =

∫
(8 sin3 u)(2 cosu)(2 cosu) du

= 32
∫

(1− cos2 u) cos2 u sinu du = 32
(

1
5

cos5 u− 1
3

cos3 u
)

+ C.

The reference triangle with acute angle u, opposite side x, and hypotenuse 2 has adjacent side
√

4− x2 .
Therefore

J = 32
[

1
5
· (4− x

2)5/2

32
− 1

3
· (4− x

2)3/2

8

]
+ C =

1
5
(4− x2)5/2 − 4

3
(4− x2)3/2 + C

= (4− x2)1/2
[

1
5
(4− x2)2 − 4

3
(4− x2)

]
+ C =

1
15

(4− x2)1/2
[
3(16− 8x2 + x4)− 20(4− x2)

]
+ C

=
1
15

(3x4 − 4x2 − 32)
√

4− x2 + C.

C07S06.011: Let x =
3
2

tanu: dx =
3
2

sec2 u du, 9 + 4x2 + 9 + 9 tan2 u = 9 sec2 u. Thus

K =
∫
x3

√
9 + 4x2 dx =

∫ (
27
8

tan3 u

)
(3 secu)

(
3
2

sec2 u

)
du

=
243
16

∫
sec3 u tan3 u du =

243
16

∫
(sec3 u)(sec2 u− 1) tanu du

=
243
16

∫
(sec4 u− sec2 u) secu tanu du =

243
16

(
1
5

sec5 u− 1
3

sec3 u

)
+ C.

The reference triangle with acute angle u, opposite side 2x, and adjacent side 3 has hypotenuse
√

9 + 4x2 .
Hence
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K =
243
16

[
1
5
· (9 + 4x2)5/2

243
− 1

3
· (9 + 4x2)3/2

27

]
+ C =

1
80

(9 + 4x2)5/2 − 3
16

(9 + 4x2)3/2 + C

=
1
80

[
(9 + 4x2)5/2 − 15(9 + 4x2)3/2

]
+ C =

√
9 + 4x2

80
[
(9 + 4x2)2 − 15(9 + 4x2)

]
+ C

=
√

9 + 4x2

80
(
16x4 + 72x2 + 81− 60x2 − 135

)
+ C =

√
9 + 4x2

80
(16x4 + 12x2 − 54) + C

=
1
40

(8x4 + 6x2 − 27)
√

9 + 4x2 + C.

Such extensive algebraic simplifications are not normally necessary.

C79S06.012: Let x = 5 tanu: dx = 5 sec2 u du, x2 + 25 + 25 sec2 u. Therefore

I =
∫

x3

√
x2 + 25

dx =
∫

125 tan3 u

5 secu
· 5 sec2 u du

=
∫

125 tan3 u secu du = 125
∫

(sec2 u− 1) secu tanu du = 125
(

1
3

sec3 u− secu
)

+ C.

The reference triangle with acute angle u, opposite side x, and adjacent side 5 has hypotenuse
√
x2 + 25 .

Thus

I = 125
[

1
3
· (x

2 + 25)3/2

125
− (x2 + 25)1/2

5

]
+ C =

1
3
(x2 + 25)3/2 − 25(x2 + 25)1/2 + C

= (x2 + 25)1/2
[

1
3
(x2 + 25)− 25

]
+ C =

1
3
(x2 + 25)1/2(x2 − 50) + C.

C07S06.013: Let x =
1
2

sin θ: dx =
1
2

cos θ dθ, 1− 4x2 = 1− sin2 θ = cos2 θ. So

I =
∫ √

1− 4x2

x
dx =

∫
2 cos θ
sin θ

· 1
2

cos θ dθ =
∫

cos2 θ
sin θ

dθ =
∫

1− sin2 θ

sin θ
dθ

=
∫

(csc θ − sin θ) dθ = ln | csc θ − cot θ |+ cos θ + C.

The reference triangle with acute angle θ, opposite side 2x, and hypotenuse 1 has adjacent side
√

1− 4x2 .
Therefore

I = ln

∣∣∣∣∣
1−
√

1− 4x2

2x

∣∣∣∣∣ +
√

1− 4x2 + C = ln

∣∣∣∣∣
1− 1 + 4x2

2x
(
1 +
√

1− 4x2
)
∣∣∣∣∣ +

√
1− 4x2 + C

= ln(4x2)− ln |2x| − ln
(
1 +

√
1− 4x2

)
+

√
1− 4x2 + C

= ln 4 + 2 ln |x| − ln 2− ln |x| − ln
(
1 +

√
1− 4x2

)
+

√
1− 4x2 + C

= ln |x|+ ln 2− ln
(
1 +

√
1− 4x2

)
+

√
1− 4x2 + C

= ln |x| − ln
(
1 +

√
1− 4x2

)
+

√
1− 4x2 + C1

4



where C1 = C − ln 2.

C07S06.014: Let x = tan θ: dx = sec2 θ dθ, 1 + x2 = sec θ. Thus
∫

1√
1 + x2

dx =
∫

1
sec θ

sec2 θ dθ = ln | sec θ + tan θ |+ C = ln
(
x+

√
1 + x2

)
+ C.

C07S06.015: Let x =
3
2

tanu: 9 + 4x2 = 9 + 9 tan2 u = 9 sec2 u, ds =
3
2

sec2 u du. Thus

J =
∫

1√
9 + 4x2

dx =
∫

1
3 secu

· 3
2

sec2 u du =
1
2

∫
secu du =

1
2

ln | secu+ tanu|+ C.

The reference triangle with acute angle u, opposite side 3x, and adjacent side 3 has hypotenuse
√

9 + 4x2 .
Therefore

J =
1
2

ln

∣∣∣∣∣
√

9 + 4x2

3
+

2x
3

∣∣∣∣∣ + C =
1
2

ln
(
2x+

√
9 + 4x2

)
+ C1

where C1 = C − 1
2

ln 3.

C07S06.016: Let x =
1
2

tanu: dx =
1
2

sec2 u du,
√

1 + 4x2 =
√

1 + tan2 u = secu. So

K =
∫ √

1 + 4x2 dx =
1
2

∫
sec3 u du =

1
4

secu tanu+
1
4

ln | secu+ tanu|+ C

by Formula 28 inside the back cover (or use the result in Example 6 of Section 7.3). The antiderivative
of sec3 x is easy to remember: It is the average of the derivative and antiderivative of secx (merely a
coincidence). Next, the reference triangle with acute angle u, opposite side 2x, and adjacent side 1 has
hypotenuse

√
1 + 4x2 , and therefore

K =
1
2
x
√

1 + 4x2 +
1
4

ln
(
2x+

√
1 + 4x2

)
+ C.

C07S06.017: Let x = 5 sin θ: dx = 5 cos θ dθ, 25− x2 = 25 cos2 θ. Thus

I =
∫

x2

√
25− x2

dx =
∫

25 sin2 θ

5 cos θ
· 5 cos θ dθ =

25
2

∫
(1− cos 2θ) dθ =

25
2

(θ − sin θ cos θ) + C.

The reference triangle with acute angle θ, opposite side x, and hypotenuse 5 has adjacent side
√

25− x2 .
Therefore

I =
25
2

[
arcsin

(x
5

)
− x
√

25− x2

25

]
+ C =

25
2

arcsin
(x

5

)
− x
√

25− x2

2
+ C.

C07S06.018: Let x = 5 sinu: 25− x2 − 25 cos2 u, dx = 5 cosu du. So

J =
∫

x3

√
25− x2

dx =
∫

125 sin3 u

5 cosu
· 5 cosu du

= 125
∫

(1− cos2 u) sinu du = 125
(

1
3

cos3 u− cosu
)

+ C.
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A reference triangle with acute angle u has opposite side x and hypotenuse 5, and thus adjacent side√
25− x2 . Therefore

J = 125
[

1
3
· (25− x2)3/2

125
− (25− x2)1/2

5

]
+ C =

1
3

(25− x2)3/2 − 25(25− x2)1/2 + C

=
1
3

(25− x2)1/2(25− x2 − 75) = − 1
3

(x2 + 50)
√

25− x2 + C.

C07S06.019: Let x = tan θ: 1 + x2 = sec2 θ, ds = sec2 θ dθ. Thus

K =
∫

x2

√
1 + x2

dx =
∫

tan2 θ

sec θ
sec2 θ dθ =

∫
sec θ tan2 θ dθ =

∫
(sec3 θ − sec θ) dθ.

For the antiderivatives, refer to Formulas 14 and 28 of the endpapers of the text or use the reduction formula
in Example 6 of Section 7.3. Thus we obtain

K =
1
2

sec θ tan θ − 1
2

ln | sec θ + tan θ |+ C.

A reference triangle with acute angle θ, opposite side x, and adjacent side 1 has hypotenuse
√

1 + x2 .
Therefore

K =
1
2

[
x
√

1 + x2 − ln
(
x+

√
1 + x2

)]
+ C.

C07S06.020: Let x = tan θ: 1+x2 = sec2 θ, ds = sec2 θ dθ. Almost exactly as in the solution of Problem
19, we get

I =
∫

x3

√
1 + x2

dx =
∫

sec θ tan3 θ dθ =
∫

(sec2 θ − 1) sec θ tan θ dθ =
1
3

sec3 θ − sec θ + C.

A reference triangle with acute angle θ, opposite side x, and adjacent side 1 has hypotenuse
√

1 + x2 .
Therefore

I =
1
3

(1 + x2)3/2 − (1 + x2)1/2 + C =
1
3

[
(1 + x2)3/2 − 3(1 + x2)1/2

]
+ C

=
√

1 + x2

3
(1 + x2 − 3) + C =

1
3

(x2 − 2)
√

1 + x2 + C.

C07S06.021: Let x =
2
3

tanu: dx =
2
3

sec2 u du, 4 + 9x2 = 4 + 4 tan2 u = 4 sec2 u. Therefore

J =
∫

x2

√
4 + 9x2

dx =
∫ 4

9 tan2 u

2 secu
· 2
3

sec2 u du =
4
27

∫
secu tan2 u du =

4
27

∫
(sec3 u− secu) du

=
4
27

(
1
2

secu tanu− 1
2

ln | secu+ tanu|
)

+ C =
2
27

(secu tanu− ln | secu+ tanu|) + C.

A reference triangle with acute angle u, opposite side 3x, and adjacent side 2 yields hypotenuse of length√
4 + 9x2 . Therefore
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J =
2
27

[
3x
√

4 + 9x2

4
− ln

(
3x+

√
4 + 9x2

2

)]
+ C

=
1
18
x
√

4 + 9x2 − 2
27

ln
(
3x+

√
4 + 9x2

)
+ C1.

C07S06.022: Let x = sin θ: 1− x2 = cos2 θ, dx = cos θ dθ. Then

K =
∫

(1− x2)3/2 dx =
∫

cos4 θ dθ.

You could now use the method in Example 5 of Section 7.4, or—as we do—the result in Problem 54 of
Section 7.3: If n is an integer and n � 2, then

∫
cosn x dx =

(cosx)n−1 sinx
n

+
n− 1
n

∫
(cosx)n−2 dx.

Thus

K =
1
4

cos3 θ sin θ +
3
4

∫
cos2 θ dθ

=
1
4

cos3 θ sin θ +
3
4

(
1
2

cos θ sin θ +
1
2

∫
θ dθ

)
=

1
4

sin θ cos3 θ +
3
8

sin θ cos θ +
3
8
θ + C.

A reference triangle with acute angle θ, opposite side x, and hypotenuse 1 has adjacent side
√

1− x2 .
Therefore

K =
1
4
x(1− x2)3/2 +

3
8
x(1− x2)1/2 +

3
8

arcsinx+ C

=
1
8
x(1− x2)1/2(2− 2x2 + 3) +

3
8

arcsinx+ C =
1
8
x(5− x2)

√
1− x2 +

3
8

arcsinx+ C.

C07S06.023: Let x = tanu: dx = sec2 u du, 1 = x2 = sec2 u. Hence

I =
∫

1
(1 + x2)3/2

dx =
∫

1
sec3 u

sec2 u du =
∫

cosu du = sinu + C.

A reference triangle with acute angle u, opposite side z, and adjacent side 1 has hypotenuse
√

1 + x2 .
Therefore

I =
x√

1 + x2
+ C.

C07S06.024: Let x = 2 sinu: 4− x2 = 4− 4 sin2 u = 4 cos2 u, dx = 2 cosu du. Thus

J =
∫

1
(4− x2)2

dx =
∫

2 cosu
16 cos4 u

du =
1
8

∫
sec3 u du =

1
16

secu tanu+
1
16

ln | secu+ tanu|+ C.

A reference triangle with acute angle u, opposite side x, and hypotenuse 2 has adjacent side
√

4− x2 . Thus
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J =
1
16
· 2x
4− x2

+
1
16

ln
∣∣∣∣ 2 + x√

4− x2

∣∣∣∣ + C

=
x

8(4− x2)
+

1
32

ln
∣∣∣∣ (2 + x)2

(2 + x)(2− x)

∣∣∣∣ + C =
x

8(4− x2)
+

1
32

ln
∣∣∣∣ 2 + x

2− x

∣∣∣∣ + C.

C07S06.025: Let x = 2 sin θ: 4− x2 = 4− 4 sin2 θ = 4 cos2 θ, dx = 2 cos θ dθ. Therefore

K =
∫

1
(4− x2)3

dx =
∫

2 cos θ
64 cos6 θ

dθ =
1
32

∫
sec5 θ dθ.

From Example 6 in Section 7.3, we know that if n is an integer and n � 2, then

∫
secn x dx =

(secx)n−2 tanx
n− 1

+
n− 2
n− 1

∫
(secx)n−2 dx.

Hence, beginning with n = 5, we see that

K =
1
32

[
1
4

sec3 θ tan θ +
3
4

∫
sec3 θ dθ

]

=
1
32

[
1
4

sec3 θ tan θ +
3
4

(
1
2

sec θ tan θ +
1
2

∫
sec θ dθ

)]

=
1
32

(
1
4

sec3 θ tan θ +
3
8

sec θ tan θ +
3
8

ln | sec θ + tan θ |
)

+ C

=
1

128
sec3 θ tan θ +

3
256

sec θ tan θ +
3

256
ln | sec θ + tan θ |+ C.

A reference triangle with acute angle θ, opposite side x, and hypotenuse 2 has adjacent side
√

4− x2 . So

K =
1

512

[
4 · 8x

(4− x2)2
+ 6 · 2x

4− x2
+ 6 ln

∣∣∣∣ x+ 2√
4− x2

∣∣∣∣
]

+ C

=
1

512

[
32x

(4− x2)2
+

12x
4− x2

+ 3 ln
∣∣∣∣ (x+ 2)2

4− x2

∣∣∣∣
]

+ C =
1

512

[
32x

(4− x2)2
+

12x
4− x2

+ 3 ln
∣∣∣∣ 2 + x

2− x

∣∣∣∣
]

+ C.

C07S06.026: Let x =
3
2

tanu: 4x2 + 9 = 9 tan2 3u+ 9 = 9 sec2 u and dx =
3
2

sec2 u du. Thus

I =
∫

1
(4x2 + 9)3

dx =
∫

1
93 sec6 u

· 3
2

sec2 u du =
1

486

∫
cos4 u du.

Now use the recursion/reduction formula in Problem 54 of Section 7.3. The result:

I =
1

486

[
1
4

cos3 u sinu+
3
4

∫
cos2 u du

]

=
1

486

[
1
4

cos3 u sinu+
3
4

(
1
2

cosu sinu+
1
2

∫
1 du

)]

=
1

486

(
1
4

sinu cos3 u+
3
8

sinu cosu+
3
8
u

)
+ C.
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A reference triangle with acute angle u, opposite side 2x, and adjacent side 3 has hypotenuse
√

9 + 4x2 .
Hence

I =
1

486

[
1
4
· 54x
(9 + 4x2)2

+
3
8
· 6x
9 + 4x2

+
3
8

arctan
(

2x
3

)]
+ C

=
27

4 · 243
· x

(9 + 4x2)2
+

9
8 · 243

· x

9 + 4x2
+

3
16 · 243

arctan
(

2x
3

)
+ C

=
x

36(9 + 4x2)2
+

x

216(9 + 4x2)
+

1
1296

arctan
(

2x
3

)
+ C.

C07S06.027: Letx =
3
4

tan θ: ds =
3
4

sec2 θ dθ, 9 + 16x2 = 9 + 9 tan2 x3 = 9 sec2 θ. Hence

I =
∫ √

9 + 16x2 dx =
∫

(3 sec θ) · 3
4

sec2 θ dθ =
9
4

∫
sec3 θ dθ =

9
8

(sec θ tan θ + ln | sec θ + tan θ | ) + C.

A reference triangle with acute angle θ, opposite side 4x, and adjacent side 3 has hypotenuse
√

9 + 16x2 .
Thus

I =
9
8

[
4x
√

9 + 16x2

9
+ ln

(
4x
√

9 + 16x2

3

)]
+ C =

1
2
x
√

9 + 16x2 +
9
8

ln
(
4x+

√
9 + 16x2

)
+ C1.

C07S06.028: Let x = 3
4 tanu: 9 + 16x2 = 9 + 9 tan2 u = 9 sec2 u, ds = 3

4 sec2 u du. Thus

I =
∫

(9 + 16x2)32 dx =
∫

(27 sec2 u) · 3
4

sec2 u du =
81
4

∫
sec5 u du.

Then, as in the solution of Problem 25, we have

I =
81
4

(
1
4

sec3 u tanu+
3
8

secu tanu+
3
8
|secu+ tanu|

)
+ C.

A reference triangle with acute angle u, opposite side 4x, and adjacent side 3 has hypotenuse
√

9 + 16x2 .
Therefore

I =
81
4

[
1
4
· 4x(9 + 16x2)3/2

81
+

3
8
· 4x(9 + 16x2)1/2

9
+

3
8

ln

(
4x+

√
9 + 16x2

3

)]
+ C

=
1
4
x(9 + 16x2)3/2 +

27
8
x
√

9 + 16x2 +
243
32

ln
(
4x+

√
9 + 16x2

)
+ C1.

C07S06.029: Let x = 5 sec θ: dx = 5 sec θ tan θ dθ, x2 − 25 = 25 sec2 θ − 25 = 25 tan2 θ. So

J =
∫ √

x2 − 25
x

dx =
∫

5 tan θ
5 sec θ

· 5 sec θ tan θ dθ

= 5
∫

tan2 θ dθ = 5
∫

(sec2 θ − 1) dθ = 5(tan θ − θ) + C.

A reference triangle with acute angle θ, adjacent side 5, and hypotenuse x has opposite side
√
x2 − 25 .

Therefore
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J = 5

[√
x2 − 25

5
− arcsec

(x
5

)]
+ C =

√
x2 − 25 − 5 arcsec

(x
5

)
+ C

=
√
x2 − 25 + 5 arctan

(
5√

x2 − 25

)
+ C =

√
x2 − 25 − 5 arctan

(√
x2 − 25

5

)
+ C.

C07S06.030: Let x =
4
3

secu: dx =
4
3

secu tanu du, 9x2−16 = 16 sec2 u−16 = 16 tan2 u. Consequently

K =
∫ √

9x2 − 16
x

dx =
∫

4 tanu
4
3 secu

· 4
3

secu tanu du

= 4
∫

tan2 u du = 4
∫

(sec2 u− 1) du = 4(tanu − u) + C.

A reference triangle with acute angle u, adjacent side 4, and hypotenuse 3x has opposite side
√

9x2 − 16 .
Therefore

K = 4

[√
9x2 − 16

4
− arcsec

(
3x
4

)]
+ C

=
√

9x2 − 16 − 4 arcsec
(

3x
4

)
+ C =

√
9x2 − 16 − 4 arctan

(√
9x2 − 16

4

)
+ C.

C07S06.031: Let x = sec θ: x2 − 1 = sec2 θ − 1, = sec θ tan θ dθ. Then

I =
∫
x2

√
x2 − 1 dx =

∫
(sec2 θ)(tan θ)(sec θ tan θ) dθ =

∫
sec3 θ tan2 θ dθ =

∫
( sec5 θ − sec3 θ) dθ.

Use the result in Example 6 of Section 7.3 (if you haven’t memorized it by now!): If n is an integer and
n � 2, then

∫
secn x dx =

(secx)n−2 tanx
n− 1

+
n− 2
n− 1

∫
(secx)n−2 dx.

Thus

I =
∫

(sec5 θ − sec3 θ) dθ =
1
4

sec3 θ tan θ +
3
4

∫
sec3 θ dθ −

∫
sec3 θ dθ

=
1
4

sec3 θ tan θ − 1
4

(
1
2

sec θ tan θ +
1
2

ln | sec θ + tan θ |
)

+ C

=
1
4

sec3 θ tan θ − 1
8

sec θ tan θ − 1
8

ln | sec θ + tan θ |+ C.

A reference triangle with acute angle θ, adjacent side 1, and hypotenuse x has opposite side
√
x2 − 1 , and

therefore

I =
1
4
x3

√
x2 − 1 − 1

8
x
√
x2 − 1 − 1

8
ln

∣∣∣x+
√
x2 − 1

∣∣∣ + C.
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Additional algebraic simplifications of the answer are possible but not normally required (except possibly to
reconcile the answer with that of a computer algebra system such as Mathematica, Maple, or Derive).

C07S06.032: Let x =
3
2

secu: dx =
3
2

secu tanu du,
√

4x2 − 9 =
√

9 sec2 u − 9 = 3 tanu. Thus

I =
∫

x2

√
4x2 − 9

dx =
∫ 9

4 sec2 u

3 tanu
· 3
2

secu tanu du

=
9
8

∫
sec3 u du =

9
16

(secu tanu+ ln | secu+ tanu| ) + C.

A reference triangle with acute angle u, adjacent side 3, and hypotenuse 2x has opposite side
√

4x2 − 9 .
Therefore

I =
9
16

(
2x
√

4x2 − 9
9

+ ln

∣∣∣∣∣
2x+

√
4x2 − 9
3

∣∣∣∣∣
)

+ C =
1
8
x
√

4x2 − 9 +
9
16

ln
∣∣∣2x+

√
4x2 − 9

∣∣∣ + C1.

C07S06.033: Let x =
1
2

sec θ: dx =
1
2

sec θ tan θ dθ, (4x2 − 1)3/2 = (sec2 θ − 1)3/2 = tan3 θ. Thus

J =
∫

1
(4x2 − 1)3/2

dx =
∫

1
tan3 θ

· 1
2

sec θ tan θ dθ

=
1
2

∫
sec θ
tan2 θ

dθ =
1
2

∫
cos θ
sin2 θ

dθ = − 1
2 sin θ

+ C = − 1
2

csc θ + C.

A reference triangle with acute angle θ, adjacent side 1, and hypotenuse 2x has opposite side
√

4x2 − 1 .
Therefore

J = −1
2
· 2x√

4x2 − 1
+ C = − x√

4x2 − 1
+ C.

C07S06.034: Let x =
3
2

secu: dx =
3
2

secu tanu du, 4x2 − 9 = 9 sec2 u− 9 = 9 tan2 u. So

K =
∫

1
x2
√

4x2 − 9
dx =

∫ 3
2 secu tanu(

9
4 sec2 u

)
(3 tanu)

du =
2
9

∫
cosu du =

2
9

sinu + C.

A reference triangle with acute angle u, adjacent side 3, and hypotenuse 2x has opposite side
√

4x2 − 9 .
Therefore

K =
2
9
·
√

4x2 − 9
2x

+ C =
√

4x2 − 9
9x

+ C.

C07S06.035: Let x =
(√

5
)

secu: x2− 5 = 5 sec2 u − 5 = 5 tan2 u, dx =
(√

5
)

secu tanu du. Therefore

I =
∫ √

x2 − 5
x2

dx =
∫ (√

5
)
tanu

5 sec2 u
·
(√

5
)

secu tanu du =
∫

tan2 u

secu
du

=
∫

sin2 u

cosu
du =

∫
1− cos2 u

cosu
du =

∫
(secu − cosu) du = ln | secu+ tanu| − sinu+ C.
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A reference triangle with acute angle u, adjacent side
√

5, and hypotenuse x has opposite side
√
x2 − 5 .

Thus

I = ln

∣∣∣∣∣
x+
√
x2 − 5√
5

∣∣∣∣∣−
√
x2 − 5
x

+ C = ln
∣∣∣x+

√
x2 − 5

∣∣∣−
√
x2 − 5
x

+ C1.

C07S06.036: 4x2 − 5 = 5 sec2 u − 5 = 5 tan2 u if 2x =
(√

5
)

secu. So let

x =
√

5
2

secu; dx =
√

5
2

secu tanu du.

Then

J =
∫

(4x2 − 5)3/2 dx =
∫ (

53/2 tan3 u
)
·
√

5
2

secu tanu du =
25
2

∫
tan4 u secu du

=
25
2

∫ (
sec4 u− 2 sec2 u+ 1

)
secu du =

25
2

∫ (
sec5 u− 2 sec3 u+ secu

)
du.

From Example 6 in Section 7.3: If n is an integer and n � 2, then

∫
secn x dx =

(secx)n−2 tanx
n− 1

+
n− 2
n− 1

∫
(secx)n−2 dx.

Therefore

∫
sec5 x dx =

1
4

sec3 x tanx+
3
4

∫
sec3 x dx

=
1
4

sec3 x tanx+
3
8

secu tanu+
3
8

ln | secu+ tanu|+ C;

2
∫

sec3 u du = secu tanu+ ln | secu+ tanu|+ C;

∫
secu du = ln | secu+ tanu|+ C.

Thus

J =
∫ (

sec5 u− 2 sec3 u+ secu
)
du =

1
4

sec3 u tanu− 5
8

secu tanu+
3
8

ln | secu+ tanu|+ C.

A reference triangle with acute angle u, adjacent side
√

5, and hypotenuse 2x has opposite side
√

4x2 − 5 .
Therefore

J =
25
2

(
1
4
· 8x3

5
√

5
·
√

4x2 − 5√
5

− 5
8
· 2x
√

4x2 − 5
5

+
3
8

ln

∣∣∣∣∣
2x+

√
4x2 − 5√
5

∣∣∣∣∣
)

+ C

= x3
√

4x2 − 5 − 25
8
x
√

4x2 − 5 +
75
16

ln
∣∣∣2x+

√
4x2 − 5

∣∣∣ + C1.

C07S06.037: Let x = 5 sinh θ. Then 25 + x2 = 25 + 25 sinh2 θ = 25 cosh2 θ and dx = 5 cosh θ dθ. So

12



∫
1√

25 + x2
dx =

∫
5 cosh θ
5 cosh θ

dθ = θ + C = sinh−1
(x

5

)
+ C.

C07S06.038: Let x = sinh θ. Then 1 + x2 = cosh2 θ and dx = cosh θ dθ. Next we will first use Eq. (11)
of Section 6.9, then Eq. (9):

∫ √
1 + x2 dx =

∫
cosh2 θ dθ =

1
2

∫
(cosh 2θ + 1) dθ

=
1
2

(
1
2

sinh 2θ + θ

)
+ C =

1
2

(sinh θ cosh θ + θ) + C =
1
2

(
x
√

1 + x2 + sinh−1 x
)

+ C.

C07S06.039: Let x = 2 cosh θ. Then x2 − 4 = 4 cosh2 θ − 4 = 4 sinh2 θ and dx = 2 sinh θ dθ. So—at one
point using Eq. (5) of Section 6.9—

∫ √
x2 − 4
x2

dx =
∫

2 sinh θ
4 cosh2 θ

· 2 sinh θ dθ =
∫

tanh2 θ dθ =
∫ (

1− sech2 θ
)
dθ

= θ − tanh θ + C = θ − sinh θ
cosh θ

+ C = cosh−1
(x

2

)
−
√
x2 − 4
x

+ C.

C07S06.040: Let x =
1
3

sinhu: dx =
1
3

coshu du, 1 + 9x2 = 1 + sinh2 u = cosh2 u. Thus

∫
1√

1 + 9x2
dx =

∫ 1
3 coshu
coshu

du =
1
3
u+ C =

1
3

sinh−1(3x) + C.

C07S06.041: We will use Eqs. (9), (12), and (10) of Section 6.9 . Let x = sinh θ. Then 1 + x2 = cosh2 θ

and dx = cosh θ dθ. Hence

∫
x2

√
1 + x2 dx =

∫
sinh2 θ cosh2 θ dθ =

1
4

∫
(2 sinh θ cosh θ)2 dθ =

1
4

∫
(sinh 2θ)2 dθ

=
1
8

∫
(cosh 4θ − 1) dθ =

1
8

(
1
4

sinh 4θ − θ
)

+ C =
1
8

(
1
2

sinh 2θ cosh 2θ − θ
)

+ C

=
1
8

[
(sinh θ cosh θ)(cosh2 θ + sinh2 θ)− θ

]
+ C

=
1
8

(
sinh3 θ cosh θ + sinh θ cosh3 θ − θ

)
+ C

=
1
8
x3

√
1 + x2 +

1
8
x(1 + x2)3/2 − 1

8
sinh−1 x+ C

=
1
8
x3

√
1 + x2 +

1
8
x(1 + x2)

√
1 + x2 − 1

8
sinh−1 x+ C

=
√

1 + x2

8
(x3 + x3 + x)− 1

8
sinh−1 x+ C

=
1
8

[
x(2x2 + 1)

√
1 + x2 − sinh−1 x

]
+ C.

13



C07S06.042: First solve the equation of the ellipse for

y =
b

a

√
a2 − x2 .

Then its area is

A = 4
∫ a

0

b

a

√
a2 − x2 dx =

4b
a

∫ a

0

√
a2 − x2 dx

=
4b
a

[
x

2

√
a2 − x2 +

a2

2
arcsin

(x
a

)]a
0

=
4b
a
· a

2

2
arcsin(1) = 2ab · π

2
= πab.

C07S06.043: The area of triangle OAC in Fig. 7.6.8 is

1
2
xy =

1
2
x
√
a2 − x2 .

The area of the region ABC is (by Example 2)

∫ a

x

√
a2 − u2 du =

[
u

2

√
a2 − u2 +

a2

2
arcsin

(u
a

)]a
x

=
a2

2
· arcsin(1)− x

2

√
a2 − x2 − a2

2
arcsin

(x
a

)
.

The area A of sector OBC is therefore their sum:

A =
a2

2
· π

2
− a2

2
arcsin

(x
a

)
.

But x = a cos θ, so

A =
πa2

4
− a2

2
arcsin (cos θ) =

πa2

4
− a2

2

(π
2
− θ

)
=
πa2

4
− πa2

4
+

1
2
a2θ =

1
2
a2θ.

C07S06.044: Given y = x2, we have ds =
√

1 + (dy/dx)2 dx =
√

1 + 4x2 dx. So the length in question
is

L =
∫ 1

0

√
1 + 4x2 dx.

Let x = 1
2 tan θ: 1 + 4x2 = 1 + tan2 θ = sec2 θ, dx =

1
2

sec2 θ dθ. Hence

L =
∫ 1

x=0

1
2

sec3 θ dθ =
1
4

[
sec θ tan θ + ln | sec θ + tan θ |

]1

x=0

=
1
4

[
2x

√
1 + 4z2 + ln

(
2x+

√
1 + 4x2

) ]1

0

=
1
4

[
2
√

5 + ln
(
2 +
√

5
) ]
≈ 1.4789428575.

C07S06.045: Given y = x2, we have ds =
√

1 + (dy/dx)2 dx =
√

1 + 4x2 dx. So the surface area of
revolution around the x-axis is

A =
∫ 1

0

2πx2
√

1 + 4x2 dx.
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Let x =
1
2

tan θ: 1 + 4x2 = sec2 θ, dx =
1
2

sec2 θ dθ. So

A =
∫ 1

x=0

2π
(

1
4

tan2 θ

)
(sec θ)

(
1
2

sec2 θ

)
dθ =

π

4

∫ 1

x=0

sec3 θ tan2 θ dθ.

Now

∫
sec3 θ tan2 θ dθ =

∫ (
sec5 θ − sec4 θ

)
dθ

=
1
4

sec3 θ tan θ +
3
8

sec θ tan θ +
3
8

ln | sec θ + tan θ | − 1
2

sec θ tan θ − 1
2

ln | sec θ + tan θ |+ C

=
1
4

sec3 θ tan θ − 1
8

sec θ tan θ − 1
8

ln | sec θ + tan θ |+ C.

A reference triangle with acute angle θ, opposite side 2x, and adjacent side 1 has hypotenuse
√

1 + 4x2 .
Therefore

S =
π

4

[
1
2
x(1 + 4x2)3/2 − 1

4
x
√

1 + 4x2 − 1
8

ln
(
2x+

√
1 + 4x2

)]1

0

=
π

4

[
1
2
· 5
√

5 − 1
4

√
5 − 1

8
ln

(
2 +
√

5
)]

=
π

32

[
18
√

5 − ln
(
2 +
√

5
)]
≈ 3.8097297049.

C07S06.046: The length of one arch of the sine curve is

S =
∫ π

0

√
1 + cos2 x dx.

To obtain the length of the upper half of the ellipse, take

y =
√

2− 2x2 , −1 � x � 1.

Then
dy

dx
= − 2x√

2− 2x2
, so—after algebraic simplification—the arc length is

E =
∫ 1

−1

√
1 + x2

√
1− x2

dx.

Let x = cosu. Then

E =
∫ 0

π

√
1 + cos2 u√
1− cos2 u

(− sinu) du =
∫ π

0

√
1 + cos2 u du = S.

C07S06.047: Given y = lnx, it follows that the arc length element is ds =
1
x

√
x2 + 1 dx, so the arc

length in question is

L =
∫ 2

1

1
x

√
x2 + 1 dx.

The substitution x = sinhu can be made to work, but we prefer to use x = tanu. This results in the definite
integral

15



L =
∫ 2

x=1

(cscu+ secu tanu) du =
[

ln | cscu− cotu|+ secu
]2

x=1

=

[
ln

∣∣∣∣∣
−1 +

√
1 + x2

x

∣∣∣∣∣ +
√

1 + x2

]2

1

= ln

(
−1 +

√
5

2

)
− ln

(
−1 +

√
2

)
+
√

5 −
√

2

= ln
(

1√
2 − 1

)
− ln

(
2√

5 − 1

)
+
√

5 −
√

2 = ln
(√

2 + 1
)
− ln

(√
5 + 1
2

)
+
√

5 −
√

2

= ln
(√

2 + 1
)
− ln

(√
5 + 1

)
+ ln 2 +

√
5 −
√

2 ≈ 1.222016177.

C07S06.048: A =
∫ 2

1

2πx
√
x2 + 1
x

dx = 2π
∫ 2

1

√
x2 + 1 dx.

The substitution x = tanu transforms the antidifferentiation problem into

2π
∫

sec3 z dz = π (sec z tan z + ln | sec z + tan z | ) + C = π

(
x
√
x2 + 1 + ln

∣∣∣x+
√
x2 + 1

∣∣∣
)

+ C.

Substitution of the limits x = 1 and x = 2 yields the answer:

A = π

[
2
√

5−
√

2 + ln
(
2 +
√

5
)
− ln

(
1 +
√

2
) ]
≈ 11.37314434.

C07S06.049: First solve for y = [a2 − (x− b)2 ]1/2. Then

dy

dx
=

−(x− b)
[a2 − (x− b)2 ]1/2

, and so 1 +
(
dy

dx

)2

=
a2

a2 − (x− b)2 .

Therefore the surface area of the torus is

S = 2
∫ b+a

b−a
2πx ds = 4πa

∫ b+a

b−a

x√
a2 − (x− b)2

dx.

The substitution we want should produce

a2 − (x− b)2 = a2 − a2 sin2 θ = a2 cos2 θ,

so we choose x = b+ a sin θ. Then dx = a cos θ dθ,

sin θ =
x− b
a

, and θ = arcsin
(
x− b
a

)
.

Before proceeding, note that when x = b+ a, we have

a cos θ = [a2 − (x− b)2 ]1/2 = 0 and θ = arcsin(1) =
π

2
,

and when x = b− a,

a cos θ = [a2 − (x− b)2 ]1/2 = 0 and θ = arcsin(−1) = − π
2
.
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Consequently

S = 4πa
∫ b+a

x=b−a

b+ a sin θ
a cos θ

· a cos θ dθ

= 4πa
[
bθ − a cos θ

]b+a
x=b−a

= 4πa
[
b · π

2
− b ·

(
− π

2

)
− 0 + 0

]
= 4π2ab.

C07S06.050: The area is

A =
∫ 4

0

√
9 + x2 dx.

Let x = 3 tan θ. Then dx = 3 sec2 θ dθ and 9 + x2 = 9 + 9 tan2 θ = 9 sec2 θ. Then

A =
∫ 4

0

9 sec3 θ dθ =
9
2

[
sec θ tan θ + ln | sec θ + tan θ |

]4

x=0

.

A reference triangle with acute angle θ, opposite side x, and adjacent side 3 has hypotenuse
√

9 + x2 . Thus

A =
9
2

[
x
√
x2 + 9
9

+ ln

(
x+
√

9 + x2

3

)]4

0

=
9
2

(
20
9

+ ln 3
)

= 10 +
9
2

ln 3 =
20 + 9 ln 3

2
≈ 14.9437552990.

C07S06.051: A = 4π
∫ π/2

0

(sinx)
√

1 + cos2 x dx. With u = cosx and du = − sinx dx, we obtain

A = 4π
∫ 1

0

√
1 + u2 du.

To find the antiderivative, we let u = sinh z, du = cosh z dz. Then we obtain

A = 4π
∫ u=1

u=0

cosh2 z dz =
[
2π(z + sinh z cosh z)

]1

u=0

= 2π
[
sinh−1 u+ u

√
1 + u2

]1

0
= 2π

(
sinh−1(1) +

√
2

)

= 2π
[√

2 + ln
(
1 +
√

2
) ]
≈ 14.4236.

C07S06.052: First we solve the equation of the ellipse for

y =
b

a
(a2 − x2)1/2. (1)

Thus

dy

dx
=
b

a
· 1
2

(a2 − x2)1/2 · (−2x) =
−bx

a(a2 − x2)1/2
,

17



so that

1 +
(
dy

dx

)1/2

= 1 +
b2x2

a2(a2 − x2)
=
a4 − a2x2 + b2x2

a2(a2 − x2)
.

Equation (1) also gives the radius of the circle of revolution “at” x, so the surface area of revolution around
the x-axis is

A = 2
∫ a

0

2π · b
a

(a2 − x2)1/2 ·
√
a4 − (a2 − b2)x2

a
√
a2 − x2

dx =
4πb
a2

∫ a

0

√
a4 − (a2 − b2)x2 dx.

Let

x =
a2 sinu√
a2 − b2

, so that dx =
a2

√
a2 − b2

· cosu du.

Then

a4 − (a2 − b2)x2 = a2 − (a2 − b2) · a
4 sin2 u

a2 − b2 = a4(1− sin2 u) = a4 cos2 u. (2)

Hence

A =
4πb
a2

∫ a

x=0

(a2 cosu) · a2 cosu√
a2 − b2

du =
4πa2b√
a2 − b2

∫ a

x=0

cos2 u du =
2πa2b√
a2 − b2

[
u+ sinu cosu

]a
x=0

.

Then, by Eq. (2), cosu =

√
a2 − (a2 − b2)x2

a2
. So

A =
2πa2b√
a2 − b2

[
arcsin

(
x
√
a2 − b2
a2

)
+
x
√
a2 − b2
a2

·
√
a4 − (a2 − b2)x2

a2

]a
0

=
2πa2b√
a2 − b2

[
arcsin

(√
a2 − b2
a

)
+
√
a2 − b2
a

·
√
a2b2

a2

]
.

Let c =
√
a2 − b2 . Then

A =
2πa2b

c

[
bc

a2
+ arcsin

( c
a

)]
= 2πab

[
b

a
+
a

c
arcsin

( c
a

)]
.

As b→ a+, c→ 0 and arcsin(c/a)→ c/a. So lim
b→a+

A = 2πa2(1 + 1) = 4πa2.

C07S06.053: This is the case in which 0 < a < b. First we solve the equation of the ellipse for

y =
b

a
(a2 − x2)1/2. (1)

Thus

dy

dx
=
b

a
· 1
2

(a2 − x2)1/2 · (−2x) =
−bx

a(a2 − x2)1/2
,

so that
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1 +
(
dy

dx

)1/2

= 1 +
b2x2

a2(a2 − x2)
=
a4 − a2x2 + b2x2

a2(a2 − x2)
.

Equation (1) also gives the radius of the circle of revolution “at” x, so the surface area of revolution around
the x-axis is

A = 2
∫ a

0

2π · b
a

(a2 − x2)1/2 ·
√
a4 + (b2 − a2)x2

a
√
a2 − x2

dx =
4πb
a2

∫ a

0

√
a4 + (b2 − a2)x2 dx.

Let

x =
a2 tanu√
b2 − a2

, so that dx =
a2 sec2 u√
b2 − a2

du.

Then

a4 + (b2 − a2)x2 = a2 + (b2 − a2) · a
4 tan2 u

b2 − a2
= a4(1 + tan2 u) = a2 sec2 u. (2)

Thus

A =
4πb
a2

∫ a

x=0

(a2 sec2 u) · a
2 sec2 u√
b2 − a2

du =
4πa2b√
b2 − a2

∫ a

x=0

sec3 u du

=
4πa2b√
b2 − a2

[
1
2
(
secu tanu+ ln | secu+ tanu|

)]a
x=0

.

Now tanu =
x
√
b2 − a2

a2
, and by Eq. (2),

secu =

√
a4 + (b2 − a2)x2

a2
.

So

A =
2πa2b√
b2 − a2

[
x
√
b2 − a2

a2
·
√
a4 + (b2 − a2)x2

a2
+ ln

∣∣∣∣∣
√
a4 + (b2 − a2)x2

a2
+
x
√
b2 − a2

a2

∣∣∣∣∣
]a
x=0

=
2πa2b√
b2 − a2

[√
b2 − a2

a
·
√
a2b2

a2
+ ln

(√
a2b2

a2
+
√
b2 − a2

a

)]
.

Let c =
√
b2 − a2 . Then

A =
2πa2b

c

[
c

a
· b
a

+ ln
(
b

a
+
c

a

)]
= 2πab

[
b

a
+
a

c
ln

(
b+ c

a

)]
.

Now let b→ a+. Then

b+ c

a
≈ 1 +

c

a
, so that ln

(
b+ c

a

)
≈ ln

(
1 +

c

a

)
≈ c

a
.

So

b

a
→ 1 and

a

c
ln

(
b+ c

a

)
→ 1
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as b→ a+. Therefore as b→ a+, A→ 2πab(1 + 1) = 4πab.

C07S06.054: Given: y = −1 + 2(x− 1)1/2. Then

dy

dx
= (x− 1)−1/2, so 1 +

(
dy

dx

)2

= 1 +
1

x− 1
=

x

x− 1
.

Therefore the length of the graph of y is

L =
∫ 5

2

(
x

x− 1

)1/2

dx.

Let x = sec2 θ, so that dx = 2 sec2 θ tan θ dθ. Hence

L =
∫ 5

x=2

sec θ
tan θ

· 2 sec2 θ tan θ dθ = 2
∫ 5

x=2

sec3 θ dθ =
[

sec θ tan θ + ln | sec θ + tan θ |
]5

x=2

.

A reference triangle with acute angle θ, adjacent side 1, and hypotenuse
√
x has opposite side

√
x− 1 .

Therefore

L =
[√

x2 − x + ln
∣∣√x +

√
x− 1

∣∣ ]5

2

= 2
√

5 −
√

2 + ln
(
2 +
√

5
)
− ln

(
1 +
√

2
)
≈ 3.6201842808.

C07S06.055: Given: y = −1 + 2(x− 1)1/2. Then

dy

dx
= (x− 1)−1/2, so 1 +

(
dy

dx

)2

= 1 +
1

x− 1
=

x

x− 1
.

Therefore the cost is

C =
∫ 5

2

√
x

(
x

x− 1

)1/2

dx =
∫ 5

2

x√
x− 1

dx.

Let x− 1 = u2. Then x = 1 + u2 and dx = 2u du. Hence

C =
∫ 5

x=2

1 + u2

u
· 2u du = 2

∫ 5

x=2

(1 + u2) du = 2
[
u+

1
3
u3

]5

x=2

= 2
[√

x− 1 +
1
3

(x− 1)1/3
]5

2

= 2
(

2− 1 +
8
3
− 1

3

)
=

20
3

(million dollars).

C07S06.056: If y = 1
20 x

2, then

dy

dx
=

1
10
x, so that 1 +

(
dy

dx

)2

= 1 +
x2

100
=

100 + x2

100
.

Thus the arc length element in this problem is ds = 1
10

√
100 + x2 dx. A segment of the string, above the

point (x, 0) and of length ds, originally at ground level, is lifted to the height y = 1
20 x

2 (even though its
original position was not (x, 0)). Hence the work done in lifting the string is

W =
∫ 100

0

1
16
· 1
20
x2 · 1

10

√
100 + x2 dx =

1
3200

∫ 100

0

x2
√

100 + x2 dx.
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Let x = 10 tan θ. Then 100 + x2 = 100 sec2 θ and dx = 10 sec2 θ dθ. Therefore

W =
1

3200

∫ 100

x=0

(100 tan2 θ)(10 sec θ)(10 sec2 θ) dθ =
100
32

∫ 100

x=0

sec3 θ tan2 θ dθ

=
25
8

∫ 100

x=0

(sec5 θ − sec3 θ) dθ =
25
8

[
1
4

sec3 θ tan θ − 1
8

sec θ tan θ − 1
8

ln | sec θ + tan θ |
]100

x=0

.

A reference triangle with acute angle θ, opposite side x, and adjacent side 10 has hypotenuse
√
x2 + 100 .

Therefore

W =
25
8

[
1
4
· x(x

2 + 100)3/2

10000
− 1

8
· x(x

2 + 100)1/2

100
− 1

8
ln

(
x+
√
x2 + 100
10

)]100

0

=

[
1

12800
x(x2 + 100)(x2 + 100)1/2 − 1

256
x(x2 + 100)1/2 − 25

64
ln

(
x+
√
x2 + 100
10

)]100

0

=

[
x3(x2 + 100)1/2

12800
+
x(x2 + 100)1/2

128
− x(x2 + 100)1/2

256
− 25

64
ln

(
x+
√
x2 + 100
10

)]100

0

=
1000000

√
100 · 101

12800
+

100
√

100 · 101
256

− 25
64

ln

(
100 +

√
100 · 101
10

)

=
3125

4

√
101 +

125
32

√
101 − 25

64
ln

(
10 +

√
101

)
=

25125
32

√
101 − 25

64
ln

(
10 +

√
101

)

=
1
64

[
50250

√
101 − 25 ln

(
10 +

√
101

)]
≈ 7889.5514748057

inch-pounds, about 657.4626229005 ft · lb.

21



Section 7.7

C07S07.001:
∫

1
x2 + 4x+ 5

dx =
∫

1
(x+ 2)2 + 1

dx = arctan(x+ 2) + C.

C07S07.002:
∫

2x+ 5
x2 + 4x+ 5

dx =
∫ (

2x+ 4
x2 + 4x+ 5

+
1

x2 + 4x+ 5

)
dx = ln(x2+4x+5)+arctan(x+2)+C

(the antiderivative of the second fraction was computed in the solution of Problem 1).

C07S07.003:
∫

5− 3x
x2 + 4x+ 5

dx = − 3
2

∫
2x+ 4− 22

3

x2 + 4x+ 5
dx = −3

2
ln(x2 + 4x+ 5) + 11

∫
1

x2 + 4x+ 5
dx

= − 3
2

ln(x2 + 4x+ 5) + 11 arctan(x+ 2) + C (see Problem 1).

C07S07.004: We will obtain x2 + 4x+ 5 = (x+ 2)2 + 1 = 1 + tan2 θ = sec2 θ if we let x = −2 + tan θ. If
so, then dx = sec2 θ dθ, x+ 1 = −1 + tan θ, and tan θ = x+ 2. Thus

I =
∫ −1 + tan θ

sec4 θ
sec2 θ dθ =

∫
(−1 + tan θ) cos2 θ dθ =

∫
(− cos2 θ + sin θ cos θ) dθ

=
∫ (

sin θ cos θ − 1 + cos 2θ
2

)
dθ =

1
2

sin2 θ − 1
2
θ − 1

4
sin 2θ + C =

1
2

sin2 θ − 1
2
θ − 1

2
sin θ cos θ + C.

A reference triangle with acute angle θ, opposite side x + 2, and adjacent side 1 has hypotenuse of length√
x2 + 4x+ 5 . Therefore

I =
1
2
· (x+ 2)2

x2 + 4x+ 5
− 1

2
arctan(x+ 2)− 1

2
· x+ 2
x2 + 4x+ 5

+ C

=
1
2
· x

2 + 4x+ 4− x− 2
x2 + 4x+ 5

− 1
2

arctan(x+ 2) + C =
x2 + 3x+ 2

2(x2 + 4x+ 5)
− 1

2
arctan(x+ 2) + C.

C07S07.005: 3− 2x− x2 = −(x2 + 2x− 3) = −(x2 + 2x+ 1− 4) = 4− (x+ 1)2 − 4− 4 sin2 θ = 4 cos2 θ if
we (and we do) let x+ 1 = 2 sin θ. Then x = −1 + 2 sin θ, dx = 2 cos θ dθ, and sin θ = 1

2 (x+ 1). So

∫
1√

3− 2x− x2
dx =

∫
1

2 cos θ
· 2 cos θ dθ =

∫
1 dθ = θ + C = arcsin

(
x+ 1

2

)
+ C.

C07S07.006: The same substitution as in the solution of Problem 5 yields

J =
∫

x+ 3√
3− 2x− x2

dx =
∫

2 + 2 sin θ
2 cos θ

· 2 cos θ dθ = 2θ − 2 cos θ + C.

A reference triangle with acute angle θ, opposite side x + 1, and hypotenuse 2 has adjacent side of length√
3− 2x− x2 . Therefore

J = 2 arcsin
(
x+ 1

2

)
−

√
3− 2x− x2 + C.

C07S07.007: 3− 2x− x2 = −(x2 + 2x− 3) = −(x2 + 2x+ 1− 4) = 4− (x+ 1)2 − 4− 4 sin2 θ = 4 cos2 θ if
we (and we do) let x+ 1 = 2 sin θ. Then x = −1 + 2 sin θ, dx = 2 cos θ dθ, and sin θ = 1

2 (x+ 1). So

1



∫
x
√

3− 2x− x2 dx =
∫

(−1 + 2 sin θ) · (2 cos θ) · (2 cos θ) dθ = 4
∫

(2 cos2 θ sin θ − cos2 θ) dθ

= 4
∫ (

2 cos2 θ sin θ − 1 + cos 2θ
2

)
dθ = 4

(
− 2

3
cos2 θ − 1

2
θ − 1

2
sin θ cos θ

)
+ C

= −1
3

(2 cos θ)3 − 3θ − 2 sin θ cos θ + C

= − 1
3

(3− 2x− x2)3/2 − 2 arcsin
(
x+ 1

2

)
− x+ 1

2

√
3− 2x− x2 + C

= −2 arcsin
(
x+ 1

2

)
−

[
1
3

(3− 2x− x2) +
1
2

(x+ 1)
]√

3− 2x− x2 + C

= −2 arcsin
(
x+ 1

2

)
− 1

6

[
2(3− 2x− x2) + 3(x+ 1)

]√
3− 2x− x2 + C

= −2 arcsin
(
x+ 1

2

)
− 1

6
(
−2x2 − 4x+ 6 + 3x+ x

)√
3− 2x− x2 + C

= −2 arcsin
(
x+ 1

2

)
+

1
6

(2x2 + x− 9)
√

3− 2x− x2 + C.

C07S07.008: 4x2 + 4x− 3 = 4x2 + 4x+ 1− 4 = (2x+ 1)2 − 4 = 4 sec2 θ − 4 = 4 tan2 θ if we (and we do)
let 2 sec θ = 2x+ 1. Thus x = sec θ − 1

2 , sec θ = x+ 1
2 , and dx = sec θ tan θ dθ. Therefore

K =
∫

1
4x2 + 4x− 3

dx =
∫

1
4 tan2 θ

· sec θ tan θ dθ =
1
4

∫
sec θ
tan θ

dθ

=
1
4

∫
csc θ dθ =

1
4

ln | csc θ − cot θ |+ C.

A reference triangle with acute angle θ, adjacent side 2, and hypotenuse 2x+ 1 has opposite side of length√
4x2 + 4x− 3 . Therefore

K =
1
4

ln
∣∣∣∣ 2x− 1√

4x2 + 4x− 3

∣∣∣∣ + C =
1
8

ln
(

4x2 − 4x+ 1
4x2 + 4x− 3

)
+ C =

1
8

ln
∣∣∣∣ 2x− 1
2x+ 3

∣∣∣∣ + C.

C07S07.009: 4x2 + 4x− 3 = 4x2 + 4x+ 1− 4 = (2x+ 1)2 − 4 = 4 sec2 θ − 4 = 4 tan2 θ if we (and we do)
let 2 sec θ = 2x+ 1. Thus x = sec θ − 1

2 , sec θ = x+ 1
2 , and dx = sec θ tan θ dθ. Thus

I =
∫

3x+ 2
4x2 + 4x− 3

dx =
∫

3 sec θ + 1
2

4 tan2 θ
· sec θ tan θ dθ =

1
8

∫
6 sec θ + 1

tan θ
· sec θ dθ

=
1
8

∫ (
6 · sec

2 θ

tan θ
+

sec θ
tan θ

)
dθ =

1
8

∫ (
6 · sec

2 θ

tan θ
+ csc θ

)
dθ

=
1
8
(
6 ln | tan θ |+ ln | csc θ − cot θ |

)
+ C =

3
4

ln | tan θ |+ 1
8

ln | csc θ − cot θ |+ C.

A reference triangle with acute angle θ, adjacent side 2, and hypotenuse 2x+ 1 has opposite side of length√
4x2 + 4x− 2 . Therefore

2



I =
3
4

ln

∣∣∣∣∣
√

4x2 + 4x− 3
2

∣∣∣∣∣ +
1
8

ln
∣∣∣∣ 2x+ 1− 2√

4x2 + 4x− 3

∣∣∣∣ + C

=
3
4

ln
√

4x2 + 4x− 3 +
1
8

ln |2x− 1| − 1
8

ln
√

4x2 + 4x− 3 + C1

=
5
16

ln |4x2 + 4x− 3|+ 1
8

ln |2x− 1|+ C1 =
7
16

ln |2x− 1|+ 5
16

ln |2x+ 3|+ C1.

C07S07.010: 4x2 + 4x− 3 = 4x2 + 4x+ 1− 4 = (2x+ 1)2 − 4 = 4 sec2 θ − 4 = 4 tan2 θ if we (and we do)
let 2 sec θ = 2x+ 1. Thus x = sec θ − 1

2 , sec θ = x+ 1
2 , and dx = sec θ tan θ dθ. Thus

J =
∫ √

4x2 + 4x− 3 dx =
∫

2 tan θ sec θ tan θ dθ

= 2
∫

(sec3 θ − sec θ) dθ = sec θ tan θ − ln | sec θ + tan θ |+ C.

A reference triangle with acute angle θ, adjacent side 2, and hypotenuse 2x+ 1 has opposite side of length√
4x2 + 4x− 2 . Therefore

J =
1
4

(2x+ 1)
√

4x2 + 4x− 3 − ln

∣∣∣∣∣
2x+ 1 +

√
4x2 + 4x− 3
2

∣∣∣∣∣ + C

=
2x+ 1

4

√
4x2 + 4x− 3 − ln |2x+ 1 +

√
4x2 + 4x− 3 |+ C1.

C07S07.011: x2 + 4x+ 13 = x2 + 4x+ 4 + 9 = (x+ 2)2 + 9 = 9 + 9 tan2 θ = 9 sec2 θ if we (and we do) let
3 tan θ = x+ 2; that is, x = −2 + 3 tan θ, dx = 3 sec2 θ dθ, and tan θ = 1

3 (x+ 2). Then

∫
1

x2 + 4x+ 13
dx =

∫
1

9 sec2 θ
· 3 sec2 θ dθ =

∫
1
3
dθ =

1
3
θ + C =

1
3

arctan
(
x+ 2

3

)
+ C.

C07S07.012: 2x − x2 = −(x2 − 2x) = 1 − (x2 − 2x + 1) = 1 − (x − 1)2 = 1 − sin2 θ = cos2 θ if we let
sin θ = x− 1. That is, x = 1 + sin θ, so that dx = cos θ dθ and θ = arcsin(x− 1). Then

∫
1√

2x− x2
dx =

∫
1

cos θ
· cos θ dθ = θ + C = arcsin(x− 1) + C.

C07S07.013: 3 + 2x− x2 = −(x2 − 2x− 3) = −(x2 − 2x+ 1− 4) = 4− (x− 1)2 = 4− 4 sin2 θ = 4 cos2 θ if
2 sin θ = x− 1; that is, x = 1 + 2 sin θ, dx = 2 cos θ dθ, and sin θ = 1

2 (x− 1). Therefore

K =
∫

1
3 + 2x− x2

dx =
∫

1
4 cos2 θ

· 2 cos θ dθ =
1
2

∫
sec θ dθ =

1
2

ln | sec θ + tan θ |+ C.

A reference triangle with acute angle θ, opposite side x− 1, and hypotenuse 2 has adjacent side of length√
3 + 2x− x2 . Thus

K =
1
2

∣∣∣∣ x+ 1√
3 + 2x− x2

∣∣∣∣ + C =
1
4

ln
∣∣∣∣ (x+ 1)2

(x+ 1)(x− 3)

∣∣∣∣ + C =
1
4

ln
∣∣∣∣ x+ 1
x− 3

∣∣∣∣ + C.

3



C07S07.014: 8 + 2x− x2 = −(x2 − 2x+ 8) = 9− (x− 1)2 = 9− 9 sin2 θ = 9 cos2 θ if x− 1 = 3 sin θ; that
is, x = 1 + 3 sin θ, ds = 3 cos θ dθ, and sin θ = 1

3 (x− 1). So

I =
∫
x
√

8 + 2x− x2 dx =
∫

(1 + 3 sin θ)(3 cos θ)(3 cos θ) dθ = 9
∫

(3 sin θ cos2 θ + cos2 θ) dθ

= 9
∫ (

3 sin θ cos2 θ +
1 + cos 2θ

2

)
dθ = 9

(
− cos2 θ +

1
2
θ +

1
4

sin 2θ
)

+ C

=
9
2
(
− 2 cos3 θ + θ + sin θ cos θ

)
+ C.

A reference triangle with acute angle θ, opposite side x− 1, and hypotenuse 3 has adjacent side of length√
8 + 2x− x2 . Therefore

I =
9
2

[
−2 · (8 + 2x− x2)3/2

27
+ arcsin

(
x− 1

3

)
+

(x− 1)
√

8 + 2x− x2

9

]
+ C

=
x− 1

2

√
8 + 2x− x2 − 8 + 2x− x2

3

√
8 + 2x− x2 +

9
2

arcsin
(
x− 1

3

)
+ C

=
[

1
2

(x− 1) +
1
3

(x2 − 2x− 8)
]√

8 + 2x− x2 +
9
2

arcsin
(
x− 1

3

)
+ C

=
1
6

(2x2 − x− 19)
√

8 + 2x− x2 +
9
2

arcsin
(
x− 1

2

)
+ C.

C07S07.015: x2 + 2x + 2 = (x + 1)2 + 1 = 1 + tan2 θ = sec2 θ if x + 1 = tan θ; that is, x = −1 + tan θ,
dx = sec2 θ dθ, and tan θ = x+ 1. Therefore

∫
2x− 5

x2 + 2x+ 2
dx =

∫ −2 + 2 tan θ − 5
sec2 θ

· sec2 θ dθ = 2 ln | sec θ | − 7θ + C

= 2 ln
√
x2 + 2x+ 2 − 7 arctan(x+ 1) + C = ln(x2 + 2x+ 2)− 7 arctan(x+ 1) + C.

C07S07.016: 4x2 + 4x− 15 = (2x+ 1)2 − 16 = 16 sec2 u− 16 = 16 tan2 u if 2x+ 1 = 4 secu. Thus we let
x = 1

2 (−1 + 4 secu); then dx = 2 secu tanu du and secu = 1
4 (2x+ 1). Hence

J =
∫

2x− 1
4x2 + 4x− 15

dx =
∫

4 secu − 2
16 tan2 u

· 2 secu tanu du =
1
8

∫
4 sec2 u tanu − 2 secu tanu

tan2 u
du

=
1
8

∫ (
4 sec2 u

tanu
− 2 secu

tanu

)
du =

1
8

∫ (
4 sec2 u

tanu
− 2 cscu

)
dx

=
1
8
(
4 ln | tanu| − 2 ln | cscu− cotu|

)
+ C =

1
2

ln | tanu| − 1
4

ln | cscu− cotu|+ C.

A reference triangle with acute angle u, adjacent side 4, and hypotenuse 2x+ 1 has opposite side of length√
4x2 + 4x− 15 . Therefore

4



J =
1
2

ln

(√
4x2 + 4x− 15

4

)
− 1

4
ln

∣∣∣∣ 2x+ 1− 4√
4x2 + 4x− 15

∣∣∣∣ + C

=
1
4

ln |4x2 + 4x− 15|+ 1
8

ln |4x2 + 4x− 15| − 1
4

ln |2x− 3|+ C1

=
3
8

ln |4x2 + 4x− 15| − 1
4

ln |2x− 3|+ C1 =
3
8

ln |2x+ 5|+ 1
8

ln |2x− 3|+ C1.

C07S07.017: 5+12x−9x2 = −(9x2−12x−5) = −(9x2−12x+4−9) = 9−(3x−2)2 = 9−9 sin2 u = 9 cos2 u
if 3x− 2 = 3 sinu. So let x = 2

3 + sinu, so that dx = cosu du and sinu = 1
3 (3x− 2). Then

∫
x√

5 + 12x− 9x2
dx =

∫ 2
3 + sinu
3 cosu

· cosu du =
∫ (

2
3

+
1
3

sinu
)
du

=
2
9
u− 1

3
cosu+ C =

2
9

arcsin
(

3x− 2
3

)
− 1

9

√
5 + 12x− 9x2 + C.

C07S07.018: 9x2 + 12x + 8 = (3x + 2)2 + 4 = 4 tan2 u + 4 = 4 sec2 u if 2 tanu = 3x + 2. Hence let
x = 1

3 (2 tanu− 2); then dx = 2
3 sec2 u du and tanu = 1

2 (3x+ 2). Therefore

K =
∫

(3x− 2)
√

9x2 + 12x+ 8 dx =
∫

(2 tanu− 4)(2 secu) · 2
3

sec2 u du

=
8
3

∫
(sec3 u tanu− 2 sec3 u) du =

8
3

∫
(sec2 u secu tanu− 2 sec3 u) du

=
8
3

(
1
3

sec3 u− secu tanu− ln | secu+ tanu|
)

+ C.

A reference triangle with acute angle u, opposite side 3x+ 2, and adjacent side 2 has hypotenuse of length√
9x2 + 12x+ 8 . Therefore

K =
8
3

(
1
3
· (9x

2 + 12x+ 8)3/2

8
− (3x+ 2)

√
9x2 + 12x+ 8

4
− ln

∣∣∣∣∣
3x+ 2 +

√
9x2 + 12x+ 8
2

∣∣∣∣∣
)

+ C

=
1
9

(9x2 + 12x+ 8)
√

9x2 + 12x+ 8 − 2
3

(3x+ 2)
√

9x2 + 12x+ 8

− 8
3

ln
∣∣∣3x+ 2 +

√
9x2 + 12x+ 8

∣∣∣ + C1

=
1
9
[
9x2 + 12x+ 8− 6(3x+ 2)

]√
9x2 + 12x+ 8 − 8

3
ln

∣∣∣3x+ 2 +
√

9x2 + 12x+ 8
∣∣∣ + C1

=
1
9
(9x2 − 6x− 4)

√
9x2 + 12x+ 8 − 8

3
ln

∣∣∣3x+ 2 +
√

9x2 + 12x+ 8
∣∣∣ + C1.

C07S07.019: 9+16x−4x2 = −(4x2−16x−9) = 25−(2x−4)2 = 25−25 sin2 u = 25 cos2 u if 2x−4 = 5 sinu.
So let x = 1

2 (4 + 5 sinu). Then dx = 5
2 cosu du and 2 sinu = 1

5 (2x− 4). Thus

∫
(7− 2x)

√
9 + 16x− 4x2 dx =

∫
(7− 4− 5 sinu)(5 cosu) · 5

2
cosu du =

1
2

∫
(3− 5 sinu)(25 cos2 u) du

5



=
1
2

∫
(75 cos2 u− 125 sinu cos2 u) du =

25
2

∫ (
3 · 1 + cos 2u

2
− 5 sinu cos2 u

)
du

=
25
4

∫ (
3 + 3 cos 2u− 10 sinu cos2 u

)
du =

25
4

(
3u+ 3 sinu cosu+

10
3

cos3 u
)

+ C

=
25
4

[
3 arcsin

(
2x− 4

5

)
+ 3 · 2x− 4

5
·
√

9 + 16x− 4x2

5
+

10
3
· (9 + 16x− 4x2)3/2

125

]
+ C

=
75
4

arcsin
(

2x− 4
5

)
+

3(x− 2)
2

√
9 + 16x− 4x2 +

1
6

(9 + 16x− 4x2)
√

9 + 16x− 4x2 + C

=
75
4

arcsin
(

2x− 4
5

)
+

[
9
6

(x− 2) +
1
6

(9 + 16x− 4x2)
]√

9 + 16x− 4x2 + C

=
75
4

arcsin
(

2x− 4
5

)
+

1
6
(
− 4x2 + 25x− 9

)√
9 + 16x− 4x2 + C

=
75
4

arcsin
(

2x− 4
5

)
− 4x2 − 25x+ 9

6

√
9 + 16x− 4x2 + C.

C07S07.020: x2 + 2x+ 5 = (x+ 1)2 + 4 = 4 tan2 u+ 4 = 4 sec2 u if we (and we do) let x = −1 + 2 tanu;
thus dx = 2 sec2 u du and tanu = 1

2 (x+ 1). And so

I =
∫

2x+ 3√
x2 + 2x+ 5

dx =
∫

1 + 4 tanu
2 secu

· 2 sec2 u du =
∫

(secu + 4 secu tanu) du

= 4 secu+ ln | secu+ tanu|+ C = 4 ·
√
x2 + 2x+ 5

2
+ ln

∣∣∣∣∣
√
x2 + 2x+ 5

2
+
x+ 1

2

∣∣∣∣∣ + C

= 2
√
x2 + 2x+ 5 + ln

(
x+ 1 +

√
x2 + 2x+ 5

)
+ C1.

C07S07.021: 6x − x2 = −(x2 − 6x) = 9 − (x2 − 6x + 9) = 9 − (x − 3)2 = 9 − 9 sin2 θ = 9 cos2 θ if
3 sin θ = x− 3, so we let x = 3 + 3 sin θ. Then dx = 3 cos θ dθ, sin θ = 1

3 (x− 3), and

I =
∫

x+ 4
(6x− x2)3/2

dx =
∫

7 + 3 sin θ
27 cos3 θ

· 3 cos θ dθ =
1
9

∫
7 + 3 sin θ

cos2 θ
dθ

=
1
9

∫
(7 sec2 θ + 3 sec θ tan θ) dθ =

7
9

tan θ +
1
3

sec θ + C

=
7
9
· x− 3√

6x− x2
+

1√
6x− x2

+ C =
7x− 12√
6x− x2

+ C.

To obtain the last line, we used a reference triangle with acute angle θ, opposite side x− 3, and hypotenuse
3, which therefore has adjacent side of length

√
6x− x2 .

C07S07.022: Let x = tanu. Then 1 + x2 = 1 + tan2 u = sec2 u and dx = sec2 u du. Hence

J =
∫

x− 1
(x2 + 1)2

dx =
∫ −1 + tanu

sec4 u
· sec2 u du =

∫
(−1 + tanu) cos2 u du

=
∫ (

sinu cosu− 1 + cos 2u
2

)
du =

1
2

sin2 u− 1
2
u− 1

2
sinu cosu + C.

6



A reference triangle with acute angle u, opposite side x, and adjacent side 1 has hypotenuse of length√
1 + x2 . Therefore

J =
1
2
· x2

1 + x2
− 1

2
arctanx− 1

2
· x

1 + x2
+ C =

x2 − x
2(x2 + 1)

− 1
2

arctanx+ C

=
1
2

(
1− x+ 1

x2 + 1
− arctanx

)
+ C = −1

2

(
x+ 1
x2 + 1

+ arctanx
)

+ C1.

C07S07.023: 4x2 +12x+13 = 4x2 +12x+9+4 = (2x+3)2 +4 = 4+4 tan2 u = 4 sec2 u if 2 tanu = 2x+3.
Hence we let x = 1

2 (−3 + 2 tanu), so that dx = sec2 u du and tanu = 1
2 (2x+ 3). Then

K =
∫

2x+ 3
(4x2 + 12x+ 13)2

dx =
∫

2 tanu sec2 u

16 sec4 u
du

=
1
8

∫
tanu cos2 u du =

1
8

∫
sinu cosu du =

1
16

sin2 u + C.

A reference triangle with acute angle u, opposite side 2x+ 3, and adjacent side 2 has hypotenuse of length√
4x2 + 12x+ 13 . Therefore

K =
1
16
· (2x+ 3)2

4x2 + 12x+ 13
+ C =

1
16
· 4x

2 + 12x+ 13− 4
4x2 + 12x+ 13

+ C

=
1
16

(
1− 4

4x2 + 12x+ 13

)
+ C = − 1

4(4x2 + 12x+ 13)
+ C1.

C07S07.024: Let x = sinu: 1− x2 = 1− sin2 u = cos2 u, dx = cosu du. Then

I =
∫

x3

(1− x2)4
dx =

∫
sin3 u cosu

cos8 u
du =

∫
sec4 u tan3 u du

=
∫ (

sec5 u− sec3 u) secu tanu du =
1
6

sec6 u− 1
4

sec4 u+ C.

A reference triangle with acute angle u, opposite side x, and hypotenuse 1 has adjacent side of length√
1− x2 . Therefore

I =
1
6
· 1
(1− x2)3

− 1
4
· 1
(1− x2)2

+ C =
1

(1− x2)3

(
1
6
− 1

4
(1− x2)

)
+ C

=
1

12(1− x2)3
(
2− 3(1− x2)

)
+ C =

3x2 − 1
12(1− x2)3

+ C.

Alternatively, the partial fractions decomposition

x3

(1− x2)4
=

A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3
+

D

(x− 1)4
+

E

x+ 1
+

F

(x+ 1)2
+

G

(x+ 1)3
+

H

(x+ 1)4

yields
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A(x7 + x6 − 3x5 − 3x4 + 3x3 + 3x2 − x− 1) +B(x6 + 2x5 − x4 − 4x3 − x2 + 2x+ 1)

+ C(x5 + 3x4 + 2x3 − 2x2 − 3x− 1) +D(x4 + 4x3 + 6x2 + 4x+ 1)

+ E(x7 − x6 − 3x5 + 3x4 + 3x3 − 3x2 − x+ 1) + F (x6 − 2x5 − x4 + 4x3 − x2 − 2x+ 1)

+G(x5 − 3x4 + 2x3 + 2x2 − 3x+ 1) +H(x4 − 4x3 + 6x2 − 4x+ 1) = x3.

It now follows that

A+ E = 0, A+B − E + F = 0,

−3A+ 2B + C − 3E − 2F +G = 0, −3A−B + 3C +D + 3E − F − 3G+H = 0,

3A− 4B + 2C + 4D + 3E + 4F + 2G− 4H = 1, 3A−B − 2C + 6D − 3E − F + 2G+ 6H = 0,

−A+ 2B − 3C + 4D − E − 2F − 3G− 4H = 0, −A+B − C +D + E + F +G+H = 0.

This system has the unique solution

A = 0, B = − 1
32
, C =

1
16
, D =

1
16
, E = 0, F =

1
32
, G =

1
16
, H = − 1

16
.

Therefore

∫
x3

(1− x2)4
dx =

1
96

[
3

x− 1
− 3

(x− 1)2
− 2

(x− 1)3
− 3
x+ 1

− 3
(x+ 1)2

+
2

(x+ 1)3

]
+ C. (1)

If you combine the six terms in the brackets on the right-hand side, you will obtain exactly the same answer
as that yielded by the method of trigonometric substitution.

The simple substitution u = 1− x2, for which du = −2x dx and x2 = 1− u, yields

I = − 1
2

∫
1− u
u4

du =
1
2

∫ (
u−3 − u−4

)
du =

1
2

(
1
3
u−3 − 1

2
u−2

)
+ C =

1
6u3
− 1

4u2
+ C

=
1

6(1− x2)3
− 1

4(1− x2)2
+ C =

1
12

[
2

(1− x2)3
− 3(1− x2)

(1− x2)3

]
+ C =

3x2 − 1
12(1− x2)3

+ C.

Integration by parts is also successful. Let

u = x2 and dv = x(1− x2)−4 dx. Then

du = 2x dx and v =
1
6

(1− x2)−3. Thus

I =
x2

6(1− x2)3
− 1

3

∫
x(1− x2)−3 dx =

x2

6(1− x2)3
− 1

12
(1− x2)−2 + C

=
2x2 − (1− x2)
12(1− x2)3

+ C =
3x2 − 1

12(1− x2)3
+ C.

The hyperbolic substitution x = tanhu, for which dx = sech2 u du and 1 − x2 = 1 − tanh2 u = sech2 u,
produces
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I =
∫

tanh3 u

sech8 u
sech2 u du =

∫
1− sech2 u

sech7 u
sechu tanhu du

=
∫ [

(sechu)−7 − (sechu)−5
]
sechu tanhu du

=
1

6 sech6 u
− 1

4 sech4 u
+ C =

1
6(1− x2)3

− 1
4(1− x2)2

+ C.

Finally, Derive 2.56 returns the answer in essentially the same form as in Eq. (1) here, while Mathematica

3.0 returns the antiderivative in the form

− 1
6(−1 + x2)3

− 1
4(−1 + x2)2

,

which is essentially the same as the very first result we obtained by the method of trigonometric substitution.

C07S07.025: x2 +x+1 = x2 +x+ 1
4 + 3

4 =
(
x+ 1

2

)2 + 3
4 = 3

4

[
4
3

(
x+ 1

2

)2 + 1
]

= 3
4

(
1 + tan2 u

)
= 3

4 sec2 u

provided that

tanu =
2√
3

(
x+

1
2

)
.

Therefore we let

x =
−1 +

√
3 tanu
2

: dx =
√

3
2

sec2 u du, tanu =
√

3
2

sec2 u du.

Thus

J =
∫

3x− 1
x2 + x+ 1

dx =
∫ 1

2

(
−3 + 3

√
3 tanu

)
− 1

3
4 sec2 u

·
√

3
2

sec2 u du

=
4
3
·
√

3
2
· 1
2

∫ (
−5 + 3

√
3 tanu

)
du =

√
3
3

(
−5u+ 3

√
3 ln | secu|

)
+ C.

A reference triangle with acute angle u, opposite side 2x + 1, and adjacent side
√

3 has hypotenuse of
length 2

√
x2 + x+ 1 . Therefore

J =
√

3
3

[
−5 arctan

(√
3
3

[2x+ 1]

)
+ 3
√

3 ln

(
2
√
x2 + x+ 1√

3

)]
+ C

= −5
√

3
3

arctan

(√
3
3

[2x+ 1]

)
+

3
2

ln(x2 + x+ 1) + C1.

C07S07.026: The same substitution as in the solution of Problem 25 yields

K =
∫

3x− 1
(x2 + x+ 1)2

dx =
∫ 1

2

(
−3 + 3

√
3 tanu

)
− 1

9
16 sec4 u

·
√

3
2

sec2 u du

=
16
9
·
√

3
2
· 1
2

∫ −5 + 3
√

3 tanu
sec2 u

du =
4
√

3
9

∫ (
−5 · 1 + cos 2u

2
+ 3
√

3 sinu cosu
)
du

=
4
√

3
9

[
− 5

2
(u+ sinu cosu) +

3
√

3
2

sin2 u

]
+ C =

2
√

3
9

(
−5u− 5 sinu cosu+ 3

√
3 sin2 u

)
+ C.
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Then the reference triangle of the solution of Problem 25 yields

K =
2
√

3
9

[
−5 arctan

(√
3
3

[2x+ 1]

)
− 5
√

3 (2x+ 1)
4(x2 + x+ 1)

+
3
√

3 (2x+ 1)2

4(x2 + x+ 1)

]
+ C

= −10
√

3
9

arctan

(√
3
3

[2x+ 1]

)
− 5 ·

√
3
9
·
√

3
2
· 2x+ 1
x2 + x+ 1

+
√

3
9
· 3
√

3
2
· (2x+ 1)2

x2 + x+ 1
+ C

= −10
√

3
9

arctan

(√
3
3

[2x+ 1]

)
+

2x+ 1
2(x2 + x+ 1)

(
2x+ 1− 5

3

)
+ C

= −10
√

3
9

arctan

(√
3
3

[2x+ 1]

)
+

(2x+ 1)(3x− 1)
3(x2 + x+ 1)

+ C.

C07S07.027: The method of partial fractions yields

1
(x2 − 4)2

=
A

x− 2
+

B

(x− 2)2
+

C

x+ 2
+

D

(x+ 2)2
=

1
32

[
− 1
x− 2

+
2

(x− 2)2
+

1
x+ 2

+
2

(x+ 2)2

]
.

Therefore

I =
∫

1
(x2 − 4)2

dx =
1
32

ln
∣∣∣∣ x+ 2
x− 2

∣∣∣∣− x

8(x2 − 4)
+ C.

Alternatively, if we let x = 2 secu, then x2 − 4 = 4 sec2 u− 4 = 4 tan2 u and dx = 2 secu tanu du. Then

I =
∫

2 secu tanu
16 tan4 u

du =
1
8

∫
secu
tan3 u

du =
1
8

∫
cos2 u
sin3 u

du =
1
8

∫
1− sin2 u

sin3 u
du =

1
8

∫ (
csc3 u− cscu

)
du.

Then Formulas 15 and 29 from the endpapers of the text yield

I =
(
− 1

2
cscu cotu− 1

2
ln | cscu− cotu |

)
+ C = − 1

16
(
cscu cotu+ ln | cscu− cotu |

)
+ C.

A reference triangle with acute angle u, adjacent side 2, and hypotenuse side x has opposite side of length√
x2 − 4 . Therefore

I = − 1
16

(
2x

x2 − 4
+ ln

∣∣∣∣ x− 2√
x2 − 4

∣∣∣∣
)

+ C

= − x

8(x2 − 4)
+

1
32

ln
∣∣∣∣ x2 − 4
(x− 2)2

∣∣∣∣ + C =
1
32

ln
∣∣∣∣ x+ 2
x− 2

∣∣∣∣− x

8(x2 − 4)
+ C.

C07S07.028: x− x2 = −(x2 − x) = −
(
x2 − x+ 1

4

)
+ 1

4 = 1
4 −

(
x− 1

2

)2 = 1
4 −

1
4 sin2 u = 1

4 cos2 u if we let
x = 1

2 (1 + sinu), so that 2x− 1 = sinu, dx = 1
2 cosu du, and u = arcsin(2x− 1). Then

J =
∫

(x− x2)3/2 dx =
∫ (

1
8

cos3 u
) (

1
2

cosu
)
du =

1
16

∫
cos4 u du.

The reduction formula in Problem 54 of Section 7.3 now yields
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J =
1
16

(
1
4

cos3 u sinu+
3
4

∫
cos2 u du

)

=
1
16

(
1
4

cos3 u sinu+
3
4

[
1
2

sinu cosu+
1
2
u

])
+ C =

1
64

sinu cos3 u+
3

128
sinu cosu+

3
128

u+ C.

A reference triangle with acute angle u, opposite side 2x− 1, and hypotenuse 1 has adjacent side of length
2
√
x− x2 , and therefore

J =
1

128
[
2 · (2x− 1) · 8(x− x2)3/2 + 3 · (2x− 1) · 2

√
x− x2 + 3 arcsin(2x− 1)

]
+ C

=
1

128
[
2(2x− 1)(x− x2)1/2

{
8(x− x2) + 3

}
+ 3 arcsin(2x− 1)

]
+ C

=
1

128
[
2(2x− 1)(3 + 8x− 8x2)

√
x− x2 + 3 arcsin(2x− 1)

]
+ C.

C07S07.029: The partial fractions decomposition

x2 + 1
x(x2 + x+ 1)

=
A

x
+

Bx+ C

x2 + x+ 1

yields the equation Ax2 +Ax+A+Bx2 + Cx = x2 + 1, so that

A+B = 1, A+ C = 0, and A = 1.

It follows that B = 0 and C = 1. Hence

x2 + 1
x(x2 + x+ 1)

=
1
x
− 1
x2 + x+ 1

.

Now x2 + x+ 1 = x2 + x+ 1
4 + 3

4 =
(
x+ 1

2

)2 + 3
4 = 3

4 tan2 u+ 3
4 = 3

4 sec2 u if 1
2

√
3 tanu = x+ 1

2 , so we let

x =
1
2

(
−1 +

√
3 tanu

)
. Then dx =

1
2

√
3 sec2 u du and tanu =

1
3

√
3 (2x+ 1).

Thus

∫
1

x2 + x+ 1
dx =

∫ 1
2

√
3 sec2 u

3
4 sec2 u

du =
2u
√

3
3

+ C =
2
√

3
3

arctan

(√
3
3

[2x+ 1]

)
+ C.

Therefore

∫
x2 + 1

x(x2 + x+ 1)
dx =

∫ (
1
x
− 1
x2 + x+ 1

)
dx = ln |x| − 2

√
3

3
arctan

(√
3
3

[2x+ 1]

)
+ C.

C07S07.030: Let x = tanu. Then x2 +1 = 1+tan2 u = sec2 u, dx = sec2 u du, and u = arctanx. Hence

J =
∫

x2 + 2
(x2 + 1)2

dx =
∫

1 + sec2 u

sec4 u
· sec2 u du =

∫
1 + sec2 u

sec2 u
du =

∫
(1 + cos2 u) du

=
∫ (

1 +
1 + cos 2u

2

)
du =

∫ (
3
2

+
1
2

cos 2u
)
du =

3
2
u+

1
4

sin 2u+ C =
1
2

(3u+ sinu cosu) + C.
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A reference triangle with acute angle u, opposite side x, and adjacent side 1 has hypotenuse of length√
x2 + 1 . Therefore

J =
1
2

(
3 arctanx+

x

x2 + 1

)
+ C.

C07S07.031: Because x4 − 2x2 + 1 = (x2 − 1)2, we let x = sec θ. Then (x2 − 1)2 = (sec2 θ− 1)2 = tan4 θ

and dx = sec θ tan θ dθ. Thus

K =
∫

2x2 + 3
x4 − 2x2 + 1

dx =
∫

3 + 2 sec2 θ

tan4 θ
· sec θ tan θ dθ =

∫ (
3 sec θ
tan3 θ

+
2 sec3 θ

tan3 θ

)
dθ

=
∫ (

3 cos2 θ
sin3 θ

+
2

sin3 θ

)
dθ =

∫ (
3(1− sin2 θ)

sin3 θ
+ 2 csc3 θ

)
dθ =

∫ (
5 csc3 θ − 3 csc θ

)
dθ.

Formulas 15 and 29 of the endpapers of the text now yield

K = 5
(
− 1

2
csc θ cot θ +

1
2

ln | csc θ − cot θ |
)
− 3 ln | csc θ − cot θ |+ C

= − 5
2

csc θ cot θ − 1
2

ln | csc θ − cot θ |+ C.

A reference triangle with acute angle θ, adjacent side 1, and hypotenuse x has opposite side of length√
x2 − 1 . Therefore

K = − 5
2
· x

x2 − 1
− 1

2
ln

∣∣∣∣ x− 1√
x2 − 1

∣∣∣∣ + C

= − 5x
2(x2 − 1)

+
1
4

ln
∣∣∣∣ x2 − 1
(x− 1)2

∣∣∣∣ + C =
1
4

ln
∣∣∣∣ x+ 1
x− 1

∣∣∣∣− 5x
2(x2 − 1)

+ C.

C07S07.032: The partial fractions decomposition

x2 + 4
(x2 + 1)2(x2 + 2)

=
Ax+B

x2 + 1
+

Cx+D

(x2 + 1)2
+
Ex+ F

x2 + 2

leads to the equation

(Ax+B)(x4 + 3x2 + 2) + (Cx+D)(x2 + 2) + (Ex+ F )(x4 + 2x+ 1) = x2 + 4,

and thus to

A(x5 +3x3 +2x)+B(x4 +3x2 +2)+C(x3 +2x)+D(x2 +2)+E(x5 +2x3 +x)+F (x4 +2x+2+1) = x2 +4.

The resulting simultaneous equations are not merely six equations in six unknowns; they are two sets of
three equations in three unknowns:

A+ E = 0, B + F = 0,

3A+ C + 2E = 0, and 3B +D + 2F = 1,

2A+ 2C + E = 0. 2B + 2D + F = 4.
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It follows easily that A = C = E = 0 and that B = −2, D = 3, and F = 2. Thus

x2 + 4
(x2 + 1)2(x2 + 2)

=
−2

x2 + 1
+

3
(x2 + 1)2

+
2

x2 + 2
.

The substitution x = tanu, x2 + 1 = sec2 u, dx = sec2 u du then yields

∫
3

(x2 + 1)2
dx =

∫
3 sec2 u

sec4 u
du = 3

∫
cos2 u du = 3

∫
1 + cos 2u

2
du = 3

(
1
2
u+

1
4

sin 2u
)

+ C

=
3
2

(u+ sinu cosu) + C.

A reference triangle with acute angle u, opposite side x, and adjacent side 1 has hypotenuse of length√
x2 + 1 . Therefore

∫
3

(x2 + 1)2
dx =

3
2

(
arctanx +

x

x2 + 1

)
+ C.

Next,

∫
2

x2 + 2
dx =

∫
1(

x/
√

2
)2

+ 1
dx =

√
2

∫
1/
√

2

1 +
(
x/
√

2
)2 dx =

√
2 arctan

(√
2
2
x

)
+ C.

Finally assembling all these results, we have

∫
x2 + 4

(x2 + 1)2(x2 + 2)
dx = −2 arctanx+

3
2

arctanx+
3x

2(x2 + 1)
+
√

2 arctan

(√
2
2
x

)
+ C

=
3x

2(x2 + 1)
− 1

2
arctanx+

√
2 arctan

(√
2
2
x

)
+ C.

C07S07.033: x2 +2x+5 = (x+1)2 +4 = 4 tan2 u+4 = 4 sec2 u if 2 tanu = x+1, so we let x = −1+tanu.
Then dx = 2 sec2 u du and tanu = 1

2 (x+ 1). Therefore

I =
∫

3x+ 1
(x2 + 2x+ 5)2

dx =
∫ −3 + 6 tanu+ 1

16 sec4 u
· 2 sec2 u du =

1
8

∫
(−2 + 6 tanu) cos2 u du

=
1
8

∫
(6 sinu cosu − 1− cos 2u) du =

1
8

(3 sin2 u − u− sinu cosu) + C.

A reference triangle with acute angle u, opposite side x + 1, and adjacent side 2 has hypotenuse of length√
x2 + 2x+ 5 . Therefore

I =
1
8

[
3 · (x+ 1)2

x2 + 2x+ 5
− arctan

(
x+ 1

2

)
− 2(x+ 1)
x2 + 2x+ 5

]
+ C =

3x2 + 4x+ 1
8(x2 + 2x+ 5)

− 1
8

arctan
(
x+ 1

2

)
+ C.

C07S07.034: x2 + 2x+ 2 = (x+ 1)2 + 1 = 1 + tan2 u = sec2 u if x+ 1 = tanu, so we let x = −1 + tanu.
Then dx = sec2 u du and u = arctan(x + 1). But before substitution, we divide the denominator of the
integrand into its numerator to find that

x3 − 2x
x2 + 2x+ 2

= x− 2 +
4

x2 + 2x+ 2
.
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Then the trigonometric substitution given here yields

∫
4

x2 + 2x+ 2
dx =

∫
4 sec2 u

sec2 u
du = 4u+ C1 = 4 arctan(x+ 1) + C1.

Therefore

∫
x3 − 2x

x2 + 2x+ 2
dx =

1
2
x2 − 2x+ 4 arctan(x+ 1) + C.

C07S07.035: The substitution u = a tan θ entails a2 + u2 = a2 sec2 θ and du = a sec2 θ dθ. Thereby we
find that

∫
1

(a2 + u2)n
du =

∫
a sec2 θ

(a2 sec2 θ)n
dθ =

∫
a sec2 θ

a2n(sec θ)2n
dθ =

1
a2n−1

∫
(cos θ)2n−2 dθ.

C07S07.036: The substitution u = a sin θ, a2 − u2 = a2 cos2 θ, du = a cos θ dθ yields
∫

1
(a2 − u2)n

du =
∫

a cos θ
(a2 cos2 θ)n

dθ =
∫

a cos θ
a2n(cos θ)2n

dθ =
1

a2n−1

∫
(sec θ)2n−1 dθ.

C07S07.037: x2 − 2x + 5 = (x − 1)2 + 4 = 4 + 4 tan2 u = 4 sec2 u if 2 tanu = x − 1, therefore we let
x = 1 + 2 tanu. Then dx = 2 sec2 u du and tanu = 1

2 (x− 1). Thus the area is

A =
∫ 5

0

1
x2 − 2x+ 5

dx =
∫ 5

x=0

2 sec2 u

4 sec2 u
du =

∫ 5

x=0

1
2
du =

[
1
2
u

]5

x=0

=
[

1
2

arctan
(
x− 1

2

)]5

0

=
1
2

[
arctan 2− arctan

(
− 1

2

)]
=

1
2

[
arctan 2 + arctan

(
1
2

)]
=

1
2

(
arctan 2 +

π

2
− arctan 2

)
=
π

4
.

C07S07.038: We use the substitution developed in the solution of Problem 37. The volume obtaining by
rotating the region around the y-axis is

V =
∫ 5

0

2πx
x2 − 2x+ 5

dx = 2π
∫ 5

x=0

1 + 2 tanu
4 sec2 u

· 2 sec2 u du

= π

∫ 5

x=0

(1 + 2 tanu) du = π

[
u− 2 ln | cosu |

]5

x=0

.

A reference triangle with acute angle u, opposite side x − 1, and adjacent side 2 has hypotenuse of length√
x2 − 2x+ 5 . Consequently

V = π

[
arctan

(
x− 1

2

)
+ 2 ln

√
x2 − 2x+ 5

2

]5

0

= π

[
arctan 2− arctan

(
− 1

2

)
+ 2 ln

(√
5

)
− 2 ln

(√
5
2

)]

= π

[
π

2
+ 2 ln

(
2
√

5√
5

)]
=
π

2
(π + 4 ln 2) ≈ 9.2899743812.
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C07S07.039: x2 − 2x + 5 = (x − 1)2 + 4 = 4 + 4 tan2 u = 4 sec2 u if 2 tanu = x − 1, therefore we let
x = 1 + 2 tanu. Then dx = 2 sec2 u du and tanu = 1

2 (x − 1). Thus the volume of revolution around the
x-axis is

V = π

∫ 5

0

1
(x2 − 2x+ 5)2

dx = π

∫ 5

x=0

2 sec2 u

16 sec4 u
du =

π

8

∫ 5

x=0

1 + cos 2u
2

du =
π

16

[
u+ sinu cosu

]5

x=0

.

A reference triangle with acute angle u, opposite side x − 1, and adjacent side 2 has hypotenuse of length√
x2 − 2x+ 5 . Therefore

V =
π

16

[
arctan

(
x− 1

2

)
+

2(x− 1)
x2 − 2x+ 5

]5

0

=
π

16

[
arctan 2− arctan

(
− 1

2

)
+

8
20

+
2
5

]

=
π

16

[
arctan 2 + arctan

(
1
2

)
+

4
5

]
=

π

16

(
π

2
+

4
5

)
=

5π2 + 8π
160

≈ 0.4655047702.

C07S07.040: 4x2 − 20x + 29 = (2x − 5)2 + 4 = 4 tan2 u + 4 = 4 sec2 u if 2 tanu = 2x − 5. Hence we let
x = 5

2 + tanu. Then tanu = 1
2 (2x− 5) and dx = sec2 u du. Therefore the area of the region is

A =
∫ 4

1

1
4x2 − 20x+ 29

dx =
∫ 4

x=1

1
4 sec2 u

· sec2 u du =
[

1
4
u

]4

x=1

=
[

1
4

arctan
(

2x− 5
2

)]4

1

=
1
4

[
arctan

(
3
2

)
− arctan

(
− 3

2

)]
=

1
2

arctan
(

3
2

)
≈ 0.4913968616.

C07S07.041: 4x2 − 20x + 29 = (2x − 5)2 + 4 = 4 tan2 u + 4 = 4 sec2 u if 2 tanu = 2x − 5. Hence we let
x = 5

2 + tanu. Then tanu = 1
2 (2x − 5) and dx = sec2 u du. Therefore the volume generated by rotating

the given region around the y-axis is

V =
∫ 4

1

2πx
4x2 − 20x+ 29

dx = π

∫ 4

x=1

5
2 + tanu
4 sec2 u

· sec2 u du =
π

2

[
5
2
u+ ln | secu|

]4

x=1

.

A reference triangle with acute angle u, opposite side 2x− 5, and adjacent side 2 has hypotenuse of length√
4x2 − 20x+ 29 . Therefore

V =
π

2

[
5
2

arctan
(

2x− 5
2

)
+ ln

(√
4x2 − 20x+ 29

2

)]4

1

=
π

2

[
5
2

arctan
(

3
2

)
− 5

2
arctan

(
− 3

2

)
+

1
4

ln(13)− 1
4

ln(13)
]

=
5π
2

arctan
(

3
2

)
≈ 7.7188438524.

C07S07.042: The substitution used in the solutions of Problems 40 and 41 yield the volume of revolution
around the x-axis to be

V = π

∫ 4

1

1
(4x2 − 20x+ 29)2

dx = π

∫ 4

x=1

sec2 u

16 sec4 u
du

=
π

16

∫ 4

x=1

cos2 u du =
π

32

∫ 4

x=1

(1 + cos 2u) du =
π

32

[
u+ sinu cosu

]4

x=1

.
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A reference triangle with acute angle u, opposite side 2x− 5, and adjacent side 2 has hypotenuse of length√
4x2 − 20x+ 29 . Therefore

V =
π

32

[
arctan

(
2x− 5

2

)
+

4x− 10
4x2 − 20x+ 29

]4

1

=
π

32

[
arctan

(
3
2

)
− arctan

(
− 3

2

)
+

12
13

]

=
π

32

[
2 arctan

(
3
2

)
+

12
13

]
=

π

16

(
6
13

+ arctan
3
2

)
≈ 0.2835939613.

C07S07.043: Given (4x+ 4)2 + (4y − 19)2 = 377, implicit differentiation yields

8(4x+ 4) + 8(4y − 19) = 0, so that
dy

dx
= − 4x+ 4

4y − 19
.

Thus

1 +
(
dy

dx

)2

= 1 +
(4x+ 4)2

(4y − 19)2
=

(4x+ 4)2 + (4y − 19)2

377− (4x+ 4)2
=

377
377− (4x+ 4)2

.

Therefore the length of the road is

L =
∫ 3

0

√
377√

377− (4x+ 4)2
dx.

Now 377− (4x+ 4)2 = 377− 16(x+ 1)2 = 377− 377 sin2 u = 377 cos2 u if 377 sin2 u = 16(x+ 1)2. So we let
x = −1 + 1

4

(√
377 sinu

)
. Then dx = 1

4

√
377 cosu du, and this substitution yields

L =
∫ 3

x=0

√
377√

377 cosu
·
√

377
4

cosu du =
∫ 3

x=0

√
377
4

du =

[√
377
4

u

]3

x=0

=

[√
377
4

arcsin
(

4x+ 4√
377

)]3

0

=
√

377
4

[(
arcsin

16√
377

)
− arcsin

(
4√
377

)]
.

It is easy to show that arcsinx − arcsin y = arcsin
(
x
√

1− y2 − y
√

1− x2
)
. Therefore (after a bit of

arithmetic) you can also show that

L =
√

377
4

arcsin
(

260
377

)
≈ 3.6940487219 (miles).

For an alternative approach, the equation of the road may be put into the form

(x+ 1)2 +
(
y − 19

4

)2 =
377
16

,

so the given curve joining A(0, 0) with B(3, 2) is an arc of a circle having center at C
(
−1, 19

4

)
and radius

1
4

√
377 . The straight line segment AB has length

√
13 , so the law of cosines may be used to find the angle

θ between the two radii CA and CB:

13 =
377
16

+
377
16
− 2 · 377

16
cos θ.

Hence the length of the circular arc AB is simply the product of the radius of the circle with the angle θ
(in radians):
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√
377
4

arccos
(

273
377

)
≈ 3.6940487219 (miles).

C07S07.044: If the integrand in the solution of Problem 43 is multiplied by 10/(1+x), then the resulting
integral will give the total cost C of the road. Therefore

C =
∫ 3

0

10
√

377
(x+ 1)

√
377− (4x+ 4)2

dx.

The substitution used in the solution of Problem 43 yields

C =
∫ 3

x=0

10
√

377
1
4

(√
377 sinu

)√
377 cosu

·
√

377
4

cosu du =
∫ 3

x=0

10 cscu du = 10
[

ln | cscu− cotu |
]3

x=0

.

A reference triangle with acute angle u, opposite side 4(x+ 1), and hypotenuse
√

377 has adjacent side of
length

√
377− (4x+ 4)2 . Therefore

C = 10

[
ln

(√
377 −

√
377− (4x+ 4)2

4x+ 4

)]3

0

= 10

(
ln
√

377 −
√

121
16

− ln
√

377 −
√

361
4

)

= 10 ln

(√
377 − 11

16
· 4√

377 − 19

)
= 10 ln

√
377 − 11

4
(√

377 − 19
) ≈ 16.197962748565 (million dollars).

For part (b), the straight road from (0, 0) to (3, 2) follows the graph of y = 2
3 x, for which

1 +
(
dy

dx

)2

= 1 +
4
9

=
13
9
.

Thus the cost of the straight road will be

S =
∫ 3

0

√
13
3
· 10
x+ 1

dx =
10
√

13
3

[
ln(x+ 1)

]3

0

=
10
√

13
3

ln 4 =
20
√

13
3

ln 2 ≈ 16.661184673015

million dollars.

C07S07.045: The equation

3x+ 2
(x− 1)(x2 + 2x+ 2)

=
A

x− 1
+

Bx+ C

x2 + 2x+ 2

leads to A(x2 + 2x+ 2) +B(x2 − x) + C(x− 1) = 3x+ 12, and thereby to

A+B = 0, 2A−B + C = 3, 2A− C = 2.

Thus

3x+ 2
(x− 1)(x2 + 2x+ 2)

=
1

x− 1
− x

x2 + 2x+ 2
.

Now x2 + 2x + 2 = (x + 1)2 + 1 = 1 + tan2 θ = sec2 θ provided that x + 1 = tan θ. Therefore we let
x = −1 + tan θ, and thus dx = sec2 θ dθ and θ = arctan(x+ 1). Hence
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J =
∫

x

(x+ 1)2 + 1
dx =

∫ −1 + tan θ
sec2 θ

· sec2 θ dθ = −θ + ln | sec θ |+ C.

A reference triangle with acute angle θ, opposite side x+ 1, and adjacent side 1 has hypotenuse of length√
x2 + 2x+ 2 , and therefore

J = − arctan(x+ 1) + ln
√
x2 + 2x+ 2 + C =

1
2

ln(x2 + 2x+ 2)− arctan(x+ 1) + C.

In conclusion,
∫

3x+ 2
x3 + x2 − 2

dx = ln |x− 1| − 1
2

(x2 + 2x+ 2) + arctan(x+ 1) + C.

C07S07.046: We begin with the partial fractions decomposition

1
x3 + 8

=
A

x+ 2
+

Bx+ C

x2 − 2x+ 4
,

which leads to A(x2 − 2x+ 4) +B(x2 + 2x) + C(x+ 2) = 1. Thus

A+B = 0, −2A+ 2B + C = 0, and 4A+ 2C = 1.

It follows that A = 1
12 , B = − 1

12 , and C = 1
3 . Therefore

1
x3 + 8

=
1
12

(
1

x+ 2
+

−x+ 4
x2 − 2x+ 4

)
.

Now x2 − 2x + 4 = (x − 1)2 + 3 = 3 tan2 u + 3 = 3 sec2 u provided that
√

3 tanu = x − 1, so we let
x = 1 +

√
3 tanu. Then dx =

√
3 sec2 u du and tanu = (x− 1)/

√
3 . Thus

∫ −x+ 4
x2 − 2x+ 4

dx =
∫ −1−

√
3 tanu+ 4

3 sec2 u
·
√

3 sec2 u du =
∫

3−
√

3 tanu√
3

du

=
∫ (√

3 − tanu
)
du = u

√
3 + ln | cosu |+ C.

Therefore

∫
1

x3 + 8
dx =

1
12

(
ln |x+ 2|+

√
3 arctan

x− 1√
3

+ ln

∣∣∣∣∣
√

3√
x2 − 2x+ 4

∣∣∣∣∣
)

+ C

=
1
12

(
ln |x+ 2|+

√
3 arctan

(√
3
3

[x− 1]

)
+

1
2

ln 3− 1
2

ln(x2 − 2x+ 4)

]
+ C

=
1
24

[
2 ln |x+ 2|+ 2

√
3 arctan

(√
3
3

[x− 1]

)
− ln(x2 − 2x+ 4)

]
+ C1.

C07S07.047: Division of denominator into numerator reveals that

x4 + 2x2

x3 − 1
= x+

2x2 + x

(x− 1)(x2 + x+ 1)
. (1)
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The partial fraction decomposition of the last term in Eq. (1) has the form

2x2 + x

(x− 1)(x2 + x+ 1)
=

A

x− 1
+

Bx+ C

x2 + x+ 1
,

and it follows that A(x2 + x+ 1) +B(x2 − x) + C(x− 1) = 2x2 + x, and thus

A+B = 2, A−B + C = 1, and A− C = 0.

Therefore A = B = C = 1, and so

2x2 + x

x3 − 1
=

1
x− 1

+
x+ 1

x2 + x+ 1
.

Now write

x+ 1
x2 + x+ 1

=
1
2
· 2x+ 2
x2 + x+ 1

=
1
2

(
2x+ 1

x2 + x+ 1
+

1
x2 + x+ 1

)
.

Then

K =
∫

1
x2 + x+ 1

dx =
∫

1(
x+ 1

2

)2 + r2
dx

where r = 1
2

√
3 . Let u = x+ 1

2 . Then use integral formula 17 from the endpapers of the text:

K =
∫

1
u2 + r2

du =
1
r

arctan
(u
r

)
+ C =

2
√

3
3

arctan
(

2x+ 1√
3

)
+ C.

Finally put all this work together to obtain

J =
1
2
x2 + ln |x− 1|+ 1

2
ln(x2 + x+ 1) +

√
3
3

arctan
(

2x+ 1√
3

)
+ C.

C07S07.048: If

x4 + 1 = (x2 + ax+ 1)(x2 + bx+ 1) = x4 + (a+ b)x3 + (ab+ 2)x2 + (a+ b)x+ 1,

then a+ b = 0 and ab+ 2 = 0, so b = −a and a2 = b2 = 2. Therefore a = ±
√

2 and b = ∓
√

2 . In either
case,

x4 + 1 = (x2 + x
√

2 + 1)(x2 − x
√

2 + 1).

Thus we have the partial fractions decomposition

x2 + 1
x4 + 1

=
Ax+B

x2 + x
√

2 + 1
+

Cx+D

x2 − x
√

2 + 1
,

and it follows that

A(x3 + x2
√

2 + x) +B(x2 − x
√

2 + 1) + C(x3 + x
√

2 + x) +D(x2 + x
√

2 + 1) = x2 + 1.

Therefore
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A+ C = 0, −A
√

2 +B + C
√

2 + E = 1,

A−B
√

2 + C +D
√

2 = 0, B +D = 1.

It follows that A = C = 0 and B = D = 1
2 . Therefore

x2 + 1
x4 + 1

=
1
2

(
1

x2 + x
√

2 + 1
+

1
x2 − x

√
2 + 1

)
.

Let r = 1
2

√
2 . Then

x2 + 2rx+ 1 = (x+ r)2 + 1− r2 = (x+ r)2 +
1
2

=
1
2

tan2 u+
1
2

=
1
2

sec2 u = r2 sec2 u

if x+ r = r tanu. So we let x = −r + r tanu. Then dx = r sec2 u du, and thus

∫
1

x2 + x
√

2 + 1
dx =

∫
r sec2 u

r2 sec2 u
du =

∫
1
r
du =

u

r
+ C1

=
1
r

arctan
(
x+ r

r

)
+ C1 =

√
2 arctan

(
x
√

2 + 1
)

+ C1.

Next, x2 − x
√

2 + 1 = (x − r)2 + 1 − r2 = (x − r)2 + 1
2 = (x − r)2 + r2 = r2 tan2 v + r2 = r2 sec2 v if

x− r = r tan v, so we let x = r + r tan v; dx = r sec2 v dv, so

∫
1

x2 − rx+ 1
dx =

∫
r sec2 v

r2 sec2 v
dv =

∫
1
r
dv =

v

r
+ C2

=
1
r

arctan
(
x− r
r

)
+ C2 =

√
2 arctan

(
x
√

2 + 1
)

+ C2.

Therefore

∫ 1

0

x2 + 1
x4 + 1

dx =
1
2

∫ 1

0

(
1

x2 + x
√

2 + 1
+

1
x2 − x

√
2 + 1

)
dx

=
1
2

[√
2 arctan

(
x
√

2 + 1
)

+
√

2 arctan
(
x
√

2 − 1
) ]1

0

=
√

2
2

[
arctan

(√
2 + 1

)
+ arctan

(√
2 − 1

)
− arctan(1)− arctan(−1)

]

=
√

2
2

[
arctan

(√
2 + 1

)
+ arctan

(√
2 − 1

)]

=
√

2
2

[
arctan

(√
2 + 1

)
+ arctan

(
1√

2 + 1

)]
=
√

2
2
· π

2
=
π
√

2
4
≈ 1.1107207345.

C07S07.049: The trial factorization

x4 + x2 + 1 = (x2 + ax+ 1)(x2 + bx+ 1) = x4 + (a+ b)x3 + (ab+ 2)x2 + (a+ b)x+ 1

yields a+ b = 0 and ab+ 2 = 1. Hence b = −a and ab = −1, so that a = ±1 and b = ∓1. Either way,
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x4 + x2 + 1 = (x2 + x+ 1)(x2 − x+ 1).

The partial fractions decomposition

2x3 + 3x
x4 + x2 + 1

=
Ax+B

x2 + x+ 1
+

Cx+D

x2 − x+ 1

then yields

A(x3 − x2 + x) +B(x2 − x+ 1) + C(x3 + x2 + x) +D(x2 + x+ 1) = 2x3 + 3x,

and thus

A+ C = 2, −A+B + C +D = 0,

A−B + C +D = 3, B +D = 0.

These equations are easily solved for A = C = 1, B = − 1
2 , and D = 1

2 . Therefore

2x3 + 3x
x4 + x2 + 1

=
1
2

(
2x− 1

x2 + x+ 1
+

2x+ 1
x2 − x+ 1

)
.

Next, x2 +x+1 = x2 +x+ 1
4 + 3

4 =
(
x+ 1

2

)2 + 3
4 = 3

4 tan2 u+ 32
4 = 3

4 sec2 u if x+ 1
2 = 1

2

√
3 tanu. Therefore

we let

x = −−1 +
√

3 tanu
2

, and so dx =
√

3
2

sec2 u du and tanu =
2x+ 1√

3
.

Thus

J1 =
∫

2x− 1
x2 + x+ 1

dx =
∫ −1 +

√
3 tanu− 1

3
4 sec2 u

·
√

3
2

sec2 u du

=
2
√

3
3

∫
(−2 +

√
3 tanu) du = − 4

√
3

3
u+ 2 ln | secu |+ C.

A reference triangle with acute angle u, opposite side 2x+ 1, and adjacent side 3 has hypotenuse of length
2
√
x2 + x+ 1 . Therefore

J1 = − 4
√

3
3

arctan
(

2x+ 1√
3

)
+2 ln

∣∣∣∣∣
2
√
x2 + x+ 1

3

∣∣∣∣∣+C = − 4
√

3
3

arctan
(

2x+ 1√
3

)
+ln(x2 +x+1)+C1.

Similarly, x2 − x + 1 = x2 − x + 1
4 + 3

4 =
(
x− 1

2

)2 + 3
4 = 3

4 tan2 v + 3
4 = 3

4 sec2 v if x − 1
2 = 1

2

√
3 tan v.

Therefore we let

x =
1 +
√

3 tan v
2

, so that dx =
√

3
2

sec2 v dv and tan v =
2x− 1√

3
.

Hence
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J2 =
∫

2x+ 1
x2 − x+ 1

dx =
∫

1 +
√

3 tan v + 1
3
4 sec2 v

·
√

3
2

sec2 v dv

=
2
√

3
3

∫
(2 +

√
3 tan v) dv =

2
√

3
3

(
2v +

√
3 ln | sec v |

)
+ C =

4
√

3
3

v + 2 ln | sec v |+ C.

A reference triangle with acute angle v, opposite side 2x−1, and adjacent side
√

3 has hypotenuse of length
2
√
x2 − x+ 1 . Therefore

J2 =
4
√

3
3

arctan
(

2x− 1√
3

)
+ ln(x2 − x+ 1) + C2.

Thus

∫
2x3 + 3x
x4 + x2 + 1

dx =
1
2

(J1 + J2) + C

=
2
√

3
3

arctan
(

2x− 1√
3

)
+

1
2

ln(x2 − x+ 1)− 2
√

3
3

arctan
(

2x+ 1√
3

)
+

1
2

ln(x2 + x+ 1) + C.

Using the result in Problem 64 of Section 6.8, the antiderivative can be further simplified to

1
2

ln(x4 + x2 + 1)− 2
√

3
3

arctan

( √
3

2x2 + 1

)
+ C.

C07S07.050: The factorization

x4 − 2x3 + 4x− 4 = (x2 − 2)(x2 − 2x+ 2) =
(
x+
√

2
) (

x−
√

2
) (
x2 − 2x+ 2

)

yields the partial fractions decomposition

16(x− 1)
x4 − 2x3 + 4x− 4

=
A

x−
√

2
+

B

x+
√

2
+

Cx+D

x2 − 2x+ 2
=

2
x−
√

2
+

2
x+
√

2
− 4(x− 2)
x2 − 2x+ 2

.

Next note that

x− 2
x2 − 2x+ 2

=
x− 1

x2 − 2x+ 2
− 1

1 + (x− 1)2
.

Therefore
∫

4(x− 2)
x2 − 2x+ 2

dx = 2 ln(x2 − 2x+ 2)− 4 arctan(x− 1) + C.

Consequently

∫ 1

0

16(x− 1)
x4 − 2x3 + 4x− 4

dx =
[
2 ln

(
x−
√

2
)

+ 2 ln
(
x+
√

2
)
− 2 ln(x2 − 2x+ 2) + 4 arctan(x− 1)

]1

0

=
[
2 ln |x2 − 2| − 2 ln(x2 − 2x+ 2) + 4 arctan(x− 1)

]1

0

= 2 ln 1− 2 ln 2− 2 ln 1 + 2 ln 2 + 4 arctan(0)− 4 arctan(−1) = −4 ·
(
− π

4

)
= π.

22



C07S07.051: Mathematica 3.0 gives the partial fraction decomposition

7x4 + 28x3 + 50x2 + 67x+ 23
(x− 1)(x2 + 2x+ 2)2

=
A

x− 1
+

Bx+ C

x2 + 2x+ 2
+

Dx+ E

(x2 + 2x+ 2)2
=

7
x− 1

− 6x− 5
(x2 + 2x+ 2)2

.

Next, x2 + 2x+ 2 = (x+ 1)2 + 1 = 1 + tan2 u = sec2 u if x+ 1 = tanu. Hence we let

x = −1 + tanu, so that dx = sec2 u du.

Then

K =
∫

6x− 5
(x2 + 2x+ 2)2

dx =
∫ −6 + 6 tanu− 5

sec4 u
· sec2 u du

=
∫

(−11 cos2 u+ 6 sinu cosu) du = −11
2

(u+ sinu cosu) + 3 sin2 u+ C.

A reference triangle with acute angle u, opposite side x+ 1, and adjacent side 1 has hypotenuse of length√
x2 + 2x+ 2 . Therefore

K = − 11
2

arctan(x+ 1)− 11
2
· x+ 1
x2 + 2x+ 2

+ 3 · (x+ 1)2

x2 + 2x+ 2
+ C.

Therefore

∫
7x4 + 28x3 + 50x2 + 67x+ 23

(x− 1)(x2 + 2x+ 2)2
dx = 7 ln |x− 1|+ 11

2
arctan(x+ 1) +

11(x+ 1)
2(x2 + 2x+ 2)

− 3(x+ 1)2

x2 + 2x+ 2
+ C.

Mathematica 3.0 returns the antiderivative in the form

7 ln |x− 1|+ 11
2

arctan(x+ 1) +
11x+ 17

2(x2 + 2x+ 2)
.

Ignoring C, the difference between the two answers is

11(x+ 1)
2(x2 + 2x+ 2)

− 3(x2 + 2x+ 1)
x2 + 2x+ 2

− 11x+ 17
2(x2 + 2x+ 2)

= −3,

a constant.

C07S07.052: Mathematica 3.0 gives the partial fraction decomposition

35 + 84x+ 55x2 − x3 + 5x4 − 4x5

(x2 + 1)2(x2 + 6x+ 10)
=
Ax+B

x2 + 1
+

Cx+D

(x2 + 1)2
+

Ex+ F

x2 + 6x+ 10
=

7x+ 3
(x2 + 1)2

− 4x− 5
x2 + 6x+ 10

.

Let x = tanu. Then dx = sec2 u du and x2 + 1 = sec2 u. Thus

I1 =
∫

7x+ 3
(x2 + 1)2

dx =
∫

7 tanu+ 3
sec4 u

· sec2 u du

=
∫ [

7 sinu cosu+
3
2

(1 + cos 2u)
]
du =

7
2

sin2 u+
3
2

(u+ sinu cosu) + C.

A reference triangle with acute angle u, opposite side x, and adjacent side 1 has hypotenuse of length√
1 + x2 . Therefore
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I1 =
7
2
· x2

1 + x2
+

3
2

arctanx+
3
2
· x

1 + x2
+ C1.

Next, x2 + 6x+ 10 = (x+ 3)2 + 1 = tan2 v + 1 = sec2 v if x+ 3 = tan v. Hence we let

x = −3 + tan v, so that dx = sec2 v dv.

Then

I2 =
∫

4x− 5
x2 + 6x+ 10

dx =
∫ −12 + 4 tan v − 5

sec2 v
· sec2 v dv = −17v + 4 ln | sec v |+ C.

A reference triangle with acute angle v, opposite side x+ 3, and adjacent side 1 has hypotenuse of length√
x2 + 6x+ 10 . Therefore

I2 = −17 arctan(x+ 3) + 4 ln
√
x2 + 6x+ 10 + C2 = −17 arctan(x+ 3) + 2 ln(x2 + 6x+ 10) + C2.

Therefore

∫
35 + 84x+ 55x2 − x3 + 5x4 − 4x5

(x2 + 1)2(x2 + 6x+ 10)
dx = I1 − I2

=
7x2

2(x2 + 1)
+

3
2

arctanx+
3x

2(x2 + 1)
+ 17 arctan(x+ 3)− 2 ln(x2 + 6x+ 10) + C.

Mathematica 3.0 returns for the antiderivative

3x
2(x2 + 1)

− 7
2(x2 + 1)

+
3
2

arctanx+ 17 arctan(x+ 3)− 2 ln(x2 + 6x+ 10).

Ignoring C, the difference between the two answers is

7x2

2(x2 + 1)
− 7

2(x2 + 1)
=

7(x2 + 1)
2(x2 + 1)

=
7
2
,

a constant.

C07S07.053: Given:

h(x) =
32x5 + 16x4 + 19x3 − 98x2 − 107x− 15

(x2 − 2x− 15)(4x2 + 4x+ 5)2
.

First we factor: x2−2x−15 = (x−5)(x+3). Then Mathematica 3.0 yields the partial fraction decomposition

h(x) =
A

x− 5
+

B

x+ 3
+

Cx+D

4x2 + 4x+ 5
+

Ex+ F

(4x2 + 4x+ 5)2
=

7
8(x− 5)

+
9

8(x+ 3)
+

3x− 4
(4x2 + 4x+ 5)2

.

Then 4x2 + 4x+ 5 = (2x+ 1)2 + 4 = 4 tan2 u+ 4 = 4 sec2 u if 2 tanu = 2x+ 1, so we let

x =
−1 + 2 tanu

2
. Then dx = sec2 u du and tanu =

2x+ 1
2

.

Hence
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K =
∫

3x− 4
(4x2 + 4x+ 5)2

dx =
∫ − 3

2 + 3 tanu− 4
16 sec4 u

· sec2 u du =
1
32

∫ −11 + 6 tanu
sec2 u

du

=
1
32

∫ [
− 11

2
(1 + cos 2u) + 6 sinu cosu

]
du =

1
64

(
− 11u− 11 sinu cosu+ 6 sin2 u

)
+ C.

A reference triangle with acute angle u, opposite side 2x+ 1, and adjacent side 2 has hypotenuse of length√
4x2 + 4x+ 5 . Therefore

K =
1
64

[
−11 arctan

(
2x+ 1

2

)
− 11 · 2(2x+ 1)

4x2 + 4x+ 5
+

6(2x+ 1)2

4x2 + 4x+ 5

]
+ C

= − 11
64

arctan
(

2x+ 1
2

)
− 11

32
· 2x+ 1
4x2 + 4x+ 5

+
3
32
· (2x+ 1)2

4x2 + 4x+ 5
+ C.

Therefore

∫
h(x) dx =

7
8

ln |x− 5|+ 9
8

ln |x+ 3| − 11
64

arctan
(

2x+ 1
2

)
− 11

32
· 2x+ 1
4x2 + 4x+ 5

+
3
32
· (2x+ 1)2

4x2 + 4x+ 5
+ C.

Mathematica 3.0 returns for the antiderivative

7
8

ln |x− 5|+ 9
8

ln |x+ 3| − 11
64

arctan
(

2x+ 1
2

)
− 22x+ 23

32(4x2 + 4x+ 5)
.

Ignoring C, the two answers differ by

22x+ 23
32(4x2 + 4x+ 5)

− 22x+ 11
32(4x2 + 4x+ 5)

+
3(4x2 + 4x+ 1)
32(4x2 + 4x+ 5)

=
12x2 + 12x+ 15
32(4x2 + 4x+ 5)

=
3
32
,

a constant.

C07S07.054: Given:

j(x) =
63x5 + 302x4 + 480x3 + 376x2 − 240x− 300

(x2 + 6x+ 10)2(4x2 + 4x+ 5)2
.

Mathematica 3.0 yields the partial fraction decomposition

j(x) =
Ax+B

x2 + 6x+ 10
+

Cx+D

(x2 + 6x+ 10)2
+

Ex+ F

4x2 + 4x+ 5
+

Gx+H

(4x2 + 4x+ 5)2

=
4(x+ 3)

(x2 + 6x+ 10)2
− x+ 6

(4x2 + 4x+ 5)2
.

Then

J1 =
∫

4x+ 12
(x2 + 6x+ 10)2

dx = 2
∫

2x+ 6
(x2 + 6x+ 10)2

dx = − 2
x2 + 6x+ 10

+ C1.

Next, as in the solution of Problem 53, we let

x =
−1 + 2 tan v

2
, so that dx = sec2 v dv, dx = sec2 v dv, and 4x2 + 4x+ 5 = 4 sec2 v.

Then
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J2 =
∫

x+ 6
(4x2 + 4x+ 5)2

dx =
∫ − 1

2 + tan v + 6
16 sec4 v

· sec2 v dv =
1
32

∫
(11 cos2 v + 2 sin v cos v) dv

=
1
64

∫ [
11(1 + cos 2v) + 4 sin v cos v

]
dv =

1
64

(
11v + 11 sin v cos v + 2 sin2 v

)
+ C.

A reference triangle with acute angle v, opposite side 2x+ 1, and adjacent side 2 has hypotenuse of length√
4x2 + 4x+ 5 . Therefore

J2 =
1
64

[
11 arctan

(
2x+ 1

2

)
+ 11 · 2(2x+ 1)

4x2 + 4x+ 5
+ 2 · (2x+ 1)2

4x2 + 4x+ 5

]
+ C

=
11
64

arctan
(

2x+ 1
2

)
+

11
32
· 2x+ 1
4x2 + 4x+ 5

+
1
32
· (2x+ 1)2

4x2 + 4x+ 5
+ C.

Thus

∫
j(x) dx = J1 − J2

= − 2
x2 + 6x+ 10

− 11
64

arctan
(

2x+ 1
2

)
− 11

32
· 2x+ 1
4x2 + 4x+ 5

− 1
32
· (2x+ 1)2

4x2 + 4x+ 5
+ C.

Mathematica 3.0 gives the antiderivative in essentially the form

− 2
10 + 6x+ x2

− 22x+ 7
32(5 + 4x+ 4x2)

− 11
64

arctan
(

2x+ 1
2

)
.

Ignoring C, the difference between the two answers is

− 22x+ 7
32(4x2 + 4x+ 5)

+
22x+ 11

32(4x2 + 4x+ 5)
+

4x2 + 4x+ 1
32(4x2 + 4x+ 5)

=
4x2 + 4x+ 5

32(4x2 + 4x+ 5)
=

1
32
,

a constant.

C07S07.055: Mathematica reports that the antiderivative is

2b− 5a+ (b− 2a)x
2(x2 + 4x+ 5)

+
(b− 2a) arctan(x+ 2)

2
+ C.

The inverse tangent term will disappear if b = 2a. Hence choose a �= 0 and b = 2a; then the antiderivative
will become

2b− 5a
2(x2 + 4x+ 5)

+ C = − a

2(x2 + 4x+ 5)
+ C.

C07S07.056: Mathematica reports that the antiderivative is

10a− 5b+ 2c+ (3a− 2b+ c)x
2(x2 + 4x+ 5)

+
(5a− 2b+ c) arctan(x+ 2)

2
+ C.

The inverse tangent term will disappear if c = 2b− 5a. Hence choose a and b arbitrary (but not both zero)
and let c = 2b− 5a. The integrand will take the form

− 2ax+ b

2(x2 + 4x+ 5)
+ C.
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C07S07.057: Mathematica reports that the antiderivative is

2(b+ c− 4a) arctan(x+ 1) + 2(11a− 4b+ c) arctan(x+ 2)

− 2a− 3b+ 2c
10

·
[
ln(x2 + 2x+ 2)− ln(x2 + 4x+ 5)

]
+ C.

In order for the inverse tangent and logarithmic terms to drop out, we impose the conditions

−4a+ b+ c = 0;

11a− 4b+ c = 0;

2a− 3b+ 2c = 0.

Mathematica reports that the only solution is a = b = c = 0. Thus there are no nonzero coefficients that
yield a rational function as the antiderivative.

C07S07.058: Mathematica reports that the antiderivative is

1
8

[
−30a+ 20b− 10c+ 4d+ (−4a+ 6b− 4c+ 2d)x

(x2 + 4x+ 5)2

+
(13b− 6c+ 3d)(x+ 2)− 2a(32 + 15x)

x2 + 4x+ 5
+ (−30a+ 13b− 6c+ 3d) arctan(x+ 2)

]
+ C

The inverse tangent term will drop out provided that

d =
30a− 13b+ 6c

3
. (1)

Hence choose a, b, and c arbitrary but not all zero and let Eq. (1) determine d. Then the antiderivative
will be a rational function. For example, if a = b = c = 3, then d = 23, and the antiderivative is

5x+ 4
(x2 + 4x+ 5)2

− 3
2(x2 + 4x+ 5)

+ C.
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Section 7.8

C07S08.001: The integral converges because

∫ ∞

2

x−3/2 dx = lim
z→∞

[
− 2x−1/2

]z
2

=
2√
2
− lim
z→∞

2√
z

=
√

2 .

C07S08.002: This improper integral diverges:

∫ ∞

1

x−2/3 dx = lim
z→∞

[
3x1/3

]z
1

= −3 + lim
z→∞

3z1/3 = +∞.

C07S08.003: Divergent:
∫ 4

0

x−3/2 dx = lim
z→0+

[
2x−1/2

]4

z

= − 2√
4

+ lim
z→0+

2√
z

= +∞.

C07S08.004: Convergent:
∫ 8

0

x−2/3 dx = lim
z→0+

[
3x1/3

]8

z

= 6− 0 = 6.

C07S08.005: Divergent:
∫ ∞

1

1
x + 1

dx = lim
z→∞

[
ln(x + 1)

]z
1

= − ln 2 + lim
z→∞

ln(z + 1) = +∞.

C07S08.006: Divergent:
∫ ∞

3

(x + 1)−1/2 dx = lim
z→∞

[
2
√
x + 1

]z
3

= −4 + lim
z→∞

√
x + 1 = +∞.

C07S08.007: Convergent:
∫ ∞

5

(x− 1)−3/2 dx = lim
z→∞

[
−2(x− 1)−1/2

]∞

5

=
2√
4
− lim
z→∞

2√
z − 1

= 1.

C07S08.008: Convergent:
∫ 4

0

(4− x)−1/2 dx = lim
z→4−

[
−2(4− x)1/2

]z
0

= 2 ·
√

4 − 2 ·
√

0 = 4.

C07S08.009: Divergent:
∫ 9

0

(9− x)−3/2 dx = lim
z→9−

[
2(9− x)−1/2

]z
0

= − 2√
9

+ lim
z→9−

2√
9− z

= +∞.

C07S08.010: Divergent:
∫ 3

0

1
(x− 3)2

dx = lim
z→3−

[
1

3− x

]z
0

= +∞.

C07S08.011: Convergent:
∫ −2

−∞

1
(x + 1)3

dx = lim
z→−∞

[
− 1

2(x + 1)2

]−2

z

= − 1
2

+ lim
z→−∞

1
2(z + 1)2

= − 1
2
.

C07S08.012: Divergent:
∫ 0

−∞

1√
4− x

dx = lim
Z→−∞

[
−2
√

4− x

]0

z

= −2 ·
√

4 + lim
z→−∞

2
√

4− z = +∞.

C07S08.013: Convergent:
∫ 8

−1

x−1/3 dx = lim
z→8−

[
3
2
x2/3

]z
−1

= − 3
2

+ lim
z→8−

(
3
2
z2/3

)
= − 3

2
+ 6 =

9
2
.

C07S08.014: Convergent:
∫ 4

−4

1
(x + 4)2/3

dx = lim
z→−4+

[
3(x + 4)1/3

]4

z

= 6− 0 = 6.

C07S08.015: Divergent:
∫ ∞

2

(x− 1)−1/3 dx = lim
z→∞

[
3
2

(x− 1)2/3
]z
2

= +∞.
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C07S08.016: Convergent:

∫ ∞

−∞

x

(x2 + 4)3/2
dx =

∫ 0

−∞
x(x2 + 4)−3/2 dx +

∫ ∞

0

x(x2 + 4)−3/2 dx

= lim
z→−∞

[
− 1√

x2 + 4

]0

z

+ lim
w→∞

[
− 1√

x2 + 4

]w
0

= − 1
2

+ 0− 0 +
1
2

= 0.

C07S08.017: Divergent:

∫ ∞

−∞

x

x2 + 4
dx =

∫ 0

−∞

x

x2 + 4
dx +

∫ ∞

0

x

x2 + 4
dx = lim

z→−∞

[
1
2

ln(x2 + 4)
]0

z

+ lim
w→∞

[
1
2

ln(x2 + 4)
]w
0

,

and neither of the last two limits exists.

C07S08.018: Convergent:
∫ ∞

0

e−(x+1) dx = lim
z→∞

[
−e−(x+1)

]z
0

= 0 + e−1 =
1
e
.

C07S08.019: Convergent:
∫ 1

0

exp (
√
x )√

x
dx = lim

z→0+

[
2 exp

(√
x

) ]1

z

= 2e− 2 = 2(e− 1).

C07S08.020: Divergent:

∫ 2

0

x

x2 − 1
dx =

∫ 1

0

x

x2 − 1
dx +

∫ 2

1

x

x2 − 1
dx = lim

z→1−

[
1
2

ln |x2 − 1|
]z
0

+ lim
w→1+

[
1
2

ln |x2 − 1|
]2

w

,

and neither of the last two limits exists (both are −∞).

C07S08.021: Convergent:
∫ ∞

0

xe−3x dx = lim
z→∞

[
− 3x + 1

9
e−3x

]z
0

=
1
9
. To find the antiderivative:

Let u = x and dv = e−3x dx.

Then du = dx and v = − 1
3
e−3x. Hence

∫
xe−3x dx = −1

3
xe−3x +

∫
1
3
e−3x dx = −1

3
xe−3x − 1

9
e−3x + C = − 3x + 1

9
e−3x + C.

C07S08.022: Convergent:
∫ 2

−∞
e2x dx = lim

z→−∞

[
1
2
e2x

]2

z

=
1
2
e4 − 0 =

1
2
e4 ≈ 27.2990750166.

C07S08.023: Convergent:
∫ ∞

0

x exp
(
−x2

)
dx = lim

z→∞

[
− 1

2
exp

(
−x2

) ]z
0

= 0−
(
− 1

2

)
=

1
2
.

C07S08.024: Given: I =
∫ ∞

−∞
|x| exp

(
−x2

)
dx =

∫ 0

−∞
(−x) exp

(
−x2

)
dx +

∫ ∞

0

x exp
(
−x2

)
dx.

Now substitute u = −x, x = −u, and dx = −du in the second of the three integrals, noting that−∞ < x � 0
corresponds to 0 � u < +∞. Thus
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I =
∫ 0

∞
(−u) exp

(
−u2

)
du +

∫ ∞

0

x exp
(
−x2

)
dx

=
∫ ∞

0

u exp
(
−u2

)
du +

∫ ∞

0

x exp
(
−x2

)
dx = 2

∫ ∞

0

x exp
(
−x2

)
dx = 2 · 1

2
= 1

by the result in Problem 23. Thus the improper integral I converges.

C07S08.025: Convergent:
∫ ∞

0

1
1 + x2

dx = lim
z→∞

[
arctanx

]z
0

= lim
z→∞

arctan z =
π

2
.

C07S08.026: Divergent:
∫ ∞

0

x

1 + x2
dx = lim

z→∞

[
1
2

ln(1 + x2)
]z
0

= lim
z→∞

1
2

ln(1 + z2) = +∞.

C07S08.027:
∫ 2nπ

0

cosx dx = 0 if n is a positive integer, but

∫ 2nπ+(π/2)

0

cosx dx =
[

sinx

]2nπ+(π/2)

0

= 1.

Therefore lim
z→∞

∫ z

0

cosx dx does not exist; this improper integral diverges.

C07S08.028: If n is a positive integer, then

∫ 2nπ

0

sin2 x dx =
∫ 2nπ

0

1− cos 2x
2

dx =
[

1
2

(x− sinx cosx)
]2nπ

0

= nπ.

Therefore the given improper integral diverges because lim
z→∞

∫ z

0

sin2 x dx = +∞.

C07S08.029: Divergent:
∫ ∞

1

lnx

x
dx = lim

z→∞

[
1
2

(lnx)2
]z
1

= lim
z→∞

1
2

(ln z)2 = +∞.

(But the divergence is relatively slow:
∫ 109

1

lnx

x
dx ≈ 214.7268734744.)

C07S08.030: Divergent:
∫ ∞

2

1
x lnx

dx = lim
z→∞

[
ln(lnx)

]z
2

= +∞.

(But the divergence is extremely slow:
∫ 109

2

1
x lnx

dx ≈ 3.3977699432.)

C07S08.031: Convergent:
∫ ∞

2

1
x(lnx)2

dx = lim
z→∞

[
− 1

lnx

]z
2

=
1

ln 2
.

C07S08.032: Convergent:
∫ ∞

1

lnx

x2
dx = lim

z→∞

[
− 1 + lnx

x

]z
1

= 1−
(

lim
z→∞

1 + ln z

z

)
= 1− lim

z→∞

1
z

= 1.

The next-to-last equality results from an application of l’Hôpital’s rule. The antiderivative was obtained by
integration by parts:
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Let u = lnx and dv =
1
x2

dx;

then du =
1
x

dx and v = − 1
x
.

Therefore
∫

lnx

x2
dx = − 1

x
lnx +

∫
1
x2

dx = − 1
x
− 1

x
lnx + C.

C07S08.033: Convergent:
∫ π/2

0

cosx√
sinx

dx = lim
z→0+

[
2
√

sinx

]π/2
z

= 2− 0 = 2.

C07S08.034: Divergent:
∫ π/2

0

sinx

(cosx)3/2
dx = lim

z→π/2−

[
3

(cosx)1/3

]z
0

= +∞.

C07S08.035: First note that—by l’Hôpital’s rule—

lim
z→0+

z ln z = lim
z→0+

ln z
1
z

= lim
z→0+

1
z

− 1
z2

= lim
z→0+

(−z) = 0.

Therefore the given improper integral converges because

∫ 1

0

lnx dx = lim
z→0+

[
−x + x lnx

]1

z

= −1 + lim
z→0+

(z − z ln z) = −1 + 0− 0 = −1.

See Example 1 of Section 7.3 for the computation of the antiderivative.

C07S08.036: Divergent:
∫ 1

0

lnx

x
dx = lim

z→0+

[
1
2

(lnx)2
]1

z

= −
[

lim
z→0+

1
2
(ln z)2

]
= −∞.

C07S08.037: Let u = lnx and dv =
1
x2

dx. Then du =
1
x

dx; choose v = − 1
x

. Hence

∫
lnx

x2
dx = − 1

x
lnx +

∫
1
x2

dx = − 1
x

lnx− 1
x

+ C.

Therefore the given improper integral diverges because

∫ 1

0

lnx

x2
dx = lim

z→0+

[
− 1

x
(1 + lnx)

]1

z

= −1 +
(

lim
z→0+

1 + ln z

z

)
= −∞.

(If you use l’Hôpital’s rule on the last limit, you’ll get the wrong answer!)

C07S08.038: Let u = e−x and dv = cosx dx. Then du = −e−x dx; choose v = sinx. Then

K =
∫

e−x cosx dx = e−x sinx +
∫

e−x sinx dx.

Now let u = e−x and dv = sinx dx. Then du = −e−x dx; choose v = − cosx. Therefore
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K = e−x sinx− e−x cosx−
∫

e−x cosx dx;

2K = e−x(sinx− cosx) + 2C;

K =
∫

e−x cosx dx =
1
2
e−x(sinx− cosx) + C.

Therefore the given improper integral converges because

∫ ∞

0

e−x cosx dx = lim
z→∞

[
1
2
e−x(sinx− cosx)

]z
0

=
1
2

+
[

lim
z→∞

e−z(sin z − cos z)
2

]
=

1
2
.

C07S08.039: The first improper integral diverges because

∫ 1

0

1
x + x2

dx =
∫ 1

0

(
1
x
− 1

x + 1

)
dx = lim

z→0+

[
ln

∣∣∣∣ x

x + 1

∣∣∣∣
]1

z

= − ln 2−
(

lim
z→0+

ln
z

z + 1

)
= +∞.

The second integral converges because
∫ ∞

1

1
x + x2

dx = − ln
1
2

+
(

lim
z→∞

ln
z

z + 1

)
= 0 + ln 2 = ln 2.

C07S08.040: First, the method of partial fractions yields

1
x2 + x4

=
A

x
+

B

x2
+

Cx + D

x2 + 1
=

1
x2
− 1

x2 + 1
.

The first improper integral diverges because

∫ 1

0

1
x2 + x4

dx = lim
z→0+

[
− 1

x
− arctanx

]1

z

= +∞.

The second integral converges because

∫ ∞

1

1
x2 + x4

dx = lim
z→∞

[
− 1

x
− arctanx

]z
1

= − π

2
+ 1 +

π

4
=

4− π

4
≈ 0.2146018366.

C07S08.041: Let x = u2. Then dx = 2u du, and thus
∫

1
x1/2 + x3/2

dx =
∫

2u
x + x2

du =
∫

2
1 + u2

du = 2 arctanu + C = 2 arctan
√
x + C.

Hence both improper integrals converge, because

∫ 1

0

1
x1/2 + x3/2

dx = lim
z→0+

[
2 arctan

√
x

]1

z

= 2 · π
4
− 2 · 0 =

π

2

and

∫ ∞

1

1
x1/2 + x3/2

dx = lim
z→∞

[
2 arctan

√
x

]z
1

= 2 · π
2
− 2 · π

4
=

π

2
.
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C07S08.042: Let x = u3; then dx = 3u2 du. Hence

∫
1

x2/3 + x4/3
dx =

∫
3u2

u2 + u4
du =

∫
3

1 + u2
du = 3 arctanu + C = 3 arctan

(
x1/3

)
+ C.

Therefore

∫ 1

0

1
x2/3 + x4/3

dx = lim
z→0+

[
3 arctan

(
x1/3

) ]1

z

= 3 arctan(1)− 3 arctan(0) =
3π
4

and

∫ ∞

1

1
x2/3 + x4/3

dx = lim
z→∞

[
3 arctan

(
x1/3

) ]z
1

=
3π
2
− 3π

4
=

3π
4

.

Thus both improper integrals converge.

C07S08.043: If k = 1, then

∫ 1

0

1
xk

dx = lim
z→0+

[
lnx

]1

z

= +∞.

If k �= 1, then

∫ 1

0

x−k dx = lim
x→0+

[
x1−k

1− k

]1

z

=
1

1− k
−

(
lim
z→0+

z1−k

1− k

)
=




1
1− k

if k < 1,

+∞ if k > 1.

Therefore the given improper integral converges precisely when k < 1.

C07S08.044: If k = 1, then

∫ ∞

1

1
xk

dx = lim
z→∞

[
lnx

]z
1

= +∞.

If k �= 1, then

∫ ∞

1

x−k dx = lim
z→∞

[
x1−k

1− k

]z
1

= − 1
1− k

+
(

lim
z→∞

z1−k

1− k

)
=




+∞ if k < 1,

1
k − 1

if k > 1.

Therefore the given improper integral converges exactly when k > 1.

C07S08.045: If k = −1, then

∫ 1

0

xk lnx dx =
∫ 1

0

lnx

x
dx = lim

z→0+

[
1
2

(lnx)2
]1

z

= −
[

lim
z→0+

1
2

(ln z)2
]

= −∞.

If k �= −1, then use integration by parts:

Let u = lnx and dv = xk dx;

then du =
1
x

dx and v =
xk+1

k + 1
.
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Hence

∫
xk lnx dx =

xk+1 lnx

k + 1
−

∫
xk

k + 1
dx

=
xk+1 lnx

k + 1
− xk+1

(k + 1)2
+ C =

xk+1

(k + 1)2
[(k + 1)(lnx) − 1] + C.

Therefore if k �= −1, then

I =
∫ 1

0

xk lnx dx = lim
z→0+

[
xk+1

(k + 1)2
{(k + 1)(lnx) − 1}

]1

z

= − 1
(k + 1)2

− lim
z→0+

[
zk+1

(k + 1)2
{(k + 1)(ln z) − 1}

]
.

Suppose first that k < −1. Write k = −1− ε where ε > 0. Then

I =
∫ 1

0

lnx

x1+ε
dx.

But 0 < x � 1, so x1+ε = x · xε � x. Therefore

lnx

x1+ε
� lnx

x
.

Therefore I diverges to −∞ if k � −1.

Now suppose that k > −1. Recall that

I = − 1
(k + 1)2

− lim
z→0+

[
zk+1

(k + 1)2
{(k + 1)(ln z) − 1}

]
.

Now

lim
z→0+

zk+1 ln z = lim
z→0+

zε ln z (where ε > 0)

= lim
z→0+

ln z

z−ε
= lim
z→0+

1
−εz−ε−1z

= − 1
ε

(
lim
z→0+

1
z−ε

)
= −

(
lim
z→0+

zε

ε

)
= 0.

Also,

lim
z→0+

zk+1 = lim
z→0+

zε = 0.

Therefore I = − 1
(k + 1)2

if k > −1.

Consequently
∫ 1

0

xk lnx dx converges exactly when k > −1, and its value for such k is − 1
(k + 1)2

.

C07S08.046: Let f(k) =
∫ ∞

1

1
x(lnx)k

dx. Then

f(−1) =
∫ ∞

1

lnx

x
dx = lim

z→∞

[
1
2

(lnx)2
]z
1

= lim
z→∞

1
2

(ln z)2 = +∞.
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If k < −1, then write k = −1− ε where ε > 0. Then

f(k) = f(−1− ε) =
∫ ∞

1

(lnx)1+ε

x
dx �

∫ ∞

1

lnx

x
dx = +∞.

Therefore the given improper integral diverges to +∞ if k � −1.

If k > −1, then −k < 1. So

f(k) =
∫ ∞

1

(lnx)−k

x
dx = lim

z→∞

[
(lnx)−k+1

−k + 1

]z
1

= lim
z→∞

(ln z)1−k

1− k
. (1)

If k < 1, then −1 < k < 1, so 0 < 1− k < 2. Therefore the integral in Eq. (1) diverges to +∞ in this case.
If k = 1, then

f(1) =
∫ ∞

1

1
x lnx

dx =
[

ln(lnx)
]∞

1

= +∞.

Finally, if k > 1, then 1− k < 0. Therefore, by Eq. (1),

f(k) = lim
z→∞

[
(lnx)1−k

1− k

]z
1

= lim
z→∞

1
(1− k)(ln z)k−1

− lim
w→1+

1
(1− k)(lnw)k−1

= +∞.

In conclusion,
∫ ∞

1

1
x(lnx)k

dx diverges to +∞ for all real numbers k.

C07S08.047: Given: Γ(t) =
∫ ∞

0

xt−1e−x dx for t > 0. Thus

Γ(t + 1) =
∫ ∞

0

xte−x dx.

Let u = xt and dv = e−x dx. Then du = txt−1 dx and v = −e−x. Thus

Γ(t + 1) =
[
− (xte−x)

]∞

x=0

+ t

∫ ∞

0

xt−1e−x dx = −
(

lim
z→∞

zt

ez

)
+ 0 + tΓ(t) = tΓ(t).

To evaluate the last limit, we used the result in Problem 61 of Section 4.8.

C07S08.048: Prove that Γ(n + 1) = n! for every positive integer n.

Proof: By Example 5 of Section 7.8, Γ(1 + 1) = Γ(2) = 1!, so the theorem holds when n = 1. Assume
that Γ(k + 1) = k! for some integer k � 1. Then

Γ(k + 2) = (k + 1)Γ(k + 1) = k!(k + 1) = (k + 1)!.

Thus whenever the theorem holds for the positive integer k, it also holds for k+1. Therefore, by induction,
Γ(n + 1) = n! for every positive integer n. �

C07S08.049: The area is

A =
∫ ∞

1

1
x

dx = lim
z→∞

[
lnx

]z
1

= lim
z→∞

ln z = +∞.

C07S08.050: The volume is
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V =
∫ ∞

1

π

x2
dx = lim

z→∞

[
− π

x

]z
1

= π −
(

lim
z→∞

π

z

)
= π.

C07S08.051: Because
dy

dx
= − 1

x2
, we have arc length element

ds =
(

1 +
1
x4

)1/2

dx =
√
x4 + 1
x2

dx.

Therefore the area of the surface of Gabriel’s horn satisfies the inequality

S =
∫ ∞

1

2π · 1
x
·
√
x4 + 1
x2

dx = 2π

(
lim
z→∞

∫ z

1

√
x4 + 1
x3

dx

)

� 2π

(
lim
z→∞

∫ z

1

√
x4

x3
dx

)
= 2π

(
lim
z→∞

[
lnx

]z
1

)
= +∞.

C07S08.052: First,

∫ ∞

0

1 + x

1 + x2
dx = lim

z→∞

[
arctanx +

1
2

ln(1 + x2)
]z
0

= lim
z→∞

[
arctan z +

1
2

ln(1 + z2)
]

= +∞.

Therefore
∫ ∞

−∞

1 + x

1 + x2
dx diverges. But

lim
t→∞

∫ t

−t

1 + x

1 + x2
dx = lim

t→∞

[
arctanx +

1
2

ln(1 + x2)
]t
−t

= lim
t→∞

[
arctan t− arctan(−t) +

1
2

ln(1 + t2)− 1
2

ln(1 + t2)
]

= lim
t→∞

2 arctan t = π.

This technique of assigning a “plausible” (or, perhaps, “balanced”) value to a divergent improper integral
of the form

∫ ∞

−∞
f(x) dx (1)

is the evaluation of the so-called Cauchy principal value of the integral in Eq. (1).

C07S08.053: We will use the definition

Γ(t) =
∫ ∞

x=0

xt−1e−x dx

for t > 0 and the result of Problem 48 to the effect that Γ(n + 1) = n! if n is a positive integer. For fixed
nonnegative integers m and n, let

J(m, n) =
∫ 1

0

xm(lnx)n dx.

Then
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J(m, 0) =
∫ 1

0

xm dx =
1

m + 1
=

0!(−1)0

(m + 1)1
=

n!(−1)n

(m + 1)n+1

where n = 0. Therefore

J(m, n) =
n!(−1)n

(m + 1)n+1

if n = 0 and m � 0. Assume that

J(m, k) =
k!(−1)k

(m + 1)k+1

for some integer k � 0 and all integers m � 0. Then

J(m, k + 1) =
∫ 1

0

xm(lnx)k+1 dx.

Let u = (lnx)k+1 and dv = xm dx. Then

du =
(k + 1)(lnx)k

x
dx and v =

xm+1

m + 1
.

Therefore

J(m, k + 1) =
[

(lnx)k+1xm+1

m + 1

]1

0

− k + 1
m + 1

∫ 1

0

xm(lnx)k dx.

The value of the evaluation bracket is zero because

lim
x→0+

(lnx)k+1

1
xm+1

=
(

lim
x→0+

lnx

x(m+1)/(k+1)

)k+1

=
(

lim
x→0+

k + 1
(m + 1)x(m+1)/(k+1)

)k+1

= 0k+1 = 0.

Therefore

J(m, k + 1) = − k + 1
m + 1

· J(m, k) = − k + 1
m + 1

· k!(−1)k

(m + 1)k+1
=

(−1)k+1(k + 1)!
(m + 1)k+2

.

Therefore, by induction,

∫ 1

0

xm(lnx)n dx =
n!(−1)n

(m + 1)n+1

for all positive integers m and n.

C07S08.054: As we saw in Section 7.8, the present value of 10 + t thousand dollars t years in the future
is (10 + t)e−t/10 thousand dollars if the interest rate is 10%. So the total present value of the perpetuity is

P =
∫ ∞

0

(10 + t)e−t/10 dt.

Let u = 10 + t and dv = e−t/10 dt. Then du = dt and we may choose v = −10e−t/10. Thus

P =
[
−10(10 + t)e−t/10

]∞

0

+ 10
∫ ∞

0

e−t/10 dt = 100− 100
[
e−t/10

]∞

0

= 200;
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that is, $200,000.

C07S08.055: We assume that a > 0. A short segment of the rod “at” position x � 0 and of length dx

has mass δ dx, and thereby exerts on m the force

Gmδ

(x + a)2
dx.

Therefore the total force exerted by the rod on m is

F =
∫ ∞

0

Gmδ

(x + a)2
dx =

[
− Gmδ

x + a

]∞

0

=
Gmδ

a
.

What if a = 0? Then the total force is

F =
∫ ∞

0

Gmδ

x2
dx =

[
−Gmδ

x

]∞

0

= lim
z→0+

Gmδ

z
= +∞.

You will obtain the same result if a < 0.

C07S08.056: A small segment of the rod “at” location y and with length dy has mass δ dy, so exerts on
m the force

Gmδ

a2 + y2
dy.

The vertical components of all such forces cancel (perhaps the reason that Cauchy developed the idea of the
principal value of certain improper integrals—see the solution to Problem 52), so the total force exerted by
the rod on the mass m is the sum (i.e., integral) of the horizontal components of such forces:

F =
∫ ∞

y=−∞

Gmδ cos θ
a2 + y2

dy = Gmδ

∫ ∞

−∞

a

(a2 + y2)3/2
dy = 2Gmaδ

∫ ∞

0

1
(a2 + y2)3/2

dy.

Then a trigonometric substitution, or integral formula 52 of the endpapers, yields

F = 2Gmaδ

[
y

a2
√

a2 + y2

]∞

0

=
2Gmδ

a

(
lim
y→∞

y√
a2 + y2

)
=

2Gmδ

a

(
lim
y→∞

1√
1 + (a/y)2

)
=

2Gmδ

a
.

C07S08.057: In the integral

Γ
(

1
2

)
=

∫ ∞

0

x−1/2e−x dx

we substitute x = u2, so that dx = 2u du. Then

Γ
(

1
2

)
=

∫ ∞

0

1
u
· e−u2 · 2u du = 2

∫ ∞

0

e−u
2
du = 2

∫ ∞

0

e−x
2
dx.

C07S08.058: We will use
∫ ∞

0

e−x
2
dx =

1
2
√
π . The volume of revolution around the x-axis is

V =
∫ ∞

0

π
[
exp

(
−x2

)]2
dx = π

∫ ∞

0

exp
(
−2x2

)
dx.
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Let u = x
√

2 , so that x = u/
√

2 and dx =
(
1/
√

2
)
du. Then

V = π

∫ ∞

0

√
2
2

exp
(
−u2

)
du =

π
√

2
2
·
√
π

2
=

π3/2
√

2
4

≈ 1.968701243.

C07S08.059: The volume of revolution around the y-axis is

V =
∫ ∞

0

2πx exp
(
−x2

)
dx = π

[
− exp

(
−x2

) ]∞

0

= π.

C07S08.060: We will use the result of Problem 47, Γ(x + 1) = xΓ(x) for all x > 0, and Eq. (9), which
tells us that Γ

(
1
2

)
=
√
π . If n = 1, then

Γ
(

3
2

)
= Γ

(
1 +

1
2

)
=

1
2

Γ
(

1
2

)
=

1
2
√
π =

1 · 3 · 5 · · · (2n− 1)
2n

√
π .

So the desired result holds when n = 1. Assume that

Γ
(
k +

1
2

)
=

1 · 3 · 5 · · · (2k − 1)
2k

√
π

for some integer k � 1. Then

Γ
(
k + 1 +

1
2

)
=

(
k +

1
2

)
Γ

(
k +

1
2

)

=
2k + 1

2
· 1 · 3 · 5 · · · (2k − 1)

2k
√
π =

1 · 3 · 5 · · · (2k − 1) · (2k + 1)
2k+1

√
π .

Therefore, by induction, the desired result holds for every integer n � 1.

C07S08.061: Part (a): Suppose that k > 1 and let

I =
∫ ∞

0

xk exp
(
−x2

)
dx.

Let u = xk−1 and dv = x exp
(
−x2

)
dx. Then

du = (k − 1)xk−2 dx and v = − 1
2

exp
(
−x2

)
.

Therefore

I =
[
− xk−1

2
exp

(
−x2

)]∞

0

+
k − 1

2

∫ ∞

0

xk−2 exp
(
−x2

)
dx.

The evaluation bracket is zero by Problem 62 of Section 4.8. This concludes the proof in part (a).

Part (b): Now suppose that n is a positive integer. If n = 1, then

∫ ∞

0

xn−1 exp
(
−x2

)
dx =

∫ ∞

0

exp
(
−x2

)
dx =

1
2
Γ

(
1
2

)

by Eq. (9) of the text. Assume that for some integer k � 1,
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∫ ∞

0

xk−1 exp
(
−x2

)
dx =

1
2

Γ
(
k

2

)

and in addition that
∫ ∞

0

xm−1 exp
(
−x2

)
dx =

1
2

Γ
(m

2

)

for every integer m such that 1 � m � k. Then

∫ ∞

0

xk exp
(
−x2

)
dx =

k − 1
2

∫ ∞

0

xk−2 exp
(
−x2

)
dx

=
k − 1

2
· 1
2
· Γ

(
k − 1

2

)
=

1
2

Γ
(

1 +
k − 1

2

)
=

1
2

Γ
(
k + 1

2

)
.

Therefore, by induction,
∫ ∞

0

xn−1 exp
(
−x2

)
dx =

1
2

Γ
(n

2

)

for every positive integer n.

C07S08.062: Answer:

P =
∫ ∞

0

10000e−3t/50 dt = − 500000
3

[
e−3t/50

]∞

0

=
500000

3
;

that is, $166,666.67.

C07S08.063: Substitute t =
x√
2

in the given interval. This routinely gives Eq. (10).

C07S08.064: Begin with

erf
(

u√
2

)

as given in Eq. (15), then use the substitution of the previous solution. This leads routinely to Eq. (16).

C07S08.065: We defined

Ib =
∫ b

0

x5e−x dx

and asked Mathematica 3.3 to evaluate Ib for increasing large positive values of b. The results:

b Ib (approximately)

10 111.949684454516

20 119.991370939137

30 119.999997291182

40 119.999999999505

50 119.999999999999933

60 119.99999999999999999258
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It seems very likely that

k = lim
b→∞

1
60

Ib = 2.

Indeed, because
∫

x5e−x dx = −(x5 + 5x4 + 20x3 + 60x2 + 120x + 120)e−x + C,

it follows that

Ib = 120− b5 + 5b4 + 20b3 + 60b2 + 120b + 12
eb

→ 120

as b→ +∞, and this proves that k = 2.

C07S08.066: We defined

k(b) =
π∫ b

0

sinx

x
dx

(1)

and asked Mathematica 3.0 to evaluate k(b) for various increasing large values of b. Here are the results:

b k(b) (approximately)

10 1.8944114397618596

20 2.0291357941544347

40 1.9795980537404538

80 1.9980480443011534

160 1.9922776386463579

320 2.0035967916498463

640 2.0012584221020270

1280 1.9998026067119984

2560 1.9995416983267274

5120 2.0001739448256683

10240 1.9999973452978946

As in the previous problem, it seems likely that k = 2. Unlike the previous problem, it appears that k(b)
oscillates around the limiting value k = 2 as b→ +∞. This is plausible given the oscillatory behavior of the
denominator in Eq. (1). Methods of Laplace transforms can be used to prove that

∫ ∞

0

sinx

x
dx =

π

2

(exactly), and—given that result—this proves that k = 2.
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C07S08.067: We defined

kb =
π(√

2
)
·
∫ b

0

1
x2 + 2

dx

and asked Mathematica 3.0 to evaluate kb for various large increasing values of b. Here are the results:

b kb (approximately)

10 2.1964469705919963

20 2.0941114933683164

40 2.0460327426191207

80 2.0227515961720504

160 2.0113173416565956

320 2.0056428162376127

640 2.0028174473301223

1280 2.0014077338319199

2560 2.0007036195035935

5120 2.0003517479044710

10240 2.0001758584911264

There is good evidence that k = 2. In fact, because

Ib =
∫ b

0

1
x2 + 2

dx =
[

1√
2

arctan
(

x√
2

) ]b
0

=
1√
2

arctan
(

b√
2

)
,

it follows that

lim
b→∞

√
2
π

Ib =
√

2
π
· 1√

2
· π

2
=

1
2
,

and therefore k = 2 exactly.

C07S08.068: Because

∫ ∞

0

1− e−3x

x
dx �

∫ ∞

0

1
x

dx �
∫ ∞

1

1
x

dx =
[

lnx

]∞

1

= +∞,

no such integer k can exist.

C07S08.069: We defined

k(b) =
π

e ·
∫ b

0

exp
(
−x2

)
cos 2x dx
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and asked Mathematica 3.0 to evaluate k(b) for some large positive values of b. The results:

k(10) = k(100) ≈ 3.54490770181103205459633496668229

to the number of decimal places shown. We conclude that there is no such integer k.

C07S08.070: We defined

k(b) =
π(√

2
)
·
∫ ∞

0

sin(x2) dx

and asked Mathematica 3.0 to approximate k(b) for some large positive values of b. The results:

k(102) ≈ 1.9849201201159858,

k(106) ≈ 2.0000012629663674, and

k(109) ≈ 2.0000000001888944.

It seems plausible that k = 2. Can you prove it?

C07S08.071: In the notation of this section, we have µ = 100 and σ = 15. For part (a), we let a = 10/σ.
Then

P =
1√
2π

∫ a

−a
exp

(
− 1

2 x
2
)

dx = erf

(√
2
3

)
≈ 0.4950149249.

Thus just under 50% of students have IQs between 90 and 110. For part (b), we let a = 25/σ. Then

P =
1√
2π

∫ ∞

a

exp
(
− 1

2 x
2
)

dx =
1
2

[
1− erf

(
5

3
√

2

) ]
≈ 0.0477903523.

Thus just under 5% of students have IQs of 125 or higher.

C07S08.072: Let µ = 69 and σ = 3. For part (a), we let

a = − 2
σ

= −2
3

and b =
3
σ

= 1.

Then we compute

P =
1√
2π

∫ b

a

exp
(
− 1

2 x
2
)
dx =

1
2

erf
(

1√
2

)
+

1
2

erf

(√
2
3

)
≈ 0.5888522085.

Thus just under 59% of adult males are between 5′ 7′′ and 6′. Part (b): Let a = 7/σ = 7/3. Then

P =
1√
2π

∫ ∞

a

exp
(
− 1

2 x
2
)
dx =

1
2

[
1− erf

(
7

3
√

2

) ]
≈ 0.0098153286.

Therefore just under 1% of adult males are 6′ 4′′ or taller.

C07S08.073: Here we take p = q = 1/2 and N = 1000; we have µ = Np = 450 and σ =
√
Npq = 15. So

we let a = 25/σ = 5/3 and compute
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P =
1√
2π

∫ a

−a
exp

(
− 1

2 x
2
)
dx = erf

(
5

3
√

2

)
≈ 0.9044192954.

Thus there is over a 90% probability of 425 to 475 heads. For part (b), we let a = 50/σ = 10/3 and compute

P =
1√
2π

∫ ∞

a

exp
(
− 1

2 x
2
)
dx =

1
2

[
1− erf

(
5
√

2
3

) ]
≈ 0.0004290603.

Thus there is only a probability of 0.04%—les than one chance in 2000—of 500 or more heads.

C07S08.074: We are given p = 3/5, q = 2/5, and N = 600. Then µ = Np = 360 and σ =
√
Npq = 12.

Part (a): We take a = 15/σ = 5/4 and compute

P =
1√
2π

∫ a

−a
exp

(
− 1

2 x
2
)
dx = erf

(
5

4
√

2

)
≈ 0.7887004527.

Thus the probability of obtaining 345 to 375 heads is just under 0.79 (sometimes called a 79% probability).
For part (b), we let b = 10/15 and compute

P =
1√
2π

∫ −b

−∞
exp

(
− 1

2 x
2
)
dx =

1
2

[
1− erf

(√
2
3

) ]
≈ 0.2524925375.

Thus there is just over a 25% probability of 350 or fewer heads.

C07S08.075: Here we have p = q = 1/2 and N = 50. Then µ = Np = 25 and σ =
√
Npq = 5/

√
2 . Part

(a): We let a = 5/σ =
√

2 and compute

P =
1√
2π

∫ ∞

a

exp
(
− 1

2 x
2
)
dx =

1
2

[1− erf(1)] ≈ 0.0786496035.

Thus there is slightly more than a 1 in 13 chance of passing by pure guessing. Part (b): We let a = 10/σ
and compute

P =
1√
2π

∫ ∞

a

exp
(
− 1

2 x
2
)
dx =

1
2

[1− erf(2)] ≈ 0.0023388675.

Thus there is less than 1 chance in 425 of making a C by pure guessing.

C07S08.076: Here we take p = 0.99, q = 0.01, and N = 500. In the notation of Section 7.8, µ = NP = 495
and σ =

√
Npq = 3

10

√
55 ≈ 2.22486. We let a = 5/σ = 10

33

√
55 ≈ 2.24733 and compute

P =
1√
2π

∫ −a

−∞
exp

(
− 1

2 x
2
)
dx =

1
2

[
1− erf

(
5
33

√
10

) ]
≈ 0.0123093807.

Therefore there is only about one chance in 81 that ten or more are defective in a batch of 500.

C07S08.077: Let p = 0.55, q = 0.45, and N = 750. In the notation of Section 7.8, we have µ = Np = 412.5
and σ =

√
Npq = 3

4

√
330 ≈ 13.62443. Now 59% of the N = 750 voters amounts to 442.5, so we let

a =
442.5− µ

σ
=

4
33

√
330 ≈ 2.20183

and evaluate
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P =
1√
2π

∫ a

−a
exp

(
− 1

2 x
2
)
dx = erf

(
4
33

√
165

)
≈ 0.9723295720.

Thus there is a 97.23% probability that between 51% and 59% will say that they are Democratic voters, and
thus that between 41% and 49% will say that they are Republican voters.

C07S08.078: For each integer n � 0, let

In =
∫ ∞

1

(lnx)n

x2
dx.

Then

I0 =
∫ ∞

1

1
x2

dx =
[
− 1

x

]∞

1

= 1 = 0!,

and therefore In = n! if n = 0. Next, suppose that Ik = k! for some integer k � 0. Then

Ik+1 =
∫ ∞

1

(lnx)k+1

x2
dx.

Integrate by parts: Let

u = (lnx)k+1, dv =
1
x2

dx.

Then du =
(k + 1)(lnx)k

x
dx, v = − 1

x
.

Thus

Ik+1 =
[
− (lnx)k+1

x

]∞

1

+ (k + 1)
∫ ∞

1

(lnx)k

x2
dx = 0 + (k + 1)Ik = (k + 1)Ik = (k + 1)(k!) = (k + 1)!.

Therefore, by induction, In = n! for each integer n � 0.
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Chapter 7 Miscellaneous Problems

C07S0M.001: The substitution x = u2, dx = 2u du yields
∫

1
(1 + x)

√
x

dx =
∫

2u
(1 + u2)u

du = 2 arctan
√
x + C.

C07S0M.002: Substitute u = 1 + tan t or simply u = tan t, if necessary. But clearly

∫
sec2 t

1 + tan t
dt = ln |1 + tan t|+ C.

C07S0M.003:
∫

sinx secx dx =
∫

sinx

cosx
dx = − ln | cosx|+ C = ln | secx|+ C.

C07S0M.004:
∫

cscx cotx
1 + csc2 x

dx = − arctan (cscx) + C =
π

2
− arctan (cscx) + C1 = arctan (sinx) + C1.

C07S0M.005:
∫

tan θ

cos2 θ
dθ =

∫
(cos θ)−3 sin θ dθ =

1
2

(cos θ)−2 + C =
1
2

sec2 θ + C.

C07S0M.006:
∫

csc4 x dx =
∫ (

csc2 x + cot2 x csc2 x
)
dx = − cotx− 1

3
cot3 x + C.

C07S0M.007: Let u = x and dv = tan2 x dx = (sec2 x −1) dx. Then du = dx and v = −x+tanx. Thus

∫
x tan2 x dx = x tanx − x2 +

∫
(x− tanx) dx

= x tanx − x2 +
1
2
x2 + ln | cosx|+ C = x tanx + ln | cosx| − 1

2
x2 + C.

C07S0M.008: Let u = x2, dv = cos2 x dx =
1 + cos 2x

2
dx. Then du = 2x dx and v =

1
2
x+

1
2

sinx cosx.
Thus

I =
∫

x2 cos2 x dx =
1
2
x3 +

1
2
x2 sinx cosx−

∫
(x2 + x sinx cosx) dx

=
1
2
x3 − 1

3
x3 +

1
2
x2 sinx cosx−

∫
x sinx cosx dx.

Now let u = x, dv = sinx cosx dx. Then du = dx and v =
1
2

sin2 x. Therefore

I =
1
6
x3 +

1
2
x2 sinx cosx− 1

2
x sin2 x +

∫
1
2

sin2 x dx

=
1
6
x3 +

1
2
x2 sinx cosx− 1

2
x sin2 x +

1
4

∫
(1− cos 2x) dx

=
1
6
x3 +

1
2
x2 sinx cosx− 1

2
x sin2 x +

1
4
x− 1

4
sinx cosx + C.

C07S0M.009: Let u = x3 and dv = x2(2− x3)1/2 dx. Then du = 3x2 dx and v = − 2
9

(2− x3)3/2. So
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∫
x5(2− x3)1/2 dx = − 2

9
x3(2− x3)3/2 +

2
3

∫
x2(2− x3)3/2 dx = − 2

9
x3(2− x3)3/2 − 4

45
(2− x3)5/2 + C.

C07S0M.010: Let x = 2 tanu. Then x2 + 4 = 4 + 4 tan2 u = 4 sec2 u and dx = 2 sec2 u du. Hence

J =
∫

1√
x2 + 4

dx =
∫

2 sec2 u

2 secu
du = ln | secu + tanu|+ C.

A reference triangle with acute angle u, opposite side x, and adjacent side 2 has hypotenuse of length√
x2 + 4 . Therefore

J = ln

(
x +
√
x2 + 4
2

)
+ C = ln

(
x +

√
x2 + 4

)
+ C1.

C07S0M.011: Let x = 5 tanu. Then 25 + x2 = 25 + 25 tan2 u = 25 sec2 u and dx = 5 sec2 u du. Thus

K =
∫

x2

√
25 + x2

dx =
∫

125 tan2 u sec2 u

5 secu
du

= 25
∫

(sec3 u− secu) du = 25
(

1
2

secu tanu− 1
2

ln | secu + tanu|
)

+ C.

The antiderivative is a consequence of integral formulas 14 and 28 of the endpapers of the text. Next,
a reference triangle with acute angle u, opposite side x, and adjacent side 5 has hypotenuse of length√

25− x2 . Therefore

K =
25
2

[
x
√

25 + x2

25
− ln

(
x +
√

25 + x2

5

)]
+ C =

1
2
x
√

25 + x2 − 25
2

ln
(
x +

√
25 + x2

)
+ C1.

When we simplify an answer by allowing a constant such as 25
2 ln 5 to be absorbed by the constant C of

integration, we will generally indicate this by replacing C with C1, as in this solution.

C07S0M.012: Here,
√

4− sin2 x =
√

4− 4 sin2 u =
√

4 cos2 u = 2 cosu if sinx = 2 sinu. So we let
x = arcsin(2 sinu), and thus

cosx dx = 2 cosu du and u = arcsin
(

sinx

2

)
.

Therefore

I =
∫

(cosx)
√

4− sin2 x dx =
∫

(2 cosu)(2 cosu) du = 2
∫

(1 + cos 2u) du = 2(u + sinu cosu) + C.

A reference triangle with acute angle u, opposite side sinx, and hypotenuse 2 has adjacent side of length√
4− sin2 x . Therefore

I = 2 arcsin
(

sinx

2

)
+ (sinx) ·

√
4− sin2 x

2
+ C.

C07S0M.013: Complete the square:
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x2 − x + 1 = x2 − x +
1
4

+
3
4

=
(
x− 1

2

)2

+
3
4

=
3
4

+
3
4

tan2 u =
3
4

sec2 u

if x− 1
2

=
√

3
2

tanu. So we let

x =
1 +
√

3 tanu

2
; dx =

√
3
2

sec2 u du and tanu =
2x− 1√

3
.

Therefore

J =
∫

1
x2 − x + 1

dx =
√

3
2

∫
sec2 u

3
4 sec2 u

du =
2
√

3
3

u + C.

A reference triangle with acute angle u, opposite side 2x−1, and adjacent side
√

3 has hypotenuse of length
2
√
x2 − x + 1 . Therefore

J =
2
√

3
3

arctan

(√
3
3

[2x− 1]

)
+ C.

C07S0M.014: We first complete the square:

x2 + x + 1 =
(
x +

1
2

)2

+
3
4

=
3
4

+
3
4

tan2 u =
3
4

sec2 u

if x +
1
2

=
√

3
2

tanu. So we let

x =
−1 +

√
3 tanu

2
; dx =

√
3
2

sec2 u du and tanu =
2x + 1√

3
.

Consequently

K =
∫ √

x2 + x + 1 dx =
∫ (√

3
2

secu

)(√
3
2

sec2 u

)
du =

3
8

(secu tanu + ln | secu + tanu|) + C.

A reference triangle with acute angle u, opposite side 2x+1, and adjacent side
√

3 has hypotenuse of length
2
√
x2 + x + 1 . Therefore

K =
3
8

[
2(2x + 1)

√
x2 + x + 1
3

+ ln

(
2x + 1 + 2

√
x2 + x + 1√
3

)]
+ C

=
1
4
(2x + 1)

√
x2 + x + 1 +

3
8

ln
(
2x + 1 + 2

√
x2 + x + 1

)
+ C1.

C07S0M.015: Given:
∫

5x + 31
3x2 − 4x + 11

dx. First complete the square in the denominator:

3x2 − 4x + 11 =
1
3
(9x2 − 12x + 33) =

1
3

(
[3x− 2]2 + 29

)
=

1
3

(
29 tan2 θ + 29

)
=

29
3

sec2 θ

if 3x− 2 =
√

29 tan θ. So let
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x =
2 +
√

29 tan θ

3
; then dx =

√
29
3

sec2 θ and tan θ =
3x− 2√

29
.

Then

I =
∫ 10

3 + 5
3

√
29 tan θ + 93

3
29
3 sec2 θ

·
√

29
3

sec2 θ dθ

=
√

29
87

∫ (
103 + 5

√
29 tan θ

)
dθ =

√
29
87

(
103θ + 5

√
29 ln | sec θ |

)
+ C.

A reference triangle with acute angle θ, opposite side 3x − 2, and adjacent side
√

29 has hypotenuse of
length

√
9x2 − 12x + 33 . Therefore

I =
√

29
87
· 103 · arctan

(
3x− 2√

29

)
+

5 · 29
87

ln

∣∣∣∣∣
√

3
√

3x2 − 4x + 11√
29

∣∣∣∣∣ + C

=
√

29
87
· 103 · arctan

(
3x− 2√

29

)
+

5
3

ln
(√

3x2 − 4x + 11
)

+ C1

=
103
√

29
87

arctan
(

3x− 2√
29

)
+

5
6

ln(3x2 − 4x + 11) + C1.

C07S0M.016: Division of denominator into numerator yields

x4 + 1
x2 + 1

= x2 − 1 +
2

x2 + 1
.

Therefore
∫

x4 + 1
x2 + 1

dx =
1
3
x3 − x + 2 arctanx + C.

C07S0M.017:
∫

(x4 + x7)1/2 dx =
∫

x2(1 + x3)1/2 dx =
2
9

(1 + x3)3/2 + C.

C07S0M.018: The substitution x = u2, dx = 2u du yields

∫ √
x

1 + x
dx =

∫
2u2

1 + u2
du =

∫ (
2− 2

1 + u2

)
du = 2u− 2 arctanu + C = 2

√
x − 2 arctan

√
x + C.

C07S0M.019: We use integral formula 16 of the endpapers and the substitution u = sinx, du = cosx dx:
∫

cosx√
4− sin2 x

dx =
∫

1√
4− u2

du = arcsin
(u

2

)
+ C = arcsin

(
sinx

2

)
+ C.

C07S0M.020:
∫

cos 2x
cosx

dx =
∫

2 cos2 x− 1
cosx

dx =
∫

(2 cosx− secx) dx = 2 sinx− ln | secx + tanx|+ C.

C07S0M.021: Let u = ln(cosx). Then du = − sinx

cosx
dx = − tanx dx, and thus

∫
tanx

ln(cosx)
dx = −

∫
1
u

du = − ln |u|+ C = − ln | ln(cosx)|+ C.
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C07S0M.022: First note that
√

1− x4 =
√

1− sin2 u = cosu if x2 = sinu. So we let

x =
√

sinu : 2x dx = cosu du, x6 = sin3 u.

Thus

I =
∫

x7

√
1− x4

dx =
1
2

∫
x6

√
1− x4

· 2x dx =
1
2

∫
sin3 u

cosu
· cosu du

=
1
2

∫
(1− cos2 u) sinu du = − 1

2
cosu +

1
6

cos3 u + C.

A reference triangle with acute angle u, opposite side x2, and hypotenuse 1 has adjacent side of length√
1− x4 . Hence

I = − 1
2

(1− x4)1/2 +
1
6

(1− x4)3/2 + C =
1
6

(1− x4)1/2(1− x4 − 3) + C = − 1
6

(x4 − 2)
√

1− x4 + C.

C07S0M.023: Let u = ln(1 + x), dv = dx. Then du =
1

1 + x
dx, and we let v = 1 + x. Then

∫
ln(1 + x) dx = (1 + x) ln(1 + x)−

∫
1 dx = (1 + x) ln(1 + x)− x + C.

The choice v = x will produce an answer that appears different: x ln(1 + x)− x + ln(1 + x) + C.

C07S0M.024: Let u = arcsecx and dv = x dx. Then

du =
1

|x|
√
x2 − 1

dx and v =
1
2
x2 =

1
2
|x| · |x|.

Then

J =
∫

x arcsecx dx =
1
2
x2 arcsecx− 1

2

∫ |x|√
x2 − 1

dx.

Thus

J =




1
2 x

2 arcsecx− 1
2 (x2 − 1)1/2 + C1 if x > 1,

1
2 x

2 arcsecx + 1
2 (x2 − 1)1/2 + C2 if x < −1.

Therefore J =
1
2
x2 arcsecx− |x|

2x
(x2 − 1)1/2 + C.

C07S0M.025: Let x = 3 tanu: dx = 3 sec2 u du and
√
x2 + 9 =

√
9 tan2 u + 9 = 3 secu. Thus

K =
∫ √

x2 + 9 dx =
∫

9 sec3 u du =
9
2

(secu tanu + ln | secu + tanu| ) + C.

A reference triangle with acute angle u, opposite side x, and adjacent side 3 has hypotenuse of length√
x2 + 9 . Thus

K =
9
2

[
x
√
x2 + 9
9

+ ln

(
x +
√
x2 + 9
3

)]
+ C =

1
2
x
√

x2 + 9 +
9
2

ln
(
x +

√
x2 + 9

)
+ C1.
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A hyperbolic substitution will yield the antiderivative in the form K =
1
2
x
√

x2 + 9 +
9
2

sinh−1
(x

3

)
+ C.

C07S0M.026: Let x = 2 sinu. Then dx = 2 cosu du and
√

4− x2 =
√

4− 4 sin2 u = 2 cosu. Thus

J =
∫

x2

√
4− x2

dx =
∫

8 sin2 u cosu
2 cosu

du = 2
∫

(1− cos 2u) du = 2(u− sinu cosu) + C.

A reference triangle with acute angle u, opposite side x, and hypotenuse 2 has adjacent side of length√
4− u2 . Thus

J = 2 arcsin
(x

2

)
− 2 · x

√
4− x2

4
+ C = 2 arcsin

(x

2

)
− x
√

4− x2

2
+ C.

C07S0M.027: Note that 2x−x2 = −(x2−2x) = 1− (x−1)2 = 1− sin2 u = cos2 u if x−1 = sinu. Hence
we let x = 1 + sinu, so that dx = cosu du. Then

I =
∫ √

2x− x2 dx =
∫

cos2 u du =
1
2

∫
(1 + cos 2u) du =

1
2

(u + sinu cosu) + C.

A reference triangle with acute angle u, opposite side x− 1, and hypotenuse 1 has adjacent side of length√
2x− x2 . Therefore

I =
1
2

arcsin(x− 1) +
1
2
(x− 1)

√
2x− x2 + C.

Mathematica 3.0 returns an answer that differs only in that arcsin(x− 1) is replaced with − arcsin(1− x).

C07S0M.028: The partial fractions decomposition of the integrand has the form

4x− 2
x3 − x

=
A

x− 1
+

B

x
+

C

x + 1
.

This yields the equation A(x2 + x) + B(x2 − 1) + C(x2 − x) = 4x− 2, and thus the simultaneous equations

A + B + C = 0, A− C = 4, and −B = −2.

It follows that B = 2, A = 1, and C = −3. Therefore

∫
4x− 2
x3 − x

dx = ln |x− 1|+ 2 ln |x| − 3 ln |x + 1|+ C = ln
∣∣∣∣ x3 − x2

(x + 1)3

∣∣∣∣ + C.

C07S0M.029: First divide denominator into numerator to obtain

x4

x2 − 2
= x2 + 2 +

4
x2 − 2

.

Then the partial fractions decomposition of the last term yields

4
x2 − 2

=
A

x +
√

2
+

B

x−
√

2

and thus the equation A
(
x−
√

2
)

+ B
(
x +
√

2
)

= 4. Consequently

A + B = 0 and −A
√

2 + B
√

2 = 4,
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and it follows that A = −
√

2 and B =
√

2 . Therefore

∫
x4

x2 − 2
dx =

1
3
x3 + 2x−

√
2 ln

∣∣∣x +
√

2
∣∣∣ +
√

2 ln
∣∣∣x−√2

∣∣∣ + C =
1
3
x3 + 2x +

√
2 ln

∣∣∣∣∣
x−
√

2
x +
√

2

∣∣∣∣∣ + C.

Mathematica 3.0 apparently prefers a hyperbolic substitution to the method of partial fractions; it yields
instead the equivalent answer

2x +
x3

3
− 2
√

2 tanh−1

(
x√
2

)

(remember that most computer algebra programs omit the “+ C ”).

C07S0M.030: The substitution u = secx yields du = secx tanx dx, and thus

∫
secx tanx

secx + sec2 x
dx =

∫
1

u + u2
du =

∫ (
1
u
− 1

u + 1

)
du

= ln
∣∣∣∣ u

u + 1

∣∣∣∣ + C = ln
∣∣∣∣ secx
1 + secx

∣∣∣∣ + C = ln
∣∣∣∣ 1
1 + cosx

∣∣∣∣ + C = C − ln |1 + cosx|.

Alternatively,
∫

secx tanx

secx + sec2 x
dx =

∫
tanx

1 + secx
dx =

∫
sinx

1 + cosx
dx = C − ln |1 + cosx|.

Mathematica 3.0 returns the antiderivative in a form equivalent to

− 4
secx + sec2 x

(sec2 x)
[
cos2

(x

2

)]
ln

(
cos

(x

2

))
.

C07S0M.031: First, x2 + 2x + 2 = 1 + (x + 1)2 = 2 + tan2 u = sec2 u if tanu = x + 1. Hence we let
x = −1 + tanu, so that dx = sec2 u du and

J =
∫

x

(x2 + x + 2)2
=

∫ −1 + tanu

sec4 u
· sec2 u du =

∫
(− cos2 u + sinu cosu) du

=
∫ (

sinu cosu− 1 + cos 2u
2

)
du =

1
2

sin2 u− 1
2
u− 1

2
sinu cosu + C.

Then a reference triangle with acute angle u, opposite side x + 1, and adjacent side 1 has hypotenuse of
length

√
x2 + x + 2 . Therefore

J =
1
2
· (x + 1)2

x2 + 2x + 2
− 1

2
arctan(x + 1)− 1

2
· x + 1
x2 + 2x + 2

+ C =
x2 + x

2(x2 + 2x + 2)
− 1

2
arctan(x + 1) + C.

Mathematica 3.0 yields instead the equivalent result

J = − x + 2
2(x2 + x + 2)

− 1
2

arctan(x + 1) + C.

C07S0M.032: Let u = x12. Then du = 12u11 du and u = x1/12. Hence
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I =
∫

x1/3

x1/2 + x1/4
dx =

∫
12u15

u6 + u3
du = 12

∫
u12

u3 + 1
du.

The method of partial fractions then yields

u12

u3 + 1
= u9 − u6 + u3 − 1 +

1
3

(
1

u + 1
− u− 2

u2 − u + 1

)
.

To find the antiderivative of the last term, note that

u2 − u + 1 =
(
u− 1

2

)2

+
3
4

=
3
4

tan2 θ +
3
4

=
3
4

sec2 θ

if u− 1
2

=
√

3
2

tan θ. So we let

u =
1 +
√

3 tan θ

2
: du =

√
3
2

sec2 θ dθ and tan θ =
2u− 1√

3
.

Therefore

∫
u− 2

u2 − u + 1
du =

∫ 1
2

(
−3 +

√
3 tan θ

)
3
4 sec2 θ

·
√

3
2

sec2 θ dθ

=
√

3
3

∫
(−3 +

√
3 tan θ) dθ =

√
3
3

(
−3θ +

√
3 ln | sec θ |

)
+ C.

A reference triangle with acute angle θ, opposite side 2u−1, and adjacent side
√

3 has hypotenuse of length
2
√
u2 − u + 1 . Therefore

∫
u− 2

u2 − u + 1
du =

√
3
3

[
−3 arctan

(
2u− 1√

3

)
+
√

3 ln

∣∣∣∣∣
2
√
u2 − u + 1√

3

∣∣∣∣∣
]

+ C

= −
√

3 arctan
(

2u− 1√
3

)
+

1
2

ln(u2 − u + 1) + C1.

Therefore

I = 12
∫

u12

u3 + 1
du

= 12

[
1
10

u10 − 1
7
u7 +

1
4
u4 − u +

1
3

ln |u + 1|+
√

3
3

arctan
(

2u− 1√
3

)
− 1

6
ln(u2 − u + 1)

]
+ C

=
6
5
u10 − 12

7
u7 + 3u4 − 12u + 4 ln |u + 1|+ 4

√
3 arctan

(
2u− 1√

u

)
− 4 ln(u2 − u + 1) + C

=
6
5
x5/6 − 12

7
x7/12 + 3x1/3 − 12x1/12 + 4 ln(1 + x1/12)

+ 4
√

3 arctan
(

2x1/12 − 1√
3

)
− 2 ln(x1/6 − x1/12 + 1) + C.

C07S0M.033: We use the identity cos2 θ =
1 + cos 2θ

2
:
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∫
1

1 + cos 2θ
dθ =

1
2

∫
2

1 + cos 2θ
dθ =

1
2

∫
1

cos2 θ
dθ =

1
2

∫
sec2 θ dθ =

1
2

tan θ + C.

C07S0M.034:
∫

secx
tanx

dx =
∫

cscx dx = ln | cscx− cotx|+ C.

C07S0M.035:
∫

sec3 x tan3 x dx =
∫

(sec2 x)(sec2 x− 1) secx tanx dx =
1
5

sec5 x− 1
3

sec3 x + C.

C07S0M.036: Integration by parts: Let u = arctanx and dv = x2 dx. Then

du =
1

1 + x2
dx; choose v =

1
3
x3.

Thus

∫
x2 arctanx dx =

1
3
x3 arctanx− 1

3

∫ (
x− x

x2 + 1

)
dx =

1
3
x3 arctanx− 1

6
x2 +

1
6

ln(x2 + 1) + C.

C07S0M.037: It’s almost always wise to develop a reduction formula for problems of this sort. Suppose
that n is a positive integer. Let

In =
∫

x(lnx)n dx.

Integration by parts: Let u = (lnx)n and dv = x dx. Then

du =
n(lnx)n−1

x
dx and v =

1
2
x2.

Therefore

In =
∫

x(lnx)n dx =
1
2
x2(lnx)n − n

2

∫
x(lnx)n−1 dx.

And thus

I3 =
∫

x(lnx)3 dx =
1
2
x2(lnx)3 − 3

2

∫
x(lnx)2 dx

=
1
2
x2(lnx)3 − 3

2

[
1
2
x2(lnx)2 −

∫
x(lnx) dx

]

=
1
2
x2(lnx)3 − 3

4
x2(lnx)2 +

3
2

[
1
2
x2 lnx− 1

2

∫
x dx

]

=
1
2
x2(lnx)3 − 3

4
x2(lnx)2 +

3
4
x2 lnx− 3

8
x2 + C

=
x2

8
[
4(lnx)3 − 6(lnx)2 + 6 lnx− 3

]
+ C.

C07S0M.038: By Eq. (44) of Section 6.8,

J =
∫

1
x
√
x2 + 1

dx = − csch−1 |x|+ C.
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Alternatively, if you need the answer expressed in a more familiar form, let x = tanu. Then dx = sec2 u du

and 1 + x2 = sec2 u. Then

J =
∫

sec2 u

secu tanu
du =

∫
secu
tanu

du =
∫

cscu du = ln | cscu− cotu |+ C.

Then a reference triangle with acute angle u, opposite side x, and adjacent side 1 has hypotenuse of length√
1 + u2 , and therefore

J = ln

∣∣∣∣∣
−1 +

√
1 + x2

x

∣∣∣∣∣ + C = ln

(
−1 +

√
1 + x2

|x|

)
+ C = ln

(
−1 +

√
1 + x2

)
− ln |x|+ C.

And for a second variation—for those of us who memorized a different form of the antiderivative of the
cosecant function—

J =
∫

cscu du = − ln | cscu + cotu |+ C = − ln

∣∣∣∣∣
1 +
√

1 + x2

x

∣∣∣∣∣ + C = ln |x| − ln
(
1 +

√
1 + x2

)
+ C.

C07S0M.039: Let u = ex. Then du = ex dx and x = lnu. Therefore

K =
∫

ex
√

1 + e2x dx =
∫ √

1 + u2 du.

Now let u = tan θ. Then du = sec2 θ dθ and 1 + u2 = sec2 θ. So

K =
∫

sec3 θ dθ =
1
2
(
sec θ tan θ + ln | sec θ + tan θ |

)
+ C.

Then a reference triangle with acute angle θ, opposite side u, and adjacent side 1 has hypotenuse of length√
1 + u2 . Hence

K =
1
2

[
u
√

1 + u2 + ln
(
u +

√
1 + u2

)]
+ C =

1
2
ex

√
1 + e2x +

1
2

ln
(
ex +

√
1 + e2x

)
+ C.

Mathematica 3.0, with its well-known penchant for using hyperbolic functions, returns the equivalent

K =
1
2
ex

√
1 + e2x +

1
2

sinh−1 (ex) + C.

C07S0M.040: First, 4x − x2 = −(x2 − 4x) = 4 − (x − 2)2 = 4 − 4 sin2 u = 4 cos2 u if x − 2 = 2 sinu.
Therefore we let

x = 2 + 2 sinu; then dx = 2 cosu du, sinu =
x− 2

2
.

A reference triangle for this substitution has acute angle u, opposite side x− 2, and hypotenuse 2. Hence
its adjacent side has length

√
4x− x2 ; thus

∫
x√

4x− x2
dx =

∫
2 + 2 sinu

2 cosu
· 2 cosu du = 2u− 2 cosu + C = 2 arcsin

(
x− 2

2

)
−

√
4x− x2 + C.

C07S0M.041: Let x = 3 secu. Then
√
x2 − 9 =

√
9 sec2 u− 9 =

√
9 tan2 u = 3 tanu; moreover,

dx = 3 secu tanu du. A reference triangle for this substitution has acute angle u, hypotenuse x, and
adjacent side 3, thus opposite side of length

√
x2 − 9 . Therefore
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∫
1

x3
√
x2 − 9

dx =
∫

3 secu tanu

(27 sec3 u)(3 tanu)
du =

1
27

∫
1 + cos 2u

2
=

1
54

(u + sinu cosu) + C

=
1
54

[
arcsec

(x

3

)
+

3
√
x2 − 9
x2

]
+ C =

1
54

arcsec
(x

3

)
+
√
x2 − 9
18x2

+ C.

There is a technical point that we have glossed over too many times not to mention. In our substitution,√
9 tan2 u = 3 tanu is true only if tanu � 0. Nevertheless, our antiderivative is correct for all x such that
|x| > 3, including values of x for which tanu < 0. We confess to a pragmatic approach to such problems.
If the substitution is “legal” only for certain values of the variables, use it anyway. Find the antiderivative,
then verify its validity for all meaningful values of the variable by differentiation. Almost always, you will
find that an antiderivative valid for an interval of values of the variables is valid for all meaningful values of
the variables.

Mathematica 3.0 returns for the antiderivative the equivalent

∫
1

x3
√
x2 − 9

dx =
√
−9 + x2

18x2
− 1

54
arctan

(
3√

−9 + x2

)
.

C07S0M.042: Do not use the method of partial fractions! (No one wants to solve seventeen equations in
seventeen unknowns, even if they are linear equations!) Let u = 7x + 1. Then

x =
u− 1

7
and dx =

1
7

du.

Therefore

∫
x

(7x + 1)17
dx =

1
7

∫
u− 1
u17

· 1
7

du =
1
49

∫
(u−16 − u−17) du =

1
49

(
u−16

16
− u−15

15

)
+ C

=
1
49

[
1

16(7x + 1)16
− 1

15(7x + 1)15

]
+ C =

1
49(7x + 1)16

(
1
16
− 7x + 1

15

)
+ C

=
1

49(7x + 1)16
· 15− 112x− 16

240
+ C = − 112x + 1

11760(7x + 1)16
+ C.

Note: Just for fun, we had Mathematica write the seventeen equations in seventeen unknowns to solve
for the coefficients A, B, . . . , Q resulting from trying to find the partial fractions decomposition

x

(7x + 1)17
=

A

7x + 1
+

B

(7x + 1)2
+

C

(7x + 1)3
+ · · ·+ P

(7x + 1)16
+

Q

(7x + 1)17
.

It turns out that the matrix of coefficient is upper triangular, so the equations are actually fairly easy to
solve, although they are quite imposing. For example, one of these equations is

9421331920A + 5299499205B + 2826399576C + 1413199788D

+ 652246056E + 271769190F + 98825160G + 29647548H + 6588344I + 823543J = 0.

The partial fractions decomposition turns out to be simple:

x

(7x + 1)17
=

1
7(7x + 1)16

− 1
(7x + 1)17

.
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A quick way to obtain this result:

x

(7x + 1)17
=

1
7
· 7x + 1− 1

(7x + 1)17
=

1
7

[
7x + 1

(7x + 1)17
− 1

(7x + 1)17

]
.

C07S0M.043: The partial fractions decomposition of the integrand has the form

4x2 + x + 1
4x3 + x

=
A

x
+

Bx + C

4x2 + 1
,

which leads to A(4x2 + 1) + Bx2 + Cx = 4x2 + x + 1, and thereby to the simultaneous equations

4A + B = 4, C = 1, A = 1

which are easily solved for A = 1, B = 0, and C = 1. Therefore

∫
4x2 + x + 1

4x3 + x
dx =

∫ (
1
x

+
1

4x2 + 1

)
dx = ln |x|+ 1

2
arctan(2x) + C.

The easiest way to find the antiderivative of the second fraction is by judicious guesswork.

C07S0M.044: Division of numerator by denominator yields

4x3 − x + 1
x3 + 1

= 4− x + 3
x3 + 1

.

Then the method of partial fractions leads to

x + 3
x3 + 1

=
A

x + 1
+

Bx + C

x2 − x + 1
,

and thus to A(x2 − x + 1) + B(x2 + x) + C(x + 1) = x + 3, and so we obtain the simultaneous equations

A + B = 0, −A + B + C = 1, and A + C = 3.

These are easy to solve for A = 2
3 , B = − 2

3 , C = 7
3 , and hence

x + 3
x3 + 1

=
1
3

(
2

x + 1
− 2x− 7

x3 − x + 1

)
.

Now

x2 − x + 1 =
(
x− 1

2

)2

+
3
4

=
3
4

tan2 u +
3
4

=
3
4

sec2 u if
√

3
2

tanu = x− 1
2
.

Hence we let

x =
1 +
√

3 tanu

2
, and so dx =

√
3
2

sec2 u du and tanu =
2x− 1√

3
.

Therefore

∫
2x− 7

x2 − x + 1
dx =

∫
1 +
√

3 tanu− 7
3
4 sec2 u

·
√

3
2

sec2 u du

=
2
√

3
3

∫
(−6 +

√
3 tanu) du =

2
√

3
3

(
− 6u +

√
3 ln | secu|

)
+ C.
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A reference triangle with acute angle u, opposite side 2x−1, and adjacent side
√

3 has hypotenuse of length
2
√
x2 − x + 1 . Therefore

∫
2x− 7

x2 − x + 1
dx =

2
√

3
3

[
−6 arctan

(
2x− 1√

3

)
+
√

3 ln
(√

x2 − x + 1
)]

+ C

= −4
√

3 arctan
(

2x− 1√
3

)
+ ln(x2 − x + 1) + C.

Consequently

∫
4x3 − x + 1

x3 + 1
dx = 4x− 2

3
ln |x + 1| − 4

√
3

3
arctan

(
2x− 1√

3

)
+

1
3

ln(x2 − x + 1) + C.

C07S0M.045:
∫

tan2 x secx dx =
∫

(sec3 x− secx) dx =
1
2
(
secx tanx− ln | secx + tanx|

)
+ C.

C07S0M.046: Here’s an easy way to get the required partial fractions decomposition of the integrand:

x2 + 2x + 2
(x + 1)3

=
x2 + 2x + 1

(x + 1)3
+

1
(x + 1)3

=
1

x + 1
+

1
(x + 1)3

.

Therefore

∫
x2 + 2x + 2

(x + 1)3
dx = ln |x + 1| − 1

2(x + 1)2
+ C.

C07S0M.047: The partial fractions decomposition

x4 + 2x + 2
x5 + x4

=
A

x
+

B

x2
+

C

x3
+

D

x4
+

E

x + 1

yields the equation A(x4 + x3) + B(x3 + x2) + C(x2 + x) + D(x + 1) + Ex4 = x4 + 2x + 2, and thereby the
simultaneous equations

A + E = 1,

A + B = 0,

B + C = 0,

C + D = 2,

D = 2.

These equations are easy to solve “from the bottom up,” and you’ll find that D = 2, C = 0, B = 0, A = 0,
and E = 1. Therefore

∫
x4 + 2x + 2
x5 + x4

dx =
∫ (

2
x4

+
1

x + 1

)
dx = ln |x + 1| − 2

3x3
+ C.

C07S0M.048: The partial fractions decomposition

8x2 − 4x + 7
(x2 + 1)(4x + 1)

=
A

4x + 1
+

Bx + C

x2 + 1

13



produces the equation A(x2 + 1) + B(4x2 + x) + C(4x + 1) = 8x2 − 4x + 7, and thus the simultaneous
equations

A + 4B = 8, B + 4C = −4, and A + C = 7,

which are easy to solve for C = −1, A = 8, and B = 0. Therefore

∫
8x2 − 4x + 7

(x2 + 1)(4x + 1)
dx =

∫ (
8

4x + 1
− 1

x2 + 1

)
dx = 2 ln |4x + 1| − arctanx + C.

C07S0M.049: The partial fractions decomposition of the integrand is

3x5 − x4 + 2x3 − 12x2 − 2x + 1
(x3 − 1)2

=
A

x− 1
+

B

(x− 1)2
+

Cx + D

x2 + x + 1
+

Ex + F

(x2 + x + 1)2
,

and thus

A(x− 1)(x4 + 2x3 + 3x2 + 2x + 1) + B(x4 + 2x3 + 3x2 + 2x + 1)

+ (Cx + D)(x4 − x3 − x + 1) + (Ex + F )(x2 − 2x + 1) = 3x5 − x4 + 2x3 − 12x2 − 2x + 1.

Thus we obtain the following simultaneous equations:

A +C = 3,

A+ B−C +D = −1,

A+ 2B −D+ E = 2,

−A+ 3B−C − 2E + F =−12,

−A+ 2B +C −D+ E− 2F = −2,

−A+ B +D + F = 1.

It follows that A = 1, B = −1, C = 2, D = 1, E = 4, and F = 2. Hence

3x5 − x4 + 2x3 − 12x2 − 2x + 1
(x3 − 1)2

=
1

x− 1
− 1

(x− 1)2
+

2x + 1
x2 + x + 1

+
2(2x + 1)

(x2 + x + 1)2
,

and therefore the required antiderivative is

ln |x− 1|+ 1
x− 1

+ ln(x2 + x + 1)− 2
x2 + x + 1

+ C.

C07S0M.050: Don’t even consider the method of partial fractions; the factorization of the denominator
is awkward. Instead note that

x4 + 4x2 + 8 = x4 + 4x2 + 4 + 4 = (x2 + 2)2 + 4 = 4 tan2 u + 4 = 4 sec2 u

if x2 + 2 = 2 tanu, so we let x2 = −2 + 2 tanu. Then

tanu =
x2 + 2

2
, 2x dx = 2 sec2 u du, and x dx = sec2 u du.

Therefore
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∫
x

x4 + 4x2 + 8
dx =

∫
sec2 u

4 sec2 u
du =

1
4
u + C =

1
4

arctan
(
x2 + 2

2

)
+ C.

C07S0M.051: Another problem in which it is probably wise to develop a reduction formula. If n is a
positive integer, let

In =
∫

(lnx)n dx.

Then use integration by parts with u = (lnx)n and dv = dx. Then

du =
n(lnx)n−1

x
dx; choose v = x.

Hence

In = x(lnx)n − n

∫
(lnx)n−1 dx = x(lnx)n − nIn−1.

So

∫
(lnx)6 dx = x(lnx)6 − 6

∫
(lnx)5 dx

= x(lnx)6 − 6
[
x(lnx)5 − 5

∫
(lnx)4 dx

]

= x(lnx)6 − 6x(lnx)5 + 30
[
x(lnx)4 − 4

∫
(lnx)3 dx

]

= x(lnx)6 − 6x(lnx)5 + 30x(lnx)4 − 120
[
x(lnx)3 − 3

∫
(lnx)2 dx

]

= x(lnx)6 − 6x(lnx)5 + 30x(lnx)4 − 120x(lnx)3 + 360
[
x(lnx)2 − 2

∫
(lnx) dx

]

= x(lnx)6 − 6x(lnx)5 + 30x(lnx)4 − 120x(lnx)3 + 360x(lnx)2 − 720
[
x lnx−

∫
1 dx

]

= x(lnx)6 − 6x(lnx)5 + 30x(lnx)4 − 120x(lnx)3 + 360x(lnx)2 − 720x lnx + 720x + C.

C07S0M.052: Let x = u3. Then dx = 3u2 dx and u = x1/3. Thus

∫
(1 + x2/3)3/2

x1/3
dx =

∫
(1 + u2)3/2

u
· 3u2 du

=
∫

3u(1 + u2)3/2 du =
3
5

(1 + u2)5/2 + C =
3
5

(1 + x2/3)5/2 + C.

C07S0M.053:
∫

(arcsinx)2√
1− x2

dx =
1
3

(arcsinx)3 + C.

C07S0M.054: Let x = u6. Then dx = 6u5 du and u = x1/6. So
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I =
∫

1
x3/2(1 + x1/3)

dx =
∫

6u5

u9(1 + u2)
du =

∫
6

u4(1 + u2)
du.

Next,

6
u4(1 + u2)

=
A

u
+

B

u2
+

C

u3
+

D

u4
+

Eu + F

1 + u2

yields A(u3 + u5) + B(u2 + u4) + C(u + u3) + D(1 + u2) + Eu5 + Fu6 = 6, and thus

A + E = 0, B + F = 0,

A + C = 0, B + D = 0,

C = 0, D = 6.

It follows easily that D = 6, C = 0, B = −6, A = 0, F = 6, and E = 0. Hence

I =
∫ (
− 6

u2
+

6
u4

+
6

1 + u2

)
du

=
6
u
− 2

u3
+ 6 arctanu + C = 6x−1/6 − 2x−1/2 + 6 arctan

(
x1/6

)
+ C.

C07S0M.055: Here we have

∫
tan3 z dz =

∫
(sec2 z − 1) tan z dz =

∫
(sec2 z tan z − tan z) dz

=
1
2

tan2 z + ln | cos z |+ C =
1
2

sec2 z + ln | cos z |+ C1.

C07S0M.056: We will use the reduction formula in Problem 54 of Section 7.3.

∫
sin2 ω cos4 ω dω =

∫
(cos4 ω − cos6 ω) dω =

∫
cos4 ω dω − 1

6
cos5 ω sinω − 5

6

∫
cos4 ω dω

= − 1
6

cos5 ω sinω +
1
6

[
1
4

cos3 ω sinω +
3
4

∫
cos2 ω dω

]

= − 1
6

cos5 ω sinω +
1
24

cos3 ω sinω +
1
8

∫
1 + cos 2ω

2
dω

= − 1
6

cos5 ω sinω +
1
24

cos3 ω sinω +
1
16

cosω sinω +
1
16

ω + C.

Mathematica 3.0 uses other trigonometric identities to produce its answer,

1
192

(12ω + 3 sin 2ω − 3 sin 4ω − sin 6ω).

C07S0M.057: Let u = exp(x2). Then du = 2x exp(x2) dx and exp(2x2) =
(
ex

2
)2

= u2. Hence

∫
x exp(x2)

1 + exp(2x2)
dx =

1
2

∫
1

1 + u2
du =

1
2

arctanu + C =
1
2

arctan
(
exp(x2)

)
+ C.
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C07S0M.058: Here we have

∫
cos3 x

(sinx)1/2
dx =

∫
(1− sin2 x) cosx

(sinx)1/2
dx =

∫ [
(sinx)−1/2 cosx − (sinx)3/2 cosx

]
dx

= 2(sinx)1/2 − 2
5

(sinx)5/2 + C =
2
5

(5− sin2 x)
√

sinx + C.

C07S0M.059: Let u = x2 and dv = x exp(−x2) dx. Then du = 2x dx; choose v = − 1
2

exp(−x2). Then

∫
x3 exp(−x2) dx = − 1

2
x2 exp(−x2) +

∫
x exp(−x2) dx

= − 1
2
x2 exp(−x2)− 1

2
exp(−x2) + C = − x2 + 1

2
exp(−x2) + C.

C07S0M.060: First let x = w2. Then dx = 2w dw, so

J =
∫

sin
√
x dx =

∫
2w sinw dw.

Then integrate by parts with u = 2w and dv = sinw dw, so that du = 2 dw; choose v = − cosw. Then

J = −2w cosw +
∫

2w dw = −2w cosw + 2 sinw + C = −2
√
x cos

√
x + 2 sin

√
x + C.

C07S0M.061: Integrate by parts with u = arcsinx and dv =
1
x2

dx, so that

du =
1√

1− x2
dx; choose v = − 1

x
.

Then

K =
∫

arcsinx

x2
dx = − 1

x
arcsinx +

∫
1

x
√

1− x2
dx = − 1

x
arcsinx− sech−1 |x|+ C.

If you prefer to avoid hyperbolic functions, substitute x = sin θ in the last integral. With 1 − x2 = cos2 θ
and dx = cos θ dθ, you’ll get

K = − 1
x

arcsinx +
∫

cos θ
sin θ cos θ

dθ = − 1
x

arcsinx + ln | csc θ − cot θ |+ C.

Then a reference triangle with acute angle θ, opposite side x, and hypotenuse 1 has adjacent side of length√
1− x2 . Therefore

K = − 1
x

arcsinx + ln

∣∣∣∣∣
1−
√

1− x2

x

∣∣∣∣∣ + C = − 1
x

arcsinx + ln
(
1−

√
1− x2

)
− ln |x|+ C.

C07S0M.062: Let x = 3 secu. Consequently
√
x2 − 9 =

√
9 sec2 u− 9 =

√
9 tan2 u = 3 tanu and

dx = 2 secu tanu du. A reference triangle for this substitution has acute angle u, hypotenuse x, and
adjacent side 3, so the side opposite u has length

√
x2 − 9 . Therefore
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∫ √
x2 − 9 dx =

∫
9 secu tan2 u du = 9

∫
(sec3 u− secu) du =

9
2
(
secu tanu− ln | secu + tanu |

)
+ C

=
9
2

(
x
√
x2 − 9
9

− ln

∣∣∣∣∣
x +
√
x2 − 9
3

∣∣∣∣∣
)

+ C =
1
2
x
√

x2 − 9 − 9
2

ln
(
x +

√
x2 − 9

)
+ C1.

C07S0M.063: Let x = sinu. Then 1− x2 = 1− sin2 u = cos2 u and dx = cosu du. A reference triangle
for this substitution has acute angle u, opposite side x, and hypotenuse 1, thus adjacent side of length√

1− x2 . Therefore

∫
x2

√
1− x2 dx =

∫
sin2 u cos2 u du =

1
4

∫
(2 sinu cosu)2 du =

1
4

∫
sin2 2u du =

1
8

∫
(1− cos 4u) du

=
1
8

(
u− 1

4
sin 4u

)
+ C =

1
8
u− 1

16
sin 2u cos 2u + C

=
1
8
u− 1

8
(sinu cosu)(cos2 u− sin2 u) + C =

1
8

(
u− sinu cos3 u + sin3 u cosu

)
+ C

=
1
8
[
arcsinx− x(1− x2)3/2 + x3(1− x2)1/2

]
+ C

=
1
8
x(2x2 − 1)

√
1− x2 +

1
8

arcsinx + C.

C07S0M.064: First, 2x− x2 = 1− (x− 1)2 = 1− sin2 u = cos2 u if x = 1 + sinu. We therefore use this
substitution with dx = cosu du. The result:

J =
∫

x
√

2x− x2 dx =
∫

(1 + sinu) cos2 u du

=
∫ (

1 + cos 2u
2

+ cos2 u sinu

)
du =

1
2
u +

1
2

sinu cosu− 1
3

cos3 u + C.

A reference triangle for the trigonometric substitution has acute angle u, opposite side x−1, and hypotenuse
1. Thus its adjacent side has length

√
2x− x2 , and therefore

J =
1
2

arcsin(x− 1) +
1
2

(x− 1)
√

2x− x2 − 1
3

(2x− x2)3/2 + C

=
1
2

arcsin(x− 1) + (2x− x2)1/2
(
x

2
− 1

2
− 2x

3
+

x2

3

)
+ C

=
1
2

arcsin(x− 1) +
1
6

(2x2 − x− 3)
√

2x− x2 + C.

C07S0M.065: The partial fractions decomposition of the integrand has the form

x− 2
4x2 + 4x + 1

=
A

2x + 1
+

B

(2x + 1)2
,

and therefore A(2x + 1) + B = x− 2. It follows that A = 1
2 and B = − 5

2 , and thus
∫

x− 2
(2x + 1)2

dx =
1
2

∫ (
1

2x + 1
− 5

(2x + 1)2

)
dx =

1
4

ln |2x + 1|+ 5
4(2x + 1)

+ C.
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C07S0M.066: The partial fractions decomposition of the integrand has the form

2x2 − 5x− 1
x3 − 2x2 − x + 2

=
A

x− 2
+

B

x− 1
+

C

x + 1
,

so that A(x2 − 1) + B(x2 − x− 2) + C(x2 − 3x + 2) = 2x2 − 5x− 1. It follows that

A + B + C = 2,

−B − 3C = −5,

−A− 2B + 2C = −1.

We find that C = 1, B = 2, and A = −1. Therefore

∫
2x2 − 5x− 1

x3 − 2x2 − x + 2
dx = − ln |x− 2|+ 2 ln |x− 1|+ ln |x + 1|+ C = ln

∣∣∣∣ (x− 1)2(x + 1)
x− 2

∣∣∣∣ + C.

C07S0M.067:
∫

e2x

e2x − 1
dx =

1
2

ln |e2x − 1|+ C.

C07S0M.068: Let u = sinx. Then

J =
∫

cosx
sin2 x− 3 sinx + 2

dx =
∫

1
u2 − 3u + 2

du

=
∫ (

1
u− 2

− 1
u− 1

)
du = ln

∣∣∣∣ u− 2
u− 1

∣∣∣∣ + C = ln
(

2− sinx

1− sinx

)
+ C.

C07S0M.069: The partial fractions decomposition of the integrand has the form

2x3 + 3x2 + 4
(x + 1)4

=
A

x + 1
+

B

(x + 1)2
+

C

(x + 1)3
+

D

(x + 1)4
.

It follows that A(x3 + 3x2 + 3x + 1) + B(x2 + 2x + 1) + C(x + 1) + D = 2x3 + 3x2 + 4, and thus

A = 2,

3A + B = 3,

3A + 2B + C = 0,

A + B + C + D = 4.

The triangular form of this system of equations makes it easy to solve for A = 2, B = −3, C = 0, and D = 5.
Therefore

∫
2x3 + 3x2 + 4

(x + 1)4
dx = 2 ln |x + 1|+ 3

x + 1
− 5

3(x + 1)3
+ C.

C07S0M.070: Let u = tanx. Then du = sec2 x dx and
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∫
sec2 x

tan2 x + 2 tanx + 2
dx =

∫
1

u2 + 2u + 2
du

=
∫

1
1 + (1 + u)2

du = arctan(u + 1) + C = arctan(1 + tanx) + C.

C07S0M.071: The partial fractions decomposition of the integrand has the form

x3 + x2 + 2x + 1
x4 + 2x2 + 1

=
Ax + B

x2 + 1
+

Cx + D

(x2 + 1)2
,

so that A(x3 + x) + B(x2 + 1) + Cx + D = x3 + x2 + 2x + 1. It follows that A = 1, B = 1, C = 1, and
D = 0. Therefore

∫
x3 + x2 + 2x + 1

x4 + 2x2 + 1
dx =

∫ (
x

x2 + 1
+

1
x2 + 1

+
x

(x2 + 1)2

)
dx =

1
2

ln(x2 + 1) + arctanx− 1
2(x2 + 1)

+ C.

C07S0M.072: Integration by parts will probably succeed, but we prefer an approach that cannot fail:

cos 3x = cos(2x + x) = cos 2x cosx− sin 2x sinx

= (1− 2 sin2 x) cosx− 2 sin2 x cosx = cosx− 4 sin2 x cosx.

Therefore

∫
sinx cos 3x dx =

∫
(sinx cosx− 4 sin3 x cosx) dx =

1
2

sin2 x− sin4 x + C.

There are many ways of finding this particular antiderivative, so a variety of answers—any two of which
differ by a constant—is possible. For example, Mathematica 3.0, Maple V Release 5, Derive 2.56, and the
TI-92 all return the antiderivative in the form

∫
sinx cos 3x dx =

1
4

cos 2x− 1
8

cos 4x

(remember that computer algebra programs normally omit the constant of integration). See Problems 59
through 61 of Section 7.4 (and the preceding instructions) for an explanation of how these computer algebra
programs may have computed this antiderivative. By the way, integration by parts (twice) with u = cos 3x
(the first time) yields

∫
sinx cos 3x dx =

1
8

(cosx cos 3x + 3 sinx sin 3x) + C.

C07S0M.073: Use integration by parts with u = x3 and dv = c2(x3 − 1)1/2 dx. Then

du = 3x2 dx; choose v =
2
9

(x3 − 1)3/2.

Then
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K =
∫

x5
√

x3 − 1 dx =
2
9
x3(x3 − 1)3/2 −

∫
2
3
x2(x3 − 1)3/2 dx

=
2
9
x3(x3 − 1)3/2 − 4

45
(x3 − 1)5/2 + C =

1
45

[
10x3(x3 − 1)3/2 − 4(x3 − 1)5/2

]
+ C

=
2(x3 − 1)1/2

45

[
5x3(x3 − 1)− 2(x3 − 1)2

]
+ C =

2
45

(3x6 − x3 − 2)
√

x3 − 1 + C.

C07S0M.074: Let u = ln(x2 + 2x) and dv = dx. Then

du =
2x + 2
x2 + 2x

dx; choose v = x + 2.

Then

∫
ln(x2 + 2x) dx = (x + 2) ln(x2 + 2x)−

∫
2(x + 1)(x + 2)

x(x + 2)
dx

= (x + 2) ln(x2 + 2x)− 2
∫ (

1 +
1
x

)
dx = (x + 2) ln(x2 + 2x)− 2x− 2 ln |x|+ C.

As usual, other forms of the answer abound. Mathematica 3.0, for example, reports (in effect) that
∫

ln(x2 + 2x) dx = x ln(x2 + 2x) + 2 ln(x + 2)− 2x + C.

C07S0M.075:
∫ √

1 + sinx

secx
dx =

∫
(1 + sinx)1/2 cosx dx =

2
3

(1 + sinx)3/2 + C.

C07S0M.076: Let u = x3. Then dx = 3u2 du and u = x1/3. Hence

∫
1

x2/3(1 + x2/3)
dx =

∫
3u2

u2(1 + u2)
du = 3 arctanu + C = 3 arctan

(
x1/3

)
+ C.

C07S0M.077:
∫

sinx

sin 2x
dx =

∫
sinx

2 sinx cosx
dx =

1
2

∫
secx dx =

1
2

ln | secx + tanx |+ C.

C07S0M.078: We will use the half-angle formula in Eq. (10) of Appendix C (it also appears inside the
front cover of the hardcover edition of the text).

∫ √
1 + cos t dt =

√
2

∫ √
1 + cos t

2
dt =

√
2

∫ √
cos2

(
t

2

)
dt =

√
2

∫ ∣∣∣∣cos
t

2

∣∣∣∣ dt.

Hence

∫ √
1 + cos t dt =




2
√

2 sin
t

2
+ C if 0 � t � π,

−2
√

2 sin
t

2
+ C if π � t � 2π.

Mathematica 3.0 returns 2(1+cos t)1/2 tan
(

1
2 t

)
if you prefer an antiderivative that is not defined “piecewise.”
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C07S0M.079: We multiply numerator and denominator by
√

1− sin t and thus obtain

∫ √
1 + sin t dt =

∫ √
1− sin2 t√
1− sin t

dt =
∫ √

cos2 t√
1− sin t

dt =
∫

(1− sin t)−1/2 | cos t | dt.

Therefore

∫ √
1 + sin t dt =



−2
√

1− sin t + C if cos t � 0,

2
√

1− sin t + C if cos t � 0.

Mathematica 3.0 returns (in effect)

∫ √
1 + sin t dt =

2
(

sin
t

2
− cos

t

2

)

sin
t

2
+ cos

t

2

·
√

1 + sin t + C.

C07S0M.080: Let u = tan t. Then du = sec2 t dt, and hence

∫
sec2 t

1− tan2 t
dt =

∫
1

1− u2
du =

1
2

∫ (
1

1 + u
+

1
1− u

)
du

=
1
2

ln 1 + u| − 1
2

ln |1− u|+ C =
1
2

ln
∣∣∣∣ 1 + u

1− u

∣∣∣∣ + C =
1
2

ln
∣∣∣∣ 1 + tan t

1− tan t

∣∣∣∣ + C.

Alternatively, if you are fond of trigonometric solutions, multiply numerator and denominator in the original
integral by cos2 t to obtain

∫
1

cos2 t− sin2 t
dt =

∫
1

cos 2t
dt =

∫
sec 2t dt =

1
2

ln | sec 2t + tan 2t |+ C.

C07S0M.081: Integrate by parts with u = ln(x2 + x + 1) and dv = dx. Then

du =
2x + 1

x2 + x + 1
dx; choose v = x.

Then

J =
∫

ln(x2 + x+ 1) dx = x ln(x2 + x+ 1)−
∫

2x2 + x

x2 + x + 1
dx = x ln(x2 + x+ 1)−

∫ (
2− x + 2

x2 + x + 1

)
dx.

Now

x2 + x + 1 =
(
x +

1
2

)2

+
3
4

=
3
4

tan2 u +
3
4

=
3
4

sec2 u

if x +
1
2
−
√

3
2

tanu, so we let

x =
−1 +

√
3 tanu

2
, dx =

√
3
2

sec2 u du, tanu =
2x + 1√

3
.

A reference triangle for this substitution has acute angle u, opposite side 2x + 1, and adjacent side
√

3 , so
its hypotenuse has length 2

√
x2 + x + 1 . Thus
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∫
x + 2

x2 + x + 1
dx =

∫ 1
2

(
3 +
√

3 tanu
)

3
4 sec2 u

·
√

3
2

sec2 u du =
√

3
3

∫ (
3 +
√

3 tanu
)

du

=
√

3
3

(
3u +

√
3 ln | secu|

)
+ C =

√
3
3

[
3 arctan

(
2x + 1√

3

)
+
√

3 ln

(
2
√
x2 + x + 1√

3

)]
+ C.

Therefore

J = x ln(x2 + x + 1)− 2x +
√

3 arctan
(

2x + 1√
3

)
+

1
2

ln(x2 + x + 1) + C.

C07S0M.082: Let w = ex, so that dw = ex dx. Then

J =
∫

ex arcsin (ex) dx =
∫

arcsinw dw.

Then let u = arcsinw and dv = dw. Thus

du =
1√

1− w2
dw; choose v = w.

Consequently,

J = w arcsinw −
∫

w(1− w2)−1/2 dw = w arcsinw + (1− w2)1/2 + C = ex arcsin (ex) +
√

1− e2x + C.

C07S0M.083: Integrate by parts with

u = arctanx and dv =
1
x2

dx.

Then

du =
1

1 + x2
dx; choose v = − 1

x
.

Thus

∫
arctanx

x2
dx = − 1

x
arctanx +

∫
1

x(x2 + 1)
dx

= − 1
x

arctanx +
∫ (

1
x
− x

x2 + 1

)
dx = − 1

x
arctanx + ln |x| − 1

2
ln(x2 + 1) + C.

C07S0M.084: Let x = 5 secu: dx = 5 secu tanu du, x2 − 25 = 25 sec2 u− 25 = 25 tan2 u. So

I =
∫

x2

√
x2 − 25

dx =
∫

25 sec2 u

5 tanu
· 5 secu tanu du

=
∫

25 sec3 u du =
25
2

(
secu tanu + ln | secu + tanu |

)
+ C.

A reference triangle for this trigonometric substitution has acute angle u, hypotenuse x, and adjacent side
5, so its opposite side has length

√
x2 − 25 . Therefore
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I =
25
2

(
x
√
x2 − 25
25

+ ln

∣∣∣∣∣
x +
√
x2 − 25
5

∣∣∣∣∣
)

+ C =
x

2

√
x2 − 25 +

25
2

ln
∣∣∣x +

√
x2 − 25

∣∣∣ + C1.

C07S0M.085: We use the idea of the method of partial fractions but avoid the algebra as follows:

x3

(x2 + 1)2
=

x3 + x− x

(x2 + 1)2
=

x(x2 + 1)
(x2 + 1)2

− x

(x2 + 1)2
=

x

x2 + 1
− x

(x2 + 1)2
.

Therefore

∫
x3

(x2 + 1)2
dx =

∫ (
x

x2 + 1
− x

(x2 + 1)2

)
dx =

1
2

ln(x2 + 1) +
1

2(x2 + 1)
+ C.

C07S0M.086: Note that 6x− x2 = −(x2 − 6x) = 9− (x2 − 6x+ 9) = 9− (x− 3)3 = 9− 9 sin2 u = 9 cos2 u
if x− 3 = 3 sinu. Hence we let

x = 3 + 3 sinu. Then dx = 3 cosu du and sinu =
x− 3

3
.

A reference triangle for this substitution has acute angle u, opposite side x − 3, and hypotenuse 3, thus
adjacent side of length

√
6x− x2 . Hence

∫
1

x
√

6x− x2
dx =

∫
3 cosu

3(1 + sinu) · 3 cosu
du =

1
3

∫
1

1 + sinu
du =

1
3

∫
1− sinu

cos2 u
du

=
1
3

∫
(sec2 u− secu tanu) du =

1
3

(tanu− secu) + C =
1
3
· x− 6√

6x− x2
+ C

= − 6x− x2

3x
√

6x− x2
+ C = −

√
6x− x2

3x
+ C.

C07S0M.087: First, x2+4 = 4 tan2 u+4 = 4 sec2 u if x = 2 tanu, so that dx = 2 sec2 u du and tanu = 1
2 x.

A reference triangle for this substitution has acute angle u, opposite side x, and adjacent side 2, thus its
hypotenuse has length

√
x2 + 4 . Therefore

∫
3x + 2

(x2 + 4)3/2
dx =

∫
2 + 6 tanu

8 sec3 u
· 2 sec2 u du =

1
2

∫
(1 + 3 tanu) cosu du =

1
2

∫
(cosu + 3 sinu) du

=
1
2

(sinu− 3 cosu) + C =
1
2

(
x√

x2 + 4
− 6√

x2 + 4

)
+ C =

x− 6
2
√
x2 + 4

+ C.

C07S0M.088: Let u = lnx and dv = x3/2 dx. Then

du =
1
x

dx; choose v =
2
5
x5/2.

Then

∫
x3/2 lnx dx =

2
5
x5/2 lnx− 2

5

∫
x3/2 dx =

2
5
x5/2 lnx− 4

25
x5/2 + C =

2
25

x5/2(5 lnx− 2) + C.
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C07S0M.089:
∫ √

1 + sin2 x

secx cscx
dx =

∫
(1 + sin2 x)1/2(sinx cosx) dx =

1
3

(1 + sin2 x)3/2 + C.

C07S0M.090: Let u =
√

sinx . Then

du =
1
2

(sinx)−1/2 cosx dx =
1

(2 secx)
√

sinx
dx.

So

∫ exp
(√

sinx
)

(secx)
√

sinx
dx = 2

∫
eudu = 2eu + C = 2 exp

(√
sinx

)
+ C.

C07S0M.091: Integration by parts is indicated, but there are several choices. We found that u = sinx

and dv = xex dx was a bad choice, leading to the correct but complicated antiderivative

I =
1
2

(x− 1)ex sinx− 1
2

(x− 2)ex cosx +
1
2
ex sinx− 1

2
ex cosx + C.

A better choice is u = x, dv = ex sinx dx. Even so, we need a preliminary computation to find v. We
integrate by parts with p = ex and dq = sinx dx. Then dp = ex dx and we may choose q = − cosx. Then

v =
∫

ex sinx dx = −ex cosx +
∫

ex cosx dx. (1)

We integrate by parts a second time, with p = ex and dq = cosx dx. Then with dp = ex dx and q = sinx

we find that

v = −ex cosx + ex sinx−
∫

ex sinx dx = ex sinx− ex cosx− v,

and therefore we may choose v =
1
2
ex(sinx− cosx). Also du = dx, and thus

I =
∫

xex sinx dx = u · v −
∫

v du =
1
2
xex(sinx− cosx)− 1

2

∫
ex sinx dx +

1
2

∫
ex cosx dx.

Now by Eq. (1),

∫
ex cosx dx = ex cosx + v = ex cosx +

1
2
ex(sinx− cosx) + C =

1
2
ex(sinx + cosx) + C.

Therefore

I =
1
2
xex(sinx− cosx)− 1

2
· 1
2
ex(sinx− cosx) +

1
2
· 1
2
ex(sinx + cosx) + C

=
1
2
xex(sinx− cosx) +

1
2
ex cosx + C =

1
2
ex(x sinx− x cosx + cosx) + C.

C07S0M.092: Integrate by parts with u = x3/2 and dv = x1/2 exp
(
x3/2

)
dx. Then

du =
3
2
x1/2 dx; choose v =

2
3

exp
(
x3/2

)
.

Thus
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∫
x2 exp

(
x3/2

)
dx =

2
3
x3/2 exp

(
x3/2

)
−

∫
x1/2 exp

(
x3/2

)
dx

=
2
3
x3/2 exp

(
x3/2

)
− 2

3
exp

(
x3/2

)
+ C =

2
3

(
x3/2 − 1

)
exp

(
x3/2

)
+ C.

C07S0M.093: First integrate by parts with u = arctanx and dv = (x−1)−3 dx. Then the new integrand
will be a rational function of x, to which the method of partial fractions can be applied if necessary. We
have

du =
1

1 + x2
dx and we choose v = − 1

2
(x− 1)−2.

Then

J =
∫

arctanx

(x− 1)3
dx = − arctanx

2(x− 1)2
+

1
2

∫
1

(x− 1)2(x2 + 1)
dx.

The partial fractions decomposition

1
(x− 1)2(x2 + 1)

=
A

x− 1
+

B

(x− 1)2
+

Cx + D

x2 + 1

leads to the equation A(x3 − x2 + x− 1) + B(x2 + 1) + C(x3 + 2x2 + x) + D(x2 − 2x + 1) = 1, and thus to
the simultaneous equations

A + C = 0, −A + B − 2C + D = 0,

A + C − 2D = 0, −A + B + D = 1.

Then C = −A and D = 0, so that A + B = 0 and −A + B = 1. Hence B = 1
2 , A = − 1

2 , and C = 1
2 .

Therefore

1
2
· 1
(x− 1)2(x2 + 1)

=
1
4

(
− 1

x− 1
+

1
(x− 1)2

+
x

x2 + 1

)
.

So, finally,

J = − arctanx

2(x− 1)2
+

1
4

(
1
2

ln(x2 + 1)− 1
x− 1

− ln |x− 1|
)

+ C.

C07S0M.094: Integrate by parts with u = ln (1 +
√
x ) and dv = dx. Then

du =
1

2
√
x (1 +

√
x )

dx, but choose v = x− 1 =
(√

x + 1
) (√

x − 1
)
.

Then

∫
ln

(
1 +
√
x

)
dx = (x− 1) ln

(
1 +
√
x

)
−

∫
(
√
x + 1) (

√
x − 1)

2
√
x (1 +

√
x )

dx

= (x− 1) ln
(
1 +
√
x

)
−

∫ √
x − 1
2
√
x

dx = (x− 1) ln
(
1 +
√
x

)
− 1

2
x +
√
x + C.
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C07S0M.095: First,

3 + 6x− 9x2 = −(9x2 − 6x− 3) = −(9x2 − 6x + 1− 4) = 4− (3x− 1)2 = 4− 4 sin2 u = 4 cos2 u

if 3x− 1 = 2 sinu, so we let

x =
1 + 2 sinu

3
; dx =

2
3

cosu du and sinu =
3x− 1

2
.

A reference triangle for this substitution has acute angle u, opposite side 3x− 1, and hypotenuse 2, so its
adjacent (to u) side has length

√
3 + 6x− 9x2 . Therefore

∫
2x + 3√

3 + 6x− 9x2
dx =

∫ 2
3

(
1 + 2 sinu + 9

2

)
2 cosu

· 2
3

cosu du =
2
9

∫ (
11
2

+ 2 sinu

)
du

=
11
9

u− 4
9

cosu + C =
11
9

arcsin
(

3x− 1
2

)
− 2

9

√
3 + 6x− 9x2 + C.

C07S0M.096: Let u = ex: du = ex dx = u dx, so dx =
1
u

du. Therefore
∫

1√
e2x − 1

dx =
∫

1
u
√
u2 − 1

du = arcsec |u|+ C = arcsec (ex) + C.

To “visualize” arcsec (ex), consider a right triangle with acute angle u, adjacent side 1, and hypotenuse ex.
Then the side of this triangle opposite the angle u has length

√
e2x − 1 , and therefore an alternative form

of the antiderivative in this problem is
∫

1√
e2x − 1

dx = arctan
(√

e2x − 1
)

+ C.

C07S0M.097: The method of partial fractions can be avoided with the substitution u = x − 1, so that
x = u + 1 and dx = du. Then

∫
x4

(x− 1)2
dx =

∫
(u + 1)4

u2
du =

u4 + 4u3 + 6u2 + 4u + 1
u2

du

=
∫ (

u2 + 4u + 6 +
4
u

+
1
u2

)
du =

1
3
u3 + 2u2 + 6u + 4 ln |u| − 1

u
+ C

=
1
3

(x− 1)3 + 2(x− 1)2 + 6(x− 1) + 4 ln |x− 1| − 1
x− 1

+ C

=
1
3
x3 + x2 + 3x− 1

x− 1
+ 4 ln |x− 1|+ C1

where C1 = C +
13
3

.

If you used the method of partial fractions, you should have found that

x4

(x− 1)2
= x2 + 2x + 3 +

4
x− 1

+
1

(x− 1)2
.

C07S0M.098: Integrate by parts with u = arctan (
√
x ) and dv = x3/2 dx. Then
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du =
1

2
√
x (1 + x)

dx; choose v =
2
5
x5/2. Then

∫
x3/2 arctan

(√
x

)
dx =

2
5
x5/2 arctan

(√
x

)
− 1

5

∫
x2

x + 1
dx

=
2
5
x5/2 arctan

(√
x

)
− 1

5

∫ (
x− 1 +

1
x + 1

)
dx

=
2
5
x5/2 arctan

(√
x

)
− 1

10
x2 +

1
5
x− 1

5
ln |x + 1|+ C.

C07S0M.099: Integrate by parts with u = arcsec (
√
x ) and dv = dx. Then

du =
1√

x
√
x− 1

· 1
2
√
x

dx =
1

2x
√
x− 1

dx; choose v = x.

Then

∫
arcsec

(√
x

)
dx = x arcsec

(√
x

)
−

∫
1
2

(x− 1)−1/2 dx = x arcsec
(√

x
)
−
√
x− 1 + C.

C07S0M.100: Let

u2 =
1− x2

1 + x2
.

Then

(1 + x2)u2 = 1− x2; u2 + x2u2 = 1− x2;

x2 + x2u2 = 1− u2; x2 =
1− u2

1 + u2
.

Therefore

2x dx =
(1 + u2)(−2u)− (2u)(1− u2)

(1 + u2)2
du = − 4u

(1 + u2)2
du.

Thus

K =
∫

x

√
1− x2

1 + x2
dx = −

∫
2u2

(1 + u2)2
du.

The partial fractions decomposition of the integrand is

− 2u2

(1 + u2)2
= − 2

1 + u2
+

2
(1 + u2)2

,

and a trigonometric substitution would be required to antidifferentiate the last fraction (unless you find it
in a table of integrals), so one might as well avoid the partial fractions approach by using a trigonometric
substitution to begin with. Thus we let u = tan θ, so that du = sec2 θ dθ. Then
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K =
∫ −2 tan2 θ

sec4 θ
sec2 θ dθ = −

∫
2 sin2 θ dθ = −

∫
(1− cos 2θ) dθ = −θ + sin θ cos θ + C.

A reference triangle for this trigonometric substitution has acute angle θ, opposite side u, and adjacent side
1. So the hypotenuse of this triangle has length

√
1 + u2 , and therefore

K = − arctanu +
u

1 + u2
+ C = − arctan

(√
1− x2

1 + x2

)
+

1

1 +
1− x2

1 + x2

·
√

1− x2

1 + x2
+ C

= − arctan

(√
1− x2

1 + x2

)
+

1 + x2

2
·
√

1− x2

1 + x2
+ C = − arctan

(√
1− x2

1 + x2

)
+

1
2

√
1− x4 + C.

C07S0M.101: If y = coshx, then

1 +
(
dy

dx

)2

= 1 + sinh2 x = cosh2 x,

so that ds = coshx dx. We will also use Eq. (11) of Section 6.8 to find that the surface area of revolution is

A =
∫ 1

0

2π cosh2 x dx = π

∫ 1

0

(1 + cosh 2x) dx = π

[
x +

1
2

sinh 2x
]1

0

= π

(
1 +

e2 − e−2

4

)
=

π

4
(
4 + e2 − e−2

)
≈ 8.83865166003373.

C07S0M.102: If y = e−x, then

1 +
(
dy

dx

)2

= 1 + e−2x, so that ds =
√

1 + e−2x dx.

Therefore the arc length in question is

L =
∫ 1

0

√
1 + e−2x dx.

Let u = e−x. Then du = −e−x dx = −u dx, so that dx = − 1
u

du. Therefore

L =
∫ 1

x=0

−
√

1 + u2

u
du.

Now let u = tan θ. Then du = sec2 θ dθ, so that

L = −
∫ 1

x=0

sec θ
tan θ

· sec2 θ dθ = −
∫ 1

x=0

sec θ
tan θ

(1 + tan2 θ) dθ

= −
∫ 1

x=0

(csc θ + sec θ tan θ) dθ =
[
− sec θ − ln | csc θ − cot θ |

]1

x=0

.

A reference triangle for the trigonometric substitution has acute angle θ, opposite side u, and adjacent side
1. Hence the hypotenuse of that triangle has length

√
1 + u2 , and consequently
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L = −
[√

1 + u2 + ln

(√
1 + u2 − 1

u

)]1

x=0

=
[√

1 + u2 + ln
(√

1 + u2 − 1
)
− lnu

]1

u=1/e

=
√

2 + ln
(√

2 − 1
)
−

√
1 + e−2 − ln

(√
1 + e−2 − 1

)
− 1 ≈ 1.192701401972.

C07S0M.103: Given y = e−x,

dy

dx
= −e−x, so that ds =

√
1 + e−2x dx.

Hence the surface area of revolution is

At =
∫ t

0

2πe−x
√

1 + e−2x dx.

Let u = e−x. Then du = −e−x dx, and so

At =
∫ t

x=0

−2π
√

1 + u2 du.

Next, let u = tan θ. Then du = sec2 θ dθ and
√

1 + u2 = sec θ. Therefore

At = −2π
∫ t

x=0

sec3 θ dθ = −π
[

sec θ tan θ + ln | sec θ + tan θ |
]t
x=0

= −π
[
u
√

1 + u2 + ln
(
u +

√
1 + u2

) ]t
x=0

= −π
[
e−x

√
1 + e−2x + ln

(
e−x +

√
1 + e−2x

) ]t
0

= π

[√
2 + ln

(
1 +
√

2
)
− e−t

√
1 + e−2t − ln

(
e−t +

√
1 + e−2t

) ]
.

Clearly

lim
t→∞

At = π

[√
2 + ln

(
1 +
√

2
) ]
≈ 7.211799724207.

C07S0M.104: Given y =
1
x

, we have arc length element

ds =

√
1 +

1
x4

dx =
√
x4 + 1
x2

dx.

Hence the surface area of revolution is

At =
∫ t

1

2π
x
·
√
x4 + 1
x2

dx =
∫ t

1

2πx
√
x4 + 1
x4

dx.

Let x =
√

tanu . Then x2 = tanu and 2x dx = sec2 u du. For later reference, also note that 1+x4 = sec2 u,
so that secu =

√
1 + x4 . Thus
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At = π

∫ t

x=1

sec3 u

tan2 u
du = π

∫ t

x=1

1 + tan2 u

tan2 u
· secu du = π

∫ t

x=1

( secu
tan2 u

+ secu
)
du

= π

∫ t

x=1

(
cosu
sin2 u

+ secu
)

du = π

[
− 1

sinu
+ ln | secu + tanu |

]t
x=1

= π

[
−
√

1 + x4

x2
+ ln

(
x2 +

√
1 + x4

)]t
1

= π

[
√

2 − ln
(
1 +
√

2
)
−
√

1 + t4

t2
+ ln

(
t2 +

√
1 + t4

)]
.

Therefore

lim
t→∞

At = π

[√
2 − ln

(
1 +
√

2
)
− 1 + lim

t→∞
ln

(
t2 +

√
1 + t4

) ]
= +∞.

Also see Problem 51 in Section 7.8.

C07S0M.105: Given y = (x2 − 1)1/2, we have

dy

dx
=

x√
x2 − 1

,

so the arc length element is

ds =

√
1 +

x2

x2 − 1
dx =

(
2x2 − 1
x2 − 1

)1/2

dx.

We will use integral formula 44 from the endpapers to help us find that the surface area of revolution is

A =
∫ 2

1

2π(x2 − 1)1/2
(

2x2 − 1
x2 − 1

)1/2

dx = 2π
∫ 2

1

√
2x2 − 1 dx = 2π

√
2

∫ 2

1

(
x2 − 1

2

)1/2

dx

= 2π
√

2

[
x

2

(
x2 − 1

2

)1/2

− 1
4

ln

(
x +

(
x2 − 1

2

)1/2
)]2

1

(using integral formula 44)

= 2π
√

2

[√
7
2
− 1

4
ln

(
2 +

√
7
2

)
− 1

2

√
1
2

+
1
4

ln

(
1 +

√
1
2

)]
≈ 11.663528688558.

C07S0M.106: Let u = (lnx)n and dv = xm dx (m and n are positive integers). Then

du =
n(lnx)n−1

x
dx and we choose v =

xm+1

m + 1
.

Then

∫
xm(lnx)n dx =

1
m + 1

xm+1(lnx)n − n

m + 1

∫
xm(lnx)n−1 dx.

In particular,
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∫
x3(lnx)3 dx =

1
4
x4(lnx)3 − 3

4

∫
x3(lnx)2 dx

=
1
4
x4(lnx)3 − 3

4

[
1
4
x4(lnx)2 − 2

4

∫
x3 lnx dx

]

=
1
4
x4(lnx)3 − 3

16
x4(lnx)2 +

3
8

[
1
4
x4 lnx− 1

4

∫
x3 dx

]

=
1
4
x4(lnx)3 − 3

16
x4(lnx)2 +

3
32

x4 lnx− 3
128

x4 + C.

Therefore

∫ e

1

x3(lnx)3 dx =
1
4
e4 − 3

16
e4 +

3
32

e4 − 3
128

e4 +
3

128

=
32− 24 + 12− 3

128
· e4 +

3
128

=
17e4 + 3

128
≈ 7.274754301277.

C07S0M.107: Let u = (sinx)m−1 and dv = (cosx)n sinx dx (m and n are integers with n � 0 and
m � 2). Then

du = (m− 1)(sinx)m−2 cosx dx and v = − 1
n + 1

(cosx)n+1.

Therefore

I =
∫

(sinx)m(cosx)n dx = − 1
n + 1

(sinx)m−1(cosx)n+1 +
m− 1
n + 1

∫
(sinx)m−2(cosx)n+2 dx

= − 1
n + 1

(sinx)m−1(cosx)n+1 +
m− 1
n + 1

∫
(sinx)m−2(cosx)n(1− sin2 x) dx

= − 1
n + 1

(sinx)m−1(cosx)n+1 +
m− 1
n + 1

∫
(sinx)m−2(cosx)n dx− m− 1

n + 1
I.

Thus
(
m− 1
n + 1

+ 1
)

I = − 1
n + 1

(sinx)m−1(cosx)n+1 +
m− 1
n + 1

∫
(sinx)m−2(cosx)n dx;

m + n

n + 1
I = − 1

n + 1
(sinx)m−1(cosx)n+1 +

m− 1
n + 1

∫
(sinx)m−2(cosx)n dx;

and, finally,

I = − n + 1
m + n

· 1
n + 1

(sinx)m−1(cosx)n+1 +
n + 1
m + n

· m− 1
n + 1

∫
(sinx)m−2(cosx)n dx

= − 1
m + n

(sinx)m−1(cosx)n+1 +
m− 1
m + n

∫
(sinx)m−2(cosx)n dx.

C07S0M.108: We will use the reduction formula in Problem 107 and also the reduction formula in Problem
54 of Section 7.3; viz.,
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∫
(cosx)n dx =

1
n

(cosx)n−1 sinx +
n− 1
n

∫
(cosx)n−2 dx

if n is an integer and n � 2. Then

∫
sin6 x cos5 x dx = − 1

11
sin5 x cos6 x +

5
11

∫
sin4 x cos5 x dx

= − 1
11

sin5 x cos6 x +
5
11

[
− 1

9
sin3 x cos6 x +

1
3

∫
sin2 x cos5 x dx

]

= − 1
11

sin5 x cos6 x− 5
99

sin3 x cos6 x +
5
33

∫
sin2 x cos5 x dx

= − 1
11

sin5 x cos6 x− 5
99

sin3 x cos6 x +
5
33

[
− 1

7
sinx cos6 x +

1
7

∫
cos5 x dx

]

= − 1
11

sin5 x cos6 x− 5
99

sin3 x cos6 x− 5
231

sinx cos6 x +
5

231

∫
cos5 x dx

= − 1
11

sin5 x cos6 x− 5
99

sin3 x cos6 x− 5
231

sinx cos6 x

+
5

231

[
1
5

cos4 x sinx +
4
5

∫
cos3 x dx

]

= − 1
11

sin5 x cos6 x− 5
99

sin3 x cos6 x− 5
231

sinx cos6 x

+
1

231
cos4 x sinx +

4
231

[
1
3

cos2 x sinx +
2
3

∫
cosx dx

]

= − 1
11

sin5 x cos6 x− 5
99

sin3 x cos6 x− 5
231

sinx cos6 x

+
1

231
cos4 x sinx +

4
693

cos2 x sinx +
8

693
sinx + C.

Therefore
∫ π/2

0

sin6 x cos5 x dx =
8

693
≈ 0.011544011544.

C07S0M.109: We need a result in Problem 58 of Section 7.3: If n is a positive integer, then

∫ π/2

0

(sinx)2n dx =
π

2
· 1
2
· 3
4
· 5
6
· · · 2n− 1

2n
.

The area in question is

A = 2
∫ 2

0

x5/2
√

2− x dx.

Let x = 2 sin2 θ. Then
√

2− x =
√

2 cos θ and dx = 4 sin θ cos θ dθ. Therefore
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A = 2
∫ π/2

0

(25/2 sin5 θ)
(√

2 cos θ
)

(4 sin θ cos θ) dθ = 64
∫ π/2

0

sin6 θ cos2 θ dθ

= 64
∫ π/2

0

[
sin6 θ − sin8 θ

]
dθ = 64

[(
π

2
· 1
2
· 3
4
· 5
6

)
−

(
π

2
· 1
2
· 3
4
· 5
6
· 7
8

)]

= 64 · π
2
· 1
2
· 3
4
· 5
6
· 1
8

=
5π
4
≈ 3.926990816987241548078304.

C07S0M.110: If 0 < t < 1, then 0 < 1− t < 1, so

t4(1− t)4

1 + t2
> 0.

Therefore

0 <

∫ 1

0

t4(1− t)4

1 + t2
dt.

Division of denominator into numerator yields

t4(1− t)4

1 + t2
= t6 − 4t5 + 5t4 − 4t2 + 4− 4

t2 + 1
.

Consequently

∫ 1

0

t4(1− t)4

1 + t2
dt =

1
7
− 2

3
+ 1− 4

3
+ 4− π =

22
7
− π.

C07S0M.111: First,

∫ 1

0

t4(1− t)4 dt =
∫ 1

0

(t8 − 4t7 + 6t6 − 4t5 + t4) dt

=
1
9
− 1

2
+

6
7
− 2

3
+

1
5

=
70− 315 + 540− 420 + 126

630
=

1
630

.

But
1
2

� 1
t2 + 1

� 1 if 0 � t � 1. Therefore

1
1260

<

∫ 1

0

t4(1− t)4

t2 + 1
dt <

1
630

;

1
1260

<
22
7
− π <

1
630

;

− 1
630

< π − 22
7

< − 1
1260

;

22
7
− 1

630
< π <

22
7
− 1

1260
.

C07S0M.112: Given y =
4
5
x5/4:

dy

dx
= x1/4, so ds =

√
1 +
√
x dx.
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Therefore the length of the given curve is

L =
∫ 1

0

√
1 +
√
x dx.

Let x = tan4 θ. Then dx = 4 tan3 θ sec2 θ dθ and
√

1 +
√
x =

√
1 + tan2 θ = sec θ. Hence

L =
∫ π/4

0

4 tan3 θ sec3 θ dθ = 4
∫ π/4

0

(sec5 θ − sec3 θ) tan θ dθ = 4
∫ π/4

0

(sec4 θ − sec2 θ) sec θ tan θ dθ

= 4
[

1
5

sec5 θ − 1
3

sec3 θ

]π/4
0

= 4

(
4
√

2
5
− 2
√

2
3
− 1

5
+

1
3

)
=

8
15

(
1 +
√

2
)
≈ 1.287580566599.

C07S0M.113: Given y =
4
3
x3/4,

dy

dx
= x−1/4, so ds =

√
1 + x−1/2 dx.

Therefore the length of the given curve is

L =
∫ 4

1

√
1 + x−1/2 dx.

Now 1 + x−1/2 = 1 + tan2 u = sec2 u if x−1/2 = tan2 u; that is, if x1/2 = cot2 u. So we let x = cot4 u; then
dx = −4 cot3 u csc2 u du, and this substitution yields

L =
∫ 4

x=1

(−4 secu)(cot3 u csc3 u) du = −4
∫ 4

x=1

cos3 u
sin5 u cosu

du

= 4
∫ 4

x=1

sin2 u− 1
sin5 u

du = 4
∫ 4

x=1

(csc3 u− csc5 u) du.

Now we need to pause to develop a reduction formula. Suppose that n is an integer and n � 3. Let

Jn =
∫

cscn x dx.

Now integrate by parts: Let u = (cscx)n−2 and dv = csc2 x dx. Then

du = −(n− 2)(cscx)n−3(cscx cotx) dx; choose v = − cotx.

Then

Jn = −(cscx)n−2 cotx− (n− 2)
∫

(cscx)n−2 cot2 x dx

= −(cscx)n−2 cotx− (n− 2)
∫

(cscx)n−2(csc2 x − 1) dx

= −(cscx)n−2 cotx− (n− 2)Jn + (n− 2)
∫

(cscx)n−2 dx.

Thus
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(n− 1)Jn = −(cscx)n−2 cotx + (n− 2)
∫

(cscx)n−2 dx,

and, finally,

Jn =
∫

cscn x dx = − 1
n− 1

(cscx)n−2 cotx +
n− 2
n− 1

∫
(cscx)n−2 dx.

With the aid of this reduction formula, we find that
∫

csc3 x dx = − 1
2

cscx cotx +
1
2

∫
cscx dx = − 1

2
cscx cotx +

1
2

ln | cscx− cotx |+ C

and

∫
csc5 x dx = − 1

4
csc3 x cotx +

3
4

∫
csc3 x dx

= − 1
4

csc3 x cotx− 3
8

cscx cotx +
3
8

ln | cscx− cotx |+ C.

Therefore

L = 4
[

1
4

csc3 u cotu− 1
8

cscu cotu +
1
8

ln | cscu− cotu |
]4

x=1

=
[
x1/4

(
1 +
√
x

)3/2 − 1
2
x1/4

(
1 +
√
x

)1/2 +
1
2

ln
(√

1 +
√
x − x1/4

)]4

1

= 3
√

6 − 1
2

√
6 +

1
2

ln
(√

3 −
√

2
)
− 2
√

2 +
1
2

√
2 − 1

2
ln

(√
2 − 1

)

=
5
2

√
6 − 3

2

√
2 +

1
2

ln

(√
3 −

√
2√

2 − 1

)
=

5
2

√
6 − 3

2

√
2 +

1
2

ln
[(√

3 −
√

2
)(√

2 + 1
)]

=
1
2

[
5
√

6 − 3
√

2 + ln
(√

6 +
√

3 − 2−
√

2
)]
≈ 3.869982889518.

C07S0M.114: Let y(t) denote the depth of water (in feet) in the tank at time t (in minutes) and let V (t)
denote the volume of water in the tank (in cubic feet) at time t. Similar triangles show that

V (t) =
1
3
π · 1

4
[y(t)]3 ; that is, V =

π

12
y3. (1)

We are also given

dV

dt
= 50− 10

√
y ; V (0) = 0, y(0) = 0.

By Eq. (1) and the chain rule,

dV

dt
=

π

4
y2 dy

dt
= 50y − 10y1/2,

so that

36



y2

5− y1/2
dy =

40
π

dt. (2)

Let u = 5− y1/2. Then y1/2 = 5− u, y = (5− u)2, and dy = −2(5− u) du. Hence Eq. (2) takes the form

− 2
u

(5− u)5 du =
40
π

dt; that is,
(5− u)5

u
du = − 20

π
dt.

Therefore

3125− 3125u + 1250u2 − 250u3 + 25u4 − u5

u
du = − 20

π
t dt.

Now we antidifferentiate and find that

F (u) = 3125 lnu− 3125u + 625u2 − 250
3

u3 +
25
4

u4 − 1
5
u5 = C − 20

π
t.

When y = 0, y = 0 and u = 5. Hence

C = 3125 ln 5− 85625
12

.

Moreover, y = 9 when u = 2, at which time

t =
π

20
[C − F (2)] =

π

20

(
3125 ln

5
2
− 56247

20

)
≈ 8.0202562539 (minutes).

C07S0M.115: Let u = ex: du = ex dx = u dx, so dx =
1
u

du. Hence

∫
1

1 + ex + e−x
dx =

∫
1

u(1 + u + u−1)
du =

∫
1

u2 + u + 1
du =

∫
1(

u + 1
2

)2 + 3
4

du

=
4
3

∫
1(

2u + 1√
3

)2

+ 1

du =
2
√

3
3

arctan
(

2u + 1√
3

)
+ C =

2
√

3
3

arctan
(

2ex + 1√
3

)
+ C.

This substitution will always succeed in integrals of this ilk because you’ll always obtain a rational function
of u after making the substitution.

C07S0M.116: The only real root of the equation x3 + x + 1 = 0 is r ≈ −0.6823278038. Division of x− r

into x3 + x + 1 yields the quotient x2 + rx + 1 + r2. The partial fractions decomposition of the integrand
has the form

1
x3 + x + 1

=
A

x− r
+

Bx + C

x2 + rx + 1 + r2
.

It follows that A(x2 + rx + 1 + r2) + B(x2 − rx) + C(x− r) = 1, and thus that

A + B = 0, rA− rB + C = 0, and − rC = 1.

It is easy to solve these equations for

A =
1

3r2 + 1
, B = − 1

3r2 + 1
, and C = − 2r

3r2 + 1
.
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Therefore

∫ 1

0

1
x3 + x + 1

=
1

3r2 + 1

∫ 1

0

(
1

x− r
− x + 2r

x2 + rx + 1 + r2

)
dx.

Let s = 1 + r2. Then

Q =
∫

1
x2 + rx + s

dx =
∫

1
x2 + rx + 1

4 r
2 + s− 1

4 r
2
dx

=
∫

1(
x + 1

2 r
)2 + 1

2 (4s− r2)
dx =

∫
1(

x + 1
2 r

)2 + ω2
dx

where ω2 = 1
4 (4s− r2). Hence

Q =
1
ω

∫ 1
ω(

2x + r

2ω

)2

+ 1

dx =
1
ω

arctan
(

2x + r

2ω

)
+ C =

2√
4s− r2

arctan
(

2x + r√
4s− r2

)
+ C.

With s = r2 + 1, we find that 4s− r2 = 3r2 + 4, and so

Q =
2√

3r2 + 4
arctan

(
2x + r√
3r2 + 4

)
+ C.

Therefore

∫
x + 2r

x2 + rx + 1 + r2
dr =

1
2

∫
2x + r

x2 + rx + 1 + r2
dx +

3r
2

∫
1

x2 + rx + 1 + r2
dx

=
1
2

ln(x2 + rx + 1 + r2) +
3r√

3r2 + 4
arctan

(
2x + r√
3r2 + 4

)
+ C.

Thus

∫ 1

0

1
x3 + x + 1

dx =
1

3r2 + 1

[
ln(x− r)− 1

2
ln(x2 + rx + 1 + r2)− 3r√

3r2 + 4
arctan

(
2x + r√
3r2 + 4

)]1

0

=
1

3r2 + 1

[
ln(1− r)− ln(−r)− 1

2
ln(r2 + r + 2) +

1
2

ln(r2 + 1)

− 3r√
3r2 + 4

arctan
(

2 + r√
3r2 + 4

)
+

3r√
3r2 + 4

arctan
(

r√
3r2 + 4

)]
≈ 0.630319322412.

C07S0M.117:
∫

1
1 + ex

dx =
∫

e−x

e−x + 1
dx = − ln

(
1 + e−x

)
+ C.

Mathematica 3.0 returns the antiderivative x− ln (1 + ex).

C07S0M.118: The substitution u = x4 + x2, du = 2(x + 2x3) dx yields

∫
x + 2x3

(x4 + x2)3
dx =

1
2

∫
1
u3

du = − 1
4u2

+ C = − 1
4(x4 + x2)2

+ C.

In case you need to know, the partial fractions decomposition of the integrand is

38



x + 2x3

(x4 + x2)3
=

1
x5
− 1

x3
+

x

(1 + x2)2
+

x

(1 + x2)3
.

C07S0M.119: Let u = tan θ, so that du = sec2 θ dθ, θ = arctanu, 1 + u2 = sec2 θ, and

dθ =
1

1 + u2
du.

Thus

H =
∫ √

tan θ dθ =
∫

u1/2

1 + u2
du.

Now let u = x2, so that x = u1/2 and du = 2x dx. Then

H =
∫

2x2

1 + x4
dx.

The partial fractions decomposition of the last integrand has the form

2x2

x4 + 1
=

Ax + B

x2 − x
√

2 + 1
+

Cx + D

x2 + x
√

2 + 1
,

and we find that

A(x3 + x2
√

2 + x) + B(x2 + x
√

2 + 1) + C(x3 − x
√

2 + x) + D(x2 − x
√

2 + 1) = 2x2.

Thus we obtain the simultaneous equations

A + C = 0, A
√

2 + B − C
√

2 + D = 2,

A + B
√

2 + C −D
√

2 = 0, B + D = 0.

Then it’s easy to solve for B = D = 0, A = 1
2

√
2 , and C = − 1

2

√
2 . Therefore

2x2

1 + x4
=
√

2
2

(
x

x2 − x
√

2 + 1
− x

x2 + x
√

2 + 1

)
.

Now let r = 1
2

√
2 . Then

x

x2 − 2rx + 1
=

1
2
· 2x− 2r
x2 − 2rx + 1

+
r

x2 − 2rx + 1
.

It’s easy to antidifferentiate the second fraction; you’ll obtain 1
2 ln(x2 − 2rx + 1) + C. For the last fraction,

a trigonometric substitution is one technique that will succeed:

x2 − 2rx + 1 = x2 − 2rx + r2 + 1− r2 = (x− r)2 +
1
2

=
1
2

tan2 ω +
1
2

=
1
2

sec2 ω

if x− r = r tanω. So we let

x = r + r tanω, dx = r sec2 ω dω, tanω =
x− r

r
= 2rx− 1 = x

√
2 − 1.

Then
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∫
r

x2 − 2rx + 1
dx = r

∫
r

1
2 sec2 ω

· sec2 ω dω = 2r2ω + C = ω + C = arctan
(
x
√

2 − 1
)

+ C.

The case of x2 + 2rx + 1 is handled similarly—only a few sign changes—and the result is that

H =
√

2
4

[
2 arctan

(
x
√

2 − 1
)

+ 2 arctan
(
x
√

2 + 1
)

+ ln
(
x2 − x

√
2 + 1

)
− ln

(
x2 + x

√
2 + 1

) ]
+ C.

Therefore, because x =
√
u =

√
tan θ , we finally obtain

H =
∫ √

tan θ dθ

=
√

2
4

[
2 arctan

(
−1 +

√
2 tan θ

)
+ 2 arctan

(
1 +
√

2 tan θ
)

+ ln
(
tan θ −

√
2 tan θ + 1

)
− ln

(
tan θ +

√
2 tan θ + 1

) ]
+ C.

C07S0M.120: If

un =
ax + b

cx + d
, then x =

b− dun

cun − a
.

Moreover,

dx =
ndun−1(a− cun)− ncun−1(b− dun)

(cun − a)2
du.

Thus if p(x) is a polynomial, then

p(x)
(
ax + b

cx + d

)1/n

dx = (un)1/n p

(
b− dun

cun − a

)
· ndu

n−1(a− cun)− ncun−1(b− dun)
(cun − a)2

du

is a rational function of u.

C07S0M.121: Let u2 = 3x− 2. Then

x =
u2 + 2

3
, dx =

2
3
u du, and u = (3x− 2)1/2.

Hence
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∫
x3
√

3x− 2 dx =
∫

1
27

(u2 + 2)3 · u · 2
3
u du =

2
81

∫
(u8 + 6u6 + 12u4 + 8u2) du

=
2
81

(
1
9
u9 +

6
7
u7 +

12
5

u5 +
8
3
u3

)
+ C

=
2

729
(3x− 2)9/2 +

4
189

(3x− 2)7/2 +
8

135
(3x− 2)5/2 +

16
243

(3x− 2)3/2 + C

=
1

25515

[
70(3x− 2)9/2 + 540(3x− 2)7/2 + 1512(3x− 2)5/2 + 1680(3x− 2)3/2

]
+ C

=
2
√

3x− 2
25515

[
35(3x− 2)4 + 270(3x− 2)3 + 756(3x− 2)2 + 840(3x− 2)

]
+ C

=
2(3x− 2)3/2

25515
(945x3 + 540x2 + 288x + 128) + C.

Mathematica 3.0 obtains the equivalent

∫
x3
√

3x− 2 dx =
√

3x− 2
25515

(5670x4 − 540x3 − 432x2 − 384x− 512) + C,

and Maple V version 5.1 gives the antiderivative in the form shown in the third line of the display here.

C07S0M.122: Let u3 = x2 + 1. Then u = (x2 + 1)1/3, x2 = u3 − 1, 2x dx = 3u2 du, and x dx = 3
2 u

2 du.
Hence

∫
x3(x2 + 1)1/3 dx =

∫
(u3 − 1) · u · 3

2
u2 du =

3
2

∫
(u6 − u3) du =

3
2

(
1
7
u7 − 1

4
u4

)
+ C

=
3
56

(
4u7 − 7u4

)
+ C =

3u4

56
(
4u3 − 7

)
+ C =

3(x2 + 1)4/3

56
[
4(x2 + 1)− 7

]
+ C

=
3
56

(4x2 − 3)(x2 + 1)4/3 + C =
3
56

(4x4 + x2 − 3)(x2 + 1)1/3 + C.

C07S0M.123: Let u3 = x2− 1. Then 3u2 du = 2x dx, x dx = 3
2 u

2 du, x2 = u3 +1, and (x2− 1)4/3 = u4.
Thus

∫
x3

(x2 − 1)4/3
dx =

∫
u3 + 1
u4

· 3
2
u2 du =

3
2

∫ (
u +

1
u2

)
du =

3
2

(
1
2
u2 − 1

u

)
+ C =

3
4

(
u2 − 2

u

)
+ C

=
3
4
· u

3 − 2
u

+ C =
3(u3 − 2)

4u
+ C =

3(x2 − 1− 2)
4(x2 − 1)1/3

+ C =
3(x2 − 3)

4(x2 − 1)1/3
+ C.

C07S0M.124: Let u2 = x− 1. Then u = (x− 1)1/2, x = u2 + 1, and dx = 2u du. So
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∫
x2(x− 1)3/2 dx =

∫
(u2 + 1)2 · u3 · 2u du = 2

∫
(u8 + 2u6 + u4) du =

2
9
u9 +

4
7
u7 +

2
5
u5 + C

=
2u5

315
(35u4 + 90u2 + 63) + C =

2(x− 1)5/2

315

[
35(x− 1)2 + 90(x− 1) + 63

]
+ C

=
2(x− 1)5/2

315
(35x2 − 70x + 35 + 90x− 90 + 63) + C

=
2(x− 1)5/2

315
(35x2 + 20x + 8) + C =

2
√
x− 1
315

(x2 − 2x + 1)(35x2 + 20x + 8) + C

=
2
√
x− 1
315

(35x4 − 50x3 + 3x2 + 4x + 8) + C.

C07S0M.125: Let u2 = x3 + 1. Then u = (x3 + 1)1/2, x3 = u2 − 1, 3x2 dx = 2u du, and x2 dx = 2
3 u du.

Therefore

∫
x5

√
x3 + 1

dx =
∫

x3

(x3 + 1)1/2
· x2 dx =

∫
u2 − 1

u
· 2
3
u du =

2
3

∫
(u2 − 1) du =

2
3

(
1
3
u3 − u

)
+ C

=
2
9

(u3 − 3u) + C =
2u
9

(u2 − 3) + C =
2
9

(x2 − 2)
√

x3 + 1 + C.

C07S0M.126: Let u3 = x4 + 1. Then x4 = u3 − 1, 4x3 dx = 3u2 du, x3 dx = 3
4 u

2 du, x = (u3 − 1)1/4,
and u = (x4 + 1)1/3. Thus

∫
x7(x4 + 1)1/3 dx =

∫
x4(x4 + 1)1/3 x3 dx =

∫
(u3 − 1) · u · 3

4
u2 du =

3
4

∫
(u6 − u3) du

=
3
4

(
1
7
u7 − 1

4
u4

)
+ C =

3
112

(4u7 − 7u4) + C =
3u4

112
(4u3 − 7) + C

=
3(x4 + 1)4/3

112
(4x4 − 3) + C =

3
112

(4x8 + x4 − 3)(x4 + 1)1/3 + C.

C07S0M.127: Let

u2 =
1 + x

1− x
. Then x =

u2 − 1
u2 + 1

and dx =
2u(u2 + 1)− 2u(u2 − 1)

(u2 + 1)2
du =

4u
(u2 + 1)2

du.

Therefore

J =
∫ (

1 + x

1− x

)1/2

dx =
∫

4u2

(u2 + 1)2
du.

The method of partial fractions requires us to integrate 4(u2 + 1)−2 with a trigonometric substitution, so
we might as well go directly to the trigonometry. Let u = tan θ. Then du = sec2 θ dθ. A reference triangle
for this substitution has acute angle θ, opposite side u, and adjacent side 1, and therefore has hypotenuse
of length

√
1 + u2 . Therefore
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J =
∫

4 tan2 θ

sec4 θ
· sec2 θ dθ =

∫
4 sin2 θ dθ =

∫
2(1− cos 2θ) dθ = 2(θ − sin θ cos θ) + C

= 2
(

arctanu− u

u2 + 1

)
+ C = 2


arctan

(
1 + x

1− x

)1/2

−

(
1 + x

1− x

)1/2

1 + x

1− x
+ 1


 + C

= 2

[
arctan

(
1 + x

1− x

)1/2

− 1
2

(1− x)
(

1 + x

1− x

)1/2
]

+ C = 2 arctan
(

1 + x

1− x

)1/2

−
√

1− x2 + C.

C07S0M.128: Let u = x2 + 1. Then x = u2 − 1, dx = 2u du, and u = (x + 1)1/2. Thus

∫
x√

x + 1
dx =

∫
u2 − 1

u
· 2u du = 2

∫
(u2 − 1) du = 2

(
1
3
u3 − u

)
+ C

=
2u
3

(u2 − 3) + C =
2
3

(x− 2)
√
x + 1 + C.

C07S0M.129: Let u3 = x + 1. Then u = (x + 1)1/3, x = u3 − 1, and dx = 3u2 du. Thus

K =
∫

(x + 1)1/3

x
dx =

∫
u

u3 − 1
· 3u2 du = 3

∫
u3

u3 − 1
du = 3

∫ (
1 +

1
u3 − 1

)
du.

The partial fractions decomposition of the last fraction has the form

1
u3 − 1

=
A

u− 1
+

Bu + C

u2 + u + 1
.

Thus we find that A(u2 + u+ 1) + b(u2− u) +C(u− 1) = 1, and thus we obtain the simultaneous equations

A + B = 0, A−B + C = 0, and A− C = 1.

It follows that A = 1
3 , B = − 1

3 , and C = − 2
3 . Thus

1
u3 − 1

=
1
3

(
1

u− 1
− u + 2

u2 + u + 1

)
.

Now

u2 + u + 1 =
(
u +

1
2

)2

+
3
4

=
3
4

tan2 θ +
3
4

=
3
4

sec2 θ if
√

3
2

tan θ = u +
1
2
.

Therefore we let

u =
−1 +

√
3 tan θ

2
; thus tan θ =

2u + 1√
3

, du =
√

3
2

sec2 θ dθ.

Note that a reference triangle for this substitution has acute angle θ, opposite side 2u+1, and adjacent side√
3 , thus hypotenuse of length 2

√
u2 + u + 1 . Therefore
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∫
u + 2

u2 + u + 1
du =

1
2

∫
3 +
√

3 tan θ
3
4 sec2 θ

·
√

3
2

sec2 θ dθ =
√

3
3

∫ (
3 +
√

3 tan θ
)

dθ

=
√

3
3

(
3θ +

√
3 ln | sec θ |

)
+ C =

√
3
3

[
3 arctan

(
2u + 1√

3

)
+
√

3 ln
(√

u2 + u + 1
)]

+ C1

=
√

3 arctan
(

2u + 1√
3

)
+

1
2

ln(u2 + u + 1) + C1.

Therefore

K = 3
∫ (

1 +
1

u3 − 1

)
du =

∫ (
3 +

1
u− 1

− u + 2
u2 + u + 1

)
du

= 3u + ln |u− 1| −
√

3 arctan
(

2u + 1√
3

)
− 1

2
ln(u2 + u + 1) + C

= 3(x + 1)1/3 + ln
∣∣∣(x + 1)1/3 − 1

∣∣∣

−
√

3 arctan
(

2(x + 1)1/3 + 1√
3

)
− 1

2
ln

(
(x + 1)2/3 + (x + 1)1/3 + 1

)
+ C.

Mathematica 3.0 returns

K = 3(x + 1)1/3 − 3(1 + x−1)2/3

2(1 + x)2/3
·Hypergeometric2F1

[
2
3
,

2
3
,

5
3
, − 1

x

]
.

C07S0M.130: The substitution x = u2 yields

I =
∫ √

1 +
√
x dx =

∫
2u
√

1 + u du,

thus requiring a second substitution of the form 1 + u = z or 1 + u = z2. A better substitution would be
x = (u− 1)2, so that dx = 2(u− 1) du, u− 1 = x1/2, and u = 1 + x1/2. Thereby we find that

I =
∫

2u1/2(u− 1) du = 2
∫ (

u3/2 − u1/2
)

du = 2
(

2
5
u5/2 − 2

3
u3/2

)
+ C =

4
15

(
3u5/2 − 5u3/2

)
+ C

=
4u3/2

15
(3u− 5) + C =

4 (1 +
√
x )3/2

15
(
3
√
x − 2

)
+ C =

4
15

(
3x +

√
x − 2

) √
1 +
√
x + C.

C07S0M.131: The substitution u2 = 1 + ex entails e2x = u2 − 1, 2x = ln(u2 − 1),

x =
1
2

ln(u2 − 1), and dx =
1
2
· 2u
u2 − 1

du =
u

u2 − 1
du.

Therefore

∫ √
1 + e2x dx =

∫
u2

u2 − 1
du =

∫ (
1 +

1
u2 − 1

)
du =

∫ (
1 +

1
2

x− 1
−

1
2

u + 1

)
du

=
1
2

∫ (
2 +

1
u− 1

− 1
u + 1

)
du =

1
2

(
2u + ln

∣∣∣∣ u− 1
u + 1

∣∣∣∣
)

+ C =
√

1 + e2x +
1
2

ln

∣∣∣∣∣
−1 +

√
1 + e2x

1 +
√

1 + e2x

∣∣∣∣∣ + C.
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C07S0M.132: Given y =
2
3
x3/2, we have

dy

dx
= x1/2, so ds =

√
1 + x dx.

Thus the surface area of revolution around the x-axis of the given curve is

A =
∫ 8

3

4π
3

x3/2(1 + x)1/2 dx.

Let u = x2. Then dx = 2u du, and therefore

A =
∫ 8

x=3

4π
3
· u3 · (1 + u2)1/2 · 2u du =

8π
3

∫ 8

x=3

u4(1 + u2)1/2 du.

Now let u = tan θ, so that du = sec2 θ dθ and 1 + u2 = sec2 θ. Thus

A =
8π
3

∫ 8

x=3

tan4 θ sec3 θ dθ =
8π
3

∫ 8

x=3

(sec2 θ − 1)2 sec3 θ dθ =
8π
3

∫ 8

x=3

(sec7 θ − 2 sec5 θ + sec3 θ) dθ.

Now use the result in Example 6 of Section 7.3: If n is an integer and n � 2, then
∫

(secx)n dx =
1

n− 1
(secx)n−2 tanx +

n− 2
n− 1

∫
(secx)n−2 dx.

Thus we find that

∫
sec3 θ dθ =

1
2

(sec θ tan θ + ln | sec θ + tan θ |) + C;

∫
sec5 θ dθ =

1
4

sec3 θ tan θ +
3
4

∫
sec3 θ dθ

=
1
4

sec3 θ tan θ +
3
8

sec θ tan θ +
3
8

ln | sec θ + tan θ |+ C;

∫
sec7 θ dθ =

1
6

sec5 θ tan θ +
5
6

∫
sec5 θ dθ

=
1
6

sec6 θ tan θ +
5
24

sec3 θ tan θ +
5
16

sec θ tan θ +
5
16

ln | sec θ + tan θ |+ C.

Therefore

A =
8π
3

∫ 8

x=3

(sec7 θ − 2 sec5 θ + sec3 θ) dθ

=
8π
3

[
1
6

sec5 θ tan θ − 7
24

sec3 θ tan θ +
1
16

sec θ tan θ +
1
16

ln | sec θ + tan θ |
]8

x=3

=
π

3

[
4
3
u(1 + u2)5/2 − 7

3
u(1 + u2)3/2 +

1
2
u(1 + u2)1/2 +

1
2

ln
∣∣∣u + (1 + u2)1/2

∣∣∣
]2

√
2

u=
√

3

=
π

3

[
4
3
· 243 · 2

√
2 − 7

3
· 27 · 2

√
2 +

1
2
· 3 · 2

√
2 +

1
2

ln
(
3 + 2

√
2

)
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− 4
3
· 32 ·

√
3 +

7
3
· 8 ·
√

3 − 1
2
· 2
√

3 − 1
2

ln
(
2 +
√

3
) ]

=
π

3

[
525
√

2 − 25
√

3 +
1
2

ln

(
3 + 2

√
2

2 +
√

3

) ]

=
π

6

[
1050

√
2 − 50

√
3 + ln

(
3 + 2

√
2

2 +
√

3

) ]
≈ 732.3929447915.

C07S0M.133: The area is

A = 2
∫ 1

0

x
√

1− x dx.

Let u = 1− x. Then x = 1− u and dx = −du. Hence

A = −2
∫ 0

u=1

(1− u)u1/2 du = 2
∫ 1

0

(u1/2 − u3/2) du = 2
[

2
3
u3/2 − 2

5
u5/2

]1

0

= 2
(

2
3
− 2

5

)
=

8
15

.

C07S0M.134: The area is

A = 2
∫ 1

0

x

(
1− x

1 + x

)1/2

dx.

Let

u2 =
1− x

1 + x
. Then x =

1− u2

1 + u2
and dx = − 4u

(1 + u2)2
du

(as in the solution of Problem 127). Hence

A = −2
∫ 0

u=1

1− u2

1 + u2
· 4
(1 + u2)2

· u du = 8
∫ 1

0

u2(1− u2)
(1 + u2)3

du.

Let u = tan θ. Then du = sec2 θ dθ and 1 + u2 = sec2 θ. Hence

A = 8
∫ 2

u=0

(tan2 θ)(1− tan2 θ)
sec6 θ

sec2 θ dθ = 8
∫ 1

u=0

(tan2 θ − tan4 θ) cos4 θ dθ

= 8
∫ 1

u=0

(sin2 θ cos2 θ − sin4 θ) dθ = 8
∫ 1

u=0

[
(sin2 θ)(1− sin2 θ)− sin4 θ

]
dθ

= 8
∫ 1

u=0

(sin2 θ − 2 sin4 θ) dθ.

Now we use the reduction formula in Problem 53 of Section 7.3: If n is an integer and n � 2, then
∫

sinn x dx = − 1
n

(sinx)n−1 cosx +
n− 1
n

∫
(sinx)n−2 dx.

Therefore

∫
sin2 θ dθ = − 1

2
sin θ cos θ +

1
2
θ + C;
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∫
sin4 θ dθ = − 1

4
sin3 θ cos θ +

3
4

∫
sin2 θ dθ

= − 1
4

sin3 θ cos θ − 3
8

sin θ cos θ +
3
8
θ + C.

Thus

A = 8
[

1
2

sin2 θ cos θ +
1
4

sin θ cos θ − 1
4
θ

]π/4
0

= 4

(√
2
2

)4

+ 2

(√
2
2

)2

− π

2
=

4− π

2
≈ 0.429203673205.

C07S0M.135: Using the recommended substitution, we find that

∫
1

1 + cos θ
dθ =

∫
1

1 +
1− u2

1 + u2

· 2
1 + u2

du =
∫

2
1 + u2 + 1− u2

du

= u + C = tan
θ

2
+ C =

1− cos θ
sin θ

+ C =
sin θ

1 + cos θ
+ C.

C07S0M.136: Using the recommended substitution, we obtain

∫
1

5 + 4 cos θ
dθ =

∫
1

5 + 4 · 1− u2

1 + u2

· 2
1 + u2

du =
∫

2
5 + 5u2 + 4− 4u2

du =
2

9 + u2
du

=
2
9

∫
1

1 +
(u

3

)2 du =
2
3

arctan
(u

3

)
+ C =

2
3

arctan
(

1
3

tan
θ

2

)
+ C

=
2
3

arctan
(

1− cos θ
3 sin θ

)
+ C =

2
3

arctan
(

sin θ

3 + 3 cos θ

)
+ C.

C07S0M.137: The recommended substitution yields

∫
1

1 + sin θ
dθ =

∫
1

1 +
2u

1 + u2

· 2
1 + u2

du =
∫

2
1 + u2 + 2u

du =
∫

2(u + 1)−2 du = − 2
u + 1

+ C

= − 2

1 + tan
θ

2

+ C = − 2 sin θ

1 + sin θ − cos θ
+ C = − 2 + 2 cos θ

1 + sin θ + cos θ
+ C.

C07S0M.138: The recommended substitution yields

∫
1

(1− cos θ)2
dθ =

∫
1(

1− 1− u2

1 + u2

)2 ·
2

1 + u2
du =

∫
(1 + u2)2

(1 + u2 − 1− u2)2
· 2
1 + u2

du =
∫

2(1 + u2)
4u4

du

=
1
2

∫
(u−4 + u−2) du =

1
2

(
− 1

3u3
− 1

u

)
+ C = − 1

6 tan3 θ

2

− 1

2 tan
θ

2

+ C

= − 1

6 ·
(

1− cos θ
sin θ

)3 −
1

2 · 1− cos θ
sin θ

+ C = − sin3 θ

6(1− cos θ)3
− sin θ

2(1− cos θ)
+ C.
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C07S0M.139: The substitution u = tan
θ

2
yields

I =
∫

1
sin θ + cos θ

dθ =
∫

1
2u

1 + u2
+

1− u2

1 + u2

· 2
1 + u2

du =
∫

2
2u + 1− u2

du.

Now

−u2 + 2u + 1 = −(u2 − 2u− 1) = −(u2 − 2u + 1− 2) = 2− (u− 1)2 = 2− 2 sin2 w = 2 cos2 w

if u− 1 =
√

2 sinw, so we let u = 1 +
√

2 sinw, so that

du =
√

2 cosw dw and sinw =
u− 1√

2
.

Thus

I =
∫

2
2u + 1− u2

du =
∫

2
2 cos2 w

·
√

2 cosw dw =
√

2 ln | secw + tanw |+ C.

A reference triangle for the trigonometric substitution has acute angle w, opposite side u−1, and hypotenuse√
2 . Therefore its adjacent side has length

√
2u + 1− u2 , and thus

I =
√

2 ln

∣∣∣∣∣
√

2 + u− 1√
2u + 1− u2

∣∣∣∣∣ + C

=
√

2
[
ln

(
−1 +

√
2 +

1− cos θ
sin θ

)
− 1

2
ln

(
1 +

2− 2 cos θ
sin θ

− (1− cos θ)2

sin2 θ

) ]
+ C.

C07S0M.140: The recommended substitution u = tan
φ

2
yields

J =
∫

1
2 + sinφ + cosφ

dφ =
∫

1

2 +
2u

1 + u2
+

1− u2

1 + u2

· 2
1 + u2

du =
∫

2
2 + 2u2 + 2u + 1− u2

du

=
∫

2
u2 + 2u + 3

du.

Now u2 + 2u + 3 = (u + 1)2 + 2 = 2 tan2 w + 2 = 2 sec2 w if u + 1 =
√

2 tanw. Hence we let

u = −1 +
√

2 tanw. Then du =
√

2 sec2 w dw and tanw =
u + 1√

2
.

Therefore

J =
∫

2
2 sec2 w

·
√

2 sec2 w dw = w
√

2 + C =
√

2 arctan
(
u + 1√

2

)
+ C

=
√

2 arctan


1 + tan

φ

2√
2


 + C =

√
2 arctan

(
1 + sinφ− cosφ√

2 sinφ

)
+ C.

C07S0M.141: The substitution u = tan
θ

2
yields
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K =
∫

sin θ

2 + cos θ
dθ =

∫
2u

2(1 + u2) + (1− u2)
· 2
1 + u2

du =
∫

4u
(u2 + 3)(u2 + 1)

du.

Next, the partial fractions decomposition

4u
(u2 + 1)(u2 + 3)

=
Au + B

u2 + 1
+

Cu + D

u2 + 3

leads to the equation A(u3 + 3u) + B(u2 + 3) + C(u3 + 3) + D(u2 + 1) = 4u, and thus to the system

A + C = 0, B + D = 0,

3A + C = 4, 3B + D = 0

with solution A = 2, C = −2, B = D = 0. Therefore

K =
∫ (

2u
u2 + 1

− 2u
u2 + 3

)
du = ln(u2 + 1)− ln(u2 + 3) + C = ln

(
u2 + 1
u2 + 3

)
+ C

= ln
(

(1− cos θ)2 + sin2 θ

(1− cos θ)2 + 3 sin2 θ

)
+ C = ln

(
1− 2 cos θ + 1

1− 2 cos θ + 1 + 2 sin2 θ

)
+ C

= ln
(

2− 2 cos θ
2 + 2 sin2 θ − 2 cos θ

)
+ C = ln

(
1− cos θ

1 + sin2 θ − cos θ

)
+ C

= ln
(

1− cos θ
2− cos θ − cos2 θ

)
+ C = ln

(
1− cos θ

(1− cos θ)(2 + cos θ)

)
+ C = − ln(2 + cos θ) + C.

C07S0M.142: The substitution u = tan
θ

2
yields

J =
∫

sin θ − cos θ
sin θ + cos θ

dθ =
∫

2u− (1− u2)
2u + (1− u2)

· 2
1 + u2

du = −2
∫

u2 + 2u− 1
(u2 + 1)(u2 − 2u− 1)

du.

The last denominator is not completely factored, but there is a slim chance that if we ignore this difficulty
we may be able to obtain a suitable partial fractions decomposition anyway. It’s worth a try because the
factorization u2−2u−1 =

(
u− 1 +

√
2

) (
u− 1−

√
2

)
would certainly discourage most people from trying

the method of partial fractions at all. So let’s see what happens. It will now be essential to check the
resulting decomposition—if any—to see if the algebra is valid. We try:

u2 + 2u− 1
(u2 + 1)(u2 − 2u− 1)

=
Au + B

u2 + 1
+

Cu + D

u2 − 2u− 1
,

which leads to the equation

A(u3 − 2u2 − u) + B(u2 − 2u− 1) + C(u3 + 3) + D(u2 + 1) = u2 + 2u− 1.

Thus we obtain the system

A + C = 0, − 2A + B + D = 1,

−A− 2B + C = 2, −B + D = −1,
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and we find one solution—we hope it’s the only solution—to be A = −1, B = 0, C = 1, D = −1. This
produces the tentative decomposition

u2 + 2u− 1
(u2 + 1)(u2 − 2u− 1)

= − u

u2 + 1
+

u− 1
u2 − 2u− 1

,

and it is with great relief that we verify that it holds for all real u (other than the two zeros of the last
denominator). Therefore

J = −2
[
− 1

2
ln(u2 + 1) +

1
2

ln |u2 − 2u− 1|
]

+ C = ln
(

1 + tan2 θ

2

)
− ln

∣∣∣∣tan2 θ

2
− 2 tan

θ

2
− 1

∣∣∣∣ + C

= ln

(
1 +

[
1− cos θ

sin θ

]2)
− ln

∣∣∣∣∣
(

1− cos θ
sin θ

)2

− 2 · 1− cos θ
sin θ

− 1

∣∣∣∣∣ + C

= ln
(

1− 2 cos θ + cos2 θ + sin2 θ

sin2 θ

)
− ln

∣∣∣∣ 1− 2 cos θ + cos2 θ − 2 sin θ + 2 sin θ cos θ − sin2 θ

sin2 θ

∣∣∣∣ + C

= ln
∣∣∣∣ 1− 2 cos θ + 1
1− 2 cos θ + cos2 θ − 2 sin θ + 2 sin θ cos θ − sin2 θ

∣∣∣∣ + C

= ln
∣∣∣∣ 2− 2 cos θ
(1− cos θ)2 − 2 sin θ + 2 sin θ cos θ − 1 + cos2 θ

∣∣∣∣ + C

= ln
∣∣∣∣ 2(1− cos θ)
(1− cos θ)2 − (2 sin θ)(1− cos θ)− (1− cos θ)(1 + cos θ)

∣∣∣∣ + C

= ln
∣∣∣∣ 2
1− cos θ − 2 sin θ − 1− cos θ

∣∣∣∣ + C = − ln | sin θ + cos θ |+ C.

C07S0M.143: The substitution u = tan
θ

2
yields

∫
sec θ dθ =

∫
1

cos θ
dθ =

∫
1 + u2

1− u2
· 2
1 + u2

du =
∫

2
1− u2

du =
∫ (

1
1 + u

+
1

1− u

)
du

= ln
∣∣∣∣ 1 + u

1− u

∣∣∣∣ + C = ln

∣∣∣∣∣∣∣
1 + tan

θ

2

1− tan
θ

2

∣∣∣∣∣∣∣
+ C = ln

∣∣∣∣∣∣∣∣∣

1 +
(

1− cos θ
1 + cos θ

)1/2

1−
(

1− cos θ
1 + cos θ

)1/2

∣∣∣∣∣∣∣∣∣
+ C

= ln
∣∣∣∣
√

1 + cos θ +
√

1− cos θ√
1 + cos θ −

√
1− cos θ

∣∣∣∣ + C = ln

∣∣∣∣∣
1 + cos θ + 2

√
1− cos2 θ + 1− cos θ

1 + cos θ − (1− cos θ)

∣∣∣∣∣ + C

= ln
∣∣∣∣ 2 + 2 sin θ

2 cos θ

∣∣∣∣ + C = ln | sec θ + tan θ |+ C.

C07S0M.144: The substitution u = tan
θ

2
yields

∫
csc θ dθ =

∫
1

sin θ
dθ =

∫
1 + u2

2u
· 2
1 + u2

du = ln |u|+ C = ln
∣∣∣∣tan

θ

2

∣∣∣∣ + C

= ln

∣∣∣∣∣
√

1− cos θ
1 + cos θ

∣∣∣∣∣ + C =
1
2

ln
∣∣∣∣ (1− cos θ)2

1− cos2 θ

∣∣∣∣ + C = ln
∣∣∣∣ 1− cos θ

sin θ

∣∣∣∣ + C = ln | csc θ − cot θ |+ C.

50



Section 8.1

C08S01.001: Separate the variables:

dy

dx
= 2y;

1
y
dy = 2 dx;

ln y = C + 2x; y(x) = Ae2x.

3 = y(1) = Ae2 : A = 3e−2.

Therefore y(x) = 3 exp(2x− 2) = 3e2x−2.

C08S01.002: Given:
dy

dx
= −3y, y(5) = −10:

1
y
dy = −3 dx; ln y = C − 3x;

y(x) = Ae−3x. − 10 = y(5) = Ae−15;

A = −10e15. y(x) = −10 exp(15− 3x).

C08S01.003: Given:
dy

dx
= 2y2, y(7) = 3:

− 1
y2
dy = −2 dx;

1
y

= C − 2x;

y(x) =
1

C − 2x
. 3 = y(7) =

1
C − 14

:

C =
43
3
. y(x) =

1
43
3 − 2x

=
3

43− 6x
.

C08S01.004: Given:
dy

dx
=

7
y
, y(0) = 6:

2y dy = 14 dx; y2 = C + 14x.

36 = [y(0)]2 = C : C = 36.

y2 = 36 + 14x : y(x) =
√

36 + 14x .

We chose the nonnegative square root in the last step because y(0) > 0.

C08S01.005: Given:
dy

dx
= 2y1/2, y(0) = 9:

y−1/2 dy = 2 dx; 2y1/2 = C + 2x;

y1/2 = A+ x; y(x) = (A+ x)2.

y(0) = 9 : A = 3.

1



Therefore y(x) = (x+ 3)2.

C08S01.006: Given:
dy

dx
= 6y2/3, y(1) = 8:

y−2/3 dy = 6 dx; 3y1/3 = 6x+ C.

y(1) = 8 : C = 0.

y1/3 = 2x; y(x) = 8x3.

C08S01.007: Given:
dy

dx
= 1 + y, y(0) = 5:

1
1 + y

dy = 1 dx; ln(1 + y) = x+ C;

1 + y = Aex; y(x) = Aex − 1.

5 = y(0) = A− 1 : A = 6.

Therefore y(x) = 6ex − 1.

C08S01.008: Given:
dy

dx
= (2 + y)2, y(5) = 3:

− 1
(y + 2)2

dy = −1 dx;
1

y + 2
= C − x;

y(x) = −2 +
1

C − x. 3 = y(5) = −2 +
1

C − 5
;

1
C − 5

= 5; C =
26
5
.

Therefore

y(x) = −2 +
1

26
5 − x

= −2 +
5

26− 5x
=
−52 + 10x+ 5

26− 5x
=

10x− 47
26− 5x

.

C08S01.009: Given:
dy

dx
= e−y, y(0) = 2:

ey dy = 1 dx; ey = x+ C;

y(x) = ln(x+ C). 2 = y(0) = lnC :

C = e2. y(x) = ln(x+ e2).

C08S01.010: Given:
dy

dx
= 2 sec y, y(0) = 0:

cos y dy = 2 dx; sin y = 2x+ C.

y(0) = 0 : 0 = 0 + C;
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C = 0; sin y = 2x.

Therefore y(x) = sin−1(2x).

C08S01.011: If the slope of y = g(x) at the point (x, y) is the sum of x and y, then we expect y = g(x)
to be a solution of the differential equation

dy

dx
= x+ y. (1)

Some solutions of this differential equation with initial conditions y(0) = −1.5, −1, −0.5, 0, 0.5, and 1 are
shown next. The figure is constructed with the same scale on the x- and y-axes, so you can confirm with a
ruler that the solution curves agree with the differential equation in (1).

C08S01.012: If the line tangent to the graph of y = g(x) at the point (x, y) meets the x-axis at the point
(x/2, 0), then y = g(x) should be a solution of the differential equation

dy

dx
=

y − 0
x− 1

2 x
=

2y
x
. (1)

The general solution of the equation in (1) is y(x) = Cx2. Some particular solutions (with c = −3.5, −1.5,
−0.5, 0.5, 1.5, and 3.5) are shown next. The figure was constructed with the same scale on the x- and y-axes,
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so you can confirm with a ruler that the solution curves agree with the differential equation in (1).

C08S01.013: If every straight line normal to the graph of y = g(x) passes through the point (0, 1), then
we expect that y = g(x) will be a solution of the differential equation

dy

dx
=

x

1− y . (1)

The general solution of this equation is implicitly defined by x2 +(y−1)2 = C where C > 0. Some solution
curves for C = 0.16, C = 0.5, and C = 1 are shown next. Note that two functions are solutions for each
value of C. Because the figure was constructed with the same scale on the x- and y-axes, you can confirm
with a ruler that the solution curves agree with the differential equation in (1).

C08S01.014: Suppose that the graph of y = g(x) is normal to every curve of the form y = kx2 where
they meet. The trick here is to eliminate k (basically because we have no control over its value). We can
eliminate k by using the fact that Dx(k) = 0. Thus if y = kx2, then
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y

x2
= k, and thus

dy

dx
=

2y
x

by implicit differentiation and subsequent simplification. If the graph of y = g(x) is normal to the graph of
y = kx2 where they meet, then

g′(x) =
dy

dx
= − x

2y
.

The general solution of this equation is implicitly defined by the equation x2 + 2y2 = C.

C08S01.015: If, for each (x, y) on the graph of y = g(x), the line tangent to the graph at that point passes
through (−y, x), then we expect for y = g(x) to satisfy the differential equation

dy

dx
=
y − x
y + x

. (1)

The substitution of the new dependent variable u = y/x leads to the general solution of this equation—see
the discussion of Homogeneous Equations in Section 1.6 of Edwards and Penney: Differential Equations:

Computing and Modeling (2nd edition, Prentice Hall, 2000). Some solution curves are shown next; note
than none appears to be the graph of a single function.

C08S01.016:
dP

dt
= k
√
P .

C08S01.017:
dv

dt
= −kv2 (where k is a positive constant).

C08S01.018:
dv

dt
= k(250− v) (where k is a positive constant).

C08S01.019:
dN

dt
= k(P −N) (where k is a positive constant).

C08S01.020:
dN

dt
= kN(P −N) (where k is a positive constant).
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C07S05.021: The principal (in dollars) at time t (in years) is A(t) = 1000e(0.08)t. Therefore A′(t) =
80e(0.08)t. So the answers to the two questions in Problem 21 are these: A′(5) = $119.35 and A′(20) =
$396.24.

C08S01.022: Take t = 0 (years) as 1970. Then the population at time t is given by P (t) = 25000ekt

where k is the growth rate of the population. We are given P (10) = 30000, so

25000e10k = 30000; e10k =
6
5
;

10k = ln
6
5
; k =

1
10

ln
6
5
.

Therefore in the year 2010 the population will be

P (40) = 25000 exp
(

40
10

ln
6
5

)
= 25000 exp

(
ln

(
6
5

)4
)

= 25000 ·
(

6
5

)4

= 51840.

C08S01.023: Let P (t) be the number of bacteria present at time t (in hours), with initial number
P0 = P (0). Then P (t) = P0e

kt where k is a constant. We are given P (10) = 6P0, and therefore

P0e
10k = 6P0; 10k = ln 6; k =

1
10

ln 6.

If T is the doubling time, then

P (T ) = 2P0 = P0 exp
(
T

10
ln 6

)
;

T

10
ln 6 = ln 2;

T =
10 ln 2
ln 6

≈ 3.8685280723.

Thus the doubling time is approximately 3 h 52 min.

C08S01.024: Suppose that the skull was formed at time t = 0 (in years). Then the amount of 14C it
contains at time t will be

N(t) = N0e
−kt,

where N0 = N(0) is the initial amount and k is the decay constant for 14C. We have already seen that

k =
ln 2
5700

≈ 0.0001216047685,

although the half-life τ = 5700 is so imprecisely known that we really should carry no more than four
significant figures; we’ll take k = 0.0001216. We find the value t = T corresponding to the present by
solving

N(T ) =
1
6
N0; N0e

−kT =
1
6
N0;

ekT = 6; T =
1
k

ln 6 =
5700 ln 6

ln 2
≈ 14734.
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Answer: The skull is between 14500 and 15000 years old.

C08S01.025: We take t = 0 (in years) corresponding to the time of formation of the relic and let t denote
its age. Then the amount of 14C it contains at time t is N(t) = N0e

−kt, where k ≈ 0.0001216. Therefore

(
5.0× 1010

)
e−kt = 4.6× 1010, so t ≈ 0.0833816

k
≈ 686.

We conclude that the relic is between 650 and 700 years old and is probably not authentic (although it may
be much older if it recently has been contaminated with “modern” carbon).

C08S01.026: At time t (in years) the investment will grow to A(t) = 5000eit where i = 0.06. Thus the
answer is A(18) = 5000 exp(1.08) = $14723.40.

C08S01.027: After t years the fine will grow to A(t) = 30eit (cents) where i = 0.05. Thus the answer is
30 exp (0.05 · 100) = 30e5 = 4452 cents; that is, $44.52.

C08S01.028: If C(t) is the concentration of the drug at time t (hours), then C(t) = C0e
−kt where

k = 1
5 ln 2. We require C0 so large that C(1) = 45 · 50 = 2250. Thus C0e

−k � 2250; that is, C0 � 2250ek ≈
2584.57 (mg).

C08S01.029: Let S(t) represent the sales t weeks after advertising is discontinued and let S(0) = S0.
Then for some constant λ,

dS

dt
= −λS, so S(t) = S0e

−λt.

Because S(1) = (0.95)S0 = S0e
−λ, λ = ln

20
19

. Therefore at time t = T , when sales have declined to 75% of
the initial rate,

S(T ) = 3
4 S0 = S0e

−λT : eλT = 4
3 ; T =

ln(4
3 )
λ

=
ln(4

3 )
ln(20

19 )
≈ 5.608.

So the company plans to resume advertising about 5.6 weeks (about 39 days) after cessation of advertising.

C08S01.030: Let L denote the number of words on the basic list at time t = 0 (in years) corresponding
to the year a.d. 1400. The number at time t � 0 is then given by Q(t) = Le−kt. We are given

Q(1000) = (0.23)L = Le−1000k, so k = (0.001) ln
(

1
0.23

)
≈ 0.001469676.

In 2000 we would expect that about the fraction e−600k ≈ 0.414 of the words in the basic list in 1400—about
41.4% of them—would still be in use.

As a matter of independent interest, 87% of the words in the Prologue to the Canterbury Tales are still
in use. You are invited to speculate about the reason for the apparent discrepancy.

C08S01.031: Let Q denote the amount of radioactive cobalt remaining at time t (in years), with the
occurrence of the accident set at time t = 0. Then

Q = Q0e
−(t ln 2)/(5.27).

If T is the number of years until the level of radioactivity has dropped to a hundredth of its initial value,
then
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1
100

= e−(T ln 2)/(5.27), so that T = (5.27)
ln 100
ln 2

,

approximately 35 years.

C08S01.032: Let Q(t) denote the amount of 238U in the mineral body at time t (in years), with the
supposition that the mineral body was formed at time t = 0. Then

Q(t) = Q0e
−kt where k =

ln 2
τ

;

τ denotes the half-life of 238U, about 4.51× 109 years. Let t = T correspond to the present, so that

Q(T )
Q0 −Q(T )

= 0.9.

Therefore

e−kT

1− e−kT = 0.9;

e−kT = 0.9− (0.9)e−kT ;

(1.9)e−kT = 0.9;

ekT =
19
9

;

T =
1
k

ln
(

19
9

)
≈ 4.86× 109.

Answer: The cataclysm occurred approximately 4.86× 109 years ago.

C08S01.033: Of course we set up coordinates so that t = 0 corresponds to 12 noon. (a) P (t) = 49ekt,
and

294 = 49ek : ek = 6; k = ln 6.

Therefore P (t) = 49 exp (t ln 6) = 49 exp (ln 6t) = 49 · 6t. (b) At 1:40 p.m. we have t = 5
3 , so the number

of bacteria present at that time is

P
(

5
3

)
= 49 · 65/3 ≈ 971.

(c) If P (t) = 20000, then

49 · 6T = 20000; 6T =
20000

49
;

T ln 6 = ln
20000

49
; T =

1
ln 6
· ln 20000

49
≈ 3.355175377985.

Answer: The clock time then will be approximately 3:21:19 p.m.

C08S01.034: (a) A(t) = 10ekt. Also 30 = A
(

15
2

)
= 10e15k/2, so

e15k/2 = 3 : k =
2
15

ln 3 = ln
(
32/15

)
.
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Therefore A(t) = 10(ek)t = 10 · 32t/15. (b) After five years, we have A(5) = 10 · 32/3 ≈ 20.8008382305.
(c) A(T ) = 100 when

A(T ) = 10 · 32T/15 : 32T/15 = 10; T =
15
2
· ln 10

ln 3
.

Thus the pollution level will reach 100 pu in approximately 15.7192745572 years.

C08S01.035: (a) A(t) = 15e−kt; 10 = A(5) = 15e−5k, so

3
2

= e5k : k =
1
5

ln
3
2
.

Therefore

A(t) = 15 exp
(
− t

5
ln

3
2

)
= 15 ·

(
3
2

)−t/5
= 15 ·

(
2
3

)t/5
.

(b) After 8 months we have

A(8) = 15 ·
(

2
3

)8/5

≈ 7.8405261683.

(c) A(T ) = 1 when

(
2
3

)T/5
=

1
15

;
(

2
3

)T
=

(
1
15

)5

;

T ln
2
3

= 5 ln
1
15

; T = 5 ·
ln

(
1
15

)
ln

(
2
3

) =
5 ln 15
ln(3/2)

.

Answer: It will be safe to return after approximately 33.394368 months.

C08S01.036: If L(t) denotes the number of human language families at time t (in years), then L(t) = ekt

where k is a positive constant. To find k:

1.5 = L(6000) = e6000k, so that k =
1

6000
ln

3
2
.

If “now” corresponds to time t = T , then we are given L(T ) = 3300. Therefore

ekT = 3300; kT = ln 3300;

T =
1
k

ln 3300 =
6000 ln 3300

ln(3/2)
.

Therefore T ≈ 119887.175278, suggesting that the original human language was first spoken about 120,000
years ago.

C08S01.037: If L(t) denotes the number of Native American language families at time t (in years), then
L(t) = ekt where k is a positive constant. To find k, we use the given data

3
2

= L(6000) = e6600k : k =
1

6000
ln

3
2
.
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If t = T corresponds to the present time, then 150 = L(T ) = ekT , so that kT = ln 150. Therefore

T =
1
k

ln 150 =
6000 ln 150

ln(3/2)
≈ 74146.483047.

This analysis suggests that the ancestors of today’s Native Americans first arrived in the western hemisphere
about 74000 years ago.

C08S01.038: If U(t) denotes the number (in millions) of internet users at time t (in years, with t = 0
corresponding to 1998), then U(t) = 40ekt where k is a positive constant. Moreover,

80 = U(100) = 40e100k, so that e100k = 2 : k =
ln 2
100

.

Thus virtually everybody will be an internet user at that time T for which U(T ) = 6000:

40ekT = 6000; ekT = 150; T =
1
k

ln 150 =
100 ln 150

ln 2
.

Because T ≈ 722.8818690496, which is about 1.98 years, it follows that virtually everyone is using the
internet today, and that’s why it takes graphics so long to download.

C08S01.039: Let y(t) denote the height of the water in the tank (in feet) at time t (in hours). Then
y(0) = 9 and y(1) = 4. By Eq. (29) of Section 8.1, we have

dy

dt
= −ky1/2,

and it follows that y−1/2 dy = −k dt, so that 2y1/2 = C − kt where C is a constant. The condition y(0) = 9
now yields C = 6, so that y1/2 = 3 − 1

2kt. The condition y(1) = 4 then yields 2 = 3 − 1
2k, so that k = 2.

Hence y(t) = (3− t)2 for 0 � t � 3. Therefore y(t) = 0 when t = 3, and thus it takes three hours total for
the tank to drain completely.

C08S01.040: Let y(t) denote the depth of water in the tank (in feet) at time t (in seconds). (We must
use units of feet and seconds because we are using g = 32 ft/s2.) Then the volume of water in the tank at
time t will be V (t) = 9πy(t). By Eq. (27) of Section 8.1, we have

dV

dt
= −a

√
2gy = −8ay1/2

where a = 1
144π is the area of the hole at the bottom of the tank (note the conversion of inches into feet).

Now

dV

dt
= − π

144
· 8y1/2,

so

9π
dy

dt
= − π

18
y1/2;

y−1/2 dy = − 1
162

dt;

2y1/2 = C − t

162
.
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Now the condition y(0) = 9 yields C = 6, and therefore

y(t) =
(

3− t

324

)2

, 0 � t � 972.

Hence the tank is empty when t = 972 (s); that is, it requires 16 min 12 s for the tank to drain completely.

C08S01.041: We will use Eq. (28) of Section 8.1, which allows us to work in units of feet and hours (instead
of seconds) because the conversion of the gravitational acceleration g into such units is taken care of by the
proportionality constant c there. Let y(t) denote the depth of the water in the tank at time t. If r(t) is the
radius of the circular surface of the water then, using similar triangles, we have

r(t)
y(t)

=
5
16
, so that r(t) =

5
16
y(t).

Hence the volume of water in the tank at time t will be

V (t) =
1
3
π · 25

144
[y(t)]3 ,

and therefore (with the aid of Eq. (28))

dV

dt
=

25π
144

y2
dy

dt
= − cy1/2;

y3/2 dy = −144c
25π

dt = −k dt (where k is constant);

2
5
y5/2 = C − kt.

Therefore y(t) = (A − Bt)2/5 for some constants A and B. Because 16 = y(0) = A2/5, we see that
A = 1024, so that y(t) = (1024 − Bt)2/5. Moreover, 9 = y(1) = (1024 − B)2/5, and it follows that
B = 781. Therefore

y(t) = (1024− 781t)2/5.

Consequently the tank will be empty when

t =
1024
781

≈ 1.31114 (h);

that is, in a little less than 1 h 19 min.

C08S01.042: Let r denote the radius of the tank and h its height. Let y(t) denote the height of water in
the tank at time t, 0 � t � T , so that y(0) = h and y(T ) = 0. Let V (t) be the volume of water in the
tank at time t, so that V (t) = πr2y(t). We will use Eq. (28) of Section 8.1, so that the units of distance and
time are not important:

dV

dt
= −cy1/2.

Thus
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dV

dt
= πr2

dy

dt
= −cy1/2;

y−1/2 dy = −2k dt (k constant);

2y1/2 = C − 2kt;

2h1/2 = C − 2k · 0 = C;

2y1/2 = 2h1/2 − 2kt;

y1/2 = h1/2 − kt.

Now 0 = y(T ) =
(
h1/2 − kT

)2
, and it follows that k = h1/2/T . Therefore

y(t) =
(
h1/2 − h1/2 t

T

)2

= h

(
1− t

T

)2

;

V (t) = πr2y(t) = πr2h

(
1− t

T

)2

= V0

(
1− t

T

)2

for 0 � t � T , as we were to show.

C08S01.043: Let y(t) be the height of water in the tank (in feet) at time t (in hours), with t = 0
corresponding to 12 noon. Then y(0) = 12 and y(1) = 6. When the height of water in the tank is h,
then—by the method of cross sections—the volume of water in the tank will be

V =
∫ h

0

πy3/2 dy =
[

2
5
πy5/2

]h
0

=
2
5
πh5/2.

Therefore at time t, the volume of water in the tank will be

V (t) =
2
5
π [y(t)]5/2 .

We will use Eq. (28) of Section 8.1 because the constant of proportionality there will allow us to use hours
and feet for our units rather than seconds and feet. Thus we find that

dV

dt
= π [y(t)]3/2 · dy

dt
= −cy1/2;

πy dy = −c dt;
π

2
y2 = A− ct;

y(t) = (B − Ct)1/2.

The condition 12 = y(0) =
√
B now yields B = 144 (not −144; look at the last equation in the display), so

that y(t) = (144− Ct)1/2. Next, 6 = y(1) = (144− C)1/2, so that C = 108. Therefore y(t) =
√

144− 108t .
The tank will be empty when y(t) = 0, which will occur when t = 4

3 (h). Answer: The tank will be empty
at 1:20 p.m.

C08S01.044: Among other things, we need to find the radius of the hole at the bottom of this tank, so we
must use Eq. (27) of Section 8.1 and work with feet and seconds (because we plan to use g = 32 ft/s2). We
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also let t = 0 correspond to 12 noon. If h is the height of water in the tank, then (by the method of cross
sections) the volume of water it contains will be

V =
∫ h

0

πy dy =
1
2
πh2.

Therefore if the height of water at time t is y(t), we have V (t) = 1
2π [y(t)]2. This and Eq. (27) yield

dV

dt
= πy

dy

dt
= −2

√
2gy = −8ay1/2;

y1/2 dy = −8r2 dt (r is the radius of the hole);

2
3
y3/2 = C1 − 8r2t;

y3/2 = C − 12r2t;

y(t) = (C − 12r2t)2/3.

The condition y(0) = 4 implies that C = 8, so that y(t) = (8− 12r2t)2/3. The depth of water in the tank at
1 p.m. is known to be 1 foot, so—converting one hour into seconds—

1 = y(3600);

8− (12r2)(3600) = 1;

r2 =
21

9 · 4 · 3600
;

r =
√

21
360

(ft).

Answers: (a) At time t in seconds, the depth of the water will be

y(t) =
(

8− 7t
3600

)2/3

(ft);

at time t in hours, the depth of the water will be y(t) = (8− 7t)2/3 (ft). (b) The tank will be empty when
y(t) = 0; that is, when t = 8

7 (h); in other words, at approximately 1:08:34 p.m. (c) The radius of the
bottom hole is 1

30

√
21 ≈ 0.152753 in.

C08S01.045: Set up a coordinate system in which one end of the tank lies in the xy-plane with its lowest
point at the origin, thus bounded by the circle with equation x2 + (y − 3)2 = 9. A horizontal cross section
of the tank “at” location y (0 � y � 6) has width 2

√
6y − y2 and length 5, so if the depth of xylene in the

tank is h, then its volume is

V =
∫ h

0

10(6y − y2)1/2 dy.

Thus if the depth of xylene in the tank is y, then its volume is given by

V (y) =
∫ y

0

10(6u− u2)1/2 du.

Hence by the chain rule and the fundamental theorem of calculus,
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dV

dt
=
dV

dy
· dy
dt

= 10(6y − y2)1/2 dy
dt
.

We will use Eq. (27) of Section 8.1,

dV

dt
= −a

√
2gy ,

in which we take g = 32 ft/s2; a is the area of the hole in the bottom of the tank, so—converting inches into
feet—we have a = π/144 (ft2). As usual, y = y(t) is the depth of water in the tank at time t (distances will
be measured in feet and time in seconds). Thus

10(6y − y2)1/2 dy
dt

= −a
√

2gy = −8ay1/2 = − π
18
y1/2;

(6− y)1/2 dy = − π

180
dt;

2
3
(6− y)3/2 = C +

πt

180
.

Now y(0) = 3, so C = 2
3 (33/2) = 2

√
3 . Therefore

2
3
(6− y)3/2 = 2

√
3 +

πt

180
.

Hence y = 0 when

t =
180
π

(
4
√

6− 2
√

3
)
≈ 362.9033

(seconds); that is, just a little less than 6 min 3 s.

C08S01.046: We will use units of centimeters and seconds in this solution. Set up a coordinate system in
which the tank has its lowest point at the origin and its vertical diameter lying on the y-axis, so that the
equation of the cross section of the tank in the xy-plane will be x2 + (y − 25)2 = 625. If the liquid in the
tank has depth y, then the radius of its circular surface will be x = (50y − y2)1/2, so in Eq. (26) of Section
8.1 we take

A(y) = π(50y − y2), a =
π

4
, and g = 980.

Thus we obtain

A(y) dy = −14a
√

10y dt; that is,

π(50y − y2) dy = −7π
√

10
2

y1/2 dt;

(
50y1/2 − y3/2

)
dy = −7

√
10
2

dt;

100
3
y3/2 − 2

5
y5/2 = C − 7t

√
10

2
.

When t = 0, we have y = 50. It follows that
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C =
10000

3

√
2 .

The tank is empty when y = 0, which leads to the equation

t =
2

7
√

10
C =

4000
√

5
21

≈ 425.9177

seconds, about 7 min 5.9 s.

C08S01.047: Let h = f−1, let a be the area of the hole, and let y(t) be the depth of water in the tank at

time t. We use c = 1, g = 32, and
dy

dt
= − 1

10800
(feet per second). Then by Eq. (26) of Section 8.1,

− 1
10800

A(y) = −a
√

64y

where A(y) = π [h(y)]2. Therefore

[h(y)]2 =
86400
π

ay1/2,

and thus

[h(y)]4 =
7464960000

π2
a2y.

Finally, because y = f(x) and x = h(y), we have

f(x) =
π2

(864000)2
x4.

Now f(1) = 4, so 86400a = π/2; it follows that

a =
π

172800
= πr2

where r is the radius of the hole. Therefore

r =
1

240
√

3
(feet). That is, r ≈ 0.02887 (in.)
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Section 8.2

C08S02.001: The following sequence of commands in Mathematica 3.0 will generate the slope field and
the solution curves through the given points. Begin with the differential equation

dy

dx
= f(x, y)

where

f[x , y ] := −y − Sin[x]

Then set up the viewing window a � x � b, c � y � d:

a = −3; b = 3; c = −3; d = 3;

The unit vectors that comprise the components of the short line segments tangent to the solution curves—
those that form the slope field—are these:

u[x , y ] := 1/Sqrt[1 + (f[x,y])∧2]

v[x , y ] := f[x,y]/Sqrt[1 + (f[x,y])∧2]

The next commands construct the slope field.

Needs["Graphics`PlotField`"]

dfield = PlotVectorField[ { u[x,y], v[x,y] }, { x, a, b }, { y, c, d },
HeadWidth → 0, HeadLength → 0, PlotPoints → 19,

PlotRange → {{ a, b, }, { c, d }}, Axes → True,

Frame → True, AspectRatio → 1 ];

To set up the first initial point and solution curve:

x0 = −2.5; y0 = 2.0;

point1 = Graphics[ { PointSize[0.025], Point[ { x0, y0 } ] } ];

soln = NDSolve[ { y′[x] == f[x, y[x]], y[x0] == y0 }, y[x], { x, a, b } ];

soln[[1, 1, 2]];

curve1 = Plot[ soln[[1, 1, 2]], { x, a, b },
PlotStyle → { Thickness[0.0065] } ];

The last option may be omitted; it’s used to thicken the solution curve to make it more visible. Repeat the
last sequence of commands with the remaining initial points; for example,

x7 = −2.5; y7 = 1.0;

point7 = Graphics[ { PointSize[0.025], Point[ { x7, y7 } ] } ];

soln = NDSolve[ { y′[x] == f[x, y[x]], y[x0] == y0 }, y[x], { x, a, b } ];

soln[[1, 1, 2]];

curve7 = Plot[ soln[[1, 1, 2]], { x, a, b },
PlotStyle → { Thickness[0.0065] } ];
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The final version of the figure can be generated by the Mathematica command

Show[ dfield, point1, curve1, point2, curve2, point3, curve3, point4, curve4,

point5, curve5, point6, curve6, point7, curve7, point8, curve8, point9, curve9,

point10, curve10, point11, curve11, point12, curve12, point13, curve13 ];

The resulting figure is next.

C08S02.002: Follow the template given in the solution of Problem 1, with the obvious changes to f(x, y)
and the initial points (xi, yi) and the viewing window. The resulting figure is next.
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C08S02.003: Follow the template given in the solution of Problem 1, with the obvious changes to f(x, y)
and the initial points (xi, yi) and the viewing window. The resulting figure is next.

C08S02.004: Follow the template given in the solution of Problem 1, with the obvious changes to f(x, y)
and the initial points (xi, yi) and the viewing window. The resulting figure is next.

C08S02.005: Follow the template given in the solution of Problem 1, with the obvious changes to f(x, y)
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and the initial points (xi, yi) and the viewing window. The resulting figure is next.

C08S02.006: Follow the template given in the solution of Problem 1, with the obvious changes to f(x, y)
and the initial points (xi, yi) and the viewing window. The resulting figure is next.

C08S02.007: Follow the template given in the solution of Problem 1, with the obvious changes to f(x, y)
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and the initial points (xi, yi) and the viewing window. The resulting figure is next.

C08S02.008: Follow the template given in the solution of Problem 1, with the obvious changes to f(x, y)
and the initial points (xi, yi) and the viewing window. The resulting figure is next.

C08S02.009: Follow the template given in the solution of Problem 1, with the obvious changes to f(x, y)
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and the initial points (xi, yi) and the viewing window. The resulting figure is next.

C08S02.010: Follow the template given in the solution of Problem 1, with the obvious changes to f(x, y)
and the initial points (xi, yi) and the viewing window. The resulting figure is next.

C08S02.011: Results, rounded to three places:
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x y (h = 0.25) y (true) x y (h = 0.1) y (true)

0.25 1.500 1.558 0.1 1.800 1.810

0.50 1.125 1.213 0.2 1.620 1.637

0.3 1.458 1.482

0.4 1.312 1.341

0.5 1.181 1.213

C08S02.012: Results, rounded to three places:

x y (h = 0.25) y (true) x y (h = 0.1) y (true)

0.25 0.750 0.824 0.1 0.600 0.611

0.50 1.125 1.359 0.2 0.720 0.746

0.3 0.864 0.911

0.4 1.037 1.113

0.5 1.244 1.359

C08S02.013: Results, rounded to three places:

x y (h = 0.25) y (true) x y (h = 0.1) y (true)

0.25 1.500 1.568 0.1 1.200 1.210

0.50 2.125 2.297 0.2 1.420 1.443

0.3 1.662 1.700

0.4 1.928 1.984

0.5 2.221 2.297

C08S02.014: Results, rounded to three places:

x y (h = 0.25) y (true) x y (h = 0.1) y (true)

0.25 0.750 0.808 0.1 0.900 0.910

0.50 0.625 0.713 0.2 0.820 0.837

0.3 0.758 0.782

0.4 0.712 0.741

0.5 0.681 0.713

C08S02.015: Results, rounded to three places:
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x y (h = 0.25) y (true) x y (h = 0.1) y (true)

0.25 1.000 0.966 0.1 1.000 0.995

0.50 0.938 0.851 0.2 0.990 0.979

0.3 0.969 0.950

0.4 0.936 0.908

0.5 0.889 0.851

C08S02.016: Results, rounded to three places:

x y (h = 0.25) y (true) x y (h = 0.1) y (true)

0.25 2.000 1.879 0.1 2.000 1.980

0.50 1.750 1.558 0.2 1.960 1.922

0.3 1.882 1.828

0.4 1.769 1.704

0.5 1.627 1.558

C08S02.017: Results, rounded to three places:

x y (h = 0.25) y (true) x y (h = 0.1) y (true)

0.25 3.000 2.953 0.1 3.000 2.997

0.50 2.859 2.647 0.2 2.991 2.976

0.3 2.955 2.920

0.4 2.875 2.814

0.5 2.737 2.647

C08S02.018: Results, rounded to three places:

x y (h = 0.25) y (true) x y (h = 0.1) y (true)

0.25 0.250 0.223 0.1 0.100 0.095

0.50 0.445 0.405 0.2 0.190 0.182

0.3 0.273 0.262

0.4 0.349 0.336

0.5 0.420 0.405

C08S02.019: Results, rounded to three places:

8



-3 -2 -1 0 1 2 3 4

-1

0

1

2

3

4

x y (h = 0.25) y (true) x y (h = 0.1) y (true)

0.25 1.125 1.134 0.1 1.050 1.051

0.50 1.267 1.287 0.2 1.103 1.105

0.3 1.158 1.162

0.4 1.216 1.223

0.5 1.278 1.287

C08S02.020: Results, rounded to three places:

x y (h = 0.25) y (true) x y (h = 0.1) y (true)

0.25 1.000 1.067 0.1 1.000 1.051

0.50 1.125 1.333 0.2 1.103 1.101

0.3 1.062 1.099

0.4 1.129 1.190

0.5 1.231 1.333

C08S02.021: We follow the template given in the solution of Problem 1 for using Mathematica 3.0 to
generate both the slope field and the desired solution curve. The result is shown at the end of this solution.
The exact solution of the initial value problem

dy

dx
= x+ y, y(0) = 0

is y(x) = ex − x− 1, and y(−4) = e−4 + 3 ≈ 3.018316, in agreement with the following figure.

9



-3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

4

C08S02.022: We followed the template given in the solution of Problem 1 to have Mathematica 3.0
generate the slope field and solution curve; the result is shown following this solution. The exact solution of
the initial value problem

dy

dx
= y − x. y(4) = 0

is y(x) = x+ 1− 5ex−4, and y(−4) = −5e−8 − 3 ≈ −3.001677.

C08S02.023: We followed the template given in the solution of Problem 1. Thus Mathematica 3.0 generated
the figure shown at the conclusion of this solution. In the solution of Problem 27 we find that y(2) ≈ 1.0044
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(although the last digit is in question).

C08S02.024: We followed the template in the solution of Problem 1 for using Mathematica 3.0 to generate
the slope field and solution curve. The result is shown following this solution. In Problem 28 we find that
y(2) ≈ 1.4633 (although the last digit is in question).

C08S02.025: We constructed the slope field and solution curve as in the solution of Problem 1. The result
is shown after this solution. The exact solution of the given initial value problem is
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v(t) = 20
[
1− exp

(
− 8t

5

)]
,

so—in accord with the figure—the limiting velocity is 20 ft/s. Landing with this velocity is about the same
as landing after jumping off a wall 6.25 feet high, so the landing is perfectly subvivable (but be sure to relax
and bend your knees). A “strategically located haystack” would nevertheless be welcome. Your velocity will
be 95% of your limiting velocity when

t =
5
8

ln 20 ≈ 1.872333

seconds.

C08S02.026: We constructed the slope field and solution curve as in the solution of Problem 1. The result
follows this solution. The exact solution of the given initial value problem is

P (t) =
75

1 + 2 exp
(
− 9t

400

) , (1)

and it follows that the doubling time is

t =
400
9

ln 4 ≈ 61.613083
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months. It is also clear—both from the figure and from Eq. (1)—that the limiting population is 75 deer.

C08S02.027: With f(x, y) = x2 + y2 − 1, we began with the initial values x = 0, y = 0, h = 0.1, k = 2,
and n = 0 and executed the Mathematica 3.0 command

While[ n < 10∗k, { n = n + 1, y = y + h∗f[x,y], x = x + h,

If[IntegerQ[n/k], Print[ { x, y } ]] } ]

We repeated with h = 0.01 and k = 20, again with h = 0.001 and k = 200, again with h = 0.0001 and
k = 2000, and once more with h = 0.00001 and k = 20000. The results are shown next.

h = 0.1 h = 0.01 h = 0.001 h = 0.0001 h = 0.00001

x y y y y y

0.2 − 0.19800 − 0.19513 − 0.19479 − 0.19475 − 0.19475

0.4 − 0.37267 − 0.36119 − 0.35999 − 0.35987 − 0.35985

0.6 − 0.49817 − 0.47591 − 0.47367 − 0.47345 − 0.47343

0.8 − 0.55948 − 0.52741 − 0.52423 − 0.52391 − 0.52388

1.0 − 0.55135 − 0.51131 − 0.50734 − 0.50694 − 0.50690

1.2 − 0.47281 − 0.42533 − 0.42056 − 0.42008 − 0.42003

1.4 − 0.32094 − 0.26359 − 0.25772 − 0.25713 − 0.25707

1.6 − 0.08538 − 0.01026 − 0.00238 − 0.00158 − 0.00150

1.8 0.26121 0.37239 0.38466 0.38591 0.38603

2.0 0.77724 0.99768 1.00172 1.00417 1.00442
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It appears that, to three places, y(2) ≈ 1.004. We did not pursue further accuracy because the next-to-last
column required over 12 seconds to execute and print and the last column required over 121 seconds. Linear
extrapolation suggests that an additional column would require over an hour; we prefer to use numerical
methods more sophisticated than Euler’s method for such problems.

C08S02.028: With f(x, y) = x+ 1
2 y

2, we began with the initial values x = −2, y = 0, h = 0.1, k = 4,
and n = 0 and executed the Mathematica 3.0 command

While[ n < 10∗k, { n = n + 1, y = y + h∗f[x,y], x = x + h,

If[IntegerQ[n/k], Print[ { x, y } ]] } ]

We repeated with h = 0.01 and k = 40, again with h = 0.001 and k = 400, again with h = 0.0001 and
k = 4000, and once more with h = 0.00001 and k = 40000. The results are shown next.

h = 0.1 h = 0.01 h = 0.001 h = 0.0001 h = 0.00001

x y y y y y

− 1.6 − 0.71477 − 0.68846 − 0.68584 − 0.68558 − 0.68556

− 1.2 − 1.13094 − 1.08353 − 1.07893 − 1.07847 − 1.07843

− 0.8 − 1.26303 − 1.21363 − 1.20880 − 1.20832 − 1.20827

− 0.4 − 1.20867 − 1.16655 − 1.16235 − 1.16193 − 1.16189

0.0 − 1.04232 − 1.00761 − 1.00408 − 1.00372 − 1.00369

0.4 − 0.79852 − 0.76778 − 0.76459 − 0.76427 − 0.76424

0.8 − 0.48290 − 0.45117 − 0.44784 − 0.44751 − 0.44747

1.2 − 0.07749 − 0.03692 − 0.03261 − 0.03218 − 0.03214

1.6 0.46934 0.53659 0.54391 0.54465 0.54473

2.0 1.29001 1.44354 1.46131 1.46311 1.46329

It appears that, to three places, y(2) ≈ 1.463. We did not pursue further accuracy because the next-to-last
column required over 25 seconds to execute and print and the last column required over 252 seconds. Linear
extrapolation suggests that an additional column would require well over an hour; we prefer to use numerical
methods more sophisticated than Euler’s method for such problems. (Hardware: Power Macintosh 7600/120
with 64Mb RAM running System 9.0.)

C08S02.029: Direct substitution verifies that both y1(x) ≡ 1 and y2(x) = cosx satisfy the given initial
value problem. This does not contradict the existence-uniqueness theorem of Section 8.2 because

∂

∂y

(
−

√
1− y2

)
=

y√
1− y2

is not continuous at the point (0, 1), so the theorem does not guarantee uniqueness of a solution passing
through that point.

C08S02.030: By inspection, y1(x) ≡ 0 is one solution. If another is not apparent by inspection, separation
of variables yields the second solution y2(x) = x3. The existence-uniqueness theorem is not contradicted
because
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∂

∂y

(
3y2/3

)
=

1
y1/3

is not continuous at (x, y) = (0, 0).

C08S02.031: If a � 0 and y(x) = (x− a)3, then

dy

dx
= 3(x− a)2 = 3

[
(x− a)3

]2/3
= 3 [y(x)]2/3 .

Therefore y(x) = (x − a)2/3 is a solution of the given differential equation on [0, +∞). Consequently, if
a � 0, then

y(x) =




x3 if x � 0,

0 if 0 � x � a,

(x− a)3 if a � x

is a solution of the given initial value problem. (It is easy to verify that y(x) is differentiable for all x.)
This does not contradict the existence-uniqueness theorem because that theorem guarantees existence and
uniqueness only on some open interval containing x = −1; here, uniqueness fails only at the “distant” point
x = 0.

C08S02.032: It is clear that y(x) = kx satisfies the given differential equation:

x
dy

dx
= kx = y(x) and y(0) = 0

if k is any constant. Therefore the initial value problem

x
dy

dx
= y, y(0) = 0

has infinitely many solutions passing through the point (0, 0).
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Section 8.3

C08S03.001: Given:
dy

dx
= 2x

√
y. Then

y−1/2 dy = 2x dx;

2y1/2 = x2 + C;

y1/2 =
x2 + C

2
;

y(x) =
(
x2 + C

2

)2

.

C08S03.002: Given:
dy

dx
= 2xy2. Then

y−2 dy = 2x dx;

y−1 = C − x2;

y(x) =
1

C − x2
.

C08S03.003: Given:
dy

dx
= x2y2. Then

y−2 dy = x2 dx;

y−1 = C − 1
3
x3;

y(x) =
1

C − 1
3x

3
=

3
K − x3

where K = 3C is a constant.

C08S03.004: Given:
dy

dx
= (xy)3/2. Then

y−3/2 dy = x3/2 dx;

− 2y−1/2 =
2
5
x5/2 + C1;

y−1/2 = − 1
5
x5/2 + C2 (C2 is a constant);

y1/2 = − 1
1
5 x

5/2 − C2

= − 5
x5/2 + C3

(C3 is a constant);

y(x) =
(

5
x5/2 + C3

)2

.

C08S03.005: Given:
dy

dx
= 2x(y − 1)1/2. Then
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(y − 1)−1/2 dy = 2x dx;

2(y − 1)1/2 = x2 + C;

(y − 1)1/2 =
x2 + C

2
;

y − 1 =
(
x2 + C

2

)2

;

y(x) = 1 +
(
x2 + C

2

)2

.

C08S03.006: Given:
dy

dx
= 4x3(y − 4)2. Then

(y − 4)−2 dy = 4x3 dx; (y − 4)−1 = C − x4;

y − 4 =
1

C − x4
; y(x) = 4 +

1
C − x4

.

C08S03.007: Given:
dy

dx
=

1 +
√
x

1 +
√
y

. Then

(1 +
√
y ) dy =

(
1 +
√
x

)
dx; y +

2
3
y3/2 = x+

2
3
x3/2 + C.

It is possible to solve explicitly for y(x). To see the explicit form, enter the Mathematica command

DSolve[ y′[x] == (1 + Sqrt[x])/(1 + Sqrt[y[x]]), y[x], x ]

and be prepared for about 32 lines of output.

C08S03.008: Given
dy

dx
=
x+ x3

y + y3
. Then

(y + y3) dy = (x+ x3) dx;
1
2
y2 +

1
4
y4 =

1
2
x2 +

1
4
x4 + C.

It is possible to solve explicitly for y(x), but probably better not to do so, as there are ambiguities of sign
involving the square roots. The result is, however, not too complicated:

y(x) = ±
√
−1±

√
(x2 + 1)2 + C .

C08S03.009: Given:
dy

dx
=

x2 + 1
x2(3y2 + 1)

. Then

(3y2 + 1) dy =
(

1 +
1
x2

)
dx; y3 + y = x− 1

x
+ C.

It is possible to solve explicitly for y(x). Enter the Mathematica command

DSolve[ y′[x] == (x∧2 + 1)/(x∧2∗(3∗(y[x])∧2 + 1)), y[x], x ]

to see the result.
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C08S03.010: Given:
dy

dx
=

(x3 − 1)y3

x2(2y3 − 3)
. Then

2y3 − 3
y3

dy =
x3 − 1
x2

dx; (2− 3y−3) dy = (x− x−2) dx;

2y +
3
2
y−2 =

1
2
x2 +

1
x

+ C; 4xy3 + 3x = x3y2 + 2y2 + 2Cxy2.

It is possible to solve explicitly for y(x) using any of various computer algebra programs, but the results are
rather complicated.

C08S03.011: Given:
dy

dx
= y2, y(0) = 1. Then

y−2 dy = dx; y−1 = C − x; y(x) =
1

C − x.

Then the initial condition yields

1 = y(0) =
1
C
, and thus y(x) =

1
1− x.

C08S03.012: Given:
dy

dx
= y1/2, y(0) = 4. Then

y−1/2 dy = dx; 2y1/2 = x+ C; y1/2 =
x+ C

2
;

y(x) =
(
x+ C

2

)2

.

The last equation and the initial condition tell us only that C2 = 16, but the third equation tells us that

√
4 = [y(0)]1/2 =

0 + C

2
, so that C = 4.

Therefore y(x) =
(
x+ 4

2

)2

.

C08S03.013: Given:
dy

dx
=

1
4y3

, y(0) = 1. Then

4y3 dy = dx; y4 = x+ C; 14 = [y(0)]4 = 0 + C;

C = 1; [y(x)]4 = x+ 1; y(x) = (x+ 1)1/4.

We take the positive root in the last step because y(0) > 0.

C08S03.014: Given:
dy

dx
=

1
x2y

, y(1) = 2. Then

2y dy = 2x−2 dx; y2 = C − 2
x
, 22 = [y(1)]2 = C − 2;

C = 6; y2 = 6− 2
x

; y(x) =
√

6− 2x−1 .
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We took the positive square root in the last step because y(1) > 0.

C08S03.015: Given:
dy

dx
=

√
xy3 , y(0) = 4. Then

y−3/2 dy = x1/2 dx; 3y−3/2 dy = 3x1/2 dx; 6y−1/2 = C1 − 2x3/2;

y−1/2 = C2 −
1
3
x3/2; y1/2 =

1
C2 − 1

3x
3/2

; y1/2 =
3

C − x3/2
;

2 = [y(0)]1/2 =
3
C

; C =
3
2
; y(x) =

9(
3
2 − x3/2

)2 ;

y(x) =
36(

3− 2x3/2
)2 .

C08S03.016: Given:
dy

dx
=
x

y
, y(3) = 5. Then

y dy = x dx; 2y dy = 2x dx; y2 = x2 + C;

25 = [y(3)]2 = 9 + C; C = 16; y2 = x2 + 16;

y(x) =
√
x2 + 16.

We took the positive root in the last step because y(3) > 0.

C08S03.017: Given:
dy

dx
= −x

y
, y(12) = −5. Then

y dy = −x dx; 2y dy = −2x dx; y2 = C − x2;

25 = [y(12)]2 = C − 144; C = 169; y2 = 169− x2;

y(x) = −
√

169− x2.

We took the negative root in the last step because y(12) < 0.

C08S03.018: Given: y2 dy

dx
= x2 + 2x+ 1, y(1) = 2. Thus

3y2 dy = 3(x+ 1)2 dx; y3 = (x+ 1)3 + C; 23 = [y(1)]3 = (1 + 1)3 + C;

C = 0; y3 = (x+ 1)3; y(x) = x+ 1.

C08S03.019: Given:
dy

dx
= 3x2y2 − y2, y(0) = 1. Then

y−2 dy = (3x2 − 1) dx; y−1 = x− x3 + C; y =
1

x− x3 + C
;

1 = y(0) =
1
C

; y(x) =
1

x− x3 + 1
.
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C08S03.020: Given:
dy

dx
= 2xy3(2x2 + 1), y(1) = 1. Then

y−3 dy = (4x3 + 2x) dx; − 1
2
y−2 = x4 + x2 + C1; y−2 = C − 2x2 − 2x4;

y2 =
1

C − 2x2 − 2x4
; 1 = [y(1)]2 =

1
C − 4

; C = 5;

y2 =
1

5− 2x2 − 2x4
; y(x) =

1√
5− 2x2 − 2x4

.

We took the positive root in the last step because y(1) > 0.

C08S03.021: Given:
dy

dx
= y + 1, y(0) = 1.

∫
dy

y + 1
=

∫
1 dx; ln(y + 1) = x+ C;

y + 1 = ex+C = Aex; y(x) = Aex − 1;

1 = y(0) = A− 1; A = 2.

Answer: y(x) = 2ex − 1.

C08S03.022: Given:
dy

dx
= 2− y, y(0) = 3.

∫
dy

y − 2
=

∫
(−1) dx; ln(y − 2) = C − x; y − 2 = eC−x = Ae−x;

y(x) = 2 +Ae−x; 3 = y(0) = 2 +A; y(x) = 2 + e−x.

C08S03.023: Given:
dy

dx
= 2y − 3, y(0) = 2.

∫
2 dy

2y − 3
=

∫
2 dx; ln(2y − 3) = 2x+ C; 2y − 3 = e2x+C = Ae2x;

y(x) =
Ae2x + 3

2
; 2 = y(0) =

A+ 3
2

; y(x) =
e2x + 3

2
.

C08S03.024: Given:
dy

dx
=

1
4
− y

16
=

4− y
16

, y(0) = 20.

∫
dy

y − 4
=

∫
− 1

16
dx; ln(y − 4) = C − x

16
; y − 4 = eC−(x/16) = Ae−x/16;

y(x) = 4 +Ae−x/16; 20 = y(0) = 4 +A; y(x) = 4 + 16e−x/16.

C08S03.025: Given:
dx

dt
= 2(x− 1), x(0) = 0.

∫
dx

x− 1
=

∫
2 dt; ln(x− 1) = 2t+ C; x− 1 = e2t+C = Ae2t;

x(t) = 1 +Ae2t; 0 = x(0) = 1 +A; x(t) = 1− e2t.
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C08S03.026: Given:
dx

dt
= 2− 3x, x(0) = 4.

∫
3 dx

3x− 2
=

∫
(−3) dt; ln(3x− 2) = C − 3t; 3x− 2 = eC−3t = Ae−3t;

x(t) =
1
3

(
2 +Ae−3t

)
; 4 = x(0) =

1
3

(2 +A) ; x(t) =
1
3

(
2 + 10e−3t

)
.

C08S03.027: Given:
dx

dt
= 5(x+ 2), x(0) = 25.

∫
dx

x+ 2
=

∫
5 dt; ln(x+ 2) = 5t+ C; x+ 2 = e5t+C = Ae5t;

x(t) = Ae5t − 2; 25 = x(0) = A− 2; x(t) = 27e5t − 2.

C08S03.028: Given:
dx

dt
= −3− 4x, x(0) = −5.

∫
4 dx

4x+ 3
=

∫
(−4) dt; ln(4x+ 3) = C − 4t; 4x+ 3 = eC−4t = Ae−4t;

x(t) =
1
4

(
Ae−4t − 3

)
; − 5 = x(0) =

1
4

(A− 3) ; x(t) = − 1
4

(
17e−4t + 3

)
.

C08S03.029: Given:
dv

dt
= 10(10− v), v(0) = 0.

∫
dv

v − 10
=

∫
(−10)dt; ln(v − 10) = C − 10t; v − 10 = eC−10t = Ae−10t;

v(t) = 10 +Ae−10t; 0 = v(0) = 10 +A; v(t) = 10
(
1− e−10t

)
.

C08S03.030: Given:
dv

dt
= −5(10− v), v(0) = −10.

∫
dv

v − 10
=

∫
5 dt; ln(v − 10) = 5t+ C; v − 10 = Ae5t;

v(t) = 10 +Ae5t; − 10 = v(0) = 10 +A; v(t) = 10− 20e5t.

C08S03.031: Let the population at time t (in years) be Q(t); t = 0 corresponds to the year 1990. From

the data given in the problem, we know that
dQ

dt
= (0.04)Q+ 50000; Q(0) = 1,500,000.

25
dQ

dt
= Q+ 1,250,000;

1
Q+ 1,250,000

· dQ
dt

=
1
25

;

ln(Q+ 1,250,000) = (0.04)t+ C;

Q(t) + 1,250,000 = Ket/25.
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Now from the condition Q(0) = 1,500,000 it follows that 1,500,000 + 1,250,000 = K, so

Q(t) + 1,250,000 = 2,750,000et/25.

In the year 2010, we have Q(20) = −1,250,000 + 2,750,000e0.8 ≈ 4,870,238, so the population in the year
2010 will be approximately 4.87 million people.

C08S03.032: Let h(t) denote the temperature (in ◦F) of the cake at time t (in minutes). By Newton’s law
of cooling, we have h′(t) = k · [h(t)−A] where k is a constant and A = 70 is the ambient temperature. Thus

∫
dh

h−A =
∫
k dt; ln(h−A) = C1 + kt; h−A = Cekt.

Thus h(t) = 70 + Cekt. The initial condition h(0) = 210 implies that 210 = 70 + C, so C = 140. Thus
h(t) = 70 + 140ekt. We are also given h(30) = 140, so that

140 = 70 + 140e30k; 70 = 140e30k;

1
2

= e30k; k = − ln 2
30

.

Now h(t) = 100 when 100 = 70 + 140ekt, so that

ekt =
3
14
, and so t =

1
k

ln
3
14

=
30 ln(14/3)

ln 2
≈ 66.67177264.

Answer: The cake will be at 100◦F about one hour and seven minutes after it is removed from the oven.

C08S03.033: One effective way to derive a differential equation is to estimate the changes that take place
in the dependent variable over a short interval [t, t+∆t] where t is the independent variable. In this problem
t is measured in months, and the change in the principal balance from time t to time t+ ∆t is

P (t+ ∆t)− P (t) ≈ rP (t) ∆t− c ∆t.

The reason is that the interest added to the principal balance is rP (t) ∆t and the monthly payment decreases
the principal by c ∆t. Thus

P (t+ ∆t)− P (t)
∆t

≈ rP (t)− c. (1)

The errors in this approximation will approach zero as ∆t → 0, and when we evaluate the limits of both
sides of the approximation in (1) we obtain

dP

dt
= rP − c, P (0) = P0.

C08S03.034: First we solve the initial value problem derived in Problem 33.

∫
r dP

rP − c =
∫
r dt; ln(rP − c) = C + rt; rP − c = Aert;

P (t) =
1
r

(
c+Aert

)
; P0 = P (0) =

1
r

(c+A) ; P (t) =
c+ (rP0 − c) ert

r
.
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In Problem 34, the loan is to be paid off in 36 months, and thus P (36) = 0. We use this information to solve
for the monthly payment c:

c+ (rP0 − c)e36r
r

= 0;

c
(
1− e36r

)
+ rP0e

36r = 0;

c =
rP0e

36r

e36r − 1
.

In part (a), we substitute P0 = 3600 and r = 0.01 (the 12% annual rate converted to the monthly rate of
1%, then converted to a decimal) and find that c = $119.08. In part (b), we substitute r = 0.015 instead
and find that c = $129.42.

C08S03.035: Let P = P (t) denote the number of people who have heard the rumor after t days. Then

dP

dt
= k(100000− P );

∫
dP

P − 100000
=

∫
(−k) dt;

ln(P − 100000) = C − kt; P − 100000 = Ae−kt;

P (t) = 100000−Ae−kt.

We assume that P (0) = 0, so that A = 100000 and thus P (t) = 100000
(
1− e−kt

)
. Next, P (7) = 10000, so

100000
(
1− e−7k

)
= 10000; 1− e−7k =

1
10

;

e−7k =
9
10

; e7k =
10
9

; k =
1
7

ln
10
9
.

Half the population of the city will have heard the rumor when P (T ) = 50000, so that

100000
(
1− e−kT

)
= 50000; 1− e−kT =

1
2
; ekT = 2; T =

ln 2
k
≈ 46.05169435.

Therefore half the population will have heard the rumor 46 days after it begins.

C08S03.036: Here we have P0 = 280 (million),

β =
17

1000
= 0.017, δ =

7
1000

= 0.007,

k = β − δ = 0.01, I = 1.5, and I/k = 150. By Eq. (15),

P (t) = 280e(0.01)t + 150
[
e(0.01)t − 1

]
.

In the year 2020 we therefore have P (20) ≈ 375.2 (million). The increase in the population is 95.2 million;
natural growth accounts for

280e(0.01)(20) − 280 ≈ 62.0

million and immigration accounts for the remaining 33.2 million.
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C08S03.037: Assuming that you begin with nothing, the value of the account P (t) (in thousands of
dollars, at time t in years) satisfies P (0) = P0 = 0. If I is your yearly investment, which we assume is made
continuously (well approximated by equal monthly deposits), then

dP

dt
=

1
10
P (t) + I; 10

dP

dt
= P + 10I;

10
P + 10I

dP = dt;
1

P + 10I
dP =

1
10

dt;

ln(P + 10I) =
1
10
t + C; P + 10I = A exp

(
t

10

)
;

P (t) = −10I +A exp
(
t

10

)
. 0 = P (0) = A− 10I :

A = 10I. P (t) = 10I
[
−1 + exp

(
t

10

)]
.

Thus the account will grow to a value of 5,000,000 in 30 years when

5000 = 10I
[
−1 + exp

(
30
10

)]
: I =

500
e3 − 1

≈ 26.19785.

Hence your monthly investment should be I/12 ≈ 2.18315; that is, approximately $2183.15 per month. It
is of interest to note that your total investment will be $654,946.21 and that the accrued interest will be
$4,345,053.79. You should now recompute the “real” answer to this problem under the assumption that your
interest income will be subject to federal, state, and local taxes. Don’t forget to compute the total tax you
expect to pay over the 30 years of investing.

C08S03.038: Set up your coordinate system with time t in hours and with t = 0 corresponding to the
time of death. Let T (t) denote the temperature of the body (in ◦F) at time t � 0. Then the solution of the
initial value problem

dT

dt
= k(70− T ), T (0) = 98.6

is

T (t) = 70 + (28.6)e−kt.

If t = a at 12 noon, then

T (a) = 70 + (28.6)e−ka = 80 and

T (a+ 1) = 70 + (28.6)e−k(a+1) = 75.

Hence

(28.6)e−ka = 10 and (28.6)e−kae−k = 5.

It follows that k = ln 2, and the first of the previous two equations then yields

a =
ln(2.86)

ln 2
≈ 1.516
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(in hours), so the death occurred at about 10:29 a.m.

C08S03.039: Given:
dN

dt
= k(10000−N), with time t measured in months.

− dN

10000−N = −k dt;

ln(10000−N) = C1 − kt;

10000−N = Ce−kt.

On January 1, t = 0 and N = 1000. On April 1, t = 3 and N = 2000. On October 1, t = 9; we want to
determine the value of N then.

9000 = Ce0 = C, so N(t) = 10000− 9000e−kt.

2000 = 10000− 9000e−3k, so 8 = 9e−3k.

Therefore k = 1
3 ln

(
9
8

)
. So N(9) = 1000− 9000e−9k = 1000

(
10− 9e−3 ln(9/8)

)
≈ 3679.

C08S03.040:
dx

dt
= k(100000− x(t)):

−dx
100000− x = −k dt;

ln(100000− x) = C1 − kt;

100000− x = Ce−kt;

x(t) = 100000− Ce−kt.

On March 1, t = 0 and x = 20000. On March 15, t = 14 and x = 60000.

20000 = 100000− C, so C = 80000.

x(t) = 10000
(
10− 8e−kt

)
.

60000 = x(14) = 10000(10− 8e−14k). so 6 = 10− 8e−14k.

Solve for k = 1
14 ln 2.

(a) x(t) = 10000(10− 8e−kt) where k = 1
14 ln 2.

(b) x(T ) = 80000: Solve 10 − 8e−kT = 2 for T : T =
1
k

ln 4 = 28. So 80000 people will be infected on
March 29.

(c) lim
t→∞

N(t) = 100000: Eventually everybody gets the flu.

C08S03.041: Let t = 0 when it began to snow, with t = t0 at 7:00 a.m. Let x(t) denote the distance
traveled by the snowplow along the road, so that x(t0) = 0. If y = ct is the depth of the snow at time t, w
is the width of the road, and v = x′(t) is the velocity of the snowplow, then “plowing at a constant rate”
means that the product wyv is constant. Hence x(t) satisfies the differential equation

k
dx

dt
=

1
t
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where k is a positive constant. The solution for which x(t0) = 0 satisfies the equation

t = t0e
kx.

We are given x = 2 when t = t0 + 1 and x = 4 when t = t0 + 3, and it follows that

t0 + 1 = t0e
2k and t0 + 3 = t0e

4k.

Elimination of t0 yields the equation

e4k − 3e2k + 2 = 0; that is,
(
e2k − 1

)(
e2k − 2

)
= 0.

Thus it follows (because k > 0) that e2k = 2. Hence t0 +1 = 2t0, and so t0 = 1. Therefore it began to snow
at 6:00 a.m.

C08S03.042: Let t = 0 when it began to snow, with t = t0 at 7:00 a.m. Let x(t) denote the distance
traveled by the snowplow along the road, so that x(t0) = 0. If y = ct is the depth of the snow at time t, w
is the width of the road, and v = x′(t) is the velocity of the snowplow, then “plowing at a constant rate”
means that the product wyv is constant. Hence x(t) satisfies the differential equation

k
dx

dt
=

1
t

where k is a positive constant. The solution for which x(t0) = 0 satisfies the equation

t = t0e
kx.

We are given x = 4 when t = t0 + 1 and x = 7 when t = t0 + 2, and it follows that

t0 + 1 = t0e
4k and t0 + 2 = t0e

7k (1)

at 8:00 a.m. and 9:00 a.m., respectively. Elimination of t0 yields the equation

2e4k − e7k − 1 = 0,

which we solve (using Newton’s method) for k ≈ 0.08276. With this value of k we finally solve either of the
equations in (1) for t0 ≈ 2.5483 (h), about 2 h 33 min. Thus it began to snow at about 4:27 a.m.

C08S03.043: Substitution of v = dy/dx in the differential equation for y = y(x) yields

a
dv

dx
=

√
1 + v2 ,

and separation of variables then yields

1√
1 + v2

dv =
1
a
dx;

sinh−1 v =
x

a
+ C1;

dy

dx
= sinh

(x
a

+ C1

)
.

Because y(0) = 0, it follows that C1 = 0, and therefore
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dy

dx
= sinh

(x
a

)
;

y(x) = a cosh
(x
a

)
+ C.

Of course the (vertical) position of the x-axis may be adjusted so that C = 0, and the units in which T

and ρ are measured may be adjusted so that a = 1. In essence, then, the shape of the hanging cable is the
graph of y = coshx.
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Section 8.4

C08S04.001: ρ(x) = exp
(∫

1 dx
)

= ex:

ex
dy

dx
+ exy = 2ex; exy(x) = 2ex + C;

y(x) = 2 + Ce−x. 0 = y(0) = C + 2 :

y(x) = 2(1− e−x).

C08S04.002: ρ(x) = e−2x:

e−2x dy

dx
− 2e−2xy = 3; e−2xy(x) = 3x+ C; y(x) = (3x+ C)e2x.

0 = y(0) = C : y(x) = 3xe2x.

C08S04.003: ρ(x) = exp
(∫

3 dx
)

= e3x:

e3x
dy

dx
+ 3e3xy(x) = 2x; e3xy(x) = x2 + C; y(x) = e−3x(x2 + C).

C08S04.004: ρ(x) = exp
(∫

−2x dx
)

= exp
(
−x2

)
:

exp
(
−x2

) dy
dx
− 2x exp

(
−x2

)
= 1; exp

(
−x2

)
y(x) = x+ C; y(x) = (x+ C) exp

(
x2

)
.

C08S04.005: Given:
dy

dx
+

2
x
y = 3, y(1) = 5:

ρ(x) = exp
(∫

2
x
dx

)
= exp(2 lnx) = x2.

Therefore

x2 dy

dx
+ 2xy = 3x2; x2y(x) = x3 + C; y(x) = x+

C

x2
.

5 = y(1) = 1 + C : C = 4. y(x) = x+
4
x2
.

C08S04.006: Given:
dy

dx
+

5
x
y = 7x, y(2) = 5:

ρ(x) = exp
(∫

5
x
dx

)
= exp(5 lnx) = x5.

Therefore

x5 dy

dx
+ 5x4y = 7x6; x5y(x) = x7 + C; y(x) = x2 +

C

x5
.
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5 = y(2) = 4 +
C

32
: C = 32. y(x) = x2 +

32
x5
.

C08S04.007: Given:
dy

dx
+

1
2x
y = 5x−1/2.

ρ(x) = exp
(∫

1
2x

dx

)
= exp

(
1
2

lnx
)

= x1/2.

Therefore

x1/2 dy

dx
+

1
2
x−1/2y = 5; x1/2y(x) = 5x+ C; y(x) = 5x1/2 + Cx−1/2.

C08S04.008: Given:
dy

dx
+

1
3x
y = 4.

ρ(x) = exp
(∫

1
3x

dx

)
= exp

(
1
3

lnx
)

= x1/3.

Then

x1/3 dy

dx
+

1
3
x−2/3y = 4x1/3; x1/3y(x) = 3x4/3 + C; y(x) = 3x+ Cx−1/3.

C08S04.009: Given
dy

dx
− 1
x
y = 1, an integrating factor is

ρ(x) = exp
(∫
− 1
x
dx

)
= exp(− lnx) =

1
x
.

Thus

1
x
· dy
dx
− 1
x2
· y(x) =

1
x

;
1
x
· y(x) = C + lnx; y(x) = Cx+ x lnx.

7 = y(1) = C : y(x) = 7x+ x lnx.

C08S04.010: Given
dy

dx
− 3

2x
y =

9
2
x2, an integrating factor is

ρ(x) = exp
(∫
− 3

2x
dx

)
= exp

(
− 3

2
lnx

)
= x−3/2.

Thus

x−3/2 dy

dx
− 3

2
x−5/2y(x) =

9
2
x1/2; x−3/2y(x) = 3x3/2 + C; y(x) = 3x3 + Cx3/2.

C08S04.011: Given: x
dy

dx
+ (1− 3x)y = 0, y(1) = 0, write the equation in the form

dy

dx
+

(
1
x
− 3

)
y = 0.

Then an integrating factor is
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ρ(x) = exp
(∫ [

1
x
− 3

]
dx

)
= xe−3x.

Therefore

xe−3x dy

dx
+

(
e−3x − 3xe−3x

)
· y = 0; xe−3xy(x) = C; y(x) =

C

x
e3x.

0 = y(0) = 0 : y(x) ≡ 0.

C08S04.012: Given
dy

dx
+

3
x
y = 2x4, y(2) = 1, an integrating factor is

ρ(x) = exp
(∫

3
x
dx

)
= x3.

Therefore

x3 dy

dx
+ 3x2y(x) = 2x7; x3y(x) =

1
4
x8 + C; y(x) =

1
4
x5 +

C

x3
.

1 = y(2) = 8 +
C

8
: C = −56. y(x) =

1
4
x5 − 56

x3
.

C08S04.013: ρ(x) = exp
(∫

1 dx
)

= ex:

ex
dy

dx
+ exy(x) = e2x; exy(x) = C +

1
2
e2x; y(x) = Ce−x +

1
2
ex.

1 = y(0) = C +
1
2

: C =
1
2
. y(x) =

1
2

(
ex + e−x

)
= coshx.

C08S04.014: Given:
dy

dx
− 3
x
y = x2, y(1) = 10, an integrating factor is

ρ(x) = exp
(∫
− 3
x
ds

)
= x−3.

Thus

x−3 dy

dx
− 3x−4y = x−1; x−3y(x) = C + lnx; y(x) = x3(C + lnx).

10 = y(1) = C : y(x) = 10x3 + x3 lnx.

C08S04.015: An integrating factor is ρ(x) = exp
(∫

2x dx
)

= exp(x2). Hence

exp(x2)
dy

dx
+ 2x exp(x2)y(x) = x exp(x2); y(x) exp(x2) = C +

1
2

exp(x2);

y(x) =
1
2

+ C exp(−x2). − 2 = y(0) =
1
2

+ C :
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C = −5
2
. y(x) =

1− 5 exp(−x2)
2

.

C08S04.016: Given
dy

dx
+ (cosx)y = cosx, y(π) = 2. An integrating factor is

ρ(x) = exp
(∫

cosx dx
)

= exp(sinx).

Therefore

exp(sinx)
dy

dx
+ (cosx exp(sinx)y(x) = (cosx) exp(sinx); y(x) exp(sinx) = C + exp(sinx);

y(x) = 1 + C exp(− sinx). 2 = y(π) = 1 + C :

C = 1. y(x) = 1 + exp(− sinx).

C08S04.017:
dy

dx
+

1
1 + x

y =
cosx
1 + x

, so an integrating factor is

ρ(x) = exp
(∫

1
1 + x

dx

)
= 1 + x.

Therefore

(1 + x)
dy

dx
+ y = cosx; (1 + x)y(x) = C + sinx; y(x) =

C + sinx
1 + x

.

1 = y(0) = C : y(x) =
1 + sinx

1 + x
.

C08S04.018: Given x
dy

dx
− 2y = x3 cosx:

dy

dx
− 2
x
y = x2 cosx, so ρ(x) = exp

(∫
− 2
x
dx

)
=

1
x2
.

Thus

1
x2
· dy
dx
− 2
x3
· y(x) = cosx;

1
x2
· y(x) = C + sinx; y(x) = Cx2 + x2 sinx.

C08S04.019: An integrating factor is

ρ(x) = exp
(∫

cotx dx
)

= exp(ln sinx) = sinx.

Hence

(sinx)
dy

dx
+ (cosx)y(x) = sinx cosx; y(x) sinx = C +

1
2

sin2 x; y(x) = C cscx+
1
2

sinx.

Mathematica 3.0 yields

DSolve[ y′[x] + y[x]∗Cot[x] == Cos[x], y[x], x]
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y(x) = C1 cscx− 1
2

cosx cotx.

C08S04.020: Given:
dy

dx
− (1 + x)y = 1 + x, y(0) = 0. An integrating factor is

ρ(x) = exp
(∫

(−1− x) dx
)

= exp
(
−x− 1

2 x
2
)
.

Thus

dy

dx
exp

(
−x− 1

2 x
2
)
− (1 + x)y(x) exp

(
−x− 1

2 x
2
)

= (1 + x) exp
(
−x− 1

2 x
2
)
;

y(x) exp
(
−x− 1

2 x
2
)

= C − exp
(
−x− 1

2 x
2
)
; y(x) = C exp

(
x+ 1

2 x
2
)
− 1.

But y(0) = 0 = C − 1, and therefore

y(x) = exp
(
x+ 1

2 x
2
)
− 1.

C08S04.021: An integrating factor for the equation
dy

dx
− 2xy = 1 is

ρ(x) = exp
(∫
−2x dx

)
= exp

(
−x2

)
,

which yields

exp
(
−x2

) dy
dx
− 2x exp

(
−x2

)
y(x) = exp

(
−x2

)
;

exp
(
−x2

)
y(x) =

∫ x

0

exp
(
−t2

)
dt + C =

√
π

2
erf (x) + C;

y(x) =
[
exp

(
x2

)][√π
2

erf (x) + C

]
.

C08S04.022: An integrating factor for the differential equation

dy

dx
− 1

2x
y = cosx

is

ρ(x) = exp
(∫
− 1

2x
dx

)
= exp

(
− 1

2 lnx
)

= x−1/2,

which yields

x−1/2 dy

dx
− 1

2
x−3/2y(x) =

cosx√
x

;

x−1/2y(x) =
∫ x

1

cos t√
t
dt;

y(x) =
√
x

∫ x

1

cos t√
t
dt.
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C08S04.023: Let A(t) denote the amount of salt (in kilograms) in the tank at time t (in seconds) and
measure volume in liters. Then

dA

dt
= − 1

200
A(t), A(0) = 100,

and the solution of this familiar initial value problem is

A(t) = 100 exp
(
− t

200

)
.

Hence A(t) = 10 when t = 200 ln 10 ≈ 460.517 (s), about 7 min 40.517 s.

C08S04.024: We use units of millions of cubic feet and days. Let P (t) denote the amount of pollutant in
the reservoir at time t. Then

dP

dt
=

1
4
− 500

8000
P (t) =

1
4
− 1

16
P (t), P (0) = 20.

The integrating factor ρ(t) = e−t/16 yields the solution P (t) = 4 + 16e−t/16. Finally, P (t) = 8 when
t = 32 ln 2 ≈ 22.18. Answer: After about 22.18 days.

C08S04.025: Substitute of V = 1640 km3 and r = 410 km3/y in the last equation in the solution of
Example 5 yields

t =
V

r
ln 4 = 4 ln 4 ≈ 5.5452

(years).

C08S04.026: The volume of liquid V (in gallons) in the tank at time t (in minutes) is V (t) = 60− t. Let
x(t) denote the number of pounds of salt in the tank at time t. Then

dx

dt
= 2− 3x

60− t , x(0) = 0.

We write the differential equation in the form

dx

dt
+

3
60− t x = 2

and compute the integrating factor

ρ(t) = exp
(∫

3
60− t dt

)
= exp (−3 ln(60− t)) =

1
(60− t)3 .

Thus

1
(60− t)3 ·

dx

dt
+

3
(60− t)4 x(t) =

2
(60− t)3 ;

1
(60− t)3 x(t) =

1
(60− t)2 + C;

x(t) = 60− t+ C · (60− t)3.

Then the initial condition x(0) = 0 yields 3600C = −1, and thus the answer in part (a) is
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x(t) = 60− t− (60− t)3
3600

.

In part (b), we have

dx

dt
= −1 +

(60− t)2
1200

,

so that x′(t) = 0 when t = 60 ± 20
√

3 . We reject the larger root because the tank is empty when t = 60,
and hence the maximum value of x(t) occurs when t = 60 − 20

√
3 ≈ 25.36 (min). The maximum amount

of salt ever in the tank is therefore

x
(
60− 20

√
3

)
=

40
√

3
3

≈ 23.094

(pounds).

C08S04.027: If V (t) is the volume of brine (in gallons) in the tank at time t (in minutes), then it’s easy
to see that V (t) = 100 + 2t. Let x(t) denote the number of pounds of salt in the tank at time t. Then

dx

dt
= 5− 3x

100 + 2t
, x(0) = 50.

An integrating factor is

ρ(t) = exp
(∫

3
100 + 2t

dt

)
= exp

(
3
2 ln(100 + 2t)

)
= (100 + 2t)3/2,

and thereby the differential equation takes the form

(100 + 2t)3/2
dx

dt
+ 3(100 + 2t)1/2x(t) = 5(100 + 2t)3/2;

(100 + 2t)3/2x(t) = (100 + 2t)5/2 + C;

x(t) = 100 + 2t+
C

(100 + 2t)3/2
.

Then the initial condition x(0) = 50 yields C = −50000, and therefore

x(t) = 100 + 2t− 50000
(100 + 2t)3/2

.

The tank is full when t = 150, and at that time the tank will contain

x(150) =
1575

4
= 393.75

pounds of salt.

C08S04.028: Part (a): We have

dx

dt
= − 5x

100
= − 1

20
x(t), x(0) = 50,

and it follows immediately that x(t) = 50e−t/20. Part (b): The input and output rates of salt (in pounds)
with respect to tank 2 are
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5
100

x(t) and
5

200
y(t),

respectively. Therefore

dy

dt
=

5
2
e−t/20 − 1

40
y(t); that is,

dy

dt
+

1
40
y(t) =

5
2
e−t/20.

An integrating factor for the last equation is

ρ(t) = exp
(∫

1
40

dt

)
= et/40,

and we thereby obtain

et/40
dy

dt
+

1
40
et/40y(t) =

5
2
e−t/40;

et/40y(t) = C − 100e−t/40;

y(t) = Ce−t/40 − 100e−t/20.

Then the initial condition y(0) = 50 yields C = 150, so the answer in part (b) is

y(t) = 150e−t/40 − 100e−t/20.

Part (c): First,

dy

dt
=

5
4
e−t/20

(
3et/40 − 4

)
;

y′(t) = 0 when t = 40 ln 4
3 ≈ 11.507283 (min), about 11 min 30.437 s. Thus the maximum amount of salt

ever in tank 2 is

y
(
40 ln 4

3

)
=

225
4

= 56.25

(pounds).

C08S04.029: Part (a):

A(t+ ∆t) ≈ A(t) + (0.12)(30et/20) ∆t+ (0.06)A(t);

A(t+ ∆t)−A(t)
∆t

≈ (3.6)et/20 + (0.06)A(t);

dA

dt
− (0.06)A(t) = (3.6)et/20 = (3.6)e(0.05)t, A(0) = 0.

An integrating factor for this linear equation is

ρ(t) = exp
(∫

(−0.06) dt
)

= e(−0.06)t.
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Thus

e(−0.06)t dA

dt
− (0.06)e(−0.06)tA(t) = (3.6)e(−0.01)t;

e(−0.06)tA(t) = C = 360e(−0.01)t;

A(t) = Ce(0.06)t − 360e(0.05)t.

Now 0 = A(0) = C − 360, so

A(t) = 360
[
e(0.06)t − e(0.05)t

]
.

Part (b): A(40) = 360
(
e12/5 − e2

)
≈ 1308.28330. Units are in thousand of dollars, so this amounts to

$1,308,283.30 (less taxes).

C08S04.030: The mass of the hailstone at time t is

m =
4
3
πδr3 =

4
3
πr3 =

4
3
πk3t3.

Hence (by Newton’s second law of motion)

d

dt
(mv) = mg;

that is,

m(t)
dv

dt
+ v(t)

dm

dt
= mg;

4
3
πk3t3

dv

dt
+ 4πk3t2v(t) =

4
3
πk3t3g;

t3
dv

dt
+ 3t2v(t) = t3g; t

dv

dt
+ 3v = gt.

Thus we obtain the linear initial value problem

dv

dt
+

3
t
v = g, v(0) = 0

with integrating factor

ρ(t) = exp
(∫

3
t
dt

)
= exp(3 ln t) = t3.

This yields

t3
dv

dt
+ 3t2v = t3g, and thus

t3v(t) =
1
4
t4g + C.

The initial condition implies that C = 0, and hence v(t) = 1
4 gt. The desired conclusion then follows

immediately because

dv

dt
=

1
4
g.
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C08S04.031: Let v(t) denote the velocity of the sports car (in kilometers per hour) at time t (in seconds).
We thereby obtain the linear initial value problem

dv

dt
= k(250− v), v(0) = 0.

This equation is easy to solve by the method of separation of variables, but we choose to solve it as a linear
differential equation:

dv

dt
+ kv = 250k.

An integrating factor is

ρ(t) = exp
(∫

k dt

)
= ekt,

and thus

ekt
dv

dt
+ kektv = 250kekt;

ektv(t) = 250ekt + C;

v(t) = 250 + Ce−kt.

The initial condition yields C = −250, so that

v(t) = 250
(
1− e−kt

)
.

We are also given v(10) = 100, and thus

100 = 250
(
1− e−10k

)
; thus k =

1
10

ln
5
3
.

To find when v(t) = 200, we solve

200 = 250
(
1− e−kt

)
;

4
5

= 1− e−kt;

e−kt =
1
5
; t =

ln 5
k

=
10 ln 5
ln(5/3)

.

Answer: About 31.506601 seconds.

C08S04.032: Part (a): We could more easily solve the differential equation

dv

dt
= −kv

by the method of separation of variables, but we demonstrate here the use of the integrating factor ρ(t) = ekt:

ekt
dv

dt
+ kektv(t) = 0; ektv(t) = C;

v(t) = Ce−kt. 0 = v0 = v(0) = C :
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v(t) = v0e
−kt.

Then the position function may be derived as follows:

x(t) = − v0
k
e−kt + C1; x0 = x(0) = C1 −

v0
k

:

C1 =
v0
k

+ x0; x(t) = x0 +
v0
k

(
1− e−kt

)
.

Part (b): First we compute

lim
t→∞

x(t) = x0 +
v0
k

(because k > 0). Therefore the total distance traveled by the body is
v0
k

< +∞.

C08S04.033: We use the formulas given in the statement of Problem 32:

v(t) = v0e
−kt and x(t) = x0 +

v0
k

(
1− e−kt

)
.

The initial condition v0 = 40 and the information v(10) = 20 yields

20 = v(10) = 40e−10k; e10k = 2; k =
1
10

ln 2.

In the solution of Problem 32 we saw that the total distance traveled by the motorboat is
[

lim
t→∞

x(t)
]
− x0 =

v0
k
,

and in this case we have

v0
k

=
400
ln 2

≈ 577.078 (ft).

C08S04.034: Here we have

dv

dt
= −kv2; v(0) = v0, x(0) = x0. (1)

The differential equation in (1) is not linear, but we can solve it by the method of separation of variables:

− 1
v2

dv = k dt;
1
v

= kt+ C;

v(t) =
1

kt+ C
. v0 = v(0) =

1
C

:

v(t) =
1

kt+ (1/v0)
; v(t) =

v0
kv0t+ 1

.

Then

x(t) =
1
k

ln(kv0t+ 1) + C1; x0 = x(0) = C1; x(t) = x0 +
1
k

ln(kv0t+ 1).

Note that x(t)→ +∞ as t→ +∞.
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C08S04.035: The formulas in Problem 34 for velocity and position (distance traveled) are

v(t) =
v0

kv0t+ 1
and x(t) = x0 +

1
k

ln(kv0t+ 1).

From the data given in Problem 33, we have v0 = 40 and v(10) = 20. Thus

20 = v(10) =
40

1 + 400k
; 20 + 8000k = 40;

8000k = 20; k =
1

400
.

Therefore

v(t) =
40

1 + (t/10)
=

400
t+ 10

.

To find the total distance traveled, we may assume that x0 = 0. Then

x(t) = 400 ln
(

1 +
t

10

)
, so that

x(60) = 400 ln 7 ≈ 778.364 (ft).

C08S04.036: Let v(t) denote the velocity of the body, v0 = v(0) its initial velocity, x(t) its position
(distance traveled) at time t, and x(0) = x0 its initial position. The differential equation of motion,

dv

dt
= −kv3/2,

is not linear, but we can solve it by the method of separation of variables:

−v3/2 dv = k dt; 2v−1/2 = kt+ C (C > 0);

v(t) =
4

(kt+ C)2
. v0 = v(0) =

4
C2

:

C =
2√
v0

.

Therefore

v(t) =
4(

kt+
2√
v0

)2 =
(

2
√
v0

kt
√
v0 + 2

)2

=
4v0

(2 + kt
√
v0 )2

.

A single antidifferentiation gives

x(t) = C0 −
4
√
v0

k (2 + kt
√
v0 )

;

x0 = x(0) = C1 −
2
√
v0
k

: C1 = x0 +
2
√
v0
k

.

Therefore
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x(t) = x0 +
2
√
v0
k
− 2
√
v0
k

(
2

2 + kt
√
v0

)

= x0 +
2
√
v0
k

(
1− 2

2 + kt
√
v0

)
.

Finally,

lim
t→∞

x(t) = x0 +
2
√
v0
k

,

so the total distance the body coasts is
2
k

√
v0 < +∞.

C08S04.037: With the usual notation of this section, we have

dv

dt
= 10− 1

10
v; v(0) = v0 = 0, x(0) = x0 = 0.

An integration factor for this linear equation is ρ(t) = et/10, and thus (in the usual way)

et/10v(t) = 100et/10 + C; v(t) = 100 + Ce−t/10;

0 = v(0) = 100 + C : v(t) = 100
(
1− e−t/10

)
.

Part (a): It is clear that the limiting velocity of the car is 100 ft/s. Part (b):

x(t) = C1 + 100t+ 1000e−t/10; 0 = x(0) = C1 + 1000;

x(t) = 100t− 1000
(
1− e−t/10

)
.

The car reaches 90% of its limiting velocity at that time t for which

v(t) = 90 : 1− e−t/10 =
9
10

; e−t/10 =
1
10
.

Therefore t = 10 ln 10 ≈ 23.025851 (s). The distance the car travels from rest until that time is

x(10 ln 10) = −900 + 1000 ln 10 ≈ 1402.585093 (ft).

C08S04.038: In the standard notation of this section, we have

dv

dt
= 10− 1

1000
v2; v0 = v(0) = 0, x0 = x(0) = 0.

One option at this point is the use of a computer algebra program to solve this separable equation. The
Mathematica 3.0 command

DSolve[ { v′[t] == 10 - (1/1000)∗(v[t])∧2, v[0] == 0 }, v[t], t ]

will produce a solution; alternatively, separation of variables yields
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1000
dv

dt
= 10000− v2 = (100 + v)(100− v); 1

(100 + v)(100− v) dv =
1

1000
dt;

1
200

(
1

100 + v
+

1
100− v

)
dv =

1
1000

dt;
(

1
100 + v

+
1

100− v

)
dv =

1
5
dt;

ln
100 + v

100− v = C +
1
5
t;

100 + v

100− v = Aet/5.

0 = v(0); 1 = Ae0; A = 1 : 100 + v = 100et/5 − et/5v(t);

(1 + et/5)v(t) = 100(et/5 − 1); v(t) = 100 · e
t/5 − 1
et/5 + 1

.

Part (a): Clearly v(t)→ 100 as → +∞. Part (b): We next solve v(t) = 90:

100 + 90
100− 90

= et/5; et/5 = 1900; t = 5 ln 1900 ≈ 37.748046

(seconds). Finally,

x(t) = C1 − 100t+ 1000 ln(1 + et/5).

Without loss of generality, we assume that x(0) = x0 = 0, and it follows that C1 = −1000 ln 2, so that

x(t) = −1000 ln 2 + 1000 ln(1 + et/5)− 100t

= −100t+ 1000 ln
1 + et/5

2
.

Hence the distance traveled by the car while attaining 90% of its limiting velocity is

x(5 ln 1900) = 1000 ln
1901

2
− 500 ln 1900 ≈ 3082.183579 (ft).

C08S04.039: We are to solve the initial value problem

dv

dt
= 5− 1

10
v, v(0) = 0.

The usual integrating factor ρ(t) = et/10 yields the solution v(t) = 50(1 − e−t/10), and it is clear that
v(t)→ 50 as t→ +∞.

C08S04.040: The mass of a drum is

m =
640
32

= 20

slugs. We also have B = 8 · (62.5) = 500 (lb) and FR = −v (pounds). Hence the differential equation given
in the statement of Problem 40 takes the form

20
dv

dt
= −640 + 500− v = −140− v.

(Note that we have taken the upward direction as the positive direction.) The Mathematica 3.0 command

DSolve[ { 20∗v′[t] == -140 - v[t], v[0] == 0 }, v[t], t ]
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then yields the solution v(t) = 140(e−(0.05)t − 1). An integration (with y(0) = 0) produces the position
(depth) function

y(t) = 2800(e−(0.05)t − 1)− 140t,

and solution of the equation v(t) = −75 (ft/s) yields

t = 20 ln
28
13
≈ 15.35

(seconds). Then y(15.35) ≈ −648.31, so the maximum safe depth is just over 648 feet.

C08S04.041: Here we have y0 = 0, v0 = 49, and vτ = −g/ρ = −245. Thus the velocity and position
(altitude) functions are

v(t) = 294e−t/25 − 245 and

y(t) = 7350− 245t− 7350e−t/25.

If the maximum height occurs at time tm, then we solve v(tm) = 0 and find that

tm = 25 ln
294
245

≈ 4.5580389198,

and hence the maximum height is y(tm) ≈ 108.2804646370 (meters). Impact occurs when y(t) = 0; that
is, when

7350− 245t− 7350e−t/25 = 0.

A few iterations of Newton’s method with initial “guess” t0 = 10 yields the solution t = ti ≈ 9.4109499312.
The impact speed will be

|v(ti)| ≈ 43.2273093261 (m/s).

C08S04.042: Set up a coordinate system in which y = 0 at the level of the hovering helicopter and the
downward direction is positive. Part (a): In the usual way we find that v(t) = 200(1 − e−4t/25). Part
(b): Clearly v(t)→ 200 as t→ +∞. Part (c): Integration yields the position function

y(t) = C + 200t+ 1250e−4t/25,

and the initial condition y(0) = 0 implies that C = −1250. To find when the ball reaches the ground, we use
Newton’s method to solve y(t) = 3000 and find that the time of descent is approximately 21.0340853733
seconds.

C08S04.043: Beginning with

dv

dt
= −g − kv, v(0) = v0,

the integrating factor ρ(t) = ekt yields

ekt
dv

dt
kektv(t) = −gekt; ektv(t) = C − g

k
ekt;
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v(t) = Ce−kt − g

k
. v0 = v(0) = C − g

k
:

C = v0 +
g

k
.

Therefore

v(t) =
(
v0 +

g

k

)
e−kt − g

k
= v0e

−kt +
g

k
(e−kt − 1).

Finally, the limiting velocity of the projectile is

vτ = lim
t→∞

v(t) = − g
k
.

C08S04.044: We assume the usual meanings of the symbols and work in the “usual” coordinate system.
Before opening the parachute, we have

dv

dt
= −32− (0.15)v; v(0) = 0, y(0) = 10000.

It follows in the usual way that

v(t) ≈ (213.333)(e−(0.15)t − 1) and so v(20) ≈ −202.712 (ft/s).

Next,

y(t) ≈ 11422.2− (1422.22)e−(0.15)t − (213.333)t; y(20) ≈ 7084.75 (ft).

After opening the parachute, we have

dv

dt
= −32− (1.5)v, v(0) ≈ −202.712, y(0) ≈ 7084.75.

Thus

v(t) ≈ −21.3333− (181.379)e−(1.5)t and

y(t) ≈ 6964.83 + (120.919)e−(1.5)t − (21.3333)t.

A few iterations of Newton’s method reveals that y(t) = 0 when t ≈ 326.476. Hence when the parachute
opens at time t = 20, the woman’s altitude is about 7085 feet. Her total time of descent is approximately
20+326.5 = 346.5 seconds, about 5 min 46.5 s. Her impact speed will be approximately |v(326.476)| ≈ 21.33
ft/s, about 15 mi/h.
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Section 8.5

C08S05.001: First note that
1

x(1− x) =
1
x

+
1

1− x . Then

∫
1

x(1− x) dx =
∫

1 dt; ln
x

1− x = t+ C1;

x

1− x = Cet;
2

1− 2
=

x(0)
1− x(0)

= C = −2;

x

1− x = −2et; x = 2(x− 1)et;

(1− 2et)x = −2et; x(t) =
2et

2et − 1
=

2
2− e−t .

C08S05.002: First note that
1

x(10− x) =
1
10

(
1
x

+
1

10− x

)
. Thus

∫
1

10x− x2
dx =

∫
1 dt;

∫ (
1
x

+
1

10− x

)
dx = 10t+ C1;

ln
x

10− x = 10t+ C1;
x

10− x = Ce10t;

1
10− 1

=
x(0)

10− x(0)
= C; C =

1
9
;

x

10− x =
1
9
e10t; 9x = 10e10t − e10tx;

(9 + e10t)x = 10e10t; x(t) =
10e10t

9 + e10t
=

10
1 + 9e−10t

.

C08S05.003: First note that
1

1− x2
=

1
2

(
1

1− x +
1

1 + x

)
. Hence

∫
1

1− x2
dx =

∫
1 dt;

∫ (
1

1 + x
+

1
1− x

)
dx = 2t+ C1;

ln
1 + x

1− x = 2t+ C1;
1 + x

1− x = Ce2t;

1 + 3
1− 3

= C = −2; (1 + x) = −2e2t(1− x);

(1− 2e2t)x = −(1 + 2e2t); x(t) =
2e2t + 1
2e2t − 1

.

C08S05.004: First note that
1

9− 4x2
=

1
6

(
1

3 + 2x
+

1
3− 2x

)
. Thus

1



1
6

∫ (
1

3 + 2x
+

1
3− 2x

)
dx =

∫
1 dt;

1
2

ln(3 + 2x)− 1
2
(3− 2x) = 6t+ C1;

ln
3 + 2x
3− 2x

= 12t+ C2;
3 + 2x
3− 2x

= Ce12t;
3 + 0
3− 0

= C = 1;

3 + 2x = (3− 2x)e12t; 2x+ (2x)e12t = 3e12t − 3; x(t) =
3(e12t − 1)
2(e12t + 1)

.

C08S05.005: First note that

1
x(5− x) =

1
5

(
1
x

+
1

5− x

)
.

Therefore

(
1
x

+
1

5− x

)
dx = 15 dt; ln

∣∣∣∣ x

5− x

∣∣∣∣ = 15t+ C;

∣∣∣∣ x

5− x

∣∣∣∣ Ae15t (where A = eC > 0);

x(0) = 8, so A =
8
3
. Also x > 0 and 5− x < 0.

Hence

x

x− 5
=

8
3
e15t; 3x = 8xe15t − 40e15t;

x(t) = − 40e15t

3− 8e15t
; x(t) =

40
8− 3e−15t

.

C08S05.006: We are to solve

1
x(x− 5)

dx = 3 dt, x(0) = 2.

Thus

(
x

x− 5
− 1
x

)
dx = 15 dt; ln

∣∣∣∣ x− 5
x

∣∣∣∣ = 15t+ C;

∣∣∣∣ x− 5
x

∣∣∣∣ = Ae15t (A = eC > 0).

x > 0 and x− 5 < 0, so
5− x
x

= Ae15t.

x(0) = 2, so A =
3
2

:
5− x
x

=
3
2
e15t;

2



10− 2x = 3xe15t; x(t) =
10

2 + 3e15t
.

C08S05.007: We are to solve

(
1
x

+
1

7− x

)
dx = 28 dt, x(0) = 11.

∣∣∣∣ x

7− x

∣∣∣∣ = 28t+ C;
∣∣∣∣ x

7− x

∣∣∣∣ = Ae28t (A = eC > 0).

x(0) = 11 : A =
11
4
, x > 0, 7− x < 0.

4x = 11(x− 7)e28t; 4x− 11xe28t = −77e28t;

x(t) =
77e28t

11e28t − 4
; x(t) =

77
11− 4e−28t

.

C08S05.008: Given:

1
x(x− 13)

dx = 7 dt, x(0) = 17.

(
1

x− 13
− 1
x

)
dx = 91 dt; ln

∣∣∣∣ x− 13
x

∣∣∣∣ = 91t+ C;

∣∣∣∣ x− 13
x

∣∣∣∣ = Ae91t. x(0) = 17 :

A =
4
17
, x > 0, x− 13 > 0.

x− 13
x

=
4
17
e91t;

17x− 221 = 4xe91t; x(t) =
221

17− 4e91t
.

C08S05.009: Given:

dP

dt
= kP 1/2; P (0) = 100, P ′(0) = 20.

Separation of variables yields

P−1/2 dP = k dt; 2P 1/2 = C + kt.

20 = 2(P0)1/2 = C : P (t) =
(
10 + 1

2kt
)2
.

20 = P ′(0) = k · 10 : k = 2; P (t) = (10 + t)2.

Therefore in one year there will be P (12) = 222 = 484 rabbits.

C08S05.010: If the death rate δ is proportional to P−1/2 (and β = 0), then

dP

dt
= −kP−1/2 · P = −kP 1/2; P (0) = 900, P (6) = 441.
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Separation of variables yields

P−1/2 dP = −k dt; 2P 1/2 = C − kt.

60 = C : 2P 1/2 = 60− kt. 2 · 21 = 60− 6k : k = 3.

2P 1/2 = 60− 3t; P (t) =
(

60− 3t
2

)2

.

Clearly P (t) = 0 when t = 20. Answer: 20 weeks.

C08S05.011: If β = aP−1/2 and δ = bP−1/2 , then

dP

dt
= (a− b)P−1/2 · P = kP 1/2

where k = a − b. In part (b) we will use the information that P0 = P (0) = 100 and P (6) = 169. For
Part (a):

P−1/2 dP = k dt; 2P 1/2 = C + kt (C > 0);

P (t) =
(

1
2 kt+ 1

2C
)2
. P0 =

(
1
2C

)2 : 1
2C =

√
P0 (because C > 0).

Therefore P (t) =
(

1
2 kt+

√
P0

)2

.

Part (b): Here we have

P (t) =
(

1
2 kt+ 10

)2
.

Thus

196 = P (6) = (3k + 10)2; 3k + 10 = ±13;

k = 1 (because k > 0). P (t) =
(
10 + 1

2 t
)2
.

Thus after one year there will be P (12) = 162 = 256 fish in the lake.

C08S05.012: Here we have

dP

dt
= kP 2; P (0) = 12 (in 1988), P (10) = 24 (in 1998).

Thus

− 1
P 2

dP = −k dt; 1
P

= C − kt;

P (t) =
1

C − kt . 12 = P (0) =
1
C

:

P (t) =
12

1− 12kt
. 24 = P (10) =

12
1− 120k

:
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k =
1

240
. P (t) =

240
20− t , 0 � t < 20.

There will be four dozen alligators in the swamp when P (t) = 48: t = 15; that is, in the year 2003. Because
P (t)→ +∞ as t→ 20−, “doomsday” occurs in the year 2008.

C08S05.013: The birth rate is β = aP (t) and the death rate is δ = bP (t) where a > b > 0. Thus

dP

dt
= [aP (t)− bP (t)] · P (t) = kP 2

where k = a− b > 0. As usual, let P0 = P (0). Then

− 1
P 2

dP = −k dt; 1
P

= C − kt; P (t) =
1

C − kt .

Part (a):

P0 = P (0) =
1
C
, so P (t) =

P0

1− kP0t
.

Part (b): With P0 = 6, P (10) = 9, and t measured in months:

P (t) =
6

1− 6kt
; 9 = P (10) =

6
1− 60k

;

k =
1

180
; P (t) =

180
30− t .

Because P (t)→ +∞ as t→ 30−, “doomsday” occurs when t = 30 months.

C08S05.014: The birth rate is β = aP (t) and the death rate is δ = bP (t) where b > a > 0. Thus

dP

dt
= [aP (t)− bP (t)] · P (t) = −kP 2

where k = b− a > 0. As usual, let P0 = P (0). Then

− 1
P 2

dP = k dt;
1
P

= C + kt; P (t) =
1

C + kt
.

Then

P0 = P (0) =
1
C
, so P (t) =

P0

1 + kP0t
.

The rabbit population dies out in the long run: Because k and P0 are positive,

lim
t→∞

P (t) = lim
t→∞

P0

1 + kP0t
= 0.

C08S05.015: Measure P in millions and t in years, with t = 0 corresponding to the year 1940. Given:
P (0) = 100, P ′(0) = 1, and

dP

dt
= kP (200− P ) (k constant). (1)
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Note that
1

P (200− P )
=

1
200

(
1
P

+
1

200− P

)
. Thus

∫
1

P (200− P )
dP =

∫
k dt;

∫ (
1
P

+
1

200− P

)
dP = 200kt+ C1;

ln
P

200− P = 200kt+ C1;
P

200− P = Ce200kt

100
100

= Ce0 = C;
P

200− P = e200kt.

By Eq. (1), 1 = P ′(0) = k · 100(200− 100) = 10000k, so k = 1/10000. Therefore

P

200− P = et/50;
200− P

P
= e−t/50;

200
P

= 1 + e−t/50; P (t) =
200

1 + e−t/50
.

Therefore the population in the year 2000 (corresponding to t = 60) will be

P (60) =
200

1 + e−6/5
≈ 153.7 (million).

C08S05.016: Given:

N ′(t) = kN(t)(15000−N(t)) (k constant), N(0) = 5000, N ′(0) = 500.

First note that
1

N(15000−N)
=

1
15000

(
1
N

+
1

15000−N

)
. So

∫ (
1
N

+
1

15000−N

)
dN =

∫
15000k dt; ln

N

15000−N = C1 + 15000kt;

N

15000−N = Ce15000kt
5000
10000

= C;

N

15000−N =
1
2
e15000kt; 500 = N ′(0) = k · 5000 · 10000;

k =
1

100000
;

N

15000−N =
1
2
e3t/20;

N = 7500e3t/20 − 1
2
e3t/20N ; N + 1

2Ne
3t/20 = 7500e3t/20;

(
1 + 1

2e
3t/20

)
N = 7500e3t/20; N(t) =

7500e3t/20

1 + 1
2e

3t/20
;

N(t) =
15000e3t/20

2 + e3t/20
; N(t) =

15000
1 + 2e−3t/20

.

Now we solve N(T ) = 10000:
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1 + 2e−3T/20 =
3
2
; e−3T/20 =

1
4
;

e3T/20 = 4; 3T = 20 ln 4;

and therefore T = 20
3 ln 4 ≈ 9.242. Thus it will require a little more than nine additional days for another

5000 people to contract this disease.

C08S05.017: Given:

dx

dt
=

4
5
x− 1

250
x2 =

200x− x2

250
; x(0) = 50.

First note that
1

200x− x2
=

1
x(200− x) =

1
200

(
1
x

+
1

200− x

)
. Then

1
200

∫ (
1
x

+
1

200− x

)
dx =

∫
1

250
dt; ln

x

200− x =
4
5
t+ C1;

x

200− x = Ce4t/5;
1
3

= Ce0 = C;

x

200− x =
1
3
e4t/5; x =

200
3
e4t/5 − 1

3
e4t/5x;

(
1 +

1
3
e4t/5

)
x =

200
3
e4t/5; x(t) =

200e4t/5

3 + e4t/5
=

200
1 + 3e−4t/5

.

Part (a): We need to solve x(T ) = 100:

100 =
200

1 + 3e−4T/5
; 1 + 3e−4T/5 = 2;

e−4T/5 =
1
3
;

4
5
T = ln 3.

Thus T =
5
4

ln 3 ≈ 1.373 (seconds).

Part (b): As t → +∞, x(t) → 200. So there is no “maximum” amount of salt that will dissolve, but for
all practical purposes, the maximum is 200 g. (The amount that dissolves becomes arbitrarily close to, but
remains always less than, 200 g.)

C08S05.018: With P (t) measuring the number of squirrels at time t (in months), we are given

dP

dt
=

1
1000

P 2 − kP, P (0) = 100, P ′(0) = 8

(where k is a constant). Substitution of these numerical data in the differential equation yields

8 = P ′(0) =
10000
1000

− 100k,

so that 100k = 10− 8 = 2: k =
1
50

. Next,

dP

dt
=

1
1000

P 2 − 1
50
P =

P (P − 20)
1000

.
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Note that
1

P (P − 20)
=

1
20

(
1

P − 20
− 1
P

)
. Thus

∫
1

P (P − 20)
dP =

∫
1

1000
dt;

1
20

∫ (
1

P − 20
− 1
P

)
dP =

1
1000

t+ C2;

ln
P − 20
P

=
1
50
t+ C1;

P − 20
P

= Cet/50;

1− 20
P

= Cet/50;
20
P

= 1− Cet/50

P (t) =
20

1− Cet/50 ; 100 = P (0) =
20

1− C ;

C =
4
5
; P (t) =

20
1− 4

5e
t/50

.

We need to find the value of T for which P (T ) = 200:

200 =
20

1− 4
5e
T/50

; 1− 4
5
eT/50 =

20
200

=
1
10

;

4
5
eT/50 =

9
10

; eT/50 =
9
8
;

T = 50 ln
9
8
≈ 5.889 (months).

C08S05.019: We are given an animal population P (t) at time t (in years) such that

dP

dt
= kP 2 − 1

100
P ; P (0) = 200, P ′(0) = 2

where k is a constant. Substitution of the numerical data in the differential equation yields

2 = P ′(0) = 40000k − 2, so that k =
1

10000
.

Thus

dP

dt
=
P 2 − 100

10000
=
P (P − 100)

10000
.

Because
1

P (P − 100)
=

1
100

(
1

P − 100
− 1
P

)
, we have

1
100

∫ (
1

P − 100
− 1
P

)
dP =

∫
1

10000
dt.

Therefore
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ln
P − 100

P
= C1 +

1
100

t;
P − 100

P
= Cet/100;

200− 100
200

= C =
1
2
; 1− 100

P
=

1
2
et/100;

100
P

= 1− 1
2
et/100; P (t) =

100
1− 1

2e
t/100

=
200

2− et/100 .

Part (a): We need to solve P (T ) = 1000:

1000 = P (t) =
200

2− eT/100 ; 2− eT/100 =
1
5
;

eT/100 =
9
5
; T = 100 ln

9
5
.

Answer: In approximately 58.779 years. Part (b): Doomsday will occur when the denominator in P (t) is
zero; that is, when et/100 = 2, so that t = 100 ln 2. Answer: In approximately 69.315 years.

C08S05.020: Part (a): We are given a population x(t) of alligators at time t (in months) satisfying the
initial value problem

dx

dt
=

1
10000

x2 − 1
100

x =
x2 − 100x

10000
, x(0) = 25.

Because
1

x(100− x) =
1

100

(
1

x− 100
− 1
x

)
, we have

1
100

∫ (
1

x− 100
− 1
x

)
dx =

∫
1

10000
dt; ln

x− 100
x

= C1 +
1

100
t;

x− 100
x

= Cet/100; 1− 100
x

= Cet/100;

100
x

= 1− Cet/100; x(t) =
100

1− Cet/100 .

The initial condition x(0) = 25 now yields C = −3. Therefore

x(t) =
100

1 + 3et/100
→ 0 as t→ +∞.

Part (b): If the initial condition is x(0) = 125, then C = 1
3 , so that

x(t) =
100

1− 1
3e
t/100

=
300

3− et/100 .

Now x(t)→ +∞ as t→ (100 ln 3)−, so doomsday occurs after approximately 109.861 (months).

C08S05.021: If we write P ′ = bP (a/b− P ) we see that M = a/b. Hence

B0P0

D0
=

(aP0)P0

bP 2
0

=
a

b
= M.
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Note also (for Problems 22 and 23) that a = B0/P0 and b = D0P
2
0 = k. (—CHE)

C08S05.022: The relations in Problem 21 given k = 1/2400 and M = 160. The solution is P (t) =
19200/(120 + 40e−t/5). We find that P = 0.95M after about 27.69 months. (—CHE)

C08S05.023: The relations in Problem 21 give k = 1/2400 and M = 180. The solution is P (t) =
43200/(240− 60e−3t/80). We find that P = 1.05M after about 44.22 months. (—-CHE)

C08S05.024: If we write P ′ = aP (P − b/a) we see that M = b/a. Hence

D0P0

B0
=

(bP0)P0

aP 2
0

=
b

a
= M.

Note also (for Problems 25 and 26) that b = D0/P0 and a = B0/P
2
0 = k. (—CHE)

C08S05.025: The relations in Problem 24 give k = 1/1000 andM = 90. The solution is P (t) = 9000/(100−
10e9t/10). We find that P = 10M after about 24.41 months. (—CHE)

C08S05.026: The relations in Problem 24 given k = 1/1100 and M = 120. The solution is P (t) =
13200/(110 + 10e6t/55). We find that P = 0.1M after about 42.12 months. (—CHE)

C08S05.027: We work in thousands of persons, so M = 100 for the total fixed population. We substitute
M = 100, P ′(0) = 1, and P0 = 50 in the logistic equation, and thereby obtain

1 = k(50)(100− 50), so k = 0.0004.

If t denotes the number of days until 80 thousand people have heard the rumor, then Eq. (7) gives

80 =
50× 100

50 + (100− 50)e−0.04t
,

so that t is approximately 34.66. Thus the rumor will have spread to 80% of the population in a little less
than 35 days. (—CHE)

C08S05.028: Proceeding as in Example 3 in the text, we solve the equations

25.00k(M − 25.00) = 3/8, 47.54k(M − 47.54) = 1/2

for M = 100 and k = 0.0002. Then Eq. (7) gives the population function

P (t) =
2500

25 + 75e−0.02t
.

We find that P = 75 when t = 50 ln 9 ≈ 110, that is, in 2035 A.D. (—CHE)

C08S05.029: The solution of the initial value problem given in the statement of Problem 29 is

P (t) =
1

1489
313500

+
341881
1358500

exp
(
− 627t

20000

) ≈ 1
0.0047496013 + (0.0276636323)e−(0.03135)t

. (1)

Part (a): The year 1930 corresponds to t = 140, for which the equation in (1) predicts P (140) ≈ 127.008
(million). Part (b):
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lim
t→∞

P (t) =
313500
1489

≈ 210.544 (million).

Part (c): The following table gives the year, the population predicted by Eq. (1), and the actual U.S. pop-
ulation (in millions) from the 1992 World Almanac and Book of Facts (New York: Pharos Books, 1991,
pp. 74–75). The population data are rounded.

Predicted Actual

Year population population

1790 3.900 3.930

1800 5.300 5.308

1810 7.185 7.240

1820 9.708 9.638

1830 13.061 12.861

1840 17.471 17.063

1850 23.193 23.192

1860 30.499 31.443

1870 39.616 38.558

1880 50.690 50.189

1890 63.707 62.980

1900 78.427 76.212

1910 94.362 92.228

1920 110.819 106.022

1930 127.008 123.203

1940 142.191 132.165

1950 155.803 151.326

1960 167.525 179.323

1970 177.272 203.302

1980 185.146 226.542

1990 191.358 248.710

2000 196.169 *281.422

*Note: This datum is from www.census.gov/main/www/cen2000/html, where the U.S. population on
April 1, 2000 is given as 281,421,906.
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C08S05.030: Any way you look at it, you should see that, the larger the parameter k > 0 is, the faster
the logistic population P (t) approaches its limiting population M . (—CHE)

C08S05.031: We begin with

dP

dt
= kP (M − P ), P (0) = P0. (6)

Thus

1
P (M − P )

dP = k dt;
1
M

(
1
P

+
1

M − P

)
dP = k dt;

ln
∣∣∣∣ P

M − P

∣∣∣∣ = kMt+ C;
∣∣∣∣ P

M − P

∣∣∣∣ = AekMt (A = eC > 0);

P

M − P = BekMt (B = ±A).

For later use, we note at this point that B =
P0

M − P0
. Next,

P = MBekMt − PBEkMt;

P (t) =
MBekMt

1 +BekMt
=

MB

e−kMt +B
=

MP0

M − P0

e−kMt +
P0

M − P0

.

Therefore

P (t) =
MP0

(M − P0)e−kMt + P0
. (7)

C08S05.032: Part (a): We begin with

dP

dt
= kP (P −M), P (0) = P0. (13)

Then

1
P (P −M)

dP = k dt;
1
M

(
1

P −M − 1
P

)
dP = k dt;

ln
∣∣∣∣P −MP

∣∣∣∣ = kMt+ C;
∣∣∣∣P −MP

∣∣∣∣ = AekMt (A = eC > 0);

P −M
P

= BekMt (B = ±A).

We note for later use that B =
P0 −M
P0

. Thus

P −M = BPekMt;

P −BPekMt = M ;
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P (t) =
M

1−BekMt
=

MP0

P0 − P0BekMt

=
MP0

P0 − (P0 −M)ekMt
=

MP0

P0 + (M − P0)ekMt
.

Part (b): If P0 < 0, then—assuming that M and k are positive—

lim
t→0

P (t) = 0.

C08S05.033: We begin with

dP

dt
= kP (M − P ) (3)

and differentiate both sides with respect to t (using the chain rule on the right-hand side). Thus

d2P

dP 2
=

{
d

dP
[kP (M − P )]

}
· dP
dt

= k(M − P − P ) · kP (M − P )

= k2P (M − P )(M − 2P ) = 2k2P (P −M)
(
P − 1

2M
)
.

The conclusions stated in Problem 33 are now clear.

C08S05.034: We begin with

dy

dx
=

bxy − qy
px− axy . (20)

Thus

dy

dx
=

bx− q
p− ay ·

y

x
;

p− ay
y

dy =
bx− q
x

dx;

(p ln y)− ay = bx− (q lnx) +A; (ln yp)− ay = bx− (lnxq) +A;

ype−ay = Bebxx−q (B = eA > 0);
yp

eay
= C · e

bx

xq
(C = ±A).

Therefore

xqyp = Cebxeay. (21)
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Section 8.6

C08S06.001: Characteristic equation: r2 − 7r + 10 = (r − 2)(r − 5) = 0: r1 = 2, r2 = 5;

y(x) = c1e
2x + c2e

5x.

C08S06.002: Char. Eqtn.: r2 + 2r − 15 = (r − 3)(r + 5) = 0: r1 = 3, r2 = −5; y(x) = c1e
3x + c2e

−5x.

C08S06.003: C. E.: 4r2 − 4r − 3 = (2r + 1)(2r − 3) = 0: r1 = − 1
2 , r2 = 3

2 ; y(x) = c1e
−x/2 + c2e

3x/2.

C08S06.004: C. E.: 12r2+13r+3 = (4r+3)(3r+1) = 0: r1 = − 3
4 , r2 = − 1

3 ; y(x) = c1e
−3x/4+c2e−x/3.

C08S06.005: C. E.: r2 + 4r + 1 = 0:

r =
−4±

√
16− 4

2
= −2±

√
3 ;

y(x) = c1 exp
([
−2 +

√
3

]
x
)

+ c2 exp
([
−2−

√
3

]
x
)
.

C08S06.006: Characteristic equation: 4r2 − 4r − 19 = 0:

r =
4±
√

16 + 304
8

=
1
2
±
√

5 ;

y(x) = c1 exp

(
1 + 2

√
5

2
x

)
+ c2 exp

(
1− 2

√
5

2
x

)
.

C08S06.007: C. E.: 4r2 + 12r + 9 = 0; (2r + 3)2 = 0; r1 = r2 = − 3
2 . Hence

y(x) = (c1 + c2x)e−3x/2.

C08S06.008: C. E.: 9r2 − 30r + 25 = 0; (3r − 5)2 = 0; r1 = r2 = 5
3 . Hence

y(x) = (c1 + c2x)e5x/3.

C08S06.009: C. E.: 25r2 − 20r + 4 = 0; (5r − 2)2 = 0; r1 = r2 = 2
5 . Therefore

y(x) = (c1 + c2x)e2x/5.

C08S06.010: C. E.: 49r2 + 126r + 81 = 0; (7r + 9)2 = 0; r1 = r2 = − 9
7 . Therefore

y(x) = (c1 + c2x)e−9x/7.

C08S06.011: Characteristic equation: r2 + 6r + 13 = 0:

r =
−6±

√
36− 52
2

= −3± 2i.

Therefore y(x) = e−3x (c1 cos 2x+ c2 sin 2x).
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C08S06.012: Characteristic equation: r2 − 10r + 74 = 0:

r =
10±

√
100− 296
2

= 5± 7i.

Hence y(x) = e5x (c1 cos 7x+ c2 sin 7x).

C08S06.013: Characteristic equation: 9r2 + 6r + 226 = 0:

r =
−6±

√
36− 8136
18

=
−6± 90i

18
= − 1

3
± 5i;

y(x) = e−x/3(c1 cos 5x+ c2 sin 5x).

C08S06.014: Characteristic equation: 9r2 + 90r + 226 = 0:

r =
−90±

√
8100− 8136
18

=
−90± 6i

18
= −5± 1

3
i;

y(x) = e−5x
(
cs cos

x

3
+ c2 sin

x

3

)
.

C08S06.015: Characteristic equation: 2r2 − 11r + 12 = 0:

r =
11±

√
121− 96
4

=
11± 5

4
.

Thus the general solution is y(x) = c1e
3x/2 + c2e

4x. Also

y′(x) =
3
2
c1e

3x/2 + 4c2e4x;

5 = y(0) = c1 + c2;

15 = y′(0) =
3
2
c1 + 4c2.

Therefore c1 = 2, c2 = 3, and y(x) = 2e3x/2 + 3e4x.

C08S06.016: Characteristic equation: r2 − 2r − 35 = 0; (r + 5)(r − 7) = 0. Thus the general solution
is y(x) = c1e

−5x + c2e
7x. Also

y′(x) = −5c1e−5x + 7c2e7x;

12 = y(0) = c1 + c2;

0 = y′(0) = −5c1 + 7c2.

Therefore c1 = 7, c2 = 5, and y(x) = 7e−5x + 5e7x.

C08S06.017: The roots of the characteristic equation are r1 = 7 and r2 = 11; the solution of the given
initial value problem is y(x) = 9e7x − 5e11x.

C08S06.018: The roots of the characteristic equation are r1 = − 2
3 and r2 = 3

4 ; the solution of the given
initial value problem is y(x) = −6e−2x/3 + 8e3x/4.
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C08S06.019: The roots of the characteristic equation are r1 = r2 = −11; the solution of the given initial
value problem is y(x) = (2− 3x)e−11x.

C08S06.020: The roots of the characteristic equation are r1 = r2 = − 7
3 ; the solution of the given initial

value problem is y(x) = (3x+ 6)e−7x/3.

C08S06.021: The roots of the characteristic equation are r1 = 5i and r2 = −5i; the solution of the given
initial value problem is y(x) = 7 cos 5x+ 2 sin 5x.

C08S06.022: The roots of the characteristic equation are r1 = 10
3 i and r2 = − 10

3 i; the solution of the
given initial value problem is

y(x) = 99 cos
10x
3

+ 30 sin
10x
3
.

C08S06.023: The roots of the characteristic equation are r1 = −2 + 4i and r2 = −2− 4i; the solution of
the given initial value problem is y(x) = e−2x(9 cos 4x+ 7 sin 4x).

C08S06.024: The roots of the characteristic equation are r1 = −5 + 9i and r2 = −5− 9i; the solution of
the given initial value problem is y(x) = e−5x(11 cos 9x+ 5 sin 9x).

C08S06.025: The roots of the characteristic equation are r1 = − 1
2 + 5i and r2 = − 1

2 − 5i; the solution of
the given initial value problem is y(x) = e−x/2(10 cos 5x+ 6 sin 5x).

C08S06.026: The roots of the characteristic equation are r1 = − 1
10 +10i and r2 = − 1

10 −10i; the solution
of the given initial value problem is y(x) = e−x/10(30 cos 10x− 3 sin 10x).

C08S06.027: The roots of the characteristic equation are r1 = 0 and r2 = −10:

r(r + 10) = 0; r2 + 10r = 0; y′′ + 10y′ = 0.

C08S06.028: The roots of the characteristic equation are r1 = 10 and r2 = −10:

(r − 10)(r + 10) = 0; r2 − 100 = 0; y′′ − 100y = 0.

C08S06.029: The roots of the characteristic equation are r1 = r2 = −10:

(r + 10)2 = 0; r2 + 20r + 100 = 0; y′′ + 20y′ + 100y = 0.

C08S06.030: The roots of the characteristic equation are r1 = 10 and r2 = 100:

(r − 10)(r − 100) = 0; r2 − 110r + 1000 = 0; y′′ − 110y′ + 1000y = 0.

C08S06.031: The roots of the characteristic equation are r1 = r2 = 0:

(r − 0)(r − 0) = 0; r2 = 0; y′′ = 0.

C08S06.032: The roots of the characteristic equation are r1 = 1 +
√

2 and r2 = 1−
√

2 :
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(
r − 1−

√
2

)(
r − 1 +

√
2

)
= 0; r2 − 2r − 1 = 0; y′′ − 2y′ − y = 0.

C08S06.033: The roots of the characteristic equation are r1 = −5 + 1
5 i and r2 = −5− 1

5 i:

(
r + 5− 1

5
i

)(
r + 5 +

1
5
i

)
= 0; r2 + 10r +

626
25

= 0; 25y′′ + 250y′ + 626y = 0.

C08S06.034: The roots of the characteristic equation are r1 = − 1
5 + 5i and r2 = − 1

5 − 5i:
(
r +

1
5
− 5i

)(
r +

1
5

+ 5i
)

= 0; r2 +
2
5
r +

626
25

= 0; 25y′′ + 10y′ + 626y = 0.

C08S06.035: The characteristic equation is r2 + 25 = 0, and hence the general solution is

y(x) = c1 cos 5x+ c2 sin 5x.

Part (a): The condition y(0) = 0 yields c1 = 0, and hence y(x) = c2 sin 5x. But the second condition
y(π) = 0 is satisfied for every choice of the constant c2. Moreover, if so, then

y′′ + 25y = −25c2 sinx+ 25c2 sinx ≡ 0

for every choice of the constant c2, and therefore the given boundary value problem has infinitely many
solutions, one for every choice of the constant c2. Part (b): The condition y(0) = 0 yields c1 = 0, and
hence y(x) = c2 sin 5x. But the second condition

0 = y(3) = c2 sin 15 ≈ (0.6502878401)c2

is satisfied only if c2 = 0. Therefore the given boundary value problem has at most the trivial solution
y(x) ≡ 0 (and substitution verifies that, indeed, this is a solution). Hence the problem has no nontrivial
solutions. The point of this problem is to draw a very sharp distinction between second-order initial value
problems, with initial conditions y(a) = b0, y′(a) = b1 given at the same abscissa, and second-order boundary

value problems, which typically have values of y (and/or y′) imposed at two different values of the abscissa.
In particular, the vital existence-uniqueness theorem stated in Section 8.6 does not hold for such boundary
value problems.

C08S06.036: Without loss of generality we assume that a = 1. The characteristic equation ar2+br+c = 0
has solution(s)

r =
−b±

√
b2 − 4c
2

.

Case 1: b2 − 4c = k2 where k > 0. Note that 0 < k < b. Then the roots of the characteristic equation are

r1 = − b+ k

2
< 0 and r2 = − b− k

2
< 0.

Therefore y(x) = c1e
r1x + c2e

r2x → 0 as x → +∞.

Case 2: b2 − 4c = 0. Then the roots of the characteristic equation are

r1 = r2 = − b
2

= −k < 0 where k > 0.
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The general solution of the differential equation is then

y(x) = (c1 + c2x)e−kx =
c1 + c2x

ekx
,

and therefore y(x) → 0 as x → +∞.

Case 3: b2 − 4c = −k2 < 0 where k > 0. The roots of the characteristic equation are

r1, r2 =
−b± ik

2
,

and the general solution is y(x) = e−bx/2(c1 cos kx + c2 sin kx). Because −b/2 < 0, | cos kx| � 1, and
| sin kx| � 1 for all x and all k > 0, it now follows that y(x) → 0 as x → +∞.
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Section 8.7

C08S07.001: Given: 2x′′ + 50x = 0; x(0) = 4, x′(0) = 15. The general solution and its derivative are

x(t) = A cos 5t + B sin 5t and

x′(t) = −5A sin 5t + 5B cos 5t.

The initial conditions yield A = 4 and B = 3. In the notation is Section 8.7, we have

C =
√

16 + 9 = 5, cosα =
4
5
, and sinα =

3
5
.

Therefore x(t) = 5 cos
(
5t− tan−1 3

4

)
≈ 5 cos(5t− 0.64350111).

C08S07.002: Given: 3x′′ + 48x = 0; x(0) = −6, x′(0) = 32. The general solution and its derivative
are

x(t) = A cos 4t + B sin 4t and

x′(t) = −4A sin 4t + 4B cos 4t.

The initial conditions yield A = −6 and B = 8. Hence

x(t) = −6 cos 4t + 8 sin 4t.

In the notation of Section 8.7,

C =
√

36 + 64 = 10, cosα = − 3
5
, and sinα =

4
5
.

Thus the phase angle α lies in the second quadrant, and so α = π + tan−1
(
− 4

3

)
= π − tan−1 4

3 . Thus

x(t) = 10 cos
(
4t− π + tan−1 4

3

)
≈ 10 cos(4t− 2.21429744).

C08S07.003: Given: 4x′′ + 36x = 0; x(0) = −5, x′(0) = −36. Then the general solution and its
derivative are

x(t) = A cos 3t + B sin 3t and

x′(t) = −3A sin 3t + 4B cos 3t.

Then the initial conditions yields A = −5 and B = −12, so the solution is

x(t) = −5 cos 3t− 12 sin 3t.

In the notation of Section 8.7 we have

C =
√

25 + 144 = 13, cosα = − 5
13

, and sinα = − 12
13

.

Thus the phase angle α lies in the third quadrant; α = π + tan−1
(

12
5

)
. Hence

x(t) = 13 cos
(
3t− π − tan−1 12

5

)
≈ 13 cos(3t− 4.31759786).

1



C08S07.004: Given: 5x′′ + 80x = 0, x(0) = 15, x′(0) = −32. The general solution and its derivative
are

x(t) = A cos 4t + B sin 4t and

x′(t) = −4A sin 4t + 4B cos 4t.

The initial conditions yield A = 15 and B = −8. In the notation of Section 8.7, we have

C =
√

225 + 64 = 17, cosα =
15
17

, and sinα = − 5
17

.

Thus the phase angle is α = 2π + tan−1
(
− 8

15

)
, and therefore

x(t) = 17 cos
(
4t− 2π + tan−1 8

15

)
≈ 17 cos(4t + 0.48995733).

C08S07.005: Given: x′′ + 6x′ + 8x = 0. The characteristic equation is

r2 + 6r + 8 = (r + 2)(r + 4) = 0

with roots −2 and −4. In the notation of Section 8.7, c2 = 9 > 8 = 4km, so the motion is overdamped.
The general solution is x(t) = Ae−2t + Be−4t, and the initial conditions yield A = 4 and B = −2. Hence
the solution is

x(t) = 4e−2t − 2e−4t.

C08S07.006: Given: x′′ + 10x′ + 21x = 0. The characteristic equation is

r2 + 10r + 21 = (r + 3)(r + 7) = 0,

with roots −3 and −7. In the notation of Section 8.7, c2 = 100 > 84 = 4km, so the resulting motion is
overdamped. The general solution is x(t) = Ae−3t + Be−7t, and the initial conditions yield A = 4 and
B = −2. Hence

x(t) = 4e−3t − 2e−7t.

C08S07.007: The characteristic equation is

r2 + 8r + 16 = (r + 4)2 = 0,

with repeated roots r1 = r2 = −4. In the notation of Section 8.7, c2 − 4km = 64− 64 = 0, so the motion is
critically damped. The general solution is

x(t) = (A + Bt)e−4t,

and the initial conditions yield A = 5 and B = 10. Hence

x(t) = (10t + 5)e−4t.

C08S07.008: The characteristic equation is r2 + 6r + 25 = 0, with roots
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r1, r2 =
−6±

√
36− 100
2

=
−6± 8i

2
= −3± 4i.

In the notation of Section 8.7, c2 = 144 < 400 = 4km, so the motion is underdamped. The general solution
and its derivative are

x(t) = e−3t(A cos 4t + B sin 4t) and

x′(t) = e−3t(4B cos 4t− 4A sin 4t)− 3e−3t(A cos 4t + B sin 4t),

and the given initial conditions yield A = 0 and B = −2. Hence the solution is

x(t) = −2e−3t sin 4t = −2e−3t cos
(
4t− π

2

)
.

C08S07.009: The differential equation has characteristic equation r2 + 8r + 20 = 0, with roots

r1, r2 =
−8±

√
64− 80
2

=
−8± 4i

2
= −4± 2i.

Thus the differential equation has general solution

x(t) = e−4t(A cos 2t + B sin 2t).

Because (in the notation of Section 8.7) c2 = 256 < 320 = 4km, the motion is underdamped. The initial
conditions yield A = 5 and B = 12, so one form of the solution is

x(t) = e−4t(5 cos 2t + 12 sin 2t).

Continuing the notation of Section 8.7, we have

C =
√
A2 + B2 = 13, cosα =

5
13

, and sinα =
12
13

,

and hence α = tan−1 12
5 . Thus the solution may also be written in the form

x(t) = 13e−4t cos
(

2t− tan−1 12
5

)
≈ 13e−4t cos(2t− 1.17600521).

C08S07.010: Given: x′′ +10x′ +125x = 0. The associated characteristic equation is r2 +10r+125 = 0,
with roots

r1, r2 =
−10±

√
100− 500
2

= −5± 10i.

In the notation of Section 8.7, we have c2 − 4km = 100 − 500 < 0, so the motion is underdamped. The
general solution of the differential equation and its derivative are

x(t) = e−5t(A cos 10t + B sin 10t) and

x′(t) = e−5t(10B cos 10t− 10A sin 10t)− 5e−5t(A cos 10t + B sin 10t).

The initial conditions yield A = 6 and B = 8, and hence one form of the solution is
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x(t) = e−5t(6 cos 10t + 8 sin 10t).

Continuing the notation of Section 8.7, we have

C =
√
A2 + B2 = 10, cosα =

3
5
, and sinα =

4
5
.

Therefore α = tan−1 4
3
, and therefore

x(t) = 10e−5t cos
(

10t− tan−1 4
3

)
≈ 10e−5t cos(10t− 0.92729522).

C08S07.011: The associated homogeneous equation is x′′+9x = 0, which has the complementary solution
xc(t) = c1 cos 3t + c2 sin 3t. A particular solution has the form

xp(t) = A cos 2t + B sin 2t,

and substitution into the original nonhomogeneous equation yields

−4A cos 2t− 4B sin 2t + 9A cos 2t + 9B sin 2t = 10 cos 2t,

so that A = 2 and B = 0. Hence the general solution of the nonhomogeneous equation, and its derivative,
are

x(t) = c1 cos 3t + c2 sin 3t− 2 cos 2t and

x′(t) = 3c2 cos 3t− 3c1 sin 3t + 4 sin 2t.

The initial conditions x(0) = x′(0) = 0 then yield c1 = 2 and c2 = 0. Therefore

x(t) = 2 cos 2t− 2 cos 3t.

C08S07.012: The associated homogeneous equation has characteristic equation r2 +4 = 0, and hence the
complementary solution is

xc(t) = c1 cos 2t + c2 sin 2t.

A particular solution of the nonhomogeneous equation has the form xp(t) = A cos 3t+B sin 3t, and it follows
easily that

x′′
p(t) + 4xp(t) = −9A cos 3t− 9B sin 3t + 4A cos 3t + 4B sin 3t = 5 sin 3t.

Thus A = 0 and B = −1. Hence the general solution of the original equation is

x(t) = c1 cos 2t + c2 sin 2t− sin 3t.

The initial conditions x(0) = x′(0) = 0 then yield c1 = 0 and c2 = 3
2 . Hence the solution of the given initial

value problem is

x(t) =
3
2

sin 2t − sin 3t.
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C08S07.013: The associated homogeneous equation has characteristic equation r2 + 100 = 0 and thus
complementary solution

xc(t) = c1 cos 10t + c2 sin 10t.

The given nonhomogeneous equation has particular solution of the form xp(t) = A cos 5t + B sin 5t, and
substitution yields

x′′
p(t) + 100xp(t) = 75A cos 5t + 75B sin 5t = 300 sin 5t,

so that A = 0 and B = 4. Therefore the nonhomogeneous equation has general solution

x(t) = c1 cos 10t + c2 sin 10t + 4 sin 5t.

The initial conditions x(0) = x′(0) = 0 yield c1 = 0 and c2 = −2, so the solution of the original initial value
problem is

x(t) = 4 sin 5t− 2 sin 10t.

C08S07.014: The characteristic equation of the associated homogeneous equation is r2 + 25 = 0, so
the complementary solution is xc(t) = c1 cos 5t + c2 sin 5t. Moreover, a particular solution has the form
xp(t) = A cos 4t + B sin 4t, and substitution yields

x′′
p(t) + 25xp(t) = 9A cos 4t + 9B sin 4t = 90 cos 4t,

so that A = 10 and B = 0. Hence the original differential equation has general solution

x(t) = c1 cos 5t + c2 sin 5t + 10 cos 4t.

The initial conditions x(0) = 25, x′(0) = 10 then yield c1 = 15 and c2 = 2. Therefore the general solution
of the given initial value problem is

x(t) = 15 cos 5t + 2 sin 5t + 10 cos 4t.

In the notation of Section 8.7, we have

C =
√

225 + 4 =
√

229 , cosα =
15√
229

, and sinα =
2√
229

.

Therefore the general solution may also be expressed in the form

x(t) = 10 cos 4t +
√

229 cos
(

5t− tan−1 2
15

)
≈ 10 cos 4t +

√
229 cos(5t− 0.13255153).

C08S07.015: The steady periodic solution has the form

xsp(t) = A cos 3t + B sin 3t

and satisfies the given differential equation; therefore

−9A cos 3t− 9B sin 3t− 12A sin 3t + 12B cos 3t + 4A cos 3t + 4B sin 3t = 130 cos 3t,
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and it follows that A and B are solutions of the simultaneous equations

−5A + 12B = 130,

−5B − 12A = 0, so that

A = − 50
13

and B =
120
13

.

Therefore

xsp(t) = − 50
13

cos 3t +
120
13

sin 3t.

In the notation of Section 8.7, we have

C =
√
A2 + B2 = 10, cosα = − 5

13
, and sinα =

12
13

.

Consequently C = 1, α = π − tan−1
(

12
5

)
, and

xsp(t) = 10 cos
(
3t− π + tan−1 12

5

)
≈ 10 cos(3t− 1.96558745).

C08S07.016: The steady periodic solution has the form xsp(t) = A cos 5t + B sin 5t and satisfies the
equation

−25A cos 5t− 25B sin 5t− 15A sin 5t + 15B cos 5t + 5A cos 5t + 5B sin 5t = −150 cos 5t.

Hence the coefficients A and B satisfy the simultaneous equations

−20A + 15B = −500,

−20B − 15B = 0.

It follows that A = 16 and B = −12, so xsp(t) = 16 cos 5t− 12 sin 5t. In the notation of Section 8.7,

C =
√
A2 + B2 = 20, cosα =

4
5
, and sinα = − 3

5
.

Therefore tanα = − 3
4 , and hence

xsp(t) = 20 cos
(
5t + tan−1 3

4

)
≈ 20 cos(5t + 0.64350111).

C08S07.017: The associated homogeneous equation has characteristic equation r2 + 4r + 5 ,= 0, with
roots

r1, r2 =
−4±

√
4− 20

2
= −2± i,

so the complementary solution has the form xc(t) = e−2t(c1 cos t+ c2 sin t). The steady periodic solution hs
the form xsp(t) = A cos 3t + B sin 3t, and substitution in the original differential equation yields

−9A cos 3t− 9B sin 3t− 12A sin 3t + 12B cos 3t + 5A cos 3t + 5B sin 3t = 40 cos 3t;
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−4A + 12B = 40,

−4B − 12A = 0.

Therefore A = −1 and B = 3, so that xsp(t) = 3 sin 3t − cos 3t. The general solution x(t) of the original
differential equation is thus

x(t) = e−2t(c1 cos t + c2 sin t) + 3 sin 3t− cos 3t; moreover

x′(t) = e−2t(c2 cos t− c1 sin t− 2c1 cos t− 2c2 sin t) + 9 cos 3t + 3 sin 3t.

The initial conditions x(0) = x′(0) = 0 next yield

c1 − 1 = 0,

c2 − 2c1 + 9 = 0,

and thus c1 = 1 and c2 = −7. Hence the general solution of the given initial value problem is

x(t) = e−2t(cos t− 7 sin t) + 3 sin 3t− cos 3t.

The transient solution is xtr(t) = e−2t(cos t− 7 sin t). In the notation of Section 8.7, we have

C =
√

1 + 49 = 5
√

2 , cosα =
1

5
√

2
, and sinα = − 7

5
√

2
.

Hence α = 2π − tan−1(7). Therefore the transient solution may be expressed in the form

xtr(t) = 5e−2t
√

2 cos(t− 2π + tan−1 7) = 5e−2t
√

2 cos(t + tan−1 7) ≈ 5e−2t
√

2 cos(t + 1.42889927).

The steady periodic solution is xsp(t) = 3 sin 3t− cos 3t. In the notation of Section 8.7,

C =
√

10 , cosα = − 1√
10

, and sinα =
3√
10

.

Therefore α = π + tan−1(−3) = π − tan−1(3). Hence

xsp(t) =
√

10 cos(3t− π + tan−1 3) ≈
√

10 cos(3t− 1.89254688).

C08S07.018: The roots of the characteristic equation are −4 ± 3i. The complementary and particular
solutions are

xc(t) = e−4t(c1 cos 3t + c2 sin 3t) and xp(t) = A cos t + B sin t.

Substitution of the latter in the original differential equation yields A = 1 and B = 22. Hence xp(t) =
cos t + 22 sin t, and the general solution of the original differential equation is

x(t) = e−4t(c1 cos 3t + c2 sin 3t) + cos t + 22 sin t; moreover,

x′(t) = e−4t(3c2 cos 3t− 3c1 sin 3t− 4c1 cos 3t− 4c2 sin 3t)− sin t + 22 cos t.

The initial condition x(0) = 5 implies that c1 = 4, and the condition x′(0) = 0 then yields c2 = −2. Hence
the given initial value problem has solution
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x(t) = e−4t(4 cos 3t− 2 sin 3t) + cos t + 22 sin t.

The transient solution is xtr(t) = e−4t(4 cos 3t− 2 sin 3t). In this notation of Section 8.7, we have

C =
√

16 + 4 = 2
√

5 , cosα =
2√
5
, and sinα = − 1√

5
.

Therefore

xtr(t) = 2e−4t
√

5 cos
(
3t + 2π − arctan 1

2

)
≈ 2e−4t

√
5 cos(3t− 0.46364761).

The steady periodic solution is xsp(t) = cos t + 22 sin t. Again using the notation of Section 8.7, we have

C =
√

485 , cosα =
1√
485

, and sinα =
22√
485

.

Therefore tanα = 22 and

xsp(t) =
√

485 cos(t− arctan 22) ≈
√

485 cos(t− 1.52537305).

C08S07.019: Equation (8) yields frequency 2 rad/s; that is,
1
π

Hz. The period is π s.

C08S07.020: With m = 3
4 , k = 48, and c = 0, we find that the frequency is ω0 =

√
k/m = 8 rad/s and

the period is T = 2π/ω0 = π/4 s.

C08S07.021: The spring constant is k = 15/0.2 = 75 N/m. The solution of 3x′′ +75x = 0 with x(0) = 0
and x′(0) = −10 is x(t) = −2 sin 5t. Thus the amplitude is 2 m, the frequency is 5 rad/s, and the period
is 2π/5 s. (—CHE)

C08S07.022: Part (a): With m = 1
4 (kg) and k = 9/(0.25) = 36 (N/m) we find that ω0 = 12 (rad/s).

The solution of x′′ + 144x = 0 with x(0) = 1 and x′(0) = −5 is

x(t) = cos 12t− 5
12

sin 12t

=
13
12

(
12
13

cos 12t− 5
13

sin 12t
)

=
13
12

cos(12t− α)

where α = 2π − tan−1
(

5
12

)
≈ 0.58883942. Part (b): Here we have

C =
13
12
≈ 1.08333333 (ft) and T =

2π
12
≈ 0.52359878 (s). (—CHE)

C08S07.023: Following the suggestion in the statement of the problem, we have

mx′′ + cx′ + kx = F (t) + mg; x(0) = x0, x′(0) = v0. (1)

Note that kx0 = mg. Hence if we let y(t) = x(t)− x0, then y(0) = x0 − x0 = 0 and y′(0) = x′(0) = v0.
Thus substitution in the equations in (1) yields

my′′ + cy′ + ky + kx0 = F (t) + kx0; that is,

my′′ + cy′ + ky = F (t); y(0) = 0, y′(0) = v0.
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C08S07.024: Newton’s second law F = a here takes the form

ρπr2hx′′ = ρπr2hg − πr2xg; that is,

x′′ +
g

ρh
x = g.

The solution of this equation for which x(0) = x′(0) = 0 is

x(t) = ρh(1− cosω0t)

where ω0 =
√
g/(ρh) . With the given numerical values of ρ, h, and g, the amplitude of oscillation is

ρh = 100 cm and the period is

p = 2π

√
ρh

g
≈ 2.007090 (s). (—C.H.E.)

C08S07.025: The fact that the buoy weighs 100 lb means that mg = 100, so that m = 100/32 = 3.125
slugs. The weight of water is 62.4 lb/ft3, so the equation F = ma of Newton’s second law of motion takes
the form

100
32

x′′ = 100− (62.4)πr2x.

It follows that the circular frequency ω of the buoy is given by

ω2 =
32 · (62.4) · πr2

100
.

But the fact that the period of the buoy is ρ = 2.5 s means that ω = 2π/(2.5). Equating these two results
yields r ≈ 0.3173201415 ft, approximately 3.8078 in. (—C.H.E.)

C08S07.026: Part (a): Substitution of Mr = (r/R)3M in Rr = −GMrm/r2 yields

Fr = −GMm

R3
r.

Part (b): Because GM/R3 = g/R, the equation mr′′ = Fr yields the differential equation

r′′ +
g

R
r = 0. (1)

Part (c): The solution Eq. (1) for which r(0) = R and r′(0) = 0 is r(t) = R cosω0t where ω0 =
√
g/R .

Hence, with g = 32.2 ft/s2 and R = 3960 · 5280 ft, we find that the period of the simple harmonic motion of
the particle is

p =
2π
ω0

= 2π

√
R

g
≈ 5063.0998

(seconds), approximately 84 min 23.0998 s. (—C.H.E.)

C08S07.027: Part (a):

x(t) = 50
(
e−2t/5 − e−t/2

)
.
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Part (b): x′(t) = 0 when

25e−t/2 − 20e−2t/5 = 5e−2t/5
(
5e−t/10 − 4

)
= 0;

t = 10 ln
5
4
≈ 2.23143551.

Hence the greatest distance that the mass travels to the right is

x

(
10 ln

5
4

)
=

512
125

= 4.096. (—C.H.E.)

C08S07.028: Part (a):

x(t) = e−t/5(20 cos 3t + 15 sin 3t) = 25e−t/5 cos(3t− α)

where α = tan−1 3
4 ≈ 0.64350111. Part (b): It follows that the oscillations are “bounded” by the curves

x = ±25e−t/5 and that the pseudoperiod of oscillation is T = 2π/3 (because ω = 3). (—C.H.E.)

C08S07.029: Part (a): With m = 12
32 = 3

8 slug, c = 3 lb-s/ft, and k = 24 lb/ft, the differential equation
takes the form

3x′′ + 24x′ + 129x = 0.

The solution satisfying x(0) = 1 and x′(0) = 0 is

x(t) = e−4t

(
cos 4t

√
3 +

1√
3

sin 4t
√

3
)

=
2√
3
e−4t

(√
3
2

cos 4t
√

3 +
1
2

sin 4t
√

3

)
=

2√
3
e−4t cos

(
4t
√

3 − π

6

)
.

Part (b): The time-varying amplitude is 2/
√

3 ≈ 1.1547 ft, the frequency is 4
√

3 ≈ 6.9282 rad/s, and the
phase angle is π/6. (—C.H.E.)

C08S07.030: Part (a): With m = 100 slugs we get ω =
√
k/100 . But we are given that

ω = (80 cycles/min)(2π)(1 min/60 s) = 8π/3,

and equating the two values yields k ≈ 7018 lb/ft. Part (b): With ω1 = 2π(78/60) s−1, Eq. (18) in the
text yields c ≈ 372.314 lb/(ft/s). Hence p = c/2m ≈ 1.8615. Finally e−pt = 0.01 gives t ≈ 2.47 s.

(—C.H.E.)

C08S07.031: In the case of critical damping, we have

r =
−c±

√
c2 − 4km
2m

= − c

2m
= −p.

The general solution of the differential equation and its derivative are

x(t) = (c1 + c2t)e−pt and

x′(t) = (c1 − pc1t− pc2)e−pt.
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The initial conditions yield x0 = c2 and v0 = c1 − pc2, and it follows that c1 = px0 + v0. Therefore

x(t) = (px0t + v0t + x0)e−pt.

C08S07.032: See Problem 31. If t > 0 and x(t) = 0, then

x0 + v0t + px0t = 0 :

t = − x0

v0 + px0
.

Hence the equation x(t) = 0 has a positive solution if and only if x0 and v0 + px0 have opposite signs.

C08S07.033: See Problem 31. If x(t) has a local extremum for t > 0, then x′(t) = 0 for some t > 0. Thus

x′(t) = (px0 + v0 − p2x0t− pv0t− px0)e−pt = 0;

v0 − p2x0t− pv0t = 0;

t =
v0

p(px0 + v0)
.

Because p > 0, a positive solution t of x′(t) = 0 exists if and only if v0 and px0 + v0 have the same sign.

C08S07.034: Because this is the overdamped case, we know that c2 > 4km. The characteristic equation
mr2 + cr + k = 0 has roots

r =
−c±

√
c2 − 4km
2m

= − c

2m
±

√
c2 − 4km

4m2
= − c

2m
±

√( c

2m

)2
− k

m
;

r1 = −p +
√
p2 − ω2

0 , r2 = −p−
√
p2 − ω2

0 .

Note that

γ =
r1 − r2

2
=
−p +

√
p2 − ω2

0 + p +
√
p2 − ω2

0

2
=

√
p2 − ω2

0 .

The solution of the differential equation and its derivative are

x(t) = c1e
r1t + c2e

r2t and

x′(t) = c1r1e
r1t + c2r2e

r2t.

The initial conditions yield

x0 = x(0) = c1 + c2 and v0 = x′(0) = c1r1 + c2r2,

and it follows that

c1 =
r2x0 − v0

r2 − r1
=

v0 − r2x0

2γ
and c2 =

r1x0 − v0

r1 − r2
=

r1x0 − v0

2γ
.
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Therefore

x(t) =
1
2γ

[
(v0 − r2x0)er1t − (v0 − r1x0)er2t

]
.

C08S07.035: The motion is overdamped, so we know that c2 > 4km. Substitute x0 = 0 in the solution in
Problem 34 to find that

x(t) =
1
2γ

(
v0e

r1t − v0e
r2t

)
=

v0

γ
· e

r1t − er2t

2

where

r1 = −p +
√
p2 − ω2

0 , r2 = −p−
√
p2 − ω2

0 , and p =
c

2m
.

Thus r1 = −p + γ and r2 = −p− γ. Hence

er1t − er2t = exp(−pt)
[
eγt − e−γt

]
= 2 exp(−pt) sinh γt.

Therefore

x(t) =
v0

γ
e−pt sinh γt.

C08S07.036: By Problem 34 and its solution.

x(t) =
1
2γ

[
(v0 − r2x0)er1t − (v0 − r1x0)er2t

]

where

γ =
r1 − r2

2
> 0 and r2 < r1 < 0.

The condition x(t) = 0 is equivalent to

(v0 − r2x0)er1t = (v0 − v1x0)er2t;

(v0 − r2x0)e(r1−r2)t = v0 − r1x0;

e(r1−r2)t =
v0 − r1x0

v0 − r2x0
;

t =
1

r1 − r2
ln

v0 − r1x0

v0 − r2x0
.

Now r1 − r2 > 0, so there is only a single solution for t. If, moreover, there is to a single positive solution,
then

v0 − r1x0

v0 − r2x0
> 1.

It now follows that there is no positive solution for t except in the following two (exclusive) cases, in each
of which there is exactly one positive solution:
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v0 > r2x0 and x0 < 0;

v0 < r2x0 and x0 > 0.

C08S07.037: With m = 1, c = 0, k = 9, F0 = 60, and ω = 3, we have

x′′ + 9x = 60 cos 3t;

x′(0) = x′(0) = 0.

Part (a): If there is a solution of the form x(t) = A cos 3t + B sin 3t, then

x′′(t) = −9A cos 3t− 9B sin 3t.

Hence x′′ + 9x = 0 for all t. So there can be no such solution. Part (b): If xp(t) = 10t sin 3t, then

x′
p(t) = 10 sin 3t + 30t cos 3t;

x′′
p(t) = 60 cos 3t− 90t sin 3t;

x′′
p(t) + 9xp(t) = 60 cos 3t− 90t sin 3t + 90t sin 3t = 60 cos 3t.
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Chapter 8 Miscellaneous Problems

C08S0M.001: Given
dy

dx
= 2x+ cosx, y(0) = 0:

y(x) = x2 + sinx+ C;

0 = y(0) = C;

y(x) = x2 + sinx.

A Mathematica command for solving this initial value problem is

DSolve[ { y′[x] == 2∗x + Cos[x], y[0] == 0 }, y[x], x ]

and other computer algebra systems, such as Maple, Derive, and MATLAB, use similar commands.

C08S0M.002: Given
dy

dx
= 3x1/2 + x−1/2, y(1) = 10:

y(x) = 2x3/2 + 2x1/2 + C;

10 = y(1) = 4 + C;

y(x) = 2x3/2 + 2x1/2 + 6.

C08S0M.003: Given:
dy

dx
= (y + 1)2.

dy

(y + 1)2
= 1 dx;

− 1
y + 1

= x+ C;

y + 1 = − 1
x+ C

;

y(x) = −1− 1
x+ C

.

C08S0M.004: Given:
dy

dx
= (y + 1)1/2.

(y + 1)−1/2 dy = 1 dx; 2(y + 1)1/2 = x+ C; y + 1 =
(
x+ C

2

)2

; y(x) = −1 +
(
x+ C

2

)2

.

C08S0M.005: Given:
dy

dx
= 3x2y2, y(0) = 1.

y−2 dy = 3x2 dx; −(y−1) = x3 + C; y(x) = − 1
x3 + C

.

But 1 = y(0) = − 1
C

, and therefore y(x) =
1

1− x3
.

C08S0M.006: Given:
dy

dx
= x1/3y1/3, y(1) = 1.
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4y−1/3 dy = 4x1/3 dx; 6y2/3 = 3x4/3 + C; y(x) =
(

3x4/3 + C

6

)3/2

.

But 1 = y(1) =
(

3 + C

6

)3/2

, so C = 3. Therefore y(x) =
(
x4/3 + 1

2

)3/2

.

A computer algebra system may return the solution in a quite different form. For example, the Mathe-

matica command

DSolve[ { y′[x] == (x∗y[x])∧(1/3), y[1] = 1 }, y[x], x ]

returns the particular solution

y(x) =

√
1 + 3x4/3 + 3x8/3 + x4

2
√

2
.

C08S0M.007: Given: x2y2 dy

dx
= 1.

3y2 dy = 3x−2dx; y3 = −3x−1 + C; y(x) =
(
C − 3

x

)1/3

.

C08S0M.008: Given: x1/2y1/2 dy

dx
= 1.

3y1/2 dy = 3x−1/2 dx; 2y3/2 = 6x1/2 + 2C; y(x) =
(
3
√
x+ C

)2/3
.

C08S0M.009: Given:
dy

dx
= y2 cosx, y(0) = 1.

y−2 dy = (cosx) dx; −(y−1) = C + sinx; y(x) = − 1
C + sinx

.

But 1 = y(0) = − 1
C

, so C = −1. Therefore y(x) =
1

1− sinx
.

C08S0M.010: Given:
dy

dx
= y1/2 sinx, y(0) = 4.

y−1/2 dy = (sinx) dx; 2y1/2 = C − cosx; y(x) =
(
C − cosx

2

)2

.

Then we impose the condition y(0) = 4 on the second of the preceding equations:

2
√

4 = C − cos 0; C − 1 = 4; C = 5.

Therefore y(x) =
(

5− cosx
2

)2

.

C08S0M.011: Given:
dy

dx
=

y2 (1−
√
x )

x2
(
1−√y

) .
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1− y1/2

y2
dy =

1− x1/2

x2
dx;

(y−2 − y−3/2) dy = (x−2 − x−3/2) dx;

1
y
− 2
√
y

=
1
x
− 2√

x
+ C.

You should leave the solution in this (implicitly defined) form because it’s troublesome to solve for y explicitly
as a function of x. Mathematica finds two solutions:

y(x) =
x− 2x3/2 + 2x2 + Cx2 ± 2

√
x3 − 2x7/2 + x4 + Cx4

1− 4x1/2 + 4x+ 2Cx− 4Cx3/2 + C2x2
.

C08S0M.012: Given:
dy

dx
=

y1/2(x+ 1)3

x1/2(y + 1)3
.

(y + 1)3

y1/2
dy =

(x+ 1)3

x1/2
dx;

(y5/2 + 3y3/2 + 3y1/2 + y−1/2) dy = (x5/2 + 3x3/2 + 3x1/2 + x−1/2) dx;

2
7
y7/2 +

6
5
y5/2 + 2y3/2 + 2y1/2 =

2
7
x7/2 +

6
5
x5/2 + 2x3/2 + 2x1/2 + C.

C08S0M.013: The equation is linear, with solution y(x) = Cx3 + x3 lnx. ( —C.H.E.)

C08S0M.014: The equation is separable, with solution y(x) =
x

3− Cx− x lnx
. (—C.H.E.)

C08S0M.015: The equation is separable, with solution y(x) = C exp
(

1− x

x3

)
. (—C.H.E.)

C08S0M.016: The equation is separable, with solution y(x) =
x

1 + Cx+ 2x lnx
. (—C.H.E.)

C08S0M.017: The equation is linear, with solution y(x) =
C + lnx

x2
. (—C.H.E.)

C08S0M.018: The equation is separable, with solution y(x) = tan
(
C + x+

1
3
x2

)
. (—C.H.E.)

C08S0M.019: The equation is linear, with solution y(x) = (x3 + C)e−3x. (—C.H.E.)

C08S0M.020: The equation is separable, with solution y(x) =
x2

x5 + Cx2 + 1
. (—C.H.E.)

C08S0M.021: The equation is linear, with solution y(x) = 2x−3/2 + Cx−3. (—C.H.E.)

C08S0M.022: The equation is linear, with solution y(x) =
C + ln(x− 1)

x+ 1
. (—C.H.E.)

C08S0M.023: The equation is separable, with solution y(x) =
x1/2

6x2 + Cx1/2 + 2
. (—C.H.E.)
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C08S0M.024: The equation is linear, with solution y(x) =
x3 + 3x2 + 3x+ C

(x+ 1)2
. (—C.H.E.)

C08S0M.025: Given:

dy

dx
= ex + y; that is,

dy

dx
− y = ex. (1)

This is a linear differential equation with integrating factor ρ(x) = e−x. Multiplication of both sides of the
second equation in (1) by ρ(x) yields

e−x
dy

dx
− e−xy = 1;

e−xy = x+ C;

y(x) = (x+ C)ex.

C08S0M.026: The equation is linear, with solution y(x) =
e2x + C

x
. (—C.H.E.)

C08S0M.027: As a separable equation:

1
y + 7

dy = 3x2 dx; ln(y + 7) = x3 + C1;

y + 7 = exp
(
x3 + C1

)
= C exp

(
x3

)
; y(x) = −7 + C exp

(
x3

)
.

As the linear equation
dy

dx
− 3x2y = 21x2:

Integrating factor: ρ(x) = exp
(∫

(−3x2) dx
)

= exp
(
−x3

)
.

Thus

y(x) · exp
(
−x3

)
=

∫
21x2 exp

(
−x3

)
dx = −7 exp

(
−x3

)
+ C.

Therefore y(x) = −7 + C exp
(
x3

)
.

C08S0M.028: As a separable equation:

1
y + 1

dy =
2x

x2 + 1
dx; ln(y + 1) = C1 + ln(x2 + 1);

y + 1 = exp
(
C1 + ln(x2 + 1)

)
= C(x2 + 1); y(x) = −1 + C(x2 + 1).

In “standand” linear form

dy

dx
− 2x
x2 + 1

y =
2x

x2 + 1
,

the equation has integrating factor

ρ(x) = exp
(∫
− 2x
x2 + 1

dx

)
=

1
x2 + 1

.
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Hence

1
x2 + 1

y =
∫

2x
(x2 + 1)2

dx = − 1
x2 + 1

+ C.

Therefore y(x) = −1 + C(x2 + 1).

C08S0M.029: First note that
1

x2 + 5x+ 6
=

1
x+ 2

− 1
x+ 3

. So

∫
1

x2 + 5x+ 6
dx =

∫
1 dt;

∫ (
1

x+ 2
− 1
x+ 3

)
dx = t+ C1;

ln
x+ 2
x+ 3

= t+ C1;
x+ 2
x+ 3

= Cet;

7
8

= Ce0 = C; 8(x+ 2) = 7(x+ 3)et;

(8− 7et)x = 21et − 16; x(t) =
21et − 16
8− 7et

.

C08S0M.030: First note that
1

2x2 + x− 15
=

1
11

(
2

2x− 5
− 1
x+ 3

)
. Then

1
11

∫ (
2

2x− 5
− 1
x+ 3

)
dx =

∫
1 dt; ln

2x− 5
x+ 3

= 11t+ C1;

2x− 5
x+ 3

= Ce11t; C =
15
13

;

2x− 5
x+ 3

=
15
13
e11t; 26x− 65 = (15x+ 45)e11t;

26x− 15e11tx = 45e11t + 65; x(t) =
45e11t + 65
26− 15e11t

.

C08S0M.031: Let τ denote the half-life of potassium, so that τ is approximately 1.28 × 109. Measure
time t also in years, with t = 0 corresponding to the time when the rock contained only potassium, and with
t = T corresponding to the present. Then at time t = 0, the amount of potassium was Q(0) and no argon
was present. At present, the amount of potassium is Q(T ) and the amount of argon is A(T ), where A(t) is
the amount of argon in the rock at time t. Now

Q(t) = Q0e
−(t ln 2)/τ , so that A(t) = 1

9 (Q0 −Q(t)) .

We also are given the observation that A(T ) = Q(T ). Thus

Q0 −Q(t) = 9Q(T ), and so Q(T ) = (0.1)Q0 = Q0e
−(T ln 2)/τ .

Therefore

ln 10 =
T

τ
ln 2 and thus T =

ln 10
ln 2

(1.28× 109) ≈ 4.2521× 109.

Thus the rock is approximately 4.2521× 109 years old.
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C08S0M.032: Let T (t) denote the temperature of the buttermilk (in degrees Celsius) at time t (in minutes);
let A denote the temperature on the front porch. Assume that the buttermilk is placed on the porch at time
t = 0. Then Newton’s law of cooling takes the form

dT

dt
= k(T −A),

but in this special case we have A = 0, so that the temperature undergoes “natural decay,” much like
radioactive decay. Thus, as in the derivation of Eq. (5), we have T (t) = T0e

kt, although k < 0 in this
problem. We know that T0 = T (0) = 0, so that T (t) = 25ekt; moreover, the information that T (20) = 15
yields

25e20k = 15, so that k =
1
20

ln
(

3
5

)
.

Finally, we solve T (t) = 5:

25e5k = 5; e−kt = 5; t = − ln 5
k

= − 20 ln 5
ln

(
3
5

) ≈ 63.01.

Answer: The buttermilk will be at 5◦C about 1 hour and 3 minutes after placing it on the porch.

C08S0M.033: First,
dA

dt
= −kA, so A(t) = A0e

−kt.

3
4
A0 = A0e

−k, so k = ln
4
3
.

Also

1
2
A0 = A0e

−kT

where T is the time required for half the sugar to dissolve. So

ln 2
k

= T =
ln 2

ln(4
3 )
≈ 2.40942 (minutes),

so half of the sugar is dissolved in about 2 minutes and 25 seconds.

C08S0M.034:
dI

dx
= −(1.4)I, so I(x) = I0e

−(1.4)x.

(a) I(x) = 1
2I0: I0e

−(1.4)x = 1
2I0; e(1.4)x = 2; x =

ln 2
1.4
≈ 0.495 (meters).

(b) I(10) = I0e
−(1.4)(10) ≈ (0.000000832) I0; that is, about

1
1202600

I0.

(c) I(x) = (0.01)I0: As in part (a), x =
ln 100
1.4

≈ 3.29 (meters).

C08S0M.035: We begin with the equation p(x) = (29.92)e−x/5.

(a) p
(

10000
5280

)
≈ 20.486 (inches); p

(
30000
5280

)
≈ 9.604 (inches).

(b) If x is the altitude in question, then we must solve

15 = (29.92)e−x/5, and thus x = 5 ln
(

29.92
15

)
≈ 3.4524 (miles),
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approximately 18230 feet.

(c) According to Trails Illustrated Topo Map 322 “Denali National Park and Preserve” (Trails Illus-
trated, Evergreen, CO, 1990, 1993) and other sources, the summit of Mt. McKinley is 20320 ft above sea
level. We evaluate

p
(

20320
5280

)
= (29.92) exp

(
20320

5 · 5280

)
≈ 13.8575

to find that the atmospheric pressure at the summit is about 13.86 inches of mercury. For an engrossing
story of an ascent of this peak, see Ruth Anne Kocour’s Facing the Extreme (with Michael Hodgson, New
York: St. Martin’s Press, 1998).

C08S0M.036: The differential equation and initial condition are

dA

dt
= −kA; A(0) = A0 = 10S

with time t measured in days. We solve the differential equation:

1
A
· dA
dt

= −k;

lnA = −kt+ C;

A(t) = e−kt+C = eCe−kt = C1e
−kt

where C1 = eC is a constant. Next, A(0) = 10S = C1, and therefore

A(t) = 10Se−kt.

To find k, we use the information that A(100) = 7S:

10Se−100k = 7S; e100k =
10
7

; k =
1

100
ln

10
7
.

To find when it is safe to return to the contaminated area, we solve A(T ) = S:

10Se−kT = S; ekT = 10; T =
1
k

ln 10 =
100 ln 10
ln

(
10
7

) ≈ 646.

It will be safe to return to the contaminated area 646 days after the accident.

C08S0M.037: The decay constant k satisfies the equation 140k = ln 2, and so k = (ln 2)/140. Measuring
radioactivity as a multiple of the “safe level” 1, it is then P (t) = 5e−kt with t measured in days. When we
solve P (t) = 1, we find that t ≈ 325.07, so the room should be safe to enter in a little over 325 days.

C08S0M.038: The projected revenues are r(t) = (1.85)e(0.03)t and the projected budget is b(t) = 2ekt for
some constant k (values of both functions are in billions of dollars; remember that in the U.S., a billion is a
thousand million). To have a balanced budget in seven years, we solve r(7) = b(7):

(1.85)e0.21 = 2e7k; 7k = ln
(
(0.925)e0.21

)
= 0.21 + ln(0.925); k =

0.21 + ln(0.925)
7

≈ 0.01886264.

So the annual budget increase should be approximately 1.886%.
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C08S0M.039: The characteristic equation

6r2 − 19r + 15 = (2r − 3)(3r − 5) = 0

has the real distinct roots r1 = 3
2 and r2 = 5

3 . Hence the general solution of the differential equation is

y(x) = Ae3x/2 +Be5x/3, for which

y′(x) =
3
2
Ae3x/2 +

5
3
Be5x/3.

The initial conditions yield

13 = y(0) = A+B and

21 = y′(0) =
3
2
A+

5
3
B,

and it quickly follows that A = 4 and B = 9. Hence y(x) = 4e3x/2 + 9e5x/3.

C08S0M.040: Alternatives to the manual methods demonstrated in the previous solution include use of a
computer algebra system such as Mathematica 3.0:

Solve[ 50∗r∧2 − 5∗r − 28 == 0, r ]

{{ r → − 7
10 }, { r →

4
5 }}

y[x ] := a∗Exp[ 4∗x/5 ] + b∗Exp[ −7∗x/10 ]

Solve[ { y[0] == 25, y′[0] == −10 }, { a, b } ]

{{ a→ 5 }, { b→ 20 }}

Therefore the solution of the given initial value problem is y(x) = 5e4x/5 + 20e−7x/10. For an even shorter
solution, execute the command

DSolve[ { 50∗y′′[x] - 5∗y′[x] - 28∗y[x] == 0, y[0] == 25, y′[0] == −10 }, y[x], x ]

—which returns the solution in the form y(x) = e−7x/10(20 + 5e3x/2).

C08S0M.041: The characteristic equation

121r2 + 154r + 49 = (11r + 7)2 = 0

has the repeated root r1 = r2 = − 7
11 , and thus the given equation has general solution

y(x) = (Ax+B)e−7x/11, for which

y′(x) =
(
A− 7

11Ax−
7
11B

)
e−7x/11.

The initial conditions then yield A = 17 and B = 11, and hence the solution of the given initial value
problem is y(x) = (17x+ 11)e−7x/11.

C08S0M.042: The characteristic equation
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169r2 − 130r + 25 = (13r − 5)2 = 0

has the repeated roots r1 = r2 = 5
13 . Thus the given equation has general solution

y(x) = (Ax+B)e5x/13, for which

y′(x) =
(
A+ 5

13Ax+ 5
13B

)
e5x/13.

It follows from the initial conditions that A = 29 and B = 26. Hence the solution of the original initial value
problem is y(x) = (29x+ 26)e5x/13.

C08S0M.043: First we solve the characteristic equation:

100r2 + 20r + 10001 = 0; 100r2 + 20r + 1 = −10000;

(10r + 1)2 = (100i)2; 10r + 1 = ±100i;

r = − 1
10
± 10i.

So the general solution of the differential equation may be expressed in the form

y(x) = e−x/10(A cos 10x+B sin 10x), for which

y′(x) = e−x/10
(

10B cos 10x− 10A sin 10x− 1
10
A cos 10x− 1

10
B sin 10x

)
.

Then the initial conditions yield A = 10 and B = 1, so the solution of the given initial value problem is

y(x) = e−x/10(10 cos 10x+ sin 10x)

.

C08S0M.044: First we solve the characteristic equation:

100r2 + 2000r + 10001 = 0; (10r + 100)2 = −1;

10r + 100 = ±i; r = −10± 1
10
i.

Therefore the given differential equation has general solution

y(x) = e−10x
(
A cos

x

10
+B sin

x

10

)
, for which

y′(x) = e−10x

(
1
10
B cos

x

10
− 1

10
A sin

x

10
− 10A cos

x

10
− 10B sin

x

10

)
.

The initial conditions yield A = 1 and B = 10. Hence the solution of the original initial value problem may
be written in the form

y(x) = e−10x
(
cos

x

10
+ 10 sin

x

10

)
.
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The solutions of Problems 43 and 44 demonstrate vividly some of the effects on an underdamped system of
increasing the damping coefficient—quicker damping, increased pseudoperiod.

C08S0M.045: Part (a): With N in thousands (of transistors) and t in years, we have N(t) = 29ert.

Part (b): In 1993 we have t = 14. So

31000 = N(14) = 29e14r; 14r = ln
31000

29
; r =

1
14

ln
31000

29
≈ 0.498174761.

Expressed as a percentage, the annual growth rate is about 49.8%. Part (c): Let τ denote the “doubling
time” and let N0 = N(0). Then from the equation N(τ) = 2N0 = N0e

rτ we find that

τ =
ln 2
r

=
14 ln 2

ln 31000
29

≈ 1.39137354

years. Thus the doubling time is 12τ , about 16.7 months. Part (d): In the year 2001 we have t = 22, so
in that year the typical microcomputer would be expected to contain

N(22) = 29e22r ≈ 1,668,007.855

thousand transistors; that is, about 1668 million transistors. In American English, that’s about 1.668 billion
transistors; in British English, it’s about 1.668 thousand million transistors (a British “billion” is a million

millions).

C08S0M.046: An atom of 14C weighs about w = 2.338× 10−23 grams. If we take the half-life of 14C to be
τ = 5700 years, then at least 70,000,000/τ half-lives have elapsed since the demise of the dinosaur. Working
backwards from “today,” 5700 years ago we would expect to find two atoms of 14C, 2 · 5700 years ago there
would be four such atoms, and so on. So the weight of the 14C in the living dinosaur would be at least

212000w ≈ 5.3554× 103589

grams. By comparison, the earth weighs about 5.988×1027 grams. So even if no other elements were present
in the dinosaur’s body, it would have weighed well over 103560 times as much as the earth. In fact, its weight
would have been an extremely large multiple of the total mass of the universe!

C08S0M.047: The differential equation leads to

P−1/2 dP = −k dt; 2P 1/2 = C − kt; P 1/2 =
C − kt

2
;

30 = [P (0)]1/2 =
C

2
; C = 60; P 1/2 =

60− kt

2
.

Then the information that P (6) = 441 yields

21 = [P (6)]1/2 = 30− 3k; k = 3; P (t) =
(

60− 3t
2

)2

.

Because we have measured time t in weeks, the answer is that all the fish will die at the end of 20 weeks.

C08S0M.048: Proof: Suppose that P (t) =
(

1
2kt+

√
P0

)2. Then P (0) =
(√

P0

)2 = P0 and

dP

dt
= 2

(
1
2kt+

√
P0

)
· 1

2k
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and

k
√
P (t) = k

(
1
2kt+

√
P0

)
.

Therefore P (t) =
(

1
2kt+

√
P0

)2 is a solution of the initial value problem given here. Moreover, if P is
differentiable and satisfies the given initial value problem, then

P−1/2 dP = k dt; 2P 1/2 = C + kt; P 1/2 =
C + kt

2
;

√
P0 = [P (0)]1/2 =

C

2
; C = 2

√
P0; P 1/2 =

kt+ 2
√
P0

2
;

P (t) =
(

1
2 kt+

√
P0

)2

.

Therefore P (t) =
(

1
2kt+

√
P0

)2 is the [unique] solution of the given initial value problem.

C08S0M.049: Given (in effect): P (t) =
(

1
2kt+

√
P0

)2, P0 = 100 (we take t = 0 [years] in 1970 and
measure population in thousands), and P (10) = 121. Thus

P (t) =
(

1
2kt+ 10

)2
,

and therefore 121 = P (10) = (5k + 10)2, so that 5k + 10 = ±11. Because k > 0, we see that k = 1
5 , and

hence

P (t) =
(

1
10 t+ 10

)2
.

Thus in the year 2000 the population will be P (30) = 169 (thousand). The population will be 200 (thousand)
when P (T ) = 200:

(
1
10T + 10

)
= 200; 1

10T + 10 = 10
√

2; T = 100
(√

2− 1
)
≈ 41.4.

Thus the population will reach 200000 in the “year” 1970 + 41.4 = 2011.4; that is, about May 26, 2011.

C08S0M.050: Given:
dP

dt
= kP 2, P (0) = P0 where k > 0. Then

− 1
P 2

dP = −k dt; 1
P

= C − kt; P (t) =
1

C − kt
;

P0 = P (0) =
1
C

; C =
1
P0

; P (t) =
P0

1− kP0t
.

C08S0M.051: If P0 = 2 and P (3) = 4 (time t is measured in months), then

P (t) =
2

1− 2kt
; 4 = P (3) =

2
1− 6k

; 1− 6k =
1
2
;

k =
1
12

; P (t) =
2

1− 1
6 t

=
12

6− t
.

Answer: lim
t→6−

P (t) = +∞.
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C08S0M.052: We are given

dv

dt
= −kv2, v0 = v(0) = 40

where k is a positive constant. Thus (part(a))

− 1
v2

dv = k dt;
1
v

= C + kt; v(t) =
1

C + kt
;

40 = v(0) =
1
C

; C =
1
40

; v(t) =
40

1 + 40kt

for t � 0. For part (b), we have

20 = v(10) =
40

1 + 400k
; 1 + 400k = 2; k =

1
400

;

v(t) =
40

1 + 1
10 t

=
400

10 + t
.

Hence v(T ) = 5 when

400
10 + T

= 5; 10 + T = 80; T = 70.

Answer: After 70 s the boat will slow to a speed of 5 ft/s.

C08S0M.053: First we solve the initial value problem
dP

dt
= −3P 1/2, P (0) = 900, with t measured in

weeks:

∫
P−1/2 dP = −3 dt; 2P 1/2 = C − 3t; 2 · 30 = C − 3 · 0;

2P 1/2 = 60− 3t; P (t) =
9
4

(20− t)2 .

So all the fish will die after 20 weeks.

C08S0M.054: Let x(t) denote the position of the race car at time t (the units are meters and seconds)
and let v(t) = x′(t) denote its velocity then. First we solve the initial value problem

dv

dt
= −kv, v(0) = v0

where v0 denotes the initial velocity of the race car and k is a positive constant. By Theorem 1 of Section
7.5 the solution is v(t) = v0e

−kt. Moreover, v′(0) = −2, and thus −2 = −kv0, so that k = 2/v0. Next,

x(t) = C − v0

k
e−kt = C − 1

2
v2
0e

−2t/v0

and 0 = x(0) = C − 1
2 v

2
0 , so that x(t) = 1

2 v
2
0

(
1− e−2t/v0

)
. Next, v(t)→ 0 as t→ +∞, so that

1800 = lim
t→∞

x(t) =
1
2
v2
0 ,

and this implies that v0 = 60 (meters per second), a little over 134 mi/h.
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C08S0M.055: Problem 13 in Section 7.6 is to derive the initial value problem

dP

dt
= rP − c, P (0) = P0

where P (t) is the balance owed at time t (in months), where r is the monthly interest rate (compounded
continuously) and c is the monthly payment (assumed made continuously). First we need to solve this initial
value problem:

∫
r dP

rP − c
=

∫
r dt; ln(rP − c) = C + rt; rP − c = Aert;

P (t) =
1
r

(
c+Aert

)
; P0 = P (0) =

1
r

(c+A) ; P (t) =
c+ (rP0 − c) ert

r
.

In this problem, the loan is to be paid off in 25 · 12 = 300 months, and thus P (300) = 0. We use this
information to solve for the monthly payment c:

c+ (rP0 − c)e300r

r
= 0;

c
(
1− e300r

)
+ rP0e

300r = 0;

c =
rP0e

300r

e300r − 1
.

With P0 = 120000 and r = 0.08/12, we find that c = $925.21. With r = 0.12/12 we find that c = $1262.87.
In the latter case the total of all 300 monthly payments is $378862.45.

C08S0M.056: First we solve the initial value problem 1000
dv

dt
= 5000− 100v, v(0) = 0:

10
dv

dt
= 50− v;

∫
dv

50− v
=

∫
1
10

dt; − ln(50− v) =
1
10

t− C;

ln(50− v) = C − 1
10

t; 50− v = Ae−t/10; v(t) = 50−Ae−t/10;

0 = v(0) = 50−A; v(t) = 50
(
1− e−t/10

)
.

Because v(t)→ 50 as t→ +∞, the powerboat can attain any speed up to 50 ft/s. (Technically, there is no
maximum speed, but the boat can reach speeds arbitrarily close to 50 ft/s.)

C08S0M.057: Let h(t) denote the temperature within the freezer (in degrees Celsius) at time t (in hours),
with t = 0 corresponding to the time the power goes off. By Newton’s law of cooling, there is a positive
constant k such that

dh

dt
= k(20− h);

∫
dh

20− h
=

∫
k dt; − ln(20− h) = kt− C;

ln(20− h) = C − kt; 20− h = Ae−kt; h(t) = 20−Ae−kt;

−16 = h(0) = 20−A; h(t) = 20− 36e−kt; h(7) = −10;

20− 36e−7k = −10; 36e−7k = 30; k =
1
7

ln
6
5
.
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Finally we solve h(T ) = 0 for

T =
7 ln 9

5

ln 6
5

≈ 22.5673076.

So the critical temperature will be reached about 22 hours and 34 minutes after the power goes off; that is,
at 9:34 p.m. on the following day. The data given here were drawn from a real incident.

C08S0M.058: By Theorem 1 of Section 7.5, the solution of the differential equation given in this problem
is A(t) = A0e

−t/400. For part (a), we compute

A(25)
A0

= e−1/16 ≈ 0.9394130628,

and the answer is 93.94%. For part (b), we solve A(T ) = 1
2A0 for T = 400 ln 2 ≈ 277.2588722240, so the

answer is about 277 years.

C08S0M.059: The differential equation we need to solve is
dv

dt
= a− ρv with initial condition v(0) = 0:

∫ −ρ
a− ρv

dv =
∫

(−ρ) dt; ln(a− ρv) = C − ρt; a− ρv = Ae−ρt;

a− ρ · 0 = A; a− ρv = ae−ρt; ρv = a
(
1− e−ρt

)
;

v(t) =
a

ρ

(
1− e−ρt

)
.

If a = 17.6 and ρ = 0.1, then

v(10) = 176
(

1− 1
e

)
≈ 111.2532183538

feet per second, about 75.854 mi/h. Also v(t)→ 176 as t→ +∞, so the limiting velocity is 176 ft/s, exactly
120 mi/h.

C08S0M.060: If the safe limit of radioactivity is S, then the radiation level at time t (months) will be
r(t) = 10Se−kt where k is a positive constant. We solve r(6) = 9S for k = 1

6 ln 10
9 , and with this value of k

we solve r(T ) = S:

10Se−kT = S; ekT = 10; T =
ln 10
k

=
6 ln 10
ln 10

9

≈ 131.126072.

We divide by 12 to convert this answer in months to 10.927173 years. It will take just under 11 years for
the levels of radiation to drop to the safe limit.

C08S0M.061: Given: S(t) = 30e(0.05)t (t is in years; t = 0 corresponds to age 30).

(a) ∆A = A(t+ ∆t)−A(t) ≈ (0.06)A(t) ∆t+ (0.12)S(t) ∆t.

dA

dt
= lim

∆t→0

∆A

∆t
= (0.06)A(t) + (0.12)S(t);

dA

dt
+ (−0.06)A(t) = (3.6)e(0.05)t.
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(b) Now use the result in Problem 22: Take x(t) = A(t), x0 = 0; a = −0.06, b = 3.6, and c = 0.05.
Then

A(t) = − 3.6
0.01

(
e(0.05)t − e(0.06)t

)
, so that

A(t) = 360
(
e(0.06)t − e(0.05)t

)
.

Now A(40) = 360
(
e2.4 − e2

)
≈ 1308.28330. Because the units in this problem are in thousands of dollars,

the answer is that the retirement money available will be $1,308,283.30.

C08S0M.062: Given:
dP

dt
= β0e

−αtP , P (0) = P0. Then

1
P

dP = β0e
−αt dt; lnP = C − β0

α
e−αt.

lnP0 = C − β0

α
: C =

β0

α
+ lnP0.

P (t) = exp
(
β0

α
+ lnP0 −

β0

α
e−αt

)
= P0 exp

(
β0

α

[
1− e−αt

])
.

C08S0M.063: If we substitute P (0) = 106 and P ′(0) = 3× 105 into the differential equation

P ′(t) = β0e
−αtP (t),

we find that β0 = 0.3. Hence the solution given in Problem 62 is

P (t) = P0 exp
(

0.3
α

[
1− e−αt

])
.

The fact that P (6) = 2P0 now yields the equation

f(α) = (0.3)
(
1− e−6α

)
− α ln 2 = 0

for α. We apply the iterative formula of Newton’s method,

αn+1 = αn −
f(αn)
f ′(αn)

,

with f ′(α) = (1.8)e−6α − ln 2 and initial guess α0 = 1. Thereby we find that α1 ≈ 0.5381, α2 ≈ 0.3926,
. . . , and α ≈ α6 ≈ 0.39148754. Therefore the limiting cell population as t→ +∞ is

P0 exp
(
β0

α

)
≈ (106) exp

(
0.3

0.39148754

)
≈ 2.152× 106.

Therefore the tumor does not grow much further after six months. (—C.H.E.)

C08S0M.064: The characteristic equation has the repeated roots r1 = r2 = −1. Hence the differential
equation has general solution

x1(t) = (At+B)e−t, for which

x′1(t) = (A−At−B)e−t.
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It follows that A = 1 and B = 0, and thus that x1(t) = te−t.

C08S0M.065: If k = 1 − 10−2n where (without loss of generality) n is a positive integer, then the
characteristic equation has distinct real roots

r1 = −1− 10−n and r2 = −1 + 10−n.

Thus the differential equation has general solution

x2(t) = Aer1t +Ber2t, so that

x′2(t) = r1Ae
r1t + r2Be

r2t.

The initial conditions yield the simultaneous equations

A+B = 0,

r1A+ r2B = 1,

and it follows that

x2(t) =
1

r2 − r1

(
er2t − er1t

)

=
e−t

2 · 10−n
[
exp

(
10−nt

)
− exp

(
−10−nt

)]
= 10ne−t sinh

(
10−nt

)
.

C08S0M.066: If k = 1 + 10−2n where (without loss of generality) n is a positive integer, then the
characteristic equation has complex conjugate roots

r1, r2 = −1± 10−ni.

Accordingly, the general solution of the differential equation is

x3(t) = e−t
(
A cos 10−nt+B sin 10−nt

)
, for which

x′3(t) = e−t
(
10−nB cos 10−nt− 10−nA sin 10−nt−A cos 10−nt−B sin 10−nt

)
.

The initial conditions yield A = 0 and B = 10n, and hence

x3(t) = 10ne−t sin
(
10−nt

)
.

C08S0M.067: If t > 0 is fixed, then—by l’Hôpital’s rule (with w = 10−n as the variable)—

lim
n→∞

x2(t) = lim
n→∞

10ne−t sinh
(
10−nt

)

= lim
w→0+

e−t sinhwt
w

= lim
w→0+

te−t coshwt = te−t = x1(t).

Similarly,
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lim
n→∞

x3(t) = lim
n→∞

10ne−t sin
(
10−nt

)

= lim
w→0+

e−t sinwt
w

= lim
w→0+

te−t coswt = te−t = x1(t).
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Section 9.1

C09S01.001: The given line with equation y = − 1
2 x+ 5

2 has slope − 1
2 , so the parallel line through (1, −2)

has equation y + 2 = − 1
2 (x− 1); that is, x+ 2y + 3 = 0.

C09S01.002: The equation 4y = 3x− 7 of the given line may be rewritten in the form y = 3
4 x−

7
4 . Hence

every perpendicular line has slope − 4
3 . Thus the perpendicular through the point (−3, 2) has equation

y − 2 = − 4
3 (x+ 3); that is, 4x+ 3y + 6 = 0.

C09S01.003: The radius of the circle terminating at (3, −4) has slope − 4
3 . Hence the line L tangent to

the circle at that point (because L is perpendicular to that radius) has equation y + 4 = 3
4 (x− 3); that is,

3x− 4y = 25.

C09S01.004: If y2 = x+ 3, then

2y
dy

dx
= 1, so that

dy

dx
=

1
2y
.

Therefore the slope of the line L tangent to the given curve at (6, −3) is − 1
6 . Hence an equation of L is

y + 3 = − 1
6 (x− 6); that is, x+ 6y + 12 = 0.

C09S01.005: Given x2 + 2y2 = 6, we have by implicit differentiation

2x+ 4y
dy

dx
= 0, so that

dy

dx
= − x

2y
.

Therefore the tangent to the given curve at (2, −1) has slope 1, so the normal to the curve there has slope
−1 and thus equation y + 1 = (−1)(x− 2) = −x+ 2; that is, x+ y = 1.

C09S01.006: The segment S with endpoints A(−3, 2) and B(5, −4) has slope

−4− 2
5− (−3)

= − 6
8

= − 3
4

and its midpoint is (1, −1). Therefore the perpendicular bisector of S has equation y + 1 = 4
3 (x− 1); that

is, 4x− 3y = 7.

C09S01.007: Given x2 +2x+y2 = 4, complete the square in each variable to find that x2 +2x+1+y2 = 5;
that is, (x+ 1)2 + (y − 0)2 = 5. Hence the circle has center (−1, 0) and radius

√
5 .

C09S01.008: Given x2 +y2−4y = 5, complete the square in each variable to find that x2 +y2−4y+4 = 9;
that is, (x− 0)2 + (y − 2)2 = 9. Hence the circle has center (0, 2) and radius 3.

C09S01.009: Given x2 + y2 − 4x+ 6y = 3, complete the square in each variable to find that

x2 − 4x+ 4 + y2 + 6y + 9 = 16; that is, (x− 2)2 + (y + 3)2 = 16.

Therefore the circle has center (2, −3) and radius 4.

C09S01.010: Given x2 + y2 + 8x− 6y = 0, complete the square in each variable to find that

x2 + 8x+ 16 + y2 − 6y + 9 = 25; that is, (x+ 4)2 + (y − 3)2 = 25.
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Thus the circle has center (−4, 3) and radius 5.

C09S01.011: Given 4x2 + 4y2 − 4x = 3, complete the square in each variable as follows:

x2 + y2 − x =
3
4
; x2 − x+

1
4

+ y2 = 1;
(
x− 1

2

)2

+ (y − 0)2 = 1.

Consequently the circle has center
(

1
2 , 0

)
and radius 1.

C09S01.012: Given 4x2 + 4y2 + 12y = 7, complete the square in each variable as follows:

x2 + y2 + 3y =
7
4
; x2 + y2 + 3y +

9
4

= 4; (x− 0)2 +
(
y +

3
2

)2

= 4.

Therefore the circle has center
(
0, − 3

2

)
and radius 2.

C09S01.013: Given 2x2 + 2y2 − 2x+ 6y = 13, complete the square in each variable as follows:

x2 + y2 − x+ 3y =
13
2

; x2 − x+
1
4

+ y2 + 3y +
9
4

= 9;
(
x− 1

2

)2

+
(
y +

3
2

)2

= 9.

Thus the circle has center
(

1
2 , −

3
2

)
and radius 3.

C09S01.014: Given 9x2 + 9y2 − 12x = 5, complete the square in each variable as follows:

x2 + y2 − 4
3
x =

5
9
; x2 − 4

3
x+

4
9

+ y2 = 1;
(
x− 2

3

)2

+ (y − 0)2 = 1.

So the circle has center
(

2
3 , 0

)
and radius 1.

C09S01.015: Given 9x2 + 9y2 + 6x− 24y = 19, complete the square in each variable:

x2 + y2 +
2
3
x− 8

3
y =

19
9

; x2 +
2
3
x+

1
9

+ y2 − 8
3
y +

16
9

= 4;
(
x+

1
3

)2

+
(
y − 4

3

)2

= 4.

Therefore the circle has center
(
− 1

3 ,
4
3

)
and radius 2.

C09S01.016: Given 36x2 + 36y2 − 48x− 108y = 47, complete the square in each variable:

x2 + y2 − 4
3
x− 3y =

47
36

; x2 − 4
3
x+

4
9

+ y2 − 3y +
9
4

=
47
36

+
16
36

+
81
36

=
144
36

= 4;

(
x− 2

3

)2

+
(
y − 3

2

)2

= 4.

So this circle has center
(

2
3 ,

3
2

)
and radius 2.

C09S01.017: Given x2 + y2 − 6x− 4y = −13, complete the square in each variable:

x2 − 6x+ 9 + y2 − 4y + 4 = −13 + 13 = 0; (x− 3)2 + (y − 2)2 = 0.

Therefore the graph of the given equation consists of the single point (3, 2).

C09S01.018: Given 2x2 + 2y2 + 6x+ 2y = −5, complete the square in each variable:
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x2 + y2 + 3x+ y = − 5
2
; x2 + 3x+

9
4

+ y2 + y +
1
4

= 0;
(
x+

3
2

)2

+
(
y +

1
2

)2

= 0.

Therefore the graph of the given equation consists of the single point
(
− 3

2 , −
1
2

)
.

C09S01.019: Given x2 + y2 − 6x− 10y = −84, complete the square in each variable:

x2 − 6x+ 9 + y2 − 10y + 25 = −50; (x− 3)2 + (y − 5)2 = −50.

The graph of the given equation has no points on it.

C09S01.020: Given 9x2 + 9y2 − 6x− 6y = −11, complete the square in each variable:

9x2 − 6x+ 1 + 9y2 − 6x+ 1 = −9; (3x− 1)2 + (3y − 1)2 = −9.

There are no points on the graph of the given equation.

C09S01.021: First use the distance formula to find that the radius of the circle is

√
(2− (−1))2 + (3− (−2))2 =

√
32 + 52 =

√
34 .

Thus an equation of the circle is (x+ 1)2 + (y + 2)2 = 34.

C09S01.022: Suppose that P (a, a+ 4) is the point where the circle is tangent to the line y = x+ 4. This
line has slope 1, so the radius terminating at P has slope −1. Therefore

a+ 4 + 2
a− 2

= −1; a+ 6 = 2− a; a = −2.

So P = P (−2, 2). The distance formula then yields the fact that the radius of the circle is

√
(−2− 2)2 + (2 + 2)2 =

√
42 + 42 =

√
32 .

Therefore an equation of the circle is (x− 2)2 + (y + 2)2 = 32.

C09S01.023: Suppose that P (a, 2a− 4) is the point at which the circle is tangent to the line y = 2x− 4.
This line has slope 2, so the radius terminating at P has slope − 1

2 . Thus

2a− 4− 6
a− 6

= − 1
2
; 4a− 20 = 6− a; a =

26
5

; 2a− 4 =
32
5
.

Then the distance formula yields the fact that the circle has radius
√(

6− 26
5

)2

+
(

6− 32
5

)2

=

√
16
25

+
4
25

=
2
5

√
5 .

Hence an equation of the circle is (x− 6)2 + (y − 6)2 = 4
5 .

C09S01.024: The circle in question passes through the three points A(4, 6), B(−2, −2), and C(5, −1).
The elegant way to solve the problem is long: First find the perpendicular bisectors of AB and AC; that is,
write their Cartesian equations. Solve these equations simultaneously to find the coordinates of the center
O of the circle. Use the distance formula to find the length of the radius OA of the circle. Finally write
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its equation. The alternative method we choose is probably a little shorter. We know that the circle has an
equation of the form (x− a)2 + (y − b)2 = r2. Because A, B, and C all lie on the circle, it follows that

(4− a)2 + (6− b)2 = r2,

(−2− a)2 + (−2− b)2 = r2, and

(5− a)2 + (−1− b)2 = r2.

That is,

a2 − 8a+ 16 + b2 − 12b+ 36 = r2,

a2 + 4a+ 4 + b2 + 4b+ 4 = r2, and

a2 − 10a+ 25 + b2 + 2b+ 1 = r2.

Thus

8a+ 12b− 52 = a2 + b2 − r2, (1)

−4a− 4b− 8 = a2 + b2 − r2, and (2)

10a− 2b− 26 = a2 + b2 − r2. (3)

So the left-hand sides of Eqs. (1) and (2) are equal, as are the left-hand sides of Eqs. (2) and (3). This means
that

12a+ 16b− 44 = 0 and 14a+ 2b− 18 = 0.

It follows easily that a = 1 and b = 2, and then from Eq. (1) [say] that r = 5. Therefore an equation of the
circle in question is (x− 1)2 + (y − 2)2 = 25.

C09S01.025: The distance formula implies that (x− 3)2 + (y − 2)2 = (x− 7)2 + (y − 4)2. Therefore

−6x+ 9− 4y + 4 = −14x+ 49− 8y + 16;

8x+ 4y = 52.

Hence P (x, y) satisfies the equation 2x+ y = 13. The locus is a straight line; it is in fact the perpendicular
bisector of the line segment joining the two given points. We omit its graph because it would occupy space
unnecessarily.

C09S01.026: The distance formula implies that the coordinates of P (x, y) satisfy

√
(x+ 2)2 + (y − 1)2 =

1
2

√
(x− 4)2 + (y + 2)2 ;

4(x2 + 4x+ 4 + y2 − 2y + 1) = x2 − 8x+ 16 + y2 + 4y + 4;

4x2 + 16x+ 4y2 − 8y + 20 = x2 − 8x+ y2 + 4y + 20;

3x2 + 24x+ 3y2 − 12y = 0;

x2 + 8x+ y2 − 4y = 0;
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x2 + 8x+ 16 + y2 − 4y + 4 = 20;

(x+ 4)2 + (y − 2)2 = 20.

All of the displayed equations are answers, some better than others; we prefer the last as it allows us to
identify the locus of P (x, y) as the circle with center (−4, 2) and radius 2

√
5 . We omit the sketch of the

graph of the locus because it occupies space unnecessarily.

C09S01.027: The distance formula implies that the coordinates of P (x, y) satisfy

3
√

(x− 5)2 + (y − 10)2 =
√

(x+ 3)2 + (y − 2)2 ;

9x2 − 90x+ 9y2 − 180y + 1125 = x2 + 6x+ y2 − 4y + 13;

8x2 − 96x+ 8y2 − 176y + 1112 = 0;

x2 − 12x+ y2 − 22y + 139 = 0;

x2 − 12x+ 36 + y2 − 22y + 121 = 157− 139 = 18;

(x− 6)2 + (y − 11)2 = 18.

Therefore the locus of P (x, y) is the circle with center (6, 11) and radius 3
√

2 . We omit a sketch as it
would occupy space unnecessarily.

C09S01.028: The distance formula implies that the coordinates of P (x, y) satisfy

x+ 3 =
√

(x− 3)2 + y2 ;

x2 + 6x+ 9 = x2 − 6x+ 9 + y2;

y2 = 12x.

Thus the locus of P (x, y) is a parabola with vertex (0, 0), axis the positive x-axis, opening to the right. To
see it, execute [say] the Mathematica command

ParametricPlot[ {(t∧2)/12, t}, {t, −5, 5} ];

C10S01.029: The distance formula tells us that the point P (x, y) satisfies the equations

√
(x− 4)2 + y2 +

√
(x+ 4)2 + y2 = 10;

√
(x− 4)2 + y2 = 10−

√
(x+ 4)2 + y2 ;

(x− 4)2 + y2 = 100− 20
√

(x+ 4)2 + y2 + (x+ 4)2 + y2;

20
√

(x+ 4)2 + y2 = 100 + 16x;

5
√

(x+ 4)2 + y2 = 25 + 4x;

25x2 + 200x+ 400 + 25y2 = 625 + 200x+ 16x2;

9x2 + 25y2 = 225.
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This is an equation of the ellipse with center (0, 0), horizontal major axis of length 10, vertical minor axis
of length 6, and intercepts (±5, 0) and (0, ±3). Its graph is shown next.

C09S01.030: The coordinates of P (x, y) must, by the distance formula, satisfy

√
x2 + (y − 3)2 +

√
x2 + (y + 3)2 = 10;

x2 + y2 − 6y + 9 = 100− 20
√
x2 + (y + 3)2 + x2 + y2 + 6y + 9;

20
√
x2 + (y + 3)2 = 12y + 100;

5
√
x2 + (y + 3)2 = 3y + 25;

25x2 + 25y2 + 150y + 225 = 9y2 + 150y + 625;

25x2 + 16y2 = 400.

This is an equation of the ellipse with center (0, 0), vertical major axis of length 10, horizontal minor axis
of length 8, and with intercepts (±4, 0) and (0, ±5). To save space we omit its graph. To see its graph,
execute [for example] the Mathematica command

ParametricPlot[ {4∗cos[t], 5∗sin[t]}, {t, 0, 2∗Pi}, PlotRange -> {{-5,5}, {-6,6} ];

C09S01.031: Let P (a, a2) be a point at which such a line is tangent to the parabola. Then

2a =
a2 − 1
a− 2

; 2a2 − 4a = a2 − 1;

a2 − 4a+ 1 = 0; a =
4±
√

16− 4
2

= 2±
√

3 .

Thus there are two such lines, one with slope 4 + 2
√

3 and one with slope 4− 2
√

3 . Their equations are

y − 1 =
(
4 + 2

√
3

)
(x− 2) and y − 1 =

(
4− 2

√
3

)
(x− 2).

C09S01.032: Let P (a, a2) be a point where a line through (−1, 2) meets the parabola y = x2 and is
normal to it there. The slope of such a line is thus −1/(2a), and thus:
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− 1
2a

=
a2 − 2
a+ 1

; − a− 1 = 2a3 − 4a;

2a3 − 3a+ 1 = 0; (a− 1)(2a2 + 2a− 1) = 0;

a = 1 or a =
−2±

√
4 + 8

4
=
−1±

√
3

2
.

It follows that there are three such lines; their slopes are

− 1
2
, − 1 +

√
3

2
, and

−1 +
√

3
2

and their equations may be written as

y − 2 = − 1
2

(x+ 1), y − 2 = − 1 +
√

3
2

(x+ 1), and y − 2 =
−1 +

√
3

2
(x+ 1).

Each of these three lines actually meets the parabola in two points but is normal to it at only one of the
two. To see the parabola and the lines, execute [for example] the Mathematica command

Plot[ { x∧2, 2 - (x + 1)/2, 2 - (x + 1)∗(1 + Sqrt[3])/2, 2 + (x + 1)∗(Sqrt[3] - 1)/2 },
{ x, -3, 3 }, AspectRatio -> Automatic ];

C09S01.033: Every line parallel to the line with equation y = 4x also has slope 4. Suppose that such a
line is also normal to the graph of y = 4/x at the point P . The tangent at P (x, y) has slope −4/(x2), so
the normal there has slope x2/4, which must also equal 4. It follows that x = ±4, so there are two such
lines, one containing the point (4, 1) and the other containing the point (−4, −1). Equations of these lines
are y − 1 = 4(x− 4) and y + 1 = 4(x+ 4).

C09S01.034: Every line parallel to y = 3x − 5 has slope 3. If such a line is also tangent to the graph of
y = x3 at the point (x, y), then 3x2 = 3, and thus x = ±1. Thus there are two such lines, one tangent
to the graph of y = x3 at the point (1, 1), the other tangent at the point (−1, −1). Their equations are
y − 1 = 3(x− 1) and y + 1 = 3(x+ 1). Each of these two lines also meets the graph of y = x3 at a second
point but is not tangent to the graph at that second point.

C09S01.035: Equation (11) is

x2(1− e2)− 2p(1 + e2)x+ y2 = −p2(1− e2).

If e > 1, then this equation may be written in the form

x2 + 2p
e2 + 1
e2 − 1

x− y2

e2 − 1
= −p2;

x2 + 2p
e2 + 1
e− 1

x+ p2

(
e2 + 1
e2 − 1

)2

− y2

e2 − 1
= −p2 + p2

(
e2 + 1
e2 − 1

)2

;

= p2

[(
e2 + 1
e2 − 1

)2

− 1

]
=
e4 + 2e2 + 1− e4 + 2e2 − 1

(e2 − 1)2
p2 =

4e2

(e2 − 1)2
p2.

Let
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h = −p e
2 + 1
e2 − 1

.

Then Eq. (11) takes the form

x2 − 2hx+ h2 − y2

e2 − 1
=

4e2p2

(e2 − 1)2
.

Now let

a =
2pe
e2 − 1

.

Then Eq. (11) simplifies to

x2 − 2hx+ h2 − y2

e2 − 1
= a2;

(x− h)2
a2

− y2

a2(e2 − 1)
= 1.

Finally, let b = a
√
e2 − 1 . Then Eq. (11) further simplifies to

(x− h)2
a2

− y2

b2
= 1

where

h = −p · e
2 + 1
e2 − 1

, a =
2pe
e2 − 1

, and b = a
√
e2 − 1 =

2pe√
e2 − 1

.
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Section 9.2

C09S02.001: (a):
(

1
2

√
2 , 1

2

√
2

)
; (b):

(
1, −
√

3
)
; (c):

(
1
2 , −

1
2

√
3

)
; (d): (0, −3); (e):

(√
2 , −

√
2

)
;

(f):
(√

3 , −1
)
; (g):

(
−
√

3 , 1
)
.

C09S02.002: (a):
(√

2 , 5
4 π

)
and

(
−
√

2 , 1
4 π

)
; (b):

(
2, − 1

6 π
)

and
(
−2, 5

6 π
)
; (c):

(
2
√

2 , 1
4 π

)
and

(
−2
√

2 , 5
4 π

)
; (d):

(
2, 2

3 π
)

and
(
−2, 5

3 π
)
; (e):

(
2, − 1

4 π
)

and
(
−2, 3

4 π
)
; (f):

(
2
√

3 , 5
6 π

)
and

(
−2
√

3 , 11
6 π

)
.

C09S02.003: r cos θ = 4: r = 4 sec θ.

C09S02.004: r sin θ = 6: r = 6 csc θ, 0 < θ < π.

C09S02.005: r cos θ = 3r sin θ: tan θ =
1
3
; θ = tan−1

(
1
3

)
.

C09S02.006: r2 cos2 θ + r2 sin2 θ = 25: r = 5.

C09S02.007: r2 sin θ cos θ = 1: r2 = csc θ sec θ.

C09S02.008: r2(cos2 θ − sin2 θ) = 1: r2 =
1

cos 2θ
; r2 = sec 2θ.

C09S02.009: r sin θ = r2 cos2 θ: r = sec θ tan θ. Note that no points on the graph are lost when r is
cancelled.

C09S02.010: r(cos θ + sin θ) = 4: r =
4

cos θ + sin θ
.

C09S02.011: r2 = 9: x2 + y2 = 9.

C09S02.012: θ = 3
4 π: tan θ = −1;

r sin θ
r cos θ

= −1; y = −x.

C09S02.013: r2 = −5r cos θ: x2 + y2 + 5x = 0.

C09S02.014: r = 2 sin θ cos θ: r3 = 2(r sin θ)(r cos θ); ±(x2 + y2)3/2 = 2xy; (x2 + y2)3 = 4x2y2.

C09S02.015: r = 1 − cos 2θ: r = 2 · 1− cos 2θ
2

= 2 sin2 θ; r3 = 2(r sin θ)2; (x2 + y2)3/2 = 2y2;

(x2 + y2)3 = 4y4.

C09S02.016: r = 2 + sin θ:

r2 = 2r + r sin θ;

(x2 + y2)2 = ±2(x2 + y2)1/2 + y;

(x2 + y2 − y)2 = 4(x2 + y2);

x4 + 2x2y2 + y4 − 2x2y − 2y3 + y2 = 4x2 + 4y2;

x4 + 2x2y2 + y4 = 4x2 + 3y2 + 2x2y + 2y3.

1



C09S02.017: r = 3 sec θ: r cos θ = 3; x = 3.

C09S02.018: r2 = cos 2θ = cos2 θ − sin2 θ: r4 = (r cos θ)2 − (r sin θ)2; (x2 + y2)2 = x2 − y2.

C09S02.019: x = 2; r = 2 sec θ.

C09S02.020: y = 3; r = 3 csc θ.

C09S02.021: y + 1 = (−1) · (x− 2); thus x+ y = 1. r(cos θ + sin θ) = 1: r =
1

cos θ + sin θ
.

C09S02.022: y − 2 = x− 4: x− y = 2. r =
2

cos θ − sin θ
.

C09S02.023: y − 3 = x− 1: x− y + 2 = 0; r =
2

sin θ − cos θ
.

C09S02.024: (x− 3)2 + y2 = 9: x2 − 6x+ y2 = 0. r2 = 6r cos θ: r = 6 cos θ.

C09S02.025: x2 + (y + 4)2 = 16: x2 + y2 + 8y = 0. r2 + 8r sin θ = 0: r + 8 sin θ = 0.

C09S02.026: (x−3)2 +(y−4)2 = 25: x2−6x+y2−8y = 0. r2 = 6r cos θ+8r sin θ: r = 6 cos θ+8 sin θ.

C09S02.027: (x− 1)2 + (y − 1)2 = 2: x2 − 2x+ y2 − 2y = 0. r2 = 2r(cos θ+ sin θ): r = 2 cos θ+ 2 sin θ.

C09S02.028: The radius of the circle is
√

42 + 32 = 5. Therefore a Cartesian equation of the circle
is (x − 5)2 + (y + 2)2 = 25; that is, x2 − 10x + y2 + 4y + 4 = 0. A polar equation of the circle is
r2 = 10r cos θ − 4r sin θ − 4.

C09S02.029: Given: r2 = −4r cos θ. Thus x2 + 4x+ y2 = 0; that is, (x+ 2)2 + (y − 0)2 = 4. This is an
equation of the circle with center (−2, 0) and radius 2, and thus it’s the one shown in Fig. 9.2.23.

C09S02.030: Given: r = 5 cos θ + 5 sin θ. Thus x2 − 5x+ y2 − 5y = 0;

x2 − 5x+
25
4

+ y2 − 5y +
25
4

=
25
2

;

(
x− 5

2

)2

+
(
y − 5

2

)2

=
5
2

√
2 .

Therefore we are given the equation of a circle through the origin with center at
(

5
2 ,

5
2

)
, the circle shown in

Fig. 9.2.21.

C09S02.031: Given: r = −4 cos θ + 3 sin θ. Thus r2 = −4r cos θ + 3r sin θ;

x2 + 4x+ y2 − 3y = 0;

(x+ 2)2 +
(
y − 3

2

)2

= 4 +
9
4

=
25
4
.

Thus we are given the equation of a circle with center
(
−2, 3

2

)
, radius 5

2 , and passing through the origin.
This is the circle shown in Fig. 9.2.24.

C09S02.032: Given: r = 8 cos θ − 15 sin θ. Then r2 = 8r cos θ − 15r sin θ;

2



x2 − 8x+ y2 + 15y = 0;

(x− 4)2 +
(
y − 15

2

)2

= 16 +
225
4

=
289
4
.

The graph is a circle with center at
(
4, − 15

2

)
, with radius 17

2 , and passing through the origin. Its graph
appears in Fig. 9.2.22.

C09S02.033: First note that r = 0 when 6 cos θ = 8; that is, never. Also r is maximal when θ = 0, for
which r = 14; r is minimal when θ = π, for which r = 2. So the graph of this limaçon is the one shown in
Fig. 9.2.26.

C09S02.034: First note that r = 0 when cos θ = −1; that is, when θ = π. Also r � 0 for all θ. So the
graph of this limaçon is the one shown in Fig. 9.2.28.

C09S02.035: The maximum value of r is 14, which occurs when θ = 0; the minimum value of r is −4,
which occurs when θ = π. So the graph of this limaçon is the one shown in Fig. 9.2.25.

C09S02.036: The maximum value of r is r(0) = 14 and the minimum value of r is r(π) = −8. Hence the
graph of this limaçon is the one shown in Fig. 9.2.27.

C09S02.037: Assume that a2 + b2 �= 0; that is, that neither a nor b is zero. Suppose that r =
a cos θ + b sin θ. Then

r2 = ar cos θ + br sin θ;

x2 − ax+ y2 − by = 0;

x2 − ax+
1
4
a2 + y2 − by +

1
4
b2 =

a2 + b2

4
;

(
x− a

2

)2
+

(
y − b

2

)2

=
a2 + b2

4
.

Therefore the graph of r = a cos θ + b sin θ is a circle with center
(

1
2 a,

1
2 b

)
and radius 1

2

√
a2 + b2 .

C09S02.038: Assume that 0 < a < b. Suppose that r = a+ b cos θ. Then r = 0 when cos θ = −a/b; that
is, when

θ = α = cos−1
(
− a
b

)
and when θ = β = 2π − cos−1

(
− a
b

)
.

Moreover, r < 0 if α < θ < β, so the graph has an inner loop. The maximum value of r is r(0) = a+ b and
the minimum value of r is r(π) = a− b < 0.
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C09S02.039: The graph of the circle with polar equation r = 2 cos θ is shown next. This graph is
symmetric around the x-axis.

C09S02.040: The graph of the circle with polar equation r = 2 cos θ + 2 sin θ is shown next. This graph
is symmetric around the line y = x.

C09S02.041: The graph of the cardioid with polar equation r = 1 + cos θ is shown next. This graph is
symmetric around the x-axis.

C09S02.042: The graph of the cardioid with polar equation r = 1 − sin θ is shown next. This graph is
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symmetric around the y-axis.

C09S02.043: The graph of the limaçon with polar equation r = 2 + 4 sin θ is shown next. This graph is
symmetric around the y-axis.

C09S02.044: The graph of the limaçon with polar equation r = 4 + 2 cos θ is shown next. This graph is
symmetric around the x-axis.

C09S02.045: The graph of the lemniscate with polar equation r2 = 4 sin 2θ is shown next. This graph is
symmetric around the line y = x, around the line y = −x, and around the pole (meaning that (x, y) is on
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the graph if and only if (−x, −y) is on the graph).

C09S02.046: The graph of the lemniscate with polar equation r2 = 4 cos 2θ is shown next. This graph is
symmetric around both coordinate axes and around the pole.

C09S02.047: The graph of the four-leaved rose with polar equation r = 2 sin 2θ is shown next. This graph
is symmetric around both coordinate axes, around both lines y = x and y = −x, and around the pole.

C09S02.048: The graph of the three-leaved rose with polar equation r = 3 sin 3θ is shown next. This
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graph is symmetric around the y-axis. It is also invariant under a rotation of 120◦ around the origin.

C09S02.049: The graph of the three-leaved rose with polar equation r = 3 cos 3θ is shown next. This
graph is symmetric around the x-axis. It is also unchanged if it is rotated any integral multiple of 120◦

around the origin.

C09S02.050: The graph of the spiral of Archimedes with polar equation r = 3θ is shown next. The graph
on the left shows the spiral for −3π � θ � 3π. This graph is symmetric around the y-axis. The graph on
the right shows the spiral for 0 � θ � 6π. The latter graph has no symmetries.
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C09S02.051: The graph of the five-leaved rose with polar equation r = 2 sin 5θ is shown next. This graph
is symmetric around the y-axis and is also unchanged if rotated any integral multiple of 72◦ around the
origin.

C09S02.052: The graph of the figure eight with polar equation r2 = 4 sin θ is shown next. This graph is
symmetric around both coordinate axes.
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C09S02.053: The graphs of the polar equations r = 1 and r = cos θ are shown next.

Solving cos θ = 1 yields θ = 0. This corresponds to the point with polar coordinates (1, 0) on both the large
circle and the small circle. The graph makes it clear that there are almost certainly no other solutions. A
rigorous demonstration that there are no other solutions is possible but would take this discussion too far
afield.

C09S02.054: The graphs of the circle with polar equation r = sin θ and the “double circle” with polar
equation r2 = 3 cos2 θ are shown next.

To find some of the points of intersection, we solve

sin2 θ = 3 cos2 θ; tan2 θ = 3; tan θ = ±
√

3 .

Thus we obtain θ = ± 1
3 π, θ = ± 2

3 π. Thereby we find some of the points of intersection of the two graphs:
They meet at the point in the first quadrant with polar coordinates

(
1
2

√
3 , 1

3 π
)
; they meet at the point

in the second quadrant with polar coordinates
(

1
2

√
3 , 2

3 π
)
. They also meet at the pole, which lies on the

small circle because it has polar coordinates (0, 0) and which also lies on the “double circle” because it has
polar coordinates

(
0, 1

2 π
)
. There are no other solutions. To verify this assertion, show that all three curves

in the figure are circles, then prove rigorously the lemma to the effect that two circles that do not coincide
can meet in no more than two points.

C09S02.055: The graphs of the circle with polar equation r = sin θ and the four-leaved rose with polar
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equation r = cos 2θ are shown next.

We find some of the points where they meet by solving their equations simultaneously as follows:

sin θ = cos 2θ; sin θ = 1− 2 sin2 θ;

2 sin2 θ + sin θ − 1 = 0; (2 sin θ − 1)(sin θ + 1) = 0;

sin θ =
1
2

or sin θ = −1; θ =
π

6
,

5π
6
, or

3π
2
.

Thus the curves meet at the points with polar coordinates
(

1
2 ,

1
6 π

)
and

(
1
2 ,

5
6 π

)
. They also meet at the

point with polar coordinates
(
−1, 3

2 π
)

because it also has polar coordinates
(
1, 1

2 π
)
. Finally, they also meet

at the pole because it has polar coordinates (0, 0) as well as polar coordinates
(
0, 1

4 π
)
.

C09S02.056: The graphs of the cardioids with polar equations r = 1 + cos θ and r = 1− sin θ are shown
next.

Simultaneous solution of their equations yields tan θ = −1, which has the two solutions θ = 3
4 π and θ = 7

4 π

for 0 � θ � 2π. Thus we find that the cardioids meet at the two points with polar coordinates
(

1− 1
2

√
2 ,

3
4
π

)
and

(
1 +

1
2

√
2 ,

7
4
π

)
.

They also meet at the pole, which lies on the first cardioid because it has polar coordinates (0, π) and on
the second cardioid because it has polar coordinates

(
0, 1

2 π
)
. There are no other solutions.
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C09S02.057: The graphs of the cardioid with polar equation r = 1− cos θ and the double oval with polar
equation r2 = 4 cos θ are shown next.

We solve their equations simultaneously as follows:

(1− cos θ)2 = 4 cos θ; 1− 2 cos θ + cos2 θ = 4 cos θ;

cos2 θ − 6 cos θ + 1 = 0; cos θ =
6±
√

32
2

= 3± 2
√

2 ;

cos θ = 3− 2
√

2 ; θ = ± cos−1
(
3− 2

√
2

)
.

Thus we obtain two of the four points of intersection: the points with polar coordinates

(
2
√

2 − 2, cos−1
(
3− 2

√
2

))
and

(
2
√

2 − 2, − cos−1
(
3− 2

√
2

))
.

The curves also meet at (0, 0) because it also has polar coordinates
(
0, 1

2 π
)
. Moreover, they meet at the

point (2, π) because it also has polar coordinates (−2, 0). There are no other points of intersection.

C09S02.058: The graphs of the two double ovals with polar equations r2 = 4 sin θ and r2 = 4 cos θ are
shown next.

Simultaneous solution of the two equations yields sin θ = ± cos θ, so that tan θ = ±1. Thus solutions seem
to consist of odd integral multiples of 1

4 π. Certainly there are no other possibilities for θ. Let’s examine
the four of these between 0 and 2π.
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O

A

B

Case 1: θ = 1
4 π. Then 4 sin θ =

√
8 and 4 cos θ =

√
8 . So we find the two points of intersection in the

first and third quadrants:
(
81/4, 1

4 π
)

and
(
−81/4, 1

4 π
)
.

Case 2: θ = 3
4 π. Then 4 sin θ =

√
8 but 4 cos θ = −

√
8 . So we find that the two points in the second and

fourth quadrants
(
81/4, 3

4 π
)

and
(
−81/4, 3

4 π
)

satisfy the equation r2 = 4 sin θ but not the equation r2 = 4 cos θ.

Case 3: θ = 5
4 π. Then both 4 sin θ and 4 cos θ are negative, so we find no solutions in this case.

Case 4: θ = 7
4 π. Then 4 cos θ = 8 but 4 sin θ = −8, so we find that the two points in the second and fourth

quadrants
(
81/4, 7

4 π
)

and
(
−81/4, 7

4 π
)

satisfy the equation r2 = 4 cos θ but not the equation r2 = 4 sin θ. But re-examine Case 2: The two points
from Case 2, which have polar coordinates that satisfy the equation r2 = 4 sin θ, also have polar coordinates
that satisfy the equation r2 = 4 cos θ. So we have found four solutions after all.

In addition, there is a fifth solution; the pole has coordinates (0, 0) and also coordinates
(
0, 1

4 π
)
, and thus

is a simultaneous solution of the original two equations. The four points so obviously solutions when one
examines the graph are also solutions for clear algebraic reasons. The origin, also a fifth solution obvious
upon inspection of the graph, isn’t obtained by ordinary algebraic methods. And there is no sixth solution.

C09S02.059: The following figure shows a typical situation of the sort described in this problem: The
point A(p, α) lies in the plane, the line L passes through A and is perpendicular to the line segment OA
from the pole O to A. Let B(r, θ) be the polar coordinates of a typical point of L. Then OAB is a right
triangle.

Moreover, the acute angle of this triangle at O is α− θ, so when we project the hypotenuse of length r onto
the side OA of length p, we find that

r cos(α− θ) = p;

r(cosα cos θ + sinα sin θ) = p;

r =
p

cosα cos θ + sinα sin θ
.
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A rectangular coordinates equation of L can now be obtained from the second displayed equation here as
follows:

(cosα)(r cos θ) + (sinα)(r sin θ) = p,

and therefore L has rectangular equation x cosα+ y sinα = p.

C09S02.060: Given r = 1− cos θ, we obtain

r2 = r − r cos θ; r2 = r − x;

x2 + y2 + x = r; (x2 + y2 + x)2 = x2 + y2;

x4 + 2x2y2 + y2 + 2x3 + 2xy2 + x2 = x2 + y2; x4 + 2x2y2 + y2 + 2x3 + 2xy2 = y2;

(x2 + y2)2 + 2x(x2 + y2) = y2.

C09S02.061: Beginning with a2(x2 + y2) = (x2 + y2 − by)2, we convert to polar coordinates:

a2r2 = (r2 − br sin θ)2; ar = ±(r2 − br sin θ);

a = ±(r − b sin θ); r − b sin θ = ±a.

Therefore r = ±a + b sin θ. If |a| = |b| and neither is zero, then the graph is a cardioid. If |a| �= |b| and
neither a nor b is zero, then the graph is a limaçon. If either a or b is zero and the other is not, then the
graph is a circle. If a = b = 0 then the graph consists of the pole alone.

C09S02.062: The graphs of r = 1 + cos θ and r = −1 + cos θ are identical. Here’s why. Suppose that
(p, α) are the polar coordinates of a point on the first cardioid. Then (−p, α + π) also lies on the first
cardioid. But

−1 + cos(α+ π) = −1− cosα = −(1 + cosα) = −p.

Thus (−p, α + π) lies on the second cardioid. Therefore (p, α) lies on the second cardioid. The argument
may be reversed to show that every point on the second cardioid also lies on the first cardioid. That’s why
their graphs are identical.

C09S02.063: The behavior of the graph of the polar equation r = cos(pθ/q) (where p and q are positive
integers) depends strongly on the values of p and q . Without loss of generality we may suppose that p and
q have no integral factor in common larger than 1. First you should determine what is meant by a “loop”
and what is meant by “overlapping loops.” The minimum value of the positive integer k required to show
the entire graph on the interval [0, kπ ] appears in the following table (for the values of p and q we found
practical to use). The table is followed by Mathematica-generated graphs of r = cos(pθ/q) for various values
of p and q. The values of p and q are given beneath each graph in the form of the ordered pair (p, q). You
can probably deduce the way in which the loops depend on p and q with the aid of a little patience and
imagination.

In the table, the values of q appear in the first row, in boldface; those of p appear in the first column.
The values of k that we deduced in constructing the figures appear in the body of the table.
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1 2 3 4 5 6 7 8 9 10 11 13 15

1 1 4 3 8 5 12 7 16
2 2 6 10 14 18 22 26 30
3 1 4 8 5 7 16 20 11
4 2 6 10 14 18 22 26 30
5 1 4 3 8 12 7 16 9
6 2 10 14 22 26
7 1 4 3 8 5 12 16 9

And here are the graphs.
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C09S02.064: The graphs of r = a + b sin(nθ) are shown next for a few values of a , b , and n . Clearly
the quantitative behavior of the graph is independent of the positive numbers a and b , apart from the cases
a > b, b = a, and a < b. We show, in order, the cases (a, b, n) = (1, 4, 4), (1, 4, 5), (4, 1, 3), (2, 2, 3),
and (2, 2, 4). The last two cases are more subtle than they at first appear—there are cusps, not crossings,
at the origin. The obvious generalizations from the conclusions you draw here are indeed valid.
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Section 9.3

C09S03.001: The graph of r = θ, 0 � θ � π, is shown next.

C09S03.002: The graph of r = θ, 0 � θ � 2π, is next.

C09S03.003: The graph of r = 1/θ, π � θ � 3π, is shown next.

C09S03.004: The graph of the polar equation r = 1/θ, 3π � θ � 5π, is next.
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C09S03.005: The graph of r = e−θ, 0 � θ � π, is next.

C09S03.006: The graph of r = e−θ,
π

2
� θ � 3π

2
, is next.

C09S03.007: Note that the entire curve r = 2 cos θ is swept out as θ runs through the interval 0 � θ � π.
Thus the area enclosed by this circle is

A =
1
2

∫ π

0

4 cos2 θ dθ =
∫ π

0

(1 + cos 2θ) dθ =
[
θ + sin θ cos θ

]π
0

= π.

The accuracy checkers felt that the area integral should be evaluated over the interval −π/2 � θ � π/2.
These limits will, of course, give the correct answer and are certainly more natural in this problem. On the
other hand, the solution shown is correct and has the advantage that trigonometric functions are generally
easier to evaluate at integral multiples of π.

C09S03.008: The area enclosed by the circle with polar equation r = 4 sin θ is

A =
1
2

∫ π

0

16 sin2 θ dθ = 4
∫ π

0

(1− cos 2θ) dθ = 4
[
θ − sin θ cos θ

]π
0

= 4π.

C09S03.009: The area enclosed by the cardioid with polar equation r = 1 + cos θ is

A =
1
2

∫ 2π

0

(1 + cos θ)2 dθ =
1
2

∫ 2π

0

(
1 + 2 cos θ +

1 + cos 2θ
2

)
dθ

=
1
2

∫ 2π

0

(
3
2

+ 2 cos θ +
1
2

cos 2θ
)
dθ =

1
2

[
3
2
θ + 2 sin θ +

1
2

sin θ cos θ
]2π

0

=
3
4
· 2π =

3
2
π.

C09S03.010: Because r � 0 for all θ, the area enclosed by the cardioid with polar equation r = 2(1−sin θ)
is

2



A =
1
2

∫ 2π

0

4
(

1− 2 sin θ +
1− cos 2θ

2

)
dθ

=
∫ 2π

0

(3− 4 sin θ − cos 2θ) dθ =
[
3θ + 4 cos θ − sin θ cos θ

]2π

0

= 6π ≈ 18.849555921539.

C09S03.011: Because r > 0 for all θ, the area enclosed by the limaçon with polar equation r = 2− cos θ
is

A =
1
2

∫ 2π

0

(2− cos θ)2 dθ =
1
2

∫ 2π

0

(4− 4 cos θ + cos2 θ) dθ =
1
2

∫ 2π

0

(
4− 4 cos θ +

1 + cos 2θ
2

)
dθ

=
1
2

[
9
2
θ − 4 sin θ +

1
4

sin 2θ
]2π

0

=
9
4
· 2π =

9
2
π ≈ 14.137166941154.

C09S03.012: Because r > 0 for all θ, the area enclosed by the limaçon with polar equation r = 3+2 sin θ
is

A =
1
2

∫ 2π

0

(3 + 2 sin θ)2 dθ =
1
2

∫ 2π

0

(9 + 12 sin θ + 4 sin2 θ) dθ

=
1
2

∫ 2π

0

[9 + 12 sin θ + 2(1− cos 2θ)] dθ =
1
2

[
11θ − 12 cos θ − sin 2θ

]2π

0

= 11π ≈ 34.557519189488.

C09S03.013: Note that the entire circle with polar equation r = −4 cos θ is swept out as θ runs through
any interval of length π. Therefore the area the circle encloses is

A =
∫ π

0

8 cos2 θ dθ = 4
∫ π

0

(1 + cos 2θ) dθ = 4
[
θ + sin θ cos θ

]π
0

= 4π ≈ 12.566370614359.

C09S03.014: The area enclosed by the cardioid with polar equation r = 5(1 + sin θ) is

A =
1
2

∫ 2π

0

25(1 + 2 sin θ + sin2 θ) dθ =
25
2

∫ 2π

0

(
1 + 2 sin θ +

1− cos 2θ
2

)
dθ

=
25
2

[
3
2
θ − 2 cos θ − 1

4
sin 2θ

]2π

0

=
25
2
· 3
2
· 2π =

75
2
π ≈ 117.809724509617.

C09S03.015: The graph of the limaçon with polar equation r = 3 − cos θ is shown next. It looks very
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much like a circle. Do you see an easy way to deduce that it is not a circle?

The area enclosed by this limaçon is

A =
1
2

∫ 2π

0

(3− cos θ)2 dθ =
1
2

∫ 2π

0

(
9− 6 cos θ +

1 + cos 2θ
2

)
dθ

=
1
2

[
19
2
θ − 6 sin θ +

1
4

sin 2θ
]2π

0

=
19
2
π ≈ 29.845130209103.

C09S03.016: The Mathematica command

ParametricPlot[ { (2 + Sin[t] + Cos[t])∗Cos[t], (2 + Sin[t] + Cos[t])*Sin[t] },
{ t, 0, 2∗Pi }, AspectRatio → Automatic ];

will produce the graph of the curve with the given polar equation r = 2 + sin θ+ cos θ. It looks very much
like a limaçon, but rotated 45◦ from the “standard” limaçons shown in the text and elsewhere in this manual.
Can you show that it is in fact a limaçon? To find the area A that it encloses, note first that

r2 = 4 + 4 sin θ + 4 cos θ + sin2 θ + 2 sin θ cos θ + cos2 θ = 5 + 4 sin θ + 4 cos θ + 2 sin θ cos θ.

Therefore

A =
1
2

∫ 2π

0

(5 + 4 sin θ+ 4 cos θ+ 2 sin θ cos θ) dθ =
1
2

[
5θ− 4 cos θ+ 4 sin θ+ sin2 θ

]2π

0

= 5π ≈ 15.707963.

C09S03.017: Given: The polar equation r = 2 cos 2θ of a four-leaved rose. The “loops,” or rose petals,
are formed by the curve repeatedly passing through the origin at different angles. Examine the graph of
this equation in Fig. 9.2.12 (Example 6 of Section 9.2). All we need is to find when r = 0; that is, when
cos 2θ = 0. This occurs when θ is an odd integral multiple of π/4, so we can take for the limits of integration
any two consecutive such numbers. Hence the area enclosed by one loop of the rose is

A =
1
2

∫ π/4

−π/4
4 cos2 2θ dθ.

Using the symmetry of the loop around the x-axis, we can double the area of the upper half of the loop to
make the computations slightly simpler:
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A =
∫ π/4

0

2(1 + cos 4θ) dθ = 2
[
θ +

1
4

sin 4θ
]π/4
0

= 2 · π
4

=
π

2
≈ 1.570796326795.

C09S03.018: Given: The polar equation r = 3 sin 3θ of a three-leaved rose (see Fig. 9.3.12). First find
when r = 0: When θ is any integral multiple of π/3. Hence the area of one loop is

A =
1
2

∫ π/3

0

9 sin2 3θ dθ =
9
4

∫ π/3

0

(1− cos 6θ) dθ =
9
4

[
θ − 1

6
sin 6θ

]π/3
0

=
3π
4
≈ 2.3561944902.

C09S03.019: Given: The polar equation r = 2 cos 4θ of an eight-leaved rose (see Fig. 9.3.13). To find
the area of one loop, we need to find the limits of integration on θ, which are determined by solving the
equation r = 0. We find that 4θ will be any odd integral multiple of π/2, and therefore that θ will be any
odd integral multiple of π/8. We will also double the area of half of one loop to make the computations
slightly simpler. Thus the area of one loop is

A =
1
2

∫ π/8

−π/8
4 cos2 4θ dθ =

∫ π/8

0

2(1 + cos 8θ) dθ =
[
2θ +

1
4

sin 8θ
]π/8
0

=
π

4
≈ 0.785398163397.

C09S03.020: The area of one loop of the five-leaved rose with polar equation r = sin 5θ (see Fig. 9.3.14)
is

A =
1
2

∫ π/5

0

sin2 5θ dθ =
1
2

∫ π/5

0

1
2

(1− cos 10θ) dθ =
1
4

[
θ − 1

10
sin 10θ

]π/5
0

=
π

20
≈ 0.157079632679.

C09S03.021: The lemniscate with polar equation r2 = 4 sin 2θ has two loops; its graph can be obtained
from the one in Fig. 9.2.13 (Example 7 of Section 9.2) by a 90◦ rotation. To find the area of the loop in the
first quadrant, find when r = 0: sin 2θ = 0 when θ is an integral multiple of π/2. Hence the area of the
loop lying in the first quadrant is

A =
1
2

∫ π/2

0

4 sin 2θ dθ =
[
− cos 2θ

]π/2
0

= 1− (−1) = 2.

C09S03.022: The lemniscate with polar equation r2 = 4 cos 2θ is shown in Fig. 9.3.15. We will find the
area of the right-hand loop. First, r = 0 when cos 2θ = 0, so that θ is an odd integral multiple of π/4. Hence
the area of the right-hand loop is

A =
1
2

∫ π/4

−π/4
4 cos 2θ dθ =

∫ π/4

0

4 cos 2θ dθ =
[
2 sin 2θ

]π/4
0

= 2.

C09S03.023: Given: The polar equation r2 = 4 sin θ. One way to construct its graph is first to construct
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the Cartesian graph y = 4 sinx, which is shown next for 0 � x � 2π.

Then construct the Cartesian graph of y = ±
√

4 sinx , shown next, also for 0 � x � 2π. Note that there
is no graph for π < x < 2π but two graphs for 0 � x � π.

Finally, use the last graph to construct the polar graph r2 = 4 sin θ by sketching both r =
√

4 sin θ and
r = −

√
4 sin θ . As θ varies from 0 to π, r begins at 0, increases to a maximum r = 2 when θ = π/2, then

decreases to 0 as θ runs through the values from π/2 to π. Meanwhile, −r sweeps out the mirror image of
the previous curve, and thus we obtain the “double oval” shown in the next figure.

The area of the upper loop is therefore

A =
1
2

∫ π

0

4 sin θ dθ =
[
− 2 cos θ

]π
0

= 2− (−2) = 4.

C09S03.024: The area of one loop of this rose is

A =
1
2

∫ π/12

−π/12
36 cos2 6θ dθ = 36

∫ π/12

0

1
2

(1 + cos 12θ) dθ = 18
[
θ +

1
12

sin 12θ
]π/12
0

=
3π
2
.
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C09S03.025: See the graph on the right.

Find the area A of the region both inside the circle r = 2 sin θ and outside the circle r = 1. The circles
cross where 2 sin θ = 1, thus where θ = π/6 and where θ = 5π/6. So

A =
1
2

∫ 5π/6

π/6

(4 sin2 θ − 1) dθ =
1
2

∫ 5π/6

π/6

[
2(1− cos 2θ)− 1

]
dθ

=
1
2

[
θ − sin 2θ

]5π/6

π/6

=
1
2

(
5π
6
− π

6
+
√

3
2

+
√

3
2

)
=

2π + 3
√

3
6

≈ 1.913222954981.

C09S03.026: See the graph on the right.

The circles r = 4 cos θ and r = 2 cross where 4 cos θ = 2, thus where θ = −π/3 and where θ = π/3. To
find the area A of their intersection, we double the area of its top half; thus

A =
∫ π/3

0

4 dθ +
∫ π/2

π/3

16 cos2 θ dθ =
4π
3

+ 4
∫ π/2

π/3

2(1 + cos 2θ) dθ =
4π
3

+ 4
[
2θ + sin 2θ

]π/2
π/3

=
4π
3

+ 4

(
π − 2π

3
−
√

3
2

)
=

4π
3

+ 4π − 8π
3
− 2
√

3 =
8π − 6

√
3

3
≈ 4.91347879.
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C09S03.027: See the figure on the right.

The two circles r = cos θ and r =
√

3 sin θ cross where

cos θ =
√

3 sin θ; tan θ =
√

3
3

; θ =
π

6
;

they also cross at the pole. The region inside both is divided by the ray θ = π/6 into a lower region of area
B and an upper region of area C. Thus we find the area of the region inside both circles to be A = B+C.
Now

B =
1
2

∫ π/6

0

3 sin2 θ dθ =
3
4

∫ π/6

0

(1− cos 2θ) dθ =
3
4

[
θ − sin θ cos θ

]π/6
0

=
3
4

(
π

6
−
√

3
4

)

and

C =
1
2

∫ π/2

π/6

cos2 θ dθ =
1
4

∫ π/2

π/6

(1 + cos 2θ) dθ =
1
4

[
θ + sin θ cos θ

]π/2
π/6

=
1
4

(
π

3
−
√

3
4

)
.

Therefore A = B + C =
5π − 6

√
3

24
≈ 0.221485767606.

C09S03.028: See the figure on the right.

Let A be the area of the region that is both inside the limaçon with polar equation r = 2+cos θ and outside
the circle with equation r = 2. The curves cross where 2 + cos θ = 2, thus where cos θ = 0; that is, where
θ = ±π/2. Hence
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A =
1
2

∫ π/2

−π/2
(4 + 4 cos θ + cos2 θ − 4) dθ =

∫ π/2

0

(
4 cos θ +

1 + cos 2θ
2

)
dθ

=
[
4 sin θ +

1
2
θ +

1
4

sin 2θ
]π/2
0

= 4 +
π

4
=

16 + π

4
≈ 4.785398163397.

C09S03.029: See the figure on the right.

Let A denote the area of the region that is both inside the limaçon with polar equation r = 3 + 2 cos θ and
outside the circle with equation r = 4. The curves cross where

3 + 2 cos θ = 4; 2 cos θ = 1; cos θ =
1
2
; θ = ± π

3
.

Therefore

A =
1
2

∫ π/3

−π/3

[
(3 + 2 cos θ)2 − 42

]
dθ =

∫ π/3

0

[
9 + 12 cos θ + 2(1 + cos 2θ)− 16

]
dθ

=
[
− 5θ + 12 sin θ + sin 2θ

]π/3
0

= − 5π
3

+ 12 ·
√

3
2

+
√

3
2

=
39
√

3 − 10π
6

≈ 6.022342493215.

C09S03.030: See the figure on the right.

Let A denote the area of the region that is both within the lemniscate with polar equation r2 = 2 cos 2θ
and outside the circle with equation r = 1. We will use the symmetry of the figure around the y-axis: We
will find the area of the half on the right, then double it to find A. The curves cross where 2 cos 2θ = 1, thus
where θ = ±π/6. To find the area of the half of the figure on the right, we will find the area of its top half
and double the result. Thus

9



A = 2 · 2 · 1
2

∫ π/6

0

(2 cos 2θ − 1) dθ = 2
[
(sin 2θ)− θ

]π/6
0

= 2

(√
3
2
− π

6

)
=

3
√

3 − π
3

≈ 0.6848532564.

C09S03.031: See Fig. 9.3.16 of the text. The lemniscates r2 = cos 2θ and r2 = sin 2θ cross where
cos 2θ = sin 2θ, thus where tan 2θ = 1; that is, where θ = π/8 (and they also cross at the pole). We find the
area A within both curves by doubling the area of the half to the right of the y-axis:

A = 2 · 1
2

∫ π/8

0

sin 2θ dθ + 2 · 1
2

∫ π/4

π/8

cos 2θ dθ

= 2
∫ π/8

0

sin 2θ dθ =
[
− cos 2θ

]π/8
0

=
2−
√

2
2

≈ 0.292893218813.

C09S03.032: See Fig. 9.3.17 of the text. Given r = 1 − 2 sin θ, we see that r = 0 when sin θ = 1
2 ; that

is, when θ = π/6 and when θ = 5π/6. The small loop is formed when 1
6 π � θ � 5

6 θ , where r � 0. Let A2

denote its area. The large loop is formed when 5
6 π � θ � 13

6 π, where r � 0. Let A1 denote its area. Also
note that

1
2

(1− 2 sin θ)2 =
1
2

(1− 4 sin θ + 4 sin2 θ) =
1
2
− 2 sin θ + 1− cos 2θ =

3
2
− 2 sin θ − cos 2θ.

Therefore

A1 =
∫ 13π/6

5π/6

(
3
2
− 2 sin θ − cos 2θ

)
dθ =

[
3
2
θ + 2 cos θ − 1

2
sin 2θ

]13π/6

5π/6

=
1
4

(
3
√

3 + 13π
)
− 1

4

(
5π − 3

√
3

)
=

3
√

3 + 4π
2

and

A2 =
[

3
2
θ + 2 cos θ − 1

2
sin 2θ

]5π/6

π/6

=
1
4

(
5π − 3

√
3

)
− 1

4

(
3
√

3 + π
)

=
2π − 3

√
3

2
.

Because A1 measures all of the area within the large loop—including that within the small loop—the area
that is both within the large loop of the limaçon and outside its small loop is

A = A1 −A2 = π + 3
√

3 ≈ 8.337745076296.
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C09S03.033: See the figure on the right.

We are to find the area A of the region that is both inside the cardioid with polar equation r = 2(1+ cos θ)
and outside the circle with equation r = 1. The curves cross where 2+2 cos θ = 1; it follows that cos θ = − 1

2 ,
so that θ = 2π/3 or θ = 4π/3. Therefore

A =
1
2

∫ 8π/3

4π/3

[
4(1 + cos θ)2 − 1

]
dθ =

1
2

∫ 8π/3

4π/3

(4 + 8 cos θ + 4 cos2 θ − 1) dθ

=
1
2

∫ 8π/3

4π/3

(3 + 8 cos θ + 2 + 2 cos 2θ) dθ =
1
2

[
5θ + 8 sin θ + sin 2θ

]8π/3

4π/3

=
1
2

(
40π
3

+ 8 ·
√

3
2
−
√

3
2

)
− 1

2

(
20π
3
− 8 ·

√
3
2

+
√

3
2

)

=
1
2

(
20π
3

+ 8
√

3 −
√

3
)

=
1
2

(
20π
3

+ 7
√

3
)

=
20π + 21

√
3

6
≈ 16.534153338457.

C09S03.034: See the figure to the right. Note: Only
the right-hand loop of the figure-eight curve is shown;
the left-hand loop is completely enclosed in the cardioid.

We are to find the area A of the region that is both inside the figure-eight curve r2 = 4 cos θ and outside
the cardioid r = 1− cos θ. All of the region in question lies to the right of the y-axis. Let A1 be the area
of the right-hand loop of the figure-eight curve that lies above the x-axis. Let A2 be the area of the region
in the first quadrant that lies within both the figure-eight curve and the cardioid. Then A = 2(A1 − A2).
Finding A1 is easy:

A1 =
1
2

∫ π/2

0

4 cos θ dθ = 2
[

sin θ
]π/2
0

= 2.

11



-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

1.5

2

To find A2 we need to find where the figure-eight curve and the cardioid meet in the first quadrant. Clearly
they meet at the pole. To find the other point, we solve

1− 2 cos θ + cos2 θ = 4 cos θ;

cos2 θ − 6 cos θ + 1 = 0;

cos θ =
6±
√

36− 4
2

= 3± 2
√

2 ;

cos θ = 3− 2
√

2 ;

θ = α = arccos
(
3− 2

√
2

)
.

So the two curves cross in the first quadrant where θ = α ≈ 80.12◦. A reference triangle with acute angle α,
adjacent side x = 3− 2

√
2 , and hypotenuse 1 has opposite side of length y = 2

√
3
√

2 − 4 . Therefore

A2 =
1
2

∫ α

0

(1− cos θ)2 dθ +
1
2

∫ π/2

α

4 cos θ dθ =
1
2

∫ α

0

(
1− 2 cos θ +

1 + cos 2θ
2

)
dθ +

[
2 sin θ

]π/2
α

=
1
2

[
3
2
θ − 2 sin θ +

1
2

sin θ cos θ
]α
0

+ 2− 2 sinα =
3
4
α− sinα+

1
4

sinα cosα+ 2− 2 sinα

=
3
4
α+ 2− 3 sinα+

1
4

sinα cosα.

Therefore

A = 2(A1 −A2) = 2
(

2− 3
4
α− 2 + 3 sinα− 1

4
sinα cosα

)

= 9
√

3
√

2 − 4 + 2
√

6
√

2 − 8 − 3
2

arccos
(
3− 2

√
2

)
≈ 3.728958744915.

C09S03.035: See the figure to the right.

The two circles with polar equations r = 2 cos θ and r = 2 sin θ meet at the pole and where 2 cos θ = 2 sin θ;
that is, where θ = π/4. So, using symmetry of the figure around the line y = x, the area of the region that
lies within both circles is

A = 2 · 1
2

∫ π/4

0

4 sin2 θ dθ =
∫ π/4

0

2(1− cos 2θ) dθ =
[
2θ − sin 2θ

]π/4
0

=
π − 2

2
≈ 0.570796326795.
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4C09S03.036: See the figure to the right.

Let A denote the area of the region that lies within the cardioid with polar equation r = 2 + 2 sin θ and
outside the circle with equation r = 2. These curves cross where 2 = 2 + 2 sin θ, so that θ = 0 or θ = π.
The integrand for finding A is

(2 + 2 sin θ)2 − 22 = 4 + 8 sin θ + 4 sin2 θ − 4 = 8 sin θ + 2(1− cos 2θ).

Therefore

A =
1
2

∫ π

0

(8 sin θ + 2− 2 cos 2θ) dθ =
1
2

[
− 8 cos θ + 2θ − sin 2θ

]π
0

= 8 + π ≈ 11.1415926535898.

C09S03.037: See Fig. 9.3.18. Note that the entire circle is generated as θ runs through any interval of
length π and that

(sin θ + cos θ)2 = sin2 θ + 2 sin θ cos θ + cos2 θ = 1 + 2 sin θ cos θ.

Therefore the area enclosed by the circle with polar equation r = sin θ + cos θ is

A =
1
2

∫ π

0

(1 + 2 sin θ cos θ) dθ =
[

1
2
θ +

1
2

sin2 θ

]π
0

=
π

2
.

To write the equation of this circle in Cartesian form, proceed as follows:

r2 = 4 sin θ + r cos θ;

x2 + y2 = x+ y;

x2 − x+
1
4

+ y2 − y +
1
4

=
1
2
;

(
x− 1

2

)2

+
(
y − 1

2

)2

=
1
2
.

So the figure is, indeed, a circle, and the square of its radius is 1
2 . Therefore the area of this circle is π/2.
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C09S03.038: See the figure on the right.

The circles r = 1 and r = 2 cos θ meet where θ = π/3; the circles r = 1 and r = 2 sin θ meet where
θ = π/6. Hence the area of the region that lies within all three circles is

A =
1
2

[∫ π/6

0

(2 sin θ)2 dθ +
∫ π/3

π/6

12 dθ +
∫ π/2

π/3

(2 cos θ)2 dθ

]

=
1
2

[∫ π/6

0

2(1− cos 2θ) dθ +
π

6
+

∫ π/2

π/3

2(1 + cos 2θ) dθ

]

=
1
2

([
2θ − sin 2θ

]π/6
0

+
[
2θ + sin 2θ

]π/2
π/3

)
+

π

12
=

1
2

(
π

3
−
√

3
2

+ π − 2π
3
−
√

3
2

)
+

π

12

=
1
2

(
2π
3
−
√

3
)

+
π

12
=

5π
12
−
√

3
2

=
5π − 6

√
3

12
≈ 0.442971535211.

C09S03.039: Part (a):

A1 =
1
2

∫ 2π

0

a2θ2 dθ =
[

1
6
a2θ3

]2π

0

=
4
3
π3a2 =

1
3
π(2πa)2.

Part (b):

A2 =
1
2

∫ 4π

2π

a2θ2 dθ =
[

1
6
a2θ3

]4π

2π

=
28
3
π3a2 =

7
12
π(4πa)2.

Part (c):

R2 = A2 −A1 =
28
3
π3a2 − 4

3
π3a2 =

24
3
π3a2 = 8π3a2 = 6 · 4

3
π3a2 = 6A1.

Part (d): If n � 2, then

An =
1
2

∫ 2nπ

2(n−1)π

a2θ2 dθ =
[

1
6
a2θ3

]2nπ

2(n−1)π

=
1
6
a2

[
8n3π3 − 8(n− 1)3π3

]
=

4
3
π3a2(3n2 − 3n+ 1),

and therefore
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Rn+1 = An+1 −An =
4
3
π3a2(3n2 + 6n+ 3− 3n− 3− 3n2 + 3n) =

4
3
π3a2 · 6n = 8π3a2n = nR2.

C09S03.040: Use the circles with polar equations r = a and r = 2a cos θ. They intersect in the first
quadrant at the point with polar coordinates

(
a, 1

3 π
)
. The area of the region that lies within both circles is

therefore

A = 2 · 1
2

∫ π/3

0

a2 dθ + 2 · 1
2

∫ π/2

π/3

4a2 cos2 θ dθ =
π

3
a2 + 2a2

∫ π/2

π/3

(1 + cos 2θ) dθ

=
π

3
a2 + a2

[
2θ + sin 2θ

]π/2
π/3

=
π

3
a2 + a2

(
π − 2π

3
−
√

3
2

)
=

4π − 3
√

3
6

a2 ≈ (1.228369698609)a2.

C09S03.041: Part (a): The area is

A1 =
∫ 2π

0

1
2
a2e−2kθ dθ −

∫ 4π

2π

1
2
a2e−2kθ dθ =

1
2
a2

[
− e

−2kθ

2k

]2π

0

− 1
2
a2

[
− e

−2kθ

2k

]4π

2π

=
a2

4k
(
1− e−4kπ

)
+
a2

4k
(
e−8kπ − e−4kπ

)
=
a2

4k
(
1− e−4kπ

)2
.

With k = 1
10 and a = 1, we obtain

A =
5
2

(
1− e−2π/5

)2

≈ 1.27945876.

Part (b): The area is

An =
∫ 2nπ

2(n−1)π

1
2
a2 exp (−2kθ) dθ −

∫ 2(n+1)π

2nπ

1
2
a2 exp (−2kθ) dθ

=
1
2
a2

[
− exp (−2kθ)

2k

]2nπ

2(n−1)π

− 1
2
a2

[
− exp (−2kθ)

2k

]2(n+1)π

2nπ

=
a2

4k
[exp (−4(n− 1)kπ)− exp (−4nkπ) + exp (−4(n+ 1)kπ)− exp (−4nkπ)]

=
a2

4k
exp (−4(n− 1)kπ) [1− exp (−4kπ)]2 .

With a = 1 and k = 1
10 , we find that

A =
5
2
e−2(n−1)π/5

(
1− e−2π/5

)2

.

C09S03.042: Let r(θ) = 2e−θ/10. R1 has area

A1 = 4π −
∫ 2π

0

1
2

[r(θ)]2 dθ = 4π − 10
(
1− e−2π/5

)
,

R2 has area
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A2 =
∫ 2π

0

1
2

[r(θ)]2 dθ − π = 10
(
1− e−2π/5

)
− π,

and, indeed, A1 +A2 = 3π.

C09S03.043: The point of intersection in the second quadrant is located where θ = α ≈ 2.326839. Using
symmetry, the total area of the shaded region R is approximately

2
∫ α

0

1
2

(
e−θ/5

)2

dθ + 2
∫ π

α

1
2

[2(1 + cos θ)]2 dθ ≈ 1.58069.

C09S03.044: The point of intersection in the first quadrant is located where θ = α ≈ 0.217075400 and the
point of intersection in the second quadrant is located where θ = β ≈ 2.924517254. So the total area of the
shaded region R is approximately

∫ β

α

1
2

(3 + cos 4θ)2 dθ +
∫ 2π+α

β

1
2

(3 + 3 sin θ)2 dθ ≈ 17.2661.
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Section 9.4

C09S04.001: If x = t+ 1, then t = x− 1, so that y = 2t− 1 = 2(x− 1)− 1 = 2x− 3. The graph is next.

C09S04.002: If x = t2 + 1 and y = 2t2− 1, then y = 2(x− 1)− 1 = 2x− 3 with the restriction that x � 1.
Thus the graph is a “half-line,” shown next.

C09S04.003: If x = t2 and y = t3, then y =
(
t2

)3/2 = x3/2; alternatively, y2 = x3. The graph is shown
next.

C09S04.004: If x = t1/2, then t = x2, so y = 3t− 2 = 3x2 − 2 with the restriction that x � 0. The graph
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is next.

C09S04.005: If x = t+ 1, then t = x− 1, so that y = 2t2− t− 1 = 2(x− 1)2− (x− 1)− 1 = 2x2− 5x+ 2.
The graph is next.

C09S04.006: If x = t2 + 3t and y = t− 2, then t = y + 2 and thus x = (y + 2)2 + 3(y + 2) = y2 + 7y + 10.
The graph is next.

C09S04.007: If x = et, then y = 4e2t = 4(et)2 = 4x2 with the restriction that x > 0. The graph is next.
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C09S04.008: If x = 2et, then y = 2e−t =
4

2et
=

4
x

, x > 0. The graph is next.

C09S04.009: If x = 5 cos t and y = 3 sin t, then

(x
5

)2
+

(y
3

)2
= 1; that is, 9x2 + 25y2 = 225.

The graph of this ellipse is next.

C09S04.010: Given x = sinh t and y = cosh t, y2 − x2 = cosh2 t − sinh2 t = 1, and thus y =
√

1 + x2

(the positive square root because cosh t > 0 for all t). The graph is next.

C09S04.011: If x = 2 cosh t and y = 3 sinh t, then

(x
2

)2
−

(y
3

)2
= cosh2 t− sinh2 t = 1; that is, 9x2 − 4y2 = 16.

But not all points that satisfy the last equation are on the graph, because x = 2 cosh t � 2 for all t. Thus
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only points on the right half of this hyperbola form the graph of the parametric equations, shown next.

C09S04.012: If x = sec t and y = tan t, then 1 + y2 = 1 + tan2 t = sec2 t = x2. The graph is next. Unlike
Problem 10, both branches of the hyperbola are present.

C09S04.013: Given x = sin 2πt and y = cos 2πt, 0 � t � 1, it follows that x2 + y2 = 1. Thus the graph is
a circle of radius 1 centered at the origin. As t runs from 0 to 1, the point (x, y) begins at (0, 1) and moves
once clockwise around the circle. The graph is next.

C09S04.014: Given x = 3 + 2 cos t and y = 5− 2 sin t, 0 � t � 2π, we find that

(
x− 3

2

)2

+
(
y − 5

2

)2

= cos2 t+ sin2 t = 1,

so that (x − 3)2 + (y − 5)2 = 4. The graph is a circle of radius 2 with center at (3, 5). As t varies from 0
to 2π, the point (x, y) begins at the point (5, 5) and moves once clockwise around the circle. The graph is
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next.

C09S04.015: Given x = sin2 πt and y = cos2 πt, 0 � t � 2, it’s clear that x+ y = 1 and that 0 � x � 1.
So the graph is the straight line segment joining (0, 1) and (1, 0). As t varies from 0 to 2, the point (x, y)
begins at (0, 1), moves southeast until it reaches (1, 0) when t = 1, then moves northwest until it returns to
(0, 1) when t = 2. We omit the graph to save space.

C09S04.016: Given x = cos t and y = sin2 t, −π � t � π, it follows that x2 + y = 1; that is, that
y = 1 − x2, −1 � x � 1. When t = −π, the point (x, y) is located at the point (−1, 0). As t increases,
(x, y) moves along the parabola from left to right, reaching (1, 0) when t = 0. As t continues to increase,
the point (x, y) retraces its route, finally returning to its starting point when t = π. The graph is next.

C09S04.017: Given x = 2t2 + 1, y = 3t3 + 2, we first calculate

dy

dx
=
dy/dt

dx/dt
=

9t2

4t
=

9
4
t, so that

dy

dx

∣∣∣∣
t=1

=
9
4
.

When t = 1, (x, y) = (3, 5), so the tangent line there has equation

y − 5 =
9
4

(x− 3); 4y − 20 = 9x− 27; 9x = 4y + 7.

Next,

d2y

dx2
=

d

dx

(
dy

dx

)
=

1
dx/dt

· d
dt

(
dy

dx

)
=

1
4t
· 9
4

=
9

16t
.

The second derivative is positive when t = 1, so the graph is concave upward at and near the point (3, 5).

C09S04.018: Given x = cos3 t and y = sin3 t, we find that
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dy

dx
=

3 sin2 t cos t
−3 cos2 t sin t

= − tan t, so that
dy

dx

∣∣∣∣
t=π/4

= −1.

When t = π/4, (x, y) =
(

1
4

√
2 , 1

4

√
2

)
, so an equation of the tangent line there is

y −
√

2
4

=
√

2
4
− x; x+ y =

√
2
2
.

Next,

d2y

dx2
=

1
dx/dt

· d
dt

(− tan t) =
− sec2 t

−3 sin t cos2 t
=

1
3 sin t cos4 t

,

and thus the second derivative is positive when t = π/4. Hence the graph is concave upward at and near the
point of tangency.

C09S04.019: Given x = t sin t and y = t cos t, we first calculate

dy

dx
=
dy/dt

dx/dt
=

cos t− t sin t
sin t+ t cos t

;
dy

dx

∣∣∣∣
t=π/2

= − π
2
.

Hence an equation of the line tangent to the graph at (x, y) = (π/2, 0) is

y = − π
2

(
x− π

2

)
; 4y = −π(2x− π); 2πx+ 4y = π2.

Next,

d2y

dx2
=

1
dx/dt

· d
dt

(
dy

dx

)

=
1

sin t+ t cos t
· (sin t+ t cos t)(−2 sin t− t cos t)− (cos t− t sin t)(2 cos t− t sin t)

(sin t+ t cos t)2

= − (sin t+ t cos t)(2 sin t+ t cos t) + (cos t− t sin t)(2 cos t− t sin t)
(sin t+ t cos t)3

= − 2 sin2 t+ 3t sin t cos t+ t2 cos2 t+ 2 cos2 t− 3t sin t cos t+ t2 sin2 t

(sin t+ t cos t)3
= − t2 + 2

(sin t+ t cos t)2
.

Thus

d2y

dx2

∣∣∣∣
t=π/2

= −
(
π2

4
+ 2

)
< 0,

and therefore the graph is concave downward at and near the point of tangency.

C09S04.020: Given: x = et, y = e−t. First,

dy

dx
=
dy/dt

dx/dt
=
−e−t
et

= −e−2t;
dy

dx

∣∣∣∣
t=0

= −1.

So an equation of the line tangent to the graph at (x, y) = (1, 1) is y − 1 = −(x − 1); that is, x + y = 2.
Next,
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d2y

dx2
=

1
et
· 2e

2t

e4t
= 2e−3t,

which is always positive, so the graph is concave upward everywhere.

C09S04.021: Equation (10) tells us that

cotψ =
1
r
· dr
dθ

where 0 � ψ � π. Thus, given r = exp
(
θ
√

3
)

and the angle θ = π/2, we find that

cotψ =
1

exp
(
θ
√

3
) · (√3

)
exp

(
θ
√

3
)

=
√

3 .

Therefore ψ =
π

6
.

C09S04.022: Given: r =
1
θ

and θ = 1.

cotψ = θ ·
(
− 1
θ2

)
= − 1

θ
.

Therefore when θ = 1 we have cotψ = −1, and thus ψ =
3π
4

.

C09S04.023: Given r = sin 3θ and the angle θ = π/6. By Eq. (10) of the text,

cotψ =
1

sin 3θ
· 3 cos 3θ = 3 cot 3θ.

Thus when θ = π/6, we have cotψ = 3 cot(π/2) = 0, and thus ψ =
π

2
.

C09S04.024: Given: r = 1− cos θ and the angle θ = π/3. Then

cotψ =
sin θ

1− cos θ
; (cotψ)

∣∣∣∣
θ=π/3

=

√
3
2

1− 1
2

=
√

3 .

Therefore ψ =
π

6
.

C09S04.025: Given x = t2 and y = t3 − 3t,

dy

dx
=

3t2 − 3
2t

;
dy

dx
= 0 when t = ±1.

So the graph has horizontal tangents at the point (1, −2) and (1, 2). The graph crosses the x-axis when
t3 − 3t = 0: t = 0, t = ±

√
3 . When t = 0 we get a vertical tangent line at (0, 0). When t = −

√
3 the

graph passes through the point (3, 0) with slope −
√

3 ; when t =
√

3 , the graph passes through the same

point (3, 0) with slope
√

3 . Therefore there is no line tangent to the graph of the parametric equations at
the point (3, 0).

C09S04.026: Given x = sin t and y = sin 2t,
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dy

dx
=

2 cos 2t
cos t

;
dy

dx
= 0 when t =

π

4
,

3π
4
,

5π
4
,

7π
4
.

Therefore the graph has a horizontal tangent line at all four of the points
(
± 1

2

√
2 , ±1

)
. The graph crosses

the x-axis when sin 2t = 0, thus when t = 0, π/2, π, 3π/2. When t = 0, the curve passes through the origin
with slope 2; when t = π, it passes through the origin with slope −2. So there is no tangent line at (0, 0).
At the other two x-intercepts, (1, 0) and (−1, 0), the tangent line is vertical.

C09S04.027: Given the polar equation r = 1 + cos θ, we can use θ itself as parameter to obtain

x = r cos θ = cos θ + cos2 θ and y = r sin θ = sin θ + sin θ cos θ.

Thus

dy

dx
=
dy/dθ

dx/dθ
=

cos θ + cos2 θ − sin2 θ

− sin θ − 2 sin θ cos θ
.

Next we solve dy/dx = 0:

cos θ + cos2 θ + cos2 θ − 1 = 0;

2 cos2 θ + cos θ − 1 = 0;

(2 cos θ − 1)(cos θ + 1) = 0;

cos θ =
1
2

or cos θ = −1.

Thus θ = π/3, π, 5π/3. But we must rule out θ = π because the denominator in dy/dx is zero for that
value of θ.

When θ =
π

3
, x =

1
2

+
1
4

=
3
4

and y =
√

3
2

+
√

3
4

=
3
√

3
4

. There is a horizontal tangent.

When θ =
5π
3
, x =

1
2

+
1
4

=
3
4

and y = −
√

3
2
−
√

3
4

= − 3
√

3
4

. There is a horizontal tangent.

The graph crosses the x-axis when cos θ = −1 and when sin θ = 0, so that θ = 0 and θ = π. When θ = 0
the tangent line is vertical at the point with Cartesian coordinates (2, 0). What happens if θ = π? The
derivative is undefined. Nevertheless, something can be done. We use l’Hôpital’s rule:

lim
θ→π

dy

dx
= lim
θ→π

sin2 θ − cos2 θ − cos θ
2 sin θ cos θ + sin θ

= lim
θ→π

4 sin θ cos θ + sin θ
2 cos2 θ − 2 sin2 θ + cos θ

=
0 + 0

2− 0− 1
= 0.

Thus we are justified in stating that the x-axis is tangent to the graph of this cardioid at the point (0, 0).

C09S04.028: Given r2 = 4 cos 2θ, we will take advantage of the many symmetries of the graph (around
both coordinate axes) and work only in the first quadrant, where

x = 2(cos 2θ)1/2 cos θ and y = 2(cos 2θ)1/2 sin θ.

Thus we find that
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dy

dx
=

(cos 2θ)−1/2(−2 sin 2θ) sin θ + 2(cos 2θ)1/2 cos θ
(cos 2θ)−1/2(−2 sin 2θ) cos θ − (2(cos 2θ)1/2 sin θ

= − 2 cos 2θ cos θ − 2 sin 2θ sin θ
2 sin 2θ cos θ + 2 cos 2θ sin θ

= − cos(2θ + θ)
sin(2θ + θ)

= − cos 3θ
sin 3θ

= − cot 3θ.

Hence dy/dx = 0 when cos 3θ = 0; that is, when θ = π/6 and when θ = π/2 (remember that we are
restricting our calculations to the first quadrant). But there is no graph at the latter point, so we find that
there is only one horizontal tangent in the first quadrant, where

x = 2 · 1√
2
·
√

3
2

=
√

6
2

and y = 2 · 1√
2
· 1
2

=
√

2
2
.

Thus there are four points on the graph where the tangent line is horizontal, all four of the points with
Cartesian coordinates

(
± 1

2

√
6 , ± 1

2

√
2

)
. Next, the graph meets the x-axis when cos 2θ = 0 and when

sin θ = 0, thus when θ = 0 and θ = π/4 (still restricting our attention to the first quadrant). Thus we find
a vertical tangent at (2, 0) and, by symmetry, another at (−2, 0). There is no tangent line when θ = π/4
because the graph passes through the origin twice, once with slope 1 and once with slope −1.

C09S04.029: Given x = e−t and y = e2t, we find that

dy

dx
=
dy/dt

dx/dt
=

2e2t

−e−t = −2e3t

and

d2y

dx2
=

1
dx/dt

· d
dt

(
dy

dx

)
=

1
−e−t ·

(
−6e3t

)
= 6e4t,

so the second derivative is positive for all t. Thus the graph of C is concave upward for all t. The graph is
shown next; note that there is no graph for x � 0 or for y � 0.

C09S04.030: Given x3 + y3 = 3xy, the straight line through the origin with slope t � 0 will meet the
loop of the folium at only one point in the first quadrant. The line has equation y = tx and thus meets the
folium at the point (x, tx). Hence

x3 + (tx)3 = 3x · tx; x3 + t3x3 = 3tx2; (1 + t3)x = 3t.

Therefore parametric equations of the loop are

x =
3t

1 + t3
, y =

3t2

1 + t3
, 0 � t < +∞.

9



C09S04.031: If the slope of the curve at P (x, y) is m, then implicit differentiation yields

2y
dy

dx
= 4p;

dy

dx
=

2p
y

; y =
2p
m
,

and thus

x =
y2

4p
=

4p2

4m2p
=

p

m2
, −∞ < m < +∞.

C09S04.032: Let r = f(θ) and r′ = f ′(θ). Then

tanα =
dy

dx
=
r′ sin θ + r cos θ
r′ cos θ − r sin θ

;

tan θ =
y

x
=
r sin θ
r cos θ

=
sin θ
cos θ

;

cotψ =
1 + tanα tan θ
tanα− tan θ

=
1 +

r′ sin θ + r cos θ
r′ cos θ − r sin θ

· sin θ
cos θ

r′ sin θ + r cos θ
r′ cos θ − r sin θ

− sin θ
cos θ

=
r′ cos2 θ − r sin θ cos θ + r′ sin2 θ + r sin θ cos θ
r′ sin θ cos θ + r cos2 θ − r′ sin θ cos θ + r sin2 θ

=
r′

r
=

1
r
· dr
dθ
.

C09S04.033: The high point on the circle is P0(aθ, 2a) and P has Cartesian coordinates x = a(θ− sin θ),
y = a(1− cos θ). Therefore the slope of the line containing P0 and P is

2a− a(1− cos θ)
aθ − a(θ − sin θ)

=
2− 1 + cos θ
θ − θ + sin θ

=
1 + cos θ

sin θ
.

But the slope of the cycloid at the point P is

dy

dx
=

a sin θ
a(1− cos θ)

=
(sin θ)(1 + cos θ)

1− cos2 θ
=

1 + cos θ
sin θ

.

We may conclude that the line containing P0 and P is tangent to the cycloid at the point P .

C09S04.034: See Fig. 9.4.15. The length of OC is a − b, so C has coordinates x = (a − b) cos t,
y = (a − b) sin t. The arc length from the point of tangency to A(a, 0) is the same as that to P ; denote it
by s. Note that s = ta. Let α be the angle OCP and θ the angle supplementary to α, so that θ = π − α.
Then s = bθ, and therefore ta = bθ. The radius b is at the angle −(θ− t) = t− θ from the horizontal, so P
has coordinates

x = (a− b) cos t+ b cos(t− θ), y = (a− b) sin t+ b sin(t− θ).

Now θ =
a

b
t, so t− θ = t− a

b
t =

b− a
b

t. Therefore

x = (a− b) cos t+ b cos
(
a− b
b

t

)
, y = (a− b) sin t− b sin

(
a− b
b

t

)
.

C09S04.035: We will need two trigonometric identities before we begin. They are
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cos 3t = cos 2t cos t− sin 2t sin t = cos3 t− sin2 t cos t− 2 sin2 t cos t = cos3 t− 3 sin2 t cos t (1)

and

sin 3t = sin 2t cos t+ cos 2t sin t = 2 sin t cos2 t+ cos2 t sin t− sin3 t = 3 sin t cos2 t− sin3 t. (2)

We begin with the parametric equations

x = (a− b) cos t+ b cos
(
a− b
b

t

)
(3)

and

y = (a− b) sin t− b sin
(
a− b
b

t

)
. (4)

If b =
a

4
, then

a− b
b

=
a− 1

4a
1
4a

=
3a
a

= 3. Thus Eqs. (3)and (4) become

x =
3
4
a cos t+

a

4
cos 3t =

a

4
(3 cos t+ cos 3t) (5)

and

y =
3
4
a sin t− a

4
sin 3t =

a

4
(3 sin t− sin 3t) . (6)

Then Eqs. (1) and (2) yield

x =
a

4
(
3 cos t+ cos3 t− 3 sin2 t cos t

)
=
a

4
(
3 cos t+ cos3 t− 3 cos t+ 3 cos3 t

)
= a cos3 t

and

y =
a

4
(
3 sin t− 3 sin t cos2 t+ sin3 t

)
=
a

4
(
3 sin t− 3 sin t+ 3 sin3 t+ sin3 t

)
= a sin3 t.

C09S04.036: Part (a): If x = a cos3 t and y = a sin3 t, then

x2/3 + y2/3 = a2/3(cos2 t+ sin2 t) = a2/3.

So every point of the hypocycloid lies on the graph x2/3 + y2/3 = a2/3. But cos3 t and sin3 t take on all
values from −1 to 1 (and it follows that x and y take on values in all four quadrants), so the hypocycloid
is the entire graph x2/3 + y2/3 = a2/3. (This argument can be strengthed by considering a ray from the
origin making the angle t (0 � t < 2π) with the nonnegative x-axis and examining its intersection with the
astroid.)

Part (b): Next,

dy

dx
=

3a sin2 t cos t
−3a cos2 t sin t

= − tan t

and, consequently, dx/dy = − cot t. So dy/dx = 0 at every integral multiple of π and dx/dy = 0 at every
odd integral multiple of π/2. Therefore the hypocycloid has horizontal tangents at (a, 0) (t = 0) and at
(−a, 0) (t = π), vertical tangents at (0, a) (t = π/2) and (0, −a) (t = 3π/2). Next,
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d2y

dx2
=

1
dx/dt

· d
dt

(
dy

dx

)
=

− sec2 t

−3a cos2 t sin t
=

1
3a cos4 t sin t

.

Thus d2y/dx2 has the same sign as a sin t, and therefore the graph of the hypocycloid is concave upward
for 0 < t < π/2 and for π/2 < t < π, concave downward for π < t < 3π/2 and 3π/2 < t < 2π.

Part (c): A Mathematica-generated graph of the hypocycloid (in the case a = 1) is next. The command
used to generate the graph was

ParametricPlot[ { (Cos[t])∧3, (Sin[t])∧3 }, { t, 0, 2∗Pi },
AspectRatio → Automatic, PlotRange → {{ -1.1, 1.1 }, { -1.1, 1.1 }} ];

C09S04.037: Extend OP the distance a to the point R at the “northeast” corner of Archimedes’ rectangle.
Because P has Cartesian coordinates

x = aθ cos θ, y = aθ sin θ,

it follows that R has coordinates

x = aθ cos θ + a cos θ, y = aθ sin θ + a sin θ.

Next, Q has coordinates

aθ cos θ + a cos θ − aθ sin θ, y = aθ sin θ + a sin θ + aθ cos θ.

Therefore the slope of PQ is

sin θ + θ cos θ
cos θ − θ sin θ

.

The spiral has polar equation r = aθ, thus parametric equations

x = aθ cos θ, y = aθ sin θ.

Therefore

dy

dx
=

a sin θ + aθcosθ

a cos θ − aθ sin θ
=

sin θ + θ cos θ
cos θ − θ sin θ

.
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Hence the line containing P and Q is tangent to the spiral at the point P .

C09S04.038: Part (a): Given: The cycloid with parametric equations x = a(t − sin t), y = a(1 − cos t)
where a > 0. If t is not an integral multiple of 2π, then

dy

dx
=

a sin t
a(1− cos t)

=
sin t

1− cos t
=

2 sin
(
t

2

)
cos

(
t

2

)

2 sin2

(
t

2

) = cot
(
t

2

)
.

Part (b): lim
t→0

∣∣∣∣ dydx
∣∣∣∣ = lim

t→0

∣∣∣∣ cos(t/2)
sin(t/2)

∣∣∣∣ = +∞. So there is a vertical tangent at each cusp of the cycloid.

C09S04.039: If ψ is constant, then by Eq. (10) of the text

1
r
· dr
dθ

= k (a constant);

1
r
dr = k dθ;

ln r = C + kθ (where C is constant);

r = Aekθ (where A = eC).

C09S04.040: With x = f(θ) cos θ and y = f(θ) sin θ, we have

dy

dx
=
f ′(θ) sin θ + f(θ) cos θ
f ′(θ) cos θ − f(θ) sin θ

.

Therefore if f(α) = 0, then

dy

dx

∣∣∣∣
θ=α

=
f ′(α) sinα
f ′(α) cosα

= tanα,

and therefore the angle of inclination of the tangent line at the pole is indeed α.

C09S04.041: Let y = tx where t � 0. Then this line meets the loop at exactly one point in the first
quadrant. For such points on the loop, we then have

x5 + t5x5 = 5t2x4; x =
5t2

1 + t5
, y =

5t3

1 + t5
, 0 � t < +∞.

C09S04.042: Suppose that the midpoint of the segment lies in the second quadrant (the other three cases
are similar), so that the endpoints of the segment lie on the positive y-axis and the negative x-axis. Drop
perpendiculars from the midpoint to the coordinate axes to see that the coordinates of the midpoint are
x = −a cos θ and y = a sin θ. It follows that x2 + y2 = a2 (in all four cases), and thus the locus of the
midpoint is the circle of radius a centered at the origin. The problem is more interesting if the point on
the segment is one other than its midpoint, or if two points on the segment are constrained to lie on the
coordinate axes while one endpoint traces out the locus.

C09S04.043: Let f(x) = x3 − 3x2 + 1. Then f ′(x) = 0 when x = 0 and when x = 2; f ′′(x) = 0 when
x = 1. Hence the graph of the parametric equations
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x = t3 − 3t2 + 1, y = t (1)

has vertical tangents at (−3, 2) and (1, 0) and an inflection point at (−1, 1). There are no horizontal
tangents and the only critical points occur at the points where the tangent line is vertical. The graph of the
equations in (1) is next.

We generated this graph by executing the Mathematica command

ParametricPlot[ { t∧3 − 3∗t∧2 + 1, t }, { t, −1.2, 3.2 },
AspectRatio → Automatic ];

C09S04.044: Let f(x) = x4 − 3x3 + 5x. Then f ′(x) = 0 when

x = 1 and when x =
5±
√

105
8

.

The corresponding values of f(x) are

y = 3 and y =
−75± 105

√
105

512
.

Thus the graph of the parametric equations

x = t4 − 3t3 + 5t, y = t (1)

has vertical tangent lines at the point (3, 1) and at the points with approximate coordinates

(−2.2479098251, −0.6558688457) and (1.9549410751, 1.9058688457).

Next, f ′′(x) = 0 when x = 0 and when x = 1.5, so the graph of the equations in (1) has inflection points
at

(0, 0) and
(

39
16
,

3
2

)
= (2.4375, 1.5) .

There are no horizontal tangents and the only critical points are the three where the tangent line is vertical.
The graph of the parametric equations in (1) is next; we generated it with the Mathematica command

ParametricPlot[ { t∧5 − 3∗t∧3 + 5∗t, t }, { t, −1.41, 2.55 },
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AspectRatio → Automatic ];

C09S04.045: To use Mathematica 3.0 to help solve this problem, we let

g[t ] := t∧5 − 5∗t∧3 + 4

h[t ] := (Sign[g[t]])∗(Abs[g[t]])∧(1/3)

and

f[t ] := (g[t])∧(1/3)

(note that h(t) = f(t); we define h to avoid certain problems with cube roots of negative numbers). To see
the graph of the parametric equations

x = (t5 − 5t3 + 4)1/3, y = t,

we executed the Mathematica command

ParametricPlot[ { h[t], t }, { t, −2.7, 2.7 } ];

with the result shown next.

Next we found that

f ′(t) =
5t2(t2 − 3)

3(t5 − 5t3 + 4)2/3
and that f ′′(t) =

10(t8 − 9t6 + 24t3 − 36t)
9(t5 − 5t3 + 4)5/3

.

If follows that f ′(t) = 0 when t = 0 and when t = ±
√

3 . Hence the graph of the equation x3 = y5−5y3+4
has vertical tangents at the three points
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([
4− 6

√
3

]1/3

,
√

3
)
≈ (−1.855891115, 1.732050808),

([
4 + 6

√
3

]1/3

, −
√

3
)
≈ (2.432447355, 1.732050808), and

(
41/3, 0

)
≈ (1.587401052, 0).

The horizontal tangents will occur when the denominator in f ′(t) = 0; that is, at

(0, −2.307699789), (0, 1), and (0, 2.143299604)

(numbers with decimal points are approximations). Finally, Newton’s method yields the zeros of the numer-
ator of f ′′(t), and—also checking the zeros of its denominator—we find that the graph has inflection points
at

(−5.150545372, −3.110298772), (0, −2.307699789),

(2.037032912, −1.044330352), (1.587401052, 0),

(0, 1), (0, 2.143299604), and

(4.266140637, 2.856500901).

The first and last of these aren’t shown on the preceding graph, but the graph appears to be a straight line
in their vicinity, so showing more of the graph is not useful.

C09S04.046: To use Mathematica 3.0 to help solve this problem, we let

g[t ] := 5∗t∧6 - 17∗t∧3 + 13∗t

h[t ] := (Sign[g[t])∗(Abs[g[t]])∧(1/5)

and

f[t ] := (g[t])∧(1/5)

(note that h(t) = f(t); we define h to avoid certain problems with odd integral roots of negative numbers).
To see the graph of the parametric equations

x = (5t6 − 17t3 + 13y)1/5, y = t,

we executed the Mathematica command

ParametricPlot[ { h[t], t }, { t, −1.3, 1.6 } ];
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with the result shown next.

Next we found that

f ′(t) =
30t5 − 51t2 + 13

5(5t6 − 17t3 + 13t)4/5
and f ′′(t) =

2(75t10 − 1530t7 + 3315t5 − 867t4 − 663t2 − 338)
25(5t6 − 17t3 + 13t)9/5

.

It follows with the aid of Newton’s method that f ′(t) = 0 when t ≈ −0.488, when t ≈ 0.528, and when
t ≈ 1.104. Hence the graph of the equation x5 = 5y6− 17y3 +13y has vertical tangents at the three points

(−1.338784051, −0.488418117), (0.80783532, 1.103631606), and (1.349152308, 0.528310640).

The horizontal tangents will occur when the denominator in f ′(t) = 0; that is, at

(0, −0.812678591) and at (0, 0)

(numbers with decimal points are approximations). Finally, Newton’s method yields the zeros of the numer-
ator of f ′′(t) and—also checking the zeros of its denominator—we find that the graph has inflection points
at

(0, −0.813073457), (2.513563956, −1.516333702),

(0, 0), (0.992940442, 1.004409592),

(1.185188240, 1.258427457), (3.735641965, 2.388360391).

The second and last of these don’t appear on the preceding graph, but the graph appears to be a straight
line in their vicinity, so showing more of the graph isn’t much use.
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Section 9.5

C09S05.001: The area is

A =
∫ 1

−1

(2t2 + 1)(3t2) dt =
∫ 1

−1

(6t4 + 3t2) dt =
[

6
5
t5 + t3

]1

−1

= 2 ·
(

6
5

+ 1
)

=
22
5
.

C09S05.002: The area is

A =
∫ ln 2

0

(e−t)(3e3t) dt =
∫ ln 2

0

3e2t dt =
[

3
2
e2t

]ln 2

0

= 6− 3
2

=
9
2
.

C09S05.003: The area is

A =
∫ π

0

sin3 t dt =
∫ π

0

(
sin t− cos2 t sin t

)
dt =

[
1
3

cos3 t− cos t
]π
0

=
4
3
.

C09S05.004: The area is A =
∫ 1

0

3e2t dt =
[

3
2
e2t

]1

0

=
3
2

(e2 − 1) ≈ 9.5835841484.

C09S05.005: The area is

A =
∫ π

0

et sin t dt =
[

1
2
et(sin t− cos t)

]π
0

=
1
2

(eπ + 1) ≈ 12.0703463164.

See Example 5 of Section 7.3 for the evaluation of the antiderivative using integration by parts.

C09S05.006: The area is

A =
∫ 1

0

(2t+ 1)et dt =
[
(2t− 1)et

]1

0

= e− (−1) = e+ 1 ≈ 3.718281828459.

See Example 3 of Section 7.3 for the evaluation of the antiderivative using integration by parts.

C09S05.007: The volume is

V =
∫ 1

−1

π(2t2 + 1)2 · 3t2 dt = π

∫ 1

−1

(12t6 + 12t4 + 3t2) dt

= π

[
12
7
t7 +

12
5
t5 + t3

]1

−1

=
(

179
35

+
179
35

)
π =

358
35

π ≈ 32.1340048567.

C09S05.008: The volume is

V =
∫ ln 2

0

π(e−2t) · 3e3t dt = π

∫ ln 2

0

3et dt = 3π
[
et

]ln 2

0

= 3π ≈ 9.424777960769.

C09S05.009: The volume is
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V =
∫ π

0

π(sin t)5 dt = π

∫ π

0

(1− 2 cos2 t+ cos4 t) sin t dt

= π

[
− 1

5
cos5 t+

2
3

cos3 t− cos t
]π
0

= π

(
8
15

+
8
15

)
=

16
15
π ≈ 3.351032163829.

C09S05.010: The volume is

V = π

∫ π

0

e2t sin t dt = π

[
1
5
e2t(2 sin t− cos t)

]π
0

=
π

5
e2π +

π

5
=
π

5
(
e2π + 1

)
≈ 337.087648741765.

See Example 5 of Section 7.3 for the technique of finding the antiderivative using integration by parts.

C09S05.011: The arc-length element is ds = (t+ 4)1/2 dt. Hence the length of the curve is

L =
∫ 12

5

(t+ 4)1/2 dt =
[

2
3

(t+ 4)3/2
]12

5

=
128
3
− 18 =

74
3
≈ 24.6666666667.

C09S05.012: The arc-length element is ds = (t2 + t4)1/2 dt = t(t2 +1)1/2 dt. Thus the length of the curve
is

L =
∫ 1

0

t(t2 + 1)1/2 dt =
[

1
3

(t2 + 1)3/2
]1

0

=
2
√

2 − 1
3

≈ 0.6094757082.

C09S05.013: The arc-length element is ds =
√

(cos t+ sin t)2 + (cos t− sin t)2 dt =
√

2 dt. Therefore
the length of the curve is

L =
∫ π/2

π/4

√
2 dt =

[
t
√

2
]π/2
π/4

=
π
√

2
4
≈ 1.1107207345.

C09S05.014: The arc-length element is

ds =
√

(et cos t+ et sin t)2 + (et cos t− et sin t)2 dt = et
√

2 dt.

Therefore the length of the curve is

L =
∫ π

0

et
√

2 dt =
[
et
√

2
]π
0

= (eπ − 1)
√

2 ≈ 31.3116678016.

C09S05.015: Equation (10) of the text tells us that the arc-length element in polar coordinates is

ds =

√
r2 +

(
dr

dθ

)2

dθ =
(
eθ +

1
4
eθ

)1/2

dθ =
√

5
2
eθ/2 dθ.

Therefore the length of the curve is
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L =
∫ 4π

0

√
5
2
eθ/2 dθ =

[
eθ/2
√

5
]4π

0

=
(
e2π − 1

)√
5 ≈ 1195.159675159775.

C09S05.016: The arc-length element is ds =
√
θ2 + 1 dθ. Thus the length of the curve is

L =
∫ 4π

2π

√
θ2 + 1 dθ =

1
2

[
θ
√
θ2 + 1 + ln

(
θ +

√
θ2 + 1

)]4π

2π

=
1
2

[
4π

√
16π2 + 1 + ln

(
4π +

√
16π2 + 1

)
− 2π

√
4π2 + 1 − ln

(
2π +

√
4π2 + 1

)]

≈ 59.563021935206.

The antiderivative was obtained using a trigonometric substitution (as in Section 7.6); alternatively, a
hyperbolic substitution can be used, or simply apply integral formula 44 of the endpapers of the text.

C09S05.017: The arc-length element is ds =
(

1 +
1
t

)1/2

dt, so the surface area is

A =
∫ 4

1

2π · 2t1/2 ·
(

1 +
1
t

)1/2

dt =
∫ 4

1

4π(t+ 1)1/2 dt =
8π
3

[
(t+ 1)3/2

]4

1

=
40π
√

5
3

− 16π
√

2
3

=
8π
3

(
5
√

5 − 2
√

2
)
≈ 69.968820743698.

C09S05.018: The arc-length element is

ds =

[(
4t− 1

t2

)2

+
16
t

]1/2

dt =
(

16t2 +
8
t

+
1
t4

)1/2

dt =
(16t6 + 8t3 + 1)1/2

t2
dt =

4t3 + 1
t2

dt,

so the surface area of revolution is

A = 2π
∫ 2

1

8t1/2 · 4t
3 + 1
t2

dt = 2π
∫ 2

1

8(4t3 + 1)
t3/2

dt = 2π
∫ 2

1

(32t3/2 + 8t−3/2) dt

= 2π
[

64
5
t5/2 − 16t−1/2

]2

1

= 2π · 216
√

2 + 16
5

=
16π
5

(
2 + 27

√
2

)
≈ 403.971278839858.

C09S05.019: The arc-length element is ds = (9t4 + 4)1/2 dt, but the surface area of revolution is not

∫ 1

−1

2πt3(9t4 + 4)1/2 dt.

The reason is that the radius of the circle of revolution is t3, which is negative for −1 � t < 0. But symmetry
of the graph allows us to double the integral over [0, 1] to find the area:

A = 2
∫ 1

0

2πt3(9t4 + 4)1/2 dt =
2π
27

[
(9t4 + 4)3/2

]1

0

=
2π
27

(
13
√

13 − 8
)
≈ 9.045963922970.

C09S05.020: The arc-length element is ds =
√

4 + (2t+ 1)2 dt = (4t2 + 4t+ 5)1/2 dt, so the surface area
of revolution is
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A =
∫ 3

0

2π(2t+ 1)(4t2 + 4t+ 5)1/2 dt =
π

3

[
(4t2 + 4t+ 5)3/2

]3

0

=
53π
√

53
3

− 5π
√

5
3

=
π

3

(
53
√

53 − 5
√

5
)
≈ 392.3487776186.

C09S05.021: The circle with polar equation r = 4 sin θ, 0 � θ � π, is to be rotated around the x-axis.
The arc-length element is

ds =
√

(4 sin θ)2 + (4 cos θ)2 dθ = 4 dθ

and the radius of the circle of revolution is y = 4 sin2 θ, so the surface area of revolution is

A = 2π
∫ π

0

16 sin2 θ dθ = 16π
∫ π

0

(1− cos 2θ) dθ = 8π
[
2θ − sin 2θ

]π
0

= 16π2 ≈ 157.9136704174.

C09S05.022: The arc-length element is ds =
√

(eθ)2 + (eθ)2 dθ = eθ
√

2 dθ and the radius of the circle of
revolution is x = r cos θ = eθ cos θ, so the surface area of revolution is

A = 2π
√

2
∫ π/2

0

e2θ cos θ dθ =
2π
√

2
5

[
(2 cos θ + sin θ)e2θ

]π/2
0

=
2π
√

2
5

(eπ − 2) ≈ 37.5702490396.

C09S05.023: The cycloidal arch is the graph of the parametric equations x = a(t− sin t), y = a(1− cos t),
0 � t � 2π, a > 0. When the region between the arch and the x-axis is rotated around the x-axis, the
volume swept out is

V =
∫ 2π

t=0

πy2 dx = πa3

∫ 2π

0

(1− cos t)3 dt = πa3

∫ 2π

0

[
1− 3 cos t+

3
2

(1 + cos 2t)− (1− sin2 t) cos t
]
dt

= πa3

[
t− 3 sin t+

3
2
t+

3
4

sin 2t− sin t+
1
3

sin3 t

]2π

0

=
5
2
πa3 · 2π = 5π2a3.

C09S05.024: The cycloidal arch is the graph of the parametric equations x = a(t− sin t), y = a(1− cos t),
0 � t � 2π, a > 0. Suppose that it is rotated around the x-axis to generate a surface of area A. To find the
arc-length element, we first compute

[x′(t)]2 + [y′(t)]2 = a2(1− 2 cos t+ cos2 t+ sin2 t) = 4a2 1− cos t
2

= 4a2 sin2

(
t

2

)
.

Thus the arc-length element is

ds = 2a
∣∣∣∣ sin

(
t

2

)∣∣∣∣ dt = 2a sin
(
t

2

)
dt.

We may remove the absolute value symbols because sin(t/2) � 0 if 0 � t � 2π. So the surface area of
revolution around the x-axis is
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A =
∫ 2π

t=0

2πy ds = 4πa2

∫ 2π

0

(1− cos t) sin
(
t

2

)
dt = 8πa2

∫ 2π

0

sin3

(
t

2

)
dt

= 8πa2

∫ 2π

0

[
1− cos2

(
t

2

)]
sin

(
t

2

)
dt = 8πa2

[
−2 cos

(
t

2

)
+

2
3

cos2
(
t

2

)]2π

0

=
64
3
πa2.

C09S05.025: Part (a): The area of the ellipse is

A = 4
∫ π/2

0

ab sin2 t dt = 2ab
∫ π/2

0

(1− cos 2t) dt = 2ab
[
t− 1

2
sin 2t

]π/2
0

= πab.

Part (b): The volume generated when [the upper half of] the ellipse is rotated around the x-axis is

V = 2
∫ π/2

0

π(b2 sin2 t)(a sin t) dt = 2πab2
∫ π/2

0

(1− cos2 t) sin t dt = 2πab2
[

1
3

cos3 t− cos t
]π/2
0

=
4
3
πab2.

Compare this with the solution of Problem 36 in Section 6.2.

C09S05.026: The loop in the graph of x = t2, y = t3 − 3t is generated as t runs from −
√

3 to
√

3 . Its
area is

A = 2
∫ √

3

0

−2t(t3 − 3t) dt =
∫ √

3

0

(12t2 − 4t4) dt =
[
4t3 − 4

5
t5

]√
3

0

=
24
√

3
5
≈ 8.3138438763.

C09S05.027: Using the given Cartesian parametrization, the arc-length element for the spiral is

ds =
√

[x′(t)]2 + [y′(t)]2 dt =
√

(cos t− t sin t)2 + (sin t+ t cos t)2 dt =
√
t2 + 1 dt.

Therefore the arc length is

L =
∫ 2π

0

√
t2 + 1 dt =

1
2

[
t
√
t2 + 1 + ln

(
t+

√
t2 + 1

) ]2π

0

=
1
2

[
2π

√
1 + 4π2 + ln

(
2π +

√
1 + 4π2

)]
≈ 21.2562941482.

The antiderivative can be obtained with the trigonometric substitution t = tan θ or by use of integral formula
44 of the endpapers of the textbook.

C09S05.028: The parametrization x = b+a cos t, y = a sin t, 0 � t � 2π of the circle yields the arc-length
element ds =

√
(−a sin t)2 + (a cos t)2 dt = a dt. The radius of the circle of revolution around the y-axis is

x = b+ a cos t, and therefore the surface area of revolution is

A =
∫ 2π

0

2πa(b+ a cos t) dt = 2πa
[
bt+ a sin t

]2π

0

= 4π2ab.

C09S05.029: The area bounded by the astroid is
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A = −4
∫ π/2

t=0

y dx = 4
∫ π/2

0

(a sin3 t)(3a cos2 t sin t) dt = 12a2

∫ π/2

0

(sin4 t− sin6 t) dt

= 12a2

(
1
2
· 3
4
· π

2
− 1

2
· 3
4
· 5
6
· π

2

)
= 12a2 · 3

16
π

(
1− 5

6

)
=

3
8
πa2.

The first minus sign is needed because dx < 0. The integral was computed using integral formula 113 of the
endpapers of the text.

C09S05.030: The arc-length element is

ds = (9a2 cos4 t sin2 t+ 9a2 cos2 t sin4 t)1/2 dt

= 3a
[
(sin2 t cos2 t)(cos2 t+ sin2 t)

]1/2
dt = 3a

(
1
4

sin2 2t
)1/2

dt =
3
2
a sin 2t dt.

So the total length of the astroid is

A = 4
∫ π/2

0

3
2
a sin 2t dt =

[
− 3a cos 2t

]π/2
0

= 3a− (−3a) = 6a.

Compare this with the solution of Problem 41 in Section 6.4.

C09S05.031: The arc-length element is

ds = (9a2 cos4 t sin2 t+ 9a2 cos2 t sin4 t)1/2 dt

= 3a
[
(sin2 t cos2 t)(cos2 t+ sin2 t)

]1/2
dt = 3a

(
1
4

sin2 2t
)1/2

dt =
3
2
a sin 2t dt.

The radius of the circle of revolution is y = a sin3 t. So the surface area of revolution around the x-axis is

A = 2
∫ π/2

t=0

2πy ds = 2
∫ π/2

0

(
2πa sin3 t

) (
3
2
a sin 2t

)
dt

= 6πa2

∫ π/2

0

2 sin4 t cos t dt =
12πa2

5

[
sin5 t

]π/2
0

=
12
5
πa2.

Compare this with the solution of Problem 42 in Section 6.4.

C09S05.032: First we use Eq. (10) to compute the arc-length element. Given r2 = 2a2 cos 2θ,

2r
dr

dθ
= −4a2 sin 2θ;

(
dr

dθ

)2

=
16a4 sin2 2θ

4r2
=

4a4 sin2 2θ
2a2 cos 2θ

=
2a2 sin2 2θ

cos 2θ
;

r2 +
(
dr

dθ

)2

=
2a2 cos2 2θ + 2a2 sin2 2θ

cos 2θ
=

2a2

cos 2θ
;

ds =
a
√

2√
cos 2θ

dθ.
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The radius of the circle of revolution is x = r cos θ =
(
a
√

2 cos 2θ
)
· cos θ. Therefore the surface area of

revolution around the y-axis is

A = 2
∫ π/4

0

2π
(
a
√

2 cos 2θ
)

(cos θ)
a
√

2√
cos 2θ

dθ = 8πa2

∫ π/4

0

cos θ dθ = 8πa2

[
sin θ

]π/4
0

= 4πa2
√

2 .

The first integral here is improper; make the integrand continuous by using its right-hand limit at θ = π/4
for its value there.

C09S05.033: The area is

A = 2
∫ 3

t=0

y dx = 2
∫ 3

0

(
3t− 1

3 t
3
) (

2t
√

3
)
dt =

√
3

∫ 3

0

(
12t2 − 4

3
t4

)
dt

=
√

3
[
4t3 − 4

15
t5

]3

0

=
216
√

3
5

≈ 74.8245948870.

C09S05.034: The arc-length element is

ds =
√

12t2 + (t2 − 3)2 dt =
√

(t2 + 3)2 dt = (t2 + 3) dt.

Therefore the arc length of the loop is

L =
∫ 3

−3

(t2 + 3) dt =
[

1
3
t3 + 3t

]3

−3

= 9 + 9 + 9 + 9 = 36.

C09S05.035: The volume of revolution around the x-axis is

V =
∫ 3

t=0

πy2 dx = π

∫ 3

0

(
3t− 1

3
t3

)2

· 2t
√

3 dt = 2π
√

3
∫ 3

0

(
1
9
t7 − 2t5 + 9t3

)
dt

= 2π
√

3
[

1
72
t8 − 1

3
t6 +

9
4
t4

]3

0

=
243π

√
3

4
≈ 330.5649341317.

C09S05.036: We saw in the solution of Problem 34 that the arc-length element is ds = (t2 + 3) dt.
Therefore the surface area of revolution around the x-axis is

A =
∫ 3

t=0

2πy ds =
∫ 3

0

2π
(

3t− 1
3
t3

) (
t2 + 3

)
dt = 2π

∫ 3

0

(
9t+ 2t3 − 1

3
t5

)
dt

= 2π
[

9
2
t2 +

1
2
t4 − 1

18
t6

]3

0

= 81π ≈ 254.4690049408.

C09S05.037: Part (a): The parametrization found for the first-quadrant loop of the folium in Section 9.4
was

x =
3t

1 + t3
, y =

3t2

1 + t3
, 0 � t < +∞.

We first need to compute the arc-length element.

7



[x′(t)]2 =
9(2t3 − 1)2

(1 + t3)4
and [y′(t)]2 =

9(t4 − 2t)2

(1 + t3)4
;

ds =
3
√
t8 + 4t6 − 4t5 − 4t3 + 4t2 + 1

(t3 + 1)2
dt.

Part (b): We will find the length of the loop by integrating ds from t = 0 to t = 1 (to avoid an improper
integral) and doubling the result. The length is thus

L = 2
∫ 1

0

3
√
t8 + 4t6 − 4t5 − 4t3 + 4t2 + 1

(t3 + 1)2
dt.

We used Mathematica 3.0 and the command

6∗NIntegrate[ (Sqrt[ t∧8 + 4∗t∧6 - 4∗t∧5 - 4∗t∧3 + 4∗t∧2 + 1 ])/(t∧3 + 1)∧2,
{ t, 0, 1 }, MaxRecursion -> 18, WorkingPrecision -> 28 ]

to find that L ≈ 4.917488721682.

C09S05.038: We use the parametrization x = a(t − sin t), y = a(1 − cos t), 0 � t � 2π, a > 0. The
arc-length element is

ds = a
√

2(1− cos t) dt = 2a

√
1− cos t

2
dt = 2a

∣∣∣∣ sin
t

2

∣∣∣∣ dt = 2a sin
t

2
dt.

Therefore the surface area of revolution around the y-axis is

A = 2π
∫ 2π

0

a

(
t− 2 sin

t

2
cos

t

2

) (
2a sin

t

2

)
dt.

Let t = 2u, so that dt = 2 du. Then

A = 2π
∫ π

0

2a2 · 2 · (2u− 2 sinu cosu)(sinu) du = 16πa2

∫ π

0

(u sinu− sin2 u cosu) du

= 16πa2

[
sinu− u cosu− 1

3
sin3 u

]π
0

= 16π2a2.

See the solution of Problem 3 in Section 7.3 for the integration by parts to antidifferentiate u sinu. Or if
you prefer, imitate a computer algebra program: Assume that the antiderivative has the form Au sinu +
Bu cosu+ C sinu+D cosu. Differentiate and solve for the four coefficients A, B, C, and D.

C09S05.039: We use the parametrization x = a(t − sin t), y = a(1 − cos t), 0 � t � 2π, a > 0. By the
method of nested cylindrical shells, the volume of revolution around the y-axis is

V =
∫ 2π

t=0

2πxy dx =
∫ 2π

0

2πa(t− sin t) · a(1− cos t) · a(1− cos t) dt

= 2πa3

∫ 2π

0

(t− 2t cos t+ t cos2 t− sin t+ 2 sin t cos t− sin t cos2 t) dt

= 2πa3

∫ 2π

0

(
3
2
t− 2t cos t+

1
2
t cos 2t− sin t+ 2 sin t cos t− sin t cos2 t

)
dt

8



= 2πa3

[
3
4
t2 − 2 cos t− 2t sin t+

1
8

cos 2t+
1
4
t sin 2t+ cos t+ sin2 t+

1
3

cos3 t
]2π

0

= 6π3a3.

See the solution of Problem 5 in Section 7.3 for the way integration by parts can be used to find the two
more troublesome antiderivatives here.

C09S05.040: Part (a): The point T has coordinates x = a cos t, y = a sin t; let P have coordinates
(x, y). The slope of OT is tan t and hence the slope of TP is − cot t. Note also that TP has length at.
Therefore

y − a sin t
x− a cos t

= − cot t = − cos t
sin t

and

(x− a cos t)2 + (y − a sin t)2 = a2t2.

Thus

y sin t− a sin2 t = −x cos t+ a cos2 t; that is, y sin t+ x cos t = a.

Therefore

(x− a cos t)2 = a2t2 − (y − a sin t)2 = a2t2 −
(
a− x cos t

sin t
− a sin t

)2

= a2t2 −
(
a− x cos t− a sin2 t

sin t

)2

= a2t2 − (a− x cos t− a+ a cos2 t)2

sin2 t

= a2t2 − 1
sin2 t

[(x− a cos t)(− cos t) + a− a]2 = a2t2 − cos2 t
sin2 t

(x− a cos t)2.

It now follows that

(1 + cot2 t)(x− a cos t)2 = a2t2;

(x− a cos t)2 = a2t2 sin2 t;

x = a cos t± at sin t.

Next,

(y − a sin t)2 = a2t2 − (x− a cos t)2 = a2t2 −
(
a− y sin t

cos t
− a cos t

)2

= a2t2 −
(
a− y sin t− a cos2 t

cos t

)2

= a2t2 −
(
a sin2 t− y sin t

cos t

)2

= a2t2 − (a sin t− y)2 tan2 t.

Therefore

(1 + tan2 t)(y − a sin t)2 = a2t2;

(y − a sin t)2 = a2t2 cos2 t;

y = a sin t± at cos t.
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A
B

C

D

A moment’s reflection about the behavior of P (x, y) for t small positive now makes it evident that the
correct choice of signs is

x = a(cos t+ t sin t), y = a(sin t− t cos t).

Part (b): After all that algebra, the arc-length element ds almost miraculously simplifies to at dt. Therefore
the length of the involute from t = 0 to t = π is

L =
∫ π

0

at dt =
[ a

2
t2

]π
0

=
π2a

2
≈ (4.9348)a.

C09S05.041: We will compute the area of the part of the region above the x-axis, then double the result.
On the left we see a quarter-circle of radius πa, with area

A1 =
1
4
π(πa)2 =

1
4
π3a2.

On the right, the area between the involute and the x-axis can be found with an integral:

A2 =
∫ π

0

[−y(t) · x′(t)] dt =
a2

12

[
3t2 sin 2t− 3 sin 2t+ 6t cos 2t+ 2t3

]π
0

=
πa2

6
(π2 + 3).

But we must subtract the area of the part of the water tank above the x-axis, the area of a semicircle of
radius a: A3 = 1

2 πa
2. So the total area of the region that the cow can graze is

A = 2(A1 +A2 −A3) =
5
6
π3a2.

C09S05.042: You can see in the following figure that there is a problem at the extreme left. Each involute
moves away from the y-axis very briefly, then moves back toward it.

We can avoid this problem by finding the area that the cow can graze in the third quadrant by integrating
not y dx, but instead x dy. To find the limits of integration on the parameter t, we need to know the value

10



t1 of t at which the involute crosses the negative x-axis (where the two involutes cross) and the value t2 of
t at which the outer involute crosses the positive y-axis. Newton’s method yields

t1 ≈ 4.4934094579 and t2 ≈ 6.121250466898.

So the area of the shaded region is

∫ t2

t=t1

x(t) · y′(t) dt ≈ (23.106)a2.

The area of the region bounded below by the x-axis, on the left by the y-axis, on the right by the line x = a,
and above by the outer involute is

B =
∫ 2π

t=t1

[−y(t) · x′(t)] dt ≈ (6.256)a2.

The area of the quarter-circle bounded below by the x-axis, on the left by the line x = a, and on the right
and above by the circular arc of radius 2πa is

C =
1
4
π(2πa)2 = π3a2 ≈ (31.006)a2.

We can obtain the total area that the cow can graze by doubling the sum of the areas A, B, and C, but
then we need to subtract the area occupied by the water tank, the area D = πa2 ≈ (3.142)a2 of a circle of
radius a. So the area the cow can graze is

2(A+B + C)−D ≈ (117.596)a2.

C09S05.043: Given r(θ) = 3 sin 3θ, remember that roses with odd coefficients are swept out twice in the
interval 0 � θ � 2π. Therefore we should integrate

ds =
√

[r(θ)]2 + [r′(θ)]2 dθ =
√

45 + 36 cos 6θ dθ

from 0 to π to obtain the total length of the rose:

∫ π

θ=0

1 ds =
∫ π

0

√
45 + 36 cos 6θ dθ ≈ 20.047339830833.

The Mathematica 3.0 command we used in Problem 43—we used appropriately modified versions of it for
Problems 44 through 55—was

NIntegrate[ Sqrt[ 45 + 36∗Cos[6∗t] ], { t, 0, Pi },
MaxRecursion -> 18, WorkingPrecision -> 28 ]

C09S05.044: Two integrals are required. The surface area is

∫ π/3

θ=0

2πx ds−
∫ π/2

θ=π/3

2πx ds.

The minus sign is needed because x(θ) = r(θ) cos θ is negative if π/3 � θ � π/2. The total surface area is
approximately 64.912021806645.

11



C09S05.045: Given r(θ) = 2 cos 2θ, remember than a rose with an even coefficient n of θ has 2n “petals,”
and is swept out as θ ranges from 0 to 2π. The arc length element in this case is ds =

√
10− 6 cos 4θ dθ,

and the length of the graph is

∫ 2π

0

√
10− 6 cos 4θ dθ ≈ 19.376896441095

C09S05.046: When the rose of Problem 45 is rotated around the x-axis, the entire surface is generated
twice. To obtain each part of the surface once, we will rotate the part of the rose from θ = 0 to θ = π/4
and, separately, the part from θ = π/4 to π/2. We will set up an integral for each surface area, add the
results, and double the sum. With x(θ) = r(θ) sin θ and the arc length element ds of Problem 45, we get the
integrals

∫ π/4

θ=0

2πy ds ≈ 5.46827 and
∫ π/2

θ=π/4

(−2πy) ds ≈ 16.1232,

for a total area of approximately 43.1829346047.

C09S05.047: Given: r(θ) = 5+9 cos θ, the arc length element is ds =
√

106 + 90 cos θ dθ, and so the total
length of the limaçon is

∫ 2π

0

√
106 + 90 cos θ dθ ≈ 61.003581373850.

C09S05.048: The limaçon of Problem 47 is to be rotated around the x-axis. To find the surface area
generated, we need to know where r(θ) = 0. The solution is

θ1 = cos−1

(
−5

9

)
≈ 2.159827297.

So the surface area is

∫ θ1

θ=0

2πy ds−
∫ π

θ=θ1

2πy ds.

The minus sign is needed because y < 0 on the part of the limaçon from θ = θ1 to π. And we stop at θ = π

because the same surface is swept out a second time for π � θ � 2π. The resulting total surface area is
approximately 860.260874010443.

C09S05.049: Given: r(θ) = cos(7θ/3). To sweep out all seven “petals” of this quasi-rose, you need to let
θ vary from 0 to 3π. The length of the graph is

∫ 3π

0

√
1
9

(
29− 20 cos(14θ/3)

)
dθ ≈ 16.342833373939.

C09S05.050: The length of the graph of this curve is
∫ 2π

0

√
cos2 t+ 4 cos2 2t dt ≈ 9.429431296944.

C09S05.051: Part (a): When the curve of Problem 50 is rotated around the x-axis, the surface generated
is swept out twice. We will rotate the part of the curve in the first quadrant around the x-axis and double
the result to get the total surface area
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2
∫ π/2

t=0

2πy ds ≈ 16.057027566602.

Part (b): To find the volume of revolution around the x-axis, we evaluate

2
∫ π/2

0

π[y(t)]2 · x′(t) dt = 2
∫ π/2

0

4π(sin2 t cos t− sin4 t cos t) dt

= 2
[

4π
(

1
3

sin3 t − 1
5

sin5 t

) ]π/2
0

=
16
15
π ≈ 3.351032163829.

C09S05.052: Now the curve of Problems 50 and 51 is to be rotated around the y-axis. We will use the
same part of the curve (the part in the first quadrant) and double the answer.

Part (a): The surface area generated is

2
∫ π/2

0

2πx(t)
√

cos2 t+ 4 cos2 2t dt ≈ 17.720537653947.

Part (b): Using the method of cylindrical shells, the volume enclosed by that surface is

2
∫ π/2

0

2πx(t)y(t)x′(t) dt = 4π
∫ π/2

0

2 sin2 t cos2 t dt

= 4π
∫ π/2

0

1
2

(1− cos2 2t) dt = 2π
∫ π/2

0

(
1− 1 + cos 4t

2

)
dt

= 2π
∫ π/2

0

(
1
2
− 1

2
cos 4t

)
dt = 2π

[
1
2
t − 1

8
sin 4t

]π/2
0

=
1
2
π2.

C09S05.053: The arc-length element is ds =
√

25 cos2 5t+ 9 sin2 3t dt, and the entire Lissajous curve is
obtained by letting t range from 0 to 2π. Hence the length of the graph is

∫ 2π

0

√
25 cos2 5t+ 9 sin2 3t dt ≈ 24.602961618540.

C09S05.054: The length of the graph is
∫ 2π

0

√
464− 320 cos 3t dt ≈ 130.742666991511.

C09S05.055: The length of the graph is

∫ 2π

0

√
[x′(t)]2 + [y′(t)]2 dt ≈ 39.403578712896.
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The graph is next.
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Section 9.6

C09S06.001: If the vertex is at V (0, 0) and the focus is at F (3, 0), then the directrix must be the
vertical line with equation x = −3. If (x, y) is a point on the parabola, then by the definition of parabola,
y2 + (x− 3)2 = (x + 3)2. It’s easy to simplify this equation to y2 = 12x. The graph is next.

C09S06.002: If the vertex is V (0, 0) and the focus is F (0, −2), then the directrix must be the horizontal
line y = 2. Using the definition of parabola, it follows that if (x, y) is a point of the parabola, then
x2 + (y + 2)2 = (y − 2)2. It’s easy to simplify this equation to x2 = −8y.

C09S06.003: If the vertex of the parabola is V (2, 3) and the focus is F (2, 1), then the directrix must be
the horizontal line y = 5. Then it follows from the definition of a parabola that if (x, y) is a point of the
parabola, then

(x− 2)2 + (y − 1)2 = (y − 5)2;

(x− 2)2 + y2 − 2y + 1 = y2 − 10y + 25;

(x− 2)2 = −8y + 24;

(x− 2)2 = −8(y − 3).

The graph of this parabola is next.

C09S06.004: If the vertex is V (−1, −1) and the focus is F (−3, −1), then the directrix must be the vertical
line x = 1. If (x, y) is a point of the parabola, then by definition (x+ 3)2 + (y + 1)2 = (x− 1)2. It’s easy to
simplify this equation to (y + 1)2 = −8(x + 1).

C09S06.005: If the vertex is V (2, 3) and the focus is F (0, 3), then the directrix of this parabola must be
the vertical line x = 4. If (x, y) is a point of the parabola, then—by definition—
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x2 + (y − 3)2 = (x− 4)2;

(y − 3)2 − 8x + 16;

(y − 3)2 = −8(x− 2).

The graph of this parabola is next.

C09S06.006: With focus F (1, 2) and directrix x = −1, the definition of parabola implies that if (x, y) is
on this parabola, then

(x− 1)2 + (y − 2)2 = (x + 1)2;

x2 − 2x + 1 + (y − 2)2 = x2 + 2x + 1;

(y − 2)2 = 4x.

C09S06.007: If a parabola has focus F (0, −3), directrix y = 0, and contains the point (x, y), then by
definition

x2 + (y + 3)2 = y2; x2 = −6y − 9; x2 = −6
(
y +

3
2

)
.

The graph of this parabola is next.

C09S06.008: With focus F (1, −1) and directrix x = 3, the definition of parabola implies that if (x, y) is
on this parabola, then

(x− 1)2 + (y + 1)2 = (x− 3)2; (y + 1)2 = 2x− 1− 6x + 9; (y + 1)2 = −4x + 8; (y + 1)2 = −4(x− 2).

C09S06.009: With focus F (0, 0) and directrix y = −2, the definition of parabola implies that if (x, y) lies
on this parabola, then

2
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x2 + y2 = (y + 2)2; x2 = 4y + 4; x2 = 4(y + 1).

Its graph is next.

C09S06.010: With focus F (−2, 1) and directrix x = −4, every point (x, y) of this parabola satisfies

(x + 2)2 + (y − 1)2 = (x + 4)2; 4x + 4 + (y − 1)2 = 8x + 16;

(y − 1)2 = 4x + 12; (y − 1)2 = 4(x + 3).

C09S06.011: The parabola with equation y2 = 12x has vertex V (0, 0) and horizontal axis y = 0, so its
focus must be at F (c, 0) and its directrix must be the vertical line x = −c where c > 0. So its equation
also has the form (x− c)2 + y2 = (x + c)2; that is, y2 = 4cx. Therefore c = 3, the focus is F (3, 0), and the
directrix is the vertical line x = −3. The graph of this parabola is next.

C09S06.012: Clearly the parabola with equation x2 = −8y has vertex V (0, 0), its axis is the y-axis, and it
opens downward. So its focus is at F (0, −c) and its directrix is the line y = c where c > 0. So its equation
has the form x2 + (y + c)2 = (y − c)2; that is, x2 = −4cy. Hence c = 2, the directrix is the line y = 2, and
the focus is F (0, −2).

C09S06.013: The parabola with equation y2 = −6x has vertex V (0, 0), its axis is the x-axis, and it opens
to the left. Hence it has focus F (−c, 0) and directrix x = c where c > 0. So its equation has the form
(x + c)2 + y2 = (x − c)2; that is, y2 = −4cx. Therefore c = 3

2 , the focus is F
(
− 3

2 , 0
)
, and the directrix is

3
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the line x = 3
2 . The graph of this parabola is next.

C09S06.014: The parabola with equation x2 = 7y clearly has vertex V (0, 0), axis the y-axis, and opens
upward. Hence it has focus F (0, c) and directrix y = −c where c > 0. Thus its equation has the form
x2 + (y− c)2 = (y + c)2; that is, x2 = 4cy. Thus c = 7

4 , the focus is F
(
0, 7

4

)
, and the directrix has equation

y = − 7
4 .

C09S06.015: Given: x2 − 4x− 4y = 0. We complete the square in x:

x2 − 4x + 4 = 4y + 4; (x− 2)2 = 4(y + 1). (1)

Thus this parabola has vertex V (2, −1), vertical axis with equation x = 2, and opens upward. So its focus
is at F (2, −1 + c) and its directrix is y = −1− c where c > 0. Thus its equation has the form

(x− 2)2 + (y + 1− c)2 = (y + 1 + c)2;

(x− 2)2 + (y + 1)2 − 2c(y + 1) + c2 = (y + 1)2 + 2c(y + 1) + c2;

(x− 2)2 = 4c(y + 1).

By Eq. (1), c = 1. Therefore the focus is at F (2, 0) and the directrix has equation y = −2. The graph of
this parabola is next.

C09S06.016: Given y2 − 2x + 6y + 15 = 0, we find that (y + 3)2 = 2(x− 3). So this parabola has vertex
V (3, −3), horizontal axis y = −3, and opens to the right. So its focus is F (3 + c, −3) and its directrix has
equation x = 3− c where c > 0. So its equation has the form

4
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(x− 3− c)2 + (y + 3)2 = (x− 3 + c)2;

(x− 3)2 − 2c(x− 3) + c2 + (y + 2)2 = (x− 3)2 + 2c(x− 3) + c2;

(y + 3)2 = 4c(x− 3).

Therefore c = 1
2 , the focus is F

(
7
2 , −3

)
, and the directrix has equation x = 5

2 .

C09S06.017: Given 4x2 +4x+4y+13 = 0, we complete the square in x to find that (2x+1)2 = −4(y+3).
Thus this parabola has vertex V

(
− 1

2 , −3
)
, vertical axis x = − 1

2 , and opens downward. So its focus is
F

(
− 1

2 , −3− c
)

and its directrix has equation y = −3 + c where c > 0. So its equation has the form

(
x + 1

2

)2 + (y + 3 + c)2 = (y + 3− c)2;

(
x + 1

2

)2 + (y + 3)2 + 2c(y + 3) + c2 = (y + 3)2 − 2c(y + 3) + c2;

(
x + 1

2

)2 = −4c(y + 3);

(2x + 1)2 = −16c(y + 3).

Therefore c = 1
4 , the focus is F

(
− 1

2 , −
13
4

)
, and the directrix has equation y = − 11

4 . This parabola is shown
next.

C09S06.018: Given 4y2 − 12y + 9x = 0, we complete the square in y and find that (2y− 3)2 = −9(x− 1).
So this parabola has vertex V

(
1, 3

2

)
, horizontal axis with equation y = 3

2 , and opens to the left. Its focus is
F

(
1− c, 3

2

)
and its directrix has equation x = 1 + c where c > 0. So its equation also takes the form

(x− 1 + c)2 +
(
y − 3

2

)2 = (x− 1− c)2;

(x− 1)2 + 2c(x− 1) + c2 +
(
y − 3

2

)2 = (x− 1)2 − 2c(x− 1) + c2;

(
y − 3

2

)2 = −4c(x− 1);

(2y − 3)2 = −16c(x− 1).

Therefore c = 9
16 , the focus is F

(
7
16 ,

3
2

)
, and the directrix has equation x = 25

16 .

C09S06.019: The location of the vertices makes it clear that the center of the ellipse is at (0, 0). Therefore
its equation may be written in the standard form

5



(x

4

)2
+

(y

5

)2
= 1.

C09S06.020: We use the equation a2 = b2 + c2 with a = 13 and c = 5 to find that b = 12. The major axis
is horizontal, hence an equation of this ellipse is

( x

13

)2
+

( y

12

)2
= 1.

C09S06.021: We use the equation a2 = b2 + c2 with a = 17 and c = 8 to find that b = 15. The major axis
is vertical, so an equation of this ellipse is

( x

15

)2
+

( y

17

)2
= 1.

C09S06.022: Here we have a = 6 and b = 4; because the major axis is vertical, an equation of this ellipse
is

(x

4

)2
+

(y

6

)2
= 1.

C09S06.023: Because c = 3 and

a =
c

e
= 3 · 4

3
= 4,

we use the equation a2 = b2 + c2 to find that b2 = 7. Therefore an equation of this ellipse is

x2

16
+

y2

7
= 1.

C09S06.024: Because c = 4 and

a =
c

e
= 4 · 3

2
= 6,

we use the equation a2 = b2 + c2 to find that b =
√

20 . Therefore an equation of this ellipse is

x2

20
+

y2

36
= 1.

C09S06.025: Because a = 10 and c = ea = 1
2 · 10 = 5, it follows from the equation a2 = b2 + c2 that

b =
√

75 . Therefore an equation of this ellipse is

x2

100
+

y2

75
= 1.

C09S06.026: We have b = 5 and e = 1
2 . Thus a = 2c; moreover, a2 = b2 + c2. So 4c2 = 25 + c2, and it

follows that c = 5
3

√
3 and a = 10

3

√
3. Therefore this ellipse has equation

x2

25
+

3y2

100
= 1.

6



C09S06.027: From the information given in the problem, we see that 8 = a/e and a = 2/e. It follows that
e = 1

2 , and so a = 4 and c = 2. Consequently b2 = 12, and therefore an equation of this ellipse is

x2

16
+

y2

12
= 1.

C09S06.028: First, c = 4 and 9 = c/e2; therefore e = 2
3 . So a = c/e = 6; b2 = a2 − c2 = 20. Therefore an

equation of this ellipse is

x2

20
+

y2

36
= 1.

C09S06.029: Were the center at the origin, the equation would be (x/4)2 + (y/2)2 = 1. Because the
center is at C(2, 3), the translation principle implies that the equation is instead

(
x− 2

4

)2

+
(
y − 3

2

)2

= 1.

C09S06.030: First, a = 4 and e = 3
4 . So c = ae = 3 and b2 = a2 − c2 = 16− 9 = 7; therefore this ellipse

has equation

(x− 1)2

16
+

(y + 2)2

7
= 1.

C09S06.031: The center of this ellipse is at (1, 1), c = 3, and a = 5. Thus b = 4, and so an equation of
this ellipse is

(
x− 1

5

)2

+
(
y − 1

4

)2

= 1.

C09S06.032: First we note that the center is C(−3, 2). It follows that b = 3 and c = 2, so that a2 = 13.
Therefore an equation of this ellipse is

(x + 3)2

9
+

(y − 2)2

13
= 1.

C09S06.033: The center is at C(1, 2), the major axis is horizontal, and c = 3. Next, a = c/e and
e = 1/3, so a = 3c = 9. Because b2 = a2 − c2, we see that b =

√
72 . Thus an equation of this ellipse is

(x− 1)2

81
+

(y − 2)2

72
= 1.

C09S06.034: In standard form, the equation of this ellipse is

(x

2

)2
+

(y

4

)2
= 1.

7
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Therefore its center is C(0, 0), a = 4, and b = 2. Thus c = 2
√

3 , so the foci are
(
0, ±2

√
3

)
. The major

axis is vertical, of length 8; the minor axis has length 4. The graph is next.

C09S06.035: In standard form, the equation of this ellipse is

(x

6

)2
+

(y

4

)2
= 1,

so its center is at C(0, 0), a = 6, and b = 4; thus c = 2
√

5 . The foci are
(
±2
√

5 , 0
)
. The major axis is

horizontal, of length 12; the minor axis has length 8. The graph of this ellipse is next.

C09S06.036: Given: 4x2−24x+9y2 = 0. We complete the square in x and write the equation in standard
form as follows:

x2 − 6x +
9
4
y2 = 0; x2 − 6x + 9 +

9
4
y2 = 9;

(x− 3)2 +
9
4
y2 = 9;

(
x− 3

3

)2

+
(y

2

)2
= 1.

Therefore the center is C(3, 0), a = 3, and b = 2. Thus c =
√

5 . The foci are
(
3±
√

5 , 0
)
, the major axis

8
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is horizontal of length 6, and the minor axis has length 4. The graph is next.

C09S06.037: We complete the square in y as follows:

9x2 + 4y2 − 32y + 28 = 0;
9
4
x2 + y2 − 8y + 7 = 0;

9
4
x2 + y2 − 8y + 16 = 9;

(x

2

)2
+

(
y − 4

3

)2

= 1.

Thus this ellipse has center C(0, 4), a = 3, and b = 2; thus c =
√

5 . The foci are
(
0, 4±

√
5

)
, the major

axis is vertical, of length 6; the minor axis has length 4. The graph of this ellipse is next.

C09S06.038: We put the given equation into standard form as follows:

2x2 + 3y2 + 12x− 24y + 60 = 0; 2(x2 + 6x) + 3(y2 − 8y) + 60 = 0;

2(x2 + 6x + 9) + 3(y2 − 8y + 16) + 60 = 48 + 18 = 66;
(x + 3)2

3
+

(y − 4)2

2
= 1.

Thus this ellipse has center C(−3, 4), a =
√

3 , and b =
√

2 . So c = 1, the foci are (−4, 4) and (−2, 4), the
major axis is horizontal with length 2

√
3 , and the minor axis has length 2

√
2 . The graph of this ellipse is

9
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C09S06.039: The given information implies that the transverse axis is horizontal, c = 4, and a = 1. Hence
b =
√
c2 − a2 =

√
15 . Therefore an equation of this hyperbola is

x2

1
− y2

15
= 1.

C09S06.040: The transverse axis is vertical, c = 3, and a = 2. Therefore b =
√
c2 − a2 =

√
5 . Hence an

equation of this hyperbola is

y2

4
− x2

5
= 1.

C09S06.041: The given information implies that the transverse axis is horizontal, c = 5, and b/a = 3/4,
so that b = 3

4 a. Then the equation a2 + b2 = c2 implies that a = 4 and thus that b = 3. So an equation of
this hyperbola is

(x

4

)2
−

(y

3

)2
= 1.

C09S06.042: The given information implies that the transverse axis is horizontal, a = 3, and b/a = 3/4,
so that b = 9/4. Hence an equation of this hyperbola is

x2

9
− 16y2

81
= 1.

C09S06.043: The information given in the problem implies that the transverse axis is vertical, a = 5, and
a/b = 1, so that b = 5 as well. Hence an equation of this hyperbola is

(y

5

)2
−

(x

5

)2
= 1.

C09S06.044: By the given information, the transverse axis is horizontal, a = 3 and c = ae = 5, so that
b = 4. Therefore this hyperbola has equation

(x

3

)2
−

(y

4

)2
= 1.

10



C09S06.045: The transverse axis is vertical and c = 6. Hence a = c/e = 3, and so b =
√

27 . Therefore
an equation of this hyperbola is

y2

9
− x2

27
= 1.

C09S06.046: The transverse axis is horizontal and a = 4. So an equation of this hyperbola has the form

x2

16
− y2

b2
= 1.

Because the point (8, 3) satisfies this equation, it follows that b2 = 3.

C09S06.047: The transverse axis is horizontal and c = 4. One directrix is x = 1, so 1 = a/e = c/e2. Thus
e = 2, and so a = 2 and b2 = 12. Thus an equation of this hyperbola is

x2

4
− y2

12
= 1.

C09S06.048: The transverse axis is vertical and c = 9. One directrix is y = 4, so c/e2 = 4. Thus e = 3/2,
so a = c/e = 6 and b2 = 45. So an equation of this hyperbola is

y2

36
− x2

45
= 1.

For an alternative solution, use the focus F (0, 9), the directrix L with equation y = 4, and the definition
|PF | = e · |PL| for each point P (x, y) on the hyperbola. It then follows that

√
x2 + (y − 9)2 = e · (y − 4);

x2 + y2 − 18y + 81 = e2(y2 − 8y + 16);

x2 − (e2 − 1)y2 + (8e2 − 18)y + (81− 16e2) = 0.

The coefficient of y in the last equation must be zero, and it follows that e = 3/2. The last equation becomes

x2 − 5
4
y2 = 16e2 − 81 = −45,

and therefore an equation of this hyperbola is
y2

36
− x2

45
= 1.

C09S06.049: Given: The hyperbola has center (2, 2), the transverse axis is horizontal of length 6, and
e = 2. Translate the hyperbola so that its center is at (0, 0). The vertices are therefore (−3, 0) and (3, 0),
so that a = 3. Then c = ae = 6, so that b2 = 27. So the translated hyperbola has equation

x2

9
− y2

27
= 1.

Therefore an equation of the original hyperbola is
(x− 2)2

9
− (y − 2)2

27
= 1.

C09S06.050: Given: The hyperbola has center C(−1, 3), vertices V1(−4, 3) and V2(2, 3), and foci
F1(−6, 3) and F2(4, 3). Translate the hyperbola so that its center is at the origin. The new vertices

11



are (±3, 0) and the new foci are (±5, 0). So the transverse axis is horizontal, a = 3, and c = 5. Therefore
b = 4, and so the translated hyperbola has equation

(x

3

)2
−

(y

4

)2
= 1.

Thus an equation of the original hyperbola is
(
x + 1

3

)2

−
(
y − 3

4

)2

= 1.

C09S06.051: Given: The hyperbola has center C(1, −2), vertices V1(1, 1), and V2(1, −5), and asymptotes
3x− 2y = 7 and 3x + 2y = −1. Translate the hyperbola so that its center is at (0, 0). The new vertices are
(0, ± 3) and the new asymptotes have equations

3(x + 1)− 2(y − 2) = 7 and 3(x + 1) + 2(y − 2) = −1;

3x− 2y = 0 and 3x + 2y = 0.

Thus their equations are y = ± 3
2x. Therefore the translated parabola has a = 3 and a/b = 3/2, so that

b = 2. Thus—because its transverse axis is vertical—it has equation

(y

3

)2
−

(x

2

)2
= 1.

Therefore the original hyperbola has equation
(
y + 2

3

)2

−
(
x− 1

2

)2

= 1.

C09S06.052: Given: One focus of the hyperbola is F (8, −1) and its asymptotes have equations 3x−4y = 13
and 3x + 4y = 5. If we translate this hyperbola so that its center is at (0, 0), then its asymptotes will have
the equations

3(x− u)− 4(y − v) = 13 and 3(x− u) + 4(y − v) = 5;

3x− 4y = 13 + 3u− 4v = 0 and 3x + 4y = 5 + 3u + 4v = 0.

Therefore 3u − 4v = −13 and 3u + 4v = −5. It follows that u = −3 and v = 1. So the given focus
will be translated to the point (5, 0). Thus the other focus is at (−5, 0), c = 5, and the asymptotes are
y = ±3x/4 = ±bx/a. Thus b = 3a/4 and so

a2 +
9
16

a2 = 25;
25
16

a2 = 25; a = 4.

Consequently b = 3, and an equation of the translated hyperbola is

(x

4

)2
−

(y

3

)2
= 1.

So the original hyperbola has equation
(
x− 3

4

)2

−
(
y + 1

3

)2

= 1.

C09S06.053: Given x2 − y2 − 2x + 4y = 4, we first complete the square in the two variables:

x2 − 2x− (y2 − 4y) = 4;

x2 − 2x + 1− (y2 − 4y + 4) + 4− 1 = 4;

(x− 1)2 − (y − 2)2 = 1.
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Thus this hyperbola has center C(1, 2). Also a = b = 1, so c =
√

2 . So its foci are
(
1±
√

2 , 2
)
. If

its center were (0, 0), its asymptotes would be y = ±x. Therefore its actual asymptotes have equations
y − 2 = ±(x− 1); that is, y = x + 1 and y = −x + 3. Its graph is next.

C09S06.054: The hyperbola’s equation can be written in the form (x + 2)2 − 2y2 = 4, thus in the form

(x + 2)2

4
− y2

2
= 1.

Thus a = 2, b =
√

2 , and c2 = a2 + b2 = 6. Therefore the center is at (−2, 0), the foci are at
(
−2±

√
6 , 0

)
,

and the asymptotes have the equations

y = ±
√

2
2

(x + 2).

The graph is next.

C09S06.055: Given the equation y2 − 3x2 − 6y = 0, complete the square:

y2 − 6y + 9− 3x2 = 9;

(y − 3)2 − 3x2 = 9;

(y − 3)2

9
− x2

3
= 1.

This hyperbola has center (0, 3), a = 3, b =
√

3 , and c = 2
√

3 . If the center were at the origin, the
hyperbola would have asymptotes with equations y = ±x

√
3 and its foci would be

(
0, ±2

√
3

)
. So the given

13
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hyperbola has asymptotes y = 3± x
√

3 and foci
(
0, 3± 2

√
3

)
. Its graph is next.

C09S06.056: After we complete the square, the equation of the hyperbola becomes (x−1)2− (y−3)2 = 1.
Thus a = b = 1 and c =

√
2 . The center is at (1, 3) and the foci are at

(
1±
√

2 , 3
)
. The asymptotes have

equations y = x + 2 and y = −x + 4. The graph is next.

C09S06.057: First complete the square in both variables:

9x2 − 4y2 + 18x + 8y = 31;

9(x2 + 2x)− 4(y2 − 2y) = 31;

9(x2 + 2x + 1)− 4(y2 − 2y + 1) = 31 + 9− 4 = 36;

(
x + 1

2

)2

−
(
y − 1

3

)2

= 1.

Thus this hyperbola has center C(−1, 1). From its equation we also see that a = 2 and b = 3, so that
c =

√
13 . If its center were at the origin, its foci would be

(
±
√

13 , 0
)

and its asymptotes would be
y = ±3x/2. Thus its foci are at

(
−1±

√
13 , 1

)
. Its asymptotes have equations y − 1 = ±3(x + 1)/2; that

14
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is, 2y = 3x + 5 and 2y = −3x− 1. The graph of this hyperbola is next.

C09S06.058: Complete the square to obtain

4(y − 1)2 − 9(x + 1)2 = 36; that is,
(
y − 1

3

)2

−
(
x + 1

2

)2

= 1.

From this equation we see that a = 3 and b = 2, the transverse axis is vertical, and c =
√

13 . The center is
at (−1, 1), the foci are at

(
−1, 1±

√
13

)
, and the asymptotes have equations 2y = 3x+5 and 2y = −3x−1.

The graph is next.

C09S06.059: We read from the given equation

r =
6

1 + cos θ

the information that (in the terminology of Section 9.6) pe = 6 and e = 1. Therefore the conic section is
a parabola with directrix the vertical line x = 6; its focus is at (0, 0). Conversion to Cartesian coordinates
yields

r + r cos θ = 6; x2 + y2 = (6− x)2;

y2 = 36− 12x; x = 3− 1
12

y2.

The parabola opens to the left with vertex at (3, 0); its axis is the x-axis (or the part of the x-axis for which
x � 3). To see the graph of this conic, we executed the Mathematica command

ParametricPlot[ { (6∗Cos[t])/(1 + Cos[t]), (6∗Sin[t])/(1 + Cos[t]) },
{ t, −1.8, 1.8 }, PlotPoints → 47 ];
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The result is next.

C09S06.060: We read from the given polar equation

r =
6

1 + 2 cos θ

the information that pe = 6 and e = 2. Hence the graph of this conic section is a hyperbola with eccentricity
2 and one directrix is the vertical line x = 3; the corresponding focus is at (0, 0). Conversion to Cartesian
coordinates yields

r + 2r cos θ = 6; x2 + y2 = (6− 2x)2;

x2 + y2 = 36− 24x + 4x2; y2 = 3x2 − 24x + 36;

1
3
y2 = x2 − 8x + 12; (x− 4)2 − 1

3
y2 = 4.

Hence the center of the hyperbola is at (4, 0), its other focus is at (8, 0), and its vertices are at (2, 0) and
(6, 0). To generate its graph, we executed the Mathematica command

Plot[ { Sqrt[ 3∗x∗x − 24∗x + 36 ], −Sqrt[ 3∗x∗x − 24∗x + 36 ] },
{ x, −2, 10 }, PlotPoints → 97 ];

The result is shown next.

C09S06.061: From the given polar equation
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r =
3

1− cos θ

we read the information that pe = 3 and that e = 1, so that the conic section is a parabola with focus
(0, 0) and directrix the vertical line x = −3. Conversion to Cartesian coordinates yields

r − r cos θ = 3; r2 = (x + 3)2;

x2 + y2 = x2 + 6x + 9; x =
1
6
(y2 − 9).

Hence the parabola opens to the right with vertex at
(
− 3

2 , 0
)

and its axis is the x-axis. To see its graph, we
executed the Mathematica command

ParametricPlot[ { (3∗Cos[t])/(1 - Cos[t]), (3∗Sin[t])/(1 - Cos[t]) },

{ t, 0.5, 2∗Pi − 0.5 } ];

The result is next.

C09S06.062: From the given polar equation

r =
8

8− 2 cos θ
=

1
1− 1

4 cos θ

we read the information that pe = 1 and that e = 1
4 . Hence this conic section is an ellipse with one focus

at (0, 0) and one directrix the vertical line x = −4. When θ = 0 we see that r = 4
3 ; when θ = π, r = 4

5 .
Hence the vertices of this ellipse are at the points

(
4
3 , 0

)
and

(
− 4

5 , 0
)
. To see its graph, we executed the

Mathematica command

ParametricPlot[ { (4∗Cos[t])/(4 − Cos[t]), (4∗Sin[t])/(4 − Cos[t]) },

{ t, 0, 2∗Pi }, PlotRange → { { −1, 1.5 }, { −1.3, 1.3 } } ];
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and the result is shown next.

C09S06.063: From the given polar equation

r =
6

2− sin θ
=

3
1− 1

2 sin θ

we read the information that pe = 3 and that e = 1
2 . Hence p = 6, and therefore the conic section is an

ellipse with one horizontal directrix y = −6 and one focus at (0, 0). Conversion to Cartesian coordinates
yields

2r − y = 6; 4(x2 + y2) = (y + 6)2;

4x2 + 3y2 − 12y = 36;
4
3
x2 + y2 − 4y = 12;

4
3
x2 + y2 − 4y + 4 = 16;

4
3
x2 + (y − 2)2 = 16.

Hence this ellipse has center at (0, 2) and its other focus at (0, 4). When we evaluate r for θ = ±π/2, we
find that the vertices of this ellipse are at (0, 6) and (0, −2). To see its graph, we executed the Mathematica

command

ParametricPlot[ { (6∗Cos[t])/(2 − Sin[t]), (6∗Sin[t])/(2 − Sin[t]) },

{ t, 0, 2∗Pi }, PlotRange → { { −4, 4 }, { −2.5, 6.5 } },

AspectRatio → Automatic ];
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and the result is shown next.

C09S06.064: From the given polar equation

r =
12

3 + 2 cos θ
=

4
1 + 2

3 cosθ

we see that pe = 4 and that e = 2
3 . Hence p = 6, and this conic section is an ellipse with one focus at (0, 0)

and one directrix with equation x = 6. Substitution of θ = 0 and θ = π in its equation yields the further
information that its vertices are at

(
12
5 , 0

)
and (−12, 0). To see its graph, we executed the Mathematica

command

ParametricPlot[ { (12∗Cos[t])/(3 + 2*Cos[t]), (12∗Sin[t])/(3 + 2∗Cos[t]) },
{ t, 0, 2∗Pi }, PlotRange → { { −13, 3 }, { −6, 6 } } ];

and the result is shown next.

C09S06.065: The parabola with equation y2 = 4px has focus F (p, 0). Suppose that (x, y) is a point on
the parabola. Then x = y2/(4p). Our goal is to minimize (x− p)2 + y2; that is,

f(y) =
(
y2

4p
− p

)2

+ y2.
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Now

f ′(y) = 2
(
y2

4p
− p

)
· 2y
4p

+ 2y =
4y3

16p2
− 4py

4p
+ 2y

=
y3

4p2
− y + 2y =

y3

4p2
+ y =

y3 + 4p2y

4p2
=

y

4p2
(y2 + 4p2).

Therefore f ′(y) = 0 if and only if y = 0; f ′(y) < 0 if y < 0 and f ′(y) > 0 if y > 0. So by the first derivative
test, f(y) has a global minimum value and it occurs where y = 0, so that x = 0 as well. Therefore the vertex
V (0, 0) of this parabola is the point of the parabola closest to its focus F (p, 0).

C09S06.066: Suppose that the vertex of this parabola is V (a, b). Then the parabola has equation of
the form (x − a)2 = c(y − b) for some number c. Because (2, 3) and (4, 3) lie on the parabola, we get the
simultaneous equations

(2− a)2 = c(3− b) and (4− a)2 = c(3− b);

(2− a)2 = (4− a)2;

4− 4a = 16− 8a;

4a = 12.

Thus a = 3; note also that c(3− b) = 1. Next, the point (6, −5) is also on the parabola, so

(6− 3)2 = c(−5− b) and thus 9 = −c(b + 5).

Therefore −c(b+ 5) = 9 and −c(b− 3) = 1. Eliminate c to find that b = 4, and thus that c = −1. Therefore
an equation of this parabola is (x− 3)2 = −(y − 4).

C09S06.067: Given: The point Q(x0, y0) on the graph of the parabola with equation y2 = 4px (p 
= 0).
Using implicit differentiation,

2y
dy

dx
= 4p,

so the slope of the line tangent to the graph at Q is 4p/(2y0). Thus it has equation

y − y0 =
4p
2y0

(x− x0);

2y0y − 2y2
0 = 4px− 4px0;

y0y − y2
0 = 2px− 2px0;

y0y − 4px0 = 2px− 2px0;

2px− y0y + 2px0 = 0.

In particular, when y = 0 we see that x = −x0, so the tangent line meets the x-axis at the point (−x0, 0).

C09S06.068: With the origin at the focus S(0, 0), the vertex of the parabola is at V (a, 0) and thus the
directrix has equation x = 2a (a < 0). The coordinates of C are (100, 100) and the [horizontal] distance
from C to the directrix is 100

√
2 , the same as its distance from the focus. Hence 2a = 100 − 100

√
2 , so
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a = 50
(
1−
√

2
)
. Therefore the closest approach of the comet to the sun is 50

(√
2 − 1

)
≈ 20.7106781187

million miles.

C09S06.069: Set up coordinates so that the parabola has vertex V (−p, 0). Then the equation of the
comet’s orbit is y2 = 4p(x + p). The line y = x meets the orbit of the comet at the point (a, b), which is
100
√

2 million miles from the origin (which is also where both the sun and the focus of the parabola are
located). Therefore

a2 = 4p(a + p) and
√

a2 + a2 =
(
100
√

2
)

(106) = 108
√

2 .

It follows that a = 108. Next, a2 = 4p(a+p). We apply the quadratic formula to find without difficulty that
p = 1

2

(√
2 − 1

)
(108). Now solve the equation of the orbit for x:

x =
1
4p

y2 − p.

The area A3 swept out by the line from the sun to the comet in three days is then

A3 =
1
2

1002 −
∫ 100

2p

(
1
4p

y2 − p

)
dy.

It now follows that

A3 = 5000− 1
12p

(106 − 8p3) + 100p− 2p2 ≈ 2475.469.

The area of the “quarter-parabola” is

AQ =
∫ 2p

0

(
p− 1

4p
y2

)
dy =

4
3
p2 ≈ 571.9096.

So the comet will reach its point of closest approach in roughly 0.693 more days; that is, in about 16 h 38
min.

C09S06.070: We begin with Eqs. (7) and (8):

x = (v0 cosα)t and y = −1
2
gt2 + (v0 sinα)t.

Then t =
x

v0 cosα
, so

y = −1
2
g · x2

(v0 cosα)2
+

v0x sinα

v0 cosα
= − gx2

2(v0 cosα)2
+

x sinα

cosα

= − g

2(v0 cosα)2

(
x2 − 2x(v0 cosα)2 sinα

g cosα

)
= − g

2(v0 cosα)2

(
x2 − 2xv2

0 sinα cosα
g

)

= − g

2(v0 cosα)2

(
x2 − 2xv2

0 sinα cosα
g

+
v4
0 sin2 α cos2 α

g2

)
+

gv4
0 sin2 α cos2 α
2g2v2

0 cos2 α

= − g

2(v0 cosα)2

(
x− v0 sinα cosα

g

)2

+
v2
0 sin2 α

2g
.

Therefore the trajectory has equation
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y − v2
0 sin2 α

2g
= − g

2(v0 cosα)2

(
x− v0 sinα cosα

g

)2

.

It is now evident that the maximum height reached by the projectile will be

M =
v2
0 sin2 α

2g
.

This maximum will occur when x is half the range of the projectile (because of the symmetry of the parabola
around its axis), and thus the projectile will have range

R =
2v2

0 sinα cosα
g

=
v2
0 sin 2α

g
.

C09S06.071: With v0 held constant, the range

R =
v2
0 sin 2α

g

of the projectile will be maximized when sin 2α = 1; that is, when α = 45◦. Thus the maximum range will
be Rmax = v2

0/g.

C09S06.072: With v0 = 50 (m/s), g = 9.8 (m/s2), and α = π/4, the range will be

R = Rmax =
2500
9.8

≈ 255.102 (meters).

The maximum height reached by the projectile will be

M =
v2
0 sin2 α

2g
=

2500
(4)(9.8)

≈ 63.776 (meters).

C09S06.073: The range will be 125 meters when

2500 sin 2α
9.8

= 125;

sin 2α =
(125)(9.8)

2500
= 0.49;

2α = arcsin(0.49).

Therefore α ≈ 14◦40′13′′ and α ≈ 75◦19′47′′ will both produce a range of 125 meters.

C09S06.074: To find the time aloft, we solve v0 sinα = 1
2gt for

t =
2v0 sinα

g
.

Part (a): With α = π/6 and v0 = 50, the range will be

R =
2500

√
3

(2)(9.8)
≈ 220.925 (meters)

and the time aloft will be
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t =
(2)(50)
(2)(9.8)

=
250
49
≈ 5.102 (seconds).

Part (b): With α = π/3 and v0 = 50, the range will be

R =
2500

√
3

(2)(9.8)
≈ 220.925 (meters),

exactly the same as in Part (a), but the time aloft will be instead

t =
(2)(50)

√
3

(2)(9.8)
=

250
√

3
49

≈ 8.837 (seconds).

C09S06.075: Given
√
x +

√
y =

√
a , square twice to eliminate the radicals:

x + 2
√
xy + y = a;

2
√
xy = a− x− y;

4xy = (a− x− y)2 = a2 − 2a(x + y) + x2 + 2xy + y2;

2xy + 2a(x + y) = x2 + y2 + a2.

Now convert to polar coordinates:

r2 + a2 = 2r2 sin θ cos θ + 2ar(sin θ + cos θ).

Now rotate the graph 45◦ (the reason is that if you graph the original equation, it resembles a parabola with
axis the line y = x):

r2 + a2 = 2r2 sin
(
θ +

π

4

)
cos

(
θ +

π

4

)
+ 2ar

[
sin

(
θ +

π

4

)
+ cos

(
θ +

π

4

)]
;

r2 + a2 = 2r2 · 1
2

(cos2 θ − sin2 θ) + 2ar
√

2 cos θ.

Finally, return to Cartesian coordinates:

x2 + y2 + a2 = x2 − y2 + 2ax
√

2 ;

2ax
√

2 = 2y2 + a2;

x =
√

2
2a

y2 +
a
√

2
4

;

x− a
√

2
4

=
√

2
2a

y2.

Therefore the graph of
√
x +

√
y =

√
a is a parabola.
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C09S06.076: Consider the following figure:

Let L be the line x+ y = 1, let (u, v) be a point equidistant from the point (−1, −1) and the line L, and let
M be the line through (u, v) and perpendicular to the line L. The distance from (u, v) to the line L is the
distance from (u, v) to the point of intersection of the lines L and M ; call this point of intersection (p, q).
The slope of L is −1, so the slope of M is +1.

First write p and q in terms of u and v: Because the slope of M is 1, q − v = p− u, and because the point
(p, q) lies on the line L, p + q = 1. So

1− p− v = p− u;

p = 1
2 (1 + u− v) and q = 1

2 (1− u + v) .

Now equate the distance between (u, v) and (−1, −1) with the distance between (u, v) and (p, q):

(u + 1)2 + (v + 1)2 = (u− p)2 + (v − q)2

=
(
u +

v − u− 1
2

)2

+
(
v +

u− v − 1
2

)2

.

Now, in order to write the equation of the curve in terms of x and y, replace (u, v) with (x, y) and expand:

4 (x + 1)2 + 4 (y + 1)2 = (2x + y − x− 1)2 + (2y + x− y − 1)2 ;

4x2 + 8x + 4 + 4y2 + 8y + 4 = 2
(
x2 + 2xy + y2 − 2x− 2y + 1

)
;

2x2 + 12x + 2y2 + 12y − 4xy + 6 = 0;

x2 − 2xy + y2 + 6x + 6y + 3 = 0.

The coefficient of x is 6, so D = 6.

C09S06.077: Part (a): In the usual notation, we have e = 0.999925 and a− c = 0.13 (AU). Now

b2 = a2 − c2 = (a + c)(a− c) and a =
c

e
.

It follows that

24



-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

c

e
− c = 0.13, and thus c = (0.13)

999925
75

≈ 1733.203333.

Thus a = c/e ≈ 1733.246664 and so b ≈ 12.25577415. The maximum distance between Kahoutek and the
sun is therefore 2a− 0.13 ≈ 3466.363328 (AU)—about 322 billion miles, about 20 light-days.

Part (b): In the case of Comet Hyakutake, we have e = 0.999643856 and a− c = 0.2300232. Thus

c

e
− c = 0.2300232; hence c

(
1
e
− 1

)
= 0.2300232.

Thus c ≈ 645.64130974. But a = c/e, so a ≈ 645.87133294. So the greatest distance between Hyakutake
and the sun is 2a− 0.2300232 ≈ 1291.51264269 (AU). This is about 120 billion miles, about 7.45 light-days.

C09S06.078: In the usual notation, we have 2a = 0.467 + 0.307 = 0.774. So a = 0.387 and e = 0.206.
Therefore c = ae = 0.079722 and

b =
√

a2 − c2 ≈ 0.378699621;

we’ll use b = 0.3787. Therefore the ellipse has major axis 0.774, minor axis 0.7574; in terms of percentages,
a is about 2.2% greater than b. Is this a nearly circular orbit? Decide for yourself: Compare the circle (on
the right) below, with diameter 0.766, with the ellipse (on the left) below with the shape of the orbit of the
planet.

C09S06.079: Assume that the focus on the positive y-axis is F (0, c) and that the directrix is the line L

with equation y = c/e2 where 0 < e < 1. Suppose that P (x, y) is a point of the ellipse. Then the equation
|PF | = e · |PL| yields

√
x2 + (y − c)2 = e ·

(
y − c

e2

)
;

x2 + y2 − 2cy + c2 = e2
(
y − c

e2

)2
;

x2 + y2 − 2cy + c2 = e2y2 − 2cy +
c2

e2
;

x2 + (1− e2)y2 =
c2

e2
− c2 = c2

(
1
e2
− 1

)
=

c2

e2
(1− e2).
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Now substitute a = c/e:

x2 + (1− e2)y2 = a2(1− e2);

x2

a2(1− e2)
+

y2

a2
= 1.

Let b2 = a2(1− e2) where b > 0. This is possible because 0 < e < 1. Then

b2 = a2 − a2e2 = a2 − c2, so that a2 + b2 = c2.

The equation of the ellipse is therefore

(x

b

)2
+

(y

a

)2
= 1;

note also that 0 < b < a and that the directrix has equation y =
c

e2
=

a

e
.

C09S06.080: Implicit differentiation of the equation of the ellipse yields

2x
a2

+
2y
b2
· dy
dx

= 0,

and therefore the line tangent to its graph at (x0, y0) has slope

m = − 2x0

a2
· b2

2y0
= − b2x0

a2y0

and thus equation

y − y0 = − b2x0

a2y0
(x− x0).

But

x2
0

a2
+

y2
0

b2
= 1, so b2x2

0 + a2y2
0 = a2b2.

Thus the equation of the tangent line may be written in the form

a2y0y − a2y2
0 = b2x2

0 − b2x0x;

a2y0y + b2x0x = a2b2;

x0x

a2
+

y0y

b2
= 1.

The second of these last three equations will figure prominently in the solution of Problem 25.

C09S06.081: We ignore the Suggestion given in the statement of Problem 81. We recommend that you
visit

http://www.augsburg.edu/depts/math/MATtours/ellipses.1.09.0.html
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P

α

β

F2 F1

for an elegant two-line proof of the reflection property due to Zalman P. Usiskin. (This site was available
on January 7, 2000 and has been in existence for several years; it should still be there when you read this.)
Before we discovered Usiskin’s proof, we constructed an algebraic proof and here it is.

See the preceding figure. Let P (x0, y0) be the point of tangency. Suppose that the ellipse has equation
(x/a)2 + (y/b)2 = 1 where 0 < b < a. We saw in the solution of Problem 24 that the slope of the tangent
line is

− b2x0

a2y0
. (1)

Let F1(c, 0) and F2(−c, 0) be the foci of the ellipse, let m1 be the slope of F1P , let m2 be the slope of F2P ,
let m be the slope of the tangent line, let α be the angle between F1P and the tangent, and let β be the angle
between F2P and the tangent. Let θ1 be the angle of inclination of F1P , let θ2 be the angle of inclination of
F2P , and let φ be the angle between the tangent line and the horizontal, so that α+φ+θ1 = π and φ+θ2 = β.
Also note that tanφ = 1/m. Finally note that because (x0, y0) lies on the ellipse, b2x2

0 + a2y2
0 = a2b2. Then

a4y2
0 − b4x2

0 = a2b2y2
0 − a2b2x2

0 + a2b2x2
0 + a4y2

0 − b4x2
0 − a2b2y0;

(a2y0 + b2x0)(a2y0 − b2x0) = a2b2y2
0 − a2b2x2

0 + (a2 − b2)(b2x2
0 + a2y2

0);

a4y2
0 − b4x2

0 = a2b2y2
0 − a2b2x2

0 + a2b2(a2 − b2);

a4y2
0 − b4x2

0 = a2b2(y2
0 − x2

0 + c2);

2x0y0
(a2y0 + b2x0)(a2y0 − b2x0)

b2x0
= 2a2y0(y2

0 − x2
0 + c2);

2x0y0

x2
0 − c2

· a
4y2

0 − b4x2
0

b4x2
0

=
2a2y0

b2x0
· y

2
0 − x2

0 + c2

x2
0 − c2

;

(
y0

x0 − c
+

y0

x0 + c

)
·
(
a4y2

0

b4x2
0

− 1
)

=
2a2y0

b2x0

(
y2
0

x2
0 − c2

− 1
)

;

(m1 + m2)(m2 − 1) = 2m(m1m2 − 1);

(m1 + m2)
m2 − 1
m2

=
2
m

(m1m2 − 1);
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(m1 + m2)
(

1
m2
− 1

)
=

2
m

(1−m1m2);

(m1 + m2) ·
1
m2
− 2(1−m1m2) ·

1
m
− (m1 + m2) = 0;

(tan θ1 + tan θ2) tan2 φ− 2(1− tan θ1 tan θ2) tanφ− (tan θ1 + tan θ2) = 0;

tan θ1 + tan θ2 + 2 tanφ− 2 tan θ1 tan θ2 tanφ− (tan θ1 + tan θ2) tan2 φ = 0;

tan θ1 + tanφ− tan θ1 tan θ2 tan θ − tan θ2 tan2 φ

= − tan θ2 − tanφ + tan θ1 tan θ2 tanφ + tan θ1 tan2 φ;

tan θ1 + tanφ

−1 + tan θ1 tanφ
=

tan θ2 + tanφ

1− tan θ2 tanφ
;

− tan(θ1 + φ) = tan(θ2 + φ);

tan(π − θ1 − φ) = tan(φ + θ2);

tanα = tanβ.

Therefore α = β. �

C09S06.082: Given: 0 < c < a, the fixed points F1(−c, 0) and F2(c, 0), and the point P (x, y), assume
that |PF1 |+ |PF2 | = 2a. Then

√
(x + c)2 + y2 +

√
(x− c)2 + y2 = 2a;

√
(x + c)2 + y2 = 2a−

√
(x− c)2 + y2 ;

(x + c)2 + y2 = 4a2 − 4a
√

(x− c)2 + y2 + (x− c)2 + y2;

4a
√

(x− c)2 + y2 = 4a2 − 4cx;

a2
[
(x− c)2 + y2

]
= a4 − 2a2cx + c2x2;

a2x2 − 2a2cx + a2c2 + a2y2 = a4 − 2a2cx + c2x2;

a2x2 + a2c2 + a2y2 = a4 + c2x2;

(a2 − c2)x2 + a2y2 = a2(a2 − c2);

b2x2 + a2y2 = a2b2 where b2 = a2 − c2;

(x

a

)2
+

(y

b

)2
= 1.

C09S06.083: Solution (a): It’s clear that the center of this ellipse is at (1, 0). So the ellipse has an
equation of the form

(x− 1)2

a2
+

y2

b2
= 1.

Substitution of (x, y) = (3, 0) in this equation yields
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4
a2

= 1, so that a2 = 4.

Thus we may assume that a = 2. Substitution of (x, y) = (0, 2) then yields

1
4

+
4
b2

= 1, so that b2 =
16
3
.

Thus an equation of the ellipse through the four given points is

(x− 1)2

4
+

3y2

16
= 1.

Solution (b) (in case it is not clear where the center of the ellipse is): The Mathematica command

Solve[ { ((-1 - u)/a)∧2 + ((0 - v)/b)∧2 == 1,

((3 - u)/a)∧2 + ((0 - v)/b)∧2 == 1,

((0 - u)/a)∧2 + ((2 - v)/b)∧2 == 1,

((0 - u)/a)∧2 + ((-2 - v)/b)∧2 == 1 }, { a, b, u, v } ]

returns the solutions u = 1, v = 0, a = ±2, b = ±4/
√

3 and no others.

C09S06.084: Because 2a = 10, if P (x, y) is a point of the ellipse then—by the last paragraph of the
subsection on applications of the ellipse in Section 9.6—

√
(x + 3)2 + (y − 3)2 +

√
(x− 3)2 + (y + 3)2 = 10;

x2 + 6x + 9 + y2 − 6y + 9 = 100− 20
√

(x− 3)2 + (y + 3)2 + x2 − 6x + 9 + y2 + 6y + 9;

20
√

(x− 3)2 + (y + 3)2 = 100− 12x + 12y;

5
√

(x− 3)2 + (y + 3)2 = 25− 3x + 3y;

25(x2 − 6x + 9 + y2 + 6y + 9) = 625− 150x + 150y + 9x2 − 18xy + 9x2;

25x2 − 150x + 225 + 25y2 + 150y + 225 = 625− 150x + 150y + 9x2 − 18xy + 9y2;

16x2 + 18xy + 16y2 = 175.

C09S06.085: Given (with a change in notation):

x2

15− q
− y2

q − 6
= 1. (1)

Part (a): If 6 < q < 15, then 15−q > 0 and q−6 > 0. So the graph of Eq. (1) is a hyperbola with horizontal
transverse axis and center C(0, 0). Also a2 = 15 − q and b2 = q − 6, so that a2 + b2 = 9 = c2. Thus c = 3
and so the hyperbola has foci at (±3, 0).

Part (b): q < 6. Then 15− q > 0 and q − 6 < 0, so the graph of Eq. (1) is an ellipse.

Part (c): q > 15. In this case 15− q < 0 and q − 6 > 0, so Eq. (1) takes the form

x2

q − 15
+

y2

q − 6
= −1.

Both denominators are positive, so there are no points on the graph.

29



C09S06.086: Given: The hyperbola with equation

x2

a2
− y2

b2
= 1

and the point P (x0, y0) on its graph. Note that neither a nor b is zero. If y0 
= 0, then implicit differentiation
yields

2x
a2
− 2y

b2
· dy
dx

= 0, so that
dy

dx
=

b2x

a2y
,

so that the slope of the line tangent to the graph of the hyperbola at the point P is

m =
b2x0

a2y0
.

(Note: This formula will be important in the solution of Problem 86.) Hence the line tangent to the hyperbola
at P has equation

y − y0 =
b2x0

a2y0
(x− x0); that is, a2y0y − a2y2

0 = b2x0x− b2x2
0. (1)

But

x2
0

a2
− y2

0

b2
= 1, and so b2x2

0 − a2y2
0 = a2b2.

(Note: The second of these formulas is important in the solution of Problem 86.) Substitution in the second
formula in Eq. (1) now yields b2x0x− a2y0y = a2b2, and therefore the tangent line has equation

x0x

a2
− y0y

b2
= 1.

If y0 = 0, work instead with dx/dy to obtain the same result by the same method.

C09S06.087: See the following figure. It shows the right branch of a hyperbola with equation

x2

a2
− y2

b2
= 1

(where a > 0 and b > 0), with foci F1(−c, 0) and F2(c, 0) (where c > 0). Let L be the line tangent to the
hyperbola at the point P (p, q) where p > 0 and q 
= 0. Let α be the angle between L and F1P and let β be
the angle between L and F2P . Let θ1 be the angle of inclination of F1P , θ2 the angle of inclination of F2P ,
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m the slope of L, and φ the angle of inclination of L. The goal is to prove that α = β.

Here’s what we have to work with. First, m = tanφ; we also found in the solution of Problem 86 that

m =
b2p

a2q
= tanφ.

We know also (Section 9.6) that a2 + b2 = c2. Because (p, q) lies on the hyperbola, it also follows that
b2p2 − a2q2 = a2b2. Let m1 be the slope of F1P and let m2 be the slope of F2P . Then

m1 = tan θ1 =
q

p + c
and m2 = tan θ2 =

q

p− c
.

Also,

θ1 + α + π − φ = π and φ + β + π − θ2 = π,

so that α = φ− θ1 and β = θ2 − φ.

We are ready to begin. The following proof was developed interactively with Mathematica 3.0. We can show
that α = β if we can show that tanα = tanβ. This would follow if tan(φ− θ1) = tan(θ2 − φ), which follows
from

tanφ− tan θ1

1 + tanφ tan θ1
=

tan θ2 − tanφ

1 + tan θ2 tanφ
.

This equation follows from

m−m1

1 + mm1
=

m2 −m

1 + mm2
; that is,

m−m1

1 + mm1
− m2 −m

1 + mm2
= 0.

We entered the left-hand side of the last equation and applied various Mathematica commands to it with
the following results. First we used Together:

2m−m1 + m2m1 −m2 + m2m2 − 2mm1m2

(1 + mm1)(1 + mm2)
.

Then Numerator:

2m−m1 + m2m1 −m2 + m2m2 − 2mm1m2.
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Then we entered % /. m -> b∗b∗p/(a∗a∗q). This asks Mathematica to evaluate the previous expression
(%) “subject to” the replacement of m with b2p/(a2q), and we obtained

−m1 −m2 +
b4m1p

2

a4q2
+

b4m2p
2

a4q2
+

2b2p
a2q

− 2b2m1m2p

a2q
.

Similarly, we replaced m1 with q/(p + c) and m2 with q/(p− c) and thereby obtained

2b2p
a2q

+
b4p2

a4(p− c)q
+

b4p2

a4(p + c)q
− q

p− c
− q

p + c
− 2b2pq

a2(p− c)(p + c)
.

Another application of Together followed by Numerator yielded

−2(a2b2c2p− a2b2p3 − b4p3 + a4pq2 + a2b2pq2).

The command %/(-2∗p) // Cancel produced

a2b2c2 − a2b2p2 − b4p2 + a4q2 + a2b2q2,

and then % /. c∧2 -> a∧2 + b∧2 yielded

a2b2(a2 + b2)− a2b2p2 − b4p2 + a4q2 + a2b2q2.

We then asked for replacement of b2p2 with a2b2 + a2q2 and obtained

a2b2(a2 + b2)− b4p2 + a4q2 + a2b2q2 − a2(a2b2 + a2q2).

The command Factor[%] returned

b2(a2b2 − b2p2 + a2q2).

We then cancelled b2 to obtain a2b2 − b2p2 + a2q2, which we have already seen is zero. This establishes the
desired conclusion: α = β. �

C09S06.088: We begin with 0 < a < c, b =
√
c2 − a2 , the two fixed points F1(−c, 0) and F2(c, 0), and

the point P (x, y) satisfying the equation |PF1 | − |PF2 | = 2a. Thus

√
(x + c)2 + y2 −

√
(x− c)2 + y2 = 2a;

√
(x + c)2 + y2 = 2a +

√
(x− c)2 + y2 ;

x2 + 2cx + c2 + y2 = 4a2 + 4a
√

(x− c)2 + y2 + x2 − 2cx + c2 + y2;

cx = a2 + a
√

(x− c)2 + y2 ;

a
√

(x− c)2 + y2 = cx− a2;

a2(x2 − 2cx + c2 + y2) = c2x2 − 2a2cx + a4;

(a2 − c2)x2 + a2c2 + a2y2 = a4;

− b2x2 + a2y2 = a2(a2 − c2) = −a2b2;

b2x2 − a2y2 = a2b2;
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x2

a2
− y2

b2
= 1. (1)

We have here the implicit assumption that x > 0, so that x � a. So we have obtained the right branch of
the hyperbola. But the equation |PF2 |− |PF1 | = 2a yields the left branch, so the locus of P (x, y) is indeed
the entire hyperbola with the equation that appears in (1).

C09S06.089: First, a2 = 9
2 + 9

2 = 9, so that a = 3 and thus 2a = 6. Therefore Problem 24 implies that
this hyperbola has equation

√
(x− 5)2 + (y − 5)2 + 6 =

√
(x + 5)2 + (y + 5)2 ;

x2 − 10x + y2 − 10y + 50 + 12
√

(x− 5)2 + (y − 5)2 + 36 = x2 + 10x + y2 + 10y + 50;

12
√

(x− 5)2 + (y − 5)2 = 20x + 20y − 36;

3
√

(x− 5)2 + (y − 5)2 = 5x + 5y − 9;

9(x2 + y2 − 10x− 10y + 50) = 25(x2 + 2xy + y2)− 90x− 90y + 81;

16x2 + 50xy + 16y2 = 369.

C09S06.090: Suppose that the plane is at P (x, y), that A is at (−50, 0), and that B is at (50, 0). Let TA
and TB denote the times for the signals from A and B (respectively) to reach the plane. Then TA−TB = 400.
But

|PA| = 980TA and |PB| = 980TB ,

so |PA| /980 = 400+ |PB| /980, and hence |PA|− |PB| = (980)(400) = 392000 (ft). Moreover, b2 = c2−a2,
so (still in feet)

a = 196000,

c = 264000, and

b = (4000)
√

1955 ≈ 176861.53.

In miles, a ≈ 37.1212, b ≈ 33.4965, and c = 50. The hyperbola on which the plane must lie has approximate
equation

x2

1377.984
− y2

1122.016
= 1.

Now the plane also lies on the line y = 50, so when this value is substituted into the equation of the hyperbola
we find that

x2 ≈ 4448.317, so that x ≈ 66.6957.

In our coordinate system, the plane is located approximately at the point (66.6957, 50) (now we stay exclu-
sively in miles). Thus the plane is 16.6957 miles east of B and 50 miles north of B; alternatively, it is about
52.7138 miles from B in the direction 18◦27′54′′ east of north.

C09S06.091: Suppose that the plane is at P (x, y), that A is at (−50, 0), and that B is at (50, 0). Let
D = |AP | and E = |BP |, in feet. Then
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NS

y

x

D

980
+

E

980
= 600 and

D

980
=

E

980
+ 400.

Find D and E, observe in the process that D = 5E, and note that P (x, y) satisfies both the equations
D = |AP | and E = |BP |. You should find that (in feet) x ≈ 218272.73.

C09S06.092: We assume that the parabola opens to the right, and thus that its equation is

r =
p

1 + e cos θ
.

With units in millions of miles, we have

150 =
p

1− cos(π/4)
,

and therefore

p = 150 ·
(

1− 1
2

√
2

)
= 75 ·

(
2−
√

2
)
.

The comet is closest to the sun at the vertex of its parabolic orbit, when θ = π, and the closest approach is
thus p/2, approximately 21.967 million miles. It is plausible, but stretches the interpretation of the problem
slightly, to interpret the given data to mean that

150 =
p

1− cos(3π/4)
,

and the minimum distance is then p/2 ≈ 128.033 million miles—but we consider the first answer to be
correct.

C09S06.093: The following figure indicates the earth (as the small circle) with north pole marked N and
south pole marked S; the larger curve indicates the elliptical orbit of the satellite.

From the figure we read the information

pe

1 + e
= 4500 and

pe

1− e
= 9000.
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45°

φ

x

y

Therefore pe = 4500(1 + e) = 9000(1 − e), and it follows that e = 1
3 and that p = 18000. The polar

equation of the orbit of the satellite is then

r =
6000

1 + 1
3 cos θ

.

The satellite crosses the equatorial plane when θ = π/2, which yields r = 6000. So the height of the
satellite above the surface of the earth then is h = 6000− 4000 = 2000 (mi).

C09S06.094: As in Example 13 of the text, we assume that the orbit of the comet is sufficiently well
approximated by a parabola near the sun that we may assume that its orbit is a parabola with eccentricity
e = 1. Thus the orbit is approximated by the graph of the polar equation

r =
p

1− cos(θ − φ)
,

where φ is the angle measured from the polar axis to the axis of the parabola, as shown in the following
figure.

We now use the data given in the problem to find p and φ. First,

5
2

=
p

1− cos ([π/4]− φ)
and 1 =

p

1− cos ([π/2]− φ)
.

By solving each equation for p and equating the results, we get

f(φ) = 3−
(

5
2

√
2

)
(cosφ + sinφ) + 2 sinφ = 0.

To find φ, we apply Newton’s method and obtain the following results:

φ ≈ 1.088587522 (about 62◦ 22′ 17′′) and

φ ≈ −0.2691202248 (about −15◦ 25′ 10′′).

Now p = r · [1− cos(θ − φ)]. So when φ takes on the first of these two values and θ = π/2, we have
p ≈ 0.1140272202, and the closest approach of the comet is

0.0570136101 (au; about 5,302,270 mi).
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y

When φ takes on the other value, we find that p ≈ 1.265883432, and in this case the closest approach of
the comet is

0.6329417159 (au; about 58,863,580 mi).

Are both these situations possible? Indeed they are—the following figure illustrates both cases, and is drawn
to scale.

C09S06.095: Here is one solution; it may not be the simplest, and it probably isn’t the most elegant—but
it works. Assume that a > b > 0 and locate coordinate axes so that the Cartesian equation of the ellipse is

x2

a2
+

y2

b2
= 1.

Then substitute x = r cos θ and y = r sin θ to convert this equation to polar coordinates. It turns out that

1
2
r2 =

a2b2

a2 + b2 + (b2 − a2) cos 2θ
.

The area of the ellipse is

A = 4
∫ π/2

0

1
2
r2 dθ.

The substitution φ = 2θ then yields

A = 2
∫ π

φ=0

a2b2

(a2 + b2) + (b2 − a2) cosφ
dφ.

Then the substitution (see the discussion following Miscellaneous Problem 134 of Chapter 7)

u = tan
φ

2
: φ = 2 arctanu,

dφ =
2

1 + u2
du, cosφ =

1− u2

1 + u2

and the observation that u = 0 when φ = 0 and that u → +∞ as φ → π− leads to the improper (but
convergent!) integral
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A = 2
∫ ∞

0

a2b2

(a2 + b2) + (b2 − a2) · 1− u2

1 + u2

· 2
1 + u2

du

= 2
∫ ∞

0

2a2b2

(a2 + b2) + (b2 − a2)(1− u2)
du = 4a2b2

∫ ∞

0

1
2b2 + 2a2u2

du

= 2a2

∫ ∞

0

1

1 +
(au

b

)2 du = 2a2 ·
[
b

a
arctan

(au

b

)]∞

0

= 2ab · π
2

= πab.

Here’s an alternative solution (C.H.E.) that uses the standard polar form of the equation of an ellipse
as presented in the final subsection of Section 9.6.

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

We begin with the ellipse with semiaxes a and b < a, eccentricity e = c/a, and polar equation

r =
pe

1− e cos θ
.

Then Eq. (29) gives pe = a(1− e2), so the area of the ellipse is

A = 2
∫ π

θ=0

1
2
r2 dθ = a2(1− e2)2I where I =

∫ π

0

1
(1− e cos θ)2

dθ.

The substitution u = tan(θ/2) mentioned in the previous solution now gives (after a bit of simplification)

I =
∫ ∞

0

2(1 + u2)
[(1− e) + (1 + e)u2 ]2

du =
∫ ∞

0

2(1 + u2)
(B + Cu2)2

du

where B = 1− e and C = 1 + e. A simple partial-fractions expansion yields

I =
2(C −B)

C
I2 +

2
C

I1 where In =
∫ ∞

0

1
(B + Cu2)n

du.

Then integration of I1 by parts with

p =
1

B + Cu2
and dq = du

gives

I1 =
[

u

B + Cu2

]∞

0

+
∫ ∞

0

2Cu2

(B + Cu2)2
du (the first term vanishes);

I1 = 2
∫ ∞

0

B + Cu2

(B + Cu2)2
du −

∫ ∞

0

2B
(B + Cu2)2

du = 2I1 − 2BI2.

It follows that I2 =
I1
2B

, so
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x

y

A1

A2

P
Q

R

°60

I =
2(C −B)

C
· I

2B
+

2
C

I1 =
(

1
B

+
1
C

)
I1 =

(
1
B

+
1
C

) ∫ ∞

0

1
B + Cu2

du.

With k =

√
B

C
we get

I =
1
C

(
1
B

+
1
C

) ∫ ∞

0

1
k2 + u2

du =
1
C

(
1
B

+
1
C

)
·
[

1
k

tan−1 u

k

]∞

0

=
1
C

(
1
B

+
1
C

)
· π

2
·
√

C

B
=

1√
BC

·
(

1
B

+
1
C

)
· π

2

=
1√

1− e2
·
(

1
1− e

+
1

1 + e

)
· π

2
=

π

(1− e2)3/2
.

Finally, we find that the area of the ellipse is

A = a2(1− e2)2I = a2(1− e2)2 · π

(1− e2)3/2

= πa2
√

1− e2 = πa2

√
1−

( c

a

)2
= πa ·

√
a2 − c2 = πab,

as desired.

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

See also Carl E. Linderhold’s book Mathematics Made Difficult (New York: World Publishing, 1971),
pp. 76–77, for a two-page proof that 2 is a prime number (it involves the phrase “maximal ideal”).

C09S06.096: See the next figure for the meanings of the various symbols. Note that A1 is the area swept
out by the radius vector to the comet as it moves from P to Q and that A2 is the area swept out in moving
from Q to R. Because

T

A2
=

15
A1

, we see that T =
15A2

A1
.

Next,
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A1 =
1
2

∫ π/2

π/3

1
(1− cos θ)2

dθ.

The substitution u = tan(θ/2) (see the solution of Problem 95) transforms this integral into

A1 =
1
2

∫ 1

1/
√

3

1 + u2

4u4
du =

1
6

(
3
√

3 − 2
)
.

The same substitution yields

A2 =
1
2

∫ π

π/2

1
(1− cos θ)2

dθ =
1
3
.

It now follows that T =
30
23

(
3
√

3 + 2
)
≈ 9.3863 days.
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Chapter 9 Miscellaneous Problems

C09S0M.001: Completing the square yields (x− 1)2 + (y − 1)2 = 4, so this conic section is a circle with
center C(1, 1) and radius 2. Its graph is next.

C09S0M.002: Completing the square in both variables yields

x2 − x +
1
4

+ y2 − y +
1
4

=
1
2
; that is,

(
x− 1

2

)2

+
(
y − 1

2

)2

=
1
2
.

Therefore this conic section is the circle with center C
(

1
2 ,

1
2

)
and radius 1

2

√
2 . Its graph is next.

C09S0M.003: Completing the square in both variables yields

x2 − 6x + 9 + y2 + 2y + 1 = 1; that is, (x− 3)2 + (y + 1)2 = 1.
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Therefore this conic section is the circle with center C(3, −1) and radius 1. Its graph is next.

C09S0M.004: Given: y2 = 4(x + y). Then y2 − 4y + 4 = 4x + 4; it follows that (y − 2)2 = 4(x + 1). So
the graph of this conic section is a parabola. It has directrix x = −2, axis y = 2, vertex at (−1, 2), focus at
(0, 2), and it opens to the right. Its graph is next.

C09S0M.005: Completing the square in x yields

x2 − 8x + 16 = −2y − 4; that is, (x− 4)2 = −2(y + 2).

Thus this conic section is a parabola with vertex V (4, −2), vertical axis with equation x = 4, focus at
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(
4, − 5

2

)
, and opening downward. Its graph is next.

C09S0M.006: The equation can be written in the form (x− 1)2 + 2(y + 2)2 = 1, and therefore this conic
section is an ellipse with center (1, −2), major axis horizontal of length 2, and minor axis of length

√
2 . It

has vertices at (2, −2),
(
1, −2± 1

2

√
2

)
, and (2, −2); its foci are at

(
1± 1

2

√
2 , −2

)
. Its graph is next.

C09S0M.007: Given: 9x2 + 4y2 = 36x. Complete the square in x as follows:

9(x2 − 4x) + 4y2 = 0; 9(x2 − 4x + 4) + 4y2 = 36;
(
x− 2

2

)2

+
(y

3

)2
= 1.

Hence this conic section is an ellipse with center C(2, 0), vertical major axis of length 6, minor axis of length

3
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4, foci at
(
2, ±
√

5
)
, and vertices at (0, 0), (4, 0), (2, 3), and (2, −3). Its graph is next.

C09S0M.008: The given equation can be written in the form (y − 1)2 − (x − 1)2 = 1. Therefore this
conic section is a hyperbola with center (1, 1), foci at the points

(
1, 1−

√
2

)
and

(
1, 1 +

√
2

)
, vertices at

(1, 2) and (1, 0), vertical transverse axis of length 2, eccentricity e =
√

2 , directrices y = 1 ± 1
2

√
2 , and

asymptotes y = x and y = x + 2. Its graph is next.

C09S0M.009: Given y2 − 2x2 = 4x + 2y + 3, complete the square in both variables as follows:

y2 − 2y − 2x2 − 4x = 3; y2 − 2y − 2(x2 + 2x) = 3;

y2 − 2y + 1− 2(x2 + 2x + 1) = 2;
(y − 1)2

2
− (x + 1)2 = 1.

This conic section is a hyperbola with center C(−1, 1), vertical transverse axis of length 2
√

2 , a =
√

2 ,

4
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b = 1, c =
√

3 , foci F
(
−1, 1±

√
3

)
, and vertices V

(
−1, 1±

√
2

)
. Its graph is next.

C09S0M.010: The given equation can be written in the form

(
y − 1

2

)2

−
(
x + 1

3

)2

= 1.

Therefore this conic section is a hyperbola with center C(−1, 1). Because c =
√

13 , the foci are at the
points

(
−1, 1±

√
13

)
. The vertices are at (−1, 3) and (−1, −1). The transverse is vertical, of length 4, the

eccentricity is 1
2

√
13 , the directrices are y = 1 ± 4

13

√
13 , and the asymptotes have equations 3y = 2x + 5

and 3y = −2x + 1. The graph is next.

C09S0M.011: Complete the square in each variable:

x2 + 2y2 = 4x + 4y − 12; x2 − 4x + 2y2 − 4y = −12;

x2 − 4x + 4 + 2(y2 − 2y + 1) = −6; (x− 2)2 + 2(y − 1)2 < 0.

Thus there are no points on the graph of the given equation.

C09S0M.012: First complete the square:

y2 − 6y + 4x + 5 = 0; y2 − 6y + 9 + 4x = 4; (y − 3)2 = −4(x− 1).
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Hence this conic section is a parabola opening to the left with vertex at (1, 3) and focus at (0, 3). Its graph
is next.

C09S0M.013: The given equation can be written in the form

(x− 1)2

4
− y2

9
= 1,

so this conic section is a hyperbola with center at (1, 0), horizontal transverse axis of length 4, foci at(
1±
√

13 , 0
)
, and vertices at (3, 0) and (−1, 0). Its graph is next.

C09S0M.014: If (x2−4)(y2−1) = 0, then either x2 = 4 or y2 = 1. Therefore the graph consists of the two
horizontal lines y = ±1 together with the two vertical lines x = ±2. The given equation is not the equation
of a conic section.

C09S0M.015: The equation can be written in the form (x − 4)2 + (y − 1)2 = 1; this conic section is the
circle with center (4, 1) and radius 1. Its graph is next.

C09S0M.016: The given equation can be written in the form

6
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(x− 1)2 +
(y − 2)2

1
4

= 1,

so this conic section is an ellipse with center (1, 2), horizontal major axis of length 2, and vertical minor axis
of length 1. It has vertices at (0, 2),

(
1, 5

2

)
, (2, 2), and

(
1, 3

2

)
and its foci are located at

(
1± 1

2

√
3 , 2

)
. Its

graph is next.

C09S0M.017: The given equation can be written in the form

[
(x− 2)2 + (y − 2)2

]
· (x + y)2 = 0,

and therefore either (x − 2)2 + (y − 2)2 = 0 or (x + y)2 = 0. In the former case the only way for the sum
of two squares to be zero is if each is zero, so only (x, y) = (2, 2) satisfies the equation. In the latter case
(x + y)2 = 0 implies that y = −x. So the graph consists of the line y = −x together with the isolated point
(2, 2). It is not the graph of a conic section.

C09S0M.018: The given equation can be written in the form

x− 1 = (y + 2)2,

and this conic section is a parabola opening to the right with vertex at (1, −2) and focus at
(

5
4 , −2

)
. Its

graph is next.

C09S0M.019: Convert to Cartesian coordinates, then complete the square:

r = −2 cos θ; r2 = −2r cos θ;

x2 + y2 = −2x; x2 + 2x + 1 + y2 = 1;

(x + 1)2 + y2 = 1.
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This conic section is the circle with center C(−1, 0) and radius 1. Its graph is next.

C09S0M.020: Multiply both sides of the given equation by r to obtain r cos θ + r sin θ = 0; in Cartesian
coordinates, that’s x + y = 0. Therefore the graph is that of the straight line y = −x with slope −1 and
passing through the origin.

C09S0M.021: Given

r =
1

sin θ + cos θ
,

multiply each side of this equation by the denominator to obtain r sin θ − r cos θ = 1. In Cartesian coordi-
nates, that’s y = x+ 1. Hence the graph is the straight line through the point (0, 1) with slope 1. One does
obtain the entire graph because the denominator can take both positive and negative values arbitrarily close
to zero. We omit the graph to save space.

C09S0M.022: Given r sin2 θ = cos θ, multiply each side of this equation by r, then convert to Cartesian
coordinates: y2 = x. This conic section is a parabola with vertex at the origin, axis the x-axis, opening to
the right, with focus

(
1
4 , 0

)
and directrix the vertical line with equation x = − 1

4 . The graph is next.

C09S0M.023: Given r = 3 csc θ, rewrite this as r sin θ = 3, then convert to Cartesian coordinates: y = 3.
The graph is the horizontal line passing through the point (0, 3). All of the line is the graph because csc θ
takes on arbitrarily large values. We omit the graph to save space.

C09S0M.024: The graph of r = 2(cos θ−1) = −2+2 cos θ is a lovely cardioid, but it isn’t a conic section.

8
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Its graph is next.

C09S0M.025: The graph of the polar equation r2 = 4 cos θ is a pair of tangent ovals (not a conic section).
It’s shown next.

C09S0M.026: Given: rθ = 1; that is, r = 1/θ. This is a spiral; the part of the graph for θ > 0 is shown
next. The part of the graph for θ < 0 is the reflection of that graph around the y-axis. The spiral is not a
conic section.

C09S0M.027: The graph of the polar equation r = 3 − 2 sin θ is a limaçon (from the French word for

9
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shell-snail); it is not a conic section. The graph is next.

C09S0M.028: Convert to Cartesian coordinates:

r =
1

1 + cos θ
; r + r cos θ = 1; x2 + y2 = (1− x)2; y2 = −2x + 1.

Thus the graph is a conic section; it is the parabola with focus at (0, 0), directrix x = 1, and vertex
(
0, 1

2

)
.

It opens to the left and its axis is the x-axis.

C09S0M.029: Given r =
4

2 + cos θ
, convert to Cartesian coordinates:

2r + r cos θ = 4; 2r = 4− x;

4(x2 + y2) = x2 − 8x + 16; 3x2 + 4y2 + 8x = 16;

3
(
x2 +

8
3
x

)
+ 4y2 = 16; 3

(
x2 +

8
3
x +

16
9

)
+ 4y2 = 16 +

16
3

=
64
3

;

3
(
x +

4
3

)2

+ 4y2 =
64
3

;
9
64

(
x +

4
3

)2

+
3
16

y2 = 1.

Thus the graph is a conic section; it is the ellipse with center C
(
− 4

3 , 0
)
, a = 8

3 , and b = 4
3

√
3 . Its major

axis is horizontal and its eccentricity is e = 1
2 . Its vertices are located at (−4, 0),

(
0, ± 4

3

√
3

)
, and

(
4
3 , 0

)
;

its foci are at
(
− 8

3 , 0
)

and (0, 0). Its graph is next.

10
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C09S0M.030: Given r =
4

1− 2 cos θ
, convert to Cartesian coordinates:

r − 2r cos θ = 4; r = 2x + 4;

x2 + y2 = 4x2 + 16x + 16; y2 = 3x2 + 16x + 16.

This is a conic section; it is the equation of the hyperbola with one focus at (0, 0) and one directrix the
vertical line x = −2. Its center is

(
− 8

3 , 0
)
, the other focus is at

(
− 16

3 , 0
)
, the other directrix has equation

x = − 10
3 , and the vertices are at

(
− 4

3 , 0
)

and (−4, 0). It has a horizontal transverse axis of length 8
3 . Its

graph is next.

C09S0M.031: The region within both circles is shown shaded in the next figure. To find its area A, we
integrate from θ = 0 to θ = π/4 and double the result:

A =
∫ π/4

0

(2 sin θ)2 dθ =
[
2θ − sin 2θ

]π/4
0

=
π

2
− 1 =

π − 2
2
≈ 0.570796326795.

C09S0M.032: The graph of the polar equation r2 = 4 cos θ is shown next. To find the area A that it
encloses, we double the area of the oval on the right:

A =
∫ π/2

−π/2
4 cos θ dθ =

[
4 sin θ

]π/2
−π/2

= 4− (−4) = 8.

11



-2 -1 1 2

-1

-0.5

0.5

1

 

-4 -2 2 4

-4

-2

2

4

C09S0M.033: The circle and the limaçon are shown next. They cross where θ = α = 7π/6 and where
θ = β = 11π/6. To find the area A within the limaçon but outside the circle, we evaluate

A =
1
2

∫ β

α

[
(3− 2 sin θ)2 − 16

]
dθ =

1
2

∫ β

α

(4 sin2 θ − 12 sin θ − 7) dθ =
1
2

[
12 cos θ − sin 2θ − 5θ

]β
α

=
1
2

(
13
√

3
2
− 55π

6

)
− 1

2

(
− 13
√

3
2
− 35π

6

)
=

39
√

3 − 10π
6

≈ 6.022342493215.

C09S0M.034: The circle and the lemniscate are shown next. They cross at the points where sin θ = 0 and
where cos θ = sin θ. Thus we obtain the two solutions r = 0 and r =

√
2 , θ = π/4. The area of the small

region within the lemniscate and outside the circle in the first quadrant is

A1 =
1
2

∫ π/4

0

[
(2 sin 2θ)− (2 sin θ)2

]
dθ =

1
2

[
− cos 2θ − 2θ + sin 2θ

]π/4
0

=
1
2

(
− π

2
+ 1 + 1

)
=

4− π

4
≈ 0.214601837.

The area of the part of the lemniscate in the third quadrant is

A2 =
∫ π/2

0

sin 2θ =
[
− 1

2
cos 2θ

]π/2
0

=
1
2
−

(
− 1

2

)
= 1.

12
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Therefore the total area outside the circle but within the lemniscate is A1 + A2 = 1
4 (8− π) ≈ 1.214601837.

C09S0M.035: The circle and the four-leaved rose cross where θ is an odd integral multiple of π/8. To
find the area A within the rose and outside the circle, we multiple the area in the first quadrant by 4. Thus
with α = π/8 and β = 3π/8, we have

A = 2
∫ β

α

(−2 + 4 sin2 2θ) dθ =
∫ β

α

(−4 cos 4θ) dθ =
[
− sin 4θ

]β
α

= 1− (−1) = 2.

The circle and the rose are shown next.

C09S0M.036: The circle and the cardioid meet at the pole and where θ = ±π/3. The area outside the
cardioid but within the circle is, by symmetry,

A =
∫ π/3

0

[
9 cos2 θ − (1 + cos θ)2 ] dθ =

∫ π/3

0

(3− 2 cos θ + 4 cos 2θ) dθ

=
[
3θ − 2 sin θ + 2 sin 2θ

]π/3
0

= π − 0 = π ≈ 3.1415926535897932385.

13
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The circle and the cardioid are shown next.

C09S0M.037: The circle and the cardioid are shown next. They meet only at the pole. To find the area
A inside the cardioid but outside the circle, we simply find the area within the cardioid and subtract the
area of a circle of radius 1

2 .

A =
1
2

∫ 2π

0

(1 + cos θ)2 dθ − π

4
= −π

4
+

∫ 2π

0

2 cos4
θ

2
dθ

= −π

4
+

[
1
8

(6θ + 8 sin θ + sin 2θ)
]2π

0

= −π

4
+

3π
2

=
5π
4
≈ 3.926990816987.

C09S0M.038: The graph of the limaçon with polar equation r = 1−2 sin θ is shown following this solution.
The curve passes through the pole when θ = α = π/6 and again when θ = β = 5π/6. The area within the
smaller loop is

A1 =
1
2

∫ β

α

(1− 2 sin θ)2 dθ =
[

3
2
θ + 2 cos θ − 1

2
sin 2θ

]β
α

=
2π − 3

√
3

2
≈ 0.543516442236.

The area within the entire limaçon is

A2 =
1
2

∫ 13π/6

5π/6

(1− 2 sin θ)2 dθ =
[

3
2
θ + 2 cos θ − 1

2
sin 2θ

]13π/6

5π/6

=
4π + 3

√
3

2
.
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Therefore the area between the two loops is A = A2 −A1 = π + 3
√

3 ≈ 8.337745076296.

C09S0M.039: Elimination of the parameter yields the equation y = x + 2 of the straight line through
(0, 2) with slope 1. The graph consists of all points of this line because both 2t3 − 1 and 2t3 + 1 take on
arbitrarily large positive and negative values.

C09S0M.040: Because cosh2 t− sinh2 t = 1, elimination of the parameter yields the equation x2 − y2 = 1
of a hyperbola with center at (0, 0) and vertices at (±1, 0). But only the right branch of this parameter is
the graph of the parametric equations, because x = cosh t � 1 for all t. That graph is next.

C09S0M.041: Because (x− 2)2 + (y− 1)2 = cos2 t+ sin2 t = 1, the graph is the circle with center C(2, 1)
and radius 1. The entire circle is obtained as the graph of the parametric equations because cos t and sin t

take on all values between −1 and +1 as t ranges from 0 to 2π. The graph is next.

C09S0M.042: Note that neither x nor y is ever negative. Thus
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√
x +

√
y = cos2 t + sin2 t = 1, so that y =

(
1−
√
x

)2
.

Also, because x � 1 and y � 1 for all t, the graph terminates at the two points (1, 0) and (0, 1), as indicated
in the following figure. This graph is part of a parabola; see the solution of Problem 75 of Section 9.6 for
the reason.

C09S0M.043: Because x− 1 = t2 = y2/3, we can write the equation in the form y2 = (x− 1)3. This curve
is called by some a “semicubical parabola” even though it’s not a parabola. Its graph is next.

C09S0M.044: By the chain rule,

dy

dx
=

dy/dt

dx/dt
=

3t2

2t
=

3t
2
.

When t = 1, we have x = 1, y = 1, and dy/dx = 3
2 . So an equation of the tangent line is y − 1 = 3

2 (x− 1);
that is, 2y + 1 = 3x.

C09S0M.045: By the chain rule,

dy

dx
=

dy/dt

dx/dt
=

3 cos t
−4 sin t

= − 4
3

tan t.

When t = π/4, we have x = 3
2

√
2 , y = 2

√
2 , and dy/dx = − 4

3 . Hence an equation of the tangent line is

y − 2
√

2 = − 4
3

(
x− 3

2

√
2

)
; that is, y = − 4

3

(
x− 3

√
2

)
.

C09S0M.046: By the chain rule,
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dy

dx
=

dy/dt

dx/dt
=
−e−t
et

= −e−2t.

When t = 0, we have x = 1, y = 1, and dy/dx = −1. Therefore an equation of the tangent line is
y − 1 = (−1)(x− 1); that is, x + y = 2.

C09S0M.047: Given the polar equation r = θ, we have x(θ) = θ cos θ and y(θ) = θ sin θ. Therefore

dy

dx
=

dy/dθ

dx/dθ
=

θ cos θ + sin θ

cos θ − θ sin θ
.

Thus when θ = π/2, we have x = 0, y = π/2, and dy/dx = −2/π. So an equation of the tangent line is

y = − 2
π
x +

π

2
; that is, 4x + 2πy = π2.

C09S0M.048: Given the cardioid with the polar equation r = 1 + sin θ, we have x(θ) = (1 + sin θ) cos θ
and y(θ) = (1 + sin θ) sin θ. Therefore, by the chain rule,

dy

dx
=

dy/dθ

dx/dθ
=

cos θ + 2 sin θ cos θ
cos2 θ − sin2 θ − sin θ

.

Thus when θ = π/3, we have

x =
1
2

(
1 +

1
2

√
3

)
, y =

√
3
2

(
1 +

1
2

√
3

)
, and

dy

dx
= −1.

Therefore an equation of the tangent line is y =
1
4

(
5 + 3

√
3 − 4x

)
. See the following figure.

C09S0M.049: The area is

∫ 2

t=−1

y dx =
[

2
3

(9t + t3)
]2

−1

=
52
3
−

(
− 20

3

)
= 24.

C09S0M.050: The area is A =
∫ 10

t=0

y dx =
[
t

]10

0

= 10.
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C09S0M.051: The area is A =
∫ π/2

t=0

y dx =
∫ π/2

0

12 cos2 t dt =
[
6t+3 sin 2t

]π/2
0

= 3π ≈ 9.424777960769.

C09S0M.052: The area is

A =
∫ 1

0

sinh2 t dt =
1
4

∫ 1

0

(e2t − 2 + e−2t) dt =
1
4

[
1
2
e2t − 2t− 1

2
e−2t

]1

0

=
e4 − 4e2 − 1

8e2
≈ 0.4067151020.

C09S0M.053: The arc length is

L =
∫ 1

0

t(4 + 9t2)1/2 dt =
[

1
27

(4 + 9t2)3/2
]1

0

=
13
√

13
27

− 8
27

=
13
√

13 − 8
27

≈ 1.439709873372.

C09S0M.054: Here, dx/dt = − tan t and dy/dt = 1. So

ds =
√

1 + tan2 t dt = sec t dt

(not − sec t, because sec t > 0 if 0 � t � π/4). So the arc length is

L =
∫ π/4

0

sec t dt =
[

ln(sec t + tan t)
]π/4
0

= ln
(
1 +
√

2
)
≈ 0.881373587020.

C09S0M.055: In this problem we have

(
dx

dt

)2

+
(
dy

dt

)2

= 4 +
(

3t2 − 1
3t2

)2

= 9t4 + 2 +
1

9t4
=

(
3t2 +

1
3t2

)2

.

Therefore the arc length is

∫ 2

1

(
3t2 +

1
3t2

)
dt =

[
t3 − 1

3t

]2

1

=
47
6
− 2

3
=

43
6
≈ 7.166666666667.

C09S0M.056: Given the polar equation r(θ) = sin θ, we have

r2 +
(
dr

dθ

)2

= sin2 θ + cos2 θ = 1,

so that ds = 1 dθ. Therefore the arc length is L =
∫ π

0

1 dθ = π.

C09S0M.057: Given: the polar equation r = sin2(θ/3), 0 � θ � π. Then

r2 +
(
dr

dθ

)2

= sin4 θ

3
+

4
9

sin2 θ

3
cos2

θ

3
,

and therefore

√
r2 + (dr/dθ)2 =

(
sin

θ

3

)(
sin2 θ

3
+

4
9

cos2
θ

3

)1/2

=
1
3

(
sin

θ

3

)(
9 sin2 θ

3
+ 4 cos2

θ

3

)1/2

=
1
3

(
sin

θ

3

)(
9 sin2 θ

3
+ 9 cos2

θ

3
− 5 cos2

θ

3

)1/2

=
1
3

(
sin

θ

3

)(
9− 5 cos2

θ

3

)1/2

.
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So the length of the graph is

L =
∫ π

0

1
3

(
sin

θ

3

)(
9− 5 cos2

θ

3

)1/2

dθ.

Let

u = cos
θ

3
; then du = − 1

3
sin

θ

3
dθ.

This substitution yields

L =
∫ 1/2

u=1

−(9− 5u2)1/2 du =
∫ 1

1/2

√
9− 5u2 du =

√
5

∫ 1

1/2

(
9
5
− u2

)1/2

du.

Then integral formula 54 of the endpapers, with a = 3/
√

5 = 3
5

√
5 , yields

L =
√

5

[
u

2

(
9
5
− u2

)1/2

+
9
10

arcsin
u
√

5
3

]1

1/2

=
√

5

[
1
2

(
9
5
− 1

)1/2

+
9
10

arcsin
√

5
3
− 1

4

(
9
5
− 1

4

)1/2

− 9
10

arcsin
√

5
6

]

=
1
2
√

9− 5 +
9
√

5
10

arcsin
√

5
3
− 1

4

√
9− 5

4
− 9
√

5
10

arcsin
√

5
6

= 1 +
9
√

5
10

arcsin
√

5
3
−
√

31
8
− 9
√

5
10

arcsin
√

5
6
≈ 1.2281021668591117.

C09S0M.058: First, dx/dt = 2t and dy/dt = 3. Hence ds =
√

9 + 4t2 dt. So the surface area is

A =
∫ 2

t=0

2πy ds =
∫ 2

0

6πt
√

9 + 4t2 dt =
[ π

2
(9 + 4t2)3/2

]2

0
= 49π ≈ 153.9380400259.

C09S0M.059: First,

[(
dx

dt

)2

+
(
dy

dt

)2
]1/2

=

√
(1 + t5)2

t6
=

1 + t5

t3
.

Therefore the surface area of revolution is

A =
∫ 4

t=1

2πy ds =
π

3

∫ 4

1

(
2t5 + 5 + 3t−5

)
dt = π

[
1
9
t6 +

5
3
t− 1

4
t−4

]4

1

=
4255735π

9216
− 55π

36
=

471295π
1024

≈ 1445.914950853127.

C09S0M.060: Given the polar equation r = cos θ, we have x(θ) = cos2 θ and y(θ) = sin θ cos θ. Therefore
√

[x′(θ)]2 + [y′(θ)]2 =
√

4 cos2 θ sin2 θ + (cos2 θ − sin2 θ)2 = 1.

Consequently the surface area of revolution is

19



A =
∫ π/2

θ=0

2πy ds =
[
− π cos2 θ

]π/2
0

= 0− (−π) = π.

C09S0M.061: Given the polar equation r = exp(θ/2), we have

x(θ) = exp(θ/2) cos θ and y(θ) = exp(θ/2) sin θ.

Therefore

[x′(θ)]2 + [y′(θ)]2 =
(

1
2

exp(θ/2) cos θ − exp(θ/2) sin θ

)2

+
(

1
2

exp(θ/2) sin θ + exp(θ/2) cos θ
)2

=
1
4

exp(θ) cos2 θ − exp(θ) cos θ sin θ + exp(θ) sin2 θ + exp(θ) cos2 θ + exp(θ) cos θ sin θ +
1
4

exp(θ) sin2 θ

=
5
4

exp(θ) cos2 θ +
5
4

exp(θ) sin2 θ =
5
4

exp(θ).

Therefore the surface area of revolution is

A =
∫ π

0

2πy(θ) ·
√

5
2

exp(θ/2) dθ = π
√

5
∫ π

0

eθ sin θ dθ =
π
√

5
2

[
(sin θ − cos θ)eθ

]π
0

=
πeπ
√

5
2

−
(
−π
√

5
2

)
=

π(1 + eπ)
√

5
2

≈ 84.791946612137.

See Example 5 in Section 7.3 for how to find the antiderivative using integration by parts.

C09S0M.062: Given x(t) = et cos t and y(t) = et sin t, we have

[x′(t)]2 + [y′(t)]2 = (et cos t− et sin t)2 + (et cos t + et sin t)2

= e2t cos2 t− 2e2t sin t cos t + e2t sin2 t + e2t cos2 t + 2e2t sin t cos t + e2t sin2 t

= 2e2t cos2 t + 2e2t sin2 t = 2e2t.

Therefore ds = et
√

2 dt. So the surface area of revolution is

A =
∫ π/2

t=0

2πy(t) ds = 2π
√

2
∫ π/2

0

e2t sin t dt =
2π
√

2
5

[
(2 sin t− cos t)e2t

]π/2
0

=
4πeπ

√
2

5
−

(
−2π

√
2

5

)
=

2π(1 + 2eπ)
√

2
5

≈ 84.026263955537.

See Example 5 of Section 7.3 for the technique of finding the antiderivative using integration by parts.

C09S0M.063: Suppose that the circle rolls to the right through a central angle θ. Then its center is
at the point (aθ, a). So the point (x, y) that generates the trochoid is located where x = aθ − b sin θ and
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y = a− b cos θ. This is easy to see from the small right triangle in the rolling circle shown next.

One cycle of a trochoid with a = 3 and b = 1 is shown next.

C09S0M.064: The circle of radius a has its center at the origin O; the smaller circle of radius b rolls around
the circumference of the larger circle, beginning with its center on the positive x-axis. Let P be the point
on the circumference of the smaller circle initially at location (a, 0). Let (x, y) be the locus of P . Suppose
that the extended radius from the larger circle through the center of the small circle make the angle θ with
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θ

φ

O

Q

Pa

b

φ

b

α

(x,y)

the positive x-axis, as in the following figure.

Let the angle that the radius QP of the small circle makes with the radius of the large circle be φ. Then
the coordinates of Q are x = (a + b) cos θ, y = (a + b) sin θ. Let α be the angle between this radius and the
vertical, as in the following figure.

From this figure we see that

θ + φ + α =
π

2
and bφ = aθ, so that φ =

a

b
θ.

Hence

α =
π

2
− θ − φ =

π

2
− θ − a

b
θ =

π

2
− a + b

b
θ.

Thus the coordinates of P are
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x = (a + b) cos θ − b sinα = (a + b) cos θ − b sin
(
π

2
− a + b

b
θ

)
= (a + b) cos θ − b cos

(
a + b

b
θ

)
and

y = (a + b) sin θ − b cosα = (a + b) sin θ − b cos
(
π

2
− a + b

b
θ

)
= (a + b) sin θ − b sin

(
a + b

b
θ

)
.

C09S0M.065: If b = a in the parametric equations of the epicycloid of Problem 64, then its equations
take the form

x = 2a cos θ − a cos 2θ,

y = 2a sin θ − a sin 2θ.

Shift this epicycloid a units to the left. Its equations will then be

x = 2a cos θ − a cos 2θ − a,

y = 2a sin θ − a sin 2θ.

Then substitution yields

r2 = x2 + y2 = a2(2 cos θ − cos2 θ + sin2 θ − 1)2 + a2(2 sin θ − 2 sin θ cos θ)2

= a2(2 cos θ − 2 cos2 θ)2 + a2(2 sin θ − 2 sin θ cos θ)2

= a2(4 cos2 θ − 8 cos3 θ + 4 cos4 θ + 4 sin2 θ − 8 sin2 θ cos θ + 4 sin2 θ cos2 θ)

= a2
[
(4 cos2 θ)(1− 2 cos θ + cos2θ) + (4 sin2 θ)(1− 2 cos θ + cos2 θ)

]

= 4a2(cos2 θ + sin2 θ)(1− cos θ)2 = 4a2(1− cos θ)2.

Thus the translated epicycloid has polar equation r = 2a(1− cos θ), and therefore it is a cycloid.

C09S0M.066: See Fig. 9.3.15 of the text. With r(t) = a
√

2 cos 2θ , we have parametric equations

x(θ) = a(2 cos 2θ)1/2 cos θ, y(θ) = a(2 cos 2θ)1/2 sin θ

for the part of the lemniscate that lies in the first quadrant. Then, as in the solution of Problem 32 in Section
9.5, we find that ds = a

√
2 sec 2θ dθ. So the area generated by rotation of that quarter of the lemniscate

around the x-axis is

∫ π/4

0

2πy(θ) · a
√

2 sec 2θ dθ = 4πa2

∫ π/4

0

sin θ dθ = 4πa2

[
− cos θ

]π/4
0

= 2πa2
(
2−
√

2
)
.

Therefore the surface area generated by rotating the entire lemniscate around the x-axis is double that:
A = 4πa2

(
2−
√

2
)
≈ (7.361209476085)a2.

C09S0M.067: Using the method of cylindrical shells, we find the volume generated to be

V =
∫ 2π

θ=0

2πx(θ)y(θ) dx = 2πa3

∫ 2π

0

(1− cos θ)2(θ − sin θ) dθ
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=
1
12

πa3

[
18θ2 − 18 cos θ − 9 cos 2θ + 2 cos 3θ − 48θ sin θ + 6θ sin 2θ

]2π

0

=
1
12

πa3(72π2 − 25 + 25) = 6π3a3 ≈ (186.037660081799)a3.

The solution of Problem 3 in Section 7.3 illustrates how to use integration by parts for the antiderivatives
of θ cos θ and θ cos 2θ.

C09S0M.068: We begin with the parametric equations

x(t) = (a− b) cos t + b cos
(
a− b

b
t

)
,

y(t) = (a− b) sin t− b sin
(
a− b

b
t

)
.

Then

[
x′(t)

]2 +
[
y′(t)

]2 =
[
(a− b) cos t− (a− b) cos

(
a− b

b
t

)]2

+
[
(b− a) sin t− (a− b) sin

(
a− b

b
t

)]2

= 4(a− b)2 sin2

(
at

2b

)
,

so that the arc-length element is

ds = 2(a− b) sin
(
at

2b

)
dt.

Therefore the arc length of one arch of the hypocycloid is

L =
∫ 2πb/a

t=0

ds =
[

4(b− a)b
a

cos
(
at

2b

)]2πb/a

0

=
4(a− b)b

a
−

(
− 4(a− b)b

a

)
=

8(a− b)b
a

.

C09S0M.069: If the point C were on the x-axis, then a Cartesian equation for the circle would be

(x− p)2 + y2 = p2; that is, x2 − 2px + y2 = 0.

Its polar equation is therefore r2 = 2px = 2pr cos θ; that is, r = 2p cos θ. Because the radius to C makes
the angle α with the x-axis, the actual equation we seek is therefore r = 2p cos(θ − α).

C09S0M.070: Let P (x, y) be a point of the parabola with focus (0, 0) and directrix x + y − 4 = 0. By
Miscellaneous Problem 93 of Chapter 3, the distance from P to the directrix is

|x + y − 4|√
2

and its distance from the focus is
√

x2 + y2 . Set them equal and square both sides of the equation to obtain

x2 + y2 =
(x + y − 4)2

2
;

2x2 + 2y2 = x2 − 2xy + y2 − 8x− 8y + 16;

x2 − 2xy + y2 + 8x + 8y = 16.
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C09S0M.071: Assume that a > b > 0. Parametrize the ellipse thus:

x = a cos t, y = b sin t, 0 � t � 2π.

The diameter with endpoints (x, y) and (−x, −y) has length

2
√

x2 + y2 = 2
√

a2 cos2 t + b2 sin2 t

where, without loss of generality, 0 � t � π/2. Thus our goal is to maximize and minimize the function
f(t) = a2 cos2 t + b2 sin2 t on that domain. Now

f ′(t) = −2a2 sin t cos t + 2b2 sin t cos t = 2(b2 − a2) sin t cos t.

Because f ′(t) < 0 if 0 < t < π/2 and f is continuous on its domain, the maximum value of f occurs when
t = 0 and its minimum when t = π/2. Therefore the diameter of this ellipse of maximum length is its major
axis, of length 2a, and its diameter of minimum length is its minor axis, of length 2b.

C09S0M.072: Implicit differentiation of the equation of the ellipse with respect to x yields

2x
a2

+
2y
b2
· dy
dx

= 0;

dy

dx
= − 2x

a2
· b

2

2y
= − b2x

a2y

if y �= 0. Therefore dy/dx = 0 when x = 0 and y = ±b. So the line tangent to the ellipse is horizontal at
the two vertices (0, ±b). Now work with dx/dy to show that the line tangent to the ellipse is vertical at the
two vertices (±a, 0). Therefore the ellipse is normal to the coordinate axes where it crosses them.

C09S0M.073: The parabola passes through (0, 0), (b/2, h) (its vertex), and (b, 0). Hence its equation
has the form

y − h = c

(
x− b

2

)2

.

Because (0, 0) satisfies this equation, we find that

−h = c

(
− b

2

)2

, so that c = −4h
b2

.

Therefore the desired equation of the parabola is y =
4hx(b− x)

b2
.

C09S0M.074: We assume that a > b; this is implied by the information that one focus is at (c, 0). Assume
that a, b, and c are all positive.

Part (a): We are to maximize and minimize x2 + y2 given the condition

x2

a2
+

y2

b2
= 1. (1)

Thus we maximize and minimize

f(x) = x2 + b2 − b2x2

a2
, −a � x � a.
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Then

f ′(x) = 2x− 2b2x
a2

;

f ′(x) = 0 when x =
b2x

a2
;

a2x = b2x, and so x = 0.

Because f is continuous on [−a, a], it has both a global maximum value and a global minimum value there.
It follows immediately that the points of the ellipse farthest from its center are (±a, 0) and those closest to
its center are (0, ±b).

Part (b): Now we want to maximize and minimize the expression (x−c)2+y2 given the condition in Eq. (1).
Thus we maximize and minimize the function

g(x) = (x− c)2 + b2 − b2x2

a2
, −a � x � a.

Now

g′(x) = 2(x− c)− 2b2x
a2

;

g′(x) = 0 when x− c =
b2x

a2
;

a2x− a2c = b2x;

(a2 − b2)x = a2c;

c2x = a2c;

x =
a2

c
.

But a/c > 1, so that a2/c > a, and therefore the critical point a2/c is not in the domain of g. But g is
continuous on its domain [−a, a], and therefore its maximum must occur at one endpoint and its minimum
at the other. Because f(a) = (a− c)2 < (a+ c)2 = f(−a), the point of the ellipse closest to its focus is (a, 0)
and the point farthest from its focus is (−a, 0).

C09S0M.075: Let θ be the angle that the segment QR makes with the x-axis (see the figure that follows
this solution). Then the coordinates of the point P (x, y) satisfy the equations

x = −a cos θ and y = b sin θ

(the figure shows only the case in which P is in the second quadrant; you should check the other three cases
for yourself). It now follows that

(x

a

)2
+

(y

b

)2
= cos2 θ + sin2 θ = 1,
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and therefore the locus of P is an ellipse. All points of the this ellipse are obtained as θ varies from 0 to 2π.

C09S0M.076: Please refer to the following figure. We introduce a uv-coordinate system; in this rest of
this solution, all coordinates will be uv-coordinates.

Choose the u- and v-axes so that F1 = F1(−c, 0) and F2 = F2(c, 0) where c > 0. Suppose that P = P (u, v).
Then |PF1 | = 2a + |PF2 |, and therefore

√
(u + c)2 + v2 = 2a +

√
(u− c)2 + v2 .

Consequently

(u + c)2 + v2 = 4a2 + 4a
√

(u− c)2 + v2 + (u− c)2 + v2;

4uc− 4a2 = 4a
√

(u− c)2 + v2 ;

uc− a2 = a
√

(u− c)2 + v2 ;

u2c2 − 2a2uc + a4 = a2u2 − 2a2uc + a2c2 + a2v2;

u2c2 − a2u2 − a2v2 = a2c2 − a4;

u2(c2 − a2)− a2v2 = a2(c2 − a2).
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y2 = 4px

Now |F1F2 | > 2a, so c > a. Thus c2 − a2 = b2 for some b > 0. Hence

b2u2 − a2v2 = a2b2; that is,

u2

a2
− v2

b2
= 1.

Therefore the locus of P (u, v) is a hyperbola with vertices (±a, 0) and foci (±c, 0) (because c2 = a2 + b2),
and so the hyperbola has foci F1 and F2. Finally, if a circle with radius r2 is centered at F2 and another
with radius r1 is centered at F1, with r2 and r1 satisfying the equation r2 = 2a+ r1, then the two circles will
intersect at a point on the hyperbola. You may thereby construct by straightedge-and-compass methods as
many points lying on the hyperbola as you please.

C09S0M.077: Please refer to the figure that follows this solution. Suppose that

Q1 = Q1

(
a2

4p
, a

)
and that Q2 = Q2

(
b2

4p
, b

)
.

Then the slope of Q1Q2 will be

m =
4p(b− a)
b2 − a2

=
4p

b + a
.

Implicit differentiation of the parabola’s equation with respect to x yields

2y
dy

dx
= 4p, so that

dy

dx
=

2p
y
.

So we can find the y-coordinate of P (and thus of R) by solving

2p
y

=
4p

b + a
: y =

a + b

2
.

It now follows that the two right triangles with sides Q1R and RQ2 are congruent, and therefore R is the
midpoint of the segment Q1Q2.

C09S0M.078: Let P = P (x, y); we have F1(−a, 0), F2(a, 0), and |PF1 | · |PF2 | = a2. Then
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√
(x + a)2 + y2

√
(x− a)2 + y2 = a2;

(x2 + 2ax + a2 + y2)(x2 − 2ax + a2 + y2) = a4;

x4 − 2ax3 + a2x2 + x2y2 + 2ax3 − 4a2x2 + 2a3x + 2axy2

+ a2x2 − 2a3x + a4 + a2y2 + x2y2 − 2axy2 + a2y2 + y4 = a4;

x4 − 2a2x2 + 2a2y2 + 2x2y2 + y4 = 0;

x4 + 2x2y2 + y4 = 2a2(x2 − y2);

(x2 + y2)2 = 2a2(x2 − y2);

r4 = 2a2(r2 cos2 θ − r2 sin2 θ) = 2a2r2 cos 2θ;

r2 = 2a2 cos 2θ.

This is an equation of a lemniscate. With a =
√

2 , it is the one shown in the text in Fig. 9.3.15.

C09S0M.079: First we put the given equation in standard form:

3x2 − y2 + 12x + 9 = 0; 3x2 + 12x− y2 = −9;

3(x2 + 4x + 4)− y2 = 3; 3(x + 2)2 − y2 = 3;

(x + 2)2 − y2

3
= 1.

With the usual meaning of the notation, this is a hyperbola with a2 = 1 and b2 = 3. By Eq. (20) of Section
9.6, b2 = a2(e2 − 1), we see that 3 = e2 − 1, so that e2 = 4. Therefore this hyperbola has eccentricity e = 2.

C09S0M.080: When r = 0, sec θ = 2 cos θ, so θ = ±π/4. The loop of the strophoid is obtained when θ

ranges between these two values, so the area of the loop is

A =
1
2

∫ π/4

−π/4
(sec2 θ − 4 cos θ sec θ + 4 cos2 θ) dθ =

∫ π/4

0

(sec2 θ − 4 + 4 cos2 θ) dθ

=
[

tan θ − 2θ + sin 2θ
]π/4
0

=
4− π

2
≈ 0.4292036732.

C09S0M.081: First we convert the equation of the folium to polar coordinates:

x3 + y3 = 3xy; r3 cos3 θ + r3 sin3 θ = 3r2 sin θ cos θ;

r cos3 θ + r sin3 θ = 3 sin θ cos θ; r =
3 sin θ cos θ

sin3 θ + cos3 θ
;

r =
3 sec θ tan θ

1 + tan3 θ
.

To obtain the area of the loop of the folium, we evaluate
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A =
1
2

∫ π/2

0

r2 dθ = 9
∫ π/4

0

sec2 θ tan2 θ

(1 + tan3 θ)2
dθ.

The substitution u = tan θ, du = sec2 θ dθ transforms this integral into

A = 3
∫ 1

0

3u2

(1 + u3)2
du = 3

[
− 1

1 + u3

]1

0

= 3
(

1− 1
2

)
=

3
2
.

C09S0M.082: In this problem the loop has polar equation

r =
5 cos2 θ sin2 θ

cos5 θ + sin5 θ
=

5 sec θ tan2 θ

1 + tan5 θ
for 0 � θ � π/2.

Therefore the area it bounds is

A =
25
2

∫ π/2

0

sec2 θ tan4 θ

(1 + tan5 θ)2
dθ = 25

∫ π/4

0

sec2 θ tan4 θ

(1 + tan5 θ)2
dθ.

The substitution u = tan θ, du = sec2 θ dθ transforms this integral into

A = 5
∫ 1

0

5u4

(1 + u5)2
du = 5

[
− 1

1 + u5

]1

0

= 5
(

1− 1
2

)
=

5
2
.

C09S0M.083: The equation of the conic can be written in the form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. (1)

We may assume that A = 1. Because (5, 0) lies on the conic, 25 + 5D + F = 0. Because (−5, 0) lies on the
conic, 25− 5D + F = 0. Therefore D = 0 and F = 25. Because (0, 4) lies on the conic, 16C + 4E + F = 0.
Because (0, −4) lies on the conic, 16C − 4E + F = 0. So E = 0 and F = −16C. Therefore 16C = 25, so
that C = 25

16 . The equation of the conic is therefore

x2 + Bxy +
25
16

y2 − 25 = 0 : 16x2 + 16Bxy + 25y2 = 400. (2)

If you have studied Eq. (1), you probably learned about its discriminant B2 − 4AC. It is known that if the
discriminant is positive, then the conic is a hyperbola; if zero, a parabola; if negative, a parabola. Degenerate
cases may occur, as they do in this problem. We see from Eq. (2) that if B < 5

2 , then the conic is an ellipse
and if B > 5

2 , then the conic is a hyperbola. If B = 5
2 then the second equation in (2) becomes

16x2 + 40xy + 25y2 = 400; (4x + 5y)2 = 400; 4x + 5y = ±20.

This is a degenerate parabola: two parallel lines.

If you have not studied Eq. (1) and its discriminant, you can proceed as follows. First, no [nondegenerate]
parabola can contain the four given points. They are the vertices of a rhombus, and if three lay on a parabola,
the fourth would be “within” the parabola. It is also clear that the four points can lie on an ellipse: Take
B = 0 in Eq. (2). It is also clear that the four given points satisfy the equation 16x2+100xy+25y2 = 400. We
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claim that this is an equation of a hyperbola. To show this, we will set up a rotated rectangular uv-coordinate
system in which the “mixed” term 100xy disappears. Please refer to the next figure.

First consider the point P , with xy-coordinates (x, y) and uv-coordinates (u, v). The rectangular uv-
coordinate system is obtained from the xy-coordinate system by a rotation through the angle α shown in
the figure. Note that

x = OQ = OP cos(α + φ) and y = PQ = OP sin(α + φ). (3)

Moreover,

u = OR = OP cosφ and v = PR = OP sinφ. (4)

Substitution of the equations in (4) into those in (3) yields

x = OP (cosα cosφ− sinα sinφ) = u cosα− v sinα (5)

and

y = OP (sinα cosφ + cosα sinφ) = u sinα + v cosα. (6)

We then entered the expression

expr = (16∗x∗x + 100∗x∗y + 25∗y∗y - 400)

in Mathematica 3.0. Then we made the substitutions for x and y given in Eqs. (5) and (6), expanded it with
the command Expand, then asked for the coefficient of uv with the command Coefficient[expr, u∗v].
Mathematica returned

100 cos2 α + 18 cosα sinα− 100 sin2 α

We simplified this and entered the result in the form

expr2 = (100∗Cos[2∗a] + 9*Sin[2∗a]),

using a in place of α. Then we entered Solve[expr2 == 0, a], and Mathematica returned two angles:

α =
1
2

arccos
(
−9√
10081

)
, α = −1

2
arccos

(
9√

10081

)
.
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We set α equal to the second of these and entered the command expr = Expand[expr]. This caused
Mathematica to replace α with its numerical value throughout expr. The result is too long to reproduce
here. We then asked for

Coefficient[expr, u∗v]

and Mathematica returned another long expression; when we asked Mathematica to Simplify the result,
the answer was 0. So we have successfully eliminated the coefficient of uv. Next we asked for

Coefficient[expr, u∗u]

and the result, after Simplify, became

1
2

(
41−

√
10081

)
.

Similarly, the coefficient of v2 turned out to be

1
2

(
41 +

√
10081

)
.

Because the coefficient of u2 is approximately −29.702091589893 and the coefficient of v2 is approximately
70.702091589893, and because the equation 16x2 + 100xy + 15y2 = 400 in the uv-coordinate system is

1
2

(
41−

√
10081

)
u2 +

1
2

(
41 +

√
10081

)
v2 = 400,

this conic section is a hyperbola. Its graph is next.

If the graph of 16x2 + 16Bxy + 25y2 = 400 is normal to the y-axis at the point (0, 4), then dy/dx = 0 there.
By implicit differentiation,

32x + 16By + 16Bx
dy

dx
+ 50y

dy

dx
= 0,

and when we substitute the data x = 0, y = 4, dy/dx = 0, we find that 64B = 0, so that B = 0. In this case
the graph is the ellipse with equation

(x

5

)2
+

(y

4

)2
= 1.
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Section 10.2

C10S02.001: The most obvious pattern is that an = n2 for n � 1.

C10S02.002: The most obvious pattern is that an = 5n− 3 for n � 1.

C10S02.003: The most obvious pattern is that an =
1
3n

for n � 1.

C10S02.004: The most obvious pattern is that an =
(−1)n−1

2n−1
=

(
− 1

2

)n−1

for n � 1.

C10S02.005: The most obvious pattern is that an =
1

3n− 1
for n � 1.

C10S02.006: The most obvious pattern is that an =
1

n2 + 1
for n � 1.

C10S02.007: Perhaps the most obvious pattern is that an = 1 + (−1)n for n � 1.

C10S02.008: One pattern is that an = 15
2 −

5
2 · (−1)n. Another is that

an = 5 ·
(

1 +
1− (−1)n

2

)
for n � 1.

C10S02.009: lim
n→∞

2n
5n− 3

= lim
n→∞

2

5− 3
n

=
2

5− 0
=

2
5
.

C10S02.010: lim
n→∞

1− n2

2 + 3n2
= lim

n→∞

1
n2
− 1

2
n2

+ 3
=

0− 1
0 + 3

= − 1
3
.

C10S02.011: lim
n→∞

n2 − n + 7
2n3 + n2

= lim
n→∞

1
n
− 1

n2
+

7
n3

2 +
1
n

=
0 + 0 + 0

2 + 0
= 0.

C10S02.012: This sequence diverges because

an =
n3

10n2 + 1
>

n3

10n2 + 10n2
=

n

20
→ +∞

as n → +∞.

C10S02.013: Example 9 tells us that if |r | < 1, then rn → 0 as n→ +∞. Take r = 9
10 to deduce that

lim
n→∞

[
1 +

(
9
10

)n]
= 1 + 0 = 1.

C10S02.014: Example 9 tells us that if |r | < 1, then rn → 0 as n→ +∞. Take r = − 1
2 to deduce that

lim
n→∞

[
2−

(
− 1

2

)n]
= 2− 0 = 2.
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C10S02.015: Given: an = 1 + (−1)n for n � 1. If n is odd then an = 1 + (−1) = 0; if n is even then
an = 1 + 1 = 2. Therefore the sequence {an} diverges. To prove this, we appeal to the definition of limit
of a sequence given in Section 10.2. Suppose that {an} converges to the number L. Let ε = 1

2 and suppose
that N is a positive integer.

Case 1: L � 1. Then choose n � N such that n is odd. Then an = 0, so

|an − L| = |0− L| = L � 1 > ε.

Case 2: L < 1. Then choose n � N such that n is even. Then an = 2, so

|an − L| = |2− L| = 2− L > 1 > ε.

No matter what the value of L, it cannot be made to fit the definition of the limit of the sequence {an}.
Therefore the sequence {an} = {1 + (−1)n} has no limit. (We can’t even say that it approaches +∞ or
−∞; it does not.)

C10S02.016: Because 1 + (−1)n = 0 if n is odd and 2 if n is even,

0 � 1 + (−1)n√
n

� 2√
n

for all n � 1. Therefore, by the squeeze law for sequences, lim
n→∞

1 + (−1)n√
n

= 0.

C10S02.017: We use l’Hôpital’s rule for sequences (Eq. (9) of Section 10.2):

lim
n→∞

an = lim
n→∞

1 + (−1)n
√

n(
3
2

)n = lim
x→∞

1± x1/2(
3
2

)x = ± lim
x→∞

1
2x1/2

(
3
2

)x ln
(

3
2

) = 0.

C10S02.018: We use the squeeze law for sequences (Theorem 3 of Section 10.2): −1 � sinn � 1 for all
integers n � 0, and therefore

− 1
3n

� sinn

3n
� 1

3n

for all integers n � 1. By the result in Example 9 of Section 10.2, 1/3n → 0 as n→ +∞. Therefore

lim
n→∞

sinn

3n
= 0.

C10S02.019: First we need a lemma.

Lemma: If r > 0, then lim
n→∞

1
nr

= 0.

Proof: Suppose that r > 0. Given ε > 0, let N = 1 + [[1/ε1/r ]]. Then N is a positive integer, and if n > N ,
then n > 1/ε1/r, so that nr > 1/ε. Therefore

∣∣∣∣ 1
nr
− 0

∣∣∣∣ < ε.

Thus, by definition, lim
n→∞

1
nr

= 0. �
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Next, we use the squeeze law for sequences (Theorem 3 of Section 10.2): −1 � sinn � 1 for all integers
n � 1, and therefore

0 � sin2 n√
n

� 1√
n

for all integers n � 1. But by the preceding lemma, 1/
√

n → 0 as n→ +∞. Therefore

lim
n→∞

sin2 n√
n

= 0.

C10S02.020: First, 1 � 2 + cosn � 3 for every integer n � 1. Thus

1
n

� 2 + cosn
n

� 3
n

for every integer n � 1. So by the squeeze law for sequences, (2 + cosn)/n→ 0 as n→ +∞. Therefore, by
the substitution law for sequences (Theorem 2 of Section 10.2),

lim
n→∞

√
2 + cosn

n
= 0.

C10S02.021: If n is a positive integer, then sinπn = 0. Therefore an = 0 for every integer n � 0. So
{an} → 0 as n→ +∞.

C10S02.022: First we need a lemma.

Lemma: If the sequence {an} converges, then it is bounded.

Proof: Suppose that the sequence {an} converges to L. Then, given ε = 1, there exists a positive integer
N such that, if n � N , then |an − L| < ε = 1. That is, L − 1 < an < L + 1 if n � N . Let M be the
maximum of the numbers |a1|, |a2|, . . . , |aN |, |L − 1|, and |L + 1|. Then −M � ak � M for every integer
k � 1. Therefore the sequence {an} is bounded. �

Thus to prove that the sequence {n cosπn} does not converge, it is sufficient to show that it is un-
bounded. But n cosπn = n if n is an odd integer. So there is no number M such that |an | � M for all n.
Therefore the sequence {n cosπn} does not converge.

C10S02.023: Suppose that a > 0. Then f(x) = ax is continuous, so ax → 1 = a0 as x → 0. But

− sinn

n
→ 0 as n→ +∞. Therefore lim

n→∞
π−(sinn)/n = 1.

C10S02.024: If n is odd then cosnπ = −1; if n is even then cosnπ = 1. Therefore an takes on the
alternating values 2 and 1

2 as n → ∞. Therefore, by a proof similar to the one given in the solution of
Problem 15, the sequence {an} has no limit as n→ +∞.

C10S02.025: We use l’Hôpital’s rule for sequences (Eq. (9)):

lim
n→∞

lnn√
n

= lim
x→∞

lnx

x1/2
= lim
x→∞

2x1/2

x
= lim
x→∞

2
x1/2

= 0.

C10S02.026: We use l’Hôpital’s rule for sequences (Eq. (9)):

lim
n→∞

ln 2n
ln 3n

= lim
x→∞

ln 2x
ln 3x

= lim
x→∞

x

x
= 1.
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C10S02.027: We use l’Hôpital’s rule for sequences (Eq. (9)):

lim
n→∞

(lnn)2

n
= lim
x→∞

(lnx)2

x
= lim
x→∞

2 lnx

x
= lim
x→∞

2
x

= 0.

C10S02.028: Let x = 1/n. Then lim
n→∞

n sin
(

1
n

)
= lim
x→0+

sinx

x
= 1.

C10S02.029: Because −π/2 < tan−1 x < π/2 for all x,

− π

2n
<

tan−1 n

n
<

π

2n

for all integers n � 1. Therefore, by the squeeze law for limits, lim
n→∞

tan−1 n

n
= 0.

C10S02.030: We use l’Hôpital’s rule for sequences (Eq. (9)):

lim
n→∞

n3

exp(n/10)
= lim
x→∞

x3

exp(x/10)
= lim
x→∞

30x2

exp(x/10)
= lim
x→∞

600x
exp(x/10)

= lim
x→∞

6000
exp(x/10)

= 0.

C10S02.031: We use the squeeze law for limits of sequences:

0 <
2n + 1

en
<

2n + 2n

en
= 2

(
2
e

)n
.

By the result in Example 9, (2/e)n → 0 as n→ +∞. Therefore lim
n→∞

2n + 1
en

= 0.

C10S02.032: If an =
sinhn

coshn
, then

lim
n→∞

an = lim
n→∞

en − e−n

en + e−n
= lim
n→∞

1− e−2n

1 + e−2n
=

1− 0
1 + 0

= 1.

C10S02.033: By Eq. (3) in Section 4.9,

lim
n→∞

(
1 +

1
n

)n
= e.

C10S02.034: If an = (2n + 5)1/n, then—using l’Hôpital’s rule for sequences—

lim
n→∞

an = lim
x→∞

exp
(

ln(2x + 5)
x

)
= exp

(
lim
x→∞

2
2x + 5

)
= e0 = 1.

C10S02.035: We use l’Hôpital’s rule for sequences:

lim
n→∞

(
n− 1
n + 1

)n
= lim
n→∞

exp
(
x ln

x− 1
x + 1

)
= exp


 lim
x→∞

ln(x− 1)− ln(x + 1)
1
x




= exp


 lim
x→∞

1
x− 1

− 1
x + 1

− 1
x2


 = exp

(
lim
x→∞

−2x2

x2 − 1

)
= e−2.
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C10S02.036: By the result in Example 7, (0.001)1/n → 1 as n→ +∞. Therefore

lim
n→∞

(0.001)−1/n =
1

lim
n→∞

(0.001)1/n
=

1
1

= 1.

C10S02.037: Let f(x) = 2x and note that f is continuous on the set of all real numbers. Thus

lim
n→∞

an = lim
x→∞

f

(
x + 1

x

)
= f

(
lim
x→∞

x + 1
x

)
= f(1) = 21 = 2.

It is the continuity of f at x = 1 that makes the second equality valid.

C10S02.038: We use l’Hôpital’s rule for sequences:

lim
n→∞

(
2− 1

n2

)n
= lim
x→∞

exp
(
x ln

x2 − 2
x2

)
= exp


 lim
x→∞

ln(x2 − 2)− 2 lnx
1
x




= exp


 lim
x→∞

2x
x2 − 1

− 2
x

− 1
x2


 = exp

(
lim
x→∞

−4x2

x3 − 2x

)
= e0 = 1.

C10S02.039: By Example 11, lim
n→∞

n1/n = 1. Thus by Example 7,

lim
n→∞

(
2
n

)3/n

= lim
n→∞

81/n(
n1/n

)3 =
1
13

= 1.

C10S02.040: First,

lim
n→∞

(n2 + 1)1/n = lim
x→∞

exp
(

ln(x2 + 1)
x

)
= exp

(
lim
x→∞

2x
x2 + 1

)
= e0 = 1. (1)

Therefore—by an argument similar to that in the solution of Problem 15, but more subtle—

lim
n→∞

(−1)n(n2 + 1)1/n does not exist.

For a proof, let ε = 1
2 and choose the integer N so large that if n > N , then

∣∣∣(n2 + 1)1/n − 1
∣∣∣ < ε.

This is possible by the result in (1). But then an = (−1)n(n2+1)1/n lies in the interval (1−ε, 1+ε) =
(

1
2 ,

3
2

)
whenever n is even, but an lies in the interval (−1 − ε, −1 + ε) =

(
− 3

2 , −
1
2

)
if n is odd. Because these

intervals have no points in common, no interval of the form (L− ε, L + ε) can contain all an for all n > K

regardless of how large K might be. Therefore no number L can be the limit of the sequence {an}.

C10S02.041: Given: an =
(

2− n2

3 + n2

)n
. First note that

lim
n→∞

2− n2

3 + n2
= lim
n→∞

2
n2
− 1

3
n2

+ 1
=

0− 1
0 + 1

= −1.
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Moreover,

lim
n→∞

(
n2 − 2
n2 + 3

)n
= lim
x→∞

exp


 ln(x2 − 2)− ln(x2 + 3)

1
x


 = exp


 lim
x→∞

2x
x2 − 2

− 2x
x2 + 3

− 1
x2




= exp
(

lim
x→∞

−x2(2x3 + 6x− 2x3 + 4x)
(x2 − 2)(x2 + 3)

)
= exp

(
lim
x→∞

−10x3

(x2 − 2)(x2 + 3)

)
= e0 = 1.

Therefore, as n → +∞ through even values, an → 1, whereas as n → +∞ through odd values, an → −1.
So we can now show that the sequence {an} has no limit as n→ ∞.

Let ε = 1
10 . Choose N1 so large that if n > N1 and n is even, then |an − 1| < ε. Choose N2 so large that

if n > N2 and n is odd, then |an − (−1)| < ε. Let N be the maximum of N1 and N2. Then if n > N ,

|an − 1| < ε if n is even;

|an − (−1)| < ε if n is odd.

Put another way, if n > N and n is even, then an lies in the interval (0.9, 1.1). If n > N and n is odd, then
an lies in the interval (−1.1, −0.9). It follows that no interval of length 0.2 can contain an for all n > K,
no matter how large K might be. Because every real number L is the midpoint of such an interval, this
means that no real number L can be the limit of the sequence {an}. Therefore

lim
n→∞

an does not exist.

C10S02.042: Given: an =

(
2
3

)n
1− n1/n

. First note that—by l’Hôpital’s rule—

lim
x→∞

x1/x = lim
x→∞

exp(lnx1/x) = exp
(

lim
x→∞

lnx

x

)
= exp

(
lim
x→∞

1
x

)
= e0 = 1.

Also, if y = x1/x, then

ln y =
1
x

lnx;
1
y
· dy
dx

=
1
x2
− 1

x2
lnx;

dy

dx
=

y

x2
(1− lnx);

dy

dx
=

x1/x

x2
(1− lnx).

Moreover,

lim
x→∞

x2

(
2
3

)x
= lim
x→∞

x2(
3
2

)x = lim
x→∞

2x(
3
2

)x ln 3
2

= lim
x→∞

2(
3
2

)x (
ln 3

2

)2 = 0.

Therefore (using Theorem 4 and again using l’Hôpital’s rule)

lim
n→∞

an = lim
x→∞

(
2
3

)x
1− x1/x

= lim
x→∞

x2
(

2
3

)x ln 2
3

[(lnx)− 1]x1/x
= 0.

C10S02.043: Let f(n) =
n− 2
n + 13

. Then the Mathematica command

6



Table[ { n, N[f[10∧n]] }, { n, 1, 7 } ]

yielded the response

{{1, 0.347826}, {2, 0.867257}, {3, 0.985192}, {4, 0.998502}, {5, 0.99985}, {6, 0.999985}, {7, 0.999999}}.

Indeed,

lim
n→∞

n− 2
n + 13

= lim
n→∞

1− 2
n

1 +
13
n

=
1− 0
1 + 0

= 1.

C10S02.044: Let f(n) =
2n + 3
5n− 17

. Results of our experiment:

n f(n)

10 0.69697

100 0.42029

1000 0.40197

10000 0.40020

100000 0.40002

1000000 0.40000

Indeed, by Theorem 4 and l’Hôpital’s rule,

lim
n→∞

2n + 3
5n− 17

= lim
x→∞

2x + 3
5x− 17

= lim
x→∞

2
5

=
2
5
.

C10S02.045: Let f(n) = an =

√
4n2 + 7
n2 + 3n

. Results of our experiment:

n f(n)

10 1.76940

100 1.97083

1000 1.99701

10000 1.99970

100000 1.99997

1000000 2.00000

By Theorem 4 and l’Hôpital’s rule (used twice),

lim
n→∞

4n2 + 7
n2 + 3n

= lim
x→∞

4x2 + 7
x2 + 3x

= lim
x→∞

8x
2x + 3

= lim
x→∞

8
2

= 4.

Therefore, by Theorem 2, lim
n→∞

an =
√

4 = 2.

7



C10S02.046: Let f(n) = an =
(

n3 − 5
8n3 + 7n

)1/3

. Results of our experiment:

n f(n)

10 0.497718

100 0.499985

1000 0.500000

10000 0.500000

100000 0.500000

Moreover,

lim
n→∞

n3 − 5
8n3 + 7n

= lim
n→∞

1− 5
n3

8 +
7
n2

=
1− 0
8 + 0

=
1
8
.

We may apply Theorem 2 because g(x) = x1/3 is continuous at x =
1
8
. Thus lim

n→∞
an = g

(
1
8

)
=

1
2
.

C10S02.047: Let f(n) = an = exp
(
−1/
√

n
)
. Results of an experiment:

n f(n)

10 0.728893

100 0.904837

1000 0.968872

10000 0.990050

100000 0.996843

1000000 0.999000

10000000 0.999684

100000000 0.999900

1000000000 0.999968

Because −1/
√

n → 0 as n→ +∞ and g(x) = ex is continuous at x = 0, Theorem 2 implies that

lim
n→∞

an = g(0) = 1.

C10S02.048: Let f(n) = an = n sin
2
n

. The results of an experiment:

8



n f(n)

10 1.98669

100 1.99987

1000 2.00000

10000 2.00000

Let x = 1/n. Then x→ 0+ as n→ +∞. So

lim
n→∞

an = lim
x→0+

sin 2x
x

= 2
(

lim
x→0+

sin 2x
2x

)
= 2 · 1 = 2.

C10S02.049: Let f(n) = an = 4 tan−1 n− 1
n + 1

. The results of an experiment:

n f(n)

10 2.74292

100 3.10159

1000 3.13759

10000 3.14119

100000 3.14155

1000000 3.14159

10000000 3.14159

The limit appears to be π. Because

lim
n→∞

n− 1
n + 1

= lim
n→∞

(
1− 2

n + 1

)
= 1− 0 = 1

and g(x) = 4 tan−1 x is continuous at x = 1, Theorem 2 implies that

lim
n→∞

an = g(1) = 4 tan−1(1) = 4 · π
4

= π.

C10S02.050: Let f(n) = an = 3 sin−1

√
3n− 1
4n + 1

. The results of an experiment:

n f(n)

10 2.99751

100 3.12652

1000 3.14008

10000 3.14144

100000 3.14158

1000000 3.14159

10000000 3.14159
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The limit seems to be π. Because

lim
n→∞

3n− 1
4n + 1

= lim
n→∞

3− 1
n

4 +
1
n

=
3− 0
4 + 0

=
3
4

and because g(x) = 3 arcsin
√

x is continuous at x = 3
4 , Theorem 2 implies that

lim
n→∞

an = g

(
3
4

)
= 3 arcsin

√
3
4

= 3 arcsin
√

3
2

= 3 · π
3

= π.

C10S02.051: Proof: Suppose that

lim
n→∞

an = A �= 0.

Without loss of generality we may suppose that A > 0. Let ε = A/3 and choose N so large that if n > N ,
then |an − A| < ε. Then if n is even, (−1)nan = an; in this case |(−1)nan − A| < ε if n > N . If n is odd,
then (−1)nan = −an; in this case |(−1)nan − (−A)| < ε if n > N . In other words, (−1)nan lies in the
interval I = (A− ε, A + ε) if n is even, whereas (−1)nan lies in the interval J = (−A− ε, −A + ε) if n is
odd. This means that no open interval of length 2ε can contain every number (−1)nan for which n > K, no
matter how large the value of K. (Note that no such interval can contains points of both I and J because
the distance between their closest endpoints is 4ε.) Because every real number is the midpoint of an open
interval of length 2ε, it now follows that no real number can be the limit of the sequence {(−1)nan}. This
concludes the proof. �

C10S02.052: Proof: To say that

lim
n→∞

an = +∞ (1)

means that, for every interval of the form (c, +∞), there exists a positive integer N such that if n � N , then
an lies in the interval (c, +∞). If {an} is an unbounded increasing sequence, then, no matter how large the
number c, ak > c for some integer k. But then an > c for all n � k, so that an lies in the interval (c, +∞)
for all n � k. This is what Eq. (1) means.

C10S02.053: Given: A > 0, x1 �= 0,

xn+1 =
1
2

(
xn +

A

xn

)
if n � 1, and L = lim

n→∞
xn.

Then

lim
n→∞

xn+1 = L and lim
n→∞

1
2

(
xn +

A

xn

)
=

1
2

(
L +

A

L

)
.

It follows that

L =
1
2

(
L +

A

L

)
; 2L =

L2 + A

L
;

2L2 = L2 + A; L2 = A.

Therefore L = ±
√

A .
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C10S02.054: Given: A > 0, x1 �= 0,

xn+1 =
1
3

(
2xn +

A

x2
n

)
if n � 1, and L = lim

n→∞
xn.

Then

lim
n→∞

xn+1 = L and lim
n→∞

1
3

(
2xn +

A

x2
n

)
=

1
3

(
2L +

A

L2

)
.

It follows that

L =
1
3

(
2L +

A

L2

)
; 3L =

2L3 + A

L2
;

3L3 = 2L3 + A; L3 = A.

Therefore L = A1/3.

C10S02.055: Part (a): Note first that F1 = 1 and F2 = 1. If n � 3, then Fn−1 is the total number
of pairs present in the preceding month and Fn−2 is the total number of productive pairs. Therefore
Fn = Fn−1 + Fn−2; that is, Fn+1 = Fn + Fn−1 for n � 2. So {Fn} is the Fibonacci sequence of Example 2.

Part (b): Note first that G1 = G2 = G3 = 1. If n � 4, then Gn−1 is the total number of pairs present in
the preceding month and Gn−3 is the total number of productive pairs. Therefore Gn = Gn−1 +Gn−3; that
is, Gn+1 = Gn + Gn−2. The Mathematica commands

g[1] = 1; g[2] = 1; g[3] = 1;

g[n ] := g[n] = g[n - 1] + g[n - 3]

serve as one way to enter the formula for the recursively defined function g. Then the command

Table[ {n, g[n]}, {n, 4, 25} ]

produces the output

{{4, 2}, {5, 3}, {6, 4}, {7, 6}, {8, 9}, {9, 13}, {10, 19}, {11, 28}, {12, 41},
{13, 60}, {14, 88}, {15, 129}, {16, 189}, {17, 277}, {18, 406}, {19, 595},
{20, 872}, {21, 1278}, {22, 1873}, {23, 2745}, {24, 4023}, {25, 5896}}

C10S02.056: Given the Fibonacci sequence {Fn} of Example 2, note that

Fn+1 = Fn + Fn−1 implies that
Fn+1

Fn
= 1 +

Fn−1

Fn
.

Thus if

an =
Fn

Fn−1
, then an+1 =

Fn+1

Fn
= 1 +

1
an

.

Assuming that τ exists, let n→ +∞ in the last equation to obtain

τ = lim
n→∞

an+1 = lim
n→∞

(
1 +

1
an

)
= 1 +

1
τ
.

Therefore

11



τ2 = τ + 1; τ2 − τ − 1 = 0; τ =
1±
√

5
2

.

Because an > 0 for all n � 1, τ cannot be negative. Therefore τ = 1
2

(
1 +
√

5
)
.

C10S02.057: Part (a): Clearly a1 < 4. Suppose that ak < 4 for some integer k � 1. Then

ak+1 =
1
2

(ak + 4) <
1
2

(4 + 4) = 4.

Therefore, by induction, an < 4 for every integer n � 1. Next, a2 = 3, so that a1 < a2. Suppose that
ak < ak+1 for some integer k � 1. Then

ak + 4 < ak+1 + 4;
1
2

(ak + 4) <
1
2

(ak+1 + 4); ak+1 < ak+2.

Therefore, by induction, an < an+1 for every integer n � 1.

Part (b): Part (a) establishes that {an} is a bounded increasing sequence. Therefore the bounded monotonic
sequence property of Section 11.2 implies that the sequence {an} converges. Let L denote its limit. Then

L = lim
n→∞

an+1 = lim
n→∞

1
2

(an + 4) =
1
2

(L + 4).

It now follows immediately that L = 4.

C10S02.058: Given the positive real number r, let

L =
1 +
√

1 + 4r
2

.

Define the sequence {an} recursively as follows: a1 =
√

r , and for each integer n � 1, an+1 =
√

r + an . We
plan to show first that {an} is a bounded sequence, then that {an} is an increasing sequence. Only then
will we attempt to evaluate its limit, because our method for doing so depends on knowing that the sequence
{an} converges.

First,

a1 =
√

r =
√

4r
2

<
1 +
√

1 + 4r
2

= L.

Suppose that ak < L for some integer k � 1. Then

ak <
1 +
√

1 + 4r
2

; ak + r < L + r;

4(ak + r) < 2 + 2
√

1 + 4r + 4r; 4(ak + r) <
(
1 +
√

1 + 4r
)2

;

ak + r < L2; ak+1 =
√

ak + r < L.

Therefore, by induction, an < L for all n � 1.

Next, 0 <
√

r , so that r < r +
√

r . Thus
√

r <
√

r +
√

r . That is, a1 < a2. Suppose that ak < ak+1

for some integer k � 1. Then

r + ak < r + ak+1;
√

r + ak <
√

r + ak+1 ; ak+1 < ak+2.
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Therefore, by induction, an < an+1 for all n � 1.

Now that we know that the sequence {an} converges, we may denote its limit by M . Then

M = lim
n→∞

an+1 = lim
n→∞

√
r + an =

√
r + M .

It now follows that M2 −M − r = 0, and thus that

M =
1±
√

1 + 4r
2

.

Because M > 0, we conclude that lim
n→∞

an =
1 +
√

1 + 4r
2

= L. And in conclusion if, as in Problem 58, we
take r = 2 we find that

√
2 +

√
2 +

√
2 +
√

2 + · · · = L = 2.

C10S02.059: Take r = 20 in the solution of Problem 58 to show that
√

20 +

√
20 +

√
20 +

√
20 + · · · = 5.

C10S02.060: Take r = 90 in the solution of Problem 58 to show that
√

90 +

√
90 +

√
90 +

√
90 + · · · = 10.

C10S02.061: Suppose that {an} is a bounded monotonic sequence; without loss of generality, suppose
that it is an increasing sequence. Because the set of values of an is a nonempty set of real numbers with an
upper bound, it has a least upper bound λ. We claim that λ is the limit of the sequence {an}.

Let ε > 0 be given. Then there exists a positive integer N such that

λ− ε < aN � λ.

For if not, then λ− ε would be an upper bound for {an} smaller than λ, its least upper bound. But because
{an} is an increasing sequence with upper bound λ, it now follows that if n > N , then aN � an � λ. Thus
if n > N , then |an − λ| < ε. Therefore, by definition, λ is the limit of the sequence {an}.

C10S02.062: Suppose that S is a nonempty set of real numbers with upper bound b. For each positive
integer n, let an be the least integral multiple of 1/10n that is an upper bound for S.

We first claim that {an} is a decreasing sequence. For suppose that an < an+1. Then

an =
j

10n
<

k

10n+1
= an+1

for some integers j and k. This implies that

10j
10n+1

<
k

10n+1

13



so that k/10n+1, chosen to be the least integral multiple of 1/10n+1 that is an upper bound for S, is larger
than 10j/10n+1, a smaller integral multiple of 1/10n+1 but also an upper bound for S. This is impossible.
Therefore {an} is a decreasing sequence.

Next we claim that {an} is bounded. Because it is decreasing, a1 is an upper bound. Any element of S is a
lower bound. This shows that {an} is bounded.

Therefore {an} converges; let A be its limit. We now claim that A is an upper bound for S. If not, choose
s in S such that A < s. Let ε = s − A. Choose N so large that A < aN < A + ε = s. Then aN is not an
upper bound for S. This is impossible. Hence A is an upper bound for S.

Finally we claim that A is the least upper bound of S. Suppose that B is an upper bound for S and that
B < A. Then there exist integers k and n such that k/10n lies between B and A. This implies that an < A,
which is impossible because {an} is a decreasing sequence with limit—and thus lower bound—A. Therefore
A is the least upper bound of S.

C10S02.063: For each integer n �, let an be the largest integral multiple of 1/10n such that a2
n � 2. (For

example, a1 = 1.4, a2 = 1.41, and a3 = 1.414.)

Part (a): First note that the numbers 1 and 3
2 are multiples of 1/10n (for each n � 1) with 12 < 2 and(

3
2

)2
> 2. It follows that 1 � an � 3

2 for each integer n � 1, and therefore the sequence {an} is bounded.
Next, an as an integral multiple of 1/10n is also an integral multiple of 1/10n+1 whose square does not exceed
2. But an+1 is the largest multiple of 1/10n+1 whose square does not exceed 2; it follows that an � an+1,
and thus the sequence {an} is also an increasing sequence.

Part (b): Because {an} is a bounded increasing sequence, it has a limit A. Then the limit laws give

A2 =
(

lim
n→∞

an

)2

= lim
n→∞

(an)2 � lim
n→∞

2 = 2,

so we see that A2 � 2.

Part (c): Assume that A2 < 2. Then 2−A2 > 0. Choose the integer k so large that 4/10k � 2−A2. Then

(
ak +

1
10k

)2

= a2
k +

2ak
10k

+
1

102k

< a2
k +

4
10k

(
because ak <

3
2

and
1

102k
<

1
10k

)

� A2 + (2−A2) = 2.

Thus the assumption that A2 < 2 implies that (ak + 1/10k)2 < 2, which contradicts the fact that ak is, by
definition, the largest integral multiple of 1/10k whose square does not exceed 2. It therefore follows that
A2 is not less than 2; that is, that A2 � 2.

Part (d): It follows immediately from the results in parts (c) and (d) that A2 = 2.

C10S02.064: The first few terms of the sequence {an} are

2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
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80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101.

Challenge 1: Prove that an is never the square of an integer. Challenge 2: Prove that every positive integer
not the square of an integer is a value of an. Challenge 3: Construct a similar sequence whose values are
the positive integers that are not cubes of integers.
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Section 10.3

C10S03.001: The series is geometric with first term 1 and ratio 1
3 . Therefore it converges to

1

1− 1
3

=
3
2
.

C10S03.002: The series is geometric with first term 1 and ratio 1/e. Therefore it converges to

1

1− 1
e

=
e

e− 1
≈ 1.581976706869.

C10S03.003: This series diverges by the nth-term test. Alternatively, you can show by induction that

Sk =
k∑

n=1

(2n− 1) = k2,

so this series diverges because lim
k→∞

Sk = +∞.

C10S03.004: By the result in Example 7 of Section 10.2,

lim
n→∞

21/n = 1.

Therefore the given series diverges by the nth-term test.

C10S03.005: This series is geometric but its ratio is −2 and |−2| > 1. Therefore the given series diverges.
Alternatively, it diverges by the nth-term test for divergence.

C10S03.006: The given series is geometric with first term 1 and ratio − 1
4 . Therefore it converges to

1

1−
(
−1

4

) =
1

1 +
1
4

=
4
5
.

C10S03.007: The given series is geometric with first term 4 and ratio 1
3 . Therefore it converges to

4

1− 1
3

= 6.

C10S03.008: The given series is geometric with first term 1
3 and ratio 2

3 . Thus it converges; its sum is

1
3

1− 2
3

= 1.

C10S03.009: This series is geometric with first term 1 and ratio r = 1.01. Because |r | > 1, the series
diverges. Alternatively, you can apply the nth-term test for divergence.
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C10S03.010: By Example 11 in Section 10.2,

lim
n→∞

n1/n = 1.

Therefore the given series diverges by the nth-term test.

C10S03.011: The given series diverges by the nth-term test:

lim
n→∞

n

n+ 1
= 1, and therefore lim

n→∞

(−1)nn
n+ 1

�= 0.

C10S03.012: The given series is geometric with first term and ratio both e/10, so it converges to

e

10
1− e

10

=
e

10− e ≈ 0.37330225702539148720531323.

C10S03.013: The given series is geometric with first term 1 and ratio r = −3/e. It diverges because
|r | > 1.

C10S03.014: The given series is the difference of two convergent geometric series, so its sum is

∞∑
n=0

3n − 2n

4n
=

∞∑
n=0

(
3
4

)n
−

∞∑
n=0

(
1
2

)n
=

1

1− 3
4

− 1

1− 1
2

= 4− 2 = 2.

C10S03.015: The given series is geometric with first term 1 and ratio 1/
√

2 . Therefore its sum is

1

1− 1√
2

=
√

2√
2 − 1

=

√
2

(√
2 + 1

)
2− 1

= 2 +
√

2 ≈ 3.414213562373.

C10S03.016: Note that

∞∑
n=1

1
2n

(1)

converges (it is geometric with ratio 1
2 ). If

∞∑
n=1

(
2
n
− 1

2n

)
(2)

also converged, then the sum of the series in (1) and (2) would converge. Their sum is

∞∑
n=1

(
1
2n

+
2
n
− 1

2n

)
=

∞∑
n=1

2
n
. (3)

But if the series in (3) converged, so would

1
2

∞∑
n=1

2
n

=
∞∑
n=1

1
n
,

2



and this would contradict Theorem 4 of Section 10.3. Therefore the series in (2) diverges. See also Problem
62 of this section.

C10S03.017: Because the limit of the nth term is

lim
n→∞

n

10n+ 17
= lim
n→∞

1

10 +
17
n

=
1
10
�= 0,

the given series diverges.

C10S03.018: By l’Hôpital’s rule (used twice), the limit of the nth term is

lim
n→∞

√
n

ln(n+ 1)
= lim
x→∞

x1/2

ln(x+ 1)
= lim
x→∞

x+ 1
2x1/2

= lim
x→∞

x1/2 = +∞.

Therefore the given series diverges by the nth-term test.

C10S03.019: The given series is the difference of two convergent geometric series, so its sum is

∞∑
n=1

(
5−n − 7−n

)
=

∞∑
n=1

1
5n
−

∞∑
n=1

1
7n

=

1
5

1− 1
5

−
1
7

1− 1
7

=
1
4
− 1

6
=

1
12
.

C10S03.020: By Example 9 in Section 10.2,
(

9
10

)n → 0 as n → +∞. So the given series diverges by the
nth-term test, because

lim
n→∞

1

1 +
(

9
10

)n =
1

1 + 0
= 1 �= 0.

C10S03.021: The series is geometric with first term e/π and ratio r = e/π. Because |r | < 1, the series
converges to

e

π

1− e

π

=
e

π − e ≈ 6.421479600999.

C10S03.022: The given series is geometric with ratio r = π/e. But its first term is nonzero and |r | > 1,
so the series diverges.

C10S03.023: The given series is geometric with ratio r = 100
99 . But its first term is nonzero and |r | > 1,

so the series diverges.

C10S03.024: The given series is geometric with first term 1 and ratio r = 99
100 , so it converges to

1

1− 99
100

= 100.

C10S03.025: The given series is the sum of three convergent geometric series, and its sum is
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∞∑
n=0

1 + 2n + 3n

5n
=

∞∑
n=0

1
5n

+
∞∑
n=0

(
2
5

)n
+

∞∑
n=0

(
3
5

)n

=
1

1− 1
5

+
1

1− 2
5

+
1

1− 3
5

=
5
4

+
5
3

+
5
2

=
65
12
≈ 5.41666666667.

C10S03.026: The given series diverges because it is the sum of the two convergent geometric series

∞∑
n=0

1
3n

and
∞∑
n=0

(
2
3

)n
(1)

and the divergent geometric series

∞∑
n=0

(
5
3

)n
. (2)

The sum of the two series in (1) converges by part (1) of Theorem 2, hence the sum of that series and the
series in (2) diverges by an argument similar to that used in the solution of Problem 16 or by the general
argument given in the solution of Problem 62.

C10S03.027: We use both parts of Theorem 2:

∞∑
n=0

7 · 5n + 3 · 11n

13n
= 7 ·

[ ∞∑
n=0

(
5
13

)n]
+ 3 ·

[ ∞∑
n=0

(
11
13

)n]

= 7 · 1

1− 5
13

+ 3 · 1

1− 11
13

=
91
8

+
39
2

=
247
8

= 30.875.

C10S03.028: The given series diverges by the nth-term test, because (by Example 7 in Section 10.2)
lim
n→∞

21/n = 1 �= 0.

C10S03.029: The given series converges because it is the difference of two convergent geometric series. Its
sum is

∞∑
n=1

[(
7
11

)n
−

(
3
5

)n]
=

∞∑
n=1

(
7
11

)n
−

∞∑
n=1

(
3
5

)n
=

7
11

1− 7
11

−
3
5

1− 3
5

=
7
4
− 3

2
=

1
4
.

C10S03.030: The given series diverges by the nth-term test for divergence, because

lim
n→∞

2n√
4n2 + 3

= lim
n→∞

(
4n2

4n2 + 3

)1/2

= lim
n→∞


 1

1 +
3

4n2




1/2

=
(

1
1 + 0

)1/2

= 1 �= 0.

C10S03.031: The given series diverges by the nth-term test for divergence, because
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lim
n→∞

n2 − 1
3n2 − 1

= lim
n→∞

1− 1
n2

3− 1
n2

=
1− 0
3− 0

=
1
3
�= 0.

C10S03.032: The given series is geometric with first term sin 1 and ratio sin 1 ≈ 0.841470984808. Therefore
it converges; its sum is

sin 1
1− sin 1

≈ 5.307993516444.

C10S03.033: The given series is geometric with nonzero first term and ratio r = tan 1 ≈ 1.557407724655.
Because |r | > 1, this series diverges.

C10S03.034: The given series is geometric with nonzero first term and ratio

r = arcsin 1 =
π

2
≈ 1.570796326795.

Because |r | > 1, this series diverges.

C10S03.035: This is a geometric series with first term π/4 and ratio r = π/4 ≈ 0.785398163397. Because
|r | < 1, it converges; its sum is

π

4
1− π

4

=
π

4− π ≈ 3.659792366325.

C10S03.036: Because

lim
n→∞

arctann =
π

2
≈ 1.570796326795,

the given series diverges by the nth-term test for divergence.

C10S03.037: A figure similar to Fig. 10.3.4 of the text shows that if n is an integer and n � 2, then

1
n lnn

�
∫ n+1

n

1
x lnx

dx.

Therefore the kth partial sum Sk of the given series satisfies the equalities and inequalities

Sk =
k∑

n=2

1
x lnx

�
∫ k+1

2

1
x lnx

dx =
[

ln(lnx)
]k+1

2

= ln(ln(k + 1))− ln(ln 2) = ln
(

ln(k + 1)
ln 2

)
.

Therefore the given series diverges because {Sk} → +∞ as k → +∞.

C10S03.038: The methods of Example 7 yield the following results.

Part (a):

0.666 666 666 · · · = 6
10

+
6

100
+

6
1000

+ · · · =
6
10

1− 1
10

=
6

10− 1
=

2
3
.
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Part (b):

0.111 111 111 · · · = 1
10

+
1

100
+

1
1000

+ · · · =
1
10

1− 1
10

=
1

10− 1
=

1
9
.

Part (c):

0.249 999 999 · · · = 2
10

+
4

100
+

9
1000

+
9

10000
+ · · · = 1

5
+

1
25

+

9
1000

1− 1
10

=
6
25

+
9

1000− 100
=

1
4
.

Part (d):

0.999 999 999 · · · = 9
10

+
9

100
+

9
1000

+ · · · =
9
10

1− 1
10

=
9

10− 1
= 1.

C10S03.039: Here we have

0.47 47 47 47 · · · = 47
100

+
47

10000
+

47
1000000

+ · · · =
47
100

1− 1
100

=
47
99
.

C10S03.040: 0.25 25 25 · · · = 25
100

+
25

10000
+

25
1000000

+ · · · =
25
100

1− 1
100

=
25
99

.

C10S03.041: 0.123 123 123 · · · = 123
1000

+
123

1000000
+

123
1000000000

+ · · · =
123
1000

1− 1
1000

=
123
999

=
41
333

.

C10S03.042: 0.3377 3377 3377 · · · = 3377
104

+
3377
108

+
3377
1012

+ · · · =
3377
10000

1− 1
10000

=
3377
9999

=
307
909

.

C10S03.043: As in Example 7,

3.14159 14159 14159 · · · = 3 +
14159
105

+
14150
1010

+
14159
1015

+ · · · = 3 +

14159
100000

1− 1
100000

= 3 +
14159
99999

=
299997 + 14159

99999
=

314156
99999

.

C10S03.044: The series is geometric with ratio 2x. Thus it will converge when |2x| < 1; that is, when
− 1

2 < x < 1
2 . For such x, we have
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∞∑
n=1

(2x)n =
2x

1− 2x
.

C10S03.045: The series is geometric with ratio x/3. Thus it will converge when
∣∣∣ x
3

∣∣∣ < 1; that is, when − 3 < x < 3.

For such x, we have

∞∑
n=1

(x
3

)n
=

x

3
1− x

3

=
x

3− x.

C10S03.046: The given series is geometric with ratio x− 1. Hence it will converge when |x− 1| < 1; that
is, when 0 < x < 2. For such x, we have

∞∑
n=1

(x− 1)n =
x− 1

1− (x− 1)
=
x− 1
2− x.

C10S03.047: The given series is geometric with ratio (x− 2)/3. Hence it will converge when
∣∣∣∣ x− 2

3

∣∣∣∣ < 1; that is, when − 1 < x < 5.

For such x, we have

∞∑
n=1

(
x− 2

3

)n
=

x− 2
3

1− x− 2
3

=
x− 2

3− (x− 2)
=
x− 2
5− x.

C10S03.048: This series is geometric with ratio x2/(x2 + 1). Therefore it will converge when

−1 <
x2

x2 + 1
< 1; that is, for all real numbers x.

Finally,

∞∑
n=1

(
x2

x2 + 1

)n
=

x2

x2 + 1

1− x2

x2 + 1

=
x2

x2 + 1− x2
= x2.

C10S03.049: This series is geometric with ratio 5x2/(x2 + 16). Hence it will converge when

5x2

x2 + 16
< 1 : 5x2 < x2 + 16;

4x2 < 16;

x2 < 4;
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− 2 < x < 2.

For such x we have

∞∑
n=1

(
5x2

x2 + 16

)n
=

5x2

x2 + 16

1− 5x2

x2 + 16

=
5x2

x2 + 16− 5x2
=

5x2

16− 4x2
.

C10S03.050: The method of partial fractions yields

1
4n2 − 1

=
1
2

(
1

2n− 1
+
−1

2n+ 1

)
.

Therefore the kth partial sum of the given series is

Sk =
k∑

n=1

1
4n2 − 1

=
1
2

(
1− 1

3
+

1
3
− 1

5
+

1
5
− 1

7
+ · · · − 1

2k + 1

)
=

1
2

(
1− 1

2k + 1

)
.

Thus

∞∑
n=1

1
4n2 − 1

= lim
k→∞

Sk =
1
2
.

C10S03.051: The method of partial fractions yields

1
9n2 + 3n− 2

=
1
3

(
1

3n− 1
+
−1

3n+ 2

)
.

Therefore the kth partial sum of the given series is

Sk =
k∑

n=1

1
9n2 + 3n− 2

=
1
3

(
1
2
− 1

5
+

1
5
− 1

8
+

1
8
− 1

11
+ · · · − 1

3k + 2

)
=

1
3

(
1
2
− 1

3k + 2

)
.

Thus

∞∑
n=1

1
9n2 + 3n− 2

= lim
k→∞

Sk =
1
6
.

C10S03.052: Because ln
n+ 1
n

= ln(n+ 1)− lnn, the kth partial sum of the given series is

Sk =
k∑

n=1

ln
n+ 1
n

= ln 2− ln 1 + ln 3− ln 2 + ln 4− ln 3 + · · ·+ ln(k + 1)− ln k = ln(k + 1).

Therefore the given series diverges because lim
k→∞

Sk = +∞.

C10S03.053: The method of partial fractions yields

1
16n2 − 8n− 3

=
1
4

(
1

4n− 3
− 1

4n+ 1

)
.
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Thus the kth partial sum of the given series is

Sk =
k∑

n=1

1
16n2 − 8n− 3

=
1
4

(
1− 1

5
+

1
5
− 1

9
+

1
9
− 1

13
+ · · · − 1

4k + 1

)
=

1
4

(
1− 1

4k + 1

)
.

Therefore

∞∑
n=1

1
16n2 − 8n− 3

= lim
k→∞

Sk =
1
4
.

C10S03.054: The method of partial fractions yields

1
n(n+ 2)

=
1
2

(
1
n
− 1
n+ 2

)
.

Therefore the kth partial sum of the given series is

Sk =
k∑

n=1

1
n(n+ 2)

=
1
2

(
1− 1

3
+

1
2
− 1

4
+

1
3
− 1

5
+

1
4
− 1

6
+

1
5
− 1

7
+ · · ·+ 1

k − 1
− 1
k + 1

+
1
k
− 1
k + 2

)

=
1
2

(
1 +

1
2
− 1
k + 1

− 1
k + 2

)
.

Therefore the sum of the given series is lim
k→∞

Sk =
3
4
.

C10S03.055: The method of partial fractions yields

1
n2 − 1

=
1
2

(
1

n− 1
− 1
n+ 1

)
.

So the kth partial sum of the given series is

Sk =
k∑

n=2

1
n2 − 1

=
1
2

(
1− 1

3
+

1
2
− 1

4
+

1
3
− 1

5
+

1
4
− 1

6
+

1
5
− 1

7
+ · · ·+ 1

k − 2
− 1
k

+
1

k − 1
− 1
k + 1

)

=
1
2

(
1 +

1
2
− 1
k
− 1
k + 1

)
.

Thus the sum of the given series is lim
k→∞

Sk =
3
4
.

C10S03.056: In Mathematica 3.0 the command

Apart[ (2∗n + 1)/(n∗n∗(n + 1)∧2) ]

produces the partial fraction decomposition
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2n+ 1
n2(n+ 1)2

=
1
n2
− 1

(n+ 1)2
.

Therefore the kth partial sum of the given series is

Sk =
k∑

n=1

2n+ 1
n2(n+ 1)2

= 1− 1
4

+
1
4
− 1

9
+

1
9
− 1

16
+ · · ·+ 1

k2
− 1

(k + 1)2
= 1− 1

(k + 1)2
.

It follows that

∞∑
n=1

2n+ 1
n2(n+ 1)2

= lim
k→∞

Sk = 1.

C10S03.057: In Derive 2.56 application of the command Expand to the nth term of the given series yields
the partial fraction decomposition

6n2 + 2n− 1
n(n+ 1)(4n2 − 1)

=
1
n
− 1
n+ 1

+
1

2n− 1
− 1

2n+ 1
.

So the kth partial sum of the given series is

Sk =
k∑

n=1

6n2 + 2n− 1
n(n+ 1)(4n2 − 1)

=
(

1− 1
2

+ 1− 1
3

)
+

(
1
2
− 1

3
+

1
3
− 1

5

)
+

(
1
3
− 1

4
+

1
5
− 1

7

)
+

(
1
4
− 1

5
+

1
7
− 1

9

)

=
(

1
5
− 1

6
+

1
9
− 1

11

)
+

(
1
6
− 1

7
+

1
11
− 1

13

)
+ · · ·+

(
1
k
− 1
k + 1

+
1

2k − 1
− 1

2k + 1

)

= 1− 1
k + 1

+ 1− 1
2k + 1

.

Therefore the sum of the given series is lim
k→∞

Sk = 2.

C10S03.058: In Derive 2.56 application of the command Expand to the nth term of the given series yields
the partial fraction decomposition

2
n(n+ 1)(n+ 2)

=
1
n
− 2
n+ 1

+
1

n+ 2
.

Thus the kth partial sum of the given series is

Sk =
k∑

n=1

2
n(n+ 1)(n+ 2)

=
1
1
− 2

2
+

1
3

+
1
2
− 2

3
+

1
4

+
1
3
− 2

4
+

1
5

+
1
4
− 2

5
+

1
6

10



+
1
5
− 2

6
+

1
7

+
1
6
− 2

7
+

1
8

+ · · ·

+
1

k − 3
− 2
k − 2

+
1

k − 1

+
1

k − 2
− 2
k − 1

+
1
k

+
1

k − 1
− 2
k

+
1

k + 1

+
1
k
− 2
k + 1

+
1

k + 2
.

Inspect the diagonals that run from southwest to northeast. The fractions with denominator 3 cancel one
another, as do those with denominators 4, 5, 6, . . . , k − 3, k − 2, k − 1, and k. Thus

Sk =
1
1
− 2

2
+

1
2

+
1

k + 1
− 2
k + 1

+
1

k + 2
=

1
2
− 1
k + 1

+
1

k + 2
.

Therefore the sum of the given series is lim
k→∞

Sk =
1
2
.

C10S03.059: In Mathematica 3.0 the command

Apart[ 6/(n∗(n + 1)∗(n + 2)∗(n + 3)) ]

yields the partial fraction decomposition

6
n(n+ 1)(n+ 2)(n+ 3)

=
1
n
− 3
n+ 1

+
3

n+ 2
− 1
n+ 3

.

Therefore the kth partial sum of the given series is

Sk =
k∑

n=1

6
n(n+ 1)(n+ 2)(n+ 3)

= 1− 3
2

+
3
3
− 1

4

+
1
2
− 3

3
+

3
4
− 1

5

+
1
3
− 3

4
+

3
5
− 1

6

+
1
4
− 3

5
+

3
6
− 1

7

+
1
5
− 3

6
+

3
7
− 1

8

+
1
6
− 3

7
+

3
8
− 1

9

+ · · ·

11



+
1

k − 4
− 3
k − 3

+
3

k − 2
− 1
k − 1

+
1

k − 3
− 3
k − 2

+
3

k − 1
− 1
k

+
1

k − 2
− 3
k − 1

+
3
k
− 1
k + 1

+
1

k − 1
− 3
k

+
3

k + 1
− 1
k + 2

+
1
k
− 3
k + 1

+
3

k + 2
− 1
k + 3

Examine the diagonals that run from southwest to northeast. The four fractions with denominator 4 all
cancel one another, as do those with denominators 5, 6, . . . , k − 1, and k. Thus

Sk = 1− 2
2

+
1
3
− 1
k + 1

+
2

k + 2
− 1
k + 3

=
1
3
− 1
k + 1

+
2

k + 2
− 1
k + 3

.

Therefore the sum of the given series is lim
k→∞

Sk =
1
3
.

C10S03.060: In Maple V (Release 5) the sequence of commands

f := 6∗n/(n∧4 - 5∗n∧2 + 4);

convert(f,parfrac,n);

yields the partial fraction decomposition

6n
n4 − 5n2 + 4

=
1

n− 2
− 1
n− 1

− 1
n+ 1

+
1

n+ 2
.

Thus the kth partial sum of the given series is

Sk =
k∑

n=3

6n
n4 − 5n2 + 4

=
1
1
− 1

2
− 1

4
+

1
5

+
1
2
− 1

3
− 1

5
+

1
6

+
1
3
− 1

4
− 1

6
+

1
7

+
1
4
− 1

5
− 1

7
+

1
8

+
1
5
− 1

6
− 1

8
+

1
9

+
1
6
− 1

7
− 1

9
+

1
10

+ · · ·

+
1

k − 7
− 1
k − 6

− 1
k − 4

+
1

k − 3

12



+
1

k − 6
− 1
k − 5

− 1
k − 3

+
1

k − 2

+
1

k − 5
− 1
k − 4

− 1
k − 2

+
1

k − 1

+
1

k − 4
− 1
k − 3

− 1
k − 1

+
1
k

+
1

k − 3
− 1
k − 2

− 1
k

+
1

k + 1

+
1

k − 2
− 1
k − 1

− 1
k + 1

+
1

k + 2
.

The fractions with denominator 5 cancel, as do those with denominators 6, 7, 8, . . . , k − 3, and k − 2.
After a few other cancellations we find that

Sk = 1− 1
4
− 1
k − 1

+
1

k + 2
.

Thus the sum of the given series is lim
k→∞

Sk =
3
4
.

C10S03.061: By part 2 of Theorem 2, if c �= 0 and
∑
can converges, then

∑ 1
c
· can =

∑
an

converges. Therefore if c �= 0 and
∑
an diverges, then

∑
can diverges.

C10S03.062: Note first that
∑

(−1)an converges. If
∑

(an + bn) also converges, then their sum
∑
bn

converges. Therefore if
∑
an converges and

∑
bn diverges, then

∑
(an + bn) diverges.

C10S03.063: Let

Sn =
n∑
i=1

ai and Tn =
n∑
i=1

bi,

let k be a fixed positive integer, and suppose that aj = bj for every integer j � k. If n = k + 1, then

Sn − Tn = (Sk + an)− (Tk + bn) = (Sk + an)− (Tk + an) = Sk − Tk.

Assume that Sn − Tn = Sk − Tk for some integer n � k + 1. Then

Sn+1 − Tn+1 = (Sn + an+1)− (Tn + bn+1) = (Sn + an+1)− (Tn + an+1) = Sn − Tn = Sk − Tk.

Therefore, by induction, Sn − Tn = Sk − Tk for every integer n � k + 1.

C10S03.064: Figure 10.3.5 of the text makes it clear that the total distance the bouncing ball travels is

D = a+ 2ra+ 2r2a+ 2r3a+ · · · = −a+ 2a(1 + r + r2 + r3 + · · · ) = −a+
2a

1− r = a · 1 + r

1− r .

C10S03.065: The total time the ball spends bouncing is
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T =
√

2a/g + 2
√

2ar/g + 2
√

2ar2/g + 2
√

2ar3/g + · · ·

= −
√

2a/g + 2
√

2a/g
(
1 + r1/2 + r + r3/2 + · · ·

)
= −

√
2a/g + 2

√
2a/g

(
1

1− r1/2

)

=
√

2a/g
(
−1 +

2
1− r1/2

)
=

√
2a/g

(
−1 + r1/2 + 2

1− r1/2

)
=

√
2a/g

(
1 + r1/2

1− r1/2

)
.

If we take r = 0.64, a = 4, and g = 32, we find the total bounce time to be

T =
√

8/32
(

1 + 0.8
1− 0.8

)
=

1
2
· 1.8
0.2

= 4.5 (seconds).

C10S03.066: The total spending will be (in billions of dollars)

1 + 0.9 + (0.9)2 + (0.9)3 + · · ·+ (0.9)n + · · · =
1

1− 0.9
= 10.

C10S03.067: Let r = 0.95. Then M1 = rM0, M2 = rM1 = r2M0, and so on; in the general case,
Mn = rnM0. Because −1 < r < 1, it now follows that

lim
n→∞

Mn = lim
n→∞

rnM0 = 0.

C10S03.068: Suppose that Mary tosses first. With H for “heads” and T for “tails,” here are her winning
patterns and their respective probabilities:

H
1
2

T T H
1
23

=
1
8

T T T T H
1
25

=
1
32

T T T T T T H
1
27

=
1

128

...
...

Evidently Mary’s probability of winning the game is the sum of the probabilities in the right-hand column.
This sum is a geometric series with first term 0.5 and ratio 0.25, and therefore its sum is 2

3 . The probability
that Paul wins can be computed in much the same way, or simply compute 1− 2

3 = 1
3 .

C10S03.069: Peter’s probability of winning is the sum of:

The probability that he wins in the first round;

The probability that everyone tosses tails in the first round and Peter
wins in the second round;

The probability that everyone tosses tails in the first two rounds and
Peter wins in the third round;

14



Et cetera, et cetera, et cetera.

Thus his probability of winning is

1
2

+
1
24

+
1
27

+
1

210
+ · · · =

1
2

1− 1
8

=
4
7
.

Similarly, the probability that Paul wins is

1
22

+
1
25

+
1
28

+
1

211
+ · · · =

1
4

1− 1
8

=
2
7

and the probability that Mary wins is

1
23

+
1
26

+
1
29

+
1

212
+ · · · =

1
8

1− 1
8

=
1
7

Note that the three probabilities have sum 1, as they should.

C10S03.070: Let X denote 1, 2, 3, 4, and 5. Peter (who goes first) has these winning patterns with
these probabilities:

6
1
6

X X X 6
53

64

X X X X X X 6
56

67

X X X X X X X X X 6
59

610

...
...

Thus Peter wins with probability

1
6

+
53

64
+

56

67
+

59

610
+ · · · =

1
6

1− 53

63

=
1
6
· 1

1− 125
216

=
36
91
≈ 0.395604395604.

Paul (who goes second) has these winning patterns with these probabilities:

X 6
5
62

X X X X 6
54

65

15



X X X X X X X 6
57

68

X X X X X X X X X X 6
510

611

...
...

Thus Paul wins with probability

5
62

+
54

65
+

57

68
+

510

611
+ · · · =

5
36

1− 53

63

=
5
36
· 1

1− 125
216

=
30
91
≈ 0.329670329670.

Mary (who goes third) has these winning patterns with these probabilities:

X X 6
52

63

X X X X X 6
55

66

X X X X X X X X 6
58

69

X X X X X X X X X X X 6
511

612

...
...

Thus Mary wins with probability

52

63
+

55

66
+

58

69
+

511

612
+ · · · =

25
216

1− 53

63

=
25
216
· 1

1− 125
216

=
25
91
≈ 0.274725274725.

The sum of the three probabilities is
36 + 30 + 25

91
= 1, exactly as it should be.

C10S03.071: The amount of light transmitted is

I

24
+

I

26
+

I

27
+

I

210
+ · · · = I ·

1
16

1− 1
4

=
I

12
,

1
12

of the incident light.

C10S03.072: The series for x does not converge, so x is not a number; computations with x have no
meaning.
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Section 10.4

C10S04.001: Because f (n)(x) = (−1)ne−x, we see that f (n)(0) = (−1)n if n � 0. Thus

P5(x) = 1− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
and

R5(x) =
x6

6!
e−z for some z between 0 and x.

C10S04.002: Given f(x) = sinx and n = 4, we have

f ′(x) = cosx f ′(0) = 1

f ′′(x) = − sinx f ′′(0) = 0

f (3)(x) = − cosx f (3)(0) = −1

f (4)(x) = sinx f (4)(0) = 0

f (5)(x) = cosx

Therefore

P4(x) = x− x3

3!
and R4(x) =

x5

5!
cos z

for some number z between 0 and x.

C10S04.003: Given f(x) = cosx and n = 4, we have

f ′(x) = − sinx f ′(0) = 0

f ′′(x) = − cosx f ′′(0) = −1

f (3)(x) = sinx f (3)(0) = 0

f (4)(x) = cosx f (4)(0) = 1

f (5)(x) = − sinx

Therefore

P4(x) = 1− x2

2!
+
x4

4!
and R4(x) = − x

5

5!
sin z

for some number z between 0 and x.

C10S04.004: Given f(x) = (1− x)−1 and n = 4, we compute

f ′(x) = (1− x)−2 f ′(0) = 1

f ′′(x) = 2(1− x)−3 f ′′(0) = 2

f (3)(x) = 6(1− x)−4 f (3)(0) = 6

1



f (4)(x) = 24(1− x)−5 f (4)(0) = 24

f (5)(x) = 120(1− x)−6

Therefore

P4(x) = 1 + x+ x2 + x3 + x4 and R4(x) =
x5

(1− z)6

for some number z between 0 and x.

C10S04.005: Given f(x) = (1 + x)1/2 and n = 3, we compute

f ′(x) =
1

2(1 + x)1/2
f ′(0) =

1
2

f ′′(x) = − 1
4(1 + x)3/2

f ′′(0) = − 1
4

f (3)(x) =
3

8(1 + x)5/2
f (3)(0) =

3
8

f (4)(x) = − 15
16(1 + x)7/2

Therefore

P3(x) = 1 +
x

2
− x2

8
+
x3

16
and R3(x) = − 5x4

128(1 + z)7/2

for some number z between 0 and x.

C10S04.006: Given f(x) = ln(1 + x) and n = 4, we find that

f ′(x) = (1 + x)−1 f ′(0) = 1

f ′′(x) = −(1 + x)−2 f ′′(0) = −1

f (3)(x) = 2(1 + x)−3 f (3)(0) = 2

f (4)(x) = −6(1 + x)−4 f (4)(0) = −6

f (4)(x) = 24(1 + x)−5

Therefore

P4(x) = x− x2

2
+
x3

3
− x4

4
and R4(x) =

x5

5(1 + z)5

for some number z between 0 and x.

C10S04.007: Given f(x) = tanx and n = 3, we find that

f ′(x) = sec2 x f ′(0) = 1

f ′′(x) = 2 sec2 x tanx f ′′(0) = 0

2



f (3)(x) = 2 sec4 x+ 4 sec2 x tan2 x f (3)(0) = 2

f (4)(x) = 16 sec4 x tanx+ 8 sec2 x tan3 x

Therefore

P3(x) = x+
x3

3
and R3(x) =

x4

4!
(16 sec4 z tan z + 8 sec2 z tan3 z)

for some number z between 0 and x.

C10S04.008: Given f(x) = arctanx and n = 2, we compute

f ′(x) =
1

1 + x2
f ′(0) = 1

f ′′(x) = − 2x
(1 + x2)2

f ′′(0) = 0

f (3)(x) =
6x2 − 2

(1 + x2)3

Therefore

P2(x) = x and R2(x) =
x3(6z2 − 2)
3!(1 + z2)3

for some number z between 0 and x.

C10S04.009: Given f(x) = arcsinx and n = 2, we compute

f ′(x) =
1√

1− x2
f ′(0) = 1

f ′′(x) =
x

(1− x2)3/2
f ′′(0) = 0

f (3)(x) =
1 + 2x2

(1− x2)5/2

Therefore

P2(x) = x and R2(x) =
x3(1 + 2z2)
3!(1− z2)5/2

for some number z between 0 and x.

C10S04.010: Given f(x) = x3 − 3x2 + 5x− 7 and n = 4, we compute

f ′(x) = 3x2 − 6x+ 5 f ′(0) = 5

f ′′(x) = 6x− 6 f ′′(0) = −6

f (3)(x) ≡ 6 f (3)(0) = 6

f (4)(x) ≡ 0 f (4)(0) = 0
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f (5)(x) ≡ 0

Therefore

P4(x) = −7 + 5x− 3x2 + x3 = f(x) and R4(x) ≡ 0.

C10S04.011: Because f (n)(x) = ex for all n � 0, we have f (n)(1) = e for such n. Therefore

ex = e+ e(x− 1) +
e

2
(x− 1)2 +

e

6
(x− 1)3 +

e

24
(x− 1)4 +

ez

120
(x− 1)5

for some z between 1 and x.

C10S04.012: Given: f(x) = cosx, a = π/4, and n = 3, we compute

f ′(x) = − sinx f ′(a) = −
√

2
2

f ′′(x) = − cosx f ′′(a) = −
√

2
2

f (3)(x) = sinx f (3)(a) =
√

2
2

f (4)(x) = cosx

Therefore

cosx =
√

2
2
−
√

2
2

(
x− π

4

)
−
√

2
4

(
x− π

4

)2
+
√

2
12

(
x− π

4

)3
+

cos z
24

(
x− π

4

)4

for some number z between π/4 and x.

C10S04.013: Given: f(x) = sinx, a = π/6, and n = 3. We compute

f ′(x) = cosx f ′(a) =
√

3
2

f ′′(x) = − sinx f ′′(a) = − 1
2

f (3)(x) = − cosx f (3)(a) = −
√

3
2

f (4)(x) = sinx

Therefore

sinx =
1
2

+
√

3
2

(
x− π

6

)
− 1

4

(
x− π

6

)2
−
√

3
12

(
x− π

6

)3
+

sin z
24

(
x− π

6

)4

for some number z between π/6 and x.

C10S04.014: Given f(x) = x1/2, a = 100, and n = 3, we compute
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f ′(x) =
1

2x1/2
f ′(a) =

1
20

f ′′(x) = − 1
4x3/2

f ′′(a) = − 1
4000

f (3)(x) =
3

8x5/2
f (3)(a) =

3
800000

f (4)(x) = − 15
16x7/2

Therefore

√
x = 10 +

1
20

(x− 100)− 1
8000

(x− 100)2 +
1

1600000
(x− 100)3 − 5

128z7/2
(x− 100)4

for some number z between 100 and x. The Taylor polynomial of degree 3 shown here can be used to
approximate square roots of numbers near 100 with some accuracy. For example,

√
101 ≈ 10 +

1
20
− 1

8000
+

1
1600000

=
16078901
1600000

≈ 10.049875625.

Ths error in this approximation is less than 4 × 10−9. To obtain an accurate upper bound for the error in
such an approximation, use the remainder term.

C10S04.015: Given f(x) = (x− 4)−2, a = 5, and n = 5, we compute

f ′(x) = −2(x− 4)−3 f ′(a) = −2

f ′′(x) = 6(x− 4)−4 f ′′(a) = 6

f (3)(x) = −24(x− 4)−5 f (3)(a) = −24

f (4)(x) = 120(x− 4)−6 f (4)(a) = 120

f (5)(x) = −720(x− 4)−7 f (5)(a) = −720

f (6)(x) = 5040(x− 4)−8

Therefore

1
(x− 4)2

= 1− 2(x− 5) + 3(x− 5)2 − 4(x− 5)3 + 5(x− 4)4 − 6(x− 5)5 +
(x− 5)6

720
· 5040
(z − 4)8

for some number z between 5 and x.

C10S04.016: Given f(x) = tanx, a = π/4, and n = 4, we compute

f(x) = tanx f(a) = 1

f ′(x) = sec2 x f ′(a) = 2

f ′′(x) = 2 sec2 x tanx f ′′(a) = 4

f (3)(x) = 2 sec4 x+ 4 sec2 x tan2 x f (3)(a) = 16

f (4)(x) = 16 sec4 x tanx+ 8 sec2 x tan3 x f (4)(a) = 80
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f (5)(x) = 16 sec6 x+ 88 sec4 x tan2 x+ 16 sec2 x tan4 x

Therefore

tanx = 1 + 2
(
x− π

4

)
+ 2

(
x− π

4

)2
+

8
3

(
x− π

4

)3
+

10
3

(
x− π

4

)4

+
1

120

(
x− π

4

)5
· (16 sec6 z + 88 sec4 z tan2 z + 16 sec2 z tan4 z)

for some number z between π/4 and x.

C10S04.017: Given f(x) = cosx, a = π, and n = 4, we compute

f(x) = cosx f(a) = −1

f ′(x) = − sinx f ′(a) = 0

f ′′(x) = − cosx f ′′(a) = 1

f (3)(x) = sinx f (3)(a) = 0

f (4)(x) = cosx f (4)(a) = −1

f (5)(x) = − sinx

Therefore

cosx = −1 +
(x− π)2

2
− (x− π)4

24
− sin z

120
(x− π)5

for some number z between π and x.

C10S04.018: Given f(x) = sinx, a = π/2, and n = 4, we compute

f(x) = sinx f(a) = 1

f ′(x) = cosx f ′(a) = 0

f ′′(x) = − sinx f ′′(a) = −1

f (3)(x) = − cosx f (3)(a) = 0

f (4)(x) = sinx f (4)(a) = 1

f (5)(x) = cosx

Therefore

sinx = 1− 1
2

(
x− π

2

)2
+

1
24

(
x− π

2

)4
+

cos z
120

(
x− π

2

)5

for some number z between π/2 and x.

C10S04.019: Given f(x) = x3/2, a = 1, and n = 4, we compute
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f(x) = x3/2 f(a) = 1

f ′(x) =
3
2
x1/2 f ′(a) =

3
2

f ′′(x) =
3
4
x−1/2 f ′′(a) =

3
4

f (3)(x) = − 3
8
x−3/2 f (3)(a) = − 3

8

f (4)(x) =
9
16
x−5/2 f (4)(a) =

9
16

f (5)(x) = − 45
32
x−7/2

Therefore

x3/2 = 1 +
3
2

(x− 1) +
3
8

(x− 1)2 − 1
16

(x− 1)3 +
3

128
(x− 1)4 − (x− 1)5

120
· 45
32z7/2

for some number z between 1 and x.

C10S04.020: Given f(x) = (1− x)−1/2, a = 0, and n = 4, we compute

f(x) = (1− x)−1/2 f(a) = 1

f ′(x) =
1
2

(1− x)−3/2 f ′(a) =
1
2

f ′′(x) =
3
4

(1− x)−5/2 f ′′(a) =
3
4

f (3)(x) =
15
8

(1− x)−7/2 f (3)(a) =
15
8

f (4)(x) =
105
16

(1− x)−9/2 f (4)(a) =
105
16

f (5)(x) =
945
32

(1− x)−11/2

Therefore

1√
1− x

= 1 +
x

2
+

3x2

8
+

5x3

16
+

35x4

128
+

x5

120
· 945
32(1− z)11/2

for some number z between 0 and x.

C10S04.021: Substitution of −x for x in the series in Eq. (19) yields

e−x = 1− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
+ · · · =

∞∑
n=0

(−1)nxn

n!
.

This representation is valid for all x.

C10S04.022: Substitution of 2x for x in the series in Eq. (19) yields
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e2x = 1 + 2x+
4x2

2!
+

8x3

3!
+

16x4

4!
+

32x5

5!
+ · · · =

∞∑
n=0

(2x)n

n!
.

This representation is valid for all x.

C10S04.023: Substitution of −3x for x in the series in Eq. (19) yields

e−3x = 1− 3x+
9x2

2!
− 27x3

3!
+

81x4

4!
− 243x5

5!
+ · · · =

∞∑
n=0

(−1)n3nxn

n!
.

This representation is valid for all x.

C10S04.024: Substitution of x3 for x in the series in Eq. (19) yields

exp
(
x3

)
= 1 + x3 +

x6

2!
+
x9

3!
+
x12

4!
+
x15

5!
+ · · · =

∞∑
n=0

x3n

n!
.

This representation is valid for all x.

C10S04.025: Substitution of 2x for x in the series in Eq. (22) yields

sin 2x = 2x− 8x3

3!
+

32x5

5!
− 128x7

7!
+

512x9

9!
− · · · =

∞∑
n=0

(−1)n(2x)2n+1

(2n+ 1)!
.

This representation is valid for all x.

C10S04.026: Substitution of x/2 for x in the series in Eq. (22) yields

sin
x

2
=
x

2
− x3

3! · 8 +
x5

5! · 32
− x7

7! · 128
+

x9

9! · 512
− · · · =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)! · 22n+1
.

This representation is valid for all x.

C10S04.027: Substitution of x2 for x in the series in Eq. (22) yields

sin
(
x2

)
= x2 − x6

3!
+
x10

5!
− x14

7!
+
x18

9!
− · · · =

∞∑
n=0

(−1)nx4n+2

(2n+ 1)!
.

This representation is valid for all x.

C10S04.028: Substitution of 2x for x in the series in Eq. (21) yields

sin2 x =
1− cos 2x

2
=

1
2

(
1−

∞∑
n=0

(−1)n(2x)2n

(2n)!

)
= x2 − x4

3
+

2x6

45
− x8

315
+

2x10

14175
− 2x12

467775
+ · · · .

This representation is valid for all x.

C10S04.029: Given f(x) = ln(1 + x) and a = 0, we compute:

f(x) = ln(1 + x) f(a) = 0
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f ′(x) =
1

1 + x
f ′(a) = 1

f ′′(x) = − 1
(1 + x)2

f ′′(a) = −1

f (3)(x) =
2

(1 + x)3
f (3)(a) = 2

f (4)(x) = − 6
(1 + x)4

f (4)(a) = −6

f (5)(x) =
24

(1 + x)5
f (5)(a) = 24

f (6)(x) = − 120
(1 + x)6

f (6)(a) = −120

Evidently f (n)(a) = (−1)n+1(n − 1)! if n � 1. (For a proof, use proof by induction. We omit the proof to
save space.) Therefore the Taylor series for f(x) at a = 0 is

∞∑
n=1

(−1)n+1(n− 1)!xn

n!
=

∞∑
n=1

(−1)n+1xn

n
= x− x2

2
+
x3

3
− x4

4
+
x5

5
− · · · .

This representation of f(x) = ln(1 + x) is valid if −1 < x � 1.

C10S04.030: Given f(x) = 1/(1− x) and a = 0, we compute:

f(x) =
1

1− x f(a) = 1

f ′(x) =
1

(1− x)2 f ′(a) = 1

f ′′(x) =
2

(1− x)3 f ′′(a) = 2

f (3)(x) =
6

(1− x)4 f (3)(a) = 6

f (4)(x) =
24

(1− x)5 f (4)(a) = 24

f (5)(x) =
120

(1− x)6 f (5)(a) = 120

f (6)(x) =
720

(1− x)7 f (6)(a) = 720

Evidently f (n)(a) = n! if n � 0. Therefore the Taylor series for f(x) at a = 0 is

∞∑
n=0

n!xn

n!
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + x5 + · · · .

This representation of f(x) = 1/(1− x) is valid if −1 < x < 1.
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C10S04.031: If f(x) = e−x, then f (n)(x) = (−1)ne−x for all n � 0. With a = 0, this implies that
f (n)(a) = (−1)n for all n � 0. Therefore the Taylor series for f(x) at a is

∞∑
n=0

(−1)nxn

n!
= 1− x+

x2

2!
− x3

3!
+
x4

4!
− x5

5!
+
x6

6!
− · · · .

This representation of f(x) = e−x is valid for all x.

C10S04.032: Given f(x) = sinx and a = π/2, we compute:

f(x) = sinx f(a) = 1

f ′(x) = cosx f ′(a) = 0

f ′′(x) = − sinx f ′′(a) = −1

f (3)(x) = − cosx f (3)(a) = 0

f (4)(x) = sinx f (4)(a) = 1

f (5)(x) = cosx f (5)(a) = 0

f (6)(x) = − sinx f (6)(a) = −1

Evidently f (n)(a) = 0 if n is odd, whereas f (n)(a) = (−1)n/2 if n is even. After simplifications we find the
Taylor series for f(x) at a to be

∞∑
n=0

(−1)n

(2n)!

(
x− π

2

)2n
= 1− 1

2

(
x− π

2

)2
+

1
24

(
x− π

2

)4
− 1

720

(
x− π

2

)6
+ · · · .

This representation of f(x) = sinx is valid for all x.

C10S04.033: Given f(x) = lnx and a = 1, we compute:

f(x) = lnx f(a) = 0

f ′(x) =
1
x

f ′(a) = 1

f ′′(x) = − 1
x2

f ′′(a) = −1

f (3)(x) =
2
x3

f (3)(a) = 2

f (4)(x) = − 6
x4

f (4)(a) = −6

f (5)(x) =
24
x5

f (5)(a) = 24

f (6)(x) = − 120
x6

f (6)(a) = −120
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We have here convincing evidence that if n � 1, then f (n)(a) = (−1)n+1(n− 1)!. (To prove this rigorously,
use proof by induction; we omit any proof to save space.) Therefore the Taylor series for f(x) = lnx at
a = 1 is

∞∑
n=1

(−1)n+1(n− 1)!(x− 1)n

n!
=

∞∑
n=1

(−1)n+1(x− 1)n

n

= (x− 1)− 1
2

(x− 1)2 +
1
3

(x− 1)3 − 1
4

(x− 1)4 +
1
5

(x− 1)5 − 1
6

(x− 1)6 + · · · .

This representation of f(x) = lnx is valid if 0 < x � 2.

C10S04.034: Given f(x) = e2x and a = 0, we compute:

f(x) = e2x f(a) = 1

f ′(x) = 2e2x f ′(a) = 2

f ′′(x) = 4e2x f ′′(a) = 4

f (3)(x) = 8e2x f (3)(a) = 8

f (4)(x) = 16e2x f (4)(a) = 16

f (5)(x) = 32e2x f (5)(a) = 32

f (6)(x) = 64e2x f (6)(a) = 64

It’s clear that f (n)(a) = 2n if n � 0. Therefore the Taylor series for f(x) = e2x at a = 0 is

∞∑
n=0

2nxn

n!
= 1 + 2x+ 2x2 +

4x3

3
+

2x4

3
+

4x5

15
+

4x6

45
+

8x7

315
+

2x7

315
+ · · · .

C10S04.035: Given f(x) = cosx and a = π/4, we compute:

f(x) = cosx f(a) =
√

2
2

f ′(x) = − sinx f ′(a) = −
√

2
2

f ′′(x) = − cosx f ′′(a) = −
√

2
2

f (3)(x) = sinx f (3)(a) =
√

2
2

f (4)(x) = cosx f (4)(a) =
√

2
2

f (5)(x) = − sinx f (5)(a) = −
√

2
2
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f (6)(x) = − cosx f (6)(a) = −
√

2
2

It should be clear that

f (n)(a) =
√

2
2

if n is of the form 4k or 4k + 3, whereas

f (n)(a) = −
√

2
2

if n is of the form 4k + 1 or 4k + 2.

Therefore the Taylor series for f(x) = cosx at a = π/4 is

√
2
2
−
√

2
2

(
x− π

4

)
−
√

2
2! · 2

(
x− π

4

)2
+
√

2
3! · 2

(
x− π

4

)3
+
√

2
4! · 2

(
x− π

4

)4
− · · · .

This representation of f(x) = cosx is valid for all x.

C10S04.036: Given f(x) = 1/(1− x)2 and a = 0, we compute:

f(x) = (1− x)−2 f(a) = 1

f ′(x) = 2(1− x)−3 f ′(a) = 2

f ′′(x) = 6(1− x)−4 f ′′(a) = 6

f (3)(x) = 24(1− x)−5 f (3)(a) = 24

f (4)(x) = 120(1− x)−6 f (4)(a) = 120

f (5)(x) = 720(1− x)−7 f (5)(a) = 720

f (6)(x) = 5040(1− x)−8 f (6)(a) = 5040

It should be clear that f (n)(a) = (n + 1)! for n � 0. (Prove this by induction; we omit the proof to save
space.) Therefore the Taylor series for f(x) at a = 0 is

∞∑
n=0

(n+ 1)!xn

n!
=

∞∑
n=0

(n+ 1)xn = 1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 + 7x6 + 8x7 + · · · .

This representation of f(x) is valid for −1 < x < 1.

C10S04.037: Given f(x) =
1
x

and a = 1, we compute:

f(x) =
1
x

f(a) = 1

f ′(x) = − 1
x2

f ′(a) = −1

f ′′(x) =
2
x3

f ′′(a) = 2

f (3)(x) = − 6
x4

f (3)(a) = −6

12



f (4)(x) =
24
x5

f (4)(a) = 24

f (5)(x) = − 120
x6

f (5)(a) = −120

f (6)(x) =
720
x7

f (6)(a) = 720

Clearly f (n)(a) = (−1)n · n! for n � 0. Therefore the Taylor series for f(x) at a = 1 is

∞∑
n=0

(−1)nn!(x− 1)n

n!
=

∞∑
n=0

(−1)n(x− 1)n

= 1− (x− 1) + (x− 1)2 − (x− 1)3 + (x− 4)4 − (x− 1)5 + (x− 1)6 − (x− 1)7 + · · · .

This representation of f(x) is valid for 0 < x < 2.

C10S04.038: Given f(x) = cosx and a = π/2, we compute:

f(x) = cosx f(a) = 0

f ′(x) = − sinx f ′(a) = −1

f ′′(x) = − cosx f ′′(a) = 0

f (3)(x) = sinx f (3)(a) = 1

f (4)(x) = cosx f (4)(a) = 0

f (5)(x) = − sinx f (5)(a) = −1

f (6)(x) = − cosx f (6)(a) = 0

Therefore the Taylor series for f(x) at x = a is

∞∑
n=1

(−1)n

(2n− 1)!

(
x− π

2

)2n−1

= −
(
x− π

2

)
+

1
3!

(
x− π

2

)3
− 1

5!

(
x− π

2

)5
+

1
7!

(
x− π

2

)7
− · · · .

This representation of f(x) = cosx is valid for all x.

C10S04.039: Given f(x) = sinx and a = π/4, we compute:

f(x) = sinx f(a) =
√

2
2

f ′(x) = cosx f ′(a) =
√

2
2

f ′′(x) = − sinx f ′′(a) = −
√

2
2

f (3)(x) = − cosx f (3)(a) = −
√

2
2

13



f (4)(x) = sinx f (4)(a) =
√

2
2

f (5)(x) = cosx f (5)(a) =
√

2
2

f (6)(x) = − sinx f (6)(a) = −
√

2
2

Therefore the Taylor series for f(x) = sinx at a = π/4 is

√
2
2

+
√

2
2

(
x− π

4

)
−
√

2
2! · 2

(
x− π

4

)2
−
√

2
3! · 2

(
x− π

4

)3
+
√

2
4! · 2

(
x− π

4

)4
+
√

2
5! · 2

(
x− π

4

)5
− · · · .

This representation of f(x) = sinx is valid for all x.

C10S04.040: Given f(x) =
√

1 + x and a = 0, we compute:

f(x) = (1 + x)1/2 f(a) = 1

f ′(x) =
1
2

(1 + x)−1/2 f ′(a) =
1
2

f ′′(x) = − 1
4

(1 + x)−3/2 f ′′(a) = − 1
4

f (3)(x) =
3
8

(1 + x)−5/2 f (3)(a) =
3
8

f (4)(x) = − 15
16

(1 + x)−7/2 f (4)(a) = − 15
16

f (5)(x) =
105
32

(1 + x)−9/2 f (5)(a) =
105
32

f (6)(x) = − 945
64

(1 + x)−11/2 f (6)(a) = − 945
64

If n � 1, the coefficient of xn in the Taylor series for f(x) is therefore

(−1)n+1 · 1 · 3 · 5 · · · (2n− 3)
n! · 2n =

(−1)n+1 · 1 · 3 · 5 · · · (2n− 3) · 2 · 4 · 6 · · · (2n− 2)
n! · 2n · (n− 1)! · 2n−1

=
(−1)n+1 · (2n− 2)!
n! · (n− 1)! · 22n−1

.

Therefore the Taylor series for f(x) at x = a is

1 +
∞∑
n=1

(−1)n+1 · (2n− 2)!xn

n! · (n− 1)! · 22n−1
= 1 +

x

2
− x2

8
+
x3

16
− 5x4

128
+

7x5

256
− 21x6

1024
+

33x7

2048
− 429x8

32768
+ · · · .

This representation of f(x) =
√

1 + x is valid for −1 < x < 1. Numerical evidence suggests that it is not
valid if x = ±1.

C10S04.041: Given f(x) = sinx and a = 0, we compute:

f(x) = sinx f(a) = 0

14



f ′(x) = cosx f ′(a) = 1

f ′′(x) = − sinx f ′′(a) = 0

f (3)(x) = − cosx f (3)(a) = −1

f (4)(x) = sinx f (4)(a) = 0

f (5)(x) = cosx f (5)(a) = 1

f (6)(x) = − sinx f (6)(a) = 0

Therefore Taylor’s formula for f(x) at a = 0 is

f(x) = x− x3

3!
+
x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ (−1)n+1 sin z

(2n+ 3)!
x2n+3 (1)

for some number z between 0 and x. Because | cos z | � 1 for all z, it follows from Eq. (18) of the text that
the remainder term in Eq. (1) approaches zero as n → ∞. Therefore the Taylor series of f(x) = sinx at
a = 0 is

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

and this representation is valid for all x.

C10S04.042: Assuming that termwise differentiation of these series is legitimate (it is), we have

Dx cosx = Dx

(
1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ · · ·

)

= −x+
x3

3!
− x5

5!
+
x7

7!
− x9

9!
+ · · · = − sinx

and

Dx sinx = Dx

(
x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ · · ·

)

= 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ · · · = cosx.

C10S04.043: Given f(x) = coshx, g(x) = sinhx, and a = 0, we compute:

f(x) = coshx f(a) = 1

f ′(x) = sinhx f ′(a) = 0

f ′′(x) = coshx f ′′(a) = 1

f (3)(x) = sinhx f (3)(a) = 0

f (4)(x) = coshx f (4)(a) = 1

f (5)(x) = sinhx f (5)(a) = 0

15



f (6)(x) = coshx f (6)(a) = 1

Evidently f (n)(a) = 1 if n is even and f (n)(a) = 0 if n is odd. Therefore the Maclaurin series for f(x) = coshx
is

∞∑
n=0

x2n

(2n)!
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+
x8

8!
+ · · · . (1)

The remainder term in Taylor’s formula is

sinh z
(2n+ 1)!

x2n+1

where z is between 0 and x. The remainder term approaches zero as n → +∞ by Eq. (18) of the text.
Therefore the series in Eq. (1) converges to f(x) = coshx for all x. Similarly,

g(x) = sinhx g(a) = 0

g′(x) = coshx g′(a) = 1

g′′(x) = sinhx g′′(a) = 0

g(3)(x) = coshx g(3)(a) = 1

g(4)(x) = sinhx g(4)(a) = 0

g(5)(x) = coshx g(5)(a) = 1

g(6)(x) = sinhx g(6)(a) = 0

It is clear that g(n)(a) = 0 if n is even, whereas g(n) = 1 if n is odd. Therefore the Maclaurin series for
g(x) = sinhx is

∞∑
n=0

x2n+1

(2n+ 1)!
= x+

x3

3!
+
x5

5!
+
x7

7!
+
x9

9!
+ · · · . (2)

This series converges to g(x) = sinhx for all x by an argument very similar to that given for the hyperbolic
cosine series.

Next, substitution of ix for x yields

cosh ix = 1 +
(ix)2

2!
+

(ix)4

4!
+

(ix)6

6!
+ · · · = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · = cosx.

Similarly, sinh ix = sinx. This is one way to describe the relationship of the hyperbolic functions to the
circular functions. A more prosaic response to the concluding question in Problem 43 would be that if the
signs in the Maclaurin series for the cosine function are changed so that they are all plus signs, you get the
Maclaurin series for the hyperbolic cosine function; the same relation hold for the sine and hyperbolic sine
series.

C10S04.044: First,
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coshx =
1
2

(
ex + e−x

)

=
1
2

(
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

)
+

1
2

(
1− x+

x2

2!
− x3

3!
+
x4

4!
− x5

5!
+ · · ·

)

= 1 +
x2

2!
+
x4

4!
+
x6

6!
+
x8

8!
+ · · · .

Similarly,

sinhx =
1
2

(
ex − e−x

)

=
1
2

(
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

)
− 1

2

(
1− x+

x2

2!
− x3

3!
+
x4

4!
− x5

5!
+ · · ·

)

= x+
x3

3!
+
x5

5!
+
x7

7!
+
x9

9!
+ · · · .

C10S04.045: Given f(x) = e−x, its plot together with that of

P3(x) = 1− x+
x2

2!
− x3

3!

are shown next.

The graphs of f(x) = e−x and

P6(x) = 1− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
+
x6

6!

are shown together next.
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C10S04.046: The graphs of f(x) = sinx and P3(x) = x − 1
6 x

3 are shown together next, on the left; the
graphs of f and P5(x) = x− 1

6 x
3 + 1

120 x
5 are shown together on the right.

C10S04.047: Given f(x) = cosx, two of its Taylor polynomials are

P4(x) = 1− x2

2!
+
x4

4!
and P8(x) = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
.

The graphs of f and P4 are shown next, on the left; the graph of f and P8 are on the right.

C10S04.048: Given f(x) = ln(1 + x), two of its Taylor polynomials are

P2(x) = 1− x2

2
and P4(x) = 1− x2

2
+
x3

3
− x4

4
.

The graphs of f and P2 are shown together next, on the left; the graphs of f and P4 are on the right.

C10S04.049: Given f(x) =
1

1 + x
, two of its Taylor polynomials are

P3(x) = 1− x+ x2 − x3 and P4(x) = 1− x+ x2 − x3 + x4.
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The graphs of f and P3 are shown together next, on the left; the graphs of f and P4 are on the right.

C10S04.050: Given f(x) =
1

1− x2
, two of its Taylor polynomials are

P3(x) = 1 + x2 and P6(x) = 1 + x2 + x4 + x6.

The graphs of f and P3 are shown together next, on the left; the graphs of f and P6 are on the right.

C10S04.051: The graph of the Taylor polynomial

P4(x) = 1− x

2!
+
x2

4!
− x3

6!
+
x4

8!

of f(x) and the graph of g(x) are shown together, next.

C10S04.052: Given: α = tan−1(1/5).

Part (a): tan 2α =
1
5 + 1

5

1− 1
25

=
5
12

.

Part (b): tan 4α =
5
12 + 5

12

1− 25
144

=
120
119

.

Part (c): tan
(π

4
− 4α

)
=

1− 120
119

1 + 120
119

= − 1
239

.
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Part (d): tan
(π

4
− 4α

)
= − 1

239
;

π

4
− 4α = − arctan

1
239

; 4 arctan
1
5
− arctan

1
239

=
π

4
.

C10S04.053: We begin with the formula

tan(A+B) =
tanA + tanB
1− tanA tanB

.

Let A = arctanx and B = arctan y. Thus

tan(arctanx + arctan y) =
x+ y

1− xy , so that arctanx + arctan y = arctan
x+ y

1− xy

(if xy < 1). Thus

arctan
1
2

+ arctan
1
5

= arctan
7
10
9
10

= arctan
7
9
.

Therefore

arctan
1
2

+ arctan
1
5

+ arctan
1
8

= arctan
7
9

+ arctan
1
8

= arctan
65
72
65
72

= arctan 1 =
π

4
.

C10S04.054: The first six terms of the series in (27) give a = arctan 1
5 ≈ 0.1973955598 with ten-place

accuracy. The first two terms of that series give b = arctan 1
239 ≈ 0.0041840760 with ten-place accuracy.

Then 16a− 4b ≈ 3.141592653 is in error in only the last digit as an approximation to π ≈ 3.141592654.

If we use instead the approximation

arctanx = x− x3

3
+
x5

5
− x7

7
+ · · · − x47

47
+
x49

49
,

then substitution of x =
1
5

yields (to the number of digits shown)

a ≈ 0.19739555984988075837004976519479029349010164238671

and substitution of x =
1

239
yields (again, to the number of digits shown)

b ≈ 0.00418407600207472386453821495928545274104806530763.

Then

16a− 4b ≈ 3.14159265358979323846264338327950288487743410695687,

—compare this with

π ≈ 3.14159265358979323846264338327950288419716939937510582

(also accurate to the number of digits shown here). The error in this last approximation is less than 7×10−37.

C10S04.055: Prove that

lim
n→∞

xn

n!
= 0

for every real number x.
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Proof: Suppose that x is a real number. Choose the integer k so large that k > |2x|. Let L = |x|k/k!.
Suppose that n = k + 1. Then

|x|n
n!

=
|x|k+1

(k + 1)!
=
|x|k
k!
· |x|
k + 1

<
L

2
=

L

2n−k

because |2x| < k < k + 1 and n− k = 1. Next, assume that

|x|m
m!

<
L

2m−k

for some integer m > k. Then

|x|m+1

(m+ 1)!
=
|x|m
m!
· |x|
m+ 1

<
L

2m−k ·
1
2

=
L

2m+1−k

because |2x| < k < m. Therefore, by induction,

|x|n
n!

<
L

2n−k

for every integer n > k. Now let n→ +∞ to conclude that

lim
n→∞

xn

n!
= 0.

C10S04.056: Suppose that 0 < x � 1. Then because

1
1 + t

= 1− t+ t2 − t3 + · · ·+ (−1)ntn +
(−1)n+1tn+1

1 + t
,

we have

∫ x

0

1
1 + t

dt =
∫ x

0

(
1− t+ t2 − t3 + · · ·+ (−1)ntn +

(−1)n+1tn+1

1 + t

)
dt;

[
ln(1 + t)

]x
0

=
[
t− t2

2
+
t3

3
− · · ·+ (−1)n

tn+1

n+ 1

]x
0

+Rn (1)

where

Rn =
∫ x

0

(−1)n+1tn+1

1 + t
dt.

Now

|Rn | �
∫ x

0

tn+1 dt =
xn+2

n+ 2
,

and therefore Rn → 0 as n→ +∞. Thus upon evaluation of Eq. (1), we find that

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n

xn+1

n+ 1
+Rn,

but because Rn → 0 as n→ +∞, we may now conclude that
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ln(1 + x) =
∞∑
n=1

(−1)n+1xn

n

if 0 � x � 1.

C10S04.057: By Theorem 4 of Section 10.3, S is not a number. Thus attempts to do “arithmetic” with
S are meaningless and may lead to all sorts of absurd results.

C10S04.058: Replacement of x with −x in the result in Problem 56 yields

ln(1− x) =
∞∑
n=1

(−1)n+1(−x)n
n

= −x− (−x)2
2

+
(−x)3

3
− (−x)4

n
+ · · ·

= −
(
x+

x2

2
+
x3

3
+
x4

4
+ · · ·

)
= −

∞∑
n=1

xn

n
.

Therefore

ln
1 + x

1− x = ln(1 + x) − ln(1− x)

=
(
x− x2

2
+
x3

3
− x4

4
+
x5

5
− · · ·

)
+

(
x+

x2

2
+
x3

3
+
x4

4
+
x5

5
+ · · ·

)

= 2
(
x+

x3

3
+
x5

5
+
x7

7
+
x9

9
+ · · ·

)
=

∑
n odd

2xn

n

if 0 � x � 1.

C10S04.059: Results: With x = 1 in the Maclaurin series in Problem 56, we find that

a =
50∑
n=1

(−1)n+1

n
≈ 0.68324716057591818842565811649.

With x = 1
3 in the second series in Problem 58, we find that

b =
49∑

n=1
n odd

2
n · 3n ≈ 0.69314718055994530941723210107.

Because |a− ln 2| ≈ 0.009900019984, whereas |b− ln 2| ≈ 2.039× 10−26, it is clear that the second series of
Problem 58 is far superior to the series of Problem 56 for the accurate approximation of ln 2.
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Section 10.5

C10S05.001:
∫ ∞

0

x

x2 + 1
dx =

[
1
2

ln(x2 + 1)
]∞

0

= +∞. Therefore
∞∑
n=1

n

n2 + 1
diverges.

C10S05.002:
∫ ∞

0

x exp(−x2) dx =
[
− 1

2
exp(−x2)

]∞

0

=
1
2
< +∞. Therefore

∞∑
n=1

n

exp(n2)

converges. The Mathematica 3.0 command

NSum[ n/Exp[n∗n], {n, 1, Infinity}, WorkingPrecision → 32 ]

yields the result that the sum of this series is approximately 0.4048813985713107.

C10S05.003:
∫ ∞

0

(x+ 1)−1/2 dx =
[
2(x+ 1)1/2

]∞

0

= +∞. Therefore
∞∑
n=1

1√
n+ 1

diverges.

C10S05.004:
∫ ∞

0

(x+ 1)−4/3 dx =
[
− 3

(x+ 1)1/3

]∞

0

= 3 < +∞. Therefore

∞∑
n=1

1
(n+ 1)4/3

converges. The Mathematica 3.0 command

NSum[ 1/(n + 1)∧(4/3), {n, 1, Infinity}, WorkingPrecision → 32 ]

reveals that the sum of the given series is approximately 2.6009377504588624.

C10S05.005:
∫ ∞

0

1
x2 + 1

dx =
[

arctanx
]∞

0

=
π

2
< +∞. Therefore

∞∑
n=1

1
n2 + 1

converges.

This is a special case of series 6.1.32 in Eldon R. Hansen, A Table of Series and Products, Prentice-Hall
Inc. (Englewood Cliffs, N.J.), 1975. According to Hansen, its sum is

− 1
2

+
π

2
cothπ ≈ 1.076674047468581174134050794750.

Mathematica 3.0 reports that the sum of the first 1,000,000 terms of this series is approximately 1.07667.

C10S05.006: The method of partial fractions yields

∫ ∞

1

1
x(x+ 1)

dx =
∫ ∞

1

(
1
x
− 1
x+ 1

)
dx

=
[
ln

x

x+ 1

]∞

1

=
(

lim
x→∞

ln
x

x+ 1

)
− ln

1
2

= ln 1− ln
1
2

= ln 2 < +∞.

Therefore the given series converges. In Example 3 of Section 10.3 we found that its sum is 1.
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C10S05.007:
∫ ∞

2

1
x lnx

dx =
[

ln(lnx)
]∞

2

= +∞. Therefore
∞∑
n=2

1
n lnn

diverges.

C10S05.008:
∫ ∞

1

lnx
x

dx =
[

1
2

(lnx)2
]∞

1

= +∞. Therefore
∞∑
n=1

lnn
n

diverges.

C10S05.009:
∫ ∞

0

2−x dx =
[
− 1

2x ln 2

]∞

0

=
1

ln 2
< +∞. Therefore

∞∑
n=1

1
2n

converges (to 1).

C10S05.010: Let u = x and dv = e−x dx. Then du = dx and we may choose v = −e−x. Thus
∫
xe−x dx = −xe−x +

∫
e−x dx = −xe−x − e−x + C.

Therefore

∫ ∞

0

xe−x dx =
[
− (x+ 1)e−x

]∞

0

= 1 < +∞,

and thus
∞∑
n=1

n

en
converges. To find its sum, note that

∞∑
n=1

n

en
=

1
e

∞∑
n=1

n

(
1
e

)n−1

=
1
e
f(x)

where x = 1/e and

f(x) =
∞∑
n=1

nxn−1.

Now f(x) = g′(x) where

g(x) =
∞∑
n=1

xn =
x

1− x.

It follows that

f(x) =
1− x+ x

(1− x)2 =
1

(1− x)2 .

Therefore

∞∑
n=1

n

en
=

1
e
f

(
1
e

)
=

e

(e− 1)2
≈ 0.920673594207792319.

Alternatively, the Mathematica 3.0 command

Sum[ n/Exp[n], {n, 1, Infinity} ]

almost immediately produces the same exact value of the sum.

C10S05.011: For each positive integer n, let
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In =
∫
xne−x dx.

Let u = xn and dv = e−x dx. Then du = nxn−1 dx; choose v = −e−x. Then

In = −xne−x + n

∫
xn−1e−x dx = −xne−x + nIn−1.

Therefore

∫
x2e−x dx = I2 = −x2e−x + 2I1 = −x2e−x + 2

(
−xe−x +

∫
e−x dx

)
= −(x2 + 2x+ 2)e−x + C.

Hence

∫ ∞

0

x2e−x dx = −
[
(x2 + 2x+ 2)e−x

]∞

0

= 2 < +∞,

and so
∞∑
n=1

n2

en
converges. It can be shown that its sum is

e(e+ 1)
(e− 1)3

≈ 1.992294767125.

C10S05.012:
∫ ∞

1

1
17x− 13

dx =
[

1
17

ln(17x− 13)
]∞

1

= +∞. Therefore
∞∑
n=1

1
17n− 13

diverges.

C10S05.013: Choose u = lnx and dv =
1
x2

dx. Then du =
1
x
dx; choose v = − 1

x
. Then

∫
lnx
x2

dx = − lnx
x

+
∫

1
x2

dx = − lnx
x
− 1
x

+ C.

Thus

∫ ∞

1

lnx
x2

dx =
[
− 1 + lnx

x

]∞

1

=
1 + 0

1
− lim
x→∞

1 + lnx
x

= 1− lim
x→∞

1
x

= 1− 0 = 1 < +∞

(we used l’Hôpital’s rule to find the limit). Therefore
∞∑
n=1

lnn
n2

converges.

C10S05.014: Because

∫ ∞

1

x+ 1
x2

dx =
∫ ∞

1

(
1
x

+
1
x2

)
dx =

[
− 1
x

+ lnx
]∞

1

= +∞,

the series
∞∑
n=1

n+ 1
n2

diverges.

C10S05.015: Because

∫ ∞

0

x

x4 + 1
dx =

[
1
2

arctan
(
x2

)]∞

0

=
π

4
< +∞,
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the series
∞∑
n=1

n

n4 + 1
converges.

With the aid of Mathematica 3.0 and Theorem 2, we find that the sum of this series is approximately
0.694173022150715 (only the last digit shown here is in doubt; it may round to 6 instead of 5).

C10S05.016: Because

∫ ∞

1

1
x3 + x

dx =
∫ ∞

1

(
1
x
− x

x2 + 1

)
dx

=
[
(lnx)− 1

2
ln

(
x2 + 1

)]∞

1

=
1
2

[
ln

x2

x2 + 1

]∞

1

=
1
2

ln 2 < +∞,

the series
∞∑
n=1

1
n3 + n

converges.

Use of a Mathematica command similar to that in the solutions of Problems 2 and 4 reveals that the
sum of the given series is approximately 0.671865985524009838. Mathematica 2.2 cannot find the exact sum,
but a Mathematica 3.0 command similar to the one in the solution of Problem 10 returns the exact value

EulerGamma +
PolyGamma(0, 1− i) + PolyGamma(0, 1 + i)

2
.

Here, EulerGamma is Euler’s constant γ ≈ 0.577216 and PolyGamma[n, z] returns the nth derivative of
the digamma function ψ(z). (We mention all this to give you a reference point at which to begin further
research if you wish.)

C10S05.017: Because

∫ ∞

1

2x+ 5
x2 + 5x+ 17

dx =
[

ln(x2 + 5x+ 17)
]∞

1

= +∞,

the series
∞∑
n=1

2n+ 5
n2 + 5n+ 17

diverges.

C10S05.018: Integration by parts (as in Example 1 of Section 7.3) yields

∫ ∞

1

ln
(
x+ 1
x

)
dx =

[
(x+ 1) ln(x+ 1)− x lnx

]∞

1

=
[
ln

(x+ 1)x+1

xx

]∞

1

.

Now

(x+ 1)x+1

xx
= (x+ 1)

(
x+ 1
x

)x
= (x+ 1)

(
1 +

1
x

)x
.

Because

lim
x→∞

(
1 +

1
x

)x
= e, it follows that lim

x→∞

(x+ 1)x+1

xx
= +∞.

Therefore the series
∞∑
n=1

ln
(
n+ 1
n

)
diverges. See also Problem 52 of Section 10.3.
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C10S05.019: Choose u = ln(1 + x−2) and dv = dx. Then

du =
−2x−3

1 + x−2
dx = − 2

x3 + x
dx;

choose v = x. Thus

∫ ∞

1

ln
(

1 +
1
x2

)
dx =

[
x ln(1 + x−2)

]∞

1

+ 2
∫ ∞

1

1
1 + x2

dx

= lim
x→∞

ln(1 + x−2)
1/x

− ln 2 +
[
2 arctanx

]∞

1

=
[

lim
z→0+

ln(1 + z2)
z

]∞

1

− ln 2 + π − π

2
=
π

2
− ln 2 < +∞

(use l’Hôpital’s rule to evaluate the last limit). Therefore
∞∑
n=1

ln
(

1 +
1
n2

)
converges.

C10S05.020: Because

∫ ∞

1

21/x

x2
dx =

[
− 21/x

ln 2

]∞

1

=
2

ln 2
− 1

ln 2
=

1
ln 2

< +∞,

the series
∞∑
n=1

21/n

n2
converges. Mathematica 3.0 reports that its sum is approximately 2.8069937050197894.

C10S05.21: Because

∫ ∞

1

x

4x2 + 5
dx =

[
1
8

ln(4x2 + 5)
]∞

1

= +∞,

the series
∞∑
n=1

n

4n2 + 5
diverges.

C10S05.022: Because

∫ ∞

1

x

(4x2 + 5)3/2
dx =

[
− 1

4
√

4x2 + 5

]∞

1

=
1
12

< +∞,

the series
∞∑
n=1

n

(4n2 + 5)3/2
converges. Its sum (via Mathematica) is about 0.1030899515824624.

C10S05.023: Because

∫ ∞

2

1
x
√

lnx
dx =

∫ ∞

2

(lnx)−1/2

x
dx =

[
2(lnx)1/2

]∞

2

= +∞,

the series
∞∑
n=2

1
n
√

lnn
diverges.

C10S05.024: Because
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∫ ∞

2

1
x

(lnx)−3 dx =
[
− 1

2(lnx)2

]∞

2

=
1

2(ln 2)2
< +∞,

the series
∞∑
n=2

1
n(lnn)3

converges. Its sum (via Mathematica) is approximately 2.06588653888413525.

C10S05.025: The substitution u = 2x and integral formula 17 of the endpapers of the text yields

∫
1

4x2 + 9
dx =

1
2

∫
1

u2 + 9
du =

1
2
· 1
3

arctan
(u

3

)
+ C =

1
6

arctan
(

2x
3

)
+ C.

Therefore

∫ ∞

1

1
4x2 + 9

dx =
[

1
6

arctan
(

2x
3

)]∞

1

=
1
6
· π

2
− 1

6
arctan

(
2
3

)
< +∞,

and thus
∞∑
n=1

1
4n2 + 9

converges.

This series is a special case of Eq. (6.1.32) of Eldon R. Hansen’s A Table of Series and Products, Prentice-
Hall, Inc. (Englewood Cliffs, N.J.), 1975. Mathematica 3.0 summed this series in a fraction of a second and
obtained the same answer as Hansen, viz.,

− 1
18

+
π

12
coth

(
3π
2

)
≈ 0.20628608982235128529.

C10S05.026: First,

∫ ∞

1

x+ 1
x+ 100

dx =
∫ ∞

1

(
1− 99

x+ 100

)
dx =

[
x− 99 ln(x+ 100)

]∞

1

= +∞

because, by l’Hôpital’s rule,

lim
x→∞

x

99 ln(x+ 100)
= lim
x→∞

x+ 100
99

= +∞.

Therefore the series
∞∑
n=1

n+ 1
n+ 100

diverges.

C10S05.027: Because

∫ ∞

1

x

(x2 + 1)2
dx =

[
− 1

2(x2 + 1)

]∞

1

=
1
4
< +∞,

the series
∞∑
n=1

n

n4 + 2n2 + 1
converges.

The Mathematica command

NSum[ n/(n∧4 + 2∗n∧2 + 1), { n, 1, Infinity }, WorkingPrecision -> 28 ] // Timing

when executed on a Power Macintosh 7600/120 yielded the approximate sum 0.39711677137965943 in 3.45
seconds.
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C10S05.028: Because

∫ ∞

1

(x+ 1)−3 dx =
[
− 1

2
(x+ 1)−2

]∞

1

=
1
8
< +∞,

the series
∞∑
n=1

1
(n+ 1)3

converges.

The sum of this series is ζ(3)− 1, where the Riemann zeta function ζ(k) is defined for integers k � 2 by the
formula

ζ(k) =
∞∑
n=1

1
nk
.

It is known that ζ(3) ≈ 1.2020569031595942854, so the sum of the series in this problem is approximately
0.2020569031595942854.

C10S05.029: Because

∫ ∞

1

arctanx
x2 + 1

dx =
[

1
2

(arctanx)2
]∞

1

=
π2

8
− π2

32
=

3
32
π2 < +∞,

the series
∞∑
n=1

arctann
n2 + 1

converges.

C10S05.030: Because

∫ ∞

3

1
x(lnx) [ln(lnx)]

dx =
[

ln(ln(lnx))
]∞

3

= +∞,

the series
∞∑
n=3

1
n(lnn) [ln(lnn)]

diverges.

C10S05.031: The integral test cannot be applied because this is not a positive-term series. In Section 10.7
you will see how to prove that it converges, and in Problem 61 there you will see that its sum is − ln 2.

C10S05.032: This is not a positive-term series; sinn is negative for infinitely many positive integral values
of n. (Exercise: Prove this assertion.) After you study absolute convergence in Section 10.7, you will see
how to apply the integral test to prove that this series converges. The Mathematica 3.0 command

N[ Sum[ N[ Exp[−n]∗Sin[n], 100 ], {n, 1, 100} ], 100 ] (1)

asks the program to compute the first hundred terms of the terms while carrying 100-digit accuracy, add
them, and report the answer (also to 100-digit accuracy, although now only the first 98 can be trusted).
Because | sinx| � 1 for all x, the number

∞∑
n=101

e−n =
1

(e− 1)e100
≈ 2.165× 10−44

overestimates the error in approximating the sum of the entire series with the partial sum in (1). Hence we
can rely on more than 40 decimal digits of accuracy in the response to the command in (1): The sum of the
series in Problem 32 is approximately 0.4195697895124155513.
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C10S05.033: The terms of this series are not monotonically decreasing. For specific examples, if we let
an = (2 + sinn)/(n2), then

a5 ≈ 0.0416430290 < 0.0477940139 ≈ a6, a11 ≈ 0.0082645437 < 0.0101626881 ≈ a12,

a18 ≈ 0.0038549776 < 0.0059553385 ≈ a19, a24 ≈ 0.0019000376 < 0.0029882372 ≈ a25,

a30 ≈ 0.0011244093 < 0.0016607309 ≈ a31, a37 ≈ 0.0009908414 < 0.0015902829 ≈ a38.

In Section 10.6 you will see how to use the comparison test to prove that this series converges.

C10S05.034: The terms of this series are not monotonically decreasing. For specific examples, let an =
[(sinn)/n ]4. Then

a3 ≈ 0.0000048963 < 0.0012814163 ≈ a4, a7 ≈ 0.0000775950 < 0.0002339130 ≈ a8,

a10 ≈ 0.0000087592 < 0.0000682987 ≈ a11, a16 ≈ 0.0000001048 < 0.0000102286 ≈ a17,

a19 ≈ 0.0000000039 < 0.0000043417 ≈ a20, a28 ≈ 0.0000000088 < 0.0000002742 ≈ a29.

After you study the comparison test in Section 10.6, you will know how to prove that this series converges.
Granted that it does converge, we can combine the integral test remainder estimate and the comparison test
to obtain a fairly accurate approximation to its sum. Because 0 � sin4 x � 1 for all x, we see that

1000∑
n=1

(
sinn
n

)4

<

∞∑
n=1

(
sinn
n

)4

<

[
1000∑
n=1

(
sinn
n

)4
]

+
∫ ∞

1000

1
x4

dx =

[
1000∑
n=1

(
sinn
n

)4
]

+
1

3000000000
.

The leftmost member of the preceding inequality can be accurately approximated by means of the Mathe-

matica 3.0 command

N[ Sum[ N[ ((Sin[n])/n)∧4, {n, 1, 1000} ], 100 ]

and thus we find that the sum of the original series is approximately 0.547197551.

C10S05.035: There is some implication that we are to use the integral test to solve this problem. Hence
we consider only the case in which p > 0. And if p = 1, then

∫ ∞

1

p−x dx =
[
− p

−x

ln p

]∞

x=1

=
1

p ln p
− lim
x→∞

1
px ln p

. (1)

If 0 < p < 1, then the limit in (1) is +∞. If p > 1 then the limit in (1) is 0. If p = 1 then the series diverges
because

∫ ∞

1

1
px

dx =
∫ ∞

1

1 dx = +∞.

Answer: The series diverges if 0 < p � 1 and converges if p > 1.

C10S05.036: Clearly the given series diverges if p � 0, so we assume that p > 0. If p = 1 then

∫ ∞

1

x

(x2 + 1)p
dx =

[
(x2 + 1)1−p

2(1− p)

]∞

1

=
[
− 1

2(p− 1)(x2 + 1)p−1

]∞

1

.
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This improper integral diverges if 0 < p < 1 and converges if p > 1. If p = 1 then

∫ ∞

1

x

(x2 + 1)p
dx =

[
1
2

ln(x2 + 1)
]∞

1

= +∞,

and therefore
∞∑
n=1

n

(n2 + 1)p
diverges if p � 1 and converges if p > 1.

C10S05.037: If p = 1 then

∫ ∞

2

1
x(lnx)p

dx =
∫ ∞

2

1
x lnx

dx =
[

ln(lnx)
]∞

2

= +∞.

Otherwise,

∫ ∞

2

1
x(lnx)p

dx =
∫ ∞

2

(lnx)−p

x
dx =

[
(lnx)1−p

1− p

]∞

2

=
[
− 1

(p− 1)(lnx)p−1

]∞

2

.

So this improper integral diverges if p < 1. If p > 1 then it converges to

1
(p− 1)(ln 2)p−1

< +∞.

Therefore the series
∞∑
n=2

1
n(lnn)p

diverges if p � 1 and converges if p > 1.

C10S05.038: If p = 1 then

∫ ∞

3

1
x(lnx) [ln(lnx)]p

dx =
∫ ∞

3

1
x(lnx) [ln(lnx)]

dx =
[

ln(ln(lnx))
]∞

3

= +∞.

If p < 0 then the series clearly diverges. If p = 0 then it is the series of Problem 7, which we have already
shown to be divergent by the integral test. Thus we suppose that p > 0 and p = 1. Then

∫ ∞

3

1
x(lnx) [ln(lnx)]p

dx =

[
[ln(lnx)]1−p

1− p

]∞

3

=

[
− 1

(p− 1) [ln(lnx)]p−1

]∞

3

.

Therefore the improper integral diverges if 0 < p < 1 and converges if p > 1. So the given series

∞∑
n=3

1
n(lnn) [ln(lnn)]p

diverges if p � 1 and converges if p > 1. When p = 1 it is a very slowly divergent series; the Mathematica

3.0 command

NSum[ 1/(n∗(Log[n])∗(Log[Log[n]])), {n, 3, 1000000000}, WorkingPrecision -> 28 ]

yielded the partial sum 5.77285617911296384. When p = 2 it converges to a surprisingly large value; the
Mathematica command

NSum[ 1/(n∗(Log[n])∗(Log[Log[n]])∧2), {n, 3, Infinity}, WorkingPrecision -> 28 ]

returned the approximate sum 38.4067680928217863.

C10S05.039: We require Rn < 0.0001. This will hold provided that
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∫ ∞

n

1
x2

dx < 0.0001

because Rn cannot exceed the integral. So we require
[
− 1
x

]∞

n

< 0.0001;

that is, that n > 10000.

C10S05.040: We require Rn < 0.00005. This will hold provided that
∫ ∞

n

1
x2

dx < 0.00005

because Rn cannot exceed the integral. So we require
[
− 1
x

]∞

n

< 0.00005;

that is, that n > 20000.

C10S05.041: We require Rn < 0.00005. This will hold provided that
∫ ∞

n

1
x3

dx < 0.00005

because Rn cannot exceed the integral. So we require

[
− 1

2x2

]∞

n

< 0.00005;

1
2n2

< 0.00005;

2n2 > 20000;

thus we require that n > 100.

C10S05.042: We require Rn < 2× 10−11. This will hold provided that
∫ ∞

n

1
x6

dx < 2× 10−11

because Rn cannot exceed the integral by Theorem 2. So we require
[
− 1

5x5

]∞

n

< 2× 10−11,

and it follows that n5 > 1010, and thus that n > 100. The exact value of the sum is

∞∑
n=1

1
n6

= ζ(6) =
π6

945
≈ 1.017343061984.

C10S05.043: We require Rn < 0.005. This will hold provided that
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∫ ∞

n

1
x3/2

dx < 0.005;

that is, provided that

[
− 2
x1/2

]∞

n

< 0.005,

so that n1/2 > 400, and thus n > N = 160000. Mathematica 3.0 reports that

SN =
N∑
n=1

1
n3/2

≈ 2.607375356498 and that S =
∞∑
n=1

1
n3/2

≈ 2.612375348685.

Note that S − SN ≈ 0.004999992187 < 0.005.

C10S05.044: We require Rn < 0.0005. This will hold provided that
∫ ∞

n

1
x3

dx =
1

2n2
< 0.0005,

so that n > 31.6228. Choose N = 32. Then Mathematica 3.0 reports that

SN =
N∑
n=1

1
n3
≈ 1.201583642358 and that S =

∞∑
n=1

1
n3
≈ 1.202056903160.

Note that S − SN ≈ 0.000473260802 < 0.0005.

The exact value of the sum of the given series is denoted by ζ(3), where ζ is the Riemann zeta function;
it is discussed briefly in the Project that follows Section 10.5. It is known that

ζ(3) ≈ 1.202056903159594285399738161511449990764986292340498881792,

correct to the number of digits shown here.

C10S05.045: We require Rn < 0.000005. This will hold provided that
∫ ∞

n

1
x5

dx =
1

4n4
< 0.000005,

so that n > 14.9535. Choose N = 15. Then Mathematica 3.0 reports that

SN =
N∑
n=1

1
n5
≈ 1.036923438841 and that S =

∞∑
n=1

1
n5
≈ 1.036927755143.

Note that S − SN ≈ 0.000004316302 < 0.000005.

C10S05.046: We require Rn < 0.00000005. This will hold provided that
∫ ∞

n

1
x7

dx =
1

6n6
< 0.00000005,

so that n > 12.2221. Choose N = 13. Then Mathematica 3.0 reports that
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SN =
N∑
n=1

1
n7
≈ 1.008349250111 and that S =

∞∑
n=1

1
n7
≈ 1.008349277382.

Note that S − SN ≈ 0.00000002727 < 0.00000005. The exact value of the sum of the given series is denoted
by ζ(7); see the concluding remarks in the solution of Problem 44.

C10S05.047: If p = 1, then

∫ ∞

1

lnx
xp

dx =
∫ ∞

1

lnx
x

dx =
[

1
2

(lnx)2
]∞

1

= +∞,

so in this case the given series
∞∑
n=1

lnn
np

diverges. Otherwise (with the aid of Mathematica 3.0 for the

antiderivative)

∫ ∞

1

lnx
xp

dx =
[
x1−p lnx− x1−p

(1− p)2

]∞

1

=
[
−1 + lnx

(p− 1)2xp−1

]∞

1

.

Thus if p < 1 the given series diverges, whereas if p > 1 it converges. Answer: p > 1.

C10S05.048: We may assume that p > 0. If p = e then

∫ ∞

1

1
pln x

dx =
∫ ∞

1

1
x
dx =

[
lnx

]∞

1

= +∞,

so in this case the series
∞∑
n=1

1
plnn

diverges. Otherwise

∫ ∞

1

1
pln x

dx =
[

x

(1− ln p)pln x

]∞

1

.

If p > e, then pln x > eln x = x, and thus
(

lim
x→∞

x

(1− ln p)pln x

)
− 1

1− ln p
= 0 +

1
−1 + ln p

< +∞.

If 0 < p < e, then pln x < eln x = x, and in this case

lim
x→∞

x

(1− ln p)pln x
= +∞.

Therefore the given series converges exactly when p > e.

C10S05.049: From the proof of Theorem 1 (the integral test), we see that if

an =
1
n
, f(x) =

1
x
, and Sn =

n∑
k=1

an

for each integer n � 1, then

Sn �
∫ n+1

1

1
x
dx =

[
lnx

]n+1

1

= ln(n+ 1)
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and

Sn − a1 �
∫ n

1

1
x
dx =

[
lnx

]n
1

= lnn.

Therefore

lnn < ln(n+ 1) � Sn � 1 + lnn;

put another way,

lnn � 1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n

� 1 + lnn

for every integer n � 1. So if a computer adds a million terms of the harmonic series every second, the
partial sum Sn will first reach 50 when n � e50 � e · n. This means that n must satisfy the inequalities

1 +
[[
e49

]]
� n �

[[
e50

]]
;

that is,

1907346572495099690526 � n � 5184705528587072464087.

Divide the smaller of these bounds by one million (additions the computer carries out each second), then by
3600 to convert to hours, by 24 and then by 365.242199 to convert to years, and finally by 100 to convert to
an answer: It will require over 604414 centuries. For a more precise answer, if N = 2911002088526872100231,
then Mathematica 3.0 reports that

N−1∑
n=1

1
n
≈ 49.999999999999999999999713 and

N∑
n=1

1
n
≈ 50.000000000000000000000057.

After converting to centuries as before, we finally get the “right” answer: It will require a little over 922460
centuries.

C10S05.050: Part (a): Subtraction of lnn from each member of the inequality in Problem 49 yields

0 � 1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n
− lnn � 1.

Part (b): First,

1
n+ 1

�
∫ n+1

n

1
x
dx =

[
lnx

]n+1

n

= ln(n+ 1)− lnn;

that is,

ln(n+ 1)− lnn− 1
n+ 1

� 0

for every positive integer n. Therefore

13



cn − cn+1 = − lnn− 1
n+ 1

+ ln(n+ 1) � 0

for such n, and therefore the sequence {cn} is a decreasing sequence. Because it is bounded, it converges by
the bounded monotonic sequence property discussed in Section 10.2 of the text. Its limit, Euler’s constant,

is denoted by γ, so that

γ = lim
n→∞

cn = lim
n→∞

(
1 +

1
2

+
1
3

+
1
4

+ · · ·+ 1
n
− lnn

)
≈ 0.577215664902.

C10S05.051: Suppose that f is continuous and f(x) > 0 for all x � 1. For each positive integer n, let

bn =
∫ n

1

f(x) dx.

Part (a): Note that the sequence {bn} is increasing. Suppose that it is bounded, so that

B = lim
n→∞

bn

exists. The definition of the value of an improper integral then implies that
∫ ∞

1

f(x) dx = lim
α→∞

∫ α

1

f(x) dx. (1)

Therefore, by Theorem 4 in Section 10.2,
∫ ∞

1

f(x) dx = lim
n→∞

∫ n

1

f(x) dx = lim
n→∞

bn = B.

Part (b): If the increasing sequence {bn} is not bounded, then by Problem 52 of Section 10.2,

lim
n→∞

bn = +∞.

Then Eq. (1) implies that
∫ ∞

1

f(x) dx = +∞

because
∫ α

1

f(x) dx is an increasing function of α.
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Section 10.6

C10S06.001: The series

∞∑
n−1

1
n2 + n+ 1

is dominated by
∞∑
n=1

1
n2
,

which converges because it is a p-series with p = 2 > 1. Therefore the dominated series also converges.

C10S06.002: The series

∞∑
n=1

n3 + 1
n4 + 2

diverges by limit-comparison with the harmonic series, demonstrated by the computation

n3 + 1
n4 + 2

1
n

=
n4 + n

n4 + 2
=

1 +
1
n3

1 +
2
n4

→ 1 + 0
1 + 0

= 1

as n→ +∞.

C10S06.003: The series

∞∑
n=1

1
n+ n1/2

diverges by limit-comparison with the harmonic series, demonstrated by the computation

1
n+ n1/2

1
n

=
n

n+ n1/2
=

1

1 +
1

n1/2

→ 1
1 + 0

= 1

as n→ +∞.

C10S06.004: The series

∞∑
n=1

1
n+ n3/2

is dominated by
∞∑
n=1

1
n3/2

,

and the latter converges because it is a p-series with p = 3
2 > 1. Therefore the dominated series also

converges. The Mathematica 3.0 command

NSum[ 1/(n + n∧(3/2)), {n, 1, Infinity}, WorkingPrecision → 29 ]

yields the information that

∞∑
n=1

1
n+ n3/2

≈ 1.68400947026785195.

C10S06.005: The series
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∞∑
n=1

1
1 + 3n

is dominated by
∞∑
n=1

1
3n
,

and the latter converges because it is a geometric series with ratio 1
3 < 1. Therefore the dominated series

also converges.

C10S06.006: The series

∞∑
n=1

10n2

n4 + 1
is dominated by

∞∑
n=1

10
n2
,

and the latter converges because it is a constant multiple of the p-series with p = 2 > 1. Therefore the
dominated series also converges. A Mathematica 3.0 command similar to the one in the solution of Problem
4 yields the approximation

∞∑
n=1

10n2

n4 + 1
≈ 11.2852792472431008541.

C10S06.007: The series

∞∑
n=2

10n2

n3 − 1

diverges by limit-comparison with the harmonic series, demonstrated by the computation

10n2

n3 − 1
1
n

=
10n3

n3 − 1
=

10

1− 1
n3

→ 10
1− 0

= 10

as n→ +∞.

C10S06.008: First note that if n � 1, then
n2 − n
n4 + 2

� n2

n4
=

1
n2

. Therefore the series

∞∑
n=1

n2 − n
n4 + 2

is dominated by
∞∑
n=1

1
n2
,

and the latter series converges because it is a p-series with p = 2 > 1. Therefore the dominated series also
converges. A Mathematica 3.0 command similar to those in the solutions of Problems 4 and 6 yields the
approximate sum 0.42667301517032271525.

C10S06.009: First note that if n � 1, then
1√

37n3 + 3
� 1√

n3
=

1
n3/2

. Therefore the series

∞∑
n=1

1√
37n3 + 3

is dominated by
∞∑
n=1

1
n3/2

,

and the latter series converges because it is a p-series with p = 3
2 > 1. Therefore the dominated series also

converges.

C10S06.010: The series
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∞∑
n=1

1√
n2 + 1

diverges by limit-comparison with the harmonic series, demonstrated by the computation

1√
n2 + 1

1
n

=
n

(n2 + 1)1/2
=

1(
1 +

1
n2

)1/2
→ 1√

1 + 0
= 1

as n→ +∞. The divergence of the given series, like that of the harmonic series, is quite slow. Mathematica

3.0 reports that the sum of its first million terms is only about 14.01049385339896.

C10S06.011: Because
√
n

n2 + n
� n1/2

n2
=

1
n3/2

, the series

∞∑
n=1

√
n

n2 + n
is dominated by

∞∑
n=1

1
n3/2

,

which converges because it is a p-series with p = 3
2 > 1. Therefore the dominated series also converges.

C10S06.012: The series

∞∑
n=1

1
3 + 5n

is dominated by
∞∑
n=1

1
5n
,

and the latter series converges because it is geometric with ratio 1
5 < 1. Thus the dominated series also

converges. Its sum, elicited by a Mathematica 3.0 command similar to those used in earlier solutions, is
approximately 0.170518822699190828424247791489.

C10S06.013: First we need a lemma: lnx < x if x > 0.

Proof: Let f(x) = x− lnx. Then

f ′(x) = 1− 1
x
.

Because f ′(x) < 0 if 0 < x < 1, f ′(1) = 0, and f ′(x) > 0 if 1 < x, the graph of y = f(x) has a global
minimum value at x = 1. Its minimum is f(1) = 1 − ln 1 = 1 > 0, and f(x) � f(1) if x > 0. Therefore
f(x) > 0 for all x > 0; that is, lnx < x if x > 0. �

Therefore the series

∞∑
n=2

1
lnn

dominates
∞∑
n=2

1
n
.

The latter series diverges because it is “eventually the same” as the harmonic series, and therefore the
dominating series also diverges.

C10S06.014: Note that

lim
n→∞

lnn
n

= 0.
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This result can be derived by a single application of l’Hôpital’s rule; it is also a consequence of other earlier
results and problems. Therefore the series

∞∑
n=1

1
n− lnn

diverges by limit comparison with the harmonic series, demonstrated by the computation

lim
n→∞

1
n− lnn

1
n

= lim
n→∞

n

n− lnn
= lim
n→∞

1

1− lnn
n

=
1

1− 0
= 1.

As one would expect—as a consequence of the limit-comparison test—the divergence of the given series is
quite slow. The sum of its first thousand terms is only about 8.76261.

C10S06.015: Because 0 � sin2 n � 1 for every integer n � 1, the series

∞∑
n=1

sin2 n

n2 + 1
is dominated by

∞∑
n=1

1
n2
.

The latter series converges because it is a p-series with p = 2 > 1. Therefore the dominated series also
converges.

C10S06.016: Because 0 � cos2 n � 1 for every integer n � 1, the series

∞∑
n=1

cos2 n
3n

is dominated by
∞∑
n=1

1
3n
.

The latter series converges because it is a geometric series with ratio 1
3 < 1. Therefore the dominated series

also converges by the comparison test.

C10S06.017: First we need a lemma: If n is a positive integer, then n < 2n.

Proof: The lemma is true for n = 1 because 1 < 2, so that 1 < 21. Suppose that k < 2k for some integer
k � 1. Then

2k+1 = 2 · 2k � 2 · k = k + k � k + 1.

Thus whenever the lemma holds for the integer k � 1, it also hold for k+1. Therefore, by induction, n < 2n

for every integer n � 1. �

Next, note that as a consequence of the lemma,

n+ 2n

n+ 3n
� 2n + 2n

3n
=

2 · 2n
3n

= 2 ·
(

2
3

)n
.

Therefore the series

∞∑
n=1

n+ 2n

n+ 3n
is dominated by

∞∑
n=1

2 ·
(

2
3

)n
.

The latter series converges because it is geometric with ratio 2
3 < 1. Therefore the dominated series also

converges by the comparison test.
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C10S06.018: The given series

S =
∞∑
n=1

1
2n + 3n

is dominated by
∞∑
n=1

1
3n
,

which converges because it is geometric with ratio 1
3 < 1. Therefore the dominated series converges by the

comparison test. Its sum is between

S100 =
100∑
n=1

1
2n + 3n

and S100 + T where T =
∞∑

n=101

1
3n

=
2

3100
.

Because 0 < T < 4× 1048, all 29 digits of the Mathematica-generated approximation

S100 ≈ 0.32135438719750624899165047695

are accurate as an approximation to the sum S of the given series.

C10S06.019: Because
1

n2 lnn
� 1
n2

if n � 3, the given series

∞∑
n=2

1
n2 lnn

is eventually dominated by
∞∑
n=2

1
n2
.

The latter series converges because it is eventually the same as the p-series with p = 2 > 1. Therefore the
dominated series converges by the comparison test. See the discussion of “eventual domination” following
the proof of Theorem 1 (the comparison test) in Section 10.6 of the text.

C10S06.020: Because
1

n1+
√
n

� 1
n2

if n � 1, the given series

∞∑
n=1

1
n1+

√
n

is dominated by
∞∑
n=1

1
n2
.

The latter series converges because it is the p-series with p = 2 > 1. Therefore the dominated series converges
by the comparison test; Mathematica 3.0 reports that its sum is approximately 1.2619486400097.

C10S06.021: First, a lemma: There is a positive integer K such that lnn � √n if n is a positive integer
and n � K.

Proof: We use l’Hôpital’s rule:

lim
n→∞

lnn√
n

= lim
x→∞

lnx
x1/2

= lim
x→∞

2x1/2

x
= lim
x→∞

2
x1/2

= 0.

Therefore there exists a positive integer K such that lnn � √n if n � K. �

Alternatively, let f(x) = x1/2 − lnx. Apply methods of calculus to show that f ′(x) < 0 if 0 < x < 4,
f ′(4) = 0, and f ′(x) > 0 if x > 4. It follows that f(x) � f(4) = 2 − ln 2 > 0 for all x > 0, and hence
x1/2 > lnx for all x > 0. Thus the integer K of the preceding proof may be chosen to be 1. But relying only
on the lemma, we now conclude that

∞∑
n=1

lnn
n2

is eventually dominated by
∞∑
n=1

n1/2

n2
=

∞∑
n=1

1
n3/2

.
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The last series converges because it is the p-series with p = 3
2 > 1. Therefore the dominated series converges

by the comparison test.

C10S06.022: The series
∞∑
n=1

arctann
n

diverges by limit-comparison with the harmonic series, shown by

the computation

lim
n→∞

arctann
n
1
n

= lim
n→∞

arctann =
π

2
.

C10S06.023: Because 0 � sin2(1/n) � 1 for every positive integer n, the given series

∞∑
n=1

sin2(1/n)
n2

is dominated by
∞∑
n=1

1
n2
.

The latter series converges because it is the p-series with p = 2 > 1. Therefore the dominated series also
converges by the comparison test.

C10S06.024: The given series
∞∑
n=1

e1/n

n
diverges by limit-comparison with the harmonic series, demon-

strated by the computation

lim
n→∞

e1/n

n
1
n

= lim
n→∞

e1/n = lim
u→0+

eu = e0 = 1.

C10S06.025: We showed in the solution of Problem 13 that lnn � n for every positive integer n. We
showed in the solution of Problem 17 that n � 2n for every positive integer n. Therefore

∞∑
n=1

lnn
en

is dominated by
∞∑
n=1

2n

en
=

∞∑
n=1

(
2
e

)n
.

The last series converges because it is geometric with ratio 2/e < 1. Therefore the dominated series converges
by the comparison test.

C10S06.026: The series
∞∑
n=1

n2 + 2
n3 + 3n

diverges by limit-comparison with the harmonic series, shown by

the computation

n2 + 2
n3 + 3n

1
n

=
n3 + 2n
n3 + 3n

=
1 +

2
n2

1 +
3
n2

→ 1 + 0
1 + 0

= 1

as n→ +∞.

C10S06.027: The given series

∞∑
n=1

n3/2

n2 + 4
diverges by limit-comparison with

∞∑
n=1

1
n1/2

,

6



shown by the computation

lim
n→∞

n3/2

n2 + 4
1

n1/2

= lim
n→∞

n2

n2 + 4
= lim
n→∞

1

1 +
4
n2

=
1

1 + 0
= 1;

note that
∞∑
n=1

1
n1/2

diverges because it is a p-series with p = 1
2 � 1.

C10S06.028: The given series

∞∑
n=1

1
n · 2n is dominated by

∞∑
n=1

1
2n
,

which converges because it is a geometric series with ratio 1
2 < 1. Therefore the dominated series converges

by the comparison test. To find its sum, observe that

∞∑
n=1

1
n · 2n =

∞∑
n=1

xn

n
= f(x)

where

x =
1
2

and f ′(x) =
∞∑
n=1

xn−1 =
1

1− x.

(We will see in Section 10.8 the conditions under which this last “term-by-term” differentiation of a series
in powers of x is valid. It is valid in this case provided that −1 < x < 1. We evaluated the sum of the last
series using the fact that it is geometric with ratio x.) We now see by antidifferentiation that

f(x) = C − ln(1− x); 0 = f(0) = C − ln 1 = C, and hence f(x) = − ln(1− x)

if −1 < x < 1. Therefore

∞∑
n=1

1
n · 2n = f

(
1
2

)
= − ln

(
1
2

)
= ln 2. (1)

The series in (1) converges quite rapidly in the sense that you don’t need to add a huge number of terms to
get good approximations to its sum. For example,

100∑
n=1

1
n · 2n ≈ 0.6931471805599453094172321214581688, (2)

which agrees with the exact decimal expansion of ln 2 in the first 31 digits to the right of the decimal. By
contrast, the better known series

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− · · · ,

which also converges to ln 2 (see Problem 61 in Section 10.7), does so much more slowly. For example,
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1000∑
n=1

(−1)n+1

n
≈ 0.692647,

and only the first two digits to the right of the decimal are correct even though we summed ten times as
many terms as in (2).

C10S06.029: First note that the series

∞∑
n=1

1
n1/2

(1)

diverges because it is a p-series with p = 1
2 � 1. Therefore the given series

∞∑
n=1

3
4 +
√
n

diverges by limit-comparison with the series in (1), as shown by the computation

lim
n→∞

3
4 + n1/2

1
n1/2

= lim
n→∞

3n1/2

4 + n1/2
= lim
n→∞

3
4

n1/2
+ 1

=
3

0 + 1
= 3.

C10S06.030: First observe that

n2 + 1
en(n+ 1)2

=
n2 + 1

en(n2 + 2n+ 1)
� n2 + 1
en(n2 + 1)

=
1
en

for each integer n � 1. Therefore the given series

∞∑
n=1

n2 + 1
en(n+ 1)2

converges by comparison with
∞∑
n=1

1
en

;

the latter series converges because it is geometric with ratio 1/e < 1. The original series can be summed
exactly using the Mathematica 3.0 command

Sum[ (n∧2 + 1)/((Exp[n])∗(n + 1)∧2), {n, 1, Infinity} ]

—the result (after simplifications) is

1
e− 1

− 2e+ 2e ln(e− 1) + 2eLi2

(
1
e

)
≈ 0.31057878433676.

Here, Lin(z) is the polylogarithm function, written PolyLog[n, z] in Mathematica and defined by

Lin(z) =
∞∑
k=1

zk

kn
.

This result suggests that the sum of the original series in Problem 30 cannot be expressed exactly in terms
of elementary functions. By contrast, the sum of the related series

∞∑
n=1

n2 + 1
en(n+ 1)
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is elementary and can be found by hand without great difficulty by using techniques of Section 10.9. You
might later enjoy verifying our result, which was

1
(e− 1)2

− 2 + 2e[1− ln(e− 1)] ≈ 0.83231351308149663532.

C10S06.031: First note that

2n2 − 1
n2 · 3n � 2n2

n2 · 3n =
2
3n

for each positive integer n. Therefore the given series

∞∑
n=1

2n2 − 1
n2 · 3n is dominated by

∞∑
n=1

2
3n
.

The latter series converges because it is geometric with ratio 1
3 < 1. Therefore the series of Problem 31

converges by the comparison test.

C10S06.032: First note that the series

∞∑
n=1

1
n4/3

(1)

converges because it is a p-series with p = 4
3 > 1. Therefore the given series

∞∑
n=1

1
(2n4 + 1)1/3

converges by limit-comparison with the series in (1), shown by the following computation:

lim
n→∞

1
(2n4 + 1)1/3

1
n4/3

= lim
n→∞

n4/3

(2n4 + 1)1/3
= lim
n→∞

1(
2 +

1
n4

)1/3
=

1
(2 + 0)1/3

=
1

21/3
.

The sum of the original series is reported by Mathematica 3.0 to be approximately 2.754012386799936.

C10S06.033: Because 1 � 2 + sinn � 3 for each integer n � 1, the given series

∞∑
n=1

2 + sinn
n2

is dominated by
∞∑
n=1

3
n2
.

The latter series converges because it is a constant multiple of the p-series with p = 2 > 1. Therefore the
dominated series converges as well by the comparison test.

C10S06.034: In the solution of Problem 13 we showed that lnx < x for all x > 0. Therefore the given
series

∞∑
n=1

lnn
n3

is dominated by
∞∑
n=1

n

n3
=

∞∑
n=1

1
n2
.
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The latter series converges because it is the p-series with p = 2 > 1. Therefore the dominated series converges
by the comparison test. Mathematica 3.0 can sum the original series exactly (in some sense); the command

Sum[ (Log[n])/(n∧3), {n, 2, Infinity} ]

elicits the response −ζ ′(3), approximately 0.19812624288564; the Riemann zeta function ζ(z) is discussed
briefly in the project that follows Section 10.5.

C10S06.035: The given series

∞∑
n=1

(n+ 1)n

nn+1

diverges by limit-comparison with the harmonic series, demonstrated by the following computation:

lim
n→∞

(n+ 1)n

nn+1

1
n

= lim
n→∞

(n+ 1)n

nn
= lim
n→∞

(
1 +

1
n

)n
= e.

C10S06.036: First note that 0 � sin4 n � 1 for each integer n � 1. Therefore

∞∑
n=1

(
sinn
n

)4

=
∞∑
n=1

sin4 n

n4
is dominated by

∞∑
n=1

1
n4
.

The latter series converges because it is the p-series with p = 4 > 1. Therefore the dominated series converges
by the comparison test. The dominated series has sum approximately 0.5471975512. Compare this series
and this result with those in the solution of Problem 34 of Section 10.5.

C10S06.037: The sum of the first ten terms of the given series is

S10 =
10∑
n=1

1
n2 + 1

=
1662222227
1693047850

≈ 0.981792822335.

The error in using S10 to approximate the sum S of the infinite series is

S − S10 = R10 �
∫ ∞

10

1
x2 + 1

dx =
[

arctanx
]∞

10

=
π

2
− arctan 10 ≈ 0.099668652491.

Because S ≈ 1.076674047469, the true value of the error is approximately 0.09488123.

C10S06.038: The sum of the first ten terms of the given series is

S10 =
10∑
n=1

1
3n + 1

=
76943801855199427217
190429124708983981100

≈ 0.404054799773.

The error in using S10 to approximate the sum S of the infinite series is

S − S10 = R10 �
∞∑

n=11

1
3n

=
2

310
≈ 0.000033870176.

Because S ≈ 0.404063267280861808, the true value of the error is approximately 0.00000847.
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C10S06.039: The sum of the first ten terms of the given series is

10∑
n=1

cos2 n
n2

≈ 0.528869678057.

The error in using S10 to approximate the sum S of the infinite series is

S − S10 = R10 �
∫ ∞

10

1
x2

dx =
[
− 1
x

]∞

10

=
1
10

= 0.1.

Because S ≈ 0.574137740053, the true value of the error is approximately 0.04526806.

C10S06.040: The sum of the first ten terms of the given series is

S10 =
11∑
n=2

1
(n+ 1)(lnn)2

≈ 1.224893289245.

The error in using S10 to approximate the sum S of the infinite series is

S − S10 = R10 �
∫ ∞

11

1
x(lnx)2

dx =
[
− 1

lnx

]∞

11

=
1

ln 11
≈ 0.417032391424.

Because S ≈ 1.625972613903, the true value of the error is approximately 0.40107933.

C10S06.041: The sum of the series is

S =
∞∑
n=1

1
n3 + 1

≈ 0.686503342339,

and S − 0.005 ≈ 0.681503342339. Because

9∑
n=1

1
n3 + 1

≈ 0.680981 < S − 0.005 < 0.681980 =
10∑
n=1

1
n3 + 1

,

the smallest positive integer n such that Rn < 0.005 is n = 10. Without advance knowledge of the sum of
the given series, you can obtain a conservative overestimate of n in the following way. We know that

Rn �
∫ ∞

n

1
x3

dx =
[
− 1

2x2

]∞

n

=
1

2n2
.

So it will be sufficient if

1
2n2

< 0.005; 2n2 > 200; n > 10;

that is, if n = 11. More accuracy, and a smaller value of n, might be obtained had we used instead the better
estimate

Rn �
∫ ∞

n

1
x3 + 1

dx,

and if n = 10 the value of this integral is approximately 0.004998001249, but one must question whether the
extra work in evaluating the antiderivative and solving the resulting inequality would be worth the trouble.

C10S06.042: The sum of the series is
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S =
∞∑
n=1

n

(n+ 1) · 2n = 2(1− ln 2) ≈ 0.613705638880, (1)

and S − 0.005 ≈ 0.608705638880. Because

7∑
n=1

n

(n+ 1) · 2n ≈ 0.606687 < S − 0.005 < 0.610159 ≈
8∑

n=1

n

(n+ 1) · 2n ,

the smallest positive integer n such that Rn < 0.005 is n = 8. Without advance knowledge of the sum of
the given series, you can obtain a conservative overestimate of n in the following way. We know that

Rn �
∫ ∞

n

1
2x

dx =
[
−2−x

ln 2

]∞

n

=
1

2n ln 2
.

So it will be sufficient if

1
2n ln 2

< 0.005; 2n >
200
ln 2
≈ 289; n = 9.

We might have found a smaller value of n by instead solving

∫ ∞

n

x

(x+ 1) · 2x dx < 0.005,

but the antiderivative we need appears to be a nonelementary function. (Techniques of Section 10.9 can be
used to find the exact sum in Eq. (1).)

C10S06.043: The sum of the series is

S =
∞∑
n=1

cos4 n
n4

≈ 0.100714442927,

and S − 0.005 ≈ 0.095714442927. Because

2∑
n=1

cos4 n
n4

≈ 0.087095 < S − 0.005 < 0.098954 ≈
3∑

n=1

cos4 n
n4

,

the smallest positive integer n such that Rn < 0.005 is n = 3. Without advance knowledge of the sum of
the given series, you can obtain a conservative overestimate of n in the following way. We know that

Rn �
∫ ∞

n

1
x4

dx =
[
− 1

3x3

]∞

n

=
1

3n3
.

So it will be sufficient if

1
3n3

< 0.005; 3n3 > 200; n3 > 67;

that is, n = 5. There are ways to lower this estimate but they are highly technical and probably not worth
the extra trouble.

C10S06.044: The sum of the series is
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S =
∞∑
n=1

1
n2+(1/n)

≈ 1.4759745320,

and S − 0.005 ≈ 1.4709745320. Because

196∑
n=1

1
n2+(1/n)

≈ 1.47095965 < S − 0.005 < 1.47098473 ≈
197∑
n=1

1
n2+(1/n)

,

the smallest positive integer n such that Rn < 0.005 is n = 197. Without advance knowledge of the sum
of the given series, you can obtain a conservative overestimate of n in the following way. We note that
n2+(1/n) > n2 for each positive integer n, and thus

Rn �
∫ ∞

n

1
x2

dx =
[
− 1
x

]∞

n

=
1
n
.

So it will be sufficient if

1
n
< 0.005; n > 200; n = 201.

C10S06.045: We suppose that
∑
an is a convergent positive-term series. By Example 9 in Section 4.3,

sinx < x for all x > 0. Moreover, the converse of Theorem 3 in Section 10.3 implies that an → 0 as
n→ +∞. Thus there exists a positive integer K such that if n � K, then an < π. Therefore

0 < sin(an) < an if n � K.

Therefore
∑
an eventually dominates the eventually positive-term series

∑
sin(an). Therefore the latter

series converges because the values of its terms for 1 � n < K cannot affect its convergence or divergence.

C10S06.046: Part (a): By l’Hôpital’s rule,

lim
n→∞

lnn
n1/8

= lim
x→∞

lnx
x1/8

= lim
x→∞

8x7/8

x
= lim
x→∞

8
x1/8

= 0.

Therefore there exists a positive integer K such that lnn < n1/8 for all n � K. (If you’re curious, you can
use Newton’s method to discover that K = 2149100652958 is the least integer that “works.”.)

Part (b): We know from part (a) that
1
n
<

1
(lnn)8

for all n � K (the same K of part (a)). Therefore

∞∑
n=2

1
(lnn)8

eventually dominates
∞∑
n=2

1
n
,

and the latter series diverges because it is eventually the same as the harmonic series.

C10S06.047: If
∑
an is a convergent positive-term series, then we may assume that n � 1, and hence

0 <
an
n

� an for all n.

Therefore
∑
an dominates the positive-term series

∑
(an/n), so by the comparison test the latter series

converges as well.
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C10S06.048: Because {cn} → 0, there exists a positive integer K such that cn � 1 for all n � K. Hence
0 � ancn � an if n � K. Therefore

∑
an eventually dominates

∑
ancn. Thus by the comparison test, the

latter series converges.

C10S06.049: Convergence of
∑
bn implies that {bn} → 0 (the converse of Theorem 3 of Section 10.3).

Therefore
∑
anbn converges by Problem 48.

C10S06.050: First, Eq. (7) in Section 5.3 tells us that for each positive integer n,

1 + 2 + 3 + 4 + · · ·+ n =
n(n+ 1)

2
.

A proof by induction is quite easy to construct. We omit it to save space. Using this result,

∞∑
n=1

1
1 + 2 + 3 + 4 + · · ·+ n

=
∞∑
n=1

2
n(n+ 1)

. (1)

This series is dominated by double the convergent p-series with p = 2, and therefore the series in (1)
converges. Moreover,

2
n(n+ 1)

=
2
n
− 2
n+ 1

,

so the kth partial sum of the series in (1) is

Sk =
k∑

n−1

2
n(n+ 1)

=
2
1
− 2

2
+

2
2
− 2

3
+

2
3
− 2

4
+

2
4
− 2

5
+ · · ·+ 2

k − 1
− 2
k

+
2
k
− 2
k + 1

= 2− 2
k + 1

.

Therefore the sum of the series in (1) is lim
k→∞

Sk = 2.

C10S06.051: By Problem 50 in Section 10.5, if n is a positive integer then

0 � 1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n
− lnn � 1.

Therefore

1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n

� 1 + lnn

for every positive integer n. Hence

∞∑
n=1

1

1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n

dominates
∞∑
n=1

1
1 + lnn

.

But we showed in the solution of Problem 13 of this section that lnn < n for all n � 1. So the last series
dominates

∞∑
n=1

1
1 + n

,
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which diverges because it is eventually the same as the harmonic series. Therefore the series of Problem 51
diverges.

C10S06.052: Suppose that
∑
an and

∑
bn are positive-term series.

Part (a): Suppose that
∑
bn converges and that

lim
n→∞

an
bn

= 0.

Then there exists a positive integer K such that an � bn for all n � K. Thus
∑
bn eventually dominates∑

an. Therefore
∑
an converges.

Part (b): Suppose that
∑
bn diverges and that

lim
n→∞

an
bn

= +∞.

Then there exists a positive integer K such that an � bn for all n � K. Thus
∑
an eventually dominates∑

bn, and therefore
∑
an diverges.
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Section 10.7

C10S07.001: The sequence {1/n2} is monotonically decreasing with limit zero. So the given series meets
both criteria of the alternating series test and therefore converges. It is known that

∞∑
n=1

(−1)n+1

n2
=
π2

12
≈ 0.822467033424;

this can be derived from results in Problem 68 of Section 10.8.

C10S07.002: The sequence
{
1/
√
n2 + 1

}
is monotonically decreasing with limit zero, so the given series

meets both criteria of the alternating series test. Therefore the series converges. Its sum is approximately
0.440917473865.

C10S07.003: Because

lim
n→∞

n

3n+ 2
=

1
3
�= 0, lim

n→∞

(−1)nn
3n+ 2

does not exist.

Therefore the given series diverges by the nth-term test for divergence.

C10S07.004: The sequence
{
n/(3n2 + 2)

}
is monotonically decreasing with limit zero, so the given series

meets both criteria of the alternating series test. Therefore this series converges. The Mathematica 3.0
command

Sum[ (n∗(−1)∧(n)/(3∗n∗n + 2), {n, 1, Infinity} ] // Timing (1)

returns the exact value of the sum; it is

1
12

[
ψ

(
1
2
− i√

6

)
− ψ

(
1− i√

6

)
+ ψ

(
1
2

+
i√
6

)
− ψ

(
1 +

i√
6

) ]
≈ −0.116088873843106141385856.

The Timing command in (1) returns a computational time of about 2.167 seconds on a PowerMacIntosh
7600/120, by modern standards a relatively slow machine. The digamma function ψ(z) is defined to be the
logarithmic derivative of the gamma function,

ψ(z) =
Γ′(z)
Γ(z)

;

in the language of Mathematica 3.0, it is PolyGamma[ 0, z ], where PolyGamma[ n, z ] = ψ(n)(z) is the
nth derivative of the digamma function. As usual, this additional information is provided for the benefit of
readers who are interested in additional reading and research on these topics.

C10S07.005: Because

lim
n→∞

n√
n2 + 2

= lim
n→∞

1(
1 +

2
n2

)1/2
= 1 �= 0, lim

n→∞

(−1)n+1n√
n2 + 2

does not exist.

Therefore the given series diverges by the nth-term test for divergence.

C10S07.006: Let

1



f(x) =
x2

(x5 + 5)1/2
for x � 1.

Then

f ′(x) =
x(20− x5)

2(x5 + 5)3/2
,

and therefore f is decreasing if x � 2. Therefore the series

∞∑
n=1

(−1)n+1n2

√
n5 + 5

=
∞∑
n=1

(−1)n+1an

satisfies the inequalities a1 < a2 > a3 > a4 > a5 > · · · ; that is, after the first term, its terms are monotoni-
cally decreasing with limit

lim
n→∞

n2

(n5 + 5)1/2
= lim
n→∞

1(
n+

5
n4

)1/2
= 0.

Therefore both criteria of the alternating series test are (effectively) met and thus the given series converges.
Its sum is approximately 0.0577598154958.

C10S07.007: We showed in the solution of Problem 13 of Section 10.6 that n > lnn for every integer
n � 1. Also, by l’Hôpital’s rule,

lim
n→∞

lnn
n

= 0.

Therefore

lim
n→∞

n

lnn
= +∞,

so the given series diverges by the nth-term test for divergence.

C10S07.008: Let

f(x) =
lnx
x1/2

; then f ′(x) =
2− lnx
2x3/2

.

Hence f is decreasing if lnx > 2; that is, if x > e2 ≈ 7.389. Let an = (lnn)/
√
n . Then even though the

sequence {an} is monotonically increasing for 1 � n � 7, it is monotonically decreasing thereafter. By
l’Hôpital’s rule,

lim
n→∞

an = lim
x→∞

lnx
x1/2

= lim
x→∞

2x1/2

x
= lim
x→∞

2
x1/2

= 0.

Therefore after the first seven terms, the terms of this sequence meet both criteria of the alternating series
test. Altering the first seven terms of a series cannot change the fact of its convergence or divergence, only
its sum; therefore the given series converges.

The Mathematica 3.0 command

Sum[ ((−1)∧n)∗(Log[n])/Sqrt[n], {n, 1, Infinity} ]

2



yields the exact value of its sum:

(√
2 ln 2

)
ζ

(
1
2

)
+

(
1−
√

2
)
ζ ′

(
1
2

)
≈ 0.193288831639282738965409085914;

the Riemann zeta function ζ(z) is discussed briefly in the project following Section 10.5 of the textbook.

C10S07.009: First we claim that if n is a positive integer, then

n

2n
� n+ 1

2n+1
. (1)

This assertion is true if n = 1 because

1
2

� 2
4
, and thus

1
21

� 2
22
.

Suppose that the inequality in (1) holds for some integer k � 1. Then

k

2k
� k + 1

2k+1
;

k

2k
+

1
2k

� k + 1
2k+1

+
2

2k+1
;

k + 1
2k

� k + 3
2k+1

;
k + 1
2k+1

>
k + 2
2k+2

.

Therefore, by induction, the inequality in (1) holds for every integer n � 1; indeed, strict inequality holds if
n � 2. Therefore if an = n/2n for n � 1, then the sequence {an} is monotonically decreasing. Its limit is
zero by l’Hôpital’s rule:

lim
n→∞

an = lim
x→∞

x

2x
= lim
x→∞

1
2x ln 2

= 0.

Therefore the given series satisfies both criteria of the alternating series test and thus it converges. To find
its sum, note that

∞∑
n=1

(−1)nn
2n

= f
(

1
2

)
where f(x) =

∞∑
n=1

(−1)n+1nxn = x
∞∑
n=1

(−1)nnxn−1 = xg(x)

where g(x) = h′(x) if we let

h(x) =
∞∑
n=1

(−1)nxn = −x+ x2 − x3 + x4 − x5 + · · · = − x

1 + x
.

Thus

g(x) = h′(x) = − 1
(1 + x)2

, so that f(x) = − x

(1 + x)2
.

It can be shown that all these computations are valid if −1 < x < 1, and therefore

∞∑
n=1

(−1)nn
2n

= f
(

1
2

)
= − 2

9
≈ −0.222222222222.

C10S07.010: The ratio test yields
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lim
n→∞

∣∣∣∣∣
(n+ 1)

(
− 2

3

)n+2

n
(
− 2

3

)n+1

∣∣∣∣∣ = lim
n→∞

2(n+ 1)
3n

=
2
3
< 1.

Therefore the alternating series

∞∑
n=1

n ·
(
− 2

3

)n+1

converges absolutely, and thus it converges. To find its sum, note that it is

f

(
− 2

3

)
where f(x) =

∞∑
n=1

nxn+1 = x2g(x)

where

g(x) =
∞∑
n=1

nxn−1.

But g(x) = h′(x) where

h(x) =
∞∑
n=1

xn =
x

1− x.

It now follows that

g(x) =
1

(x− 1)2
and that f(x) =

x2

(x− 1)2
.

These computations can be shown valid provided that −1 < x < 1. So the sum of the original series is
f

(
− 2

3

)
= 4

25 = 0.16.

C10S07.011: Given the series

∞∑
n=1

(−1)nn√
2n + 1

, (1)

first observe that, by l’Hôpital’s rule,

lim
x→∞

x

(2x + 1)1/2
= lim
x→∞

2(2x + 1)1/2

2x ln 2
= lim
x→∞

2(2x + 1)1/2

(22x)1/2 ln 2

= lim
x→∞

2
ln 2

(
2x + 1
22x

)1/2

= lim
x→∞

2
ln 2

(
1
2x

+
1

22x

)1/2

= 0.

Next,

lim
n→∞

2n+1 + 1
2n + 1

= lim
n→∞

2 + 2−n

1 + 2−n
=

2 + 0
1 + 0

= 2

and

lim
n→∞

(n+ 1)2

n2
= lim
n→∞

(
n+ 1
n

)2

= 12 = 1.
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Therefore there exists a positive integer K such that, if n � K, then

2n+1 + 1
2n + 1

>
3
2
>

(n+ 1)2

n2
.

For such n, it follows that

n2

2n + 1
>

(n+ 1)2

2n+1 + 1
; thus

n√
2n + 1

>
n+ 1√

2n+1 + 1
.

This shows that the terms of the series in (1) are monotonically decreasing for n � K, and so both criteria of
the alternating series test are met for n � K. Altering the terms for n < K cannot change the convergence
or divergence of a series, so the series in (1) converges. Its sum is approximately −0.178243455603. (By the
way, the least value of K that “works” in this proof is K = 5, although the terms of the series begin to
decrease in magnitude after n = 3.)

C10S07.012: This series diverges by the nth-term test for divergence because (nπ/10)n+1 → +∞ as
n→ +∞.

C10S07.013: The values of sin(nπ/2) for n = 1, 2, 3, . . . are 1, 0, −1, 0, 1, 0, −1, 0, 1 · · · . So we rewrite
the given series in the form

∞∑
n=1

(−1)n+1

(2n− 1)2/3

to present it as an alternating series in the strict sense of the definition. Because the sequence {1/(2n−1)2/3}
clearly meets the criteria of the alternating series test, this series converges. Its sum is approximately
0.711944418056.

C10S07.014: This series converges by the alternating series test, because the numerators take the values
−1, 1, −1, 1, −1, . . . as n = 1, 2, 3, 4, 5, . . . , and the denominators are monotonically increasing
positive numbers.

A Mathematica command similar to those used previously in the solutions for this chapter yields the
exact value of the sum of the given series; it is

−1 +
√

2
2
ζ

(
3
2

)
≈ −0.7651470246254079453672687586.

C10S07.015: Because

lim
n→∞

sin
(

1
n

)
= lim
u→0+

sinu = 0

and because sinu decreases monotonically through positive values as u → 0+, this series converges by the
alternating series test. Its sum is approximately −0.550796848134.

C10S07.016: Because

lim
n→∞

n sin
(π
n

)
= lim
u→0+

sinπu
u

= π
(

lim
u→0+

sinπu
πu

)
= π · 1 = π �= 0,

5



the given series diverges by the nth-term test for divergence.

C10S07.017: By Example 7 of Section 10.2, 21/n → 1 as n → +∞. So the given series diverges by the
nth-term test for divergence.

C10S07.018: Lemma: If a > 1 and k is a positive integer, then

lim
n→∞

an

nk
= +∞. (1)

Proof: If k = 1, then l’Hôpital’s rule yields

lim
n→∞

an

nk
= lim
x→∞

ax

x
= lim
x→∞

ax ln a
1

= +∞

because ln a > 0. So the result in Eq. (1) holds when k = 1. Assume that Eq. (1) holds for some integer
k � 1. Then by l’Hôpital’s rule,

lim
n→∞

an

nk+1
= lim
x→∞

ax

xk+1
= lim
x→∞

ax ln a
(k + 1)xk

=
(

ln a
k + 1

)(
lim
x→∞

ax

xk

)
= +∞

because (ln a)/(k + 1) > 0. Thus whenever Eq. (1) holds for some positive integer k � 1, it also holds for
k + 1. Therefore, by induction, Eq. (1) holds for every integer k � 1. �

Therefore

lim
n→∞

(1.01)n+1

n4
= (1.01)

(
lim
n→∞

(1.01)n

n4

)
= +∞.

Consequently the given series diverges by the nth-term test for divergence.

The point of the Lemma is that every exponential function with base a > 1 eventually outruns any
polynomial function, no matter how high its degree. In the case of this particular series, its 1000th term is
approximately 2.11687× 10−8, rather close to zero, but its millionth term exceeds 2.38839× 104297.

C10S07.019: By the result in Example 11 of Section 10.2 of the text, n1/n → 1 as n → +∞. Therefore
the given series diverges by the nth-term test for divergence.

C10S07.020: The ratio test yields

ρ = lim
n→∞

(n+ 1)!(2n)!
n!(2n+ 2)!

= lim
n→∞

n+ 1
(2n+ 2)(2n+ 1)

= lim
n→∞

1
2(2n+ 1)

= 0 < 1.

So the series

∞∑
n=1

(−1)n+1n!
(2n)!

converges absolutely and therefore converges. Its sum is approximately 0.42443638350202229593. The
convergence of this series is particularly fast; this 20-place accuracy was obtained by adding only the first
14 terms of the series.

The exact value of the sum of the series (obtained with the usual Mathematica command) is
√
π

2ie1/4
erf

(
i

2

)
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where the error function is defined by

erf(z) =
2√
π

∫ z

0

exp
(
−t2

)
dt.

See Eq. (15) of Section 7.8 and the surrounding discussion for more information about the error function.

C10S07.021: The ratio test yields

ρ = lim
n→∞

2n

2n+1
=

1
2
< 1,

so the series

∞∑
n=1

(−1)n+1

2n

converges absolutely. Because it is geometric with ratio r = − 1
2 and first term 1

2 , its sum is 1
3 .

C10S07.022: The series

∞∑
n=1

1
n2 + 1

is dominated by
∞∑
n=1

1
n2
,

and the latter converges because it is the p-series with p = 2 > 1. Therefore the first series converges by
the comparison test. It converges absolutely because it is a positive-term series. For additional discussion
of this series, see the solution to Problem 5 in Section 10.5 and the solution to Problem 37 in Section 10.6.
The usual Mathematica 3.0 command returns the exact value of the sum of this series; it is

π coshπ − sinhπ
2 sinhπ

≈ 1.07667404746858117413405079475.

C10S07.023: If

f(x) =
lnx
x
, then f ′(x) =

1− lnx
x2

,

so the sequence {(lnn)/n} is monotonically decreasing if n � 3. By l’Hôpital’s rule,

lim
n→∞

lnn
n

= lim
x→∞

lnx
x

= lim
x→∞

1
x

= 0.

Therefore the series

∞∑
n=1

(−1)n lnn
n

converges by the alternating series test. Because

∫ ∞

1

lnx
x
dx =

[
1
2

(lnx)2
]∞

1

= +∞,

the given series converges conditionally rather than absolutely. Its sum is approximately 0.159868903742.

C10S07.024: The given series
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∞∑
n=1

1
nn

is eventually dominated by
∞∑
n=1

1
n2
,

and the latter series converges because it is the p-series with p = 2 > 1. Therefore the given series converges
by the comparison test. It converges absolutely because it is a positive-term series. Its sum is approximately
1.29128599706266354040728259 (with the aid of the usual NSum command in Mathematica 3.0). We examine
this series from a completely different perspective in Problem 65 of Section 10.8.

C10S07.025: The series

∞∑
n=1

(
10
n

)n

converges absolutely by the root test, because

ρ = lim
n→∞

[(
10
n

)n]1/n
= lim
n→∞

10
n

= 0 < 1.

Its sum is approximately 186.724948614024. In spite of the relatively large sum, this series converges ex-
tremely rapidly; for example, the sum of its first 25 terms is approximately 186.724948614005. The sum is
large because the first ten terms of the series are each at least 10; the largest is the fourth term, 39.0625.
But the 25th term is less than 1.126× 10−10.

C10S07.026: Given the infinite series

∞∑
n=1

3n

n!n
,

the ratio test yields

ρ = lim
n→∞

3n+1n!n
3n(n+ 1)!(n+ 1)

= lim
n→∞

3n
(n+ 1)2

= 0.

Therefore the given series converges absolutely. Mathematica 3.0 reports that the exact value of its sum is

−γ − ln 3 + Ei (3) ≈ 8.258004617055774006006578692211837127301,

where γ is Euler’s constant and Ei (z) is the [principal value of the] exponential integral function

Ei (z) = −
∫ ∞

−z

e−t

t
dt.

C10S07.027: Given the infinite series
∞∑
n=0

(−10)n

n!
, the ratio test yields

ρ = lim
n→∞

n!10n+1

(n+ 1)!10n
= lim
n→∞

10
n+ 1

= 0.

Therefore this series converges absolutely. It is the result of substitution of −10 for x in the Maclaurin series
for f(x) = ex (see Eq. (19) in Section 10.4); therefore its sum is e−10 ≈ 0.0000453999297625.
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C10S07.028: Given the series
∞∑
n=1

(−1)n+1n!
nn

, the ratio test yields

ρ = lim
n→∞

(n+ 1)!nn

n!(n+ 1)n+1
= lim
n→∞

nn

(n+ 1)n
= lim
n→∞

(
n

n+ 1

)n
=

1
e
.

Because ρ < 1, the given series converges absolutely. Its sum, using the Mathematica 3.0 command NSum,
is approximately 0.6558316008674916.

C10S07.029: The series
∞∑
n=1

(−1)n+1

(
n

n+ 1

)n
diverges by the nth-term test for divergence because

lim
n→∞

(
n

n+ 1

)n
=

1
e
�= 0.

C10S07.030: Given the series
∞∑
n=1

n!n2

(2n)!
, the ratio test yields

ρ = lim
n→∞

(n+ 1)!(n+ 1)2(2n)!
n!n2(2n+ 2)!

= lim
n→∞

(n+ 1)3

n2(2n+ 1)(2n+ 2)
= lim
n→∞

(n+ 1)2

2n2(2n+ 1)

= lim
n→∞

n2 + 2n+ 1
4n3 + 2n2

= lim
n→∞

1
n

+
2
n2

+
1
n3

4 +
2
n

=
0 + 0 + 0

4 + 0
= 0.

Therefore the given series converges absolutely. The Mathematica 3.0 Sum command yields the exact value
of its sum:

1
32

[
14 + 13e1/4

√
π erf

(
1
2

) ]
≈ 0.9187409358813278427240872318129884.

C10S07.031: Given the series
∞∑
n=1

(
lnn
n

)n
, the root test yields

ρ = lim
n→∞

[(
lnn
n

)n]1/n
= lim
n→∞

lnn
n

= lim
x→∞

lnx
x

= lim
x→∞

1
x

= 0

(with the aid of l’Hôpital’s rule). Because ρ < 1, the given series converges absolutely. Its sum is approxi-
mately 0.187967875056.

C10S07.032: Because

lim
n→∞

23n

7n
= lim
n→∞

8n

7n
= lim
n→∞

(
8
7

)n
= +∞,

the series
∞∑
n=0

(−1)n23n

7n
diverges by the nth-term test for divergence.

C10S07.033: First note that

√
n+ 1 −

√
n =

n+ 1− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n
→ 0
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as n → +∞. Moreover, the sequence
{√
n+ 1 −

√
n

}
is monotonically decreasing. Proof: Suppose that

n is a positive integer. Then

n2 + 2n+ 1 > n2 + 2n; n+ 1 >
√
n2 + 2n

2n+ 2 > 2
√
n2 + 2n ; 4(n+ 1) > n+ 2

√
n2 + 2n + n+ 2;

2
√
n+ 1 >

√
n +

√
n+ 2 ;

√
n+ 1 −

√
n >

√
n+ 2 −

√
n+ 1 .

Therefore the series
∞∑
n=0

(−1)n
(√
n+ 1 −

√
n

)
converges by the alternating series test.

Its sum is approximately 0.760209625219. It converges conditionally, not absolutely. The reason is that

∞∑
n=1

1√
n+ 1 +

√
n

dominates
∞∑
n=1

1
2
√
n+ 1

,

which diverges because it is a constant multiple of a series eventually the same as the p-series with p = 1
2 � 1.

C10S07.034: Given the series
∞∑
n=1

n ·
(

3
4

)n
, the ratio test yields

ρ = lim
n→∞

(n+ 1) ·
(

3
4

)n+1

n ·
(

3
4

)n = lim
n→∞

3(n+ 1)
4n

=
3
4
.

Because ρ < 1, the series converges absolutely. To find its sum, note that

∞∑
n=1

n ·
(

3
4

)n
= f

(
3
4

)
where f(x) =

∞∑
n=1

nxn = x
∞∑
n=1

nxn−1.

The last series is

g(x) =
∞∑
n=1

nxn−1 = G′(x) where G(x) =
∞∑
n=1

xn =
x

1− x.

(These computations all can be shown valid provided that −1 < x < 1.) Thus

g(x) = G′(x) =
1

(x− 1)2
, so that f(x) =

x

(x− 1)2
.

Therefore the sum of the original series is f
(

3
4

)
= 12.

C10S07.035: Because

lim
n→∞

(
ln

1
n

)n
= lim
n→∞

(− lnn)n

does not exist, the series
∞∑
n=1

(
ln

1
n

)n
diverges by the nth-term test for divergence.

C10S07.036: Given the series
∞∑
n=0

(n!)2

(2n)!
, the ratio test yields
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ρ = lim
n→∞

[(n+ 1)!]2(2n)!
(n!)2 (2n+ 2)!

= lim
n→∞

(n+ 1)2

(2n+ 2)(2n+ 1)
= lim
n→∞

n+ 1
2(2n+ 1)

= lim
n→∞

n+ 1
4n+ 2

= lim
x→∞

x+ 1
4x+ 2

= lim
x→∞

1
4

=
1
4

by l’Hôpital’s rule. Because ρ < 1, the series converges absolutely.

The Mathematica 3.0 command

Sum[ ((n!)∧2)/((2∗n)!), {n, 1, Infinity} ]

returns the exact value of its sum:

9 + 2π
√

3
27

≈ 0.736399858718715077909795.

The remarkable simplicity of this result suggests that

∞∑
n=0

(n!)2xn

(2n)!
(1)

is an elementary function. Indeed, the Mathematica 3.0 Sum command, followed by the powerful command
FullSimplify, reveals that the sum of the power series in (1) is

4
4− x +

4
√
x

(4− x)3/2 arcsin
(√

x

2

)
.

C10S07.037: First, for each positive integer n,

3n

n(2n + 1)
� 3n

n(2n + 2n)
=

3n

2n · 2n =
1
2n
·
(

3
2

)n
.

Next, using l’Hôpital’s rule,

lim
x→∞

(
3
2

)x
2x

= lim
x→∞

(
3
2

)x ln
(

3
2

)
2

= +∞

because ln
(

3
2

)
> 0 and because, if a > 1, then ax → +∞ as x→ +∞. Therefore the series

∞∑
n=1

(−1)n+13n

n(2n + 1)

diverges by the nth-term test for divergence.

C10S07.038: Claim: f(x) =
arctanx
x

is decreasing for x � 2. Proof:

f ′(x) =
x− (1 + x2) arctanx

x2(1 + x2)
, so

f ′(x) <
x− (1 + x2)
x2(1 + x2)

if x � 2; thus

f ′(x) <
2x− (1 + x2)
x2(1 + x2)

= − (x− 1)2

x2(x2 + 1)

11



if x � 2. Moreover,

0 � arctanx � π

2
if x > 0, and therefore 0 � arctanx

x
� π

2x
if x > 0.

Consequently

lim
x→∞

arctanx
x

= 0

by the squeeze law for limits (Section 2.3).

Therefore
∞∑
m=1

(−1)n+1 arctann
n

converges by the alternating series test. Its sum is about 0.465712303526.

But this series is conditionally convergent, not absolutely convergent. The reason: arctan 1 = π/4 > 1/2,
and hence

∞∑
n=1

arctann
n

dominates
∞∑
n=1

1
2n
,

and the latter series diverges because it is a nonzero multiple of the harmonic series.

C10S07.0:39 Given the series
∞∑
n=1

(−1)n+1n!
1 · 3 · 5 · · · (2n− 1)

, the ratio test yields

ρ = lim
n→∞

(n+ 1)! · 1 · 3 · 5 · · · (2n− 1)
n! · 1 · 3 · 5 · · · (2n− 1) · (2n+ 1)

= lim
n→∞

n+ 1
2n+ 1

=
1
2
.

Because ρ < 1, the series in question converges absolutely. Its sum is approximately 0.586781998767.

C10S07.040: Given the series
∞∑
n=1

(−1)n+1 1 · 3 · 5 · · · (2n− 1)
1 · 4 · 7 · · · (3n− 2)

, the ratio test yields

ρ = lim
n→∞

1 · 3 · 5 · · · (2n− 1) · (2n+ 1) · 1 · 4 · 7 · · · (3n− 2)
1 · 3 · 5 · · · (2n− 1) · 1 · 4 · 7 · · · (3n− 2) · (3n+ 1)

= lim
n→∞

2n+ 1
3n+ 1

=
2
3
.

Because ρ < 1, the original series converges absolutely. The Sum command in Mathematica 3.0 yields the
exact value of the sum of this series; it is

HypergeometricPFQ

[{
1,

3
2

}
,

{
4
3

}
, − 2

3

]
= 2F1

(
1,

3
2
;

4
3
; − 2

3

)
≈ 0.5644219964461680148.

Note carefully the punctuation in the arguments of the generalized hypergeometric function

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
∞∑
k=0

p∏
i=1

(ai)k

k!
q∏
i=1

(bi)k

zk

where (c)k =
k∏
j=1

(a+ j − 1).

The hypergeometric function finds its way into extremely diverse branches of advanced mathematics.
For example,
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cos z = 0F1

(
;

1
2
; −1

4
z2

)
;

ln(z + 1) = z · 2F1 (1, 1; 2; −z) ;

erf (z) =
2z√
π
· 1F1

(
1
2
;

3
2
; −z2

)
;

π = 4− 8
9
· 3F2

(
1
2
,

1
2
, 1;

5
2
,

5
2
; −1

)
.

(To interpret the right-hand side of the first formula, you need to know that the “empty product” of no
numbers is defined to have the value 1, just as 20 = 0! = 1.)

C10S07.041: Given the series
∞∑
n=1

(n+ 2)!
3n(n!)2

, the ratio test yields

ρ = lim
n→∞

(n+ 3)!3n(n!)2

(n+ 2)!3n+1 [(n+ 1)!]2
= lim
n→∞

n+ 3
3(n+ 1)2

= lim
n→∞

1
n

+
3
n2

3
(

1 +
1
n

)2 =
0 + 0
3 · 1 = 0.

Because ρ < 1, the given series converges absolutely. Its sum can be computed exactly, as follows. Note first
that

∞∑
n=1

(n+ 2)!
3n(n!)2

=
∞∑
n=1

(n+ 2)(n+ 1)
3n · (n!) = f

(
1
3

)

where

f(x) =
∞∑
n=1

(n+ 2)(n+ 1)xn

n!
.

But f(x) = g′(x) where

g(x) =
∞∑
n=1

(n+ 2)xn+1

n!
,

and g(x) = h′(x) where

h(x) =
∞∑
n=1

xn+2

n!
= x2

∞∑
n=1

xn

n!
= x2(ex − 1).

But then, f(x) = h′′(x) = (x2 + 4x+ 2)ex − 2, so the sum of the series in this problem is

f

(
1
3

)
=

31e1/3 − 18
9

≈ 2.807109464185.

This is confirmed by Mathematica 3.0, which in response to the command

NSum[ ((n + 2)∗(n + 1))/((3∧n)∗(n!)), { n, 1, Infinity } ]

13



returns the approximate sum 2.80711.

C10S07.042: Given the series
∞∑
n=1

(−1)n+1nn

3n2 , the root test yields

ρ = lim
n→∞

[
nn

3n2

]1/n
= lim
n→∞

n

3n
= lim
x→∞

x

3x
= lim
x→∞

1
3x ln 3

= 0.

Because ρ < 1, the original series converges absolutely. Moreover, its convergence is extremely rapid in spite
of the very rapidly increasing factor in the numerator of each term: The sum of its first 20 terms and the sum
of its first 40 terms agree to the first 60 decimal places; its sum is approximately 0.2853164160576381077.

C10S07.043: The sum of the first five terms of the given series is

S5 =
5∑

n=1

(−1)n+1

n3
=

195353
216000

≈ 0.904412037037.

The sixth term of the series is

− 1
216
≈ −0.004629629629.

Thus S5 approximates the sum S of the series with error less than 0.005. Indeed, we can conclude that
S6 ≈ 0.899782 < S < 0.904412 ≈ S5. To two decimal places, S ≈ 0.90. Mathematica 3.0 reports that
S ≈ 0.901542677370.

C10S07.044: The sum of the first eight terms of the given series is

S8 =
8∑

n=1

(−1)n+1

3n
=

1640
6561

≈ 0.249961896052.

The ninth term of the series is

1
19683

≈ 0.000050805263.

Thus S8 approximates the sum S of the series with error less than 0.000051. Indeed, we can conclude
that S8 ≈ 0.249962 < S < 0.250012 ≈ S9. (Here we round down lower bounds and round up upper
bounds.) To four decimal places, S ≈ 0.2500. Mathematica 3.0 reports (using the command NSum) that
S = 0.250000000000. Indeed, the series is geometric with first term 1

3 and ratio − 1
3 , so its sum is exactly 1

4 .
Mathematica 3.0 can find the exact sums of a wide variety series, including geometric series (try Sum instead
of NSum); the command

Sum[ ((-1)∧(n+1))/(3∧n), { n, 1, Infinity } ]

elicits the response
1
4
.

C10S07.045: The sum of the first six terms of the given series is

S6 =
6∑

n=1

(−1)n+1

n!
=

91
144
≈ 0.631944444444.

The seventh term of the series is

14



1
5040

≈ 0.000198412698.

Thus S6 approximates the sum S of the series with error less than 0.0002. Indeed, we can conclude that
S6 ≈ 0.631945 < S < 0.632142 ≈ S7 (here we round down lower bounds and round up upper bounds). To
three places, S ≈ 0.632. Mathematica 3.0 reports that S ≈ 0.632120558829. Using Eq. (19) in Section 10.4,
we see that the exact value of the sum is

S = 1− 1
e
.

We have in this problem an example of a series that Mathematica 3.0 can sum exactly (using the command
Sum instead of NSum); the command

Sum[ ((-1)∧(n+1))/(n!), { n, 1, Infinity } ]

produces the exact answer in the form − 1− e
e

.

C10S07.046: The sum of the first seven terms of the given series is

S7 =
7∑

n=1

(−1)n+1

nn
=

376274084904457
480290277600000

≈ 0.783430567832.

The eighth term of the series is

− 1
16777216

≈ −0.0000000596.

Thus S7 approximates the sum S of the series with error less than 0.00000006. In fact, we may conclude
that S8 ≈ 0.78343051 < S < S7 ≈ 0.78343056. Thus to six decimal places, S ≈ 0.783431. Mathematica 3.0
reports that S ≈ 0.7834305107121344.

C10S07.047: The sum of the first 12 terms of the series is

S12 =
12∑
n=1

(−1)n+1

n
=

18107
27720

≈ 0.653210678211.

The 13th term of the series is

1
13
≈ 0.076923076923.

Thus S12 approximates the sum S of the series with error less than 0.08. Indeed, we may conclude that
S12 ≈ 0.653211 < S < 0.730133 ≈ S13 (we round down lower bounds and round up upper bounds). Thus to
one decimal place, S ≈ 0.7. This is a series that Mathematica 3.0 can sum exactly; the command

Sum[ ((-1)∧(n+1))/n, { n, 1, Infinity } ]

produces the response ln 2.

C10S07.048: The sum of the first 15 terms of the series is

S15 =
15∑
n=1

(−1)n+1

n2
=

107074439839
129859329600

≈ 0.824541757368.
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The 16th term of the series is

− 1
256

= −0.00390625.

Thus S15 approximates the sum S of the series with error less than 0.004. In fact, we may conclude that
S16 ≈ 0.820636 < S < 0.824541 ≈ S15. (We round lower bounds down and upper bounds up.) Thus to two
places, S ≈ 0.82. This is another series than Mathematica 3.0 can sum exactly: The command

Sum[ ((-1)∧(n+1))/(n∧2), { n, 1, Infinity } ]

produces the response

π2

12

—approximately 0.822467033424. Mathematica 3.0 can also sum many telescoping series exactly; it reports
that

∞∑
n=1

1
n(n+ 1)

= 1

(exactly). It was unable to sum exactly the telescoping (!) series

∞∑
n=1

arctan
(

1
n2 + n+ 1

)
,

which we first saw in Johnson and Kiokemeister’s freshman calculus book in 1967.

C10S07.049: The condition

1
n4
< 0.0005 leads to n > 6.69,

so the sum of the terms through n = 6 will provide three-place accuracy. The sum of the first six terms of
the series is

6∑
n=1

(−1)n+1

n4
=

4090037
4320000

≈ 0.946767824074,

so to three places, the sum of the infinite series is 0.947. The exact value of the sum of this series is

7π4

720
≈ 0.947032829497.

C10S07.050: The condition

1
n5
< 0.00005 leads to n > 7.25,

so the sum of the terms through n = 7 will provide four-place accuracy. The sum of the first seven terms of
the series is

7∑
n=1

(−1)n+1

n5
=

12705011703799
13069123200000

≈ 0.972139562033,
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so, to four places, the sum of the infinite series is 0.9721. The exact value of the sum of this series is not
known to be expressible in terms of elementary functions, but the Mathematica 3.0 command

Sum[ ((-1)∧(n+1))/(n∧5), { n, 1, Infinity } ]

yields the result

15
16
ζ(5) ≈ 0.97211977044690930593565514355.

C10S07.051: The condition

1
n! · 2n < 0.00005 leads to 5 < n < 6,

so the sum of the terms through n = 5 will provide four-place accuracy. The sum of the first six terms of
the series is

5∑
n=0

(−1)n

n! · 2n =
2329
3840

≈ 0.606510416667,

so to four places, the sum of the infinite series is 0.6065. The exact value of the sum of this series is

∞∑
n=0

(−1)n

n! · 2n = e−1/2 ≈ 0.606530659713.

C10S07.052: The condition

1
(2n)!

< 0.000005 leads to 4 < n < 5,

so the sum of the terms through n = 4 will provide five-place accuracy. The sum of the first five terms of
the series is

4∑
n=0

(−1)n

(2n)!
=

4357
8064

≈ 0.540302579365,

so to five places, the sum of the infinite series is 0.54030. The exact value of the sum of the infinite series is

∞∑
n=0

(−1)n

(2n)!
= cos(1) ≈ 0.540302305868.

C10S07.053: The condition

1
(2n+ 1)!

·
(π

3

)2n+1

< 0.000005 leads to 4 < n < 5,

so the sum of the terms through n = 4 will provide five-place accuracy. The sum of the first five terms of
the series is

4∑
n=0

(−1)n

(2n+ 1)!
·
(π

3

)2n+1

≈ 0.866025445100,

so to five places, the sum of the infinite series is 0.86603. The exact value of the sum of the infinite series is
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∞∑
n=0

(−1)n

(2n+ 1)!
·
(π

3

)2n+1

= sin
(π

3

)
=
√

3
2
≈ 0.866025403784.

C10S07.054: The condition

1
n · 10n

< 0.00000005 leads to 6 < n < 7,

so the sum of the first six terms of the series will provide seven-place accuracy. The sum of the first six
terms is

6∑
n=1

(−1)n+1

n · 10n
=

571861
6000000

≈ 0.095310166667,

so to seven places, the sum of the infinite series is 0.0953102. The exact value of the sum of this series is

∞∑
n=1

(−1)n+1

n · 10n
= ln(1.1) ≈ 0.095310179804.

C10S07.055: Because

0 < an � 1
n

for all n � 1,

an → 0 as n→ +∞ by the squeeze law for limits (Section 2.3 of the text). The alternating series test does
not apply because the sequence {an} is not monotonically decreasing. The series

∑
an diverges because

its 2nth partial sum S2n satisfies the inequality

S2n > 1 +
1
3

+
1
5

+
1
7

+ · · ·+ 1
2n− 1

>
1
2

+
1
4

+
1
6

+
1
8

+ · · ·+ 1
2n
,

and the last expression is half the nth partial sum of the harmonic series. Similar remarks hold for S2n+1,
and hence Sn → +∞ as n→ +∞. Therefore

∑
an diverges.

C10S07.056: Because

0 < an � 1√
n

for all n � 1,

an → 0 as n→ +∞ by the squeeze law for limits (Section 2.3 of the text). The alternating series test does
not apply because the sequence {an} is not monotonically decreasing. The series

∑
an diverges because

its 2nth partial sum S2n satisfies the inequality

S2n > 1 +
1√
3

+
1√
5

+
1√
7

+ · · ·+ 1√
2n− 1

>
1
2

+
1
4

+
1
6

+
1
8

+ · · ·+ 1
2n
,

and the last expression is half the nth partial sum of the harmonic series. Similar remarks hold for S2n+1,
and hence Sn → +∞ as n→ +∞. Therefore

∑
an diverges.

C10S07.057: Let

an = bn =
(−1)n√
n

for n � 1.
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Then
∑
an and

∑
bn converge by the alternating series test. But

∞∑
n=1

anbn =
∞∑
n=1

(−1)2n

n
=

∞∑
n=1

1
n

diverges because it is the harmonic series.

C10S07.058: This is merely the contrapositive of Theorem 3, so its proof is the same.

C10S07.059: Let b = |a|. Then the ratio test applied to
∑

(an/n!) yields

ρ = lim
n→∞

n!bn+1

(n+ 1)!bn
= lim
n→∞

b

n+ 1
= 0 < 1.

Therefore the series

∞∑
n=0

an

n!
(1)

converges for every real number a. Thus by the nth-term test for divergence, it follows that

lim
n→∞

an

n!
= 0

for every real number a. The sum of the series in (1) is ea.

C10S07.060: Part (a): Given: −1 < r < 1 and
∞∑
n=0

nrn, the ratio test yields

ρ = lim
n→∞

(n+ 1)|r |n+1

n|r |n = lim
n→∞

n+ 1
n
|r | = |r | < 1.

Therefore the series in question converges. For later use in part (b), note that

lim
n→∞

nrn = 0 (1)

by the nth-term test for divergence.

Part (b): Let S denote the sum of the series in part (a). Then

(1− r)S =
∞∑
n=0

n(1− r)rn = lim
k→∞

k∑
n=0

(nrn − nrn+1)

= lim
k→∞

(r − r2 + 2r2 − 2r3 + 3r3 − 3r4 + · · ·+ (k − 1)rk−1 − (k − 1)rk + krk − krk+1)

= lim
k→∞

(1 + r + r2 + r3 + · · ·+ rk − krk+1 − 1)

= lim
k→∞

(
1− rk+1

1− r − krk+1 − 1
)

=
1

1− r − 1 =
r

1− r .

(Note that krk+1 → 0 as k → +∞ by the concluding remark in part (a).) Therefore

∞∑
n=0

nrn = S =
r

(1− r)2 .
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C10S07.061: We are given

Hn =
n∑
k=1

1
k

and Sn =
n∑
k=1

(−1)k+1

k
.

Part (a): Note first that

S2 = 1− 1
2

and H2 −H1 = 1 +
1
2
− 1,

so S2n = H2n −Hn if n = 1. Assume that S2m = H2m −Hm for some integer m � 1. Then

S2(m+1) = S2m +
1

2m+ 1
− 1

2m+ 2
= H2m −Hm +

1
2m+ 1

− 1
2m+ 2

= H2m +
1

2m+ 1
+

1
2m+ 2

−Hm −
2

2m+ 2
= H2(m+1) −Hm+1.

Therefore, by induction, S2n = H2n −Hn for every positive integer n.

Part (b): Let m = 2n. Then

lim
n→∞

(H2n − ln 2n) = lim
m→∞

(Hm − lnm) = γ

by Problem 50 in Section 10.5.

Part (c): By the results in parts (a) and (b),

lim
n→∞

(H2n − ln 2n−Hn + lnn) = 0;

lim
n→∞

(S2n − ln 2− lnn+ lnn) = 0;

lim
n→∞

S2n = ln 2.

Thus the “even” partial sums of the alternating harmonic series converge to ln 2. But the alternating
harmonic series converges by the alternating series test. Therefore the sequence of all of its partial sums
converges to ln 2; that is,

∞∑
k=1

1
k

= 1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+ · · · = ln 2.

But see the solution of Problem 28 in Section 10.6 for a better way to approximate ln 2.

C10S07.062: Part (a): We may suppose that none of the terms of the series is zero. If an > 0, then

a+n =
an + |an |

2
=
an + an

2
= an

and if an < 0, then

a−n =
an − |an |

2
=
an + an

2
= an.

Thus
∑
a+n is the series of positive terms of

∑
an and

∑
a−n is the series of negative terms of

∑
an, arranged

in each case in the same order in which they appear in
∑
an.
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Part (b): If both
∑
a+n and

∑
a−n converged, then both would converge absolutely. This would imply that∑

an also converges absolutely, but it does not. If
∑
a+n converged and

∑
a−n diverged, then their sum

would diverge by Problem 62 in Section 10.3, but their sum is
∑
an, which converges. Therefore

∑
a+n and∑

a−n both diverge.

Without loss of generality, suppose that the real number r is nonnegative. Sum enough terms of
∑
a+n to

exceed r, but don’t use more terms than are necessary. This is possible because
∑
a+n = +∞. Then add

enough terms of
∑
a−n so that the resulting sum is less than r, but use no more terms than are necessary.

This is possible because
∑
a−n = −∞. Repeat this process using only terms not used in the previous

step. Because an → 0 as n → +∞, the partial sums of the resulting series will converge to r. Thus some
rearrangement of the conditionally convergent series

∑
an converges to r.

C10S07.063: The answer consists of the first twelve terms of the following series:

1 +
1
3
− 1

2
+

1
5
− 1

4
+

1
7

+
1
9
− 1

6
+

1
11

+
1
13
− 1

8
+

1
15

+
1
17
− 1

10
+

1
19

+
1
21
− 1

12
+

1
23

+
1
25
− 1

14

+
1
27
− 1

16
+

1
29

+
1
31
− 1

18
+

1
33

+
1
35
− 1

20
+

1
37

+
1
39
− 1

22
+

1
41

+
1
43
− 1

24
+

1
45

+
1
47
− 1

26
+ · · · .

The 12th partial sum of the series shown here is

353201
360360

≈ 0.9801337551337551

and the 13th is

6364777
6126120

≈ 1.0389572845455198,

so the convergence to the sum 1 is quite slow (as might be expected when dealing with variations of the har-
monic series). To generate and view many more partial sums, enter the following commands in Mathematica

3.0 (or modify them to use in another computer algebra program):

u = Table[ 1/(2∗n - 1), { n, 1, 2 + 1000 } ]{
1,

1
3
,

1
5
,

1
7
, . . . ,

1
2003

}

(Of course, the ellipsis is ours, not Mathematica’s. And you may replace 1000 in the first two commands
with as large a positive integer as you and your computer will tolerate.)

v = Table[ 1/(2∗n), { n, 1, 2 + 1000 } ]{
1
2
,

1
4
,

1
6
,

1
8
, . . . ,

1
2004

}

x = 0; i = 0; j = 0;

(Here x denotes the running sum of the first k terms of the series; i and j are merely subscripts to be used
in the arrays u and v , respectively.)

While[ i < 1000, {
While[ x <= 1, { i = i + 1, x = x + u[[i]], Print[ { i, u[[i]], N[x,40] } ] } ],

While[ x >= 1, { j = j + 1, x = x - v[[j]], Print[ { j, v[[j]], N[x,40] } ] } ] } ]
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If you execute these commands, be prepared for 1543 lines of output, concluding with

{
1001,

1
2001

, 1.000352986739167522306758169577325155187
}

{
542,

1
1084

, 0.99943047751407521384248944485074232678
}

There is evidence that the series is converging to 1 but still stronger evidence that the convergence is painfully
slow.

C10S07.064: Part (a): The method has already been explained in the solution of Problem 62. Here is
the beginning of the rearranged series that converges to −2:

−
31∑
n=1

1
2n

+
1∑

n=1

1
2n− 1

−
227∑
n=32

1
2n

+
2∑

n=2

1
2n− 1

−
440∑

n=228

1
2n

+
3∑

n=3

1
2n− 1

−
658∑

n=441

1
2n

+
4∑

n=4

1
2n− 1

−
876∑

n=659

1
2n

+
5∑

n=5

1
2n− 1

−
1094∑
n=877

1
2n

+
6∑

n=6

1
2n− 1

−
1312∑

n=1095

1
2n

+
7∑

n=7

1
2n− 1

−
1530∑

n=1313

1
2n
.

The partial sum at this point is approximately −2.00015.

Part (b): Add enough positive terms to just exceed 3. Then add just enough negative terms for the partial
sum to drop below 2. Then add enough positive terms to just exceed 4. Then add just enough negative
terms for the partial sum to drop below 3. Then exceed 5, then drop below 4, and so on. The rearranged
series begins in this way:

57∑
n=1

1
2n− 1

−
4∑

n=1

1
2n

+
3361∑
n=58

1
2n− 1

−
33∑
n=5

1
2n

+
184479∑
n=3362

1
2n− 1

−
248∑
n=34

1
2n

+
10111149∑
n=184480

1
2n− 1

−
1836∑
n=249

1
2n
.

At this point the partial sum of the rearrangement is approximately 4.999913358948.

C10S07.065: The sum of the first 50 terms of the rearrangement is S50 ≈ −0.00601599. Also,

S500 ≈ −0.000622656, S5000 ≈ −0.0000624766,

S50000 ≈ −0.0000062497656, S500000 ≈ −0.00000062499766,

S5000000 ≈ −0.000000062499977, and S50000000 ≈ −0.0000000062499998.

We have strong circumstantial evidence here that the sum of the series is 0. (It is.)
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Section 10.8

C10S08.001: Given the series
∞∑
n=1

nxn, the ratio test yields

lim
n→∞

(n+ 1)|x|n+1

n|x|n = |x|,

so the series converges if −1 < x < 1. It clearly diverges at both endpoints of this interval, so its interval of
convergence is (−1, 1). To find its sum, note that

∞∑
n=1

nxn = x

∞∑
n=1

nxn−1 = xf ′(x)

where

f(x) =
∞∑
n=1

xn =
x

1− x
, so that f ′(x) =

1
(1− x)2

.

Therefore
∞∑
n=1

nxn =
x

(1− x)2
if −1 < x < 1.

C10S08.002: Given the series
∞∑
n=1

xn√
n

, the ratio test yields

lim
n→∞

n1/2|x|n+1

(n+ 1)1/2|x|n = |x|,

so the series converges if −1 < x < 1. It clearly diverges if x = 1 (it dominates the harmonic series)
but converges if x = −1 by the alternating series test. Thus its interval of convergence is [−1, 1). The
Mathematica 3.0 command

Sum[ (x∧n)/Sqrt[n], {n, 1, Infinity} ]

returns the sum of this series in the closed, but redundant, form

PolyLog

[
1

2
, x

]

where PolyLog[n, z] is the polylogarithm function

Lin(z) =
∞∑
k=1

zk

kn
.

C10S08.003: Given the series
∞∑
n=1

nxn

2n
, the ratio test yields

lim
n→∞

(n+ 1)2n|x|n+1

n2n+1|x|n =
|x|
2
,

so the series converges if −2 < x < 2. It diverges at each endpoint of this interval by the nth-term test for
divergence, so its interval of convergence is (−2, 2).

1



C10S08.004: Given the series
∞∑
n=1

(−1)nxn

n1/25n
, the ratio test yields

lim
n→∞

n1/25n|x|n+1

(n+ 1)1/25n+1|x|n =
|x|
5
,

so the series converges if −5 < x < 5. It also converges if x = 5 by the alternating series test, but diverges
if x = −5 by domination of the harmonic series. Thus its interval of convergence is (−5, 5 ].

C10S08.005: Given the series
∞∑
n=1

n!xn, the ratio test yields

lim
n→∞

(n+ 1)!|x|n+1

n!|x|n = lim
n→∞

n|x|.

This limit is zero if x = 0 but is +∞ otherwise. Therefore the series converges only at the real number x = 0.
Thus its interval of convergence is [ 0, 0 ]. If you prefer the strict interpretation of the word “interval,” the
interval [ a, b ] is defined only if a < b according to Appendix A. If so, we must say that this series has no
interval of convergence and that it converges only if x = 0.

C10S08.006: Given the series
∞∑
n=1

(−1)nxn

nn
, the ratio test yields

lim
n→∞

nn|x|n+1

(n+ 1)n+1|x|n = lim
n→∞

(
n

n+ 1

)n
· |x|
n+ 1

=
1
e
·
(

lim
n→∞

|x|
n+ 1

)
= 0

for all real x. So the series converges for all x.

C10S08.007: Given the series
∞∑
n=1

3nxn

n3
, the ratio test yields

lim
n→∞

n33n+1|x|n+1

(n+ 1)33n|x|n = 3|x|,

so the series converges if − 1
3 < x < 1

3 . When x = 1
3 it is the p-series with p = 3 > 1, and thus it converges.

When x = − 1
3 the series converges by the alternating series test. Therefore its interval of convergence is[

− 1
3 ,

1
3

]
.

C10S08.008: Given the series
∞∑
n=1

(−4)nxn√
2n+ 1

, the ratio test yields

lim
n→∞

(2n+ 1)1/24n+1|x|n+1

(2n+ 3)1/24n|x|n = 4|x|,

so the series converges if − 1
4 < x < 1

4 . When x = 1
4 , the series converges by the alternating series test.

When x = − 1
4 , the series diverges by limit-comparison with the p-series for which p = 1

2 .

C10S08.009: Given the series
∞∑
n=1

(−1)nn1/2(2x)n, the ratio test yields

lim
n→∞

(n+ 1)1/22n+1|x|n+1

n1/22n|x|n = 2|x|,

so the series converges if − 1
2 < x < 1

2 . It diverges at each endpoint of this interval by the nth-term test for
divergence, and therefore its interval of convergence is (− 1

2 ,
1
2 ).
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C10S08.010: Given the series
∞∑
n=1

n2xn

3n− 1
, the ratio test yields

lim
n→∞

(n+ 1)2(3n− 1)|x|n+1

n2(3n+ 1)|x|n = |x|,

so this series converges if −1 < x < 1. At each endpoint of this interval it diverges by the nth-term test
for divergence, so its interval of convergence is (−1, 1). The Sum command in Mathematica 3.0 returns the
sum of the series in the form

4x− x2

9(x− 1)2
+

x

18 2F1

(
1,

1
2
;

5
3
; x

)

where 2F1 is the hypergeometric function discussed in one of the solutions in Section 10.7.

C10S08.011: Given the series
∞∑
n=1

(−1)nnxn

2n(n+ 1)3
, the ratio test yields

lim
n→∞

(n+ 1)42n|x|n+1

n(n+ 2)32n+1|x|n =
|x|
2
,

so this series converges if −2 < x < 2. If x = 2 it becomes

∞∑
n=1

(−1)nn
(n+ 1)3

,

which converges by the alternating series test. If x = −2 it becomes

∞∑
n=1

n

(n+ 1)3
,

which converges because it is dominated by the p-series with p = 2 > 1. Therefore its interval of convergence
is [−2, 2 ].

C10S08.012: Given the series
∞∑
n=1

n10xn

10n
, the ratio test yields

lim
n→∞

(n+ 1)1010n|x|n+1

n1010n+1|x|n =
|x|
10

,

so this series converges if −10 < x < 10. At each endpoint of this interval it diverges by the nth-term test
for divergence. Therefore its interval of convergence is (−10, 10). We were astounded to find—with the
aid of the Sum command in Mathematica 3.0—that the sum of this series (on that interval) is a rational
function; viz.,

− 10x
(x− 10)11

· (x9 + 10130x8 + 4784000x7 + 455192000x6 + 13103540000x5

+ 131035400000x4 + 455192000000x3 + 478400000000x2 + 101300000000x+ 1000000000).

C10S08.013: Given the series
∞∑
n=1

(lnn)xn

3n
, the ratio test yields

lim
n→∞

[ln(n+ 1)] 3n|x|n+1

[lnn] 3n+1|x|n =
|x|
3
,

3



so the series converges if −3 < x < 3. At the two endpoints of this interval it diverges by the nth-term test
for divergence. Hence its interval of convergence is (−3, 3). Note:

lim
n→∞

ln(n+ 1)
lnn

= lim
x→∞

ln(x+ 1)
lnx

= lim
x→∞

x

x+ 1
= 1

by l’Hôpital’s rule.

C10S08.014: Given the series
∞∑
n=2

(−1)n4nxn

n lnn
, the ratio test yields

lim
n→∞

n [lnn ] 4n+1|x|n+1

(n+ 1) [ln(n+ 1)] 4n|x|n = 4|x|,

so this series converges if − 1
4 < x < 1

4 . If x = 1
4 then this series converges by the alternating series test. If

x = − 1
4 then it diverges by the integral test—see the solution of Problem 7 of Section 10.5. Thus its interval

of convergence is
(
− 1

4 ,
1
4

]
. Use l’Hôpital’s rule as in the solution of Problem 13 to show that

lim
n→∞

lnn
ln(n+ 1)

= 1.

C10S08.015: Given the series
∞∑
n=0

(5x− 3)n, the ratio test yields

lim
n→∞

|5x− 3|n+1

|5x− 3|n = |5x− 3|,

and we solve |5x− 3| < 1 as follows:

−1 < 5x− 3 < 1; 2 < 5x < 4;
2
5
< x <

4
5
.

So this series converges on the interval I =
(

2
5 ,

4
5

)
. It diverges at each endpoint by the nth-term test for

divergence, so I is its interval of convergence. On this interval it is a geometric series with ratio in (−1, 1),
so its sum is

∞∑
n=0

(5x− 3)n =
1

1− (5x− 3)
=

1
4− 5x

provided that x is in I.

C10S08.016: Given the series
∞∑
n=1

(2x− 1)n

n4 + 16
, the ratio test yields

lim
n→∞

[
n4 + 16

]
|2x− 1|n+1

[(n+ 1)4 + 16] |2x− 1|n = |2x− 1|.

Note:

lim
n→∞

n4 + 16
(n+ 1)4 + 16

= lim
n→∞

1 +
16
n4(

n+ 1
n

)4

+
16
n4

=
1 + 0
1 + 0

= 1.

Next we solve |2x− 1| < 1:

4



−1 < 2x− 1 < 1; 0 < 2x < 2; 0 < x < 1.

So the given series converges if 0 < x < 1. If x = 0 it converges by the alternating series test. If x = 1
it converges because it is dominated by the p-series with p = 4 > 1. Therefore its interval of convergence
is [0, 1]. Mathematica 3.0 can sum this series in closed form with its Sum command, but the resulting
expression is a nested sum of about 113 terms involving the imaginary number i and the Lerch transcendent
function

Φ(z, s, a) =
∞∑
k=0

zk

(a+ k)s

(in which any term in the sum for which k + a = 0 is excluded). Therefore we have not included the
Mathematica output here. Out of curiosity, we tested Mathematica with some much simpler variants of the
original series in Problem 16; here are the results:

Sum[ (x∧n)/(n∧4), {n, 1, Infinity} ]

Li4(x).

Sum[ (x∧n)/(n∧2 + 1), {n, 1, Infinity} ]

1− i

4
[
− 1− i+ (1 + i) · 2F1(i, 1; 1 + i; x) + x · 2F1(1, 1− i; 2− i; x)

]
.

The polylogarithm and hypergeometric functions are discussed earlier in these solutions.

C10S08.017: Given the series
∞∑
n=1

2n(x− 3)n

n2
, the ratio test yields

lim
n→∞

n22n+1|x− 3|n+1

(n+ 1)22n|x− 3|n = 2|x− 3|,

so this series converges if 2|x− 3| < 1:

|x− 3| < 1
2
; − 1

2
< x− 3 <

1
2
;

5
2
< x <

7
2
.

If x = 5
2 , the series converges by the alternating series test. If x = 7

2 , it converges because it is the p-series
with p = 2 > 1. Thus its interval of convergence is

[
5
2 ,

7
2

]
.

C10S08.018: Given the series
∞∑
n=1

n!
nn

xn, the ratio test yields

lim
n→∞

(n+ 1)!nn|x|n+1

n!(n+ 1)n+1|x|n = |x| ·
[

lim
n→∞

(
n

n+ 1

)n]
=
|x|
e
.

We are given divergence at the endpoints, but this can be derived using the result in Miscellaneous Problem
61 of Chapter 10. Either way, the interval of convergence of this series is (−e, e).

C10S08.019: Given the series
∞∑
n=1

(2n)!
n!

xn, the ratio test yields

lim
n→∞

n!(2n+ 2)!|x|n+1

(n+ 1)!(2n)!|x|n = lim
n→∞

(2n+ 2)(2n+ 1)|x|
n+ 1

= lim
n→∞

2(2n+ 1)|x|.
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The last limit is +∞ if x 	= 0 but zero if x = 0. Therefore this series converges only at the single point
x = 0.

C10S08.020: Given the series
∞∑
n=1

1 · 3 · 5 · · · (2n+ 1)
n!

xn, the ratio test yields

lim
n→∞

n! · 1 · 3 · 5 · · · (2n+ 1)(2n+ 3)|x|n+1

(n+ 1)! · 1 · 3 · 5 · · · (2n+ 1)|x|n = lim
n→∞

2n+ 3
n+ 1

|x| = 2|x|,

so this series converges if − 1
2 < x < 1

2 . We are given divergence at both endpoints, so its interval of
convergence is

(
− 1

2 ,
1
2

)
. To derive divergence at the endpoints, note that

1 · 3 · 5 · · · (2n+ 1)
n! · 2n =

3
2
· 5
4
· 7
6
· · · 2n+ 1

2n
> 1,

so that the power series fails to converge if x = ± 1
2 by the nth-term test for divergence.

The usual Mathematica 3.0 command yields a simple algebraic function for the sum of this series on its
interval of convergence; it is

f(x) =
1

(1− 2x)3/2
− 1,

and its graph is next.

C10S08.021: Given the series
∞∑
n=1

n3(x+ 1)n

3n
, the ratio test yields

lim
n→∞

(n+ 1)33n|x+ 1|n+1

n33n+1|x+ 1|n =
|x+ 1|

3
,

so the given series converges if

−1 <
x+ 1

3
< 1; −3 < x+ 1 < 3; −4 < x < 2.

At the endpoints of this interval, the series diverges by the nth-term test for divergence. Thus its interval
of convergence is (−4, 2). To find its sum in closed form, let

f(x) =
∞∑
n=1

n3(x+ 1)n

3n
.

Then
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f(x) = (x+ 1)
∞∑
n=1

n3(x+ 1)n−1

3n
= (x+ 1)g′(x)

where

g(x) =
∞∑
n=1

n2(x+ 1)n

3n
= (x+ 1)

∞∑
n=1

n2(x+ 1)n−1

3n
.

But g(x) = (x+ 1)h′(x) where

h(x) =
∞∑
n=1

n(x+ 1)n

3n
= (x+ 1)

∞∑
n=1

n(x+ 1)n−1

3n
= (x+ 1)k′(x)

where

k(x) =
∞∑
n=1

(x+ 1)n

3n
=

x+ 1
2− x

if −4 < x < 2 because the last series is geometric and convergent for such x. It now follows that

k′(x) =
3

(x− 2)2
; h(x) =

3(x+ 1)
(x− 2)2

;

h′(x) = − 3(x+ 4)
(x− 2)3

; g(x) = − 3(x+ 1)(x+ 4)
(x− 2)3

;

g′(x) =
3(x2 + 14x+ 22)

(x− 2)4
; f(x) =

3(x+ 1)(x2 + 14x+ 22)
(x− 2)4

.

C10S08.022: Given the series
∞∑
n=1

(−1)n+1(x− 2)n

n2
, the ratio test yields

lim
n→∞

n2|x− 2|n+1

(n+ 1)2|x− 2|n = |x− 2|,

and thus the series converges if −1 < x − 2 < 1; that is, if 1 < x < 3. It also converges if x = 3 by the
alternating series test and converges if x = 1 because then it is the p-series with p = 2 > 1. Therefore its
interval of convergence is [1, 3].

C10S08.023: Given the series
∞∑
n=1

(3− x)n

n3
, the ratio test yields

lim
n→∞

n3|3− x|n+1

(n+ 1)3|3− x|n = |3− x| = |x− 3|,

so this series converges if −1 < x − 3 < 1; that is, if 2 < x < 4. It also converges at x = 2 because it is
the p-series with p = 3 > 1 and converges at x = 4 by the alternating series test. Therefore its interval of
convergence is [2, 4].

C10S08.024: Given the series
∞∑
n=1

(−1)n+110n

n!
(x− 10)n, the ratio test yields
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lim
n→∞

n!10n+1|x− 10|n+1

(n+ 1)!10n|x− 10|n = lim
n→∞

10|x− 10|
n+ 1

= 0

for all real numbers x. Therefore this series converges on the set (−∞, +∞) of all real numbers. You
can use the series in Eq. (19) of Section 10.4—of which this series is a special case—to write its sum in
closed form. (Watch out for the “missing” term corresponding to n = 0.) You should find that its sum is
1− exp(100− 10x).

C10S08.025: Given the series
∞∑
n=1

n!
2n

(x− 5)n, the ratio test yields

lim
n→∞

(n+ 1)!2n|x− 5|n+1

n!2n+1|x− 5|n = lim
n→∞

n+ 1
2
|x− 5| = +∞

unless x = 5, in which case the limit is zero. So this series converges only at the single point x = 5; its radius
of convergence is zero.

C10S08.026: Given the series
∞∑
n=1

(−1)n+1

n · 10n
(x− 2)n, the ratio test yields

lim
n→∞

n · 10n · |x− 2|n+1

(n+ 1) · 10n+1 · |x− 2|n =
|x− 2|

10
,

and therefore this series converges if −10 < x − 2 < 10; that is, if −8 < x < 12. If x = 12 it converges by
the alternating series test; if x = −8 it diverges because it is then the harmonic series. To write its sum in
closed form, let

f(x) =
∞∑
n=1

(−1)n+1

n · 10n
(x− 2)n; then f ′(x) =

∞∑
n=1

(−1)n+1

10n
(x− 2)n−1.

The series for f ′(x) is geometric, with sum

1
10

1 +
x− 2
10

=
1

10 + x− 2
=

1
x+ 8

.

Therefore f(x) = C + ln(x+ 8); f(2) = 0 = C + ln 10, and thus

f(x) = − ln 10 + ln(x+ 8) = ln
(
x+ 8
10

)
.

C10S08.027: Given the series
∞∑
n=0

x(2n), the ratio test yields

lim
n→∞

|x|(2n+1)

|x|(2n)
= lim
n→∞

|x|(2n).

This limit is zero if −1 < x < 1, is 1 if x = ±1, and is +∞ if |x| > 1. The series diverges if x = ±1 by the
nth-term test for divergence, and hence its interval of convergence is (−1, 1).

C10S08.028: Given the series
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∞∑
n=0

(
x2 + 1

5

)n
,

note that it is geometric with first term 1 and ratio (x2 + 1)/5. Hence it converges if

−1 <
x2 + 1

5
< 1; − 5 < x2 + 1 < 5;

0 � x2 < 4; − 2 < x < 2.

Its interval of convergence is (−2, 2) and its sum there is
5

4− x2
.

C10S08.029: Given the series
∞∑
n=1

(−1)nxn

1 · 3 · 5 · · · (2n− 1)
, the ratio test yields

lim
n→∞

1 · 3 · 5 · · · (2n− 1) · |x|n+1

1 · 3 · 5 · · · (2n− 1) · (2n+ 1) · |x|n = lim
n→∞

|x|
2n+ 1

= 0

for all x. Hence the interval of convergence of this series is (−∞, +∞).

C10S08.030: Given the series
∞∑
n=1

1 · 3 · 5 · · · (2n− 1)
2 · 5 · 8 · · · (3n− 1)

xn, the ratio test yields

lim
n→∞

1 · 3 · 5 · · · (2n− 1) · (2n+ 1) · 2 · 5 · 8 · · · (3n− 1) · |x|n+1

1 · 3 · 5 · · · (2n− 1) · 2 · 5 · 8 · · · (3n− 1) · (3n+ 2) · |x|n = lim
n→∞

2n+ 1
3n+ 2

|x| = 2|x|
3

.

Therefore this series converges if |x| < 3
2 and diverges if |x| > 3

2 . If x = 3
2 , then the given series has nth term

an =
1 · 3 · 5 · · · (2n− 1) · 3n
2 · 5 · 8 · · · (3n− 1) · 2n ,

and

an+1

an
=

3(2n+ 1)
2(3n+ 2)

=
6n+ 3
6n+ 4

= 1− 1
6n+ 4

> 1− 1
n+ 1

=
n

n+ 1

for every integer n � 1. Thus for such n we have

an+1 >
n

n+ 1
· an >

n

n+ 1
· n− 1

n
· n− 2
n− 1

· · · 1
2
· a1;

an+1 >
1

2(n+ 1)
· 3
4

=
3

8(n+ 1)
.

Therefore an >
3
8n

for all n � 1. Hence

∞∑
n=1

an dominates
3
8

∞∑
n=1

1
n

;

thus the series of this problem diverges if x = 3
2 . For the case x = − 3

2 , more care is needed. Substitute
x = + 3

2 . Then the nth term of the original series is
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an =
1 · 3 · 5 · · · (2n− 1) · 3n
2 · 5 · 8 · · · (3n− 1) · 2n =

1
2
· 3
2
· 5
2
· · · 2n− 1

2
2
3
· 5
3
· 8
3
· · · 3n− 1

3

=

(
1− 1

2

)(
2− 1

2

)(
3− 1

2

)
· · ·

(
n− 1

2

)
(
1− 1

3

)(
2− 2

3

)(
3− 1

3

)
· · ·

(
n− 1

3

) .

Therefore

ln an =
n∑
k=1

ln
(
k − 1

2

k − 1
3

)
=

n∑
k=1

ln
(
k − 1

3 −
1
6

k − 1
3

)
=

n∑
k=1

ln
(

1− 1
6k − 2

)
.

The linear approximation to f(x) = lnx at (1, 0) is L(x) = x − 1. Because the graph of f is concave
downward everywhere, lnx < x− 1 if 0 < x < 1. Substitute

x = 1− 1
6k − 2

in the inequality lnx < x− 1 to conclude that

ln
(

1− 1
6k − 2

)
< − 1

6k − 2

for every positive integer k. Therefore

ln an < −
n∑
k=1

1
6k − 2

for every positive integer n. The last series diverges to −∞ by limit-comparison with the harmonic series.
It follows that

lim
n→∞

ln an = −∞, and thus that lim
n→∞

an = 0.

Therefore when we substitute x = − 3
2 in the original power series of this problem, the resulting numerical

series satisfies the criteria of the alternating series test and consequently converges. Thus the interval of
convergence of the given power series is

[
− 3

2 ,
3
2

)
.

The reader familiar with convergence tests will recognize that the last argument of this solution derives
from a failure of Raabe’s test; we owe great thanks to Ed Azoff for suggestions that led to this argument.
The sum of this series (on its interval of convergence) can be expressed in closed form with the aid of
Mathematica; it is

x

3
·
Γ

(
2
3

)
Γ

(
5
3

) · 2F1

(
1,

3
2
;

5
3
;

2x
3

)
.

See earlier solutions in Chapter 10 for information about the hypergeometric function 2F1; see the subsection
on Special Functions in Section 7.8, and several end-of-section problems, for more about the gamma function.

C10S08.031: The function is the sum of a geometric series with first term and ratio x, and hence

f(x) =
x

1− x
= x+ x2 + x3 + x4 + x5 + · · · .

This series has radius of convergence 1 and interval of convergence (−1, 1).

C10S08.032: We write f(x) in the form of the sum of a geometric series:
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f(x) =
1

10 + x
=

1
10

1 + 1
10 x

=
1
10
− x

102
+

x2

103
− x3

104
+

x4

105
− · · · .

The radius of convergence of this series is 10 and its interval of convergence is (−10, 10).

C10S08.033: Substitute −3x for x in the Maclaurin series for ex in Eq. (2), then multiply by x2 to obtain

f(x) = x2e−3x = x2

(
1− 3x

1!
+

9x2

2!
− 27x3

3!
+

81x4

4!
− 243x5

5!
+ · · ·

)

= x2 − 3x3

1!
+

32x4

2!
− 33x5

3!
+

34x6

4!
− 35x7

5!
+ · · · .

The ratio test gives radius of convergence +∞, so the interval of convergence of this series is (−∞, +∞).

C10S08.034: Write f(x) in the form of the sum of a geometric series:

f(x) =
x

9− x2
=

1
9 x

1−
(

1
3 x

)2 =
x

32
+
x3

34
+
x5

36
+
x7

38
+

x9

310
+ · · · .

This series has radius of convergence 3 and interval of convergence (−3, 3).

C10S08.035: Substitute x2 for x in the Maclaurin series in (4) to obtain

f(x) = sinx2 = x2 − x6

3!
+
x10

5!
− x14

7!
+
x18

9!
− · · · .

The ratio test yields radius of convergence +∞, so the interval of convergence of this series is (−∞, +∞).

C10S08.036: Substitution in the Maclaurin series in Eq. (3) yields

f(x) = cos2 2x =
1
2

(1 + cos 4x)

=
1
2

(
1 + 1− 42x2

2!
+

44x4

4!
− 46x6

6!
+

48x8

8!
− 410x10

10!
+ · · ·

)

= 1− 23x2

2!
+

27x4

4!
− 211x6

6!
+

215x8

8!
− 219x10

10!
+ · · · .

The ratio test yields radius of convergence +∞, so the interval of convergence of this series is (−∞, +∞).

C10S08.037: Substitution of α = 1
3 in the binomial series in Eq. (14) yields

(1 + x)1/3 = 1 +
1
3
x− 1

3
· 2
3
· x

2

2!
+

1
3
· 2
3
· 5
3
· x

3

3!
− 1

3
· 2
3
· 5
3
· 8
3
· x

4

4!
+ · · ·

= 1 +
1
3
x− 2

32
· x

2

2!
+

2 · 5
33
· x

3

3!
− 2 · 5 · 8

34
· x

4

4!
+ · · · .

Next, replacement of x with −x yields

f(x) = (1− x)1/3 = 1− 1
3
x− 2

32
· x

2

2!
− 2 · 5

33
· x

3

3!
− 2 · 5 · 8

34
· x

4

4!
− 2 · 5 · 8 · 11

35
· x

5

5!
− · · · .

The radius of convergence of this series is 1.
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C10S08.038: Substitution of α = 3
2 in the binomial series in Eq. (14) yields

(1 + x)3/2 = 1 +
3
2
x+

3 · 1
22
· x

2

2!
− 3 · 1 · 1

23
· x

3

3!
+

3 · 1 · 1 · 3
24

· x
4

4!
− 3 · 1 · 1 · 3 · 5

25
· x

5

5!
+ · · · .

Then replacement of x with x2 yields

f(x) = (1 + x2)3/2 = 1 +
3
2
x2 +

3
22
· x

4

2!
− 3 · 1

23
· x

6

3!
+

3 · 1 · 3
24

· x
8

4!
− 3 · 1 · 3 · 5

25
· x

10

5!
+ · · · .

The radius of convergence of this series is 1.

C10S08.039: Substitution of α = −3 in the binomial series in Eq. (14) yields

f(x) = (1 + x)−3 = 1− 3x+ 3 · 4 · x
2

2!
− 3 · 4 · 5 · x

3

3!
+ 3 · 4 · 5 · 6 · x

4

4!
− · · · .

The radius of convergence of this series is 1.

C10S08.040: Rewrite f(x) in such a way that the binomial series in Eq. (14) can be used:

f(x) = (9 + x3)−1/2 =
1
3

(
1 +

x3

9

)−1/2

.

According to Eq. (14),

(1 + z)−1/2 = 1− 1
2
z +

1 · 3
22
· z

2

2!
− 1 · 3 · 5

23
· z

3

3!
+

1 · 3 · 5 · 7
24

· z
4

4!
− · · · .

Multiply by 1
3 and substitute x3/9 for z to obtain

f(x) =
1√

9 + x3
=

1
3
− 1

2 · 33
x3 +

1 · 3
22 · 35

· x
6

2!
− 1 · 3 · 5

23 · 37
· x

9

3!
+

1 · 3 · 5 · 7
24 · 39

· x
12

4!
− · · · .

This series converges when −1 <
x3

9
< 1, so its radius of convergence is 91/3.

C10S08.041: Let g(x) = ln(1 + x). Then

g′(x) =
1

1 + x
= 1− x+ x2 − x3 + x4 − x5 + · · · , −1 < x < 1.

So

g(x) = C + x− x2

2
+
x3

3
− x4

4
+
x5

5
− x6

6
+ · · ·

by Theorem 3. Also 0 = g(0) = ln 1 = C, so that

g(x) = x− x2

2
+
x3

3
− x4

4
+
x5

5
− x6

6
+ · · · .

Therefore

f(x) =
g(x)
x

= 1− x

2
+
x2

3
− x3

4
+
x4

5
− x5

6
+ · · · .

The ratio test tells us that the radius of convergence is 1; the interval of convergence is (−1, 1].
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C10S08.042: Let g(x) = arctanx. Then

g′(x) =
1

1 + x2
= 1− x2 + x4 − x6 + x8 − x10 + x12 − · · · , −1 < x < 1.

Thus

g(x) = C + x− x3

3
+
x5

5
− x7

7
+
x9

9
− x11

11
+ · · · .

Also 0 = g(0) + C. So

arctanx = x− x3

3
+
x5

5
− x7

7
+
x9

9
− x11

11
+ · · · ,

and thus

x− arctanx =
x3

3
− x5

5
+
x7

7
− x9

9
+
x11

11
− · · · .

So

f(x) =
x− arctanx

x3
=

1
3
− x2

5
+
x4

7
− x6

9
+
x8

11
− · · · .

The ratio test indicates radius of convergence 1; the interval of convergence is [−1, 1].

C10S08.043: Termwise integration yields

f(x) =
∫ x

0

sin t3 dt =
∫ x

0

(
t3 − t9

3!
+
t15

5!
− t21

7!
+ · · ·

)
dt

=
[
t4

4
− t10

3!10
+

t16

5!16
− t22

7!22
+ · · ·

]x
0

=
x4

4
− x10

3!10
+

x16

5!16
− x22

7!22
+ · · · .

This representation is valid for all real x.

C10S08.044: Termwise integration yields

f(x) =
∫ x

0

sin t
t

dt =
∫ x

0

(
1− t2

3!
+
t4

5!
− t6

7!
+ · · ·

)
dt

=
[
t− t3

3!3
+

t5

5!5
− t7

7!7
+ · · ·

]x
0

= x− x3

3!3
+

x5

5!5
− x7

7!7
+ · · · .

This representation is valid for all real x.

C10S08.045: Termwise integration yields

f(x) =
∫ x

0

exp
(
−t3

)
dt =

∫ x

0

(
1− t3 +

t6

2!
− t9

3!
+
t12

4!
− · · ·

)
dt

=
[
t− t4

4
+

t7

2!7
− t10

3!10
+

t13

4!13
− · · ·

]x
0

= x− x4

4
+

x7

2!7
− x10

3!10
+

x13

4!13
− · · · .

This representation is valid for all real x.
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C10S08.046: One result in the solution of Problem 42 yields

f(x) =
∫ x

0

arctan t
t

dt =
∫ x

0

(
1− t2

3
+
t4

5
− t6

7
+
t8

9
− · · ·

)
dt

=
[
t− t3

32
+

t5

52
− t7

72
+

t9

92
− · · ·

]x
0

= x− x3

32
+
x5

52
− x7

72
+
x9

92
− · · · .

This representation is valid for −1 � x � 1. The sum of the last series in the case x = 1 is known as
Catalan’s constant, which is connected with estimates in the theory of combinatorial functions.

C10S08.047: First,

1− exp
(
−t2

)
= 1−

(
1− t2 +

t4

2!
− t6

3!
+
t8

4!
− · · ·

)
= t2 − t4

2!
+
t6

3!
− t8

4!
+
t10

5!
− · · · .

Then termwise integration yields

f(x) =
∫ x

0

1− exp
(
−t2

)
t2

dt =
∫ x

0

(
1− t2

2!
+
t4

3!
− t6

4!
+
t8

5!
− · · ·

)
dt

=
[
t− t3

2! · 3 +
t5

3! · 5 −
t7

4! · 7 +
t9

5! · 9 − · · ·
]x
0

= x− x3

2! · 3 +
x5

3! · 5 −
x7

4! · 7 +
x9

5! · 9 − · · · .

This representation is valid for all real x.

C10S08.048: Termwise integration yields

tanh−1 x =
∫ x

0

1
1− t2

dt =
∫ x

0

(
1 + t2 + t4 + t6 + t8 + · · ·

)
dt

=
[
t+

t3

3
+
t5

5
+
t7

7
+
t9

9
+ · · ·

]x
0

= x+
x3

3
+
x5

5
+
x7

7
+
x9

9
+ · · · .

This representation is valid if −1 < x < 1.

C10S08.049: We begin with

f(x) =
∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + x5 + · · · =
1

1− x
, −1 < x < 1.

Then termwise differentiation yields

f ′(x) =
∞∑
n=1

nxn−1 =
1

(1− x)2
; thus

xf ′(x) =
∞∑
n=1

nxn =
x

(1− x)2
, −1 < x < 1.

C10S08.050: Termwise differentiation of the second series in the solution of Problem 49 yields
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f ′′(x) =
∞∑
n=2

n(n− 1)xn−2 =
2

(1− x)3
. Hence

x2f ′′(x) =
∞∑
n=2

n(n− 1)xn =
2x2

(1− x)3
, −1 < x < 1.

C10S08.051: We found in the solution of Problem 49 that if

f(x) =
∞∑
n=0

xn =
1

1− x
, −1 < x < 1,

then

xf ′(x) =
∞∑
n=1

nxn =
x

(1− x)2
, −1 < x < 1.

Therefore

Dx [xf ′(x)] =
∞∑
n=1

n2xn−1 =
1 + x

(1− x)3
,

and hence

∞∑
n=1

n2xn =
x+ x2

(1− x)3
, −1 < x < 1.

C10S08.052: We saw in the solution of Problem 49 that

G(x) =
∞∑
n=1

nxn =
x

(1− x)2
, −1 < x < 1.

Therefore

∞∑
n=1

n

2n
= G

(
1
2

)
=

1
2
1
4

= 2.

We saw in the solution of Problem 51 that

H(x) =
∞∑
n=1

n2xn =
x+ x2

(1− x)3
, −1 < x < 1.

Thus

∞∑
n=1

n2

3n
= H

(
1
3

)
=

1
3

+
1
9(

2
3

)3 =
3
2
.

In connection with our earlier discussions of the polylogarithm function, you can verify that both the
series of Problem 52 are special cases of the series
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∞∑
n=1

np

qn
= Li(−p)

(
1
q

)
.

C10S08.053: If

y = ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+

xn+1

(n+ 1)!
+ · · · , then

dy

dx
= 0 + 1 +

2x
2!

+
3x2

3!
+ · · ·+ nxn−1

n!
+

(n+ 1)xn

(n+ 1)!
+ · · ·

= 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn−1

(n− 1)!
+
xn

n!
+ · · · = ex = y.

C10S08.054: If

y = sinx = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ · · · , then

u =
dy

dx
= 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ · · · = cosx,

d2y

dx2
= −x+

x3

3!
− x5

5!
+
x7

7!
− x9

9!
+ · · · = − sinx, and

d2u

dx2
=

d3y

dx3
= −1 +

x2

2!
− x4

4!
+
x6

6!
− x8

8!
+ · · · = − cosx.

Therefore both the sine and cosine functions satisfy the differential equation
d2y

dx2
+ y = 0.

C11S08.055: If

y = sinhx = x+
x3

3!
+
x5

5!
+
x7

7!
+
x9

9!
+
x11

11!
+ · · · , then

dy

dx
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+
x8

8!
+
x10

10!
+ · · · = coshx and

d2y

dx2
= x+

x3

3!
+
x5

5!
+
x7

7!
+
x9

9!
+ · · · = sinhx.

Therefore both the hyperbolic sine and hyperbolic cosine functions satisfy the differential equation

d2y

dx2
− y = 0.

C10S08.056: We let

Sk(x) =
k∑

n=1

(−1)n−1x2n−1

(2n− 1)!
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for k � 1 and plotted y = Sk(x) for k = 5, 8, 11, and 14 simultaneously using Mathematica 3.0. These
graphs are next.

All four graphs cross first cross the positive x-axis at a point between 3.1 and 3.2. To locate this point more
accurately, we applied Newton’s method to the equation Sk(x) = 0 for all four values of k, using the initial
guess x0 = 3. Here are the results:

k = 5 k = 8 k = 11 k = 14

x1 3.1490725899 3.1425458981 3.1425465431 3.1425465431

x2 3.1486900652 3.1415918805 3.1415926533 3.1415926533

x3 3.1486900715 3.1415918808 3.1415926536 3.1415926536

x4 3.1486900716 3.1415918808 3.1415926536 3.1415926536

There can be little doubt that, to ten places, π = 3.1415926536.

C10S08.057: From Example 7 we have

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
; we are also given J1(x) =

∞∑
n=0

(−1)nx2n+1

22n+1n!(n+ 1)!
.

We apply the ratio test to the series for J1(x) with the following result:

lim
n→∞

22n+1n!(n+ 1)!|x|2n+3

22n+3(n+ 1)!(n+ 2)!|x|2n+1
= lim
n→∞

x2

4(n+ 1)(n+ 2)
= 0

for all x. Therefore this series converges for all x. Next,

J ′
0(x) =

∞∑
n=1

(−1)n2nx2n−1

22n(n!)2
=

∞∑
n=1

(−1)nx2n−1

22n−1n!(n− 1)!

=
∞∑
n=0

(−1)n+1x2n+1

22n+1(n+ 1)!n!
= −

∞∑
n=0

(−1)nx2n+1

22n+1(n+ 1)!n!
= −J1(x).

C10S08.058: First,

xJ0(x) = x

∞∑
n=0

(−1)nx2n

22n(n!)2
=

∞∑
n=0

(−1)nx2n+1

22n(n!)2
.
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Therefore term-by-term integration yields

∫
xJ0(x) dx =

∞∑
n=0

(−1)nx2n+2

(2n+ 2)22n(n!)2
+ C =

∞∑
n=0

(−1)nx2n+2

22n+1(n+ 1)!n!
+ C

= x

∞∑
n=0

(−1)nx2n+1

22n+1(n+ 1)!n!
+ C = xJ1(x) + C.

C10S08.059: We begin with

y(x) = J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
. Then:

y′(x) =
∞∑
n=1

(−1)n2nx2n−1

22n(n!)2
=

∞∑
n=0

(−1)n+1(2n+ 2)x2n+1

22n+2[(n+ 1)!]2
=

∞∑
n=0

(−1)n+1x2n+1

22n+1n!(n+ 1)!
;

y′′(x) =
∞∑
n=0

(−1)n+1(2n+ 1)x2n

22n+1n!(n+ 1)!
;

x2y′′(x) =
∞∑
n=0

(−1)n+1(2n+ 1)x2n+2

22n+1n!(n+ 1)!
;

xy′(x) =
∞∑
n=0

(−1)n+1x2n+2

22n+1n!(n+ 1)!
;

x2y(x) =
∞∑
n=0

(−1)nx2n+2

22n(n!)2
.

Note that the coefficient n in Bessel’s equation is zero. Therefore

x2y′′(x) + xy′(x) + x2y(x) =
∞∑
n=0

(−1)nx2n+2

22n(n!)2

[
− 2n+ 1

2(n+ 1)
− 1

2(n+ 1)
+ 1

]

=
∞∑
n=0

(−1)nx2n+2

22n(n!)2

[
−2n+ 2

2n+ 2
+ 1

]
≡ 0.

C10S08.060: We begin with

y(x) = J1(x) =
∞∑
n=0

(−1)nx2n+1

22n+1n!(n+ 1)!
. Then:

x2y(x) =
∞∑
n=0

(−1)nx2n+3

22n+1n!(n+ 1)!
=

∞∑
n=1

(−1)n−1x2n+1

22n−1(n− 1)!n!
;

y′(x) =
∞∑
n=0

(−1)n(2n+ 1)x2n

22n+1n!(n+ 1)!
;

xy′(x) =
∞∑
n=0

(−1)n(2n+ 1)x2n+1

22n+1n!(n+ 1)!
;
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y′′(x) =
∞∑
n=1

(−1)n(2n+ 1)(2n)x2n−1

22n+1n!(n+ 1)!
;

x2y′′(x) =
∞∑
n=1

(−1)n(2n+ 1)(2n)x2n+1

22n+1n!(n+ 1)!
,

Take n = 1 in Bessel’s equation. Then

x2y′′(x) + xy′(x) + (x2 − 1)y(x) =
∞∑
n=1

(−1)n(2n+ 1)(2n)x2n+1

22n+1n!(n+ 1)!
+
x

2
+

∞∑
n=1

(−1)n(2n+ 1)x2n+1

22n+1n!(n+ 1)!

−
∞∑
n=1

(−1)nx2n+1

22n+1n!(n+ 1)!
− x

2
−

∞∑
n=1

(−1)nx2n+1

22n+1n!(n+ 1)!

=
∞∑
n=1

(−1)nx2n+1

22n−1(n− 1)!n!

[
(2n+ 1)(2n)
4n(n+ 1)

+
2n+ 1

4n(n+ 1)
− 1− 1

4n(n+ 1)

]
.

The last factor (in brackets) is

2n+ 1
2(n+ 1)

+
2n+ 1

4n(n+ 1)
− 1− 1

4n(n+ 1)
=

2n+ 1
2(n+ 1)

+
1

2(n+ 1)
− 1 =

2n+ 2
2n+ 2

− 1 ≡ 0.

This establishes that y(x) = J1(x) satisfies Bessel’s equation of order 1.

C10S08.061: The Taylor series of f centered at a = 0 is

f(x) =
sinx
x

= 1− x2

3!
+
x4

5!
− x6

7!
+
x8

9!
− · · · .

This representation is valid for all real x. We plotted the Taylor polynomials for f(x) with center a = 0 of
degree 4, 6, and 8 and the graph of y = f(x) simultaneously, with the following result.

C10S08.062: Using the solution of Problem 61, we have

g(x) =
[
t− t3

3!3
+

t5

5!5
− t7

7!7
+ · · ·

]x
0

= x− x3

3!3
+

x5

5!5
− x7

7!7
+ · · · .

The ratio test yields

lim
n→∞

(2n+ 1)!(2n+ 1)|x|2n+3

(2n+ 3)!(2n+ 3)|x|2n+1
= lim
n→∞

(2n+ 1)x2

(2n+ 3)2(2n+ 2)
= 0
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for all real x. Hence this series converges for all x. The following figure shows the graph of y = g(x) and the
graphs of its Taylor polynomials Sk(x) of degree k for k = 3, 5, and 7.

C10S08.063: Equation 20 is

arctanx = x− x3

3
+
x5

5
− x7

7
+
x9

9
− · · · , −1 < x < 1.

Thus

arctanx =
∞∑
n=0

(−1)nx2n+1

2n+ 1
= x

∞∑
n=0

(−1)nx2n

2n+ 1
, −1 < x < 1.

Consequently,

π = 6 · π
6

= 6 · arctan
1√
3

=
6√
3

∞∑
n=0

(−1)n

2n+ 1
·
(

1√
3

)2n

=
6√
3

∞∑
n=0

(−1)n

2n+ 1
· 1
3n

.

Mathematica 3.0 reports that

6√
3

10∑
n=0

(−1)n

2n+ 1
· 1
3n
≈ 3.1415933045030815,

6√
3

20∑
n=0

(−1)n

2n+ 1
· 1
3n
≈ 3.1415926535956350,

6√
3

30∑
n=0

(−1)n

2n+ 1
· 1
3n
≈ 3.1415926535897932, and

6√
3

40∑
n=0

(−1)n

2n+ 1
· 1
3n
≈ 3.1415926535897932.

C10S08.064: We begin by replacing sinxt with its Maclaurin series:

∫ ∞

0

e−t sinxt dt =
∫ ∞

0

e−t
(
xt− x3t3

3!
+
x5t5

5!
− x7t7

7!
+ · · ·

)
dt

= x

∫ ∞

0

te−t dt− x3

3!

∫ ∞

0

t3e−t dt+
x5

5!

∫ ∞

0

t5e−t dt− x7

7!

∫ ∞

0

t7e−t dt+ · · ·

= x− x3 + x5 − x7 + · · · = x

1 + x2
, −1 < x < 1.

20



The next-to-last equality follows from the definition of the gamma function in Eq. (7) of Section 7.8 and the
results in Problems 47 and 48 there, which imply that

∫ ∞

0

tne−t dt = n!

if n is a nonnegative integer.

C10S08.065: Part (a): From the Maclaurin series for the natural exponential function in Eq. (2) of this
section, we derive the fact that

e−t =
1
et

=
∞∑
n=0

(−1)n

n!
tn

for all real t. Substitute t = x lnx = ln(xx) to obtain

1
xx

=
∞∑
n=0

(−1)n

n!
(x lnx)n

if x > 0. Part (b): The formula in Problem 53 of Section 7.8 states that if m and n are fixed positive
integers, then

∫ 1

0

xm(lnx)n dx =
(−1)nn!

(m+ 1)n+1
. (1)

Moreover, term-by-term integration is valid in the case of the result in part (a), so

∫ 1

0

1
xx

dx =
∞∑
n=0

(−1)n

n!

∫ 1

0

(x lnx)n dx.

Thus Eq. (1) here yields

∫ 1

0

1
xx

dx =
∞∑
n=0

(−1)n

n!
· (−1)nn!
(n+ 1)n+1

=
∞∑
n=0

1
(n+ 1)n+1

=
∞∑
n=1

1
nn

.

C10S08.066: Suppose that

f(x) =
∞∑
n=0

anx
n, −r < x < r

where r > 0. Then

a0 = f(0) =
f (0)(0)

0!
.

Assume that

ak =
f (k)(0)
k!

and that f (k)(x) =
∞∑
n=k

n(n− 1) · · · (n− k + 1)anxn−k

for some integer k � 0. Then
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f (k+1)(x) =
∞∑

n=k+1

n(n− 1) · · · (n− k)anxn−k−1.

Moreover, substitution of x = 0 zeros out every term in the last series except for its first, for which n = k+1,
and therefore

f (k+1)(0) = (k + 1)!ak+1, so that ak+1 =
f (k+1)(0)
(k + 1)!

.

Therefore, by induction, an = f (n)(0)/n! for all n � 0. Thus the only power series in powers of x that
represents f(x) at and near x = 0 is its Maclaurin series.

C10S08.067: Part (a):

f(x) =
∞∑
n=0

α(α− 1)(α− 2) · · · (α− n+ 1)
n!

xn

= 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)
3!

x3 + · · ·+ α(α− 1)(α− 2) · · · (α− n+ 1)
n!

xn + · · · .

f ′(x) = α+
α(α− 1)

1!
x+

α(α− 1)(α− 2)
2!

x2 +
α(α− 1)(α− 2)(α− 3)

3!
x3 + · · ·

+
α(α− 1)(α− 2) · · · (α− n+ 1)

(n− 1)!
xn−1 +

α(α− 1)(α− 2) · · · (α− n)
n!

xn + · · · .

xf ′(x) = αx+
α(α− 1)

1!
x2 +

α(α− 1)(α− 2)
2!

x3 +
α(α− 1)(α− 2)(α− 3)

3!
x4 + · · ·

+
α(α− 1)(α− 2) · · · (α− n+ 1)

(n− 1)!
xn +

α(α− 1)(α− 2) · · · (α− n)
n!

xn+1 + · · · .

Therefore

(1 + x)f ′(x) = f ′(x) + xf ′(x)

= α+ (α2 − α+ α)x+
1
2!

[α(α− 1)(α− 2 + 2)]x2 +
1
3!

[α(α− 1)(α− 2)(α− 3 + 3)]x3 + · · ·

+
1
n!

[α(α− 1)(α− 2) · · · (α− n+ 1)(α− n+ n)]xn + · · ·

= α+ α2x+
α2(α− 1)

2!
x2 +

α2(α− 1)(α− 2)
3!

x3 + · · ·

+
α2(α− 1)(α− 2) · · · (α− n+ 1)

n!
xn + · · · = αf(x).

Part (b): From the result (1 + x)f ′(x) = αf(x) in part (a), we derive

f ′(x)
f(x)

=
α

1 + x
; ln (f(x)) = C + α ln(1 + x);

f(x) = K(1 + x)α; 1 = f(0) = K · 1α : K = 1.
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Therefore f(x) = (1 + x)α, −1 < x < 1.

C10S08.068: Part(a):
∫ 1

0

arcsinx√
1− x2

dx =
[

1
2

(arcsinx)2
]1

0

=
1
2
· π

2

4
=

π2

8
.

Part (b): One of the two results in Problem 58 of Section 7.3 is that

∫ π/2

0

(sinx)2n+1 dx =
2
3
· 4
5
· 6
7
· · · 2n

2n+ 1

for every positive integer n. Thus the substitution x = sinu yields

∫ 1

0

x2n+1

√
1− x2

dx =
∫ π/2

0

(sinu)2n+1

cosu
cosu du =

2
3
· 4
5
· 6
7
· · · 2n

2n+ 1
.

Part (c): The series in Example 12 is

arcsinx = x+
∞∑
n=1

1 · 3 · 5 · · · (2n− 1)
2 · 4 · 6 · · · (2n)

· x
2n+1

2n+ 1
.

Therefore

π2

8
=

∫ 1

0

[
x√

1− x2
+

∞∑
n=1

1
2
· 3
4
· · · (2n− 1)

2n
· 1
2n+ 1

· x2n+1

√
1− x2

]
dx

=
[
− (1− x2)1/2

]1

0

+

[ ∞∑
n=1

1 · 3 · 5 · · · (2n− 1)
2 · 4 · 6 · · · (2n) · (2n+ 1)

∫ 1

0

x2n+1

√
1− x2

dx

]

= 1 +
∞∑
n=1

1 · 3 · 5 · · · (2n− 1)
2 · 4 · 6 · · · (2n) · (2n+ 1)

· 2
3
· 4
5
· 6
7
· · · 2n

2n+ 1

= 1 +
∞∑
n=1

1
(2n+ 1)2

= 1 +
1
32

+
1
52

+
1
72
· · · .

Part (d): Therefore

S =
∞∑
n=1

1
n2

=
∞∑
n=1

1
(2n− 1)2

+
∞∑
n=1

1
(2n)2

=
π2

8
+

1
4

∞∑
n=1

1
n2

=
π2

8
+

1
4
S.

Therefore
3
4
S =

π2

8
, and thus S =

π2

6
. That is,

∞∑
n=1

1
n2

=
π2

6
.

C10S08.069: Assume that the power series

∞∑
n=0

anx
n
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converges for some x = x0 	= 0. Then {anxn0 } → 0 as n→ +∞. Thus there exists a positive integer K such
that, if n � K and |x| < |x0|, then

|anxn0 | � 1; |anxn| �
∣∣∣∣x
n

xn0

∣∣∣∣ ; |anxn| �
∣∣∣∣ xx0

∣∣∣∣
n

.

This implies that the series

∞∑
n=0

|anxn| is eventually dominated by
∞∑
n=0

∣∣∣∣ xx0

∣∣∣∣
n

,

a convergent geometric series. Therefore
∑

anx
n converges absolutely if |x| < |x0|.

C10S08.070: Part (a): Suppose that the power series
∑

anx
n converges for some, but not all, nonzero

values of x. Let S be the set of real numbers for which the series converges absolutely. If S is not bounded
above, then

∑
anx

n converges absolutely for all x by the result in Problem 69. Therefore S has an upper
bound. Moreover, S is nonempty because it contains zero. Therefore S has a least upper bound.

Part (b): Let λ be the least upper bound of S. If |x| < λ, then there exists x0 in S such that |x| < x0 < λ.
Therefore, invoking the result in Problem 69 again,

∑
anx

n converges absolutely. On the other hand, if
|x| > λ but

∑
anx

n converges, then x is an element of S. This contradicts the definition of least upper
bound, and therefore

∑
anx

n diverges if |x| > λ. This proves Theorem 1 immediately with R = λ in part
(3) of the theorem.
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Section 10.9

C10S09.001: To estimate 651/3 using the binomial series, first write

651/3 = (43 + 1)1/3 = 4
(

1 +
1
64

)1/3

.

According to Eq. (14) in Section 10.8, the binomial series is

(1 + x)α = 1 + αx +
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)
3!

x3 + · · · ;

it has radius of convergence R = 1. Therefore

4(1 + x)1/3 = 4 +
4
3
x− 4 · 2

32
· x

2

2!
+

4 · 2 · 5
33

· x
3

3!
− 4 · 2 · 5 · 8

34
· x

4

4!
+ · · · .

With x = 1
64 , this series is alternating after the first two terms. For three digits correct to the right of the

decimal in our approximation, we note that if a = 1
64 , then

4 · 2
32
· a

2

2!
< 0.00011.

Therefore

651/3 ≈ 4 +
4
3
· 1
64
≈ 4.02083333 ≈ 4.021.

For more accuracy, the sum of the first seven terms of the series is approximately 4.02072575858904; compare
this with 651/3 ≈ 4.02072575858906.

C10S09.002: To estimate 6301/4 using the binomial series, first write

6301/4 = 5 ·
(

630
625

)1/4

= 5 ·
(

1 +
1

125

)1/4

.

Using Eq. (14) in Section 10.8, we have

(1 + x)1/4 = 1 +
1
4
x− 3

42
· x

2

2!
+

3 · 7
43
· x

3

3!
− 3 · 7 · 11

44
· x

4

4!
+ · · · .

With x = 1
125 , this series is alternating after the first two terms, and

5 · 3
42
· x

2

2
< 0.00003,

and thus

6301/4 ≈ 5 +
5
4
· 1
125

= 5.010.

Adding the next term of the series changes the approximation only slightly to 5.00997. The true value of
6301/4 is approximately 5.009971392346.

C10S09.003: The Maclaurin series for the sine function yields

sin(0.5) =
1
2
− 1

3! · 23
+

1
5! · 25

− 1
7! · 27

− · · · .

1



The alternating series remainder estimate (Theorem 2 in Section 10.7) tells us that because

1
5! · 25

≈ 0.000260417 < 0.0003,

the error in approximating sin(0.5) using only the first two terms of this series will be no greater than 0.0003.
Thus

sin(0.5) ≈ 1
2
− 1

3! · 23
≈ 0.47916667.

Therefore, to three places, sin(0.5) ≈ 0.479. As a separate check, the sum of the first three terms of the
series is approximately 0.47942708, the sum of its first six terms is approximately 0.479425538604, and this
agrees with the true value of sin(0.5) to the number of digits shown.

C10S09.004: Replacement of x with − 1
5 in the Maclaurin series for ex (Eq. (2) in Section 10.8) yields

e−1/5 = 1− 1
5

+
1

2! · 52
− 1

3! · 53
+

1
4! · 54

− · · · . (1)

Because

1
4! · 54

≈ 0.00006667 < 0.00007,

the sum of the first four terms of the series in (1) will yield three-place accuracy. Compare that sum,
approximately 0.81866667 ≈ 0.819, with e−1/5 ≈ 0.81873075.

C10S09.005: The Maclaurin series of the inverse tangent function is given in Eq. (20) of Section 10.8; it is

arctanx = x− 1
3
x3 +

1
5
x5 − 1

7
x7 +

1
9
x9 − · · · .

When x = 1
2 , the sum of the first four terms of this series is approximately 0.4634672619. With five terms

we get 0.4636842758 and with six terms we get 0.4636398868. To three places, arctan(0.5) ≈ 0.464.

C10S09.006: By Eq. (19) in Section 10.8,

ln(1 + x) = x− 1
2
x2 +

1
3
x3 − 1

4
x4 +

1
5
x5 − · · · .

If x = 1
10 , then this series is an alternating series; thus because

1
4
· 1
104

= 0.000025 < 0.00003,

the sum of the first three terms of the series should give three-place accuracy. And

1
10
− 1

2 · 100
+

1
3 · 1000

≈ 0.09533333,

so that ln(1.1) ≈ 0.0953. Indeed, the sum of the first four terms of the series is approximately 0.09530833;
moreover, ln(1.1) ≈ 0.0953101798.

C10S09.007: When x = π/10 is substituted in the Maclaurin series for the sine function (Eq. (4) in
Section 10.8), we obtain

sin
( π

10

)
=

π

10
− π3

3! · 103
+

π5

5! · 105
− π7

7! · 107
+ · · · .

2



Because

π5

5! · 105
≈ 0.000025501641 < 0.00003,

the sum of the first two terms of the series should yield three-place accuracy. Thus because

sin
( π

10

)
≈ π

10
− π3

3! · 103
≈ 0.30899155,

we may conclude that sin(π/10) ≈ 0.309 to three places. In fact, the sum of the first three terms of the
series is approximately 0.30901699 and sin(π/10) ≈ 0.30901699 to the number of digits shown.

C10S09.008: When x = π/20 is substituted in the Maclaurin series for the cosine function (Eq. (3) in
Section 10.8), the result is

cos
( π

20

)
= 1− π2

2! · 202
+

π4

4! · 204
− π6

6! · 206
+ · · · .

Because

π4

4! · 204
≈ 0.000025366951 < 0.00003,

the sum of the first two terms of the Maclaurin series should yield three-place accuracy. And

cos
( π

20

)
≈ 1− π2

2! · 202
≈ 0.98766299,

so to three places, cos(π/20) ≈ 0.988. To check, the sum of the first three terms of the Maclaurin series is
approximately 0.9876883614 and cos(π/20) ≈ 0.9876883406 to the number of digits shown.

C10S09.009: First we convert 10◦ into π/18 radians, then use the Maclaurin series for the sine function
(Eq. (4) of Section 10.8):

sin 10◦ = sin
( π

18

)
=

π

18
− π3

3! · 183
+

π5

5! · 185
− π7

7! · 187
+ · · · .

Because

π3

3! · 183
≈ 0.000886096,

the first term of the Maclaurin series alone may not give three-place accuracy (it doesn’t). But

π5

5! · 185
≈ 0.0000013496016,

so we will certainly obtain three-place accuracy by adding the first two terms of the series:

sin
( π

18

)
≈ π

18
− π3

3! · 183
≈ 0.17364683.

Thus, to three places, sin 10◦ ≈ 0.174. To check, the sum of the first three terms of the series is approximately
0.1736481786 and the true value of sin 10◦ is approximately 0.1736481777 (to the number of digits shown).

C10S09.010: First we convert 5◦ to π/36 radians. Then the Maclaurin series for the cosine function (see
Eq. (3) in Section 10.8) yields
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cos 5◦ = cos
( π

36

)
= 1− π2

2! · 362
+

π4

4! · 364
− π6

6! · 366
+ · · · .

Now

π2

2! · 362
≈ 0.0038077177,

so the first term alone of the series will not give three-place accuracy, but

π4

4! · 364
≈ 0.0000024164524,

so the sum of the first two terms will be quite enough:

cos
( π

36

)
≈ 1− π2

2! · 362
≈ 0.99619228,

and therefore—to three places—we have cos 5◦ ≈ 0.996. To be certain, we found that the sum of the first
three terms is approximately 0.9961946987 and that the true value of cos 5◦ is 0.9961946981 to the number
of digits shown.

C10S09.011: Four-place accuracy demands that the error not exceed 0.00005. Here we have

I =
∫ 1

0

sinx

x
dx =

∫ 1

0

(
1− x2

3!
+

x4

5!
− x6

7!
+ · · ·

)
dx

= 1− 1
3!3

+
1

5!5
− 1

7!7
+

1
9!9
− 1

11!11
+ · · · .

The alternating series remainder estimate (Theorem 2 of Section 10.7), when applied, yields

1
7!7
≈ 0.0000566893 (not good enough) and

1
9!9
≈ 0.000000008748 (great accuracy),

so that

I ≈ 1− 1
3!3

+
1

5!5
− 1

7!7
≈ 0.946082766;

to four places, I ≈ 0.9461. To check, the sum of the first five terms of the series is approximately
0.9460830726 and the true value of the integral is 0.9460830703671830, correct to the number of digits
shown here.

C10S09.012: Here the Maclaurin series of the sine function (Eq. (4) in Section 10.8) yields

J =
∫ 1

0

sinx

x1/2
dx =

∫ 1

0

(
x1/2 − x5/2

3!
+

x9/2

5!
− x13/2

7!
+

x17/2

9!
− · · ·

)
dx

=
2
3
− 2

3! · 7 +
2

5! · 11
− 2

7! · 15
+

2
9! · 19

− · · · .

Here,

2
7! · 15

≈ 0.000026455026 (not good enough)
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but

2
9! · 19

≈ 0.00000029 (four-place accuracy assured).

Therefore

J ≈ 2
3
− 2

3! · 7 +
2

5! · 11
− 2

7! · 15
≈ 0.6205363155;

to four places, J ≈ 0.6205. To check this result, the sum of the first five terms of the series is approximately
0.620536605613 and the approximate value of the integral is 0.6205366034467622 (correct to the number of
digits shown here). The generalized hypergeometric function appears anew as the exact value of the integral;
it is

2
3
· 1F2

(
3
4
;

3
2
,

7
4
; −1

4

)
.

C10S09.013: The Maclaurin series for the inverse tangent function (Eq. (20) in Section 10.8) leads to

K =
∫ 1/2

0

arctanx

x
dx =

∫ 1/2

0

(
1− x2

3
+

x4

5
− x6

7
+ · · ·

)
dx

=
1
2
− 1

23 · 32
+

1
25 · 52

− 1
27 · 72

+
1

29 · 92
− · · · .

Now

1
29 · 92

≈ 0.000024112654 < 0.00003,

so by the alternating series error estimate, the sum of the first four terms of the numerical series should yield
four-place accuracy. Thus

K ≈ 1
2
− 1

23 · 32
+

1
25 · 52

− 1
27 · 72

≈ 0.4872016723;

that is, to four places K ≈ 0.4872. To check this result, the sum of the first five terms of the series is
approximately 0.487225784990 and the approximate value of the integral is 0.487222358295 (to the number
of digits shown).

C10S09.014: The Maclaurin series for the sine function yields

L =
∫ 1

0

sinx2 dx =
∫ 1

0

(
x2 − x6

3!
+

x10

5!
− x14

7!
+

x18

9!
− · · ·

)
dx

=
1
3
− 1

3! · 7 +
1

5! · 11
− 1

7! · 15
+

1
9! · 19

− · · · .

Using the alternating series remainder estimate, we find that

1
7! · 15

≈ 0.000013227513,

and thus for four-place accuracy we need only add the first three terms of the series:
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L ≈ 1
3
− 1

3! · 7 +
1

5! · 11
≈ 0.310281385281;

to four places, L ≈ 0.3103. To verify this result, the sum of the first four terms of the series is approximately
0.310268157768 and the value of the integral is 0.3102683017233811 (accurate to the number of digits shown).

C10S09.015: The Maclaurin series for ln(1 + x), in Eq. (19) of Section 10.8, yields

I =
∫ 1/10

0

ln(1 + x)
x

dx =
∫ 1/10

0

(
1− x

2
+

x2

3
− x3

4
+

x4

5
− x5

6
+ · · ·

)
dx

=
[
x− x2

4
+

x3

9
− x4

16
+

x5

25
− x6

36
+ · · ·

]1/10

0

=
1
10
− 1

4 · 102
+

1
9 · 103

− 1
16 · 104

+
1

25 · 105
− · · · .

Because

1
16 · 104

= 0.00000625,

the alternating series remainder estimate tells us that the sum of the first three terms of the numerical series
should give four-place accuracy. Because

I ≈ 1
10
− 1

4 · 102
+

1
9 · 103

≈ 0.097611111,

the four-place approximation we seek is I ≈ 0.0976. To check this result, the sum of the first four terms
of the series is approximately 0.097604861111 and the value of the integral, to the number of digits shown
here, is 0.0976052352293216.

C10S09.016: The binomial series (Example 8 in Section 10.8) yields

(1 + x)−1/2 = 1− x

2
+

1 · 3x2

2! · 22
− 1 · 3 · 5x3

3! · 23
+

1 · 3 · 5 · 7x4

4! · 24
− · · · .

Therefore

J =
∫ 1/2

0

1√
1 + x4

dx =
∫ 1/2

0

(
1− x4

2
+

1 · 3x8

2! · 22
− 1 · 3 · 5x12

3! · 23
+ · · ·

)
dx

=
[
x− x5

2 · 5 +
1 · 3x9

2! · 22 · 9 −
1 · 3 · 5x13

3! · 23 · 13
+

1 · 3 · 5 · 7x17

4! · 24 · 17
− · · ·

]1/2

0

=
1
2
− 1

26 · 5 +
1 · 3

2! · 211 · 9 −
1 · 3 · 5

3! · 216 · 13
+

1 · 3 · 5 · 7
4! · 221 · 17

− · · · .

We note that

1 · 3 · 5
3! · 216 · 13

≈ 0.0000029343825 < 0.000003,

so the alternating series remainder estimate assures us of four-place accuracy if we sum the first three terms
of the numerical series:

J ≈ 1
2
− 1

26 · 5 +
1 · 3

2! · 211 · 9 ≈ 0.496956380208.
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Thus, to four places, J ≈ 0.4970. To check this result, the sum of the first four terms of the series
is approximately 0.496953445826 and the value of the integral, accurate to the number of digits shown
here, is 0.4969535632094542968468. Solution by integration is known to require nonelementary functions;
Mathematics 3.0 uses the elliptic integral of the first kind.

C10S09.017: The Maclaurin series for the natural exponential function—Eq. (2) in Section 10.8—yields

J =
∫ 1/2

0

1− e−x

x
dx =

∫ 1/2

0

(
1− x

2!
+

x2

3!
− x3

4!
+

x4

5!
− · · ·

)
dx

=
[
x− x2

2!2
+

x3

3!3
− x4

4!4
+

x5

5!5
− · · ·

]1/2

0

=
1
2
− 1

2! · 2 · 22
+

1
3! · 3 · 23

− 1
4! · 4 · 24

+ · · · .

Because

1
6! · 6 · 26

≈ 0.00000361690,

the alternating series remainder estimate assures us that the sum of the first five terms of the series, which
is approximately 0.443845486111, will give us four-place accuracy: J ≈ 0.4438. The value of the integral,
accurate to the number of digits shown here, is 0.4438420791177484.

C10S09.018: The binomial series yields

(1 + x3)1/2 = 1 +
x3

2
− x6

2! · 22
+

3x9

3! · 23
− 3 · 5x12

4! · 24
+ · · · .

Then term-by-term integration yields

∫ 1/2

0

√
1 + x3 dx =

1
2

+
1

4 · 25
− 1

2! · 7 · 29
+

3
3! · 10 · 213

− 3 · 5
4! · 13 · 217

+ · · · .

We find that

1
2! · 7 · 29

≈ 0.00014, whereas
3

3! · 10 · 213
≈ 0.0000061.

The sum of the first three terms of the numerical series then yields the approximation

∫ 1/2

0

√
1 + x3 dx ≈ 0.507672991071;

to four places, the value of the integral is 0.5077. To the number of digits shown here, its actual value is
0.50767875196789934967776718. Direct evaluation of the integral is known to require the use of nonelemen-
tary functions; Mathematica 3.0 uses the elliptic function of the first kind.

C10S09.019: The Maclaurin series for the natural exponential function—Eq. (2) in Section 10.8—yields

exp(−x2) = 1− x2 +
x4

2!
− x6

3!
+

x8

4!
− x10

5!
+ · · · .

Then termwise integration gives

∫ 1

0

exp(−x2) dx = 1− 1
3

+
1

2! · 5 −
1

3! · 7 +
1

4! · 9 −
1

5! · 11
+ · · · .
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Next, the sum of the first six terms of the numerical series is approximately 0.746729196729, the sum of the
first seven terms is approximately 0.746836034336, and the sum of the first eight terms is approximately
0.746822806823. To four places, the value of the integral is 0.7468. The actual value of the integral, to the
number of digits shown here, is 0.7468241328124270.

C10S09.020: The Maclaurin series for the cosine function yields

1− cosx
x2

=
1
2!
− x2

4!
+

x4

6!
− x6

8!
+

x8

10!
− · · · .

Then term-by-term integration gives the series

∫ 1

0

1− cosx
x2

dx =
1
2!
− 1

4! · 3 +
1

6! · 5 −
1

8! · 7 +
1

10! · 9 − · · · .

The sum of the first three terms of the last series is approximately 0.486388888889 and the sum of the first
four terms is approximately 0.486385345805. Thus to four places, the value of the integral is 0.4864. Its
actual value, to the number of digits shown here, is 0.48638537623532273234228992. To evaluate the definite
integral directly, Mathematica 3.0 uses the sine integral function

Si(z) =
∫ z

0

sin t

t
dt

and the Bessel function of the first kind of order − 1
2 .

C10S09.021: The binomial series (Example 8 in Section 10.8) yields

(1 + x2)1/3 = 1 +
x2

3
− 2x4

2! · 32
+

2 · 5x6

3! · 33
− 2 · 5 · 8x8

4! · 34
+

2 · 5 · 8 · 11x10

5! · 35
− · · · .

Then term-by-term integration yields

I =
∫ 1/2

0

(1 + x2)1/3 dx =
[
x +

x3

3 · 3 −
2x5

2! · 32 · 5 +
2 · 5x7

3! · 33 · 7 −
2 · 5 · 8x9

4! · 34 · 9 +
2 · 5 · 8 · 11x11

5! · 35 · 11
− · · ·

]1/2

0

=
1
2

+
1

3 · 3 · 23
− 2

2! · 32 · 5 · 25
+

2 · 5
3! · 33 · 7 · 27

− 2 · 5 · 8
4! · 34 · 9 · 29

+
2 · 5 · 8 · 11

5! · 35 · 11 · 211
− · · · .

The sum of the first five terms of the numerical series is approximately 0.513254407130 and the sum of its
first six terms is approximately 0.513255746722. So to four places, I ≈ 0.5133. The actual value of the
integral, accurate to the number of digits shown here, is 0.5132555590033423.

C10S09.022: First, the binomial series yields

(1 + x3)−1/2 = 1− 1
2
x3 +

3
2! · 22

x6 − 3 · 5
3! · 23

x9 +
3 · 5 · 7
4! · 24

x12 − · · · .

Then term-by-term integration gives

J =
∫ 1/2

0

x√
1 + x3

dx =
[

1
2
x2 − 1

10
x5 +

3
64

x8 − 5
176

x11 +
5

256
x14 − · · ·

]1/2

0

=
1

2 · 22
− 1

10 · 25
+

3
64 · 28

− 5
176 · 211

+
5

256 · 214
− · · · .

.
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Now

5
176 · 211

≈ 0.00001387, whereas
5

256 · 214
≈ 0.00000119,

so the sum of the first four terms of the numerical series will give four-place accuracy. That sum is approx-
imately 0.122044233842, and thus J ≈ 0.1220. To check this result, the first five terms of the series sum
to approximately 0.122045425935. The actual value of the integral, accurate to the number of digits shown
here, is 0.1220453252641941480696898.

C10S09.023: The Maclaurin series for the natural exponential function (Eq. (2) in Section 10.8) yields

lim
x→0

1 + x− ex

x2
= lim

x→0

1
x2

(
−x2

2!
− x3

3!
− x4

4!
− · · ·

)
= lim

x→0

(
−1

2
− x

6
− x2

24
− · · ·

)
= − 1

2
.

C10S09.024: Here we could first use the product law for limits to dispense with the factor cosx, but we
choose the hard way:

lim
x→0

x− sinx

x3 cosx
= lim
x→0

x3

3!
− x5

5!
+

x7

7!
− · · ·

x3 − x5

2!
+

x7

4!
− · · ·

= lim
x→0

1
3!
− x2

5!
+

x4

7!
− · · ·

1− x2

2!
+

x4

4!
− · · ·

=
1
6
.

C10S09.025: The series in Eqs. (2) and (3) of Section 10.8 yield

lim
x→0

1− cosx
x(ex − 1)

= lim
x→0

x2

2!
− x4

4!
+

x6

6!
− · · ·

x2 +
x3

2!
+

x4

3!
+ · · ·

= lim
x→0

1
2!
− x2

4!
+

x4

6!
− · · ·

1 +
x

2!
+

x2

3!
+ · · ·

=
1
2
.

C10S09.026: The series in Eqs. (2) and (20) of Section 10.8 yield

lim
x→0

ex − e−x − 2x
x− arctanx

= lim
x→0

2x3

3!
+

2x5

5!
+

2x7

7!
+ · · ·

x3

3
− x5

5
+

x7

7
− · · ·

= lim
x→0

2
3!

+
2x2

5!
+

2x4

7!
+ · · ·

1
3
− x2

5
+

x4

7
− · · ·

= 1.

C10S09.027: The Maclaurin series for the sine function in Eq. (4) of Section 10.8 yields

lim
x→0

(
1
x
− 1

sinx

)
= lim

x→0

(sinx)− x

x sinx

= lim
x→0

−x3

3!
+

x5

5!
− x7

7!
+ · · ·

x2 − x4

3!
+

x6

5!
− · · ·

= lim
x→0

− x

3!
+

x3

5!
− x5

7!
+ · · ·

1− x2

3!
+

x4

5!
− · · ·

=
0
1

= 0.

C10S09.028: By Example 5 of Section 10.9,

lnx2 = 2 lnx = 2(x− 1)− 2
2

(x− 1)2 +
2
3

(x− 1)3 − 2
4

(x− 4)4 + · · · .

Therefore
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lim
x→1

lnx2

x− 1
= lim

x→1

[
2− (x− 1) +

2
3

(x− 1)2 − 1
2

(x− 3)3 + · · ·
]

= 2.

C10S09.029: The Taylor series with center π/2 for the sine function is

sinx = 1− 1
2!

(
x− π

2

)2
+

1
4!

(
x− π

2

)4
− 1

6!

(
x− π

4

)6
+ · · · .

We convert 80◦ into x = 4π/9 and substitute:

sin 80◦ = 1− 1
2!

( π

18

)2
+

1
4!

( π

18

)4
− 1

6!

( π

18

)6
+ · · · . (1)

For four-place accuracy, we need

1
n!

( π

18

)n
< 0.00005,

and the smallest even positive integer for which this inequality holds is n = 4. Thus only the first two
terms of the series in (1) are needed to show that, to four places, sin 80◦ ≈ 0.9848. The sum of the first two
terms is approximately 0.984769129011, the sum of the first three terms is approximately 0.984807792249,
and sin 80◦ ≈ 0.984807753012 (all digits given here are correct).

C10S09.030: The Taylor series with center π/4 for the cosine function is

cosx =
√

2
2

[
1−

(
x− π

4

)
− 1

2!

(
x− π

4

)2
+

1
3!

(
x− π

4

)3
+

1
4!

(
x− π

4

)4
− 1

5!

(
x− π

4

)5
− · · ·

]
.

Note the + − − + + − − + + − − + · · · pattern of the signs. After we convert 35◦ to radians and
substitute, we find that additional care with signs is required because

x− π

4
=

7π
36
− π

4
= − π

18

is negative and some of the exponents in the Taylor series are odd. We obtain

cos 35◦ =
√

2
2

[
1 +

π

18
− 1

2!

( π

18

)2
− 1

3!

( π

18

)3
+

1
4!

( π

18

)4
+

1
5!

( π

18

)5
− 1

6!

( π

18

)6
− 1

7!

( π

18

)7
+ · · ·

]
.

The sign pattern is now + + − − + + − − + + − − · · · . Normally one cannot combine terms
in an infinite series without affecting its convergence or its sum. But the series in question is absolutely
convergent; therefore we may combine the first and second terms, the third and fourth terms, and so on, to
obtain a regrouped series that passes the alternating series convergence test. The sum of its first two terms
is approximately 0.819123779375, the sum of its first three terms is approximately 0.819152072726, and the
sum of its first four terms is approximately 0.819152044274. Hence to four places, cos 35◦ ≈ 0.8192. (The
actual value is approximately 0.81915204428899 with all digits shown correct or correctly rounded.)

C10S09.031: The Taylor series with center π/4 for the cosine function is

cosx =
√

2
2

[
1−

(
x− π

4

)
− 1

2!

(
x− π

4

)2
+

1
3!

(
x− π

4

)3
+

1
4!

(
x− π

4

)4
− 1

5!

(
x− π

4

)5
− · · ·

]
.

We convert 47◦ to radians and substitute to find that

10



cos 47◦ =
√

2
2

[
1− π

90
− 1

2!

( π

90

)2
+

1
3!

( π

90

)3
+

1
4!

( π

90

)4
− 1

5!

( π

90

)5
− · · ·

]
.

This series is absolutely convergent, so rearrangement will not change its convergence or its sum. We make
it into an alternating series by grouping terms 2 and 3, terms 4 and 5, and so on. We seek six-place accuracy
here. If x = π/90, then

x3

3!
+

x4

4!
≈ 0.000007 and that

x5

5!
+

x6

6!
≈ 0.00000000043,

so the first five terms of the [ungrouped] series—those through exponent 4—yield the required six-place
accuracy: cos 47◦ ≈ 0.681998. The actual value of cos 47◦ is approximately 0.6819983600624985 (the digits
shown here are all correct or correctly rounded).

C10S09.032: The Taylor series with center π/3 for the sine function is

sinx =
√

3
2

+
1
2

(
x− π

3

)
−
√

3
2! · 2

(
x− π

3

)2
− 1

3! · 2
(
x− π

3

)3

+
√

3
4! · 2

(
x− π

3

)4
+

1
5! · 2

(
x− π

3

)5
−
√

3
6! · 2

(
x− π

3

)6
− · · · ,

and 58◦ converts into x = 29π/90 radians, and hence

sin 58◦ =
√

3
2

+
1
2

( π

90

)
−
√

3
2! · 2

( π

90

)2
− 1

3! · 2
( π

90

)3
+
√

3
4! · 2

( π

90

)4
+

1
5! · 2

( π

90

)5
−
√

3
6! · 2

( π

90

)6
− · · · .

We group terms in pairs, much as in the solution of Problem 30. For six-place accuracy, we find that

1
3! · 2

( π

90

)3
+
√

3
4! · 2

( π

90

)4
≈ 0.0000036,

which is not sufficient for the needed accuracy, but that

1
5! · 2

( π

90

)5
+
√

3
6! · 2

( π

90

)6
≈ 0.0000000002,

more than enough. We sum the series through the terms up to degree 4 to find that sin 58◦ ≈ 0.848048. In
fact, sin 58◦ ≈ 0.848048096156425970386 (accurate to the number of digits shown here).

C10S09.033: Note that e0.1 < 1.2 = 6
5 , and if |x| � 0.1, then the Taylor series remainder estimate yields

∣∣∣∣ ez

120
x5

∣∣∣∣ � 6
600

(
1
10

)5

= 10−7 < 0.5× 10−6,

so six-place accuracy is assured.

C10S09.034: The Taylor series remainder estimate yields

∣∣∣ cos z
720

x6
∣∣∣ � 10−6

720
≈ 1.4× 10−9 < 0.5 × 10−8,

so eight-place accuracy is assured (too conservative, as usual; you actually get ten-place accuracy).

C10S09.035: The Taylor series remainder estimate is difficult to work with; we use instead the cruder
alternating series remainder estimate:
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(0.1)5

5
< 0.5× 10−5,

so five-place accuracy is assured.

C10S09.036: The alternating series remainder estimate gives

3
16
· (0.1)3 = 1.875× 10−4 < 0.5× 10−3,

so three-place accuracy is assured.

C10S09.037: Clearly |ez | < 5
3 if |z | < 0.5. Hence the Taylor series remainder estimate yields

∣∣∣∣ ez

120
x5

∣∣∣∣ � 5
3 · 120

(
1
2

)5

≈ 0.434× 10−3,

so two-place accuracy will be obtained if |x| � 0.5. In particular,

e1/3 ≈ 1 +
1
3

+
1
18

+
1

486
+

1
1944

≈ 1.39.

In fact, to the number of digits shown here, e1/3 ≈ 1.395612425086.

C10S09.038: We let

f(x) =
∣∣∣∣x− x3

6
− sinx

∣∣∣∣
and used Mathematica 3.0 to find the largest value of x for which f(x) < 10−6. That value of x is
approximately a = 0.164396337603, so the approximation will give five-place accuracy on the interval
[−a, a ].

C10S09.039: The Taylor series remainder estimate is

|R3(x)| =
√

2
2
· cos z

4!

(
x− π

4

)4
.

Part (a): If 40◦ � x◦ � 50◦, then

2π
9

� x � 5π
18

and cos z � cos
(π

6

)
=
√

3
2

,

so

|R3(x)| �
√

2
2
· 1
24
·
( π

36

)4
·
√

3
2
≈ 0.0000014797688 < 0.000002,

thereby giving five-place accuracy. Part (b): If 44◦ � x◦ � 46◦, then

44π
180

� x � 46π
180

,

so that

|R3(x)| �
√

2
2
· 1
24
·
( π

180

)4
·
√

3
2
≈ 0.0000000023676302 < 0.000000003,
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thereby giving eight-place accuracy.

C10S09.040: If 1
6 π � x � 1

3 π, then

|R4(x)| =
√

2
2
· sin z

5!
·
∣∣∣x− π

4

∣∣∣5 �
√

2
2
·
√

3
2
· 1
5!
·
( π

12

)5
≈ 0.0000062759,

not quite enough for five-place accuracy, but

|R5(x)| =
√

2
2
· cos z

6!
·
∣∣∣x− π

4

∣∣∣6 �
√

2
2
·
√

3
2
· 1
6!
·
( π

12

)6
≈ 0.000000273839 < 0.0000003,

definitely good enough. Hence we should use the approximation

cosx ≈ P5(x) =
√

2
2

[
1−

(
x− π

4

)
− 1

2!

(
x− π

4

)2
+

1
3!

(
x− π

4

)3
+

1
4!

(
x− π

4

)4
− 1

5!

(
x− π

4

)5]
.

To use Mathematica 3.0 to demonstrate the accuracy of this approximation, recall that % refers to “last
output.” So execute the commands

Series[ Cos[x], { x, Pi/4, 5 } ] // Normal

and

Plot[ Abs[Cos[x] - %], { x, Pi/6, Pi/3 },
PlotRange → { -0.000001, 0.000001 } ];

You should find that every point on the graph lies between 0 and 5× 10−7.

C10S09.041: The volume of revolution around the x-axis is

V = 2
∫ π

0

π
sin2 x

x2
dx = 2π

∫ π

0

1− cos 2x
2x2

dx

= π

∫ π

0

1
x2

(
(2x)2

2!
− (2x)4

4!
+

(2x)6

6!
− (2x)8

8!
+ · · ·

)
dx = π

∫ π

0

(
22

2!
− 24x2

4!
+

26x4

6!
− 28x6

8!
+ · · ·

)
dx

= π

[
22x

2!
− 24x3

4! · 3 +
26x5

6! · 5 −
28x7

8! · 7 + · · ·
]π
0

=
(2π)2

2!
− (2π)4

4! · 3 +
(2π)6

6! · 5 −
(2π)8

8! · 7 + · · · .

This series converges rapidly after the first 10 or 15 terms. For example, the sum of the first seven terms is
about 8.927353886225. The Mathematica 3.0 command

NSum[ ((-1)∧(k+1))∗((2∗Pi)∧(2∗k))/(((2∗k)!)∗(2∗k-1)),
{ k, 1, Infinity }, WorkingPrecision → 28 ]

returns the approximate sum 8.9105091465101038071781678. The Mathematica 3.0 command

2∗Integrate[ Pi∗(Sin[x]/x)∧2, {x, 0, Pi} ]

produces the exact value of the volume:

V = −1 + HypergeometricPFQ
[{
−1

2

}
,

{
1
2
,

1
2

}
, −π2

]

≈ 8.9105091465101038071781677928811594135107930070735323609643.
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The Mathematica function HypergeometricPFQ is the generalized hypergeometric function pFq. Space
prohibits further discussion; we’ve mentioned this only to give you a reference in case you’re interested in
further details.

C10S09.042: The area is

A = 2
∫ 2π

0

1− cosx
x2

dx = 2
∫ 2π

0

(
1
2!
− x2

4!
+

x4

6!
− x6

8!
+

x8

10!
− · · ·

)
dx

= 2
[
x

2!
− x3

4! · 3 +
x5

6! · 5 −
x7

8! · 7 +
x9

10! · 9 − · · ·
]2π

0

=
22π

2!
− 24π3

4! · 3 +
26π5

6! · 5 −
28π7

8! · 7 +
210π9

10! · 9 − · · · =
∞∑
n=1

(−1)n+122nπ2n−1

(2n)! · (2n− 1)
.

This series converges rather slowly at first. But it passes the alternating series convergence test and its 27th
term is less than 4× 10−31, so the sum of its first 26 terms, which is approximately 2.8363031522652569, is
the area (reliable to the number of digits shown here). Mathematica 3.0 reports that the exact value of the
area is 2 Si(2π) where Si(z) is the sine integral function (see the solution of Problem 20).

C10S09.043: The volume is

V =
∫ 2π

0

2πx
1− cosx

x2
dx = 2π

∫ 2π

0

(
x

2!
− x3

4!
+

x5

6!
− x7

8!
+

x9

10!
− · · ·

)
dx

= 2π
[

x2

2! · 2 −
x4

4! · 4 +
x6

6! · 6 −
x8

8! · 8 +
x10

10! · 10
− · · ·

]2π

0

=
(2π)3

2! · 2 −
(2π)5

4! · 4 +
(2π)7

6! · 6 −
(2π)9

8! · 8 +
(2π)11

10! · 10
− · · · =

∞∑
n=1

(−1)n+1(2π)2n+1

(2n)! · 2n .

This alternating series converges slowly at first—its ninth term is approximately 0.0127—but its 21st term
is less than 4× 10−19, so the sum of its first 20 terms is a very accurate estimate of its value. That partial
sum is approximately 15.3162279832536178, and all the digits shown here are accurate.

The Mathematica 3.0 command

Integrate[ 2∗Pi∗x∗(1 - Cos[x])/(x∗x), {x, 0, 2∗Pi} ]

produces the exact value of the volume:

V = 2π
[
EulerGamma− CosIntegral(2π) + ln(2π)

]

≈ 15.3162279832536178193148907070596936732523585560299990575827.

Here, EulerGamma is Euler’s constant γ ≈ 0.577216, which first appears in the textbook in Problem 50 of
Section 10.5; CosIntegral is defined to be

CosIntegral(x) = γ + lnx +
∫ x

0

(cos t)− 1
t

dt.

Again, the reference is provided only for your convenience if you care to pursue further study of this topic.
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) 1

x

1 + x + x2 + x3 + ...
1 – x

1 – x

x – x2

x2

x2 – x3

x3

...

C10S09.044: The volume is

V = 2π
∫ 2π

0

(
1− cosx

x2

)2

dx.

Now

(
1− cosx

x2

)2

=
1− 2 cosx + cos2 x

x4
=

2− 4 cosx + 1 + cos 2x
2x4

=
3− 4 cosx + cos 2x

2x4

=
1

2x4

(
3− 4 +

4x2

2!
− 4x4

4!
+

4x6

6!
− 4x8

8!
+ · · · + 1− (2x)2

2!
+

(2x)4

4!
− (2x)6

6!
+

(2x)8

8!
− · · ·

)

=
23 − 2

4!
− 25 − 2

6!
x2 +

27 − 2
8!

x4 − 29 − 2
10!

x10 + · · · .

Therefore

V = 2π
∫ 2π

0

(
23 − 2

4!
− 25 − 2

6!
x2 +

27 − 2
8!

x4 − 29 − 2
10!

x6 + · · ·
)

dx

= 2π
[

23 − 2
4!

x− 25 − 2
6! · 3 x3 +

27 − 2
8! · 5 x5 − 29 − 2

10! · 7 x7 + · · ·
]2π

0

=
23 − 2

4!
(2π)2 − 25 − 2

6! · 3 (2π)4 +
27 − 2
8! · 5 (2π)6 − 29 − 2

10! · 7 (2π)8 − · · · =
∞∑
n=1

(−1)n+1(22n+1 − 2)(2π)2n

(2n + 2)!(2n− 1)
.

The 31st term of this series is less than 10−22, so by the alternating series remainder estimate, the sum of its
first 30 terms will give an accurate estimate of the volume: It is V ≈ 3.2801806101868747 (all digits shown
are correct or correctly rounded). As an independent check of this result, the Mathematica 3.0 command

NIntegrate[ 2∗Pi∗((1 - Cos[x])/(x∧2))∧2, { x, 0, 2∗Pi }, WorkingPrecision → 28 ]

returns the value 3.2801806101868746547, accurate to the number of digits shown; the exact value is also
available from Mathematica and is

− 2
3
[
π Si(2π) + Si(4π)

]

where Si(z) is the sine integral function (see the solution of Problem 20).

C10S09.045: The long division is shown next.
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__

__

__ __ ) __ __

__

___

____

__ __

___ ____

__

____

___

1
2! 4! 6! 3! 5! 7!

+

– ...

3 15

315

30

6 72

2

17

4

840

x

x2

x3

x4

x5

x7

x6
+–

+ ___ +

++ ...x – __x3
+ x5

– x7

x – x3

2!
+ x5

4! – + ...x7

6!

__
3
x3

– x5
+ x7

– ...

__
3
x3

– x5
+ x7

– ...

15
2x5___ – x7

+ ...

15
2x5___ – x7

15 + ...

315

+ ...

– ...

____17x7

315

C10S09.046: The long division is shown next.

C10S09.047: The equation (actually, the identity)

(1− x)(a0 + a1x + a2x
2 + a3x

3 + · · ·+ anx
n + · · · ) = 1

leads to

a0 + (a1 − a0)x + (a2 − a1)x2 + (a3 − a2)x3 + (a4 − a3)x4 + · · · = 1.

It now follows that a0 = 1 and that an+1 = an if n � 0, and therefore an = 1 for every integer n � 0.
Consequently

1
1− x

= 1 + x + x2 + x3 + x4 + · · ·+ xn + · · · , −1 < x < 1.

C10S09.048: The equation

(a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · · )2 = 1 + x

leads to

a2
0 + 2a0a1x + (a2

1 + 2a0a2)x2 + (2a1a2 + 2a0a3)x3

+ (a2
2 + 2a1a3 + 2a0a4)x4 + (2a2a3 + 2a1a4 + 2a0a5)x5 + · · · = 1 + x.

It now follows that
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a2
0 = 1 : a0 = 1.

2a0a1 = 1 : a1 =
1
2
.

a2
1 + 2a0a2 = 0 : a2 = − a2

1

2a0
= −1

8
.

2a1a2 + 2a0a3 = 0 : a3 = −a1a2

a0
=

1
16

.

a2
2 + 2a1a3 + 2a0a4 = 0 : a4 = −a2

2 + 2a1a3

2a0
= − 5

128
.

C10S09.049: The method of Example 3 uses the identity

secx cosx = 1

and begins by assuming the existence of coefficients {ai} such that

secx = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · · .

Thus

(a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · · )

(
1− x2

2
+

x4

24
− x6

720
+ · · ·

)
= 1,

so that

a0 + a1x +
(
a2 −

1
2
a0

)
x2 +

(
a3 −

1
2
a1

)
x3 +

(
a4 −

1
2
a2 +

1
24

a0

)
x4 + · · · = 1.

It now follows that

a0 = 1; a1 = 0;

a2 =
1
2
a0 =

1
2
; a3 =

1
2
a1 = 0;

a4 =
1
2
a2 −

1
24

a0 =
5
24

.

Therefore

secx = 1 +
1
2
x2 +

5
24

x4 +
61
720

x6 +
277
8064

x8 +
50521

3628800
x10 +

540553
95800320

x12 +
199360981

87178291200
x14 + · · · .

We had Mathematica 3.0 compute a few extra terms in case you did as well and want to check your work.
(We used the command

Series[ Sec[x], { x, 0, 20 } ] // Normal

but to save space we show here only the first eight terms of the resulting Taylor polynomial.)
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C10S09.050: The series for f(x) = ln(1− x) can be found by the method of Example 10 of Section 10.8.
We multiply f(x) by the geometric series representation of 1/(1− x) and find that, if −1 < x < 1, then

1
1− x

· ln(1− x) = (1 + x + x2 + x3 + x4 + · · · )
(
−x− x2

2
− x3

3
− x4

4
− · · ·

)

= −(1 + x + x2 + x3 + x4 + · · · )
(
x +

x2

2
+

x3

3
+

x4

4
+ · · ·

)

= −
[
x +

(
1 +

1
2

)
x2 +

(
1 +

1
2

+
1
3

)
x3 +

(
1 +

1
2

+
1
3

+
1
4

)
x4 + · · ·

]
= −

∞∑
n=1

Hnx
n

where

Hn =
n∑
k=1

1
k

is the nth partial sum of the harmonic series.

C10S09.051: Example 10 in Section 10.8 shows how to derive the series

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · · , −1 < x < 1.

Hence

1 + x = exp(ln(1 + x)) =
∞∑
n=0

an

(
x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · ·

)n

= a0 + a1

(
x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · ·

)
+ a2

(
x2 − x3 +

[
1
4

+
2
3

]
x4 − · · ·

)

+ a3

(
x3 +

[
−1

2
− 1

]
x4 + · · ·

)
+ · · ·

= a0 + a1x +
(
a2 −

1
2
a1

)
x2 +

(
a3 − a2 +

1
3
a1

)
x3 + · · · .

Therefore

a0 = 1, a1 = 1, a2 =
1
2
a1 =

1
2
, and a3 = a2 −

1
3
a1 =

1
6
.

C10S09.052: Assume that there exist coefficients {ai} such that

x

sinx
= a0 + a1x + a2x

2 + a3x
3 + a4x

4 + · · ·

on some open interval containing the origin (there do). Then

(a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · · )

(
x− x3

6
+

x5

120
− x7

5040
+ · · ·

)
= x,

and therefore
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)1 + x + x2

2 – x – x2 + ...

2 + x
2 + 2x + 2x2

–x – 2x2

–x – x2 – x3

–x2 + x3

–x2 – x3 – x4

2x3 + x4

...

a0x + a1x
2 +

(
a2 −

1
6
a0

)
x3 +

(
a3 −

1
6
a1

)
x4 +

(
a4 −

1
6
a2 +

1
120

a0

)
x5 + · · · = x.

It now follows that

a0 = 1, a1 = 0,

a2 =
1
6
a0 =

1
6
, a3 =

1
6
a1 = 0, and

a4 =
1
6
a2 −

1
120

a0 =
1
36
− 1

120
=

7
360

.

Therefore

x

sinx
= 1 +

x2

6
+

7x4

360
+

31x6

15120
+

127x8

604800
+

73x10

3421440
+

1414477x12

653837184000
+ · · · .

We had Mathematica 3.0 compute a few extra coefficients in case you did as well and want to check your
work.

C10S09.053: Long division of the finite power series 1 + x+ x2 into the finite power series 2 + x proceeds
as shown next.

The next dividend is the original dividend with exponents increased by 3, so the next three terms in the
numerator can be obtained by multiplying the first three by x3. Thus we obtain the series representation

2 + x

1 + x + x2
= 2− x− x2 + 2x3 − x4 − x5 + 2x6 − x7 − x8 + · · · .

This series is the sum of three geometric series each with ratio x3, so it converges on the interval (−1, 1).
Summing the three geometric series separately, we obtain

2
1− x3

− x

1− x3
− x2

1− x3
=

2− x− x2

1− x3
=

(1− x)(2 + x)
(1− x)(1 + x + x2)

,

thus verifying our computations.

C10S09.054: Using the series in Problem 53, we find that

∫ 1/2

0

x + 2
x2 + x + 1

dx =
[
2x− x2

2
− x3

3
+

2x4

4
− x5

5
− x6

6
+

2x7

7
− · · ·

]1/2

0

=
2
2
− 1

22 · 2 −
1

23 · 3 +
2

24 · 4 −
1

25 · 5 −
1

26 · 6 +
2

27 · 7 − · · · .
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The sum of the first nine terms of the last series is approximately 0.857256. The computer algebra system
Mathematica 3.0 reports that

∫ 1/2

0

x + 2
x2 + x + 1

dx =
[√

3 arctan
2x + 1√

3
+

1
2

ln(x2 + x + 1)
]1/2

0

=
√

3 arctan
(

2√
3

)
+

1
2

ln
(

7
4

)
− π

2
√

3
≈ 0.857400371269052481.

C10S09.055: The first two steps in the long division of 1 + x2 + x4 into 1 give quotient 1 − x2 and
remainder (and new dividend) x6. So the process will repeat with exponents increased by 6, and thus

1
1 + x2 + x4

= 1− x2 + x6 − x8 + x12 − x14 + x18 − x20 + · · · .

Therefore

∫ 1/2

0

1
1 + x2 + x4

dx =
[
x− x3

3
+

x7

7
− x9

9
+

x13

13
− x15

15
· · ·

]1/2

0

=
1
2
− 1

23 · 3 +
1

27 · 7 −
1

29 · 9 +
1

213 · 13
− 1

215 · 15
+ · · · .

The sum of the first five terms of the last series is approximately 0.459239824988 and the sum of the first
six terms is approximately 0.459239825000. The Mathematica 3.0 command

NIntegrate[ 1/(1 + x∧2 + x∧4), { x, 0, 1/2 }, WorkingPrecision → 28 ]

returns 0.4592398249998759. The computer algebra system Derive 2.56 yields

∫ 1/2

0

1
1 + x2 + x4

dx

=

[√
3
6

{
arctan

(√
3
3

(2x + 1)

)
+ arctan

(√
3
3

(2x− 1)

)}
+

1
4

ln
(
x2 + x + 1
x2 − x + 1

)]1/2

0

=
√

3
6

arctan

(
2
√

3
3

)
+

1
4

ln
(

7
3

)
≈ 0.45923982499987591403.

C10S09.056: The first two steps in the long division of 1 + x4 + x8 into 1 give quotient 1 − x4 and
remainder (and new dividend) x12. So the process will repeat with exponents increased by 12, and thus

1
1 + x4 + x8

= 1− x4 + x12 − x16 + x24 − x28 + x36 − x40 + · · · .

Therefore

∫ 1/2

0

1
1 + x4 + x8

dx =
[
x− x5

5
+

x13

13
− x17

17
+

x25

25
− x29

29
+ · · ·

]1/2

0

=
1
2
− 1

25 · 5 +
1

213 · 13
− 1

217 · 17
+

1
225 · 25

− 1
229 · 29

+ · · · .
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The sum of the first four terms of the last series is approximately 0.493758942364 and the sum of the first
five terms is the same to 12 digits. The Mathematica 3.0 NIntegrate command yields the approximate
value 0.4937589423641742. The computer algebra system Derive 2.56 reports that

∫ 1/2

0

1
1 + x4 + x8

dx

=

[√
3
6

{
arctan

(√
3
3

(2x + 1)

)
+ arctan

(√
3
3

(2x− 1)

)}
+
√

3
12

ln

(
x2 + x

√
3 + 1

x2 − x
√

3 + 1

)]1/2

0

=
√

3
6

arctan

(
2
√

3
3

)
−
√

3
6

ln 2−
√

3
12

ln

(
37− 20

√
3

52

)
≈ 0.4937589423641742012965658.

C10S09.057: See the solution of Problem 61 in Section 10.8. We plotted the Taylor polynomials with
center zero for f(x),

Pn(x) =
n∑
k=1

(−1)k+1x2k−2

(2k − 1)!
,

for n = 3, 6, and 9. Their graphs, together with the graph of f , are shown next.

C10S09.058: See the solution to Problem 62 of Section 10.8. The Taylor series with center zero for f(x) is

f(x) =
∫ x

0

sin t

t
dt = x− x3

18
+

x5

600
− x7

35280
+

x9

3265920
− x11

439084800
+ · · · .

We plotted the graph of f and its Taylor polynomials of degrees 7, 9, and 11; the results are shown next.

C10S09.059: The four Maclaurin series we need are in Eq. (4) of Section 10.8, Eq. (7) of Section 10.9,
Eq. (21) of Section 10.8, and Eq. (20) of Section 10.8. They are
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sinx = x− x3

6
+

x5

120
− x7

5040
+ · · · ,

tanx = x +
x3

3
+

2x5

15
+

17x7

315
+ · · · ,

arcsinx = x +
x3

6
+

3x5

40
+

5x7

112
+ · · · , and

arctanx = x− x3

3
+

x5

5
− x7

7
+ · · · .

Therefore

sinx− tanx

arcsinx− arctanx
=
− 1

2x
3 − 1

8x
5 − · · ·

1
2x

3 + 1
8x

5 + · · ·
=
− 1

2 −
1
8x

2 − · · ·
1
2 + 1

8x
2 + · · ·

→
− 1

2 − 0− 0− · · ·
1
2 + 0 + 0 + · · ·

= −1

as x→ 0.

Use of l’Hôpital’s rule to solve this problem—even with the aid of a computer algebra program—is
troublesome. Using Mathematica 3.0, we first defined

f(x) = sinx − tanx and g(x) = arcsinx − arctanx.

Then the command

Limit[ f[x]/g[x], x → 0 ]

elicited the disappointing response “Indeterminate.” But when we computed the quotient of the derivatives
using

f′[x]/g′[x]

we obtained the expected fraction

cosx − sec2 x
1√

1− x2
− 1

1 + x2

,

and Mathematica reported that the limit of this fraction, as x → 0, was −1. To avoid Mathematica’s

invocation of l’Hôpital’s rule (with the intent of obtaining a fraction that was not indeterminate), we had
Mathematica find the quotient of the derivatives of the last numerator and denominator; the resulting
numerator was

−2x
√

1− x2 (cosx− sec2 x) +
x(1 + x2)(cosx− sec2 x)√

1− x2
+ (1 + x2)

√
1− x2 (sinx + 2 sec2 x tanx)

and the corresponding denominator was

−2x− x√
1− x2

.

The quotient is still indeterminate, but repeating the process—you really don’t want to see the results—
next (and finally) led to a form not indeterminate, whose value at x = 0 was (still) −1.
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C10S09.060: We used Mathematica 3.0 to generate these Maclaurin series:

sin(tanx) = x +
x3

6
− x5

40
− 55x7

1008
− 143x9

3456
− 968167x11

39916800
+ · · · and

tan(sinx) = x +
x3

6
− x5

40
− 107x7

5040
− 73x9

24192
+

41897x11

39916800
+ · · · .

To find the series for arcsin(arctanx), we substituted the Taylor polynomial with center zero and degree 11
for arctanx into the corresponding Taylor polyomial for arcsinx. We used Mathematica 3.0 to expand the
resulting expression and thereby discovered that

arcsin(arctanx) = x− x3

6
+

13x5

120
− 341x7

5040
+

18649x9

362880
− 177761x11

4435200
− · · · .

Similarly, we found that

arctan(arcsinx) = x− x3

6
+

13x5

120
− 173x7

5040
+

12409x9

362880
− 123379x11

13305600
− · · · .

Therefore

sin(tanx)− tan(sinx) = −x7

30
− 29x9

756
− 1913x11

75600
+ · · ·

and

arcsin(arctanx)− arctan(arcsinx) = −x7

30
+

13x9

756
− 2329x11

75600
+ · · · .

Thus (after cancelling the common factor x7) we see that

lim
x→0

sin(tanx)− tan(sinx)
arcsin(arctanx)− arctan(arcsinx)

= lim
x→0

− 1
30
− 29

756
x2 − 1913

75600
x4 + · · ·

− 1
30

+
13
756

x2 − 2329
75600

x4 + · · ·
= 1.

It would not be practical to try to find this limit using l’Hôpital’s rule, even with a computer. The common
factor x7 tells us that the rule would have to be applied seven times. The result of just the first application
of the rule yields

lim
x→0

(1− x2)1/2(1 + x2)(1 + arcsin2 x)(1− arctan2 x)1/2[(cos(tanx)) sec2 x− cosx sec2(sinx)]
(1− x2)1/2 + (1− x2)1/2 arcsin2 x− (1− arctan2 x)1/2 − x2(1− arctan2 x)1/2

.

C10S09.061: Part (a): Assume that a � b > 0. The parametrization x = a cos t, y = b sin t yields arc
length element

ds = (a2 sin2 t + b2 cos2 t)1/2 dt = [a2 sin2 t + a2 cos2 t + (b2 − a2) cos2 t]1/2 dt

= [a2 + (b2 − a2) cos2 t]1/2 dt = a

[
1− a2 − b2

a2
cos2 t

]1/2

dt = a(1− ε2 cos2 t)1/2 dt

where

ε =

√
a2 − b2

a2
=

√
1− (b/a)2
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is the eccentricity of the ellipse; recall that 0 � ε < 1 for the case of an ellipse. We multiply the length of
the part of the ellipse in the first quadrant by 4 to find its total arc length is

p = 4a
∫ π/2

0

√
1− ε2 cos2 t dt.

Part (b): The binomial formula yields

(1− x)1/2 = 1− 1
2
x− 1

22
· x

2

2!
− 3

23
· x

3

3!
− 3 · 5

24
· x

4

4!
− 3 · 5 · 7

25
· x

5

5!
− · · · .

Consequently,

√
1− ε2 cos2 t = 1− 1

2
ε2 cos2 t− 1

22 · 2!
ε4 cos4 t− 3

23 · 3!
ε6 cos6 t

− 3 · 5
24 · 4!

ε8 cos8 t− 3 · 5 · 7
25 · 5!

ε10 cos10 t− · · · .

Then formula 113 in the Table of Integrals in the text yields

p = 4a
∫ π/2

0

√
1− ε2 cos2 t dt

= 4a

([
t

]π/2
0

− 1
2
ε2 · 1

2
· π

2
− 1

22 · 2!
ε4 · 1

2
· 3
4
· π

2

− 3
23 · 3!

ε6 · 1
2
· 3
4
· 5
6
· π

2
− 3 · 5

24 · 4!
ε8 · 1

2
· 3
4
· 5
6
· 7
8
· π

2
− · · ·

)

= 2πa
(

1− 1
4
ε2 − 3

64
ε4 − 5

256
ε6 − 175

16384
ε8 − · · ·

)
.

C10S09.062: First we apply the binomial series to express A in terms of a and ε:

A =
1
2
(a + b) =

1
2

(
a + a

√
1− ε2

)

=
a

2

(
1 + 1− 1

2
ε2 − 1

22
· ε

4

2!
− 3

23
· ε

6

3!
− 3 · 5

24
· ε

8

4!
− · · ·

)

= a

(
1− ε2

4
− ε4

16
− ε6

32
− 5ε8

256
− · · ·

)
.

Next,

R =

√
1
2
(a2 + b2) =

[
1
2

{
a2 + a2(1− ε2)

}]1/2

= a

(
1− ε2

2

)1/2

= a

(
1− ε2

4
− 1

22
· ε4

2! · 4 −
3
23
· ε6

3! · 8 −
3 · 5
24
· ε8

4! · 16
− · · ·

)

= a

(
1− ε2

4
− ε4

32
− ε6

128
− 5ε8

2048
− · · ·

)
.
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Therefore

1
2
(A + R) = a

(
1− ε2

4
− 3ε4

64
− 5ε6

256
− 180ε8

16384
− · · ·

)
.

It follows that the arc length of the ellipse is

p = π(A + R) +
5πaε8

8192
+ · · · . (1)

If ε is close to zero then the perimeter of the ellipse is almost exactly

π(A + R) = π

(
a + b

2
+

√
a2 + b2

2

)
.

If a = 238857 (miles, exactly) and ε = 0.0549 (exactly), then Eq. (1) and Mathematica 3.0 predict that the
arc length of the elliptical orbit of the Moon is approximately

1499651.3094565814 (miles); that is, 1499651 mi 1633 ft 11.169 in.
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Section 10.10

C10S10.001: We use series methods to solve
dy

dx
= y. Assume that

y(x) =
∞∑
n=0

anx
n,

so that

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.

Substitution in the given differential equation yields

∞∑
n=0

[(n+ 1)an+1 − an ]xn = 0,

and hence

an+1 =
an
n+ 1

for n � 0.

Thus

a1 = a0, a2 =
a1

2
=

a0

2
,

a3 =
a2

3
=

a0

3 · 2 , a4 =
a3

4
=

a0

4!
,

a5 =
a4

5
=

a0

5!
, . . . .

In general, an =
a0

n!
if n � 0. Hence

y(x) =
∞∑
n=0

a0

n!
xn = a0

∞∑
n=0

xn

n!
= a0e

x.

Finally,

lim
n→∞

∣∣∣∣ n!xn+1

(n+ 1)!xn

∣∣∣∣ = |x| ·
(

lim
n→∞

1
n+ 1

)
= 0,

so the radius of convergence of the series we found is +∞.

C10S10.002: We use series methods to solve
dy

dx
= 4y. Assume that

y(x) =
∞∑
n=0

anx
n,

so that

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.
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Substitution in the given differential equation yields

∞∑
n=0

[(n+ 1)an+1 − 4an ]xn = 0,

so that

an+1 =
4an
n+ 1

if n � 0.

Therefore

a1 = 4a0, a2 =
4a1

2
=

42a0

2
,

a3 =
4a2

3
=

43a0

3!
, a4 =

4a3

4
=

44a0

4!
,

a5, =
45a0

5!
, . . . .

Thus an =
4n

n!
a0 if n � 0. Therefore

y(x) = a0

∞∑
n=0

4n

n!
xn = a0

∞∑
n=0

(4x)n

n!
= a0e

4x.

By a computation almost identical to that in the solution of Problem 1, this series has radius of convergence
+∞.

C10S10.003: We use series methods to solve 2
dy

dx
+ 3y = 0. Assume that

y(x) =
∞∑
n=0

anx
n,

so that

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.

Substitution in the given differential equation yields

∞∑
n=0

[2(n+ 1)an+1 + 3an ]xn = 0,

and thus

an+1 = − 3an
2(n+ 1)

if n � 0.

Therefore
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a1 = −3
2
a0, a2 = −3

2
· a1

2
=

(
3
2

)2

· a0

2
,

a3 = −3
2
· a2

3
= −

(
3
2

)3

· a0

3!
, . . . .

In general,

an = (−1)n
(

3
2

)n
· a0

n!
for n � 1.

Therefore

y(x) = a0

∞∑
n=0

(−1)n
(

3
2

)n
· xn
n!

= a0

∞∑
n=0

(−1)n

n!

(
3x
2

)n
= a0e

−3x/2.

By computations quite similar to those in the solution of Problem 1, this series has radius of convergence
+∞.

C10S10.004: We use series methods to solve
dy

dx
+ 2xy = 0. Assume that

y(x) =
∞∑
n=0

anx
n,

so that

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.

Substitution in the given differential equation yields

∞∑
n=1

nanx
n−1 +

∞∑
n=0

2anxn+1 = 0;

∞∑
n=0

(n+ 1)an+1x
n +

∞∑
n=1

2an−1x
n = 0;

a1 +
∞∑
n=1

[(n+ 1)an+1 + 2an−1 ]xn = 0.

Therefore

a1 = 0 and (n+ 1)an+1 = −2an−1 if n � 1;

that is,

an+2 = − 2an
n+ 2

if n � 0.

Therefore a3 = a5 = a7 = · · · = 0 and
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a2 = −2a0

2
= −a0

1!
, a4 = −2a2

4
=

22a0

4 · 2 =
a0

2!
,

a6 = −2a4

6
= − 23a0

6 · 4 · 2 = −a0

3!
, a8 = − 24a0

8 · 6 · 4 · 2 =
a0

4!
;

in general,

a2n =
(−1)n

n!
a0 if n � 1.

Therefore

y(x) = a0

(
1− x2

1!
+
x4

2!
− x6

3!
+
x8

4!
− · · ·

)
= a0 exp

(
−x2

)
.

The radius of convergence of this series is +∞.

C10S10.005: We use series methods to solve
dy

dx
= x2y. Assume that

y(x) =
∞∑
n=0

anx
n,

so that

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.

Substitution in the given differential equation yields

∞∑
n=0

(n+ 1)an+1x
n =

∞∑
n=0

anx
n+2 =

∞∑
n=2

an−2x
n.

Therefore a1 = 0, a2 = 0, and (n+ 1)an+1 = an−2 if n � 2; that is,

a1 = a2 = a4 = a5 = a7 = a8 = · · · 0 and an+3 =
an
n+ 3

if n � 0. Hence

a3 =
a0

3
=

a0

1! · 3 , a6 =
a3

6
=

a0

6 · 3 =
a0

2! · 32
,

a9 =
a6

9
=

a0

9 · 6 · 3 =
a0

3! · 33
, . . . ;

in general,

a3n =
a0

n! · 3n if n � 1.

Therefore

y(x) = a0

[
1 +

1
1!
· x

3

3
+

1
2!

(
x3

3

)2

+
1
3!

(
x3

3

)3

+ · · ·
]

= a0 exp
(
x3

3

)
.

As in previous solutions, the radius of convergence of this series is +∞.
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C10S10.006: We use series methods to solve (x− 2)
dy

dx
+ y = 0. Assume that

y(x) =
∞∑
n=0

anx
n,

so that

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.

Substitution in the given differential equation yields

∞∑
n=0

(n+ 1)an+1x
n+1 −

∞∑
n=0

2(n+ 1)an+1x
n +

∞∑
n=0

anx
n = 0;

∞∑
n=1

nanx
n −

∞∑
n=0

2(n+ 1)an+1x
n +

∞∑
n=0

anx
n = 0.

When n = 0, we have −2a1 + a0 = 0, and thus

a1 =
a0

2
.

If n � 1, then nan − 2(n+ 1)an+1 + an = 0, so that 2(n+ 1)an+1 = (n+ 1)an. Therefore

an+1 =
an
2

if n � 1.

Hence

a2 =
a1

2
=

a0

22
, a3 =

a2

2
=

a0

23
,

a4 =
a3

2
=

a0

24
, . . . ;

that is,

an =
a0

2n
if n � 1.

Therefore

y(x) = a0

∞∑
n=0

xn

2n
= a0 ·

1

1− x

2

=
2a0

2− x

because the series is geometric; for the same reason, its radius of convergence is R = 2.

C10S10.007: We use series methods to solve (2x− 1)
dy

dx
+ 2y = 0. Assume that

y(x) =
∞∑
n=0

anx
n,

so that
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y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.

Substitution in the given differential equation yields

∞∑
n=1

2nanxn −
∞∑
n=0

(n+ 1)an+1x
n +

∞∑
n=0

2anxn = 0.

If n = 0, we find that −a1 + 2a0 = 0, and thus that a1 = 2a0. If n � 1, then

2nan − (n+ 1)an+1 + 2an = 0; (n+ 1)an+1 = 2(n+ 1)an; an+1 = 2an.

Hence a1 = 2a0, a2 = 22a0, a3 = 23a0, etc.; in general, an = 2na0 if n � 1. Therefore

y(x) = a0

∞∑
n=0

2nxn = a0

∞∑
n=0

(2x)n =
a0

1− 2x

because the series is geometric; for the same reason, its radius of convergence is R = 1
2 .

C10S10.008: We use series methods to solve 2(x+ 1)
dy

dx
= y. Assume that

y(x) =
∞∑
n=0

anx
n,

so that

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.

Substitution in the given differential equation yields

∞∑
n=1

2nanxn +
∞∑
n=0

2(n+ 1)an+1x
n =

∞∑
n=0

anx
n.

When n = 0, we have

2a1 = a0, so that a1 =
1
2
a0.

If n � 1, then 2nan + 2(n+ 1)an+1 = an: 2(n+ 1)an+1 = −(2n− 1)an, and thus

an+1 = −2n− 1
2n+ 2

an.

Consequently,

a2 = −1
4
a1 = − 1

4 · 2 a0, a3 = −3
6
a2 =

3 · 1
6 · 4 · 2 a0,

a4 = −5
8
a3 = − 5 · 3 · 1

8 · 6 · 4 · 2 a0, . . . .

Thus
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y(x) = a0

(
1 +

1
x
x− 1

4 · 2 x
2 +

3 · 1
6 · 4 · 2 x

3 − 5 · 3 · 1
8 · 6 · 4 · 2 x

4 +
7 · 5 · 3 · 1

10 · 8 · 6 · 4 · 2 x
5 − · · ·

)
= a0

√
1 + x .

The radius of convergence of this binomial series is R = 1.

C10S10.009: We use series methods to solve (x− 1)
dy

dx
+ 2y = 0. Assume that

y(x) =
∞∑
n=0

anx
n,

so that

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.

Substitution in the given differential equation yields

∞∑
n=1

nanx
n −

∞∑
n=0

(n+ 1)an+1x
n +

∞∑
n=0

2anxn = 0.

When n = 0, we have −a1 + 2a0 = 0, so that a1 = 2a0. If n � 1, then

nan − (n+ 1)an+1 + 2an = 0 : (n+ 1)an+1 = (n+ 2)an,

and hence

an+1 =
n+ 2
n+ 1

an if n � 0.

Therefore

a2 =
3
2
a1 = 3a0, a3 =

4
3
a2 = 4a0,

a4 =
5
4
a3 = 5a0, . . . ;

in general, an = (n+ 1)a0 if n � 1. Therefore

y(x) = a0

∞∑
n=0

(n+ 1)xn.

Now y(x) = F ′(x) where

F (x) = a0

∞∑
n=0

xn+1 =
a0x

1− x.

Consequently,

y(x) = F ′(x) =
a0(1− x+ x)

(1− x)2 =
a0

(1− x)2 .

The radius of convergence of the series for y(x) is R = 1.
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C10S10.010: We use series methods to solve 2(x− 1)
dy

dx
= 3y. Assume that

y(x) =
∞∑
n=0

anx
n,

so that

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.

Substitution in the given differential equation yields

∞∑
n=1

2nanxn −
∞∑
n=0

2(n+ 1)an+1x
n =

∞∑
n=0

3anxn.

It is convenient, and has no effect, if we change the range of the index in the first sum from 1 � n < +∞ to
0 � n < +∞. Thus we find that, if n � 0, then

2nan − 2(n+ 1)an+1 = 3an; 2(n+ 1)an+1 = (2n− 3)an; an+1 =
2n− 3
2n+ 2

an.

Therefore

a1 = −3
2
a0, a2 = −1

4
a1 =

1 · 3
4 · 2 a0,

a3 =
1
6
a2 =

1 · 1 · 3
6 · 4 · 2 a0, a4 =

3
8
a3 =

3 · 1 · 1 · 3
8 · 6 · 4 · 2 a0,

and so on. Thus

y(x) = a0

(
1− 3

2
x+

1 · 3
4 · 2 x

2 +
1 · 1 · 3
6 · 4 · 2 x

3 +
3 · 1 · 1 · 3
8 · 6 · 4 · 2 x

4 +
5 · 3 · 1 · 1 · 3
10 · 8 · 6 · 4 · 2 x

5 + · · ·
)

= a0(1− x)3/2.

The radius of convergence of this binomial series is R = 1.

C10S10.011: We use series methods to solve the differential equation y′′ = y. Assume the existence of a
solution of the form

y(x) =
∞∑
n=0

anx
n.

Then

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n and

y′′(x) =
∞∑
n=2

n(n− 1)anxn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n.

Then substitution in the given differential equation yields
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an+2 =
an

(n+ 2)(n+ 2)
for n � 0.

Therefore

a2 =
a0

2 · 1 , a3 =
a1

3 · 2 ,

a4 =
a0

4!
, a5 =

a1

5!
,

and so on. Hence

y(x) = a0

(
1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · ·

)
+ a1

(
x+

x3

3!
+
x5

5!
+
x7

7!
+ · · ·

)

= a0 coshx + a1 sinhx.

The radius of convergence of all series here is R = +∞. The solution may also be expressed in the form
y(x) = c1e

x + c2e
−x.

C10S10.012: We use series methods to solve the differential equation y′′ = 4y. Assume the existence of
a solution of the form

y(x) =
∞∑
n=0

anx
n.

Then

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n and

y′′(x) =
∞∑
n=2

n(n− 1)anxn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n.

Much as in the solution of Problem 11, substitution in the given differential equation leads to

an+2 =
4an

(n+ 2)(n+ 1)
for n � 0.

Consequently,

a2 =
4a0

2!
, a3 =

4a1

3!
, a4 =

42a0

4!
, a5 =

42a1

5!
,

and so on. Therefore

y(x) = a0

(
1 +

4x2

2!
+

42x4

4!
+

43x6

6!
+ · · ·

)
+ a1

(
x+

4x3

3!
+

42x5

5!
+

43x7

7!
+ · · ·

)

= a0

(
1 +

(2x)2

2!
+

(2x)4

4!
+

(2x)6

6!
+ · · ·

)
+
a1

2

(
2x+

(2x)3

3!
+

(2x)5

5!
+

(2x)7

7!
+ · · ·

)
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= a0 cosh 2x+
1
2
a1 sinh 2x.

Each series here has radius of convergence +∞. The solution of the given differential equation can also be
expressed in the form y(x) = c1e

2x + c2e
−2x.

C10S10.013: We use series methods to solve the differential equation y′′ + 9y = 0. Assume the existence
of a solution of the form

y(x) =
∞∑
n=0

anx
n.

Then

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n and

y′′(x) =
∞∑
n=2

n(n− 1)anxn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n.

Then substitution in the given differential equation leads—as in the solution of Problem 11—to the recursion
formula (n+ 2)(n+ 1)an+2 + 9an = 0, and thus

an+2 = − 9
(n+ 2)(n+ 1)

an for n � 0.

Hence

a2 = − 9
2!
a0, a3 = − 9

3!
a1,

a4 =
92

4!
a0, a5 =

92

5!
a1,

a6 = −93

6!
a0, a7 = −93

7!
a1,

and so on. Hence

y(x) = a0

(
1− 9x2

2!
+

92x4

4!
− 93x6

6!
+ · · ·

)
+ a1

(
x− 9x3

3!
+

92x5

5!
− 93x7

7!
+ · · ·

)

= a0

(
1− (3x)2

2!
+

(3x)4

4!
− (3x)6

6!
+ · · ·

)
+
a1

3

(
3x− (3x)3

3!
+

(3x)5

5!
− (3x)7

7!
+ · · ·

)

= a0 cos 3x +
a1

3
sin 3x = c1 cos 3x + c2 sin 3x.

The radius of convergence of each series here is R = +∞.

C10S10.014: We use series methods to solve the differential equation y′′ + y = x. Assume the existence
of a solution of the form

y(x) =
∞∑
n=0

anx
n.
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Then

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n and

y′′(x) =
∞∑
n=2

n(n− 1)anxn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n.

Then substitution in the given differential equation yields

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

anx
n = x.

The case n = 0 yields 2a2 + a0 = 0, and hence

a2 = −1
2
a0.

The case n = 1 yields 6a3 + a1 = 1, and thereby

a3 = −a1 − 1
6

.

And if n � 2, we obtain

an+2 = − an
(n+ 2)(n+ 1)

.

The last recursion formula then yields

a4 = − a2

4 · 3 =
a0

4!
, a5 = − a3

5 · 4 =
a1 − 1

5!
,

a6 = − a4

6 · 5 = −a0

6!
, a7 = − a5

7 · 6 = −a1 − 1
7!

,

and so on. Therefore

y(x) = a0

(
1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

)
+ a1

(
x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)

+
x3

3!
− x5

5!
+
x7

7!
− x9

9!
+ · · ·

= a0 cosx+ a1 sinx+ x−
(
x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · ·

)

= a0 cosx+ a1 sinx+ x− sinx = a0 cosx+ (a1 − 1) sinx+ x = x+ c1 cosx+ c2 sinx.

The radius of convergence of each series here is R = +∞.

C10S10.015: Given the differential equation x
dy

dx
+ y = 0, substitution of the series

y(x) =
∞∑
n=0

anx
n (1)
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as in earlier solutions in this section yields

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n = 0.

It then follows that a0 = 0 and that nan + an = 0 if n � 1. The latter equation implies that an = 0 if
n � 1. Thus we obtain only the trivial solution y(x) ≡ 0, which is not part of the general solution because
it contains no arbitrary constant and is not independent of any other solution. Part of the reason that the
series has no solution of the form in (1) is that a general solution is

y(x) =
C

x
.

This solution is undefined at x = 0 and, of course, has no power series expansion with center c = 0. Here’s
an experiment for you: Assume a solution of the form

∞∑
n=0

bn(x− 1)n

and see what happens. Then assume a solution of the form

∞∑
n=−1

cnx
n

and see what happens. You can learn more about these ideas, and their consequences, in a standard course in
differential equations (make sure that the syllabus includes the topic of series solution of ordinary differential
equations).

C10S10.016: Given the differential equation 2x
dy

dx
= y, substitution of the series

y(x) =
∞∑
n=0

anx
n (1)

as in earlier solutions in this section yields

∞∑
n=1

2nanxn =
∞∑
n=0

anx
n.

Whe n = 0, this equation yields a0 = 0. If n � 1, it implies that 2nan = an, and hence that an = 0 for
all n � 0. So the given differential equation has no series solution of the form in (1) other than the trivial
solution y(x) ≡ 0. A general solution of the given differential equation is y(x) = C

√
x . Perhaps it would

be possible to discover a general solution by series methods were you to begin with the assumption of the
existence of a solution of the form

y(x) =
∞∑
n=0

bn(x− 1)n

.

C10S10.017: Given the differential equation x
dy

dx
+ y = 0, substitution of the series

y(x) =
∞∑
n=0

anx
n (1)
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as in earlier solutions in this section yields

∞∑
n=1

nanx
n+1 +

∞∑
n=0

anx
n = 0;

∞∑
n=2

(n− 1)an−1x
n +

∞∑
n=0

anx
n = 0.

Examination of the cases n = 0 and n = 1 yields a0 = a1 = 0. If n � 2 we see that (n− 1)an−1 + an = 0,
and hence that an = 0 for all n � 0. Thus the series method using the form in (1) uncovers only the trivial
solution y(x) ≡ 0, not a general solution of the given differential equation. Part of the reason is that a
general solution of the differential equation is

y(x) = C exp
(

1
x

)
.

C10S10.018: Given the differential equation x3 dy

dx
= 2y, substitution of the series

y(x) =
∞∑
n=0

anx
n (1)

as in earlier solutions in this section yields

∞∑
n=1

nanx
n+2 =

∞∑
n=0

2anxn; that is,

∞∑
n=3

(n− 2)an−2x
n =

∞∑
n=0

2anxn.

It follows that a0 = a1 = a2 = 0 and that

an =
n− 2

2
an−2 if n � 3.

Therefore an = 0 for all n � 0, and so the series method yields only the trivial solution y(x) ≡ 0, not a
general solution of the given differential equation. A general solution of that equation is

y(x) = C exp
(
− 1
x2

)
,

and this is part of the reason that the given differential equation has no solution of the form in Eq. (1).

C10S10.019: Given the initial value problem

y′′ + 4y = 0; y(0) = 0, y′(0) = 3,

we assume the existence of a series solution of the form

y(x) =
∞∑
n=0

anx
n.

Then

13



y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n and

y′′(x) =
∞∑
n=2

n(n− 1)anxn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n.

Substitution in the given differential equation yields (n + 2)(n + 1)an+2 + 4an = 0, from which we obtain
the recurrence relation

an+2 = − 4
(n+ 2)(n+ 1)

an for n � 0.

Thus we may choose a0 and a1 to be arbitrary constants, and find that

a2 = − 4
2!
a0, a3 = − 4

3!
a1,

a4 = − 4
4 · 3 a2 =

42

4!
a0, a5 =

42

5!
a1,

a6 = −43

6!
a0, a7 = −43

7!
a1,

and so on. Therefore the general solution of the given differential equation may be written in the form

y(x) = a0

(
1− 4x2

2!
+

42x4

4!
− 43x6

6!
+

44x8

8!
− · · ·

)
+ a1

(
x− 4x3

3!
+

42x5

5!
− 43x7

7!
+

44x9

9!
− · · ·

)

= a0 cos 2x +
a1

2
sin 2x = A cos 2x + B sin 2x.

Substitution of the initial conditions yields a0 = y(0) = 0 and a1 = y′(0) = 3, so the particular solution
of the differential equation is

y(x) =
3
2

sin 2x.

C10S10.020: Given the initial value problem

y′′ − 4y = 0; y(0) = 2, y′(0) = 0,

we assume the existence of a series solution of the form

y(x) =
∞∑
n=0

anx
n.

Then

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n and

y′′(x) =
∞∑
n=2

n(n− 1)anxn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n.
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Substitution in the given differential equation yields (n+ 2)(n+ 1)an+2 = 4an, and thus

an+2 =
4

(n+ 2)(n+ 1)
an, n � 0.

Thus a0 and a1 may be chosen to be arbitrary constants, and

a2 =
4
2!
a0, a3 =

4
3!
a1,

a4 =
4

4 · 3 a2 =
42

4!
a0, a5 =

4
5 · 4 a3 =

42

5!
a1,

a6 =
43

6!
a0, a7 =

43

7!
a1,

and so on. Hence

y(x) = a0

(
1 +

4x2

2!
+

4x4

4!
+

43x6

6!
+ · · ·

)
+ a1

(
x+

4x3

3!
+

42x5

5!
+

43x7

7!
+ · · ·

)

= a0

(
1 +

(2x)2

2!
+

(2x)4

4!
+

(2x)6

6!
+ · · ·

)
+
a1

2

(
2x+

(2x)3

3!
+

(2x)5

5!
+

(2x)7

7!
+ · · ·

)

= a0 cosh 2x+
a1

2
sinh 2x = A cosh 2x + B sinh 2x.

Then the initial conditions yield A = y(0) = 2 and 2B = y′(0) = 0. Therefore the particular solution of
the given initial value problem is

y(x) = 2 cosh 2x = e2x + e−2x.

C10S10.021: Given the initial value problem

y′′ − 2y′ + y = 0; y(0) = 0, y′(0) = 1,

we assume the existence of a series solution of the form

y(x) =
∞∑
n=0

anx
n.

Then

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n and

y′′(x) =
∞∑
n=2

n(n− 1)anxn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n.

Substitution in the given differential equation then yields

(n+ 2)(n+ 1)an+2 − 2(n+ 1)an+1 + an = 0 for n � 0,

so that
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an+2 =
2(n+ 1)an+1 − an

(n+ 2)(n+ 1)
, n � 0.

At this point it would be easier to use the information that a0 = 0 and a1 = 1 to help find the general form
of the coefficient an, but we choose to demonstrate that it is not necessary and, instead, find the general
solution of the differential equation in terms of a0 and a1 as yet unspecified. Using the recursion formula
just derived, we find that

a2 =
2a1 − a0

2 · 1 =
2a1 − a0

2!
,

a3 =
4a2 − a1

3 · 2 =
4a1 − 2a0 − a1

3 · 2 =
3a1 − 2a0

3!
,

a4 =
6a3 − a2

4 · 3 =
3a1 − 2a0 − a1 + 1

2 a0

4 · 3 =
4a1 − 3a0

4!
, and

a5 =
8a4 − a3

5 · 4 =
4
3 a1 − a0 − 1

2 a1 + 1
3 a0

5 · 4 =
8a1 − 6a0 − 3a1 + 2a0

5!
=

5a1 − 4a0

5!
.

At this point one might conjecture that

an =
na1 − (n− 1)a0

n!
if n � 2,

and this can be established using a proof by induction on n. That granted, it follows that

y(x) = a0 + a1x+
2a1 − a0

2!
x2 +

3a1 − 2a0

3!
x3 +

4a1 − 3a0

4!
x4 +

5a1 − 4a0

5!
x5 + · · ·

= a0

(
1− x2

2!
− 2x3

3!
− 3x4

4!
− 4x5

5!
− · · ·

)
+ a1

(
x+ x2 +

x3

2!
+
x4

3!
+
x5

4!
+ · · ·

)

= a0

(
1− x2

2!
− 2x3

3!
− 3x4

4!
− 4x5

5!
− · · ·

)
+ a1x

(
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

)
.

Let

F (x) = 1− x2

2!
− 2x3

3!
− 3x4

4!
− 4x5

5!
− · · · .

Then

F ′(x) = −x− x2 − x3

2!
− x4

3!
− x5

4!
− · · ·

= −x
(

1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

)
= −xex.

Therefore F (x) = (1− x)ex + C. Moreover, F (0) = 1, so that C = 0. Consequently,

y(x) = a0(1− x)ex + a1xe
x = a0e

x + (a1 − a0)xex = Aex +Bxex.

Finally, the given initial conditions imply that A = y(0) = 0 and that B = y′(0) = 1. Therefore the
particular solution of the original initial value problem is y(x) = xex.
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C10S10.022: Given the initial value problem

y′′ + y′ − 2y = 0; y(0) = 1, y′(0) = −2,

we assume the existence of a series solution of the form

y(x) =
∞∑
n=0

anx
n.

Then

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n and

y′′(x) =
∞∑
n=2

n(n− 1)anxn−2 =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n.

Substitution in the given differential equation then yields

(n+ 2)(n+ 1)an+2 + (n+ 1)an+1 − 2an = 0 for n � 0,

so that

an+2 =
2an − (n+ 1)an+1

(n+ 2)(n+ 1)
, n � 0.

At this point it would be easier to use the information that a0 = 1 and a1 = −2 to help discover the
general form of the coefficient an, but we choose to demonstrate that it is not necessary and, instead, find
the general solution of the differential equation in terms of the unspecified constants a0 and a1. Rewriting
the expressions for a0 and a1 with the aid of hindsight and using the recursion formula for an, we find that

a0 =
1 · a0 − 0 · a1

0!
, a1 =

1 · a1 − 0 · a0

1!
,

a2 =
2 · a0 − 1 · a1

2!
, a3 =

3 · a1 − 2 · a0

3!
,

a4 =
6 · a0 − 5 · a1

4!
, a5 =

11 · a1 − 10 · a0

5!
,

a6 =
22 · a0 − 21 · a1

6!
, a7 =

43 · a1 − 42 · a0

7!
,

a8 =
86 · a0 − 85 · a1

8!
, a9 =

171 · a1 − 170 · a0

9!
.

The problem now is to discover the pattern in the coefficients. Let cn denote the coefficient of a0 in the
numerator in an and let dn denote the coefficient of a1 in the same numerator. The data we have accumulated
may be summarized in the following table.
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n cn dn

0 1 0

1 0 1

2 2 −1

3 −2 3

4 6 −5

5 −10 11

6 22 −21

7 −42 43

8 86 −85

9 −170 171

It appears that cn+1 = 2− 2cn for n � 0; clearly c0 = 1, and c1 = 0. The first of these equations yields

cn+1 + 2cn = 2 = cn+2 + 2cn+1,

and thus we obtain the linear second-order homogeneous difference equation

cn+2 + cn+1 − 2cn = 0

with initial conditions c0 = 1, c1 = 0. Note the similarity to the characteristic equation of the original
differential equation; note also the familiarity of the following method of solution of this difference equation.
We assume a solution of the form cn = rn where r is a nonzero constant. Substitution in the difference
equation yields

rn+2 + rn+1 − 2rn = 0, so that r2 + r − 2 = 0.

This quadratic equation has the two solutions r1 = 1 and r2 = −2. Linearity of the difference equation
implies that a linear combination of solutions is a solution, and thus the difference equation has general

solution

cn = A · 1n +B · (−2)n

for n � 0. Then the initial conditions c0 = 1 and c1 = 0 yield A = 2
3 and B = 1

3 . Hence

cn =
2 + (−2)n

3
for n � 0.

Moreover, cn + dn = 1, and it follows that

dn = 1− cn =
1− (−2)n

3
.

Thus we find that
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an =
cna0 + dna1

n!

=
[2 + (−2)n ] a0 + [1− (−2)n ] a1

n! · 3 =
(2a0 + a1) + (a0 − a1)(−2)n

n! · 3 ,

a result that should be routine, though perhaps not simple, to establish with a proof by induction on n.
Finally, this yields the general solution

y(x) =
2a0 + a1

3

(
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

)
+
a0 − a1

3

(
1− 2x+

(−2x)2

2!
+

(−2x)3

3!
+

(−2x)4

4!
+ · · ·

)

=
1
3
(2a0 + a1)ex +

1
3
(a0 − a1)e−2x = Aex +Be−2x.

The initial conditions in the original initial value problem now imply that a0 = 1 and a1 = −2, and hence
its particular solution is y(x) = e−2x.

Note: We obtained the coefficients cn and dn by using Mathematica 3.0 as follows: We executed the
commands

a[0] = a0; a[1] = a1; a[n ] := a[n] = (2*a[n−2] ∗ (n − 1)∗a[n−1])/(n∗(n − 1))

and

ColumnForm[ Table[ { n, Simplify[ a[n] ] }, {n, 0, 9 } ] ]

(If you experiment, you will find that the alternative command

a[n ] := (2*a[n−2] ∗ (n − 1)∗a[n−1])/(n∗(n − 1))

will require substantically greater execution time.)

C10S10.023: Suppose that the differential equation

x2y′′ + x2y′ + y = 0

has a series solution of the form

y(x) =
∞∑
n=0

cnx
n.

Then

y′(x) =
∞∑
n=1

ncnx
n−1 =

∞∑
n=0

(n+ 1)cn+1x
n and

y′′(x) =
∞∑
n=2

n(n− 1)cnxn−2 =
∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n.

Substitution in the given differential equation then yields

∞∑
n=2

n(n− 1)cnxn +
∞∑
n=1

ncnx
n+1 +

∞∑
n=0

cnx
n = 0;
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∞∑
n=2

n(n− 1)cnxn +
∞∑
n=2

(n− 1)cn−1x
n +

∞∑
n=0

cnx
n = 0.

It then follows that c0 = c1 = 0 and that, if n � 2,

n(n− 1)cn + (n− 1)cn−1 + cn = 0; that is, cn = − n− 1
n2 − n+ 1

cn−1.

Thus

c2 = −1
3
c1 = 0, c3 = −2

7
c2 = 0, c4 = − 3

13
c3 = 0,

and so on: cn = 0 for all n � 0. Therefore the only solution discovered by the series method used here
is the trivial solution y(x) ≡ 0. Not only do we not find two linearly independent solutions, there is not
even one because the trivial solution is neither independent of any solution nor has it the form of a general
solution.

C10S10.024: Given the differential equation (the Bessel equation of order zero)

xy′′ + y′ + xy = 0,

we assume the existence of a solution of the form

y(x) =
∞∑
n=0

anx
n =

∞∑
n=1

an−1x
n−1, for which

y′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n and

y′′(x) =
∞∑
n=2

n(n− 1)anxn−2 =
∞∑
n=1

(n+ 1)nan+1x
n−1.

Substitution in Bessel’s equation then yields

∞∑
n=1

(n+ 1)nan+1x
n +

∞∑
n=0

(n+ 1)an+1x
n +

∞∑
n=1

an−1x
n = 0.

If n = 0, this equation yields a1 = 0. If n � 1, we find that

(n+ 1)nan+1 + (n+ 1)an+1 + an−1 = 0,

so that

an+2 = − an
(n+ 2)2

if n � 0.

Thus a1 = a3 = a5 = · · · = 0, and

a2 = − a0

22
, a4 = − a2

42
=

a0

42 · 22
,

a6 = − a4

62
= − a0

62 · 42 · 22
, a8 =

a0

82 · 62 · 42 · 22
;
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in general, if n � 1 (and even if n = 0), then

a2n =
(−1)na0

(2n)2 · (2n− 2)2 · · · 62 · 42 · 22

=
(−1)na0

22n · n2 · (n− 1)2 · · · 32 · 22 · 12
=

(−1)na0

22n · (n!)2
.

Therefore

J0(x) = a0

∞∑
n=0

(−1)nx2n

22n(n!)2
.

Because the coefficients with odd subscripts are all zero, there is no second linearly independent solution
produced by this variation of the infinite series method. There does exist a second linearly independent
solution, but finding it requires advanced techniques; see, for example, Section 8.4 of Edwards and Penney:
Differential Equations and Boundary Value Problems: Computing and Modeling, 2nd ed. (Upper Saddle
River, N.J.: Prentice Hall, 2000).

C10S10.025: Part (a): The method of separation of variables yields

1
1 + y2

dy = 1 dx; arctan y = x+ C;

y(x) = tan(x+ C). 0 = y(0) = tanC :

C = nπ (n is an integer); y(x) = tan(x+ nπ) = tanx.

Part (b): If

y(x) = x+ c3x
3 + c5x

5 + c7x
7 + c9x

9 + · · · , then

y′(x) = 1 + 3c3x2 + 5c5x4 + 7c7x6 + 9c9x8 + · · · . Hence

1 + [y(x)]2 = 1 + x2 + 2c3x4 + (c23 + 2c5)x6 + (2c3c5 + 2c7)x8

+ (2c3c7 + c25 + 2c9)x10 + (2c3c9 + 2c5c7 + 2c11)x12 + (2c3c11 + 2c5c9 + c27 + 2c13)x14 + · · ·

= y′(x) = 1 + 3c3x2 + 5c5x4 + 7c7x6 + 9c9x8 + 11c11x10 + · · · .

It follows that

3c3 = 1 : c3 =
1
3
.

5c5 = 2c3 =
2
3

: c5 =
2
15
.

7c7 = c23 + 2c5 =
1
9

+
4
15

=
17
45

: c7 =
17
315

.

9c9 = 2c3c5 + 2c7 =
62
315

: c9 =
62

2835
.

11c11 = 2c3c7 + c25 + 2c9 =
1382
14175

: c11 =
1382

155925
.
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Part (c): Continuing in this manner, we find that

tanx = x+
1
3
x3 +

2
15
x5 +

17
315

x7 +
62

2835
x9 +

1382
155925

x11 +
21844

6081075
x13 +

929569
638512875

x15

+
6404582

10854518875
x17 +

443861162
1856156927825

x19 +
18888466084

194896477400625
x21

+
113927491862

2900518163668125
x23 +

58870668456604
3698160658676859375

x25 + · · · .
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Chapter 10 Miscellaneous Problems

C10S0M.001: Divide each term in numerator and denominator by n2:

lim
n→∞

n2 + 1
n2 + 4

= lim
n→∞

1 +
1
n2

1 +
4
n2

=
1 + 0
1 + 0

= 1.

C10S0M.002: Divide each term in numerator and denominator by n:

lim
n→∞

8n− 7
7n− 8

= lim
n→∞

8− 7
n

7− 8
n

=
8− 0
7− 0

=
8
7
.

C10S0M.003: In Example 9 of Section 10.2, it is shown that if |r | < 1, then rn → 0 as n → +∞.
Therefore

lim
n→∞

[
10− (0.99)n

]
= 10− 0 = 10.

C10S0M.004: Because sinπn = 0 for every integer n, lim
n→∞

n sinπn = 0.

C10S0M.005: Because

0 � |an | =
|1 + (−1)n

√
n |

n + 1
� 2
√

n

n
=

2√
n
→ 0

as n → +∞, the sequence with the given general term converges to 0 by the squeeze law for limits. This
problem is the result of a typograhical error; it was originally intended to be the somewhat more challenging
problem in which

an =
1 + (−1)nn1/n

n + 1

for n � 1.

C10S0M.006: In Example 9 of Section 10.2 it is shown that if |r | < 1, then rn → 0 as n → +∞. Hence
there exists a positive integer K such that 0.5 < 1 + (−0.5)n < 1.5 if n � K. Thus

0.5
n + 1

<
1 + (−0.5)n

n + 1
<

1.5
n + 1

if n � K. Therefore, by the squeeze law for limits (Theorem 3 of Section 10.2),

lim
n→∞

1 + (−0.5)n

n + 1
= 0.

Therefore lim
n→∞

an = 0 by Theorem 2 of Section 10.2.

C10S0M.007: Because −1 � sin 2n � 1 for every positive integer n,

− 1
n

� sin 2n
n

� 1
n

1



for every positive integer n. Therefore, by the squeeze law for limits (Theorem 3 of Section 10.2),

lim
n→∞

sin 2n
n

= 0.

C10S0M.008: Use l’Hôpital’s rule to show that

lim
x→∞

lnx

x
= 0.

By Theorem 4 of Section 10.2,

lim
n→∞

lnn

n
= 0.

Because f(x) = 2−x is continuous at x = 0, it now follows from Theorem 2 of Section 10.2 that

lim
n→∞

2−(lnn)/n = 20 = 1.

C10S0M.009: If n is an even positive integer, then sin(nπ/2) = 0. Therefore an = (−1)0 = 1 for arbitrarily
large values of n. Hence if the sequence {an} has a limit, it must be 1. But if n is an odd positive integer,
then sin(nπ/2) = ±1. Therefore an = −1 for arbitrarily large values of n. So if the sequence {an} has a
limit, it must be −1. Because 1 	= −1, the sequence {an} has no limit as n→ +∞.

C10S0M.010: By l’Hôpital’s rule—applied three times—

lim
x→∞

(lnx)3

x2
= lim
x→∞

3(lnx)2

2x2
= lim
x→∞

6 lnx

4x2
= lim
x→∞

6
8x2

= 0.

Therefore by Theorem 4 of Section 10.2, lim
n→∞

(lnn)3

n2
= 0.

C10S0M.011: Because −1 � sinx � 1 for all x,

− 1
n

� 1
n

sin
1
n

� 1
n

for every positive integer n. Therefore by the squeeze law for sequences, lim
n→∞

1
n

sin
1
n

= 0.

C10S0M.012: Use l’Hôpital’s rule and Theorem 4 of Section 10.2, or—more simply—

lim
n→∞

n− en

n + en
= lim
n→∞

n

en
− 1

n

en
+ 1

=
0− 1
0 + 1

= −1.

(Equation (8) of Section 4.8, with k = 1 and x replaced with n, tells us that n/en → 0 as n→ +∞.)

C10S0M.013: Here we have

lim
n→∞

sinhn

n
= lim
n→∞

en − e−n

2n
= lim
n→∞

1− e−2n

2ne−n
.

The numerator in the last fraction is approaching 1 as n → +∞, but the denominator is approaching zero
through positive values (by Eq. (8) of Section 4.8). Therefore an → +∞ as n → +∞. Alternatively, you
may say that the limit in question does not exist.
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C10S0M.014: Let m = 2n. Then

lim
n→∞

(
1 +

2
n

)2n

= lim
m→∞

(
1 +

4
m

)m
= e4

by Eq. (4) in Section 4.9: ex = lim
n→∞

(
1 +

x

n

)n
.

C10S0M.015: Example 7 in Section 10.2 implies that 31/n → 1 as n→ +∞. Example 11 in Section 10.2
shows that n1/n → 1 as n→ +∞. Moreover, if n is a positive integer, then

n1/n � (2n2 + 1)1/n � (3n2)1/n = 31/n ·
(
n1/n

)2

,

and

lim
n→∞

31/n ·
(
n1/n

)2

=
(

lim
n→∞

31/n
)
·
(

lim
n→∞

n1/n
)2

= 1 · 1 = 1.

Therefore, by the squeeze law for limits,

lim
n→∞

(2n2 + 1)1/n = 1.

C10S0M.016: Given the infinite series
∞∑
n=1

(n2)!
nn

with nth term an, the ratio test yields

ρ = lim
n→∞

an+1

an
= lim

n→∞

(n2 + 2n + 1)!nn

(n2)!(n + 1)n+1
� lim

n→∞

n2 + n

n + 1
·
(

n

n + 1

)n
= lim

n→∞

n

e
= +∞.

Therefore this series diverges.

The accuracy checkers were of the opinion that this problem was the result of a typographical error,
because a similar but more interesting problem would be to determine the convergence or divergence of the
series

∞∑
n=1

(n!)2

nn
.

In this case the ratio test again yields divergence:

ρ = lim
n→∞

[(n + 1)!]2 · nn
(n + 1)n+1 · (n!)2

= lim
n→∞

(n + 1)2 · nn
(n + 1)n+1

= lim
n→∞

(n + 1) ·
(

n

n + 1

)n
= +∞

because lim
n→∞

(
n

n + 1

)n
=

1
e

by Eq. (3) in Section 4.9 and the quotient law for limits.

C10S0M.017: By l’Hôpital’s rule,

lim
x→∞

lnx

x
= lim
x→∞

1
x

= 0,

so (lnn)/n→ 0 as n→ +∞ by Theorem 4 of Section 10.2. Also, if

f(x) =
lnx

x
, then f ′(x) =

1− lnx

x2
,
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which is negative for x > e, and so the sequence {(lnn)/n} is monotonically decreasing if n � 3. Therefore
the given series converges by the alternating series test. Its sum is approximately 0.080357603217. The
Mathematica 3.0 command

Sum[ ((−1)∧(n+1))∗(Log[n])/n, {n, 2, Infinity} ]

almost immediately produces the exact value of the sum of the series; it is

(−γ + ln 2) ln 2 ≈ 0.080357603216669740576603392838415915369054452040814050762608

(Euler’s constant γ is first discussed in Problem 50 of Section 10.5 of the text).

C10S0M.018: The positive-term series

∞∑
n=0

3n

2n + 4n
is dominated by

∞∑
n=0

3n

4n
=

∞∑
n=0

(
3
4

)n
,

which converges because it is geometric with ratio 3
4 . Therefore the dominated series converges as well.

Mathematica 3.0 reports that its sum is approximately 3.06042509453554205209546181 (as usual, all digits
shown are correct).

C10S0M.019: This series converges because the ratio test yields

ρ = lim
n→∞

(n + 1)! exp(n2)
n! exp ([n + 1]2)

= lim
n→∞

(n + 1) exp
(
n2 − [n + 1]2

)
= lim
n→∞

n + 1
exp(2n + 1)

= 0

by Eq. (8) in Section 4.8 and the squeeze law for limits:

0 � n + 1
e2n+1

� 2n + 1
e2n+1

for every positive integer n. The sum of the series is approximately 1.405253880284.

C10S0M.020: Because −1 � sinx � 1 for all x,
∣∣∣∣ 1
n3/2

sin
1
n

∣∣∣∣ � 1
n3/2

for every integer n � 1. Therefore the given series converges absolutely because

∞∑
n=1

∣∣∣∣ 1
n3/2

sin
1
n

∣∣∣∣ is dominated by
∞∑
n=1

1
n3/2

;

the latter series converges because it is a p-series with p = 3
2 > 1. Because the original series converges

absolutely, it converges by Theorem 3 of Section 10.7. The sum of the original series is approximately
1.1739398073796145.

C10S0M.021: For every positive integer n,
∣∣∣∣ (−2)n

3n + 1

∣∣∣∣ � 2n

3n
=

(
2
3

)n
.

Therefore the series
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∞∑
n=0

∣∣∣∣ (−2)n

3n + 1

∣∣∣∣ is dominated by
∞∑
n=0

(
2
3

)n
.

The latter series converges because it is geometric with ratio 2
3 , and therefore the dominated series converges.

Hence the original series of Problem 21 converges absolutely, and therefore it converges by Theorem 3 of
Section 10.7. Its sum is approximately 0.230836643803.

C10S0M.022: Because

lim
n→∞

2
n2

= 0, it follows that lim
n→∞

2−(2/n2) = 20 = 1

by Theorem 4 of Section 10.2. Thus
∞∑
n=1

2−(2/n2) diverges by the nth-term test (Theorem 3, Section 10.3).

C10S0M.023: Three applications of l’Hôpital’s rule yield

lim
x→∞

x

(lnx)3
= lim
x→∞

x

3(lnx)2
= lim
x→∞

x

6 lnx
= lim
x→∞

x

6
= +∞.

Therefore
∞∑
n=2

(−1)n · n
(lnn)3

diverges by the nth-term test for divergence (Theorem 3 of Section 10.3).

C10S0M.024: By Example 7 of Section 10.2,

lim
n→∞

1
101/n

=
1
1

= 1.

Therefore
∞∑
n=1

(−1)n

101/n
diverges by the nth-term test for divergence.

C10S0M.025: For every positive integer n,

0 � n1/2 + n1/3

n2 + n3
� 2n1/2

n3
=

2
n5/2

.

Therefore

∞∑
n=1

n1/2 + n1/3

n2 + n3
is dominated by

∞∑
n=1

2
n5/2

.

The latter series converges because it is a constant multiple of the p-series with p = 5
2 > 1. Therefore the

dominated series converges by the comparison test (Theorem 1 of Section 10.6). The sum of the given series
is approximately 1.459973884376.

C10S0M.026: We plan to show that the conditions in the alternating series test for convergence are met
by the given series,

∞∑
n=1

(−1)n+1

n[1+(1/n)]
. (1)

Claim 1: If n is a positive integer, then
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2 �
(

n + 1
n

)n
.

To show this, let

f(x) =
(

x + 1
x

)x
, x � 1.

Then

ln f(x) = x ln(x + 1)− x lnx;

f ′(x)
f(x)

=
x

x + 1
+ ln(x + 1)− 1− lnx;

f ′(x) =
(

x + 1
x

)x [
ln(x + 1)− lnx− 1

x + 1

]
.

Because f(1) = 2, we can establish our claim by showing that

ln(x + 1)− lnx− 1
x + 1

> 0 (2)

if x > 1. If a � 1, then the line tangent to the graph of g(x) = lnx at the point (a + 1, g(a + 1)) has
slope 1/(a+1), and this line is otherwise completely above the graph of g because the graph of g is concave
downward everywhere. Hence the line through the point (a, g(a)) with slope 1/(a + 1) passes below the
point (a + 1, g(a + 1)). That is,

1
a + 1

+ ln a < ln(a + 1).

Because this inequality holds for all a � 1, we have established the inequality in (2) and this proves our first
claim.

Claim 2: If n is a positive integer, then n < 2n+2. This certainly holds if n = 1 because 1 < 8 = 23.
Suppose that k < 2k+2 for some integer k � 1. Then

2k+3 = 2 · 2k+2 > 2k � k + 1;

that is, k + 1 < 2(k+1)+2. Therefore, by induction,

n < 2n+2

for every positive integer n. This establishes our second claim.

Then, for every such integer n,

1 <
1
n
· 2 · 2n+1; n + 1 <

n + 1
n
·
(

n + 1
n

)n [(
n + 1

n

)n]n+1

;

n + 1 <

(
n + 1

n

)n2+2n+1

; (n + 1) · n(n+1)2 < (n + 1)n
2+2n+1;

n(n+1)2 < (n + 1)n
2+2n; nn+1 < (n + 1)n(n+2)/(n+1);
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n(n+1)/n < (n + 1)(n+2)/(n+1); n1+(1/n) < (n + 1)1+1/(n+1);

1
n1+(1/n)

>
1

(n + 1)1+1/(n+1)
.

Therefore the sequence of terms of the series in (1) is monotonically decreasing in magnitude. Moreover, for
each positive integer n,

0 � 1
n1+(1/n)

� 1
n
,

so by the squeeze law for limits, the terms of the series in (1) have limit zero. Finally, because they alternate
in sign, the alternating series test—Theorem 1 in Section 10.7—guarantees that the series in (1) converges.
Its sum (according to Mathematica 3.0) is approximately 0.779511537393.

C10S0M.027: Given: The alternating series

∞∑
n=1

(−1)n+1 arctann√
n

. (1)

We plan to show that this series meets the criterion for convergence stated in the alternating series test
(Theorem 1 of of Section 10.7). First,

0 � arctann � π

2

for every positive integer n. Thus for such n,

0 � arctann√
n

� π

2
√

n
.

Therefore, by the squeeze law for limits,

lim
n→∞

arctann√
n

= 0.

Now let

f(x) =
arctanx√

x
for x � 1. Then:

f ′(x) =
1
x
·
(

x1/2

1 + x2
− arctanx

2x1/2

)
=

1
x3/2

(
x

1 + x2
− arctanx

2

)

=
1

2x3/2

(
2x

1 + x2
− arctanx

)
=

2x− (1 + x2) arctanx

2x3/2(1 + x2)
.

Now if x � 2, then 1 � arctanx. Therefore

1 + x2 � (1 + x2) arctanx; − (1 + x2) arctanx � −(1 + x2);

2x− (1 + x2) arctanx � 2x− (1 + x2); 2x− (1 + x2) arctanx � −(x− 1)2;

2x− (1 + x2) arctanx < 0 if x > 1; f ′(x) < 0 if x > 1.
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Consequently the sequence of terms of the series in (1) is (after the first term) monotonically decreasing in
magnitude. Because they alternate in sign, the series in (1) converges by the alternating series test. Its sum
is approximately 0.378868816198.

C10S0M.028: Let x = 1/n. Then

lim
n→∞

n sin
1
n

= lim
x→0+

1
x

sinx = 1.

Therefore
∞∑
n=1

n sin
1
n

diverges by the nth-term test for divergence.

C10S0M.029: We use the integral test (Theorem 1 of Section 10.5):

∫ ∞

3

1
x(lnx)(ln lnx)

dx =
[

ln(ln lnx)
]∞

3

= +∞,

and therefore
∞∑
n=3

1
n(lnn)(ln lnn)

diverges.

C10S0M.030: We use the integral test:

∫ ∞

3

1
x(lnx)(ln lnx)2

dx =
[
− 1

ln(lnx)

]∞

3

=
1

ln(ln 3)
< +∞.

Therefore the series
∞∑
n=3

1
n(lnn)(ln lnn)2

converges. The Mathematica 3.0 command

NSum[ 1/(n∗(Log[n])∗(Log[Log[n]])∧2),
{n, 3, Infinity}, WorkingPrecision → 29 ] // Timing

yielded the approximation 38.4067680928211786 to its sum in about 8 seconds on a fairly slow computer.

C10S0M.031: The ratio test yields

ρ = lim
n→∞

2n+1 · n! · |x|n+1

2n · (n + 1)! · |x|n = lim
n→∞

2|x|
n + 1

= 0

for every real number x. Therefore the given series converges for all x; its interval of convergence is
(−∞, +∞). Its sum is e2x.

C10S0M.032: The ratio test yields

ρ = lim
n→∞

2n+1 · |3x|n+1

2n+2 · |3x|n =
3|x|
2

,

so the given series converges if |x| < 2
3 . It diverges if x = ± 2

3 by the nth-term test for divergence. Hence its
interval of convergence is

(
− 2

3 ,
2
3

)
. The given series is, of course, geometric, and on its interval of convergence

we have

∞∑
n=0

(3x)n

2n+1
=

1
2− 3x

.
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C10S0M.033: The ratio test yields

ρ = lim
n→∞

n · 3n · |x− 1|n+1

(n + 1) · 3n+1 · |x− 1|n = lim
n→∞

n · |x− 1|
3(n + 1)

=
|x− 1|

3
.

So the given series converges if −3 < x − 1 < 3; that is, if −2 < x < 4. It diverges if x = 4 (because it
becomes the harmonic series). It converges if x = −2 by the alternating series test. Thus its interval of
convergence is [−2, 4).

C10S0M.034: The given series is geometric with ratio
2x− 3

4
. Hence it converges exactly when

−1 <
2x− 3

4
< 1; − 4 < 2x− 3 < 4;

−1 < 2x < 7; − 1
2

< x <
7
2
.

Thus its interval of convergence is
(
− 1

2 ,
7
2

)
, and on that interval its sum is

4
7− 2x

.

C10S0M.035: The ratio test yields

ρ = lim
n→∞

(4n2 − 1) · |x|n+1

[4(n + 1)2 − 1] · |x|n = lim
n→∞

(4n2 − 1) · |x|
4n2 + 8n + 3

= lim
n→∞

(
4− 1

n2

)
· |x|

4 +
8
4

+
3
n2

= |x|.

Thus the series converges if −1 < x < 1. If x = ±1 then the given series converges absolutely because it is
dominated by the p-series with p = 2 > 1. Hence the interval of convergence of the given series is [−1, 1].
The Mathematica 3.0 command

Sum[ ((−1)∧n)∗(x∧n)/(4∗n∗n − 1), {n, 1, Infinity} ]

quickly returns the value of the sum of this series on part of its interval of convergence; the response is
√

x − arctan (
√

x )− x arctan (
√

x )
2
√

x
.

This result raises some intriguing new questions concerning the behavior of the series, and particularly of its
sum, for −1 � x < 0.

C10S0M.036: The ratio test yields

ρ = lim
n→∞

(n2 + 1) · |2x− 1|n+1

[(n + 1)2 + 1] · |2x− 1|n = lim
n→∞

(n2 + 1) · |2x− 1|
n2 + 2n + 2

= lim
n→∞

(
1 +

1
n2

)
· |2x− 1|

1 +
2
n

+
2
n2

= |2x− 1|.

So the given series converges if −1 < 2x − 1 < 1; that is, if 0 < x < 1. It converges absolutely at the
endpoints of this interval because it is dominated by the p-series with p = 2 > 1. Hence its interval of
convergence is [0, 1]. On that interval Mathematica 3.0 reports that the exact value of its sum is

1− i

4
[1 + i + (1 + i) · 2F1(i, 1; 1 + i; 2x− 1)
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− 2F1(1, 1− i; 2− i; 2x− 1) + 2x · 2F1(1, 1− i; 2− i; 2x− 1) ]

where 2F1 is, again, the generalized hypergeometric function.

C10S0M.037: The ratio test yields

ρ = lim
n→∞

(n + 1)! · 10n · |x|2n+2

n! · 10n+1 · |x|2n = lim
n→∞

(n + 1)x2

10
= +∞

if x 	= 0. Therefore the given series converges only if x = 0.

C10S0M.038: Note first that, by l’Hôpital’s rule,

lim
x→∞

lnx

ln(x + 1)
= lim
x→∞

x + 1
x

= 1.

Therefore the ratio test yields

ρ = lim
n→∞

(lnn) · |x|n+1

[ln(n + 1)] · |x|n = lim
n→∞

lnn

ln(n + 1)
|x| = |x|.

So the given series converges if −1 < x < 1. If x = 1 then it diverges because it dominates the harmonic
series (we have seen many proofs that lnn < n if n � 1). If x = −1 then it converges by the alternating
series test. The series passes the criteria of that test because f(x) = lnx is monotonically increasing and
approaches +∞ as x→ +∞. Therefore the given series has interval of convergence [−1, 1).

C10S0M.039: Note that

∞∑
n=0

1 + (−1)n

n! · 2 xn = 1 +
x2

2!
+

x4

4!
+

x6

6!
+ · · · = 1 +

∞∑
n=1

x2n

(2n)!
. (1)

So the ratio test yields

ρ = lim
n→∞

(2n)! · x2n+2

(2n + 2)! · x2n
= lim
n→∞

x2

(2n + 2)(2n + 1)
= 0

for all real x. Hence the interval of convergence of the series in (1) is (−∞, +∞). This series converges to
f(x) = coshx (see Example 6 in Section 10.8).

C10S0M.040: Recall that

lim
n→∞

(
1 +

1
n

)n
= e

by Eq. (3) of Section 4.9. Thus the ratio test yields

ρ = lim
n→∞

(
1 +

1
n + 1

)n+1

|x− 1|n+1

(
1 +

1
n

)n
|x− 1|n

=
e · |x− 1|

e
= |x− 1|.

So the given series converges if −1 < x − 1 < 1; that is, if 0 < x < 2. It diverges at the endpoints of this
interval by the nth-term test for divergence. Thus its interval of convergence is (0, 2).

10



C10S0M.041: The given series diverges for every real number x by the nth-term test for divergence.

C10S0M.042: The given series is geometric with ratio lnx, so it converges exactly when −1 < lnx < 1;
that is, when e−1 < x < e.

C10S0M.043: The ratio test yields

ρ = lim
n→∞

n! · e(n+1)x

(n + 1)! · enx = lim
n→∞

ex

n + 1
= 0

for every real number x, so the given series converges for all x. Its sum is exp(ex).

C10S0M.044: The rational number with decimal expansion 2.7182818281828 · · · is

2 +
7
10

+
1828
105

+
1828
109

+
1828
1013

+ · · · =
27
10

+
1828 · 10−5

1− 10−4
=

27
10

+
1828

105 − 10
=

27
10

+
1828
99990

=
271801
99990

.

C10S0M.045: Let

an = bn =
(−1)n+1

√
n

for n � 1.

Then
∑

an and
∑

bn converge by the alternating series test, but
∑

anbn diverges because it is the
harmonic series.

C10S0M.046: This is a special case of Problem 49 in Section 10.6; the proof used there can be adapted
to create a solution of this problem.

C10S0M.047: Assuming that A exists, we have

A = lim
n→∞

an = lim
n→∞

(
1 +

1
1 + an

)
= 1 +

1
1 + A

because A 	= −1. Therefore A + A2 = 2 + A, and it follows that A2 = 2. Because A � 0 (the limit of a
sequence of positive numbers cannot be negative), A =

√
2 .

C10S0M.048: Part (a): First, F1 = 1 < 21 and F2 = 1 < 22. If n � 2, then Fn+1 = Fn+Fn−1, so Fn > 0
for all n � 1. Moreover, if Fn−1 < 2n−1 and Fn < 2n, then

Fn+1 � 2n + 2n−1 < 2n + 2n = 2n+1.

Therefore, by induction, Fn < 2n for all n � 1. Hence

∞∑
n=1

Fnx
n is dominated by

∞∑
n=1

2nxn.

The latter series converges absolutely for |x| < 1
2 (it is geometric with ratio 2x), so the dominated series

also converges for such x.

Part (b): We use the formula Fn+1 − Fn − Fn−1 = 0 for n � 2.
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(1− x− x2)(F1x + F2x
2 + F3x

3 + F4x
4 + · · · )

= F1x + F2x
2 + F3x

3 + F4x
4 + F5x

5 + · · ·

− F1x
2 − F2x

3 − F3x
4 − F4x

5 − · · ·

− F1x
3 − F2x

4 − F3x
5 − · · ·

· · ·

= F1x + (F2 − F1)x2 + (F3 − F2 − F1)x3

+ (F4 − F3 − F2)x4

+ (F5 − F4 − F3)x5 + · · ·

= x + (1− 1)x2 + 0 · x3 + 0 · x4 + 0 · x5 + · · · = x.

Therefore F (x) =
x

1− x− x2
.

Note: Application of the ratio test to the given power series yields the limit 1
2

(
1 +
√

5
)
|x|, so the radius

of convergence of the series for F (x) is actually

1
τ

=
√

5 − 1
2

≈ 0.6180339887498948482045868.

C10S0M.049: If an =
1
n

, then the series

∞∑
n=1

ln(1 + an) =
∞∑
n=1

ln
(

1 +
1
n

)

diverges because

Sk =
k∑

n=1

ln
(

1 +
1
n

)
=

k∑
n=1

[ln(n + 1)− lnn]

= ln 2− ln 1 + ln 3− ln 2 + ln 4− ln 3 + · · ·+ ln(k + 1)− ln k = ln(k + 1),

and therefore Sk → +∞ as k → +∞. Alternatively, using the integral test,

J =
∫ ∞

1

ln
(

1 +
1
x

)
dx =

∫ ∞

1

[ln(x + 1)− lnx] dx =
[
(x + 1) ln(x + 1)− x lnx

]∞

1

= +∞

because

lim
x→∞

[(x + 1) ln(x + 1)− x lnx] � lim
x→∞

[(x + 1) lnx− x lnx] = lim
x→∞

lnx = +∞

and, at the lower limit x = 1 of integration, we have (x + 1) ln(x + 1)− x lnx = ln 4. Therefore, because

J =
∫ ∞

1

ln
(

1 +
1
x

)
dx = +∞,
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the infinite product
∞∏
n=1

(
1 +

1
n

)
diverges.

C10S0M.050: We must test for convergence the infinite series

∞∑
n=1

ln
(

1 +
1
n2

)
. (1)

An easy integration by parts yields

I =
∫ ∞

1

ln
(

1 +
1
x2

)
dx =

∫ ∞

1

[
ln(x2 + 1)− 2 lnx

]
dx

=
[
2 arctanx− 2x lnx + x ln(1 + x2)

]∞

1

= π −
(π

2
+ ln 2

)
=

π

2
− ln 2.

To evaluate the limit of the antiderivative as x→ +∞, use l’Hôpital’s rule:

lim
x→∞

[
x ln(1 + x2)− 2x lnx

]
= lim
x→∞

x ln
(

1 + x2

x2

)
= lim
x→∞

ln(1 + x2)− ln(x2)
1
x

= lim
x→∞

2x
1 + x2

− 2
x

− 1
x2

= lim
x→∞

(
2x− 2x3

1 + x2

)
= lim
x→∞

2x + 2x3 − 2x3

1 + x2
= lim
x→∞

2x
1 + x2

= 0.

Therefore

lim
x→∞

[
2 arctanx− 2x lnx + x ln(1 + x2)

]
= 2 · π

2
+ 0 = π.

Thus by the integral test, the series in Eq. (1) converges; it now follows that the infinite product converges
as well. The integral test remainder estimate for the series yields

π − (n + 1) ln
(

1 +
1

(n + 1)2

)
− 2 arctan(n + 1) � Rn � π − n ln

(
1 +

1
n2

)
− 2 arctann.

With n = 100, the upper and lower estimates here differ by about 0.000099005, so that

0.00990082840327 � Rn � 0.00999983334000

(we round down on the left and up on the right). Moreover,

S100 ≈ 1.29189639611721, so that 1.301797226 �
∞∑
n=1

ln
(

1 +
1
n2

)
� 1.301896231.

We apply the natural exponential function to the last inequality and thereby conclude that

3.675897152 �
∞∏
n=1

(
1 +

1
n2

)
� 3.676261103.

So to three places, the value of the infinite product is 3.676.

The related infinite product
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∞∏
n=2

(
1− 1

n2

)

is much easier to prove convergent and to evaluate.

C10S0M.051: The binomial series is

(1 + x)1/5 = 1 +
x

5
− 4

52
· x

2

2!
+

4 · 9
53
· x

4

3!
− 4 · 9 · 14

54
· x

4

4!
+ · · · .

Substitution of x = 1
2 and summing the first five terms of this series yields 1.0839 (exactly); summing the

first six terms yields 1.0843788 (exactly). So to three places,
(
1 + 1

2

)1/5 ≈ 1.084. The true value of the
expression is closer to 1.084471771198.

C10S0M.052: The Taylor series with center zero for ln(1 + x) can be found in Eq. (19) of Section 10.8; it
is

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · · .

Substitution of x = 1
5 and summing the first three terms of this series yields 0.182666666667 (approxi-

mately); summing the first four terms yields 0.182266666667 (approximately); summing the first five terms
yields 0.182330666667 (approximately). So to three places, ln(1.2) ≈ 0.182. The true value is closer to
0.182321556794.

C10S0M.053: We substitute −x2 for x in the Maclaurin series for the natural exponential function. Thus
we find that

∫ 1/2

0

exp(−x2) dx =
∫ 1/2

0

(
1− x2 +

x4

2!
− x6

3!
+

x8

4!
− · · ·

)
dx

=
[
x− x3

3
+

x5

2! · 5 −
x7

3! · 7 +
x9

4! · 9 − · · ·
]1/2

0

=
1
2
− 1

3 · 23
+

1
2! · 5 · 25

− 1
3! · 7 · 27

+
1

4! · 9 · 29
− · · · =

∞∑
n=0

(−1)n

n! · (2n + 1) · 22n+1
.

The sum of the first two terms and the sum of the first three terms of this series are

443
960
≈ 0.461458333333 and

4133
8960

≈ 0.461272321429,

respectively. Thus the value of the integral to three places is approximately 0.461. A closer approximation
is 0.4612810064127924 (to the number of digits shown).

C10S0M.054: The binomial series takes the form

(1 + x4)1/3 = 1 +
x4

3
− 2

32
· x

8

2!
+

2 · 5
33
· x

12

3!
− 2 · 5 · 8

34
· x

16

4!
+ · · · .

Then termwise integration yields
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∫ 1/2

0

(1 + x4)1/3 dx =
[
x +

x5

3 · 5 −
2
32
· x9

2! · 9 +
2 · 5
33
· x13

3! · 13
− 2 · 5 · 8

34
· x17

4! · 17
+ · · ·

]1/2

0

=
1
2

+
1

25 · 3 · 5 −
2

2! · 29 · 32 · 9 +
2 · 5

3! · 213 · 33 · 13
− 2 · 5 · 8

4! · 217 · 34 · 17
+ · · · .

The sum of the first two terms and the sum of the first three terms of the last series are

241
480
≈ 0.502083333333 and

104107
207360

≈ 0.502059220679,

respectively. So to three places, the value of the integral is approximately 0.502. A closer approximation is
0.5020597824999187833. The Mathematica 3.0 command

Integrate[ ( 1 + x∧4)∧(1/3), {x, 0, 1/2} ]

elicits the warning “ Unable to check convergence,” but produces the response

3
28
·
(

17
2

)1/3

+
2
7
· 2F1

(
1
4
,

2
3
;

5
4
; − 1

16

)
,

which is plausible because it has the same decimal expansion as the approximation given earlier. And
the generalized hypergeometric function now makes its graceful but permanent exit from the pages of this
manual.

C10S0M.055: The Maclaurin series for the natural exponential function yields

1
x

(1− e−x) =
1
x

(
x− x2

2!
+

x3

3!
− x4

4!
+

x5

5!
− · · ·

)
= 1− x

2!
+

x2

3!
− x3

4!
+

x4

5!
− x5

6!
+ · · · .

Then termwise integration produces

∫ 1

0

1− e−x

x
dx =

[
x− x2

2! · 2 +
x3

3! · 3 −
x4

4! · 4 +
x5

5! · 5 −
x6

6! · 6 + · · ·
]1

0

= 1− 1
2! · 2 +

1
3! · 3 −

1
4! · 4 +

1
5! · 5 −

1
6! · 6 + · · · .

The sum of the first five terms of the last series and the sum of its first six terms are

5737
7200

≈ 0.796805555556 and
8603
10800

≈ 0.796574074074,

respectively. So to three places, the value of the integral is 0.797. A more accurate approximation is
0.7965995992970531.

C10S0M.056: The Mathematica 3.0 command

Series[ Exp[x], { x, 0, 13 } ] // Normal

produces the Taylor polynomial P13(x) of degree 13 with center zero for the natural exponential function.
Then the command

Series[ Sin[x], { x, 0, 13 } ] // Normal

produces the Taylor polynomial Q13(x) of degree 13 with center zero for the sine function. The command
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%% /. x → %

then asks Mathematica to substitute Q13(x) for x in P13(x). In other words, compute P13(Q13(x)). Then
the Expand command expands the resulting expression, thereby forming a polynomial of degree 169. Its first
14 terms will be the degree 13 Taylor polynomial with center zero of exp(sinx), and it is

1 + x +
x2

2
− x4

8
− x5

15
− x6

240
+

x7

90
+

31x8

5760
+

x9

5670
− 2951x10

3628800
− x11

3150
+

181x12

14515200
+

2417x13

48648600
.

To check this result, simply enter the Mathematica 3.0 command

Series[ Exp[Sin[x]], {x, 0, 13} ] // Normal

—the response will be almost instantaneous.

C10S0M.057: We will need both the recursion formula
∫ ∞

0

t2n exp(−t2) dt =
2n− 1

2

∫ ∞

0

t2n−2 exp(−t2) dt (n � 1),

which follows from the formula in Problem 50 of Section 7.3, and the famous formula
∫ ∞

0

exp(−t2) dt =
√

π

2
,

which is derived in Example 5 of Section 14.4 (it is Eq. (9) there). We begin with the Maclaurin series of
the cosine function.

∫ ∞

0

exp(−t2) cos 2xt dt =
∫ ∞

0

exp(−t2)
(

1− 22x2t2

2!
+

24x4t4

4!
− 26x6t6

6!
+

28x8t8

8!
− · · ·

)
dt

=
∫ ∞

0

(
exp(−t2)− 22x2

2!
t2 exp(−t2) +

24x4

4!
t4 exp(−t2)− 26x6

6!
t6 exp(−t2) + · · ·

)
dt

=
∫ ∞

0

e−t
2
dt− 22x2

2!

∫ ∞

0

t2e−t
2
dt +

24x4

4!

∫ ∞

0

t4e−t
2
dt− 26x6

6!

∫ ∞

0

t6e−t
2
dt + · · ·

=
∫ ∞

0

e−t
2
dt− 22x2

2!
· 1
2

∫ ∞

0

e−t
2
dt +

24x4

4!
· 3
2
· 1
2

∫ ∞

0

e−t
2
dt− 26x6

6!
· 5
2
· 3
2
· 1
2

∫ ∞

0

e−t
2
dt + · · ·

=
(∫ ∞

0

e−t
2
dt

)(
1− 22x2

2!
· 1
2

+
24x4

4!
· 3 · 1

22
− 26x6

6!
· 5 · 3 · 1

23
+

28x8

8!
· 7 · 5 · 3 · 1

24
− · · ·

)
.

The typical term in the last infinite series is

22nx2n

(2n)!
· (2n− 1)(2n− 3) · · · 5 · 3 · 1

2n
=

22nx2n

(2n)!
· (2n)!
2n · (2n)(2n− 2) · · · 6 · 4 · 2 =

22nx2n

n! · 2n · 2n =
(x2)n

n!
.

Consequently,

∫ ∞

0

e−t
2
cos 2xt dt =

(∫ ∞

0

e−t
2
dt

)(
1− x2

1!
+

(x2)2

2!
− (x2)3

3!
+

(x2)4

4!
− · · ·

)

=
(∫ ∞

0

e−t
2
dt

)
e−x

2
=
√

π

2
e−x

2
.
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C10S0M.058: The first equality is derived in Example 5 of Section 6.9 and appears in Eq. (30) there.
Thus we have

tanh−1 x =
∫ x

0

1
1− t2

dt =
∫ x

0

(
1 + t2 + t4 + t6 + t8 + · · ·

)
dt

= x +
x3

3
+

x5

5
+

x7

7
+

x9

9
+ · · · =

∞∑
n=0

x2n+1

2n + 1

provided that |x| < 1.

C10S0M.059: The binomial series takes the form

(1 + t2)−1/2 = 1− 1
2
t2 +

1 · 3
22
· t

4

2!
− 1 · 3 · 5

23
· t

6

3!
+

1 · 3 · 5 · 7
24

· t
8

4!
− · · · .

Thus

sinh−1 x =
∫ x

0

(1 + t2)−1/2 dt = x− x3

3
+

1 · 3
22 · 5 ·

x5

2!
− 1 · 3 · 5

23 · 7 ·
x7

3!
+

1 · 3 · 5 · 7
24 · 9 · x

9

4!
− · · ·

=
∞∑
n=0

1 · 3 · 5 · · · (2n− 1)
2n · n!

· x2n+1

2n + 1
=

∞∑
n=0

1 · 3 · 5 · · · (2n− 1)
2 · 4 · 6 · · · (2n)

· x2n+1

2n + 1

=
∞∑
n=0

(2n)!
2n · n! · 2 · 4 · 6 · · · (2n)

· x2n+1

2n + 1
=

∞∑
n=0

(2n)!
22n · (n!)2

· x2n+1

2n + 1

provided that |x| < 1.

C10S0M.060: We begin with the assumption that there exist coefficients {an} such that tan y =
∑

any
n.

The Maclaurin series for the inverse tangent function is derived in Example 11 of Section 10.8 and appears
in Eq. (20) there; it is

tan−1 x = x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · · .

Thus

x = tan(tan−1 x) = a0 + a1

(
x− x3

3
+

x5

5
− x7

7
+ · · ·

)

+ a2

(
x− x3

3
+

x5

5
− x7

7
+ · · ·

)2

+ a3

(
x− x3

3
+

x5

5
− x7

7
+ · · ·

)3

+ · · ·

= a0 + a1

(
x− x3

3
+

x5

5
− x7

7
+ · · ·

)

+ a2

(
x2 − 2x4

3
+

23x6

45
− 44x8

105
+

563x10

1575
− · · ·

)
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+ a3

(
x3 − x6 +

14x7

15
− 818x9

945
+

141x11

175
− · · ·

)

+ a4

(
x4 − 4x6

3
+

22x8

15
− 1436x10

945
+

21757x12

14175
− · · ·

)
+ · · · .

Therefore

x = a0 + a1x + a2x
2 +

(
a3 −

a1

3

)
x3 +

(
a4 −

2a2

3

)
x4 + · · · .

It now follows that a0 = 0, a1 = 1, a2 = 0, a3 = 1
3 , and a4 = 0. Thus the Maclaurin series for the tangent

function—if it exists (it does)—begins

tanx = x +
x3

3
+ · · · .

For more about this series, see Eq. (7) of Section 10.9 and the discussion that precedes and follows it; see
also Problem 25 of Section 10.10.

C10S0M.061: We let Mathematica 3.0 do this problem. First we defined

mu = 1/(12∗n) - 1/(360∗n∧3) + 1/(1260∗n∧5)

Then the command

Series[ Exp[x], { x, 0, 10 } ] // Normal

produced the 10th-degree Taylor polynomial with center zero for ex:

1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+

x7

5040
+

x8

40320
+

x9

362880
+

x10

3628800
.

Recall that % means “last output” to Mathematica. Thus the next command

% /. x → mu

tells Mathematica to substitute mu for x in the Taylor polynomial, producing the response

1 +
(

1
1260n5

− 1
360n3

+
1

12n

)
+

1
2

(
1

1260n5
− 1

360n3
+

1
12n

)2

+
1
6

(
1

1260n5
− 1

360n3
+

1
12n

)3

+
1
24

(
1

1260n5
− 1

360n3
+

1
12n

)4

+ · · ·+ 1
3628800

(
1

1260n5
− 1

360n3
+

1
12n

)10

.

Finally, the Expand command resulted in almost a full page of output, including the answer:

exp(µ(n)) = 1 +
1

12n
+

1
288n2

− 139
51840n3

− 571
2488320n4

+
163879

209018880n5
+ . . . .

C10S0M.062: Given: T (n) =
∫ π/4

0

(tanx)n dx.

Part (a): Equation (12) in Section 7.4 gives the reduction formula
∫

(tanx)n dx =
1

n− 1
(tanx)n−1 −

∫
(tanx)n−2 dx

18



if n is an integer and n � 2. It follows immediately that if n is a nonnegative integer, then

T (n + 2) =
1

n + 1
− T (n).

Part (b): We show that T (n)→ 0 as n→ +∞ by an argument very similar to that used in the solution of
Problem 61 of Section 7.3. Indeed, it may be helpful to examine the figure that accompanies that solution.
Given ε > 0 (but quite close to zero), choose the positive integer k so large that

[
tan

(π

4
− ε

2

)]k
<

2ε
π

.

This is possible because

0 < a = tan
(π

4
− ε

2

)
< 1,

and thus an → 0 as n→ +∞. Then the region bounded above by the graph of y = (tanx)k and below by the
x-axis over the interval 0 � x � π/4 is contained in the union of two rectangles: One with northwest vertex
at (0, 2ε/π) and southeast vertex at (π/4, 0), the other rectangle with southwest vertex at

(
1
4 π − 1

2 ε, 0
)

and
northeast vertex at (π/4, 1). It now follows that

T (n) =
∫ π/4

0

(tanx)n dx <
π

4
· 2ε

π
+ 1 · ε

2
= ε

if n � k, and this shows that T (n)→ 0 as n→ +∞.

Part (c): T (0) =
∫ π/4

0

1 dx =
π

4
and

T (1) =
∫ π/4

0

tanx dx =
[

ln(secx)
]π/4
0

= ln
√

2 =
1
2

ln 2.

Part (d): First,

T (2) = 1− T (0) = 1− π

4
= (−1)2

(
1− π

4

)
,

so the formula in Part (d) holds when n = 2. Assume that it holds for some integer k � 2; that is, assume
that

T (2k) = (−1)k+1

(
1− 1

3
+

1
5
− · · · ± 1

2k − 1
− π

4

)
.

Then

T (2k + 2) =
1

2k + 1
− T (2k) =

1
2k + 1

− (−1)k+1

(
1− 1

3
+

1
5
− · · · ± 1

2k − 1
− π

4

)

=
1

2k + 1
+ (−1)k+2

(
1− 1

3
+

1
5
− · · · ± 1

2k − 1
− π

4

)

= (−1)k+2

(
1− 1

3
+

1
5
− · · · ± 1

2k − 1
∓ 1

2k + 1
− π

4

)
.

Therefore, by induction, the formula of Part (d) holds for every positive integer n.
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Part (e): We now know that if n is a positive integer, then

T (2n) = (−1)n+1

(
1− 1

3
+

1
5
− · · · ± 1

2n− 1
− π

4

)
.

Therefore

(−1)n+1T (2n) = 1− 1
3

+
1
5
− · · · ± 1

2n− 1
− π

4
;

π

4
+ (−1)n+1T (2n) = 1− 1

3
+

1
5
− · · · ± 1

2n− 1
.

Now let n→ +∞ to conclude that

π

4
= lim
n→∞

(
1− 1

3
+

1
5
− · · · ± 1

2n− 1

)
= 1− 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ · · · .

Part (f): First,

T (3) =
1
2
− T (1) =

1
2
− 1

2
ln 2 =

1
2
(−1)2(1− ln 2) =

1
2
(−1)1+1(1− ln 2).

Therefore

T (2n + 1) =
1
2
(−1)n+1

(
1− 1

2
+

1
3
− 1

4
+ · · · ± 1

n
− ln 2

)
(1)

if n = 1. Assume that Eq. (1) holds for some integer k � 1. Then

T (2k + 3) =
1

2k + 2
− 1

2
(−1)k+1

(
1− 1

2
+

1
3
− 1

4
+ · · · ± 1

k
− ln 2

)

=
1

2k + 2
+

1
2
(−1)k+2

(
1− 1

2
+

1
3
− 1

4
+ · · · ± 1

k
− ln 2

)

= ±1
2
(−1)k+2 · 1

k + 1
+

1
2
(−1)k+2

(
1− 1

2
+

1
3
− 1

4
+ · · · ± 1

k
− ln 2

)

=
1
2
(−1)k+2

(
1− 1

2
+

1
3
− 1

4
+ · · · ± 1

k
∓ 1

k + 1
− ln 2

)
.

Therefore, by induction, Eq. (1) holds for every positive integer n.

Part (g): For each positive integer n, we have

1
2
(−1)n+1T (2n + 1) = 1− 1

2
+

1
3
− 1

4
+ · · · ± 1

n
− ln 2.

Therefore

1
2
(−1)n+1T (2n + 1) + ln 2 = 1− 1

2
+

1
3
− 1

4
+ · · · ± 1

n
.

Now let n→ +∞ to conclude that

ln 2 = 1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+

1
7
− · · · .
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C10S0M.063: Proof: Assume that e is a rational number. Then e = p/q where p and q are positive
integers and q > 1 (because e is not an integer). Thus

p

q
= e = 1 +

1
1!

+
1
2!

+
1
3!

+ · · ·+ 1
q!

+ Rq

where

Rq =
1

(q + 1)!
+

1
(q + 2)!

+
1

(q + 3)!
+

1
(q + 4)!

+ · · ·

=
1
q!
·
(

1
q + 1

+
1

(q + 1)(q + 2)
+

1
(q + 1)(q + 2)(q + 3)

+ · · ·
)

<
1
q!
·
(

1
q + 1

+
1

(q + 1)2
+

1
(q + 1)3

+ · · ·
)

=
1
q!
·

1
q + 1

1− 1
q + 1

=
1

q! · q .

Thus

1 +
1
1!

+
1
2!

+
1
3!

+ · · ·+ 1
q!

<
p

q
< 1 +

1
1!

+
1
2!

+
1
3!

+ · · ·+ 1
q!

+
1

q! · q .

If the left member of the last inequality is multiplied by q!, the product is an integer; call it M . Thus when
all three members of the last inequality are multiplied by q!, the result is

M < (q − 1)! · p < M +
1
q

< M + 1.

This is a contradiction because it asserts that the integer (q − 1)! · p lies strictly between the consecutive

integers M and M + 1. Therefore e is irrational. �

C10S0M.064: The partial product Pk has many cancellations, much like a telescoping series:

Pk =
k∏

n=2

n2

n2 − 1
=

2 · 2
1 · 3 ·

3 · 3
2 · 4 ·

4 · 4
3 · 5 ·

5 · 5
4 · 6 · · ·

(k − 1) · (k − 1)
(k − 2) · k · k · k

(k − 1) · (k + 1)
=

2k
k + 1

.

Therefore

∞∏
n=2

n2

n2 − 1
= lim
k→∞

Pk = 2.

C10S0M.065: Suppose that x2 = 5. Then

x2 − 4 = 1; x− 2 =
1

2 + x
; x = 2 +

1
2 + x

.

Now substitute the last expression for the last x. The result is

x = 2 +
1

4 +
1

2 + x

.

Repeat: Substitute the right-hand side of the last equation for the last x. Thus
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x = 2 +
1

4 +
1

4 +
1

2 + x

.

Continue this process. It follows that a0 = 2 and that an = 4 for all n � 1.

C10S0M.066: The series

S = 1 +
1
2
− 2

3
+

1
4

+
1
5
− 2

6
+

1
7

+
1
8
− 2

9
+

1
10

+ · · · (1)

is not absolutely convergent, so we must use special care in finding its sum. If both converge, then the series
in (1) has the same sum as the series

(
1 +

1
2

)
− 2

3
+

(
1
4

+
1
5

)
− 2

6
+

(
1
7

+
1
8

)
− 2

9
+

(
1
10

+
1
11

)
− · · · (2)

because the 2nth partial sum of the series in (2) is equal to the 3nth partial sum of the series in (1). Moreover,
the terms of the series in (2) are clearly approaching zero, and their absolute values do so monotonically
because

1
3k − 2

+
1

3k − 1
− 2

3k
=

9k2 − 3k + 9k2 − 6k − 18k2 + 18k − 4
(3k − 2)(3k − 1)(3k)

=
9k − 4

(3k − 2)(3k − 1)(3k)
> 0

and

2
3k
− 1

3k + 1
− 1

3k + 2
=

18k2 + 18k + 4− 9k2 − 3k − 9k2 − 6k
(3k)(3k + 1)(3k + 1)

=
9k + 4

(3k)(3k + 1)(3k + 1)
> 0.

Therefore the series in (2) converges by the alternating series test, and so the series in (1) converges as well.
To evaluate its sum, let

f(x) = x +
x2

2
− 2x3

3
+

x4

4
+

x5

5
− 2x6

6
+

x7

7
+

x8

8
− 2x9

9
+

x10

10
+ · · · . (3)

Then f(x) exists at least on the interval
(
− 1

2 ,
1
2

)
by the ratio test (Theorem 1 of Section 10.8; see also

Problem 70 of that section). Therefore power series manipulations using calculus are valid. We find that

f ′(x) = 1 + x− 2x2 + x3 + x4 − 2x5 + x6 + x7 − 2x8 + x9 + · · ·

=
(
1 + x3 + x6 + x9 + · · ·

)
+

(
x + x4 + x7 + x10 + · · ·

)
− 2

(
x2 + x5 + x8 + x11 + · · ·

)
,

−1 < x < 1. These rearrangement are permissible because the first series for f ′(x) is absolutely convergent on
(−1, 1). Moreover, f ′(x) is the sum of three geometric series, each of which converges on (−1, 1). Therefore

f ′(x) =
1

1− x3
+

x

1− x3
− 2x2

1− x3
=

1 + x− 2x2

1− x3
=

(1− x)(1 + 2x)
(1− x)(1 + x + x2)

=
2x + 1

x2 + x + 1
.

Therefore, if −1 < x < 1, then f(x) = C + ln(x2 + x + 1). Also 0 = f(0) = C, so that

f(x) = ln(x2 + x + 1), −1 < x < 1.

Now we invoke a theorem formulated and proved by the brilliant Norwegian mathematician Neils Henrik
Abel (1802–1829). It implies that if the series obtained by substitution of x = 1 in Eq. (3) converges (we
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have seen that this is so) and the function f is continuous at x = 1 (this is clear), then f(1) is the sum of
the series. Therefore

1 +
1
2
− 2

3
+

1
4

+
1
5
− 2

6
+

1
7

+
1
8
− 2

9
+

1
10

+ · · · = f(1) = ln 3.

To check this result, the Mathematica 3.0 command

Sum[ 1/(3∗n - 2) + 1/(3∗n - 1) - 2/(3∗n), {n, 1, Infinity} ]

yields the sum

ln 3 ≈ 1.0986122886681096913952452369225257046474905578227494517

almost instantaneously.

Bonus: One of our students contributed the following problem. Test for convergence:

∞∑
n=1

1
21 · 21/2 · 21/3 · · · 21/n

.

C10S0M.Extra: Curious about the Riemann zeta function? Questions about its behavior are currently
the deepest and most important unsolved problems in mathematics; some of the answers have important
consequences in the theory of the distribution of prime numbers. Some of those consequences are related to
a remarkable identity discovered by Leonhard Euler:

Theorem: If s > 1 then

ζ(s) =
∏

p prime

1
1− p−s

.

Note that the product is taken over all primes p.

Recall that if s is a real number and s > 1, then

ζ(s) =
∞∑
n=1

1
ns

and that the function ζ may be extended to most other numbers, including most complex numbers, by
the condition that it is required to be infinitely differentiable. We’ll have no need for its values at complex
numbers here; we are mostly concerned with its values when s is an integer and s > 1. In the text we have
seen a few of the values of the zeta function; for example,

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, and ζ(8) =

π8

9450
.

It is known that ζ(2n) is a rational multiple of π2n if n is a positive integer; much less is known about ζ(n)
if n is odd and n � 3. The values of ζ(2n) continue the preceding list as follows:

π10

93555
,

691π12

638512875
,

2π14

18243225
,

3617π16

325641566250
,

43867π18

38979295480125
, and

174611π20

1531329465290625
.

The pattern of the coefficients is related to the Bernoulli numbers {Bn}, the values of which may be defined
as follows. Write the Taylor series with center zero for
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g(t) =
t

et − 1
.

(Note that g(0) may be defined by the usual requirement that g be continuous at t = 0.) The resulting series
is

g(t) = 1− t

2
+

t2

12
− t4

720
+

t6

30240
− t8

1209600
+

t10

47900160
− · · · . (1)

Then for n an even nonnegative integer, the nth Bernoulli number Bn may be defined to be the product of
n! and the coefficient of tn in the series in (1). Finally, if n is an integer and n � 1, then the coefficient of
π2n in the expression for ζ(2n) is of the form

2j |B2n |
(2k)!

where j and k are integers very closely related to n. We leave it to you to discover that simple relationship
—extrapolation from the data given here will yield a valid result. Finally, if you need more numbers,
the Mathematica commands Zeta[ n ] and BernoulliB[ n ], or the Maple commands Zeta(n) and
bernoulli(n), will provide you with more values of the zeta function and more Bernoulli numbers.
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Section 12.1

C12S01.001: v =
−⇀
RS = 〈 3 − 1, 5 − 2 〉 = 〈 2, 3 〉. The position vector of the point P (2, 3) and

−⇀
RS are

shown next.

C12S01.002: v =
−⇀
RS = 〈 1− (−2), 4− (−3) 〉 = 〈 3, 7 〉.

C12S01.003: v =
−⇀
RS = 〈−5 − 5, −10 − 10 〉 = 〈−10, −20 〉. The position vector of the point P and

−⇀
RS

are shown next.

C12S01.004: v =
−⇀
RS = 〈 15− (−10), −25− 20 〉 = 〈25, −45 〉.

C12S01.005: w = u + v = 〈 1, −2 〉+ 〈 3, 4 〉 = 〈 1 + 3, −2 + 4 〉 = 〈 4, 2 〉. The next figure illustrates this
computation in the form of the triangle law for vector addition (see Fig. 12.1.6 of the text).

C12S01.006: u + v = 〈 4, 2 〉+ 〈−2, 5 〉 = 〈 4− 2, 2 + 5 〉 = 〈 2, 7 〉.

C12S01.007: Given: u = 3i + 5j, v = 2i− 7j:
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(5,–2)

(3,5)

u

v

u + v

u + v = 3i + 5j + 2i− 7j = (3 + 2)i + (5− 7)j = 5i− 2j.

The next figure illustrates the triangle law for vector addition using u and v.

C12S01.008: u + v = 〈 7− 10, 5 + 0 〉 = 〈−3, 5 〉 = −3i + 5j.

C12S01.009: Given: a = 〈 1, −2 〉 and b = 〈−3, 2 〉. Then:

|a| =
√

(1)2 + (−2)2 =
√

5 ,

| − 2b| = |〈−6, 4 〉| =
√

36 + 16 = 2
√

13 ,

|a− b| = |〈 1− (−3), −2− 2 〉| =
√

16 + 16 = 4
√

2 ,

a + b = 〈 1− 3, −2 + 2 〉 = 〈−2, 0 〉,

3a− 2b = 〈 3, −6 〉 − 〈−6, 4 〉 = 〈 3− (−6), −6− 4 〉 = 〈 9, −10 〉.

C12S01.010: Given: a = 〈 3, 4 〉 and b = 〈−4, 3 〉. Then:

|a| =
√

9 + 16 =
√

25 = 5,

| − 2b| = |〈−8, 6 〉| =
√

64 + 36 = 10,

|a− b| = |〈 3− (−4), 4− 3 〉| =
√

49 + 1 = 5
√

2 ,

a + b = 〈 3− 4, 4 + 3 〉 = 〈−1, 7 〉,

3a− 2b = 〈 9, 12 〉 − 〈−8, 6 〉 = 〈 9− (−8), 12− 6 〉 = 〈 17, 6 〉.

C12S01.011: Given: a = 〈−2, −2 〉 and b = 〈−3, −4 〉. Then:

|a| =
√

4 + 4 =
√

8 = 2
√

2 ,

| − 2b| = |〈 6, 8 〉| =
√

36 + 64 = 10,

|a− b| = |〈−2− (−3), −2− (−4) 〉| = |〈 1, 2 〉| =
√

1 + 4 =
√

5 ,

a + b = 〈−2− 3, −2− 4 〉 = 〈−5, −6 〉,

3a− 2b = 〈−6, −6 〉 − 〈−6, −8 〉 = 〈−6− (−6), −6− (−8) 〉 = 〈 0, 2 〉.
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C12S01.012: Given: a = −2〈 4, 7 〉 = 〈−8, −14 〉 and b = −3〈−4, −2 〉 = 〈 12, 6 〉. Then:

|a| =
√

64 + 196 =
√

260 = 2
√

65 ,

| − 2b| = |〈−24, −12 〉| =
√

576 + 144 =
√

720 = 12
√

5 ,

|a− b| = |〈−8− 12, −14− 6 〉| = |〈−20, −20 〉| =
√

400 + 400 = 20
√

2 ,

a + b = 〈−8 + 12, −14 + 6 〉 = 〈 4, −8 〉,

3a− 2b = 〈−24, −42 〉 − 〈 24, 12 〉 = 〈−24− 24, −42− 12 〉 = 〈−48, −54 〉.

C12S01.013: Given: a = i + 3j and b = 2i− 5j. Then:

|a| = |i + 3j| =
√

1 + 9 =
√

10 ,

| − 2b| = |4i− 10j| =
√

16 + 100 = 2
√

29 ,

|a− b| = | − i + 8j| =
√

1 + 64 =
√

65 ,

a + b = i + 3j + 2i− 5j = 3i− 2j,

3a− 2b = 3i + 9j− 4i + 10j = −i + 19j.

C12S01.014: Given: a = 2i− 5j and b = i− 6j. Then:

|a| = |2i− 5j| =
√

4 + 25 =
√

29 ,

| − 2b| = | − 2i + 12j| =
√

4 + 144 = 2
√

37 ,

|a− b| = |i + j| =
√

2 ,

a + b = 2i− 5j + i− 6j = 3i− 11j,

3a− 2b = 6i− 15j− 2i + 12j = 4i− 3j.

C12S01.015: Given: a = 4i and b = −7j. Then:

|a| = |4i| =
√

16 = 4,

| − 2b| = |14j| =
√

(14)2 = 14,

|a− b| = |4i + 7j| =
√

16 + 49 =
√

65 ,

a + b = 4i− 7j,

3a− 2b = 12i + 14j.

C12S01.016: Given: a = −i− j and b = 2i + 2j. Then:

|a| =
√

1 + 1 =
√

2 ,

| − 2b| = | − 4i− 4j| =
√

32 = 4
√

2 ,

3



|a− b| = | − 3i− 3j| =
√

18 = 3
√

2 ,

a + b = −i− j + 2i + 2j = i + j,

3a− 2b = −3i− 3j− 4i− 4j = −7i− 7j.

C12S01.017: Because |a| =
√

9 + 16 = 5,

u =
1
5
a = − 3

5
i− 4

5
j and v = − 1

5
a =

3
5
i +

4
5
j.

C12S01.018: Because |a| =
√

25 + 144 = 13,

u =
1
13

a =
5
13

i− 12
13

j and v = − 1
13

a = − 5
13

i +
12
13

j.

C12S01.019: Because |a| =
√

64 + 225 =
√

289 = 17,

u =
1
17

a =
8
17

i +
15
17

j and v = − 1
17

a = − 8
17

i− 15
17

j.

C12S01.020: Because |a| =
√

49 + 576 =
√

625 = 25,

u =
1
25

a =
7
25

i− 24
25

j and v = − 1
25

a = − 7
25

i +
24
25

j.

C12S01.021: a =
−⇀
PQ = 〈 3− 3, −2− 2 〉 = 〈 0, −4 〉 = −4j.

C12S01.022: a =
−⇀
PQ = 〈−3− (−3), 6− 5 〉 = 〈 0, 1 〉 = j.

C12S01.023: a =
−⇀
PQ = 〈 4− (−4), −7− 7 〉 = 〈 8, −14 〉 = 8i− 14j.

C12S01.024: a =
−⇀
PQ = 〈−4− 1, −1− (−1) 〉 = 〈−5, 0 〉 = −5i.

C12S01.025: Given a = 〈 6, 0 〉 and b = 〈 0, −7 〉, c = b− a = 〈−6, −7 〉. Then

|c|2 = 36 + 49 = |a|2 + |b|2.

Therefore the vectors a and b are perpendicular because of the (true) converse of the Pythagorean theorem.
See Example 5.

C12S01.026: Given a = 〈 0, 3 〉 and b = 〈 3, −1 〉, c = b− a = 〈 3, −4 〉. Then

|c|2 = 9 + 16 = 25 �= 9 + 10 = |a|2 + |b|2.

Therefore the vectors a and b are not perpendicular by the (true) contrapositive of the Pythagorean theorem.
See Example 5.

C12S01.027: Given a = 〈 2, −1 〉 and b = 〈 4, 8 〉, c = b− a = 〈 2, 9 〉. Then

|c|2 = 4 + 81 = 85 = 5 + 80 = |a|2 + |b|2.
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Therefore the vectors a and b are perpendicular by the (true) converse of the Pythagorean theorem. See
Example 5.

C12S01.028: Given a = 〈 8, 10 〉 and b = 〈 15, −12 〉, c = b− a = 〈 7, −22 〉. Then

|c|2 = 49 + 484 = 533 = 164 + 369 = |a|2 + |b|2.

Therefore the vectors a and b are perpendicular by the (true) converse of the Pythagorean theorem. See
Example 5.

C12S01.029: Given a = 2i + 3j and b = 3i + 4j, we have

3a− 2b = 6i + 9j− 6i− 8j = j and

4a− 3b = 8i + 12j− 9i− 12j = −i.

Therefore i = −4a + 3b and j = 3a− 2b.

C12S01.030: Given a = 5i− 9j and b = 4i− 7j,

4a− 5b = 20i− 36j− 20i + 35j = −j and

7a− 9b = 35i− 63j− 36i + 63j = −i.

Therefore i = −7a + 9b and j = −4a + 5b.

C12S01.031: Given a = i + j and b = i− j, we have

c = 2i− 3j = ra + sb = r i + rj + si− sj = (r + s)i + (r − s)j.

It follows that r + s = 2 and that r − s = −3. These simultaneous equations are easily solved, and thereby
we find that c = − 1

2 a + 5
2 b.

C12S01.032: Given a = 3i + 2j and b = 8i + 5j, we have

c = 7i + 9j = ra + sb = 3r i + 2rj + 8si + 5sj = (3r + 8s)i + (2r + 5s)j.

Thus 3r+ 8s = 7 and 2r+ 5s = 9. These simultaneous equations are easily solved for r = 37 and s = −13,
and thus c = 37a− 13b.

C12S01.033: Part (a): 3(5i− 7j) = 15i− 21j. Part (b):
1
3

(5i− 7j) =
5
3
i− 7

3
j.

C12S01.034: Part (a): −4(−3i + 5j) = 12i− 20j. Part (b): − 1
4

(−3i + 5j) =
3
4
i− 5

4
j.

C12S01.035: Part (a): If a = 7i− 3j, then |a| =
√

58 . Thus a unit vector with the same direction as a is

u =
a√
58

. Answer: 5u =
5
√

58
58

(7i− 3j).

Part (b): If b = 8i + 5j, then |b| =
√

89 . Thus a unit vector with the same direction as b is
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v =
b√
89

. Answer: − 5v = − 5
√

89
89

(8i + 5j).

C12S01.036: If a = 〈 c, 2 〉 and b = 〈 c, −8 〉, then let w = b − a = 〈 0, −10 〉. Perpendicularity of a and
b is equivalent to the Pythagorean relation

|a|2 + |b|2 = |w|2;

that is, c2 + 4 + c2 + 64 = 100, so that c2 = 16. Answer: There are two solutions: c = 4 and c = −4. The
corollary to Theorem 1 in Section 12.2 gives a more efficient method for solving such problems.

C12S01.037: Given a = 〈 2c, −4 〉 and b = 〈 3, c 〉, let w = b− a = 〈 3− 2c, c+ 4 〉. Perpendicularity of a
and b is equivalent to the Pythagorean relation

|a|2 + |b|2 = |w|2;

that is, 4c2 + 16 + c2 + 9 = 5c2 − 4c+ 25, and thus the unique solution is c = 0.

C12S01.038: Let u =
−⇀
AB = 〈−7, 4 〉, v =

−⇀
BC = 〈 6, −12 〉, and w =

−⇀
CA = 〈 1, 8 〉. Then

u + v + w = 〈−7 + 6 + 1, 4− 12 + 8 〉 = 〈 0, 0 〉 = 0.

C12S01.039: With a = 〈 a1, a2 〉, b = 〈 b1, b2 〉, and c = 〈 c1, c2 〉, we have

a + (b + c) = 〈 a1, a2 〉+ (〈 b1, b2 〉+ 〈 c1, c2 〉) = 〈 a1, a2 〉+ 〈b1 + c1, b2 + c2 〉

= 〈 a1 + (b1 + c1), a2 + (b2 + c2) 〉 = 〈 (a1 + b1) + c1, (a2 + b2) + c2 〉

= 〈 a1 + b1, a2 + b2 〉+ 〈 c1, c2 〉 = (〈 a1, a2 〉+ 〈 b1, b2 〉) + 〈 c1, c2 〉 = (a + b) + c.

C12S01.040: With a = 〈 a1, a2 〉 and scalars r and s, we have

(r + s)a = (r + s)〈 a1, a2 〉 = 〈 (r + s)a1, (r + s)a2 〉 = 〈 ra1 + sa1, ra2 + sa2 〉

= 〈 ra1, ra2 〉+ 〈 sa1, sa2 〉 = r〈 a1, a2 〉+ s〈 a1, a2 〉 = ra + sa.

C12S01.041: With a = 〈 a1, a2 〉 and scalars r and s, we have

(rs)a = (rs)〈 a1, a2 〉 = 〈 (rs)a1, (rs)a2 〉 = 〈 r(sa1), r(sa2) 〉 = r〈 sa1, sa2 〉 = r(s〈 a1, a2 〉) = r(sa).

C12S01.042: With a = 〈 a1, a2 〉, b = 〈 b1, b2 〉, and the assumption that a + b = a, we have

〈 a1, a2 〉+ 〈 b1, b2 〉 = 〈 a1, a2 〉; 〈 a1 + b1, a2 + b2 〉 = 〈 a1, a2 〉;

a1 + b1 = a1 and a2 + b2 = a2; b1 = b2 = 0;

therefore b = 0.
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C12S01.043: See Fig. 12.1.13. The angle each cable makes with the horizontal is 30◦, so

T1 cos 30◦ = T2 cos 30◦. Therefore T1 = T2.

Also

T1 sin 30◦ + T2 sin 30◦ = 100; 2 · 1
2
· T1 = 100; T1 = T2 = 100.

C12S01.044: See Fig. 12.1.14; let T1 be the tension in the right-hand cable and T2 the tension in the
left-hand cable. Then

T1 cos 30◦ = T2 cos 45◦ and T1 sin 30◦ + T2 sin 45◦ = 50.

Thus T2 sin 45◦ = T2 cos 45◦ = T1 cos 30◦, and therefore

T1 ·
(

1
2

+
√

3
2

)
= 50 :

T1 =
100

1 +
√

3
=

100
(√

3 − 1
)

2
= 50

(√
3 − 1

)
≈ 36.602540 (lb).

It now follows that

T2 = T1 ·
cos 30◦

cos 45◦
= T1 ·

√
3
2
· 2√

2
=
√

6
2
· T1 = 25

(
3
√

2 −
√

6
)
≈ 44.828774 (lb).

C12S01.045: See Fig. 12.1.15; let T1 be the tension in the right-hand cable and T2 the tension in the
left-hand cable. The equations that balance the horizontal and vertical forces, respectively, are

T1 cos 40◦ = T2 cos 55◦ and T1 sin 40◦ + T2 sin 55◦ = 125.

A Mathematica 3.0 command for solving these equations simultaneously is

Solve[ { t1∗Cos[40∗Pi/180] == t2∗Cos[55∗Pi/180],
t1∗Sin[40∗Pi/180] + t2∗Sin[55∗Pi/180] == 125 }, {t1,t2} ]

and it yields the solution

T1 =
125 cos(11π/15)

cos(11π/36) sin(2π/9) + cos(2π/9) sin(11π/36)
≈ 71.970925644575 (lb),

T2 =
125 cos(2π/9)

cos(11π/36) sin(2π/9) + cos(2π/9) sin(11π/36)
≈ 96.121326055335 (lb).

C12S01.046: See Fig. 12.1.16; let T1 be the tension in the right-hand cable and T2 the tension in the
left-hand cable. Let θ1 be the acute angle that the right-hand cable makes with the horizontal support; let
θ2 be the acute angle that the left-hand cable makes with the horizontal support. The hypotenuse of the
right triangle formed by the two cables and the support has length 5, so that

cos θ1 =
3
5

= sin θ2 and cos θ2 =
4
5

= sin θ1.
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Balancing the horizontal forces and balancing the vertical forces leads, respectively, to

T1 cos θ1 = T2 cos θ2 and T1 sin θ1 + T2 sin θ2 = 150;

thus

3
5
T1 =

4
5
T2; T2 =

3
4
T1;

4
5
T1 +

3
4
· 3
5
T1 = 150;

(
4
5

+
9
20

)
T1 = 150;

5
4
T1 = 150; T1 = 120 (lb).

Then it follows that T2 = 3
4 T1 = 90 (lb).

C12S01.047: va = vg −w = 〈 500, 0 〉 − 〈−25
√

2 , −25
√

2 〉 = 〈 500 + 25
√

2 , 25
√

2 〉. This corresponds
to a compass bearing of about 86◦13′ (about 3.778◦ north of east) with airspeed approximately 536.52 mi/h
(about 467 knots).

C12S01.048: va = vg −w = 〈−500, 0 〉 − 〈−25
√

2 , −25
√

2 〉 = 〈 25
√

2 − 500, 25
√

2 〉. This corresponds
to a compass bearing of about 274◦ 21′ (about 4.351◦ north of west) with airspeed approximately 466 mi/h
(about 405 knots).

C12S01.049: va = vg − w = 〈−250
√

2 , 250
√

2 〉 − 〈−25
√

2 , −25
√

2 〉 = 〈−225
√

2 , 275
√

2 〉. This
corresponds to a compass bearing of about 320◦ 43′ (about 50.71◦ north of west) with airspeed approximately
502 mi/h (about 437 knots).

C12S01.050: Assume that A = (a1, a2), that B = (b1, b2), and that C = (c1, c2). Then

−⇀
AB = 〈 b1 − a1, b2 − a2 〉,

−⇀
BC = 〈 c1 − b1, c2 − b2 〉, and

−⇀
CA = 〈 a1 − c1, a2 − c2 〉.

Therefore

−⇀
AB +

−⇀
BC +

−⇀
CA = 〈 b1 − a1 + c1 − b1 + a1 − c1, b2 − a2 + c2 − b2 + a2 − c2 〉 = 〈 0, 0 〉 = 0.

C12S01.051: Denote the origin by O. Then a =
−⇀
OP and b =

−⇀
OQ. Let M denote the midpoint of the

line segment PQ. Then
−⇀
PQ = b− a, so that

−−⇀
PM =

1
2

(b− a) .

Hence the position vector of M is

−⇀
OP +

−−⇀
MP = a +

1
2

(b− a) =
1
2

(a + b) .

C12S01.052: Let u =
−−⇀
AM , let v =

−⇀
NA, and let w =

−⇀
BC. Let x =

−−⇀
MN . (Perhaps you should draw a

figure.) Then
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2u + w + 2v = 0; u + x + v = 0;

w = −2u− 2v = 2x; x =
1
2
w.

Therefore x and w are parallel and |x| = 1
2 |w|. Thus the line segment joining the midpoints of two sides of

an arbitrary triangle is parallel to the third side and half its length.

C12S01.053: Let A, B, C, and D be the vertices of a parallelogram, in order, counterclockwise. Then its

diagonals are AC and BD. Let M be the point where the diagonals cross. Let u =
−⇀
AB and let v =

−⇀
BC.

Then

−⇀
AC = u + v and

−⇀
BD = v− u.

Then
−−⇀
AM = r(u + v) and

−−⇀
MC = (1 − r)(u + v) for some scalar r. Similarly,

−−⇀
BM = s(v − u) and

−−⇀
MD = (1− s)(v− u) for some scalar s. Therefore

−⇀
AB +

−−⇀
BM =

−−⇀
AM ; u + s(v− u) = r(u + v);

(1− r − s)u = (r − s)v; 1− r − s = 0 = r − s

because u and v are not parallel. It follows that r = s = 1
2 , so that |AM | = |MC | and |BM | = |MD |.

Therefore the diagonals of the arbitrary parallelogram ABCD bisect each other.

C12S01.054: Let A, C, E, and G be the vertices of an arbitrary quadrilateral in the plane, in order,
counterclockwise. Let B be the midpoint of AC, D the midpoint of CE, F the midpoint of EG, and H

the midpoint of GA. We are to prove that BDFH is a parallelogram. Let u =
−⇀
AB. Then u =

−⇀
BC. Let

v =
−⇀
CD. Then v =

−⇀
DE. Let w =

−⇀
EF . Then w =

−⇀
FG. Let x =

−−⇀
GH. Then x =

−⇀
HA. It now follows that

2u + 2v + 2w + 2x = 0; u + v + w + x = 0;

−⇀
BD = u + v = −(w + x) =

−−⇀
FH; |−⇀BD | = |−−⇀FH | and

−⇀
BD ‖ −−⇀FH.

According to a theorem of Euclid, if two sides of a quadrilateral are parallel and have the same length, then
the quadrilateral is a parallelogram. Or, if you prefer, you can use these computations to show also that
−⇀
DF ‖ −−⇀HB, so that BDFH is a parallelogram by definition.

C12S01.055: See Fig. 12.1.18, which makes it easy to see that a1 = r cos θ and a2 = r sin θ. Then

a⊥ =
[
r cos

(
θ +

π

2

)]
i +

[
r sin

(
θ +

π

2

)]
j = (−r sin θ)i + (r cos θ)j = −a2i + a1j.
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Section 12.2

C12S02.001: Given a = 〈 2, 5, −4 〉 and b = 〈 1, −2, −3, 〉, we find that

(a): 2a + b = 〈 5, 8, −11 〉,
(b): 3a− 4b = 〈 2, 23, 0 〉,
(c): a ·b = 2 · 1− 5 · 2 + 4 · 3 = 4,

(d): |a− b| = |〈 1, 7, −1 〉| =
√

51 , and

(e):
a
|a| =

1√
4 + 25 + 16

〈 2, 5, −4 〉 =
√

5
15
〈 2, 5, −4 〉 =

〈
2
√

5
15

,

√
5
3

, −4
√

5
15

〉
.

C12S02.002: Given a = 〈−1, 0, 2 〉 and b = 〈 3, 4, −5 〉, we find that

(a): 2a + b = 〈 1, 4, −1 〉,
(b): 3a− 4b = 〈−15, −16, 26 〉,
(c): a ·b = −1 · 3 + 0 · 4− 2 · 5 = −13,

(d): |a− b| = |〈−4, −4, 7 〉| =
√

16 + 16 + 49 =
√

81 = 9, and

(e):
a
|a| =

1√
5
〈−1, 0, 2 〉 =

〈
−
√

5
5

, 0,
2
√

5
5

〉
.

C12S02.003: Given a = 〈 1, 1, 1 〉 and b = 〈 0, 1, −1 〉, we find that

(a): 2a + b = 〈 2, 3, 1 〉,
(b): 3a− 4b = 〈 3, −1, 7 〉,
(c): a ·b = 1 · 0 + 1 · 1− 1 · 1 = 0,

(d): |a− b| = |〈 1, 0, 2 〉| =
√

5 , and

(e):
a
|a| =

1√
3
〈 1, 1, 1 〉 =

〈 √
3
3

,

√
3
3

,

√
3
3

〉
.

C12S02.004: Given a = 〈 2, −3, 5 〉 and b = 〈 5, 3, −7 〉, we find that

(a): 2a + b = 〈 9, −3, 3 〉,
(b): 3a− 4b = 〈−14, −21, 43 〉,
(c): a ·b = 2 · 5− 3 · 3− 7 · 5 = −34,

(d): |a− b| = |〈−3, −6, 12 〉| =
√

9 + 36 + 144 = 3
√

21 , and

(e):
a
|a| =

1√
4 + 9 + 25

〈−2, −3, 5 〉 =

〈 √
38
19

,
−3
√

38
38

,
5
√

38
38

〉
.

C12S02.005: Given a = 〈 2, −1, 0 〉 and b = 〈 0, 1, −3 〉, we find that

(a): 2a + b = 〈 4, −1, −3 〉,
(b): 3a− 4b = 〈 6, −7, 12 〉,
(c): a ·b = 2 · 0− 1 · 1 + 0 · (−3) = −1,

(d): |a− b| = |〈 2, −2, 3 〉| =
√

17 , and

(e):
a
|a| =

1√
5
〈 2, −1, 0 〉 =

〈
2
√

5
5

, −
√

5
5

, 0

〉
.
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C12S02.006: Given a = 〈 1, −2, 3 〉 and b = 〈 1, 3, −2 〉, we find that

(a): 2a + b = 〈 3, −1, 4 〉,
(b): 3a− 4b = 〈−1, −18, 17 〉,
(c): a ·b = 1 · 1− 2 · 3− 3 · 2 = −11,

(d): |a− b| = |〈 0, −5, 5 〉| =
√

50 = 5
√

2 , and

(e):
a
|a| =

1√
1 + 4 + 9

〈 1, −2, 3 〉 =

〈 √
14
14

, −
√

14
7

,
3
√

14
14

〉
.

C12S02.007: If θ is the angle between a and b, then

cos θ =
a ·b
|a| · |b| =

4√
45
√

14
=

2
√

70
105

≈ 0.15936371,

and therefore θ ≈ 80.830028◦ ≈ 81◦.

C12S02.008: If θ is the angle between a and b, then

cos θ =
a ·b
|a| · |b| = − 13√

5
√

50
= −13

√
10

50
≈ −0.82219219,

and therefore θ ≈ 145.304864◦ ≈ 145◦.

C12S02.009: If θ is the angle between a and b, then

cos θ =
a ·b
|a| · |b| = 0 (exactly),

and therefore θ = 90◦ (exactly).

C12S02.010: If θ is the angle between a and b, then

cos θ =
a ·b
|a| · |b| =

10− 9− 35√
38
√

83
= − 34√

3154
= −34

√
3154

3154
≈ −0.60540788,

and therefore θ ≈ 127.258199◦ ≈ 127◦.

C12S02.011: If θ is the angle between a and b, then

cos θ =
a ·b
|a| · |b| =

−1
5
√

2
= −
√

2
10
≈ −0.14142136,

and therefore θ ≈ 98.130102◦ ≈ 98◦.

C12S02.012: If θ is the angle between a and b, then

cos θ =
a ·b
|a| · |b| = −11

14
≈ −0.78571429,

and therefore θ ≈ 141.786789◦ ≈ 142◦.

C12S02.013: Refer to Problem 1;

compab =
a ·b
|a| =

4
√

5
15

and compba =
a ·b
|b| =

2
√

14
7

.
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C12S02.014: Refer to Problem 2;

compab =
a ·b
|a| = −13

√
5

5
and compba =

a ·b
|b| = −13

√
2

10
.

C12S02.015: Refer to Problem 3;

compab =
a ·b
|a| = 0 = compba =

a ·b
|b| .

C12S02.016: Refer to Problem 4;

compab =
a ·b
|a| = −17

√
38

19
and compba =

a ·b
|b| = −34

√
83

83
.

C12S02.017: Refer to Problem 5;

compab =
a ·b
|a| = −

√
5
5

and compba =
a ·b
|b| = −

√
10
10

.

C12S02.018: Refer to Problem 6;

compab =
a ·b
|a| = −11

√
14

14
and compba =

a ·b
|b| = −11

√
14

14
.

C12S02.019: An equation of the sphere is (x− 3)2 + (y − 1)2 + (z − 2)2 = 25; that is,

x2 − 6x+ y2 − 2y + z2 − 4z = 11.

C12S02.020: A equation of the sphere is (x+ 2)2 + (y − 1)2 + (z + 5)2 = 7; that is,

x2 + 4x+ y2 − 2y + z2 + 10z + 23 = 0.

C12S02.021: The center of the sphere is at
(

3 + 7
2

,
5 + 3

2
,
−3 + 1

2

)
= (5, 4, −1)

and its radius is

1
2

√
(7− 3)2 + (3− 5)2 + (1 + 3)2 =

1
2
√

16 + 4 + 16 = 3.

Therefore an equation of this sphere is (x− 5)2 + (y − 4)2 + (z + 1)2 = 9; that is,

x2 − 10x+ y2 − 8y + z2 + 2z + 33 = 0.

C12S02.022: The radius of the sphere is

√
(4− 1)2 + 52 + (−2)2 =

√
9 + 25 + 4 =

√
38 ,

and thus an equation of the sphere is (x− 4)2 + (y − 5)2 + (z + 2)2 = 38; that is,
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x2 − 8x+ y2 − 10y + z2 + 4z + 7 = 0.

C12S02.023: The sphere has radius 2, thus equation x2 + y2 +(z− 2)2 = 4; that is, x2 + y2 + z2− 4z = 0.

C12S02.024: The sphere has radius 4, thus equation (x− 3)2 + (y + 4)2 + (z − 3)2 = 16; that is,

x2 − 6x+ y2 + 8y + z2 − 6z + 18 = 0.

C12S02.025: We complete the square in x and y:

x2 + 4x+ 4 + y2 − 6y + 9 + z2 = 13;

(x+ 2)2 + (y − 3)2 + (z − 0)2 = 13.

This sphere has center at (−2, 3, 0) and radius
√

13 .

C12S02.026: We complete the square in all three variables:

x2 − 8x+ 16 + y2 − 9y +
81
4

+ z2 + 10z + 25 + 40 =
245
4

;

(x− 4)2 +
(
y − 9

2

)2

+ (z + 5)2 =
85
4
.

This sphere has center at
(

4,
9
2
, −5

)
and radius

√
85
2

.

C12S02.027: We complete the square in z:

x2 + y2 + z2 − 6z + 9 = 16 + 9 = 25;

(x− 0)2 + (y − 0)2 + (z − 3)2 = 52.

This sphere has center at (0, 0, 3) and radius 5.

C12S02.028: We complete the square in all three variables:

x2 − 7
2
x+ y2 − 9

2
y + z2 − 11

2
z = 0;

x2 − 7
2
x+

49
16

+ y2 − 9
2
y +

81
16

+ z2 − 11
2
z +

121
16

=
251
16

;

(
x− 7

4

)2

+
(
y − 9

4

)2

+
(
z − 11

4

)2

=
251
16

.

This sphere has center at
(

7
4
,

9
4
,

11
4

)
and radius

√
251
4

.

C12S02.029: The equation z = 0 is an equation of the xy-plane.

C12S02.030: The equation x = 0 is an equation of the yz-plane.
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C12S02.031: The equation z = 10 is an equation of the plane parallel to the xy-plane and passing through
the point (0, 0, 10).

C12S02.032: The equation xy = 0 holds when either x = 0 or y = 0 (or both). So its graph is the union
of the yz-plane and the xz-plane.

C12S02.033: The equation xyz = 0 holds when any one (or more) of the three variables is zero. Hence its
graph is the union of the three coordinate planes.

C12S02.034: If x2 +y2 + z2 +7 = 0, then the sum of the three nonnegative numbers x2, y2, and z2 is −7,
which is negative. This is impossible regardless of the values of x, y, and z. Therefore there are no points
on the graph of the given equation.

C12S02.035: Given the equation x2 + y2 + z2 = 0, the sum of the three nonnegative numbers x2, y2, and
z2 can be zero only if none of x, y, and z is nonzero. Therefore the graph of the given equation consists of
the single point (0, 0, 0).

C12S02.036: The equation x2 + y2 + z2 − 2x+ 1 = 0 can be rewritten in the form (x− 1)2 + y2 + z2 = 0,
and—as in the solution of Problem 35—the sum of three nonnegative real numbers can be zero only if none
is nonzero. Therefore the graph of the given equation consists of the single point (1, 0, 0).

C12S02.037: Complete the square in x and y:

x2 + y2 + z2 − 6x+ 8y + 25 = 0;

x2 − 6x+ 9 + y2 + 8y + 16 + z2 + 25 = 25;

(x− 3)2 + (y + 4)2 + z2 = 0.

The sum of three nonnegative real numbers can be zero only if none is positive. So the graph of the given
equation consists of the single point (3, −4, 0).

C12S02.038: Given the equation x2+y2 = 0, the argument used in the previous few solutions demonstrates
that x = 0 = y, but z is arbitrary. Hence the graph of the given equation is the z-axis.

C12S02.039: If a = 〈 4, −2, 6 〉 and b = 〈 6, −3, 9 〉, then b = 3
2 a. Therefore a and b are parallel.

Because they are nonzero and parallel, they are not perpendicular; alternatively, they are not perpendicular
because a ·b = 84 �= 0.

C12S02.040: Suppose that a = 〈 4, −2, 6 〉 and b = 〈 4, 2, 2 〉. If b = λa for some scalar λ, then
examination of first components shows that λ = 1, whereas examination of second components shows that
λ = −1. Therefore there is no such scalar, and thus a and b are not parallel. Moreover, a ·b = 24 �= 0, so
these two vectors are also not perpendicular.

C12S02.041: Because

b = −9i + 15j− 12k = −3
4

(12i− 20j + 16k) = −3
4
a,

the vectors a and b are parallel. Because they are nonzero as well, they are not perpendicular; alternatively,
a ·b = −600 �= 0, and hence they are not perpendicular.

C12S02.042: If there existed a scalar ξ such that ξa = b, then
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ξ(12i− 20j + 17k) = −9i + 15j + 24k,

so that 12ξ = −9, −20ξ = 15, and 17ξ = 24. The first two equations agree that ξ = − 3
4 , but the third

implies that ξ = 24
17 . Hence there is no such scalar ξ, and therefore the vectors a and b are not parallel.

But a ·b = −9 · 12− 20 · 15 + 24 · 17 = −108− 300 + 408 = 0, and thus a and b are perpendicular.

C12S02.043: The distinct points P , Q, and R lie on a single straight line if and only if the vectors

representing
−⇀
PQ and

−⇀
QR are parallel. Here we have

3
−⇀
PQ = 3 (〈 1, −3, 5 〉 − 〈 0, −2, 4 〉) = 3〈 1, −1, 1 〉 = 〈 3, −3, 3 〉 = 〈 4, −6, 8 〉 − 〈 1, −3, 5 〉 =

−⇀
QR.

Therefore
−⇀
PQ and

−⇀
QR are parallel, and so the three points P , Q, and R do lie on a single straight line.

C12S02.044: The distinct points P , Q, and R lie on a single straight line if and only if the vectors

representing
−⇀
PQ and

−⇀
QR are parallel. Here we have

−3
−⇀
PQ = −3 (〈 3, 3, 3 〉 − 〈 6, 7, 8 〉) = −3〈−3, −4, −5 〉 = 〈 9, 12, 15 〉 = 〈 12, 15, 18 〉 − 〈 3, 3, 3 〉 =

−⇀
QR.

Therefore
−⇀
PQ and

−⇀
QR are parallel, and so the three points P , Q, and R do lie on a single straight line.

C12S02.045: The sides of triangle ABC are represented by the three vectors u =
−⇀
AB = 〈−1, 1, 0 〉,

v =
−⇀
BC = 〈 0, −1, 1 〉, and w =

−⇀
AC = 〈−1, 0, 1 〉. Let A denote the angle of the triangle at vertex A. Then

cosA =
u ·w
|u| · |w| =

(−1)(−1)√
2
√

2
=

1
2
,

and therefore A = 60◦ (exactly). Similarly,

cosB =
−u ·v
| − u| · |v| =

(−1)(−1)√
2
√

2
=

1
2
,

and so B = 60◦ as well. Finally,

cosC =
−v · (−w)
| − v| · | −w| =

(−1)(−1)√
2
√

2
=

1
2
,

and it follows that C = 60◦.

C12S02.046: The sides of triangle ABC are represented by the three vectors u =
−⇀
AB = 〈 0, 2, 0 〉,

v =
−⇀
BC = 〈 0, 0, 3 〉, and w =

−⇀
AC = 〈 0, 2, 3 〉. Let A denote the angle of the triangle at vertex A. Then

cosA =
u ·w
|u| · |w| =

4√
4
√

13
=

2
√

13
13

≈ 0.55470020,

and therefore A ≈ 56.309932◦ ≈ 56◦. Similarly,

cosB =
−u ·v
| − u| · |v| =

0√
4
√

9
= 0,

and so B = 90◦ (exactly). Finally,
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cosC =
−v · (−w)
| − v| · | −w| =

(−3)(−3)√
9
√

13
=

3
√

13
13

≈ 0.83205029,

and it follows that C ≈ 33.690067◦ ≈ 34◦.

C12S02.047: The sides of triangle ABC are represented by the three vectors u =
−⇀
AB = 〈 2, −3, 2 〉,

v =
−⇀
BC = 〈 0, 6, 3 〉, and w =

−⇀
AC = 〈 2, 3, 5 〉. Let A denote the angle of the triangle at vertex A. Then

cosA =
u ·w
|u| · |w| =

4− 9 + 10√
17
√

38
=

5
√

646
646

≈ 0.19672237,

and therefore A ≈ 78.654643◦ ≈ 79◦. Similarly,

cosB =
−u ·v
| − u| · |v| =

18− 6√
17
√

45
=

4
√

85
85

≈ 0.43386082,

and so B ≈ 64.287166◦ ≈ 64◦. Finally,

cosC =
−v · (−w)
| − v| · | −w| =

18 + 15√
38
√

45
=

11
√

190
190

≈ 0.79802388,

and it follows that C ≈ 37.058191◦ ≈ 37◦.

C12S02.048: The sides of triangle ABC are represented by the three vectors u =
−⇀
AB = 〈−1, 1, 0 〉,

v =
−⇀
BC = 〈−1, −3, −2 〉, and w =

−⇀
AC = 〈−2, −2, −2 〉. Let A denote the angle of the triangle at vertex

A. Then

cosA =
u ·w
|u| · |w| =

2− 2√
2
√

12
= 0,

and therefore A = 90◦ (exactly). Similarly,

cosB =
−u ·v
| − u| · |v| =

−1 + 3√
2
√

14
=
√

7
7
≈ 0.37796447,

and so B ≈ 67.792346◦ ≈ 68◦. Finally,

cosC =
−v · (−w)
| − v| · | −w| =

2 + 6 + 4√
12
√

14
=
√

42
7
≈ 0.92582010,

and it follows that C ≈ 22.207654◦ ≈ 22◦.

C12S02.049: If a =
−⇀
PQ = 〈 2, 5, 5 〉 and its direction angles are α, β, and γ (as in Fig. 11.2.14), then

cosα =
2
|a| =

2√
54

=
√

6
9
≈ 0.27216553,

so that α ≈ 74.206830951736◦. Also

cosβ = cos γ =
5
|a| =

5√
54

=
5
√

6
18
≈ 0.68041382,

and therefore β = γ ≈ 47.124011333364◦.
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C12S02.050: If a =
−⇀
PQ = 〈−1, 3, −6 〉 and its direction angles are α, β, and γ (as in Fig. 12.2.14), then

cosα =
−1
|a| = − 1√

46
= −
√

46
46
≈ −0.14744196,

so that α ≈ 98.478713147086◦. Next,

cosβ =
3
|a| =

3√
46

=
3
√

46
46

≈ 0.44232587,

and therefore β ≈ 63.747624882279◦. Finally,

cos γ =
−6
|a| = − 6√

46
= −6

√
46

46
≈ −0.88465174,

and so γ ≈ 152.208694355221◦.

C12S02.051: If a =
−⇀
PQ = 〈 6, 8, 10 〉 and its direction angles are α, β, and γ (as in Fig. 12.2.14), then

cosα =
6
|a| =

6√
200

=
3
√

2
10
≈ 0.42426407,

so that α ≈ 64.895909749779◦. Next,

cosβ =
8
|a| =

8√
200

=
2
√

2
5
≈ 0.56568543,

and therefore β ≈ 55.550098012047◦. Finally,

cos γ =
10
|a| =

10√
200

=
√

2
2
≈ 0.70710678,

and so γ = 45◦ (exactly).

C12S02.052: If a =
−⇀
PQ = 〈 5, 12, 13 〉 and its direction angles are α, β, and γ (as in Fig. 12.2.14), then

cosα =
5
|a| =

5√
338

=
5
√

2
26
≈ 0.27196415,

so that α ≈ 74.218821492928◦. Next,

cosβ =
12
|a| =

12√
338

=
6
√

2
13
≈ 0.65271395,

and therefore β ≈ 49.253463877931◦. Finally,

cos γ =
13
|a| =

13√
338

=
√

2
2
≈ 0.70710678,

and so γ = 45◦ (exactly).

C12S02.053: The displacement vector is D =
−⇀
PQ = 3i + j, and consequently the work done is simply

F ·D = (i− k) · (3i + j) = 3.
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C12S02.054: The displacement vector is D =
−⇀
PQ = −6i − 5j + 9k, and consequently the work done is

F ·D = (2i− 3j + 5k) · (−6i− 5j + 9k) = 48.

C12S02.055: 40 · (cos 40◦) · 1000 · (0.239) ≈ 7323.385 (cal; less than 8 Cal).

C12S02.056: 200 · (sec 5◦) · 10 · 22
15
· 1
550
≈ 5.353706 (hp).

C12S02.057: Set up a coordinate system in which the lowest point of the inclined plane is at the origin in
the xy-plane and its highest point is at (x, h). Then

h

x
= tanα, so that x =

h

tanα
= h cotα.

Therefore the displacement vector in this problem is D = 〈h cotα, h 〉. A unit vector parallel to the inclined
plane is 〈 cosα, sinα 〉, so a unit vector in the direction of N is 〈− sinα, cosα 〉 (by Problem 55 in Section
12.1). Therefore N = λ〈− sinα, cosα 〉 where λ is a positive scalar. If we denote by F the magnitude |F|
of F, then

F = 〈F cosα, F sinα 〉.

The horizontal forces acting on the weight must balance, as must the vertical forces, yielding (respectively)
the scalar equations

λ sinα = F cosα and λ cotα+ F sinα = mg.

From the first of these equations we see that λ = F cosα, and substitution of this in the second equation
yields

F ·
(

cos2 α
sinα

)
+ F ·

(
sin2 α

sinα

)
= mg,

and it follows that F = mg sinα. Therefore F = 〈mg sinα cosα, mg sin2 α 〉. So the work done by F in
moving the weight from the bottom to the top of the inclined plane is (if there’s no friction)

W = F ·D = mgh cos2 α+mgh sin2 α = mgh.

C12S02.058: Because | cos θ | � 1 for all θ, if θ is the angle between the vectors a and b, then

|a ·b| = |a| · |b| · | cos θ | � |a| · |b|.

For an alternative proof that relies only on the definition of the dot product and does not use Theorem 1,
suppose that

a = 〈 a1, a2 〉 and b = 〈 b1, b2 〉.

Then
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0 � (a1b2 − a2b1)2;

0 � a2
1b

2
2 − 2a1a2b1b2 + a2

2b
2
1;

a2
1b

2
1 + 2a1a2b1b2 + a2

2b
2
2 � a2

1b
2
1 + a2

1b
2
2 + a2

2b
2
1 + a2

2b
2
2;

(a1b1 + a1b2)2 � (a2
1 + a2

2)(b
2
1 + b22);

|a1b1 + a2b2 | � (a2
1 + a2

2)
1/2(b21 + b22)

1/2;

|a ·b| � |a| · |b|.

For a proof for three-dimensional vectors, begin with the inequality

0 � (a1b2 − a2b1)2 + (a1b3 − a3b1)2 + (a2b3 − a3b2)2

and proceed in like manner.

C12S02.059: By the first equation in (9), we have

|a + b|2 = (a + b) · (a + b).

Then we use the fact that x � |x| for each real number x (in the first line) and the Cauchy-Schwarz inequality
of Problem 58 (in the second line):

|a + b|2 = a ·a + 2a ·b + b ·b = |a|2 + 2a ·b + |b|2 � |a|2 + 2|a ·b|+ |b|2

� |a|2 + 2|a| · |b|+ |b|2 = (|a|+ |b|)2 .

All these expression are nonnegative. Therefore, for any two vectors a and b, |a + b| � |a|+ |b|.

C12S02.060: Following the Suggestion, we write

a = (a− b) + b, so that

|a| = |(a− b) + b| � |a− b|+ |b|.

Therefore |a| − |b| � |a− b| for any two vectors a and b.

C12S02.061: Suppose that u = 〈u1, u2, u3 〉 and that v = 〈 v1, v2, v3 〉. If both are the zero vector, let
w = i. Otherwise we may suppose without loss of genrality that u �= 0. Indeed, we may further suppose
without loss of generality that u1 �= 0. We need to choose w = 〈w1, w2, w3 〉 such that

u ·w = u1w1 + u2w2 + u3w3 = 0 and

v ·w = v1w1 + v2w2 + v3w3 = 0.

This will obtain provided that

u1v1w1 + u2v1w2 + u3v1w3 = 0 and

u1v1w1 + u1v2w2 + u1v3w3 = 0.

10



Subtraction of the first of these equations from the second yields the sufficient condition

(u1v2 − u2v1)w2 + (u1v3 − u3v1)w3 = 0.

Thus our goal will be accomplished if we let

w2 = u1v3 − u3v1 and

w3 = −(u1v2 − u2v1) = u2v1 − u1v2.

Now let

w1 = − u2w2 + u3w3

u1
,

and we have reached our goal. In particular, if u = 〈 1, 2, −3 〉 and v = 〈 2, 0, 1 〉, then we obtain

w2 = 1 · 1 + 3 · 2 = 7,

w3 = 2 · 2− 1 · 0 = 4, and

w1 = −(2 · 7− 3 · 4) = −2,

and thus any nonzero multiple of w = 〈−2, 7, 4 〉 is a correct answer to this problem. We will see a more
efficient construction of a nonzero vector perpendicular to two given nonparallel vectors in Section 12.3.

C12S02.062: The edge of the cube on the x-axis coincides with the vector i = 〈 1, 0, 0 〉. The diagonal of

the cube coincides with the vector a =
−⇀
OP = 〈 1, 1, 1 〉. So the angle θ between them satisfies

cos θ =
i ·a
|i| · |a| =

1√
3

=
√

3
3

.

Therefore θ = arccos

(√
3
3

)
≈ 0.95531662 (radians; approximately 54◦ 44′ 8.197′′).

A more interesting problem is to find the angle between the long diagonal of a four-dimensional unit
hypercube and one of its incident edges. Then generalize the result to dimension n.

C12S02.063: Given: The points P1(x1, y1, z1), P2(x2, y2, z2), and

M

(
x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
.

Let a =
−−⇀
P1P2 = 〈x2 − x1, y2 − y1, z2 − z1 〉. Then a coincides with the line segment joining P1 with P2.

Hence if the initial point of 1
2 a is placed at P1, then its terminal point will coincide with the midpoint of the

segment P1P2. That is,
−−⇀
OP1 + 1

2 a will be the position vector of the midpoint of P1P2. But

−−⇀
OP1 +

1
2
a = 〈x1, y1, z1 〉+

1
2
〈x2 − x1, y2 − y1, z2 − z1 〉 =

〈
x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

〉
=
−−⇀
OM.

This is enough to establish that M is the midpoint of the segment P1P2.

C12S02.064: Place the vectors a, b, and c so that they have the same initial point. Next,
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c =
ba + ab
a+ b

is a linear combination of a and b, so c lies in the plane determined by a and b. Let φ denote the angle
between the vectors a and c. Then

cosφ =
a · c
|a| · |c| ;

moreover,

a · c =
a · (ba + ab)

a+ b
=
a2b+ a2b cos θ

a+ b

where θ is the angle between a and b. Hence

a · c =
a2b

a+ b
(1 + cos θ) =

2a2b

a+ b
cos2

(
θ

2

)
.

But |a| = a; moreover,

|c| =
√

(ba + ab) · (ba + ab)
a+ b

=

√
b2a2 + 2ab(a ·b) + a2b2

a+ b

=
√

2a2b2 + 2a2b2 cos θ
a+ b

=
ab

a+ b

√
4

(
1 + cos θ

2

)
=

2ab
a+ b

cos
(
θ

2

)
.

Therefore

cosφ = 2 · a2b

a+ b

[
cos2

(
θ

2

)]
· a+ b

2a2b cos(θ/2)
= cos

(
θ

2

)
.

It now follows that φ = 1
2 θ. Similarly, the angle between the vectors b and c is also equal to 1

2 θ. Consequently
c bisects the angle between a and b.

Alternative proof: Both ba and ab have length |a| · |b|. So they form two adjacent sides of a rhombus.
Their sum is a diagonal of the rhombus, and a theorem of geometry tells us that each diagonal of a rhombus
bisects the angles at its ends.

C12S02.065: Suppose that the vectors a and b in the plane are nonzero and nonparallel. We will provide
a proof in the case that the first components of a and b are nonzero. Let a = 〈 a1, a2, 〉, b = 〈 b1, b2 〉, and
c = 〈 c1, c2 〉. To find α and β such that c = αa + βb, solve

c1 = αa1 + βb1,

c2 = αa2 + βb2;

a2c1 = αa1a2 + βa2b1,

a1c2 = αa1a2 + βa1b2.

Subtract the next-to-last equation from the last:

12



d

P1(x1,y1)

n = ai + bj

P0(x0,y0)

L:  ax + by + c = 0

a1c2 − a2c1 = β(a1b2 − a2b1);

β =
a1c2 − a2c1
a1b2 − a2b1

.

But what if the last denominator is zero? Then a1b2 = a2b1, so that

a2

a1
=
b2
b1

= k,

and thus a2 = ka1 and b2 = kb1. Therefore

a = 〈 a1, ka1 〉 = a1〈 1, k 〉 and

b = 〈 b1, kb1 〉 = b1〈 1, k 〉,

so that a and b are parallel. Hence a1b2 − a2b1 �= 0.

In a similar fashion we find that

α =
b2c1 − b1c2
a1b2 − a2b1

.

All that remains is the verification that α and β perform as advertised:

αa + βb =
b2c1 − b1c2
a1b2 − a2b1

〈 a1, a2 〉+
a1c2 − a2c1
a1b2 − a2b1

〈 b1, b2 〉

=
1

a1b2 − a2b1

(
〈 a1b2c1 − a1b1c2, a2b2c1 − a2b1c2 〉+ 〈a1b1c2 − a2b1c1, a1b2c2 − a2b2c1 〉

)

=
1

a1b2 − a2b1
〈 (a1b2 − a2b1)c1, (a1b2 − a2b1)c2 〉 = 〈 c1, c2 〉 = c.

C12S02.066: See the following figure.

Given: d is the perpendicular distance from P1 to L. Then

d =
∣∣∣∣compn

(
−−⇀
P0P1

)∣∣∣∣ =
|n ·−−⇀P0P1 |
|n| =

|ax1 − ax0 + by1 − by0 |√
a2 + b2

.

Because P0 is on L, ax0 + by0 + c = 0. Then the result in Problem 66 follows immediately.
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C12S02.067: The equation

(x− 3)2 + (y + 2)2 + (z − 4)2 = (x− 5)2 + (y − 7)2 + (z + 1)2

can be simplified to 2x + 9y − 5z = 23. This is an equation of the plane that bisects the segment AB and
is perpendicular to it.

C12S02.068: First,
−⇀
AP = 〈x−1, y−3, z−5 〉. To express the condition that n and

−⇀
AP are perpendicular,

simply write n ·−⇀AP = 0. When simplified, we obtain x−y+2z = 8. This is an equation of the plane through
the point A perpendicular to the vector n.

C12S02.069: The distance between the last two points listed in Problem 69 is

√
(1− 0)2 + (0− 1)2 + (1− 1)2 =

√
2 ,

and the other five distance computations also yield the same result. Hence the given points are the vertices
of a regular tetrahedron. Let a be the position vector of (1, 1, 0) and let b be the position vector of (1, 0, 1).
Then the angle θ between a and b satisfies the equation

cos θ =
a ·b
|a| · |b| =

1 · 1 + 1 · 0 + 0 · 1√
2
√

2
=

1
2
.

Therefore θ =
π

3
.

C12S02.070: Let a be the vector with initial point the center of the molecule and terminal point (0, 0, 0)
and let b be the vector with initial point the center of the molecule and terminal point (1, 1, 0). Double
these two vectors to avoid fractions. Thus we use instead 2a = 〈−1, −1, −1 〉 and 2b = 〈 1, 1, −1 〉. Then
the bond angle α satisfies the equation

cosα =
(2a) · (2b)
|2a| · |2b| =

−1− 1 + 1√
3
√

3
= −1

3
.

Therefore α ≈ 109.471220634491◦; that is, approximately 109◦ 28′ 16.3943′′.
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Section 12.3

C12S03.001: If a = 〈 5, −1, −2 〉 and b = 〈−3, 2, 4 〉, then

a×b =

∣∣∣∣∣∣∣∣∣

i j k

5 −1 −2

−3 2 4

∣∣∣∣∣∣∣∣∣
= 〈−4 + 4, 6− 20, 10− 3 〉 = 〈 0, −14, 7 〉.

C12S03.002: If a = 〈 3, −2, 0 〉 and b = 〈 0, 3, −2 〉, then

a×b =

∣∣∣∣∣∣∣∣∣

i j k

3 −2 0

0 3 −2

∣∣∣∣∣∣∣∣∣
= 〈 4− 0, 0− (−6), 9− 0 〉 = 〈 4, 6, 9 〉.

C12S03.003: If a = i− j + 3k and b = −2i + 3j + k, then

a×b =

∣∣∣∣∣∣∣∣∣

i j k

1 −1 3

−2 3 1

∣∣∣∣∣∣∣∣∣
= (−1− 9)i + (−6− 1)j + (3− 2)k = −10i− 7j + k.

C12S03.004: If a = 4i + 2j− 2k and b = 2i− 5j + 5k, then

a×b =

∣∣∣∣∣∣∣∣∣

i j k

4 2 −2

2 −5 5

∣∣∣∣∣∣∣∣∣
= (10− 10)i + (−4− 20)j + (−20− 4)k = −24j− 24k.

C12S03.005: If a = 〈 2, −3, 0 〉 and b = 〈 4, 5, 0 〉, then

a×b =

∣∣∣∣∣∣∣∣∣

i j k

2 −3 0

4 5 0

∣∣∣∣∣∣∣∣∣
= 〈 0− 0, 0− 0, 10 + 12 〉 = 〈 0, 0, 22 〉.

C12S03.006: If a = −5i + 2j and b = 7i− 11j, then

a×b =

∣∣∣∣∣∣∣∣∣

i j k

−5 2 0

7 −11 0

∣∣∣∣∣∣∣∣∣
= (0− 0)i + (0− 0)j + (55− 14)k = 41k.

C12S03.007: If a = 〈 3, 12, 0 〉 and b = 〈 0, 4, 3 〉, then
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a×b =

∣∣∣∣∣∣∣∣∣

i j k

3 12 0

0 4 3

∣∣∣∣∣∣∣∣∣
= 〈 36− 0, 0− 9, 12− 0 〉 = 〈 36, −9, 12 〉.

The magnitude of a×b is

|a×b| =
√

362 + 92 + 122 =
√

1521 = 39,

so the two unit vectors perpendicular to both a and b are

u =
1
39
〈 36, −9, 12 〉 =

〈
12
13
, − 3

13
,

4
13

〉
and v = − 1

39
〈 36, −9, 12 〉 =

〈
− 12

13
,

3
13
, − 4

13

〉
.

C12S03.008: If a = i + 2j + 3k and b = 2i + 3j + 5k, then

a×b =

∣∣∣∣∣∣∣∣∣

i j k

1 2 3

2 3 5

∣∣∣∣∣∣∣∣∣
= (10− 9)i + (6− 5)j + (3− 4)k = i + j− k.

The magnitude of the cross product is

|i + j− k| =
√

1 + 1 + 1 =
√

3 ,

so the two unit vectors perpendicular to both a and b are

u =
√

3
3

(i + j− k) =
√

3
3

i +
√

3
3

j−
√

3
3

k and v = −
√

3
3

(i + j− k) = −
√

3
3

i−
√

3
3

j +
√

3
3

k.

C12S03.009: The definition of the cross product in Eq. (5) yields

i× j =

∣∣∣∣∣∣∣∣∣

i j k

1 0 0

0 1 0

∣∣∣∣∣∣∣∣∣
= (0− 0)i + (0− 0)j + (1− 0)k = k,

j×k =

∣∣∣∣∣∣∣∣∣

i j k

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣
= (1− 0)i + (0− 0)j + (0− 0)k = i, and

k× i =

∣∣∣∣∣∣∣∣∣

i j k

0 0 1

1 0 0

∣∣∣∣∣∣∣∣∣
= (0− 0)i + (1− 0)j + (0− 0)k = j.

C12S03.010: The definition of the cross product in Eq. (5) yields
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j× i =

∣∣∣∣∣∣∣∣∣

i j k

0 1 0

1 0 0

∣∣∣∣∣∣∣∣∣
= (0− 0)i + (0− 0)j + (0− 1)k = −k,

k× j =

∣∣∣∣∣∣∣∣∣

i j k

0 0 1

0 1 0

∣∣∣∣∣∣∣∣∣
= (0− 1)i + (0− 0)j + (0− 0)k = −i, and

i×k =

∣∣∣∣∣∣∣∣∣

i j k

1 0 0

0 0 1

∣∣∣∣∣∣∣∣∣
= (0− 0)i + (0− 1)j + (0− 0)k = −j.

C12S03.011: If a = i, b = i + j, and c = i + j + k, then

a× (b× c) = a×

∣∣∣∣∣∣∣∣∣

i j k

1 1 0

1 1 1

∣∣∣∣∣∣∣∣∣
= a× (i− j) =

∣∣∣∣∣∣∣∣∣

i j k

1 0 0

1 −1 0

∣∣∣∣∣∣∣∣∣
= −k,

whereas

(a×b) × c =

∣∣∣∣∣∣∣∣∣

i j k

1 0 0

1 1 0

∣∣∣∣∣∣∣∣∣
× c = k× c =

∣∣∣∣∣∣∣∣∣

i j k

0 0 1

1 1 1

∣∣∣∣∣∣∣∣∣
= −i + j.

Thus the vector product is not associative.

C12S03.012: Let a = i, b = 2i, and c = 3i. Then a×b = a× c because both products are 0 (because
a is parallel to b and a is parallel to c). But b �= c. Thus “cancellation” involving the vector product may
produce invalid results.

C12S03.013: If a, b, and c are mutually perpendicular, note that b× c is perpendicular to both b and
c, hence b× c is parallel to a. Therefore a× (b× c) = 0.

C12S03.014: By Eq. (10) (and the discussion that precedes it and follows it), the area of triangle PQR is

A = 1
2 |
−⇀
PQ×−⇀PR|. But

−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

0 −1 1

−1 0 1

∣∣∣∣∣∣∣∣∣
= −i− j− k.

Therefore the area of triangle PQR is A = 1
2

√
3 .
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C12S03.015: By Eq. (10) (and the discussion that precedes and follows it), the area of triangle PQR is

A = 1
2 |
−⇀
PQ+

−⇀
PR |. But

−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

1 1 7

−4 −5 4

∣∣∣∣∣∣∣∣∣
= 39i− 32j− k.

The magnitude of 39i− 32j− k is

|39i− 32j− k| =
√

1521 + 1024 + 1 =
√

2546 .

Therefore the area of triangle PQR is A = 1
2

√
2546 ≈ 25.2289516231.

C12S03.016: Let a =
−⇀
OP = 〈 1, 1, 0 〉, b =

−⇀
OQ = 〈 1, 0, 1 〉, and c =

−⇀
OR = 〈 0, 1, 1 〉. Then the volume V

of the parallelepiped having these vectors as adjacent edges is given by the scalar triple product in Theorem
4: V = |a · (b× c)|. Here we have

b× c =

∣∣∣∣∣∣∣∣∣

i j k

1 0 1

0 1 1

∣∣∣∣∣∣∣∣∣
= −i− j + k = 〈−1, −1, 1 〉.

Therefore V = |〈 1, 1, 0 〉 · 〈−1, −1, 1 〉| = | − 1− 1 + 0| = 2.

C12S03.017: Let a =
−⇀
OP = 〈 1, 3, −2 〉, b =

−⇀
OQ = 〈 2, 4, 5 〉, and c =

−⇀
OR = 〈−3, −2, 2 〉. Part (a):

By Theorem 4 and part (4) of Theorem 3, the volume of the parallelepiped with adjacent edges these three
vectors is given by V = |(a×b) · c|. Here we have

a×b =

∣∣∣∣∣∣∣∣∣

i j k

1 3 −2

2 4 5

∣∣∣∣∣∣∣∣∣
= 〈 23, −9, −2 〉,

and therefore V = |〈 23, −9, −2 〉 · 〈−3, −2, 2 〉| = |−55| = 55.

Part (b): By Example 7 of Section 12.3, the volume of the pyramid is
55
6

.

C12S03.018: A vector n normal to the plane containing P (1, 3, −2), Q(2, 4, 5), and R(−3, −2, 2) is

n =
−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

1 1 7

−4 −5 4

∣∣∣∣∣∣∣∣∣
= 〈 39, −32, −1 〉.

The magnitude of n is
√

2546 , so a unit vector normal to the plane is

u =
1√

2546
n =

√
2546
2546

〈 39, −32, −1 〉.
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Then the (perpendicular) distance from the origin to this plane is

−n ·−⇀OP = −
√

2546
2546

〈 39, −32, −1 〉 · 〈 1, 3, −2 〉 =
55
√

2546
2546

≈ 1.090017548523.

C12S03.019: Here we have
−⇀
AB = 〈 2, 1, 3 〉, −⇀AC = 〈 1, −3, 0 〉, and

−⇀
AD = 〈 3, 5, 6 〉. By Theorem 4 and

Eq. (17), the volume of the parallelepiped having these vectors as adjacent sides is the absolute value of

∣∣∣∣∣∣∣∣∣

2 1 3

1 −3 0

3 5 6

∣∣∣∣∣∣∣∣∣
= (−1) · (6− 15)− 3 · (12− 9) = 9− 9 = 0

(we expanded the determinant using its second row; see the discussion following Example 1 of the text). By
the reasoning given in Example 8, the four given points are coplanar.

C12S03.020: Here we have
−⇀
AB = 〈 12, 11, 15 〉, −⇀AC = 〈 11, −13, 12 〉, and

−⇀
AD = 〈 13, 35, 18 〉. By

Theorem 4 and Eq. (17), the volume of the parallelepiped having these vectors as adjacent sides is the
absolute value of

∣∣∣∣∣∣∣∣∣

12 11 15

11 −13 12

13 35 18

∣∣∣∣∣∣∣∣∣
= 12 · (−234− 420)− 11 · (198− 156) + 15 · (385 + 169) = −7848− 462 + 8310 = 0

(we expanded the determinant using its first row; see the discussion following Example 1 of the text). By
the reasoning given in Example 8, the four given points are coplanar.

C12S03.021: Here we have
−⇀
AB = 〈 1, 2, 3 〉, −⇀AC = 〈 2, 3, 4 〉, and

−⇀
AD = 〈 9, 12, 21 〉. By Theorem 4 and

Eq. (17), the volume of the parallelepiped having these vectors as adjacent sides is the absolute value of

∣∣∣∣∣∣∣∣∣

1 2 3

2 3 4

9 12 21

∣∣∣∣∣∣∣∣∣
= 1 · (63− 48)− 2 · (42− 36) + 3 · (24− 27) = 15− 12− 9 = −6

(we expanded the determinant using its first row; see the discussion following Example 1 of the text).
Therefore the four given points are not coplanar. The parallelepiped having the three vectors as adjacent
sides has volume 6 and the tetrahedron (pyramid) with the four given points as its vertices has volume 1.

C12S03.022: Here we have
−⇀
AB = 〈 11, 12, 13 〉, −⇀AC = 〈 2, 3, 4 〉, and

−⇀
AD = 〈 9, 12, 21 〉. By Theorem 4

and Eq. (17), the volume of the parallelepiped having these vectors as adjacent sides is the absolute value of

∣∣∣∣∣∣∣∣∣

11 12 13

2 3 4

9 12 21

∣∣∣∣∣∣∣∣∣
= 11 · (63− 48)− 12 · (42− 36) + 13 · (24− 27) = 165− 72− 39 = 54

5



(we expanded the determinant using its first row; see the discussion following Example 1 of the text). By
Theorem 4, the four given points are not coplanar. The tetrahedron with those four points as vertices has
volume 54

6 = 9.

C12S03.023: Name the vertices of the polygon counterclockwise, beginning at the origin: O, A, and B.
Then

a =
−⇀
OA = 〈 176 cos 15◦, 176 sin 15◦, 0 〉 ≈ 〈 170.002945, 45.552152, 0 〉 and

b =
−⇀
OB = 〈 83 cos 52◦, 83 sin 52◦, 0 〉 ≈ 〈 51.099902, 65.404893, 0 〉.

Using the exact rather than the approximate values, we entered the Mathematica 3.0 commands

c = Cross[a,b] (* to compute the vector product of a and b *)

area = (1/2)∗Sqrt[c.c] (* to compute half the magnitude of c *)

N[area,20] (* to print a 20-place approximation to the area *)

The response to the last command rounds to the answer, 4395.6569291026 (m2).

C12S03.024: Name the vertices of the polygon counterclockwise, beginning at the origin: O, A, and B.
Then

a =
−⇀
OA = 〈 255 cos 27◦, 255 sin 27◦, 0 〉 ≈ 〈 227.206664, 115.767577, 0 〉 and

b =
−⇀
OB = a− 〈 225 cos 9◦, 225 sin 9◦, 0 〉 ≈ 〈 4.976787, 80.569823, 0 〉.

Using the exact rather than the approximate values, we entered the Mathematica 3.0 commands

c = Cross[a,b] (* to compute the vector product of a and b *)

area = (1/2)∗Sqrt[c.c] (* to compute half the magnitude of c *)

N[area,20] (* to print a 20-place approximation to the area *)

The response to the last command rounds to the answer, 8864.925026 (ft2).

C12S03.025: Name the vertices of the polygon counterclockwise, beginning at the origin: O, A, B, and
C. Then

a =
−⇀
OA = 〈 220 cos 25◦, 220 sin 25◦, 0 〉 ≈ 〈 227.206664, 115.767577, 0 〉,

b =
−⇀
OB = a + 〈−210 cos 40◦, 210 sin 40◦, 0 〉 ≈ 〈 38.518380, 227.961416, 0 〉, and

c =
−⇀
OC = 〈−150 cos 63◦, 150 sin 63◦, 0 〉 ≈ 〈−68.098575, 133.650979, 0 〉.

Using the exact rather than the approximate values, we entered the Mathematica 3.0 commands

p = Cross[a,b] (* to compute the vector product of a and b *)

area1 = (1/2)∗Sqrt[p.p] (* to compute half the magnitude of p *)

q = Cross[b,c]

area2 = (1/2)∗Sqrt[q.q]
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N[area1 + area2, 20] (* to print a 20-place approximation to the total area *)

The response to the last command rounds to the answer, 31271.643253 (ft2).

C12S03.026: Name the vertices of the polygon counterclockwise, beginning at the origin: O, A, B, C,
and D. Then

a =
−⇀
OA = 〈 175, 0, 0 〉,

b =
−⇀
OB = a + 〈 200 cos 50◦, 200 sin 50◦, 0 〉 ≈ 〈 303.557522, 153.208889, 0 〉,

c =
−⇀
OC = b + 〈−150 cos 40◦, 150 sin 40◦, 0 〉 ≈ 〈 188.650855, 249.627030, 0 〉, and

d =
−⇀
OD = 〈−125 cos 70◦, 125 sin 70◦, 0 〉 ≈ 〈−42.752518, 117.461578, 0 〉.

Using the exact rather than the approximate values, we entered the Mathematica 3.0 commands

p = Cross[a,b] (* to compute the vector product of a and b *)

area1 = (1/2)∗Sqrt[p.p] (* to compute half the magnitude of p *)

q = Cross[b,c]

area2 = (1/2)∗Sqrt[q.q]
r = Cross[c,d]

area3 = (1/2)∗Sqrt[r.r]
N[area1 + area2 + area3, 20] (* to print a 20-place approximation to total area *)

The response to the last command rounds to the answer, 53258.070719 (m2).

C12S03.027: Let a = 〈 a1, a2, a3 〉 and b = 〈 b1, b2, b3 〉. Then

a×b =

∣∣∣∣∣∣∣∣∣

i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣
= 〈 a2b3 − a3b2, a3b1 − a1b3 a1b2 − a2b1 〉 and

b×a =

∣∣∣∣∣∣∣∣∣

i j k

b1 b2 b3

a1 a2 a3

∣∣∣∣∣∣∣∣∣
= 〈 b2a3 − b3a2, b3a1 − b1a3 b1a2 − b2a1 〉

= −〈 a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1 〉 = −(a×b).

C12S03.028: Let a = 〈 a1, a2, a3 〉, b = 〈 b1, b2, b3 〉, and c = 〈 c1, c2, c3 〉. Then

(a×b) · c =

∣∣∣∣∣∣∣∣∣

i i k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣
· c = 〈 a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1 〉 · 〈 c1, c2, c3 〉

= c1(a2b3 − a3b2)− c2(a1b3 − a3b1) + c3(a1b2 − a2b1).
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The last expression is the expansion of the determinant in Eq. (17) along its third row (see the discussion
following Eq. (3) of the text), and therefore we have shown that (a×b) · c = a · (b× c) for all three-
dimensional vectors a, b, and c.

C12S03.029: Part (a): Please refer to Fig. 12.3.13 of the text. Because the segment of length d is
perpendicular to the segment PQ, we know from elementary geometry that the area of the triangle is
1
2 |
−⇀
PQ| · d. Therefore

1
2
|−⇀AP ×−⇀AQ| =

1
2
|−⇀PQ| · d, and thus d =

|−⇀AP ×−⇀AQ|

|−⇀PQ|
. (1)

Part (b): With A = (1, 0, 1), P = (2, 3, 1), and Q = (−3, 1, 4), we have

−⇀
AP = 〈 1, 3, 0 〉, −⇀

AQ = 〈−4, 1, 3 〉, and
−⇀
PQ = 〈−5, −2, 3 〉.

To use the formula in (1), we first compute

−⇀
AP ×−⇀AQ =

∣∣∣∣∣∣∣∣∣

i j k

1 3 0

−4 1 3

∣∣∣∣∣∣∣∣∣
= 〈 9− 0, 0− 3, 1− (−12) 〉 = 〈 9, −3, 13 〉.

Then the formula in (1) implies that the distance from the given point to the given line is

d =
|−⇀AP ×−⇀AQ|

|−⇀PQ|
=
|〈 9, −3, 13 〉|√

25 + 4 + 9
=
√

259√
38

=
√

9842
38

≈ 2.61070670.

C12S03.030: Let d be the perpendicular distance from A to the plane determined by the three (non-
collinear) points P , Q, and R. Then the volume of the pyramid APQR is one-third the product of the area
of its base and its height, but it is also one-sixth the volume of the parallelepiped determined by the three

vectors
−⇀
AP ,

−⇀
AQ, and

−⇀
AR. The area of the (triangular) base of the pyramid is half the magnitude of the

cross product of
−⇀
PQ and

−⇀
PR, and—putting this all together—we have

1
3
· d · 1

2
|−⇀PQ×−⇀PR| =

1
6
|−⇀AP · (−⇀AQ×−⇀AR)|, and thus d =

|−⇀AP · (−⇀AQ×−⇀AR)|

|−⇀PQ×−⇀PR|
. (1)

Next, to find the distance d from the point A(1, 0, 1) to the plane P determined by the three points
P (2, 3, 1), Q(3, −1, 4), and R(0, 0, 2), we first compute

−⇀
PQ = 〈 1, −4, 3 〉, −⇀

PR = 〈−2, −3, 1 〉, −⇀
AP = 〈 1, 3, 0 〉, −⇀

AQ = 〈 2, −1, 3 〉, and
−⇀
AR = 〈−1, 0, 1 〉.

Then by Eq. (17) of the text, we have

−⇀
AP · (−⇀AQ×−⇀AR) =

∣∣∣∣∣∣∣∣∣

1 3 0

2 −1 3

−1 0 1

∣∣∣∣∣∣∣∣∣
= 1 · (−1− 0)− 3 · (2 + 3) = −1− 15 = −16
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(we evaluated the determinant by expansion along its first row). Next,

−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

1 −4 3

−2 −3 1

∣∣∣∣∣∣∣∣∣
= 〈−4 + 9, −6− 1, −3− 8 〉 = 〈 5, −7, −11 〉

so that |−⇀PQ×−⇀PR| =
√

25 + 49 + 121 =
√

195 . Thus by the formula in (1),

d =
|−16|√

195
=

16
√

195
195

≈ 1.14578380.

C12S03.031: Let u =
−−−⇀
P1Q1, v =

−−−⇀
P2Q2, and w =

−−⇀
P1P2. A vector n that is perpendicular to both lines is

one perpendicular to both u and v, and an obvious choice is n = u×v (n will be nonzero because the two
lines are not parallel). The projection of w in the direction of n will be ±d where d is the (perpendicular)
distance between the two lines. Thus

d =
|w ·n|
|n| =

|−−⇀P1P2 · (−−−⇀P1Q1 ×−−−⇀P2Q2)|

|−−−⇀P1Q1 ×−−−⇀P2Q2 |
.

Comment: Rather than memorizing formulas such as those in Problems 29, 30, and 31, one should learn
the general technique for finding the distance between two objects (points, lines, or planes) in space. First
find a vector n normal to both objects. Then construct another vector c “connecting” the two objects; that
is, with initial point on one and terminal point on the other. Then the projection of c in the direction of n
is the (perpendicular) distance between the two objects (or its negative); that is, the distance d is given by
the simple formula

d =
|c ·n|
|n| .

C12S03.032: Part (a): Because I is parallel to a, there exists a scalar a1 such that a = a1I. Because
b lies in the plane determined by I and J, if b1 is the projection of b in the direction of I and b2 is the
projection of b in the direction of J, it follows immediately that b = b1I + b2J. Because every vector is
a linear combination of I, J, and K, if we let c1 be the projection of c in the direction of I, c2 be the
projection of c in the direction of J, and c3 be the projection of c in the direction of K, it then follows that
c = c1I + c2J + c3K.

Part (b): Because I, J, and K form a right-handed triple of unit vectors, we have much the same results as
expressed in the equations in (11):

I×J = K, J×K = I, K× I = J,

J× I = −K, K×J = −I, and I×K = −J.

Thus

a×b = a1I× (b1I + b2J) = a1b1(I× I) + a1b2(I×J) = a1b2K.

It now follows that
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(a×b)× c = a1b2K× (c1I + c2J + c3K) = a1b2c1(K× I) + a1b2c2(K×J) = a1b2c1J− a1b2c2I.

Part (c): Note that a1I = a and that b2J = b− b1I. Thus

a1b2J = a1b− a1b1I = a1b− b1a.

(We are taking a little care here to avoid division by a1 because it might be zero.) Thus

(a×b) × c = a1b2c1J− a1b2c2I = c1(a1b− b1a)− b2c2a = a1c1b− (b1c1 + b2c2)a = (a · c)b− (b · c)a.

C12S03.033: Given the vectors a, b, and c in space, we have

a× (b× c) = −(b× c)×a (by Eq. (12))

= − [(b ·a)c− (c ·a)b] (by the result in Problem 32)

= (a · c)b− (a ·b)c (this establishes Eq. (16)).

C12S03.034: Note that (a×b) × (c×d) is perpendicular to a×b and the latter is perpendicular to a
and to b. Therefore (a×b)× (c×d) lies in the plane determined by a and b. Consequently

(a×b)× (c×d) = r1a + r2b

for some scalars r1 and r2. (If a and b are parallel—so that there is no plane determined by a and b—then
a×b = 0; in this case, simply choose r1 = r2 = 0.) The other half of the proof follows by a similar argument
(or by interchanging a with c and b with d in the preceding proof).

C12S03.035: Given: The triangle in the plane with vertices at P (x1, y1, 0), Q(x2, y2, 0), and R(x3, y3, 0).
Let

u =
−⇀
PQ = 〈x2 − x1, y2 − y1, 0 〉 and v =

−⇀
PR = 〈x3 − x1, y3 − y1, 0 〉.

The area of the triangle is A = 1
2 |u×v|. Now

u×v =

∣∣∣∣∣∣∣∣∣

i j k

x2 − x1 y2 − y1 0

x3 − x1 y3 − y1 0

∣∣∣∣∣∣∣∣∣
= 〈 0, 0, (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1) 〉,

so that

|u×v| = |x2y3 − x2y1 − x1y3 + x1y1 − x3y2 + x3y1 + x1y2 − x1y1 |

= |x2y3 − x2y1 − x1y3 − x3y2 + x3y1 + x1y2 |

= |(x2y3 − x3y2)− (x1y3 − x3y1) + (x1y2 − x2y1)|,

which is the absolute value of the determinant
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∣∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣
(1)

(expanded using its first column—see the discussion following Eq. (3) in the text). Thus the area of triangle
PQR is half the absolute value of the determinant in (1).

C12S03.036: We let Mathematica 3.0 work this problem. The command Cross[u,v] returns the vector
product of u and v. The command u.v returns the scalar (dot) product of u and v. Finally, the vector
〈x, y, z 〉 is expressed in Mathematica as the ordered list {x,y,z}. Here’s a transcript of the Mathematica

session.

a = {a1, a2, a3}; b = {b1, b2, b3}; (∗ semicolons suppress output ∗)

c = Cross[a,b]

{−a3b2 + a2b3, a3b1 − a1b3, −a2b1 + a1b2}

lhs = c.c (∗ ‘‘left-hand side’’ of the identity in Problem 36 ∗)

(−a2b1 + a1b2)2 + (a3b1 − a1b3)2 + (−a3b2 + a2b3)2

rhs = (a.a)∗(b.b) - (a.b)∧2

−(a1b1 + a2b2 + a3b3)2 − (a2
1 + a2

2 + a2
3)(b

2
1 + b22 + b23)

Simplify[lhs - rhs]

0
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Section 12.4

C12S04.001: Solving the vector equation 〈x, y, z 〉 = tv +
−⇀
OP yields

〈x, y, z 〉 = t〈 1, 2, 3 〉+ 〈 0, 0, 0 〉 = 〈 t, 2t, 3t 〉,

so that the parametric equations of the line are x = t, y = 2t, z = 3t.

C12S04.002: Solving the vector equation 〈x, y, z 〉 = tv +
−⇀
OP yields

〈x, y, z 〉 = t〈−2, 7, 3 〉+ 〈 3, −4, 5 〉 = 〈−2t+ 3, 7t− 4, 3t+ 5 〉,

and thus the parametric equations of the line are x = −2t+ 3, y = 7t− 4, z = 3t+ 5.

C12S04.003: Solving the vector equation 〈x, y, z 〉 = tv +
−⇀
OP yields

〈x, y, z 〉 = t〈 2, 0, −3 〉+ 〈 4, 13, −3 〉 = 〈 2t+ 4, 13, −3t− 3 〉,

and thus the parametric equations of the line are x = 2t+ 4, y = 13, z = −3t− 3.

C12S04.004: Solving the vector equation 〈x, y, z 〉 = tv +
−⇀
OP yields

〈x, y, z 〉 = t〈−17, 13, 31 〉+ 〈 17, −13, −31 〉 = 〈−17t+ 17, 13t− 13, 31t− 31 〉,

and thus the parametric equations of the line are x = −17(t− 1), y = 13(t− 1), z = 31(t− 1).

C12S04.005: Solving the vector equation 〈x, y, z 〉 =
−−⇀
OP1 + t

−−⇀
P1P2 yields

〈x, y, z 〉 = 〈 0, 0, 0 〉+ t〈−6, 3, 5 〉,

so the line has parametric equations x = −6t, y = 3t, z = 5t.

C12S04.006: Solving the vector equation 〈x, y, z 〉 =
−−⇀
OP1 + t

−−⇀
P1P2 yields

〈x, y, z 〉 = 〈 3, 5, 7 〉+ t〈 3, −13, 3 〉 = 〈 3 + 3t, 5− 13t, 7 + 3t 〉

so the line has parametric equations x = 3t+ 3, y = −13t+ 5, z = 3t+ 7.

C12S04.007: Solving the vector equation 〈x, y, z 〉 =
−−⇀
OP1 + t

−−⇀
P1P2 yields

〈x, y, z 〉 = 〈 3, 5, 7 〉+ t〈 3, 0, −3 〉 = 〈 3 + 3t, 5, 7− 3t 〉

so the line has parametric equations x = 3t+ 3, y = 5, z = −3t+ 7.

C12S04.008: Solving the vector equation 〈x, y, z 〉 =
−−⇀
OP1 + t

−−⇀
P1P2 yields

〈x, y, z 〉 = 〈 29, −47, 13 〉+ t〈 44, 100, −80 〉 = 〈 29 + 44t, −47 + 100t, 13− 80t 〉

so the line has parametric equations x = 44t+ 29, y = 100t− 47, z = −80t+ 13.

C12S04.009: Solving the vector equation 〈x, y, z 〉 =
−⇀
OP + tv yields

1



〈x, y, z 〉 = 〈 2, 3, −4 〉+ t〈 1, −1, −2 〉 = 〈 2 + t, 3− t, −4− 2t 〉

so the line has parametric equations x = t+ 2, y = −t+ 3, z = −2t− 4 and symmetric equations

x− 2 = −y + 3 = −z + 4
2

.

C12S04.010: Solving the vector equation 〈x, y, z 〉 =
−⇀
OP + t

−⇀
PQ yields

〈x, y, z 〉 = 〈 2, 5, −7 〉+ t〈 2, −2, 15 〉 = 〈 2 + 2t, 5− 2t, −7 + 15t 〉

so the line has parametric equations x = 2t+ 2, y = −2t+ 5, z = 15t− 7 and symmetric equations

x− 2
2

= −y − 5
2

=
z + 7
15

.

C12S04.011: Solving the vector equation 〈x, y, z 〉 =
−⇀
OP + tk yields

〈x, y, z 〉 = 〈 1, 1, 1 〉+ t〈 0, 0, 1 〉 = 〈 1, 1, 1 + t 〉

so the line has parametric equations x = 1, y = 1, z = t + 1. In a strict sense, the line doesn’t have
symmetric equations, but its Cartesian equations are

x = 1, y = 1.

The fact that z is not mentioned means that z is arbitrary.

C12S04.012: A line normal to the plane with Cartesian equation x + y + z = 1 is parallel to its normal
vector n = 〈 1, 1, 1 〉. Because the line in this problem passes through the origin, it has vector equation
〈x, y, z 〉 = tn, parametric equations x = t, y = t, z = t, and symmetric equations x = y = z.

C12S04.013: A line normal to the plane with Cartesian equation 2x− y + 3z = 4 is parallel to its normal
vector n = 〈 2, −1, 3 〉. The line of this problem also passes through the point P (2, −3, 4) and thus has vector
equation 〈x, y, z 〉 = t〈 2, −1, 3 〉 + 〈 2, −3, 4 〉, parametric equations x = 2t + 2, y = −t − 3, z = 3t + 4,
and symmetric equations

x− 2
2

= −(y + 3) =
z − 4

3
.

C12S04.014: The line with parametric equations x = 3t, y = 2 + t, z = 2 − t contains the points
Q(0, 2, 2) (take t = 0) and R(3, 3, 1) (take t = 1). Thus this line, and any parallel line, is parallel to

the vector
−⇀
QR = 〈 3, 1, −1 〉. Hence such a line passing through the point P (2, −1, 5) has vector equation

〈x, y, z 〉 = t〈 3, 1, −1 〉+〈 2, −1, 5 〉, parametric equations x = 3t+2, y = t−1, z = −t+5, and symmetric
equations

x− 2
3

= y + 1 = −(z − 5).

C12S04.015: Given: The lines L1 and L2 with symmetric equations

2



x− 2 =
y + 1

2
=

z − 3
3

and
x− 5

3
=

y − 1
2

= z − 4, (1)

respectively. Points on L1 include P1(2, −1, 3) and Q1(3, 1, 6), and thus L1 is parallel to the vector
−−−⇀
P1Q1 = 〈 1, 2, 3 〉. Points on L2 include P2(5, 1, 4) and Q2(8, 3, 5), and thus L2 is parallel to the vector
−−−⇀
P2Q2 = 〈 3, 2, 1 〉. Clearly L1 and L2 are not parallel. To determine whether they intersect, the Mathematica

3.0 command for solving the equations in (1) simultaneously is

Solve[ {x - 2 == (y + 1)/2, x - 2 == (z - 3)/3,

(x - 5)/3 == (y - 1)/2, (x - 5)/3 == z - 4 }, { x, y, z } ]

and this command yields the response x = 2, y = −1, z = 3. Hence the two lines meet at the single point
(2, −1, 3).

C12S04.016: When we solve the equations of L1 and L2 simultaneously, we obtain the unique solution
x = 7, y = 5, z = −3. Therefore the lines are not parallel and meet at the single point (7, 5, −3).

C12S04.017: When we try to solve the equations of L1 and L2 simultaneously, we find that there is no
solution. Thus the lines do not intersect. Two points on L1 are P1(6, 5, 7) and Q1(8, 7, 10), so L1 is

parallel to the vector v1 =
−−−⇀
P1Q1 = 〈 2, 2, 3 〉. Two points on L2 are P2(7, 5, 10) and Q2(10, 8, 15), so L2

is parallel to the vector v2 =
−−−⇀
P2Q2 = 〈 3, 3, 5 〉. The equation λv1 = v2 has no solution, so v1 and v2 are

not parallel. Therefore L1 and L2 are skew lines.

C12S04.018: To determine if L1 and L2 intersect, we solve simultaneously

14 + 3t = 5 + 3s and 7 + 2t = 15 + 5s

and find the unique solution t = − 23
3 , s = − 14

3 . Then we solve simultaneously

14 + 3t = 5 + 3s and 21 + 5t = 10 + 7s

and find the unique solution t = −5, s = −2. Therefore the lines do not intersect. Points on L1 include

P1(14, 7, 21) and Q1(17, 9, 26), so a vector parallel to L1 is v1 =
−−−⇀
P1Q1 = 3i+2j+5k. Points on L2 include

P2(5, 15, 10) and Q2(8, 20, 17), so a vector parallel to L2 is v2 =
−−−⇀
P2Q2 = 3i + 5j + 7k. These vectors are

not parallel. Therefore L1 and L2 are skew lines.

C12S04.019: We solve the equations

x− 7
6

=
y + 5

4
,

x− 7
6

=
9− z

8
,

11− x
9

=
7− y

6
, and

7− y
6

=
z − 13

12

simultaneously and find that there is no solution. So L1 and L2 do not intersect. Two points on L1 are

P1(7, −5, 9) and Q1(13, −1, 1), so L1 is parallel to the vector v1 =
−−−⇀
P1Q1 = 6i + 4j− 8k. Two points of L2

and P2(11, 7, 13) and Q2(2, 1, 25), so L2 is parallel to the vector v2 =
−−−⇀
P2Q2 = −9i − 6j + 12k. Because

− 3
2 v1 = v2, the vectors v1 and v2 are parallel, and therefore L1 and L2 are parallel as well.

C12S04.020: The Mathematica 3.0 command

Solve[ { 13 + 12∗t == 22 + 9∗s, -7 + 20∗t == 8 + 15∗s,
11 - 28*t == -10 - 21∗s }, { s, t } ]
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produces the response s = −1 + 4
3 t. When this substitution is made in the equations for L2, the equations

of L1 result. Therefore L1 and L2 coincide.

C12S04.021: The vector equation of the plane is n · 〈x, y, z 〉 = n ·−⇀OP , and because
−⇀
OP = 0 it follows

that a Cartesian equation of the plane is x+ 2y + 3z = 0.

C12S04.022: The vector equation of the plane is n · 〈x, y, z 〉 = n ·−⇀OP ; that is,

〈−2, 7, 3 〉 · 〈x, y, z 〉 = 〈−2, 7, 3 〉 · 〈 3, −4, 5 〉,

and it follows that a Cartesian equation of the plane is 2x− 7y − 3z = 19.

C12S04.023: The vector equation of the plane is n · 〈x, y, z 〉 = n ·−⇀OP ; that is,

〈 1, 0, −1 〉 · 〈x, y, z 〉 = 〈 1, 0, −1 〉 · 〈 5, 12, 13 〉,

and thus a Cartesian equation of the plane is x− z + 8 = 0.

C12S04.024: A plane with normal vector j is parallel to the xz-plane, so its equation is of the form y = c

where c is a constant. The plane of Problem 24 also passes through the point (5, 12, 13), so c = 12. Thus a
Cartesian equation of this plane is y = 12.

C12S04.025: A plane parallel to the xz-plane has an equation of the form y = c where c is a constant.
The plane of Problem 25 also passes through the point (5, 7, −6), so c = 7. Thus a Cartesian equation of
this plane is y = 7.

C12S04.026: The vector equation of the plane is n · 〈x, y, z 〉 = n ·−⇀OP ; that is,

〈 2, 2, −1 〉 · 〈x, y, z 〉 = 〈 2, 2, −1 〉 · 〈 1, 0, −1 〉.

Thus a Cartesian equation of this plane is 2x+ 2y − z = 3.

C12S04.027: The vector equation of the plane is n · 〈x, y, z 〉 = n ·−⇀OP ; that is,

〈 7, 11, 0 〉 · 〈x, y, z 〉 = 〈 7, 11, 0 〉 · 〈 10, 4, −3 〉.

Thus a Cartesian equation of this plane is 7x+ 11y = 114.

C12S04.028: The vector equation of the plane is n · 〈x, y, z 〉 = n ·−⇀OP ; that is,

〈 1, −3, 2 〉 · 〈x, y, z 〉 = 〈 1, −3, 2 〉 · 〈 1, −3, 2 〉.

Thus a Cartesian equation of this plane is x− 3y + 2z = 14.

C12S04.029: A plane parallel to the plane with Cartesian equation 3x + 4y − z = 10 has normal vector
n = 3i + 4j − k, thus a Cartesian equation of the form 3x + 4y − z = c for some constant c. The plane of
Problem 29 also passes through the origin, so that c = 0. Hence it has Cartesian equation 3x+ 4y − z = 0.

C12S04.030: The plane with Cartesian equation x+ y − 2z = 0 has normal vector n = i + j− 2k, so the
plane of Problem 30 has vector equation
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n · 〈x, y, z 〉 = n · 〈 5, 1, 4 〉

and thus Cartesian equation x+ y − 2z + 2 = 0.

C12S04.031: The plane through the origin O(0, 0, 0) and the two points P (1, 1, 1) and Q(1, −1, 3) has
normal vector

n =
−⇀
OP ×−⇀OQ =

∣∣∣∣∣∣∣∣∣

i j k

1 1 1

1 −1 3

∣∣∣∣∣∣∣∣∣
= 〈 4, −2, −2 〉.

Therefore this plane has a Cartesian equation of the form 4x− 2y − 2z = c where c is a constant. Because
the plane of Problem 31 passes through the origin, c = 0. Therefore a Cartesian equation of this plane is
2x− y − z = 0.

C12S04.032: The plane P through the three points A(1, 0, −1), B(3, 3, 2), and C(4, 5, −1) has normal
vector

n =
−⇀
AB×−⇀AC =

∣∣∣∣∣∣∣∣∣

i j k

2 3 3

3 5 0

∣∣∣∣∣∣∣∣∣
= 〈−15, 9, 1 〉.

Thus it has vector equation n · 〈x, y, z 〉 = n ·−⇀OA = 〈−15, 9, 1 〉 · 〈 1, 0, −1〉 = −16. Therefore the plane
P has Cartesian equation 15x− 9y − z = 16.

C12S04.033: The plane P that contains P (2, 4, 6) and the line L with parametric equations x = 7− 3t,
y = 3 + 4t, z = 5 + 2t also contains the two points Q(7, 3, 5) (set t = 0) and R(4, 7, 4) (set t = 1) of L.

So the vectors
−⇀
PQ = 5i− j− k amd

−⇀
PR = 2i + 3j + k are parallel to P, and thus P has normal vector

n =
−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

5 −1 −1

2 3 1

∣∣∣∣∣∣∣∣∣
= 2i− 7j + 17k.

So P has vector equation n · (xi + yj + zk) = n ·−⇀OP = 78 and thus Cartesian equation 2x− 7y+ 17z = 78.

C12S04.034: The plane P that contains the point P (13, −7, 29) and the line L with parametric equations
x = 17−9t, y = 23+14t, z = 35−41t also contains the two pointsQ(17, 23, 35) (set t = 0) and R(8, 37, −6)

(set t = 1) of L. So the vectors
−⇀
PQ = 4i + 30j + 6k and

−⇀
PR = −5i + 44j− 35k are parallel to P, and thus

P has normal vector

n =
−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

4 30 6

−5 44 −35

∣∣∣∣∣∣∣∣∣
= −1314i + 110j + 326k.
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So P has vector equation n · (xi + yj + zk) = n ·−⇀OP = −8398 and thus Cartesian equation

1314x− 110y − 326z = 8398; that is, 657x− 55y − 163z = 4199.

C12S04.035: There are several ways to solve this problem.

First solution: Two points of L are P (7, 3, 9) and Q(3, 9, 14), so the vector
−⇀
PQ = 〈−4, 6, 5 〉 is parallel

to L. The vector n = 〈 4, 1, 2 〉 is normal to the plane P. But

n ·−⇀PQ = 〈 4, 1, 2 〉 · 〈−4, 6, 5 〉 = −16 + 6 + 10 = 0,

so that n and
−⇀
PQ are perpendicular. Therefore L is parallel to P. Moreover, P does not satisfy the

equation of P because

4 · 7 + 1 · 3 + 2 · 9 = 28 + 3 + 18 = 49 	= 17.

Because L is parallel to P and contains a point not on P, the line and the plane cannot coincide.

Second solution: If the line and the plane both contain the point (x, y, z), then there exists a scalar t such
that all four equations in Problem 35 are simultaneously true. The Mathematica 3.0 command

Solve[ { x == 7 - 4∗t, y == 3 + 6∗t, z == 9 + 5∗t,
4∗x + y + 2∗z == 17 }, { x, y, z, t } ]

returns { }, the “empty set,” telling us that these four equations have no simultaneous solution. So no point
of L lies in the plane P; the line and the plane are parallel and do not coincide.

Third solution: If x = 7− 4t, y = 3 + 6t, and z = 9 + 5t are substituted in the equation 4x+ y + 2z = 17
of the plane, the result is 49 = 17. This is impossible, so no point of L lies in the plane P. We reach the
same conclusion as in the previous two solutions.

C12S04.036: If x = 15+7t, y = 10+12t, and z = 5−4t are substituted in the equation 12x−5y+6z = 50
of the plane, the result is 160 = 50. This is impossible, so the line and the plane have no points in common
and are therefore parallel.

C12S04.037: Simultaneous solution of the four equations given in the statement of Problem 37 yields the
unique solution x = 9

2 , y = 9
4 , z = 17

4 , and t = 3
4 . So the line and the plane are not parallel and meet

at the single point
(

9
2 ,

9
4 ,

17
4

)
. The easiest way to solve these equations by hand is to substitute the three

parametric equations into the equation of the plane and solve for t:

3(3 + 2t) + 2(6− 5t)− 4(2 + 3t) = 1; 9 + 6t+ 12− 10t− 8− 12t = 1;

−16t = −12; t =
3
4
.

Then substitution in the parametric equations yields the values of x, y, and z given here.

C12S04.038: Simultaneous solution of the four equations given in the statement of Problem 38 yields the
unique solution x = 237

20 , y = 3
4 , z = 63

10 , y = 21
20 . Therefore the line and the plane are not parallel and they

meet at the single point
(

237
20 ,

3
4 ,

63
10

)
. See the solution of Problem 37 for additional comments.
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C12S04.039: The vector n1 = 〈 1, 0, 0 〉 is normal to the first plane; the vector n2 = 〈 1, 1, 1 〉 is normal
to the second. If θ is the angle between the normals (this is, by definition, the angle between the planes),
then

cos θ =
n1 ·n2

|n1 | · |n2 |
=

1√
3

=
√

3
3
,

so θ ≈ 54.735610317245◦.

C12S04.040: The vector n1 = 〈 2, −1, 1 〉 is normal to the first plane; the vector n2 = 〈 1, 1, −1 〉 is
normal to the second. If θ is the angle between the normals (this is, by definition, the angle between the
planes), then

cos θ =
n1 ·n2

|n1 | · |n2 |
=

0
1 ·
√

3
= 0,

so θ = 90◦ (exactly).

C12S04.041: The vector n1 = 〈 1, −1, −2 〉 is normal to the first plane; the vector n2 = 〈 1, −1, −2 〉 is
normal to the second. If θ is the angle between the normals (this is, by definition, the angle between the
planes), then θ = 0 because n1 and n2 are parallel.

C12S04.042: The vector n1 = 〈 2, 1, 1 〉 is normal to the first plane; the vector n2 = 〈 3, −1, −1 〉 is
normal to the second. If θ is the angle between the normals (this is, by definition, the angle between the
planes), then

cos θ =
n1 ·n2

|n1 | · |n2 |
=

4√
66

=
2
√

66
33

,

so θ ≈ 60.503791503434◦.

C12S04.043: By inspection, two points that lie on both planes are P (10, 0, −10) and Q(10, 1, −11).

Hence a vector parallel to their line of intersection L is v =
−⇀
PQ = 〈 0, 1, −1 〉. So a vector equation of L is

〈x, y, z 〉 =
−⇀
OP + tv = 〈 10, 0, −10 〉+ t〈 0, 1, −1 〉 = 〈 10, t, −10− t 〉,

its parametric equations are x = 10, y = t, z = −10−t, and its Cartesian equations are x = 10, y = −10−z.

C12S04.044: Let z = 0 and solve the equations of the planes simultaneously to find that one point on
their line of intersection L is P (2, −1, 0). Repeat with z = 1 to find that another such point is Q(2, 0, 1).

So L is parallel to the vector v =
−⇀
PQ = 〈 0, 1, 1 〉 and thus has vector equation

〈x, y, z 〉 =
−⇀
OP + tv = 〈 2, −1, 0 〉+ t〈 0, 1, 1 〉 = 〈 2, t− 1, t 〉,

parametric equations x = 2, y = t− 1, z = t, and Cartesian equations x = 2, y + 1 = z.

C12S04.045: The planes of Problem 41 are parallel, so there is no line of intersection.

C12S04.046: Substitute z = 0, then solve the equations of the planes simultaneously to find that one
point on their line of intersection L is P

(
7
5 ,

6
5 , 0

)
. Repeat with z = 1 to find that another such point is

Q
(

7
5 ,

1
5 , 1

)
. Hence the vector v =

−⇀
PQ = 〈 0, −1, 1 〉 is parallel to L, and thus L has vector equation
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〈x, y, z 〉 =
−⇀
OP + tv = 〈 7

5 ,
6
5 , 0 〉+ t〈 0, −1, 1 〉.

Thus L has parametric equations x = 7
5 , y = 6

5 − t, z = t and Cartesian equations x = 7
5 , −y + 6

5 = z.

C12S04.047: Substitute z = 0, then solve the equations of the planes simultaneously to find that one
point on their line of intersection L is Q

(
7
5 ,

6
5 , 0

)
. Repeat with z = 1 to find that another such point is

R
(

7
5 ,

1
5 , 1

)
. Hence the vector v =

−⇀
QR = 〈 0, −1, 1 〉 is parallel to L. Therefore the parallel line through the

point P (3, 3, 1) has vector equation

〈x, y, z 〉 =
−⇀
OP + tv = 〈 3, 3, 1 〉+ t〈 0, −1, 1 〉.

Thus L has parametric equations x = 3, y = 3− t, z = 1+ t and Cartesian equations x = 3, −y+3 = z−1.

C12S04.048: A plane P perpendicular to the planes P1 and P2 will be parallel to both of their normals,
so the cross product of these normals will be normal to P. The first plane given in Problem 48 has normal
n1 = i + j− 2k and the second has normal n2 = 2i + k, so a normal to P is

n = n1 ×n2 =

∣∣∣∣∣∣∣∣∣

i j k

1 1 −2

2 0 1

∣∣∣∣∣∣∣∣∣
= i− 5j− 2k.

Therefore a vector equation of P is

n · (xi + yj + zk) = n ·−⇀OP = n · (3i + 3j + k),

and therefore P has Cartesian equation x− 5y − 2z + 14 = 0.

C12S04.049: Because the xy-plane has equation z = 0, the plane with equation 3x+ 2y− z = 6 intersects
the xy-plane in the line with equation 3x + 2y = 6. So three points on the plane P we seek are P (1, 1, 1),
Q(2, 0, 0), and R(0, 3, 0). Thus a normal to P is

n =
−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

1 −1 −1

−1 2 −1

∣∣∣∣∣∣∣∣∣
= 〈 3, 2, 1 〉.

Therefore P has vector equation n · 〈x, y, z 〉 = n ·−⇀OP ; that is,

〈 3, 2, 1 〉 · 〈x, y, z 〉 = 〈 3, 2, 1 〉 · 〈 1, 1, 1 〉;

3x+ 2y + z = 6.

C12S04.050: Set z = 0 and solve the equations of the two given planes simultaneously to find that one point
on their line of intersection is Q(1, 0, 0). Repeat with z = 1 to find that another such point is R(1, 1, 1).

A third point in the plane P whose equation we seek is P (1, 3, −2), so the vectors
−⇀
PQ = 〈 0, −3, 2 〉 and

−⇀
PR = 〈 0, −2, 3 〉 are parallel to P. Hence a normal to P is
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n =
−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

0 −3 2

0 −2 3

∣∣∣∣∣∣∣∣∣
= 〈−5, 0, 0 〉.

Thus a vector equation of P is n · 〈x, y, z 〉 = n ·−⇀OP ; that is,

〈−5, 0, 0 〉 · 〈x, y, z 〉 = 〈−5, 0, 0 〉 · 〈 1, 3, −2 〉; −5x = −5; x = 1.

C12S04.051: The plane P whose equation we seek passes through P (1, 0, −1) and Q(2, 1, 0), and is thus

parallel to
−⇀
PQ = 〈 1, 1, 1 〉. To find two points in the line of intersection of the other two planes, set z = 1

and solve their equations simultaneously to find that one such point is S(2, 2, 1). Repeat with z = 5 to find

that another such point is R(1, −1, 5). Hence another vector parallel to P is
−⇀
RS = 〈 1, 3, −4 〉. If

−⇀
RS had

turned out to be parallel to
−⇀
PQ, then there would have been insufficient information to solve the problem,

but they are not parallel. Hence a normal to P is

n =
−⇀
PQ×−⇀RS =

∣∣∣∣∣∣∣∣∣

i j k

1 1 1

1 3 −4

∣∣∣∣∣∣∣∣∣
= 〈−7, 5, 2 〉.

Hence P has vector equation n · 〈x, y, z 〉 = n ·−⇀OP ; that is,

〈−7, 5, 2 〉 · 〈x, y, z 〉 = 〈−7, 5, 2 〉 · 〈 1, 0, −1 〉; −7x+ 5y + 2z = −9; 7x− 5y − 2z = 9.

C12S04.052: Solve the given equations simultaneously—perhaps using the Mathematica 3.0 command

Solve[ { x - 1 == (y + 1)/2, x - 1 == z - 2,

x - 2 == (y - 2)/3, x - 2 == (z - 4)/2 }, { x, y, z } ]

—to find that the point P (1, −1, 2) is the unique point that lies on both lines. By inspection, another point
on the first line is Q(2, 1, 3) and another point on the second line is R(2, 2, 4). Hence a vector normal to
the plane P that contains those two lines is

n =
−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

1 2 1

1 3 2

∣∣∣∣∣∣∣∣∣
= 〈 1, −1, 1 〉.

Therefore a vector equation of P is n · 〈x, y, z 〉 = n ·−⇀OP ; that is,

〈 1, −1, 1 〉 · 〈x, y, z 〉 = 〈 1, −1, 1 〉 · 〈 1, −1, 2 〉; x− y + z = 4.

C12S04.053: Set z = 1 and solve the equations of the two planes simultaneously to find that one point
on their line of intersection is P (1, 1, 1). Repeat with z = 5 to find that another such point is Q(−5, 6, 5).
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Substitute t = 0 to find that a point on the given line is R(1, 3, 2); substitute t = 1 to find that another

such point is S(7, −2, −2). Then
−⇀
PQ = 〈−6, 5, 4 〉 and

−⇀
RS = 〈 6, −5, −4 〉, so it’s clear that the two lines

are parallel. Note that R does not lie on the first given plane, so the given line and the line of intersection of
the two given planes do not coincide. To obtain two nonparallel vectors in the plane P that contains both

lines, use
−⇀
PQ and

−⇀
PR = 〈 0, 2, 1 〉. Then a normal to P will be

n =
−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

−6 5 4

0 2 1

∣∣∣∣∣∣∣∣∣
= 〈−3, 6, −12 〉.

Replace n with the simpler 〈 1, −2, 4 〉 and write a vector equation of P in the form

〈 1, −2, 4 〉 · 〈x, y, z 〉 = 〈 1, −2, 4 〉 · 〈 1, 1, 1 〉,

from which we read the Cartesian equation x− 2y + 4z = 3.

C12S04.054: See the Comment in the solution of Problem 31 of Section 12.3 for our strategy in solving
this problem. Without loss of generality we may assume that a 	= 0. Then a point on the given plane is
(d/a, 0, 0). So a vector “connecting” the given point with the given plane is

c =
〈
x0 −

d

a
, y0, z0

〉

and a vector normal to the plane is n = 〈 a, b, c 〉. Hence the distance between them is

D =
|n · c|
|n| =

|ax0 − d+ by0 + cz0 |√
a2 + b2 + c2

.

C12S04.055: The formula in Problem 54 with x0 = y0 = z0 = 0, a = b = c = 1, and d = 10 yields distance

D =
10√
3

=
10
√

3
3
≈ 5.773502691896.

C12S04.056: The formula in Problem 54 with x0 = 5, y0 = 12, z0 = −13, a = 3, b = 4, c = 5, and
d = 12 yields

D =
|15 + 48− 65− 12|√

9 + 16 + 25
=

14
5
√

2
=

7
√

2
5
≈ 1.979898987322.

C12S04.057: If L1 and L2 are skew lines, choose two points P1 and Q1 in L1 and two points P2 and Q2 in

L2. Let n =
−−−⇀
P1Q1 ×−−−⇀P2Q2. Let P1 be the plane through P1 with normal vector n and let P2 be the plane

through P2 with normal vector n. Clearly P1 contains L1, P2 contains L2, and P1 and P2 are parallel.

C12S04.058: Without loss of generality we may assume that a 	= 0. Then the point Q(d2/a, 0, 0) is in
the second plane. By the formula in Problem 54, the distance between Q and the first plane is

D =
|a · (d2/a) + b · 0 + c · 0− d1 |√

a2 + b2 + c2
=

|d1 − d2 |√
a2 + b2 + c2

.

10



C12S04.059: See the Comment in the solution of Problem 31 of Section 12.3 for our strategy in the following
solution. By inspection, P1(1, −1, 4) and Q1(3, 0, 4) lie in L1 and we are given the two points P2(2, 1, −3)

and Q2(0, 8, 4) in L2. Hence v1 =
−−−⇀
P1Q1 = 〈 2, 1, 0 〉 is parallel to L1 and v2 =

−−−⇀
P2Q2 = 〈−2, 7, 7 〉 is parallel

to L2.

Part (a): The line L2 has vector equation

〈x, y, z 〉 = tv2 + 〈 2, 1, −3 〉 = 〈 2− 2t, 1 + 7t, −3 + 7t 〉,

and thus symmetric equations

−x+ 2
2

=
y − 1

7
=

z + 3
7

.

It is clear that the two lines are not parallel because v2 is not a scalar multiple of v1. The Mathematica 3.0
command

Solve[ { (2 - x)/2 == (y - 1)/7, (2 - x)/2 == (z + 3)/7,

x - 1 == 2∗y + 2, z == 4 }, { x, y, z } ]

for solving the equations of the two lines simultaneously returns the information that there is no solution.
Therefore the two lines are skew lines.

Part (b): Let c =
−−⇀
P1P2 be a “connector” from L1 to L2 and note that n = v1 ×v2 = 〈 7, −14, 16 〉 is

normal to both lines. Therefore the distance between the lines is

D =
|n · c|
|n| =

133√
501

=
133
√

501
501

≈ 5.942001786397.

Alternative Part (b): If we follow the method required in the statement of Problem 59, we find that the first
line lies in the plane with equation 7x− 14y + 16z = 85 and the second line lies in the plane with equation
7x− 14y + 16z = −48. Therefore, by the formula in Problem 58, the distance between them is

D =
|85− (−48)|√
49 + 196 + 256

=
133√
501

=
133
√

501
501

.

C12S04.060: Two points on L1 are P1(7, 11, 13) and Q1(9, 6, 19), and a vector parallel to L1 is thus

v1 =
−−−⇀
P1Q1 = 〈 2, −5, 6 〉. To find two points on L2, we set x = 4 and solved the equations of the two planes

simultaneously using Mathematica 3.0: The command

Solve[ { 3∗x - 2∗y + 4∗z == 10, 5∗x + 3∗y - 2∗z == 15, x == 4 }, { x, y, z } ]

produced the response (x, y, z) = (4, −3, −2) = P2. Repeating with x = −4 produced a second point

on L2: (x, y, z) = (−4, 23, 17) = Q2. Thus a vector parallel to L2 is v2 =
−−−⇀
P2Q2 = 〈−8, 26, 19 〉. So

the vector n = v1 ×v2 = 〈−251, −86, 12 〉 is normal to both lines. A vector that connects L1 to L2 is

c =
−−⇀
P1P2 = 〈−3, −14, −15 〉. Hence the distance between the two lines is

D =
|n · c|
|n| =

1777√
70541

=
1777

√
70541

70541
≈ 6.690623965208.
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Section 12.5

C12S05.001: Because y2 + z2 = 1 while x is arbitrary, the graph lies on the cylinder of radius 1 with axis
the x-axis. A small part of the graph is shown in Fig. 12.5.17.

C12S05.002: Because x2 + y2 = 1 while z varies between −1 and 1, the graph lies on the part of the
cylinder with radius 1 and axis the z-axis that lies between z = −1 and z = 1. A small part of the graph is
shown in Fig. 12.5.18.

C12S05.003: Because x2 + y2 = t2 = z2, the graph lies on the cone with axis the z-axis and equation
z2 = x2 + y2. A small part of the graph is shown in Fig. 12.5.16.

C12S05.004: First note that

x2 + y2 = (cos2 t+ sin2 t) sin2 4t = sin2 4t,

so that

x2 + y2 + z2 = sin2 4t+ cos2 4t = 1.

Therefore the graph lies on the sphere with radius 1 and center (0, 0, 0). A small part of the graph is shown
in Fig. 12.5.15.

C12S05.005: If r(t) = 3i− 2j, then r′(t) = 0 = r′′(t), and hence r′(1) = 0 = r′′(1).

C12S05.006: If r(t) = t2i − t3j, then r′(t) = 2ti − 3t2j and r′′(t) = 2i − 6tj. Therefore r′(2) = 4i − 12j
and r′′(2) = 2i− 12j.

C12S05.007: If r(t) = e2ti+e−tj, then r′(t) = 2e2ti−e−tj and r′′(t) = 4e2ti+e−tj. Therefore r′(0) = 2i−j
and r′′(0) = 4i + j.

C12S05.008: If r(t) = i cos t+ j sin t, then r′(t) = −i sin t+ j cos t and r′′(t) = −i cos t− j sin t. Hence

r′
(π

4

)
= −

√
2
2

i +
√

2
2

j and r′′
(π

4

)
= −

√
2
2

i−
√

2
2

j.

C12S05.009: If r(t) = 3i cos 2πt+ 3j sin 2πt, then

r′(t) = −6πi sin 2πt+ 6πj cos 2πt and r′′(t) = −12π2i cos 2πt− 12π2j sin 2πt.

Therefore

r′
(

3
4

)
= 6πi and r′′

(
3
4

)
= 12π2j.

C12S05.010: If r(t) = 5i cos t + 4j sin t, then r′(t) = −5i sin t + 4j cos t and r′′(t) = −5i cos t − 4j sin t.
Hence r′(π) = −4j and r′′(π) = 5i.

C12S05.011: If r(t) = ti + t2j + t3k, then
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v(t) = 〈 1, 2t, 3t2 〉,

v(t) =
√

1 + 4t2 + 9t4 , and

a(t) = 〈 0, 2, 6t 〉.

C12S05.012: If r(t) = 〈 3t2, 4t2, −12t2 〉, then

v(t) = 〈 6t, 8t, −24t 〉, v(t) =
√

36t2 + 64t2 + 576t2 = |26t|, and a(t) = 〈 6, 8, −24 〉.

C12S05.013: If r(t) = 〈 t, 3et, 4et 〉, then

v(t) = 〈 1, 3et, 4et 〉, v(t) =
√

1 + 25e2t , and a(t) = 〈 0, 3et, 4et 〉.

C12S05.014: If r(t) = 〈 et, e2t, e3t 〉, then

v(t) = 〈 et, 2e2t, 3e3t 〉, v(t) =
√
e2t + 4e4t + 9e6t , and a(t) = 〈 et, 4e2t, 9e3t 〉.

C12S05.015: If r(t) = 〈 3 cos t, 3 sin t, −4t 〉, then

v(t) = 〈−3 sin t, 3 cos t, −4 〉, v(t) =
√

9 sin2 t+ 9 cos2 t+ 16 = 5, and a(t) = 〈−3 cos t, −3 sin t, 0 〉.

C12S05.016: If r(t) = 〈 12t, 5 sin 2t, −5 cos 2t 〉, then

v(t) = 〈 12, 10 cos 2t, 10 sin 2t 〉, v(t) = 2
√

86 , and a(t) = 〈 0, −20 sin 2t, 20 cos 2t 〉.

C12S05.017: By Eq. (16), we have

∫ π/4

0

〈 sin t, 2 cos t 〉 dt =
[
〈− cos t, 2 sin t 〉

]π/4
0

=

〈
−
√

2
2
,
√

2

〉
− 〈−1, 0 〉 =

〈
2−
√

2
2

,
√

2

〉
.

C12S05.018: By Eq. (16), we have

∫ e

1

〈
1
t
, −1

〉
dt =

[
〈 ln t, −t 〉

]e
1

= 〈 1, −e 〉 − 〈 0, −1 〉 = 〈 1, 1− e 〉.

C12S05.019: By Eq. (16), we have

∫ 2

0

〈 t2(1 + t3)3/2, 0 〉 dt =
[ 〈

2
15

(1 + t3)5/2, 0
〉 ]2

0

=
(

162
5
− 2

15

)
i =

484
15

i.

C12S05.020: By Eq. (16), we have

∫ 1

0

〈 et, −t exp(−t2) 〉 dt =
[ 〈

et,
1
2

exp(−t2)
〉 ]1

0

=
〈
e,

1
2e

〉
−

〈
1,

1
2

〉
=

〈
e− 1,

1− e
2e

〉
.
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C12S05.021: Given u(t) = 〈 3t, −1 〉 and v(t) = 〈 2, −5t 〉, Theorem 2 yields

Dt [u(t) ·v(t)] = u(t) ·v′(t) + u′(t) ·v(t) = 〈 3t, −1 〉 · 〈 0, −5 〉+ 〈 3, 0 〉 · 〈2, −5t 〉 = 5 + 6 = 11.

C12S05.022: Given u(t) = 〈 t, t2 〉 and v(t) = 〈 t2, −t 〉, Theorem 2 yields

Dt [u(t) ·v(t)] = u(t) ·v′(t) + u′(t) ·v(t) = 〈 t, t2 〉 · 〈 2t, −1 〉+ 〈 1, 2t 〉 · 〈t2, −t 〉 = 2t2 − t2 + t2 − 2t2 = 0.

C12S05.023: Given u(t) = 〈 cos t, sin t 〉 and v(t) = 〈 sin t, − cos t 〉, Theorem 2 yields

Dt [u(t) ·v(t)] = u(t) ·v′(t) + u′(t) ·v(t) = 〈 cos t, sin t 〉 · 〈 cos t, sin t 〉+ 〈− sin t, cos t 〉 · 〈sin t, − cos t 〉

= cos2 t+ sin2 t− sin2 t− cos2 t = 0.

C12S05.024: Given u(t) = 〈 t, t2, t3 〉 and v(t) = 〈 cos 2t, sin 2t, e−3t 〉, Theorem 2 yields

Dt [u(t) ·v(t)] = u(t) ·v′(t) + u′(t) ·v(t)

= 〈 t, t2, t3 〉 · 〈−2 sin 2t, 2 cos 2t, −3e−3t 〉+ 〈 1, 2t, 3t2 〉 · 〈 cos 2t, sin 2t, e−3t 〉

= −2t sin 2t+ 2t2 cos 2t− 3t3e−3t + cos 2t+ 2t sin 2t+ 3t2e−3t

= (2t2 + 1) cos 2t+ (3t2 − 3t3)e−3t.

C12S05.025: Given a = 0 = 〈 0, 0, 0 〉, it follows that v(t) = 〈 c1, c2, c3 〉 where c1, c2, and c3 are
constants. Then

k = 〈 0, 0, 1 〉 = v(0) = v0 = 〈 c1, c2, c3 〉

implies that c1 = c2 = 0 and c3 = 1. Hence v(t) = 〈 0, 0, 1 〉, and therefore

r(t) = 〈 k1, k2, t+ k3 〉

where k1, k2, and k3 are constants. Then

i = 〈 1, 0, 0 〉 = r(0) = r0 = 〈 k1, k2, k3 〉

leads to k1 = 1 and k2 = k3 = 0. Therefore r(t) = 〈 1, 0, t 〉.

C12S05.026: Given a = 〈 2, 0, 0 〉, it follows that v(t) = 〈 2t+c1, c2, c3 〉 where c1, c2, and c3 are constants.
Then

4k = 〈 0, 0, 4 〉 = v(0) = v0 = 〈 c1, c2, c3 〉

implies that c1 = c2 = 0 and c3 = 4. Hence v(t) = 〈 2t, 0, 4 〉, and therefore

r(t) = 〈 t2 + k1, k2, 4t+ k3 〉

where k1, k2, and k3 are constants. Then
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3j = 〈 0, 3, 0 〉 = r(0) = r0 = 〈 k1, k2, k3 〉

leads to k2 = 3 and k1 = k3 = 0. Therefore r(t) = 〈 t2, 3, 4t 〉.

C12S05.027: Given a = 〈 2, 0, −4 〉, it follows that v(t) = 〈 2t+ c1, c2, −4t+ c3 〉 where c1, c2, and c3 are
constants. Then

10j = 〈 0, 10, 0 〉 = v(0) = v0 = 〈 c1, c2, c3 〉

implies that c1 = c3 = 0 and c2 = 10. Hence v(t) = 〈 2t, 10, −4t 〉, and therefore

r(t) = 〈 t2 + k1, 10t+ k2, −2t2 + k3 〉

where k1, k2, and k3 are constants. Then

0 = 〈 0, 0, 0 〉 = r(0) = r0 = 〈 k1, k2, k3 〉

leads to k1 = k2 = k3 = 0. Therefore r(t) = 〈 t2, 10t, −2t2 〉.

C12S05.028: Given a = 〈 1, −1, 3 〉, it follows that v(t) = 〈 t+ c1, −t+ c2, 3t+ c3 〉 where c1, c2, and c3
are constants. Then

7j = 〈 0, 7, 0 〉 = v(0) = v0 = 〈 c1, c2, c3 〉

implies that c1 = c3 = 0 and c2 = 7. Hence v(t) = 〈 t, −t+ 7, 3t 〉, and therefore

r(t) =
〈

1
2
t2 + k1, −

1
2
t2 + 7t+ k2,

3
2
t2 + k3

〉

where k1, k2, and k3 are constants. Then

5i = 〈 5, 0, 0 〉 = r(0) = r0 = 〈 k1, k2, k3 〉

leads to k1 = 5 and k2 = k3 = 0. Therefore

r(t) =
〈

1
2
t2 + 5, −1

2
t2 + 7t,

3
2
t2

〉
.

C12S05.029: Given a = 〈 0, 2, −6t 〉, it follows that v(t) = 〈 c1, 2t + c2, −3t2 + c3 〉 where c1, c2, and c3
are constants. Then

5k = 〈 0, 0, 5 〉 = v(0) = v0 = 〈 c1, c2, c3 〉

implies that c1 = c2 = 0 and c3 = 5. Hence v(t) = 〈 0, 2t, −3t2 + 5 〉, and therefore

r(t) =
〈
k1, t

2 + k2, −t3 + 5t+ k3
〉

where k1, k2, and k3 are constants. Then

2i = 〈 2, 0, 0 〉 = r(0) = r0 = 〈 k1, k2, k3 〉

leads to k1 = 2 and k2 = k3 = 0. Therefore
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r(t) =
〈
2, t2, −t3 + 5t

〉
.

C12S05.030: Given a = 〈 6t, −5, 12t2 〉, it follows that v(t) = 〈 3t2 + c1, −5t+ c2, 4t3 + c3 〉 where c1, c2,
and c3 are constants. Then

4j− 5k = 〈 0, 4, −5 〉 = v(0) = v0 = 〈 c1, c2, c3 〉

implies that c1 = 0, c2 = 4, and c3 = −5. Hence v(t) = 〈 3t2, −5t+ 4, 4t3 − 5 〉, and therefore

r(t) =
〈
t3 + k1, −

5
2
t2 + 4t+ k2, t4 − 5t+ k3

〉

where k1, k2, and k3 are constants. Then

3i + 4j = 〈 3, 4, 0 〉 = r(0) = r0 = 〈 k1, k2, k3 〉

leads to k1 = 3, k2 = 4, and k3 = 0. Therefore

r(t) =
〈
t3 + 3, −5

2
t2 + 4t+ 4, t4 − 5t

〉
.

C12S05.031: Given a = 〈 t, t2, t3 〉, it follows that

v(t) =
〈

1
2
t2 + c1,

1
3
t3 + c2,

1
4
t4 + c3

〉

where c1, c2, and c3 are constants. Then

10j = 〈 0, 10, 0 〉 = v(0) = v0 = 〈 c1, c2, c3 〉

implies that c1 = c3 = 0, and c2 = 10. Hence

v(t) =
〈

1
2
t2,

1
3
t3 + 10,

1
4
t4

〉
,

and therefore

r(t) =
〈

1
6
t3 + k1,

1
12
t4 + 10t+ k2,

1
20
t5 + k3

〉

where k1, k2, and k3 are constants. Then

10i = 〈 10, 0, 0 〉 = r(0) = r0 = 〈 k1, k2, k3 〉

leads to k1 = 10 and k2 = k3 = 0. Therefore

r(t) =
〈

1
6
t3 + 10,

1
12
t4 + 10t,

1
20
t5

〉
.

C12S05.032: Given a = 〈 t, e−t, 0 〉, it follows that

v(t) =
〈

1
2
t2 + c1, −e−t + c2, c3

〉
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where c1, c2, and c3 are constants. Then

5k = 〈 0, 0, 5 〉 = v(0) = v0 = 〈 c1, −1 + c2, c3 〉

implies that c1 = 0, c2 = 1, and c3 = 5. Hence

v(t) =
〈

1
2
t2, 1− e−t, 5

〉

and therefore

r(t) =
〈

1
6
t3 + k1, e−t + t+ k2, 5t+ k3

〉

where k1, k2, and k3 are constants. Then

3i + 4j = 〈 3, 4, 0 〉 = r(0) = r0 = 〈 k1, 1 + k2, k3 〉

leads to k1 = 3, k2 = 3, and k3 = 0. Therefore

r(t) =
〈

1
6
t3 + 3, e−t + t+ 3, 5t

〉
.

C12S05.033: Given a = 〈 cos t, sin t, 0 〉, it follows that

v(t) = 〈 c1 + sin t, c2 − cos t, c3 〉

where c1, c2, and c3 are constants. Then

−i + 5k = 〈−1, 0, 5 〉 = v(0) = v0 = 〈 c1, −1 + c2, c3 〉

implies that c1 = −1, c2 = 1, and c3 = 5. Hence

v(t) = 〈−1 + sin t, 1− cos t, 5 〉,

and therefore

r(t) = 〈−t− cos t+ k1, t− sin t+ k2, 5t+ k3 〉

where k1, k2, and k3 are constants. Then

j = 〈 0, 1, 0 〉 = r(0) = r0 = 〈−1 + k1, k2, k3 〉

leads to k1 = 1, k2 = 1, and k3 = 0. Therefore

r(t) = 〈 1− t− cos t, 1 + t− sin t, 5t 〉.

C12S05.034: Given a = 〈 9 sin 3t, 9 cos 3t, 4 〉, it follows that

v(t) = 〈−3 cos 3t+ c1, 3 sin 3t+ c2, 4t+ c3 〉

where c1, c2, and c3 are constants. Then
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2i− 7k = 〈 2, 0, −7 〉 = v(0) = v0 = 〈−3 + c1, c2, c3 〉

implies that c1 = 5, c2 = 0, and c3 = −7. Hence

v(t) = 〈 5− 3 cos 3t, 3 sin 3t, 4t− 7 〉,

and therefore

r(t) = 〈 5t− sin 3t+ k1, − cos 3t+ k2, 2t2 − 7t+ k3 〉

where k1, k2, and k3 are constants. Then

3i + 4j = 〈 3, 4, 0 〉 = r(0) = r0 = 〈 k1, −1 + k2, k3 〉

leads to k1 = 3, k2 = 5, and k3 = 0. Therefore

r(t) = 〈 5t− sin 3t+ 3, 5− cos 3t, 2t2 − 7t 〉.

C12S05.035: The position vector of the moving point is r(t) = 〈 3 cos 2t, 3 sin 2t, 8t 〉. Hence its velocity,
speed, and acceleration are

v(t) = 〈−6 sin 2t, 6 cos 2t, 8 〉,

v(t) = |v(t)| =
√

36(sin2 2t+ cos2 2t) + 64 = 10, and

a(t) = 〈−12 cos 2t, −12 sin 2t, 0 〉,

respectively. Therefore

v
(

7
8 π

)
= 〈 3

√
2 , 3
√

2 , 8 〉, v
(

7
8 π

)
= 10, and a

(
7
8 π

)
= 〈−6

√
2 , 6
√

2 , 0 〉.

C12S05.036: Given u(t) = 〈 t, t2, t3 〉 and v(t) = 〈 et, cos t, sin t 〉, we have

Dt [u(t) ·v(t)] = u(t) ·v′(t) + u′(t) ·v(t)

= 〈 t, t2, t3 〉 · 〈 et, − sin t, cos t 〉+ 〈 1, 2t, 3t2 〉 · 〈 et, cos t, sin t 〉

= (t+ 1)et + 2t2 sin t+ (t3 + 2t) cos t.

Moreover,

Dt [u(t) ×v(t)] = u(t) ×v′(t) + u′(t) ×v(t)

=

∣∣∣∣∣∣∣∣∣

i j k

t t2 t3

et − sin t cos t

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

i j k

1 2t 3t2

et cos t sin t

∣∣∣∣∣∣∣∣∣

= 〈 t2 cos t+ t3 sin t, t3et − t cos t, −t sin t− t2et 〉
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+ 〈 2t sin t− 3t2 cos t, 3t2et − sin t, cos t− 2tet 〉

= 〈 (t3 + 2t) sin t− 2t2 cos t, (t3 + 3t2)et − sin t− t cos t, cos t− t sin t− (t2 + 2t)et 〉.

C12S05.037: Given u(t) = 〈 0, 3, 4t 〉 and v(t) = 〈 5t, 0, −4 〉, we first compute

u(t)×v(t) =

∣∣∣∣∣∣∣∣∣

i j k

0 3 4t

5t 0 −4

∣∣∣∣∣∣∣∣∣
= 〈−12, 20t2, −15t 〉.

Therefore Dt [u(t)×v(t)] = 〈 0, 40t, −15 〉. Next,

u(t) ×v′(t) + u′(t) ×v(t) =

∣∣∣∣∣∣∣∣∣

i j k

0 3 4t

5 0 0

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

i j k

0 0 4

5t 0 −4

∣∣∣∣∣∣∣∣∣

= 〈 0, 20t, −15 〉+ 〈 0, 20t, 0 〉 = 〈 0, 40t, −15 〉 = Dt [u(t) ×v(t)] .

C12S05.038: We asked Mathematica 3.0 to prove part 5 of Theorem 2. First we define arbitrary 3-vectors
u(t) and v(t):

u[t ] := { u1[t], u2[t], u3[t] }

v[t ] := { v1[t], v2[t], v3[t] }

Then we form their cross product:

c = Cross[ u[t], v[t] ]

{-u3[t]∗v2[t] + u2[t]∗v3[t], u3[t]∗v1[t] - u1[t]∗v3[t], -u2[t]∗v1[t] + u1[t]∗v2[t]}

Then we compute the derivative of the last expression with respect to t:

side1 = D[c,t]

{ v3[t]∗u2′[t] - v2[t]∗u3′[t] - u3[t]∗v2′[t] + u2[t]∗v3′[t],
-v3[t]∗u1′[t] + v1[t]∗u3′[t] + u3[t]∗v1′[t] - u1[t]∗v3′[t],
v2[t]∗u1′[t] - v1[t]∗u2′[t] - u2[t]∗v1′[t] + u1[t]∗v2′[t] }

Next we compute the other side of the equation:

side2 = Cross[u[t],v′[t]] + Cross[u′[t],v[t]]

{ v3[t]∗u2′[t] - v2[t]∗u3′[t] - u3[t]∗v2′[t] + u2[t]∗v3′[t],
-v3[t]∗u1′[t] + v1[t]∗u3′[t] + u3[t]∗v1′[t] - u1[t]∗v3′[t],
v2[t]∗u1′[t] - v1[t]∗u2′[t] - u2[t]∗v1′[t] + u1[t]∗v2′[t] }

Now we see if the two computations produce the same result:
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Simplify[ side1 - side2 ]

{0, 0, 0}

and the proof is complete.

C12S05.039: Given: |r(t)| = R, a constant. Let v(t) = r′(t). Then r(t) · r(t) = R2, also a constant. Hence

0 = Dt [r(t) · r(t)] = 2r(t) ·v(t),

so that r(t) ·v(t) = 0. Therefore v(t) is perpendicular to the radius of the sphere, so the velocity vector is
everywhere tangent to the sphere.

C12S05.040: If v(t) is the velocity vector of the moving particle, then we are given |v(t)| = c, a constant.
Then v(t) ·v(t) = c2, also a constant. Hence 0 = Dt [v(t) ·v(t)] = 2v(t) ·a(t) where a(t) is the acceleration
vector of the particle. But because v(t) ·a(t) = 0, it follows that v and a are always perpendicular.

C12S05.041: The ball of Example 10 has position vector r(t) = 〈 t2, 80t, 80t − 16t2 〉 and velocity vector
v(t) = 〈 2t, 80, 80 − 32t 〉. Its maximum height occurs when the z-component of its velocity vector is zero:
80− 32t = 0, so that t = 5

2 . The speed of the ball at time t is

v(t) =
√

4t2 + 6400 + 6400− 5120t+ 1024t2 ,

so that

v
(

5
2

)
=
√

25 + 12800− 12800 + 6400 =
√

6425 = 5
√

257 ≈ 80.156097709407

(ft/s). Its position then is

r
(

5
2

)
=

〈
25
4 , 200, 100

〉
,

and the z-component of this vector is its maximum height, 100 ft.

C12S05.042: Given L(t) = mr(t) ×v(t), we have

L′(t) = [mr(t)×v′(t)] + [mr′(t)×v(t)]

= [mr(t)×a(t)] +m [v(t)×v(t)] = [mr(t)×a(t)] +m · 0 = τ (t).

C12S05.043: Because x0 = y0 = 0, the equations in (22) and (23) take the form

x(t) = (v0 cosα)t, y(t) = − 1
2
gt2 + (v0 sinα)t.

To find the range, find the positive value of t for which y(t) = 0:

gt = 2v0 sinα; t =
2v0 sinα

g
;

thus the range is the value of x(t) then; it is

R = x

(
2v0 sinα

g

)
=

2v20 sinα cosα
g

=
v20 sin 2α

g
.
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If α = 1
4 π and R = 5280 (there are 5280 feet in one mile), then

v20
32

= 5280, so that v0 =
√

32 · 5280 = 32
√

165 ≈ 411.047442517284

(feet per second).

C12S05.044: Because x0 = y0 = 0, the equations in (22) and (23) take the form

x(t) = (v0 cosα)t, y(t) = − 1
2
gt2 + (v0 sinα)t.

The maximum height of the projectile occurs when y′(t) = 0; that is, when

−gt+ v0 sinα = 0; t =
v0 sinα
g

.

Hence the maximum height is

y

(
v0 sinα
g

)
= − 1

2
g · v0 sin2 α

g2
+
v20 sin2 α

g
=
v20 sin2 α

2g
. (1)

We saw in the solution of Problem 43 that the range of the projectile is given by

R =
v20 sin 2α

g
, (2)

so if α = 1
3 π and R = 5280, we have by Eq. (2)

v20 =
5280g

2 sinα cosα
.

Therefore by Eq. (1) the maximum height of the projectile is

v20 sin2 α

2g
=

5280g
2 sinα cosα

· sin
2 α

2g
=

1320 sinα
cosα

= 1320 tan
(π

3

)
= 1320

√
3 ≈ 2286.307065990918

(feet).

C12S05.045: The formula for the range is derived in the solution of Problem 43.

C12S05.046: The formula for the range, derived in the solution of Problem 43, is

R(α) =
2v20 sinα cosα

g
=
v20 sin 2α

g
.

The range will be maximized when R′(α) = 0; that is, when

2v20 cos 2α
g

= 0 : α =
π

4
.

C12S05.047: We saw in the solution of Problem 43 that the range of the projectile is

R =
v20 sin 2α

g
.

To find its maximum height, first find when y′(t) = 0:
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−gt = v0 sinα, so that t =
v0 sinα
g

.

Then to find the maximum height, evaluate y(t) at that value of t:

y

(
v0 sinα
g

)
=
v20 sin2 α

2g
.

Part (a): If v0 = 160 and α = 1
6 π, then the range is

R =
(160)2 ·

√
3

2 · 32
= 400

√
3 ≈ 692.820323027551

(feet) and the maximum height is

v0 sin2 α

2g
=

(160)2 · 1
4 · 2 · 32

= 100

(feet). Part (b): If v0 = 160 and α = 1
4 π, then the range is

R =
(160)2 · 1

32
= 800

(feet) and the maximum altitude is

v20 sin2 α

2g
=

(160)2 · 1
2 · 2 · 32

= 200

(feet). Part (c): If α = 1
3 π and v0 = 160, then the range is

R =
(160)2 ·

√
3

2 · 32
= 400

√
3 ≈ 692.820323027551

(feet) and the maximum altitude (also in feet) is

ymax =
(160)2 · 3
4 · 2 · 32

= 300.

C12S05.048: We have seen in previous solutions that the range and maximum height of the projectile are

R =
v20 sin 2α

g
and ymax =

v20 sin2 α

2g

where α is the angle from the horizontal at which the projectile is fired and v0 is its initial velocity. To clear
the hill, we require ymax > 300; we are given v0 = 160 and R = 600. To find α, we solve

(160)2 sin 2α
32

= 600 : sin 2α =
600 · 32
(160)2

=
3
4
,

so that 2α ≈ 48.590378◦ or 2α ≈ 131.409622◦. Thus α ≈ 24.295189◦ or α ≈ 65.704811◦. In the first case
the maximum height of the projectile will be

ymax =
v20 sin2 α

2g
=

(160)2 sin2 α

64
≈ 67.712434

11



(feet), not enough to clear the hill. But if α ≈ 65.704811◦, then the maximum height of the projectile will
be

ymax =
v20 sin2 α

2g
=

(160)2 sin2 α

64
≈ 332.287565

(feet), so the projectile will clear the hill unless the hill has an unusual shape. Answer: Angle of elevation
approximately 65◦ 42′ 17.32′′.

C12S05.049: With x0 = 0 and y0 = 100, the equations in (22) and (23) of the text take the form

x(t) = (v0 cosα)t, y(t) = −1
2
gt2 + (v0 sinα)t+ 100.

With g = 9.8 and α = 0, these equations become

x(t) = v0t, y(t) = 100− 1
2
gt2.

We require x(t) = 1000 when y(t) = 0. But y(t) = 0 when

t2 =
200
9.8

=
1000
49

, so that t =
10
√

10
7

.

Thus

1000 = x

(
10
√

10
7

)
=

10
√

10
7

v0,

and it follows that v0 = 70
√

10 ≈ 221.359436211787 (meters per second, approximately 726.244869461242
feet per second).

C12S05.050: First we analyze the behavior of the bomb. Suppose that it is dropped at time t = 0. If the
projectile is fired from the origin, then the equations of motion of the bomb are

x(t) ≡ 800, y(t) = 800− 1
2
gt2

where g = 9.8 (m/s2). Now y(t) = 400 when

800− 1
2
gt2 = 400;

1
2
gt2 = 400;

t2 =
800
9.8

=
4000
49

; t = T =
20
√

10
7

.

Now we turn our attention to the projectile, fired at time t = 0 from the origin. By Eqs. (22) and (23) of
the text, its equations of motion are

x(t) = (v0 cosα)t, y(t) = −1
2
gt2 + (v0 sinα)t.

We require x(T ) = 800 and y(T ) = 400. Thus

20
√

10
7

· v0 cosα = 800 and − 1
2
g · 800

g
+

20
√

10
7

· v0 sinα = 400;

12



v0 cosα =
7 · 800
20
√

10
and

20
√

10
7

· v0 sinα = 400 + 400 = 800;

v0 cosα = 28
√

10 and v0 sinα = 28
√

10 .

It now follows that cosα = sinα, and thus α = 1
5 π. Moreover,

v0 =
28
√

10
sin(π/4)

= 56
√

5 ≈ 125.219806739988

meters per second, approximately 410.826137598387 feet per second.

C12S05.051: First we analyze the behavior of the bomb. Suppose that it is dropped at time t = 0. If the
projectile is fired from the origin, then the equations of motion of the bomb are

x(t) ≡ 800, y(t) = 800− 1
2
gt2

where g = 9.8 (m/s2). Now y(t) = 400 when

800− 1
2
gt2 = 400;

1
2
gt2 = 400;

t2 =
800
9.8

=
4000
49

; t = T =
20
√

10
7

.

Now we turn our attention to the projectile, fired at time t = 0 from the origin. (We will adjust for the
one-second delay later in this solution.) By Eqs. (22) and (23) of the text, its equations of motion are

x(t) = (v0 cosα)t, y(t) = −1
2
gt2 + (v0 sinα)t.

We require x(T − 1) = 800 and y(T − 1) = 400. (This is how we take care of the one-second delay). Thus

T − 1 =
20
√

10 − 7
7

;

(v0 cosα)(T − 1) = 800;

−1
2
g(T − 1)2 + (v0 sinα)(T − 1) = 400;

v0 cosα =
800
T − 1

. (1)

Also

−1
2
g(T − 1) + v0 sinα =

400
T − 1

;

v0 sinα =
400
T − 1

+
1
2
g(T − 1). (2)

Division of Eq. (2) by Eq. (1) then yields

13



tanα =
T − 1
800

·
[

400
T − 1

+
1
2
g(T − 1)

]
=

1
2

+
9.8

1600
(T − 1)2

=
1
2

+
98

16000
·
(

20
√

10 − 7
7

)2

=
8049− 280

√
10

8000
≈ 0.895445,

so that α ≈ 41.842705345876◦. Then, by Eq. (1),

v0 =
800

(T − 1) cosα
≈ 133.645951548503

meters per second, approximately 438.470969647319 feet per second.

C12S05.052: With the origin at the base of the cliff, the equations of motion of the projectile are

x(t) = (v0 cosα)T, y(t) = −1
2
gt2 + (v0 sinα)t+ 500.

Here we use v0 = 1000 and g = 32. We require x(T ) = 20000 and y(T ) = 0 simultaneously. Thus

(v0 cosα)T = 20000 : T =
20000
v0 cosα

=
20

cosα

and

0 = y(T ) = −2 + (1000 sinα)T + 500 :

− 16 · 400
cos2 α

+
20000 sinα

cosα
+ 500 = 0;

6400 sec2 α− 20000 tanα− 500 = 0;

6400 + 6400 tan2 α− 20000 tanα− 500 = 0;

6400 tan2 α− 20000 tanα+ 5900 = 0;

64 tan2 α− 200 tanα+ 59 = 0;

tanα =
200±

√
40000− 15104

128
=

200±
√

24896
128

=
25±

√
389

16
.

It now follows that α ≈ 18.252934◦ and α ≈ 70.314970◦ are both solutions. Answer: There are two angles;
one is approximately 18◦ 15′ 11′′ and the other is approximately 70◦ 18′ 54′′.

C12S05.053: We give proofs for vectors with two components; these proofs generalize readily to vectors
with three or more components. Let u(t) = 〈u1(t), u2(t) 〉 and v(t) = 〈 v1(t), v2(t) 〉. The assumptions that

lim
t→a

u(t) and lim
t→a

v(t)

both exist means that there exist vectors 〈 p1, p2 〉 and 〈 q1, q2 〉 such that

lim
t→a

u1(t) = p1, lim
t→a

u2(t) = p2, lim
t→a

v1(t) = q1, and lim
t→a

v2(t) = q2.

Part (a):
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lim
t→a

[u(t) + v(t)] = lim
t→a
〈u1(t) + v1(t), u2(t) + v2(t) 〉 = 〈 p1 + q1, p2 + q2 〉

= 〈 p1, p2 〉+ 〈 q1, q2 〉 =
[

lim
t→a

u(t)
]

+
[

lim
t→a

v(t)
]
.

Part (b):

lim
t→a

[u(t) ·v(t)] = lim
t→a

[u1(t)v1(t) + u2(t)v2(t)] = p1q1 + p2q2

= 〈 p1, p2 〉 · 〈 q1, q2 〉 =
(

lim
t→a

u(t)
)

·
(

lim
t→a

v(t)
)
.

C12S05.054: We give the proof in case the vector function r(t) has two components; the proof generalizes
readily to vectors with three or more components. Suppose that r(t) = 〈 r1(t), r2(t) 〉. Then

Dt [r(h(t))] = Dt〈 r1(h(t)), r2(h(t)) 〉

= 〈 r′1(h(t)) · h′(t), r′2(h(t)) · h′(t) 〉 = h′(t)〈 r′1(h(t)), r′2(h(t)) 〉 = h′(t)r′(h(t)).

C12S05.055: If v(t) is the velocity vector of the moving particle, then we are given |v(t)| = C, a constant.
Then v(t) ·v(t) = C2, also a constant. Hence 0 = Dt [v(t) ·v(t)] = 2v(t) ·a(t) where a(t) is the acceleration
vector of the particle. But because v(t) ·a(t) = 0, it follows that v and a are always perpendicular.

C12S05.056: Let r(t) be the position vector of the moving point and let R denote the radius of the circle.
Then |r(t)| = R, a constant. Thus r(t) · r(t) = R2, also a constant. Differentiation of both sides of this
equation (actually, an identity) with respect to t yields 2r(t) ·v(t) = 0, so that r(t) ·v(t) = 0 for all t. Thus
r and v are always perpendicular.

C12S05.057: If r(t) = 〈 coshωt, sinhωt 〉, then

v(t) = r′(t) = 〈ω sinhωt, ω coshωt 〉 and

a(t) = v′(t) = 〈ω2 coshωt, ω2 sinhωt 〉 = ω2r(t) = cr(t)

where c = ω2 > 0. An external force that would produce this sort of motion would be a central repulsive
force proportional to distance from the origin.

C12S05.058: If r(t) = 〈 a cosωt, b sinωt 〉, then

v(t) = r′(t) = 〈−aω sinωt, bω cosωt 〉 and

a(t) = v′(t) = 〈−aω2 cosωt, −bω2 sinωt 〉 = −ω2〈 a cosωt, b sinωt 〉 = −ω2r(t) = cr(t)

where c = −ω2 < 0. An external force producing this type of motion would be a central force directed
toward the origin and with magnitude proportional to distance from the origin.

C12S05.059: Given the acceleration vector a = 〈0, a 〉, we first find the velocity and position vectors:

v(t) = 〈 c1, at+ c2 〉 and

r(t) = 〈 c1t+ k1, 1
2 at

2 + c2t+ k2 〉
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where c1, c2, k1, and k2 are constants. Thus the position (x(t), y(t)) of the moving point is given by

x(t) = c1t+ k1 and y(t) = 1
2 at

2 + c2t+ k2.

If c1 = 0 then the point moves in a straight line. Otherwise, we solve the first of these equations for t and
substitute in the second:

t =
x− k1
c1

;

y =
1
2
a

(
x− k1
c1

)2

+ c2 ·
x− k1
c1

+ k2

=
a

2c21
(x2 − 2k1x+ k2

1) +
c2
c1

(x− k1) + k2

=
a

2c21
x2 +

(
c2

c1
− ak1
c21

)
x+

(
ak2

1

2c21
− c2k1

c1
+ k2

)

= Ax2 +Bx+ C

where A, B, and C are constants. If A = 0 then the trajectory of the particle is a parabola. If A = 0 it is
a straight line.

C12S05.060: If the acceleration of the particle is a = 〈 0, 0, 0 〉, then we first find its velocity and position
vectors:

v(t) = 〈 c1, c2, c3 〉 and

r(t) = 〈 c1t+ k1, c2t+ k2, c3t+ k3 〉

where ci and ki are constants for 1 � i � 3. Hence the position (x, y, z) of the moving particle is given by

x = c1t+ k1, y = c2t+ k2, z = c3t+ k3.

If c1 = c2 = c3 = 0 then the particle remains at a single point without motion. Otherwise these are Cartesian
equations of a straight line, and that is the trajectory of the particle. Note also that its speed is given by

v(t) = |v(t)| =
√
c21 + c22 + c23 ,

a constant.

C12S05.061: Given: r(t) = 〈 r cosωt, r sinωt 〉. Part (a):

v(t) = 〈−rω sinωt, rω cosωt 〉 = rω〈− sinωt, cosωt 〉. So

r(t) ·v(t) = r2ω(− sinωt cosωt+ sinωt cosωt) = 0,

and therefore r and v are always perpendicular. Therefore v is always tangent to the circle. Moreover, the
speed of motion is

v(t) = rω
√

sin2 ωt+ cos2 ωt = rω.

16



Part (b): a(t) = rω2〈− cosωt, − sinωt 〉 = −ω2r(t). Therefore a and r are always parallel and have
opposite directions (because −ω2 < 0). Finally, the scalar acceleration is

a(t) = |a(t)| = |−ω2 | · |r(t)| = rω2.

C12S05.062: Because F = kr, r and a are parallel. So

Dt(r×v) = (r×a) + (v×v) = 0 + 0 = 0.

Therefore r×v = C, a constant vector. Consequently the vector r is always perpendicular to the constant
vector C. This holds for every point on the trajectory of the particle, and thus every point on the trajectory
lies in the plane through the origin with normal vector C.

C12S05.063: With north the direction of the positive x-axis, west the direction of the positive y-axis,
and upward the direction of the positive z-axis, the baseball has acceleration a(t) = 〈 0.1, 0, −32 〉, initial
velocity v0 = 〈 0, 0, 160 〉, and initial position r0 = 〈 0, 0, 0 〉. It follows that its position vector is

r(t) =
〈

1
20
t2, 0, 160t− 16t2

〉
.

The ball returns to the ground at that positive value of t for which the z-component of r is zero; that is,
t = 10. At that time the x-component of r is 5, so the ball lands 5 feet north of the point from which it was
thrown.

C12S05.064: We assume that the baseball is hit directly down the left-field foul line, that this line coincides
with the positive y-axis, and that its direction is due north. We also assume that the acceleration due to
spin is directed due east, in the direction of the positive x-axis. Then the acceleration vector of the baseball
is a(t) = 〈 2, 0, −32 〉. Its initial velocity is v0 = 〈 0, 96 cos 15◦, 96 sin 15◦ 〉, so its velocity vector is

v(t) =
〈
2t, 24

(
1 +
√

3
)√

2 , 24
(
−1 +

√
3

)√
2 − 32t

〉
.

The initial position of the baseball is r0 = 〈 0, 0, 0 〉, so the baseball has position vector

r(t) =
〈
t2, 24t

(
1 +
√

3
)√

2 , 24t
(
−1 +

√
3

)√
2 − 16t2

〉
.

The ball strikes the ground when the z-component of r is zero; that is, when

t =
3
2

(√
6 −

√
2

)
≈ 1.552914.

At this time the x-component of r(t) is 18− 9
√

3 ≈ 2.411543, so the ball hits the ground just under 2 ft 5
in. from the foul line.

C12S05.065: In the “obvious” coordinate system, the acceleration of the projectile is a(t) = 〈 2, 0, −32 〉;
its initial velocity is v0 = 〈 0, 200, 160 〉 and its initial position is r0 = 〈 0, 0, 384 〉. Hence its velocity and
position vectors are

v(t) = 〈 2t, 200, 160− 32t 〉 and r(t) = 〈 t2, 200t, 384− 160t− 16t2 〉.

The projectile strikes the ground at that positive value of t from which the z-component of r is zero:

17



16t2 − 160t− 384 = 0; t2 − 10t− 24 = 0;

(t− 12)(t+ 2) = 0; t = 12 (not t = −2).

When t = 12, the position of the projectile is r(12) = 〈 144, 2400, 0 〉, so it lands 2400 ft north and 144 ft
east of the firing position. The projectile reaches its maximum altitude when the z-component of v(t) is
zero; that is, when t = 5. Its position then is r(5) = 〈 25, 1000, 784 〉, so its maximum altitude is 784 ft.

C12S05.066: Situate the gun at the origin, north the positive y-direction, east the positive x-direction,
upward the positive z-direction. Assume that the gun is fired at time t = 0 (seconds) with angle α of
elevation and lateral deviation θ measured counterclockwise from the positive y-axis. Note that θ will be
rather close to zero. If T is the time of impact of a shell at the point (0, 5000, 0), it is then easy to derive
the equations

T = 6000 cosα sin θ,

T cosα cos θ = 10, and

4T = 125 sinα.

To obtain a first approximation to a solution, assume that θ = 0. The previous equations then imply that

sin 2α =
16
25

and T = 10 secα.

The first of these equations has two first-quadrant solutions:

α ≈ 19.89590975◦ and α ≈ 70.10409025◦.

The corresponding values of T are

T ≈ 10.63476324 and T ≈ 29.38476324 (seconds).

One may now continue in a very pragmatic way: Fire the gun due north with the smaller value of α. It’s
easy to show that the shell won’t clear the hill. So the larger value of α must be used in any case. If the gun
is fired due north with the larger value of α, the shell will strike the ground at

(x, y, z) ≈ (71.95535922, 5000, 0) .

So swivel the gun counterclockwise through an angle of

θ = arctan
(

71.95535922
5000

)
≈ 0.8244907643◦

and really fire it this time. The results:

T = 29.38476324 and point of impact (x, y, z) ≈ (0.0074499339, 4999.482323, 0.000001).

This is certainly close enough! You can also verify that the shell easily clears the hill unless the hill has an
abnormal shape (the shell reaches a maximum altitude of more than 3450 ft).
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A more sophisticated solution might proceed as follows. Obtain the approximate values of α and T using
θ = 0. Beginning with those values, iterate the following versions of the first equations (this is a method of
repeated substitution):

T =
125
4

sinα,

θ = arcsin
(

T

6000 cosα

)
,

α = arccos
(

10
T cos θ

)
.

A few iterations of these equations, in the order given, results in convergence to the values

T ≈ 29.38430462,

α ≈ 70.10161954◦, and

θ ≈ 0.8244650319◦.

The point of impact is (−0.0000000078, 5000, 0.0000011) if these values are used. The errors in x and z are
undoubtedly roundoff errors.
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Section 12.6

C12S06.001: We first compute

v(t) =
√

(x′(t))2 + (y′(t))2 + (z′(t))2 =
√

64 + 36 cos2 2t + 36 sin2 2t =
√

100 = 10.

Therefore the length of the graph is

s =
∫ π

0

10 dt =
[

10t
]π
0

= 10π.

C12S06.002: Here we have

v(t) =
√

(x′(t))2 + (y′(t))2 + (z′(t))2 =
√

1 + 2t2 + t4 = t2 + 1.

Hence the length of the graph is

s =
∫ 1

0

(t2 + 1) dt =
[
t3

3
+ t

]1

0

=
4
3
− 0 =

4
3
.

C12S06.003: First,

v(t) =
√

[x′(t)]2 + [y′(t)]2 + [z′(t)]2 =
√

(6et cos t− 6et sin t)2 + (6et cos t + 6et sin t)2 + (17et)2

=
√

289e2t + 36e2t cos2 t− 72e2t sin t cos t + 36e2t sin t + 36e2t cos2 t + 72e2t sin t cos t + 36e2t sin2 t

=
√

289e2t + 36e2t + 36e2t =
√

361e2t = 19et.

Therefore the arc length is

s =
∫ 1

0

19et dt =
[

19et
]1

0

= 19e− 19 = 19(e− 1) ≈ 32.647354740722.

C12S06.004: Here we compute

v(t) =
√

[x′(t)]2 + [y′(t)]2 + [z′(t)]2 =
√

t2 + t−2 + 2 = t +
1
t
.

Therefore the length of the arc is

s =
∫ 2

1

(
t +

1
t

)
dt =

[
t2

2
+ ln t

]2

1

= 2 + ln 2− 1
2

=
3
2

+ ln 2 ≈ 2.193147180560.

C12S06.005: First,

v(t) =
√

(3t cos t + 3 sin t)2 + (3 cos t− 3t sin t)2 + (4t)2

=
√

16t2 + 9 cos2 t + 9 sin2 t + 9t2 cos2 t + 9t2 sin2 t =
√

9 + 25t2 .

Then the substitutions u = 5t, a = 3, and formula 44 of the endpapers of the text yields arc length
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s =
∫ 4/5

0

√
9 + 25t2 dt =

[
t

2

√
9 + 25t2 +

9
10

(
ln 5t +

√
9 + 25t2

)]4/5

0

= 2 +
9
10

ln 9− 9
10

ln 3 =
20 + 9 ln 3

10
≈ 2.988751059801.

By comparison, Mathematica 3.0 yields

s =
[
t

2

√
9 + 25t2 +

9
10

sinh−1

(
5t
3

) ]4/5

0

,

which can be simplified to the same answer using identities found in Section 7.6.

C12S06.006: First we compute

v(t) =
√

(2et)2 + (−e−t)2 + 22 =
√

4e2t + 4 + e−2t = 2et + e−t.

Then the arc length in question is

s =
∫ 1

0

(
2et + e−t

)
dt =

[
2et − e−t

]1

0

= 2e− e−1 − 1 ≈ 4.068684215747.

C12S06.007: By Eq. (13) of the text,

κ(x) =
|y′′(x)|

[1 + (y′(x))2 ]3/2
=

|6x|
(1 + 9x4)3/2

,

and therefore κ(0) = 0.

C12S06.008: By Eq. (13) of the text,

κ(x) =
|y′′(x)|

[1 + (y′(x))2 ]3/2
=

|6x|
(1 + 9x4)3/2

,

and therefore

κ(−1) =
6

103/2
=

3
√

10
50

≈ 0.1897366596.

C12S06.009: By Eq. (13) of the text,

κ(x) =
| cosx|

(1 + sin2 x)3/2
,

and thus κ(0) = 1.

C12S06.010: By Eq. (12) of the text,

κ(t) =
|x′(t)y′′(t)− x′′(t)y′(t)|
[(x′(t))2 + (y′(t))2 ]3/2

=
|1 · 2− 0|

[12 + (2t + 3)2 ]3/2
,

and consequently

2



κ(2) =
2

(1 + 49)3/2
=

2
503/2

=
2
√

50
2500

=
√

2
250
≈ 0.005656854248.

C12S06.011: By Eq. (12) of the text,

κ(t) =
|x′(t)y′′(t)− x′′(t)y′(t)|
[(x′(t))2 + (y′(t))2 ]3/2

=
| − 20 sin2 t− 20 cos2 t|
[25 sin2 t + 16 cos2 t]3/2

=
20

(16 + 9 sin2 t)3/2
,

so that

κ
(π

4

)
=

20(
16 + 9

2

)3/2 =
40
√

82
1681

≈ 0.2154761484.

C12S06.012: By Eq. (12) of the text,

κ(t) =
|x′(t)y′′(t)− x′′(t)y′(t)|
[(x′(t))2 + (y′(t))2 ]3/2

=
|15 sinh2 t− 15 cosh2 t|

(25 sinh2 t + 9 cosh2 t)3/2
=

15
(25 sinh2 t + 9 cosh2 t)3/2

.

Therefore

κ(0) =
15

93/2
=

15
27

=
5
9
.

C12S06.013: Given: y = ex. By Eq. (13) of the text, the curvature at x is

κ(x) =
|y′′(x)|

[1 + (y′(x))2 ]3/2
=

ex

(1 + e2x)3/2
.

Because κ(x) > 0 for all x, κ(x)→ 0 as x→ ±∞, and κ is continuous on the set of all real numbers, there
is a maximum value. Next,

κ′(x) =
ex(1− 2e2x)
(1 + e2x)5/2

; κ′(x) = 0 when e2x =
1
2

: x = − 1
2

ln 2.

Answer: The maximum curvature of the graph of y = ex occurs at the point
(
− 1

2
ln 2,

1
2

√
2

)
.

The curvature there is

1
2

√
2(

1 + 1
2

)3/2 =
√

2
2
· 2

3/2

33/2
=

2
√

3
9
≈ 0.3849001794597505.

C12S06.014: Given: y = lnx. By the result in the solution of Problem 13, there is a unique point where
the curvature of the graph is maximal and it is

(
1
2

√
2 , − 1

2
ln 2

)
.

Alternatively, by Eq. (12), the curvature at x is
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κ(x) =
|y′′(x)|

[1 + (y′(x))2 ]3/2
=

x−2

(1 + x−2)3/2
=

x−2 · x3

(x2 + 1)3/2
=

x

(x2 + 1)3/2
.

Because κ(x) > 0 for all x > 0, κ(x)→ 0 as x→ +∞ and as x→ 0+, and κ is continuous on (0, +∞), there
is a maximum value. To find it,

κ′(x) =
(x2 + 1)3/2 − x · 2x · 3

2 (x2 + 1)1/2

(x2 + 1)3
=

1− 2x2

(x2 + 1)5/2
; κ′(x) = 0 when x =

1
2

√
2 .

C12S06.015: Given: x = 5 cos t, y = 3 sin t. By Eq. (12) of the text, the curvature at (x(t), y(t)) is given
by

κ(t) =
|x′(t)y′′(t)− x′′(t)y′(t)|
[(x′(t))2 + (y′(t))2 ]3/2

=
|15 sin2 t + 15 cos2 t|

(25 sin2 t + 9 cos2 t)3/2
=

15
(9 + 16 sin2 t)3/2

.

Nothing is lost by restriction of t to the interval [0, 2π ], and κ(t) is continuous there, so κ has both a global
maximum value and a global minimum value in that interval. To find them,

κ′(t) =
−15 · 3

2 (9 + 16 sin2 t)1/2 · 32 sin t cos t
(9 + 16 sin2 t)3

= − 720 sin t cos t
(9 + 16 sin2 t)5/2

.

Because κ′(t) = 0 at every integral multiple of π/2, we check these critical points (and only these):

κ(0) =
5
9

= κ(π) = κ(2π);

κ(π/2) =
3
25

= κ(3π/2).

Therefore the maximum curvature of the graph of the given parametric equations is 5
9 , which occurs at (5, 0)

and at (−5, 0) (corresponding to t = 0 and t = π); the minimum curvature is 3
25 and occurs at (0, 3) and

at (0, −3).

C12S06.016: Given: xy = 1. By Eq. (13) of the text, the curvature at x is given by

κ(x) =
|2x−3 |

(1 + x−4)3/2
=

2|x3 |
(x4 + 1)3/2

.

Because κ(x) → 0 as x → ±∞ and as x → 0 and κ is continuous on (−∞, 0) and on (0, +∞), κ has a
global maximum on each of these two intervals. By symmetry it sufficies to consider only the case in which
x > 0. Then

κ′(x) =
6x2(x4 + 1)3/2 − 2x3 · 3

2 (x4 + 1)1/2 · 4x3

(x4 + 1)3
=

6x2(x4 + 1)− 12x6

(x4 + 1)5/2
=

6x2(1− x4)
(x4 + 1)5/2

;

κ′(x) = 0 when x = 1. By symmetry, in the case x < 0 we find that κ′(x) = 0 when x = −1. Answer: The
maximum curvature occurs at the two points (−1, −1) and (1, 1) and the curvature there is 1

2

√
2 .

C12S06.017: Let r(t) = 〈 t, t3 〉. For the purpose of determining the direction of N, note that the graph
of y = x3 is concave downward at and near the given point (−1, −1). Then

v(t) = 〈 1, 3t2 〉;
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v(−1) = 〈 1, 3 〉;

T(−1) =

〈 √
10
10

,
3
√

10
10

〉
;

N(−1) =

〈
3
√

10
10

, −
√

10
10

〉
.

C12S06.018: Let r(t) = 〈 t3, t2 〉. For the purpose of determining the direction of N, note that the graph
of the given parametric equations is concave downward at and near the given point (−1, 1). Then

v(t) = 〈 3t2, 2t 〉; v(−1) = 〈 3, −2 〉;

T(−1) =

〈
3
√

13
13

, − 2
√

13
13

〉
; N(−1) =

〈
− 2
√

13
13

, − 3
√

13
13

〉
.

C12S06.019: Let r(t) = 〈 3 sin 2t, 4 cos 2t 〉. For the purpose of determining the direction of N, note that
the graph of the given parametric equations is concave downward at and near the given point for which
t = π/6. Then

v(t) = 〈 6 cos 2t, −8 sin 2t 〉; v(π/6) = 〈 3, −4
√

3 〉;

T(π/6) =

〈√
57
19

, − 4
√

19
19

〉
; N(π/6) =

〈
− 4
√

19
19

, −
√

57
19

〉
.

C12S06.020: Let r(t) = 〈 t − sin t, 1 − cos t 〉. For the purpose of determining the direction of N, note
that the graph of the given parametric equations is concave downward at and near the given point for which
t = π/2. Then

v(t) = 〈 1− cos t, sin t 〉; v(π/2) = 〈 1, 1 〉;

v(t) =
√

1− 2 cos t + cos2 t + sin2 t =
√

2− 2 cos t ; v(π/2) =
√

2 ;

T(π/2) =

〈√
2
2

,

√
2
2

〉
; N(π/2) =

〈√
2
2

, −
√

2
2

〉
.

C12S06.021: Let r(t) = 〈 cos3 t, sin3 t 〉. For the purpose of determining the direction of N, note that the
graph of the given parametric equations is concave upward at and near the given point for which t = 3π/4.
Then

v(t) = 〈−3 cos2 t sin t, 3 sin2 t cos t 〉; v(3π/4) =

〈
− 3
√

2
4

, − 3
√

2
4

〉
; v(3π/4) =

3
2
;

T(3π/4) =

〈
−
√

2
2

, −
√

2
2

〉
; N(3π/4) =

〈
−
√

2
2

,

√
2
2

〉
.

C12S06.022: We adjoin third component zero to form r(t) = 〈 3 sinπt, 3 cosπt, 0 〉. Then
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v(t) = 〈 3π cosπt, −3π sinπt, 0 〉 a(t) = 〈−3π2 sinπt, −3π2 cosπt, 0 〉,

and v(t) ≡ 3π. By Eq. (26) of the text,

aT =
v ·a
v

=
0
v

= 0,

and by Eq. (28),

aN =
|v×a|

v
=

1
3π
|〈 0, 0, −9π3 〉| = 3π2.

C12S06.023: We adjoin third component zero to form r(t) = 〈 2t+1, 3t2− 1, 0 〉. Then v(t) = 〈 2, 6t, 0 〉,
a(t) = 〈 0, 6, 0 〉, and v(t) = (36t2 + 4)1/2. By Eq. (26) of the text,

aT =
v ·a
v

=
36t

(36t2 + 4)1/2
=

18t√
9t2 + 1

,

and by Eq. (28),

aN =
|v×a|

v
=

1
v
· |〈 0, 0, 12 〉| = 6√

9t2 + 1
.

C12S06.024: We adjoin third component zero to form r(t) = 〈 cosh 3t, sinh 3t, 0 〉. Then

v(t) = 〈 3 sinh 3t, 3 cosh 3t, 0 〉 a(t) = 〈 9 cosh 3t, 9 sinh 3t, 0 〉,

and v(t) =
√

9 sinh2 3t + 9 cosh2 3t = 3
√

sinh2 3t + cosh2 3t . Next,

v ·a = 27 sinh 3t cosh 3t + 27 cosh 3t sinh 3t = 54 sinh 3t cosh 3t,

so by Eq. (26) of the text,

aT =
v ·a
v

=
18 sinh 3t cosh 3t√
sinh2 3t + cosh2 3t

=
9 sinh 6t√
cosh 6t

(we used various hyperbolic identities from Section 6.9 to simplify some of these answers). Next,

v×a =

∣∣∣∣∣∣∣∣∣

i j k

3 sinh 3t 3 cosh 3t 0

9 cosh 3t 9 sinh 3t 0

∣∣∣∣∣∣∣∣∣
= 〈 27 sinh2 3t− 27 cosh2 3t, 0, 0 〉 = 〈−27, 0, 0 〉.

Hence by Eq. (28),

aN =
27

3
√

sinh2 3t + cosh2 3t
=

9√
cosh 6t

.

C12S06.025: We adjoin third component zero to form r(t) = 〈 t cos t, t sin t, 0 〉. Then

v(t) = 〈 cos t− t sin t, sin t + t cos t, 0 〉 a(t) = 〈−2 sin t− t cos t, 2 cos t− t sin t, 0 〉,
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and v(t) =
√

cos2 t + t2 sin2 t + sin2 t + t2 cos2 t =
√
t2 + 1 . Next,

v(t) ·a(t) = −2 sin t cos t + 2t sin2 t− t cos2 t + t2 sin t cos t + 2 sin t cos t− t sin2 t + 2t cos2 t− t2 sin t cos t

= 2t− t = t.

So by Eq. (26) of the text,

aT =
v(t) ·a(t)

v(t)
=

t√
t2 + 1

,

Next,

v(t)×a(t) =

∣∣∣∣∣∣∣∣∣

i j k

cos t− t sin t sin t + t cos t 0

−2 sin t− t cos t 2 cos t− t sin t 0

∣∣∣∣∣∣∣∣∣

= 〈 0, 0, 2 cos2 t− t sin t cos t− 2t sin t cos t + t2 sin2 t + 2 sin2 t + 2t sin t cos t + t sin t cos t + t2 cos2 t 〉

= 〈 0, 0, t2 + 2 〉.

Therefore by Eq. (28),

aN =
|v(t)×a(t)|

v(t)
=

t2 + 2√
t2 + 1

C12S06.026: We adjoin third component zero to form r(t) = 〈 et sin t, et cos t, 0 〉. Then

v(t) = 〈 et(cos t + sin t), et(cos t− sin t), 0 〉 v(t) = et
√

cos2 t + sin2 t + sin2 t + cos2 t = et
√

2 ,

and

a(t) = 〈 et(sin t + cos t + cos t− sin t), et(cos t− sin t− sin t− cos t), 0 〉 = et〈−2 sin t, 2 cos t, 0 〉.

Next,

v(t) ·a(t) = e2t(−2 sin t cos t + 2 sin2 t + 2 sin t cos t + 2 cos2 t) = 2e2t,

so by Eq. (26) of the text,

aT =
v(t) ·a(t)

v(t)
=

2e2t

et
√

2
= et
√

2 .

Also

v(t)×a(t) = e2t

∣∣∣∣∣∣∣∣∣

i j k

cos t− sin t sin t + cos t 0

−2 sin t 2 cos t 0

∣∣∣∣∣∣∣∣∣

= e2t〈 0, 0, 2 cos2 t− 2 sin t cos t + 2 sin2 t + 2 sin t cos t 〉 = e2t〈 0, 0, 2 〉.
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Thus by Eq. (28),

aN =
|v(t)×a(t)|

v(t)
=

2e2t

et
√

2
= et
√

2 .

C12S06.027: Given x2 + y2 = a2, implicit differentiation yields

2x + 2y
dy

dx
= 0, so that

dy

dx
= − x

y
.

Differentiation of both sides of the last equation with respect to x then yields

d2y

dx2
=

x
dy

dx
− y

y2
=

xy
dy

dx
− y2

y3
=
−x2 − y2

y3
= − a2

y3
.

Next, Eq. (13) yields

κ(x) =
|y′′(x)|

[1 + (y′(x))2 ]3/2
=

a2

|y |3(1 + x2y−2)3/2
.

If y �= 0, then

κ(x) =
a2

(y2 + x2)3/2
=

a2

a3
=

1
a
.

If y = 0, then x �= 0; interchange the roles of x and y and work with dx/dy to obtain the same result. In
this case, instead of Eq. (13) use:

κ(y) =
|x′′(y)|

[1 + (x′(y))2 ]3/2
.

C12S06.028: Let r(t) =
〈

3
2 t

2, 4
3 t

3
〉
. Then

v(t) = r′(t) = 〈 3t, 4t2 〉, so that v(1) = 〈 3, 4 〉.

Hence the unit tangent vector corresponding to t = 1 is T(1) =
〈

3
5 ,

4
5

〉
and the unit normal vector corre-

sponding to t = 1 is N(1) =
〈
− 4

5 ,
3
5

〉
. Finally,

41
5

T(1) +
12
5

N(1) =
41
5

〈
3
5
,

4
5

〉
+

12
5

〈
− 4

5
,

3
5

〉
= 〈 3, 8 〉.

C12S06.029: Let x(t) = t, y(t) = 1 − t2, and r(t) = 〈x(t), y(t) 〉. Then r′(t) = 〈 1, −2t 〉, so that
r′(0) = 〈 1, 0 〉 = T(1). The graph of the given equation is concave down everywhere, so that the unit
normal vector corresponding to t = 0 is N = 〈 0, −1 〉. Next, a(t) = r′′(t) = 〈 0, −2 〉, and so a(0) is the
same. By Eq. (12) the curvature is

κ(t) =
|x′(t)y′′(t)− x′′(t)y′(t)|

[v(t)]3
=

2
(1 + 4t2)3/2

.

Because κ(0) = 2, the radius of the osculating circle at (0, 1) is 1
2 , and by Eq. (16) the position vector of the

center of that circle is
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r(0) +
1
2
N(0) =

〈
0,

1
2

〉
.

Therefore an equation of the osculating circle is

x2 +
(
y − 1

2

)2

=
1
4
.

C12S06.030: We let Mathematica 3.0 find the equation of the osculating circle at the point (0, 1) of the
graph of y = ex. First we let

x[t ] := t; y[t ] := Exp[t]; r[t ] := {x[t], y[t]}

Recall that vectors such as r(t) are enclosed in French braces. Then we used Eq. (12) to define the curvature
function κ:

kappa[t ] := (Abs[x′[t]∗y′′[t] - x′′[t]∗y′[t]])/(((x′[t])∧2 + (y′[t])∧2)∧(3/2))

To find the unit tangent vector at (0, 1), we computed

r′[0]

and found that v(0) = 〈 1, 1 〉. Hence the unit tangent vector we need is

utan = r′[0]/Sqrt[r′[0].r′[0]]

—that is, T(1) =
〈

1
2

√
2 , 1

2

√
2

〉
. The graph of y = ex is concave upward everywhere, so the unit normal

at (0, 1) is

unorm = { -1/Sqrt[2], 1/Sqrt[2] }

—thus N(0) =
〈
− 1

2

√
2 , 1

2

√
2

〉
. The acceleration is

a = r′′[0]

and thus a(0) = 〈 0, 1 〉. To find the curvature at (0, 1), we asked for kappa[t], and found it to be

κ(t) =
et

(1 + e2t)3/2
.

Therefore κ(0) = 1
4

√
2 , and so the radius of the osculating circle is ρ = 2

√
2 . Its center has position vector

r[0] + (2∗Sqrt[2])∗unorm
which turns out to be 〈−2, 3 〉, and thus an equation of the osculating circle is (x + 2)2 + (y − 3)2 = 8. To
check this answer, we wrote parametric equations of the osculating circle:

xx[t ] := - 2 + 2∗Sqrt[2]∗Cos[Pi∗t]; yy[t ] := 3 + 2∗Sqrt[2]∗Sin[Pi∗t]

and then plotted the graphs of y = ex and the osculating circle simultaneously by entering the command

ParametricPlot[ {{ x[t], y[t] }, { xx[t], yy[t] }}, { t, -4, 2 },
AspectRatio -> Automatic ];
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the resulting graph is shown next.

C12S06.031: Let x(t) = t and y(t) = t−1; let r(t) = 〈x(t), y(t) 〉. Then

v(t) = r′(t) =
〈

1, − 1
t2

〉
and v(t) = |v(t)| =

√
t4 + 1
t2

.

Thus the unit tangent and unit normal vectors at (1, 1) are

T(1) =
v(1)
v(1)

=

〈√
2
2

, −
√

2
2

〉
and N(1) =

〈√
2
2

,

√
2
2

〉
,

respectively. By Eq. (12) of the text, the curvature at (x(t), y(t)) is

κ(t) =
|x′(t)y′′(t)− x′′(t)y′(t)|
[(x′(t))2 + (y′(t))2 ]3/2

=
2t3

(t4 + 1)3/2
,

so the curvature at (1, 1) is κ(1) = 1
2

√
2 . Therefore the osculating circle at (1, 1) has radius ρ =

√
2 . By

Eq. (16) of the text, the position vector of the center of that circle is

r(1) +
(√

2
)
·N(1) = 〈 2, 2 〉.

Therefore an equation of the osculating circle is (x− 2)2 + (y − 2)2 = 2.

C12S06.032: Let x(t) = t, y(t) = 2t− 1, z(t) = 3t + 5, and r(t) = 〈x(t), y(t), z(t) 〉. Then

v(t) = 〈 1, 2, 3 〉, a(t) = 0, and κ(t) =
|v(t) ×a(t)|

[v(t)]3
≡ 0.

Well, of course: The curvature of a straight line should be zero at every point.

C12S06.033: Given r(t) = 〈 t, sin t, cos t 〉, we first compute

v(t) = 〈 1, cos t, − sin t 〉, v(t) =
√

1 + cos2 t + sin2 t ≡
√

2 , and a(t) = 〈 0, − sin t, − cos t 〉.

Then
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v(t) ×a(t) =

∣∣∣∣∣∣∣∣∣

i j k

1 cos t − sin t

0 − sin t − cos t

∣∣∣∣∣∣∣∣∣
= 〈− cos2 t− sin2 t, cos t, − sin t 〉 = 〈−1, cos t − sin t 〉.

Therefore, by Eq. (27), the curvature is

κ(t) =
|v(t)×a(t)|

[v(t)]3
=
√

2
2
√

2
≡ 1

2
.

C12S06.034: Given r(t) = 〈 t, t2, t3 〉, we first compute

v(t) = 〈 1, 2t, 3t2 〉, v(t) =
√

1 + 4t2 + 9t4 , and a(t) = 〈 0, 2, 6t 〉.

Then

v(t)×a(t) =

∣∣∣∣∣∣∣∣∣

i j k

1 2t 3t2

0 2 6t

∣∣∣∣∣∣∣∣∣
= 〈 12t2 − 6t2, −6t, 2 〉 = 〈 6t2, −6t, 2 〉.

Therefore, by Eq. (27),

κ(t) =
|v(t)×a(t)|

[v(t)]3/2
=
√

36t4 + 36t2 + 4
(9t4 + 4t2 + 1)1/2

=
2
√

9t4 + 9t2 + 1
(9t4 + 4t2 + 1)3/2

.

C12S06.035: Given: r(t) = 〈 et cos t, et sin t, et 〉. Then

v(t) = 〈 et(cos t− sin t), et(sin t + cos t), et 〉,

v(t) = et(cos2 t + sin2 t + sin2 t + cos2 t + 1)1/2 = et
√

3 , and

a(t) = 〈et(cos t− sin t− sin t− cos t), et(sin t + cos t + cos t− sin t), et 〉 = et〈−2 sin t, 2 cos t, 1 〉.

Therefore

v(t)×a(t) = e2t

∣∣∣∣∣∣∣∣∣

i j k

cos t− sin t sin t + cos t 1

−2 sin t 2 cos t 0

∣∣∣∣∣∣∣∣∣
= e2t〈 sin t− cos t, − sin t− cos t, 2 〉.

Thus

|v(t)×a(t)| = e2t
√

sin2 t + cos2 t + sin2 t + cos2 t + 4 = e2t
√

6,

and therefore

κ(t) =
e2t
√

6
3e2t
√

3
=
√

2
3

e−t.
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C12S06.036: Given: r(t) = 〈 t sin t, t cos t, t 〉. Then

v(t) = 〈 sin t + t cos t, cos t− t sin t, 1 〉, v(t) = (sin2 t + t2 cos2 t + cos2 t + t2 sin2 t + 1)1/2 =
√

t2 + 2 ,

and a(t) = 〈 2 cos t− t sin t, −2 sin t− t cos t, 0 〉. Moreover,

v(t)×a(t) =

∣∣∣∣∣∣∣∣∣

i j k

sin t + t cos t cos t− t sin t 1

2 cos t− t sin t −2 sin t− t cos t 0

∣∣∣∣∣∣∣∣∣
= 〈 2 sin t + t cos t, 2 cos t− t sin t,

−2 sin2 t− t sin t cos t− 2t sin t cos t− t2 cos2 t− 2 cos2 t + t sin t cos t + 2t sin t cos t− t2 sin2 t 〉

= 〈 2 sin t + t cos t, 2 cos t− t sin t, −2− t2 〉.

Therefore

|v(t)×a(t)| = (4 sin2 t + 4t sin t cos t + t2 cos2 t + 4 cos2 t− 4t sin t cos t + t2 sin2 t + t4 + 4t2 + 4)1/2

= (t4 + 4t2 + 4 + 4 + t2)1/2 = (t4 + 5t2 + 8)1/2.

Thus by Eq. (27),

κ(t) =
(t4 + 5t2 + 8)1/2

(t2 + 2)3/2
.

C12S06.037: Let x(t) = t, y(t) = 2t − 1, z(t) = 3t + 5, and r(t) = 〈x(t), y(t), z(t) 〉. It follows that
v(t) = 〈 1, 2, 3 〉 and a(t) = 0. Hence v(t) ·a(t) = 0 and v(t)×a(t) = 0, and therefore aT = 0 = aN .

C12S06.038: Given r(t) = 〈 t, sin t, cos t 〉, we first compute

v(t) = 〈 1, cos t, − sin t 〉, v(t) =
√

1 + cos2 t + sin2 t ≡
√

2 , and a(t) = 〈 0, − sin t, − cos t 〉.

Thus v(t) ·a(t) = 0, so that aT = 0. Also

v(t) ×a(t) =

∣∣∣∣∣∣∣∣∣

i j k

1 cos t − sin t

0 − sin t − cos t

∣∣∣∣∣∣∣∣∣
= 〈−1, cos t, − sin t 〉,

so that |v(t) ×a(t)| =
√

2 . Therefore

aN =
|v(t)×a(t)|

v(t)
=
√

2√
2

= 1.

C12S06.039: Using Mathematica 3.0, we let

r[t ] := { t, t∧2, t∧3 }; v[t ] := r′[t]
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so that v(t) = 〈 1, 2t, 3t2 〉, and we let

speed[t ] := Sqrt[v[t].v[t]]

(using the fact that |u| =
√

u ·u ), so that v(t) = (1 + 4t2 + 9t4)1/2. We also defined

a[t ] := r′′[t]

so that a(t) = 〈 0, 2, 6t 〉. Next we computed

v[t].a[t]

4t + 18t3

and then, by Eq. (26),

asubT = v[t].a[t]/speed[t]

so that aT =
4t + 18t3√

1 + 4t2 + 9t4
. Next,

p[t ] := Cross[v[t], a[t]]

yielded v(t) ×a(t) = 〈 6t2, −6t, 2 〉. Then

magp[t ] := Sqrt[p[t].p[t]]

revealed that |v(t)×a(t)| = (4 + 36t2 + 36t4)1/2. Hence, by Eq. (28),

asubN = magp[t]/speed[t]

—that is, aN =
√

4 + 36t2 + 36t4√
1 + 4t2 + 9t4

.

C12S06.040: Using Mathematica 3.0, we let

r[t ] := { Exp[t]∗Cos[t], Exp[t]∗Sin[t], Exp[t] }; v[t ] := r′[t]

so that v(t) = r′(t) = 〈 et(cos t− sin t), et(cos t + sin t), et 〉. Then

speed[t ] := Sqrt[v[t].v[t]]

let us know that v(t) =
√

e2t + (et cos t− et sin t)2 + (et cos t + et sin t)2 . And then the obvious command
Simplify[speed[t]] elicited the response

√
3
√
e2t

so we redefined

speed[t ] := Sqrt[3]∗Exp[t]

Then we let
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a[t ] := r′′[t]

and thereby discovered that a(t) = 〈−2et sin t, 2et cos t, et 〉. Then we used Eq. (26) of the text to find aT :

asubT = (v[t].a[t])/speed[t]

e−t((e2t − 2et sin t)(et cos t− et sin t) + (2et cos t)(et cos t + et sin t))√
3

Simplify[asubT]

√
3 et

—that is, aT =
√

3 et. Next we used Eq. (28) to find aN :

p[t ] := Cross[ v[t], a[t] ]

revealed that

v(t) ×a(t) = 〈 e2t(sin t− cos t), −e2t(sin t + cos t), 2e2t(cos2 t + sin2 t) 〉,

and then Simplify[p[t]] yielded

v(t) ×a(t) = 〈 e2t(sin t− cos t), −e2t(sin t + cos t), 2e2t 〉

Next we entered

Simplify[ Sqrt[ p[t].p[t] ] ]

and defined the result to be magp[t]:

magp[t ] := Sqrt[6]∗Exp[2∗t]

Finally, Eq. (28) yielded the value of aN :

asubN = magp[t]/speed[t]

gave the response aN =
√

2 et.

C12S06.041: Beginning with r(t) = 〈 t sin t, t cos t, t 〉, we found:

v(t) = r′(t) = 〈 t cos t + sin t, cos t− t sin t, 1 〉,

v(t) = |v(t)| =
√

1 + (t cos t + sin t)2 + (cos t− t sin t)2 =
√

t2 + 2 ,

a(t) = v′(t) = 〈 2 cos t− t sin t, −t cos t− 2 sin t, 0 〉,

v(t) ·a(t) = (−t cos t− 2 sin t)(cos t− t sin t) + (t cos t + sin t)(2 cos t− t sin t) = t,

aT =
v(t) ·a(t)

v(t)
=

t√
t2 + 2

,

v(t) ×a(t) = 〈 t cos t + 2 sin t, 2 cos t− t sin t, −(t2 + 2) 〉,
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|v(t) ×a(t)| =
√

t4 + 5t2 + 8 , and

aN =
|v(t) ×a(t)|

v(t)
=
√
t4 + 5t2 + 8√

t2 + 2
.

C12S06.042: Given r(t) = 〈 t, t2, t3 〉, we will compute the unit tangent vector T(t) using its definition in
Eq. (17) and the principal unit normal vector N(t) by means of Eq. (29). We find:

v(t) = r′(t) = 〈 1, 2t, 3t2 〉,

v(t) = |v(t)| =
√

9t4 + 4t2 + 1 ,

a(t) = v′(t) = 〈 0, 2, 6t 〉,

aT (t) =
v(t) ·a(t)

v(t)
=

4t + 18t3√
9t4 + 4t2 + 1

,

aN (t) =
|v(t) ×a(t)|

v(t)
=
|〈 6t2, −6t, 2 〉|√

9t4 + 4t2 + 1
=
√

36t4 + 36t2 + 4√
9t4 + 4t2 + 1

,

κ(t) =
|v(t) ×a(t)|

[v(t)]3
=
|〈 6t2, −6t, 2 〉|

(9t4 + 4t2 + 1)3/2
=
√

36t4 + 36t2 + 4
(9t4 + 4t2 + 1)3/2

,

T(t) =
v(t)
v(t)

=
1√

9t4 + 4t2 + 1
〈 1, 2t, 3t2 〉, and

N(t) =
a− aTT

aN
=

1√
(9t4 + 4t2 + 1)(36t4 + 36t2 + 4)

〈−4t− 18t3, 1− 9t4, 6t + 12t3 〉.

Then substitution of t = 1 yields

T =

〈√
14
14

,
2
√

14
14

,
3
√

14
14

〉
and N =

〈
− 11
√

266
266

, − 8
√

266
266

,
9
√

266
266

〉
.

C12S06.043: Given r(t) = 〈 t, sin t, cos t 〉, we will compute the unit tangent vector T using its definition
in Eq. (17), then the principal unit normal vector N by means of Eq. (29). We find:

v(t) = r′(t) = 〈 1, cos t, − sin t 〉,

v(0) = 〈 1, 1, 0 〉,

v(0) =
√

2 ,

T(0) =

〈√
2
2

,

√
2
2

, 0

〉
,

a(t) = 〈 0, − sin t, − cos t 〉,

a(0) = 〈 0, 0, −1 〉,

aT (0) =
v(0) ·a(0)

v(0)
= 0,
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aN (0) =
|v(0)×a(0)|

v(t)
= 1,

κ(0) =
|v(0)×a(0)|

[v(t)]3
=

1
2
, and

N(0) =
a− aTT

aN
= 〈 0, 0, −1 〉

C12S06.044: Given r(t) = 〈 6et cos t, 6et sin t, 17et 〉, we will compute the unit tangent vector T using its
definition in Eq. (17), then the principal unit normal vector N by means of Eq. (29). We find:

v(t) = r′(t) = 〈 6et(cos t− sin t), 6et(cos t + sin t), 17et 〉,

v(0) = 〈 6, 6, 17 〉,

v(0) = 19,

T(0) =
〈

6
19

,
6
19

,
17
19

〉
,

a(t) = 〈−12et sin t, 12et cos t, 17et 〉,

a(0) = 〈 0, 12, 17 〉,

aT (0) =
v(0) ·a(0)

v(0)
= 19,

aN (0) =
|v(t) ×a(t)|

v(t)
= 6
√

2 ,

κ(0) =
|v(0)×a(0)|

[v(0)]3
=

6
√

2
361

, and

N(0) =
a− aTT

aN
=

〈
−
√

2
2

,

√
2
2

, 0

〉
.

C12S06.045: The process of computing T and N can be carried out almost automatically in Mathematica

3.0. Given r(t) = 〈 et cos t, et sin t, et 〉, we entered the following commands:

v0 = r′[0]

{1, 1, 1}

a0 = r′′[0]

{0, 2, 1}

speed = Sqrt[v0.v0]
√

3

asubT = v0.a0/speed
√

3

vcrossa = Cross[ v0, a0 ]

{-1, -1, 2}

16



asubN = (Sqrt[ vcrossa.vcrossa ])/speed
√

2

kappa = asubN/(speed∗speed)
√

2
3

utan = v0/speed

{ 1√
3

,
1√
3

,
1√
3
}

unorm = (a0 - asubT∗utan)/asubN

{ − 1√
2

,
1√
2

, 0 }

Thus we see that

T(0) =

〈√
3
3

,

√
3
3

,

√
3
3

〉
and N(0) =

〈
−
√

2
2

,

√
2
2

, 0

〉
.

C12S06.046: Given r(t) = 〈 a cosωt, a sinωt, bt 〉, we find—successively—that

v(t) = r′(t) = 〈−aω sinωt, aω cosωt, b 〉,

v(t) = |v(t)| =
√

a2ω2 cos2 ωt + a2ω2 sin2 ωt + b2 =
√

a2ω2 + b2 ,

a(t) = v′(t) = 〈−aω2 cosωt, −aω2 sinωt, 0 〉,

aT (t) =
v(t) ·a(t)

v(t)
=

0
v(t)

≡ 0,

v(t) ×a(t) = 〈 abω2 sinωt, −abω2 cosωt, a2ω3 〉,

|v(t) ×a(t)| =
√

a2ω4(a2ω2 + b2) = aω2
√

a2ω2 + b2 ,

aN (t) =
|v(t)×a(t)|

v(t)
≡ aω2,

κ(t) =
|v(t)×a(t)|

[v(t)]3
=

aω2

a2ω2 + b2
,

T(t) =
1√

a2ω2 + b2
〈−aω sinωt, aω cosωt, b 〉,

N(t) =
a(t)− aT (t)T(t)

aN (t)
= 〈− cosωt, − sinωt, 0 〉.

C12S06.047: Because

ds

dt
=

√
[x′(t)]2 + [y′(t)]2 + [z′(t)]2 =

√
16 + 144 + 9 = 13,

we see that the arc length is given by s = 13t, and therefore the arc-length parametrization of the given
curve is
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x(s) = 2 +
4s
13

, y(s) = 1− 12s
13

, z(s) = 3 +
3s
13

.

C12S06.048: Because

ds

dt
=

√
[x′(t)]2 + [y′(t)]2 + [z′(t)]2 =

√
4 cos2 t + 4 sin2 t = 2,

we see that the arc length is given by s = 2t, and therefore the arc-length parametrization of the given curve
is

x(s) = 2 cos
s

2
, y(s) = 2 sin

s

2
, z(s) = 0.

C12S06.049: Because

ds

dt
=

√
[x′(t)]2 + [y′(t)]2 + [z′(t)]2 =

√
9 cos2 t + 9 sin2 t + 16 =

√
25 = 5,

we see that the arc length is given by s = 5t, and therefore the arc-length parametrization of the given curve
is

x(s) = 3 cos
s

5
, y(s) = 3 sin

s

5
, z(s) =

4s
5
.

C12S06.050: We begin by letting r(t) = 〈 t, f(t), 0 〉. Then v(t) = 〈 1, f ′(t), 0 〉, and consequently
v(t) =

√
1 + [f ′(t)]2 . Next, a(t) = 〈 0, f ′′(t), 0 〉, and so

v(t) ×a(t) =

∣∣∣∣∣∣∣∣∣

i j k

1 f ′(t) 0

0 f ′′(t) 0

∣∣∣∣∣∣∣∣∣
= 〈 0, 0, f ′′(t) 〉.

Therefore |v(t)×a(t)| = |f ′′(t)|. So by Eq. (27),

κ(t) =
|v(t)×a(t)|

[v(t)]3
=

|f ′′(t)|
(1 + [f ′(t)]2)3/2

.

C12S06.051: By Newton’s second law of motion, the acceleration of the particle is a scalar multiple of
the force acting on the particle, so the force and acceleration vectors are parallel. Therefore the acceleration
vector a is normal to the velocity vector v. But then,

Dt(v ·v) = v ·a + a ·v = 0 + 0 = 0,

and therefore v ·v = K, a constant. Hence the speed v(t) =
√

v ·v is also constant.

C12S06.052: Beginning with Eq. (20), derive as in the text Eqs. (21)–(25). Then by Eq. (25),

a2 = |a|2 = (aN )2 + (aT )2, so that a2 − (aT )2 = (aN )2.

Then by Eq. (23),
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κ =
κv2

v2
=

aN
v2

=

√
a2 − (aT )2

v2
.

Next, if we are working with vectors with two components and we let r(t) = 〈x(t), y(t) 〉, then aT = v′(t)
by Eq. (23) and a(t) = 〈x′′(t), y′′(t) 〉. Hence

√
a2 − (aT )2

v2
=

√
[x′′(t)]2 + [y′′(t)]2 − [v′(t)]2

[x′(t)]2 + [y′(t)]2
.

C12S06.053: Given x(t) = cos t + t sin t and y(t) = sin t− t cos t, we first compute

[v(t)]2 = [x′(t)]2 + [y′(t)]2

= (t cos t + sin t− sin t)2 + (cos t− cos t + t sin t)2 = t2 cos2 t + t2 sin2 t = t2,

v′(t) = 1,

[x′′(t)]2 = (cos t− t sin t)2,

[y′′(t)]2 = (sin t + t cos t)2, and

[x′′(t)]2 + [y′′(t)]2 = cos2 t + sin2 t + t2 sin2 t + t2 cos2 t = t2 + 1.

Then the formula in Problem 52 yields

κ(t) =

√
[x′′(t)]2 + [y′′(t)]2 − [v′(t)]2

[x′(t)]2 + [y′(t)]2
=
√
t2 + 1− 1

t2
=

1
|t| .

C12S06.054: The Mathematica 3.0 command

Solve[ D[ x∧3 + (y[x])∧3 == 3∗x∗y[x], x ], y′[x] ]

asks Mathematica to differentiate the equation x3 + y3 = 3xy implicitly with respect to x, then solve for
y′(x); its response (after slight simplifications) is

y′(x) =
y(x)− x2

[y(x)]2 − x
=

y − x2

y2 − x
, (1)

exactly what we obtained by hand. To find the second derivative, use the command

Solve[ D[ x∧3 + (y[x])∧3 == 3∗x∗y[x], {x,2} ], y′′[x] ]

and the response—after slight simplifications—will be

y′′(x) =
2(x− y′(x) + y(x)[y′(x)]2)

x− [y(x)]2
. (2)

We entered these two commands, substituted the result in Eq. (1) for y′(x) in Eq. (2), then used the Simplify
command to find that
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y′′(x) =
2xy(1 + x3 − 3xy + y3)

(x− y2)3
=

2xy
(x− y2)3

.

It was then an easy matter to find that at the point
(

3
2 ,

3
2

)
, we have

dy

dx
= −1 and

d2y

dx2
= − 32

3
,

and it then follows from Eq. (13) of the text that the curvature at that point is κ = 8
3

√
3 . The unit normal

there is clearly

N =

〈
−
√

2
2

, −
√

2
2

〉
,

and then Eq. (16) gives the center of the osculating circle to be
(

21
16 ,

21
16

)
. The radius of the circle is

1/κ = 3
16

√
2 , so its equation is

(
x− 21

16

)2

+
(
y − 21

16

)2

=

(
3
√

2
16

)2

;

we used the Mathematica commands Expand and Simplify to write this equation in the alternative form
8x2 + 8y2 − 21x− 21y + 27 = 0.

C12S06.055: The six conditions listed in the statement of the problem imply, in order, that

0 = F,

1 = A + B + C + D + E + F,

0 = E,

1 = 5A + 4B + 3C + 2D + E,

0 = 2D, and

0 = 20A + 12B + 6C + 2D.

The last two equations were obtained by observing—via Eq. (13)—that curvature zero is equivalent to
y′′(x) = 0. Simultaneous solution of these equations yields A = 3, B = −8, C = 6, and D = E = F = 0.
Answers: y = 3x5−8x4+6x3; because κ(x) is zero where the curved track meets the straight tracks, because
their derivatives agree at the junctions, and because

κ(x) =
|60x3 − 96x2 + 36x|

[1 + (15x4 − 32x3 + 18x2)2 ]3/2

is continuous on [0, 1], the normal forces on the train negotiating this transitional section of track will change
continuously from zero to larger values and then back to zero. Thus there will be no abrupt change in the
lateral forces on the train.
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y

x
c

b

a

rur

C12S06.056: See the following figure for the meanings of the symbols.

Part (a):

v =
dr

dt
ur + r

dθ

dt
uθ and v = |v| =

√(
dr

dθ

)2

+ r2

(
dθ

dt

)2

.

At the nearest and farthest points of the orbit, dr/dt = 0. Hence

v =
∣∣∣∣r dθ

dt

∣∣∣∣ = r
dθ

dt
.

Part (b): Note first that
1
2
r2 dθ

dt
is constant. Moreover,

∫ T

0

1
2
r2 dθ

dt
dt = πab.

Therefore

T

2
r2 dθ

dt
= πab, and thus r

dθ

dt
=

2πab
rT

.

Consequently, at the nearest and farthest points of the orbit, v =
2πab
rT

by part (a).

C12S06.057: Conversion into miles yields the semimajor axis of the orbit of Mercury to be a = 35973972.
With eccentricity e = 0.206 and period T = 87.97 days, we use

b2 = a2(1− e2)

to find that b ≈ 35202402. Then the formula c2 = a2 − b2 yields c ≈ 7410638. So at perihelion the speed of
Mercury is

2πab
(a− c)T

≈ 3166628

miles per day. We divide by 24 · 3600 to convert this answer to 36.650789 miles per second. Replace a − c

with a + c to find that its speed at aphelion is approximately 24.129956 miles per second.

C12S06.058: Conversion into miles yields the semimajor axis of the Earth’s orbit to be a = 92956000.
With eccentricity e = 0.0167 and period T = 365.249 days, we use
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b2 = a2(1− e2)

to find that b ≈ 92943037. Then the formula c2 = a2 − b2 yields c ≈ 1552365. So at perihelion the speed of
Earth is

2πab
(a− c)T

≈ 1626004

miles per day. We divide by 24 · 3600 to convert this answer to 18.819493 miles per second. Replace a − c

with a + c to find that the speed at aphelion is approximately 18.201246 miles per second.

C12S06.059: We are given that the semimajor axis of the Moon’s orbit is a = 238900 (miles). With
eccentricity e = 0.055 and period T = 27.32 days, we use

b2 = a2(1− e2)

to find that b ≈ 238538. Then the formula c2 = a2 − b2 yields c ≈ 13139. So at perigee the speed of the
Moon is

2πab
(a− c)T

≈ 58053

miles per day. We divide by 24 · 3600 to convert this answer to 0.671911 miles per second. Replace a − c

with a + c to find that the speed at apogee is approximately 0.601854 miles per second.

C12S06.060: Let T1 be the period of the Moon, a1 the semimajor axis of its orbit, T the period of
the artificial satellite, and a the semimajor axis of its orbit. From the data in Problem 59, we know that
T1 = 27.32 (days) and that a1 = 238900 (mi). We are given a = 10000, and Kepler’s third law of planetary
motion (Eq. (44)) implies that

(T1)2

(a1)3
=

T 2

a3
; that is,

(27.32)2

(238900)3
=

T 2

(10000)3
,

which we solve for T ≈ 0.233968 (days). Then the formula b2 = a2(1− e2) with e = 0.5 yields b = 8660.25;
next, the formula c2 = a2 − b2 yields c = 5000. Hence at perigee the speed of the satellite is

v =
2πab

(a− c)T
≈ 465140

miles per day; we divide by 24 · 3600 to convert this answer to approximately 5.383569 miles per second.
Replace a− c with a+ c to find that the speed of the satellite at apogee is approximately 1.794523 miles per
second.

C12S06.061: Equation (44), applied to the Earth-Moon system with units of miles and days, yields
(27.32)2 = γ · (238900)3. For a satellite with period T = 1

24 (of a day—one hour), it yields T 2 = γ · r3 where
r is the radius of the orbit of the satellite. Divide the second of these equations by the first to eliminate γ:

T 2

(27.32)2
=

r3

(238900)3
,

so that

r3 =
(238900)3

(24)2 · (27.32)2
, and thus r ≈ 3165.35
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miles, about 795 miles below the surface of the Earth. So it can’t be done.

C12S06.062: Equation (44), when applied to the Earth-Sun system with units of miles and years, yields
(1)2 = γ ·(92956000)3. Applied to the Jupiter-Sun system it yields (11.86)2 = γ ·a3 where a is the semimajor
axis of Jupiter’s orbit. Division of the second of these equations by the first yields

a3 = (92956000)3 · (11.86)2,

and hence the semimajor axis of the Jovian orbit is a ≈ 483430322 miles.

C12S06.063: With the usual meaning of the symbols, the data given in the problem tell us that a+c = 4960
and a − c = 4060, which we solve for a = 4510 (units are in days and miles). Let T be the period of the
satellite in its orbit. Equation (44), applied to the Earth-Moon system, then to the Earth-satellite system,
yields

(27.32)2 = γ · (238900)3 and T 2 = γ · (4510)2,

which we solve for T ≈ 0.0708632854. Multiply by 24 to convert this answer to approximately 1.7007188486
hours—about 1 h 42 min 2.588 s.

C12S06.064: Part (a): We begin with Eq. (40),

r =
pe

1 + e cos θ

and differentiate both sides with respect to t, remembering that θ = θ(t). Thus

dr

dt
=

dr

dθ
· dθ
dt

=
h

r2
· dr
dθ

=
h

r2
· pe2 sin θ

(1 + e cos θ)2
=

h sin θ

p
· p2e2

r2(1 + cos θ)2
=

h sin θ

p
· r

2

r2
=

h sin θ

p
.

Part (b): Another differentiation with respect to t then yields

d2r

dt2
=

d

dt

(
dr

dt

)
=

[
d

dθ

(
dr

dt

) ]
· dθ
dt

=
h

r2
· h cos θ

p
=

h2 cos θ
pr2

.

Part (c): First we solve

r =
pe

1 + e cos θ
for cos θ =

pe− r

re
.

Then substitution in the result in part (b) yields

d2r

dt2
=

h2 cos θ
pr2

=
h2(pe− r)

pr3e
=

h2

r2

(
pe− r

pre

)
=

h2

r2

(
1
r
− 1

pe

)
.

C12S06.065: We will use Eqs. (37) and (41), which are—respectively—

r2 dθ

dt
= h (constant) and

d2r

dt2
=

h2

r2

(
1
r
− 1

pe

)
.

But we begin with Eq. (42),

a =

[
d2r

dt2
− r

(
dθ

dt

)2
]

ur.

23



Substitution of Eqs. (37) and (41) then yields

a =

[
h2

r2

(
1
r
− 1

pe

)
− 1

r3

(
r2 dθ

dt

)2
]
ur

=
[
h2

r2

(
1
r
− 1

pe

)
− 1

r3
h2

]
ur =

[
h2

r3
− h2

per2
− h2

r3

]
ur = − h2

per2
ur.

C12S06.066: If θ = θ(t), ur = 〈 cos θ, sin θ 〉, and uθ = 〈− sin θ, cos θ 〉, then

dur
dt

= 〈− sin θ, cos θ 〉 dθ
dt

= uθ
dθ

dt
and

duθ
dt

= 〈− cos θ, − sin θ 〉 dθ
dt

= −ur
dθ

dt
.

C12S06.067: We begin with Eq. (33),

v =
dr

dt
ur + r

dθ

dt
uθ,

and differentiate both sides with respect to t:

a =
dv
dt

=
(
d2r

dt2
ur +

dr

dt
· dur

dt

)
+

(
dr

dt
· dθ
dt

uθ + r
d2θ

dt2
uθ + r

dθ

dt
· duθ

dt

)

=
d2r

dt2
ur +

dr

dt
· dθ
dt

uθ +
dr

dt
· dθ
dt

uθ + r
d2θ

dt2
uθ − r

(
dθ

dt

)2

ur

=

[
d2r

dt2
− r

(
dθ

dt

)2
]
ur +

[
2
dr

dt
· dθ
dt

+ r
d2θ

dt2

]
uθ

=

[
d2r

dt2
− r

(
dθ

dt

)2
]
ur +

[
1
r
· d

dt

(
r2 dθ

dt

)]
uθ.
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Section 12.7

C12S07.001: The graph of 3x+ 2y + 10z = 20 is a plane with intercepts x = 20
3 , y = 10, and z = 2. The

graph produced by the Mathematica 3.0 command

ParametricPlot3D[ { x, y, (20 - 3∗x - 2∗y)/10 }, { x, -7, 7 }, { y, -7, 7 } ];

is shown next.

C12S07.002: The graph of 3x+ 2y = 30 is a plane perpendicular to the xy-plane; that is, parallel to the
z-axis. Its intercepts are (10, 0, 0) and (0, 15, 0). The graph produced by the Mathematica 3.0 command

ParametricPlot3D[ { x, (30 - 3∗x)/2, z }, { x, -12, 12 }, { z, -12, 12 },

ViewPoint → { 1.7, -1.1, 2 } ];

is shown next.

C12S07.003: The graph of x2 + y2 = 9 is a circular cylinder of radius 3 with axis the z-axis. The graph
produced by the Mathematica 3.0 command

ParametricPlot3D[ { 3∗Cos[t], 3∗Sin[t], z }, { t, 0, 2∗Pi }, { z, -4, 4 } ];
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is shown next.

C12S07.004: The graph of y2 = x2− 9 is a cylinder whose rulings are lines parallel to the z-axis. It meets
the xy-plane in the hyperbola with equation x2 − y2 = 9. The graph produced by the Mathematica 3.0
command

ParametricPlot3D[ {{ 3∗Cosh[t], 3∗Sinh[t], z }, { -3∗Cosh[t], 3∗Sinh[t], z }},

{ t, -2, 2 }, { z, -5, 5 } ];

is shown next.

C12S07.005: The graph of xy = 4 is a cylinder whose rulings are parallel to the z-axis. It meets the
xy-plane in the hyperbola with equation xy = 4. The graph produced by the Mathematica 3.0 command

ParametricPlot3D[ {{ x, 4/x, z }, { -x, -4/x, z }}, { x, 1/3, 5 }, { z, -3, 3 } ];
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is shown next.

C12S07.006: The given equation z = 4x2 + 4y2 has the polar form z = 4r2, which shows that its graph is
a surface of revolution around the z-axis. The surface meets the xz-plane in the parabola z = 4x2, so the
surface is a circular paraboloid. The graph produced by the Mathematica 3.0 command

ParametricPlot3D[ { r∗Cos[t], r∗Sin[t], 4*r*r }, { r, 0, 0.75 }, { t, 0, 2∗Pi } ];

is shown next.

C12S07.007: The graph of the equation z = 4x2 + y2 is an elliptic paraboloid with axis the z-axis and
vertex at the origin. It is elliptic because, if z = a2, then the horizontal cross section there has equation
4x2 + y2 = a2. It is a paraboloid because it meets every vertical plane containing the z-axis in a parabola;
for example, it meets the xz-plane in the parabola with equation z = 4x2. The graph produced by the
Mathematica 3.0 command

ParametricPlot3D[ { r∗Cos[t], 2∗r∗Sin[t], 4∗r∗r }, { r, 0, 1 }, { t, 0, 2∗Pi } ];
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is shown next.

C12S07.008: The graph of the equation 4x2 + 9y2 = 36 is an elliptical cylinder with axis the x-axis. The
graph produced by the Mathematica 3.0 command

ParametricPlot3D[ { 3∗Sin[t], 4∗Cos[t], z }, { t, 0, 2∗Pi }, { z, -5, 5 },

AspectRatio → Automatic ];

is shown next.

C12S07.009: The given equation z = 4− x2 − y2 has the polar coordinates form z = 4− r2, so the graph
is a surface of revolution around the z-axis. The graph meets the xz-plane in the parabola z = 4−x2, so the
graph is a circular paraboloid, opening downward, with axis the z-axis, and vertex at (0, 0, 4). The graph
produced by the Mathematica 3.0 command

ParametricPlot3D[ { r*Cos[t], r∗Sin[t], 4 - r∧2 }, { r, 0, 3 }, { t, 0, 2∗Pi } ];
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is shown next.

C12S07.010: The graph of the equation y2 + z2 = 1 is a circular cylinder of radius 1 with axis the x-axis.
The graph produced by the Mathematica 3.0 command

ParametricPlot3D[ { x, Cos[t], Sin[t] }, { t, 0, 2∗Pi }, { x, -2, 2 } ];

is shown next.

C12S07.011: The given equation 2z = x2 + y2 has the polar form z = 1
2 r

2, so the graph is a surface of
revolution around the z-axis. It meets the yz-plane in the parabola with equation z = 1

2 x
2, so the surface

is a circular paraboloid; its axis is the z-axis and its vertex is at the origin. The graph produced by the
Mathematica 3.0 command

ParametricPlot3D[ { r∗Cos[t], r∗Sin[t], (r∗r)/2 }, { t, 0, 2∗Pi }, { r, 0, 2 } ];

5



-2

-1

0

1

2
-2

-1

0

1

2

0

0.5

1

1.5

2

-2

-1

0

1

2

1
1.5

2
2.5

3

-1

0

1

-1

0

1

1
1.5

2
2.5

3

-1

0

1

is shown next.

C12S07.012: The graph of the equation x = 1+y2+z2 is the graph of the equation z = 1+x2+y2 = 1+r2

rotated 90◦, so the surface is a circular paraboloid opening along the positive x-axis and with its vertex at
(1, 0, 0). The graph produced by the Mathematica 3.0 command

ParametricPlot3D[ { 1 + r∗r, r∗Cos[t], r∗Sin[t] }, { t, 0, 2∗Pi }, { r, 0, 1.4 } ];

is shown next.

C12S07.013: The polar form of the given equation z2 = 4(x2 + y2) is z = ±2r, so the graph is a surface of
revolution around the z-axis. Because z is proportional to r, the graph consists of both nappes of a circular
cone with axis the z-axis and vertex at the origin. To produce the graph of the upper nappe, we used the
Mathematica 3.0 command

ParametricPlot3D[ { r∗Cos[t], r∗Sin[t], 2∗r }, { t, 0, 2∗Pi }, { r, 0, 2 } ];
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and the result is shown next.

C12S07.014: The graph of the equation y2 = 4x is a cylinder parallel to the z-axis. It is a parabolic
cylinder because it intersects the xy-plane in the parabola with equation y2 = 4x. The graph generated by
the Mathematica 3.0 command

ParametricPlot3D[ { y∗y/4, y, z }, { y, -3.5, 3.5 }, { z, -3, 3 } ];

is shown next.

C12S07.015: The graph of the equation x2 = 4z + 8 is a cylinder parallel to the y-axis. It is a parabolic
cylinder because its trace in the xz-plane is the parabola with equation z = (x2 − 8)/4. It opens upward
and its lowest points consist of line z = −2, x = 0. The graph produced by the Mathematica 3.0 command

ParametricPlot3D[ { x, y, (x∗x - 8)/4 }, { x, -4, 4 }, { y, -4, 4 } ];
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is shown next.

C12S07.016: The graph of the equation x = 9 − z2 is a cylinder parallel to the y-axis. It is a parabolic
cylinder because its trace in the xz-plane is the parabola with equation x = 9− z2. The graph produced by
the Mathematica 3.0 command

ParametricPlot3D[ { 9 - z∗z, y, z }, { y, -4, 4 }, { z, -4, 4 } ];

is shown next.

C12S07.017: The graph of the equation 4x2 + y2 = 4 is a cylinder parallel to the z-axis. It is an elliptical
cylinder because its trace in any horizontal plane is the ellipse with equation 4x2 + y2 = 4. The graph of
this surface produced by the Mathematica 3.0 command

ParametricPlot3D[ { Cos[t], 2∗Sin[t], z }, { t, 0, 2∗Pi }, { z, -3, 3 } ];
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is shown next.

C12S07.018: The graph of the equation x2 + z2 = 4 is a cylinder parallel to the y-axis. It is a circular
cylinder because its trace in the xz-plane is a circle with center at the origin and radius 2. The Mathematica

3.0 command

ParametricPlot3D[ { 2∗Cos[t], y, 2∗Sin[t] }, { t, 0, 2∗Pi }, { y, -3, 3 } ];

generates the graph of this surface, shown next.

C12S07.019: The graph of the equation x2 = 4y2 + 9z2 is an elliptical cone with axis the x-axis. The
graph generated by the Mathematica 3.0 command

ParametricPlot3D[ {{ 6∗r, 3∗r∗Cos[t], 2∗r∗Sin[t] }, { -6∗r, 3∗r∗Cos[t], 2∗r∗Sin[t] }},

{ r, 0, 1.4 }, { t, 0, 2∗Pi } ];
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is shown next.

C12S07.020: The graph of the equation z = x2−4y2 is a hyperbolic paraboloid (see Example 13 of Section
12.7). The graph generated by the Mathematica 3.0 command

ParametricPlot3D[ { x, y, x∗x - 4∗y∗y }, { x, -1, 1 }, { y, -0.7, 0.7 } ];

is shown next.

C12S07.021: The polar form of the given equation x2 + y2 + 4z = 0 is z = − 1
4 r

2, so its graph is a
paraboloid opening downward, with axis the negative z-axis and vertex at the origin. The graph generated
by the Mathematica 3.0 command

ParametricPlot3D[ { r∗Cos[t], r∗Sin[t], -r∗r/4 }, { t, 0, 2∗Pi }, { r, 0, 3.2 } ];

is shown next.

C12S07.022: The graph of the equation x = sin y is a cylinder parallel to the z-axis. It meets the xy-plane
in the curve x = sin y. The graph generated by the Mathematica 3.0 command

10



 

-1
0

1

-5

0

5

-2

0

2

-1
0

1

-5

0

5

 

-1

0

1

2

-1

-0.5

0
0.5

1

-1

-0.5

0

0.5

1

-1

0

1

2

-1

-0.5

0
0.5

1

ParametricPlot3D[ { Sin[y], y, z }, { y, -7∗Pi/4, 11∗Pi/4 }, { z, -3, 3 } ];

is shown next.

C12S07.023: There may be two versions of this problem, depending on which printing and which version
(with or without matrices) of the textbook you are using. The intended version and its solution are given
first.

The graph of the equation x = 2y2 − z2 is a hyperbolic paraboloid with saddle point at the origin. It
meets the xz-plane in the parabola x = −z2 with vertex at the origin and opening to the left; it meets the
xy-plane in the parabola x = 2y2 with vertex at the origin and opening to the right. The surface meets each
plane parallel to the yz-plane in both branches of a hyperbola (except for the yz-plane itself, which it meets
in a pair of straight lines that meet at the origin—a degenerate hyperbola). The graph generated by the
Mathematica 3.0 command

ParametricPlot3D[ { 2∗y∗y - z∗z, y, z }, { y, -1, 1 }, { z, -1, 1 } ];

is shown next.

The other version of this problem is the result of a typograhical error discovered too late in the production
process to be corrected in the first printing of the version of the textbook “with matrices.” Its solution follows.

Given the equation z = 2y2 − z2, we complete the square in z to obtain

2y2 − z2 − z = 0;

2y2 − z2 − z − 1
4

= − 1
4
;
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2y2 −
(
z +

1
2

)2

= − 1
4
.

The graph of this equation is a cylinder with rulings parallel to the x-axis (because x is missing from the
equation). It meets the yz-plane in the hyperbola with equation

(
z +

1
2

)2

− 2y2 =
1
4
.

Thus the graph is a hyperbolic cylinder parallel to the x-axis.

C12S07.024: The graph of the equation

x2 + 4y2 + 2z2 = 4; that is,
x2

4
+ y2 +

z2

2
= 1

is an ellipsoid centered at the origin. Its x-intercepts are (±2, 0), its y-intercepts are (0, ±1, 0), and its
z-intercepts are

(
0, 0, ±

√
2

)
. Any plane perpendicular to any coordinate axis and meeting that axis strictly

between the intercepts meets the ellipsoid in a non-circular ellipse. The graph generated by the Mathematica

3.0 command

ParametricPlot3D[ {{ 2∗r∗Cos[t], r∗Sin[t], Sqrt[2 - 2∗r∗r] },

{ 2∗r∗Cos[t], r∗Sin[t], -Sqrt[2 - 2∗r∗r] }},

{ t, 0, 2*Pi }, { r, 0, 1 } ];

is shown next.

C12S07.025: The graph of the equation x2 + y2 − 9z2 = 9 is a hyperboloid of one sheet with axis the
z-axis. It meets the xy-plane in a circle of radius 3 and meets parallel planes in larger circles. It meets every
plane containing the z-axis in both branches of a hyperbola. The graph generated by the Mathematica 3.0
command

ParametricPlot3D[ {{ r∗Cos[t], r∗Sin[t], Sqrt[(r∗r - 9)/9] },

{ r∗Cos[t], r∗Sin[t], -Sqrt[(r∗r - 9)/9] }},

{ r, 3, 4.5 }, { t, 0, 2∗Pi } ];
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is shown next.

C12S07.026: The graph of the equation x2 − y2 − 9z2 = 9 is a hyperboloid of two sheets centered at the
origin and with its vertices on the x-axis at (±3, 0, 0). Each plane perpendicular to the x-axis and meeting
it at a point x for which |x| > 3 intersects the hyperboloid in an ellipse centered on the x-axis. A plane
perpendicular to either of the other coordinate axes meets it in both branches of a hyperbola. The graph
generated by the Mathematica 3.0 command

ParametricPlot3D[ {{ Sqrt[9∗r∗r + 9], 3∗r∗Cos[t], r∗Sin[t] },

{ -Sqrt[9∗r∗r + 9], 3∗r∗Cos[t], r∗Sin[t] }},

{ r, 0, 2 }, { t, 0, 2∗Pi } ];

is shown next.

C12S07.027: The graph of the equation y = 4x2 + 9z2 is an elliptic paraboloid opening in the positive y-
direction, with axis the nonnegative y-axis and vertex at the origin. The graph generated by the Mathematica

3.0 command

ParametricPlot3D[ { 3∗r∗Cos[t], 36∗r∗r, 2∗r∗Sin[t] }, { r, 0, 1/2 }, { t, 0, 2∗Pi } ];
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is shown next.

C12S07.028: The graph of the equation y2 + 4x2 − 9z2 = 36 is a hyperboloid of one sheet with axis the
z-axis. Planes normal to the z-axis meet the surface in ellipses. Planes containing the z-axis meet it in both
branches of a hyperbola. The graph generated by the Mathematica 3.0 command

ParametricPlot3D[ {{ r∗Cos[t], 2∗r∗Sin[t], Sqrt[(4∗r∗r - 36)/9] },

{ r∗Cos[t], 2∗r∗Sin[t], -Sqrt[(4∗r∗r - 36)/9] }},

{ t, 0, 2∗Pi }, { r, 3, 5 } ];

is shown next.

C12S07.029: The graph of the equation y2 − 9x2 − 4z2 = 36 is a hyperboloid of two sheets with axis the
y-axis, center the origin, and intercepts (0, ±6, 0). Planes containing the y-axis meet it in both branches of
a hyperbola. Planes normal to the y-axis and outside the intercepts meet it in ellipses. The graph generated
by the Mathematica 3.0 command

ParametricPlot3D[ {{ 2∗r∗Cos[t], 6∗Sqrt[r∗r + 1], 3∗r∗Sin[t] },

{ 2∗r∗Cos[t], -6∗Sqrt[r∗r + 1], 3∗r∗Sin[t] }},

{ t, 0, 2∗Pi }, { r, 0, 1 } ];
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is shown next.

C12S07.030: The graph of the equation x2 + 9y2 + 4z2 = 36 is an ellipsoid centered at the origin. The
graph generated by the Mathematica 3.0 command

ParametricPlot3D[ {{ 3∗r∗Cos[t], r∗Sin[t], Sqrt[(36 - 9∗r∗r)/4] },

{ 3∗r∗Cos[t], r∗Sin[t], -Sqrt[(36 - 9∗r∗r)/4] }},

{ r, 0, 2 }, { t, 0, 2∗Pi } ];

is shown next.

C12S07.031: The graph of the curve x = 2z2 (in the xz-plane) is to be rotated around the x-axis. To
obtain an equation of the resulting surface, replace z with (y2 + z2)1/2 to obtain x = 2(y2 + z2). The surface
is a circular paraboloid opening along the positive x-axis. The graph generated by the Mathematica 3.0
command

ParametricPlot3D[ { 2∗r∗r, r∗Cos[t], r∗Sin[t] }, { t, 0, 2∗Pi }, { r, 0, 2 } ];
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is shown next.

C12S07.032: The curve 4x2 + 9y2 = 36 (in the xy-plane) is to be rotated around the y-axis. To obtain an
equation of the resulting surface, replace x2 with x2 + z2 to obtain 4x2 + 4z2 + 9y2 = 36. The surface is an
ellipsoid (actually, an oblate spheroid) centered at the origin. To see its graph, enter the Mathematica 3.0
command

ParametricPlot3D[ {{ r∗Cos[t], Sqrt[(36 - 4∗r∗r)/9], r∗Sin[t] },
{ r∗Cos[t], -Sqrt[(36 - 4∗r∗r)/9], r∗Sin[t] }},
{ t, 0, 2∗Pi }, { r, 0, 3 } ];

C12S07.033: The curve y2 − z2 = 1 (in the yz-plane) is to be rotated around the z-axis. To obtain an
equation of the resulting surface, replace y2 with x2 +y2 to obtain x2 +y2− z2 = 1. The surface is a circular
hyperboloid of one sheet with axis the z-axis. The graph generated by the Mathematica 3.0 command

ParametricPlot3D[ {{ r∗Cos[t], r∗Sin[t], Sqrt[r∗r - 1] },
{ r∗Cos[t], r∗Sin[t], -Sqrt[r∗r - 1] }},
{ r, 1, 3 }, { t, 0, 2∗Pi } ];

is shown next.

C12S07.034: The curve z = 4 − x2 (in the xz-plane) is to be rotated around the z-axis. To obtain an
equation of the resulting surface, replace x2 with x2 + y2 to obtain z = 4 − x2 − y2. See the solution of
Problem 9 of this section for further discussion of this surface.
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C12S07.035: The curve y2 = 4x (in the xy-plane) is to be rotated around the x-axis. Replace y2 with
y2 + z2 to obtain an equation of the resulting surface: y2 + z2 = 4x. The surface is a circular paraboloid
opening along the positive x-axis, with axis that axis, and with vertex at the origin. The graph generated
by the Mathematica 3.0 command

ParametricPlot3D[ { r∗r/4, r∗Cos[t], r∗Sin[t] }, { t, 0, 2∗Pi }, { r, 0, 3.5 } ];

is shown next.

C12S07.036: The curve with equation yz = 1 (in the yz-plane) is to be rotated around the z-axis. To
obtain an equation of this surface, replace y with ±

√
x2 + y2 to obtain z2(x2 + y2) = 1. To see this surface,

enter the Mathematica 3.0 command

ParametricPlot3D[ {{ r∗Cos[t], r∗Sin[t], 1/r }, { r∗Cos[t], r∗Sin[t], -1/r }},
{ t, 0, 2∗Pi }, { r, 1/6, 4 }, ViewPoint → { 1.3, -2.2, 0.6 } ];

The change in ViewPoint is necessary; otherwise the top half of the figure completely conceals the bottom
half.

C12S07.037: Given: the curve with equation z = exp(−x2) in the xz-plane, to be rotated around the
z-axis. To obtain an equation of the resulting surface, replace x2 with x2 + y2 to obtain z = exp

(
−x2 − y2

)
.

The graph of this surface generated by the Mathematica 3.0 command

ParametricPlot3D[ { r∗Cos[t], r∗Sin[t], Exp[-r∗r] }, { t, 0, 2∗Pi }, { r, 0, 2.4 },
AspectRatio → Automatic, ViewPoint → { 1.3, -2.2, 0.6 } ];

is shown next.

C12S07.038: Given: y2 − 2yz + 2z2 = 1. This is an ellipse in the yz-plane; in the appropriately rotated
(through about 0.447 radians, about 25.6◦) uv-coordinate system, its equation takes the form (0.38)u2 +
(2.62)v2 = 1 (the coefficients are approximate). If this ellipse is rotated around the z-axis, the resulting
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surface has equation obtained from that of the ellipse by replacement of y with ±
√
x2 + y2 . The resulting

equation is

x2 + y2 ± 2z
√
x2 + y2 + 2z2 = 1.

Half of the surface is shown next.

C12S07.039: The curve with equation z = 2x (in the xz-plane) is to be rotated around the z-axis. To
obtain an equation of the surface thereby generated, replace x with ±

√
x2 + y2 . The resulting equation is

z2 = 4(x2 + y2) and its graph consists of both nappes of a right circular cone with vertices at the origin and
axis the z-axis. The graph generated by the Mathematica 3.0 command

ParametricPlot3D[ {{ r∗Cos[t], r∗Sin[t], 2∗r }, { r∗Cos[t], r∗Sin[t], -2∗r }},
{ t, 0, 2∗Pi }, { r, 0, 3 } ];

is shown next.

C12S07.040: The curve with equation z = 2x (in the xz-plane) is to be rotated around the x-axis. To
obtain an equation of the surface it generates, replace z with ±

√
y2 + z2 . An equation of the surface is thus

4x2 = y2 + z2. The surface consists of both nappes of a cone with vertices at the origin and axis the x-axis.
To generate its graph, execute the Mathematica 3.0 command

ParametricPlot3D[ {{ r/2, r∗Cos[t], r∗Sin[t] }, { -r/2, r∗Cos[t], r∗Sin[t] }},
{ t, 0, 2∗Pi }, { r, 0, 3 } ];
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C12S07.041: The graph of x2 + 4y2 = 4 is an elliptical cylinder with centerline the z-axis. Thus its traces
in horizontal planes are ellipses with semiaxes 2 and 1.

C12S07.042: The graph of x2 + 4y2 + 4z2 = 4 is an ellipsoid (actually, a prolate spheroid). Its traces in
horizontal planes near the origin are ellipses centered on the z-axis.

C12S07.043: The graph of x2 + 4y2 + 4z2 = 4 is an ellipsoid. A plane parallel to the yz-plane is
perpendicular to the x-axis and thus has an equation of the form x = a. So the trace of the ellipsoid in such
a plane has equations

x = a, 4y2 + 4z2 = 4− a2.

Thus the trace is a circle if |a| < 2, a single point if |a| = 2, and the empty set if |a| > 2.

C12S07.044: The graph of z = 4x2 + 9y2 is an elliptical paraboloid opening upward with axis the z-axis
and vertex at the origin. A horizontal plane has equation z = a and thus the trace in such a plane has
equations

z = a, 4x2 + 9y2 = a.

Thus the trace is an ellipse if a > 0, a single point if a = 0, and the empty set if a < 0.

C12S07.045: The graph of z = 4x2 + 9y2 is an elliptical paraboloid opening upward with axis the z-axis
and vertex at the origin. A plane parallel to the yz-plane has equation x = a and thus the trace in such a
plane has equations

x = a, z = 4a2 + 9y2.

Thus the trace is a parabola opening upward with vertex at (a, 0, 4a2).

C12S07.046: The graph of z = xy meets the horizontal plane z = a in the curve with equations

z = a, y =
a

x
.

Thus the trace is a hyperbola with asymptotes lying in the xz-plane and the yz-plane, except if a = 0 then
the trace consists of the x- and y-axes.

C12S07.047: A plane containing the z-axis has an equation of the form ax+ by = 0. So if b 
= 0 then the
intersection of the hyperbolic paraboloid z = xy with such a plane has equations

y = − a
b
x, z = − a

b
x2.

Hence the trace is a parabola opening downward if a and b have the same sign, opening upward if they have
opposite sign, and is a horizontal line if a = 0 (or if b = 0). The surface itself resembles the one shown in
Fig. 12.7.22 rotated 45◦ around the z-axis.

C12S07.048: Given: the surface with equation x2 − y2 + z2 = 1, a hyperboloid of one sheet. Its traces in
horizontal planes (where z = a, a constant) are hyperbolas with equations of the form

z = a, x2 − y2 = 1− a2.
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(If a = ±1 then the traces are pairs of intersecting straight lines.) Its traces in planes parallel to the yz-plane,
where x = a, a constant, have equations of the form

x = a, z2 − y2 = 1− a2,

so the traces are similar to those in the previous case. But its traces in planes parallel to the xz-plane, where
y = a (a constant), have equations of the form

y = a, x2 + z2 = a2 + 1,

and thus are circles centered on the y-axis, having minimum radius 1 when a = 0 but larger radius the larger
|a| becomes. The hyperboloid resembles the one shown in Fig. 12.7.17, except that its axis is the y-axis
rather than the z-axis.

C12S07.049: The triangles OAC and OBC in Fig. 12.7.1 are congruent because the angles OCA and
OCB are right angles, |OA| = |OB | because they are both radii of the same sphere, and |OC | = |OC |. So
the triangles have matching side-side-angle in the same order.

C12S07.050: The intersection I of the two surfaces x = 1−y2 and x = y2+z2 satisfies both these equations
simultaneously, and thus 1− y2 = y2 + z2; that is, 2y2 + z2 = 1. Hence I lies on the elliptical cylinder with
equation 2y2 + z2 = 1. Thus the projection of I into the yz-plane lies on the ellipse E with equations x = 0,
2y2 + z2 = 1. Care is needed here. You can’t simply set x = 0 and simplify the other two equations; you
won’t get all the points on the ellipse. To project the intersection of two surfaces into a plane, first find the
equation of the cylinder perpendicular to the plane and containing the intersection. Moreover, at this point
all we actually know is that the projection lies on the ellipse E. We need to show that the projection of I is
all of E. Let (0, y, z) be a point of E. Then 2y2 + z2 = 1. Let x = 1− y2. Then

y2 + z2 = 2y2 + z2 + 1− y2 − 1 = 1 + 1− y2 − 1 = 1− y2 = x.

Therefore the point (x, y, z) lies on I. Hence every point of E is the image of a point of I under the vertical
projection into the yz-plane. This proves that the projection of the intersection of the given surfaces into
the yz-plane is an ellipse.

C12S07.051: The intersection I of the plane z = y and the paraboloid z = x2 +y2 satisfies both equations,
and thus lies on the surface with equation

y = x2 + y2; that is, x2 +
(
y − 1

2

)2

=
1
4
.

This surface is a circular cylinder perpendicular to the xy-plane. Hence the projection of I into that plane
lies on the circle C with equations

z = 0, x2 +
(
y − 1

2

)2

=
1
4
.

It remains to show that all of C is obtained by projecting I into the xy-plane. Suppose that (x, y, 0) lies on
C. Then y = x2 + y2. Let z = y. Then

x2 + y2 = y = z,

and therefore (x, y, z) satisfies the equations of both the plane and the paraboloid. Therefore (x, y, z) lies
on I. This proves that the projection of I into the xy-plane is all of C. Therefore the projection of I into
the xy-plane is a circle.
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C12S07.052: The intersection I of the paraboloids with equations y = 2x2 + 3z2 and y = 5 − 3x2 − 2z2

satisfies both equations, and therefore lies on the surface with equation

2x2 + 3z2 = 5− 3x2 − 2z2; that is, x2 + z2 = 1.

This surface is a circular cylinder normal to the xz-plane. Therefore the projection of I into that plane lies
on the circle C with equations

y = 0, x2 + z2 = 1.

It remains to show that every point of C is thereby obtained. Suppose that (x, 0, z) lies on C. Then
x2 + z2 = 1. Let y = 2x2 + 3z2. Then

5− 3x2 − 2z2 = 5− 5x2 − 5z2 + 2x2 + 3z2

= 5− 5(x2 + z2) + 2x2 + 3z2 = 5− 5 + 2x2 + 3z2 = 2x2 + 3z2 = y.

Therefore (x, y, z) lies on both paraboloids, and thus the point (x, y, z) on their intersection I projects onto
the point (x, 0, z) of the circle C. That is, all of C is obtained by projection of I into the xz-plane. This
proves that the projection of I into that plane is indeed a circle.

C12S07.053: The plane with equation x + y + z = 1 and the ellipsoid with equation x2 + 4y2 + 4z2 = 4
have intersection that satisfies both equations, so it lies on the surface with equation

x2 + 4y2 + 4(1− x− y)2 = 4; that is, 5x2 + 8xy + 8y2 − 8x− 8y = 0.

This surface is a cylinder normal to the xy-plane, so its projection into the xy-plane—which is the projection
of the intersection into the xy-plane—has the same equation. By earlier discussions of such equations, the
projection must be a conic section. But it cannot be a hyperbola or a parabola because it is clearly a closed
curve. (It is not any of the degenerates cases of a conic section because it contains the two points (0, 0) and
(0, 1).) Therefore it is an ellipse. To be absolutely certain of this, the Mathematica 3.0 command

ContourPlot[ 5∗x∗x + 8∗x∗y + 8∗y∗y - 8∗x - 8∗y, { x, -1, 2 }, { y, -1.5, 1.5 },
Axes → True, AxesOrigin → (0,0), AxesLabel → { x, y }, Contours → 3,

ContourShading → False, PlotPoints → 47, PlotRange → { -0.01, 0.01 } ];

generates a plot of this curve, and it’s shown next.
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Section 12.8

C12S08.001: The formulas in (3) immediately yield

x = r cos θ = 1 · cos
π

2
= 0, y = r sin θ = 1 · sin π

2
= 1, z = 2.

Answer: (0, 1, 2).

C12S08.002: The formulas in (3) yield (x, y, z) = (0, −3, −1).

C12S08.003: If (r, θ, z) = (2, 3π/4, 3), then (x, y, z) = (r cos θ, r sin θ, z) =
(
−
√

2 ,
√

2 , 3
)
.

C12S08.004: If (r, θ, z) = (3, 7π/6, −1), then (x, y, z) = (r cos θ, r sin θ, z) =
(
− 3

2

√
3 , − 3

2 , −1
)
.

C12S08.005: If (r, θ, z) = (2, π/3, −5), then (x, y, z) = (r cos θ, r sin θ, z) =
(
1,
√

3 , −5
)
.

C12S08.006: If (r, θ, z) = (4, 5π/3, 6), then (x, y, z) = (r cos θ, r sin θ, z) =
(
2, −2

√
3 , 6

)
.

C12S08.007: Given (ρ, φ, θ) = (2, 0, π), the equations in (6) immediately yield

x = ρ sinφ cos θ = 0, y = ρ sinφ sin θ = 0, z = ρ cosφ = 2.

Answer: (0, 0, 2).

C12S08.008: If (ρ, φ, θ) = (3, π, 0), then

(x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) = (0, 0, −3).

C12S08.009: If (ρ, φ, θ) = (3, π/2, π), then

(x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) = (−3, 0, 0).

C12S08.010: If (ρ, φ, θ) = (4, π/6, 2π/3), then

(x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) =
(
−1,
√

3 , 2
√

3
)
.

C12S08.011: If (ρ, φ, θ) = (2, π/3, 3π/2), then

(x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) =
(
0, −
√

3 , 1
)
.

C12S08.012: If (ρ, φ, θ) = (6, 3π/4, 4π/3), then

(x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) =
(
− 3

2

√
2 , − 3

2

√
6 , −3

√
2

)
.

C12S08.013: If P (x, y, z) = P (0, 0, 5), then P has cylindrical coordinates

r =
√
x2 + y2 = 0, θ (therefore) arbitrary, and z = 5.

So one correct answer is (0, 0, 5). Also P has spherical coordinates

1



ρ =
√
x2 + y2 + z2 = ±5, φ = 0 (if ρ > 0), θ (therefore) arbitrary.

Thus one correct answer is (5, 0, 0). Another is (−5, π, π/2).

C12S08.014: If P (x, y, z) = P (0, 0, −3), then P has cylindrical coordinates

r =
√
x2 + y2 = 0, θ (therefore) arbitrary, and z = −3.

So one correct answer is (0, 0, −3). Also P has spherical coordinates

ρ =
√
x2 + y2 + z2 = ±3, φ = π (if ρ > 0), θ (therefore) arbitrary.

Thus one correct answer is (3, π, 0). Another—perhaps more natural—is (−3, 0, 0).

C12S08.015: Cylindrical
(√

2 , π/4, 0
)
, spherical

(√
2 , π/2, π/4

)
.

C12S08.016: Cylindrical
(
2
√

2 , −π/4, 0
)
, spherical

(
2
√

2 , π/2, −π/4
)
.

C12S08.017: Given: the point with Cartesian coordinates P (1, 1, 1). Its cylindrical coordinates are(√
2 , π/4, 1

)
. To find the spherical coordinates of P , we compute

ρ =
√

12 + 12 + 12 =
√

3 and θ =
π

4
.

To find φ, Fig. 12.8.10 makes it clear that

cosφ =
z

ρ
=

1√
3

=
√

3
3
,

and hence

φ = arccos

(√
3
3

)
≈ 0.9553166181245093;

that’s approximately 54.7356103162◦, about 54◦ 44′ 8.197′′. Thus the spherical coordinates of P are
(
√

3 , cos−1

√
3
3
,
π

4

)
.

Other ways to express φ are

φ = sin−1

√
6
3

and φ = tan−1
(√

2
)
.

C12S08.018: Cylindrical
(√

2 , 3π/4, −1
)
, spherical

(√
3 , 1

2π + arccos
(

1
3

√
6

)
, 3π/4

)
. A simpler way to

express φ is

φ =
π

2
+ arctan

(√
2
2

)
,

which is approximately 125◦ 15′ 51.8′′. Thus the spherical coordinates of P (−1, 1, −1) are approximately
(1.732051, 2.186276, 2.356194) (with the angles in the last answer measured in radians). To find φ, see the
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(0,0,0) (0,1,–1)

(–1,1,–1)(0,0,–1)

φ

α

ρ

r

z-axis

following figure, showing the vertical plane containing the z-axis and the point (−1, 1, −1). The figure shows
that r =

√
2 and that ρ =

√
3 . Also

φ = α+
π

2
where tanα =

1
r

=
√

2
2
, sinα =

1
ρ

=
√

3
3
, and cosα =

r

ρ
=
√

6
3
.

C12S08.019: The given point P having the Cartesian coordinates (2, 1, −2) has cylindrical coordinates(√
5 , tan−1

(
1
2

)
, −2

)
. To find its spherical coordinates, it’s clear that ρ = 3. Imagine the vertical plane that

contains the z-axis and P (2, 1, −2). If you mark the points O(0, 0, 0) and Q(2, 1, 0), draw the z-axis and
the triangle OAP , then the angle φ is the obtuse angle reaching from the positive z-axis to the hypotenuse
of triangle OAP . Let α be the acute angle of that triangle at O. Note that OA has length r =

√
5 , that

OP has length ρ = 3, and that AP has length −z = 2. Because

φ = α+
π

2
, sinα =

2
3
, and cosα =

√
5
3
,

it now follows that

cosφ = cos
(π

2
+ α

)
= − sinα = −2

3
.

Therefore the spherical coordinates of P are
(

3, cos−1

(
−2

3

)
, tan−1

(
1
2

))
≈ (3, 2.300523983822, 0.463647609001).

C12S08.020: The cylindrical coordinates are
(√

5 , π + tan−1
(

1
2

)
, −2

)
. The spherical coordinates are

(
3,

π

2
+ sin−1 2

3
, π + tan−1 1

2

)
.

The evaluation of φ is the most difficult; use a figure resembling that shown in the solution of Problem 18.

C12S08.021: The cylindrical coordinates of P (3, 4, 12) are
(
5, arctan

(
4
3

)
, 12

)
and its spherical coordi-

nates are
(
13, arcsin

(
5
13

)
, arctan

(
4
3

))
.

C12S08.022: The cylindrical coordinates of P (−2, 4, −12) are
(
2
√

5 , arccos
(
− 1

5

√
5

)
, −12

)
; its spherical

coordinates are
(
2
√

41 , 1
2π + arccos

(
1
41

√
205

)
, arccos

(
− 1

5

√
5

))
. Finding φ is the most difficult; draw a

figure similar to the one used in the solution of Problem 18.

C12S08.023: The graph of the cylindrical equation r = 5 is the cylinder of radius 5 with axis the z-axis.
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C12S08.024: The graph of the cylindrical or spherical equation θ = 3π/4 is the vertical plane with
Cartesian equation x+ y = 0.

C12S08.025: The graph of the cylindrical or spherical equation θ = π/4 is the vertical plane with Cartesian
equation y = x.

C12S08.026: The graph of the spherical equation ρ = 5 is the spherical surface of radius 5 centered at the
origin.

C12S08.027: The graph of the spherical equation φ = π/6 consists of both nappes of the cone with
Cartesian equation z2 = 3x2 +3y2 if ρ may be negative. If ρ � 0, then the graph consists of the upper nappe
alone.

C12S08.028: The graph of the spherical equation φ = 5π/6 consists of both nappes of the cone with
Cartesian equation z2 = 3x2 +3y2 if ρ may be negative. If ρ � 0, then the graph consists of the lower nappe
alone.

C12S08.029: The graph of the spherical equation φ = π/2 is the xy-plane.

C12S08.030: If ρ is allowed to be negative, then the graph of the spherical equation φ = π is the z-axis.
If ρ � 0, then the graph is the nonpositive z-axis.

C12S08.031: The cylindrical equation z2 + 2r2 = 4 has the same graph as does the Cartesian equation
2x2 +2y2 +z2 = 4. It is an ellipsoid (actually, a prolate spheroid) with intercepts

(
±
√

2 , 0, 0
)
,

(
0, ±
√

2 , 0
)
,

and (0, 0, ±2).

C12S08.032: The cylindrical equation z2 − 2r2 = 4 has the same graph as does the Cartesian equation
z2−2x2−2y2 = 4. Hence its graph is a hyperboloid of two sheets with axis the z-axis and vertices (0, 0, ±2).
It resembles the one shown in Fig. 12.7.19.

C12S08.033: The graph of the cylindrical equation r = 4 cos θ is the same as the graph of the Cartesian
equation

x2 + y2 = 4x; that is, (x− 2)2 + y2 = 4.

Therefore its graph is a circular cylinder parallel to the z-axis, of radius 2, and centerline the line with
Cartesian equations x = 2, y = 0.

C12S08.034: The spherical equation ρ = 4 cosφ takes the Cartesian form

x2 + y2 + z2 = 4z; that is, x2 + y2 + (z − 2)2 = 4.

Thus the graph is a spherical surface with center (0, 0, 2) and radius 2; thus the south pole of the sphere is
located at the origin.

C12S08.035: The cylindrical equation r2 − 4r + 3 = 0 can be written in the form

(r − 1)(r − 3) = 0,

so that r = 1 or r = 3. The graph consists of all points that satisfy either equation. Hence the graph consists
of two concentric circular cylinders, each with axis the z-axis; their radii are 1 and 3.
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C12S08.036: The graph of the spherical equation ρ2 − 4ρ+ 3 = 0 can be written in the form

(ρ− 1)(ρ− 3) = 0,

so that ρ = 1 or ρ = 3. The graph consists of all points that satisfy either of these equations. Hence the graph
consists of two concentric spherical surfaces, both centered at the origin, and of radii 1 and 3, respectively.

C12S08.037: The cylindrical equation z2 = r4 can be written in Cartesian form as

z = ±(x2 + y2), so that z = x2 + y2 or z = −(x2 + y2).

The graph consists of all points that satisfy either of the last two equations, hence it consists of two circular
paraboloids, each with axis the z-axis, vertex at the origin; one opens upward and the other opens downward.

C12S08.038: The graph of the spherical equation ρ3 + 4ρ = 0 can be written in the form ρ(ρ2 + 4) = 0,
and the only solution of this equation is ρ = 0. Hence the graph of the given equation consists of the single
point (0, 0, 0).

C12S08.039: The Cartesian equation x2 + y2 + z2 = 25 has cylindrical form r2 + z2 = 25 and spherical
form ρ2 = 25; that is, ρ = ±5 (but the graph of ρ = −5 coincides with the graph of ρ = 5, so ρ = 5 is also a
correct answer).

C12S08.040: The Cartesian equation x2 + y2 = 2x takes the cylindrical form r2 = 2r cos θ, which has the
same graph as the slightly simpler r = 2 cos θ. Its spherical form is

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ = 2ρ sinφ cos θ;

ρ2 sin2 φ = 2ρ sinφ cos θ;

the last equation holds when ρ sinφ = 0 and when ρ sinφ = 2 cos θ. The former is the special case of the
latter when θ = π/2. Hence the spherical equation can be simplified to ρ sinφ = 2 cos θ.

C12S08.041: The Cartesian equation x+ y + z = 1 takes the cylindrical form

r cos θ + r sin θ + z = 1

and the spherical form

ρ sinφ cos θ + ρ sinφ sin θ + ρ cosφ = 1.

C12S08.042: The Cartesian equation x + y = 4 takes the cylindrical form r cos θ + r sin θ = 4 and the
spherical form ρ sinφ cos θ + ρ sinφ sin θ = 4.

C12S08.043: The Cartesian equation x2 + y2 + z2 = x+ y + z takes the cylindrical form

r2 + z2 = r cos θ + r sin θ + z

and the spherical form

ρ2 = ρ sinφ cos θ + ρ sinφ sin θ + ρ cosφ.
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The common factor ρ may be cancelled from both sides of the last equation without loss of any points on
the graph.

C12S08.044: The Cartesian equation z = x2 − y2 takes the cylindrical form

z = r2 cos2 θ − r2 sin2 θ = r2 cos 2θ

and the spherical form

ρ cosφ = ρ2 sin2 φ cos2 θ − ρ2 sin2 φ sin2 θ;

ρ cosφ = (ρ sinφ)2(cos2 θ − sin2 θ);

ρ cosφ = (ρ sinφ)2 cos 2θ;

cosφ = ρ sin2 φ cos 2θ.

C12S08.045: The surface is the part of the cylinder of radius 3 and centerline the z-axis that lies between
the planes z = −1 and z = 1. The Mathematica 3.0 command

ParametricPlot3D[ { 3∗Cos[t], 3∗Sin[t], z }, { t, 0, 2∗Pi }, { z, −1, 1 } ];

generates the graph, shown next.

C12S08.046: The surface is the hemisphere of radius 2 and center the origin that lies on and above the
xy-plane. The Mathematica 3.0 command

ParametricPlot3D[ { 2∗Sin[phi]∗Cos[t], 2∗Sin[phi]∗Sin[t], 2∗Cos[phi] },

{ t, 0, 2∗Pi }, { phi, 0, Pi/2 } ];
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generates the graph, shown next.

C12S08.047: The surface is the part of the sphere of radius 2 and center the origin that lies between the
two horizontal planes z = −1 and z = 1. The Mathematica 3.0 command

ParametricPlot3D[ { 2∗Sin[phi]∗Cos[t], 2∗Sin[phi]*Sin[t], 2*Cos[phi] },

{ t, 0, 2∗Pi }, { phi, Pi/3, 2∗Pi/3 } ];

generates the graph, shown next.

C12S08.048: The solid is the part of the solid cylinder with radius 3 and centerline the z-axis that lies
between the horizontal planes z = −2 and z = 2. To generate an image, we will create its curved side
and its top separately, then display them simultaneously. For the curved side, we use the Mathematica 3.0
command

f1 = ParametricPlot3D[ { 3∗Cos[t], 3∗Sin[t], z }, { t, 0, 2∗Pi }, { z, −2, 2 } ];

For the top surface, we use

f2 = ParametricPlot3D[ { r∗Cos[t], r∗Sin[t], 2 }, { r, 0, 3 }, { t, 0, 2∗Pi } ];
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Finally, the command Show[f1, f2] produces what appears to be the solid cylinder, and the result is
shown next.

C12S08.049: The solid lies between the horizontal planes z = −2 and z = 2, is bounded on the outside by
the cylinder of radius 3 with centerline the z-axis, and is bounded on the inside by the cylinder of radius 1
with centerline the z-axis. To generate an image, we will create the inner and outer bounding surfaces, the
top, and display them simultaneously. For the outer cylinder, we use the Mathematica 3.0 command

f1 = ParametricPlot3D[ { 3∗Cos[t], 3∗Sin[t], z }, { t, 0, 2∗Pi }, { z, −2, 2 } ];

For the inner cylinder, we use

f2 = ParametricPlot3D[ { 1∗Cos[t], 1∗Sin[t], z }, { t, 0, 2∗Pi }, { z, −2, 2 } ];

For the top, we use

f3 = ParametricPlot3D[ { r∗Cos[t], r∗Sin[t], 2 }, { t, 0, 2∗Pi }, { r, 1, 3 } ];

Finally, the command Show[ f1, f2, f3 ] produces an image of the solid. The infamous “out of memory”
message prohibits us from displaying it.

C12S08.050: The solid is bounded below by the xy-plane and above by the hemisphere of radius 2 centered
at the origin. To generate an image, we will create the hemisphere and its base separately and display them
simultaneously. We also want to view the resulting figure from below because, viewed from above, it would
be indistinguishable from the hemispherical surface of Problem 46. We begin with the Mathematica 3.0
command

f1 = ParametricPlot3D[ { 2∗Sin[phi]∗Cos[t], 2∗Sin[phi]∗Sin[t], 2∗Cos[phi] },
{ phi, 0, Pi/2 }, { t, 0, 2∗Pi },
ViewPoint -> { 1.3, −2.4, −2,0 } ];

followed by

f2 = ParametricPlot3D[ { rho∗Cos[t], rho∗Sin[t], 0 }, { rho, 0, 2 },
{ t, 0, 2∗Pi }, ViewPoint -> { 1.3, −2.4, −2.0 } ];
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Then the command Show[ f1, f2 ] produces an image of the hemispherical solid, shown next.

C12S08.051: The solid described by the spherical inequality 3 � ρ � 5 is the region between two concentric
spheres centered at the origin, one of radius 3 and the other of radius 5. We will display the half of this
solid for which y � 0 (otherwise, you wouldn’t be able to tell that the solid has a hollow core). We use
Mathematica 3.0 to draw the outer hemisphere, then the inner hemisphere, then make it appear “solid” by
covering the gap between the two with an annulus. Here are the commands:

f1 = ParametricPlot3D[ { 5∗Sin[phi]∗Cos[t], 5∗Sin[phi]∗Sin[t], 5∗Cos[phi] },
{ phi, 0, Pi }, { t, 0, Pi } ];

f2 = ParametricPlot3D[ { 3∗Sin[phi]∗Cos[t], 3∗Sin[phi]∗Sin[t], 3∗Cos[phi] },
{ phi, 0, Pi }, { t, 0, Pi } ];

f3 = ParametricPlot3D[ { r∗Cos[t], 0, r∗Sin[t] }, { r, 3, 5 }, { t, 0, 2∗Pi } ];

Show[ f1, f2, f3 ];

The figure is next.

C12S08.052: The solid is bounded below by a right circular cone, vertex at the origin, axis the z-axis,
opening upward; it is bounded above by part of the surface of a sphere of radius 10 centered at the origin.
To see it, execute the Mathematica 3.0 commands
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f1 = ParametricPlot3D[ { 10∗Sin[phi]∗Cos[t], 10∗Sin[phi]∗Sin[t], 10∗Cos[phi] },

{ t, 0, 2∗Pi }, { phi, 0, Pi/6 } ];

f2 = ParametricPlot3D[ { rho∗(1/2)∗Cos[t], rho∗(1/2)∗Sin[t], rho∗Cos[Pi/6] },

{ t, 0, 2*Pi }, { rho, 0, 10 } ];

Show[ f1, f2 ];

The resulting image is shown next.

C12S08.053: Given z = x2, a curve in the xz-plane to be rotated around the z-axis, replace x2 with x2+y2

to obtain z = x2 + y2. In cylindrical coordinates, the equation is z = r2.

C12S08.054: Given y2 − z2 = 1, a curve in the yz-plane to be rotated around the z-axis, replace y2 with
x2 + y2 to obtain x2 + y2 − z2 = 1. In cylindrical coordinates, the equation is r2 − z2 = 1.

C12S08.055: A central cross section of the sphere-with-hole, shown after this solution, makes it clear
that the figure is described in cylindrical coordinates by 1 � r � 2 and 0 � θ � 2π; the third cylindrical
coordinate z is determined by the cylindrical equation of the sphere, r2 + z2 = 4, so that

−
√

4− r2 � z �
√

4− r2 .

The figure also makes it clear that the spherical coordinates of the figure satisfy the inequalities 0 � θ � 2π
and π/3 � φ � 2π/3. The value of the third spherical coordinate ρ is secφ on the surface of the cylinder
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and 2 on the surface of the sphere, and hence secφ � ρ � 2.

C12S08.056: Take ρ = 3960 for the radius of the earth throughout this solution. The spherical coordinates
of Atlanta are then (ρ, φ, θ) where

φ =
5π
16

and θ =
689π
450

.

Then the formulas in (6) yield its Cartesian coordinates:

x1 ≈ 321.303374687189, y1 ≈ −3276.905308046423, z1 ≈ 2200.058122757625.

Similarly, the angular spherical coordinates of San Francisco are

φ =
2611π
9000

and θ =
11879π
9000

,

and hence its Cartesian coordinates are

x2 ≈ −1677.985673523340, y2 ≈ −2642.043377610385, z2 ≈ 2426.019552739741.

Thus the straight-line distance between the two cities is

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ≈ 2109.802108457354.

Now we use the triangle with vertices at O (the center of the earth), A (Atlanta), and S (San Francisco)
and the law of cosines to find the angle α between OA and OS:

d2 = ρ2 + ρ2 − 2ρ2 cosα;

cosα =
2ρ2 − d2

2ρ2
≈ 0.858073636081;

α ≈ 0.539289738320.

Therefore the great circle distance from Atlanta to San Francisco is ρα ≈ 2135.587363747416 miles, approx-
imately 3436.894710322722 kilometers.

C12S08.057: Take ρ = 3960 for the radius of the earth throughout this solution. The spherical coordinates
of Fairbanks are then (ρ, φ, θ) where
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φ =
7π
50

and θ =
4243π
3600

.

Then the formulas in (6) yield its Cartesian coordinates:

x1 ≈ −1427.537970311664, y1 ≈ −897.229805845151, z1 ≈ 3583.115127765437.

Similarly, the angular spherical coordinates of St. Petersburg are

φ =
1003π
6000

and θ =
3043π
18000

,

and hence its Cartesian coordinates are

x2 ≈ 1711.895024130100, y2 ≈ 1005.568095522826, z2 ≈ 3426.346192611774.

Thus the straight-line distance between the two cities is

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ≈ 3674.405513694586.

Now we use the triangle with vertices at O (the center of the earth), F (Fairbanks), and S (St. Petersburg)
and the law of cosines to find the angle α between OF and OS:

d2 = ρ2 + ρ2 − 2ρ2 cosα;

cosα =
2ρ2 − d2

2ρ2
≈ 0.569519185572;

α ≈ 0.964875538222.

Therefore the great circle distance from Fairbanks to St. Petersburg is ρα ≈ 3820.907131357640 miles,
approximately 6149.153966407630 kilometers.

C12S08.058: Flying the 62nd parallel means that the spherical angle φ remains 7π/45. With ρ = 3960
(miles) as the radius of the earth, the distance from this parallel to the xy-plane is then z = ρ cosφ ≈
3496.472467721351. So the radius of the circular arc flown by the airplane will be given by

r =
√
ρ2 − z2 ≈ 1859.107388632127.

The angular difference in longitude of the two cities is 178.28◦, so the distance flown by the airplane will be

r · (178.28) · π

180
≈ 5784.748336823967

miles.

C12S08.059: Take r = 3960 as the radius of the earth. Recall from the solution of Problem 57 that the
Cartesian coordinates of Fairbanks are F (x1, y1, z1) where

x1 ≈ −1427.537970311664, y1 ≈ −897.229805845151, z1 ≈ 3583.115127765437

and that those of St. Petersburg are S(x2, y2, z2) where

x2 ≈ 1711.895024130100, y2 ≈ 1005.568095522826, z2 ≈ 3426.346192611774.
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Thus a normal to the plane P containing the center of the earth O and the two points F and P is

n = 〈n1, n2, n3 〉 =
−⇀
OF ×−⇀OS = 〈−6677286.184221, 11025156.247493, 100476.602035 〉.

The intersection of this plane with the surface of the earth is the great-circle route between F and S. The
point on this route closest to the north pole will be the point where the plane Q containing the z-axis and
normal to P intersects the route. (We are in effect constructing the geodesics from F and P to the north pole
and bisecting the angle between them with Q.) Observe that Q has an equation of the form Ax+ By = 0,
thus a normal of the form m = 〈A, B, 0 〉 having the property that m ·n = 0. Indeed, we choose B = 1 and
solve for A to find that A ≈ −6.056409573098. Then we asked Mathematica to solve for the point C(x, y, z)
on the plane’s great circle route closest to the north pole:

Solve[ { A∗x + B∗y == 0, n1∗x + n2∗y + n3∗z == 0, x∗x + y∗y + z∗z == r∗r },
{ x, y, z } ]

The response was x ≈ −6.620560438727, y ≈ −40.096825620356, and z ≈ 3959.791460765913 (and their
negatives, which we rejected). Let N(0, 0, r) denote the north pole. The straight-line distance d between C
and N is given by

d =
√
x2 + y2 + (z − r)2 ≈ 40.640260013511.

Then the law of cosines will tell us the angle α between OC and ON :

d2 = r2 + r2 − 2r2 cosα;

cosα =
2r2 − d2

2r2
≈ 0.999947338577;

α ≈ 0.010262736960.

Thus the great-circle distance from C to N is rα ≈ 40.640438363451 (miles).

C12S08.060: Either:

0 � x � H, 0 � r � R

H
z, 0 � θ � 2π or

0 � r � R,
H

R
r � z � H, 0 � θ � 2π.

C12S08.061: The cone has the following description in spherical coordinates:

0 � ρ �
√
R2 +H2 , 0 � θ � 2π, φ = arctan

(
R

H

)
.

C12S08.062: Take ρ = 3960 as the radius of the earth in this solution. By Example 8, the angular spherical
coordinates of New York City are then

φ =
197π
720

and θ =
143π
90

,

so by the equations in (6) its Cartesian coordinates are N(x1, y1, z1) where
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x1 ≈ 826, 900308254456, y1 ≈ −2883.744078623090, z1 ≈ 2584.928619752381.

The angular spherical coordinates of London are

φ =
77π
360

and θ = 0.

Hence its Cartesian coordinates are L(x2, y2, z2) where

x2 ≈ 2465.157961084973, y2 = 0, z2 ≈ 3099.128301135559.

Let O denote the origin, at the center of the earth. Then

n = 〈n1, n2, n3 〉 = 10−6

(
−−⇀
ON ×−⇀OL

)
≈ 〈−8, 937092887293, 3.809587218899, 7.108884673149 〉

is normal to the plane containing O, N , and L. Thus an equation of that plane is

n1x+ n2y + n3z = 0, so that y = − n1x+ n3z

n2
.

We substituted for y in the equation x2 + y2 + z2 = ρ2 of the earth’s surface, then solved for z = g(x); we
found that

g(x) =
−n1n3x+

√
n4

2ρ
2 + n2

2n
2
3r

2 − n2
1n

2
2x

2 − n4
2x

2 − n2
2n

2
3x

2

n2
2 + n2

3

.

At this point we asked Mathematica 3.0 to find g′(x) and solve g′(x) = 0:

g′[x]

(0.015373)

(
63.5328− (2103.23)x√

1.48043× 1010 − (2103.23)x2

)

Solve[ g′[x] == 0, x ]

{{ x → 2151.18 }}

g[ 2151.18 ]

3195.81

So the maximum z-coordinate of the plane’s route is considerably larger than that of London; the plane does
indeed fly north of the latitude of London in the great circle route from New York to London.

C12S08.063: Begin with the equation of the given circle,

(y − a)2 + z2 = b2 (x = 0),

and replace y with r to get the cylindrical-coordinates equation

(r − a)2 + z2 = b2

of the torus. Then substitute
√
x2 + y2 for r and rationalize to get the rectangular-coordinates equation

4a2(x2 + y2) = (x2 + y2 + z2 + a2 − b2)2
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of the torus. We recognize the combination x2 + y2 = r2 and x2 + y2 + z2 = ρ2 and substitute to obtain

4a2r2 = (ρ2 + a2 − b2)2.

Finally, we take positive square roots and substitute ρ sinφ for r to obtain the spherical-coordinates equation

2aρ sinφ = ρ2 + a2 − b2

of the torus. (—C.H.E.)

C12S08.064: We use Mathematica 3.0 to solve this problem.

n = 6; m = 2; a = 5; b = 1;

rho = a + b∗Sin[ n∗phi ]*Cos[ m∗theta ];

r = rho∗Sin[ phi ];

x = r∗Cos[ theta ];

y = r∗Sin[ theta ];

z = rho∗Cos[ phi ];

ParametricPlot3D[ { x, y, z }, { theta, 0, 2∗Pi }, { phi, 0, Pi },
PlotPoints → { 40, 40 } ];

The result is shown next. (—C.H.E.)
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Chapter 12 Miscellaneous Problems

C12S0M.001: Note that
−−⇀
PM =

−−⇀
MQ. Hence

1
2

(
−⇀
AP +

−⇀
AQ

)
=

1
2

(
−−⇀
AM −−−⇀PM +

−−⇀
AM +

−−⇀
MQ

)
=
−−⇀
AM.

C12S0M.002: Recall first that

compb a =
a ·b
|b| .

Therefore

a⊥ ·b = a ·b− a‖ ·b = a ·b−
(

a ·b
|b|

)
b ·b
|b| = a ·b− a ·b = 0.

Therefore a⊥ is perpendicular to b.

C12S0M.003: Given the distinct points P and Q in space, let L be the straight line through both. Then

a vector equation of L is r(t) =
−⇀
OP + t

−⇀
PQ. First suppose that R is a point on L. Then for some scalar t,

−⇀
OR =

−⇀
OP + t

−⇀
PQ =

−⇀
OP + t

(
−⇀
OQ−−⇀OP

)
= (1− t)−⇀OP + t

−⇀
OQ = a

−⇀
OP + b

−⇀
OQ

where a = 1 − t and b = t; moreover, a + b = 1, as desired. Next suppose that there exist scalars a and b
such that a+ b = 1 and

−⇀
OR = a

−⇀
OP + b

−⇀
OQ.

Let t = b, so that 1− t = a. Then

−⇀
OR = (1− t)−⇀OP + t

−⇀
OQ =

−⇀
OP + t

(
−⇀
OQ−−⇀OP

)
=
−⇀
OP + t

−⇀
PQ.

Therefore R lies on the line L. Consequently an alternative form of the vector equation of L is

r(t) = t
−⇀
OP + (1− t)−⇀OQ.

C12S0M.004: Suppose first that P , Q, and R are collinear. By the result in Problem 3, there exists scalars

a and b such that a+ b = 1 and
−⇀
OR = a

−⇀
OP + b

−⇀
OQ. Let c = −1. Then

a
−⇀
OP + b

−⇀
OQ+ c

−⇀
OR = 0 and a+ b+ c = 1− 1 = 0.

Next suppose that there exists scalars a, b, and c not all zero such that a+ b+ c = 0 and

a
−⇀
OP + b

−⇀
OQ+ c

−⇀
OR = 0.

Without loss of generality suppose that c �= 0. Then

−⇀
OR = − a

c

−⇀
OP − b

c

−⇀
OQ

and

1



− a
c
− b
c

=
c

c
= 1.

Therefore, by the result in Problem 3, R lies on the straight line containing P and Q.

C12S0M.005: Given P (x0, y0), Q(x1, y1), and R(x2, y2), we think of
−⇀
PQ and

−⇀
PR as vectors in space,

so that

−⇀
PQ = 〈x1 − x0, y1 − y0, 0 〉 and

−⇀
PR = 〈x2 − x0, y2 − y0, 0 〉.

By Eq. (10) in Section 12.3, the area A of the triangle PQR is half the magnitude of
−⇀
PQ×−⇀OR. But

−⇀
PQ×−⇀PR =

∣∣∣∣∣∣∣∣∣

i j k

x1 − x0 y1 − y0 0

x2 − x0 y2 − y0 0

∣∣∣∣∣∣∣∣∣
=

[
(x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)

]
k.

Therefore

A =
1
2
|(x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)|.

C12S0M.006: A vector equation of the line is

r(t) =
−−⇀
OP1 + tv = 〈 1, −1, 0 〉+ t〈 2, −1, 3 〉.

Therefore the line has parametric equations

x = 1 + 2t, y = −1− t, z = 3t, −∞ < t < +∞

and symmetric equations

x− 1
2

= −y − 1 =
z

3
.

C12S0M.007: A vector equation of the line is

r(t) =
−−⇀
OP1 + t

−−⇀
P1P2 = 〈 1, −1, 2 〉+ t〈 2, 3, −3 〉.

Therefore the line has parametric equations

x = 1 + 2t, y = −1 + 3t, z = 2− 3t, −∞ < t < +∞

and symmetric equations

x− 1
2

=
y + 1

3
=
z − 2
−3

.

C12S0M.008: Because the plane has normal vector n = i + j, it has an equation of the form x + y = D

where D is a constant. Because the point P (3, −5, 1) lies on the plane, D = 3− 5 = −2. Hence an equation
of the plane is x+ y + 2 = 0.
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C12S0M.009: The line L1 with symmetric equations x − 1 = 2(y + 1) = 3(z − 2) contains the points
P1(1, −1, 2) and Q1(7, 2, 4), and thus L1 is parallel to the vector u1 = 〈 6, 3, 2 〉. The line L2 with symmetric
equations x−3 = 2(y−1) = 3(z+1) contains the points P2(3, 1, −1) and Q2(9, 4, 1), and thus L2 is parallel

to the vector u2 = 〈 6, 3, 2 〉 = u1. Therefore L1 and L2 are parallel. The vector v =
−−⇀
P1P2 = 〈 2, 2, −3 〉 lies

in the plane P containing L1 and L2, as does u1, and therefore a normal to P is

n = u1 ×v =

∣∣∣∣∣∣∣∣∣

i j k

6 3 2

2 2 −3

∣∣∣∣∣∣∣∣∣
= 〈−13, 22, 6 〉.

Therefore an equation of P has the form 13x − 22y − 6z = D. The point P1(1, −1, 2) lies in the plane P,
and therefore D = 13 · 1− 22 · (−1)− 6 · 2 = 23. Therefore an equation of P is 13x− 22y − 6z = 23.

C12S0M.010: For i = 1 and i = 2, the line Li passes through the point Pi(xi, yi, zi) and is parallel to
the vector vi = 〈 ai, bi, ci 〉. Let L be the line through P1 parallel to v2. Now, by definition, the lines L1

and L2 are skew lines if and only if they are not coplanar. But L1 and L2 are coplanar if and only if the
plane determined by L1 and L is the same as the plane determined by L2 and L; that is, if and only if the
plane determined by L1 and L is the same as the plane that contains the segment P1P2 and the line L.

Thus L1 and L2 are coplanar if and only if
−−⇀
P1P2, v1, and v2 are coplanar, and this condition is equivalent

(by Theorem 4 in Section 12.3) to the condition
∣∣∣∣−−⇀P1P2 · (v1 ×v2)

∣∣∣∣ = 0.

That is, L1 and L2 are coplanar if and only if

∣∣∣∣∣∣∣∣∣

x1 − x2 y1 − y2 z1 − z2

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣∣∣∣
= 0.

This establishes the conclusion in Problem 10.

C12S0M.011: Given the four points A(2, 3, 2), B(4, 1, 0), C(−1, 2, 0), and D(5, 4, −2), we are to find

an equation of the plane containing A and B and parallel to
−⇀
CD = 〈 6, 2, −2 〉. Because

−⇀
AB = 〈 2, −2, −2 〉

is not parallel to
−⇀
CD, a vertor normal to the plane is

m =
−⇀
AB×−⇀CD =

∣∣∣∣∣∣∣∣∣

i j k

2 −2 −2

6 2 −2

∣∣∣∣∣∣∣∣∣
= 〈 8, −8, 16 〉;

to simplify matters slightly we will use the parallel vector n = 〈 1, −1, 2 〉. Therefore the plane has a
Cartesian equation of the form x− y + 2z = K. Because A(2, 3, 2) lies in the plane, K = 2− 3 + 2 · 2 = 3.
Answer: x− y + 2z = 3.

C12S0M.012: Given the four points A(2, 3, 2), B(4, 1, 0), C(−1, 2, 0), and D(5, 4, −2), we are to find
points P on the line L1 through A and B and Q on the line L2 through C and D such that the line L
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containing P and Q is perpendicular to both L1 and L2. There are several ways to do this; here is one
solution. The lines L1 and L2 have vector equations

L1 : r1(s) =
−⇀
OA+ s

−⇀
AB = 〈 2, 3, 2〉+ s〈2, −2, −2 〉 and

L2 : r2(t) =
−⇀
OC + t

−⇀
CD = 〈−1, 2, 0 〉+ t〈 6, 2, −2 〉.

Hence the points P and Q have coordinates

P (2 + 2s, 3− 2s, 2− 2s) and Q(−1 + 6t, 2 + 2t, −2t)

for some choice of the parameters s and t. Therefore the vector

u =
−⇀
PQ = 〈 6t− 2s− 3, 2t+ 2s− 1, −2t+ 2s− 2 〉

for some choice of s and t. Now we impose the condition that u must be perpendicular to both
−⇀
AB and

−⇀
CD

by requiring that u is parallel to

−⇀
AB×−⇀CD =

∣∣∣∣∣∣∣∣∣

i j k

2 −2 −2

6 2 −2

∣∣∣∣∣∣∣∣∣
= 〈 8, −8, 16 〉;

it will be simpler to impose the condition that u is parallel to n = 〈 1, −1, 2 〉. We do so by requiring that
u×n = 0:

u×n =

∣∣∣∣∣∣∣∣∣

i j k

6t− 2s− 3 2t+ 2s− 1 −2t+ 2s− 2

1 −1 2

∣∣∣∣∣∣∣∣∣
= 〈 2t+ 6s− 4, −14t+ 6s+ 4, −8t+ 4 〉 = 0.

It follows that s = t = 1
2 , so that P = (3, 2, 1) and Q = (2, 3, −1). The perpendicular distance between L1

and L2 is therefore d = |PQ| =
√

6 .

C12S0M.013: A vector normal to the plane P is n = 〈 a, b, c 〉 and
−−⇀
OP0 = 〈x0, y0, z0 〉 connects the origin

to P. Hence the distance D from the origin to P is the length of the projection of
−−⇀
OP0 in the direction of

n. But the projection of
−−⇀
OP0 in the direction of n is

−−⇀
OP0 ·n
|n| =

ax0 + by0 + cz0√
a2 + b2 + c2

=
−d√

a2 + b2 + c2
.

Therefore D =
|d|√

a2 + b2 + c2
.

C12S0M.014: Let Q1 be the foot of the perpendicular from the point P1(x1, y1, z1) to the plane P with
equation ax+ by + cz + d = 0; also let the point Q be determined by the vector equation

−⇀
OQ =

−−⇀
OQ1 −

−−⇀
OP1.

Then Q is the foot of the perpendicular from the origin O to the plane with equation
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a(x+ x1) + b(y + y1) + c(z + z1) + d = 0

(a translate of the origin plane by −−−⇀OP1, using the translation principle)—that is,

ax+ bx+ cz + d1 = 0 where d1 = ax1 + by1 + cz1 + d.

Hence, by the result in Problem 13,

D =
∣∣∣∣−−−⇀P1Q1

∣∣∣∣ =
∣∣∣∣−⇀OQ

∣∣∣∣ =
|d1 |√

a2 + b2 + c2
=
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
.

C12S0M.015: The planes have the common normal n = 〈2, −1, 2 〉, a point on the first plane P1 is
P1(2, 0, 0), and a point on the second plane P2 is P2(7, 1, 0). So a vector that connects the two planes is

c =
−−⇀
P1P2 = 〈 5, 1, 0 〉. So the distance D between P1 and P2 is the absolute value of the projection of c in

the direction of n; that is,

D =
|n · c|
|n| =

9
3

= 3.

C12S0M.016: Given r(t) = 〈 t, t2, t3 〉, a vector tangent to its trajectory is v(t) = r′(t) = 〈 1, 2t, 3t2 〉. The
plane at (1, 1, 1) normal to the trajectory thus has normal vector v(1) = 〈 1, 2, 3 〉, and hence an equation
of this plane is x+ 2y + 3z = 6.

C12S0M.017: Given the isosceles triangle with sides AB and AC of equal length and M the midpoint of

the third side BC, let u =
−−⇀
BM =

−−⇀
MC and let v =

−−⇀
AM . Then

−⇀
AB = v− u and

−⇀
AC = v + u. Now

|v− u| = |v + u|, so

(v− u) · (v− u) = (v + u) · (v + u);

v ·v− 2v ·u + u ·u = v ·v + 2v ·u + u ·u.

Therefore v · 2u = 0, and therefore the segment AM is perpendicular to the segment BC.

C12S0M.018: Name the vertices of the rhombus A, B, C, and D in counterclockwise order. Then let

u =
−⇀
AB =

−⇀
DC and v =

−⇀
BC =

−⇀
AD. Thus the diagonal from A to C is represented by the vector v + u and

the diagonal from B to D is represented by the vector v− u. Moreover,

(v + u) · (v− u) = v ·v− u ·u = |v|2 − |u|2 = 0

because |v| = |u|. Therefore v+u is perpendicular to v−u, and so the diagonals of a rhombus are mutually
perpendicular.

C12S0M.019: Given a(t) = 〈 sin t, − cos t 〉, the velocity vector is

v(t) = 〈 c1 − cos t, c2 − sin t 〉.

But v(0) = 〈−1, 0 〉 = 〈 c1 − 1, c2 〉, and it follows that c1 = c2 = 0. So v(t) = 〈− cos t, − sin t 〉. Hence the
position vector of the particle is

5



r(t) = 〈 k1 − sin t, k2 + cos t 〉.

But 〈 0, 1 〉 = r(0) = 〈 k1, k2 + 1 〉, so that k1 = k2 = 0. Thus r(t) = 〈− sin t, cos t 〉. The parametric
equations of the motion of the particle are x(t) = − sin t, y(t) = cos t. Because x2 + y2 = 1 for all t, the
particle moves in a circle of radius 1 centered at the origin.

C12S0M.020: Given a(t) = −ω2r(t), suppose that r(t) = 〈x(t), y(t) 〉. Then

x′′(t) = −ω2x(t) and y′′(t) = −ω2y(t).

Following the Suggestion given in the statement of the problem,

x(t) = A1 cosωt+B1 sinωt and y(t) = A2 cosωt+B2 sinωt.

We are given r(0) = 〈 p, 0 〉, and it follows that A1 = p and A2 = 0. So

x(t) = p cosωt+B1 sinωt and y(t) = B2 sinωt.

Next,

x′(t) = −pω sinωt+B1ω cosωt and y′(t) = B2ω cosωt.

We are given v(0) = 〈 0, qω 〉, and it follows that B1 = 0 and B2 = q. Therefore

x(t) = p cosωt and y(t) = q sinωt.

Then, because

[
x(t)
p

]2
+

[
y(t)
q

]2
= 1,

the trajectory of the particle is the ellipse centered at the origin and with semiaxes of lengths p and q on the
coordinate axes.

C12S0M.021: The trajectory of the projectile fired by the gun is given by

x1(t) = (320 cosα)t, y1(t) = −16t2 + (320 sinα)t.

The trajectory of the moving target is given by

x2(t) = 160 + 80t, y2(t) ≡ 0.

We require the angle of elevation α so that, at some time T > 0,

y1(T ) = 0 and x1(T ) = x2(T ); that is,

− 16T 2 + (320 sinα)T = 0 and (320 cosα)T = 160 + 80T.

It follows that T = 20 sinα and, consequently, that

6400 sinα cosα = 160 + 1600 sinα;

40 sinα cosα = 1 + 10 sinα.
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Let u = sinα. Then the last equation yields

40u
√

1− u2 = 1 + 10u;

1600u2(1− u2) = 1 + 20u+ 100u2;

1600u4 − 1500u2 + 20u+ 1 = 0.

The graph of the last equation shows solutions between 0 and π/2 near 0.03 and 0.96. Five iterations of
Newton’s method with these starting values yields the two solutions

u1 ≈ 0.0333580866275847 and u2 ≈ 0.9611546539773131.

These correspond to the two angles

α1 ≈ 0.033364276320 (about 1◦ 54′ 41.876′′) and

α2 ≈ 1.291155565633 (about 73◦ 58′ 39.953′′).

C12S0M.022: With the gun and the foot of the hill located at the origin and the hill in the first quadrant,
the parametric equations of motion of the projectile fired by the gun (at time t = 0) are

x(t) = (v0 cosα)t, y(t) = −1
2
gt2 + (v0 sinα)t

where α is the angle of elevation of the gun from the horizontal. The range of the projectile is

R(α) =
2
√

3
3
x(T )

where T is the time at which it strikes the hill; we also require x(T ) = y(T )
√

3 , which leads to

(v0 cosα)T =
(
− 1

2
gT 2 + Tv0 sinα

)√
3 ;

v0 cosα =
(
− 1

2
gT + v0 sinα

)√
3 ;

T =
2v0
g

(
sinα−

√
3
3

cosα

)
.

Therefore

R(α) =
2
√

3
3
x(T ) =

4(v0)2
√

3
3g

(
sinα cosα−

√
3
3

cos2 α

)
.

R′(α) =
4(v0)2

√
3

3g

(
cos 2α+

√
3
3

sin 2α

)
.

Now R′(α) = 0 when
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sin 2α = −
√

3 cos 2α;

tan 2α = −
√

3 (0 � 2α � π);

2α =
2π
3
.

Therefore the angle α that maximizes the range of the projectile is π/3.

C12S0M.023: Let r(t) = 〈 t, t2, 4
3 t

3/2 〉. Then

v(t) = r′(t) = 〈 1, 2t, 2t1/2 〉,

so that v(1) = 〈 1, 2, 2 〉. Also

a(t) = r′′(t) = 〈 0, 2, t−1/2 〉,

and thus a(1) = 〈 0, 2, 1 〉. Moreover,

v(1)×a(1) =

∣∣∣∣∣∣∣∣∣

i j k

1 2 2

0 2 1

∣∣∣∣∣∣∣∣∣
= 〈−2, −1, 2 〉,

and thus |v(1)×a(1)| = 3. Thus

aT (1) =
v(1) ·a(1)
v(1)

=
6
3

= 2,

κ(1) =
|v(1)×a(1)|

[v(1)]3
=

3
27

=
1
9
, and

aN (1) =
|v(1)×a(1)|

v(1)
=

3
3

= 1.

C12S0M.024: We saw in the solution of Problem 23 that at the point
(
1, 1, 4

3

)
we have

v(1) = 〈 1, 2, 2 〉, a(1) = 〈 0, 2, 1 〉, v(1) = 3, aT (1) = 2, and aN (1) = 1.

Hence

T(1) =
v(1)
v(1)

=
〈

1
3
,

2
3
,

2
3

〉

and therefore

N(1) =
a(1)− aT (1)T(1)

aN (1)
= 〈 0, 2, 1 〉 − 2

〈
1
3
,

2
3
,

2
3

〉
=

〈
− 2

3
,

2
3
, − 1

3

〉
.

Thus a normal to the osculating plane at the point
(
1, 1, 4

3

)
is
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n = 3T(1)× 3N(1) =

∣∣∣∣∣∣∣∣∣

i j k

1 2 2

−2 2 −1

∣∣∣∣∣∣∣∣∣
= 〈−6, −3, 6 〉.

Therefore an equation of the osculating plane at
(
1, 1, 4

3

)
is 6x+ 3y − 6z = 1.

C12S0M.025: A vector normal to the plane is

n = v1 ×v2 =

∣∣∣∣∣∣∣∣∣

i j k

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣∣∣∣
= 〈 b1c2 − b2c1, a2c1 − a1c2, a1b2 − a2b1 〉.

Hence the plane has equation

(b1c2 − b2c1)(x− x0) + (a2c1 − a1c2)(y − y0) + (a1b2 − a2b1)(z − z0) = 0.

But this is exactly the equation you obtain when the matrix in the equation

∣∣∣∣∣∣∣∣∣

x− x0 y − y0 z − z0

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣∣∣∣
= 0

given in Problem 25 is expanded along its first row.

C12S0M.026: Because r′(t0) and r′′(t0) are coplanar with T(t0) and N(t0), we may use the former in
place of the latter to construct—via their cross product—a vector normal to the osculating plane. The scalar
triple product in the equation given in Problem 26 can be written as a three-by-three determinant, and when
one does so, one obtains the equation in Problem 25.

C12S0M.027: Let r(t) = 〈 t, t2, t3 〉. Then

r′(t) = 〈 1, 2t, 3t2 〉, so that r′(1) = 〈 1, 2, 3 〉.

Also

r′′(t) = 〈 0, 2, 6t 〉, and so r′′(1) = 〈 0, 2, 6 〉.

Thus by the results in Problems 25 and 26, an equation of the osculating plane to the twisted cubic r(t) at
the point r(1) is

∣∣∣∣∣∣∣∣∣

x− 1 y − 1 z − 1

1 2 3

0 2 6

∣∣∣∣∣∣∣∣∣
= 0.

Expansion of this determinant along its first row yields the equation of the osculating plane in more conven-
tional form:
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6(x− 1)− 6(y − 1) + 2(z − 1) = 0; that is, 3x− 3y + z = 1.

C12S0M.028: From x = r cos θ we find that

dx

dt
=
dr

dt
cos θ − (r sin θ)

dθ

dt
;

from y = r sin θ we derive

dy

dt
=
dr

dt
sin θ + (r cos θ)

dθ

dt
.

Then

(
dx

dt

)2

+
(
dy

dt

)2

=
(
dr

dt
cos θ − (r sin θ)

dθ

dt

)2

+
(
dr

dt
sin θ + (r cos θ)

dθ

dt

)2

=
(
dr

dt

)2

cos2 θ − 2(r cos θ sin θ) · dr
dt
· dθ
dt

+ (r2 sin2 θ)
(
dθ

dt

)2

+
(
dr

dt

)2

sin2 θ + 2(r sin θ cos θ) · dr
dt
· dθ
dt

+ (r2 cos2 θ)
(
dθ

dt

)2

=
(
dr

dt

)2

+
(
r · dθ
dt

)2

.

Then the desired result follows immediately from Eq. (2) in Section 12.6.

C12S0M.029: Equation (6) in Section 12.8, with ρ = 1, yields

x = sinφ cos θ, y = sinφ sin θ, z = cosφ.

Mathematica 3.0 can solve this problem for us.

x[t ] := Sin[phi[t]]∗Cos[theta[t]]

y[t ] := Sin[phi[t]]∗Sin[theta[t]]

z[t ] := Cos[phi[t]]

term1 = (x′[t])∧2

(Cos[phi[t]] Cos[theta[t]] phi′[t] - Sin[phi[t]] Sin[theta[t]] theta′[t])2

term2 = (y′[t])∧2

(Cos[phi[t]] Sin[theta[t]] phi′[t] + Cos[theta[t]] Sin[phi[t]] theta′[t])2

term3 = (z′[t])∧2

Sin[phi[t]]2 phi′t]2

Simplify[ term1 + term2 + term3 ]

phi′[t]2 + Sin[phi[t]]2 theta′[t]2

That is,
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(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

=
(
dφ

dt

)2

+ (sin2 φ)
(
dθ

dt

)2

.

Then the result in Problem 13 follows from Eq. (2) in Section 12.6.

C12S0M.030: Part (a): Beginning with B ·T = 0, we differentiate both sides with respect to arc length
s to find that

0 =
dB
ds

·T + B · dT
ds

=
dB
ds

·T + B ·κN =
dB
ds

·T.

Therefore T and
dB
ds

are perpendicular.

Part (b): We begin with B ·B = 1. Then differentiation of both sides with respect to s yields

0 = B · dB
ds

+
dB
ds

·B = 2B · dB
ds
.

Therefore B and
dB
ds

are perpendicular.

Part (c): Because both N and dB/ds are perpendicular to both T and B and because the latter two are
not parallel, the former two are parallel. That is, there exists a number τ such that

dB
ds

= −τN.

C12S0M.031: The helix of Example 7 of Section 12.1 has position vector

r(t) = 〈 a cosωt, a sinωt, bt 〉.

(Assume that a, b, and ω are all positive.) In that example we found that the velocity and acceleration
vectors are

v(t) = 〈−aω sinωt, aω cosωt, b 〉 and a(t) = 〈−aω2 cosωt, −aω2 sinωt, 0 〉.

We also found that the speed is given by v(t) =
√
a2ω2 + b2 . Note that v(t) ·a(t) = 0 and that

v(t) ×a(t) =

∣∣∣∣∣∣∣∣∣

i j k

−aω sinωt aω cosωt b

−aω2 cosωt −aω2 sinωt 0

∣∣∣∣∣∣∣∣∣
= 〈 abω2 sinωt, −abω2 cosωt, a2ω3 〉.

By Eq. 26 of Section 12.6, the tangential component of acceleration is zero: aT = 0. Next,

|v(t)×a(t)| =
√
a2b2ω4 + a4ω6 = aω2

√
b2 + a2ω2 .

So by Eq. (28) in Section 12.6, the normal component of acceleration is

aN =
|v(t) ×a(t)|

v(t)
= aω2.

Then the unit tangent vector is
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T(t) =
v(t)
v(t)

=
1√

a2ω2 + b2
〈−aω sinωt, aω cosωt, b 〉 .

Thus by Eq. (29) of Section 12.6, the principal unit normal vector is

N(t) =
a− aTT
aN

=
1
aω2

(〈
−aω2 cosωt, −aω2 sinωt, 0

〉
− 0 ·T

)
= 〈− cosωt, − sinωt, 0 〉.

Therefore the unit binormal vector is

B = T×N =
1√

a2ω2 + b2

∣∣∣∣∣∣∣∣∣

i j k

−aω sinωt aω cosωt b

− cosωt − sinωt 0

∣∣∣∣∣∣∣∣∣
=

1√
a2ω2 + b2

〈 b sinωt, −b cosωt, aω 〉.

Then

dB
ds

=
dB
dt
· dt
ds

=
1
v(t)

· dB
dt

=
bω

a2ω2 + b2
〈 cosωt, sinωt, 0 〉 = − bω

a2ω2 + b2
N.

Therefore, by definition, the torsion is

τ =
bω

a2ω2 + b2
.

C12S0M.032: If the terminal point of r(t) lies in a fixed plane with unit normal n, then either B = n or
B = −n, so that dB/ds = 0. Therefore τ is identically zero for such a curve because |N| = 1 �= 0.

C12S0M.033: The spherical surface with center (0, 0, 1) (in Cartesian coordinates) and radius 1 has
Cartesian equation x2 + y2 + (z − 1)2 = 1; that is,

x2 + y2 + z2 = 2z.

In spherical coordinates, this equation takes the form ρ2 = 2ρ cosφ. No points on the surface are lost by
cancellation of ρ from the last equation (take φ = π/2), so a slightly simpler spherical equation is ρ = 2 cosφ.

C12S0M.034: Replace y with the cylindrical coordinate r to obtain (r − 1)2 + z2 = 1. Simplify this to
r2 + z2 = 2r, then convert to rectangular coordinates:

x2 + y2 + z2 = 2
√
x2 + y2 .

C12S0M.035: Replace y2 with x2 + y2 to obtain a Cartesian equation of the surface of revolution:

(x2 + y2 + z2)2 = 2(z2 − x2 − y2).

In cylindrical coordinates this equation takes the form

(r2 + z2)2 = 2(z2 − r2),

and thus its spherical form is
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ρ4 = 2ρ2(cos2 φ− sin2 φ); that is, ρ2 = 2 cos 2φ.

(No points on the graph are lost by cancellation of ρ2: Take φ = π/2.) The graph of this equation is next.

C12S0M.036: A = |a×b|, so a×b = i(A cosα) + j(A cosβ) + k(A cos γ) where α, β, and γ are the
direction cosines of a×b. By assumption, the (signed) projections of A into the three coordinate planes are
Ax = A cosα, Ay = A cosβ, and Az = A cos γ. Hence a×b = Axi +Ayj +Azk, and therefore

A2 = |a×b|2 = (Ax)2 + (Ay)2 + (Az)2.

C12S0M.037: If a = 〈 a1, a2, a3 〉 and b = 〈 b1, b2, b3 〉, then by Eq. (17) in Section 12.3,

i · (a×b) =

∣∣∣∣∣∣∣∣∣

1 0 0

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
a2 a3

b2 b3

∣∣∣∣∣∣ ;

similar results hold for j · (a×b) and k · (a×b). Hence by the result in Problem 36,

A2 =

∣∣∣∣∣∣
a2 a3

b2 b3

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
a3 a1

b3 b1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
a1 a2

b1 b2

∣∣∣∣∣∣
2

.

C12S0M.038: It suffices to show that the intersection of the elliptical cylinder

(x
a

)2
+

(y
b

)2
= 1 (z arbitrary)

with the plane Ax+By + Cz = 0 (where C �= 0) is an ellipse. This is done in the solution of Problem 39.
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Rotation of Axes and Second-Degree Curves

In Section 10.6 we studied the second-degree equation

Ax2 + Cy2 +Dx+ Ey + F = 0, (1)

which contains no xy-term. We found that the graph is always a conic section, apart from exceptional cases
of the following types:

2x2 + 3y2 = −1 (no locus),

2x2 + 3y2 = 0 (a single point),

(2x− 1)2 = 0 (a straight line),

(2x− 1)2 = 1 (two parallel lines),

x2 − y2 = 0 (two intersecting lines).

We may therefore say that the graph of Eq. (1) is a conic section, possibly degenerate. If either A or C
is zero (but not both), then the graph is a parabola. It is an ellipse if AC > 0, a hyperbola if AC < 0 (by
results in Section 10.6).

Let us assume that AC �= 0. Then we can determine the particular conic section represented by Eq. (1)
by completing squares; that is, we write Eq. (1) in the form

A(x− h)2 + C(y − k)2 = G. (2)

This equation can be simplified further by a translation of coordinates to a new x′y′-coordinate system
centered at the point (h, k) in the old xy-system. The relation between the old and new coordinates is

x′ = x− h, y′ = y − k; that is, x = x′ + h, y = y′ + k. (3)

In the new x′y′-coordinate system, Eq. (2) takes the simpler form

A(x′)2 + C(y′)2 = G, (2′)

from which it is clear whether we have an ellipse, a hyperbola, or a degenerate case.

We now turn to the general second-degree equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0. (4)

Note the presence of the “cross-product,” or xy-, term. In order to recognize its graph, we need to change
to a new x′y′-coordinate system obtained by a rotation of axes.

We obtain the x′y′-axes from the xy-axes by a rotation through an angle α in the counterclockwise
direction. The next figure shows that

x = OQ = OP cos(φ+ α) and y = PQ = OP sin(φ+ α). (5)

Similarly,

x′ = OR = OP cosφ and y′ = PR = OP sinφ. (6)

14
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Recall the addition formulas

cos(φ+ α) = cosφ cosα− sinφ sinα,

sin(φ+ α) = sinφ cosα+ cosφ sinα.

With the aid of these identities and the substitution of the equations in (6) into those in (5), we obtain this
result:

Equations for Rotation of Axes:

x = x′ cosα− y′ sinα,
(7)

y = x′ sinα+ y′ cosα.

These equations express the old xy-coordinates of the point P in terms of its new x′y′-coordinates and
the rotation angle α.

Example 1: The xy-axes are rotated through an angle of α = 45◦. Find the equation of the curve 2xy = 1
in the new coordinates x′ and y′.

Solution: Because cos 45◦ = sin 45◦ = 1
2

√
2 , the equations in (7) yield

x =
x′ − y′√

2
and y =

x′ + y′√
2

.

The original equation 2xy = 1 then becomes

(x′)2 + (y′)2 = 1.

So, in the x′y′-coordinate system, we have a hyperbola with a = b = 1 (in the notation of Section 10.8),
c =
√

2 , and foci
(
±
√

2 , 0
)
. In the original xy-coordinate system, its foci are (1, 1) and (−1, −1) and its

asymptotes are the x- and y-axes. A hyperbola of this form, one which has equation xy = k, is called a
rectangular hyperbola (because its asymptotes are perpendicular). �

Example 1 suggests that the cross-product term Bxy in Eq. (4) may disappear upon rotation of the
coordinate axes. One can, indeed, always choose an appropriate angle α of rotation so that, in the new
coordinate system, there is no xy-term.
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To determine the appropriate rotation angle, we substitute the equations in (7) for x and y into the
general second-degree equation in (4). We obtain the following new second-degree equation:

A′(x′)2 +B′x′y′ + C ′(y′)2 +D′x′ + E′y′ + F ′ = 0. (8)

The new coefficients are given in terms of the old ones and the angle α by the following equations:

A′ = A cos2 α+B cosα sinα+ C sin2 α,

B′ = B(cos2 α− sin2 α) + 2(C −A) sinα cosα,

C ′ = A sin2 α−B sinα cosα+ C cos2 α,

D′ = D cosα+ E sinα,

E′ = −D sinα+ E cosα, and

F ′ = F.

(9)

Now suppose that an equation of the form in (4) is given, with B �= 0. We simply choose α so that
B′ = 0 in the list of new coefficients in (9). Then Eq. (8) will have no cross-product term, and we can
identify and sketch the curve with little trouble in the x′y′-coordinate system. But is it really easy to choose
such an angle α?

It is. Recall that

cos 2α = cos2 α− sin2 α and sin 2α = 2 sinα cosα.

So the equation for B′ in (9) may be written

B′ = B cos 2α+ (C −A) sin 2α.

Thus we can cause B′ to be zero by choosing α to be that (unique) acute angle such that

cot 2α =
A− C
B

. (10)

If we plan to use the equations in (9) to calculate the coefficients in the transformed Eq. (8), we shall
need the values of sinα and cosα that follow from Eq. (10). It is sometimes convenient to calculate these
values directly from cot 2α, as follows. Draw a right triangle containing an acute angle 2α with opposite side
B and adjacent side A − C, so that Eq. (10) is satisfied. Then the numerical value of cos 2α can be read
directly from this triangle. Because the cosine and cotangent are both positive in the first quadrant and
both negative in the second quadrant, we give cos 2α the same sign as cot 2α. Then we use the half-angle
formulas to find sinα and cosα:

sinα =
(

1− cos 2α
2

)1/2

, cosα =
(

1 + cos 2α
2

)1/2

. (11)

Once we have the values of sinα and cosα, we can compute the coefficients in the resulting Eq. (8) by
means of the equations in (9). Alternatively, it’s frequently simpler to get Eq. (8) directly by substitution
of the equations in (9), with the numerical values of sinα and cosα obtained from Eq. (11), into Eq. (4).

Example 2: Determine the graph of the equation

73x2 − 72xy + 52y2 − 30x− 40y − 75 = 0.
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Solution: We begin with Eq. (10) and find that cot 2α = − 7
24 , so that cos 2α = − 7

25 . Thus

sinα =

(
1−

(
− 7

25

)
2

)1/2

=
4
5
, cosα =

(
1 +

(
− 7

25

)
2

)1/2

=
3
5
.

Then, with A = 73, B = −72, C = 52, D = −30, E = −40, and F = −75, the equations in (9) yield

A′ = 25, D′ = −50,

B′ = 0 (this was the point), E′ = 0,

C ′ = 100, F ′ = −75.

Consequently the equation in the new x′y′-coordinate system, obtained by rotation through an angle of
α = arcsin

(
4
5

)
≈ 53.13◦, is

25(x′)2 + 100(y′)2 − 50x′ = 75.

If you prefer, you could obtain this equation by substitution of

x =
3
5
x′ − 4

5
y′, y =

4
5
x′ +

3
5
y′

in the original equation.

By completing the square in x′ we finally obtain

25(x′ − 1)2 + 100(y′)2 = 100,

which we put into the standard form

(x′ − 1)2

4
+

(y′)2

1
= 1.

Thus the original curve is an ellipse with major semiaxis 2, minor semiaxis 1, and center (1, 0) in the
x′y′-coordinate system. �

Example 2 illustrates the general procedure for finding the graph of a second-degree equation. First, if
there is a cross-product (xy) term, rotate axes to eliminate it. Then translate axes as necessary to reduce
the equation to the standard form of a parabola, ellipse, or hyperbola (or one of the degenerate cases of a
conic section).

There is a test by which the nature of the curve may be discovered without actually carrying out the
transformations described here. This test derives from the fact that, whatever the angle α of rotation, the
equations in (9) imply that

(B′)2 − 4A′C ′ = B2 − 4AC (12)

(it is easy to verify this for yourself). Thus the discriminant B2 − 4AC is an invariant under any rotation
of axes. If α is so chosen that B′ = 0, then the left-hand side of Eq. (12) is simply −4A′C ′. Because A′ and
C ′ are the coefficients of the squared terms, our earlier discussion of Eq. (1) now applies. It follows that the
graph will be:

• a parabola if B2 − 4AC = 0,

17



• an ellipse if B2 − 4AC < 0, and

• a hyperbola if B2 − 4AC > 0.

Of course, degenerate cases may occur.

Here are some examples:

• x2 + 2xy + y2 = 1 is a (degenerate) parabola,

• x2 + xy + y2 = 1 is an ellipse, and

• x2 + 3xy + y2 = 1 is a hyperbola.

C12S0M.039: First Solution Without loss of generality, we may assume that the ellipse in the xy-plane
is centered at the origin, and by rotation (if necessary) that the plane containing the curve K has equation
z = by + c (that is, parallel to the x-axis). Then the ellipse has an equation of the form

Ax2 +Bxy + Cy2 +D = 0

where B2 − 4AC < 0 (by the preceding discussion of rotation of axes). Parametrize the plane with a
uv-coordinate system that projects vertically onto the xy-coordinate system in the plane:

u = x, v = y
√

1 + b2 .

This parametrization preserves distance; that is,

√
x2 + y2 + (z − c)2

on the plane is

√
u2 + v2 =

√
x2 + (1 + b2)y2 =

√
x2 + b2y2 + y2 =

√
x2 + (z − c)2 + y2 .

Now suppose that the point (x, y, z) is on the intersection of the plane and the cylinder. The equation

Ax2 +Bxy + Cy2 +D = 0

takes the form

Au2 +Bu
v√

1 + b2
+ C

v2

1 + b2
+D = 0;

that is,

Au2 +
B√

1 + b2
uv +

C

1 + b2
v2 +D = 0.

Is this the equation of an ellipse? We check the discriminant:

(
B√

1 + b2

)2

− 4AC
1 + b2

=
B2 − 4AC

1 + b2
< 0.

Because the descriminant is negative, the curve K is an ellipse.

Note: If you have access to the version of the sixth edition of the textbook with early transcendentals

functions and matrices, you can use instead the following much simpler solution of this problem.
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C12S0M.039: Second Solution Without loss of generality, we may suppose that the elliptical cylinder
E with vertical sides has equation z = ax2 + by2 where a and b are both positive. We may also suppose
that the nonvertical plane P has equation z = px + qy + r where the coefficients have the property that
the intersection C of P and E is a closed curve. Substitution of the equation of P for z in the equation of
E shows that C lies in the vertical cylinder with equation

ax2 − px+ by2 − qy = r, (1)

and the equation of the vertical projection D of C into the xy-plane has the same equation (together with
z = 0). The matrix associated with the form in Eq. (1) is

A =


 a 0

0 b




and has eigenvalues λ1 = a and λ2 = b. Hence, in an appropriately rotated and translated uv-coordinate
system, D has equation

au2 + bv2 = s.

Because D is a closed curve, s > 0; thus D is an ellipse. Therefore, by the result in Problem 38, C itself is
also an ellipse.

C12S0M.040: The projection into the xy-plane of the intersection K has the equation a2x2−Ax+ b2y2−
By = 0. We may also assume that a > 0 and b > 0. It follows by completing squares that this projection is
either empty, a single point, or an ellipse. In the latter case, it follows from Problem 38 that K is an ellipse.

C12S0M.041: The intersection of z = Ax+By with the ellipsoid

(x
a

)2
+

(y
b

)2
+

(z
c

)2
= 1

has the simultaneous equations

(x
a

)2
+

(y
b

)2
+
A2x2 + 2ABxy +B2y2

c2
= 1, z = Ax+By.

The first of these two equations is the equation of the projection of the intersection into the xy-plane; write
it in the form

Px2 +Qxy +Ry2 = 1

and show that its discriminant is negative—this shows that the projection is an ellipse (see the discussion
of rotation of axes immediately preceding the solution of Problem 39). It then follows from the result in
Problem 38 that the intersection itself must be an ellipse. (Of course, if the plane is tangent to the ellipse
or misses it altogether, then the intersection is not an ellipse—it is either empty or else consists of a single
point.)

C12S0M.042: IF f ′′ is continuous and the graph of f has an inflection point at (a, f(a)), then f ′′(a) = 0.
Hence by Eq. (13) in Section 12.6, the curvature of the graph of f is zero at that point.

C12S0M.043: By Eq. (13) in Section 12.6, the curvature of y = sinx at the point (x, sinx) is

κ(x) =
| sinx|

(1 + cos2 x)3/2
.
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The curvature is minimal when it is zero, and this occurs at every integral multiple of π. To maximize the
curvature, note that the numbers that maximize the numerator in the curvature formula—the odd integral
multiples of π/2—also minimize the denominator and thereby maximize the curvature itself.

C12S0M.044: By Eq. (12) in Section 12.6, the curvature of the hyperbola at (x(t), y(t)) is

κ(t) =
|x′(t)y′′(t)− x′′(t)y′(t)|
[(x′(t))2 + (y′(t))2 ]3/2

=
| sinh2 t− cosh2 t|

(sinh2 t+ cosh2 t)3/2

=
1

(sinh2 t+ cosh2 t)3/2
=

1
(cosh 2t)3/2

.

For maximal curvature, minimize the denominator; when cosh 2t is minimal, t = 0 and (x, y) = (1, 0). At
no point is the curvature minimal because at no point is cosh 2t maximal.

C12S0M.045: With r(t) = 〈 t cos t, t sin t 〉, we have

v(t) = r′(t) = 〈 cos t− t sin t, t cos t+ sin t 〉;

v(π/2) = 〈−π/2, 1 〉;

v(π/2) =
1
2

√
π2 + 4 ;

T(π/2) =
1√

π2 + 4
〈−π, 2 〉.

Because the curve turns left as t increases,

N
(π

2

)
=

1√
π2 + 4

〈−2, −π 〉.

C12S0M.046: By Eq. (12) in Section 12.6, the curvature is

κ(t) =
|x′(t)y′′(t)− x′′(t)y′(t)|
[(x′(t))2 + (y′(t))2 ]3/2

=
ab sin2 t+ ab cos2 t

(a2 sin2 t+ b2 cos2 t)3/2
=

ab

(a2 sin2 t+ b2 cos2 t)3/2
.

Because a > b > 0, the curvature will be maximal when the last denominator is minimal, which will occur
when sin t = 0 and cos t = ±1. Thus it will be maximal when t is an integral multiple of π; the corresponding
points on the ellipse are its vertices (±a, 0). The curvature will be minimal when the denominator is maximal,
and this occurs when sin t = ±1 and cos t = 0. So the curvature is minimal when t is an odd integral multiple
of π/2, and the corresponding points on the ellipse are (0, ±b). If you prefer to use the derivative to maximize
and minimize the curvature, you should find that

κ′(t) =
3ab(a2 − b2) sin t cos t
(a2 sin2 t+ b2 cos2 t)5/2

,

that κ′(t) = 0 at every integral multiple of π/2, and that

κ(0) = κ(π) =
a

b2
while κ(π/2) = κ(3π/2) =

b

a2
.

C12S0M.047: We will ask Mathematica 3.0 to solve this problem (but we will include intermediate
computations so you can check your work).
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x[t ] := r[t]∗Cos[t]

y[t ] := r[t]∗Sin[t]

x′[t]

-r[t] Sin[t] + Cos[t] r′[t]

y′[t]

Cos[t] r[t] + Sin[t] r′[t]

x′′[t]

-Cos[t] r[t] - 2 Sin[t] r′[t] + Cos[t] r′′[t]

y′′[t]

-r[t] Sin[t] + 2 Cos[t] r′[t] + Sin[t] r′′[t]

num = Simplify[ x′[t]∗y′′[t] - x′′[t]∗y′[t] ]

r[t]2 + 2 r′[t]2 - r[t] r′′[t]

den1 = Expand[ (x′[t])2 ]

r[t]2 r[t]2 - 2 Cos[t] r[t] Sin[t] r′[t] + Cos[t]2 r′[t]2

den2 = Expand[ (y′[t])2 ]

Cos[t]2 r[t]2 + 2 Cos[t] r[t] Sin[t] r′[t] + Sin[t]2 r′[t]2

den = Simplify[ den1 + den2 ]

r[t]2 + r′[t]2

Finally, when we asked for Abs[num]/den∧(3/2), the response was

|(r(t))2 + 2(r′(t))2 − r(t)r′′(t)|
[(r(t))2 + (r′(t))2 ]3/2

.

C12S0M.048: Substitution of r(θ) = θ in the formula of Problem 47 yields

κ(θ) =
|θ2 + 2− 0|
(θ2 + 1)3/2

=
θ2 + 2

(θ2 + 1)3/2
.

Because κ(θ) ≈ 1/θ if θ is large positive or large negative, it is clear that κ(θ)→ 0 as θ → ±∞.

C12S0M.049: The function f is said to be odd if f(−x) = −f(x) for all x; f is said to be even if
f(−x) = f(x) for all x. Because y(x) = Ax + Bx3 + Cx5 is an odd function, the condition y(1) = 1 will
imply that y(−1) = −1. Because y′(x) = A+ 3Bx2 + 5Cx4 is an even function, the condition y′(1) = 0 will
imply that y′(−1) = 0 as well. Because the graph of y is symmetric around the origin (every odd function
has this property), the condition that the curvature is zero at (1, 1) will imply that it is also zero at (−1,−1).
By Eq. (13) of Section 12.6, the curvature at x is

κ(x) =
|6Bx+ 20Cx3 |[

1 + (A+ 3Bx2 + 5Cx4)2
]3/2 ,

so the curvature at (1, 1) will be zero when 6B + 20C = 0. Thus we obtain the simultaneous equations
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A+ B+ C = 1,

A+ 3B+ 5C = 0,

3B+ 10C = 0.

These equations are easy to solve for A = 15
8 , B = − 5

4 , and C = 3
8 . Thus an equation of the connecting

curve is

y(x) =
15
8
x− 5

4
x3 +

3
8
x5.

C12S0M.050: The given plane P through the origin has equation Ax + By + Cz = 0 where ABC �= 0,
and P intersects the sphere x2 + y2 + z2 = R2 in a great circle K. Take two points S and T on this great
circle equally distant from, but close to, the “north pole” N(0, 0, R) of the sphere. Draw the arc of the
great circle connecting S with N and the arc of the great circle connecting T with N . The plane bisector
of the angle between these arcs at N (the angle between their tangents at N) will meet the great circle K
at its highest point. So all we need is to construct a plane Q containing the z-axis and normal to P. Now
Q has an equation of the form Dx+ Ey = 0, so a normal to Q is n = 〈D, E, 0 〉. The points (0, 0, 0) and
(B, −A, 0) lie in P, so the vector u = 〈B, −A, 0 〉 is parallel to P. So Q will be normal to P provided that
n and u are parallel; that is, if there is a scalar λ such that

n = λu; that is, 〈D, E, 0 〉 = λ〈B, −A, 0 〉.

It is simplest to choose λ = 1, so that D = B and E = −A. This implies that the plane Q has equation
Bx−Ay = 0.

To find the highest point (the point with greatest z-coordinate) on K, we now solve simultaneously the
equations of the sphere, P, and Q. The Mathematica 3.0 command

Solve[ { x∗x + y∗y + z∗z == r∗r, a∗x + b∗y + c∗z == 0, b∗x == a∗y }, { x, y, z } ]

produces the two solutions

x1 =
ACR√

(A2 +B2)(A2 +B2 + C2)
, y1 =

BCR√
(A2 +B2)(A2 +B2 + C2)

,

z1 = − (A2 +B2)R√
(A2 +B2)(A2 +B2 + C2)

and

x2 = − ACR√
(A2 +B2)(A2 +B2 + C2)

, y2 = − BCR√
(A2 +B2)(A2 +B2 + C2)

,

zz =
(A2 +B2)R√

(A2 +B2)(A2 +B2 + C2)
.

Assuming that R > 0, the coordinates of the highest point on K are (x2, y2, z2). (If you prefer, exactly the
same answer can be obtained by using the method of Lagrange multipliers of Section 13.9.)

C12S0M.051: Without loss of generality we may suppose that the tetrahedron lies in the first octant with
the solid right angle at the origin. Let the coordinates of its other three vertices be (a, 0, 0), (0, b, 0), and
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(0, 0, c). Then the vectors a = 〈 a, 0, 0 〉, b = 〈 0, b, 0 〉, and c = 〈 0, 0, c 〉 form three of the edges of the
tetrahedron and the other three edges are b − a, c − b, and a − c. The area A of the triangle with these
three edges is half the magnitude of the cross product of b− a and c− a, and

(b− a)× (c− a) =

∣∣∣∣∣∣∣∣∣

i j k

−a b 0

−a 0 c

∣∣∣∣∣∣∣∣∣
= 〈 bc, ac, ab 〉.

Therefore

A2 =
1
4
(a2b2 + a2c2 + b2c2).

Part (a): The triangular face of the tetrahedron that lies in the xz plane has area B = 1
2ac, the triangle in

the xy plane has area C = 1
2ab, and the triangle in the yz-plane has area D = 1

2bc. It follows immediately
that

A2 = B2 + C2 +D2.

Part (b): This is a generalization of the Pythagorean theorem to three dimensions. How would you generalize
it to higher dimensions?
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Section 13.2

C13S02.001: Because f(x, y) = 4 − 3x − 2y is defined for all x and y, the domain of f is the entire
two-dimensional plane.

C13S02.002: Because x2 + 2y2 � 0 for all x and y, the domain of f(x, y) =
√
x2 + 2y2 is the entire

two-dimensional plane.

C13S02.003: If either x or y is nonzero, then x2 + y2 > 0, and so f(x, y) is defined—but not if x = y = 0.
Hence the domain of f consists of all points (x, y) in the plane other than the origin.

C13S02.004: If x �= y then the denominator in f(x, y) is nonzero, and thus f(x, y) is defined—but not if
x = y. So the domain of f consists of all those points (x, y) in the plane for which y �= x.

C13S02.005: The real number z has a unique cube root z1/3 regardless of the value of z. Hence the domain
of f(x, y) = (y − x2)1/3 consists of all points in the xy-plane.

C13S02.006: The real number z has a unique cube root z1/3 regardless of the value of z. But
√

2x is real
if and only if x � 0. Therefore the domain of f(x, y) = (2x)1/2 + (3y)1/3 consists of all those points (x, y)
for which x � 0.

C13S02.007: Because arcsin z is a real number if and only if −1 � z � 1, the domain of the given function
f(x, y) = sin−1(x2 + y2) consists of those points (x, y) in the xy-plane for which x2 + y2 � 1; that is, the
set of all points on and within the unit circle.

C13S02.008: Because arctan z is defined for every real number z, the only obstruction to the computation
of f(x) = arctan(y/x) is the possibility that x = 0. This obstruction is insurmountable, and therefore the
domain of f consists of all those points (x, y) in the xy-plane for which x �= 0; that is, all points other than
those on the y-axis.

C13S02.009: For every real number z, exp(z) is defined and unique. Therefore the domain of the given
function f(x, y) = exp(−x2 − y2) consists of all points (x, y) in the entire xy-plane.

C13S02.010: Because ln z is a unique real number if and only if z > 0, the domain of f(x, y) = ln(x2−y2−1)
consists of those points (x, y) for which x2 − y2 − 1 > 0; that is, for which y2 < x2 − 1. This is the region
bounded by the hyperbola with equation x2 − y2 = 1, shown shaded in the following figure; the bounding
hyperbola itself is not part of the domain of f .

C13S02.0011: Because ln z is a unique real number if and only if z > 0, then domain of f(x, y) = ln(y−x)
consists of those points (x, y) for which y > x. This is the region above the graph of the straight line with
equation y = x (the line itself is not part of the domain of f).

1



C13S02.012: Because
√
z is a unique real number if and only if z � 0, the domain of the given function

f(x, y) =
√

4− x2 − y2 consists of those points (x, y) for which x2 + y2 � 4. That is, the domain consists
of all those points (x, y) on and within the circle with center (0, 0) and radius 2.

C13S02.013: If x and y are real numbers, then so are xy, sinxy, and 1 + sinxy. Hence the only
obstruction to computation of

f(x, y) =
1 + sinxy

xy

is the possibility of division by zero. So the domain of f consists of those points (x, y) for which xy �= 0;
that is, all points in the xy-plane other than those on the coordinate axes.

C13S02.014: If x and y are real numbers, then so are xy, sinxy, 1 + sinxy, and x2 + y2. Hence the only
obstruction to computation of

f(x, y) =
1 + sinxy
x2 + y2

is the possibility of division by zero. So the domain of f consists of those points (x, y) for which x2 +y2 �= 0;
that is, all points in the xy-plane other than the origin.

C13S02.015: If x and y are real numbers, then so are xy and x2 − y2. So the only obstruction to the
computation of

f(x, y) =
xy

x2 − y2

is the possibility that x2 − y2 = 0. If so, then f(x, y) is undefined, and therefore the domain of f consists
of those points (x, y) for which x2 �= y2. That is, the domain of f consists of those points in the xy-plane
other than the two straight lines with equations y = x and y = −x.

C13S02.016: The only obstruction to the computation of

f(x, y, z) =
1√

z − x2 − y2

is the possibility that the radicand is negative or the denominator is zero. Thus the domain consists of those
points (x, y, z) in space for which x2 + y2 < z. These are the points strictly above the circular paraboloid
with equation z = x2 + y2 (such a paraboloid is shown in Fig. 12.3.15).

C13S02.017: If w is any real number, then exp(w) is a unique real number. So the only obstruction to
the computation of

f(x, y, z) = exp
(

1
x2 + y2 + z2

)

is the possibility that x2 + y2 + z2 = 0. If so, then f is undefined, and therefore its domain consists of all
those point (x, y, z) in space other than the origin (0, 0, 0)

C13S02.018: If w is a positive real number, then lnw is a unique real number, but not otherwise. So the
domain of f(x, y, z) = lnxyz consists of those points (x, y, z) in space for which xyz > 0. These are the
points for which either:

• x > 0, y > 0, and z > 0;

2



• x > 0, y < 0, and z < 0;

• x < 0, y > 0, and z < 0; or

• x < 0, y < 0, and z > 0.

So the domain of f consists of those points (x, y, z) strictly within the first octant and those strictly within
three other octants.

C13S02.019: If w is a positive real number, then lnw is a unique real number, but not otherwise. So
the domain of f(x, y, z) = ln(z − x2 − y2) consists of those points (x, y, z) in space for which x2 + y2 < z.
These are the points strictly above the circular paraboloid with equation z = x2 + y2; such a paraboloid is
shown in Fig. 12.3.15.

C13S02.020: If −1 � w � 1, then sin−1 w is a unique real number, but not otherwise. Hence the domain
of f(x, y, z) = arcsin(3− x2 − y2 − z2) consists of those points (x, y, z) in space for which

−1 � 3− x2 − y2 − z2 � 1;

−1 � x2 + y2 + z2 − 3 � 1;

2 � x2 + y2 + z2 � 4.

Thus the domain of f consists of all points on or between the two spherical surfaces centered at (0, 0, 0),
the inner with radius

√
2 , the outer with radius 2.

C13S02.021: The graph is the horizontal (parallel to the xy-plane) plane passing through the point
(0, 0, 10).

C13S02.022: The graph is the plane z = x parallel to the y-axis; its trace in the xz-plane is the straight
line with equations z = x, y = 0; the graph also contains the y-axis.

C13S02.023: The graph of f(x, y) = x+y is the plane with equation z = x+y. The trace of this plane in
the xy-plane is the straight line with equations z = 0, y = −x. Its trace in the xz-plane is the straight line
with equations y = 0, z = x and its trace in the yz-plane is the straight line with equations x = 0, z = y.

C13S02.024: If z =
√
x2 + y2 , then z2 = x2 + y2 (while z � 0). Thus the graph of f(x) =

√
x2 + y2

is the upper nappe of the 45◦ circular cone with vertex at the origin and axis the nonnegative z-axis. See
Example 7 of Section 12.3 and the top half of Fig. 12.3.11 there.

C13S02.025: The graph of z = x2 + y2 is a circular paraboloid with axis the nonnegative z-axis, opening
upward, with its vertex at the origin. See Fig. 13.2.4.

C13S02.026: The graph of z = 4−x2−y2 is a circular paraboloid with axis the z-axis, opening downward,
with its vertex at (0, 0, 4). Its graph is shown in the solution of Problem 9 of Section 12.7 and a similar
paraboloid appears in Fig. 13.2.7.

C13S02.027: If z =
√

4− x2 − y2 , then z2 = 4 − x2 − y2 and z � 0; that is, x2 + y2 + z2 = 4 and
z � 0. Consequently the graph of f(x, y) =

√
4− x2 − y2 is a hemisphere—the upper half of the sphere

with radius 2 and center (0, 0, 0).

C13S02.028: The graph of z = 16 − y2 is a parabolic cylinder parallel to the x-axis; its trace in the
yz-plane is the parabola with equations z = 16− y2, x = 0. It resembles the surface shown in Fig. 12.3.8.
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C13S02.029: In cylindrical coordinates, the graph of f(x, y) = 10−
√
x2 + y2 has the equation z = 10−r

where r � 0. Therefore the graph of f is the lower nappe of a circular cone with axis the z-axis and vertex
at (0, 0, 10).

C13S02.030: Given: f(x, y) = −
√

36− 4x2 − 9y2 . The graph of f is, by definition, the graph of the
equation z = −

√
36− 4x2 − 9y2 ; that is,

4x2 + 9y2 + z2 = 36, z � 0.

Thus the graph is the lower half of an ellipsoid with center at the origin and axes on the coordinate axes.
Its intercepts are (±3, 0, 0), (0, ±2, 0), and (0, 0, −6). The Mathematica 3.0 command

ParametricPlot3D[ { 3∗r∗Cos[t], 2∗r∗Sin[t], -6*Sqrt[1 - r∗r] },
{ t, 0, 2∗Pi }, { r, 0, 1 }, AspectRatio -> Automatic ];

generates its graph, shown next.

C13S02.031: The level curves of f(x, y) = x − y are the straight lines x − y = c where c is a constant.
Some of these are shown next.

C13S02.032: The level curves of f(x, y) = x2− y2 are rectangular hyperbolas (the level curve x2− y2 = 0
is a degenerate hyperbola—two intersecting straight lines). The Mathematica 3.0 command
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ContourPlot[ x∗x - y∗y, { x, -3, 3 }, { y, -3, 3 }, Axes -> True,

AxesLabel -> { x, y }, AxesOrigin -> { 0, 0 }, Contours -> 15,

ContourShading -> False, Frame -> False, PlotPoints -> 47 ];

generates some of the level curves and the result is shown next.

C13S02.033: The level curves of f(x, y) = 4x2 + y2 are ellipses centered at the origin, with major axes on
the x-axis and minor axes on the y-axis. The Mathematica 3.0 command

ContourPlot[ x∗x + 4∗y∗y, { x, -3, 3 }, { y, -3, 3 }, Axes -> True,

AxesLabel -> { x, y }, AxesOrigin -> { 0, 0 }, Contours -> 15,

ContourShading -> False, Frame -> False, PlotPoints -> 47 ];

generates some of these level curves; the output resulting from the preceding command is shown next.

C13S02.034: The level curves of f(x, y) = y − x2 are parabolas with equations of the form y = x2 + C

where C is a constant. They open upward and their vertices lie on the y-axis.
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C13S02.035: The level curves of f(x, y) = y − x3 are curves with the equation y = x3 + C for various
values of C. Their inflection points all lie on the y-axis. A few of these level curves are shown next.

C13S02.036: The level curves of f(x, y) = y − cosx are curves with equations of the form y = cosx+ C

for various values of the constant C. The Mathematica 3.0 command

ContourPlot[ y - Cos[x], { x, -6, 6 }, { y, -6, 6 }, Axes -> True,

AxesLabel -> { x, y }, AxesOrigin -> { 0, 0 }, Contours -> 15,

ContourShading -> False, Frame -> False, PlotPoints -> 47 ];

generates several of these level curves, as shown next.

C13S02.037: The level curves of f(x, y) = x2 + y2 − 4x are circles centered at the point (2, 0). The
Mathematica 3.0 command

ContourPlot[ x∗x + y∗y - 4∗x, { x, -5, 5 }, { y, -5, 5 }, Axes -> True,

AxesLabel -> { x, y }, AxesOrigin -> { 0, 0 }, Contours -> 15,

ContourShading -> False, Frame -> False, PlotPoints -> 47 ];
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produces several of these level curves, shown next.

C13S02.038: The level curves of f(x, y) = x2 + y2 − 6x+ 4y+ 7 are circles centered at the point (3, −2).

C13S02.039: Because exp(−x2 − y2) is constant exactly when x2 + y2 is constant, the level curves of
f(x, y) = exp(−x2 − y2) are circles centered at the origin. When they are close the graph is steep; when
they are far apart the slope of the graph is more moderate. Some level curves of f are shown next.

C13S02.040: Because

f(x, y) =
1

1 + x2 + y2

is constant exactly when x2 + y2 is constant, the level curves of f are circles centered at the origin. Those of
radii between 0.75 and 1.25 are quite close together; those with radii over 4 are quite far apart, as are those
with radii less than 0.5.

C13S02.041: Because f(x, y, z) = x2 + y2 − z is constant when z = x2 + y2 +C (where C is a constant),
the level surfaces of f are circular paraboloids with axis the z-axis, all opening upward and all having the
same shape.

C13S02.042: Because f(x, y, z) = z +
√
x2 + y2 is constant when z = C − (x2 + y2)1/2 (where C is a

constant), the level surfaces of f are the lower nappes of circular cones with vertices on the z-axis.
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C13S02.043: The function f(x, y, z) = x2 + y2 + z2 − 4x− 2y − 6z is constant when

(x− 2)2 + (y − 1)2 + (z − 3)2 = C

for some nonnegative constant C. Therefore the level surfaces of f are spherical surfaces all centered at the
point (2, 1, 3).

C13S02.044: Note first that f(x, y, z) = z2 − x2 − y2 is constant exactly when

z2 = x2 + y2 + C

for some constant C. If C = 0 then the level surface consists of both nappes of a circular cone with axis the
z-axis and vertex at the origin. If C < 0 then the level surface is a circular hyperboloid of one sheet with
axis the z-axis, similar to the one shown in Fig. 12.3.18. If C > 0 then it is a circular hyperboloid of two
sheets, also with axis the z-axis, similar to the one shown in Fig. 12.3.20. If you made a movie showing the
surface at time C as C varies from −5 to 5 it would be fascinating to watch. Such movies can be created
with any of several computer algebra programs, including Mathematica and Maple. In Maple V (Release
5.1) the movie can be created using this command:

restart:with(plots):display(seq(implicitplot3d(z∗z = x∗x + y∗y + t, x = -10..10,

y = -10..10, z = -5..5), t = -5..5), insequence = true);

If you have sufficient memory, you might consider changing the function to

z∗z = x∗x + y∗y + t/2

and replacing t = -5..5 with t = -10..10 to increase the number of frames in the movie from 11 to 21.
This should produce a “smoother” version of the movie.

C13S02.045: The function f(x, y, z) = x2 +4y2−4x−8y+17 is constant exactly when (x−2)2 +4(y−1)2

is a nonnegative constant. Hence the level surfaces of f are elliptical cylinders parallel to the z-axis and
centered on the vertical line that meets the xy-plane at the point (2, 1, 0). The ellipse in which each such
cylinder meets the xy-plane has major axis parallel to the x-axis, minor axis parallel to the y-axis, and the
major axis is twice the length of the minor axis.

C13S02.046: The function f(x, y, z) = x2 + y2 + 25 is constant exactly when x2 + y2 is a nonnegative
constant. Hence the level surfaces of f are circular cylinders concentric around the z-axis.

C13S02.047: The graph of f(x, y) = x3 + y2 should resemble vertical translates of z = x3 in planes
perpendicular to the y-axis and should resemble vertical translates of z = y2 in planes perpendicular to the
x-axis. Hence the graph must be the one shown in Fig. 13.2.32.

C13S02.048: The graph of f(x, y) = 2x − y2 should resemble vertical translates of z = 2x in planes
perpendicular to the y-axis and resemble vertical translates of z = −y2 in planes perpendicular to the
x-axis. Hence the graph of f must be the one shown in Fig. 13.2.31.

C13S02.049: The graph of f(x, y) = x3− 3x2 + 1
2y

2 will resemble vertical translates of the cubic equation
z = x3 − 3x2 = x2(x − 3) in planes perpendicular to the y-axis and will resemble vertical translates of
the parabola z = 1

2y
2 in planes perpendicular to the x-axis. Therefore the graph of f does not appear

among Figs. 13.3.27 through 13.3.32. It resembles slightly the graph in Fig.13.2.30, but that graph appears

8
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to be linear in the y-direction, much as if it were the graph of g(x, y) = 1
4 (5x3 − 15x + 3y) instead. For

comparison, the graph of z = g(x, y) is shown next.

C13S02.050: The graph of f(x, y) = x2 − y2 should show us vertical translates of the parabola z = x2 in
planes perpendicular to the y-axis and vertical translates of the parabola z = −y2 in planes perpendicular
to the x-axis. Hence it must be the graph shown in Fig. 13.2.27.

C13S02.051: The graph of f(x, y) = x2 +y4−4y2 will show vertical translates of the parabola z = x2 in
planes perpendicular to the y-axis and vertical translates of the quartic z = y4−4y2 in planes perpendicular
to the x-axis. Thus this graph is the one shown in Fig. 13.2.28.

C13S02.052: The graph of f(x, y) = 2y3 − 3y2 − 12y + x2 is shown in Fig. 13.2.29. The fact that the
derivative of g(y) = 2y3 − 3y2 − 12y is zero when y = −1 and when y = 2 accounts for the “waviness” of
the figure in the y-direction.

C13S02.053: Figure 13.2.33 has the level curves shown in Fig. 13.2.41. Note how the level curves are close
together where the graph is steep.

C13S02.054: Figure 13.2.34 has the level curves shown in Fig. 13.2.39. The latter clearly shows three
peaks surrounded by level ground.

C13S02.055: Figure 13.2.35 has the level curves shown in Fig. 13.2.42. Moving outward from the center,
Fig. 13.2.34 is alternately steep and almost flat; this is reflected in the behavior of the level curves, alternately
close and far apart.

C13S02.056: Figure 13.2.36 has the level curves shown in Fig. 13.2.40. The latter indicates two peaks, or
two deep holes, or one of each.

C13S02.057: Figure 13.2.57 has the level curves shown in Fig. 13.2.44. The latter indicates three peaks
in a row, or two peaks with a deep hole between them, or some variation of this idea.

C13S02.058: Figure 13.2.38 has the level curves shown in Fig. 13.2.43. The latter indicates four peaks, or
two peaks and two holes, or some variation of this theme.

C13S02.059: The Mathematica 3.0 commands

a = 2; b = 1;
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Plot3D[ (a∗x + b∗y)∗Exp[ −x∧2 − y∧2 ], { x, −3, 3 }, { y, −3, 3 },

PlotRange → { −1, 1 }, PlotPoints → { 25, 25 },

AxesLabel → { "x", "y", "z" } ];

produce the graph shown next.

Plots with various values of a and b (not both zero) indicate that the surface always has one pit and one
peak, both lying on the same straight line in the xy-plane. The values of a and b determine the orientation
of this line and the distances of the pit and the peak from the origin. —C.H.E.

C13S02.060: The values of the parameters a, b, and c determine whether the graph is a rotated paraboloid
that is elliptic opening upward, elliptic opening downward, or hyperbolic. Without loss of generality, we
may assume that b = 0 so the paraboloid is not rotated. The Mathematica 3.0 commands

a = 1; b = 0; c = 0;

z = (a∗x∧2 + b∗x∗y + c∗y∧2)∗Exp[ −x∧2 − y∧2 ];

Plot3D[ z, { x, −3, 3 }, { y, −3, 3 },

PlotPoints → { 30, 30 }, PlotRange → { −0.5, 0.5 },

BoxRatios → { 1, 1, 1 } ];

produce the following graph.
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If the graph of the quadratic form is a parabolic paraboloid, we appear to see two peaks and no passes.
Next, the Mathematica 3.0 commands a = 2; b = 0; c = 1;

z = (a∗x∧2 + b∗x∗y + c∗y∧2)∗Exp[ −x∧2 − y∧2 ];

Plot3D[ z, { x, −3, 3 }, { y, −3, 3 },
PlotPoints → { 30, 30 }, PlotRange → { −1, 1 },
BoxRatios → { 1, 1, 1 } ];

produce the following graph.
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Hence if the graph of the quadratic form is an elliptic paraboloid, we appear to see two peaks separated by a
pit and two passes. But if the paraboloid is circular, the pits and peaks coalesce, and we see a pit surrounded
by a circular ridge. Finally, the Mathematica commands

a = 2; b = 0; c = −1;

z = a∗x∧2 + b∗x∗y + c∗y∧2)∗Exp[ −x∧2 − y∧2 ];

Plot3D[ z, { x, −3, 3 }, { y, −3, 3 },
PlotPoints → { 30, 30 }, PlotRange → { −0.7, 0.7 },
BoxRatios → { 1, 1, 1 } ];

produce the following graph.

So if the graph of the quadratic form is a hyperbolic paraboloid, we appears to see two peaks and two pits
surrounding a pass. —C.H.E.

You should also try the case a = 1; b = 0; c = 1 to see what happens.

C13S02.061: The Mathematica 3.0 commands

n = 3;

x = r∗Cos[t]; y = r∗Sin[t];

z = (r∧2)∗(Sin[ n∗t ])*Exp[ −r∧2 ];

ParametricPlot3D[ { x, y, z }, { r, 0, 3 }, { t, 0, 2∗Pi },
PlotPoints → { 30, 30 }, PlotRange → { −1, 1 },
BoxRatios → { 1, 1, 1 } ];

produce the following graph.
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Apparently n peaks and n pits alternately surround the origin. —C.H.E.

C13S02.062: The Mathematica 3.0 commands

n = 3;

x = r∗Cos[t]; y = r∗Sin[t];

z = (r∧2)∗((Cos[ n∗t ])∧2)*Exp[ −r∧2 ];

ParametricPlot3D[ { x, y, z }, { r, 0, 3 }, { t, 0, 2∗Pi },

PlotPoints → { 30, 30 }, PlotRange → { −1, 1 },

BoxRatios → { 1, 1, 1 } ];

produce the following graph.
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Apparently 2n peaks (separated by passes) surround the origin. —C.H.E.
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Section 13.3

C13S03.001: The limit laws in Eqs. (5), (6), and (7) and the result in Example 4 yield

lim
(x,y)→(0,0)

(
7− x2 + 5xy

)

=
(

lim
(x,y)→(0,0)

7
)
−

(
lim

(x,y)→(0,0)
x

)2

+ 5
(

lim
(x,y)→(0,0)

x

)
·
(

lim
(x,y)→(0,0)

y

)
= 7− 02 + 5 · 0 · 0 = 7.

C13S03.002: Because f(x, y) = 3x2 − 4xy + 5y2 is a polynomial, it is continuous everywhere; then, by
definition of continuity,

lim
(x,y)→(1,−2)

f(x, y) = f(1,−2) = 3 + 8 + 20 = 31.

C13S03.003: The product and composition of continuous functions is continuous where defined, hence
f(x, y) = e−xy is continuous everywhere. Then, by definition of continuity,

lim
(x,y)→(1,−1)

f(x, y) = f(1,−1) = e1 = e.

C13S03.004: The sum, product, and quotient of continuous functions is continuous where defined, so

f(x, y) =
x+ y

1 + xy

is continuous where xy �= −1. Therefore

lim
(x,y)→(0,0)

f(x, y) =
0 + 0

1 + 0 · 0 =
0
1

= 0.

C13S03.005: The sum, product, and quotient of continuous functions is continuous where defined, so

f(x, y) =
5− x2

3 + x+ y

is continuous where x+ y �= −3. Therefore

lim
(x,y)→(0,0)

f(x, y) =
5− 02

3 + 0 + 0
=

5
3
.

C13S03.006: The sum, product, and quotient of continuous functions is continuous where defined, so

f(x, y) =
9− x2

1 + xy

is continuous where xy �= −1. Consequently

lim
(x,y)→(2,3)

f(x, y) =
9− 22

1 + 2 · 3 =
5
7
.

C13S03.007: The sum, product, and composition of continuous functions is continuous where defined, so

1



f(x, y) = ln
√

1− x2 − y2

is continuous if x2 + y2 < 1. Therefore

lim
(x,y)→(0,0)

f(x, y) = f(0, 0) = ln
√

1− 02 − 02 = ln 1 = 0.

C13S03.008: The sum, product, and quotient of continuous functions is continuous where defined, so

f(x, y) = ln
1 + x+ 2y
3y2 − x

is continuous where

x �= 3y2 and
1 + x+ 2y
3y2 − x > 0.

Hence

lim
(x,y)→(2,−1)

f(x, y) = f(2,−1) = ln
1 + 2− 2
3 · 1− 2

= ln 1 = 0.

C13S03.009: Let z = x+ 2y and w = 3x+ 4y. Then z → 0 and w → 0 as (x, y) → (0, 0) by Example
4. Hence, by continuity of the natural exponential and cosine functions and the product law for limits,

lim
(x,y)→(0,0)

ex+2y cos(3x+ 4y) = e0 cos 0 = 1 · 1 = 1.

C13S03.010: Convert to polar coordinates. Then by the limit laws of Chapter 2,

lim
(x,y)→(0,0)

cos(x2 + y2)
1− x2 − y2

= lim
r→0

cos r2

1− r2 =
cos 0
1− 0

= 1.

C13S03.011: Every polynomial is continuous everywhere, and hence every rational function (even of three
variables) is continuous where its denominator is not zero. Therefore

f(x, y, z) =
x2 + y2 + z2

1− x− y − z

is continuous where x+ y + z �= 1. Hence

lim
(x,y,z)→(1,1,1)

f(x, y, z) = f(1, 1, 1) =
12 + 12 + 12

1− 1− 1− 1
= − 3

2
.

C13S03.012: The sum, product, and composition of continuous functions is continuous where defined.
Hence

f(x, y, z) = (x+ y + z) lnxyz

is continuous where xyz > 0. Hence

lim
(x,y,z)→(1,1,1)

f(x, y, z) = f(1, 1, 1) = 3 ln 1 = 3 · 0 = 0.
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C13S03.013: The sum, product, quotient, and composition of continuous functions is continuous where
defined. Hence

f(x, y, z) =
xy − z
cosxyz

is continuous provided that xyz is not an odd integral multiple of π/2. Therefore

lim
(x,y,z)→(1,1,0)

f(x, y, z) = f(1, 1, 0) =
1 · 1− 0

cos 0
=

1
1

= 1.

C13S03.014: The rational function

f(x, y, z) =
x+ y + z

x2 + y2 + z2

is continuous wherever its denominator is not zero, so it is continuous at every point in space other than
(0, 0, 0). Thus

lim
(x,y,z)→(2,−1,3)

f(x, y, z) = f(2,−1, 3) =
2− 1 + 3

22 + 12 + 32
=

4
14

=
2
7
.

C13S03.015: First,

f(z) = tan
3πz
4

is continuous provided that 3πz/4 is not an odd integral multiple of π/2; that is, provided that z is not
two-thirds of an odd integer. Hence f(z) is continuous at z = 1. Next,

g(x, y) =
√
xy

is the composition of continuous functions, so g(x, y) is continuous provided that xy > 0. So g is continuous
at (2, 8). Finally, the product of continuous functions is continuous, so h(x, y, z) = g(x, y)·f(z) is continuous
at (2, 8, 1). Therefore

lim
(x,y,z)→(2,8,1)

h(x, y, z) = h(2, 8, 1) = 161/2 · tan
3π
4

= 4 · (−1) = −4.

C13S03.016: The sum, product, quotient, and composition of continuous functions is continuous where
defined. Hence

f(x, y) = arcsin
xy√

x2 + y2

is continuous provided that (x, y) �= (0, 0) and that

−1 <
xy√

x2 + y2
< 1.

Therefore

lim
(x,y)→(1,−1)

f(x, y) = f(1,−1) = arcsin
1 · (−1)√

1 + 1
= arcsin

−1√
2

= − π
4
.
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C13S03.017: If f(x, y) = xy, then

lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

xy + hy − xy
h

= lim
h→0

hy

h
= y and

lim
k→0

f(x, y + k)− f(x, y)
k

= lim
k→0

xy + kx− xy
k

= lim
k→0

kx

k
= x.

C13S03.018: If f(x, y) = x2 + y2, then

lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

(x+ h)2 + y2 − x2 − y2

h
= lim
h→0

2hx+ h2

h
= 2x and

lim
k→0

f(x, y + k)− f(x, y)
k

= lim
k→0

x2 + (y + k)2 − x2 − y2

k
= lim
k→0

2ky + k2

k
= 2y.

C13S03.019: If f(x, y) = xy2 − 2, then

lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

(x+ h)y2 − 2− xy2 + 2
h

= lim
h→0

hy2

h
= y2 and

lim
k→0

f(x, y + k)− f(x, y)
k

= lim
k→0

x(y + k)2 − 2− xy2 + 2
k

= lim
k→0

2kxy + k2x

k
= 2xy.

C13S03.020: If f(x, y) = x2y3 − 10, then

f(x+ h, y)− f(x, y) = (x+ h)2y3 − 10− x2y3 + 10 = 2hxy3 + h2y3 and

f(x, y + k)− f(x, y) = x2(y + k)3 − 10− x2y3 + 10 = 3kx2y2 + 3k2x2y + k3x2.

Thus

lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

2hxy3 + h2y3

h
= 2xy3 and

lim
k→0

f(x, y + k)− f(x, y)
k

= lim
k→0

3kx2y2 + 3k2x2y + k3x2

k
= 3x2y2.

C13S03.021: lim
(x,y)→(1,1)

1− xy
1 + xy

=
1− 1 · 1
1 + 1 · 1 =

0
2

= 0.

C13S03.022: The limit

lim
(x,y)→(2,−2)

4− xy
4 + xy

does not exist because the numerator has limit 8 but the denominator has limit 0 as (x, y)→ (2,−2).

C13S03.023: lim
(x,y,z)→(1,1,1)

xyz

yz + xz + xy
=

1 · 1 · 1
1 · 1 + 1 · 1 + 1 · 1 =

1
3
.

C13S03.024: This limit does not exist. As (x, y, z) → (1,−1, 1), the numerator yz + xz + xy has limit
−1 + 1− 1 = −1 �= 0 but the denominator 1 + xyz has limit 1− 1 = 0.
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C13S03.025: lim
(x,y)→(0,0)

ln(1 + x2 + y2) = ln(1 + 0 + 0) = ln 1 = 0.

C13S03.026: This limit does not exist. Let z = 2 − x2 − y2. Then z → 0 through positive values as
(x, y)→ (0, 0), and hence

lim
(x,y)→(1,1)

ln(2− x2 − y2) = lim
z→0+

ln z = −∞.

C13S03.027: Convert to polar coordinates, then replace r2 with z. Thus

lim
(x,y)→(0,0)

cot(x2 + y2)
x2 + y2

= lim
r→0

cot r2

r2
= lim

z→0+

cos z
z sin z

,

which does not exist because cos z → 1 as z → 0+, but z sin z → 0. Because the last numerator is
approaching +∞ as z → 0+ but the last denominator is approaching zero through positive values, it is also
correct to write

lim
(x,y)→(0,0)

cot(x2 + y2)
x2 + y2

= +∞.

C13S03.028: Because the sum and composition of continuous functions is continuous where defined,

lim
(x,y)→(0,0)

sin
(
ln(1 + x+ y)

)
= sin

(
ln(1 + 0 + 0)

)
= sin(ln 1) = sin 0 = 0.

C13S03.029: Convert to polar coordinates. Then

lim
(x,y)→(0,0)

exp
(
− 1
x2 + y2

)
= lim
r→0

exp
(
− 1
r2

)
= lim
z→∞

e−z = 0.

C13S03.030: Convert to polar coordinates. Then

lim
(x,y)→(0,0)

arctan
(
− 1
x2 + y2

)
= lim
r→0

arctan
(
− 1
r2

)
= lim
z→−∞

arctan z = − π
2
.

C13S03.031: For continuity of f(x, y) =
√
x+ y , we require x+ y > 0. Thus f is continuous on the set

of all points (x, y) that lie strictly above the graph of y = −x.

C13S03.032: For continuity of f(x, y) = arcsin(x2 + y2), we require

−1 < x2 + y2 < 1.

This condition will hold provided that x2 + y2 < 1, so f will be continuous on the points strictly within the
unit circle centered at (0, 0); that is, strictly within the circle with equation x2 + y2 = 1.

C13S03.033: For continuity of f(x, y) = ln(x2 + y2 − 1), we require that x2 + y2 − 1 > 0; that is, that
x2 + y2 > 1. So f will be continuous on the points strictly outside the unit circle centered at (0, 0); that is,
strictly outside the circle with equation x2 + y2 = 1.

C13S03.034: For continuity of f(x, y) = ln(2x− y), we require that 2x− y > 0 or, put another way, that
y < 2x. Hence f will be continuous on the set of those points in the xy-plane that lie strictly below the
straight line with equation y = 2x.
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C13S03.035: Because the inverse tangent function is continuous on the set of all real numbers, the only
discontinuity of

f(x, y) = arctan
(

1
x2 + y2

)

wlll occur when the denominator in the fraction is zero. Hence f is continuous on the set of all points in the
xy-plane other than (0, 0). This discontinuity is removable because conversion to polar coordinates shows
that

lim
(x,y)→(0,0)

arctan
(

1
x2 + y2

)
= lim
r→0+

arctan
(

1
r

)
=
π

2
.

C13S03.036: Because the inverse tangent function is continuous on the set of all real numbers, the
discontinuities of

f(x, y) = arctan
(

1
x+ y

)

occur when (and only when) the denominator in the fraction is zero. Hence f is continuous on the set of
all points in the xy-plane that do not lie on the line with equation y = −x. None of these discontinuities
is removable. For example, as (x, y) → (0, 0) through positive values along the line y = x, we find that
f(x, y) → π/2 because 1/(x + y) → +∞. But as (x, y) → (0, 0) through negative values along the line
y = x, we find that f(x, y) → −π/2 because 1/(x + y) → −∞. The same argument holds for every other
point on the line y = −x, so f has no limit at any of these points. Part of the graph of z = f(x, y) is next.

C13S03.037: Using polar coordinates yields

lim
(x,y)→(0,0)

x2 − y2√
x2 + y2

= lim
r→0

r2 cos2 θ − r2 sin2 θ

r
= lim
r→0

r2 cos 2θ
r

= lim
r→0

r cos 2θ = 0.

C13S03.038: Use of polar coordinates yields

lim
(x,y)→(0,0)

x3 − y3

x2 + y2
= lim
r→0

r3 cos3 θ − r3 sin3 θ

r2
= lim
r→0

r(cos3 θ − sin3 θ) = 0.

C13S03.039: Use of polar coordinates yields

lim
(x,y)→(0,0)

x4 + y4

(x2 + y2)3/2
= lim
r→0

r4 cos4 θ + r4 sin4 θ

r3
= lim
r→0

r(cos4 θ + sin4 θ) = 0.
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C13S03.040: Using polar coordinates yields

lim
(x,y)→(0,0)

sin
√
x2 + y2√

x2 + y2
= lim
r→0

sin r
r

= 1.

C13S03.041: Using spherical coordinates yields

lim
(x,y,z)→(0,0,0)

xyz

x2 + y2 + z2
= lim
ρ→0

ρ3(sin2 φ cosφ sin θ cos θ)
ρ2

= lim
ρ→0

ρ(sin2 φ cosφ sin θ cos θ) = 0.

C13S03.042: Use of spherical coordinates yields

lim
(x,y,z)→(0,0,0)

arctan
1

x2 + y2 + z2
= lim
ρ→0

arctan
1
ρ2

= lim
z→∞

arctan z =
π

2
.

C13S03.043: The substitution y = mx yields

lim
(x,y)→(0,0)

x2 − y2

x2 + y2
= lim
x→0

x2(1−m2)
x2(1 +m2)

=
1−m2

1 +m2
.

This is the limit as (x, y) → (0, 0) along the straight line of slope m. Different values of m (such as 0 and
1) give different values for the limit (such as 1 and 0), and therefore the original limit does not exist (see the
Remark following Example 9).

C13S03.044: The substitution y = mx yields

lim
(x,y)→(0,0)

x4 − y4

x4 + x2y2 + y4
= lim

x→0

x4(1−m4)
x4(1 +m2 +m4)

= lim
x→0

1−m4

1 +m2 +m4
=

1−m4

1 +m2 +m4
.

Hence if (x, y)→ (0, 0) along the line y = x (where m = 0) the limit is 1, whereas if (x, y)→ (0, 0) along
the line y = x (where m = 1), the limit is zero. Therefore this limit does not exist.

C13S03.045: If (x, y, z)→ (0, 0, 0) along the positive x-axis—where y = z = 0—we obtain

lim
x→0+

x+ y + z

x2 + y2 + z2
= lim
x→0+

1
x

= +∞.

Therefore the original limit does not exist.

C13S03.046: If (x, y, z)→ (0, 0, 0) along the positive x-axis—where y = z = 0—we obtain

lim
x→0+

x2 + y2 − z2

x2 + y2 + z2
= lim
x→0+

x2

x2
= 1.

But if (x, y, z)→ (0, 0, 0) along the positive z-axis—where x = y = 0—we obtain

lim
z→0+

x2 + y2 − z2

x2 + y2 + z2
= lim
z→0+

−z2

z2
= −1.

Therefore the original limit does not exist (see the Remark that follows Example 9).

C13S03.047: The graph that follows this solution suggests that as (x, y) → (0, 0) along straight lines of
various slopes, the values of
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lim
(x,y)→(0,0)

x2 − 2y2

x2 + y2

range from −2 to 1, so that the limit in question does not exist. To be certain that it does not, let (x, y)
approach (0, 0) along the x-axis to get limit 1, then along the y-axis to get limit −2. The figure was generated
by executing the Mathematica 3.0 command

ParametricPlot3D[ { r∗Cos[t], r∗Sin[t], (Cos[t])∧2 - 2∗(Sin[t])∧2 },
{ t, 0, 2∗Pi }, { r, 0.01, 2 } ];

C13S03.048: The graph that follows this solution suggests that as (x, y) → (0, 0) along straight lines of
various slopes, the values of

lim
(x,y)→(0,0)

x2y2

x4 + y4

range from 0 to 1
2 , so that the limit in question does not exist. To be certain that it does not, let (x, y)

approach (0, 0) along the line y = x to get limit 1
2 , then along the x-axis to get limit 0.

C13S03.049: The graph that follows this solution suggests that as (x, y) → (0, 0) along straight lines of
various slopes, the values of

lim
(x,y)→(0,0)

xy

2x2 + 3y2
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range from −0.2 to 0.2, so that the limit in question does not exist. To be sure that it does not, let (x, y)
approach (0, 0) along the line y = x to get limit 0.2, then long the line y = −x to get limit −0.2.

C13S03.050: The graph that follows this solution suggests that as (x, y) → (0, 0) along straight lines of
various slopes, the values of

lim
(x,y)→(0,0)

x2 + 4xy + y2

x2 + xy + y2

range from −2 to 2, so that the limit in question does not exist. To be certain of this, let (x, y) approach
(0, 0) along the line y = x to get limit 2, then along the line y = −x to get limit −2.

C13S03.051: Given:

f(x, y) =
2x2y

x4 + y2
.

Suppose that (x, y) approaches (0, 0) along the nonvertical straight line with equation y = mx. If m �= 0,
then—on that line—

lim
(x,y)→(0,0)

f(x, y) = lim
x→0

2mx3

x4 +m2x2
= lim
x→0

2mx
x2 +m2

=
0
m2

= 0.

Clearly if m = 0 the result is the same. And if (x, y) approaches (0, 0) along the y-axis, then—on that
line—
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lim
(x,y)→(0,0)

f(x, y) = lim
y→0

2 · 0 · y
0 + y2

= 0.

Therefore as (x, y) approaches (0, 0) along any straight line, the limit of f(x, y) is zero. But on the curve
y = x2 we have

lim
(x,y)→(0,0)

f(x, y) = lim
x→0

2x4

x4 + x4
= 1,

and therefore the limit of f(x, y) does not exist at (0, 0) (see the Remark following Example 9). For related
paradoxical results involving functions of two variables, see Problem 60 of Section 13.5 and the miscellaneous
problems of Chapter 13.

C13S03.052: Given:

f(x, y) =




x− y
x3 − y if y �= x3;

1 if y = x3.

Then as (x, y) approaches (1, 1) along the horizontal line y = 1, we have

lim
(x,y)→(1,1)

f(x, y) = lim
x→1

x− 1
x3 − 1

= lim
x→1

1
x2 + x+ 1

=
1
3
.

But as (x, y) approaches (1, 1) along the vertical line x = 1, we have

lim
(x,y)→(1,1)

f(x, y) = lim
y→1

1− y
1− y = 1.

Therefore f(x, y) has no limit at (x, y) = (1, 1). Consequently f is not continuous there (and in fact we
have shown that it has a nonremovable discontinuity there).

C13S03.053: Given:

f(x, y) =
xy

x2 + y2
.

After we convert to polar coordinates, we have

f(r, θ) =
r2 cos θ sin θ

r2
= cos θ sin θ =

1
2

sin 2θ.

On the hyperbolic spiral rθ = 1, we have θ → +∞ as r approaches zero through positive values. Hence
f(r, θ) takes on all values between − 1

2 and 1
2 infinitely often as r → 0+. Therefore, as we discovered in

Example 9, f(x, y) has no limit as (x, y)→ (0, 0).

C13S03.054: Let z = xy. By the discussions following Examples 4 and 5 and the “basic trigonometric
limit” (Theorem 1 in Section 2.3),

lim
(x,y)→(0,0)

sinxy
xy

= lim
z→0

sin z
z

= 1 = f(0, 0).

Therefore f is continuous at (0, 0). By the discussion following Example 5, f is continuous at every other
point of the xy-plane. Therefore f is continuous everywhere.
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C13S03.055: Let z = x2−y2. By the discussions following Examples 4 and 5 and the “basic trigonometric
limit” (Theorem 1 in Section 2.3),

lim
(x,y)→(0,0)

sin(x2 − y2)
x2 − y2

= lim
z→0

sin z
z

= 1 = f(0, 0).

Therefore f is continuous at (0, 0). By the discussion following Example 5, f is continuous at every other
point of the xy-plane. Therefore f is continuous everywhere.

C13S03.056: Let w = xyz. By the discussions following Examples 4 and 5 and the “basic trigonometric
limit” (Theorem 1 in Section 2.3),

lim
(x,y,z)→(0,0,0)

sinxyz
xyz

= lim
w→0

sinw
w

= 1 = f(0, 0, 0).

Therefore f is continuous at (0, 0, 0). By the discussion following Example 5, f is continuous at every other
point of xyz-space. Therefore f is continuous everywhere.
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Section 13.4

C13S04.001: If f(x, y) = x4 − x3y + x2y2 − xy3 + y4, then

∂f

∂x
= 4x3 − 3x2y + 2xy2 − y3 and

∂f

∂y
= −x3 + 2x2y − 3xy2 + 4y3.

C13S04.002: If f(x, y) = x sin y, then

∂f

∂x
= sin y and

∂f

∂y
= x cos y.

C13S04.003: If f(x, y) = ex(cos y − sin y), then

∂f

∂x
= ex(cos y − sin y) and

∂f

∂y
= −ex(cos y + sin y).

C13S04.004: If f(x, y) = x2exy, then

∂f

∂x
= 2xexy + x2yexy = xexy(xy + 2) and

∂f

∂y
= x3exy.

C13S04.005: If f(x, y) =
x+ y

x− y , then

∂f

∂x
= − 2y

(x− y)2 and
∂f

∂y
=

2x
(x− y)2 .

C13S04.006: If f(x, y) =
xy

x2 + y2
, then

∂f

∂x
=
y(y2 − x2)
(x2 + y2)2

and
∂f

∂y
=
x(x2 − y2)
(x2 + y2)2

.

C13S04.007: If f(x, y) = ln(x2 + y2), then

∂f

∂x
=

2x
x2 + y2

and
∂f

∂y
=

2y
x2 + y2

.

C13S04.008: If f(x, y) = (x− y)14, then

∂f

∂x
= 14(x− y)13 and

∂f

∂y
= −14(x− y)13.

C13S04.009: If f(x, y) = xy, then
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∂f

∂x
= yxy−1 and

∂f

∂y
= xy lnx.

C13S04.010: If f(x, y) = arctanxy, then

∂f

∂x
=

y

1 + x2y2
and

∂f

∂y
=

x

1 + x2y2
.

C13S04.011: If f(x, y, z) = x2y3z4, then

∂f

∂x
= 2xy3z4,

∂f

∂y
= 3x2y2z4, and

∂f

∂z
= 4x2y3z3.

C13S04.012: If f(x, y, z) = x2 + y3 + z4, then

∂f

∂x
= 2x,

∂f

∂y
= 3y2, and

∂f

∂z
= 4z3.

C13S04.013: If f(x, y, z) = exyz, then

∂f

∂x
= yzexyz,

∂f

∂y
= xzexyz, and

∂f

∂z
= xyexyz.

C13S04.014: If f(x, y, z) = x4 − 16yz, then

∂f

∂x
= 4x3,

∂f

∂y
= −16z, and

∂f

∂z
= −16y.

C13S04.015: If f(x, y, z) = x2ey ln z, then

∂f

∂x
= 2xey ln z,

∂f

∂y
= x2ey ln z, and

∂f

∂z
=
x2ey

z
.

C13S04.016: If f(u, v) = (2u2 + 3v2) exp(−u2 − v2), then

∂f

∂u
= 4u exp(−u2 − v2)− 2u(2u2 + 3v2) exp(−u2 − v2) = −2u(2u2 + 3v2 − 2) exp(−u2 − v2) and

∂f

∂v
= 6v exp(−u2 − v2)− 2v(2u2 + 3v2) exp(−u2 − v2) = −2v(2u2 + 3v2 − 3) exp(−u2 − v2).

C13S04.017: If f(r, s) =
r2 − s2
r2 + s2

. then

∂f

∂r
=

4rs2

(r2 + s2)2
and

∂f

∂s
= − 4r2s

(r2 + s2)2
.

C13S04.018: If f(u, v) = euv(cosuv + sinuv), then
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∂f

∂u
= veuv(cosuv + sinuv) + veuv(cosuv − sinuv) = 2veuv cosuv and

∂f

∂v
= ueuv(cosuv + sinuv) + ueuv(cosuv − sinuv) = 2ueuv cosuv.

C13S04.019: If f(u, v, w) = uev + vew + weu, then

∂f

∂u
= weu + ev,

∂f

∂v
= uev + ew, and

∂f

∂w
= eu + vew.

C13S04.020: If f(r, s, t) = (1− r2 − s2 − t2) exp(−rst), then

∂f

∂r
= −2re−rst − st(1− r2 − s2 − t2)e−rst = e−rst(r2st+ s3t+ st3 − 2r − st),

∂f

∂s
= −2se−rst − rt(1− r2 − s2 − t2)e−rst = e−rst(rs2t+ r3t+ rt3 − 2s− rt), and

∂f

∂t
= −2te−rst − rs(1− r2 − s2 − t2)e−rst = e−rst(rst2 + r3s+ rs3 − 2t− rs).

C13S04.021: If z(x, y) = x2 − 4xy + 3y2, then

zx(x, y) = 2x− 4y, zy(x, y) = −4x+ 6y,

zxy(x, y) = −4, zyx(x, y) = −4.

C13S04.022: If z(x, y) = 2x3 + 5x2y − 6y2 + xy4, then

zx(x, y) = 6x2 + 10xy + y4, zy(x, y) = 5x2 − 12y + 4xy3,

zxy(x, y) = 10x+ 4y3, zyx(x, y) = 10x+ 4y3.

C13S04.023: If z(x, y) = x2 exp(−y2), then

zx(x, y) = 2x exp(−y2), zy(x, y) = −2x2y exp(−y2),

zxy(x, y) = −4xy exp(−y2), zyx(x, y) = −4xy exp(−y2).

C13S04.024: If z(x, y) = xy exp(−xy), then

zx(x, y) = y exp(−xy)− xy2 exp(−xy), zy(x, y) = x exp(−xy)− x2y exp(−xy),

zxy(x, y) = −xy exp(−xy)− (xy − 1) exp(−xy) + xy(xy − 1) exp(−xy)

= (x2y2 − 3xy + 1) exp(−xy) = zyx(x, y).

C13S04.025: If z(x, y) = ln(x+ y), then
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zx(x, y) =
1

x+ y
= zy(x, y) and zxy(x, y) = − 1

(x+ y)2
= zyx(x, y).

C13S04.026: If z(x, y) = (x3 + y3)10, then

zx(x, y) = 30x2(x3 + y3)9, zy(x, y) = 30y2(x3 + y3)9,

zxy(x, y) = 810x2y2(x3 + y3)8, zyx(x, y) = 810x2y2(x3 + y3)8,

C13S04.027: If z(x, y) = e−3x cos y, then

zx(x, y) = −3e−3x cos y, zy(x, y) = −e−3x sin y,

zxy(x, y) = 3e−3x sin y, zyx(x, y) = 3e−3x sin y.

C13S04.028: If z(x, y) = (x+ y) secxy, then

zx(x, y) = secxy + y(x+ y) secxy tanxy = (1 + xy tanxy + y2 tanxy) secxy,

zy(x, y) = secxy + x(x+ y) secxy tanxy = (1 + xy tanxy + x2 tanxy) secxy,

zxy(x, y) = (x2y sec2 xy + xy2 sec2 xy + x tanxy + 2y tanxy) secxy

+ (1 + xy tanxy + y2 tanxy)x secxy tanxy

= (xy sec2 xy + xy tan2 xy + 2 tanxy)(x+ y) secxy,

zyx(x, y) = (x2y sec2 xy + xy2 sec2 xy + 2x tanxy + y tanxy) secxy

+ (1 + xy tanxy + x2 tanxy)y secxy tanxy

= (xy sec2 xy + xy tan2 xy + 2 tanxy)(x+ y) secxy.

C13S04.029: If z(x, y) = x2 cosh
(

1
y2

)
, then

zx(x, y) = 2x cosh
(

1
y2

)
, zy(x, y) = −2x2

y3
sinh

(
1
y2

)
,

zxy(x, y) = −4x
y3

sinh
(

1
y2

)
, zyx(x, y) = −4x

y3
sinh

(
1
y2

)
.

C13S04.030: If z(x, y) = sinxy + arctanxy, then

zx(x, y) =
y

1 + x2y2
+ y cosxy, zy(x, y) =

x

1 + x2y2
+ x cosxy,

zxy(x, y) =
1− x2y2

(1 + x2y2)2
+ cosxy − xy sinxy = zyx(x, y).
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C13S04.031: Given: f(x, y) = x2 + y2 and the point P (3, 4, 25) on its graph. Then

fx(x, y) = 2x; fx(3, 4) = 6;

fy(x, y) = 2y; fy(3, 4) = 8.

Hence by Eq. (11) of Section 13.4, an equation of the plane tangent to the graph of z = f(x, y) at the point
P is

z − 25 = 6(x− 3) + 8(y − 4); that is, 6x+ 8y − z = 25.

C13S04.032: Given: f(x, y) =
√

50− x2 − y2 and the point P (4, −3, 5) on its graph. Then

fx(x, y) = − x√
50− x2 − y2

; fy(x, y) = − y√
50− x2 − y2

;

fx(4, −3) = −4
5
; fy(4, −3) =

3
5
.

Hence by Eq. (11) of Section 13.4, an equation of the plane tangent to the graph of z = f(x, y) at the point
P is

z − 5 = −4
5

(x− 4) +
3
5

(y + 3); that is, 4x− 3y + 5z = 50.

C13S04.033: Given: f(x, y) = sin
πxy

2
and the point P (3, 5, −1) on its graph. Then

fx(x, y) =
πy

2
cos

πxy

2
; fy(x, y) =

πx

2
cos

πxy

2
;

fx(3, 5) = 0; fy(3, 5) = 0.

The plane tangent to the graph of z = f(x, y) at the point P is horizontal, so its has equation z = −1.

C13S04.034: Given: f(x, y) =
4
π

arctanxy and the point P (1, 1, 1) on its graph. Then

fx(x, y) =
4y

π(1 + x2y2)
; fy(x, y) =

4x
π(1 + x2y2)

;

fx(1, 1) =
2
π

; fy(1, 1) =
2
π
.

Then by Eq. (11), an equation of the plane tangent to the graph of z = f(x, y) at the point P is

z − 1 =
2
π

(x− 1) +
2
π

(y − 1); that is, 2x+ 2y − πz = 4− π.

C13S04.035: Given: f(x, y) = x3 − y3 and the point P (3, 2, 19) on its graph. Then fx(x, y) = 3x2 and
fy(x y) = −3y2, so fx(3, 2) = 27 and fy(3, 2) = −12. So by Eq. (11) an equation of the plane tangent to
the graph of z = f(x, y) at the point P is

z − 19 = 27(x− 3)− 12(y − 2); that is, 27x− 12y − z = 38.
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C13S04.036: The graph of the given equation z = 3x+4y is a plane, so it is its own tangent plane and the
coordinates of the point of tangency don’t matter. Answer: An equation of the plane tangent to the graph
of z = 3x+ 4y at the point P is z = 3x+ 4y.

C13S04.037: Given: f(x, y) = xy and the point P (1, −1, −1) on its graph. Then fx(x, y) = y and
fy(x, y) = x, so fx(1, −1) = −1 and fy(1, −1) = 1. By Eq. (11) an equation of the plane tangent to the
graph of z = f(x, y) at the point P is z + 1 = −(x− 1) + (y − 1); that is, x− y + z = 1.

C13S04.038: Given: f(x, y) = exp(−x2 − y2) and the point P (0, 0, 1) on its graph. Then

fx(x, y) = −2x exp(−x2 − y2); fy(x, y) = −2y exp(−x2 − y2);

fx(0, 0) = 0; fy(0, 0) = 0.

This plane is horizontal. Therefore its equation is z = 1.

C13S04.039: Given: f(x, y) = x2 − 4y2 and the point P (5, 2, 9) on its graph. Then fx(x, y) = 2x and
fy(x, y) = −8y, so fx(5, 2) = 10 and fy(5, 2) = −16. By Eq. (11) an equation of the plane tangent to the
graph of z = f(x, y) at the point P is

z − 9 = 10(x− 5)− 16(y − 2); that is, 10x− 16y − z = 9.

C13S04.040: Given: f(x, y) = (x2 + y2)1/2 and the point P (3, −4, 5) on its graph. Then

fx(x, y) =
x

(x2 + y2)1/2
; fy(x, y) =

y

(x2 + y2)1/2
;

fx(3, −4) =
3
5
; fy(3, −4) = −4

5
.

By Eq. (11) an equation of the plane tangent to the graph of z = f(x, y) at the point P is

z − 5 =
3
5

(x− 3)− 4
5

(y + 4); that is, 3x− 4y − 5z = 0.

C13S04.041: If fx(x, y) = 2xy3 and fy(x, y) = 3x2y2, then

fxy(x, y) = 6xy2 = fyx(x, y).

In Section 15.3 we will find that there must exist a function f having the given partial derivatives. Here we
can find one by inspection; it is f(x, y) = x2y3.

C13S04.042: If fx(x, y) = 5xy + y2 and fy(x, y) = 3x2 + 2xy, then

fxy(x, y) = 5x+ 2y �= 6x+ 2y = fyx(x, y).

Hence by the Note preceding and following Eq. (14), there can be no function f(x, y) having the given
first-order partial derivatives.

C13S04.043: If fx(x, y) = cos2 xy and fy(x, y) = sin2 xy, then

fxy(x, y) = −2x sinxy cosxy �= −2y sinxy cosxy = fyx(x, y).
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By the Note preceding and following Eq. (14), there can be no function f(x, y) having the given first-order
partial derivatives.

C13S04.044: Given fx(x, y) = cosx sin y and fy(x, y) = sinx cos y, we find that

fxy(x, y) = cosx cos y = fyx(x, y).

So it’s not impossible that there exists a function f(x, y) having the given first-order partial derivatives.
Indeed, by inspection, one such function is f(x, y) = sinx sin y.

C13S04.045: The graph of z = f(x, y) is shown in Fig. 13.4.14. The key to solving this group of six
problems is first to locate f . Do this by sketching cross sections of each graph parallel to the xz- and
yz-planes. This will make it easy to eliminate all but one candidate for the graph of f . Then the same
sketches—the ones you created for the graph that turned out to be the graph of f—will quickly identify the
other five graphs.

C13S04.046: The graph of z = fx(x, y) is shown in Fig. 13.4.17.

C13S04.047: The graph of z = fy(x, y) is shown in Fig. 13.4.13.

C13S04.048: The graph of z = fxx(x, y) is shown in Fig. 13.4.12.

C13S04.049: The graph of z = fxy(x, y) is shown in Fig. 13.4.15.

C13S04.050: The graph of z = fyy(x, y) is shown in Fig. 13.4.16.

C13S04.051: If m and n are positive integers and f(x, y) = xmyn, then fx(x, y) = mxm−1yn and
fy(x, y) = nxmyn−1. Hence fxy(x, y) = mnxm−1yn−1 = fyx(x, y).

C13S04.052: If f(x, y) = ex+y, then fx(x, y) = ex+y and fy(x, y) = ex+y. Therefore all higher-order
partial derivatives must also be equal to ex+y.

C13S04.053: If f(x, y, z) = exyz, then

fx(x, y, z) = yzexyz, fy(x, y, z) = xzexyz, and fz(x, y, z) = xyexyz.

Therefore

fxx(x, y, z) = y2z2exyz, fxy(x, y, z) = fyx(x, y, z) = (xyz2 + z)exyz,

fxz(x, y, z) = fzx(x, y, z) = (y + xy2z)exyz, fyz(x, y, z) = fzy(x, y, z) = (x+ x2yz)exyz,

fyy(x, y, z) = x2z2exyz, fzz(x, y, z) = x2y2exyz, and

fxyz(x, y, z) = (1 + 3xyz + x2y2z2)exyz.

C13S04.054: If g(x, y) = sinxy, then

gx(x, y) = y cosxy, gy(x, y) = x cosxy,

gxy(x, y) = cosxy − xy sinxy, gyx(x, y) = cosxy − xy sinxy,
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gxx(x, y) = −y2 sinxy, gxxy(x, y) = −xy2 cosxy − 2y sinxy,

gxyx(x, y) = −xy2 cosxy − 2y sinxy, gyxx(x, y) = −xy2 cosxy − 2y sinxy.

C13S04.055: If u(x, t) = exp(−n2kt) sinnx where n and k are constants, then

ut(x, t) = −n2k exp(−n2kt) sinnx, ux(x, t) = n exp(−n2kt) cosnx,

and uxx(x, t) = −n2 exp(−n2kt) sinnx.

Therefore ut = kuxx for any choice of the constants k and n.

C13S04.056: If m and n are constants and

u(x, y, t) = exp
(
− (m2 + n2)kt

)
sinmx cosny,

then

ut(x, y, t) = −k(m2 + n2) exp
(
− (m2 + n2)kt

)
sinmx cosny,

ux(x, y, t) = m exp
(
− (m2 + n2)kt

)
cosmx cosny,

uy(x, y, t) = −n exp
(
− (m2 + n2)kt

)
sinmx sinny,

uxx(x, y, t) = −m2 exp
(
− (m2 + n2)kt

)
sinmx cosny, and

uyy(x, y, t) = −n2 exp
(
− (m2 + n2)kt

)
sinmx cosny.

Therefore ut = k(uxx + uyy) for any choice of the constants m and n.

C13S04.057: Part (a): If y(x, t) = sin(x+ at) (where a is a constant), then

yt(x, t) = a cos(x+ at), yx(x, t) = cos(x+ at),

ytt(x, t) = −a2 sin(x+ at), yxx(x, t) = − sin(x+ at).

Therefore ytt = a2yxx.

Part (b): If y(x, t) = cosh
(
3(x− at)

)
, then

yt(x, t) = −3a sinh
(
3(x− at)

)
, yx(x, t) = 3 sinh

(
3(x− at)

)
,

ytt(x, t) = 9a2 cosh
(
3(x− at)

)
, yxx(x, t) = 9 cosh

(
3(x− at)

)
.

Therefore ytt = a2yxx.

Part (c): If y(x, t) = sin kx cos kat (where k is a constant), then

yt(x, t) = −ka sin kx sin kat, yx(x, t) = k cos kx cos kat,

ytt(x, t) = −k2a2 sin kx cos kat, yxx(x, t) = −k2 sin kx cos kat.
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Therefore ytt = a2yxx.

C13S04.058: Part (a): If u(x, y) = ln
(√

x2 + y2
)
, then

ux(x, y) =
x

x2 + y2
, uxx(x, y) =

y2 − x2

(x2 + y2)2
,

uy(x, y) =
y

x2 + y2
, uyy(x, y) =

x2 − y2

(x2 + y2)2
.

Therefore uxx + uyy = 0.

Part (b): If u(x, y) =
√
x2 + y2 , then

ux(x, y) =
x√

x2 + y2
, uxx(x, y) =

y2

(x2 + y2)3/2
,

uy(x, y) =
y√

x2 + y2
, uyy(x, y) =

x2

(x2 + y2)3/2
.

Therefore uxx + uyy �= 0, and thus u does not satisfy Laplace’s equation.

Part (c): If u(x, y) = arctan(y/x), then

ux(x, y) = − y

x2 + y2
, uxx(x, y) =

2xy
(x2 + y2)2

,

uy(x, y) =
x

x2 + y2
, uyy(x, y) = − 2xy

(x2 + y2)2
.

Therefore uxx + uyy = 0, and thus u satisfies Laplace’s equation.

Part (d): If u(x, y) = e−x sin y, then

ux(x, y) = −e−x sin y, uxx(x, y) = e−x sin y,

uy(x, y) = e−x cos y, uyy(x, y) = −e−x sin y.

Therefore uxx + uyy = 0, and thus u satisfies Laplace’s equation.

C13S04.059: Given: f and g are twice-differentiable functions of a single variable, a is a constant, and
y(x, t) = f(x+ at) + g(x− at). Then

yt(x, t) = af ′(x+ at)− ag′(x− at), ytt(x, t) = a2f ′′(x+ at) + a2g′′(x− at),

yx(x, t) = f ′(x+ at) + g′(x− at), yxx(x, t) = f ′′(x+ at) + g′′(x− at).

It’s now clear that y(x, t) satisfies the wave equation ytt = a2yxx.

C13S04.060: Given: The constant q and the function
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φ(x, y, z) =
q√

x2 + y2 + z2
.

Then

φx(x, y, z) = − qx

(x2 + y2 + z2)3/2
and

φxx(x, y, z) =
q(2x2 − y2 − z2)
(x2 + y2 + z2)5/2

.

By the symmetries in φ among x, y, and z, it follows that

φyy(x, y, z) =
q(2y2 − x2 − z2)
(x2 + y2 + z2)5/2

and φzz(x, y, z) =
q(2z2 − x2 − y2)
(x2 + y2 + z2)5/2

.

It is now clear that φ satisfies the three-dimensional Laplace equation φxx + φyy + φzz = 0.

C13S04.061: Given:

u(x, t) = T0 + a0 exp
(
−x

√
ω/2k

)
cos

(
ωt− x

√
ω/2k

)

where T0, a0, ω, and k are constants. First note that

u(0, t) = T0 + a0e
0 cos(ωt− 0) = T0 + a0 cosωt.

Next,

ut(x, t) = −a0ω exp
(
−x

√
ω/2k

)
sin

(
ωt− x

√
ω/2k

)
,

ux(x, t) = −a0

(√
ω/2k

)
exp

(
−x

√
ω/2k

) [
cos

(
ωt− x

√
ω/2k

)
− sin

(
ωt− x

√
ω/2k

) ]
, and

uxx(x, t) = −a0ω

k
exp

(
−x

√
ω/2k

)
sin

(
ωt− x

√
ω/2k

)
.

Therefore y(x, t) satisfies the one-dimensional heat equation ut = kuxx.

C13S04.062: For simplicity replace R with u, R1 with x, R2 with y, and R3 with z. Then

u = u(x, y, z) = (x−1 + y−1 + z−1)−1.

Therefore

∂u

∂x
= (−1)(x−1 + y−1 + z−1)−2(−1)x−2 = x−2(x−1 + y−1 + z−1)−2.

Using the symmetry of the appearance of x, y, and z in the expression for u, we have

∂u

∂y
= y−2(x−1 + y−1 + z−1)−2 and

∂u

∂z
= z−2(x−1 + y−1 + z−1)−2.
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Thus

ux + uy + uz = (x−2 + y−2 + z−2)(x−1 + y−1 + z−1)−2,

and the solution is complete.

C13S04.063: Given pV = nRT where n and R are constants, solve for p, V , and T in turn; then compute

∂p

∂V
= −nRT

V 2
,

∂V

∂T
=
nR

p
, and

∂T

∂p
=

V

nR
.

Then

∂p

∂V
· ∂V
∂T
· ∂T
∂p

= −nRT
pV

= −1.

C13S04.064: Let f(x, y) =
√
x2 + y2 . Then

fx(x, y) =
x√

x2 + y2
, fx(a, b) =

a√
a2 + b2

and

fy(x, y) =
y√

x2 + y2
, fy(a, b) =

b√
a2 + b2

.

By Eq. (11), an equation of the plane tangent to the cone z = f(x, y) at the point (a, b) is

z − f(a, b) =
a(x− a)√
a2 + b2

+
b(y − b)√
a2 + b2

,

which after simplifications becomes

z =
ax+ by√
a2 + b2

.

Therefore this plane passes through the origin. Repeat the argument with g(x, y) = −
√
x2 + y2 for the

case of the lower nappe of the cone.

C13S04.065: If f(x, y) = x2 + 2xy + 2y2 − 6x+ 8y, then the equations

fx(x, y) = 0, fy(x, y) = 0

are

2x+ 2y − 6 = 0, 2x+ 4y = −8,

which have the unique solution x = 10, y = −7. So the surface that is the graph of z = f(x, y) contains
exactly one point at which the tangent plane is horizontal, and that point is (10, −7, −58).
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C13S04.066: Let P (a, b, c) be a point on the paraboloid with equation z = x2 +y2. Note that c = a2 + b2,
zx(a, b) = 2a, and zy(a, b) = 2b. Thus the plane tangent to the paraboloid at P has equation

2a(x− a) + 2b(y − b) = z − c.

Substitution of a2 + b2 for c then yields the equation

2ax+ 2by = z + a2 + b2.

In the xy-plane we have z = 0, so the tangent plane meets the xy-plane in the line L with equation

2ax+ 2by = a2 + b2.

Now (x, y) = (a/2, b/2) satisfies this equation, so the point Q(a/2, b/2) is on L. The slope of L is −a/b,
so a normal to L has slope b/a. The segment OQ has this slope, so OQ is a perpendicular from the origin
O to this line. Its length is r = 1

2

√
a2 + b2 , so L is tangent to the circle with center O and radius r. The

equation of that circle is therefore x2 + y2 = 1
4 (a2 + b2), and the solution is complete.

C13S04.067: Given: van der Waals’ equation
(
p+

a

V 2

)
(V − b) = (82.06)T

where p denotes pressure (in atm), V volume (in cm3), and T temperature (in K). For CO2, the empirical
constants are a = 3.59× 106 and b = 42.7. We are also given V = 25600 when p = 1 and T = 313. Part (a):
We differentiate with respect to p while holding T constant. We obtain

(
1− 2a

V 3
Vp

)
(V − b) +

(
p+

a

V 2

)
· Vp = 0;

V − b− 2a
V 2

Vp +
2ab
V 3

Vp + pVp +
a

V 2
Vp = 0;

(
a

V 2
− 2ab
V 3
− p

)
Vp = V − b;

aV − 2ab− pV 3

V 3
Vp = V − b;

Vp =
V 3(V − b)

aV − 2ab− pV 3
.

If p is changed from 1 to 1.1, then the resulting change in V will be predicted by

∆V ≈ Vp ∆p =
1
10
Vp,

and substitution of the data V = 25600, p = 1 yields ∆V ≈ −2569.76 (cm3).

Part (b): We hold p constant and differentiate both sides of van der Waals’ equation with respect to T .
The result:

(
p+

a

V 2

)
VT −

2a
V 3

(V − b)VT = 82.06;

(
pV 3 + aV

)
VT − 2a(V − b)VT = (82.06)V 3;

VT =
(82.06)V 3

pV 3 − aV + 2ab
.
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If T is changed from 313 to 314 while the pressure is maintained at the constant value p = 1, the resulting
change in V is predicted by

∆V ≈ VT ∆T = 1 · VT .

Substitution of the data V = 25600, p = 1, T = 313 yields ∆V ≈ 82.5105.

The exact values of the two answers are closer to −2347.60 and 69.9202. Part of the discrepancy is caused by
the fact that V = 25600 is itself only an approximation; the true value is closer to 25669.920232. Reworking
parts (a) and (b) with this value of V yields the different approximations −2557.17 and 82.5095.

C13S04.068: If z(x, y) = ln(cosx)− ln(cos y), then

zx(x, y) = − tanx, zy(x, y) = tan y,

zxx(x, y) = − sec2 x, zxy(x, y) ≡ 0, and

zyy(x, y) = sec2 y.

Therefore

(1 + z2
y)zxx − zzxzyzxy + (1 + z2

x)zyy = − sec2 x sec2 y − 0 + sec2 x sec2 y ≡ 0.

C13S04.069: Part (a): If f(x, y) = sinx sinh(π − y), then

fx(x, y) = cosx sinh(π − y), fxx(x, y) = − sinx sinh(π − y),

fy(x, y) = − sinx cosh(π − y), fyy(x, y) = sinx sinh(π − y).

Clearly f is harmonic.

Part (b): If f(x, y) = sinh 2x sin 2y, then

fx(x, y) = 2 cosh 2x sin 2y, fxx(x, y) = 4 sinh 2x sin 2y,

fy(x, y) = 2 sinh 2x cos 2y, fyy(x, y) = −4 sinh 2x sin 2y.

Clearly f is harmonic.

Part (c): If f(x, y) = sin 3x sinh 3y, then

fx(x, y) = 3 cos 3x sinh 3y, fxx(x, y) = −9 sin 3x sinh 3y,

fy(x, y) = 3 sin 3x cosh 3y, fyy(x, y) = 9 sin 3x sinh 3y.

Again it is clear that f is harmonic.

Part (d): If f(x, y) = sinh 4(π − x) sin 4y, then

fx(x, y) = −4 cosh 4(π − x) sin 4y, fxx(x, y) = 16 sinh 4(π − x) sin 4y,

fy(x, y) = 4 sinh 4(π − x) cos 4y, fyy(x, y) = −16 sinh 4(π − y) sin 4y.
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Therefore f is harmonic.

C13S04.070: The sum of two harmonic functions is harmonic. Here is a proof for the case of functions of
two variables. Suppose that f and g are harmonic. Then

fxx + fyy = 0 and gxx + gyy = 0.

Let h(x, y) = f(x, y) + g(x, y). Then

hxx + hyy = fxx + gxx + fyy + gyy = fxx + fyy + gxx + gyy = 0 + 0 = 0.

Therefore f + g is harmonic. This concludes the proof. By induction, you may extend it to show that the
sum of any finite number of harmonic functions is harmonic. This answers the question in Problem 70.

C13S04.071: If f(x, y) = 100 +
1

100
(x2 − 3xy + 2y2), then

fx(x, y) =
1

100
(2x− 3y), fy(x, y) =

1
100

(4y − 3x),

fx(100, 100) = −100
100

= −1, fy(100, 100) =
100
100

= 1.

Part (a): You will initially be descending at a 45◦ angle. Part (b): You will initially be ascending at a 45◦

angle.

C13S04.072: If f(x, y) = 1000 +
1

1000
(3x2 − 5xy + y2), then

fx(x, y) =
1

1000
(6x− 5y), fy(x, y) =

1
1000

(2y − 5x),

fx(150, 250) = − 7
20
, fy(150, 250) = −1

4
.

Part (a): You will initially be descending at an angle of − arctan
(

7
20

)
radians, about −19◦ 17′ 24.166′′. Part

(b): You will initially be descending at an angle of − arctan
(

1
4

)
radians, approximately −14◦ 2′ 10.476′′.

C13S04.073: Given:

f(x, y) =




xy

x2 + y2
if (x, y) �= (0, 0),

0 if (x, y) = (0, 0).

Part (a): To find the first-order partial derivatives of f at a point other than (0, 0), we proceed normally:

fx(x, y) =
y3 − x2y

(x2 + y2)2
and fy(x, y) =

x3 − xy2

(x2 + y2)2
.

Clearly both are defined and continuous everywhere except possibly at the origin. Next,

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)
h

= lim
h→0

0
h

= 0

and
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fy(0, 0) = lim
k→0

f(0, 0 + k)− f(0, 0)
k

= lim
k→0

0
k

= 0.

Therefore both fx and fy are defined everywhere.

Part (b): At points of the line y = mx other than (0, 0), we have

fx(x, y) = fx(x, mx) =
m3 −m

(m2 + 1)2x
,

and hence (taking m = 0) we have fx(x, y) = fx(x, 0) ≡ 0, whereas (taking m = 2) we have

fx(x, y) = fx(x, 2x) =
6

25x
,

so that fx is not continuous at (0, 0). Similarly, at points of the line y = mx other than (0, 0), we have

fy(x, y) = fy(x, mx) =
(1−m2)

(1 +m2)2x
,

and hence (taking m = 1) we have fy(x, y) = fy(x, x) ≡ 0, whereas (taking m = 0) we have

fy(x, y) = fy(x, 0) =
1
x
.

Hence fy is also not continuous at (0, 0).

Part (c): If (x, y) �= (0, 0), then differentiation of fx with respect to x yields

fxx(x, y) =
2xy(x2 − 3y2)

(x2 + y2)3
.

Similarly,

fxy(x, y) = fyx(x, y) =
6x2y2 − x4 − y4

(x2 + y2)3
and fyy(x, y) =

2xy(y2 − 3x2)
(x2 + y2)3

.

Therefore the second-order partial derivatives of f are all defined and continuous except possibly at the
origin.

Part (d): Here we have

fxx(0, 0) = lim
h→0

fx(0 + h, 0)− fx(0, 0)
h

= lim
h→0

0
h

= 0

and, similarly, fyy(0, 0) = 0. Hence both second-order partial derivatives fxx and fyy exist at the origin
(but you can use polar coordinates to show that neither is continuous there). On the other hand,

fxy(0, 0) = lim
k→0

fx(0, 0 + k)− fx(0, 0)
k

= lim
k→0

1
k2
,

which does not exist; fyx(0, 0) also does not exist by a similar computation.

C13S04.074: Given:

g(x, y) =



xy(x2 − y2)
x2 + y2

if (x, y) �= (0, 0),

0 if (x, y) = (0, 0).
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Part (a): At points (x, y) other than the origin, we have

gx(x, y) =
x4y + 4x2y3 − y5

(x2 + y2)2
and gy(x, y) =

x5 − 4x3y2 − xy4

(x2 + y2)2
.

Therefore both first-order partial derivatives of g are defined and continuous except possibly at (0, 0). Also

gx(0, 0) = lim
h→0

g(0 + h, 0)− g(0, 0)
h

= lim
h→0

0
h

= 0;

gy(0, 0) = 0 by a similar computation. This establishes the result in Part (a).

Part (b): If (x, y) �= (0, 0), then the substitutions x = r cos θ, y = r sin θ give us (with what we suppose
is a clear but unconventional use of the notation)

gx(r, θ) =
r5 cos4 θ sin θ + 4r5 cos2 θ sin3 θ − r5 sin5 θ

r4
=
r

4
(3 sin 3θ − sin 5θ)

and

gy(r, θ) =
r5 cos5 θ − 4r5 cos3 θ sin2 θ − r5 sin4 θ cos θ

r4
=
r

4
(3 cos 3θ + cos 5θ)

(simplifications by Mathematica 3.0). It is now clear that both gx(x, y) and gy(x, y) approach zero as
(x, y)→ (0, 0), and therefore both gx and gy are continuous everywhere.

Part (c): If (x, y) is a point other than the origin, then

gxx(x, y) =
4xy3(3y2 − x2)

(x2 + y2)3
,

gxy(x, y) =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
= gyx(x, y), and

gyy(x, y) =
4x3y(y2 − 3x2)

(x2 + y2)3
.

Therefore all four second-order partial derivatives of g are defined and continuous except possibly at the
origin.

Part (d): Here we have

gxx(0, 0) = lim
h→0

gx(0 + h, 0)− gx(0, 0)
h

= lim
h→0

0
h

= 0,

gyy(0, 0) = lim
k→0

gy(0, 0 + k)− gy(0, 0)
k

= lim
k→0

0
k

= 0,

gxy(0, 0) = lim
k→0

gx(0, 0 + k)− gx(0, 0)
k

= lim
k→0

−k
k

= −1, and

gyx(0, 0) = lim
h→0

gy(0 + h, 0)− gy(0, 0)
h

= lim
h→0

h

h
= 1.

Therefore all four second-order partial derivatives of g exist at (0, 0) but gxy(0, 0) �= gyx(0, 0).

Part (e): Let m be a constant and suppose that (x, y) �= (0, 0). Then
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gxx(x, y) = gxx(x, mx) =
4m3(3m2 − 1)

(m2 + 1)3
,

and thus (take m = 1) gxx(x, x) ≡ 1. But (take m = 0) gxx(x, 0) ≡ 0. Hence gxx is not continuous at
(0, 0). Similarly,

gyy(x, y) = gyy(x, mx) =
m(4m2 − 3)
(m2 + 1)3

,

so (take m = 1) gyy(x, x) ≡ 1
8 . But (take m = 0) gyy(x, 0) ≡ 0. Therefore gyy is not continuous at (0, 0).

Finally,

gxy(x, y) = gyx(x, y) = gxy(x, mx) = gyx(x, mx) =
1 + 9m2 − 9m4 −m6

(m2 + 1)3
,

and thus (take m = 1) gxy(x, x) = gyx(x, x) ≡ 0 but (take m = 0) gxy(x, 0) = gyx(x, 0) ≡ 1.
Consequently neither gxy nor gyx is continuous at the origin. Observe how the result in Problem 74 illustrates
the Note containing Eq. (16).
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Section 13.5

C13S05.001: If z = x− 3y + 5, then zx ≡ 1 and zy ≡ −3. Hence there is no point on the graph at which
the tangent plane is horizontal. Indeed, the graph of z = x− 3y + 5 is itself a plane with nonvertical normal
vector 〈 1, −3, −1 〉, and that’s another reason why no tangent plane is horizontal.

C13S05.002: If z = 4− x2 − y2, then zx = −2x and zy = −2y. Both vanish at (0, 0), so there is exactly
one point on the graph of z = 4− x2 − y2 at which the tangent plane is horizontal; it is (0, 0, 4).

C13S05.003: If z = xy + 5, then zx = y and zy = x. Both vanish at (0, 0), so there is exactly one point
on the graph of z = xy + 5 at which the tangent plane is horizontal—(0, 0, 5).

C13S05.004: If z = x2 +y2 +2x, then zx = 2x+2 and zy = 2y. Both vanish at (−1, 0), so there is exactly
one point on the graph at which the tangent plane is horizontal; namely, (−1, 0, −1).

C13S05.005: If z = f(x, y) = x2 + y2− 6x+ 2y + 5, then zx = 2x− 6 and zy = 2y + 2. Both are zero only
at the point (3, −1), so the graph of z = f(x, y) has a horizontal tangent plane at the point (3, −1, −5).

C13S05.006: If z = f(x, y) = 10 + 8x− 6y − x2 − y2, then zx = −2x + 8 and zy = −2y − 6. Both vanish
at (4, −3), so the graph of z = f(x, y) has a horizontal tangent plane at the point (4, −3, 35).

C13S05.007: If z = f(x, y) = x2 + 4x + y3, then zx = 2x + 4 and zy = 3y2. Both are zero at the point
(−2, 0), so the graph of z = f(x, y) has exactly one horizontal tangent plane—the one that is tangent at
the point (−2, 0, −4).

C13S05.008: If z = f(x, y) = x4 + y3 − 3y, then zx = 4x2 and zy = 3y2 − 3 = 3(y + 1)(y− 1). Thus there
are two points where both partial derivatives are zero: (0, −1) and (0, 1). Therefore the graph of z = f(x, y)
has two horizontal tangent planes. One is at (0, −1, 2), the other at (0, 1, −2).

C13S05.009: If z = f(x, y) = 3x2 + 12x + 4y3 − 6y2 + 5, then zx = 6x + 12 and zy = 12y(y − 1). Both
partial derivatives are zero at (−2, 0) and (−2, 1), so the graph of z = f(x, y) has two horizontal tangent
planes. One is tangent at the point (−2, 0, −7) and the other is tangent at the point (−2, 1, −9).

C13S05.010: If

z = f(x, y) =
1

1− 2x + 2y + x2 + y2
,

then

∂f

∂x
= − 2x− 2

(1− 2x + x2 + 2y + y2)2
and

∂f

∂y
= − 2y + 2

(1− 2x + x2 + 2y + y2)2
.

Both partial derivatives are zero at (1, −1), so the graph of z = f(x, y) has one horizontal tangent plane,
tangent to the graph at the point (1, −1, −1).

C13S05.011: If f(x, y) = (2x2 + 3y2) exp(−x2 − y2), then

∂f

∂x
= 4x exp(−x2 − y2)− 2x(2x2 + 3y2) exp(−x2 − y2) = −2x(2x2 + 3y2 − 2) exp(−x2 − y2) and

∂f

∂y
= 6y exp(−x2 − y2)− 2y(2x2 + 3y2) exp(−x2 − y2) = −2y(2x2 + 3y2 − 3) exp(−x2 − y2).
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We note that exp(−x2 − y2) is never zero, so to find when both partial derivatives are zero, it is enough to
solve simultaneously

x(2x2 + 3y2 − 2) = 0,

y(2x2 + 3y2 − 3) = 0.

One solution is obvious: x = y = 0. Next, if x �= 0 but y = 0, then the first of these equations implies
that 2x2 = 2, so we get the two critical points (1, 0) and (−1, 0). If x = 0 but y �= 0, then the second of
these equations implies that 3y2 = 3, so we obtain two more critical points, (0, −1) and (0, 1). There is no
solution if both x and y are nonzero, for that would imply that 2x2 + 3y2 = 2 and 2x2 + 3y2 = 3. But are
there five horizontal tangent planes? No, because two of them are tangent at two critical points. One plane
is tangent to the graph of z = f(x, y) at (−1, 0, 2e−1) and (1, 0, 2e−1), a second is tangent at (0, −1, 3e−1)
and (0, 1, 3e−1), and the third is tangent at (0, 0, 0).

C13S05.012: If f(x, y) = 2xy exp
(
−[4x2 + y2 ]/8

)
, then

fx(x, y) = 2y exp
(
−[4x2 + y2 ]/8

)
− 2x2y exp

(
−[4x2 + y2 ]/8

)
= −2y(x + 1)(x− 1) exp

(
−[4x2 + y2 ]/8

)
and

fy(x, y) = 2x exp
(
−[4x2 + y2 ]/8

)
− 1

2
xy2 exp

(
−[4x2 + y2 ]/8

)

= −1
2
x(y − 2)(y + 2) exp

(
−[4x2 + y2 ]/8

)
.

Because exp
(
−[4x2 + y2 ]/8

)
is never zero, to find where both partials vanish it suffices to solve simultane-

ously the equations

(x + 1)(x− 1)y =0 and

x(y − 2)(y + 2) =0.

A brief case argument reveals five critical points: (−1, −2), (−1, 2), (0, 0), (1, −2), and (1, 2). But there
are only three horizontal tangent planes because two of the planes are tangent to the graph of z = f(x, y) at
two different points. One is tangent at (−1, −2, 4e−1) and (1, 2, 4e−1), another is tangent at (−1, 2, −4e−1)
and (1, −2, −4e−1), and the third is tangent to the graph at (0, 0, 0).

C13S05.013: Given: z = f(x, y) = x2 − 2x + y2 − 2y + 3. Then

fx(x, y) = 2x− 2 and fy(x, y) = 2y − 2,

so both partials are zero at only one point: (1, 1). So the graph of z = f(x, y) has only one horizontal
tangent plane; it is tangent at the point (1, 1, 1). This is clearly the lowest point on the graph of f .

C13S05.014: If z = f(x, y) = 6x− 8y − x2 − y2, then

∂f

∂x
= −2x + 6 and

∂f

∂y
= −2y − 8.

So both partials are zero at (3, −4) and only there. Thus there is exactly one horizontal plane tangent to
the graph of z = f(x, y), and it is tangent to the graph at the point (3, −4, 25). This is clearly the highest
point on the graph of f .
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C13S05.015: If z = f(x, y) = 2x− x2 + 2y2 − y4, then

fx(x, y) = −2x + 2 and fy(x, y) = −4y3 + 4y = −4y(y + 1)(y − 1).

Thus there are three critical points: (1, −1), (1, 0), and (1, 1). But there are only two horizontal planes
tangent to the graph of f because one is tangent at two points—namely, at (1, −1, 2) and at (1, 1, 2); the
other horizontal tangent plane is tangent to the graph at (1, 0, 1). The first two of these points are the
equally high highest points on the graph of f .

C13S05.016: If z = f(x, y) = 4xy − x4 − y4, then

fx(x, y) = 4(y − x3) and fy(x, y) = 4(x− y3).

We find that both partial derivatives are zero at (−1, −1), (0, 0), and (1, 1). But there are only two
horizontal tangent planes, because one is tangent to the graph of f at the two points (−1, −1, 2) and
(1, 1, 2); the other is tangent at the point (0, 0, 0). The first two of these points are the equally high highest
points on the graph of f .

C13S05.017: Given: z = f(x, y) = 3x4 − 4x3 − 12x2 + 2y2 − 12y, the following sequence of Mathematica

3.0 commands will find the points of tangency of all horizontal tangent planes. (Recall that % refers to the
“last output.”)

f[x , y ] := 3∗x∧4 - 4∗x∧3 - 12∗x∧2 + 2∗y∧2 - 12∗y

d1 = D[ f[x,y], x ]

−24x− 12x2 + 12x3

d2 = D[ f[x,y], y ]

−12 + 4y

Solve[ { d1 == 0, d2 == 0 }, { x, y } ];

{{x→ −1, y → 3}, {x→ 0, y → 3}, {x→ 2, y → 3}}

f[x,y] /. %

{−23, −18, −50}

Thus there are three horizontal planes tangent to the graph of z = f(x, y); the points of tangency are
(−1, 3, −23), (0, 3, −18), and (2, 3, −50). The last of these is the lowest point on the graph of f .

C13S05.018: If z = f(x, y) = 3x4 + 4x3 + 6y4 − 16y3 + 12y2, then

fx(x, y) = 12x2 + 12x3 = 12x2(x + 1) and fy(x, y) = 24y − 48y2 + 24y3 = 24y(y − 1)2.

So the graph of z = f(x, y) has four critical points: (−1, 0), (−1, 1), (0, 0), and (0, 1). And there are,
indeed, four horizontal tangent planes; they are tangent at the four points (−1, 0, −1), (−1, 1, 1), (0, 0, 0),
and (0, 1, 2). The first of these is the lowest point on the graph of f .

C13S05.019: If f(x, y) = 2x2 + 8xy + y4, then

fx(x, y) = 4x + 8y = 4(x + 2y) and fy(x, y) = 8x + 4y3 = 4(2x + y3).
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Thus both partial derivatives are zero at the three points (−4, 2), (0, 0), and (4, −2). But there are only
two horizontal tangent planes because one is tangent to the graph of z = f(x, y) at two points: (−4, 2, −16)
and (4, −2, −16). The other plane is tangent to the graph at the origin. The two equally low lowest points
on the graph of f are (−4, 2, −16) and (4, −2, −16).

Detail: Solving simultaneous nonlinear equations is an ad hoc procedure. One method that frequently works
is to solve one equation for one of the variables, then substitute in the others. Here we begin with

4(x + 2y) = 0 and 4(2x + y3) = 0.

We solve the first for x = −2y and substitute in the second to obtain

−4y + y3 = 0; that is, y(y + 2)(y − 2) = 0.

This yields the three solutions y = −2, y = 0, and y = 2, and the corresponding values of x are 4, 0, and
−4.

C13S05.020: Given:

z = f(x, y) =
1

10− 2x− 4y + x2 + y4
.

Then

fx(x, y) = − 2x− 2
(10− 2x + x2 − 4y + y4)2

and fy(x, y) = − 4y3 − 4
(10− 2x + x2 − 4y + y4)2

.

Both partials vanish at (1, 1), so there is exactly one horizontal plane tangent to the graph of z = f(x, y).
The point of tangency is

(
1, 1, 1

6

)
. This is the highest point on the graph of f .

C13S05.021: If z = f(x, y) = exp(2x− 4y − x2 − y2), then

fx(x, y) = (2− 2x) exp(2x− 4y − x2 − y2) and fy(x, y) = −(2y + 4) exp(2x− 4y − x2 − y2).

Hence both partial derivatives are zero when

2x− 2 = 0 and 2y + 4 = 0;

that is, at the single point (1, −2). Hence there is exactly one horizontal plane tangent to the graph of
z = f(x, y); it is tangent at the point (1, −2, e5). This is the highest point on the graph of f .

C13S05.022: If z = f(x, y) = (1 + x2) exp(−x2 − y2), then

fx(x, y) = 2x exp(−x2 − y2)− 2x(1 + x2) exp(−x2 − y2) = −2x3 exp(−x2 − y2) and

fy(x, y) = −2y(1 + x2) exp(−x2 − y2).

Therefore both partials are zero when x3 = 0 and (1+x2)y = 0; that is, only at (0, 0). Thus there is exactly
one horizontal plane tangent to the graph of z = f(x, y); it is tangent at the point (0, 0, 1). This is the
highest point on the graph of f .

C13S05.023: The graph of f(x, y) = x+2y is a plane, so its maximum and minimum values on a polygonal
region must occur at the vertices of the polygon. Here we have
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f(−1, −1) = −3, f(−1, 1) = 1, f(1, −1) = −1, and f(1, 1) = 3.

At this point it is clear what are the maximum and minimum values of f(x, y) on R.

C13S05.024: If f(x, y) = x2 + y2 − x, then

fx(x, y) = 2x− 1 and fy(x, y) = 2y,

so
(

1
2 , 0

)
is the only critical point of f . Because

f(x, y) =
(
x− 1

2

)2

+ y2 − 1
4
,

the global minimum value of f on R is f
(

1
2 , 0

)
= − 1

4 . The maximum value of f on R must occur on the
boundary of R.

• On the lower edge of R, we have f(x, −1) = x2 − x + 1, with minimum value f
(

1
2 , −1

)
= 3

4 there
and maximum value f(−1, −1) = 3.

• On the right-hand edge of R, we have f(1, y) = y2, with minimum value f(1, 0) = 0 and maximum
value f(1, −1) = f(1, 1) = 1.

• On the upper edge of R, we have f(x, 1) = x2 − x + 1, with minimum value f
(

1
2 , 1

)
= 3

4 there and
maximum value f(−1, 1) = 3.

• On the left-hand edge of R, we have f(−1, y) = y2, with minimum value f(−1, 0) = 0 and maximum
value f(−1, −1) = f(−1, 1) = 3.

Therefore the minimum value of f on R is f
(

1
2 , 0

)
= − 1

4 ; its maximum is f(−1, −1) = f(−1, 1) = 3.

C13S05.025: Given: f(x, y) = x2 + y2 − 2x on the triangular region R with vertices at (0, 0), (2, 0),
and (0, 2). Then

fx(x, y) = 2x− 2 and fy(x, y) = 2y,

so the only critical point of f is (1, 0), which is a point of R. Because

f(x, y) = (x− 1)2 + y2 − 1,

the global minimum value of f on R is f(1, 0) = −1. The maximum value of f must occur on the boundary
of R, which we explore next.

• On the lower edge of R, we have f(x, 0) = x2 − 2x, which must attain its maximum at one endpoint
of that edge. Hence the maximum value of f there is f(0, 0) = f(2, 0) = 0.

• On the left-hand edge of R, we have f(0, y) = y2, with maximum value f(0, 2) = 4.

• On the diagonal edge of R, which has equation y = 2− x, we have

f(x, 2− x) = g(x) = x2 + (2− x)2 − 2x = 2x2 − 6x + 4,

and g′(x) = 4x− 6, so the minimum value of f there is g
(

3
2

)
= − 1

2 and the maximum value there (because
it must occur at an endpoint of the diagonal edge) is f(0, 2) = 4.

In summary, the minimum value of f on R is f(1, 0) = −1 and its maximum value is f(0, 2) = 4.
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C13S05.026: Given: f(x, y) = x2 + y2 − x− y on the triangular region R of Problem 25. Then

fx(x, y) = 2x− 1 and fy(x, y) = 2y − 1,

so
(

1
2 ,

1
2

)
is the only critical point of f . This point does lie within the region R, and

f(x, y) =
(
x− 1

2

)2

+
(
y − 1

2

)2

− 1
2
,

so the global minimum value of f on R is f
(

1
2 ,

1
2

)
= − 1

2 . The global maximum must occur on the boundary
of R, which we study next.

• On the lower edge of R, we have f(x, 0) = x2 − x, which is minimized at the point
(

1
2 , 0

)
, but the

value of f(x, y) there is − 1
4 , not the global minimum of f on R. The maximum value of f on this edge

must occur at one of its endpoints, so the maximum of f on this edge is f(2, 0) = 2.

• On the right-hand edge of R, we have f(0, y) = y2 − y, and the analysis proceeds exactly as in the
previous case; the maximum value of f there is f(0, 2) = 2.

• On the diagonal edge of R, where y = 2− x, we have

f(x, y) = f(x, 2− x) = g(x) = x2 + (2− x)2 − x− 2 + x = 2x2 − 4x + 2 = 2(x− 1)2,

so the minimum value of f on the diagonal is g(1) = 0 and its maximum value must occur at an endpoint
of the diagonal. We have already examined the behavior of f at both those endpoints.

In summary, the global minimum value of f on R is f
(

1
2 ,

1
2

)
= − 1

2 and the global maximum of f there is
f(2, 0) = f(0, 2) = 2.

C13S05.027: Given: f(x, y) = 2xy on the circular disk R described by the inequality x2 + y2 � 1.
Then fx(x, y) = 2y and fx(x, y) = 2x, so the only critical point of f is (0, 0). On the line y = x we have
f(x, x) = 2x2, but on the line y = −x we have f(x, −x) = −2x2. Therefore f does not have an extremum
at (0, 0). (The graph of z = 2xy is a hyperbolic paraboloid with a saddle point at (0, 0); to see its graph,
rotate the graph shown in Fig. 13.10.1 45◦ around the z-axis.) Because f must have a global maximum and
a global minimum on R, both must occur on its boundary.

• We describe the boundary x2 + y2 = 1 of R in polar coordinates: r = 1, 0 � θ � 2π. Thus on the
boundary, we have

f(x, y) = 2xy = g(θ) = 2 sin θ cos θ.

Then

g′(θ) = 2 cos2 θ − 2 sin2 θ = 2 cos 2θ,

and g′(θ) = 0 when 2θ is an odd integral multiple of π/2; that is, when θ is an odd integral multiple of π/4.
Now

g(π/4) = g(5π/4) = 1 and g(3π/4) = g(7π/4) = −1,

so we have discovered the global extrema of f on R.

Summary: The global maximum value of f is 1 and occurs at each of the two points
(

1
2

√
2 , 1

2

√
2

)
and(

− 1
2

√
2 , − 1

2

√
2

)
. The global minimum value of f is −1 and occurs at each of the two points

(
− 1

2

√
2 , 1

2

√
2

)
and

(
1
2

√
2 , − 1

2

√
2

)
.

6



C13S05.028: Given: f(x, y) = xy2 on the circular disk R described by the inequality x2 + y2 � 3. Then
fx(x, y) = y2 and fy(x, y) = 2xy, so both partial vanish when y = 0 (and x is arbitrary). Thus every
point of the diameter of the disk R that lies on the x-axis is a critical point, and on this diameter the value
of f(x, y) is the constant 0. But f(1, 1) > 0 and f(−1, 1) < 0, so none of these critical points yields the
maximum or the minimum value of f . They must therefore occur on the boundary of R.

• On the boundary of R, y2 = 3−x2, so f(x, y) will have the same extrema as g(x) = x(3−x2) = 3x−x3.
But g′(x) = 3 − 3x2, so g′(x) = 0 when x = ±1. If so, then y2 = 2, and thus we find four critical points,
locations of possible extrema of f :

(x, y) =
(
1,
√

2
)
, where f(x, y) = 2; (x, y) =

(
1, −
√

2
)
, where f(x, y) = 2;

(x, y) =
(
−1,
√

2
)
, where f(x, y) = −2; (x, y) =

(
−1, −

√
2

)
, where f(x, y) = −2.

The domain of g is the closed interval −
√

3 � x �
√

3 , but at the endpoints of this interval g(x) = 0, so
they do not yield extrema. Thus the global maximum of f is 2 and its global minimum is −2.

C13S05.029: The square of the distance between the plane and the origin is

f(x, y) = x2 + y2 +
(

169− 12x− 4y
3

)2

.

Setting both partials of f(x, y) equal to zero yields the equations

2x− 8
3

(169− 12x− 4y) = 0, 2y − 8
9

(169− 12x− 4y) = 0.

These equations are easiest to solve if you note first that they imply immediately that 6x = 18y, because
each is equal to 8(169− 12x− 4y). It follows that their solution is x = 12, y = 4. The corresponding value
of z on the given plane is 3, so the point of the plane closest to the origin is (12, 4, 3). (The formula for f

makes it plain that f has a global minimum and no maximum.) The distance between the plane and the
origin is therefore

√
f(12, 4) = 13.

C13S05.030: The square of the distance between the plane and the point Q is

f(x, y) = (x− 9)2 + (y − 9)2 + (27− 2x− 2y − 9)2,

and setting both partials of f equal to zero yields the simultaneous equations

2(x− 9)− 4(18− 2x− 2y) = 0, 2(y − 9)− 4(18− 2x− 2y) = 0.

These equations are easiest to solve if you first note that they immediately imply that 2(x− 9) = 2(y − 9),
because each of these is equal to 4(18 − 2x − 2y). It follows that x = y = 5, and the corresponding z-
coordinate on the plane is 7. So the point of the plane closest to Q is (5, 5, 7). The distance between Q

and the plane is 6.

C13S05.031: The square of the distance between the plane and the point Q is

f(x, y) = (x− 7)2 + (y + 7)2 + (49− 2x− 3y)2.

When we set both partials of f equal to zero, we get the simultaneous equations
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2(x− 7)− 4(49− 2x− 3y) = 0, 2(y + 7)− 6(49− 2x− 3y) = 0,

with solution x = 15, y = 5; the corresponding z-coordinate on the plane is 4. So the point on the plane
closest to Q is (15, 5, 4). The distance between the two is 4

√
14 .

C13S05.032: The square of the distance from the origin to the surface is

f(x, y) = x2 + y2 +
64
x2y2

.

When we equate both partial derivatives of f to zero, we obtain the equations

2x− 128
x3y2

= 0, 2y − 128
x2y3

= 0.

It is easiest to solve these equations if you begin with the observation that they immediately imply that
2x2 = 2y2. There are four solutions: (−2, −2), (−2, 2), (2, −2), and (2, 2). So the coordinates of the
first-octant point P on the surface closest to the origin is (2, 2, 2). The distance from P to the origin is
2
√

3 .

C13S05.033: The square of the distance from the origin to the point (x, y, z) of the surface is

f(x, y) = x2 + y2 +
16
x4y4

.

The equations fx(x, y) = 0 = fy(x, y) are

2x− 64
x5y4

= 0, 2y − 64
x4y5

= 0.

They are easiest to solve if you begin with the observation that they imply that 2x2 = 2y2. There are four
solutions—all possible combinations of x = ±

√
2 , y = ±

√
2 . It follows that the point on the surface in the

first octant closest to the origin is
(√

2 ,
√

2 , 1
)
; its distance from the origin is

√
5 .

C13S05.034: The square of the distance between the point (x, y, z) of the surface and the origin is

f(x, y) = x2 + y2 +
8

x4y8
,

and the equations fx(x, y) = 0 = fy(x, y) take the form

2x− 32
x5y8

= 0, 2y − 64
x4y9

= 0; that is,

2x6y8 = 32, 2x4y10 = 64.

It is easiest to solve these equations if you begin with their consequence 2x6y8 = x4y10. The only positive
solution is x = 1, y =

√
2 . The corresponding value of z on the surface is 1

2

√
2 .

C13S05.035: We will find the maximum possible product of three nonnegative real numbers with sum
120—the reason in a moment. If x, y, and z are the three numbers, then we are to maximize xyz given
x + y + z = 120. So we solve for z, substitute, and maximize

f(x, y) = xy(120− x− y), 0 � x, 0 � y, x + y � 120.
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Thus by allowing one or two of the numbers to be zero, the domain of f is now a closed and bounded subset
of the plane—the triangle with two sides on the nonnegative coordinate axes and the third side part of the
graph of y = 120 − x. Write f(x, y) = 120xy − x2y − xy2 and set both partial derivatives equal to zero to
obtain

120y − 2xy − y2 = 0, 120x− 2xy − x2 = 0.

Because neither x nor y is zero—that would minimize the product, not maximize it—we may cancel to
obtain

120− 2x− y = 0, 120− 2y − x = 0,

and it follows that 2x + y = x + 2y, so that y = x, and then the equation 3x = 120 yields x = 40 and
y = 40. It follows that z = 40 as well. The maximum of f(x, y) does not occur on the boundary of its
domain, for f(x, y) = 0 there. Hence this lone interior critical point must yield the global maximum, which
is 40 · 40 · 40 = 64000.

C13S05.036: Let one set of four parallel edges of the box have length x each, another set length y each,
and the third length z each. Then we are to maximize box volume V = xyz given 4x + 4y + 4z = 6; that
is, 2x + 2y + 2z = 3. Solve for z and substitute in V to obtain the function to be maximized:

V (x, y) =
xy(3− 2x− 2y)

2
, 0 � x, 0 � y, x + y � 3

2
.

The domain of V is a closed and bounded subset of the plane and V is continuous there, so a global
maximum exists. It does not occur on the boundary of the domain because V (x, y) = 0 there. So it must
occur at an interior critical point. When both partials of V are set equal to zero, the resulting equations are

y

2
(3− 2x− 2y)− xy = 0,

x

2
(3− 2x− 2y)− xy = 0.

It follows that y = x and then, from either of the preceding equations, that y = x = 1
2 . Next, z = 1

2 as
well, so—because this is the only interior critical point—the maximum volume of such a box is V

(
1
2 ,

1
2

)
= 1

8

(cubic meters).

C13S05.037: Let the dimensions of the box be x by y by z. We are to minimize total surface area
A = 2xy + 2xz + 2yz given xyz = 1000. Solve the latter equation for z and substitute in A to obtain the
function to be minimized:

A(x, y) =
2000
x

+
2000
y

+ 2xy, 0 < x, 0 < y.

Although A is continuous on its domain, the domain is neither closed nor bounded. But an argument similar
to the one given in Example 7 makes it clear that A has a global minimum, so it must occur at a critical
point of the domain. When we set both partial derivatives of A equal to zero, we obtain the equations

2y − 2000
x2

= 0, 2x− 2000
y2

= 0.

These equations imply that 2x2y = 2xy2, so that y = x. Then either of the two preceding equations implies
that x = 10 = y. Finally, xyz = 1000 implies that z = 10 as well. This is the only critical point, so we have
found the global minimum of A. To minimize the total surface area, make a cube of edge length 10.
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C13S05.038: Let the bottom of the box have dimensions x by y, the front and back dimensions x by z,
and the sides dimensions y by z. We are to minimize total surface area A = xy+2xz+2yz given xyz = 4000.
Solve the last equation for z and substitute in the area formula to obtain the function to be minimized:

A(x, y) =
8000
x

+
8000
y

+ xy, 0 < x, 0 < y.

Although A is continuous on its domain, the domain is neither closed nor bounded. But an argument similar
to the one given in Example 7 makes it clear that A has a global minimum, so it must occur at a critical
point of the domain. When we set both partial derivatives of A equal to zero, we obtain the equations

y − 8000
x2

= 0, x− 8000
y2

= 0,

and it follows immediately that x2y = xy2, so that y = x. Then either of the preceding equations yields
x = y = 20. The corresponding value of z is 10. There is only one critical point, so the open-topped box of
volume 4000 cm3 and minimal surface area has base 20 cm by 20 cm and height 10 cm.

C13S05.039: Suppose that the dimensions of the base of the box are x by y, the front and back have
dimensions x by z, and the sides have dimensions y by z. The cost of the base is then 6xy and the total
cost of the other four sides is 2 · 5xz + 2 · 5yz. So we are to minimize total cost C = 6xy+ 10xz + 10yz given
xyz = 600. Solve the last equation for z and substitute in the cost expression to obtain the function to be
minimized:

C(x, y) =
6000
x

+
6000
y

+ 6xy, 0 < x, 0 < y.

By an argument similar to the one used in the solution of Example 7, C(x, y) has a global minimum and it
occurs at a critical point. When we set both partial derivatives of C equal to zero, we get the equations

6y − 6000
x2

= 0, 6x− 6000
y2

= 0.

It follows immediately that x2y = xy2, so that x = y. Then either of the displayed equations yields
x = y = 10. The corresponding value of z is 6, so the dimensions of the least expensive such box are these:
base 10 inches by 10 inches, height 6 inches. It will cost $18.00.

C13S05.040: Suppose that the base of the box has dimensions x by y and that the height of the box is
z. Then the cost of the top and the bottom will be 3xy each and the total cost of the four sides will be
8xz + 8yz. So we are to minimize total cost C = 6xy + 8xz + 8yz given xyz = 48. Solve the last equation
for z and substitute in the expression for the cost to obtain the function to be minimized:

C(x, y) =
384
x

+
384
y

+ 6xy, 0 < x, 0 < y.

By an argument similar to the one used in Example 7, C(x, y) has a global minimum and it occurs at a
critical point. When we write Cx(x, y) = 0 and Cy(x, y) = 0, we obtain

6y − 384
x2

= 0, 6x− 384
y2

= 0.

These equations imply that x2y = xy2, so that y = x. Then either displayed equation further implies that
x = y = 4. The condition xyz = 48 then yields z = 3. We have found only one critical point, so we have
minimized C(x, y). The dimensions of the least expensive such box are these: base 4 ft by 4 ft, height 3 ft.
This box will cost $288.00.
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C13S05.041: Let the base and top of the box have dimensions x by y, the front and back dimensions
x by z, and the sides dimensions y by z. Then the top and base cost 3xy cents each, the front and
back cost 6xz cents each, and the two sides cost 9yz cents each. Hence the total cost of the box will be
C = 6xy + 12xz + 18yz. But xyz = 750, so that z = 750/(xy). To substitute this into the formula for C

and simplify, we use the Mathematica 3.0 command

6∗x∗y + 12∗x∗z + 18∗y∗z /. z -> 750/(x∗y)

(Recall that /. translates roughly as “evaluate subject to.”) The response is

13500
x

+
9000
y

+ 6xy.

Next we construct the total surface area function, the quantity to be minimized:

f[x , y ] := 13500/x + 9000/y + 6∗x∗y

Then we compute both partial derivatives:

d1 = D[ f[x,y], x]

6y − 13500
x2

d2 = D[ f[x,y], y]

6x− 9000
y2

Then we set both partial derivatives equal to zero and solve simultaneously:

Solve[ { d1 == 0, d2 == 0 }, { x, y } ]

The response is

{{x→ 15, y → 10}, {x→ −15 (−1)1/3, y → −10 (−1)1/3}, {x→ 15 (−1)2/3, y → 10 (−1)2/3}}

We ignore the two pairs of non-real roots and evaluate z:

750/(x∗y) /. {x -> 15, y -> 10}

5

Finally, we evaluate f at (15, 10) to find the minimum cost:

f[15,10]

2700

The domain of f is not a closed and bounded set, but instead the interior of the entire first quadrant.
Nevertheless, f(x, y) has a global minimum at a critical point by an argument similar to the one used in
Example 7. Because we have found only one critical point, we have found the global minimum as well. The
box should have dimensions x = 15, y = 10, and z = 5 inches. It will cost $27.00.
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C13S05.042: Let the base and top of the box have dimensions x by y (units in meters, etc.), the front
and back dimensions x by z, and the sides have dimensions y by z. Assume that the bottom costs 2 units
per square meter and the other five sides cost 1 unit per square meter. Then the total cost of the box will be
C = 3xy + 2xz + 2yz. Solve xyz = 12 for z and substitute in the expression for cost to obtain the quantity
to be minimized:

C(x, y) =
24
x

+
24
y

+ 3xy, 0 < x, 0 < y.

When both partial derivatives of C are set equal to zero, the result is the pair of simultaneous equations

3y − 24
x2

= 0, 3x− 24
y2

= 0

with solution x = 2, y = 2. By an argument similar to the one in Example 7, we have found the location
of the global minimum of C(x, y). The corresponding value of z is 3. Hence the base of the box should
measure 2 meters by 2 meters and its height should be 3 meters. Its total cost will be C(2, 2) = 36 (in
whatever units cost per square meter is measured).

C13S05.043: Suppose that the base of the building measures x feet by y feet, that its front and back
measure x by z, and that its two sides measure y by z. Then the total heating and cooling costs will be
C = 2xy+4xz+8yz. Solve xyz = 8000 for z and substitute in the expression for cost to obtain the quantity
to be minimized:

C(x, y) =
64000
x

+
32000
y

+ 2xy, 0 < x, 0 < y.

Although the domain of C is not a closed and bounded subset of the plane, nevertheless C(x, y) has a global
minimum at a critical point by an argument similar to the one used in the solution of Example 7. When we
set both partial derivatives of C(x, y) equal to zero, we obtain

2y − 64000
x2

= 0, 2x− 32000
y2

= 0,

having the only real solutions x = 40, y = 20. The corresponding value of z is 10, so the building should
be 40 feet wide (in front), 20 feet deep, and 10 feet high. The annual heating and cooling costs will thereby
have their minimum possible value, C(40, 20) = 4800 dollars per year.

C13S05.044: Suppose that the dimensions of the base and top of the aquarium are x by y (units are in
inches, cents, etc.), that the front and back have dimensions x by z, and that the sides have dimensions y by
z. Then the cost of the aquarium will be C = 30xy + 10xz + 10yz. Solve xyz = 24000 for z and substitute
in the expression for the cost to get the quantity to be minimized:

C(x, y) =
240000

x
+

240000
y

+ 30xy, 0 < x, 0 < y.

The domain of C is not a closed and bounded subset of the plane, but by an argument similar to the one
used in Example 7, C(x, y) has a global minimum value that occurs at a critical point in its domain. When
we set both partials of C equal to zero, we obtain the simultaneous equations

30y − 240000
x2

= 0, 30x− 240000
y2

= 0,

and the only real solution of these equations is x = 20, y = 20. Thus we have found the location of the
global minimum value of C(x, y). The corresponding value of z is 60, so the least expensive aquarium will
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have base 20 inches by 20 inches and height 60 inches (an ideal shape for White Cloud Mountain tropical
fish). Its total cost will be C(20, 20) cents—a rather substantial $360.00.

C13S05.045: Suppose that (x, y, z) is the vertex of the box that lies on the given plane with equation
x + 3y + 7z = 11. We are to maximize the volume V = xyz of the box. Solve the equation of the plane for
z and subsitute to obtain

V (x, y) =
xy (11− x− 3y)

7
, 0 � x, 0 � y, x + 3y � 11.

The domain of V is a closed and bounded subset of the xy-plane—it consists of the sides and interior of the
triangle with vertices at (0, 0), (11, 0), and

(
0, 11

3

)
. Therefore the continuous function (it’s a polynomial)

V (x, y) has a global maximum on its domain. The maximum does not occur on the boundary because
V (x, y) is identically zero there. Hence the maximum occurs at an interior critical point. When we set the
partial derivatives of V equal to zero, we get the simultaneous equations

(11− x− 3y)y − xy

7
= 0,

(11− x− 3y)x− 3xy
7

= 0.

To solve these equations, multiply through by 7 and factor to obtain

(11− 2x− 3y)y = 0, (11− x− 6y)x = 0.

• If x = 0 and y = 0, we have one solution.

• If x = 0 and y �= 0, then y = 11
3 .

• If x �= 0 and y = 0, then x = 11.

• If x �= 0 and y �= 0, then 2x + 3y = 11 and x + 6y = 11. It follows that x = 11
3 and y = 11

9 .

Only the last of these solutions will produce a box of positive volume. The corresponding value of z is 11
21 .

Thus we have found the maximizing values of x, y, and z. The maximum possible volume is

11
3
· 11

9
· 11
21

=
1331
567

≈ 2.347442680776.

C13S05.046: Suppose that (x, y, z) is the vertex of the box that lies on the given plane with equation

x

a
+

y

b
+

z

c
= 1

(a, b, and c are positive constants). We are to maximize the volume V = xyz of the box. Solve the equation
of the plane for z and substitute in the expression for V to obtain

V (x, y) = cxy
(
1− x

a
− y

b

)
, 0 � x, 0 � y,

x

a
+

y

b
� 1.

Because the domain of V is a closed and bounded subset of the xy-plane and V is continuous there, it
has a global maximum. Moreover, the maximum must occur at an interior critical point because V (x, y) is
identically zero on the boundary of its domain. We first find

Vx(x, y) = cy
(
1− x

a
− y

b

)
− cxy

a
=

cy

ab
(ab− ay − 2bx) and

Vy(x, y) = cx
(
1− x

a
− y

b

)
− cxy

b
=

cx

ab
(ab− bx− 2ay).

13



The maximum does not occur when x = 0 or when y = 0, so we need only solve simultaneously

ab− ay − 2bx = 0 and ab− bx− 2ay = 0.

These equations imply that ay + 2bx = bx + 2ay, so that bx = ay. Then substitution of bx for ay in the
equation ab− bx− 2ay = 0 yields

ab− bx− 2bx = 0; that is, x =
a

3
.

By symmetry, the corresponding values of y and z are

y =
b

3
and z =

c

3
.

Therefore the maximum value of the box in question is

a

3
· b
3
· c
3

=
abc

27
.

C13S05.047: Suppose that the dimensions of the rectangular box are x by y by z (in inches). Without
loss of generality we may suppose that x � y � z. Then the length of the box is z, so its girth is 2x+2y. We
are to maximize box volume V = xyz given the side condition 2x + 2y + z � 108; of course, the maximum
occurs when 2x + 2y + z = 108, so that is the side condition we use. Solve for z in the last equation and
substitute in the expression for volume to obtain the function to be maximized:

V (x, y) = xy(108− 2x− 2y), 0 � x, 0 � y, x + y � 54.

Now V is continuous (V (x, y) is a polynomial) on its domain, a closed and bounded region in the xy-plane,
so V has a global maximum there. The maximum does not occur on the boundary because V (x, y) is
identically zero on the boundary of its domain. So the global maximum occurs at an interior critical point
where both partial derivatives are zero; that is,

(108− 2x− 2y)y − 2xy = 0, (108− 2x− 2y)x− 2xy = 0.

We may cancel y from the first of these equations and x from the second because neither is zero at the
maximum. Thus we are to solve

108− 4x− 2y = 0, 108− 2x− 4y = 0.

It follows that 4x + 2y = 2x + 4y, and thus that x = y. This implies in turn that x = y = 18 and z = 36.
So the maximum volume of such a box is 18 · 18 · 36 = 11664 cubic inches, exactly 6.25 cubic feet. If it were
filled with osmium (the heaviest element known) it would weigh over 4338 kg, about 4.78 tons.

C13S05.048: Suppose that the cylindrical mailing tube has radius r and length h. Then its volume is
V = πr2h.

• Case 1: The cylinder has a large height in comparison with its radius, so that its girth is clearly its
circumference, 2πr. This means that a measurement of the cylinder reveals that h � 2r, so that the Post
Office’s definition of “length” is surely the height of the cylinder rather than one of its diameters. Then we
are to maximize V = πr2h given 2πrh + h = 108. Then h = 108− 2πr, and thus

V (r) = πr2(108− 2πr) = 108πr2 − 2π2r3

14



with domain determined by the conditions that r � 0 and 2r � h; the latter condition implies that

2r � 108− 2πr, so that 2r + 2πr � 108 : r � 54
π + 1

≈ 13.038462.

Next, V ′(r) = 216πr − 6π2r2; V ′(r) = 0 when

r =
36
π
≈ 11.459156; V

(
36
π

)
=

46656
π
≈ 14851.066

cubic inches is the maximum volume in this case. Note that this is somewhat greater than the maximum
volume in Problem 47.

• Case 2: 2r � h. In this case the “girth” of the box is, strictly speaking, its greatest circumference in
a plane perpendicular to its length. Its length is a diameter of the cylinder, so its girth is 4r + 2h. Because
its length is 2r, we are to maximize box volume V = πr2h subject to the side condition 6r + 2h = 108.
Because h = 54− 3r, we maximize

V (r) = πr2(54− 3r) = 54πr2 − 3πr3,

with domain determined by the conditions that h � 2r and h � 0. The latter implies that 4r � 108, and
thus the domain of V is now

54
5

� r � 108
4

; that is, 10.8 � r � 25.2.

In this case V ′(r) = 0 when r = 12; the corresponding value of h is 18 and the maximum volume of the box
in this case is V (12) = 2592π ≈ 8143.008 cubic inches.

Answer: Design the cylindrical box as indicated in Case 1 for maximum volume.

Note: See also Problems 25 and 26 in Section 3.6.

C13S05.049: Suppose that the upper corner of the box in the first octant meets the paraboloid at the
point (x, y, z), so that z = 1− x2 − y2. We are to maximize box volume V = 2x · 2y · z; that is,

V (x, y) = 4xy(1− x2 − y2) = 4xy − 4x3y − 4xy2, 0 � x, 0 � y, x2 + y2 � 1.

Because V is continuous (V (x, y) is a polynomial) and its domain is a closed and bounded subset of the
xy-plane, V has a global maximum—which does not occur on the boundary of its domain because V (x, y)
is identically zero there. Hence the maximum we seek occurs at an interior critical point. When we set the
partial derivatives of V simultaneously equal to zero, we obtain the equations

4y(1− x2 − y2)− 8x2y = 0, 4x(1− x2 − y2)− 8xy2 = 0;

that is, because neither x nor y is zero at maximum box volume,

1− 3x2 − y2 = 0 and 1− x2 − 3y2 = 0.

It follows in the usual way that y = x, and thus that x = y = 1
2 . The corresponding value of z is also 1

2 , so
the dimensions of the box of maximum volume are 1 by 1 by 1

2 and its volume is 1
2 .

C13S05.050: Place the box with its sides parallel to the coordinate planes and let (x, y, z) be the point
where its upper corner in the first octant meets the hemisphere. Then z = (R2 − x2 − y2)1/2, so we are to
maximize box volume

15



V (x, y) = 2x · 2y · (R2 − x2 − y2)1/2, 0 � x, 0 � y, x2 + y2 � R2.

There is a global maximum because V is continuous on a closed and bounded subset of the xy-plane, and
the maximum does not occur on the boundary because V (x, y) is identically zero there. When we set both
partials equal to zero, we obtain the equations

4y(R2 − x2 − y2)1/2 =
4x2y

(R2 − x2 − y2)1/2
, 4x(R2 − x2 − y2)1/2 =

4xy2

(R2 − x2 − y2)1/2
;

that is,

x2 = R2 − x2 − y2 and y2 = R2 − x2 − y2

because neither x nor y is zero at maximum box volume. It follows that y = x and then that

x = y = z =
R
√

3
3

,

and the maximum possible volume of the box is
4R3
√

3
9

.

Plausibility check: The volume of the maximal box is approximately 37% of that of the hemisphere—a
reasonable answer.

C13S05.051: Let r be the common radius of the two cones and the cylinder, h the height of the cylinder,
and z the height of each cone. Note that the slant height of each cone is (r2 + z2)1/2, so each has curved
surface area

2π · r
2
· (r2 + z2)1/2 = πr(r2 + z2)1/2.

We are to minimize the total surface area

A = 2πr(r2 + z2)1/2 + 2πrh (1)

of the buoy given fixed volume V = 2
3 πr

2z + πr2h. We first solve this last equation for

h =
3V − 2πr2z

3πr2
,

then substitute in (1) to express A as a function of r and z:

A(r, z) =
2V
r
− 4πrz

3
+ 2πr(r2 + z2)1/2.

The domain of A is described by the inequalities

0 < r, 0 � z, r2z � 3V
2π

,

and though it is neither closed nor bounded, it can be shown by an argument similar to the one in Example 7
that A(r, z) has a global minimum that does not occur on the boundary of its domain (unless it occurs where
h = 0 or where z = 0; we will attend to those possibilities later). Moreover, intuition and experience suggest
that the minimal surface area will occur when the figure can be inscribed in a nearly spherical ellipsoid.

Next,
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Az(r, z) =
2[3πrz − 2πr(r2 + z2)1/2 ]

3(r2 + z2)1/2
,

so Az(r, z) = 0 when 3z = 2(r2 + z2)1/2. Therefore, when Az(r, z) = 0, we have both 2r = z
√

5 and
(r2 + z2)1/2 = 3

2 z.

Also,

Ar(r, z) =
2[6πr4 + 3πr2z2 − 3V (r2 + z2)1/2 − 2πr2z(r2 + z2)1/2 ]

3r2(r2 + z2)1/2
,

so Ar(r, z) = 0 when

6πr4 + 3πr2z2 − 3V (r2 + z2)1/2 − 2πr2z(r2 + z2)1/2 = 0.

We substitute 3
2 z for (r2 + z2)1/2 in this last equation to find that when both partials vanish, also

9V z

2
= 6πr4,

then we replace r with 1
2 z
√

5 to find that when both partials vanish,

25πz3 = 12V.

Thus the minimum surface area seems to occur when

z =
(

12V
25π

)1/3

≈ (0.534601847029)V 1/3,

for which

r =
(

9V 2

20π2

)1/6

≈ (0.597703035427)V 1/3

and

h =
(

12V
25π

)1/3

≈ (0.534601847029)V 1/3.

At these values of the variables, the surface area is

A = 51/6(18πV 2)1/3 ≈ (5.019214931473)V 2/3.

The symmetry of the solution—that h = z—suggests that we have found the minimum, but we have
yet to check the cases h = 0 and z = 0.

• If z = 0, then the buoy is a cylinder with radius r, height h, total surface area A = 2πr2 + 2πrh, and
fixed volume V = πr2h; we are to minimize its total surface area. We substitute

h =
V

πr2

in the surface area formula to obtain the function to be minimized:

A(r) = 2πr2 +
2V
r

, 0 < r <∞.
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Then

A′(r) = 4πr − 2V
r2

=
4πr3 − 2V

r2
.

Thus A′(r) = 0 when

r = r0 =
(

V

2π

)1/3

≈ (0.541926070139)V 1/3.

The corresponding value of A(r) is a global minimum by the first derivative test, and it is

A(r0) = (54πV 2)1/3 ≈ (5.535810445932)V 2/3.

This is somewhat larger than the minimum we found in the case z > 0.

• If h = 0, then the buoy consists of two congruent right circular cones with their bases, circles of radii
r, coinciding, and each cone of height z. The total volume of the two cones is

V =
2
3
πr2z,

which we solve for z and substitute in the surface area formula A = 2πr(r2 + z2)1/2 to obtain the function
to be minimized,

A(r) = 2πr
(
r2 +

9V 2

4π2r4

)1/2

=
(4π2r6 + 9V 2)1/2

r
, 0 < r.

Now

A′(r) =
8π2r6 − 9V 2

r2(4π2r6 + 9V 2)1/2
;

A′(r) = 0 when 8π2r6 = 9V 2, so that

r = r0 =
√

2
2

(
3V
π

)1/3

≈ (0.696319882685)V 1/3.

Then

A(r0) = 37/6 · π1/3 · V 2/3 ≈ (5.276647566071)V 2/3,

which is larger than the minimum found in the first part of this solution. Therefore the minimum possible
surface area of the buoy is 51/6(18πV 2)1/3 ≈ (5.019214931473)V 2/3.

A final observation: The buoy of minimal possible surface area cannot be inscribed in a sphere. If V = 1
(say), then it can be inscribed in an ellipsoid (actually, a prolate spheroid) with approximate equation

x2

(0.69016802)2
+

y2

(0.69016802)2
+

z2

(1.06923700)2
= 1
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with the axis of symmetry of the buoy on the z-axis. A figure showing the elliptical cross-section of this
ellipsoid in the xz-plane and the cross-section of the buoy in the xz plane (for the case V = 1) is next.

C13S05.052: Let 2x be the length of the base of the rectangle, y its height, and h the height of the
isosceles triangle. We are to maximize the total area A = 2xy+xh of the window given that it has perimeter
24; that is,

2x + 2y + 2
√
x2 + h2 = 24, so that y = 12− x−

√
x2 + h2 . (1)

Substitution for y in the area formula yields the quantity to be maximized:

A(x, h) = hx + 24x− 2x2 − 2x
√
x2 + h2 , 0 � x � 6, 0 � h � 12.

Because A is continuous on its domain and the latter is a closed and bounded subset of the xy-plane, A(x, y)
has a global maximum value. To find it, first write the equations Ax(x, h) = 0 = Ah(x, h). These simplify
to

(24 + h− 4x)
√
x2 + h2 − 2h2 − 4x2

√
x2 + h2

= 0 and
x
√
x2 + h2 − 2hx√

x2 + h2
= 0.

The second of these equations implies that
√
x2 + h2 = 2h. It follows that x2 = 3h2, so that

h =
x
√

3
3

. (2)

Moreover, substitution of 2h for
√
x2 + h2 in the first equation yields

2h2 + 4x2 = (24 + h− 4x)(2h) = 48h + 2h2 − 8xh, so that

x2 = 12h− 2xh = h(12− 2x).

Thus, by Eq. (2),

x2 =
x
√

3
3

(12− 2x) = 4x
√

3 − 2x2
√

3
3

;

3x2 = 12x
√

3 − 2x2
√

3 ;

3x = 12
√

3 − 2x
√

3
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—the cancellation is possible because x = 0 does not maximize A(x, h). Thus

(
3 + 2

√
3

)
x = 12

√
3 ;

x =
12
√

3
3 + 2

√
3

= 12
(
2−
√

3
)

after some routine arithmetic. Next,

h =
x
√

3
3

=
(
4
√

3
)
·
(
2−
√

3
)

= 4
(
2
√

3 − 3
)
.

Moreover,

y = 12− x−
√
x2 + h2 = 12− x− 2h = 4

(
3−
√

3
)

after some more arithmetic. Finally, it appears that the maximum possible value of A(x, h) is

A = 2xy + xh = 24
(
2−
√

3
)
· 4

(
3−
√

3
)

+ 12
(
2−
√

3
)
· 4

(
2
√

3 − 3
)

= 144
(
2−
√

3
)

after yet another struggle with the arithmetic. There are two other possibilities for the global maximum to
eliminate.

• If h = 0: Then we are to maximize the area of a rectangle of perimeter 24, and the largest such
rectangle is a square of side 6 and area 36.

• If y = 0: We are to maximize the area of an isosceles triangle of perimeter 24. It is a routine
single-variable calculus problem to show that the isosceles triangle of fixed perimeter and maximum area is
equilateral; in this case, with each side of length 8 and total area 16

√
3 .

The maximum area in the first case is approximately 38.58468371. In the second case it is 36 and in
the third case it is approximately 27.71281293. Hence the construction in the first case yields the window of
largest area, with

x ≈ 3.215390309173,

h ≈ 1.856406460551,

y ≈ 5.071796769724,

A ≈ 38.584683710082.

C13S05.053: We want to minimize

f(x, y) = x2 + (y − 1)2 + x2 + y2 + (x− 2)2 + y2 = (x− 2)2 + 2x2 + (y − 1)2 + 2y2

with domain the entire xy-plane. An argument similar to the one used in Example 7 establishes that f(x, y)
has a global minimum value, which must be at a point where both partial derivatives are zero. These
equations are 6x − 4 = 0, 6y − 2 = 0, with solution x = 2

3 , y = 1
3 . Because this is the only critical point,

we have located the point that minimizes f(x, y). It is
(

2
3 ,

1
3

)
, and the value of f(x, y) there is 10

3 .

It would seem somewhat more practical to find the point (x, y) such that the sum of the distances (not
their squares) from (x, y) to the three points (0, 1), (0, 0), and (2, 0) is a minimum. For example, where
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should a power company be located to minimize the total length of its cables to industries located at the
three points (0, 1), (0, 0), and (2, 0)? This is a much more difficult problem. The function to be minimized
is

h(x, y) =
√
x2 + (y − 1)2 +

√
x2 + y2 +

√
(x− 2)2 + y2 ,

and its partial derivatives are

f(x, y) = hx(x, y) =
x√

x2 + (y − 1)2
+

x− 2√
(x− 2)2 + y2

+
x√

x2 + y2
and

g(x, y) = hy(x, y) =
y − 1√

x2 + (y − 1)2
+

y√
(x− 2)2 + y2

+
y√

x2 + y2
.

It is doubtful that any present-day computer algebra system could solve the simultaneous equations

f(x, y) = 0, g(x, y) = 0 (1)

exactly with a reasonable amount of memory and in a reasonable time. But recall Newton’s method from
the last section of Chapter 3. Techniques of this chapter can be used to extend Newton’s method to two
simultaneous equations in two unknowns, as in Eq. (1). Here is the extension.

The graph of f(x, y) = 0 is, generally, a curve in the xy-plane, as is the graph of g(x, y) = 0. The point
where these curves meet is the simultaneous solution that we seek. If (x0, y0) is an initial “guess” for the
simultaneous solution, then (x0, y0, f(x0, y0)) is a point on the surface z = f(x, y) and (x0, y0, g(x0, y0)) is
a point on the surface z = g(x, y). The tangent planes to these respective surfaces at these respective points
generally meet the xy-plane in a pair of lines, whose intersection should be close to the desired solution
(x�, y�) of the simultaneous equations in (1). Let (x1, y1) denote the intersection of these lines, and repeat
the process with (x0, y0) replaced with (x1, y1). This leads to the pair of iterative formulas

xk+1 = xk −
f(xk, yk)gy(xk, yk)− g(xk, yk)fy(xk, yk)
fx(xk, yk)gy(xk, yk)− gx(xk, yk)fy(xk, yk)

,

yk+1 = yk −
g(xk, yk)fx(xk, yk)− f(xk, yk)gx(xk, yk)
fx(xk, yk)gy(xk, yk)− gx(xk, yk)fy(xk, yk)

for k = 0, 1, 2, . . . .

We wrote a simple Mathematica 3.0 program to implement this procedure with the initial guess
(x0, y0) = (0.5, 0.5). Here are the results (rounded, of course):

(x1, y1) = (0.201722209269, 0.369098300563), (x2, y2) = (0.250232659645, 0.283132873843),

(x3, y3) = (0.254890752792, 0.304117462143), (x4, y4) = (0.254568996440, 0.304503089648),

(x5, y5) = (0.254569313597, 0.304503701206), (x6, y6) = (0.254569313597, 0.304503701206),

and—to the number of digits shown—(x7, y7) = (x6, y6). The sum of the distances from (x6, y6) to the
three points (0, 1), (0, 0), and (2, 0) is approximately 2.909312911180.

Warning: A much better “initial guess” is required than in the case of a function of a single variable. For
example, with the initial guess (x0, y0) = (2/3, 1/3) (the solution to the original version of Problem 53,
which one would think would be a fairly good initial guess), (x6, y6) ≈ (1422.779, 732.866). Thus it is clear
that Newton’s method is not converging to the correct solution.
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C13S05.054: We are to minimize

f(x, y) = (x− a1)2 + (y − b1)2 + (x− a2)2 + (y − b2)2 + (x− a3)2 + (y − b3)2

with domain the entire xy-plane. By an argument similar to that used in the solution of Example 7, there
is a global minimum value and it occurs at a critical point at which fx(x, y) = 0 and fy(x, y) = 0. These
equations are

2(x− a1) + 2(x− a2) + 2(x− a3) = 0, 2(y − b1) + 2(y − b2) + 2(y − b3) = 0

with solution

x =
a1 + a2 + a3

3
, y =

b1 + b2 + b3
3

.

Because the critical point is unique, we have found the point required in Problem 54. The value of f(x, y)
at this point is

2
3

(a2
1 − a1a2 + a2

2 − a1a3 + a2
3 − a2a3 + b21 − b1b2 + b22 − b1b3 + b23 − b2b3).

In connection with Problem 53, consider the general problem of finding the point the sum of whose
distances from three or more fixed points is minimal. This problem is extremely difficult (see the solution to
Problem 53 for an approximation method when the numbers {ai} and {bi} are given). It is amusing that
the exact solution can be accurately approximated in a few moments using an analog computer constructed
from two thin sheets of clear rigid plastic (with coordinates inscribed on one), three small dowel rods each
about 4 cm long, a little glue, and some soap-bubble solution. See the book Plateau’s Problem by Frederick
J. Almgren, Jr. (W. A. Benjamin, Inc., New York, 1966) for more information.

C13S05.055: Let 2x denote the length of the base of each isosceles triangle, z the height of each triangle,
and y the distance between the triangles. We are to minimize the area A = 2xz + 2y

√
x2 + z2 given the

house has fixed volume V = xyz. Solve the latter equation for y and subsitute in the area formula to obtain
the function

A(x, z) = 2xz +
2V
√
x2 + z2

xz
, 0 < x, 0 < z.

An argument similar to the one used in the solution of Example 7 shows that A must have a global minimum
value even though its domain is neither closed nor bounded. Therefore, if there is a unique critical point of
A in its domain, that will be the location of its global minimum.

To find the critical point or points, we use Mathematica 3.0 and first define

a[x , z ] := 2∗x∗z + (2∗v∗Sqrt[x∗x + z∗z])/(x∗z)

Then we compute and simplify both partial derivatives.

d1 = D[ a[x,z], x ]

2z +
2v

z
√
x2 + z2

− 2v
√
x2 + z2

x2z

d1 = Together[d1]
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2z
(
−v + x2

√
x2 + z2

)
x2
√
x2 + z2

n1 = Numerator[ d1 ]

2z
(
−v + x2

√
x2 + z2

)

d2 = D[ a[x,z], z ]

2x +
2v

x
√
x2 + z2

− 2v
√
x2 + z2

xz2

d2 = Together[ d2 ]

2x
(
−v + z2

√
x2 + z2

)
z2
√
x2 + z2

n2 = Numerator[ d2 ]

2x
(
−v + z2

√
x2 + z2

)

Because neither x = 0 nor z = 0 (because V > 0), we may cancel:

n1 = n1/(2∗z) // Cancel

−v + x2
√
x2 + z2

n2 = n2/(2∗x) // Cancel

−v + z2
√
x2 + z2

Both of the last expressions must be zero when both partial derivatives are set equal to zero, and it follows
that z = x. We substitute this information into the numerator n1 of Ax(x, z) and set the result equal to
zero.

n1 /. z -> x

−v +
√

2 (x2)3/2

Solve[ % == 0, x ]

And Mathematica returns six solutions, only two of which are real, and only one of the two is positive: We
find that

x = z =
V 1/3

21/6
, and y = 21/3 · V 1/3,

so that the minimum possible surface area is 3 · 22/3 · V 2/3.

C13S05.056: If the dimensions of the box are x by y by z, then x2 + y2 + z2 = L2. Hence we are to
maximize box volume

V (x, y) = xy
√
L2 − x2 − y2 , 0 � x, 0 � y, x2 + y2 � L2.
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The domain D of V is the part of the disk with center (0, 0) and radius L that lies in the first quadrant
(including the boundary points of D). This is a closed and bounded subset of the xy-plane and V is
continuous there, so V (x, y) has a global maximum on D—and this maximum does not lie on the boundary
of D because V (x, y) is identically zero there. Thus we seek interior critical points of V . When we write the
equations Vx(x, y) = 0 and Vy(x, y) = 0, we obtain

y
√
L2 − x2 − y2 − x2y√

L2 − x2 − y2
= 0,

x
√
L2 − x2 − y2 − xy2√

L2 − x2 − y2
= 0.

Thus

y(L2 − x2 − y2)− x2y = 0,

x(L2 − x2 − y2)− xy2 = 0.

The maximum does not occur when x = 0 nor when y = 0, so we may cancel without losing the desired
solution:

(L2 − x2 − y2)− x2 = 0,

(L2 − x2 − y2)− y2 = 0.

It follows that y2 = x2, and hence (because both are positive) y = x. If we began anew and eliminated y

rather than z, we would discover that x = z. Hence x = y = z, and so 3x2 = L2; therefore

x = y = z =
L
√

3
3

maximizes V and its maximum value is
√

3
9
· L3.

C13S05.057: Let x, y, and z be the lengths of the edges of the three squares. We are to maximize and
minimize their total area A = x2 + y2 + z2 given the condition 4x + 4y + 4z = 120; that is, x + y + z = 30.
Using this side condition to eliminate z in the expression for A, we obtain the function

A(x, y) = x2 + y2 + (30− x− y)2, 0 � x, 0 � y, x + y � 30.

The domain D of A is the triangular region in the xy-plane with vertices at (0, 0), (30, 0), and (0, 30),
including the boundary segments. Hence D is a closed and bounded subset of the plane and A is continuous
there (because A(x, y), when expanded, is a polynomial). Therefore there is both a global maximum and a
global minimum value of A(x, y). We proceed in the usual way, first setting both partial derivatives equal
to zero:

2x− 2(30− x− y) = 0 and 2y − 2(30− x− y) = 0.

It follows that y = x. By symmetry (rework the problem eliminating y rather than z) z = x, so that
x = y = z. Therefore x = y = z = 10 may yield an extremum of A.

• On the boundary segment of D on which y = 0,
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A(x, 0) = f(x) = x2 + (30− x)2, 0 � x � 30.

Methods of single-variable calculus yield the critical point x = 15; we have also the two endpoints of the
domain of f to check.

• On the boundary segment of D on which x = 0,

A(0, y) = g(y) = y2 + (30− y)2, 0 � y � 30.

Methods of single-variable calculus yield the critical point y = 15; we have also the two endpoints of the
domain of g to check.

• On the boundary segment of D with equation x + y = 30, we have y = 30− x, so that

A(x, 30− x) = h(x) = x2 + (30− x)2, 0 � x � 30.

Again, methods of single-variable calculus yield the critical point x = 15; the endpoints of this boundary
segment will be checked in the other two cases.

Results:

A(10, 10) = 300, A(15, 0) = 450,

A(0, 15) = 450, A(0, 0) = 900,

A(30, 0) = 900, A(0, 30) = 900, and

A(15, 15) = 450.

Answer: For maximum total area, make only one square, measuring 30 cm on each side, with area 900 cm2.
For minimum total area, make three equal squares, each measuring 10 cm on each side, with total area 300
cm2.

C13S05.058: Suppose that the edges of the cubes have lengths x, y, and z. We are to maximize and
minimize total surface area A = 6x2 +6y2 +6z2 given x3 + y3 + z3 = V , a constant. Solve the last equation
for

z = (V − x3 − y3)1/3

and substitute in the area formula to obtain the function

A(x, y) = 6x2 + 6y2 + 6(V − x3 − y3)2/3, 0 � x, 0 � y, x3 + y3 � V.

Then A is continuous on its domain, which is a closed and bounded subset of the xy-plane, and hence
A(x, y) has both a global maximum and a global minimum there. When we set both partials equal to zero,
we get the equations

12x− 12x2

(V − x3 − y3)1/3
= 0 and 12y − 12y2

(V − x3 − y3)1/3
= 0. (1)

There are several cases to consider.

• If x �= 0, y �= 0, and x3 + y3 < V (the same as z �= 0), then x and y can be cancelled from the
equations in (1), and it follows immediately that y = x. Then the first of the equations in (1) implies that
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(V − 2x3)1/3 = x; V − 2x3 = x3; x = y = z = (V/3)1/3

(z = x by symmetry). In this case the total surface area of the three cubes is 6 · 31/3 · V 2/3.

• If x = 0, y �= 0, and y3 < V (the same as z �= 0), then the second equation in (1) implies that

1− y

(V − y3)1/3
= 0; V − y3 = y3; y = (V/2)1/3.

Rework the problem eliminating y instead of z to discover that z = (V/2)1/3 as well, or simply substitute
x = 0 and y = (V/2)1/3 in x3 + y3 + z3 = V and solve for z. In this case the total surface area of the two

cubes will be

6y2 + 6z2 = 12(V/2)2/3 = 6 · 21/3 · V 2/3,

less than in the first case.

• If x �= 0, y = 0, and x2 < V (the same as z �= 0), proceed exactly as in the previous case to obtain
total surface area of the two cubes again 6 · 21/3 · V 2/3.

• If x = 0 and y = 0, then we get no information from the equations in (1). But in this case z3 = V , so
that z = V 1/3. There is only one cube, with total surface area 6V 2/3, less than in any of the previous cases.

• If z = 0, then x3 + y3 = V and the total surface area of the two (or fewer) cubes is 6x2 + 6y2. Thus
the maximum-minimum problem becomes a problem in single-variable calculus: Find the global maximum
and minimum values of

f(x) = 6x2 + 6(V − x3)2/3, 0 � x � V 1/3.

Then

f ′(x) =
12x

[
(V − x3)1/3 − x

]
(V − x3)1/3

,

and f ′(x) = 0 when x = 0 and when x = (V/2)1/3. There is also the endpoint x = V 1/3 to check. If x = 0
then there is only one cube, of total surface area 6 · V 2/3. If x = (V/2)1/3 then y = x; there are two equal
cubes of total surface area 6 · 21/3 · V 2/3. If x = V 1/3 then there is only one cube, of total surface area
6 · V 2/3.

Answer: For maximum total surface area, make three equal cubes, each of edge length (V/3)1/3 and total
area 6 · 31/3 · V 2/3. For minimum total surface area, make only one cube, of edge length V 1/3 and surface
area 6 · V 2/3.

Comment: This awkward method of solving Problem 58 is awkward precisely because it does not take
advantage of the symmetries present in the original problem. For a more elegant (and much shorter) solution,
use the method of Lagrange multipliers, which will be discussed in Section 13.9.

C13S05.059: Using the notation in Fig. 13.5.16, we have cross-sectional area

A(x, θ) = (L− 2x)x sin θ + x2 sin θ cos θ, 0 � θ � π

2
, 0 � x � L

2
.

to be maximized. When we set the partial derivatives of A equal to zero, we obtain the equations

(L− 2x) sin θ − 2x sin θ + 2x sin θ cos θ = 0, (L− 2x)x cos θ + x2 cos2 θ − x2 sin2 θ = 0. (1)
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The first equation in (1) yields

(L− 2x)− 2x + 2x cos θ = 0 or sin θ = 0,

but the second of these can be rejected as θ = 0 minimizes the cross-sectional area. The second equation in
(1) yields

(L− 2x) cos θ + x cos2 θ − x sin2 θ = 0 or x = 0,

and the second of these can also be rejected because x = 0 minimizes the area. Thus we have the simultaneous
equations

L− 2x− 2x + 2x cos θ = 0 and (L− 2x) cos θ + x cos2 θ − x sin2 θ = 0. (2)

We solve the first of these for L− 2x = 2x− 2x cos θ and substitute in the second to obtain

2x(1− cos θ) cos θ + x cos2 θ − x sin2 θ = 0;

2(1− cos θ) cos θ + cos2 θ − sin2 θ = 0;

2 cos θ − 2 cos2 θ + cos2 θ − 1 + cos2 θ = 0;

cos θ =
1
2
;

θ =
π

3
.

In the second step we used the fact that x = 0 minimizes A to cancel x with impunity; in the last step we
used the domain of A to determine θ. In any case, the first equation in (2) lets us determine the maximizing
value of x as well:

L− 4x + x = 0, and thus x =
L

3
.

We have found only one critical point, and the only endpoint that might produce a larger cross-sectional
area occurs when θ = π/2, in which case the first equation in (2) implies that

L− 4x = 0, so that x =
L

4
.

In the latter case the cross-sectional area of the gutter is L2/8, but in the previous case, when θ = π/3, we
find that A =

(
L2
√

3
)
/12 ≈ (0.1443)L2, so this is the maximum possible cross-sectional area of the gutter.

C13S05.060: Given: f(x, y) = (y − x2)(y − 3x2). Part (a):

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

3h4

h
= lim
h→0

3h3 = 0

and

fy(0, 0) = lim
k→0

f(0, k)− f(0, 0)
k

= lim
k→0

k2

k
= lim
k→0

k = 0.

Part (b): Suppose that m is a real number. Then
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f(x, mx) = (mx− 3x2)(mx− x2) = 3x4 − 4mx3 + m2x2 = x2(m− 3x)(m− x).

Therefore if x �= 0 and

−m

3
< x <

m

3
, then f(x, mx) > 0,

so—because f(0, 0) = 0—f(x, y) has a local minimum at (0, 0) on the line y = mx. On the vertical line
through (0, 0) (the y-axis), f(x, y) > 0 for all (x, y) except that f(0, 0) = 0. Therefore f(x, y) has a local
minimum at (0, 0) on every straight line that passes through (0, 0).

Part (c): On the parabola y = 2x2, we have

f(x, y) = f(x, 2x2) = (2x2 − x2)(2x2 − 3x2) = −x4,

and so f(x, y) does not have a local minimum at (0, 0) on the parabola y = 2x2. (In fact, it has a global
maximum at (0, 0) on that curve.) Therefore f(x, y) does not have a local minimum at (0, 0) even though
it has one on every straight line through (0, 0).

C13S05.061: Given:

P (x) = −2x2 + 12x + xy − y − 10,

Q(y) = −3y2 + 18y + 2xy − 2x− 15.

Part (a): This is known as a game of perfect information—each player (manager) knows every strategy
available to his opponent. Each manager computes

P ′(x) = 12− 4x + y, Q′(y) = 18 + 2x− 6y,

sets both equal to zero (knowing that the other manager is doing the same), and solves for x = 45/11,
y = 48/11. Thus each maximizes his profit knowing that the other manager is doing the same; indeed, if
either player (manager) deviates from his optimal strategy , his profit will decrease and that of his opponent
(the other manager) is likely to increase. With these values of x and y, the profits will be

P =
2312
121

≈ 19.107 and Q =
4107
121

≈ 33.942.

Part (b): After the merger and the agreement to maximize total profit, the new partners plan to maximize

R(x, y) = P (x) + Q(y) = −2x2 − 3y2 + 3xy + 10x + 17y − 25.

The junior partner computes both partial derivatives and sets both equal to zero:

10− 4x + 3y = 0, 17 + 3x− 6y = 0.

The simultaneous solution is

x =
37
5
, y =

98
15

for a combined profit of

1013
15
≈ 67.533 > 53.050 ≈ 6419

121
=

2312
121

+
4107
121

.
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Thus the merger increases total profit.

C13S05.062: First we replace A with x, B with y, and C with z—purely for cosmetic reasons. The
weekly profits may be written in the form

To AP: p(x, y, z) = 1000x− x2 − 2xy,

To BQ: q(x, y, z) = 2000y − 2y2 − 4yz,

To CR: r(x, y, z) = 1500z − 3z2 − 6xz.

Part (a): If the firms act independently, then p is really a function of x alone, q a function of y alone, and
r a function of z alone. Again, in this three-person game of perfect information, each manager computes
p′(x), q′(y), and r′(z) and sets all three equal to zero:

1000− 2x− 2y = 0, 2000− 4y − 4z = 0, 1500− 6x− 6z = 0.

The simultaneous solution is x = 125, y = 375, and z = 125. The weekly profit of each company will be

AP: $15625, BQ: $281250, CR: $46875

for a total weekly profit of $343750.

Part (b): Now firms AP and CR merge and act to maximize their total weekly profit; this fact is known to
the management of BQ. The profit function for the new company APCR will be

s(x, y, z) = p(x, y, z) + q(x, y, z) = 1000x− x2 − 2xy + 1500z − 6xz − 3z2.

Note that, contrary to what the notation suggests, s is a function of x and z alone. The firms act as did
the two in Problem 61: APCR computes sx, sz, and q′(y), sets all three equal to zero, and solves. BQ does
the same. The results:

1000− 2x− 2y − 6z = 0, 1500− 6x− 6z = 0, 2000− 4y − 4z = 0,

with solution x = 500, y = 750, z = −250. But this solution is not feasible; it contains a negative production
number. The maximum for APCR must occur at a boundary point of its domain, which is x � 0, z � 0.

• If z = 0, then the profits are these:

To APCR: s(x) = 1000x− x2 − 2xy;

To BQ: q(y) = 2000y − 2y2.

Now we solve s′(x) = 0 and q′(y) = 0 simultaneously:

1000− 2x− 2y = 0, 2000− 4y = 0 : y = 500, x = 0.

The weekly profit of APCR will be $0 and that of BQ will be $500000. This is a loss for APCR of $62500
per week and a weekly gain for BQ of $218750. This is certainly not the maximum for APCR.

• If x = 0, then the profits are these:

To APCR: s(z) = 1500z − 3z2;

To BQ: q(y) = 2000y − 2y2 − 4yz.
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x

z

y

y  = x

(0, 0, 60)

(0, 40, 40)

(0, 120, 0)

(48, 48, 0)

(80, 0, 0)

y  =  x  + z

y = z

Now we solve s′(z) = 0 and q′(y) = 0 simultaneously:

1500− 6z = 0, 2000− 4y − 4z = 0 : y = 250, z = 250.

The weekly profit of APCR will be $187500 and that of BQ will be $125000. This is a weekly gain for APCR
of $125000 and a weekly loss for BQ of $156250.

We need not consider the case y = 0 because BQ would never choose that alternative, inasmuch as BQ has
a positive weekly profit in every case we have considered. Answer: After the merger, Ajax Products is in
effect shut down and all products are produced by Conglomerate Resources. The newly merged firm will
have a weekly profit of $187500 and Behemoth Quicksilver will have a weekly profit of $125000.

C13S05.063: Let x be the number of sheep, y the number of hogs, and z the number of head of cattle.
Suppose that 60 cattle use 1 unit of land. Then each head of cattle uses 1

60 units of land. By similar
reasoning, each hog uses 1

120 units of land and each sheep uses 1
80 units of land. This leads to the side

condition

x

80
+

y

120
+

z

60
= 1

for each unit of land available. Let’s write this in the simpler form 3x + 2y + 4z = 240. An additional
condition in the problem is that y � x+ z. We are now to maximize the profit P per unit of land, given by
P (x, y, z) = 10x + 8y + 20z.

The domain of P is the triangular region shown shaded in the preceding figure. It is obtained as follows:
Draw the part of the plane 3x+2y+4z = 240 that lies in the first octant (because none of x, y, or z can be
negative). The intersections of that plane with the positive coordinate planes are shown as solid lines. The
intersection of the plane y = x + z with the positive coordinate planes is shown as a pair of dashed lines.
The condition y � x+ z implies that only the part of the first plane to the right of the second may be used
as the domain of P . Therefore we arrive at the shaded triangle as the domain of the profit function. Finally,
because P is a linear function of x, y, and z, its maximum and minimum values occur at the vertices of the
shaded triangle. Here, then, are the results:
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Vertex: (48, 48, 0); Profit: $864 per unit of land.

Vertex: (0, 120, 0); Profit: $960 per unit of land.

Vertex: (0, 40, 40); Profit: $1120 per unit of land.

Were it not for the restriction of the state law mentioned in the problem, the farmer could maximize her
profit per unit of land by raising only cattle: P (0, 0, 60) = 1200. Answer: Raise 40 hogs and 40 cattle per
unit of land, but no sheep.

C13S05.064: Upon setting the partial derivatives of f equal to zero we get the equations

fx(x, y) = ax + by = 0,

fy(x, y) = bx + cy = 0,

whose only solution is the point (0, 0), unless its coefficient determinant ac−b2 vanishes. Computer graphing
of various possibilities with ac− b2 = 0 appears always to yield parabolic cylinders. Indeed, if ac− b2 = 0
then a and c have the same sign and b = ±

√
ac . Then we note that

f(x, y) =




(√
a x ±

√
c y

)2 if a, c > 0,

−
(√
−a x ±

√
−c y

)2
if a, c < 0.

—C.H.E.

C13S05.065: Here is the case a = 3, b = 1, c = 2 (via Mathematica 3.0):

ParametricPlot3D[ { r∗Cos[t], r∗Sin[t], r*r*(a*(Cos[t])∧2 + 2∗b∗Cos[t]∗Sin[t] +

c∗(Sin[t])∧2) }, { r, 0, 1 }, { t, 0, 2∗Pi }, BosRatios → { 1, 1, 1 },
ViewPoint → { −1.2, 2.1, 1.6 } ];

Here is the case a = 1, b = 3, c = 1:

ParametricPlot3D[ { r∗Cos[t], r∗Sin[t], r*r*(a*(Cos[t])∧2 + 2∗b∗Cos[t]∗Sin[t] +

31



 

-2

-1

0

1

2

-2
-1

0

1

2

0

10

-2

-1

0

1

2

-2
-1

0

1

2

c∗(Sin[t])∧2) }, { r, 0, 2 }, { t, 0, 2∗Pi }, BoxRatios → { 1, 1, 1 },
ViewPoint → { −1.2, 2.1, 1.6 } ];

Space prohibits our further experimentation along these lines, but these two examples certainly support the
conclusions given in the statement of Problem 65.

C13S05.066: Upon setting the partial derivatives of f equal to zero we get the equations

fx(x, y) = 4x3 + 4bxy2 = 4x(x2 + by2) = 0,

fy(x, y) = 4bx2y + 4y3 = 4y(bx2 + y2) = 0.

Obviously, the only solution is (0, 0) unless b < 0. In the latter case, if x and y are nonzero, then the other
factors yield by2 = y2/b, so it follows that b2 = 1 and hence that b = −1. Computer experimentation
yields graphs that look like Fig. 13.5.7 if b > −1 (local minimum) and like Fig. 13.5.8 if b < −1 (saddle
point). —C.H.E.

C13S05.067: Upon changing to polar coordinates we get f(x, y) = x4 + 2bx2y2 + y4 = r4g(θ) where

g(θ) = cos4 θ + 2b cos2 θ sin2 θ + sin4 θ.

Upon differentiating and simplifying we find that

g′(θ) = 4(b− 1)(cos2 θ − sin2 θ) cos θ sin θ.

Hence the critical points of g are

• multiples of π/2, where g(θ) = 1, and

• odd multiples of π/4, where cos2 θ = sin2 θ = 1
2 so g(θ) = 1

4 + 1
2 b + 1

4 = 1
2 (b + 1).

If b > −1 it follows that g(θ) is always positive, so f(x, y) = r4g(θ) is positive except at the origin. But if
b < −1 it follows that g(θ) attains both positive and negative values, so z = f(x, y) = r4g(θ) exhibits a
saddle point at the origin. —C.H.E.
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C13S05.068: When we set the first-order partial derivatives of f equal to zero, we obtain the simultaneous
equations

fx(x, y, z) = 2x− 6y = 0,

fy(x, y, z) = −6x + 2y + 2z = 0,

fz(x, y, z) = 2y + 2z = 0.

The first and third equations yield x = 3y and z = −y; when this information is substituted in the second
equation, we find that y = 0. Hence the only critical point is at the origin, where we have f(0, 0, 0) = 12.
Yet

f(1, 1, 0) = 8 < 12 and f(1, −1, 0) = 20 > 12.

Therefore we cannot find the extrema of f merely by setting all partial derivatives equal to zero. If you
examine the behavior of f on the two lines

y = x, z = 0 and y = −x, z = 0

through the origin, you will find that f has no extrema, global or local.

C13S05.069: When we set all first-order partial derivative of g equal to zero, we get the simultaneous
equations

gx(x, y, z) = 4x3 − 16xy2 = 0,

gy(x, y, z) = 4y3 − 16x2y = 0,

gz(x, y, z) = z = 0.

The only solution of these equations is x = y = z = 0, at which g(0, 0, 0) = 12. But

g(1, 1, 0) = 6 < 12 and g(0, 0, 2) = 28 > 12.

Therefore g has no global maximum or minimum at the origin. Examination of the behavior of g(x, y, z)
on the two lines

y = x, z = 0 and x = 0, y = 0

is enough to establish that g has no extrema, global or local. Thus one cannot conclude that g has an
extremum at a point where all its partial derivatives are zero.

C13S05.070: Because hy(x, y) ≡ −2, there is no point at which both partial derivatives of h are simul-
taneously zero. Examination of the behavior of h on the boundary of its domain

0 � x, 0 � y, x + y � 1,

a triangle in the xy-plane, reveals that the global maximum value of h is 1 and the global minimum value
of h is −1. Note that these extrema cannot discovered by setting the partial derivatives of h equal to zero
and solving the resulting equations.
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Section 13.6

C13S06.001: If w = 3x2 + 4xy − 2y3, then dw = (6x + 4y) dx + (4x− 6y2) dy.

C13S06.002: If w = exp(−x2 − y2), then dw = −2x exp(−x2 − y2) dx− 2y exp(−x2 − y2) dy.

C13S06.003: If w =
√

1 + x2 + y2 , then

dw =
x√

1 + x2 + y2
dx +

y√
1 + x2 + y2

dy =
x dx + y dy√
1 + x2 + y2

.

C13S06.004: If w = xyex+y, then dw = y(x + 1)ex+y dx + x(y + 1)ex+y dy.

C13S06.005: If w(x, y) = arctan
(
x

y

)
, then dw =

y dx − x dy

x2 + y2
.

C13S06.006: If w = xz2 − yx2 + zy2, then dw = (z2 − 2xy) dx + (2yz − x2) dy + (y2 + 2xz) dz.

C13S06.007: If w = ln(x2 + y2 + z2), then

dw =
2x dx

x2 + y2 + z2
+

2y dy

x2 + y2 + z2
+

2z dz

x2 + y2 + z2
=

2x dx + 2y dy + 2z dz

x2 + y2 + z2
.

C13S06.008: If w = sinxyz, then dw = yz cosxyz dx + xz cosxyz dy + xy cosxyz dz.

C13S06.009: If w = x tan yz, then dw = tan yz dx + xz sec2 yz dy + xy sec2 yz dz.

C13S06.010: If w = xyeuv, then dw = yeuv dx + xeuv dy + xyveuv du + xyueuv dv.

C13S06.011: If w = e−xyz, then dw = −yze−xyz dx− xze−xyz dy − xye−xyz dz.

C13S06.012: If w = ln(1 + rs), then

dw =
s dr

1 + rs
+

r ds

1 + rs
=

s dr + r ds

1 + rs
.

C13S06.013: If w = u2 exp(−v2), then dw = 2u exp(−v2) du− 2u2v exp(−v2) dv.

C13S06.014: If w =
s + t

s− t
, then

dw = − 2t ds
(s− t)2

+
2s dt

(s− t)2
=

2s dt − 2t ds
(s− t)2

.

C13S06.015: If w =
√

x2 + y2 + z2 , then

dw =
x dx√

x2 + y2 + z2
+

y dy√
x2 + y2 + z2

+
z dz√

x2 + y2 + z2
=

x dx + y dy + z dz√
x2 + y2 + z2

.

C13S06.016: If w = pqr exp(−p2 − q2 − r2), then
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dw = (qr − 2p2qr) exp(−p2 − q2 − r2) dp

+ (pr − 2pq2r) exp(−p2 − q2 − r2) dq + (pq − 2pqr2) exp(−p2 − q2 − r2) dr.

C13S06.017: If w = f(x, y) =
√

x2 + y2 , then

dw =
x dx + y dy√

x2 + y2
.

Choose x = 3, y = 4, dx = −0.03, and dy = 0.04. Then

f(2.97, 4.04) ≈ f(3, 4) +
3 · (−0.03) + 4 · (0.04)√

32 + 42
=

2507
500

= 5.014.

Compare with the true value of

f(2.97, 4.04) =
√

10057
20

≈ 5.014229751417.

C13S06.018: If w = f(x, y) =
√

x2 − y2 , then

dw =
x dx√
x2 − y2

− y dy√
x2 − y2

=
x dx − y dy√

x2 − y2
.

Choose x = 13, y = 5, dx = 0.2, and dy = −0.1. Then

f(13.2, 4.9) ≈ f(13, 5) +
13 · (0.2) + 5 · (0.1)√

132 − 52
= 12 +

31
120

=
1471
120

≈ 12.258333333333.

Compare with the true value of

f(13.2, 4.9) =
√

15023
10

≈ 12.256834827964.

C13S06.019: If w = f(x, y) =
1

1 + x + y
, then

dw = − dx + dy

(1 + x + y)2
.

Choose x = 3, y = 6, dx = 0.02, and dy = 0.05. Then

f(3.02, 6.05) ≈ f(3, 6)− 0.02 + 0.05
(1 + 3 + 6)2

=
1
10
− 7

10000
=

993
10000

= 0.0993.

Compare with the true value of

f(3.02, 6.05) =
100
1007

≈ 0.0993048659384310.

C13S06.020: If w = f(x, y, z) =
√

xyz , then

dw =
yz dx + xz dy + xy dz

2
√

xyz
.
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Choose x = 1, y = 3, z = 3, dx = −0.1, dy = −0.1, and dz = 0.1. Then

f(0.9, 2.9, 3.1) ≈ f(1, 3, 3) +
−9 · (0.1)− 3 · (0.1) + 3 · (0.1)

2
√

9
= 3− 3

20
=

57
20

= 2.85.

Compare with the true value of

f(0.9, 2.9, 3.1) =
3
√

8990
100

≈ 2.8444683158720541.

C13S06.021: If w = f(x, y, z) =
√

x2 + y2 + z2 , then

dw =
x dx + y dy + z dz√

x2 + y2 + z2
.

Choose x = 3, y = 4, z = 12, dx = 0.03, dy = −0.04, and dz = 0.05. Then

f(3.03, 3.96, 12.05) ≈ f(3, 4, 12) +
3 · (0.03)− 4 · (0.04) + 12 · (0.05)√

32 + 42 + 122

= 13 +
53

1300
=

16953
1300

≈ 13.040769230769.

Compare with the true value of

f(3.03, 3.96, 12.05) =
√

68026
20

≈ 13.040897208398.

C13S06.022: If w = f(x, y, z) =
xyz

x + y + z
, then Mathematica 3.0 can find the linear approximation to

f(1.98, 3.03, 4.97) as follows:

f[x , y , z ] := x∗y∗z/(x + y + z)

D[f[x,y,z], x]∗dx + D[f[x,y,z], y]∗dy + D[f[x,y,z], z]∗dz // Together

(yz2 + y2z) dx + (xz2 + x2z) dy + (xy2 + x2y) dz

(x + y + z)2

% /. { x → 2, y → 3, z → 5, dx → -2/100, dy → 3/100, dz → -3/100 }

− 3
250

f[2, 3, 5]

3

Then we add the last two results:

% + %%

747
250

N[ %, 20 ]
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2.9880000000000000000

Now we compare the approximation with the true value:

f[ 198/100, 303/100, 497/100 ]

14908509
4990000

N[ %, 20 ]

2.9876771543086172345

C13S06.023: If w = f(x, y, z) = e−xyz, then

dw = −e−xyz(yz dx + xz dy + xy dz).

Take x = 1, y = 0, z = −2, dx = 0.02, dy = 0.03, and dz = −0.02. Then

f(1.02, 0.03, −2.02) ≈ f(1, 0, −2)− e0(0− 2 · (0.03) + 0) = 1 +
3
50

= 1.06.

Compare with the exact value, which is

f(1.02, 0.03, −2.02) = exp
(

15453
250000

)
≈ 1.0637623386083891.

C13S06.024: If w = f(x, y) = (x− y) cos 2πxy, then

dw = [cos(2πxy)− 2πy(x− y) sin(2πxy)] dx− [cos(2πxy) + 2πx(x− y) sin(2πxy)] dy.

Take x = 1, y = 0.5, dx = 0.1, and dy = −0.1. Then

f(1.1, 0.4) ≈ f(1, 0.5) + (−1) · (0.1)− (−1) · (−0.1) = −1
2
− 1

5
= − 7

10
= −0.7.

Compare with the exactly value, which is

f(1.1, 0.4) =
7
10

cos
(

22π
25

)
≈ −0.6508435401217760.

C13S06.025: If w = f(x, y) =
(√

x +
√
y

)2, then

dw =
√
x +

√
y√

x
dx +

√
x +

√
y√

y
dy.

Take x = 16, y = 100, dx = −1, and dy = −1. Then

f(15, 99) ≈ f(16, 100) +
4 + 10

4
· (−1) +

4 + 10
10

· (−1) = 196− 49
10

=
1911
10

= 191.1.

By comparison, the exact value is

f(15, 99) =
(√

15 +
√

99
)2

≈ 191.0713954719907741.
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C13S06.026: If w = f(x, y, z) = x1/2y1/3z1/4, then

dw =
y1/3z1/4

2x1/2
dx +

x1/2z1/4

3y2/3
dy +

x1/2y1/3

4z3/4
dz.

Take x = 25, y = 27, z = 16, dx = 1, dy = 1, and dz = 1. Then

f(26, 28, 17) ≈ f(25, 27, 16) +
3 · 4
2 · 5 +

5 · 4
3 · 9 +

5 · 3
4 · 8 = 30 +

6217
4320

=
135817
4320

≈ 31.4391203703703704.

For comparison, the true value is

f(26, 28, 17) = 27/6 · 71/3 · 131/2 · 171/4 ≈ 31.4401721089687491.

C13S06.027: If w = f(x, y) = exp(x2 − y2), then

dw = 2x exp(x2 − y2) dx− 2y exp(x2 − y2) dy.

Take x = 1, y = 1, dx = 0.1, and dy = −0.1. Then

f(1.1, 0.9) ≈ f(1, 1) + 2 · (0.1)− 2 · (−0.1) = 1 +
2
5

=
7
5

= 1.4.

Compare with the true value, which is

f(1.1, 0.9) = e2/5 ≈ 1.4918246976412703.

C13S06.028: If w = f(x, y) =
x1/3

y1/5
, then

dw =
1

3x2/3y1/5
dx− x1/3

5y6/5
dy =

5y dx − 3x dy

15x2/3y6/5
.

Take x = 27, y = 32, dx = −2, and dy = −2. Then

f(25, 30) ≈ f(27, 32) +
160 · (−2)− 81 · (−2)

15 · 9 · 64
=

3
2
− 79

4320
=

6401
4320

≈ 1.4817129629629630.

For purposes of comparison, the true value is

f(25, 30) =
57/15

61/5
≈ 1.4810023646720941.

C13S06.029: If w = f(x, y, z) =
√

x2 + y2 + z2 , then

dw =
x dx + y dy + z dz√

x2 + y2 + z2
.

Take x = 3, y = 4, z = 12, dx = 0.1, dy = 0.2, and dz = −0.3. Then

f(3.1, 4.2, 11.7) ≈ f(3, 4, 12) +
0.3 + 0.8− 3.6

13
= 13− 5

26
=

333
26
≈ 12.8076923076923077.

The true value is
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f(3.1, 4.2, 11.7) =
√

16414
10

≈ 12.8117133904876283.

C13S06.030: If w = f(x, y, z) = (x2 + 2y2 + 2z2)1/3, then

dw =
2x dx + 4y dy + 4z dz

3(x2 + 2y2 + 2z2)2/3
.

Take x = y = z = 5, dx = 0.1, dy = 0.2, and dz = 0.3. Then

f(5.1, 5.2, 5.3) ≈ f(5, 5, 5) +
10 · (0.1) + 20 · (0.2) + 20 · (0.3)

3(25 + 50 + 50)2/3
= 5 +

11
75

=
386
75
≈ 5.1466666666666667.

For comparison purposes, the true value is

f(5.1, 5.2, 5.3) =
(

13627
100

)1/3

≈ 5.1459640985125985.

C13S06.031: Given: The point Q(1, 2) on the curve f(x, y) = 0, where f(x, y) = 2x3 + 2y3 − 9xy. Then

df = (6x2 − 9y) dx + (6y2 − 9x) dy = 0.

Choose x = 1, y = 2, and dx = 0.1. Then

(6− 18) · 1
10

+ (24− 9) dy = 0;

dy =
1
15
· 12
10

=
12
150

=
2
25

= 0.08.

So the point P on the curve f(x, y) = 0 near Q and with x-coordinate 1.1 has y-coordinate

y ≈ 2 +
2
25

=
52
25

= 2.08.

The true value of the y-coordinate is approximately 2.0757642703016864.

C13S06.032: Given: The point Q(2, 4) on the curve f(x, y) = 0, where f(x, y) = 4x4 + 4y4 − 17x2y2.
Then

df = (16x3 − 34xy2) dx + (16y3 − 34x2y) dy = 0.

Choose x = 2, y = 4, and dy = −0.1. Then

(128− 1088) dx + (1024− 544)(−0.1) = 0;

− 960 dx− 48 = 0;

dx = − 1
20

= −0.05.

So the point P on the curve f(x, y) = 0 near Q and having y-coordinate 3.9 therefore has x-coordinate
x ≈ 2 − 0.05 = 1.95. By some coincidence, the error in this approximation is zero: The point P (3.9, 1.95)
does lie on the curve f(x, y) = 0.
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C13S06.033: Suppose that the base of the rectangle has length x and that its height is y. Then its area is
w = f(x, y) = xy, and dw = y dx + x dy. Choose x = 10, y = 15, dx = 0.1, and dy = 0.1. Then dw = 2.5;
this is the estimate of the maximum error in computing the area of the rectangle. The actual maximum
error possible is f(10.1, 15.1)− f(10, 15) = 2.51.

C13S06.034: Part (a): The volume of the cylinder is w = f(r, h) = πr2h, so that

dw = 2πrh dr + πr2 dh.

Choose r = 3, h = 9, and dr = dh = 0.1. Then

dw = 54π · (0.1) + 9π · (0.1) =
63π
10
≈ 19.7920337176156974

is the estimate of the maximum error in computing the volume of the cylinder. The actual maximum error
possible is

f(3.1, 9.1)− f(3, 9) =
6451π
1000

≈ 20.2664142083077562.

Part (b): The surface area of the cylinder is w = f(r, h) = 2πrh + 2πr2, and thus

dw = (2πh + 4πr) dr + 2πr dh.

Choose r = 3, h = 9, and dr = dh = 0.1. Then

dw = (2π · 9 + 4π · 3) · (0.1) + 2π · 3 · (0.1) =
18π
5
≈ 11.3097335529232557

is the estimate of the maximum error in computing the surface area of the cylinder. The actual maximum
error possible is

f(3.1, 9.1)− f(3, 9) =
91π
25

= 11.4353972590668474.

C13S06.035: The volume of the cone is given by

w = f(r, h) =
π

3
r2h, so that dw =

2π
3

rh dr +
π

3
r2 dh.

Choose r = 5, h = 10, and dr = dh = 0.1. Then

dw =
2π
3
· 5 · 10 · (0.1) +

π

3
· 52 · (0.1) =

25π
6
≈ 13.0899693899574718

is an estimate of the maximum error in measuring the volume of the cylinder. The true value of the maximum
error is

f(5.1, 10.1)− f(5, 10) =
12701π
3000

≈ 13.3004560977479880.

C13S06.036: If the dimensions of the box are x by y by z, then its total surface is w = f(x, y, z) =
2xy + 2xz + 2yz, and so

dw = 2(y + z) dx + 2(x + z) dy + 2(x + y) dz.

Choose x = 10, y = 15, z = 20, and dx = dy = dz = 0.1. Then
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dw = (70 + 60 + 50) · (0.1) = 18

is an estimate of the maximum error in measuring the total surface area of the box. The true value of the
maximum error is

f(10.1, 15.1, 20.1)− f(10, 15, 20) =
903
50

= 18.06.

C13S06.037: If the sides of the field are x and y and the angle between them is θ, then the area of the
field is given by

w = f(x, y, θ) =
1
2
xy sin θ,

so that

dw =
1
2
y sin θ dx +

1
2
x sin θ dy +

1
2
xy cos θ dθ.

If x = 500, y = 700, θ = π/6, dx = dy = 1, and dθ = π/720, then

dw = 350 · 1
2
· 1 + 250 · 1

2
· 1 +

1
2
· 500 · 700 ·

√
3
2
· π

720
= 300 +

4375π
√

3
36

≈ 961.2810182103919247

(in square feet) is an estimate of the maximum error in computing the area of the field. The true value of
the maximum error is

f(501, 701, (π/6) + (π/720))− f(500, 700, π/6) ≈ 962.9622561829376760

(in square feet). The former amounts to approximately 0.0220679756246646 acres (there are 43560 square
feet in one acre).

C13S06.038: We begin with the equation

V (T, p) =
82.06T

p
, for which dV = −4103(p dT − T dp)

50p2
.

When p = 5, dp = −0.1, T = 300, and dT = −20, we find that

dV =
4103(5 · (−20) − 300 · (−0.1))

50 · 25
= − 28721

125
= −229.768.

The actual change in the volume is

V (280, 4.9)− V (300, 5) = −8206
35
≈ −234.4571428571428571.

C13S06.039: The period T of a pendulum of length L is given (approximately) by

T = 2π
(
L

g

)1/2

, for which dT =
( g

L

)1/2
· πg dL− πL dg

g2
.

If L = 2, dL = 1/12, g = 32, and dg = 0.2, then
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dT =
17π
1920

≈ 0.0278161849536596.

The true value of the increase in the period is

T (2 + 1/12, 32.2)− T (2, 32) ≈ 0.0274043631738259.

C13S06.040: Given

T = 2π
(
L

g

)1/2

,

we compute

dT = 2π · 1
2

(
L

g

)−1/2

· g dL − L dg

g2
=

π

g2

( g

L

)1/2
· (g dL − L dg).

Therefore

dT

T
=

1
2π

( g

L

)1/2
· π

g2

( g

L

)1/2
· (g dL − L dg)

=
1
2
· g
L
· 1
g2
· (g dL − L dg) =

1
2gL

· (g dL − L dg) =
1
2
·
(
dL

L
− dg

g

)
.

C13S06.041: Given: R(v0, α) =
1
32

(v0)2 sin 2α, we first compute

dR =
1
16

(
v0 sin 2α dv0 + (v0)2 cos 2α dα

)
.

Substitution of v0 = 400, dv0 = 10, α = π/6, and dα = π/180 yields

dR = 125
√

3 +
250π

9
≈ 303.7728135458261405

as an estimate of the increase in the range. The true value of the increase is

R(410, (π/6) + (π/180))−R(400, π/6) = −2500
√

3 +
42025

8
sin

(
31π
90

)
≈ 308.1070548148573585.

C13S06.042: Given

S =
k

wh3
,

we first compute

dS = − k

w2h3
dw − 3k

wh4
dh = − k

wh3

(
1
w

dw +
3
h

dh

)
= −S ·

(
1
w

dw +
3
h

dh

)
. (1)

If S = 1 when w = 2 and h = 4, then

1 =
k

2 · 64
, so that k = 128; thus S =

128
wh3

.
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To approximate the sag when w = 2.1 and h = 4.1, we take w = 2, h = 4, and dw = dh = 0.1 in Eq. (1) to
find that

dS = −1 ·
(

1
2
· (0.1) +

3
4
· (0.1)

)
= −0.05− 0.075 = −0.125,

and thus the sag will be approximately 1− 0.125 = 0.875 (inches). The true value is

S(2.1, 4.1) =
128

(2.1) · (4.1)3
≈ 0.88438039

inches.

C13S06.043: Part (a): If (x, y)→ (0, 0) along the line y = x, then

lim
(x,y)→(0,0)

f(x, y) = lim
x→0

f(x, x) = lim
x→0

1 = 1.

But if (x, y)→ (0, 0) along the line y = 0, then

lim
(x,y)→(0,0)

f(x, y) = lim
x→0

f(x, 0) = lim
x→0

0 = 0.

Therefore f is not continuous at (0, 0).

Part (b): We compute the partial derivatives of f at (0, 0) by the definition:

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)
h

= lim
h→0

f(h, 0)
h

= lim
h→0

0
h

= 0;

fy(0, 0) = lim
k→0

f(0, 0 + k)− f(0, 0)
k

= lim
k→0

f(0, k)
k

= lim
k→0

0
k

= 0.

Therefore both fx and fy exist at (0, 0) but f is not continuous at (0, 0).

C13S06.044: The function f(x, y) =
(
x1/3 + y1/3

)3
is continuous everywhere because it is the composition

of the sum of continuous functions. At the origin we compute its partial derivative with respect to x as
follows:

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)
h

= lim
h→0

(
h1/3

)3

h
= 1;

similarly, fy(0, 0) = 1. So only the plane z = x + y can approximate the graph of f at and near (0, 0). But
the line L1 in the vertical plane y = x, through (0, 0, 0), and tangent to the graph of f has slope

lim
x→0

f(x, x)− f(0, 0)
x
√

2
= 4
√

2 ,

whereas the line L2 in the vertical plane y = x, through (0, 0, 0), and tangent to the graph of z = x + y

has slope
√

2 . Because no plane through (0, 0, 0) approximates the graph of f accurately near (0, 0), the
function f is not differentiable at (0, 0).

C13S06.045: Given:

f(x, y) = y2 + x2 sin
1
x
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if x 	= 0; f(0, y) = y2. Then

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

1
h
· h2 sin

1
h

= lim
h→0

h sin
1
h

= 0

and

fy(0, 0) = lim
k→0

f(0, k)− f(0, 0)
k

= lim
k→0

k2

k
= lim
k→0

k = 0.

Therefore the linear approximation to f at (0, 0) can only be z = 0. Moreover,

0 � f(x, y) � x2 + y2 = g(x, y)

for all (x, y), and z = g(x, y) has the tangent plane z = 0 at (0, 0). Therefore z = 0 does approximate
f(x, y) accurately at and near (0, 0). That is, f is differentiable at (0, 0). But if x 	= 0, then

fx(x, y) = 2x sin
1
x
− cos

1
x
,

so fx(x, y) has no limit as (x, y) → (0, 0) along the x-axis. Therefore fx(x, y) is not continuous at (0, 0),
and thus f is not continuously differentiable at (0, 0) even though it is differentiable there.

C13S06.046: Suppose that f is a function of a single variable. We are to show that f ′(a) exists if and
only if f is differentiable at x = a in the sense of Eq. (19), meaning that there exists a constant c such that

lim
h→0

f(a + h)− f(a)− ch

|h| = 0 (1)

and that, if Eq. (1) holds, then c = f ′(a). So let us suppose first that f ′(a) exists. Let c = f ′(a). Then

lim
h→0

f(a + h)− f(a)
h

= f ′(a)

by definition, and

lim
h→0

ch

h
= c = f ′(a).

Consequently,

lim
h→0

f(a + h)− f(a)− ch

h
=

(
lim
h→0

f(a + h)− f(a)
h

)
−

(
lim
h→0

ch

h

)
= 0 − 0 = 0,

and therefore Eq. (1) holds as well.

Next suppose that

lim
h→0

f(a + h)− f(a)− ch

|h| = 0

for some constant c. Then

lim
h→0

∣∣∣∣ f(a + h)− f(a)− ch

|h|

∣∣∣∣ =
∣∣∣∣ lim
h→0

f(a + h)− f(a)− ch

h

∣∣∣∣ = 0,

and thus
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lim
h→0

f(a + h)− f(a)− ch

h
= 0.

It now follows that
(

lim
h→0

f(a + h)− f(a)− ch

h

)
+

(
lim
h→0

ch

h

)
= 0 + c = c,

and thus

lim
h→0

f(a + h)− f(a)
h

= c.

That is, f ′(a) exists and c = f ′(a).

C13S06.047: Suppose that the function f of n � 2 variables is differentiable at a. Then there exists a
constant vector c = 〈 c1, c2, . . . , cn 〉 such that

lim
h→0

f(a + h)− f(a)− c ·h
|h| = 0.

Therefore
(

lim
h→0

|h|
)
·
(

lim
h→0

f(a + h)− f(a)− c ·h
|h|

)
= 0 · 0 = 0,

and therefore

lim
h→0

[f(a + h)− f(a)− c ·h] = 0.

But c ·h→ 0 as h→ 0 because c is a constant vector. Therefore
(

lim
h→0

[f(a + h)− f(a)− c ·h]
)

+
(

lim
h→0

[c ·h + f(a)]
)

= 0 + 0 + f(a) = f(a),

and thus we see that

lim
h→0

f(a + h) = f(a).

Therefore f is continuous at x = a. That is, the function f is continuous wherever it is differentiable.

C13S06.048: Suppose that the function f of n � 2 variables is differentiable at a. Then there exists a
constant vector c = 〈c1, c2, . . . , cn 〉 such that

lim
h→0

f(a + h)− f(a)− c ·h
|h| = 0. (1)

Now Eq. (1) holds for every n-vector h, and in particular, if i is a fixed integer between 1 and n, then Eq. (1)
holds for the vector

h = 〈 0, 0, . . . , 0, h, 0, . . . , 0 〉

having the nonzero scalar h as its ith entry and zeros for all other entries. Moreover, note that h→ 0 is, in
such a case, equivalent to h→ 0. Let a = 〈 a1, a2, . . . , an 〉. Then Eq. (1) implies that
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lim
h→0

f(a1, a2, . . . , ai + h, . . . , an)− f(a1, a2, . . . , ai, . . . , an)− c ·h
h

= lim
h→0

f(a1, a2, . . . , ai + h, . . . , an)− f(a1, a2, . . . , ai, . . . , an)− cih

h
= 0.

It follows immediately that

lim
h→0

f(a1, a2, . . . , ai + h, . . . , an)− f(a1, a2, . . . , ai, . . . , an)
h

= ci.

Hence Dif(a) exists and is equal to ci for 1 � i � n. Moreover, this shows that the vector c in Eq. (19) of
the text is unique.
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Section 13.7

C13S07.001: If w = exp(−x2 − y2), x = t, and y = t1/2, then

dw

dt
=

∂w

∂x
· dx
dt

+
∂w

∂y
· dy
dt

= −2x exp(−x2 − y2)− yt−1/2 exp(−x2 − y2) = −2t exp(−t2 − t)− exp(−t2 − t).

Alternatively, w = exp(−t2 − t), and hence

dw

dt
= −(2t + 1) exp(−t2 − t).

C13S07.002: If w =
1

u2 + v2
, u = cos 2t, and v = sin 2t, then

dw

dt
=

∂w

∂x
· dx
dt

+
∂w

∂y
· dy
dt

=
4u sin 2t

(u2 + v2)2
− 4v cos 2t

(u2 + v2)2
=

4 sin 2t cos 2t− 4 sin 2t cos 2t
(cos2 2t + sin2 2t)2

= 0.

Alternatively, w =
1

cos2 2t + sin2 2t
≡ 1, and hence

dw

dt
≡ 0.

C13S07.003: If w(x, y, z) = sinxyz, x = t, y = t2, and z = t3, then

dw

dt
=

∂w

∂x
· dx
dt

+
∂w

∂y
· dy
dt

+
∂w

∂z
· dz
dt

= yz cosxyz + 2txz cosxyz + 3t2xy cosxyz = t5 cos t6 + 2t5 cos t6 + 3t5 cos t6 = 6t5 cos t6.

Alternatively, w = sin t6, and thus
dw

dt
= 6t5 cos t6.

C13S07.004: If w(u, v, z) = ln(u + v + z), u = cos2 t, v = sin2 t, and z = t2, then

dw

dt
=

∂w

∂x
· dx
dt

+
∂w

∂y
· dy
dt

+
∂w

∂z
· dz
dt

= −2 sin t cos t
u + v + z

+
2 sin t cos t
u + v + z

+
2t

u + v + z
=

2t
u + v + z

=
2t

1 + t2
.

Alternatively, w = ln(t2 + 1), and so
dw

dt
=

2t
t2 + 1

.

C13S07.005: If w(x, y, z) = ln(x2 + y2 + z2), x = s− t, y = s + t, and z = 2(st)1/2, then

∂w

∂s
=

∂w

∂x
· ∂x
∂s

+
∂w

∂y
· ∂y
∂s

+
∂w

∂z
· ∂z
∂s

=
2x

x2 + y2 + z2
+

2y
x2 + y2 + z2

+
2tz

(st)1/2(x2 + y2 + z2)
=

2(st)1/2x + 2(st)1/2y + 2tz
(st)1/2(x2 + y2 + z2)

=
2(s− t)(st)1/2 + 4t(st)1/2 + 2(s + t)(st)1/2

(st)1/2[(s− t)2 + 4st + (s + t)2 ]
=

2(2s + 2t)
2s2 + 4st + 2t2

=
2

s + t

1



and

∂w

∂t
=

∂w

∂x
· ∂x
∂t

+
∂w

∂y
· ∂y
∂t

+
∂w

∂z
· ∂z
∂t

= − 2x
x2 + y2 + z2

+
2y

x2 + y2 + z2
+

2sz
(st)1/2(x2 + y2 + z2)

=
−2(st)1/2x + 2(st)1/2y + 2sz

(st)1/2(x2 + y2 + z2)

=
4s(st)1/2 − 2(s− t)(st)1/2 + 2(s + t)(st)1/2

(st)1/2[(s− t)2 + 4st + (s + t)2 ]
=

2(2s + 2t)
2s2 + 4st + 2t2

=
2

s + t
.

Alternatively,

w(s, t) = ln
(
(s− t)2 + 4st + (s + t)2

)
= ln(2s2 + 4st + 2t2),

and therefore

∂w

∂s
=

2
s + t

and
∂w

∂t
=

2
s + t

.

C13S07.006: If w(p, q, r) = pq sin r, p = 2s + t, q = s− t, and r = st, then

∂w

∂s
=

∂w

∂p
· ∂p
∂s

+
∂w

∂q
· ∂q
∂s

+
∂w

∂r
· ∂r
∂s

= 2q sin r + p sin r + pqt cos r

= (s− t)t(2s + t) cos st + 2(s− t) sin st + (2s + t) sin st = (2s2t− st2 − t3) cos st + (4s− t) sin st

and

∂w

∂t
=

∂w

∂p
· ∂p
∂t

+
∂w

∂q
· ∂q
∂t

+
∂w

∂r
· ∂r
∂t

= q sin r − p sin r + pqs cos r

= s(s− t)(2s + t) cos st + (s− t) sin st− (2s + t) sin st = (2s3 − s2t− st2) cos st− (s + 2t) sin st.

Alternatively,

w(s, t) = (s− t)(2s− t) sin st,

and thus

∂w

∂s
= (s− t)t(2s + t) cos st + 2(s− t) sin st + (2s + t) sin st

= (2s2t− st2 − t3) cos st + (4s− t) sin st and

∂w

∂t
= s(s− t)(2s + t) cos st + (s− t) sin st− (2s + t) sin st

= (2s3 − s2t− st2) cos st− (s + 2t) sin st.

C13S07.007: If w(u, v, z) =
√
u2 + v2 + z2 , u = 3et sin s, v = 3et cos s, and z = 4et, then

∂w

∂s
=

3uet cos s√
u2 + v2 + z2

− 3vet sin s√
u2 + v2 + z2

+ 0 =
3et(u cos s− v sin s)√

u2 + v2 + z2
= 0

2



because u cos s− v sin s = 3et sin s cos s− 3et cos s sin s = 0. But

∂w

∂t
=

3uet sin s√
u2 + v2 + z2

+
3vet cos s√
u2 + v2 + z2

+
4zet√

u2 + v2 + z2

=
et(3u sin s + 3v cos s + 4z)√

u2 + v2 + z2
=

et(16et + 9et cos2 s + 9et sin2 s)√
16e2t + 9e2t cos2 s + 9e2t sin2 s

= 5et.

Alternatively,

w(s, t) =
√

16e2t + 9e2t cos2 s + 9e2t sin2 s = 5et,

and therefore

∂w

∂s
= 0 and

∂w

∂t
= 5et.

C13S07.008: If w(x, y, z) = yz + zx + xy, x = s2 − t2, y = s2 + t2, and z = s2t2, then

∂w

∂s
=

∂w

∂x
· ∂x
∂s

+
∂w

∂y
· ∂y
∂s

+
∂w

∂z
· ∂z
∂s

= 2s(y + z) + 2s(x + z) + 2st2(x + y)

= 4s3t2 + 2s(s2 − t2 + s2t2) + 2s(s2 + t2 + s2t2) = 4s3(2t2 + 1) and

∂w

∂t
=

∂w

∂x
· ∂x
∂t

+
∂w

∂y
· ∂y
∂t

+
∂w

∂z
· ∂z
∂t

= −2t(y + z) + 2t(x + z) + 2s2t(x + y)

= 2t
[
(s2 + 1)x + (s2 − 1)y

]
= 2t

[
(s2 + 1)(s2 − t2) + (s2 − 1)(s2 + t2)

]
= 4t(s4 − t2).

Alternatively,

w(s, t) = s2t2(s2 − t2) + s2t2(s2 + t2) + (s2 − t2)(s2 + t2) = s4 + 2s4t2 − t4,

and therefore

∂w

∂s
= 4s3 + 8s3t2 and

∂w

∂t
= 4s4t− 4t3.

C13S07.009: Because r(x, y, z) = exp(yz + xz + xy), we find that

∂r

∂x
= (y + z) exp(yz + xz + xy),

∂r

∂y
= (x + z) exp(yz + xz + xy),

and
∂r

∂z
= (x + y) exp(yz + xz + xy).

C13S07.010: Because r(x, y, z) = (x + y)(x + z)(y + z)− (x + y)2 − (x + z)2 − (y + z)2, we find that

∂r

∂x
= 2xy + 2xz + 2yz − 4x− 2y − 2z + y2 + z2,

∂r

∂y
= 2xy + 2xz + 2yz − 2x− 4y − 2z + x2 + z2, and

∂r

∂z
= 2xy + 2xz + 2yz − 2x− 2y − 4z + x2 + y2.
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C13S07.011: Because

r(x, y, z) = sin

( √
xy2z3

√
x + 2y + 3z

)
,

we find that

∂r

∂x
=

(2y + 3z)
√

xy2z3

2x(x + 2y + 3z)3/2
cos

( √
xy2z3

√
x + 2y + 3z

)
,

∂r

∂y
=

(x + y + 3z)
√

xy2z3

y(x + 2y + 3z)3/2
cos

( √
xy2z3

√
x + 2y + 3z

)
, and

∂r

∂z
=

3(x + 2y + 2z)
√

xy2z3

2z(x + 2y + 3z)3/2
cos

( √
xy2z3

√
x + 2y + 3z

)
.

C13S07.012: Because r(x, y, z) = exp(xz − xy) + exp(xy − yz) + exp(yz − xz), we find that

∂r

∂x
= y exp(xy − yz)− z exp(yz − xz) + (z − y) exp(xz − xy),

∂r

∂y
= z exp(yz − xz)− x exp(xz − xy) + (x− z) exp(xy − yz), and

∂r

∂z
= x exp(xz − xy)− y exp(xy − yz) + (y − x) exp(yz − xz).

C13S07.013: If p = f(x, y), x = x(u, v, w), and y = y(u, v, w), then

∂p

∂u
=

∂f

∂x
· ∂x
∂u

+
∂f

∂y
· ∂y
∂u

,

∂p

∂v
=

∂f

∂x
· ∂x
∂v

+
∂f

∂y
· ∂y
∂v

, and

∂p

∂w
=

∂f

∂x
· ∂x
∂w

+
∂f

∂y
· ∂y
∂w

.

C13S07.014: If p = f(x, y, z), x = x(u, v), y = y(u, v), and z = z(u, v), then

∂p

∂u
=

∂f

∂x
· ∂x
∂u

+
∂f

∂y
· ∂y
∂u

+
∂f

∂z
· ∂z
∂u

and

∂p

∂v
=

∂f

∂x
· ∂x
∂v

+
∂f

∂y
· ∂y
∂v

+
∂f

∂z
· ∂z
∂v

.

C13S07.015: If p = f(u, v, w), u = u(x, y, z), v = v(x, y, z), and w = w(x, y, z), then

∂p

∂x
=

∂f

∂u
· ∂u
∂x

+
∂f

∂v
· ∂v
∂x

+
∂f

∂w
· ∂w
∂x

,

∂p

∂y
=

∂f

∂u
· ∂u
∂y

+
∂f

∂v
· ∂v
∂y

+
∂f

∂w
· ∂w
∂y

, and

∂p

∂z
=

∂f

∂u
· ∂u
∂z

+
∂f

∂v
· ∂v
∂z

+
∂f

∂w
· ∂w
∂z

.
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C13S07.016: If p = f(v, w), v = v(x, y, z, t), and w = w(x, y, z, t), then

∂p

∂x
=

∂f

∂v
· ∂v
∂x

+
∂f

∂w
· ∂w
∂x

,
∂p

∂y
=

∂f

∂v
· ∂v
∂y

+
∂f

∂w
· ∂w
∂y

,

∂p

∂z
=

∂f

∂v
· ∂v
∂z

+
∂f

∂w
· ∂w
∂z

, and
∂p

∂t
=

∂f

∂v
· ∂v
∂t

+
∂f

∂w
· ∂w
∂t

.

C13S07.017: If p = f(w) and w = w(x, y, z, u, v), then

∂p

∂x
= f ′(w) · ∂w

∂x
,

∂p

∂y
= f ′(w) · ∂w

∂y
,

∂p

∂z
= f ′(w) · ∂w

∂z
,

∂p

∂u
= f ′(w) · ∂w

∂u
, and

∂p

∂v
= f ′(w) · ∂w

∂v
.

C13S07.018: If p = f(x, y, u, v), x = x(s, t), y = y(s, t), u = u(s, t), and v = v(s, t), then

∂p

∂s
=

∂f

∂x
· ∂x
∂s

+
∂f

∂y
· ∂y
∂s

+
∂f

∂u
· ∂u
∂s

+
∂f

∂v
· ∂v
∂s

and

∂p

∂t
=

∂f

∂x
· ∂x
∂t

+
∂f

∂y
· ∂y
∂t

+
∂f

∂u
· ∂u
∂t

+
∂f

∂v
· ∂v
∂t

.

C13S07.019: Let F (x, y, z) = x2/3 + y2/3 + z2/3 − 1. Then

∂z

∂x
= −Fx

Fz
= −

2
3 x

−1/3

2
3z

−1/3
= − z1/3

x1/3
and

∂z

∂y
= −Fy

Fz
= −

2
3 y

−1/3

2
3z

−1/3
= −z1/3

y1/3
.

C13S07.020: Let F (x, y, z) = x3 + y3 + z3 − xyz. Then

∂z

∂x
= −Fx

Fz
= −3x2 − yz

3z2 − xy
and

∂z

∂y
= −Fy

Fz
= −3y2 − xz

3z2 − xy
.

C13S07.021: Let F (x, y, z) = xexy + yezx + zexy − 3. Then

∂z

∂x
= −Fx

Fz
= −exy + xyexy + yzezx + yzexy

xyezx + exy
and

∂z

∂y
= −Fy

Fz
= −x2exy + ezx + xzexy

xyezx + exy
.

C13S07.022: Let F (x, y, z) = x5 + xy2 + yz − 5. Then

∂z

∂x
= −Fx

Fz
= −5x4 + y2

y
and

∂z

∂y
= −Fy

Fz
= −2xy + z

y
.

C13S07.023: Let

F (x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1.

Then
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∂z

∂x
= −Fx

Fz
= − c2x

a2z
and

∂z

∂y
= −Fy

Fz
= −c2y

b2z
.

C13S07.024: Let F (x, y, z) = xyz − sin(x + y + z). Then

∂z

∂x
= −Fx

Fz
= − yz − cos(x + y + z)

xy − cos(x + y + z)
and

∂z

∂y
= −Fy

Fz
= −xz − cos(x + y + z)

xy − cos(x + y + z)
.

C13S07.025: If w = u2 + v2 + x2 + y2, u = x− y, and v = x + y, then

∂w

∂x
= 2u · ux + 2v · vx + 2x = 2(x− y) + 2(x + y) + 2x = 6x and

∂w

∂y
= 2u · uy + 2v · vy + 2y = −2(x− y) + 2(x + y) + 2y = 6y.

C13S07.026: If w =
√

uvxy , u =
√

x− y , and v =
√

x + y , then

wx = wuux + wvvx + wx · 1 + wy · 0

=
vxy

4
√

x− y
√

uvxy
+

uxy

4
√

x + y
√

uvxy
+

uvy

2
√

uvxy

=
uxy

√
x− y + vxy

√
x + y + 2uvy

√
x2 − y2

4
√

x2 − y2
√

uvxy
.

Substitution of
√

x− y for u and
√

x + y for v finally yields

∂w

∂x
=

xy2(2x2 − y2)

2
(
xy

√
x2 − y2

)3/2
.

Similarly,

∂w

∂y
=

x2y(x2 − 2y2)

2
(
xy

√
x2 − y2

)3/2
.

C13S07.027: If w(u, v, x, y) = xy ln(u + v), u = (x2 + y2)1/3, and v = (x3 + y3)1/2, then

wx = wuux + wvvx + wx · 1 + wy · 0

=
2x2y

3(u + v)(x2 + y2)2/3
+

3x3y

2(u + v)(x3 + y3)1/2
+ y ln(u + v).

Then substitution of the formulas for u and v yields

∂w

∂x
=

2x2y

3(x2 + y2)2/3
[
(x2 + y2)1/3 + (x3 + y3)1/2

]

+
3x3y

2(x3 + y3)1/2
[
(x2 + y2)1/3 + (x3 + y3)1/2

] + y ln
(
(x2 + y2)1/3 + (x3 + y3)1/2

)
.
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Similarly,

∂w

∂y
=

2xy2

3(x2 + y2)2/3
[
(x2 + y2)1/3 + (x3 + y3)1/2

]

+
3xy3

2(x3 + y3)1/2
[
(x2 + y2)1/3 + (x3 + y3)1/2

] + x ln
(
(x2 + y2)1/3 + (x3 + y3)1/2

)
.

C13S07.028: If w(u, v, x, y) = uv − xy,

u =
x

x2 + y2
, and v =

y

x2 + y2
, (1)

then

wx = wuux + wvvx + wx · 1 + wy · 0

=
(y2 − x2)v
(x2 + y2)2

− 2uxy
(x2 + y2)2

− y.

After substituting the formulas in (1) to eliminate u and v, the result is

∂w

∂x
=

y3 − 3x2y − x6y − 3x4y3 − 3x2y5 − y7

(x2 + y2)3
.

Similarly,

∂w

∂y
=

x3 − 3xy2 − xy6 − 3x3y4 − 3x5y2 − x7

(x2 + y2)3
.

C13S07.029: We differentiate the equation x2 + y2 + z2 = 9 implicitly, first with respect to x, then with
respect to y, and obtain

2x + 2z · zx = 0, 2y + 2z · zy = 0.

We substitute the coordinates of the point of tangency P (1, 2, 2) and find that

2 + 4zx = 0 and 4 + 4zy = 0,

and it follows that at P , zx = − 1
2 and zy = −1. Hence an equation of the plane tangent to the given surface

at the point P is

z − 2 = − 1
2

(x− 1)− (y − 2);

that is, x + 2y + 2z = 9.

C13S07.030: Given: The surface with equation x2 + 2y2 + 2z2 = 14 and the point P (2, 1, −2) on it.
Implicit differentiation of the equation with respect to x and again with respect to y yields

2x + 4z · zx = 0, 4y + 4z · zy = 0.

Substitution of the coordinates of P then yields
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4− 8zx = 0 and 4− 8zy = 0,

and thus zx = zy = 1
2 at the point P . Hence an equation of the plane tangent to the surface at P is

z + 2 =
1
2

(x− 2) +
1
2

(y − 1);

that is, x + y − 2z = 7.

C13S07.031: Given: The surface with equation x3 + y3 + z3 = 5xyz and the point P (2, 1, 1) on it. We
differentiate the equation implicitly, first with respect to x, then with respect to y, and thereby obtain

3x2 + 3z2 · zx = 5yz + 5xy · zx, 3y2 + 3z2 · zy = 5xz + 5xy · zy.

Then we substitute the coordinates of P and find that

12 + 3zx = 5 + 10zx and 3 + 3zy = 10 + 10zy,

and it follows that zx = 1 and zy = −1 at the point P . Hence an equation of the plane tangent to the
surface at P is

z − 1 = (x− 2)− (y − 1);

that is, x− y − z = 0.

C13S07.032: Given: The surface with equation z3 + (x+ y)z2 + x2 + y2 = 13 and the point P (2, 2, 1) on
it. We first differentiate the equation with respect to x, then with respect to y, and find that

3z2 · zx + 2(x + y)z · zx + z2 + 2x = 0 and 3z2 · zy + 2(x + y)z · zy + z2 + 2y = 0.

Then substitution of the coordinates of P yields

3zx + 8zx + 1 + 4 = 0, 3zy + 8zy + 1 + 4 = 0.

It follows that zx = − 5
11 = zy at the point P . Thus an equation of the plane tangent to the surface at P is

z − 1 = − 5
11

(x− 2)− 5
11

(y − 2);

that is, 5x + 5y + 11z = 31.

C13S07.033: Suppose that the square base of the box measures x (inches) on each side and that its height
is z. Suppose also that time t is measured in hours. Then the volume of the box is V = x2z, and by the
chain rule

dV

dt
=

∂V

∂x
· dx
dt

+
∂V

∂z
· dz
dt

= 2xz · (−3) + x2 · (−2).

Thus when x = 24 and z = 12, we have

dV

dt
= 2 · 24 · 12 · (−3) + 242 · (−2) = −2880

cubic inches per hour; that is, − 5
3 cubic feet per hour.
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C13S07.034: Let x be the length of each edge of the square base of the box and let z be its height. Units:
centimeters and minutes. We are given

dx

dt
= 2 and

dz

dt
= −3,

and we are to find the rate of change V ′(t) of the volume of the box and the rate of change A′(t) of its
surface area when x = z = 100 (cm). Note that V = x2z and A = 2x2 + 4xz. First,

dV

dt
=

∂V

∂x
· dx
dt

+
∂V

∂z
· dz
dt

= 2xz · 2 + x2 · (−3),

and thus, when x = z = 100, we have

dV

dt
= 40000− 30000 = 10000

cubic centimeters per minute; that is, 0.01 cubic meters per minute. Next,

dA

dt
=

∂A

∂x
· dx
dt

+
∂A

∂z
· dz
dt

= (4x + 4z) · 2 + 4x · (−3),

so that, when x = z = 100,

dA

dt
= 1600− 1200 = 400

square centimeters per minute; that is, 0.04 square meters per minute.

C13S07.035: Let r denote the radius of the conical sandpile and h its height. Units: feet and minutes.
We are given that, at the time t when when h = 5 and r = 2,

dh

dt
= 0.4 and

dr

dt
= 0.7.

The volume of the sandpile is given by V =
1
3
πr2h, and thus

dV

dt
=

∂V

∂r
· dr
dt

+
∂V

∂h
· dh
dt

=
(

2
3
πrh

)
· 7
10

+
(

1
3
πr2

)
· 2
5
.

Thus when h = 5 and r = 2,

dV

dt
=

20π
3
· 7
10

+
4π
3
· 2
5

=
26π
5
≈ 16.336282

(cubic feet per minute).

C13S07.036: Units: centimeters and minutes. We are given

dx

dt
= 1,

dy

dt
= 2, and

dz

dt
= −2.

The volume of the box is given by V = xyz and its total surface area by A = 2(xy + xz + yz). We are to
find the rate of change of each at the time t at which x = 300, y = 200, and z = 100. First, the volume:

dV

dt
=

∂V

∂x
· dx
dt

+
∂V

∂y
· dy
dt

+
∂V

∂z
· dz
dt

= yz + 2xz − 2xy.

Thus when x = 300, etc., we have
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dV

dt
= 200 · 100 + 2 · 300 · 100− 2 · 300 · 200 = −40000.

So the volume of the box is decreasing at the rate of 40000 cubic centimeters per minute; that is, at the rate
of 0.04 cubic meters per minute. Next,

dA

dt
= 2(y + z)

dx

dt
+ 2(x + z)

dy

dt
+ 2(x + y)

dz

dt
.

Then when x = 300, etc., we have

dA

dt
= 2 · 300 · 1 + 2 · 400 · 2− 2 · 500 · 2 = 200

square centimeters per minute. Thus the surface area of the box is increasing at the rate of 0.02 square
meters per minute when x = 300.

C13S07.037: For this gas sample, we have V = 10 when p = 2 and T = 300. Substitution in the equation
pV = nRT yields nR = 1

15 . Moreover, with time t measured in minutes, we have

V =
nRT

p
, so that

dV

dt
= nR

(
1
p
· dT
dt
− T

p2
· dp
dt

)
.

Finally, substitution of the data nR = 1
15 , V = 10, p = 2, T = 300, dT/dt = 10, and dp/dt = 1 yields the

conclusion that the volume of the gas sample is decreasing at the rate of 13
3 liters per minute at the time in

question.

C13S07.038: From the equation

1
R

=
1
R1

+
1
R2

+
1
R3

and the given data R1 = R2 = 100, R3 = 200, we find that R = 40 Ω. Also from this equation we derive
(with time t in seconds)

1
R2

=
1
R2

1

· dR1

dt
+

1
R2

2

· dR2

dt
+

1
R2

3

· dR3

dt
.

Then substitution of the previous data and the additional information that

dR1

dt
=

dR2

dt
= 1 and

dR2

dt
= −2

yields the result that R is increasing at the rate of 0.24 Ω per second at the time in question.

C13S07.039: Given: x = h(y, z) satisfies the equation F (x, y, z) = 0. Thus F (h(y, z), y, z) ≡ 0, and so
implicit differentiation with respect to y yields

∂F

∂x
· ∂x
∂y

+
∂F

∂y
· ∂y
∂y

+
∂F

∂z
· 0 = 0.

Thus if Fx �= 0, we find that
∂x

∂y
= − Fy

Fx
.

C13S07.040: Suppose that w = f(x, y), x = r cos θ, and y = r sin θ. Then
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∂w

∂r
=

∂w

∂x
· ∂x
∂r

+
∂w

∂y
· ∂y
∂r

=
∂w

∂x
cos θ +

∂w

∂y
sin θ.

Thus

(
∂w

∂r

)2

= (wx)2 cos2 θ + 2wxwy cos θ sin θ + (wy)2 sin2 θ.

Next,

∂w

∂θ
=

∂w

∂x
(−r sin θ) +

∂w

∂y
(r cos θ).

Hence

1
r2

(
∂w

∂θ

)2

=
1
r2

(wx)2r2 sin2 θ − 2
r2

wxwyr
2 sin θ cos θ +

1
r2

(wy)2r2 cos2 θ

= (wx)2 sin2 θ − 2wxwy sin θ cos θ + (wy)2 cos2 θ.

It follows immediately that

(
∂w

∂r

)2

+
1
r2

(
∂w

∂θ

)2

=
(
∂w

∂x

)2

+
(
∂w

∂y

)2

.

C13S07.041: If w = f(u) and u = x + y, then

∂w

∂x
= f ′(u) · ∂u

∂x
= f ′(u) = f ′(u) · ∂u

∂y
=

∂w

∂y
.

C13S07.042: If w = f(u) and u = x− y, then

∂w

∂x
= f ′(u)

∂u

∂x
= f ′(u) and

∂w

∂y
= f ′(u)

∂u

∂y
= −f ′(u),

which establishes the first result we were to prove. Moreover,

∂2w

∂x2
=

∂

∂x
f ′(u) = f ′′(u)

∂u

∂x
= f ′′(u),

∂2w

∂y2
=

∂

∂y

(
− f ′(u)

)
= −f ′′(u)

∂u

∂y
= f ′′(u), and

∂2w

∂x∂y
=

∂

∂x

(
∂w

∂y

)
=

∂

∂x

(
− f ′(u)

)
= −f ′′(u)

∂u

∂x
= −f ′′(u).

And this establishes the second equation.

C13S07.043: If w = f(x, y), x = u + v, and y = u− v, then

∂w

∂v
=

∂w

∂x
· ∂x
∂v

+
∂w

∂y
· ∂y
∂v

=
∂w

∂x
− ∂w

∂y
.

Therefore
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∂2w

∂u∂v
=

∂

∂u

(
∂w

∂x
− ∂w

∂y

)

=
∂2w

∂x2
· ∂x
∂u

+
∂2w

∂y∂x
· ∂y
∂u
− ∂2w

∂x∂y
· ∂x
∂u
− ∂2w

∂y2
· ∂y
∂u

=
∂2w

∂x2
+

∂2w

∂y∂x
− ∂2w

∂x∂y
− ∂2w

∂y2
=

∂2w

∂x2
− ∂2w

∂y2
.

C13S07.044: If w = f(x, y), x = 2u + v, and y = u− v, then

∂w

∂u
=

∂w

∂x
· 2 +

∂w

∂y
· 1;

∂2w

∂u2
=

∂

∂u

(
2
∂w

∂x
+

∂w

∂y

)

= 2
(
∂2w

∂x2
· ∂x
∂u

+
∂2w

∂y∂x
· ∂y
∂u

)
+

∂2w

∂x∂y
· ∂x
∂u

+
∂2w

∂y2
· ∂y
∂u

= 4
∂2w

∂x2
+ 2

∂2w

∂y∂x
+ 2

∂2w

∂x∂y
+

∂2w

∂y2
= 4

∂2w

∂x2
+ 4

∂2w

∂y∂x
+

∂2w

∂y2
.

∂w

∂v
=

∂w

∂x
· ∂x
∂v

+
∂w

∂y
· ∂y
∂v

=
∂w

∂x
− ∂w

∂y
;

∂2w

∂v2
=

∂

∂v

(
∂w

∂x
− ∂w

∂y

)

=
∂2w

∂x2
· ∂x
∂v

+
∂2w

∂y∂x
· ∂y
∂v
− ∂2w

∂x∂y
· ∂x
∂v
− ∂2w

∂y2
· ∂y
∂v

=
∂2w

∂x2
− 2

∂2w

∂y∂x
+

∂2w

∂y2
.

Therefore

∂2w

∂u2
+

∂2w

∂v2
= 5

∂2w

∂x2
+ 2

∂2w

∂y∂x
+ 2

∂2w

∂y2
.

C13S07.045: If w = f(x, y), x = r cos θ, and y = r sin θ, then

∂w

∂r
=

∂w

∂x
cos θ +

∂w

∂y
sin θ;

∂2w

∂r2
=

∂

∂r

(
∂w

∂x
cos θ +

∂w

∂y
sin θ

)

=
∂2w

∂x2
· ∂x
∂r

cos θ +
∂2w

∂y∂x
· ∂y
∂r

cos θ +
∂2w

∂x∂y
· ∂x
∂r

sin θ +
∂2w

∂y2
· ∂y
∂r

sin θ

=
∂2w

∂x2
cos2 θ +

∂2w

∂y∂x
sin θ cos θ +

∂2w

∂x∂y
sin θ cos θ +

∂2w

∂y2
sin2 θ;

1
r
· ∂w
∂r

=
1
r
· ∂w
∂x

cos θ +
1
r
· ∂w
∂y

sin θ;
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∂w

∂θ
=

∂w

∂x
· ∂x
∂θ

+
∂w

∂y
· ∂y
∂θ

=
∂w

∂x
(−r sin θ) +

∂w

∂y
(r cos θ);

∂2w

∂θ2
=

∂

∂θ

(
−r · ∂w

∂x
sin θ + r · ∂w

∂y
cos θ

)

= −r
(
∂w

∂x
cos θ +

∂2w

∂x2
· ∂x
∂θ

sin θ +
∂2w

∂y∂x
· ∂y
∂θ

sin θ

)

+ r

(
−∂w

∂y
sin θ +

∂2w

∂x∂y
· ∂x
∂θ

cos θ +
∂2w

∂y2
· ∂y
∂θ

cos θ
)

= −r · ∂w
∂x

cos θ + r2 · ∂
2w

∂x2
sin2 θ − r2 · ∂2w

∂y∂x
cos θ sin θ

− r · ∂w
∂y

sin θ − r2 · ∂2w

∂x∂y
sin θ cos θ + r2 · ∂

2w

∂y2
cos2 θ.

Therefore

∂2w

∂r2
+

1
r
· ∂w
∂r

+
1
r2
· ∂

2w

∂θ2
=

∂2w

∂x2
cos2 θ + 2

∂2w

∂y∂x
sin θ cos θ +

∂2w

∂y2
sin2 θ

+
1
r
· ∂w
∂x

cos θ +
1
r
· ∂w
∂y

sin θ − 1
r
· ∂w
∂x

cos θ − 1
r
· ∂w
∂y

sin θ

+
∂2w

∂x2
sin2 θ +

∂2w

∂y2
cos2 θ − 2

∂2w

∂y∂x
sin θ cos θ =

∂2w

∂x2
+

∂2w

∂y2
.

C13S07.046: Given

w =
1
r
f
(
t− r

a

)
where r = (x2 + y2 + z2)1/2,

show that

wxx + wyy + wzz =
1
a2

wtt.

This problem is best worked in spherical coordinates because of the spherical symmetry of the Laplacian,
but it is stated in such a way to suggest that it should be worked in Cartesian coordinates. Thus we will
follow that route, but we asked Mathematica 3.0 to help us with the complicated computations. First we
expressed w in Cartesian form:

w[x , y , z , t ] := (1/Sqrt[x∗x + y∗y + z∗z])∗f[t - (1/a)∗Sqrt[x∗x + y∗y + z∗z]]

Then we computed wx:

D[w[x,y,z,t], x] // Together

− 1
a(x2 + y2 + z2)3/2

[
−axf

(
t− (x2 + y2 + z2)1/2

a

)
− x(x2 + y2 + z2)1/2f ′

(
t− (x2 + y2 + z2)1/2

a

)]

Next we computed wxx:

D[ w[x,y,z,t], {x,2} ]
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3x2

(x2 + y2 + z2)5/2
f

(
t− (x2 + y2 + z2)1/2

a

)
− 1

(x2 + y2 + z2)3/2
f

(
t− (x2 + y2 + z2)1/2

a

)

+
3x2

a(x2 + y2 + z2)2
f ′

(
t− (x2 + y2 + z2)1/2

a

)
− 1

a(x2 + y2 + z2)
f ′

(
t− (x2 + y2 + z2)1/2

a

)

+
x2

a2(x2 + y2 + z2)3/2
f ′′

(
t− (x2 + y2 + z2)1/2

a

)

We then asked for wxx + wyy + wzz with the command

D[ w[x,y,z,t], {x,2} ] + D[ w[x,y,z,t], {y,2} ] + D[ w[x,y,z,t], {z,2} ];

but suppressed the output by ending the command with the semicolon. But when we asked Mathematica to
Simplify the result, we obtained

1
a2(x2 + y2 + z2)1/2

f ′′
(
t− (x2 + y2 + z2)1/2

a

)

We compared this with
1
a2

wtt by computing the latter:

(1/(a∗a))∗D[ w[x,y,z,t], {t,2} ]

1
a2(x2 + y2 + z2)1/2

f ′′
(
t− (x2 + y2 + z2)1/2

a

)

and this is enough to show that

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
=

1
a2
· ∂

2w

∂t2
.

C13S07.047: Suppose that w = f(r) where r = (x2 + y2 + z2)1/2. Then

∂w

∂x
= f ′(r)

∂r

∂x
=

x

(x2 + y2 + z2)1/2
f ′(r),

and thus

∂2w

∂x2
=

∂

∂x

(
x

(x2 + y2 + z2)1/2
f ′(r)

)

=
x

(x2 + y2 + z2)1/2
· ∂

∂x

(
f ′(r)

)
+ f ′(r) · ∂

∂x

(
x

(x2 + y2 + z2)1/2

)

= − x2f ′(r)
(x2 + y2 + z2)3/2

+
f ′(r)

(x2 + y2 + z2)1/2
+

x2f ′′(r)
x2 + y2 + z2

= −x2f ′(r)
r3

+
f ′(r)
r

+
x2f ′′(r)

r2
.

Similarly,

∂2w

∂y2
= −y2f ′(r)

r3
+

f ′(r)
r

+
y2f ′′(r)

r2
and

∂2w

∂z2
= −z2f ′(r)

r3
+

f ′(r)
r

+
z2f ′′(r)

r2
.
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Hence

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
= −r2f ′(r)

r3
+

3f ′(r)
r

+
r2f ′′(r)

r2

= −f ′(r)
r

+
3f ′(r)

r
+ f ′′(r) =

d2w

dr2
+

2
r
· dw
dr

.

C13S07.048: If w = f(u) + g(v), u = x− at, and v = x + at, then

∂w

∂t
= f ′(u) · ∂u

∂t
+ g′(v) · ∂v

∂t
= −af ′(u) + ag′(v).

Hence

∂2w

∂t2
=

∂

∂t

(
− af ′(u) + ag′(v)

)
= a2f ′′(u) + a2g′′(v) = a2

(
f ′′(u) + g′′(v)

)
.

Also

∂w

∂x
= f ′(u) + g′(v)

because ux = vx = 1. For the same reason,

∂2w

∂x2
= f ′′(u) + g′′(v).

Therefore

∂2w

∂t2
= a2 ∂

2w

∂x2
.

C13S07.049: If w = f(u, v), u = x + y, and v = x− y, then

∂w

∂x
=

∂w

∂u
· ∂u
∂x

+
∂w

∂v
· ∂v
∂x

=
∂w

∂u
+

∂w

∂v
and

∂w

∂y
=

∂w

∂u
· ∂u
∂y

+
∂w

∂v
· ∂v
∂y

=
∂w

∂u
− ∂w

∂v
.

Therefore

∂w

∂x
· ∂w
∂y

=
(
∂w

∂u

)2

−
(
∂w

∂v

)2

.

C13S07.050: Suppose that w = f(x, y), x = eu cos v, and y = eu sin v. Then

∂w

∂u
=

∂w

∂x
· ∂x
∂u

+
∂w

∂y
· ∂y
∂u

=
∂w

∂x
eu cos v +

∂w

∂y
eu sin v and

∂w

∂v
=

∂w

∂x
· ∂x
∂v

+
∂w

∂y
· ∂y
∂v

= −∂w

∂x
eu sin v +

∂w

∂y
eu cos v.

Thus

15



(wu)2 + (wv)2 = (wx)2e2u cos2 v + 2wxwye2u sin v cos v + (wy)2e2u sin2 v

+ (wx)2e2u sin2 v − 2wxwye2u sin v cos v + (wy)2e2u cos2 v

= e2u(wx)2 + e2u(wy)2.

Therefore

(
∂w

∂x

)2

+
(
∂w

∂y

)2

= e−2u

[(
∂w

∂u

)2

+
(
∂w

∂v

)2
]
.

C13S07.051: We are given w = f(x, y) and the existence of a constant α such that

x = u cosα− v sinα and y = u sinα + v cosα.

Then

wu = wxxu + wyyu = wx cosα + wy sinα;

wv = wxxv + wyyv = −wx sinα + wy cosα;

(wu)2 + (wv)2 = (wx)2 cos2 α + 2wxwy sinα cosα + (wy)2 sin2 α

+ (wx)2 sin2 α− 2wxwy sinα cosα + (wy)2 cos2 α

= (wx)2 + (wy)2.

C13S07.052: If w = f(u) where

u =
x2 − y2

x2 + y2
,

then

xwx + ywy = xf ′(u)ux + yf ′(u)uy = xf ′(u) · 4xy2

(x2 + y2)2
− yf ′(u) · 4x2y

(x2 + y2)2
= 0.

C13S07.053: Using the Suggestion and the notation in the equations in (17), we have
(
∂x

∂y

)
z

·
(
∂y

∂z

)
x

·
(
∂z

∂x

)
y

=
(
−Fy
Fx

)
·
(
−Fz
Fy

)
·
(
−Fx
Fz

)
= −1.

C13S07.054: If F (x, y, z) = x2 + y2 + z2 − 1 = 0 implicitly defines z = f(x, y), y = g(x, z), and
x = h(y, z), then:

2x
∂h

∂y
+ 2y = 0, so − y

x
=

∂h

∂y
=

(
∂x

∂y

)
z

,

2y
∂g

∂z
+ 2z = 0, so − z

y
=

∂g

∂z
=

(
∂y

∂z

)
x

, and

2x + 2z
∂f

∂x
= 0, so − x

z
=

∂f

∂x
=

(
∂z

∂x

)
y

.
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Thus

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

=
(
−y

x

) (
−z

y

) (
−x

z

)
= −1.

C13S07.055: If the equation pV − nRT = 0 implicitly defines the functions T = f(p, V ), V = g(p, T ),
and p = h(V, T ), then

p + V
∂h

∂V
= 0, so − p

V
=

∂h

∂V
=

(
∂p

∂V

)
T

,

p
∂g

∂T
− nR = 0, so

nR

p
=

∂g

∂T
=

(
∂V

∂T

)
p

, and

V − nR
∂f

∂p
= 0, so

V

nR
=

∂f

∂p
=

(
∂T

∂p

)
V

.

Therefore

(
∂p

∂V

)
T

(
∂V

∂T

)
p

(
∂T

∂p

)
V

=
(
− p

V

) (
nR

p

) (
V

nR

)
= −1.

C13S07.056: From the equation F (p, V, T ) = 0 and results in Section 13.7, we find that

∂V

∂p
= − Fp

FV
,

∂V

∂T
= −FT

FV
,

∂p

∂V
= −FV

Fp
, and

∂p

∂T
= −FT

Fp
.

It now follows that

α

β
= −VT

Vp
= −FT /FV

Fp/FV
= −FT

Fp
=

∂p

∂T
.

C13S07.057: First note that

∂p

∂T
=

α

β
=

1.8× 106

3.9× 104
=

600
13

.

Hence an increase of 5◦ in the Celsius temperature multiplies the initial pressure (1 atm) by 3000
13 ≈ 230.77,

so the bulb will burst.

C13S07.058: The result

T ′(u, v, w) =




a1 b1 c1

a2 b2 c2

a3 b3 c3




follows immediately from the definition of derivative matrix.

C13S07.059: Here we have
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T ′(ρ, φ, θ) =




sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ

sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0


 .

Therefore

|T ′(ρ, φ, θ)| = ρ2 sin3 φ sin2 θ + ρ2 sinφ cos2 φ cos2 θ + ρ2 cos2 φ sinφ sin2 θ + ρ2 sin3 φ cos2 θ

= ρ2(sin3 φ + sinφ cos2 φ) = ρ2 sinφ.

C13S07.060: According to the chain rule in Theorem 2, the partial derivatives of the composition

G(u, v, w) = F (T (u, v, w)) = F
(
x(u, v, w), y(u, v, w), z(u, v, w)

)

are given in scalar notation by

Gu = Fxxu + Fyyu + Fzzu,

Gv = Fxxv + Fyyv + Fzzv,

Gw = Fxxw + Fyyw + Fzzw.

In matrix notation, this means that the derivative matrix of G is given by

G′ =




Gu

Gv

Gw


 =




Fxxu + Fyyu + Fzzu

Fxxv + Fyyv + Fzzv

Fxxw + Fyyw + Fzzw


 .

Because the derivative matrices of F and T are given by

F ′ = [Fx Fy Fz ] and T ′ =




xu xv xw

yu yv yw

zu zv zw


 ,

it follows upon calculating the matrix product that

F ′T ′ = [Fx Fy Fz ]




xu xv xw

yu yv yw

zu zv zw


 =




Fxxu + Fyyu + Fzzu

Fxxv + Fyyv + Fzzv

Fxxw + Fyyw + Fzzw


 = G′.

C13S07.061: Here we compute
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[
Fx Fy Fz

]



sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ

sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0


 =

[
∂w

∂ρ

∂w

∂φ

∂w

∂θ

]
,

which has first component

∂w

∂ρ
= Fx sinφ cos θ + Fy sinφ sin θ + Fz cosφ,

second component

∂w

∂φ
= Fx ρ cosφ cos θ + Fy ρ cosφ sin θ − Fz ρ sinφ,

and third component

∂w

∂θ
= −Fx ρ sinφ sin θ + Fy ρ sinφ cos θ.
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Section 13.8

C13S08.001: If f(x, y) = 3x− 7y and P (17, 39) are given, then

∇f(x, y) = 〈 3, −7 〉, and thus ∇f(17, 39) = 〈 3, −7 〉.

C13S08.002: If f(x, y) = 3x2 − 5y2 and P (2, −3) are given, then

∇f(x, y) = 〈 6x, −10y 〉, and thus ∇f(2, −3) = 〈 12, 30 〉.

C13S08.003: If f(x, y) = exp(−x2 − y2) and P (0, 0) are given, then

∇f(x, y) = 〈−2x exp(−x2 − y2), −2y exp(−x2 − y2) 〉, and thus ∇f(0, 0) = 〈 0, 0 〉 = 0.

C13S08.004: If f(x, y) = sin 1
4 πxy and P (3, −1) are given, then

∇f(x, y) =
〈

1
4 πy cos 1

4 πxy,
1
4 πx cos 1

4 πxy
〉
, and so ∇f(3, −1) =

〈
1
8 π
√

2 , − 3
8 π
√

2
〉
.

C13S08.005: Given f(x, y, z) = y2 − z2 and P (17, 3, 2), then

∇f(x, y, z) = 〈 0, 2y, −2z 〉, and therefore ∇f(17, 3, 2) = 〈 0, 6, −4 〉.

C13S08.006: Given f(x, y, z) =
√
x2 + y2 + z2 and P (12, 3, 4), then

∇f(x, y, z) =

〈
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

〉
,

and therefore ∇f(12, 3, 4) =
〈

12
13 ,

3
13 ,

4
13

〉
.

C13S08.007: Given f(x, y, z) = ex sin y + ey sin z + ez sinx and P (0, 0, 0), then

∇f(x, y, z) = 〈ez cosx+ ex sin y, ex cos y + ey sin z, ey cos z + ez sinx〉 ,

and therefore ∇f(0, 0, 0) = 〈 1, 1, 1 〉.

C13S08.008: Given f(x, y, z) = x2 − 3yz + z3 and P (2, 1, 0), then

∇f(x, y, z) = 〈 2x, −3z, 3z2 − 3y 〉, and so ∇f(2, 1, 0) = 〈 4, 0, −3 〉.

C13S08.009: Given f(x, y, z) = 2
√
xyz and P (3, −4, −3), then

∇f(x, y, z) =
〈

yz
√
xyz

,
xz
√
xyz

,
xy
√
xyz

〉
, and so ∇f(3, −4, −3) =

〈
2, −3

2
, −2

〉
.

C13S08.010: Given f(x, y, z) = (2x− 3y + 5z)5 and P (−5, 1, 3), then

∇f(x, y, z) = 〈 10(2x− 3y + 5z)4, −15(2x− 3y + 5z)4, 25(2x− 3y + 5z)4 〉,
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and therefore ∇f(−5, 1, 3) = 〈 160, −240, 400 〉.

C13S08.011: Given f(x, y) = x2 + 2xy + 3y2, P (2, 1), and v = 〈 1, 1 〉, we first compute a unit vector
with the same direction as v:

u =
v
|v| =

〈
1
2

√
2 , 1

2

√
2

〉
.

Also ∇f(x, y) = 〈 2x+ 2y, 2x+ 6y 〉, so ∇f(P ) = 〈 6, 10 〉. Therefore

Duf(P ) = (∇f(P )) ·u = 〈 6, 10 〉 ·
〈

1
2

√
2 , 1

2

√
2

〉
= 8
√

2 .

C13S08.012: Given f(x, y) = ex sin y, P
(
0, 1

4 π
)
, and v = 〈 1, −1 〉, we first compute a unit vector with

the same direction as v:

u =
v
|v| =

〈
1
2

√
2 , − 1

2

√
2

〉
.

Also ∇f(x, y) = 〈 ex sin y, ex cos y 〉, so ∇f(P ) =
〈

1
2

√
2 , 1

2

√
2

〉
. Therefore Duf(P ) = (∇f(P )) ·u = 0.

C13S08.013: Given f(x, y) = x3 − x2y + xy2 + y3, P (1, −1), and v = 〈 2, 3 〉, we first compute a unit
vector with the same direction as v:

u =
v
|v| =

〈
2
13

√
13 , 3

13

√
13

〉
.

Also ∇f(x, y) = 〈 3x2 − 2xy + y2, 3y2 + 2xy − x2 〉, so ∇f(P ) = 〈 6, 0 〉. Therefore

Duf(P ) = (∇f(P )) ·u = 〈 6, 0 〉 ·
〈

2
13

√
13 , 3

13

√
13

〉
= 12

13

√
13 .

C13S08.014: Given f(x, y) = arctan(y/x), P (−3, 3), and v = 〈 3, 4 〉, we can automate the computation
of Duf(P ) using Mathematica 3.0 as follows. First we find the unit vector u with the same direction as v
(remember that v.v is the way to compute v ·v):

v = {3, 4};

u = v/Sqrt[v.v]

{
3
5
,

4
5

}

Then we define f and compute its gradient:

f[x , y ] := ArcTan[y/x]

{D[f[x,y], x], D[f[x,y], y]} // Simplify

{
− y

x2 + y2
,

x

x2 + y2

}

Then we evaluate ∇f(P ) (recall that % refers to the “last output”):

% /. {x → -3, y → 3}

2



{
−1

6
, −1

6

}

Now we can compute Duf(P ) = (∇f(P )) ·u:

%.u

− 7
30

C13S08.015: Given: f(x, y) = sinx cos y, the point P
(

1
3 π, −

2
3 π

)
, and the vector v = 〈 4, −3 〉, we first

construct a unit vector with the same direction as v:

u =
v
|v| =

〈
4
5
, −3

5

〉
.

Next, ∇f(x, y) = 〈 cosx cos y, − sinx sin y 〉, and hence ∇f(P ) = 〈− 1
4 ,

3
4 〉. Therefore

Duf(P ) = (∇f(P )) ·u = − 13
20
.

C13S08.016: Given f(x, y, z) = xy + yz + zx, the point P (1, −1, 2), and the vector v = 〈 1, 1, 1 〉, we
first construct a unit vector with the same direction as v:

u =
v
|v| =

〈√
3
3
,

√
3
3
,

√
3
3

〉
.

Next, ∇f(x, y, z) = 〈 y + z, x+ z, x+ y 〉, and thus ∇f(P ) = 〈 1, 3, 0 〉. Therefore

Duf(P ) =
(
∇f(P )

)
·u =

4
√

3
3
.

C13S08.017: Given f(x, y, z) =
√
xyz , the point P (2, −1, −2), and the vector v = 〈 1, 2, −2 〉, we first

construct a unit vector u with the same direction as v:

u =
v
|v| =

〈
1
3
,

2
3
, −2

3

〉
.

Next,

∇f(x, y, z) =

〈
yz

2
√
xyz

,
xz

2
√
xyz

,
xy

2
√
xyz

〉
,

and hence Duf(P ) =
(
∇f(P )

)
·u =

〈
1
2
, −1, −1

2

〉
·
〈

1
3
,

2
3
, −2

3

〉
= −1

6
.

C13S08.018: We are given f(x, y, z) = ln(1 + x2 + y2 − z2), the point P (1, −1, 1), and the vector
v = 〈 2, −2, −3 〉. The first step is to construct a unit vector u with the same direction as v:

u =
v
|v| =

〈
2√
17
, − 2√

17
, − 3√

17

〉
.

Next,
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∇f(x, y, z) =
〈

2x
1 + x2 + y2 − z2 ,

2y
1 + x2 + y2 − z2 , −

2z
1 + x2 + y2 − z2

〉
,

and thus ∇f(P ) = 〈 1, −1, −1 〉. Therefore

Duf(P ) =
(
∇f(P )

)
·u =

7√
17
.

C13S08.019: Given f(x, y, z) = exp(xyz), the point P (4, 0, −3), and the vector v = 〈 0, 1, −1 〉, we first
construct a unit vector with the same direction as v:

u =
v
|v| =

〈
0,
√

2
2
, −
√

2
2

〉
.

Next, ∇f(x, y, z) = exp(xyz)〈 yz, xz, xy 〉, and so ∇f(P ) = 〈 0, −12, 0 〉. Therefore

Duf(P ) =
(
∇f(P )

)
·u = −6

√
2 .

C13S08.020: Given f(x, y, z) =
√

10− x2 − y2 − z2 , the point P (1, 1, −2), and the vector v =
〈 3, 4, −12 〉, we begin by constructing the unit vector u with the same direction as v:

u =
v
|v| =

〈
3
13
,

4
13
, −12

13

〉
.

Then

∇f(x, y, z) =

〈
− x√

10− x2 − y2 − z2
, − y√

10− x2 − y2 − z2
, − z√

10− x2 − y2 − z2

〉
.

Therefore

Duf(P ) =
(
∇f(P )

)
·u =

〈
−1

2
, −1

2
, 1

〉
·
〈

3
13
,

4
13
, −12

13

〉
= −31

26
.

C13S08.021: Given f(x, y) = 2x2 + 3xy + 4y2 and the point P (1, 1), we first compute

∇f(x, y) = 〈 4x+ 3y, 3x+ 8y 〉.

So the direction in which f is increasing the most rapidly at P is ∇f(P ) = 〈 7, 11 〉 and its rate of increase
in that direction is |〈 7, 11 〉| =

√
170 .

C13S08.022: Given f(x, y) = arctan
(y
x

)
and the point P (2, −3), we first compute

∇f(x, y) =
〈
− y

x2 + y2
,

x

x2 + y2

〉
.

So the direction in which f is increasing the most rapidly at P is

v = ∇f(P ) =
〈

3
13
,

2
13

〉
,

4



and its rate of increase in that direction is |v| =
√

13
13

.

C13S08.023: Given f(x, y) = ln(x2 + y2) and the point P (3, 4), we first compute

∇f(x, y) =
〈

2x
x2 + y2

,
2y

x2 + y2

〉
.

Therefore the direction in which f is increasing the most rapidly at P is

v = ∇f(P ) =
〈

6
25
,

8
25

〉
,

and its rate of increase in that direction is |v| = 2
5
.

C13S08.024: Given f(x, y) = sin(3x− 4y) and the point P
(

1
3 π,

1
4 π

)
, we first compute

∇f(x, y) = 〈 3 cos(3x− 4y), −4 cos(3x− 4y) 〉.

Therefore the direction in which f is increasing the most rapidly at P is v = ∇f(P ) = 〈 3, −4 〉 and its rate
of increase in that direction is |v| = 5.

C13S08.025: Given f(x, y, z) = 3x2 + y2 + 4z2 and the point P (1, 5, −2), we first compute

∇f(x, y, z) = 〈 6x, 2y, 8z 〉.

Therefore the direction in which f is increasing the most rapidly at P is v = ∇f(P ) = 〈 6, 10, −16 〉 and
its rate of increase in that direction is |v| = 14

√
2 .

C13S08.026: We are to find the direction in which f(x, y, z) = exp(x − y − z) is increasing the most
rapidly at the point P (5, 2, 3) and its rate of increase in that direction. Such computations can easily be
carried out with computer algebra systems such as Mathematica 3.0. We first define f :

f[x , y , z ] := Exp[x - y - z]

Then we compute the gradient of f :

{D[f[x,y,z],x], D[f[x,y,z],y], D[f[x,y,z],z]}
〈
ex−y−z, −ex−y−z,−ex−y−z

〉

Then we evaluate the last output at P :

% /. {x → 5, y → 2, z → 3}

〈 1, −1, −1 〉

The last output, ∇f(P ), gives the direction in which f is increasing the most rapidly at P . Its magnitude
is the rate of increase of f in that direction:

Sqrt[%.%]

√
3
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C13S08.027: We are given f(x, y, z) =
√
xy2z3 and the point P (2, 2, 2). We first compute the gradient

of f :

∇f(x, y, z) =

〈
y2z3

2
√
xy2z3

,
xyz3√
xy2z3

,
3xy2z2

2
√
xy2z3

〉
.

Thus the direction in which f is increasing the most rapidly at P is ∇f(P ) = 〈 2, 4, 6 〉 and its rate of
increase in that direction is |∇f(P )| = 2

√
14 .

C13S08.028: Given: f(x, y, z) =
√

2x+ 4y + 6x and the point P (7, 5, 5). We first compute the gradient
of f :

∇f(x, y, z) =

〈
1√

2x+ 4y + 6x
,

2√
2x+ 4y + 6x

,
3√

2x+ 4y + 6x

〉
.

Hence the direction in which f is increasing the most rapidly at P is

v = ∇f(P ) =
〈

1
8
,

1
4
,

3
8

〉

and its rate of increase in that direction is |v| = 1
8

√
14 .

C13S08.029: Let f(x, y) = exp(25− x2 − y2)− 1. Then

∇f(x, y) = 〈−2x exp(25− x2 − y2), −2y exp(25− x2 − y2) 〉,

so at P (3, 4) we have ∇f(P ) = 〈−6, −8 〉, a vector normal to the graph of f(x, y) = 0 at the point P .
Hence, as in Example 7, an equation of the line tangent to the graph at P is −6(x − 3) − 8(y − 4) = 0;
simplified, this is 3x+ 4y = 25.

C13S08.030: Let f(x, y) = 2x2 + 3y2 − 35. Then ∇f(x, y) = 〈 4x, 6y 〉. Thus a vector normal to the
graph of f(x, y) = 0 at the point P (2, 3) is ∇f(P ) = 〈 8, 18 〉. Hence an equation of the line tangent to the
graph at P is 8(x− 2) + 18(y − 3) = 0; that is, 4x+ 9y = 35.

C13S08.031: Let f(x, y) = x4 + xy+ y2 − 19. Then ∇f(x, y) = 〈 4x3 + y, x+ 2y 〉, so a vector normal to
the graph of f(x, y) = 0 at the point P (2, −3) is ∇f(P ) = 〈 29, −4 〉. So the tangent line at P has equation
29(x− 2)− 4(y + 3) = 0; that is, 29x− 4y = 70.

C13S08.032: Let f(x, y, z) = 3x2 +4y2 +5z2−73. Then ∇f(x, y, z) = 〈 6x, 8y, 10z 〉, so a vector normal
to the graph of f(x, y, z) = 0 at the point P (2, 2, 3) is ∇f(P ) = 〈 12, 16, 30 〉. Therefore the plane tangent
to the graph at P has equation

12(x− 2) + 16(y − 2) + 30(z − 3) = 0; that is, 6x+ 8y + 15z = 73.

C13S08.033: Let f(x, y, z) = x1/3 + y1/3 + z1/3 − 1. Then

∇f(x, y, z) =
〈

1
3x2/3

,
1

3y2/3
,

1
3z2/3

〉
,

and thus a vector normal to the surface f(x, y, z) = 0 at the point P (1, −1, 1) is
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∇f(P ) =
〈

1
3
,

1
3
,

1
3

〉
.

Therefore an equation of the plane tangent to the surface at P is

1
3

(x− 1) +
1
3

(y + 1) +
1
3

(z − 1) = 0; that is, x+ y + z = 1.

C13S08.034: Let f(x, y, z) = xyz+x2− 2y2 + z3− 14. Then ∇f(x, y, z) = 〈 yz+2x, xz− 4y, xy+3z2 〉,
so a vector normal to the surface f(x, y, z) = 0 at the point P (5, −2, 3) is ∇f(P ) = 〈 4, 23, 17 〉. Therefore
the plane tangent to this surface at P has equation

4(x− 5) + 23(y + 2) + 17(z − 3) = 0; that is, 4x+ 23y + 17z = 25.

C13S08.035: If u and v are differentiable functions of x and y and a and b are constants, then

∇
(
au(x, y) + bv(x, y)

)
=

〈
∂

∂x

(
au(x, y) + bv(x, y)

)
,
∂

∂y

(
au(x, y) + bv(x, y)

)〉

= 〈 aux + bvx, auy + bvy 〉 = 〈 aux, auy 〉+ 〈 bvx, bvy 〉

= a 〈ux, uy 〉+ b 〈 vx, vy 〉 = a∇u(x, y) + b∇v(x, y).

C13S08.036: If u and v are differentiable function of x and y, then

∇
(
u(x, y) · v(x, y)

)
=

〈
∂

∂x
(uv),

∂

∂y
(uv)

〉

= 〈uxv + uvx, uyv + uvy 〉 = 〈uxv, uyv 〉+ 〈uvx, uvy 〉

= v · 〈ux, uy 〉+ u · 〈 vx, vy 〉 = u(x, y) ·∇v(x, y) + v(x, y) ·∇u(x, y).

C13S08.037: If u and v are differentiable functions of x and y and v(x, y) 
= 0, then

∇
(
u(x, y)
v(x, y)

)
=

〈
∂

∂x

(u
v

)
,
∂

∂y

(u
v

)〉
=

〈
vux − uvx

v2
,
vuy − uvy

v2

〉

=
〈vux
v2
,
vuy
v2

〉
−

〈uvx
v2
,
uvy
v2

〉
=
v∇u
v2
− u∇v

v2
=
v∇u− u∇v

v2
.

C13S08.038: Suppose that n is a positive integer and that u is a differentiable function of x and y. Then

∇(un) =
〈
∂

∂x
(un),

∂

∂y
(un)

〉
= 〈nun−1ux, nu

n−1uy 〉

= nun−1 · 〈ux, uy 〉 = nun−1 ·∇u.

C13S08.039: We know that v = ∇f(P ) gives the direction in which f is increasing the most rapidly at P .
Then v is the direction in which −f is decreasing the most rapidly at P . But ∇

(
− f(P )

)
= −∇f(P ) = −v,

so that −v is the direction in which −f is increasing the most rapidly at P and, therefore, is the direction
in which f is decreasing the most rapidly at P .

7



C13S08.040: Suppose that f is a differentiable function of the three independent variables x, y, and z.
Then

Dif(x, y, z) =
(
∇f(x, y, z)

)
· i = 〈 fx, fy, fz 〉 · 〈 1, 0, 0 〉 = fx(x, y, z),

Djf(x, y, z) =
(
∇f(x, y, z)

)
· j = 〈 fx, fy, fz 〉 · 〈 0, 1, 0 〉 = fy(x, y, z), and

Dkf(x, y, z) =
(
∇f(x, y, z)

)
·k = 〈 fx, fy, fz 〉 · 〈 0, 0, 1 〉 = fz(x, y, z).

C13S08.041: Let f(x, y) = Ax2 +Bxy + Cy2 −D. Then

∇f(x, y) = 〈 2Ax+By, 2Cy +Bx 〉,

so a vector normal to the graph of f(x, y) = 0 at the point P (x0, y0) is

∇f(P ) = 〈 2Ax0 +By0, 2Cy0 +Bx0 〉.

Hence, as in Example 7, an equation of the line tangent to the graph at P is

(2Ax0 +By0)(x− x0) + (2Cy0 +Bx0)(y − y0) = 0;

2Ax0x+By0x− 2A(x0)2 −Bx0y0 + 2Cy0y +Bx0y − 2C(y0)2 −Bx0y0 = 0;

2Ax0x+By0x+Bx0y + 2Cy0y = 2A(x0)2 + 2Bx0y0 + 2C(y0)2;

2(Ax0)x+B(y0x+ x0y) + 2(Cy0)y = 2D;

(Ax0)x+
1
2
B(y0x+ x0y) + (Cy0)y = D.

C13S08.042: Let f(x, y, z) = Ax2 +By2 + Cz2 −D. then

∇f(x, y, z) = 〈 2Ax, 2By, 2Cz 〉,

so a vector normal to the graph of f(x, y, z) = 0 at the point P (x0, y0, z0) is

∇f(P ) = 〈 2Ax0, 2By0, 2Cz0 〉.

Therefore an equation of the plane tangent to the graph at P is

2Ax0(x− x0) + 2By0(y − y0) + 2Cz0(z − z0) = 0;

(Ax0)x+ (By0)y + (Cz0)z = A(x0)2 +B(y0)2 + C(z0)2 = D.

C13S08.043: The equation of the paraboloid can be written in the form

H(x, y, z) = Ax2 +By2 − z = 0, and ∇H(x, y, z) = 〈2Ax, 2By, −1〉.

A vector normal to the paraboloid at the point P (x0, y0, z0) is n = 〈2Ax0, 2By0, −1〉, and hence the plane
tangent to the paraboloid at P has an equation of the form

2Ax0x+ 2By0y − z = d.
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But the point P also lies on the plane, and hence

d = 2A(x0)2 + 2B(y0)2 − z0 = 2(Ax2
0 +By20)− z0 = 2z0 − z0 = z0.

Hence an equation of the tangent plane is 2Ax0x + 2By0y − z = z0, and the result in Problem 43 follows
immediately.

C13S08.044: Because v is not a unit vector, we must replace it with a unit vector having the same direction
before we can use the formulas of this section. So we take

u =
v
|v| =

〈
1
3
,

2
3
, −2

3

〉
.

The gradient vector of f is

∇f = (y + z)i + (x+ z)j + (x+ y)k,

so ∇f(1, 2, 3) = 5i + 4j + 3k. Hence

Duf(P ) = 〈5, 4, 3〉 · 〈 13 ,
2
3 , −

2
3 〉 = 7

3

(degrees per kilometer) for the desired range of change of temperature with respect to distance.

C13S08.045: In the solution of Problem 44 we calculated ∇f (P ) = 〈5, 4, 3〉, and the unit vector in the
direction from P to Q is

u =
−⇀
PQ

|−⇀PQ|
=

〈
2
3
,

2
3
,

1
3

〉
.

Then

Duf(P ) = ∇f(P ) ·u = 〈5, 4, 3〉 ·
〈

2
3 ,

2
3 ,

1
3

〉
= 7

(degrees per kilometer). Hence

dw

dt
=
dw

ds
· ds
dt

=
(

7
deg
km

) (
2

km
min

)
= 14

deg
min

as the hawk’s rate of change of temperature at P .

C13S08.046: The gradient vector is

∇f =
∂f

∂x
i +

∂f

∂y
j = (0.006)xi− (0.008)y j,

so

∇f(40, 30) = (0.24)i− (0.24)j =
(
0.24
√

2
)
u.

The unit vector

u =
∇f(40, 30)
|∇f (40, 3 0)| =

i− j√
2
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points southeast (into the fourth quadrant); this is the direction in which the bumblebee should initially fly.
And, according to Section 13.8, the directional derivative of f in this optimal direction is

Duf(40, 30) = |∇f(40, 30)| = (0.24)
√

2 ≈ 0.34

degrees per unit of distance.

C13S08.047: Part (a): If W (x, y, z) = 50 + xyz, then ∇W = 〈 yz, xz, xy 〉, so at the point P (3, 4, 1)
we have ∇W (P ) = 〈 4, 3, 12 〉. The unit vector with the same direction as v = 〈 1, 2, 2 〉 is

u =
v
|v| =

〈
1
3
,

2
3
,

2
3

〉
,

and so the rate of change of temperature at P in the direction of v is

(
∇W (P )

)
·u = 〈 4, 3, 12 〉 ·

〈
1
3
,

2
3
,

2
3

〉
=

34
3
.

Because distance is measured in feet, the units for this rate of change are degrees Celsius per foot.

Part (b): The maximal directional derivative of W at P is |∇W (P )| = |〈 4, 3, 12 〉| = 13 and the direction
in which it occurs is ∇W (P ) = 〈 4, 3, 12 〉.

C13S08.048: Part (a): If W (x, y, z) = 100 − x2 − y2 − z2, then ∇W = 〈−2x, −2y, −2z 〉. The unit
vector with the same direction as v = 〈 3, −4, 12 〉 is

u =
v
|v| =

〈
3
13
, − 4

13
,

12
13

〉
,

so the rate of change of W in the direction of v at the point P (3, −4, 5) is

(
∇W (P )

)
· u = 〈−6, 8, −10 〉 ·

〈
3
13
, − 4

13
,

12
13

〉
= −170

13
.

Because distance is measured in meters, the units for this rate of change are degrees Celsius per meter.

Part (b): The maximal directional derivative of W at P is |∇W (P )| = 10
√

2 and the direction in which
it occurs is ∇W (P ) = 〈−6, 8, −10 〉.

C13S08.049: Part (a): Given f(x, y) = 1
10 (x2 − xy + 2y2), let

g(x, y, z) = z − f(x, y); then ∇g(x, y, z) =
1
10
〈 y − 2x, x− 4y, 10 〉.

Thus a normal to the surface z = f(x, y) at the point P
(
2, 1, 2

5

)
is 1

10 〈−3, −2, 10 〉. Hence an equation
of the plane tangent to this surface at P is

3x+ 2y − 10z = 4; that is, z =
3
10
x+

1
5
y − 2

5
.

Part (b): Let Q denote the point (2, 1) and R the point (2.2, 0.9). Then v =
−⇀
QR = 〈 0.2, −0.1 〉. Thus an

approximation to f(2.2, 0.9) is

f(2, 1) +
(
∇f(Q)

)
·v = 0.4 + 〈 0.3, 0.2 〉 · 〈 0.2, −0.1 〉 =

11
25

= 0.44.

The true value is f(2.2, 0.9) = 56
125 = 0.448.
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C13S08.050: Let F (x, y, z) = 2x2 +3y2−z. The equation F (x, y, z) = 0 has the paraboloid as its graph.
The vector n = 〈 4, −3, −1 〉 is normal to the plane. All we require is that ∇F = 〈 4x, 6y, −1 〉 is parallel
to n. This leads to x = 1, y = − 1

2 , and (because F (x, y, z) = 0) z = 11
4 . Thus an equation of the required

plane is

4(x− 1)− 3
(
y +

1
2

)
−

(
z − 11

4

)
= 0; that is, 16x− 12y − 4z = 11.

C13S08.051: Let F (x, y, z) = z2−x2− y2 and G(x, y, z) = 2x+3y+4z+2. Then the cone is the graph
of F (x, y, z) = 0 and the plane is the graph of G(x, y, z) = 0. At the given point P (3, 4, −5) we have

∇F (3, 4, −5) = 〈−6, −8, −10 〉 and ∇G(3, 4, −5) = 〈 2, 3, 4 〉.

Let P denote the plane normal to the ellipse (the intersection of the cone and the first plane) at the point
P . Then a normal to P is

n = 〈−6, −8, −10 〉× 〈 2, 3, 4 〉 =

∣∣∣∣∣∣∣∣∣

i j k

−6 −8 −10

2 3 4

∣∣∣∣∣∣∣∣∣
= 〈−2, 4, −2 〉.

We will use instead the parallel vector 〈 1, −2, 1 〉. In the usual way we find that P has Cartesian equation
x− 2y + z + 10 = 0.

C13S08.052: Let F (x, y, z) = z2−x2− y2 and G(x, y, z) = 2x+3y+4z+2. Then the cone is the graph
of F (x, y, z) = 0 and the plane is the graph of G(x, y, z) = 0. Then a plane P normal to the ellipse at the
point P (x, y, z) will itself have normal vector

n = ∇F × ∇G =

∣∣∣∣∣∣∣∣∣

i j k

−2x −2y 2z

2 3 4

∣∣∣∣∣∣∣∣∣
= 〈−8y − 6z, 8x+ 4z, 4y − 6x 〉.

The condition that the line tangent to the ellipse be horizontal implies that the third component of n must
be zero, so that P is a vertical plane. Thus we obtain the three simultaneous equations that the highest and
lowest points of the ellipse must satisfy:

4y − 6x = 0,

z2 = x2 + y2, and

2x+ 3y + 4z + 2 = 0.

They have exactly two simultaneous solutions, and thus we discover the answers:
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Low point: x =
52 + 16

√
13

39
≈ 2.8125338566006110,

y =
26 + 8

√
13

13
≈ 4.2188007849009165,

z =
−8− 2

√
13

3
≈ −5.0703675169759929.

High point: x =
52− 16

√
13

39
≈ −0.1458671899339443,

y =
26− 8

√
13

13
≈ −0.2188007849009165,

z =
−8 + 2

√
13

3
≈ −0.2629658163573405.

C13S08.053: Let F (x, y, z) = x2 + y2 + z2 − r2 and G(x, y, z) = z2 − a2x2 − b2y2. Then the sphere is
the graph of F (x, y, z) = 0 and the cone is the graph of G(x, y, z) = 0. At a point where the sphere and
the cone meet, these vectors are the normals to their tangent planes. To show that the tangent planes are
perpendicular, it is sufficient to show that their normals are perpendicular. But

(
∇F

)
·
(
∇G

)
= 〈 2x, 2y, 2z 〉 · 〈−2a2x, −2b2y, 2z 〉 = −4a2x2 − 4b2y2 + 4z2 = 4(z2 − a2x2 − b2y2) = 0

because (x, y, z) lies on the cone. Therefore the tangent planes are perpendicular at every point of the
intersection of the sphere and the cone.

C13S08.054: The equation of the ellipsoid may be written in the form

F (x, y, z) = x2 + y2 + 2z2 − 2 = 0,

and ∇F (x, y, z) = 〈2x, 2y, 4z〉 is normal to the ellipsoidal surface at the point (x, y, z). A normal at
P (a, b, c) is therefore n = 〈a, b, 2c〉, and in general there are four points on the ellipsoid with z-coordinate
c: They are (±a, ±b, c). Thus there are four normal vectors in question, 〈±a, ±b, 2c〉, and consequently
four tangent planes, with equations ±ax± by+2cz = d for some constant d (the same d for all four planes).
These planes meet the z-axis where x = y = 0, and thus all four have the same z-intercept z = d/(2c).
(If c = 0, then all four tangent planes are vertical—parallel to the z-axis—and none meets the z-axis. If
a = b = 0 then there is only one tangent plane meeting the ellipsoidal surface at a point with z-coordinate
c. If exactly one of a and b is zero, then there are only two tangent planes of the sort specified in Problem
54, but the same argument shows that both meet the z-axis at the same point.)

C13S08.055: The surface is the graph of the equation G(x, y, z) = 0 where

G(x, y, z) = xyz − 1, so that ∇G(x, y, z) = 〈yz, xz, xy〉.

Suppose that P (a, b, c) is a point strictly within the first octant (so that a, b, and c are all positive). Note
that abc = 1. A vector normal to the surface at P is n = 〈bc, ac, ab〉, and hence the plane tangent to the
surface at P has equation

bcx+ acy + abz = d
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for some constant d. Moreover, because P is a point of the surface,

bca+ acb+ abc = d; that is, d = 3abc.

Hence an equation of the tangent plane is bcx+ acy + abz = 3abc. The intercepts of the pyramid therefore
occur at (3a, 0, 0), (0, 3b, 0), and (0, 0, 3c). Therefore, because of the right angle at the origin, the pyramid
has volume

V =
1
6

(3a)(3b)(3c) =
27
6
abc =

9
2
,

independent of the choice of P , as we were to show.

C13S08.056: Part (a): Given z = f(x, y) = 500 − (0.003)x2 − (0.004)y2, we begin by constructing a
vector v = 〈−1, 1 〉 that points northwest, then the unit vector with the same direction:

u =
v
|v| =

〈
−
√

2
2
,

√
2
2

〉
.

Next, ∇f(x, y) = 〈−(0.006)x, −(0.008)y 〉, so the value of the gradient at your position on the hill is
v = ∇f(−100, −100) = 〈 0.6, 0.8 〉. So your initial rate of climb in the direction of u is

Duf(−100, −100) = v ·u = − 3
10

√
2 +

4
10

√
2 =

1
10

√
2 ≈ 0.1414213562

in units of feet per foot; that is, you initially climb at the rate of about 0.1414 feet upward for every foot
you travel horizontally. Your initial angle of climb is

arctan
(

1
10

√
2

)

radians, approximately 8◦ 2′ 58.081′′ (a gentle slope).

Part (b): If instead you head northeast, repeat the previous calculations with the new unit vector

u =

〈√
2
2
,

√
2
2

〉
.

Your initial rate of climb in the new direction of u will be

Duf(−100, −100) = v ·u =
3
10

√
2 +

4
10

√
2 =

7
10

√
2 ≈ 0.989949493661

feet per foot. The initial angle of climb will be arctan
(

7
10

√
2

)
radians, approximately 44◦ 42′ 38.241′′, an

extremly steep climb, comparable to the last 30 meters up the north face of Rabun Bald.

C13S08.057: The hill is steepest in the direction of ∇z(−100, −100) = 〈 0.6, 0.8 〉. The slope of the hill
in that direction is |〈 0.6, 0.8 〉| = 1, so that your initial angle of climb would be 45◦. The compass heading
in the direction you are climbing is

π

2
− arctan

4
3

radians, approximately 36◦ 52′ 11.632′′.

C13S08.058: Part (a): First we compute the gradient of
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z =
1000

1 + (0.00003)x2 + (0.00007)y2
:

∇z = − 1
[1 + (0.00003)x2 + (0.00007)y2 ]2

〈 (0.06)x, (0.14)y 〉 .

The slope of this hill at the point (100, 100, 500) in the northwest direction is

[∇z(100, 100)] ·
√

2
2
〈−1, 1 〉 =

〈
−3

2
, −7

2

〉
·
〈
−
√

2
2
,

√
2
2

〉
= −
√

2 ≈ −1.4142135623731.

Your initial angle of descent is thus approximately 1.4142 feet per foot and the angle of descent is approxi-
mately 54◦ 44′ 8.2′′.

Part (b): The slope of this hill at the point (100, 100, 500) in the northeast direction is

[∇z(100, 100)] ·
√

2
2
〈 1, 1 〉 =

〈
−3

2
, −7

2

〉
·
〈√

2
2
,

√
2
2

〉
= −5

√
2

2
≈ −3.535533905933.

Your initial rate of descent is thus approximately 3.5355 feet per foot and the angle of descent is approximately
74◦ 12′ 13.6′′, a very steep descent.

C13S08.059: Given

z = f(x, y) =
1000

1 + (0.00003)x2 + (0.00007)y2
,

we first compute

∇f(x, y) =
〈
− 600 000 000x

(100000 + 3x2 + 7y2)2
, − 1 400 000 000y

(100000 + 3x2 + 7y2)2

〉
.

Hence to climb the most steeply, the initial direction should be

∇f(100, 100) =
〈
−3

2
, −7

2

〉
,

and the initial rate of ascent will be |∇f(100, 100)| = 2
2

√
58 ≈ 3.807886553 feet per foot. The initial

angle of climb will be arctan
(

1
2

√
58

)
≈ 1.313982409 radians, approximately 75◦ 17′ 8.327′′. The compass

heading is

270◦ − arctan
(

7
3

)◦
≈ 203◦ 11′ 54.926′′.

C13S08.060: Given

z = f(x, y) = 100 exp
(
−x

2 + 3y2

701

)
,

we first compute

∇f(x, y) =
〈
−200

701
x exp

(
−x

2 + 3y2

701

)
, −600

701
y exp

(
−x

2 + 3y2

701

)〉
.
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Part (a):

v = ∇f(30, 20) =
〈
−6000

701
exp

(
−2100

701

)
, −12000

701
exp

(
−2100

701

)〉

≈ 〈−0.427965138743, −0.855930277485 〉

gives the initial direction in which you should head to climb the most steeply, and if you do so, your rate
of climb will initially be |v| ≈ 0.956959142228 feet per foot. That will be at an angle of approximately
43◦ 44′ 24.196′′ from the horizontal. The initial heading will be approximately

270◦ − arctan
(

0.855930277485
0.427965138743

)◦
≈ 206◦ 33′ 54.184′′.

Part (b): If you initially head west, with direction vector u = 〈−1, 0 〉, then your initial rate of ascent will
be

v ·u =
6000
701

exp
(
−2100

701

)
≈ 0.427965138743

feet per foot, so you will initially climb at an angle of approximately 23◦ 10′ 9.252′′ from the horizontal.

C13S08.061: Let

f(x, y) =
1

1000
(3x2 − 5xy + y2).

Then

∇f(x, y) =
1

1000
〈 6x− 5y, 2y − 5x 〉 ,

and therefore v = ∇f(100, 100) =
〈

1
10 , −

3
10

〉
.

Part (a): A unit vector in the northeast direction is u = 1
2

〈√
2 ,
√

2
〉
, so the directional derivative of f

at (100, 100) in the northeast direction is

v ·u =
〈

1
10 , −

3
10

〉
· 1

2

〈√
2 ,
√

2
〉

= − 1
10

√
2 .

Hence you will initially be descending the hill, and at an angle of arctan
(

1
10

√
2

)
below the horizontal,

approximately 8◦ 2′ 58.081′′.

Part (b): A unit vector in the direction 30◦ north of east is u = 1
2

〈√
3 , 1

〉
, so the directional derivative

of f at (100, 100) in the direction of u is

〈
1
10 , −

3
10

〉
· 1

2

〈√
3 , 1

〉
= −3−

√
3

20
≈ −0.06339746.

Hence you will initially be descending the hill, and at an angle of approximately 3◦ 37′ 56.665′′.

C13S08.062: Given: The two surfaces f(x, y, z) = 0 and g(x, y, z) = 0 both pass through the point P
at which both ∇f(P ) and ∇g(P ) exist. Part (a): Suppose that the two surfaces are mutually tangent at
P . Then their tangent planes there coincide. So their normal vectors at P are parallel. Therefore

∇f(P ) × ∇g(P ) = 0.
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To prove the converse, simply reverse the steps in this argument.

Part (b): Suppose that the two surfaces are orthogonal at P . Then their tangent planes at P are perpen-
dicular. So their normal vectors at P are perpendicular. Therefore

∇f(P ) · ∇g(P ) = 0.

To prove the converse, simply reverse the steps in this argument. Also see the solution of Problem 53.

C13S08.063: Because u = 〈a, b〉 and v = 〈c, d〉 are not collinear, neither is zero and neither is a scalar
multiple of the other. Hence, as vectors, they are linearly independent, and this implies that the simultaneous
equations

afx(P ) + bfy(P ) = Duf(P ),

cfx(P ) + dfy(P ) = Dvf(P )

have a unique solution for the values of fx(P ) and fy(P ). Thus ∇f(P ) = 〈fx(P ), fy(P )〉 is uniquely
determined, and therefore so is the directional derivative

Dwf(P ) = ∇f(P ) ·w

in the direction of the arbitrary unit vector w. —C.H.E.

C13S08.064: Obviously f is continuous at the origin because f(x, y)→ 0 as (x, y)→ (0, 0). Next,

D〈a,b〉f(0, 0) = lim
t→0

f(at, bt)− f(0, 0)
t

= lim
t→0

(
3
√
at + 3

√
bt

)3

t
=

(
3
√
a + 3
√
b

)3

(1)

for all a and b. Thus every directional derivative exists. For instance, with a = 1 and b = 0 we find that
fx(0, 0) = 1, and with a = 0 and b = 1 we find that fy(0, 0) = 1. Therefore ∇f(0, 0) = 〈1, 1〉.

But if f were differentiable at the origin, it would follow with u =
〈

3
5 ,

4
5

〉
that

Duf(0, 0) = ∇f(0, 0) ·u = 1 · 3
5

+ 1 · 4
5

=
7
5
.

But the calculation in Eq. (1) shows that

Duf(0, 0) =
(

3

√
3
5 + 3

√
4
5

)3

≈ 5.561701 
= 7
5
.

Therefore f is not differentiable at the origin. —C.H.E.
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Section 13.9

C13S09.001: Given f(x, y) = 2x+y and the constraint g(x, y) = x2 +y2−1 = 0, the equation ∇f = λ∇g

yields

2 = 2λx and 1 = 2λy,

so that λ �= 0. Hence

1
λ

= x = 2y, and thus 4y2 + y2 = 1.

Thus we have two solutions:

(x, y) =
(

2
5

√
5 ,

1
5

√
5

)
and (x, y) =

(
−2

5

√
5 , −1

5

√
5

)
.

Clearly the first maximizes f(x, y) and the second minimizes f(x, y). So the global maximum value of
f(x, y) is

√
5 and its global minimum value is −

√
5 .

Note: The function f is continuous on the circle x2 +y2 = 1 and a continuous function defined on a closed
and bounded subset of euclidean space (such as that circle) must have both a global maximum value and
a global minimum value. We will use this argument to identify extrema when possible and without stating
the argument explicitly in various solutions in this section.

C13S09.002: From the vector equation 〈 1, 1 〉 = λ〈 2x, 8y 〉 we see that λ �= 0, and hence x = 4y. Then
the constraint takes the form 20y2 = 1, and thus there are two critical points:

(x, y) =
(

2
5

√
5 ,

1
10

√
5

)
: f(x, y) =

1
2

√
5 (global maximum);

(x, y) =
(
−2

5

√
5 , − 1

10

√
5

)
: f(x, y) = −1

2

√
5 (global minimum).

We identify the critical points using the fact that f(x, y) is continuous everywhere, including the set of
points on the ellipse x2 + 4y2 = 1, and a continuous function defined on a closed and bounded subset of
euclidean space (such as this ellipse) must have both a global maximum and a global minimum. We will use
this argument without explicitly stating it in various other solutions in this section.

C13S09.003: The Lagrange multiplier equation 〈 2x, −2y 〉 = λ〈 2x, 2y 〉 yields the scalar equations x = λx

and −y = λy. To solve them with a minimum number of cases, note that multiplication of the first by y

and the second by x yields

xy = λxy = −xy, so that xy = 0.

If x = 0 then y = ±2; if y = 0 then x = ±2. So there are four critical points:

f(2, 0) = 4 : global maximum; f(−2, 0) = 4 : global maximum;

f(0, 2) = −4 : global minimum; f(0, −2) = −4 : global minimum.

C13S09.004: The Lagrange multipler equation 〈 2x, 2y 〉 = λ〈 2, 3 〉 leads to the scalar equations 2x = 2λ
and 2y = 3λ, and it follows that 3x = 2y. Substitution in the constraint yields the only critical point,

1



(
12
13 ,

18
13

)
, and the value of f(x, y) there is 36

13 , which is the global minimum value of f ; there is no maximum
value because

lim
x→∞

f(x, 0) = +∞.

C13S09.005: The Lagrange multiplier equation 〈 y, x 〉 = λ〈 8x, 18y 〉 yields the scalar equations y = 8λx
and x = 18λy. Multiply the first by 9y and the second by 4x to obtain

9y2 = 72λxy = 4x2, so that 3y = ±2x.

The constraint equation takes the form 18y2 = 36, so that y2 = 2. Thus there are four critical points. But
f(x, y) must have both a global maximum and a global minimum value on the ellipse 4x2 + 9y2 = 36, so
we may identify all of the critical points:

f
(

3
2

√
2 ,
√

2
)

= 3 : global maximum; f
(
− 3

2

√
2 ,
√

2
)

= −3 : global minimum;

f
(

3
2

√
2 , −

√
2

)
= −3 : global minimum; f

(
− 3

2

√
2 , −

√
2

)
= 3 : global maximum.

C13S09.006: The Lagrange multiplier method yields the equations 4x = λx and 9y = λy, so that

4xy = λxy = 9xy, and therefore xy = 0.

There are four critical points; f(x, y) attains its global maximum value 9 at (0, ±1) and its global minimum
value 4 at (±1, 0).

C13S09.007: It is clear that f(x, y, z) = x2 + y2 + z2 can have no global maximum value on the plane
g(x, y, z) = 3x+ 2y + z − 6 = 0, and almost as clear that there is a unique global minimum. The Lagrange
multiplier equation

〈 2x, 2y, 2z 〉 = λ〈 3, 2, 1 〉

then yields 4x = 6y = 12z = 6λ, so that x = 3z and y = 2z. Then the constraint takes the form
9z+4z+z = 6, and therefore the global minimum value of f on the plane g(x, y, z) = 0 is f

(
9
7 ,

6
7 ,

3
7

)
= 18

7 .
We have also discovered three distinct positive rational numbers whose sum is equal to the sum of their
squares.

C13S09.008: It is clear that the continuous function f(x, y, z) = 3x + 2y + z must have both a global
maximum and a global minimum on the spherical surface with equation g(x, y, z) = x2 + y2 + z2 − 1 = 0.
The Lagrange multiplier equation 〈 3, 2, 1 〉 = λ〈 2x, 2y, 2z 〉 yields first the information that λ �= 0, and
therefore

3
λ

= 2x,
2
λ

= 2y, and
1
λ

= 2z.

Therefore

6
λ

= 4x = 6y = 12z;

2x = 3y = 6z;
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x = 3z and y = 2z;

9z2 + 4z2 + z2 = 1;

z2 =
1
14

.

Results:

Global minimum: f
(
− 3

14

√
14 , − 1

7

√
14 , − 1

14

√
14

)
= −
√

14 ;

Global maximum: f
(

3
14

√
14 , 1

7

√
14 , 1

14

√
14

)
=
√

14 .

C13S09.009: The continuous function f(x, y, z) = x+y+ z must have both a global maximum value and
a global minimum value on the ellipsoidal surface with equation g(x, y, z) = x2 + 4y2 + 9z2 − 36 = 0. The
Lagrange multiplier method yields 〈 1, 1, 1 〉 = λ〈 2x, 8y, 18z 〉, and thus λ �= 0. Therefore

1
λ

= 2x = 8y = 18z, so that x = 4y = 9z.

Substitution of x = 9z and y = 9
4 z in the equation g(x, y, z) = 0 then yields z = ± 4

7 . Results:

Global maximum: f
(

36
7 , 9

7 ,
4
7

)
= 7;

Global minimum: f
(
− 36

7 , − 9
7 , −

4
7

)
= −7.

C13S09.010: Clearly the continuous function f(x, y, z) = xyz must have both a global maximum and
a global minimum on the spherical surface with equation g(x, y, z) = x2 + y2 + z2 − 1 = 0, and because
f(x, y, z) takes on both positive and negatives values on the surface, we may ignore the possibility that any
of x, y, or z is zero. The Lagrange multiplier method yields

〈 yz, xz, xy 〉 = λ〈 2x, 2y, 2z 〉;

yz = 2λx, xz = 2λy, xy = 2λz;

2λxyz = y2z2 = x2z2 = x2y2.

Therefore x2 = y2 = z2, and then the constraint yields 3x2 = 1. There are eight critical points—all
combinations of x = ± 1

3

√
3 , y = ± 1

3

√
3 , and z = ± 1

3

√
3 . At four of these f attains its global maximum

value 1
9

√
3 and at the other four f attains its global minimum value − 1

9

√
3 .

C13S09.011: Clearly f(x, y, z) = xy + 2z is continuous on the closed and bounded spherical surface
g(x, y, z) = x2 + y2 + z2 − 36 = 0, and hence f has both a global maximum and a global minimum there.
The Lagrange multiplier equation is

〈 y, x, 2 〉 = λ〈 2x, 2y, 2z 〉, and hence y = 2λx, x = 2λy, and 2 = 2λz.

Now λz = 1, so λ �= 0. If neither x nor y is zero, then

1
λ

=
2x
y

=
2y
x

= z.
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So y2 = x2 in this case. If y = x, then z = 2, so 2x2 + 4 = 36 and we obtain two critical points and the
values f(4, 4, 2) = 20 and f(−4, −4, 2) = 20. If y = −x, then z = −2, and we obtain two critical points and
the values f(4, −4, −2) = −20 and f(−4, 4, −2) = −20. Finally, if either of x and y is zero, then so is the
other; z2 = 36, and we obtain two more critical points and the values f(0, 0, 6) = 12 and f(0, 0,−6) = −12.
Hence the global maximum value of f(x, y, z) is 20 and its global minimum value is −20.

C13S09.012: Given: f(x, y, z) = x − y + z on the surface g(x, y, z) = x2 − 6xy + y2 − z = 0. The
Lagrange multiplier method yields the vector equation

〈 1, −1, 1 〉 = λ〈 2x− 6y, 2y − 6x, −1 〉,

and it follows immediately that λ = −1. Consequently 2x − 6y = −1 and 2y − 6x = 1. These equations
have the solution x = − 1

8 , y = 1
8 , and it follows that z = 1

8 . At this point the value of f(x, y, z) is − 1
8 .

Have we found an extremum? If so, it is not a global extremum, because as x → +∞ while y = 0,
f(x, y, z)→ +∞; as x→ +∞ along the line y = x, f(x, y, z)→ −∞.

Substitution of z = x2 − 6xy + y2 in f(x, y, z) = x− y + z yields

h(x, y) = x− y + x2 − 6xy + y2,

which necessarily has a critical point at
(
− 1

8 ,
1
8

)
. Let x = u− 1

8 and y = v + 1
8 . Then (after some algebra)

h(u, v) = u2 − 6uv + v2 − 1
8
.

The critical point has been shifted to the origin (0, 0). On the line u = v, we have h(u, v) = −4u2 − 1
8 ,

so the origin is not a local minimum. On the line u = −v, we have h(u, v) = 8u2 − 1
8 , so the origin is

not a local maximum. Hence the origin is not an extremum. Therefore f(x, y, z) subject to the constraint
g(x, y, z) = 0 has no extrema.

C13S09.013: The continuous function f(x, y, z) = x2y2z2 clearly has a global maximum value and a
global minimum value on the ellipsoidal surface g(x, y, z) = x2 + 4y2 + 9z2 − 27 = 0. The Lagrange
multiplier method yields the equations

xy2z2 = λx, x2yz2 = 4λy, and x2y2z = 9λz.

If any one of x, y, or z is zero, then f(x, y, z) = 0, and this is clearly the global minimum value of f(x, y, z).
Otherwise, λ �= 0, and hence

x2y2z2 = λx2 = 4λy2 = 9λz2,

and thus x2 = 4y2 = 9z2 = 9; that is, x2 = 9, y2 = 9
4 , and z2 = 1. Thus the global maximum value of

f(x, y, z) occurs at eight different critical points, and that maximum value is 9 · 9
4 · 1 = 81

4 .

C13S09.014: The continuous function f(x, y, z) = x2 + y2 + z2 clearly has both a global maximum value
and a global minimum value on the closed and bounded surface with equation g(x, y, z) = x4+y4+z4−3 = 0.
The Lagrange multiplier method yields the equations

x = 2λx3, y = 2λy3, and z = 2λz3.

Note first that λ �= 0.

Case 1: Two of x, y, and z are zero. Then the third is ±31/4 and the value of f(x, y, z) is
√

3 .
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Case 2: Exactly one of x, y, and z is zero. Then the other two have equal squares, and thus each is
±

(
3
2

)1/4. In this case the value of f(x, y, z) is
√

6 .

Case 3: None of x, y, and z is zero. Then they have equal squares, so each is equal to ±1. In this case the
value of f(x, y, z) is 3.

Summary: The global minimum value of f(x, y, z) is
√

3 and its global maximum value is 3.

C13S09.015: We are to find the extrema of f(x, y, z) = x2 + y2 + z2 subject to the two constraints
g(x, y, z) = x + y + z − 1 = 0 and h(x, y, z) = x + 2y + 3z − 6 = 0. The Lagrange multiplier equation is

〈 2x, 2y, 2z 〉 = λ〈 1, 1, 1 〉+ µ〈 1, 2, 3 〉,

from which we obtain the scalar equations λ = 2x− µ = 2y − 2µ = 2z − 3µ, so that

2x + µ = 2y and 2y + µ = 2z, and thus

µ = 2(y − x) = 2(z − y) : 2y = x + z.

Thus we are to solve the following three linear equations in three unknowns:

x + y + z = 1,

x− 2y + z = 0,

x + 2y + 3z = 6.

We find that x = − 5
3 , y = 1

3 , and z = 7
3 . A geometric interpretation of this problem is to find the point on

the intersection of two planes—a line—closest to and farthest from the origin. Hence there is no maximum
but surely a minimum, and we have found it: f

(
− 5

3 ,
1
3 ,

7
3

)
= 25

3 .

C13S09.016: We are to find the extrema of f(x, y, z) = z given the constraints g(x, y, z) = x2+y2−1 = 0
and h(x, y, z) = 2x + 2y + z − 5 = 0. Geometrically, this is the problem of finding the highest (maximum
z-coordinate) and lowest points on the ellipse formed by the intersection of a plane and a vertical cylinder.
Hence there will be a unique global maximum and a unique global minimum unless the plane is horizontal
or vertical—and it is not. The Lagrange multiplier equation is

〈 0, 0, 1 〉 = λ〈 2x, 2y, 0 〉+ µ〈 2, 2, 1 〉,

which leads to the scalar equations

λx + µ = 0, λy + µ = 0, and µ = 1.

Therefore λx = λy = −1 and, because λ �= 0, we find that y = x. Thus we are to solve simultaneously the
following three nonlinear equations in three unknowns:

y = x,

x2 + y2 = 1,

2x + 2y + z = 5.

The second equation becomes 2x2 = 1, so that x = ± 1
2

√
2 and y = x.
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Case 1: If x = 1
2

√
2 , then y = x and z = 5 − 2

√
2 . This is the global minimum value of f(x, y, z) = z

subject to the two constraints.

Case 2: If x = − 1
2

√
2 , then y = x and z = 5 + 2

√
2 . This is the global maximum value of f(x, y, z) = z

subject to the two constraints.

See Problems 47 and 48 of Section 13.8 for an alternative method of solving such high point/low point
problems.

C13S09.017: We are to find the extrema of the function f(x, y, z) = z subject to the two constraints
g(x, y, z) = x+ y+ z−1 = 0 and h(x, y, z) = x2 + y2−1 = 0. Geometrically, this is the problem of finding
the highest (maximum z-coordinate) and lowest points on the ellipse formed by the intersection of a plane
and a vertical cylinder. Hence there will be a unique global maximum and a unique global minimum unless
the plane is horizontal or vertical—which it is not. The Lagrange multiplier equation is

〈 0, 0, 1 〉 = λ〈 1, 1, 1 〉+ µ〈 2x, 2y, 0 〉.

We thus obtain the three (simultaneous) scalar equations

2µx + λ = 0, 2µy + λ = 0, λ = 1.

Thus 2µx = 2µy = −1 and so, because µ �= 0, we find that y = x. Then the second constraint implies that
2x2 = 1, and because y = x there are only two cases:

Case 1: x = 1
2

√
2 = y, z = 1−

√
2 . This is the lowest point on the ellipse.

Case 2: x = − 1
2

√
2 = y, z = 1 +

√
2 . This is the highest point on the ellipse.

C13S09.018: We are to maximize and minimize the function f(x, y, z) = x subject to the two constraints
g(x, y, z) = x + y + z − 12 = 0 and h(x, y, z) = 4y2 + 9z2 − 36 = 0. Here’s the geometry: The plane
g(x, y, z) = 0 and the elliptical cylinder h(x, y z) = 0 (with axis the x-axis) meet in an ellipse, and we are
to find the points on this ellipse farthest from and closest to the yz-plane. At the conclusion we will see that
both extrema are positive, so the ellipse lies entirely on one side of the yz-plane; we will not encounter the
anomalous situation of the closest point having x-coordinate zero.

The Lagrange multiplier equation in vector form is

〈 1, 0, 0 〉 = λ〈 1, 1, 1 〉+ µ〈 0, 8y, 18z 〉,

and it leads to the scalar equations

λ = 1 and 8µy + λ = 0 = 18µz + λ,

and thus 8µy = 18µz = −1. It follows that µ �= 0, and so 4y = 9z. We substitute y = 9
4 z in the second

constraint and find that

81
4
z2 + 9z2 = 36, so that z = ± 4

13

√
13 .

Case 1: If z = 4
13

√
13 , then y = 9

13

√
13 and x = 12 −

√
13 . The latter is the global minimum value of

f(x, y, z) = x.

Case 2: If z = − 4
13

√
13 , then y = − 9

13

√
13 and x = 12 +

√
13 . The latter is the global maximum value

of f(x, y, z) = x.
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C13S09.019: We should find only one possible extremum because there is no point on the line farthest
from the origin. We minimize f(x, y) = x2 + y2 given the constraint g(x, y) = 3x + 4y − 100 = 0. The
Lagrange multiplier method yields

〈 2x, 2y 〉 = λ〈 3, 4 〉, so that 2x = 3λ and 2y = 4λ.

Thus 8x = 12λ = 6y, so that y = 4
3 x. Substitution in the constraint yields x = 12 and y = 16. Answer:

The point on the line g(x, y) = 0 closest to the origin is (12, 16).

C13S09.020: The units here are cents and inches. Suppose that the base of the box has dimensions x by
y and its height is z. Then its cost (in cents) will be

C(x, y, z) = 7xy + 10xz + 10yz,

which is to be minimized subject to the constraint g(x, y, z) = xyz − 700 = 0. The Lagrange multiplier
method yields the scalar equations

7y + 10z = λyz, 7x + 10z = λxz, and 10x + 10y = λxy.

Multiply each equation by the “missing” variable to find that

λxyz = 7xy + 10xz = 7xy + 10yz = 10xz + 10yz.

But x, y, and z are positive, and thus y = x and 10z = 7x, so that z = 7
10 x. Substitution in the constraint

yields

700 = xyz =
7
10

x3, so that x3 = 1000.

Therefore x = 10, y = 10, and z = 7. The box of minimum cost has base 10 inches by 10 inches, height 7
inches, and will cost $21.00.

C13S09.021: Please refer to Problem 29 of Section 13.5. We are to minimize

f(x, y, z) = x2 + y2 + z2 given g(x, y, z) = 12x + 4y + 3z − 169 = 0.

Geometrically, we are to find the point (x, y, z) on the plane with equation g(x, y, z) = 0 closest to the
origin, hence we can be sure that a unique solution exists. The Lagrange multiplier method yields the scalar
equations

2x = 12λ, 2y = 4λ, and 2z = 3λ,

so that 2x = 6y = 8z = 12λ, and thus y = 1
3 x and z = 1

4 x. Then the constraint yields

12x +
4
3
x +

3
4
x = 169;

144x + 16x + 9x = 169 · 12;

x = 12, y = 4, z = 3.

Answer: The point on the plane g(x, y, z) = 0 closest to the origin is (12, 4, 3).

C13S09.022: Please refer to Problem 30 of Section 13.5. We are to minimize
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f(x, y, z) = (x− 9)2 + (y − 9)2 + (z − 9)2 given g(x, y z) = 2x + 2y + z − 27 = 0.

Geometrically, we are to find the point (x, y, z) on the plane with equation g(x, y z) = 0 closest to the
point P (9, 9, 9). Thus we can be sure that a unique global minimum of f(x, y, z) exists and that there can
be no maximum, so we anticipate a single critical point. The Lagrange multiplier method yields the scalar
equations

2(x− 9) = 2λ, 2(y − 9) = 2λ, 4(z − 9) = 2λ,

and thus x− 9 = y − 9 = 2z − 18. Hence y = x and z = 1
2 (x + 9). Substitution in the constraint yields

2x + 2x +
x + 9

2
= 27; i.e., 9x + 9 = 54.

Therefore x = 5, y = 5, and z = 7. So the point on the plane g(x, y, z) = 0 closest to P is (5, 5, 7).

C13S09.023: Please refer to Problem 31 of Section 13.5. We are to minimize

f(x, y, z) = (x− 7)2 + (y + 7)2 + z2 given g(x, y, z) = 2x + 3y + z − 49 = 0.

This is the geometric problem of finding the point (x, y, z) on the plane g(x, y, z) = 0 closest to the point
Q(7, −7, 0). Hence we can be sure that a unique minimum exists and, because there can be no maximum of
f(x, y z), we anticipate a single critical point. The Lagrange multiplier method yields the scalar equations

2(x− 7) = 2λ, 2(y + 7) = 3λ, 2z = λ.

It follows that 6λ = 6x− 42 = 4y + 28 = 12z, and thus

x =
12z + 42

6
= 2z + 7 and

y =
12z − 28

4
= 3z − 7.

Substitution in the constraint gives the equation

4z + 14 + 9z − 21 + z = 49, so that 14z = 56.

Therefore z = 4, y = 5, and x = 15. The point on the plane g(x, y, z) = 0 closest to Q is thus (15, 5, 4).

C13S09.024: Please refer to Problem 32 of Section 13.5. We are to minimize

f(x, y, z) = x2 + y2 + z2 given g(x, y, z) = xyz − 8 = 0.

This is the geometric problem of finding the point (or points) on the surface xyz = 8 that are closest to the
origin. This is an unbounded surface, so we expect to find no global maximum of f(x, y, z) on it, but we
expect to find a global minimum, perhaps at several different critical points, but we seek only the closest
point that lies in the first octant. The Lagrange multipler method yields the scalar equations

2x = λyz, 2y = λxz, 2z = λxy,

and thus λxyz = 2x2 = 2y2 = 2z2. Because we are restricted to the first octant, we find that x = y = z = 2,
so the point in the first octant on the given surface closest to the origin is (2, 2, 2). Its distance from the
origin is

√
12 = 2

√
3 .
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C13S09.025: Please refer to Problem 33 of Section 13.5. We are to find the point (x, y, z) in the first
octant and on the surface g(x, y, z) = x2y2z − 4 = 0 closest to the origin, so we minimize

f(x, y, z) = x2 + y2 + z2 subject to the constraint g(x, y, z) = 0.

The surface is unbounded, so we anticipate no maximum and only one minimum in the first octant. The
Lagrange multiplier method yields the scalar equations

2x = 2λxy2z, 2y = 2λx2yz, 2z = λx2y2.

It follows that 2λx2y2z = 2x2 = 2y2 = 4z2, and hence that x2 = y2 = 2z2. The restriction to the first
octant then implies that x = y = z

√
2 , and then the constraint x2y2z = 4 implies that

(2z2)(2z2)(z) = 4; 4z5 = 4; z = 1.

So x = y =
√

2 . The point on g(x, y, z) = 0 in the first octant closest to the origin is
(√

2 ,
√

2 , 1
)
. Its

distance from the origin is
√

5 .

C13S09.026: Please see Problem 34 of Section 13.5. We are to find the point in the first octant on the
surface g(x, y, z) = x4y8z2− 8 = 0 closest to the origin Q(0, 0, 0), so we minimize f(x, y, z) = x2 + y2 + z2

subject to this constraint. Note that the surface g(x, y, z) = 0 is an unbounded surface, so there is no
maximum of f ; we expect to find only one critical point in the first octant. The Lagrange multiplier
equations are

2x = 4λx3y8z2, 2y = 8λx4y7z2, and 2z = 2λx4y8z.

Consequently, 8λx4y8z2 = 4x2 = 2y2 = 8z2, so that 2x2 = y2 = 4z2. Hence y2 = 4z2 and x2 = 2z2, and
then the constraint equation yields

8 = x4y8z2 = (4z4)(256z8)(z2), so that 128z14 = 1.

Hence z2 = 1
2 , and so z = 1

2

√
2 . Also x2 = 2z2 = 1, so x = 1; y2 = 4z2 = 2, so that y =

√
2 . Therefore

the point on the surface closest to the origin is
(
1,
√

2 , 1
2

√
2

)
. Its distance from the origin is 1

2

√
14 .

C13S09.027: Please see Problem 35 of Section 13.5. We are to maximize f(x, y, z) = xyz given
g(x, y, z) = x + y + z − 120 = 0 and the additional condition that x, y, and z are all positive. The
Lagrange multiplier equations are

λ = yz = xz = xy, and hence x = y = z = 40.

Therefore the maximum value of f is f(40, 40, 40) = 403 = 64000.

To establish that f(x, y, z) actually has a global maximum value on its domain (the set of all triples of
positive real numbers (x, y, z) such that x+y+z = 120), extend the domain slightly to include all triples of
nonnegative triples of real numbers (x, y, z) such that x+y+z = 120. Then f is continuous on this domain,
which is a closed and bounded subset of three-dimensional space (it is the part of the plane x+ y + z = 120
that lies in the first octant or on the adjacent coordinate planes). Hence f has a global maximum there,
and the maximum does not occur on the boundary because xyz = 0 if any of x, y, or z is zero. Hence this
maximum must occur at an interior critical point, and in the previous paragraph we found only one such
critical point. This is enough to establish that 64000 is the correct answer.

C13S09.028: Please refer to Problem 36 of Section 13.5. Suppose that the dimensions of the box are x

by y by z (units are in meters). We are to maximize box volume V (x, y, z) = xyz given the constraint
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g(x, y, z) = 4x + 4y + 4z − 6 = 0. Note also that x, y, and z are all positive. The Lagrange multiplier
equations are

λ = yz = xz = xy, so that x = y = z =
1
2
,

and therefore the maximum volume of such a box is 1
8 (cubic meters).

C13S09.029: Please see Problem 37 of Section 13.5. Suppose that the box has dimensions x by y by
z (units are in inches). Then we are to minimize total surface area A(x, y, z) = 2xy + 2xz + 2yz given
V (x, y, z) = xyz − 1000 = 0. The Lagrange multipliers equations are

2(y + z) = λyz, 2(x + z) = λxz, and 2(x + y) = λxy;

note also that in the solution, all three of x, y, and z must be positive. Hence we can eliminate λ from all
three of the previous equations:

λ

2
=

y + z

yz
=

x + z

xz
=

x + y

xy
;

1
z

+
1
y

=
1
z

+
1
x

=
1
y

+
1
x

;

x = y = z and xyz = 1000;

x = y = z = 10.

Answer: The minimum possible surface area occurs when the box is a cube measuring 10 in. along each
edge. The minimum possible surface area is 600 in.2

C13S09.030: Please see Problem 38 of Section 13.5. Dimensions in this problem will be centimeters, square
centimeters, etc. Suppose that the base of the box has dimensions x by y and that its height is z. We are
to minimize total surface area

A(x, y, z) = xy + 2xz + 2yz given V (x, y, z) = xyz − 4000 = 0.

The Lagrange multiplier equations are

y + 2z = λyz, x + 2z = λxz, and 2x + 2y = λxy;

note also that in the solution, all three of x, y, and z are positive. Multiply each of the previous equations
by the “missing” variable to obtain

λxyz = xy + 2xz = xy + 2yz = 2xz + 2yz.

Hence 2xz = 2yz, so that y = x; thus x2 + 2xz = 2xz + 2xz, so that x = y = 2z. Because xyz = 4000, it
not follows that 4z3 = 4000, so that z = 10 and x = y = 20. Therefore the box of minimum surface area
has base 20 by 20 cm and height 10 cm.

C13S09.031: Please see Problem 39 of Section 13.5. Units in this problem will be cents and inches.
Suppose that the bottom of the box has dimensions x by y and that its height is z. We are to minimize
total cost C(x, y, z) = 6xy + 10xz + 10yz given the constraint V (x, y, z) = xyz − 600 = 0. The Lagrange
multiplier equations are
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6y + 10z = λyz, 6x + 10z = λxz, and 10x + 10y = λxy;

also note that x, y, and y are all positive. Multiply each of the three previous equations by the “missing”
variable to find that

λxyz = 6xy + 10xz = 6xy + 10yz = 10xz + 10yz,

and thus x = y and 6y = 10z; that is, x = y = 5
3 z. Substitution in the constraint equation yields

600 = xyz =
25
9
z3 : z3 =

5400
25

= 216.

Therefore z = 6 and x = y = 10. Answer: The dimensions that minimize the total cost are these: base 10
in. by 10 in., height 6 in.; its total cost will be $18.00.

C13S09.032: Please see Problem 40 of Section 13.5. Units in this problem wil be dollars and feet. Suppose
that the box has bottom (and top) dimensions x by y and that its height is z. We are to minimize the total
cost C(x, y, z) = 6xy + 8xz + 8yz given the constraint V (x, y, z) = xyz − 48 = 0. The Lagrange multiplier
equations are

6y + 8z = λyz, 6x + 8z = λxz, and 8x + 8y = λxy.

Note that all three variables are positive. So multiply each of the preceding equations by the “missing”
variable to obtain

λxyz = 6xy + 8xz = 6xy + 8yz = 8xz + 8yz,

then cancel with impunity to find that

x = y and 3x = 4z, so that x = y =
4
3
z.

Then the constraint yields

48 = xyz =
16
9
z3, and thus z = 3 and x = y = 4.

So the cheapest box has base 4 ft by 4 ft and height 3 ft. (It will cost $288.00!)

C13S09.033: Please refer to Problem 41 of Section 13.5. Suppose that the front of the box has width x

and height z (units are in inches and cents) and that the bottom of the box measures x by y. We are to
minimize total cost C(x, y, z) = 6xy + 12xz + 18yz given the constraint V (x, y, z) = xyz − 750 = 0. The
Lagrange multiplier equations are

6y + 12z = λyz, 6x + 18z = λxz, and 12x + 18y = λxy.

Note that x, y, and z are positive. Multiply each of the three preceding equations by the “missing” variable
to obtain

λxyz = 6xy + 12xz = 6xy + 18yz = 12xz + 18yz.

It follows that 12xz = 18yz, so that 2x = 3y; also, 6xy = 12xz, so that y = 2z. Thus x = 3
2 y = 3z. Then

substitution in the constraint equation yields
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750 = xyz = 6z3 : z3 = 125,

and so z = 5, y = 10, and x = 15. The front of the cheapest box should be 15 in. wide and 5 in. high; its
depth (from front to back) should be 10 in. (This box will cost $27.00.)

C13S09.034: Please refer to Problem 42 of Section 13.5. This box has both top and bottom, but the
bottom costs twice as much per square meter as the other five sides. Assume the latter cost 1 unit per
square meter, that the bottom has dimensions x by y, and that the height of the box is z. Then we are
to minimize total cost C(x, y, z) = 3xy + 2xz + 2yz given the constraint V (x, y, z) = xyz − 12 = 0. The
Lagrange multiplier equations are

3y + 2z = λyz, 3x + 2z = λxz, and 2x + 2y = λxy.

Note that all three of x, y, and z are positive. Multiply the first of the last three equation by x, the second
by y, and the third by z to obtain

λxyz = 3xy + 2xz = 3xy + 2yz = 2xz + 2yz,

and it follows that x = y and 3y = 2z. Thus z = 3
2 y, and substitution in the constraint equation yields

12 = xyz = x · x · 3
2
x : x3 = 8,

and therefore x = 2, y = 2, and z = 3. Thus the cheapest box will have base measuring 2 m by 2 m and
height 3 m.

C13S09.035: We are to minimize f(x, y, z) = x2 +y2 +z2 given (x, y, z) lies on the surface with equation
g(x, y, z) = xy + 5− z = 0. The Lagrange multiplier equations are

2x = λy, 2y = λx, and 2z = −λ.

Therefore λ = −2z, and thus 2x = −2yz and 2y = −2xz. So

2x2 = 2y2 = −2xyz : x2 = y2 = −xyz.

Case 1: y = x. Then x2 = −x2z, so x = 0 or z = −1. In the latter case, the constraint equation yields
x2 = −6, so that case is rejected. We obtain only the critical point (0, 0, 5).

Case 2: y = −x. Then x2 = x2z, so x = 0 or z = 1. If x = 0, then we obtain only the critical point of Case
1. If z = 1 then the constraint equation yields x2 = 4, and we obtain two more critical points: (2, −2, 1)
and (−2, 2, 1).

Now f(0, 0, 5) = 25, f(2, −2, 1) = 9, and f(−2, 2, 1) = 9. Hence there are two points of the surface
g(x, y, z) = 0 closest to the origin. They are (2, −2, 1) and (−2, 2, 1); each is at distance

√
9 = 3 from

the origin.

C13S09.036: The semiperimeter s = 1
2 (x + y + z) of the triangle with sides x, y, and z is fixed. We

maximize the square of its area A,

A2 = f(x, y, z) = s(s− x)(s− y)(s− z) (Heron’s formula),

subject to the constraint x+y+z = 2s; note also that x, y, and z are nonnegative. The Lagrange multipler
equations are
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−s(s− y)(s− z) = λ, −s(s− x)(s− z) = λ, and − s(s− x)(s− y) = λ,

and therefore

(s− x)(s− y) = (s− x)(s− z) = (s− y)(s− z).

Clearly x < s, y < s, and z < s if the area is to be maximal. Thus

s− x = s− y = s− z, and hence x = y = z =
2
3
s :

The triangle of maximal area is equilateral. It has area

A =
√
s(s− x)(s− y)(s− z) =

√
s · 1

3
s · 1

3
s · 1

3
s =

√
3
9

s2 =
√

3
4

x2.

C13S09.037: See Fig. 13.9.9 of the text. There we see three small isosceles triangles, each with two equal
sides of length 1 meeting at the center of the circle. Their total area

A =
1
2

sinα +
1
2

sinβ +
1
2

sin γ

is the area of the large triangle, the quantity to be maximized given the constraint

g(α, β, γ) = α + β + γ − 2π = 0.

It is clear that, at maximum area, the center of the circle is within the large triangle or, at worst, on its
boundary. Thus we have the additional restrictions

0 � α � π, 0 � β � π, and 0 � γ � π. (1)

The Lagrange multiplier equations are

λ =
1
2

cosα =
1
2

cosβ =
1
2

cos γ,

and the restrictions in (1) imply that α = β = γ = 2
3 π. Hence the triangle of maximal area is equilateral

(because it is equiangular). If x denotes the length of each side, then by the law of cosines

x2 = 12 + 12 − 2 · 1 · 1 · cos
2π
3

= 3,

and so each side of the maximal-area triangle has length
√

3 . The area of the maximal-area triangle is

A =
3
2

sin
2π
3

=
3
2
·
√

3
2

=
3
√

3
4
≈ 1.299038106,

and the ratio of this area to that of the circumscribed circle is

A

π
≈ 0.413496672.

So the inscribed triangle of maximal area occupies about 41% of the area of the circle; this result meets the
test of plausibility.
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C13S09.038: We maximize and minimize the square of the distance of a point (x, y) of the ellipse from
the origin; thus we maximize and minimize

f(x, y) = x2 + y2

subject to the constraint g(x, y) = x2 + xy + y2 − 3 = 0. The Lagrange multiplier equations are

2x = λ(2x + y) and 2y = λ(2y + x). (1)

Solution 1 (in which we ignore the Suggestion): Clearly λ �= 0. So if neither x nor y is zero, we have

1
λ

=
2x + y

2x
=

2y + x

2y
;

1 +
y

2x
= 1 +

x

2y
;

2y2 = 2x2;

y2 = x2.

Case 1: y = x. Then the constraint equation yields 3x2 = 3, so we obtain the two critical points (1, 1),
and (−1, −1).

Case 2: y = −x. Then the constraint equation yields x2 = 3, so we obtain the two critical points(√
3 , −

√
3

)
and

(
−
√

3 ,
√

3
)
.

Case 3: x = 0. Then the constraint equation yields y = ±
√

3 , so we obtain the two critical points
(
0,
√

3
)

and
(
0, −
√

3
)
,

Case 4: y = 0. In a manner similar to that in Case 3, we obtain the two critical points
(√

3 , 0
)

and(
−
√

3 , 0
)
.

The values of f(x, y) at these eight critical points are 2, 2, 6, 6, 3, 3, 3, and 3. Thus the two points on
the ellipse closest to the origin are (1, 1) and (−1, −1), each at distance

√
2 . The two farthest from the

origin are
(√

3 , −
√

3
)

and
(
−
√

3 ,
√

3
)
, each at distance

√
6 .

Solution 2 (in which we follow the Suggestion): We write the equations in (1) in the form

(2− 2λ)x− λy = 0,

λx− (2− 2λ)y = 0.

Their solution (x, y) cannot be (0, 0), and there must be a nontrivial solution. Hence the determinant of
the preceding system is zero:

−(2− 2λ)2 + λ2 = 0;

−4 + 8λ− 4λ2 + λ2 = 0;

3λ2 − 8λ + 4 = 0;

(λ− 2)(3λ− 2) = 0.

Case 1: λ = 2
3 . Then (1) yields
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2
3
x− 2

3
y = 0,

so that y = x. This brings us to Case 1 of the previous solution.

Case 2: λ = 2. Then (1) yields

−2x− 2y = 0,

so that y = −x. This brings us to Case 2 of the previous solution.

The conclusions in the second solution are exactly the same as in the first solution, but the annoying Cases
3 and 4 of the first solution are avoided.

C13S09.039: We are to use the Suggestion in Problem 38 to find the point or points on the hyperbola
g(x, y) = x2 + 12xy + 6y2 − 130 = 0 that are closest to the origin. To do so we minimize f(x, y) = x2 + y2

subject to the constraint g(x, y) = 0. The Lagrange multiplier equations are

2x = λ(2x + 12y) and 2y = λ(12y + 12x). (1)

When put into the form suggested in Problem 38, they become

(1− λ)x− 6λy = 0,

6λx + (6λ− 1)y = 0.

Because (x, y) = (0, 0) is not a solution of this system and because it must therefore have a nontrivial
solution, the determinant of this system must be zero:

(1− λ)(6λ− 1) + 36λ2 = 0;

30λ2 + 7λ− 1 = 0;

(3λ + 1)(10λ− 1) = 0.

Case 1: λ = − 1
3 . Then (1) implies that

4
3
x + 2y = 0 : y = −2

3
x.

Substitution of the last equation for y into the constraint equation g(x, y) = 0 yields x2 + 30 = 0, so there
is no solution in Case 1.

Case 2: λ = 1
10 . Then (1) implies that

9
10

x− 6
10

y = 0 : y =
3
2
x.

Substitution of the last equation for y into the constraint equation yields x2 = 4, so we obtain two solutions
in this case: (−2, −3) and (2, 3). These two points of the hyperbola are its points closest to (0, 0), each at
distance

√
13 .

C13S09.040: We are to find the points of the ellipse g(x, y) = 4x2 + 9y2 − 36 = 0 closest to, and farthest
from, the point (1, 1). So we maximize and minimize f(x, y) = (x− 1)2 +(y− 1)2 subject to the constraint
g(x, y) = 0. The Lagrange multiplier equations are
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2(x− 1) = 8λx, 2(y − 1) = 18λy. (1)

Anticipating some tough computations ahead, we let Mathematica 3.0 complete the solution. First we
eliminate λ from the equations in (1).

Eliminate[ {2∗(x - 1) == 8∗lambda∗x, 2∗(y - 1) == 18∗lambda∗y}, lambda ]

x(4 + 5y) = 9y

Then we solve this equation for x (remember that “%” refers to the “last output”):

Solve[ %, x ]

x =
9y

4 + 5y

(Actually, Mathematica returns
{{

x→ 9y
4 + 5y

}}
,

but we are rewriting its output for clarity.) We substitute this expression for x in the constraint equation:

4∗x∗x + 9∗y∗y - 36 /. %

−36 + 9y2 +
324y2

(4 + 5y)2

Together[%]

9(25y4 + 40y3 − 48y2 − 160y − 64)
(4 + 5y)2

Numerator[%]

9(25y4 + 40y3 − 48y2 − 160y − 64)

Cancel[ %/9 ]

25y4 + 40y3 − 48y2 − 160y − 64

Solve[ % == 0, y ];

The semicolon suppresses the very complicated three-quarter page exact solution of the quartic equation.
Even the command Simplify[%], though effective, did not produce an answer simple enough for repro-
duction here. So we turned to numerical techniques:

N[%,30]

Mathematica returned two real solutions and two non-real complex solutions. The two real solutions are

y1 ≈ −0.4940738409036014 and y2 ≈ 1.8181224938702933.
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-3 -2 -1 1 2 3

-2

-1

1

2

(Of course, the student can obtain these using Newton’s method.) The corresponding values of x can be
obtained from the previous equation

x =
9y

4 + 5y
,

and we found that

x1 ≈ −2.9070182041747204 and x2 ≈ 1.2499875374924531.

The distance from (x1, y1) to (1, 1) is approximately 4.182947 and the distance from (x2, y2) to (1, 1) is
approximately 0.855464, so the former is the point of the ellipse farthest from (1, 1) and the latter is the
point closest to (1, 1). The ellipse and the line segments connecting (1, 1) to each of (x1, y1) and (x2, y2)
are shown next.

C13S09.041: The highest point has the largest z-coordinate; the lowest point, the smallest. Consequently
we are to maximize and minimize

f(x, y z) = z given g(x, y, z) = x2 + y2 − 1 = 0 and h(x, y, z) = 2x + y − z − 4 = 0.

Because the ellipse is formed by the intersection of a plane with a vertical cylinder, there will be a unique
highest point and a unique lowest point unless the plane is horizontal or vertical—and it is not; one of its
normal vectors is n = 〈 2, 1, −1 〉. So we expect to find exactly two critical points. The Lagrange multiplier
equations are

2λx + 2µ = 0, 2λy + µ = 0, −µ = 1,

and when the third is substituted into the first two, we find that

2λx = −2 = 4λy.

But then λ �= 0, and therefore x = 2y. Substitution of this information into the first constraint yields
5y2 = 1 and thus leads to the following two cases.

Case 1: y = 1
5

√
5 . Then x = 2

5

√
5 , and the second constraint implies that z =

√
5 − 4.

Case 2: y = − 1
5

√
5 . Then x = − 2

5

√
5 , and the second constraint implies that z = −

√
5 − 4.
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Therefore the lowest point on the ellipse is
(
− 2

5

√
5 , − 1

5

√
5 , −

√
5 − 4

)
and the highest point on the ellipse is(

2
5

√
5 , 1

5

√
5 ,
√

5 − 4
)
. See Problem 48 of Section 13.8 for an alternative method of solving such problems.

C13S09.042: We are to maximize and minimize f(x, y, z) = z given the two constraint equations
g(x, y, z) = z2 − x2 − y2 = 0 and h(x, y, z) = x + 2y + 3z − 3 = 0. It is clear from the geometry of
the problem that there are unique solutions, and we expect to find exactly two critical points. The Lagrange
multiplier vector equation is

〈 0, 0, 1 〉 = λ〈−2x, −2y, 2z 〉+ µ〈 1, 2, 3 〉,

which yields the scalar equations

−2λx + µ = 0, −2λy + 2µ = 0, and 2λz + 3µ = 1.

Note first that if λ = 0, then the first of these equations implies that µ = 0, and then the third implies that
0 = 1. Thus λ �= 0. Then, because the first two equations imply that

4λx = 2µ = 2λy, it follows that y = 2x.

Substitution of this information into the first constraint yields z2 = 5x2, and we obtain the following two
cases.

Case 1: z = x
√

5 . The second constraint implies that 5x + 3x
√

5 = 3, and thus that

x =
3

5 + 3
√

5
=

9
√

5 − 15
20

, y =
9
√

5 − 15
10

, and z =
9− 3

√
5

4
.

Case 2: z = −x
√

5 . The second constraint implies that 5x− 3x
√

5 = 3, and thus that

x =
3

5− 3
√

5
= −9

√
5 + 15
20

, y = −9
√

5 + 15
10

, and z =
9 + 3

√
5

4
.

Case 1 gives the coordinates of the lowest point on the ellipse and Case 2 gives the coordinates of its highest
point.

C13S09.043: We are to maximize and minimize f(x, y, z) = x2 + y2 + z2 given the two constraints
g(x, y, z) = x2 + y2 − z2 = 0 and h(x, y, z) = x + 2y + 3z − 3 = 0. From the geometry of the problem we
see that there will be a unique maximum distance and a unique minimum distance, but there may be more
than two critical points. The Lagrange multiplier vector equation is

〈 2x, 2y, 2z 〉 = λ〈 2x, 2y, −2z 〉+ µ〈 1, 2, 3 〉,

and the corresponding scalar equations are

2x = 2λx + µ, 2y = 2λy + 2µ, and 2z = −2λz + 3µ.

It follows that

6µ = 12x− 12λx = 6y − 6λy = 4z + 2λz,

and hence 12x(1− λ) = 6y(1− λ).
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Case 1: λ = 1. Then 6z = 0, and so z = 0. Then the first constraint implies that x = y = 0, which
contradicts the second constraint. This leaves only the second case.

Case 2: λ �= 1. Then y = 2x. Then the first constraint takes the form 5x2 = z2, and it is convenient to
consider separately two subcases.

Case 2a: z = x
√

5 . Then the second constraint yields

x =
3
20

(
−5 + 3

√
5

)
, y =

3
10

(
−5 + 3

√
5

)
, and z =

3
4

(
3−
√

5
)
.

Case 2b: z = −x
√

5 . Then the second constraint yields

x = − 3
20

(
5 + 3

√
5

)
, y = − 3

10

(
5 + 3

√
5

)
, and z =

3
4

(
3 +
√

5
)
.

The coordinates in Case 2a are those of the point closest to the origin; its distance from the origin is
approximately 0.81027227. The coordinates of the point farthest from the origin are those given in Case 2b;
the distance from this point to the origin is approximately 5.55368876.

C13S09.044: We are to minimize the function f(x, y, z) = xy + 3xz + 7yz given the two constraint
equations g(x, y, z) = xyz− 12 = 0 and 1

6 x = 1
2 y; we rewrite the latter in the form h(x, y, z) = x− 3y = 0.

The Lagrange multiplier equations are

y + 3z = λyz + µ, x + 7z = λxz − 3µ, and 3x + 7y = λxy.

We also have the constraint equations

xyz = 12 and x = 3y.

Here we depart from the usual procedure of eliminating the multipliers because the last constraint equation
is easy to use to eliminate x without complicating the other four equations. They become

y + 3z = λyz + µ, 3y + 7z = 3λyz − 3µ,

16y = 3λy2, 3y2z = 12.

Then, because y �= 0, the equation 16y = 3λy2 is equivalent to 3λy = 16, so that

λ =
16
3y

.

Then elimination of λ from the remaining three equations yields

y + 3z =
16
3
z + µ, 3y + 7z = 16z − 3µ, and y2z = 4.

Multiply the first of these by 3 and add the result to the second to eliminate µ:

6y + 16z = 32z, so that 3y = 8z; that is, z =
3
8
y.

Combine this with the equation y2z = 4 to find that

3
8
y3 = 4 : y3 =

32
3
, so that y =

2
3
· (36)1/3 ≈ 2.201284833.
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It now follows that

z =
3
8
y =

1
4
· (36)1/3 ≈ 0.825481812 and x = 3y = 2 · (36)1/3 ≈ 6.603854498.

These are the dimensions that minimize the cost of the ice-cube tray shown in Fig. 13.9.10. Note that the
ratio x : y : z = 2 : 2

3 : 1
4 is in fact 24 : 8 : 3, not quite the monolith’s ratio of 9 : 4 : 1. Well, that would

have been too much to hope for.

C13S09.045: Suppose that f(x, y, z) and g(x, y, z) have continuous first-order partial derivatives. Sup-
pose also that the maximum (or minimum) of f(x, y, z) subject to the constraint

g(x, y, z) = 0

occurs at a point P at which ∇g(P ) �= 0. Prove that

∇f(P ) = λ∇g(P )

for some number λ.

Proof: Parametrize the surface g(x, y, z) = 0 at and near the point P with a smooth function r(u, v) and

in such a way that ru(u, v) and rv(u, v) are nonzero at and near P . Suppose that r(u0, v0) =
−⇀
OP . Then

f(r(u, v)) has a maximum (or minimum) at (u0, v0). Hence

Du(f(r(u, v))) = 0 and Dv(f(r(u, v))) = 0.

Hence

∇f(P ) · ru(u0, v0) = 0 and ∇f(P ) · rv(u0, v0) = 0.

But g(r(u, v)) ≡ 0, and hence

∇g(P ) · ru(u0, v0) = 0 and ∇g(P ) · rv(u0, v0) = 0.

Therefore ∇f(P ) and ∇g(P ) are parallel to ru(u0, v0)× rv(u0, v0). Consequently, because ∇g(P ) �= 0,
∇f(P ) = λ∇g(P ) for some scalar λ. �

C13S09.046: If we project the ellipse into the xy-plane, we should obtain a circle or another ellipse. The
center of the original ellipse will project onto the center of its image, and this will locate the center of the
ellipse. Then we can find its minor and major semiaxes by minimizing and maximizing the distance of points
of the ellipse from its center.

Every point in the intersection satisfies the equations z = x2 + y2 = 12 − x − y, and hence satisfies the
equation x2 + x + y2 + y = 12; that is,

(
x +

1
2

)2

+
(
y +

1
2

)2

= 12 +
1
2

=
25
2
.

Hence the projection of the ellipse into the xy-plane is a circle with center
(
− 1

2 , −
1
2

)
. Because the center of

the ellipse lies in the plane x + y + z = 12, its coordinates are C
(
− 1

2 , −
1
2 , 13

)
.

Next we maximize and minimize
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f(x, y, z) =
(
x +

1
2

)2

+
(
y +

1
2

)2

+ (z − 13)2

given the constraints g(x, y, z) = x + y + z − 12 = 0 and h(x, y, z) = x2 + y2 − z = 0. The Lagrange
multiplier equations are

2x + 1 = λ + 2µx,

2y + 1 = λ + 2µy,

2z − 26 = λ− µ.

We solve the third equation for λ = µ + 2z − 26 and substitute for λ in the other two equations:

2x + 1 = µ + 2z − 26 + 2µx,

2y + 1 = µ + 2z − 26 + 2µy.

Subtract the second of these from the first to obtain x− y = µ(x− y). There are two cases to consider.

Case 1: y = x. Then the constraint equations yield

2x + z = 12, z = 2x2;

2x2 + 2x− 12 = 0;

x2 + x− 6 = 0;

(x + 3)(x− 2) = 0.

Thus x = −3 or x = 2. Thus we obtain the two critical points (−3, −3, 18) and (2, 2, 8).

Case 2: y �= x. Then µ = 1. The earlier equation 2x + 1 = µ + 2z − 26 + 2µx now becomes

2x + 1 = 1 + 2z − 26 + 2x, and thus z = 13.

The constraint equations become x + y = −1 and x2 + y2 = 13. We solve the first of these for y = −1− x

and substitute in the second to obtain x2+x−6 = 0, exactly as in Case 1. But now we obtain two additional
critical points: (−3, 2, 13) and (2, −3, 13).

It turns out that the two critical points of Case 1 are at distance 5
2

√
6 ≈ 6.123724356958 from C, whereas

the two critical points of Case 2 are at distance 5
2

√
2 ≈ 3.535533905933 from C. Therefore the major

semiaxis of the ellipse has length 5
2

√
6 and the minor semiaxis has length 5

2

√
2 .

C13S09.047: Given the constant P , we are to maximize

A(x, y, z) =
1
2
xy

given the constraints g(x, y, z) = x + y + z − P = 0 and h(x, y, z) = x2 + y2 − z2 = 0. The Lagrange
multiplier equations are

1
2
y = λ + 2µx,

1
2
x = λ + 2µy, and 0 = λ− 2µz.
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We solve the last equation for λ = 2µz and substitute in the other two to obtain

y = 4µz + 4µx,

x = 4µz + 4µy.

We subtract the second of these from the first to find that y − x = −4µ(y − x). There are two cases to
consider.

Case 1: y = x. Then the constraint equations become 2x + z = P and z2 = 2x2. We solve the first for z

and substitute in the second to obtain

(P − 2x)2 = 2x2;

P − 2x = ±x
√

2 ;

2x± x
√

2 = P ;

x =
P

2±
√

2
.

We must take the plus sign in the last denominator because x � P . Thus we obtain our first critical point:

x =
P

2 +
√

2
=

2−
√

2
2

P, y = x, z = P − 2x =
(√

2 − 1
)
P.

In this case the area of the triangle is

A =
1
2
xy =

(
2−
√

2
)2

8
P 2 =

3− 2
√

2
4

P 2 ≈ (0.042893218813)P 2.

Case 2: y �= x. Then 4µ = −1, so that µ = − 1
4 . Our earlier equations

y = 4µ(z + x) and x = 4µ(z + y)

now become y = −z − x and x = −z − y, each of which is impossible as, at maximum, x , y, and z are all
positive.

Thus Case 1 is the only case that produces a critical point. We may conclude that y = x and that the right
triangle with fixed perimeter and maximum area is isosceles.

C13S09.048: We are to maximize

A(x, y, z, α) =
1
2
xy sinα

given the constraints x+ y+ z−P = 0 and x2 + y2− 2xy cosα− z2 = 0. The Lagrange multiplier equations
are

1
2
y sinα = λ + 2µx− 2µy cosα,

1
2
x sinα = λ + 2µy − 2µx cosα,

0 = λ− 2µz, and

1
2
xy cosα = 2µxy sinα.
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A B

C D

The third of these equations implies that λ = 2µz. We substitute for λ in the other three equations and
obtain

y sinα = 4µz + 4µx− 4µy cosα, (1)

x sinα = 4µz + 4µy − 4µx cosα, (2)

xy cosα = 4µxy sinα. (3)

At maximum area, x and y are nonzero, so Eq. (3) implies that cosα = 4µ sinα. Now subtract Eq. (2)
from Eq. (1) to obtain

(y − x) sinα = −4µ(y − x)− 4µ(y − x) cosα.

There are two cases to consider.

Case 1: y �= x. Then

sinα = −4µ− 4µ cosα = −4µ(1 + cosα)

= −4µ(1 + 4µ sinα) = −4µ− 16µ2 sinα,

and thus (16µ2 + 1) sinα = −4µ. Thus

(16µ2 + 1) sin2 α = −4µ sinα = − cosα,

and hence cosα < 0. But this implies that π/2 < α � π.

But α cannot be an obtuse angle at maximum area. See the preceding figure. If α is the angle CAB, replace
α with π−α and ensure that AC and AD have the same length. Then triangle ABD has the same area as
triangle ABC but smaller perimeter. By enlarging triangle ABD until it has perimeter P , you will obtain
a triangle with perimeter P and area larger than that of triangle ABC. This is why, at maximum, α must
be an acute angle. Thus we have shown that Case 1 is impossible. This leaves only

Case 2: y = x. Now repeat the earlier argument with y, z, and the angle β between them to show that
y = z as well.

Therefore the triangle with fixed perimeter P and maximum area is equilateral.

C13S09.049: The hexagon in Fig. 13.9.13 is the union of four congruent trapezoids, one in each quadrant.
The area of the trapezoid in the first quadrant is 1

2 (1 + y)x, so the total area of the hexagon is

A(x, y) = 2x(1 + y),
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which we are to maximize subject to the constraint x2 +y2−1 = 0. Note also that 0 � x � 1 and 0 � y � 1.
The Lagrange multiplier equations are

2 + 2y = 2λx and 2x = 2λy,

which yield (multiply the first by y, the second by x)

2y + 2y2 = 2λxy = 2x2, so that y2 + y = x2.

Substitute for x2 in the constraint equation to obtain 2y2 + y − 1 = 0, so that (2y − 1)(y + 1) = 0. Thus
y = 1

2 because y �= −1. So the only critical point is
(

1
2

√
3 , 1

2

)
. To verify that the resulting hexagon is

regular, it is sufficient (by the various symmetries in the figure) to verify that the distances from
(

1
2

√
3 , 1

2

)
to (0, 1) and from

(
1
2

√
3 , 1

2

)
to

(
1
2

√
3 , − 1

2

)
are equal. They are; each distance is 1.

C13S09.050: We are to maximize the volume

V (x, y) = 2πx2y + 2 · 1
3
· πx2(1− y);

to simplify the notation slightly, we maximize instead

f(x, y) =
3
2π

V (x, y) = 3x2y + x2 − x2y = 2x2y + x2

subject to the constraint x2 + y2 − 1 = 0. Note also that 0 � x � 1 and 0 � y � 1. The Lagrange multiplier
equations are

4xy + 2x = 2λx and 2x2 = 2λy,

and it follows that 4xy2 + 2xy = 2λxy = 2x3. But x �= 0 at maximum volume, and hence 2y2 + y = x2.
Substitution for x2 in the constraint leads to

3y2 + y − 1 = 0, so that y =
−1±

√
13

6
,

and of course the plus sign is to be chosen. Then

x2 = 1− y2 =
11 +

√
13

18
,

and hence, at maximum volume of the solid, the radius of the cylinder is

x =
1
3

√
11 +

√
13

2
≈ 0.9007882744038995

and its height is

2y =
−1 +

√
13

3
≈ 0.8685170918213398.

The maximum volume is approximately 3.175419716, which is just under 76% of the volume of the circum-
scribed sphere, so the answer is certainly plausible.

C13S09.051: We are to minimize f(x, y) = x2 + y2 given the constraint (x− 1)2 − y = 0. The Lagrange
multiplier equations are
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2x = 2λ(x− 1) and 2y = −λ,

and elimination of λ leads to the equation x = −2y(x− 1). We combine this with the constraint equation
and ask Mathematica 3.0 to solve the resulting two equations:

Solve[ { x == -2∗y∗(x - 1), y == (x - 1)∧2 }, { x, y } ]

The only real solution is

x = 1 +

(
−9 +

√
87

)1/3

62/3
− 1[

6 ·
(
−9 +

√
87

)]1/3 ≈ 0.4102454876985416,

y =
1
36


−12 +

64/3

(
−9 +

√
87

)2/3
+

[
6 ·

(
−9 +

√
87

)]2/3


 ≈ 0.3478103847799310.

C13S09.052: We are to maximize and minimize f(x, y) = (x − 3)2 + (y − 2)2 given the constraint
4x2 + 9y2 − 36 = 0. The Lagrange multiplier equations are

2(x− 3) = 8λx and 2(y − 2) = 18λy.

We eliminate λ by multiplication of the first equation by 9
2 y and the second by 2x, which yields

9y(x− 3) = 36λxy = 4x(y − 2);

thus we ask Mathematica 3.0 to solve simultaneously the equations

5xy + 8x = 27y and 4x2 + 9y2 = 36 :

Solve[ { 5∗x∗y + 8∗x == 27∗y, 4∗x∗x + 9∗y∗y == 36 }, { x, y } ]

The computer algebra program returns two real solutions (and two complex non-real solutions). Their exact
values are extremely long and complicated, so we provide only the numerical approximations to the two real
solutions:

x1 ≈ 2.3558738622119243, y1 ≈ 1.2382529530389304;

x2 ≈ −2.8814378699195849, y2 ≈ −0.5567029137074361.

Hence the point of the ellipse closest to (3, 2) is (x1, y1) and the point farthest from (3, 2) is (x2, y2).

C13S09.053: We are to find the first-quadrant point of the hyperbola xy = 24 that is closest to the point
P (1, 4), so we minimize f(x, y) = (x− 1)2 +(y− 4)2 subject to the constraint xy = 24 and the observation
that x > 0 and y > 0. The Lagrange multiplier equations are

2(x− 1) = λy and 2(y − 4) = λx.

To eliminate λ, multiply the first equation by x and the second by y to obtain

2x(x− 1) = λxy = 2y(y − 4).
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We simplified this equation and asked Mathematica 3.0 to solve it simultaneously with the constraint equa-
tion:

Solve[ { x∗x - x == y∗y - y, x∗y == 24 }, { x, y } ]

The resulting output is too long to reproduce here, but to evaluate the results numerically to 20 places we
entered

N[ %, 20 ]

and obtained four pairs of solutions, only two of which were real:

x1 = 4, y1 = 6 and x2 ≈ −5.5338281384822297, y2 ≈ −4.3369615751352589.

Hence the point in the first quadrant on the hyperbola xy = 24 closest to P is (4, 6). It seems very likely
that (x2, y2) is the point on the hyperbola in the third quadrant closest to P .

C13S09.054: To find the point on the surface xyz = 1 closest to the point P (1, 2, 3), we minimize
f(x, y, z) = (x − 1)2 + (y − 2)2 + (z − 3)2 subject to the constraint xyz = 1. The Lagrange multiplier
equations are

2(x− 1) = λyz, 2(y − 2) = λxz, and 2(z − 3) = λxy.

To solve these using Mathematica 3.0, we entered the command

Solve[ { 2∗(x - 1) == lambda∗y∗z, 2∗(y - 2) == lambda∗x∗z,

2∗(z - 3) == lambda∗x∗y, x∗y∗z == 1 }. { x, y, z, lambda } ]

The resulting output was far too long for inclusion here, but its numerical evaluation occupied only three-
quarters of a page. There are twelve quadruples of solutions, only four of which are real. Omitting the values
of λ, they are

x1 ≈ 2.0677534914056975, y1 ≈ −0.7910474616309738, z1 ≈ −0.6113623587188331;

x2 ≈ −0.8475829693534350, y2 ≈ 2.6018676160318058, z2 ≈ −0.4534533163839419;

x3 ≈ 0.1760798739948590, y3 ≈ 1.9246211375645630, z3 ≈ 2.9508357067673743;

x4 ≈ −0.6647722146060670, y4 ≈ −0.4514455938540451, z4 ≈ 3.3321283557432110.

Next, evaluation of f(x, y, z) at these points yielded

f(x1, y1, z1) ≈ 21.9719815374570127, f(x2, y2, z2) ≈ 15.7021472643159114,

f(x3, y3, z3) ≈ 0.6869434746674517, f(x4, y4, z4) ≈ 8.8913612708384896.

Therefore (x3, y3, z3) is the point on the surface xyz = 1 closest to the point P . Because the surface
xyz = 1 contains points arbitrarily far from P , there can be no global maximum value of f(x, y, z) there.
To visualize the surface, note that its intersection with the horizontal plane z = K consists of both branches
of the hyperbola xy = 1/K provided that K �= 0. Thus the surface consists of four sheets, so the other
three critical points we found are very likely local minima of f(x, y, z) there.
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C13S09.055: To find the point on the spherical surface with equation

(x− 1)2 + (y − 2)2 + (z − 3)2 − 36 = 0 (1)

that are closest to and farthest from the origin, note that there do exist such points, and probably only one of
each type, so we expect to find only two critical points. We maximize and minimize f(x, y, z) = x2 +y2 +z2

subject to the constraint in Eq. (1). The Lagrange multiplier equations are

2x = 2λ(x− 1), 2y = 2λ(y − 2), and 2z = 2λ(z − 3).

To solve these, we entered the Mathematica 3.0 command

Solve[ { x == lambda∗(x - 1), y == lambda∗(y - 2), z == lambda∗(z - 3),

(x - 1)∧2 + (y - 2)∧2 + (z - 3)∧2 == 36 }, { x, y, z, lambda } ]

As expected, there are two solutions. Omitting the values of λ, they are

x1 =
7− 3

√
14

7
, y1 =

14− 6
√

14
7

, z1 =
21− 9

√
14

7
and

x2 =
7 + 3

√
14

7
, y2 =

14 + 6
√

14
7

, z2 =
21 + 9

√
14

7
.

Their numerical values are

x1 ≈ −0.6035674514745463, y1 ≈ −1.2071349029490926, z1 ≈ −1.8107023544236389 and

x2 ≈ 2.6035674514745463, y2 ≈ 5.2071349029490926, z2 ≈ 7.8107023544236389.

The first of these is obviously much closer to the origin than the second, so (x1, y1, z1) is the point of the
spherical surface closest to the origin and (x2, y2, z2) is the point of the spherical surface farthest from the
origin.

C13S09.056: We are given the ellipsoidal surface S with equation

4x2 + 9y2 + z2 − 36 = 0, (1)

and we are to find the points of S closest to and farthest from the origin, so we maximize and minimize
f(x, y, z) = x2 + y2 + z2 subject to the constraint in Eq. (1). The Lagrange multiplier equations are

2x = 8λx, 2y = 18λy, 2z = 2λz;

that is,

x = 4λx, y = 9λy, z = λz.

The instructions tell us to use a computer algebra system as needed, but none is needed here. Note first
that λ �= 0. If x and y are nonzero, then 4λ = 1 = 9λ, which is impossible. Similarly, x and z cannot both
be nonzero, nor can both y and z. So at most one of x, y, and z is nonzero. Also, at least one of x, y,
and z is nonzero. Hence there are only three cases.
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Case 1: x �= 0, y = 0 = z. Then x = ±3. The two critical points (−3, 0, 0) and (3, 0, 0) are at distance 3
from the origin.

Case 2: y �= 0, x = 0 = z. Then y = ±2. The two critical points (0, −2, 0) and (0, 2, 0) are at distance 2
from the origin.

Case 3: z �= 0, x = 0 = y. Then z = ±6. The two critical points (0, 0, −6) and (0, 0, 6) are at distance 6
from the origin.

Summary: The two points of Case 2 are closest to the origin; the two points of Case 3 are farthest from the
origin. The two points of Case 1 are not even local extrema. You can verify the last assertion by examining
the behavior of f near these points, first restricted to the xy-plane, then to the xz-plane.

C13S09.057: We are to find the points of the ellipse with equation 4x2 + 9y2 = 36 closest to, and
farthest from, the line with equation x + y = 10. What if the ellipse and the line intersect? If they do,
then the equation 4x2 + 9(10 − x)2 = 36 will have one or two real solutions. But this equation reduces to
13x2 − 180x + 864 = 0, which has discriminant

∆ = 1802 − 4 · 13 · 864 = −12528 < 0.

Because the quadratic has no real solutions, the ellipse and the line do not meet. To find the answers,
we could assume that (x, y) is a point of the ellipse, that (u, v) is a point of the line, and maximize and
minimize

f(x, y, u, v) = (x− u)2 + (y − v)2

subject to the constraints 4x2 + 9y2 − 36 = 0 and u + v − 10 = 0. The Lagrange multiplier equations are

2(x− u) = 8λx, 2(y − v) = 18λy,

−2(x− u) = µ, −2(y − v) = µ.

Mathematica 3.0 can solve the system of six simultaneous equations (the four Lagrange multiplier equations
and the two constraint equations) exactly in a few tenths of a second, but this problem can be solved by
hand. Observe that if the line is moved without rotation toward the ellipse, when it first touches the ellipse
it will be touching the point of the ellipse closest to the original line and the moving line will be tangent to
the ellipse at that point. As the line continues to move across the ellipse, it will last touch the ellipse at the
point of the ellipse farthest from the original line and the moving line will be tangent to the ellipse at that
point. Because the line has slope −1, all we need do is find the points of the ellipse where the tangent line
has slope −1. Implicit differentiation of the equation of the ellipse yields

8x + 18y
dy

dx
= 0, so that

dy

dx
= − 8x

18y
= −4x

9y
.

The extrema occur when

dy

dx
= −1; 4x = 9y; y =

4
9
x.

Substitution of the last equation for y in the equation of the ellipse yields the two solutions x = ± 9
13

√
13 .

So the points of the ellipse closest to, and farthest from, the line are (respectively)
(

9
13

√
13 ,

4
13

√
13

)
and

(
− 9

13

√
13 , − 4

13

√
13

)
.

28



(You can tell the maximum from the minimum by observing that the line is to the “northeast” of the ellipse.)

C13S09.058: Suppose that (x, y, z) is a point of the ellipsoid with equation 4x2 + 9y2 + z2 = 36 and that
(u, v, w) is a point of the plane with equation 2x+ 3y + z = 10. Then we should maximimze and minimize

f(x, y, z, u, v, w) = (x− u)2 + (y − v)2 + (z − w)2

subject to the constraints given by the equations of the ellipsoid and the line. The Lagrange multiplier
equations and the constraint equations form a system of eight equations in eight unknowns, one of which is
nonlinear; they are:

2(x− u) = 8λx, 2(y − v) = 18λy, 2(z − w) = 2λz,

−2(u− x) = 2µ, −2(y − v) = 3µ, −2(z − 2) = µ,

4x2 + 9y2 + z2 = 36, 2u + 3v + w = 10.

These equations are difficult to solve by hand, but a computer algebra program—even if unable to solve
them exactly—could yield highly accurate approximations in seconds. A simpler alternative is to apply the
condition that the ellipsoid’s normal vector 〈 8x, 18y, 2z 〉 must be a scalar multiple of the plane’s normal
vector 〈2, 3, 1 〉. This gives the equations

8x = 2λ, 18y = 3λ, 2z = λ, 4x2 + 9y2 + z2 = 36,

whose two xyz-solutions are comparitively easy to find. Thus we find the two critical points

P1

(√
3 ,

2
3

√
3 , 2
√

3
)

and P2

(
−
√

3 , −2
3

√
3 , −2

√
3

)
.

It may appear that these are the points of the ellipsoid nearest to and farthest from the plane.

But we must investigate the possibility that the plane and the ellipsoid intersect. Elimination of z from
their equations gives the equation

4x2 + 9y2 + (10− 2x− 3y)2 = 36,

which can be simplified to

4x2 + 9y2 + 6xy − 20x− 30y + 32 = 0.

If we substitute x = 2 (for instance), we get the quadratic equation 9y2 − 18y + 8 = 0 with real solutions
y = 2

3 and y = 4
3 , which in turn give z = 4 and z = 2, respectively. Thus the ellipsoid and the plane meet;

their intersection contains the points
(
2, 2

3 , 4
)

and
(
2, 4

3 , 2
)
, among others. It follows (Why?) that the plane

and ellipsoid intersect in an ellipse that evidently lies in the first octant. All the points on the ellipse are
the points of ellipsoid closest to the plane; they are at distance zero from the plane. The point P1 found
previously is not the farthest point from the plane; it provides only a local maximum value for the distance
function. The point P2 is the point of the ellipsoid farthest from the plane.

C13S09.059: The sides of the box must be parallel to the coordinate planes. Let (x, y, z) be the upper
vertex of the box that lies in the first octant, so that at maximum volume we have x, y, and z all positive.
The box has width 2x, depth 2y, and height z = 9 − x2 − 2y2, so we are to maximize box volume
V (x, y, z) = 4xyz given the constraint x2 + 2y2 + z − 9 = 0. The Lagrange multiplier equations are
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4yz = 2λx, 4xz = 4λy, and 4xy = λ.

These equations (together with the constraint equation) are relatively easy to solve by hand. To solve them
using Mathematica 3.0, we entered the command

Solve[ { 4∗y∗z == 2∗lambda∗x, 4∗x∗z == 4∗lambda∗y, 4∗x∗y == lambda,

x∗x + 2∗y∗y + z == 9 }, { x, y, z, lambda } ]

The computer returned nine solutions, but eight involve negative or zero values of x, y, or z; the only viable
solution is

x =
3
2
, y =

3
4

√
2 , z =

9
2
,

and therefore the box of maximum volume has volume V =
81
4

√
2 .

C13S09.060: We are given the plane P with equation 4x+ 9y + z = 0 and the elliptic paraboloid S with
equation 2x2 +3y2− z = 0. Because the paraboloid becomes arbitrarily steep as x and y take on very large
(positive or negative) values, the intersection of P and S cannot be a parabola or a hyperbola; it must be
an ellipse, so there is a unique highest point and a unique lowest point on the intersection. To find it, we
maximize and minimize f(x, y, z) = z subject to the constraints in the equations of P and S. The Lagrange
multiplier equations are

0 = 4λ + 4µx, 0 = 9λ + 6µy, and 1 = λ− µ.

These equations are easy to solve by hand. First we show that µ �= 0. If µ = 0 then the first of the previous
equations implies that λ = 0, and this contradicts the third equation. Hence µ �= 0. Then the first two
equations yield

−36λ = 36µx = 24µy, so that 3µx = 2µy.

Therefore y = 3
2 x. Substitution for y in the constraint equations yields

4x +
27
2
x + z = 0 and 2x2 +

27
4
x2 = z.

Elimination of z then yields

4x +
27
2
x + 2x2 +

27
4
x2 = 0;

16x + 54x + 8x2 + 27x2 = 0;

35x2 + 70x = 0;

x2 + 2x = 0.

If x = 0 then we obtain the critical point (0, 0, 0), clearly the lowest point on the intersection. If x = −2
then we obtain the critical point (−2, −3, 35), and this is the highest point on the ellipse.

C13S09.061: With n = 3 and k = 2 (for instance), the equations in (15) are
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g1(x1, x2, x3, x4) = 0,

g2(x1, x2, x3, x4) = 0,

g3(x1, x2, x3, x4) = 0

and the scalar component equations of the vector equation

∇f(x1, x2, x3, x4) = λ1∇g1(x1, x2, x3, x4) + λ2∇g2(x1, x2, x3, x4) + λ3∇g3(x1, x2, x3, x4)

are

D1f(x1, x2, x3, x4) = λ1D1g1(x1, x2, x3, x4) + λ2D1g2(x1, x2, x3, x4) + λ3D1g3(x1, x2, x3, x4),

D2f(x1, x2, x3, x4) = λ1D2g1(x1, x2, x3, x4) + λ2D2g2(x1, x2, x3, x4) + λ3D2g3(x1, x2, x3, x4),

D3f(x1, x2, x3, x4) = λ1D3g1(x1, x2, x3, x4) + λ2D3g2(x1, x2, x3, x4) + λ3D3g3(x1, x2, x3, x4),

D4f(x1, x2, x3, x4) = λ1D4g1(x1, x2, x3, x4) + λ2D4g2(x1, x2, x3, x4) + λ3D4g3(x1, x2, x3, x4).

Consequently we have altogether 3 + 4 = 7 equations in the seven unknowns λ1, λ2, λ3, x1, x2, x3, and
x4. —C.H.E.

C13S09.062: The ith Lagrange multiplier equation is 1 = λx1x2 · · ·xi−1xi+1 · · ·xn. Upon multiplying
by xi and using the constraint we get xi = λ for each i. Thus x1 = x2 = · · · = xn. Because each xi is
positive and their product is 1, it follows that the minimum value of f is attained with xi = 1 for each i,
1 � i � n. This shows that x1 +x2 + · · ·+xn � n. We get the arithmetic-geometric mean inequality almost
immediately when we substitute

xi =
ai

n
√
a1a2 · · · an

. —C.H.E.

C13S09.063: With

f(x, y) = x2 + y2 and g(x, y) =
a

x
+

b

y
− 1,

the Lagrange multiplier equations are

2x = − λ

x2
and 2y = − λ

y2
,

and it follows that 2x2 = −λa and 2y2 = −λb. Then division of the last equation by the one before it
yields y = xb1/3a−1/3, and then substitution of this value in the constraint equation readily gives x =
a1/3(a2/3 + b2/3). Thus y = b1/3(a2/3 + b2/3), and substitution of these values of x and y gives

Lmin =
√
x2 + y2 =

(
a2/3 + b2/3

)3/2

. —C.H.E.

C13S09.064: Part (a): Immediate. Part (b): With a = b = c = 1, we have x = y = z by symmetry;
hence the equation

1
x

+
1
y

+
1
z

= 1
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yields x = y = z = 3, and it follows that the minimum area is

Amin =

√
34 + 34 + 34

4
=

9
2

√
3 .

Part (c): We use Mathematica.

Clear[x, y, z, λ]

f = x∧2∗y∧2 + x∧2∗z∧2 + y∧2∗z∧2;
g = a/x + b/y + c/z − 1;

eq1 = g == 0;

eq2 = D[f, x] == λ∗D[g, x]

eq3 = D[f, y] == λ∗D[g, y]

eq4 = D[f, z] == λ∗D[g, z]

2xy2 + 2xz2 = − λa

x2

2x2y + 2yz2 = − λb

y2

2x2z + 2y2z = − λc

z2

Now substitute your selected values of a, b, and c. To illustrate with a = b = c = 1, the equations we need
to solve are these:

eqs = { eq1, eq2, eq3, eq4 } /. { a → 1, b → 1, c → 1 }

−1 +
1
x

+
1
y

+
1
z

= 0, 2xy2 + 2xz2 = − λ

x2

2x2y + 2yz2 = − λ

y2
, 2x2z + 2y2z = − λ

z2
.

Because x, y, z, a, b, and c are all positive, it’s clear that λ is negative. So let’s try the initial guesses
x = y = z = 2 and λ = −1. (Generally, λ need not be estimated very accurately.)

soln = FindRoot[ eqs, { x, 2 }, { y, 2 }, { z, 2 }, { λ, −1 } ]

x = 3, y = 3, z = 3, λ = −972.

{ Sqrt[ f/4 /. soln ], N[ (9/2)∗Sqrt[3] ] }

7.794228634051643, 7.794228634059946 —C.H.E.

C13S09.065: We write P1(x, y, z) and P2(u, v, w) because the two points are independent. Mathematica

then yields the solution, as follows.

f = (x − u)∧2 + (y − v)∧2 + (z − w)∧2;
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eq1 = 2∗x + y + 2∗z == 15;

eq2 = x + 2∗y + 3∗z == 30;

eq3 = u − v - 2 ∗w == 15;

eq4 = 3∗u - 2∗v - 3∗w == 20;

eq5 = 2∗(x −u) == 2∗λ1 + λ2;

eq6 = 2∗(y −v) == λ1 + 2∗λ2;

eq7 = 2∗(z −w) == 2∗λ1 + 3∗λ2;

eq8 = −2∗(x − u) == λ3 + 3∗λ4;

eq9 = −2∗(y −v) == −λ3 − 2∗λ4;

eq10 = −2∗(z − w) == −2∗λ3 − 3∗λ4;

eqs = { eq1. eq2. eq3. eq4. eq5. eq6. eq7. eq8. eq9. eq10 };

vars = { x, y, z, u, v, w, λ1, λ2, λ3, λ4 };

soln = Solve[ eqs, vars ]

x = 7, y = 43, z = −21, u = 12, v = 41, w = −22,

λ1 = −8, λ2 = 6, λ3 = −8, λ4 = 6.

Thus the closest points are P1(7, 43, −21) on line L1 and P2(12, 41, −22) on line L2. —C.H.E.
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Section 13.10

C13S10.001: Given f(x, y) = 2x2 + y2 + 4x − 4y + 5, in the notation of Section 13.10 we have A = 4,
B = 0, and C = 2. Hence ∆ = 8 > 0 and A > 0 for all points (x, y), and so—by Theorem 1—any critical
point where both partials vanish is a local minimum. Here we have

fx(x, y) = 4x+ 4 and fy(x, y) = 2y − 4,

so the only such critical point is (−1, 2). The Mathematica 3.0 command

ContourPlot[ 2∗x∗x + y∗y + 4∗x - 4∗y + 5, {x, -4, 2}, {y, -2, 4},
AspectRatio → 1.0, Axes → True, Contours → 15, ContourShading → False,

Frame → False, PlotPoints → 31, AxesOrigin → {0,0}];

generates level curves for f in the vicinity of the critical point (−1, 2), shown next. Because the graph of
f is an elliptic paraboloid opening upward, the local minimum at (−1, 2) is actually a global minimum.

C13S10.002: Given f(x, y) = 10+12x− 12y− 3x2− 2y2, both partials vanish at (2, −3). In the notation
of Section 13.10 we have A = −6, B = 0, and C = −4. Hence ∆ = 24 > 0 and A < 0, and so—by Theorem
2—there is a local maximum at the critical point. Because the graph of f is an elliptic paraboloid opening
downward, there is actually a global maximum at (2, −3). To see level curves of f , define f and then
execute a Mathematica 3.0 command similar to this one:

ContourPlot[ f[x,y], {x, -2, 6}, {y, -7, 1}, AspectRatio → 1.0,

Axes → True, Contours → 15, ContourShading → False,

Frame → False, PlotPoints → 31, AxesOrigin → {0,0}];

For more information on the ContourPlot command, enter

??ContourPlot

and for more information in the options, ask by option name, as in the command ??Axes. In Maple V

version 5, enter

restart:with(plots):
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and then (after defining f) enter

contourplot(f(x,y),x=-2..6,y=-7..1,scaling=constrained);

C13S10.003: Given f(x, y) = 2x2− 3y2 +2x− 3y+7, both partial derivatives are zero at the single point
P

(
− 1

2 , −
1
2

)
. In the notation of Section 13.10 we have A = 4, B = 0, and C = −6. Hence ∆ = −24 < 0,

and so—by Theorem 2—there is a saddle point at P . The Mathematica 3.0 command ContourPlot on
the rectangle −3 � x � 2, −3 � y � 2 produced the level curve diagram shown next.

C13S10.004: Given f(x, y) = xy+3x−2y+4, both partials vanish at the single point P (2, −3). Because
A = 0, B = 1, C = 0, and ∆ = −1, there is a saddle point at P . To see level curves of f , execute the
Mathematica 3.0 command

ContourPlot[ f[x,y], {x, -2, 6}, {y, -7, 1}, AspectRatio → 1.0,

Axes → True, Contours → 15, ContourShading → False,

Frame → False, PlotPoints → 96, AxesOrigin → {0,0} ];

C13S10.005: Given f(x, y) = 2x2 + 2xy + y2 + 4x − 2y + 1, both partial derivatives are zero at the
single point P (−3, 4). In the notation of Section 13.10, A = 4, B = 2, and C = 2, so that ∆ = 4 > 0.
Because A > 0, there is a local minimum at P . A diagram of some level curves of f near P generated by
Mathematica 3.0 is next.
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C13S10.006: Given f(x, y) = x2 + 4xy + 2y2 + 4x − 8y + 3, both partials vanish at the single point
P (6, −4). Also A = 2, B = 4, and C = 4, so ∆ = −8 < 0. Hence there is a saddle point at P . To see level
curves of f near P , execute the Mathematica 3.0 command

ContourPlot[ f[x,y], {x, -1, 13}, {y, -11, 3}, AspectRatio → 1.0,

Axes → True, Contours → 15, ContourShading → False,

Frame → False, PlotPoints → 31, AxesOrigin → {0,0} ];

C13S10.007: Given f(x, y) = x3 + y3 + 3xy + 3, both partials vanish at the two points P (−1, −1) and
Q(0, 0). Also fxx(x, y) = 6x, fxy(x, y) = 3, and fyy(x, y) = 6y. At P we have A = −6, B = 3, and
C = −6, so ∆ = 27 > 0. Thus there is a local maximum at P . At Q we have A = 0, B = 3, and C = 0,
so ∆ = −9 < 0. So there is a saddle point at Q. Level curves of f near P are shown next, on the left;
level curves near Q are shown on the right. The figure on the left was generated by the Mathematica 3.0
command

ContourPlot[ f[x,y], {x, -1.5, -0.5}, {y, -1.5, -0.5}, AspectRatio → 1.0

Contours → 15, ContourShading → False, PlotPoints → 31 ];

C13S10.008: Given f(x, y) = x2 − 2xy + y3 − y, both partials vanish at the two points P
(
− 1

3 , −
1
3

)
and

Q(1, 1). Also fxx(x, y) = 2, fxy(x, y) = −2, and fyy(x, y) = 6y. At P we have A = 2, B = −2, and
C = −2, so ∆ = −8 < 0. So there is a saddle point at P . At Q we have A = 2, B = −2, and C = 6, so
∆ = 8 > 0. Because A > 0 there is a local minimum at Q. It cannot be global because of the presence of the
term y3 in f(x, y). To generate a diagram of level curves of f near P , enter the Mathematica 3.0 command

ContourPlot[ f[x,y], {x, -1, 1.3}, {y, -1, 1/3}, AspectRatio → 1.0,

Contours → 15, ContourShading → False, PlotPoints → 31 ];

To see level curves near Q, change the range option to

{x, 1/3, 5/3}, {y, 1/3, 5/3}

C13S10.009: Given f(x, y) = 6x−x3−y3, both partial derivatives are zero at the two points P
(
−
√

2 , 0
)

and Q
(√

2 , 0
)
. Because fxx(x, y) = −6x, fxy(x, y) = 0, and fyy(x, y) = −6y, at P we have A = 6

√
2

and B = C = 0, so ∆ = 0; ∆ = 0 at Q as well. Hence Theorem 2 provides us with no information. But on
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the vertical line x = −
√

2 through P , f(x, y) takes the form −4
√

2 − y3, so there is no extremum at P ;
similarly, there is none at Q. Hence f has no extrema. We generated level curves of f near P and Q using
Mathematica 3.0 commands similar to those in the solution of Problem 7. The results are shown next.

C13S10.010: Given f(x, y) = 3xy − x3 − y3, both partials vanish at the two points P (0, 0) and Q(1, 1).
Moreover, fxx(x, y) = −6x, fxy(x, y) = 3, and fyy(x, y) = −6y. At P we have A = 0, B = 3, and C = 0,
so ∆ = −9 < 0 and there is a saddle point at P . At Q we have A = −6, B = 3, and C = −6, so ∆ = 27 > 0;
because A < 0, there is a local maximum at Q. It cannot be global because of the presence of the term −x3

in f(x, y). Use the Mathematica 3.0 ContourPlot command with range −0.5 � x � 0.5, −0.5 � y � 0.5
to see level curves of f near P . Change the range limits to 0.5 and 1.5 to see level curves near Q.

C13S10.011: Given f(x, y) = x4 + y4−4xy, both partial derivatives are zero at P (−1, −1), Q(0, 0), and
R(1, 1). Also fxx(x, y) = 12x2, fxy(x, y) = −4, and fyy(x, y) = 12y2. Thus at both P and R, we have
A = 12, B = −4, and C = 12, so that ∆ = 128 > 0; thus there are local minima at P and R. At Q we
have A = C = 0 and B = −4, so that ∆ = −16 < 0: There is a saddle point at Q. The minima at P and R
are global because x4 + y4 greatly exceeds 4xy if x and y are large in magnitude. Level curves of f near
the two critical points P and Q, generated by Mathematica 3.0, are shown next.

C13S10.012: Given f(x, y) = x3 +6xy+3y2, both partial derivatives are zero at the two points P (2, −2)
and Q(0, 0). Next, fxx(x, y) = 6x and fxy(x, y) = fyy(x, y) = 6. Thus at P we have A = 12 and
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B = C = 6; so ∆ = 36 > 0, and therefore there is a local minimum at P . (It cannot be global because the
dominant term in f(x, y) is x3.) At Q we have A = 0 and B = C = 6, so that ∆ = −36 < 0. Thus there is
a saddle point at Q. Use the Mathematica 3.0 ContourPlot command as in previous solutions to see level
curves of f near these critical points. Squares with side 2 centered at the critical points show off the level
curves quite well.

C13S10.013: Given f(x, y) = x3 + 6xy + 3y2 − 9x, both partial derivatives are zero at the two points
P (−1, 1) and Q(3, −3). Next, fxx(x, y) = 6x and fxy(x, y) = fyy(x, y) = 6. Hence at P we have A = −6
and B = C = 6, so that ∆ = −72 < 0: There is a saddle point at P . At Q we have A = 18 and B = C = 6,
so ∆ = 72 > 0. Because A > 0 there is a local minimum at Q. It cannot be global because the dominant
term in f(x, y) is x3. We used Mathematica 3.0 with commands similar to those in previous solutions to
show level curves of f near these two critical points; the diagrams are next.

C13S10.014: Given f(x, y) = x3 + 6xy + 3y2 + 6x, we have

fx(x, y) = 3(x2 + 2y + 2) and fy(x, y) = 6(x+ y).

If both partials are zero, then y = −x, and consequently x2 − 2x + 2 = 0. But the discriminant of
this quadratic is −4 < 0, so the last equation has no (real) solutions. Therefore f has no extrema; its
graph doesn’t even have any saddle points. The Mathematica 3.0 ContourPlot command using the range
−4 � x � 4, −4 � y � 4 produces level curves in support of this conclusion.

C13S10.015: If f(x, y) = 3x2 + 6xy + 2y3 + 12x − 24y, then both partial derivatives of f are zero at
the two points P (−5, 3) and Q(0, −2). Next, fxx(x, y) = fxy(x, y) = 6 and fyy(x, y) = 12y. Thus at
P we have A = B = 6 and C = 36, so ∆ = 180 > 0. Because A > 0 there is a local minimum at P (it
cannot be global because the dominant term in f(x, y) is 2y3.) At Q we have A = B = 6 and C = −24,
so ∆ = −180 < 0; there is a saddle point at Q. We used Mathematica 3.0 commands similar to those in
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previous solutions to generate level curves of f near its two critical points; these diagrams are next.

C13S10.016: If f(x, y) = 3x2 + 12xy + 2y3 − 6x+ 6y, then

fx(x, y) = 6(x+ 2y − 1) and fy(x, y) = 6(2x+ y2 + 1).

We set both equal to zero and solve. The first equation tells us that x = 1 − 2y and we substitute this in
the second equation to obtain

2− 4y + y2 + 1 = 0; y2 − 4y + 3 = 0; (y − 1)(y − 3) = 0.

Thus we obtain the two critical points P (−5, 3) and Q(−1, 1). Next, fxx(x, y) = 6, fxy(x, y) = 12, and
fyy(x, y) = 12y. Hence at P we find that A = 6, B = 12, and C = 36, so that ∆ = 72 > 0. Thus there is
a local minimum at P . (It cannot be global because the dominant term in f(x, y) is 2y3.) At Q we have
A = 6, B = 12, and C = 12, so that ∆ = −72; there is a saddle point at Q.

C13S10.017: If f(x, y) = 4xy − 2x4 − y2, then both partial derivatives are zero when

8x3 = 4y and 4x = 2y;

y = 2x3 and y = 2x;

x3 − x = 0; that is, x(x− 1)(x+ 1) = 0.

Thus we obtain three critical points: P (−1, −2), Q(0, 0), and R(1, 2). For the next step, we compute
fxx(x, y) = −24x2, fxy(x, y) = 4, and fyy(x, y) = −2. Thus an application of Theorem 2 yields this
information.

At P : A = −24, B = 4, C = −2, ∆ = 32 : Local maximum.

At Q : A = 0, B = 4, C = −2, ∆ = −16 : Saddle point.

At R : A = −24, B = 4, C = −2, ∆ = 32 : Local maximum.
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The extrema are global maxima with the same value, f(−1, −2) = 2 = f(1, 2). To see that they are global,
examine the behavior of f(x, y) on straight lines through the origin. Diagrams of level curves near P and
Q were generated using Mathematica 3.0 and appear next.

C13S10.018: Given f(x, y) = 8xy − 2x2 − y4, we first set both partials equal to zero and solve:

−4x+ 8y = 0 and 8x− 4y3 = 0;

x = 2y and 2x = y3;

4y = y3, so that y(y + 2)(y − 2) = 0.

Thus we obtain the three critical points P (−4, −2), Q(0, 0), and R(4, 2). Moreover, fxx(x, y) = −4,
fxy(x, y) = 8, and fyy(x, y) = −12y2. Then Theorem 2 yields these results:

At P : A = −4, B = 8, C = −48, ∆ = 128 : Local maximum.

At Q : A = −4, B = 8, C = 0, ∆ = −64 : Saddle point.

At R : A = −4, B = 8, C = −48, ∆ = 128 : Local maximum.

Level curves plotted with the aid of Mathematica 3.0 support these conclusions.

C13S10.019: Given f(x, y) = 2x3 − 3x2 + y2 − 12x + 10, we set both partial derivatives equal to zero
and solve to find the only two critical points: P (−1, 0) and Q(2, 0). At P we find that A = −18, B = 0,
and C = 2, so there is a saddle point at P . At Q we find that A = 18, B = 0, and C = 2, so there is a
local minimum at Q. (There are no global extrema because the dominant term in f(x, y) is 2x3.) We used
Mathematica 3.0 in the usual way to generate level curves of f near these two critical points; the resulting
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diagram is next.

C13S10.020: If f(x, y) = 2x3 + y3 − 3x2 − 12x− 3y, then both partials vanish when

6(x2 − x− 2) = 0 and 3(y2 − 1) = 0;

(x+ 1)(x− 2) = 0 and (y + 1)(y − 1) = 0.

Thus we find four critical points: P (−1, −1), Q(−1, 1), R(2, −1), and S(2, 1). Next, fxx(x, y) = 12x− 6,
fxy(x, y) = 0, and fyy(x, y) = 6y. Application of Theorem 2 gives these results:

At P : A = −18, B = 0, C = −6, ∆ = 108 : Local maximum.

At Q : A = −18, B = 0, C = 6, ∆ = −108 : Saddle point.

At R : A = 18, B = 0, C = −6, ∆ = −108 : Saddle point.

At S : A = 18, B = 0, C = 6, ∆ = 108 : Local minimum.

There are no global extrema because f(x, y) is dominated by the terms 2x3 and y3. The Mathematica 3.0
command

ContourPlot[ f[x,y], {x, -2, 3}, {y, -2.5, 2.5}, AspectRatio → 1.0,

Contours → 15, ContourShading → False, PlotPoints → 100 ];

shows all four critical points and some nearby level curves of f .

C13S10.021: If f(x, y) = xy exp(−x2 − y2), then

fx(x, y) = (1− 2x2)y exp(−x2 − y2) and fy(x, y) = x(1− 2y2) exp(−x2 − y2).

Thus there are a total of five critical points. They are P (0, 0), Q
(
− 1

2

√
2 , − 1

2

√
2

)
, R

(
− 1

2

√
2 , 1

2

√
2

)
,

S
(

1
2

√
2 , − 1

2

√
2

)
, and T

(
1
2

√
2 , 1

2

√
2

)
. The values of f at these points are (in the same order) 0, 1/(2e),

−1/(2e), −1/(2e), and 1/(2e). The second-order partial derivatives of f are
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fxx(x, y) = (4x3y − 6xy) exp(−x2 − y2) = 2xy(2x2 − 3) exp(−x2 − y2),

fxy(x, y) = (4x2y2 − 2x2 − 2y2 + 1) exp(−x2 − y2), and

fyy(x, y) = (4xy3 − 6xy) exp(−x2 − y2) = 2xy(2y2 − 3) exp(−x2 − y2).

Application of Theorem 2 yields these results:

At P : A = 0, B = 1, C = 0, ∆ = −1 : Saddle point.

At Q : A = −2
e
, B = 0, C = −2

e
, ∆ =

4
e2

: Local maximum.

At R : A =
2
e
, B = 0, C =

2
e
, ∆ =

4
e2

: Local minimum.

At S : A =
2
e
, B = 0, C =

2
e
, ∆ =

4
e2

: Local minimum.

At T : A = −2
e
, B = 0, C = −2

e
, ∆ =

4
e2

: Local maximum.

The extrema are all global because f(x, y) → 0 as |x| and/or |y | increase without bound. To generate a
diagram of these critical points and nearby level curves of f , we executed the Mathematica 3.0 command

ContourPlot[ f[x,y], {x, -1.5, 1.5}, {y, -1.5, 1.5}, AspectRatio → 1.0,

Contours → 15, ContourShading → False, PlotPoints → 48 ];

and the result is shown next.

C13S10.022: If f(x, y) = (x2 + y2) exp(x2 − y2), then

fx(x, y) = 2x(x2 + y2 + 1) exp(x2 − y2) and fy(x, y) = 2y(1− x2 − y2) exp(x2 − y2).

Hence there are three critical points: P (0, 0), Q(0, 1), and R(0, −1). Next,
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fxx(x, y) = 2(2x4 + 2x2y2 + 5x2 + y2 + 1) exp(x2 − y2),

fxy(x, y) = −4xy(x2 + y2) exp(x2 − y2), and

fyy(x, y) = 2(2y4 + 2x2y2 − x2 − 5y2 + 1) exp(x2 − y2).

Application of Theorem 2 yields the following information.

At P : A = 2, B = 0, C = 2, ∆ = 4 : Local minimum.

At Q : A =
4
e
, B = 0, C = −4

e
, ∆ = −16

e2
: Saddle point.

At R : A =
4
e
, B = 0, C = −4

e
, ∆ = −16

e2
: Saddle point.

The local minimum value f(0, 0) = 0 is in fact global because f(x, y) cannot be negative.

C13S10.023: If f(x, y) = x4 + y4, then

∆ = AC −B2 = (12x2)(12y2)− 02 = 144x2y2,

and so ∆(0, 0) = 0. But f(x, y) has the global minimum value 0 at (0, 0) because f(x, y) > 0 for all
(x, y) �= (0, 0).

C13S10.024: If f(x, y) = x3 + y3, then

∆ = AC −B2 = (6x)(6y)− 02 = 36xy,

hence ∆(0, 0) = 0. On the x-axis, f(x, y) = f(x, 0) = x3, so there is neither a maximum nor a minimum
at the origin, nor is the origin a saddle point.

C13S10.025: If f(x, y) = exp(−x4 − y4), then

∆ = AC −B2

=
[
4x2(4x4 − 3) exp(−x4 − y4)

]
·
[
4y2(4y4 − 3) exp(−x4 − y4)

]
−

[
16x3y3 exp(−x4 − y4)

]2
,

and so ∆(0, 0) = 0. To maximize f(x, y), make x4 + y4 as small as possible, and hence 1 = f(0, 0) is the
global maximum value of f(x, y).

C13S10.026: Let

f(s, t) = (t− 2s)2 + (t− s+ 2)2 + (2t− s− 1)2.

Then

fs(s, t) = 4(2s− t) + 2(s− t− 2) + 2(s+ 1− 2t) = 12s− 10t− 2 and

ft(s, t) = 2(t− 2s) + 2(2− s+ t) + 4(2t− s− 1) = −10s+ 12t,

and it follows that both partials vanish when s = 6
11 and t = 5

11 . Next, at this critical point we have A = 12,
B = −10, and C = 12, so ∆ = 44 > 0 and A = 12 > 0 tell us that we have found a local minimum of f(s, t).
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Geometrically it is clear that there are two closest points on a pair of skew lines, so our local minimum is
actually global. The two closest points are

P

(
5
11
,

16
11
,

10
11

)
and Q

(
12
11
, − 5

11
,

17
11

)
, and |−⇀PQ| = 7

11

√
11 ≈ 2.110579412044.

C13S10.027: Let f(x, y) = x2 + y2 + (xy − 2)2. Then

fx(x, y) = 2x+ 2y(xy − 2) = 2x+ 2xy2 − 4y and

fy(x, y) = 2y + 2x(xy − 2) = 2y + 2x2y − 4x.

Both partial derivatives are zero when

x+ xy2 − 2y = 0 and y + x2y − 2x = 0;

x2 + x2y2 − 2xy = 0 and y2 + x2y2 − 2xy = 0;

x2 = y2, so that y = x or y = −x.

If y = x, then x3 − x = 0, and we obtain the three critical points P (−1, −1), Q(0, 0), and R(1, 1). If
y = −x then x3 + 3x = 0 and we obtain the critical point Q again but no others. Next

fxx(x, y) = 2(y2 + 1), fxy(x, y) = 4(xy − 1), and fyy(x, y) = 2(x2 + 1).

At P and at R, we find that A = 4, B = 0, and C = 4, so f(x, y) has a local minimum at those two points.
Its value at each is 3. But at Q we find that A = 2, B = −4, and C = 2, so ∆ = −12 and hence there is
no extremum at Q. It is geometrically evident that f(x, y) has a global minimum, so we have found it: Its
global minimum value is 3, which occurs at both the points P and R.

C13S10.028: Given f(x, y) = (x2 + 2y2) exp(1− x2 − y2), we first compute

fx(x, y) = 2x(1− x2 − 2y2) exp(1− x2 − y2) and

fy(x, y) = 2y(2− x2 − 2y2) exp(1− x2 − y2).

Thus to find where both partials vanish, we must solve the simultaneous equations

x(1− x2 − 2y2) = 0 and y(2− x2 − 2y2) = 0.

There are four cases to consider.

Case 1: x = 0 and y = 0. This yields the critical point Q(0, 0).

Case 2: x = 0 and 2−x2−2y2 = 0; that is, y2 = 1. This yields the two critical points S(0, −1) and T (0, 1).

Case 3: 1−x2− 2y2 = 0 and y = 0, so that x2 = 1. This yields the two critical point P (−1, 0) and R(1, 0).

Case 4: 1− x2 − 2y2 = 0 and 2− x2 − 2y2 = 0. There are no solutions in this case.

Next, we used Mathematica 3.0 to compute the second-order partial derivatives and evaluate them at the
five critical points.

f[x ,y ] := (x∗x + 2∗y∗y)∗Exp[1 - x∗x - y∗y]

11
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{D[f[x,y], {x,2}], D[f[x,y], x, y], D[f[x,y], {y,2}]}

(We have omitted the output because we next simplified it. We will also rewrite the result of the next
command in more conventional notation.)

Factor[%]

fxx(x, y) = 2(2x4 + 4x2y2 − 5x2 − 2y2 + 1) exp(1− x2 − y2),

fxy(x, y) = 4xy(x2 + 2y2 − 3) exp(1− x2 − y2),

fyy(x, y) = 2(4y4 + 2x2y2 − x2 − 10y2 + 2) exp(1− x2 − y2).

Then we evaluated each partial derivative at each of the critical points.

% /. {{x → -1, y → 0}, {x → 0, y → 0}, {x → 1, y → 0},
{x → 0, y → -1}, {x → 0, y → 1}}

The results and conclusions are summarized in the following table.

P = (−1, 0) : A = −4, B = 0, C = 2, ∆ = −8, f(P ) = 1 : Saddle point;

Q = (0, 0) : A = 2e, B = 0, C = 4e, ∆ = 8e2, f(Q) = 0 : Local minimum;

R = (1, 0) : A = −4, B = 0, C = 2, ∆ = −8, f(R) = 1 : Saddle point;

S = (0, −1) : A = −2, B = 0, C = −8, ∆ = 16, f(S) = 2 : Local maximum;

T = (0, 1) : A = −2, B = 0, C = −8, ∆ = 16, f(T ) = 2 : Local maximum.

The diagram of critical points and level curves of f that follows this solution now makes it clear that the two
maxima at height 2 are separated from the minimum at height 0 by a “ridge” of height 1 connecting the two
saddle points. Moreover, because f(x, y) is never negative, the minimum is the global minimum. Because
f(x, y) → 0 as |x| and/or |y | increase without bound, the two maxima are also global. The diagram of
level curves was generated by Mathematica 3.0 with the command

ContourPlot[ f[x,y], {x, -1.5, 1.5}, {y, -1.5, 1.5}, AspectRatio → 1.0,

Contours → 13, ContourShading → False, PlotPoints → 61 ];

12



C13S10.029: The sum of the areas of the squares is

f(x, y) =
(x

4

)2
+

(y
4

)2
+

(
120− x− y

4

)2

, 0 � x, 0 � y, x+ y � 120.

Thus

∂f

∂x
=

1
8
(2x+ y − 120) and

∂f

∂y
=

1
8
(x+ 2y − 120),

and both partial derivatives are zero at the single point (x, y) = (40, 40). Because

∂2f

∂x2
=

1
4
,

∂2f

∂y ∂x
=

1
8
, and

∂2f

∂y2
=

1
4
,

we see that ∆ = 3
64 > 0, so that f(x, y) has a local minimum at (40, 40). Because there must be a global

maximum, it must occur on the boundary of the domain of f . If y = 0 then it is easy to show that x = 60 is
a critical point of f(x, 0), and f(60, 0) = 450. Similar results hold if x = 0 and if x+ y = 120. At the corner
points of the domain we find the global maximum value of f(x, y) to be f(0, 120) = 900. It also follows that
the local minimum at (40, 40) is global.

C13S10.030: Given

f(x, y) = xy exp
(
x2 + 4y2

8

)
,

we have

fx(x, y) =
1
4
(4y + x2y) exp

(
x2 + 4y2

8

)
,

fy(x, y) = (x+ xy2) exp
(
x2 + 4y2

8

)
,

fxx(x, y) =
1
16

(12xy + x3y) exp
(
x2 + 4y2

8

)
,

fxy(x, y) =
1
4
(x2y2 + x2 + 4y2 + 4) exp

(
x2 + 4y2

8

)
,

fyy(x, y) = (3xy + xy3) exp
(
x2 + 4y2

8

)
.

To find the critical points, we solve simultaneously

y(x2 + 4) = 0 and x(y2 + 1) = 0,

and evidently (0, 0) is the only critical point. Also (in the notation of Theorem 2) A = 0, B = 1, and C = 0,
so ∆ = −1. Therefore this critical point is a saddle point and f has no extrema.

C13S10.031: Given

f(x, y) = sin
(πx

2

)
sin

(πy
2

)
,

we first compute
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fx(x, y) =
π

2
cos

(πx
2

)
sin

(πy
2

)
and fy(x, y) =

π

2
sin

(πx
2

)
cos

(πy
2

)
.

Now cos(πx/2) = 0 when x is an odd integer and sin(πx/2) = 0 when x is an even integer. In order that
both partial derivatives are zero, it is necessary and sufficient that x and y are both odd integers or both
even integers. Next,

fxx(x, y) = −π
2

4
sin

(πx
2

)
sin

(πy
2

)
,

fxy(x, y) =
π2

4
cos

(πx
2

)
cos

(πy
2

)
, and

fyy(x, y) = −π
2

4
sin

(πx
2

)
sin

(πy
2

)
.

Note that every integer has exactly one of the following forms: 4k, 4k + 1, 4k + 2, 4k + 3 (where k is an
integer). The reason is that division of an integer by 4 produces eactly one of the remainders 0, 1, 2, or 3.

Case 1: x and y are both of the form 4k or both of the form 4k+ 2. Then (in the notation of Theorem 1)
A = 0, B = 1

4π
2, and C = 0. Hence ∆ < 0, and so (x, y) is a saddle point.

Case 2: One of x and y is of the form 4k and the other is of the form 4k + 2. Then A = 0, B = − 1
4π

2,
and C = 0. Hence ∆ < 0, and so (x, y) is a saddle point.

Case 3: x and y are both of the form 4k+ 1 or both of the form 4k+ 3. Then A = C = − 1
4π

2 and B = 0.
Thus ∆ > 0 and A < 0, so (x, y) is a local maximum (actually, a global maximum; the value of f there is
1).

Case 4: One of x and y is of the form 4k + 1 and the other is of the form 4k + 3. Then A = C = 1
4π

2 and
B = 0. Thus ∆ > 0 and A > 0, so (x, y) is a local minimum (actually, a global minimum; the value of f
there is −1).

Execute the Mathematica 3.0 command

ContourPlot[ f[x,y], {x, -3.5, 3.5}, {y, -3.5, 3.5}, AspectRatio → 1.0,

Contours → 21, ContourShading → False, PlotPoints → 61 ];

to see the maxima and minima in a checkerboard pattern with saddle points arranged neatly among them.

C13S10.032: If f(x, y) = x3 − 3xy2, then

fx(x, y) = 3(x2 − y2) and fy(x, y) = −6xy.

Hence both partials vanish at (0, 0) and nowhere else. On the line y = mx we have

f(x, y) = f(x, mx) = x3(1− 3m2).

Let L1 be the line y = mx for which 3m2 = 1 and m > 0; let L2 be the line y = mx for which 3m2 = 1
and m < 0; let L3 denote the y-axis, where x = 0. Then it is easy to verify that f(x, y) = 0 on these three
lines. In the region in the first and fourth quadrants between L1 and L2, f(x, y) > 0. In the region in the
first quadrant between L1 and L3, f(x, y) < 0. In the region in the second quadrant between L3 and L2,
f(x, y) > 0. Indeed, the three lines divide the plane into six regions, on which f(x, y) is alternately positive
and negative as one moves counterclockwise around the origin. Thus the critical point at (0, 0) is a “monkey
saddle.”
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C13S10.033: If f(x, y) = 4xy(x2 − y2), then

fx(x, y) = 4y(3x2 − y2) and fy(x, y) = 4x(x2 − 3y2).

Hence (0, 0) is the only critical point of f . On the line y = mx we have

f(x, y) = f(x, mx) = −4m(m+ 1)(m− 1)x4.

In the first-quadrant region between the lines y = 0 and y = x, where 0 < m < 1, f(x, y) > 0. In the
first-quadrant region between the lines y = x and x = 0, where 1 < m, f(x, y) < 0. Continuing in this
way counterclockwise around the origin, we find eight regions on which f(x, y) is alternately positive and
negative. Hence the origin qualifies as a “dog saddle.”

C13S10.034: Given

f(x, y) =
xy(x2 − y2)
x2 + y2

,

write f in polar coordinates. We will abuse the notation and write

f(r, θ) =
r4(sin θ cos θ)(cos2 θ − sin2 θ)

r2
=

1
4
r2 sin 4θ.

Thus f has a removable discontinuity at the origin; define its value there to be zero to make it continuous
at (0, 0). As θ runs through values from 0 to 2π while r > 0, we see that f(r, θ) is alternately positive and
negative on the eight regions in the plane for which θ is an integral multiple of 1

4 π. Therefore the origin is
another “dog saddle.”

C13S10.035: Given f(x, y) = 2x4− 12x2 + y2 + 8x, note first that f(x, y) is dominated by the term 2x4.
Therefore it can have no global maximum and must have a global minimum. We continue with the aid of
Mathematica 3.0, but as usual, we will rewrite its responses for a little more clarity.

{D[f[x,y],x], D[f[x,y],y]}

fx(x, y) = 8x3 − 24x+ 8, fy(x, y) = 2y.

N[Solve[ % == 0, {x,y} ], 20]

(We let Mathematica find the exact solutions, then approximate them to 20 places.)

x1 ≈ 1.532088886238, y1 = 0;

x2 ≈ 0.347296245334, y2 = 0;

x3 ≈ −1.879385241572, y3 = 0.

{D[f[x,y], {x,2}], D[f[x,y], x, y], D[f[x,y], {y,2}]}

fxx(x, y) = 24x2 − 24, fxy(x, y) = 0, fyy(x, y) = 2.

Then we asked Mathematica to evaluate the second-order partial derivatives and f(x, y) itself at the three
critical points. The response was

(x1, y1) : A ≈ 32.335113, B = 0, C = 2, f(x1, y1) ≈ −4.891245,
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(x2, y2) : A ≈ −21.105246, B = 0, C = 2, f(x2, y2) ≈ 1.360090,

(x3, y3) : A ≈ 60.770133, B = 0, C = 2, f(x3, y3) ≈ −32.468845.

Hence there is a local minimum at (x1, y1), a saddle point at (x2, y2), and the global minimum at (x3, y3).

C13S10.036: Given f(x, y) = x4 + 4x2 − y2 − 16x, note first that f(x, y) can have no global extrema
because of the presence of the terms x4 and −y2. We continue with the aid of Mathematica 3.0, but as
usual, we will rewrite its responses for a little more clarity.

{D[f[x,y],x], D[f[x,y],y]}

fx(x, y) = 4x3 + 8x− 16, fy(x, y) = −2y.

N[Solve[ % == 0, {x,y} ], 20]

(We let Mathematica find the exact solutions, then approximate them to 20 places.)

x1 ≈ 1.179509024603, y1 = 0.

{D[f[x,y], {x,2}], D[f[x,y], x, y], D[f[x,y], {y,2}]}

fxx(x, y) = 12x2 + 8, fxy(x, y) = 0, fyy(x, y) = −2.

Then we asked Mathematica to evaluate the second-order partial derivatives and f(x, y) itself at the critical
point. The response was

(x1, y1) : A ≈ 24.694898, B = 0, C = −2, f(x1, y1) ≈ −11.371625.

Hence there is a saddle point at (x1, y1) and no extrema.

C13S10.037: Given f(x, y) = x4 + 12xy+ 6y2 + 4x+ 10, note first that f(x, y) is dominated by the term
x4. Therefore it can have no global maximum. We continue with the aid of Mathematica 3.0, but as usual,
we will rewrite its responses for a little more clarity.

{D[f[x,y],x], D[f[x,y],y]}

fx(x, y) = 4x3 + 12y + 4, fy(x, y) = 12x+ 12y.

N[Solve[ % == 0, {x,y} ], 20]

(We let Mathematica find the exact solutions, then approximate them to 20 places.)

x1 ≈ −1.879385241572, y1 ≈ 1.879385241572;

x2 ≈ 0.347296355334, y2 ≈ −0.347296355334;

x3 ≈ 1.532088886238, y3 ≈ −1.532088886238.

{D[f[x,y], {x,2}], D[f[x,y], x, y], D[f[x,y], {y,2}]}

fxx(x, y) = 12x2, fxy(x, y) = 12, fyy(x, y) = 12.

Then we asked Mathematica to evaluate the second-order partial derivatives and f(x, y) itself at the three
critical points. The response was
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(x1, y1) : A ≈ 42.385067, B = 12, C = 12, f(x1, y1) ≈ −6.234422,

(x2, y2) : A ≈ 1.447377, B = 12, C = 12, f(x2, y2) ≈ 10.680045,

(x3, y3) : A ≈ 28.167556, B = 12, C = 12, f(x3, y3) ≈ 7.554378.

Hence there is a local (indeed, global) minimum at (x1, y1), a saddle point at (x2, y2), and a local minimum
at (x3, y3).

C13S10.038: Given f(x, y) = x4 + 8xy− 4y2− 16x+ 10, note first that f(x, y) is dominated by the term
x4. Therefore it can have no global maximum. We continue with the aid of Mathematica 3.0, but as usual,
we will rewrite its responses for a little more clarity.

{D[f[x,y],x], D[f[x,y],y]}

fx(x, y) = 4x3 + 8y − 16, fy(x, y) = 8x− 8y.

N[Solve[ % == 0, {x,y} ], 20]

(We let Mathematica find the exact solutions, then approximate them to 20 places.)

x1 ≈ 1.179509024603, y1 ≈ 1.179509024603.

{D[f[x,y], {x,2}], D[f[x,y], x, y], D[f[x,y], {y,2}]}

fxx(x, y) = 12x2, fxy(x, y) = 8, fyy(x, y) = −8.

Then we asked Mathematica to evaluate the second-order partial derivatives and f(x, y) itself at the critical
point. The response was

(x1, y1) : A ≈ 16.694898, B = 8, C = −8, f(x1, y1) ≈ −1.371625.

Hence there is a saddle point at (x1, y1) and no extrema of any kind.

C13S10.039: Given f(x, y) = x4 + 2y4 − 12xy2 − 20y2, note first that f(x, y) is dominated by the terms
x4 and 2y4. Therefore it can have no global maximum and must have a global minimum. We continue with
the aid of Mathematica 3.0, but as usual, we will rewrite its responses for a little more clarity.

{D[f[x,y],x], D[f[x,y],y]}

fx(x, y) = 4x3 − 12y2, fy(x, y) = 8y3 − 24xy − 40y.

N[Solve[ % == 0, {x,y} ], 20]

(We let Mathematica find the exact solutions, then approximate them to 20 places.)

x1 = 0, y1 = 0;

x2 ≈ 3.624678956480, y2 ≈ −3.984223496422;

x3 ≈ 3.624678956480, y3 ≈ 3.984223496422.

{D[f[x,y], {x,2}], D[f[x,y], x, y], D[f[x,y], {y,2}]}

fxx(x, y) = 12x2, fxy(x, y) = −24y, fyy(x, y) = 24y2 − 24x− 40.
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Then we asked Mathematica to evaluate the second-order partial derivatives and f(x, y) itself at the three
critical points. The response was

(x1, y1) : A = 0, B = 0, C = −40, f(x1, y1) = 0,

(x2, y2) : A ≈ 157.659570, B ≈ 95.621364, C ≈ 253.984590, f(x2, y2) ≈ −331.355231,

(x3, y3) : A ≈ 157.659570, B ≈ −95.621364, C ≈ 253.984590, f(x3, y3) ≈ −331.355231.

Hence there is a global minimum at (x2, y2), and at (x3, y3). A plot of the level curves of f(x, y) using the
ContourPlot command in Mathematica 3.0 indicates that the origin is an (ordinary) saddle point. You can
verify that there is no extremum there by showing that f(x, 0) has a local minimum at the origin whereas
f(0, y) has a local maximum there.
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Chapter 13 Miscellaneous Problems

C13S0M.001: Using polar coordinates, we get

lim
(x,y)→(0,0)

x2y2

x2 + y2
= lim
r→0

r4 sin2 θ cos2 θ
r2

= lim
r→0

(r2 sin2 θ cos2 θ) = 0

because 0 � sin2 θ � 1 and 0 � cos2 θ � 1 for all θ.

C13S0M.002: We convert to spherical coordinates:

lim
(x,y,z)→(0,0,0)

x3 + y3 − z3

x2 + y2 + z2
= lim
ρ→0

ρ3 sin3 φ cos3 θ + ρ3 sin3 φ sin3 θ − ρ3 cos3 φ
ρ2

= lim
ρ→0

ρ(sin3 φ cos3 θ + sin3 φ sin2 θ − cos3 φ) = 0

because −1 � sin3 ζ � 1 and −1 � cos3 ζ � 1 for all ζ.

C13S0M.003: First we note that lim
(x,y)→(0,0)

g(x, y) �= 0 because

lim
x→0

g(x, x) = lim
x→0

x2

2x2
=

1
2
.

Therefore g is not continuous at (0, 0).

C13S0M.004: Using the very definition of partial derivative, we have

gx(0, 0) = lim
h→0

g(h, 0)− g(0, 0)
h

= lim
h→0

h · 0− 0
h(h2 + 02)

= 0

and

gy(0, 0) = lim
k→0

g(0, k)− g(0, 0)
k

= lim
k→0

0 · k − 0
k(02 + k2)

= 0.

Again we see that the existence of gx(a, b) and gy(a, b) is no guarantee of the continuity of g at (a, b).

C13S0M.005: If fx(x, y) = 2xy3 + ex sin y, then

f(x, y) = x2y3 + ex sin y + g(y).

Hence

fy(x, y) = 3x2y2 + ex cos y + g′(y) = 3x2y2 + ex cos y + 1.

Therefore g′(y) = 1, and thus g(y) = y + C. Thus every solution of this problem has the form

f(x, y) = x2y3 + ex sin y + y + C

where C is a constant.

C13S0M.006: If fx(x, y) = 6xy2, then f(x, y) = 3x2y2 + g(y) where—as the notation indicates—g(y) is
a function of y alone. Therefore
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fy(x, y) = 6x2y + g′(y) �= 8x2y

no matter what the choice of g. So there is no such function f having continuous second-order partial
derivatives.

C13S0M.007: The paraboloid is a level surface of f(x, y, z) = x2 + y2 − z with gradient 〈 2a, 2b, −1 〉 at
the point (a, b, a2 + b2). The normal line L through that point has vector equation

〈x, y, z 〉 = 〈 a, b, a2 + b2 〉+ t〈 2a, 2b, −1 〉

and thus parametric equations

x = 2at + a, y = 2bt + b, z = a2 + b2 − t.

Suppose that this line passes through the point (0, 0, 1). Set x = 0, y = 0, and z = 1 in the parametric
equations of L, solve the third equation for t, then substitute the result in the other two equations to find
that

2a(a2 + b2)− a = 0 = 2b(a2 + b2)− b.

It now follows that a2 + b2 = 1
2 or a = 0 = b. Therefore the points on the paraboloid where the normal

vector points at (0, 0, 1) are the origin (0, 0, 0) and the points on the circle formed by the intersection of
the paraboloid and the horizontal plane z = 1

2 .

C13S0M.008: Let f(x, y, z) = sinxy + sin yz + sinxz − 1. Then the surface S in question is the level
surface f(x, y, z) = 0 of f . Next we compute

∇f(x, y, z) = 〈 y cosxy + z cosxz, x cosxy + z cos yz, y cos yz + x cosxz 〉,

which is normal to S at the point (x, y, z). Hence a normal at P
(
1, 1

2π, 0
)

is 〈 0, 0, 1 + 1
2π 〉. Therefore

an equation of the plane tangent to S at P is z = 0.

C13S0M.009: Let f(x, y, z) = x2 + y2 − z2. Then ∇f(x, y, z) = 〈 2x, 2y, −2z 〉 is normal to the cone at
(x, y, z). So a normal at P (a, b, c) is n = 〈 a, b, −c 〉. An equation of the line through P with direction n
is

〈x, y, z 〉 = 〈 a, b, c 〉+ t〈 a, b, −c 〉;

that is,

x = a + ta, y = b + tb, z = c− tc.

When x = y = 0, we have t = −1, and thus z = 2c. Hence (0, 0, 2c) is the point where the line meets the
z-axis. Thus the normal vector n (extended in length, if necessary) intersects the z-axis.

C13S0M.010: If

u(x, t) =
1√

4πkt
exp

(
− x2

4kt

)
,

then
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∂u

∂t
=

x2 − 2kt
8kt2
√
πkt

exp
(
− x2

4kt

)
,

∂u

∂x
= − x

4kt
√
πkt

exp
(
− x2

4kt

)
, and

∂2u

∂x2
=

(x2 − 2kt)
8k2t2

√
πkt

exp
(
− x2

4kt

)
.

Therefore
∂u

∂t
= k

∂2u

∂x2
.

C13S0M.011: If

u(x, y, t) =
1

4πkt
exp

(
−x2 + y2

4kt

)
,

then

ut(x, y, t) =
x2 + y2 − 4kt

16k2πt3
exp

(
−x2 + y2

4kt

)
,

ux(x, y, t) = − x

8k2πt2
exp

(
−x2 + y2

4kt

)
,

uxx(x, y, t) =
x2 − 2kt
16k3πt3

exp
(
−x2 + y2

4kt

)
,

uy(x, y, t) = − y

8k2πt2
exp

(
−x2 + y2

4kt

)
,

uyy(x, y, t) =
y2 − 2kt
16k3πt3

exp
(
−x2 + y2

4kt

)
, and

uxx(x, y, t) + uyy(x, y, t) =
x2 + y2 − 4kt

16k3πt3
exp

(
−x2 + y2

4kt

)
.

Therefore ut = k(uxx + uyy).

C13S0M.012: Given: f(x, y, z) = (xyz)1/5. If u = 〈a, b, c〉, then

Duf(0, 0, 0) = lim
t→0

(abct3)1/5

t
= lim

t→0

(abc)1/5

t2/5
,

which exists if and only if abc = 0. —C.H.E.

C13S0M.013: If r(x, y) = 〈x, y, f(x, y) 〉, then

rx(x, y) = 〈 1, 0, fx(x, y) 〉 and ry(x, y) = 〈 0, 1, fy(x, y) 〉,

and hence
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rx × ry =

∣∣∣∣∣∣∣∣∣

i j k

1 0 fx(x, y)

0 1 fy(x, y)

∣∣∣∣∣∣∣∣∣
= 〈−fx(x, y), −fy(x, y), 1 〉.

Let g(x, y, z) = z − f(x, y). Then

∇g(x, y, z) = 〈−fx(x, y), −fy(x, y), 1 〉 = rx × ry ,

and therefore rx × ry is normal to the surface z = f(x, y).

C13S0M.014: Suppose that the bottom of the box measures x by y (units are in centimeters) and
that the box has height z. We are to maximize box volume V (x, y, z) = xyz given the side condition
A(x, y, z) = xy + 2xz + 2yz − 300 = 0. The Lagrange multiplier equations are

yz = λ(y + 2z), xz = λ(x + 2z), and xy = λ(2x + 2y).

Because λ �= 0 at maximum volume and x, y, and z are all positive, we may eliminate λ by writing

1
λ

=
y + 2z
yz

=
x + 2z
xz

=
2x + 2y

xy
,

and it follows (after obtaining the common denominator xyz) that

xy + 2xz = xy + 2yz = 2xz + 2yz.

Therefore at maximum, x = y = 2z. The condition A(x, y, z) = 0 then implies that x = y = 10 and z = 5.
To maximize the volume of the box, its base should be a square 10 cm on a side and its height should be 5
cm. The maximum possible volume thereby obtained will be V (10, 10, 5) = 500 cm3.

C13S0M.015: Suppose that the bottom of the crate measures x by y (units are in feet and dollars) and
that its height is z. We are to minimize its total cost C(x, y, z) = 5xy + 2xz + 2yz given the constraint
V (x, y, z) = xyz − 60 = 0. The Lagrange multiplier equations are

5y + 2z = λyz, 5x + 2z = λxz, and 2x + 2y = λxy.

Because x, y, and z are all positive (because of the constraint) and λ �= 0, it follows that

λxyz = 5xy + 2xz = 5xy + 2yz = 2xz + 2yz,

and thus 5x = 5y = 2z, so that x = y = 2
5 z. Substitution in the constraint yields z = 5 · 31/3, then

x = y = 2 · 31/3. The base of the shipping crate will be a square 2 · 31/3 ≈ 2.884449914 feet on each side and
the height of the crate will be 5 · 31/3 ≈ 7.21124785 feet. (Its cost will be $124.81!)

C13S0M.016: Let (a, b, c) denote the point at which the plane is tangent to the surface xyz = 1; note
that abc = 1. Let f(x, y, z) = xyz − 1; then ∇f(x, y, z) = 〈 yz, xz, xy 〉, and hence a normal to the plane
is

∇f(a, b, c) = 〈 bc, ac, ab 〉.

Therefore an equation of the plane is bc(x − a) + ac(y − b) + ab(z − c) = 0; that is, bcx + acy + abz = 3.
Hence the intercepts of the plane are
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x0 =
3
bc
, y0 =

3
ac

, and z0 =
3
ab

.

Because a pyramid is a special case of a cone, the volume of this pyramid is one-third the product of the
area of its base and its height. Hence the volume of the pyramid is

V =
1
3
· 1
2
x0y0z0 =

9
2a2b2c2

=
9
2
.

C13S0M.017: Given

1
R

=
1
R1

+
1
R2

,

we differentiate implicitly with respect to R1 and thereby find that

− 1
R2
· ∂R
∂R1

= − 1
R2

1

, and thus
∂R

∂R1
=

(
R

R1

)2

.

Similarly,

∂R

∂R2
=

(
R

R2

)2

.

Hence if the errors in measuring R1 and R2 are ∆R1 = 3 and ∆R2 = 6, we estimate the resulting error in
computation of R as follows:

∆R ≈ ∂R

∂R1
·∆R1 +

∂R

∂R2
·∆R2 =

(
R

R1

)2

∆R1 +
(

R

R2

)2

∆R2

=
(

200
300

)2

· 3 +
(

200
600

)2

· 6 =
4
9
· 3 +

1
9
· 6 = 2.

In fact, when R1 = 303 and R2 = 606, the value of R is exactly 202, so there is no error in this approximation.

C13S0M.018: Please refer to Problem 67 of Section 13.4, in which we are given van der Waals’ equation

(
p +

a

V 2

)
(V − b) = (82.06)T ; (1)

p, V , and T denote the pressure (in atm), volume (in cm3), and temperature (in kelvins) of 1 mol of a gas.
Let us first differentiate Eq. (1) implicitly with respect to p, then solve for Vp:

(
1− 2a

V 3
· Vp

)
(V − b) +

(
p +

a

V 2

)
Vp = 0;

V − 2a
V 2

Vp − b +
2ab
V 3

Vp + pVp +
a

V 2
Vp = 0;

(
p +

2ab
V 3
− a

V 2

)
Vp = b− V ;

Vp =
V 3(V − b)

aV − 2ab− pV 3
.
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Similarly,

VT =
(82.06)V 3

pV 3 − aV + 2ab
.

Now we use the linear approximation ∆V ≈ dV = VT ∆T + Vp ∆p. We take ∆p = 0.1, p = 1, T = 313,
∆T = −10, a = 3.59× 106, b = 42.7, and V = 25600. We find that ∆V ≈ −3394.86 cm3. (The true value
is approximately −3098.264 cm3.)

C13S0M.019: Suppose that a, b, and c are positive. The ellipsoid with equation

(x

a

)2
+

(y

b

)2
+

(z

c

)2
= 1

and, therefore, semiaxes of lengths a, b, and c, has volume V = 4
3 πabc. Let

V (x, y, z) =
4
3
πxyz.

Then

Vx(x, y, z) =
4
3
πyz, Vy(x, y, z) =

4
3
πxz, and Vz(x, y, z) =

4
3
πxy.

Assume that errors of at most 1% are made in measuring x, y, and z. Then the error in computing V will
be at most

∆V ≈ dV = Vx dx + Vy dy + Vz dz =
4
3
πyz · x

100
+

4
3
πxz · y

100
+

4
3
πxy · z

100
=

1
25

πxyz,

and hence the percentage error in computing V will be at most

100 · ∆V

V
≈ 100 · 1

25
πxyz · 3

4πxyz
= 3;

that is, the maximum error is approximately 3%.

C13S0M.020: Assume that the first sphere S1 is the level surface f(x, y, z) = x2 + y2 + z2 − a2 = 0 and
that the second sphere is the level surface g(x, y, z) = (x− c)2 + y2 + z2 − b2 = 0. Set z = 0 to obtain the
intersection of the two spheres with the xy-plane. The resulting two circles meet at two points, one of why
(P , say) has coordinates

x =
a2 − b2 + c2

2c
, y =

√
a2 − x2 , z = 0.

Now ∇F = 〈 2x, 2y, 2z 〉 is normal to S1 at P and ∇g = 〈 2(x− c), 2y, 2z 〉 is normal to S2 at P . Because
the angle θ between the two planes is the same as the angle between ∇f and ∇g, we find that

cos θ =
(∇f) · (∇g)
|∇f | · |∇g | =

a2 − cx

ab
=

a2 + b2 − c2

2ab
.

C13S0M.021: The ellipsoidal surface S is the level surface

f(x, y, z) = x2 + 4y2 + 9z2 − 16 = 0,
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and hence a vector normal to S at the point (x, y, z) is n = ∇f = 〈 2x, 8y, 18z 〉. If n is parallel to
the position vector 〈x, y, z 〉, then n (extended if necessary) will pass through (0, 0, 0). This leads to the
equation

〈 2x, 8y, 18z 〉 = λ〈x, y, z 〉;

that is,

2x = λx, 8y = λy, 18z = λz. (1)

Multiply both sides of the first equation by yz, the second by xz, and the third by xy to eliminate λ:

λxyz = 2xyz = 8xyz = 18xyz.

We obtain a contradiction if xyz �= 0, and thus at least one of x, y, and z is zero. If (say) x �= 0, then
multiply the second equation in (1) by z and the third by y to obtain λyz = 8yz = 18yz. If yz �= 0 we
obtain a contradiction, so at least one of y and z is zero. Repeating with the other two cases, we conclude
that at least two of x, y, and z are zero. Of course the third cannot be zero because of the condition
f(x, y, z) = 0. Therefore there are six points on S at which the normal vector points toward the origin;
they are (±4, 0, 0), (0, ±2, 0), and

(
0, 0, ± 4

3

)
.

C13S0M.022: Write

w = w(u, v) =
∫ v

u

f(t) dt

where u = g(x) and v = h(x). Then F (x) = w(u(x), v(x)). Consequently

F ′(x) = wuux + wvvx = −f(u)g′(x) + f(v)h′(x) = f(h(x)) · h′(x)− f(g(x)) · g′(x).

C13S0M.023: Given: a, b, and c are mutually perpendicular unit vectors in space and f is a function
of the three variables x, y, and z. Rename the unit vectors if necessary so that a, b, c forms a right-handed
triple. Then

a×b = c, b× c = a, and c×a = b. (1)

Write a = 〈 a1, a2, a3 〉, b = 〈 b1, b2, b3 〉, and c = 〈 c1, c2, c3 〉. Then

aDaf + bDbf + cDcf = a
(
∇f

)
·a + b

(
∇f

)
·b + c

(
∇f

)
· c

= (a1fx + a2fy + a3fz)〈 a1, a2, a3 〉+ (b1fx + b2fy + b3fz)〈 b1, b2, b3 〉+ (c1fx + c2fy + c3fz)〈 c1, c2, c3 〉.

If the scalar multiplications and vector additions in the last line are carried out, the resulting vector will
have first component

(a2
1 + b21 + c21)fx + (a1a2 + b1b2 + c1c2)fy + (a1a3 + b1b3 + c1c3)fz. (2)

By Eq. (1),

c3 = a1b2 − a2b1, a3 = b1c2 − b2c1, and b3 = c1a2 − c2a1.

Hence substitution for a3, b3, and c3 in Eq. (2) yields
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(a2
1 + b21 + c21)fx + (a1a2 + b1b2 + c1c2)fy + (a1b1c2 − a1b2c1 + b1c1a2 − b1c2a1 + c1a1b2 − c1a2b1)fz

= (a2
1 + b21 + c21)fx + (a1a2 + b1b2 + c1c2)fy + 0 · fz.

Also by Eq. (1),

a2 = b3c1 − b1c3, b2 = c3a1 − c1a3, and c2 = a3b1 − a1b3.

Hence substitution for a2, b2, and c2 in the last expression yields

(a2
1 + b21 + c21)fx + (a1a2 + b1b2 + c1c2)fy

= (a2
1 + b21 + c21)fx + (a1b3c1 − a1b1c3 + b1c3a1 − b1c1a3 + c1a3b1 − c1a1b3)fy

= (a2
1 + b21 + c21)fx + 0 · fy = (a2

1 + b21 + c21)fx.

Moreover, Eq. (1) implies that

a1 = b2c3 − b3c2, b1 = c2a3 − c3a2, and c1 = a2b3 − a3b2.

Hence substitution for only one of each of a1, b1, and c1 in the last expression yields

(a1b2c3 − a1b3c2 + b1c2a3 − b1c3a2 + c1a2b3 − c1a3b2)fx = a · (b× c)fx = fx

by Eq. (17) of Section 11.3. Similarly, the second component of aDaf + bDbf + cDcf is fy and its third
component is fz. Therefore ∇f = aDaf + bDbf + cDcf . �

C13S0M.024: Given: R = 〈 cos θ, sin θ, 0 〉 and Θ = 〈− sin θ, cos θ, 0 〉, if f(x, y, z) = w(r, θ, z) then

DRf =
(
∇f

)
·R = 〈 fx, fy, fz 〉 · 〈 cos θ, sin θ, 0 〉 = fx cos θ + fy sin θ.

Then, using the facts that x = r cos θ and y = r sin θ, we have

wr = fxxr + fyyr + fzzr = fx cos θ + fy sin θ.

Therefore, DRf = wr. Next,

DΘf = 〈 fx, fy, fz 〉 · 〈− sin θ, cos θ, 0 〉 = −fx sin θ + fy cos θ

and

1
r
wθ =

1
r
(fxxθ + fyyθ + fzzθ) =

1
r

[fx · (−r sin θ) + fy · (r cos θ)] = −fx sin θ + fy cos θ.

Therefore DΘf =
1
r
wθ. Also,

Dkf = wzzr + wzzθ + wzzz = wz.

Thus, by the result in Problem 23,

∇f = RDRf + ΘDΘf + kDkf =
∂w

∂r
R +

1
r
· ∂w
∂θ

Θ +
∂w

∂z
k.
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C13S0M.025: If f(x, y) = 500− (0.003)x2 − (0.004)y2, then

∇f(x, y) =
〈
− 3x

500
, − 4y

500

〉
, so ∇f(−100, −100) =

〈
3
5
,

4
5

〉
.

To maintain a constant altitude, you should move in a direction normal to the gradient vector; that is, you
should initially move in the direction of either 〈−4, 3 〉 or 〈 4, −3 〉.

C13S0M.026: First, ∇f = −2k〈x, 2y 〉f(x, y), and the shark’s path is described by r(t) = 〈x(t), y(t) 〉.
The latter implies that the shark’s direction is v(t) = r′(t) = 〈x′(t), y′(t) 〉. That v is parallel to ∇f implies
that 〈x′(t), y′(t) 〉 is also parallel to 〈x, 2y 〉. Therefore

〈
dx

dt
,
dy

dt

〉
= λ〈x, 2y 〉

for some scalar λ. Consequently

λ =
1
x
· dx
dt

=
1
2y
· dy
dt

.

Now forget λ and solve the differential equation:

C + lnx =
1
2

ln y;

ln y = 2 lnx + 2C;

y(x) = cx2 : a parabola.

C13S0M.027: The given surface S is the level surface

f(x, y, z) = x2/3 + y2/3 + z2/3 − 1 = 0,

and

∇f(x, y, z) =
〈

2
3x1/3

,
2

3y1/3
,

2
3z1/3

〉
.

Hence the plane P tangent to S at the point P (a, b, c) has normal vector

n = ∇f(a, b, c) =
〈

2
3a1/3

,
2

3b1/3
,

2
3c1/3

〉
,

and thus an equation of P is

x− a

a1/3
+

y − b

b1/3
+

z − c

c1/3
= 0.

Set x and y equal to zero to find the z-intercept of P:

z − c

c1/3
= a2/3 + b2/3, so that z = (a2/3 + b2/3 + c2/3)c1/3 = c1/3.

Similarly, the x-intercept of P is a1/3 and its y-intercept is b1/3. So the sum of the squares of its intercepts
is a2/3 + b2/3 + c2/3 = 1.
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C13S0M.028: The given ellipse E with equation

(x

a

)2
+

(y

b

)2
= 1

(a and b are positive and a �= b) is the level curve

f(x, y) =
(x

a

)2
+

(y

b

)2
− 1 = 0,

and thus its normal vector at (x, y) is

n(x, y) = ∇f(x, y) =
〈

2x
a2

,
2y
b2

〉
.

This vector (extended, if necessary) will pass through the origin provided that it is parallel to the position
vector r(x, y) = 〈x, y 〉; that is,

〈
2x
a2

,
2y
b2

〉
= λ〈x, y 〉

for some scalar λ. This leads to the simultaneous equations

2x
a2

= λx and
2y
b2

= λy.

If x �= 0 and y �= 0, this leads to the contradiction that a = b. Hence one of x and y is zero (and they
cannot both be zero). Hence there are four points on the ellipse E at which the normal vector, if extended,
passes through the origin; they are the vertices (±a, 0) and (0, ±b) of E.

C13S0M.029: Given:

f(x, y) =
x2y2

x2 + y2

if (x, y) �= (0, 0); f(0, 0) = 0. Then

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

0
h3

= 0.

Also fy(0, 0) = 0 by a very similar computation. If (x, y) �= (0, 0), then

fx(x, y) =
2xy4

(x2 + y2)2
and fy(x, y) =

2x4y

(x2 + y2)2
,

and (using polar coordinates)

lim
(x,y)→(0,0)

fx(x, y) = lim
r→0

2r5 cos θ sin4 θ

r4
= 0,

so that fx is continuous at (0, 0) (as is fy, by a similar argument). Hence both first-order partial derivatives
are continuous everywhere, and therefore f is differentiable at the origin. Finally, f(x, y) � 0 = f(0, 0),
so 0 = f(0, 0) is a local (indeed, the global) minimum value of f(x, y). —C.H.E.

C13S0M.030: We minimize f(x, y, z) = x2 +y2 +z2 subject to the constraint g(x, y, z) = xy+1−z = 0.
The Lagrange multiplier equations are

10



2x = λy, 2y = λx, and 2z = −λ.

The Mathematica 3.0 command

Eliminate[ { 2∗x == lambda∗y, 2∗y == lambda∗x, 2*z == -lambda }, { lambda } ]

yields the response (rewritten slightly, as usual)

x2 = y2 and yz = −x and xz = −y.

Then the command

Solve[ { x∗x == y∗y, y∗z == -x, x∗z == -y, g[x,y,z] == 0 }, {x, y, z} ]

produces three solutions, and the one involving only real numbers is x = y = 0, z = 1. Because there is
no point on the surface z = xy + 1 farthest from the origin, we have found the unique closest point; it is
(0, 0, 1).

C13S0M.031: The absence of first-degree terms in its equation implies that the center of the given rotated
ellipse 73x2 + 72xy + 52y2 = 100 is the origin. Thus to find its semiaxes, we maximize and minimize
f(x, y) = x2 + y2 subject to the constraint

g(x, y) = 73x2 + 72xy + 52y2 − 100 = 0.

The Lagrange multiplier equations are

2x = λ(146x + 72y) and 2y = λ(72x + 104y).

The methods of Problem 38 of Section 13.9 lead to the simultaneous equations

(1− 73λ)x− 36λy = 0,

36λx + (52λ− 1)y = 0.

Because this system has a nontrivial solution, the determinant of its coefficient matrix must be zero:
∣∣∣∣∣∣

1− 73λ −36λ

36λ 52λ− 1

∣∣∣∣∣∣ = −2500λ2 + 125λ− 1 = 0,

and hence (100λ− 1)(25λ− 1) = 0.

Case 1: λ = 1
100 . Then the simultaneous equations shown here lead to 3x = 4y; then the constraint equation

yields

(x1, y1) =
(
−4

5
, −3

5

)
and (x2, y2) =

(
4
5
,

3
5

)
.

Case 2: λ = 1
25 . Then the simultaneous equations shown here lead to 4x + 3y = 0; then the constraint

equation yields

(x3, y3) =
(
−6

5
,

8
5

)
and (x4, y4) =

(
6
5
, −8

5

)
.
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Thus these four points are the endpoints of the semiaxes of the ellipse; the minor semiaxis (Case 1) has
length 1 and the major semiaxis (Case 2) has length 2.

C13S0M.032: Assume (without loss of generality) that (1, 0, 0) is one endpoint of the longest chord of
the sphere x2 + y2 + z2 = 1. To find the other endpoint, we maximize

f(x, y, z) = (x− 1)2 + y2 + z2 given g(x, y, z) = x2 + y2 + z2 − 1 = 0.

The Lagrange multiplier equations are

2(x− 1) = 2λx, 2y = 2λy, 2z = 2λz.

If either y or z is nonzero, this leads to λ = 1; then the first equation yields a contradiction. Hence y = 0,
z = 0, and x = ±1. If x = 1 then we have found the shortest chord of the sphere; it has length zero. Hence
the longest chord has endpoints (1, 0, 0) and (−1, 0, 0) and its length is 2.

If you prefer not to assume that one endpoint of one of the longest chord is at (1, 0, 0), assume instead that
it is at the point (a, b, c) and let its other endpoint be (x, y, z). Then maximize (and minimize)

f(x, y, z) = (x− a)2 + (y − b)2 + (z − c)2 given g(x, y, z) = x2 + y2 + z2 − 1 = 0.

You can solve this problem quickly and easily with a computer algebra program. In Mathematica 3.0, after
f and g are defined, proceed something like this.

delf = { D[f[x,y,z],x], D[f[x,y,z],y], D[f[x,y,z],z] }

{ 2(x− a), 2(y − b), 2(z − c) }

delg = { D[g[x,y,z],x], D[g[x,y,z],y], D[g[x,y,z],z] }

{ 2x, 2y, 2z }

Eliminate[ delf == lambda∗delg, lambda }]

bz = cy and az = cx and ay = bx

Solve[ { b∗z == c∗y, a∗z == c∗x, a∗y == b∗x, g[a,b,c] == 0 }, { x, y, z } ]

{{ x→ −a, y → −b, z → −c }, { x→ a, y → b, z → c }}

C13S0M.033: Let us find both the maximum and the minimum perimeter of a triangle inscribed in the
unit circle. The center of the circle will be within the triangle of maximum perimeter or on its boundary by
the following argument. The following figure on the left shows a triangle with the center of the circle outside
it. By moving the chord AB to the new position CD shown next on the right, you increase the perimeter
of the circle and now the center of the circle is within the triangle. (Note: CD and AB are parallel and
have the same length.) Similarly, the center of the circle is outside the triangle of minimum perimeter, for
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A

B

C

D

if inside—as in the figure on the right—move the chord CD to position AB to obtain a triangle of smaller
perimeter with the center of the circle now outside the triangle.

Thus to find the triangle of maximum perimeter, use the notation in Fig. 13.9.9 and maximize the perimeter

p(α, β, γ) =
√

2− 2 cosα +
√

2− 2 cosβ +
√

2− 2 cos γ = 2 sin
α

2
+ 2 sin

β

2
+ 2 sin

γ

2

given the constraint g(α, β, γ) = α + β + γ − 2π = 0. The Lagrange multiplier equations are

cos
α

2
= λ, cos

β

2
= λ, cos

γ

2
= λ,

and therefore, because f(x) = cos
(

1
2x

)
is single-valued on the interval 0 � x � 2π, we may conclude that

α = β = γ. Then the constraint equation implies that α = β = γ = 2
3 π, and thus we find that the triangle

of maximum perimeter inscribed in the unit circle is equilateral and its perimeter is

p

(
2
3
π,

2
3
π,

2
3
π

)
= 3
√

3 ≈ 5.1961524227066319.

Next we seek the triangle of minimum perimeter. The figure resembles the one on the left in the preceding
illustration. Let C denote the third vertex of the triangle. Let α be the central angle that subtends the arc
BC, let β be the central angle that subtends the arc CA, and let γ be the central angle that subtends the
short arc BA. Then we are to minimize the perimeter of the triangle, given by

p(α, β, γ) = 2 sin
α

2
+ 2 sin

β

2
+ 2 sin

γ

2

(exactly as in the maximum-perimeter investigation); the constraint is now α+β− γ = 0, and we note that
0 � γ � π as well. The Lagrange multiplier equations are

cos
α

2
= λ, cos

β

2
= λ, cos

γ

2
= −λ.

But all three of 1
2 α, 1

2 β, and 1
2 γ lie in the first quadrant, so these equations are impossible unless λ = 0, in

which case α = β = π and γ = 2π or, equivalently in this case, γ = 0. This implies that AC and BC are
the same diameter of the circle and that AB is one endpoint of that diameter. Thus we obtain a degenerate
triangle of perimeter |AC | + |BC | = 4. But this is not the minimum perimeter; the minimum occurs at a
boundary point extremum missed by the Lagrange multiplier method.

To find the minimum, rewrite the perimeter function in the form

p(α, β) = 2 sin
α

2
+ 2 sin

β

2
+ 2 sin

α + β

2
, 0 � α, 0 � β, α + β � π.
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E

I

I

I1

R1

R2

I2

There is no point in setting both partial derivatives of p equal to zero; remember, we are seeking a boundary
extremum. Hence we examine the boundary of the domain of p(α, β) to find the minimum. One possibility
is that α = β = 0. In this case γ = 0 as well. If so, then the triangle is totally degenerate; its three vertices
all coincide at a single point on the circumference of the circle, its three sides all have length zero, and its
perimeter is (finally, the global minimum) zero.

C13S0M.034: Please refer to the following circuit diagram.

Let x = I1 and y = I2. We minimize f(x, y) = R1x
2 + R2y

2 given the constraint g(x, y) = x + y − I = 0
(I, R1, and R2 are all constants). The Lagrange multiplier equations are

2R1x = λ and 2R2y = λ,

and thus

R1x = R2y = R2(I − x);

R1x + R2x = R2I;

I1 = x =
R2I

R1 + R2
; similarly,

I2 = y =
R1I

R1 + R2
.

The net resistance R of the two resistors in parallel satisfies the equation E = IR, but E = R1I1 = R2I2
(we are using Ohm’s law and Kirchhoff’s laws), and therefore

IR =
R1R2I

R1 + R2
;

R =
R1R2

R1 + R2
;

1
R

=
R2 + R1

R1R2
=

1
R1

+
1
R2

.

C13S0M.035: First we make sure that the line and the ellipse do not intersect. Substitution of y = 2− x

in the equation of the ellipse yields
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x2 + 2(2− x)2 = 1; 3x2 − 8x + 7 = 0.

The discriminiant of the quadratic is ∆ = 64− 84 < 0, so the last equation has no real solutions. Therefore
the ellipse and the line do not meet.

Next, following the Suggestion, we let

f(x, y, u, v) = (x− u)2 + (y − v)2

and maximize and minimize f(x, y, u, v) subject to the two constraints

g(x, y, u, v) = x2 + 2y2 − 1 = 0 and h(x, y, u, v) = u + v − 2 = 0.

The Lagrange multiplier equations are

2(x− u) = 2λx, 2(y − v) = 4λy, 2(u− x) = µ, and 2(v − y) = µ.

Elimination of µ yields u− x = v − y. Then elimination of λ yields

2y(x− u) = x(y − v) and u + y = v + x.

Finally, solving the last two equations simultaneously with the two constraint equations yields the expected
number of solutions—two. They are

x = −1
3

√
6 , y = −1

6

√
6, u =

12−
√

6
6

, v =
12 +

√
6

6
and

x =
1
3

√
6 , y =

1
6

√
6, u =

12 +
√

6
6

, v =
12−

√
6

6
.

Because the ellipse is “southwest” of the line, the first solution listed here gives the point (x, y) of the ellipse
farthest from the line and the second gives the point closest to the line.

C13S0M.036: Part (a): We maximize f(x, y, z) = x + y + z subject to the constraint or side condition
g(x, y, z) = x2 + y2 + z2 − a2 = 0. The Lagrange multiplier equations are

1 = 2λx, 1 = 2λy, and 1 = 2λz.

Thus λ �= 0, and therefore x = y = z. Substitution in the constraint yields two solutions:

x = y = z = −
√

3
3

a and x = y = z =
√

3
3

a.

Therefore the maximum value of f(x, y, z) on the sphere is a
√

3 .

Part (b): By Part (a), |x + y + z | � a
√

3 for every point (x, y, z) on a sphere of radius a. Therefore

(x + y + z)2 � 3a2 = 3(x2 + y2 + z2)

for all points (x, y, z) on a sphere of radius a. Because a is an arbitrary nonnegative number and because
every point (x, y, z) lies on some sphere, we may conclude that

(x + y + z)2 � 3(x2 + y2 + z2)
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for all real numbers x, y, and z.

C13S0M.037: Let f(x1, x2, . . . , xn) = x1 + x2 + · · · + xn where n is a fixed positive integer. Suppose
that a is a nonnegative real number. To maximize f(x1, x2, . . . , xn) subject to the constraint

g(x1, x2, . . . , xn) = x2
1 + x2

2 + · · ·+ x2
n − a2 = 0, (1)

the Lagrange multiplier equations are

2λxi = 1, 1 � i � n.

Hence λ �= 0, and thus x1 = x2 = · · · = xn. Then the constraint equation implies that

nx2
1 = a2, so that x1 = ± a√

n
.

Therefore the maximum value of f subject to the constraint in (1) is nx1 = a
√
n .

It now follows that |x1+x2+ . . .+xn | � a
√
n for every point (x1, x2, . . . , xn) satisfying Eq. (1). Therefore

(x1 + x2 + · · ·+ xn)2 � na2 = n(x2
1 + x2

2 + · · ·+ x2
n)

for all numbers x1, x2, . . . , xn satisfying Eq. (1). But every such set of numbers satisfies Eq. (1) for some
nonnegative value of a, and a is arbitrary. Therefore

(
n∑
i=1

xi

)2

� n

n∑
i=1

(xi)2 (2)

for all n-tuples of real numbers {x1, x2, . . . , xn}. Note that equality holds only if x1 = x2 = · · · = xn;
this will be important in the solution of Problem 51. Finally, divide both sides in Eq. (2) by n2 and take
square roots to obtain the result

x1 + x2 + · · ·+ xn
n

�
√

x2
1 + x2

2 + · · ·+ x2
n

n

in Problem 37.

C13S0M.038: Given: f(x, y) = xy − x − y on the plane triangle T with vertices at (0, 0), (0, 1), and
(3, 0). When we set both partial derivatives equal to zero and solve, we obtain (x, y) = (1, 1), which does
not lie in T . So the extrema—and there must be a global maximum and a global minimum—lie on the
boundary of T .

• On the bottom of T , we have f(x, 0) = −x, so the only candidate for a maximum is f(0, 0) = 0 and the
only candidate for a minimum is f(3, 0) = −3.

• On the left edge of T , we have f(0, y) = −y, so the only candidate for a maximum is f(0, 0) = 0 and
the only candidate for a minimum is f(0, 1) = −1.

• On the inclined edge of T , where y = 1
3 (3− x), we have

f

(
x,

3− x

3

)
=

x− x2 − 3
3

,

a quadratic opening downward and with derivative 1
3 (1 − 2x). The derivative is zero when x = 1

2 , so that
y = 5

6 , and this point does lie on T . So the only candidate for a maximum is f
(

1
2 ,

5
6

)
= − 11

12 ; we have
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already examined the behavior of f at the two endpoints of the inclined edge of T . Examination of the
behavior of f(x, y) on the vertical line x = 1

2 establishes that there is no local extremum at
(

1
2 ,

5
6

)
.

Therefore the maximum value of f(x, y) on T is f(0, 0) = 0 and its minimum value is f(3, 0) = −3. At
(0, 1), f(x, y) attains the local minimum value −1.

C13S0M.039: We are to find the extrema of f(x, y, z) = x2−yz subject to the constraint or side condition
g(x, y, z) = x2 + y2 + z2 − 1 = 0. The Lagrange multiplier equations are

2x = 2λx, −z = 2λy, and − y = 2λz. (1)

Thus

2xyz = 2λxyz, −xz2 = 2λxyz, and − xy2 = 2λxyz,

and hence −xy2 = −xz2 = 2xyz.

Case 1: x = 0. Multiply the second equation in (1) by z and the third by y to obtain −z2 = 2λyz = −y2,
so that y2 = z2. If y = z, then the constraint equation yields y2 = 1

2 , and we obtain the two critical points

A

(
0,

1
2

√
2 ,

1
2

√
2

)
and B

(
0, −1

2

√
2 , −1

2

√
2

)
.

If y = −z, then the constraint equation yields y2 = 1
2 , and we obtain two more critical points,

C

(
0,

1
2

√
2 , −1

2

√
2

)
and D

(
0, −1

2

√
2 ,

1
2

√
2

)
.

Case 2: x �= 0. Then y2 = z2 = −2yz. If z = y then y2 = −2y2, so that y = z = 0. If z = −y then
y2 = 2y2, and again y = z = 0. Then the constraint equation yields x = ±1, so in this case we obtain the
two critical points

E(1, 0, 0) and F (−1, 0, 0).

The values of f(x, y, z) at these six points are

f(A) = −1
2

= f(B), f(C) =
1
2

= f(D), and f(E) = f(F ) = 1.

Therefore the maximum value of f(x, y, z) is 1 and occurs at the two critical points E and F . Its minimum
value is − 1

2 and occurs at the two critical points A and B. Numerical experimentation with

h(y, z) = 1− y2 − z2 + yz

for y and z near the critical points C and D shows that there is not even a local extremum at either of
these points.

C13S0M.040: We seek the extrema of f(x, y) = x2y2 given the constraint g(x, y) = x2 + 4y2 − 24 = 0.
The Lagrange multiplier equations are

2xy2 = 2λx and 2x2y = 8λy,

and elimination of λ yields the equation x3y = 4xy3.
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Case 1: x = 0. Then the constraint equation yields the two critical points A
(
0,
√

6
)

and B
(
0, −
√

6
)
.

Case 2: y = 0. Then the constraint equation yields the two critical points C
(
2
√

6 , 0
)

and D
(
−2
√

6 , 0
)
.

Case 3: x �= 0 and y �= 0. Then the equation x3y = 4xy3 yields x2 = 4y2, so that x = ±2y. If x = 2y
then the constraint equation takes the form y2 = 3, and we obtain the critical points E

(
2
√

3 ,
√

3
)

and
F

(
−2
√

3 , −
√

3
)
. If x = −2y then again y2 = 3, and we obtain the critical points G

(
2
√

3 , −
√

3
)

and
H

(
−2
√

3 ,
√

3
)
.

The corresponding values of f(x, y) are zero at the critical points of Cases 1 and 2 and 36 at the critical
points of Case 3. Hence the global maximum value of f(x, y) is 36 and its global minimum value is zero.

C13S0M.041: If f(x, y) = x3y−3xy+y2, then when we equate both partial derivatives to zero we obtain
the equations

3y(x2 − 1) = 0 and x3 − 3x + 2y = 0.

The first equation holds when x = ±1 and when y = 0. Then the second equation yields the critical points
P (−1, −1), Q(0, 0), R

(
−
√

3 , 0
)
, S

(√
3 , 0

)
, and T (1, 1). In the notation of Theorem 2 of Section 13.10,

we find that

A = 6xy, B = 3x2 − 3, and C = 2,

and application of Theorem 2 yields the following results:

At P (−1, −1) : A = 6, B = 0, C = 2, ∆ = 12, f(P ) = −1 : Local minimum;

At Q(0, 0) : A = 0, B = −3, C = 2, ∆ = −9, f(Q) = 0 : Saddle point;

At R
(
−
√

3 , 0
)

: A = 0, B = 6, C = 2, ∆ = −36, f(R) = 0 : Saddle point;

At S
(√

3 , 0
)

: A = 0, B = 6, C = 2, ∆ = −36, f(S) = 0 : Saddle point;

At T (1, 1) : A = 6, B = 0, C = 2, ∆ = 12, f(T ) = −1 : Local minimum.

There are no global extrema; consider the behavior of f(x, y) on the two lines y = x and y = −x.

C13S0M.042: If f(x, y) = x2 + xy + y2 − 6x + 2, then when we equate both partial derivatives to zero
we obtain the equations

2x + y − 6 = 0 and x + 2y = 0.

Thus the only critical point is (4, −2). In the notation of Section 13.10, we have A = 2, B = 1, and C = 2,
so that ∆ = 3 > 0. Hence by Theorem 2 of Section 13.10, f(4, −2) = −10 is a local minimum value of
f(x, y). In fact, this is the global minimum value of f(x, y), demonstrated by the following computation:
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f(x, y) = x2 + xy + y2 − 6x + 2

=
1
4
(4x2 + 4xy + 4y2 − 24x + 8)

=
1
4
(
[x + 2y ]2 + 3x2 − 24x + 8

)

=
1
4
(
[x + 2y ]2 + 3[x2 − 8x + 16]− 40

)

=
1
4
(
[x + 2y ]2 + 3[x− 4]2

)
− 10.

C13S0M.043: If f(x, y) = x3 − 6xy + y3, then the equations fx(x, y) = 0 = fy(x, y) take the form

3x2 − 6y = 0 and 3y2 − 6x = 0.

Thus 2y = x2 and y2 = 2x, so that 8x = x4. So the only two critical points are (0, 0) and (2, 2). In the
notation of Section 13.10 we have A = 6x, B = −6, and C = 6y. Hence ∆ = −36 at (0, 0); A = 12 and
∆ = 108 at (2, 2). Therefore the graph of z = f(x, y) has a saddle point at the origin and a local minimum
at (2, 2). There are no global extrema; examine the behavior of f(x, 0).

C13S0M.044: If f(x, y) = x2y + xy2 + x + y, then the equations fx(x, y) = 0 = fy(x, y) are

y2 + 2xy + 1 = 0 and x2 + 2xy + 1 = 0, (1)

so that y2 = x2. If y = x then neither of the equations in (1) has a real solution. If y = −x then either of
the equations in (1) yields x2 = 1, and so there are two critical points: (−1, 1) and (1, −1). In the notation
of Section 13.10 we have A = 2y, B = 2x + 2y, and C = 2x, and it follows from Theorem 2 of that section
that f(−1, 1) = 0 and f(1, −1) = 0 are both saddle points. The graph of z = f(x, y) has no extrema.

C13S0M.045: Given f(x, y) = x3y2(1− x− y), the equations fx(x, y) = 0 = fy(x, y) become

3x2y2(1− x− y)− x3y2 = 0 and 2x3y(1− x− y)− x3y2 = 0. (1)

Clearly both partial derivatives are zero at every point where x = 0 (the y-axis), at every point where y = 0
(the x-axis). Note that f(x, y) = 0 at all such points. Moreover, there is one additional critical point; if
x �= 0 and y �= 0, then the equations in (1) may be simplified to

4x + 3y = 3 and 2x + 3y = 2,

with the unique solution (x, y) =
(

1
2 ,

1
3

)
. At this critical point the value of f(x, y) is 1

432 . Because we have
infinitely many critical points, we will have to deal with them by ad hoc methods. The next diagram shows
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+

–
–

– –

y-axis

x-axis

x + y = 1

the three lines where f(x, y) = 0. They divide the xy-plane into seven regions, and the sign of f(x, y) is
indicated on each.

It is clear from this diagram that no point on the line x + y = 1 is an extremum, but that there is a saddle
point at (0, 1). (Theorem 2 of Section 13.10 fails at this point because ∆ = 0 there.) It is also clear from
the diagram that there is a local maximum at every point of the negative x-axis and at every point of
the x-axis for which x > 1; there is a local minimum at every point of the x-axis for which 0 < x < 1.
Finally, no point of the y-axis is an extremum. The fact that f

(
1
2 ,

1
3

)
is positive shows that there is a local

maximum at
(

1
2 ,

1
3

)
, and this conclusion is supported by Theorem 2 of Section 13.10; at that point we have

A = − 1
9 ,B = − 1

12 , and C = − 1
8 . Finally, because f(x, x) = x5(1 − 2x), there are no global minima;

because f(x, −2x) = 4x5(1 + x), there are no global maxima.

C13S0M.046: If f(x, y) = x4 − 2x2 + y2 + 4y + 3, then when we equate both partial derivatives to zero
we obtain the equations

4x(x2 − 1) = 0 and 2y + 4 = 0.

The first equation holds when x = 0 and when x = ±1. Then the second equation yields the critical points
P (−1, −2), Q(0, −2), and R(1, −2). In the notation of Theorem 2 of Section 13.10, we find that

A = 12x2 − 4, B = 0, and C = 2,

and application of Theorem 2 yields the following results:

At P (−1, −2) : A = 8, B = 0, C = 2, ∆ = 16, f(P ) = −2 : Local minimum;

At Q(0, −2) : A = −4, B = 0, C = 2, ∆ = −8, f(Q) = −1 : Saddle point;

At R(1, −2) : A = 8, B = 0, C = 2, ∆ = 16, f(R) = −2 : Local minimum.

Because f(x, y) = (x2 − 1)2 + (y + 2)2 − 2, the local minima are actually global minima. There are no
maxima of any ilk.

C13S0M.047: If f(x, y) = exy − 2xy, then the equations fx(x, y) = 0 = fy(x, y) take the form

(exy − 2)y = 0 and (exy − 2)x = 0.

Hence (0, 0) is an isolated critical point and the points for which exy = 2 (the points on both branches of the
hyperbola xy = ln 2) are all critical points. Note that f(0, 0) = 1 and that f(x, y) ≡ 2− 2 ln 2 ≈ 0.61370564
for all points on the hyperbola xy = ln 2. Next,
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fxx(x, y) = y2exy, fxy(x, y) = (xy + 1)exy − 2, and fyy(x, y) = x2exy.

Hence Theorem 2 of Section 13.10 yields A = 0, B = −1, and C = 0 at the critical point (0, 0), and therefore
it is a saddle point. It is easy to show that the global minimum value of g(x) = ex − 2x is 2 − 2 ln 2, and
therefore every point of the hyperbola xy = ln 2 is a location of the global minimum value of f(x, y). There
are no other extrema.

C13S0M.048: If f(x, y) = x3 − y3 + x2 + y2, then the equations fx(x, y) = 0 = fy(x, y) become

(3x + 2)x = 0 and (2− 3y)y = 0,

and thus there are four critical points. The results of an application of Theorem 2 of Section 13.10 to these
points is next.

At
(
− 2

3 , 0
)

: A = −2, B = 0, C = 2, f
(
− 2

3 , 0
)

=
4
27

: Saddle point;

At
(
− 2

3 ,
2
3

)
: A = −2, B = 0, C = −2, f

(
− 2

3 ,
2
3

)
=

8
27

: Local maximum;

At (0, 0) : A = 2, B = 0, C = 2, f(0, 0) = 0 : Local minimum;

At
(
0, 2

3

)
: A = 2, B = 0, C = −2, f

(
0, 2

3

)
=

4
27

: Saddle point.

Because f(x, −x) = 2x3 + 2x2, there are no global extrema.

C13S0M.049: If f(x, y) = (x−y)(xy−1), then when we equate both partial derivatives to zero we obtain

2xy − y2 − 1 = 0 and 2xy − x2 − 1 = 0. (1)

Therefore y2 = x2. If y = x then either equation in (1) yields x2 = 1, and thus we obtain the two critical
points (−1, −1) and (1, 1). If y = −x then each equation in (1) yields 3x2 + 1 = 0, and so there are no
other critical points. When Theorem 2 of Section 13.10 is applied to the first critical point, we find that
A = −2, B = 0, and C = 2; at the second critical point we find that A = 2, B = 0, and C = −2. Therefore
both these points are saddle points and there are no extrema.

C13S0M.050: If f(x, y) = (2x2 + y2) exp(−x2 − y2), then the equations fx(x, y) = 0 and fy(x, y) = 0
become

(4x− 4x3 − 2xy2) exp(−x2 − y2) = 0 and (2y − 4x2y − 2y3) exp(−x2 − y2) = 0.

Cancel the factor −2 exp(−x2 − y2) from both equations because it is never zero, then solve to find five
critical points. Application of Theorem 2 of Section 13.10 then yields the following information.

At P (−1, 0) : A = −8
e
, B = 0, C = −2

e
, ∆ =

16
e2

, f(P ) =
2
e

: Local maximum;

At Q(0, 0) : A = 4, B = 0, C = 2, ∆ = 8, f(Q) = 0 : Local minimum;

At R(1, 0) : A = −8
e
, B = 0, C = −2

e
, ∆ =

16
e2

, f(R) =
2
e

: Local maximum;

At S(0, −1) : A =
2
e
, B = 0, C = −4

e
, ∆ = − 8

e2
, f(S) =

1
e

: Saddle point;

At T (0, 1) : A =
2
e
, B = 0, C = −4

e
, ∆ = − 8

e2
, f(T ) =

1
e

: Saddle point.
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Because f(x, y) > 0 if (x, y) �= (0, 0) and because f(x, y) → 0 as either |x| → 0 or |y | → 0 (or both), the
three local extrema are actually global extrema. Please consider using a computer algebra system to plot
level curves of f ; for example, use the Mathematica 3.0 command

ContourPlot[ f[x,y], {x, -2, 2}, {y, -2, 2}, ContourShading → False,

Contours → 19, PlotPoints → 101 ];

to see one of the most interesting level curve structures of this chapter.

C13S0M.051: Given the data {(xi, yi)} for i = 1, 2, 3, . . . , n (where n is a positive integer), we are to
minimize

f(m, b) =
n∑
i=1

[
yi − (mxi + b)

]2
.

When we equate both partial derivatives of f to zero, we obtain the equations

n∑
i=1

(
yi −mxi − b

)
xi = 0 and

n∑
i=1

(
yi −mxi − b

)
= 0.

Rewrite the first of these in the form

b

n∑
i=1

xi + m

n∑
i=1

(xi)2 =
n∑
i=1

xiyi (1)

and the second in the form

b

n∑
i=1

1 + m

n∑
i=1

xi =
n∑
i=1

yi. (2)

Let

P =
n∑
i=1

xi, Q =
n∑
i=1

yi, R =
n∑
i=1

(xi)2, and S =
n∑
i=1

xiyi.

Then Eqs. (1) and (2) take the form

Pb + Rm = S, nb + Pm = Q. (3)

Because P , Q, R, and S are the results of experimental observations, it is highly unlikely that the determi-
nant of coefficients in (3) is zero, and hence these equations will normally have a unique solution (although
the experimenter should be wary if the determinant is near zero). Next,

fmm(m, b) = 2
n∑
i=1

(xi)2 = 2R, fmb(m, b) = 2
n∑
i=1

xi = 2P, and fbb(m, b) = 2n.

Application of Theorem 2 of Section 13.10 yields

A = 2R, B = 2P, C = 2n, and ∆ = 4Rn− 4P 2 = 4(Rn− P 2).

Hence our sole critical point will be a local minimum (and, by the geometry of the problem, a global
minimum) provided that
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P 2 < nR; that is,

(
n∑
i=1

xi

)2

< n

n∑
i=1

(xi)2.

The inequality in Miscellaneous Problem 37 is strict unless all the xi are equal, and in an experimental
problem in which the least squares method is used, they will not be equal. This establishes that the critical
point is a global minimum.

C13S0M.052: Regard y as fixed and the constraint is

g(x) =

(
n∑
i=1

x2
i

)
− 1 = 0.

Then the method of Lagrange multipliers gives yi = 2λxi for each i. Multiplication by xi and subsequent
summation yields f(x, y) = 2λ. Multiplication by yi and subsequent summation gives 1 = 2λf(x, y).
Therefore λ = 1

2 and f(x, y) = 1 at a maximum. —C.H.E.
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Section 14.1

C14S01.001: Part (a):

f(1, −2) · 1 + f(2, −2) · 1 + f(1, −1) · 1 + f(2, −1) · 1 + f(1, 0) · 1 + f(2, 0) · 1 = 198.

Part (b):

f(2, −1) · 1 + f(3, −1) · 1 + f(2, 0) · 1 + f(3, 0) · 1 + f(2, 1) · 1 + f(3, 1) · 1 = 480.

The average of the two answers is 339, fairly close to the exact value 312 of the integral.

C14S01.002: Part (a):

f(1, −1) · 1 + f(2, −1) · 1 + f(1, 0) · 1 + f(2, 0) · 1 + f(1, 1) · 1 + f(2, 1) · 1 = 144.

Part (b):

f(2, −2) · 1 + f(3, −2) · 1 + f(2, −1) · 1 + f(3, −1) · 1 + f(2, 0) · 1 + f(3, 0) · 1 = 570.

The average of the two answers is 357, fairly close to the exactly value 312 of the integral. The computations
shown here can be automated in computer algebra systems. For example, in Mathematica 3.0, after defining
f(x, y) = 4x3 + 6xy2, you could proceed as follows.

x[i ] := i + 1; y[j ] := j - 2; deltax = x[1] - x[0]; deltay = y[1] - y[0];

(∗ Part (a): ∗) xstar[i ] := x[i-1]; ystar[j ] := y[j]

Sum[ Sum[ f[xstar[i],ystar[j]]∗deltax∗deltay, {j, 1, 3}, {i, 1, 2} ]

144

(∗ Part (b): ∗) xstar[i ] := x[i]; ystar[j ] := y[j-1]

Sum[ Sum[ f[xstar[i],ystar[j]]∗deltax∗deltay, {j, 1, 3}, {i, 1, 2} ]

570

The idea is that to work another such problem, all you need to do is redefine f , xstar and ystar, and the
limits on i and j.

C14S01.003: We omit ∆x and ∆y from the computation because each is equal to 1.

f
(

1
2 ,

1
2

)
+ f

(
3
2 ,

1
2

)
+ f

(
1
2 ,

3
2

)
+ f

(
3
2 ,

3
2

)
= 8.

This is also the exact value of the iterated integral.

C14S01.004: We omit ∆x and ∆y from the computation because each is equal to 1.

f
(

1
2 ,

1
2

)
+ f

(
3
2 ,

1
2

)
+ f

(
1
2 ,

3
2

)
+ f

(
3
2 ,

3
2

)
= 4.

This is also the exact value of the iterated integral. In a Mathematica 3.0 solution similar to the one in
Problem 2, we would use

xstar[i ] := (x[i] + x[i-1])/2; ystar[j ] := (y[j] + y[j-1])/2
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C14S01.005: The Riemann sum is

f(2, −1) · 2 + f(4, −1) · 2 + f(2, 0) · 2 + f(4, 0) · 2 = 88.

The true value of the integral is
416
3
≈ 138.666666666667.

C14S01.006: We omit ∆x = 1 and ∆y = 1 from the computation.

f(1, 1) + f(2, 1) + f(1, 2) + f(2, 2) + f(1, 3) + f(2, 3) = 43.

The true value of the integral is 26. The midpoint approximation gives the very close Riemann sum 25.

C14S01.007: We factor out of each term in the sum the product ∆x ·∆y = 1
4 π

2. The Riemann sum then
takes the form

1
4
π2 ·

[
f
(

1
4 π,

1
4 π

)
+ f

(
3
4 π,

1
4 π

)
+ f

(
1
4 π,

3
4 π

)
+ f

(
3
4 π,

3
4 π

) ]
= 1

2 π
2 ≈ 4.935.

The true value of the integral is 4.

C14S01.008: We factor out of each term in the sum the product ∆x ·∆y = 1
6 π. The Riemann sum then

takes the form

1
6 π ·

[
f
(

1
4 ,

1
6 π

)
+ f

(
3
4 ,

1
6 π

)
+ f

(
1
4 ,

1
2 π

)
+ f

(
3
4 ,

1
2 π

)
+ f

(
1
4 ,

5
6 π

)
+ f

(
3
4 ,

5
6 π

) ]
= 1

2 π ≈ 1.571.

Mathematica 3.0 reports that the true value of the integral is

-14 CosIntegral[4π] + 1
4 (EulerGamma + Log[4π])

and when we asked for a numerical value with the command N[%], it returned the approximation

0.77858913775068568

C14S01.009: Because f(x, y) = x2y2 is increasing in both the positive x-direction and the positive
y-direction on [1, 3]× [2, 5], L � M � U .

C14S01.010: Because f(x, y) =
√

100− x2 − y2 is decreasing in both the positive x-direction and the
positive y-direction on [1, 4]× [2, 5], U � M � L.

C14S01.011: We integrate first with respect to x, then with respect to y:

∫ 2

0

∫ 4

0

(3x+ 4y) dx dy =
∫ 2

0

[
3
2
x2 + 4xy

]4

0

dy =
∫ 2

0

(24 + 16y) dy =
[
24y + 8y2

]2

0

= 80.

C14S01.012: We integrate first with respect to x, then with respect to y:

∫ 3

0

∫ 2

0

x2y dx dy =
∫ 3

0

[
1
3
x3y

]2

0

dy =
∫ 3

0

8
3
y dy =

[
4
3
y2

]3

0

= 12.

C14S01.013: We integrate first with respect to y, then with respect to x:
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∫ 2

−1

∫ 3

1

(2x− 7y) dy dx =
∫ 2

−1

[
2xy − 7

2
y2

]3

1

dx =
∫ 2

−1

(4x− 28) dx =
[
2x2 − 28x

]2

−1

= −48− 30 = −78.

C14S01.014: We integrate first with respect to y, then with respect to x:

∫ 1

−2

∫ 4

2

x2y3 dy dx =
∫ 1

−2

[
1
4
x2y4

]4

2

dx =
∫ 1

−2

60x2 dx =
[

20x3

]1

−2

= 180.

C14S01.015: We integrate first with respect to x, then with respect to y:

∫ 3

0

∫ 3

0

(xy + 7x+ y) dx dy =
∫ 3

0

[
xy +

7
2
x2 +

1
2
x2y

]3

0

dy

=
∫ 3

0

(
3
2
(5y + 21)

)
dy =

[
1
4
(15y2 + 126y)

]3

0

=
513
4

= 128.25.

C14S01.016: We integrate first with respect to x, then with respect to y:

∫ 2

0

∫ 4

2

(x2y2 − 17) dx dy =
∫ 2

0

[
1
3
x3y2 − 17x

]4

2

dy

=
∫ 2

0

2
3

(28y2 − 51) dy =
[

2
9

(28y3 − 153y)
]2

0

= −164
9
≈ −18.222222222222.

C14S01.017: We integrate first with respect to y, then with respect to x:

∫ 2

−1

∫ 2

−1

(2xy2 − 3x2y) dy dx =
∫ 2

−1

[
2
3
xy3 − 3

2
x2y2

]2

−1

dx

=
∫ 2

−1

3
2

(4x− 3x2) dx =
[
3x2 − 3

2
x3

]2

−1

= 0− 9
2

= −9
2

= −4.5.

C14S01.018: We integrate first with respect to y, then with respect to x:

∫ 3

1

∫ −1

−3

(x3y − xy3) dy dx =
∫ 3

1

[
1
2
x3y2 − 1

4
xy4

]−1

−3

dx

=
∫ 3

1

(20x− 4x3) dx =
[
10x2 − x4

]3

1

= 9− 9 = 0.

C14S01.019: We integrate first with respect to x, then with respect to y:

∫ π/2

0

∫ π/2

0

sinx cos y dx dy =
∫ π/2

0

[
− cosx cos y

]π/2
0

dy

=
∫ π/2

0

cos y dy =
[

sin y
]π/2
0

= 1− 0 = 1.
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C14S01.020: This is merely Problem 19 with x and y interchanged, so the answer should be the same.

∫ π/2

0

∫ π/2

0

cosx sin y dy dx =
∫ π/2

0

[
− cosx cos y

]π/2
0

dx

=
∫ π/2

0

cosx dx =
[

sinx
]π/2
0

= 1− 0 = 1.

C14S01.021: We integrate first with respect to y, then with respect to x:

∫ 1

0

∫ 1

0

xey dy dx =
∫ 1

0

[
xey

]1

0

dx

=
∫ 1

0

(ex− x) dx =
[

1
2

(e− 1)x2

]1

0

=
1
2

(e− 1) ≈ 0.8591409142295226.

C14S01.022: We integrate first with respect to x, then with respect to y:

∫ 1

0

∫ 2

−2

x2ey dx dy =
∫ 1

0

[
1
3
x3ey

]2

−2

dy

=
∫ 1

0

16
3
ey dy =

[
16
3
ey

]1

0

=
16
3

(e− 1) ≈ 9.1641697517815746.

C14S01.023: We integrate first with respect to y, then with respect to x:

∫ 1

0

∫ π

0

ex sin y dy dx =
∫ 1

0

[
− ex cos y

]π
0

dx

=
∫ 1

0

2ex dx =
[

2ex
]1

0

= 2e− 2 ≈ 3.436563656918.

C14S01.024: We integrate first with respect to x, then with respect to y:

∫ 1

0

∫ 1

0

ex+y dx dy =
∫ 1

0

[
ex+y

]1

0

dy =
∫ 1

0

(
ey+1 − ey

)
dy

=
[
ey+1 − ey

]1

0

= (e2 − e)− (e− 1) = (e− 1)2 ≈ 2.9524924420125598.

C14S01.025: We integrate first with respect to x, then with respect to y:

∫ π

0

∫ π

0

(xy + sinx) dx dy =
∫ π

0

[
1
2
x2y − cosx

]π
0

dy =
∫ π

0

(
2 +

1
2
π2y

)
dy

=
[
2y +

1
4
π2y2

]π
0

=
1
4

(
π4 + 8π

)
≈ 30.635458065680.

C14S01.026: We integrate first with respect to x, then with respect to y:
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∫ π/2

0

∫ π/2

0

(y − 1) cosx dx dy =
∫ π/2

0

[
(y − 1) sinx

]π/2
0

dy =
∫ π/2

0

(y − 1) dy

=
[

1
2
y2 − y

]π/2
0

=
1
8
(π2 − 4π) ≈ −0.3370957766587268.

C14S01.027: We integrate first with respect to x, then with respect to y:

∫ π/2

0

∫ e

1

sin y
x

dx dy =
∫ π/2

0

[
(lnx) sin y

]e
1

dy

=
∫ π/2

0

sin y dy =
[
− cos y

]π/2
0

= 0− (−1) = 1.

C14S01.028: We integrate first with respect to y, then with respect to x:

∫ e

1

∫ e

1

1
xy

dy dx =
∫ e

1

[
ln y
x

]e
1

dx =
∫ e

1

1
x
dx =

[
lnx

]e
1

= 1− 0 = 1.

C14S01.029: We integrate first with respect to x, then with respect to y:

∫ 1

0

∫ 1

0

(
1

x+ 1
+

1
y + 1

)
dx dy =

∫ 1

0

[
x

y + 1
+ ln(x+ 1)

]1

0

dy =
∫ 1

0

(
1

y + 1
+ ln 2

)
dy

=
[

ln(y + 1) + y ln 2
]1

0

= 2 ln 2− 0 = 2 ln 2 ≈ 1.3862943611198906.

C14S01.030: We integrate first with respect to y, then with respect to x:

∫ 2

1

∫ 3

1

(
x

y
+
y

x

)
dy dx =

∫ 2

1

[
y2

2x
+ x ln y

]3

1

dx =
∫ 2

1

(
4
x

+ x ln 3
)
dx

=
[

1
2
x2 ln 3 + 4 lnx

]2

1

= 4 ln 2 +
3
2

ln 3 ≈ 4.4205071552419458.

C14S01.031: The first evaluation yields

∫ 2

−2

∫ 1

−1

(2xy − 3y2) dx dy =
∫ 2

−2

[
x2y − 3xy2

]1

−1

dy

=
∫ 2

−2

(−6y2) dy =
[
− 2y3

]2

−2

= −16− 16 = −32.

The second yields

∫ 1

−1

∫ 2

−2

(2xy − 3y2) dy dx =
∫ 1

−1

[
xy2 − y3

]2

−2

dx

=
∫ 1

−1

(−16) dx =
[
− 16x

]1

−1

= −16− 16 = −32.

5



C14S01.032: The first evaluation yields

∫ π/2

−π/2

∫ π

0

sinx cos y dx dy =
∫ π/2

−π/2

[
− cosx cos y

]π
0

dy

=
∫ π/2

−π/2
2 cos y dy =

[
2 sin y

]π/2
−π/2

= 2− (−2) = 4.

The second yields

∫ π

0

∫ π/2

−π/2
sinx cos y dy dx =

∫ π

0

[
sinx sin y

]π/2
−π/2

dx

=
∫ π

0

2 sinx dx =
[
− 2 cosx

]π
0

= 2− (−2) = 4.

C14S01.033: The first evaluation yields

∫ 2

1

∫ 1

0

(x+ y)1/2 dx dy =
∫ 2

1

[
2
3

(x+ y)3/2
]1

0

dy =
∫ 2

1

(
2
3

(y + 1)3/2 − 2
3
y3/2

)
dy

=
[

4
15

(y + 1)5/2 − 4
15
y5/2

]2

1

=
4
15

(
9
√

3 − 8
√

2 + 1
)
≈ 1.406599671769.

The second yields

∫ 1

0

∫ 2

1

(x+ y)1/2 dy dx =
∫ 1

0

[
2
3

(x+ y)3/2
]2

1

dx =
∫ 1

0

(
2
3

(x+ 2)3/2 − 2
3

(x+ 1)3/2
)
dx

=
[

4
15

(x+ 2)5/2 − 4
15

(x+ 1)5/2
]1

0

=
4
15

(
9
√

3 − 8
√

2 + 1
)
.

C14S01.034: The first evaluation yields

∫ ln 3

0

∫ ln 2

0

ex+y dx dy =
∫ ln 3

0

[
ex+y

]ln 2

0

dy =
∫ ln 3

0

(2ey − ey) dy =
[
ey

]ln 3

0

= 3− 1 = 2.

The second yields

∫ ln 2

0

∫ ln 3

0

ex+y dy dx =
∫ ln 2

0

[
ex+y

]ln 3

0

dx =
∫ ln 2

0

(3ex − ex) dx =
[

2ex
]ln 2

0

= 4− 2 = 2.

C14S01.035: We may assume that n � 1 and, if you wish, even that n is a positive integer. Then

∫ 1

0

∫ 1

0

xnyn dx dy =
∫ 1

0

[
xn+1yn

n+ 1

]1

0

dy =
∫ 1

0

yn

n+ 1
dy =

[
yn+1

(n+ 1)2

]1

0

=
1

(n+ 1)2
.

Therefore

lim
n→∞

∫ 1

0

∫ 1

0

xnyn dx dy = lim
n→∞

1
(n+ 1)2

= 0.

6



C14S01.036: Note that whatever the choice of (x�i , y
�
i ), f(x�i , y

�
i ) = k, and hence f(x�i , y

�
i ) ∆Ai is equal

to the product of k and the area a(Ri) of Ri for each i. Hence

n∑
i=1

f(x�i , y
�
i ) ∆Ai =

n∑
i=1

k · a(Ri) = k

(
n∑
i=1

a(Ri)

)
= k · a(R) = k(b− a)(d− c).

C14S01.037: Let a(R) denote the area of R. If 0 � x � π and 0 � y � π, then 0 � f(x, y) � sin 1
2 π = 1.

Hence every Riemann sum lies between 0 · a(R) and 1 · a(R). Therefore

0 �
∫ π

0

∫ π

0

sin
√
xy dx dy � a(R) = π2 ≈ 9.869604401.

The exact value of the integral is

∫ π

0

∫ π

0

sin
√
xy dx dy = 4

∫ π

0

sin t
t

dt ≈ 7.4077482079298646814442134806319654533832.

C14S01.038: The corresponding relation between Riemann sums is

n∑
i=1

cf(x�i , y
�
i ) ·∆Ai = c

n∑
i=1

f(x�i , y
�
i ) ·∆Ai.

C14S01.039: The corresponding relation among Riemann sums is

n∑
i=1

[f(x�i , y
�
i ) + g(x�i , y

�
i )] ·∆Ai =

[ n∑
i=1

f(x�i , y
�
i ) ·∆Ai

]
+

[ n∑
i=1

g(x�i , y
�
i ) ·∆Ai

]
.

C14S01.040: The corresponding relation between Riemann sums is this: If f(x, y) � g(x, y) at each
point of R, then

n∑
i=1

f(x�i , y
�
i ) ·∆Ai �

n∑
i=1

g(x�i , y
�
i ) ·∆Ai.
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Section 14.2

C14S02.001:
∫ 1

0

∫ x

0

(1 + x) dy dx =
∫ 1

0

[
y + xy

]x
y=0

dx =
∫ 1

0

(x+ x2) dx =
[

1
2
x2 +

1
3
x3

]1

0

=
5
6
.

C14S02.002:
∫ 2

0

∫ 2x

0

(1 + y) dy dx =
∫ 2

0

[
y +

1
2
y2

]2x

0

dx =
∫ 2

0

(2x+ 2x2) dx =
[
x2 +

2
3
x3

]2

0

=
28
3

.

C14S02.003:
∫ 1

0

∫ 1

y

(x+ y) dx dy =
∫ 1

0

[
1
2
x2 + xy

]1

y

dy

=
∫ 1

0

(
1
2

+ y − 3
2
y2

)
dy =

[
1
2

(y + y2 − y3)
]1

0

=
1
2
.

C14S02.004:
∫ 2

0

∫ 1

y/2

(x+ y) dx dy =
∫ 2

0

[
1
2
x2 + xy

]1

y/2

dy

=
∫ 2

0

(
1
2

+ y − 5
8
y2

)
dy =

[
1
2
y +

1
2
y2 − 5

24
y3

]2

0

=
4
3
.

C14S02.005:
∫ 1

0

∫ x2

0

xy dy dx =
∫ 1

0

[
1
2
xy2

]x2

0

dx =
∫ 1

0

1
2
x5 dx =

[
1
12

x6

]1

0

=
1
12

.

C14S02.006:
∫ 1

0

∫ √
y

y

(x+ y) dx dy =
∫ 1

0

[
1
2
x2 + xy

]√
y

y

dy

=
∫ 1

0

(
1
2
y + y3/2 − 3

2
y2

)
dy =

[
1
4
y2 +

2
5
y5/2 − 1

2
y3

]1

0

=
3
20

.

C14S02.007:
∫ 1

0

∫ √
x

x

(2x− y) dy dx =
∫ 1

0

[
2xy − 1

2
y2

]√
x

x

dx

=
∫ 1

0

(
−1

2
x+ 2x3/2 − 3

2
x2

)
dx =

[
− 1

4
x2 +

4
5
x5/2− 1

2
x3

]1

0

=
1
20

.

C14S02.008:
∫ 2

0

∫ √
2y

−
√

2y

(3x+ 2y) dx dy =
∫ 2

0

[
3
2
x2 + 2xy

]√
2y

−
√

2y

dy

=
∫ 2

0

(
4
√

2
)
y3/2 dy =

[ (
8
5

√
2

)
y5/2

]2

0

=
64
5

.

C14S02.009:
∫ 1

0

∫ x

x4
(y − x) dy dx =

∫ 1

0

[
1
2
y2 − xy

]x
x4

dx

=
∫ 1

0

(
−1

2
x2 + x5 − 1

2
x8

)
dx =

[
− 1

6
x3 +

1
6
x6 − 1

18
x9

]1

0

= − 1
18

.

C14S02.010:
∫ 2

−1

∫ y+2

−y
(x+ 2y2) dx dy =

∫ 2

−1

[
1
2
x2 + 2xy2

]y+2

−y
dy

1



-2 -1 1 2

1

2

3

4

=
∫ 2

−1

(2 + 2y + 4y2 + 4y3) dy =
[
2y + y2 +

4
3
y3 + y4

]2

−1

= 36.

C14S02.011:
∫ 1

0

∫ x3

0

ey/x dy dx =
∫ 1

0

[
xey/x

]x3

0

dx =
∫ 1

0

(
x exp(x2)− x

)
dx

=
[

1
2

(
exp(x2)− x2

) ]1

0

=
e− 2

2
≈ 0.3591409142295226.

C14S02.012:
∫ π

0

∫ sin x

0

y dy dx =
∫ π

0

[
1
2
y2

]sin x

0

dx =
∫ π

0

1
2

sin2 x dx =
[
1
8

(2x− sin 2x)
]π
0

=
π

4
.

C14S02.013:
∫ 3

0

∫ y

0

(y2 + 16)1/2 dx dy =
∫ 3

0

[
x(y2 + 16)1/2

]y
0

dy

=
∫ 3

0

y(y2 + 16)1/2 dy =
[

1
3

(y2 + 16)3/2
]3

0

=
125
3
− 64

3
=

61
3

.

C14S02.014:
∫ e2

1

∫ 1/y

0

exy dx dy =
∫ e2

1

[
1
y
exy

]1/y

0

dy =
∫ e2

1

e− 1
y

dy =
[
(e− 1) ln y

]e2
1

= 2(e− 1).

C14S02.015: The following sketch of the graphs of y = x2 and y ≡ 4 is extremely helpful in finding the
limits of integration.

Answer:

∫ 2

−2

∫ 4

x2
xy dy dx =

∫ 2

−2

[
1
2
xy2

]4

x2

dx =
∫ 2

−2

(
8x− 1

2
x5

)
dx =

[
4x2 − 1

12
x6

]2

−2

=
32
3
− 32

3
= 0.

C14S02.016:
∫ √

6

−
√

6

∫ 2−x2

−4

x2 dy dx =
∫ √

6

−
√

6

[
x2y

]2−x2

−4

dx =
∫ √

6

−
√

6

(6x2 − x4) dx

=
[
2x3 − 1

5
x5

]√
6

−
√

6

=
48
5

√
6 ≈ 23.5151015307185097.
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C14S02.017: The following diagram, showing the graphs of y = x2 and y = 8−x2, is useful in finding the
limits of integration. (Solve y = x2 and y = 8− x2 simultaneously to find where the two curves cross.)

Answer:

∫ 2

−2

∫ 8−x2

x2
x dy dx =

∫ 2

−2

[
xy

]8−x2

x2

dx =
∫ 2

−2

(8x− 2x3) dx =
[
4x2 − 1

2
x4

]2

−2

= 8− 8 = 0.

C14S02.018:
∫ 1

−1

∫ 1−y2

y2−1

y dx dy =
∫ 1

−1

[
xy

]1−y2

y2−1

dy =
∫ 1

−1

(2y − 2y3) dy =
[
y2 − 1

2
y4

]1

−1

=
1
2
− 1

2
= 0.

C14S02.019: The following graph of y = sinx is helpful in determining the limits of integration.

Answer:

∫ π

0

∫ sin x

0

x dy dx =
∫ π

0

[
xy

]sin x

0

dx =
∫ π

0

x sinx dx =
[

sinx− x cosx
]π
0

= π.

C14S02.020: To determine the order of integration and to determine the limits of integration, it is helpful
to draw the domain of the double integral. The value of the integral is

∫ π/2

−π/2

∫ cos x

0

sinx dy dx =
∫ π/2

−π/2

[
y sinx

]cos x

0

dx =
∫ π/2

−π/2
sinx cosx dx =

[
1
2

sin2 x

]π/2
−π/2

=
1
2
− 1

2
= 0.

C14S02.021: A Mathematica 3.0 command to draw the domain of the double integral is

ParametricPlot[ {{t,1}, {E,t}, {t,t}}, {t,1,E}, AxesOrigin → {0,0},
PlotRange → {{-0.5,3}, {-0.5,3}} ];
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The graph produced by this command is shown next.

Answer:

∫ e

1

∫ x

1

1
y
dy dx =

∫ e

1

[
ln y

]x
1

dx =
∫ e

1

lnx dx =
[
−x+ x lnx

]e
1

= 0− (−1) = 1.

C14S02.022: A Mathematica 3.0 command to draw the domain of the double integral is

ParametricPlot[ { Cos[t], Sin[t] }, { t, 0, Pi/2 }, AspectRatio → Automatic ];

The value of the double integral is

∫ 1

0

∫ √
1−x2

0

xy dy dx =
∫ 1

0

[
1
2
xy2

]√
1−x2

0

dx =
∫ 1

0

1
2

(x− x3) dx =
[

1
4
x2 − 1

8
x4

]1

0

=
1
8
.

C14S02.023: A Mathematica 3.0 command to draw the domain of the double integral is

Plot[ {x, -x/2, 1}, {x, -2, 1}, AspectRatio → Automatic,

PlotRange → {{-2,1}, {0,1}} ];

the resulting figure is next.

The value of the double integral is

∫ 1

0

∫ y

−2y

(1− x) dx dy =
∫ 1

0

[
x− 1

2
x2

]y
−2y

dy =
∫ 1

0

(
3y +

3
2
y2

)
dy =

[
1
2

(3y2 + y3)
]1

0

= 2− 0 = 2.

C14S02.024: The value of the double integral is

∫ 3

0

∫ 9−x

2x

(9− y) dy dx =
∫ 3

0

[
9y − 1

2
y2

]9−x

2x

dx =
∫ 3

0

3
2

(x2 − 12x+ 27) dx =
[

1
2

(x3 − 18x2 + 81x)
]3

0

= 54.
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C14S02.025: The domain of the double integral can be plotted by executing the following Mathematica

3.0 command:

Plot[ {x∗x, 4}, {x, -2, 2} ];

and the resulting figure is next.

When the order of integration is reversed, we obtain

∫ 4

0

∫ √
y

−√
y

x2y dx dy =
∫ 4

0

[
1
3
x3y

]√
y

−√
y

dy =
∫ 4

0

2
3
y5/2 dy =

[
4
21

y7/2

]4

0

=
512
21
≈ 24.380952380952.

C14S02.026: To draw the domain of the double integral, execute the Mathematica 3.0 command

Plot[ {x, x∧4}, {x, 0, 1}, AspectRatio → Automatic ];

Reversal of the order of integration yields

∫ 1

0

∫ y1/4

y

(x− 1) dx dy =
∫ 1

0

[
1
2
x2 − x

]y1/4

y

dy

=
∫ 1

0

1
2

(2y − y2 + y1/2 − 2y1/4) dy =
[

1
2
y2 − 1

6
y3 +

1
3
y3/2 − 4

5
y5/4

]1

0

= − 2
15
.

C14S02.027: The Mathematica 3.0 command

Plot[ { x∗x, 2∗x + 3 }, { x, -1, 3 } ];

produces a figure showing the domain of the double integral; it appears next.
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When the order of integration is reversed, two integrals are required—one for the part of the region for which
0 � y � 1, the other for the part when 1 � y � 9. The reason is that the lower limit of integration for x
changes where y = 1. The first integral is

I1 =
∫ 1

0

∫ √
y

−√
y

x dx dy =
∫ 1

0

[
1
2
x2

]√
y

−√
y

dy =
∫ 1

0

0 dy = 0.

The second integral is

I2 =
∫ 9

1

∫ √
y

(y−3)/2

x dx dy =
∫ 9

1

[
1
2
x2

]√
y

(y−3)/2

dy

=
∫ 9

1

1
8
(10y − 9− y2) dy =

[
1
24

(15y2 − 27y − y3)
]9

1

=
32
3
.

C14S02.028: When the order of integration is reversed, two integrals are required. The one on the left
half of the domain of the double integral is

I1 =
∫ 0

−4

∫ √
4+x

−
√

4+x

y dy dx =
∫ 0

−4

[
1
2
y2

]√
4+x

−
√

4+x

=
∫ 0

−4

0 dx = 0

and the one of the right half of the domain is

I2 =
∫ 4

0

∫ √
4−x

−
√

4−x
y dy dx =

∫ 4

0

[
1
2
y2

]√
4−x

−
√

4−x
dx =

∫ 4

0

0 dx = 0.

C14S02.029: To see the domain of the double integral, execute the Mathematica 3.0 command

Plot[ { 2∗x, 4∗x - x∗x }, { x, 0, 2 } ];

the result is shown next.

When the order of integration is reversed, the given integral becomes

∫ 4

0

∫ y/2

2−
√

4−y
1 dx dy =

∫ 4

0

[
x

]y/2
2−

√
4−y

dy

=
∫ 4

0

(
1
2
y + (4− y)1/2 − 2

)
dy =

[
1
4
y2 − 2y − 2

3
(4− y)3/2

]4

0

=
4
3
.

6



C14S02.030: The domain of the given integral is bounded above by the line y = x, below by the x-axis,
and on the right by the line x = 1. When the order of integration is reversed, we obtain

∫ 1

0

∫ x

0

exp(−x2) dy dx =
∫ 1

0

[
y exp(−x2)

]x
0

dx =
∫ 1

0

x exp(−x2) dx

=
[
− 1

2
exp(−x2)

]1

0

=
e− 1
2e
≈ 0.3160602794142788.

Because the antiderivative

F (t) =
∫ t

0

exp(−x2) dx

is known to be nonelementary, the original integral cannot be evaluated by hand using the fundamental
theorem of calculus.

C14S02.031: The domain of the given integral is bounded above by the line y = π, on the left by the
y-axis, and on the right by the line y = x. When the order of integration is reversed, we obtain

∫ π

0

∫ y

0

sin y
y

dx dy =
∫ π

0

[
x sin y
y

]y
0

dy =
∫ π

0

sin y dy =
[
− cos y

]π
0

= 2.

If the improper integral is disturbing, merely define the integrand to have the value 1 at y = 0. Then it will
be continuous and the integral will no longer be improper. Because the antiderivative

F (t) =
∫ t

0

sin y
y

dy

is known to be nonelementary, the only way to evaluate the given integral by hand is first to reverse the
order of integration.

C14S02.032: The domain of the given integral is bounded above by the line y = x, on the right by the
line x =

√
π , and below by the x-axis. When the order of integration is reversed, we obtain

∫ √
π

0

∫ x

0

sinx2 dy dx =
∫ √

π

0

[
y sinx2

]x
0

dx =
∫ √

π

0

x sinx2 dx =
[
− 1

2
cosx2

]√
π

0

=
1
2

+
1
2

= 1.

C14S02.033: To generate a figure showing the domain of the given integral, use the Mathematica 3.0
command

ParametricPlot[ {{t,t}, {1,t}, {t,0}}, {t,0,1}, AspectRatio → Automatic,

PlotRange → {{-0.1, 1.1}, {-0.1, 1.1}} ];
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The result is shown next.

When the order of integration is reversed, we obtain

∫ 1

0

∫ x

0

1
1 + x4

dy dx =
∫ 1

0

[
y

1 + x4

]x
0

dx =
∫ 1

0

x

1 + x4
dx =

[
1
2

arctanx2

]1

0

=
π

8
.

The integration can be carried out in the order given in the textbook, but finding the partial fraction
decomposition of the integrand is long and complex if machine aid is not available.

C14S02.034: The domain of the given integral is the plane region bounded above by the graph of y = tanx,
below by the x-axis, and on the right by the line x = π/4. When the order of integration is reversed, the
result is

∫ π/4

0

∫ tan x

0

secx dy dx =
∫ π/4

0

[
y secx

]tan x

0

dx =
∫ π/4

0

secx tanx dx =
[

secx
]π/4
0

= −1 +
√

2 .

C14S02.035: We used Mathematica 3.0 in this problem. First we entered

Solve[ x∧3 + 1 == 3∗x∗x, x ]

and the computer returned the exact answers. Then we asked for the numerical values to 40 places, and we
found that the curves intersect at the three points with approximate coordinates

(a, 3a2) ≈ (−0.5320888862379561, 0.8493557485738457),

(b, 3b2) ≈ (0.6527036446661393, 1.270661432813855), and

(c, 3c2) ≈ (2.8793852415718168, 24.8725781081447688).

We then entered the command

Plot[ {x∧3 + 1, 3∗x∗x}, {x, a, b}, PlotRange → {-1, 25} ];

and thereby discovered that the cubic graph is above the quadratic on (a, b) but below it on (b, c). Thus
we needed to compute two integrals:
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i1 = Integrate[ Integrate[ x, {y, 3∗x∗x, x∧3 + 1} ], {x, a, b} ]

and

i2 = Integrate[ Integrate[ x, {y, x∧3 + 1, 3∗x∗x} ], {x, b, c} ]

Results:

I1 ≈ 0.0276702414879754 and I2 ≈ 7.9240769481663325.

All the digits are correct or correctly rounded because we used at least 32 decimal digits in every computation.
The answer, therefore, is

I1 + I2 ≈ 7.9517471896543079.

C14S02.036: The Mathematica 3.0 command

Solve[ x∧4 == x + 4, x ]

yielded the exact solution—two real, two complex non-real. We asked for the real solutions to 40 places and
found that the two curves intersect in the two points

(a, a4) ≈ (−1.2837816658635382, 2.7162183341364618) and

(b, b4) ≈ (1.5337511687552043, 5.5337511687552043).

Clearly the quartic lies under the linear graph on (a, b). Hence the only integral we need compute is

Integrate[ Integrate[ x, {y, x∧4, x + 4} ], {x, a, b} ]

and the computer reported that its value is approximately 1.8930263071804474. All digits are correct or
correctly rounded because we carried at least 32 decimal digits in every computation.

C14S02.037: We began with the Mathematica 3.0 command

Solve[ x∗x - 1 == 1/(1 + x∗x), x ]

and were rewarded with the exact solutions—two real, two complex non-real. The two real solutions are
a = −21/4 and b = 21/4, so we used these exact values in the following computations. The double integral
has the value

Integrate[ Integrate[ x, {y, x∗x - 1, 1/(x∗x + 1)}, {x, a, b} ]

1
2

[
1−
√

2 − ln
(
1 +
√

2
)]

+
1
2

[
−1 +

√
2 + ln

(
1 +
√

2
)]

= 0.

C14S02.038: We used Mathematica 3.0, beginning with the command

Solve[ x∧4 - 16 == 2∗x - x∗x, x ]

and the computer returned the exact answer—two real solutions, two complex non-real solutions. We
approximated the real solutions to 40 decimal digits; thus we found that the two curves cross at
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(a, 2a− a2) ≈ (−1.7521717788841865, −6.5744495004865478) and

(b, 2b− b2) = (2, 0).

We carried at least 32 decimal digits in our computations, so the value of the integral given here is correct
or correctly rounded:

Integrate[ Integrate[ x, {y, x∧4 - 16, 2∗x - x∗x}, {x, a, b} ] ]

8.871348510800994831161862.

C14S02.039: We used Mathematica 3.0 to automate Newton’s method for solving the equation x2 = cosx:

f[x ] := x∗x - Cos[x]

g[x ] := N[x - f[x]/f′[x], 60]

The function g carries out the iteration of Newton’s method, carrying 60 digits in its computations. A graph
indicated that the positive solution of f(x) = 0 is close to 4/5, hence we entered the successive commands

g[4/5]

g[%]

(Recall that % refers to the “last output.”)

g[%]

After six iterations the results agreed to over 50 decimal degits, and thus we find that the graphs cross at
the two points

(b, b2) ≈ (0.8241323123025224, 0.6791940681811024) and (a, a2)

where a = −b. Hence the value of the double integral is

Integrate[ Integrate[ x, {y, x∗x, Cos[x]}], {x, a, b} ]

0.0× 10−58

A moment’s thought about Riemann sums reveals that the exact value of the integral is zero.

C14S02.040: We let f(x) = x2 − 2x − sinx. Clearly f(0) = 0. We used the function g of the solution
of Problem 39 to implement Newton’s method for finding the positive solution. Beginning with the initial
approximation x0 = 2.2, six iterations yielded 50-place accuracy; the graphs cross at (0, 0) and at

(b, b2 − 2b) ≈ (2.3169342886237398, 0.7343159205529156).

The Mathematica 3.0 command

Integrate[ Integrate[ x, {y, x∗x - 2∗x, Sin[x]} ], {x, a, b} ]

3.3945384440042540571563864737
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yielded a good approximation to the value of the double integral. All digits shown are correct or correctly
rounded because we carried at least 32 decimal digits in each computation.

C14S02.041: The integral is zero. Each term f(x�i , y
�
i ) ∆Ai = x�i ∆Ai in every Riemann sum is cancelled

by a similar term in which x�i has the opposite sign.

C14S02.042: By symmetry around both coordinate axes, the value of the integral is

4
∫ 1

0

∫ 1−x

0

x2 dy dx = 4
∫ 1

0

[
x2y

]1−x

0

dx = 4
∫ 1

0

(x2 − x3) dx = 4
[

1
3
x3 − 1

4
x4

]1

0

=
1
3
.

C14S02.043: Every term of the form f(x�i , y
�
i ) ∆Ai in every Riemann sum is cancelled by a similar term

in which x�i has the opposite sign (but y�i is the same). Therefore the value of the integral is zero.

C14S02.044: Clearly the double integral of y2 over the square is the same as the double integral of x2, so
the answer is double the answer to Problem 42.

C14S02.045: Suppose that the rectangle R consists of those points (x, y) for which both a � x � b and
c � y � d. Suppose that k is a positive constant and that f is a function continuous on R. Then

I =
∫∫

R

f(x, y) dA

exists. Suppose that ε > 0 is given. Then there exists a number δ1 > 0 such that, for every partition
P = {R1, R2, . . . Rn} of R such that |P | < δ1 and for every selection (x�i , y

�
i ) in Ri (i = 1, 2, . . . , n),

∣∣∣∣∣
n∑
i=1

f(x�i , y
�
i ) ∆Ai − I

∣∣∣∣∣ <
ε

2k

(where ∆Ai is the area a(Ri) of Ri). Consequently,
∣∣∣∣∣ k

n∑
i=1

f(x�i , y
�
i ) ∆Ai − kI

∣∣∣∣∣ <
ε

2
. (1)

Moreover, kf is continuous on R, and hence

J =
∫∫

R

kf(x, y) dA

exists. So there exists a number δ2 > 0 such that, for every partition P = {R1, R2, . . . Rn} of R such that
|P | < δ2 and every selection (x�i , y

�
i ) in Ri ( i = 1, 2, . . . n),

∣∣∣∣∣
n∑
i=1

kf(x�i , y
�
i ) ∆Ai − J

∣∣∣∣∣ <
ε

2
; that is,

∣∣∣∣∣ k
n∑
i=1

f(x�i , y
�
i ) ∆Ai − J

∣∣∣∣∣ <
ε

2
.

Let δ be the minimum of δ1 and δ2. Then, for every partition P of R with |P | < δ and every selection
(x�i , y

�
i ) in Ri (i = 1, 2, . . . n), we have both
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∣∣∣∣∣kI − k

n∑
i=1

f(x�i , y
�
i ) ∆Ai

∣∣∣∣∣ <
ε

2
(by (1)) and

∣∣∣∣∣ k
n∑
i=1

f(x�i , y
�
i ) ∆Ai − J

∣∣∣∣∣ <
ε

2
.

Add the last two inequalities. Then, by the triangle inequality (Theorem 1 of Appendix A, page A-2),

|kI − J | < ε

2
+

ε

2
= ε.

Because ε is an arbitrary positive number, this proves that J = kI; that is, we have shown that
∫∫

R

kf(x, y) dA = k

∫∫
R

f(x, y) dA.

The proof is similar in the case k < 0, and if k = 0 there is nothing to prove. �

For a shorter proof, one that exploits both the continuity of f and the fact that R is a rectangle with sides
parallel to the coordinate axes, choose a continuous function F such that Fx = f . Then choose a continuous
function P such that Py = F . Then

∫∫
R

kf(x, y) dA =
∫ d

c

∫ b

a

kf(x, y) dx dy =
∫ d

c

[
kF (x, y)

]b
a

dy

=
∫ d

c

[kF (b, y)− kF (a, y)] dy =
[
kP (b, y)− kP (a, y)

]d
c

= kP (b, d)− kP (a, d)− kP (b, c) + kP (a, c) = k [P (b, d)− P (a, d)− P (b, c) + P (a, c)]

= k

[
P (b, y)− P (a, y)

]d
c

= k

∫ d

c

[F (b, y)− F (a, y)] dy

= k

∫ d

c

[
F (x, y)

]b
a

dy = k

∫ d

c

∫ b

a

f(x, y) dx dy = k

∫∫
R

f(x, y) dA.

C14S02.046: Suppose that R is a plane rectangle with sides parallel to the coordinate axes, so that R
consists of those points (x, y) for which both a � x � b and c � y � d for some numbers a, b, c, and
d. Suppose that f and g are functions both of which are continuous on R. Then there exist continuous
functions F and G such that Fx = f and Gx = g on R. Moreover, there exist continuous functions P and
Q such that Py = F and Qy = G on R. Then

∫∫
R

f(x, y) dA =
∫ d

c

∫ b

a

f(x, y) dx dy =
∫ d

c

[
F (x, y)

]b
a

dy

=
∫ d

c

[F (b, y)− F (a, y)] dy =
[
P (b, y)− P (a, y)

]d
c

= P (b, d)− P (a, d)− P (b, c) + P (a, c).

Similarly,
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∫∫
R

g(x, y) dA = Q(b, d)−Q(a, d)−Q(b, c) +Q(a, c).

Finally,

∫∫
R

[f(x, y) + g(x, y)] dA =
∫ d

c

∫ b

a

[f(x, y) + g(x, y)] dx dy =
∫ d

c

[
F (x, y) +G(x, y)

]b
a

dy

=
∫ d

c

[F (b, y) +G(b, y)− F (a, y)−G(a, y)] dy

=
[
P (b, y) +Q(b, y)− P (a, y)−Q(a, y)

]d
c

= P (b, d) +Q(b, d)− P (a, d)−Q(a, d)− P (b, c)−Q(b, c) + P (a, c) +Q(a, c).

We compare these three results; it follows immediately that
∫∫

R

[f(x, y) + g(x, y)] dA =
∫∫

R

f(x, y) dA +
∫∫

R

g(x, y) dA.

C14S02.047: Suppose that R is a plane rectangle with sides parallel to the coordinate axes, so that R
consists of those points (x, y) for which both a � x � b and c � y � d for some numbers a, b, c, and d.
Suppose that f is continuous on R and that m � f(x, y) � M for all (x, y) in R.

Let g(x, y) ≡ m and h(x, y) ≡M for (x, y) in R. Then g(x, y) � f(x, y) � h(x, y) for all points (x, y) in
R. Let P = {R1, R2, . . . , Rn} be a partition of R and let (x�i , y

�
i ) be a selected point in Ri for 1 � i � n.

As usual, let ∆Ai = a(Ri) for 1 � i � n. Then for each integer i, 1 � i � n, we have

g(x�i , y
�
i ) � f(x�i , y

�
i ) � h(x�i , y

�
i );

thus

g(x�i , y
�
i ) ∆Ai � f(x�i , y

�
i ) ∆Ai � h(x�i , y

�
i ) ∆Ai

for 1 � i � n. Add these inequalities to find that

n∑
i=1

m ·∆Ai �
n∑
i=1

f(x�i , y
�
i ) ∆Ai �

n∑
i=1

M ·∆Ai.

Therefore

m ·
n∑
i=1

a(Ri) �
n∑
i=1

f(x�i , y
�
i ) ∆Ai � M ·

n∑
i=1

a(Ri);

that is,

m · a(R) �
n∑
i=1

f(x�i , y
�
i ) ∆Ai � M · a(R) (1)

for every partition P of R and every selection (x�i , y
�
i ) for P. That is, the inequalities in (1) hold for every

Riemann sum for f on R. Because the double integral of f on R is the limit of such sums, we may conclude
that
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m · a(R) �
∫∫

R

f(x, y) dA � M · a(R).

C14S02.048: Suppose that R1 and R2 are rectangles with sides parallel to the coordinate axes and that
the right-hand edge of R1 coincides with the left-hand edge of R2. Suppose that R1 consists of those points
(x, y) in the plane for which a � x � b and r � y � s and that R2 consists of those points (x, y) for which
b � x � c and r � y � s. Let R be the union of R1 and R2, so that R consists of those points (x, y) for
which a � x � c and r � y � s.

Suppose that f is continuous on R, and thus on R1 and R2. Choose a continuous function F such that
Fx = f on R and a function P such that Py = F on R. Note that these equations hold on R1 and R2 as
well. Then

∫∫
R1

f(x, y) dA =
∫ s

r

∫ b

a

f(x, y) dx dy =
∫ s

r

[
F (x, y)

]b
a

dy =
∫ s

r

[F (b, y)− F (a, y)] dy

=
[
P (b, y)− P (a, y)

]s
r

= P (b, s)− P (a, s)− P (b, r) + P (a, r).

Similarly,
∫∫

R2

f(x, y) dA = P (c, s)− P (b, s)− P (c, r) + P (b, r)

and
∫∫

R

f(x, y) dA = P (c, s)− P (a, s)− P (c, r) + P (a, r).

Therefore

∫∫
R1

f(x, y) dA +
∫∫

R2

f(x, y) dA

= P (b, s)− P (a, s)− P (b, r) + P (a, r) + P (c, s)− P (b, s)− P (c, r) + P (b, r)

= P (c, s)− P (a, s)− P (c, r) + P (a, r) =
∫∫

R

f(x, y) dA.

C14S02.049: Suppose that R is a rectangle with sides parallel to the coordinate axes, that f(x, y) � g(x, y)
for all (x, y) in R, and that both

I =
∫∫

R

f(x, y) dA and J =
∫∫

R

g(x, y) dA

exist. Suppose by way of contradiction that J < I. Let ε = I − J . Note that ε/3 > 0. Choose δ > 0 so
small that if P = {R1, R2, . . . , Rn} is a partition of R with |P | < δ and (x�i , y

�
i ) is a selection for P with

(x�i , y
�
i ) in Ri for 1 � i � n, then

∣∣∣∣∣
n∑
i=1

f(x�i , y
�
i ) ∆Ai − I

∣∣∣∣∣ <
ε

3
and

∣∣∣∣∣
n∑
i=1

g(x�i , y
�
i ) ∆Ai − J

∣∣∣∣∣ <
ε

3
.
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With such a partition and such a selection, note that

n∑
i=1

g(x�i , y
�
i ) ∆Ai < J +

ε

3
< I − ε

3
<

n∑
i=1

f(x�i , y
�
i ) ∆Ai,

and thus

n∑
i=1

[f(x�i , y
�
i ) − g(x�i , y

�
i )] ∆Ai > 0.

Because ∆Ai > 0 for 1 � i � n, it follows that

f(x�j , y
�
j ) > g(x�j , y

�
j )

for some j, 1 � j � n, contrary to hypothesis. Therefore I � J . �

C14S02.050: Let m = f(x0, y0) and M = f(x1, y1) where (x0, y0) and (x1, y1) are points of R. Let
r(t) be a continuous parametric curve lying entirely in R such that r(0) = (x0, y0) and r(1) = (x1, y1). By
Eq. (8) of Section 14.2,

m · a(R) �
∫∫

R

f(x, y) dA � M · a(R).

Note that g(t) = f(r(t)) · a(R) is continuous on [0, 1] and that g(0) = m · a(R) and g(1) = M · a(R).
Therefore

g
(
t
)

=
∫∫

R

f(x, y) dA (1)

for some t in [0, 1]. Let (x, y) = g
(
t
)
. Then (x, y) is a point of R, and by Eq. (1),

f(x, y) · a(R) =
∫∫

R

f(x, y) dA.

C14S02.051: Recall that R is the region in the first quadrant bounded by the circle x2 + y2 = 1 and the
coordinate axes. Hence

∫∫
R

(x+ y) dA =
∫ 1

x=0

∫ √
1−x2

y=0

(x+ y) dy dx

=
∫ 1

0

[
xy +

1
2
y2

]√
1−x2

0

dx =
∫ 1

0

(
x
√

1− x2 +
1
2
(1− x2)

)
dx

=
[
− 1

3
(1− x2)3/2 +

1
2
x− 1

6
x3

]1

0

=
1
2
− 1

6
+

1
3

=
2
3
.

C14S02.052: Here is one way to use Mathematica to solve this problem. First define f(x, y) = xy and
set n = 5. Then the Riemann sum for the induced partition using the midpoint of each small rectangle
(actually, a square) is
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

( 1/n∧2)∗Sum[ f[ (i − 1/2)/n, (y − 1/2)/n ], { j, 1, n − 1 },
{ i, 1, IntegerPart[ Sqrt[ n∧2 − j∧2 ] ] } ]

207
2500

(You may need to substitute Floor for IntegerPart in the Mathematica command shown here.) So the
midpoint approximation to the integral is 0.0828. Its actual value is

Integrate[ f[ x, y ], { y, 0, 1 }, { x, 0, Sqrt[ 1 − y∧2 ] } ]

1
8

Therefore the exact value of the integral is 0.125. You can use ideas illustrated by the limits of summation
in the first command to verify the entries in the second column of the table in Fig. 14.2.3. —C.H.E.

C14S02.053: The domain of the integral and the partition using n = 5 subintervals of equal length in each
direction is shown next.

The midpoints of the subrectangles of the inner partition are indicated with “bullets” in the figure. Let
f(x, y) = xy exp

(
y2

)
. Then the corresponding midpoint sum for the given integral is

S =
1
n2

[
f(0.1, 0.1) + f(0.3, 0.1) + f(0.5, 0.1) + f(0.7, 0.1) + f(0.3, 0.1) + f(0.3, 0.3)

+ f(0.3, 0.5) + f(0.3, 0.7) + f(0.5, 0.1) + f(0.5, 0.3) + f(0.5, 0.5) + f(0.5, 0.7)

+ f(0.7, 0.1) + f(0.7, 0.3) + f(0.7, 0.5)
]

=
1
25

[
4
25
e0.01 +

12
25
e0.09 +

4
5
e0.25 +

63
100

e0.49
]
≈ 0.109696.

The exact value of the integral is

∫∫
R

f(x, y) dA =
∫ 1

y=0

∫ √1−y2

x=0

xy exp
(
y2

)
dx dy
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=
∫ 1

0

[
1
2
x2y exp

(
y2

)]√1−y2

0

dy =
∫ 1

0

1
2
(y − y3) exp

(
y2

)
dy

=
[

2− y2

4
exp

(
y2

)]1

0

=
e− 2

4
≈ 0.1795704571147613088400718678.

If you prefer the other order of integration—which avoids the integration by parts—it is

∫∫
R

f(x, y) dA =
∫ 1

x=0

∫ √
1−x2

y=0

xy exp
(
y2

)
dy dx

=
∫ 1

0

[
1
2
x exp

(
y2

)]√
1−x2

0

dx =
∫ 1

0

1
2

[
x exp

(
1− x2

)
− x

]
dx

=
[
−1

4
x2 − 1

4
exp

(
1− x2

)]1

0

=
e− 2

4
.
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Section 14.3

C14S03.001: The area is

A =
∫ 1

y=0

∫ y

x=y2
1 dx dy =

∫ 1

y=0

[
x

]y
x=y2

dy

=
∫ 1

y=0

(y − y2) dy =
[

1
2
y2 − 1

3
y3

]1

y=0

=
1
2
− 1

3
=

1
6
.

To find the limits of integration, it is very helpful to sketch the domain of the double integral. The figure is
next; it was produced by Mathematica 3.0 via the command

Plot[ {x, Sqrt[x]}, {x, 0, 1}, AspectRatio→ Automatic ];

C14S03.002: The area is

A =
∫ 1

0

∫ y=x

y=x4
1 dy dx =

∫ 1

0

(x− x4) dx =
[

1
2
x2 − 1

5
x5

]1

0

=
3
10
.

C14S03.003: The graphs cross where x2 = 2x + 3; that is, where x = −1 and where x = 3. A sketch of
the domain of the integral is next; it was produced by Mathematica 3.0 via the command

Plot[ {x∗x, 2∗x + 3}, {x, -1, 3}, AspectRatio → Automatic ];
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-2 -1 1 2

1

2

3

4

The area of the region is

A =
∫ 3

−1

∫ 2x+3

y=x2
1 dy dx =

∫ 3

−1

(3 + 2x− x2) dx =
[
3x+ x2 − 1

3
x3

]3

−1

=
32
3
.

C14S03.004: The graphs cross where 2x+ 3 = 6x− x2; that is, where x = 1 and where x = 3. The area
they enclose is

A =
∫ 3

1

∫ 6x−x2

y=2x+3

1 dy dx =
∫ 3

1

(4x− 3− x2) dx =
[
2x2 − 3x− 1

3
x3

]3

1

=
4
3
.

C14S03.005: The graphs cross where x2 = 2− x; that is, where x = −2 and where x = 1. But the x-axis
is also part of the boundary of the region in question, and hence the following figure is important to find not
only the correct limits of integration, but indeed the very region whose area is sought. It was produced by
the Mathematica 3.0 command

Plot[ {x∗x, 2 - x}, {x, -2, 2}, AspectRatio → Automatic ];

(We enhanced the result using Adobe Illustrator.) The area of the region bounded by all three graphs is

A =
∫ 1

y=0

∫ 2−y

x=
√
y

1 dx dy =
∫ 1

0

(2−√y − y) dy =
[
2y − 2

3
y3/2 − 1

2
y2

]1

0

=
5
6
.

C14S03.006: The region is bounded on the northwest by the graph of y = (x + 1)2, on the northeast by
the graph of y = (x − 1)2, and below by the x-axis. To avoid radicals we will integrate first with respect
to y, then with respect to x, even though this entails computing two integrals. The area of the part of the
region to the right of the y-axis is

A1 =
∫ 1

x=0

∫ (x−1)2

y=0

1 dy dx =
∫ 1

0

(x− 1)2 dx =
[
x− x2 +

1
3
x3

]1

0

=
1
3
.

The area of the part of the region to the left of the y-axis is

A2 =
∫ 0

x=−1

∫ (x+1)2

y=0

1 dy dx =
∫ 0

−1

(x+ 1)2 dx =
[
x+ x2 +

1
3
x3

]0

−1

=
1
3
.
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Therefore the total area bounded by all three of the given curves is A1 +A2 =
2
3
.

C14S03.007: The graphs cross where x2 + 1 = 2x2 − 3; that is, where x = −2 and where x = 2. The area
between them is

A =
∫ 2

x=−2

∫ x2+1

y=2x2−3

1 dy dx =
∫ 2

−2

(4− x2) dx =
[
4x− 1

3
x3

]2

−2

=
32
3
.

C14S03.008: The graphs cross where x2 + 1 = 9− x2; that is, where x = −2 and where x = 2. The area
between them is

A =
∫ 2

x=−2

∫ 9−x2

y=x2+1

1 dy dx =
∫ 2

−2

(8− 2x2) dx =
[
8x− 2

3
x3

]2

−2

=
64
3
.

C14S03.009: The part of the region that lies in the first quadrant is shown next; the figure was generated
using the Mathematica 3.0 command

Plot[ {x, 2∗x, 2/x}, {x, 0, 2}, PlotRange → {0, 2.5} ];

The bounding curves cross at the origin and at the points (1, 2), and
(√

2 ,
√

2
)
. The area they bound (in

the first quadrant) is

A =
∫ 1

x=0

∫ 2x

y=x

1 dy dx+
∫ √

2

x=1

∫ 2/x

y=x

1 dy dx =
∫ 1

0

x dx+
∫ √

2

1

(
2
x
− x

)
dx

=
[

1
2
x2

]1

0

+
[
2 lnx− 1

2
x2

]√
2

1

=
1
2

+ ln 2− 1
2

= ln 2 ≈ 0.693147180559945309417232.

The region is symmetric around the origin, so the total area is 2 ln 2.

C14S03.010: The curves cross where

x2 =
2

1 + x2
;

x4 + x2 − 2 = 0;

(x2 + 2)(x2 − 1) = 0;

thus where x = −1 and where x = 1. The area of the region they bound is

3
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∫ 1

x=−1

∫ 2/(1+x2)

y=x2
1 dy dx =

∫ 1

−1

(
2

1 + x2
− x2

)
dx =

[
2 arctanx− 1

3
x3

]1

−1

= π − 2
3
≈ 2.474925986923.

C14S03.011: The volume is

V =
∫ 1

x=0

∫ 1

y=0

(1 + x+ y) dy dx =
∫ 1

x=0

[
y + xy +

1
2
y2

]1

y=0

dx =
∫ 1

0

(
x+

3
2

)
dx =

[
3
2
x+

1
2
x2

]1

0

= 2.

C14S03.012: The volume is

V =
∫ 2

y=0

∫ 3

x=0

(2x+ 3y) dx dy =
∫ 2

y=0

[
x2 + 3xy

]3

x=0

dy =
∫ 2

0

(9 + 9y) dy =
[
9y +

9
2
y2

]2

0

= 36.

C14S03.013: The volume is

V =
∫ 2

y=0

∫ 1

x=0

(y + ex) dx dy =
∫ 2

y=0

[
xy + ex

]1

x=0

dy =
∫ 2

0

(e+ y − 1) dy =
[
ey +

1
2
y2 − y

]2

0

= 2e.

C14S03.014: The volume is

V =
∫ π

x=0

∫ π

y=0

(3 + cosx+ cos y) dy dx =
∫ π

x=0

[
3y + y cosx+ sin y

]π
y=0

dx

=
∫ π

0

(3π + π cosx) dx =
[
3πx+ π sinx

]π
0

= 3π2 ≈ 29.608813203268075856503473.

C14S03.015: The domain of the integral can be drawn by using the Mathematica 3.0 command

Plot[ 1 - x, {x, 0, 1} ];

and the result is shown next.

The volume is

V =
∫ 1

x=0

∫ 1−x

y=0

(x+ y) dy dx =
∫ 1

x=0

[
xy +

1
2
y2

]1−x

y=0

dx =
∫ 1

0

1
2

(1− x2) dx =
[

1
2
x− 1

6
x3

]1

0

=
1
3
.

C14S03.016: The volume is
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V =
∫ 4

x=0

∫ (4−x)/2

y=0

(3x+ 2y) dy dx =
∫ 4

x=0

[
3xy + y2

](4−x)/2

y=0

dx

=
∫ 4

0

(
4 + 4x− 5

4
x2

)
dx =

[
4x+ 2x2 − 5

12
x3

]4

0

=
64
3
.

C14S03.017: The domain of the integral can be drawn using the Mathematica 3.0 command

ParametricPlot[ {{1,t}, {t,0}, {t,t∗t}}, {t,0,1}, AspectRatio → Automatic ];

and the result is shown next.

The volume is

V =
∫ 1

x=0

∫ x2

y=0

(1 + x+ y) dy dx =
∫ 1

x=0

[
y + xy +

1
2
y2

]x2

y=0

dx =
∫ 1

0

(
x2 + x3 +

1
2
x4

)
dx

=
[

1
3
x3 +

1
4
x4 +

1
10
x5

]1

0

=
41
60
≈ 0.683333333333.

C14S03.018: The domain of the integral can be drawn using the Mathematica 3.0 command

ParametricPlot[ {{0,t}, {t,1}, {Sqrt[t],t}}, {t,0,1}, AspectRatio → Automatic ];

and the volume of the solid is

V =
∫ 1

x=0

∫ 1

y=x2
(2x+ y) dy dx =

∫ 1

x=0

[
2xy +

1
2
y2

]1

y=x2

dx =
∫ 1

0

(
1
2

+ 2x− 2x3 − 1
2
x4

)
dx

=
[

1
2
x+ x2 − 1

2
x4 − 1

10
x5

]1

0

=
9
10
.
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C14S03.019: The domain of the integral is shown next.

The volume of the solid is

V =
∫ 1

x=−1

∫ 1

y=x2
x2 dy dx =

∫ 1

x=−1

[
x2y

]1

y=x2

dx =
∫ 1

−1

(x2 − x4) dx =
[

1
3
x3 − 1

5
x5

]1

−1

=
4
15
.

C14S03.020: The domain of the integral can be drawn using the Mathematica 3.0 command

ParametricPlot[ {{t∗t,t}, {4,t}}, {t, -2, 2} ];

and the volume of the solid is

V =
∫ 2

y=−2

∫ 4

x=y2
y2 dx dy =

∫ 2

y=−2

[
xy2

]4

x=y2

dy =
∫ 2

−2

(4y2 − y4) dy

=
[

4
3
y3 − 1

5
y5

]2

−2

=
128
15
≈ 8.533333333333.

C14S03.021: The volume of the solid is

V =
∫ 2

y=0

∫ 1

x=0

(x2 + y2) dx dy =
∫ 2

y=0

[
1
3
x3 + xy2

]1

x=0

dy =
∫ 2

0

(
1
3

+ y2

)
dy =

[
1
3

(y + y3)
]2

0

=
10
3
.

C14S03.022: The volume is

V =
∫ 1

x=−2

∫ 2−x2

y=x

(1 + x2 + y2) dy dx =
∫ 1

x=−2

[
y + x2y +

1
3
y3

]2−x2

y=x

dx

=
∫ 1

−2

1
3

(14− 3x− 9x2 − 4x3 + 3x4 − x6) dx =
[

14
3
x− 1

2
x2 − x3 − 1

3
x4 +

1
5
x5 − 1

21
x7

]1

−2

=
837
70
≈ 11.9571428571428571.

C14S03.023: The domain of the integral can be drawn by executing the Mathematica 3.0 command

ParametricPlot[ {{3, 2∗t/3}, {t, 0}, {t, 2∗t/3}}, {t, 0, 3} ];
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and the result is shown next.

The volume of the solid is

V =
∫ 3

x=0

∫ 2x/3

y=0

(9− x− y) dy dx =
∫ 3

x=0

[
9y − xy − 1

2
y2

]2x/3

y=0

dx

=
∫ 3

0

(
6x− 8

9
x2

)
dx =

[
3x2 − 8

27
x3

]3

0

= 19.

C14S03.024: The volume of the solid is

V =
∫ 1

x=0

∫ √
x

y=x2
(10 + y − x2) dy dx =

∫ 1

x=0

[
10y − x2y +

1
2
y2

]√
x

y=x2

dx

=
∫ 1

0

(
10x1/2 +

1
2
x− 10x2 − x5/2 +

1
2
x4

)
dx =

[
20
3
x3/2 +

1
4
x2 − 10

3
x3 − 2

7
x7/2 +

1
10
x5

]1

0

=
1427
420

≈ 3.3976190476190476.

C14S03.025: The volume is

V =
∫ 1

x=0

∫ 2−2x

y=0

(4x2 + y2) dy dx =
∫ 1

x=0

[
4x2y +

1
3
y3

]2−2x

y=0

dx

=
∫ 1

0

8
3

(1− 3x+ 6x2 − 4x3) dx =
[

8
3
x− 4x2 +

16
3
x3 − 8

3
x4

]1

0

=
4
3
.

C14S03.026: The volume is

V =
∫ 1

x=0

∫ x2

y=x3
(2x+ 3y) dy dx =

∫ 1

x=0

[
2xy +

3
2
y2

]x2

y=x3

dx =
∫ 1

0

(
2x3 − 1

2
x4 − 3

2
x6

)
dx

=
[

1
2
x4 − 1

10
x5 − 3

14
x7

]1

0

=
13
70
≈ 0.1857142857142857.

C14S03.027: The volume is
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V =
∫ 2

x=0

∫ (6−3x)/2

y=0

(6− 3x− 2y) dy dx =
∫ 2

x=0

[
6y − 3xy − y2

](6−3x)/2

y=0

dx

=
∫ 2

0

(
9− 9x+

9
4
x2

)
dx =

[
9x− 9

2
x2 +

3
4
x3

]2

0

= 6.

C14S03.028: The volume is

V =
∫ 2

y=0

∫ (4−y)/2

x=y/2

(8− 4x− 2y) dx dy =
∫ 2

y=0

[
8x− 2x2 − 2xy

](4−y)/2

x=y/2

dy

=
∫ 2

0

(2y2 − 8y + 8) dy =
[

2
3
y3 − 4y2 + 8y

]2

0

=
16
3
.

C14S03.029: The triangular domain of the integral can be drawn by executing the Mathematica 3.0
command

ParametricPlot[ {{1, 2 + 2∗t}, {1 + 4∗t, 2}, {1 + 4∗t, 4 - 2∗t}},
{t, 0, 1}, PlotRange → {{-0.5, 5.5}, {-0.5, 4.5}},
AspectRatio → Automatic, AxesOrigin → {0, 0} ];

and the result is shown next.

The volume of the solid is

V =
∫ 5

x=1

∫ (9−x)/2

y=2

xy dy dx =
∫ 5

x=1

[
1
2
xy2

](9−x)/2

y=2

dx

=
∫ 5

1

(
65
8
x− 9

4
x2 +

1
8
x3

)
dx =

[
65
16
x2 − 3

4
x3 +

1
32
x4

]5

1

= 24.

C14S03.030: To generate the triangular base of the solid, execute the Mathematica 3.0 command

ParametricPlot[ {{-3, -4 + 8∗t}, {-3 + 8∗t, 4 - 4∗t}, {-3 + 8∗t, -4 + 4∗t}},
{t, 0, 1} ];
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and the result is shown next.

The top of the triangle has equation y = 1
2 (5 − x) and the bottom has equation y = 1

2 (x − 5). Hence the
volume of the solid is

V =
∫ 5

x=−3

∫ (5−x)/2

y=(x−5)/2

(25− x2 − y2) dy dx =
∫ 5

x=−3

[
25y − x2y − 1

3
y3

](5−x)/2

y=(x−5)/2

dx

=
∫ 5

−3

(
1375
12
− 75

4
x− 25

4
x2 +

13
12
x3

)
dx =

[
1375
12

x− 75
8
x2 − 25

12
x3 +

13
48
x4

]5

−3

=
1792

3
.

C14S03.031: The volume is

V =
∫ 1

y=−1

∫ √1−y2

x=−
√

1−y2
(x+ 1) dx dy.

This integral can be evaluated exactly with a single command in Mathematica 3.0, but we will evaluate it
one step at a time. As usual, the Mathematica output is rewritten slightly for more clarity.

Integrate[ x + 1, x ]

x+
1
2
x2

(% /. x → Sqrt[1 - y∗y]) - (% /. x → -Sqrt[1 - y∗y])

2
√

1− y2 +
1
2

(1− y2) +
1
2

(y2 − 1)

Simplify[ % ]

2
√

1− y2

Integrate[ %, y ]

y
√

1− y2 + arcsin y

(% /. y → 1) - (% /. y → -1)

π

N[ %, 60 ]

9



3.14159265358979323846264338327950288419716939937510582097494

C14S03.032: The volume is

V =
∫ 3

x=−3

∫ √
9−x2

y=−
√

9−x2
(9− x2 − y2) dy dx.

We used Mathematica 3.0 much as in the solution of Problem 31 to obtain the numerical value of V :

V =
∫ 3

x=−3

[
9y − x2y − 1

3
y3

]√
9−x2

y=−
√

9−x2

dx =
∫ 3

−3

4
9

(9− x2)3/2 dx

=
[

4
3

(9− x2)1/2
(

45
8
x− 1

4
x3

)
+

81
2

arcsin
(x

3

) ]3

−3

=
81
2
π ≈ 127.2345024703866262.

C14S03.033: The volume is

V =
∫ 1

x=−1

∫ √
1−x2

y=−
√

1−x2
2
√

4− x2 − y2 dy dx.

We used Derive 2.56 to evaluate this integral in a step-by-step fashion much as in the solution of Problem
31. Results:

V =
∫ 1

x=−1

[
(4− x2) arctan

y√
4− x2 − y2

+ y
√

4− x2 − y2

]√
1−x2

y=−
√

1−x2

dx

=
∫ 1

−1

[
2(4− x2) arctan

√
3
√

1− x2

3
+ 2
√

3
√

1− x2

]
dx

=
[

2
3
x(12− x2) arctan

√
3
√

1− x2

3
+

16
3

arctan
√

3 (2x+ 1)
3
√

1− x2

+
16
3

arctan
√

3 (2x− 1)
3
√

1− x2
− 4
√

3 arcsinx+
2
√

3
3

x
√

1− x2

]1

−1

=
π

3

(
32− 12

√
3

)
≈ 11.7447292674805137.

In Section 14.4 we will find that this integral is quite easy to evaluate if we first convert to polar coordinates.
If so, the integral takes the form

∫ 2π

θ=0

∫ 1

r=0

2r
√

4− r2 dr dθ =
∫ 2π

θ=0

[
− 2

3
(4− r2)3/2

]1

r=0

dθ =
∫ 2π

0

(
16
3
− 2
√

3
)
dθ = 2π

(
16
3
− 2
√

3
)
.

C14S03.034: The volume is

V =
∫ 1

x=−1

∫ √
1−x2

y=−
√

1−x2

[√
2− x2 − y2 − (x2 + y2)

]
dy dx

We used Derive 2.56 to evaluate V , one step at a time much as in the solution of Problem 31. Results:

10



V =
∫ 1

x=−1

[
2− x2

2
arctan

(
y√

2− x2 − y2

)
+
y
√

2− x2 − y2

2
− x2y − 1

3
y3

]√
1−x2

y=−
√

1−x2

=
∫ 1

−1

[
(2− x2) arctan

√
1− x2 +

1− 4x2

3

√
1− x2

]
dx

=
[
x(6− x2)

3
arctan

√
1− x2 +

7
6

arcsinx+
2
√

2
3

arctan

(
x
√

2 + 1√
1− x2

)

+
2
√

2
3

arctan

(
x
√

2 − 1√
1− x2

)
+
x

3
(1− x2)3/2 − x

6

√
1− x2

]1

−1

=
π

6

(
8
√

2 − 7
)
≈ 2.2586524883563962.

The volume would be much easier to evaluate using polar coordinates (as in Section 14.4, coming up next).
We would thereby obtain

V = 2π
∫ 1

0

(r
√

2− r2 − r3) dr = 2π
[
− 1

3
(2− r2)3/2 − 1

4
r4

]1

0

=
π

6

(
8
√

2 − 7
)
.

C14S03.035: Given: the plane with Cartesian equation

x

a
+
y

b
+
z

c
= 1

cutting off a tetrahedron in the first octant. We set z = 0 and solve for

y =
b

a
(a− x);

the triangular region in the first quadrant bounded by this line and the coordinate axes is the domain of the
volume integral. Hence the volume of the tetrahedron is

V =
∫ a

x=0

∫ b(a−x)/a

y=0

c
(
1− x

a
− y

b

)
dy dx =

∫ a

x=0

[
2abcy − 2bcxy − acy2

2ab

]b(a−x)/a
y=0

dx

=
∫ a

0

bc(a− x)2
2a2

dx =
[

3a2bcx− 3abcx2 + bcx3

6a2

]a
0

=
abc

6
.

C14S03.036: The volume is

V =
∫ a

x=−a

∫ √
a2−x2

y=−
√
a2−x2

(x+ h) dy dx =
∫ a

x=0

[
xy + hy

]√
a2−x2

y=−
√
a2−x2

dx =
∫ a

−a
2(x+ h)(a2 − x2)1/2 dx

= 2h
∫ a

−a
(a2 − x2)1/2 dx +

∫ a

−a
2x(a2 − x2)1/2 dx = h · πa2 +

[
− 2

3
(a2 − x2)3/2

]a
−a

= πa2h.

We evaluated the first integral in the second line by observing that it is the area of a semicircle of radius a.

C14S03.037: The volume is
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V =
∫ 1

y=0

∫ √1−y2

x=0

√
1− y2 dx dy =

∫ 1

y=0

[
x
√

1− y2

]√1−y2

x=0

dy =
∫ 1

0

(1− y2) dy =
[
y − 1

3
y3

]1

0

=
2
3
.

As the text indicates, the other order of integration provides more difficulties. You obtain

V =
∫ 1

x=0

∫ √
1−x2

y=0

√
1− y2 dy dx =

∫ 1

x=0

[
1
2
y
√

1− y2 +
1
2

arcsin y
]√

1−x2

y=0

dx

=
∫ 1

0

[
1
2
x
√

1− x2 +
1
2

arcsin
(√

1− x2
) ]

dx

=
[ (

1
6
x2 − 2

3

) √
1− x2 +

1
2
x arcsin

(√
1− x2

) ]1

0

=
2
3
.

C14S03.038: The volume is

V =
∫ π

x=0

∫ sin x

y=− sin x

2 sinx dy dx =
∫ π

x=0

[
2y sinx

]sin x

y=− sin x

dx

=
∫ π

0

4 sin2 x dx =
[
2x− sin 2x

]π
0

= 2π ≈ 6.2831853071795865.

C14S03.039: We integrate to find the volume of an eighth of the sphere, then multiply by 8. Thus the
volume of a sphere of radius a is

V = 8
∫ a

x=0

∫ √
a2−x2

y=0

√
a2 − x2 − y2 dy dx.

Let y = (a2 − x2)1/2 sin θ. Then dy = (a2 − x2)1/2 cos θ dθ. This substitution yields

V = 8
∫ a

x=0

∫ π/2

θ=0

[
(a2 − x2)− (a2 − x2) sin2 θ

]1/2(a2 − x2)1/2 cos θ dθ dx

= 8
∫ a

x=0

∫ π/2

θ=0

(a2 − x2) cos2 θ dθ dx

= 8
∫ a/2

x=0

∫ π/2

θ=0

(a2 − x2) · 1 + cos 2θ
2

dθ dx = 8
∫ a

x=0

(a2 − x2)
[

1
2
θ +

1
4

sin 2θ
]π/2
0

dx

= 8
∫ a

0

π

4
(a2 − x2) dx = 2π

[
a2x− 1

3
x3

]a
0

= 2π · 2
3
a3 =

4
3
πa3.

C14S03.040: Given: the ellipsoid with equation

x2

a2
+
y2

b2
+
z2

c2
= 1; (1)

we assume that a, b, and c are all positive. Set z = 0 in Eq. (1) to find that the ellipsoid intersects the
xy-plane in the ellipse with equation

12



x2

a2
+
y2

b2
= 1; that is, y =

b

a
(a2 − x2)1/2

(we take the positive root because we plan to integrate over the quarter of the ellipse that lies in the first
quadrant). Finally, we solve Eq. (1) for

z =
c

ab
(a2b2 − b2x2 − a2y2)1/2.

We integrate to find the volume of the eighth of the ellipsoid that lies in the first octant, then multiply by
8. Hence the volume of the ellipsoid is

V = 8
∫ a

x=0

∫ (b/a)(a2−x2)1/2

y=0

c

ab
(a2b2 − b2x2 − a2y2)1/2 dy dx.

Let

y =
b

a
(a2 − x2)1/2 sin θ; then dy =

b

a
(a2 − x2)1/2 cos θ dθ.

This substitution yields

V = 8
∫ a

x=0

∫ π/2

θ=0

c

ab

[
(a2b2 − b2x2)(1− sin2 θ)

]1/2 · b
a

(a2 − x2)1/2 cos θ dθ

=
8bc
a2

∫ a

x=0

∫ π/2

θ=0

(a2 − x2) cos2 θ dθ dx =
8bc
a2

∫ a

x=0

∫ π/2

θ=0

(a2 − x2) · 1 + cos 2θ
2

dθ dx

=
8bc
a2

∫ a

x=0

(a2 − x2)
[
θ

2
+

sin 2θ
4

]π/2
θ=0

dx =
8bc
a2

∫ a

0

π

4
(a2 − x2) dx

=
2πbc
a2

[
a2x− 1

3
x3

]a
0

=
2πbc
a2
· 2
3
a3 =

4
3
πabc.

C14S03.041: We integrate over the quarter-circle of radius 5 and center (0, 0) in the first quadrant, then
multiply by 4. Hence the volume is

V = 4
∫ 5

x=0

∫ √
25−x2

y=0

(25− x2 − y2) dy dx = 4
∫ 5

x=0

[
25y − x2y − 1

3
y3

]√
25−x2

y=0

dx

=
∫ 5

0

8
3

(25− x2)3/2 dx =
[

8
3

√
25− x2

(
125
8
x− 1

4
x3

)
+ 625 arcsin

(x
5

) ]5

0

=
625
2
π ≈ 981.747704246810387019576057.

The techniques of Section 14.4 will transform this problem into one that is remarkably simple.

C14S03.042: When we solve the equations of the paraboloids simultaneously, we find that x2 + y2 = 4.
Thus the intersection of the paraboloids is a curve that lies in this cylinder. So an appropriate domain for
a double integral will be the circular disk of radius 2 centered at the origin. Therefore the volume of the
intersection of the two paraboloids is
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V =
∫ 2

x=−2

∫ √
4−x2

y=−
√

4−x2
(12− 3x2 − 3y2) dy dx =

∫ 2

x=−2

[
12y − 3x2y − y3

]√
4−x2

y=−
√

4−x2

dx

=
∫ 2

−2

4(4− x2)3/2 dx =
[
(10x− x3)

√
4− x2 + 24 arcsin

(x
2

) ]2

−2

= 24π ≈ 75.398223686155.

C14S03.043: Suppose that the cylinder is the one with equation x2 + z2 = R2 and that the square hole is
centered on the z-axis and its sides are parallel to the coordinate planes. Thus the hole meets the xy-plane
in the square with vertices at

(
± 1

2R, ±
1
2R

)
. We will integrate over the quarter of that square that lies in

the first quadrant, then multiply by 4. Hence the volume of material removed by the drill is

V = 4
∫ R/2

x=0

∫ R/2

y=0

2
√
R2 − x2 dy dx = 4

∫ R/2

x=0

[
2y

√
R2 − x2

]R/2
y=0

dx

= 4
∫ R/2

0

R(R2 − x2)1/2 dx = 4
[

1
2
Rx(R2 − x2)1/2 − 1

2
R3 arctan

(
x

(R2 − x2)1/2

) ]R/2
0

=
[
1
2

√
3 + 2 arctan

(
1
3

√
3

) ]
·R3 =

3
√

3 + 2π
6

·R3 ≈ (1.913222954981)R3.

C14S03.044: When the equations of the elliptical paraboloid and the parabolic cylinder are solved si-
multaneously, one consequence is that x2 + 4y2 = 4. Hence this elliptical cylinder contains the curve of
intersection of the two surfaces, and the ellipse x2 + 4y2 = 4 in the xy-plane is an appropriate domain for a
double integral. Hence the volume bounded by the two surfaces is

V =
∫ 2

x=−2

∫ (1/2)(4−x2)1/2

y=−(1/2)(4−x2)1/2
(4− x2 − 4y2) dy dx =

∫ 2

x=−2

[
4y − x2y − 4

3
y3

](1/2)(4−x2)1/2

y=−(1/2)(4−x2)1/2

dx

=
∫ 2

−2

2
3

(4− x2)3/2 dx =
[

1
6
(4− x2)1/2(10x− x3) + 4 arcsin

(x
2

) ]2

−2

= 4π ≈ 12.566370614359.

C14S03.045: The region bounded by the parabolas y = x2 and y = 8 − x2 in the xy-plane is a suitable
domain for a double integral that gives the volume of the solid. Hence the volume of the solid is

V =
∫ 2

x=−2

∫ 8−x2

y=x2
(2x2 − x2) dy dx =

∫ 2

x=−2

[
x2y

]8−x2

y=x2

dx =
∫ 2

−2

(8x2 − 2x4) dx

=
[

8
3
x3 − 2

5
x5

]2

−2

=
256
15
≈ 17.066666666667.

C14S03.046: We used Mathematica 3.0 in the usual way; the volume of the solid is

V =
∫ π/2

x=−π/2

∫ cos x

y=− cos x

(4− x2 − y2) dy dx =
∫ π/2

x=−π/2

[
4y − x2y − 1

3
y3

]cos x

y=− cos x

dx

=
∫ π/2

−π/2

(
(8− 2x2) cosx− 2

3
cos3 x

)
dx =

1
18

[
207 sinx− 72x cosx− 36x2 sinx− sin 3x

]π/2
−π/2

=
208− 9π2

9
≈ 13.2415067100217525.
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C14S03.047: We used Mathematica 3.0 in the usual way; the volume of the solid is

V =
∫ π/2

x=−π/2

∫ cos x

y=− cos x

cos y dy dx =
∫ π/2

x=−π/2

[
sin y

]cos x

y=− cos x

dx

=
∫ π/2

−π/2
2 sin(cosx) dx ≈ 3.57297496390010467337.

Mathematica reports that the exact value of the integral is

4∗HypergeometricPFQ
[
{1},

{
3
2
,

3
2

}
, −1

4

]
.

C14S03.048: A Mathematica solution:

I1 = Integrate[ Sin[x]∗Cos[y], { y, 0, Cos[x] } ]

(sinx) sin(cosx)

V = 4∗Integrate[ I1, { x, 0, Pi/2 } ]

4[1− cos(1)]

N[V]

1.83879 —C.H.E.

C14S03.049: A Mathematica solution:

eq1 = z == 2∗x + 3;

eq2 = z == x∧2 + y∧2;

Eliminate[ { eq1, eq2 }, z ]

y2 = −x2 + 2x+ 3

This is the circle (x− 1)2 + y2 = 4 with center (1, 0) and radius 2. Therefore the volume of the solid is

Integrate[ 3 + 2∗x − x∧2 - y∧2, { x, −1, 3 },
{ y, −Sqrt[ 3 + 2∗x − x{∧2 ], Sqrt[ 3 + 2∗x − x∧2 ] } ]

8π —C.H.E.

C14S03.050: A Mathematica solution:

eq1 == z == 4∗x + 4∗y;
eq2 = z == x∧2 + y∧2 − 1;

Eliminate[ { eq1, eq2 }, z ]

−y2 + 4y + 1 == x2 − 4x

This is the circle (x − 2)2 + (y − 2)2 = 9 with center (2, 2) and radius 3. Hence the volume of the solid
bounded by the two surfaces is

15



Integrate[ 1 + 4∗x + 4∗x - x∧2 - y∧2, { x, −1, 5 },
{ y, 2 − Sqrt[ 9 − (x − 2)∧2 ], 2 + Sqrt[ 9 − (x - 2)∧2 ] } ]

81π
2

—C.H.E.

The answer is correct in spite of the typographical error in the last Mathematica command, which should be

Integrate[ 1 + 4∗x + 4∗y - x∧2 - y∧2, { x, −1, 5 },
{ y, 2 − Sqrt[ 9 − (x − 2)∧2 ], 2 + Sqrt[ 9 − (x - 2)∧2 ] } ]

How do you explain that?

C14S03.051: A Mathematica solution:

eq1 = z == −16∗x − 18∗y;
eq2 = z == 11 − 4∗x∧2 − 9∗y∧2;

Eliminate[ { eq1, eq2 }, z ]

−9y2 + 18y + 11 = 4x2 − 16x

This is the ellipse 4(x − 2)2 + 9(y − 1)2 = 36 with center (2, 1) and semiaxes a = 3 and b = 2. Hence the
volume of the solid is

Integrate[ 11 − 4∗x∧2 − 9∗y∧2 + 16∗x + 18∗y, { x, −1, 5 },
{ y, 1 − 1/3∗Sqrt[ 36 − 4∗(x − 2)∧2 ], 1 + 1/3∗Sqrt[ 36 − 4∗(x − 2)∧2 ] } ]

108π —C.H.E.

C14S03.052: A Mathematica solution:

I1 = Simplify[ 8∗Integrate[ Sqrt[ 4 − x∧2 − y∧2 ], y ] ]

4y
√

4− x2 − y2 − 4(x2 − 4) tan−1

(
y√

4− x2 − y2

)

(I1 /. y → 1) − (I1 /. y → 0)

4
√

3− x2 − 4(x2 − 4) tan−1

(
1√

3− x2

)

(Assuming that no one really wants to see the antiderivative of the preceding expression, let’s jump imme-
diately to the double integral that gives the volume of the hole.)

V = 8∗Integrate[ Integrate[

Sqrt[ 4 − x∧2 - y∧2 ], { y, 0, 1 } ], { x, 0, 1 } ]

4
3

[
2
√

2 + 11 tan−1

(
1√
3

)
+ 19 tan−1

(
1√
2

)
− 8 tan−1

(
5√
2

) ]

N[V]
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14.5755

100∗%/(4∗Pi∗8/3)∗percent

43.4954 percent —C.H.E.

C14S03.053: First let’s put the center of the sphere at the point (−2, 0, 0). A Mathematica solution:

V = FullSimplify[ 2∗Integrate[ Integrate[

Sqrt[ 16 − (x + 2)∧2 − y∧2 ], { y, −1, 1 } ], { x, −1, 1 } ] ]

2
3

[
6
√

6 − 2
√

14 + 29 cot−1
(√

6
)

+ 41 cot−1
(√

14
)
− 47 csc−1

(√
15

)

+ 47 sin−1
(√

3/5
)

+ 20 tan−1
(√

3/2
)
− 108 tan−1

(
9
√

3/2
)

− 20 tan−1
(
11/
√

14
)

+ 108 tan−1
(
19/
√

14
)]

N[V]

26.7782

100∗%/(4∗Pi∗64/3)∗percent

9.98878 percent —C.H.E.
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Section 14.4

C14S04.001: The circle with center (0, 0) and radius a > 0 has polar description r = a, 0 � θ � 2π.
Therefore its area is

A =
∫ 2π

θ=0

∫ a

r=0

r dr dθ =
∫ 2π

θ=0

[
1
2
r2

]a
r=0

dθ =
∫ 2π

0

1
2
a2 dθ =

[
1
2
a2θ

]2π

0

= πa2.

C14S04.002: The circle with polar equation r = 3 sin θ has area

A =
∫ π

θ=0

∫ 3 sin θ

r=0

r dr dθ =
∫ π

θ=0

[
1
2
r2

]3 sin θ

r=0

dθ =
∫ π

0

9
2

sin2 θ dθ

=
∫ π

0

9
4

(1− cos 2θ) dθ =
9
8

[
2θ − sin 2θ

]π
0

=
9
4
π.

C14S04.003: The area bounded by the cardioid with polar description r = 1 + cos θ, 0 � θ � 2π, is

A =
∫ 2π

θ=0

∫ 1+cos θ

r=0

r dr dθ =
∫ 2π

θ=0

[
1
2
r2

]1+cos θ

r=0

dθ =
∫ 2π

0

(
1
2

+ cos θ +
1
2

cos2 θ
)
dθ

=
1
8

[
6θ + 8 sin θ + sin 2θ

]2π

0

=
3
2
π.

C14S04.004: The area bounded by one loop of the four-leaved rose with polar equation r = 2 cos 2θ is

A =
∫ π/4

θ=−π/4

∫ 2 cos 2θ

r=0

r dr dθ =
∫ π/4

θ=−π/4

[
1
2
r2

]2 cos 2θ

r=0

dθ =
∫ π/4

−π/4
2 cos2 2θ dθ

=
1
4

[
4θ + sin 4θ

]π/4
−π/4

=
1
2
π ≈ 1.5707963267948966.

C14S04.005: To see the two circles, execute the Mathematica 3.0 command

ParametricPlot[ {{Cos[t], Sin[t]}, {2∗Sin[t]∗Cos[t], 2∗Sin[t]∗Sin[t]}},
{t, 0, 2∗Pi}, AspectRatio → Automatic ];

the result is shown next.
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To find where the two circles meet, solve their equations simultaneously:

2 sin θ = 1; sin θ =
1
2
; θ =

1
6
π, θ =

5
6
π.

To find the area between them, two integrals are required. Each is doubled because we are actually finding
the area of the right half of the intersection of the circles.

A1 = 2
∫ π/6

θ=0

∫ 2 sin θ

r=0

r dr dθ = 2
∫ π/6

0

2 sin2 θ dθ =
[
2θ − sin 2θ

]π/6
0

=
2π − 3

√
3

6
;

A2 = 2
∫ π/2

θ=π/6

∫ 1

r=0

r dr dθ =
∫ π/2

θ=π/6

1 dθ =
π

3
.

Therefore the total area enclosed by both circles is

A = A1 +A2 =
4π − 3

√
3

6
≈ 1.2283696986087568.

C14S04.006: We are to find the area within the limaçon r = 2 + cos θ and outside the circle r = 2. Their
graphs are shown next.

To find where they intersect, solve their equations simultaneously for θ = ± 1
2 π. The area we seek can be

found with a single integral:

A =
∫ π/2

θ=−π/2

∫ 2+cos θ

r=2

r dr dθ =
∫ π/2

θ=−π/2

[
1
2
r2

]2+cos θ

r=2

dθ =
∫ π/2

−π/2

(
1
2

(2 + cos θ)2 − 2
)
dθ

=
1
8

[
2θ + 16 sin θ + sin 2θ

]π/2
−π/2

=
π + 16

4
≈ 4.7853981633974483.

C14S04.007: To find where the limaçon r = 1− 2 sin θ passes through the origin, solve 1− 2 sin θ = 0 for
θ = 1

6 π, θ = 5
6 π. The small loop of the limaçon is generated by the values of θ between these two angles,

and is thus given by

A =
∫ 5π/6

θ=π/6

∫ 1−2 sin θ

r=0

r dr dθ =
∫ 5π/6

θ=π/6

[
1
2
r2

]1−2 sin θ

r=0

dθ =
∫ 5π/6

π/6

[
1
2

(1− 2 sin θ)2
]
dθ

=
[

3
2
θ + 2 cos θ − 1

2
sin 2θ

]5π/6

π/6

=
2π − 3

√
3

2
≈ 0.5435164422364773.
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C14S04.008: In polar coordinates the integral becomes

I =
∫ 2π

θ=0

∫ 3

r=0

r3 dr dθ = 2π
[

1
4
r4

]3

0

=
81
2
π ≈ 127.2345024703866262.

Because the inner integral does not involve θ, it is constant with respect to θ. Therefore to integrate it with
respect to θ over the interval 0 � θ � 2π, simply multiply the inner integral by 2π.

C14S04.009: In polar coordinates the integral takes the form

I =
∫ 2π

θ=0

∫ 2

r=0

r2 dr dθ = 2π
[

1
3
r3

]2

0

=
16
3
π ≈ 16.7551608191455639.

Because the inner integral does not involve θ (either in the integrand or in the limits of integration), it is
constant with respect to θ. Therefore to integrate it with respect to θ over the interval 0 � θ � 2π, simply
multiply the inner integral by 2π. We will use this time-saving technique frequently and without further
comment.

C14S04.010: Note that the domain of the integral is generated as θ varies from − 1
2 π to 1

2 π. In polar
coordinates the integral is

I =
∫ π/2

θ=−π/2

∫ 2 cos θ

r=0

r3 dr dθ =
∫ π/2

θ=−π/2

[
1
4
r4

]2 cos θ

r=0

dθ =
∫ π/2

−π/2
4 cos4 θ dθ

=
1
8

[
12θ + 8 sin 2θ + sin 4θ

]π/2
−π/2

=
3
2
π ≈ 4.71238898038468985769.

If you prefer, the last integral in the first line of the display may be evaluated using Formula (113) of the
endpapers:

∫ π/2

−π/2
4 cos4 θ dθ = 8

∫ π/2

0

cos4 θ dθ = 8 · 1
2
· 3
4
· π

2
=

3
2
π.

C14S04.011: Note that the domain of the integral is generated as θ varies from 0 to π. In polar coordinates
the integral takes the form

I =
∫ π

θ=0

∫ sin θ

r=0

(10 + 2r cos θ + 3r sin θ) · r dr dθ =
∫ π

θ=0

[
5r2 +

1
3
r3(2 cos θ + 3 sin θ)

]sin θ

r=0

dθ

=
∫ π

0

(
5 sin2 θ +

2
3

sin3 θ cos θ + sin4 θ

)
dθ

=
1
96

[
276θ − 8 cos 2θ + 2 cos 4θ − 144 sin 2θ + 3 sin 4θ

]π
0

=
23
8
π ≈ 9.03207887907065556058.

The reduction formulas in Problems 53 and 54 of Section 7.3, and the formulas of Problem 58 there and
Formula (113) of the endpapers, may be used if you prefer to avoid trigonometric identities.

C14S04.012: The polar form of the integral is

I =
∫ 2π

θ=0

∫ a

r=0

(a2 − r2) · r dr dθ = 2π
[

1
4

(2a2r2 − r4)
]a
0

=
πa4

2
.
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C14S04.013: In polar form the given integral becomes

J =
∫ π/2

θ=0

∫ 1

r=0

r

1 + r2
dr dθ =

π

2
·
[

1
2

ln(1 + r2)
]1

0

=
1
4
π ln 2 ≈ 0.5443965225759005.

To evaluate the integral in Cartesian coordinates, you would first need to evaluate

∫ √1−y2

x=0

1
1 + x2 + y2

dx =
1√

1 + y2
arctan

(√
1− y2√
1 + y2

)
. (1)

Then you would need to antidifferentiate the last expression in (1). Neither Mathematica 3.0 nor Derive

2.56 could do so.

C14S04.014: Conversion of the integral to polar coordinates yields

K =
∫ π/2

θ=0

∫ 1

r=0

r√
4− r2

dr dθ =
π

2
·
[
−

√
4− r2

]1

0

=
π

2
·
(
2−
√

3
)
≈ 0.4208936072384665.

It is possible to evaluate this integral in Cartesian coordinates. You should obtain

K =
∫ 1

0

∫ √
1−x2

0

1√
4− x2 − y2

dy dx =
∫ 1

0

[
arctan

(
y√

4− x2 − y2

) ]√
1−x2

0

dx

=
∫ 1

0

arctan

(√
1− x2

√
3

)
dx

=
[
x arctan

(√
1− x2

√
3

)
−
√

3 arcsinx− arctan
(

1− 2x√
3
√

1− x2

)
+ arctan

(
1 + 2x√

3
√

1− x2

) ]1

0

=
π

2

(
2−
√

3
)
.

We have concealed one complication: The evaluation in the next-to-last line requires l’Hôpital’s rule.

C14S04.015: In polar coordinates the integral becomes

I =
∫ π/2

θ=0

∫ 2

r=0

r4 dr dθ =
π

2
·
[

1
5
r5

]2

0

=
π

2
· 32

5
=

16
5
π ≈ 10.0530964914873384.

This integral can be evaluated in Cartesian coordinates. You should obtain

I =
∫ 2

0

∫ √
4−x2

0

(x2 + y2)3/2 dy dx

=
∫ 2

0

[ (
5
8
x2y +

1
4
y3

) √
x2 + y2 +

3
8
x4 ln

(
y +

√
x2 + y2

) ]√
4−x2

0

dx

=
∫ 2

0

[
5
4
x2

√
4− x2 +

1
2

(4− x2)3/2 − 3
4
x4 lnx+

3
8
x4 ln

(
2 +

√
4− x2

) ]
dx

=
[ (

2
5
x+

3
20
x3

) √
4− x2 +

32
5

arcsin
(x

2

)
− 3

20
x5 lnx+

3
40
x5 ln

(
2 +

√
4− x2

) ]2

0

=
16
5
π.
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The final equality requires l’Hôpital’s rule.

C14S04.016: The polar form of the integral is

J =
∫ π/2

θ=π/4

∫ csc θ

r=0

r3 cos2 θ dr dθ =
∫ π/2

θ=π/4

[
1
4
r4 cos2 θ

]csc θ

r=0

dθ =
∫ π/2

π/4

1
4

cot2 θ csc2 θ dθ

=
[
− 1

12
cot3 θ

]π/2
π/4

=
1
12
≈ 0.0833333333333333.

This integral is easier to evaluate in Cartesian coordinates.

C14S04.017: In polar coordinates the integral becomes

K =
∫ π/2

θ=0

∫ 1

r=0

r sin r2 dr dθ =
π

2
·
[
− 1

2
cos r2

]1

0

dθ =
π

4
(1− cos 1) ≈ 0.3610457246892050.

Exact evaluation of the given integral in Cartesian coordinates may be impossible. Mathematica 3.0 reports
that

∫
sin(x2 + y2) dx =

√
π

2

[
(cos y2) · FresnelS

(
x

√
2
π

)
+ (sin y2) · FresnelC

(
x

√
2
π

) ]

where

FresnelS(x) =
∫ x

0

sin
(
πt2

2

)
dt and FresnelC(x) =

∫ x

0

cos
(
πt2

2

)
dt.

C14S04.018: The polar form of the given integral is

I =
∫ π/4

θ=0

∫ 2 cos θ

r=sec θ

1 dr dθ =
∫ π/4

θ=0

[
r

]2 cos θ

r=sec θ

dθ =
∫ π/4

0

(2 cos θ − sec θ) dθ

=
[
2 sin θ − ln(sec θ + tan θ)

]π/4
0

=
√

2 − ln
(
1 +
√

2
)
≈ 0.5328399753535520.

This integral can also be evaluated in Cartesian coordinates. You should obtain

I =
∫ 2

1

[
ln

(
y +

√
x2 + y2

) ]√
2x−x2

0

dx =
∫ 2

1

[
− lnx+ ln

(√
2x +

√
2x− x2

) ]
dx

=
[
−
√

2
√

2x− x2

√
x

− x lnx+ x ln
(√

2x +
√

2x− x2
) ]2

1

=
√

2 − ln
(
1 +
√

2
)
.

C14S04.019: The volume is

V =
∫ 2π

θ=0

∫ 1

r=0

(2 + r cos θ + r sin θ) · r dr dθ =
∫ 2π

θ=0

[
r2 +

1
3
r3(cos θ + sin θ)

]1

r=0

dθ

=
∫ 2π

0

(
1 +

1
3

cos θ +
1
3

sin θ
)
dθ =

[
θ − 1

3
cos θ +

1
3

sin θ
]2π

0

= 2π.
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C14S04.020: The volume is

V =
∫ 2π

θ=0

∫ 2

r=0

(2 + r cos θ) · r dr dθ =
∫ 2π

θ=0

[
r2 +

1
3
r3 cos θ

]2

r=0

dθ =
∫ 2π

0

(
4 +

8
3

cos θ
)
dθ

=
[
4θ +

8
3

sin θ
]2π

0

= 8π ≈ 25.1327412287182349.

C14S04.021: The volume is

V =
∫ π

θ=0

∫ 2 sin θ

r=0

(3 + r cos θ + r sin θ) · r dr dθ =
∫ π

θ=0

[
3
2
r2 +

1
3
r3(cos θ + sin θ)

]2 sin θ

r=0

dθ

=
∫ π

0

(
6 sin2 θ +

8
3

sin3 θ cos θ +
8
3

sin4 θ

)
dθ =

1
12

[
48θ − 4 cos 2θ + cos 4θ − 26 sin 2θ + sin 4θ

]π
0

=
1
4

+
48π − 3

12
= 4π ≈ 12.56637061435917295385.

C14S04.022: The volume is

V =
∫ 2π

θ=0

∫ 1+cos θ

r=0

(1 + r cos θ) · r dr dθ =
∫ 2π

θ=0

[
1
2
r2 +

1
3
r3 cos θ

]1+cos θ

r=0

dθ

=
∫ 2π

0

(
1
2
(1 + cos θ)2 +

1
3
(1 + cos θ)3 cos θ

)
dθ

=
∫ 2π

0

1
6

(
4 + 10 cos θ + 8 cos2 θ + 2 cos3 θ + cos 2θ + 2 cos θ cos 2θ + cos2 θ cos 2θ

)
dθ

=
1
96

[
132θ + 200 sin θ + 44 sin 2θ + 8 sin 3θ + sin 4θ

]2π

0

=
11
4
π ≈ 8.6393797973719314.

C14S04.023: We will find the volume of the sphere of radius a centered at the origin:

V =
∫ 2π

θ=0

∫ a

r=0

2r
√
a2 − r2 dr dθ = 2π ·

[
− 2

3
(a2 − r2)3/2

]a
r=0

= 2π · 2
3
a3 =

4
3
πa3.

C14S04.024: When we solve the equations of the paraboloids simultaneously, we find that x2 + y2 = 4.
Hence the curve in which the surfaces intersect lies on the cylinder x2+y2 = 4. Thus the disk in the xy-plane
bounded by the circle x2 + y2 = 4 is appropriate for the domain of the volume integral. So the volume of
the solid bounded by the paraboloids is

V =
∫ 2π

θ=0

∫ 2

r=0

(12− 3r2) · r dr dθ = 2π ·
[
6r2 − 3

4
r4

]2

r=0

= 24π ≈ 75.3982236861550377.

C14S04.025: The volume of the solid is
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V =
∫ 2π

θ=0

∫ a

r=0

(h+ r cos θ) · r dr dθ =
∫ 2π

θ=0

[
1
2
r2h+

1
3
r2 cos θ

]a
r=0

dθ =
∫ 2π

0

(
1
2
a2h+

1
3
a3 cos θ

)
dθ

=
1
6

[
3a2hθ + 2a3 sin θ

]2π

0

= πa2h.

C14S04.026: The wedge is bounded above by the plane z = x = r cos θ, below by the plane z = 0, and
on the side by the cylinder r = 2 for − 1

2 π � θ � 1
2 π. Hence the volume of the wedge is

V =
∫ π/2

θ=−π/2

∫ 2

r=0

r2 cos θ dr dθ =
∫ π/2

θ=−π/2

[
1
3
r3 cos θ

]2

r=0

dθ =
∫ π/2

−π/2

8
3

cos θ dθ

=
[

8
3

sin θ
]π/2
−π/2

=
16
3
≈ 5.3333333333333333.

C14S04.027: When we solve the equations of the paraboloids simultaneously, we find that one consequence
is that x2+y2 = 1. Thus the curve in which the paraboloids meet lies on that cylinder, and hence the circular
disk x2 + y2 � 1 in the xy-plane is a suitable domain for the double integral that yields the volume between
the paraboloids. That volume is therefore

V =
∫ 2π

θ=0

∫ 1

r=0

(4− 4r2) · r dr dθ = 2π ·
[
2r2 − r4

]1

r=0

dθ = 2π ≈ 6.2831853071795865.

C14S04.028: When we solve the equations of the paraboloids simultaneously, we find that one consequence
is that x2+y2 = 1. Thus the curve in which the paraboloids meet lies on that cylinder, and hence the circular
disk x2 + y2 � 1 in the xy-plane is a suitable domain for the double integral that yields the volume between
the paraboloids. That volume is therefore

V =
∫ 2π

θ=0

∫ 1

r=0

(1− r2) · r dr dθ = 2π ·
[

1
2
r2 − 1

4
r4

]1

r=0

dθ =
1
2
π ≈ 1.5707963267948966.

C14S04.029: When the equations of the sphere and the cone are solved simultaneously, one consequence
is that x2 + y2 = 1

2 a
2. Therefore the circle in which the sphere and cone meet lies on the cylinder with that

equation. Thus a suitable domain for the double integral that gives the volume in question is the circle in
the xy-plane with equation x2 + y2 = 1

2 a
2. Hence the volume of the “ice-cream cone” is

V =
∫ 2π

θ=0

∫ a/
√

2

r=0

(√
a2 − r2 − r

)
· r dr dθ = 2π ·

[
− 1

3

(
(a2 − r2)3/2 + r3

) ]a/√2

r=0

= 2π · 1
12

(
4− 2

√
2

)
a3 =

1
3
π

(
2−
√

2
)
a3 ≈ (0.6134341230070734)a3.

C14S04.030: The volume is

V =
∫ π

θ=0

∫ 2a sin θ

r=0

r3 dr dθ =
∫ π

θ=0

[
1
4
r4

]2a sin θ

r=0

dθ =
∫ π

0

4a4 sin4 θ dθ

=
1
8

[
a4(12θ − 8 sin 2θ + sin 4θ)

]π
0

=
3
2
πa4 ≈ (4.7123889803846899)a4.
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C14S04.031: The curve r2 = 2 sin θ is not a lemniscate. The lemniscate was discovered in 1694 by Jacques
Bernoulli (1654–1705) and has an equation of the form r2 = a2 cos(2θ−ω) or of the form r2 = a2 sin(2θ−ω)
where ω and a are constants. The effect of ω is to rotate the graph through the angle ω and the effect of a
is to magnify the graph. The curve given in Problem 31 has the shape shown in Figure 14.04.031A, shown
next, and was generated by the Mathematica 3.0 command

ParametricPlot[ {{(Sqrt[2∗Sin[t]])∗Cos[t], (Sqrt[2∗Sin[t]])∗Sin[t]},
{-(Sqrt[2∗Sin[t]])∗Cos[t], -(Sqrt[2∗Sin[t]])∗Sin[t]}},
{t, 0, Pi}, PlotPoints → 43, AspectRatio → Automatic ];

It seems likely that there is a typographical error in this problem and the equation given for the lemniscate
should be r2 = 2 sin 2θ. This curve has the shape shown in Figure 14.04.031B, shown next, and was generated
by the Mathematica 3.0 command

ParametricPlot[ {{(Sqrt[2∗Sin[2∗t]])∗Cos[t], (Sqrt[2∗Sin[2∗t]])∗Sin[t]},
{-(Sqrt[2∗Sin[2∗t]])∗Cos[t], -(Sqrt[2∗Sin[2∗t]])∗Sin[t]}},
{t, 0, Pi/2}, PlotPoints → 43, AspectRatio → Automatic ];
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We will solve the problem both ways. First, with the curve r2 = 2 sin θ, we find the volume to be

V =
∫ π

θ=0

∫ √
2 sin θ

r=0

r3 dr dθ =
∫ π

θ=0

[
1
4
r4

]√
2 sin θ

r=0

dθ =
∫ π

0

sin2 θ dθ

=
1
4

[
2θ − sin 2θ

]π
0

=
1
2
π ≈ 1.5707963267948966.

Second, using the lemniscate with polar equation r2 = 2 sin 2θ, we find the volume to be

V =
∫ π/2

θ=0

∫ √
2 sin 2θ

r=0

r3 dr dθ =
∫ π/2

θ=0

[
1
4
r4

]√
2 sin 2θ

r=0

dθ =
∫ π/2

0

sin2 2θ dθ

=
1
8

[
4θ − sin 4θ

]π/2
0

=
1
4
π ≈ 0.7853981633974483.

C14S04.032: The volume is

V =
∫ 2π

θ=0

∫ 2

r=0

2r
√

18− 2r2 dr dθ = 2π ·
[
− 1

3
(18− 2r2)3/2

]2

0

=
4
3
π

(
−5
√

10 + 27
√

2
)
≈ 93.71319733506050999635.

The volume of a cylinder of the same radius as the given cylinder but with height 6
√

2 (the major axis
of the ellipsoid) is 24π

√
2 ≈ 106.6292 and the volume of the ellipsoid itself is 36π

√
2 ≈ 159.9438, so the

answer we obtained is certainly plausible.

C14S04.033: Part(a): A cross section of Fig. 14.4.23 in the xz-plane reveals a right triangle with legs b
and a− h and hypotenuse a, and it follows immediately that b2 = 2ah− h2. Part (b): The volume of the
spherical segment is

V =
∫ 2π

0

∫ b

0

r
[√

a2 − r2 − (a− h)
]
dr dθ = 2π

[
− 1

3
(a2 − r2)3/2 − 1

2
ar2 +

1
2
hr2

]b
0

=
π

3

[
3r2h− 3r2a− 2(a2 − r2)3/2

]b
0

=
π

3
[
3b2h− 3b2a− 2(a2 − b2)3/2 + 2a3

]

=
π

3
[
3b2h− 3b2a− 2(a2 − 2ah+ h2)3/2 + 2a3

]
=
π

3
[
3b2h− 3b2a− 2(a− h)3 + 2a3

]

=
π

3
(3b2h− 3b2a+ 6a2h− 6ah2 + 2h3) =

π

3
[
3b2h− 3a(2ah− h2) + 6a2h− 6ah2 + 2h3

]

=
π

3
(3b2h− 6a2h+ 3ah2 + 6a2h− 6ah2 + 2h3) =

π

3
(3b2h− 3ah2 + 2h3) =

π

3
h(3b2 − 3ah+ 2h2).

Recall that 2ah = b2 + h2, so we may substitute 3
2 b

2 + 3
2 h

2 for 3ah in the last expression. Therefore the
volume of the spherical cap is

V =
1
3
πh

(
3b2 − 3

2
b2 − 3

2
h2 + 2h2

)
=

1
6
πh(6b2 − 3b2 − 3h2 + 4h2) =

1
6
πh(3b2 + h2).
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C14S04.034: We first convert the given integral to polar form and integrate over the quarter circle with
polar description 0 � θ � 1

2 π, 0 � r � a. Then we let a→ +∞. Thus we obtain

Ia =
∫ π/2

0

∫ a

0

r

(1 + r2)2
dr dθ =

π

2
·
[
− 1

2(1 + r2)

]a
0

=
π

4

(
1− 1

1 + a2

)
.

Then
∫ ∞

0

∫ ∞

0

1
(1 + x2 + y2)2

dx dy = lim
a→∞

Ia =
π

4
.

C14S04.035: Using the Suggestion, we have

2π(b− x) dA = 2π(b− r cos θ)r dr dθ,

and hence the volume of the torus is

V =
∫ 2π

0

∫ a

0

2πr(b− r cos θ) dr dθ =
∫ 2π

0

[
bπr2 − 2

3
πr3 cos θ

]a
0

dθ

=
[

1
3

(3πa2bθ − 2πa3 sin θ)
]2π

0

= 2π2a2b.

Read the First Theorem of Pappus in Section 14.5 and apply it to this circular disk of radius a rotated
around a circle of radius b to obtain the same answer in a tenth of the time.

C14S04.036: The plane and the paraboloid meet in the circle x2 + y2 = 9, z = −3, so the circular disk
x2 + y2 � 9, z = 0 is a suitable domain for the volume integral. The volume is therefore

V =
∫ 2π

0

∫ 3

0

(18− 2r2) · r dr dθ = 2π ·
[
9r2 − 1

2
r4

]3

0

= 81π ≈ 254.4690049407732523.

C14S04.037: The plane and the paraboloid meet in a curve that lies on the cylinder x2 + y2 = 4, so the
circular disk x2 + y2 � 4 in the xy-plane is a suitable domain for the volume integral. The volume of the
solid is thus

V =
∫ 2π

0

∫ 2

0

(4− r2) · r dr dθ = 2π ·
[
2r2 − 1

4
r4

]2

0

= 8π ≈ 25.1327412287183459.

C14S04.038: The circular disk x2 + y2 � 4 in the xy-plane is a suitable domain for the volume integral.
The volume of the solid is therefore

V =
∫ 2π

0

∫ 2

0

(3 + r cos θ + r sin θ) · r dr dθ =
∫ 2π

0

[
3
2
r2 +

1
3
r3(cos θ + sin θ)

]2

0

dθ

=
∫ 2π

0

(
6 +

8
3

[cos θ + sin θ ]
)
dθ =

[
6θ − 8

3
cos θ +

8
3

sin θ
]2π

0

= 12π ≈ 37.6991118430775189.

C14S04.039: When we solve the equations of the paraboloids simultaneously, we find that x2 + y2 = 4.
Hence the curve in which the surfaces intersect lies on the cylinder x2+y2 = 4. Thus the disk in the xy-plane
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bounded by the circle x2 + y2 = 4 is appropriate for the domain of the volume integral. So the volume of
the solid bounded by the paraboloids is

V =
∫ 2π

θ=0

∫ 2

r=0

(12− 3r2) · r dr dθ = 2π ·
[
6r2 − 3

4
r4

]2

r=0

= 24π ≈ 75.3982236861550377.

C14S04.040: When we solve the equations of the paraboloid and the ellipsoid simultaneously, we find
that their curve of intersection lies on the cylinder x2 + y2 = 4. Hence the circular disk x2 + y2 � 4 in the
xy-plane is a suitable domain for the volume integral. The volume is

V =
∫ 2π

0

∫ 2

0

(
√

80− 4r2 − 2r2) · r dr dθ = 2π ·
[
− 1

2
r4 − 2

3
(20− r2)3/2

]2

0

= 2π
(

80
3

√
5 − 152

3

)
=

16
3
π

(
10
√

5 − 19
)
≈ 56.3087300917396928.

C14S04.041: A Mathematica solution:

V = Simplify[ 2∗Integrate[ Integrate[

r∗Sqrt[ b∧2 - r∧2 ], { r, 0, a } ], { θ, 0, 2∗Pi } ] ]

3
2

(
b3 − (b2 − a2)3/2

)
π

V1 = V /. { a → 2, b → 4 }

4
3

(
64− 24

√
3

)
π

Percent of material removed:

N[ 100∗V1/(4∗Pi∗64/3) ]

35.0481 —C.H.E.

C14S04.042: A Maple solution:

V := 2∗int(int(r∗sqrt(12−4∗r∗cos(t)−r∧2), r=0..1), t=0..2∗Pi):

V := evalf(V);

V := 21.22150986

MATLAB gives

f = inline('r.∗sqrt(12−4∗r.∗cos(t)−r.∧2','r','t');

V = 2∗dblquad(f,0,1,0,2∗pi)

V = 21.2215

The percent of material removed:
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N[100∗V/(4∗Pi∗64/3)]

7.91603 —C.H.E.

C14S04.043: A Mathematica solution for the case of a square hole:

n = 4;

V = 4∗n∗Integrate[ Integrate[ r∗Sqrt[ 4 − r∧2 ],

{ r, 0, Cos[ Pi/n ]*Sec[ θ ] } ], { θ, 0, Pi/n } ];

(We suppress the output; it’s not attractive.)

V = Chop[ N[V] ]

7.6562

Percent:

100∗V/(4∗Pi∗8/3)

22.8473

Now for the pentagonal, hexagonal, heptagonal, and 17-sided holes. First, the pentagonal hole:

n = 5;

V = 4∗n∗Integrate[ Integrate[ r∗Sqrt[ 4 − r∧2 ],

{ r, 0, Cos[ Pi/n ]*Sec[ θ ] } ], { θ, 0, Pi/n } ];

V = Chop[ N[V] ]

9.03688

Percent:

100∗V/(4∗Pi*8/3)

26.9675

Next, the hexagonal hole:

n = 6;

V = 4∗n∗Integrate[ Integrate[ r∗Sqrt[ 4 − r∧2 ],

{ r, 0, Cos[ Pi/n ]*Sec[ θ ] } ], { θ, 0, Pi/n } ];

V = Chop[ N[V] ]

9.83041

Percent:

100∗V/(4∗Pi*8/3)

29.3355
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For the heptagonal and 17-sided holes, we use Maple V Release 5.

n:=7;

V:=4∗n∗int(int(r∗sqrt(4−r∧2), r=0..cos(Pi/n)∗sec(t)), t=0..Pi/n);

V:=evalf(V);

V := 10.32346688

Percent:

evalf(100∗V/(4∗Pi∗8/3);

30.80682719

n:=17;

V:=4∗n∗int(int(r∗sqrt(4−r∧2), r=0..cos(Pi/n)∗sec(t)), t=0..Pi/n);

V:=evalf(V);

V := 11.49809060

Percent:

evalf(100∗V/(4∗Pi∗8/3);

34.31208666 —C.H.E.
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Section 14.5

Note: To integrate positive integral powers of sines and cosines (and their products), there are effective
techniques not illustrated in the text. They use the following identities, which are consequences of the
Euler-DeMoivre formula

(cos θ + i sin θ)n =
(
eiθ

)n
= einθ = cosnθ + i sinnθ.

1. sin2 θ =
1
2

(1− cos 2θ).

2. sin3 θ =
1
4

(3 sin θ − sin 3θ).

3. sin4 θ =
1
8

(3− 4 cos 2θ + cos 4θ).

4. sin5 θ =
1
16

(10 sin θ − 5 sin 3θ + sin 5θ).

5. sin6 θ =
1
32

(10− 15 cos 2θ + 6 cos 4θ − cos 6θ).

6. sin7 θ =
1
64

(35 sin θ − 21 sin 3θ + 7 sin 5θ − sin 7θ).

7. sin8 θ =
1

128
(35− 56 cos 2θ + 28 cos 4θ − 8 cos 6θ + cos 8θ).

8. sin9 θ =
1

256
(126 sin θ − 84 sin 3θ + 36 sin 5θ − 9 sin 7θ + sin 9θ).

9. sin10 θ =
1

512
(126− 210 cos 2θ + 120 cos 4θ − 45 cos 6θ + 10 cos 8θ − cos 10θ).

10. cos2 θ =
1
2

(1 + cos 2θ).

11. cos3 θ =
1
4

(3 cos θ + cos 3θ).

12. cos4 θ =
1
8

(3 + 4 cos 2θ + cos 4θ).

13. cos5 θ =
1
16

(10 cos θ + 5 cos 3θ + cos 5θ).

14. cos6 θ =
1
32

(10 + 15 cos 2θ + 6 cos 4θ + cos 6θ).

15. cos7 θ =
1
64

(35 cos θ + 21 cos 3θ + 7 cos 5θ + cos 7θ).

16. cos8 θ =
1

128
(35 + 56 cos 2θ + 28 cos 4θ + 8 cos 6θ + cos 8θ).
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17. cos9 θ =
1

256
(126 cos θ + 84 cos 3θ + 36 cos 5θ + 9 cos 7θ + cos 9θ).

18. cos10 θ =
1

512
(126 + 210 cos 2θ + 120 cos 4θ + 45 cos 6θ + 10 cos 8θ + cos 10θ).

19. sin2 θ cos2 θ =
1
8

(1− cos 4θ).

20. sin3 θ cos2 θ =
1
16

(2 sin θ + sin 3θ − sin 5θ).

21. sin4 θ cos2 θ =
1
32

(2− cos 2θ − 2 cos 4θ + cos 6θ).

22. sin5 θ cos2 θ =
1
64

(5 sin θ + sin 3θ − 3 sin 5θ + sin 7θ).

23. sin6 θ cos2 θ =
1

128
(5− 4 cos 2θ − 4 cos 4θ + 4 cos 6θ − cos 8θ).

24. sin2 θ cos3 θ =
1
16

(2 cos θ − cos 3θ − cos 5θ).

25. sin2 θ cos4 θ =
1
32

(2 + cos 2θ − 2 cos 4θ − cos 6θ).

26. sin2 θ cos5 θ =
1
64

(5 cos θ − cos 3θ − 3 cos 5θ − cos 7θ).

27. sin2 θ cos6 θ =
1

128
(5 + 4 cos 2θ − 4 cos 4θ − 4 cos 6θ − cos 8θ).

28. sin3 θ cos3 θ =
1
32

(3 sin 2θ − sin 6θ).

29. sin4 θ cos3 θ =
1
64

(3 cos θ − 3 cos 3θ − cos 5θ + cos 7θ).

30. sin5 θ cos3 θ =
1

128
(6 sin 2θ − 2 sin 4θ − 2 sin 6θ + sin 8θ).

40. sin6 θ cos3 θ =
1

256
(6 cos θ − 8 cos 3θ + 3 cos 7θ − cos 9θ).

41. sin4 θ cos4 θ =
1

128
(3− 4 cos 4θ + cos 8θ).

42. sin5 θ cos4 θ =
1

256
(6 sin θ + 4 sin 3θ − 4 sin 5θ − sin 7θ + sin 9θ).

43. sin6 θ cos4 θ =
1

512
(6− 2 cos 2θ − 8 cos 4θ + 3 cos 6θ + 2 cos 8θ − cos 10θ).

44. sin5 θ cos5 θ =
1

512
(10 sin 2θ − 5 sin 6θ + sin 10θ).

45. sin6 θ cos5 θ =
1

1024
(10 cos θ − 10 cos 3θ − 5 cos 5θ + 5 cos 7θ + cos 9θ − cos 11θ).
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46. sin6 θ cos6 θ =
1

2048
(10− 15 cos 4θ + 6 cos 8θ − cos 12θ).

C14S05.001: By the symmetry principle, the centroid is at (x, y) = (2, 3).

C14S05.002: By the symmetry principle, the centroid is at (x, y) = (2, 3).

C14S05.003: By the symmetry principle, the centroid is at (x, y) = (1, 1).

C14S05.004: The mass and moments are

m =
∫ 3

0

∫ 3−x

0

1 dy dx =
∫ 3

0

(3− x) dx =
[
3x− 1

2
x2

]3

0

=
9
2
,

My =
∫ 3

0

∫ 3−x

0

x dy dx =
∫ 3

0

(3x− x2) dx =
[

3
2
x2 − 1

3
x3

]3

0

=
9
2
, and

Mx =
∫ 3

0

∫ 3−x

0

y dy dx =
∫ 3

0

1
2

(3− x)2 dx =
[

1
6

(x− 3)3
]3

0

=
9
2
.

Therefore the centroid is located at (x, y) = (1, 1).

C14S05.005: The mass and moments are

m =
∫ 4

0

∫ (4−x)/2

0

1 dy dx =
∫ 4

0

4− x

2
dx =

[
2x− 1

4
x2

]4

0

= 4,

My =
∫ 4

0

∫ (4−x)/2

0

x dy dx =
∫ 4

0

(
2x− 1

2
x2

)
dx =

[
x2 − 1

6
x3

]4

0

=
16
3
, and

Mx =
∫ 4

0

∫ (4−x)/2

0

y dy dx =
∫ 4

0

1
8

(4− x)2 dx =
[

1
24

(x− 4)3
]4

0

=
8
3
.

Therefore the centroid is located at (x, y) =
(

4
3 ,

2
3

)
.

C14S05.006: Here we have

m =
∫ 1

0

∫ 2−y

y

1 dx dy =
∫ 1

0

(2− 2y) dy =
[
2y − y2

]1

0

= 1 and

Mx =
∫ 1

0

∫ 2−y

y

y dx dy =
∫ 1

0

(2y − 2y2) dx =
[
y2 − 2

3
y3

]1

0

=
1
3
.

By symmetry, x = 1. Therefore the centroid is located at
(
1, 1

3

)
.

C14S05.007: The mass and moments are
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m =
∫ 2

0

∫ x2

0

1 dy dx =
∫ 2

0

x2 dx =
[

1
3
x3

]2

0

=
8
3
,

My =
∫ 2

0

∫ x2

0

x dy dx =
∫ 2

0

x3 dx =
[

1
4
x4

]2

0

= 4, and

Mx =
∫ 2

0

∫ x2

0

y dy dx =
∫ 2

0

1
2
x4 dx =

[
1
10

x5

]2

0

=
16
5
.

Therefore the centroid is (x, y) =
(

3
2 ,

6
5

)
.

C14S05.008: By symmetry, My = 0; next,

m =
∫ 3

−3

∫ 9

x2
1 dy dx =

∫ 3

−3

(9− x2) dx =
[
9x− 1

3
x3

]3

−3

= 36 and

Mx =
∫ 3

−3

∫ 9

x2
y dy dx =

∫ 3

−3

1
2

(81− x4) dx =
[

81
2
x− 1

10
x5

]3

−3

=
972
5
.

Therefore the centroid is located at
(
0, 27

5

)
.

C14S05.009: By symmetry, My = 0. Next,

m =
∫ 2

−2

∫ 0

x2−4

1 dy dx =
∫ 2

−2

(4− x2) dx =
[
4x− 1

3
x3

]2

−2

=
32
3

and

Mx =
∫ 2

−2

∫ 0

x2−4

y dy dx =
∫ 2

−2

−1
2

(4− x2)2 dx =
[

4
3
x3 − 8x− 1

10
x5

]2

−2

= −256
15

.

Therefore the centroid is at the point
(
0, − 8

5

)
.

C14S05.010: By symmetry, My = 0. Next,

m =
∫ 2

−2

∫ x2+1

0

1 dy dx =
∫ 2

−2

(x2 + 1) dx =
[

1
3
x3 + x

]2

−2

=
28
3

and

Mx =
∫ 2

−2

∫ x2+1

0

y dy dx =
∫ 2

−2

1
2

(x2 + 1)2 dx =
[

1
10

x5 +
1
3
x3 +

1
2
x

]2

−2

=
206
15

.

Hence the centroid is located at the point
(
0, 103

70

)
≈ (0, 1.4714285714285714).

C14S05.011: The mass and moments are
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m =
∫ 1

0

∫ 1−x

0

xy dy dx =
∫ 1

0

1
2

(x− 2x2 + x3) dx =
1
24

[
6x2 − 8x3 + 3x4

]1

0

=
1
24
,

My =
∫ 1

0

∫ 1−x

0

x2y dy dx =
∫ 1

0

[
1
2
x2y2

]1−x

0

dx =
∫ 1

0

1
2

(x2 − 2x3 + x4) dx

=
1
60

[
10x3 − 15x4 + 6x5

]1

0

=
1
60
,

Mx =
∫ 1

0

∫ 1−x

0

xy2 dy dx =
∫ 1

0

[
1
3
xy3

]1−x

0

dx =
∫ 1

0

1
3

(x− 3x2 + 3x3 − x4) dx

=
1
60

[
10x2 − 20x3 + 15x4 − 4x5

]1

0

=
1
60
.

Therefore the centroid is located at the point
(

2
5 ,

2
5

)
.

C14S05.012: Using Mathematica 3.0, the computations to find the mass m and the moments My and
Mx of the lamina can be partially automated in such a way to reduce typing and make clear the individual
steps in the solution, as follows. First we compute the appropriate antiderivatives with respect to y:

{Integrate[ x∧2, y ], Integrate[ x∧3, y ], Integrate[ x∧2∗y, y ]}
{
x2y, x3y,

1
2
x2y2

}

Then we evaluate these antiderivatives at y = 1− x and at y = 0:

(% /. y → 1 - x) - (% /. y → 0)

{
(1− x)x2, (1− x)x3,

1
2

(1− x)2x2

}

Now we integrate with respect to x:

Integrate[ %, x ]

{
1
3
x3 − 1

4
x4,

1
4
x4 − 1

5
x5,

1
6
x3 − 1

4
x4 +

1
10

x5

}

Then we evaluate these antiderivatives at x = 0 and at x = 1. This will yield, respectively, the values of m,
My, and Mx.

(% /. x → 1) - (% /. x → 0)

{
1
12
,

1
20
,

1
60

}

The coordinates of the centroid are then

{ %[[2]]/%[[1]], %[[3]]/%[[1]] }
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{
3
5
,

1
5

}

Answer: Mass m =
1
12

, centroid (x, y) =
(

3
5
,

1
5

)
.

C14S05.013: The mass and moments of the lamina are

m =
∫ 2

−2

∫ 4−x2

0

y dy dx =
∫ 2

−2

1
2

(4− x2)2 dx =
1
30

[
240x− 40x3 + 3x5

]2

−2

=
256
15

,

My =
∫ 2

−2

∫ 4−x2

0

xy dy dx =
∫ 2

−2

1
2
x(4− x2)2 dx =

1
12

[
48x2 − 12x4 + x6

]2

−2

= 0, and

Mx =
∫ 2

−2

∫ 4−x2

0

y2 dy dx =
∫ 2

−2

1
3

(4− x2)3 dx =
[

64
3
x− 16

3
x3 +

4
5
x5 − 1

21
x7

]2

−2

=
4096
105

.

Therefore the centroid of the lamina is (x, y) =
(
0, 16

7

)
.

C14S05.014: The mass and moments of the lamina are

m =
∫ 3

−3

∫ 9−y2

0

x2 dx dy =
∫ 3

−3

1
3

(9− y2)3 dy =
[
243y − 27y3 +

9
5
y5 − 1

21
y7

]3

−3

=
23328

35
,

My =
∫ 3

−3

∫ 9−y2

0

x3 dx dy =
∫ 3

−3

1
4

(9− y2)4 dy =
[

6561
4

y − 243y3 +
243
10

y5 − 9
7
y7 +

1
36

y9

]3

−3

=
139968

35
,

Mx =
∫ 3

−3

∫ 9−y2

0

x2y dx dy =
∫ 3

−3

1
3
y(9− y2)3 dy =

[
243
2

y2 − 81
4
y4 +

3
2
y6 − 1

24
y8

]3

−3

= 0.

Therefore the centroid of the lamina is (x, y) = (6, 0).

C14S05.015: The mass and moments of the lamina are

m =
∫ 1

0

∫ √
x

x2
xy dy dx =

∫ 1

0

1
2

(x2 − x5) dx =
1
12

[
2x3 − x6

]1

0

=
1
12
,

My =
∫ 1

0

∫ √
x

x2
x2y dy dx =

∫ 1

0

1
2

(x3 − x6) dx =
1
56

[
7x4 − 4x7

]1

0

=
3
56
,

Mx =
∫ 1

0

∫ √
x

x2
xy2 dy dx =

∫ 1

0

1
3

(x5/2 − x7) dx =
1

168

[
16x7/2 − 7x8

]1

0

=
3
56
.

Hence the centroid of the lamina is at (x, y) =
(

9
14 ,

9
14

)
.

C14S05.016: The mass and moments of the lamina are
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m =
∫ 1

0

∫ √
x

x2
(x2 + y2) dy dx =

∫ 1

0

(
1
3
x3/2 + x5/2 − x4 − 1

3
x6

)
dx

=
[

2
15

x5/2 +
2
7
x7/2 − 1

5
x5 − 1

21
x7

]1

0

=
6
35
,

My =
∫ 1

0

∫ √
x

x2
x(x2 + y2) dy dx =

∫ 1

0

(
1
3
x5/2 + x7/2 − x5 − 1

3
x7

)
dx

=
[

2
21

x7/2 +
2
9
x9/2 − 1

6
x6 − 1

24
x8

]1

0

=
55
504

,

Mx =
∫ 1

0

∫ √
x

x2
(x2 + y2)y dy dx =

∫ 1

0

(
1
4
x2 +

1
2
x3 − 1

2
x6 − 1

4
x8

)
dx

=
[

1
12

x3 +
1
8
x4 − 1

14
x7 − 1

36
x9

]1

0

=
55
504

.

Therefore the centroid of the lamina is at (x, y) =
(

275
432 ,

275
432

)
.

C14S05.017: The mass and moments of the lamina are

m =
∫ 1

−1

∫ 2−x2

x2
y dy dx =

∫ 1

−1

(2− 2x2) dx =
[
2x− 2

3
x3

]1

−1

=
8
3
,

My =
∫ 1

−1

∫ 2−x2

x2
xy dy dx =

∫ 1

−1

(2x− 2x3) dx =
[
x2 − 1

2
x4

]1

−1

= 0,

Mx =
∫ 1

−1

∫ 2−x2

x2
y2 dy dx =

∫ 1

−1

[
1
3
y3

]2−x2

x2

dx =
∫ 1

−1

(
1
3

(2− x2)3 − 1
3
x6

)
dx

=
[

8
3
x− 4

3
x3 +

2
5
x5 − 2

21
x7

]1

−1

=
344
105

.

Hence the centroid of the lamina is at (x, y) =
(
0, 43

35

)
.

C14S05.018: The mass and moments of the lamina are

m =
∫ e

1

∫ ln x

0

1 dy dx =
∫ e

1

lnx dx =
[
− x+ x lnx

]e
1

= 1,

My =
∫ e

1

∫ ln x

0

x dy dx =
∫ e

1

x lnx dx =
[

1
2
x2 lnx− 1

4
x2

]e
1

=
e2 + 1

4
,

Mx =
∫ e

1

∫ ln x

0

y dy dx =
∫ e

1

1
2

(lnx)2 dx =
[
x− x lnx+

1
2
x(lnx)2

]e
1

=
e− 2

2
.

(The reduction formula in Problem 51 of Section 8.3 (Section 7.3 of the “early transcendentals version”) is
helpful in evaluating the last integral.) The centroid of the lamina is located at the point

(x, y) =
(
e2 + 1

4
,
e− 2

2

)
≈ (2.0972640247326626, 0.3591409142295226).
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C14S05.019: The mass and moments of the lamina are

m =
∫ π

0

∫ sin x

0

1 dy dx =
∫ π

0

sinx dx =
[
− cosx

]π
0

= 2,

My =
∫ π

0

∫ sin x

0

x dy dx =
∫ π

0

x sinx dx =
[

sinx− x cosx
]π
0

= π,

Mx =
∫ π

0

∫ sin x

0

y dy dx =
∫ π

0

1
2

sin2 x dx =
[

1
8

(2x− sin 2x)
]π
0

=
1
4
π.

Therefore the centroid of the lamina is located at

(x, y) =
(π

2
,
π

8

)
≈ (1.5707963267948966, 0.3926990816987242).

C14S05.020: The mass of the lamina is

m =
∫ 1

x=−1

∫ exp(−x2)

y=0

|xy | dy dx = −
∫ 0

x=−1

∫ exp(−x2)

y=0

xy dy dx+
∫ 1

0

∫ exp(−x2)

y=0

xy dy dx

= 2
∫ 1

0

∫ exp(−x2)

y=0

xy dy dx = 2
∫ 1

0

1
2
x exp(−2x2) dx =

[
− 1

4
exp(−2x2)

]1

0

=
e2 − 1
4e2

.

By symmetry, My = 0. Finally,

Mx =
∫ 1

x=−1

∫ exp(−x2)

y=0

|x| · y2 dy dx =
∫ 1

x=−1

1
3
|x| · exp(−3x2) dx

=
2
3

∫ 1

0

x exp(−3x2) dx =
2
3

[
− 1

6
exp(−3x2)

]1

0

=
1
9

(
1− 1

e3

)
=

e3 − 1
9e3

.

Therefore the centroid of the lamina is located at the point

(x, y) =
(

0,
4(e2 + e+ 1)

9e(e+ 1)

)
≈ (0, 0.4884168976896321).

C14S05.021: The mass and moments of the lamina are

m =
∫ a

0

∫ a

0

(x+ y) dy dx =
∫ a

0

(
1
2
a2 + ax

)
dx =

[
1
2

(a2x+ ax2)
]a
0

= a3,

My =
∫ a

0

∫ a

0

x(x+ y) dy dx =
∫ a

0

(
1
2
a2x+ ax2

)
dx =

[
1
4
a2x2 +

1
3
ax3

]a
0

=
7
12

a4, and

Mx =
∫ a

0

∫ a

0

(x+ y)y dy dx =
∫ a

0

(
1
3
a3 +

1
2
a2x

)
dx =

[
1
3
a3x+

1
4
a2x2

]a
0

=
7
12

a4.

Therefore its centroid is located at the point (x, y) =
(

7
12 a,

7
12 a

)
.

C14S05.022: The mass and moments of the lamina are
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m =
∫ a

0

∫ a−x

0

(x2 + y2) dy dx =
∫ a

0

(
1
3
a3 − a2x+ 2ax2 − 4

3
x3

)
dx

=
[

1
3
a3x− 1

2
a2x2 +

2
3
ax3 − 1

3
x4

]a
0

=
1
6
a4,

My =
∫ a

0

∫ a−x

0

x(x2 + y2) dy dx =
∫ a

0

(
1
3
a3x− a2x2 + 2ax3 − 4

3
x4

)
dx

=
[

1
6
a3x2 − 1

3
a2x3 +

1
2
ax4 − 4

15
x5

]a
0

=
1
15

a5, and

Mx =
∫ a

0

∫ a−x

0

(x2 + y2)y dy dx =
∫ a

0

(
1
4
a4 − a3x+ 2a2x2 − 2ax3 +

3
4
x4

)
dx

=
[

1
4
a4x− 1

2
a3x2 +

2
3
a2x3 − 1

2
ax4 +

3
20

x5

]a
0

=
1
15

a5.

Therefore the centroid of the lamina is located at (x, y) =
(

2
5 a,

2
5 a

)
.

C14S05.023: The mass and moments of the lamina are

m =
∫ 2

−2

∫ 4

x2
y dy dx =

∫ 2

−2

(
8− 1

2
x4

)
dx =

[
8x− 1

10
x5

]2

−2

=
128
5
,

My =
∫ 2

−2

∫ 4

x2
xy dy dx =

∫ 2

−2

(
8x− 1

2
x5

)
dx =

[
4x2 − 1

12
x6

]2

−2

= 0, and

Mx =
∫ 2

−2

∫ 4

x2
y2 dy dx =

∫ 2

−2

(
64
3
− 1

3
x6

)
dx =

[
64
3
x− 1

21
x7

]2

−2

=
512
7
.

Thus the centroid of the lamina is located at the point (x, y) =
(
0, 20

7

)
.

C14S05.024: The curves cross where x2 = 2x + 3; that is, at x = −1 and at x = 3. Hence the mass and
moments of the lamina are

m =
∫ 3

−1

∫ 2x+3

x2
x2 dy dx =

∫ 3

−1

(3x2 + 2x3 − x4) dx =
[
x3 +

1
2
x4 − 1

5
x5

]3

−1

=
96
5
,

My =
∫ 3

−1

∫ 2x+3

x2
x3 dy dx =

∫ 3

−1

(3x3 + 2x4 − x5) dx =
[

3
4
x4 +

2
5
x5 − 1

6
x6

]3

−1

=
544
15

, and

Mx =
∫ 3

−1

∫ 2x+3

x2
x2y dy dx =

∫ 3

−1

(
9
2
x2 + 6x3 + 2x4 − 1

2
x6

)
dx

=
[

3
2
x3 +

3
2
x4 +

2
5
x5 − 1

14
x7

]3

−1

=
3616
35

.

Therefore the centroid is at

(x, y) =
(

17
9
,

113
21

)
≈ (1.8888888888888889, 5.3809523809523810).
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C14S05.025: The mass and moments are

m =
∫ π

0

∫ sin x

0

x dy dx =
∫ π

0

x sinx dx =
[

sinx− x cosx
]π
0

= π,

My =
∫ π

0

∫ sin x

0

x2 dy dx =
∫ π

0

x2 sinx dx =
[
2 cosx− x2 cosx+ 2x sinx

]π
0

= π2 − 4, and

Mx =
∫ π

0

∫ sin x

0

xy dy dx =
∫ π

0

1
2
x sin2 x dx =

[
1
16

(2x2 − cos 2x− 2x sin 2x)
]π
0

=
1
8
π2.

Consequently the centroid of the lamina is at

(x, y) =
(
π2 − 4
π

,
π

8

)
≈ (1.8683531088546306, 0.3926990816987242).

C14S05.026: By symmetry, the moment My is zero, and thus x = 0. The mass and other moment are

m =
∫ π

θ=0

∫ a

r=0

r2 sin θ dr dθ =
∫ π

0

1
3
a3 sin θ dθ =

[
− 1

3
a3 cos θ

]π
0

=
2
3
a3 and

Mx =
∫ π

θ=0

∫ a

r=0

r3 sin2 θ dr dθ =
∫ π

0

1
4
a2 · 1− cos 2θ

2
dθ =

1
8
a4

[
θ − sin θ cos θ

]π
0

=
1
8
πa4.

Therefore the y-coordinate of the centroid is y =
3
16

πa.

C14S05.027: The mass and moments are

m =
∫ π

θ=0

∫ a

r=0

r2 dr dθ = π ·
[

1
3
r3

]a
0

=
1
3
πa3,

My =
∫ π

θ=0

∫ a

r=0

r3 cos θ dr dθ =
∫ π

0

1
4
a4 cos θ dθ =

[
1
4
a4 sin θ

]π
0

= 0, and

Mx =
∫ π

θ=0

∫ a

r=0

r3 sin θ dr dθ =
∫ π

0

1
4
a4 sin θ dθ =

[
− 1

4
a4 cos θ

]π
0

=
1
2
a4.

Therefore the centroid of the lamina is located at the point

(x, y) =
(

0,
3a
2π

)
≈

(
0, (0.47746483) · a

)
.

C14S05.028: The mass and moments are

10



-1 -0.5 0.5 1

-1

-0.5

0.5

1

1.5

2

m =
∫ 2π

θ=0

∫ 1+cos θ

r=0

r2 dr dθ =
∫ 2π

0

1
3

(1 + cos θ)3 dθ =
∫ 2π

0

(
1
3

+ cos θ + cos2 θ +
1
3

cos3 θ
)
dθ

=
1
36

[
30θ + 45 sin θ + 9 sin 2θ + sin 3θ

]2π

0

=
5
3
π,

My =
∫ 2π

θ=0

∫ 1+cos θ

r=0

r3 cos θ dr dθ =
∫ 2π

0

1
4

(cos θ)(1 + cos θ)4 dθ

=
∫ 2π

0

(
1
4

cos θ + cos2 θ +
3
2

cos3 θ + cos4 θ +
1
4

cos5 θ
)
dθ

=
1

960

[
840θ + 1470 sin θ + 480 sin 2θ + 145 sin 3θ + 30 sin 4θ + 3 sin 5θ

]2π

0

=
7
4
π,

Mx =
∫ 2π

θ=0

∫ 1+cos θ

r=0

r3 sin θ dr dθ =
∫ 2θ

0

1
4

(sin θ)(1 + cos θ)4 dθ

=
∫ 2π

0

(
1
4

sin θ + sin θ cos θ +
3
2

sin θ cos2 θ + sin θ cos3 θ +
1
4

sin θ cos4 θ
)
dθ

= − 1
320

[
210 cos θ + 120 cos 2θ + 45 cos 3θ + 10 cos 4θ + cos 5θ

]2π

0

= 0.

Therefore the centroid of the lamina is at (x, y) =
(

21
20 , 0

)
.

C14S05.029: The following figure, generated by Mathematica 3.0, shows the two circles.

They cross where 2 sin θ = 1; that is, where θ = 1
6 π and where θ = 5

6 π. The lamina in question is the region
outside the lower circle and inside the upper circle. Its mass and moments are
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-2

-1

1

2

m =
∫ 5π/6

π/6

∫ 2 sin θ

1

r2 sin θ dr dθ =
∫ 5π/6

π/6

(
8
3

sin4 θ − 1
3

sin θ
)
dθ

=
1
12

[
12θ + 4 cos θ − 8 sin 2θ + sin 4θ

]5π/6

π/6

=
8π + 3

√
3

12
,

My =
∫ 5π/6

π/6

∫ 2 sin θ

1

r3 sin θ cos θ dr dθ =
∫ 5π/6

π/6

(
4 sin5 θ cos θ − 1

4
sin θ cos θ

)
dθ

=
1
48

[
6 cos 4θ − cos 6θ − 12 cos 2θ

]5π/6

π/6

= 0,

Mx =
∫ 5π/6

π/6

∫ 2 sin θ

1

r3 sin2 θ dr dθ =
∫ 5π/6

π/6

(
4 sin6 θ − 1

4
sin2 θ

)
dθ

=
1
48

[
54θ − 42 sin 2θ + 9 sin 4θ − sin 6θ

]5π/6

π/6

=
12π + 11

√
3

16
.

Thus its centroid is at the point

(x, y) =

(
0,

36π + 33
√

3
32π + 12

√
3

)
≈ (0, 1.4034060567438982)

and its mass is approximately 2.5274078042854148.

C14S05.030: The limaçon and the circle are shown next, in a figure generated by Mathematica 3.0. We
are to find the mass and centroid of the region within the limaçon and outside the circle given its density at
(r, θ) is r.

The curves intersect where 1 + 2 cos θ = 2; that is, where θ = ± 1
3 π. The mass and moments of the lamina

are
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m =
∫ π/3

−π/3

∫ 1+2 cos θ

2

r2 dr dθ =
∫ π/3

−π/3

(
1
3

(1 + 2 cos θ)3 − 8
3

)
dθ

=
∫ π/3

−π/3

(
2 cos θ + 4 cos2 θ +

8
3

cos3 θ − 7
3

)
dθ =

1
9

[
36 sin θ + 9 sin 2θ + 2 sin 3θ − 3θ

]π/3
−π/3

=
45
√

3 − 2π
9

≈ 7.96212233704665463687,

My =
∫ π/3

−π/3

∫ 1+2 cos θ

2

r3 cos θ dr dθ =
∫ π/3

−π/3

(
1
4

(cos θ)(1 + 2 cos θ)4 − 4 cos θ
)
dθ

=
∫ π/3

−π/3

(
2 cos2 θ + 6 cos3 θ + 8 cos4 θ + 4 cos5 θ − 15

4
cos θ

)
dθ

=
1
60

[
240θ + 195 sin θ + 150 sin 2θ + 55 sin 3θ + 15 sin 4θ + 3 sin 5θ

]π/3
−π/3

=
160π + 327

√
3

60
,

Mx =
∫ π/3

−π/3

∫ 1+2 cos θ

2

r3 sin θ dr dθ =
∫ π/3

−π/3

(
1
4

(sin θ)(1 + 2 cos θ)4 − 4 sin θ
)
dθ

=
∫ π/3

−π/3

(
2 sin θ cos θ + 6 sin θ cos2 θ + 8 sin θ cos3 θ + 4 sin θ cos4 θ − 15

4
sin θ

)
dθ

=
1
20

[
35 cos θ − 30 cos 2θ − 15 cos 3θ − 5 cos 4θ − cos 5θ

]π/3
−π/3

= 0.

Therefore the centroid of the lamina is at the point

(x, y) =

(
981
√

3 + 480π
900
√

3 − 40π
, 0

)
≈ (2.2377522671212835, 0).

C14S05.031: The polar moment of inertia of the lamina is

I0 =
∫ 2π

0

∫ a

0

rn+3 dr dθ = 2π ·
[
rn+4

n+ 4

]a
0

=
2πan+4

n+ 4
.

C14S05.032: The polar moment of inertia of the lamina is

I0 =
∫ π

0

∫ a

0

r4 sin θ dr dθ =
∫ π

0

1
5
a5 sin θ dθ =

[
− 1

5
a5 cos θ

]π
0

=
2
5
a5.

C14S05.033: The polar moment of inertia of the lamina is

I0 =
∫ π/2

−π/2

∫ 2 cos θ

0

kr3 dr dθ =
∫ π/2

−π/2
4k cos4 θ dθ =

1
8
k

[
12θ + 8 sin 2θ + sin 4θ

]π/2
−π/2

=
3
2
πk.

C14S05.034: See the figure that accompanies the solution of Problem 29. The polar moment of inertia of
the lamina is
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I0 =
∫ 5π/6

π/6

∫ 2 sin θ

1

r4 sin θ dr dθ =
∫ 5π/6

π/6

1
5

(32 sin6 θ − sin θ) dθ

=
1
30

[
60θ + 6 cos θ − 45 sin 2θ + 9 sin 4θ − sin 6θ

]5π/6

π/6

=
4π + 3

√
3

3
≈ 5.9208410123552683.

C14S05.035: The polar moment of inertia of the lamina is

I0 =
∫ π/4

−π/4

∫ √
cos 2θ

0

r5 dr dθ =
∫ π/4

−π/4

1
6

cos3 2θ dθ =
1

144

[
9 sin 2θ + sin 6θ

]π/4
−π/4

=
1
9
.

C14S05.036: In Problem 21 we found that the mass of the lamina is m = a3. Next,

Iy =
∫ a

0

∫ a

0

x2(x+ y) dy dx =
∫ a

0

(
1
2
a2x2 + ax3

)
dx =

[
1
6
a2x3 +

1
4
ax4

]a
0

=
5
12

a5,

and Ix = Iy by symmetry. Therefore x̂ = ŷ = 1
6 a
√

15 .

C14S05.037: In Problem 23 we found that the mass of the lamina is m = 128
5 . Next,

Iy =
∫ 2

−2

∫ 4

x2
x2y dy dx =

∫ 2

−2

(
8x2 − 1

2
x6

)
dx =

[
8
3
x3 − 1

14
x7

]2

−2

=
512
21

and

Ix =
∫ 2

−2

∫ 4

x2
y3 dy dx =

∫ 2

−2

(
64− 1

4
x8

)
dx =

[
64x− 1

36
x9

]2

−2

=
2048

9
.

Therefore x̂ = 2
21

√
105 and ŷ = 4

3

√
5 .

C14S05.038: In Problem 24 we found that the mass of the lamina is m = 96
5 . Next,

Iy =
∫ 3

−1

∫ 2x+3

x2
x4 dy dx =

∫ 3

−1

(3x4 + 2x5 − x6) dx =
[

3
5
x5 +

1
3
x6 − 1

7
x7

]3

−1

=
8032
105

and

Ix =
∫ 3

−1

∫ 2x+3

x2
x2y2 dy dx =

∫ 3

−1

(
9x2 + 18x3 + 12x4 +

8
3
x5 − 1

3
x8

)
dx

=
[
3x3 +

9
2
x4 +

12
5
x5 +

4
9
x6 − 1

27
x9

]3

−1

=
84256
135

.

Therefore

x̂ =
√

1757
21

≈ 1.9960278014413988 and ŷ =
√

2633
9

≈ 5.7014184936299995.

C14S05.039: In the solution of Problem 27 we found that the mass of the lamina is m = 1
3 πa

3. Next,

Iy =
∫ π

0

∫ a

0

r4 cos2 t dr dθ =
∫ π

0

1
5
a5 cos2 θ dθ =

[
1
20

a5(2θ + sin 2θ)
]π
0

=
1
10

πa5 and

Ix =
∫ π

0

∫ a

0

r4 sin2 θ dr dθ =
∫ π

0

1
5
a5 sin2 θdθ =

[
1
20

a5(2θ − sin 2θ)
]π
0

=
1
10

πa5.
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Therefore x̂ = ŷ = 1
10 a
√

30 .

C14S05.040: In the solution of Problem 33 we found that the mass of the lamina is m = πk. Next,

Iy =
∫ π/2

−π/2

∫ 2 cos θ

0

kr3 cos2 θ dr dθ =
∫ π/2

−π/2
4k cos6 θ dθ

=
1
48

k

[
60θ + 45 sin 2θ + 9 sin 4θ + sin 6θ

]π/2
−π/2

=
5
4
πk;

Ix =
∫ π/2

−π/2

∫ 2 cos θ

0

kr3 sin2 θ dr dθ =
∫ π/2

−π/2
4k cos4 θ sin2 θ dθ

=
1
48

k

[
12θ + 3 sin 2θ − 3 sin 4θ − sin 6θ

]π/2
−π/2

=
1
4
πk.

Therefore x̂ = 1
2

√
5 and ŷ = 1

2 .

C14S05.041: The quarter of the circular disk x2 + y2 � a2 that lies in the first quadrant has the polar-
coordinates description 0 � r � a, 0 � θ � 1

2 π. If we assume that it has uniform density δ = 1, then its
mass is m = 1

4 πa
2. Next,

My =
∫ π/2

0

∫ a

0

r2 cos θ dr dθ =
∫ π/2

0

1
3
a3 cos θ dθ =

[
1
3
a2 sin θ

]π/2
0

=
1
3
a3,

and Mx = My by symmetry. Therefore the centroid is located at the point

(x, y) =
(

4a
3π

,
4a
3π

)
≈

(
[0.4244131815783876]a, [0.4244131815783876]a

)
.

C14S05.042: Given: The quarter of the circular disk x2 + y2 � a2 that lies in the first quadrant, with
centroid (x, y). Note that x = y by symmetry. By the first theorem of Pappus,

2πy · 1
4
πa2 =

2
3
πa3,

which we solve for y =
4a
3π

.

C14S05.043: The arc x2 + y2 = r2 can be parametrized in this way:

x(t) = r cos θ, y(t) = r sin θ, 0 � θ � π

2
.

We may also assume that it has unit density. The arc length element is

ds =
√

[x′(θ)]2 + [y′(θ)]2 dθ = r dθ,

and hence its mass is

m =
∫ π/2

0

r dθ =
1
2
πr.

Its moment around the y-axis is
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My =
∫ π/2

0

r2 cos θ dθ =
[
r2 sin θ

]π/2
0

= r2.

Therefore, because y = x by symmetry,

(x, y) =
(

2r
π
,

2r
π

)
.

C14S05.044: By the second theorem of Pappus,

2πy · πr
2

= 2πr2,

and hence x = y =
2r
π

.

C14S05.045: We may assume that the triangle has unit density. The hypotenuse of this right triangle has
equation

y = f(x) = h
(
1− x

r

)
,

and hence the mass and moments of the triangle are

m =
∫ r

0

∫ f(x)

0

1 dy dx =
∫ r

0

h
(
1− x

r

)
dx =

[
hx− h

2r
x2

]r
0

=
1
2
hr,

My =
∫ r

0

∫ f(x)

0

x dy dx =
∫ r

0

hx
(
1− x

r

)
dx =

[
h

2
x2 − h

3r
x3

]r
0

=
1
6
hr2, and

Mx =
∫ r

0

∫ f(x)

0

y dy dx =
∫ r

0

(
1
2
h2 − h2

r
x+

h2

2r2
x2

)
dx

=
[
h2

2
x− h2

2r
x2 +

h2

6r2
x3

]r
0

=
1
6
h2r.

Therefore the centroid of the triangle is

C = (x, y) =
(

1
3
r,

1
3
h

)
.

The midpoint of the hypotenuse is the point M
(

1
2 r,

1
2 h

)
and the line from the origin to M has equation

y = hx/r, so it is clear that C lies on this line and is two-thirds of the way from the origin to M .

C14S05.046: Here we simply observe that 2π
r

3
· 1
2
rh =

1
3
πr2h.

C14S05.047: Here we simply observe that 2π
r

2
· L = πrL.

C14S05.048: First we compute the mass and moments of the rectangular part of the lamina (we assume
that it has unit density):
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m =
∫ r2

0

∫ h

0

1 dy dx =
∫ r2

0

h dx = hr2,

My =
∫ r2

0

∫ h

0

x dy dx =
∫ r2

0

hx dx =
1
2
hr22, and

Mx =
∫ r2

0

∫ h

0

y dy dx =
∫ r2

0

1
2
h2 dx =

1
2
h2r2.

Next we compute the mass and moments of the triangular part of the lamina. First note that the equation
of the diagonal side of the lamina is

y =
h

r1 − r2
(r1 − x) = f(x).

Thus

m =
∫ r1

r2

∫ f(x)

0

1 dy dx =
∫ r1

r2

h(r1 − x)
r1 − r2

dx =
[

2hr1x− hx2

2(r1 − r2)

]r1
r2

=
1
2
h(r1 − r2);

My =
∫ r1

r2

∫ f(x)

0

x dy dx =
∫ r1

r2

hr1x− hx2

r1 − r2
dx =

[
3hr1x2 − 2hx3

6(r1 − r2)

]r1
r2

=
1
6
h(r1 − r2)(r1 + 2r2);

Mx =
∫ r1

r2

∫ f(x)

0

y dy dx =
∫ r1

r2

h2(r1 − x)2

2(r1 − r2)2
dx =

[
3h2(r1)2x− 3h2r1x

2 + h2x3

6(r1 − r2)2

]r1
r2

=
1
6
h2(r1 − r2).

Now moments, like masses, are additive. Thus the mass and moments of the entire lamina can be obtained
by addition; they are

m =
1
2
h(r1 + r2), My =

1
6
h(r21 + r1r2 + r22), and Mx =

1
6
h2(r1 + 2r2).

Therefore the centroid of the lamina is at

(x, y) =
(
r21 + r1r2 + r22

3(r1 + r2)
,
h(r1 + 2r2)
3(r1 + r2)

)
.

Finally, using the first theorem of Pappus, the volume generated by rotating the trapezoid around the
y-axis—the volume of the conical frustum—is

V = 2πx · 1
2
h(r1 + r2) =

1
3
πh(r21 + r1r2 + r22).

C14S05.049: The diagonal side of the trapezoid has centroid at its midpoint, so that x = 1
2 (r1 + r2). By

the second theorem of Pappus, the curved surface area of the conical frustum—which is generated by the
diagonal side—is

A = 2πx · L = πL(r1 + r2).

C14S05.050: The vertical line segment L in the xy-plane connecting the two points (r, 0) and (r, h)
generates the curved side of the cylinder of radius r and height h when L is rotated around the y-axis. The
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centroid of L has x-coordinate x = r, so by the second theorem of Pappus the curved surface area of the
cylinder is

A = 2πx · h = 2πrh.

This result also follows from the result in Problem 49 by letting r1 = r2 = r, in which case L = h, so that
A = π(r1 + r2)L = 2πrh.

C14S05.051: First we compute the mass and moments of the rectangle (we assume that it has unit density):

m =
∫ a

−a

∫ b

0

1 dy dx =
∫ a

−a
b dx = 2ab;

My =
∫ a

−a

∫ b

0

x dy dx =
∫ a

−a
bx dx =

[
1
2
bx2

]a
−a

= 0;

Mx =
∫ a

−a

∫ b

0

y dy dx =
∫ a

−a

1
2
b2 dx = ab2.

Next we compute the mass and moments of the semicircle. Note that its curved boundary has equation
y = b +

√
a2 − x2 = f(x). Because we have assumed unit density, its mass is m = 1

2 πa
2. By symmetry,

My = 0. And

Mx =
∫ a

−a

∫ f(x)

b

y dy dx =
∫ a

−a

[
1
2

(
b+

√
a2 − x2

)2
− 1

2
b2

]
dx

=
∫ a

−a

[
b(a2 − x2)1/2 +

1
2

(a2 − x2)
]
dx = b

∫ a

−a
(a2 − x2)1/2 dx+

[
1
2 a

2x− 1
6
x3

]a
−a

= b · πa
2

2
+ a3 − 1

3
a3 =

3πa2b+ 4a3

6
.

Moments, like masses, are additive. Thus we find the mass and moments for the entire lamina by adding
those of the rectangle and semicircle:

m =
4ab+ πa2

2
, My = 0, and Mx =

6ab2 + 3πa2b+ 4a3

6
.

Therefore x = 0 and

y =
6ab2 + 3πa2b+ 4a3

6
· 2
4ab+ πa2

=
6b2 + 3πab+ 4a2

12b+ 3πa
.

Finally, we apply the first theorem of Pappus to find the volume of the solid generated by rotation of the
lamina around the x-axis:

V = 2πy · 4ab+ πa2

2
= π · 6b

2 + 3πab+ 4a2

12b+ 3πa
· (4ab+ πa2) =

πa

3
· (6b2 + 3πab+ 4a2).

To check the answer, note that it has the correct domensions of volume and that in the extreme case b = 0,
it becomes 4

3 πa
3, the correct formula for the volume of a sphere of radius a.

C14S05.052: The area of the region is
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A =
∫ h

0

∫ √
2py

0

1 dx dy =
∫ h

0

√
2py dy =

[
2
3
y3/2

√
2p

]h
0

=
2
3
h3/2

√
2p =

2
3
rh

(the last equality follows from the substitution of
r2

2h
for p). The moments are

My =
∫ h

0

∫ √
2py

0

x dx dy =
∫ h

0

py dy =
h2p

2
=

r2h

4
and

Mx =
∫ h

0

∫ √
2py

0

y dx dy =
∫ h

0

y3/2
√

2p dy =
2
5
h5/2

√
2p =

2
5
rh2.

Therefore the centroid of the region is

(x, y) =
(

3
8
r,

3
5
h

)
.

By the first theorem of Pappus, the volume of the paraboloid generated by rotating this region around the
y-axis is therefore

V = 2πx ·A = 2π · 3
8
r · 2

3
rh =

1
2
πr2h.

C14S05.053: The plate is a rectangle of area ab, area density δ, and mass m, and hence m = abδ. The
moment of inertia with respect to the y-axis is

Iy =
∫ a/2

−a/2

∫ b/2

−b/2
δx2 dy dx =

∫ a/2

−a/2
δbx2 dx =

[
1
3
δbx3

]a/2
−a/2

=
1
12

δa3b =
1
12

ma2.

By symmetry or by a very similar computation Ix = 1
12mb2. So, by the comment following Eq. (6) of the

text,

I0 = Ix + Iy =
1
12

m(a2 + b2).

C14S05.054: Note that the moments Mx and My are both zero because (x, y) = (0, 0). Therefore the
moment of inertia of the region R with respect to the line perpendicular to the xy-plane at the point (x0, y0)
is

I =
∫∫

R

[
(x− x0)2 + (y − y0)2

]
· δ dA

=
∫∫

R

(x2 + y2) · δ dA− 2
∫∫

R

(x0x+ y0y) · δ dA+
∫∫

R

(x2
0 + y2

0) · δ dA

= I0 − 2x0δ

∫∫
R

x dA− 2y0δ

∫∫
R

y dA+ (x2
0 + y2

0)
∫∫

R

δ dA

= I0 − 2x0δMy − 2y0δMx + (x2
0 + y2

0)m = I0 +m(x2
0 + y2

0).
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C14S05.055: Suppose that the plane lamina L is the union of the two nonoverlapping laminae R and S.
Let IL, IR, and IS denote the polar moments of inertia of L, R, and S, respectively. Let δ(x, y) denote
the density of L at the point (x, y). Then

IL =
∫∫

L

(x2 + y2)δ(x, y) dA =
∫∫

R

(x2 + y2)δ(x, y) dA+
∫∫

S

(x2 + y2)δ(x, y) dA = IR + IS .

Next, let I1 denote the polar moment of inertia of the lower rectangle in Fig. 14.5.25 and let I2 denote the
polar moment of inertia of the upper rectangle. Then

I1 =
∫ 1

−1

∫ 3

0

(x2 + y2) · k dy dx = k

∫ 1

−1

(3x2 + 9) dx = k

[
x3 + 9x

]1

−1

= 20k;

I2 =
∫ 4

−4

∫ 4

3

(x2 + y2) · k dy dx = k

∫ 4

−4

[
x2y +

1
3
y3

]4

3

dx = k

∫ 4

−4

(
x2 +

37
3

)
dx

= k

[
1
3
x3 +

37
3
x

]4

−4

= k ·
(

128
3

+
296
3

)
=

424
3

k.

Thus, by the first result in this solution, the polar moment of inertia of the T-shaped lamina is

I0 = I1 + I2 =
484
3

k.

C14S05.056: Let k denote the [constant] density of the racquet. The area of the racquet is

A =
∫ π/4

θ=−π/4

1
2
r2 dθ =

∫ π/4

−π/4

1
2

cos 2θ dθ =
[

1
4

sin 2θ
]π/4
−π/4

=
1
2
,

and hence its mass is m = 1
2 k. Next we compute the moment of inertia I of the racquet with respect to the

line x = −1:

I = 2
∫ π/4

0

∫ √
cos 2θ

0

kr(1 + r cos θ)2 dr dθ = k

∫ π/4

0

[
r2 +

4
3
r3 cos θ +

1
2
r4 cos2 θ

]√
cos 2θ

0

dθ = J1 + J2 + J3

where

J1 = k

∫ π/4

0

cos 2θ dθ = k ·
[

1
2

sin 2θ
]π/4
0

=
1
2
k,

J2 = k

∫ π/4

0

1
2

cos2 θ cos2 2θ dθ =
k

96

[
12θ + 9 sin 2θ + 3 sin 4θ + sin 6θ

]π/4
0

=
k

96
(3π + 8),

and

J3 =
4k
3

∫ π/4

0

(cos 2θ)3/2 cos θ dθ.

To evaluate J3 using Mathematica 3.0, the command

Integrate[ (4∗k/3)∗(Cos[2∗t])∧(3/2)∗Cos[t], t]
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produces the antiderivative

4k
3
·
[

3 arcsin(
√

2 sin t)
8
√

2
+
√

cos 2t
(

1
4

sin t+
1
8

sin 3t
)

Then we evaluate the antiderivative at the limits of integration:

(% /. t → Pi/4) - (% /. t → 0)

kπ

4
√

2

To evaluate J3 by hand, note that

J3 =
4k
3

∫ π/4

0

(1− 2 sin2 θ)3/2 cos θ dθ.

The substitution u = arcsin
(√

2 sin θ
)

then yields

sinu =
√

2 sin θ; sin2 u = 2 sin2 θ; 1− 2 sin2 θ = 1− sin2 u = cos2 u.

Moreover, cosu du =
√

2 cos θ dθ, and therefore

cos θ dθ =
1√
2

cosu du.

These substitutions yield

J3 =
4k
3

∫ π/2

u=0

(cos3 u) · cosu√
2

du =
2k
√

2
3

∫ π/2

0

(
1 + cos 2u

2

)2

du

=
2k
√

2
3
· 1
4

∫ π/2

0

(
1 + 2 cos 2u+

1 + cos 4u
2

)
du

=
k
√

2
6
·
[

3
2
u+ sin 2u+

1
8

sin 4u
]π/2
0

=
k
√

2
6
· 3
2
· π

2
=

πk
√

2
8

.

Therefore

I = J1 + J2 + J3 =
k

96

(
56 + 3π + 12π

√
2

)
,

and hence the radius of gyration of the racquet with respect to the line x = −1 is

x̂ =

√
Iy
m

=

√
56 + 3π + 12π

√
2

48
≈ 1.5728117948615531.
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The coordinates of the “sweet spot” are thus approximately (0.573, 0); this point is marked with a bullet in
the following sketch of the racquet.

C14S05.057: The mass and moments are

m =
∫ π

0

∫ 2 sin θ

0

r2 sin θ dr dθ =
∫ π

0

8
3

sin4 θ dθ =
1
12

[
12θ − 8 sin 2θ + sin 4θ

]π
0

= π;

My =
∫ π

0

∫ 2 sin θ

0

r3 sin θ cos θ dr dθ =
∫ π

0

4 sin5 θ cos θ dθ =
[

2
3

sin6 θ

]π
0

= 0;

Mx =
∫ π

0

∫ 2 sin θ

0

r3 sin2 θ dr dθ =
∫ π

0

4 sin6 θ dθ =
1
48

[
60θ − 45 sin 2θ + 9 sin 4θ − sin 6θ

]π
0

=
5
4
π.

Therefore the centroid is at (x, y) =
(

0,
5
4

)
.

C14S05.058: The mass and moments are

m =
∫ π

0

∫ 2 sin θ

0

r3 sin θ dr dθ =
∫ π

0

4 sin5 θ dθ =
1
60

[
− 150 cos θ + 25 cos 3θ − 3 cos 5θ

]π
0

=
64
15

;

My =
∫ π

0

∫ 2 sin θ

0

r4 sin θ cos θ dr dθ =
∫ π

0

32
5

sin6 θ cos θ dθ ==
[

32
35

sin7 θ

]π
0

= 0;

Mx =
∫ π

0

∫ 2 sin θ

0

r4 sin2 θ dr dθ =
∫ π

0

32
5

sin7 θ dθ

=
1

350

[
− 1225 cos θ + 245 cos 3θ − 49 cos 5θ + 5 cos 7θ

]π
0

=
1024
175

.

Therefore the centroid is at the point (x, y) =
(

0,
48
35

)
.

C14S05.059: The mass and moments are
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m =
∫ π/2

0

∫ 2 cos θ

0

r2 cos θ dr dθ =
∫ π/2

0

8
3

cos4 θ dθ =
1
12

[
12θ + 8 sin 2θ + sin 4θ

]π/2
0

=
1
2
π;

My =
∫ π/2

0

∫ 2 cos θ

0

r3 cos2 θ dr dθ =
∫ π/2

0

4 cos6 θ dθ =
1
48

[
60θ + 45 sin 2θ + 9 sin 4θ + sin 6θ

]π/2
0

=
5
8
π;

Mx =
∫ π/2

0

∫ 2 cos θ

0

r3 sin θ cos θ dr dθ =
∫ π/2

0

4 sin θ cos5 θ dθ =
[
− 2

3
cos6 θ

]π/2
0

=
2
3
.

Therefore the centroid is located at (x, y) =
(

5
4
,

4
3π

)
.

C14S05.060: The mass and moments are

m =
∫ π/2

0

∫ 2 cos θ

0

r5 cos2 θ sin2 θ dr dθ =
∫ π/2

0

32
3

cos8 θ sin2 θ dθ

=
1

2880

[
840θ + 420 sin 2θ − 120 sin 4θ − 130 sin 6θ − 45 sin 8θ − 6 sin 10θ

]π/2
0

=
7
48

π;

My =
∫ π/2

0

∫ 2 cos θ

0

r6 cos3 θ sin2 θ dr dθ =
∫ π/2

0

128
7

cos10 θ sin2 θ dθ

=
1

6720

[
2520θ + 1440 sin 2θ − 225 sin 4θ − 400 sin 6θ − 195 sin 8θ − 48 sin 10θ − 5 sin 12θ

]π/2
0

=
3
16

π;

Mx =
∫ π/2

0

∫ 2 cos θ

0

r6 cos2 θ sin3 θ dr dθ =
∫ π/2

0

128
7

cos9 θ sin3 θ dθ

=
1

6720

[
−1080 cos 2θ − 405 cos 4θ + 20 cos 6θ + 90 cos 8θ + 36 cos 10θ + 5 cos 12θ

]π/2
0

=
32
105

.

Hence the centroid is located at the point (x, y) =
(

9
7
,

512
245π

)
≈ (1.2857142857, 0.6652027009).
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Section 14.6

Note: For some triple integrals, there are six possible orders of integration of the corresponding iterated
integrals; for many triple integrals, there are two. To save space, in this section we do not show all possibilities,
but only the one that seems most natural.

C14S06.001: The value of the triple integral is

I =
∫ 1

z=0

∫ 3

y=0

∫ 2

x=0

(x+ y + z) dx dy dz =
∫ 1

z=0

∫ 3

y=0

[
1
2
x2 + xy + xz

]2

x=0

dy dz

=
∫ 1

z=0

∫ 3

y=0

(2 + 2y + 2z) dy dz =
∫ 1

z=0

[
2y + y2 + 2yz

]3

y=0

dz =
∫ 1

0

(15 + 6z) dz =
[
15z + 3z2

]1

0

= 18.

C14S06.002: The value of the triple integral is

J =
∫ π

z=0

∫ π

y=0

∫ π

x=0

xy sin z dx dy dz =
∫ π

0

∫ π

0

1
2
π2y sin z dy dz =

∫ π

0

1
4
π4 sin z dz

=
[
−1

4
π4 cos z

]π
0

=
1
2
π4 ≈ 48.7045455170012186.

C14S06.003: The value of the triple integral is

K =
∫ 6

z=−2

∫ 2

y=0

∫ 3

x=−1

xyz dx dy dz =
∫ 6

z=−2

∫ 2

y=0

[
1
2
x2yz

]3

x=−1

dy dz =
∫ 6

z=−2

∫ 2

y=0

4yz dy dz

=
∫ 6

z=−2

[
2y2z

]2

y=0

dz =
∫ 6

z=−2

8z dz =
[
4z2

]6

z=−2

= 128.

C14S06.004: The value of the triple integral is

I =
∫ 6

z=−2

∫ 2

y=0

∫ 3

x=−1

(x+ y + z) dx dy dz =
∫ 6

z=−2

∫ 2

y=0

[
1
2
x2 + xy + xz

]3

x=−1

dy dz

=
∫ 6

z=−2

∫ 2

y=0

(4 + 4y + 4z) dy dz =
∫ 6

z=−2

[
2y2 + 4y + 4yz

]2

y=0

dz =
∫ 6

z=−2

(16 + 8z) dz

=
[
16z + 4z2

]6

z=−2

= 256.

C14S06.005: The value of the triple integral is

J =
∫ 1

x=0

∫ 1−x

y=0

∫ 1−x−y

z=0

x2 dz dy dx =
∫ 1

x=0

∫ 1−x

y=0

[
x2z

]1−x−y

z=0

dy dx =
∫ 1

x=0

∫ 1−x

y=0

(x2 − x3 − x2y) dy dx

=
∫ 1

x=0

[
x2y − x3y − 1

2
x2y2

]1−x

y=0

dx =
∫ 1

0

(
1
2
x2 − x3 +

1
2
x4

)
dx =

[
1
6
x3 − 1

4
x4 +

1
10

x5

]1

0

=
1
60
.
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C14S06.006: The value of the triple integral is

K =
∫ 3

0

∫ (6−2x)/3

0

∫ 6−2x−3y

0

(2x+ 3y) dz dy dx =
∫ 3

0

∫ (6−2x)/3

0

[
2xz + 3yz

]6−2x−3y

0

dy dx

=
∫ 3

0

∫ (6−2x)/3

0

(12x− 4x2 + 18y − 12xy − 9y2) dy dx

=
∫ 3

0

[
12xy − 4x2y + 9y2 − 6xy2 − 3y3

](6−2x)/3

0

dx =
∫ 3

0

(
12− 4x2 +

8
9
x3

)
dx

=
[
12x− 4

3
x3 +

2
9
x4

]3

0

= 18.

C14S06.007: The value of the triple integral is

I =
∫ 0

x=−1

∫ 2

y=0

∫ 1−x2

z=0

xyz dz dy dx =
∫ 0

x=−1

∫ 2

y=0

[
1
2
xyz2

]1−x2

z=0

dy dx

=
∫ 0

x=−1

∫ 2

y=0

(
1
2
xy − x3y +

1
2
x5y

)
dy dx =

∫ 0

x=−1

[
1
4
xy2 − 1

2
x3y2 +

1
4
x5y2

]2

y=0

dx

=
∫ 0

x=−1

(x− 2x3 + x5) dx =
1
6

[
3x2 − 3x4 + x6

]0

x=−1

= − 1
6
.

C14S06.008: The value of the triple integral is

J =
∫ 1

x=−1

∫ 2

y=−2

∫ 4−y2

z=0

(2y + z) dz dy dx =
∫ 1

−1

∫ 2

−2

[
2yz +

1
2
z2

]4−y2

0

dy dx

=
∫ 1

−1

∫ 2

−2

(
8 + 8y − 4y2 − 2y3 +

1
2
y4

)
dy dx =

∫ 1

−1

[
8y + 4y2 − 4

3
y3 − 1

2
y4 +

1
10

y5

]2

−2

dx

=
∫ 1

−1

256
15

dx =
512
15
≈ 34.1333333333333333.

C14S06.009: The value of this triple integral is

K =
∫ 1

−1

∫ 3

0

∫ 2−x2

x2
(x+ y) dz dy dx =

∫ 1

−1

∫ 3

0

[
xy + xz

]2−x2

x2

dy dx

=
∫ 1

−1

∫ 3

0

(2x− 2x3 + 2y − 2x2y) dy dx =
∫ 1

−1

[
2xy − 2x3y + y2 − x2y2

]3

0

dx

=
∫ 1

−1

(9 + 6x− 9x2 − 6x3) dx =
[
9x+ 3x2 − 3x3 − 3

2
x4

]1

−1

= 12.

C14S06.010: The value of this triple integral is
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I =
∫ 1

−1

∫ 2

−2

∫ 8−y2

y2
z dz dy dx =

∫ 1

−1

∫ 2

−2

[
1
2
z2

]8−y2

y2

dy dx =
∫ 1

−1

∫ 2

−2

(32− 8y2) dy dx

=
∫ 2

−1

[
32y − 8

3
y3

]2

−2

dx =
∫ 1

−1

256
3

dx =
512
3
≈ 170.66666666666666667.

C14S06.011: The solid resembles the tetrahedron shown in Fig. 14.6.4 of the text. We don’t have enough
memory to transfer a Mathematica-generated graphic from Adobe Illustrator to this document, but you can
see it if you execute the Mathematica 3.0 command

ParametricPlot3D[ {{x, 0, 6 - 2∗x - 3∗y}, {x, y, 6 - 2∗x - 3∗y}},

{x, 0, 3}, {y, 0, 2}, PlotRange → {0, 3}, {0, 2}, {0, 6}},

AspectRatio → 1.0, ViewPoint → {3.5, -1.6, 3.0},

LightSources → {{{1., 0., 1.}, RGBColor[1., 0., 0.]},

{{1., 1., 1.}, RGBColor[0., 1., 0.]}, {{0., 1., 1.}, RGBColor[1., 0., 1.]}} ];

If you change the Viewpoint parameters, you will see that in an effort to conserve memory, we plotted only
the diagonal face of the tetrahedron and the face that lies in the xz-plane. The volume of this tetrahedron
is given by

V =
∫ 3

x=0

∫ (6−2x)/3

y=0

∫ 6−2x−3y

z=0

1 dz dy dx =
∫ 3

x=0

∫ (6−2x)/3

y=0

(6− 2x− 3y) dy dx

=
∫ 3

x=0

[
6y − 2xy − 3

2
y2

](6−2x)/3

y=0

dx =
∫ 3

x=0

(
6− 4x+

2
3
x2

)
dx =

[
6x− 2x2 +

2
9
x3

]3

0

= 6.

C14S06.012: The volume is

V =
∫ 2

−2

∫ 4

x2

∫ y

0

1 dz dy dx =
∫ 2

−2

∫ 4

x2
y dy dx =

∫ 2

−2

[
1
2
y2

]4

x2

dx

=
∫ 2

−2

(
8− 1

2
x4

)
dx =

[
8x− 1

10
x5

]2

−2

=
128
5

= 25.6.

C14S06.013: The view of the figure next, on the left, was generated with the Mathematica 3.0 command

ParametricPlot3D[ {{u, 0, v}, {u, 4 - u∗u, v}, {u, v, 4 - v}},

{u, -2, 2}, {v, 0, 4}, AspectRatio → Automatic,
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PlotRange → {{-2.2, 2.2}, {-0.2, 4.2}, { -0.2, 4.2}}, ViewPoint → {4, 4, 5} ];

Change the ViewPoint command parameters to {4, -4, 7} to see the figure from another angle (this view
is shown above, on the right). The volume of the solid is

V =
∫ 2

x=−2

∫ 4−x2

y=0

∫ 4−y

z=0

1 dz dy dx =
∫ 2

x=−2

∫ 4−x2

y=0

(4− y) dy dx =
∫ 2

x=−2

[
4y − y2

]4−x2

y=0

dx

=
∫ 2

−2

(
8− 1

2
x4

)
dx =

[
8x− 1

10
x5

]2

−2

=
128
5

= 25.6.

C14S06.014: The volume is

V =
∫ 1

0

∫ 1−x

0

∫ x2+y2

0

1 dz dy dx =
∫ 1

0

∫ 1−x

0

(x2 + y2) dy dx =
∫ 1

0

[
x2y +

1
3
y3

]1−x

0

dx

=
∫ 1

0

1
3

(1− 3x+ 6x2 − 4x3) dx =
1
6

[
2x− 3x2 + 4x3 − 2x4

]1

0

=
1
6
.

C14S06.015: It’s not easy to get a clear three-dimensional plot of this solid. We got fair results with the
Mathematica 3.0 command

ParametricPlot3D[ {{u, u∗u, v}, {u*u, u, v}, {u*Sqrt[10], v, 10 - u∗u - v∗v}},

{u, 0, 1}, {v, 0, 10}, AspectRatio → 0.8,

PlotRange → {{0, Sqrt[10]}, {0, Sqrt[10]}, {0, 10}}, ViewPoint → {6, -4, 12} ];

If you have the time and computer memory, experiment with changing the AspectRatio and ViewPoint

parameters until you get a clear view of the solid. Its volume is
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V =
∫ 1

x=0

∫ √
x

y=x2

∫ 10−x2−y2

z=0

1 dz dy dx =
∫ 1

x=0

∫ √
x

y=x2
(10− x2 − y2) dy dx

=
∫ 1

x=0

[
1
3

(30y − 3x2y − y3)
]y=√

x

y=x2

dx =
∫ 1

0

(
10x1/2 − 1

3
x3/2 − 10x2 − x5/2 + x4 +

1
3
x6

)
dx

=
[

20
3
x3/2 − 2

15
x5/2 − 10

3
x3 − 2

7
x7/2 +

1
5
x5 +

1
21

x7

]1

0

=
332
105
≈ 3.1619047619047619.

C14S06.016: The volume is

V =
∫ −1

−3

∫ 2

−2

∫ 8−z2

z2
1 dx dz dy =

∫ −1

−3

∫ 2

−2

(8− 2z2) dz dy =
∫ −1

−3

[
8z − 2

3
z3

]2

−2

dy

=
∫ −1

−3

64
3
dy =

128
3
≈ 42.6666666666666667.

C14S06.017: The volume is

V =
∫ 2

x=−2

∫ 4

z=x2

∫ 4−z

y=0

1 dy dz dx =
∫ 2

x=−2

∫ 4

z=x2
(4− z) dz dx =

∫ 2

x=−2

[
4z − 1

2
z2

]4

z=x2

dx

=
∫ 2

x=−2

(
8− 4x2 +

1
2
x4

)
dx =

[
8x− 4

3
x3 +

1
10

x5

]2

−2

=
256
15
≈ 17.0666666666666667.

C14S06.018: The volume is

V =
∫ 1

y=−1

∫ 1−y2

z=y2−1

∫ 1−z

x=0

1 dx dz dy =
∫ 1

y=−1

∫ 1−y2

z=y2−1

(1− z) dz dy =
∫ 1

y=−1

[
z − 1

2
z2

]1−y2

y2−1

dy

=
∫ 1

y=−1

(2− 2y2) dy =
[
2y − 2

3
y3

]1

−1

=
8
3
≈ 2.6666666666666667.

C14S06.019: The volume is

V =
∫ 1

y=0

∫ √
y

z=y2

∫ 2−y−z

x=0

1 dx dz dy =
∫ 1

y=0

∫ √
y

z=y2
(2− y − z) dz dy =

∫ 1

y=0

[
2z − yz − 1

2
z2

]√
y

z=y2

dy

=
∫ 1

y=0

1
2

(4y1/2 − y − 2y3/2 − 4y2 + 2y3 + y4) dy

=
1
60

[
80y3/2 − 15y2 − 24y5/2 − 40y3 + 15y4 + 6y5

]1

0

=
11
30
≈ 0.3666666666666667.

C14S06.020: The volume is
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V =
∫ 2

0

∫ 2−x

0

∫ 4−x2−z2

0

1 dy dz dx =
∫ 2

0

∫ 2−x

0

(4− x2 − z2) dz dx =
∫ 2

0

[
4z − x2z − 1

3
z3

]2−x

0

dx

=
∫ 2

0

1
3

(16− 12x2 + 4x3) dx =
1
3

[
16x− 4x3 + x4

]2

0

=
16
3
≈ 5.3333333333333333.

C14S06.021: Because the solid has constant density δ = 1, its mass is

m =
∫ 2

x=−2

∫ 4

y=x2

∫ y

z=0

1 dz dy dx =
∫ 2

x=−2

∫ 4

y=x2
y dy dx =

∫ 2

x=−2

[
1
2
y2

]4

y=x2

dx

=
∫ 2

x=−2

(
8− 1

2
x4

)
dx =

[
8x− 1

10
x5

]2

−2

=
128
5
.

Its moments are

Myz =
∫ 2

x=−2

∫ 4

y=x2

∫ y

z=0

x dz dy dx =
∫ 2

x=−2

∫ 4

y=x2
xy dy dx =

∫ 2

x=−2

[
1
2
xy2

]4

y=x2

dx

=
∫ 2

x=−2

(
8x− 1

2
x5

)
dx =

[
4x2 − 1

12
x6

]2

−2

= 0,

Mxz =
∫ 2

x=−2

∫ 4

y=x2

∫ y

z=0

y dz dy dz =
∫ 2

x=−2

∫ 4

y=x2

1
2
y2 dy dx =

∫ 2

x=−2

[
1
3
y3

]4

y=x2

dx

=
∫ 2

x=−2

(
64
3
− 1

3
x6

)
dx =

[
64
3
x− 1

21
x7

]2

−2

=
512
7
,

Mxy =
∫ 2

x=−2

∫ 4

y=x2

∫ y

z=0

z dz dy dx =
∫ 2

x=−2

∫ 4

y=x2

[
1
2
z2

]y
z=0

dy dx

=
1
2

∫ 2

x=−2

∫ 4

y=x2
y2 dy dx =

1
2

∫ 2

x=−2

[
1
3
y3

]4

y=x2

dx =
∫ 2

x=−2

(
32
3
− 1

6
x6

)
dx

=
[

32
3
x− 1

42
x7

]2

−2

=
256
7
.

Therefore the centroid of the solid is located at the point (x, y, z) =
(

0,
20
7
,

10
7

)
.

C14S06.022: Because the hemispherical solid has unit density δ = 1, its mass is m = 2
3 πR

3. By symmetry,
x = y = 0. It remains only to compute the moment Mxy. Let D denote the circular disk x2 + y2 � R2,
z = 0. Then

Mxy =
∫∫

D

(∫ √R2−x2−y2

z=0

z dz

)
dA =

∫∫
D

[
1
2
z2

]√R2−x2−y2

z=0

dA =
∫∫

D

1
2

(R2 − x2 − y2) dA

=
∫ 2π

θ=0

∫ R

r=0

1
2

(R2 − r2) · r dr dθ =
∫ 2π

θ=0

[
1
4
R2r2 − 1

8
r4

]R
r=0

dθ = 2π · 1
8
R4 =

1
4
πR4.
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Therefore the centroid is located at the point (x, y, z) =
(

0, 0,
3
8
R

)
.

C14S06.023: Because the solid has unit density δ = 1, its mass and moments are

m =
∫ 2

x=−2

∫ 4

z=x2

∫ 4−z

y=0

1 dy dz dx =
∫ 2

x=−2

∫ 4

z=x2
(4− z) dz dx =

∫ 2

x=−2

[
4z − 1

2
z2

]4

z=x2

dx

=
∫ 2

−2

(
8− 4x2 +

1
2
x4

)
dx =

[
8x− 4

3
x3 +

1
10

x5

]2

−2

=
256
15

;

Myz =
∫ 2

x=−2

∫ 4

z=x2

∫ 4−z

y=0

x dy dz dx =
∫ 2

x=−2

∫ 4

z=x2
(4x− xz) dz dx =

∫ 2

x=−2

[
4xz − 1

2
xz2

]4

z=x2

dx

=
∫ 2

−2

(
8x− 4x3 +

1
2
x5

)
dx =

[
4x2 − x4 +

1
12

x6

]2

=2

= 0;

Mxz =
∫ 2

x=−2

∫ 4

z=x2

∫ 4−z

y=0

y dy dz dx =
∫ 2

x=−2

∫ 4

z=x2

1
2

(4− z)2 dz dx =
∫ 2

x=−2

[
8z − 2z2 +

1
6
z4

]4

z=x2

dx

=
∫ 2

−2

(
32
3
− 8x2 + 2x4 − 1

6
x6

)
dx =

[
32
3
x− 8

3
x3 +

2
5
x5 − 1

42
x7

]2

−2

=
2048
105

;

Mxy =
∫ 2

x=−2

∫ 4

z=x2

∫ 4−z

y=0

z dy dz dx =
∫ 2

x=−2

∫ 4

z=x2
(4z − z2) dz dx =

∫ 2

x=−2

[
2z2 − 1

3
z3

]4

z=x2

dx

=
∫ 2

−2

(
32
3
− 2x4 +

1
3
x6

)
dx =

[
32
3
x− 2

5
x5 +

1
21

x7

]2

−2

=
1024
35

.

Therefore the centroid of the solid is located at the point (x, y, z) =
(

0,
8
7
,

12
7

)
.

C14S06.024: Because the solid has unit density δ = 1, its mass is

m =
∫ 1

−1

∫ 1

−1

∫ 1−x2

0

1 dz dy dx =
∫ 1

−1

∫ 1

−1

(1− x2) dy dx =
∫ 1

−1

(2− 2x2) dx =
[
2x− 2

3
x3

]1

−1

=
8
3
.

By symmetry x = y = 0, and

Mxy =
∫ 1

−1

∫ 1

−1

∫ 1−x2

0

z dz dy dx =
∫ 1

−1

∫ 1

−1

1
2

(1− x2)2 dy dx =
∫ 1

−1

(1− x2)2 dx

=
[
x− 2

3
x3 +

1
5
x5

]1

−1

=
16
15
.

Therefore the centroid of the solid is located at the point (x, y, z) =
(

0, 0,
2
5

)
.

C14S06.025: Because the solid has unit density δ = 1, its mass and moments are given by
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m =
∫ π/2

x=−π/2

∫ cos x

z=0

∫ 1−z

y=0

1 dy dz dx =
∫ π/2

x=−π/2

[
z − 1

2
z2

]cos x

z=0

dx

=
∫ π/2

−π/2

(
cosx− 1

2
cos2 x

)
dx =

∫ π/2

0

(2 cosx− cos2 x) dx =
1
4

[
−2x+ 8 sinx− sin 2x

]π/2
0

=
8− π

4
;

Myz = 0 (by symmetry);

Mxz =
∫ π/2

x=−π/2

∫ cos x

z=0

∫ 1−z

y=0

y dy dz dx =
∫ π/2

x=−π/2

∫ cos x

z=0

1
2

(1− z)2 dz dx

=
∫ π/2

x=−π/2

[
1
2
z − 1

2
z2 +

1
6
z3

]cos x

z=0

dx =
∫ π/2

−π/2

(
1
2

cosx− 1
2

cos2 x+
1
6

cos3 x
)
dx

=
1
72

[
−18x+ 45 sinx− 9 sin 2x+ sin 3x

]π/2
−π/2

=
44− 9π

36
;

Mxy =
∫ π/2

x=−π/2

∫ cos x

z=0

∫ 1−z

y=0

z dy dz dx =
∫ π/2

x=−π/2

∫ cos x

z=0

(z − z2) dz dx =
∫ π/2

x=−π/2

[
1
2
z2 − 1

3
z3

]cos x

z=0

dx

=
∫ π/2

−π/2

(
1
2

cos2 x− 1
3

cos3 x
)
dx =

1
72

[
18x− 18 sinx+ 9 sin 2x− 2 sin 3x

]π/2
−π/2

=
9π − 16

36
.

Therefore the centroid of the solid is located at the point

(x, y, z) =
(

0,
44− 9π
72− 9π

,
9π − 16
72− 9π

)
≈ (0, 0.359643831963, 0.280712336074).

C14S06.026: (See Problem 12.) The moment of inertia of the solid (with density δ = 1) with respect to
the z-axis is

Iz =
∫ 2

−2

∫ 4

x2

∫ y

0

(x2 + y2) dz dy dx =
∫ 2

−2

∫ 4

x2
(x2y + y3) dy dx =

∫ 2

−2

[
1
2
x2y2 +

1
4
y4

]4

x2

dx

=
∫ 2

−2

(
648x2 − 1

2
x6 − 1

4
x8

)
dx =

[
64x+

8
3
x3 − 1

14
x7 − 1

36
x9

]2

−2

=
15872

63
≈ 251.936507936508.

C14S06.027: (See Problem 24.) The moment of inertia of the solid (with density δ = 1) with respect to
the y-axis is

Iy =
∫ 1

x=−1

∫ 1

y=−1

∫ 1−x2

z=0

(x2 + z2) dz dy dx =
∫ 1

x=−1

∫ 1

y=−1

[
x2z +

1
3
z3

]1−x2

z=0

dy dx

=
∫ 1

x=−1

∫ 1

−1

1
3

(1− x6) dy dx =
∫ 1

−1

2
3

(1− x6) dx =
[

2
3
x− 2

21
x7

]1

−1

=
8
7
.

C14S06.028: Given: The solid cylinder x2 + y2 � R2, 0 � z � H; we assume constant density δ rather
than constant density 1. Let D denote the base of the cylinder—the circular disk x2 + y2 � R2, z = 0. The
moment of inertia of the cylinder with respect to the z-axis is
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Iz =
∫∫

D

(∫ H

z=0

δ(x2 + y2) dz

)
dA = δH

∫∫
D

(x2 + y2) dA = δH

∫ 2π

θ=0

∫ R

r=0

r3 dr dθ

= 2πδH
[

1
4
r4

]R
0

=
1
2
πδR4H.

Because the mass of the cylinder is M = δπR2H, the answer can also be expressed in the form

Iz =
1
2
MR2 = M ·

(
R√
2

)2

,

demonstrating that the answer has the correct dimensions—the product of mass and square of distance.
For a physical interpretation of the last equation, the cylinder behaves for purposes of angular acceleration
around the z-axis as if all its mass were concentrated at distance 1

2R
√

2 from the z-axis.

C14S06.029: With unit density δ = 1, the moment of inertia of the given tetrahedron with respect to the
z-axis is

Iz =
∫ 1

z=0

∫ 1−z

y=0

∫ 1−y−z

x=0

(x2 + y2) dx dy dz =
∫ 1

z=0

∫ 1−z

y=0

[
1
3
x3 + xy2

]1−y−z

x=0

dy dz

=
∫ 1

z=0

∫ 1−z

y=0

(
1
3
− y + 2y2 − 4

3
y3 − z + 2yz − 2y2z + z2 − yz2 − 1

3
z3

)
dy dz

=
∫ 1

z=0

[
−1

3
y4 +

2
3
y3(1− z)− 1

2
y2(1− z)2 +

1
3
y(1− z)3

]1−z

y=0

dz

=
∫ 1

0

1
6

(1− 4z + 6z2 − 4z3 + z4) dz =
1
30

[
5z − 10z2 + 10z3 − 5z4 + z5

]1

0

=
1
30
.

C14S06.030: Problem 54 of Section 14.5 provides an alternative method of solving this problem, one that
is frequently simpler. But we will solve it by direct methods. The moment of inertia of the given solid cube
of unit density with respect to the z-axis is

Iz =
∫ 1/2

z=−1/2

∫ 4

y=3

∫ 1/2

x=−1/2

(x2 + y2) dx dy dz =
∫ 1/2

z=−1/2

∫ 4

y=3

[
1
3
x3 + xy2

]1/2

−1/2

dy dz

=
∫ 1/2

z=−1/2

∫ 4

y=3

(
1
12

+ y2

)
dy dz =

∫ 1/2

−1/2

[
1
12

y +
1
3
y3

]4

3

dz =
∫ 1/2

−1/2

149
12

dz =
149
12
≈ 12.41666667.

C14S06.031: It should be clear that x = y = 0 by symmetry, but there is a slight suggestion in the wording
of the problem that we should prove this more rigorously. Hence we will compute the mass and all three
moments. Assuming unit density δ = 1, we have

m =
∫ √

h

x=−
√
h

∫ √
h−x2

y=−
√
h−x2

∫ h

z=x2+y2
1 dz dy dx =

∫ √
h

x=−
√
h

∫ √
h−x2

y=−
√
h−x2

(h− x2 − y2) dy dx

=
∫ √

h

x=−
√
h

[
hy − x2y − 1

3
y3

]√
h−x2

y=−
√
h−x2

dx =
∫ √

h

x=−
√
h

4
3

(h− x2)3/2 dx.
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The substitution x =
√
h sin θ, dx =

√
h cos θ dθ then yields

m =
∫ π/2

θ=−π/2

4
3
h2 cos4 θ dθ =

1
24

h2

[
12θ + 8 sin 2θ + sin 4θ

]π/2
−π/2

=
1
2
πh2.

Next,

Myz =
∫ √

h

x=−
√
h

∫ √
h−x2

y=−
√
h−x2

∫ h

z=x2+y2
x dz dy dx =

∫ √
h

x=−
√
h

∫ √
h−x2

y=−
√
h−x2

(hx− x3 − xy2) dy dx

=
∫ √

h

x=−
√
h

[
hxy − x3y − 1

3
xy3

]√
h−x2

y=−
√
h−x2

dx =
∫ √

h

−
√
h

4
3
x(h− x2)3/2 dx

=
[
− 4

15
(h− x2)5/2

]√
h

−
√
h

= 0;

Mxz =
∫ √

h

x=−
√
h

∫ √
h−x2

y=−
√
h−x2

∫ h

z=x2+y2
y dz dy dx =

∫ √
h

x=−
√
h

∫ √
h−x2

y=−
√
h−x2

(hy − x2y − y3) dy dx

=
∫ √

h

x=−
√
h

[
1
2
hy2 − 1

2
x2y2 − 1

4
y4

]√
h−x2

y=−
√
h−x2

dx =
∫ √

h

−
√
h

0 dx = 0;

Mxy =
∫ √

h

x=−
√
h

∫ √
h−x2

y=−
√
h−x2

∫ h

z=x2+y2
z dz dy dx =

∫ √
h

x=−
√
h

∫ √
h−x2

y=−
√
h−x2

(
1
2
h2 − 1

2
(x2 + y2)2

)
dy dx.

Now rewrite the last integral in polar coordinates. Then

Mxy =
∫ 2π

θ=0

∫ √
h

r=0

1
2

(h2 − r4) · r dr dθ =
∫ 2π

θ=0

[
1
4
h2r2 − 1

12
r6

]√
h

r=0

dθ = 2π · 1
6
h3 =

1
3
πh3.

Thus the centroid of the parabolic segment is located at the point

(x, y, z) =
(

0, 0,
2
3
h

)
,

and therefore the centroid is on the axis of symmetry of the segment, two-thirds of the way from the vertex
(0, 0, 0) to the base.

C14S06.032: We assume that the cone has unit density δ = 1, that its vertex is at the origin, that its axis
of symmetry lies on the nonnegative z-axis, and that it has radius R and height H. Then the equation of
its base is z = H and the equation of its curved side is

z =
H

R

√
x2 + y2 .

Let D denote the circular disk x2 + y2 � R2 in the xy-plane. Then the mass of the cone is

m =
∫∫

D

(∫ H

z=(H/R)
√
x2+y2

1 dz

)
dA =

∫∫
D

(
H − H

R

√
x2 + y2

)
dA.

Rewrite the double integral as an iterated integral in polar coordinates. Thus
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m =
∫ 2π

θ=0

∫ R

r=0

(
H − H

R
r

)
· r dr dθ = 2π

[
H

2
r2 − H

3R
r3

]R
0

=
1
3
πR2H.

Next, we could argue that the centroid lies on the axis of the cone by symmetry, but there is an implication
in the statement of the problem that this should be proved rigorously. Hence we compute all three moments.
First,

Myz =
∫∫

D

(∫ H

z=(H/R)
√
x2+y2

x dz

)
dA =

∫∫
D

(
Hx− H

R
x
√
x2 + y2

)
dA.

Rewrite the double integral as an iterated integral in polar coordinates (don’t forget to replace x with
r cos θ). Thus

Myz =
∫ 2π

θ=0

∫ R

r=0

(
Hr cos θ − H

R
r2 cos θ

)
· r dr dθ =

∫ 2π

θ=0

[
1
3
Hr3 cos θ − H

4R
r4 cos θ

]R
r=0

dθ

=
∫ 2π

0

1
12

R3H cos θ dθ =
1
12

[
R3H sin θ

]2π

0

= 0.

Also,

Mxz =
∫∫

D

(∫ H

z=(H/R)
√
x2+y2

y dz

)
dA =

∫∫
D

(
Hy − H

R
y
√
x2 + y2

)
dA.

As before, rewrite the double integral as an iterated integral in polar coordinates (and don’t forget the
substitution of r sin θ for y). So

Mxz =
∫ 2π

θ=0

∫ R

r=0

(
Hr sin θ − H

R
r2 sin θ

)
r dθ =

∫ 2π

θ=0

[
1
3
Hr3 sin θ − H

4R
r4 sin θ

]R
r=0

dθ

=
∫ 2π

0

1
12

R3H sin θ dθ =
[
− 1

12
R3H cos θ

]2π

0

= 0.

Finally,

Mxy =
∫∫

D

(∫ H

z=(H/R)
√
x2+y2

z dz

)
dA =

∫∫
D

(
1
2
H2 − H2

2R2
(x2 + y2)

)
dA.

As before, rewrite the double integral in polar form. Thus

Mxy =
∫ 2π

θ=0

∫ R

r=0

(
1
2
H2 − H2

2R2
r2

)
· r dr dθ = 2π ·

[
H2

4
r2 − H2

8R2
r4

]R
0

=
1
4
πR2H2.

Therefore the centroid of the uniform solid right circular cone is located at the point

(x, y, z) =
(

0, 0,
3
4
H

)
,

on the axis of the cone and three-fourths of the way from the vertex to the base.
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C14S06.033: Place the cube in the first octant with three of its faces in the coordinate planes, one vertex
at (0, 0, 0), and the opposite vertex at (a, a, a). With density δ = 1, its moment of inertia with respect to
the z-axis is

Iz =
∫ a

z=0

∫ a

y=0

∫ a

x=0

(x2 + y2) dx dy dz =
∫ a

0

∫ a

0

[
1
3
x3 + xy2

]a
0

dy dz =
∫ a

0

∫ a

0

(
1
3
a3 + ay2

)
dy dz

=
∫ a

0

[
1
3
a3y +

1
3
ay3

]a
0

dz =
∫ a

0

2
3
a4 dz = a · 2

3
a4 =

2
3
a5.

Because the mass of the cube is m = a3, we see that Iz = 2
3ma2, which is dimensionally correct.

C14S06.034: The density at P (x, y, z) is δ(x, y, z) = k(x2 + y2 + z2) where k is a positive constant. It
will not change the answer to assume that k = 1. Then the mass and moments of the cube are

m =
∫ a

0

∫ a

0

∫ a

0

(x2 + y2 + z2) dz dy dx =
∫ a

0

∫ a

0

(
1
3
a3 + ax2 + ay2

)
dy dx

=
∫ a

0

1
3

[
a3y + 3ax2y + ay3

]a
0

dx =
1
3

∫ a

0

(2a4 + 3a2x2) dx =
1
3

[
2a4x+ a2x3

]a
0

= a5;

Myz =
∫ a

0

∫ a

0

∫ a

0

(x3 + xy2 + xz2) dz dy dx =
∫ a

0

∫ a

0

(
1
3
a3x+ ax3 + axy2

)
dy dx

=
∫ a

0

1
3

[
a3xy + 3ax3y + axy3

]a
0

dx =
1
3

∫ a

0

(2a4x+ 3a2x3) dx =
1
3

[
a4x2 +

3
4
a2x4

]a
0

=
7
12

a6;

Mxz = Mxy =
7
12

a6 by symmetry.

Therefore the centroid of this cube is located at the point (x, y, z) =
(

7
12

a,
7
12

a,
7
12

a

)
.

C14S06.035: With density δ(x, y, z) = k(x2 + y2 + z2) at the point (x, y, z) (k is a positive constant),
the moment of inertia of the cube of Problem 34 with respect to the z-axis is

Iz =
∫ a

0

∫ a

0

∫ a

0

k(x2 + y2 + z2)(x2 + y2) dz dy dx

= k

∫ a

0

∫ a

0

[
x4z + 2x2y2z + y4z +

1
3
x2z3 +

1
3
y2z3

]a
0

dy dx

= k

∫ a

0

∫ a

0

(
1
3
a3x2 + ax4 +

1
3
a3y2 + 2ax2y2 + ay4

)
dy dx

= k

∫ a

0

[
1
3
a3x2y + ax4y +

1
9
a3y3 +

2
3
ax2y3 +

1
5
ay5

]a
0

dx

= k

∫ a

0

(
14
45

a6 + a4x2 + a2x4

)
dx = k

[
14
45

a6x+
1
3
a4x3 +

1
5
a2x5

]a
0

=
38
45

ka7.

C14S06.036: The density of the cube at the point (x, y, z) is δ(x, y, z) = kz where k is a positive
constant. Its mass and moments are
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m =
∫ 1

0

∫ 1

0

∫ 1

0

kz dz dy dx =
∫ 1

0

∫ 1

0

1
2
k dy dx = 1 · 1 · 1

2
k =

1
2
k;

Myz =
∫ 1

0

∫ 1

0

∫ 1

0

kxz dz dx dy =
∫ 1

0

∫ 1

0

1
2
kx dx dy =

∫ 1

0

1
4
k dy = 1 · 1

4
k =

1
4
k;

Mxz =
∫ 1

0

∫ 1

0

∫ 1

0

kyz dz dy dx =
∫ 1

0

∫ 1

0

1
2
ky dy dx =

∫ 1

0

1
4
k dx = 1 · 1

4
k =

1
4
k;

Mxy =
∫ 1

0

∫ 1

0

∫ 1

0

kz2 dz dy dx =
∫ 1

0

∫ 1

0

1
3
k dy dx = 1 · 1 · 1

3
k =

1
3
k.

Therefore its centroid is located at the point
(

1
2
,

1
2
,

2
3

)
.

C14S06.037: The moment of inertia of the cube of Problem 36 with respect to the z-axis is

Iz =
∫ 1

0

∫ 1

0

∫ 1

0

k(x2 + y2)z dz dy dx =
∫ 1

0

∫ 1

0

1
2
k(x2 + y2) dy dx

=
∫ 1

0

[
1
2
kx2y +

1
6
ky3

]1

0

dx =
∫ 1

0

(
1
2
kx2 +

1
6
k

)
dx = k ·

[
1
6
x3 +

1
6
x

]1

0

=
1
3
k.

C14S06.038: Assume that the sphere is centered at the origin, so that it consists of the points (x, y, z)
for which x2 + y2 + z2 � a2. Let D denote the circular disk x2 + y2 � a2 in the xy-plane. With constant
density δ, the moment of inertia of the sphere with respect to the z-axis is

Iz =
∫∫

D

(∫ √a2−x2−y2

z=−
√
a2−x2−y2

δ(x2 + y2) dz

)
dA =

∫∫
D

2δ(x2 + y2)
√
a2 − x2 − y2 dA.

Now rewrite the last double integral as an iterated integral in polar coordinates. The result:

Iz =
∫ 2π

θ=0

∫ a

r=0

2δr3(a2 − r2)1/2 dr dθ =
∫ 2π

θ=0

[
δ · 6r

4 − 2a2r2 − 4a4

15
· (a2 − r2)1/2

]a
r=0

dθ

=
∫ 2π

θ=0

4
15

δa5 dθ = 2π · 4
15

δa5 =
8
15

πδa5.

Because the mass of the sphere is m = 4
3 πδa

3, we see that Iz = 2
5ma2, which is dimensionally correct and

of plausible magnitude.

C14S06.039: With constant density δ = 1, the mass and moments are

m =
∫ 1

z=0

∫ √
1−z2

y=0

∫ √
1−z2

x=0

1 dx dy dz =
∫ 1

z=0

∫ √
1−z2

y=0

√
1− z2 dy dz

=
∫ 1

z=0

(1− z2) dz =
[
z − 1

3
z3

]1

0

=
2
3
;
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Myz =
∫ 1

z=0

∫ √
1−z2

y=0

∫ √
1−z2

x=0

x dx dy dz =
∫ 1

z=0

∫ √
1−z2

y=0

1
2

(1− z2) dy dz

=
∫ 1

z=0

1
2

(1− z2)3/2 dz =
[

5z − 2z3

16
· (1− z2)1/2 +

3
16

arcsin z
]1

0

=
3
32

π;

Mxz =
∫ 1

z=0

∫ √
1−z2

y=0

∫ √
1−z2

x=0

y dx dy dz =
∫ 1

z=0

∫ √
1−z2

y=0

y(1− z2)1/2 dy dz

=
∫ 1

z=0

1
2

(1− z2)3/2 dz =
[

5z − 2z3

16
· (1− z2)1/2 +

3
16

arcsin z
]1

0

=
3
32

π;

Mxy =
∫ 1

z=0

∫ √
1−z2

y=0

∫ √
1−z2

x=0

z dx dy dz =
∫ 1

z=0

∫ √
1−z2

y=0

z(1− z2)1/2 dy dz

=
∫ 1

z=0

(z − z3) dz =
[

1
2
z2 − 1

4
z4

]1

0

=
1
4
.

Therefore the centroid of the solid is located at the point
(

9
64

π,
9
64

π,
3
8

)
.

C14S06.040: Assuming constant density δ = 1, the moment of inertia of the solid of Problem 39 with
respect to the z-axis is

Iz =
∫ 1

z=0

∫ √
1−z2

y=0

∫ √
1−z2

x=0

(x2 + y2) dx dy dz =
∫ 1

z=0

∫ √
1−z2

y=0

[
1
3
x3 + xy2

]√
1−z2

x=0

dy dz

=
∫ 1

z=0

∫ √
1−z2

y=0

(
1
3

(1− z2)3/2 + y2(1− z2)1/2
)
dy dz

=
∫ 1

z=0

[
1
3
y(1− z2)3/2 +

1
3
y3(1− z2)1/2

]√
1−z2

y=0

dz =
∫ 1

z=0

[
1
3
y(1 + y2 − z2)(1− z2)1/2

]√
1−z2

y=0

dz

=
∫ 1

0

2
3

(1− z2)2 dz =
2
45

[
15z − 10z3 + 3z5

]1

0

=
16
45
.

C14S06.041: The given solid projects onto the circular disk D with radius 2 and center (0, 0) in the
xy-plane. Hence the volume of the solid is

V =
∫∫

D

(∫ 12−x2−2y2

z=2x2+y2
1 dz

)
dA =

∫∫
D

(12− 3x2 − 3y2) dA.

Rewrite the last double integral as an iterated integral in polar coordinates. Thus

V =
∫ 2π

θ=0

∫ 2

r=0

(12− 3r2) · r dr dθ = 2π ·
[
6r2 − 3

4
r4

]2

0

= 24π ≈ 75.3982236861550377.

C14S06.042: Note first that the two surfaces intersect in a curve that projects vertically onto the ellipse
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(
x− 1

2

)2

+ z2 = 1

in the xz-plane. Hence the volume of the solid is

V =
∫ 1

z=−1

∫ 1+2
√

1−z2

x=1−2
√

1−z2

∫ 2x+3

y=x2+4z2
1 dy dx dz =

∫ 1

z=−1

∫ 1+2
√
−z2

x=1−2
√

1−z2
(3 + 2x− x2 − 4z2) dx dz

=
∫ 1

z=−1

[
3x+ x2 − 1

3
x3 − 4xz2

]1+2
√

1−z2

x=1−2
√

1−z2
dz

=
∫ 1

−1

[
3

(
1 + 2

√
1− z2

)
− 4z2

(
1 + 2

√
1− z2

)
+

(
1 + 2

√
1− z2

)2

− 1
3

(
1 + 2

√
1− z2

)3

− 3
(
1− 2

√
1− z2

)
+ 4z2

(
1− 2

√
1− z2

)
−

(
1− 2

√
1− z2

)2

+
1
3

(
1− 2

√
1− z2

)3
]
dz

=
∫ 1

−1

32
3

(1− z2)3/2 dz =
[

4
3

(5z − 2z3)
√

1− z2 + 4 arcsin z
]1

−1

= 4π ≈ 12.566370614359.

C14S06.043: Following the Suggestion, the volume is

V =
∫ 1

z=0

∫ z/2

y=−z/2

∫ √z2−4y2

x=−
√
z2−4y2

1 dx dy dz =
∫ 1

z=0

∫ z/2

y=−z/2
2
√
z2 − 4y2 dy dz.

Let y = 1
2 z sinu, dy = 1

2 z cosu du. This substitution yields

V =
∫ 1

z=0

∫ π/2

u=−π/2
z2 cos2 u du dz =

∫ 1

z=0

[
1
4
z2(2u+ sin 2u)

]π/2
u=−π/2

dz

=
∫ 1

0

1
2
πz2 dz =

[
1
6
πz3

]1

0

=
1
6
π ≈ 0.5235987755982989.

Methods of single-variable calculus also succeed here. A horizontal cross section of the solid at z = h

(0 < h � 1) is an ellipse with equation x2 +4y2 = h2. This ellipse has major semiaxis of length h and minor
semiaxis of length 1

2 h. Therefore its area is 1
2 πh

2. So, by the method of parallel cross sections (see Eq. (3)
of Section 6.2), the volume of the solid is

∫ 1

0

1
2
πh2 dh =

[
1
6
πh3

]1

0

=
1
6
π.

C14S06.044: First interchange the roles of z and x. Thus we are to find the volume of the region bounded
by the paraboloid z = 2x2 + y2 and the parabolic cylinder z = 2 − y2. The two surfaces meet in a curve
that projects vertically onto the circle x2 + y2 = 1, z = 0. Let D be the disk bounded by that circle. Then
the volume of the solid bounded by the two surfaces is

V =
∫∫

D

(∫ 2−y2

z=2x2+y2
1 dz

)
dA =

∫∫
D

(2− 2x2 − 2y2) dA.

Rewrite the last double integral as an iterated integral in polar coordinates. Thus
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V =
∫ 2π

θ=0

∫ 1

r=0

(2− 2r2) · r dr dθ = 2π
[
r2 − 1

2
r4

]1

0

= 2π · 1
2

= π ≈ 3.14159265358979323846.

C14S06.045: If the pyramid (tetrahedron) of Example 2 has density z at the point (x, y, z), then its mass
and moments are

m =
∫ 2

x=0

∫ (6−3x)/2

y=0

∫ 6−3x−2y

z=0

z dz dy dx =
∫ 2

0

∫ (6−3x)/2

0

1
2

(6− 3x− 2y)2 dy dx

=
∫ 2

0

[
18y − 18xy +

9
2
x2y − 6y2 + 3xy2 +

2
3
y3

](6−3x)/2

0

dx

=
∫ 2

0

[
9(6− 3x)− 3

2
(6− 3x)2 +

1
12

(6− 3x)3 − 9x(6− 3x) +
3
4
x(6− 3x)2 +

9
4
x2(6− 3x)

]
dx

=
∫ 2

0

(
18− 27x+

27
2
x2 − 9

4
x3

)
dx =

[
18x− 27

2
x2 +

9
2
x3 − 9

16
x4

]2

0

= 9;

Myz =
∫ 2

x=0

∫ (6−3x)/2

y=0

∫ 6−3x−2y

z=0

xz dz dy dx =
∫ 2

0

∫ (6−3x)/2

0

1
2
x(6− 3x− 2y)2 dy dx

=
∫ 2

0

∫ (6−3x)/2

0

(
18x− 18x2 +

9
2
x3 − 12xy + 6x2y + 2xy2

)
dy dx

=
∫ 2

0

[
9
2
xy(x− 2)2 + 3xy2(x− 2) +

2
3
xy3

](6−3x)/2

0

dx

=
∫ 2

0

[
9x(6− 2x)− 3

2
x(6− 3x)2 +

1
12

x(6− 3x)3 − 9x2(6− 3x) +
3
4
x2(6− 3x)2 +

9
4
x3(6− 3x)

]
dx

=
∫ 2

0

(
18x− 27x2 +

27
2
x3 − 9

4
x4

)
dx =

[
9x2 − 9x3 +

27
8
x4 − 9

20
x5

]2

0

=
18
5

;

Mxz =
∫ 2

x=0

∫ (6−3x)/2

y=0

∫ 6−3x−2y

z=0

yz dz dy dx =
∫ 2

0

∫ (6−3x)/2

0

1
2
y(6− 3x− 2y)2 dy dx

=
∫ 2

0

∫ (6−3x)/2

0

(
18y − 18xy +

9
2
x2y − 12y2 + 6xy2 + 2y3

)
dy dx

=
∫ 2

0

[
9y2 − 9xy2 +

9
4
x2y2 − 4y3 + 2xy3 +

1
2
y4

](6−3x)/2

0

dx

=
∫ 2

0

[
9
4

(6− 3x)2 − 1
2

(6− 3x)3 +
1
32

(6− 3x)4 − 9
4
x(6− 3x)2 +

1
4
x(6− 3x)3 +

9
16

x2(6− 3x)2
]
dx

=
∫ 2

0

(
27
2
− 27x+

81
4
x2 − 27

4
x3 +

27
32

x4

)
dx =

[
27
2
x− 27

2
x2 +

27
4
x3 − 27

16
x4 +

27
160

x5

]2

0

=
27
5

;

Mxy =
∫ 2

x=0

∫ (6−3x)/2

y=0

∫ 6−3x−2y

z=0

z2 dz dy dx =
∫ 2

0

∫ (6−3x)/2

0

1
3

(6− 3x− 2y)3 dy dx

16



=
∫ 2

0

∫ (6−3x)/2

0

(
72− 108x+ 54x2 − 9x3 − 72y + 72xy − 18x2y + 24y2 − 12xy2 − 8

3
y3

)
dy dx

=
∫ 2

0

[
72y − 108xy + 54x2y − 9x3y − 36y2 + 36xy2 − 9x2y2 + 8y3 − 4xy3 − 2

3
y4

](6−3x)/2

y=0

dx

=
∫ 2

0

(
54− 108x+ 81x2 − 27x3 +

27
8
x4

)
dx =

[
54x− 54x2 + 27x3 − 27

4
x4 +

27
40

x5

]2

0

=
108
5
.

Therefore the centroid of the pyramid is located at the point
(

2
5
,

3
5
,

12
5

)
.

C14S06.046: The mass and moments are

m = 2
∫ 2

−1

∫ y+2

y2

∫ √z−y2

0

1 dx dz dy =
∫ 2

−1

∫ y+2

y2
2
√
z − y2 dz dy =

∫ 2

−1

[
4
3

(z − y2)3/2
]y+2

y2

dy

=
∫ 2

−1

4
3

(2 + y − y2)3/2 dy

=
[

1
48

(−43 + 78y + 24y2 − 16y3)(2 + y − y2)1/2 +
81
32

arcsin
(

2y − 1
3

) ]2

−1

=
81
32

π;

Myz = 2
∫ 2

−1

∫ y+2

y2

∫ √z−y2

0

x dx dz dy = 2
∫ 2

−1

∫ y+2

y2

1
2

(z − y2) dz dy = 2
∫ 2

−1

[
1
4
z2 − 1

2
y2z

]y+2

y2

dy

= 2int2−1

(
1 + y − 3

4
y2 − 1

2
y3 +

1
4
y4

)
dy = 2

[
y +

1
2
y2 − 1

4
y3 − 1

8
y4 +

1
20

y5

]2

−1

=
81
20

;

Mxz = 2
∫ 2

−1

∫ y+2

y2

∫ √z−y2

0

y dx dz dy =
∫ 2

−1

∫ y+2

y2
2y(z − y2)1/2 dz dy =

∫ 2

−1

[
4
3
y(z − y2)3/2

]y+2

y2

dy

=
∫ 2

−1

4
3
y(2 + y − y2)3/2 dy

=
[

4
3

(
−727

640
− 61

320
y +

63
80

y2 +
11
40

y3 − 1
5
y5

)
· (2 + y − y2)1/2 +

81
128

arcsin
(

2y − 1
3

) ]2

−1

=
81
64

π;

Mxy = 2
∫ 2

−1

∫ y2

y+2

∫ √z−y2

0

z dx dz dy =
∫ 2

−1

∫ y2

y+2

2z(z − y2)1/2 dz dy

=
∫ 2

−1

[ (
4
5
z2 − 4

15
y2z − 8

15
y4

)
· (z − y2)1/2

]y+2

y2

dy

=
∫ 2

−1

4
15

(12 + 12y + y2 − y3 − 2y4)(2 + y − y2)1/2 dy

=
[
− 4

15

(
7075
768

− 2303
384

y − 427
96

y2 − 23
48

y3 +
1
6
y4 +

1
3
y5

)
· (2 + y − y2)1/2 +

567
128

arcsin
(

2y − 1
3

) ]2

−1
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=
567
128

π.

Therefore the centroid of the parabolic segment is located at the point
(

8
5π

,
1
2
,

7
4

)
.

C14S06.047: First we compute

∫ 2

x=0

∫ (6−3x)/2

y=0

∫ 6−3x−2y

z=0

z dz dy dx =
∫ 2

0

∫ (6−3x)/2

0

1
2

(6− 3x− 2y)2 dy dx

=
∫ 2

0

∫ (6−3x)/2

0

(
18− 18x+

9
2
x2 − 12y + 6xy + 2y2

)
dy dx

=
∫ 2

0

[
18y − 18xy +

9
2
x2y − 6y2 + 3xy2 +

2
3
y3

](6−3x)/2

0

dx

=
∫ 2

0

(
18− 27x+

27
2
x2 − 9

4
x3

)
dx =

[
18x− 27

2
x2 +

9
2
x3 − 9

16
x4

]2

0

= 9.

The volume of the pyramid is 6, and hence the average value of the density function δ(x, y, z) = z on the
pyramid is δ = 9

6 = 3
2 .

C14S06.048: The volume of the cube is 1, and hence the average value of f(x, y, z) = x2 + y2 + z2 on
the cube is

f =
∫ 1

0

∫ 1

0

∫ 1

0

(x2 + y2 + z2) dz dy dx

=
∫ 1

0

∫ 1

0

(
1
3

+ x2 + y2

)
dy dx =

∫ 1

0

(
2
3

+ x2

)
dx =

[
2
3
x+

1
3
x3

]1

0

= 1.

C14S06.049: The centroid of the cube of Problem 48 is, by symmetry, its midpoint
(

1
2 ,

1
2 ,

1
2

)
. Because

the cube has volume 1, the average value of

g(x, y, z) =
(
x− 1

2

)2

+
(
y − 1

2

)2

+
(
z − 1

2

)2

on the cube is

g =
∫ 1

x=0

∫ 1

y=0

∫ 1

z=0

g(x, y, z) dz dy dx =
∫ 1

0

∫ 1

0

[
3
4
z − xz + x2z − yz + y2z − 1

2
z2 +

1
3
z3

]1

0

dy dx

=
∫ 1

0

∫ 1

0

(
7
12
− x+ x2 − y + y2

)
dy dx =

∫ 1

0

[
7
12

y − xy + x2y − 1
2
y2 +

1
3
y3

]1

0

dx

=
∫ 1

0

(
5
12
− x+ x2

)
dx =

[
5
12

x− 1
2
x2 +

1
3
x3

]1

0

=
1
4
.

C14S06.050: If the cube of Problem 48 has density δ(x, y, z) = x + y + z at the point (x, y, z), then—
because the volume of the cube is 1—the average value of the density function on the cube is
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δ =
∫ 1

0

∫ 1

0

∫ 1

0

(x+ y + z) dz dy dx =
∫ 1

0

∫ 1

0

(
1
2

+ x+ y

)
dy dx

=
∫ 1

0

[
1
2
y + xy +

1
2
y2

]1

0

dx =
∫ 1

0

(1 + x) dx =
3
2
.

C14S06.051: First we compute

J =
∫ 2

x=0

∫ (6−3x)/2

y=0

∫ 6−3x−2y

z=0

(x2 + y2 + z2) dz dy dx =
∫ 2

0

∫ (6−3x)/2

0

[
x2z + y2z +

1
3
z3

]6−3x−2y

0

dy dx

=
∫ 2

0

∫ (6−3x)/2

0

(
72− 108x+ 60x2 − 12x3 − 72y + 72xy − 20x2y + 30y2 − 15xy2 − 14

3
y3

)
dy dx

=
∫ 2

0

[
72y − 108xy + 60x2y − 12x3y − 36y2 + 36xy2 − 10x2y2 + 10y3 − 5xy3 − 7

6
y4

](6−3x)/2

0

dx

=
∫ 2

0

(
135
2
− 135x+

441
4

x2 − 171
4

x3 +
207
32

x4

)
dx =

[
135
2

x− 135
2

x2 +
147
4

x3 − 171
16

x4 +
207
160

x5

]2

0

=
147
5
.

Because the pyramid has volume V = 6, the average squared distance of its points from its centroid is

d =
J

V
=

147
30

=
49
10

= 4.9.

C14S06.052: Suppose that the tetrahedron T has vertices at (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c)
where a, b, and c are positive constants. Suppose also that its density is δ = 1. We plan first to find the
centroid of T . Its mass is simply m = 1

6 abc. The equation of its bounding diagonal plane is

x

a
+
y

b
+
z

c
= 1, so that z = f(x, y) = c

(
1− x

a
− y

b

)
.

and therefore

Myz =
∫ a

x=0

∫ b−bx/a

y=0

∫ f(x,y)

z=0

x dz dy dx =
∫ a

0

∫ b−bx/a

0

(
cx− c

a
x2 − c

b
xy

)
dy dx

=
∫ a

0

[
2abcxy − 2bcx2y − acxy2

2ab

]b−bx/a
0

dx =
∫ a

0

a2bcx− 2abcx2 + bcx3

2a2
dx

=
[

6a2bcx2 − 8abcx3 + 3bcx4

24a2

]a
0

=
1
24

a2bc.

Therefore x = 1
4 a. By symmetry, y = 1

4 b and z = 1
4 c. It follows that the centroid of the pyramid of

Example 2, with unit density, is located at the point
(

1
2 ,

3
4 ,

3
2

)
. Let h(x, y, z) be the squared distance of the

point (x, y, z) of the pyramid from its centroid:

h(x, y, z) =
(
x− 1

2

)2

+
(
y − 3

4

)2

+
(
z − 3

2

)2

.
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Then we compute

J =
∫ 2

0

∫ (6−3x)/2

0

∫ 6−3x−2y

0

h(x, y, z) dz dy dx

=
∫ 2

0

∫ (6−3x)/2

0

[
49
16

z − xz + x2z − 3
2
yz + y2z − 3

2
z2 +

1
3
z3

]6−3x−2

0

dy dx

=
∫ 2

0

∫ (6−3x)/2

0

(
291
8
− 1107

16
x+

99
2
x2 − 12x3 − 409

8
y

+
121
2

xy − 20x2y + 27y2 − 15xy2 − 14
3
y3

)
dy dx

=
∫ 2

0

[
291
8

y − 1107
16

xy +
99
2
x2y − 12x3y − 409

16
y2

+
121
4

xy2 − 10x2y2 + 9y3 − 5xy3 − 7
6
y4

](6−3x)/2

0

dx

=
∫ 2

0

(
441
16
− 1125

16
x+

4833
64

x2 − 585
16

x3 +
207
32

x4

)
dx

=
[

441
16

x− 1125
32

x2 +
1611
64

x3 − 585
64

x4 +
207
160

x5

]2

0

=
441
40

.

Because the pyramid has volume V = 6, the average value of h(x, y, z) on the pyramid is

h =
J

V
=

147
80

= 1.8375.

C14S06.053: Using Mathematica 3.0, we find that the average distance of points of the cube of Problem
48 from the origin is

d =
∫ 1

x=0

∫ 1

y=1

∫ 1

z=0

√
x2 + y2 + z2 dz dy dx

=
∫ 1

0

∫ 1

0

[
1
2
z
√
x2 + y2 + z2 +

1
2

(x2 + y2) ln
(
z +

√
x2 + y2 + z2

) ]1

0

dy dx

=
∫ 1

0

∫ 1

0

[
1
2

√
x2 + y2 + 1 − 1

2
(x2 + y2) ln

(√
x2 + y2

)
+

1
2

(x2 + y2) ln
(
1 +

√
x2 + y2 + 1

) ]
dy dx

=
∫ 1

0

[
1
3
y
√
x2 + y2 + 1 − 1

3
x2 arctan

(
y

x
√
x2 + y2 + 1

)
− 1

6
y(3x2 + y2) ln

(√
x2 + y2

)

+
1
6
y(3x2 + y2) ln

(
1 +

√
x2 + y2 + 1

)
+

1
6

(3x2 + 1) ln
(
y +

√
x2 + y2 + 1

) ]1

0

dx

=
∫ 1

0

[
1
3

√
x2 + 2 − 1

3
x2 arctan

(
1

x
√
x2 + 2

)
− 1

3
(3x2 + 1) ln

(√
x2 + 1

)

+
1
3

(3x2 + 1) ln
(
1 +

√
x2 + 2

) ]
dx
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=
[

1
4
x
√
x2 + 2 +

1
3

arcsinh
(

x√
2

)
− 1

12
x4 arctan

(
1

x
√
x2 + 2

)

− 1
6

arctan
(

x√
x2 + 2

)
− 1

3
x(x2 + 1) ln

(√
x2 + 1

)
+

1
3
x(x2 + 1) ln

(
1 +

√
x2 + 2

) ]1

0

=
1
24

[
6
√

3 − π + 8 arcsinh

(√
2
2

)
− 8 ln 2 + 16 ln

(
1 +
√

3
) ]
≈ 0.960591956455052959425108.
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Section 14.7

C14S07.001: The volume is

V =
∫ 2π

θ=0

∫ 2

r=0

∫ 4

z=r2
r dz dr dθ = 2π

∫ 2

r=0

(4r − r3) dr = 2π
[
2r2 − 1

4
r4

]2

0

= 8π.

C14S07.002: We assume unit density. Then the mass of the solid is m = 8π by the result in the solution
of Problem 1. It is clear by symmetry that x = y = 0, but we will also demonstrate this rigorously:

Myz =
∫ 2π

0

∫ 2

0

∫ 4

r2
r2 cos θ dz dr dθ =

∫ 2π

0

∫ 2

0

(4r2 cos θ − r4 cos θ) dr dθ

=
∫ 2π

0

[
4
3
r3 cos θ − 1

5
r5 cos θ

]2

0

dθ =
∫ 2π

0

64
15

cos θ dθ =
[

64
15

sin θ
]2π

0

= 0.

Replacement of cos θ with sin θ in the first integral will clearly lead to the result Mxz = 0. There remains
only this:

Mxy =
∫ 2π

0

∫ 2

0

∫ 4

r2
rz dz dr dθ =

∫ 2π

0

∫ 2

0

[
1
2
rz2

]4

r2
dr dθ =

∫ 2π

0

∫ 2

0

(
8r − 1

2
r5

)
dr dθ

=
∫ 2π

0

[
4r2 − 1

12
r6

]2

0

dθ =
∫ 2π

0

32
3

dθ =
64
3
π.

Therefore the centroid of the solid is located at
(
0, 0, 8

3

)
. Compare this answer with that obtained using the

result in Problem 31 of Section 14.6.

C14S07.003: Place the center of the sphere at the origin. Then its volume is

V =
∫ 2π

θ=0

∫ a

r=0

∫ √
a2−r2

z=−
√
a2−r2

r dz dr dθ = 2π
∫ a

r=0

2r
√
a2 − r2 dr = 2π ·

[
−2

3
(a2 − r2)3/2

]a
0

=
4
3
πa3.

C14S07.004: The moment of inertia of a solid sphere of density δ, radius a, and center (0, 0, 0) with
respect to the z-axis is

Iz =
∫ 2π

0

∫ a

0

∫ √
a2−r2

−
√
a2−r2

δr3 dz dr dθ = 2πδ
∫ a

0

2r3(a2 − r2)1/2 dr

= 2πδ ·
[
− 2

15
(2a4 + a2r2 − 3r4)(a2 − r2)1/2

]a
0

=
8
15
πδa5 =

2
5
ma2

where m = 4
3 πδa

3 is the mass of the sphere.

C14S07.005: The volume is

V =
∫ 2π

θ=0

∫ 1

r=0

∫ √
4−r2

z=−
√

4−r2
r dz dr dθ = 2π

∫ 1

r=0

2r(4− r2)1/2 dr = 2π ·
[
−2

3
(4− r2)3/2

]1

0

= 2π
(

16
3
− 2
√

3
)

=
4
3
π

(
8− 3

√
3

)
≈ 11.7447292674805137.
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C14S07.006: Assuming unit density, the result in the solution of Problem 5 shows that the mass of the
solid is

m =
2
3
π

(
8− 3

√
3

)
.

By symmetry, the centroid lies on the z-axis, so we need only compute the moment with respect to the
xy-plane:

Mxy =
∫ 2π

0

∫ 1

0

∫ √
4−r2

0

rz dz dr dθ = 2π
∫ 1

0

1
2

(4r − r3) dr = 2π ·
[
r2 − 1

8
r4

]1

0

= 2π · 7
8

=
7
4
π.

Therefore the centroid is located at the point (x, y, z) where x = y = 0 and

z =
7π
4
· 3
2π

(
8− 3

√
3

) =
21
296

(
8 + 3

√
3

)
≈ 0.9362135164758083.

C14S07.007: The mass of the cylinder is

m =
∫ 2π

θ=0

∫ a

r=0

∫ h

z=0

rz dz dr dθ = 2π
∫ a

r=0

1
2
rh2 dr = 2π ·

[
1
4
r2h2

]a
0

=
1
2
πa2h2.

C14S07.008: We saw in the solution of Problem 7 that the mass of the cylinder is m = 1
2 πa

2h2. By
symmetry, its centroid lies on the z-axis. So we need only compute its moment with respect to the xy-plane:

Mxy =
∫ 2π

0

∫ a

0

∫ h

0

rz2 dz dr dθ = 2π
∫ a

0

1
3
rh3 dr = 2π ·

[
1
6
r2h3

]a
0

=
1
3
πa2h3.

Therefore its centroid is located at the point
(

0, 0,
2
3
h

)
.

C14S07.009: The moment of inertia of the cylinder of Problem 7 with respect to the z-axis is

Iz =
∫ 2π

θ=0

∫ a

r=0

∫ h

z=0

r3z dz dr dθ = 2π
∫ a

r=0

[
1
2
r3z2

]h
z=0

dr

= 2π
∫ a

r=0

1
2
r3h2 dr = 2π ·

[
1
8
r4h2

]a
r=0

= 2π · 1
8
a4h2 =

1
4
πa4h2.

C14S07.010: The cylinder x2 +y2−2x = 0 meets the xy-plane in the circle with polar equation r = 2 cos θ
and the entire circle is swept out as θ runs through the values from − 1

2 π to 1
2 π. (We will integrate from

0 to π/2 and double the result.) Hence the volume of the region within both the cylinder and the sphere
r2 + z2 = 4 is

V = 2
∫ π/2

0

∫ 2 cos θ

0

∫ √
4−r2

−
√

4−r2
r dz dr dθ = 2

∫ π/2

0

∫ 2 cos θ

0

2r(4− r2)1/2 dr dθ

= 2
∫ π/2

0

[
−2

3
(4− r2)3/2

]2 cos θ

0

dθ = 2
∫ π/2

0

16
3

(1− sin3 θ) dθ

=
32
3

∫ π/2

0

[
1− (1− cos2 θ) sin θ

]
dθ =

32
3

[
θ + cos θ − 1

3
cos3 θ

]π/2
0

2



=
32
3

(
π

2
− 1 +

1
3

)
=

16
9

(3π − 4) ≈ 9.6440497080344528.

This problem has a pitfall. Here are the details of the simplification in the second line of this solution:

[
−2

3
(4− r2)3/2

]2 cos θ

0

=
16
3
− 2

3
(4− 4 cos2 θ)

√
4− 4 cos2 θ =

16
3
− 2

3
(4 sin2 θ)

√
4 sin2 θ

=
16
3

[
1− (sin2 θ)

√
sin2 θ

]
.

If 0 � θ � 1
2 π, then sin θ � 0, and hence the last expression can be replaced with

16
3

[
1− sin3 θ

]
.

But if − 1
2 π � θ � 0, then sin θ � 0, so that

16
3

[
1− (sin2 θ)

√
sin2 θ

]
=

16
3

[
1 + sin3 θ

]
.

If this important detail is overlooked by a student who integrates from − 1
2 π to 1

2 π, he or she will obtain
the incorrect answer 16

3 π for the volume of the solid.

C14S07.011: The volume is

V =
∫ 2π

θ=0

∫ 3

r=0

∫ 9−r2

z=0

r dz dr dθ = 2π
∫ 3

r=0

(9r − r3) dr = 2π ·
[

9
2
r2 − 1

4
r4

]3

0

=
81
2
π.

By symmetry, x = y = 0. The moment of the solid with respect to the xy-plane is

Mxy =
∫ 2π

θ=0

∫ 3

r=0

∫ 9−r2

z=0

rz dz dr dθ = 2π
∫ 3

r=0

1
2
r(9− r2)2 dr

= 2π
∫ 3

r=0

(
81
2
r − 9r3 +

1
2
r5

)
dr = 2π ·

[
81
4
r2 − 9

4
r4 +

1
12

r6
]3

0

=
243
2

π.

Therefore the z-coordinate of the centroid is z = 3. Suggestion: Compare this answer with the answer
obtained by using the result in Problem 31 of Section 14.6.

C14S07.012: The paraboloids meet in the circle x2 + y2 = 4, z = 4. Therefore the volume between them
is

V =
∫ 2π

0

∫ 2

0

∫ 12−2r2

r2
r dz dr dθ = 2π

∫ 2

0

(12r − 3r3) dr = 2π ·
[
6r2 − 3

4
r4

]2

0

= 2π · 12 = 24π.

We are to assume that the solid has unit density, so its mass is m = 24π as well. By symmetry, the centroid
lies on the z-axis. The moment of the solid with respect to the xy-plane is

Mxy =
∫ 2π

0

∫ 2

0

∫ 12−2r2

r2
rz dz dr dθ = 2π

∫ 2

0

(
72r − 24r3 +

3
2
r5

)
dr = 2π ·

[
36r2 − 6r4 +

1
4
r6

]2

0

= 2π · 64 = 128π.
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Therefore the centroid of the solid is located at the point
(

0, 0,
16
3

)
.

C14S07.013: The curve formed by the intersection of the paraboloids lies on the cylinder x2 + y2 = 4, and
hence the solid projects vertically onto the disk D with boundary x2 + y2 = 4 in the xy-plane. Therefore
the volume of the solid is

V =
∫ 2π

θ=0

∫ 2

r=0

∫ 12−r2−r2 sin2 θ

z=r2+r2 cos2 θ

r dz dr dθ =
∫ 2π

θ=0

∫ 2

r=0

(12r − 3r3) dr dθ =
∫ 2π

θ=0

[
6r2 − 3

4
r4

]2

r=0

dθ

=
∫ 2π

0

12 dθ = 2π · 12 = 24π ≈ 75.3982236861550377.

C14S07.014: The paraboloid z = r2 and the plane z = 2r cos θ intersect in the cylinder r = 2 cos θ, which
projects vertically onto the circle with the same polar equation in the xy-plane. Note that this circle is swept
out as θ varies from − 1

2 π to 1
2 π. Hence the volume of the solid between the paraboloid and the plane is

V =
∫ π/2

−π/2

∫ 2 cos θ

0

∫ 2r cos θ

r2
r dz dr dθ =

∫ π/2

−π/2

∫ 2 cos θ

0

(2r2 cos θ − r3) dr dθ

=
∫ π/2

−π/2

[
2
3
r3 cos θ − 1

4
r4

]2 cos θ

0

dθ =
∫ π/2

−π/2

4
3

cos4 θ dθ =
1
24

[
12θ + 8 sin 2θ + sin 4θ

]π/2
−π/2

=
1
2
π ≈ 1.57079632679489661923.

C14S07.015: The spherical surface r2 + z2 = 2 and the paraboloid z = r2 meet in a horizontal circle that
projects vertically onto the circle x2 + y2 = 1 in the xy-plane. Hence the volume between the two surfaces is

V =
∫ 2π

θ=0

∫ 1

r=0

∫ √
2−r2

z=r2
r dz dr dθ =

∫ 2π

0

∫ 1

0

[
r(2− r2)1/2 − r3

]
dr dθ = 2π ·

[
−1

3
(2− r2)3/2 − 1

4
r4

]1

0

= 2π ·
(

2
3

√
2 − 7

12

)
=

1
6
π

(
8
√

2 − 7
)
≈ 2.2586524883563962.

C14S07.016: Choose a coordinate system in which the points of the cylinder are described by

0 � r � a, 0 � θ � 2π, 0 � z � h

and denote the (constant) density of the homogeneous cylinder by δ. Then the mass of the cylinder will be
m = πδa2h. So its moment of inertia with respect to its axis of symmetry—the z-axis—is

Iz =
∫ 2π

0

∫ a

0

∫ h

0

δr3 dz dr dθ =
∫ 2π

0

∫ r

0

δr3h dr dθ

= 2πδ ·
[

1
4
r4h

]a
0

dθ =
1
2
πδa4h =

1
2
a2 · πδa2h =

1
2
ma2.

C14S07.017: Set up a coordinate system in which the points of the cylinder are described by

0 � r � a, 0 � θ � 2π, 0 � z � h.
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Because the cylinder has constant density δ, its mass is m = πδa2h. One diameter of its base coincides with
the x-axis, so we will find the moment of inertia I of the cylinder with respect to that axis. The square of
the distance of the point (x, y, z) from the x-axis is y2 + z2 = z2 + r2 sin2 θ. Therefore

I = Ix =
∫ 2π

θ=0

∫ a

r=0

∫ h

z=0

δ(z2 + r2 sin2 θ) · r dz dr dθ = δ

∫ 2π

0

∫ a

0

(
1
3
h3r + hr3 sin2 θ

)
dr dθ

= δ

∫ 2π

0

[
1
6
h3r2 +

1
4
hr4 sin2 θ

]a
0

dθ = δ

∫ 2π

0

(
1
6
a2h3 +

1
4
a4h sin2 θ

)
dθ

= δ

[
6a4hθ + 8a2h3θ − 3a4h sin 2θ

48

]2π

0

=
1
12

δπa2h(3a2 + 4h2) =
1
12

m(3a2 + 4h2)

where m is the mass of the cylinder.

C14S07.018: By symmetry, the centroid lies on the axis of the cylinder midway between its two bases.
This is so obvious that the intent of this problem must be to verify this by actually computing the integrals.
Assume that the cylinder has unit density and is described in cylindrical coordinates by

0 � r � a, 0 � θ � 2π, 0 � z � h.

Then its mass and moments are

m =
∫ 2π

0

∫ a

0

∫ h

0

r dz dr dθ = 2π
∫ a

0

rh dr = 2π · 1
2
a2h = πa2h;

Myz =
∫ 2π

0

∫ a

0

∫ h

0

r2 cos θ dz dr dθ =
∫ 2π

0

∫ a

0

r2h cos θ dr dθ =
∫ 2π

0

1
3
a3h cos θ dθ

=
[

1
3
a3h sin θ

]2π

0

= 0;

Mxz =
∫ 2π

0

∫ a

0

∫ h

0

r2 sin θ dz dr dθ =
∫ 2π

0

∫ a

0

r2h sin θ dr dθ =
∫ 2π

0

1
3
a3h sin θ dθ

=
[
−1

3
a3h cos θ

]2π

0

= 0;

Mxy =
∫ 2π

0

∫ a

0

∫ h

0

rz dz dr dθ = 2π
∫ a

0

1
2
rh2 dr = 2π ·

[
1
4
r2h2

]a
0

=
1
2
πa2h2.

Therefore the centroid of the cylinder is located at the point

(
0, 0,

1
2
h

)
,

on its axis of symmetry and midway between its two bases.

C14S07.019: The volume is

V =
∫ 2π

θ=0

∫ 1

r=0

∫ 1

z=r

r dz dr dθ = 2π
∫ 1

0

(r − r2) dr = 2π ·
[

1
2
r2 − 1

3
r3

]1

0

=
1
3
π.
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C14S07.020: Suppose that the cone has base radius R and height H. Set up a coordinate system in
which its vertex is at the origin, its axis lies on the nonnegative z-axis, its base (at the top) is part of the
horizontal plane z = H, and its curved side has cylindrical description

z =
H

R
r, 0 � r � R, 0 � θ � 2π.

Assume that the cone has constant unit density. Then its mass and moments are

m =
∫ 2π

0

∫ R

0

∫ H

Hr/R

r dz dr dθ = 2π
∫ R

0

(
Hr − H

R
r2

)
dr

= 2π
[
H

2
r2 − H

3R
r3

]R
0

= 2π · 1
6
R2H =

1
3
πR2H;

Myz =
∫ 2π

0

∫ R

0

∫ H

Hr/R

r2 cos θ dz dr dθ =
∫ 2π

0

∫ R

0

(
Hr2 cos θ − H

R
r3 cos θ

)
dr dθ

=
∫ 2π

0

[
H

3
r3 cos θ − H

4R
r4 cos θ

]R
0

dθ =
∫ 2π

0

1
12

R2H cos θ dθ =
[

1
12

R2H sin θ
]2π

0

= 0;

Mxz =
∫ 2π

0

∫ R

0

∫ H

Hr/R

r2 sin θ dz dr dθ =
∫ 2π

0

∫ R

0

(
Hr2 sin θ − H

R
r3 sin θ

)
dr dθ

=
∫ 2π

0

[
H

3
r3 sin θ − H

4R
r4 sin θ

]R
0

dθ =
∫ 2π

0

1
12

R2H sin θ dθ =
[
− 1

12
R2H cos θ

]2π

0

= 0;

Mxy =
∫ 2π

0

∫ R

0

∫ H

Hr/R

rz dz dr dθ = 2π
∫ R

0

(
H2

2
r − H2

2R2
r3

)
dr

= 2π ·
[
H2

4
r2 − H2

8R2
r4

]R
0

= 2π
1
8
R2H2 =

1
4
πR2H2.

Therefore the centroid is located at the point
(

0, 0,
3
4
H

)
,

on the axis of the cone three-quarters of the way from its vertex to its base. Compare this with the solution
of Problem 32 in Section 14.6.

C14S07.021: Without loss of generality we may assume that the hemispherical solid has density δ = 1.
Choose a coordinate system in which the solid is bounded above by the spherical surface ρ = a and below
by the xy-plane. Then its mass and moments are

m =
∫ 2π

θ=0

∫ π/2

φ=0

∫ a

ρ=0

ρ2 sinφ dρ dφ dθ = 2π
∫ π/2

φ=0

1
3
a3 sinφ dφ =

2
3
πa3

[
− cosφ

]π/2
0

=
2
3
πa3;

Myz =
∫ 2π

θ=0

∫ π/2

φ=0

∫ a

ρ=0

ρ3 sin2 φ cos θ dρ dφ dθ =
∫ 2π

θ=0

∫ π/2

φ=0

1
4
a4 sin2 φ cos θ dφ dθ

=
∫ 2π

θ=0

(∫ π/2

φ=0

1
4
a2 sin2 φ dφ

)
cos θ dθ =

(∫ π/2

φ=0

1
4
a2 sin2 φ dφ

)
·
[

sin θ
]2π

θ=0

= 0;
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Mxz =
∫ 2π

θ=0

∫ π/2

φ=0

∫ a

ρ=0

ρ3 sin2 φ sin θ dρ dφ dθ =
∫ 2π

θ=0

∫ π/2

φ=0

1
4
a4 sin2 φ sin θ dφ dθ

=
∫ 2π

θ=0

(∫ π/2

φ=0

1
4
a2 sin2 φ dφ

)
sin θ dθ =

(∫ π/2

φ=0

1
4
a2 sin2 φ dφ

)
·
[
− cos θ

]2π

θ=0

= 0;

Myx =
∫ 2π

θ=0

∫ π/2

φ=0

∫ a

ρ=0

ρ3 sinφ cosφ dρ dφ dθ = 2π
∫ π/2

φ=0

1
4
a4 sinφ cosφ dφ

=
1
2
πa4

[
1
2

sin2 φ

]π/2
0

=
1
4
πa4.

Therefore the centroid of the hemispherical solid is located at the point
(

0, 0,
3
8
a

)
.

C14S07.022: We are given the information that the hemispherical solid has density δ = kz at the point
(x, y, z). Then its mass and moments are

m =
∫ 2π

θ=0

∫ π/2

φ=0

∫ a

ρ=0

kρ3 sinφ cosφ dρ dφ dθ = 2π
∫ π/2

φ=0

1
4
ka4 sinφ cosφ dφ

=
1
4
kπa4

[
sin2 φ

]π/2
0

=
1
4
kπa4;

Myz =
∫ 2π

θ=0

∫ π/2

φ=0

∫ a

ρ=0

kρ4 sin2 φ cosφ cos θ dφ dθ =
∫ 2π

θ=0

[
1
15

ka5 sin3 φ cos θ
]π/2
φ=0

dθ

=
[

1
15

ka5 sin θ
]2π

θ=0

= 0;

Myz =
∫ 2π

θ=0

∫ π/2

φ=0

∫ a

ρ=0

kρ4 sin2 φ cosφ sin θ dφ dθ =
∫ 2π

θ=0

[
1
15

ka5 sin3 φ sin θ
]π/2
φ=0

dθ

=
[
− 1

15
ka5 cos θ

]2π

θ=0

= 0;

Mxy =
∫ 2π

θ=0

∫ π/2

φ=0

∫ a

ρ=0

kρ4 sinφ cos2 φ dρ dφ dθ =
∫ 2π

θ=0

∫ π/2

φ=0

1
5
ka5 sinφ cos2 φ dφ dθ

= 2π ·
[
− 1

15
ka5 cos3 φ

]π/2
φ=0

=
2
15

kπa5.

Therefore the centroid of this hemispherical solid is located at the point
(

0, 0,
8
15

a

)
.

C14S07.023: The plane z = 1 has the spherical-coordinates equation ρ = secφ; the cone with cylindrical-
coordinates equation r = z has spherical-coordinates equation φ = 1

4 π. Hence the volume bounded by the
plane and the cone is
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V =
∫ 2π

θ=0

∫ π/4

φ=0

∫ secφ

ρ=0

ρ2 sinφ dρ dφ dθ = 2π
∫ π/4

φ=0

1
3

sec2 φ tanφ dφ = 2π ·
[

1
6

sec2 φ

]π/4
φ=0

=
1
3
π.

C14S07.024: Without loss of generality the cone has density δ = 1. Assume that its vertex is at the
origin and that its axis lies on the nonnegative z-axis. Assume that its curved side has spherical-coordinates
equation φ = α (where 0 < α < 1

2 π) and that its base lies on the plane z = a > 0; thus its base has
spherical-coordinates equation ρ = a secφ. Then its mass and moments are

m =
∫ 2π

0

∫ α

0

∫ a secφ

0

ρ2 sinφ dρ dφ dθ = 2π
∫ α

0

1
3
a3 sec2 φ tanφ dφ

= 2π
(

1
6
a3 sec2 α− 1

6
a3

)
=

1
3
πa3 tan2 α;

Myz =
∫ 2π

0

∫ α

0

∫ a secφ

0

ρ3 sin2 φ cos θ dρ dφ dθ =
∫ 2π

0

∫ α

0

1
4
a4 sec2 φ tan2 φ cos θ dφ dθ

=
1
4
a4

∫ 2π

0

(∫ α

0

sec2 φ tan2 φ dφ

)
cos θ dθ =

1
4
a4

(∫ α

0

sec2 φ tan2 φ dφ

)
·
[

sin θ
]2π

0

= 0;

Mxz =
∫ 2π

0

(∫ α

0

∫ a secφ

0

ρ3 sin2 φ dρ dφ

)
sin θ dθ =

(∫ α

0

∫ a secφ

0

ρ3 sin2 φ dρ dφ

)
·
[
− cos θ

]2π

0

= 0;

Myz =
∫ 2π

0

∫ α

0

∫ a secφ

0

ρ3 sinφ cosφ dρ dφ dθ = 2π
∫ α

0

1
4
a4 sec3 φ sinφ dφ

= 2π
(

1
8
a4 sec2 α− 1

8
a4

)
=

1
4
πa4 tan2 α.

Therefore the centroid of the cone is on its axis of symmetry and three-quarters of the way from the vertex
to the base, because it is located at the point

(x, y, z) =
(

0, 0,
3
4
a

)
.

C14S07.025: Assume unit density. Then the mass and the volume are numerically the same; they and the
moments are

m = V =
∫ 2π

0

∫ π/4

0

∫ a

0

ρ2 sinφ dρ dφ dθ = 2π · 1
3
a3

[
− cosφ

]π/4
0

=
2
3
πa2

(
1− 1

2

√
2

)
=

1
3
π

(
2−
√

2
)
a3;

Myz =
∫ 2π

0

∫ π/4

0

∫ a

0

ρ3 sin2 φ cos θ dρ dφ dθ =

(∫ π/4

0

∫ a

0

ρ3 sin2 φ dρ dφ

)
·
[

sin θ
]2π

0

= 0;

Mxz =
∫ 2π

0

∫ π/4

0

∫ a

0

ρ3 sin2 φ sin θ dρ dφ dθ =

(∫ π/4

0

∫ a

0

ρ3 sin2 φ dρ dφ

)
·
[
− cos θ

]2π

0

= 0;
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Mxy =
∫ 2π

0

∫ π/4

0

∫ a

0

ρ3 sinφ cosφ dρ dφ dθ = 2π · 1
4
a4 ·

[
1
2

sin2 φ

]π/4
0

=
1
8
πa4.

So the z-coordinate of the centroid is

z =
3πa4

8π
(
2−
√

2
)
a3

=
3a

8
(
2−
√

2
) =

3
(
2 +
√

2
)
a

16
=

3
16

(
2 +
√

2
)
a;

clearly x = y = 0. For a plausibility check, note that z ≈ (0.6401650429449553)a.

C14S07.026: Assume that the solid of Problem 25 has constant density δ. Then its moment of inertia
with respect to the z-axis is

Iz =
∫ 2π

0

∫ π/4

0

∫ a

0

δρ4 sin3 φ dρ dφ dθ = 2πδ
∫ π/4

0

1
5
a5 sin3 φ dφ

= 2πδa5 · 1
60

[
cos 3φ− 9 cosφ

]π/4
0

= 2πδ

(
2
15

a5 −
√

2
12

a5

)
=

1
30

πδ
(
8− 5

√
2

)
a5.

C14S07.027: Set up a coordinate system so that the center of the sphere is at the point with Cartesian
coordinates (a, 0, 0). Then its Cartesian equation is

(x− a)2 + y2 + z2 = a2; x2 − 2ax+ y2 + z2 = 0;

and thus it has spherical-coordinates equation ρ = 2a sinφ cos θ (but note that θ ranges from − 1
2 π to 1

2 π).
We plan to find its moment of inertia with respect to the z-axis, and the square of the distance of a point of
the sphere from the z-axis is

x2 + y2 = ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ = ρ2 sin2 φ.

Moreover, if the sphere has mass m and constant density δ, then we also have m = 4
3πa

3δ. Finally,

Iz =
∫ π/2

−π/2

∫ π

0

∫ 2a sinφ cos θ

0

δρ2 sin2 φ dρ dφ dθ = 2δ
∫ π/2

0

∫ π

0

1
5
(2a sinφ cos θ)5 sin3 φ dφ dθ

=
64
5
δa5

∫ π/2

0

∫ π

0

sin8 φ cos5 θ dφ dθ =
128
5

δa5

∫ π/2

0

∫ π/2

0

sin8 φ cos5 θ dφ dθ

=
128
5

δa5 ·
(∫ π/2

0

sin8 φ dφ

)
·
(∫ π/2

0

cos5 θ dθ

)
.

Then Formula (113) from the long table of integrals (see the endpapers) yields

Iz =
128
5

δa5 · 1
2
· 3
4
· 5
6
· 7
8
· π

2
· 2
3
· 4
5

=
28
15

πδa5 =
4
3
πδa3 · 7

5
a2 =

7
5
ma2.

C14S07.028: We will find its moment of inertia with respect to the z-axis (which contains a diameter)
using density δ = ρ2 at the point (ρ, φ, θ):
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Iz =
∫ 2π

0

∫ π

0

∫ 2a

a

δρ6 sin3 φ dρ dφ dθ = 2πδ
∫ π

0

127
7

δa7 sin3 φ dφ

=
127
42

πa7

[
cos 3φ− 9 cosφ

]π
0

=
1016
21

πa7.

C14S07.029: The surface with spherical-coordinates equation ρ = 2a sinφ is generated as follows. Draw
the circle in the xz-plane with center (a, 0) and radius a. Rotate this circle around the z-axis. This generates
the surface with the given equation. It is called a pinched torus—a doughnut with an infinitesimal hole. Its
volume is

V =
∫ 2π

θ=0

∫ π

φ=0

∫ 2a sinφ

ρ=0

ρ2 sinφ dρ dφ dθ = 2π
∫ π

φ=0

1
3

(2a sinφ)3 sinφ dφ

=
16
3
πa3 · 2

∫ π/2

φ=0

sin4 φ dφ =
32
3
πa3 · 1

2
· 3
4
· π

2
= 2π2a3.

We evaluated the last integral with the aid of Formula (113) from the long table of integrals (see the
endpapers). The volume of the pinched torus is also easy to evaluate using the first theorem of Pappus
(Section 14.5).

C14S07.030: Draw the cardioid with polar equation r = 1 + sin θ, then replace the y-axis with the z-axis.
Such a cardioid is shown in the following figure.

To generate the surface with spherical-coordinates equation ρ = 1 + cosφ, rotate this cardioid around the
x-axis. The resulting surface resembles an inverted apple. The volume that it bounds is

V =
∫ 2π

0

∫ π

0

∫ 1+cosφ

0

ρ2 sinφ dρ dφ dθ = 2π
∫ π

0

1
3

(1 + cosφ)3 sinφ dφ

= 2π
[
− 1

12
(1 + cosφ)4

]π
0

= 2π · 4
3

=
8
3
π.

C14S07.031: Assuming constant density δ, we have

Ix = 2
∫ 2π

0

∫ a

0

∫ √
4a2−r2

0

δ(r2 sin2 θ + z2) · r dz dr dθ
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= 2δ
∫ 2π

0

∫ a

0

(
1
3
r(4a2 − r2)3/2 + r3(4a2 − r2)1/2 sin2 θ

)
dr dθ

= 2δ
∫ 2π

0

1
30

[
(4a2 − r2)3/2

[
(8a2 + 3r2) cos 2θ − 16a2 − r2

]]a
r=0

dθ

= 2δ
∫ 2π

0

1
30

a5
[
128− 51

√
3 +

(
33
√

3 − 64
)

cos 2θ
]
dθ

=
1
30

δa5

[ (
128− 5

√
3

)
· 2θ +

(
33
√

3 − 64
)

sin 2θ
]2π

0

=
2
15

(
128− 51

√
3

)
δπa5.

C14S07.032: Assuming constant density δ, we have

Iz =
∫ 2π

0

∫ π/6

0

∫ 2a cosφ

0

δρ4 sin3 φ dρ dφ dθ = 2πδ
∫ π/6

0

1
5

(2a cosφ)5 sin3 φ dφ

=
64
5
πδa5

∫ π/6

0

cos5 φ sin3 φ dφ =
64
5
πδa5

∫ π/6

0

(cos5 φ− cos7 φ) sinφ dφ

=
64
5
πδa5

[
1
8

cos8 φ− 1
6

cos6 φ
]π/6
0

=
64
5
πδa5

[
1
8
·
(

3
4

)4

− 1
6
·
(

3
4

)3

− 1
8

+
1
6

]

=
64
5
πδa5 · 67

6144
=

67
480

πδa5.

C14S07.033: If the density at (x, y, z) of the ice-cream cone is z, then its mass and moments are

m =
∫ 2π

0

∫ π/6

0

∫ 2a cosφ

0

ρ3 sinφ cosφdρ dφ dθ = 2π
∫ π/6

0

4a4 sinφ cos5 φ dφ

=
[
−4

3
πa4 cos6 φ

]π/6
0

=
37
48

πa4;

Myz =
∫ 2π

0

(∫ π/6

0

∫ 2a cosφ

0

ρ4 sin2 φ cosφ dρ dφ

)
cos θ dθ

=

(∫ π/6

0

∫ 2a cosφ

0

ρ4 sin2 φ cosφ dρ dφ

)
·
[

sin θ
]2π

0

= 0;

Mxz = 0 (by a similar computation);

Mxy =
∫ 2π

0

∫ π/6

0

∫ 2a cosφ

0

ρ4 sinφ cos2 φ dρ dφ dθ = 2π
∫ π/6

0

32
5
a5 cos7 φ sinφ dφ

= 2π ·
[
−4

5
a5 cos8 φ

]π/6
0

=
35
32

πa5.

Hence the centroid is located at the point
(

0, 0,
105
74

a

)
.
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C14S07.034: The moment of inertia of the ice-cream cone of Problem 33 with respect to the z-axis is

Iz =
∫ 2π

0

∫ π/6

0

∫ 2a cosφ

0

(ρ cosφ) · (ρ sinφ)2 · ρ2 sinφ dρ dφ dθ = 2π
∫ π/6

0

32
3
a6 cos7 φ sin3 φ dφ

=
1

240
πa6

[
cos 10φ+ 5 cos 8φ+ 5 cos 6φ− 20 cos 4φ− 70 cos 2φ

]π/6
0

=
47
240

πa6.

C14S07.035: The similar star with uniform density k has mass m2 = 4
3 kπa

3. The other star has mass

m1 =
∫ 2π

0

∫ π

0

∫ a

0

k

[
1−

(ρ
a

)2 ]
· ρ2 sinφ dρ dφ dθ = 2π

∫ π

0

[
5ka2ρ3 sinφ− 3kρ5 sinφ

15a2

]a
0

dφ

= 2π
∫ π

0

2
15

ka3 sinφ dφ =
[
− 4

15
kπa3 cosφ

]π
0

=
8
15

kπa3.

Finally,
m1

m2
=

2
5
.

C14S07.036: The moment of inertia of the first star of Problem 35 with respect to its diameter that lies
on the z-axis is

Iz =
∫ 2π

0

∫ π

0

∫ a

0

k

[
1−

( ρ

a

)2 ]
· ρ4 sin3 φ dρ dφ dθ = 2π

∫ π

0

[
7ka2ρ5 sin3 φ− 5kρ7 sin3 φ

35a2

]a
0

dφ

= 2π
∫ π

0

2
35

ka5 sin3 φ dφ =
1

105
πka5

[
cos 3φ− 9 cosφ

]π
0

=
16
105

πka5.

C14S07.037: The given triple integral takes the following form:

∫ 2π

0

∫ π

0

∫ a

0

ρ2 exp
(
−ρ3

)
sinφ dρ dφ dθ = 2π

∫ π

0

[
−1

3
exp

(
−ρ3

)
sinφ

]a
0

dφ

= 2π
∫ π

0

1
3
[
1− exp

(
−a3

) ]
sinφ dφ =

4
3
π
[
1− exp

(
−a3

) ]
.

Clearly the value of the integral approaches
4
3
π as a→ +∞.

C14S07.038: If the given integral is evaluated over the ball B of Problem 37, the result is

∫ 2π

0

∫ π

0

∫ a

0

ρ3 exp
(
−ρ2

)
sinφ dρ dφ dθ = 2π

∫ π

0

[
−1

2
(ρ2 + 1) exp

(
−ρ2

)
sinφ

]a
0

dφ

= 2π
∫ π

0

1
2

[
1− (a2 + 1) exp

(
−a2

) ]
sinφ dφ = π

[ {
(a2 + 1) exp

(
−a2

)
− 1

}
cosφ

]π
0

= 2π
[
1− (a2 + 1) exp

(
−a2

) ]
.

Now let a→ +∞ to see that the value of the integral given in the statement of this problem is 2π.

C14S07.039: Let V = 4
3 πa

3, the volume of the ball. The average distance of points of such a ball from
its center is then
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d =
1
V

∫ 2π

0

∫ π

0

∫ a

0

ρ3 sinφ dρ dφ dθ =
2π
V

∫ π

0

1
4
a4 sinφ dφ =

πa4

2V

[
− cosφ

]π
0

=
πa4

V
=

3
4
a.

Note that the answer is both plausible and dimensionally correct.

C14S07.040: The key to solving such problems is to keep the integrand as simple as possible. To do so we
set up a coordinate system in which the ball is centered at the point with Cartesian coordinates (0, 0, a).
Thus the bounding spherical surface has spherical-coordinates equation ρ = 2a cosφ where 0 � φ � 1

2 π and
0 � θ � 2π. Let V = 4

3 πa
3, the volume of the ball. The average distance of points of the ball from its south

pole (at the origin) is then

d =
1
V

∫ 2π

0

∫ π/2

0

∫ 2a cosφ

0

ρ3 sinφ dρ dφ dθ

=
2π
V

∫ π/2

0

4a4 cos4 φ sinφ dφ =
2π
V

[
−4

5
a4 cos5 φ

]π/2
0

=
2π
V
· 4
5
a4 =

6
5
a.

As in the solution of Problem 39, note that the answer is both plausible and dimensionally correct.

C14S07.041: A Mathematica solution:

m = Integrate[ Integrate[ delta∗a∧2∗Sin[ phi ], { phi, 0, Pi } ],

{ theta, 0, 2∗Pi } ]

4πa2δ

r = a∗Sin[ phi ];

I0 = Integrate[ Integrate[ r∧2∗delta∗a∧2∗Sin[ phi ], { phi, 0, Pi } ],

{ theta, 0, 2∗Pi } ]

8
3
πa4δ

I0/m

2
3
a2 —C.H.E.

Second solution, by hand: The spherical surface S of radius a is described by ρ = a, 0 � φ � π,
0 � θ � 2π. Hence its moment of inertia with respect to the z-axis is

Iz =
∫∫

S

δ(x2 + y2) dA =
∫ 2π

θ=0

∫ π

φ=0

δa4 sin3 φ dφ dθ

= 2πδa4

∫ π

0

(1− cos2 φ) sinφ dφ = 2πδa4

[
1
3

cos3 φ − cosφ

]π
0

=
(

2
3
a2

)
· 4πδa2 =

2
3
ma2.

C14S07.042: A Mathematica solution:

m = Integrate[ Integrate[ Integrate[ delta∗rho∧2∗Sin[ phi ],

{ rho, a, b } ], { phi, 0, Pi } ], { theta, 0, 2∗Pi } ]

13



4
3
πδ(b3 − a3)

r = rho∗Sin[ phi ];

I0 = Integrate[ Integrate[ Integrate[ delta∗r∧2∗delta∗rho∧2∗Sin[ phi ],

{ rho, a, b } ], { phi, 0, Pi } ], { theta, 0, 2∗Pi } ]

8
15

πδ(b5 − a5)

Simplify[ I0/m ]

2
5
· b

5 − a5

b3 − a3
—C.H.E.

Second solution, by hand: Let r =
√
x2 + y2 denote the usual radial polar coordinate. Then the

moment of inertia of the solid with respect to the z-axis is

Iz =
∫ 2π

θ=0

∫ π

φ=0

∫ b

ρ=a

δr2ρ2 sinφ dρ dφ dθ = 2πδ
∫ π

0

∫ b

a

ρ4 sin3 φ dρ dφ

= 2πδ
(
b5 − a5

5

)∫ π

0

sin3 φ dφ = 2πδ
(
b5 − a5

5

)
· 4
3

=
8
15

πδ(b5 − a5).

The mass of the shell S is m = 4
3πδ(b

3 − a3), and therefore

Iz =
4
3
πδ(b3 − a3) · 2(b5 − a5)

5(b3 − a3)
=

2
5
m · b

5 − a5

b3 − a3
=

2
5
mc2

where c2 =
b5 − a5

b3 − a3
.

C14S07.043: A Mathematica solution:

z = Sqrt[ b∧2 − a∧2 ];

m = 2∗Integrate[ Integrate[ delta∗r∗z, { r, a, b } ], { theta, 0, 2∗Pi } ]

4
3
πδ(b2 − a2)3/2

I0 = 2∗Integrate[ Integrate[ delta∗r∧3∗z, { r, a, b } ], { theta, 0, 2∗Pi } ]

4
15

πδ(2b4 + b2a2 − 3a4)
√
b2 − a2

Simplify[ I0/m ]

1
5

(3a2 + 2b2) —C.H.E.

Second solution, by hand: Choose a coordinate system so that the z-axis is the axis of symmetry of the
sphere-with-hole. The central cross section of the solid in the xz-plane is bounded by the circle with polar
(or cylindrical coordinates) equation r2 + z2 = b2. Hence the mass of the solid is

m = 2
∫ 2π

θ=0

∫ b

r=a

∫ √
b2−r2

z=0

δr dz dr dθ = 4πδ
∫ b

a

r(b2 − r2)1/2 dr

14



= 4πδ

[
− 1

3
(b2 − r2)3/2

]b
a

=
4
3
πδ(b2 − a2)3/2.

The moment of inertia of this solid with respect to the z-axis is

Iz = 2
∫ 2π

θ=0

∫ b

r=a

∫ √
b2−r2

z=0

δr3 dz dr dθ = 4πδ
∫ b

a

r3(b2 − r2)1/2 dr.

Integration by parts with u = r2, dv = (b2 − r2)1/2 dr, so that

du = 2r dr and v = − 1
3
(b2 − r2)3/2,

then yields

Iz = 4πδ

([
− 1

3
r2(b2 − r2)3/2

]b
a

+
2
3

∫ b

a

r(b2 − r2)3/2 dr

)

= 4πδ

(
1
3
a2(b2 − a2)3/2 +

2
3

[
− 1

5
(b2 − r2)5/2

]b
a

)

=
4
15

πδ

[
5a2(b2 − a2)3/2 + 2(b2 − a2)(b2 − a2)3/2

]
=

4
15

πδ(b2 − a2)3/2(5a2 + 2b2 − 2a2)

=
4
3
πδ(b2 − a2)3/2 · 1

5
(3a2 + 2b2) =

1
5
m(3a2 + 2b2).

C14S07.044: As we examine Fig. 14.7.15(b), with the positive x-axis to the east and the positive y-axis to
the north, we see that one-sixteenth of the solid is bounded below by the region R in the xy-plane described
in polar (cylindrical) coordinates by

0 � r � 1, 0 � θ � π

4

and above by part of the cylindrical surface with equation x2 + z2 = 1 (not y2 + z2 = 1; over R, that
surface is higher). We get the total volume V of the solid of Problem 44 by multiplying by 16:

V = 16
∫ π/4

θ=0

∫ 1

r=0

∫ √
1−r2 cos2 θ

z=0

r dz dr dθ = 16
∫ π/4

0

∫ 1

0

r
√

1− r2 cos2 θ dr dθ

= 16
∫ π/4

0

[
− (1− r2 cos2 θ)3/2

3 cos2 θ

]1

r=0

dθ =
16
3

∫ π/4

0

(
1

cos2 θ
− (1− cos2 θ)3/2

cos2 θ

)
dθ

=
16
3

∫ π/4

0

1− sin3 θ

cos2 θ
dθ =

16
3

∫ π/4

0

1− (1− cos2 θ) sin θ
cos2 θ

dθ

=
16
3

∫ π4

0

1 + cos2θ sin θ − sin θ
cos2 θ

dθ =
16
3

∫ π/4

0

(sec2 θ + sin θ − sec θ tan θ) dθ

=
16
3

[
tan θ − cos θ − sec θ

]π/4
0

=
16
3

(
3− 3

2

√
2

)
= 8

(
2−
√

2
)
≈ 4.68629150101523961.
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Replacement of (1 − cos2θ)3/2 with sin3θ in the third line is permitted because sin θ is nonnegative on R.
(Thus we have avoided the “pitfall” indicated in the solution of Problem 10.) The plausibility of the answer
is enhanced by the observation that a sphere of radius 1 will fit snugly within the boundary of the region
bounded by all three cylinders, and the volume of such a sphere is approximately 4.18879020478639098.

Second solution: Mathematica 3.0 presents the last antiderivative in such a way as to produce a seemingly
improper integral, so care must be taken in the computer algebra solution. We write t for θ here, as usual;
recall also that the symbol “ % ” refers to the last output.

16∗Integrate[ r, { z, 0, Sqrt[ 1 − (r∗Cos[t])∧2 ] } ]

16r
√

1− r2 cos2 t

Integrate[ %, r ]

8
(√

2− r2 − r2 cos 2t
)
· 1
3

√
2

(
r2 − sec2 t

)

(% /. r → 1) − (% /. r → 0)

16
3

sec2t +
(
8
√

1− cos 2t
)
· 1
3

√
2

(
1− sec2 t

)

Integrate[ %, t ]

16
3

tan t−
(√

1− cos 2t
)
· 1
3

√
2 (16 cot t+ 8 tan t)

Limit[ %, t → Pi/4 ] − Limit[ %, t → 0 ]

16
3
− 8
√

2 +
32
3

= 16− 8
√

2

N[ %, 40 ]

4.68629150101523960958649020632241537144

C14S07.045: First we let g(φ, θ) = 6 + 3 cos 3θ sin 5φ, so that the boundary of the bumpy sphere B has
spherical equation ρ = g(φ, θ). Then the volume V of B is simply

V =
∫ 2π

θ=0

∫ π

φ=0

∫ g(φ,θ)

ρ=0

ρ2 sinφ dρ dφ dθ.

To evaluate V with the aid of Mathematica 3.0, we write r in place of ρ, f instead of φ, and t for θ, as
usual. Then, to find the volume V of B step-by-step, we proceed as follows:

Integrate[ r∗r∗Sin[f], r ]

1
3
ρ3 sinφ

% /. r → g[f,t]

1
3
(sinφ)(6 + 3 cos 3θ sin 5φ)3

Integrate[ %, f ]

3
78848

[−2247168 cosφ− 19712 cos 9φ+ 16128 cos 11φ− 177408 cos(φ− 6θ)
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− 9856 cos(9φ− 6θ) + 8064 cos(11φ− 6θ)− 177408 cos(φ+ 6θ)

− 9856 cos(9φ+ 6θ) + 8064 cos(11φ+ 6θ) + 2772 sin(4φ− 9θ)

− 1848 sin(6φ− 9θ)− 264 sin(14φ− 9θ) + 231 sin(16φ− 9θ)

+ 185724 sin(4φ− 3θ)− 123816 sin(6φ− 3θ)− 792 sin(14φ− 3θ)

+ 693 sin(16φ− 3θ) + 185724 sin(4φ+ 3θ)− 123816 sin(6φ+ 3θ)

− 792 sin(14φ+ 3θ) + 693 sin(16φ+ 3θ) + 2772 sin(4φ+ 9θ)− 1848 sin(6φ+ 9θ)

− 264 sin(14φ+ 9θ) + 231 sin(16φ+ 9θ) ]

(% /. f → Pi) - (% /. f → 0) // FullSimplify

12 (157 + 25 cos 6θ)
11

Integrate[ %, t ]

1884θ + 50 sin 6θ
11

(% /. t → 2∗Pi) - (% /. t → 0)

3768π
11

N[ %, 60 ]

1076.138283520576447502476388017924266069590311789503624849396

Thus V = 3768
11 π ≈ 1076.13828352.

C14S07.046: First we let g(φ, θ) = 6 + 3 cos 3θ sin 5φ. To find the moment of the bumpy sphere with
respect to the yz-plane, we computed

Myz =
∫ 2π

θ=0

∫ π

φ=0

∫ g(φ,θ)

ρ=0

ρ3 sin2φ cos θ dρ dφ dθ

by executing the following Mathematica commands:

Integrate[ r∧3∗(Sin[f])∧2∗Cos[t], { r, 0, g[f,t] } ];

Integrate[ %, { f, 0, Pi } ];

Integrate[ %, { t, 0, 2∗Pi } ]

0

Therefore x = 0. Similarly, we found that

Mxz =
∫ 2π

θ=0

∫ π

φ=0

∫ g(φ,θ)

ρ=0

ρ3 sin2φ sin θ dρ dφ dθ = 0

and

Mxy =
∫ 2π

θ=0

∫ π

φ=0

∫ g(φ,θ)

ρ=0

ρ3 sinφ cos θ dρ dφ dθ = 0.

17



α

φ ρ

w

c
P

(0,0,0)

(0,0,c)

Thus the centroid of the bumpy sphere is, indeed, located at its center (0, 0, 0). (We suppressed the
“intermediate output” in this solution because it is quite long, as in the solution of Problem 45.)

C14S07.047: The following figure makes some of the equations we use easy to derive.

A mass element δ dV located at the point P (ρ, φ, θ) of the ball exerts a force on the mass m at (0, 0, c)
that has vertical component

dF = −Gmδ cosα
w2

dV.

Note the following:

M =
4
3
πδa3;

w2 = ρ2 + c2 − 2ρc cosφ;

2w dw = 2ρc sinφ dφ;

w cosα+ ρ cosφ = c;

ρ cosφ =
ρ2 + c2 − w2

2c
;

ρ sinφ dφ =
w

c
dw.

Hence the total force exerted by the ball on m is

F = −
∫ 2π

θ=0

∫ a

ρ=0

∫ π

φ=0

Gmδ cosα
w2

· ρ2 sinφ dφ dρ dθ = −
∫ 2π

0

∫ a

0

∫ π

0

Gmδw cosα
w3

· ρ2 sinφ dφ dρ dθ

= −2π
∫ a

0

∫ π

0

Gmδ

w3
(c− ρ cosφ) · ρ2 sinφ dφ dρ = −2π

∫ a

0

∫ c+ρ

c−ρ

Gmδ

w3

(
c− ρ2 + c2 − w2

2c

)
· ρw
c

dw dρ

= −2π
∫ a

ρ=0

∫ c+ρ

w=c−ρ

Gmδ

w3
· 2c

2 − ρ2 − c2 + w2

2c
· ρ · w

c
dw dρ

18



α

φ ρ

w

c
P

(0,0,0)

(0,0,c)

= −πGmδ

∫ a

0

∫ c+ρ

c−ρ

1
w2
· c

2 − ρ2 + w2

c2
· ρ dw dρ = −πGmδ

c2

∫ a

0

∫ c+ρ

c−ρ

(
c2 − ρ2

w2
+ 1

)
· ρ dw dρ

= −πGmδ

c2

∫ a

0

ρ ·
[
ρ2 − c2

w
+ w

]c+ρ
w=c−ρ

dρ = −πGmδ

c2

∫ a

0

ρ ·
(
ρ2 − c2

ρ+ c
+ c+ ρ+

c2 − ρ2

c− ρ
− c+ ρ

)
dρ

= −πGmδ

c2

∫ a

0

ρ(ρ− c+ ρ+ c+ c+ ρ− c+ ρ) dρ = −πGmδ

c2

∫ a

0

4ρ2 dρ = −πGmδ

c2
·
[

4
3
ρ3

]a
0

= −πGmδ

c2
· 4
3
a3 = −4

3
πδa3 · Gm

c2
= −GMm

c2
.

Magnificent! You can even extend this result to show that if the density of the ball varies only as a function
of ρ, then the same conclusion follows: The ball acts, for purposes of gravitational attraction of an external
mass m, as if all its mass M were concentrated at its center. And note one additional item of interest: This
is one of the extremely rare spherical triple integrals not evaluated in the order dρ dφ dθ.

C14S07.048: The following figure makes some of the equations we use easy to derive.

A mass element δ dV located at the point P (ρ, φ, θ) of the ball exerts a force on the mass m at (0, 0, c)
that has vertical component

dF =
Gmδ cosα

w2
dV.

Note the following:

M =
4
3
πδa3;

w2 = ρ2 + c2 − 2ρc cosφ;

2w dw = 2ρc sinφ dφ;

w cosα+ ρ cosφ = c;
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ρ cosφ =
ρ2 + c2 − w2

2c
;

ρ sinφ dφ =
w

c
dw.

Hence the total force exerted by the ball on m is

F =
∫ 2π

θ=0

∫ b

ρ=a

∫ π

φ=0

Gmδ cosα
w2

· ρ2 sinφ dφ dρ dθ =
∫ 2π

0

∫ b

a

∫ π

0

Gmδw cosα
w3

· ρ2 sinφ dφ dρ dθ

= 2π
∫ b

a

∫ π

0

Gmδ

w3
(c− ρ cosφ) · ρ2 sinφ dφ dρ = 2π

∫ b

a

∫ c+ρ

ρ−c

Gmδ

w3

(
c− ρ2 + c2 − w2

2c

)
· ρw
c

dw dρ

= 2π
∫ b

ρ=a

∫ c+ρ

w=ρ−c

Gmδ

w3
· 2c

2 − ρ2 − c2 + w2

2c
· ρ · w

c
dw dρ

= πGmδ

∫ b

a

∫ c+ρ

ρ−c

1
w2
· c

2 − ρ2 + w2

c2
· ρ dw dρ =

πGmδ

c2

∫ b

a

∫ c+ρ

ρ−c

(
c2 − ρ2

w2
+ 1

)
· ρ dw dρ

=
πGmδ

c2

∫ b

a

ρ ·
[
ρ2 − c2

w
+ w

]c+ρ
w=ρ−c

dρ =
πGmδ

c2

∫ b

a

ρ ·
(
ρ2 − c2

ρ+ c
+ c+ ρ− ρ2 − c2

ρ− c
+ c− ρ

)
dρ

=
πGmδ

c2

∫ b

a

ρ(ρ− c+ ρ+ c− ρ− c+ c− ρ) dρ =
πGmδ

c2

∫ b

a

0 dρ = 0.

The key difference between this derivation and that in the solution of Problem 47 is that the lower limit of
integration on w is here ρ− c rather than c− ρ. The reason for the change is that here we have c � ρ, so
that when φ = 0 we have w2 = (ρ− c)2 and thus w = ρ− c.

C14S07.049: A Mathematica solution:

r = 6370∗1000; k = 0.371;

d1 = 11000; d2 = 5000;

m1 = (4/3)∗Pi∗d1∗x∧3;

m2 = (4/3)∗Pi∗d2∗(r∧3 - x∧3);

m = m1 + m2;

i1 = (2/5)∗m1∗x∧2;

By Problem 42, the moment of inertia of the mantle with respect to the polar axis (through the poles of the
planet) is

i2 = (2/5)∗m2∗(r∧5 - x∧5)/(r∧3 - x∧3);

Therefore we proceed to solve for x as follows.

i0 = i1 + i2;

eq1 = i0 == k∗m∗r∧2;
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soln = NSolve[ eq1, x ];

We suppress the output, but there are five solutions. Only two are real and positive,

x1 ≈ 2.76447× 106 and x2 ≈ 5.87447× 106.

We are given the information that the mantle is “a few thousand kilometers thick,” and x2 does not satisfy
this condition, as it implies that the mantle is less than 496 km thick. We conclude that the radius of the
core is x1/1000 km, and hence that the thickness of the mantle is (r − x1)/1000 ≈ 3605.53 km. —C.H.E.
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Section 14.8

C14S08.001: The surface area element is

dS =
√

1 + 12 + 32 dA =
√

11 dA.

So the area in question is

A = 4
∫ 2

x=0

∫ 3
√

1−(x/2)2

y=0

√
11 dy dx =

∫ 2

0

6
√

11
√

4− x2 dx

=
[
3x
√

11
√

4− x2 + 12
√

11 arcsin
(x

2

) ]2

0

= 6π
√

11 ≈ 62.5169044565658738.

C14S08.002: The surface area element is

dS =
√

1 + 22 + 22 dA = 3 dA.

So the area in question is

A =
∫ 1

0

∫ √
x

x2
3 dy dx =

∫ 1

0

(3x1/2 − 3x2) dx =
[
2x3/2 − x3

]1

0

= 1.

C14S08.003: The paraboloid meets the plane in the circle with equation x2 + y2 = 4, z = 5. Let D
denote the circular disk x2 + y2 � 4 in the xy-plane. The surface area element is

dS =
√

1 + 4x2 + 4y2 dA,

so the surface area in question is

A =
∫∫

D

√
1 + 4x2 + 4y2 dA =

∫ 2π

θ=0

∫ 2

r=0

r
√

1 + 4r2 dr dθ = 2π ·
[

1
12

(1 + 4r2)3/2
]2

0

= 2π

(
17
√

17 − 1
12

)
=

1
6
π

(
17
√

17 − 1
)
≈ 36.1769031974114084.

C14S08.004: The surface area element is

dS =
√

1 + x2 dA,

so the area is

A =
∫ 1

0

∫ x

0

√
1 + x2 dy dx =

∫ 1

0

x(1 + x2)1/2 dx =
[

1
3

(1 + x2)3/2
]1

0

=
1
3

(
2
√

2 − 1
)
≈ 0.609475708249.

C14S08.005: The surface area element is

dS =
√

2 + 4y2 dA,

so the area is

1



A =
∫ 2

y=0

∫ 1

x=0

(2 + 4y2)1/2 dx dy =
∫ 2

y=0

(2 + 4y2)1/2 dy =
[

1
2
y(2 + 4y2)1/2 +

1
2
arcsinh

(
y
√

2
) ]2

0

= 3
√

2 +
1
2
arcsinh

(
2
√

2
)

= 3
√

2 +
1
2

ln
(
3 + 2

√
2

)
≈ 5.1240142741388282.

C14S08.006: The surface area element is dS =
√

2 + 4y2 dA, so the surface area is

A =
∫ 1

0

∫ y

0

(2 + 4y2)1/2 dx dy =
∫ 1

0

y(2 + 4y2)1/2 dy =
[

1
12

(2 + 4y2)3/2
]1

0

=
1
6

(
3
√

6 −
√

2
)
≈ 0.9890426199607321.

C14S08.007: The surface area element is dS =
√

14 dA, so the surface area is

A =
∫ 3

x=0

∫ (6−2x)/3

y=0

√
14 dy dx =

∫ 3

0

1
3

(6− 2x)
√

14 dx =
[
2x
√

14 − 1
3
x2
√

14
]3

0

= 3
√

14 .

Alternatively, the vectors u = 〈−3, 2, 0 〉 and v = 〈−3, 0, 6 〉 span two adjacent sides of the triangular
surface. So its area is half the magnitude of their cross product:

A =
1
2
|u×v| = 1

2
|〈12, 18, 6 〉| = 1

2

√
504 = 3

√
14 ≈ 11.22497216032182415675.

C14S08.008: The surface area element is dS =
√

14 dA. Hence the surface area is

A =
∫ 2π

0

∫ √
2

0

r
√

14 dr dθ = 2π ·
[

1
2
r2
√

14
]√

2

0

= 2π
√

14 ≈ 23.5095267170779957.

C14S08.009: The surface area element is dS =
√

1 + x2 + y2 dA, so the surface area is

A =
∫ 2π

θ=0

∫ 1

r=0

r(1 + r2)1/2 dr dθ = 2π ·
[

1
3

(1 + r2)3/2
]1

0

=
2
3
π

(
2
√

2 − 1
)
≈ 3.8294488151512928.

C14S08.010: The surface area element is dS =
√

1 + 4x2 + 4y2 dA, so the surface area is

∫ 2π

0

∫ 2

0

r(1 + 4r2)1/2 dr dθ = 2π ·
[

1
12

(1 + 4r2)3/2
]2

0

=
1
6
π

(
17
√

17 − 1
)
≈ 36.1769031974114084.

C14S08.011: The paraboloid meets the xy-plane in the circle with equation x2 + y2 = 16. The surface
area element is

dS =
√

1 + 4x2 + 4y2 dA,

so the area is

2



A =
∫ 2π

0

∫ 4

0

r(1 + 4r2)1/2 dr dθ = 2π ·
[

1
12

(1 + 4r2)3/2
]4

0

=
1
6
π

(
65
√

65 − 1
)
≈ 273.866639786258.

C14S08.012: Let z(r, θ) = br. Then the surface area element is

dS =
√
r2 + (rzr)2 + (zθ)2 dA = r

√
1 + b2 dA,

so the surface area is

A =
∫ 2π

0

∫ a

0

r(1 + b2)1/2 dr dθ = 2π ·
[

1
2
r2(1 + b2)1/2

]a
0

= πa
√
a2 + a2b2 = πa

√
a2 + h2 = πaL.

Note that when you use Eq. (10), you should see dr dθ where you are accustomed to see r dr dθ.

C14S08.013: Let r(θ, z) = 〈 a cos θ, a sin θ, z 〉. Then

rθ × rz =

∣∣∣∣∣∣∣∣∣

i j k

−a sin θ a cos θ 0

0 0 1

∣∣∣∣∣∣∣∣∣
= 〈 a cos θ, a sin θ, 0 〉

and hence

|rθ × rz | =
√
a2 cos2 θ + a2 sin2 θ = a.

Therefore, by Eq. (8), the area of the zone is

A =
∫ 2π

θ=0

∫ h

z=0

a dz dθ = 2π ·
[
az

]h
z=0

= 2πah.

C14S08.014: Let z(r, θ) =
√
a2 − r2 . Then the surface area element in cylindrical coordinates is

dS =
√
r2 + (rzr)2 + (zθ)2 dA =

ar√
a2 − r2

dA.

Thus by Eq. (10), the area of the zone is

A =
∫ 2π

0

∫ √
a2−b2

√
a2−c2

ar√
a2 − r2

dr dθ = 2π ·
[
−a(a2 − r2)1/2

]√
a2−b2

√
a2−c2

= 2π(ac− ab) = 2πa(c− b) = 2πah.

C14S08.015: Let z(x, y) =
√
a2 − x2 . Then the surface area element in Cartesian coordinates is

dS =
a√

a2 − x2
dA.

Let D be the disk in which the vertical cylinder meets the xy-plane. Then the area of the part of the
horizontal cylinder—top and bottom—that lies within the vertical cylinder is
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A = 2
∫∫

D

a√
a2 − x2

dA =
∫ 2π

θ=0

∫ a

r=0

2a√
a2 − r2 cos2 θ

· r dr dθ

=
∫ 2π

θ=0

[
−2a(a2 − r2 cos2 θ)1/2

cos2 θ

]a
r=0

dθ = 4
∫ π/2

θ=0

2a2(sec2 θ − sec θ tan θ) dθ = 8a2

[
tan θ − sec θ

]π/2
0

= 8a2 + 8a2 ·
(

lim
θ→(π/2)−

[
tan θ − sec θ

])
= 8a2 + 8a2 · 0 = 8a2.

The change in the limits of integration in the second line was necessary because we needed the simplification
(1 − cos2 θ)1/2 = sin θ, which is not valid if π < θ < 2π; moreover, we needed to avoid the discontinuity of
the following improper integral at θ = π/2.

C14S08.016: Let z(r, θ) =
√
a2 − r2 . Then the surface area element in cylindrical coordinates is

dS =
√
r2 + (rzr)2 + (zθ)2 dA =

ar√
a2 − r2

dA.

Hence, by Eq. (10), the area of the part of the sphere (top and bottom) that lies within the cylinder is

A = 2
∫ π

0

∫ a sin θ

0

ar√
a2 − r2

dr dθ =
∫ π

0

[
− 2a(a2 − r2)1/2

]a sin θ

0

dθ

= 2
∫ π/2

0

2a2(1− cos θ) dθ = 4a2

[
θ − sin θ

]π/2
0

= 4a2
(π

2
− 1

)
= 2a2(π − 2) ≈ (2.283185307180)a2.

The change of limits of integration in the second line is necessary because the important simplification
(a2 − a2 sin2 θ)1/2 = a cos θ is not valid on the interval 1

2 π < θ < π. The student who fails to notice this
will probably obtain the incorrect answer 2πa2.

C14S08.017: The surface y = f(x, z) is parametrized by

r(x, z) = 〈x, f(x, z), z 〉

for (x, z) in the region R in the xz-plane. Then

rx × rz =

∣∣∣∣∣∣∣∣∣

i j k

1 fx 0

0 fz 1

∣∣∣∣∣∣∣∣∣
= 〈 fx, −1, fz 〉.

Therefore the area of the surface y = f(x, z) lying “over” the region R is

A =
∫∫

R

√
1 +

(
∂f

∂x

)2

+
(
∂f

∂z

)2

dx dz.

The surface x = f(y, z) is parametrized by

r(y, z) = 〈 f(y, z), y, z 〉

for (y, z) in the region R in the xz-plane. Then
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ry × rz =

∣∣∣∣∣∣∣∣∣

i j k

fy 1 0

fz 0 1

∣∣∣∣∣∣∣∣∣
= 〈 1, −fy, −fz 〉.

Therefore the area of the surface x = f(y, z) lying “over” the region R is

A =
∫∫

R

√
1 +

(
∂f

∂y

)2

+
(
∂f

∂z

)2

dy dz.

C14S08.018: The equations in (6) take the form

x = a sinφ cos θ, y = a sinφ sin θ, z = a cosφ,

and hence the spherical surface corresponding to the region R in the φθ-plane is parametrized by

r(φ, θ) = 〈 a sinφ cos θ, a sinφ sin θ, a cosφ 〉.

Thus

rφ × rθ =

∣∣∣∣∣∣∣∣∣

i j k

a cosφ cos θ a cosφ sin θ −a sinφ

−a sinφ sin θ a sinφ cos θ 0

∣∣∣∣∣∣∣∣∣
= 〈 a2 sin2 φ cos θ, a2 sin2 φ sin θ, a2 sinφ cosφ 〉.

Therefore

|rφ × rθ | =
√
a4 sin4 φ cos2 θ + a4 sin4 φ sin2 θ + a4 sin2 φ cos2 φ = a2 sinφ.

Thus, by Eq. (8), the surface area of the part of the sphere corresponding to R is

A =
∫∫

R

a2 sinφ dφ dθ.

C14S08.019: By Problem 50 of Section 14.2,

A =
∫ θ2

θ1

∫ φ2

φ1

a2 sinφ dφ dθ = a2 sin φ̂ ∆φ ∆θ

for some φ̂ in (φ1, φ2). Therefore

∆V =
∫ ρ2

ρ1

(ρ2 sin φ̂ ∆φ ∆θ) dρ =
1
3
(ρ3

2 − ρ3
1) sin φ̂ ∆φ ∆θ

=
1
3
· ρ

3
2 − ρ3

1

ρ2 − ρ1
sin φ̂ ∆φ ∆θ ∆ρ =

1
3
· 3ρ̂2 sin φ̂ ∆φ ∆θ ∆ρ = ρ̂2 sin φ̂ ∆ρ ∆φ ∆θ

for some ρ̂ in (ρ1, ρ2), and this is Eq. (8) of Section 14.7.
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C14S08.020: See the solution of Problem 29 of Section 14.7. The surface area of this pinched torus can
be computed (without the second theorem of Pappus) as follows. First parametrize it via

r(φ, θ) = 〈 2a sin2 φ cos θ, 2a sin2 φ sin θ, 2a sinφ cosφ 〉

where 0 � φ � π and 0 � θ � 2π. (To verify that this parametrization is correct, execute the Mathematica

3.0 command

ParametricPlot3D[ { 2∗Sin[u]∗Sin[u]∗Cos[v], 2∗Sin[u]∗Sin[u]∗Sin[v], 2∗Sin[u]∗Cos[u] },
{u, 0, Pi}, {v, 0, 2∗Pi}, AspectRatio → Automatic ];

to see a copy of the pinched torus for the case a = 1.) Next,

rφ = 〈 4a sinφ cosφ cos θ, 4a sinφ cosφ sin θ, 2a cos2 φ− 2a sin2 φ 〉 and

rθ = 〈−2a sin2 φ sin θ, 2a sin2 φ cos θ, 0 〉.

After some lengthy computations, you will find that |rφ × rθ | = 4a2 sin2 φ. Hence the surface area of the
pinched torus is

A =
∫ 2π

θ=0

∫ π

φ=0

4a2 sin2 φ dφ dθ = 2πa2 ·
[
2φ− sin 2φ

]π
0

= 4π2a2.

C14S08.021: Given:

x = f(z) cos θ, y = f(z) sin θ, z = z

where 0 � θ � 2π and a � z � b. The surface thereby generated is thereby parametrized by

r(θ, z) = 〈 f(z) cos θ, f(z) sin θ, z 〉,

and thus

rθ = 〈−f(z) sin θ, f(z) cos θ, 0 〉 and

rz = 〈 f ′(z) cos θ, f ′(z) sin θ, 1 〉.

Therefore

rθ × rz =

∣∣∣∣∣∣∣∣∣

i j k

−f(z) sin θ f(z) cos θ 0

f ′(z) cos θ f ′(z) sin θ 1

∣∣∣∣∣∣∣∣∣
= 〈 f(z) cos θ, f(z) sin θ, −f(z) · f ′(z) 〉

and hence

|rθ × rz | =
√

[f(z)]2 + [f(z) · f ′(z)]2 = f(z)
√

1 + [f ′(z)]2 .

Thus, by Eq. (8), the area of the surface of revolution is
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A =
∫ 2π

θ=0

∫ b

z=a

f(z)
√

1 + [f ′(z)]2 dz dθ =
∫ b

z=a

2πf(z)
√

1 + [f ′(z)]2 dz.

Compare this with Eq. (8) in Section 6.4.

C14S08.022: Part (a):

A =
∫ 2π

0

∫ π

0

a2 sinφ dφ dθ = 2πa2 ·
[
− cosφ

]π
0

= 4πa2.

Part (b): The area is

A =
∫ 2π

0

∫ π/6

0

a2 sinφ dφ dθ = 2πa2 ·
[
− cosφ

]π/6
0

=
(
2−
√

3
)
πa2,

a little less than 6.6987% of the total surface area of the sphere.

C14S08.023: In the result in Problem 21, take f(z) = r (the constant radius of the cylinder). Then

f(z)
√

1 +
[
f ′(z)

]2 = r,

so the curved surface area of the cylinder is

A =
∫ 2π

θ=0

∫ h

z=0

r dz dθ = 2π ·
[
rz

]h
z=0

= 2πrh.

C14S08.024: Let z(x, y) =
√
r2 − x2 . Then

dS =
√

1 + (zx)2 + (zy)2 dA =
r√

r2 − x2
dA.

Then Eq. (9) yields the curved surface area of the cylinder:

A = 4
∫ r

x=0

∫ h

y=0

r√
r2 − x2

dy dx = 4
∫ r

x=0

[
ry√

r2 − x2

]h
y=0

dx

= 4
∫ r

0

rh√
r2 − x2

dx = 4 ·
[
rh arctan

(
x√

r2 − x2

) ]r
x=0

= 4 · πrh
2

= 2πrh.

Why the factor 4? We had to double twice; once because the integral gives only the area of the top of
the cylinder, once again because we integrated only over the interval 0 � x � r rather than the interval
−r � x � r.

C14S08.025: Part (a): The Mathematica 3.0 command

Plot3D[ x∗x + y∗y, {x, -1, 1}, {y, -1, 1}, AspectRatio → Automatic ];
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produced the view of the surface that is shown next.

The surface area element is dS =
√

1 + 4x2 + 4y2 dA, so the area of the surface is

A =
∫ 1

x=−1

∫ 1

y=−1

√
1 + 4x2 + 4y2 dy dx

=
∫ 1

−1

[
1
2
y
√

1 + 4x2 + 4y2 +
1
4

(4x2 + 1) ln
(
2y +

√
1 + 4x2 + 4y2

) ]1

−1

dx

=
∫ 1

−1

[√
4x2 + 5 − 1

4
(4x2 + 1) ln

(
−2 +

√
4x2 + 5

)
+

1
4

(4x2 + 1) ln
(
2 +

√
4x2 + 5

) ]
dx

=
[

2
3
x
√

4x2 + 5 +
7
6

arcsinh
(

2x√
5

)
− 1

6
arctan

(
4x√

4x2 + 5

)

+
1
12
x(4x2 + 3) ln

(
−2 +

√
4x2 + 5

)
+

1
12
x(4x2 + 3) ln

(
2 +

√
4x2 + 5

) ]1

−1

= 4 +
7
3

arcsinh

(
2
√

5
5

)
− 1

3
arctan

(
4
3

)
+

7
6

ln 5 ≈ 7.44625672301236346326.

Part (b): By symmetry, we integrate over the quarter of the square that lies in the first quadrant and
multiply by 4. Thus the area is

A = 4
∫ 1

x=0

∫ 1−x

y=0

√
1 + 4x2 + 4y2 dy dx

=
∫ 1

0

[
2y

√
1 + 4x2 + 4y2 + (4x2 + 1) ln

(
2y +

√
1 + 4x2 + 4y2

) ]1−x

0

dx

=
∫ 1

0

[
2(1− x)

√
1 + 4(1− x)2 + 4x2 − (1 + 4x2) ln

(√
1 + 4x2

)

+ (1 + 4x2) ln
(
2(1− x) +

√
1 + 4(1− x)2 + x2

) ]
dx

=
[

1
3

(4x− 2x2 − 1)
√

8x2 − 8x+ 5 +
5
√

2
6

arcsinh

(√
6
3

[2x− 1]

)
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− 1
6

arctan

(
72 + 288x2 − 25(4x+ 1)

√
8x2 − 8x+ 5

184x2 − 200x− 29

)

+
1
6

arctan

(
−72− 288x2 + 25(4x+ 1)

√
8x2 − 8x+ 5

184x2 − 200x− 29

)

− 1
3
x(4x2 + 3) ln

(√
1 + 4x2

)
+

1
3
x(4x2 + 3) ln

(
2− 2x+

√
8x2 − 8x+ 5

) ]1

0

=
2
√

5
3

+
5
√

2
3

arcsinh

(√
6
3

)
− 1

6
arctan

(
72− 25

√
5

71

)
− 1

6
arctan

(
72− 25

√
5

29

)

+
1
6

arctan

(
25
√

5 − 72
29

)
+

1
6

arctan

(
25
√

5 − 72
71

)
≈ 3.0046254342814410.

Of course it was Mathematica 3.0 that computed and evaluated the antiderivatives in this solution.

C14S08.026: Part (a): The surface area element is

dS =
√

1 + (zx)2 + (zy)2 dA =

√
1 +

x2

x2 + y2
+

y2

x2 + y2
dA =

√
2 dA.

Hence the area of the surface is

∫ 1

x=−1

∫ 1

y=−1

√
2 dy dx = 4

√
2 ≈ 5.6568542494923802.

Part (b): By symmetry, we integrate over the quarter of the square that lies in the first quadrant, then
multiply by 4. The area is thus

4
∫ 1

x=0

∫ 1−x

y=0

√
2 dy dx =

1
2
· 4
√

2 = 2
√

2 ≈ 2.8284271247461901.

In both cases we integrated the constant function by multiplying its value by the area of the domain of the
integral.

C14S08.027: Part (a): The following graph of the surface was generated by the Mathematica 3.0 command

Plot3D[ 1 + x∗y, {x, -1, 1}, {y, -1, 1} ];
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The surface area element is dS =
√

1 + x2 + y2 dA. Hence the surface area is

∫ 1

x=−1

∫ 1

y=−1

√
1 + x2 + y2 dy dx =

∫ 1

−1

[
1
2
y
√

1 + x2 + y2 +
1
2

(1 + x2) ln
(
y +

√
1 + x2 + y2

) ]1

−1

dx

=
∫ 1

−1

[√
2 + x2 − 1

2
(1 + x2) ln

(
−1 +

√
2 + x2

)
+

1
2

(1 + x2) ln
(
1 +

√
2 + x2

) ]
dx

=
[

2
3
x
√

2 + x2 +
4
3
arcsinh

(
x
√

2
2

)
− 2

3
arctan

(
x√

2 + x2

)

− 1
6
x(3 + x2) ln

(
−1 +

√
2 + x2

)
+

1
6
x(3 + x2) ln

(
1 +

√
2 + x2

) ]1

−1

=
4
√

3
3
− 2

9
π +

8
3

arcsinh

(√
2
2

)
− 4

3
ln

(
−1 +

√
3

)
+

4
3

ln
(
1 +
√

3
)
≈ 5.123157101094.

Part (b): Using symmetry, we integrate over the quarter of the square in the first quadrant and multiply
the answer by 4. Thus the surface area is

4
∫ 1

x=0

∫ 1−x

y=0

√
1 + x2 + y2 dy dx =

∫ 1

0

[
2y

√
1 + x2 + y2 + 2(1 + x2) ln

(
y +

√
1 + x2 + y2

) ]1

0

dx

=
∫ 1

0

[
2(1− x)

√
2x2 − 2x+ 2 − 2(1 + x2) ln

(√
1 + x2

)

+ 2(1 + x2) ln
(
1− x+

√
2x2 − 2x+ 2

) ]
dx

=
[

1
3

(4x− 2x2 − 1)
√

2x2 − 2x+ 2 +
7
√

2
6

arcsinh
(

2x− 1√
3

)
+

4
3

arctan

(√
2x2 − 2x+ 2

x+ 1

)

− 2
3
x(3 + x2) ln

(√
1 + x2

)
+

2
3
x(3 + x2) ln

(
1− x+

√
2x2 − 2x+ 2

) ]1

0

=
2
√

2
3

+
7
√

2
3

arcsinh

(√
3
3

)
+

4
3

arctan

(√
2
2

)
− 4

3
arctan

(√
2

)
≈ 2.302310960471.

C14S08.028: The surface area element is

dS =

√
1 +

x2

4− x2 − y2
+

y2

4− x2 − y2
dA =

2√
4− x2 − y2

dA.

Part (a): The surface area is double the integral of dS because half of the surface is above the xy-plane
and half is below. Thus the area is
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∫ 1

x=−1

∫ 1

y=−1

4√
4− x2 − y2

dy dx =
∫ 1

−1

[
4 arctan

(
y√

4− x2 − y2

) ]1

−1

dx

=
∫ 1

−1

8 arctan
(

1√
3− x2

)
dx

=
[
8 arcsin

(
x√
3

)
+ 8x arctan

(
1√

3− x2

)
+ 8 arctan

(
3− 2x√
3− x2

)

− 8 arctan
(

3 + 2x√
3− x2

) ]1

−1

= 16 arcsin

(√
3
3

)
+ 32 arctan

(√
2
2

)
− 16 arctan

(
5
√

2
2

)
≈ 8.8205695749204929.

Part (b): Using symmetry, we integrate dS over the quarter of the square in the first quadrant, multiply
by 4, then multiply by 2 as well because half of the surface is above the xy-plane and half is below. Thus
the area is

8
∫ 1

x=0

∫ 1−x

y=0

2√
4− x2 − y2

dy dx =
∫ 1

0

[
16 arctan

(
y√

4− x2 − y2

) ]1−x

0

dx

=
∫ 1

0

16 arctan
(

1− x√
3 + 2x− 2x2

)
dx

=
[
8
√

2 arcsin
(

2x− 1√
7

)
+ 16x arctan

(
1− x√

3 + 2x− 2x2

)

− 16 arctan
(

5− 3x√
3 + 2x− 2x2

)
− 16 arctan

(
5x+ 1

3
√

3 + 2x− 2x2

) ]1

0

= 16
√

2 arcsin
(

1√
7

)
+ 16 arctan

(
1

3
√

3

)
− 32 arctan

(
2√
3

)
+ 16 arctan

(
5√
3

)

≈ 4.183189651006409398670043719362732266.

C14S08.029: We readily verify that x, y, and z satisfy the equation

x2

a2
+
y2

b2
=

z

c

of an elliptic paraboloid. For a typical graph, we executed the Mathematica commmands

a = 2; b = 1; c = 3;

x = a∗u∗Cos[v]; y = b∗u∗Sin[v]; z = c∗u∧2;

ParametricPlot3D[ { x, y, z }, { u, 0, 1 }, { v, 0, 2∗Pi } ];
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and the resulting graph is next. —C.H.E.

C14S08.030: We readily verify that x, y, and z satisfy the equation

x2

a2
+
y2

b2
+
z2

c2
= 1

of an ellipsoid. For a typical example, we executed the Mathematica commands

a = 2; b = 1; c = 1;

x = a∗Sin[u]∗Cos[v]; y = b∗Sin[u]∗Sin[v]; z = c∗Cos[u];

ParametricPlot3D[ { x, y, z }, { u, 0, Pi }, { v, 0, 2∗Pi } ];

and the result is shown next. —C.H.E.

C14S08.031: We readily verify that x, y, and z satisfy the equation

z2

c2
− x2

a2
− y2

b2
= 1

of a hyperboloid of two sheets. To see the upper half of a typical example, we executed the following
Mathematica commands:

a = 2; b = 1; c = 4;

12
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0

2-1

0

1

-2

-1

0

1

2

-1

0

1

-2

-1

0

1

2

x = a∗Sinh[u]∗Cos[v]; y = b∗Sinh[u]∗Sin[v]; z = c∗Cosh[u];

ParametricPlot3D[ { x, y, z }, { u, 0, 1 }, { v, 0, 2∗Pi } ];

and the result is next. —C.H.E.

C14S08.032: It’s easy to verify that x, y, and z satislfy the equation

x2

a2
+
y2

b2
− z2

c2
= 1

of a hyperboloid of one sheet. To graph a typical example, we executed the Mathematica commands

a = 2; b = 1; c = 2;

x = a∗Cosh[u]∗Cos[v]; y = b∗Cosh[u]∗Sin[v]; z = c∗Sinh[u];

ParametricPlot3D[ { x, y, z }, { u, -1, 1 }, { v, 0, 2∗Pi } ];

and the result is shown next. —C.H.E.

C14S08.033: The ellipsoid is parametrized via

r(φ, θ) = 〈4 sinφ cos θ, 3 sinφ sin θ, 2cosφ 〉.

Then
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rφ = 〈 4 cosφ cos θ, 3 cosφ sin θ, −2 sinφ 〉 and

rθ = 〈−4 sinφ sin θ, 3 sinφ cos θ, 0 〉.

It now follows that

rφ × rθ = 〈 6 sin2 φ cos θ, 8 sin2 φ sin θ, 12 sinφ cosφ 〉,

so that

|rφ × rθ | =
√

36 sin4 φ cos2 θ + 144 sin2 φ cos2 φ+ 64 sin4 φ sin2 θ .

We used the NIntegrate command in Mathematica 3.0 to approximate the surface area of the ellipsoid; it
is

∫ 2π

θ=0

∫ π

φ=0

(36 sin4 φ cos2 θ + 144 sin2 φ cos2 φ+ 64 sin4 φ sin2 θ)1/2 dφ dθ ≈ 111.545774984838.

C14S08.034: Part (a): Begin with the ellipse

(
x− b
a

)2

+
(
z

c

)2

= 1,

and note that this equation is satisfied if

x− b
a

= cosψ and
z

c
= sinψ.

With the aid of a figure much like Fig. 14.8.13, we see that the ellipsoidal torus generated by rotation of this
ellipse around the z-axis is parametrized by

x = (b+ a cosψ) cos θ, y = (b+ a cosψ) sin θ, z = c sinψ

where 0 � θ � 2π and 0 � ψ � 2π.

Part (b): Parametrize the surface of revolution via r(ψ, θ) where the components of r are those given in
Part (a), but using a = 2, b = 3, and c = 1. Then

rψ = 〈−2 sinψ cos θ, −2 sinψ sin θ, cosψ 〉;

rθ = 〈−(3 + 2 cosψ) sin θ, (3 + 2 cosψ) cos θ, 0 〉;

rψ × rθ = 〈−(3 + 2 cosψ) cosψ cos θ, −(3 + 2 cosψ) cosψ sin θ, −2(3 sinψ + sin 2ψ) 〉;

|rψ × rθ | =
[

(5− 3 cos 2ψ)(3 + 2 cosψ)2

2

]1/2
.

It follows that the surface area of the ellipsoid is

A =
∫ 2π

θ=0

∫ 2π

ψ=0

[
(5− 3 cos 2ψ)(3 + 2 cosψ)2

2

]1/2
dψ dθ = 2π

∫ 2π

0

[
(5− 3 cos 2ψ)(3 + 2 cosψ)2

2

]1/2
dψ.
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The command

2∗Pi∗NIntegrate[ Sqrt[ (1/2)∗(5 - 3∗Cos[2*t])*(3 + 2∗Cos[t])∧2 ],

{t, 0, 2∗Pi}, WorkingPrecision → 32 ]

in Mathematica 3.0 returns the approximation A ≈ 182.622946526146.

Part (c): Let

f(x) =
[
1− (x− 3)2

4

]1/2
.

The graph of f is the top half of the ellipse. Hence the length of the ellipse is

L = 2
∫ 5

1

√
1 +

[
f ′(x)

]2
dx =

∫ 5

1

[
3x2 − 18x+ 11
x2 − 6x+ 5

]1/2
dx.

Note that this integral is improper at each endpoint of the interval [1, 5]. A Mathematica 3.0 command
similar to the one in Part (b) yields the approximation L ≈ 9.688448220548.
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Section 14.9

C14S09.001: It is easy to solve the given equations for

x =
u + v

2
, y =

u− v

2
.

Hence

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣

1
2

1
2

1
2

−1
2

∣∣∣∣∣∣∣
= −1

2
.

C14S09.002: It is easy to solve the given equations for

x =
u + 2v

7
, y =

v − 3u
7

.

Thus

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣

1
7

2
7

−3
7

1
7

∣∣∣∣∣∣∣
=

1
7
.

C14S09.003: When we solve the equations u = xy and v = y/x for x and y, we find that there are two
solutions:

x =
√

u

v
, y =

√
uv and x = −

√
u

v
, y = −

√
uv .

It doesn’t matter which we choose; the value of the Jacobian will be the same. (Why?) So we choose the
first solution. Then

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣

1
2u1/2v1/2

− u1/2

2v3/2

v1/2

2u1/2

u1/2

2v1/2

∣∣∣∣∣∣∣∣
=

1
2v

.

C14S09.004: When we solve the equations u = 2(x2 + y2), v = 2(x2 − y2) for x and y, we get four
solutions—all possible combinations of

x = ±
√
u + v

2
, y = ±

√
u− v

2
.

We choose the solution for which x and y are both nonnegative. Then

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

1
4
√
u + v

1
4
√
u + v

1
4
√
u− v

− 1
4
√
u− v

∣∣∣∣∣∣∣∣∣
= − 1

8
√
u2 − v2

.

C14S09.005: When we solve the equations u = x+ 2y2, v = x− 2y2 for x and y, we get two solutions:

1



x =
u + v

2
, y = ±

√
u− v

2
.

We choose the solution for which y is nonnegative. Then

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

1
2

1
2

1
4
√
u− v

− 1
4
√
u− v

∣∣∣∣∣∣∣∣∣
= − 1

4
√
u− v

.

C14S09.006: Given

u =
2x

x2 + y2
, v = − 2y

x2 + y2
, (1)

note first that

u2 + v2 =
4x2 + 4y2

(x2 + y2)2
=

4
x2 + y2

,

so that

x2 + y2 =
4

u2 + v2
. (2)

Therefore, using the equations in (1), then Eq. (2), we have

x =
1
2
u(x2 + y2) =

2u
u2 + v2

and y = −1
2
v(x2 + y2) = − 2v

u2 + v2
.

Then

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣∣

2(v2 − u2)
(u2 + v2)2

− 4uv
(u2 + v2)2

4uv
(u2 + v2)2

2(v2 − u2)
(u2 + v2)2

∣∣∣∣∣∣∣∣∣∣
=

4
(u2 + v2)2

.

C14S09.007: First we solve the equations u = x+ y and v = 2x− 3y for

x =
3u + v

5
, y =

2u− v

5
.

Substitution in the equation x+ y = 1 then yields

1 =
3u + v

5
+

2u− v

5
=

5u
5

= u.

Similarly, x+ y = 2 yields u = 2, 2x− 3y = 2 yields v = 2, and 2x− 3y = 5 yields v = 5. Moreover,

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

3
5

1
5

2
5

−1
5

∣∣∣∣∣∣∣∣∣
= −1

5
.
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Therefore

∫∫
R

1 dy dx =
∫ 5

v=2

∫ 2

u=1

1
5
du dv = 3 · 1 · 1

5
=

3
5
.

Note: Because R is a parallelogram with adjacent sides represented by the two vectors a = 〈 3
5 ,

2
5 , 0 〉 and

b = 〈 3
5 , −

3
5 , 0 〉, we have the following alternative method of finding the area A of R:

a×b =

∣∣∣∣∣∣∣∣∣∣∣

i j k

3
5

2
5

0

3
5

−3
5

0

∣∣∣∣∣∣∣∣∣∣∣
=

〈
0, 0, −3

5

〉
,

and therefore A = |a×b| = 3
5
.

C14S09.008: Given u = xy and v =
y

x
, we have

uv = xy · y
x

= y2 and
u

v
= xy · x

y
= x2,

and thus we choose

x =
√

u

v
and y =

√
uv . (1)

Then

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣∣

1
2u1/2v1/2

− u1/2

2v3/2

v1/2

2u1/2

u1/2

2v1/2

∣∣∣∣∣∣∣∣∣∣
=

1
2v

.

Also, if y = x, then substitution of the equations in (1) yields

(uv)1/2 =
u1/2

v1/2
; uv =

u

v
; v2 = 1.

So we choose v = 1. (This choice implies that if we have a similar choice with u, we must choose u > 0
because of the equations in (1).) Similarly, y = 2x yields v = 2, xy = 1 yields u = 1, and xy = 2 yields
u = 2. Hence the area of the region of Fig. 14.9.7 is

A =
∫∫

R

1 dx dy =
∫ 2

v=1

∫ 2

u=1

1
2v

du dv =
∫ 2

1

1
2v

dv =
1
2

ln 2 ≈ 0.3465735902799727.

C14S09.009: If u = xy and v = xy3, then

uy2 = xy3 = v, so that y2 =
v

u
; y =

v1/2

u1/2
.

Then
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x =
u

y
= u · u

1/2

v1/2
=

u3/2

v1/2
.

(We do not need the solution in which x and y are negative.) Then

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣∣

3u1/2

2v1/2
− u3/2

2v3/2

− v1/2

2u3/2

1
2u1/2v1/2

∣∣∣∣∣∣∣∣∣∣
=

3
4v
− 1

4v
=

1
2v

.

We also find by substitution that xy = 2 corresponds to u = 2, xy = 4 corresponds to u = 4, xy3 = 3
corresponds to v = 3, and xy3 = 6 corresponds to v = 6. Hence the area of the region shown in Fig. 14.9.8
is

A =
∫∫

D

1 dx dy =
∫ 6

v=3

∫ 4

u=2

1
2v

du dv =
∫ 6

3

1
v
dv = ln 2 ≈ 0.6931471805599453.

C14S09.010: If y = ux2 and x = vy2, then

y = uv2y4; y3 =
1
uv2

; y =
1

u1/3v2/3
.

Then it follows that

x = vy2 =
v

u2/3v4/3
=

1
u2/3v1/3

.

Next,

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

− 2
3u5/3v1/3

− 1
3u2/3v4/3

− 1
3u4/3v2/3

− 2
3u1/3v5/3

∣∣∣∣∣∣∣∣∣
=

1
3u2v2

.

Next, y = x2 corresponds to u = 1, y = 2x2 corresponds to u = 2, x = y2 corresponds to v = 1, and
x = 4y2 corresponds to v = 4. Therefore the area of the region shown in Fig. 14.9.9 is

A =
∫∫

R

1 dx dy =
∫ 4

v=1

∫ 2

u=1

1
3u2v2

du dv =
∫ 4

v=1

[
− 1

3uv2

]2

u=1

dv =
∫ 4

1

1
6v2

dv =
[
− 1

6v

]4

1

=
1
8
.

C14S09.011: Given: the region R bounded by the curves y = x3, y = 2x3, x = y3, and x = 4y3. Choose
u and v so that y = ux3 and x = vy3. Then

y = uv3y9; y8 =
1
uv3

;

y =
1

u1/8v3/8
; x = vy3 =

v

u3/8v9/8
=

1
u3/8v1/8

.

Then the curve y = x3 can be written as
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1
u1/8v3/8

=
1

u9/8v3/8
;

u1/8v3/8 = u9/8v3/8;

u = 1.

Similarly, the curve y = 2x3 corresponds to u = 2, the curve x = y3 corresponds to v = 1, and the curve
x = 4y3 corresponds to v = 4. Next,

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

− 3
8u11/8v1/8

− 1
8u3/8v9/8

− 1
8u9/8v3/8

− 3
8u1/8v11/8

∣∣∣∣∣∣∣∣∣
=

1
8u3/2v3/2

.

Hence the area of R is

∫∫
R

1 dx dy =
∫ 4

v=1

∫ 2

u=1

1
8u3/2v3/2

du dv =
∫ 4

v=1

[
− 1

4u1/2v3/2

]2

u=1

dv =
∫ 4

1

(
1

4v3/2
− 1

4
√

2 v3/2

)
dv

=
[√

2 − 2
4v1/2

]4

1

=
2−
√

2
8

≈ 0.07322330470336311890.

C14S09.012: The transformation

u =
2x

x2 + y2
, v =

2y
x2 + y2

yields

u2 + v2 =
4(x2 + y2)
(x2 + y2)2

=
4

x2 + y2
; x2 + y2 =

4
u2 + v2

;

x =
1
2
u · (x2 + y2) =

2u
u2 + v2

; y =
1
2
v · (x2 + y2) =

2v
u2 + v2

.

The circle x2 + y2 = 2x is thereby transformed into

4
u2 + v2

=
4u

u2 + v2
: u = 1.

Similarly, the other three circles are transformed into u = 1
3 , v = 1, and v = 1

4 . The Jacobian of this
transformation is

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣∣

−2(u2 − v2)
(u2 + v2)2

− 4uv
(u2 + v2)2

− 4uv
(u2 + v2)2

−2(v2 − u2)
(u2 + v2)2

∣∣∣∣∣∣∣∣∣∣
= − 4

(u2 + v2)2
.

Note also that
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(x2 + y2)2 =
16

(u2 + v2)2
, so that

1
(x2 + y2)2

=
(u2 + v2)2

16
.

Therefore

∫∫
R

1
(x2 + y2)2

dx dy =
∫ 1/4

v=1

∫ 1/3

u=1

(u2 + v2)2

16
· 4
(u2 + v2)2

du dv

=
∫ 1/4

v=1

∫ 1/3

u=1

1
4
du dv =

(
−3

4

)
·
(
−2

3

)
· 1
4

=
1
8
.

C14S09.013: The Jacobian of the transformation x = 3r cos θ, y = 2r sin θ is

∂(x, y)
∂(r, θ)

=

∣∣∣∣∣∣
3 cos θ −3r sin θ

2 sin θ 2r cos θ

∣∣∣∣∣∣ = 6r cos2 θ + 6r sin2 θ = 6r.

The ellipse
x2

9
+

y2

4
= 1 is transformed into

9r2 cos2 θ
9

+
4r2 sin2 θ

4
= 1 : the circle r = 1.

The paraboloid has equation

z = x2 + y2 = 9r2 cos2 θ + 4r2 sin2 θ.

Therefore the volume of the solid is

V =
∫ 2π

θ=0

∫ 1

r=0

(9r2 cos2 θ + 4r2 sin2 θ) · 6r dr dθ =
∫ 2π

0

(
27
2

cos2 θ + 6 sin2 θ

)
dθ

=
∫ 2π

0

(
6 +

15
2
· 1 + cos 2θ

2

)
dθ =

[
39
4
θ +

15
8

sin 2θ
]2π

0

=
39
2
π ≈ 61.26105674500096815.

C14S09.014: The Jacobian of the transformation x = au, y = bv, z = cw (a, b, and c are positive
constants) is

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣∣∣∣

a 0 0

0 b 0

0 0 c

∣∣∣∣∣∣∣∣∣
= abc.

The ellipsoid with equation

x2

a2
+

y2

b2
+

z2

c2
= 1

becomes the sphere S with equation u2 + v2 + w2 = 1. Let B denote the ball bounded by that sphere.
Then the volume of the ellipsoid is
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V =
∫∫∫

R

1 dx dy dz =
∫∫∫

B

abc dV =
4
3
πabc.

C14S09.015: We are given the transformation u = xy, v = xz, w = yz. Then uvw = x2y2z2. Hence

u1/2v1/2w1/2 = xyz = uz : z =
v1/2w1/2

u1/2
;

u1/2v1/2w1/2 = xyz = vy : y =
u1/2w1/2

v1/2
;

u1/2v1/2w1/2 = xyz = wx : x =
u1/2v1/2

w1/2
.

The surface xy = 1 corresponds to the plane u = 1. Similarly, the other surfaces correspond to the planes
u = 4, v = 1, v = 9, w = 4, and w = 9. The Jacobian of the given transformation is

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v1/2

2u1/2w1/2

u1/2

2v1/2w1/2
−u

1/2v1/2

2w3/2

w1/2

2u1/2v1/2
−u

1/2w1/2

2v3/2

u1/2

2v1/2w1/2

−v
1/2w1/2

2u3/2

w1/2

2u1/2v1/2

v1/2

2u1/2w1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= − 1
2u1/2v1/2w1/2

.

Therefore the volume bounded by the surfaces is

V =
∫ 9

w=4

∫ 9

v=1

∫ 4

u=1

1
2u1/2v1/2w1/2

du dv dw =
∫ 9

4

∫ 9

1

[
u1/2

v1/2w1/2

]4

u=1

dv dw

=
∫ 9

4

∫ 9

1

1
v1/2w1/2

dv dw =
∫ 9

4

[
2v1/2

w1/2

]9

v=1

dw =
∫ 9

4

4
w1/2

dw =
[
8w1/2

]9

4

= 8.

C14S09.016: We are given the solid bounded by the paraboloids z = x2 + y2 and z = 4(x2 + y2) and the
planes z = 1 and z = 4. We are also given the transformation

x =
r

t
cos θ, y =

r

t
sin θ, z = r2.

Under this transformation, the plane z = 1 corresponds to r = 1 and the plane z = 4 corresponds to r = 2.
The paraboloid z = x2 + y2 corresponds to

r2 =
r2

t2
cos2 θ +

r2

t2
sin2 θ =

r2

t2
,

thus to t = 1. The other paraboloid yields t = 2. Finally, to obtain the entire solid, θ varies from 0 to 2π.
The Jacobian of the given transformation is
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∂(x, y, z)
∂(r, θ, t)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
t

cos θ −r
t

sin θ − r

t2
cos θ

1
t

sin θ
r

t
cos θ − r

t2
sin θ

2r 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2r
(
r2

t3
sin2 θ +

r2

t3
cos2 θ

)
=

2r3

t3
.

Hence the volume of the solid is

V =
∫ 2π

θ=0

∫ 2

r=1

∫ 2

t=1

2r3

t3
dt dr dθ = 2π

∫ 2

1

[
− r3

t2

]2

t=1

dr

= 2π
∫ 2

1

3
4
r3 dr =

3
2
π

[
1
4
r4

]2

1

=
45
8
π ≈ 17.67145867644258696635.

C14S09.017: The substitution x = u + v, y = u− v transforms the rotated ellipse x2 + xy + y2 = 3 into
the ellipse S in “standard position,” in which its axes lie on the coordinate axes. The resulting equation of
S (in the uv-plane) is 3u2 + v2 = 3. The Jacobian of this transformation is

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣
1 1

1 −1

∣∣∣∣∣∣ = −2.

Therefore

I =
∫∫

R

exp(−x2 − xy − y2) dx dy = 2
∫∫

S

exp(−3u2 − v2) du dv. (1)

The substitution u = r cos θ, v = r
√

3 sin θ has Jacobian

∂(u, v)
∂(r, θ)

=

∣∣∣∣∣∣
cos θ −r sin θ

√
3 sin θ r

√
3 cos θ

∣∣∣∣∣∣ = r
√

3 (cos2 θ + sin2 θ) = r
√

3 .

This transformation, applied to the bounding ellipse of the region S, yields

3 = 3u2 + v2 = 3r2 cos2 θ + 3r2 sin2 θ = 3r2,

and thereby transforms it into the circle with polar equation r = 1. Then substitution in the second integral
in Eq. (1) yields

I = 2
∫∫

S

exp(−3u2 − u2) du dv = 2
∫ 2π

θ=0

∫ 1

r=0

r
√

3 exp(−3r2) dr dθ

= 4π
√

3
[
−1

6
exp(−3r2)

]1

0

=
2
3
π
√

3
(
1− e−3

)
≈ 3.44699122256300138528.

C14S09.018: Remember that x = x(u, v), y = y(u, v), u = u(x, y), and v = v(x, y). Then
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∂(x, y)
∂(u, v)

· ∂(u, v)
∂(x, y)

=

∣∣∣∣∣∣
xu xv

yu yv

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
ux uy

vx vy

∣∣∣∣∣∣

=

∣∣∣∣∣∣
xuux + xvvx xuuy + xvvy

yuux + yvvx yuuy + yvvy

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∂x

∂x

∂x

∂y

∂y

∂x

∂y

∂y

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣ = 1.

C14S09.019: Suppose that k is a positive constant. First we need an integration by parts with

u = ρ2 and dv = ρ exp(−kρ2) dρ :

du = 2ρ dρ and v = − 1
2k

exp(−kρ2).

Thus

∫
ρ3 exp(−kρ2) dρ = − 1

2k
ρ2 exp(−kρ2) +

∫
1
k
ρ exp(−kρ2) dρ

= − 1
2k

ρ2 exp(−kρ2)− 1
2k2

exp(−kρ2) + C.

Then the improper triple integral given in Problem 19 will be the limit of Ia as a→ +∞, where

Ia =
∫ 2π

θ=0

∫ π

φ=0

∫ a

ρ=0

ρ3 exp(−kρ2) sinφ dρ dφ dθ

= 2π
[
− cosφ

]π
φ=0

[
− 1

2k
ρ2 exp(−kρ2)− 1

2k2
exp(−kρ2)

]a
ρ=0

= 4π
[
− 1

2k
a2 exp(−ka2)− 1

2k2
exp(−ka2) +

1
2k2

]
.

Because k > 0, it is clear that Ia →
2π
k2

as a→ +∞.

C14S09.020: Given: The solid ellipsoid R with constant density δ and boundary surface with equation

x2

a2
+

y2

b2
+

z2

c2
= 1 (1)

(where a, b, and c are positive constants). The transformation

x = aρ sinφ cos θ, y = bρ sinφ sin θ, z = cρ cosφ

has Jacobian
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J =
∂(x, y, z)
∂(ρ, φ, θ)

=

∣∣∣∣∣∣∣∣∣

a sinφ cos θ aρ cosφ cos θ −aρ sinφ sin θ

b sinφ sin θ bρ cosφ sin θ bρ sinφ cos θ

c cosφ −cρ sinφ 0

∣∣∣∣∣∣∣∣∣

= abcρ2 cos2 φ sinφ cos2 θ + abcρ2 sin3 φ cos2 θ + abcρ2 cos2 φ sinφ sin2 θ + abcρ2 sin3 φ sin2 θ

= abcρ2 sinφ.

This transformation also transforms the ellipsoidal surface of Eq. (1) into

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ + ρ2 cos2 φ = ρ2 sin2 φ+ ρ2 cos2 φ = ρ2 = 1,

and thereby transforms R into the solid ball B of radius 1 and center at the origin. Therefore the mass of
the ellipsoid is

M =
∫ 2π

θ=0

∫ π

φ=0

∫ 1

ρ=0

δabcρ2 sinφ dρ dφ dθ = 2πδabc
∫ π

φ=0

1
3

sinφ dφ = 2πδabc
[
−1

3
cosφ

]π
0

=
4
3
πδabc.

C14S09.021: Given: The solid ellipsoid R with constant density δ and boundary surface with equation

x2

a2
+

y2

b2
+

z2

c2
= 1 (1)

(where a, b, and c are positive constants). The transformation

x = aρ sinφ cos θ, y = bρ sinφ sin θ, z = cρ cosφ

has Jacobian

J =
∂(x, y, z)
∂(ρ, φ, θ)

=

∣∣∣∣∣∣∣∣∣

a sinφ cos θ aρ cosφ cos θ −aρ sinφ sin θ

b sinφ sin θ bρ cosφ sin θ bρ sinφ cos θ

c cosφ −cρ sinφ 0

∣∣∣∣∣∣∣∣∣

= abcρ2 cos2 φ sinφ cos2 θ + abcρ2 sin3 φ cos2 θ + abcρ2 cos2 φ sinφ sin2 θ + abcρ2 sin3 φ sin2 θ

= abcρ2 sinφ.

This transformation also transforms the ellipsoidal surface of Eq. (1) into

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ + ρ2 cos2 φ = ρ2 sin2 φ+ ρ2 cos2 φ = ρ2 = 1,

and thereby transforms R into the solid ball B of radius 1 and center at the origin. Therefore the moment
of inertia of the ellipsoid with respect to the z-axis is
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Iz =
∫ 2π

θ=0

∫ π

φ=0

∫ 1

ρ=0

(ρ2 sin2 φ)(a2 cos2 θ + b2 sin2 θ)δabcρ2 sinφ dρ dφ dθ

=
∫ 2π

0

∫ π

0

[
1
5

(δabcρ5 sin3 φ)(a2 cos2 θ + b2 sin2 θ)
]1

ρ=0

dφ dθ

=
∫ 2π

0

∫ π

0

1
5

(δabc sin3 φ)(a2 cos2 θ + b2 cos2 θ) dφ dθ

=
1
60

δabc

∫ 2π

0

[
(cos 3φ− 9 cosφ)(a2 cos2 θ + b2 sin2 θ)

]π
0

dθ

=
4
15

δabc

∫ 2π

0

(a2 cos2 θ + b2 sin2 θ) dθ =
1
15

δabc

[
2a2θ + 2b2θ + a2 sin 2θ − b2 sin 2θ

]2π

0

=
1
15

δabc(4πa2 + 4πb2).

Because the mass of the sphere (found in the solution of Problem 20) is M = 4
3πδabc, we see that

Iz
M

=
1
5

(a2 + b2), and hence that Iz =
1
5
M(a2 + b2).

C14S09.022: Given u = xy and v =
y

x
, we have

uv = xy · y
x

= y2 and
u

v
= xy · x

y
= x2,

and thus we choose

x =
√

u

v
and y =

√
uv . (1)

The Jacobian of this transformation is

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣∣

1
2u1/2v1/2

− u1/2

2v3/2

v1/2

2u1/2

u1/2

2v1/2

∣∣∣∣∣∣∣∣∣∣
=

1
2v

.

Also, if y = x, then substitution of the equations in (1) yields

(uv)1/2 =
u1/2

v1/2
; uv =

u

v
; v2 = 1.

So we choose v = 1. (This choice implies that if we have a similar choice with u, we must choose u > 0
because of the equations in (1).) Similarly, y = 2x yields v = 2, xy = 1 yields u = 1, and xy = 2 yields
u = 2. Hence the area of the region of Fig. 14.9.7 is

A =
∫∫

R

1 dx dy =
∫ 2

v=1

∫ 2

u=1

1
2v

du dv =
∫ 2

1

1
2v

dv =
1
2

ln 2 ≈ 0.3465735902799727.

Its moments with respect to the coordinate axes are
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My =
∫ 2

v=1

∫ 2

u=1

1
2v
· u

1/2

v1/2
du dv =

∫ 2

v=1

[
u3/2

3v3/2

]2

u=1

dv =
∫ 2

1

2
√

2 − 1
3v3/2

dv =
[

2− 4
√

2
3v1/2

]2

1

=
5
√

2 − 6
3

;

Mx =
∫ 2

v=1

∫ 2

u=1

1
2v
·
√
uv du dv =

∫ 2

v=1

[
u3/2

3v1/2

]2

u=1

dv

=
∫ 2

1

2
√

2 − 1
3v1/2

dv =
[

4
√

2 − 2
3

v1/2

]2

1

=
10− 6

√
2 ,

3
.

Hence the coordinates of its centroid are

(x, y) =

(
10
√

2 − 12
3 ln 2

,
20− 12

√
2

3 ln 2

)
≈ (1.030149480423, 1.456851366485) .

C14S09.023: If u = xy and v = xy3, then

uy2 = xy3 = v, so that y2 =
v

u
; y =

v1/2

u1/2
.

Then

x =
u

y
= u · u

1/2

v1/2
=

u3/2

v1/2
.

(We do not need the solution in which x and y are negative.) Then

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣∣

3u1/2

2v1/2
− u3/2

2v3/2

− v1/2

2u3/2

1
2u1/2v1/2

∣∣∣∣∣∣∣∣∣∣
=

3
4v
− 1

4v
=

1
2v

.

We also find by substitution that xy = 2 corresponds to u = 2, xy = 4 corresponds to u = 4, xy3 = 3
corresponds to v = 3, and xy3 = 6 corresponds to v = 6. Hence the area of the region shown in Fig. 14.9.8
is

A =
∫∫

D

1 dx dy =
∫ 6

v=3

∫ 4

u=2

1
2v

du dv =
∫ 6

3

1
v
dv = ln 2 ≈ 0.6931471805599453.

Its moments with respect to the coordinate axes are

My =
∫ 6

v=3

∫ 4

u=2

1
2v
· u

3/2

v1/2
du dv =

∫ 6

v=3

[
u5/2

5v3/2

]4

u=2

dv =
∫ 6

3

32− 4
√

2
5v3/2

dv

=
[

8
√

2 − 64
5v1/2

]6

3

=
72
√

3 − 40
√

6
15

;

Mx =
∫ 6

v=3

∫ 4

u=2

1
2v
· v

1/2

u1/2
du dv =

∫ 6

v=3

[
u1/2

v1/2

]4

u=2

dv =
∫ 6

3

2−
√

2
v1/2

dv

=
[ (

4− 2
√

2
)
v1/2

]6

3

= 6
√

6 − 8
√

3 .
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Therefore its centroid is located at the point

(x, y) =

(
72
√

3 − 40
√

6
15 ln 2

,
6
√

6 − 8
√

3
ln 2

)
≈ (2.570696785449, 1.212631342551) .

C14S09.024: If y = ux2 and x = vy2, then

y = uv2y4; y3 =
1
uv2

; y =
1

u1/3v2/3
.

Then it follows that

x = vy2 =
v

u2/3v4/3
=

1
u2/3v1/3

.

Next,

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

− 2
3u5/3v1/3

− 1
3u2/3v4/3

− 1
3u4/3v2/3

− 2
3u1/3v5/3

∣∣∣∣∣∣∣∣∣
=

1
3u2v2

.

Next, y = x2 corresponds to u = 1, y = 2x2 corresponds to u = 2, x = y2 corresponds to v = 1, and
x = 4y2 corresponds to v = 4. Therefore the area of the region shown in Fig. 14.9.9 is

A =
∫∫

R

1 dx dy =
∫ 4

v=1

∫ 2

u=1

1
3u2v2

du dv =
∫ 4

v=1

[
− 1

3uv2

]2

u=1

dv =
∫ 4

1

1
6v2

dv =
[
− 1

6v

]4

1

=
1
8
.

Its moments with respect to the coordinate axes are

My =
∫ 4

v=1

∫ 2

u=1

1
3u2v2

· 1
u2/3v1/3

du dv =
∫ 4

v=1

[
− 1

5u5/3v7/3

]2

u=1

dv

=
∫ 4

v=1

4− 21/3

20v7/3
dv =

[
3 · 21/2 − 12

80v4/3

]4

1

=
96− 36 · 21/3 + 3 · 22/3

640
;

Mx =
∫ 4

v=1

∫ 2

u=1

1
3u2v2

· 1
u1/3v2/3

du dv =
∫ 4

v=1

[
− 1

4u4/3v8/3

]2

u=1

dv

=
∫ 4

1

4− 22/3

16v8/3
dv =

[
3 · 22/3 − 12

80v5/3

]4

1

=
96 + 3 · 21/3 − 30 · 22/3

640
.

Therefore its centroid is located at the point with coordinates

(x, y) =
(

96− 36 · 21/3 + 3 · 22/3

80
,

96 + 3 · 21/3 − 30 · 22/3

80

)
≈ (0.692563066996, 0.651971644883) .

C14S09.025: Given: The solid ellipsoid R with constant density δ and boundary surface with equation

x2

a2
+

y2

b2
+

z2

c2
= 1 (1)

(where a, b, and c are positive constants). The transformation
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x = aρ sinφ cos θ, y = bρ sinφ sin θ, z = cρ cosφ

has Jacobian

J =
∂(x, y, z)
∂(ρ, φ, θ)

=

∣∣∣∣∣∣∣∣∣

a sinφ cos θ aρ cosφ cos θ −aρ sinφ sin θ

b sinφ sin θ bρ cosφ sin θ bρ sinφ cos θ

c cosφ −cρ sinφ 0

∣∣∣∣∣∣∣∣∣

= abcρ2 cos2 φ sinφ cos2 θ + abcρ2 sin3 φ cos2 θ + abcρ2 cos2 φ sinφ sin2 θ + abcρ2 sin3 φ sin2 θ

= abcρ2 sinφ.

This transformation also transforms the ellipsoidal surface of Eq. (1) into

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ + ρ2 cos2 φ = ρ2 sin2 φ+ ρ2 cos2 φ = ρ2 = 1,

and thereby transforms R into the solid ball B of radius 1 and center at the origin. Note also that

x2 + y2 = a2ρ2 sin2 φ cos2 θ + b2r2 sin2 φ sin2 θ = (ρ2 sin2 φ)(a2 cos2 θ + b2 sin2 θ).

Assume that the solid R has constant density δ. Then its moment of inertia with respect to the z-axis is

Iz =
∫ 2π

θ=0

∫ π

φ=0

∫ 1

ρ=0

(ρ2 sin2 φ)(a2 cos2 θ + b2 sin2 θ)δabcρ2 sinφ dρ dφ dθ

=
∫ 2π

0

∫ π

0

1
5
(δabc sin3 φ)(a2 cos2 θ + b2 sin2 θ) dφ dθ

=
∫ 2π

0

4
15

(δabc)(a2 cos2 θ + b2 sin2 θ) dθ =
4
15

πδabc(a2 + b2) =
1
5
M(a2 + b2)

where M is the mass of the ellipsoid. By symmetry,

Iy =
4
15

πδabc(a2 + c2) =
1
5
M(a2 + c2) and Ix =

4
15

πδabc(b2 + c2) =
1
5
M(b2 + c2).

C14S09.026: Assume that the solid of Problem 16 has constant density δ. By symmetry its centroid lies
on the z-axis. A consequence of the solution of Problem 16 is that the solid has mass M = 45

8 πδ. Its moment
with respect to the xy-plane is

Mxy =
∫ 2π

θ=0

∫ 2

r=1

∫ 2

t=1

2
(r
t

)3
· r2 dt dr dθ =

∫ 2π

0

∫ 2

1

[
−r

5

t2

]2

t=1

dr dθ

= 2π
∫ 2

1

3
4
r5 dr = 2π

[
1
8
r6

]2

1

= 2π · 63
8

=
63
4
π.

Therefore the centroid of the solid is located at the point
(
0, 0, 14

5

)
. Next, by symmetry,
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Iy = Ix = δ

∫ 2π

θ=0

∫ 2

r=1

∫ 2

t=1

[(r
t

sin θ
)2

+ r4

]
· 2

(r
t

)3
dt dr dθ

= δ

∫ 2π

θ=0

∫ 2

r=1

[
−r

5(1 + 4r2t2 − cos 2θ)
4t4

]2

t=1

dr dθ

= δ

∫ 2π

θ=0

∫ 2

r=1

3
64

r5(5 + 16r2 − 5 cos 2θ) dr dθ = δ

∫ 2π

θ=0

[
3
32

r8 +
5
64

r2 sin2 θ

]2

r=1

dθ

= δ

∫ 2π

0

(
765
32

+
315
64

sin2 θ

)
dθ = δ

[
45
64

(7 sin 2θ − 150θ)
]2π

0

=
3375
64

πδ.

Thus Ix = Iy ≈ (165.6699250916492528)δ. Finally, to compute Iz, note that

x2 + y2 =
(r
t

cos θ
)2

+
(r
t

sin θ
)2

=
r2

t2
.

Therefore the moment of inertia of the solid with respect to the z-axis is

Iz = δ

∫ 2π

θ=0

∫ 2

r=1

∫ 2

t=1

2r5

t5
dt dr dθ = δ

∫ 2π

θ=0

∫ 2

r=1

[
− r5

2t4

]2

t=1

dr dθ

= δ

∫ 2π

θ=0

∫ 2

r=1

15
32

r5 dr = 2πδ
[

5
64

r6

]2

1

=
315
32

πδ ≈ (30.9250526837745272)δ.

C14S09.027: The average distance of points of the ellipsoid from its center at (0, 0, 0) is

d =
1
V

∫ 2π

0

∫ π

0

∫ 1

0

(abcρ2 sinφ)
√

(aρ sinφ cos θ)2 + (bρ sinφ sin θ)2 + (cρ cosφ)2 dρ dφ dθ

where V = 4
3 πabc is the volume of the ellipsoid. In particular, if a = 4, b = 3, and c = 2, we find (using

the NIntegrate command in Mathematica 3.0) that d ≈ 2.300268522983.

C14S09.028: Following the instructions in Problem 28, we have

∫ 1

0

∫ 1

0

1
1− xy

dx dy =
∫ 1

0

∫ 1

0

(
1 +

∞∑
n=1

xnyn

)
dx dy = 1 +

∞∑
n=1

(∫ 1

0

xndx

)
·
(∫ 1

0

yn dy

)

= 1 +
∞∑
n=1

(
1

n + 1

)
·
(

1
n + 1

)
= 1 +

1
22

+
1
32

+
1
42

+ · · · = ζ(2). —C.H.E.

C14S09.029: Part (a): First note that

∫ 1

0

∫ 1

0

(
1

1− xy
− 1

1 + xy

)
dx dy =

∫ 1

0

∫ 1

0

2xy
1− x2y2

dx dy.

The Jacobian of the substitution u = x2, v = y2 is

∂(u, v)
∂(x, y)

=

∣∣∣∣∣
2x 0

0 2y

∣∣∣∣∣ = 4xy,
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so

∫ 1

0

∫ 1

0

2xy
1− x2y2

dx dy =
1
2

∫ 1

0

∫ 1

0

1
1− x2y2

· 4xy dx dy =
1
2

∫ 1

0

∫ 1

0

1
1− uv

du dv =
1
2
ζ(2).

Part (b): Addition as indicated in Problem 29, and cancellation of the integrals involving 1/(1 +xy), yields
the equation

2
∫ 1

0

∫ 1

0

1
1− xy

dx dy =
1
2
ζ(2) + 2

∫ 1

0

∫ 1

0

1
1− x2y2

dx dy,

which we readily solve for

∫ 1

0

∫ 1

0

1
1− x2y2

dx dy =
∫ 1

0

∫ 1

0

1
1− xy

dx dy − 1
4
ζ(2) =

3
4
ζ(2).

Part (c): The Jacobian of the transformation T : R2
uv → R2

xy that we define by x = (sin v)/(cosu),
y = (sinu)/(cos v) is

JT =

∣∣∣∣∣∣∣∣∣∣

cosu
cos v

− sinu sin v
cos2 v

− sinu sin v
cos2 u

cos v
cosu

∣∣∣∣∣∣∣∣∣∣
= 1− sin2 u sin2 v

cos2 u cos2 v
= 1 − tan2 u tan2 v.

Reading the limits for the transformed integral from Fig. 14.9.10(a) in the text, we therefore find that

ζ(2) =
4
3

∫ 1

0

∫ 1

0

1
1− x2y2

dx dy

=
4
3

∫ π/2

0

∫ (π/2)−v

0

(
1− sin2 u sin2 v

cos2 u cos2 v

)−1

· (1− tan2 u tan2 v) du dv =
4
3

∫ π/2

0

∫ (π/2)−v

0

1 du dv

=
4
3

∫ π/2

0

(π
2
− v

)
dv =

4
3

[
π

2
v − 1

2
v2

]π/2
0

=
4
3
· π

2

8
=

π2

6
. —C.H.E.
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Chapter 14 Miscellaneous Problems

C14S0M.001: The domain of the given integral is bounded above by the graph of y = x3, below by the
x-axis, and on the right by the vertical line x = 1. When its order of integration is reversed, the given
integral becomes

∫ 1

x=0

∫ x3

y=0

1√
1 + x2

dy dx =
∫ 1

0

x3

√
1 + x2

dx

=
[

1
3
(x2 − 2)

√
1 + x2

]1

0

=
2−
√

2
3

≈ 0.1952621458756350.

Mathematica 3.0 can evaluate the given integral without first reversing the order of integration. It obtains

∫ 1

y=0

∫ 1

x=y1/3

1√
1 + x2

dx dy =
∫ 1

0

[
arcsinh(1)− arcsinh(y1/3)

]
dy

=
[
y2/3 − 2

3

√
1 + y2/3 + y arcsinh(1)− y arcsinh(y1/3)

]1

0

=
2−
√

2
3

.

C14S0M.002: The given integral is improper, but the only discontinuity occurs at (0, 0), a corner point
of the domain of the integral. If we define the value of the integrand to be 1 at that point, the integrand will
be continuous on its entire domain and the problem vanishes. The domain of the given integral is bounded
above by the line y = x, below by the x-axis, and on the right by the vertical line x = 1. When its order of
integration is reversed, the given integral becomes

∫ 1

x=0

∫ x

y=0

sinx
x

dy dx =
∫ 1

0

[
y sinx
x

]x
y=0

dx

=
∫ 1

0

sinx dx =
[
− cosx

]1

0

= 1− cos(1) ≈ 0.4596976941318602.

Mathematica 3.0 can evaluate the given integral without first reversing the order of integration. It obtains

∫ 1

y=0

∫ 1

x=y

sinx
x

dx dy =
∫ 1

0

[
SinIntegral(x)

]1

x=y

dy

=
[
y SinIntegral(1)− y SinIntegral(y)− cos y

]1

0

= 1− cos(1).

C14S0M.003: The domain of the given integral is bounded above by the line y = 1, below and on the
right by the line y = x, and on the left by the y-axis. When its order of integration is reversed, it becomes

∫ 1

y=0

∫ y

x=0

exp(−y2) dx dy =
∫ 1

0

y exp(−y2) dy =
[
−1

2
exp(−y2)

]1

0

=
1
2
− 1

2e
=
e− 1
2e

≈ 0.3160602794142788.

Mathematica 3.0 can evaluate the given integral without first reversing the order of integration:
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∫ 1

x=0

∫ 1

y=x

exp(−y2) dy dx =
∫ 1

x=0

[
1
2
√
π erf(y)

]1

y=x

dx =
∫ 1

0

1
2
√
π

[
erf(1)− erf(x)

]
dx

=
1
2

[√
π x

[
erf(1)− erf(x)

]
− exp(−x2)

]1

0

=
e− 1
2e

.

Note: By definition, the error function is erf(x) =
2√
π

∫ x

0

exp(−t2) dt.

C14S0M.004: The domain of the given integral is bounded above by the line y = 4, below and on the
right by the graph of y = x2/3, and on the left by the y-axis. When its order of integration is reversed, the
integral takes the form

∫ 4

y=0

∫ y3/2

x=0

x cos y4 dx dy =
∫ 4

y=0

[
1
2
x2 cos y4

]y3/2

x=0

dy =
∫ 4

0

1
2
y3 cos y4 dy

=
[

1
8

sin y4
]4

0

=
1
8

sin 256 ≈ −0.1249010042633828.

Mathematica 3.0 can evaluate the given integral without first reversing the order of integration, but all the
antiderivatives that it uses involve the gamma function with complex arguments—we omit the details—and
it expresses the final answer in the form

1
16
i
[
1− exp (512i)

]
· exp (−256i)

where i2 = −1. You will need Euler’s formula eiθ = cos θ + i sin θ to show that this answer is equal to the
previous answer.

C14S0M.005: The domain of the given integral is bounded above by the graph of y = x2, below by the
x-axis, and on the right by the line x = 2. When its order of integration is reversed, it becomes

∫ 2

x=0

∫ x2

y=0

y exp(x2)
x3

dy dx =
∫ 2

x=0

[
y2 exp(x2)

2x3

]x2

y=0

dx

=
∫ 2

0

1
2
x exp(x2) dx =

[
1
4

exp(x2)
]2

0

=
e4 − 1

4
≈ 13.3995375082860598.

Mathematica 3.0 can evaluate the given integral without first reversing the order of integration, but the
intermediate antiderivatives involve the exponential integral function

Ei(z) =
∫ ∞

z

e−t

t
dt

and hence we omit the details.

C14S0M.006: Here we obtain

∫ ∞

x=0

∫ ∞

y=x

1
y
e−y dy dx =

∫ ∞

y=0

∫ y

x=0

1
y
e−y dx dy

=
∫ ∞

0

[
x

y
e−y

]y
x=0

dy =
∫ ∞

0

e−y dy =
[
−e−y

]∞

0

= 1−
(

lim
y→∞

e−y
)

= 1.
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C14S0M.007: The volume is

V =
∫ 1

y=0

∫ 2−y

x=y

(x2 + y2) dx dy =
∫ 1

y=0

[
1
3
x3 + xy2

]2−y

x=y

dy

=
∫ 1

0

4
3

(2− 3y + 3y2 − 2y3) dy =
[

8
3
y − 2y2 +

4
3
y3 − 2

3
y4

]1

0

=
4
3
.

C14S0M.008: The paraboloids intersect in the circle x2 + y2 = 16, z = 32. Hence the volume between
them is

V =
∫ 2π

θ=0

∫ 4

r=0

∫ 48−r2

z=2r2
r dz dr dθ = 2π

∫ 4

0

(48r − 3r3) dr

= 2π
[
24r2 − 3

4
r4

]4

0

= 2π(384− 192) = 384π ≈ 1206.3715789784806036.

C14S0M.009: By symmetry, the centroid lies on the z-axis. Assume that the solid has unit density. Then
its mass and volume are

m = V =
∫ 2π

θ=0

∫ π/2

φ=π/3

∫ 3

ρ=0

ρ2 sinφ dρ dφ dθ

= 2π ·
[
− cosφ

]π/2
π/3

·
[

1
3
ρ3

]3

0

= 18π ·
[
0−

(
− 1

2

) ]
= 9π ≈ 28.2743338823081391.

The moment of the solid with respect to the xy-plane is

Mxy =
∫ 2π

θ=0

∫ π/2

φ=π/3

∫ 3

ρ=0

ρ3 sinφ cosφ dρ dφ dθ = 2π
∫ π/2

φ=π/3

[
1
4
ρ4 sinφ cosφ

]3

ρ=0

dφ

= 2π
∫ π/2

φ=π/3

81
4

sinφ cosφ dφ = 2π
[
−81

8
cos2 φ

]π/2
φ=π/3

=
81
16
π.

Therefore the centroid of the solid is located at the point with coordinates

(x, y, z) =
(

0, 0,
9
16

)
.

C14S0M.010: The elliptic paraboloids intersect in a curve that lies on the elliptical cylinder with Cartesian
equation x2 + 4y2 = 4. The intersection of that cylinder with the xy-plane forms the elliptical boundary of
a region R suitable for the domain of the volume integral, which is

V =
∫∫

R

(8− 2x2 − 8y2) dx dy. (1)

Let us use the substitution x = 2r cos θ, y = r sin θ. The boundary of R takes the form

4r2 cos2 θ + 4r2 sin2 θ = 4,
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and hence is transformed into the circle r = 1. The Jacobian of this transformation is

∂(x, y)
∂(r, θ)

=

∣∣∣∣∣∣
2 cos θ −2r sin θ

sin θ r cos θ

∣∣∣∣∣∣ = 2r.

Therefore the volume intgral in Eq. (1) is transformed into

V =
∫ 2π

θ=0

∫ 1

r=0

(8− 8r2 cos2 θ − 8r2 sin2 θ) · 2r dr dθ

=
∫ 2π

0

∫ 1

0

16(r − r3) dr dθ = 32π
[

1
2
r2 − 1

4
r4

]1

0

= 8π ≈ 25.1327412287183459.

C14S0M.011: First interchange y and z: We are to find the volume bounded by the paraboloid z = x2+3y2

and the cylinder z = 4−y2. These surfaces intersect in a curve that lies on the elliptic cylinder x2 +4y2 = 4,
bounding the region R in the xy-plane. Hence the volume is

V =
∫∫

R

(4− x2 − 4y2) dx dy.

Apply the transformation x = 2r cos θ, y = r sin θ. This transforms R into the region 0 � r � 1, 0 � θ � 2π.
Moreover, the Jacobian of this transformation is

∂(x, y)
∂(r, θ)

=

∣∣∣∣∣∣
2 cos θ −2r sin θ

sin θ r cos θ

∣∣∣∣∣∣ = 2r.

Hence

V =
∫ 2π

θ=0

∫ 1

r=0

(4− 4r2) · 2r dr dθ = 2π ·
[
4r2 − 2r4

]1

0

= 4π ≈ 12.56637061435917295385.

C14S0M.012: The volume is

V =
∫ 1

x=−1

∫ 2−x2

z=x2
(4− z) dz dx =

∫ 1

−1

[
4z − 1

2
z2

]2−x2

x2

dx =
∫ 1

−1

(6− 6x2) dx =
[
6x− 2x3

]1

−1

= 8.

C14S0M.013: First interchange x and z: We are to find the volume enclosed by the elliptical cylinder
4x2 + y2 = 4 and between the planes z = 0 and z = y + 2. Let R denote the plane region in which the
elliptical cylinder meets the xy-plane. Then the volume is

V =
∫∫

R

(y + 2) dx dy.

The transformation x = r cos θ, y = 2r sin θ transforms R into the rectangle 0 � r � 1, 0 � θ � 2π. The
Jacobian of this transformation is

∂(x, y)
∂(r, θ)

=

∣∣∣∣∣∣
cos θ −r sin θ

2 sin θ 2r cos θ

∣∣∣∣∣∣ = 2r.
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Therefore

V =
∫ 2π

θ=0

∫ 1

r=0

(2 + 2r sin θ) · 2r dr dθ =
∫ 2π

0

[
2r2 +

4
3
r3 sin θ

]1

r=0

dθ

=
∫ 2π

0

(
2 +

4
3

sin θ
)
dθ =

[
2θ − 4

3
cos θ

]2π

0

= 4π ≈ 12.56637061435917295385.

C14S0M.014: Let R denote the bounded plane region with boundary the ellipse

x2

a2
+
y2

b2
= 1; (1)

we assume that a > 0, b > 0, and that a < h (this ensures that the plane z = h+ x is above R). Then the
volume within the elliptical cylinder and between the planes z = 0 and z = h+ x is

V =
∫∫

R

(h+ x) dx dy.

Apply the transformation x = ar cos θ, y = br sin θ. This transforms R into the region 0 � r � 1,
0 � θ � 2π (you can see this by substitution into Eq. (1)). Moreover, the Jacobian of this transformation is

∂(x, y)
∂(r, θ)

=

∣∣∣∣∣∣
a cos θ −ar sin θ

b sin θ br cos θ

∣∣∣∣∣∣ = abr(cos2 θ + sin2 θ) = abr.

Consequently,

V =
∫ 2π

0

∫ 1

0

(h+ ar cos θ) · abr dr dθ =
∫ 2π

0

[
1
2
abhr2 +

1
3
a2br3 cos θ

]1

0

dθ

=
∫ 2π

0

(
1
2
abh+

1
3
a2b cos θ

)
dθ =

[
1
2
abhθ − 1

3
a2b sin θ

]2π

0

= πabh.

C14S0M.015: The graph of x4 + x2y2 = y2 in the first quadrant is the graph of

y =
x2

√
1− x2

, 0 � x < 1.

This curve meets the line y = x at the point
(

1
2

√
2 , 1

2

√
2

)
and, of course, at the point (x, y) = (0, 0).

Conversion of the first equation into polar form yields

r4 cos4 θ + r4 cos2 θ sin2 θ = r2 sin2 θ;

(r2 cos2 θ)(cos2 θ + sin2 θ) = sin2 θ;

r2 cos2 θ = sin2 θ;

thus r = tan θ. Noting that the line y = x has polar equation θ = 1
4 π, we find that
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∫∫
R

1
(1 + x2 + y2)2

dA =
∫ π/4

θ=0

∫ tan θ

r=0

r

(1 + r2)2
dr dθ =

∫ π/4

0

[
− 1

2(1 + r2)

]tan θ

r=0

dθ

=
∫ π/4

0

1
2

(1− cos2 θ) dθ =
1
8

[
2θ − sin 2θ

]π/4
0

=
π − 2
16

≈ 0.0713495408493621.

C14S0M.016: The mass and moments are

m =
∫ 1

0

∫ √
x

x2
(x2 + y2) dy dx =

∫ 1

0

[
x2y +

1
3
y3

]√
x

x2

dx =
∫ 1

0

(
1
3
x3/2 + x5/2 − x4 − 1

3
x6

)
dx

=
[

2
15
x5/2 +

2
7
x7/2 − 1

5
x5 − 1

21
x7

]1

0

=
6
35
≈ 0.1714285714285714;

My =
∫ 1

0

∫ √
x

x2
x · (x2 + y2) dy dx =

∫ 1

0

[
x3y +

1
3
xy3

]√
x

x2

dx

=
∫ 1

0

(
1
3
x5/2 + x7/2 − x5 − 1

3
x7

)
dx =

[
2
21
x7/2 +

2
9
x9/2 − 1

6
x6 − 1

24
x8

]1

0

=
55
504

;

Mx =
∫ 1

0

∫ √
x

x2
y · (x2 + y2) dy dx =

∫ 1

0

[
1
2
x2y2 +

1
4
y4

]√
x

x2

dx

=
∫ 1

0

(
1
4
x2 +

1
2
x3 − 1

2
x6 − 1

4
x8

)
dx =

[
1
12
x3 +

1
8
x4 − 1

14
x7 − 1

36
x9

]1

0

=
55
504

.

Therefore the centroid of the lamina is located at the point with coordinates

(x, y) =
(

275
432

,
275
432

)
≈ (0.636574074074, 0.636574074074).

C14S0M.017: The mass and and moments are

m =
∫ 2

−2

∫ 4+y2

2y2
y2 dx dy =

∫ 2

−2

[
xy2

]4+y2

2y2

dy

=
∫ 2

−2

(4y2 − y4) dy =
[

4
3
y3 − 1

5
y5

]2

−2

=
128
15
≈ 8.5333333333333333;

Mx =
∫ 2

−2

∫ 4+y2

2y2
y3 dx dy =

∫ 2

−2

[
xy3

]4+y2

2y2

dx =
∫ 2

−2

(4y3 − y5) dy =
[
y4 − 1

6
y6

]2

−2

= 0;

My =
∫ 2

−2

∫ 4+y2

2y2
xy2 dx dy =

∫ 2

−2

(
8y2 + 4y4 − 3

2
y6

)
dy =

[
8
3
y3 +

4
5
y5 − 3

14
y7

]2

−2

=
4096
105

.

Therefore the centroid of the lamina is located at the point with coordinates

6



(x, y) =
(

32
7
, 0

)
≈ (4.5714285714285714, 0).

C14S0M.018: The mass and moments are

m =
∫ 2

1

∫ ln x

0

1
x
dy dx =

∫ 2

1

[
y

x

]ln x

0

dx =
∫ 2

1

lnx
x
dx

=
[

1
2

(lnx)2
]2

1

=
1
2

(ln 2)2 ≈ 0.2402265069591007;

My =
∫ 2

1

∫ ln x

0

x

x
dy dx =

∫ 2

1

lnx dx =
[
−x+ x lnx

]2

1

= −1 + 2 ln 2;

Mx =
∫ 2

1

∫ ln x

0

y

x
dy dx =

∫ 2

1

[
y2

2x

]ln x

0

dx =
∫ 2

1

(lnx)2

2x
dx =

[
1
6

(lnx)3
]2

1

=
1
6

(ln 2)3.

Therefore the centroid of the lamina is located at the point

(x, y) =
(
−2 + 4 ln 2

(ln 2)2
,

ln 2
3

)
≈ (1.608042201545, 0.231049060187).

C14S0M.019: The mass and moments are

m =
∫ π/2

θ=−π/2

∫ 2 cos θ

r=0

kr dr dθ =
∫ π/2

θ=−π/2

[
1
2
kr2

]2 cos θ

r=0

dθ

=
∫ π/2

θ=−π/2
2k cos2 θ dθ =

[
1
2
k(2θ + sin 2θ)

]π/2
θ=−π/2

= kπ;

My =
∫ π/2

θ=−π/2

∫ 2 cos θ

r=0

kr2 cos θ dr dθ =
∫ π/2

θ=−π/2

[
1
3
kr3 cos θ

]2 cos θ

r=0

dθ

=
∫ π/2

θ=−π/2

8
3
k cos4 θ dθ =

[
1
12
k(12θ + 8 sin 2θ + sin 4θ)

]π/2
θ=−π/2

= kπ;

Mx =
∫ π/2

θ=−π/2

∫ 2 cos θ

r=0

kr2 sin θ dr dθ =
∫ π/2

θ=−π/2

[
1
3
kr3 sin θ

]2 cos θ

r=0

dθ

=
∫ π/2

θ=−π/2

8
3
k cos3 θ sin θ dθ =

[
−2

3
k cos4 θ

]π/2
θ=−π/2

= 0.

Therefore the centroid of the lamina is located at the point (1, 0).

C14S0M.020: The mass and moments are
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m =
∫ π/2

−π/2

∫ 2 cos θ

0

r2 dr dθ =
∫ π/2

−π/2

[
1
3
r3

]2 cos θ

0

dθ

=
∫ π/2

−π/2

8
3

cos3 θ dθ =
[

2
9

(9 sin θ + sin 3θ)
]π/2
−π/2

=
32
9
≈ 3.5555555555555555;

My =
∫ π/2

−π/2

∫ 2 cos θ

0

r3 cos θ dr dθ =
∫ π/2

−π/2

[
1
4
r4 cos θ

]2 cos θ

0

dθ

=
∫ π/2

−π/2
4 cos5 θ dθ =

1
60

[
150 sin θ + 25 sin 3θ + 3 sin 5θ

]π/2
−π/2

=
64
15

;

Mx =
∫ π/2

−π/2

∫ 2 cos θ

0

r3 sin θ dr dθ =
∫ π/2

−π/2

[
1
4
r4 sin θ

]2 cos θ

0

dθ

=
∫ π/2

−π/2
4 cos4 θ sin θ dθ =

[
−4

5
cos5 θ

]π/2
−π/2

= 0.

Therefore the centroid of the lamina is located at the point
(

6
5 , 0

)
.

C14S0M.021: By the first theorem of Pappus, the y-coordinate y of the centroid must satisfy the equation

2πy · 1
2
πab =

4
3
πab2,

and it follows immediately that y =
4b
3π

.

C14S0M.022: Part (a): By symmetry, x = y, and by the first theorem of Pappus, y must satisfy the
equation

2πy
(

1
4
πb2 − 1

4
πa2

)
=

2
3
π(b3 − a3),

and therefore

y =
4(b3 − a3)
3π(b2 − a2)

=
4(a2 + ab+ b2)

3π(a+ b)
.

Part (b): lim
b→a

4(a2 + ab+ b2)
3π(a+ b)

=
4 · 3a2

3π · 2a =
2a
π

.

Therefore the centroid of the region is located at
(

2a
π
,

2a
π

)
.

C14S0M.023: Assume that the lamina has constant density δ. By symmetry, x = 0. The mass of the
lamina and its moment with respect to the x-axis are
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m =
∫ 2

x=−2

∫ 4−x2

y=0

δ dy dx =
∫ 2

x=−2

δ(4− x2) dx = δ

[
4x− 1

3
x3

]2

−2

=
32
3
δ and

Mx =
∫ 2

x=−2

∫ 4−x2

y=0

δy dy dx =
∫ 2

x=−2

[
1
2
δy2

]4−x2

y=0

dx =
1
2
δ

∫ 2

x=−2

(16− 8x2 + x4) dx

=
1
2
δ

[
16x− 8

3
x3 +

1
5
x5

]2

−2

=
256
15
δ.

Therefore the centroid of the lamina is at the point
(
0, 8

5

)
.

C14S0M.024: The volume of the solid is

V =
∫ 1

0

∫ 1−y

0

x2 dx dy =
∫ 1

0

[
1
3
x3

]1−y

0

dy =
∫ 1

0

1
3

(1− y)3 dy =
[
− 1

12
(1− y)4

]1

0

=
1
12
.

C14S0M.025: The volume of the ice-cream cone is

V =
∫ 2π

θ=0

∫ 1

r=0

∫ √
5−r2

z=2r

r dz dr dθ = 2π
∫ 1

r=0

(
r
√

5− r2 − 2r2
)
dr

= −2
3
π ·

[
(5− r2)3/2 + 2r3

]1

0

=
10
3
π

(√
5 − 2

)
≈ 2.472098079537133054103626.

C14S0M.026: Assume constant density δ = 1. Clearly x = y = 0. The mass and moment with respect to
the xy-plane are

m =
∫ 2π

0

∫ π/3

0

∫ a

0

ρ2 sinφ dρ dφ dθ = 2π
∫ π/3

0

1
3
a3 sinφ dφ = 2π

[
−1

3
a3 cosφ

]π/3
0

=
1
3
πa3 and

Mxy =
∫ 2π

0

∫ π/3

0

∫ a

0

ρ3 sinφ cosφ dρ dφ dθ

= 2π
∫ π/3

0

1
4
a4 sinφ cosφ dφ = 2π

[
1
8
a4 sin2 φ

]π/3
0

=
3
16
πa4.

Therefore the centroid is located at the point

(x, y, z) =
(

0, 0,
9
16
a

)
.

Because the density is 1, the volume is V =
1
3
πa3 (numerically the same as the mass).

C14S0M.027: Let δ be the [constant] density of the cone and let h denote its height. Place the cone with
its vertex at the origin and with its axis lying on the nonnegative z-axis. Then its mass is M = 1

3 πδa
2h.

The side of the cone has cylindrical equation z = hr/a, so the moment of inertia of the cone with respect
to the z-axis is
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Iz =
∫ 2π

θ=0

∫ a

r=0

∫ h

z=hr/a

δr3 dz dr dθ = 2πδ
∫ a

r=0

(
r3h− r

4h

a

)
dr

= 2πδ
[

1
4
r4h− 1

5a
r5h

]a
r=0

=
1
10
πδa4h =

3
10
Ma2.

Note that the answer is plausible and dimensionally correct. One of our physics teachers, Prof. J. J. Kyame
of Tulane University (retired), always insisted that we express moment of inertia in terms of mass, as here,
so that the answer can be inspected for plausibility and dimensional accuracy.

C14S0M.028: The mass is

m =
∫ π/2

0

∫ π/2

0

∫ a

0

(ρ3 sin2 φ cosφ sin θ cos θ) · (ρ2 sinφ) dρ dφ dθ

=
∫ π/2

0

∫ π/2

0

1
6
a6 sin3 φ cosφ sin θ cos θ dφ dθ =

∫ π/2

0

[
1
24
a6 sin4 φ sin θ cos θ

]π/2
0

dθ

=
∫ π/2

0

1
24
a6 sin θ cos θ dθ =

[
1
48
a6 sin2 θ

]π/2
0

=
1
48
a6.

C14S0M.029: We are given the solid ellipsoid E with constant density δ = 1 and boundary the surface
with Cartesian equation

x2

a2
+
y2

b2
+
z2

c2
= 1.

Its moment of inertia with respect to the x-axis is then

Ix =
∫∫∫

E

(y2 + z2) dV.

We use the transformation

x = aρ sinφ cos θ, y = bρ sinφ sin θ, z = cρ cosφ. (1)

Under this transformation, E is replaced with the solid B determined by

0 � θ � 2π, 0 � φ � π, 0 � ρ � 1.

The Jacobian of the transformation in (1) is

∂(x, y, z)
∂(ρ, φ, θ)

=

∣∣∣∣∣∣∣∣∣

a sinφ cos θ aρ cosφ cos θ −aρ sinφ sin θ

b sinφ sin θ bρ cosφ sin θ bρ sinφ cos θ

c cosφ −cρ sinφ 0

∣∣∣∣∣∣∣∣∣
= abcρ2 sinφ.

Therefore

Ix =
∫ 2π

0

∫ π

0

∫ 1

0

[
(bρ sinφ sin θ)2 + (cρ cosφ)2

]
· abcρ2 sinφ dρ dφ dθ

10



=
∫ 2π

0

∫ π

0

∫ 1

0

(b2 sin2 φ sin2 θ + c2 cos2 φ) · abcρ4 sinφ dρ dφ dθ

=
1
5
abc

∫ 2π

0

∫ π

0

(b2 sin3 φ sin2 θ + c2 sinφ cos2 φ) dφ dρ

=
1
5
abc

∫ 2π

0

∫ π

0

[
b2(1− cos2 φ) sinφ sin2 θ + c2 sinφ cos2 φ

]
dφ dθ

=
1
5
abc

∫ 2π

0

[
1
3
b2 cos3 φ sin2 θ − b2 cosφ sin2 θ − 1

3
c2 cos3 φ

]π
0

dθ

=
1
5
abc

∫ 2π

0

[
−1

3
b2(1− cos 2θ) + b2(1− cos 2θ) +

2
3
c2

]
dθ

==
1
5
abc

[
−1

3
b2θ +

1
6
b2 sin 2θ + b2θ − 1

2
b2 sin 2θ +

2
3
c2θ

]2π

0

=
1
5
abc

(
−2

3
πb2 + 2πb2 +

4
3
πc2

)
=

4
15
πabc(b2 + c2) =

1
5
M(b2 + c2)

where M = 4
3 πabc is the mass of E.

C14S0M.030: The region of Problem 30 is in the first octant, within the cylinder with cylindrical equation
r = a, outside the sphere with spherical equation ρ = a, and below the plane with Cartesian equation z = a

(where a > 0). Thus its volume is

V =
∫ π/2

0

∫ a

0

∫ a

√
a2−r2

r dz dr dθ =
∫ π/2

0

∫ a

0

(
ar − r

√
a2 − r2

)
dr dθ

=
∫ π/2

0

[
1
2
ar2 +

1
3

(a2 − r2)3/2
]a
0

dθ =
π

2
· 1
6
a3 =

1
12
πa3.

To check this answer, begin with a solid sphere of radius a. Circumscribe a right circular cylinder of the
same radius. Subtract the volume of the sphere from that of the cylinder, then divide by 8 to get the volume
of the part of the region in the first octant:

V =
1
8

(
2πa3 − 4

3
πa3

)
=

1
8
· 2
3
πa3 =

1
12
πa3.

C14S0M.031: The cylinder r = 2 cos θ meets the xy-plane in the circle with equation r = 2 cos θ,
− 1

2 π � θ � 1
2 π. With density δ = 1, the moment of inertia of the solid region with respect to the z-axis is

Iz = 2
∫ π/2

−π/2

∫ 2 cos θ

0

∫ √
4−r2

0

r3 dz dr dθ = 4
∫ π/2

0

∫ 2 cos θ

0

r3
√

4− r2 dr dθ

= 4
∫ π/2

0

[
1
15

(3r4 − 4r2 − 32)
√

4− r2
]2 cos θ

0

dθ

=
4
15

∫ π/2

0

(64− 64 sin θ − 32 sin θ cos2 θ + 96 sin θ cos4 θ) dθ
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=
8

225

[
480θ + 450 cos θ − 25 cos 3θ − 9 cos 5θ

]π/2
0

=
128
225

(15π − 26) ≈ 12.0171461995217912.

The student who obtains the incorrect answer 128
15 π may well have overlooked the fact that

√
4− 4 cos2 θ = |2 sin θ |.

C14S0M.032: The area element dA = r dr dθ moves around a circle of radius x = r cos θ, and hence of
circumference 2πr cos θ. So the volume generated is

V =
∫ π/2

−π/2

∫ 2a cos θ

0

2πr2 cos θ dr dθ = 2
∫ π/2

0

[
2
3
πr3 cos θ

]2a cos θ

0

dθ

= 2
∫ π/2

0

(
16
3
πa3 cos4 θ

)
dθ =

[
1
3
πa3(12θ + 8 sin 2θ + sin 4θ)

]π/2
0

= 2π2a3.

C14S0M.033: The area element r dr dθ moves around a circle of radius y = r sin θ, and therefore of
circumference 2πr sin θ. Hence the volume swept out is

V =
∫ π

θ=0

∫ 1+cos θ

r=0

2πr2 sin θ dr dθ =
∫ π

θ=0

[
2
3
πr3 sin θ

]1+cos θ

r=0

dθ

=
∫ π

0

2
3
π(1 + cos θ)3 sin θ dθ =

[
−1

6
π(1 + cos θ)4

]π
0

=
8
3
π ≈ 8.37758040957278196923.

C14S0M.034: Assume that b � 0. Then the area element r dr dθ moves around a circle having radius
b+ x = b+ r cos θ, and hence the volume swept out is

V =
∫ 2π

0

∫ a

0

2π(b+ r cos θ)r dr dθ =
∫ 2π

0

[
πbr2 +

2
3
πr3 cos θ

]a
0

dθ

=
∫ 2π

0

(
πa2b+

2
3
πa3 cos θ

)
dθ =

[
πa2bθ +

2
3
πa3 sin θ

]2π

0

= 2π2a2b.

C14S0M.035: The moment of inertia of the torus of Problem 34 with respect to the line x = −b (where
b � 0), its natural axis of symmetry, is

I =
∫ 2π

θ=0

∫ a

r=0

2πδ(b+ r cos θ)3 · r dr dθ =
∫ 2π

θ=0

πδ

[
b3r2 + 2b2r3 cos θ +

3
2
br4 cos2 θ +

2
5
r5 cos3 θ

]a
r=0

dθ

= πδ

∫ 2π

0

(
a2b3 + 2a3b2 cos θ +

3
2
a4b cos2 θ +

2
5
a5 cos3 θ

)
dθ

=
1

120
πδa2

[
90a2bθ + 120b3θ + 36a3 sin θ + 240ab2 sin θ + 45a2b sin 2θ + 4a3 sin 3θ

]2π

0

=
1

120
πδa2(180πa2b+ 240πb3) =

1
2
π2δa2b(3a2 + 4b2) =

1
4
M(3a2 + 4b2)

where M = 2π2δa2b is the mass of the torus.
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C14S0M.036: The average distance of points of a circular disk of radius a from its center is

d =
1
πa2

∫ 2π

0

∫ a

0

r2 dr dθ =
2
a2
·
[

1
3
r3

]a
0

=
2a3

3a2
=

2
3
a.

C14S0M.037: Use the disk bounded by the circle with polar equation r = 2a sin θ, 0 � θ � π. Then the
origin is a point on the boundary of the disk, and the average distance of points of this disk from the origin
is

d =
1
πa2

∫ π

θ=0

∫ 2a sin θ

r=0

r2 dr dθ =
1
πa2

∫ π

0

8
3
a3 sin3 θ dθ

=
2a3

9πa2

[
cos 3θ − 9 cos θ

]π
0

=
32
9π
a ≈ (1.131768484209)a.

C14S0M.038: Use the circular disks bounded by r = 2 cos θ and r = 4 cos θ, − 1
2 π � θ � 1

2 π. The two
circles are tangent at the origin, and the average distance of points outside the small circle and inside the
large circle from the origin is

d =
1
3π

∫ π/2

−π/2

∫ 4 cos θ

2 cos θ

r2 dr dθ =
1
3π

∫ π/2

−π/2

[
1
3
r3

]4 cos θ

2 cos θ

dθ =
1
9π

∫ π/2

−π/2
56 cos3 θ dθ

=
14
27π

[
9 sin θ + sin 3θ

]π/2
−π/2

=
224
27π

≈ 2.6407931298210782.

C14S0M.039: We use the ball bounded by the surface with spherical-coordinates equation ρ = a. Then
the average distance of points of this ball from its center is

d =
3

4πa3

∫ 2π

θ=0

∫ π

φ=0

∫ a

ρ=0

ρ3 sinφ dρ dφ dθ

=
3

4πa3

∫ 2π

θ=0

∫ π

φ=0

1
4
a4 sinφ dφ dθ =

3
4πa3

· 2π ·
[
−1

4
a4 cosφ

]π
0

=
3

4πa3
· 2π · 1

2
a4 =

3
4
a.

C14S0M.040: We use the ball of radius a centered at the point (0, 0, a) on the z-axis. The average
distance of points of this ball from the origin (its “south pole”) is then

d =
3

4πa3

∫ 2π

0

∫ π/2

0

∫ 2a cosφ

0

ρ3 sinφ dρ dφ dθ =
3

4πa3
· 2π ·

∫ π/2

0

4a4 sinφ cos4 φ dφ

=
3

2a3

[
−4

5
a4 cos5 φ

]π/2
0

=
3

2a3
· 4
5
a4 =

6
5
a.

C14S0M.041: We will use the spheres with spherical-coordinates equations ρ = 2 cosφ and ρ = 4 cosφ,
which have a mutual point of tangency at the origin. Then the average distance of points outside the smaller
and inside the larger sphere from the origin is
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d =
3

28π

∫ 2π

θ=0

∫ π/2

φ=0

∫ 4 cosφ

ρ=2 cosφ

ρ3 sinφ dρ dφ dθ =
3

28π
· 2π ·

∫ π/2

φ=0

[
1
4
ρ4 sinφ

]4 cosφ

ρ=2 cosφ

dφ

=
3
14

∫ π/2

0

60 sinφ cos4 φ dφ =
3
14

[
−12 cos5 φ

]π/2
0

=
18
7
≈ 2.5714285714285714.

C14S0M.042: Place the cone with its vertex at the origin and its axis on the nonnegative z-axis. Then a
spherical-coordinates equation of its side is

φ = arctan
(
R

H

)

and an equation of its base (at the top) is ρ = H secφ. Hence the average distance of points of the cone
from its vertex is

d =
3

πR2H

∫ 2π

0

∫ arctan(R/H)

0

∫ H secφ

0

ρ3 sinφ dρ dφ dθ =
3

πR2H
· 2π ·

∫ arctan(R/H)

0

1
4
H4 sec3 φ tanφ dφ

=
6

R2H

[
1
12
H4 sec3 φ

]arctan(R/H)

0

=
6

R2H
· 1
12
·
[
H(H2 +R2)3/2 −H4

]
=

(H2 +R2)3/2 −H3

2R2
.

Thus the average distance of points of the cone from its vertex is

d =
L3 −H3

2R2

where L =
√
R2 +H2 is the slant height of the cone.

C14S0M.043: The part of the paraboloid that lies between the two given planes also is the part between
the cylinders r = 2 and r = 3. Let R denote the part of the xy-plane between those two cylinders. Then
the surface area in question is

A =
∫∫

R

√
r2 + (rzr)2 + (zθ)2 dr dθ =

∫ 2π

θ=0

∫ 3

r=2

√
r2 + 4r4 dr dθ = 2π

∫ 3

2

r(1 + 4r2)1/2 dr

= 2π
[

1
12

(1 + 4r2)3/2
]3

2

=
1
6
π

(
37
√

37 − 17
√

17
)
≈ 81.1417975124065455.

C14S0M.044: Let D denote the circular disk x2 + y2 � 4. Then the surface area is

A =
∫∫

D

√
1 + (zx)2 + (zy)2 dx dy =

∫∫
D

√
1 + 4x2 + 4y2 dx dy

=
∫ 2π

0

∫ 2

0

r(1 + 4r2)1/2 dr dθ = 2π
[

1
12

(1 + 4r2)1/2
]2

0

=
1
6
π

(
17
√

17 − 1
)
≈ 36.1769031974114084.

C14S0M.045: Let R be the region in the φθ-plane determined by the inequalities φ2 � φ � φ1 and
0 � θ � 2π, where

cosφ2 =
z2
a

and cosφ1 =
z1
a
.
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Thus the part of the sphere ρ = a for which the spherical coordinates φ and θ satisfy these inequalities is
the part of the sphere between the planes z = z1 and z = z2. Thus the formula in Problem 18 of Section
14.8 yields the area of this surface to be

A =
∫∫

R

a2 sinφ dφ dθ =
∫ 2π

θ=0

∫ φ1

φ=φ2

a2 sinφ dφ dθ

= 2πa2

[
+ cosφ

]φ2

φ1

= 2πa2

(
z2 − z1
a

)
= 2πa(z2 − z1) = 2πah

because h = z2 − z1.

C14S0M.046: The graph of z(r, θ) =
√

4− r2 is the top half of the sphere, so we will need to double the
area integral. Let D be the plane region bounded by the circle with Cartesian equation x2 + y2 = 2x; the
polar-coordinates equation of this circle is r = 2 cos θ, − 1

2 π � θ � 1
2 π. The area of the part of the sphere

above this circle plus the area of the part below it is then

A = 2
∫∫

D

√
r2 + (rzr)2 + (zθ)2 dr dθ = 2

∫ π/2

−π/2

∫ 2 cos θ

0

2r
(4− r2)1/2 dr dθ

= 4
∫ π/2

0

[
−2(4− r2)1/2

]2 cos θ

0

dθ = 4
∫ π/2

0

[
4− 2(4− 4 cos2 θ)1/2

]
dθ

= 4
∫ π/2

0

(4− 4 sin θ) dθ = 4
[
4θ + 4 cos θ

]π/2
0

= 4 · 4 · π
2
− 16 = 8(π − 2) ≈ 9.13274123.

The student who obtains the incorrect answer 2π2 likely forgot that
√

4− 4 cos2 θ �= 2 sin θ if −π < θ < 0.

C14S0M.047: Position the cone with its vertex at the origin and its axis on the nonnegative z-axis. The
side of the cone has Cartesian equation z =

√
x2 + y2 , and hence

dS =
√

1 + (zx)2 + (zy)2 dx dy =

√
1 +

x2

x2 + y2
+

y2

x2 + y2
dx dy =

√
2 dx dy.

Let S be the square with vertices at (±1, ±1). Because the area of S is 4, we see with no additional
computations that the area of the part of the cone that lies directly above S is

∫∫
S

√
2 dx dy = 4

√
2 ≈ 5.6568542494923802.

C14S0M.048: Let z(x, y) = 1
2 x

2. Let D be the disk in the xy-plane bounded by the circle x2 + y2 = 1.
Then the area of the part of the parabolic cylinder that lies over D is

A =
∫∫

D

√
1 + (zx)2 + (zy)2 dA = 4

∫ 1

x=0

∫ √
1−x2

y=0

√
1 + x2 dy dx = 4

∫ 1

0

√
1− x4 dx.

The antiderivative of
√

1− x4 is known to be nonelementary. (See Sherman K. Stein and Anthony Barcellos:
Calculus and Analytic Geometry (McGraw-Hill: New York, 1992), page 460, Problems 164–174.) Therefore
we next used Mathematica 3.0 for a numerical integration. The command
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NIntegrate[ 4∗Sqrt[1 - x∧4], {x,0,1}, AccuracyGoal → 24, WorkingPrecision → 30 ]

yielded the approximation A ≈ 3.49607673905615974729.

C14S0M.049: Given: x = x(t), y = y(t), z = z, a � t � b, 0 � z � h(t): Let

r(t, z) = 〈x(t), y(t), z 〉, so that rt = 〈x′(t), y′(t), 0 〉 and rz = 〈 0, 0, 1 〉.

Then

rt × rz =

∣∣∣∣∣∣∣∣∣

i j k

x′(t) y′(t) 0

0 0 1

∣∣∣∣∣∣∣∣∣
= 〈 y′(t), −x′(t), 0 〉,

and hence

|rt × rz | =
√[

x′(t)
]2 +

[
y′(t)

]2
.

Therefore the area of the “fence” is

A =
∫ b

t=a

∫ h(t)

z=0

([
x′(t)

]2 +
[
y′(t)

]2)1/2

dz dt.

C14S0M.050: The “fence” stands above the plane curve r = a sin θ, 0 � θ � π. Thus we take the height
function h(θ) =

√
a2 − r2 as the upper limit of integration in the formula in Problem 49, where

z =
√
a2 − r2 =

√
a2 − a2 sin2 θ = a cos θ

provided that 0 � θ � 1
2 π. Moreover, we have

x(θ) = a sin θ cos θ, y(θ) = a sin2 θ, and z = z

where 0 � θ � π and 0 � z � |a cos θ |. Thus

[
x′(θ)

]2 +
[
y′(θ)

]2 = a2(cos2 θ − sin2 θ)2 + 4a2 sin2 θ cos2 θ

= a2(cos4 θ + 2 sin2 θ cos2 θ + sin4 θ) = a2(cos2 θ + sin2 θ)2 = a2.

We double the integral to allow for the fact that an equal height of the “fence” stands below the xy-plane,
and double it again in order to restrict the range of θ to the interval 0 � θ � 1

2 π. Thus the area in question
is

A = 4
∫ π/2

θ=0

∫ h(θ)

z=0

a dz dθ = 4a
∫ π/2

0

∫ a cos θ

0

1 dz dθ = 4a
∫ π/2

0

a cos θ dθ = 4a2

[
sin θ

]π/2
0

= 4a2.

C14S0M.051: We are given the region R bounded by the curves x2 − y2 = 1, x2 − y2 = 4, xy = 1, and
xy = 3, of constant density δ. Its polar moment of inertia is

I0 =
∫∫

R

(x2 + y2) δ dx dy.
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The hyperbolas bounding R are u-curves and v-curves if we let u = xy and v = x2 − y2. If we make this
substitution, then

4u2 + v2 = 4x2y2 − (x2 − y2)2 = (x2 + y2)2,

and therefore we will substitute
√

4u2 + v2 for x2 + y2 in the integral for I0. Moreover, it is not necessary
to solve for x and y in terms of u and v because of a result in Section 14.9 (see the proof in Problem 18
there). Thus

∂(u, v)
∂(x, y)

=

∣∣∣∣∣∣
y x

2x −2y

∣∣∣∣∣∣ = −2(x2 + y2),

and therefore

∂(x, y)
∂(u, v)

= − 1
2(x2 + y2)

= − 1
2
√

4u2 + v2
.

Therefore

I0 =
∫ 4

v=1

∫ 3

u=1

√
4u2 + v2

2
√

4u2 + v2
δ du dv =

∫ 4

1

∫ 3

1

1
2
δ du dv = 3δ.

C14S0M.052: The equations u = x− y, v = x+ y are easy to solve for

x =
u+ v

2
, y =

−u+ v
2

. (1)

Then the curves that bound the region R are transformed as follows:

x+ y = 1 becomes v = 1;

y = 0 becomes u = v;

x = 0 becomes u = −v.

The Jacobian of the transformation in (1) is

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣

1
2

1
2

−1
2

1
2

∣∣∣∣∣∣∣
=

1
4

+
1
4

=
1
2
.

Therefore

∫∫
R

exp
(
x− y
x+ y

)
dx dy =

∫ 1

v=0

∫ v

u=−v

1
2

exp
(u
v

)
du dv =

1
2

∫ 1

v=0

[
v exp

(u
v

) ]v
u=−v

dv

=
1
2

∫ 1

0

v ·
(
e− 1

e

)
dv =

1
2

[
1
2
v2

(
e− 1

e

) ]1

0

=
e2 − 1

4e
≈ 0.5876005968219007.

C14S0M.053: We use the transformation

x = aρ sinφ cos θ, y = bρ sinφ sin θ, z = cρ cosφ.

17



We saw in the solution of Problem 29 that the Jacobian of this transformation is

∂(x, y, z)
∂(ρ, φ, θ)

= abcρ2 sinφ.

Moreover, it follows from work shown in the solution of Problem 29 that the density function takes the form
δ(ρ, φ, θ) = 1− ρ2. Finally, the ellipsoidal surface

x2

a2
+
y2

b2
+
z2

c2
= 1

is transformed into the surface ρ = 1, and therefore the mass of the solid ellipsoid is

m =
∫ 2π

θ=0

∫ π

φ=0

∫ 1

ρ=0

(1− ρ2)abcρ2 sinφ dρ dφ dθ = 2πabc
∫ π

φ=0

∫ 1

ρ=0

(ρ2 − ρ4) sinφ dρ dφ

= 2πabc
∫ π

0

2
15

sinφ dφ =
4
15
πabc

[
− cosφ

]π
0

=
8
15
πabc.

C14S0M.054: If r2 = u1/2 cos 2θ = v1/2 sin 2θ, then r4 = u cos2 2θ = v sin2 2θ. Hence

u =
r4

cos2 2θ
and v =

r4

sin2 2θ
.

Thus

uv

u+ v
=

r8

sin2 2θ cos2 2θ
· sin2 2θ cos2 2θ
r4 cos2 2θ + r4 sin2 2θ

=
r4

cos2 2θ + sin2 2θ
= r4

and

tan 2θ =
sin 2θ
cos 2θ

=
r2

v1/2
· u

1/2

r2
=
u1/2

v1/2
.

Therefore

θ =
1
2

arctan
(
u1/2

v1/2

)
and r =

(
uv

u+ v

)1/4

.

To find the Jacobian of this transformation from the uv-plane to the rθ-plane, note first that

cos 2θ =
r2

u1/2
and sin 2θ =

r2

v1/2
.

After the next computation, we will use a result in Section 14.9 (see Problem 18 there).

∂(u, v)
∂(r, θ)

=

∣∣∣∣∣∣
4r3 sec2 2θ 4r4 sec2 2θ tan 2θ

4r3 csc2 2θ −4r4 csc2 2θ cot 2θ

∣∣∣∣∣∣ = −16r7 sec3 2θ csc3 2θ,

and thus

∂(r, θ)
∂(u, v)

= − sin3 2θ cos3 2θ
16r7

= − r12

16r7u3/2v3/2

= − r6

16ru3/2v3/2
= − u3/2v3/2

16r(u+ v)3/2u3/2v3/2
= − 1

16r(u+ v)3/2
.

18



The transformation we are using has the following effect on the lemniscates that bound the region R:

r2 = 4 sin 2θ becomes v1/2 = 4;

r2 = 3 sin 2θ becomes v1/2 = 3;

r2 = 4 cos 2θ becomes u1/2 = 4;

r2 = 3 cos 2θ becomes u1/2 = 3.

Therefore the area of R is

A =
∫∫

R

r dr dθ =
∫ 16

v=9

∫ 16

u=9

1
16(u+ v)3/2

du dv =
∫ 16

9

[
− 1

8(u+ v)1/2

]16

9

dv

=
1
8

∫ 16

9

[
1

(v + 9)1/2
− 1

(v + 16)1/2

]
dv =

1
4

[
(v + 9)1/2 − (v + 16)1/2

]16

9

=
10− 7

√
2

4
≈ 0.025126265847083664597.

C14S0M.055: The spherical surface with radius
√

3 centered at the origin has equation x2 + y2 + z2 = 3,
and hence the upper hemisphere has equation z =

√
3− x2 − y2 . Next,

1 + (zx)2 + (zy)2 = 1 +
x2

3− x2 − y2 +
y2

3− x2 − y2 =
3

3− x2 − y2 .

We integrate over the unit square in the xy-plane, quadruple the result to find the area of the part of the
surface above the 2-by-2 square, then double it to account for the spherical surface below the xy-plane. Thus
the surface area is

A = 8
∫ 1

x=0

∫ 1

y=0

√
3√

3− x2 − y2
dy dx = 8

∫ 1

x=0

[√
3 arctan

(
y√

3− x2 − y2

) ]1

y=0

= 8
∫ 1

0

√
3 arctan

(
1√

2− x2

)
dx =

∫ 1

x=0

8
√

3 arcsin
(

1√
3− x2

)
dx.

Now use integration by parts with

u = 8
√

3 arcsin
1√

3− x2
, dv = dx;

du =
8x
√

3
(3− x2)

√
2− x2

dx, v = x.

Thus we find that

A =
[
8x
√

3 arcsin
1√

3− x2

]1

0

− 8
√

3
∫ 1

0

x2

(3− x2)
√

2− x2
dx

= 8
√

3 arcsin
1√
2
− 8
√

3
∫ 1

0

x2

(3− x2)
√

2− x2
dx = 2π

√
3 − 8

√
3

∫ 1

0

x2

(3− x2)
√

2− x2
dx.
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Now make the substitution x =
√

2 sin θ, dx =
√

2 cos θ dθ. This yields

A = 2π
√

3 − 8
√

3
∫ π/4

0

2 sin2 θ

(3− 2 sin2 θ)
dθ

= 2π
√

3 − 8
√

3
∫ π/4

0

1− cos 2θ
3− 2 sin2 θ

dθ = 2π
√

3 − 4
√

3
∫ π/2

φ=0

1− cosφ
2 + cosφ

dφ

where φ = 2θ. Now substitute

u = tan
φ

2
, sinφ =

2u
1 + u2

, cosφ =
1− u2

1 + u2
, dφ =

2 du
1 + u2

(see the discussion immediately following Miscellaneous Problem 134 of Chapter 8 (Chapter 7 of the “early
transcendentals version”)). This yields

A = 2π
√

3 − 4
√

3
∫ 1

0

4u2

(u2 + 1)(u2 + 3)
du = 2π

√
3 − 8

√
3

∫ 1

0

(
3

u2 + 3
− 1
u2 + 1

)
du

= 2π
√

3 − 8
√

3
[√

3 arctan
(
u√
3

)
− arctanu

]1

0

= 2π
√

3 −
(
8
√

3
)
· π
12

(
2
√

3 − 3
)

= 4π
(√

3 − 1
)
≈ 9.19922175645144125328.

C14S0M.056: We will find the volume of the part of the solid that lies in the first octant, then multiply
by 8. Thus the volume is

V = 8
∫ a

x=0

∫ (a2/3−x2/3)3/2

y=0

(a2/3 − x2/3 − y2/3)3/2 dy dx.

The substitution y = b sin3 θ transforms the integrand into

(a2/3 − x2/3 − b2/3 sin2 θ)3/2,

and hence will be useful provided that b2/3 = a2/3 − x2/3; for this reason, we let b = (a2/3 − x2/3)3/2. Then
the substitution

y = (a2/3 − x2/3)3/2 sin3 θ, dy = 3(a2/3 − x2/3)3/2 sin2 θ cos θ dθ

yields

V = 8
∫ a

0

∫ π/2

0

[
(a2/3 − x2/3)3/2 cos3 θ

]
· 3(a2/3 − x2/3)3/2 sin2 θ cos θ dθ dx

= 24
∫ a

0

∫ π/2

0

(a2/3 − x2/3)3 sin2 θ cos4 θ dθ dx = 24
∫ a

0

(a2/3 − x2/3)3
∫ π/2

0

(cos4 θ − cos6 θ) dθ dx.

Then Formula 117 of the long table of integrals yields

V = 24
∫ a

0

(a2/3 − x2/3)3
(

1
2
· 3
4
· π

2
− 1

2
· 3
4
· 5
6
· π

2

)
dx = 24

∫ a

0

π

32
(a2/3 − x2/3)3 dx

=
3
4
π

[
a2x− 9

5
a4/3x5/3 +

9
7
a2/3x7/3 − 1

3
x3

]a
0

=
3
4
π · 16

105
a3 =

4
35
πa3.

20



C14S0M.057: We will find the volume of the part of the solid that lies in the first octant, then multiply
by 8. Thus the volume of the entire solid is

V = 8
∫ a

x=0

∫ (a1/3−x1/3)3

y=0

(a1/3 − x1/3 − y1/3)3 dy dx.

The substitution y = b sin6 θ transforms the integrand into

(a1/3 − x1/3 − b1/3 sin2 θ)3,

and hence will be useful provided that b1/3 = a1/3 − x1/3. Thus we choose b = (a1/3 − x1/3)3, and the
substitution

y = (a1/3 − x1/3)3 sin6 θ, dy = 6(a1/3 − x1/3)3 sin5 θ cos θ dθ

then yields

V = 8
∫ a

x=0

∫ π/2

θ=0

[
(a1/3 − x1/3) cos2 θ

]3 · 6(a1/3 − x1/3)3 sin5 θ cos θ dθ

= 48
∫ a

0

∫ π/2

0

(a1/3 − x1/3)6 sin5 θ cos7 θ dθ

= 48
∫ a

0

(a1/3 − x1/3)6
[

1
122880

(−600 cos 2θ − 75 cos 4θ

+ 100 cos 6θ + 30 cos 8θ − 12 cos 10θ − 5 cos 12θ)
]π/2
0

dx

= 48
∫ a

0

1
120

(a1/3 − x1/3)6 dx =
2
5

∫ a

0

(a1/3 − x1/3)6 dx

=
2
5

[
a2x− 9

2
a5/3x4/3 + 9a4/3x5/3 − 10ax2 +

45
7
a2/3x7/3 − 9

4
a1/3x8/3 +

1
3
x3

]a
0

=
2
5
· 1
84
a3 =

1
210

a3.

C14S0M.058: The average squared distance of points of the ellipsoid from its center (at (0, 0, 0)) is

1
V

∫ 2π

0

∫ π

0

∫ 1

0

[
(a sinφ cos θ)2 + (b sinφ sin θ)2 + (c cosφ)2

]
· ρ2 · abcρ2 sinφ dρ dφ dθ (1)

where V = 4
3 πabc is the volume of the ellipsoid. To obtain this integral, we began with the solid ellipsoid E

given in Problem 58. We set up the triple integral

1
V

∫∫∫
E

(x2 + y2 + z2) dV,

then converted it—using ellipsoidal coordinates, as in Problems 20, 21, 25, and 27 of Section 14.9—to the
integral shown in (1). (The expression abcρ2 sinφ that appears there is the Jacobian of the transformation.)
Then we evaluated the integral in (1) using Mathematica 3.0, as follows.

Integrate[ ((a∗Sin[phi]∗Cos[theta])∧2 + (b∗Sin[phi]*Sin[theta])∧2
+ (c∗Cos[phi])∧2)*(a*b*c*rho∧4∗Sin[phi]), rho ]
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x

y

z
w

v

w x + y + z = 3v = w 3√

(1,1,z)

1
5

(abcρ5 sinφ)(c2 cos2 φ+ a2 cos2 θ sin2 φ+ b2 sin2 φ sin2 θ)

(% /. rho → 1) - (% /. rho → 0)

1
5

(abc sinφ)(c2 cos2 φ+ a2 cos2 θ sin2 φ+ b2 sin2 φ sin2 θ)

Simplify[ Integrate[ %, phi ] ]

1
120

(abc cosφ)(−10a2 − 10b2 − 4c2 + 2(a2 + b2 − 2c2) cos 2φ+ (a2 − b2) cos 2(φ− θ)

− 10a2 cos 2θ + 10b2 cos 2θ + a2 cos 2(φ+ θ)− b2 cos 2(φ+ θ))

Simplify[ (% /. phi → Pi) - (% /. phi → 0) ]

2
15
abc(a2 + b2 + c2 + (a2 − b2) cos 2θ

Integrate[ %, theta ]

1
15

(2a3bcθ + 2ab3cθ + 2abc3θ + a3bc sin 2θ − ab3c sin 2θ))

Factor[ (% /. theta → 2∗Pi) - (% /. theta → 0) ]

4
15
πabc(a2 + b2 + c2)

%/((4/3)∗Pi∗a∗b∗c)

1
5

(a2 + b2 + c2)

C14S0M.059: Locate the cube C as shown in the next figure, with one vertex at the origin and the
opposite vertex at the point (1, 1, 1) in space. Let L be the line through these two points; we will rotate C
around the line L to generate the solid S. We also install a coordinate system on L; it becomes the w-axis,
with w = 0 at the origin and w =

√
3 at the point with Cartesian coordinates (1, 1, 1). Thus distance is

measured on the w-axis in exactly the same way it is measured on the three Cartesian coordinate axes.
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x + y + z = 3v = w 3√

x

y

z
w

Choose a point v on the x-axis with 1
2 � v � 1. We first deal with the case 2

3 � v � 1. Then the point with
Cartesian coordinates (v, v, v) determines a point w = v

√
3 on the w-axis, and the plane normal to the

w-axis at this point intersects C in a triangle, also shown in the preceding figure. It is clear that the plane
has equation x+ y+ z = 3v = w

√
3 and that it meets one edge of the cube at the point (1, 1, z) for some z

between 0 and 1. In fact, because (1, 1, z) satisfies the equation of the plane, it follows that z = −2 +w
√

3 .

When the cube is rotated around L, the resulting solid S meets the plane x+ y + z = 3v in a circular disk
centered at (v, v, v), and the radius of this disk is the distance from (v, v, v) to (1, 1, z), which is

√
(v − 1)2 + (v − 1)2 + (w

√
3 − 2− v)2 =

√
2(v − 1)2 + (3v − 2− v)2

=
√

6(v − 1)2 = (1− v)
√

6 =
(
1− 1

3w
√

3
)
·
√

6 .

Now we turn to the case 1
2 � v � 2

3 . In this case the plane through (v, v, v) meets the surface of the cube
in a semi-regular hexagon, one in which each interior angle is 2π/3 and whose sides are of only two different
lengths a and b, alternating as one moves around the hexagon. Such a hexagon is shown in the next figure.

One of the vertices of the hexagon is located at the point (1, y, 0) on one edge of the cube. The distance
from (v, v, v) to this point is the radius of the circular disk in which the plane normal to the w-axis at
(v, v, v) meets the solid S. It is easy to show that y = 3v− 1, and it follows that the distance in question is

√
(v − 1)2 + (2v − 1)2 + v2 =

√
6v2 − 6v + 2 =

√
2w2 − 2w

√
3 + 2 .

By considering only values of v for which 1
2 � v � 1, we obtain only half of the solid S, so we now can find

the volume V of S as follows. We shift to coordinates on the w-axis and remember that dw =
√

3 dv. The
result is that

V = 2
∫ 2/3

v=1/2

π(2w2 − 2w
√

3 + 2)
√

3 dw + 2
∫ 1

v=2/3

6π
(
1− 1

3w
√

3
)2√

3 dw.

The adjusted limits of integration are w = 1
2

√
3 to 2

3

√
3 in the first integral and w = 2

3

√
3 to

√
3 in the

second. Then Mathematica 3.0 promptly reports that

V =
π√
3
≈ 1.813799364234217850594078257642155732.
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Section 15.1

C15S01.001: F(x, y) = 〈 1, 1 〉 is a constant vector field; some vectors in this field are shown next.

C15S01.002: The vector field F(x, y) = 〈 3, −2 〉 is a constant vector field. Some typical vectors in this
field are shown next.
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C15S01.003: Some typical vectors in the field F(x, y) = 〈x, −y 〉 are shown next.

C15S01.004: Some typical vectors in the field F(x, y) = 〈 2, x 〉 are shown next.

C15S01.005: Some typical vectors in the field F(x, y) = 〈 (x2 + y2)1/2〈x, y 〉 are shown next. Note that
the length of each vector is proportional to the square of the distance from the origin to its initial point and
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that each vector points directly away from the origin.

C15S01.006: Some typical vectors in the field F(x, y) = (x2 + y2)−1/2〈x, y 〉 are shown next. Note that
each is a unit vector that points directly away from the origin.

C15S01.007: The vector field F(x, y, z) = 〈 0, 1, 1 〉 is a constant vector field. All vectors in this field are

3



  

x

y

z

(0,1,1)

  

x

y

z

(1,1,0)

(0,0,1)

parallel translates of the one shown in the next figure.

C15S01.008: The vector field F(x, y, z) = 〈 1, 1, −1 〉 is a constant vector field. All vectors in this field
are parallel translates of the one shown in the next figure.

C15S01.009: Each vector in the field F(x, y, z) = 〈−x, −y 〉 is parallel to the xy-plane and reaches from
its initial point at (x, y, z) to its terminal point (0, 0, z) on the z-axis.

C15S01.010: Each vector in the field F(x, y, z) = 〈x, y, z 〉 points directly away from the origin and its
length is the same as the distance from the origin to its initial point.

C15S01.011: The vector field ∇(xy) = 〈 y, x 〉 is shown in Fig. 15.1.8. To verify this, evaluate the gradient
at (2, 0).

C15S01.012: The gradient vector field ∇(2x2 + y2) = 〈 4x, 2y 〉 is shown in Fig. 15.1.9. To verify this,
evaluate the gradient at (2, 2).

C15S01.013: The gradient vector field

∇
(
sin 1

2 (x2 + y2)
)

=
〈
x cos 1

2 (x2 + y2), y cos 1
2 (x2 + y2)

〉

is shown in Fig. 15.1.10. To verify this, evaluate the gradient at (1, 1) and at (0, 1).
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C15S01.014: The gradient vector field

∇
(
sin 1

2 (y2 − x2)
)

=
〈
−x cos 1

2 (y2 − x2), y cos 1
2 (y2 − x2)

〉
is shown in Fig. 15.1.7. To verify this, evaluate the gradient at the point (1, 1).

C15S01.015: If F(x, y, z) = 〈x, y, z 〉, then

∇·F = 1 + 1 + 1 = 3 and ∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

x y z

∣∣∣∣∣∣∣∣∣∣
= 〈 0, 0, 0 〉 = 0.

C15S01.016: If F(x, y, z) = 〈 3x, −2y, −4z 〉, then

∇·F = 3− 2− 4 = −3 and ∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

3x −2y −4z

∣∣∣∣∣∣∣∣∣∣
= 〈 0, 0, 0 〉 = 0.

C15S01.017: If F(x, y, z) = 〈 yz, xz, xy 〉, then

∇·F = 0 + 0 + 0 = 0 and ∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

yz xz xy

∣∣∣∣∣∣∣∣∣∣
= 〈x− x, y − y, z − z 〉 = 0.

C15S01.018: If F(x, y, z) = 〈x2, y2, z2 〉, then

∇·F = 2x+ 2y + 2z and ∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

x2 y2 z2

∣∣∣∣∣∣∣∣∣∣
= 〈 0, 0, 0 〉 = 0.

C15S01.019: If F(x, y, z) = 〈xy2, yz2, zx2 〉, then

∇·F = y2 + z2 + x2 and ∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

xy2 yz2 zx2

∣∣∣∣∣∣∣∣∣∣
= 〈−2yz, −2xz, −2xy 〉.

C15S01.020: If F(x, y, z) = 〈 2x− y, 3y − 2z, 7z − 3x 〉, then

∇·F = 2 + 3 + 7 = 12 and ∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

2x− y 3y − 2z 7z − 3x

∣∣∣∣∣∣∣∣∣∣
= 〈 2, 3, 1 〉.
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C15S01.021: If F(x, y, z) = 〈 y2 + z2, x2 + z2, x2 + y2 〉, then

∇·F = 0 + 0 + 0 = 0 and ∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

y2 + z2 x2 + z2 x2 + y2

∣∣∣∣∣∣∣∣∣∣
= 〈 2y − 2z, 2z − 2x, 2x− 2y 〉.

C15S01.022: If F(x, y, z) = 〈 0, exz sin y, exy cos z 〉, then

∇·F = exz cos y − exy sin z and

∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

0 exz sin y exy cos z

∣∣∣∣∣∣∣∣∣∣
= 〈xexy cos z − xexz sin y, −yexy cos z, zexz sin y 〉.

C15S01.023: If F(x, y, z) = 〈x+ sin yz, y + sinxz, z + sinxy 〉, then

∇·F = 1 + 1 + 1 = 3 and

∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

x+ sin yz y + sinxz z + sinxy

∣∣∣∣∣∣∣∣∣∣

= 〈x cosxy − x cosxz, y cos yz − y cosxy, z cosxz − z cos yz 〉.

C15S01.024: If F(x, y, z) = 〈x2e−z, y3 lnx, z cosh y 〉, then

∇·F = 2xe−z + 3y2 lnx+ cosh y and

∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

x2e−z y3 lnx z cosh y

∣∣∣∣∣∣∣∣∣∣
= 〈 z sinh y, −x2e−z, x−1y3 〉.

C15S01.025: If a and b are constants and f and g are differentiable functions of two variables, then

∇(af + bg) =
〈
∂

∂x
(af + bg),

∂

∂y
(af + bg)

〉
= 〈 afx + bgx, afy + bgy 〉

= 〈 afx, afy 〉 + 〈 bgx, bgy 〉 = a 〈 fx, fy 〉 + b 〈 gx, gy 〉 = a∇f + b∇g.

If f and g are functions of three variables, then the proof is similar, merely longer.
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C15S01.026: If a and b are constants and F = 〈P, Q, R 〉 and G = 〈S, T, U 〉 where P , Q, R, S, T ,
and U are each differentiable functions of three variables, then

∇· (aF + bG) = ∇· 〈 aP + bS, aQ+ bT, aR+ bU 〉 = aPx + bSx + aQy + bTy + aRz + bUz

= a(Px +Qy +Rz) + b(Sx + Ty + Uz) = a∇·F + b∇·G.

C15S01.027: If a and b are constants and F = 〈P, Q, R 〉 and G = 〈S, T, U 〉 where P , Q, R, S, T ,
and U are each differentiable functions of three variables, then

∇× (aF + bG) = ∇× 〈 aP + bS, aQ+ bT, aR+ bU 〉

=

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

aP + bS aQ+ bT aR+ bU

∣∣∣∣∣∣∣∣∣∣

= 〈 aRy + bUy − aQz − bTz, aPz + bSz − aRx − bUx, aQx + bTx − aPy − bSy 〉

= a〈Ry −Qz, Pz −Rx, Qx − Py 〉 + b〈Uy − Tz, Sz − Ux, Tx − Sy 〉

= a (∇×F) + b (∇×G) .

C15S01.028: Suppose that G = 〈S, T, U 〉 where S, T , U , and f are differentiable functions of x, y,
and z. Then

∇· (fG) = ∇· 〈 fS, fT, fU 〉 = fxS + fSx + fyT + fTy + fzU + fUz

= (f)(Sx + Ty + Uz) + 〈 fx, fy, fz 〉 · 〈S, T, U 〉 = (f)(∇·G) + (∇f) ·G.

C15S01.029: Suppose that G = 〈S, T, U 〉 where S, T , U , and f are differentiable functions of x, y,
and z. Then

∇× (fG) = ∇× 〈 fS, fT, fU 〉 =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

fS fT fU

∣∣∣∣∣∣∣∣∣∣

= 〈 fyU + fUy − fzT − fTz, fzS + fSz − fxU − fUx, fxT + fTx − fyS − fSy 〉

= 〈 fyU − fzT, fzS − fxU, fxT − fyS 〉 + 〈 fUy − fTz, fSz − fUx, fTx − fSy 〉

=

∣∣∣∣∣∣∣∣∣

i j k

fx fy fz

S T U

∣∣∣∣∣∣∣∣∣
+ (f)

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

S T U

∣∣∣∣∣∣∣∣∣∣
= (∇f)×G + (f)(∇×G).
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C15S01.030: Suppose that f and g are differentiable functions of x, y, and z. Then

∇
(
f

g

)
=

〈
∂

∂x

(
f

g

)
,
∂

∂y

(
f

g

)
,
∂

∂z

(
f

g

)〉
=

〈
gfx − fgx

g2
,
gfy − fgy

g2
,
gfz − fgz

g2

〉

=
〈
gfx
g2

,
gfy
g2

,
gfz
g2

〉
−

〈
fgx
g2

,
fgy
g2

,
fgz
g2

〉
=

g

g2
〈 fx, fy, fz 〉 −

f

g2
〈 gx, gy, gz 〉

=
g

g2
∇f − f

g2
∇g =

g∇f − f∇g
g2

.

C15S01.031: If F = 〈P, Q, R 〉 and G = 〈S, T, U 〉 where P , Q, R, S, T , and U are each differentiable
functions of three variables, then

∇· (F×G) = ∇· 〈QU −RT, RS − PU, PT −QS 〉

= QxU +QUx −RxT −RTx +RyS +RSy − PyU − PUy + PzT + PTz −QzS −QSz

and

G · (∇×F)− F · (∇×G) = G · 〈Ry −Qz, Pz −Rx, Qx − Py 〉 − F · 〈Uy − Tz, Sz − Ux, Tx − Sy 〉

= SRy − SQz + TPz − TRx + UQx − UPy − PUy + PTz −QSz +QUx −RTx +RSy.

Then comparison of the last expressions in each of the two computations reveals that

∇· (F×G) = G · (∇×F)− F · (∇×G).

C15S01.032: Suppose that F = 〈P, Q, R 〉 where the component functions P , Q, and R of the three
variables x, y, and z have continuous second-order partial derivatives. Then

∇· (∇×F) = ∇· 〈Ry −Qz, Pz −Rx, Qx − Py 〉 = Ryx −Qzx + Pzy −Rxy +Qxz − Pyz = 0

because Pzy = Pyz, Qzx = Qxz, and Ryx = Rxy.

C15S01.033: Suppose that f and g are twice-differentiable functions of the three variables x, y, and z.
Then

∇·
[
∇(fg)

]
= ∇· 〈 fxg + fgx, fyg + fgy, fzg + fgz 〉

= fxxg + 2fxgx + fgxx + fyyg + 2fygy + fgyy + fzzg + 2fzgz + fgzz

= (f)(gxx + gyy + gzz) + (g)(fxx + fyy + fzz) + 2(fxgx + fygy + fzgz)

= f∇· 〈 gx, gy, gz 〉 + g∇· 〈 fx, fy, fz 〉 + 2〈 fx, fy, fz 〉 · 〈 gx, gy, gz 〉

= f∇· (∇g) + g∇· (∇f) + 2(∇f) · (∇g).

C15S01.034: Suppose that f and g are twice-differentiable functions of x, y, and z. Then
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∇ · (∇f × ∇g) = ∇ · (〈 fx, fy, fz 〉× 〈 gx, gy, gz 〉) = ∇ ·

∣∣∣∣∣∣∣∣∣

i j k

fx fy fz

gx gy gz

∣∣∣∣∣∣∣∣∣

= ∇ · 〈 fygz − fzgy, fzgx − fxgz, fxgy − fygx 〉

= fyxgz + fygzx − fzxgy − fzgyx + fzygx + fzgxy − fxygz − fxgzy + fxzgy + fxgyz − fyzgx − fygxz

= (fzy − fyz)gx + (fxz − fzx)gy + (fyx − fxy)gz + (gyz − gzy)fx + (gzx − gxz)fy + (gxy − gyx)fz = 0.

C15S01.035: If r = 〈x, y, z 〉, then ∇ · r = 3 and ∇× r = 0 by the solution of Problem 15.

C15S01.036: Write the constant vector a in the form 〈 a1, a2, a3 〉. Then

∇ · (a× r) = ∇ ·

∣∣∣∣∣∣∣∣∣

i j k

a1 a2 a3

x y z

∣∣∣∣∣∣∣∣∣
= ∇ · 〈 a2z − a3y, a3x− a1z, a1y − a2x 〉 = 0 + 0 + 0 = 0

and

∇× (a× r) =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

a2z − a3y a3x− a1z a1y − a2x

∣∣∣∣∣∣∣∣∣∣
= 〈 a1 + a1, a2 + a2, a3 + a3 〉 = 2a.

C15S01.037: By the results in Problems 28 and 35,

∇ · r
r3

=
1
r3

(∇ · r)− 3
2

(x2 + y2 + z2)−5/2〈 2x, 2y, 2z 〉 · r =
3
r3
− 3r−5 (x2 + y2 + z2) =

3
r3
− 3r2

r5
= 0.

C15S01.038: By the results in Problem 29 and 35,

∇ × r
r3

=
1
r3

(∇× r)− 3
2

(x2 + y2 + z2)−5/2〈 2x, 2y, 2z 〉× r = 0− 3r−5(r× r) = 0− 0 = 0.

C15S01.039: If r = |r| = (x2 + y2 + z2)1/2, then

∇r = ∇(x2 + y2 + z2)1/2 =
1
2

(x2 + y2 + z2)−1/2〈 2x, 2y, 2z 〉 =
r
r
.

C15S01.040: If r = |r| = (x2 + y2 + z2)1/2, then

∇
(

1
r

)
= ∇(x2 + y2 + z2)−1/2 = −1

2
(x2 + y2 + z2)−3/2〈 2x, 2y, 2z 〉 = − r

r3
.

C15S01.041: By the results in Problems 28, 35, and 39,
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∇ · (rr) = r∇ · r + (∇r) · r = 3r +
r · r
r

= 3r +
r2

r
= 4r.

C15S01.042: By the results in Problems 28, 39, and 40,

∇ · (∇r) = ∇ ·
( r
r

)
=

1
r

∇ · r +
(

∇ 1
r

)
· r =

3
r
− r · r

r3
=

3
r
− 1
r

=
2
r
.

C15S01.043: Here we have

∇(ln r) = ∇
(
ln

√
x2 + y2 + z2

)
=

1
2

〈
2x

x2 + y2 + z2
,

2y
x2 + y2 + z2

,
2z

x2 + y2 + z2

〉

=
1

x2 + y2 + z2
〈x, y, z 〉 =

r
r2
.

C15S01.044: If r = 〈x, y, z 〉 and r = |r|, then

∇(r10) = ∇
(
[x2 + y2 + z2 ]5

)

= 〈 10x(x2 + y2 + z2)4, 10y(x2 + y2 + z2)4, 10z(x2 + y2 + z2)4 〉 = 10r8〈x, y, z 〉 = 10r8r.
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Section 15.2

C15S02.001: If x(t) = 4t− 1 and y(t) = 3t+ 1, −1 � t � 1, then

∫
C

(x2 + y2) ds =
∫ 1

−1

(125t2 − 10t+ 10) dt =
[

125
3
t3 − 5t2 + 10t

]1

−1

=
310
3
,

∫
C

(x2 + y2) dx =
∫ 1

−1

(100t2 − 8t+ 8) dt =
[

100
3
t3 − 4t2 + 8t

]1

−1

=
248
3
, and

∫
C

(x2 + y2) dy =
∫ 1

−1

(75t2 − 6t+ 6) dt =
[
25t3 − 3t2 + 6t

]1

−1

= 62.

C15S02.002: If x(t) = t and y(t) = t2, 0 � t � 1, then

∫
C

x ds =
∫ 1

0

t(1 + 4t2)1/2 dt =
[

1
12

(1 + 4t2)3/2
]1

0

=
5
√

5 − 1
12

≈ 0.8483616572915790,

∫
C

x dx =
∫ 1

0

t dt =
[

1
2
t2

]1

0

=
1
2
, and

∫
C

x dy =
∫ 1

0

2t2 dt =
[

2
3
t3

]1

0

=
2
3
.

C15S02.003: If x(t) = et + 1 and y(t) = et − 1, 0 � t � ln 2, then

∫
C

(x+ y) ds =
∫ ln 2

0

23/2e2t dt =
[
21/2e2t

]ln 2

0

= 3
√

2 ≈ 4.2426406871192851,

∫
C

(x+ y) dx =
∫ ln 2

0

2e2t dt =
[
e2t

]ln 2

0

= 3, and
∫
C

(x+ y) dy =
∫ ln 2

0

2e2t dt =
[
e2t

]ln 2

0

= 3.

C15S02.004: If x(t) = sin t and y(t) = cos t, 0 � t � 1
2 π, then

∫
C

(2x− y) ds =
∫ π/2

0

(2 sin t− cos t) dt =
[
−2 cos t− sin t

]π/2
0

= 1,

∫
C

(2x− y)dx =
∫ π/2

0

(2 sin t cos t− cos2 t) dt = − 1
4

[
2t+ 2 cos 2t+ sin 2t

]π/2
0

=
4− π

4
, and

∫
C

(2x− y) dy =
∫ π/2

0

(sin t cos t − 2 sin2 t) dt =
[

1
4

(2 sin 2t− cos 2t− 4t)
]π/2
0

=
1− π

2
.

C15S02.005: If x(t) = 3t and y(t) = t4, 0 � t � 1, then

∫
C

xy ds =
∫ 1

0

3t5
√

9 + 16t6 dt =
[

1
48

(9 + 16t6)3/2
]1

0

=
49
24
≈ 2.0416666666666667,

∫
C

xy dx =
∫ 1

0

9t5 dt =
[

3
2
t6

]1

0

=
3
2
, and

∫
C

xy dy =
∫ 1

0

12t8 dt =
[

4
3
t9

]1

0

=
4
3
.
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C15S02.006: The path C is self-parametrizing: x = x, y(x) = x2. Hence

∫
C

P (x, y) dx+Q(x, y) dy =
∫
C

xy dx+ (x+ y) dy =
∫ 2

−1

(2x2 + 3x3) dx =
[

2
3
x3 +

3
4
x4

]2

−1

=
69
4
.

C15S02.007: One parametrization of the path C is this: Let y(t) = t and x(t) = t3, −1 � t � 1. Then

∫
C

P (x, y) dx+Q(x, y) dy =
∫
C

y2 dx+ x dy =
∫ 1

−1

(t3 + 3t4) dt =
[

1
4
t4 +

3
5
t5

]1

−1

=
6
5
.

C15S02.008: One parametrization of the path C is this: Let x(t) = t2 and y(t) = t3, 1 � t � 2. Then

∫
C

P (x, y) dx+Q(x, y) dy =
∫
C

yx1/2 dx+ x3/2 dy =
∫ 2

1

5t5 dt =
[

5
6
t6

]2

1

=
105
2
.

C15S02.009: Parametrize the path C in two parts. Let

x1(t) = t, y1(t) = 1, −1 � t � 2 and let x2(t) = 2, y2(t) = t, 1 � t � 5.

Then

∫
C

P (x, y) dx+Q(x, y) dy =
∫
C

x2y dx+ xy3 dy =
∫ 2

−1

t2 dt+
∫ 5

1

2t3 dt

=
[

1
3
t3

]2

−1

+
[

1
2
t4

]5

1

= 3 + 312 = 315.

C15S02.010: Parametrize the path C in two parts: Let

x1(t) = 3, y1(t) = 2− t, −3 � t � 0 and let x2(t) = 3− t, y2(t) = −1, 0 � t � 5.

Then

∫
C

P (x, y) dx+Q(x, y) dy =
∫
C

(x+ 2y) dx+ (2x− y) dy =
∫ 0

−3

(−t+ 4) dt+
∫ 5

0

(t− 1) dt

=
[
−1

2
t2 + 4t

]0

−3

+
[

1
2
t2 − t

]5

0

=
33
2

+
15
2

= 24.

C15S02.011: Because r(t) = 〈 t, t2, t3 〉 for 0 � t � 1, we have

dr = 〈 1, 2t, 3t2 〉 and F(t) = 〈 t3, t, −t2 〉.

Therefore

∫
C

F · dr =
∫ 1

0

(2t2 + t3 − 3t4) dt =
[

2
3
t3 +

1
4
t4 − 3

5
t5

]1

0

=
19
60
≈ 0.316666666667.

C15S02.012: Parametrize the path C as follows: r(t) = 〈 2 + 2t, −1 + 3t, 3− 4t 〉, 0 � t � 1. Then
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∫
C

F · dr =
∫ 1

0

(20 + 4t− 72t2) dt =
[
20t+ 2t2 − 24t3

]1

0

= −2.

To use Mathematica 3.0 to solve this problem, one method is to proceed as follows.

x[t ] := 2 + 2∗t; y[t ] := -1 + 3∗t; z[t ] := 3 - 4∗t

r[t ] := { x[t], y[t], z[t] }

f[t ] := { y[t]∗z[t], x[t]∗z[t], x[t]∗y[t] }

f[t].r′[t] (a.b gives the dot product of the vectors a and b.)

3(3− 4t)(2 + 2t) + 2(3− 4t)(−1 + 3t)− 4(2 + 2t)(−1 + 3t)

Expand[%]

20 + 4t− 72t2

Integrate[%, t]

20t+ 2t2 − 24t3

(% /. t → 1) - (% /. t → 0)

−2

C15S02.013: The path C is parametrized by r(t) = 〈 sin t, cos t, 2t 〉, 0 � t � π. Hence

dr = 〈 cos t, − sin t, 2 〉 and F(t) = 〈 cos t, − sin t, 2t 〉,

and thus

∫
C

F · dr =
∫ π

0

(4t+ 1) dt =
[
2t2 + t

]π
0

= 2π2 + π ≈ 22.8808014557685105.

C15S02.014: Parametrize the path C in three sections, as follows:

x1(t) = 4t, y1(t) = 0, z1(t) = 0, 0 � t � 1;

x2(t) = 4, y2(t) = 2t, z2(t) = 0, 0 � t � 1;

x3(t) = 4, y3(t) = 2, z3(t) = 3t, 0 � t � 1.

Then
∫
C

F · dr = I1 + I2 + I3

where
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I1 =
∫ 1

0

32t dt =
[
16t2

]1

0

= 16,

I2 =
∫ 1

0

(8t+ 24) dt =
[
4t2 + 24t

]1

0

= 28,

I3 =
∫ 1

0

81t2 dt =
[
27t3

]1

0

= 27,

and therefore
∫
C

F · dr = 71.

C15S02.015: Parametrize the path C in three sections, as follows:

x1(t) = −1, y1(t) = 2, z1(t) = −2 + 4t, 0 � t � 1;

x2(t) = −1 + 2t, y2(t) = 2, z2(t) = 2, 0 � t � 1;

x3(t) = 1, y3(t) = 2 + 3t, z3(t) = 2, 0 � t � 1.

Then
∫
C

F · dr = I1 + I2 + I3

where

I1 =
∫ 1

0

(32− 64t) dt =
[
32t− 32t2

]1

0

= 0,

I2 =
∫ 1

0

16 dt =
[

16t
]1

0

= 16, and

I3 =
∫ 1

0

12 dt =
[

12t
]1

0

= 12.

Therefore
∫
C

F · dr = 0 + 16 + 12 = 28.

C15S02.016: Parametrize the path C by

r(t) = 〈 1 + 2t, −1 + 3t, 2 + 3t 〉, 0 � t � 1.

Then f(x, y, z) = xyz becomes f(t) = 18t3 + 15t2 − t− 2 and |r′(t)| =
√

22 . Hence

∫
C

f(x, y, z) ds =
∫ 1

0

(18t3 + 15t2 − t− 2)
√

22 dt

=
√

22
[

9
2
t4 + 5t3 − 1

2
t2 − 2t

]1

0

= 7
√

22 ≈ 32.8329103187640069.
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C15S02.017: Here we have

∫
C

(2x+ 9xy) ds =
∫ 1

0

(2t+ 9t3)(1 + 4t2 + 9t4)1/2 dt

=
[

1
6

(1 + 4t2 + 9t4)3/2
]1

0

=
14
√

14 − 1
6

≈ 8.5638672358058632.

C15S02.018: Here we have

∫
C

xy ds =
∫ 5π/2

0

(36 sin t cos t)(16 sin2 t+ 81 cos2 t+ 49)1/2 dt =
[
−12

65
(16 sin2 t+ 81 cos2 t+ 49)3/2

]5π/2

0

= −12
65

[
(16 + 49)3/2 − (81 + 49)3/2

]
= 12

(
2
√

130 −
√

65
)
≈ 176.8950090442105192.

C15S02.019: Because the wire W is uniform, we may assume that its density is δ = 1. Moreover, x = 0
by symmetry. Parametrize the wire by

r(t) = 〈 a cos t, a sin t 〉, 0 � t � π.

Then ds = a dt. Also the mass of the wire is πa, so it remains only to compute the moment

Mx =
∫
W

ay dt =
∫ π

0

a2 sin t dt =
[
−a2 cos t

]π
0

= 2a2.

Therefore the centroid of the wire is located at the point
(

0,
2a
π

)
.

C15S02.020: Parametrize the wire W by

r(t) = 〈a cos t, a sin t 〉, 0 � t � π.

Because the wire is uniform, assume that its density is δ, a positive constant. The length of the wire is πa,
so its mass is m = πδa. Finally, ds = a dt. Therefore the moments of inertia of W with respect to the
coordinate axes are

Ix =
∫
C

aδy2 dt =
∫ π

0

a3δ sin2 t dt =
1
2
a3δ

[
t− 1

2
sin 2t

]π
0

=
1
2
πδa3 =

1
2
ma2 and

Iy =
∫
C

aδx2 dt =
∫ π

0

a3δ cos2 t dt =
1
2
a3δ

[
t+

1
2

sin 2t
]π
0

=
1
2
πδa3 =

1
2
ma2.

C15S02.021: First, the arc length element is

ds =
√

9 sin2 t+ 9 cos2 t+ 16 dt = 5 dt.

The mass and moments of the helical wire W are
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m =
∫
W

5k dt =
∫ 2π

0

5k dt = 10kπ;

Myz =
∫ 2π

0

15k cos t dt =
[
15k sin t

]2π

0

= 0;

Mxz =
∫ 2π

0

15k sin t dt =
[
−15k cos t

]2π

0

= 0;

Mxy =
∫ 2π

0

20kt dt =
[
10kt2

]2π

0

= 40kπ2.

Therefore the coordinates of the centroid are

x = y = 0, z =
40kπ2

10kπ
= 4π.

C15S02.022: The moment of inertia of the helical wire W of Problem 21 with respect to the z-axis is

Iz =
∫
W

(x2 + y2) dm =
∫ 2π

0

9 · 5k dt =
[
45kt

]2π

0

= 90kπ = 9m

where m is the mass of the wire.

C15S02.023: Parametrize the wire W via

r(t) = 〈 a cos t, a sin t, 0 〉, 0 � t � π

2
.

Then the arc-length element is ds = |r′(t)| dt = a dt. The mass element is dm = a · k · a2 sin t cos t dt, and
hence the mass of W is

m =
∫ π/2

0

ka3 sin t cos t dt =
[

1
2
ka3 sin2 t

]π/2
0

=
1
2
ka3.

Clearly the z-coordinate of the centroid is z = 0, and y = x by symmetry. The moment of the wire with
respect to the y-axis is

My =
∫ π/2

0

ka4 sin t cos2 t dt = −1
3
ka4

[
cos3 t

]π/2
0

=
1
3
ka4.

Therefore the x-coordinate of the centroid is

x =
2ka4

3ka3
=

2
3
a.

The moments of W with respect to the coordinate axes are

Ix =
∫ π/2

0

ka5 sin2 t cos t dt =
1
4
ka5

[
sin4 t

]π/2
0

=
1
4
ka5 =

1
2
ma2;

Iy = Ix by symmetry, and I0 = Ix + Iy =
1
2
ka5 = ma2.
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C15S02.024: The wire W has constant density k and is parametrized via x = t − sin t, y = 1 − cos t,
0 � t � 2π. Hence the arc-length element is

ds =
√

1− 2 cos t+ cos2 t+ sin2 t dt =
√

2− 2 cos t dt

= 2
(

1− cos t
2

)1/2

dt = 2
(

sin2 t

2

)1/2

dt = 2 sin
t

2
dt;

the last equality is justified because 0 � 1
2 t � π. Hence the mass of W and its moment with respect to the

y-axis are

m =
∫ 2π

0

2k sin
t

2
dt =

[
−4k cos

t

2

]2π

0

= 8k and

My =
∫ 2π

0

2k(t− sin t) sin
t

2
dt =

2
3
k

[
sin

3t
2

+ 9 sin
t

2
− 6t cos

t

2

]2π

0

= 8πk.

Hence the x-coordinate of the centroid of W is x = π. Its moment with respect to the x-axis is

Mx =
∫ 2π

0

2k(1− cos t) sin
t

2
dt =

2
3
k

[
cos

3t
2
− 9 cos

t

2

]2π

0

=
32
3
k,

and hence the y-coordinate of its centroid is y = 4
3 . Its moment of inertia with respect to the x-axis is

Ix =
∫ 2π

0

2k(1− cos t)2 sin
t

2
dt =

∫ 2π

0

8k sin5 t

2
dt

=
1
15
k

[
−150 cos

t

2
+ 25 cos

3t
2
− 3 cos

5t
2

]2π

0

=
256
15

k =
32
15
m.

C15S02.025: Using the given parametrization we find that the arc-length element is ds = 3
2 | sin 2t| dt,

and hence the polar moment of inertia of the wire is

I0 = 4
∫ π/2

0

k(cos6 t+ sin6 t) ds = − 3
16
k

[
cos 6t+ 7 cos 2t

]π/2
0

= 3k.

Because the mass of the wire is

m = 4
∫ π/2

0

k ds = −3k
[

cos 2t
]π/2
0

= 6k,

we can also write I0 =
1
2
m.

C15S02.026: The standard parametrization of the circle C with center (0, 0) and radius a is

r(t) = 〈 a cos t, a sin t 〉, 0 � t � 2π.

With this parametrization, we have arc-length element ds = a dt, and hence the average distance of points
of the circle from its center is

d =
1

2πa

∫ 2π

0

a2 dt =
1

2πa

[
a2t

]2π

0

=
2πa2

2πa
= a.
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C15S02.027: We are given the circle C of radius a centered at the origin and the point (a, 0) on C.
Suppose that (x, y) is a point of C. Let t be the angular polar coordinate of (x, y). Then, by the law of
cosines, the distance w between (a, 0) and (x, y) satisfies the equation

w2 = a2 + a2 − 2a2 cos t = 2a2(1− cos t) = 4a2 · 1− cos t
2

= 4a2 sin2 t

2
.

Because 0 � t � 2π, it now follows that w = 2a sin
t

2
, and hence the average value of w on C is

d =
1

2πa

∫ 2π

0

2a2 sin
t

2
dt = − 4a2

2πa

[
cos

t

2

]2π

0

=
8a2

2πa
=

4
π
a ≈ (1.2732395447351627)a.

C15S02.028: We use the parametrization given in the statement of Problem 24. Then the arc-length
element is

ds =
√

1− 2 cos t+ cos2 t+ sin2 t dt =
√

2− 2 cos t dt

= 2
(

1− cos t
2

)1/2

dt = 2
(

sin2 t

2

)1/2

dt = 2 sin
t

2
dt;

the last equality is justified because 0 � 1
2 t � π. An immediate consequence of Example 2 in Section 10.5 is

that this cycloid has length 8. Hence the average distance of points of the cycloid from the origin is

d =
1
8

∫ 2π

0

2(t2 + 2− 2t sin t− 2 cos t )1/2 sin
t

2
dt.

This integral appears to involve a nonelementary antiderivative, but the Mathematica 3.0 command

NIntegrate[ 2∗Sin[t/2]∗Sqrt[t∗t + 2 - 2∗t∗Sin[t] - 2∗Cos[t]], {t, 0, 2∗Pi},
WorkingPrecision → 28, AccuracyGoal → 24 ]

(the options ask Mathematica to carry 28 decimal digits in its computations and to select enough sampling
points to assure that 24 digits are correct in the final answer) yielded the result d ≈ 3.552523608078470787.

C15S02.029: The parametrization x(t) = cos3 t, y(t) = sin3 t, 0 � t � 2π of the astroid yields the
arc-length element

ds =
√

9 cos4 t sin2 t+ 9 cos2 t sin4 t dt =
3
2

√
sin2 2t dt =

3
2

sin 2t dt,

although the last equality is valid only if sin 2t is nonnegative. Hence we will find the average distance of
points of the astroid in the first quadrant from the origin; by symmetry, this will be the same as the average
distance of all of its points from the origin. Noting that

[x(t)]2 + [y(t)]2 = cos6 t+ sin6 t

and noting also that the length of the first-quadrant arc of the astroid is 3
2 (a consequence of the solution of

Problem 30 in Section 10.5), we find that the average distance of points of the astroid from the origin is
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d =
2
3

∫ π/2

0

3
2

√
cos6 t+ sin6 t sin 2t dt

=
[√

3
24

arctanh

( √
6 cos 2t√

5 + 3 cos 4t

)
−
√

2
16

(cos 2t)
√

5 + 3 cos 4t
]π/2
0

=
1
2

+
√

3
12

arctanh
√

3
2
≈ 0.69008649907523658688277356372.

Of course we used Mathematica 3.0 to find and simplify both the antiderivative and the value of the definite
integral. By contrast, Derive 2.56 yields the result

d =
2
3

∫ π/2

0

3
2

√
cos6 t+ sin6 t sin 2t dt

=
[
−
√

3
24

ln
(
2
√

3 cos4 t− 3 cos2 t+ 1 + 2
√

3 cos2 t−
√

3
)
− 1− 2 cos2 t

4

√
3 cos4 t− 3 cos2 t+ 1

]π/2
0

=
6 +
√

3 ln
(
2 +
√

3
)

12
≈ 0.69008649907523658688277356372.

C15S02.030: Using the parametrization of the helix given in the statement of Problem 21, we find that
the arc-length element is

ds =
√

9 sin2 t+ 9 cos2 t+ 16 dt = 5 dt.

Hence the length of the helix is

s =
∫ 2π

0

5 dt = 10π.

Next, the distance from the origin to the point (x(t), y(t), z(t)) of the helix is

√
16t2 + 9 cos2 t+ 9 sin2 t =

√
16t2 + 9 .

Therefore the average distance of points of the helix from the origin is

d =
1

10π

∫ 2π

0

5
√

16t2 + 9 dt =
1

10π

[
5
2
t
√

16t2 + 9 +
45
8

arcsinh
4t
3

]2π

0

=
1

10π

(
5π

√
64π2 + 9 +

45
8

arcsinh
8π
3

)
=

1
2

√
64π2 + 9 +

9
16π

arcsinh
8π
3
≈ 13.1609004583093278.

C15S02.031: With the given parametrization, we find that ds =
√

2 e−t dt and that

√
[x(t)]2 + [y(t)]2 = e−t.

The length of the spiral is

∫ ∞

0

√
2 e−t dt =

[
−
√

2 e−t
]∞

0

=
√

2 ,
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and thus the average distance of points of the spiral from the origin is

d =
1√
2

∫ ∞

0

√
2 e−2t dt =

[
−1

2
e−2t

]∞

0

=
1
2
.

C15S02.032: The work done in moving along a path on the sphere is zero because F is normal to the
sphere. Therefore F ·T is identically zero on any path on the sphere. Let C denote the straight line segment
from (1, 0, 0) to (5, 0, 0). Parametrize C by x(t) = 1 + 4t, y = 0, z = 0, 0 � t � 1. Then the work done
in moving along C is

W =
∫
C

F · dr =
∫ 1

0

4k
(1 + 4t)2

dt = −k
[

1
1 + 4t

]1

0

=
4
5
k.

C15S02.033: Part (a): Parametrize the path by x(t) = 1, y(t) = t, 0 � t � 1. Then the force is

F(t) =
〈

k

1 + t2
,

kt

1 + t2

〉
,

and so the work is

W =
∫ 1

0

F · dr =
∫ 1

0

kt

1 + t2
dt =

[
1
2
k ln(1 + t2)

]1

0

=
1
2
k ln 2.

Part (b): Parametrize the path by x(t) = 1− t, y(t) = 1, 0 � t � 1. Then the force is

F(t) =
〈

k(1− t)
1 + (1− t)2 ,

k

1 + (1− t)2

〉
,

and thus the work is

W =
∫ 1

0

− k(1− t)
1 + (1− t)2 dt =

[
1
2
k ln

(
1 + (1− t)2

)]1

0

= −1
2
k ln 2.

C15S02.034: Parametrize the unit circle C in the usual way: x(t) = cos t, y(t) = sin t, 0 � t � 2π.
Suppose that the force function has the form F(x, y) = F(t) = 〈 k1, k2 〉. Then the work done is

W =
∫
C

F · dr =
∫ 2π

0

(k2 cos t− k1 sin t) dt =
[
k1 cos t+ k2 sin t

]2π

0

= 0.

C15S02.035: Parametrize the unit circle C in the usual way: x(t) = cos t, y(t) = sin t, 0 � t � 2π. Then
the force function is F(t) = 〈 k cos t, k sin t 〉. Hence F · dr = 0, and therefore

∫
C

F · dr = 0.

C15S02.036: Parametrize the unit circle C in the usual way: x(t) = cos t, y(t) = sin t, 0 � t � 2π. Then
F(t) = 〈− sin t, cos t 〉, so that F · dr = sin2 t+ cos2 t = 1. Therefore

∫
C

F · dr =
∫ 2π

0

1 dt = 2π ≈ 6.28318530717958647692528676655901.
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C15S02.037: The work done in moving along a path on the sphere is zero because F is normal to the
sphere. Therefore F ·T is identically zero on any path on the sphere.

C15S02.038: The force function is F(t) = 〈 0, −150 〉 and the path may be parametrized as follows:
x(t) = 100(1− t), y(t) = 100(1− t), 0 � t � 1. Hence the work done is

∫
C

F · dr =
∫ 1

0

15000 dt = 15000 (ft·lb).

C15S02.039: The force function is F(t) = 〈 0, −150 〉 and the path may be parametrized as follows:
x(t) = 100 sin t, y(t) = 100 cos t, 0 � t � 1

2 π. Hence the work done is

∫
C

F · dr =
∫ π/2

0

15000 sin t dt = −15000
[

cos t
]π/2
0

= 15000 (ft·lb).

C15S02.040: The force function is F(t) = 〈 0, −150 〉 and the path may be parametrized as follows:
x(t) = 100(1− t), y(t) = 100(1− t)2, 0 � t � 1. Hence the work done is

∫
C

F · dr =
∫ 1

0

30000(1− t) dt =
[
30000t− 15000t2

]1

0

= 15000 (ft·lb).

C15S02.041: The force function is F(t) = 〈 0, 0, −200 〉 and the path may be parametrized as follows:
x(t) = 25 cos t, y(t) = 25 sin t, z(t) = 100− 100t/(10π), 0 � t � 10π. Hence the work done is

∫
C

F · dr =
∫ 10π

0

2000
π

dt =
[

2000
π

t

]10π

0

= 20000 (ft·lb).

C15S02.042: We parametrize the typical circle C as follows: x(t) = a cos t, y(t) = a sin t, z(t) ≡ 0.
Moreover, we are given

B(t) = 〈−aB sin t, aB cos t, 0 〉

where a is a constant. Hence

∫
C

B · dr =
∫ 2π

0

a2 |B| dt = 2πa2 |B| = µI

by Ampere’s law. Therefore

B = |B| = µI

2πa2
,

which shows that B is proportional to the current I and inversely proportional to the square of the radius
a of the distance from the wire.
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Section 15.3

Note: In the solutions of Problems 1 through 16, P (x, y) always denotes the first component of the given
vector field F(x, y), Q(x, y) always denotes its second component, and φ(x, y) denotes a scalar potential
function with gradient F(x, y).

C15S03.001: If P (x, y) = 2x+ 3y and Q(x, y) = 3x+ 2y, then

∂P

∂y
= 3 =

∂Q

∂x
.

Hence F is conservative. By inspection, φ(x, y) = x2 + 3xy + y2.

C15S03.002: If P (x, y) = 4x− y and Q(x, y) = 6y − x, then

∂P

∂y
= −1 =

∂Q

∂x
.

Hence F is conservative. By inspection, φ(x, y) = 2x2 − xy + 3y2.

C15S03.003: If P (x, y) = 3x2 + 2y2 and Q(x, y) = 4xy + 6y2, then

∂P

∂y
= 4y =

∂Q

∂x
.

Hence F is conservative. By inspection, φ(x, y) = x3 + 2xy2 + 2y3.

C15S03.004: If P (x, y) = 2xy2 + 3x2 and Q(x, y) = 2x2y + 4y3, then

∂P

∂y
= 4xy =

∂Q

∂x
.

Hence F is conservative. By inspection, φ(x, y) = x3 + x2y2 + y4.

C15S03.005: If P (x, y) = 2y + sin 2x and Q(x, y) = 3x+ cos 3y, then

∂P

∂y
= 2 �= 3 =

∂Q

∂x
.

Hence F is not conservative.

C15S03.006: If P (x, y) = 4x2y − 5y4 and Q(x, y) = x3 − 20xy3, then

∂P

∂y
= 4x2 − 20y3 �= 3x2 − 20y3 =

∂Q

∂x
.

Hence F is not conservative.

C15S03.007: If P (x, y) = x3 +
y

x
and Q(x, y) = y2 + lnx, then

∂P

∂y
=

1
x

=
∂Q

∂x
.

Hence F is conservative. By inspection, φ(x, y) =
1
4
x4 + y lnx+

1
3
y3.
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C15S03.008: If P (x, y) = 1 + yexy and Q(x, y) = 2y + xexy, then

∂P

∂y
= (1 + xy)exy =

∂Q

∂x
.

Hence F is conservative. By inspection, φ(x, y) = x+ y2 + exy.

C15S03.009: If P (x, y) = cosx+ ln y and Q(x, y) =
x

y
+ ey, then

∂P

∂y
=

1
y

=
∂Q

∂x
.

Hence F is conservative. By inspection, φ(x, y) = sinx+ x ln y + ey.

C15S03.010: If P (x, y) = x+ arctan y and Q(x, y) =
x+ y

1 + y2
, then

∂P

∂y
=

1
1 + y2

=
∂Q

∂x
.

Hence F is conservative. By inspection, φ(x, y) =
1
2
x2 + x arctan y +

1
2

ln(1 + y2).

C15S03.011: If P (x, y) = x cos y + sin y and Q(x, y) = y cosx+ sinx, then

∂P

∂y
= cos y − x sin y �= cosx− y sinx =

∂Q

∂x
.

Hence F is not conservative.

C15S03.012: If P (x, y) = (xy + y)ex−y and Q(x, y) = (xy + x)ex−y, then

∂P

∂y
= (1 + x)(1− y)ex−y �= (1 + x)(1 + y)ex−y =

∂Q

∂x
.

Hence F is not conservative

C15S03.013: If P (x, y) = 3x2y3 + y4 and Q(x, y) = 3x3y2 + y4 + 4xy3, then

∂P

∂y
= 9x2y2 + 4y3 =

∂Q

∂x
.

Hence F is conservative. By inspection, φ(x, y) = x3y3 + xy4 +
1
5
y5.

C15S03.014: If P (x, y) = ex sin y + tan y and Q(x, y) = ex cos y + x sec2 y, then

∂P

∂y
= ex cos y + sec2 y =

∂Q

∂x
.

Hence F is conservative. By inspection, φ(x, y) = ex sin y + x tan y.

C15S03.015: If P (x, y) =
2x
y
− 3y2

x4
and Q(x, y) =

2y
x3
− x2

y2
+

1
√
y

, then

∂P

∂y
= −2x

y2
− 6y
x4

=
∂Q

∂x
.
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Hence F is conservative. By inspection, φ(x, y) =
x2

y
+ 2
√
y +

y2

x3
.

C15S03.016: If P (x, y) =
2x5/2 − 3y5/3

2x5/2y2/3
and Q(x, y) =

3y5/3 − 2x5/2

3x3/2y5/3
, then

∂P

∂y
= −4x5/2 + 9y5/3

6x5/2y5/3
=
∂Q

∂x
.

Hence F is conservative. To find a scalar potential for F, we compute

∫
P (x, y) dx =

∫ (
y−2/3 − 3

2
x−5/2y

)
dx = xy−2/3 + x−3/2y + g(y)

and

∫
Q(x, y) dy =

∫ (
x−3/2 − 2

3
xy−5/3

)
dy = x−3/2y + xy−2/3 + h(x).

Thus a scalar potential for F(x, y) is φ(x, y) =
x

y2/3
+

y

x3/2
.

C15S03.017: We let x(t) = x1t and y(t) = y1t for 0 � t � 1. Also let r(t) = 〈x(t), y(t) 〉 and
F(x, y) = 〈 3x2 + 2y2, 4xy + 6y2 〉. Then

∫ 1

t=0

F(x(t), y(t)) · r′(t) dt =
∫ 1

0

3(x3
1 + 2x1y

2
1 + 2y3

1)t2 dt =
[
(x3

1 + 2x1y
2
1 + 2y3

1)t3
]1

0

= x3
1 + 2x1y

2
1 + 2y3

1 .

Then, as in Example 3, a scalar potential for F(x, y) is φ(x, y) = x3 + 2xy2 + 2y3.

C15S03.018: We let x(t) = x1t and y(t) = y1t for 0 � t � 1. Also let r(t) = 〈x(t), y(t) 〉 and
F(x, y) = 〈 2xy2 + 3x2, 2x2y + 4y3 〉. Then

∫ 1

t=0

F(x(t), y(t)) · r′(t) dt =
∫ 1

0

(3x3
1t

2 + 4x2
1y

2
1t

3 + 4y4
1t

3) dt =
[
x3

1t
3 + x2

1y
2
1t

4 + y4
1t

4

]1

0

= x3
1 + x2

1y
2
1 + y4

1 .

Therefore a scalar potential for F is φ(x, y) = x3 + x2y2 + y4.

C15S03.019: We let x(t) = x1t and y(t) = y1t for 0 � t � 1. Also let r(t) = 〈x(t), y(t) 〉 and
F(x, y) = 〈 3x2y3 + y4, 3x3y2 + y4 + 4xy3 〉. Then

∫ 1

t=0

F(x(t), y(t)) · r′(t) dt =
∫ 1

0

(6x3
1y

3
1t

5 + 5x1y
4
1t

4 + y5
1t

4) dt

=
[
x3

1y
3
1t

6 + x1y
4
1t

5 +
1
5
y5
1t

5

]1

0

= x3
1y

3
1 + x1y

4
1 +

1
5
y5
1 .

Therefore a scalar potential for F is φ(x, y) = x3y3 + xy4 +
1
5
y5.

C15S03.020: We let x(t) = x1t and y(t) = y1t for 0 � t � 1. Also let r(t) = 〈x(t), y(t) 〉 and
F(x, y) = 〈 1 + yexy, 2y + xexy 〉. Then
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∫ 1

t=0

F(x(t), y(t)) · r′(t) dt =
∫ 1

0

[
x1 + 2x1y1t exp

(
x1y1t

2
)

+ 2y2
1t

]
dt

=
[

exp
(
x1y1t

2
)

+ x1t+ y2
1t

2

]1

0

= exp(x1y1)− 1 + x1 + y2
1 .

Therefore a scalar potential for F is φ(x, y) = exy + x+ y2.

C15S03.021: Let P (x, y) = y2 + 2xy and Q(x, y) = x2 + 2xy. Then

∂P

∂y
= 2x+ 2y =

∂Q

∂x
,

and therefore F(x, y) is conservative with potential function φ(x, y) = x2y + xy2. Therefore

∫ (1,2)

(0,0)

P dx + Q dy =
[
x2y + xy2

](1,2)

(0,0)

= 6− 0 = 6.

C15S03.022: Let P (x, y) = 2x− 3y and Q(x, y) = 2y − 3x. Then

∂P

∂y
= −3 =

∂Q

∂x
,

and therefore F(x, y) is conservative with potential function φ(x, y) = x2 − 3xy + y2. Thus

∫ (1,1)

(0,0)

P dx + Q dy =
[
x2 − 3xy + y2

](1,1)

(0,0)

= −1− 0 = −1.

C15S03.023: Let P (x, y) = 2xey and Q(x, y) = x2ey. Then

∂P

∂y
= 2xey =

∂Q

∂x
,

and therefore F(x, y) is conservative with potential function φ(x, y) = x2ey. Consequently

∫ (1,−1)

(0,0)

P dx + Q dy =
[
x2ey

](1,−1)

(0,0)

=
1
e
− 0 =

1
e
.

C15S03.024: Let P (x, y) = cos y and Q(x, y) = −x sin y. Then

∂P

∂y
= − sin y =

∂Q

∂x
,

and therefore F(x, y) is conservative with potential function φ(x, y) = x cos y. So

∫ (2,π)

(0,0)

P dx + Q dy =
[
x cos y

](2,π)

(0,0)

= −2− 0 = −2.

C15S03.025: Let P (x, y) = sin y + y cosx and Q(x, y) = sinx+ x cos y. Then

∂P

∂y
= cosx+ cos y =

∂Q

∂x
,
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and therefore F(x, y) is conservative with potential function φ(x, y) = y sinx+ x sin y. Therefore

∫ (π,π)

(π/2,π/2)

P dx + Q dy =
[
y sinx+ x sin y

](π,π)

(π/2,π/2)

= 0− π = −π.

C15S03.026: Let P (x, y) = ey + yex and Q(x, y) = ex + xey. Then

∂P

∂y
= ex + ey =

∂Q

∂x
,

and therefore F(x, y) is conservative with potential function φ(x, y) = xey + yex. It then follows that

∫ (1,−1)

(0,0)

P dx + Q dy =
[
xey + yex

](1,−1)

(0,0)

=
1
e
− e− 0 =

1
e
− e ≈ −2.3504023872876029.

C15S03.027: By inspection, φ(x, y, z) = xyz. For an analytic solution, write

F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z) 〉

where P (x, y, z) = yz, Q(x, y, z) = xz, and R(x, y, z) = xy. Then let

g(x, y, z) =
∫
P (x, y, z) dx =

∫
yz dx = xyz + h(y, z).

Then

∂g

∂y
= Q(x, y, z) = xz = xz +

∂h

∂y
and

∂g

∂z
= R(x, y, z) = xy = xy +

∂h

∂z
,

and therefore the choice h(y, z) ≡ 0 yields a scalar potential for F.

C15S03.028: Write F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z) 〉 where P (x, y, z) = 2x − y − z,
Q(x, y, z) = 2y − x, and R(x, y, z) = 2z − x. Let

φ(x, y, z) =
∫
P (x, y, z) dx = x2 − xy − xz + g(y, z).

Then

Q(x, y, z) = 2y − x =
∂φ

∂y
= −x+

∂g

∂y
.

It follows that gy(y, z) = 2y, and thus that g(y, z) = y2 + h(z). Then

R(x, y, z) = 2z − x =
∂φ

∂z
= −x+ h′(z).

Therefore h(z) = z2 + C where C is a constant. Therefore

φ(x, y, z) = x2 + y2 + z2 − xy − xz + C;

for a particular scalar potential for F, choose C = 0.

C15S03.029: Write
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F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z) 〉

where P (x, y, z) = y cos z − yzex, Q(x, y, z) = x cos z − zex, and R(x, y, z) = −xy sin z − yex. Let

φ(x, y, z) =
∫
P (x, y, z) dx = xy cos z − yzex + g(y, z).

Then

Q(x, y, z) = x cos z − zex =
∂φ

∂y
= x cos z − zex +

∂g

∂y
.

Hence gy(x, z) = 0, and so g is a function of z alone. Thus

φ(x, y, z) = xy cos z − yzex + g(z),

and therefore

R(x, y, z) = −xy sin z − yex =
∂φ

∂z
= −xy sin z − yex + g′(z).

Thus g(z) = C, a constant. So every scalar potential for F has the form φ(x, y, z) = xy cos z − yzex + C.
For a particular scalar potential, simply choose C = 0.

C15S03.030: Parametrize the circle C via x(t) = cos t, y(t) = sin t, −π � t � π. Let r(t) = 〈x(t), y(t) 〉.
Then

F(x(t), y(t)) = 〈− sin t, cos t 〉,

and hence F(x(t), y(t)) · r′(t) = 1. So integration from P (1, 0) to Q(−1, 0) along the top half of the circle
yields

∫ Q

P

F · dr =
∫ π

t=0

1 dt = π,

whereas integration from P to Q along the bottom half of the circle yields

∫ Q

P

F · dr =
∫ −π

t=0

1 dt = −π.

Next, if ∇f = F for some function f = f(x, y), then

∂f

∂y
=

x

x2 + y2
,

and it follows that

f(x, y) = arctan
( y
x

)
+ g(x).

But then

∂f

∂x
= − y

x2 + y2
+ g′(x),

and the choice of g(x) ≡ 0 yields the function
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f(x, y) = arctan
( y
x

)

for which ∇f = F provided that x �= 0. There can be no function φ(x, y) such that ∇φ = F for all
(x, y) �= (0, 0) because our previous work shows that the line integral of F from P to Q is not independent
of the path.

C15S03.031: Suppose that the force field F = 〈P, Q 〉 is conservative in the plane region D. Then there
exists a potential function φ(x, y) for F; that is, ∇φ = F, so that

∂φ

∂x
= P (x, y) and

∂φ

∂y
= Q(x, y)

on the interior of D. But then

∂P

∂y
=

∂2φ

∂y ∂x
=

∂2φ

∂x ∂y
=
∂Q

∂x

on the interior ofD, under the assumption that the second-order mixed partial derivatives of φ are continuous
there. Of course, continuity of Py and Qx on D is enough to guarantee this.

C15S03.032: Suppose that the force field F = 〈P, Q, R 〉 is conservative in the space region D. Then
there exists a potential function φ(x, y, z) for F; that is, ∇φ = F, so that

∂φ

∂x
= P (x, y, z),

∂φ

∂y
= Q(x, y, z), and

∂φ

∂z
= R(x, y, z)

on the interior of D. But then

∂P

∂y
=

∂2φ

∂y ∂x
=

∂2φ

∂x ∂y
=
∂Q

∂x
,

∂P

∂z
=

∂2φ

∂z ∂x
=

∂2φ

∂x ∂z
=
∂R

∂x
, and

∂Q

∂z
=

∂2φ

∂z ∂y
=

∂2φ

∂y ∂z
=
∂R

∂y

provided that φ(x, y, z) has continuous second-order mixed partial derivatives. But continuity of Py, Pz,
Qx, Qz, Rx, and Ry on D is enough to guarantee this.

C15S03.033: The given integral is not independent of the path because

∂x2

∂z
= 0 �= 2y =

∂y2

∂y
.

C15S03.034: Parametrize the path C from (0, 0, 0) to (x1, y1, z1) by x(t) = x1t, y(t) = y1t, z(t) = z1t,
0 � t � 1. Let r(t) = 〈x(t), y(t), z(t) 〉. Given

F(x, y, z) = 〈 yz, xz + y, xy + 1 〉,

note that F(x(t), y(t), z(t)) = 〈 y1z1t2, y1t+ x1z1t
2, 1 + x1y1t

2 〉, so that

F(t) · r′(t) = z1 + y2
1t+ 3x1y1z1t

2.

Therefore

∫
C

F · dr =
∫ 1

0

(z1 + y2
1t+ 3x1y1z1t

2) dt =
[
z1t+

1
2
y2
1t

2 + x1y1z1t
3

]1

0

= z1 +
1
2
y2
1 + x1y1z1.
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The subscripts are now superfluous; thus we obtain

f(x, y, z) = z +
1
2
y2 + xyz,

and therefore ∇f = 〈 yz, y + xz, 1 + xy 〉 = F(x, y, z).

C15S03.035: Part (a): If

f(x, y) = arctan
( y
x

)
,

then

∂f

∂x
=
− y

x2

1 +
y2

x2

= − y

x2 + y2
and

∂f

∂y
=

1
x

1 +
y2

x2

=
x

x2 + y2
.

Part (b): Because F = ∇f has a potential on the right half-plane x > 0, line integrals of F will be
independent of the path C provided that the path always remains in the right half-plane. Hence if C is such
a path from A(x1, y1) = (r1, θ1) to B(x2, y2) = (r2, θ2), then

∫
C

F ·T ds =
∫ B

A

F · dr =
[
f(x, y)

]B
A

= θ2 − θ1.

Part (c): Parametrize the unit circle using x(t) = cos t, y(t) = sin t, −π � t � π. It is easy to verify that

F(x(t), y(t)) = 〈− sin t, cos t 〉

and that F(t) · r′(t) = 1. Therefore

∫
C1

F · dr =
∫ π

0

1 dt = π and
∫
C2

F · dr =
∫ −π

0

1 dt = −π.

This does not contradict the fundamental theorem of calculus for line integrals because F does not have a
scalar potential defined in a region containing both C1 and C2 (see the solution of Problem 30).

C15S03.036: If

F =
kr
r3

is the inverse-square force field of Example 7 in Section 15.2, then in Cartesian coordinates we have

F(x, y, z) =
〈

kx

(x2 + y2 + z2)3/2
,

ky

(x2 + y2 + z2)3/2
,

kz

(x2 + y2 + z2)3/2

〉
,

and it is easy to show that a scalar potential for F is
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φ(x, y, z) = − k

(x2 + y2 + z2)1/2
.

Therefore F is conservative on any space region not containing the origin. Let r =
√
x2 + y2 + z2 . Then

φ(x, y, z) = −k/r, and therefore the work done by F in moving from a point P at distance r1 from the
origin to a point Q at distance r2 from the origin is

W =
∫ Q

P

F · dr =
[
φ(x, y, z)

]Q
P

=
[
− k

r

]r2
r1

= k

(
1
r1
− 1
r2

)
.

C15S03.037: The units are mks units throughout. We use M = 5.97×1024, G = 6.67×10−11, m = 10000,
and let k = GMm = 3.98199 × 1018 in the formula in Problem 36. We also must convert r1 and r2 into
meters: r1 = 9000 · 1000 and r2 = 11000 · 1000. Then substitution in the formula in Problem 36 yields
W = 8.04442× 1010 N·m.

C15S03.038: The units are mks units throughout. We use M = 1.99×1030, G = 6.67×10−11, m = 10000,
and let k = GMm = 1.32733 × 1024 in the formula in Problem 36. We also must convert r1 and r2 into
meters: r1 = 1.5 × 1011 and r2 = 2.29 × 1011. Then substitution in the formula in Problem 36 yields
W = 3.05267× 1012 N·m.

9



Section 15.4

Note: As in the text, the notation
∮
C

P (x, y) dx + Q(x, y) dy

(and variations thereof) always denotes an integral around the closed path C with counterclockwise (positive)
orientation.

C15S04.001: By Green’s theorem,

∮
C

(x + y2) dx + (y + x2) dy =
∫ 1

y=−1

∫ 1

x=−1

(2x− 2y) dx dy

=
∫ 1

y=−1

[
x2 − 2xy

]1

x=−1

dy =
∫ 1

−1

−4y dy =
[
−2y2

]1

0

= 0.

C15S04.002: By Green’s theorem,

∮
C

(x2 + y2) dx− 2xy dy =
∫ 1

0

∫ 1−x

0

(−2y − 2y) dy dx

=
∫ 1

0

[
− 2y2

]1−x

0

dx =
∫ 1

0

−2(1− x)2 dx =
[

2
3

(1− x)3
]1

0

= −2
3
.

C15S04.003: By Green’s theorem,

∮
C

(y + ex) dx + (2x2 + cos y) dy =
∫ 1

0

∫ 2−y

y

(4x− 1) dx dy

=
∫ 1

0

[
2x2 − x

]2−y

y

dy =
∫ 1

0

(6− 6y) dy =
[
6y − 3y2

]1

0

= 3.

C15S04.004: By Green’s theorem,

∮
C

(x2 − y2) dx + xy dy =
∫ 1

0

∫ x

x2
3y dy dx

=
∫ 1

0

[
3
2
y2

]x
x2

dx =
3
2

∫ 1

0

(x2 − x4) dx =
3
2

[
1
3
x3 − 1

5
x5

]1

0

=
1
5
.

C15S04.005: By Green’s theorem,

∮
C

[
−y2 + exp(ex)

]
dx + (arctan y) dy =

∫ 1

0

∫ √
x

x2
2y dy dx =

∫ 1

0

[
y2

]√
x

x2

dx

=
∫ 1

0

(x− x4) dx =
[

1
2
x2 − 1

5
x5

]1

0

=
3
10

.
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C15S04.006: Let D be the disk bounded by the circle C. Then by Green’s theorem,

∮
C

y2 dx + (2x− 3y) dy =
∫∫

D

(2− 2y) dA =
∫ 2π

θ=0

∫ 3

r=0

(2− 2r sin θ) · r dr dθ

=
∫ 2π

0

[
r2 − 2

3
r3 sin θ

]3

0

dθ =
∫ 2π

0

(9− 18 sin θ) dθ

=
[
9θ + 18 cos θ

]2π

0

= 18π ≈ 56.5486677646162783.

C15S04.007: By Green’s theorem,

∮
C

(x− y) dx + y dy =
∫ π

0

∫ sin x

0

1 dy dx =
∫ π

0

sinx dx =
[
− cosx

]π
0

= 2.

C15S04.008: Let R be the region bounded by the curve C. By Green’s theorem,
∮
C

ex sin y dx + ex cos y dy =
∫∫

R

(ex cos y − ex cos y) dA =
∫∫

R

0 dA = 0.

C15S04.009: Let D be the bounded region bounded by the curve C. Then by Green’s theorem,
∮
C

y2dx + xy dy =
∫∫

D

(y − 2y) dA = −
∫∫

D

y dA = 0

by symmetry.

C15S04.010: Let R denote the bounded plane region bounded by the curve C. Then by Green’s theorem,
∮
C

y

1 + x2
dx + (arctanx) dy =

∫∫
R

(
1

1 + x2
− 1

1 + x2

)
dA =

∫∫
R

0 dA = 0.

C15S04.011: Let R denote the bounded plane region bounded by the curve C. Then by Green’s theorem,

∮
C

xy dx + x2 dy =
∫∫

R

(2x− x) dA =
∫ π/2

θ=0

∫ sin 2θ

r=0

r2 cos θ dr dθ =
∫ π/2

0

[
1
3
r3 cos θ

]sin 2θ

0

dθ

=
∫ π/2

0

8
3

sin3 θ cos4 θ dθ =
1

840

[
5 cos 7θ + 7 cos 5θ − 35 cos 3θ − 105 cos θ

]π/2
0

=
16
105

≈ 0.15238095238095238095.

C15S04.012: Let D be the bounded plane region bounded by the curve C. Then by Green’s theorem,
∮
C

x2 dx− y2 dy =
∫∫

D

0 dA = 0.

C15S04.013: The given parametrization and the corollary to Green’s theorem yield area
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A =
∮
C

x dy =
∫ 2π

0

a2 cos2 t dt = a2

[
1
2
t +

1
2

sin t cos t
]2π

0

= πa2.

C15S04.014: The given parametrization and the corollary to Green’s theorem yield area

A =
∮
C

y dx = a2

∫ 2π

0

(1− cos t)2 dt =
1
4
a2

[
6t− 8 sin t + sin 2t

]2π

0

= 3πa2 ≈ (9.4247779607693797)a2.

There’s no minus sign in front of the first integral because the counterclockwise direction around the region
bounded by the cycloid and the x-axis is opposite to the direction of the parametrization along the cycloid.
There’s no need to evaluate the line integral along the x-axis because x dy = 0 there.

C15S04.015: We’ll use the given parametrization, find the area of the part of the astroid in the first
quadrant, then multiply by 4. The corollary to Green’s theorem yields area

A =
∮
C

x dy = 4
∫ π/2

0

3 sin2 t cos4 t dt

=
1
16

[
12t + 3 sin 2t− 3 sin 4t− sin 6t

]π/2
0

=
3
8
π ≈ 1.17809724509617246442.

There’s no need to evaluate the line integral along the x- or y-axes because x dy = 0 there.

C15S04.016: Parametrize the lower part of C with x(t) = t, y(t) = t3, 0 � t � 1. Parametrize the
upper part of C with x(t) = t, y(t) = t2, 0 � t � 1. Note that the latter parametrization is opposite
the counterclockwise direction around C, so an extra minus sign will be required. The corollary to Green’s
theorem then yields area

A =
∮
C

x dy =
∫ 1

0

t · 3t2 dt−
∫ 1

0

t · 2t dt =
[

3
4
t4

]1

0

−
[

2
3
t3

]1

0

=
3
4
− 2

3
=

1
12
≈ 0.0833333333333333.

C15S04.017: Denote by E the bounded plane region bounded by the given curve C. Then the work is

W =
∮
C

F ·T ds =
∮
C

−2y dx + 3x dy =
∫∫

E

5 dA = 5 · 6π = 30π ≈ 94.2477796076937972.

(The area of the ellipse is 6π because it has semiaxes of lengths 2 and 3.)

C15S04.018: Denote by D the disk bounded by the given circle C. Then the work is

W = o

∫
C

F ·T ds =
∮
C

(y2 − x2) dx + 2xy dy =
∫∫

D

(2y − 2y) dA = 0.

C15S04.019: Denote by T the triangular region bounded by the given triangle C. Then the work done is
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W =
∮
C

F ·T ds =
∮
C

5x2y3 dx + 7x3y2 dy =
∫∫

T

(21x2y2 − 15x2y2) dA =
∫ 3

x=0

∫ 6−2x

y=0

6x2y2 dy dx

=
∫ 3

0

[
2x2y3

]6−2x

y=0

dx =
∫ 3

0

(432x2 − 432x3 + 144x4 − 16x5) dx

=
[
144x3 − 108x4 +

144
5

x5 − 8
3
x6

]3

0

=
972
5

= 194.4.

C15S04.020: Denote by S the semicircular plane region bounded by the given curve C. Then the work
done is

W =
∮
C

F ·T ds =
∮
C

xy2 dx + 3x2y dy =
∫∫

S

(6xy − 2xy) dA =
∫∫

S

4xy dA = 0

by symmetry. Or, without using symmetry, the last integral becomes

∫ π

θ=0

∫ 2

r=0

4r3 sin θ cos θ dr dθ =
∫ π

0

16 sin θ cos θ dθ =
[
8 sin2 θ

]π
0

= 0.

C15S04.021: Denote by R the bounded plane region bounded by the given curve C. Then the outward
flux of F across C is

φ =
∮
C

F ·n ds =
∫∫

R

∇·F dA =
∫∫

R

∇· 〈 2x, 3y 〉 dA =
∫∫

R

5 dA = 30π ≈ 94.2477796076937972.

C15S04.022: Denote by D the disk bounded by the given circular path C. Then the outward flux of F
across C is

φ =
∮
C

F ·n ds =
∫∫

D

∇·F dA =
∫∫

D

∇· 〈x3, y3 〉 dA =
∫∫

D

(3x2 + 3y2) dA

=
∫ 2π

0

∫ 3

0

3r3 dr dθ = 6π
[

1
4
r4

]3

0

=
243
2

π ≈ 381.7035074111598785.

C15S04.023: Denote by T the triangular region bounded by the given path C. Then the outward flux of
F across C is

φ =
∮
C

F ·n ds =
∫∫

T

∇·F dA

=
∫∫

T

∇· 〈 3x +
√

1 + y2 , 2y − (1 + x4)1/3 〉 dA =
∫∫

T

5 dA = 5 · 1
2
· 3 · 6 = 45

because T is a triangle with base 3 and height 6.

C15S04.024: Denote by S the semicircular region bounded by the given path C. Then the outward flux
of F across C is
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φ =
∮
C

F ·n ds =
∫∫

S

∇·F dA =
∫∫

S

(3x2 + 3y2) dA

= 3
∫ π

0

∫ 2

0

r3 dr dθ = 3π · 16
4

= 12π ≈ 37.6991118430775189.

C15S04.025: Given f , a twice-differentiable function of x and y, we have

∇2f = ∇· (∇f) = ∇· 〈 fx, fy 〉 =
∂2f

∂x2
+

∂2f

∂y2
.

C15S04.026: Given f(x, y) = ln(x2 + y2), we have

∇f =
〈

2x
x2 + y2

,
2y

x2 + y2

〉
, and thus

∇2f =
2(x2 + y2)− 4x2

(x2 + y2)2
+

2(x2 + y2)− 4y2

(x2 + y2)2
=

2y2 − 2x2 + 2x2 − 2y2

(x2 + y2)2
= 0

provided that (x, y) �= (0, 0).

C15S04.027: If f and g are twice-differentiable functions of x and y, then

∇2(fg) = ∇·
[
∇(fg)

]
= ∇· 〈 fxg + fgx, fyg + fgy 〉

= fxxg + fxgx + fxgx + fgxx + fyyg + fygy + fygy + fgyy

= (f)(gxx + gyy) + 2(fxgx + fygy) + (g)(fxx + fyy)

= f∇2g + g∇2f + 2〈 fx, fy 〉 · 〈 gx, gy 〉 = f∇2g + g∇2f + 2∇f · ∇g.

Compare this with Problem 33 of Section 15.1.

C15S04.028: By Green’s theorem,
∮
C

fx dy − fy dx =
∮
C

−fy dx + fx dy =
∫∫

R

(fxx + fyy) dA =
∫∫

R

∇2f dx dy.

C15S04.029: We may assume constant density δ = 1. Then

A =
∮
C

x dy =
∮
C

−y dx.

Now

My =
∫∫

R

x dA and Mx =
∫∫

R

y dA.

Hence, by Green’s theorem,

My =
∮
C

1
2
x2 dy and Mx = −

∮
C

1
2
y2 dx.
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Therefore

x =
My

A
=

1
2A

∮
C

x2 dy and y =
Mx

A
= − 1

2A

∮
C

y2 dx.

C15S04.030: Part (a): We use the semicircular region R bounded by the semicircle C described by
x2 +y2 = a2, y � 0 and the line segment L with endpoints (−a, 0) and (a, 0). Both the integrals in Problem
29 will be zero on L, so we will parametrize only C and integrate only along C. Then the parametrization
x = a cos t, y = a sin t, 0 � t � π of C and the results in Problem 29 yield

x =
1

πa2

∫
C

x2 dy =
1

πa2

∫ π

0

a3 cos3 t dt =
a

π

[
sin t− 1

3
sin3 t

]π
0

= 0 and

y = − 1
πa2

∫
C

y2 dx =
1

πa2

∫ π

0

a3 sin3 t dt =
a

π

[
− cos t +

1
3

cos3 t
]π
0

=
4a
3π
≈ (0.4244131815783876)a.

Part (b): We use the quarter circle R bounded by the circular arc C described by x2 + y2 = a2, x � 0,
y � 0 and the coordinate axes. Both the integrals in Problem 29 will be zero on the coordinate axes, so we
parametrize only C and integrate only along C. The parametrization x = a cos t, y = a sin t, 0 � t � π/2
and the results in Problem 29 yield

x =
2

πa2

∫
C

x2 dy =
2

πa2

∫ π/2

0

a3 cos3 t dt =
2a
π

[
sin t− 1

3
sin3 t

]π/2
0

=
4a
3π
≈ (0.4244131815783876)a and

y = − 2
πa2

∫
C

y2 dx =
2

πa2

∫ π/2

0

a3 sin3 t dt =
2a
π

[
− cos t +

1
3

cos3 t
]π/2
0

=
4a
3π
≈ (0.4244131815783876)a.

C15S04.031: Suppose that the plane region R is bounded by the piecewise smooth simple closed curve C,
oriented counterclockwise, and that R has constant density δ. Then, by Green’s theorem,

Ix =
∫∫

R

δy2 dA = δ

∮
C

−1
3
y3 dx = −1

3
δ

∮
C

y3 dx and

Iy =
∫∫

R

δx2 dA = δ

∮
C

1
3
x3 dy =

1
3
δ

∮
C

x3 dy.

C15S04.032: By the results in Problem 31, we have

I0 = Ix + Iy =
1
3
δ

∮
C

−y3 dx + x3 dy =
1
3
δ

∫∫
R

(3x2 + 3y2) dA = δ

∫∫
R

r2 dA

= δ

∫ 2π

0

∫ a

0

r3 dr dθ = δ · 2π · 1
4
a4 = πδa2 · 1

2
a2 =

1
2
Ma2.

C15S04.033: As in Problem 30 of Section 10.4, the substitution y = tx in the equation x3 + y3 = 3xy of
the folium yields x3 + t3x3 = 3tx2, and thereby the parametrization

x(t) =
3t

1 + t3
, y(t) =

3t2

1 + t3
, 0 � t < +∞
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of the first-quadrant loop of the folium. If C is the half of its loop that stretches from (0, 0) to
(

3
2 ,

3
2

)
along

the lower half of the folium, then C is swept out by this parametrization as t varies from 0 to 1. Let J be the
straight line segment joining

(
3
2 ,

3
2

)
with (0, 0); parametrize J with x = 3

2 (1− t), y = 3
2 (1− t), 0 � t � 1.

Then the area of the folium is

A = 2 · 1
2

∮
C ∪ J

x dy − y dx =
∫
C

x dy − y dx +
∫
J

x dy − y dx.

The last integral is

∫ 1

t=0

[
−3

2
(1− t) +

3
2

(1− t)
]
dt = 0,

and hence the area of the folium is

A =
∫ 1

0

[
x(t)y′(t)− y(t)x′(t)

]
dt =

∫ 1

0

[
9t(2t− t4)
(1 + t3)3

− 9t2(2t3 − 1)
(1 + t3)3

]
dt

=
∫ 1

0

9t2

(1 + t3)2
dt =

[
− 3

1 + t3

]1

0

=
3
2
.

C15S04.034: One complete loop of the curve is swept out as t varies from 0 to π, as indicated in the
graph of the loop, shown next.

This graph was generated by Mathematica 3.0 in response to the command

ParametricPlot[ {Sin[2∗t], Sin[t]}, {t, 0, Pi}, AspectRatio → Automatic ];

The area enclosed by the loop is

A =
∮
C

x dy =
∫ π

0

2 cos2 t sin t dt =
[
−2

3
cos3 t

]π
0

=
4
3
.

C15S04.035: We substitute f∇g for F in Eq. (9),
∮
C

F ·n ds =
∫∫

R

∇·F dA.

With the aid of the result in Problem 28 of Section 15.1, this yields
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C1

C2

C3R1

R2

∮
C

f∇g ·n ds =
∫∫

R

∇· (f∇g) dA =
∫∫

R

(f∇·∇g + ∇f · ∇g) dA.

C15S04.036: Suppose that the plane region R is bounded below by the horizontal line y = a, on the right
by the graph of x = g2(y), above by the horizontal line y = b, and on the left by the graph of x = g1(y);
let C denote the boundary of R, oriented counterclockwise. On the top and bottom we have dy = 0, so we
will neither parametrize these two parts of C nor will we bother to integrate Q(x, y) dy over them. The
right-hand part of C may be parametrized by x = g2(t), y = t, a � t � b. The left-hand part may be
parametrized, though in the “wrong” direction, by x = g1(t), y = t, a � t � b. Thus we have

∮
C

Q(x, y) dy =
∫ b

a

Q(g2(t), t) dt−
∫ b

a

Q(g1(t), t) dt =
∫ b

a

[
Q(g2(t), t)−Q(g1(t), t)

]
dt

=
∫ b

a

[
Q(x, t)

]g2(t)
x=g1(t)

dt =
∫ b

t=a

∫ g2(t)

x=g1(t)

∂Q

∂x
dx dt =

∫ b

y=a

∫ g2(y)

x=g1(y)

∂Q

∂x
dA =

∫∫
R

Qx dA.

C15S04.037: It suffices to show the result in the case that R = R1 ∪ R1 is the union of two regions, with
C the boundary of R, C1 ∪C3 the boundary of R1, and −C3 ∪ C2 the boundary of R2. Then C = C1 ∪ C2.
Perhaps the next figure will clarify all this.

Under the assumption that Green’s theorem holds for R1 and for R2, we have

∮
C1∪C3

P dx + Q dy =
∫∫

R1

(Qx − Py) dA and

∮
−C3∪C2

P dx + Q dy =
∫∫

R2

(Qx − Py) dA.

Addition of these equations yields

∫
C1

(P dx + Q dy) +
∫
C2

(P dx + Q dy) +
∫
C3

(P dx + Q dy)−
∫
C3

(P dx + Q dy) =
∫∫

R

(Qx − Py) dA.

Therefore
∮
C

P dx + Q dy =
∫∫

R

(Qx − Py) dA.

C15S04.038: Part (a): First parametrize C as follows:
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x(t) = x1 + (x2 − x1)t, y(t) = y1 + (y2 − y1)t, 0 � t � 1.

Then

∫
C

x dy − y dx =
∫ 1

t=0

{[
x1 + (x2 − x1)t

]
(y2 − y1)−

[
y1 + (y2 − y1)t

]
(x2 − x1)

}
dt

=
[
x1(y2 − y1)t +

1
2

(x2 − x1)(y2 − y1)t2 − y1(x2 − x1)t−
1
2

(y2 − y1)(x2 − x1)t2
]1

0

= x1y2 − x1y1 +
1
2

(x2y2 − x2y1 − x1y2 + x1y1)− x2y1 + x1y1 −
1
2

(x2y2 − x1y2 − x2y1 + x1y1)

= x1y2 − x2y1.

Part (b): Let C denote the boundary of the given triangle T , oriented counterclockwise. Then the area of
T is given by

A =
1
2

∮
C

x dy − y dx =
1
2

(0 · y1 − x2 · 0 + x1y2 − x2y1 + x2 · 0− 0 · y2) =
1
2

(x1y2 − x2y1).

C15S04.039: Part (a): With x1 = 1, y1 = 0, x2 = cos(2π/3), y2 = sin(2π/3), x3 = cos(4π/3), and
y3 = sin(4π/3), we obtain area

A =
1
2

(x1y2 − x2y1 + x2y3 − x3y2 + x3y1 − x1y3) =
1
4

√
3 +

1
4

√
3 +

1
4

√
3 =

3
4

√
3 ≈ 1.29903810567666.

Part (b): With the points (xi, yi) (1 � i � 5) chosen in a way analogous to that in part (a), we obtain area

A =
1
2
(x1y2 − x2y1 + x2y3 − x3y2 + x3y4 − x4y3 + x4y5 − x5y4 + x5y1 − x1y5)

=
5
8

√
10 + 2

√
5 ≈ 2.37764129073788393029.

(We used a computer algebra program to evaluate the first line, then simplified the result by hand.)

C15S04.040: By the corollary to Green’s theorem,

A =
∫∫

R

1 dx dy =
1
2

∮
C

x dy − y dx =
1
2

∮
J

∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ (u dv − v du) =
∫∫

S

∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ du dv.

C15S04.041: Using Mathematica 3.0, we entered the parametric functions

x(t) =
(2n + 1)tn

t2n+1 + 1
and y(t) =

(2n + 1)tn+1

t2n+1 + 1
.

Then we computed one of the integrands for area in Eq. (4):

(−y′[t]∗x[t] + x[t]∗y′[t])/2 // Together
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(2n + 1)2t2n

2(t2n+1 + 1)2

Then we set n = 1, then 2, then 3, and found the areas of the corresponding loops as follows:

Integrate[ (9/2)∗(t∧2)/(1 + t∧3)∧2, t ]

− 3
2(t3 + 1)

( % /. t → Infinity ) − ( % /. t → 0 )

3
2

Integrate[ (25/2)∗(t∧4)/(1 + t∧5)∧2, t ]

− 5
2(t5 + 1)

( % /. t → Infinity ) − ( % /. t → 0 )

5
2

Integrate[ (49/2)∗(t∧6)/(1 + t∧7)∧2, t ]

− 7
2(t7 + 1)

( % /. t → Infinity ) − ( % /. t → 0 )

7
2

In fact, the integral is easy to find in the general case:

Integrate[ (1/2)*((2*n + 1)∧2)*(t∧(2∗n))/(1 + t∧(2∗n + 1))∧2, t ]

− 2n + 1
2(1 + t2n+1)

Therefore

An =

[
− 2n + 1

2(1 + t2n+1)

]∞

0

= 0 +
2n + 1

2
= n +

1
2
.

To avoid the improper integral, let C denote the simple closed curve consisting of the lower half of the loop
(swept out as t ranges from 0 to 1) together with the “return path” along the line y = x back to the origin.
On the return path P we have the parametrization x = y = n + 1

2 − t as t ranges from 0 to n + 1
2 ; but on

this path, −y dx + x dy = 0, and hence

1
2

∫
P

−y dx + x dy = 0.

The area enclosed by the loop is double that enclosed by C, and thus
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An = 2 ·
[
− 2n + 1

2(1 + t2n+1)

]1

0

= −2n + 1
2

+ (2n + 1) = n +
1
2
.

The only danger in this “short cut” is that you may use one of the other two formulas in Eq. (4) of the text
and forget the line integral along P .
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Section 15.5

C15S05.001: Here S is the surface z = h(x, y) = 1 − x − y over the plane triangle bounded by the
nonnegative coordinate axes and the graph of y = 1− x. So

dS =
√

1 + (hx)2 + (hy)2 dx dy =
√

3 dx dy.

Therefore

∫∫
S

(x+ y) dS =
∫ 1

x=0

∫ 1−x

y=0

(x+ y)
√

3 dy dx =
√

3
∫ 1

0

[
xy +

1
2
y2

]1−x

0

dx

=
√

3
∫ 1

0

(
1
2
− 1

2
x2

)
dx =

√
3

[
1
2
x− 1

6
x3

]1

0

=
1
3

√
3 ≈ 0.5773502691896258.

C15S05.002: Here S is the surface z = h(x, y) = 6 − 2x − 3y over the plane triangle bounded by the
nonnegative coordinate axes and the graph of y = 1

3 (6− 2x). Also

dS =
√

1 + (hx)2 + (hy)2 dx dy =
√

1 + 4 + 9 dx dy =
√

14 dx dy,

and therefore

∫∫
S

xyz dS =
∫ 3

0

∫ (6−2x)/3

0

xy(6− 2x− 3y)
√

14 dy dx =
√

14
∫ 3

0

[
3xy2 − x2y2 − xy3

](6−2x)/3

0

dx

=
√

14
∫ 3

0

(
4x− 4x2 +

4
3
x3 − 4

27
x4

)
dx =

√
14

[
2x2 − 4

3
x3 +

1
3
x4 − 4

135
x5

]3

0

=
9
5

√
14 ≈ 6.7349832961930945.

C15S05.003: First, S is the surface z = h(x, y) = 2x+3y lying over the circular disk D with center (0, 0)
and radius 3 in the xy-plane. Also

dS =
√

1 + (hx)2 + (hy)2 dx dy =
√

14 dx dy,

and thus

∫∫
S

(y + z + 3) dS =
∫∫

D

(y + 2x+ 3y + 3)
√

14 dA =
∫ 2π

θ=0

∫ 3

r=0

(4r sin θ + 2r cos θ + 3)
(
r
√

14
)
dr dθ

=
√

14
∫ 2π

0

[
3
2
r2 +

2
3
r3(cos θ + 2 sin θ)

]3

0

dθ =
√

14
∫ 2π

0

(
27
2

+ 18 cos θ + 36 sin θ
)
dθ

=
√

14
[

27
2
θ + 18 sin θ − 36 cos θ

]2π

0

= 27π
√

14 ≈ 317.3786106805529421.

C15S05.004: The surface S is the part of the cone z = h(x, y) =
√
x2 + y2 that lies over the circular

disk D with center (0, 0) and radius 2 in the xy-plane. Next,

1



dS =


1 +

(
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2


1/2

dx dy =
[
1 +

x2 + y2

x2 + y2

]1/2
dx dy =

√
2 dx dy.

Therefore

∫∫
S

z2 dS =
∫∫

S

(x2 + y2) dS =
∫∫

D

r3
√

2 dr dθ =
√

2
∫ 2π

0

∫ 2

0

r3 dr dθ

= 2π
√

2
[

1
4
r4

]2

0

= 8π
√

2 ≈ 35.54306350526692997613.

C15S05.005: The surface S is the part of the paraboloid z = h(x, y) = x2 + y2 that lies over the circular
disk D with center (0, 0) and radius 2 in the xy-plane. Also

dS =
√

1 + (hx)2 + (hy)2 dx dy =
√

1 + 4x2 + 4y2 dx dy,

and thus

∫∫
S

(xy + 1) dS =
∫∫

D

(xy + 1)
√

1 + 4x2 + 4y2 dx dy =
∫ 2π

0

∫ 2

0

(1 + r2 sin θ cos θ) · r(1 + 4r2)1/2 dr dθ

=
∫ 2π

0

1
240

(1 + 4r2)3/2
[
20 + (6r2 − 1) sin 2θ

]2

0

dθ

=
∫ 2π

0

1
240

[
340
√

17 − 20 +
(
1 + 391

√
17

)
sin 2θ

]
dθ

=
1

480

[
40

(
17
√

17 − 1
)
θ −

(
1 + 391

√
17

)
cos 2θ

]2π

0

=
1

480

[
1 + 391

√
17 − 1− 391

√
17 + 80π

(
17
√

17 − 1
) ]

=
1
6
π

(
−1 + 17

√
17

)
≈ 36.176903197411408364756.

C15S05.006: Here S is the hemisphere z = h(x, y) = (1− x2 − y2)1/2, described in spherical coordinates
by

ρ = 1, 0 � φ � 1
2
π, 0 � θ � 2π

and parametrized for such φ and θ by

x = sinφ cos θ, y = sinφ sin θ, z = cosφ.

Thus with r(φ, θ) = 〈 sinφ cos θ, sinφ sin θ, cosφ 〉 we have
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rφ × rθ =

∣∣∣∣∣∣∣∣∣

i j k

cosφ cos θ cosφ sin θ − sinφ

− sinφ sin θ sinφ cos θ 0

∣∣∣∣∣∣∣∣∣
= 〈 sin2 φ cos θ, sin2 φ sin θ, sinφ cosφ 〉.

Therefore

|rφ × rθ | = (sin4 φ cos2 θ + sin4 φ sin2 θ + sin2 φ cos2 φ)1/2 = (sin4 φ+ sin2 φ cos2 φ)1/2 = | sinφ|.

Hence

∫∫
S

(x2 + y2)z dS =
∫ 2π

0

∫ π/2

0

sin3 φ cosφ dφ dθ = 2π
[

1
4

sin4 φ

]π/2
0

=
1
2
π ≈ 1.5707963267948966.

C15S05.007: The surface S is the part of the graph of z = h(x, y) = x+ y that lies over the circular disk
D with center (0, 0) and radius 3 in the xy-plane. Also dS =

√
1 + 1 + 1 dx dy =

√
3 dx dy, and hence

Iz =
∫∫

S

δ(x2 + y2) dS =
∫∫

D

δr2
√

3 dA = δ
√

3
∫ 2π

0

∫ 3

0

r3 dr dθ = 2πδ
√

3
[

1
4
r4

]3

0

=
81
2
πδ
√

3 .

The mass of S is

m = δ
√

3
∫ 2π

0

∫ 3

0

r dr dθ = 2πδ
√

3
[

1
2
r2

]3

0

= 9πδ
√

3 ,

and therefore Iz =
9
2
m.

C15S05.008: The surface S has equation z = h(x, y) = xy and lies over (and under) the circular disk D

with center (0, 0) and radius 5 in the xy-plane. The surface area element is

dS =
√

1 + (hx)2 + (hy)2 dA =
√

1 + x2 + y2 dA,

and therefore the moment of inertia of S (with constant density δ) with respect to the z-axis is

Iz =
∫∫

S

(x2 + y2)δ dS =
∫∫

D

δr2
√

1 + r2 dA =
∫ 2π

0

∫ 5

0

δr3
√

1 + r2 dr dθ

=
2
15

πδ

[
(3r4 + r2 − 2)

√
1 + r2

]5

0

=
4
15

πδ
(
1 + 949

√
26

)
.

Because the mass of S is

m =
∫∫

S

δ dS =
∫ 2π

0

∫ 5

0

δr
√

1 + r2 dr dθ =
2
3
πδ

(
−1 + 26

√
26

)
,

the moment of inertia may also be expressed in the form

Iz =
2 + 1898

√
26

−5 + 130
√

26
·m ≈ m · (3.8358837113445991)2.

3



C15S05.009: Suppose that (x, z) is a point in the xz-plane. Let w be the radius vector from the origin in
the xz-plane to (x, z) and let θ be the angle that w makes with the nonnegative x-axis. Then points in the
cylindrical surface S are described by

x = cos θ, y = y, z = sin θ, −1 � y � 1, 0 � θ � 2π.

Thus the cylindrical surface S is parametrized by r(y, θ) = 〈 cos θ, y, sin θ 〉, for which ry = 〈 0, 1, 0 〉 and
rθ = 〈− sin θ, 0, cos θ 〉. Hence

ry × rθ =

∣∣∣∣∣∣∣∣∣

i j k

0 1 0

− sin θ 0 cos θ

∣∣∣∣∣∣∣∣∣
= 〈 cos θ, 0, sin θ 〉.

Therefore |ry × rθ | = 1, so that dS = dy dθ. Let D denote the rectangle −1 � y � 1, 0 � θ � 2π. Because
S has constant density δ, its moment of inertia with respect to the z-axis is therefore

Iz =
∫∫

S

(x2 + y2)δ dS =
∫∫

D

(y2 + cos2 θ)δ dA =
∫ 2π

θ=0

∫ 1

y=−1

(y2 + cos2 θ)δ dy dθ

= δ

∫ 2π

0

[
1
3
y3 + y cos2 θ

]1

−1

dθ = δ

∫ 2π

0

(
2
3

+ 2 cos2 θ
)
dθ =

1
6
δ

[
10θ + 3 sin 2θ

]2π

0

=
10
3
πδ.

Because the mass m of S is the product of its surface area and its density, we have m = 4πδ, and hence we
may also express Iz in the form

Iz =
5
6
m = m · (0.9128709291752769)2.

C15S05.010: The surface S has equation z = h(x, y) =
√
x2 + y2 and lies over the annular region R in

the xy-plane described in polar coordinates by 2 � r � 5, 0 � θ � 2π. We have surface area element

dS =
(

1 +
x2

x2 + y2
+

y2

x2 + y2

)1/2

dA =
√

2 dA,

and therefore the moment of inertia of the constant-density surface S with respect to the z-axis is

Iz =
∫∫

S

(x2 + y2)δ dS =
∫ 2π

0

∫ 5

2

δr3
√

2 dr dθ = δ
√

2
∫ 2π

0

[
1
4
r4

]5

2

=
609
2

πδ
√

2 .

The mass of S is

m =
∫∫

S

δ dS =
∫ 2π

0

∫ 5

2

δr
√

2 dr dθ = 21δπ
√

2 ,

and therefore its moment of inertia with respect to the z-axis may also be expressed in the form

Iz =
29
2
m ≈ m · (3.8078865529319541)2.

C15S05.011: The surface S has the spherical-coordinates parametrization
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r(φ, θ) = 〈 5 sinφ cos θ, 5 sinφ sin θ, 5 cosφ 〉, 0 � φ � arccos
(

3
5

)
, 0 � θ � 2π.

Therefore

rφ × rθ =

∣∣∣∣∣∣∣∣∣

i j k

5 cosφ cos θ 5 cosφ sin θ −5 sinφ

−5 sinφ sin θ 5 sinφ cos θ 0

∣∣∣∣∣∣∣∣∣
= 〈 25 sin2 φ cos θ, 25 sin2 φ sin θ, 25 sinφ cosφ 〉,

and thus

|rφ × rθ | =
√

625 sin2 φ cos2 φ+ 625 sin4 φ cos2 θ + 625 sin4 φ sin2 θ = 25 sinφ

(because 0 � φ � π/2). Hence the mass of S is

m =
∫∫

S

δ dS =
∫ 2π

θ=0

∫ arccos(3/5)

φ=0

25δ sinφ dφ dθ = 2πδ
[
− 25 cosφ

]arccos(3/5)

0

= 20πδ ≈ (62.8318530717958648)δ.

Next,

x2 + y2 = (5 sinφ cos θ)2 + (5 sinφ sin θ)2 = 25 sin2 φ,

and hence the moment of inertia of S with respect to the z-axis is

Iz =
∫∫

S

(x2 + y2)δ dS =
∫ 2π

θ=0

∫ arccos(3/5)

φ=0

625δ sin3 φ dφ dθ = 2πδ
[

625
3

cos3 φ− 625 cosφ
]arccos(3/5)

0

=
520
3

πδ ≈ (544.5427266222308280)δ.

The moment of inertia may also be expressed in the form Iz =
26
3
m ≈ m · (2.9439202887759490)2.

C15S05.012: The upper half of the surface S has the spherical-coordinates parametrization

r(φ, θ) = 〈 5 sinφ cos θ, 5 sinφ sin θ, 5 cosφ 〉, arccos
(

4
5

)
� φ � 1

2
π, 0 � θ � 2π.

To find the mass and moment of inertia with respect to the z-axis, we will integrate over the top half of S
and then double the result. But first,

rφ × rθ =

∣∣∣∣∣∣∣∣∣

i j k

5 cosφ cos θ 5 cosφ sin θ −5 sinφ

−5 sinφ sin θ 5 sinφ cos θ 0

∣∣∣∣∣∣∣∣∣
= 〈 25 sin2 φ cos θ, 25 sin2 φ sin θ, 25 sinφ cosφ 〉,

and thus
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|rφ × rθ | =
√

625 sin2 φ cos2 φ+ 625 sin4 φ cos2 θ + 625 sin4 φ sin2 θ = 25 sinφ

(because 0 � φ � π/2). Hence the mass of S is

m =
∫∫

S

δ dS = 2
∫ 2π

θ=0

∫ π/2

φ=arccos(4/5)

25δ sinφ dφ dθ = 4πδ
[
− 25 cosφ

]π/2
arccos(4/5)

= 80πδ ≈ (251.3274122871834591)δ.

Next,

x2 + y2 = (5 sinφ cos θ)2 + (5 sinφ sin θ)2 = 25 sin2 φ,

and hence the moment of inertia of S with respect to the z-axis is

Iz =
∫∫

S

(x2 + y2)δ dS = 2
∫ 2π

θ=0

∫ π/2

φ=arccos(4/5)

625δ sin3 φ dφ dθ = 4πδ
[

625
3

cos3 φ− 625 cosφ
]π/2
arccos(4/5)

=
4720

3
πδ ≈ (4942.7724416479413618)δ.

The moment of inertia may also be expressed in the form Iz =
59
3
m ≈ m · (4.4347115652166902)2.

C15S05.013: An upward unit vector normal to S is

n =
〈x

3
,
y

3
,
z

3

〉
.

The surface has equation z = h(x, y) =
√

9− x2 − y2 , and therefore

dS =

√
1 +

x2

9− x2 − y2
+

y2

9− x2 − y2
dA =

3√
9− x2 − y2

dA.

Next, F ·n =
1
3

(x2 + y2), and S lies over the circular disk D in the plane with center (0, 0) and radius 3.
Therefore

∫∫
S

F ·n dS =
∫∫

D

x2 + y2√
9− x2 − y2

dA =
∫ 2π

θ=0

∫ 3

r=0

r3√
9− r2

dr dθ

= 2π
[
−1

3
(r2 + 18)

√
9− r2

]3

0

= 36π ≈ 113.0973355292325566.

C15S05.014: An upward unit vector normal to S is n =
〈

2
3 ,

2
3 ,

1
3

〉
. The surface S has equation

z = h(x, y) = 3 − 2x − 2y, and therefore dS =
√

1 + 4 + 4 dA = 3 dA. Also, the surface S lies over the
triangle T in the first quadrant bounded by the coordinate axes and the line y = 1

2 (3− 2x). Thus

∫∫
S

F ·n dS =
∫∫

T

3 dy dx =
∫ 3/2

0

∫ (3−2x)/2

0

3 dy dx

=
∫ 3/2

0

3
2

(3− 2x) dx =
1
2

[
9x− 3x2

]3/2

0

=
27
8

= 3.375.
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C15S05.015: An upward unit vector normal to S is

n =
〈
− 3

10

√
10 , 0,

1
10

√
10

〉
.

The surface S has equation z = h(x, y) = 3x+2, and therefore dS =
√

10 dA. Also, S lies over the circular
disk S in the xy-plane with center (0, 0) and radius 2. Therefore

∫∫
S

F ·n dS =
∫∫

D

3z dA =
∫∫

D

(9x+ 6) dA =
∫ 2π

θ=0

∫ 2

r=0

(9r2 cos θ + 6r) dr dθ =
∫ 2π

0

[
3r3 cos θ + 3r2

]2

0

=
∫ 2π

0

(24 cos θ + 12) dθ =
[
24 sin θ + 12θ

]2π

0

= 24π ≈ 75.3982236861550377.

C15S05.016: An upward unit vector normal to the surface S is n =
〈

1
2 x,

1
2 y,

1
2 z

〉
. The surface may be

parametrized in spherical coordinates by

r(φ, θ) = 〈 2 sinφ cos θ, 2 sinφ sin θ, 2 cosφ 〉, 0 � φ � 1
2
π, 0 � θ � 2π.

Then

rφ × rθ =

∣∣∣∣∣∣∣∣∣

i j k

2 cosφ cos θ 2 cosφ sin θ −2 sinφ

−2 sinφ sin θ 2 sinφ cos θ 0

∣∣∣∣∣∣∣∣∣
= 〈 4 sin2 φ cos θ, 4 sin2 φ sin θ, 4 sinφ cosφ 〉.

Therefore

|rφ × rθ | =
√

16 sin4 φ cos2 θ + 16 sin4 φ sin2 θ + 16 sin2 φ cos2 φ = 4 sinφ

(the last equality because 0 � φ � π). Next,

F ·n =
1
2
z2 = 2 cos2 φ,

and therefore

∫∫
S

F ·n dS =
∫ 2π

θ=0

∫ π/2

φ=0

8 sinφ cos2 φ dφ dθ = 2π
[
−8

3
cos3 φ

]π/2
0

=
16
3
π ≈ 16.7551608191455639.

C15S05.017: The surface S has Cartesian equation z = h(x, y) =
√
x2 + y2 , and thus has normal vector

n1 = 〈hx, hy, −1 〉 =

〈
x√

x2 + y2
,

y√
x2 + y2

, −1

〉
,

and thus (in polar coordinates) a upward-pointing vector normal to S is n2 = 〈− cos θ, − sin θ, 1 〉. Therefore
an upward-pointing unit vector normal to S is

n =
n2

|n2 |
=
√

2
2
〈− cos θ, − sin θ, 1 〉.
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Next,

dS =
√

1 + (hx)2 + (hy)2 dA =
(

1 +
x2

x2 + y2
+

y2

x2 + y2

)1/2

dA =
√

2 dA,

and in polar coordinates we have F = 〈 r sin θ, −r cos θ, 0 〉. But then F ·n dS = 0, so the surface integral
is zero as well.

C15S05.018: The surface S has equation z = h(x, y) = 4− x2 − y2 and lies above the circular disk D in
the xy-plane with center (0, 0) and radius 2. Also

dS =
√

1 + (hx)2 + (hy)2 dA =
√

1 + 4x2 + 4y2 dA,

and because 〈hx, hy, −1 〉 is normal to S, we find that an upward-pointing unit vector normal to S is

n =

〈
2x√

1 + 4x2 + 4y2
,

2y√
1 + 4x2 + 4y2

,
1√

1 + 4x2 + 4y2

〉
.

Therefore

F ·n dS =
4x2 + 4y2 + 3√
1 + 4x2 + 4y2

·
√

1 + 4x2 + 4y2 dA,

and consequently

∫∫
S

F ·n dS =
∫∫

D

(4x2 + 4y2 + 3) dA =
∫ 2π

0

∫ 2

0

(4r3 + 3r) dr dθ

= 2π
[
r4 +

3
2
r2

]2

0

= 44π ≈ 138.2300767579509025.

C15S05.019: On the face of the cube in the xy-plane, z = 0, and so

F(x, y, z) ·n = 〈x, 2y, 0 〉 · 〈 0, 0, −1 〉 = 0,

and hence the flux of F across that face is zero. Similarly, the flux across the faces in the other two coordinate
planes is zero. On the top face we have z = 1, and hence

F(x, y, z) ·n = 〈x, 2y, 3 〉 · 〈 0, 0, 1 〉 = 3.

Similarly, the flux across the face in the plane y = 1 is 2 and the flux across the face in the plane x = 1 is 1.
Hence the total flux of F across S is 3 + 2 + 1 = 6.

C15S05.020: The hemispherical surface z =
√

4− x2 − y2 has unit normal vector

n =
1
2
〈x, y, z 〉

and parametrization

x = 2 sinφ cos θ, y = 2 sinφ sin θ, z = 2 cosφ, 0 � φ � 1
2
π, 0 � θ � 2π.
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The usual computation of |rφ × rθ | (see the solution of Problem 6, 11, 12, 13, or 16) yields dS = 4 sinφ dA

(provided that 0 � φ � π), and thereby

F(x, y, z) ·n = 〈 4 sinφ cos θ, −6 sinφ sin θ, 2 cosφ 〉 · 〈 sinφ cos θ, sinφ sin θ, cosφ 〉

= 2 cos2 φ+ 4 sin2 φ cos2 θ − 6 sin2 φ sin2 θ,

and hence the flux of F across the upper hemispherical surface H is

∫∫
H

F ·n dS =
∫ 2π

0

∫ π/2

0

(8 cos2 φ sinφ+ 16 sin3 φ cos2 θ − 24 sin3 φ sin2 θ) dφ dθ

=
∫ 2π

0

[
−8

3
cos3 φ− 16 cosφ cos2 θ +

16
3

cos3 φ cos2 θ + 24 cosφ sin2 θ − 8 cos3 φ sin2 θ

]π/2
0

dθ

=
∫ 2π

0

(
8
3

+
32
3

cos2 θ − 16 sin2 θ

)
dθ =

[
40
3

sin θ cos θ
]2π

0

= 0.

On the circular disk D that forms the base of the hemispherical solid,

F ·n = 〈 2x, −3y, 0 〉 · 〈 0, 0, −1 〉 = 0,

and therefore
∫∫

D

F ·n dS = 0.

Hence the total flux of F across the surface S is zero.

C15S05.021: For the same reasons given in the solution of Problem 19, F ·n = 0 on the three faces of the
pyramid in the coordinate planes. On the fourth face T a unit normal vector is

n =
1√
26
〈 3, 4, 1 〉,

and because this face is the graph of z = h(x, y) = 12− 3x− 4y, we have

dS =
√

1 + (hx)2 + (hy)2 dA =
√

26 dx dy.

Therefore F ·n dS = (3x− 4y) dy dx, and consequently

∫∫
T

F ·n dS =
∫ 4

0

∫ (12−3x)/4

0

(3x− 4y) dy dx =
∫ 4

0

[
3xy − 2y2

](12−3x)/4

0

dx

=
∫ 4

0

(
−18 + 18x− 27

8
x2

)
dx =

[
− 18x+ 9x2 − 9

8
x3

]4

0

= 0.

Thus the total flux of F across S is zero. If you now turn two pages ahead in your textbook, you will see
how the divergence theorem enables you to obtain the same result in less than two seconds and without need
of pencil, paper, or computer.

C15S05.022: On the circular disk D that forms the base of the given parabolic solid, we easily see that
F ·n = 〈 2x, 2y, 3 〉 · 〈 0, 0, −1 〉 = −3, a constant, and therefore the flux of F across D is simply the product
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of −3 and the area of D: −12π. An upward-pointing unit vector normal to the upper curved surface C

described by z = h(x, y) = 4− x2 − y2 is

n =
1√

1 + 4x2 + 4y2
〈 2x, 2y, 1 〉,

and

dS =
√

1 + (hx)2 + (hy)2 dA =
√

1 + 4x2 + 4y2 dA.

Therefore on C we have F ·n dS = 4x2 + 4y2 + 3. Thus the flux of F across C is

∫∫
C

F ·n dS =
∫∫

D

(4x2 + 4y2 + 3) dA =
∫ 2π

0

∫ 2

0

(4r2 + 3) · r dr dθ = 2π
[
r4 +

3
2
r2

]2

0

= 44π,

and therefore the total flux of F across S is

44π − 12π = 32π ≈ 100.530964914873383630804588.

C15S05.023: The paraboloids meet in the circle x2 + y2 = 9, z = 9, so both the upper surface and the
lower surface lie over the disk D in the xy-plane with center (0, 0) and radius 3. The lower surface L is the
graph of h(x, y) = x2 + y2 and the upper surface U is the graph of j(x, y) = 18− x2 − y2 for (x, y) in D.
A vector normal to L is

〈hx, hy, −1 〉 = 〈 2x, 2y, −1 〉

and hence the outer unit vector normal to L is

n1 =
1√

1 + 4x2 + 4y2
〈2x, 2y, −1 〉;

similarly, the outer unit vector normal to U is

n2 =
1√

1 + 4x2 + 4y2
〈 2x, 2y, 1 〉.

The surface area element for L is

dS =
√

1 + (hx)2 + (hy)2 dA =
√

1 + 4x2 + 4y2 dA

and the surface area element for U is the same. Next,

F ·n1 dS = −z2 = −(x2 + y2)2 dA and F ·n2 dS = z2 = (18− x2 − y2)2 dA.

Thus

∫∫
L

F ·n1 dS = −
∫∫

D

(x2 + y2)2 dA = −
∫ 2π

0

∫ 3

0

r5 dr dθ = −2π
[

1
6
r6

]3

0

= −243π

and

∫∫
U

F ·n2 dS =
∫∫

D

(18− x2 − y2)2 dA =
∫ 2π

0

∫ 3

0

(18− r2)2 · r dr dθ = 2π
[
−1

6
(18− r2)3

]3

0

= 1701π.
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Therefore
∫∫

S

F ·n dS = 1701π − 243π = 1458π ≈ 4580.4420889339185417.

C15S05.024: As we saw in the solutions of Problems 4, 10, and 17, the surface area element for the conical
surface z =

√
x2 + y2 is dS =

√
2 dA and the outer unit normal vector for that surface C is

n1 =
√

2
2

〈
x√

x2 + y2
,

y√
x2 + y2

, −1

〉
.

Let D denote the circular disk in the xy-plane centered at the origin and having radius 3. Then

∫∫
C

F ·n1 dS =
∫∫

D

x3 + 2y3 − 3z2
√
x2 + y2√

x2 + y2
dA =

∫∫
D

x3 + 2y3 − 3(x2 + y2)3/2√
x2 + y2

dA

=
∫ 2π

0

∫ 3

0

(r3 cos3 θ + 2r3 sin3 θ − 3r3) dr dθ =
∫ 2π

0

[
1
4
r2(cos3 θ + 2 sin3 θ − 3)

]3

0

dθ

=
∫ 2π

0

81
4

(cos3 θ + 2 sin3 θ − 3) dθ

=
[

27
16

(2 cos 3θ − 18 cos θ + sin 3θ + 9 sin θ − 36θ)
]2π

0

= − 243π
2

.

The outer unit vector normal to the circular disk z = 3, x2 + y2 � 9 that forms the top T of the solid is
n2 = 〈 0, 0, 1 〉 and it should be clear that the surface area element is dS = dA = dx dy. Hence

∫∫
T

F ·n2 dS =
∫∫

D

27 dA = π · 32 · 27 = 243π.

Therefore
∫∫

S

F ·n dS = 243π − 243
2

π =
243
2

π ≈ 381.703507411159878473211171.

C15S05.025: The surface S may be parametrized by

x(φ, θ) = a sinφ cos θ, y(φ, θ) = a sinφ sin θ, z(φ, θ) = a cosφ, 0 � φ � 1
2
π, 0 � θ � 1

2
π.

Then, if r(φ, θ) = 〈x(φ, θ), y(φ, θ), z(φ, θ) 〉, we find that

rφ × rθ =

∣∣∣∣∣∣∣∣∣

i j k

a cosφ cos θ a cosφ sin θ −a sinφ

−a sinφ sin θ a sinφ cos θ 0

∣∣∣∣∣∣∣∣∣
= 〈 a2 sin2 φ cos θ, a2 sin2 φ sin θ, a2 sinφ cosφ 〉,

and therefore

|rφ × rθ | =
√
a4 cos2 φ sin2 φ+ a4 sin4 φ cos2 θ + a4 sin4 φ sin2 θ = a2 sinφ
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because 0 � φ � π. Because the surface has unit density, its mass is

m =
∫∫

S

1 dS =
∫ π/2

0

∫ π/2

0

a2 sinφ dφ dθ =
1
2
π

[
−a2 cosφ

]π/2
0

=
1
2
πa2.

The moment of S with respect to the yz-plane is

Myz =
∫∫

S

x(φ, θ) dS =
∫ π/2

0

∫ π/2

0

a3 sin2 φ cos θ dφ dθ

=
∫ π/2

0

[
1
4
a3(cos θ)(2φ− sin 2φ)

]π/2
0

dθ =
∫ π/2

0

1
4
πa3 cos θ dθ =

[
1
4
πa3 sin θ

]π/2
0

=
1
4
πa3.

Therefore (by symmetry) (x, y, z) =
(

1
2 a,

1
2 a,

1
2 a

)
.

C15S05.026: Given the conical surface z = r, we saw in the solutions of Problems 4, 10, 17, and 24 that
dS =

√
2 dA =

√
2 dx dy. The surface S lies over the circular disk D with center (0, 0) and radius a in

the xy-plane and because the surface has constant density δ = k, it has mass

m =
∫∫

S

k dS =
∫ 2π

0

∫ a

0

kr
√

2 dr dθ = 2π
[

1
2
kr2
√

2
]a
0

= πka2
√

2 .

The moment of S with respect to the xy-plane is

Mxy =
∫∫

S

kz dS =
∫ 2π

0

∫ a

0

kr2
√

2 dr dθ = 2π
[

1
3
kr3
√

2
]a
0

=
2
3
πka3

√
2 .

The centroid of S lies on the z-axis by symmetry, and therefore

x = 0, y = 0, and z =
Mxy

m
=

2
3
a.

The moment of inertia of S with respect to the z-axis is

Iz =
∫∫

S

k(x2 + y2) dS =
∫ 2π

0

∫ a

0

kr3
√

2 dr dθ = 2π
[

1
4
kr4
√

2
]a
0

=
1
2
πka4

√
2 =

1
2
ma2.

C15S05.027: The surface z = r2, 0 � r � a is described in Cartesian coordinates by z = h(x, y) = x2+y2,
and thus

dS =
√

1 + (hx)2 + (hy)2 dA =
√

1 + 4x2 + 4y2 dA.

Because the surface S lies over the circular disk D in the xy-plane with center (0, 0) and radius a and
because S has constant density δ, its mass is

m =
∫∫

S

δ dS =
∫∫

D

δ
√

1 + 4x2 + 4y2 dA =
∫ 2π

0

∫ a

0

δr
√

1 + 4r2 dr dθ

= 2πδ
[

1
12

(1 + 4r2)3/2
]a
0

=
1
6
πδ

[
(1 + 4a2)3/2 − 1

]
.
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The moment of S with respect to the xy-plane is

Mxy =
∫∫

S

δz dS =
∫∫

D

δ(x2 + y2)
√

1 + 4x2 + 4y2 dA =
∫ 2π

0

∫ a

0

δr3
√

1 + 4r2 dr dθ

= 2πδ
[ (

1
5
r4 +

1
60

r2 − 1
120

) √
1 + 4r2

]a
0

=
1
60
πδ

[
(24a4 + 2a2 − 1)

√
1 + 4a2 + 1

]
.

Hence the z-coordinate of the centroid of S is

z =
Myx

m
=

(24a4 + 2a2 − 1)
√

1 + 4a2 + 1
10

[
(1 + 4a2)3/2 − 1

] .

For example, if a = 1, then

z =
1 + 25

√
5

10
(
−1 + 5

√
5

) ≈ 0.5589371284878981.

By symmetry, x = y = 0. Finally, the moment of inertia of S with respect to the z-axis is

Iz =
∫∫

S

δ(x2 + y2) dS =
∫∫

D

δ(x2 + y2)
√

1 + 4x2 + 4y2 dA =
1
60
πδ

[
(24a4 + 2a2 − 1)

√
1 + 4a2 + 1

]

(the computations are exactly the same as those in the evaluation of Mxy).

C15S05.028: The surface S may be parametrized by

x(φ, θ) = a sinφ cos θ, y(φ, θ) = a sinφ sin θ, z(φ, θ) = a cosφ, 0 � φ � 1
4
π, 0 � θ � 2π.

Then, as in the solution of Problem 25, we find that dS = a2 sinφ dA. We may assume that S has constant
density δ = 1. Hence its mass is

m =
∫∫

S

1 dS =
∫ 2π

0

∫ π/4

0

a2 sinφ dφ dθ = 2π
[
− cosφ

]π/4
0

=
(
2−
√

2
)
πa2

and its moment with respect to the xy-plane is

Mxy =
∫∫

S

z dS =
∫ 2π

0

∫ π/4

0

a3 sinφ cosφ dφ dθ = 2π
[

1
2
a3 sin2 φ

]π/4
0

=
1
2
πa3.

Thus—by symmetry—x = y = 0 and

z =
Mxy

m
=

a

2
(
2−
√

2
) ≈ (0.8535533905932738)a.

C15S05.029: The surface S is described by z = h(x, y) =
√

4− x2 − y2 , and

1 + (hx)2 + (hy)2 = 1 +
x2

4− x2 − y2
+

y2

4− x2 − y2
=

4
4− x2 − y2

.

Thus
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dS =
2√

4− x2 − y2
dA.

In cylindrical coordinates, S is described by

z =
√

4− r2 , 0 � r � 2 cos θ, −1
2
π � θ � 1

2
π.

We may without loss of generality assume that S has constant density δ = 1. Hence its mass is

m =
∫∫

S

1 dS = 2
∫ π/2

0

∫ 2 cos θ

0

2r√
4− r2

dr dθ = 2
∫ π/2

0

[
−2(4− r2)1/2

]2 cos θ

0

dθ

= 4
∫ π/2

0

(
2−

√
4− 4 cos2 θ

)
dθ = 8

∫ π/2

0

(1− sin θ) dθ = 8
[
θ + cos θ

]π/2
0

= 4π − 8.

Clearly y = 0 by symmetry. The moment of S with respect to the xy-plane is

Mxy =
∫∫

S

z dS = 2
∫ π/2

0

∫ 2 cos θ

0

2r
√

4− r2√
4− r2

dr dθ = 2
∫ π/2

0

[
r2

]2 cos θ

0

dθ

= 2
∫ π/2

0

4 cos2 θ dθ = 4
∫ π/2

0

(1 + cos 2θ) dθ = 4
[
θ +

1
2

sin 2θ
]π/2
0

= 2π.

The moment of S with respect to the yz-plane is

Myz =
∫∫

S

x dS = 2
∫ π/2

0

∫ 2 cos θ

0

2r2 cos θ√
4− r2

dr dθ.

Let r = 2 sinψ. Then dr = 2 cosψ dψ and
√

4− r2 = 2 cosψ. Thus

∫
r2√

4− r2
dr =

∫
4 sin2 ψ

2 cosψ
· 2 cosψ dψ = 4

∫
1− cos 2ψ

2
dψ

= 2ψ − sin 2ψ + C = 2ψ − 2 sinψ cosψ + C = 2 arcsin
( r

2

)
− 1

2
r
√

4− r2 + C.

Therefore

Myz = 2
∫ π/2

0

[ (
4 arcsin

r

2
− r

√
4− r2

)
cos θ

]2 cos θ

0

dθ

= 2
∫ π/2

0

[
4(cos θ) arcsin(cos θ)− 4 cos2 θ sin θ

]
dθ.

To evaluate

J =
∫

(cos θ) arcsin(cos θ) dθ,

we use integration by parts. Let

14



u = arcsin(cos θ), dv = cos θ dθ; then

du = − sin θ√
1− cos2 θ

dθ, v = sin θ.

Thus

J = (sin θ) arcsin(cos θ) +
∫

sin2 θ

sin θ
dθ = (sin θ) arcsin(cos θ) − cos θ + C.

Consequently,

Myz = 2
[
4(sin θ) arcsin(cos θ)− 4 cos θ +

4
3

cos3 θ
]π/2
0

= 2
(

4− 4
3

)
=

16
3
.

Therefore

x =
Myz

m
=

4
3π − 6

≈ 1.167958929256072440802606 and

z =
Mxy

m
=

π

2π − 4
≈ 1.375969196942054330601955.

C15S05.030: As a consequence of Example 5 in Section 14.8, if the toroidal surface has uniform density
δ, then its mass is

M =
∫ 2π

0

∫ 2π

0

aδ(b+ a cosψ) dθ dψ = 2πδa
[
bψ + a sinψ

]2π

0

= 4π2δab.

Figure 14.8.13 shows that the distance of the mass element dM of the toroidal surface from the z-axis is
r = (b + a cosψ). We will use Mathematica 3.0 to find the moment of inertia of the surface with respect
to the z-axis. The computations can be carried out with a single command, but we split the process into
several steps so that you may check your work if you solved this problem by another method. We need to
evaluate

Iz =
∫ 2π

0

∫ 2π

0

aδ(b+ a cosψ)3 dθ dψ.

Integrate[ a∗delta∗(b + a∗Cos[psi])∧3, theta ]

aδθ(b+ a cosψ)3

(% /. theta → 2∗Pi) - (% /. theta → 0)

2aδπ(b+ a cosψ)3

Integrate[ %, psi ]

1
6
aδπ(18a2bψ + 12b3ψ + 9a3 sinψ + 36ab2 sinψ + 9a2b sin 2ψ + a3 sin 3ψ)

isubz = (% /. psi → 2∗Pi) - (% /. psi → 0)

15



1
6
aδπ(36a2bπ + 24b3π)

mass = 4∗Pi∗Pi∗delta∗a∗b;

isubz/mass

36a2bπ + 24b3π
24bπ

Together[ Simplify[ % ] ]

1
2

(3a2 + 2b2)

Therefore Iz =
1
2
M(3a2 + 2b2).

C15S05.031: The surface S is described by h(x, y) = 4 − y2, and hence dS =
√

1 + 4y2 dA. Thus the
moment of inertia of S with respect to the z-axis is

Iz =
∫ 2

−2

∫ 1

−1

(x2 + y2)
√

1 + 4y2 dx dy

∫ 2

−2

[ (
1
3
x3 + xy2

) √
1 + 4y2

]1

−1

dy

=
∫ 2

−2

(
2
3

+ 2y2

) √
1 + 4y2 dy =

[
24y3 + 19y

48

√
1 + 4y2 +

13
96

arcsinh(2y)
]2

−2

=
460
√

17 + 13 arcsinh(4)
48

≈ 40.080413560385795202979817.

C15S05.032: The surface S is described by h(x, y) = 4− x2 − y2, and thus

dS =
√

1 + (hx)2 + (hy)2 dA =
√

1 + 4x2 + 4y2 dA.

Therefore the moment of inertia of S with respect to the z-axis is

Iz =
∫ 1

−1

∫ 1

−1

(x2 + y2)
√

1 + 4x2 + 4y2 dx dy

=
∫ 1

−1

[ {
1
4
x3 +

1
32

x(20y2 + 1)
} √

1 + 4x2 + 4y2

+
1
64

(48y4 + 8y2 − 1) ln
(
2x+

√
1 + 4x2 + 4y2

) ]1

−1

dy

=
∫ 1

−1

[
20y2 + 9

16

√
4y2 + 5 +

48y4 + 8y2 − 1
64

{
ln

(
2 +

√
4y2 + 5

)
− ln

(
−2 +

√
4y2 + 5

)} ]
dy

=
[

42y3 + 49y
120

√
4y2 + 5 +

169
480

arcsinh
(

2y√
5

)
+

1
60

arctan

(
4y√

4y2 + 5

)

+
144y5 + 40y3 − 15y

960

{
ln

(
2 +

√
4y2 + 5

)
− ln

(
−2 +

√
4y2 + 5

)} ]1

−1
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=
91
20

+
169
240

arcsinh
(

2√
5

)
+

1
30

arctan
(

4
3

)
+

169
480

ln 5 ≈ 5.714222370605732754862318.

All of the antiderivatives and evaluations were computed using Mathematica 3.0.

C15S05.033: By Eq. (12) in Section 15.5,

cos γ =
1
|N| ·

∂(x, y)
∂(x, y)

=
1
|N| .

Therefore |N| dS = sec γ dx dy.

C15S05.034: We compute the three Jacobians in Eq. (17) using the parameters y and z. The result is

∂(y, z)
∂(y, z)

=

∣∣∣∣∣∣
yy yz

zy zz

∣∣∣∣∣∣ = 1,

∂(z, x)
∂(y, z)

=

∣∣∣∣∣∣
zy zz

xy xz

∣∣∣∣∣∣ = − ∂x

∂y
, and

∂(x, y)
∂(y, z)

=

∣∣∣∣∣∣
xy xz

yy yz

∣∣∣∣∣∣ = − ∂x

∂z
.

Therefore
∫∫

S

P dy dz + Q dz dx + R dx dy =
∫∫

D

(
P − Q

∂x

∂y
− R

∂x

∂z

)
dy dz.

C15S05.035: The temperature within the ball is u(x, y, z) = 4(x2 + y2 + z2). With position vector
r = 〈x, y, z 〉 for points of B, we find that

q = −K∇u = −2 · 4〈 2x, 2y, 2z 〉 = −16〈x, y, z 〉 = −16r.

A unit vector normal to the concentric spherical surface S of radius 3 is n = 1
3 r, so

q ·n = −16
3

(x2 + y2 + z2) = −16
3
· 9 = −48.

Because S is a spherical surface of radius 3, its surface area is 4π · 9 = 36π. Therefore the rate of heat flow
across S is

∫∫
S

q ·n dS = −
∫∫

S

48 dS = −48 · 36π = −1728π.

C15S05.036: The temperature within the cylinder is u(x, y) = 4(x2 + y2), so

q = −K ∇u = −2 · 4〈 2x, 2y, 0 〉 = −16〈x, y, 0 〉.

A unit vector normal to the inner cylindrical surface is n = 1
3 〈x, y, 0 〉, and hence q ·n = −48. Therefore

the rate of flow of heat across the inner surface is
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∫∫
S

q ·n dS = −48 · 2π · 3 · 10 = −2880π.

C15S05.037: The given parametrization yields N = 〈−2bu2 cos v, −2au2 sin v, abu 〉, so the area of the
paraboloid is

A =
∫ 2π

0

∫ c

0

u
√

(2au sin v)2 + (2bu cos v)2 + (ab)2 du dv

=
∫ 2π

0

[
(ab)2 + 2(ac)2 + 2(bc)2 − 2(a2 − b2)c2 cos 2v

]3/2 − (ab)3

6
[
a2 + b2 − (a2 − b2) cos 2v

] dv.

We believe the last integral to be nonelementary (because Mathematica 3.0 uses elliptic functions to compute
the antiderivative). With a = 4, b = 3, and c = 2 it reduces to

∫ 2π

0

−1728 + (344− 56 cos 2v)3/2

150− 42 cos 2v
dv.

The Mathematica 3.0 NIntegrate command yields the result A ≈ 194.702812872043. To compute the
moment of inertia of the paraboloid with respect to the z-axis, we insert the factor

x2 + y2 = (au cos v)2 + (bu sin v)2 = (4u cos v)2 + (3u sin v)2

into the first integral, and Mathematica yields the result Iz ≈ 5157.168115181396.

C15S05.038: Using the given parametrization, we find that

N = 〈 bc sin2 u cos v, ac sin2 u sin v, ab sinu cosu 〉,

and thus that

|N| = (sinu)
√

(bc sinu cos v)2 + (ac sinu sin v)2 + (ab cosu)2 .

Hence (using a = 4, b = 3, c = 2, and density δ = 1) the area of the ellipsoid is

A =
∫ 2π

0

∫ π

0

|N| du dv ≈ 111.545774984838

and its moment of inertia with respect to the z-axis is

Iz =
∫ 2π

0

∫ π

0

[
(a sinu cos v)2 + (b sinu sin v)2

]
· |N| du dv ≈ 847.811218594696.

C15S05.039: The given parametrization yields

|N| = (coshu)
√

(b coshu cos v)2 + (a coshu sin v)2 + (ab sinhu)2 ,

and hence (using a = 4, b = 3, c = 2, and density δ = 1) we find that the hyperboloid has surface area

A =
∫ 2π

0

∫ c

−c
|N| du dv ≈ 1057.350512779488
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and moment of inertia with respect to the z-axis

Iz =
∫ 2π

0

∫ c

−c
(cosh2 u)

[
(a cos v)2 + (b sin v)2

]
· |N| du dv ≈ 98546.9348740325.

C15S05.040: The given parametrization of the Möbius strip yields

|N| =

√
16 +

3
4
t2 + 8t cos

(
1
2
θ

)
+

1
2
t2 cos θ ,

and thus the Möbius strip has area

A =
∫ 2π

0

∫ 1

−1

|N| dt dθ ≈ 50.398571814841

and its moment of inertia with respect to the z-axis is

Iz =
∫ 2π

0

∫ 1

−1

(x2 + y2) · |N| dt dθ ≈ 831.469864671567.

C15S05.041: We use Fig. 14.7.15 of the text and the notation there; the only change is replacement of
the variable ρ with the constant radius a of the spherical surface. The spherical shell has constant density
δ and total mass M = 4πa2δ. The “sum” of the vertical components of the gravitational forces exerted by
mass elements δ dS of the spherical surface S on the mass m is

F =
∫∫

S

Gmδ cosα
w2

dS.

We saw in the solution of Problem 25 (among others) that dS = a2 sinφ dA. Figure 14.7.15 also shows us
that

w cosα = c− a cosφ and w2 = a2 + c2 − 2ac cosφ (1)

(by the law of cosines (Appendix L, page A-49)). Note that

F = 2πGmδ

∫ π

φ=0

a2 cosα sinφ
w2

dφ.

Substitute cosα =
c− a cosφ

w
to obtain

F = 2πGmδ

∫ π

0

a2(c− a cosφ) sinφ
w3

dφ.

Next note that φ = 0 corresponds to w = c− a and that φ = π corresponds to w = c+ a. Moreover, by the
second equation in (1),

cosφ =
a2 + c2 − w2

2ac
and thus

− sinφ dφ = − w

ac
dw.

These substitutions yield
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F = 2πGmδ

∫ c+a

w=c−a

a2

w3

(
c− a2 + c2 − w2

2c

)
· w
ac

dw

= 2πGmδ

∫ c+a

c−a

a

w2c
· 1
2c
· (c2 + w2 − a2) dw =

2πGmδa

2c2

∫ c+a

c−a

(
c2 − a2

w2
+ 1

)
dw

=
πGmδa

c2

[
a2 − c2

w
+ w

]c+a
c−a

=
πGmδa

c2
(a− c+ a+ c+ c+ a− c+ a) =

4πGmδa2

c2
=

GMm

c2
.
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Section 15.6

C15S06.001: The right-hand side in the divergence theorem (Eq. (1)) is
∫∫∫

B

∇·F dV =
∫∫∫

B

3 dV = 3 · 4
3
π · 13 = 4π

and the left-hand side in the divergence theorem is

∫∫
S

F ·n dS =
∫∫

S

〈x, y, z 〉 · 〈x, y, z 〉 dS =
∫∫

S

(x2 + y2 + z2) dS =
∫∫

S

1 dS = 1 · 4π · 12 = 4π.

Note that we integrate a constant function by multiplying its value by the size (length, area, or volume) of
the domain of the integral. We will continue to do so without further comment.

C15S06.002: Here we have

F(x, y, z) = (x2 + y2 + z2)1/2 〈x, y, z 〉, and n =
1
3
〈x, y, z 〉

is a unit vector normal to the surface S. Because F ·n = 1
3 (x2 + y2 + z2)3/2, F ·n takes on the constant

value 9 on S. Therefore
∫∫

S

F ·n dS = 9 · area(S) = 9 · 4π · 32 = 324π ≈ 1017.8760197630930093.

Next, let B denote the solid ball bounded by S. Then

∇·F =
x2√

x2 + y2 + z2
+

y2√
x2 + y2 + z2

+
z2√

x2 + y2 + z2
+ 3

√
x2 + y2 + z2 = 4

√
x2 + y2 + z2 ,

and thus

∫∫∫
B

∇·F dV =
∫∫∫

B

4
√

x2 + y2 + z2 dV

=
∫ 2π

0

∫ π

0

∫ 3

0

4ρ3 sinφ dρ dφ dθ = 2π
∫ π

0

81 sinφ dφ = 2π
[
−81 cosφ

]π
0

= 324π.

C15S06.003: On the face F of the cube in the plane x = 2, a unit vector normal to F is n = i, and
F · i = x = 2. Hence

∫∫
F

F ·n dS = 2 · area(F ) = 8.

By symmetry, the same result obtains on the faces in the planes y = 2 and z = 2. On the face G of the cube
in the plane x = 0, a unit vector normal to G is n = −i, and F · (−i) = −x = 0. Hence

∫∫
G

F ·n dS = 0.

By symmetry, the same result holds on the faces in the other two coordinate planes. Hence
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∫∫
S

F ·n dS = 3 · 8 + 3 · 0 = 24.

Let B denote the solid cube bounded by S and let V denote the volume of B. Because ∇·F = 3, we also
have

∫∫∫
B

∇·F dV = 3 · V = 3 · 8 = 24.

C15S06.004: On the face F of the cube in the plane x = 2, a unit vector normal to F is n = i, and
F · i = xy = 2y. Hence

∫∫
F

F ·n dS =
∫ 2

0

∫ 2

0

2y dy dz =
∫ 2

0

4 dz = 8.

By symmetry, the same result holds on the faces in the planes y = 2 and z = 2. On the face G of the cube
in the plane x = 0, a unit vector normal to G is n = −i, and F · (−i) = −xy = 0. Hence

∫∫
G

F ·n dS = 0.

By symmetry, the same result holds on the faces in the other two coordinate planes. Hence
∫∫

S

F ·n dS = 3 · 8 + 3 · 0 = 24.

Let B denote the solid cube bounded by S. Because ∇·F = y + z + x, we see that

∫∫∫
B

∇·F dV =
∫ 2

0

∫ 2

0

∫ 2

0

(x + y + z) dx dy dz

=
∫ 2

0

∫ 2

0

(2 + 2y + 2z) dy dz =
∫ 2

0

(8 + 4z) dz =
[
8z + 2z2

]2

0

= 24.

C15S06.005: On the face F of the tetrahedron that lies in the plane x = 0, a unit vector normal to F is
n = −i, and F ·n = −x− y = −y. Hence

∫∫
F

F ·n dS =
∫ 1

0

∫ 1−z

0

(−y) dy dz =
∫ 1

0

−1
2

(1− z)2 dz =
[

1
6

(1− z)3
]1

0

= −1
6
.

By symmetry the same result holds on the faces in the other two coordinate planes. On the fourth face G

of the tetrahedron, a unit vector normal to G is

n =
√

3
3
〈 1, 1, 1 〉,

and G is part of the graph of z = h(x, y) = 1− x− y, so that

dS =
√

1 + (hx)2 + (hy)2 dA =
√

3 dA.

Therefore
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∫∫
G

F ·n dS =
∫∫

G

(2x+ 2y + 2z) dA =
∫∫

G

2 dA =
∫ 1

0

∫ 1−x

0

2 dy dx =
∫ 1

0

[
2y

]1−x

0

dx =
[
2x−x2

]1

0

= 1,

and therefore
∫∫

S

F ·n dS = 1− 3 · 1
6

=
1
2
.

Let B denote the solid tetrahedron itself, with volume V . Then
∫∫∫

B

∇·F dV =
∫∫∫

B

3 dV = 3 · V = 3 · 1
6
· 1 · 1 =

1
2
.

C15S06.006: Let B denote the cube bounded by the surface S. Then

∫∫
S

F ·n dS =
∫∫∫

B

∇·F dV =
∫∫∫

B

(2x + 2y + 2z) dV =
∫ 2

0

∫ 2

0

∫ 2

0

(2x + 2y + 2z) dz dy dx

=
∫ 2

0

∫ 2

0

(4 + 4x + 4y) dy dx =
∫ 2

0

(16 + 8x) dx =
[
16x + 4x2

]2

0

= 48.

C15S06.007: Let B denote the solid cylinder bounded by the surface S. Then

∫∫
S

F ·n dS =
∫∫∫

B

∇·F dV =
∫∫∫

B

3(x2 + y2 + z2) dV =
∫ 2π

0

∫ 3

0

∫ 4

−1

3(r2 + z2) · r dz dr dθ

= 2π
∫ 3

0

[
3r3z + rz3

]4

−1

dr = 2π
∫ 3

0

(65r + 15r3) dr = 2π
[

65
2

r2 +
15
4

r4

]3

0

= 2π · 2385
4

=
2385

2
π ≈ 3746.3492394058284367.

C15S06.008: Denote by B the solid paraboloid bounded by the given surface S. Then

∫∫
S

F ·n dS =
∫∫∫

B

∇·F dV =
∫∫∫

B

4(x2 + y2) dV =
∫ 2π

0

∫ 5

0

∫ 25−r2

0

4r3 dz dr dθ

= 2π
∫ 5

0

(100r3 − 4r5) dr = 2π
[
25r4 − 2

3
r6

]5

0

= 2π · 15625
3

=
31250

3
π ≈ 32724.9234748936795673.

C15S06.009: Let B denote the tetrahedron bounded by the given surface S. Then

∫∫
S

F ·n dS =
∫∫∫

B

∇·F dV =
∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

(2x + 1) dz dy dx

=
∫ 1

0

∫ 1−x

0

(1 + x− 2x2 − y − 2xy) dy dx =
∫ 1

0

[
(1 + x− 2x2)y − 1

2
(2x + 1)y2

]1−x

0

dx

3



=
∫ 1

0

(
1
2
− 3

2
x2 + x3

)
dx =

[
1
2
x− 1

2
x3 +

1
4
x4

]1

0

=
1
4
.

C15S06.010: Let B denote the solid region bounded by the given surface S. Then

∫∫
B

F ·n dS =
∫∫∫

B

∇·F dV =
∫∫∫

B

(x2 + y2) dV =
∫ 2π

0

∫ 3

0

∫ 9

r2
r3 dz dr dθ

= 2π
∫ 3

0

(9r3 − r5) dr = 2π
[

9
4
r4 − 1

6
r6

]3

0

= 2π · 243
4

=
243
2

π ≈ 381.7035074111598785.

C15S06.011: Let B denote the solid paraboloid bounded by the surface S. Then

∫∫
S

F ·n dS =
∫∫∫

B

∇·F dV =
∫∫∫

B

5(x2 + y2 + z2) dV =
∫ 2π

0

∫ 5

0

∫ 25−r2

0

5(r2 + z2) · r dz dr dθ

= 2π
∫ 5

0

[
5r3z +

5
3
rz3

]25−r2

0

dr = 2π
∫ 5

0

(
78125

3
r − 3000r3 + 120r5 − 5

3
r7

)
dr

= 2π
[

78125
6

r2 − 750r4 + 20r6 − 5
24

r8

]5

0

= 2π · 703125
8

=
703125

4
π ≈ 552233.08363883.

C15S06.012: First note that

∇·F = ∇·
〈

x√
x2 + y2 + z2

,
y√

x2 + y2 + z2
,

z√
x2 + y2 + z2

〉

= − x2

(x2 + y2 + z2)3/2
− y2

(x2 + y2 + z2)3/2
− z2

(x2 + y2 + z2)3/2
+

3√
x2 + y2 + z2

=
2√

x2 + y2 + z2
.

Let B denote the solid ball bounded by the surface S. Then

∫∫
S

F ·n dS =
∫∫∫

B

∇·F dV =
∫∫∫

B

2√
x2 + y2 + z2

dV =
∫ 2π

0

∫ π

0

∫ 2

0

2
ρ
· ρ2 sinφ dρ dφ dθ

= 2π
∫ π

0

[
ρ2 sinφ

]2

0

dφ = 2π
∫ π

0

4 sinφ dφ = 2π
[
− 4 cosφ

]π
0

= 16π ≈ 50.2654824574366918.

C15S06.013: Here is a step-by-step illustration of the solution using Mathematica 3.0.

f = {x, y, 3} (∗ First we define the vector function F. ∗)

{x, y, 3}

D[%[[1]],x] + D[%[[2]],y] + D[%[[3]],z] (∗ Then we compute div F. ∗)

2
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Integrate[ 2∗r, z ] (∗ Begin the triple integral in cylindrical coordinates. ∗)

2rz

(% /. z → 4) - (% /. z → r∧2) (∗ Substitute the limits on z. ∗)

8r − 2r3

Integrate[ %, r]

4r2 − 1
2
r4

(% /. r → 2) - (% /. r → 0) (∗ Substitute the limits on r. ∗)

8

2∗Pi∗% (∗ Integrate the constant by multiplying by 2π. ∗)

16π

N[%, 18] (∗ Approximate the answer. ∗)

50.2654824574366918

C15S06.014: Let B denote the solid bounded by the surface S. Then

∫∫
S

F ·n dS =
∫∫∫

B

∇·F dV =
∫ 2

−2

∫ 4−x2

0

∫ 5−z

0

4x2 dy dz dx =
∫ 2

−2

∫ 4−x2

0

[
4x2y

]5−z

0

dz dx

=
∫ 2

−2

∫ 4−x2

0

4x2(5− z) dz dx =
∫ 2

−2

[
20x2z − 2x2z2

]4−x2

0

dx

=
∫ 2

−2

(48x2 − 4x4 − 2x6) dx =
[
16x3 − 4

5
x5 − 2

7
x7

]2

−2

=
4608
35

≈ 131.657142857143.

C15S06.015: Compare this problem and its solution with Problem 25 of Section 15.4. If f is a twice-
differentiable scalar function, then

∇2f = ∇· (∇f) = ∇· 〈 fx, fy, fz 〉 = fxx + fyy + fzz.

C15S06.016: By the divergence theorem and the result in Problem 15,
∫∫

S

∂f

∂n
dS =

∫∫
S

(∇f) ·n dS =
∫∫∫

T

∇· (∇f) dV =
∫∫∫

T

∇2f dV.

C15S06.017: If ∇2f ≡ 0 in the region T with boundary surface S, then by the divergence theorem and
Problem 28 in Section 15.1,
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∫∫
S

f
∂f

∂n
dS =

∫∫
S

(f)(∇f) ·n dS =
∫∫∫

T

∇·
[
(f)(∇f)

]
dV

=
∫∫∫

T

[
(f)∇· (∇f) + (∇f) · (∇f)

]
dV =

∫∫∫
T

[
(f)∇2f + |∇f |2

]
dV =

∫∫∫
T

|∇f |2 dV.

C15S06.018: By the divergence theorem and Problem 28 of Section 15.1,

∫∫
S

f
∂g

∂n
dS =

∫∫
S

(f)(∇g) ·n dS =
∫∫

S

F ·n dV =
∫∫∫

T

∇·F dV =
∫∫∫

T

∇· (f∇g) dV

=
∫∫∫

T

[
(f)(∇· ∇g) + (∇f) · (∇g)

]
dV =

∫∫∫
T

(
f∇2g + ∇f · ∇g

)
dV.

C15S06.019: Green’s first identity states that if the space region T has surface S with a piecewise smooth
parametrization, if f and g are twice-differentiable scalar functions, and if ∂f/∂n = (∇f) ·n where n is the
unit vector normal to S with outer direction, then

∫∫
S

f
∂g

∂n
dS =

∫∫∫
T

(f∇2g + ∇f · ∇g) dV.

Interchanging the roles of f and g yields the immediate consequence

∫∫
S

g
∂f

∂n
dS =

∫∫∫
T

(g∇2f + ∇g · ∇f) dV.

Then substraction of the second of these equations from the first yields

∫∫
S

(
f
∂g

∂n
− g

∂f

∂n

)
dS =

∫∫∫
B

(
f∇2g + ∇f · ∇g − g∇2f −∇g · ∇f

)
dV =

∫∫∫
B

(
f∇2g − g∇2f

)
dV,

and this is Green’s second identity.

C15S06.020: Let a be an arbitrary constant vector and let F = f a. Then the divergence theorem yields

∫∫
S

F ·n dS =
∫∫∫

B

∇·F dV ; that is,

∫∫
S

f a ·n dS =
∫∫∫

B

∇· (f a) dV =
∫∫∫

B

[
(f)(∇·a) + (∇f) ·a

]
dV

=
∫∫∫

B

[
(f)(0) + a · ∇f

]
dV = a

∫∫∫
B

∇f dV, and so

a
∫∫

S

fn dS = a
∫∫∫

B

∇f dV.

The last equation holds for every constant vector a, including i, j, and k. Therefore the x-, y-, and
z-components of the last two integrals are the same, and consequently
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∫∫
S

fn dS =
∫∫∫

B

∇f dV.

C15S06.021: By the result in Problem 20, we have

B = −
∫∫

S

pn dS = −
∫∫∫

T

∇(δgz) dV = −
∫∫∫

T

〈 0, 0, δg 〉 dV = −k
∫∫∫

T

δg dV = −W k

because
∫∫∫

T

δg dV = mg = W

is the weight of the fluid displaced by the body.

C15S06.022: We use Mathematica 3.0 to solve this problem. We begin by defining F and r as in the
statement of the problem:

r = {x, y, z}; r0 = {a, b, c}; r − r0

{x− a, y − b, z − c}

f = %/((r − r0).(r − r0))∧(3/2)
{

x− a(
(x− a)2 + (y − b)2 + (z − c)2

)3/2
,

y − b(
(x− a)2 + (y − b)2 + (z − c)2

)3/2
,

z − c(
(x− a)2 + (y − b)2 + (z − c)2

)3/2

}

Now we compute the divergence of F (called f here to avoid capitals).

D[%[[1]], x] + D[%[[2]], y] + D[%[[3]], z]

− 3(x− a)2(
(x− a)2 + (y − b)2 + (z − c)2

)5/2
− 3(y − b)2(

(x− a)2 + (y − b)2 + (z − c)2
)5/2

− 3(z − c)2(
(x− a)2 + (y − b)2 + (z − c)2

)5/2
+

3(
(x− a)2 + (y − b)2 + (z − c)2

)3/2

Simplify[ % ]

0

Therefore ∇·F = 0 except at the point (a, b, c).

C15S06.023: Let B denote the region bounded by the paraboloid and the plane. Because

F(x, y, z) =
〈
x
√

x2 + y2 + z2 , y
√

x2 + y2 + z2 , z
√

x2 + y2 + z2
〉
,

we have
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∇·F =
x2√

x2 + y2 + z2
+

y2√
x2 + y2 + z2

+
z2√

x2 + y2 + z2
+ 3

√
x2 + y2 + z2 = 4

√
x2 + y2 + z2 .

Thus in cylindrical coordinates, ∇·F = 4
√
r2 + z2 . Then, by the divergence theorem,

I =
∫∫

S

F ·n dS =
∫∫∫

B

∇·F dV

=
∫ 2π

0

∫ 25

0

∫ √
25−z

0

4r
√

r2 + z2 dr dz dθ =
8
3
π

∫ 25

0

[
(25− z + z2)3/2 − z3

]
dz.

Let

J =
∫ c

0

(
(z − a)2 + b2

)3/2
dz.

Later we will use the following values: b = 3
2

√
11 , a = 1

2 , and c = 25 = a2 + b2. The substitution
z = a + b tanu yields

J = b4
∫ c

z=0

sec5 u du,

and the integral formulas in 37 and 28 of the endpapers of the text then yield

J = b4
∫ c

z=0

sec5 u du = b4
([

1
4

sec3 u tanu

]c
z=0

+
3
4

∫ c

z=0

sec3 u du

)

= b4
([

1
4

sec3 u tanu

]c
z=0

+
3
4

[
1
2

secu tanu +
1
2

ln | secu + tanu |
]c
z=0

)
.

The substitution z = a + b tanu also yields

secu =
1
b

[
(z − a)2 + b2

]1/2 and tanu =
1
b
(z − a).

It now follows that

J = b4

[
3(z − a)

[
(z − a)2 + b2

]3/2
4b4

+
3(z − a)

[
(z − a)2 + b2

]1/2
8b2

+
3
8

ln

∣∣∣∣∣
z − a +

[
(z − a)2 + b2

]1/2
b

∣∣∣∣∣
]c
z=0

= b4

[
3a(a2 + b2)1/2

8b2
+

a(a2 + b2)3/2

4b4
+

3(c− a)
[
(c− a)2 + b2

]1/2
8b2

+
(c− a)

[
(c− a)2 + b2

]3/2
4b4

− 3
8

ln
(
−a + (a2 + b2)1/2

b

)
+

3
8

ln

(
c− a +

[
(c− a)2 + b2

]1/2
b

) ]
.

Then substitution of the numerical values of a, b, and c yields

J =
9801
16

[
1081885

6534
− 3

8
ln

(
3√
11

)
+

3
8

ln
(
3
√

11
) ]

=
3

128
(4327540 + 9801 ln 11) .

And, finally,
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I =
8
3
π

(
J −

∫ 25

0

z3 dz

)
=

8
3
π

[
1

128
(482620 + 29403 ln 11)

]

=
482620 + 29403 ln 11

48
π ≈ 36201.967191566589699334774115.

We integrated sec5 u using the integral formulas mentioned earlier; all the subsequent work was done by
Mathematica 3.0.

C15S06.024: We begin with Gauss’s law in the form
∫∫

S

F ·n dS = −4πGM.

Because F and n have opposite directions and n is a unit vector, this law in this special case takes the form

∫∫
S

|F| dS = 4πGM ;

|F| · 4πr2 = 4πGM ;

|F| = GM

r2
.

C15S06.025: We begin with Gauss’s law in the form
∫∫

S

F ·n dS = −4πGM.

Because F and n have opposite directions and n is a unit vector, we may in this case deduce that
∫∫

S

|F| dS = 4πGM = 4πG · 0 = 0.

Therefore 4πr2 |F| = 0, so that |F| = 0. Therefore F = 0.

C15S06.026: We begin with Gauss’s law in the form
∫∫

S

F ·n dS = −4πGMr = −4πG · 4
3
πδr3.

Because F and n have opposite directions and n is a unit vector, we may now conclude that

∫∫
S

|F| dS = 4πGMr;

4πr2|F| = 4πGMr;

|F| = GMr

r2
.

C15S06.027: Imagine a cylindrical surface of radius r and length L concentric around the wire. Because
the electric field E is normal to the wire, there is no flux of E across the top and bottom of the cylinder, so
the surface S of Gauss’s law may be regarded as the curved side of the cylinder. It follows that
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∫∫
S

E ·n dS =
Q

ε0
=

Lq

ε0
.

Because E and n are parallel and n is a unit vector, it now follows that

∫∫
S

|E| dS =
Lq

ε0
;

2πrL|E| = Lq

ε0
;

|E| = q

2πε0r
.
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Section 15.7

C15S07.001: Because n is to be the upper unit normal vector, we have

n = n(x, y, z) =
1
2
〈x, y, z 〉.

The boundary curve C of the hemispherical surface S has the parametrization

x = 2 cos θ, y = 2 sin θ, z = 0, 0 � θ � 2π.

Therefore

∫∫
S

(∇×F) ·n dS =
∮
C

3y dx− 2x dy + xyz dz

=
∫ 2π

0

(−12 sin2 θ − 8 cos2 θ) dθ =
[
−10θ + sin 2θ

]2π

0

= −20π.

C15S07.002: Parametrize the boundary curve C as follows:

x = 2 cos t, y = 2 sin t, z = 4, 0 � t � 2π.

Then

∫∫
S

(∇×F) ·n dS =
∮
C

F · dr =
∮
C

2y dx+ 3x dy + ez dz

=
∫ 2π

0

(12 cos2 t− 8 sin2 t) dt =
[
2t+ 5 sin 2t

]2π

0

= 4π.

C15S07.003: Parametrize the boundary curve C of the surface S as follows:

x = 3 cos t, y = 3 sin t, z = 0, 0 � t � 2π.

Then

∫∫
S

(∇×F) ·n dS =
∮
C

F ·T ds =
∫ 2π

0

(−6 cos t− 27 sin2 t cos t) dt =
[

3
4

(3 sin 3t− 17 sin t)
]2π

0

= 0.

C15S07.004: Parametrize the boundary curves as follows:

C1 : x = cos t, y = sin t, z = 1, 0 � t � 2π;

C2 : x = cos t, y = − sin t, z = 3, 0 � t � 2π.

Then

∫∫
S

(∇×F) ·n dS =
∮
C1

F ·T ds+
∮
C2

F ·T ds =
∫ 2π

0

(cos2 t− sin2 t) dt+
∫ 2π

0

(3 sin2 t− 3 cos2 t) dt

=
[

1
2

sin 2t
]2π

0

−
[

3
2

sin 2t
]2π

0

= 0 + 0 = 0.
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C15S07.005: Parametrize the boundary curves of the surface S as follows:

C1 : x = cos t, y = − sin t, z = 1, 0 � t � 2π;

C2 : x = 3 cos t, y = 3 sin t, z = 3, 0 � t � 2π.

Then

∫∫
S

(∇×F) ·n dS =
∮
C1

F ·T ds+
∮
C2

F ·T ds

=
∫ 2π

0

(cos2 t+ sin2 t) dt+
∫ 2π

0

−27(cos2 t+ sin2 t) dt =
[
− 26t

]2π

0

= −52π.

C15S07.006: Use for the surface S the disk x2 + y2 � 9, z = 4; use n = k for the normal. Then we have
∇×F = 〈 3, 0, −5 〉, and hence (∇×F) ·n = −5. Therefore

∮
C

F ·T ds =
∫∫

S

(∇×F) ·n dS =
∫∫

S

(−5) dS = −5 · area(S) = −45π.

C15S07.007: Parametrize S (the elliptical region bounded by C) as follows:

x = z = r cos t, y = r sin t, 0 � t � 2π.

Then rr × rt = 〈−r, 0, r 〉, dS = r
√

2 dr dt, the upper unit normal for S is

n =
1
2

√
2 〈−1, 0, 1 〉,

and ∇×F = 〈 3, 2, 1 〉. Therefore (∇×F) ·n = −
√

2 . Consequently,

∮
C

F ·T ds =
∫∫

S

(∇×F) ·n dS =
∫ 2π

0

∫ 2

0

(−2r) dr dt

= 2π
[
−r2

]2

0

= 2π · (−4) = −8π ≈ −25.1327412287183459.

C15S07.008: The upper unit normal to the triangle bounded by C is

n =
1
2

√
2 〈 0, −1, 1 〉,

and consequently (∇×F) ·n = 0. Therefore the value of the line integral is zero.

C15S07.009: If F(x, y, z) = 〈 y − x, x− z, x− y 〉, then

∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

y − x x− z x− y

∣∣∣∣∣∣∣∣∣∣
= 〈 0, −1, 0 〉.
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The surface S bounded by C is part of the plane with equation x+ 2y + z = 2, so an upward normal to S

is 〈 1, 2, 1 〉. Hence the unit normal vector we need is

n =
1
6

√
6 〈 1, 2, 1 〉.

Then (∇×F) ·n = − 1
3

√
6 , a constant, so it remains only to find the area of S. Its vertices are at A(2, 0, 0),

B(0, 1, 0), and C(0, 0, 2), so we compute the “edge vectors”

u =
−→
AB = 〈−2, 1, 0 〉 and v =

−→
AC = 〈−2, 0, 2 〉

and their cross product

u×v =

∣∣∣∣∣∣∣∣∣

i j k

−2 1 0

−2 0 2

∣∣∣∣∣∣∣∣∣
= 〈 2, 4, 2 〉;

the area of S is then 1
2 |u×v| =

√
6 . Therefore

∮
C

F ·T ds =
∫∫

S

(∇×F) ·n dS =
(
−1

3

√
6

)
·
√

6 = −2.

C15S07.010: Let E denote the elliptical region bounded by C. Now E lies in the plane with equation
−y + z = 0, so has upper unit normal

n =
1
2

√
2 〈 0, −1, 1 〉.

Next, ∇×F = 〈−2z, −2x, −2y 〉, so (∇×F) ·n =
√

2 (x− y). The projection of D into the xy-plane may
be described in this way:

x2 + (y − 1)2 = 1, z = 0;

alternatively, by r = 2 sin t (0 � y � π), z = 0. Thus

J =
∫
C

F ·T ds =
∫∫

E

(∇×F) ·n dS =
∫∫

E

√
2 (x− y) dS.

A parametrization of E is

w(r, t) = 〈 r cos t, r sin t, r sin t 〉, 0 � t � π, 0 � r � 2 sin t.

Next we find that wr ×wt = 〈 0, −r, r 〉. Therefore dS = r
√

2 dr dt. Consequently,

J =
∫∫

E

√
2 (x− y) dS =

∫ π

0

∫ 2 sin t

0

r
√

2 (cos t− sin t) · r
√

2 dr dt

=
∫ π

0

∫ 2 sin t

0

2r2(cos t− sin t) dr dt =
∫ π

0

[
2
3
r3(cos t− sin t)

]2 sin t

0

dt

=
∫ π

0

16
3

(sin3 t cos t− sin4 t) dt =
1
6

[
−12t− 4 cos 2t+ cos 4t+ 8 sin 2t− sin 4t

]π
0

= −2π.
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C15S07.011: If F(x, y, z) = 〈 3y − 2z, 3x+ z, y − 2x 〉, then

∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

3y − 2z 3x+ z y − 2x

∣∣∣∣∣∣∣∣∣∣
= 〈 1− 1, −2 + 2, 3− 3 〉 = 0.

Therefore F is irrotational. Next, let C be the straight line segment from (0, 0, 0) to the point (u, v, w) of
space. Parametrize C as follows: x = tu, y = tv, z = tw, 0 � t � 1. Then

∫
C

F ·T ds =
∫ 1

t=0

(6tuv − 4tuw + 2tvw) dt =
[
(3uv − 2uw + vw)t2

]1

0

= 3uv − 2uw + vw.

Now replace u with x, v with y, and w with z (because (u, v, w) represents an arbitrary point of space).
This yields the potential function

φ(x, y, z) = 3xy − 2xz + yz.

To be absolutely certain of this, verify for yourself that ∇φ = F.

C15S07.012: If F(x, y, z) = 〈 3y3 − 10xz2, 9xy2, −10x2z 〉, then we can use Mathematica 3.0 to verify
that F is irrotational and to find a scalar potential φ(x, y, z) for F, as follows. Recall that % refers to the
“last output,” that expr1 → expr2 requests replacement of expr1 with expr2, that expr[[k]] refers
to the kth entry in the vector expr, and that u.v computes the dot product of the vectors u and v. We
begin by constructing F and computing its curl.

ff = { 3∗y∧3 - 10∗x∗z∧2, 9∗x∗y∧2, -10∗x∧2∗z };

The semicolon at the end of the line suppresses the output, which in this case would be the echo

{3y3 − 10xz2, 9xy2, −10x2z}

{D[ff[[3]],y] - D[ff[[2]],z], D[ff[[1]],z] - D[ff[[3]],x],

D[ff[[2]],x] - D[ff[[1]],y]}

{0, 0, 0}

Thus F (alias ff to avoid encroaching on Mathematica’s capital letters) is irrotational. Now we follow the
technique illustrated in Example 3.

ff /. {x → t∗u, y → t∗v, z →t∗w}

{3t3v3 − 10t3uw2, 9t3uv2, −10t3u2w}

%.{u, v, w}

9t3uv3 − 10t3u2w2 + u(3t3v3 − 10t3uw2)

Simplify[%]

4t3u(5uw2 − 3v3)
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Integrate[%, t]

t4u(3v3 − 5uw2)

(% /. t → 1) - (% /. t → 0)

3uv3 − 5u2w2

% /. {u → x, v → y, w → z}

3xy3 − 5x2z2

Finally we check the result φ(x, y, z) = 3xy3 − 5x2z2:

phi = 3∗x∗y∧3 - 5∗x∧2∗z∧2; {D[phi,x], D[phi,y], D[phi,z]}

{3y3 − 10xz2, 9xy2, −10x2z}

% - ff

{0, 0, 0}

C15S07.013: If F(x, y, z) = 〈 3ez − 5y sinx, 5 cosx, 17 + 3xez 〉, then

∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

3ezz − 5y sinx 5 cosx 17 + 3xez

∣∣∣∣∣∣∣∣∣∣
= 〈 0, 3ez − 3ez, −5 sinx+ 5 sinx 〉 = 0.

Therefore F is irrotational. Then the method of Example 3 yields

x(t) = tu, y(t) = tv, z(t) = tw, 0 � t � 1,

r(t) = 〈x(t), y(t), z(t) 〉 = 〈 tu, tv, tw 〉, and

F(t) = 〈 3 exp(tw)− 5tv sin tu, 5 cos tu, 17 + 3tu exp(tw) 〉,

so that

∫
C

F · dr =
∫ 1

t=0

(17w + 3tuwetw + 5v cos tu+ 3uetw − 5tuv sin tu) dt

=
[
3tuetw + 17tw + 5tv cos tu

]1

0

= 3uew + 17w + 5v cosu.

Therefore φ(x, y, z) = 3xez + 17z + 5y cosx.

C15S07.014: First write F in the form

F = (x2 + y2 + z2)3/2 〈x, y, z 〉.

Then F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z) 〉 where
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P (x, y, z) = (x2 +y2 +z2)3/2 ·x, Q(x, y, z) = (x2 +y2 +z2)3/2 ·y, and R(x, y, z) = (x2 +y2 +z2)3/2 ·z.

Then

∂P

∂y
= 3(x2 + y2 + z2)1/2 · xy, ∂P

∂z
= 3(x2 + y2 + z2)1/2 · xz,

∂Q

∂x
= 3(x2 + y2 + z2)1/2 · xy, ∂Q

∂z
= 3(x2 + y2 + z2)1/2 · yz,

∂R

∂x
= 3(x2 + y2 + z2)1/2 · xz, ∂R

∂y
= 3(x2 + y2 + z2)1/2 · yz.

Therefore

∇×F = 〈Ry −Qz, Pz −Rx, Qx − Py 〉 = 〈 0, 0, 0 〉 = 0,

and hence F is irrotational. Then the method of Example 3 yields

∫
C

F · dr =
∫ 1

0

(u2 + v2 + w2)5/2t4 dt =
[

1
5

(u2 + v2 + w2)5/2t5
]1

0

=
1
5

(u2 + v2 + w2)5/2.

Therefore a scalar potential for F is φ(x, y, z) =
1
5

(x2 + y2 + z2)5/2; that is, φ(r) =
1
5
r5.

C15S07.015: We are given r = 〈x, y, z 〉; suppose that a = 〈 b, c, d 〉 is a constant vector. Part (a):

a× r =

∣∣∣∣∣∣∣∣∣

i j k

b c d

x y z

∣∣∣∣∣∣∣∣∣
= 〈 cz − dy, dx− bz, by − cx 〉,

and hence ∇· (a× r) = 0 + 0 + 0 = 0. Part (b): Using some of the results in part (a), we have

∇× (a× r) =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

cz − dy dx− bz by − cx

∣∣∣∣∣∣∣∣∣∣
= 〈 2b, 2c, 2d 〉 = 2a.

Part (c): First,

(r · r)a = 〈 b(x2 + y2 + z2), c(x2 + y2 + z2), d(x2 + y2 + z2) 〉.

Thus ∇·
[
(r · r)a

]
= 2bx+ 2cy+ 2dz = 2r ·a. Part (d): Using some of the results in parts (a) and (c), we

have
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∇×
[
(r · r)a

]
=

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

b(x2 + y2 + z2) c(x2 + y2 + z2) d(x2 + y2 + z2)

∣∣∣∣∣∣∣∣∣∣

= 〈 2dy − 2cz, 2bz − 2dx, 2cx− 2by 〉

= −2〈 cz − dy, dx− bz, by − cx 〉 = −2(a× r) = 2(r×a).

C15S07.016: Suppose that S and T are oriented surfaces having the same oriented boundary curve C;
also assume that the following integrals exist (because S and T have piecewise smooth parametrizations, n
represents both a unit vector normal to S and a unit vector normal to T , C has a piecewise differentiable
parametrization, and F is continuous and has continuous first-order partial derivatives). Then

∫∫
S

(∇×F) ·ndS =
∫
C

F ·T ds =
∫∫

T

(∇×F) ·n dS.

C15S07.017: Assume that S is a closed surface having a piecewise smooth parametrization, that n is the
outer unit normal vector for S, and that F is continuous and has continuous first-order partial derivatives
on an open region containing S and the solid T that it bounds. Part (a): By the divergence theorem,

∫∫
S

(∇×F) ·n dS =
∫∫∫

T

∇· (∇×F) dV =
∫∫∫

T

0 dV = 0

by Problem 32 of Section 15.1. Part (b): Let C be a simple closed curve on S having a suitably differentiable
parametrization and a given orientation. Then C is the common boundary of the two surfaces S1 and S2

into which it divides S; that is, S is the union of S1 and S2, S1 and S2 meet in the curve C, and C has
positive orientation on (say) S1 and the opposite orientation on S2. Then

∫∫
S1

(∇×F) ·n dS =
∫
C

F ·T ds = −
∫∫

S2

(∇×F) ·n dS.

Therefore
∫∫

S

(∇×F) ·n dS =
∫∫

S1

(∇×F) ·n dS +
∫∫

S2

(∇×F) ·n dS = 0.

C15S07.018: Following the Suggestion given in the statement of the problem, let F = φa where a is an
arbitrary constant vector. Write T = 〈T1, T2, T3 〉 and n = 〈n1, n2, n3 〉. Then

∮
C

(φa) ·T ds =
∫∫

S

[
∇× (φa)

]
·n dS =

∫∫
S

[
(φ)(∇×a) + (∇φ)×a

]
·n dS =

∫∫
S

(∇φ×a) ·n dS.

If a = i, then
∮
C

(φa) ·T ds =
∮
C

φT1 ds =
∫∫

S

〈 0, φz, −φy 〉 dS =
∫∫

S

(n2φz − n3φy) dS.

Similarly, if a = j, then
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∮
C

(φa) ·T ds =
∮
C

φT2 ds =
∫∫

S

(n3φx − n1φz) dS,

and if a = k, then
∮
C

(φa) ·T ds =
∮
C

φT3 ds =
∫∫

S

(n1φy − n2φx) dS.

Hence

∮
C

φT ds =
∮
C

φ〈T1, T2, T3 〉 ds =

〈∮
C

φT1 ds,

∮
C

φT2 ds,

∮
C

φT3 ds

〉

=

〈∫∫
S

(n2φz − n3φy) dS,
∫∫

S

(n3φx − n1φz) dS,
∫∫

S

(n1φy − n2φx) dS

〉

=
∫∫

S

〈n2φz − n3φy, n3φx − n1φz, n1φy − n2φx 〉 dS =
∫∫

S

n× (∇φ) dS.

C15S07.019: We are given the constant vector a and the vector r = 〈x, y, z 〉. Let F = a× r. Then by
Stokes’ theorem,

∫
C

(a× r) ·T ds =
∫∫

S

[
∇× (a× r)

]
·n dS =

∫∫
S

2a ·n dS

by part (b) of Problem 15. But because integration is carried out componentwise, it now follows that
∫
C

(a× r) ·T ds = 2a
∫∫

S

n dS.

C15S07.020: Write F(x, y, z) in the form 〈P, Q, R 〉 where P , Q, and R are functions of x, y, and z.
Write the unit normal vector n in the form 〈n1, n2, n3 〉. Then

n×F =

∣∣∣∣∣∣∣∣∣

i j k

n1 n2 n3

P Q R

∣∣∣∣∣∣∣∣∣
= 〈n2R− n3Q, n3P − n1R, n1Q− n2P 〉

and

∇×F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

P Q R

∣∣∣∣∣∣∣∣∣∣
= 〈Ry −Qz, Pz −Rx, Qx − Py 〉.

Equation (4) from Section 15.6 tells us that
∫∫

S

P dy dz + Q dz dx + R dx dy =
∫∫∫

T

(Px +Qy +Rz) dV.
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Then Eq. (3) of Section 15.6 implies that
∫∫

S

(n2R− n3Q) dS =
∫∫

S

R dz dx − Q dx dy =
∫∫∫

T

(Ry −Qz) dV. (1)

Similarly,
∫∫

S

(n3P − n1R) dS =
∫∫

S

P dx dy − R dy dz =
∫∫∫

T

(Pz −Rx) dV (2)

and
∫∫

S

(n1Q− n2P ) dS =
∫∫

S

Q dy dz − P dz dx =
∫∫∫

T

(Qx − Py) dV. (3)

Addition of the results in Eqs. (1), (2), and (3) then yields

∫∫
S

(n×F) dS =
∫∫

S

〈n2R− n3Q, n3P − n1R, n1Q− n2P 〉 dS

=
∫∫∫

T

〈Ry −Qz, Pz −Rx, Qx − Py 〉 dV =
∫∫∫

T

(∇×F) dV.

C15S07.021: Beginning with the Suggestion given in the statement of Problem 21, we find that

φx = lim
h→0

φ(x+ h, y, z)− φ(x, y, z)
h

= lim
h→0

1
h

∫ (x+h,y,z)

(x,y,z)

P (t, y, z) dt = lim
h→0

h · P (x�, y, z)
h

= P (x, y, z)

where x� is between x and x+h. A similar argument shows that φy = Q and φz = R. Adding these results
establishes that ∇φ = F = 〈P, Q, R 〉.

C15S07.022: First note that

L =
∫∫

S

(r− r0)× (−δgzn) dS = δg

∫∫∫
V

∇×
[
z(r− r0)

]
dV

by Problem 20. But ∇×
[
z(r − r0)

]
= (∇z)× (r − r0) + z

[
∇× (r − r0)

]
. It follows immediately that

∇z = k and that ∇× (r− r0) = 0. Thus

L = δg

∫∫∫
V

k× (r− r0) dV = δgk×
(∫∫∫

V

r dV − r0V

)
.

Consequently L = 0, because r0 =
1
V

∫∫∫
V

r dV .
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Chapter 15 Miscellaneous Problems

C15S0M.001: Parametrize C: x = t, y = 4
3 t, 0 � t � 3. Then

ds =
√

[x′(t)]2 + [y′(t)]2 dt =
5
3
dt and [x(t)]2 + [y(t)]2 =

25
9
t2.

Therefore

∫
C

(x2 + y2) ds =
∫ 3

0

125
27

t2 dt =
[

125
81

t3
]3

0

=
125
3
≈ 41.666666666667.

C15S0M.002: Parametrize C: x = t, y = t2, −1 � t � 1. Then

∫
C

y2 dx + x2 dy =
∫ 1

−1

(2t3 + t4) dt =
[

1
2
t4 +

1
5
t5

]1

−1

=
2
5
.

C15S0M.003: We are given the curve C parametrized by r(t) = 〈 e2t, et, e−t 〉, 0 � t � ln 2. Because
F(t) = 〈x, y, z 〉, we can also write

F(t) = 〈 e2t, et, e−t 〉,

and therefore

∫
C

F ·T ds =
∫
C

F · dr =
∫ ln 2

0

(2e4t + e2t − e−2t) dt =
1
2

[
e4t + e2t + e−2t

]ln 2

0

=
69
8

= 8.625.

C15S0M.004: Parametrize the three line segments separately, as follows:

C1 : x1(t) = 1 + t, y1(t) = 1, z1(t) = 2;

C2 : x2(t) = 2, y2(t) = 1 + 2t, z2(t) = 2;

C3 : x3(t) = 2, y2(t) = 3, z2(t) = 2 + 4t;

in each case the range for the parameter is 0 � t � 1. Hence

∫
C

xyz ds =
∫
C1

xyz ds+
∫
C2

xyz ds+
∫
C3

xyz ds

=
∫ 1

0

(2t+ 2) dt+
∫ 1

0

(16t+ 8) dt+
∫ 1

0

(96t+ 48) dt

=
[
t2 + 2t

]1

0

+
[
8t2 + 8t

]1

0

+
[
48t2 + 48t

]1

0

= 3 + 16 + 96 = 115.

C15S0M.005: Given the curve C with parametrization

x(t) = t, y(t) = t3/2, z(t) = t2, 0 � t � 4,
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we substitute and find that

∫
C

z1/2 dx+ x1/2 dy + y2 dz =
∫ 4

0

(
t+

3
2
t+ 2t4

)
dt =

[
5
4
t2 +

2
5
t5

]4

0

=
2148

5
= 429.6.

C15S0M.006: If φ(x, y, z) = xy2 + 1
2 z

2, then

∇φ = 〈 y2, 2xy, z 〉,

and therefore the given integral is independent of the path C from the fixed point A to the fixed point B.

C15S0M.007: Suppose that there exists a function φ(x, y) such that ∇φ = 〈x2y, xy2 〉. Then

φ(x, y) =
∫
x2y dx =

1
3
x3y + g(y),

and hence

∂φ

∂y
=

1
3
x3 + g′(y). (1)

But there is no choice of g(y) such that the last expression in Eq. (1) can equal xy2 unless x is constant.
This is not possible on any path C from (0, 0) to (1, 1). Thus there is no such function φ, and thus by
Theorem 2 the given integral is not independent of the path from (0, 0) to (1, 1).

C15S0M.008: Let δ denote the (constant) density of the wire. The length of the wire is 2πa, and hence
2πaδ = M , the mass of the wire. Therefore (for future reference)

δ =
M

2πa
. (1)

Parametrize the wire using x(t) = a cos t, y(t) = a sin t, 0 � t � 2π. Then

ds =
√
a2 sin2 t+ a2 cos2 t dt = a dt.

Part (a): The moment of inertia of the wire with respect to the z-axis is then

Iz =
∫ 2π

0

δa3 dt = 2πδa3 = Ma2

(by Eq. (1)). Part (b): The moment of inertia of the wire with respect to the x-axis is

Ix =
∫ 2π

0

δay2 dt =
1
4
δa3

[
2t− sin 2t

]2π

0

= πδa3 =
1
2
Ma2

(by Eq. (1)). It is also possible to solve part (b) mentally if you note that Iy = Ix and recall that I0 = Ix+Iy.

C15S0M.009: Parametrize the wire W using x(t) = t, y(t) = 1
2 t

2, 0 � t � 2. Then

ds =
√

[x′(t)]2 + [y′(t)]2 dt =
√

1 + t2 dt.

The density of the wire is δ(t) = x(t) = t. Therefore the mass of the wire is
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m =
∫
W

δ ds =
∫ 2

0

t
√

1 + t2 dt =
[

1
3

(1 + t2)3/2
]2

0

=
5
√

5 − 1
3

≈ 3.3934466291663162.

Its moment of inertia with respect to the y-axis is

Iy =
∫
W

δx2 ds =
∫ 2

0

t3(1 + t2)1/2 dt

=
[

1
15

(1 + t2)1/2(3t4 + t2 − 2)
]2

0

=
50
√

5 + 2
15

≈ 7.5868932583326323.

If you prefer, Iy ≈ m · (1.4952419583303542)2.

C15S0M.010: Parametrize the given path C as follows: x = t, y = t2, z = t3, 1 � t � 2. Then

F(x, y, z) = 〈 t3, −t, t2 〉 and r(t) = 〈 t, t2, t3 〉.

Hence the work done is

W =
∫
C

F · dr =
∫ 2

1

(3t4 + t3 − 2t2) dt =
[

3
5
t5 +

1
4
t4 − 2

3
t3

]2

1

=
1061
60

≈ 17.683333333333.

C15S0M.011: Let R denote the region bounded by C. Then Green’s theorem yields

∮
C

x2y dx + xy2 dy =
∫∫

R

(y2 − x2) dA =
∫ 2

x=−2

∫ 8−x2

y=x2
(y2 − x2) dy dx

=
∫ 2

−2

[
1
3
y3 − x2y

]8−x2

x2

dx =
∫ 2

−2

(
512
3
− 72x2 + 10x4 − 2

3
x6

)
dx

=
[

512
3
x− 24x3 + 2x5 − 2

21
x7

]2

−2

=
2816

7
≈ 402.2857142857142857.

C15S0M.012: Let R denote the plane region bounded by the given cardioid. Then

∮
C

x2 dy =
∫∫

R

2x dA =
∫∫

R

2r2 cos θ dr dθ =
∫ 2π

0

[
2
3
r3 cos θ

]1+cos θ

0

dθ

=
∫ 2π

0

(
2
3

cos θ + 2 cos2 θ + 2 cos3 θ +
2
3

cos4 θ
)
dθ

=
1
48

[
60θ + 104 sin θ + 32 sin 2θ + 8 sin 3θ + sin 4θ

]2π

0

=
5
2
π ≈ 7.8539816339744831.

C15S0M.013: Suppose that C is any positively oriented piecewise smooth simple closed curve in the xy-
plane. Let n be the outwardly directed unit vector normal to C. We will apply the vector form of Green’s
theorem in Eq. (9) of Section 15.4,
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∮
C

F ·n ds =
∫∫

R

∇·F dA

where R denotes the bounded plane region with boundary C and F is a two-dimensional vector function of
x and y with continuously differentiable component functions. If F(x, y) = 〈x2y, −xy2 〉, then

∮
C

F ·n ds =
∫∫

R

(2xy − 2xy) dA = 0.

Therefore the integrals given in the statement of Problem 13 are equal because each is equal to zero. It
is also possible to verify this by a direct computation. For example, using the parametrization x = cos t,
y = sin t, 0 � t � 2π and the outer unit normal vector n = 〈 cos t, sin t 〉, the first integral in Problem 13
becomes

∮
C

F ·n ds =
∫ 2π

0

(cos3 t sin t− cos t sin3 t)dt = −1
4

[
cos4 t+ sin4 t

]2π

0

= 0− 0 = 0.

C15S0M.014: Part (a): Parametrize C as follows: x = x1 + (x2 − x1)t, y = y1 + (y2 − y1)t, 0 � t � 1.
Then

∫
C

−y dx + x dy =
∫ 1

0

{[
x1 + (x2 − x1)t

]
· (y2 − y1)− (x2 − x1) ·

[
y1 + (y2 − y1)t

]}
dt

=
∫ 1

0

(x1y2 − x2y1) dt = x1y2 − x2y1.

Part (b): By the corollary to Green’s theorem (Eq. (4) in Section 15.4) and part (a), the area of the polygon
with boundary C is

A =
1
2

∮
C

−y dx + x dy

=
1
2
[
(x1y2 − x2y1) + (x2y3 − x3y2) + (x3y4 − x4y3) + · · ·+ (xn−1yn − xnyn−1) + (xny1 − x1yn)

]

=
1
2

n∑
i=1

(xiyi+1 − xi+1yi).

C15S0M.015: Suppose that
∫
C

P dx + Qdy

is independent of the path in the plane region D. By Theorem 2 of Section 15.3, F = 〈P, Q 〉 = ∇φ in
D where φ is some differentiable scalar potential function. Suppose that C is a simple closed curve in D.
Choose a point (a, b) on C. Then by Theorem 1 of Section 15.3,

∮
C

P dx + Qdy =
[
φ(x, y)

](a,b)

(a,b)

= φ(a, b)− φ(a, b) = 0.
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C15S0M.016: If Qx = Py on D, C is a piecewise smooth simple closed curve in D, and R is the region
bounded by C, then

∮
C

P dx + Qdy =
∫∫

R

(Qx − Py) dA =
∫∫

R

0 dA = 0.

If
∮
C

P dx + Qdy = 0

for every piecewise smooth simple closed curve C in D, then
∫
J

P dx + Qdy

is independent of the path in D. Here’s why: Suppose that A and B are two points of D. Let J and K

be two paths in D from A to B. Let C = J ∪ (−K). Then C is a closed path in D, and it follows that

0 =
∮
C

P dx + Qdy =
∫
J

P dx + Qdy −
∫
K

P dx + Qdy,

and therefore
∫
J

P dx + Qdy =
∫
K

P dx + Qdy.

Consequently F = 〈P, Q 〉 = ∇φ for some scalar potential φ defined on D (by Theorem 2 of Section 15.3).
Therefore

Py −Qx = φxy − φyx = 0

on D, and thus Py = Qx on D.

C15S0M.017: The surface S is described by h(x, y) = 2− x2 − y2, and thus

dS =
√

1 + (hx)2 + (hy)2 dA =
√

1 + 4x2 + 4y2 dA.

Therefore

∫∫
S

(x2 + y2 + 2z) dS =
∫∫

S

(4− x2 − y2) dS =
∫ 2π

θ=0

∫ √
2

r=0

r(4− r2)
√

1 + 4r2 dr dθ

= 2π
[

1
120

(41 + 158r2 − 24r4)
√

1 + 4r2
]√

2

0

= 2π · 371
60

=
371
30

π ≈ 38.8510291493937764.

C15S0M.018: A unit vector normal to S is

n(x, y, z) =
1
a
〈x, y, z 〉,

and therefore
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∫∫
S

F ·n dS =
∫∫

S

1
a

(x2 + y2 + z2)2 dS =
∫∫

S

a3 dS = 4πa2 · a3 = 4πa5.

C15S0M.019: The upper surface S1 is described by h(x, y) = 12− 2x2 − y2, and thus

dS =
√

1 + (hx)2 + (hy)2 dA =
√

1 + 16x2 + 4y2 dA.

An outwardly pointing vector normal to S1 is
〈
−∂h
∂x

, −∂h
∂y

, 1
〉

= 〈 4x, 2y, 1 〉,

and therefore a outwardly pointing unit vector normal to S1 is

n =
1√

1 + 16x2 + 4y2
〈4x, 2y, 1 〉.

Hence the outward flux of F = 〈x, y, z 〉 across S1 is

∫∫
S1

F ·n dS =
∫∫

S1

4x2 + 2y2 + z√
1 + 16x2 + 4y2

·
√

1 + 16x2 + 4y2 dS =
∫∫

S1

(4x2 + 2y2 + z) dS

=
∫∫

S

(12 + 2x2 + y2) dS =
∫ 2π

θ=0

∫ 2

r=0

(12 + 2r2 cos2 θ + r2 sin2 θ) · r dr dθ

=
∫ 2π

0

[
6r2 +

1
8
r4(3 + cos 2θ)

]2

0

dθ =
∫ 2π

0

(30 + 2 cos 2θ) dθ =
[
30θ + sin 2θ

]2π

0

= 60π.

The lower surface S2 is described by h(x, y) = x2 + 2y2. By computations similar to those shown earlier in
this solution, we find that

dS =
√

1 + 4x2 + 16y2 dA

and that an outer unit vector normal to S2 is

n =
1√

1 + 4x2 + 16y2
〈 2x, 4y, −1 〉.

Thus the flux of F across S2 is

∫∫
S2

F ·n dS =
∫∫

S2

(2x2 + 4y2 − z) dS =
∫∫

S2

(x2 + 2y2) dS =
∫ 2π

0

∫ 2

0

(r2 cos2 θ + 2r2 sin2 θ) · r dr dθ

=
∫ 2π

0

[
1
4
r4 cos2 θ +

1
2
r4 sin2 θ

]2

0

dθ =
∫ 2π

0

(4 cos2 θ + 8 sin2 θ) dθ =
[
6θ − sin 2θ

]2π

0

= 12π.

Therefore the total outward flux of F across the boundary of T is

φ = 60π + 12π = 72π ≈ 226.19467105846511316931.
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C15S0M.020: Suppose that the surface S has area a(S) and that (x, y, z) is a point of S. Let f(x, y, z)
denote the distance between (x, y, z) and the fixed point P of space. Then (in analogy with the definition
used in Problems 47 through 53 of Section 14.6, Problems 39 and 40 of Section 14.7, and Miscellaneous
Problems 36 through 42 of Chapter 14) we define the average distance of points of S from the point P to be

d =
1

a(S)

∫∫
S

f(x, y, z) dS.

To find the average distance of points of the spherical surface S of radius a > 0 from a fixed point P on S,
we choose for S the spherical surface of radius a tangent to the xy-plane at the origin and otherwise lying
above the xy-plane. A spherical coordinates equation of S is ρ = 2a cosφ. We parametrize S as follows:

x(φ, θ) = ρ sinφ cos θ = 2a cosφ sinφ cos θ,

y(φ, θ) = ρ sinφ sin θ = 2a cosφ sinφ sin θ,

z(φ, θ) = ρ cosφ = 2a cos2 φ, 0 � φ � 1
2 π, 0 � θ � 2π.

With r(φ, θ) = 〈x(φ, θ), y(φ, θ), z(φ, θ) 〉, we have

rφ × rθ =

∣∣∣∣∣∣∣∣∣

i j k

2a(cos2 φ− sin2 φ) cos θ 2a(cos2 φ− sin2 φ) sin θ −4a sinφ cosφ

−2a sinφ cosφ sin θ 2a sinφ cosφ cos θ 0

∣∣∣∣∣∣∣∣∣

= 〈 8a2 sin2 φ cos2 φ cos θ, 8a2 sin2 φ cos2 φ sin θ, 4a2(sinφ cos3 φ− sin3 φ cosφ) 〉

= 4a2(sinφ cosφ)〈 2 sinφ cosφ cos θ, 2 sinφ cosφ sin θ, cos2 φ− sin2 φ 〉.

Thus

|rφ × rθ |

= 4a2| sinφ cosφ|(4 sin2 φ cos2 φ cos2 θ + 4 sin2 φ cos2 φ sin2 θ + cos4 φ− 2 sin2 φ cos2 φ+ sin4 φ)1/2

= 4a2| sinφ cosφ|(4 sin2 φ cos2 φ+ cos4 φ− 2 sin2 φ cos2 φ+ sin4 φ)1/2

= 4a2| sinφ cosφ|
(
[cos2 φ+ sin2 φ]

)1/2 = 4a2| sinφ cosφ| = 4a2 sinφ cosφ.

(We may drop the absolute value symbols in the last step because 0 � φ � π/2.) Choose P to be the origin.
The distance of the typical point (ρ, φ, θ) of S from P is then ρ; moreover, ρ = 2a cosφ. Therefore the
average distance of points of S from the fixed point P is

d =
1

4πa2

∫ 2π

θ=0

∫ π/2

φ=0

(2a cosφ) · (4a2 sinφ cosφ) dφ dθ =
2π · 8a3

4πa2

[
−1

3
cos3 φ

]π/2
0

=
16πa3

12πa2
=

4
3
a.

Alternatively, we may choose for S the spherical surface of radius a centered at the origin; we will compute
the average distance of points of S from its “north pole” P (0, 0, a). If a point of S is at distance w from P

and its spherical coordinates are (ρ, φ, θ), then the law of cosines implies that

w2 = a2 + ρ2 − 2aρ cosφ = a2 + a2 − 2a2 cosφ = 2a2(1− cosφ).
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Therefore the average distance of points of S from the fixed point P is

d =
1

4πa2

∫ 2π

0

∫ π

0

√
2a2(1− cosφ) (a2 sinφ) dφ dθ =

2πa3

4πa2

∫ π

0

(sinφ)
√

2(1− cosφ) dφ

=
a

2

[
2
3
· 21/2 · (1− cosφ)3/2

]π
0

=
a

2
· 2
3
· 21/2 · 23/2 =

4
3
a.

C15S0M.021: We compute the three Jacobians in Eq. (17) of Section 15.5 using the parameters y and z.
The result is

∂(y, z)
∂(y, z)

=

∣∣∣∣∣∣
yy yz

zy zz

∣∣∣∣∣∣ = 1,

∂(z, x)
∂(y, z)

=

∣∣∣∣∣∣
zy zz

xy xz

∣∣∣∣∣∣ = − ∂x
∂y

, and

∂(x, y)
∂(y, z)

=

∣∣∣∣∣∣
xy xz

yy yz

∣∣∣∣∣∣ = − ∂x
∂z

.

Therefore

∫∫
S

P dy dz + Q dz dx + R dx dy =
∫∫

D

(
P − Q

∂x

∂y
− R

∂x

∂z

)
dy dz.

C15S0M.022: Suppose that the surface S is described by y = g(x, z) for (x, z) in the region D of the
xz-plane. Then S is parametrized by r(x, z) = 〈x, g(x, z), z 〉. Thus

rx × rz =

∣∣∣∣∣∣∣∣∣

i j k

1 gx 0

0 gz 1

∣∣∣∣∣∣∣∣∣
= 〈 gx, −1, gz 〉.

Therefore

|rx × rz | =
√

1 + (gx)2 + (gz)2 ,

and consequently

∫∫
S

f(x, y, z) dS =
∫∫

D

f(x, g(x, z), z)
√

1 + (gx)2 + (gz)2 dA =
∫∫

D

f(x, g(x, z), z) secβ dx dz.

C15S0M.023: Here we have

z =
1
V

∫∫∫
T

z dV =
1
V

∫∫∫
T

∇·
〈
0, 0, 1

2 z
2
〉
dV =

1
V

∫∫
S

1
2
z2 dx dy =

1
2V

∫∫
S

z2 dx dy
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by Eq. (4) of Section 15.6.

C15S0M.024: By symmetry, x = y = 0. Parametrize the curved surface S of the hemisphere in the usual
way:

x = a sinφ cos θ, y = a sinφ sin θ, z = a cosφ, 0 � φ � π/2, 0 � θ � 2π.

Then z2 = a2 cos2 φ and

∂(x, y)
∂(φ, θ)

=

∣∣∣∣∣∣∣∣

∂x

∂φ

∂x

∂θ

∂y

∂φ

∂y

∂θ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
a cosφ cos θ −a sinφ sin θ

a cosφ sin θ a sinφ cos θ

∣∣∣∣∣∣ = a2 sinφ cosφ.

There is no need to integrate on the bottom face of the solid; it is in the xy-plane, where z2 = 0.
Consequently,

z =
3

4πa3

∫∫
S

z2 dx dy =
3

4πa3

∫ 2π

0

∫ π/2

0

(a cosφ)2
∂(x, y)
∂(φ, θ)

dφ dθ

=
3

4πa3

∫ 2π

0

∫ π/2

0

a4 cos3 φ sinφ dφ dθ =
3a
4π
· 2π ·

[
−1

4
cos4 φ

]π/2
0

=
3
8
a.

C15S0M.025: By Eq. (23) of Section 15.5, the heat flow across the boundary sphere S into B is given by

R =
∫∫

S

K(∇u) ·n dS.

The divergence theorem then gives

R =
∫∫∫

B

∇· (K∇u) dV =
∫∫∫

B

K∇2u dV.

C15S0M.026: Let the ball B be subdivided into small volume elements ∆V1, ∆V2, . . . , ∆Vn. The heat
capacity c is measured in units such as calories per degree per cubic centimeter, so if ∆u is small, then
approximately (c ∆u) ∆Vi calories of heat are required to raise the temperature of the volume element ∆Vi
by ∆u degrees. It follows that the rate at which heat is flowing into this volume element is given by

∆Ri ≈ lim
∆t→0

(c ∆u) ∆Vi
∆t

= c · ∂u
∂t

∆Vi.

The total rate of heat flow into B is therefore

R =
n∑
i=1

∆Ri ≈
n∑
i=1

c · ∂u
∂t

∆Vi →
∫∫∫

B

c · ∂u
∂t

dV.

C15S0M.027: Problems 25 and 26 imply that
∫∫∫

B

c · ∂u
∂t

dV =
∫∫∫

B

K∇2u dV
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for any small ball B within the body. This can be so only if cut ≡ K∇2u; that is, ut = k∇2u (because
k = K/c).

C15S0M.028: By Problem 17 of Section 15.6,
∫∫

S

f
∂f

∂n
dS =

∫∫∫
T

|∇f |2 dV

where ∂f/∂n = (∇f) ·n. Part (a): Let f = u1 − u2. Because f ≡ 0 on S,
∫∫∫

T

|∇f |2 dV =
∫∫

S

f
∂f

∂n
dS = 0.

Therefore ∇f = 0 at each point of T . Part (b): fx = fy = fz = 0 at each point of T . Therefore f is
constant on T . Because f ≡ 0 on the boundary S of T , it now follows that f ≡ 0 on T . Therefore u1 ≡ u2

on T .

C15S0M.029: We begin with r = 〈x, y, z 〉 and φ = φ(r) where r = |r| =
√
x2 + y2 + z2 . Part (a):

∇φ(r) = ∇φ
(√

x2 + y2 + z2
)

=

〈
φ′(r) · x√

x2 + y2 + z2
, φ′(r) · y√

x2 + y2 + z2
, φ′(r) · z√

x2 + y2 + z2

〉

= φ′(r)
〈x
r
,
y

r
,
z

r

〉
=

r
r
φ′(r).

Part (b): We use the result in part (a) and the result in Problem 28 of Section 15.1:

∇·
[
φ(r)r

]
= φ(r)(∇· r) + (∇φ) · r = φ(r)(1 + 1 + 1) +

r · r
r
· dφ
dr

= 3φ(r) + r
dφ

dr
.

Part (c): We use the result in part (a) and the results in Problems 29 and 35 of Section 15.1:

∇× (φ(r)r) =
(
φ(r)

)
(∇× r) + (∇φ) × r = 0 +

r× r
r
· dφ
dr

= 0.

C15S0M.030: Cut the upper half of the torus using the two semicircles in which any plane containing
the z-axis intersects the torus. The outer boundary circle is oriented counterclockwise; the inner boundary
circle, clockwise. Zeugma!

C15S0M.031: Let us envision a Möbius strip M in space constructed from a long narrow rectangular strip
of paper by matching its ends with a half-twist. Let the strip of paper be subdivided into smaller rectangles
R1, R2, . . . , Rn as indicated in the following figure, with the boundary curve of each of these rectangles
oriented in the positive fashion described in Section 15.7. Then the arrows cancel along any interior segment
indicated in the figure, and the arrows on the ends of the strip are as indicated there—upward on the right
and downward on the left.
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The Möbius strip is formed by matching these two ends of the rectangular paper strip, with the two end
arrows matching in direction (thus providing the necessary half-twist). If we denote by Si the ith curvilinear
rectangle on the Möbius strip (corresponding to the original Ri ), then Stokes’ theorem gives

∮
Ci

F ·T ds =
∫∫

Si

(∇×F) ·n dS

for each i. Taking account of cancellation of line integrals in opposite directions along segments corresponding
to interior segments in the figure, summation then yields

∫∫
M

(∇×F) ·n dS =
n∑
i=1

∫∫
Si

(∇×F) ·n dS

=
n∑
i=1

∮
Ci

F ·T ds =
∮
C

F ·T ds+ 2
∫
J

F ·T ds,

where C denotes the boundary curve of the Möbius strip and J denotes the single interior segment along
which the arrows match, so that the line integrals along J do not cancel. Because of the final term in the
last equation, this calculation does not yield Stokes’ theorem in the form

∫∫
M

(∇×F) ·n dS =
∮
C

F ·T ds

for the Möbius strip. Greater generality would take us too far afield, but surely you can well imagine that a
similar “failure to cancel” would occur for any subdivision of the original narrow rectangular strip.

C15S0M.032: Let θ denote the angle between u and r. The point P with position vector r is at distance
|r| sin θ from the line of rotation determined by u. Hence, because |u| = 1, the velocity of P is

v = ω|r| sin θ = ω|u| |r| sin θ = (ωu) × r = ω × r.

Finally,

∇×v = ∇× (ω × r) = 2ω

by the result in Problem 36 of Section 15.1.

C15S0M.033: Part (a): If ∆Si is a small piece of the boundary sphere S of the small ball B, and δi,
vi, and ni denote (respectively) the density, fluid flow velocity vector, and outward unit normal at time t
at a typical point of ∆Si, then the rate of outward fluid flow across this area element ∆Si is approximately
δivi ·ni ∆Si. Hence the rate of flow of fluid into B at time t is given by

Q′(t) ≈ −
n∑
i=1

δivi ·ni ∆Si → −
∫∫

S

δv ·n dS.

Part (b): Equating our two expressions for Q′(t), we get
∫∫∫

B

∂δ

∂t
dV = −

∫∫
S

δv ·n dS = −
∫∫∫

B

∇· (δv) dV

(applying the divergence theorem on the right). The fact that
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∫∫∫
B

[
∂δ

∂t
+ ∇· (δv)

]
dV = 0

therefore holds for any small ball B within the fluid flow region implies that the integrand must vanish
identically; that is,

∂δ

∂t
+ ∇· (δv) = 0.
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