Compact NSX

Circuit breakers and switch disconnectors Measurement and communication
From 100 to 630A

Catalogue 2008

Contents

Introduction

Functions
and characteristics
A-1
Installation recommendations B-1
Dimensions and connection C-1
Wiring diagrams D-1
Additional characteristics E-1Catalogue numbersF-1
©

Compact NSX
 Next-generation circuit breakers

Today, next-generation Compact NSX circuit breakers provide an intelligent outlook and set the standards of tomorrow. A power monitoring unit enhances their invariably impeccable protective functions. For the first time, users can monitor both energy and power, offering new performance in a remarkably compact device.

Compactness, discrimination and modularity - all of the features which defined the success of the Compact NS generation of circuit breakers combined with new functions for safe, easy monitoring and management of installations.

The new range of Compact NSX circuit breakers stands out from the crowd, thanks to its electronic intelligence. Through direct access to in-depth information, and networking via open protocols, Compact NSX lets operators optimise the management of their electrical installations.

Far more than a circuit breaker, Compact NSX is a measurement and communication tool ready to meet energy-efficiency needs through optimised energy consumption, increased energy availability, and improved installation management.

Safety and performance

Compactness, discrimination and modularity - new Compact NSX circuit breakers incorporate advanced monitoring and communication functions, from 40 amps up, combined with impeccable protection.

Expert technology

A roto-active contact breaking principle provides each circuit breaker with very high breaking capacity in a very small device, remarkable fault current limitation performance, and endurance.
> Compact NSX benefits from a patented double roto-active contact breaking concept, together with a reflex tripping system for ultimate breaking.
$>$ Exceptional fault current limitation guarantees robust, reliable protection and, above all, reduces the causes of component aging, thus extending service life for installations.

23

new patents pending confirm the innovative character of Compact NSX

New breaking capacities

New performance levels for Compact NSX improve application targeting: > 36-50 kA - standard applications (industrial plants, buildings and hospitals),

70-100 kA - high performance at controlled cost,

150 kA - demanding applications (maritime).

Enhanced protection for motors

Compact NSX meets the requirements of IEC 60947-4-1 standards for protection of motors: $>$ well adapted to motor-starting solutions up to 315 kW at 400 V , providing protection against short circuits, overloads, phase unbalance and loss,
$>$ also enables set-up of additional protection systems for starting and braking with the motor running, reverse braking, jogging or reversing in complete safety,
> add a Schneider Electric contactor; Compact NSX complies with the requirements of so-called type 2 coordination.

Reduced installation costs

Optimising installations allows for achieving up to 30% savings:
$>$ considerable savings at the time of installation, thanks to total discrimination with miniature circuit breakers,
$>$ smaller devices, more economic switchboards mean best overall installation cost, without overcalibration.

The trip units are now true circuit breaker control systems.

With the integration of electronics, trip units have gained in speed and accuracy.

Greater reliability and better discrimination allows more refined settings, especially for time delays.

Monitoring and management

Compact NSX is a single device, which contains a monitoring unit to control energy consumption and power.

Integrated monitoring

> The new Compact NSX range incorporates Micrologic electronic trip units in the circuit breaker, offering both:

- an accurate power monitoring unit,
- a highly reliable protective device.
> A Micrologic electronic tripping device combines next-generation sensors:
- an "iron" sensor for the power supply to the electronics,
- an "air" sensor (Rogowski coils) for measurement, guaranteeing high accuracy.
> These electronic systems are designed to withstand high temperatures $\left(105^{\circ} \mathrm{C}\right)$, ensuring reliability under severe operating conditions.
> The originality lies in how Compact NSX measures, processes and displays data, either directly on screen, on the switchboard front panel, or via a monitoring system.

Accessibility of information...

To keep costs under control and ensure service continuity, relevant information must be available in real time:
> a kilowatt-hour meter helps optimise costs and their allocation,
> harmonic distortion rate shows the quality of electrical supply,
> alarm notification secures operational control and maintenance planning,
> event logs and tables, activated continuously, ensure the installed equipment base operates correctly, so energy efficiency is maximized.

...for power monitoring

$>$ Together with power monitoring software (e.g., PowerLogic), the Compact NSX Modbus communication interface provides operators with a parameter set and tools that make system monitoring very easy.
> Operators have real-time data to control energy availability, to monitor power supply quality, to optimise consumption of different applications or zones, reducing load peaks and continuously supplying priority loads, and to draw up maintenance schedules.
$>$ A software utility (RSU) allows protection and alarm configuration, in addition to testing communications with all installed devices.

Monitoring software PowerLogic ION-E

Measurement functions are controlled by an additional microprocessor.

Protection functions are electronically managed independently of measurement functions.

An ASIC (Application-Specific Integrated Circuit) is common to all trip units, which boosts immunity to conducted or radiated interference and increases reliability.

Simplicity

Compact NSX takes the principles of easy installation and use which made its predecessor so successful - to a higher level.

Simple in design

Compact NSX is mounted and wired reusing the same measurements as Compact NS.

Cut-outs are the same whatever the type of handle. Engineering drawings are the same, so installation and connection layouts can be used on new projects, simplifying extensions or retrofits, and reducing maintenance costs.

Integration in help software, for parameter settings and switchboard installation, further eases design.

Simple to install

> A transparent lead-sealable cover protects access to tripping device switches and prevents settings from being changed.
> The new electrical control adjustment also has a transparent lead- sealable cover to prevent it from being operated accidentally.
$>$ Compact NSX has an optional functional terminal shield that offers excellent protection against direct contact (IP40 on all sides, IP20 at cable entry points) and easy installation.
> All Compact NSX devices can be equipped with a communication function via a pre-wired connection with a Modbus interface module. When the Modbus address is declared, the Compact NSX device is integrated into the network.
> There are four levels of functionalities:

- communication of device status: On/Off position, trip indication and fault-trip indication,
- communication of commands: open, close, and reset,
- communication of measurements: mainly I, U, f, P, E, and THD,
- communication of operating assistance data: settings, parameters, alarms, histograms and event tables, and maintenance indicators.
> The switchboard "plug \& play" display unit connects to the trip unit without any special settings or configuration. A cable fitted with an RJ45 connector allows for easy integration with communications networking.

Simple to use

> Users customise time-stamped alarms for all parameters, assign them to indicator lights, choose display priorities, and configure time delay thresholds and modes.
$>$ Event logs and tables are continuouslyactivated. Providing a wealth of information, they enable users to ensure that the installed equipment base operates correctly, to optimize settings, and to maximise energy efficiency.
> Local and remote displays offer easy access to operators and provide the main electrical values: I, U, V, f, energy, power, total harmonic distortion, etc. The user-friendly switchboard display unit with intuitive navigation is more comfortable to read, and offers quick access to information.

Performance, yet unimposing. Compact NSX perfectly blends into its environment.

Attractively designed.
The front of Compact NSX circuit breakers has an attractive curved profile.
Measurements are easy to read on a backlit LCD display.
Screen navigation is intuitive and settings are simplified
by immediate readouts in amps.

Service continuity

Compact NSX makes discrimination its main advantage in minimising the impact of short circuits, ensuring service continuity for installations.

Total discrimination

Thanks to its 30 years of experience, Schneider Electric, with Compact NSX, offers perfect mastery of discrimination for ever more reliable service continuity. Compact NSX circuit breakers strongly limit fault currents, occurring as the result of short-circuits, which reduces installation downtime and avoids over-dimensioning cables. When several circuit breakers are used in series, the downstream circuit breaker trips as close as possible to the fault, isolating only the circuit concerned. The upstream circuit breaker is not affected and allows the other circuits to remain operational.

Service continuity

Adding an SDTAM module allows remote indication of motor overloads and actuation of a contactor, ensuring total service continuity: $>$ the SDTAM switches the contactor instead of tripping the circuit breaker,
$>$ the module allows for machine restart directly from the contactor without having to operate circuit breakers.

Preventive maintenance

Maintenance indicators provide information on the number of operations, level of wear on contacts and total load rates. This makes it far easier to monitor equipment ageing and optimise investments over time. Maintenance is now preventive, avoiding faults.

100\%
service continuity

Direct access
to maintenance indicators

Schneider Electric expertise

Schneider Electric commits to reducing energy costs and CO2 emissions for its customers. It offers products, solutions and services that integrate with all levels of the energy value chain. Compact NSX is part and parcel of the Schneider Electric energy efficiency approach.

Solutions for the future

With Compact NSX, Schneider Electric works through flexible solutions for commercial and industrial buildings, Schneider Electric commits to help customers gradually move towards an active approach to their energy efficiency. It helps get more return from investments and future design solutions.

Energy performance contracts

An energy performance contract offers innovative service to modernise technical installations.

The objective is dramatically to reduce energy costs, whilst improving comfort and safety, all in an environmentally-responsible way.

Environmentally responsible

Schneider Electric meets the expectations of its markets with products adapted to the practices of the 190 countries where it is present and strongly commits to respect the norms and directives of each of those countries.

- Compact NSX, like all the products in its LV ranges, is a product designed to comply with all European directives for the environment. It has also received international certifications and approval from independent agencies.
- In compliance with ISO 14001 standards, all of its factories are nonpolluting.
- Designed for easy disassembly and recycling at end of life, Compact NSX complies with environmental directives RoHS* and WEEE**.

[^0]Up to 300
savings in energy costs

4 steps
> Diagnostics
> Proposals
> Implementation
$>$ Follow-up

ت we one . -

Functions

Compact NSX100 to 630 offers high
performance and a wide range of interchangeable trip units to protect most applications. Electronic versions provide highly accurate protection with wide setting ranges and can integrate measurement, metering and communication functions. They can be combined with the FDM121 switchboard display unit to provide all the functions of a Power Meter as well as operating assistance.

Power Meter

- page A-20

Compact NSX equipped with Micrologic 5 / 6 trip units offer type A (ammeter) or E (energy) metering functions as well as communication. Using Micrologic sensors and intelligence, Compact NSX provides access to measurements of all the main electrical parameters on the built-in screen, on a dedicated FDM121 display unit or via the communication system.

Operating assistance - page A-22

Integration of measurement functions provides operators with operating assistance functions including alarms tripped by user-selected measurement values, time-stamped event tables and histories, and maintenance indicators.

Switchboard display unit - page A-24

The main measurements can be read on the built-in screen of Micrologic 5 / 6 trip units.
They can also be displayed on the FDM121 switchboard display unit along with pop-up windows signalling the main alarms.

Communication
 page A-26

Compact NSX equipped with Micrologic 5 / 6 trip units provide communication capabilities. Simple RJ45 cords connect to a Modbus interface module.

Applications

Protection of distribution

 systems(AC 220/690 V) page A-14

Compact NSX devices are equipped with MA or TM thermal-magnetic trip units or Micrologic $2 / 5 / 6$ electronic trip units to provide protection against shortcircuits and overloads for:

- distribution systems supplied by transformers
- distribution systems supplied by engine generator sets
- long cables in IT and TN systems.

They can be easily installed at all levels in distribution systems, from the main LV switchboard to the subdistribution boards and enclosures. All Compact NSX devices can protect against insulation faults by adding a Vigi module or Vigirex relay.

Protection of

motors
(AC 220/690 V)
page A-36

The Compact NSX range includes a number of versions to protect motor applications:

- basic short-circuit protection with MA magnetic trip units or the electronic Micrologic 1-M version, combined with an external relay to provide thermal protection
- protection against overloads, short-circuits and phase unbalance or loss with Micrologic 2-M trip units
more complete protection against overloads and short-circuits with additional motor-specific protection (phase unbalance, locked rotor, underload and long start) with Micrologic 6 E-M trip units. These versions also offer communication, metering and operating assistance.
The exceptional limiting capacity of Compact NSX circuit breakers automatically provides type-2 coordination with the motor starter, in compliance with standard IEC 60947-4-1.

Protection of
 special
 applications
 > page A-48

Special applications:

The Compact NSX range offers a number of versions
for special protection applications:

- service connection to public distribution systems
- page A-48
- generators - page A-50
- industrial control panels $>$ page A-52
with:
- compliance with international standards

IEC 60947-2 and UL 508 / CSA 22-2 N14

- compliance with US standard UL 489
\square installation in universal and functional enclosures.
- $16 \mathrm{~Hz} 2 / 3$ systems $>$ page A-53
- 400 Hz systems $>$ page $\mathrm{A}-54$

Control and

isolation using
switchdisconnectors
page A-56

A switch-disconnector version of Compact NSX circuit

 breakers is available for circuit control and isolation. All add-on functions of Compact NSX circuit breakers may be combined with the basic switch-disconnector function, including:- earth-leakage protection
- motor mechanism
- ammeter, etc.

For all these applications, circuit breakers in the Compact NSX range offer positive contact indication and are suitable for isolation in accordance with standards IEC 60947-1 and 2.

Source changeover systems

- page A-60

To ensure a continuous supply of power, some

 electrical installations are connected to two power sources:- a normal source
- a replacement source to supply the installation when the normal source is not available.
A mechanical and/or electrical interlocking system between two circuit breakers or switch-disconnectors avoids all risk of parallel connection of the sources during switching.

A source-changeover system can be:

- manual with mechanical device interlocking
- remote controlled with mechanical and/or electrical device interlocking
- automatic by adding a controller to manage
switching from one source to the other on the basis of external parameters.

Standardised characteristics indicated on the rating plate:
1 Type of device: frame size and breaking capacity class
2 Ui: rated insulation voltage.
3 Uimp: rated impulse withstand voltage.
4 Ics: service breaking capacity.
5 Icu: ultimate breaking capacity for various values of the rated operational voltage Ue
6 Ue: operational voltage.
7 Colour label indicating the breaking capacity class.
8 Circuit breaker-disconnector symbol.
9 Reference standard.
10 Main standards with which the device complies. Note: when the circuit breaker is equipped with an extended rotary handle, the door must be opened to access the rating plate.

Compliance with standards

Compact NSX circuit breakers and auxiliaries comply with the following:
■ international recommendations:

- IEC 60947-1: general rules
- IEC 60947-2: circuit breakers
- IEC 60947-3: switch-disconnectors
- IEC 60947-4: contactors and motor starters
- IEC 60947-5.1 and following: control circuit devices and switching elements; automatic control components
■ European (EN 60947-1 and EN 60947-2) and corresponding national standards:
- France NF
\square Germany VDE
- United Kingdom BS
- Australia AS
- Italy CEI
- the specifications of the marine classification companies (Veritas, Lloyd's Register of Shipping, Det Norske Veritas, etc.), standard NF C 79-130 and recommendations issued by the CNOMO organisation for the protection of machine tools. For U.S. UL, Canadian CSA, Mexican NOM and Japanese JIS standards, please consult us.

Pollution degree

Compact NSX circuit breakers are certified for operation in pollution-degree III environments as defined by IEC standards 60947-1 and 60664-1 (industrial environments).

Climatic withstand

Compact NSX circuit breakers have successfully passed the tests defined by the
following standards for extreme atmospheric conditions:
■ IEC 60068-2-1: dry cold ($-55^{\circ} \mathrm{C}$)

- IEC 60068-2-2: dry heat $\left(+85^{\circ} \mathrm{C}\right)$

■ IEC 60068-2-30: damp heat (95% relative humidity at $55^{\circ} \mathrm{C}$)

- IEC 60068-2-52 severity level 2: salt mist.

Environment

Compact NSX respects the European environment directive EC/2002/95 concerning the restriction of hazardous substances (RoHS).
Product environment profiles (PEP) have been prepared, describing the environmental impact of every product throughout its life cycle, from production to the end of its service life.
All Compact NSX production sites have set up an environmental management system certified ISO 14001.
Each factory monitors the impact of its production processes. Every effort is made to prevent pollution and to reduce consumption of natural resources.

Ambient temperature

- Compact NSX circuit breakers may be used between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. For temperatures higher than $40^{\circ} \mathrm{C}\left(65^{\circ} \mathrm{C}\right.$ for circuit breakers used to protect motor feeders), devices must be derated (pages B-8 and B-9).
■ Circuit breakers should be put into service under normal ambient, operatingtemperature conditions. Exceptionally, the circuit breaker may be put into service when the ambient temperature is between $-35^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$.
■ The permissible storage-temperature range for Compact NSX circuit breakers in the original packing is $-50^{\circ} \mathrm{C}{ }^{(1)}$ and $+85^{\circ} \mathrm{C}$.
(1) $-40^{\circ} \mathrm{C}$ for Micrologic control units with an LCD screen.

Electromagnetic compatibility

Compact NSX devices are protected against:
■ overvoltages caused by circuit switching (e.g. lighting circuits)
■ overvoltages caused by atmospheric disturbances
■ devices emitting radio waves such as mobile telephones, radios, walkie-talkies, radar, etc.
■ electrostatic discharges produced by users.
Immunity levels for Compact NSX comply with the standards below.
■ IEC/EN 60947-2: Low-voltage switchgear and controlgear, part 2: Circuit breakers:
\square Annex F: Immunity tests for circuit breakers with electronic protection
\square Annex B: Immunity tests for residual current protection
■ IEC/EN 61000-4-2: Electrostatic-discharge immunity tests
■ IEC/EN 61000-4-3: Radiated, radio-frequency, electromagnetic-field immunity tests
■ IEC/EN 61000-4-4: Electrical fast transient/burst immunity tests
■ IEC/EN 61000-4-5: Surge immunity tests
■ IEC/EN 61000-4-6: Immunity tests for conducted disturbances induced by radiofrequency fields

- CISPR 11: Limits and methods of measurement of electromagnetic disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment.

Discrimination

Compact NSX reinforces the discrimination capabilities of the Compact NS range by applying the rapid calculation capacity of the Micrologic trip units.
Total discrimination is now possible between NSX100 and modular Multi 9 circuit breakers rated $\leqslant 63 \mathrm{~A}$ (see page A-8).

Suitable for isolation with positive contact indication

All Compact NSX circuit breakers are suitable for isolation as defined in IEC standard 60947-2:
\square The isolation position corresponds to the O (OFF) position.

- The operating handle cannot indicate the OFF position unless the contacts are effectively open.
- Padlocks may not be installed unless the contacts are open Installation of a rotary handle or a motor mechanism does not alter the reliability of the position-indication system.
The isolation function is certified by tests guaranteeing:
- the mechanical reliability of the position-indication system
\square the absence of leakage currents
■ overvoltage withstand capacity between upstream and downstream connections. The tripped position does not insure isolation with positive contact indication. Only the OFF position guarantees isolation.

Installation in class II switchboards

All Compact NSX circuit breakers are class II front face devices. They may be installed through the door of class II switchboards (as per IEC standards 61140 and 60664-1) without downgrading switchboard insulation. Installation requires no special operations, even when the circuit breaker is equipped with a rotary handle or a motor mechanism.

Degree of protection

The following indications are in accordance with standards IEC 60529 (IP degree of protection) and IEC 62262 (IK protection against external mechanical impacts).

Bare circuit breaker with terminal shields

- With toggle: IP40, IK07.
- With standard direct rotary handle / VDE: IP40 IK07

Circuit breaker installed in a switchboard

- With toggle: IP40, IK07.
- With direct rotary handle:
- standard / VDE: IP40, IK07
- MCC: IP43 IK07
- CNOMO: IP54 IK08
- With extended rotary handle: IP56 IK08

■ With motor mechanism: IP40 IK07.

Functions and characteristics

Introduction
Characteristics and performance of Compact NSX circuit breakers from 100 to 630 A

Compact NSX100/160/250.

Compact NSX400/630.
(1) OSN: Over Sized Neutral protection for neutrals carrying high currents (e.g. 3rd harmonics).
(2) ZSI: Zone Selective Interlocking using pilot wires.
(3) $2 P$ circuit breaker in 3P case for B and F types, only with thermal-magnetic trip unit.

Common characteristics			
Rated voltages			
Insulation voltage (V)	Ui		800
Impulse withstand voltage (kV)	Uimp		8
Operational voltage (V)	Ue	AC $50 / 60 \mathrm{~Hz}$	690
Suitability for isolation		IEC/EN 60947-2	yes
Utilisation category			A
Pollution degree		IEC 60664-1	3

Circuit breakers				
Breaking capacity levels				
Electrical characteristics as per IEC 60947-2				
Rated current (A)	In	$40^{\circ} \mathrm{C}$		
Number of poles				
Breaking capacity (kA rms)				
	Icu	AC $50 / 60 \mathrm{~Hz}$	220/2	
			380/4	
			440 V	
			500 V	
			525 V	
			660/69	
Service breaking capacity (kA rms)				
	Ics	AC $50 / 60 \mathrm{~Hz}$	220/240	
			380/4	
			440 V	
			500 V	
			525 V	
			660/69	
Durability (C-O cycles)		Mechanical		
		Electrical	440 V	$\mathrm{ln} / 2$
				In
			690 V	$\mathrm{ln} / 2$
				In

Characteristics as per Nema AB1
Breaking capacity (kA rms) AC 50/60 Hz 240
480 V
600 V
Characteristics as per UL 508
$\begin{array}{ll}\text { Breaking capacity (kA rms) } & \left.\text { AC } 50 / 60 \mathrm{~Hz} \begin{array}{l}240 \mathrm{~V} \\ 480 \mathrm{~V} \\ \\ 600 \mathrm{~V}\end{array}\right)\end{array}$

Protection and measurements

Common characteristics
Control

	Manual	With toggle	■ith direct or extended rotary handle
	Electrical	With remote control	■
Versions	Fixed		■
Withdrawable	Plug-in base Chassis	\square	
			■

NSX100					NSX160				NSX250					NSX400				NSX630								
F	N	H	S	L	F N	H	S	L	F	N	H	S	L	N	H	S	L	N	H	S	L					
100					160				250					400				630								
$2^{(3)}, 3,4$					$2^{(3)}, 3,4$				$2^{(3)}, 3,4$					3,4				3,4								
85	90	100	120	150	$\begin{array}{llllll}85 & 90 & 100 & 120 & 150\end{array}$				$\begin{array}{llllll}85 & 90 & 100 & 120 & 150\end{array}$					$85 \quad 100 \quad 120 \quad 150$				$85 \quad 100 \quad 120 \quad 150$								
36	50	70	100	150	3650	70	100	150	36	50	70	100	150	50	70	100	150	50	70	100	150					
35	50	65	90	130		65	90	130	35	50	65	90	130	42	65	90	130	42	65	90	130					
25	36	50	65	70	$\begin{array}{ll}35 & 50 \\ 30 & 36\end{array}$	50	65	70	30	36	50	65	70	30	50	65	70	30	50	65	70					
22	35	35	40	50	32 22	35	40	50	22	35	35	40	50	22	35	40	50	22	35	40	50					
8	10	10	15	20	$\begin{array}{ll}22 & 35 \\ 8 & 10\end{array}$	10	15	20		810	10	15	20	10	20	25	35	10	20	25	35					
85	90	100	120	150	8590	100	120	150	85	90	100	120	150	85	100	120	150	85	100	120	150					
36	50	70	100	150	3650	70	100	150	36	50	70	100	150	50	70	100	150	50	70	100	150					
35	50	65	90	130	$35 \quad 50$	65	90	130	35	50	65	90	130	42	65	90	130	42	65	90	130					
12.5	36	50	65	70	12.536	50	65	70	30	36	50	65	70	30	50	65	70	30	50	65	70					
	35	35	40	50	1135	35	40	50		35	35	40	50	11	11	12	12	11	11	12	12					
4	10	10	15	20	410	10	15	20	8	10	10	15	20	10	10	12	12	10	10	12	12					
50000					40000				20000					15000				15000								
50000					$\begin{array}{\|l\|} \hline 10000 \\ 20000 \\ \hline \end{array}$				$\begin{aligned} & 20000 \\ & 10000 \end{aligned}$					12000				8000								
30000									6000	4000																
2000					$\begin{aligned} & 15000 \\ & 7500 \end{aligned}$									$\begin{aligned} & 10000 \\ & 5000 \end{aligned}$					$\begin{array}{\|l\|} \hline 6000 \\ 3000 \end{array}$				$\begin{array}{\|l\|} \hline 6000 \\ 2000 \end{array}$			
1000																										

| 40 | 85 | 90 | 100 | 120 | 150 | 40 | 85 | 90 | 100 | 120 | 150 | 40 | 85 | 90 | 100 | 120 | 150 | 40 | 85 | 100 | 120 | 150 | 40 | 85 | 100 | 120 | 150 |
| :--- |
| 20 | 35 | 50 | 65 | 90 | 130 | 20 | 35 | 50 | 65 | 90 | 130 | 20 | 35 | 50 | 65 | 90 | 130 | 30 | 42 | 65 | 90 | 130 | 30 | 42 | 65 | 90 | 130 |
| - | 8 | 20 | 35 | 40 | 50 | - | 20 | 20 | 35 | 40 | 50 | - | 20 | 20 | 35 | 40 | 50 | - | 20 | 35 | 40 | 50 | - | 20 | 35 | 40 | 50 |

-	85	85	85	-	-	-	85	85	85	-	-	-	85	85	85	-	-	85	85	85	-	-	85	85	85	-	-
-	25	50	65	-	-	-	35	50	65	-	-	-	35	50	65	-	-	35	50	65	-	-	35	50	65	-	-
-	10	10	10	-	-	-	10	10	10	-	-	-	15	15	15	-	-	20	20	20	-	-	20	20	20	-	-

\square	\square	\square	\square	\square
\square	\square	\square	-	-
\square	\square	-	\square	\square
\square	\square	\square	\square	\square
\square	\square	\square	\square	\square
■	-	-	-	■
\square	\square	-	\square	-
\square	\square	\square	\square	\square
-	-	-	\square	\square
■	\square	\square	\square	\square
-	\square	-	-	\square
-	\square	-	-	\square
\square	\square	-	\square	\square
\square	\square	\square	\square	\square
\square	-	-	\square	-

$105 \times 161 \times 86$
$140 \times 161 \times 86$
2.05
2.4

$105 \times 161 \times 86$	$105 \times 161 \times 86$
$140 \times 161 \times 86$	$140 \times 161 \times 86$
2.2	2.4
2.6	2.8

$|$| $140 \times 225 \times 110$ | $140 \times 225 \times 110$ |
| :--- | :--- |
| $185 \times 255 \times 110$ | $185 \times 255 \times 110$ |
| 6.05 | 6.2 |
| 7.90 | 8.13 |
| $45 / 52.5 \mathrm{~mm}$ | $45 / 52.5 \mathrm{~mm}$ |
| $45 / 70 \mathrm{~mm}$ | $45 / 70 \mathrm{~mm}$ |
| 4×240 | 4×240 | Introduction

With Micrologic electronic trip units, Compact NSX stands out from the crowd. Thanks to the new generation of sensors and its processing capability, protection is enhanced even further. It also provides measurements and operating information.

Thermal-magnetic or electronic trip unit?

Thermal-magnetic trip units protect against overcurrents and short-circuits using tried and true techniques. But today, installation optimisation and energy efficiency have become decisive factors and electronic trip units offering more advanced protection functions combined with measurements are better suited to these needs. Micrologic electronic trip units combine reflex tripping and intelligent operation. Thanks to digital electronics, trip units have become faster as well as more accurate and reliable. Wide setting ranges make installation upgrades easier. Designed with processing capabilities, Micrologic trip units can provide measurement information and device operating assistance. With this information, users can avoid or deal more effectively with disturbances and can play a more active role in system operation. They can manage the installation, anticipate on events and plan any necessary servicing.

Accurate measurements for complete protection

Compact NSX devices take advantage of the vast experience acquired since the launch of Masterpact NW circuit breakers equipped with Micrologic trip units. From 40 amperes on up to the short-circuit currents, they offer excellent measurement accuracy. This is made possible by a new generation of current transformers combining "iron-core" sensors for self-powered electronics and "aircore" sensors (Rogowski toroids) for measurements.
The protection functions are managed by an ASIC component that is independent of the measurement functions. This independence ensures immunity to conducted and radiated disturbances and a high level of reliability.

Numerous security functions

Torque-limiting screws

The screws secure the trip unit to the circuit breaker. When the correct tightening torque is reached, the screw heads break off. Optimum tightening avoids any risk of temperature rise. A torque wrench is no longer required.

Easy and sure changing of trip units

All trip units are interchangeable, without wiring. A mechanical mismatch-protection system makes it impossible to mount a trip unit on a circuit breaker with a lower rating.

"Ready" LED for a continuous self-test

The LED on the front of the electronic trip units indicates the result of the self-test runs continuously on the measurement system and the tripping release. As long as the green LED is flashing, the links between the CTs, the processing electronics and the Mitop release are operational. The circuit breaker is ready to protect. No need for a test kit. A minimum current of 15 to 50 A , depending on the device, is required for this indication function.
A patented dual adjustment system for protection functions.
Available on Micrologic 5 / 6, the system consists of:
■ a first adjustment, under de-energised conditions and using a dial, sets the maximum value
■ a second adjustment, made via the keypad or remotely, fine-tunes the setting. The second setting may not exceed the first. It can be read directly on the Micrologic screen, to within one ampere and a fraction of a second.

Coordinated tripping systems

Compact NSX detects faults even faster and its tripping time is reduced. It protects the installation better and limits contact wear.

Because it directly actuates the mechanism, it precedes the trip unit by a few milliseconds.

Compact NSX100 with Micrologic for total discrimination. *
Better coordination between protection functions reduces the
difference in ratings required for total discrimination.

* Please refer to supplementary technical catalogue.

Unmatched discrimination

Discrimination

Compact NSX provides maximum continuity of service and savings through an unmatched level of discrimination:

- given the high accuracy of measurements, overload discrimination is ensured even between very close ratings
- for major faults, the fast processing of the Micrologic trip units means the upstream device can anticipate the reaction of the downstream device. The upstream breaker adjusts its tripping delay to provide discrimination - for very high faults, the energy of the arc dissipated by the short-circuit in the downstream breaker causes reflex tripping. The current seen by the upstream device is significantly limited. The energy is not sufficient to cause tripping, so discrimination is maintained whatever the short-circuit current.

For total discrimination over the entire range of possible faults, from the long-time pick-up Ir to the ultimate short-circuit current Icu, a ratio of 2.5 must be maintained between the ratings of the upstream and downstream devices
This ratio is required to ensure selective reflex tripping for high short-circuits.

Understanding the names of Micrologic electronic trip units

Examples

Micrologic 1.3	Instantaneous only	400 or 630 A		Distribution
Micrologic 2.3	LS $_{0} \mathrm{I}$	400 or 630 A		Distribution
Micrologic 5.2 A	LSI	100,160 or 250 A	Ammeter	Distribution
Micrologic 6.3 E-M	LSIG	400 or 630 A	Energy	Motor

Functions and characteristics

Introduction

Overview of trip units for Compact NSX

Compact NSX offers a range of trip units in interchangeable cases, whether they are magnetic, thermal-magnetic or electronic. Versions 5 and 6 of the electronic trip unit offer communication and metering. Using Micrologic sensors and intelligence, Compact NSX supplies all the information required to manage the electrical installation and optimise energy use.

Type of protection and applications
MA magnetic TM-D thermal-magnetic

- Distribution and motors

- Distribution
- Generators

Compact NSX100/160/250

Compact NSX400/630

1.3-M Distribution and motors

Settings and indications

Adjustment and
reading
Pick-up set in amps using dials
Non-adjustable time delay

Adjustment and reading
Pick-up set in amps using dials
Non-adjustable time delay

2.2 Distribution
2.2-G Generators
2.2-M Motors

5.2 A Distribution
and generators
5.2 E Distribution
and generators
5.2 A-Z 16 Hz 2/3 networks
6.2 A Distribution and generators 6.2 E Distribution and generators

5.3 A Distribution
and generators
5.3 E Distribution
and generators
5.3 A-Z 16 Hz 2/3 networks

Adjustment and reading
Pick-up set in amps with fine adjustment using dials Non-adjustable time delay

Front indications

Test connector
Self test

Adjustment and reading
Pick-up set in amps

Fine adjustment via keypad

Adjustable time delays

Front indications

Test connector

Self test

The capabilities of Micrologic 5/6A and E trip units come into full play with the FDM121 switchboard display unit. When the two are connected via a simple cord with RJ45 connectors, the combination offers full Power Meter capabilities and all the measurements required to monitor the electrical installation.

Ammeter Micrologic (A)

I measurements

Current measurements

- Phase and neutral currents $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{IN}$
- Average current of the 3 phases lavg
- Highest current of the three phases Imax
- Ground-fault current \lg (Micrologic 6.2/6.3A)
- Maximeter/minimeter for I measurements

Operating and maintenance assistance

Indications, alarms and histories

- Indication of fault types
- Alarms for high/low alarm thresholds linked to I measurements
- Trip, alarm and operating histories
- Time-stamped tables for settings and maximeters

Maintenance indicators

- Operation, trip and alarm counters
- Operating hours counter
- Contact wear
- Load profile and thermal image

Communication

- Modbus with add-on module

TM thermal-magnetic and MA magnetic trip units can be used on Compact NSX100/160/250 circuit breakers with performance levels B/F/H/N/S/L.
TM trip units are available in 2 versions: ■ TM-D, for the protection of distribution cables

- TM-G, with a low threshold, for the protection of generators or long cable lengths.
Vigi modules or Vigirex relays can be added to all the circuit breakers to provide external earth-leakage protection.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

TM-D and TM-G thermal-magnetic trip units

Circuit breakers equipped with thermal-magnetic trip units are used mainly in industrial and commercial electrical distribution applications:

- TM-D, for protection of cables on distribution systems supplied by transformers ■ TM-G, with a low pick-up for generators (lower short-circuit currents than with transformers) and distribution systems with long cable lengths (fault currents limited by the impedance of the cable).

Protection

\qquad

Thermal protection (Ir)

Thermal overload protection based on a bimetal strip providing an inverse time curve $\mathrm{I}^{2} \mathrm{t}$, corresponding to a temperature rise limit. Above this limit, the deformation of the strip trips the circuit breaker operating mechanism.
This protection operates according to:
■ Ir that can be adjusted in amps from 0.7 to 1 times the rating of the trip unit (16 A to
250 A), corresponding to settings from 11 to 250 A for the range of trip units
■ a non-adjustable time delay, defined to ensure protection of the cables.

Magnetic protection (Im)

Short-circuit protection with a fixed or adjustable pick-up Im that initiates
instantaneous tripping if exceeded.
■ TM-D: fixed pick-up, Im, for 16 to 160 A ratings and adjustable from 5 to $10 x \ln$ for 200 and 250 A ratings

- fixed pick-up for 16 to 630 A ratings.

Protection against insulation faults
Two solutions are possible by adding:

- a Vigi module acting directly on the trip unit of the circuit breaker

■ a Vigirex relay connected to an MN or MX voltage release.

Protection versions

■ 3-pole:

\square 3P 3D: 3-pole frame (3P) with detection on all 3 poles (3D)

- 3P 2D: 3-pole frame (3P) with detection on 2 poles (2D).
- 4-pole:
- 4P 3D: 4-pole frame (4P) with detection on 3 poles (3D).
\square 4P 4D: 4-pole frame (4P) with detection on all 4 poles (same threshold for phases and neutral).

MA magnetic trip units

In distribution applications, circuit breakers equipped with MA magnetic-only trip units are used for:
■ short-circuit protection of secondary windings of LV/LV transformers with overload protection on the primary side.
■ as an alternative to a switch-disconnector at the head of a switchboard in order to provide short-circuit protection.
Their main use is however for motor protection applications, in conjunction with a thermal relay and a contactor or motor starter (see "Motor protection", page A-36).

Protection
Magnetic protection (Im)
Short-circuit protection with an adjustable pick-up Im that initiates instantaneous tripping if exceeded.

- Im $=\ln \mathbf{x} \ldots$ set in amps on an adjustment dial covering the range 6 to $14 \times \ln$ for 2.5 to 100 A ratings or 9 to 14 In for 150 to 220 A ratings.

Protection versions

■ 3-pole (3P 3D): 3-pole frame (3P) with detection on all 3 poles (3D).
■ 4-pole (4P 3D): 4-pole frame (4P) with detection on 3 poles (3D).

(1) For temperatures greater than $40^{\circ} \mathrm{C}$, the thermal protection characteristics are modified. See the temperature derating table.

Micrologic 2 trip units can be used on Compact NSX100 to 630 circuit breakers with performance levels $B / F / H / N / S / L$. They provide:

- standard protection of distribution cables
- indication of:
- overloads (via LEDs)
- overload tripping (via the SDx relay module).
Circuit breakers equipped with Micrologic 1.3-M trip units, without thermal protection, are used in certain applications to replace switch-disconnectors at the head of switchboards. Micrologic 1.3-M trip units are dedicated to Compact NSX400/630 A circuit breakers.

SDx remote indication relay module with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Micrologic 2

Circuit breakers equipped with Micrologic 2 trip units can be used to protect distribution systems supplied by transformers. For generators and long cables, Micrologic 2-G trip units offer better suited low pick-up solutions (see page A-50).

Protection

Settings are made using the adjustment dials with fine adjustment possibilities
Overloads: Long time protection (Ir)
Inverse time protection against overloads with an adjustable current pick-up Ir set using a dial and a non-adjustable time delay tr.
Short-circuits: Short-time protection with fixed time delay (Isd)
Protection with an adjustable pick-up Isd. Tripping takes place after a very short delay used to allow discrimination with the downstream device.
Short-circuits: Non-adjustable instantaneous protection
Instantaneous short-circuit protection with a fixed pick-up.

Neutral protection

■ On 3-pole circuit breakers, neutral protection is not possible.
■ On four-pole circuit breakers, neutral protection may be set using a three-position switch:

- 4P 3D: neutral unprotected
$\square 4 \mathrm{P} 3 \mathrm{D}+\mathrm{N} / 2$: neutral protection at half the value of the phase pick-up, i.e. $0.5 \times \mathrm{lr}$
\square 4P 4D: neutral fully protected at Ir.

Indications

Front indications

■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
■ Orange overload pre-alarm LED: steady on when I > 90% Ir

- Red overload LED: steady on when I > 105 \% Ir

Remote indications
An overload trip signal can be remoted by installing an SDx relay module inside the circuit breaker.
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is reclosed. For description, see page A-81.

Micrologic 1.3-M for magnetic protection only

Micrologic 1.3-M trip units provide magnetic protection only, using electronic technology. They are dedicated to 400/630 A 3-pole (3P 3D) circuit breakers or 4pole circuit breakers with detection on 3 poles (4P, 3D) and are used in certain applications to replace switch-disconnectors at the head of switchboards. They are especially used in 3-pole versions for motor protection, see page A-40.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Micrologic 1.3-M

Protection of distribution systems
Micrologic 5 / 6 A or E trip units

Micrologic 5/6 A (Ammeter) or E (Energy) trip units can be used on Compact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L. They all have a display unit.
They offer basic LSI protection (Micrologic 5) or LSI and ground-fault protection G (Micrologic 6).
They also offer measurement, alarm and communication functions.

Trip unit menus.

Display of interrupted current.

SDx remote indication relay module with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Protection

Settings can be adjusted in two ways, using the dials and/or the keypad . The keypad can be used to make fine adjustments in 1 A steps below the maximum value defined by the setting on the dial. Access to setting modifications via the keypad is protected by a locking function displayed on the screen and controlled by a microswitch \boldsymbol{O}. The lock is activated automatically if the keypad is not used for 5 minutes. Access to the microswitch is protected by a transparent lead-sealable cover. With the cover closed, it is still possible to display the various settings and measurements using the keypad.

Overloads: Long time protection (Ir)

Inverse time protection against overloads with an adjustable current pick-up Ir set using a dial or the keypad for fine adjustments. The time delay $\mathbf{t r}$ is set using the keypad.
Short-circuits: Short-time protection (Isd)
Short-circuit protection with an adjustable pick-up Isd and adjustable time delay tsd, with the possibility of including a portion of an inverse time curve ($I^{2} t$ On).
Short-circuits: Instantaneous protection (li)
Instantaneous protection with adjustable pick-up li.
Additional ground fault protection (lg) on Micrologic 6
Residual type ground-fault protection with an adjustable pick-up $\mathbf{I g}$ (with Off position) and adjustable time delay $\mathbf{t g}$. Possibility of including a portion of an inverse time curve (12 t On).

Neutral protection

■ On 4-pole circuit breakers, this protection can be set via the keypad:
\square Off: neutral unprotected
$\square 0.5$: neutral protection at half the value of the phase pick-up, i.e. 0.5 xlr - 1.0: neutral fully protected at Ir
\square OSN: Oversized neutral protection at 1.6 times the value of the phase pick-up. Used when there is a high level of 3rd order harmonics (or orders that are multiples of 3) that accumulate in the neutral and create a high current. In this case, the device must be limited to $\mathrm{Ir}=0.63 \mathrm{x} \ln$ for the maximum neutral protection setting of $1.6 \times \mathrm{Ir}$.

- With 3-pole circuit breakers, the neutral can be protected by installing an external neutral sensor with the output (T1, T2) connected to the trip unit.

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of Micrologic control units to provide zone selective interlocking for short-time (Isd) and ground-fault (lg) protection, without a time delay. For Compact NSX 100 to 250, the ZSI function is available only in relation to the upstream circuit breaker (ZSI out).
Display of type of fault \qquad
On a fault trip, the type of fault (Ir, Isd, li, Ig), the phase concerned and the interrupted current are displayed. An external power supply is required.
Indications \qquad
Front indications

■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
■ Orange overload pre-alarm LED: steady on when I>90\% Ir
■ Red overload LED: steady on when I > 105 \% Ir
Remote indications
An SDx relay module installed inside the circuit breaker can be used to remote the following information:

- overload trip

■ overload prealarm (Micrologic 5) or ground fault trip (Micrologic 6).
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.
These outputs can be reprogrammed to be assigned to other types of tripping or alarm. The module is described in detail in the section dealing with accessories.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Power Meter functions

Electronic Micrologic 5 / 6 A or E

```
In addition to protection functions,
Micrologic 5/6 trip units offer all the functions of Power Meter products as well as operating-assistance for the circuit breaker.
■ display of settings
- measurement functions:
\(\square\) Ammeter ( A )
- Energy (E)
- alarms
- time-stamped histories and event tables
- maintenance indicator
■ communication.
```


Micrologic built-in LCD display showing an energy measurement

FDM121 display: navigation.

Current.

Power.

Voltage.

Consumption.

Examples of measurement screens on the FDM121 display unit.

Micrologic A and E measurement functions are made possible by Micrologic intelligence and the accuracy of the sensors. They are handled by a microprocessor that operates independent of protection functions.

Display

Micrologic LCD

The user can display all the protection settings and the main measurements on the LCD screen of the trip unit.
■ Micrologic A: instantaneous rms current measurements
■ Micrologic E: voltage, frequency and power measurements and energy metering, in addition to the measurements offered by Micrologic A
To make the display available under all conditions and increase operating comfort, an external power supply is recommended for Micrologic A.
It is indispensable to:
■ display faults and interrupted current measurements

- use all the functions of Micrologic E (e.g. metering of low power and energy values)
■ ensure operation of the communication system.
The external power supply can be shared by several devices. For description, see page A-32.

FDM121 display unit

An FDM121 switchboard display unit can be connected to a Micrologic trip unit using a prefabricated cord to display all measurements on a screen. The result is a veritable $96 \times 96 \mathrm{~mm}$ Power Meter.
In addition to the information displayed on the Micrologic LCD, the FDM121 screen shows demand, power quality and maximeter/minimeter values along with alarms, histories and maintenance indicators.
The FMD121 display unit requires a 24 V DC power supply. The Micrologic trip unit is supplied by the same power supply via the cord connecting it to the FDM121.

PC screen

When the Micrologic, with or without an FDM121 switchboard display unit, is connected to a communication network, all information can be accessed via a PC.

Measurements

Instantaneous rms measurements

The Micrologic A and E continuously display the RMS value of the highest current of the three phases and neutral (Imax). The navigation buttons \longrightarrow can be used to scroll through the main measurements.
In the event of a fault trip, the current interrupted is memorised.
The Micrologic A measures phase, neutral, ground fault currents.
The Micrologic E offers voltage, frequency and power measurements in addition to the measurements provided by Micrologic A

Maximeters / minimeters

Every instantaneous measurement provided by Micrologic A or E can be associated with a maximeter/minimeter. The maximeters for the highest current of the 3 phases and neutral, the demand current and power can be reset via the trip unit keypad, the FDM121 display unit or the communication system.

Energy metering

The Micrologic E also measures the energy consumed since the last reset of the meter. The active energy meter can be reset via the keypad and the FDM121 display unit or the communication system.

Demand and maximum demand values

Micrologic E also calculates demand current and power values. These calculations can be made using a block or sliding interval that can be set from 5 to 60 minutes in steps of 1 minute. The window can be synchronised with a signal sent via the communication system. Whatever the calculation method, the calculated values can be recovered on a PC via Modbus communication.
Ordinary spreadsheet software can be used to provide trend curves and forecasts based on this data. They will provide a basis for load shedding and reconnection operations used to adjust consumption to the subscribed power.

Power quality

Micrologic E calculates power quality indicators taking into account the presence of harmonics up to the 15 th order, including the total harmonic distortion (THD) of current and voltage.

Micrologic 5 / 6 integrated Power Meter functions			Type		Display	
			A	E	Micrologic LCD	FDM121 display
Display of protection settings						
Pick-ups (A) and delays	All settings can be displayed	Ir, tr, Isd, tsd, li, Ig, tg	-	\square	-	
Measurements						
Instantaneous rms measurements						
Currents (A)	Phases and neutral Average of phases Highest current of the 3 phases and neutral Ground fault (Micrologic 6) Current unbalance between phases	$\begin{aligned} & I 1, I 2, I 3, I N \\ & \text { lavg }=(I 1+I 2+I 3) / 3 \\ & \text { Imax of } 11, I 2, I 3, I N \\ & \text { \% Ig (pick-up setting) } \\ & \text { \% lavg } \end{aligned}$	$\square \square$	■		
Voltages (V)	Phase-to-phase Phase-to-neutral Average of phase-to-phase voltages Average of phase-to-neutral voltages $\mathrm{Ph}-\mathrm{Ph}$ and $\mathrm{Ph}-\mathrm{N}$ voltage unbalance Phase sequence	$\begin{aligned} & \text { U12, U23, U31 } \\ & \text { V1N, V2N, V3N } \\ & \text { Uavg = (U12 + U21 + U23) / } 3 \\ & \text { Vavg = (V1N + V2N + V3N) / } 3 \\ & \text { \% Uavg and \% Vavg } \\ & \text { 1-2-3, 1-3-2 } \end{aligned}$	- - - - - -	\square		
Frequency (Hz)	Power system	f	-	\square	\square	\square
Power	Active (kW) Reactive (kVAR) Apparent (kVA) Power factor and cos (fundamental)	P, total and per phase Q, total and per phase S, total and per phase PF and $\cos \varphi$, total and per phase	- - - -	\square		
Maximeters / minimeters						
	Associated with instantaneous rms measurements	Reset via Micrologic or FDM121 display unit	\square	-	-	■
Energy metering						
Energy	Active (kW), reactive (kVARh), apparent (kVAh)	Total since last reset Absolute or signed mode ${ }^{(1)}$	-	■	\square	-
Demand and maximum demand values						
Demand current (A)	Phases and neutral	Present value on the selected window Maximum demand since last reset		-		
Demand power	Active (kWh), reactive (kVAR), apparent (kVA)	Present value on the selected window Maximum demand since last reset		\square		
Calculation window	Sliding, fixed or com-synchronised	Adjustable from 5 to 60 minutes in 1 minute steps	-	\square	-	(2)
Power quality						
Total harmonic distortion (\%)	Of voltage with respect to rms value	THDU,THDV of the Ph-Ph and Ph-N voltage	-	\square	-	\square
	Of current with respect to rms value	THDI of the phase current	-	\square	-	\square

(1) Absolute mode: E absolute $=E$ out $+E$ in; Signed mode: E signed $=E$ out $-E$ in.
(2) Available via the communication system only.

Additional technical characteristics

Measurement accuracy

Accuracies are those of the entire measurement system, including the sensors:
■ Current: Class 1 as per IEC 61557-12

- Voltage: 0.5%
- Power and energy: Class 2 as per IEC 61557-12
- Frequency: 0.1%.

(2)

[^1](2) Available via the communication system only.

Additional technical characteristics

Contact wear

Each time Compact NSX opens, the Micrologic 5/6 trip unit measures the interrupted current and increments the contact-wear indicator as a function of the interrupted current, according to test results stored in memory. Breaking under normal load conditions results in a very slight increment. The indicator value may be read on the FDM121 display. It provides an estimation of contact wear calculated on the basis of the cumulative forces affecting the circuit breaker. When the indicator reaches 80\%, it is advised to replace the circuit breaker to ensure the availability of the protected equipment.

Circuit breaker load profile

Micrologic 5/6 calculates the load profile of the circuit breaker protecting a load circuit. The profile indicates the percentage of the total operating time at four current levels (\% of breaker In):

- 0 to 49 \% In
- 50 to 79% In
- 80 to 89% In
- $\geqslant 90 \% \mathrm{ln}$.

This information can be used to optimise use of the protected equipment or to plan ahead for extensions.

Micrologic measurement capabilities come into full play with the FDM121 switchboard display. It connects to Compact NSX via a simple cord and displays Micrologic information. The result is a true integrated unit combining a circuit breaker and a Power Meter. Additional operating assistance functions can also be displayed.

FDM121 display.

Surface mount accessory.

Connection with FDM121 display unit.

FDM121 switchboard display

The FDM121 is a switchboard display unit that can be integrated in the Compact NSX100 to 630 A system. It uses the sensors and processing capacity of the Micrologic trip unit. It is easy to use and requires no special software or settings. It is immediately operational when connected to the Compact NSX by a simple cord. The FDM121 is a large display, but requires very little depth. The anti-glare graphic screen is backlit for very easy reading even under poor ambient lighting and at sharp angles.

Display of Micrologic measurements and alarms

The FDM121 is intended to display Micrologic 5 / 6 measurements, alarms and operating information. It cannot be used to modify the protection settings. Measurements may be easily accessed via a menu.
All user-defined alarms are automatically displayed. The display mode depends on the priority level selected during alarm set-up:

- high priority: a pop-up window displays the time-stamped description of the alarm and the orange LED flashes
- medium priority: the orange "Alarm" LED goes steady on
- low priority: no display on the screen.

All faults resulting in a trip automatically produce a high-priority alarm, without any special settings required.
In all cases, the alarm history is updated.
If power to the FDM121 fails, all information is stored in the Micrologic non-volatile memory. The data is automatically recovered when power is restored and can be consulted via the communication system.

Status indications and remote control

When the circuit breaker is equipped with the BSCM module (page A-27), the
FDM121 display can also be used to view circuit breaker status conditions:
■ O/F: ON/OFF

- SD: trip indication

■ SDE: Fault-trip indication (overload, short-circuit, ground fault)

Main characteristics

- $96 \times 96 \times 30 \mathrm{~mm}$ screen requiring 10 mm behind the door (or 20 mm when the 24 volt power supply connector is used).
- White backlighting.
- Wide viewing angle: vertical $\pm 60^{\circ}$, horizontal $\pm 30^{\circ}$.
- High resolution: excellent reading of graphic symbols.
- Alarm LED: flashing orange for alarm pick-up, steady orange after operator reset if alarm condition persists.
- Operating temperature range $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
- CE / UL marking.
- 24 V DC power supply, with tolerances $24 \mathrm{~V}-20 \%(19.2 \mathrm{~V})$ to $24 \mathrm{~V}+10 \%(26.4 \mathrm{~V})$. When the FDM121 is connected to the communication network, the 24 V is supplied by the communication system wiring system.
- Consumption 40 mA .

Mounting

The FDM121 is easily installed in a switchboard.

- Standard door cut-out $92 \times 92 \mathrm{~mm}$.
- Attached using clips.

To avoid a cut-out in the door, an accessory is available for surface mounting by drilling only two 22 mm diameter holes.
The FDM121 degree of protection is IP54 in front. IP54 is maintained after switchboard mounting by using the supplied gasket during installation.

Connection

The FDM121 is equipped with:

- a 24 V DC terminal block:
- plug-in type with 2 wire inputs per point for easy daisy-chaining
- power supply range of $24 \mathrm{~V}-20 \%(19.2 \mathrm{~V})$ to $24 \mathrm{~V}+10 \%(26.4 \mathrm{~V})$
- two RJ45 jacks.

The Micrologic connects to the internal communication terminal block on the Compact NSX via the pre-wired NSX cord. Connection to one of the RJ45 connectors on the FDM121 automatically establishes communication between the Micrologic and the FDM121 and supplies power to the Micrologic measurement functions.
When the second connector is not used, it must be fitted with a line terminator.

Navigation

Five buttons are used for intuitive and fast navigation.
The "Context" button may be used to select the type of display (digital, bargraph, analogue).
The user can select the display language (Chinese, English, French, German, Italian, Portuguese, Spanish, etc.) Other languages can be downloaded.

Screens

Main menu
When powered up, the FDM121 screen automatically displays the ON/OFF status of the device.

Quick view
Metering
Alarms
Services.
When not in use, the screen is not backlit. Backlighting can be activated by pressing one of the buttons. It goes off after 3 minutes.

Fast access to essential information

■ "Quick view" provides access to five screens that display a summary of essential operating information (I, U, f, P, E, THD, circuit breaker On / Off).

Access to detailed information

■ "Metering" can be used to display the measurement data (I, U-V, f, P, Q, S, E,
THD, PF) with the corresponding $\mathrm{min} / \mathrm{max}$ values.

- Alarms displays active alarms and the alarm history.
- Services provides access to the operation counters, energy and maximeter reset function, maintenance indicators, identification of modules connected to the internal bus and FDM121 internal settings (language, contrast, etc.)

Compact NSX communication

 characteristics
Communications modules

All Compact NSX devices can be equipped
with the communication function via a prewired connection system and a Modbus network interface.
The interface can be connected directly or via the FDM121 switchboard display unit. Four functional levels can be combined to adapt to all supervision requirements.

Four functional levels

The Compact NSX can be integrated in a Modbus communication environment. Four functional levels can be used separately or combined.

Communication of status indications

This level is compatible with all Compact NSX circuit breakers, whatever the trip unit, and with all switch-disconnectors. Using the BSCM module, the following information is accessible:

- ON/OFF position (O/F)
- trip indication (SD)
- fault-trip indication (SDE).

Communication of commands

Also available on all circuit breakers and switch-disconnectors, this level (communicating remote control) can be used to:

- open
- close
- reset.

Communication of measurements with Micrologic 5 / 6 A or E
This level provides access to all available information:

- instantaneous and demand values
- maximeters/minimeters
- energy metering
- demand current and power
- power quality.

Communication of operating assistance with Micrologic 5/6A or E

- protection and alarm settings
- time-stamped histories and event tables
- maintenance indicators.

Communication components and connections

Modbus interface module

Functions

This module, required for connection to the network, contains the Modbus address (1 to 99) declared by the user via the two dials in front. It automatically adapts (baud rate, parity) to the Modbus network in which it is installed.
It is equipped with a lock-out switch to enable or disable operations involving writing to Micrologic, i.e. reset, counter reset, setting modifications, device opening and closing commands, etc.
There is a built-in test function to check the connections of the Modbus interface module with the Micrologic and FDM121 display unit.

Mounting

The module is mounted on a DIN rail. A number of modules may be clipped one next to the other. For this, a stacking accessory is available for fast clipconnection of both the Modbus link and the 24 V DC supply.
The Modbus interface module supplies 24 V DC to the corresponding Micrologic, FDM121 display and BSCM module. Module consumption is $60 \mathrm{~mA} / 24 \mathrm{~V}$ DC.

Modbus interface module.

BSCM module

Functions

The optional BSCM Breaker Status \& Control Module is used to acquire device status indications and control the communicating remote-control function.
It includes a memory used to manage the maintenance indicators.

Status indications

Indication of device status:

O/F, SD and SDE.

Maintenance indicators

The BSCM module manages the following indicators:

- mechanical operation counter
- electrical operation counter
- history of status indications.

It is possible to assign an alarm to the operation counters.

Controls

The module can be used to carry out communicating remote control operations: (open, close and reset) in different modes (manual, auto).

Mounting

The BSCM module can be installed on all Compact NSX circuit breakers and switch-disconnectors. It simply clips into the auxiliary contact slots. It occupies the slots of one O/F contact and one SDE contact. The BSCM is supplied with 24 V DC power automatically via the NSX cord when the communication system is installed.
1 Five-point Modbus and 24 V DC connector
2 Two Modbus address dials (1 to 99)
3 Modbus traffic LED
4 Lock-out to disable writing to the NSX
5 Test LED
6 Test button
7 Two connectors for RJ45 cable

[^2]
Functions and characteristics

Compact NSX uses the Modbus communication protocol, compatible with SMS PowerLogic supervision systems. Two downloadable utilities facilitate implementation of communication functions.

Modbus

Modbus is the most widely used communication protocol in industrial networks. It operates in masterslave mode. The devices (slaves) communicate one after the other with a gateway (master).
Masterpact, Compact NSX, PowerLogic and Sepam products all operate with this protocol. A Modbus network is generally implemented on an LV or MV switchboard scale.
Depending on the data monitored and the desired refresh rate, a Modbus network connected to a gateway can serve 4 to 16 devices. For larger installations, a number of Modbus networks can be connected to an Ethernet network (TCP/IP/Modbus protocol) via their gateways.

Micrologic utilities

- Two utilities, RSU and RCU, presented on the next page, are available to assist in starting up a communicating installation. Intended for Compact NSX and Masterpact, the software can be downloaded from the Schneider Electric internet site.
■ The "Live update" function enables immediate updating to obtain the most recent upgrades. These easy-to-use utilities include starting assistance and online help. They are compatible with Microsoft Windows 2000, XP and Vista.

RSU configuration screen for a Micrologic 5.2.

Gateway

The gateway has two functions:

- access to the company intranet (Ethernet) by converting Modbus frames to the TCP/IP/Modbus protocol
- optional web-page server for the information from the devices.
Examples include MPS100, EGX400 and EGX100.

MPS100

■ Plug and play device. It comes loaded with a webpage application for graphic display of currents and voltages and viewing of circuit-breaker status and power and energy values.
To use the application, simply declare the Modbus addresses of the connected slaves. Automatically recognised devices include all Masterpact and Compact NSX Micrologic trip units and the PM500/700/800 and PM9c power monitoring units. ■ Can be used for automatic alarm notification via a messaging server available on the site intranet or via mobile phones (e-mail converted into SMS).

- Can be used for logging of data that can be automatically sent as e-mail attachments, e.g. a weekly consumption report.

RCU mini-supervision screen for current measurements.

Web page.

Compact NSX communication
 RSU and RCU utilities

Two utilities, RSU and RCU, are available to assist in starting up a communicating installation.
They can be downloaded from the Schneider Electric internet site and include a "Live update" function that enables immediate updating.

RSU: Micrologic Remote Setting Utility.

RSU (Remote Setting Utility)

This utility is used to set the protection functions and alarms for each Masterpact and Compact NSX device.
After connection to the network and entry of the circuit-breaker Modbus address, the software automatically detects the type of trip unit installed.
There are two possible operating modes.

Off-line with the software disconnected from the communication network

For each selected circuit breaker, the user can do the following.

Determine the protection settings

The settings are carried out on a screen that shows the front of the trip unit. The Micrologic setting dials, keypad and screen are simulated for easy use of all Micrologic setting functions.
Save and duplicate the protection settings
Each configuration created can be saved for subsequent device programming. It can also be duplicated and used as the basis for programming another circuit breaker.

On-line with the software connected to the network
Similarly, for each selected circuit breaker, the user can do the following.

Display the current settings

The software displays the trip unit and provides access to all settings.

View the corresponding protection curves

A graphic curve module in the software displays the protection curve corresponding to the settings. It is possible to lay a second curve over the first for discrimination studies.

Modify settings in a secure manner

- There are different levels of security
- password: by default, it is the same for all devices, but can be differentiated for each device
- locking of the Modbus interface module which must be unlocked before the corresponding device can be set remotely
- maximum settings limited by the positions of the two dials on the trip unit.

These dials, set by the user, determine the maximum settings that can be made via the communication system.

- Settings are modified by:
- either direct, on-line setting of the protection settings on the screen
\square or by loading the settings prepared in off-line mode. This is possible only if the positions of the dials allow the new settings.
All manual settings made subsequently on the device have priority.

Program alarms

■ Up to 12 alarms can be linked to measurements or events.
■ two alarms are predefined and activated automatically:

- Micrologic 5: overload (Ir)
\square Micrologic 6: overload (Ir) and ground fault (Ig)
- thresholds, priorities and time delays can be set for 10 other alarms. They may be selected from a list of 91 alarms

Set the outputs of the SDx relays

This is required when the user wants to change the standard configuration and assign different signals to the 2 outputs of the SDx relay.

RCU (Remote Control Utility)

The RCU utility can be used to test communication for all the devices connected to the Modbus network. It is designed for use with Compact NSX, Masterpact, Advantys OTB and Power Meter devices. It offers a number of functions.

Mini supervisor

■ Display of I, U, f, P, E and THD measurements for each device, via navigation

- Display of ON/OFF status

Open and close commands for each device
A common or individual password must first be entered.

When all functions have been tested, this utility is replaced by the supervision software selected for the installation.

Supervision software

Schneider Electric electrical installation supervision, management and expert system software integrates Compact NSX identification modules.

Connection symbol for Compact NSX compatible modules.

PowerView software.

Types of software

Masterpact and Compact NSX communication functions are designed to interface with software dedicated to electrical installations:
■ switchboard supervision
■ electrical installation supervision
■ power system management: electrical engineering expert systems

- process control

■ SCADA (Supervisory Control \& Data Acquisition), EMS (Enterprise Management
System) or BMS (Building Management System) type software.

Integration of Compact NSX

Compact NSX devices are integrated via Modbus interface modules connected via FDM121 display units or NSX cords.
For easy connection of the different modules, the prefabricated cables are identified by ULP (Universal Logic Plug) symbols. The connection points on compatible modules are marked in the same manner.

Schneider Electric solutions

Electrical switchboard supervision via MPS100 or EGX400 Web servers

A simple solution for customers who want to consult the main electrical parameters of switchboard devices without dedicated software.
Up to 16 switchboard devices are connected via Modbus interfaces to an MPS100 or EGX400 Ethernet gateway integrating the functions of a web page server. The embedded Web pages can be easily configured with just a few mouse clicks. The information they provide is updated in real time.
The Web pages can be consulted using a standard Web browser on a PC connected via Ethernet to the company Intranet or remotely via a modem. Automatic notification of alarms and threshold overruns is possible via e-mail or SMS (Short Message Service).

Electrical installation supervision via PowerView software

PowerLogic ${ }^{\circledR}$ PowerView software is ideally suited to the supervision needs of small system applications, monitoring up to 32 devices. Installed on a PC under Windows, it represents a cost-effective and easy-to-implement power-monitoring solution that offers:
■ automatic detection of compatible devices

- real-time monitoring of data including power consumption
- a report generator with a number of pre-defined reports that can be exported to Excel
- cost allocation
- time-stamped data-logging possibilities
- Modbus serial and Modbus TCP/IP compatible communication.

SMS electrical engineering expert system software

PowerLogic ${ }^{\circledR}$ SMS is a family of web-enabled software products for high-end powermonitoring applications. It is designed for large power systems.
SMS products offer detailed analysis of electrical events, long-duration data logging and extensive, economical report-building capabilities (e.g. consumption monitoring and tariff management)
A wide variety of screens can be displayed in real time, including more than 50 tables, analogue meters, bargraphs, alarms logs with links to display waveforms and predefined reports on energy quality and service costs.

Other software

Compact NSX devices can forward their measurement and operating information to special software integrating the electrical installation and other technical facilities:
■ SCADA process control software: Vijeo CITECT
■ BMS Building Management System software: Vista.
Please consult us.

Accessories for Micrologic trip units

External neutral current transformers.

External neutral voltage tap (cat. no. LV434208).

External 24 V DC power-supply module.

External neutral current transformer (ENCT)

The external transformer is a sensor required for a three-pole circuit breaker in a system with a distributed neutral to measure the neutral current in order to:

- protect the neutral conductor
- protect against insulation faults.

This current transformer can be connected to Micrologic 5 / 6 trip units. The transformer rating must be compatible with that of the circuit breaker.
Required current transformers for different circuit breaker models

Type of circuit breaker	Rating	Catalogue number
NSX100/160/250	$\frac{25-100 \mathrm{~A}}{\text { LV429521 }}$	
NSX400/630	$400-630 \mathrm{~A}$	LV430563

External neutral voltage tap (ENVT)

The neutral voltage transformer is required for Micrologic E power metering with a three-pole circuit breaker in a system with a distributed neutral. It is used to connect the neutral to the Micrologic trip unit to measure phase-to-neutral ($\mathrm{Ph}-\mathrm{N}$) voltages.

External 24 V DC power-supply module

Use
An external 24 V DC power supply is required for installations with communication, whatever the type of trip unit.
On installations without communication, it is available as an option for Micrologic 5/6 in order to make it possible to:
■ modify settings when the circuit breaker is open

- display measurements when the current flowing through the circuit breaker is low
(15 to 50 A depending on the rating)
■ maintain the display of the cause of tripping and interrupted current.

Characteristics

A single external 24 V DC supply may be used for the entire switchboard.
The required characteristics are:
■ output voltage: $24 \vee \mathrm{DC} \pm 5 \%$
■ ripple: $\pm 1 \%$.

- overvoltage category: OVC IV - as per IEC 60947-1

External 24 V DC power-supply modules with an output current of 1 A are available:

Available external power-supply modules			Cat. no.
Available ext Power supply	V DC (± 5 \%)	24/30	54440
		48/60	54441
		100/125	54442
	VAC (+10 \%, -15 \%)	110/130	54443
		200/240	54444
		380/415	54445
Output voltage		24 V DC ($\pm 5 \%$)	
Ripple		± 1 \%	
Overvoltage category (OVC)		OVC IV - as per	

An external 24 V DC power-supply module with an output current of 3 A is also available:

Available external power-supply modules			
Power supply	V DC	Cat. no.	
	VAC	$110 / 230$	ABL8RPS24030
Output voltage	$110 / 240$		
Ripple	$24 \mathrm{VDC}(\pm 5 \%)$		
Overvoltage category $($ OVC $)$	$\pm 1 \%$		

Total consumption

To determine the required output current of the 24 V DC power supply, it is necessary to sum up the currents consumed by the different loads supplied:

Consumption of Compact NSX modules Module	Consumption (mA)
Micrologic $5 / 6$	20
BSCM module	10
FDM121	40
Modbus communication interface	60
NSX cord U >480 V AC	30

24 VDC power-supply terminal block (cat. no. LV434210).

NSX cord $U>480 \mathrm{~V}$ (cat. no. LV434204).

Maintenance case (cat. no. TRV00910).

Configuration and maintenance module (cat. no. TRV00911).

Using the configuration and maintenance module.

Test battery

This pocket battery connects to the Micrologic test connector. It powers up the Micrologic and the Ready LED. It supplies the screen and allows settings to be made via the keypad

Battery module

The battery module is a back-up supply for the external power-supply module. The input/output voltages are 24 V DC and it can supply power for approximately three hours (100 mA).

24 V DC power-supply terminal block

The 24 V DC power-supply terminal block can be installed only on Micrologic 5/6 trip units. It is required to power the trip unit when the trip unit is not connected to an FDM121 display unit or to the communication system. When used, it excludes connection of an NSX cord.

NSX cord

■ For voltage $\mathrm{U} \leqslant 480 \mathrm{~V}$, available in 3 prefabricated lengths: $0.35 \mathrm{~m}, 1.3 \mathrm{~m}$ and 3 m .

- For voltages $U>480 \mathrm{~V}$, a special 0.35 m cord with an insulation accessory is required.
■ A set of cords with RJ45 connectors is available to adapt to different distances between devices.

Maintenance case

The case includes

- configuration and maintenance module

■ power supply (110... 220 V AC / 50-60 Hz 24 V DC - 1 A)
\square special cable for connection to the trip-unit test connector

- standard USB cable
- standard RJ45 cable
- user manual

■ optional Bluetooth link (to PC).

Configuration and maintenance module

Included in the maintenance kit, this module tests Micrologic operation and provides access to all parameters and settings. It connects to the Micrologic test connector and can operate in two modes.

- Stand-alone mode to:
\square supply the Micrologic and check operation via the Ready LED
\square check mechanical operation of the circuit breaker (trip using pushbutton).
■ PC mode, connected to a PC via USB or Bluetooth link. This mode provides access to protection settings, alarm settings and readings of all indicators. Using the associated RSU software utility, it is possible to store, in a dedicated file for each device, all the data that can transferred to another device.
This mode also offers operating-test functions:
\square check on trip time delay (trip curve)
\square check on non-tripping time (discrimination)
\square check on ZSI (Zone Selective Interlocking) function
\square alarm simulation
\square display of setting curves
\square display of currents
\square printing of test reports.

Earth-leakage protection
 Add-on protection against insulation faults using a Vigi module or Vigirex relay

There are two ways to add earth-leakage protection to any three or four-pole Compact NSX100 to 630 circuit breaker equipped with a magnetic, thermal-magnetic or Micrologic 2, 5 or 6 trip unit: $■$ by adding a Vigi module to the circuit breaker to form a Vigicompact NSX ■ by using a Vigirex relay and separate toroids.

Vigicompact NSX100 to 630 .

Earth-leakage relay.

[^3]
Circuit breaker with add-on Vigi module (Vigicompact NSX)

- For general characteristics of circuit breakers, see pages A-6 and A-7.

■ Add-on Vigi modules. Earth-leakage protection is achieved by installing a Vigi module (characteristics and selection criteria on next page) directly on the circuit breaker terminals It directly actuates the trip unit (magnetic, thermal-magnetic or Micrologic).

Circuit breaker combined with a Vigirex relay

Compact NSX circuit breaker + Vigirex relay

Vigirex relays may be used to add external earth-leakage protection to Compact

 NSX circuit breakers. The circuit breakers must be equipped with an MN or MX voltage release. The Vigirex relays add special tripping thresholds and time delays for earth-leakage protection.Vigirex relays are very useful when faced with major installation constraints (circuit breaker already installed and connected, limited space available, etc.).

Vigirex-relay characteristics

■ Sensitivity adjustable from 30 mA to 250 mA and 9 time-delay settings (0 to
4.5 seconds).

■ Closed toroids up to 630 A (30 to 300 mm in diameter), split toroids up to 250 A
(46 to 110 mm in diameter) or rectangular sensors up to 630 A .
■ $50 / 60 \mathrm{~Hz}, 400 \mathrm{~Hz}$ distribution systems.

Options

- Trip indication by a fail-safe contact
- Pre-alarm contact and LED, etc.

Compliance with standards

■ IEC 60947-2, annex M

- IEC/EN 60755: general requirements for residual-current operated protective devices
- IEC/EN 61000-4-2 to 4-6: immunity tests
- CISPR11: radio-frequency radiated and conducted emission tests
- UL1053 and CSA22.2 No. 144 for RH10, RH21 and RH99 relays at supply voltages up to and including 220/240 V.

Vigicompact NSX100 to 630 circuit breakers with earth-leakage protection

Addition of the Vigi module does not alter circuit-breaker characteristics:

- compliance with standards

■ degree of protection, class II front-face insulation

- positive contact indication
- electrical characteristics
- trip-unit characteristics
- installation and connection modes

■ indication, measurement and control auxiliaries

- installation and connection accessories.

\left.| Dimensions and weights | | | NSX100/160/250 |
| :--- | :--- | :--- | :--- |$\right)$ NSX400/630

Vigi earth-leakage protection modules
Compliance with standards
■ IEC 60947-2, annex B.

- Decree dated 14 November 1988 (for France).
- IEC 60755, class A, immunity to DC components up to 6 mA
- operation down to $-25^{\circ} \mathrm{C}$ as per VDE 664.

Remote indications

Vigi modules may be equipped with an auxiliary contact (SDV) to remotely signal

1 Sensitivity setting
2 Time-delay setting (for selective earth-leakage protection).
3 Lead-seal fixture for controlled access to settings.
4 Test button simulating an earth-fault for regular checks on the tripping function
5 Reset button (reset required after earth-fault tripping).
6 Rating plate
7 Housing for SDV auxiliary contact.

Plug-in devices

The Vigi module can be installed on a plugin base. Special accessories are required (see catalogue number chapter).
tripping due to an earth fault.

Use of 4-pole Vigi module with a 3-pole Compact NSX

In a 3-phase installation with an uninterrupted neutral, an accessory makes it possible to use a 4-pole Vigi module with connection of the neutral cable.

Power supply

Vigi modules are self-supplied internally by the distribution-system voltage and therefore do not require any external source. They continue to function even when supplied by only two phases.

Vigi module selection

Type	Vigi ME	Vigi MH	Vigi MB
Number of poles	3,4 ${ }^{(1)}$	3,4 ${ }^{(1)}$	3, $4^{(1)}$
NSX100	\square	\square	-
NXS160	\square	\square	-
NSX250	-	\square	-
NSX400	-	-	\square
NSX630	-	-	\square
Protection characteristics			
Sensitivity	fixed	adjustable	adjustable
$1 \Delta n(A)$	0.3	0.03-0.3-1-3-10	0.3-1-3-10-30
Time delay	fixed	adjustable	adjustable
Intentional delay (ms)	< 40	$0-60^{(2)}-150{ }^{(2)}-310^{(2)}$	0-60-150-310
Max. break time (ms)	< 40	< $40<140<300<800$	< $40<140<300<800$
Rated voltage VAC $50 / 60 \mathrm{~Hz}$	200... 440	200... 440-440...550	200...440-440... 550

(1) Vigi $3 P$ modules may also be used on $3 P$ circuit breakers used for two-phase protection.
(2) If the sensitivity is set to 30 mA , there is no time delay, whatever the time-delay setting.

Operating safety

The Vigi module is a user safety device. It must be tested at regular intervals (every 6 months).

The parameters to be considered for motorfeeder protection depend on: ■ the application (type of machine driven, operating safety, frequency of operation, etc.)
■ the level of continuity of service required by the load or the application - the applicable standards for the protection of life and property.
The required electrical functions are:
\square isolation
■ switching, generally at high endurance levels

- protection against overloads and shortcircuits, adapted to the motor ■ additional special protection. A motor feeder must comply with the requirements of standard IEC 60947-4-1 concerning contactors and their protection:
■ coordination of feeder components
- thermal-relay trip classes

■ contactor utilisation categories
■ coordination of insulation.

Motor-feeder function

A motor feeder comprises a set of devices for motor protection and control, as well as for protection of the feeder itself

Isolation

The purpose is to isolate the live conductors from the upstream distribution system to enable work by maintenance personnel on the motor feeder at no risk. This function is provided by a motor circuit breaker offering positive contact indication and lockout/ tagout possibilities.

Switching

The purpose is to control the motor (ON / OFF), either manually, automatically or remotely, taking into account overloads upon start-up and the long service life required. This function is provided by a contactor. When the coil of the contactor's electromagnet is energised, the contactor closes and establishes, through the poles, the circuit between the upstream supply and the motor, via the circuit breaker.

Basic protection

■ Short-circuit protection
Detection and breaking, as quickly as possible, of high short-circuit currents to avoid damage to the installation. This function is provided by a magnetic or thermalmagnetic circuit breaker.
■ Overload protection
Detection of overload currents and motor shutdown before temperature rise in the motor and conductors damages insulation. This function is provided by a thermalmagnetic circuit breaker or a separate thermal relay.

Overloads: I< 10 x In

They are caused by:

- an electrical problem, related to an anomaly in the distribution system (e.g. phase failure,
voltage outside tolerances, etc.)
- a mechanical problem, related to a process malfunction (e.g. excessive torque) or damage to
the motor (e.g. bearing vibrations).
These two causes will also result in excessively long starting times
Impedant short-circuits: $\mathbf{1 0}$ x In $<\boldsymbol{I}<\mathbf{5 0}$ x In
This type of short-circuit is generally due to deteriorated insulation of motor windings or damaged supply cables.
Short-circuits: I > 50 x In
This relatively rare type of fault may be caused by a connection error during maintenance.

Phase unbalance or phase loss protection
Phase unbalance or phase loss can cause temperature rise and braking torques that can lead to premature ageing of the motor. These effects are even greater during starting, therefore protection must be virtually immediate.

Additional electronic protection

■ Locked rotor

■ Under-load

- Long starts and stalled rotor
- Insulation faults.

Motor-feeder solutions

Standard IEC 60947 defines three types of device combinations for the protection of motor feeders

Three devices

- magnetic circuit breaker + contactor + thermal relay.

Two devices

■ thermal-magnetic circuit breaker + contactor.

One device

- thermal-magnetic circuit breaker + contactor in an integrated solution (e.g

Tesys U).

Device coordination

The various components of a motor feeder must be coordinated. Standard IEC 60947-4-1 defines three types of coordination depending on the operating condition of the devices following a standardised short-circuit test.

Type-1 coordination

- No danger to life or property.
- The contactor and/or the thermal relay may be damaged.

■ Repair and replacement of parts may be required prior to further service.

Type-2 coordination

- No danger to life or property.
- No damage or adjustments are allowed. The risk of contact welding is accepted as long as they can be easily separated.
- Isolation must be maintained after the incident, the motor feeder must be suitable
for further use without repair or replacement of parts.
- A rapid inspection is sufficient before return to service.

Total coordination
■ No damage and no risk of contact welding is allowed for the devices making up the motor feeder. The motor feeder must be suitable for further use without repair or replacement of parts.
This level is provided by integrated 1-device solutions such as Tesys U.

Contactor utilisation categories

For a given motor-feeder solution, the utilisation category determines the contactor withstand capacity in terms of frequency of operation and endurance. Selection, which depends on the operating conditions imposed by the application, may result in oversizing the contactor and circuit-breaker protection. Standard IEC 60947 defines the following contactor utilisation categories.
Contactor utilisation categories (AC current)

Contactor utilisation categories	Type of load	Control function	Typical applications
AC1	Non-inductive $(\cos \varphi \geqslant 0.8)$	Energising	Heating, distribution
AC2	Slip-ring motor $(\cos \varphi \geqslant 0.65)$	Starting Switching off motor during running Counter-current braking Inching	Wiring-drawing machine
AC3	Squirrel-cage motor $(\cos \varphi=0.45$ for $\leqslant 100 \mathrm{~A})$ $(\cos \varphi=0.35$ for $>100 \mathrm{~A})$	Starting Switching off motor during running	Compressors, elevators, pumps, mixers, escalators, fans, conveyer systems, air- conditioning
AC4	Starting Switching off motor during running Regenerative braking Plugging Inching	Printing machines, wire-drawing machines	

Utilisation category AC3 - common coordination tables for circuit breakers and contactors
This category covers asynchronous squirrel-cage motors that are switched off during running, which is the most common situation (85% of cases). The contactor makes the starting current and switches off the rated current at a voltage approximately one sixth of the nominal value. The current is interrupted without difficulty.
The circuit breaker-contactor coordination tables for Compact NSX are for use with contactors in the AC3 utilisation category, in which case they ensure type-2 coordination.

Utilisation category AC4 - possible oversizing

This category covers asynchronous squirrel-cage motors capable of operating under regenerative braking or inching (jogging) conditions
The contactor makes the starting current and can interrupt this current at a voltage that may be equal to that of the distribution system.
These difficult conditions make it necessary to oversize the contactor and, in general, the protective circuit breaker with respect to category AC3.

Functions and characteristics

Motor protection

Motor-feeder characteristics and solutions

The trip class determines the trip curve of the thermal protection device (inverse-time curve) for a motor feeder
Standard IEC 60947-4-1 defines trip classes 5, 10, 20 and 30.
These classes are the maximum durations, in seconds, for motor starting with a starting current of 7.2 Ir , where Ir is the thermal setting indicated on the motor rating plate.

Example: In class 20, the motor must have finished starting within 20 seconds (6 to 20 s) for a starting current of 7.2 lr .

Standardised values in kW

Rated operational power	Standardised values in kW currents le (A) for:			
	230 V	400 V	500 V	690 V
kW	A	A	A	A
0.06	0.35	0.32	0.16	0.12
0.09	0.52	0.3	0.24	0.17
0.12	0.7	0.44	0.32	0.23
0.18	1	0.6	0.48	0.35
0.25	1.5	0.85	0.68	0.49
0.37	1.9	1.1	0.88	0.64
0.55	2.6	1.5	1.2	0.87
0.75	3.3	1.9	1.5	1.1
1.1	4.7	2.7	2.2	1.6
1.5	6.3	3.6	2.9	2.1
2.2	8.5	4.9	3.9	2.8
3	11.3	6.5	5.2	3.8
4	15	8.5	6.8	4.9
5.5	20	11.5	9.2	6.7
7.5	27	15.5	12.4	8.9
11	38	22	17.6	12.8
15	51	29	23	17
18.5	61	35	28	21
22	72	41	33	24
30	96	55	44	32
37	115	66	53	39
45	140	80	64	47
55	169	97	78	57
75	230	132	106	77
90	278	160	128	93
110	340	195	156	113
132	400	230	184	134
160	487	280	224	162
200	609	350	280	203
250	748	430	344	250
315	940	540	432	313

Trip class of a thermal-protection device

The motor feeder includes thermal protection that may be built into the circuit breaker. The protection must have a trip class suited to motor starting. Depending on the application, the motor starting time varies from a few seconds (no-load start) to a few dozen seconds (high-inertia load).
Standard IEC 60947-4-1 defines the trip classes below as a function of current setting Ir for thermal protection.
Trip class of thermal relays as a function of their Ir setting

Class	$\mathbf{1 . 0 5} \mathbf{I r ~}^{(1)}$	$\mathbf{1 . 2} \boldsymbol{I r}^{(1)}$	$\mathbf{1 . 5} \boldsymbol{I r}^{(2)}$	$\mathbf{7 . 2} \mathbf{I r}^{(1)}$
5	$\mathrm{t}>2 \mathrm{~h}$	$\mathrm{t}<2 \mathrm{~h}$	$\mathrm{t}<2 \mathrm{mn}$	$2 \mathrm{~s}<\mathrm{t} \leqslant 5 \mathrm{~s}$
10	$\mathrm{t}>2 \mathrm{~h}$	$\mathrm{t}<2 \mathrm{~h}$	$\mathrm{t}<4 \mathrm{mn}$	$4 \mathrm{~s}<\mathrm{t} \leqslant 10 \mathrm{~s}$
20	$\mathrm{t}>2 \mathrm{~h}$	$\mathrm{t}<2 \mathrm{~h}$	$\mathrm{t}<8 \mathrm{mn}$	$6 \mathrm{~s}<\mathrm{t} \leqslant 20 \mathrm{~s}$
30	$\mathrm{t}>2 \mathrm{~h}$	$\mathrm{t}<2 \mathrm{~h}$	$\mathrm{t}<12 \mathrm{mn}$	$9 \mathrm{~s}<\mathrm{t} \leqslant 30 \mathrm{~s}$

(1) Time for a cold motor (motor off and cold).
(2) Time for warm motor (motor running under normal conditions).

Currents of squirrel-cage motors at full rated load

Standardised values in HP

Rated operational power	Indicative values of the rated operational currents le (A) for						
	$\begin{aligned} & 110- \\ & 120 \mathrm{~V} \end{aligned}$	200 V	208 V	$\begin{aligned} & 220 \text { - } \\ & 240 \text { V } \end{aligned}$	$\begin{aligned} & 380- \\ & 415 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 440- \\ & 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 550- \\ & 600 \text { V } \end{aligned}$
hp							
1/2	4.4	2.5	2.4	2.2	1.3	1.1	0.9
3/4	6.4	3.7	3.5	3.2	1.8	1.6	1.3
1	8.4	4.8	4.6	4.2	2.3	2.1	1.7
$11 / 2$	12	6.9	6.6	6	3.3	3	2.4
2	13.6	7.8	7.5	6.8	4.3	3.4	2.7
3	19.2	11	10.6	9.6	6.1	4.8	3.9
5	30.4	17.5	16.7	15.2	9.7	7.6	6.1
$71 / 2$	44	25.3	24.2	22	14	11	9
10	56	32.2	30.8	28	18	14	11
15	84	48.3	46.2	42	27	21	17
20	108	62.1	59.4	54	34	27	22
25	136	78.2	74.8	68	44	34	27
30	160	92	88	80	51	40	32
40	208	120	114	104	66	52	41
50	260	150	143	130	83	65	52
60	-	177	169	154	103	77	62
75	-	221	211	192	128	96	77
100	-	285	273	248	165	124	99
125	-	359	343	312	208	156	125
150	-	414	396	360	240	180	144
200	-	552	528	480	320	240	192
250	-	-	-	604	403	302	242
300	-	-	-	722	482	361	289

Note: $1 \mathrm{hp}=0.7457 \mathrm{~kW}$.

Asynchronous-motor starting parameters

The main parameters of direct on-line starting of three-phase asynchronous motors (90% of all applications) are listed below.
■ Ir: rated current
This is the current drawn by the motor at full rated load (e.g. approximately 100 Arms for 55 kW at 400 V).

- Id: starting current

This is the current drawn by the motor during starting, on average 7.2 In for a duration td of 5 to 30 seconds depending on the application (e.g. 720 Arms for 10 seconds). These values determine the trip class and any additional "long-start" protection devices that may be needed.

- l"d: peak starting current

This is the subtransient current during the first two half-waves when the system is energised, on the average 14 In for 10 to 15 ms (e.g. 1840 A peak).

The protection settings must effectively protect the motor, notably via a suitable thermal-relay trip class, but let the peak starting current through.

Typical motor-starting curve

Compact NSX motor-feeder solutions

Compact NSX motor circuit breakers are designed for motor-feeder solutions using: ■ three devices, including an MA or 1.3-M magnetic-only trip unit ■ two devices including a TM-D or 2-M thermal-magnetic trip unit.
They are designed for use with contactors in the AC3 utilisation category (80% of all cases) and they ensure type-2 coordination with the contactor.
For the AC4 utilisation category, the difficult conditions generally make it necessary to oversize the protection circuit breaker with respect to the AC3 category.

Compact NSX motor-protection range

Compact NSX trip units can be used to create motor-feeder solutions comprising two or three devices. The protection devices are designed for continuous duty at $65^{\circ} \mathrm{C}$.

Three-device solutions

- 1 NSX circuit breaker with an MA or Micrologic 1.3-M trip unit
- 1 contactor
- 1 thermal relay.

Two-device solutions

- 1 Compact NSX circuit breaker
\square with a Micrologic 2.2-M or 2.3-M electronic trip unit
\square with a Micrologic 6 E-M electronic trip unit. This version offers additional protection and Power Meter functions.
- 1 contactor.

Motor protection
 MA and Micrologic 1.3-M instantaneous trip units

MA magnetic trip units are used in 3-device motor-feeder solutions. They can be mounted on all Compact NSX100/160/250 circuit breakers with performance levels B/F/H/N/S/L.
They provide short-circuit protection for motors up to 110 kW at 400 V .

Micrologic 1.3-M trip units are used in 3device motor-feeder solutions on Compact NSX400/630 circuit breakers with performance levels B/F/H/N/S/L.
They provide short-circuit protection for motors up to 250 kW at 400 V .
They also provide the benefits of electronic technology:
■ accurate settings

- tests

■ "Ready" LED.

MA magnetic trip units

-		MA 220 $220 \mathrm{~A} / 65^{\circ} \mathrm{C}$	Im

Circuit breakers with an MA trip unit are combined with a thermal relay and a contactor or a starter.

Protection

\qquad

Magnetic protection (lm)

Short-circuit protection with an adjustable pick-up Im that initiates instantaneous tripping if exceeded.

- $\operatorname{Im}=\ln x \ldots$ is set on an adjustment dial in multiples of the rating:
- 6 to $14 \times \ln$ (2.5 to 100 A ratings)
- 9 to $14 \times \ln$ (150 to 200 A ratings)

Protection version
■ 3-pole (3P 3D): 3-pole frame (3P) equipped with detection on all 3 poles (3D).

Micrologic 1.3-M trip units

Circuit breakers with a Micrologic 1.3-M trip unit are combined with a thermal relay and a contactor.
Protection

\qquad

\square

Settings are made using a dial.

Short-circuits: Short-time protection (Isd)
Protection with an adjustable pick-up Isd. There is a very short delay to let through motor starting currents.
■ Isd is set in amperes from 5 to $13 \times \mathrm{ln}$, as follows:

- from 1600 to 4160 A for the 320 A rating.
- from 2500 to 6500 A for the 500 A rating.

Short-circuits: Non-adjustable instantaneous protection (li)
Instantaneous protection with non-adjustable pick-up li.

Protection version

■ 3-pole (3P 3D): 3-pole frame (3P) equipped with detection on all 3 poles (3D).

Indications

Front indications
■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

(1) Motor standards require operation at $65^{\circ} \mathrm{C}$. Circuit-breaker ratings are derated to take this requirement into account.

Micrologic 2-M trip units provide built-in
thermal and magnetic protection. They are used in 2-device motor-feeder solutions on Compact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L.
They provide protection for motors up to 315 kW at 400 V against:
■ short-circuits
■ overloads with selection of a trip class (5,
10 or 20)
■ phase unbalance.

SDTAM remote indication relay module with its terminal block.
(

Circuit breakers with a Micrologic 2.2 / 2.3-M trip unit include protection similar to an inverse-time thermal relay. They are combined with a contactor.

Protection

Settings are made using a dial.
Overloads (or thermal protection): Long-time protection and trip class (Ir) Inverse-time thermal protection against overloads with adjustable pick-up Ir. Settings are made in amperes. The tripping curve for the long-time protection, which indicates the time delay $t r$ before tripping, is defined by the selected trip class.

Trip class (class)

The class is selected as a function of the normal motor starting time.

- Class 5: starting time less than 5 s
- Class 10: starting time less than 10 s
- Class 20: starting time less than 20 s

For a given class, it is necessary to check that all motor-feeder components are sized to carry the 7.2 Ir starting current without excessive temperature rise during the time corresponding to the class.

Short-circuits: Short-time protection (Isd)

Protection with an adjustable pick-up Isd. There is a very short delay to let through motor starting currents.
Short-circuits: Non-adjustable instantaneous protection (li) Instantaneous protection with non-adjustable pick-up li.

Phase unbalance or phase loss (lunbal) (产)

This function opens the circuit breaker if a phase unbalance occurs:
■ that is greater than the 30% fixed pick-up lunbal

- following the non-adjustable time delay tunbal equal to:
$\square 0.7$ s during starting
$\square 4 \mathrm{~s}$ during normal operation.
Phase loss is an extreme case of phase unbalance and leads to tripping under the same conditions.

Indications

Front indications

■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
■ Red alarm LED for motor operation: goes ON when the thermal image of the rotor and stator is greater than 95% of the permissible temperature rise.

Remote indications via SDTAM module

Compact NSX devices with a Micrologic 2 can be equipped with an SDTAM module dedicated to motor applications for:
■ a contact to indicate circuit-breaker overload
■ a contact to open the contactor. In the event of a phase unbalance or overload, this output is activated 400 ms before circuit-breaker tripping to open the contactor and avoid circuit breaker tripping
This module takes the place of the MN/MX coils and an OF contact.

Unbalance of phase currents and voltages

Additional technical characteristics

Phase unbalance

An unbalance in three-phase systems occurs when the three voltages are not equal in amplitude and/or not displaced 120° with respect to each other. It is generally due to single-phase loads that are incorrectly distributed throughout the system and unbalance the voltages between the phases.
These unbalances create negative current components that cause braking torques and temperature rise in asynchronous machines, thus leading to premature ageing.

Phase loss

Phase loss is a special case of phase unbalance.

- During normal operation, it produces the effects mentioned above and tripping must occur after four seconds.
■ During starting, the absence of a phase may cause motor reversing, i.e. it is the load that determines the direction of rotation. This requires virtually immediate tripping (0.7 seconds).
Starting time in compliance with the class (Micrologic 2-M)
For normal motor starting, Micrologic 2-M checks the conditions below with respect to the thermal-protection (long-time) pick-up Ir:
- current > 10% x Ir (motor-off limit)
- overrun of $1.5 \times \operatorname{Ir}$ threshold, then return below this threshold before the end of a 10 s time delay.
If either of these conditions is not met, the thermal protection trips the device after a maximum time equal to that of the selected class.
Pick-up Ir must have been set to the current indicated on the motor rating plate.

Long starts (Micrologic 6 E-M)

When this function is not activated, the starting conditions are those indicated above.
When it is activated, this protection supplements thermal protection (class).
A long start causes tripping and is characterised by:

- current > 10% x Ir (motor-off limit) with:

■ either overrun of the long-time pick-up (1 to $8 \times \operatorname{lr}$) without return below the pick-up before the end of the long-time time delay (1 to 200 s)

- or no overrun of the long-time pick-up (1 to $8 \times \operatorname{lr}$) before the end of the long-time time delay (1 to 200 s).
Pick-up Ir must have been set to the current indicated on the motor rating plate.
This protection should be coordinated with the selected class.

Micrologic 6.E-M is used in 2-device motor-feeder solutions. It provides the same protection as Micrologic 2-M:

- short-circuits

■ overloads with selection of the same trip classes (5, 10 or 20), plus trip class 30 for starting of machines with high inertia. In addition, it offers specific motorprotection functions that can be set via the keypad.

SDTAM remote indication relay module with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Protection

The protection functions are identical to those of Micrologic 2-M and can be fineadjusted via the keypad $\boldsymbol{\square}$
Access to setting modifications via the keypad is protected by a locking function that is controlled by a microswitch O. The lock is activated automatically if the keypad is not used for 5 minutes. Access to the microswitch is protected by a transparent lead-sealable cover. It is possible to scroll through settings and measurements with the cover closed.

Overloads (or thermal), class and short-circuits
The long-time, short-time and instantaneous functions are identical to those of Micrologic 2-M.
In addition, there is trip class 30 for long-time protection and a setting for self-cooled or fan-cooled motors (\&).

Ground-fault protection (Ig)

Residual type ground-fault protection with an adjustable pick-up Ig (with Off position) and adjustable time delay $\mathbf{t g}$.

Phase unbalance or phase loss (lunbal)

This function opens the circuit breaker if a phase unbalance occurs:

- that is greater than the lunbal pick-up that can be fine-adjusted from 10 to 40%
(30 \% by default)
- following the tunbal time delay that is:
$\square 0.7$ s during starting
\square adjustable from 1 to 10 seconds (4 seconds by default) during normal operation. Phase loss is an extreme case of phase unbalance and leads to tripping under the same conditions.

Locked rotor (ljam)

This function detects locking of the motor shaft caused by the load.
During motor starting (see page A-43), the function is disabled.
During normal operation, it causes tripping:
■ above the Ijam pick-up that can be fine-adjusted from 1 to $8 \times \mathrm{Ir}$

- in conjunction with the tjam time delay that can be adjusted from 1 to 30 seconds.

Under-Ioad (lund)

This function detects motor no-load operation due to insufficient load (e.g. a drained pump). It detects phase undercurrent.
During motor starting (see page A-43), the function is always enabled.
During normal operation, it causes tripping:

- below the lund pick-up that can be fine-adjusted from 0.3 to $0.9 \times \mathrm{lr}$
- in conjunction with the tund time delay that can be adjusted from 1 to 200 seconds.
Long starts (llong)
This protection supplements thermal protection (class). It is used to better adjust protection to the starting parameters. It detects abnormal motor starting, i.e. when the starting current remains too high or too low with respect to a pick-up value and a time delay.
It causes tripping:
■ in relation with a llong pick-up that can be fine-adjusted from 1 to 8 xlr
- in conjunction with the tlong time delay that can be adjusted from 1 to 200 seconds.
(see "long starts" page A-43)

Display of type of fault

On a fault trip, the type of fault (Ir, Isd, Ii, Ig, lunbal, Ijam), the phase concerned and the interrupted current are displayed

Indications

Front indications
■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
■ Red alarm LED for motor operation: goes ON when the thermal image of the rotor or stator is greater than 95% of the permissible temperature rise.

Remote indications via SDTAM or SDx module

See description on page A-42 for SDTAM and page A-81 for SDx.

(1) Motor standards require operation at $65^{\circ} \mathrm{C}$. Circuit-breaker ratings are derated to take this requirement into account.
(2) The unbalance measurement takes into account the most unbalanced phase with respect to the average current.

Functions and characteristics

Motor protection

Micrologic 6 E-M electronic trip units (cont.)

Micrologic 6 E-M provides Power Meter functions with energy metering. With the FDM121 display unit, all metering data and operating indicators are available on the switchboard front panel. This version also displays the thermal image of the motor.

Current values.

Thermal-image alarm.

PC screen with motor thermal image and value monitoring.

Power Meter functions

The built-in Power Meter functions of the Micrologic 6 E-M are the same as those for the Micrologic 6-E presented in the section on distribution (see page A-20). When used exclusively in the three-phase version, neutral measurements are excluded.

Operating-assistance functions

The operating-assistance functions of the Micrologic $6 \mathrm{E}-\mathrm{M}$ are the same as those for the Micrologic 6-E presented in the section on distribution (see page A-22).

Special functions for motor feeders

Additional operating functions specifically for motor feeders are available.

Phase sequence

The order in which the phases L1, L2, L3 are connected determines the direction of motor rotation. If two phases are inverted, the direction is reversed. Information on the direction of rotation is provided. It can be linked to an alarm to detect an inversion in the direction following servicing on the supply under deenergised conditions and disable restarting.

Thermal image of the rotor and stator

Micrologic $6 \mathrm{E}-\mathrm{M}$ offers a thermal-image function.
Taking into account the Ir setting and the class, an algorithm simulates rotor and stator temperature rise. It includes the slow temperature rise of the stator and its metal mass. Also included is the faster temperature rise of the copper rotor. The thermal protection function trips the circuit breaker when the calculated thermal image reaches 100% of the permissible temperature rise.
The communication indicates the thermal-image value as a percentage of the permissible temperature rise. One or more alarms may be assigned to selected thresholds. A red LED on the front signals when the value exceeds 95%. An SDx module with two outputs programmed for thermal-image values can be used to implement other alarm functions.

[^4](2) Available via communication system.
(3) The BSCM module (page A-27) is required for these functions.

Special applications
 Generator protection with Micrologic 2.2-G

Micrologic G trip units are used for the protection of systems supplied by generators or comprising long cable lengths. They can be mounted on all Compact NSX100/160/250 circuit breakers. With extensive setting possibilities, Micrologic 5 offers the same functions from 100 to 630 A .
 A thermal-magnetic trip unit is also available for the NSX100 (see page A-15).

Circuit breakers equipped with Micrologic G trip units protect systems supplied by generators (lower short-circuit currents than with transformers) and distribution systems with long cable lengths (fault currents limited by the impedance of the cable).

Protection

Settings are made using the adjustment dials with fine adjustment possibilities

Overloads: Long-time protection (lr)

Inverse-time thermal protection against overloads with an adjustable current pick-up Ir and a very short, non-adjustable time delay $\mathbf{t r}$ (15 seconds for 1.5 x Ir).

Short-circuits: Short-time protection (Isd) with fixed time delay

Short-circuit protection with an adjustable pick-up Isd, delayed 200 ms , in compliance with the requirements of marine classification companies.
Short-circuits: Non-adjustable instantaneous protection (li) Instantaneous short-circuit protection with a fixed pick-up required for generator protection.

Neutral protection

■ On 3-pole circuit breakers, neutral protection is not possible.
■ On four-pole circuit breakers, neutral protection may be set using a three-position switch:

- 4P 3D: neutral unprotected
$\square 4 \mathrm{P} 3 \mathrm{D}+\mathrm{N} / 2$: neutral protection at half the value of the phase pick-up, i.e. $0.5 \times \mathrm{Ir}$
\square 4P 4D: neutral fully protected at Ir.

Indications

■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
■ Orange overload pre-alarm LED: steady on when I > 90% Ir
■ Red overload LED: steady on when I > 105 \% Ir

Remote indications

An SDx relay module installed inside the circuit breaker can be used to remote the overload-trip signal.
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed
The module is described in detail in the section dealing with accessories.

Front indications

SDx remote indication relay module with its terminal block.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Functions and characteristics

Compact NSX circuit breakers are also used in industrial control panels. They serve as an incoming devices or can be combined with contactors to protect motor feeders:
■ compliance with worldwide standards including IEC 60947-2 and UL 508 / CSA 22-2 no. 14
■overload and short-circuit protection ■ isolation with positive contact indication, making it possible to service machines safely by isolating them from all power sources

- installation in universal and functional type enclosures ■ NA switch-disconnector version.

Industrial control panels

Compact NSX circuit breakers equipped for public distribution or motor protection functions as described in the previous pages can be used in industrial control panels. The accessories for the Compact NSX range are suitable for the special needs of these switchboards.

Auxiliaries

All auxiliaries can be added to the circuit breaker by the user:
■ padlocking devices (in the OFF position)

- rotary handle

■ status-indication auxiliary contacts (ON, OFF and tripped)

- shunt (MX) or undervoltage (MN) releases
- early-make or early-break contacts.

Rotary handle

Direct or extended versions for mounting up to 600 mm behind the front:

- black front with black handle
- yellow front with red handle (for machine tools or emergency off as per IEC 204 / VDE 0013).
All rotary handles can be padlocked in the OFF position. Optional door interlock, recommended for MCC panels (motor control centres).
When the device is equipped with an extended rotary handle, a control accessory mounted on the shaft makes it possible to operate the device with the door open. The device can be padlocked in the OFF position in compliance with UL508.

Early-make or early-break contacts

These contacts can be used respectively to supply an MN undervoltage release before the circuit breaker closes or to open the contactor control circuit before the circuit breaker opens.

Special functions

- Indication of thermal overloads with the SDx module.
- Early opening of the contactor for overload faults with the SDTAM module.
- Links with PLCs via the communication system.

■ Measurement of all electrical parameters with Micrologic A and E.

- Programmable alarms with Micrologic 5 and 6 .

Installation in enclosures

Compact circuit breakers can be installed in a metal enclosure together with other devices (contactors, motor-protection circuit breakers, LEDs, etc.) (see page A-90).

Compliance with North American industrial control equipment standards

Compact NSX devices have received UL508 / CSA 22-2 no. 14 approval for industrial control equipment of the "Manual Motor Controller", "Across the Line Starter", "General Use" and "Disconnecting Means" types.
Type NA devices are switch-disconnectors that must always be protected upstream.
UL508 approval

Circuit breakers	Trip units	Approvals
Compact NSX100 to 630	TMD, Micrologic 2,5 and 6	General Use
F/N/H		Motor Disconnecting Means
	NA, MA, Micrologic $1.3 \mathrm{M}, 2.2 \mathrm{M}$,	Manual Motor Controller
	2.3 M, Micrologic $6.2 \mathrm{E}-\mathrm{M}$ and	Across the Line Starter
	$6.3 \mathrm{E}-\mathrm{M}$	Motor Disconnecting Means

V AC ratings		115	230	460	575
TMD Micrologic 2, 5 and 6	NA, MA Micrologic $1.3 \mathrm{M}, \mathbf{2 . 2} \mathrm{M}$, 2.3 M Micrologic 6.2 E-M and 6.3 E-M				
25	25	3	7.5	15	20
50	50	7.5	15	30	40
100	100	15	30	75	100
160	150	25	50	100	150
250	220	40	75	150	200
400	320	-	125	250	300
550	500	-	150	350	500

The deratings indicated on pages $B-8$ and $B-9$ apply to TMD, Micrologic 2, 5 and 6 trip units, rated at $40^{\circ} \mathrm{C}$.

$16 \mathrm{~Hz} 2 / 3$ network protection Micrologic 5 A-Z trip unit

Compact NSX circuit breakers may be used on $16 \mathrm{~Hz} 2 / 3$ systems with special thermalmagnetic and electronic (Micrologic 5A-Z) trip units.

16 Hz 2/3 networks

Single-phase distribution networks with a frequency of $16 \mathrm{~Hz} 2 / 3$ are used for railroad applications in certain European countries.

Breaking capacity for $16 \mathrm{~Hz} 2 / 3$ at $250 / 500$ V

Compact NSX circuit breakers of the 3P 2D or the 3P 3D type protect $16 \mathrm{~Hz} 2 / 3$ networks at 250 V or 500 V .
They can be equipped with either:
■ a TM-D thermal-magnetic trip unit for Compact NSX100 to 250
■ or an electronic Micrologic 5.2 A-Z trip unit for Compact NSX100 to 250 or a 5.3 A-Z for Compact NSX400/630.
The possible breaking-capacity performance levels are B, F, N and H as indicated below.
Breaking capacity Icu

Operating voltage		TMD and Micrologic 5 A-Z trip units			
	Performance	B	F	N	H
$250 \mathrm{~V} / 500 \mathrm{~V}$	Icu (kA)	25	36	50	70

Protection

TM-D thermal-magnetic trip units

		$175 \left\lvert\, \begin{array}{r} 1 m 25 \\ 225 \\ 2 \end{array}\right.$		${ }_{1500}^{1250}$	TM						
The $16 \mathrm{~Hz} 2 / 3$ frequency does not modify the thermal settings with respect to those at 50 Hz (see page A-15). The magnetic pick-ups are modified as shown below.											
Magnetic protection for Compact NSX 100/160/250 at 50 Hz and at $16 \mathrm{~Hz} \mathbf{2 / 3}$											
Rating (A) In at $40^{\circ} \mathrm{C}$ Pick-up (A) Im accur. $\pm 20 \%$		1625	32	40	50	63	80	100	125	160	200250
		Fixed									Adjustable
NSX100	50 Hz	$\begin{array}{lll}190 & 300 \\ 170 & 27\end{array}$	400360	500	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	500450		800			
	$16 \mathrm{~Hz} 2 / 3$							720			
NSX160/250	50 Hz	190300	400	500	500	500	640	800	1250	1250	5 to 10
	$16 \mathrm{~Hz} \mathrm{2/3}$	170270	360	450	450	450	580	720		1100	4.5 to 9

Micrologic 5 A-Z trip units

Phase and isolated neutral interrupted-250/500 V
B and F (3P 2D version) $\quad \mathrm{N}$ and H (3P 3D version)

Remark. For an operating voltage > 250 V , the installation must be designed to eliminate all risk of double earth faults.

Micrologic 5.2 A-Z and 5.3 A-Z are dedicated to $16 \mathrm{~Hz} 2 / 3$ networks.
They use a suitable sampling frequency. The protection settings are identical to those of Micrologic 5 A (see page A-19). They also offer a current-measurement function for this specific frequency.
Trip-unit selection

Wiring for NSX100 to 630 A

2 poles in series - Earthed neutral - $250 / 500 \mathrm{~V}$

Compact NSX circuit breakers may be used on 400 Hz systems.

400 Hz distribution systems

The main 400 Hz applications are in aeronautics and certain military ships. Modern aircraft have three-phase $115 / 200 \mathrm{~V} 400 \mathrm{~Hz}$ networks.

Impact on protective devices

Due to the higher frequency, circuit breakers are subjected to additional temperature rise for identical current levels, resulting from higher losses caused by Foucault currents and an increase in the skin effect (reduction in the useful CSA of conductors). To remain within the rated temperature-rise limits of devices, current derating is required.
The power levels of 400 Hz applications rarely exceed a few hundred kW with relatively low short-circuit currents, generally not exceeding four times the rated current.
The standard Compact NSX and Masterpact NT/NW ranges are suitable for 400 Hz applications if derating coefficients are applied to the protection settings. See the derating table below.

Breaking capacity of Compact NSX circuit breakers in $400 \mathrm{~Hz}, 440$ V systems

Circuit breaker	Breaking capacity Icu
NSX100	10 kA
NSX160	10 kA
NSX250	10 kA
NSX400	10 kA
NSX630	10 kA

Trip units equipped with thermal-magnetic

protection

The 400 Hz current settings are obtained by multiplying the 50 Hz values by the following adaptation coefficient:

- K1 for thermal trip units
- K2 for magnetic trip units.

These coefficients are independent of the trip-unit setting.
Thermal trip units
The current settings are lower at 400 Hz than at $50 \mathrm{~Hz}(\mathrm{~K} 1<1)$.

Magnetic trip units

The current settings are conversely higher at 400 Hz than at $50 \mathrm{~Hz}(\mathrm{~K} 2>1)$.
Consequently, when the trip units are adjustable, they must be set to the minimum value.

Adaptation coefficients for thermal-magnetic trip units

Circuit breaker	Trip unit	$\ln (\mathrm{A})$	Thermal at $40^{\circ} \mathrm{C}$		$\begin{aligned} & \operatorname{Im}(A) \\ & 50 \mathrm{~Hz} \end{aligned}$	Magnetic	
		50 Hz	K1	400 Hz		K2	400 Hz
NSX100	TM16G	16	0.95	15	63	1.6	100
	TM25G	25	0.95	24	80	1.6	130
	TM40G	40	0.95	38	80	1.6	130
	TM63G	63	0.95	60	125	1.6	200
NSX100	TM16D	16	0.95	15	240	1.6	300
	TM25D	25	0.95	24	300	1.6	480
	TM40D	40	0.95	38	500	1.6	800
	TM63D	63	0.95	60	500	1.6	800
	TM80D	80	0.9	72	650	1.6	900
	TM100D	100	0.9	90	800	1.6	900
NSX250	TM100D	100	0.9	90	800	1.6	900
	TM160D	160	0.9	144	1250	1.6	2000
	TM200D	200	0.9	180	1000 to 2000	1.6	$\begin{aligned} & 1600 \text { to } \\ & 3200 \end{aligned}$
	TM250D	250	0.9	225	1250 to 2500	1.6	$\begin{aligned} & 2000 \text { to } \\ & 4000 \end{aligned}$

Example

NSX100 equipped with a TM16G with 50 Hz settings $\mathrm{Ir}=16 \mathrm{~A}$ and $\mathrm{Im}=63 \mathrm{~A}$.
400 Hz settings $\mathrm{Ir}=16 \times 0.95=15 \mathrm{~A}$ and $\mathrm{Im}=63 \mathrm{~A} \times 1.6=100 \mathrm{~A}$.

Protection of 400 H systems (cont.)

Micrologic 5E trip unit.

MX or MN voltage release.

SDx remote indication relay module with its terminal block.

Protection(cont.)

Micrologic electronic trip units

Micrologic 2.2, 2.3 or $5.2,5.3$ with A or E measurement functions are suitable for 400 Hz . The use of electronics offers the advantage of greater operating stability when the frequency varies. However the units are still subject to temperature rise caused by the frequency.
The practical consequences are:

- limit settings to 0.9 In (see the Ir derating table below)
- the long-time, short-time and instantaneous pick-ups are not modified (see pages

A-17 or A-19)
■ the accuracy of the displayed measurements is 2 \% (class II).
Thermal derating: maximum Ir setting

Circuit breaker	Maximum setting coefficient 1	Max. Ir setting at $\mathbf{4 0 0} \mathbf{~ H z}$
NSX100N	0.8	100
NSX250N	0.8	225
NSX400N	0.8	320
NSX630N		500

Example

An NSX250N, equipped with a Micrologic 2.2, Ir $=250 \mathrm{~A}$ at 50 Hz , must be limited to use at $\mathrm{Ir}=250 \times 0.9=225 \mathrm{~A}$.
Its short-time pick-up with fixed time delay is adjustable from 1.5 to $10 \operatorname{lr}$ (60 to 400 A). The instantaneous pick-up remains at 3000 A.

OF auxiliary contacts in 400 Hz networks

Electrical characteristics of auxiliary contacts

Contacts	Standard		Low level	
Utilisation cat. (IEC 60947-5-1)	AC12	AC15	CA12	CA15
Operational current 24 V	6	6	5	3
(A) 48 V	6	6	5	3
110 V	6	5	5	2.5
220/240 V	6	4	5	2
$380 / 415 \mathrm{~V}$	6	2	5	1.5

MN and MX voltage releases for Compact NSX100/630 at 400 Hz and 440 V

For circuit breakers on 400 Hz systems, only 125 V DC MN or MX releases may be used. The release must be supplied by the 400 Hz system via a rectifier bridge (to be selected from the table below) and an additional resistor with characteristics depending on the system voltage.

$\mathbf{U}(\mathbf{V}) \mathbf{4 0 0 ~ H z}$	Rectifier	Additional resistor
$220 / 240 \mathrm{~V}$	Thomson 110 BHz or	$4.2 \mathrm{k} \Omega-5 \mathrm{~W}$
	General Instrument W06 or	
	Semikron SKB at $1.2 / 1.3$	
$380 / 420 \mathrm{~V}$	Semikron SKB at $1.2 / 1.3$	$10.7 \mathrm{kN} \Omega-10 \mathrm{~W}$

Note: other models of rectifier bridges may be used if their characteristics are at least equivalent to those stated above.

SDx indication contacts

The SDx module may be used in 400 Hz systems for voltages from 24 to 440 V . An SDx relay module installed inside the circuit breaker can be used to remote the overload-trip signal.
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.
These outputs can be reprogrammed to be assigned to other types of tripping or alarm (see page A-81).

Functions and characteristics

Switch-disconnectors
 Overview of applications

A switch-disconnector is a control device
that can be used to open and close a circuit under normal operating conditions.
It is suitable for isolation as indicated on the
front by the symbol

Position of switch-disconnectors

Compact NSX switch-disconnectors are used primarily for the following applications:

- busbar coupling and isolation
- isolation of industrial distribution boards and industrial control panels

■ isolation of subdistribution boards for modular devices

- isolation of local enclosures

■ isolation of final distribution enclosures for commercial applications

- industrial control panel switch-disconnectors.

N.B. Adjacent to or built into the machine.

L
Building utilities

Manufacturing processes and individual machines

Compact NSX100 to 630 NA switchdisconnectors are available in fixed, plug-in and withdrawable versions. They use the same accessories and offer the same connection possibilities as the circuitbreaker versions.
They may be interlocked with another Compact switch-disconnector or circuit breaker to form a source-changeover system.

Compact NSX switch-disconnector.

Compact NSX switch-disconnector equipped with a motor mechanism module.

Compact NSX switch-disconnector equipped with a Vigi module.

Suitability for isolation with positive contact indication

Compact NSX switch-disconnectors are suitable for isolation as defined by standard IEC 60947-3. The corresponding conformity tests guarantee:
■ the mechanical reliability of the position indication, i.e. the O (OFF) position indicated by the control device always reflects the open position of the contacts: \square the required distance between contacts is provided
\square padlocks may not be installed unless the contacts are open

- the absence of leakage currents
- overvoltage withstand capacity between upstream and downstream connections. Installation of a rotary handle or a motor mechanism does not alter the reliability of the position-indication system.

Emergency-off function

A Compact NSX NA is combined with an MN or MX release connected to an emergency-off button. In an emergency, an operator at a remote location can interrupt the circuit at rated load to isolate the entire switchboard and the downstream loads.

Motor mechanism

Compact NSX NA devices equipped with a motor mechanism module enable remote closing and opening. This function may be combined with the emergency-off function. In this case, the emergency off function is combined with a closing lock-out that must be intentionally reset (electrical diagram with closing lock-out).

Earth-leakage protection

A Vigi module may be added to a switch-disconnector to monitor all leakage currents in the outgoing circuits of the switchboard on which the switch-disconnector is installed. When the Vigi module detects an earth-leakage current, the switchdisconnector interrupts the load current. This function may be combined with the motor mechanism and the emergency-off function using an MN or MX release.

Switch-disconnector protection

The switch-disconnector can make and break its rated current. For an overload or a short-circuit, it must be protected by an upstream device, in compliance with installation standards.
The circuit-breaker/switch-disconnector coordination tables determine the required upstream circuit breaker. However, due to their high-set magnetic release, Compact NSX100 to 630 A switch-disconnectors are self-protected.

Switch-disconnector utilisation category

Depending on the rated operational current and the mechanical durability (A for frequent operation or B for infrequent operation), standard IEC 60947-3 defines the utilisation categories as shown in the table below. Compact NSX NA switchdisconnectors comply with utilisation categories AC22A or AC23A.

Utilisation category		Typical applications		
Infrequent operation	Frequent operation	AC-21B		Resistive loads including moderate overloads $(\cos \varphi=$
:---				
$0.95)$				

Switch-disconnectors

Characteristics and performance of Compact NSX switch-disconnectors from 100 to 630 NA

Installation standards require upstream protection. However Compact NSX100 to 630 NA switch-disconnectors are selfprotected by their high-set magnetic release.

Switch-disconnectors

Electrical characteristics as per IEC 60947-3 and EN 60947-3

Conventional thermal current (A)	Ith $60{ }^{\circ} \mathrm{C}$			
Number of poles				
Operational current (A) depending on the utilisation category		AC $50 / 60 \mathrm{~Hz}$		
		220/240 V		
		$380 / 415 \mathrm{~V}$		
		440/480 V ${ }^{(2)}$		
		500/525 V		
		660/690 V		
		DC		
		250 V (1 pole)		
		500 poles (2 poles in series)		
		750 V (3 poles in series)		
Short-circuit making capacity (kA peak)	Icm	min. (switch-disconnector alone)		
		max. (protection by upstream circuit breaker)		
Rated short-time withstand current (Arms)	Icw	for	1 s	
			3 s	
			20 s	
Durability (C-O cycles)	mechanical			
	electrical	AC		
			440 V	$\ln / 2$
				In
			690 V	In/2
				In
		DC	250 V	$\ln / 2$
			500 V	

Positive contact indication
Pollution degree

Protection	
Add-on earth-leakage protection	By Vigi module
	By Vigirex relay

Additional indication and control auxiliaries

Indication contacts	
Voltages releases	MX shunt release
	$M N$ undervoltage release

Voltage-presence indicator	
Current-transformer module	
Ammeter module	
Insulation monitoring module	
Remote communication by bus	
Device-status indication Device remote operation Operation counter Installation / connections Dimensions (mm) WxHxD Weight (kg) \quad fixed, front connections	$2 / 3 \mathrm{P}$

Source-changeover systems (see chapter on Source-changeover systems)

Manual source-changeover systems
Remote-operated or automatic source-changeover systems
(1) $2 P$ in $3 P$ case.
(2) Suitable for 480 V NEMA.

NSX100NA	NSX160NA	NSX250NA	NSX400NA	NSX630NA
100	160	250	400	630
$2{ }^{(1)}, 3,4$	$2^{(1)}, 3,4$	$2{ }^{(1)}$, 3, 4	3, 4	3,4
AC22A / AC23A				
100	160	250	400	630
100	160	250	400	630
100	160	250	400	630
100	160	250	400	630
100	160	250	400	630
DC22A / DC23A				
100	160	250	400	630
100	160	250	400	630
100	160	250	400	630
2.6	3.6	4.9	7.1	8.5
330	330	330	330	330
1800	2500	3500	5000	6000
1800	2500	3500	5000	6000
690	960	1350	1930	2320
50000	40000	20000	15000	15000
AC22A / AC23A				
35000	30000	15000	10000	6000
20000	15000	7500	5000	3000
15000	10000	6000	5000	3000
8000	5000	3000	2500	1500
10000	10000	10000	2000	2000
5000	5000	5000	1000	1000
■	■	\square	■	■
III	III	III	III	III

$140 \times 255 \times 110$
$185 \times 255 \times 110$
5.2
6.8

Functions and characteristics

Source-changeover systems

Presentation

Some installations use two supply sources
to counter the temporary loss of the main supply.
A source-changeover system is required to safely switch between the two sources.
The replacement source can be a generator set or another network.

Service sector:

- hospital operating rooms
- safety systems for tall buildings
- computer rooms (banks, insurance companies, etc.)
- lighting systems in shopping centres, etc.

Industry:

- assembly lines
- engine rooms on ships
- critical auxiliaries in thermal power stations, etc.

Infrastructures:

- runway lighting systems
- port and railway installations
- control systems for military installations, etc.

Manual source changeover

This is the most simple system. It is controlled manually by a maintenance technician and consequently the time required to switch from the normal source to the replacement source can vary.
A manual source-changeover system is made up of:

- two devices (circuit breakers or switch-disconnectors) controlled manually
- mechanical interlocking.

The interlock prevents connection to both sources at the same time, even momentarily.

Remote-operated source-changeover systems

This is the most commonly employed system. No human invention is required. The transfer from the normal to the replacement source is controlled electrically. A remote-operated source-changeover system is made up of two circuit breakers or switch-disconnectors equipped with motor mechanisms and:
■ an electrical interlocking system implemented in a number of manners
■ a mechanical interlocking system that protects against the consequences of an electrical malfunction and prevents incorrect manual operation.

Automatic source-changeover systems

An automatic controller may be added to the remote-operated source-changeover system for automatic source control according to programmable operating modes. This solution ensures optimum energy management:

- switching to a replacement source depending on external requirements

■ source management

- load shedding

■ emergency source replacement, etc.

Interlocking of two or three toggle-controlled devices.

Interlocking of two devices with rotary handles.

Interlocking with keylocks.

Interlocking on a base plate.

Interlocking of two or three toggle-controlled devices

Interlocking system

Two devices can be interlocked using this system. Two identical interlocking systems can be used to interlock three devices installed side by side.
Authorised positions:
■ one device closed (ON), the others open (OFF)

- all devices open (OFF).

The system is locked using one or two padlocks (shackle diameter 5 to 8 mm).
This system can be expanded to more than three devices.
There are two interlocking-system models:
■ one for Compact NSX100 to 250

- one for Compact NSX400/630.

Combinations of Normal and Replacement devices
All toggle-controlled fixed or plug-in Compact NSX100 to 630 circuit breakers and switch-disconnectors of the same frame size can be interlocked. The devices must be either all fixed or all plug-in versions.

Interlocking of two devices with rotary handles
 Interlocking system

Interlocking involves padlocking the rotary handles on two devices which may be either circuit breakers or switch-disconnectors.
Authorised positions:
■ one device closed (ON), the other open (OFF)

- both devices open (OFF).

The system is locked using up to three padlocks (shackle diameter 5 to 8 mm).
There are two interlocking-system models:
■ one for Compact NSX100 to 250

- one for Compact NS400/630.

Combinations of Normal and Replacement devices

All rotary-handle fixed or plug-in Compact NSX100 to 630 circuit breakers and switch-disconnectors of the same frame size can be interlocked. The devices must be either all fixed or all plug-in versions.

Interlocking of a number of devices using keylocks (captive keys)

Interlocking using keylocks is very simple and makes it possible to interlock two or more devices that are physically distant or that have very different characteristics, for example medium-voltage and low-voltage devices or a Compact NSX100 to 630 circuit breaker and switch-disconnector.

Interlocking system

Each device is equipped with an identical keylock and the key is captive on the closed (ON) device. A single key is available for all devices. It is necessary to first open (OFF position) the device with the key before the key can be withdrawn and used to close another device.
A system of wall-mounted captive key boxes makes a large number of combinations possible between many devices.

Combinations of Normal and Replacement devices

All rotary-handle Compact NSX100 to 630 circuit breakers and switch-disconnectors can be interlocked between each other or with any other device equipped with the same type of keylock.

Interlocking of two devices on a base plate

Interlocking system

A base plate designed for two Compact NSX devices can be installed horizontally or vertically on a mounting rail. Interlocking is carried out on the base plate by a mechanism located behind the devices. In this way, access to the device controls and trip units is not blocked.

Combinations of Normal and Replacement devices

All rotary-handle and toggle-controlled Compact NSX100 to 630 circuit breakers and switch-disconnectors can be interlocked. Devices must be either all fixed or all plugin versions, with or without earth-leakage protection or measurement modules.
An adaptation kit is required to interlock:

- two plug-in devices
- a Compact NSX100-250 with an NSX400-630.

Connection to the downstream installation can be made easier using a coupling accessory (see next page).

Functions and characteristics

Source-changeover systems Remote-operated and automatic sourcechangeover systems
 Coupling accessory on base plate

Remote-operated source-changeover system

1 Circuit breaker QN equipped with a motor mechanism and auxiliary contacts, connected to the Normal source 2 Circuit breaker QR equipped with a motor mechanism and auxiliary contacts, connected to the Replacement source
3 Base plate with mechanical interlocking
4 Electrical interlocking unit IVE
5 Coupling accessory (downstream connection)

Standard device accessories may be used for the coupling accessory on the base plate.

Remote-operated systems

It is made up of two devices with motor mechanisms, mounted on a base plate and combined with:
■ an electrical interlocking unit
■ optional mechanical interlocking system.

Electrical interlocking unit (IVE)

Interlocks two devices equipped with motor mechanisms and auxiliary contacts. The IVE unit is mandatory to ensure the necessary time-delays required for safe switching.

Mechanical interlocking system

The mechanical interlocking system is strongly recommended to limit the effects of design or wiring errors and to avoid manual switching errors.

Automatic systems

An automatic controller can manage switching from one source to the other.
The controller can be:

- a device provided by the customer
- an integrated BA controller
- an integrated UA controller

An integrated BA or UA automatic controller manages source transfer according to user-selected sequences that can include source priorities, start-up of a generator, return to the Normal source, etc. An ACP auxiliaries control plate facilitates installation of the BA and UA controllers. The plate includes two circuit breakers to protect the control circuits and two contactors to control the motor mechanisms of the devices.

Coupling accessory on base plate

This accessory may be used with a manual or remote-operated source-changeover system (with or without an automatic controller). It respects the mounting distance between the devices secured to the ACP plate and provides downstream coupling of the two sets of busbars. It is compatible with standard device accessories.
The short terminal shields of the device can be installed on the upstream connectors of the coupling accessory. Downstream, it is possible to use the connection accessories and the long or short terminal shields of the device.

[^5]By combining a remote-operated sourcechangeover system with an integrated BA or UA automatic controller, it is possible to automatically control source transfer according to user-selected sequences.

BA controller.

UA controller.

Auxiliary control plate for a BA or UA controller.

Functions of the BA and UA controllers

(1) The controller is powered by the ACP auxiliaries control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit-breaker operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

Accessories and auxiliaries

Sealable terminal shields

Electrical auxiliaries $>$ A-80

Accessories and auxiliaries

Sealable long terminal shields for plug-in base

$$
\text { Electrical accessories }>\mathrm{A}-78
$$

Automatic withdrawable auxiliary connector

Mechanical accessories $>\mathrm{A}-69$

Functions and characteristics

Accessories and auxiliaries
 Device installation

Compact NSX circuit breakers may be installed horizontally, vertically or flat on their back, without derating performance levels.
There are three installation versions:

- fixed
- plug-in (on a base)
- withdrawable (on a chassis).

For the last two, components must be added (base, chassis) to the fixed version. Many connection components are shared by the three versions.

Fixed Compact NSX250.

Plug-in Compact NSX250.

Installation positions.

Installation positions.

Fixed circuit breakers

Fixed circuit breakers are designed for standard connection using bars or cables with lugs. Bare-cable connectors are available for connection to bare copper or aluminium cables
For connection of large cables, a number of solutions with spreaders may be used for both cables with lugs or bare cables.

Mounting on a Prisma mounting plate.

Mounting on DIN rail (with adapter).

Mounting on busbars with an adapter.

Plug-in circuit breakers

The plug-in version makes it possible to:

- extract and/or rapidly replace the circuit breaker without having to touch the connections on the base
■ allow for the addition of future circuits by installing bases that will be equipped with
a circuit breaker at a later date
■ isolate the power circuits when the device is mounted on or through a panel. It acts as a barrier for the connections of the plug-in base. Insulation is made complete by the mandatory short terminal shields on the device. The degrees of protection are: \square circuit breaker plugged in $=$ IP4
\square circuit breaker removed = IP2
\square circuit breaker removed, base equipped with shutters $=$ IP4.

Parts of a plug-in configuration

A plug-in configuration is made by adding a "plug-in kit" to a fixed device. To avoid connecting or disconnecting the power circuits under load conditions, a safety trip causes automatic tripping if the device is ON, before engaging or withdrawing it. The safety trip, supplied with the kit, must be installed on the device. If the device is disconnected, the safety trip does not operate. The device can be operated outside the switchboard.

Accessories

Optional insulation accessories are available.
■ Terminal shields to protect against direct contact.

- Interphase barriers to reinforce insulation between phases and protect against direct contact

Mounting

Withdrawable Compact NSX250.

Installation positions.

Withdrawable circuit breakers

In addition to the advantages provided by the base, installation on a chassis facilitates handling. It offers three positions, with transfer from one to the other after mechanical unlocking:
■ connected: the power circuits are connected

- disconnected: the power circuits are disconnected, the device can be operated to check auxiliary operation
- removed: the device is free and can be removed from the chassis.

Parts of a withdrawable configuration

A withdrawable configuration requires two side plates installed on the base and two sides plates mounted on the circuit breaker. Similar to the plug-in version, a safety trip causes automatic tripping if the device is ON, before engaging or withdrawing it, and enables device operation in the disconnected position.

Accessories

Accessories are the same as for the base, with in addition:

- auxiliary contacts for installation on the fixed part, indicating the "connected" and "disconnected" positions
■ locking by 1 to 3 padlocks (shackle diameter 5 to 8 mm), to:
\square prevent insertion for connection
- lock the circuit breaker in connected or disconnected position
- toggle collar for circuit breakers with a toggle mounted through a front panel,
intended to maintain the degree of protection whatever the position of the circuit breaker (supplied with a toggle extension)
■ telescopic shaft for extended rotary handles. The door can then be closed with the device in the connected and disconnected positions.

Protection collar for toggle and toggle extension to provide IP4 in the connected and disconnected positions.

Mounting

Mounting on rails.

Telescopic shaft.

Mounting on a backplate.

Mounting through a front panel.
pans

Functions and characteristics

Accessories and auxiliaries Connection of fixed devices

Fixed circuit breakers are designed for standard front connection using bars or cables with lugs.
Cable connectors are available for bare cables. Rear connection is also possible.

Insulated bar.

Small lug for copper cables.

Small lug for Al cables.

Mounting at the back of a switchboard

Mounting behind the front panel with a raiser.

Front connection

Bars or cables with lugs

Standard terminals

Compact NSX100 to 630 come with terminals comprising snap-in nuts with screws:

- Compact NSX100: M6 nuts and screws. Compact NSX160/250: M8 nuts and
screws
■ Compact NSX400/630: M10 nuts and screws.
These terminals may be used for:
■ direct connection of insulated bars or cables with lugs
- terminal extensions offering a wide range of connection possibilities.

Interphase barriers or terminal shields are recommended. They are mandatory for certain connection accessories (in which case the interphase barriers are provided).

Bars

When the switchboard configuration has not been tested, insulated bars are mandatory.

Maximum size of bars			
Compact NSX circuit breaker		100/160/250	400/630
Without spreaders	pitch (mm)	35	45
	maximum bar size (mm)	20×2	32×6
With spreaders	pitch (mm)	45	52.5
	maximum bar size (mm)	32×2	40×6

Crimp lugs

There are two models, for aluminium and copper cables.
It is necessary to use narrow lugs, compatible with device connections. They must be used with interphase barriers or long terminal shields. The lugs are supplied with interphase barriers and may be used for the types of cables listed below.
Cable sizes for connection using lugs

Compact NSX circuit breaker	$\mathbf{1 0 0 / 1 6 0 / 2 5 0}$	$\mathbf{4 0 0 / 6 3 0}$	
Copper cables	size $\left(\mathrm{mm}^{2}\right)$	$120,150,180$	240,300
crimping	hexagonal barrels or punching		
Aluminium cables	$\frac{\text { size }\left(\mathrm{mm}^{2}\right)}{\text { crimping }}$	$120,150,180$	240,300

Terminal extensions

Extensions with anti-rotation ribs can be attached to the standard terminals to
provide numerous connection possibilities in little space:
■ straight terminal extensions
■ right-angle terminal extensions

- edgewise terminal extensions

■ double-L extensions

- 45° extensions.

Spreaders

Spreaders may be used to increase the pitch:
■ NSX100 to 250: the 35 mm pitch can be increased to 45 mm
■ NSX400/630: the 45 mm pitch can be increased to 52 or 70 mm .
Bars, cable lugs or cable connectors can be attached to the ends.

One-piece spreader for NSX100 to 250

Connection of large cables may require an increase in the distance between the device terminals.
The one-piece spreader is the means to:

- increase the 35 mm pitch of the NSX100 to 250 circuit-breaker terminals to the 45 mm pitch of a NSX400/630 device
- use all the connection and insulation accessories available for the next largest frame size (lugs, connectors, spreaders, right-angle and edgewise terminal extensions, terminal shields and interphase barriers).
It may also be used for Interpact INS switch-disconnectors.
Equipped with a single-piece spreader, Compact NSX devices can be mounted:
■ at the back of a switchboard
- behind the front panel with a raiser.

The one-piece spreader is also the means to:

- align devices with different frame sizes in the switchboard
- use the same mounting plate, whatever the device.

Pitch (mm) depending on the type of spreader

Compact NSX circuit breaker	NSX100 to $\mathbf{2 5 0}$	NSX400 to $\mathbf{6 3 0}$
Without spreaders	35	45
With spreaders	45	52.5 or 70
With one-piece spreader	45	-

Bare cables

For bare cables (without lugs), the prefabricated bare-cable connectors may be used for both copper and aluminium cables.

1-cable connectors for Compact NSX100 to 250

The connectors snap directly on to the device terminals or are secured by clips to right-angle and straight terminal extensions as well as spreaders.
1-cable connectors for Compact NSX400 to $\mathbf{6 3 0}$
The connectors are screwed directly to the device terminals.
2-cable connectors for Compact NSX100 to 250 and 400/630
The connectors are screwed to device terminals or right-angle terminal extensions.
Distribution connectors for Compact NSX100 to 250
These connectors are screwed directly to device terminals. Interphase barriers are supplied with distribution connectors, but may be replaced by long terminal shields. Each connector can receive six cables with cross-sectional areas ranging from 1.5 to $35 \mathrm{~mm}^{2}$ each.
Polybloc distribution block for Compact NSX100 to 630
Polybloc connects directly to device terminals.
It is used to connect up to six or nine flexible or rigid cables with cross-sectional areas not exceeding $10 \mathrm{~mm}^{2}$ or $16 \mathrm{~mm}^{2}$, to each pole.
Connection is made to spring terminals without screws.

Maximum size of cables depending on the type of connector

Compact NSX circuit breaker		100/160	250	400	630
Steel connectors	1.5 to $95 \mathrm{~mm}^{2}$	\square			
Aluminium connectors	25 to $95 \mathrm{~mm}^{2}$	\square	-		
	120 to $185 \mathrm{~mm}^{2}$	\square	\square		
	2 cables 50 to $120 \mathrm{~mm}^{2}$	\square	-		
	2 cables 35 to $240 \mathrm{~mm}^{2}$			■	-
	35 to $300 \mathrm{~mm}^{2}$			-	\square
Distribution connectors	6 cables $35 \mathrm{~mm}^{2}$	■	-		
Polybloc distribution blocks	6 or 9 cables 10/16 mm ${ }^{2}$	■	\square		

Rear connection

Device mounting on a backplate with suitable holes enables rear connection.

Bars or cables with lugs

Rear connections for bars or cables with lugs are available in two lengths. Bars may be positioned flat, on edge or at 45° angles depending on how the rear connections are positioned.
The rear connections are simply fitted to the device connection terminals. All combinations of rear connection lengths and positions are possible on a given device.

Bare cables

For the connection of bare cables, the 1-cable connectors for Compact NSX100 to 250 may be secured to the rear connections using clips.

Connection of bare cables to NSX100 to 250.

Functions and characteristics

Accessories and auxiliaries Connection of withdrawable and plug-in devices

Connection is identical for both
withdrawable and plug-in versions. The same accessories as for fixed devices may be used.

Bars or cables with lugs

The plug-in base is equipped with terminals which, depending on their orientation, serve for front and rear connection.
For rear connection of a base mounted on a backplate, the terminals must be replaced by insulated, long right-angle terminal extensions.
For Compact NSX630 devices, connection most often requires the 52.5 or 70 mm pitch spreaders.

Front connection.

Front connection with spreaders.

Rear connection of a base mounted on a backplate.

Connection accessories

All accessories for fixed devices (bars, lugs, terminal extensions and spreaders) may be used with the plug-in base (see pages A-70, A-71).

Bare cables

All terminals may be equipped with bare-cable connectors. See the "Connection of fixed devices" section.

With a 100 to 250 A base

With a 400/630 A base.

Adapter for plug-in base

The adapter is a plastic component for the 100 to 250 base and the $400 / 630$ base that enables use of all the connection accessories of the fixed device.
It is required for interphase barriers and the long and short terminal shields.

Adapter for 100 to 250 A-3P
base.
Connection with bars or
cables with lugs.

Adapter for 400/630 A - 4P base.
Connection with spreaders and interphase barriers.

Insulation of live parts

Terminal shields are identical for fixed and plug-in/withdrawable versions and cover all applications up to 1000 V . They exist for the 100 to 250 A and 400/630 A ratings, in long and short versions.

Long terminal shields.

Short terminal shields.

1 Partially cut removable squares.
2 Grids with break marks.

Assembled with captive screws.

Terminal shields

Insulating accessories used for protection against direct contact with power circuits. They provide IP40 degree of protection and IK07 mechanical impact protection.

Terminal-shield types

Compact NSX100 to 250 and NSX400/630 3P or 4P can be equipped with:
■ short terminal shields

- long terminal shields.

All terminal shields have holes or knock-outs in front for voltage-presence indicators.

Short terminal shields

They are used with:

- plug-in and withdrawable versions in all connection configurations
- fixed versions with rear connection.

Long terminal shields

They are used for front connection with cables or insulated bars.
They comprise two parts assembled with captive screws, forming an IP40 cover.

- The top part is equipped with sliding grids with break marks for precise adaptation to cables or insulated bars.
- The rear part completely blocks off the connection zone. Partially cut squares can be removed to adapt to all types of connection for cables with lugs or copper bars.
Long terminal shields may be mounted upstream and downstream of:
- fixed devices

■ the base of plug-in and withdrawable versions, thus completing the insulation provided by the mandatory short terminal shields on the device
■ the one-piece spreader for NSX100 to 250

- the 52.5 mm spreaders for NSX400/630.

Terminal shields and pitch

Combination possibilities are shown below.

| Circuit breaker | NSX100/160/250 | NSX400/630 | |
| :--- | :--- | :--- | :--- | :--- |
| Short terminal shields | 35 | 45 | |
| Pitch (mm) | 35 | 45 | 52.5 |
| Long terminal shields | | | |
| Pitch (mm) | | | |

Interphase barriers

Safety accessories for maximum insulation at the power-connection points:

- they clip easily onto the circuit breaker
- single version for fixed devices and adapters on plug-in bases
- not compatible with terminal shields
- the adapter for the plug-in base is required for mounting on plug-in and
withdrawable versions.

Rear insulating screens

Safety accessories providing insulation at the rear of the device.
Their use is mandatory for devices with spreaders, installed on backplates, when terminal shields are not used.
The available screen dimensions are shown below.

Circuit breaker		NSX100/160/250	NSX400/630
3 P	$\mathrm{W} \times \mathrm{H} \times$ thickness (mm)	$140 \times 105 \times 1$	$203 \times 175 \times 1.5$
4 P	$\mathrm{W} \times \mathrm{H} \times$ thickness (mm)	$175 \times 105 \times 1$	$275 \times 175 \times 1.5$

Accessories and auxiliaries

Selection of auxiliaries
for Compact NSX100/160/250

Standard

All Compact NSX100/160/250 circuit breakers and switch-disconnectors have slots for the electrical auxiliaries listed below.
5 indication contacts (see page A-80)

- 2 ON/OFF (OF1 and OF2)
- 1 trip indication (SD)
- 1 fault-trip indication (SDE)
- 1 earth-fault indication (SDV), when the device is equipped with a Vigi module.

1 remote-tripping release (see page A-83)

- either 1 MN undervoltage release

■ or 1 MX shunt release.

Remote indications

Circuit breakers equipped with Micrologic trip units may be equipped with a fault-trip indication to identify the type of fault by installing:
1 indication module with two outputs (see page A-81)
■ either an SDx module with Micrologic 2.2 / 5.2 A or E / 6.2 A or E
■ or an SDTAM module with Micrologic 2.2 M or 6-2 E-M (motor protection).
This module occupies the slots of one OF contact and an MN/MX release.

All these auxiliaries may be installed with a motor mechanism or a rotary handle.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, TMD, TMG, MA
Standard

Micrologic 2 / 5 / 6

Standard

Remote indications via SDx or SDTAM

The SDx or SDTAM uses the OF1 and MN/MX slots.
External connection is made via a terminal block in the OF1 slot.
The 24 V DC supply provides for the Micrologic 5/ 6 display when the device is OFF or under low-load conditions.

Communication

Communication requires specific auxiliaries (see page A-26).

Communication of status indications

- 1 BSCM module.
- 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the BSCM
Communication of status conditions is compatible with a standard motor mechanism and a rotary handle.
Communication of status indications and controls
This requires, in addition to the previous auxiliaries:
- 1 communicating motor mechanism connected to the BSCM.

Communication of measurements

Available on Micrologic 5/6, the system consists of:

- 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the Micrologic.
Communication of measurements is compatible with a standard or communicating motor mechanism and a rotary handle.
Communication of status indications, controls and measurements
Available on Micrologic 5/6, the system consists of:
- 1 BSCM module
- 1 NSX cord (internal terminal block) for both communication and 24 V DC supply
to the BSCM and the Micrologic
- 1 communicating motor mechanism connected to the BSCM.

Installation of SDx or SDTAM is compatible with communication.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, TMD, TMG, MA, Micrologic 2
Communication of status indications

Communication of status indications and controls

Accessories and auxiliaries
Selection of auxiliaries
for Compact NSX400/630

Standard

All Compact NSX400/630 circuit breakers and switch-disconnectors have slots for the electrical auxiliaries listed below.
7 indication contacts (see page A-80)
■ 4 ON/OFF (OF1, OF2, OF3, OF4)

- 1 trip indication (SD)
- 1 fault-trip indication (SDE)
- 1 earth-fault indication (SDV), when the device is equipped with a Vigi module

1 remote-tripping release (see page A-83)

- either 1 MN undervoltage release

■ or 1 MX shunt release.

Remote indications

Circuit breakers equipped with Micrologic trip units may be equipped with a fault-trip indication to identify the type of fault by installing:
1 indication module with two outputs (see page A-81)
■ either an SDx module with Micrologic 2.2 / 5.2 A or E / 6.2 A or E
■ or an SDTAM module with Micrologic 2.2 M or 6-2 E-M (motor protection).
This module occupies the slots of an MN/MX release.

All these auxiliaries may be installed with a motor mechanism or a rotary

handle.

The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, Micrologic 1.3 M
Standard

Micrologic 2 / 5 / 6
Standard

The SDx or SDTAM uses the reserved slot and the MN/MX slots.
External connection is made via a terminal block in the reserved slot.
The 24 V DC supply provides for the Micrologic 5/6 display when the device is OFF or under low-load conditions.

Communication

Communication requires specific auxiliaries (see page A-26).
Communication of status indications
■ 1 BSCM module

- 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the BSCM.
Communication of status conditions is compatible with a standard motor mechanism and a rotary handle.
Communication of status indications and controls
This requires, in addition to the previous auxiliaries:
- 1 communicating motor mechanism connected to the BSCM.

Communication of measurements

Available on Micrologic 5 / 6 , the system consists of:

- 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the Micrologic.
Communication of measurements is compatible with a standard or communicating motor mechanism and a rotary handle.
Communication of status indications, controls and measurements
Available on Micrologic 5/6, the system consists of:
- 1 BSCM module
- 1 NSX cord (internal terminal block) for both communication and 24 V DC supply
to the BSCM and the Micrologic
■ 1 communicating motor mechanism connected to the BSCM.

Installation of SDx or SDTAM is compatible with communication.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, Micrologic 1.3 M, Micrologic 2
Communication of status indications Communication of status indications and controls

Micrologic 5 / 6

Communication of status indications

Communication of status indications, controls and measurements with or without FDM121 display

Functions and characteristics

Accessories and auxiliaries Connection of electrical auxiliaries

Fixed Compact NSX.

Plug-in/withdrawable Compact NSX.

Fixed Compact NSX

Auxiliary circuits exit the device through a knock-out in the front cover.

Withdrawable or plug-in Compact NSX

Automatic auxiliary connectors

Auxiliary circuits exit the circuit breaker via one to three automatic auxiliary connectors (nine wires each). These are made up of:

- a moving part, connected to the circuit breaker via a support (one support per circuit breaker)
- a fixed part, mounted on the plug-in base, equipped with connectors for bare cables up to $2.5 \mathrm{~mm}^{2}$.
Micrologic trip unit options are also wired via the automatic auxiliary connectors.

Selection of automatic auxiliary connectors
Depending on the functions installed, one to three automatic auxiliary connectors are required.

Withdrawable Compact NSX

Manual auxiliary connectors

As an option to the automatic auxiliary connectors, withdrawable circuit breakers may be equipped with one to three plugs with nine wires each. In "disconnected" position, the auxiliaries remain connected.
They can then be tested by operating the device.

Nine-wire manual auxiliary
connector.

Compact NSX100/160/250.

Each auxiliary is equipped with a terminal block with numbered terminals for connection of wires up to:

- $1.5 \mathrm{~mm}^{2}$ for auxiliary contacts and voltage releases
- $2.5 \mathrm{~mm}^{2}$ for the motor-mechanism module.

MT: motor mechanism.
MTc: communicating motor mechanism.

Accessories and auxiliaries
 Indication contacts

One contact model provides circuit-breaker status indications (OF - SD - SDE - SDV). An early-make or early-break contact, in conjunction with a rotary handle, can be used to anticipate device opening or closing.
A CE / CD contact indicates that the chassis is connected / disconnected.

Indication contacts.

$C E / C D$ carriage switches.

These common-point changeover contacts provide remote circuit-breaker status information.
They can be used for indications, electrical locking, relaying, etc.
They comply with the IEC 60947-5 international recommendation.

Functions

Breaker-status indications, during normal operation or after a fault
A single type of contact provides all the different indication functions:

- OF (ON/OFF) indicates the position of the circuit breaker contacts

■ SD (trip indication) indicates that the circuit breaker has tripped due to:
\square an overload
\square a short-circuit
\square an earth fault (Vigi) or a ground fault (Micrologic 6)
\square operation of a voltage release

- operation of the "push to trip" button
\square disconnection when the device is ON.
The SD contact returns to de-energised state when the circuit breaker is reset.
$■$ SDE (fault-trip indication) indicates that the circuit breaker has tripped due to:
- an overload
\square a short-circuit
ㅁ an earth fault (Vigi) or a ground fault (Micrologic 6).
The SD contact returns to de-energised state when the circuit breaker is reset.
■ SDV indicates that the circuit breaker has tripped due to an earth fault. It returns to de-energised state when the Vigi module is reset.
All the above auxiliary contacts are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits).
Rotary-handle position contact for early-make or early-break functions
- CAM (early-make or early-break function) contacts indicate the position of the rotary handle.
They are used in particular for advanced opening of safety trip devices (early break) or to energise a control device prior to circuit-breaker closing (early make).

Chassis-position contacts

■ CE/CD (connected/disconnected) contacts are microswitch-type carriage switches for withdrawable circuit breakers.

Installation

■ OF, SD, SDE and SDV functions: a single type of contact provides all these different indication functions, depending on where it is inserted in the device. The contacts clip into slots behind the front cover of the circuit breaker (or the Vigi module for the SDV function).
The SDE function on a circuit breaker equipped with a thermal-magnetic trip unit requires the SDE actuator.
■ CAM function: the contact fits into the rotary-handle unit (direct or extended).
■ CE/CD function: the contacts clip into the fixed part of the chassis.

Electrical characteristics of auxiliary contacts

Contacts			Stanc	dard			Low	evel		
Types of co Rated therm	tacts al current (A)		$\begin{aligned} & \text { All } \\ & 6 \\ & \hline \end{aligned}$				$\begin{aligned} & \mathrm{OF}, \mathrm{SI} \\ & 5 \end{aligned}$, SDE,	SDV	
Minimum loa			100 m	A at 24	DC		1 mA	t 4 V		
Utilisation cat	. IIEC 6094	-5-1)	AC12	AC15	DC12	DC14	AC12	AC15	DC12	DC14
Operational	24 V	AC/DC	6	6	6	1	5	3	5	1
current (A)	48 V	AC/DC	6	6	2.5	0.2	5	3	2.5	0.2
	110 V	AC/DC	6	5	0.6	0.05	5	2.5	0.6	0.05
	$220 / 240 \mathrm{~V}$	AC	6	4	-	-	5	2	-	-
	250 V	DC	-	-	0.3	0.03	5	-	0.3	0.03
	$380 / 440 \mathrm{~V}$	AC	6	2	-	-	5	1.5	-	-
	480 V	AC	6	1.5	-	-	5	1	-	-
	660/690 V	AC	6	0.1	-	-	-	-	-	-

SDx and SDTAM modules for Micrologic

SDx and SDTAM are relay modules with two
static outputs. They send different signals depending on the type of fault. They may not be used together.

SDx relay module with its terminal block.

SDTAM relay module with its terminal block.

SDx module

The SDx module remotes the trip or alarm conditions of Compact NSX circuit breakers equipped with electronic protection.
The SD2 output, available on all Micrologic trip units, corresponds to the overloadtrip indication.
The SD4 output, available on Micrologic 5 / 6 , is assigned to:
■ overload pre-alarm (Micrologic 5)

- ground-fault trip indication (Micrologic 6)

These two outputs automatically reset when the device is closed (turned ON).
For Micrologic 5 / 6 , the SD2 and SD4 outputs can be reprogrammed to be assigned to other types of tripping or alarm.

Output characteristics

It is possible to assign a function:

- latching with a time delay. Return to the initial state occurs at the end of the time delay
- permanent latching. In this case, return to the initial state takes place via the communication function.
Static outputs: 24 to 415 V AC / V DC; 80 mA max.

SDTAM module

The SDTAM module is specifically for the motor-protection Micrologic trip units 2.2 M, 2.3 M and 6.2 E-M, 6.3 E-M.

The SDTAM module, linked to the contactor controller, opens the contactor when an overload or other motor fault occurs, thus avoiding opening of the circuit breaker.

Micrologic $\mathbf{2}$ M

The SD4 output opens the contactor 400 ms before normal circuit-breaker opening in the following cases:
■ overload (long-time protection for the trip class)

- phase unbalance or phase loss.

The SD2 output serves to memorise contactor opening by SDTAM.

Micrologic 6 E-M

The SD4 output opens the contactor 400 ms before normal circuit-breaker opening in the following cases:
■ overload (long-time protection for the trip class)

- phase unbalance or phase loss
- locked rotor
- underload (undercurrent protection)

■ long start.
The SD2 output serves to memorise contactor opening by SDTAM.

Output characteristics

Output reset can be:
■ manual by a pushbutton included in the wiring diagram
\square automatic after an adjustable time delay (1 to 15 minutes) to take into account the motor-cooling time.
Static outputs: 24 to 415 V AC / V DC; 80 mA max.

SDx wiring diagram.

SDTAM wiring diagram with contactor control.

Accessories and auxiliaries

Motor mechanism

Compact NSX250 with motor mechanism.

1 Position indicator (positive contact indication)
2 Spring status indicator (charged, discharged)
3 Manual spring-charging lever
4 Keylock device (optional) Locking device (OFF position), using 1 to 3 padlocks, shackle diameter 5 to 8 mm , not supplied
5 I (ON) pushbutton
6 O (OFF) pushbutton
7 Manual/auto mode selection switch. The position of this switch can be indicated remotely. 8 Operation counter (Compact NSX400/630)

When equipped with a motor-mechanism module, Compact NSX circuit breakers feature very high mechanical endurance as well as easy and sure operation:

- all circuit-breaker indications and information remain visible and accessible,
including trip-unit settings and indications
- suitability for isolation is maintained and padlocking remains possible
- double insulation of the front face.

A specific motor mechanism is required for operation via the communication function. This communicating motor mechanism must be connected to the BSCM module to receive the opening and closing orders. Operation is identical to that of a standard motor mechanism.

Applications

■ Local motor-driven operation, centralised operation, automatic distribution control.
■ Normal/standby source changeover or switching to a replacement source to
ensure availability or optimise energy costs.
■ Load shedding and reconnection.

- Synchrocoupling.

Operation

The type of operation is selected using the manual/auto mode selection switch (7). A transparent, lead-seal cover controls access to the switch.

Automatic

When the switch is in the "auto" position, the ON/OFF (I/O) buttons and the charging lever on the mechanism are locked.

- Circuit-breaker ON and OFF controlled by two impulse-type or maintained signals.
- Automatic spring charging following voluntary tripping (by MN or MX), with standard wiring.
■ Mandatory manual reset following tripping due to an electrical fault.

Manual

When the switch is in the "manual" position, the ON/OFF (I/O) buttons may be used.
A microswitch linked to the manual position can remote the information.
■ Circuit-breaker ON and OFF controlled by 2 pushbuttons I/O.

- Recharging of stored-energy system by pumping the lever 8 times.
- Padlocking in OFF position.

Installation and connections

All installation (fixed, plug-in/withdrawable) and connection possibilities are maintained.
Motor-mechanism module connections are made behind its front cover to integrated terminals, for cables up to $2.5 \mathrm{~mm}^{2}$.

Optional accessories

- Keylock for locking in OFF position.
- Operations counter for the Compact NSX400/630, indicating the number of ON/ OFF cycles. Must be installed on the front of the motor-mechanism module.

Characteristics

Motor mechanism			MT100 to MT630
Response time (ms)	opening closing		$\begin{aligned} & <600 \\ & <80 \\ & \hline \end{aligned}$
Operating frequency Control voltage (V)	cycles/minute max.		4
	DC		24/30-48/60-110/130-250
	AC 50/60 Hz		$\begin{aligned} & 48(50 \mathrm{~Hz})-110 / 130- \\ & 220 / 240-380 / 440 \end{aligned}$
Consumption ${ }^{(1)}$	DC (W)	opening	$\leqslant 500$
		closing	$\leqslant 500$
	AC (VA)	opening	$\leqslant 500$
		closing	$\leqslant 500$

(1) For NSX100 to NSX250, the inrush current is 2 In for 10 ms .

Electrical endurance

Circuit breaker + motormechanism module, in thousands of operations (IEC 60947 2), at 440 V.

Remote tripping

MX or MN voltage release.

Opening conditions of the MN release.

MN release with a time-delay unit.

Wiring diagram for emergency-off function with MN + time-delay unit.

Opening conditions of the MX release.

Note: circuit breaker opening using an MN or MX release must be reserved for safety functions. This type of tripping increases wear on the opening mechanism. Repeated use reduces the mechanical endurance of the circuit breaker by 50%.

MX or MN voltage releases are used to trip the circuit breaker. They serve primarily for remote, emergency-off commands.
It is advised to test the system every six months.

MN undervoltage release

The MN release opens the circuit breaker when its supply voltage drops to a value below 35% of its rated voltage Un.
Undervoltage tripping, combined with an emergency-off button, provides fail-safe tripping. The MN release is continuously supplied, i.e. if supply is interrupted:

- either voluntarily, by the emergency-off button,
- or accidentally, through loss of power or faulty wiring,
the release provokes opening of the circuit breaker.

Opening conditions

Circuit-breaker tripping by an MN release meets the requirements of standard IEC 60947-2.

- Automatic opening of the circuit breaker is ensured when the continuous voltage supply to the release $\mathrm{U} \leqslant 0.35 \times \mathrm{Un}$.
- If the supply voltage is between 0.35 and 0.7 Un , opening is possible, but not guaranteed. Above 0.7 Un, opening does not take place.

Closing conditions

If there is no supply to the MN release, it is impossible to close the circuit breaker, either manually or electrically. Closing is ensured when the voltage supply to the release $\mathrm{U} \geqslant 0.85 \times \mathrm{Un}$. Below this threshold, closing is not guaranteed.
Characteristics

Power supply	VAC	$\frac{50 / 60 \mathrm{~Hz}: 24-48-100 / 130-200 / 240}{}$
		VDC
Operating threshold	Opening	$12-24-30 / 415-30-48-60-125-250$
	Closing	0.35 to 0.7 Un
Operating range		0.85 Un
Consumption (VA or W)		0.85 to 1.1 Un
Response time (ms)	Pick-up: $30-$ Hold: 5	

Time-delay unit for an MN release

A time delay unit for the MN release eliminates the risk of nuisance tripping due to a transient voltage dip lasting $\leqslant 200 \mathrm{~ms}$. For shorter micro-outages, a system of capacitors provides temporary supply to the MN at $\mathrm{U}>0.7$ to ensure non tripping. The correspondence between MN releases and time-delay units is shown below.

Power supply	Corresponding MN release
Unit with fixed delay 200 ms	
48 VAC	48 V DC
220 / 240 V AC	250 V DC
Unit with adjustable delay $\leqslant \mathbf{2 0 0} \mathbf{~ m s}$	
48-60 V AC/DC	48 V DC
100-130 V AC/DC	125 V DC
220-250 V AC/DC	250 V DC

MX shunt release

The MX release opens the circuit breaker via an impulse-type ($\geqslant 20 \mathrm{~ms}$) or maintained order.

Opening conditions

When the MX release is supplied, it automatically opens the circuit breaker. Opening is ensured for a voltage $U \geqslant 0.7 \times$ Un.

Characteristics

Power supply	VAC	$\frac{50 / 60 \mathrm{~Hz}: 24-48-100 / 130-200 / 240}{50 \mathrm{~Hz}: 380 / 41560 \mathrm{~Hz}: 208 / 277}$
		$12-24-30-48-60-125-250$
Operating range		0.7 to 1.1 Un
Consumption (VA or W)		Pick-up: 30
Response time (ms)	50	

Circuit breaker control by MN or MX

When the circuit breaker has been tripped by an MN or MX release, it must be reset before it can be reclosed.
MN or MX tripping takes priority over manual closing.
In the presence of a standing trip order, closing of the contacts, even temporary, is not possible.

- Connection using wires up to $1.5 \mathrm{~mm}^{2}$ to integrated terminal blocks.

Accessories and auxiliaries
 Rotary handles

There are two types of rotary handle:

- direct rotary handle

■ extended rotary handle.
There are two models:
■ standard with a black handle

- red handle and yellow front for machinetool control.

Compact NSX with a rotary handle.

Compact NSX with an MCC rotary handle.

Compact NSX with a CNOMO machine-tool rotary handle.

Compact NSX with an extended rotary handle installed at the back of a switchboard, with the keylock option and key.

Direct rotary handle

Standard handle

Degree of protection IP40, IK07.
The direct rotary handle maintains:

- visibility of and access to trip-unit settings
- suitability for isolation
- indication of the three positions O (OFF), I (ON) and tripped
- access to the "push to trip" button.

Device locking

The rotary handle facilitates circuit-breaker locking.

- Padlocking:
- standard situation, in the OFF position, using 1 to 3 padlocks, shackle diameter 5 to 8 mm , not supplied
\square with a simple modification, in the ON and OFF positions. Locking in the ON position does not prevent free circuit-breaker tripping if a fault occurs. In this case, the handle remains the ON position after the circuit breaker tripping. Unlocking is required to go to the tripped then the OFF position. ■ Keylock (and padlock)
It is possible to install a Ronis or Profalux keylock (optional) on the base of the handle to obtain the same functions as with a padlock.
Early-make or early-break contacts (optional)
Early-make and/or early-break contacts may be used with the rotary handle. It is thus possible to:
■ supply an MN undervoltage release before the circuit breaker closes
- open the contactor control circuit before the circuit breaker opens.

MCC switchboard control

Control of an MCC switchboard is achieved by adding a kit to the standard handle. In addition to the standard functions, the kit offers the characteristics listed below.

Higher degree of protection IP

Degree of protection IP43, IK07.
The IP is increased by a built-in gasket.

Door locking depending on device position

■ The door cannot be opened if the circuit breaker is ON or in the tripped position. For exceptional situations, door locking can be temporarily disabled with a tool to open the door when the circuit breaker is closed. This operation is not possible if the handle is locked by a padlock.

- Circuit-breaker closing is disabled if the door is open. This function can be deactivated.

Machine-tool control in compliance with CNOMO

Control of a machine-tool is achieved by adding a kit to the standard handle. In addition to the standard functions, the kit offers the characteristics listed below.
Enhanced waterproofness and mechanical protection

- Degree of protection IP54, IK08.

■ Compliance with CNOMO E03.81.501N.

Extended rotary handle

Degree of protection IP56, IK08.
The extended rotary handle makes it possible to operate circuit breakers installed at the back of switchboards, from the switchboard front.
It maintains:

- visibility of and access to trip-unit settings

■ suitability for isolation

- indication of the three positions O (OFF), I (ON) and tripped.

Mechanical door locking when device closed

A standard feature of the extended rotary handle is a locking function, built into the shaft, that disables door opening when the circuit breaker is in the ON or tripped positions.
Door locking can be temporarily disabled with a tool to open the door without opening the circuit breaker. This operation is not possible if the handle is locked by a padlock.

Voluntary disabling of mechanical door locking

A modification to the handle, that can be carried out on site, completely disables door locking, including when a padlock is installed on the handle. The modification is reversible.
When a number of extended rotary handles are installed on a door, this disabling function is the means to ensure door locking by a single device.

Extended rotary handle (cont.)

Device and door padlocking

Padlocking locks the circuit-breaker handle and disables door opening:
■ standard situation, in the OFF position, using 1 to 3 padlocks, shackle diameter 5
to 8 mm , not supplied
■ with a simple modification, in the ON and OFF positions. Locking in the ON position does not prevent free circuit-breaker tripping if a fault occurs.
In this case, the handle remains in the ON position after the circuit breaker tripping.
Unlocking is required to go to the tripped then the OFF position.
If the door controls were modified to voluntarily disable door locking, padlocking does not lock the door, but does disable handle operation of the device.

Device locking using a keylock inside the switchboard

It is possible to install a Ronis or Profalux keylock (optional) on the base of the rotary handle to lock the device in the OFF position or in either the ON or OFF positions.

Accessory for device operation with the door open

When the device is equipped with an extended rotary handle, a control accessory mounted on the shaft makes it possible to operate the device with the door open.
■ The device can be padlocked in the OFF position.

- The accessory complies with UL508.

Early-make or early-break contacts (optional)

The extended rotary handle offers the same possibilities with early-make and/or early-break contacts as the standard rotary handle.

Parts of the extended rotary handles

- A unit that replaces the front cover of the circuit breaker (secured by screws).
- An assembly (handle and front plate) on the door that is always secured in the same position, whether the circuit breaker is installed vertically or horizontally. ■ An extension shaft that must be adjusted to the distance. The min/max distance between the back of circuit breaker and door is:
- 185... 600 mm for Compact NSX100 to 250
- 209... 600 mm for Compact NS400/630.

For withdrawable devices, the extended rotary handle is also available with a telescopic shaft to compensate for device disconnection. In this case, the $\mathrm{min} / \mathrm{max}$ distances are:

- $248 \ldots 600 \mathrm{~mm}$ for Compact NSX100 to 250
- 272... 600 mm for Compact NS400/630.

Manual source-changeover systems

An additional accessory interlocks two devices with rotary handles to create a source-changeover system. Closing of one device is possible only if the second is open
This function is compatible with direct or extended rotary handles. Up to three padlocks can be used to lock in the OFF or ON position.

Voltage-presence indicator.

Compact NSX with current-transformer module.

Compact NSX with ammeter module.

Voltage-presence indicator

The indicator detects and indicates that circuit breaker terminals are supplied with power.

Installation

- Mounted in the long or short terminal shields, via the knockouts.
- May be positioned upstream or downstream of the circuit breaker.
- Degree of protection IP40, IK04.
- Not compatible with the motor-mechanism module.

Electrical characteristics
Operates on all networks with voltages ranging from 220 to 550 V AC.

Current-transformer module

This module enables direct connection of a measurement device such as an ammeter or a power meter.

Installation

- The module is installed directly on the downstream circuit-breaker terminals.
- Degree of protection IP40, IK04.
- Class II insulation between front and the power circuits.
- Connection to 6 integrated connectors for cables up to $2.5 \mathrm{~mm}^{2}$.

Electrical characteristics

- Current transformer with 5 A secondary winding.
- Class 3 for the following output-power consumptions:

Accuracy:

- 100 A rating: 1.6 VA
- 150 A rating: 3 VA
- 250 A rating: 5 VA
- 400/600 A rating: 8 VA.

Current-transformer module with voltage measurement outputs

This module enables direct connection of a digital measurement device such as a Power Meter PM700, PM800, etc. (not supplied).

Installation

- The module is installed directly on the downstream circuit-breaker terminals.
- Degree of protection IP40, IK04.
- Class II insulation between front and the power circuits.

■ Built-in connectors for cables from 1.5 to $2.5 \mathrm{~mm}^{2}$.

Electrical characteristics

■ Rated operational voltage Ue: 530 V
■ Frequencies of measured values: $50 \ldots 60 \mathrm{~Hz}$

- Three CTs with 5 A secondary windings for the rated primary current In:
- class 0.5 to 1 for rated power consumption values at the output:
- 125 A, 150 A and 250 A ratings: class 1 for 1.1 VA
- 400/600 A rating: class 0.5 for 2 VA
- Connection using a 2.5 mm 2 cable up to 2.5 m long.
- Four voltage measurement outputs including protection with automatic reset. \square voltage measurement output impedance $3500 \Omega \pm 25 \%$, maximum current 1 mA \square The voltage measurement outputs are intended only for measurements (1 mA max.) and may not be used to supply the display.

Ammeter and Imax ammeter modules

Ammeter module

Measures and displays (dial-type ammeter) the current of each phase (selection of phases by 3-position switch in front).

Imax ammeter module

Measures and displays (dial-type ammeter) the maximum current flowing in the middle phase. The Imax value can be reset on the front.

Installation

- Identical for both types of ammeter module.
- The module is installed directly on the downstream circuit-breaker terminals.

■ The ammeter clips into the module in any of four 90° positions, i.e. it can be
installed of devices mounted both vertically and horizontally.
■ Degree of protection IP40, IK04.

- Class II insulation between front and the power circuits.

Electrical characteristics

- Ammeter module: accuracy class 4.5
- Imax ammeter module: accuracy $\pm 6 \%$

■ Maximum currents are displayed only if they last $\geqslant 15$ minutes.

Insulation monitoring module.

Insulation monitoring module

This module detects and indicates an insulation drop on a load circuit (TN-S or TT systems).
Operation is identical to that of a Vigi module, but without circuit-breaker tripping. Indication by a red LED in front.
An auxiliary contact may be installed for remote insulation-drop indications. When insulation drops below a minimum, user-set threshold, the LED goes on and the auxiliary contact switches. The fault indication cannot be cancelled except by pressing the manual reset button.

Installation

- The module is installed directly on the downstream circuit-breaker terminals.
- Degree of protection IP40, IK04.
- Double insulation of the front face.

Electrical characteristics

■ Settings: 100-200-500-1000 mA
■ Accuracy: -50 +0 \%

- Time delay following insulation drop: 5 to 10 seconds

■ AC-system voltage: 200 to 440 V AC.

Functions and characteristics

Accessories and auxiliaries
 Locks

Toggle locking using padlocks and an accessory: Removable device Fixed device attached to the case.

Rotary-handle locking using a keylock.

Locking in the OFF position guarantees isolation as per IEC 60947-2. Padlocking systems can receive up to three padlocks with shackle diameters ranging from 5 to 8 mm (padlocks not supplied). Certain locking systems require an additional accessory.

Control device	Function	Means	Required accessories
Toggle	Lock in OFF position	Padlock	Removable device
	Lock in OFF or ON position	Padlock	Fixed device
$\begin{array}{l}\text { Direct rotary } \\ \text { handle }\end{array}$ Standard MCC CNOMO	Lock in - OFF position OFF or ON position ${ }^{(1)}$	Padlock	-
		Keylock	Locking device + keylock
	Lock in - OFF position - OFF or ON position ${ }^{(1)}$	Padlock	-
	Lock in - OFF position - OFF or ON position (1)	Padlock	-
Extended rotary handle	Lock in - OFF position - OFF or ON position ${ }^{(1)}$ with door opening prevented (2)	Padlock	-
	Lock in OFF position	Padlock	UL508 control accessory
	- OFF or ON position ${ }^{(1)}$ inside the switchboard	Keylock	Locking device + keylock
Motor mechanism	Lock in OFF position remote operation disabled	Padlock	-
		Keylock	Locking device + keylock
Withdrawable circuit breaker	Lock in disconnected position	Padlock	-
		Keylock	Locking device + keylock
	- connected position	Keylock	Locking device + keylock

(1) Following a simple modification of the mechanism.
(2) Unless door locking has been voluntarily disabled.

Motor-mechanism locking using a padlock or a keylock.

Sealing accessories

Identification accessories.

Sealing accessories.

Outgoing-circuit identification

Compact NSX100 to 630 can be equipped with label holders supplied in sets of ten
(cat. no. LV429226).
They are compatible with escutcheons.

Sealing accessories

Sealing accessories are available. Each bag of accessories contains all the parts required for the types of sealing indicated below.
A bag contains:

- 6 sealing accessories
- 6 lead seals
- 0.5 m of wire
- 2 screws.

Types of seals and corresponding functions
Toggle control

Functions and characteristics

Accessories and auxiliaries Individual enclosures

IP55 heavy-duty metal enclosure.

IP55 heavy-duty insulating enclosure.

Individual enclosures are available for Compact/Vigicompact NSX devices with two, three or four poles.
All fixed, front connections are possible, except right-angle, 45°, double-L and edgewise terminal extensions.
All spreaders may be installed in the enclosures intended for Compact/Vigicompact
NSX250 to 630 devices, except the 70 mm spreaders for NSX400/630.

Two models of enclosures

■ IP55 heavy-duty metal individual enclosure, with:
\square metal enclosure

- door with keylock and cut-out for rotary handle
- extended rotary handle, IP56, IK08, black or red/yellow
\square device mounting plate
- removable plate (without holes) for cable entry through bottom.

■ IP55 heavy-duty insulating individual enclosure, with:

- polyester insulating enclosure
- transparent cover, screwed, lead sealable, with cut-out for extended rotary handle ㅁ extended rotary handle, IP56, IK08, black or red/yellow
\square device mounting plate
$\square 2$ removable plates (without holes) for cable entry through bottom and/or top.

Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ in mm)

■ Metal enclosures:

- Compact NSX100/160
$450 \times 350 \times 250$
- Compact NSX250 and Vigicompact NSX100 to 250
- Compact NSX400
- Compact NSX630 and Vigicompact NSX400/630
$650 \times 350 \times 250$
$650 \times 350 \times 250$

■ Insulating enclosures:

- Compact NSX100/160
$850 \times 350 \times 250$
- Compact NSX250 and Vigicompact NSX100/160
$360 \times 270 \times 235$
- Compact NSX400/630
$540 \times 270 \times 235$
- Vigicompact NSX250/630
$720 \times 360 \times 235$
$720 \times 360 \times 235$

Escutcheons and protection collars

Escutcheons are an optional feature mounted on the switchboard door. They increase the degree of protection to IP40, IK07. Protection collars maintain the degree of protection, whatever the position of the device (connected, disconnected).

IP30 escutcheon.

IP30 or IP40 escutcheons for fixed devices

IP30
The three types are glued to the cut-out in the front door of the switchboard:

- escutcheon for all control types (toggle, rotary handle or motor mechanism)
- without access to the trip unit
\square with access to the trip unit
\square for Vigi modules, can be combined with the above.

IP40

The four types, with a gasket, are screwed to the door cut-out:
■ three escutcheons identical to the previous, but IP40

- a wide model for Vigi and ammeter modules that can be combined with the above.

Escutcheon for toggle without and with access to the trip unit.

Escutcheon for Vigi module.

Wide escutcheon for ammeter.

Accessories and auxiliaries

IP40 escutcheons for withdrawable devices

IP40 for withdrawable devices
The two types, with a gasket, are screwed to the door cut-out:

- for rotary handle or motor mechanism: standard IP40 escutcheon

■ for toggle with extension: standard escutcheon + collar for withdrawal.

Escutcheon with collar for toggle.

Escutcheon for Vigi module.

Standard escutcheon with rotary handle.

Standard escutcheon for motor mechanism.

Standard escutcheon with collar for withdrawal, for toggle.

IP40 for Vigi module on withdrawable devices
The two types, with a gasket, are screwed to the door cut-out:
■ for rotary handle or motor mechanism: standard IP40 escutcheon

- for toggle: standard escutcheon + collar for withdrawal.

Escutcheon for Vigi module, with escutcheons for the three types of control.

NS retrofit front cover.

IP43 toggle cover

Available only for devices with toggles. Fits over toggle and front cover of the device. ■ Mounted on the front of the circuit breaker.
■ Degree of protection IP43, IK07.

Toggle cover.

Retrofit front covers

These replacement front covers make it possible to install NSX devices in existing switchboards containing NS devices by installing the NS-type retrofit covers on the NSX devices.
■ NS100 to 250 cover.
■ NS400/630 cover.

Installation recommendations

Contents

Operating conditions

Operating conditions B-2

| Installation in switchboards |
| :--- | :--- |
| Power supply and weights |

Safety clearances and minimum distances B-4
$\begin{array}{ll}\text { Installation example } & \text { B-5 }\end{array}$
Control wiring
Control wiring
Temperature derating
Compact NSX100 to 250 equipped with thermal-magnetic trip units B-8
Compact NSX equipped with electronic trip units

Power loss/ Resistance

Compact NSX equipped with thermal-magnetic trip units B-10
Compact NSX equipped with electronic trip units B-11
Dimensions and connection
Wiring diagrams
Additional characteristics
Catalogue numbers
Glossary

Installation

recommendations

Operating conditions

Altitude derating

Altitude does not significantly affect the characteristics of Compact NSX circuit breakers up to 2000 m . Above this altitude, it is necessary to take into account the decrease in the dielectric strength and cooling capacity of air.
The following table gives the corrections to be applied for altitudes above 2000 metres.
The breaking capacities remain unchanged.

Compact NSX100 to 630

Altitude (m)		$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$
Dielectric withstand voltage (V)		3000	2500	2100	1800
Insulation voltage (V)	Ui	800	700	600	500
Maximum operational voltage (V)	Ue	690	590	520	460
Average thermal current (A) at $40^{\circ} \mathrm{C}$	ln x	1	0.96	0.93	0.9

Vibrations

Compact NSX devices resist electromagnetic or mechanical vibrations.
Tests are carried out in compliance with standard IEC 60068-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.):
■ 2 to 13.2 Hz : amplitude $\pm 1 \mathrm{~mm}$
■ 13.2 to 100 Hz : constant acceleration 0.7 g .
Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.

Degree of protection

Compact NSX circuit breakers have been tested for degree of protection (IP) mechanical impact protection (IK). See page A-5.

Electromagnetic disturbances

Compact NSX devices are protected against:
■ overvoltages caused by circuit switching
■ overvoltages caused by an atmospheric disturbances or by a distribution-system
outage (e.g. failure of a lighting system)
■ devices emitting radio waves (radios, walkie-talkies, radar, etc.)
■ electrostatic discharges produced directly by users.
Compact NSX devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards. See page A-5.
These tests ensure that:

- no nuisance tripping occurs
- tripping times are respected.

Installation in switchboards
 Power supply and weights

Power supply from the top or bottom

Compact NSX circuit breakers can be supplied from either the top or the bottom, even when equipped with a Vigi earth-leakage protection module, without any reduction in performance. This capability facilitates connection when installed in a switchboard.
All connection and insulation accessories can be used on circuit breakers supplied either from the top or bottom.

Weight

The table below presents the weights (in kg) of the circuit breakers and the main accessories, which must be summed to obtain the total weight of complete configurations. The values are valid for all performance categories.

Type of device		Circuit breakers	Base	Chassis	Vigi module	Visu module	Motor mech.	
NSX100	3P/2D	1.79	0.8	2.2	0.87	2	1.2	
	3P/3D	2.05	0.8	2.2	0.87	2	1.2	
	4P/4D	2.4	1.05	2.2	1.13	2.2	1.2	
NSX160	3P/2D	1.85	0.8	2.2	0.87	2	1.2	
	3P/3D	2.2	0.8	2.2	0.87	2	1.2	
	4P/4D	2.58	1.05	2.2	1.13	2.2	1.2	
	NSX250	3P/2D	1.94	0.8	2.2	0.87	2	1.2
	3P/3D	2.4	0.8	2.2	0.87	2	1.2	
	4P/4D	2.78	1.05	2.2	1.13	2.2	1.2	

Installation in switchboards
Safety clearances and minimum distances

General rules

When installing a circuit breaker, minimum distances (safety clearances) must be maintained between the device and panels, bars and other protection devices installed nearby. These distances, which depend on the ultimate breaking capacity, are defined by tests carried out in accordance with standard IEC 60947-2.
If installation conformity is not checked by type tests, it is also necessary to:

- use insulated bars for circuit-breaker connections
- segregate the busbars using insulating screens.

For Compact NSX100 to 630 devices, terminal shields and interphase barriers are recommended and may be mandatory depending on the operating voltage of the device and type of installation (fixed, withdrawable, etc.).

Power connections

The table below indicates the rules to be respected for Compact NSX100 to 630 devices to ensure insulation of live parts for the various types of connection.
\square fixed devices with front connection (FC) or rear connection (RC)

- plug-in or withdrawable devices.

Connection accessories such as crimp lugs, bare-cable connectors, terminal extensions (straight, right-angle, double-L and 45°) and spreaders are supplied with interphase barriers.
Long terminal shields provide a degree of protection of IP40 (ingress) and IK07 (mechanical impact).

Compact NSX100 to 630: rules to be respected to ensure insulation of live parts

Type of connection	Fixed, front connection			Fixed, rear connection	Plug-in or withd	awable
						Through panel
Possible, recommended or mandatory accessories: With:	No insulating accessory	Interphase barriers	Long terminal shields	Short terminal shields		Short terminal shields
operating voltage type of conductor						
$\leqslant 500 \mathrm{~V}$ Insulated bars	Possible	Possible	Possible	Recommended	Recommended	Mandatory
Extension terminals Cables + crimp lugs	No	Mandatory (supplied)	Possible (instead of ph. barriers)	Recommended	Recommended	Mandatory
Bare cables + connectors	$\begin{aligned} & \text { Possible for } \\ & \text { NSX100 to } 250 \end{aligned}$	$\begin{aligned} & \text { Possible for } \\ & \text { NSX100 to } 250 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Possible for } \\ & \text { NSX100 to } 250 \end{aligned}$			
	No	Mandatory (supplied)	Possible (instead of ph. barriers)	Recommended	Recommended	Mandatory
$>500 \mathrm{~V} \text { Insulated bars }$	No	No	Mandatory	Mandatory	Mandatory	Mandatory
Extension terminals Cables + crimp lugs	No	No	Mandatory	Mandatory	Mandatory	Mandatory
Bare cables + connectors	No	No	Mandatory	Mandatory	Mandatory	Mandatory

Safety clearance

Minimum distance between two adjacent circuit breakers

Minimum distance between circuit breaker and front or rear panels

Note: if $F<8 \mathrm{~mm}$: an insulating screen or long terminal shield is mandatory (see page A-73).

Minimum distance between circuit breaker and top, bottom or side panels

Minimum safety clearances for Compact NSX100 to 630

Operating voltage	Clearance (mm)						
	Between devices	Between device and sheetmetal					
	A1	C1	D1	D2	C1	D1	D2
$\mathrm{U} \leqslant 440 \mathrm{~V}$ for devices equipped with: no accessories interphase barriers ■ long terminal shields	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 30 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 40 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 40 \\ & 0 \\ & 0 \end{aligned}$
$440 \mathrm{~V}<\mathrm{U} \leqslant 600 \mathrm{~V}$ for devices equipped with: interphase barriers ${ }^{(1)}$ ■ long terminal shields ${ }^{(2)}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l} 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$
$U>600 \mathrm{~V}$ for devices equipped with: \square long terminal shields	0	10	50	50	20	100	100

(1) Only for NSX100 to 250.
(2) For all cases.

Clearances with respect to live bare busbars

Minimum clearances for Compact NSX100 to 630

Operating voltage	Clearances with respect to live bare busbars			
	spacing $\leqslant \mathbf{6 0} \mathbf{~ m m}$	spacing $\mathbf{>} \mathbf{6 0} \mathbf{~ m m ~}$		
	F1	F2	F1	F2
$U<440 \mathrm{~V}$	350	350	80	80
$U \leqslant 440 \mathrm{~V} \leqslant 600 \mathrm{~V}$	350	350	120	120
$U>600 \mathrm{~V}$	prohibited: insulating screen required between device and busbars			

[^6] by tests.

Remote tripping by MN or MX release

Power consumption is approximately:
■ 30 VA for pick-up of the MN and MX releases
■ 300 VA to 500 VA for the motor mechanism.
The table below indicates the maximum permissible cable length for different supply voltages and cable cross-sectional areas.
Recommended maximum cable lengths (in metres)

Power supply voltage (V DC) Cable cross-section (mm^{2})	12 V		24 V		48 V	
	1.5	2.5	1.5	2.5	1.5	2.5
MN U source 100 \%	15	-	160	-	640	-
U source 85 \%	7	-	40	-	160	-
MX U source 100 \%	60	-	240	-	960	-
U source 85 \%	30	-	120	-	480	-
Motor mechanism U source 100 \%	-	-	10	16	65	110
U source 85 \%	-	-	2	4	17	28

Note: the indicated length is that of each of the two wires.

External neutral voltage tap (ENVT)

This connection is required for accurate power measurements on 3-pole circuit breakers equipped with Micrologic 5 / 6 E trip units in installations with a distributed neutral. It can be used to measure phase-neutral voltages and calculate power using the 3 wattmeter method.
Compact NSX 3-pole circuit breakers come with a wire installed on the device for the connection to the ENVT.
This wire is equipped with a connector for connection to an external wire with the following characteristics:

- cross-sectional area of $1 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$

■ maximum length of 10 metres.

External neutral current transformer (ENCT)

This connection is required to protect the neutral on 3-pole circuit breakers equipped with Micrologic 5 / 6 A or E trip units in installations with a distributed neutral. For Micrologic 6 A or E , it is required for type G ground-fault protection.
The ENCT is connected in the same way for fixed, plug-in or withdrawable devices:

- fixed devices are connected via terminals T1 and T2 of the internal terminal block.

■ plug-in and withdrawable devices are not connected via the auxiliary terminals.
The wires must be connected/disconnected inside the device via terminals T1 and T2.
The ENCT must be connected to the Micrologic trip unit by a shielded twisted pair. The shielding should be connected to the switchboard earth only at the CT end, no more than 30 cm from the CT.
■ the power connections of the CT to the neutral (H 2 and H 1) must be made in the same way for power supply from the top or the bottom (see figure). Make sure they are not reversed for devices with power supply from the bottom.

- cross-sectional area of $0.4 \mathrm{~mm}^{2}$ to $1.5 \mathrm{~mm}^{2}$

■ maximum length of 10 metres.

ULP connection system between Micrologic, FDM 121 switchboard display and Modbus interface

The ULP (Universal Logic Plug) wiring system used by Compact NSX for connections through to the Modbus network requires neither tools nor settings. The prefabricated cords are sued for both data transfer and distribution of 24 V DC power. Connectors on each component are identified by ULP (Universal Logic Plug) symbols, ensuring total compatibility between each component.

Available cords

All connections are made with prefabricated cords:
■ NSX cord for connection of the internal terminal block to the Modbus interface or the FDM 121 display via an RJ45 connector. The cord is available in three lengths, $0.35 \mathrm{~m}, 1.3 \mathrm{~m}$ and 3 m
■ ULP cords with RJ45 connectors at each end for the other connections between components. The cord is available in six lengths, $0.3 \mathrm{~m}, 0.6 \mathrm{~m}, 1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}$ and 5 m . For greater distances, two cords can be interconnected using the RJ45 female/ female accessory.
Maximum length of 10 m between 2 modules and 30 m in all.
A line terminator must be fitted to all components with an unused RJ45 connector.

Power supply, without the Communication function, via the terminal block with a backup battery.

Supply, with the Communication function, via the Modbus interface.

24 V DC power-supply module

Use

An external 24 V DC power supply is required for installations with communication, whatever the type of trip unit.
On installations without communication, it is available as an option for Micrologic 5/6 to:

- modify settings when the circuit breaker is open (OFF position)
- display measurements when the current flowing through the circuit breaker is low
- maintain the display of the cause of tripping.

Characteristics

The external 24 V DC supply may be used for the entire switchboard. The required characteristics are indicated in the table below.

Characteristics	
Output voltage	24 V DC -20% to $+10 \%$
Ripple	$\pm 1 \%$
Overvoltage category (OVC)	OVC IV - as per IEC $60947-1$

Sizing

Sizing must take into account all supplied modules.

Module	Consumption (mA)
Micrologic $5 / 6$	40
BSCM module	10
FDM 121	40
Modbus communication interface	60
NSX cord U >480 V AC	30
SDx / SDTAM module	20

Wiring

Micrologic 5 or $\mathbf{6}$ not using the Communication function
The external 24 V DC supply is connected via the circuit breaker terminal block. Use of a 24 V DC battery provides backup power for xx minutes in the event of an interruption in the external supply.

Micrologic 5 or $\mathbf{6}$ using the Communication function

The external 24 V DC supply is connected via the Modbus interface using a five-pin connector, including two for the power supply. Stacking accessories (see page A-27) can be used to supply a number of interfaces by fast clip-on connection.
The 24 V DC power is distributed downstream by the ULP (Universal Logic Plug) communication cords with RJ45 connectors. This system ensures both data transfer and power distribution to the connected modules.

Recommendations for 24 V DC wiring

■ Do not connect the positive terminal to earth.

- Do not connect the negative terminal to earth.
- The maximum length for each conductor (+/-) is ten metres.
- For connection distances greater than ten metres, the plus and minus conductors of the 24 V DC supply must be twisted to improve EMC.
■ The 24 V DC conductors must cross the power cables perpendicularly. If this is difficult or impossible, the plus and minus conductors must be twisted.

Modbus

Each Compact NSX circuit breaker equipped with Micrologic 5/6 and an FDM 121 display is connected to the Modbus network via the Modbus interface module. Connection of all the circuit breakers and other Modbus devices in the switchboard to a Modbus bus is made much easier by using a Modbus RJ45 junction block installed in the switchboard.

Recommendations for Modbus wiring

■ The shielding may be earthed.

- The conductors must be twisted to improve immunity (EMC).

■ The Modbus conductors must cross the power cables perpendicularly.

Installation
recommendations

Temperature derating
Compact NSX100 to 250 equipped with thermal-magnetic trip units

When thermal-magnetic trip units are used at ambient temperatures other than $40^{\circ} \mathrm{C}$, the Ir pick-up is modified.

Temperature derating curve for Compact NSX100.

Example 1. Fault $\mathrm{I}=500 \mathrm{~A}$

$\mathbf{I / I r}$	4.5	5	5.5
$\mathbf{\mathbf { T } ^ { \circ }} \mathbf{C}$	$20^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
\mathbf{t} min.	8 s	6 s	5 s
\mathbf{t} max.	80 s	60 s	50 s

[^7]The overload protection is calibrated at $40^{\circ} \mathrm{C}$ in the lab. This means that when the ambient temperature is less or greater than $40^{\circ} \mathrm{C}$, the Ir protection pick-up is slightly modified.
To obtain the tripping time for a given temperature:

- see the tripping curves for $40^{\circ} \mathrm{C}$ (see pages E-2 and E-3)
- determine tripping times corresponding to the Ir value (thermal setting on the device), corrected for the ambient temperature as indicated in the tables below.

Settings of Compact NSX100 to 250 equipped with TM-D and

 TM-G trip units, as a function of the temperatureThe table indicates the real Ir (A) value for a given rating and temperature.

Rat. Temperature $\left({ }^{\circ} \mathbf{C}\right)$ $\mathbf{(A)}$									$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$
$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$	$\mathbf{6 5}$	$\mathbf{7 0}$						
$\mathbf{1 6}$	18.4	18.7	18	18	17	16.6	16	15.6	15.2	14.8	14.5	14	13.8
$\mathbf{2 5}$	28.8	28	27.5	27	26.3	25.6	25	24.5	24	23.5	23	22	21
$\mathbf{3 2}$	36.8	36	35.2	34.4	33.6	32.8	32	31.3	30.5	30	29.5	29	28.5
$\mathbf{4 0}$	46	45	44	43	42	41	40	39	38	37	36	35	34
$\mathbf{5 0}$	57.5	56	55	54	52.5	51	50	49	48	47	46	45	44
$\mathbf{6 3}$	72	71	69	68	66	65	63	61.5	60	58	57	55	54
$\mathbf{8 0}$	92	90	88	86	84	82	80	78	76	74	72	70	68
$\mathbf{1 0 0}$	115	113	110	108	105	103	100	97.5	95	92.5	90	87.5	85
$\mathbf{1 2 5}$	144	141	138	134	131	128	125	122	119	116	113	109	106
$\mathbf{1 6 0}$	184	180	176	172	168	164	160	156	152	148	144	140	136
$\mathbf{2 0 0}$	230	225	220	215	210	205	200	195	190	185	180	175	170
$\mathbf{2 5 0}$	288	281	277	269	263	256	250	244	238	231	225	219	213

Example 1. What is the tripping time of a Compact NSX100 equipped with a TM100D trip unit set to 100 A , for an overload $\mathrm{I}=500 \mathrm{~A}$?
The overload I / Ir is calculated as a function of the temperature. Use the above values and the curve on page E-3 (shown on the left) to determine the corresponding time.

- At $40^{\circ} \mathrm{C}$, $\mathrm{Ir}=100 \mathrm{~A}, \mathrm{I} / \mathrm{Ir}=5$ and the tripping time is between 6 and 60 seconds.
- At $20^{\circ} \mathrm{C}, \mathrm{Ir}=110 \mathrm{~A}, \mathrm{I} / \mathrm{Ir}=4.54$ and the tripping time is between 8 and 80 seconds.
- At $60^{\circ} \mathrm{C}, \mathrm{Ir}=90 \mathrm{~A}, \mathrm{l} / \mathrm{Ir}=5.55$ and the tripping time is between 5 and 50 seconds.

Example 2. What is the setting to obtain a real Ir of 210 A , taking into account the temperature, for a Compact NSX250 equipped with a TM250D trip unit?
The necessary dial setting, in amperes, is shown below.

- At $40^{\circ} \mathrm{C}, \mathrm{Ir}=(210 / 250) \times 250 \mathrm{~A}=210 \mathrm{~A}$
- At $20^{\circ} \mathrm{C}$, $\mathrm{Ir}=(210 / 277) \times 250 \mathrm{~A}=189.5 \mathrm{~A}$
- At $60^{\circ} \mathrm{C}, \mathrm{Ir}=(210 / 225) \times 250 \mathrm{~A}=233 \mathrm{~A}$

Additional derating coefficient for an add-on module

The values indicated in the previous tables are valid for fixed circuit breakers equipped with one of the following modules:

- Vigi module
- insulation monitoring module
- ammeter module
- current-transformer module.

They also apply for plug-in or withdrawable circuit breakers equipped with:

- ammeter module
- current-transformer module.

However, for plug-in or withdrawable circuit breakers equipped with a Vigi module or an insulation monitoring module, the coefficient 0.84 must be applied.
The table below sums up the situation for add-on modules.
$\left.\begin{array}{ll|l|l|l}\begin{array}{l}\text { Type of } \\ \text { device }\end{array} & \text { Circuit breaker } & \begin{array}{l}\text { TM-D trip- } \\ \text { unit rating }\end{array} & \begin{array}{l}\text { Vigi or } \\ \text { insulation } \\ \text { monitoring } \\ \text { module }\end{array} & \begin{array}{l}\text { Ammeter or } \\ \text { current } \\ \text { transformer } \\ \text { module }\end{array} \\ \text { Fixed } & \text { NSX100 to } 250 & 16 \text { to } 100 & & \\ & \text { NSX160 to } 250 & 125 & & \\ & \text { NSX160 to } 250 & 160\end{array}\right)$

Electronic trip units are not affected by variations in temperature. If the trip units are used in high-temperature environments, the Micrologic setting must nevertheless take into account the temperature limits of the circuit breaker.

Changes in temperature do not affect measurements by electronic trip units.

- The built-in CT sensors with Rogowski toroids measure the current.
- The control electronics compare the value of the current to the settings defined for $40^{\circ} \mathrm{C}$.
Because temperature has no effect on the toroid measurements, the tripping thresholds do not need to be modified.
However, the temperature rise caused by the flow of current and the ambient temperature increase the temperature of the device. To avoid reaching the thermal withstand level of the equipment, it is necessary to limit the current flowing through the device, i.e. the maximum Ir setting as a function of the temperature.

Compact NSX100/160/250

The table below indicates the maximum long-time (LT) protection setting Ir (A) depending on the ambient temperature.

Type of device	Rating (A) Temperature (${ }^{\circ} \mathrm{C}$)							
		40	45	50	55	60	65	70
NSX100/160								
Fixed, plug-in or withdr.	40	no derating						
	100	no derating						
NSX250								
Fixed, plug-in or withdrawable	100	no derating						
	160	no derating						
Fixed	250	250	250	250	245	237	230	225
Plug-in or withdr.	250	250	245	237	230	225	220	215

Compact NSX400 and 630

The table below indicates the maximum long-time (LT) protection setting Ir (A) depending on the ambient temperature.

Type of device	Rating (A)	Temperature $\left({ }^{\circ} \mathbf{C}\right)$							
$\mathbf{4 0}$		$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$	$\mathbf{6 5}$	$\mathbf{7 0}$		
NSX400									

Example. A fixed Compact NSX400 equipped with a Micrologic can have a maximum Ir setting of:

- 400 A up to $50^{\circ} \mathrm{C}$
- 380 A up to $60^{\circ} \mathrm{C}$.

Additional derating coefficient for an add-on module
For fixed or plug-in / withdrawable circuit breakers, the addition of a:

- Vigi module
- insulation-monitoring module
- ammeter module
- current-transformer module
can modify the derating values. Apply the coefficients shown below.
Derating of a Compact NSX equipped with a Micrologic trip unit

Type of device	Circuit breaker	TM-D trip-unit rating	Vigi / Insulation monitoring module	Ammeter module I External sensor (CT)
Fixed	$\begin{aligned} & \text { NSX100 to } 250 \\ & \text { NSX160 to } 250 \\ & \text { NSX250 } \end{aligned}$	$\begin{aligned} & 40 \text { to } 100 \\ & 125 \\ & 250 \end{aligned}$	1	11
Plug-in or withdrawable	$\begin{array}{\|l\|} \hline \text { NSX100 to } 250 \\ \text { NSX160 to } 250 \end{array}$	$\begin{array}{\|l} \hline 40 \text { to } 100 \\ 160 \\ \hline \end{array}$		
	NSX250	250	0.86	
Fixed	$\begin{array}{\|l\|} \hline \text { NSX400 } \\ \text { NSX630 } \end{array}$	$\begin{array}{\|l\|} \hline 250 \text { to } 400 \\ 250 \text { to } 630 \end{array}$	$\begin{aligned} & \hline 0.97 \\ & 0.90 \end{aligned}$	
Plug-in or withdrawable	$\begin{aligned} & \text { NSX400 } \\ & \text { NSX630 } \end{aligned}$	$\begin{array}{\|l\|} \hline 250 \text { to } 400 \\ 250 \text { to } 630 \end{array}$	$\begin{aligned} & 0.97 \\ & 0.90 \end{aligned}$	

Note: to provide the Visu function, Compact NSX circuit breakers, with or without a Vigi module, are combined with INV switch-disconnectors. Tripping values for the selected combination are indicated in the Interpact catalogue.

Power loss/ Resistance

Compact NSX equipped with thermal-magnetic trip units

Compact NSX thermal power loss values are used to calculate total temperature rise in the switchboard in which the circuit breakers are installed.

With a Vigi module, the deviation of the N and $L 3$ bars required to pass through the toroid results in higher power losses compared to those of the L1 and L2 bars.

The values indicated in the tables below are typical values for a device at full rated load and $50 / 60 \mathrm{~Hz}$.

Power loss per pole (P/pole) in Watts (W)

The value indicated is the power loss at $\mathrm{I}_{N}, 50 / 60 \mathrm{~Hz}$, for a three-pole or four-pole circuit breaker. Measurement and calculation of power loss are carried out in compliance with the recommendations of Annex G of standard IEC 60947-2.
Resistance per pole ($\mathrm{R} / \mathrm{pole}$) in milliohms ($\mathrm{m} \Omega$)
The value of the resistance per pole is provided as a general indication for a new device.
The value of the contact resistance must be determined on the basis of the measured voltage drop, in accordance with the manufacturer's test procedure (ABT instruction document no. 1-BEE-02.2-A).
Note: this measurement is not sufficient to determine the quality of the contacts, i.e. the capacity of the circuit breaker to carry its rated current.

Additional power loss

Additional power loss is equal to the sum of the power dissipated by the following:

- Vigi module: note that the deviation of the N and L3 bars required to pass through the toroid results in higher power losses compared to those of the L1 and L2 bars (diagram opposite). When calculating total power loss, use L1, L2, L3 for a 3P device and $\mathrm{N}, \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$ for a 4P device
■ disconnecting contacts (plug-in and withdrawable devices)
- ammeter module
- transformer module.

Calculation of total power loss

Total power loss at full rated load and $50 / 60 \mathrm{~Hz}$ is equal to the sum of the device and additional power losses per pole multiplied by the number of poles (2,3 or 4). If a Vigi module is installed, it is necessary to differentiate between N and L 3 on one hand and L1 and L2 on the other

Compact NSX100 to 250 equipped with TM-D and TM-G trip units

Type of device		Fixed device		Additional power / pole				
3/4 poles	Rat. (A)	R/pole	P/pole	Vigi (N, L3)	Vigi (L1, L2)	$\begin{array}{\|l\|} \text { Plug-in I } \\ \text { withdr. } \end{array}$	Ammeter module	Transfo. module
NSX100	16	11.42	2.92	0	0	0	0	0
	25	6.42	4.01	0	0	0.1	0	0
	32	3.94	4.03	0.06	0.03	0.15	0.1	0.1
	40	3.42	5.47	0.10	0.05	0.2	0.1	0.1
	50	1.64	4.11	0.15	0.08	0.3	0.1	0.1
	63	2.17	8.61	0.3	0.15	0.4	0.1	0.1
	80	1.37	8.77	0.4	0.2	0.6	0.1	0.1
	100	0.88	8.8	0.7	0.35	1	0.2	0.2
NSX160	80	1.26	8.06	0.4	0.2	0.6	0.1	0.1
	100	0.77	7.7	0.7	0.35	1	0.2	0.2
	125	0.69	10.78	1.1	0.55	1.6	0.3	0.3
	160	0.55	13.95	1.8	0.9	2.6	0.5	0.5
NSX250	125	0.61	9.45	1.1	0.55	1.6	0.3	0.3
	160	0.46	11.78	1.8	0.9	2.6	0.5	0.5
	200	0.39	15.4	2.8	1.4	4	0.8	0.8
	250	0.3	18.75	4.4	2.2	6.3	1.3	1.3

Compact NSX100 to 630 equipped with MA/1.3-M trip units

Type of device		Fixed device		Additional power / pole				
3 poles	Rat. (A)	R/pole	P/pole	Vigi (N, L3)	Vigi $(\mathrm{L} 1, \mathrm{~L} 2)$	Plug-in / withdr.	Ammeter module	Transfo. module
NSX100	2.5	148.42	0.93	0	0	0	0	0
	6.3	99.02	3.93	0	0	0	0	0
	12.5	4.05	0.63	0	0	0	0	0
	25	1.66	1.04	0	0	0.1	0	0
	50	0.67	1.66	0.2	0.1	0.3	0.1	0.1
	100	0.52	5.2	0.7	0.35	1	0.2	0.2
NSX160	150	0.38	8.55	1.35	0.68	2.6	0.45	0.45
NSX250	220	0.3	14.52	2.9	1.45	4.89	0.97	0.97
NSX400	320	0.12	12.29	3.2	1.6	6.14	1.54	1.54
NSX630	500	0.1	25	13.99	7	15	3.75	3.75

The values indicated in the table below are typical values for a device at full rated load and $50 / 60 \mathrm{~Hz}$. The definitions and information are the same as that for circuit breakers equipped with thermal-magnetic trip units.

Compact NSX100 to 630 equipped with Micrologic trip units

Type of device		Fixed device		Additional power / pole				
$3 / 4$ poles	Rat. (A)	R/pole	P/pole	Vigi $(N, L 3)$	Vigi $(\mathrm{L} 1, \mathrm{~L} 2)$	Plug-in / withdr.	Ammeter module	Transfo. module
NSX100	40	0.84	1.34	0.1	0.05	0.2	0.1	0.1
	100	0.468	4.68	0.7	0.35	1	0.2	0.2
NSX160	40	0.73	1.17	0.4	0.2	0.6	0.1	0.1
	100	0.36	3.58	0.7	0.35	1	0.2	0.2
	160	0.36	9.16	1.8	0.9	2.6	0.5	0.5
NSX250	100	0.27	2.73	1.1	0.55	1.6	0.2	0.2
	250	0.28	17.56	4.4	2.2	6.3	1.3	1.3
NSX400	400	0.12	19.2	3.2	1.6	9.6	2.4	2.4
NSX630	$630{ }^{(1)}$	0.1	39.69	6.5	3.25	19.49	5.95	5.95

(1) The power loss values for the Vigi modules and withdrawable circuit breakers are given for 570 A .
Easy installation

P071850270

Dimensions and connection
 Contents

Functions and characteristics A-1
Installation recommendations B-1
Dimensions and mounting
Compact NSX100 to 630 fixed version C-2
Vigicompact NSX100 to 630 fixed version C-3
Compact NSX100 to 630 plug-in version C-4
Compact NSX100 to 630 withdrawable version C-6
Vigicompact NSX100 to 630 plug-in and withdrawable versions C-8
Visu function for Compact NSX100 to 250 fixed version C-9
Visu function for Compact NSX400/630 fixed version C-10
Motor mechanism module for Compact NSX100 to 630 C-11
Direct rotary handle for Compact and Vigicompact NSX100 to 630 C-12
MCC and CNOMO type direct rotary handles
for Compact NSX100 to 630 fixed version C-13
Extended rotary handle for Compact NSX100 to 630 C-14
Indication and measurement modules for Compact NSX100 to 630 fixed version C-15
One-piece spreader for Compact NSX100 to 250 fixed version C-16
FDM121 switchboard display C-17
Front-panel accessories
Compact NSX100 to 630 C-18
Front-panel cutouts
Compact NSX100 to 630 fixed version C-20
Vigicompact NSX100 to 630 fixed version C-22
Compact NSX100 to 630 plug-in and withdrawable versions C-24
Vigicompact NSX100 to 630 plug-in and withdrawable versions C-25
Visu function for Compact NSX100 to 630 fixed version C-26
Motor mechanism module for Compact and Vigicompact NSX100 to 630 C-27
Direct rotary handle for Compact and Vigicompact NSX100 to 630 C-28
MCC and CNOMO type direct rotary handlesfor Compact NSX100 to 630 fixed versionC-13
Extended rotary handle for Compact NSX100 to 630 C-14
Indication and measurement modules for Compact NSX100 to 630 C-30
FDM121 switchboard display C-17
Power connections
Compact and Vigicompact NSX100 to 630 fixed version C-32
Compact and Vigicompact NSX100 to 630 plug-in and withdrawable versions C-36
Connection of insulated bars or cables with lugs to Compactand Vigicompact NSX100 to 630C-40
Connection of bare cables to Compact and Vigicompact NSX100 to 630 C-41
Wiring diagrams
Additional characteristics D-1
Catalogue numbers F-1
Glossary G-1

Dimensions and connection

Dimensions and mounting

Compact NSX100 to 630 fixed version

Interphase barriers.
\square Short terminal shields.

(1) The $\varnothing T$ holes are required for rear connection only.

For two-pole circuit breakers, the middle holes are not required.

On DIN rail with adapter plate (NSX100 to 250)

For two-pole circuit breakers, the middle holes are not required.

Dimensions and connection

Dimensions and mounting

Compact NSX100 to 630 plug-in version

On backplate (M) 2/3P 4P 4P

Front connection (an insulating screen is supplied with the base and must be fitted between the base and the backplate)

Connection by exterior-mounted rear connectors
 two-pole circuit breakers, the middle holes are not required).

Connection by interior-mounted rear connectors

Type	A	A1	A2	A10	A11	B	B1	B2	C3	D1	E9	E10	E11	E12	E13	E14	E15
NSX100/160/250	80.5	161	94	175	210	52.5	105	140	126	75	95	190	87	174	77.5	155	79
NSX400/630	127.5	255	142.5	244	281	70	140	185	168	100	150	300	137	274	125	250	126
Type	E16	E17	E18	E19	E20	F1	F2	F3	F4	F5	F6	F7	F8	F9	$\boldsymbol{\varnothing}$ O1	U	
NSX100/160/250	158	61	122	37.5	75	35	17.5	70	54.5	109	144	70	105	35	24	$\leqslant 32$	180
NSX400/630	252	101	202	75	150	45	22.5	90	71.5	143	188	100	145	50	33	$\leqslant 35$	

Mounting

Through front panel (N)
2/3P
NSX100 to 250

| On backplate (M) $2 / 3 \mathrm{P}$ | 4 P |
| :--- | :---: | :---: |

Front connection (an insulating screen is supplied with the base and must be fitted between the base and the backplate)

Connection by exterior-mounted rear connectors

(1) The ØT1 holes are required for rear connection only (for
two-pole circuit breakers, the middle holes are not required).
two-pole circuit breakers, the middle holes are not required).

Type	A10	A11	A12	A13	B3	B4	B5	B6	B7	C3	D1	E9	E10	E11	E12	E13
E14																
NS $100 / 160 / 250$	175	210	106.5	103.5	92.5	185	216	220	251	126	75	95	190	87	174	77.5
NSX400/630	244	281	140	140	110	220	250	265	295	168	100	150	300	137	274	125
Type	E15	E16	E17	E18	E19	E20	F1	F2	F3	F7	F8	F9	F10	F11	F12	ØT1
U																
NSX100/160/250	79	158	61	122	37.5	75	35	17.5	70	70	105	35	74	148	183	24
NSX400/630	126	252	101	202	75	150	45	22.5	90	100	145	50	91.5	183	228	33

Dimensions and connection

Dimensions and mounting

Vigicompact NSX100 to 630 plug-in and withdrawable versions

Dimensions - plug-in version

Dimensions - withdrawable version	NSX100 to 630	$4 P$
	3P	

Mounting

Through front panel (N)
See Compact NSX100 to 630 plug-in version, page C-4, or withdrawable version, page C-6
On backplate (M)
See Compact NSX100 to 630 plug-in version, page C-5, or withdrawable version, page C-7

On rails

See Compact NSX100 to 630 plug-in version, page C-5, or withdrawable version, page C-7

Type	A	A2	A5	A6	A7	A10	A11	B	B1	B2	B3	B4	B5	B6	B7	C3	D1
NSX100/160/250	80.5	94	155.5	236	169	175	210	52.5	105	140	92.5	185	216	220	251	126	75
NSX400/630	127.5	142.5	227.5	355	242.5	244	281	70	140	185	110	220	250	265	295	168	100

Interphase barriers.
Short terminal shields.
Long terminal shields.
Mounting
On rails or backplate

Dimensions and connection

Dimensions and mounting

Visu function for Compact NSX400/630 fixed version

Interphase barriers for base. Short terminal shields. Long terminal shields.

On rails or backplate

Motor mechanism module for Compact NSX100

 to 630Dimensions
Fixed circuit breaker

55: without keylock
C6: with keylock

Plug-in circuit breaker

Withdrawable circuit breaker

Type	A14	A15	A16	A17	B	B1	B2	B8	B9	C4	C5	C6	D1
NSX100/160/250	27.5	73	34.5	62.5	52.5	105	140	45.5	91	143	182	209.5	75
NSX400/630	40	123	52	100	70	140	185	61.5	123	215	256	258	100

Plug-in circuit breaker

Withdrawable circuit breaker

Type	A14	A15	A18	B	B1	B2	B8	B9	B10	C7	C8	C9	D1
NSX100/160/250	27.5	73	9	52.5	105	140	45.5	91	9.25	121	155	164	75
NSX400/630	40	123	24.6	70	140	185	61.5	123	5	145	179	188	100

Dimensions and connection

Dimensions and mounting

Extended rotary handle for Compact NSX100 to 630

Dimensions

Fixed and plug-in circuit breakers

Cutout for shaft (mm)

Type	R1
NSX100/160/250	$\min .171$
	$\max .600$
NSX400/630	$\min .195$
	$\max .600$

Withdrawable circuit breaker

Cutout for shaft (mm)
Type R2

NSX100/160/250 min. 248 max. 600 $\min .272$ max. 600

Dimensions and front-panel cutout

Type	A18	B10	D1
NSX100/160/250	9	9.25	75
NSX400/630	24.6	5	100

Dimensions and mounting

Indication and measurement modules for Compact NSX100 to 630 fixed version

For two-pole circuit breakers, the middle holes are not required.

Dimensions and mounting

connection
One-piece spreader for Compact NSX100 to 250 fixed version

Dimensions

Mounting
Through panel

On panel

Connector (optional).

Dimensions and connection

Front-panel accessories
Compact NSX100 to 630

IP30 front-panel escutcheons
For toggle, rotary handle or motor mechanism module

For toggle or rotary handle with access to trip unit

For Vigicompact

IP40 front-panel escutcheons

For toggle, rotary handle or motor mechanism module and protection collar

For Vigicompact with protection collar or ammeter module

Protection collars for IP40 front-panel escutcheons
For toggle

For Vigicompact

Y

Circuit breaker with toggle or rotary handle.
 mechanism module.

IP43 toggle cover

Type	A	A1	A2	A3	A4	A5	B	B1	B2	B3	C
NSX100/160/250	113	138	114	101	73	85	113	157	91	103	40
NSX400/630	163	215	164	151	122.5	138	163	189	122.5	138	60

Dimensions and connection

Front-panel cutouts

Compact NSX100 to 630 fixed version

For toggle with access to trip unit

With IP30 front-panel escutcheon
NSX100 to 250
NSX400/630
For toggle

For toggle with access to trip unit

With IP43 toggle cover
For toggle

Type	P3	P4
NSX100/160/250	88	89
NSX400/630	112	113

Dimensions and connection

Front-panel cutouts

Vigicompact NSX100 to 630 fixed version

For toggle with access to trip unit

With IP30 front-panel escutcheon (cont.) NSX100 to 250 NSX400/630
For toggle with access to trip unit

With IP40 front-panel escutcheon
For toggle

Type	P3	P4
NSX100/160/250	88	89
NSX400/630	112	113

Dimensions and connection

Front-panel cutouts

Compact NSX100 to 630 plug-in and withdrawable versions

Plug-in version

Bare sheet metal

See Compact NSX100 to 630 fixed version, page C-20

With IP30 front-panel escutcheon

See Compact NSX100 to 630 fixed version, page C-20

With IP40 front-panel escutcheon

See Compact NSX100 to 630 fixed version, page C-21

With toggle cover

See Compact NSX100 to 630 fixed version, page C-21

Withdrawable version	NSX100 to 250	NSX400/630
With protection collar and IP40 front-panel escutcheon		

Bare sheet metal

See Compact NSX100 to 630 fixed version, page C-22
With IP30 front-panel escutcheon
See Compact NSX100 to 630 fixed version, page C-22

With IP40 front-panel escutcheon

See Compact NSX100 to 630 fixed version, page C-23

| Withdrawable version | NSX100 to 250 | NSX400/630 |
| :--- | :--- | :--- | :--- |
| With protection collar and IP40 front-panel escutcheon | | |

Type	D1	P3	P5
NSX100/160/250	75	88	123
NSX400/630	100	112	147

Dimensions and connection

Front-panel cutouts

Visu function for Compact NSX100 to 630 fixed version

Compact NSX100 to 250 with Interpact INV100 to 250 Visu function
Bare sheet metal

With IP40 front-panel escutcheon

Compact NSX400/630 with Interpact INV400 to 630 Visu function

Bare sheet metal

With IP40 front-panel escutcheon

Y

Motor mechanism module for Compact and Vigicompact NSX100 to 630

NSX100 to 250

NSX400/630

With IP30 front-panel escutcheon
Fixed, plug-in or withdrawable circuit breaker

With IP40 front-panel escutcheon
NSX100 to 250
NSX400/630
Fixed, plug-in or withdrawable circuit breaker without access to Vigi module

Fixed or plug-in circuit breaker with access to Vigi module

Type	D1	P6 $^{(1)}$	P7 $^{(2)}$	P8 $^{(1)}$	P9 $^{(2)}$
NSX100/160/250	75	145	177	146	178
NSX400/630	100	217	249	218	250

(1) Plug-in version.
(2) Withdrawable version.

Dimensions and connection

Front-panel cutouts
Direct rotary handle for Compact and Vigicompact NSX100 to 630

Bare sheet metal with access to the trip unit

With IP30 front-panel escutcheon

With IP30 front-panel escutcheon with access to the trip unit

With IP40 front-panel escutcheon

Fixed or withdrawable circuit breakers
NSX100 to 250
NSX400/630
With IP40 front-panel escutcheon

Type	D1	P10	P11	P12
NSX100/160/250	75	89	90	123
NSX400/630	100	112	113	147

Dimensions and connection

Front-panel cutouts

Indication and measurement modules for Compact NSX100 to 630

Fixed or plug-in circuit breakers with ammeter module and voltage-presence indicator
Bare sheet metal

With toggle

Rotary handle

With IP40 front-panel escutcheon

With toggle

Z

Rotary handle

Type	D1	J1	J2	J3	K1	K2	P3	P4	P10	P11
NSX100/160/250	75	78.5	67.5	55	46.5	74	88	89	89	90
NSX400/630	100	122	129	122.5	64.5	90	112	113	112	113

Dimensions and connection

Power connections

Compact and Vigicompact NSX100 to 630 fixed version

Connection with accessories
Long and short rear connectors

NSX400/630

Dimensions and connection

Power connections

Compact and Vigicompact NSX100 to 630 fixed version

Double-L terminal extensions

NSX100 to 250

Connection with accessories (cont.)
Spreaders
NSX100 to 250

NSX400/630

One-piece spreader (for NSX100 to 250 only)

Dimensions and connection

Power connections

Compact and Vigicompact NSX100 to 630 plug-in and withdrawable versions

Connection without accessories
Front connection: mounting on backplate (M) or rails (V)

NSX400/630

Rear connection: mounting through front panel (N) or on rails (V)

NSX100 to 250

NSX400/630

Dimensions and connection

Power connections

Compact and Vigicompact NSX100 to 630 plug-in and withdrawable versions

Connection with accessories (cont.)
45° extensions: mounting through front panel (N) or on rails (V)

NSX100 to 250

NSX400/630

Double-L extensions: mounting on backplate (M) or rails (V)
NSX100 to 250

Double-L extensions: mounting through front panel (N) or on rails (V)

$$
\text { NSX100 to } 250
$$

Long insulated rear connectors: mounting on backplate (M) or rails (V)

Exterior-mounted rear connectors NSX100 to 250

Interior-mounted rear connectors

NSX100 to 250

NSX400/630

NSX400/630

Dimensions and
connection

Power connections

Connection of insulated bars or cables with lugs

 to Compact and Vigicompact NSX100 to 630

Accessories for NSX100 to 250

Straight terminal extensions

Tinned copper

Spreaders:

separate parts

Tinned copper
For $U>600 \mathrm{~V}$, the mandatory insulation kit is not compatible with spreaders made up of separate parts.
The one-piece spreader must be used.
Accessories for NSX400 and 630
Spreaders made up of separate parts for 52.5 and 70 mm pitch

Tinned copper
For $U>600 \mathrm{~V}$, use of the 52.5 mm pitch spreaders requires a specific insulation kit.
The 70 mm pitch spreaders may not be used.
Accessories for NSX100 to 630

Right-angle terminal extensions
DB112173

To be mounted on upstream side.

45° terminal extensions

Edgewise terminal extensions

Tinned copper

Tinned copper

Direct connection to NSX100 to 630				
Dimensions		NSX100	NSX160/250	NSX400/630
Bars	$\mathrm{L}(\mathrm{mm})$	$\leqslant 25$	$\leqslant 25$	$\leqslant 32$
	I (mm)	d + 10	d + 10	d + 15
	$\mathrm{d}(\mathrm{mm})$	$\leqslant 10$	$\leqslant 10$	$\leqslant 15$
	$\mathrm{e}(\mathrm{mm})$	$\leqslant 6$	$\leqslant 6$	$3 \leqslant \mathrm{e} \leqslant 10$
	\varnothing (mm)	6.5	8.5	10.5
Lugs	$\mathrm{L}(\mathrm{mm})$	$\leqslant 25$	$\leqslant 25$	$\leqslant 32$
	\varnothing (mm)	6.5	8.5	10.5
Torque (Nm) ${ }^{(1)}$		10	15	50
Torque (Nm) ${ }^{(2)}$		5/5	5/5	20/11
Torque (Nm) ${ }^{(3)}$		8	8	20

(1) Tightening torque on the circuit breaker for lugs or bars.
(2) Tightening torque on fixed devices for rear connectors//tightening torque on plug-in or withdrawable devices for power connectors.
(3) Tightening torque on the plug-in base for terminal extensions.

Connection with accessories to NSX100 to 250 (IEC 228)

Pole pitch				
Without spreaders			35 mm	
With spreaders			45 mm	
Dimensions			With spreaders or terminal extensions	
			NSX100	NSX160/250
	Bars	\underline{L} (mm)	$\leqslant 25$	$\leqslant 25$
		1 (mm)	$20 \leqslant 1 \leqslant 25$	$20 \leqslant 1 \leqslant 25$
		$\mathrm{d}(\mathrm{mm})$	$\leqslant 10$	$\leqslant 10$
		$\mathrm{e}(\mathrm{mm})$	$\leqslant 6$	$\leqslant 6$
		\varnothing (mm)	6.5	8.5
	Lugs	$\mathrm{L}(\mathrm{mm})$	$\leqslant 25$	$\leqslant 25$
		$\varnothing(\mathrm{mm})$	6.5	8.5
	Torqu	$\mathrm{Nm})^{(1)}$	10	15
	Torqu	$\mathrm{Nm})^{(2)}$	5	5

(1) Tightening torque on the circuit breaker for spreaders or terminal extensions.
(2) Tightening torque on the plug-in base for spreaders or terminal extensions.

Spreaders and straight, right-angle, 45°, double-L and edgewise terminal extensions are supplied with flexible interphase barriers.

Connection with accessories to NSX400 and 630 (IEC 228)
Pole pitch

Without spreaders			45 mm	
With spreaders			52.5 or 70 mm	
Dimensions			With spreaders	With terminal extensions
	Bars	$\underline{L}(\mathrm{~mm})$	$\leqslant 40$	$\leqslant 32$
		l (mm)	d + 15	$30 \leqslant 1 \leqslant 34$
		$\mathrm{d}(\mathrm{mm})$	$\leqslant 20$	$\leqslant 15$
\bigcirc		e (mm)	$3 \leqslant \mathrm{e} \leqslant 10$	$3 \leqslant \mathrm{e} \leqslant 10$
θ d 0		\varnothing (mm)	12.5	10.5
$\rightarrow \mathrm{H}^{4} \mathrm{~L}$	Lugs	L (mm)	$\leqslant 40$	$\leqslant 32$
		\varnothing (mm)	12.5	10.5
	Torqu	$\mathrm{Nm})^{(1)}$	50	50
	Torqu	Nm) ${ }^{(2)}$	20	20

(1) Tightening torque on the circuit breaker for spreaders or terminal extensions.
(2) Tightening torque on the plug-in base for spreaders or terminal extensions.

Spreaders and right-angle, 45° and edgewise terminal extensions are supplied with flexible interphase barriers.

Mounting detail: 2 cables with lugs.

Connection of bare cables to Compact and Vigicompact NSX100 to 630

(1) For flexible cables from 1.5 to $4 \mathrm{~mm}^{2}$, connection with crimped or self-crimping ferrules.

Connection to NSX400 and 630

Conductor materials and electrodynamic stresses
Compact NSX circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors (flexible or rigid bars, cables). In the event of a short-circuit, thermal and electrodynamic stresses will be exerted on the conductors. They must therefore be correctly sized and held in place by supports.
Electrical connection points on switchgear devices (switch-disconnectors, contactors, circuit breakers, etc.) should not be used for mechanical support. Any partition between upstream and downstream connections of the device must be made of non-magnetic material.

Accumulated experience

Wiring diagrams

Functions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Compact NSX100 to 630
Fixed circuit breakers D-2
Plug-in / withdrawable circuit breakers D-4
Motor mechanism D-6
SDx module with Micrologic D-8
SDTAM module with Micrologic M D-9
Additional characteristics E-1
Catalogue numbers F-1
Glossary G-1

Indication contacts

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

Terminals shown in red O must be connected by the customer.

Indication contacts

OF2 / OF1: device ON/OFF indication contacts
OF4 / OF3: device ON/OFF indication contacts (NSX400/630)
SDE: fault-trip indication contact (short-circuit, overload, ground fault, earth leakage)
SD: trip-indication contact
CAF2/CAF1: early-make contact (rotary handle only)
CAO1: early-break contact (rotary handle only)
SDV: earth leakage fault trip indication contact (add-on Vigi module)

Colour code for auxiliary wiring

RD:	red
WH: white	VT:
violet	
YE: yellow	GY:
grey	
BK: black	OR:
orange	
GN: green	BL:

RD: red
GY: grey

BL: blue

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

[^8]| Remote | operation |
| :--- | :--- |
| MN: | undervoltage release |
| or | |
| MX: | shunt release |

Motor mechanism (MT)

A4: opening order
A2: closing order
B4, A1: motor mechanism power supply
L1: manual position (manu)
B2: SDE interlocking (mandatory for automatic or remote recharging)
BPO: opening pushbutton
BPF: closing pushbutton
Communicating motor mechanism (MTc)
B4, A1: motor mechanism power supply
BSCM: breaker status and control module

Indication contacts

OF2 / OF1: device ON/OFF indication contacts
OF4 / OF3: device ON/OFF indication contacts (NSX400/630)
SDE: fault-trip indication contact
(short-circuit, overload, ground fault, earth leakage)
SD: trip-indication contact
CAF2/CAF1: early-make contact (rotary handle only)
CAO1: early-break contact (rotary handle only)
SDV: earth leakage fault trip indication contact (add-on Vigi module)

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

After tripping initiated by the "Push to trip" button or by the undervoltage (MN) release or the shunt (MX) release, device reset can be automatic, remote or manual.

Following tripping due to an electrical fault (with an SDE contact), reset must be carried out manually.

Symbols

Q: circuit breaker
A4 : opening order
A2: closing order
B4, A1: motor mechanism power supply
L1: manual position (manu)
B2: SDE interlocking (mandatory for correct operation)
BPO: opening pushbutton
BPF: closing pushbutton
SDE: fault-trip indication contact (short-circuit, overload, ground fault, earth leakage)

Motor mechanism (MT) with remote reset

Motor mechanism (MT) with manual reset

Communicating motor mechanism (MTc)

Schematic representation of the communicating motor mechanism (MT).

Single-line diagram of communicating motor mechanism
Opening, closing and reset orders are transmitted via the communication network. The "Enable automatic reset" and "Enable reset even if SDE" parameters must be set using the RSU software via the screen by clicking the blue text.
"Auto/manu" is a switch on the front of the motor mechanism.

Symbols

Q: circuit breaker
B4, A1: motor mechanism power supply
BSCM: breaker status and control module
Terminals shown in red O must be connected by the customer.

The diagram is shown with circuits de- energised, all devices open, connected and charged and relays in normal position.

Terminals shown in red O must be connected by the customer.

Operation

I: charge current
PAL Ir: thermal overload pre-alarm
SDG: ground-fault signal
SDT: thermal-fault signal
Q: circuit breaker

SDTAM module with Micrologic M

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

Symbols

SD1, SD3: SDTAM-module power supply
SD2: thermal-fault signal output (80 mA max.)
SD4: contactor-control output (80 mA max.)

	SD2	SD4
Micrologic 2-M	SDT	KA1
Micrologic 6 E-M	SDT	KA1

Terminals shown in red O must be connected by the customer.

Connection

Operation

I: charge current
SDT: thermal-fault signal
KA1: auxiliary relay (e.g. Merlin Gerin RDN or RTBT relay)
KM1: motor contactor
Q: circuit breaker

Reinforced discrimination

Additional characteristics Contents

Functions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Wiring diagrams D-1
Tripping curves Compact NSX100 to 250 protection of distribution systems E-2
Compact NSX100 to 250 motor protection -6
Compact NSX400 to 630 protection of distribution systems E-8
Compact NSX400 to 630 motor protection E-10
Compact NSX100 to 630 reflex tripping E-12
Current and energy limiting curves
Catalogue numbers F-1
Glossary G-1

Tripping curves
Compact NSX100 to 250
Protection of distribution systems

\square Reflex tripping

TM200D / TM250D

\square Reflex tripping.

Tripping curves
Compact NSX100 to 250
Protection of distribution systems (cont.)

Micrologic 2.2 and 2.2 G electronic trip units

Micrologic 2.2-40... 160 A

\square Reflex tripping.

Micrologic 2.2 G-250 A

Micrologic 2.2-250 A

Micrologic 5.2 and 6.2 A or E electronic trip units

Micrologic 5.2 and 6.2 A or E-40... 160 A

Micrologic 5.2 and 6.2 A or E-250 A
\square Reflex tripping

Micrologic 6.2 A or E (ground-fault protection)

The tripping curve is identical to that of Micrologic 5.
Ground-fault protection is shown separately.

Additional characteristics

Tripping curves
Compact NSX100 to 250
Motor protection

MA magnetic trip units

MA2.5... MA100

\square Reflex tripping.

Micrologic 2.2 Melectronic trip units
Micrologic 2.2 M-25 A

Micrologic 2.2 M-50... 220 A

Micrologic 6.2 E-M and 6 E-M electronic trip units

Micrologic 6.2 E-M - 25 A

Micrologic 6.2 E-M - 50... 220 A

Micrologic 6 E-M (ground-fault protection)

The tripping curve is identical to that of Micrologic 6.
Ground-fault protection is shown separately.

Tripping curves
Compact NSX400 to 630
Protection of distribution systems

Micrologic 2.3, 5.3 and 6.3 A or E electronic trip units
Micrologic 2.3-250... 400 A

\square Reflex tripping.

Micrologic 5.3 and 6.3 A or E-400 A

Micrologic 2.3-630 A

Micrologic 5.3 and 6.3 A or E-630 A

Micrologic 6.3 A or E electronic trip units (cont.)
Micrologic 6.3 A or E (ground-fault protection)

The tripping curve is identical to that of Micrologic 6.
Ground-fault protection is shown separately.

Additional characteristics

Tripping curves
Compact NSX400 to 630
Motor protection

Micrologic 1.3 M and 2.3 M electronic trip units

Micrologic 1.3 M-320 A

\square Reflex tripping

Micrologic 2.3 M-320 A

Micrologic 1.3 M-500 A

Micrologic 6.3 E-M and 6 E-M electronic trip units

Micrologic 6.3 E-M - 320 A

Micrologic 6.3 E-M - 500 A

\square Reflex tripping.

Micrologic 6 E-M (motor protection)

The tripping curve is identical to that of Micrologic 6.
Ground-fault protection is shown separately.

Additional characteristics

Tripping curves
Compact NSX100 to 630
Reflex tripping

Compact NSX100 to 630 devices
incorporate the exclusive reflex-tripping system.
This system breaks very high fault currents. The device is mechanically tripped via a "piston" actuated directly by the pressure produced in the breaking units by the shortcircuit.
For high short-circuits, this system provides a faster break, thereby ensuring discrimination.
Reflex-tripping curves are exclusively a function of the circuit-breaker rating.

Current and energy limiting curves

The limiting capacity of a circuit breaker is
its aptitude to let through a current, during a short-circuit, that is less than the prospective short-circuit current.

The exceptional limiting capacity of the Compact NSX range is due to the rotating double-break technique (very rapid natural repulsion of contacts and the appearance of two arc voltages in-series with a very steep wave front).

Ics = 100 \% Icu

The exceptional limiting capacity of the Compact NSX range greatly reduces the forces created by fault currents in devices.
The result is a major increase in breaking performance.
In particular, the service breaking capacity Ics is equal to 100% of Icu.
The Ics value, defined by IEC standard 60947-2, is guaranteed by tests comprising the following steps:
■ break three times consecutively a fault current equal to 100\% of Icu
■ check that the device continues to function normally, that is:
\square it conducts the rated current without abnormal temperature rise
\square protection functions perform within the limits specified by the standard
\square suitability for isolation is not impaired.

Longer service life of electrical installations

Current-limiting circuit breakers greatly reduce the negative effects of short-circuits on installations.
Thermal effects
Less temperature rise in conductors, therefore longer service life for cables.

Mechanical effects

Reduced electrodynamic forces, therefore less risk of electrical contacts or busbars being deformed or broken.

Electromagnetic effects

Fewer disturbances for measuring devices located near electrical circuits.

Economy by means of cascading

Cascading is a technique directly derived from current limiting. Circuit breakers with breaking capacities less than the prospective short-circuit current may be installed downstream of a limiting circuit breaker. The breaking capacity is reinforced by the limiting capacity of the upstream device. It follows that substantial savings can be made on downstream equipment and enclosures.

Current and energy limiting curves

The limiting capacity of a circuit breaker is expressed by two curves which are a function of the prospective short-circuit current (the current which would flow if no protection devices were installed):

- the actual peak current (limited current)

■ thermal stress ($A^{2} s$), i.e. the energy dissipated by the short-circuit in a conductor with a resistance of 1Ω.

Example

What is the real value of a 150 kA rms prospective short-circuit (i.e. 330 kA peak) limited by an NSX250L upstream?
The answer is 30 kA peak (curve page $\mathrm{E}-14$).

Maximum permissible cable stresses

The table below indicates the maximum permissible thermal stresses for cables depending on their insulation, conductor (Cu or Al) and their cross-sectional area (CSA). CSA values are given in mm^{2} and thermal stresses in $\mathrm{A}^{2} \mathrm{~s}$.

CSA		1.5 mm ${ }^{2}$	2.5 mm ${ }^{2}$	$4 \mathrm{~mm}^{\mathbf{2}}$	$6 \mathrm{~mm}^{\mathbf{2}}$	$10 \mathrm{~mm}{ }^{2}$
PVC	Cu	2.97×10^{4}	8.26×10^{4}	2.12×10^{5}	4.76×10^{5}	1.32×10^{6}
	AI					5.41×10^{5}
PRC	Cu	4.10×10^{4}	1.39×10^{5}	2.92×10^{5}	6.56×10^{5}	1.82×10^{6}
	AI					7.52×10^{5}
CSA		$16 \mathrm{~mm}^{2}$	$25 \mathrm{~mm}^{2}$	$35 \mathrm{~mm}^{2}$	$50 \mathrm{~mm}^{2}$	
PVC	Cu	3.4×10^{6}	8.26×10^{6}	1.62×10^{7}	3.31×10^{7}	
	AI	1.39×10^{6}	3.38×10^{6}	6.64×10^{6}	1.35×10^{7}	
PRC	Cu	4.69×10^{6}	1.39×10^{7}	2.23×10^{7}	4.56×10^{7}	
	AI	1.93×10^{6}	4.70×10^{6}	9.23×10^{6}	1.88×10^{7}	

Example

Is a Cu/PVC cable with a CSA of $10 \mathrm{~mm}^{2}$ adequately protected by an NSX160F?
The table above indicates that the permissible stress is $1.32 \times 10^{6} \mathrm{~A}^{2} \mathrm{~s}$.
All short-circuit currents at the point where an NSX160F (Icu $=35 \mathrm{kA}$) is installed are limited with a thermal stress less than $6 \times 10^{5} \mathrm{~A}^{2}$ s (curve page E -14).
Cable protection is therefore ensured up to the limit of the breaking capacity of the circuit breaker.

Additional characteristics

Current and energy limiting curves

Current-limiting curves
Voltage 400/440 V AC
Limited short-circuit current (kÂ peak)

Energy-limiting curves

Voltage 400/440 V AC
Limited energy

Voltage 660/690 V AC
Limited short-circuit current (kÂ peak)

Voltage 660/690 V AC
Limited energy

Catalogue numbers

Catalogue numbers

Contents

Functions and characteristics	A-1
Installation recommendations	B-1
Dimensions and connection	C-1
Wiring diagrams	D-1
Additional characteristics	E-1
NSX100 to $\mathbf{2 5 0}$	F-3
NSX400 to $\mathbf{6 3 0}$	$\mathrm{F}-29$
Glossary	G-1

NSX100/160/250F: complete fixed/FC device F-4
Compact NSX100/160/250F (36 kA 380/415 V) F-4
NSX100/160/250N: complete fixed/FC device F-5
Compact NSX100/160/250N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$) F-5
NSX100/160/250H: complete fixed/FC device F-6
Compact NSX100/160/250H ($70 \mathrm{kA} \mathrm{380/415} \mathrm{V)}$ F-6
NSX100/160/250NA: complete fixed/FC device F-7
Compact NSX100/160/250NA F-7 F-7
NSX100/160/250F/N/H/S/L: fixed/FC device based on separate components F-8
Compact and Vigicompact F-8
Trip unit accessories F-10
Compact and Vigicompact NSX100/160/250 F-10
Installation and connection F-11
Compact and Vigicompact NSX100/160/250 F-11
Accessories F-12
Compact and Vigicompact NSX100/160/250 F-12
Monitoring and control, test tools F-21
Compact and Vigicompact NSX100/160/250 F-21

Compact NSX100/160/250F
With thermal-magnetic trip unit TM-D

		Compact NSX100F (36 kA at $\mathbf{3 8 0 / 4 1 5} \mathrm{V}$)				
		Rating	3P 2d	3P 3d	4P 3d	4P 4d
		TM16D	LV429627	LV429637	LV429647	LV429657
		TM25D	LV429626	LV429636	LV429646	LV429656
		TM32D	LV429625	LV429635	LV429645	LV429655
		TM40D	LV429624	LV429634	LV429644	LV429654
		TM50D	LV429623	LV429633	LV429643	LV429653
		TM63D	LV429622	LV429632	LV429642	LV429652
		TM80D	LV429621	LV429631	LV429641	LV429651
		TM100D	LV429620	LV429630	LV429640	LV429650
		Compact NSX160F (36 kA at $\mathbf{3 8 0 / 4 1 5} \mathrm{V}$)				
		Rating	3P 2d	3P 3d	4P 3d	4P 4d
		TM80D	LV430623	LV430633	LV430643	LV430653
		TM100D	LV430622	LV430632	LV430642	LV430652
		TM125D	LV430621	LV430631	LV430641	LV430651
		TM160D	LV430620	LV430630	LV430640	LV430650
		Compact NSX250F (36 kA at 380/415 V)				
		Rating	3P 3d	3P 3d	4P 3d	4P 4d
		TM125D	LV431623	LV431633	LV431643	LV431653
		TM160D	LV431622	LV431632	LV431642	LV431652
		TM200D	LV431621	LV431631	LV431641	LV431651
		TM250D	LV431620	LV431630	LV431640	LV431650
	With electronic	Microlo	2.2 (LS 1 P			
		Compact NSX100F (36 kA at $380 / 415 \mathrm{~V}$)				
		Rating		3P 3d	4P 3d, 4d,	
		40		LV429772	LV429782	
		100		LV429770	LV429780	
		Compact NSX160F (36 kA at $380 / 415 \mathrm{~V}$)				
		Rating		3P 3d	4P 3d, 4d, 3d + N/2	
		100		LV430771	LV430781	
		160		LV430770	LV430780	
		Compact NSX250F (36 kA at 380/415 V)				
		Rating		3P 3d	4P 3d, 4d,	
		100		LV431772	LV431782	
		160		LV431771	LV431781	
		250		LV431770	LV431780	
	With electronic	Microlo	5.2 A (LSI pro	meter)		
		Compact NSX100F (36 kA at $380 / 415 \mathrm{~V}$)				
		Rating		3P 3d	4P 3d, 4d,	
		40		LV429882	LV429887	
		100		LV429880	LV429885	
		Compact NSX160F (36 kA at 380/415 V)				
		Rating		3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
		100		LV430881	LV430886	
		160		LV430880	LV430885	
		Compact NSX250F (36 kA at $\mathbf{3 8 0 / 4 1 5} \mathrm{V}$)				
		Rating		3P 3d	4P 3d, 4d,	
		100		LV431862	LV431867	
		160		LV431861	LV431866	
					LV431865	
	With electronic trip unit Micrologic 5.2 E (LSI protection, energy meter)					
	To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit					
	With electronic trip unit Micrologic 6.2 A (LSIG protection, ammeter)					
	To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit					
	With electronic trip unit Micrologic 6.2 E (LSIG protection, energy meter)					
	To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit					
	With electronic trip unit Micrologic 6.2 E-M (LSIG motor protection, energy meter)					
	To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit					

	Compact NSX100/160/250H				
	With thermal-magnetic trip unit TM-D				
		Compact NSX100H (70 kA at $380 / 415 \mathrm{~V}$)			
		Rating	3P 3d	4P 3d	4P 4d
		TM16D	LV429677	LV429687	LV429697
		TM25D	LV429676	LV429686	LV429696
		TM32D	LV429675	LV429685	LV429695
		TM40D	LV429674	LV429684	LV429694
		TM50D	LV429673	LV429683	LV429693
		TM63D	LV429672	LV429682	LV429692
		TM80D	LV429671	LV429681	LV429691
		TM100D	LV429670	LV429680	LV429690
		Compact NSX160H (70 kA at $\mathbf{3 8 0 / 4 1 5} \mathrm{V}$)			
		Rating	3P 3d	4P 3d	4P 4d
		TM80D	LV430673	LV430683	LV430693
		TM100D	LV430672	LV430682	LV430692
		TM125D	LV430671	LV430681	LV430691
		TM160D	LV430670	LV430680	LV430690
		Compact NSX250H (70 kA at $\mathbf{3 8 0} / 415 \mathrm{~V}$)			
		Rating	3P 3d	4P 3d	4P 4d
		TM125D	LV431673	LV431683	LV431693
		TM160D	LV431672	LV431682	LV431692
		TM200D	LV431671	LV431681	LV431691
		TM250D	LV431670	LV431680	LV431690
	With electronic trip unit Micrologic 2.2 (LSOI protection)				
		Compact NSX100H (70 kA at 380/415 V)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2	
		40	LV429792	LV429802	
		100	LV429790	LV429800	
		Compact NSX160H (70 kA at 380/415 V)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2	
		100	LV430791	LV430801	
		160	LV430790	LV430800	
		Compact NSX250H (70 kA at 380/415 V)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2	
		100	LV431792	LV431802	
		160	LV431791	LV431801	
		250	LV431790	LV431800	
	With electronic trip unit Micrologic 5.2 A (LSI protection, ammeter)				
		Compact NSX100H (70 kA at 380/415 V)			
		Rating	$3 P 3 d$	4P 3d, 4d, 3d + N/2, OSN	
		40	LV429794	LV429804	
		100	LV429793	LV429803	
		Compact NSX160H (70 kA at 380/415 V)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN	
		100	LV430795	LV430805	
		160	LV430794	LV430804	
		Compact NSX250H (70 kA at 380/415 V)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN	
		100	LV431797	LV431807	
		160	LV431796	LV431806	
		250	LV431795	LV431805	
	With electronic trip unit Micrologic 5.2 E (LSI protection, energy meter)				
	To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit				
	With electronic trip unit Micrologic 6.2 A (LSIG protection, ammeter)				
	To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit				
	With electronic trip unit Micrologic 6.2 E (LSIG protection, energy meter)				
	To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit				
	With electronic trip unit Micrologic 6.2 E-M (LSIG motor protection, energy meter)To be ordered with 2 catalogue numbers: 1 basic frame + 1 trip unit				

Compact NSX100/160/250NA switch-disconnector
With NA switch-disconnector unit

Compact NSX100NA

Rating	3P	4P
100	LV429629	LV429639
Compact NSX160NA		
Rating	3P	4P
160	LV430629	LV430639
Compact NSX250NA		
Rating	3P	4P
250	LV431629	LV431639

Compact and Vigicompact

Basic frame				
	Compact NSX100			
		3P	4P	
	NSX100F (36 kA 380/415 V)	LV429003	LV429008	
	NSX100N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$)	LV429006	LV429011	
	NSX100H (70 kA 380/415 V)	LV429004	LV429009	
	NSX100S (100 kA 380/415 V)	LV429018	LV429019	
	NSX100L (150 kA 380/415 V)	LV429005	LV429010	
	Compact NSX160			
		3P	4P	
	NSX160F (36 kA 380/415 V)	LV430403	LV430408	
	NSX160N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$)	LV430406	LV430411	
	NSX160H (70 kA 380/415 V)	LV430404	LV430409	
	NSX160S (100 kA 380/415 V)	LV430391	LV430396	
	NSX160L (150 kA 380/415 V)	LV430405	LV430410	
	Compact NSX250			
		3P	4P	
	NSX250F (36 kA 380/415 V)	LV431403	LV431408	
	NSX250N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$)	LV431406	LV431411	
	NSX250H (70 kA 380/415 V)	LV431404	LV431409	
	NSX250S (100 kA 380/415 V)	LV431391	LV431396	
	NSX250L (150 kA 380/415 V)	LV431405	LV431410	
+ Trip unit				
Distribution protection				
	Thermal-magnetic TM-D			
	Rating	3P 3d	4P 3d	4P 4d
	TM16D	LV429037	LV429047	LV429057
	TM25D	LV429036	LV429046	LV429056
	TM32D	LV429035	LV429045	LV429055
	TM40D	LV429034	LV429044	LV429054
	TM50D	LV429033	LV429043	LV429053
	TM63D	LV429032	LV429042	LV429052
	TM80D	LV429031	LV429041	LV429051
	TM100D	LV429030	LV429040	LV429050
	TM125D	LV430431	LV430441	LV430451
	TM160D	LV430430	LV430440	LV430450
	TM200D	LV431431	LV431441	LV431451
	TM250D	LV431430	LV431440	LV431450
	Micrologic 2.2 (LS ${ }_{\text {O }}$ protection)			
	Rating	3P 3d	4P 3d, 4d, 3d + N/2	
	Micrologic 2.240A	LV429072	LV429082	
	Micrologic 2.2 100 A	LV429070	LV429080	
	Micrologic 2.2 160 A	LV430470	LV430480	
	Micrologic 2.2 250 A	LV431470	LV431480	
	Micrologic 5.2 A (LSI protection, ammeter)			
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
	Micrologic 5.2 A 40 A	LV429091	LV429101	
	Micrologic 5.2A 100 A	LV429090	LV429100	
	Micrologic 5.2A 160 A	LV430490	LV430495	
	Micrologic 5.2A 250 A	LV431490	LV431495	
	Micrologic 5.2 E (LSI protection, energy meter)			
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
	Micrologic 5.2 E 40A	LV429096	LV429106	
	Micrologic 5.2 E 100 A	LV429095	LV429105	
	Micrologic 5.2 E 160 A	LV430491	LV430496	
	Micrologic 5.2 E 250 A	LV431491	LV431496	
	Micrologic 6.2 A (LSIG protection, ammeter)			
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
	Micrologic 6.2 A 40 A	LV429111	LV429136	
	Micrologic 6.2A 100 A	LV429110	LV429135	
	Micrologic 6.2A 160 A	LV430505	LV430515	
	Micrologic 6.2A 250 A	LV431505	LV431515	
	Micrologic 6.2 E (LSIG protection, energy meter)			
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
	Micrologic 6.2 E 40A	LV429116	LV429141	
	Micrologic 6.2 E 100 A	LV429116	LV429140	
	Micrologic 6.2E 160 A	LV430506	LV430516	
	Micrologic 6.2 E 250 A	LV431506	LV431516	

+ Trip unit (cont.)				
Motor protection				
		Magnetic MA (I protection)		
		Rating	3P 3d	4P 3d
		MA2.5	LV429125	
		MA6. 3	LV429124	
		MA12.5	LV429123	
		MA25	LV429122	
		MA50	LV429121	
		MA100	LV429120	LV429130
		MA150	LV430500	LV430510
		MA220	LV431500	LV431510
		Micrologic 2.2-M (LS I I protection)		
			3P 3d	
		Micrologic 2.2-M 25A	LV429174	
		Micrologic 2.2-M 50 A	LV429172	
		Micrologic 2.2-M 100 A	LV429170	
		Micrologic 2.2-M 150 A	LV430520	
		Micrologic 2.2-M 220 A	LV431520	
		Micrologic 6.2 E-M (LSIG protection, energy meter) Rating		
		Micrologic 6.2 E-M 25A		LV429184
		Micrologic 6.2 E-M 50 A	LV429182	
		Micrologic 6.2 E-M 80 A	LV429180	
		Micrologic 6.2 E-M 150 A	LV430521	
		Micrologic 6.2 E-M 220 A	LV431521	
Generator protection				
		Thermal-magnetic TM-G		
		TM16G	LV429155	LV429165
		TM25G	LV429154	LV429164
		TM40G	LV429153	LV429163
		TM63G	LV429152	LV429162
		Micrologic 2.2 G (LSol protection)		
		Rating	3P 3d	4P 3d, 4d, 3d + N/2
		Micrologic 2.2-G 40A	LV429076	LV429086
		Micrologic 2.2-G 100 A	LV429075	LV429085
		Micrologic 2.2-G 160 A	LV430475	LV430485
		Micrologic 2.2-G 250 A	LV431475	LV431485
+ Vigi module or insulation monitoring module				
	Vigi module			
		ME type for NSX100/160 (200 to 440 V)	LV429212	LV429213
		MH type for NSX100/160 (200 to 440 V)	LV429210	LV429211
		MH type for NSX250 (200 to 440 V)	LV431535	LV431536
		MH type for NSX100/160 (440 to 550 V)	LV429215	LV429216
		MH type for NSX250 (440 to 550 V)	LV431533	LV431534
		Connection for a 4P Vigi on a 3P breaker		LV429214
Insulation monitoring module				
				$\mid 4 P$
		200 to 440 V AC	LV429459	LV429460
		Connection for a 4P insulation monitoring module on a 3P breaker		LV429214

Trip unit accessories

24 VDC wiring accessory for Micrologic $5 / 6$

24 V DC power supply connector
| LV434210

ZSI wiring accessory for NS630b NW with NSX

ZSI module
| LV434212

External power supply module (24 V DC - 1 A), class 4

Fixed/RC device = fixed/FC device + rear connection kit

Short RC kit

Kit 3P		$3 \times$	LV429235
Kit 4P Mixed RC kit Kit 3P		$4 \times$	LV429235
	Short RCs	$2 \times$	LV429235
Kit 4P	Long RCs	$1 \times$	LV429236
	Short RCs	$2 \times$	LV429235
	Long RCs	$2 \times$	LV429236

Plug-in version = fixed/FC device + plug-in kit

	2P (3P)	3P	4P
Plug-in kit	LV429288	LV429289	LV429290
Comprising:	$=1 \times$ LV429265	$=1 \times$ LV429266	$=1 \times$ LV429267
Base	$+3 \times$ LV429268	$+4 \times$ LV429268	
Power connections	$+2 \times$ LV429268	$+2 \times$ LV429515	$+2 \times$ LV429516
Short terminal shields	$+2 \times$ LV429515	$+1 \times$ LV429270	$+1 \times$ LV429270

Kit for Vigicompact

Vigicompact plug-in kit
Comprising:
Base
Power connections
Short terminal shields
\qquad

3P	4P
LV429291	LV429292
$=1 \times$ LV429266	$=1 \times$ LV429267
$+3 \times$ LV429269	$+4 \times$ LV429269
$+2 \times$ LV429515	$+2 \times$ LV429516
$+1 \times$ LV429270	$+1 \times$ LV429270

Withdrawable version = fixed/FC device + withdrawable kit

Plug-in kit
Chassis side plates
for base
Chassis side plates
for breaker

2P (3P)	3P	4P
Kit for Compact =	Kit for Compact $=$	Kit for Compact $=$
$1 \times$ LV429288	$1 \times$ LV429289	$1 \times$ LV429290
+	+	+
$1 \times$ LV429282	$1 \times$ LV429282	$1 \times$ LV429282
+	+	+
$1 \times$ LV429283	$1 \times$ LV429283	$1 \times$ LV429283

Kit for Vigicompact

3P	4P
Kit for Vigicompact =	Kit for Vigicompact =
$1 \times$ LV429291	$1 \times$ LV429292
+	+
$1 \times$ LV429282	$1 \times$ LV429282
+	+
$1 \times$ LV429283	$1 \times$ LV429283

Accessories
Compact and Vigicompact NSX100/160/250

[^9]
Accessories (cont.)
 Compact and Vigicompact NSX100/160/250
 (cont.)

[^10]
Accessories (cont.)
 Compact and Vigicompact NSX100/160/250 (cont.)

Electrical auxiliaries

Auxiliary contacts (changeover)

OF or SD or SDE or SDV
29450
OF or SD or SDE or SDV low level
29452
SDE adapter, mandatory for trip unit TM, MA or Micrologic 2
LV429451
SDx output module for Micrologic

SDTAM contactor tripping module (early-break thermal fault signal) for Micrologic 2.2-M/6.2 E-M

SDTAM 24/415 V AC/DC overload fault indication

Accessories (cont.)

Compact and Vigicompact NSX100/160/250
(cont.)

Accessories (cont.)
Compact and Vigicompact NSX100/160/250 (cont.)

Indication and measurement modules

Rating (A)	100	160	250
3 3P	LV429455	LV430555	LV431565
4P	LV429456	LV430556	LV431566

I max. ammeter module

Rating (A)

3P	LV434849

| 160 |
| :--- | :--- |
| LV434850 |

250
LV434851

Current transformer module and voltage output				
$\sqrt{6}$	Rating (A)	125	150	250
(6) ${ }^{3}$	3P	LV429461	LV430561	LV431569
	4P	LV429462	LV430562	LV431570

Voltage presence indicator

Rotary handles

Direct rotary handle

With black handle
LV429337
With red handle on yellow front
LV429339
LV429341
CNOMO conversion accessory
LV429342

Accessories for direct or extended rotary handle

Accessories (cont.)

Compact and Vigicompact NSX100/160/250 (cont.)

Accessories (cont.)
Compact and Vigicompact NSX100/160/250 (cont.)

Interlocking with key (2 keylocks / 1 key) for rotary handles

Installation accessories

Front-panel escutcheons

IP40 escutcheon for all control types

LV429317
LV429316
LV429318

IP40 escutcheon for Vigi module

IP43 rubber toggle cover

1 toggle cover
| LV429319

60 mm busbar adapter

[^11]
Accessories (cont.)
 Compact and Vigicompact NSX100/160/250
 (cont.)

Accessories (cont.)
Compact and Vigicompact NSX100/160/250 (cont.)

Spare parts

	10 spare toggle extensions (NSX250)		\| LV429313
	Bag of screws		\| LV429312
	12 snap-in nuts (fixed/FC)	M6 for NSX100N/H/L M8 for NSX160/250N/H/L	$\begin{array}{\|l\|l\|} \hline \text { LV429234 } \\ \text { LV430554 } \end{array}$
	NS retrofit escutcheon	Small cut-out	\| LV429528
	IP40 toggle escutcheon	Compact NS type/small cut-out	\| 29315
	1 set of 10 identification labels		\| LV429226
	1 base for extended rotary handle		\| LV429502
	LCD display for electronic trip unit	Micrologic 5 Micrologic 6 Micrologic G-E-M	$\begin{array}{\|l\|l\|} \hline \text { LV429483 } \\ \hline & \text { LV429484 } \\ \hline \text { LV429486 } \end{array}$
$\begin{aligned} & \text { 喜 } \\ & \text { 言 } 11111 \end{aligned}$	5 transparent covers for trip unit	TM, MA, NA Micrologic 2 Micrologic 5/6	$\begin{array}{\|l\|} \hline \text { LV429481 } \\ \hline \text { LV429481 } \\ \hline \text { LV429478 } \\ \hline \end{array}$
	5 opaque covers for Micrologic 5/6		LV429479

Monitoring and control, test tools Compact and Vigicompact NSX100/160/250

(1) SDE adapter mandatory for trip unit TM, MA or Micrologic 2 (LV429451).
(2) For measurement display with Micrologic A and E or status display with BSCM.
(3) See Telemecanique catalogue.

Monitoring and control, test tools
(cont.)
Compact and Vigicompact NSX100/160/250
(cont.)

Test tool, software, demo

Pocket battery for Micrologic NSX100-630
| LV434206

Maintenance case
| TRV00910
Comprising:

- USB maintenance interface
- Power supply
- Micrologic cord
- USB cord
- RJ45/RJ45 male cord

Spare USB maintenance interface
| TRV00911

Spare power supply 110-240 V AC
| TRV00915

Spare Micrologic cord for USB maintenance interface	TRV00917

Bluetooth/Modbus option for USB maintenance interface
| VW3A8114

Configuration and setting software RSU
LV4ST100
Test software LTU
Monitoring software RCU
LV4ST121
(1) See Telemecanique catalogue.
(2) Downloadable from http://schneider-electric.com.
NSX400/630N: complete fixed/FC device F-30
Compact NSX400/630N (50 kA 380/415 V) F-30
NSX400/630H: complete fixed/FC device F-31
Compact NSX400/630H (70 kA 380/415 V) F-31
NSX400/630NA: complete fixed/FC device F-32
Compact NSX400/630NA F-32
NSX400/630N/H/S/L: fixed/FC device based on separate components F-33
Compact and Vigicompact F-33
Trip unit accessories F-34
Compact and Vigicompact NSX400/630 F-34
Installation and connection F-35
Compact and Vigicompact NSX400/630 F-35
Accessories F-37
Compact and Vigicompact NSX400/630 F-37
Monitoring and control, test tools F-46
Compact and Vigicompact NSX400/630 F-46

Compact NSX400/630N

Electronic trip unit Micrologic 2.3 (LSOI protection)

Compact NSX400N (50 kA at 380/415 V)	250 A
Compact NSX630N (50 kA at 380/415 V)	400 A

3P 3d
LV432707
LV432693
LV432893

4P 3d, 4d, 3d + N/2
Compact NSX400N (50 kA at $380 / 415 \mathrm{~V}$)
Compact NSX630N (50 kA at $380 / 415 \mathrm{~V}$) 630 A

LV432893

LV432708 LV432694 LV432894

Electronic trip unit Micrologic 5.3 A (LSI protection, ammeter)

		4P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN
Compact NSX400N (50 kA at $380 / 415 \mathrm{~V})$	400 A	LV432699	LV432700
Compact NSX630N $(50 \mathrm{kA}$ at $380 / 415 \mathrm{~V})$	630 A	LV432899	LV432900

Electronic trip unit Micrologic 1.3-M A (I motor protection)

		3P 3d
Compact NSX400N 1.3-M (50 kA at 380/415V)	320A	LV432749
Compact NSX630N 1.3-M (50 kA at 380/415V)	500 A	LV432949

Electronic trip unit Micrologic 2.3-M (LSOI motor protection)

$\stackrel{\sqrt{4}}{5}$

		3P 3d Compact NSX400N 2.3-M (50 kA at 380/415V)
Compact NSX630N 2.3-M (50 kA at 380/415V)	500 A	LV432776
LV432976		

With electronic trip unit Micrologic 5.3 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 A (LSIG protection, ammeter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 E (LSIG protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 E-M (LSIG motor protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
Compact NSX400/630H
Electronic trip unit Micrologic 2.3 (LSOI protection)

Compact NSX400H $(70$ kA at $380 / 415 \mathrm{~V})$	250 A
	400 A
Compact NSX630H $(70 \mathrm{kA}$ at $380 / 415 \mathrm{~V})$	630 A

3P 3d
LV432709
LV432695
LV432895

4P 3d, 4d, 3d + N/2
Compact NSX630H (70 kA at 380/415 V)
630 A LV432895

Electronic trip unit Micrologic 5.3 A (LSI protection, ammeter)

		4P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN
Compact NSX400H (70 kA at 380/415 V)	400 A	LV432701	LV432702
Compact NSX630H (70 kA at $380 / 415 \mathrm{~V})$	630 A	LV432901	LV432902

Electronic trip unit Micrologic 1.3-M (I motor protection)

With electronic trip unit Micrologic 6.3 E (LSIG protection, energy meter)
Only available as separate components.
With electronic trip unit Micrologic 6.3 E-M (LSIG motor protection, energy meter)
Only available as separate components.

Compact NSX400/630 0.3 NA switch-disconnector With 0.3 NA switch-disconnector unit

Compact NSX400 0.3 NA
Compact NSX630 0.3 NA, 45 mm pitch

3P
 LV432756
 LV432956

4P

LV432757
LV432957

Compact and Vigicompact

	Basic frame			
	,	Compact NSX400		
	N0]		3P	4P
	N1 ${ }^{\text {a }}$	NSX400N (50 kA 380/415 V)	LV432403	LV432408
	-	NSX400H (70 kA 380/415 V)	LV432404	LV432409
		NSX400S (100 kA 380/415 V)	LV432414	LV432416
		NSX400L (150 kA 380/415 V)	LV432405	LV432410
	(0)	Compact NSX630		
			3P	4P
		NSX630N ($50 \mathrm{kA} \mathrm{380/415} \mathrm{V)}$	LV432803	LV432808
		NSX630H (70 kA 380/415 V)	LV432804	LV432809
	N	NSX630S (100 kA 380/415 V)	LV432814	LV432816
		NSX630L (150 kA 380/415 V)	LV432805	LV432810
+ Trip unit				
Distribution protection				
		Micrologic 2.3 (LSol protection)		
		Rating	3P 3d	4P 3d, 4d, 3d + N/2
		Micrologic 2.3 250 A	LV432082	LV432086
		Micrologic 2.3400 A	LV432081	LV432085
		Micrologic 2.3630 A	LV432080	LV432084
		Micrologic 5.3 A (LSI protection, ammeter)		
	- 1 d	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN
	- ${ }^{3}$	Micrologic 5.3A400 A	LV432091	LV432094
	[-1)	Micrologic 5.3 A 630 A	LV432090	LV432093
	-	Micrologic 5.3 E (LSI protection, energy meter)		
	4	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN
		Micrologic 5.3E 400 A	LV432097	LV432100
		Micrologic 5.3E 630 A	LV432096	LV432099
		Micrologic 6.3 A (LSIG protection, ammeter)		
	-3.	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN
	A-	Micrologic 6.3A400 A	LV432103	LV432106
	NT	Micrologic 6.3A630 A	LV432102	LV432105
	,	Micrologic 6.3 E (LSIG prote		
	\% 484π	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN
		Micrologic 6.3E 400 A	LV432109	LV432112
		Micrologic 6.3E 630 A	LV432108	LV432111
Motor protection				
		Micrologic 1.3-M (I protection)		
		Rating	3P 3d	4P 3d
		Micrologic 1.3-M 320 A	LV432069	LV432078
		Micrologic 1.3-M 500 A	LV432068	LV432077
		Micrologic 2.3-M (LS ${ }_{\text {O }}$ I protection)		
		Rating	3P 3d	
		Micrologic 2.3-M 320 A	LV432072	
		Micrologic 2.3-M 500 A	LV432071	
		Micrologic 6.3 E-M (LSIG protection, energy meter)		
$\stackrel{\square}{0}$	\rightarrow,	Rating	3P 3d	
	S\%	Micrologic 6.3 E-M 320 A	LV432075	
	N-	Micrologic 6.3 E-M 500 A	LV432074	

+ Vigi module or insulation monitoring module

Trip unit accessories
External neutral CT for 3 pole breaker with Micrologic 5/6

400-630 A

24 V DC wiring accessory for Micrologic 5/6

24 V DC power supply connector
| LV434210

ZSI accessory for NS630b-NW with NSX

ZSI module
| LV434212

External power supply module (24 V DC - 1 A), class 4

Fixed/RC device = fixed/FC device + rear connection kit

Mixed RC kit

Fixed/FC device with 52.5 mm or 70 mm pitch = fixed/FC device with 45 mm pitch + spreaders
The pitch of all Compact and Vigicompact NSX400/630 devices is 45 mm . Spreaders are available for fixed front, plug-in or withdrawable connection with pitch of 52.5 mm or 70 mm .

Upstream or downstream spreaders				
		52.5 mm	3P	LV432490
	0		4P	LV432491
	(0)	70 mm	3P	LV432492
	[0)		4P	LV432493

Plug-in version = fixed/FC device + plug-in kit Kit for Compact

Plug-in kit
Comprising:
Base
Power connections
Short terminal shields
3P LV432538

4P

	3P	4P
Vigi plug-in kit	LV432540	LV432541
Comprising:	$=1 \times$ LV432516	
Base	$+3 \times$ LV432519	$+1 \times$ LV432517
Power connections	$+2 \times$ LV432591	$+4 \times$ LV432519
Short terminal shields	$+1 \times$ LV432520	$+2 \times$ LV432592
Safety trip interlock	$+1 \times$ LV432520	

Accessories

Compact and Vigicompact NSX400/630

Connection accessories (Cu or Al)				
Rear connections				
	$\begin{aligned} & 2 \text { short } \\ & 2 \text { long } \end{aligned}$			$\begin{array}{\|l\|l\|} \hline \text { LV432475 } \\ \hline \text { LV432476 } \end{array}$
Bare cable connectors ${ }^{(1)}$				
	Aluminium connectors	$1 \times\left(35\right.$ to $\left.300 \mathrm{~mm}^{2}\right)$	Set of 3 Set of 4	$\begin{aligned} & \text { LV432479 } \\ & \hline \text { LV432480 } \end{aligned}$
	Aluminium connectors for 2 cables	$2 \times\left(35\right.$ to $\left.300 \mathrm{~mm}^{2}\right)$	Set of 3 Set of 4	$\begin{array}{\|l\|} \hline \text { LV432481 } \\ \hline \text { LV432482 } \\ \hline \end{array}$
	6.35 mm voltage tap for steel or aluminium connectors		Set of 10	LV429348
Terminal extensions ${ }^{(1)}$				
	45° terminal extensions		Set of 3 Set of 4	$\begin{array}{\|l\|} \hline \text { LV432586 } \\ \hline \text { LV432587 } \\ \hline \end{array}$
	Edgewise terminal extensions		Set of 3 Set of 4	$\begin{array}{\|l\|} \hline \text { LV432486 } \\ \hline \text { LV432487 } \\ \hline \end{array}$
	Right-angle terminal extensions		Set of 3 Set of 4	$\begin{array}{\|l\|} \hline \text { LV432484 } \\ \hline \text { LV432485 } \\ \hline \end{array}$
	Spreaders	$52.5 \mathrm{~mm}$ 70 mm	$\begin{aligned} & 3 P \\ & \frac{3 P}{4 P} \\ & \frac{3 P}{4 P} \end{aligned}$	LV432490 LV432491 LV432492 LV432493
Crimp lugs for copper cable ${ }^{(1)}$				
	For cable $240 \mathrm{~mm}^{2}$ For cable $300 \mathrm{~mm}^{2}$		Set of 3 Set of 4 Set of 3 Set of 4	LV432500 LV432501 LV432502 LV432503
Crimp lugs for aluminium cable ${ }^{(1)}$				
細	For cable $240 \mathrm{~mm}^{2}$ For cable $300 \mathrm{~mm}^{2}$		Set of 3 Set of 4 Set of 3 Set of 4	LV429504 LV429505 LV429506 LV429507

Accessories (cont.)
Compact and Vigicompact NSX400/630 (cont.)

Accessories (cont.)

Compact and Vigicompact NSX400/630 (cont.)

Electrical auxiliaries

Auxiliary contacts (changeover)

> | OF or SD or SDE or SDV | 29450 |
| :--- | :--- |

OF or SD or SDE or SDV low level
29452

SDx output module for Micrologic electronic trip unit

SDTAM contactor tripping module (early-break thermal fault signal) for Micrologic 2.3-M/6.3 E-M

SDTAM 24/415 V AC/DC overload fault indication
| LV429424

Voltage releases				
		Voltage	MX	MN
	AC	$24 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429384	LV429404
		$48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429385	LV429405
		$110-130 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429386	LV429406
		220-240 V $50 / 60 \mathrm{~Hz}$ and 208-277 V 60 Hz	LV429387	LV429407
		$380-415 \mathrm{~V} 50 \mathrm{~Hz}$ and $440-480 \mathrm{~V} 60 \mathrm{~Hz}$	LV429388	LV429408
		525 V 50 Hz and 600 V 60 Hz	LV429389	LV429409
	DC	12 V	LV429382	LV429402
		24 V	LV429390	LV429410
		30 V	LV429391	LV429411
		48 V	LV429392	LV429412
		60 V	LV429383	LV429403
		125 V	LV429393	LV429413
		250 V	LV429394	LV429414
	MN $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ with fixed time delay			
	Composed of:	MN 48 V DC		LV429412
		Delay unit $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		LV429426
	MN 220-240 V 50/60 Hz with fixed time delay			
	Composed of:	MN 250 V DC		LV429414
		Delay unit $220-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		LV429427
	MN 48 V DC/AC $50 / 60 \mathrm{~Hz}$ with adjustable time delay			
	Composed of:	MN 48 V DC		LV429412
		Delay unit $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		33680
	MN110-130 V DC/AC 50/60 Hz with adjustable time delay			
	Composed of:	MN 125 V DC		LV429413
		Delay unit 110-130 V $50 / 60 \mathrm{~Hz}$		33681
	MN 220-250 V 50/60 Hz with adjustable time delay			
	Composed of:	MN 250 V DC		LV429414
		Delay unit $220-250 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		33682

Accessories (cont.)
Compact and Vigicompact NSX400/630 (cont.)

Motor mechanism
Motor mechanism module

Accessories (cont.)
Compact and Vigicompact NSX400/630 (cont.)

Rotary handles
Direct rotary handle

LV432597

MCC conversion accessory
CNOMO conversion accessory

Accessories (cont.)
Compact and Vigicompact NSX400/630 (cont.)

Locks
Toggle locking device for 1 to 3 padlocks

By removable device

By fixed device

| LV432631

Locking of rotary handle

[^12] Keylock (keylock adapter not included)

	LV432604
Ronis 1351B.500	$\mathbf{4 1 9 4 0}$
Profalux KS5 B24 D4Z	$\mathbf{4 2 8 8 8}$

Locking of motor mechanism module

	LV432649
Ronis 1351B. 500	41940
Profalux KS5 B24 D4Z	42888

Accessories (cont.)
Compact and Vigicompact NSX400/630 (cont.)

Interlocking
Mechanical interlocking for circuit breakers
With toggles

With rotary handles
| LV432621

viturotary handles
| LV432614

Installation accessories
Front-panel escutcheons

(1) For only 1 device.

Plug-in/withdrawable version accessories				
Insulation accessories				
		Connection adapter for plug-in base	$\frac{3 \mathrm{P}}{4 \mathrm{P}}$	$\begin{array}{\|l\|l\|} \hline \text { LV432584 } \\ \hline \end{array}$
Auxiliary connections				
$\begin{aligned} & \stackrel{\circ}{\pi} \\ & \stackrel{\rightharpoonup}{ \pm} \\ & \hline \end{aligned}$		19-wire fixed connector (for base)		LV429273
		19-wire moving connector (for circuit breaker)		LV432523

	1 support for 3 moving connectors	LV432525
	9-wire manual auxiliary connector (fixed + moving)	LV429272

Plug-in base accessories

Long insulated right angle terminal extensions	Set of 2	LV432526
2 IP40 shutters for base		
Base	3P	LV432521

Accessories (cont.)
Compact and Vigicompact NSX400/630 (cont.)

Spare parts

Additional toggle extension for NSX400/630
| 32595

5 spare toggle extensions
| LV432553

$\stackrel{\text { \% }}{\stackrel{0}{2}}$
| LV432552
Bag of screws

Compact NS retrofit escutcheon
Small cut-out
| LV432571

IP40 toggle escutcheon
Compact NS type/small cut-out
| 32556

1 set of 10 identification labels
| LV429226

1 base for extended rotary handle
|LV432498

LCD display for electronic trip unit	Micrologic 5 Micrologic 6	LV429483
	Micrologic E-M	LV429484
5 transparent covers for electronic trip unit	Micrologic 2	LV432459
Micrologic 5/6	LV432461	
5 opaque covers for Micrologic $5 / 6$		LV432460

Monitoring and control (remote operation)

Breaker Status Control Module BSCM
| LV434205

ULP display module ${ }^{(1)}$

Switchboard front display module FDM121
FDM mounting accessory (diameter 22 mm)
|TRV00121
TRV00128

ULP communication module

Modbus interface

Modbus SL communication interface module
| TRV00210

ULP wiring accessories

	NSX cord L $=0.35 \mathrm{~m}$	LV434200
	NSX cord L $=1.3 \mathrm{~m}$	LV434201
	NSX cord L $=3 \mathrm{~m}$	LV434202
	NSX cord for U > 480 V AC L $=0.35 \mathrm{~m}$	LV434204
-	10 stacking connectors for communication interface modules	TRV00217

10 Modbus line terminators	VW3A8306DRC (2)

RS 485 roll cable (4 wires, length 60 m)	50965

10 RJ45 connectors female/female	TRV00870

10 ULP line terminators	TRV00880

10 RJ45/RJ45 male cord $L=0.3 \mathrm{~m}$	TRV00803
10 RJ45/RJ45 male cord $L=0.6 \mathrm{~m}$	TRV00806
5 RJ45/RJ45 male cord $L=1 \mathrm{~m}$	TRV00810
5 RJ45/RJ45 male cord $L=2 \mathrm{~m}$	TRV00820
5 RJ45/RJ45 male cord $L=3 \mathrm{~m}$	TRV00830
1 RJ45/RJ45 male cord $L=5 \mathrm{~m}$	TRV00850
External power supply module 100-240 V AC 110-230 V DC / 24 V DC-3 A class 2	ABL8RPS24030

Power supply modules

External power supply module 100-240 V AC 110-230 V DC / 24 V DC-3 A class 2
ABL8RPS24030 (2)

	External power supply module 24 V DC-1 A OVC IV	
	24-30 V DC	5444
	48-60 V DC	5444
	100-125 V AC	5444
	110-130 V AC	5444
	200-240 V AC	5444
	$380-415$ V AC	5444
Battery module		
$\stackrel{\sim}{\sim}$	24 V DC battery module	5444

(1) For measurement display with Micrologic A and E or status display with BSCM.
(2) See Telemecanique catalogue.

(1) See Telemecanique catalogue.
(2) Downloadable from http://schneider-electric.com.

Glossary

Glossary

Functions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Wiring diagramsD-1
Additional characteristics E-1
Catalogue numbers F-1
Accessories G-2
Circuit-breaker characteristics (IEC 60947-2) G-2
Communication G-4
Components G-5
Controls G-5
Discrimination / Cascading G-6
Environment G-7
Harmonics G-8
Measurements G-8
Protection G-9
Relays and auxiliary contacts G-10
Switchgear G-10
Three-phase asynchronous motors and their protection G-11
Trip units G-12

For each major section (Accessories, Switchgear, etc.) and for each item (Adapter for plug-in base, Connection terminal, etc.), this glossary provides:
■ the page number in the concerned catalogue

- the reference standard

■ the standardised IEC symbol

- the definition.

Text in quotation marks is drawn from the standards.
ccessories

Adapter for plug-in base	-A-72	The adapter is a plastic component that can be installed upstream and/or downstream of the plug-in base and enables use of all the connection accessories of the fixed device.
Bare-cable connector	—A-71	Conducting part of the circuit breaker intended for connection to power circuits. On Compact NSX, it is an aluminium part that screws to the connection terminals of the circuit breaker. There are one or more holes (single or multiple cable connector) for the ends of bare cables.
Connection terminals	-A-70	Flat copper surface, linked to the conducting parts of the circuit breaker and to which power connections are made using bars, connectors or lugs.
One-piece spreader	-A-70	The spreader is a plastic component with copper connectors that can be installed upstream and/or downstream of a Compact NSX100 to 250 circuit breaker with a pole pitch of 35 mm. It increases the pitch of the circuit-breaker terminals to the 45 mm pitch of a NSX400/630 device to facilitate connection of large cables.
Spreaders	—A-70	Set of three (3P device) or four (4P) flat, conducting parts made of aluminium. They are screwed to the circuit-breaker terminals to increase the pitch between poles.

Circuit-breaker characteristics (IEC 60947-2)

Breaking capacity	- A-6	Value of prospective current that a switching device is capable of breaking at a stated voltage under prescribed conditions of use and behaviour. Reference is generally made to the ultimate breaking capacity (Icu) and the service breaking capacity (Ics).
Degree of protection (IP) IEC 60529	-A-5	Defines device protection against the penetration of solid objects and liquids, using two digits specified in standard IEC 60259. Each digit corresponds to a level of protection, where 0 indicates no protection. - First digit (0 to 6): protection against penetration of solid foreign objects. 1 corresponds to protection against objects with a diameter > $50 \mathrm{~mm}, 6$ corresponds to total protection against dust. ■ Second digit (0 to 8): protection against penetration of liquids (water). 1 corresponds to protection against falling drops of water (condensation), 8 corresponds to continuous immersion. The enclosure of Compact NSX circuit breakers provides a minimum of IP40 (protection against objects $>1 \mathrm{~mm}$) and can reach IP56 (protection against dust and powerful water jets) depending on the installation conditions.
Degree of protection against external mechanical impacts (IK)	-A-6	Defines the aptitude of an object to resist mechanical impacts on all sides, indicated by a number from 0 to 10 (standard IEC 62262). Each number corresponds to the impact energy (in Joules) that the object can handle according to a standardised procedure. 0 corresponds to no protection, 1 to an impact energy of 0.14 Joules, 10 to an impact energy of 20 Joules. Compact NSX provide IK07 (2 Joules) and can provide IK08 (5 Joules) depending on the installation conditions.
Durability	-A-6	The term "durability" is used in the standards instead of "endurance" to express the expectancy of the number of operating cycles which can be performed by the equipment before repair or replacement of parts. The term "endurance" is used for specifically defined operational performance.
Electrical durability IEC 60947-1	- A-6	With respect to its resistance to electrical wear, equipment is characterised by the number of on-load operating cycles, corresponding to the service conditions given in the relevant product standard, which can be made without re replacement.

Frame size	- A-70	"A term designating a group of circuit breakers, the external physical dimensions of which are common to a range of current ratings. Frame size is expressed in amperes corresponding to the highest current rating of the group. Within a frame size, the width may vary according to the number of poles. This definition does not imply dimensional standardization." Compact NSX has two frame sizes covering 100 to 250 A and 400 to 630 A .
Insulation class	-A-5	Defines the type of device insulation in terms of earthing and the corresponding safety for user, in one of three classes. - Class I. The device is earthed. Any electrical faults, internal or external, or caused by the load, are cleared via the earthing circuit, thus ensuring user safety. - Class II. The device is not connected to a protective conductor. User safety is ensured by reinforced insulation around the live parts (an insulating case and no contact with live parts, i.e. plastic buttons, moulded connections, etc.) or double insulation. - Class III. The device may be connected only to SELV (safety extra-low voltage) circuits. The Compact NSX are class II devices (front) and may be installed through the door in class II switchboards (standards IEC 61140 and IEC 60664-1), without reducing insulation, even with a rotary handle or motor mechanism module.
Making capacity		Value of prospective making current that a switching device is capable of making at a stated voltage under prescribed conditions of use and behaviour. Reference is generally made to the short-circuit making capacity Icm.
Maximum break time	>A-17	Maximum time after which breaking is effective, i.e. the contacts separated and the current completely interrupted.
Mechanical durability	- A-6	With respect to its resistance to mechanical wear, equipment is characterised by the number of no-load operating cycles which can be effected before it becomes necessary to service or replace any mechanical parts.
Non-tripping time	-A-17	This is the minimum time during which the protective device does not operate in spite of pick-up overrun, if the duration of the overrun does not exceed the corresponding voluntary time delay.
Pollution degree of environment conditions IEC 60947-1 IEC 60664-1	-A-6	"Conventional number based on the amount of conductive or hygroscopic dust, ionized gas or salt and on the relative humidity and its frequency of occurrence, resulting in hygroscopic absorption or condensation of moisture leading to reduction in dielectric strength and/or surface resistivity". Standard IEC 60947-1 distinguishes four pollution degrees. ■ Degree 1. No pollution or only dry, non-conductive pollution occurs. ■ Degree 2. Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation may be expected. - Degree 3. Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation. - Degree 4. The pollution generates persistent conductivity caused, for instance, by conductive dust or by rain or snow. Compact NSX meets degree 3, which corresponds to industrial applications.
Prospective short-circuit current	-E-13	Current that would flow through the poles if they remained fully closed during the short-circuit.
Rated current (In)	-A-6	This is the current that the device can carry continuously with the contacts closed and without abnormal temperature rise.
Rated impulse withstand voltage (Uimp)	-A-6	"The peak value of an impulse voltage of prescribed form and polarity which the equipment is capable of withstanding without failure under specified conditions of test and to which the values of the clearances are referred. The rated impulse withstand voltage of an equipment shall be equal to or higher than the values stated for the transient overvoltages occurring in the circuit in which the equipment is fitted".
Rated insulation voltage (Ui)	-A-6	"The rated insulation voltage of an equipment is the value of voltage to which dielectric tests and creepage distances are referred. In no case shall the maximum value of the rated operational voltage exceed that of the rated insulation voltage".
Rated operational current (le)		"A rated operational current of an equipment is stated by the manufacturer and takes into account the rated operational voltage, the rated frequency, the rated duty, the utilization category and the type of protective enclosure, if appropriate".

Rated short-time withstand current (Icw)
"A value of voltage which, combined with a rated operational current, determines the application of the equipment and to which the relevant tests and the utilisation categories are referred. For multipole equipment, it is generally stated as the voltage between phases".
This is the maximum continuous voltage at which the equipment may be used.
"Value of short-time withstand current, assigned to the equipment by the manufacturer, that the equipment can carry without damage, under the test conditions specified in the relevant product standard". Generally expressed in kA for $0.5,1$ or 3 seconds. This is an essential characteristic for air circuit breakers. It is not significant for moulded-case circuit breakers for which the design targets fast opening and high limiting capacity.

Expressed as a percentage of Icu, it provides an indication on the robustness of the device under severe conditions. It is confirmed by a test with one opening and one closing/opening at Ics, followed by a check that the device operates correctly at its rated current, i.e. 50 cycles at In, where temperature rise remains within tolerances and the protection system suffers no damage.
Short-circuit making capacity $>\mathrm{A}-58$
(lcm)
Suitability for isolation $>$ A-5
(see also Positive contact
indication, page G-5)
Value indicating the capacity of the device to make and carry a high current without repulsion of the contacts. It is expressed in kA peak.

This capability means that the circuit breaker meets the conditions below.
■ In the open position, it must withstand, without flashover between the upstream and downstream contacts, the impulse voltage specified by the standard as a function of the Uimp indicated on the device.

- It must indicate contact position by one or more of the following systems:
- position of the operating handle
\square separate mechanical indicator
\square visible break of the moving contacts
- Leakage current between each pole, with the contacts open, at a test voltage of
$1.1 \times$ the rated operating voltage, must not exceed:
- 0.5 mA per pole for new devices

ㅁ 2 mA per pole for devices already subjected to normal switching operations $\square 6 \mathrm{~mA}$, the maximum value that must never be exceeded.

- It must not be possible to install padlocks unless the contacts are open. Locking in the closed position is permissible for special applications. Compact NSX complies with this requirement by positive contact indication.

Suitable for isolation with \quad A-5 Suitability for isolation is defined here by the mechanical reliability of the position positive contact indication
(see also Suitability for isolation, page G2) indicator of the operating mechanism, where:

- the isolation position corresponds to the O (OFF) position
- the operating handle cannot indicate the "OFF" position unless the contacts are effectively open.

The other conditions for isolation must all be fulfilled:

- locking in the open position is possible only if the contacts are effectively open
- leakage currents are below the standardised limits

■ overvoltage impulse withstand between upstream and downstream connections.
Ultimate breaking capacity (Icu) >A-6
Expressed in kA, it indicates the maximum breaking capacity of the circuit breaker. It is confirmed by a test with one opening and one closing/opening at Icu, followed by a check that the circuit is properly isolated. This test ensures user safety.

Communication

BSCM \quad A-27 The optional BSCM for Compact NSX is used to acquire device status indications
(Breaker status and control module)

Ethernet TCP/IP

(Transmission Control Protocol/
Internet Protocol)
and control the communicating remote-control function. It includes a memory used to manage the maintenance indicators. It serves as a converter between the analog outputs of the device indication contacts (O/F, SD, SDE) and the digital communicating functions.

Ethernet is a very common network protocol and complies with IEEE standard 802.3. Ethernet TCP/IP is the protocol that brings web functions to Ethernet networks. Most PCs have an Ethernet 10/100 card (10 or $100 \mathrm{Mbit} / \mathrm{s}$) for connection to the internet. Data communicated from Compact NSX via Modbus are accessible on a PC via a TCP/IP-Modbus gateway such as MPS100 or EGX100.

Set of communicating devices that are interconnected by communication lines in order to share data and resources.

Open protocol	-3	A protocol for system communication, interconnection or data exchange for which technical specifications are public, i.e. there are no restrictions on access or implementation. An open protocol is the opposite of a proprietary protocol.
Protocol	- A-28	Standardised specification for dialog between digital components that exchange data. It is an operating mode based on the length and structure of binary words and it must be used by all the components exchanging data between themselves. Communication is not possible without using a protocol.
RJ45 connector	- A-26	Universal, 8-wire connector that is widely used in digital communication networks. The RJ45 connector is used to interconnect computer equipment (Ethernet, Modbus, etc.), telephones and audiovisual equipment.
RS485 Modbus	- A-28	Modbus is the most widely used communication protocol in industrial networks. It operates in master-slave mode. An RS485 multipoint link connects the master and slaves via a pair of wires offering throughputs of up to 38400 bits/second over distances up to 1200 m). The master cyclically polls the slaves which send back the requested information. The Modbus protocol uses frames containing the address of the targeted slave, the function (read, write), the datum and the CRC (cyclical redundancy check).
SDTAM	-A-81	Relay module with two static outputs specifically for the motor-protection Micrologic trip units $1 \mathrm{M}, 2 \mathrm{M}$ and $6 \mathrm{E}-\mathrm{M}$. An output, linked to the contactor controller, opens the contactor when an overload or other motor fault occurs, thus avoiding opening of the circuit breaker. The other output stores the opening event in memory.
SDx	- A-81	Relay module with two outputs that remotes the trip or alarm conditions of Compact NSX circuit breakers equipped with a Micrologic electronic trip unit.
Static output	- A-81	Output of a relay made up of a thyristor or triac electronic component. The low switching capability means that a power relay is required. This is the case for the SDx and SDTAM outputs.
ULP (Universal Logic Plug) $\stackrel{\square}{\rightleftarrows}$	-A-31	Connection system used by Compact NSX to communicate information to the Modbus interface via a simple RJ45 cable. Compatible modules are indicated by the symbol opposite.
Γ		
ASIC (Application Specific Integrated Circuit)	-A-8	Integrated circuit designed, built and intended for a specific application. It carries out repetitive sequences of instructions engraved in the silicon chip. For that reason, it is extremely reliable because it cannot be modified and is not affected by environment conditions. Micrologic trip units use an ASIC for the protection functions. The ASIC cyclically polls the network status at a high frequency, using the values supplied by captors. Comparison with the settings forms the basis for orders to the electronic trip units.
Microprocessor	- A-8	A microprocessor is a more general purpose device than an ASIC. In Micrologic, a microprocessor is used for measurements and it can be programmed. It is not used for the main protection functions that are carried out by the ASIC.
Controls		
Communicating motor mechanism	- A-82	For Compact NSX remote control via the communication system, a communicating motor mechanism is required. Except for the communication function, it is identical to the standard motor mechanism module and connects to and controlled by the BSCM module.
CNOMO machine-tool rotary handle	- A-84	Handle used for machine-tool control enclosures and providing IP54 and IK08.
Direct rotary handle	- A-84	This is an optional control handle for the circuit breaker. It has the same three positions I (ON), O (OFF) and TRIPPED as the toggle control. It provides IP40, IK07 and the possibility, due to its extended travel, of using early-make and early-break contacts. It maintains suitability for isolation and offers optional locking using a keylock or a padlock.

Emergency off	- A-83	In a circuit equipped with a circuit breaker, this function is carried out by an opening mechanism using an MN undervoltage release or an MX shunt release in conjunction with an emergency off button.
Extended rotary handle	-A-84	Rotary handle with an extended shaft to control devices installed at the rear of switchboards. It has the same characteristics as direct rotary handles. It offers multiple locking possibilities using a keylock, a padlock or a door interlock.
Failsafe remote tripping	-A-83	Remote tripping is carried out by an opening mechanism using an MN undervoltage release in conjunction with an emergency off button. If power is lost, the protection device opens the circuit breaker.
Manual toggle control	$>\mathrm{A}-89$	This is the standard control mechanism for the circuit breaker, with a toggle that can be flipped up or down. In a moulded-case circuit breaker (MCCB), there are three positions, I (ON), O (OFF) and TRIPPED. Once in the TRIPPED position, manual reset is required by switching to O (OFF position before reclosing.The TRIPPED position does not offer isolation with positive contact indication. This is guaranteed only by the O (OFF) position.
MCC rotary handle	- A-84	Handle used for motor control centres and providing IP43 and IK07.
Motor mechanism module	- A-82	The optional motor mechanism module is used to remotely open, close and recharge the circuit breaker.

$\boldsymbol{D}_{\text {iscrimination } / \text { Cascading }}$

Cascading
Current discrimination

Discrimination	-A-8	Discrimination is ensured between upstream and downstream circuit breakers if, when a fault occurs, only the circuit breaker placed immediately upstream of the fault trips. Discrimination is the key to ensuring the continuity of service of an installation.
Energy discrimination	-A-8	This function is specific to Compact NSX (see Reflex tripping on page G-7) and supplements the other types of discrimination.
Partial discrimination	-A-8	Discrimination is partial if the conditions for total discrimination are not met up to the ultimate short-circuit current Icu, but only up to a lesser value. This value is called the discrimination limit. If a fault exceeds the discrimination limit, both circuit breakers trip.
Time discrimination		Discrimination based on the difference between the time-delay settings of the circuit breakers. The upstream trip unit is delayed to provide the downstream breaker the time required to clear the fault.
Total discrimination	-A-8	Total discrimination is ensured between upstream and downstream circuit breakers if, for all fault values, from overloads up to solid short-circuits, only the downstream circuit breaker trips and the upstream circuit breaker remains closed.
Zone selective interlocking (ZSI)	- A-18	A number of circuit breakers with Micrologic electronic trip units are interconnected one after another by a pilot wire. In the event of a short-time or ground fault: ■ in the absence of information from downstream, the circuit breaker directly concerned by the fault (i.e. located just upstream of the fault) shifts to the shortest time delay and sends a signal upstream - the upstream device, on receiving the signal from the downstream device, maintains its normal time delay. In this manner, the fault is cleared rapidly by the circuit breaker closest to the fault.

Environment.

EMC (Electromagnetic	A-5
compatibility)	EMC is the capacity of a device not to disturb its environment during operation (emitted electromagnetic disturbances) and to operate in a disturbed environment
	(electromagnetic disturbances affecting the device). The standards define various
classes for the types of disturbances. Micrologic trip units comply with annexes F	

Vibration withstand IEC 60068-2-6	-B-2	Circuit breakers are tested in compliance with standard IEC 60068-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.): - 2 to 13.2 Hz : amplitude of $\pm 1 \mathrm{~mm}$ - 13.2 to 100 Hz : constant acceleration of 0.7 g .
WEEE directive (Waste of Electrical and Electronic Equipment)	- A-4	European directive on managing the waste of electrical and electronic equipment. Circuit breakers are not included in the list of concerned products. However, Compact NSX products respect the WEEE directive.

Harmonics.

Current harmonics	- A-20	Non-linear loads cause harmonic currents that flow in the 50 Hz (or 60 Hz) distribution system. Total harmonic current is the sum of sinusoidal AC currents for which the rms values can be measured and broken down into: - the fundamental current at the $50 / 60 \mathrm{~Hz}$ frequency of the distribution system, with an rms value of IH_{1} ■ harmonic currents with whole, odd multiples (3, 5, 7, etc.) of the $50 / 60 \mathrm{~Hz}$ frequency, called the third-order, fifth-order, etc. harmonics. For example, IH_{3}, the third-order harmonic at $150 / 180 \mathrm{~Hz}, \mathrm{IH}_{5}$, the fifth-order harmonic at $250 / 300 \mathrm{~Hz}$, etc. The presence of harmonics in the system must be monitored and limited because it results in temperature rise, currents in the neutral (caused by the third-order harmonics and multiples), malfunctions of sensitive electronic devices, etc. Micrologic E trip units take into account harmonics up to order 15 in the THDI and THDU calculations.

Non-linear load	Systems producing harmonics are present in all industrial, commercial and residential sectors. Harmonics are caused by non-linear loads. A load is said to be non-linear when the current drawn does not have the same waveform as the supply voltage. Typically, loads using power electronics are non-linear. Examples of non-linear loads include computers, rectifiers, variable-speed drives, arc furnaces and fluorescent lighting.		
Total harmonic distortion of			
current (THDI)		\quad	THDI characterises the distortion of the current wave by harmonics.
:---			
It indicates the quantity of harmonics in the resulting waveform. It is expressed in			
percent.			
The higher the THDI, the more the current is distorted by harmonics.			
THDI should remain below 10\%. Above that level, there is said to be harmonic			
pollution that is considered severe when it rises above 50\%.			

Measurements

Contact wear	A-23Each time Compact NSX opens, the Micrologic $5 / 6$ trip unit measures the interrupted current and increments the contact-wear indicator as a function of the interrupted current, according to test results stored in memory.
Current transformer with	It is made up of a coil wound around an iron frame through which a power busbar runs. The current flowing in the bar, on passing through the sensor, induces a magnetic field that reverses for each half period. This variation in the field in turn creates an induced current in the coil. This current is proportional to the current flowing in the bar. It is sufficient to supply the measurement electronics. The disadvantage of iron-core measurement current transformers (CT) is that they rapidly saturate for currents > >10 In.

Current transformer with Rogowski toroid or air-core CT	- 10	It is made up of a coil without an iron frame, through which a power busbar runs. The output voltage at the coil terminals is proportional to the current flowing through the bar. The result is a current transformer (CT) with a voltage output. The advantage is that it never saturates whatever the primary current and thus enables measurement of high currents. The output is however a very low current that is too low to supply the measurement electronics. For Micrologic, Rogowski CTs measure the current and a second CT, with an iron core, provides the electrical supply.
Demand current, demand power and peak values	-A-21	Average of the instantaneous current or power values over an adjustable fixed or sliding time interval. The highest value observed over the time interval is the peak value. The time interval runs from the last reset.
Instantaneous current	-A-21	True rms value of the current measured by the current transformers over a sliding time interval. Available on Micrologic $5 / 6$ A or E.
Instantaneous voltage	-A-21	True rms value of the voltage measured by the voltage sensors over a sliding time interval. Available on Micrologic $5 / 6 \mathrm{~A}$ or E .
Maximeters/minimeters	- A-20	Micrologic 5 and 6 A or E can record the minimum and maximum values of electrical parameters over set time periods.
Overvoltage category (OVC - Overvoltage category) IEC 60947-1. Annex H	- A-32	Standard IEC 60664-1 stipulates that it is up to the user to select a measurement device with a sufficient overvoltage category, depending on the network voltage and the transient overvoltages likely to occur. Four overvoltage categories define the field of use for a device. - Cat. I. Devices supplied by a SELV isolating transformer or a battery. - Cat. II. Residential distribution, handheld or laboratory tools and devices connected to standardised $2 \mathrm{P}+$ earth electrical outlets (230 V). - Cat. III. Industrial distribution, fixed distribution circuits in buildings (main low voltage switchboards, rising mains, elevators, etc.). - Cat. IV. Utility substations, overhead lines, certain industrial equipment.
Percent load	-A-23	Percentage of current flowing through the circuit breaker with respect to its rated current. Micrologic 6 E-M offers this information and can sum it over the total operating time to provide the load profile for the following ranges, 0 to $49 \%, 50$ to $79 \%, 80$ to 89% and $\geqslant 90 \%$.
Phase sequence	-A-23	The order in which the phases are connected ($\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$ or $\mathrm{L} 1, \mathrm{~L} 3, \mathrm{~L} 2$) determines the direction of rotation for three-phase asynchronous motors. Micrologic 6 E-M trip units provide this information.
Power and energy metering (consumption)	-A-21	The digital electronics in Micrologic $5 / 6 \mathrm{E}$ calculate the instantaneous power levels, apparent (S in kVA), active (P in kW) and (Q in kV), and integrate over a time interval to determine the corresponding energies (kVAh, kWh kvarh). Calculations are for each phase and for the total.
Time-stamped histories	- A-23	Micrologic trip units store information on events (e.g. alarms and their cause) that are time-stamped to within a millisecond.
rotectio		
Ground-fault protection G (lg)	-A-19	Protection function specific to electronic circuit breakers, symbolised by G (Ground). This protection can calculate high-threshold residual earth-leakage currents (in the order of tens of Amperes) on the basis of phase-current measurements. Micrologic $5 / 6$ offers this protection function with adjustable pick-up Ig and time delay.
Instantaneous protection I (Ii)	-A-19	This protection supplements Isd. It provokes instantaneous opening of the device. The pick-up may be adjustable or fixed (built-in). This value is always lower than the contact-repulsion level.
Long-time protection L (Ir)	-A-19	Protection function where the adjustable Ir pick-up determines a protection curve similar to the thermal-protection curve (inverse-time curve $I^{2} t$). The curve is generally determined on the basis of the Ir setting which corresponds to a theoretically infinite tripping time (asymptote) and of the point at 6 Ir at which the tripping time depends on the rating.
Magnetic protection (Im)	-A-14	Short-circuit protection provided by magnetic trip units (see this term). The pick-up setting may be fixed or adjustable.

Neutral protection (IN) > A-16	The neutral is protected because all circuit-breaker poles are interrupted. The setting may be that used for the phases or specific to the neutral, i.e. reduced neutral (0.5 times the phase current) or OSN (oversized neutral) at 1.6 times the phase current. For OSN protection, the maximum device setting is limited to 0.63 In .
Residual-current earth-leakage $>$ A-34 protection (I $\Delta \mathrm{n}$)	Protection provided by Vigi modules, in which the residual-current toroids directly detect low-threshold earth-leakage currents (in the order of tens of mA) caused by insulation faults.
Short-delay protection S (Isd) > A-19	Protection function specific to electronic circuit breakers, symbolised by S (Short delay or short time). This protection supplements thermal protection. The reaction time is very short, but has a slight time delay to enable discrimination with the upstream device. The short-delay pick-up Isd is adjustable from approximately 1.5 to 10 lr .
Short-delay protection with A-17 fixed time delay So (Isd)	Short-delay protection, but with a fixed time delay. This function is available on Micrologic 2. It is symbolised by So. It ensures discrimination with downstream devices.
Thermal protection (Ir) > A-15	Overload protection provided by thermal trip units (see this term) using an inversetime curve ($\mathrm{l}^{2} \mathrm{t}$).

Relays and auxiliary contacts

Auxiliary contact IEC 60947-1		"Contact included in an auxiliary circuit and mechanically operated by the switching device".
Break contact IEC 60947-1	- A-84	"Control or auxiliary contact which is open when the main contacts of the mechanical switching device are closed and closed when they are open".
Make contact IEC 60947-1	- A-84	"Control or auxiliary contact which is closed when the main contacts of the mechanical switching device are closed and open when they are open".
Relay (electrical) IEC 60947-1	-A-18	"Device designed to produce sudden, predetermined changes in one or more electrical output circuits when certain conditions are fulfilled in the electrical input circuits controlling the device".
Relay module with static output	- A-81	Output of a relay made up of a thyristor or triac electronic component. The low interrupting capacity means that a power relay is required. This is the case for the SDx and SDTAM outputs.

Switchgear

Circuit breaker
A-6
IEC 60947-2
$\xrightarrow{+}$
Circuit-breaker utilisation
category
IEC $60947-2$$\quad$ A-6
"Mechanical switching device, capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short circuit". Circuit breakers are the device of choice for protection against overloads and short-circuits. Circuit breakers may, as is the case for Compact NSX, be suitable for isolation.

The standard defines two utilisation categories, A and B, depending on breaker discrimination with upstream breakers under short-circuit conditions.

- Category A. Circuit breakers not specifically designed for discrimination applications.
- Category B. Circuit breakers specifically designed for discrimination, which requires a short time-delay (which may be adjustable) and a rated short-time withstand current in compliance with the standard. Compact NSX100 to 630 circuit breakers are category A, however, by design, they provide discrimination with downstream devices (see the Complementary technical information guide).
Contactor \quad A-36
"Mechanical switching device having only one position of rest, operated otherwise than by hand, capable of making, carrying and breaking currents under normal circuit conditions including operating overload conditions". A contactor is provided for frequent opening and closing of circuits under load or slight overload conditions. It must be combined and coordinated with a protective device against overloads and short-circuits, such as a circuit breaker.

Contactor utilisation categories $>$ A-37

IEC 60947-4-1

Current-limiting circuit breaker $>$ A-36
IEC 60947-2
Disconnector
IEC 60947-3

Switch-disconnector \quad A-56
IEC 60947-3

Switch-disconnector utilisation $>$ A-57
category
IEC 60947-3

The standard defines four utilisation categories, $\mathrm{AC} 1, \mathrm{AC} 2, \mathrm{AC} 3$ and AC 4 depending on the load and the control functions provided by the contactor. The class depends on the current, voltage and power factor, as well as contactor withstand capacity in terms of frequency of operation and endurance.
"A circuit-breaker with a break-time short enough to prevent the short-circuit current reaching its otherwise attainable peak value".
"Mechanical switching device which, in the open position, complies with the requirements specified for the isolating function". A disconnector serves to isolate upstream and downstream circuits. It is used to open or close circuits under no-load conditions or with a negligible current level. It can carry the rated circuit current and, for a specified time, the short-circuit current.
"Switch which, in the open position, satisfies the isolating requirements specified for a disconnector". A switch-disconnector serves for switching and isolation. The switch function breaks the circuit under load conditions and the disconnection function isolates the circuit. Protection is not provided. It may be capable of making shortcircuit currents if it has the necessary making capacity, but it cannot break shortcircuit currents. Compact NSX100 to 630 NA switch-disconnectors have a making capacity.

The standard defines six utilisation categories, $\mathrm{AC}-21 \mathrm{~A}$ or $\mathrm{B}, \mathrm{AC}-22 \mathrm{~A}$ or $\mathrm{B}, \mathrm{AC} 23 \mathrm{~A}$ or B. They depend on the rated operational current and the mechanical durability (A for frequent operation or B for infrequent operation). Compact NSX NA switchdisconnectors comply with utilisation categories AC22A or AC23A.

Three-phase asynchronous motors and their protection.

Locked-rotor protection (ljam)	- A-44	This function steps in when the motor shaft cannot or can no longer drive the load. The result is a high overcurrent.
Long-start protection (llong)	- A-44	An overly long start means the current drawn remains too high or too low for too long, with respect to the starting current. In all cases, the load cannot be driven and the start must be interrupted. The resulting temperature rise must be taken into account before restarting.
Phase-unbalance or phaseloss protection (lunbal)	- A-43	This protection function steps in if the current values and/or the unbalance in the three phases supplying the motor exceeds tolerances. Currents should be equal and displacement should be one third of a period. Phase loss is a special case of phase unbalance.
Starting current	- A-38	Start-up of a three-phase, asynchronous motor is characterised by: - a high inrush current, approximately 14 In for 10 to 15 ms - a starting current, approximately 7.2 In for 5 to 30 seconds - return to the rated current after the starting time.
Starting time	- A-38	Time after which the motor ceases to draw the starting current and falls back to the operating current $\operatorname{lr}(\leqslant \ln)$.
Thermal image of the rotor and stator	- A-44	The thermal image models the thermal behaviour of a motor rotor and stator, taking into account temperature rise caused by overloads or successive starts, and the cooling constants. For each motor power rating, the algorithm takes into account a theoretical amount of iron and copper which modifies the cooling constants.
Thermal protection		Protection against overcurrents following an inverse time curve $\mathrm{I}^{2 \mathrm{t}}=$ constant, which defines the maximum permissible temperature rise for the motor. Tripping occurs after a time delay that decreases with increasing current.
Trip class IEC 60947-4-1	- A-38	The trip class determines the trip curve of the thermal protection device for a motor feeder. The standard defines trip classes $5,10,20$ and 30 . These classes are the maximum durations, in seconds, for motor starting with a starting current of 7.2 Ir , where Ir is the thermal setting indicated on the motor rating plate.
Under-load protection (lund)	- A-44	This function steps in when the driven load is too low. It detects a set minimum phase current which signals incorrect operation of the driven machine. In the example of a pump, under-load protection detects when the pump is no longer primed.

Tripunits

Electronic trip unit (Micrologic) > A-16	Trip unit that continuously measures the current flowing through each phase and the neutral if it exists. For Micrologic, the measurements are provided by built-in current sensors linked to an analog-digital converter with a high sampling frequency. The measurement values are continuously compared by the ASIC to the protection settings. If a setting is overrun, a Mitop release trips the circuit-breaker operating mechanism. This type of trip unit offers much better pick-up and delay setting accuracy than thermal-magnetic trip units. It also provides a wider range of protection functions.
Magnetic release \quad A-14	Release actuated by a coil or a lever. A major increase in the current (e.g. a shortcircuit) produces in the coil or the lever a change in the magnetic field that moves a core. This trips the circuit breaker operating mechanism. Action is instantaneous. The pick-up setting may be adjustable.
Reflex tripping $>\mathrm{A}-8$	Compact NSX circuit breakers have a patented reflex-tripping system based on the energy of the arc and that is independent of the other protection functions. It operates extremely fast, before the other protection functions. It is an additional safety function that operates before the others in the event of a very high shortcircuit.
Release IEC 60947-1	Device, mechanically connected to a mechanical switching device (e.g. a circuit breaker), which releases the holding means and permits the opening or the closing of the switching device. For circuit breakers, releases are often integrated in a trip unit.
Shunt release (MX) > A-83	This type of release operates when supplied with current. The MX release provokes circuit-breaker opening when it receives a pulse-type or maintained command.
Thermal-magnetic trip unit $>$ A-14	Trip unit combining thermal protection for overloads and magnetic protection.
Thermal release $>\mathrm{A}-14$	Release in which a bimetal strip is heated by the Joule effect. Above a temperaturerise threshold that is a function of the current and its duration ($I^{2} t$ curve = constant, which is representative of temperature rise in cables), the bimetal strip bends and releases the circuit-breaker opening mechanism. The pick-up setting may be adjustable.
Undervoltage release (MN) > A-83	This type of release operates when the supply voltage drops below the set minimum.

Nationwide support on one number call the Customer Information Centre on 08706088608

Fax 08706088606

Schneider Electric's local support

Schneider Electric is committed to supporting its customers at every stage of a project. Our 180 sales engineers, the largest dedicated sales force in the UK electrical industry, operate from 4 customer support centres.
Our sales engineers are skilled at assessing individual requirements and combined with the expert support of our product specialists, will develop the most effective and economical answer taking relevant regulations and standards fully into account.
To access the expertise of the Schneider Electric group, please call 08706088608 . Each customer support centre includes facilities for demonstrations and training, and presentation rooms fully equipped with audio visual and video, providing excellent meeting facilities.

Merlin Gerin is a world leader in the manufacture and supply of high, medium and low voltage products for the distribution, protection, control and management of electrical systems and is focused on the needs of both the commercial and industrial sectors. The newly launched VDI Network Solutions offer provides flexible, configurable ethernet systems for all communication needs.

Square D is a total quality organisation and its business is to put electricity to work productively and effectively, protecting people, buildings and equipment. Its low voltage electrical distribution equipment, systems and services are used extensively in residential and commercial applications.

Telemecanique
Telemecanique is a UK market leader and world expert in automation and control. It provides complete solutions, with its range of components, Modicon range of high technology programmable controllers (PLCs), multiple fieldbus and ethernet communication networks, HMI, motion control systems, variable speed drives and communications software. In addition, it offers power distribution through prefabricated busbar trunking.

Local customer support centres

Scotland
Schneider Electric Ltd
Unit 18
Claremont Centre
112a Cornwall Street South
Kinning Park
Glasgow G41 1AA

South West
Schneider Electric Ltd PO Box 41 Langley Road Chippenham Wiltshire SN15 1JJ

North West
Schneider Electric Ltd
First Floor
Market House
Church Street
Wilmslow
Cheshire SK9 1AY

Product showrooms

Industrial systems and solutions showroom
Schneider Electric Ltd, University of Warwick Science Park, Sir William Lyons Road, Coventry CV4 7EZ
Building systems and solutions showroom
Schneider Electric Ltd, Stafford Park 5, Telford, Shropshire TF3 3BL
Energy and Infrastructure systems and solutions showroom
Schneider Electric Ltd, 123 Jack Lane, Hunslet, Leeds LS10 1BS

[^0]: * RoHS = Restriction of Hazardous Substances
 ${ }^{* *}$ WEEE $=$ Waste Electrical and Electronic Equipment

[^1]: (1) The BSCM module (page A-27) is required for these functions.

[^2]: Mounting with stacking accessory.

[^3]: Separate toroids.

[^4]: (1) Absolute mode: E absolute $=E$ out $+E$ in; Signed mode: E signed $=E$ out $-E$ in.

[^5]: 1 Short terminal shields
 2 Terminals
 3 Interphase barriers
 4 Long terminal shields

[^6]: These clearances can be reduced for special installations as long as the configuration is checked

[^7]: \square Thermal-protection curve with minimum and maximum values.

[^8]: Terminals shown in red \square / 0 must be connected by the customer.

[^9]: (1) Supplied with 2 or 3 interphase barriers.

[^10]: (1) Supplied with 2 or 3 interphase barriers.

[^11]: (1) For only 1 device.

[^12]: Keylock adapter (keylock not included)

