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Introduction

QCD has been established as the fundamental theory describing strong interactions. Since the proof of
asymptotic freedom[1, 2], this theory has received a lot of confirmations, showing its predictive power
in the perturbative regime and in the low energy sector. Nonetheless, big issues are still open. As
an example, the features of the phase diagram of QCD still remain really difficult to study from the
theoretical point of view: while at zero density it has been possible to do extensive numerical simulations
starting from first principles, at finite density there are very few certainties.
From the experimental point of view, the phase diagram is being studied with heavy ion collision experiments,
where strongly interacting matter is heated in the collision, melting into - according to theoretical predictions
- a plasma of quark and gluons, and subsequently cooling down and “condensing” into hadrons again.
The properties of the quark-gluon plasma can be inferred by looking at various experimental probes, and
by analyzing the hadrochemical composition of the product of the collisions it is possible to recover some
information on the phase structure of QCD, namely the chemical potential and the temperature at which
the hadrons are formed.
From the theoretical standpoint, several effective approaches have been devised to (at least try to) make
predictions on the structure of the QCD phase diagram. The obvious fields of application where this
fundamental knowledge would be of great interest would be in the physics of the early universe, and
in the understanding of the properties of neutron stars. In the study of gauge theories in general, a
lot of achievements have been reached in the last decades with numerical methods based on lattice
discretizations of the fundamental theory: with this approach, the infinite dimensional path integrals of
the continuum theory are approximated with finite dimensional integrals, and approximated versions for
all observables and their moments can then be written in the discretized theory. Via a careful tuning of the
parameters in the chosen lattice formulation of the theory (which are dimensionless), it may be possible
to reduce the corresponding physical value of the lattice spacing, thus approaching the continuum limit,
and by enlarging the lattice it is possible to approach the thermodynamic limit, towards the real theory
which lives in a continuum, infinite space. The cut-off and the finite volume effects on the approximated
observables can be assessed by evaluating them on lattices with different values of the lattice spacings
and different size, and an estimate of the physical quantities in the physical theory can thus be given, once
the necessary renormalizations are carried out.
The methods commonly used for evaluating the path integrals of the discretized theory are based on
importance sampling: the integration domain is sampled mostly in the regions which give the largest
contributions. The individuation of such regions, and this approach in general, are straightforward if
the integrand is a positive definite quantity which can be interpreted as a probability density. Else, the
calculation is affected by the so called sign problem.
As an example, real time QCD is affected by this problem beyond any hope (at least at present). Lattice
QCD is indeed formulated at imaginary time, where the sign problem is, at least in the simplest cases,
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Introduction ii

absent: while of course this approach does not allow to study real time dynamics, it is very fruitful for
investigating the time-independent thermodynamic properties of the theory. Unfortunately, even in the
context of QCD thermodynamics, the sign problem arises in other circumstances: most notably, and
for what we are concerned here, in the presence of a non-zero baryon chemical potential µB, where the
fermion determinant becomes complex.
Various approaches have been tried to circumvent this problem. Reweighting methods can be used,
where the sampling is done according to a probability density defined ad hoc (for instance, the one for
zero chemical potential) and then the computed values of the observables are re-weighted according to
the ratio between the “ad hoc” probability density and the original factor. Of course these methods have
some limits: first, the region of field space explored with the modified importance sampling can actually
be quite different from the one we are interested in, and due to the fact that the new ensemble has finite
size this can lead to huge errors: this is the so-called overlap problem. Moreover, the reweighting ratio
can be affected by huge statistical uncertainties while becoming exponentially small with the volume,
thus making the thermodynamic limit hard to explore1.
Another possible approach that allows to use the ensemble extracted at zero chemical potential is the
Taylor expansion method. The observables are expanded in Taylor series and the derivatives in the
chemical potential which make up the series are measured on the lattice. Clearly, this method will
work only for small enough µB. Moreover, in general, higher order derivatives can be very expensive
to compute precisely.
It is also possible to exploit the fact that the fermion determinant is actually real for imaginary values of
the chemical potential, so the sign problem is absent. Then, thanks to the fact that for finite systems the
partition function is analytic, we can use analytic continuation to obtain information for small enough
real µ . This is the approach used in the work that will be described in the following thesis.
Given the importance of the subject, it is no surprise that many other more sophisticated approaches
have been devised to attack this problem. As an example, the grand canonical partition function can be
evaluated at imaginary baryon chemical potential (without the sign problem), and its Fourier coefficients
are the canonical partition functions for a fixed value of the baryon number 2. Unfortunately the sign
problem reappears in the Fourier transform, and is mitigated only for small values of the total baryon
number: this makes the thermodynamic limit at fixed baryon density hard to study, as with the re-weighting
method.
Some groups have been recently exploring approaches whose validity is yet to be completely justified. As
an example, complex Langevin dynamics just avoids importance sampling, and use stochastic quantization
to explore the complexified integration domain, for real chemical potential. This is in principle possible if
the action is an analytic function (unfortunately the logarithm of the fermion determinant is not analytic).
While there have been some successes for toy models and simplified theories, there is no proof that this
procedure converges to the right result in the case of complex actions, and current studies still focus on
the fundamentals.

However, the possibility of studying QCD at imaginary chemical potentials is also interesting per se.
The phase diagram of QCD at imaginary µB shows interesting features, like the so-called Roberge-Weiss
phase transition. The structure of the phase diagram becomes even richer when one considers also the
quark masses as free parameters, and can be put in relation to the so-called “Columbia plot” at vanishing
chemical potential, where the order of the deconfinement-chiral phase transitions are displayed as a
function of the light and strange quark masses. Moreover, the pure-imaginary µB situation can work

1This is due to the fact that this ratio is the exponential of the difference of two free energies, which are extensive quantities.
2In other words, the canonical partition functions are the coefficient in the fugacity expansion of the grand canonical partition

function, where the fugacity is e−µ/T .
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as a testbed for the validity of some effective approaches used to make predictions on the phase diagram
at real µB, provided that those approaches can be extended to imaginary chemical potentials.

In the first Chapter of this thesis, a brief introduction to the relevant topics in Lattice QCD will be given.
It is by no means intended to be a comprehensive exposition, but just a collection of important results
and references to give the context for the following parts. Chapter 2 is about the determination of the
curvature of the critical line of QCD, with a brief introduction to the experimental context. Chapter 3 is
about the determination of the properties of the Roberge-Weiss transition, for physical quark masses and
towards the chiral limit. In Chapter 4 the main results and possible future developments of the present
work are summarized.

Finally, in the appendices, a Lattice QCD code implementation making use of OpenAcc (used for the
most recent data presented in Chapter Three) is described.
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Chapter 1

Lattice QCD

1.1 Path Integrals, Lattice actions

Lattice QCD is a discretized version of QCD which uses a lattice as a ultraviolet regulator, approximating
the path integral in the continuum with a finite dimensional integral. In this approach, the fermion fields
live on the lattice vertices, while the gauge fields retain their meaning of a “connection” being replaced by
the parallel transport operators, or “links”, which represent the exponentiation of the path ordered integral
of the original gauge fields in the continuum (in practice, they are SU(3) matrices). If we Wick-rotate
the time axis in the complex plane with the transformation t =−iτ , then the Minkowski metric becomes
the Euclidean one in four dimensions, and the gamma matrices, the partial derivative and the gauge fields
transform accordingly. With the lattice approach, it is possible to study the thermodynamic properties
of QCD. In this Wick-rotated system, we take periodic boundary conditions on the τ axis for the gauge
fields, and anti-periodic boundary conditions for the fermionic fields. The finite extent of the lattice in the
Euclidean time direction is proportional to the inverse of the temperature, with a proportionality constant
given by the lattice spacing in physical units1.
The Euclidean path integral can be written as

Z =
∫

DUDψ̄Dψ exp
[
−
(
SE

g +SE
f
)]

=
∫

DU exp
(
−SE

g
)
Det(ME

f ) (1.1)

where SE
g is the gauge part of the Euclidean action which is expressed in terms of the SU(3) links denoted

as U , while the integration of the fermionic quark fields ψ , which in the path integral formalism require
to be treated as Grassmann variables, has yielded the determinant of the Euclidean Dirac operator ME

f =[
γE

ρ

(
∂ρ − igAρ

)
+m

]
. The Gauge part of the QCD Euclidean action in the continuum can be discretized

as
SE

g = ∑
n,µ,ν

[
1−Re Tr W 1×1

µ,ν (n)
]
, (1.2)

where W 1×1
µ,ν (n) represents the product of the four SU(3) “links” U around a plaquette in the µ−ν plane.

This action, called the Wilson Gauge action, is the simplest one. The possible choices are infinite and
the only requirement is that they give the correct continuum limit. This freedom has been exploited to
construct different “improved” actions, which make use of next-to-nearest-neighbor terms to improve

1 Here and in the following natural units, that is the convention h̄ = c = 1, are used.
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convergence to the continuum limit. Thanks to various improvements it has been possible to study
QCD with physical quark masses, obtaining quantitative results on real-world physics. An example
of improvement to the gauge action, derived from the “Symanzik improvement program” [3, 4] is the
tree-level Symanzik action[5, 6, 7]. It is worth mentioning also the Iwasaki action [8], which was instead
obtained from renormalization group considerations. The way fermions are introduced in the theory
requires a separate discussion, given the importance and complications involved.

1.2 Fermions on the lattice: the no-go theorem and staggered fermions

As can be easily seen, a naive discretization of the Dirac Lagrangian leads to the so-called “fermion
doubling” problem: the periodicity of the lattice and the use of the symmetric discretization of the first
derivative make so that the dispersion relation has 2D different zeros (in the massless case) in the first
Brillouin zone, even in the continuum limit. This implies there are 2D linearly independent fermion-like
excitations, which are called “doublers” (see e.g. [9] for an illustration of the problem). Different
strategies have been devised in order to circumvent this issue. The first attempt consists in the so-called
Wilson fermions formulation: an irrelevant term proportional to a second order derivative is added to the
Lagrangian, which vanishes as a higher power of the lattice spacing a in the continuum limit, while at
the same time suppressing the doublers. One of the major problems related to this ploy is that the newly
added term is, Dirac-indices-wise, exactly like a mass term, which breaks explicitly chiral symmetry.
Moreover, since the newly added term and the mass term have the same symmetries, they mix, thus
implying that quark mass renormalizes additively.

Another possible approach are the so-called “Staggered” (or Kogut-Susskind) fermions. This approach
is based on the fact that the naive fermion action has a four-fold degeneracy: it can be seen, by acting on
the fermion field with the point dependent transformation

T (n) = γ
n1
1 γ

n2
2 γ

n3
3 γ

n4
4 , (1.3)

where n1, . . . ,n4 represents the (integer) coordinated of the point, that the Dirac operator is diagonalized
in the Dirac indices, and the four-fold degeneracy becomes evident:

T †(n)γµ T (n+ µ̂) = ηµ(n)1 . (1.4)

The quantities ηµ(n) (called “staggered phases”) are just ±1 factors, as it can be easily computed:

ηµ(n) = (−1)n1+...+nµ−1 , η1(n) = 1 . (1.5)

Exploiting this degeneracy, we are allowed to take only one of the four Dirac components of the field,
which we will call χ(n). The fermionic action written in terms of χ(n) reads

Sstag
F =

1
2 ∑

n,µ
ηµ(n)χ̄(n) [χ(n+ µ̂)−χ(n− µ̂)] + am∑

n
χ̄(n)χ(n) (1.6)

(the mass term is trivial). Exploiting the fact that the staggered phases ηµ(n) are periodic in n in all four
directions, we can decompose the lattice in cubes with dimensions 24, and decompose the index n in an
index N and an index ρ , with N indicating the 24 block and ρ indicating the position within the 24 block.
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With these ideas, the staggered fermion action can be rewritten as

Sstag
F =

1
2 ∑

N,ρ,µ

ηµ(ρ)χ̄(2N +ρ) [χ(2N +ρ + µ̂)−χ(2N +ρ− µ̂)] + am∑
n

χ̄(n)χ(n) . (1.7)

We can also define a field χρ(N)≡ χ(2N +ρ), having 24 components labeled by the multi-index ρ . By
looking explicitly at Equation 1.7, it is possible to see that the ρ-labeled components of χρ(N) represent
4 Dirac fields (commonly dubbed “tastes”), which are degenerate in the non interacting case. Moreover,
it can be proven that a U(1) symmetry, remnant of chiral symmetry in the continuum, still holds for the
massless Dirac operator (see [9] for an explicit calculation).

The fact that the theory contains four fermions instead of one is, in general, undesired. In the case that
this degeneracy is present in the fermion determinant, we have

detMst = (detM)4 (1.8)

So we are lead, in order to recover the determinant for a single fermion species, to take the fourth root
[10]:

detM = detM1/4
st . (1.9)

In the actual simulation, the quantities derived from detM1/4
st are computed using a rational approximation,

which can be efficiently implemented in the algorithm. However, there are a number of problems related
to rooting. The validity of the rooting procedure and the systematics related to it have been debated in the
literature [11, 12, 13, 14] (for a review, see also [15]). In particular, when rooting is used the chiral limit
mq→ 0 and the continuum limit a→ 0 do not seem to commute, and in principle at finite lattice spacing
there are some spurious effects due to the symmetries of the underlying unrooted staggered formulation.
The conclusions that can be drawn these studies is that if one wants to study the physical chiral limit, the
continuum limit must be taken first.
At the time of writing, staggered fermions are the cheapest strategy to perform simulations relevant to
real-world physics.
One of the main practical issues is that rooting is justified only when the 4 “tastes” are exactly degenerate.
Unfortunately, the doublers interact with each other thanks to high-moment gluons, through the so called
taste-exchange interactions, which are suppressed in the continuum limit, and according to [16] make
up the largest part of the O(a2) cutoff effects in the staggered formulation, even larger than the ones
coming from the discretization of the derivative, which are O(a2) as well. A cheap possibility to reduce
taste exchange interactions is stouting, where the gluon fields are smoothed in an analytic way [17] when
entering the Dirac operator. This is the choice that will be used in the present work. In order to quantify
taste symmetry violation it is possible to measure the two-point correlators for staggered mesons [18, 19].
In Fig.1.1 a measurement of the pion multiplet masses for the action of our choice is shown.

An alternative is using the so-called HISQ action [16], implemented in the MILC code, engineered
specifically to suppress taste-exchange interactions. For a general comparison between variations of
the staggered discretization and their effectiveness in dealing with taste symmetry violations, the reader
can refer to [21].

In general, any discretization of Dirac fermions has to cope with the limitations due to the Nielsen-Ninomiya
no-go theorem [22, 23, 24], from which it can be proven that with a fermionic discretization which
respects hermiticity, locality and translational invariance, the doubler problem cannot be solved while



Lattice QCD 4

FIGURE 1.1: Masses for some of the pion multiplets (related to some irreducible representations of the
staggered fermion symmetry group) for the action used in the present work, as a function of the lattice
spacing. The black line at the bottom represents the physical pseudo-Goldstone boson, at 135 MeV. Figure

taken from [20].

also keeping chiral symmetry intact in the fermionic action. It has been proven that a “minimal” violation
of chiral symmetry on the lattice can be described by the Ginsparg-Wilson relation [25]:

{D,γ5}= aDγ5D . (1.10)

It may be interesting that, apart from a different constant factor on the r.h.s., this equation is satisfied
by the “blocked” (in the Renormalization Group idea) free Dirac operator. A Dirac operator satisfying
this relation in the interacting case is the Neuberger Overlap Operator [26]. Such a Dirac operator would
also satisfy exactly a variation of chiral symmetry, which tends to the proper chiral symmetry in the
continuum[27]. Other notable implementations of fermions on the lattice are Domain Wall fermions,
where chiral fermions are represented as domain walls along a fifth lattice dimension (whose finiteness
causes an explicit breaking of chiral symmetry), and Twisted mass fermions, where a theory with two
degenerate flavors of Wilson fermions is modified with a mass term which is not the identity in isospin
space. For a rather recent and brief review on the subject, the reader can refer e.g. to [28], §7 and §10.

1.3 Finite density and the sign problem

Let us start with a system where just a single quark species is present (the generalization is straightforward).
We wish to use a path integral representation of the grand canonical partition function, with µ as the
thermodynamic potential associated to quark number Q.

Z = Tr e−H−µQ, Q =
∫

d3x ψ̄(x)γ0ψ(x). (1.11)

The partition function must be even in µ , to satisfy charge conjugation symmetry. More explicitly,

Z =
∫

DADψ̄Dψ exp
{
−1

4
Fλρ Fλρ + ψ̄

[
γρ

(
∂ρ − igAρ

)
−µγ0 +m

]
ψ

}
. (1.12)
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Note that the term containing the chemical potential looks like a minimal coupling term between the
quark current and a U(1) fixed gauge field directed in the temporal direction. Using this analogy, we can
introduce the chemical potential on the lattice by multiplying all the links in the temporal direction by
e−aµ , where a is the lattice spacing 2. In (1.1), this entails the dependence on µ of the fermion determinant
Det(M).
Let us see now how this causes the infamous sign problem. In the case of zero chemical potential, the
Dirac Operator is γ5-hermitian: (

/D+m
)†

= γ5
(
/D+m

)
γ5 . (1.13)

If a chemical potential is present, we have

γ5
(
/D+m− γ0µ

)
γ5 =

(
− /D+m+ γ0µ

)
=
(
/D+m+ γ0µ

∗)†
. (1.14)

For the determinant, this implies

Det
(
/D+m− γ0µ

)
=
[
Det

(
/D+m+ γ0µ

∗)]∗ (1.15)

which means that the determinant is real if and only if µ is purely imaginary, otherwise it is in general
complex. This means that the integrand in (1.12) is complex, and the integral cannot be evaluated with
straightforward importance sampling methods. We choose instead to avoid this problem and study the
theory at imaginary chemical potential[30], and in order to recover information about the theory at real
µ we just use analytic continuation. This is justified by the fact that the lattice theory in a finite volume
has a finite number of degrees of freedom, and this means that all observables should be analytic in the
parameters of the theory3.

1.4 QCD: Center and chiral symmetry

1.4.1 The chiral transition and deconfinement

The changes expected for the properties of strongly interacting matter when it is put under extreme
conditions are the subject of vast ongoing theoretical and experimental research efforts. Various parameters
of phenomenological interest enter the description of such extreme conditions, like temperature, chemical
potentials or external background fields. Part of this research consists in the study of the QCD phase
diagram, that is in mapping the various phases of strongly interacting matter in equilibrium conditions
(with the associated phase transitions and critical points) as a function of those parameters.

At high temperature confinement and chiral symmetry breaking are expected to disappear, and QCD
is expected to be described in terms of quark and gluon effective degrees of freedom, in the so-called
quark-gluon plasma phase. Lattice QCD simulations show that, indeed, a rapid change of properties
takes place around a well defined temperature Tc. There is no compelling reason for expecting a true
phase transition, since no exact symmetry of QCD, which could possibly change its realization at Tc,
is known: chiral symmetry is exact only for vanishing quark masses, while the Z3 center symmetry is

2Implementing a non-zero chemical potential in the naive way, that is adding a term ∑x ψ̄(x)γ0ψ to the lattice action, leads to a
non renormalizable lattice theory (see, for example, [29]).

3Obviously, this becomes false in the thermodynamic limit, where real phase transitions can occur. Clearly, in general, analytic
continuation cannot be performed beyond such singularities.
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exact only in the pure gauge theory, where its spontaneous breaking is associated to deconfinement. In
fact, lattice simulations have shown that only a smooth crossover is present in the case of physical quark
masses, at a temperature Tc ∼ 155 MeV 4 [20, 31, 32, 33, 34].
The situation could be different in the presence of other external parameters. In particular, and most
importantly for what we are concerned here, the crossover could turn into a real transition for large
enough baryon chemical potential µB, starting from a critical endpoint in the T−µB plane. Such a critical
point, and the associated critical behavior around it, could have a huge impact on strong interactions
phenomenology, so that large theoretical and experimental efforts are being dedicated to investigate its
existence and locate it.

1.4.2 The phase diagram of QCD as a function of mass and imaginary chemical
potential

In the chiral and quenched limits there are two different order parameters for chiral symmetry and center
symmetry, namely the chiral condensate and the Polyakov loop respectively. At zero chemical potential,
these symmetries are both explicitly broken at finite mass: chiral symmetry is exact only at zero mass,
while center symmetry is exact only in the infinitely-heavy-quark limit.
The phase diagram at zero chemical potential, as a function of the light quark mass ml (take equal for
the up and down quarks) and the strange quark mass ms, has been studied extensively. The order of
the transition in N f = 2+ 1 QCD can be displayed as a function of light quark mass ml and the strange
quark mass ms in the so-called Columbia plot [35] (see Fig.1.2, left). An important analytical work is
[36], where the chiral transition was studied making use of an effective Lagrangian and a renormalization
group analysis. An important conclusion is that, for ml = ms = mq (that is, the N f = 3 case) the chiral
phase transition must be first order in the chiral limit 5. The expected effect of a nonzero quark mass mq,
which breaks explicitly chiral symmetry, is to weaken the 1st order chiral transition, up to the point where
it becomes second order, in the Ising 3D universality class [38]; at larger masses a crossover takes places
instead of a proper transition. At a sufficiently large value of the quark mass, the explicit violation of
center symmetry decreases in magnitude, up to the point where a second-order phase transition appears,
related to confinement. In [39] the Authors study the case of a single fermion with a large mass. Here
the universality class is the one of a 3-state Potts model, with an external magnetic field associated to one
spin direction[40] in the case of finite quark mass, thus breaking explicitly the Z3 center symmetry to Z2:
again, the second order transition is in the Ising 3D universality class. Then beyond this second order
point the transition becomes 1st order as in the SU(3) pure gauge theory [41].

The case with ms 6= ml is of course more complex. Some results obtained in the N f = 3 case, that is on
the diagonal of the Columbia plot, can be extended by continuity to the neighboring regions. There are
anyway some issues which still need to be investigated. In particular, in the ml = 0,ms = ∞ case (N f = 2)
there is not a clear-cut answer about the nature of the phase transition in the continuum limit, even if
for finite lattice spacing (Nt = 4) it has been proven to be 1st order (see [42] and references therein for
a broader view of the issue). The difficulty in studying this problem stems from the fact that when the

4This is the value obtained by defining Tc as the temperature at which the renormalized chiral condensate (defined as in Eq.2.13)
has an inflection point.

5It is interesting to note how difficult it is to verify this in lattice simulations. For a recent review of the subject, see [37] and
references therein.
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FIGURE 1.2: Left: A Possible Columbia plot at zero density. Right: a possible Columbia plot with an
additional parameter on the z axis, µ2

q . In both cases, a second order chiral transition is assumed in the
chiral limit for N f = 2, i.e. the upper left corner of the left plot. Both figures taken from [42].

quark mass goes to zero the computational cost of Montecarlo simulations increases making numerical
simulations unfeasible6.

The opposite corner of the Columbia plot (which corresponds to N f = 1) is not particularly interesting: for
N f = 1 the chiral group is only UB(1)×UA(1), and the axial UA(1) symmetry is spontaneously broken
by instantons [43, 44, 45] at zero temperature, while baryon number conservation cannot be violated:
the only possible phenomenon is a partial restoration of UA(1) at high temperature due to instanton
suppression [36].

In the case of nonzero chemical potential, the phase diagram acquires another axis (see Fig.1.2, right)
It has been noted empirically that the strength of the chiral transition is increased in the case where a
nonzero imaginary chemical potential µI,q is present, i.e. that the 1st order zone around the ms = ml = 0
corner expands in this case. This suggests that, for large enough imaginary chemical potential µI,q, even
in the N f = 2 case a first order transition may take place in the chiral limit, and at the endpoint of this
first order line a second order transition will take place for ml = ml,crit.(µ

2
I,q).

As a remark to the reader, let us stress that the topic touched here has been developed in a vast literature,
and is an active field of research. For a general review including the latest development see e.g. [46] and
references therein.

6 This is due to the computational cost of the inversion of the Dirac Operator, which may depend (even greatly) on the algorithm
used.
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1.4.3 Center symmetry and the fermion determinant

The gauge part of the QCD action is invariant under a transformation that multiplies all the temporal links
in a time slice by the same element of the center of SU(3) 7, which consist of the Z3 group formed by
the three complex roots of 1. Notice that, under such a center transformation of the links, the Polyakov
loop P [47, 48], defined as

P≡ 1
L3 〈∑

~x
Tr

Nτ

∏
τ=1

U4(~x,τ)〉 ≡
1
L3 ∑

~x
〈P(~x)〉, (1.16)

will not be invariant unless it is zero. So, if center symmetry is intact, we expect the Polyakov loop to be
zero.
The Polyakov loop has an interesting physical interpretation. Indeed,

P ∝ e−Fqτ , (1.17)

where F(q) is the free energy of the system associated to the presence of an infinitely heavy quark. This
can be justified computing the partition function of an infinitely heavy quark coupled to a dynamical
gauge field (see [49], and [9], §20). When the Polyakov loop is zero, the free energy of an isolated heavy
quark is infinite so all quarks are confined. If instead the Polyakov loop is nonzero, the free energy of a
heavy quark is finite and isolated quarks are present: this signals quark deconfinement.
Montecarlo studies have extensively evidenced that at large T the value of P becomes non zero, which
means that center symmetry is broken. In the Yang-Mills SU(N) theory, there are N possible ground
states of equal energy connected by center transformations. This means that in the broken phase we have
P ∝ exp

( 2πi
N k
)
, with integer k.

The situation is different when dynamical fermions are included in the theory. From the Lagrangian
point of view, center symmetry is broken explicitly by the presence of the fermion determinant. For zero
chemical potential, this causes the Polyakov loop to be a real, positive value.
This has also an interesting physical interpretation. The Polyakov loop correlator

Γ(~y) =
1
L3 〈∑

~x
P(~x)P†(~x+~y)〉 (1.18)

can be put in relation, with a construction similar to the one used for the Polyakov Loop, to the potential
energy of a quark-antiquark couple; indeed (see, e.g., [9], §20)

exp(−Vq̄q(y)) =
〈P(0)P†(~y)〉
|〈P〉|2

. (1.19)

If |P| is nonzero, cluster property entails that, for |y| → ∞, we have 〈P(0)P†(~y)〉 → |〈P〉|2. This means
that Vq̄q → const at large distance, instead of the confining Vq̄q σr (where σ is the string tension): this
can be put in relation to the fact that, in a theory with dynamical fermions, the string breaks thanks to the
polarization of the medium.

Some aspects of the effect of fermions on the Polyakov loop have been studied in [50]. In particular, the
authors studied the effect of an imaginary chemical potential coupled to the quark number. As already

7The center of a group G is defined as the subgroup of the elements of G which commute with all the elements of G. For SU(N),

in the fundamental representation, it is basically C =
{

eiλ 1 : Nλ = 2kπ

}
.
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stated in Section 1.3, for a theory with a single quark field the Euclidean partition function becomes (in
the continuum)

Z(µI) = Tr e−H−µQ =
∫

DψDψ̄DAµ exp
(
−
∫

d4x
[

ψ̄(γµ Dµ −m)ψ− 1
4

F2− iµIψ
†
ψ

])
, (1.20)

where µI is the imaginary part of the chemical potential, and Dµ is the covariant derivative ∂µ − iAµ . A
key observation is that the introduction of µI amounts to the introduction of a real nonzero Abelian A4,
which cannot be gauged to zero because of the boundary conditions on in the Euclidean time direction.
Alternatively, the introduction of µI can be seen just as a change in the boundary conditions:

ψ(~x,0) =−exp(iµIτ)ψ(~x,τ) . (1.21)

which again evidences a 2π periodicity in µI . Here τ represents the Euclidean time extension of the
lattice. Notice that µIτ is equal to the dimensionless ratio µI/T , where T denotes the temperature.

As evidenced in [50], if the system contains single quark states, the partition function has a 2π periodicity
in µI , but if only colorless states are present, where the quark number Q is a multiple of the number of
colors N, the partition function should have a 2π/N periodicity. This is evident when looking at Eq.(1.20).
In the same work, starting from the results in [51, 52, 53], the Authors compute an effective potential for
the Polyakov loop for the high temperature case.
It is possible to choose a gauge where A4 has only diagonal components8. In such a gauge, we have that

P(~x) = Tr eiφ(~x)τ (1.22)

with

φ(~x) = diag(φ1(~x), . . . ,φN(~x)), with
N

∑
i=1

φi(~x) = 0 mod 2π , (1.23)

and ∂φi/∂x4 = 0. The phases φi(~x) can be written as a constant background field φi plus a perturbation
δφi(~x). An effective potential can be calculated for the constant field φi, which consists of two contributions:
the one coming from the gauge part of the action, and the one coming from the fermionic part 9 of the
action:

V glu
e f f (φ1, . . . ,φN) =

1
24

π
2T 4

N

∑
i, j=1

{[(
φi−φ j

πT

)
mod 2

−1
]2

−1

}2

, (1.24)

V f erm
e f f (φ1, . . . ,φN) =−

1
12

π
2T 4

N

∑
i=1

{[(
φi

πT
+1
)

mod 2
−1
]2

−1

}2

. (1.25)

The total potential will be the sum of the two contributions, with the fermionic one depending also on µI :

Ve f f (φ1, . . . ,φN ,µI) =V glu
e f f (φ1, . . . ,φN)+V f erm

e f f (φ1 +µI , . . . ,φN +µI) . (1.26)

The minima of V glu
e f f , considering the constraint ∑

N
i=1 φi/T = 0 mod 2π , are when all φi are equal to each

other and φi/T = 2πm
N ; moreover by making use of Lagrange multipliers, it can be also straightforwardly

proven that V f erm
e f f is minimized locally by such solutions: this implies that there are N possible local

8Of course, due to boundary conditions, it is not possible to chose a gauge where A4 is zero, but it is possible to make so that is
is constant in x4 and diagonal.

9 The formula obtained for V f erm
e f f is in principle valid only for massless fermions. It can be argued though that quark mass

should not be relevant in the high temperature limit (T >> m), and this can be explicitly checked in the computation of V f erm
e f f (see

[52]).
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FIGURE 1.3: The effective potential for the three different center sector of SU(3) as a function of
θ = µI/T (differentiated by line styles). Figure taken from [50].

minima, one for each center sector. The one that will be chosen (the absolute minimum) will depend on
µI .
Considering the solution φi/T = 2πm

N , the minimum of Ve f f as a function of µI is

Ve f f (φi/T =
2πm

N
) =− 1

12
π

2T 4N
(

1− (µI−2πmT/N)2

π2T 2

)2

,−πT < µI < πT . (1.27)

From Eq.(1.27) it is clear that for

µI =
(2m+1)πT

N
(1.28)

the “energy” associated to two center sectors is the same, while the derivative of Ve f f with respect to µI

has a discontinuity, so we expect a first order transition driven by µI , the so called Roberge-Weiss phase
transition. For clarity, in Fig.1.3 the effective potential is plotted for the different center sectors.

This analysis extends trivially to the case with N f different fermions with equal chemical potential µq:
while the presence of the fermion determinant explicitly breaks center symmetry at zero density, when
µq = i (2m+1)πT

N there is a residual Z2 symmetry for two possible values of the Polyakov loop, namely the
two elements of the center which are the closest to eiµq/T .

The same computation has been also easily extended to the case µl 6= µs (i.e. µs = 0) in Section 3.2,
showing that in this case the Roberge-Weiss phase transition at extremely high temperature happens at a
different value of µl ; the lattice data obtained confirm this picture. The most important effect is that the
Roberge-Weiss-like transition happens at a larger value of the imaginary chemical potential, and this fact
may be relevant for the validity of analytic continuation. In the following parts of Chapter 3 we will only
study the case where the chemical potentials for all quarks are purely imaginary and equal to iµq,I .

In [50] the T = 0 case is also studied, making use of the strong coupling expansion of the lattice field
theory and of the loop expansion of the fermionic determinant. While the grounds of the computation
in this case are less solid, it may be worth noting that these results hint that the expected value of P is
a smooth function of µ/T instead, thus suggesting that no transitions take place at low T : this scenario
suggests the existence of an endpoint at finite temperature, which is confirmed by lattice studies.
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FIGURE 1.4: Depiction of the T − µI phase diagram in the case in which the Roberge-Weiss transition
is of the second order kind (left) or of the first order kind (right). Figure taken and modified from [54].

If we look at the Roberge-Weiss transition in the T −µq,I phase diagram, a number of questions naturally
arise. An important issue is the relation between the Roberge Weiss and the the other transitions or
crossovers, in particular the relation with the critical line of QCD (the topic of the first part of the present
Thesis).
As far as the order of the Roberge-Weiss transition at the endpoint is concerned, we expect it to depend
on the quark masses. When the deconfinement/chiral restoration transition is a first order transition for
µI/T ∼ π/3, the endpoint of the Roberge-Weiss transition line is actually a triple point, when instead
for µI/T ∼ π/3 we have a deconfinement/chiral restoration crossover the Roberge-Weiss transition at
the endpoint will be of the second order kind (see Fig. 1.4 for a depiction of the two cases). These two
situations are separated by the case where the Roberge-Weiss endpoint is a tricritical point. The general
expectation about the order of the deconfinement transition at µI/T ∼ π/3 can be seen from Fig.(1.2,
right), on the bottom plane. That figure suggests that in the low-masses corner, in the high-masses corner
and in the chiral limit of the N f = 2 case the Roberge-Weiss transition will be first order, while it should
be second order for intermediate masses and in the chiral limit of the N f = 1 case.

1.5 General Remarks on the numerical setup

The results of this work have been carried out by making use of an improved action, with the tree-level
Symanzik improvement for the gauge part [5, 6] and twice-stout staggered fermions [17]. The partition
function reads

Z =
∫

DU e−SE
g ∏
f=u,d,s

det
(

M f
st[U,µ f ,I ]

)1/4
. (1.29)

For the tree-level Symanzik improved gauge action, we have

SE
g = ∑

n,µ 6=ν

(
5
6

W 1×1
µ,ν (n)− 1

12
W 1×2

µ,ν (n)
)

, (1.30)
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where the product of 6 links around planar 1×2 rectangles are also taken into account. For the fermionic
part, the fermion matrix for a quark f is defined as

(M f
st)i, j = am f δi, j +

4

∑
ν=1

ηi;ν

2

[
eiaµ f ,Iδν ,4U (2)

i;ν
δi, j−ν̂ e−iaµ f ,Iδν ,4U (2)†

i−ν̂ ;ν
δi, j+ν̂

]
. (1.31)

where:

• i, j represent lattice sites;

• ηi,ν represent the staggered phases:

ηi,ν = (−1)∑
ν−1
µ=1 iµ ; (1.32)

• U (2)
i;ν

represent the twice-stouted gauge links, which are obtained from the standard gauge links
(the ones that enter Eq. 1.30) by the stouting procedure. In the isotropic formulation, stouted
links are obtained from the original links by moving towards the local minimum of the action,
integrating the action gradient on the field manifold in a first-order Euler fashion. The integration
step size is proportional to the so-called stout strength ρ , which in our case is set to 0.15 (see [17],
Eq. 1). An essential feature of the stout formulation is that the stouted links entering the Dirac
operator are an analytic function of the standard links. This allows to compute derivatives of the
fermion action with respect to the standard links by making use of the chain rule for differentiation,
a task necessary in the molecular dynamics phase of the Montecarlo algorithm. More details on
the stouting procedure will be discussed in Appendix A.

• µ f ,I represent the imaginary part of the chemical potential associated to quark f .

1.5.1 Line of Constant physics and scale setting

The action we use has 3 dimensionless parameters: the light quark mass aml , the strange quark mass ams

and the inverse square coupling β . In order to study physical QCD, we need to tune the parameters in the
theory so that the values of known observables measured on the lattice (which can only be dimensionless
quantities) match the physical values. In particular, quark masses must be tuned as a function of β . A
part of this procedure is also scale setting, that is the mapping of the lattice spacing a in physical unit as a
function of β and the quark masses. Through dimensional analysis, the appropriate powers of the lattice
spacing in physical units can be recovered that represent the proportionality factors needed to convert
dimensionless lattice measurements into physical values.

Scale setting and quark mass tuning has been done with a variety of techniques in [32, 55, 56, 57]. In
particular, and for what concerns our work, in [32, 55] the quark masses are tuned so that the ratios
mK/ fK and mK/mπ (where mK and fK are the mass and the decay constant of the kaon) measured on
T = 0 lattices are equal to their physical values10: fπ ' 131 MeV, mπ ' 134 MeV, and mK ' 498 MeV.
For the general scale setting (the determination of a as a function of β ), fK ' 160 MeV has been used 11.
This tuning procedure yields, for the action we use, the values of the light and strange bare quark masses
shown in Fig.(1.5, left) as a function of β , which are in a ratio ms/ml ' 28.15. The obtained value of

10 We here refer to the lightest staggered kaon and the lightest staggered pion.
11This is the value reported in the 2008 Particle Data Book, which has actually changed by some percent in these years.
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FIGURE 1.5: Left: The bare quark masses (strange and light quarks) as a function of the inverse coupling
β on the line of constant physics for the action of our choice. Right: Value of the temperature 1/(aNτ )
for various choices of the Euclidean time side, as a function of β for the action of our choice. Curves have
been obtained with a spline interpolation of data coming from [55] and [56]. Systematic errors deriving

from the scale setting procedure are not shown, and are of the order of 2-3%.

the lattice spacing a is related to the temperature by the Euclidean time size of the lattice Nt . In Fig.(1.5,
right) the temperature as a funcion of β is reported for some values of Nt .

Notice that the scale setting procedure has a degree of arbitrariness: for example, it is possible to set the
general scale making use of either mπ or mK , or fK . These three choices give slightly different results,
which deviate less than 2-3% from the average: this can be interpreted as the systematic uncertainty in
the determination of the lattice spacing a, which propagates to all dimensionful quantities.



Chapter 2

The critical line of QCD and analytic
continuation

2.1 Phenomenology of the QCD phase diagram

The most prominent features of QCD are confinement and chiral symmetry breaking. Confinement, in
particular, entails that baryons and mesons are the relevant degrees of freedom at low temperatures. It
is expected, because of asymptotic freedom, that at high temperature and/or at high baryon chemical
potential strongly interacting matter will turn into a phase where quarks and gluons are the relevant
degrees of freedom instead1.

From the theoretical point of view, the T − µB phase diagram of QCD has been studied ab initio on
the lattice and with effective models. Amongst the effective models, we cite the Nambu-Jona-Lasinio
model [59] (see also [60] for a review), which is an effective model for quarks with four-fermion,
nonrenormalizable vertices which respect chiral symmetry (so that the chiral-symmetry breaking effect
is in the mass term only). In the original formulation2 gluons are absent and there is no confinement. A
possible extension of the model is the Polyakov-loop extended NJL model [61, 62, 63], or PNJL, where
an external background field A0 is introduced in the Dirac term to mimic the effect of the gluon fields,
plus an effective potential U(l, l̄) which is a function of the Polyakov loop l.

Moreover, the field correlator method [64] has been also applied to the study of the Equation of state
at µ 6= 0 [65, 66], which is relevant for the interiors of neutron stars (see, e.g., [67]). Unfortunately,
a problem with these effective approaches is that, while their predictive power can be tested against
results coming from ab-initio computations, it is not clear whether they are a valid substitute for ab-initio
methods when the latter fail to give reliable predictions.

The behaviour of strongly interacting matter at finite temperature, at zero density, has been widely studied
via lattice simulations. The phase diagram can be studied by making use of two orders parameters, namely
the Polyakov loop for confinement, and the chiral condensate for the chiral properties.

1 This does not mean that physics is completely perturbative, as discussed in [58]: perturbation theory breaks down at a certain
order gn (depending on the observable), because all terms with higher order contribute anyway to that order. This is due to the fact
that they are infrared divergent, and must be regularized with a cutoff which behaves as g2.

2 The original formulation [59] dates to well before QCD was conceived, and was initially involving nucleons instead of quarks.

14
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In the physical theory, the mass of the quark is neither infinite, nor zero: this breaks explicitly the SU(3)
center symmetry and chiral symmetry respectively. This causes both the Polyakov loop and the chiral
condensate to be approximate order parameters, rather than proper ones. This can be put in relation to
the fact that at physical quark masses, both the de-confinement and the chiral “transitions” are smooth
crossovers. Of course, this entails that the definition of the critical temperature is, up to a certain level,
arbitrary. Modulo these ambiguities, the locations of the two transitions are compatible, being around
155 MeV [32] for the chiral transition. We will refer to both pseudo-transitions as “the crossover” or “the
transition”.
The same situation is expected to hold even for finite density, at least at small density. From the lattice, an
early work with multi-parameter reweighting but no continuum limit [68] suggested a possible location
for a critical endpoint, but on the existence of a critical endpoint there is no general consensus: for
example, more recent studies [69, 70] seem to exclude it.

Particularly important is what happens at zero temperature with increasing µ . In particular, density is
expected to remain zero until the baryon chemical potential reaches almost the nucleon mass3, where
it jumps to the density of nuclear matter. For higher values of the chemical potential, a µB-driven
deconfinement transition at zero temperature is possible. With an analysis based on renormalization
group and universality arguments [71] is has been hinted that, for physical quark masses, it should be
of the first order type4. At high enough densities and low enough temperatures, nuclear matter should
become a color superconductor, in the so-called “color-flavor-locked” phase [72, 73], with a number of
possible variants (like the “crystal color superconductor” [74]). This could be mostly relevant for the
interior of neutron stars. In Fig.(2.1) a depiction of a possible µB−T phase diagram is shown.

Heavy ion collision experiments can also yield important information about the phase diagram. In the
collision, a fireball of quark-gluon plasma is produced. After a thermalization phase, the fireball reaches
local thermodynamic equilibrium, and expands and cools following a hydrodynamic evolution. When the
temperature decreases enough, hadrons and mesons form. At some time after that, the “chemical” nature
of the particles stops changing: the corresponding point in the phase diagram is called the “chemical
freeze-out point” [75, 76, 77, 78, 79, 80, 81, 82, 83]. In this picture, the chemical freeze-out point is at a
temperature which is lower than the confinement (pseudo) transition.
In this scheme, the values of the temperature and the chemical potential at the transition can be obtained
by looking at the chemical composition of the system. Indeed, in statistical models that assume the
thermalization of the quark-gluon plasma, the abundances of the various baryon species are functions of
the temperature and the chemical potential [82]. These estimates are also significantly affected by other
phenomena, like e.g. pion exchange between already formed hadrons [84].

The collection of the points of chemical freeze-out in the phase diagram is called the freeze-out curve.
The collection of (µ,T (µ)) points at which the QCD crossover happens is called the (pseudo) critical line
(it of course depends on the definition of (pseudo-)critical temperature Tc(µ), which is slightly arbitrary),
and from what has just been said, the freeze-out curve should lie below the critical line. Due to the
symmetry of QCD under charge conjugation, we expect Tc(µ) to be even in µ , thus for small µ we can
assume

Tc(µB)

Tc(0)
= 1−κ

(
µB

Tc(0)

)2

+O(µ4
B) (2.1)

3 That is, the nucleon mass minus the binding energy per nucleon in nuclear matter.
4 The method used is to check for the existence of a infrared stable (IRS) fixed point, which is required for the transition to be

of the second order kind. Lack of such a IRS fixed point entails a first order transition, with the usual caveats: there might be a
nonperturbative IRS fixed point which is not detected by the analysis of the beta function, and away from the fixed point the short
range interactions could cause a first order transition.
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FIGURE 2.1: A possible phase diagram for QCD. In particular, on the existence of the critical point there
is still not a general consensus (picture taken and modified from [73]).

where µB is the baryon chemical potential and κ is the curvature of the critical line of QCD. Our
investigation will focus on κ .

2.2 Heavy Ion collision Experiments

In the following, a brief review of Heavy Ion collision physics is presented, loosely based on the introduction
given in [85]. The topic is vast and is an active field of research, so the little resume presented here might
not be up to date.

2.2.1 Theoretical description of Heavy Ion collision

The commonly accepted description of heavy ion collision processes is usually divided in three phases: a
first, pre-thermalization phase, when so-called hard processes occur; a second, locally thermalized phase
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FIGURE 2.2: Stages of a heavy ion collision and a choice of the models used to describe it (Figure from
[86]).

which can be described with hydrodynamic models, and a subsequent freeze-out phase, where hadrons
are formed and interactions stop. In Fig.(2.2) a depiction of the stages of Heavy Ion Collisions is
presented.

The geometric aspects of the impact (e.g. the number of nucleons taking part Npart and the impact
parameter b, the differential cross section ∂σ/∂b et cetera) can be described by making use of Glauber
models [87].

The behaviour of the system at the instant of the collision is described in terms of a Color Glass Condensate
(CGC). In such situation, it is possible to separate the scales between the fast, high Bjorken-x partons and
the slow, small Bjorken-x ones. In a Born-Oppenheimer scale separation scheme, the high x partons
can be considered the classical sources of a Yang-Mills field which represents the low x partons 5. This
scheme must be intended as an effective method to explain the dynamics of soft gluons in Deep Inelastic
Scattering, justified by the fact that occupation numbers are high (for more details see, e.g., [86, 88]).
The transition from the CGC to the thermalized Quark Gluon Plasma is described in terms of the so
called “Glasma” [89], which is still governed by the classical Yang-Mills equation. Numerical studies of
“classical” glasma dynamics show that this phase is extremely unstable due to nonlinear interactions and
strong event-by-event fluctuations in momentum anisotropy are generated. While quantum fluctuations
might be parametrically suppressed, next-to-leading-order effects may actually be crucial for an accurate
description of the system.

It is believed that after this phase, the system becomes a quark-gluon plasma that can still be treated
classically through relativistic viscous hydrodynamics (see, e.g. [90]). The underlying assumptions
that justify the hydrodynamic approach are that the system is at local thermodynamic equilibrium, and
that the mean free path is smaller than the size of the system. Very important ingredients entering the
hydrodynamic description are, e.g. the Equation of State and the functional dependence of viscosity η

on thermodynamic quantities (usually its ratio with entropy density η/s is considered).
When the quark-gluon plasma temperature decreases below a certain point, hadrons are formed. The
statistical properties of the hadronization process are usually taken care of making use of the Cooper-Frye

5In this case, the high x partons represent the slow modes (the atomic nuclei in the original context of the Born-Oppenheimer
approximation), while the low x partons represent the fast modes (the electrons in the original B.O. scheme).
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FIGURE 2.3: Center of mass energies and expected run times for heavy Ion collision physics (Figure
from [85]).

prescriptions [91]. Following this phase, subsequent hadron-hadron interaction can still significantly
modify the hadrochemical compositions of the collision products [84].
Numerical tools have been created to describe the space-time evolution of the system from the beginning
of the collision to the eventual hadronization, with different approaches and taking care of the different
phases of the collision with different formalisms (e.g. [90, 92]).

2.2.2 Experiments probing the phase diagram of QCD

Heavy ion collision experiments have been performed on various machines, in colliders (RHIC, and LHC
at higher center-of-mass energies) and fixed-target configurations (SPS). In general, the higher the

√
s per

nucleon in the collision, the smaller the chemical potential at hadronization. This can be explained by the
fact that the higher

√
s, the more the product of the collision will be spread in rapidity. So, for a given

rapidity interval - let’s say, at central rapidity - the number of observed particles will decrease as
√

s

increases. For the future, machines with lower
√

s have been devised in order to better study the high-µB

regions of the phase diagram (see Fig. 2.3).
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There are two classes of possible experimental signatures of the quark gluon plasma [93]: evidences for
bulk behaviour in agreement with QGP formation and evidences for changes in the properties of particles
traversing it (e.g., heavy quarks, quarkonia systems and jets).

A striking feature of RHIC data were the strong event-by-event anisotropies in momentum distribution.
The main effect of these anisotropies is described in in terms of the so-called elliptic flow v2, which is
the first non-constant term in the Fourier expansion of the distribution of produced particles:

v2 = 〈cos[2(φ −ψRP)]〉 , (2.2)

where φ −ψRP is the angle between the impulse of the particle and the reaction plane defined by the
impact parameter and the beam direction. Higher harmonics have also been measured, and compared
with hydrodynamics simulations with different level of success[92]. The explanation for a nonzero v2 is
natural in an hydrodynamic description of the system: the elongated shape of the overlap region of the
two nuclei in a non-central collision causes a larger pressure gradient along the reaction plane, which
consequently causes a stronger flow in this direction [94]. This is usually seen as the most important
experimental evidence of a thermalized quark gluon plasma.

Another class of observables in heavy ion collisions is related to the so-called hard probes, consisting of
quarkonium systems and “open heavy flavor” [95]. Due to their mass, these particles can be produced
only at the early stages of the collision, and propagate in the medium which evolves thereafter; this
dynamics is usually described with transport calculations based on the Boltzmann equation. A possible
sign for the onset of deconfinement is the suppression of charmonium [96]: in the plasma, color screening
prevents the binding of the q̄q pairs, when the Debye mass (which is approximately proportional to T ) is
larger than the inverse of typical radius of the q̄q system. Experimentally, suppression is quantified with
RAA, the ratio between the measured yield in nucleus-nucleus collision and the yield in proton-proton
collision multiplied by the number of expected nucleon-nucleon collisions in the nucleus-nucleus collision.
The situation is more complicated than imagined at first, because there can be also mechanisms which
regenerate charmonium, like q̄q recombination (an effect that grows with energy), as well as other
mechanisms that suppress it (e.g. cold nuclear matter [CNM] effects, like nuclear absorption). The
dynamics seem to be cleaner for bottomonium systems, whose signal should be less affected by these
phenomena. At LHC, given the increase in collision energy, it was finally possible to study these
observables.
Also, jets can be considered hard probes. A suppression of jets (called jet quenching) was expected and
has as well been observed, in agreement with some theoretical estimates [85]. Other information comes
also from photon and dilepton production (at the beginning of the collision, or thermally, in the QGP).

Heavy ion collisions can also provide data more specifically on the transition between QGP and hadronic
matter, through hadrochemistry studies. Assuming hadrochemical equilibrium at hadronization, it is
possible to calculate the statistical abundances of different hadron species as a function of, e.g., T and
µB. Conversely, from hadron abundances it is possible to estimate T and µB at the point of chemical
freeze-out [82]. The subsequent interactions between hadrons can, however, have a significant impact on
the results and must be taken into account [84].
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2.3 Lattice QCD and Analytic Continuation

As already discussed, a direct lattice determination of Tc at µB 6= 0 is presently hindered by the well
known sign problem, but various methods have been proposed so far to partially circumvent it and to
obtain reliable results in the regime of small µB. A natural parametrization of Tc(µB) for small chemical
potentials, which exploits the symmetry under charge conjugation at µB = 0 and assumes analyticity
around this point is 6

Tc(µB)

Tc
= 1−κ

(
µB

Tc

)2

+ O(µ4
B) , (2.3)

where the coefficient κ defines the curvature of the pseudo-critical line Tc(µB). The curvature can be
obtained in lattice QCD simulations in various ways.

In the so-called Taylor expansion method [69, 97, 98, 99, 100]) it is recovered by suitable combinations
of expectation values computed at µB = 0. Another option is determining the pseudo-critical line for
purely imaginary values of µB, for which numerical simulations are feasible since the sign problem is
absent, then fixing the behavior for small and real µB by analytic continuation7. Reweighting techniques
have also been used, in which the oscillating complex behavior is shifted from the path integral measure
to the physical observables [68, 116], and also approaches via a reconstruction of the canonical partition
function [117, 118].

A natural candidate for a comparison with QCD predictions is the chemical freeze-out curve in the T−µB

plane, determined by heavy ion collision experiments, which is obtained so as to describe the particle
multiplicities according to a thermal-statistical model (see Section 2.2 for context). In general, one can
only assume that chemical freeze-out takes place after re-hadronization, i.e. that the freeze-out curve lies
below the pseudo-critical line in the T−µB plane. However, as a working hypothesis it is also reasonable
to assume that chemical freeze-out is reached shortly after re-hadronization, so that the two lines may lie
close to each other. Actually, a comparison with early lattice determinations of Tc(µB) does not show a
good agreement. In particular, most early lattice determinations of κ turn out be a factor 2-3 smaller than
the corresponding curvature of the freeze-out curve [82], even if a recent reanalysis of experimental data,
which takes into account inelastic collisions after freeze-out, seems to bring to a significant reduction of
such a discrepancy [84].

On the side of lattice QCD simulations, a complete control over all possible systematics is also desirable.
That requires a proper continuum extrapolation and a comparison among different methods adopted to
partially overcome the sign problem. Most determinations available at or around the physical point
(i.e. by adopting quark masses tuned so as to yield a physical hadron spectrum) have been obtained by
the Taylor expansion method, see Ref. [98] (p4-improved action for staggered quarks) and Refs. [69, 99]
(stout-smeared improved action for staggered quarks). A recent determination [113, 115], obtained by the
method of analytic continuation and adopting a HISQ/tree action discretization of N f = 2+1 QCD, has
provided a value of the curvature which is somewhat larger with respect to previous lattice determinations.

Apart from possible systematics lying behind either the Taylor expansion method or analytic continuation,
one should consider other standard sources of systematic errors, among which the different possible
definitions of Tc, the approach to the thermodynamical limit (finite size effects), to the continuum limit
and to the physical point, and the different setup of chemical potentials, µu, µd and µs, coupled respectively

6We note that a possible ambiguity in the denominator of the quadratic term, i.e. whether we take µB/Tc(µB) or µB/Tc(0) as an
expansion variable, is irrelevant as long as just the quadratic term is considered, since it only affects higher order terms.

7 As a possible list of references see, e.g., [101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115].
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to the up, down and strange quark numbers. For instance, the choice in Ref. [113] has been to fix them
to equal values (µu = µd = µs = µB/3), while in previous determinations the choice has typically been
µu = µd = µB/3 and µs = 0, which is thought to better reproduce the thermal medium in accordance with
the initial conditions of heavy ion collisions, which correspond to strangeness neutrality8.

In this work we have considered both the case µs = 0 and µs 6= 0 and have monitored two different
physical quantities, namely the renormalized chiral condensate and its susceptibility, in order to locate
the pseudo-critical temperature for different values of the chemical potentials.

Various purposes have been accomplished in this way:

1. we compared determinations of the curvature obtained by different methods but with the same
lattice discretization [69];

2. we compared determinations of the curvature obtained by the same method (analytic continuation)
but with different discretizations [113, 115] (HISQ vs stout smeared staggered quarks) 9;

3. we studied the effects on the critical line of the inclusion of a strange quark chemical potential. In
fact, the setup with µs = µl is the same studied in [113, 115];

4. making use of the data from lattices with aspect ratio Ns/Nt = 4, we obtained a continuum extrapolated
value of κ , using two different procedures in order to assess the systematics uncertainties in the
continuum extrapolation procedure. As a byproduct of this analysis, the strength of the transition
as a function of µB can also be assessed: this information is relevant to the possible existence of a
critical endpoint in the T −µB plane.

The following sections are organized as follows: in Section 2.4 we elaborate on the relations between the
chemical potentials, describe the observables chosen to locate Tc and their renormalization; in Section 2.5
we describe the method of analytic continuation, with a focus on the possible differences related to
the inclusion (or non inclusion) of a strange chemical potential µs, which stem from differences in
the corresponding phase diagrams at imaginary chemical potentials. In Section 2.6 we present our
numerical results, which are compared to previous determinations in Section 2.8, where we also briefly
review different methods to determine κ adopted in the literature. Finally, in Section 2.9, we draw our
conclusions for this part of the Thesis.

2.4 Numerical setup and observables

Using the action described in Section 1.5, we performed simulations at finite temperature around the
transition temperature, using lattices with temporal extensions Nt = 6,8,10 and 12. At fixed Nt , the
temperature T = 1/(aNt) of the system was changed by varying the value of the bare coupling constant
β . The bare quark masses ms and ml were accordingly rescaled with β , in order to move on a line of
constant physics, with mπ ' 135MeV and ms/ml = 28.15; this line is determined by a spline interpolation
of the values reported in Refs. [55, 57].

8 The issue of strangeness neutrality is actually more complex and has been investigated in [114].
9At the time of writing the present Thesis, a work using the same lattice action was published with results compatible with the

ones obtained here [114].
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2.4.1 Setup of chemical potentials

For N f = 2+ 1 QCD one can consider, in general, three independent chemical potentials, µu,µd and
µs, coupled respectively to Nu,Nd and Ns, i.e. the number of up, down and strange quarks. Different
conventions can be adopted: for instance it is usual to make reference to the conserved charges B, Q and
S (baryon number, electric charge and strangeness) and to the chemical potentials coupled to them, µB,
µQ and µS. The conserved charges are related to the quark numbers by the well known relations

B = (Nu +Nd +Ns)/3

Q = (2Nu−Nd−Ns)/3 (2.4)

S = −Ns

from which the equalities involving the chemical potentials can be deduced

µu = µB/3+2µQ/3

µd = µB/3−µQ/3 (2.5)

µs = µB/3−µQ/3−µS .

In the following we make reference to the convention in terms of µu,µd and µs, and translate to the other
convention when necessary (e.g., to extract κ given in Eq. (2.3)). The lattice action used and the details
have been described in 1.5.

The purpose of our study is to determine the dependence of the pseudocritical temperature Tc on the
baryon chemical potential (which is given by µB = µu +2µd), in a setup of chemical potentials which is
as close as possible to the thermal equilibrium conditions created in heavy ion collisions. We thus have
to require to S = 0 and Q = rB, where r is the number of protons divided by the number of nucleons of
the colliding ions, r ≡ Z/A≈ 0.4 typically.

These requirements can be translated into relations between µB, µS and µQ, which at the lowest order in
µB read µQ ' q1(T )µB and µS ' s1(T )µB, the coefficients q1(T ) and s1(T ) being related to derivatives
of the free energy density [119, 120]. Let us consider as an example the strangeness neutrality condition:
in a gas of non-interacting fermions it would imply µs = 0 but in QCD, due to interactions, the mixed
derivatives of the free energy density with respect to µs and µu,µd are non-vanishing, so that one needs
a non-zero µs to ensure S = 0. Early lattice investigations [119, 120] showed that, for T ∼ 155MeV,
the constraints on charge and strangeness imply s1 ' 0.25 and q1 ' −0.025. With a precision of a few
percent, around the transition at vanishing density, we thus have µl ≡ µu = µd , µl ' µB/3 and µs ' µl/4.

At the time of writing of this Thesis, a more recent investigation of the issue of strangeness neutrality
has appeared[114], which is in good agreement with earlier results, especially for small baryon chemical
potential (see Figure 2.4).

Our determination of the curvature κ has been obtained setting µs = 0, which is close to the conditions
described above. To quantify the impact of µs we have considered also the case µs = µl , in order to obtain
an estimate about the effect of a non-zero µs in a range which covers the equilibrium conditions created
in heavy ion collisions.
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FIGURE 2.4: The value of the imaginary strangeness chemical potential µ I
S that realizes strangeness

neutrality, as a function of T and the baryon chemical potential µ I
B. Figure from [114].

2.4.2 Observables on the Lattice, Renormalization and location of Tc(µB)

In the absence of a true phase transition, the determination of the pseudo-critical line may depend on the
physical observable chosen to locate it. On the other hand, chiral symmetry restoration is the leading
phenomenon around Tc, with the light chiral condensate becoming an exact order parameter in limit of
zero light quark masses. Therefore in the following Tc(µB) will be determined by monitoring the chiral
properties of the system.

The chiral condensate of the flavor f is defined as

〈ψ̄ψ〉 f =
T
V

∂ logZ
∂m f

, (2.6)

where V is the spatial volume. Since in our simulations the two light quarks are degenerate with mass
ml ≡ mu = md , it is convenient to introduce the light quark condensate:

〈ψ̄ψ〉l =
T
V

∂ logZ
∂ml

= 〈ūu〉+ 〈d̄d〉 , (2.7)

which will be renormalized by adopting the prescription introduced in Ref. [121]:

〈ψ̄ψ〉rl (T )≡

[
〈ψ̄ψ〉l− 2ml

ms
〈s̄s〉
]
(T )[

〈ψ̄ψ〉l− 2ml
ms
〈s̄s〉
]
(T = 0)

, (2.8)

where ms is the bare strange quark mass.
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The light quarks chiral susceptibility is given by (Ml is the Dirac operator corresponding to a single light
flavor)

χψ̄ψ =
∂ 〈ψ̄ψ〉l

∂ml
= χ

disc
ψ̄ψ +χ

conn
ψ̄ψ (2.9)

χ
disc
ψ̄ψ ≡ T

V

(
Nl

4

)2 [
〈(Tr M−1

l )2〉−〈Tr M−1
l 〉

2] (2.10)

χ
conn
ψ̄ψ ≡ −T

V
Nl

4
〈Tr M−2

l 〉 . (2.11)

In this expression Nl is the number of degenerate light quarks, that in our case is fixed to Nl = 2. Traces
are computed by noisy estimators, with 8 random vectors for each flavor. The renormalization of the
chiral susceptibility is performed by first subtracting the T = 0 contribution (thus removing the additive
renormalization) and then multiplying the result by the square of the bare light quark mass to fix the
multiplicative UV divergence [55]:

χ
r
ψ̄ψ = m2

l
[
χψ̄ψ(T )−χψ̄ψ(T = 0)

]
. (2.12)

All the T = 0 quantities have been measured on a symmetric Nt = Ns = 32 lattice or on a Nt = Ns = 48
(see Section 2.7).

The renormalization prescriptions Eqs. (2.8)-(2.12) are not the only available choices: other approaches
exist in the literature (see e.g. Refs. [69, 98]) and in the following sections we will also investigate the
dependence of the results on the different renormalization prescriptions adopted. As an alternative, we
consider the following prescription [69]

〈ψ̄ψ〉r(2) =
ml

m4
π

(〈ψ̄ψ〉l−〈ψ̄ψ〉l(T = 0)) . (2.13)

In this case the zero T subtraction eliminates additive divergences while multiplication by the bare quark
mass ml takes care of multiplicative ones.

2.5 Analytic continuation with and without a strange quark chemical
potential

Both the method of analytic continuation from imaginary chemical potentials and the Taylor expansion
approach are based on the assumption that the free energy is analytic, at least in a limited region of small
chemical potentials.

As it happens for other thermodynamical quantities, it is possible to make an ansatz for the dependence of
the pseudo-critical temperature Tc(µu,µd ,µs) which is valid for small chemical potentials. The symmetries
of the theory constrain the possible form of this dependence. First of all, charge conjugation symmetry
imposes that Tc, as well as the free energy itself, be invariant under a simultaneous sign change of all
chemical potentials, thus a Taylor expansion of Tc must include only monomials of overall even degree
in the chemical potentials.

Moreover, in the case of two degenerate flavors, isospin symmetry imposes further constraints. By
rewriting the coupling to the chemical potentials of the continuum Lagrangian in the more compact
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form ψ̄ f γ0M f f ′ψ f ′ , where f , f ′ are flavor indices and M is a 2× 2 hermitian matrix, which is usually
diagonal (that is, M = diag[µu,µd ]), it can be shown that the theory is invariant under isospin rotations
ψ→ Rψ , combined with M→ RMR†, where R denotes a generic SU(2) matrix. The dependence of Tc on
the chemical potentials must satisfy such invariance, that means that it can be function only of invariant
quantities of the matrix M. At the leading quadratic order two independent such quantities exist, which
can be chosen to be det(M) and Tr(M†M) (or alternatively [Tr(M)]2). To leading order we thus have (see
also Ref. [122]):

Tc(M) = Tc(M = 0)−αTr(M†M)− γ det(M) =

= Tc(M = 0)−α(µ2
u +µ

2
d )− γ µuµd ,

(2.14)

where µu and µd represent the two eigenvalues of M. It is interesting that at this level the requirement
of isospin invariance is in fact equivalent to the requirement of symmetry under u↔ d exchange. This is
particularly relevant since in the lattice discretization of the partition function, Eq. (1.29), each quark is
treated by means of a separate quartic root of a fermion determinant, so that only the symmetry under u↔
d exchange is strictly true at finite lattice spacing. It has been verified in Ref. [111] that, in the discretized
N f = 2 theory, the mixing term γ is small but non-zero, corresponding to a measurable difference between
the curvature in terms of the baryon or the isospin chemical potential. In our N f = 2+ 1 setup, the
generalization of Eq. (2.14) is simply

Tc(µu,µd ,µs) = Tc(0)−A(µ2
u +µ

2
d )−Bµ

2
s

−Cµuµd − Dµs(µu +µd)+O(µ4) . (2.15)

In this study, we are interested only in two particular setups of chemical potentials. In the first case
we set µu = µd ≡ µl and µs = 0. That coincides with the setup adopted in most studies (like e.g. in
Refs. [69, 98]), which is thought to be close to the situation created in heavy ion collisions, where the
initial conditions correspond to strangeness neutrality. In this case the expected parametrization is

Tc(µl) = Tc(0)−A′µ2
l +O(µ4

l ) (2.16)

where A′ = 2A+C.

In the second case, we set µs = µl : that permits to estimate the effects of the inclusion of µs and to
compare with some previous studies [112, 113]. In this case the parametrization is

Tc(µl) = Tc(0)− (A′+B′)µ2
l +O(µ4

l ) (2.17)

where B′ = B+2D. An independent study with µu = µd = 0 and µs 6= 0 would provide direct information
on B and verify if the mixing term D is negligible or not: this is left for future investigations.

When the chemical potentials are purely imaginary, and if analytic continuation holds true, the following
dependence is expected for Tc as a function of the quantity θl = Im(µl)/T introduced in Section 3.3:

Tc(θl)

Tc(0)
= 1+Rθ

2
l +O(θ 4

l ) (2.18)

where R = A′Tc(0) or R = (A′+B′)Tc(0), depending on the different setup adopted.

Apart from the possible different values of the curvatures, the fact that µs = 0 or µs = µl is of course
relevant also to non-linear terms in θ 2

l , as we are going to discuss in the rest of this section. In this
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respect, a substantial difference in the phase diagram in the T −θl plane may play a significant role. It is
well known [50] that when all imaginary chemical potentials are equal, i.e. when the temporal boundary
conditions of all quark fields are rotated by the same angle θl , a translation of θl by a multiple of 2π/3
can be canceled by a center transformation of gauge fields, so that the partition function is periodic in θl

with a period 2π/3. Such a periodicity is smoothly realized at low T [101, 102, 103, 104, 123], while in
the high T regime it is enforced by first order transitions [50], known as Roberge-Weiss (RW) transitions,
which are connected with center symmetry and with the dynamics of the Polyakov loop, as explained in
more details in Chapter 1.
One important consequence of the analysis that will be exposed in Section 3.2 is that, for high T ,
the region available for analytic continuation is larger for µs = 0 than for µs = µl : that means that a
better control on systematic effects can be attained. Since analytic continuation is actually performed in
terms of θ 2

l , going from π/3 to approximately 0.45π means that the available region is almost doubled,
i.e. the increase is substantial. Moreover, one may expect that for µs = 0 the possible effects of the
critical behavior around the RW endpoint on the region of small chemical potentials should be milder,
since the endpoint is moved further inside the T −θl plane: such effects include the possible non-linear
contributions in θ 2

l to the pseudo-critical line Tc(θl). This point will be discussed further in Section 2.6.4.

2.6 Numerical Results

We performed simulations for different values of the chemical potentials and O(10) temperatures around
Tc(µ), on different lattice sizes, with Nt going from 6 to 12. We used Nt = 6 lattices with different spatial
size Ns to study finite size effects (163×6, 243×6 and 323×6). While we mainly considered the µs = 0
setup, for the 323× 8 lattice we also studied the case µs = µl . We have also performed simulations on
lattices with Nt = 10 and 12 and different choices of T and of the chemical potentials, which have been
used with the data from Nt = 6,8 to perform the continuum extrapolation. To that purpose, we have
considered only lattices with fixed aspect ratio Ns/Nt = 4. As shown in the following, that guarantees the
absence of significant finite size effects.
Four different values of chemical potentials have been considered for Nt = 10 and 12, corresponding to
µs = 0 and Im(µl)/(πT ) = 0,0.20,0.24 and 0.275 (the same values but 0.20 have been considered for
Nt = 6). These values have been chosen in order so that the expected value of Tc(µ) would be significantly
different from Tc(0), while at the same time staying sufficiently far from the non analiticities related to
the “Roberge-Weiss-like” transition which, in the µs = 0 setup, happens for µl/(πT )∼ 0.45 (see Section
3.2). However, in order to provide more information about systematics related to the choice of µs/µl

and to the truncation of the Taylor expansion in Eq. (2.18), a larger set of temperatures and chemical
potentials has been considered for Nt = 8, in which case we performed simulations also at µs 6= 0.
The Rational Hybrid Monte-Carlo algorithm [124, 125, 126] has been used for sampling gauge configurations
according to Eq. (1.29), each single run consisting of 2-5 K trajectories of unit length in molecular
dynamics time, with higher statistics around the transition.

To perform the renormalization described in Sec. 3.3, one needs to compute observables also at T = 0
and at the same values of the bare parameters, i.e. at the same UV cutoff. At T = 0 observables depend
smoothly on β ; moreover no dependence at all is expected on the imaginary chemical potentials, since
they can be viewed as a modification in the temporal boundary conditions which, at T = 0 (hence for
ideally infinite temporal extension), are completely irrelevant. For those reasons, we performed a set
of simulations on a 324 lattice and on a 484 lattice, at zero chemical potentials and for a few values of
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β on the line of constant physics. Then we estimated the observables at intermediate values of β by a
suitable interpolation and adopted them to renormalize data at T 6= 0 and generic values of the chemical
potentials. More details on the T = 0 measurements are reported in Section 2.7.
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FIGURE 2.5: Renormalized light chiral condensate for various values of T and µl respectively on:
243×6 lattice with µs = 0 (top left); 323×8 lattice with µs = 0 (top right); 323×8 lattice with µs = µl
(bottom left). In the top figure the data from the 323×6 lattice at µl = 0 are also shown for comparison.
Lines correspond to the best fit described in the text and the filled triangles denote the values at the
pseudo-critical temperature. Bottom Right: determinations of Tc obtained from the renormalized chiral
condensate 〈ψ̄ψ〉rl , for various values of the chemical potential and lattice sizes. The lines correspond to
quadratic and quartic fits in µl,I , as discussed in the text. Fit results are reported in Table 2.1.

In Figs. 2.5 and 2.6 we plot the results obtained respectively for the renormalized light chiral condensate
〈ψ̄ψ〉rl and for the renormalized chiral susceptibility χr

ψ̄ψ , which are our reference observables and
have been defined in Eqs. (2.8)-(2.12). Since no real phase transition is present in the explored range
of chemical potentials, before going on we have to define a prescription to locate the pseudo-critical
temperature Tc (a comparison with the results obtained by other definitions and/or approaches is reported
in the next section). We will adopt the two following definitions of Tc, related to the two different
observables studied:

1. the temperature corresponding to the inflection point of the renormalized chiral condensate (as
defined by Eq. (2.8)) ;

2. the temperature corresponding to the maximum of the renormalized chiral susceptibility (as defined
by Eq. (2.12)).

Both these definitions are faithful, i.e. when a real phase transition is present its location is correctly
identified (in the thermodynamical limit) by means of them.
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FIGURE 2.6: Renormalized light chiral susceptibility, divided by m4
π , for various values of T and µl

respectively on: 243×6 lattice with µs = 0 (top left); 323×8 lattice with µs = 0 (top right); 323×8 lattice
with µs = µl (bottom left). In the top figure the data from the 323× 6 lattice at µl = 0 are also shown
for comparison. Bottom right: determinations of Tc obtained from the renormalized chiral susceptibility
χr

ψ̄ψ
, for various values of the chemical potential and lattice sizes. The lines correspond to quadratic and

quartic fits in µl,I , as discussed in the text. Fit results are reported in Table 2.2.

In order to determine the inflection point of the renormalized chiral condensate, we performed a best fit
on the data by using the expression

〈ψ̄ψ〉rl (T ) = A1 +B1 arctan(C1(T −Tc)) , (2.19)

with the four independent parameters A1, B1, C1 and Tc. This function is found to well describe the
behavior of 〈ψ̄ψ〉rl (T ) in the whole range of explored temperatures. The best fits obtained by this
procedure are plotted, together with the corresponding data points, in Fig. 2.5, the position of the inflection
point being denoted, for each data set, by a filled triangle. The errors on the fit parameters have been
estimated by means of a bootstrap analysis; results for Tc are stable, within the quoted errors, if a different
interpolation (e.g., through an hyperbolic tangent) is adopted to locate the inflection point.

In the case of the renormalized chiral susceptibility, a reasonable description of the data around the peak
location is provided by a Lorentzian function

χ
r
ψ̄ψ =

A2

B2
2 +(T −Tc)2 . (2.20)

In both cases, statistical errors on the fitted parameters have been estimated by means of a bootstrap
analysis, while systematic uncertainties have been estimated either by varying the range of fitted points
around Tc or by choosing an alternative fitting function (e.g., a hyperbolic tangent for the condensate or
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a parabola for its susceptibility). Statistical and systematic10 errors are both included in the collection of
determinations of Tc for the various combinations of lattice sizes and chemical potentials in Table 2.6,

In Fig. 2.6 we report numerical data for the dimensionless ratio χr
ψ̄ψ/m4

π as a function of T , together with
some of the fits performed 11.

The full set of determinations of Tc(µl,I ,µs,I) is reported in Table 2.6. We stress that such values do not
take into account the error on the determination of the physical scale, which is of the order of 2-3 % [55,
57]; on the other hand, since such error affects all Tc values in the same way, its effect on the ratio of
pseudo-critical temperatures, which is the quantity entering the determination of κ , is expected to be
negligible.

In order to extract the curvature, we performed a fit to the values obtained for Tc(µl,I), separately for each
lattice size and setup of chemical potentials, according to the function

Tc(µl,I) = Tc(0)

(
1+9κ

(
µl,I

Tc(µl,I)

)2

+O(µ4
l,I)

)
. (2.21)

When quartic corrections turned out to be necessary, that is in the µs = µl setup, we used instead the
function 12

Tc(µl,I) = Tc(0)

(
1+9κ

(
µl,I

Tc(µl,I)

)2

+

+ 81b
(

µl,I

Tc(µl,I)

)4

+O(µ6
l,I)

)
.

(2.22)

In this way we got estimates of κ for all the lattices and the chemical potential setups adopted. The
results of these fits are reported in Tables 2.1 and 2.2, for the critical temperatures obtained from the
chiral condensate and for the chiral susceptibility respectively. In Figs. 2.5 and 2.6 data for Tc(µl,I) are
plotted together with the results of the aforementioned fits. In most cases, a simple linear fit (i.e. setting
b = 0) works quite well; just for the µs = µl setup (studied only on the 323× 8 lattice) the introduction
of a quartic correction is necessary in order to obtain reasonable values of the χ̃2 test. It is tempting to
associate the enhancement of non-linear corrections in the µs = µl setup to the fact that, in this case, the
Roberge-Weiss endpoint is closer to the µl = 0 axis, so that the associated critical behavior might have a
stronger influence on the small µl region.

Traces appearing in the definition of chiral quantities (see, e.g., Eqs. (2.10) and (2.11)) have been computed
by noisy estimators at the end of each molecular dynamics trajectory, using 8 random vectors for each
flavor. Such a choice has appeared, after some preliminary tests, as a reasonable compromise to balance
the effort spent in the stochastic estimators and in the gauge configuration production, i.e. in order
to optimize the statistical error obtained for a given computational effort. A jackknife analysis with
blocking has been exploited to determine the statistical errors, with blocks ranging in size from 80 (far
from Tc) to 400 measurements (close to Tc).

10We do not report the systematic error on the determination of the physical scale, which is of the order of 2-3 % [55, 57] and,
being related to an overall scale determination, does not affect the ratio of pseudocritical temperatures entering the determination
of κ , see Eqs. (2.3) and (2.18).

11Notice that if T -dependent dimensionless combinations of the susceptibility are adopted, like, e.g., χr
ψ̄ψ

/T 4, the behavior
deviates significantly from a Lorentzian function. Moreover, the locations of the maxima move to lower values of T by about 5
MeV.

12Both κ and b are normalized as the coefficients that would appear in the expansion in terms of µB; this is the reason of the
factors 9 and 81 appearing in Eq. (2.21). Notice also that, going to the fourth order expansion, one needs to specify what is the
temperature appearing in the ratio µ/T , as we have done in Eq. (2.22).
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FIGURE 2.7: Renormalized susceptibility and chiral condensates for the 403 × 10 (left column) and
483×12 lattices (right column).

In Fig. 2.7 we report results obtained for χr
ψ̄ψ , 〈ψ̄ψ〉r(1) and 〈ψ̄ψ〉r(2) on the 403×10 and 483×12 lattice,

together with some best fits according to Eqs. (2.19) and (2.20). In the following we will perform the
continuum limit using two different methods, in order to check for systematics effects.

2.6.1 Continuum limit for µs = 0 - First method

In order to extract the curvature of the critical line, we have performed a best fit to the values of Tc(µl,I),
obtained for each lattice size and setup of chemical potentials, according to the function in Eq.2.21.
For all sets of chemical potentials explored for µs = 0, the inclusion of quartic corrections has not been
necessary: a more detailed discussion about the stability of the fit as the range of chemical potentials is
changed is reported in Sec. 2.6.4.
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Lattice µs Tc(0) κ b χ2/ndo f
163×6 0.00 148.2(3) 0.0133(4) - 1.4
243×6 0.00 149.1(6) 0.0150(7) - 0.17
323×6 0.00 149.2(7) 0.0142(8) - 0.2
323×8 0.00 154.2(4) 0.0142(7) - 1.2
323×8 µl 154.0(4) 0.0200(6) - 2.5
323×8 µl 154.2(4) 0.0149(24) 0.0008(4) 0.04

TABLE 2.1: Parameters of the best fit to Tc(µl,I) from the renormalized chiral condensate according to
Eq. (2.21) or Eq.( 2.22). Blank fields indicate that the corresponding parameter has been set to zero in

that fit.

Lattice µs Tc(0) κ b χ2/ndo f
163×6 0.00 150.7(4) 0.0119(6) - 0.1
243×6 0.00 151.5(5) 0.0140(7) - 0.7
323×6 0.00 152.1(3) 0.0134(5) - 0.4
323×8 0.00 155.6(6) 0.0134(9) - 0.2
323×8 µl 155.2(6) 0.0196(10) - 3.3
323×8 µl 155.6(7) 0.012(3) 0.0010(5) 1.2

TABLE 2.2: The same as in Table 2.1, but using the critical temperatures estimated from the maxima of
the renormalized chiral susceptibility.

Lattice θl/π θs/π C1M1 C1M2 C2M1 C2M2
163×6 0.00 0.00 148.2(3) 148.2(2) 148.4(4) 148.4(2)
163×6 0.20 0.00 155.0(4) 154.6(2) 155.1(5) 154.8(2)
163×6 0.24 0.00 158.9(4) 157.8(2) 159.1(4) 158.1(2)
163×6 0.275 0.00 161.2(4) 160.5(2) 161.5(4) 160.8(2)
243×6 0.00 0.00 149.0(6) 149.0(2) 149.0(6) 149.0(2)
243×6 0.24 0.00 160.8(7) 159.6(2) 160.7(5) 159.6(2)
243×6 0.275 0.00 164.1(4) 163.0(2) 164.3(3) 163.1(2)
323×6 0.00 0.00 149.3(3) 149.3(1) 149.4(4) 149.4(1)
323×6 0.24 0.00 160.2(2) 159.5(1) 160.4(2) 159.6(1)
323×6 0.275 0.00 163.5(3) 162.7(1) 163.5(3) 162.7(1)
323×8 0.00 0.00 154.2(4) 154.2(2) 154.5(4) 154.5(2)
323×8 0.20 0.00 162.9(8) 161.6(2) 163.0(6) 161.8(2)
323×8 0.24 0.00 165.0(5) 164.5(2) 164.8(5) 164.5(2)
323×8 0.275 0.00 169.5(9) 168.6(3) 168.6(7) 168.4(3)
323×8 0.20 0.20 163.9(6) 163.3(2) 163.7(6) 163.4(2)
323×8 0.24 0.24 169.4(7) 168.3(3) 168.6(6) 168.3(3)
323×8 0.275 0.275 175.4(6) 174.1(2) 174.4(7) 174.0(3)

TABLE 2.3: Critical temperatures obtained by using different renormalization prescription and/or
different definition of Tc, see text for symbol definitions.

In Fig. 2.8 we report an example of such quadratic fits to the critical temperatures obtained for Nt = 10,12
and for the various explored observables. A complete collection of results, including also those already
presented in Ref. [127], is reported in Table 2.7.

In a range of temperatures around Tc, the UV cutoff a−1 is approximately proportional to Nt . Therefore,
assuming corrections proportional to a2, we extracted, from the curvatures obtained for different values
of Nt , continuum extrapolated results according to the ansatz

κ(Nt) = κcont + const./N2
t . (2.23)
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Lattice θl/π θs/π Tc(χ
r) Tc(χdisc)

163×6 0.00 0.00 150.7(4) 145.8(7)
163×6 0.20 0.00 157.0(4) 151.9(9)
163×6 0.24 0.00 160.0(4) 155.6(9)
163×6 0.275 0.00 162.7(4) 158.0(7)
243×6 0.00 0.00 151.6(5) 148.0(1.0)
243×6 0.24 0.00 162.0(5) 158.3(8)
243×6 0.275 0.00 165.9(4) 162.2(9)
323×6 0.00 0.00 152.0(4) 147.2(1.0)
323×6 0.24 0.00 162.7(4) 156.9(9)
323×6 0.275 0.00 165.5(4) 161.5(1.3)
323×8 0.00 0.00 155.6(7) 151.2(1.2)
323×8 0.20 0.00 163.0(6) 157.2(1.0)
323×8 0.24 0.00 165.8(8) 160.4(1.4)
323×8 0.275 0.00 169.8(7) 166.1(1.3)
323×8 0.20 0.20 165.3(9) 159.3(9)
323×8 0.24 0.24 169.6(7) 164.8(1.5)
323×8 0.275 0.275 177.0(8) 172.9(1.3)

TABLE 2.4: Critical temperatures obtained from the non-renormalized disconnected chiral susceptibility.
The values obtained from χr are reported for reference.

Lattice µs Fit Tc(0) κ b χ2/ndo f
163×6 0.00 lin 145.8(7) 0.0126(10) - 0.2
243×6 0.00 lin 147.9(1.0) 0.0141(13) - 0.2
323×6 0.00 lin 147.0(1.0) 0.0138(16) - 0.8
323×8 0.00 lin 150.5(1.1) 0.0143(17) - 1.3
323×8 µl lin 149.8(1.1) 0.0208(18) - 3.8
323×8 µl quad 151.2(1.2) 0.008(5) 0.0020(7) 0.04

TABLE 2.5: Curvatures extracted from the data of Table 2.4.
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FIGURE 2.8: Critical lines for the 403×10 lattice (top) and for the 483×12 one (bottom).

Results are shown in Fig. 2.9, where we also report the extrapolated continuum values, which are
κcont(〈ψ̄ψ〉r(1)) = 0.0134(13), κcont(〈ψ̄ψ〉r(2)) = 0.0127(14) and κcont(χ

r
ψ̄ψ) = 0.0132(10).
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Lattice µl,I
πT

µs,I
πT Tc(ψ̄ψ(1)) Tc(ψ̄ψ(2)) Tc(χ

r)

163×6 0.00 0.00 148.2(3) 148.4(4) 150.7(4)
163×6 0.20 0.00 155.0(4) 155.1(5) 157.0(4)
163×6 0.24 0.00 158.9(4) 159.1(4) 160.0(4)
163×6 0.275 0.00 161.2(4) 161.5(4) 162.7(4)
243×6 0.00 0.00 149.0(6) 149.0(6) 151.6(5)
243×6 0.24 0.00 160.8(7) 160.7(5) 162.0(5)
243×6 0.275 0.00 164.1(4) 164.3(5) 165.9(4)
323×6 0.00 0.00 149.1(7) 149.4(4) 152.0(4)
323×6 0.24 0.00 160.2(3) 160.4(2) 162.7(4)
323×6 0.275 0.00 163.4(3) 163.5(3) 165.5(4)
323×8 0.00 0.00 154.2(4) 154.5(4) 155.6(7)
323×8 0.10 0.00 155.4(7) 155.2(8) 157.2(7)
323×8 0.15 0.00 159.5(9) 158.9(9) 160.2(5)
323×8 0.20 0.00 162.9(8) 163.0(6) 163.0(6)
323×8 0.24 0.00 165.0(5) 164.8(5) 165.8(8)
323×8 0.275 0.00 169.5(9) 168.6(7) 169.8(7)
323×8 0.30 0.00 172.4(9) 171.8(9) 172.8(8)
323×8 0.10 0.10 157.1(8) 157.0(8) 158.5(7)
323×8 0.15 0.15 159.2(9) 158.8(8) 160.1(8)
323×8 0.20 0.20 163.9(6) 163.7(6) 165.3(9)
323×8 0.24 0.24 169.4(7) 168.6(6) 169.6(7)
323×8 0.275 0.275 175.4(6) 174.4(7) 177.0(8)

403×10 0.00 0.00 154.5(1.5) 154.3(1.5) 155.1(7)
403×10 0.20 0.00 163.0(7) 163.0(8) 162.5(7)
403×10 0.24 0.00 166.8(8) 167.1(7) 166.2(1.0)
403×10 0.275 0.00 170.8(8) 171.2(8) 169.6(8)
483×12 0.00 0.00 154.5(1.0) 155.5(1.3) 154.7(7)
483×12 0.20 0.00 163.2(1.2) 165.0(1.5) 161.9(7)
483×12 0.24 0.00 165.2(1.1) 166.2(1.0) 166.2(1.0)
483×12 0.275 0.00 167.8(1.2) 168.7(9) 167.9(9)

TABLE 2.6: Critical values of T obtained from the renormalized chiral susceptibility and from the
renormalized chiral condensates. Errors do not take into account the uncertainty on the physical scale,

which is of the order of 2-3 % [55, 57].

2.6.2 Continuum limit for µs = 0 - Second method

Results of the previous section show that the continuum extrapolation of κ is quite smooth, with a
good agreement between the results obtained with different observables and different renormalization
prescriptions. This is also consistent with the preliminary evidence reported in Ref. [127].

Nevertheless, it is useful to explore different ways of performing the continuum limit, in order to check
for the overall consistency of the procedure. In the previous section we first determined the value of κ at

Lattice κ(ψ̄ψ(1)) κ(ψ̄ψ(2)) κ(χr)

243×6 0.0150(7) 0.00152(7) 0.0140(7)
323×8 0.0142(7) 0.0135(7) 0.0134(9)

403×10 0.0157(17) 0.0164(16) 0.0139(10)
483×12 0.0130(15) 0.0123(17) 0.0131(11)

TABLE 2.7: Curvatures obtained at fixed Nt from different observables.
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FIGURE 2.9: Left: Continuum limit of the curvatures extracted at fixed Nt (data have been slightly shifted
in the horizontal direction to improve readability). Right: Fitted values of the curvature κ from the Nt = 6
lattices as a function of the inverse spatial volume. Squares correspond to the determinations obtained by
using the chiral condensate, triangles to the chiral susceptibility estimates.

each single value of Nt , then extrapolated these results to Nt →∞ to obtain κcont . A different procedure is
to first extrapolate the critical temperatures to Nt →∞ (for fixed values of the dimensionless ratio µl,I/T )
and then to extract the value of κcont by using the continuum extrapolated critical temperatures.

To implement the second procedure we have performed, separately for each µl,I/T , a best fit to the values
obtained for the renormalized condensates and for the renormalized chiral susceptibility on different
values of Nt , according to modified versions of Eqs. (2.19) and (2.20). Since the cut-off dependence is
more pronounced for such quantities, we have excluded Nt = 6 data, thus using only Nt = 8,10,12.

In detail, in the case of the renormalized susceptibility, each fit parameter appearing in Eq. (2.20) has
been given an additional Nt dependence, for instance Tc(Nt) = Tc(Nt = ∞)+ const/N2

t . Results for the
extrapolated quantities are reported in the upper plot in Fig. 2.10 where, for the sake of clarity, we report
only the cases µl,I = 0 and µl,I/(πT ) = 0.275. In the case of the renormalized condensates, instead, due
to the larger number of parameters which are present in Eq. (2.19), we could obtain fits which are stable
against the variation of the fitted range by adding an Nt -dependence to just two parameters, in particular
Tc and C1. Results are shown in the middle and lower plot of Fig. 2.10.

Such fits provide estimates for the continuum extrapolated pseudo-critical temperatures, reported in
Table 2.8 and in Fig. 2.11. Such values coincide, within errors, with the continuum pseudo-critical
temperatures that one could obtain by directly fitting results reported in Table 2.6. A best fit to the
extrapolated temperatures according to Eq. (2.21), with only the quadratic term included, provides

κcont(〈ψ̄ψ〉r(1)) = 0.0145(11)

κcont(〈ψ̄ψ〉r(2)) = 0.0138(10)

κcont(χ
r
ψ̄ψ) = 0.0131(12) ,

which are consistent with those found previously.

2.6.3 Strength of the transition as a function of µB

The width and the height of the chiral susceptibility peak, which can be obtained respectively from B2

and A2/B2
2 in Eq. (2.20), are directly related to the strength of the chiral pseudo-transition. Therefore,



The curvature of the critical line of QCD 35

140 160 180 200 220

T [MeV]

0

0.02

0.04

0.06

0.08

0.1

χ
r ψ−

ψ
 /

 m
π4

Cont. ext. µ
l,I

/(πT) = 0.0

Cont. ext. µ
l,I

/(πT) = 0.275

Nt = 12 
Nt = 10
Nt = 8
Nt = 12
Nt = 10
Nt = 8

140 160 180 200

T [MeV]

0

0.2

0.4

0.6

0.8

1

〈ψ_
ψ

〉 (
1
)

r

Cont. ext. µ
l,I

/(πT) = 0.0

Cont. ext. µ
l,I

/(πT) = 0.275

Nt = 12
Nt = 10
Nt = 8
Nt =  12
Nt = 10
Nt = 8

140 160 180 200 220

T [MeV]

-0.4

-0.3

-0.2

-0.1

〈ψ_
ψ

〉 (
2
)

r

Cont. ext. µ
l,I

/(πT) = 0.0

Cont. ext. µ
l,I

/(πT) = 0.275

Nt = 12
Nt = 10
Nt = 8
Nt =  12
Nt = 10
Nt = 8

0 0.02 0.04 0.06 0.08

(µ
l,I

/(πT))
2

10

15

20

25

B
2
 [MeV]

100 χ
r,max

ψ−ψ   / mπ

4

FIGURE 2.10: Top Left, top right and bottom left: Continuum limit for the renormalized susceptibility
and the renormalized chiral condensates; Bottom right: Peak values (×100) and widths of the continuum
extrapolated renormalized chiral susceptibility.

µl,I/(πT ) Tc(ψ̄ψ(1)) Tc(ψ̄ψ(2)) Tc(χ
r)

0.00 154.7(8) 156.5(8) 154.4(8)
0.20 163.9(8) 165.0(7) 161.0(1.1)
0.24 166.9(9) 168.5(7) 165.8(1.0)
0.275 169.7(8) 170.8(7) 167.3(1.1)

TABLE 2.8: Continuum extrapolated critical temperatures for the various µl,I values.

we have the possibility to monitor the dependence of such strength on the baryon chemical potential and,
having performed a continuum extrapolation for χr

ψ̄ψ , we can do that directly on continuum extrapolated
quantities.

If a critical endpoint exists, along the pseudo-critical line, for relatively small values of real µB, we might
expect a visible dependence of the strength parameters also for small values of imaginary µB. The width
and the height would tend respectively to zero and infinity approaching, e.g., a critical endpoint in the Z2

universality class.

To that purpose, in Fig. (2.10, bottom right) we plot the continuum extrapolated width B2 and height
A2/B2

2 as a function of µl,I . No apparent change of either quantity can be appreciated, hence no dependence
of the strength as a function of µB.

Of course, that does not exclude the presence of a critical endpoint at real µB: the critical region could
be small enough, or the endpoint location far enough from µB = 0, so that no influence is visible for
small, imaginary µB. For instance, for µs = 0, a Roberge-Weiss [50] like endpoint is expected along the
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pseudo-critical line at imaginary chemical potential, for µl,I/(πT ) ∼ 0.45 [127]. Fig. 2.10 shows that
also this endpoint has no apparent influence on the strength of the transition in the explored range.

2.6.4 Inclusion of µs 6= 0 and systematics of analytic continuation

We have extended results for Nt = 8 presented in Ref. [127], performing numerical simulations for a larger
range of imaginary chemical potentials, which include also the case µs = µl . That enables us to answer
two important questions: what is the systematic error, in the determination of κ by analytic continuation,
related to the truncation of the Taylor series in Eq. (2.21) and to the chosen range of chemical potentials?
What is the impact of our effective ignorance about the actual value of µs corresponding to the thermal
equilibrium conditions? We are going to discuss in detail only the determination of the pseudo-critical
temperature from the renormalized chiral susceptibility, however we stress that similar conclusions are
reached when one considers the renormalized chiral condensate. The corresponding pseudo-critical
temperatures, taken from Table 2.6, are reported in Fig. 2.12 for µs = 0 and for µs = µl .
We first tried a quadratic fit in µl,I : remembering the definition θl = µl,I/T , we used

Tc(θl) = Tc(0)(1+9κ θ
2
l ) (2.24)

and several fits have been performed by changing each time the maximum value µ
(max)
l,I included in the fit.

Reasonable best fits are obtained in all cases, apart from the fit to the whole µs = µl range, which yields
a reduced χ̃2 ∼ 2.4 and indicates the need for quartic corrections in this case. Results obtained for κ are
shown in Fig. 2.12: for µs = 0, the fitted value of κ is perfectly stable as the range of chemical potentials
is changed. Instead, for µs = µl , the value of κ clearly depends on the fitted range of chemical potentials:
it is larger as the range is extended and becomes compatible, within errors, with that obtained for µs = 0
as the range is decreased. This behavior is consistent with the presence of significant quartic corrections
in this case. That may be related to the different structures of the phase diagrams for imaginary chemical
potential that one has in the two cases: this issue has been discussed in detail in Ref. [127].
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We then tried a best fit to a function including quartic corrections,

Tc(θl) = Tc(0)(1+9κ θ
2
l +bθ

4
l ) , (2.25)

to the whole range of chemical potentials explored in both cases. The corresponding results obtained
for κ are reported in Fig. 2.12 as well. While for µs = 0 the value is perfectly compatible with the one
obtained without including quartic corrections (indeed, in this case one obtains b = 0 within errors), for
µs = µl we observe a significant change, bringing κ in good agreement with the µs = 0 case. A similar
conclusion is reached when a common fit to both sets of data (i.e. with a common value for Tc(0)) is
performed, as shown in the right panel of Fig. (2.12, right) and in Fig.( 2.12, left).
We conclude that, for µs = 0, no evidence of quartic corrections is found in the whole explored range.
As a consequence, the extracted κ is stable against variations of the fitted range and we can exclude the
presence of significant systematic corrections, related to the procedure of analytic continuation, affecting
the continuum extrapolated determination of κ that we have provided.
In the case µs = µl , larger values of κ are obtained when quartic corrections are neglected, however κ

becomes compatible with that obtained for µs = 0 when such corrections are included, or when the fitted
range of chemical potentials is small enough. We conclude that κ is not affected by the inclusion of µs, at
least within present errors, which however are larger than for the µs = 0 case. In particular, a fair estimate
in this case is κ(µs = µl) = 0.013(3).

2.6.5 Discussion of results

Let us now analyze the main features emerging from our results. A first important point is that, as one
would expect, the value of Tc at zero chemical potential is in agreement with other existing determinations
in the literature [20, 31, 32, 33, 34], i.e. in a range around 155 MeV.
Comparing data at the same lattice spacing and different spatial volumes (Nt = 6 and Ls = 16,24,32), or
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at the same physical spatial volume13 and different lattice spacings (243× 6 vs 323× 8), one concludes
that both finite size and finite lattice spacing effects are visible in the determination of the pseudo-critical
temperature at zero and nonzero µl , both tending in general to decrease the value of Tc. It is also evident
that the introduction of a non-zero µs,I = µl,I has a significant impact, leading to a relative temperature
change Tc(µl,I)/Tc(0)−1 which is up to 40 % larger (at the largest value of µl,I explored), with respect
to the µs,I = 0 case.
On the other hand, when the dependence of Tc on µl,I is considered, in order to extract the curvature, good
part of these effects boils down to a constant shift of the curves or to the introduction of quartic corrections
(see Figs. 2.5 and 2.6). That means, in particular, that the curvature κ is a more stable quantity: the
introduction of the strange quark chemical potential does not modify it within present errors, finite lattice
spacing effects seem to be within the 10 % level. Finite size effects are of the order of 15 % when going
from lattices with aspect ratio ∼2.7 to lattices with aspect ratio 4. However they are much smaller and
stay within statistical errors when going from aspect ratio 4 to aspect ratio ∼5.3, suggesting that they are
well under control already on lattices with aspect ratio 4; all that can be appreciated from Fig. 2.9, where
we report our determinations of κ for Nt = 6 and different spatial volumes.

2.7 Parameter sets and data at T = 0

The determination of the renormalized condensate and susceptibility requires the computation of the
corresponding quantities at T = 0 and at the same UV cutoff of the finite temperature data. To that aim,
we spanned a range of β on the line of constant physics, 3.5 ≤ β ≤ 3.95. The lattice sizes have been
chosen in such a way to have temperatures well below Tc, keeping at the same time finite size effects
under control. This required us to perform simulations on larger lattices (going from 324 up to 484) as
we decreased the value of the lattice spacing. We report results in Table 2.9.

The temperatures, which are in the range T ∼ 25−50 MeV, are low enough to be considered as a good
approximation of the T = 0 limit; indeed, as expected because of the absence of transitions in this T

range, observables depend smoothly on β ; moreover no dependence at all is expected on the imaginary
chemical potentials, since they can be viewed as a modification in the temporal boundary conditions
which, at T = 0 (i.e. for infinite temporal extension), are completely irrelevant. Hence, the relatively
coarse sampling of the interval is enough to permit a reliable interpolation. We adopted a cubic spline
interpolation for the condensate and a linear fit for the susceptibility.

The renormalization prescription for the susceptibility that we adopted requires the subtraction of the T =

0 result from the T 6= 0 contribution. To give an idea of the relative magnitude of the two contributions, in
Fig 2.13 we plot the chiral susceptibilities χψ̄ψ , defined in Eq. (2.9), both at zero and at finite temperature,
at zero chemical potential.

As a crosscheck, we have performed an independent determination of the pion mass on our zero temperature
lattices, obtaining values in the range 133-137 MeV for the set of parameters explored: given the overall
2-3% systematic error on the determination of the lattice spacing, this is satisfactory.

13Lattices with the same aspect ratio Ls/Nt corresponds to approximately equal spatial volumes at the crossover, apart from the
residual a-dependence of Tc.
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β Lattice χψ̄ψ 〈ψ̄ψ〉−2(ml/ms)〈s̄s〉 〈ψ̄ψ〉/2
3.50 324 1.97(4) 0.07999(11) 0.04403(5)
3.55 324 1.97(5) 0.05680(13) 0.03164(7)
3.60 324 2.05(6) 0.03912(14) 0.02211(7)
3.65 324 1.82(3) 0.02633(2) 0.01518(9)
3.70 324 1.80(3) 0.01804(3) 0.01064(2)
3.65 484 1.74(7) 0.02638(4) 0.01521(2)
3.75 484 1.61(5) 0.01232(5) 0.00749(2)
3.85 484 1.47(4) 0.00614(2) 0.00401(1)
3.95 484 1.37(3) 0.00331(2) 0.00237(1)

TABLE 2.9: Determination of the observables at T = 0 (on the 324 and 484 lattices) needed to perform
the renormalizations discussed in Section 3.3. Data are in lattice units.

2.8 Comparison with other determinations in the literature

In this section we will elaborate on how our results obtained on Nt = 6 and 8 lattices compare with the
early ones reported by other groups. In the following subsection we analyze how the determinations of
Tc and κ change if different prescriptions are adopted to renormalize observables or to locate Tc. Some
of the results of this analysis can be compared more directly with some results already present in the
literature. However, it must be remarked that the values we obtained with these alternative methods are
not extrapolated to the continuum limit.

2.8.1 Comparison with other methods

Regarding the determination of κ from the chiral condensate we compare two different renormalization
prescriptions of the condensate and two different methods to extract Tc. We set the following notation:
C1 is the chiral condensate renormalized as in Eq. (2.8), while C2 is the one renormalized as in Eq. (2.13).
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Lattice µs Fit Tc(0) κ b χ2/ndo f
163×6 0.00 lin 148.2(2) 0.0136(3) - 0.8
243×6 0.00 lin 149.0(2) 0.0139(3) - 0.2
323×6 0.00 lin 149.3(1) 0.0133(2) - 0.1
323×8 0.00 lin 154.2(2) 0.0136(3) - 2.5
323×8 µl lin 154.0(2) 0.0187(3) - 15.5
323×8 µl quad 154.3(2) 0.0137(9) 0.0008(2) 0.02

TABLE 2.10: Curvatures obtained by fitting the Tcs from the C1M2 combination of Table 2.3.

Lattice µs Fit Tc(0) κ b χ2/ndo f
163×6 0.00 lin 148.5(3) 0.0133(5) - 1.1
243×6 0.00 lin 149.1(5) 0.0152(7) - 0.0
323×6 0.00 lin 149.5(3) 0.0141(5) - 0.4
323×8 0.00 lin 154.7(4) 0.0135(7) - 2.5
323×8 µl lin 154.3(3) 0.0186(5) - 4.5
323×8 µl quad 154.3(3) 0.0138(11) 0.0008(3) 0.0

TABLE 2.11: Curvatures obtained by fitting the Tcs from the C2M1 combination of Table 2.3.

Lattice µs Fit Tc(0) κ b χ2/ndo f
163×6 0.00 lin 148.33(16) 0.0124(3) - 12.5
243×6 0.00 lin 148.49(23) 0.0147(3) - 0.0
323×6 0.00 lin 149.4(1) 0.0133(2) - 0.0
323×8 0.00 lin 154.55(17) 0.0131(3) - 1.7
323×8 µl lin 154.23(18) 0.0181(3) - 14.6
323×6 µl quad 154.56(19) 0.0133(10) 0.0006(8) 0.0

TABLE 2.12: Curvatures obtained by fitting the Tcs from the C2M2 combination (i.e. the same method
adopted in Ref. [69]) of Table 2.3.

For what concerns the method we define M1 as the determination of Tc obtained from the inflection point
of 〈ψ̄ψ〉rl , which is the one adopted in this work. A different procedure, which we will denote as M2,
was put forward in Ref. [69]: for each observable φ(T,µB) that is monotonic in the neighborhood of
the µB = 0 transition, the authors define the critical temperature at finite chemical potential (denoted by
Tc(µB)) as the solution of the equation

φ(Tc(µB),µB) = φ(Tc(0),0) . (2.26)

With this definition, along the (Tc(µB),µB) curve we have dφ ≡ 0, thus we obtain

κ ≡−Tc(0)
dTc(µB)

dµ2
B

∣∣∣∣
µB=0

=

= Tc(0)
∂φ/∂ µ2

B
∂φ/∂T

∣∣∣∣
µB=0; T=Tc

.

(2.27)

In the latter case, we have taken the value of the condensate at the inflection point at zero chemical
potential as the reference value which is kept constant at nonzero µB.

According to these definitions, the method that we adopted can be addressed as C1M1. In Table 2.3
we show the results for Tc obtained by taking all different combinations. As we did in Section 2.6, we
compute the curvature of the pseudo-critical line by fitting the extracted values of Tc by Eq. (2.21). The
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results of these fits are reported in Table 2.10, 2.11 and 2.12 respectively for the combinations C1M2,
C2M1 and C2M2.

Regarding the determination of κ from the chiral susceptibility, in Table 2.4 we report the results for the
pseudo-critical temperature as a function of the chemical potential obtained from the non-renormalized
disconnected chiral susceptibility χdisc

ψ̄ψ
, defined in Eq. (2.10). The disconnected susceptibility is measured

in lattice spacing units: that leads to an additional T = 1/(Nta) dependence, which can account for the
generally lower values of Tc obtained. Again, as we did in Section 2.6, we compute the curvature of the
pseudo-critical line by fitting Tc with Eq. (2.21): we report the results in Table 2.5.

We also report that a recent work has appeared, where analytic continuation is used [114]. One of the
methods used to locate Tc is similar to the one we denoted here as C2M1 (it differs for the function used
for fitting chiral condensate data).

2.8.2 The curvature of the critical line in the literature
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Endrodi et al., 2011

Kaczmarek et al., 2011

Cea et. al, 2015
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FIGURE 2.14: Determinations of the critical line curvature κ in different works. From bottom to
top: i) Analytic continuation, strange quark number susceptibility [114]; ii) Analytic continuation,
this work; iii) Analytic continuation, disconnected chiral susceptibility with µs = µl , Ref. [113]; iv)
Taylor expansion, chiral susceptibility, Ref. [100]; v) Taylor expansion, chiral susceptibility, Ref. [98];
vi) Taylor expansion, chiral condensate (renormalization “C2”), Ref. [69]; vii) Taylor expansion, strange
quark number susceptibility, Ref. [69].

In Fig. 2.14 we compare our present results with previous ones in the literature. We do not report many
early determinations and consider only a collection of recent ones, which look at the chiral transition and
have been obtained by discretizations of N f = 2+1 QCD at or close to the physical point [69, 98, 113].
Our results seem generally larger than results obtained by the Taylor expansion [69, 98] and in marginal
agreement with results obtained by analytic continuation and a different discretization [113]. However,
the correct assessment of possible discrepancies or agreement requires a careful analysis of the possible
sources of systematic differences between the various determinations, a task that we try to accomplish in
this Section.
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Part of the effects are related to the different lattice discretizations adopted and should disappear as one
approaches the continuum limit. Moreover, since no real transition takes place, the result depends on the
particular physical quantity and on the prescription chosen to locate the crossover at zero and non-zero
µB. In this work, we have considered either the chiral condensate (renormalized as in Eq. (2.8)) and its
inflection point, or the full chiral susceptibility (renormalized as in Eq. (2.12)) and its maximum: as we
have already discussed, both are faithful, in the sense that provide a correct location of Tc in the case of a
real transition.

The determinations in Ref. [98] and [100] develop on previous studies carried on by the same group
about the chiral transition at ml = 0 with physical ms [128]. The basic idea is that, if for physical ms and
ml = 0 the chiral transition is second order, the neighborhood of the critical point can be described by two
scaling variables, t and h. To leading order only h depends on the chiral symmetry breaking parameter,
i.e. ml , and we thus have the relations

t ' 1
t0

(
T −Tc(0)

Tc(0)
+κ

(
µB

Tc(0)

)2
)

h' 1
h0

ml

ms
, (2.28)

where t0 and h0 are dimensionless factors. These can be fixed by imposing appropriate normalization
conditions to the scaling functions (see [98, 128] for more details).

In Eq. (2.28) we denoted by Tc(0) the critical temperature at vanishing chemical potential and, since
the transition for generic µB is located at t = 0, it follows that κ is the curvature of the critical line as
previously defined in Eq. (2.3). To extract the value of κ one can study an observable ϕ directly related
to the critical behavior, like the chiral condensate, which plays a role analogous to the magnetization and,
in the scaling regime, is governed by a well known scaling behavior ϕ ≡ ϕ(t,h), which is fixed according
to the O(4) universality class and was checked at µB = 0 in Ref. [128]. It is easy then to prove, by means
of Eq. (2.28), that

κ =
t0

∂tϕ

∂ϕ

∂ (µB/T )2 . (2.29)

In Ref. [98], ∂ϕ/∂ (µB/T )2 was measured directly in terms of a mixed susceptibility computed at µB = 0,
while t0/∂tϕ was fixed by the O(4) scaling function. In this way the value of κ was inferred by imposing
a scaling behavior for the mixed susceptibility computed for different values of the light quark mass.

In Ref. [112] a variant of this approach was proposed, which makes use of simulations performed at
imaginary chemical potential (with µl = µs). Having at disposal data obtained at µB 6= 0, Eq. (2.28) can
be used without the need of computing derivatives of observables: results are compatible with those of
Ref. [98].

In this case, a direct comparison with our determination is not easy, since one has different lattice
discretizations (p4 staggered action vs stout smeared staggered action) and no proper continuum extrapolation
from both sides (Ref. [98] has lattices with Nt = 4,8, Ref. [112] has lattices with Nt = 4). Moreover, one
should notice that the value of κ obtained in this way is actually the curvature of the second order line in
the chiral limit ml = 0, assuming O(4) critical behavior; the expectation is that the dependence of κ on
the light quark mass is very mild.
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The strangeness susceptibility and the chiral condensate were used as the φ observable in Ref. [69], with
the renormalization prescription in Eq.(2.13) for the chiral condensate:

〈ψ̄ψ〉r(2) =
ml

m4
π

(〈ψ̄ψ〉l−〈ψ̄ψ〉l(T = 0)) . (2.30)

In Eq. (2.27), the derivative with respect to µ2
B is given in terms of a susceptibility computed at µB =

0, as for Eq. (2.28), while ∂φ/∂T is obtained directly by numerical differentiation of data at various
temperatures. Notice that this prescription for locating Tc might not be faithful in the particular case of a
real transition and if the chosen observable is not an order parameter vanishing at Tc: indeed, in general,
the value taken by the observable at Tc could change as the transition changes with µB.

In this case, a detailed comparison with our determination makes sense, since we adopt the same lattice
discretization and the same physical observable (chiral condensate), even if with a different renormalization
prescription. In particular we can understand, making use of our data, what is the influence on the
curvature of adopting a different prescription for locating Tc and/or of adopting a different renormalization
prescription for the chiral condensate (Eq. (2.8) vs Eq. (2.13)).

In Fig. 2.5 we can see that, if we use the inflection points (marked with filled triangles in the plots)
as a definition of Tc(µB), Eq. (2.26) is only approximately satisfied, in particular at these points the
condensate assumes values 〈ψ̄ψ〉rl (Tc(µl,I),µl,I) that decreases as µl,I is increased. Therefore, adopting
the prescription of Ref. [69] and defining Tc(µl,I) as the temperature for which the condensate takes the
same value as for Tc(0), we would obtain lower estimates of Tc(µl,I) and of κ . This is indeed what
happens, as shown in Section 2.8.1. Despite this consideration, however, the continuum extrapolated
value of κ does not differ within the statistical errors.

A more substantial difference is obtained if, in addition, one also adopts the renormalization prescription
of Ref. [69], i.e. Eq. (2.13) (see Section 2.8.1 for details). In this case our continuum extrapolated value
would go from κ = 0.0132(18) to κ = 0.0110(18), i.e. an effect of around 20%. Therefore, about
one third of the discrepancy with respect to Ref. [69], claiming κ = 0.0066(20), can be attributed to
systematic effects connected to different prescriptions for renormalization or location of Tc: this is not
unexpected, in view of the fact that there is no real phase transition in the range of chemical potentials
under study. Taking that into account, the remaining discrepancy between the two determinations goes
below 2 standard deviations. In the future, a more rigorous continuum extrapolation of our data could
better clarify the issue.

Finally, we compare with the results published in Ref. [113], in which the authors adopt the method
of analytic continuation, with the setup µl = µs, and locate Tc by looking for the maximum of the
disconnected part of the unrenormalized chiral susceptibility. The outcome of such analysis is in marginal
agreement with our determination. One should also take into account that, as illustrated in Section 2.8.1,
adopting the unrenormalized disconnected susceptibility in place of the full renormalized one leads to
an increased curvature: in our case the continuum extrapolated value goes from κ = 0.0126(22) to
κ = 0.0146(41), hence in better agreement with the outcome of Ref. [113]. That, taking into account
that a different discretization was used in Ref. [113] (HISQ action), is compatible with the absence of
significant lattice artifacts in both cases.

Regarding the different setup of chemical potentials, we have already verified on our results that the
introduction of a non-zero µs does not influence the value of κ significantly, but on the other hand it
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introduces larger non-linear corrections in µ2
l,I . In Ref. [113] there was no evidence of such non-linear

corrections, even if only on the smallest lattice, namely 163×6, multiple values of µl,I were explored.

2.9 Conclusions

We determined the curvature κ of the pseudo-critical line of N f = 2+1 QCD with physical quark masses
with the method of analytic continuation from imaginary chemical potentials. We considered a stout
smeared staggered discretization and performed simulations on lattices with Nt = 6,8,10 and 12. In
order to obtain a continuum extrapolated estimate, we used data from all the lattices we simulated having
aspect ratio 4. We also enlarged the range of chemical potentials explored for Nt = 8: that allowed us to
better estimate possible systematics related to analytic continuation.

Regarding the case µs = 0, we have obtained continuum extrapolated values of κ from different observables
(chiral susceptibility and the chiral condensate with two different renormalization prescriptions) and by
two different extrapolation procedures (extrapolating κcont from κ(Nt) or extracting κcont from continuum
extrapolated temperatures). The comparison of the two different procedures permits us to give an estimate
of the systematic uncertainties related to the continuum extrapolation. In the case of the renormalized
chiral susceptibility (κ = 0.0132(10) vs κ = 0.0131(12)) the systematic error is negligible in comparison
to the statistical one. In the case of 〈ψ̄ψ〉r(1) (κ = 0.0134(13) vs κ = 0.0145(11)) and of 〈ψ̄ψ〉r(2)
(κ = 0.0127(14) vs κ = 0.0138(10)) the systematic and statistical uncertainties are clearly comparable
in size. The extended analysis performed on Nt = 8 has permitted us to state also that, within present
errors, systematic effects connected to the range of µl chosen to extract the curvature are not significant.

Regarding finite size effects, we have shown that they are negligible within the present precision on
lattices with aspect ratio 4. Taking into account the obtained results and the contributions from the
systematic effects mentioned above, we quote κ = 0.0135(15) as our final continuum estimate for the
case µs = 0.

Such a result confirms, even after continuum extrapolation, a discrepancy with previous determinations
obtained by Taylor expansion [69, 98, 99], reporting κ ∼ 0.006.

This is in marginal agreement with recent results obtained by the method of analytic continuation [113,
115], and larger than previous lattice determinations obtained by the Taylor expansion technique [69,
98] (notice however that larger values of the curvature have been obtained when considering different
observables, like the strange quark number susceptibility or thermodynamical quantities [69, 99]). At the
time of writing, another work has appeared estimating the curvature of the critical line, using analytic
continuation, and a lattice action very similar to the one used by us [114]. The results are compatible
with ours.

To better assess the discrepancies between our results and the ones obtained by other groups, we have
analyzed various possible systematic effects. Adopting the same conventions for renormalizing the chiral
condensate and for locating Tc used in Ref. [69], our estimate from the condensate would go down to
κ = 0.0110(18); hence, taking into account such systematics, the discrepancy with respect to results
with the same lattice discretization appears to be below the 2σ level. Adopting the disconnected chiral
susceptibility in place of the full renormalized one, as in Ref. [113, 115], our estimate from this observable
would go up to κ = 0.0146(41), in better agreement with Ref. [113, 115]. Notice that the results of this
analysis are not extrapolated to the continuum limit.
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FIGURE 2.15: Tentative Analytic continuation from the data obtained by us compared with the data
from heavy ion collisions [82, 83, 84] .

The remaining part of the discrepancy could be possibly attributed to the systematic uncertainties related
to the continuum extrapolation of previous studies. However, we stress that updated investigations by the
same groups lead to results which are consistent with our estimate (see, e.g., Ref. [100]).

We have also considered the effects of the introduction of a nonzero strange quark chemical potential
µs = µl , finding that the curvature stays unchanged within the present accuracy.

However, there is evidence for the presence of quartic contributions in the dependence of Tc on the
imaginary µB in this case. The origin of this difference could be related to the different phase structure
which is found, for imaginary chemical potentials, at the different values of µs. In particular, the so-called
Roberge-Weiss line and the associated non-analytic behavior moves further from the µl = 0 axis when
µs = 0. Anyway, when such contributions are taken into account, or when the range of fitted chemical
potentials around µB = 0 is small enough, the curvature becomes compatible, even if within larger errors,
with that obtained for µs = 0. That means that also for the equilibrium conditions created in heavy ion
collisions, corresponding to µs ∼ 0.25 µl around Tc, one does not expect significant deviations from the
results obtained for µs = 0: a prudent estimate for the curvature in this case is14 κ = 0.0135(20). That
is obtained based on the estimate for µs = 0, with an increased error determined on the basis of the
uncertainty that we have for the curvature extracted at µs = µl .

Finally, the analysis of the continuum extrapolated peak of the chiral susceptibility as a function of
imaginary µB shows no significant variations of the strength of the transition, which could be associated
to a possible nearby critical endpoint present along the pseudo-critical line.

As an addition, in Fig.(2.15) a tentative extrapolation to real µB is presented. The systematic errors are
estimated - quite arbitrarily - assuming that the possible term of order six is comparable with the quartic
term in magnitude at the upper end of the range in µB/T . In the same figure the data for the freeze-out
point determined in [82] is reported, along with the result of a refined analysis [84] and of another recent
determination of the chemical freeze-out point [83]. The black line is the extrapolated critical line, the
darkest red band is the statistical error, the lightest red band is the width of the transition found performing
the continuum limit with method 2, and the intermediate band is the sum of the systematic error and the
error on the scale (which is assumed to be 2.5% [55, 56]). It must be remarked that this assumption is
arbitrary and the value of the analytic continuation to real chemical potentials is only qualitative.

14After completion of this work, Ref. [114] has appeared, reporting the consistent result κ = 0.0149(21).



Chapter 3

At Large ImµB: the Roberge-Weiss
phase transition

3.1 The Roberge-Weiss transition

In the case of QCD with a purely imaginary baryon chemical potential [30, 101, 102, 103, 104, 129], the
partition function is

Z(T,θB) = Tr
(

e−
H
T eiθBB

)
(3.1)

where H is the QCD Hamiltonian, B is the baryon charge and θB = Im(µB)/T . All physical states of the
theory, over which the trace is taken, are globally color neutral and carry an integer valued baryon charge
B, hence Z is 2π-periodic in θB, or alternatively 2π/Nc-periodic in θq = Im(µq)/T , where µq = µB/Nc

is the quark chemical potential and Nc is the number of colors. That can also be proven by making
use of center transformations in the path-integral formulation of the partition function, as we review in
Section 3.3.

Due to the parity and the 2π−periodicity of Z in θB, 〈B〉 will be an odd function of θB with the same
period 2π . This implies that either 〈B〉 is null for θB =±π , or Z has a non-analytic behavior, associated
with first order phase transition lines present for θB = π (or odd multiples of it). These are known as
Roberge-Weiss (RW) transitions [50] and have been widely studied by lattice QCD simulations [42, 54,
101, 102, 103, 104, 108, 111, 123, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139].

In correspondence with such points, analogously to what happens when θB is a multiple of 2π , the
theory is invariant under charge conjugation, but contrary to that case charge conjugation is spontaneously
broken at high T , where the system develops a non-zero expectation value for the imaginary part of the
baryon number density: the temperature TRW where the spontaneous breaking takes place is precisely the
endpoint of the Roberge-Weiss first order transition lines. An alternative point of view about the same
transition is to look at it as a quantum (i.e. zero temperature) transition, with an associated spontaneous
breaking of charge conjugation, driven by the compactification of one of the spatial directions below a
critical size LC = 1/TRW (finite size transition [140, 141]). Since charge conjugation is a Z2 symmetry,
one expects a 3d-Ising universality class if the transition is second order, or alternatively a first order
transition with the development of a latent heat.

46
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The temperature TRW and the critical behavior to which it is related represent universal properties of
strong interactions, directly related to the change in the effective degrees of freedom propagating in the
thermal medium, hence to deconfinement. They can be carefully studied by lattice QCD simulations,
since the path integral measure is real and positive for imaginary chemical potentials. Despite being
related to a critical point located in an unphysical region of the QCD phase diagram, their importance and
relevance to a full understanding of strong interactions stems from various considerations:

• The RW endpoint may influence physics in a critical region around it. Moreover, if at the RW
endpoint a first order transition is present, the endpoint is actually a triple point, with further
departing first order lines, the endpoints of which may be even closer to the µB = 0 axis, with
more interesting consequences.

• Early studies have shown that the RW endpoint transition is first order for small quark masses,
second order for intermediate masses, and again first order for large masses; the three regions are
separated by two tricritical points [130, 131, 132]. The emergence of this interesting structure has
induced many further studies in effective models [142, 143, 144, 145, 146, 147, 148, 149, 150,
151, 152, 153, 154] which try to reproduce the essential features of QCD. Moreover, interesting
proposals have been made on the connection of this phase structure with that present at µB = 0 (the
so-called Columbia plot) and on the possibility to exploit the whole phase structure at imaginary
chemical potential in order to clarify currently open issues on the phase structure at µB = 0, like
the order of the chiral transition for N f = 2 [42, 139].

• Once the RW endpoint has been precisely located, it can be taken as a test ground to compare the
lattice techniques presently used to locate the critical point at real µB, so as to assess their reliability
and guide future research on the subject.

• The relation of the RW endpoint to the other symmetries of QCD, which are present at least in well
defined limits of strong interactions, is an interesting issue by itself, which can help elucidate some
fundamental non-perturbative properties of the theory.

In what follows we study the properties of the RW endpoint by lattice simulations of QCD with physical
quark masses. In Section 3.2 we determine, without continuum limit extrapolation, the location of the
RW-like transition happening in N f = 2+1 QCD when the strange quark chemical potential is set to zero.
In Section 3.4 the location TRW of the proper RW transition (that is, the one that happens when µl = µs =

i π

3 T ) is determined for various lattice spacings, corresponding to temporal extensions Nt = 4,6,8,10, and
then extrapolated to the continuum limit. Moreover we are able to determine its universality class, through
a finite size scaling analysis, at two different lattice spacings, namely Nt = 4,6. Moreover, in order to
approach the issue of the interconnection between chiral symmetry and the RW endpoint, we consider
the relation of the endpoint location to the analytic continuation of the pseudocritical chiral transition
temperature Tc(µB) to imaginary chemical potentials. Finally, we show some preliminary results about
the RW transition towards the chiral limit.

3.1.1 The Roberge Weiss transition in the literature

The Roberge-Weiss N f = 2 transition was recently studied with unimproved staggered fermions on Nt = 4
lattices in [130, 131]. A picture emerged, where in the chiral and infinite mass limits the Roberge-Weiss
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transition would be first order, while it would be second order for intermediate masses (see Fig.1.4 and
the discussion in Chapter 1 for a description of the two situations). For the values of the quark mass where
the transition is first order, the critical point T = Tc, µ = iπT/3 (or, equivalently, µ = iπT ) is actually a
triple point, where the two high-temperature phases (which differ in the sign of the imaginary part of P)
coexist with the low temperature phase, where 〈Im P〉= 0. On this triple point three first order lines join:
the line of the µI,q-driven Z2 transition at high temperature, and the two chiral/deconfinement transition
lines for µI,q < πT/3 and for µI,p > πT/3, one of which is related to the critical line of QCD studied in
the first part of this Thesis 1. These two latter ones may end at a further critical point, or continue until
µI,q = 0: in that case, we would have a first order chiral/deconfining phase transition even at µI,q = 0.

An example of why studying QCD at imaginary chemical potential can be relevant to the µI,q = 0 case is
[42]. In that work the relation between mtric;l (the value of ml below which the chiral transition becomes
first order) and µI,q was studied for N f = 2, taking advantage of the fact that for larger µI,q the value
mtric;l increases, thus reducing the computational cost of the simulations. Assuming that the point where
mtric;l(µ

2
q ) vanishes is a tricritical point [155, 156], data on the mtric;l(µI,q) dependence were interpolated

with a tricritical scaling ansatz, and extrapolated to µ = 0, finding that mtric;l(0) is greater than zero, thus
suggesting that for N f = 2, the chiral phase transition is first order for ml = 0, at least for the Nt = 4
lattice. Anyway, as pointed out in [37], lattice artifacts seem to heavily affect quantitative predictions, in
the sense that transitions are generally weakened towards the continuum limit.

The two values mtric;l
π and mtric;h

π of the pion mass for which the transition becomes first order indicate two
tricritical points (see the bottom plane in Fig.1.2, right). While the fact that at large mass the transition
would be first order is expected, since in that limit quarks decouple and we recover the deconfining
transition in pure gauge SU(3), which has been found to be first order in [41], the fact that it is first
order also in the chiral limit is non trivial. The N f = 3 case was studied in [132], where the Authors
came to similar conclusions. This picture for N f = 2 has been more recently confirmed by simulations
with Wilson fermions on lattices with temporal extension Nt equal to 4 and 6 [54, 138]. Unfortunately,
as already suggested in [132], mtric;l

π and mtric;h
π seem to be heavily affected by UV cutoff effects: in

particular, mtric;l
π decreases as the lattice spacing is decreased. There is no compelling reason why it

should not go to zero in the continuum limit: in that case, the first order region would disappear.

The order of the Roberge-Weiss transition for physical quark masses was studied, in [157], where the
Authors found that on Nt = 4 and Nt = 6 lattices the transition was of the second order type. There is
no direct proof that the transition is second oder in the continuum limit, but the fact that mtric;l

π decreases
towards the continuum limit while mtric;h

π is much larger than the physical value, as suggested in [54, 138]2

suggests that the transition for physical quark masses keeps being of the second order kind even in such
limit.

3.1.2 Our goals

Our goal is to study the nature of the Roberge-Weiss transition as a function of mass, keeping the ratio
ms/ml constant, and equal to the physical value ∼ 28.15. For each value of the masses, we aim to
discriminate between the two possible scenarios: either the transition is first order or it is second order.

1Notice that in the first part of this thesis the theory N f = 2+1 was studied, with (mainly) µs = 0.
2Scale setting in these works (which study non-physical theories) is performed using the method described in [158], based on

the so-called Wilson Flow [159].
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Since the system exhibits a Z2 global symmetry in the order parameter |ImP(~x)|, this means that it falls in
the Ising 3D universality class. The values of the critical exponents can thus either be the first order ones,
or the Ising 3D ones. The critical exponents for a first order transition can be found analytically, while the
ones for a second order transition for the Ising 3D universality class have been found with great accuracy
with numerical simulations [160]. Another way of discriminating between these two possibilities is to
look at the Binder cumulant crossing for various volumes [161, 162]: in this case there is as well a large
literature where the crossing values have been calculated accurately [163].

It must be noted that we are approaching the same kind of chiral limit as in N f = 3, for which in the case
µ = 0 the chiral phase transition has been proven to be first order [36]. If the usual picture holds, where
the critical line ends up at the Roberge-Weiss endpoint and the effect of an imaginary chemical potential
is to strengthen the transition, this means that in such limit the RW endpoint should be a triple point, and
the RW transition should be of the first order kind.

3.1.3 Determination of the order of the transition: Finite size scaling

A commonly used tool in computational statistical physics to find the properties of a phase transition (e.g.
computing the critical exponents or determining precisely the critical point) is finite size scaling. Here
our aim is much simpler: we already know that only two cases are possible, and the critical exponents
for the two cases are already known. We first focus on the second order case. In the following, we just
need to recall the meaning of the ν and γ critical exponents3, which hold in the neighborhood of a critical
point:

• The behaviour of the correlation length as a function of the reduced temperature is

ξ ∝ |t|−ν (3.2)

• The behaviour of the susceptibility as a function of the reduced temperature t = |T −Tc| is

χ ∝ |t|−γ (3.3)

Of course, these relations are valid only in an infinite system or where the size of the system L is much
larger than the correlation length ξ . When the condition ξ << L is not true any more, the fact that the
system has a finite size causes the following effects:

1. The susceptibility of the order parameter will not diverge, but have a maximum, which will be
proportional to Lζ ;

2. The temperature at which the susceptibility of the order parameter is maximal will be different from
the one in the thermodynamic limit. The difference between the finite size maximum temperature
and the transition temperature in the thermodynamic limit will be proportional to L−λ ;

3. At finite system size true phase transitions cannot happen, because the partition function will
always be analytic. This means that any transition will always manifest itself, in a finite-size

3 For a general review on the subject of critical exponents and the scaling relations between them, the reader can refer e.g. to
[164, 165]. The following reminder of finite size scaling is based on [166].
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system, as a crossover which will sharpen more and more as the thermodynamic limit is approached.
The width of this analytical crossover will be proportional to L−θ ;

As we shall immediately see, there is a relation between ζ . λ and θ and the critical exponents γ and ν .
A measure of the violation of the condition ξ << L is given by the ratio ξ/L, which according to Eq.3.2
should be proportional to 1/

(
L1/ν |t|

)
elevated to the ν-th power. Following this line of reasoning, we

expect that the minimum value of |t| for which the behaviour of the system will differ significantly from
the infinite volume limit will be proportional to L−1/ν .
As far as χ is concerned, we can assume that the scaling relation 3.3 will be modified as follows:

χ = ξ
γ/ν

χ0 (L/ξ ) (3.4)

where the function χ0 contains the finite size effects; χ0 is defined to be constant for large x, and so that
when ξ becomes large, χ will saturate: for this it is necessary that χ0(L/ξ ) ∝ (L/ξ )γ/ν when L/ξ << 1.
Making use of Eq.3.2 to get rid of the unknown ξ , Equation 3.4 can be recast in a more convenient form
4 :

χ = Lγ/ν
χ̃0

(
L1/ν t

)
(3.5)

where χ̃0(x) = x−γ χ0(xν) has the property that it tends to a constant for x→ 0. From this relation we can
promptly see the effects of the finite size of the system on the behaviour of χ: moreover, the function

χ̃0(x) = L−γ/ν
χ

(
xL−1/ν

)
(3.6)

does not depend on L, as long as we are in the critical region, where the scaling relations 3.2 and 3.3
hold. Testing this claim is the idea behind the collapse plot method: the possible values of γ and ν are
known a priori, depending on the order of the transition, and we can test the hypothesis that the quantity
L−γ/ν χ

(
xL−1/ν

)
is independent of L in the two cases, that is second order or first order. In the case of

a second order transition, the critical exponents depend on the universality class (in our case, the one of
the three-dimensional Ising model). In the first order case it is possible to calculate the exponents to use
for finite size scaling in a general way, making use of a simple model.

3.1.3.1 The case of a tricritical point

The transition may also take place at a tricritical point, which can be defined as the end point of a
three-phase coexistence line (as a critical point is the end point of a two-phase coexistence line), or as
the point where a first order phase transition becomes of the second order kind. Such a situation can be
described by a Landau-Ginzburg effective theory, where the fourth-order coefficient changes sign in the
correspondence of the tricritical point. Of course, in that case a sixth-order term is necessary to stabilize
the theory. Interestingly enough, the fact that the fourth order term vanishes at the tricritical point makes
the Ginzburg criterion more and more valid the closer to the tricritical point, and this makes the mean
field description more and more valid 5. Anyway, the case in which the pion mass coincides with mtric;l

π

4Actually, we should have two different functions, depending on |t|, for t > 0 and t < 0 respectively, but they can eventually be
combined into one.

5Apart from logarithmic corrections to scaling, which are not shown by the critical indices.
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or mtric;h
π requires a fine tuning of the quark mass, and for this reason the probability of being in this case

is rather low and that situation will not be analyzed here6(for details, refer e.g. to [167], §150).

3.1.3.2 The first order case

In the case of a first order transition, the argument to be used in the study of finite size scaling differs;
in particular, we do not expect the correlation length to diverge. The divergences in thermodynamic
quantities do not arise from the divergence in the correlation length, but from phase coexistence. Nonetheless,
in the case of symmetric first order transitions7 it is possible to obtain an universal function like in the
second order case, and more in general it is possible to assess the most important finite-size effects. Let
us take the example of a field-driven first order transition. We can describe finite size scaling around such
transition between two phases with a simple model, the “double Gaussian approximation” [168]. In the
following, we will restrict the discussion to a symmetric transition, since the generalization is trivial. In
this case, the order parameter will be distributed as

PL(s) = N (β ,H)

(
exp
[
−βLd (s−Msp)

2

2χ

]
+ exp

[
−βLd (s+Msp)

2

2χ

])
exp
[
βLdsH

]
, (3.7)

where±Msp is the average value of the order parameter in the two phases, while χ represents the intensive

susceptibility in each phase and N is the appropriate normalization factor. Notice that s represents the
spatial average over a region of size Ld of a local observable (e.g., the magnetization in the Ising model).
A remark on Eq.(3.7) is in order. Here, the size Ld of the region where s is averaged over must be
small enough so that it contains mostly just one phase, otherwise PL(s) cannot be double peaked. On the
other hand, looking at this model from a Landau-Ginzburg viewpoint, it must be large enough so that the
derivative terms in the Landau free energy can be neglected. Working out the calculations, it is possible
to obtain the mean value 〈s〉PL and the fluctuation of the order parameter, 〈s2〉PL −〈s〉2PL

. Of course, for
the intensive susceptibility of the finite system, from Eq.(3.7) we have 8

χ =
∂ 〈s〉PL

∂H
= βLd [〈s2〉PL −〈s〉

2
PL

]
∝ Ld (3.8)

It can be expected that the maximum of the fluctuations at the phase transition (in this case when H =

0) will be dominated by the distance between the peaks in the order parameter distribution, while the
contribution of χ is a correction that decreases as L−d . Moreover, since in Eq.3.7 the dependence on the
field H appears only through the quantity LdH, it is natural to write

χ = Ld
χ̃0(LdH) , (3.9)

and taking the analogy with Eq. 3.5 we obtain ν = 1/d, γ = 1. The case of temperature-driven first order
transitions has been studied with an approach similar to [168] in [169]. In [169] it is stated that at the
transition the height of the two Gaussians must be equal, instead of the area, which is the assumption

6 If we are close to a tricritical point, we may expect corrections to finite size scaling (which may be significant for small lattice
volumes).

7 That is, where the partition function is symmetric in a scaling variable, e.g., the external field Z(t,h) = Z(t,−h).
8When the size L of the system becomes large enough that different phases can coexist, the situation could be different, but the

configurations where this happens are actually suppressed by interface energy (in d ≥ 1). See also [161] for a discussion about the
effect on PL of phase coexistence.
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made instead in [168]. This last statement was proven to lead to slightly incorrect results in [170, 171]9

by justifying a generalization of [168]. In order to describe temperature-driven first order transitions, we
follow a more general and rigorous approach to finite size scaling for first order transitions which has
been proposed in [170, 171]. The idea is that close to a first order transition 10 , the partition function can
be written as

Z(h,L)'
N

∑
q=1

exp
(
− f ′qLd

)
(3.10)

where f ′q is a “metastable” energy density associated to the phase q (which depends on the external fields
and temperature). When q is a stable phase, f ′q is equal to the actual free energy density β f , while for
unstable phases f ′q > β f . The consequences of this assumption can be worked out in the case of two
phases, with a parameter h driving the transition (which can also be the reduced temperature t, and the
generalization to a higher number of phases is straightforward). It is reasonable to assume that near the
transition (which we assume to happen at h = 0) f ′q can be expanded in powers of h:

f ′q(h) = f ′q +mqh+
1
2

χqh2 +O(h3) . (3.11)

The value of an observable M can be computed as

M(h,L) =
N

∑
q=1

Pq(h)Mq(h) (3.12)

where

Mq(h,L) =−
∂ f ′q(h)

∂h
,Pq(h,L) =

exp
(

f ′q(h)L
d
)

Z(h,L)
(3.13)

From this expression it is easy to work out the results. As an example, we take the case of the q-state
Potts model. As proven in [172], for 2 ≤ q ≤ 4 the model has a second order phase transition, while
for q ≥ 5 the temperature-driven transition is of the first order kind. In this second situation, where the
system has q ordered phases and one disordered phase, Eq. 3.10 becomes

Z(h,L)' qexp
(
−β foLd

)
+ exp

(
−β fdLd

)
. (3.14)

Working out the elementary calculations, it is possible to assess the finite size effects affecting thermodynamic
quantities. In particular, it can be seen that for any kind of first order transition the peak shrinks in width
as ∝ L−d , it grows as ∝ Ld , it is shifted by ∝ L−2d (but for symmetrical phase transition the shift is
proportional to L−3d). For more details, refer to the Theorems and other references in [170, 171].

9 The hypothesis of the two Gaussians having the same height leads to the conclusion that the deviation of the susceptibility
peak position from its infinite-volume value scales as L−d (see [169], Eq.20), while it turns out that, at least in the case of only two
phases coexisting, the right behaviour is L−2d ([170], Eq 3.15).

10It must be reported that, as stated in [171], the results of [170] have been rigorously proven only for a class of models at low
temperature. The conjecture of [171] is that they are valid also at higher temperature where multiple phases coexist with a finite
correlation length.
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3.1.3.3 The Binder cumulant and finite size scaling

Let us consider a system with an order parameter s and close to a second order transition. The order
parameter s follows a probability distribution PL(s). We can define the Binder cumulant as

B4 =
〈(s−〈s〉)4〉
〈(s−〈s〉)2〉2

. (3.15)

In the case where PL(s) is Gaussian (above Tc) we have B4 = 3, while when PL(s) is double peaked (and
peaks have infinitesimal width, like in the T → 0 limit) B4 = 1 instead. Let us follow the analysis of
[161]. We assume the probability distribution PL(s) to satisfy a scaling relation 11

PL(s) = LxP̂P̃(asLy,ξ/L) (3.16)

where P̃ is an universal scaling function, while P̂ and a are constants. From the normalization constraint
one obtains easily x = y, and note that

∫ +∞

−∞

dzP̃(z,ξ/L) = a/P̂ =C0 , (3.17)

for all ξ/L. It is possible to calculate the moments using the same expression for PL(s):

〈sk〉L = LxP̂
∫ +∞

−∞

dsskP̃(asLx,ξ/L) =

= L−kx P̂
ak+1

∫ +∞

−∞

dzzkP̃(z,ξ/L) =

= L−kx P̂
ak+1 fk(ξ/L) , (3.18)

where the functions fk are universal as well. We thus can express B4 as

B4(ξ/L) =
a f4(ξ/L)

P̂ f2(ξ/L)2
. (3.19)

Since ξ diverges at the critical point, the value of B4 at Tc will be independent of L, and it will depend
only on the universality class.

3.2 Location of the Roberge-Weiss-like transition for µs = 0

The presence of the RW transitions places a limitation on the region of imaginary chemical potentials
available to analytic continuation: for high T , only chemical potentials such that θl < π/3 can be used to
investigate the dependence of the free energy for small values of µl , since for θl > π/3 one is exploring
a different analyticity sheet of the free energy, corresponding to a different center sector, even if with
identical and periodically repeated physical properties. The pseudo-critical line itself, in particular,
develops a non-analyticity at θl = π/3: numerical evidence is that it touches the RW endpoint, where it
forms a cusp, and then repeats periodically; such a situation is depicted schematically in Fig.(3.2, bottom
left).

11In [161] PL is actually the probability distribution of s averaged on a Ld cell of the system.
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FIGURE 3.1: Imaginary part of the Polyakov loop as a function of θl at fixed T ≈ 208MeV for µs = µl
and for µs = 0.

When one adopts the setup in which µd = µu ≡ µl 6= 0 and µs = 0, the phase diagram in the T −θl plane
looks different. The strange quark determinant is independent of θl and that breaks the π/3 periodicity
in θl . In particular, as θl is increased, the effective coupling of the up and down quark determinants to
the Polyakov loop will rotate by an angle−θl , while that of the strange quark will stay oriented along the
positive real axis. As a consequence, the critical value of θl at which, in the high T regime, the Polyakov
loop jumps from one sector to the other, will be higher than π/3. Given the residual 2π periodicity
in θl and the symmetry under inversion of θl , the expected phase diagram is depicted schematically in
Fig. (3.2, bottom right): we still have RW-like transition lines at high T , which however take place for
different values of θl (apart from the one at θl = π) and separate sectors of the theory which are not
equivalent to each other.

We have verified this expectation explicitly by monitoring the Polyakov loop as a function of θl in the
two different setups: results are reported in Fig. 3.1, where we plot the imaginary part of the Polyakov
loop (which jumps when the boundary between two different center sectors is crossed) as a function of
θl . While for µs = µl the jump takes place at θl = π/3, as expected, when µs = 0 the jump moves
forward and takes place approximately at θl ' 0.45π , for T = 208MeV. In the regime of asymptotically
high temperatures instead, a perturbative computation performed making use of the one loop effective
potential for the Polyakov loop in the presence of massless quarks, gives θc ≈ 0.482933π .

3.2.1 One loop Polyakov effective potential

As already discussed in Section 1.4.3, the effective potential for the Polyakov loop can be computed in
perturbation theory, obtaining results valid in the limit of very high temperature. Formulas 1.25 and 1.24
can be modified to take the chemical potentials into consideration.
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As noted in Section 2.5, one expects the position of these transitions to change when µu = µd but µs = 0.
This can be explicitly seen by using Eq. (1.25). The potential evaluated on the three cubic roots of the
identity is plotted in Fig. (3.2, upper panel), where θl = Im(µl)/T : the level crossings (corresponding
to sector changes) move with respect to the µl = µs setup, the first one being located at θc ≈ 0.482933π .
For comparison, we report also the analysis for the standard RW case (µs = µu = µd) in Fig. 3.2.
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FIGURE 3.2: Top Left: Effective Polyakov loop potential computed from Eq. (1.26) for µu = µd = µs.
This is actually the same as Fig. 2 of Ref. [50] (or Fig.1.3). Top Right: the same for µu = µd and µs = 0.
The true vacuum potential (plotted on the right) is also reported to allow for a direct comparison of the
two cases. Bottom Row: Sketched phase diagram in the T − θl plane for µs = µl (left) and for µs = 0
(right). Solid lines indicate the RW lines, while the dashed lines corresponds to the analytic continuation
of the pseudo-critical line. In the µs = 0 case the exact location of the RW-like lines, apart from the one
at θl = π , is temperature dependent and known analytically only in the high T limit.

3.3 General framework and numerical setup

Let us now sketch the structure of the phase diagram at imaginary µB. This has already been done in
the introduction, by considering the effective degrees of freedom at work in the different regimes; now
we will proceed through an analysis of the properties of the path integral. In the presence of a purely
baryon chemical potential (i.e. µQ = 0 and µS = 0), one has µu = µd = µs ≡ µq = µB/3. When µq

is purely imaginary, its introduction is equivalent to a global rotation of fermionic boundary conditions
in the temporal direction by an angle θq = Im(µq)/T , therefore one expects at least a 2π-periodicity in
θq (2πNc in θB). However, the actual periodicity is 2π/Nc, since a rotation of the fermionic boundary
conditions by that angle is equivalent to a center transformation on the gauge fields, hence it can be
reabsorbed without modifying the path integral [50].
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Numerical simulations show that such a periodicity is smoothly realized at low temperatures [101, 102,
103, 104]. At high T , instead, since the Polyakov loop P (trace of the temporal Wilson line normalized
by Nc, averaged in space) enters the fermionic determinant expansion multiplied by exp(iθq), the value
of θq selects the true vacuum among the three different minima of the Polyakov loop effective potential,
which are related to each other by center transformations. Hence, phase transitions occur as θq crosses
the boundary between two different center sectors, i.e. for θq = (2k+ 1)π/Nc and k integer (in which
case θB is an odd multiple of π), where 〈P〉 jumps from one center sector to the other [50]; the phase of P

can serve as a possible order parameter in this case. The T -θq phase diagram then consists of a periodic
repetition of first order lines (RW lines) in the high-T regime, which disappear at low T . Therefore
they have an endpoint, or a triple point, at some temperature TRW, where an exact Z2 symmetry breaks
spontaneously. A schematic view of the diagram is reported in Fig. (3.2, lower panel).

An alternative order parameter is represented by any of the quark number densities (where q = u,d,s)

〈nq〉 ≡
1

V4

∂ logZ
∂ µq

(3.20)

where V4 is the four dimensional lattice volume. Since Z is an even function of µB, each 〈nq〉 is odd
and, for purely imaginary µB, it is purely imaginary as well. Invariance under charge conjugation,
or alternatively oddness and the required 2π periodicity in θB, implies that 〈nq〉 vanishes for θB = π

or integer multiples of it, unless a discontinuity takes place at such points, in correspondence of a
spontaneous breaking of charge conjugation invariance. This is exactly what happens at the RW lines, so
that a non-zero 〈nq〉 signals the onset of the RW transition.

In the following, it will be convenient to consider one particular RW line, corresponding to θq = π , for
which the imaginary part of the Polyakov loop, together with the imaginary part of the quark number
density, can be taken as an order parameter. We could in principle define the susceptibility of the
imaginary part of the Polyakov loop as

χ̃Im P ≡ NtN3
s (〈(ImP)2〉−〈ImP〉2) , (3.21)

but this defition has a couple of shortcomings. First of all, the autocorrelation time of Im P above
the transition TRW is very large, because at high temperature the probability of tunnelling between the
configurations where Im P > 0 and Im P < 0 becomes extremely low. This can of course be fixed by
exploiting the Z2 symmetry of the system, imposing the correct result 〈Im P〉 = 0 in Eq. 3.21. But of
course, the susceptibility of the order parameter as defined in this way would not show a peak at TRW :
the issue here is exactly the same as the problem that one faces when studying the Ising model at low
temperature.
A way out is to consider |Im P| as the order parameter. Noting that 〈|Im P|〉 ∼ |〈Im P〉| both in the high
temperature and in the low temperature phase12, it is reasonable to conclude that the susceptibility of
|Im P| will have a peak at the transition.13 The order parameter susceptibility is then defined as

χ|Im P| ≡ NtN3
s (〈(ImP)2〉−〈|ImP|〉2) , (3.22)

12 Actually, when Im P ∼ 0 (for T < TRW ) we have 〈Im P〉 = 0, while 〈|Im P|〉 > 0. This is actually a finite size effect (the
smaller the spatial volume of the lattice, the larger the fluctuations of P). Note that P represents the value averaged in space and
〈. . .〉 represents the Montecarlo average.

13 This would be actually equivalent to use Eq.3.21 in an infinite volume with our current Montecarlo algorithm: then, ergodicity
would be lost and we would end up with 〈|Im P|〉= |〈Im P〉| even at high temperature.
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ν γ γ/ν 1/ν

3D Ising 0.6301(4) 1.2372(5) ∼ 1.963 ∼ 1.587
1st Order 1/3 1 3 3
Tricritical 1/2 1 2 2

TABLE 3.1: The critical exponents relevant for this study (see e.g. [156, 163, 175])“.

where Ns (Nt ) is the spatial (temporal) size in lattice units. The susceptibility χ|Im P| is expected to scale,
moving around the endpoint at fixed Nt and θq, as

χ|Im P| = Nγ/ν
s φ(tN1/ν

s ) , (3.23)

where t = (T −TRW)/TRW is the reduced temperature, which is proportional to (β −βRW) close enough
to the critical point. That means that the quantity χ|Im P|/Nγ/ν

s , measured on different spatial sizes, should
lie on the same curve when plotted against (β −βRW )N1/ν

s . Alternatively, repeating the same reasoning
exposed above for the Polyakov loop, we will consider also the susceptibility of the absolute value of the
imaginary part of the quark number density, which is defined, for every flavor q, by

χq ≡ NtN3
s
(
〈[Im(nq)]

2〉−〈|Im(nq)|〉2
)
, (3.24)

and is expected to show a scaling behavior as in Eq. (3.23).

3.4 Numerical Results for physical quark masses

In this Section we present our numerical results, starting from an analysis of the critical behavior around
the RW endpoint transition, in order to assess its order and universality class on lattices with Nt = 4,6.
Then we will consider also lattices with Nt = 8,10 in order to provide a continuum extrapolated value for
TRW.

Since we are interested in studying the behavior near the phase transition, long time histories are required,
to cope with the critical slowing down (see Fig. 3.3); for the couplings around the critical value, we used
∼ 40−50K unit-length trajectories for each run when performing the finite size analysis.

3.4.1 Finite size scaling and universality class of the transition

The effective theory associated with the spontaneous breaking of the charge conjugation at finite temperature
is a three dimensional theory with Z2 symmetry, so the transition can be either first order or second
order in the three-dimensional Ising universality class. A tricritical scaling is in principle possible
as well; however the tricritical point is just a single point at the boundary of first and second order
regions. As a consequence (apart from the unlikely case of being exactly on it) tricritical indices can
be observed only as scaling corrections, the ultimate large volume behavior being either first order or
Ising 3d [131, 156, 173, 174]. The critical indices that will be used in the following are reported for
convenience in Table 3.1.

We will now present the finite size scaling analysis performed to identify the nature of the transition
on lattices with temporal extent Nt = 4 and 6. As previously discussed, we adopt two different order
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FIGURE 3.3: Monte Carlo histories of |Im P| for Nt = 4 and the β values closest to the peak of χ|Im P|,
showing the peculiar features expected near a second order transition: the increase of the autocorrelation
time and the absence of a double peak structure in the histogram.

parameters, namely the imaginary part of the average Polyakov loop and the quark number density; the
former turned out to have smaller corrections to scaling, so we will start our analysis from the study of
the susceptibility χ|Im P| defined in Eq. (3.22).

Fig. 3.4 shows χ|Im P| obtained on Nt = 4 lattices and rescaled according to Eq. (3.23), using alternatively
the critical indices of the 3d Ising universality class or those corresponding to a first order transition (the
values used for the critical coupling are the ones reported in Table 3.2). Using 3d Ising indices the results
on different volumes collapse on top of each other, whereas this is not the case using first order indices,
which strongly indicates that the transition is second order for Nt = 4. Note that, since we are performing
simulations on a line of constant physics, the mass parameters change with β ; it is thus not possible to
use standard reweighting methods [176, 177]. In Fig. 3.5 we repeat the same analysis using the Polyakov
loop measured on lattices with temporal extent Nt = 6. Again, the 3d-Ising universality class appears
to describe the scaling of the susceptibility of the Polyakov loop significantly better than a first order,
although larger corrections to scaling are present with respect to the Nt = 4 case.

A confirmation of the previous analysis comes from the study of the fourth-order Binder ratio, which in
our case is defined as

B4 =
〈(ImP)4〉
〈(ImP)2〉2

. (3.25)

It is easy to show that, in the thermodynamical limit, B4→ 3 in the absence of a phase transition, while
B4 → 1 if a first order transition is present. At second order transitions B4 assumes non-trivial values,
which are characteristic of the universal critical behavior associated with the transition [161, 162, 163].
For the particular case of the three-dimensional Ising universality class the critical value is B4 = 1.604(1),
see Ref. [175]. From these general properties the following simple procedure follows to locate the critical
endpoint of a line of first order transition: study the behavior of B4 as a function of the coupling for
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different values of the lattice size; the endpoint coupling value will correspond (up to scaling corrections)
to the crossing point of these curves.
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FIGURE 3.6: Binder fourth order ratio of the Polyakov loop imaginary part computed on Nt = 4 lattices
(left) and Nt = 6 lattices (right). The horizontal line denotes the value expected for a second order
transition of the 3d Ising universality class.

In Fig. 3.6 we show the values of B4 in a neighborhood of the critical coupling at three different volumes
both on Nt = 4 and Nt = 6 temporal extent. The behavior of the Binder ratio as a function of β is clearly
the one expected at a critical endpoint and the value at the crossing point is in reasonable agreement with
that expected for a transition of the 3d Ising universality class, while a first order is clearly excluded.
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The same conclusions are obtained by studying the susceptibility of the u quark number density defined
in Eq. (3.24), although in this case the scaling corrections appear to be larger. As an example in Fig. 3.7
we show the behavior of χu on Nt = 4 lattices, rescaled according to Eq. (3.23): again, the 3d-Ising
critical indices are favored. The case of the strange susceptibility χs is similar, as well as the Nt = 6 case.
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FIGURE 3.7: Disconnected susceptibility of the light baryon number computed on Nt = 4 lattices and
rescaled with the critical exponents of the 3d Ising universality class (left) or corresponding to a first
order transition (right).

3.4.2 Critical temperature: continuum extrapolated value

Having established that the RW-transition is second order for physical quark masses and for lattices with
temporal extent Nt = 4 and 6, we now proceed to estimate the continuum value of TRW. To this purpose,
simulations have been performed also on lattices with Nt = 8 and 10, considering a limited number of
spatial volumes (one or two) per simulation setup.

The pseudocritical value of the coupling has been determined for each lattice size by estimating the
position of the maximum of χ|Im P| and χu. To this purpose, we have fitted the peak with a Lorentzian
function:

f (β ) =
a

1+(β −βpc)
2 /c2

. (3.26)

The results for the large volume limit of βpc, denoted by βc, are reported in Table 3.2; the error also
takes into account the systematics related to the choice of the fit range. The volume dependence of the
pseudocritical coupling is very mild for lattices with aspect ratio 4 or larger, with variations at the level
of 0.1% in terms of β (which become 0.5% in terms of temperature), as can be seen in Fig. 3.8 for the
case of the Nt = 4 lattices. The pseudocritical couplings determined by using χ|Im P| or χu have a priori

to coincide only in the thermodynamical limit, however in all the cases the differences between the two
determinations are well below 0.1% and, with the exception of the lattice 4× 163, they are compatible
with each other at one standard deviation.

In order to convert the critical temperatures to physical units we used the lattice spacings values reported
in Tab. 3.2, which are obtained by a spline interpolation of the results presented in [55, 56, 57]. The
systematic uncertainty on these lattice spacings is 2−3% [55, 56, 57] and this is by far the largest source
of error in the final temperature estimates. The results obtained at the different Nt are plotted in Fig. 3.8
together with the linear fit in 1/N2

t , which describes well the approach to the continuum limit and from
which we extract the value 208(4)MeV for the continuum limit of the RW endpoint temperature. Using
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Nt βc Ns a (fm)
4 3.4498(7) 16,24,32 0.2424(6)
6 3.6310(15) 24,32,40 0.1714(3)
8 3.7540(25) 32,40 0.1233(3)
10 3.8600(25) 40 0.0968(2)

TABLE 3.2: Critical values of the coupling for different lattice temporal extents Nt and corresponding
values of the lattice spacing. The reported value of βc is obtained taking into consideration only the
largest value of the lattice spatial extent Ns, and the systematic uncertainties in both the polyakov loop
susceptibility and the baryon number susceptibility maxima for Nt = 4, while for higher values of Nt only
the maximum of the baryon number susceptibility at largest spatial volume has been considered. Only
the statistical error of the lattice spacing is reported in the table, the systematic error is about 2− 3%
[55, 56, 57].

as systematical error the difference between this value and the one obtained using just the three finer
lattices, we get our final estimate TRW = 208(5)MeV.

3.4.3 Relation with the pseudocritical chiral transition line

An interesting issue that remains to be investigated is the relation between the RW endpoint and the
chiral transition. In particular, the question can be posed in the following way: does the pseudocritical
line really get to the RW endpoint, as assumed in Fig. 3.2 and as suggested by early studies on the subject?

A number of investigations appeared recently, reproducing the pseudocritical line for imaginary chemical
potentials at or close to the physical point and with the setup of chemical potentials relevant to the RW
endpoint, i.e. µs = µl = µB/3, see Refs. [113, 115] and also Chapter 2. A possible way to approach the
question is to try extrapolating the location of the pseudocritical line up to θB = π on the basis of those
determinations. To this aim we considered results for Tc(θB) obtained in the first part of this Thesis on
Nt = 8 lattices and adopting the same discretization used in the present study. In Fig. 3.9, we present two
different extrapolations of such data, corresponding to the fit ansatz

Tc(θB) = Tc(1+κ θ
2
B +bθ

4
B + cθ

6
B) (3.27)
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with or without the sixth order term included (a simple linear dependence on θ 2
B has already been

excluded, see the previous Chapter). In both cases one gets reasonably close, within errors, to the RW
endpoint.

Of course, the issue can be checked also directly, by determining the location of the pseudocritical line
exactly at θB = π . To that aim, in Fig. 3.9 we plot the renormalized light chiral susceptibility, defined in
Eq. (2.12) for lattices with temporal extent Nt = 6,8, together with the positions of the RW endpoint as
previously determined on the same lattices. It is clearly seen that the location of the maxima of the chiral
susceptibility is compatible with the position of the RW endpoints. For instance for Nt = 8 and Ns = 32
we obtain, by fitting the chiral susceptibility to a Lorentzian peak, βc = 3.749(3), which is at just one
standard deviation from the RW endpoint coupling reported in Table 3.2.

We can thus confirm, within present errors, evidence that the RW endpoint is located at a point where the
analytic continuation of the pseudocritical line and the RW first order line meet each other. To conclude,
based on this evidence, we have performed a final fit, including terms up to the sixth order in θ 2

B , which
includes the RW endpoint as a part of the pseudocritical line. The result is the dashed line reported in
Fig. 3.9, which has been continued also to the other center sectors, so as to reproduce a realistic version
(i.e. for N f = 2+ 1 QCD with physical quark masses, even if just for Nt = 8) of the phase diagram
sketched in Fig. 3.2.
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terms. Right: Renormalized light chiral susceptibility on Nt = 6 and 8 lattices. The vertical bands denote
the position of the RW endpoint on lattices of the corresponding temporal extent.

3.4.4 Conclusions

We have investigated the properties of the RW endpoint by lattice simulations of N f = 2+ 1 QCD with
physical quark masses and making use of two different order parameters for the transition, namely the
imaginary part of the Polyakov line and the imaginary part of the quark number density, which have led
to consistent results.

The temperature of the endpoint, TRW, has been determined at four different values of the lattice temporal
extent, Nt = 4,6,8,10, from which we have obtained a continuum extrapolated value TRW = 208(5)MeV,
where the error includes both statistical and systematic contributions, stemming mostly from the determination
of the physical scale. That leads to the estimate TRW/Tc = 1.34(7), where the error also takes into account
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the systematics involved in the determination of Tc, originating both from the scale setting and from the
difficulties in defining a critical temperature when no real transition is present. This ratio is significantly
larger than the ones obtained in previous studies; indeed, with unimproved actions, unphysical quark
masses and no extrapolation to the continuum limit, TRW was typically found to be only about 10% larger
than Tc. The larger value is partially due to the larger curvature κ , and partially to the more significant
contribution from non-linear terms in µ2

B (see Eq. (3.27)) which are present in the case µu = µd = µs (see
previous Chapter).

Regarding the order of the transition, our finite size scaling analysis provides evidence that a second order
transition of the 3d-Ising universality class takes place, rather than a first order one, at least for Nt = 4 and
Nt = 6 lattices. Our investigation has been performed at a fixed value of the pion mass, corresponding to
its physical value mπ ' 135 MeV.

Previous studies on the subject, performed in the N f = 2 theory with both staggered and Wilson fermions,
have shown that the order of the transition changes as a function of mπ ; in particular, there are two
tricritical pion masses, mtric.light

π and mtric.heavy
π , and the transition is second order for mtric.light

π < mπ <

mtric.heavy
π and first order for lighter or heavier pion masses. The value of the heavy tricritical mass is

typically well above the GeV scale. The lighter critical pion mass has been found to be mtric.light
π ∼ 400

MeV for standard staggered fermions on Nt = 4 lattices [131], and around 930 and 680 MeV for standard
Wilson fermions on respectively Nt = 4 [54] and Nt = 6 [138] lattices. Given these results, even if we
have studied just the physical value of the pion mass, we can conclude the following: for stout improved
staggered fermions, one has mtric.light

π < 135 MeV on both the Nt = 4 and Nt = 6 lattices. When compared
to previous results, that demonstrates the presence of significant cut-off effects on the values of this
tricritical mass, even when working at fixed Nt but with a different action. Moreover, based on the
observed tendency of the tricritical mass to decrease with the increase of Nt , we suggest that mtric.light

π will
be smaller than mphys

π = 135 MeV in the continuum limit, so that the RW endpoint should be a second
order transition in the continuum limit at the physical pion mass.

We must however remark that the mechanism driving the change of nature of RW endpoint transition,
from second to first order as the pion mass decreases, is still unknown. If such a mechanism is related
to the chiral properties of quarks, unexpected behaviors could occur as the continuum chiral symmetry
group is fully recovered. This is known to happen, at least for staggered fermions, for lattice spacings
well below those explored in the present study (see Ref. [178] for a recent investigation about this issue).

Let us spend a few words about what, in our opinion, future studies should clarify. First of all, one would
like to check the second order nature of the RW endpoint at the physical point on finer lattices, i.e. for
Nt > 6. Then, our study with stout improved staggered fermions should be extended to different values
of the pion mass, in order to locate the values of the tricritical masses mtric.light

π and mtric.heavy
π and possibly

extrapolate them to the continuum limit. Such a program would clarify the universal properties of the
only critical point of strong interactions (in the presence of finite quark masses) that one can predict a

priori, based on the known symmetries of QCD. Preliminary results concerning the chiral limit will be
presented in the next section.

Finally, another open issue regards the relation of the RW critical point to those predicted in well defined
limits of QCD. The relation to the deconfinement transition present in the quenched case is obvious, since
the two transitions trivially coincide in this case and are both related to center symmetry. The relation
to the chiral transition in the limit of massless quarks is far less trivial. Suppose to move (varying the
temperature) along the line θB = π in the presence of massless quarks; in principle one expects two
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aml 0.003 0.0015 0.00075
Ns 16, 20, 24, (32) 16, 20, 24, (32) 16, 20, 24, 28
Nt 4 (48) 4 (48) 4

TABLE 3.3: The combination of the value of the light quark mass ml and number of lattice sites along
the spatial direction Ns that have been used in the simulations towards the chiral limit. We also have run
simulations on large lattices for T = 0 simulations (323× 48). The value of aml for physical mπ range

from aml ' 0.007 for β = 3.40 to aml ' 0.004 for β = 3.50.

different critical temperatures, one at which chiral symmetry is restored, Tχ , and one at which the Z2

charge conjugation symmetry spontaneously breaks, TRW. What is the relation between Tχ and TRW?
Our present results at finite quark masses prove that the location of the peak of the renormalized chiral
susceptibility coincides, within errors, with TRW, see Fig. 3.9, so that the analytic continuation of the
pseudocritical line meets the RW line at its endpoint. However, in order to obtain a definite answer, the
issue should be explored while approaching the chiral limit.

3.5 Towards the chiral limit

In this section we present some preliminary work on the Roberge-Weiss transition in the N f = 3 chiral
limit, which is approached by keeping the ratio between the light and strange bare quark masses fixed
to the physical value ∼ 28.15. Data reported here has been produced with the program briefly described
in Appendix A. Our numerical setup is similar to the one described in the first part of this Thesis, but
while in that case our exploration was carried out for physical quark masses with a scan in µI,B, we here
aim to do a parameter scan in the mass while keeping the chemical potential for all quarks fixed to iπT .
The starting point of this work are the results obtained for physical quark masses in the previous Section,
where it was determined that for the same action used here, for physical values of the quark masses, at
Nt = 4 and 6, the Roberge-Weiss transition is of the second order kind. We decrease the quark mass,
and for each value of the quark masses we do a parameter scan in the inverse coupling β , which allows
us to locate the transition temperature looking at the order parameter |ImP|. For the same values of the
quark masses we repeat these steps on larger lattices in order to perform a finite size scaling analysis.
Since we are approaching the N f = 3 chiral limit and in that limit the chiral phase transition is expected
to be first order, and the Roberge-Weiss has been empirically found to be stronger than the chiral one, it
can be expected that below a certain value of ml the Roberge-Weiss transition will become first order. A
significant achievement here would be to locate such value of ml , which is related to the tricritical pion
mass mtric;l

π . At the time of writing, only data for Nt = 4 are available.

3.5.1 Results for finite size scaling

In the following figures (Figs.3.10, 3.11 and 3.12) the quantity χ|Im P| (See Eq. 3.22) is shown, which
is a measure of the fluctuation of the order parameter ImP. In the figures this quantity, and the inverse
coupling β , are rescaled according to the critical exponents of first order (left figure) or second order in
the Ising 3D universality class (right figure). Rescaling according to tricritical indices is not reported, for
the simple reason that with the precision given we are not able to distinguish between the tricritical and
second order 3D Ising cases. The results for the 3 different mass setups are displayed. The continuous
bands have been produced by making use of the multi-histogram reweighting method [177], and the error
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FIGURE 3.10: Collapse plots for the Polyakov loop susceptibility, at mla = 0.003. Left : Second order
Ising 3D scaling. Right : First order scaling.
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FIGURE 3.11: Collapse plots for the Polyakov loop susceptibility, at mla = 0.0015. Left : Second order
Ising 3D scaling. Right : First order scaling.

bands have been obtained by making use of the jackknife technique associated to the multi-histogram
reweighting. It must be noted that, while for aml = 0.003 and aml = 0.0015 the scaling seems to be
consistent with the second order hypothesis, in the aml = 0.00075 case the L = 24 and L = 28 might
agree better with a first order hypothesis. The whole picture for aml = 0.00075 could also be explained
by the hypothesis that, for this value of the quark mass, we are close to the tricritical point, on the first
order side: a tricritical scaling would indeed fit the data on the smaller lattices, but at larger lattices the
true first order scaling would become evident. However, more data and possibly data coming from larger
lattices are needed to clarify this issue.
A second order of considerations is also related to the rooting procedure. It has indeed been shown that
the chiral limit and the continuum limit may not commute when rooting is used. Besides the evidences
of large cutoff effects, seen e.g. in [54, 138] (but also in [37]), this fact stresses the need to study
finer lattices. Nonetheless, comparing with the results obtained with unimproved staggered fermions on
Nt = 4 lattices for N f = 2 [131], it is already clear that in the current setup the light tricritical mass is
much smaller.

The results for the Binder cumulant B4 are shown in Fig. 3.13. Data for the Binder cumulant should
respect the scaling law

B4(β ) = 1.604+ c1x+O(x2) (3.28)

where x = (β −βc)N1/ν
s and 1.604 is the expected value of B4 at crossing for the Ising 3D universality

class. A fit to Eq. (3.28) does not give completely satisfactory results: maybe lattices with larger spatial
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FIGURE 3.12: Collapse plots for the Polyakov loop susceptibility, at mla = 0.00075. Left : Second order
Ising 3D scaling. Right : First order scaling.
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FIGURE 3.13: Binder cumulant for the imaginary part of the Polyakov loop. Top left: mla = 0.003. Top
Right: mla = 0.0015. Bottom left: mla = 0.00075. In the case of a second order transition, if the spatial
volume is large enough so that the scaling region is reached, the bands should cross at the universal value

B4(βc)∼ 1.604.

dimension Ns are still needed, likely because of the very small quark masses adopted.

3.5.2 The light chiral susceptibility at the RW transition

It is also interesting to look at the chiral properties in the correspondence of the transition. At the time
of writing it is not possible to perform a proper renormalization for the chiral susceptibility as it has
been done for the data at physical mass, because part of the necessary data is missing. In Fig. 3.14 the
maximum values of the chiral susceptibility are shown. Even if the order parameter of the Roberge-Weiss
transition has no clear relation with chiral symmetry, it can be worth noting that the finite size scaling of
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FIGURE 3.14: Left: Maxima of the additively renormalized chiral susceptibility for aml = 0.003 and
ml = 0.0015. Right: Maxima of the bare chiral susceptibility for aml = 0.00075. Both these quantities

are in lattice units.

the chiral susceptibility maxima seems at the time more compatible with a first order transition than with
a second order transition, at least for large volumes. Indeed, speaking of the bulk susceptibility, defined
as in Eq. 2.12, in the case of a second order transition in the 3D Ising universality class the maxima should
decrease as Nγ/ν−3

s ∼ N−1.03
s , while in the first order case the maxima should remain constant.

We also report that the values of the inverse coupling β at the maxima of the chiral susceptibility are also
largely compatible with the corresponding maxima of the Polyakov loop susceptibility.



Chapter 4

Conclusions and Outlooks

In this Thesis the phase diagram of QCD for imaginary chemical potential has been studied. By making
use of analytic continuation, we finally managed to give a reliable estimate of the curvature of the
(pseudo) critical line of QCD at real baryon chemical potential, keeping under control most of the
systematics involved, coming from the definition of the critical line (i.e., the definition of the pseudocritical
temperature as a function of the chemical potential), from the effect of the strange quark chemical
potential and from the continuum limit procedure. We obtained the value κ = 0.0135(15). While it is
reassuring that the results are compatible with the ones from the latest works appeared in literature (which
use as well the method of analytic continuation from imaginary chemical potential), it must be noted that
there appears to be a discrepancy with older determinations obtained with the Taylor expansion method.
As the work presented here suggests, this discrepancy could be partially explained by methodological
differences in the choice of the observables and in the definition of the critical temperature used in those
works. It must be noted, though, that the recent works based on analytic continuation are quite more
“mature” than the previous ones based on Taylor expansion, so it would be reasonable to carry over a
study of the subject with Taylor expansion the same level of accuracy reached with analytic continuation.
This would allow to have yet another confirmation of these results, excluding unforeseen systematic
issues in analytic continuation.

Of course, the general structure of the QCD phase diagram at large finite density remains unknown and
theoretically not understood. From the experimental side, a number of facilities have been planned and
are becoming operational to study different regions of the phase diagram, especially at very large baryon
chemical potential. Unfortunately, at the moment the theoretical tools to study that region of the phase
diagram are not mature enough to provide reliable results, but many techniques are being developed that
could eventually be used to tame the sign problem. It must be also noted that the bridge connecting
equilibrium physics with the experimental observables is extremely complex, and still deserves more
study and development.

The second part of this Thesis concerned the Roberge-Weiss transition. We have studied it for physical
quark masses, locating the critical temperature in the continuum limit (TRW = 208(5) MeV) and determining
the order of the transition, which appears to be of the second order kind. An interesting issue is the
determination of the properties of the Roberge-Weiss transition as a function of the quark masses. This
topic has been studied recently by making use of different discretizations and on Nt = 4 and 6 lattices. In
the case of unimproved Wilson fermions, a large cutoff dependence of both the upper and lower tricritical
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mass has been found by other groups. We decided to approach the chiral limit keeping the ratio between
the light and the strange bare quark masses constant and equal to the one at the physical point. Our
preliminary results for Nt = 4 do not show any clear evidence that the tricritical mass is contained in the
mass interval we have explored. However, we established that the tricritic mass is much smaller than
the one found in previous works with two flavors of unimproved staggered fermions on lattices with the
same temporal extension Nt . It is anyway expected that cutoff effects will be important: for this reason,
a natural and necessary next step is to study lattices with larger temporal extensions, besides increasing
statistics in the existing datasets.



Appendix A

Implementation of a full dynamical
fermions Monte Carlo with Hybrid
parallelism (OpenAcc and MPI)

A.1 Numerical challenges of Lattice QCD

LQCD uses the Feynman path-integral quantization and approximates the infinite dimensional path-integral
by a finite dimensional integral: continuous space-time is replaced by a finite lattice of sizes Lt , Lx, Ly,
Lz and lattice spacing a. In order to maintain gauge invariance, the variables Uµ(n) associated with the
gauge fields are elements of the SU(3) group and live on the links of the lattice; the quark fields ψ(n) live
on the lattice sites and transform under the gauge group as 3−dimensional complex vectors[179]. The
fundamental problem of LQCD is the evaluation of expectation values of given functions of the fields,
O[U ], that is integrals of the form

〈Ô〉= 1
Z

∫
DUO[U ]det(M[U ])e−Sg[U ] , Z =

∫
DU det(M[U ])e−Sg[U ] ; (A.1)

the exponent Sg is the discretization of the action of the gauge fields (usually written as a sum of traces
of products of Uµ(n) along closed loops) and det(M) describes the gluon-quark interaction. Here, M[U ]

is a large and sparse structured matrix (i.e. containing both space-time and color indexes) which is the
discretization of the continuum fermion operator M ∼ m I+D where m is the fermion mass, multiplying
the identity operator, and D is the Dirac operator, which is constructed in terms of covariant derivatives.
The integral in DU extends over all the Uµ(n) variables on the lattice using the Haar measure of SU(3).
Eq. (A.1) refers to a single quark species (flavor); in the realistic case of multiple flavors1, one has to
introduce a separate determinant for each flavor.

This formulation makes contact with a standard problem in statistical mechanics: importance sampling of
the distribution det(M[U ])e−Sg[U ]. What is non-standard is the form of this distribution and in particular

1At present, we have experimental evidence of 6 different flavors in Nature, usually named with the letters u, d, s, c, b, t and
ordered by increasing quark mass. In a realistic simulation, one usually takes into account the first 3 (or 4, at most) flavors, since
the heaviest species give a negligible contribution to the low-energy dynamics of the theory.
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the presence of the determinant. The best strategy devised so far to cope with this problem is to introduce
the so called pseudo fermion fields[180] φ and rewrite the integral as follows:∫

DUO[U ]det(M[U ])e−Sg[U ]
∝

∫
DUDφ O[U ]exp

(
−Sg[U ]−φ

†M[U ]−1
φ
)

; (A.2)

the action is still a non-local function of the field variables, but the computational burden required for
the solution of a large sparse linear system is much lower than the one needed for the computation of its
determinant.

The explicit form of Sg[U ] and M[U ] is not fully determined, as these functions only have the constraint
to go over to the correct continuum limit as the lattice spacing goes to zero. Much in the same way as
several discretization schemes exist for the numerical solution of a partial differential equation, several
discretization schemes of the QCD action exist. Here, we consider a specific state-of-the-art discretization,
the tree-level Symanzik improved action[5, 6] for the gauge part and the stout-improved[17] “staggered”
action for the fermion part. Staggered actions have a residual degeneracy, that has to be removed by
taking the 4−th root of the determinant. So, Eq. (A.2) becomes in the staggered case∫

DUDφ O[U ]exp
(
−Sg[U ]−φ

†M[U ]−1/4
φ
)
. (A.3)

A.1.1 Why LQCD is a computational grand challenge

The physical system that one would like to simulate by the lattice box has a characteristic physical length
ξ , which is of the order of 10−15 m (the size of a hadron). In order to reduce systematic effects related to
discretization and to the finite box size, one would like that, at the same time, the lattice spacing a be much
smaller, and the box size La much larger than ξ , i.e. a� ξ � La. Making the reasonable approximation
that� translates into one order of magnitude means that the number of sites in each direction should be
' 102; the corresponding fermion matrix, considering also internal (e.g., color) indexes, has a dimension
slightly exceeding 108×108; note that it is a sparse matrix, since the discretization of the Dirac operator
D connects only neighbor lattice sites. In finite temperature simulations the size of the lattice is typically
smaller, since in that case the temporal direction is shortened and equal to the inverse of the temperature,
1/T .

The most computationally demanding task in the typical LQCD algorithm is the solution of a linear
system involving the fermion matrix M. The numerical difficulty of this problem is fixed by the condition
number of M, hence, since the highest eigenvalue is typically O(1), by the smallest eigenvalue of M. Here
the physical properties of QCD play a significant role: the eigenvalues of the Dirac operator are dense
around zero, a property related to the so-called spontaneous breaking of chiral symmetry, so the smallest
eigenvalue is set by am where m is quark mass. Since Nature provides us with two quark flavors (u and
d quarks) whose mass is significantly lower (by two orders of magnitude) than other energy scales of the
theory, typical values of am are very small, resulting in a bad condition number (κ & 105 being a typical
value). Also regarding this aspect, the situation becomes better when one is interested in the regime of
very high temperatures, since in that case the spontaneous breaking of chiral symmetry disappears, the
minimum eigenvalue of D is non-zero, and the condition number significantly improves.
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A.1.2 Numerical algorithms for LQCD

In LQCD, the usual local updates adopted in statistical mechanics scale badly with the volume, as the
action of Eq. (A.2) is non-local. This problem is partly solved by the Hybrid Monte Carlo (HMC)
algorithm[181]; in HMC we associate fake conjugate momenta – entering quadratically in the action –
to each degree of freedom of the system. For an SU(3) gauge theory, momenta conjugate to the link
variable are again 3×3 matrices Hµ(n) associated to each link of the lattice, this time living in the group
algebra (hence Hermitian and traceless). Eq. (A.3) is rewritten as

∫
DUDφDHO[U ]exp

(
−1

2
H2−Sg[U ]−φ

†M[U ]−1/4
φ

)
, (A.4)

where the momenta term is a shorthand to indicate the sum of −Tr(Hµ(n)2)/2 over the whole lattice.
The update then proceeds as follows:

1. random Gaussian initial momenta H and pseudo fermions φ are generated;

2. starting from the initial configuration and momenta (U,H), a new state (U ′,H ′) is generated by
integrating the equations of motion (to some accuracy: precision is not paramount, but reversibility
is);

3. the new state (U ′,H ′) is accepted with probability e−∆S, where ∆S is the change of the total (i.e.
included the momenta) action.

Step 2 is an unphysical evolution in a fictitious time and, under mild conditions on the numerical integration
of the equations of motion, it can be shown to satisfy the detailed balance principle[181, 182], so it
provides a stochastically exact way to estimate the integral in Eq. (A.2). The more time consuming steps
of the update are the ones that involve the non-local term in the exponent of Eq. (A.2). In particular, the
most time consuming single step of the whole algorithm is the solution of a linear system

M[U ]ϕ = b . (A.5)

This calculation is needed to compute the forces appearing in the equations of motion and also to evaluate
∆S, and one usually resorts to Krylov solvers. In the case of staggered fermions, corresponding to
Eq. (A.3), it is customary to use the so-called Rational HMC (RHMC) algorithm[124, 125, 126], in
which the algebraic matrix function appearing in Eq. (A.3) is approximated to machine precision by a
rational function. In this case one replaces Eq. (A.5) by r equations (r is the order of the approximation
adopted)

(M[U ]+σi)ϕi = b , i ∈ {1, . . . ,r} , (A.6)

where the real numbers σi are the poles of the rational approximations. These equations can again be
solved by using Krylov methods: by exploiting the shift-invariance of the Krylov subspace it is possible
to write efficient algorithms that solve all the equations appearing in (A.6) at the same time, using at each
iteration only one matrix-vector product[183].

For most of the discretizations adopted in QCD (and in particular for the one we use), the matrix M[U ]

can be written in block form

M = mI +

(
0 Doe

Deo 0

)
, D†

oe =−Deo ; (A.7)
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matrices Doe and Deo connect only even and odd sites. It is thus convenient to use an even/odd preconditioning[184,
185]; in this case, Eq. (A.5) is replaced by:

(m2 I−DeoDoe)ϕe = be; (A.8)

ϕe is defined only on even sites and the matrix is positive definite (because of Eq. (A.7)), so we can use
the simplest of the Krylov solvers: the conjugate gradient (or its shifted counterpart).

Over the years, many improvements of this basic scheme have been developed; these are instrumental
in reducing the computational cost of actual simulations but their implementation is straightforward,
once the basic steps of the “naive” code are ready. For this reason we will not discuss in the following
the details of multi-step integrators[186, 187], improved integrators[188, 189, 190], multiple pseudo
fermions[126] or the use of different rational approximations and stopping residuals in different parts of
the HMC[125], even if our code uses all these improvements.

A.1.3 Data structures and computational challenges

Our most important data structures are the collection of all gauge variables Uµ(n) (elements of the group
of SU(3) matrices, one for each link of the four-dimensional lattice) and of the pseudo fermion fields
φ(n) (3−dimensional complex vectors, one for each even site of the lattice when using the even/odd
preconditioning). We also need many derived and temporary data structures, such as:

1. the configurations corresponding to different stout levels (U (k)
µ (n), again SU(3) matrices), used

in the computation of the force (typically less than five stout levels are used) and the momenta
configuration (which are 3×3 Hermitian traceless matrices);

2. some auxiliary structures needed to compute the force acting on the gauge variables, like the so
called “staples” Σ

(k)
µ (n) and the Γµ(n) and Λµ(n) matrices[17]; Σ

(k)
µ (n) and Γµ(n) are generic 3×3

complex matrices and Λµ(n) are 3×3 Hermitian traceless matrices;

3. the solutions ϕi of Eq. (A.6) and some auxiliary pseudo fermion-like structure needed in the Krylov
solver.

At the lowest level, almost all functions repeatedly multiply two 3× 3 complex matrices (e.g., in the
update of the gauge part), or a 3× 3 complex matrix and a 3−dimensional complex vector (e.g., in
the Krylov solver) or compute dot products and linear combinations of complex 3−vectors. All these
operations have low computational intensity, so it is convenient to compress as much as possible all basic
structures by exploiting their algebraic properties. The prototypical example is Uµ(n): one only stores
the first two rows of the matrix and recovers the third one on the fly as the complex conjugate of the
wedge product of the first two rows[191]. This overhead is negligible with respect to the gain induced, at
least for GPUs, by the reduction of the memory transfer[192, 193]2.

At a higher level the single most time consuming function is the Krylov solver, which may take 40 . . .80%
of the total execution time of a realistic simulation (depending e.g. on the value of the temperature) and
consists basically of repeated applications3 of the Doe and Deo matrices defined in Eq. (A.7), together

2A priori it would be possible to do even better, i.e. to store just 8 real numbers, but in this case the reconstruction algorithm
presents some instabilities[192].

3typically 102÷103 iterations are needed to reach convergence, depending on the temperature.
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with some linear algebra on the pseudo fermion vectors (basically zaxpy-like functions). An efficient
implementation of Deo and Doe multiplies is then of paramount importance, the effectiveness of this
operation being often taken as a key figure of merit in the LQCD community.

A.2 Gauge and Fermion improvements

A.2.1 Stout Fermions

In this section we will just recall the basics of the stouting procedure (for a full discussion, the reader
can refer to [17] and also look into the MILC code [194]). Stouting is a way to smooth the gauge
configuration. This aim, as in the case of cooling and in the so-called Wilson flow, is reached by a
procedure to reduce the value of the action. In the case of cooling, the new link is chosen as the one
which minimizes the local contribution to the action 4: the new link is in principle independent from the
old one. In the case of Wilson flow (or Symanzik flow) and stouting, the derivative of the Wilson (or
Symanzik) gauge action with respect to the link is computed, and the link is modified in the “direction”
opposite to the gradient in order to approach the local minimum of the action. While Wilson flow is a
continuous process, stouting happens in finite steps. The stouted links are related to the standard links
through the equation

U (n+1)
i;ν

= exp
(

iQ(n)
i;ν

)
U (n)

i;ν
, (A.9)

where Q(n)
i;ν

is a matrix which is linearly dependent on the staples C(n)
i;ν

, which depend linearly on a
parameter ρ that in our case is equal for all staples in all directions. For small enough values of ρ ,
stouting is also an “accurate” integrator of Wilson Flow, while for too large values of ρ the stouting
procedure does not converge. The maximum value of ρ by which stouting is stable is 0.15, which is also
the one we have used in our simulations.

While the links entering the Dirac operator are the stouted ones, we need to compute the force on the
original links. Since the stouted links are an analytic function of the original ones, it is possible to use the
chain rule to obtain the force acting on the original links. The algorithm to do that is quite involved and
it has to cope with some numerical instabilities, some of which are solved in the original paper [17], and
some of which have instead been pointed out and solved in the MILC code [194] and in the Nissa code
[195].

A.2.2 Tree Level Symanzik improvement

The Symanzik improvement program for the Gauge part of the action can be carried out. In addition
to the 4-link loop Gauge-invariant term represented by the plaquettes, 6-link loop terms can be included
in the action. There are 3 of such terms, inequivalent from the point of view of lattice symmetries. In
our choice, only the planar loops are considered [5, 6]. In the molecular dynamics equations, this entails
having new terms - not only the usual 3-link staples, but also two geometrically inequivalent kinds of
5-link staples (which actually result in 3 stencil-wise inequivalent staples, and thus 3 different functions).

4Actually, this is what is done with SU(2) links. With SU(3) links, the procedure is iterated over the 3 subgroups.
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FIGURE A.1: Memory data layout for vectors, in the multi rank setup (in the single process case, the
halo and border sections are missing). When using the tree level Symanzik (“TlSym”) improvement for
the gauge part of the action, the gauge halos and borders have to be twice as big w.r.t. the fermion one.
Notice that each component is a complex value. See sections A.3.1 and A.3.3 for details.

A.3 OpenAcc implementation of the Lattice QCD code

The advantage of the OpenAcc framework over CUDA is the promise that a code written in the plain
C language can be compiled and run in a multi threaded fashion on a variety of architectures just by
annotating it with #pragma constructs. In this regard, the idea is very similar to OpenMP, but at the
moment a difference still exists in the sense that OpenAcc supports GPUs, while OpenMP targets either
multi-core CPUs or many-core devices, like Intel MICs. It is expected that either the two standards will
converge in the future, or the OpenMP standard will incorporate OpenAcc constructs (or at least their
logic).

In this section we describe the implementation of our LQCD code. Two implementations of the same
algorithm were already available [196]: a C++ version targeting single-core CPUs and a C/CUDA for
Nvidia GPUs. The two implementations shared only a negligible part of the code, also because the
C/CUDA version had been aggressively optimized making also use of CUDA-specific features. Another
implementation written in C++ and making use of OpenMP and MPI have been used for running on large
clusters of CPUs [195].
In the following we describe another implementation using OpenAcc framework target to run on a cluster
of GPUs. We first describe the data-structures used, then the implementation target to run on single rank,
and finally that for a multi rank machine.

A.3.1 Memory allocation structure

Data structures plays an important role on performances [197] and are a key choice in implementation
of a new code. In [198], we have analyzed the impact of data-structures for LQCD code, and we have
shown that on GPUs a Structure of Arrays (SoA) memory data layout gives the best performances. This
because the SoA format allow to process in parallel many sites of application domain (the lattice, in our
case). This is also becoming more and more relevant also on CPUs, given the increase in the length of
vector instructions. For this reason all data structures are implemented following the SoA paradigm.

In our implementation, we use the C99 double complex as basic data-type of application data-domain:
this allows us to make use of built-in complex operators of the C library without loss of performance and
making coding easier and more readable without loss of performance. The pseudo-fermion variables,
which are defined only on the even half of the lattice sites, have been implemented with the vec3 soa as
shown in figure A.1. The fact that all the sides of the lattice are even assures that the number of even
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FIGURE A.2: Memory data layout for the data structures of SU(3), which is implemented “as a structure
containing 3 vectors. On architectures where the algorithm is severely memory bound one can avoid

reading and writing the r2 member, when the unitarity constraint is satisfied.

lattice sites is half of the sites in the local lattice (i.e. the part of the lattice which will be processed by the
present rank), that is LNH SIZEH. For each even lattice site the pseudo fermion field has three complex
components (the r,g and b “colors” of QCD). We implemented the this data structure using the SoA
approach, adopting a lexicographical ordering of the even sites. The index idxh in the lexicographical
ordering is calculated as

idxh = (int)
x0 +LNH N0[x1 +LNH N1(x2 +LNH N2x3)]

2
. (A.10)

For several reasons which will be clear in the following, we decided to allow for all possible freedom in
the mapping of the physical directions x,y,z and τ to the logical directions x0,x1,x2 and x3.
The data structures representing the “staples” and the Γµ (a field that is necessary in the stouting procedure,
see [17]), which are GL(3) matrices, are stored in memory making use of the su3 soa data type5 a
collection of 3 vec3 soa structures. The number of matrices that must be stored in memory is equal to
the number of links in the lattice, which is equal to 8 LNH SIZEH: this means that an array of 8 su3 soa

elements is required.
The gauge links configurations, i.e. the set of all gauge links U and necessary copies or stouted versions
of it, are stored in memory as an array of 8 su3 soa structures. It must be remarked that the gauge links
are SU(3) matrices with unitarity property implying that r2 = (r0∧ r1)∗. This property can be used to
reduce the bandwidth needed by a factor of 1/3 on architectures where the algorithm is severely memory
bound.

Other data structures are needed to store in memory traceless Hermitian matrices or traceless anti-Hermitian
3×3 matrices. In order to store these, only 8 real numbers per matrix are needed: the 3 complex numbers
above the diagonal and the first two elements of the diagonal, which are simple real (imaginary) numbers
for (anti) Hermitian traceless matrices. These data structures have been implemented according to the

5Here the name of the data type is slightly misleading, since this data structure is used to store GL(3) matrices, while actual
SU(3) matrices require in principle less memory.
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SoA scheme: the structures thmat soa and tamat soa are made of 3 vectors of double complex numbers
and of 2 vectors of double numbers, in a similar fashion to vec3 soa.

In the single rank implementation the data movements between device and host are negligible, with
significant transfers happening only at the beginning and at the end of the program, and managed with
the enter data and exit data directives.

A.3.2 Implementation of the full algorithm

First, to assess the level of performance achievable with OpenAcc, we implemented a benchmark containing
an OpenAcc version of the Dirac Operator, which in some cases (e.g., low temperature simulations) can
account for up to 80% of the compute time. The Dirac operator is made up of three functions: deo,
doe and a zaxpy-like function (which is negligible in terms of computation time). A direct measurement
indicated that the performance of the OpenAcc versions of the double precision functions deo and doe

functions were on par with the CUDA ones.

After this promising start [198], we proceeded to implement the full algorithm in OpenAcc, as it has been
briefly described in Section A.1.2.

The next step has been the introduction of the action improvements to the algorithm, the aim of which
is to reduce discretization errors. The improvements have been of two kinds: on the fermionic part, and
on the gauge part. On the fermionic part, the improvement is the introduction of stouting, along the lines
described in [17]: in the fermionic part of the action, the gauge links are replaced by a spatially smeared
version of themselves with the positive side effect of reducing the condition number of the Dirac operator,
thus making the solution of the linear systems in Eq.(A.8) faster. On the gauge part, the improvement
consists in the introduction of rectangle terms in the action in Eq. (A.1). The implementation of the
improvements consists of two sets of functions: the ones needed for the evaluation of the action, and
the ones needed for the evaluation of the forces that act on momenta during the molecular dynamics
evolution.

The development of these new features started with coding the logic of the improvements, then testing
the results running it in a single thread fashion. Once we made sure that the results were correct, we
could switch acceleration on making use of OpenAcc, annotating the code with #pragma constructs.

In order to have a more readable and duplicate-less code, the most complex kernels have been split in
a number of functions. While small functions can be used in kernels when declared as static inline, for
large ones we had to use the routine seq OpenAcc directive (because large functions won’t be inlined)6.

Kernels have been parallelized on the device following two possible approaches. The ones which have
to access data pertaining to nearest neighbors (and/or second neighbors) have been parallelized using the
#pragma acc loop directive on 4 nested cycles (one per dimension). This allowed us to use a 3D thread
blocks, which should improve data reuse between threads thus reducing the bandwidth need, which is
our major concern here. The ones which instead consisted of only single-site operations have been
parallelized making use of a single cycle, acting on the necessary set of lattice sites.

Here we proceed to a more detailed description of it in Algorithms 1,2, 3,4, 5 and 6 in order to give the
context for the content of the present section.

6This is also necessary when inlining is disabled, e.g. at low levels of optimization.



OpenAcc implementation of a LQCD algorithm 78

In Algorithm 1 the main computational tasks are shown: the most consuming is Molecular Dynamics at
step 6, which is described in Algorithm 2. A non negligible compute time is also taken by the heatbath
generation of the pseudo fermions (at step 4) and the calculation of the final action (at step 7). The steps
4 and 7 consist basically in a call to the multi shift inverter function (described in Algorithm 6), with a
high target accuracy.

Algorithm 1 High level scheme of the algorithm
1: Read gauge configuration U
2: Create momenta p
3: Smooth Uµ STOUT LEVEL times
4: Generate pseudo fermions with heat bath
5: Calculation of initial action
6: Molecular Dynamics [possibly in single precision]
7: Calculate action variation ∆S
8: Montecarlo step accepted with probability min(1,e−∆S)
9: Take measurements

The outer level of the multistep integrator for Molecular Dynamic evolution is described in Algorithm 2.
In zero temperature simulations or for small quark masses usually the costliest parts in terms of compute
time are the calculations of the fermion force, which is detailed in Algorithm 4. In high temperature
simulations the load is shifted more inside the Gauge cycles, described in Algorithm 3.

Algorithm 2 MD evolution - 2nd order MN integrator (outer cycle),[190]
1: Fermion Force Calculation
2: Evolve momenta for λ∆T/Nmd {λ = 0.1931833275037836, [189]}
3: for i = 1 to Nmd−1 do
4: Gauge cycle (∆T/2Nmd)
5: Fermion Force Calculation
6: Evolve momenta for (1−2λ )∆T/Nmd
7: Gauge cycle (∆T/2Nmd)
8: Fermion Force Calculation
9: Evolve momenta for 2λ∆T/Nmd

10: end for
11: Gauge cycle (∆T/2Nmd)
12: Fermion Force Calculation
13: Evolve momenta for (1−2λ )∆T/Nmd
14: Gauge cycle (∆T/2Nmd)
15: Fermion Force Calculation
16: Evolve momenta for λ∆T/2Nmd

As can be seen in Algorithm 3, the actual evolution of the gauge configuration happens inside the inner
gauge cycle, where the gauge contribution to the momenta evolution is also calculated. Among the tasks
in Algorithm 3, the computation of staples in the gauge force calculation is the most time consuming. It
consists of calculating 6 products of 3 and 5 SU(3) matrices representing links on C-shaped paths on the
lattice. These functions have been parallelized using the #pragma acc loop directive on 4 nested cycles
(one per dimension). This allowed us to use a 3D thread blocks, which should improve data reuse between
threads thus reducing the bandwidth need, which is our major concern here. We shall also remark that
since second-nearest-neighbor-site addressing is needed, for the sake of simplicity we decided to use
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indirect addressing7. Notice that the function PPMMM 5mat prod (as well as similar ones) has to be
declared with #pragma acc routine seq to be used inside a kernel.

#pragma acc routine seq

void PPMMM_5mat_prod([...]

[...]

void calc_loc_improved_staples_typeA_nnptrick_all_bulk(

__restrict const su3_soa * const u,

__restrict su3_soa * const loc_stap )

{

int d0, d1, d2, d3, mu, iter;

#pragma acc kernels present(u) present(loc_stap) present(nnp_openacc)

present(nnm_openacc)

#pragma acc loop independent gang

for(d3=D3_HALO+GAUGE_HALO; d3<nd3-D3_HALO-GAUGE_HALO; d3++){

[...]

#pragma acc loop independent vector(32)

for(d0=0; d0 < nd0; d0++) {

#pragma acc loop seq

for(mu=0; mu<4; mu++){

[...]

const int idx_pmu = nnp_openacc[idxh][mu][parity];

// r+mu

[...]

PPMMM_5mat_prod(&u[dir_nu_1R], idx_pmu, [...]

[...]

LISTING A.1: The implementation of a kind of staple calculation.

Fermion force calculation is sketched in Algorithm 4. The costliest computation here is solving the
equations (M +σ)xσ = b, by making use of the multi shift solver (Algorithm 6). It has to be pointed
out that, in this case, it is not necessary to calculate the solutions to the best possible accuracy: as long
as reversibility is granted, the Metropolis step assures the stochastic correctness of the algorithm [125].
Moreover, when performing molecular dynamics in single precision, the target accuracy for the solutions
has to be set to a reasonable level. It has to be remarked that the task at step 12 needs the stouted gauge
configuration U s−1 in order to compute iF̃(s−1) from iF̃(s“): this means that either the full stack of stouted
gauge configurations U s must be kept in memory, or they have to be computed again at every time. We
opted for the first solution for performance reasons, but it has to be said that in some cases memory can
be a concern (and this is one of the most compelling reasons to go for a multi-gpu setup).

7 The code would be greatly more complicated if using direct addressing, also because of some limitations in the coding options
necessary to avoid branches that would destroy thread coherence.
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Algorithm 3 MD Evolution - 2nd order MN integrator - Gauge cycle (for a time ∆gT )
1: Gauge Force Calculation
2: Evolve momenta for λ∆gT/Ngs

 Gauge Block type 0
3: Evolve U for ∆gT/(2Ngs)
4: for j = 0 to Ngs−1 do
5: Gauge Force Calculation
6: Evolve momenta for (1−2λ )∆gT/Ngs

 Gauge Block type 1
7: Evolve U for ∆gT/(2Ngs)
8: Gauge Force Calculation
9: Evolve momenta for 2λ∆gT/Ngs

 Gauge Block type 2
10: Evolve U for ∆gT/(2Ngs)
11: end for
12: Gauge Force Calculation
13: Evolve momenta for (1−2λ )∆gT/Ngs

 Gauge Block type 3
14: Evolve U for ∆gT/(2Ngs)
15: Gauge Force Calculation
16: Evolve momenta for λ∆gT/Ngs

Algorithm 4 The fermion force calculation
1: for s = 1 to STOUT LEVEL do
2: Calculate U (s) from U (s−1) {[17]}
3: end for
4: iF̃(STOUT LEVEL) = 0
5: for ips = 1 to Nps do
6: Solve (M+σ)xσ = b {See Algorithm 6}
7: Use xσ to compute iF̃ips on U (STOUT LEVEL)

8: iF̃ips = exp
(
iφips

)
iF̃ips {φips is the U(1) external phase associated to the pseudofermion i}

9: iF̃(STOUT LEVEL)+= iF̃ips

10: end for
11: for s = STOUT LEVEL to 1 do
12: Calculate iF̃(s−1) from iF̃(s) {[17]}
13: end for
14: iF = traceless anti-hermitean part of [UF̃ ]

The Conjugate Gradient solver is described in Algorithm 5. It is used exclusively during measurements:
note that in case it is used during the Molecular Dynamics evolution the trial solution must be chosen so
to maintain time reversibility when convergence is incomplete. A possible choice for the trial solution
is the null vector. The matrix-vector multiplication at step 6 is by far the most time consuming task,
followed by the zaxpy operations at steps 9 and 10.

The Multi-Shift Conjugate gradient solver is described in Algorithm 6. The matrix-vector multiplication
at step 9 is usually the most time consuming task, with the multiple zaxpy-like operations at steps 15
and 24. These kernels have to perform operations of the kind of pσ = γσ pσ + ζ σ

n r on a number of
vectors σ = 1, . . . ,N that may range from about 5 to about 20 when the solver is started, then decreases
when a solution has been computed with the required precision, and finally reaches 0 when the algorithm
terminates. The simplest solution to get this task done is to write a single kernel which will be launched
N times, but for such a light kernel the overhead is extremely significant (around 10 µs for synchronous
mode, which would have to be paid N times). For this reason, we decided to write a kernel that also
includes the iterations on N vectors. It must be remarked that there are some possible optimizations,
that are still not implemented in the code. For example, it has been noted that the solutions that are the
slowest to converge give also a smaller contribution to the fermion force. This suggests that the accuracy
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Algorithm 5 The CG solver algorithm for the equation Mx = b. Lower case Latin letters represent
vectors, Greek letters represent scalars.

1: s = Mx0 // x0 is the trial solution
2: r = b− s
3: p = r
4: δ = ‖r‖2

5: while ‖r‖2/‖b‖2 > tolerance do
6: s = Mp // matrix-vector multiplication
7: α = Re{s · p}
8: ω = δ/α

9: x = x+ω p
10: r = r−ωs
11: λ = ‖r‖2

12: γg = λ/δ

13: δ = λ

14: p = γg p+ r
15: end while

could be relaxed on these solutions, or that a multi-scale integration scheme could be used, where the
force contribution is calculated more often for the most important solutions, and less often for the least
important ones [199].

In order to improve the performance of the single process program, we also implemented a single
precision version of the code for the molecular dynamics evolution. Due to the low arithmetic density
of the LQCD algorithms, on GPUS at least all the kernels are memory-bound. This means that, when
precision is not an issue, it is preferable to use a single precision version of selected algorithms and
structures, and it is reasonable to expect a plain ×2 reduction in execution times for single precision
kernels w.r.t double precision ones. It must be remarked though that the action computations for the
Metropolis test must be performed using the highest possible precision.

A.3.3 Multi-rank implementation

The general idea for the multi-rank implementation was to have a number NRanks of MPI processes
(ranks), each performing the computations pertaining to a portion of the whole lattice which has been
split in NRanks equal parts along one direction. The choice of the direction to split the lattice along has
to be done in order to minimize the amount of data that need to be transferred, which is proportional to the
volume of the 3D hypersurface between the different portions of the lattice. This criterion suggests that
the longest direction is the one to cut, i.e. the Euclidean time direction for zero-temperature simulations,
and one of the three spatial directions in the finite temperature case. This required our code to be versatile
enough so that we could map the physical directions of the lattice to the logical directions in our code,
so that the direction along which the lattice has the largest size is mapped on x3 (the “slowest” index) in
Eq.(A.10).
A brief explanation of the terminology is in order. With local lattice of a rank we indicate the portion of
the lattice to which all the position-dependent quantities computed on that rank are related. With halo we
refer to the portions of the lattice that are needed for the computation on a given rank, but are not a part
of the local lattice, and the data relative to it must be received from other ranks prior to the computation.
With border we refer to the parts of the local lattice which correspond to the halos for the neighboring
ranks. We usually refer with bulk to the part of the local lattice which does not include the border.
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Algorithm 6 The shifted CG solver for the equations (M+σ)xσ = b. Lower case Latin letters represent
vectors, Greek letters represent scalars.

1: xσ = 0 // (∀σ )
2: p = r = b
3: δ = ‖r‖2

4: ω0 = 1
5: γg = 0
6: ζ σ

−1 = ζ σ
0 = 1, γσ

s = 0, pσ = b // (∀σ )
7: n = 1
8: while not all xσ converged with required accuracy do
9: s = Mp // matrix-vector multiplication

10: α = Re{s · p}
11: ωn =−δ/α

12: if xσ not yet converged then
13: ζ σ

n =
ζ σ

n−2ζ σ
n−1ωn−1

ωnγg(ζn−2−ζn−1)+ζn−2ωn−1(1−σωn)
,

14: ωσ = ωn
ζ σ

n
ζ σ

n−1
,

15: xσ = xσ −ωσ pσ ,// multiple vector operations
16: end if
17: r = r−ωs
18: λ = ‖r‖2

19: γg = λ/δ

20: δ = λ

21: p = γg p+ r
22: γσ = γgωσ ζ σ

n
ζ σ

n−1
23: if xσ not yet converged then
24: pσ = γσ pσ +ζ σ

n r, // multiple vector operations

25: κσ =
δ (ζ σ

n−1)
2

‖b‖
26: if κ < tolerance then
27: xσ converged
28: end if
29: end if
30: n = n+1
31: end while

In our simple setup (with only a single-direction cut), thanks to a clever order of lattice sites in memory,
it is possible to have a natural division of halo-border-bulk sections of the data structures, as visible in
Figs.A.1 and A.2, thus avoiding the need of using gather-scatter kernels. It has to be remarked that, for
gauge-related computations, the halo and border regions must have a thickness of 2 lattice sites when the
tree level Symanzik improvement is turned on (because of the rectangular 2× 1 staples and rectangles)
and 1 lattice site otherwise, while for the fermion part the halo and border are 1-site thick. For the sake
of simplicity, as far as structure allocations are concerned, we did not distinguish between these two
cases and the halo-border thickness has been taken as the maximum necessary, while of course during
communications only the strictly necessary data are transferred.

The largest communications between ranks are of two types: gauge links and pseudo fermion field. In
Figs.A.1 and A.2 the portion of the data structures that has to be transferred is shown. In the pseudo
fermion case, each rank has to send 6 packets while receiving 6. When double precision is used, the size
of each packet is

s = (V4/Lcut) sizeof(double) , (A.11)
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where V4 is the 4-dimensional volume of lattice, and Lcut is the size of the direction which has been cut.
In the case of a 323×Lcut lattice, packet size is around 260KB. In the case of gauge links, the number of
such packets for each rank is 96 to send and 96 to receive.

In order to achieve a better scalability it was necessary to superpose the calculation in the bulk with the
transfers of the data pertaining to halos and borders. This means to duplicate some functions, to have a
version acting on the bulk and another acting on the borders. This has been done for the deo and doe

functions, and for the three elements of the Gauge Blocks in Algorithm 3: the force calculation, momenta
evolution and gauge link evolution. It must be remarked that we made use of the CUDA-aware feature of
Open MPI in order for the MPI send and MPI recv instructions to manage the transfers directly from and
to device memory. Another observation is that all functions implementing linear combinations of vectors
did not need to be split, and operated on the whole local lattice and halos (in this case just 1-site thick). If
the task to split required to access data pertaining to nearest neighbors, then only the outer cycle was split
into three cycles with different limits; if the task consisted only of single-site operations the only cycle
was split in three cycles.

For both the deo and doe functions it was convenient to write a wrapper that would perform the calculations
on the borders, communicate the border results to neighboring ranks (and receive the halo results from
neighboring ranks) and perform calculations in the bulk. In order to achieve the communication-computation
superposition, we had to use the asynchronous versions of the MPI “send” and “recv” functions, and the
async clause in the kernels construct (see listingA.3), and then use MPI Waitall functions to wait for the
end of the transfers.

In the case of gauge cycle, we came to the conclusion that the most convenient approach was to perform
all the computations of a Gauge Block on the borders, then communicate the evolved gauge links while
performing the computations of the same Gauge Block in the bulk.

In the case of the gauge functions we used the asynchronous versions of the MPI “send” and “recv”
functions, but no async directive was necessary.
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inline void acc_Deo( __restrict const su3_soa * const u,

__restrict vec3_soa * const out,

__restrict const vec3_soa * const in,

const double_soa * backfield)

{

MPI_Request send_border_requests[6], recv_border_requests[6];

// computations on the borders

acc_Deo_d3p(u, out, in, backfield); // on async(2)

acc_Deo_d3m(u, out, in, backfield); // on async(3)

#pragma acc wait(2)

#pragma acc wait(3) // waiting for computations on the border to end

communicate_fermion_borders_async(out,send_border_requests,

recv_border_requests); // using MPI_Isend() and MPI_Irecv()

// computations on the bulk

acc_Deo_bulk(u, out, in, backfield); // on async(1)

MPI_Waitall(6,recv_border_requests,MPI_STATUSES_IGNORE);

MPI_Waitall(6,send_border_requests,MPI_STATUSES_IGNORE);

#pragma acc wait(1)

}

LISTING A.2: The high level implementation of the deo function in the multinode setup, with

asynchronous communications
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void multistep_2MN_gauge_async_bloc(su3_soa *tconf_acc_old,

su3_soa *tconf_acc_new, su3_soa *local_staples, tamat_soa *tipdot,

thmat_soa *tmomenta, int omelyan_index)

{

MPI_Request send_border_requests[96];

MPI_Request recv_border_requests[96];

// force calculations on the borders

calc_ipdot_gauge_soloopenacc_d3c(tconf_acc_old,local_staples,tipdot,

HALO_WIDTH,GAUGE_HALO);

[...]

// momenta evolution on the borders

mom_sum_mult_d3c(tmomenta,tipdot,deltas_Omelyan,omelyan_index,

HALO_WIDTH,GAUGE_HALO);

[...]

// gauge links evolution on the borders

mom_exp_times_conf_soloopenacc_d3c(

tconf_acc_old, tconf_acc_new, tmomenta,

deltas_Omelyan,4,

HALO_WIDTH,GAUGE_HALO);

[...]

// asynchronous communication of the evolved gauge links

// with MPI_Isend and MPI_Irecv

communicate_su3_borders_async(tconf_acc_new,GAUGE_HALO,

send_border_requests,recv_border_requests);

// Same computations, on the bulk

calc_ipdot_gauge_soloopenacc_bulk(tconf_acc_old,local_staples,tipdot);

mom_sum_mult_bulk(tmomenta,tipdot,deltas_Omelyan,omelyan_index);

mom_exp_times_conf_soloopenacc_bulk(

tconf_acc_old, tconf_acc_new, tmomenta,

deltas_Omelyan,4);

MPI_Waitall(96,send_border_requests,MPI_STATUSES_IGNORE);

MPI_Waitall(96,recv_border_requests,MPI_STATUSES_IGNORE);

LISTING A.3: The high level implementation of the gauge molecular dynamics evolution in the

multi-rank setup, with asynchronous communications



Appendix B

Measurement of Fermionic observables

B.1 Noisy estimators and noise vectors

Let’s take a set of uncorrelated stochastic real variables ηi, which satisfy the property

〈
ηiη j

〉
noise = δi, j , (B.1)

where 〈. . .〉noise represent the average over “noise” fluctuations.
Let’s assume we have a noise vector η , with components ηi (where i will label a lattice site), and a
determined matrix Ai, j (which is not stochastic!), then we obtain〈

∑
i j

ηiAi jη j

〉
noise

= ∑
i j

Ai jδi j = Tr A . (B.2)

Notice that the sum and the average over noise commute. Let’s do another exercise now. We want to
compute

(Tr A)2 . (B.3)

It must be remarked that1 (〈
∑
i j

ηiAi jη j

〉
noise

)2

6=

〈(
∑
i j

ηiAi jη j

)2〉
noise

, (B.4)

indeed 〈(
∑
i j

ηiAi jη j

)2〉
noise

=

〈
∑
i jkl

ηiAi jη jηkAklηl

〉
noise

. (B.5)

First of all, the only terms in the sum which give a nonzero contribution are the ones in which i = j and
k = l, or i = k and j = l, or i = l and j = k. Moreover, if i = j = k = l, we have to take into consideration
also the value of 〈η4

i 〉 (the contact term), so

〈(
∑
i j

ηiAi jη j

)2〉
noise

= ∑
i6= j

[AiiA j j +Ai jA ji +Ai jAi j]+∑
i

A2
ii〈η4

i 〉noise (B.6)

1 The right hand side of Eq.(B.4) is exactly what one would obtain using only one random vector to evaluate (〈TrA〉noise)
2.
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In order to properly estimate the LHS of Eq.(B.4), we have to use more than one random vector. Different
independent random vectors, labeled by Greek indices, must satisfy the relation〈

η
α
i η

β

j

〉
noise

= δi jδ
αβ . (B.7)

Then, if α 6= β , 〈
∑
i j

η
α
i Ai jη

α
j ∑

kl
η

β

k Aklη
β

l

〉
noise

= ∑
i

Aii ∑
j

A j j = (TrA)2 , (B.8)

which is exactly what we want.
Notice one could use complex noise vectors, satisfying{

〈η†
i η j〉noise = δi j

〈ηiη j〉noise = 0
,

which implies that the real part and the imaginary part of η must satisfy a relation like Eq.(B.7). Then,〈(
∑
i j

η
†
i Ai jη j

)2〉
noise

= ∑
i6= j

[AiiA j j +Ai jA ji]+∑
i

A2
ii

〈(
η

†
i ηi

)2
〉

noise
, (B.9)

which is not yet what we want.

B.1.1 Errors

Getting back to the real case, we can see what is the variance2 of our estimator of Tr A, that is

1
N

N

∑
α,i j

η
α
i Ai jη

α
j . (B.10)

To calculate this, we need to compute the average of the modulus of its square first:

1
N2

N

∑
αβ

∑
i j,kl

Ai jA∗kl

〈
η

α
i η

α
j η

β

k η
β

l

〉
noise

. (B.11)

This is equal to

1
N2

N

∑
α 6=β

∑
i j,kl

Ai jA∗kl

〈
η

α
i η

α
j η

β

k η
β

l

〉
noise

+
1

N2

N

∑
α

∑
i j,kl

Ai jA∗kl
〈
η

α
i η

α
j η

α
k η

α
l
〉

noise . (B.12)

The first part is just related to the square of the trace, because if α 6= β the η vectors are independent.
The second term instead has been already calculated in Eq.(B.6), so we obtain

N(N−1)
N2 | Tr A|2 + 1

N

[
∑
i 6= j

[
AiiA∗j j +Ai jA∗ji +Ai jA∗i j

]
+∑

i
|Aii|2 〈(ηα

i )
4〉noise

]
(B.13)

2 The variance of a complex number z = x+ iy should be defined as

〈x2〉+ 〈y2〉−〈x〉2−〈y〉2 = 〈z∗z〉−〈z∗〉〈z〉
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In the following, we will assume 〈(ηα
i )

4〉noise = c4 for all α and i. The terms can be rearranged to give

| Tr A|2 + 1
N

[
Tr AA∗+ Tr AA† +∑

i
|Aii|2 (c4−3)

]
(B.14)

In order to obtain the variance of the trace estimator, we have to subtract〈
1
N

N

∑
α,i j

η
α
i Ai jη

α
j

〉2

noise

= | Tr A|2 (B.15)

and then we obtain

ε
2 =

1
N

[
Tr AA∗+ Tr AA† +∑

i
|Aii|2 (c4−3)

]
. (B.16)

Notice that, if ηi is Gaussian, c4 = 3, while if ηi is a stochastic Z2 variable, c4 = 1. Moreover, for any
probability distribution, 〈x4〉 ≥ 〈x2〉2, and since we fixed 〈x2〉= 1 in Eq.(B.1), we see that the Z2 choice
is the one that minimizes the errors.
Moreover, it is straightforward to verify that ε2 above vanishes when using Z2 noise in the case where A

is real and diagonal.

B.2 Chiral condensate

The chiral condensate for a given quark is defined as

〈ψ̄qψq〉=
∂

∂mq
logZ (B.17)

On the lattice, it is calculated through noisy estimators.

〈ψ̄qψq〉= TrM−1
q = 〈φM−1

q φ〉noise , (B.18)

where Mq is the Dirac matrix associated to the quark q (thus including the SU(3) gauge links, which are
the same for all quarks, and the optional U(1) phase field, which may include electromagnetic fields and
imaginary chemical potentials), and 〈. . .〉noise means an average on the noise vectors φ . As a necessary
and sufficient condition for the last equality to hold, the scalar product between two different noise vectors
φi must satisfy

〈φiφ j〉noise = δi j (B.19)

Given a Z2 noise vector3 φ , an estimate of the chiral condensate will be

〈ψ̄qψq〉= φM−1
q φ . (B.20)

The issue here is to estimate
χ = M−1

q φ . (B.21)

3It may also be Gaussian, but it seems that Z2 works best.
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Notice that the algorithm used in the code to invert a matrix (the conjugate gradient method) requires the
matrix to be Hermitian. Mq is not, but M†

q Mq is. Then, the trick will be to calculate

χ =
(
M†

q Mq
)−1

M†
q φ . (B.22)

In order to be more concrete, let’s say a bit more about the structure of the Dirac matrix (let’s forget for
the sake of my fingers the subscript q, we’re concerned by only a quark species at a time anyway). In the
staggered formulation (see, for example [9])

Mi, j =
4

∑
µ=1

[
Uµ(i)δi+µ̂, j−U†

µ(i− µ̂)δi−µ̂, j
]
+mδi, j (B.23)

where Uµ contains also all the U(1) phases you can think of (the staggered phases ηµ , the imaginary
chemical potentials and the electromagnetic fields), while i and j are indices for the lattice sites. It is very
apparent that the first term only connects even sites to odd sites. Symbolically, we can write

M =

(
Mee Meo

Moe Moo

)
=

(
m Deo

Doe m

)
,

where the gauge links and U(1) phases are contained in the Deo and Doe sub-matrices. Notice that the
matrix

D =

(
0 Deo

Doe 0

)

is anti Hermitian4. This means that

M†M =

(
m2−DeoDoe 0

0 m2−DoeDeo

)
.

Notice that the sub-matrices (m2−DeoDoe) and (m2−DoeDeo) are Hermitian. So our ploy shown in
Eq.(B.22) turns into(

χe

χo

)
=

( [
m2−DeoDoe

]−1 0

0
[
m2−DoeDeo

]−1

)(
m −Deo

−Doe m

)(
φe

φo

)
,

from which we read
χe =

[
m2−DeoDoe

]−1
(mφe−Deoφo) (B.25)

and a similar equation for χo. From this reasoning it may look like we need to perform two inversions,
one to obtain χe and another to obtain χo. We can avoid the second inversion by making use of the
original statement of the problem, (Eq. B.21), which implies φ = Mχ:(

φe

φo

)
=

(
m Deo

Doe m

)(
χe

χo

)
.

4There are two ways to see this: the clever one is to notice that D is the lattice discretization of a derivative, and as such must be
anti-hermitian. The poor man way to see this (or the pedantic man way to check it) is to use Eq.(B.23), noticing that

(Deo)i j =−(Doe)
†
ji , (B.24)

as it must be.
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This tells us that φo = Doeχe +mχo, which implies

χo =
1
m
(φo−Doeχe) .

Once χe and χo are calculated, our estimate of the chiral condensate (for a given quark) will be

〈ψ̄ψ〉= φ
†
e χe +φ

†
o χo . (B.26)

An alternative consists of exploiting the obvious relation, valid only stochastically on an ensamble of
configurations:

〈φ †
o χo〉= 〈φ †

e χe〉 . (B.27)

B.3 Nonzero chemical potential on the lattice and the quark number

Let’s for the sake of simplicity limit the present discussion to one quark only. In the continuum, in the
Euclidean formulation, in the presence of a nonzero chemical potential, we have

Z =
∫

DAEDψ̄Dψ exp
{
−SE

g (A
E)− ψ̄

[
γ

E
ν

(
∂ν − iAE

ν

)
+m

]
ψ +µψ̄γ4ψ

}
. (B.28)

This is equivalent to substitute the usual Dirac operator with

M(µ) =
[
γ

E
ν

(
∂ν − iAE

ν

)
−µγ4 +m

]
(B.29)

Two remarks are in order:

1. The usual Hybrid Montecarlo algorithm relies on the Euclidean action SE being real. The gauge
Euclidean action SE

g being real, this requires the determinant of the fermion matrix M(µ) to be real.
A sufficient condition for this, is the γ5-hermiticity condition5, γ5Mγ5 = M†, which is only true if
µ if zero or pure imaginary, that is µ = iµI .

2. The term containing µ can be reabsorbed in AE
4 , once one replaces AE

4 with

AE
4 = AE

4 − iµ1 = AE
4 +µI1 . (B.30)

This means that, if we take µ pure imaginary, we can interpret it as an additional U(1) phase in the
Fermion Matrix6.

With these observations, the (i, j) element of the µ-dependent staggered Dirac operator might be written
as

Mi, j =
1

2a ∑
ν

ην(i)
[
eµaδν ,4Uν(i)δi+ν̂ , j− e−µaδν ,4U†

ν ( j)δi−ν̂ , j

]
(B.31)

5Of course this relies on the property
Det(M) = Det(γ5Mγ

5).

6 A little discussion here is in order. The first idea one can have for introducing a nonzero chemical potential on the lattice, is
to “naively” discretize the term ψ̄γ4ψ . Unfortunately, this recipe produces (additional) divergences that cannot be “renormalized
away” even in the free-field case[200].
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where i and j label the lattice sites, ην(i) are the staggered phases, and Uν(i) are the SU(3) gauge links.
Notice that, since in our case µ = iµI ,

Mi, j =
1

2a ∑
ν

ην(i)
[
eiµIaδν ,4Uν(i)δi+ν̂ , j− e−iµIaδν ,4U†

ν ( j)δi−ν̂ , j

]
(B.32)

The quark number observable nq on the lattice can be written as

nq =
∂

∂ µ
logZ = Z−1

∫
DUe−SE

g
∂ detM(µ)

∂ µ
. (B.33)

Noticing that detM(µ) = ∏i λi, we have7

∂ detM(µ)

∂ µ
= ∑

i

∂λi

∂ µ

1
λi

∏
j

λ j = Tr
(

∂M
∂ µ

M−1
)

detM . (B.34)

Notice that ∂M/∂ µ , from Eq.(B.31), is

∂Mi, j

∂ µ
=

1
2

η4(i)
[
eµaU4(i)δi+4̂, j + e−µaU†

4 ( j)δi−4̂, j

]
=

=
1
2

η4(i)
[
eµaU4(i)δi+4̂, j + e−µaU†

4 ( j)δi−4̂, j

]
.

Notice that µa = µ

nt T
.

B.3.1 The case of a biased estimator: |ImN|

In some cases, it is necessary to evaluate the quantity |ImN| (where N is the quark number) instead of
ImN (see, e.g., Eq.3.24). It is expected that applying a nonlinear function to the non-biased estimator

N =
1
N

N

∑
α=1

η
†
α

∂M
∂ µ

M−1
ηα (B.35)

will give a biased estimator. A brute force solution to the bias issue can be just “get more statistics”, if the
estimator is asymptotically unbiased. But in this case, the number of random vectors per configuration is
set at the beginning of the simulation: the value of N for every configuration will be biased, and it will
not be possible to take other measurements on the same gauge configurations.

This is necessary as in the Polyakov loop, for example, to locate the Roberge-Weiss transition looking
at quark number: the disconnected susceptibility of |Im N| exhibits a peak at the transition, while the
connected susceptibility of Im N at finite volume and infinite statistics does not decrease for T > Tc, due
to nonzero tunnel probability.

The problem is to find an unbiased estimator for the quantity |〈x〉|,where 〈. . .〉means the noise mean. The
naive estimator is |x̄|: assuming that the estimator x̄ has a variance ε2, the bias can be easily calculated:

〈|x̄|〉= x̄Erf
(

x̄
ε

)
+

√
2
π

εe
−x̄2

2ε2 , (B.36)

7It is also possible to use the classical trick detM = e Tr logM with the same effect.
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where
Erf(z) = 2/

√
π

∫ z

0
e−t2

dt . (B.37)

It can be seen that the maximum value of the bias is when x̄
ε
= 0, and that the bias is negligible when∣∣ x̄

ε

∣∣> 3 or so. The question one can ask oneself is if there is an unbiased estimator f (x) for which 8

∫ +∞

−∞

f (x̄)p(x̄)dx̄ = |〈x〉| . (B.40)

Now, let’s assume that x̄ is a Gaussian random variable, with mean µ and standard deviation ε : then
Eq.(B.40) becomes

1√
2πε

∫ +∞

−∞

f (x̄)e−
(x̄−µ)2

2ε2 dx̄ = |µ| . (B.41)

It can be easily argued that such a f (x) that would satisfy Eq.B.41 cannot exist, because any non-pathological
function smoothed with a Gaussian low-pass filter will never exhibit a singular point as the one of |x|.
To prove this point, a solution can be looked for using using the Fourier transform. In fact, Fourier
transforming Eq.(B.41) one obtains

1√
2π

f̃ (y)e−
(εy)2

2 e−iµy =−
√

2
π

1
y2 , (B.42)

which would imply

f (x) =− 1√
2π

∫
dy

2
y2 e

(εy)2
2 ei(µ+x)y . (B.43)

This integral cannot be computed, or made sense of. It is not possible to anti-transform f̃ (y) in order to
obtain f (x), since the integral would be too violently divergent in the ultraviolet.

A possible way out is to regularize the integral: for example, regularizing with a factor e−
(εy)2

2 would
yield the naive estimator f (x) = |x|. It can be noted that a numerical approach that tries to obtain a zero
bias on a grid of points is in principle possible, but it will yield an estimator with a divergent variance as
the grid is made finer and finer. A compromise could be made between the need of correcting the bias
and the need of keeping the variance small enough for the estimator to be useful.

B.3.2 A pedagogical failure: the susceptibility of |Im nl| at the transition

As an example of biased estimator, here are estimates of the absolute values of the light quark number,
and its disconnected susceptibility

χIm nl ∝ 〈(Im nl)
2〉−〈|Im nl |〉2 . (B.44)

8In this frame of mind it is possible, for example, to look for an estimator g(x) so that

1√
2πε

∫ +∞

−∞

g(x)e−
(x−µ)2

2ε2 dx̄ = µ
2 . (B.38)

It is very easy to see that g(x) = x2− ε2 satisfy the given equation. Of course, this requires ε to be known a priori. An unbiased
estimator for ε from N variables would be the function f that satisfy the equation∫

dNx f (x1, . . . ,xN)exp
(
−∑

N
i=1(xi−µ)2

2ε2

)
= ε (B.39)
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FIGURE B.1: Left: The square of the absolute value of the imaginary part of the light quark number
estimator, at mla = 0.00075 for L = 20, measured with 2,3 and 4 random vectors per quark, and the
square of the imaginary part of the light quark number estimator, measured with 4 random vectors (bias
on (Im nl)

2 is negligible). The bias is evident for |Im nl |. Right: The susceptibility of the absolute value
of the imaginary part of the light quark number for the same setup, measured with 2,3 and 4 random

vectors per quark.

A catastrophic effect of bias is visible on the susceptibility, in Fig. B.1: a quantity which should be
definite positive is not as such anymore, especially at low β where Im nl should be very close to zero. This
is due to the fact that, as shown in Fig.B.1, due to the bias on the |Im n| extimator the quantity 〈|Im nl |〉2

is larger than the quantity 〈(Im nl)
2〉|. Notice that bias is increased as the number of measurements is

lowered.
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