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ANewton–Krylov algorithm for aerodynamic shape optimization in three dimensions is presented for both single-
point andmultipoint optimization. An inexact Newtonmethod is used to solve the Euler equations, a discrete adjoint
method is used to compute the gradient, and an optimizer based on a quasi-Newtonmethod is used tofind the optimal
geometry. Theflexible generalizedminimal residualmethod is usedwith approximate Schur preconditioning to solve
both the flow equation and the adjoint equation. Thewing geometry is parameterized byB-spline surfaces, and a fast
algebraic algorithm is used for grid movement at each iteration. An effective strategy is presented to enable
simultaneous optimization of planform variables and section shapes. Optimization results are presented with up to
225 design variables to demonstrate the capabilities and efficiency of the approach.

Nomenclature
b = wing span
CL, CD = lift and drag coefficients
Cj = geometric constraint
c = wing chord
E, F, G = inviscid fluxes
GS = matrix containing the x, y, or z coordinates of the

surface grid
G = gradient vector
H = Hessian matrix
I = integral of the objective function over a range of

operating conditions
J = objective function
M = mach number
M, N = B-spline basis functions
P = weighting function for multipoint optimization
P = search direction
Q = continuous state (flow) variables
Q = discretized state (flow) variables
R = residual vector
T = diagonal matrix containing reciprocals of local

time steps
X = design variables
XB = matrix containing the coordinates of B-spline

control points
! = angle of attack
! = dihedral angle of a wing
"LE, "TE = leading-edge and trailing-edge weep angle
" = taper ratio of a wing
! = flow adjoint vector
# = geometric twist of a wing
 = aspect ratio of a wing

I. Introduction

I NTHE aerodynamic design of aircraft, there have been twomajor
breakthroughs in design methodology. The first is the devel-

opment of computational fluid dynamics (CFD). In the last decade,
CFD has emerged as an indispensable design tool for aircraft
aerodynamics, complementing and sometimes replacingwind tunnel
testing. Improvements in computer hardware have allowed engineers
to solve larger and more complex CFD problems. However, using
CFD as an analysis tool alone still relies on a cut-and-try approach,
which does not necessarily tell engineers where and how design
improvements can be achieved. Inverse design methods have been
popular, but they rely heavily on the expertise and experience of
aerodynamicists.

The incorporation of high-fidelity CFD codes into automated
optimization tools represents the second breakthrough. Unlike
inverse design, aerodynamic shape optimization seeks to directly
improve the performance measures such as lift and drag coefficients.
Such tools are useful in the refinement of existing designs; they can
also serve as an inexpensive numerical testbed for unconventional
configurations. Beginning with the early work of Hicks et al. [1] and
Hicks and Henne [2], aerodynamic shape optimization has become
popular. The speed and effectiveness of aerodynamic shape opti-
mization has improved significantly through the development of the
adjoint method [3,4]. The main advantage of the adjoint method is
that the time required for each gradient computation is nearly
independent of the number of design variables. Adjoint methods are
further divided into continuous [5–10] and discrete [11–19]
approaches. Both have been implemented successfully in aero-
dynamic shape optimization.

Many examples in wing design optimization consider only one
operating condition, such as a fixed Mach number and a fixed lift
coefficient (single-point optimization). This serves to prove the
effectiveness of an algorithmbut is not a practical approach to design.
Awing must operate in a range of conditions in the flight envelope,
for example, a range ofMach numbers and lift coefficients. Tradeoffs
and compromises must be made between different operating condi-
tions to achieve an overall optimum. Nemec et al. [15] studied
multipoint optimization of airfoils using a discrete adjoint method.
Zingg and Elias [20] investigated automatic selection of sampling
points andweights. Thework is extended inZingg andBilling [21] as
well as Buckley et al. [22] to include multiple cruise and dive
conditions. Studies in multipoint wing design include those by
Reuther et al. [7,8], Cliff et al. [23], and Leoviriyakit and Jameson
[10]. Jameson et al. [24] studied multipoint aerostructural optimi-
zation of wings.

The objective of this paper is to present a novel algorithm
for aerodynamic shape optimization of wings and to demonstrate
its effectiveness through several examples. The algorithm is an
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extension of the robust algorithm developed by Nemec and Zingg
[14,15] for two-dimensional airfoil optimization. Numerical solution
of the three-dimensional Euler equations is accomplished using a
parallel Newton–Krylov–Schur algorithm developed by Hicken and
Zingg [25]. Hicken and Zingg [26] used the same flow solver in an
optimization algorithm that is designed to enable large shape changes
as might be encountered in the design of unconventional aircraft
configurations. The present approach is intended specifically for
wing design. To this end, an effective strategy is developed to enable
simultaneous optimization of both planform variables and section
shapes. Examples are presented to demonstrate its effectiveness in
optimizing a wing geometry to minimize both wave and induced
drag.

II. Problem Formulation
The goal of aerodynamic shape optimization is to find a shape

parameterized by a set of design variables X such that a scalar
objective function J is minimized:

min
X

J !X ;Q" (1)

whereQ is the vector of state variables representing the flow solution
at each node of the computational grid. To ensure the optimizer yields
a physically realistic shape, a set of geometric constraints is imposed.
We consider only constraints that are functions of design variables:

Cj!X" # 0 (2)

In addition, the discrete steady Euler equationsmust also be satisfied:

R !X ;Q" $ 0 (3)

A. Objective Function

For aerodynamic shape-optimization problems, objective func-
tions are generally based on performance measures, such as lift and
drag coefficients !CL; CD". In the design problems presented in this
paper, our objective is tominimize dragwhile maintaining a required
lift. Introducing the lift constraint as a penalty leads to the following
objective function [14]:

J 0 $ !L

!
1 % CL

C&
L

"
2

' !D

!
1 % CD

C&
D

"
2

(4)

Targets in lift and drag are specified by the user in C&
L and C&

D,
whereas weights !L and !D are specified such that the lift constraint
is adequately satisfied. If the target lift is attainable and target drag is
not, this objective function represents lift-constrained drag mini-
mization with the lift constraint appearing as a penalty term. The
target drag C&

D should always be a value that is physically
unattainable to ensure that the final drag is minimized, but better
convergence is obtained if the target value is not too low. Values of
!L $ 100:0 and !D $ 1:0 are suitable to maintain the final CL to
within 0.5% of C&

L for a wide range of drag-minimization problems
[27].

B. Multipoint Optimization

For multipoint optimization, we are interested in improving
aerodynamic performance over a range of operating conditions. In
this case, the quantity that we wish to minimize is the weighted
integral I of the objective function over a range of Mach numbers:

I $
Z

Mh

Ml

P!M"J (X ;Q!M") dM (5)

The user-specified weighting function P!M" reflects the relative
importance attached by the designer to each Mach number in this
range. Rather than minimizing Eq. (5) directly, we instead apply
Newton–Cotes quadrature rules to approximate it using a weighted
sum of Np discrete operating points:

J 0 $
XNp

i$1

!0
iP!Mi"|###{z###}

!i

J i * I (6)

The weights !i combine both the weighting function P!Mi" as well
as the weights !0

i, which are based on the specific quadrature rule
used. In this current study, we assume thatP!M" $ 1; in otherwords,
all operating points are of equal importance to the designer. If we
select equally spaced operating points betweenMl andMh, with the
first and last operating point atMl andMh, respectively, and apply the
trapezoidal rule, we obtain the following weights:

!i $
( 0:5 i$ 1
1:0 i$ 2 . . .Np % 1
0:5 i$ Np

(7)

Note that !i must be adjusted for other weighting functions P!M" or
if the operating points are not equally spaced.

C. Geometric Constraints
We have implemented two geometric constraints: a volume

constraint and a thickness constraint. These constraints are expressed
as quadratic penalty terms in the objective function:

J $ J 0 ' J p;V ' J p;T (8)

The volume constraint is imposed to limit the change in the volume
enclosed by the wing. A penalty term is added when the volume V
deviates from the initial volumeV0.Written in the form of Eq. (2), the
volume constraint is expressed as:

jV % V0j $ 0 (9)

If the constraint is violated, a penalty term is added to the objective
function:

J p;V $ !V

!
1 % V

V0

"
2

(10)

The penalty weight !V is user-supplied. A value of !V $ 50:0 is
suitable for a wide range of drag-minimization problems. The
volume constraint gives the optimizer more flexibility than applying
a thickness constraint near midchord [28]. Therefore, we only apply
thickness constraints near leading and trailing edges to ensure that
the optimized geometry is physically possible, i.e., to prevent
crossover. For thickness constraints, we specify minimum thick-
nesses at fixed relative positions [x=c and y=!b=2"] on thewing. The
ith thickness constraint is expressed as

t&i % ti # 0 (11)

where ti is the thickness at the current optimization iteration, and t&i is
the minimum required thickness. A penalty term is added if ti is
below t&i :

J p;i $
!
1 % ti

t&i

"
2

if ti < t&i (12)

The contributions from all thickness constraints are summed and
multiplied by a user-supplied weight !T :

J p;T $ !T

X

i

J p;i (13)

We use a penalty weight of !T $ 50:0. This value is also suitable for
a wide range of optimization problems. By casting the constraints as
penalty terms, our original optimization problem [Eq. (1)] can be
solved using an algorithm for unconstrained optimization.

III. Geometry Parameterization and Design Variables
We use B-spline control surfaces based on Fudge et al. [29] to

parameterize the geometry of the wing. In this method, the kth order
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B-spline representation of a surface in 3-D space using M + N
control points and basis functions is given by

a !s; t" $
XN

j$1

XM

i$1

!XB"i;jMi;k!s"N j;k!t" (14)

where a is the position vector along the curve at parametric distances
s and t from the origin, !XB"i;j are the locations of the control points,
andMi;k!s" andN j;k!t" are the basis functions of order k, defined by
the Cox–de Boor relationships [30]:

M i;1!t" $
$
1 if di # t < di'1
0 otherwise

(15)

M i;k!t" $
%

t% di

di'k%1 % di

&
Mi;k%1!t" '

%
di'k % t

di'k % di'1

&
Mi'1;k%1!t"

(16)

where di represents the elements of a uniform open knot vector given
by

di $
(
0 1 # i # k
i % k k' 1 # i # M
M % k' 1 M' 1 # i # M' k

(17)

N is similarly defined. At the start of the optimization cycle, the
surface grid is first parameterized using B-spline control surfaces.
For a structured surface grid with I and J nodes in the parametric
directions s and t, the B-spline surface can be described in discrete
matrix form as

G S $ UD D$ XBV (18)

where GS contains either the x, y, or z coordinates for each surface
grid node !j; k";U andV store the basis function values at parametric
distances s and t from the grid origin;D is an intermediate matrix of
sizeM + J; andXB is amatrix containing the x, y, or z coordinates of
the control points:

G S $
x11 , , , x1J
..
. ..

.

xI1 , , , xIJ

2
64

3
75 U $

N 1!s1" , , , NM!s1"
..
. ..

.

N 1!sI" , , , NM!sI"

2
64

3
75

XB $
x11 , , , x1N
..
. ..

.

xM1 , , , xMN

2
64

3
75 V $

M1!t1" , , , M1!tJ"
..
. ..

.

MN!t1" , , , MN!tJ"

2
64

3
75

(19)

The distances s and t are calculated based on the nodal indices:

si $
i % 1

I % 1
!m% k' 2" tj $

j % 1

J % 1
!n % k' 2" (20)

The control point locations are found by first solving for D and
then XB in the least-squares problems in Eq. (18). This process is
repeated for each of the three coordinates. Figures 1a and 1b show the
parameterization of the ONERAM6wing. In this example, the wing
is represented using cubic B-spline control points, with 13 control
points in both the spanwise and chordwise directions on each of the
top and bottom surfaces.

To generate a new surface grid in response to changes in the
location of the control points, the intermediate matrixD in Eq. (18) is
first generated based on the new control point locationsXB, and then
the new surface gridGS is generated.An example is shown in Figs. 1c
and 1d.

Using this parameterization strategy, we can use two levels of
design variables. At the planform level, control points are grouped

Fig. 1 B-spline surface parameterization of an ONERA M6 wing with a perturbation.
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into a reduced set of planform variables, such as semispan (b=2),
chord (c), leading-edge and trailing-edge sweep ("LE,"TE), dihedral
(!) and geometric twist (#) angles. The twist angle is defined as a
single variable, i.e., it varies linearly from wing root to tip. Other
planform parameters such as taper ratio " and aspect ratio  are
extracted from the above planform variables. At the wing section
level, each individual control point may independently move
vertically to adjust the wing section shape; thus, the design variables
are the z coordinates of the control points. Increasing the number of
control points improves the flexibility of the parameterization and
allows more control over changes in the geometry. However, the
increased degrees of freedom will also slow the convergence of the
optimizer, and therefore the selection of the number of design
variables is a compromise between geometric flexibility and opti-
mization convergence.

IV. Numerical Method
A. Flow Analysis

The governing equations for the optimization are the Euler
equations, discretized on multiblock structured grids. In our parallel
strategy, each block in the grid and the corresponding component of
Q is distributed to a separate processor. Thus the discretization ofQ is
done in parallel in each block. Second-order centered differencing
is used at interior nodes, whereas first-order one-sided differencing is
used at boundaries and block interfaces. For numerical stability, we
use a scalar dissipation model based on the JST model [31,32], with
second-difference dissipation near shocks and fourth-difference
dissipation everywhere else. Boundary conditions and the coupling
between blocks at the interfaces are done using simultaneous approx-
imation terms (SATs). The use of SATs reduces the number of ghost
cells necessary and thus reduces the need for interprocessor
communications. Details of the implementation of SATs can be
found in Hicken and Zingg [25]. Communication between proces-
sors is done using the message passing library MPICH.

Spatial discretization of the Euler equations produces a set of
nonlinear algebraic equations. These are solved using a parallel
Newton–Krylov method. Because the adjoint gradient computation
requires the flow-Jacobian matrix (@R=@Q) from a well-converged
solution, residual reduction of 10 orders of magnitude is used. The
linear system is solved using the Krylov subspace iterative method
called the flexible generalized minimal residual (FGMRES) method
[33]. To improve the convergence of FGMRES, we right-
precondition the linear system. An approximate-Schur precondi-
tioner based on Saad and Sosonkina [34] is applied to a first-order
approximation of the Jacobian to form the preconditioner. Details of
the implementation can be found in Hicken and Zingg [25].

The Newton method converges quadratically when Q is
sufficiently close to the solution. However, during startup, when
the iterate is far from the solution, convergence may not be possible.
Therefore, for stability during the startup period, the flow solver
instead uses an approximate Newton method, where the first-order
Jacobian replaces the full Jacobian. A pseudotime step is added for
globalization of the Newton method.

B. Optimizer

When the lift and geometric constraints are implemented as
quadratic penalty terms, we can consider the optimization as an
unconstrained problem. Applying the Newton method in the
optimizer, the search direction is given by the gradient G and the
inverse of the Hessian matrix H:

P $%H%1G (21)

In this current work, we use the BFGS method [35] to approximate
the Hessian matrix, whereas the gradient is computed using the
discrete adjoint method. For many aerodynamic shape-optimization
applications, we can generally reduce the gradientL2 norm by two to
three orders of magnitude.

C. Adjoint Solver

At the heart of any gradient-based optimization is the fast and
accurate evaluation of the objective function gradientG. The gradient
can be expressed as

G $ @J
@X

%!T @R
@X

(22)

where ! is the adjoint variable, obtained by solving the adjoint
equation:

!
@R
@Q

"
T

!$
!
@J
@Q

"
T

(23)

We solve the adjoint system by adopting the same strategy used for
the flow solution. The system is solved using FGMRES as the
iterative solver, with the approximate Schur preconditioner to right-
precondition the system. We specify a tolerance of 10%8 for the
adjoint system to obtain an accurate gradient. The right-hand-side
term @J =@Q is differentiated by hand for each objective function.
Finally, the partial derivatives with respect to design variables
@J =@X and @R=@X in Eq. (22) are evaluated using second-order
centered differencing. For the kth design variable,

@R
@X k

*R(X ' h#̂k;Q) %R(X % h#̂k;Q)
2h

@J
@X k

* J (X ' h#̂k;Q) % J (X % h#̂k;Q)
2h

(24)

where #̂k is the kth unit vector, and the step size h is given by

h$max!# , jXkj; 10%6" (25)

where 10%4 > # > 10%6. Note that the evaluation of Eq. (24) does not
require additional flow solves. The cost of using finite differencing to
evaluate Eq. (24) scales with the number of design variables.
However, when a fast and inexpensive grid movement algorithm is
used, the cost of evaluating these partial derivatives using finite
differences is an order ofmagnitude lower than the cost of solving the
adjoint equation. This is the case for the algebraic algorithm used for
the current work. If a more expensive grid movement algorithm is
used, such as the linear elasticitymethod [36], then it ismore efficient
to solve a mesh adjoint system [26,36,37].

D. Line Search
A line-search algorithm with a backtracking feature is used to find

a suitable step length$ along the search directionPn that satisfies the
strongWolfe conditions [35]. To construct a cubic interpolant during
a line search, both the objective function and the gradient are
computed at every trial point. The line search is considered stalled if a
satisfactory step size cannot be found in 15 line-search iterations. In
that case, the optimizer is restarted from the steepest descent
direction %G, and the approximate Hessian inverse is reset to the
identity matrix.

E. Design Variable Scaling

The scaling of the design variables is crucial to the performance of
the optimizer. A problem is considered poorly scaled if changes in
one variable produce much larger variations in the value of the
objective function than changes of comparable magnitude in other
variables. This problem arises when we mix B-spline design
variables with planform variables. In our experience, $X i, from
initial to optimized geometry, ranges from 10%5 to 10%3 for B-spline
variables, and to 100 for angle-of-attack and planform variables (e.g.,
change in sweep angle). To improve the convergence of the opti-
mizer, we scale the z coordinates of the control points by the square
root of their initial values, as discussed in Zingg et al. [28]. This
scaling method assumes that both the leading and trailing edges of
the wing are at z$ 0:0 and that the B-spline control points at the
leading and trailing edges are not used as design variables. If this is
not the case, the coordinates have to be translated before scaling is
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applied. To avoid any divisions by zero, any control points at z$ 0:0
are scaled by the average scaling of the other design variables. Angle
of attack and planform design variables are not scaled.

F. Grid Movement Strategy
A high-quality computational grid is necessary to compute the

flow solution at each design iteration. For aerodynamic shape opti-
mization using body-fitted grids, expensive grid regeneration can be
avoided by employing a suitable grid movement algorithm. Each
time the wing surface changes, the grid is adjusted accordingly. For
the current work, we use a fast and robust algebraic grid movement
method. In this method, the movement of the nodes along a grid line
is determined by the algebraic equation,

x new
k $ xold

k '$x1

2
(1' cos!%Sk") for k$ 2 . . . kmax (26)

where$x1 is the displacement of the surface node, kmax is the index
of the node on the grid line at the outer boundary, and

Sk $
P

k
i$2 jxi % xi%1jPkmax
i$2 jxi % xi%1j

(27)

is the normalized arclength distance along the grid line. This
algebraic grid movement algorithm provides sufficient grid quality
for many optimization applications, as long as the changes in the
geometry are relatively small and the block boundaries are suf-
ficiently far from the body surface. Examples are shown in Figs. 2
and 3.

In the first example (Fig. 2), the root location of the ONERA M6
wing is displaced by 0:3croot, and the wing is rotated by 5 deg with
respect to the far-field boundaries. The grid at the symmetry plane is
shown. This amount of movement in the grid is typically found near
the wing tip for optimization cases where both the sweep angle and
twist angles change. In the second example (Fig. 3), a 10-deg sweep
is added. The grid lines extending from the wing surface are plotted.
In both examples, the grid quality of the perturbed grid remains high.
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a) ONERA M6 wing at symmetry plane
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0.2

0.4

0.6
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b) Perturbed grid at symmetry plane

c) ONERA M6 wing close up d) Perturbed grid close up
Fig. 2 Example of the algebraic grid movement algorithm applied to an ONERA M6 wing.
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a) ONERA M6 wing at symmetry plane
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b) Perturbed grid at symmetry plane
Fig. 3 Example of the algebraic grid movement algorithm applied to an ONERA M6 wing.
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V. Results and Discussion
Optimization results are obtained using a Beowulf-class cluster.

The cluster uses Intel Xeon 5500 (Nehalem) processors with a CPU
speed of 2.53 GHz, with 16GB of sharedmemory per computational
node (8 processors). The computational nodes are connected by a
nonblocking 4x-DDR Infiniband network.

A. Single-Point Wing Optimization

We present single-point optimization results at a transonic speed.
The goal of this optimization is to minimize drag atM$ 0:90 while
maintaining a lift coefficient of CL $ 0:30. The initial geometry is
the ONERA M6 wing. The computational grid around the wing has
an H-H topology with 48 blocks and 1,063,000 nodes, as shown in
Fig. 4. Each block is distributed to a different processor. TheONERA
M6 wing initially generates the required lift at an angle of attack of

!$ 2:69 deg. At this operating condition, the wing has a drag
coefficient of CD $ 0:0265.

We use the lift-constrained drag-minimization objective function
[Eq. (4)], with the following targets and weights in lift and drag:

C&
L $ 0:302 !L $ 100:0 C&

D $ 0:0075 !D $ 1:0

We run single-point optimization cases using the following
combinations of geometric design variables: 1) leading-edge sweep
($"LE) only; 2) leading-edge sweep and linear geometric twist (#);
3) leading-edge sweep, linear geometric twist, and z coordinates of
225 B-spline control points controlling wing section shapes;
4) leading-edge sweep, linear geometric twist, and z coordinates of
119 B-spline control points controlling wing section shapes (using
fewer control points to parameterize the geometry); and 5) z coor-
dinates of 119 B-spline control points controlling wing section
shapes.

In Cases 1–3, we parameterize the top and bottom surfaces of the
wing using a 13 + 13 B-spline surface. However, only planform
variables are used in Cases 1 and 2. In Cases 4 and 5, we reduce the
number of control points in the spanwise direction to seven, thereby
reducing the number of design variables by almost a factor of two. In
Cases 3–5, where the wing section geometry is also optimized, the z
coordinates of all B-spline control points except near the leading and
trailing edges are used as design variables. Note that, as sweep ("LE)
changes, the wing is sheared along the chordwise direction, and thus
the planform (projected) area remains constant throughout the
optimization cycle. Similarly, twist (#) is obtained by translating
the control points vertically; thus changing# also does not affect the
planform area. In Case 5, no planform design variables are used. In
Cases 3–5, a volume constraint [Eq. (10)] with a penalty weight of
!V $ 50:0 is used to maintain the wing’s volume. A minimum
thickness of !t=c"& $ 0:001 is also applied at !x=c" $ 0:99 to
prevent grid crossover. The penalty weight for the thickness

X
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Z

Fig. 4 Grid over the ONERA M6 wing.
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Fig. 5 Convergence histories for single-point optimization cases.
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constraint is !T $ 50:0. In addition to the geometric design
variables, the angle of attack (!) is a design variable in all cases.

Convergence histories for all five single-point optimization cases
are shown in Fig. 5. In the cases using planform variables alone
(Cases 1 and 2), the gradient L2 norm (kGk2) converges to below
10%7 and 10%8, respectively. The optimizer increased "LE signif-
icantly to reduce wave drag, to "LE $ 55 and 53 deg, respectively,
but the final flow fields are not shock free. The final drag coefficients
from both cases are much higher than for Cases 3–5, where the
optimizer has the freedom to modify the section shapes as well, as
shown in Table 1. The addition of the twist design variable in Case 2
further reduces the induced drag somewhat. Tomaintain the required
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Fig. 6 Comparison of Mach contours for single-point optimization (Case 4).
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Fig. 7 Comparison of Cp and wing sections for single-point optimization (Case 4).

Table 1 Final CD at CL ! 0:30 for
single-point optimization cases

Case Final CD

1 0.0128
2 0.0118
3 0.00826
4 0.00803
5 0.00892
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CL at the higher sweep angles, the angles of attack were increased to
3.90 and 6.22 deg, respectively. In Case 2, a twist of#$%5:6 deg
(washout) is added at the tip.

In cases where individual B-spline control points are used as
design variables (Cases 3–5), both J and kGk2 are reduced by more
than two orders of magnitude. Cases 3 and 4 show further drag
reductions, compared with Case 5, by adding sweep angle and twist
as design variables. In particular, Case 4, with a reduced number of
spanwise sections, converged the fastest. The convergence com-
parison between Cases 3 and 4 indicates that, with a careful choice of

geometry parameterization, it is possible to substantially reduce the
number of design variables while obtaining better optimization
results and speeding up the optimizer. In general, using seven to eight
spanwise sections allows for both speed and geometric flexibility.

In Case 4, after 250 iterations, the lift and drag coefficients are

CL $ 0:30 CD $ 0:00803

This represents a 70% drag reduction compared to the ONERA M6
wing. In the optimized geometry from Case 4, "LE increased from
30.0 deg to 35.2 deg, and a twist angle of#$%3:27 degwas added.
The angle of attack decreased slightly to!$ 2:55 deg. Both volume
and thickness constraints are active at the end of the optimization
cycle, with the final volumewithin 0.1% of the initial volume and the
thickness within 0.08% of the target minimum thickness.

Surface Mach number contours of the optimized wing are
compared to the ONERA M6 wing in Fig. 6. Pressure coefficients
and wing sections of the ONERA M6 wing and the optimized wing
are plotted at six spanwise stations in Fig. 7. Both figures show that
the optimizer has successfully eliminated thewave drag by removing
the shocks. The spanwise lift distributions for the ONERAM6 wing
and the optimized geometry are compared to the elliptical lift distri-
bution in Fig. 8. It shows that the lift distribution of the optimized
geometry matches the elliptical lift distribution more closely,
indicating that the induced drag has also been minimized.

During the optimization cycle, a flow solve requires an average of
8.6 min to reduce the residual by 10 orders of magnitude, using 48
processors. The adjoint solver takes an average of 4.2 min to reduce
the linear residual by eight orders of magnitude. The evaluation of
@R=@X and @J =@X require two calls to the grid movement
algorithm per design variable; each grid movement call plus residual
evaluation takes only 0.08 s to complete. The cost breakdown of a
gradient evaluation is compared to a flow solution in Table 2. The
timing shown in the table is averaged over all design iterations.

The entire optimization cycle (250 iterations) for Case 4 took 56 h
to complete. Drag coefficients at CL $ 0:30 are shown in Table 3
after 20, 50, and 100 iterations. Optimization time can be further
shortened by usingmore processors, because the flow solver is found
to scale well up to 1000 processors [38].

B. Multipoint Wing Optimization

Even with a single-point optimization, the improvement in perfor-
mance is significant over all transonic speeds, compared with the
ONERA M6 wing, as shown in Fig. 9. However, a degree of point
optimization is visible. Performance degrades rapidly on either side
of M $ 0:9. Multipoint optimization is useful when a wing is to be
designed to operate under a range of operating conditions and can
eliminate the point optimization phenomenon as well.

The goal of our multipoint optimization is to reduce the drag
coefficient at a fixed lift coefficient ofCL $ 0:30 betweenMl $ 0:80
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Fig. 8 Lift distribution for the optimized wing (Case 4).

Table 2 Cost breakdown of gradient computation
compared to flow solution

Time, s Relative cost

Flow solution 516 100%
Adjoint solution 253 49%
@R=@X and @J =@X 21 4.1%
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Fig. 9 CD vsM at CL ! 0:30 plot for the single-point optimization (Case 4).

Table 3 Drag reduction vs iteration count
for single-point optimization (Case 4)

Iteration CD Drag reduction

1 0.0265
20 0.0107 59.8%
50 0.0100 62.1%

100 0.00890 66.3%
250 0.00803 70.0%
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andMh $ 0:90. Note that we did not specify the same target lift over
the range ofMach numbers, which scaleswith the square of theMach
number. This would mean specifying the same M2C&

L over all
operating points. Instead, we assume that, as the aircraft increasesM,
it climbs to a higher altitude (lower density) such that the same lift is
generated with a constantCL. Note that we can only be confident that
theweighted integral I [Eq. (5)] has beenminimized if the composite
objective function J [Eq. (6)] is a good approximation to I.

In the cases presented, the lift-constrained drag-minimization
objective function [Eq. (4)] is used at each operating point; targets
and weights in lift and drag (C&

L,C
&
D, !L, and!D) are the same as the

single-point case. Geometry parameterization, geometric design
variables, and geometric constraints are identical to single-point
Case 4, and the angles of attack at the additional operating points are

also design variables. We initiate the multipoint optimization cases
with the final optimized geometry from Case 4 of the single-point
cases. Our multipoint optimization cases are performed using the
trapezoidal rule for numerical integration with two, three, and five
operating points. All operating points are equally spaced, with the
first and last operating points at M$ 0:80 and M$ 0:90, respec-
tively. Weights !i for each operating point are given in Eq. (7).

The convergence histories for the three cases are shown in Fig. 10.
Note that, in each iteration, the flow solution and gradient must be
computed for each operating point. In each of these three cases, the
gradient L2 norm is reduced by more than two orders of magnitude.
The accuracy of the composite objective function compared to the
integral I is shown in Table 4. The I values shown are obtained by
numerically integrating the objective function values over the entire
Mach number range with a fine interval.

Drag coefficients for the optimized wings at CL $ 0:30 are
compared to the single-point Case 4 results in Fig. 11. With two
operating conditions, the drag is substantially reduced over most of
the operating range, with a slight penalty in CD at M$ 0:90. The
composite objective function J differs from the integral I by 1.2%,
indicating that I is not well approximated. Significant point opti-
mization remains, as seen in Fig. 11. The three-point case continues
this trend; the integral is better approximated (0.63% error), but some
point optimization is still seen. Finally, withfive operating points, the
integral is well approximated (0.12% error), and there is no point
optimization. Relative to the single-point case, the wing optimized
with a five-point approximation to the integral has a drag coefficient
atM$ 0:90 that is 4.3% higher. If this is of concern to the designer,
then this can be addressed by choosing a different weighting function
P!M". However, any increase in the weighting function atM $ 0:90
will penalize the drag at otherMach numbers. If thewingwill operate
throughout the prescribed range of Mach numbers with equal
probability, then the constant weighting function P!M" $ 1 used
here is appropriate.

The wing sections from the two-, three-, and five-point cases are
shown in Fig. 12; the final sweep and twist angles are compared in
Table 5. For practical wing design, a wider range of operating
conditions, including off-design conditions, must be considered, as
discussed by Buckley et al. [22]. However, the present example
demonstrates that the algorithm presented is effective for multipoint
optimization and well suited to practical wing design.

VI. Conclusions
An efficient parallel Newton–Krylov algorithm is presented for

aerodynamic shape optimization of wings. An effective strategy for
enabling simultaneous optimization of planform variables and
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Fig. 10 Convergence histories for multipoint optimization cases.

Table 4 Accuracy of approximation of integral

Case I Composite J Error

Single-point 9:21 + 10%4

Two-point 8:46 + 10%4 8:35 + 10%4 1.20%
Three-point 8:30 + 10%4 8:27 + 10%4 0.63%
Five-point 8:31 + 10%4 8:30 + 10%4 0.12%
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Fig. 11 CD vs M at CL ! 0:3 plots for two-, three-, and five-point
optimized wings.
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section shapes is shown to convergewell for problems parameterized
with over 200 design variables, reducing both wave and induced
drag.Multipoint optimization results demonstrate that a drag integral
can be minimized over a range of Mach numbers while avoiding
point optimization, thus producing an efficient and robust design.
Future work will involve extension to turbulent flows as well as
aerostructural optimization.
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