Northumbria Research Link

Citation: Davies, Alan James (1995) Towards a method of measurement and cost control for civil engineering work in the petrochemical industry. Doctoral thesis, University of Northumbria at Newcastle.

This version was downloaded from Northumbria Research Link: https://nrl.northumbria.ac.uk/id/eprint/15684/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

Some theses deposited to NRL up to and including 2006 were digitised by the British Library and made available online through the EThOS e-thesis online service. These records were added to NRL to maintain a central record of the University's research theses, as well as still appearing through the British Library's service. For more information about Northumbria University research theses, please visit University Library Online.

TOWARDS A Method of Measurement and Cost Control FOR CIVIL ENGINHERING WORK IN THE PETROCHEMICAL Industry

by
Alan James Davies
in collaboration with
Imperial Chemical Industries

A Thesis Submitted in Partial Fulfilment of the Requirements for the Award of Doctor of Philosophy

University of Northumbria at Newcastle

August 1895

Volume 1 of 2

Acienowiedermenta

Abstreot
Consente
Chepter 1
Crapter 2
Chepter 3
Chaplere 4
Chepter 5
Chupters
Chepter 7
Chapter 8
Reteresoen
Btallogaphy

AckNOWLEDGEMENTS

It would be ungracious of me not to acknowledge the supervision and forbearance of Cliff Hardcastle and Henry Brown at various stages of this work Something of them must inevitably have rubbed off onto me. It would be equally ungracious of me to forget the organisational efforts, at the collaborating organisation, of Geoff Solomon and Norman Davies (no relation) whose work and interest in the findings of the research did them great credit. It was also a pleasure to have had the opportunity to work with, and hear the viewpoints of, the other potential users of measurement and cost control models.

I am indebted to John Lowe, my Director of Studies, for managing to guide my work to this outcome. I found his aftable approach sufficiently "hands off" to encourage some thinking on my part, which I suppose was the point. I have enjoyed our association, and hope it continues. My thanks also go to Sussie for not permitting me to spend our honeymoon writing up this Thesis.

Abstract

This work deals with the formulation of a hypothetical measurement and cost control model for Petrochemical Civil Engineering work The conventional model used at the collaborating organisation is the conventional general building construction measurement model, adopted without modification. Therefore there is a presumption, rather than proof, that this model is appropriate to Petrochemical Civil Engineering cost data. The lack of theoretical development in the cost modelling field give grounds to suspect that the conventional general bullding construction measurement and cost control model have little empirical observation to guide their formulation. Thus it will be argued that the reasons to employ any such model in preference to any other are liksely to be sociological influences of peer group paradigm practice. These sociological influences have been insufficiently recognised and stucied.

This thesis argues for the collection of empirical evidence upon whioh to bulld a hypothetioal cost model for Petrochemical Civil Engineering work, and that this would constitute a small step towards the theoretical development of cost modelling. To this end a strategy of grounded theory is proposed, devoid of any of the "preconceived truths" characteristic of middle range theory. It shall be argued that, given the laok of strength in the theoretical component of model building epistemology, the first step should be to make the model fit the data rather than to employ a prescriptive model into whose requirements the data must be shaped (this is argued to be an undesirable charaoteristio of the conventional models).

For the purpose of measurement functions, statistical analyses shall identify significant and insignificant cost centres in the Petrochemical Civil Engineering cost data. A hypothetical Petrochemical Civil Engineering model ahall be formulated whose parameters more olosely reflect these obeervations. Validation of this hypothetical model shall be commenced by means of a survey of all of its potential usens. The survey solicits their judgement as to whether the model is lilsely to achieve its objectives in practice. The reluctance of some users to believe the empirical findings will be argued to be symptomatio of the sociological basds upon whioh alternative cost models and techniques are trequently appraised.

Given the characteristic property of empirical models, that they yield general trends but not precisely identical outcomes, discussion shall be offered of whether truly "standard" models for costs of construction projects are either achievable or, indeed, desirable. The project costs being observed are the outcomes of actions and decisions in the social world, not the outcomes of phenomena of the physical world. Therefore it is necessary to ask whether dissimilarities are being modelled as opposed to similarities, and whether "universal" methods of measurement and cost control could ever fit any individual project to which they might be applied. It should be noted that the aim of this work is to formulate a model for a limited set of situations, not for all construction work; though there are areas of overiap between construction work types in different sectors of the industry.

A test of the hypothetical Petroohemical Civil Engineering model, in the form of a tender produced using tender documents prepared according to the parametars on the hypothetical Petrochemical Civil Engineering model will reveal favourable performance. The ensuing criticisms, by measurer and tenderer, of the hypothetical model shall be shown to be largely of a technical nature, indicating a tendency to appraise models on the basis of their internal consistenoy rather than on the basis of the epistemological arguments surrounding the formulation of their internal components.

For the purpose of cost analysis and planning functions, unacoeptably high variability of cost behsviour shall be found using conventional Elemental cost centres. This will be argued to be inadmissible in a cost model. The need to identify more consistent and gignificant cost centres will be axgued. A potentially useful classification of such cost centres, developed by others, shall be identifed. Investigation into their applicability to Petrochemical Civil Fhgineering modelling shall be recommended as being worthwhile.

It shall be recommended as an area for future work that a single model, at an appropriate level of abstraction, be sought which is capable of simultaneousiy fulfiling the measurement and cost analysis and planning functions. The conventional measurement and cost planning models are merely differing levels of abstraction of each other, the latter being an over simplified abstraction from the ovar detailed former. That this abstraction is deemed to neceasary at all is argued to be damonstrative of the fact that neither of the conventional levels of abutraction are appropriate.

CONTENTS

Chapter 1: Probi mm Statemient and Structure of Thesis
1.1: Problem Statement 1
1.2. Considarations of Philosophy and Practicalthy 4
1.3: Structure of Thesis 5
1.4: Croes Reterencing of Chapters, Appendioes, Tables and Diaprams 10
1.5: Summary Remarks 19
Chapterr 2: Thbormetical Underrinning of Moder
2.1: Generally 20
22. Proof and Refutation of Theories And Models 20
20: Ponerible Solutions to the Duhemian Problem 21
2.4: Induotion 23
25: The Popperian (Eypothetioodeduottvo) Acoount 24
2.6: Tho Kuhnian Acoount 27
2.7: The Latratorian Accoumt 30
2f: The Ferecabendian A0coumt 31
29: Koentrobs Accoumt 32
210: Beloction of Theondes and Modals 38
2.11: The Bociolopical (or Ideologioal) Paractirm Acoount 34
2.12: The Obiout viat or Ehmprionl (Pontion) Acoount 38
2.12: The Petrochermical Chell Enetmeoring Meamurement and Cout Control Model 39
2.14: Bummaxy 43
Chapier 3: The ObJecivers of a Cost Model for Petrochrimical Civil Enginerring Woris
Rhented to Orimodox Convenions
3.1: The Conventional Petrochemical Civil Engineering Cost Models as Information 44
Communioation Media
3.2. Level of Abstraction of the Model 49
33: The Relationship to Cost of the Conventional Petrochemical Civil Engineering 54
Model
3.4: The Relationship to Design of the Conventional Petrochemical Civil Engineering 59
Model
3.5: Bummary 65
Chapterr 4: Review ofr Rbsearch Methods
4.1: Generally 67
42: The Gemeral State of Cost Modelling Reeearch in the United Kingdom Construotion 67
Industry
43: Inductive, Doduotive and Emprical Stratery of this Thoris 69
4.4: Stratery of Grounded Theory and Middle Range Theory 73
4.5: Statistical Analyais of Conventional Perrochemical Civil Engineering Measurement 74
and Cont Control Modols and thedr Cost Distrubutions
4.4. Cation of of the Statistical Mothod 75
47: Eurves Method: Drateing and Vabidating a Fypothetical Model for Petroohemical 78
Ctyll Enptneering Work
48: Cation on of the Surver Method 80
4.9. Fhepocimential Method: A Tent of the Firpothetion Model 88
410. Citiofim of tho Encpertmental Mothod 85
4.11: The Cope Slundy 87
4.12: Cattif mof of the Camo Sturdy 87
4.18: Bummagy 88

Chapier 5: The Formulation of Measurgment and Cost Conirol modeis in rei atehd Fisids

5.1: The Epistermology of Model-Building 91
5.2. The Thecoretical Devalopment of Building Cost Models 93
5.3: Weaknesses in Exristing Cost Modelling Theory. The Myth of Standardisation 94
5.4: Formulation of Idiographio Models for Construction Projeots 97
5.5: Formulation of the Civil Engineering Cost Model 99
5.6: Formulation of the Bullding Cost Model 100
5.7: Formulation of a Commercial Pival to the Bullding Cost Model 104
5.8: Formulation of the Iterative Civil Fngincering Model 106
5.9. Formulation of the Burlderts Quantitiea Model 107
5.10. Formulation of the International Frocinearing Construotion Model 108
5.11: Formulation of a Rational Bill of Guanttiee for Civil Fngineering Work 109
5.12. Formulation of Flemental Modols 110
5.13: Proposals for the Formulation of a Fiypothotical Petroohemical Ctwll Engineering 113
Model
5.14: Summany Remariss 114
Chapierr 6: Fofmulation of a Hypothbital Peifochimmical Civil Enannarring Measurkmient and Cost Conirol Moder
6.1: Lovel of Abetraction: Elll of Quantitice Itemes: Preltminary Anak is is 116
6.: Level of Abetraction: Bill of Curantities Itemos Remults of Preliminaxy Angiveds 116
 117
6.4:Lovel of Abetemotion: Em of Cuantities Itemar Roults of Comprehensivo Anakids 118
65. Nocmat thon" the Dats 120
6.6. Cowfirnificant Parametern and Geopodo Famities of Pammetars 188
 128
6.8: Leval of Abstraction: Trade: Results of Analysis of Cost-Insignificant Parameters 127
6.9. Level of Abstraction: Trade Subsections: Analyais of Cost-Insigntficant Parametars 129
6.10. Level of Abstraction: Trade Subeections: Results of Anskysis of CostInsignificant 120
Parametens
6.11: Recommended Measurement Conventions for costsignifioant and Cost- 130
Insignificant Parameters of a Hypothetical Petrochemical Civil Engineering
Measurement and Cost Control Model
6.12. Level of Abstraction: Flement: Comprehensive Analyzis 130
6.13: Level of Abstraotion: Flement Results of Comprehensive Analysis 181
6.14: Conchusions and Recommendations 132
6.15: Further Disoussion 133
6.16: Identification of CostGenerating Flements in Potrochemical Civl Fingineering Bills 134 of Curantities
6.17: "Normalised" Rate of Cost-Generation by Element in Petrochemioal Civil 135
Fhnqineering Bills of Quantitios
6.18: Results of Analyris of CostGeneration by Element in Potrochemioal Civil 135
Engineering Bills of Curantities
6.19. Conclusions and Recommendations 137
6.2. Further Disousaion 138
Chapierr 7: Valmaiton ofite Hypotherical Peirochimmical Civil Engannherang Measurbinient and Cosi Conirol Moder
7.1: Generanty 148
7.2: Eurvery of User Atttoudes to Fiypothetionl Meannement Modal (Btace 1) 143
7.2: Summany of Reaults of Eurvey of User Atttudes to Fypothetionl Measurement 148 Model (Exac: 1)
7.4: Eurver of Uner Asttudes to Hypothetionl Meamurement Modal (Stace 2) 144
75. Summery of Results of Surver of User Authtudee to Fiypothetical Measurement 145
Modal (Exage 2)
7.6. Expentmental Method. A Teat of the Fiypothetical Model 147
7.7: Critigue 148
7.8: Some Results from the Experiment Feedback from Measurer and Estimator 149
7.9. Discussion of Feedback from Measurer and Estimator 151
7.10: Comolusions 152
7.11: Further Discussion 153
7.12: Comparison of SMMM7, the Hypothetical Modal and "Shorter Bills of Quantities" 155
7.13: Results of Comparison of BMMY7, the Hypothetical Model and "Shorter Bills of 155
Quantities
7.14: Conclusions from Comparison 156
7.15: Summany 159
CHAPTERR 8: CONCIUETONS AND RECOMMENNDATIONS
8.1: Regarating Problem Statement 162
82. Regarcing Theonetical Underpanning of Models 162
83: Regarding the Objectives of a Cost Model for Petrochemical Civil Fhagineering Work 162
Related to Orthodox Conventions
8.4: Regarding Reviow of Repearoh Mothods 164
8.5. Reganding the Formulation of Cost Models in Rolated Fields 165
8.6: Regarding the Focmulation of a Fypothetical Petroohemical Civll Engineering 168
Measurument and Cost Control Modal
86: Regarding the Validation of a Hypothotical Potroobemical Ctvll Engeineering 170
Meamrement and Cont Contral Modal
88: Recormmendations 171
Rexperranciss 174
BTBIMOCHAFHY 184

List of Charts, Tables and Diagrams

Chart 1: Expenditure at the Collaborating Organisation on Capital 2
Construation
Chart 2: Turnover at the Collaborating Organisation by Product Division 2
Table 1: Cross-referencing of Charts, Tables and Diagrams 10
Table 14.1: "Comparison of SMM7, the Hypothetical Model and "Shorter 157
Bills of Quantities"
Table 14.2: "Comparison of SMM7, the Hypothetical Model and "Shorter 158
Bills of Quantities"
Table 15: Commonality of Measurement Coverage in 3 Selected Methods of 160
Measurement
Table 2 "Least Value" Items In 3 Petroohemioal Civil Engineering Bills of A1
Quantities
Table 3: Small Value Items in 3 Petroohemioal Civil Engineering Bills ofA1
Quantities
Table 4: Not used
Table 5: Effeot of Removing from Petrochemical Civil Engineering Bills of A5
Quantitios the "Smallest Value" Items which Collectively Comprise only 5\% of the Bill Total (All Items)
Table 6: Denoriptive Statistios Indioating Cost Diatribution in Petrochemioal A6
Civil Engineering Bills of Quantities (SMM5)
Table 7: Denoriptive Etatistica Indicating Cont Distribution in Petroohomioal A7
Civll Engineoring Bille of Quantitios (SMM6)
Table 8: Skewneas of Distribution of Cont Data in Petroohemioal Civil AB
Engincoring Bills of Quantitios (all BQ itoms)
Table 9: Skewnems of Distribution of Cont Data in Potrochomical Civil A8
Encineering Bill of Quantitios (mongured itoms only)
Teble 9.1: Contindenifioant Itoms In "Lowest Cout" Bande By Trade (8MM5)A10
Diagram 1.1: SMM5 BQ: Trade Items as \% of "Lowest Cost" Bands A11
(Demolitions + Alterations to Roofing)
Diagram 1.2: SMM5 BQ: Trade Items as \% of "Lowest Cost" Bands (Carpentry A11 to Electrical installation)
Diagram 1.3: BMM5 BQ: Trade Items as \% of "Lowest Cost" Bands A11
(Finishings to Fencing + Gates)Table 9.2: Cost-insignificant Items In "Lowest Cost" Bands By Trade (SMM6)A12
Diagram 2.1: SMM6 BQ: Trade Items as \% of "Lowest Cost" Bands A18
(Domolitions + Altorations to Asphalt Work)
Diagram 2.2: 8MM6 BQ: Trade Items as \% of "Lovest Cost" Bands (Roofing to A13
Eloctrical installation)
Diagram 2.3: 8MM6 BQ: Trade Items as \% of "Lowest Cost" Bands A18
(Finishings to Fencing + Gates)
Table 10.1: Cost Distributions in "Loweat Cost" Bands By Trade Bubsection A14 (GMM5 BQ)
Table 10.2: Cost-Distributions in "Lowest Cost" Bands By Trade Subsection A20 (SMM6 BQ)
Table 11.1: Compingignifioant Items in "Lowest Cost" Bands By Trade A26-43
Subsootion (BMM5 BA)
Diagram 4.1: Demolitions + Alterations: BMM5 BQ (Soo Table 11.1) A26
Diarram 4.2: Brosvation + Earthwork: SMM5 BQ (Soe Table 11.1) A27
Diagram 4.8: Pling: BMM5 BQ (Soe Teble 11.1) A28
Diacram 4.4: Conorote Work: BMM5 BA (See Table 11.1) $A 89$
Diagram 4.5: Briokworls + Blookwork: EMM5 BQ (Boe Table 11.1) A80
Diagram 4.6: Roofing: SMM5 BQ (See Table 11.1) A31
Diagram 4.7: Carpentry: SMM5 BQ (Bee Table 11.1) A32
Diagram 4.8: Joinery: SMM5 BQ (See Table 11.1) A34
Diagram 4.9: Struotural Steelwork: SMM5 BQ (Bee Table 11.1) A35
Diagram 4.10: Metalwork: SMM5 BQ (See Table 11.1) A36
Diagram 4.11: Plumbing Part]: SMM5 BQ (See Table 11.1) A38
Diagram 4.12: Plumbing Part]: SMM5 BQ (See Table 11.1) A38
Diagram 4.13: Electrical Installation: SMM5 BQ (See Table 11.1) A39
Diagram 4.14: Floor, Wall + Ceiling Finishes: SMM5 BQ (See Table 11.1) A40
Diagram 4.15: Glasing: SMM5 BQ (See Table 11.1) A41
Diagram 4.16: Painting + Decorating: SMM5 BQ (Bee Table 11.1) A42
Diagram 4.17: Drainage: SMM5 BQ (Soo Table 11.1) A43
Diagram 4.18: Fencing + Gates: 8MM5 BQ (Soe Table 11.1) A44
Table 11.2: Cost-insignificant Itoms In "Lowest Cost" Bands By Trade A44-59
Subsection (SMM6 BQ)
Diagram 5.1: Demolitions + Alterations: SMM6 BQ (Boe Table 11.2) A44
Diaqram 5.2: Excavation + Earthwork: GMM6 BQ (Soo Table 11.2) A45
Diagram 5.3: Pling: SMM6 BQ (Boe Table 11.2) A46
Diagram 5.4: Conorete Work: BMM6 BQ (Bee Table 11.2) A.47
Diagram 5.5: Briolwork + Blockwork: 8MM6 BQ (Bee Table 11.2) A48
Diagram 5.6: Apphalt Work: BMM6 BQ (Eee Table 11.2) A49
Diagram 5.7: Roofinc: 8MM8 BQ (Bee Table 11.2) A50
Diagram 5.8: Woodworlc: SMM6 BQ (See Table 11.2) A51
Diacram 5.9: Struotural Stoekwork: SMM6 BQ (Soe Table 11.2) A52
Diagram 5.10: Motalworic: BMM6 BQ (See Table 11.2) A53
Diagram 5.11: Plumbing Part): SMM6 BQ (Bee Table 11.2) A54
Diacram 5.12: Flumbing Part]: SMM6 BQ (Bee Table 11.2) A55
Diagram 5.13: Electrical Installation: SMM6 BQ (See Table 11.2) A56
Diagram 5.14: Floor, Wall + Ceiling Finishes: SMM6 BQ (See Table 11.2) A57
Diagram 5.15: Glasing: BMM6 BQ (See Table 11.2) A58
Diagram 5.16: Painting + Deoorating: SMM6 BQ (See Table 11.2) A58
Diagram 5.17: Drainage: SMM6 BQ (Soe Table 11.2) A59
Diagram 5.18: Fencing + Gates: SMM6 BQ (Bee Table 11.2) A60
Table 12.1: Recommendations Regarding "Generic Families" of Items (Using A61-67
Enlarged Data Sample)
Table 12.2: Recommendations Regarding Cost-insignificant Items Using A68-78
Enlarged Data Sample)
Table 13.1: Inoidence of Elements in Petroohemioal Civil Engineering A80
Projects: All BQ Items
Table 13.2: Incidence of Elements in Petrochomical Civil Engineering A81
Projocts: Measurod BQ Itoms Only
Table 18.3: Consiatency of Elemental Cost Behaviour acroas Petroohemical A82 A88 A84
Potroohemical Civil Engineoring Projocts: All BQ Itoms: 8MM6 BQ
Table 15.8: Coeffioient of Variation of Flemental Coat Behaviour acroas A85
Petroohemioal Civil Engineering Projects: Measured BQ Iterns Only: SMM5 BQ
Table 15.4: Coefficient of Varistion of Elemental Cont Bohsviour acroesA86
Petroohemioal Civil Bngineering Projeota: Meaeured BQ Items Only: 8MM6
BA
Table 16.1: Major and Minor Cont-generating Fiemente in PetrochemicalA88
Civil Engineoring Projecta: All BQ Items: 8MM5 BA
Table 16.2: Major and Minor Cont-generating Flomente in PotroohemicalA89
Civil Engineoring Projocta: All BQ Itoma: 8MM8 BQ
Table 16.3: Major and Minor Cost-generating Elements in Petroohemioal A90 Civil Engineering Projects: Measured BQ Items Only: SMM5 BQ
Table 16.4: Major and Minor Cost-generating Elements in Petrochemical A91
Civil Engineering Projects: Measured BQ Items Only: SMM6 BQ
Diagram 6.1: Reduction of Measurable Items Using the Hypothetioal Model A93
Diagram 6.2: Reduction of Measurement Time Using the Hypothetical A93
Model
Diagram 6.3: Effect on Measurement Time (Low Cost Items) Using the A94
Hypothetical Model
Diagram 6.4: Readability of the Hypothetiosl Model A95
Diagram 6.5: Simplioity and Clarity of the Hypothetioal Model A96
Diagram 6.6: Effeot on Woriding-up Time of the Hypothetioal Model A98
Diagram 6.7: Reduotion of Working-up Time (Low Cost Items) Using the A97
Hypothetical Model
Diagram 6.8: Appropriateness of Level of Abstraction of Detail of the A98
Hypothotical Model
Diagram 6.9: Doubt Regarding Items "Deemed to be Included" in the A99
Hypothetical Model
Diacram 6.10: Clearer Specification Provisions in the Hypothetical Model 1.100
Diagram 6.11: Adoguacy of Units of Measuremont in the Hypothetioal Model A. 101
Diacram 6.12: Adequacy for Preparing BQ of the Hypothotioal Model A102
Diacram 6.18: Adecuacy for Preparing Tenders of the Fypothetical Model A103
Diagram 6.14: Diffioulties Foreaeen in Prioing BQ Items Uaing the A105
Hypothotical Model
Diagram 6.15: Roduotion of Tondering Time Using the Hypothetical Model A106
Diagram 6.16: Acoeptability of Lovel of Abstraction of Priceable Detail in the A107
Hroothotionl Model
Diegram 6.17: Informstion Required to Supplement the IIjpothetical ModelA108
(Tonderine)

Diagram 6.18: Information Required to Supplement the Hypothetioal Model (Prioing BQ)	A109
Diagram 6.19: Some Problems Foreseen Using the Hypothetical Model (Preparing Tenders)	A110
Diagram 6.20: No Problems Foreseen Pricing BQ Using a Completely-drafted Hypothetical Model	A111
Diagram 6.21: Effect on Time Spent Valuing Variations Using the Hypothotioal Model	A113
Diagram 6.22: Information Required to Supplement the Hypothetical Model (Post Contract Production Planning)	A114
Diagram 6.23: Time Spent on Interim Valuations Using the Hypothetical Model	A116
Diagram 7.1: Roduotion of Moasurable Items Using the Hypothetioal Model	A118
Diagram 7.2: Reduction of Measurement Time Using the Hypothetical Model	A119
Diagram 7.3: Effeot on Measurement Time (Low Cost Items) Using the Hypothetioal Model	A180
Diagram 7.4: Roadability of the Hypothetical Model	1121
Diacram 7.5: Simplicity and Clarity of the Hypothetioal Model	A122
Diagram 7.6: Effeot on Worldingup Tyme of the Hypothetioal Model	A128
Diagram 7.7: Reduotion of Working-up Time (Low Cost Items) Using the Hypothetical Model	A124
Diagram 7.8: Appropriateness of Level of Abstraction of Detail of the Hypothetioal Model	A125
Diagram 7.9: Doubt Regarding Itoms "Deemed to be Inoluded" in the Hypothetioal Model	A127
Diacpam 7.10: Clearer Epeolfioation Provitions in the Hrypothetioal Model	A180
Dispram 7.11: Adecuscr of Units of Meamurement in the Fippothetioal Model	A131
Diacram 7.12: Adoquacy for Proparing BQ of the Frypothetioal Model	A132
Diagram 7.18: Adequacy for Preparing Tonders of the Frpothetioal Model	A184
Diagram 7.14: Difficultios Foreacen in Prioing BQ Items Uning the Hypothetionl Model	A186

Diagram 7.15: Reduction of Tendering Time Using the Hypothetioal Model	A138
Diagram 7.16: Acceptability of Level of Abstraction of Priceable Detail in the Hypotheticsl Model	1140
Diagram 7.17: Information Required to Supplement the Hypothetical Model (Tendering)	A142
Diagram 7.18: Information Required to Supplement the Hypothetioal Model (Prioing BQ)	A144
Diagram 7.19: Sonfe Problems Foreseen Using the Hypothetioal Model (Preparing Tenders)	A147
Diagram 7.20: No Problems Foreseen Pricing BQ Using a Completelydrafted Hypothetical Model	A149
Diagram 7.21: Effect on Time Spent Valuing Variations Using the Hypothetioal Model	A151
Diagram 7.22: Information Required to Supplement the Hypothetical Model (Post Contract Production Planning)	A152
Diagram 7.23: Time Spent on Interim Valuations Using the Hypothetioal Model	A153
5	
Table 17: Element Classification following the Deutsohes Institut für Normung [DIN 276] (With English Translations)	A165
Table 18: Element Classification Following the Building Cost Information Service	A167
Table 19: Signifioant Cost Centres Independent of the Levels of Abstraction of the Conventional Elemental and BQ Modela: "Lead Poaitiona" and their	A168-169
UK Equivalonts	
Table 20: Frample of Design Variations to, and the Input of Costs of Factors of Production into"\& "Lead Position": [Leitpoaition: 018.21] Beton fir	A170
Abfullungen, Fundamente, Boden, Platten, Deoken / [Lead Poaition 018.21] Conorete for Fylling, Foundation, Ground Floors, Blabs, Upper FMoors	

Annex 1: Hypothetical Petrochemioal Civil Engineering Measurement A172-182
Model (Prior to Validation Stage 1)Annex 2: Hypothetical Petrochemical Civil Engineering MeasurementA183-A223
Model (Prior to Validation Stage 2)

CHAPTER 1:
 Problem Statemmet and Structure of Thesis

1.1 Problem Statemaknt

The problem with which this research work was confronted was clearly prescribed. A collaborating Petrochemical organisation was expending some $£ 157000000$ per annum on capital construction work at the time this study commenced, for which no specialist measurement and cost control model existed. A suitable set of such conventions needed to be investigated. The organisation possessed geographical divisions in which measurers applied different versions of the conventional Building models, for no other obvious reason than that of familiarity. It was necessary to ascertain which such model, if any, was best suited to the nature of the construction work in question. It soon became apparent that the nature of the construction work in question was that of a curious hybrid blend of what might be termed "olassical" Building work and "olassical" Civil Fngineering work Parts of the Building model could be applied, or parts of the Civil Engineering model; but neither with outrageous success.

An additional problem was that the buildings and structures being modelled were regarded as being anoillary to, or as supporting, the process plant used to manufacture the organisation's products. Therefore the "building work", if it may be so called, often took a subservient role. Whereas a "building" would normally be deemed to require the provision of supporting infrastructure, in Petroohemical Civil Engineering the building itself could be a supporting infrastructure. Charts 1 and 2 show respectively the scale of capital construction investment at the collaborating organisation, and tts turnover by product division, at the time of commencing this study (sorurce: intarnal papars at that organisation). The costs (and potential ssvings which might acorue from the development of suitable measurement and cost control techniques) are considerable.

Chart 1: United Kingdom Expenditure on Construction atthe Collaborating

Organisation

Chart 2: TURNOVER AT THE COLLABORATING ORGANISATION BY PRODUCT DIVISION

As stated, the design of process plant would often receive priority. Contracts for the Petrochemical Civil Engineering work would often be let on the basis of incomplete design.

This is not a situation envisaged by the conventional building models which were being employed at he time. Such models were formulated in the expectation that design would be substantially complete.

The mixture of construction types and variable complexity of work encountered required the exploration and identification of an appropriate level of abstraction for a Petrochemical Civil Engineering cost model. In the case of crude or incomplete design it had to be ascertained whether the detail demanded by conventional models was excessive and hence a source of over administration. In the case of relatively detailed design there was a need to enquire whether the provision of detail in conventional models constituted the provision, for the sake of it, of information which could be gleaned from the drawings, and which was therefore a possible case of expensive redundancy. The projects analysed were:

SMM5 BLIL S OF QUANITIES:

Bill 2	Melinar Plant	$(1985=£ 110$ 100)
Bill 3	Ethoxylates Plant	$(1980=£ 381$ 800)
Bill 4	Ammonium Nitrate Plant	$(1980=£ 211$ 700)
Bill 5	Contol Room Building + Alterations	$(1977=£ 190$ 900)
Bill 6	Protein Plant Site Development Works	$(1977=£ 301100)$
Bill 7	Control Room Building	$(1974=£ 253500)$
Bill 8	Substations	$(1980=£ 379$ 400)
Bill 9	Laboratory Extension \& Refurb	$(1982=£ 149300)$

SMM6 BILLS OFQUANITIIES:

Bill 11	Offoading Facility	$(1984=£ 83$ 700)
Bill 12	Effluent Pipeline	$(1984=£ 95200)$
Bill 13	Caustic Plant Structural Steelwork	$(1984=£ 463800)$
Bill 14	HCl Reaction + Compressor Sections	$(1985=£ 77 \mathbf{6 0 0})$
Bill 15	Bagged Salt Warehouse Extension	$(1984=£ 39600)$
Bill 16	Anhydrous Caustic Plant	$(1984=£ 687100)$
Bill 17	Cool Firing Cement Plant	$(1984=£ 410800)$

Two further projects were subsequently added (Oflice/Staff Amenities and Plastics Plant containing high quality finishings) in order to supplement the superstructure, fittings and finishings aspect of the data. The comprehensive statistical analyses described here were repeated following the addition of these data. The characteristic results replicated. In ordier to avoid unnecessary repetition, and to save space, the results reported in Chapter 6 and in the Appendices are those following the repeat analyses.

1.2 CONsimbrations of Phmosorfy and Practicality

Fundamental to the consideration of such cost models is the need to question the besis of their formulation and adoption in practice. There was little evidence to suggest that the models used, the building cost models unsbridged, had any rational basis upon which to justify their application in practice. They were the "traditional" models, used, presumably, for reasons of "practicality" or "familiarity". This, though, cannot be taken to imply "validity".

The propensity for the construction industry to reaist change is well known; the reasons why practitioners tend to support established models and oppose potemtial rivals has been the subject of rather less exposition. A new, or improved, model was being sought whose undertying principles might be adopted by the collaborating organisation. Therefore the likelihood that potential model users might realst a "theoretical" alternative to the status quo (though on what grounds is a matter for considerable debate) had to be anticipated. Therefore part of this research looks into the ways in which theories and models can come to be espoused or rejected and discovers that these reasons are not all scientific. The relationship between what the induatry calls "theoretical" and what it calls "practical" is briefly discussed. The word "theory" tends to be misunderstood and misused. It may be that in building economics we have no models worthy of the exalted status of theory.

The mention of the word "theory" can cause practitioners to become sceptical. Phrases like "academics in tvory towers" and "cost models are irrelevant" have been known to appear in the correspondence columns of professional journals. If cost models are irrelevant, then so be tt. They are nevertheleas used in practice. We employ them in our daity businees and purveg their output to our clienter. If they are irrelevant, and this has been alleged, then there
is a clear need to look at potential alternatives to the irrelevancies, in the interests of rational development. Such alternatives must include the alternatives being developed in the "theoretical" world. Indeed, it is from the "theoretical" world that the "alternatives" are likely to emanate.

In a survey executed by Fletcher et al (1972) the viewpoints of practitioners belonging to two influential professional societies were sought regarding the development of conventional Building measurement and cost control models. In the section of the survey entitled "Practice Generally" two of the most populous responses were "criticism comes from the theorists and academics" and "the existing SMMM works well". The works of academia seem often to be vilified by the professions. Therafore the basis of such reasoning requires discussion. Criticism is essential to the advancement of knowledge. It must come from somewhere. If it does not come from the industry itself then some academio must offer it.

Fletoher et al (1972) had the misfortune to report a response rate to their survey of approximately 0.33 per cent. Out of 49170 enquiries made to the practitioners concerned, 158 replies were recetved. The enthusiasm of the profeasions towards participation in devalopment of the subject (whether it be "theoretical" development or no) may or may not to reflect distrust of development.

It can never be proven beyond doubt that any individual model works; not even the conventional models; we can only select the least defective one from a range of models which have either already been formulated or which, as audacious upstarts, are about to be. Further, if we insist on the upstart models being tested, we must demand at least as muoh of the conventional ones. In fact we should demand better of conventional models, as they are the ones in widespread use. It cannot be presumed that the models in widespreed use are intrinsically better than their rivals, without looling at the potential rivals.

1.3 Sirduciurts of Thesis

Chapter 2 discusses the overall philosophy of soience concerning theories and models. These aspects of methodology are considered to be subjectindependent, but necessary. It
will identify which of the overall philosophical approaches are considered to be pertinent to the models being studied and formulated in this work. The Chapter will draw principally on the philosophy of Duhem (1954), Musgrave (1978), Koertge (1978), Popper (1959), Grünbaum (1878), Kuhn (1962), Masterman (1970), Feyerabend (1970, 1975 and 1978), Sen (1970), Post (1978) and Toulmin (1970).

Chapter 3 will discuss the requirements of cost models and criticise the Conventional Petrochemical Civil Engineering Cost Model as an information communication medium. The Chapter will then discuss the requirements of such models and criticise the Conventional Petrochemical Civil Engineering Cost Model in terms of an appropriate level of abstraction of detail. Chapter 2 will then discuss the requirements of such models and oriticise the Conventional Petroohemical Civil Engineering Cost Model in terms of its relevance to the design and costs of the building or structure which it purports to represent.

Chapter 3 will criticise the basis of the conventional model's formulation and will draw principally on the work of Ferry and Brandon (1991), Flanagan (1980), Hardcastle (1992), Daly (1981), Barnes (1971 and 1977), Fine (1982), Davies and Greenwood (1994), Stamper (1973), Hardcestle (1992), Hardcastle ot al (1987a, 1987b and 1988), Heath and Bryant (1892), Drucker (1978), Cirillo (1979), Diederichs and Hepermann (1985), Salset (1986), Emmett (1990), Hooker (1985), Snell (1973), Feyerabend (1975), Brandon (1982), Silverton (1983) and Dirksen (1982).

Chapter 4 will briefly review the overall state of theoretical development in building economics, point out some of its weakneeses and report some recommended agenda for cost modelling researoh. The Chapter will set out a basic strategy for the research in this thesis and review and criticise the research methods (the data collection tools) used.

Chapter 4 will propose statistical anslysis of the data in Conventional Petrochemical Civil Engineering measurement and cost control models in order to obtain empirical observations of cost behaviour. The Chapter will then propose a surveg among all lisely endusers, inviting their judgement on the hypothetical measurement model so formulated. The interviews will seek to ascertain whether the end-users consider that the hypothetical model would achieve its stated objectives. The survey will also ensble the respondents to comment
on whether they agree with its stated objectives. The Chapter will then propose an experimental measurement exeroise whereby a known historical projeot will be re measured using the hypothetical model and priced as a bona fide tender. This will constitutes the beginning of a hypotheticodeductive phase; that is of modeltesting.

Chapter 4 will question whether there need be an overt intention (as the pure and social sciences often presume) to generalise to the whole population (in this case the whole construction industry). An empirical model which follows an individual situation, or a limited number of situations of similar character, is specifically being attempted in the work described here. The Chapter will recommends study of the principles of idiographic models. Chapter 4 will draw principally on the work of Ashworth (1994), Rattery (1991), Newton (1991), Popper (1959), Neale and Liebert (1980), Hogarth (1980), Feyerabend (1975), Katona (1963), Layder (1993), Barnes (1971), Dominowski (1980), Hartman and Hedblom (1979), Sen (1970), Dobson et al (1980), (Lulksos (1971) and Flanagan (1980).

Chapter 5 will commence by giving some brief overall treatment of the epistemology of modelbuilding and point out the epistemological requirement for a theoretical basis upon which to found the actual building of models. Without some theoretical basis, the model is vacuous. In the general context there is a need for a more substantial body of theory upon which to base modelbuilding. Without rational consideration of what the "facts" to be modelled ought to be the exercise is no more than one of data collection. This is eapecially likely if the conventional rules of the measurement model have been formulated more by a process of negotiation between interested parties than by any prior substantial data analysis. Chapter 5 will then question the applicability of conventional standard Element classifications to the Petrochemical Civil Fngineering data under study.

Chapter 5 will then briefty review the formulation of, and discusses some methodological issues concerning models in related fields bearing similar characteristics to the hypothetical model described in this thesis. The models in question will be: the Civil Engineering Cost Model, the Building Cost Model, a Commercial Ptval to the Building Model, the Iterative Civil Engineering Model, the Builder's Quantities Model, the International Fingineering Construction Model, a Rational Bill of Quantities Model for Ctvil Engineering Work and Flemental Models.

Chapter 5 will draw principally on the work of Kenny (1979), Hindness (1977), Brandon (1982), Bowen and Edwards (1985), Tong and Lu (1992), Feyerabend (1975), Kenley and Wilson (1986), Barnes (1971), Strotton (1988), Bennett (1983 and 1986), Quier (1992), Moore and Ashworth (1986), Saket (1986), Saket (undated), Horner et al (1986), Horner and Sakiet (1984), Pasquire (1993), Barnes (1971), Singh and Banjoko (1990), De Troyer (1986), Diederichs and Hepermann (1985) and Davies and Greenwood (1894).

Chapter 6 describes the statistical analyses used to formulate (by empirical observation) a hypothetical Petrochemical Civil Engineering model. The "Preliminary Ansiysis at Bill of Quantities Item Level of Abstraction" section will describe the analysis of historical cost data in Petrochemical Civil Engineering Bills of Quantities by rank order distribution of cost (apportioned by tenderers).

The seotion "Comprehensive Analysis at Bill of Quantities Item Level of Abstraction" will describe analysis of Petroohemical Civil Engineering cost data following "normalisation". Item values in Bills of Quantities will be standardised by dividing each item value by the mean item value. For each Bill of Quantities descriptive statistics will be produced of mean item value, standard deviation and skewneas.

In the seotions "Analysis at Trade and Trade Subsection Level of Abstraction" those Trades and Trade Subsections in which costinsignificant Bill ttems proliferate will be identifed. A costrinsignificant item is defined for the salse of argument as being one of the lowest value Bill Items which collectively aggregate to the last 5\% of the Bill Total (when placed in descending rank order of value)

The section "Recommendations regarding Costinsignificant Parameters and Ceneric Families of Parameters" will identify those items which permanentiy reside in the costinsignificant category previously deacribed. Their omisaion from the measurement system shall be suggested. Those generic temilies of items which are similar in nature but conventionally clasified in separate measurement rules and identically or similarty priced will be identifled. The aimplification of their measurement will be sugegested, by virtue of reduoing the number of measurement categories for such ttems or by amalgamating such
items into composite items. Proposals for an experimental method of measurement shall be set out.

In the section "Analysis at Elemental Level of Abstraction" the historical cost data will be grouped by functional building Flement and Elemental cost distributions by projeot and the incidence of functional Elements across all projects will be computed. Cost significant and cost insignificant Elements shall be identified and discussion offered as to whether data classification using conventional Elements is capable of leading to standardisation. The overt need to standardise shall be questioned. Study of idiographic, as opposed to nomothetic, models will be recommended.

Chapter 6 will classify Elements by the rate at which they ganerate costs (attract prices from Tenderers). Elements as Major Cost Generators or a Minor Cost Generators will be considered, and proposals made for their treatment within a hypothetical measurement model. Chapter 5 will draw principally on the work of Barnes (1971), Ashworth and Skitmore (1983), Druoker (1978), Gray (1983), Ayraro et al (1987), Flanagan (1980), the Building Cost Information Service (1969), Morrison and Stevens (1983), Ferry and Brandon (1991), Brown (1984), De Troyer (1990), Marks et al (1990), Diederichs and Hepermann (1985) and Nachmias and Nachmias (1976).

Chapter 7 describes the first steps of the validation of the hypothetical model (whioh will have been formulated on the basis of the empirical observations in Chaptar 5). A survey of all potential model users will be executed in order to solioit the judgement of these experts as to whether the proposed method of measurement would achieve its stated objectives. In Chapter 7 the first test of the hypothetical model will be carried out by remeasuring an existing historical projeot using the hypothetical model as the method of measurement and having one of an approved panel of contractors price the project again as a bona fice Tender. Comment by the Tenderer and the expent user who "re measured" the project on the use of the document for Tendering purposes shall be added.

Chapter 7 will describe two brief tests to compare SMMM7, The hypothetical model and "Shorter Bills of Quantities" in terms of their relative compatibilty. Chapter 7 will refer broadly to Hughes (1983), Silverton (1983), Saket (1986) and Heath and Bryant (1991).

Chapter 8 will offer overall conclusions and recommendations for further work, and will refer broedly to the work of Saket (1986), Morrison and Stevens (1983) and Diederichs and Hepermann (1985).

1.4 CROBO TXHFHREHCING OF CHAPLHRS, APPFNDICESS, TABL BS AND DIACRAMM

TABIE 1: Index To Tabi ms and Diacrams

PRORLAMSTATEMERNT	AfPENDIX	Rew hivant Chapterf(b)
Chart 1: Empenditure at the Collaborating Organisation on Capital		Ch 1
Construction		
Chart 1: Turnover at the Collaborating Organisation by Product		Ch 1
Division		
Table 1: Index to Charts, Tables and Diagrams		Ch 1

A Preimminary Analysis	APPENDE	Remenvant CHAPIER(S)
Table 2 "Least Value" Items In 3 Petroahemical Civil Engineering Bills of Quantities	App 1	Ch 5
Table 3: Small Value Items in 3 Petroohemical Civil Fngineering	App 1	Ch 5
Bills of Quantities		
Table 4: Effect of removing from Petroohemical Civil Engineening Bills of Quantities the "Smallest Value" items which collectively comprise only 5\% of the Bill Total (All Items)	App 1	Ch 5
Table 5: Cost distribution in Petroahemical Civil Fagineering Bills	App 1	Ch 5
of Quantities (SIMMO)		
Table 6: Cost distribution in Petroohemical Civil Engineering Bills of Quantities (BIMM6)	App 1	Ch 5
Table 7: Slsewnees of distribution of cost data in Petrochemical Civll	App 1	Ch 5
Fragineering Bills of Quantities (all BQ trems)		

Table 8.1: Skewness of distribution of cost data in Petroohemical Civil Engineering Bills of Quantities (all BQ items)	App 1	Ch 5
Table 8.2: Skewness of distribution of cost data in Petrochemical Civil Engineering Bills of Quantities (measured items onty)	App 1	Ch 5
Table 9.1: Cost-insignificant Items In "Lowest Cost" Bands By Trade	App 2	Ch 5
(SMMM5)		
Table 9.2: Cost-insignificant Items In "Lowest Cost" Bands By Trade	App 2	Ch 5
(SMM6)		

THEIDENTIFICATION OF COSTGICAIFICANTANDCOSTHNEICANIFICANT PARAMETERRS INTHE CONVENTIONAL PETROCHBEMCAL CIVILENGGNGERRNG Measurimirntand CostConirol Moder (TRADe Levielof Absiracion)	APPERDX	Femevant Chaptert(s)
Diagram 1.1: SMM5 BQ: Trade Items as \% of "Lowest Cost" Bands (Demolitions + Alterations to Roofing)	App 2	Ch 5
Diagram 1.2: SMM5 BQ: Trade Items as \% of "Lowest Cost" Bands (Carpentry to Flectrical installation)	App 2	Ch 5
Diagram 1.3: SMM5 BQ. Trade Items as \% of "Lowest Cost" Bands (Finishings to Fencing + Gates)	App 2	Ch 5
Table 9.2: Cost-insignificant Itams In "Lowest Cost" Bands By Trade (SMMM6)	App 2	Ch 5
Diagram 2.1: SMM6 BQ: Trade Items as \% of "Lowest Coet" Bands (Demolitions + Alterations to Asphalt Work)	App 2	Ch 5
Diagram 2.2: SMMM6 BQ: Trade Items as \% of "Lowest Cost" Bands (Roofing to Electrical installation)	App 2	Ch 5
Diagram 23: SMM6 BQ. Trade Items as \% of "Lowest Cost" Bands (Finishings to Fencing + Gates)	App 2	Ch 5

THE IDENTIFICATION OF COSTGIGNIFICANT AND COSTHNSIGNIITCANT Parameitrrs inthe Convenionnal Peirochimmical Civil Encinteriring MeAsurenient and Cost Conirol Model (TradeSubbection Leverlof ABGIRACIION)	APPERDDX	Rthenant CHAPIER(S)
Table 10.1: Cost Distributions In "Lowest Cost" Bands By Trade Subsection (SMMM5 BQ)	App 3	Ch 5
Table 10.2: Costrinsignifficant Items In "Lowest Cost" Bands By Trade Subsection (SMMM6 BQ)	App 3	Ch 5
Table 11.1: Cost-insignificant Items In "Lowest Cost" Bands By Trade Subsection (SMMM5 BQ)	App 3	Ch 5
Diagram 4.1: Demolitions + Alterations: SMM5 BQ (See Teble 11.1)	App 3	Ch 5
Diagram 4.2: Frcesvation + Ferthwork SMM5 BQ (Bee Table 11.1)	App 3	Ch 5
Diagram 3: NOT USED		
Diagram 4.3: Piling: SMM5 BQ (See Table 11.1)	App 3	Ch 5
Diagram 4.4: Concrete Work SMM5 BQ (See Table 11.1)	App 3	Ch 5
Diagram 4.5: Briokwork + Blockwork SMM5 BQ (Bee Table 11.1)	App 3	Ch 5
Diagram 4.6: Roofing: SMM5 BQ (See Trable 11.1)	App 3	Ch 5
Diagram 4.7: Carpentry: SMM5 BQ (See Table 11.1)	App 3	Ch 5
Diagram 4.8: Joinery. SMM5 BQ (See Table 11.1)	App 3	Ch 5
Diagram 4.9: Structural Steelwork SMM5 BQ (See Table 11.1)	App 3	Ch 5
Diagram 4.10: Metalwork SMMM5 BQ (Eee Table 11.1)	App 3	Ch 5

Diagram 4.15: Gleadng: SMM5 BQ (See Table 11.1) Diagram 4.16: Painting + Decorating. SMMM5 BQ (See Table 11.1) Diagram 4.17: Drainage: SMM5 BQ (See Table 11.1) Diagram 4.18: Fencing + Gates: SMM5 BQ (See Table 11.1) Table 11.2: Cost-insignificant Items In "Lowest Cost" Bands By Trade Subsection (SMMM6 BQ) Diagram 5.1: Demolitions + Alterations: SMM6 BQ (See Table 11.2)

Diagram 5.2: Excavation + Earthwork SMM6 BQ (See Table 11.2)
Diagram 5.3: Pling: SMDM6 BQ (See Table 11.2) Diagram 5.4: Conorete Work SMM6 BQ (See Table 11.2) Diagram 5.5: Brickwork + Blookwork SMMM BQ (See Table 11.2) Diagram 5.6: Asphalt Work SMMM6 BQ (See Table 11.2)

Diagram 5.7: Roofing: SMMM6 BQ (Bee Table 11.2) Diagram 5.8: Woodwork SMMM6 BQ (See Table 11.2) Diagram 5.9: Structural Steekwork SMMM6 BQ (See Table 11.2) Diagram 5.10: Metahwork SIMM6 BQ (Bee Table 11.2)

App 3	Ch 5
App 3	Ch 5

 Parametirrs inthe Conveninonal Petrochibmical Civilemgankering Meagurgment and Cost Coniriol Moden. Trade Subebction Levelo of ABSIRACTON	Appindix	Rru Evint Chaptert(B)
Diagram 5.11: Plumbing [Part]: SMMM6 BQ (See Table 11.2)	App 3	Ch 5
Diagram 5.12: Plumbing [Part]: SMMM6 BQ (See Table 11.2)	App 3	Ch 5
Diagram 5.13: Flectrical Installation: SMMM6 BQ (Bee Table 11.2)	App 3	Ch 5
Diagram 5.14: Floor, Wall + Ceiling Finishes: SMIM6 BQ (Bee Table	App 3	Ch 5
11.2)		
Disgram 5.15: Gleang: SMM ${ }^{\text {S }}$ BQ (Bee Trble 11.2)	App 3	Ch 5
Diagram 5.16: Painting + Decorating. SMMM6 BQ (Bee Table 11.2)	App 3	Ch 5
Diagram 5.17: Drainege: SMMM6 BQ (Bee Table 11.2)	App 3	Ch 5
Diagram 5.18: Fencing + Getes: SMIM6 BQ (See Table 11.2)	App 3	Ch 5

RECOMMENDED MEASGUREMENT CONVENIIONS FOR COSTGIGNIFICANT AND COST- INSIGNIFHCANT PARAMETERRS OFAHYPOTHETICAL PEIROCHEMICAL CIVI. EnGan	APPENDIX	Rthevant Chapter(s)
Table 12.1: Recommendations regarding "Generio Families" of items (Using enlarged data sample)	App 4	Ch 5
Table 12.2: Recommendations regarding Costinsignificant ftems (Using enlarged data sample)	App 4	Ch 5

Resulis of Analysis of blement Cosisinthe Convenitonal Peirochemical Civil Enannikiring Miasurbmientand Cost Conirol MODEL	AFPindix	remevant Chaptere(s)
Table 13.1: Incidence of Flements in Petrochemical Civil	App 5	Ch 5
Table 13.2: Incidence of Elements in Petroohemical Civil Fingineering projects: Measured BO Items Onky	App 5	Ch 5
Table 13.3: Consistency of Elemental cost behaviour acroes Petrochemical Civil Engineering projects (All projects)	App 5	Ch 5
Table 15.1: Coeflicient of Vaxiation of Elemental cost behaviour across Petrochemical Civil Engineering projects: All BQ Items:	App 5	Ch 5
SMM5 BQ		
Table 15.2: Coeflicient of Variation of Elemental cost behaviour acroes Petroohemical Civil Engineering projects: All BQ Items:	App 5	Ch 5
SMM6 BQ		
Table 15.3: Coeflimient of Variation of Flemental cost behaviour across Petrochemical Civil Engineering projects: Meesured BQ Items Only: SMDM5 BQ	App 5	Ch 5
Table 15.4: Coeflioient or Variation of Elemental cost beheviour across Petrochemical Civil Engineering projects: Measured BQ Items Only: BIMM6 BQ	App 5	Ch 5
Table 16.1: Major and Minor Cost-generating Filements in Petrochemical Civil Fngineering projects: All BQ Items: SMMI BQ	App 5	Ch 5

Resulis of Analysis of blament Cosis inthe Convenitonal Peirochimical Civilemainkering Measurbminat and Cost Conirol MODEL	APpindox	Renevant CHAPTER(8)
Table 16.2: Major and Minor Cost-generating Elements in	App 5	Ch 5
Petrochemical Civil Engineering projects: All BQ Items: SMM6 BQ		
Table 16.3: Major and Minor Cost-generating Elements in	App 5	Ch 5
Petroohemical Civil Engineering projects: Measured BQ Items		
Only: SMM5 BQ		
Table 16.4: Major and Minor Costgenerating Elements in	App 5	Ch 5
Petrochemical Civil Engineering projeots: Measured BQ Items		
Only: SMM ${ }^{\text {a }}$ BQ		

Valdation of hypothehical Peirochimical Civilenganmhrina Moderi: Rrasults of Structured Interiview Suivey of Moden Userg (stage 1)	Apfindix	Remenant Chapterf(s)
Diagram 6.1: Reduction of Measurable Items Using the	App 6	Ch 6
Hypothetical Model		
Diagram 6.2: Reduction of Measurement Time Using the	App 6	Ch 6
Hypothetical Model		
Diagram 6.3: Effect on Measurement Time (Low Cost Items) Using	App 6	Ch 6
the Hypothetical Model		
Diagram 6.4: Readability of the Hypothetical Model	App 6	Ch 6
Diagram 6.5: Simplioity and Claxty of the Hypothetical Model	App 6	Ch 6
Diagram 6.6: Fffect on Woriningup Time of the Hypothetical Model	App 6	Ch 6
Diagram 6.7: Reduction of Workingup Time (Low Cost Items)	App 6	Ch 6
Using the Hypothetical Model		
Diagram 6.8: Appropriateness of Level of Abstraction of Detail of the	App 6	Ch 6
Hypothetical Model		
Diagram 6.9: Doubt Regarding Items "Deemed to be Included" in	App 6	Ch 6
the Hypothetical Model		
Diagram 6.10: Clearer Specification Provisions in the Fypothetical	App 6	Ch 6
Model		

Diagram 6.11: Adequacy of Units of Measurement in the	App 6	Ch 6
Hypothetical Model		
Diagram 6.12: Adequacy for Preparing $B Q$ of the Hypothetical	App 6	Ch 6
Model		
Diagram 6.13: Adequacy for Preparing Tenders of the Hypothetical	App 6	Ch 6
Model		
Diagram 6.14: Diffoulties Foreseen in Pricing BQ Items Using the Hypothetical Model	App 6	Ch 6
Diagram 6.15: Reduotion of Tendering Time Using the Hypothetical	App 6	Ch 6
Model		
Diagram 6.16: Acceptability of Level of Abstraction of Priceable	App 6	Ch 6
Detail in the Hypothetical Model		
Diagram 6.17: Information Required to Supplement the Hypothetical Model (Tendering)	App 6	Ch 6
Diagram 6.18: Information Required to Supplement the	App 6	Ch 6
Hypothetical Model (Prioing BQ)		
Diagram 6.19: Some Problems Foreseen Using the Fiypothetical	App 6	Ch 6
Model (Preparing Tenders)		

VALDATION OFA HYPOTHETICAL PETROCHEMICAL CIVLEBNGINEMFRNG MODEM: 	APPindix	PETEVANT Chapteris
Diagram 6.20: No Problems Foreseen Prioing BQ Using a	App 6	Ch 6
Completely-drafted Hypothetical Model		
Diagram 6.21: Effeot on Time Spent Valuing Variations Using the	App 6	Ch 6
Hypothetical Model		
Diagram 6.22: Information Required to Supplement the	App 6	Ch 6
Hypothetical Model (Post Contract Production Planning)		
Diagram 6.23: Time Spent on Interim Valuations Using the	App 6	Ch 6
Hypothetical Model		

VALDATION OFA HYPOTHEIICALPEIROCHEMICAL CIVILENGINGERING MODEI: RHSUITS O FSIRUCTUREDINIERVIEW SUEVEY OF MODELUSERR (STAGE2)	APPRPDEX	Renevant Chapteris)
Diagram 7.1: Reduction of Measurable Items Using the	App 7	Ch 6
Hypothetical Model		
Diagram 7.2: Reduction of Measurement Time Using the	App 7	Ch 6
Hypothetical Model		
Diagram 7.3: Effect on Measurement Time (Low Cost Items) Using	App 7	Ch 6
the Hypothetical Model		
Diagram 7.4: Readability of the Hypothetical Model	App 7	Ch 6
Diagram 7.5: Simplicity and Clarity of the Fypothetical Model	App 7	Ch 6
Diagram 7.6: Effect on Workingup Time of the Hypothetical Model	App 7	Ch 6
Diagram 7.7: Reduction of Workingrup Time (Low Cost Items)	App 7	Ch 6
Using the Hypothetical Model		
Diagram 7.8: Appropriateness of Level of Abstraction of Detail of the	App 7	Ch 6
Hypothetical Model		
Diagram 7.9: Doubt Regarding Items "Deemed to be Included" in	App 7	Ch 6
the Hypothetical Model		
Diagram 7.10: Clearer Speoification Provisions in the Hypothetical	App 7	Ch 6
Model		
Diagram 7.11: Adequacy of Units of Measurement in the	App 7	Ch 6
Hypothetical Modal		
Diagram 7.12: Adequacy for Preparing BQ of the Hypothetical	App 7	Ch 6
Model		
Diagram 7.13: Adequacy for Preparing Tenders of the Hypothetical	App 7	Ch 6
Model		
Diagram 7.14: Difmulties Foreseen in Prioing BQ Items Using the	App 7	Ch 6
Hypothetical Model		
Diagram 7.15: Reduotion of Tendering Time Using the Hypothetical	App 7	Ch 6
Model		
Diagram 7.16: Acceptability of Level of Abstraction of Priceable	App 7	Ch 6
Detail in the Hypothetical Model		

Diagram 7.17: Information Required to Supplement the	App 7	Ch 6
Hypothetical Model (Tendering) Diagram 7.18: Information Required to Supplement the		
	App 7	Ch 6
Hypothetical Model (Pricing BQ)		
Diagram 7.19: Some Problems Foreseen Using the Hypothetical	App 7	Ch 6
Model (Preparing Tenders)		

Valmation of A Hypotherical Petrochemical Civilemainekring Modeli: RESUUTS OF STRUCTUREDINIERVIEW SUAVEY OF MODEL USERRS (STAGE2)	APpendix	Renevant Chapter(s)
Diagram 7.20: No Problems Foreseen Pricing BQ Using a Completely-dratted Hypothetical Model	App 7	Ch 6
	App 7	Ch 6
Hypothetical Model		
Diagram 7.22: Information Required to Supplement the	App 7	Ch 6
Hypothetical Model (Post Contract Production Planning) Diagram 7.23: Time Spent on Interim Valuations Using the		
	App 7	Ch 6
Hypothetical Model		
Table 14.1: Comparison of SMMM7, the hypothetical model and	-	Ch 6
"Shorter Bills of Quantities"		
Table 14.2: Comparison of SMMM7, the hypothetical model and "Shorter Bills of Quantities"	-	Ch 6

A Sugargien Levelo of Abgiraction for Cost Cenntrits to br Fmpirically investigatied por Cost Pianning in Peirochimacal Civilehnaninhering WORK	APrindix	Remevant Chapterz(s)
Table 17: Element Classification Following the Deutsohes Institut fïr Normung [DIN 276] (With Fhalish Translations)	App 8	Ch 2, 5, 7
Table 18: Flement Classification Following the Bullding Cost	App 8	Ch 2, 5, 7
Information Service		
Table 18: Significant Cost Centres Independent of the Levels of	App 8	Ch 2, 5, 7
Positions" and their UK Equivelents		

Table 20: Example of Design Variations to, and the Input of Costs of	App 8	Ch 2, 5, 7
Froctors of Production into a "Lead Position": [Leitposition: 013.21]		
Beton für Abfüllungen, Fundamente, Böden, Platten, Deaken/		
[Lead Position 013.21] Conorete for Filling, Foundations, Ground		
Floors, Slabs, Upper Floors		

1.5 SUMMARY REMMAFISS

Much of the literature on models of the type being studied here tends to centre around the internal consistency of the model. Criticisms (if criticisms they are) tend to be of a technical nature, concentrating on the degree of "watertightness", in a legalistic sense, of the individual clauses and conventions. Too little of the literature, though there is some, concentrates on the epistemological issues surrounding the actual formulation of the models. Rather leas work in cost modelling (or in building economics as a whole) deals with the sociological influences upon the adoption of models and techniques in praotice; the rather subjective assumptions about what we imagine suoh models actually do (see Ashworth, Rattery and Newton, infra).

The reasons why models become accepted in practice are not necessarily scientific in the pure sense of the word. The extent to which a model, in terms of tts internal consistency or of its own intrinsic content, works can easily be shown. But this avails us little (Feyerabend, 1875). To accept a model on fts (presumed) imtrinsic merit is to feed the model with data acceptable to the model; thus the model itsalf dictates the form the data should taks. It is hoped that this thesis can argue the need to establish some rational empirical evidence to aid decisions regarding modal formulation and seleotion; some evidence of cost dita behaviour which ought to dictate the form the modal should take.

Chapter 2 will discuss the theoretical underpinning of theories and models.

Chapter 2:

Theoretical Underpinning of Modeis

2.1 Genfrrally

The problem encountered in this work is that of an organisation using more than one model (of the same generic type) for the measurement and control of capital cost of construction work in the Petrochemical Civil Engineering sector of the construction industry. The organisation was confronted with a problem: which such (or which other) model to adopt for the stated purpose. The problem, therefore, was one of model selection. This warranted the need to seek a rational basis for model selection; whether of conventional models or of alternative models.

The Chapter will first explore the problem in terms of the overall philosophy of science related to models and theories. It will deal with some philosophical approanes to the proof and refutation of theory or model systems. The Chapter will compare theory with practice and explore the possibility that in professional practice ideological (as opposed to logical) reasons could exist for selection or rejection of models. The Chapter will then seek to apply these philosophical considerations to conventional Petrochemical Civil Engineering measurement and cost control models. The status of the conventional models will be established and criticised in terms of the perceived current state of their theoretical development. The Chapter will then seek to argue towards a more rational approach to the formulation and adoption of such models.

2.2 Proof And Rgheutation Of Thibordirs And Moden 8

It is required of a theory that it possems considerable power to predict the behswiour of those things which it describes, otherwise it is refuted to some eutent. Thus whet it predicts should be confirmed by experience. The main problems associated with models or theories are those concerned with their verification or falsification. An acute dilemma in regard to
refutation is what is known as the Duhemian Problem. This is the situation where experience does not support the predicted outcome (Duhem, 1954).

Systems can be defined of the form (T.A) $=\mathrm{e}$, where T is the predictive theory or model, A is one of the set of auxiliary hypotheses necessary to deduce the prediction and e is the implied prediction (see, for example, Koertge, 1978). In other words theories or models are general statements containing, or founded upon, less general hypothetical statements, which purport to explain how things behave. The possible outcomes of any test of such a system are (T•A) \rightarrow (experience confirms the prediction made by the system) and (T•A) \rightarrow (e (prediction failure or anomaly occurs).

The difficulty which the Duhemian Problem presents is the diffloulty in defining what to do about (T•A) \rightarrow-e, that is, what to do when the prediction, e is not confirmed: and whether to modify such parts or reject and replace them. Which part of the system is to blame; the theory or model, its auxiliary hypotheses, or both?

The extent to which a theory or model can in any event be proven or refuted will be addressed later. First, possible solutions to the Duhemian problem will be identiffed individually. What can be done if the evidence does not conform to the predictions of the theory or model?

23 Possible EOLNTIONS to The Duthenian Probi mm

According to Musgrave (1978), "prediction fallure" means that a theoretical system containing a hypothesis fails if that partioular hypotheais fails. Thus Musgrave seemed inolined to blame the hypotheais. The potentially damaging nature of prediction failure is illustrated by the faot that a particular hypotheais, A could be contained in more than one theoretical system, T. The implication from this is that the failure of some theoretical system \mathbf{S}^{\prime} can induce the pallure of some other theoretical syitems, $\mathcal{S}^{\mathrm{n}}, \mathrm{S}^{\mathrm{m}}, \mathrm{S}^{\mathrm{m}}$ (and 80 on) whioh contain the same refuted "suppoaition" or "hypotheais" as systam S". Thus an entire family of models all formulated on the basis of the same faulty underiying prinoiple can be disoredtted
by virtue of the fact that one model in that family possessing that refuted principle has not performed well in the light of experience.

The principal reactions or solutions to this potentially alarming failure or anomaly are listed below. The list structure is that suggested by Koertge (1978). It is not an exhaustive list, but its exclusions are relatively trivial:
(i) Reserve judgement (which does not really constitute a solution unless aspects of the Feyerabend's acoount can be shown to apply, though that would require some imaginative interpretation: this interpretation is not Feyerabend's),
(ii) Reject the process of Induction (show that the derivation of the implication was not correct)
(iii) Reject T (the Popperian account),
(iv) Reject A (the Laksatosian account),
(v) Reject T and A (the Popperian account or certain combinations of other accounts),
(v) Ignore the contradiction (the Kuhnian or Sooiological account),
(vi) Do not adopt a standard solution whioh risks contradicting or ignoring the tactual evidence (Koertge's account), or
(vii) Reject the research tools used (show that the experiment purporting to show - was unreliable). This is not of immediate philosophical concern in this Chapter, though it is obviousily necessary later to recognise that no rescaroh method is perfect. Criticism of the research toolsas opposed to the research phillosophyare offered elsewhere (vide infra).

Rejection of T may or may not necessarily imply the rejection of A (and vice varse), thus illustrating the diffcult nature of the philosophical problem. The various solutions are now discussed in further detall.

2.4 INDUCHION

This method relies on the use of observations to argue towards the probability that a theory or model, T and any of its auxiliary hypotheses, A are true. Any prediction success, e, constitutes confirmation. Any prediction failure, \sim, is deemed to be outside the purview of either Tor A

Such models, in fact, rely on inference. The inference is said to be an inductive inference if it passes, via some principle of inductive logic, from singular or partioular statements suoh as results of individual observations, experiments or experiences to more universal statements, such as hypotheses or theoriea, which say that because the singular observations, experiments or experiences yielded certain results then all such observations, experiments or experiences will definitely or probebly yield such results.

Such methods have their critics: "Now it is far from obvious, from a logical point of view, that we are justified in inferring universal stataments from singular ones, no matter how numerous; for any conclusion drawn in this wey may always turn out to be false: no matter how many instances of white swans we may have observed, this does not justify the conclusion that all swans are white" (Popper, 1959).

Therefore inductive methods appear to possess the weakness that they lead not to universality of causation, but to degrees of reliability or probability, there is a probability of a swan being white, but no absolute certainty. Some soientific validity can, in fact, be ascribed to a model which is not absolutely accurate: "We have described the principle of induction as the means whereby science decides upon truth. To be more erroct, we should say that it serves to decide upon probability. For it is not given to soience to reach either truth or falsity... but scientific statements can only attain continuous degrees of probability whose unattainable upper and lower limits are truth and falsity" (Reichenbach, 1830, att in Popper, 1959). This is not to sey, though, that statements of likelihood or probability would be insuffient to satisfy the basio needs of professional practice.

However to the Popperian this is inadequate: if the untversal statement or theory has to be taken as probable rather than true then, by virtue of the inductive relationship, the principle
of induction (the logic relating observation to theory) and even the observations themselves must be taken as probable rather than true. Hence, as it produces neither absolute truth nor absolute falsehood, the entire inductive process will inevitably require modification from its original state. Inductive methods, therefore, have been said to be regressive. Induction is selective. Being dedicated to arriving at a theoretical position they discard data which do not support the position sought.

If it is the purpose of science to put forward and test theories or hypotheses, it is evident that there can be two stages of reasoning involved: the stage during which the theory or hypothesis is formulated and the stage during which the theory or hypothesis is tested. The inductive method demands a rational reconstruction of the steps leading to the formulation of the theory. This may or may not consist of a set of empirical facts, but nevertheless follows an inductive course in that it attempts to build up a theory rather than break it down. Conversely, the school of the logic of knowledge believes not in questions of fact pertaining to the formulation of a theory (quid fact) but in questions of the justification and validity of the theory itself (quid furis) (originally attributable to Kant, but cited from Popper (1959)). This leads to considerations of deductive research methods.

2.5

 THE POFPMRIAN (HYPOTHEMCO-DEDUCIIVE) ACCOUNTThis method will not admit an irrefutable theory or model, T. It relies on talsification of T and/or A by "severe teating" and replacement with testable alternatives, T and A' (Popper, 1959). It has been argued (Koertge, 1978) that this method prefers to reject the theory, T rather than its audiliary hypothesis, A. This invites a criticism: either T or A, or both T and A could be wrong. In order to talsity T, an unproblematio aurdiang hypothesis would be required to bring about the talsification of T as opposed to the falsification of \mathbf{A} As unproblematio awdiliary hypotheses can prove to be dimoult to come by this solution cannot give any strong advice as to whether it is T or A which needs to be replaced (Koertge, 1878).

This method has been called "counterintuitive": the severity of testing cannot be maintained. Popper claimed that the erecution of a series of teats led to the diminishing severity of each successive teat owing to the increase in backuround knowledge, and hence the increased
probability of soundness which accrues from each successive test. Grünbaum (1978) was sceptical about what constituted "severity of testing" and argued that if there is no reason at the time to doubt a test there is no reason to repeat it. What is more, Grünbaum argued that Popper was contradioting himself Diminishing refutational returns from successive tests and the consequent increased "certainty" of the theory amoumt to nothing more than the inductive approach, which Popper and others originally viewed with disdain. It is suggested here that the fact of diminishing marginal returns from tests indicates an inability to completely falsify.

The hypotheticodeductive models start with the assertion that "no observation, which might be used inductively to lead to the formulation of a hypothesis, can be unbiased; therefore the starting point of the induction must be false" (Popper, 1959). The way in which our senses interpret the rave information which we see, hear, or feel is clouded or conditioned by prior experience. Thus there is a degree of expectation as to the likely outcome of such hypotheses, or as to the meaning of such observations. One is likely to classify observations as being relevant or irrelevant and select or discard one or other methodology considered unlikely to produce the desired outcome. "Induction is ampliative in nature. It expands our knowledge, or at all events our pretensions to knowledge. This is all very well, but... it cannot ... lead us with certainty to the truth (Medawar, 1982).

The hypotheticodeduotivists argue that the best thing to do with ideas is to test them, irrespective of method of formulation. They should be tested until they no longer withstand the tests; that is, to destruction. Popperian thinking is that a hypothesis or theory must be capable being refuted, otherwise there is no worth in having the theory and no point in having a science incapable of admitting that tis guiding tenets could be false. By contrast, inductive approaches try to justify the truth of statements as opposed to their falsehood. There is no reason to suppose, though, that any deductive process will perforce proceed any more aystematically and inevitably than would any inductive process. It is just as likely that "gueaswork" and "inspiration" will feature in deduotive processes as they will in inductive processes.

The inspiration behind an idea is as likely to be intuttive or irrational as it is to be logical. Thus hypotheticodeductivists say that the only semsible thing to rationaly construct is the
second stage; the tests to which the idea can be put. There is no reason to justify the derivation of a theory as it may have been arrived at by casual, as opposed to causal, observation or even by act of blind faith. It matters little. The sole purpose of the hypothetioo-deductivemethod is to test the idea.

But if inductive styles are questionable in terms of "logic of process" and deductive styles can resemble them in terms of "logic of execution" what makes them different? It would seem that the hypotheticodeductive model is no less immune to oriticism than is the inductive approach: "There is no logic of 'disoovery' - in that sense, there is no logic of 'testing', either, all the formal algorithms proposed for testing... are, to speak impolitely, ridiculous... There are maxims for discovery and maxims for testing. the idea that correct ideas come from the sky, while the methods for testing them are highly rigid and predetermined is one of the worst legacies of the Vienna Circle" (Putnam, 1991).

The hypothetico-deductive approach suggests that the correctness of an idea cannot be inferred from close observation of the world being studied (Popper, 1959); onity the theory itself can be so inferred. The mere fact that it has been formulated does not vouch for its validity. Its correotness can only be judged by applying the theory and seeing whether it works. Thus, it has been argued, the more correct a theory proves to be, the more successful it will become. The theory could become the dominsting theory in its field and its community of adherents become sufficiently populous to turn the theory into a paradigm (vide infra).

In the long run an idea could become relatively successtul not necessarily by virtue of its correctness, but by virtue of attracting a school of adherents who happen to believe it, regardless of any inductive reasoning, deductive test or contrary evidence. In fact it may be that they have nelther the time nor the inclination to question the theory. The mact of acceptance of a theory does not necesearity imply its ecientific validity. Lengthier discussion of the influence of belief, that is, of paychological considerations, is offered later. First it is necessary to consider the nature of the established theories themselves; that is, of paradigmatio models; the Kuhnian Account.

Kuhn's account describes the act of ignoring the prediction frilures, at least until they overwhelm the prediction successes. The method basically consists of ignoring anomalies and persevering with further development and application of the theory or model, T (and, presumably, of its contributory hypotheses, A). Only a large number of anomalies will bring about its replacement by an alternative, and even that is debatable. This approach is said to be characterised by periods of "normal science".

The influential concept of a "paradigm" was first expressed by Kuhn (1962). A theory is a paradigm if it is acoepted by its "disciples" as the dominating theory in its field, until such time as a better one replaces it. Once the paradigm is accepted there follows discipline, or a period of what Kuhn referred to as "normal scientific activity", during which the adherents to the paradigm seek to develop it further and find more situations to which it could apply. Thus "normal scientific activity" seeks to establish and widen the truth of the paradigm rather than to replace it with something else, or with something better.

The fact that such normal scientific activity is founded on the broad acoeptance of the paradigm as the best available explanstion of things is suggestive of a position of relative conservatism. Normal scientifio activity seeks not to bring theories into disrepute; rather the opposite. In seeking to practice peradigms rather than depose them we impute to them some degree of immunity to refutation. What oreates the pressure to embrace a new paradigm is the phenomenon of anomaly, that is, the occasions when things do not behave in the way predicted by the theory. A single anomaly, or several anomalies, would be ignored and the theory still retained as a paradigm. Therefore our paradigm theories do not cater for isolated anomalous results. In disoiplines in which research is well-developed paradigms are likely to be accepted as "laws" for a long time. Newton's theories, for emmple, were paradigms for maxy years until they were upstaged by, intar alia, Einstein and his Relativity.

Kuhn (1972) referred to the conflict between predicted outcome and anomaty as the "eesential tension'. A singie anomaly would be ignored. Several would constitute a crisis. It
is still not clear, though, how many anomalies would constitute several', or what kind of anomalies they would have to be.

However it is only when the anomalies become significant in number that the adherents to a paradigm would perceive a "Kuhnian paradigm orisis" to exist and consider replacing one with another (this replacement being known as "paradigm shit"). It is argued here that there it is difficult to conceive of a moment when there would be sufficient grounds (prediction failures) to produce sufficient "crisis" to justity the adoption or replacement of a paradigm. What, in any event, would be a suitable definition of "crisis"? In what definable circumstances would a "scientific revolution" take place?

In the case of a political revolution, to which Kuhn compares scientific revolutions, there can be competing ideas, but what, short of armed insurreotion, actually foments the revolution? What is the analogical "breaking- point" in the process of "normal soience"? Toulmin (1970) enquired, in similar fashion: "How eutensive do the conceptual incongruities between the ideas of one scientific generation and the next have to be, if the transition betwreen them is to constitute a 'scientifio revolution' on Kuhn's present account?'

Feyerabend (1970) alluded to Kuhn's argument for tanacity, which would cause a paradigm to be embraced even if the evidence against embracing it were strong. "Having adopted tenacity we can no longer use recaloitrant facts for removing a theory, T, even if the facts should happen to be as plain and straightforward as daylight ttself. But we can use other theories, T, T, T", etc. which accentuate the difloulties of T while at the same time promising means for their solution. In this case elimination of T is urged by the principle of tenacity itself.. Kuhn's axgument for tenacity (need for a rational beokground for argument) is not violated either as the better theory will of course provide better standards of rationality and excellence".

Therefore proliferstion of theories with stronger rational axguments could lead to the deposition of the paradigm. The frot that the alternattve theories or models have stronger rational argument can cause deposition of an erdsting paradigm even though the paradigm trself had a tenacious rational background argument. Proliferation (as espoused by Feyerabend et af) is further discussed later.

Masterman (1970) claimed that Kuhn never attributed the downfall of a paradigm theory to its falsification Rather the overdevelopment of the theory merely exhaustitic anomalies are induced which do not refute it, but which produce only marginal advances in its development comparative to the effort of undertaking the exercise: "His essential point is that an anomaly is an untruth, or a shouldbesolublebutis-insoluble problem, or a germane but unwelcome result, or a contradiction, or an awokward fact, which Kubn correotly characterises as an irritant'... Putting it more generally, it is not only the case that a fullyextended paradigm, or theory, reaches a point where further extensions of it produce diminishing marginal returns... The situation is worse. The paradigm goes bad on you, if it is stretched too far, producing conceptual inconsistency, absurdity, misexpectation, disorder, complexity and confusion, in exactly the same way as a crude analogy does...".

Thus paradigms may detariorate owing to the cocurrence of anomalies produced by analogies beyond their original scope; they are not necessarily refuted owing to their internal inconsistencies, but by external factors beyond their scope. This is by virtue of the fact that the paradigms themsalves define the limits of their own prediotions. When applied to matters outside their original purview they of course fail. Thus normal paradigm activity tends to be inductive in character. A great deal of "mainstream research", and this is true of cost modelling, is devoted either to the defence, justification, formulation or further application of models, not to their destruction, despite the rather frequent misuse of the word "test". A "test" which produces what was expected, or which produces encouraging results, is not a test. One does not test an idea by collecting informstion whioh agrees with it.

Induction had a similar criticism. Masterman (1970) stated: "No philosopher of science before Kuhn had deacribed this deterioration. All had blamed the gradual collapse of various scientific theories on the fact that they were eventuslly falsified in experience by, say, the emergence of new facts ; iec on the non-co-operation, as it were, of nature. None had blamed it on the fact that theories, since they have to have conorete analogical paradigms at the heart of them to define their basic commitments, and since the effect of these paradigms is to drestically restrict their fields, collapea, when extended too far, by their own maksoup; without any necessary accentuating ircitation from nature at all".

Feyerabend (1870) considered that "...it is quite imaginable that soientists abandon a paradigm out of frustration and not because they have arguments against it. (Killing the representatives of the status quo would be another way of breaking up a paradigm)." Thus religious or political doctrines can be likewise replaced.

Toulmin (1970) argued that the anomalies which might depose a paradigm are not as 'drastio and inexplicable' as might first be thought to be necessary. Indeed, Toulmin argued that the more such 'catastrophes' are studied the less catastrophic they turn out to be: "the conceptual incongruities between the ideas held by the scientific generations separated by Kuhn's 'paradigm shift' are not profound; they are caused not by revolution, but by 'degrees of variation' between theories". The opponent theorists subsequently, if gradually, concede that because these profound contradiotions were never really profound their theoretical positions were in fact much closer together than they would first admit.

Thus, argued Toulmin: "...The cocurrence of a 'scientific revolution' no longer amounts to a dramatic interruption in the normal continuous consolidation of soience: instead it becomes a mere 'unit of variation' within that very process of scientific change... the very basis for distinguishing between 'normal' and 'revolutionary' change in science which was the very heart and core of Kuhn's theory, collapses... ".

2.7 THE LAKATOBIAN ACCOUNT

Put simplistically, this method consists of rejecting the awdiary hypotheses, A, as being weak and retaining the theory, T, as being a strong, "hard core" part of the (T-A) aystem. Lelcatos called this approesh a "Methodology of Scientific Research Programmes (MSRP)". The Kuhnian model was a forerunner to this; Lakratos was suggeating a modification thereto.

The Lakatosian recommendation was to consider the theory or model, T as being acoeptable enough and to let it go largely unohallenged by retaining it as the underpinning agent of a researah programme. Suoh programmes would involve rejection or refinement of the individual hypotheses. New hypotheses should be adopted which are inspired by the positive heuristlo of the programme, that is, which axe consistent with the power of the
theory or model to create evidential support forthem. Theory or model validity is viewed as a function of the historical fact that it has been the subject of such a programme. Study of the historical development of science (or rather of research programmes) would thus determine which theory or model was strongest. Lakatos also considered model proliferation to be necessary in order to bring about paradigm shift, but disagreed with the basic Kuhnian requirement for sucoessive periods of tenscity and proliferation, that is profound distinctions between one period of normal science and the neac.

Feyerabend (1970) held that proliferation and tenacity do not belong to suocessive periods of the history of science, but are always coprasent. They can immediately precede revolutions, but are, to be more accurate, always thera "Science as we know it is not a temporal succession of normal periods and periods of proliferation; it is their funtaposition'.

Abandonment of a research programme is possible due to its feilure to yield fruit, but does not necessarily lessen its validity. There may be reasons for abandonment totally unconnected with the theory or model itself. A programme may be discontinued due to the need to pursue some other activity, laok of funds, or even overt political pressure. Therefore old ideas are not necessarily bed (or dead). There may have been perfectly innocuous reasons for having at some time discontinued the research programme in question.

Lakstos had a degree of support: "There is no idea, however ancient or absurd that is not capable of improving our knowledge.. Nor is political interference rejected. It may be needed to overcome the chauvinism of soience that resists alternatives to the status qud" (Feyerabend, 1875). Feyerabend therefore agreed with much of Lakstos' thiniding, but strongty championed competition between entire theoretical systems, as opposed to the mere refinement of audiliary hypothetical componemts, as a means of comparison. This leads to consideration of the Feyerabendian solution.

2.8

To say thet this involves reserving judgement would be a vary loose interpretation of Feyerabend's phillosophy. It is not Feyerabend's. Feyerabendis approach championed the
proliferation of theories and models in healthy competition with one another. Feyerabend axgued that scientists should lose their obsession with pursuing an accepted "one true method" and should compare numerous approaches to the same problem.

Feyerabend's approach envisages numerous competing models and demands the toleration of supposediy "heretical" models as the only effective way to increase knowledge. Paradigm adherents lose touch with reality, whereas the "heretics" are trying to provide competing models in order to increase the amount of knowledge through which the truth might be better approached. Feyerabend (1975) alleged that departure from reality can (and doas) result from group adherence to the status quo. "It will seem that the truth has at last been arrived at. At the same time, it is evident that all contact with the world has been lost and that the stability achieved, the semblance of absolute truth, is nothing but the result of an absolute conformismr'. The Feyerabendian approach has been variousky criticised as being anarchic, though Feyerabend vehemently denied this.

2.9 KOERIGE's ACCOUNT

Koertge's suggested addition to the list of possible solutions presented above was an attempt at developing a mechanism to enable the scientist to assess the relative plausibility of removing T or A following prediction failure. It tried to define certain conditions in which it would be better to reject T or A (Koertge, 1978).

The method recommended a "commonsense" approach as opposed to a sociologioal approach. A sociological approach, as defined by Koertge, means rejecting either T or A according to some convention of accepted peer group practice (vide infra) which protects one or other part of the (T•A) zystem, by acting, as it were, as a rigid "handbook" of problems and remedies. Koertge suggested a fledible approach: cheak on the most probable sources of trouble and oheok on the most accessible ones first, without resting on some sociological explanation that one or other of T and A has priority. This approach had a basio requirement, however, that no "hard and fast" rule for solution be adopted which might contradiot the avzilable factual evidence pertaining to the situstion at hand.

Koertge's solution may provide advice on which of the other authors' "standard" solutions to adopt under given appropriate sets of circumstances; though Koertge required some urgent clarification of certain detail in the other solution models. Koertge suggested (and claimed not to be speaking in a facetious manner in so suggesting) that a good first point of reference would be the novel "Zen and the Art of Motor Cyole Maintenance" which, Koertge alleged, constituted a "commonsense", "nonetandardising", "lexible", "prioritising" "repair manual", and a good place for an aspiring scientist to seek preliminary guidance on research methods.

2.10 SELECHION OF THEORNES AND MODEMS

Consideration having been given to the possible methods of dealing with proof or refutation of theories or models and their constituent hypotheses, it is deemed appropriate now to turn to questions of how the theory, model or hypotheaes actually came to be adopted. As it has already been stated that a theory must (largely) explain phenomena it is considered pertinent to discuss the relationship between paradigm and true theory, the ways in which they can be compared and the eatent to which they are compared in practice.

Professional practice tends to distrust "theory" as a concept. The mention of the word "theory", history talls us, can cause practitioners to experience parozysms of rage. Phrases like "academics in ivory towers" and "cost models are irrelevant" have appeared in the correspondence columns of professional journals. If cost models are irrelevant, then so be it; they are neverthelees used in practice. We employ them in our daily business and purves their output to our clients. If such models as exist are irrelevant, and this has been alleged, then their very irrelevance provides the need to look at potential alternatives, including those being developed in the "theoretical" worid, for it is from the "theoretical" world that potential "alternatives" are most likely to emanate. What is the relationship between the "theoretical" and the "practical"? What do "theoretical" and "practical" actually stenity? of these two, which is the weaksest?

Social or profeasional peer groups tend to embrace and practice, as groups, accepted theories, rules, models, techniques and norms. These socially accepted norms, intar alta, were described by Kuhn (1962) as being paracigms. A paracigen, basically, is something
which a group, rightly or wrongly, practises. A paradigm can dominate the thinking and practice of a group for a long time until it is deposed by another, which the group then embraces. Kuhn referred to this as scientific revolution, culminating in paradigm shith, whereby a model is discarded for some reason in favour of another. Such revolutions are no different to social, political or religious revolutions. "Social", "political" and "religious" are key words in this context; accepted group norms (paradigms) are not necessarily adopted or deposed on the basis of rational appraisal. It is worth discussing, therefore, whether a "theoretical" model formulated on the basis of rational appraisal is any better worse than a "practical" model which might not have been formulated on such a basis.

When somebody says "I have a theory that..." what they really mean is that they have a hypothesis which has not formally been investigated. Until the investigation occurs it remains a supposition, not a theory. A hypothesis whioh survives tests (attempts to rafute ti) can become an explanatory theory. Every time it survives a test it acoquires greater immunity to refutation. However, whether a hypothesis has been formulated following rigorous or informal observation, or whether it came in a dream, matters little to the hypotheticodeductivist. It is a hypothesis to be tested. It could have been formulated out of mere belief, which makes it not a logical phenomenon, but a socialogioal or psyahological one. It may even be a myth. It is insufficient merely to suppose, assume or imagine that one model works better than another.

Indeed, if conventional models "do not explain things" it becomes of importance to explore how they could come to be practised at the expense of their potentially "explanatory" or "theoretical" rivals. Therefore it must be determined whether there are grounds other than "scientific" validity for model acceptance.

2.11 THE BOGOLOGHCAL (OR IDEOLOGICAL) PARADICM ACCOUNT

Kuhn (1962) gave no fewer than 21 definitions of phenomena which could be obaracterised as being paradigms. Masterman (1970), following Kuhn's (1962), olassified these into three broad categories: metaphysical paradigms (metaparadigms), artefact (or construot) paradigms and sociological paradigms.

The metaphysical paradigms include: a set of beliefs, a myth, a successful metaphysical speculation, a standard, a new way of seeing, an organising principle governing perception, a map, or something which determines an area of reality. They reflect the world view of scientists.

The artefact, or construct, paradigms include: a textbook or classic work, a supplier of tools, a piece of instrumentation, a grammatical paradigm, an analogy, a gestaltfigure, or an anomalous paok of cards. They reflect the tools and methods used to investigate or solve problems.

The sociological paradigms include: a universally recognised soientific achievement, a concrete scientific achievement, a set of political institutions, or an accepted judicial decision. They signity what is accepted by some social or peer group.

It is evident (Masterman, 1970) that Kuhn used the word 'paradigm' rather than the word theory' because paradigms can be defined as tangible, definable pieces of accepted social or professional practice or commitment capable of existing priar to the exdistance of a theory. A theory is but one of 21 phenomena whioh could be classed as paradigms (following Kuhn's acoount). But paradigms can function which are not theories. Masterman (1970) argued: "...at least it is made clear that, for Kuhn, something sociologically describable, and above all, concrete, already exists in actual soience, at the early stages, when the theory is not there".

Masterman (1870) contrasted this to (for eample) Feyerabend, who studied Kuhn's work more than any other contemporary philosopher of science, but who always presupposed the existence of at least one theory. Kuhn, on the other hand, made no such supposition: theories can be preceded by paradigms, that is, arise out of them. Kuhn, notwithstanding the foregoing, implied quite clearisy that paradigm activity is not necessarily scientific activity.

Therefore a paradox arises: extansion or development may be sought of a "paradigm" which is sufficiently undeveloped to warrant the title "explanatong theory". If a paradigm is embraced which has not been seen to possess these explanstory powers then how does it come to be hy is it embraced in preference to some equally worthy (or equally unworthy) rival? This can perhaps be explained by considering the weys in which people might deal
with the evidence, or the laok it, which might justify, or not justify, any decision to aocept the theory or model.

Lack of evidence to support a model will not necessarihy deter a person from deciding to use it and then behaving as if the deoision were correct. Lewin (1951) suggested that the mere fact that a decision has been made exerts a stabilising influence. A person will behave according to that decision even were it diffioult so to do. Lewin described the housewife who selects an expensive piece of meat when she could have selected cheaper alternatives. Having deemed it to be attractive she will make sure that it reaches the table and is eaten. Thus someone who deems a given model to be desirable (for whatever reason) will try to ensure that people use it, though there may be no more proof of its effcacy than of the efficacy of any alternative. The model may be of material or commercial value to the people who champion its use; this could be a strong factor in establishing its attractiveness to a sponsor.

Were a model to be seen to possess defects, that is, features of tt which could not be used to justify any decision to use it, it would not necessarity follow that the decision to use it would change. Each decision, once made, creates a greater or lesser degree of dissonance or discordance. This could crudely be described as the degree of anguish which follows the decision itself. There will always be reasons not to decide to use a given model as well as reasons why such a model should be used. These contradictions are known as the "predecision confliot".

A key point in this content is that the decision-makars might not regard the stituation as being one of conflict. They may be unaware of, or palpably ignore, the reasons not to use a model. The decision to use the model having been made, the reasons not to use it still remain and cause the diseonance. There will be a greater or leeser compulsion to justify the decision depending upon the amount of dissonance.

Featingerts Theory of Cognitive Diseonance (1957) held that the amount of dissonance evisting after a decision has been made is a direct function of the number of things the person knows are inconsistent with that decision. When the consonant information, that is, the information which would support a deoision, is outweighed by the dissonant
information, that is, the information which would not support the decision, there is no guarantee that the decision will be based on the consonant information. This assumes, of course, that all such information is available, which is not necessarily the case. This point is elaborated below.

A parallel can therefore be seen between the psychological or sociological reasons to accept or reject an alternative and the scientific reasons to embrace or unseat a paradigm. It is argued here that however "scientific" or "unscientific" the method of model selection, the "need to justity" tends to create paradigm practice.

Why would somebody, confronted with two or more equallyattractive (or unattractive) alternative models, decide to select one or other of them? They will be equally attractive if, for each, there is an equal amount (or laok) of information to support them. The information may exist, but the person may be unaware of it, or choose to ignore it. Known models may be chosen due to familiarity, but ohoices made purely on that basis can hardly be deecribed as rational. Familiarity with a model does not justify its superiority over another, about which nothing might be known. Fear of the unknown effect of using an alternative might exist, but there may be no greater empirical proof of themodel so accepted than of any rejected alternative.

It is clear that a model, theory or paradigm can be accepted or rejeoted without recourse to "the facts". In this sense Kuhn, Masterman ot al are correct in identifying social or ideological grounds for acoeptance or rejection. Feyerabend (1970) put it sucoinctiv: "The most important point is however this: it is hardily ever the case that theories are direotly compared with 'the facts', or with 'the evidence'. 'Thus the most salient characteristic of the paradigm idea is that it deals with group acceptance. Solentific or professional, it matters little; the paradigm, in the context of this study, is a sociological phenomenon.

Sen (1970), in considering ohoice of economic models, suggested that a model may be selected not on the beais that any gain would ensue from using it, but on the basis of conformity; that is, commitment to a set of social or peer group ideals: "Every economic system has, therefore, tended to rely on the existance of attitudes to work which supersedes the calculation of net gain from each unit of exartion. Social conditioning plays an extremely
important part here... and one reason why economists seem to have little to contribute in this area is the neglect in the traditional economic theory of the whole issue of commitment and the social relations surrounding it".

An individual might select a model not out of personal (informed) preference, but out of loyalty, or fealty to some group of associates, peers or rulers. Sen stressed the importance of Harsanyi's (1955) distinction between 'ethical' and 'subjective' preferences. The former relates to preferences which the individual would rather express (were it left to the individual) and the latter relates to preferences which he or she actually expresses (implying or requiring that something or somebody influences the choice, for whatever reason). This is, in effect, another way of suggesting that man is an irrational oreature. However, by adopting a stance of commitment to a group, the individual's ohoice of model will at least be consistent, which suggests a measure of rationality, albeit a rationality displayed by the group rather than by the individual. But what type of rationality is it? Sen (1970) concluded: "In the sense of consistency of choice, there is, of course, no reason to think that admitting commitment must imply any departure from rationality. This is, however, a very weak sense of rationality."

It can be seen, therefore, that adherence to a paradigm model due to social, religious, political or peer group commitment reasons could cocur at the expense of adherence brought about by taking recourse to the 'tacts', whatever they might be. It is equally probable that model rejection could be brought about by the same preasures. Scientific treatment of a model, theory or paradigm can be given if it is "stripped of tts sociological environment" (Masterman, 1870).

2.12 The Objecinvist Or Bmpiracal (POsinan) Account

Post (1978) argued for an objeotivist solution to the problem of theory or model selection. Post argued for a "normative" programme; an approach which exoludes "positivistic sociological" definitions of what constitutes "success". Frplanstions liles "we use this model because it works" are fatuous without empirical evidence that suoh a model works. The model cannot be considered in isolation on the basds of some assumed (or even
demonstrable) intrinsic merit. Consideration of "intrinsic" merit (which can be real or imagined) is not a rational solution unless it is compared with the "intrinsic" merit of other models. Here Feyerabend (1978) supported Post: "... it does not suffice to consider its 'intrinsic' merits for this just amounts to comparing the idea with itself".

Further, definitions of what constitutes "success" depend a great deal upon who has a vested interest in promoting the model: "The mere fact that a certain procedure is followed in practice does not render that practice acceptable to an objective methodology of appraisal. Indeed even the fact that a practice following certain oriteria generally leads to success' does not justify those criteria in an objective programme" (Post, 1878). Post's implication would appear to be that models deliberately designed so as to be incapable of being unsuccessful must be dubious. They could be formulated so as to excolude potential falsifiers.

The Postian Problem was straightforward. Given two theories, T_{1} and T_{2}, by what criteria can and should we decide to prefer T_{2} over T_{1} ? The solution was straightforward. If the empirical parts of a theory, that is those parts which have withstood some teating, are represented as E_{1} and E_{2} respectively, then the criterion for seleotion is $\Delta \mathrm{E}>0$; that is where one theory has more "testsurvival" than the other. T_{1} is better than T_{2} if, in moving from T_{2} to $T_{1}, \Delta \mathrm{~A}>0$ is induced. T_{2} is better than T_{1} if in moving from T_{1} to $T_{2}, \Delta B>0$ is induced. Post's qualification was, of course, that no suoh tests should have led to refutation.

2.13 The Pehrochmmical Civil Enganghring Measurbmient and Cost Conirol Modim

Cost modellers in the field of Petrochemical Civil Engineering would not be dismayed by the suggestion that approximations to the truth are the best obtainable results. Models stating some criterion as being "general" on the basis that, for ecmmple, only 95% of the cases observed actually satistied that criterion would merely exprees statements of high probability, but ought consequently to be highly acceptable in practice. Suoh probabilities would lie within the tolerances of acouracy usually permitted by conventions of commercial practice. The Petroohemical Civil Fngineering cost data themselves are somewhat orude and do not completely represent their imagined associated construction costs in any event (vide infra). A solution is sought which is accurate enough, but not so acourate that the
commercial beneffits which it brings are outweighed by the incremental effort of obtaining higher degrees of accuracy (see also Sen, 1970).

In Building cost modelling, it is argued, there are too few well-developed theories capable so far of dominsting the thinking of its associated practising community. In fact it is debatable whether, in the field of Petrochemical Civil Engineering cost modelling, there are any true theories. Consistent with Masterman's (1970) interpretation of Kuhn (1962), it is argued that in Petrochemical Civil Engineering measurement and cost control there are many paradigms existing prior to theory which do domininate the thinking of the associated community. These paradigms do not constitute theories as they do not adequately explain the cost behaviour which they purport to represent. Whence do these Petrochemical Civil Engineering paradigms arise?

In practice the paradigmatio models in Petrochemical Civil Engineering have been adopted analogically from the paradigm models of the wider, general domain of Building cost modelling. It is argued that these "parent" models from other closely related fields are no more justifiable in the "scientific" sense of the word than the analogical Petrochemical Civil Engineering models adopted therefrom.

Following Musgrave (1978) (supra): if the Petroohemical Civil Fingineering models can be found to be based on some faulty underiying prinoiple or prinoiples also contained by the general Building cost models from which they are adspted then the entire family of such Building cost models can be similarly disoredited.

Too seldom have established building cost techniques been subject to tests of validity or formulated by processes other than of negotiation between interested parties. Conventional models may be based on untested assumptions that their constituent parameters bear relationship to the prices which tenderers might, or might not, apportion thereto. Beldom, also, have practitioners trusted alternative models about which they might know little. Oten have they persevered with established models about whose thatual' periormance they might know less.

The absence of tactual' reasoning behind the model is consistent with a sooiological paradigm. Hence Petroohemical Civil Engineering cost modellers adhere to paradigm practice, adopted analogically from the general set of models described above, but are practising prior to theory. Soorn of the term "theory" constitutes a misuse of the meaning of the word. Current models are adopted for more for sociological reasons, as classified by Masterman (1970). Specifically, these models are espoused out of commitment to a peer group as suggested by Sen (1970) or by virtue of it being in a person's job interest so to do, as suggested by Toulmin (1970).

It is relatively less likely that such models have been formulated on the basis of rigorous observation of the cost behaviour of their constituent data. Therefore such observation should be attempted. A hypothetical model could be proposed, without logical formulation, which could appear, prima tecie, to be a ridiculous model. For the researcher the joy would be in seeing whether it worked. The practitioner might refuse to contemplate such a model because it had not been shown to work. The contradiotion is that the established model might not have been shown to work either. It could, in truth, be as "ridiculous" and unjustifiable as any competing model. But the practitioner might preferentially use the established one, as if the fact that it were officially endorsed, or were in widespread use, somehow bore testimony to its validity.

Thus, it is argued, Petroohemical Civil Fingineering cost models exist in the "pretheory" state described by Kuhn et al There are sets of giobal, uniting beliefs in the domain of professional practice. However there is a danger if this belief turns out to be more de taoto than informed To speak impolitety, the established building cost models of the "real world" are leas likely to be in the "real world" than the explanatory theories which "academic" world has not yet fully developed, but which, strangely, have already been fully castigated by profesaional practice.

It is argued that the "acientific" development of Petrochemical Civil Fingineering and Building cost models is sufficiently infantile that there are not yet any theories capable of having strong explanstory powers, or capable of surviving the "eevere testing to deatruotion" demanded by the hypotheticodeductivists. A relattvely orude set of analyses should suffice
to show that insufficient empirical consonant or dissonant information has, as yet, been identified which would assist any cost model selection decision.

Further, it is argued, the "model or method proliferation" suggested by Feyerabend (1970) will contribute towards the development of a stronger explanatory theory for Petrochemical Civil Engineering measurement and cost control by providing more such information. Only competition can facilitate this process. Any strengthening or weakening of conventional Petrochemical Civil Engineering measurement and cost control models will contribute to the strengthening or weakening of the general Building sociological paradigms, whose underlying principles they assume.

If this work does not serve to provide logical reasons to adopt a new model or change an existing one, then perhaps it might provide sociological reasons. It might "persuade" or "convert" people regarding model selection, as if by way of a religious or spirtual mission, rather than by exposition of empirical "facts": "such a change of position could have come about only as a result of a 'conversion' - the sort of mind-change which a man would have to describe by saying, I can no longer see nature as I did before...' - or alternatively as the outcome of 'causes' rather than 'reasons' - 'Einstein was very persuasive...', or I found myself changing without knowing why...'. or It was as much as my job was worth...'." (Toulmin, 1970). If Toulmin's reasons for "conversion" were good enough reasons for conversion to the established models (and there is much evidence to support such an argument) then (by the same token) they must constitute good enough reasons for considering "conversion" to potential alternatives.

A possible approach to the treatment of the established Building model (which was very like the establishment approach to heresy) was attempted by Skoyles (1986), who was extolling the virtues of serious researoh to an assembly of practitioners: To demonstrate that QSs (sid) should have a rethink about the principles of measurement, I vigorousiy tore up a copy of the SMMM. Unfortunately the pieces llew into the froe of the evening's guests [sic] - the President of the QS Division. I shall long remember [... 's] kind acceptance of my blurted apology 'Remember Ted, the SMLM works' ". At 920 per copy for the BMMM, was this a wasteful "research teohnique" on Slsoyles' part, and was the (then) President of the Quantity

Surveying Division of the Royal Institution of Chartered Surveyors an adherent to a sociological paradigm? Time, and the work which follows here, might tell.

214 SUMMARY

It is the contention of this thesis that:
(1) There is a lack of theoretical development in building economics, which is characterised by the practice of group paradigms prior to theory formulation.
(2) There is a consequent paucity of rational scientific evidence to justify the adoption of conventional Building cost models. These models are too often presumed to possess intrinsio merit.
(3) The conventional Petroohemical Civil Enginearing Measurement and Cost Control Model, being no more than the general Building cost model adopted in its entirety, is a sociological paradigen with even less claim to have been founded on the basis of rational evidence.

Chapter 3 will discuss the use, content, requirements and objectives of a measurement and cost control model for Petrochemical Civil Engineering and, by implication, for building work in general.

Chapter 3:

The objectives of a Cost Model For Petrochemical Civil Engineriring Work related to orthodox convenitions

3.1 The Convenitional Peirochemical Civil Envginkering Cost Modems as Information Communication Mehia

The communication of measurement and cost control information within the design team and between the design and production teams in Building, Civil Fngineering and Petrochemical Civil Engineering has traditionally, and widely, been viathe Bill of Quantities. This document contains a basic list of parameters which represent recognisable physical design features of a completed building or structure, against which successful tenderers are invited to assign prices for payment by the building owner. This document is produced by transforming pictorial design information into sets of quantitative and qualitative phraseology which purport to represent the work which the contrector is expected to carry out. These data are measured and described acoording to sets of rules, known as Standard Methods of Measurement, which prescribe the features which shall be measured and the phraseology which shall be used to describe them.

There has been much debate about what the dooument communicates or ought to communicate to its users, and about how efficacious it is for facilitating its perceived cost control functions. "It is evident that if the building is split up into its constituent parts and the cost of each part can be eatimated, an eastimate can be compiled of the whole work. It has been found in practice that a sohedule can be made setting out the quantity of each type of work in recognised units of measurement, and that estimated prices can be built up for the labour and material involved in each unit. This schedule is the Bill of Quantities, the prices in which can be added up to arrive at a total sum" (Willis and Newman, 1888).

Willis and Newman omitted to mention that there are also plant and equipment costs, but offered a useful starting definition. The procees by which a Bill of Quantities is produced is easily desoribed: "1) Taking off in which dimensions are scaled and read from drawings and entered in a recognised form on spectally ruled paper... ; and 2) Working up' which
comprises squaring the dimensions,... transferring the resultant lengths, arranged in a convenient order for billing and reduced to the recognised units of measurement, and finally the billing operation, where the various items of work making up the complete project are listed in full, with the quanttties involved in a suitable order under work section or elemental headings" (Seeley, 1988). Seeley overlooked the existence of areas, volumes and masses, but adequately summarised the process of information transformation; from piotorial form into words and numbers which purport to represent the way in which construction costs are generated.

It is unlikely, though, that these documents truly represent the way in which construction costs are incurred by the builder. Indeed it is not construction work which is measured by the design team. "There has been an attempt in recent revisions of the rules for measuring Bills of Quantities... to orientate the measurement of the building to the way costs are incurred on site. However, the vast majority of items are still langely measured 'in-plece', that is to say they are measured as fixed in the building with no allowance for waste and no identification of the plant and tools required to install them. This is to avoid the possible situation arising where the quantity surveyor tells the contractor how to 'do his job' or makes assumptions as to his efficiency" (Ferry and Brandon, 1891).

Flanagan (1980) stressed the importance of recognising the resources and activities which give rise to construction costs, which conventional models ignore. Though this is a potential weakness, much depends upon the particular purpose for which the model is designed, and for whose benefit the model exists. It must be determine whether it was ever intended that the particular model should reoognise such cost determinants. There can be no firm expectation that the main purpose of models such as the Bill of Quantities is to represent construotion costs. It would be appropriate, therefore, to consider what the functions of such models are, or should be.

Ferry and Brandon (1991) correctly asserted that the Bill of Quantities is a "Cost Model", defining a "Cost Model" as "the symbolio representation of a system, expreasing the content of that system in terms of the factors whioh infuence its costr", but harboured doubts as to whether this model adequataly represents, or ought to represent, the true costs of construction.

Hardcastle (1092) argued that there may be confusion over the definition of the main purposes of the Bill of Quantities, but that other auxiliany uses can be identified. This argument is not supported here. The main function of the Bill of Quantities is clear, as will be argued below. Hardoastle nevertheless alluded to an interesting scenario, if it existed; a scenario where the main use of a document cannot be defined, but where incidental uses thereof can be described at length. A strange situation, indeed. Hardcastle correctiy stated, though, that these incidental uses are only potential uses. Skinner (1979) identified 14 procedures for which the Bill of Quantities is an information source.

Daly (1981) identified 21 cases of potential utility, to contractors, of Bills of Quantities. All of these potential uses were invoked at some time or other, but not consistently. There was a tendency for Bills not to be used in four cases and only occasionally to be used in six cases. Of the eleven cases of extensive use, only two related to resource and project planning (the true cost determinants in the domain of the builder). Six cases of "extensive use" related to interim and variation payments (the domain, by prescription in building contracts, of the design team). Therefore the document acts as an accountanoy tool, not a spectacularly useful tool for planning or prediction. Unfortunataly Daly's results did not clarify the situation regarding use in preparation of tenders.

The Bill of Quantities is clearly a vehicle for communicating information Daly, however, admirably demonstrated the severe limitations to the actual utility, as opposed to its possible utility, other than as a vehiole for payment to the appointed contractor. It would be pertinent to investigate the significance and validity of the information contained in suoh doouments in terms of oost-importance.

That the Bill of Quantities, or any model which uses "lowest cost" as a contractor selection oriterion, is not an entirely suitable vehicle for actually comparison of contractors can be inferred from Ng and Exttmore (1994) and Holt ot al (1994). They argued, variousity, that contractor seleotion should be based on numerous desirable attributes of contractors, not solely on level of tender bid. It could be contended that any tender sum so socepted will change in any event owing to disruptions, not all of which are attributable to contractor performance. Potential contractor performance is not considered in any formal, objective manner by "bid only" models of contractor selection. The axgument that the tender sum,
represented by the sum of the prices assigned to the Bill of Quantities, should not be the sole selection criterion suggests that the Bill of Quantities is not as important a tendering instrument as might be first thought. This effectively restricts the area of application of the Bill of Quantities to that of cost evaluation of design change brought about by the design team. It is design alone which the conventional Bill of Quantities is intended to represent; and even that is debatable (vide infra).

It should be understood, that the principal function of the Bill of Quantities is to provide prices for valuing variations to the work (or rather to the desigra) portrayed therein. Its benefit to the tenderer is imagined to be significant but is, in practice, limited. It provides information about the proposed project which may or may not be actively used by the builder. It exists for the benefit of the design team, as a, tool to aid their cost control and prediction. By its use the design team dictate the way in which the tenderer is expected to present prices. Indeed Bills of Quantities contain "disolaimer" clauses instructing tenderers not to rely upon them for various construction management purposes.

In Civil Engineering it has been argued that "the first purpose of a Bill of Quantities is to facilitate the estimating of cost of work by a contractor when tendering" (Barnes, 1977). It is argued here that conventional Bills of Quantities are not intended for that purpose. They may be useful in that conteat, but not necessarily efficacious (see also Skinner, 1979).

The Chartered Institute of Building (1882) held that the purpose of a Standard Method of Measurement should be to lead to the production of Bills of Quantities able to provide unambiguous information needed by contractors' estimstors to establish, intar alita, the cost of building. All other uses of Bills should be regarded as subsidiary. A modification is suggested here: all uses of the Bill other than the valuation of variations should be regarded as subsidiary. It could never provide all information required to compile a tender and a tender can be compiled without it. Is sufficient that the information therein does not hinder the tendering procees. Were there ever an unworshiptul company of paradigm adheremts it would be the one obsessed with the idea that Bills of Quantities are, or should be, a ley instrument in the builder's eatimating process. They are not, it is contended, and could never be.

In reality the Bill of Quantities purports to rellect a state of design (a finished product) and not the construction methods selected or the factors which influence their costs. There is some argument that it should reflect those methods. However, with certain exceptions, the methods are not for the design team to dictate. Therefore there is no perceived need for the Bill to describe the wark, because the builder decides what that work, and its resource inputs, shall be. The builder's estimator finds it diffoult enough to predict performance on site (see Fine, 1982); the Bill of Quantities should never attempt so to do. Though it models a unique design, the Bill can never model unique construction methods and prices. The best it hopes to achieve is an appradimation of a unique stituation by using a general set of standard parameters of description. Even this aspiration is somewhat dubious (see 'nomothetic models', infray).

The builder can approximate by inserting standard prices against these standard parameters. The builder can forecast a set of resource requirements, but not very accurately. achieved output on construction projects varies between 50 and $\mathbf{2 0 0 \%}$ of the output allowed in such an estimate. The weaknees of the prices assigned by the tenderer to these resource units is that they tend to be "standard" prices computed from eatimated "mean" output allowances, which could never bear true relationship to sohieved output (Fine, 1982).

Given that all building cost information originates from builders, the picture still cannot be clear, the builder cannot predict perfectly and is not supplying true building costs in any event. The Bill requires that the tender be broken down and apportioned to the deaign features desoribed therein. Its priced contents cannot represent, or dictate, the was in which a tender has been, or should be, compiled. Thus it cannot represent true building costs: We know that the rates in the Bill of Quantities are not true costs, but they are not even true prices in the sense of a price on the supermariset shelf. The contractor is not offering to 'sell' brickwork at so many pounds per aquare metre, his acoepted offer is for constructing a whole building and the rates are simply a notional breakdown of his total price for commercial and administrative purposes. There is thus no reason wing any individual rate should be justifiable in relation to either cost or competition" (Ferry and Brandon, 1991).

The Bill of Quantities has one express function only (for that is winy it was invented): to serve as a tender analysis in a format specitied by the deaign team 80 it can be used to approximate
costs of design changes in the pre contract or post contract period. Davies and Greenwood (1994) argued that there is no difference, in design terms, between pre contract design change and post contract design change: "both mechanisms are basically the same; they merely occur at different times".

This is to say that if the preferred mechanism of valuing such variations is to take recourse solely to the price information in the model (and it is often so preferred) then there cannot be a difference between the design changes at these different times as far as the cost model is conoerned. Any design change which so changes the scope of the project that it no longer remotely resembles the contents of the model does not affect the workings or the contents of the model; it merely means that the contents of the model can no longer be used and that other solutions must be found. This is evidence that the conventional model is very weak as a predictive, inductive and theoretical model. That which it fails to predict is considered to be completely outside its purview.

Davies and Greenwood (1994) argued for a leval of abstraction of information which could be used in both the design and production phases. The conventional model exists at an unsuitably low level of abstraction for that purpose. Its use by the production team to execute numerous estimsting or planning tasks can be envisaged, but these are only possible uses and there is no expectation that its use in suoh situations will be particularty efficacious.

Thus the use of the conventional cost model is not intended to be synomymous with its possible use by the production team. The separation in the construotion industry of design and production matters is notorious. It is argued here that the conventional measurement and cost planning models cannot fulfil both roles simultaneously. For any attempt to bridge this gulf to succeed the modal should exist at an appropriate leval of abstraction

3.2 LevEl Of Abgiracion of thi Moden

Level of abstraction is a key issue in this regard. Information which eadsts at a low level of abstraction exists at a high level of detail and information which exists at a high level of
abstraction exists at a low level of detail. In neither case is the amount of detail necessarily synonymous with significance (either to cost or design). The significance of information can only be ascertained by viewing the information in an appropriate context.

An appropriate context to consider is that surrounding the initial formulation of the model; for if the inductive process of its formulation was of a payohological, as opposed to logical, nature little can be said of its resultant content. The circumstances determining cost behaviour may not have been the ciroumstances reflected in the formulation of the model which is supposed to represent those costs. Hence the parameters which the model contains may be inappropriate to its intended use. Certain (or all) of its constituent detail may be redundant in terms of what it is the model is supposed to actually commumicate.

This, it is contended, is because the parameters of such models were not formulated as a function of cost significance; they were formulated as a funotion of design significance using known determinants of physical appearance, not known determinants of cost. Thus their derivation may be out of context with their intended use; that of representation of significant cost features. If such models contain insignificant or redundant cost centres they will do so regardless of their level of abstraction, because no matter what the level of abstraction, it is "design centres" which are being abstracted.

The most significant feature of the conventional measurement model is the quantity of the detail itself. Models could be out of context in that they might, as a result of their manner of formulation, dictate cost behaviour rather than represent it. If so, the model is presoriptive, not descriptive; it does not identify in its structure which parameters are relatively cost important and which are not. "Information which says what must or ought to be done is very different from information which conveys facks, or information which passes judgements, but it relies on both of these other kinds of information. Typical prescriptive information includes orders and instructions, rules and regulations, recommendations and advice. To justify prescriptive information one must appeal to the consequences of acting upon $\mathrm{tt}^{\text {n }}$ (Stamper, 1973). An effort should therefore be made to make the model more desoriptive. This implies empirical observation of data prior to formulation.

This invites the suggestion that the paradigm models of practioe (see Kuhn and Masterman) are not theories; they do not explain anything very well. Rather, by virtue of not categorising or reflecting the relative importance of those things which can be observed they could falsely depict the situation which they were intended to describe. It is suggested at this juncture that if parameters of a model are formulated which are not a function of the behaviour which it is intended the model represent then the level of signification of the information in the model will not vary as a function of its quantity. In fact the level of signification of the information will remain constant, because there is no functional relationship between the conditions of the model's formulation the relevance of what it is modelling. As the constituent parameters of a model may not have been formulated to actually follow costsignificance (see Davies and Greenwood, 1994) it is important that the nature of costsignificance in the models should be investigated.

Tender cost analyses, usually in Flemental format, are produced mainly by abstraction from priced Bills of Quantities (see, for emample, Ogunlana, 1979). It is suggested here that the fact that such a process of abstraction must occur at all suggests that the leval of abstraction of the Bill of Quantities must have been to some extant inappropriate for facilitating cost control functions in the first place. Flanagan (1980) stated that "for the purpose of cost planning, the building price is analysed into funotional elemental categories, but these are of little help in the identification of factors affecting prices". Flanagan argued for greater study of construction aotivities as cost determinants.

Davies and Greenwood (1994) axgued that not only do conventional Bills exist at an inappropriate level of detail, but 80 also do the elemental cost analyses derived therefrom. The analyses in fact overcompensate for the excessive detail of the Bills by manifesting themselves as gross oversimplifications. Therefore the two models are mutually contradictory. The parameters contained by the cost analyses are too insensitive to reflect, to an appropriste degree of definition, the eftects of deaign variations. The parameters contained by the Bill of Quantities contain muah detail whioh is inappropriate for axy potential use. Such information is, as was said by Hardoastle (1092), redundant. The most appropriate level of abstraction, it is argued here, lies between that of Bill of Quantities and Elemental Cost Anatyais.

A cultural change is required, it is argued. A suitable set of model parameters must be identified exist at a lower level of abstraction than that of the Bill of Quantities, much of which is redundant by virtue of being a bath flled to overflowing (see, for example, Barnes, (1971) and Hardcastle ot al (1987a, 1987b and 1988)). It should also exist at a higher level of abstraction than that of the conventional Elemental Cost Analysis, much of which is vague by virtue of having "thrown the baby out with the bath water". A model is needed which fulfils both roles simultaneously and avoids unnecessary duplication of effort (Davies and Greenwood, 1994).

Attempts at Element standardisation should be treated oum grano salis, the paradigm of adopting a single set of standard rules for variable behaviour induce a reduction of grip on the reality of variable behaviour. This is evident cursory inspection shows that conventional Elemental classifications have been founded, ouriousiy, on a general set of design features (somehow expected to be exhibited by all buildings, regardless of their structure) rather than on prior analysis of cost behaviour. Yet the very Element costs displayed by these models are highly variable from building to building within the same EHement. The fact of this high variability must be evidence that conventional Element classifications obsoure, or do not recognise, the significant cost determinants. This has to be inadmissible in a cost model.

Thus it becomes necessary to discuss data identifiable in the conventional Petrochemical Civil Engineering cost data commensurate (or not commensurate) with the level of definition described above. It should also be determined whether there are levals of detail which, owing to the manner in which the the model has been formulated are, to speak impolitely, spurious. In order so to do it is proposed here to exramine the parametars which contribute (variousky) cost significance or mere detall in the conventional model.

Viewing conventional (or any) cost models as information syatams, it can be postulated that such systems possesses the property of equifinality (Heath and Bryant, 1092). That is, they are each capable of achieving the stated goal, whatever that goal might be, but by different means. Given that each system has this capability it would seem reasonsble to embrace the system which possessed the least compleuity. This implies that it contains leas information, in tota, than the other systems. If it is capable of containing leas information and still
achieving the goal what can be said of the "surplus" information possessed by the others? Can a model containing less information than other models be a better model?

Classical cost modelling "theory", to misuse the word, holds that the more the design of the building or structure has evolved, and hence the more information contained in the cost model, the better the model becomes. This is naive. The concept of entropy must be considered. Entropy is the degree of uncertainty which results from randomness, or lack of predictability, in a situation or information message. When certainty or predictability is present in a situation then no additional information is needed, and no entropy exists (Heath and Bryant, 1892). Once a model or system achieves an acceptable degree of certainty or predictability the addition to it of further information merely creates entropy, the uncertainty and confusion. The idea that equal, or equivalent, certainty can be obtained by the provision of less information than is usually "expected" is alien to conventional thinking regarding conventional cost models.

An eutension to the basio argument is now offered. The entropic content of the model can be reduced by removing it from the model. If the entropic information has not been removed, it is argued that it is not surplus in the sense of merely being benign. It is not information which just happens to be there, and which has no effect. It could have a detrimental effect. Heath and Bryant (1992), building on work by Shannon and Weaver (1949), discussed the concept of information in a communicating aystem being distorted during transmission. The transmission device itself can cause distortion of otherwise olear information. For example, though the person spealing into a telephone may be spealing clearly and lucidty, there may be problems associated with the "meahanics" or "electronics" of the telephone system itself (the transmission device) which cause the reoipient to hear just "noise". "Noise" thus induced will increase uncertainty. Much of what is heard, though never intended by the sender, will nevertheless be heard.

However the person recetving mas have no way of knowing that the transmission device is distorting the message. The noise may be taken at face value as being intended, necessary and usefu. The recipient may act upon the information; th may not be percetred as being "noise". It is attributable by Heath and Bryant (1992) to Shannon and Weaver that if noise is introduced, then the recetved mesage contains distortions, ecrors and extraneous matarial
which would lead one to say that the received message exhibits, as a result, increased uncertainty. It has increased the total quantity of information, but it may sound to the recipient as if it were all beneficial.

Considering the Petrochemical Civil Engineering cost model as such a communicating device there may be noise and uncertainty produced by the structure and workings of the model which flow from the measurement conventions governing its formulation. These conventions may prescribe to the sender the inclusion of extraneous information in the model which portrays distortions of the information which the sender might otherwise have communicated. The recipient, though, of the Bill of Quantities, or the user of an Elemental Cost Analysis abstracted therefrom, might do no leas than assume that the information contained (received) was all relevant. It might not ocour to the recipient that it is possible for the model itsalf to induce distortion. It is argued that the encoding device, the conventional method of measurement, induces such distortions. The "noise" is induced by the conventions which detarmine the model's content.
3.3 The Rmationghip to Cost of the Convennional Pembochranical Civil EhNGINEMERTNG MODEM

Bias in cost distributions is known to be a feature of Bills of Quantities. They bebave according to the prinoiples expounded by the economist Pareto, who found that 80% of the income in a country is earned by 20% of its income earners. Such distributions of cost have been suggested of Bill of Quantities items by, for emample, Barnes (1971), the Property Services Agency (1983), Hardcastle et al (1987a), Hardcastle at al (1987b) and Hardcastle ot al (1988). This principle has been seen to apply in numerous situations, such as quality control of manufactured products (Wadsworth et al, 1990).

Horner and Saket (1984) and Horner of al (1986) deacribed a method of eatimating for tenderens, uxing data from Civil Fhagineering projecta, whioh they alleged eobieves the same results as conventional models by onily using 30\% of the items whioh would form a Bill of Quantities. That the "Parsto" distribution applies to many aitustions is widely accepted by those who have studied the phenomenon. Thus it may be alleged that $80 \% e 0 \%$ of the thems
in a Bill of Quantities can aggregate to only $10 \%-20 \%$ of its cost total. Barnes's (1971) work in Civil Engineering is the most salient recent related modelling work related to measurement and cost control.

Drucker (1978) contended that this type of distribution is a feature of all data arising from commercial activity: What exists is likely to be misallocated. Business is not a phenomenon of nature but one of society. In a social situation... events are not distributed according to the 'normal distribution' of a natural universe. In a social situation... a very small number of events - the first 10 to 20% at the most - account for 90% of all results; whereas the great majority of events account for 10% of the results." Drucker (1978) also contended that "A second implication is that resources and efforts will normally allocate themselves to the 90% of events that produce practically no results. They will allocate themselves to the number of events rather than to the results. In fact, the most expensive and potentially most productive resources (ie. highlytrained people) will misallocate themselves the worst. For the preasure exerted by the bulk of transactions is fortified by the individual's pride in doing the diffoult whether produotive or not. This has been proved by every study'.

Goldratt (1990) held that the "80/20" distribution was a considerable underestimate when dealing with variables in the world of "throughput of costs": "In the throughput world, even the Pareto principle must be understood in a totally different manner. It is no longer the $20-$ 80 rule. It is much oloser to the 0.199 .9 rule. A ting fraction (0.1 percent) determines 89.9 percent of the result... attention is spread muah too thin, on too many seemingty equally important problems". Therefore it should be determined whether all the data, or information, in the conventional models cost model have the equal importance ascribed to them (by omission) by the conventional measurement conventions. That these phenomena are phenomens of the economic world, or of the commercial world, as Drucker put it, is important to remember.

Cirillo (1979) explained that the "Pareto" distribution is an empirical law, based on obearvations of what actualty happens. Though Pareto's distribution curve is of the same ganeral shape for all populations studied, the eraot distributions differ from population to population. The "lawn" predicts a general phemomenon, but not the preoise outcome. Cirillo (1879) elaborated by aseerting that suoh distributions do not ocour by abance. They are not
observations of phenomena of the natural world, and so the distributions are not normal; not the rasult of random error. A complexity of sociological, political and commercial conditions are determining the outcomes. Much literature related to building economics depicts and discusses normal distributions as if the entities being observed are features of a world of physical, as opposed to social, science. This is an erroneous assumption. There is the risk, therefore, that economists (including building economists) pey insufficient attention to the sociological foundations of their models and theories.

Fifort is expended measuring those things which it is believed (but is not necessarity known) affect costs. Effort should not be expended measuring those things which contribute little (if any) cost. Such things are of no use if they appear in a document which is primarily concerned with costs. It should be ascertained, therefore, what is costsignificant and what is not. Further, our data classifications and measurement techniques should be selected suoh that they follow criteria of costsignificance rather than some other (arbitrary?) artteria

Measurement can be technically diffoult and very timeconsuming. Then, as if in defiance of the beliefs of the design team, the builder appears to consider much of the product of systematio measurement to be relatively unimportant. It is dimoult to maks a case, therefore, for including items of little costimportance in a document with a highlyrrestricted cost planning function. As will be shown later tenderers frequently attach no costs whatever to extensive tracts of the cost document. Items which were of no importance to the builder at the time of tendering can by logical infarence be equally as unimportant to the bullder for the purpose of valuing changes to the contents of the dooument.

It has been suggested of the Bill of Quantities that "considered as a model, it should therefore comprise a list of carefully desoribed parameters on which the cost of the work done can be expected to depend. Clearty these parameters should inolude the quantities of the work to be done in the course of the main construction operations. There is no point in listing those parameters whose influence on the total cost of the work is so small as to be masked by uncertainty in the forecasting of the cost of the major operations" (Barnes, 1977).

It has also been suggested that the failure of Bills of Quantities items to takse into acoount the uncertainty affecting costs of building operations renders them dubious in terms of
reliability: "Simulations of repetitive processes show that costs are largely generated by the interferences and uncertainties that exist, and that simple additive models like the BoQ [sid] seriously underestimate costs. It is the failure of these simple additive models that produces much of the drama in our industry" (Fine, 1982). This is to essume, of course, that it is intended that the model should represent the way in which construction activity occurs on the construction site. No such contention is made here. The document was never intended to cater for the ways in which the builder incurs costs, but was intended always to provide a convenient, if crude, way of effecting payment to the builder in certain situations.

Fine clearly did not follow the thinking of Willis and Newman and was even leas complimentary to the Bill of Quantities when he compared the "science" of the ingredients in a chemical reaction with the ingredients in the Bill. He showed that were the quantities of the chemical ingredients altered a different result would be obtained, but were the quantities and prices of Bill of Quantities items to be redistributed at random and the tender sum recalculated there would be no appreciable difference between the original and recalculated totals.

There appears to be a polarisation of opinion. One sohool of thought believes that the items measured represent the work done. One school of thought believes otherwise. One school of thought believes that simple ttem addition, as it were "grocery lists", produce correct totals. The other school of thought suggests that such lists ignore the occurrences and uncertainties which most markedly affect building costs. Certain items, therefore, the measurament of which is costly, may have no cost significance to the person who pricas them - the builder.

There appears to be little reason to disagree with the suggestion that the prices in suoh documents need bear no resemblance to reality (Ferry and Brandon, 1991). They are merely rates at which the bullder is happy to be paid; they are therefore prone to abuse. An opportunist builder might Ioad' the prices in the Bills; not to alter its total, but to ensure fivourable rates of payment. There is ittie, really, that can be done about this. The tender has been accepted. Any suggestion that the prices inserted by the builder are inappropriate, even though thes might be, would probably not be based on tactual howiedge. The problem is in not knowing how the prices were built up or for what particular reasons the
prices were so apportioned to the measured Bill items. Arguably, the design team cannot knowwhether a price or rate is correct. Therefore the design team is not in a strong position to question the individual item costs in Bills of Quantities, to the extent that such ftem costs exhibit subtle variations when like items are compared across ranges of construction projeots.

What is far more meaningful, therefore, is the relative cost of these items; what value should an item have before it significantly contributes to total cost? Which items are relatively unimportant in cost terms? Which items have an aggregate value so small that if they were removed from the measurement system altogether the overall tender sum would not discernibly alter? There seems to be misallocation of effort measuring things which the tenderer considers to be unimportant and which, far as prices for valuing variations are concerned, are redundant (though the design team, curiously, think otherwise).

Major cost determinants are relatively few in number (see, for erample, Diederichs and Hepermann, 1985). Were this seen to be the case in Petrochemical Civil Engineering Bills of Quantities data then it could be argued that too much of the effort and administration devoted to producing the level of detail so displayed in the conventionsl models is misdirected effort. Further confirmation of the cost distributions disoussed above was presented for Civil Engineering data by Saket (1986) and Sakst (undated), and for Petrochemical Civil Engineering cost data by Hardcastle ot al (1987a, 1987b and 1988). Ashworth and Skitmore (1983) suggested that the removal of minor tems from Bills of Quantities might go some way towards improving the acouracy of the remaining coatimportant tems; thus making the whole process more realistic. Their justification appeared to be the fact that costrinsignificant items are seldom estimated using normal estimating procedures, but rather are priced on an ad hoc basis. They did not comment on how the costs of these items would be estimated once they were no longer expresslyidentified, but it is contended here that the problem is not insurmountable given that such data are costinsignificant.

Horner and Saket (1984) recognised this and alleged that these lists of items are longer than is necessary to achieve an acceptable level of accuracy. It is not clear what an acceptable level of acouracy ought to be, however, but practitioners frequently allege $+/ 5 \%$ at Bill of

Quantities stage. This claim though, is not based on any substantial evidence. Serious attempts at analysis in this and related fields, for example by Keating (1977), Fine and Hackemar (1970), Gates (1967) and Barnes (1977) revealed figures ranging from 5 to 25%.

Accuracy of cost predictionis a vague concept in the case of the types of model under discussion, nor could it ever be precisely achieved. Therefore it is deemed appropriate to consider attributes of such information which may be relevant in terms other than those of cost. As it has already been argued that the model primarily exists as a tool to aid the design team rather than the production team it is deemed pertinent also to consider what relevance this information has to the design itself. If the document represents neither true construction costs nor the true design then its use is so limited as to question the justifisbility of its obsession with detail.

3.4 The Remevance to Disgign of the Convenvional Peirochemacal Civil Engainghrinng Modeh

It is a commonly-held view that whereas the existence of a measured item might not directly have a cost implication to a Tenderer, its existence conveys indirectly to the tenderar some notion of the complecity and scope of the proposed design. This may, or may not, be true. It can be diffoult, prima sacia, to ascertain whether the data can be actually attributable to design souroes. The measured items refleot the design, but the prices placed against them represent the commercial tactics of the successful tenderer.

It is debatable, also, whether large amounts of such measurement information are really necessary: "Heving too much information may be just as bad as having too little, sometimes it is worse because one may become confused. Posadbly leas, more accurate information would be more beneficial" (Hardcastle, 1982). This however must perforce be contingent upon ascertaining what level of accuracy and defintion it is reasonsble to require.

It is here, it is argued, where sooiological considerations enter the debate. The notion that better acouracy can only be achieved viathe acquistition of phyzical quantity of detail is lilsaly to be founded belief rather then sure knowiedge. Hardoantle's (1992) argument is supported
here; were better accuracy the goal then it could only be achieved via the acquisition of more appropriateinformation.

This is to assume, obviousty, that accuracy is a paramount requirement of a Bill of Quantities. It is argued that it is not. The term "acouracy" in the given context is a largely irrelevant term. The Bill itself models neither true building costs nor a true tender build up. The builder produces such a build up but does not necessarily incorporate it in the Bill. If the information in such a document is inappropriate either to the design or the work intended then arguments concerning its acouracy as a cost estimate are fatuous. If it does not represent what it is supposed to represent then it is a model of a well-defined, but fictitious, gituation.

Discussion of the influence of prescription cannot be avoided here. As a method of measurement prescribes what shall be measured, and how, it is logical to infer that the method of measurement itself may create some level or amount of detail which cannot be inferred from the actual design. Measurement rules, by virtue of the wey they are written, may suggest complexity which the design itself does not. Such rules may be so absurdly simple that they give the impression that a complex building is, in fact, not complea. The converse could also apply. This might mislead a tenderer. Much depends upon whether the detail of the Method of Measurement is appropriate to the type of construotion work involved, or to anytype of construction work.

It is argued that the detall of conventional Bill of Quantities models is not a function of significance, but of mere existance; the measurement conventions dictating how the information should be prepared and presented can only specify that what exists should be measured if no prior analyais has determined what is important. "BQs [sic] prepared under previous standard Methods of Measurement lack flevibility and can contain an unneceasary amount of detail and superfluous information" (Thmmet, 1990, axguing for a simpler set of measurement rules). A simpler set of measurement rules, Fhmmet contended, will not projudice ecouracy. Besides, eatreme cocuracy is not the prime objective of the model. "Fewer items does not mean less accuracy, but it does mean lees intricescy" (Fimmett, 1990).

The detailed treatment demanded by detailed measurement rules was admirably demonstrated by Baccarini (1984 and 1984a), who showed the profuse amount of technical detail which must accompany an item description of even a simple design feature of a building. It is frequently the measurement rules themselves which are complex; not the features which they describe. The cost behaviour is flowing from the artificial parameters of the model; the design feature is simple, but complex rules have been devised for dealing with it. A case for simplicity, therefore, could well be argued.

Smith (1987) favoured using different levels of measurement detail for different levels of design detail, suggesting the use of SMM 6 where the design is incomplete and the use of SMM17 in the "Utopian" situation where the project is fully deaigned. It is difficult to agree with this reasoning, given that SMM6 prescribes more detailed measurement than does SMM17. Its application to incomplete design, which might not reveal any detail, would appear rather misplaced. Nevertheless, Smith raises the important point that methods of measurement intended for complete design are frequently used on incomplete design.

Hooker (1985). a member of the Standard Method of Measurement Development Unit which drafted SMMM7, related some of the Unit's findings: "Quantity Surveyors thought that the present level of detail of the [SMMM] rules was frequently more elaborate than was merited by the standard of information provided by architects and engineers. For their part, estimators suggested that in view of the frequently high incidence of variations, stemming from the inadequacy of the pretender design dooumentation, the method of measuring work should reflect more alosely the construotion process and serve to highlight the disruptive effect of variations". Detailed rules of measurement, then, are incomsistent with incomplete deaign

As to whether the items measured reflect the construction process, it is contended that even if they did it would matter little if tenderers neverthelees accorded them "zero" or "negitigible" cost importance Hooker (1985) further elaborated, commenting on contributors to the development of SMMM7 who were neither surveyors nor estimstors: "These contributors to the inquiry concentrated upon the disoussion of methods of ensuring thet the maximum benefit be obtained from the precontract measurement process so that the need for subsequent remeasurement for any reason can be drastically reduced, if not removedm. At this point it might be permissible to amsert that if it cen be conterived that substantial pre
contract re-measurement need not occur then a strong case exists for reducing the effort involved in pre contract measurement.

Given that methods of measurement will perforce expect some level of detail commensurate with completeness of design, how does the surveyor arrive at the required detail in the case of an incomplete (or missing) piece of design? Perhaps by resorting to the "witchoraft" described by Fine (1982). There are, clearly, situations in which it is difmoult to attribute the detail in the Bill of Quantities either to the design or to the method of measurement: "The cautious surveyor in preparing the Bill will sometimes measure abnormal foundations, often unnecessary, another even more cautious, will throw in expensive retaining walls, and for good weight, concrete ad libin his drainage section" (Snell, 1973).

In other words, if some design information is missing (or incomplete) there is still the desire to ensure that there is enough content in the Bill to cover, or into which to subsume, any (illdefined) contingencies. The design can be resolved later. The measurer will tend to create detail even though it might be unavailable in the design and/or not required by the Method of Measurement, in the belief that the existence of some (any) detail provides a form of insurance against some future (undefinable) contingency. It is argued that in so doing the measurer creates a problem by incorporating variations at the outset.

Thus the measurer "invents" items in order to cover overall cost rather than the costs of known features of design. Therefore not only do Bills frequently not repreeent the building costs but also frequently do not even represent the intended desdign. Thus the builder is confronted with variations even if the finalised design does not change and even tf the work done on site never altered from what was actually intended: "Iritation arises when the total sum of a priced out Bill of Quantities differs greatiy from the actual value of the work, even when the rates remain unaltared and the actual work remains unaltered too" (Snell, 1973).

It would appear, prima troie, to be a ludiorous situstion whereby parts of the cost model can be fictitious (the content does not repreaent axything in partioular, it merely attracts prices). Yet measurement conventions can permit, even demand, laborious treatment of suoh fliction. Subsequent analysis will reveal that large tracts of "riction" did in fact exist in the data studied. It is further contended that if the paramount deasire is to represent, for cost control
purposes, a sum of money in the aggregate and that if a large proportion of the items measured represent neither a significant sum of money nor even what it is intended then there is nothing to fear if the measurement of unrepresentative items is discontinued or simplified. Their costs can be subsumed elsewhere, because their costs are derisory.

It is difficult to state with certainty that the measured items truly reflect the complexity of the design. Complexity can be a function of the measurement rules as much a function of the building. Notions regarding compleadty can be gleaned elsewhere: from the drawings, for example. It has been asserted (Smith, 1979) that if the drawings do not show the complexity of the design then the Bill of Quantities ought to. This argument cannot be supported: if the drawings from which the measurements ware prepared do not show the complexity then the measurer can only contrive to produce such compleaity due to some express requirement of the measurement rules themsalves or by some desire to invent detail as a form of "contingency" allowance against some unforeseen event. The irony is that if some subjective allowance has been made for them, then these events cannot have been unforeseen. Some subjeotive allowance would be less timeoonsuming no leas acourate and no less problematic than treatment by some complex set of measurement conventions.

Detail created by these conventions is a systematic misrepresentation of the state of reality and, hence, spurious. The eventual deaign will not change; it merely has not evolved yet. However the contents of the cost model will have to; because the design had not evolved at the time the model was produced tts original contents amounted to a myth (see Masterman, 1970). Thus such practice, perversely, can actually oonstitute the problem with whioh the practice itself was intended to deal.

It has been suggested (Hughes, 1983a and 1983b) that if a method of measurement causes the problem, that is, is the souroe of miscepresentation, then it cannot provide the solution to the problem. "The contract documents of which the BQ [but not the SMMM is a part must reflect the total situation obtaining at the time of tender. If the deaign is incomplete and Items have to be 'Invented' [to whatever degree] then the contract, not the method of measurement, must provide for the consequences". This should be compared with Feyerabend's (1975) assertion that a model cannot be tested according to the frots if it has itself discarded any facts which might cometitute a teet.

Paradoxically, should design ever be complete then measurement would not be necessary, as there would be no variations. Should design be grossiy incomplete then measurement, perhaps, is not the solution. A method of measurement, therefore, should be used when appropriate, but when used should be appropriste to the situation. Measurement should not be done out of a desire merely to conform to some acoepted paradigm practice. Wildry incomplete design renders [BQ] quantities an improper basis for contracting, and the quantity surveyor should not hesitate to say so. A defence of I did what [the] SMIM - in which I have no confidence - told me' is not calculated to inspire the olient in the independence and judgement of his professional adviser" (Silverton, 1983).

It is evident that muoh of the detail sought by measurers, or, more correctly, demanded by ruling conventions, because the measurers are merely obeying the conventions, is of dubious worth in terms of tendering and calculating the cost of change. A model for measurement and cost control in Petrochemical Civil Engineering work should not exhibit the properties of existing models. It should contain sufficient detail only to achieve reasonable efficacy, which is all that could ever be achieved anyway, but not enough detail to render it unnecessarily cumbersome. It should not be stifled by convention which is so formulated as to require detail for the saks of acquiring it, detail whioh, in some cases, can be neither inferred, used nor believed; which msy have been distorted or contrived for the sole purpose of satisfying the demands of the model ttself.

It is, perhaps, that we are blinded by the light of our own conventions; we fail to see what we need to see. The term "model-blindness" in relation to cost models is Brandon's (1982). Its essential meaning is that we can become so scoustomed to using certain teohniques that we forget why we use them, or whether they ever did what we end up imagining they do. As a practising group we lose, or never possessed, the inclination to rationally fustity their efficacy, or to ecamine posedble better alternatives. Thus manifestations of paradigm practice arise; sociological, or even ideological, as opposed to logical.

Dirksen (1982), an independent obeerver of the activities of construction cont modellens, Whilst appreciating that Bills of Quantities do perform some useful work, geve a word of caution: "Mentioning the likselihood of insocuracies does not imply that the quantity surveyor does slap-dash work. But there is a danger: acouracy can turn into pedantry over detail, care
into slowness, correctness into inflexibility". It is obsession with the dubious notion that all information must be intrinsically useful simply because it exists which causes us to create too much of it. Dirksen concluded: "The fact that quantity surveyors live with figures and love them can cause too many to be produced, and then not even the right ones".

It is clear that there are problems associated with the content and relevance of conventional Petroohemical Civil Engineering cost models. Muoh argument has been presented towards the thesis that it is possible for such models, as presently structured, to tell "fairy tales" rather than provide a reasoned account of what has happened, or will probably happen. The paradigm of institutional acceptance remains and must, in the interests of furthering our knowledge, be challenged.

Feyerabend (1975) alleged that departure from reality can (and does) result from group adherence to the status qua. "It will seem that the truth has at last been arrived at. At the same time, it is evident that all contact with the world has been lost and that the stability achieved, the semblance of absolute truth, is nothing but the result of an absolute oonformismr". A measure of non-conformism should therefore be introduced: the validity of the conventional cost models should be ohallenged. The possibility of rational improvement of such models should be entertained.

3.5 SUMMARY

It is contended in this theass that:
(1) Conventional measurement and cost planning models do not recognise the true determinants of building cost. Though this is a wealmenees, it is not inconsistent with the intention that the models are for the use of the deagn team for the purpose of approximating the cost not of ohanges to the methods of production, but to ohanges in deaign (proposed in the pre contract - the cost planning model, or actual in the post contract - the measurement model).
(凤) Ease of use of the conventional models is synonymous with ease of abuse. Much of the content of this model carries little cost importance and is otten fictional in any event. A newlyformulated model should be characterised by a reduction in the amount of redundant or entropic information which contained by the conventional model.
(3) The conventional measurement and cost planning models are presoriptive, not representative, of cost behaviour. Their undertying measurement conventions are capable of producing "noise" for the sake of having it. Due to the way in which they have been formulated their constituent parameters make no attempt to reffect the relative importance of cost centres. A model should be formulated on the basis of prior empirical observation of cost behaviour in the appropriate data; the model should be made to filt the facts, not create them. This will not undermine the paradigm, but attempt to provide a rational, rather than sociological, step towards the development of measurement and cost planning theory.
(4) The paradigm practice of abstracting an oversimplified cost planning model from an overdetailed measurement model is an unnecessary duplication of effort and produces two inappropriate models at inappropriate levels of abstraction. The identification of consistent cost centres should be attempted which exist at a suttable level of abstraction for use in both models, or in a single model which performs both functions simultaneously.
(5) The paradigm practice of the conventional model being a tool of the design team will not disappear quiokly. Therefore a newiyformulated model should be capable of being input into the broadty-recognised conventional format of the paradigm model. Therefore the consistent cost centres so identified should be capeble of being expreseed in terms of design parameters, but the froility to input costs of the factors of production if deased. These cost centres should therefore take the form of a "neutral" language capable of being commutative between these two domains.

Chapter 4 will briefly review some preasing issues for cost modelling research and will review and criticise the research methods by which the objectives stated above will be attempted.

CHAPTER 4:

Review Of Research Methods

4.1 Genseraily

This Chapter will review the research methods, that is the tools for data collection and interpretation, employed in this work. The strategio philosophical aim has already been considered (vide supra). Criticism shall be offered of the methods as data collection tools. The Chapter will also deal with problems of proof and refutation attributable to these tools. Problems of proof and refutation were identified in terms of overall philosophy, but not discussed with reference to the tooks of data collection, in Chapter 2.

4.2 The Genneral Gtate of Cost Modehlang Rbsbenrch in the United Kingiom CONETRUCTION INDUETRY

The general position of cost research in the United Kingdom construotion industry was summarised (Ashworth, 1994) as follows:

1) Little attempt has been made to verify current practice,
2) Understanding is limited to experience and intuition,
3) Current practice may be unsoundiy based, and thus there are disadvantages of continuing along this route as a priority.
4) Future investigations should build on a factual basis, and not on the posesbility of false assumptions,
5) The profession should be convinced of the necesaity of getting [sid] the fundamental principles authenticated, since these are often not propecty understood and
6) Opinions alone may be biased and therefore unreliable.

These discouraging signs have implications for the development of cost modelling research and, it is contended, strongly underpin the philosophical statements expressed in Chapter 2. The requirement to deal, as far as possible, with facts rather than opinions and the necessity to try to distinguish "fact" from "opinion" has implications for the possible methods of data colleotion which a piece of research could utilise. Though the understanding of research methodology "is important, it can sometimes be overemphasised. It should be regarded as nothing more than the tools of the trade. It is important to be aware of the range of research methods available and to appreciate their relevance to the work being studied... it may be necessary to combine some of the... methods during the carrying out of research projects" (Ashworth, 1994). Raftery (1991) sugreested an agenda for research into models for building cost and prediction. The principal suggestions were as follows:

1) The need to disentangle the modelling of costs from the forecasting of markst prices,
2) The need for empirical work on the comparative robustneas and reliability of statistical methods compared with the naive "cost planning" (in place) methods currently in use, and
3) The need for research on the nature (reliability, rationality) of human expertise.

In this thesis the word "cost" is used to indicate the price(s) provided by the builder which are therefore present in the models, and which the olient must therefore pay. The cost to the builder is not necessarily the price inserted by the builder into the model. Raftery is correct in asserting that the conventional cost planning models, having been formulated on the basis of design parameters as opposed to true "coat" parameters, are naive. This point will be developed (vide infra).

Raftery clearis held that reasons for embracing teohniques or models suoh as "erpertise" can be ill-defined, potentially subjective and potentially insationaliy expremed This is to classity the conventional Petrochemical Ctwll Engineering measurement and coet model, and the Building model as a sooiologicai, paychological or ideological paradigm. Therefore it is to
the social sciences which this thesis (and much other research in building economics) should in part look for ideas and criticisms. Building Economios is not in a "pure science".

Newton (1991), in a review of the state of cost modelling, held that it was important for modellers to begin to focus on the inherent or implicit assumptions conventionally built into cost models and also to focus on the inherent assumptions made about the validity of them. Newton's argument is supported here to the extent that there appears to be an underiying assumption regarding the conventional Petroohemical Civil Enginearing cost model. This assumption is that its constituent designbased parameters are all important and, hence, relevant. The structure of the conventional model, it is angued, does not adequately reflect the relative cost importance of design parameters as it has not been formulated following prior empirical observation of the cost behaviour of those parameters. Indeed, as they are borrowed, unaltered, from outside the field of Petroohemical Civil Engineering it is unlikely that such empirical observation took place, highly likely that the modal does not represent the observable facts and likely that the facts have to be made to $\boldsymbol{f t}$ the model. The assumption that a model's parameters are important solely because the model demands their inclusion is a weak basis for model validation. The rules of measurement themselves, in respeot of conventional models, are not truly empirical in nature, having been formulated more by a process of negotiation between interested parties than by prior data analyads.

4.3 Inducive, Dimducive and Empirical Eirnitegy of this Thifsis

Given the (apparently) contrasting characteristics of inductive and deductive methods it is considered that the epproach in this work will be primarily inductive. Observations of behaviour of cost data in the conventional Petroohemical Ctill Engineering measurememt and cost control model will be used to attempt to formulate a hypothetioal measurement and cost control model for Petrochemical Civil Ehagineering work The eatablishment of an empirical basis for model formulation will serve to compete against conventional models in this and other fields, the basis for whose formulation and adoption in practice has largaly been on a sooiological besis. This is seen also to be conistent with Ashworth's requirement to verity or absllenge evisting practice. On the basis of these findings, the cost behswiour
observed will be used to formulate a hypothetical model for Petrochemical Civil Engineering work

Though testing of the conventional model is not an express direot aim, the analysis of conventional data could (arguably) constitute such a test, to the extent that it may or may not be a destructive treatment of it (see Popper, 1959). The analyses executed on the data from the conventional model will be used to attempt to show that its cost parameters do not necessarily behave in the way assumed by the designers (and users) of the conventional model. It is debatable, in fact, whether its designers had any notion of how these cost parameters might behave, given the lack of theoretical development in cost modelling.

Thus the work will attempt to show the conventional models to possess the status of "paradigm prior to theory". The conventional cost model does not explain cost behaviour very well. The overall approach of this work will be induotive as, in working towards a hypothetical model, it will effectively arrive at (culminate in) a hypothesis. However there will be some deduotive content following formulation of the hypothetical model in the form of validation with its potential users and a "ineld test".

It is true that a hypothetical model such as is proposed here could have been formulated intuitively, without the use of prior observation to justity tits formulation, and the work devoted antiraly to testing it. However it is considered that to first demonstrate actual, as opposed to assumed or imagined, cost behaviour of data in the conventional models might overcome any sooiological or ideological reaistance to alternative models. This would be a rational step as it would increase the amount of consonant or dissonant information which would aid a modeleelection dedision (see Festinger). It would be a step towards a more rational formulation for the sociological paradigen, which is empirically weak. The paradigm is not being tested as such. The work is operating within the overall framework of the paradigm, but is arguing for more rational criteris for ths validstion (eee Post, 1978).

The relative conservatism of the practitionars as a peer group and their posaible distaste for what they would regard as "theoretical" models must be borne in mind Potential misunderstanding of the meaning of the word "theors" was discuseed earlier (Chapter 2). It was considered better first to attempt to expowe the shortoomings of the eudeting models in
order to thy to reduce scepticism regarding "simpler" models. Detailed models are often regarded in practice as desirable precisely because they are detailed; as if the presence of profuse (but relatively untested) detail were a guarantee of accuracy, of reliability, of true relevance to the costs of construction or of some (psychological?) feeling of wellbeing.

In terms of theoretical development, the field of cost modelling is relatively poverty stricken. Though there are numerous teohniques available for cost modelling, the conventional techniques are often viewed as ends in themselves. There have been few attempts in the "establishment" to link these teohniques to some predetermined (genuine) theoretical framework. Therefore in the absence of a strong theoretical background (no theories precedent to the model building process), an empirioal approach to model-building is argued for. This permits a degree of objectivity which did not necessarily surround the formulation of the conventional models or theories, if there are any. "Empirical research, the foundstion of the scientific approach, refars to any activity that systemstically attempts to gather evidence through observations and procedures that can be repeated and verifiled by others" (Neale and Liebert, 1980).

A rational scientific approach requires that everything, no matter how obvious or trivial looking, must be proved or refuted on the basis of evidence. That something seems obvious, appears sensible, or "must be right" is no basis upon which to accept a proposition Arguments such as "this model is better because it is practical" have no scientific worth whatsoever. Belief and ignorance have no place in the rational appraisal of models. The apparently sensible statements that brushing one's teeth will reduce cavities, that cigarette smoking may be a health harard, or that children will be paychologically bettar off if they are loved than if they are treated harahly are only propositions. They may be totally correct, totally incorrect, or correct under some circumstances. But in any case the basis of acceptance will be aystematic, public exploration of each proposition rather than belief, good sense or precedent. It is this demand for publichy observable evidence that hallmarks the Objective nature of empirical work (Neale and Liebert, 1980).

Appraisal of models based on "profeasional judgement" are weak, as definitions of what professional judgement actually is are vague. But to question profeasional judgement is to "touch a live wire". The paradigms of profemional practice are mubjectbased; research
methods are appraised independent of subject. "Professional people have been trained in their subject knowledge, but not in the use of conceptual skills or in the intuitive processes used to manipulate knowiedge. Judgement, intuition and flair are, it seems, sacrosanct. Questioning their judgement' is like an attack on their moral or professional character" (Hogarth, 1980).

Acquisition of "academic" or "professional" knowledge of one's subject is one thing, the means by which to appraise the objective worth of what one has learned is another. " ...one thing must be avoided at all costs: the special standards which define special subjects and special professions must not be allowed to permeate general education and they must not be made the defining property of a 'well-educated man'. General education should prepare a citiven to choose between the standards, or to find his wes in a society that contains groups committed to verious standards but it must under no oondition bend his mind so that it oonforms to the standerds of one partioular group" (Feyerabend, 1975). Research, in this conters, is not vocationsl. It is subject independent

What, exsothy, is the rational basis by which "practicality" could superseding "rationality"? In anticipation of arguments such as "we need practical models; this model works because it is practical (in other words, it is the model which we happen to use?)" it is necessary to look for a definition of a practical model. A brief detinition has already been offered of "theory". Theories explain. What does "practical" mean? What does it explain? The Conoise Oxford English Dictionary (1975) offers the following definitions of "practical":

1) Of, ooncerned with, shown in, practice (ol. theoretian). This tells us nothing. It is what our discoussion is about.
2) Availabla, useatul in prectioa This is a good definition to use. We need a useful practical model. But the argument has to centre around what constitutes "useful". Useful to the practitioner, useful to the sponsor, or useful as a cost model?
3) Brgaged in practioa, practising. This is not disputed. People who prectioe. But whet do they prectice?
4) Inclined to action rather than speculation This does not imply correctness A person inclined to action could be speculating during such action. It merely means that that person is doing something, not that what is being done is correct.

We must reconcile ourselves to clear meanings. Nowhere is there a definition that the word "practical" means "right". It merely means "is used". These statements should not be scorned as being exercises in semantics. It is quite clear that there can be no possible implication that a "practical" cost model is necessarily useful, in the sense of describing cost behsviour, just because it is being used for that purpose. There can be no possible implication that the sole reason that the model worksis the fact that it is the one used in practice.

Given a rational need for observable evidence it is inevitable that discussion will ocour concerning what, exactiv, constitutes rational and observable evidence. For this reason it is necessary to review the various research methods (tools of dats collection) in order to ascertain the extent to which they are able to provide the rational evidence required. Once the method has been selected the it is the method which is being imperfect. It is important, then, to consider these methods and the ways in which they could facilitate comparison and appraisal of models and alternative approaches. It is consideration of different approaches which helps us to advance our knowledge.

Merely to revise the conventional model without questioning the fundamental basis of ths formulation is meraly to "reahufle the same deck of cards"; it amounts to accepting without question that its basis is in fact: "When at a croseroads and froed with a new problem, sometimes we just act in the same way as we have always acted, without maling new decisions and without considering the advantages and disadvantages of our actions" (Katona, 1963).

4.4 Stratigiy of Groundibd Theoriy and Middis Range Thisory

Central to research approach to is the decision about whether to use the "grounded theory" and "middlerange" theory approaahes. This deoinion is contingent upon the state of theoretical development of the material being studied. Middle range theory is used mainly
to test hypotheses, theories or propositions. Such propositions are made and data are collected and analysed, and the results fed back, in order to confirm, reject or modify the initial proposition. This implies that a testable proposition, hypothesis or theory has already been formulated. "In essence, MRT encourages research whioh is led by a clear theoretical idea formulated prior to the research" (Layder, 1893). Thus middle range theory is characteristic of the deduotive method.

Lack of theoretical development in the field of Petrochemical Civil Engineering cost modelling (and, to a considerable extent, the general Building cost modelling field from which its paradigm models are drawn) implies rejection of a strategy of middle range theory. An approach is needed which caters for this lack of theoretioal development. A grounded theory approach is thus recommended, which enoourages research without preconceived theoretical ideas regarding the topic being studied (though in practice it is diffoult to avoid preconceived notions). Thus, using this approach, theories can develop as the research unfolds. It enables the researcher to be flerible interpretation of the findings as there are no preconceived theoretical "truths" or requirements to influence the reeearcher's thoughts or, indeed, to influence decisions about what should be observed.

There is a danger with the middle range theory approach; preconceived 'socepted' ideas may lead to bias in the collection of data: "...the researcher should adopt theoretical ideas whioh fit the data collected during the researoh rather than collecting data that fit a preconcetved hypothesis or theoretical idea" (Leyder, 1093). Grounded theory promises the former, not the latter. It is more characteristic of the general inductive approach adopted here. Critiodsms of the data collection methods employed in this Thesis are now offered.

Measurthaint and Cost Control Modim 8 and Therir Coer Disifibutions

Statistical analyais, striotly spealing, is not a reaearoh method so muoh as a tool to aid the research method seleoted. It requires that dista already exist, that some method, already selected, has been used to collect the data. The socalled "statistical method" mereif interprets the data thus gathered.

One purpose of statistical analysis is to contribute to theory by investigating the supposition that the conventional measurement models produce misapplication of effort by generating profuse cost-insignificant, unnecessary and redundant item detail. In order so to do statistics will be produced describing the cost distributions in Bills of Quantities at the hierarchical levels of Elements, Trades, Trade Subseotions, Generic Families of Bill Items and Individual Bill Items. This is considered justifiable in that it (a) extends existing knowledge of cost distributions to a data set in a field not previously studied for suoh a purpose and (b) will, though a true destructive test was not the direct aim of this research, show the extent to which conventional models do or do not work. The teohnique also facilitates comparison of data behaviour with that of data previously observed in other fields, principally in Civil Engineering proper (see Barnes, 1971). Thus it is capable, mutatis mutandis, of replioation.

A second and ultimate purpose is to use the results so obtained, the cost centres so identified, to formulate a possible improved model for measurement and cost control of Petrochemical Civil Engineering work It is contended that this hypothetical measurement model, once formulated, will aim to simplity the pre contract and post contract measurement and cost control procedures without unduly impairing their eflicacy. This act of formulation will constitute an inductive phase of the work

This technique will be used to identify actual Bill of Quantities cost centres, at differing levels of abstraction, which are populous but which tenderers consider to be relatively unimportant for valuing varistions to the deaign which the model purports to represent. Should it be demonstrated that suah detail is of little consequence to the tenderer, that is, is redundsint, this would afford some evidence that conventional models exist for the beneft of the design team (as ideological models) and do not exist as theories (or logical models) Which actually explain or predict cost behsviour.

4.6 Crincism Of The Statisitical Meniod

This infers critiolsm of the validity of the resulta, as the statistical techniques are mere processing tools which show what the results are. The results themsalves cannot be presented and be deemed to "stand alone", it is true, but there is a paradouical problem in
trying to extend the significance of the results beyond "stand slone" status. This is the problem of the process of induction; the problem of using singular statements (observations) to proceed via an inductive argument to a more general or universal set of statements (hypotheses or theories) (see Popper, 1959). The problem is one of justifying whether it is possible to generalise from a single observation or small sample thereof. It must be understood, though, that this is contingent upon whether generalisation is intended, or even desirable (see "idiographic models", infra). "Experimenters are usually interested primarily in the internal validity of their results. With the issue of generality of secondary concern (Dominowski, 1980).

A principal criticism is that there is a possibility that the results were freak results. Were the techniques to be applied time and time again and the results replicated ersactly, then the results would not be freak results. Therefore it must be determined whether the results were a singular, chance phenomenon, by considering the size and nature of the sample. A key consideration is that of "finite series". A finite series of observations will not necessarily yield the same outcomes as an infinite series. Popper's (1950) illustration of the problem is now offered.

We know that the probability of an unbiased toseed coin coming down "heads" is 0.5 . We know that if we toss it 1000 times we will obtain a data series containing 1000 terms. Experience tells us that, as near as makes no difference, $\mathbf{5 0 0}$ of the terms in the series will possess the property of being "heads". Erperience also tells us that no matter how many times the coin comes down "heads" the probability of it being "heads" nerat time is still 0.5. Suppose, though, that the observer's power to interpret observations is not alouded by euah prior experience (see Popper, 1959); the obeerver has no prior knowiedge of such probabilities, or expectations as to the likely outcomes of coin tosees. The observer tomes the coin 1000 times and tt comes down "heeds" every singie time. The obeerver will quite reasonably conclude, based on a large sample of 1000 obeervations, that on the next (or amy) toas it will akways come down "heads" and never come down "tails". The natve observer cannot concetve, given the results of that particular eet of obearvetions, that an infintte series, or even another 1000 throws, would even out the balance. The data problem is suoh that we cannot observe, or always imagine, an infintte series. Thus results from a limited data series
could produce conclusions and probabilities which are entirely reasonable under the circumstances, but which are quite erroneous (Popper, 1959).

In the context of observing Petrochemical Civil Engineering cost data it is necessary to establish whether the finite data sample used could be considered to be representative. Detailed Bills of Quantities data from an eventual total of 20 Petrochemical Civil Engineering projects will be analysed. These data constituted the entire workload of the collaborating organisation at the time of analysis. Defining a Bill of Quantities item as being a statistical case, it is considered that a sample sime of some tens of thousands of cases is sufficiently large to permit reasonable reliance upon the results yielded.

However the data set used does not constitute a complete set of data for all Petroohemical Civll Engineering work, nor for Building work in general. Thus the sample cannot be termed a random sample from the Petrochemical Civil Engineering population, more a "sample of convenience", using what is available. "A researcher interested in studying, say, psychotic patients is most likely to makse use of paychotic patients who are located in some nearty facilty. Clearty no population has been defined from which the subjects have been randomly selected, exceept for the possibility of defining the population as 'payohotic patients in this facility'. Consequently one does not know whether the findings might be generalised to 'all paychotic patients'. Similar remarks can be made about research employing various patient groups or other noticeable segments of the general population" (Dominowsld, 1980). The data used in this research comprised the entire workioad of current and recent construction projects available at the time of the study.

Cost distributions idemtified in other "segments" of the construction industry are disouseed elsewhere. Subeequent Chapters will compare the behsviour of the Petrochemical Civil Eagineering cost data to the findinge of such related work it will be shown that certain extenstive analyses were repeated following addition of cost data for further Petrochemioal Civil Engineering projects which became available after the work commenced. This constitutes a measure of "resultreplication", which is argued to marginally increase the validity of the results.

4.7 SURVEY MEIHOD: DRAFTING AN EXPEHRIMENTAL MEASUREBMENT AND COST CONIROL MODEL FOR PETROCHEMMICAL CIVIL ENGINHERRING WORX

The term surveyhas been defined as "the systematic collection of data from a group (sample) of respondents using a standardised (the same) questionnaire. A survey as suoh is not a research design.. data collection techniques do not define the level of research to be adopted" (Hartman and Hedblom, 1979). In this study the teohnique employed used questionnaires as the basis of a structured intarview, questions were asked of the respondents to determine whether certain objectives would be reached, but ample opportunity existed for the respondents to comment on whether they agreed with its objectives, and why.

The survey invited all likely end-users to comment on a hypothetical measurement model whose parameters were formulated so as to represent, (that is, explain?) the actual cost behaviour identified by the prior observations. The interviews themselves will sought to ascertain whether the end-users considered that the hypothetical model would achieve its stated objectives. Also, dratting suggestions by the users are obviously considered useful. These interviews constitute a survey. As to whether the sample could be considered to be representative, the reader is referred to the discussion of "paychotic petients" (vide supra) (Dominowski, 1980).

Inviting the respondents' own comments in the interviews may also go some way towards establishing whether they embrace as indtviduals the conventional model which they embrace as peer group members (see, for ecomple, Sen, 1970). "If, in a given attuation, a person is part of a group, he may be motivated by the interests of his group. His motives may be centred around the welfare of his family, his business associates, or his country, and what would be best for his own weltare may be eccondary or may not even enter into considerstion" (Katons, 1963). There is the posaibility, though, that if the indtvidual ecoepts the established model at froe value he or she may not even be serving the longterm intarests of the group.

No less importantly, it msy be poesible to determine whother they consider that the hypothetical position would be temable "in practice". Though there are relatively few
respondents in absolute terms, the sample is considered to be a highly-representative sample; all potential users at the collaborating organisation will be consulted. One aspect of this technique was clearty inductive in charactar. As the survey demonstrates whether the users consider the hypothetical model might be justified in terms of tts aims or thesis it contains an element of induotive inference. Information is being sought to support a hypothetical alternative to an existing set of conventions.

It has been said of intervieweradministered questionnaires that the interviewer can exercise better control and thus achieve better quality results. The method possesses the advantages of "obtaining better quality responses to open-ended questions. This follows since the interviewer can probe and insure [sic] complete responses... the quality of the data are better, and some control has been obtained by the interviewer reading the questions" (Hartman and Hedblom, 1979). However the issue of "control" must be taken oum grano selis If too much control is exercised by the interviewrer the question arises of whether the observations are being unduly guided and, hence, biased (vide supra). Lack of exarted control would seem to imply lack of inherent bias on the part of the observer.

As to whether the survey is inductive or deductive in oharacter, a fortunate parador would appear to arise. As it seeks verification by ths lilsaly usars of the extent to which a hypothetical model might perform (or fail to perform) in practice it may be axgued that it thereby constitutes the first test of the validity of a set of hypothetical statements. This is not an overwhelmingiy strong argument, though. The induotive method does not seek refutation of the hypothetical model; it seeks not overtly to teat; it culminates at worst in the refinement of the original hypothetical statements. Interviews are a good technique for suah refinement.

The "fortunate paradox" is this: any eurvey obearvations which could be potential falafilens of the hypothetical model, though not directly admitted by the inductive process leading to the formulation, could constitute an incuctive countarergument in thwour of the conventional model which the hypothetical model aims to supersede. Thus the woret outcome of the survey is that if the inductive process thils there would be a body of inductive counterevidence, supporting the stetus qua, which did not previousity exdist in terms of formal expression. It masy be that the hypothetical modal is not proven, but this does not malse
things bad; the important point is that the survey permits an element of rational discussion, as opposed to "institutionalised" irrational discussion.

The survey carried out in this work, then, is designed to be honest. The hypothetical modelcan be criticised just as the conventional model can. Potential weaknesses of the hypothetical model, as opposed to protected. The survey is a healthy one; though it seeks to develop a certain argument it admits oriticism of it. It admits counterargument; the ohampions of the status quomight show less propensity to admit possible weaknesses of the status quo. It is preferable to risk a rational rejection of an alternative model than to preserve an existing model based on the dubious reasoning that it is a practical model, therefore it is better than the theoretical one and criticism is unnecessary' (unattributed quotation).

The hypothetical model and the established model should be judged by the same people against the same criteria; one should not be protected against the other. "... rational discussion consists in the attempt to criticise, and not in the attempt to prove or make probable. Every step that protects a view from criticism, that makes it safe or 'wellfounded', is a step away from rationality. Every step that makes it more vulnerable is welcome. In addition, it is recommended to abandon ideas which have been found wenting and it is forbidden to retain them in the fere of strong and successful critioism unieas one can present suitable countererguments" (Feyerabend, 1975).

4.8 Crinctse of the Survey Mentiod

The survey method is a highly useful way of gathering data, but can pose diffoulties as it lies somewhere between paychometrio teating and observation by sampling (Dobeon et al 1880). If it consists of a highilystructured set of queations then it might resemble a payohometrio test, but the key difference is that in the research described here it was not the subjects themselves who were being tested. They were merely being asked to erprees their views about something in this case about the likely performance of a hypothetical measurement model.

The actual construction and phrasing of the questions becomes important: the more structured the questions become, the greater are the imposed limitations to the set of data so colleoted. Because the questions are structured to address some end objective the questions to which the subjects must respond are being prescribed The motives of the interviewier may or may not be revealed to the subjeots by the manner in which the questions are phrased. In effect, the respondents are being told what to observe (see Popper, 1959). In defence of the survey carried out here, the questions related to all conceivable functions of a measurement model and its resultant measurement model; therefore there was no overt attempt to delimit the possible responses.

Conversely, in a pure sampling exercise the process is more open-ended. The questions themselves become rather leas important than the desire simply to ensure that a suitable representative sample of the population is taken. The interviewer has no partioular vested interest and merely wants responses; nothing and noone is being tested. In an opinion poll conducted at the time of an election, for erample, there is frequently only one question asked (Dobson et al 1980).

A criticism of the survey is that it concentrates on verbal reports, not on actual behaviour (Dobson et al, 1980). The subjects could respond untruthfully, or in ways which does not represent their true points of view. What people say is not always what they do. When using questionnaires or structured interviews problems of subjectivity arise. The respondents could harbour preconceived notions or be inherently biased. People cannot alweys articulate why they do things or winy they hold certain viewpoints; they may merely consider that they ought to be thinking these things. "We construct reasons for our actions, reasons that are acceptable to society and that put us in a good light; we even believe that these are our reasons; but the true reasons are different, they are repressed, covared up, and unlmown to us" (Katona, 1963).

Therefore the respondents, being members of social or profeasional peer groups, could be capable of providing what is often referred to as the "team answer" to the quautions or tasks which they have been set, regarclleas of their personal preferences or belieds. Thus the influence of group adherence to a paradigm (though it might not be favoured by the indtrictual group members) might be mirrored in the attitudes and responses expreased in
the survey: "[the worker] finds the work process preemisting when he enters production: it is not a process that he is able to shape or determine in any way. 'He has to conform whether he likes it or not' " (Luksacs, 1971; in McDonough, 1978).

A possible weakness of the survey is the possibility that it may be unsble to find the truth. Even when the subjects are answering truthfully, truth distortions can be brought about. In the survey of the potential users of the hypothetical measurement model such truth distortions could manifest themselves in numerous ways. A subject might not understand, or might misunderstand, a question or questions, or may place different definitions on the words used. The subject, in trying to impress the interviewer, might not respond in the way that he or she would naturally respond (Dobson et al, 1980). The interviewer might, by his or her presence, or "body language", exert a subtle influence on the subjects; though in the survey carried out at the collaborating organisation this bias was partly cured, or at least made consistent, by having only one interviewer. A subject might give an exaggerated, or amplified, response because he or she happens to be extremely enthusiastio about, or is vehemently opposed to, what is being proposed.

In the survey carried out in this study, opponents of the hypothetical measurement model in principle held the conviction that detail was safe in principle and simplicity was dangarous in principle. Despite the empirical evidence of the prior analyses opponents of the hypothetical model retained the belief that existing conventions of measurement must be more trustworthy because they demand the inclusion of everything rather than the exolusion of the significant or the redundant. Some respondents, though addreasing the objectives as stated, made it olear that they did not necesasily agree with those objectives. The fact that a hightystructured set of questions makes the subjects addrees the objectives deaired by the researcher is seen to be an advantage in that it ensures that the objectives of the researcher are addreased. However, a paradox of objectivity arises; it inevitably becomes prestructured and directed (Popper, 1959).

Popper once attempted to demonstrate the imposaibility of pure, unblased observation by asking a group of students to look around them and witte down what they obearved; whereupon they asked him to tell them what they were supposed to be observing. The
survey technique is very much the same: with a question or set of questions being posed by the interviewer, the subjects are being told what to write or talk about.

It would be unwise, therefore, to take the results of the survey at the collaborating organisation as being concrete proof of the validity of the experimental model. Rather, its evidence should be taken as persuasive. There was, though, a percetved benefit in carrying out the survey. In consideration of the relatively conservative attitude of the surveying profession, it was deemed desirable to confide in the respondents as to the nature and purpose of the work, to consult with them rather then impose a system upon them. Thus, it was perceived, a co-operative, if cautious, approach would ensue.

4.9 Exfrardithital Method: A Test Of The Experrimental Moder

This phase of the research was definable as experimental as it conformed to the "one variable" principle. Any difference in the outcome of the experimental exercise could be attributed to the sole difference between the conditions of "normality" and the conditions in the experiment). A measurement exercise was being carried out, using a previouskycompleted Petrochemical Civil Engineering project, in the same fashion as the original project. The only differing condition or variable was the document containing the rules for measurement of the work. The sole difference in condtions was a single altered variable; the differing Bill of Quantities provided to the tenderer as a result of uaing a different Method of Measurement. Thus onty the introduction of that convention could casse a different result. "This is the only logical conolusion because the two conditions are identical, and are treated identically, in all respects ewoept for one solitary difference. Hence any differences in outcome must be direotly attributed to the sole difierence in the conditions" (Dobson of al 1980).

A salient feeture of the experiment was that it was not designed to numericeily measure differences in the processes or product of meenurement and tendering using a new measurement convemtion. Owing to the nature of meanurement and tendering processes this would be difficult to sohieve. Surveyors have difierent idionynoratio approeohes, even when thes are all using the same basic measurement rules. Such a course of ection could
not be adopted, for practical reasons. Some of the users were seconded to the collaborating organisation from consultant firms. Measurement of the physical resources consumed by measurement and tender documentation tasles was not permitted on the grounds of commercial sensitivity. These outside firms were not themselves collaborators in the research.

It is accepted that Methods of Measurement define minimum amounts of information which should be provided. Different measurers spend greater or lesser amounts of time interpreting and providing information over and above the minimum requirements, according to their interpretation of the particular circumstances prevailing on individual projects. Similar considerations apply to the tendering process. The tenderers all possess identical information upon which to base their tenders. What an experiment cannot do, however, is dictate how a tenderer goes about prepering a tender.

In reality the tenderer cannot be compelled to actively use the Bill of Quantities for preparing a tender (see Daly, 1981). Its prinoipal role is that of allowing the tenderer to notionally break down a tender rather than to compile one. It would seem inevitable that the tenderer would strategically, or tactically, loed the price structure, as the tenderer cannot alter the modal structure. Neither can the available information always communicate to the tenderer the degree of risk or uncertainty surrounding certain aspects of projects, interpretations of which are, conventionally, somewhat subjective. Fisk to tenderers can be categorised as external or internal.

Eheternal risk is that risk which is imposed upon the tenderers from external eouroes. It is the risk associated with the qualty of the information with which they are provided. The taot that, eg., a Bill of Quantities earists will have the effect of minimising some riak, by virtue of containing quantitative information relating to a proposed project. Importantily, this rink is equal for all tenderems, as all tenderers pomeas eractily the same information. However, no amount of informstion a Bill of Quanfities can perfectly desoribe everything; there is always an amount of interpretation of the things which the Bill cannot communicate.

Internal risk is selfimposed by the tenderens; by the way in which they interpret identical information, by simple errors, or even by unfamiliarity with the conditions dewcribed by such
information. Whereas the measurement document can and should attempt to minimise the external risk imposed upon tenderers it could never influence the internally-imposed risk caused by the different ways in which tenderers may interpret the identical sets of information with which they are provided.

The type of external risk allegedly reduced by providing copious measurement detail may in fact increase. If the measurement detail is contrived to compensate for incomplete design, then suoh detail imposes risk upon the tenderer by virtue of being a misrepresentation of what the tenderer actually has to provide.

4.10 Criticibim OfThe Experrmahntal Method

There are such criticisms. The subject, that is, the tenderar, will usually know that it is an experiment. When using an experimental measurement convention for Petrochemical Civil Engineering work it would be difficult to disguise the fact. When tendering involves a Bill of Quantities it is necessary for the tenderer to have a copy of the ahoeen Method of Measurement (in this case a hypothetical Method).

Also, a Method of Measurement expressly identifies the individual items to which such prices are expected to be assigned, though this expectation is not always reaised. Once in possession of an experimental method of measurement and experimental Bill of Quantities the tenderer could only come to one conolusion: it was an experiment. The tenderer's behsviour might be affected by this knowledge. We must look to Social Soiences for explanations of people's behaviour in theee, or in analogical, conditions.

The major critioism of experimental methods of research is that of "distortion of behsulour". "Paychologists have attempted to equeese the study of human life into a laboretory situration where it becomes unrecognisably different from tis naturally ocouring form" (Heather, 1976). The same consideretions ware found to apply to the observation of the behsiviour of animals in (artificial) 200s. This led to the development, in the 1940s of ethology, which involves studying animals in their natural habitat. Some paychologists of the day argued that ethological principles should be extended into human paychology, but it is only recently
that natural studies of people's behaviour have been attempted. The setting in which behaviour cocurs is not a natural one but one that has been specially oreated. Consequently there is the question of the extent to which the behaviour in laboratory settings is representative of behaviour in other (natural) settings. In addition, the human subject is aware of being a participant in a research study, and this raises some of the questions that apply to survey research. Finally, most...experiments involve 'samples of convenienoe', making statistical generalisations somewhat questionable. Overall, ...experiments... are strong with respect to internal validity but weak with respect to external validity or generality" (Dominowski, 1980). Again, it has to be considered whether generalisation is intended or desirable. A model for a particular segment of a population is being sought. It is contended that the different population segments have different characteristics. Models of a "general" type may be inappropriate (see "idiographic" models, intra).

The analogical defence of "ethology" is the best defence which can be made of the experiment carried out here. True, the tenderer knew that this was an experimental model, but it is argued that this knowiedge would have had no influence on the tenderer's behaviour as the knowledge was not "dangerous" in the given contert. This is easily demonstrated by simple reference to the use of "established" models. Being amious to secure work, tanderers are used to complying with whatever documentation is specified. They are experienced in such situations. This would not be the first time that the tenderer had been confronted with "new" measurement document. SMMM5, SMMM6 and CESMMM (and tts successors) were all "new" at one time or other.

Problems attributable to unfamiliarity with an experimental method would be liks those asecciated with axy new method of measurement. The fact that it was a new method would not in any way affect the ability of the tenderer to practice his or her "stook in trade". Tender documentation varies from des to day, from project to project and trom alient to oliemt. Tenderers are often faced with new or unfemiliar information; the tenderser was worling in natural conditions. Further, the eubjeot's behsoviour was not being obeerved; only the frutts of his or her lebours. The aim was to malse observations about the product of this labour and to acquire feedback about the temderer's views regarding this product.

Another criticism of the method centres around "expectancy effects". It can be alleged that the expectations and vested interests of the experimenter can influence the subject and make the subject want to please the experimenter and produce the results which the experimenter seeks. A defence to this critioism can be offered. The measurer (at the collaborating organisation) and the tenderer were both given the experimental method of measurement and technical notes regarding tis contants. The measurar may have had expectations as to the behaviour of the model, being one of the participants in the prior user survey, and the experimenter clearty had such expectations, being the person trying to justify the model. However, neither the measurer nor the experimenter communicated these expectations to the tenderer, as neither were present when the tender was being prepared.

4.11 The Case Giudy

Though the case study is not a technique directit employed here, there are some underiying principles pertaining thereto of importance to construction project data. This concerns whether the "classical" criticisms of the case study are actually, in the contert of construction projects, criticisms at all. The philosophy centres around whether a model is being formulated for all possible situations, or only for an individual sdiuation (or a limited number of similar situations).

4.12 Critcisme of thr Case Sivdy

The case study is generally regarded as being inappropriate for proceeding from singular obeervations to general atataments suah as theories. It is idiographito as opposed to nomothetia, that is, it deals with individual cases, not groups of individuals. Therefore unlilse other methods it does not lead to statisticel analysis" (Dobaon ot al, 1980). By this Dobson et alimply that it would be comparativaly useless to analywe a ringie case and hope to drew a universal inference therefrom. In the conteat of Petroohemical Civil Finginearing models tt would be of litile avail to speculate on the beass of observing the charecterintics of (say) onily one ttem in a Bill of Quaptitice. The reauls of a single case turdy, though
interesting, cannot be generalised to others, therefore this approach is unlikely to lead to, or disprove, general theoretical statements. Its "biographical" or "narrative" nature leads to subjectivity. Due to deep involvement with the single subject under study it is unlikely that the researcher can remain dispassionate about it (Dobson et al, 1880).

In this study there is no overt intention to generalise to the whole "construction" industry population. Teohniques for measurement and cost control are being sought which represent the particular characteristics of a particular set of cases in a particular segment of the industry. The more a model generalises, the leas it is likely to fit any of the individual cases to which it is supposed to apply. It may even be better not to generalise. Perhaps, when it comes to consideration of the construction industry as a whole, standardisation is neither achievable nor inappropriate Given that the industry's first guiding principle is that "every project is different", the haplees learner might wonder why its second guiding principle is the development of standard, universal models which can only serve to mask the individual characteristics of these individual projects.

In fact Flanagan (1980) found what he termed "mutual exolusivity" of conventional Trade and Elemental cost centres. He encountered difinculty in satisfactorily modelling the costs of a single projeot using Trade and Elemental values from a large variety of projects. Only with "homogenised" data, that is, projects with relatively similar unique oharacteristics, did his results improve. This seems to question the fundamental basis that a general model could be developed, using "averages" from the whole population, which would eatisfactorily fit individual projects. Therefore an empirical model (one which follows the individual situation, or a limited number of atituations of similar oharactar, rather than one which vainily misrepresents some abstract "average" stituation) may be preterable. Some study of the principles of idiographio models is recommended. Further disousaion of this idee is offered later (Bee Kenley et al 1991).

1) In respect of models of the type discuseed in this theas: little attempt has been made to verify current practice, underatanding is limited to experience and intultion, current
practice may be not soundly based, and future investigations should build on a factual basis, not on the possibility of false assumptions (Ashworth, 1994).
2) There is a need for empirical work on the naive "cost planning" (in place) methods currently in use, and a need for research on the nature, reliability and rationality of the "human expertise" which forms a rather vague or subjective reasoning behind the conventional models (Raftery, 1991). The conventional rules of measurement are not truly empirical in nature, these rules having been formulated more by a process of negotiation between interested parties than on the basis of prior substantial data analysis (vide intra).
3) There is a need to focus on the inherent or implicit assumptions conventionally built into cost models and also to focus on the inherent assumptions made about the validity of them (Newton, 1891).
4) The approach in this work will be primarily (but not exolusively) induotive. The main objective is to use observations of behaviour of cost date in the conventional Petrochemical Civil Fagineering measurement and cost control model to formulate a hypothetial model. This is considered to be a step towards a more rational formulation for the sociological paradigm, which is empirically weak, and will bring it a little nearer true "theoretical" status. The paradigm is not being tested as such. In fact this work is operating within the overall framework of the paradigm model, but is arguing for a shift in the basis of its formulation and validation.
5) Owing to a lack of theoretical devalopment in the field of Petroohemical Civil Engineering cont modelling and the general Building coet modelling field from which it is drawn the strategy of middle range theory is rejected. An emphasis on a grounded theory approach is recommended. This approach encourages reeearch without preconcetved theoretical ideas and enables the rewarcher to be leadble about interpretation of the findings as there are no preconceived theoretical "truths" involved.
6) Statistical Analyds of the data in Conventional Petrochemical Civil Engineering measurement and cost control models shall be exsocuted in order to obtain empirical
observations of cost behaviour. Statistical analyssis is the research method, but a tool to aid the research.
7) A survey will be conducted among all likely end-users, inviting their judgement on the hypothetical measurement model so formulated. The interviews will seek to ascertain whether the end-users consider that the hypothetical model would achieve its stated objectives. The survey will also enable the respondents to comment on whether they agree with its stated objectives, given that its hypothetical statements have been formulated following empirical observation. Also, dratting suggestions by the users are obviousty considered useful.
8) An experimental measurement exercise will be carried out and priced as a bona fide tender, using a previousiy-completed Petrochemical Civil Fingineering project, and using the hypothetical measurement model. The sole difference in conditions as far as the tenderar is concerned will be an experimental Bill of quantities resulting from the use of the hypothetical measurement model. The prioing of tender documents based on various methods of measurement is a natural part of the work of the tenderer's eatimator.
9) In this study there is no overt intention to generalise to the whole "construotion" industry population. Techniques for measurement and cost control are being sought which represent the partioular characteristics of a partioular set of cases in a partioular segment of the industry. Therefore an empirical model whioh follows an individual situation, or a limited number of situations of similar obaracter, is sought. In the ciroumstances some further discussion of the relative desirability of idiographic and nomothetio models will be offered. Some study of the prinaiples of idiographic models is recommended.

Chapter 5 will desoribe the formulation of models, in related fields, which bear admilar oharacteristics to the hypothetical Petrochemical Civil Fhgineering model. The Chapter will also give some treatment of their epistamology and methodology and will culminste by outlining the steps to be undertaken in the statimpal analyis of the conventional model data and the formulation of the hypothetical Petroohemical Civil Engineering model twalt.

CHAPTER 5:
 The Formulation of Cost Model is in Rellated Fields

5.1 THE EPISTEMOLOGY OF MODEL-EUIIDING

In order to interpret data two sets of assumptions are required. There must be a reasonable set of assumptions about how the dats were generated (the model) and a set of reasonable assumptions about how the data can be summarised (the statistical methods) (Kenny, 1979). We attempt to prove or disprove hypotheses by drawing inferences from the model, the data and the statistical summaries. That the hypothesis in question has been proved or disproved cannot be implied in any way from the data or any inference drawn from them. Statistical evaluation of the data can only produce probabilities of proof or retutation. The model, and the assumptions on it is based, are always open to question.

Thus in cost modelling the absolute truth cannot be attained. Modern epistemology tells us that proof is a goal that is never achieved by social soientists or any scientist for that matter. As the ancient Hebrews felt about their God, the scientist should never speak the words truth or proof but akways keep them in mind" (Kenny, 1979). Therefore a model, though a useful tool, cannot on its own come up with truth or falsity. It is neceseary first for the theory or hypothesis to have undergone some formulation in the mind or imagination of the researcher, the model can only help to prove or falsify statements already formulated by some logical, paychological or ideological theoretical activity.

The model itself is not the centre of attention; that it is efficient, or produces intereating results, or whatever, is helptul, but it is only a tool used to pursue a higher ideal. "Very often a statistical model can elegantily and simply summarise the data Although the fit of the statistical modal mag eatisty the curionity of the statistioian, it only whets the ourioutity of the social scientist since moet social scientists gather dets to teat subutantive theory. They invest their egos and reputations in theory, not in statistical modela.. the formation of ecientific hypotheees is guided by theory and not by a statistical model" (Kenny, 1979).

In the context of cost modelling, Kenny's foregoing statement is useful. Firstly, it is debatable whether most cost modelling research is devoted to testing; there is not an overwhelming amount of evidence of this, apart from the teat of "social acceptability" (vide supraj), if such tests can be called tests. Secondily, it is debatable whether there is a substantial amount of cost modelling research activity directly dedicated to theory, whether to testing or establishing it. However Kenny is right to point out the dangers of viewing the model itself as a solution, or as an end in itself, and is right to point out that modelbuilding relies on assumptions to which careful attention should be paid. Such assumptions are open to question, and should be questioned.

As to whether a model should be based on assumptions or on tacts it is, of course, more desirable that it should be based on fects if at all possible. Assumptions and facts, though, are bound together; it can prove dificult to tell them apart; they can cause problems for modellers. "Models are reconstruotions of the order of facts; the validity of the model is determined by its "itting' the order of the frots" (Hindnees, 1977). However this depends upon the modeller being able to define what constitutes "trat".

Hindness percelved that the epistemology of modelbuilding comprises two distinot phases; the "theoretical" (the actual building of the model, using some language of aynthesis) and the "nontheoretical" (the act of observation itseli, using some language of analysis). The act of observation involves no theoretical preconceptions regarding which facts are more important than others. The facts ere merely observed. Hindnees could not defend this position, denying the posaibility of divorcing the aynthetic language of the "governing science or theory" from the analytical language of "potcollection". Without an underiying theoretical structure the discerning modeller would be leet wondering what the facts to be colleoted ought to be, or what the tacts 80 collected ectually represent. Alternatively the leas discerning modeller might eccept as given that the "facts" collected ware appropriate, as the model trself so scceptes. Without some "theoretical" frameworis the obeervitions are arbitracy and relatively meaningless.. "in the epistamolosy of modalbuilding an easential arbitrarineas in the seleotion of frots to be modelled is further compounded by an arbitrary relation of resemblance' between the model and the facte it is supposed to represent. We shall see that such dootrines meraly add a dogmatio and apeculative dimenaion to a conception that is already so vague and imprecise as to be almont vacuous" (findineen, 1877).

It is argued that the conventional Petrochemical Civil Engineering cost control model possesses certain such weaknesses. That there is a lack, or at least a dearth, of theoretical development in the field has already been argued. Given this lack, it is contended that conventional modelbuilding in this field consists solely of the fact-collecting phase. There is no true strong explanatory powers Worse, given no true theoretical structure, the user of the conventional model can only presume that the "facts" demanded by the model and which, therefore, flow from it, are true facts. There are implicit assumptions that the model actually models what it ought to model. Thus there exists a rather arbitrary relationship between the conventional model and the facts which it is imagined to represent. As stated (supra), the rather arbitrary "costs" which it models tend not to be based on the true determinants of cost. The most important "facts", that is, the most important cost centres, have not been determined prior to the building of the model. The model is not structured on that basis; it does not even go so far as to "speculate", as Hindnees put it. This testifies to the lack of theoretical content.

It is clear that though there are limitations to what can be generalised from the process of observation of finite sets of data, and hence limitations to the models so produced, "the research and data must be grounded in a solid foundation of caraful observation" (Kenny, 1979). But oniy the modeller can theorise about what is to be observed.

5.2 The Theorehical Deveh opament of Bullding Cost Modehs

In the general contert of cost modalling, Brandon (1982) argued that there was a definite need for a more subetantial body of theory upon which to base cost modelling practice. Brandon's solution, though, was to call for a shit away from current models rather than the development of improved theoretical structures for the purpose of better relasing the eristing models to the teots which they are supposed to reprecent. Whether a "drith awnay from" is any different to "modifying" is, of course, a matter for semantic debate.

Bowen and Edwards (1985) alleged the mbength of the conventional building model to be that it paralleled the design proceas and was thersfore relatively easy to use. It has been suggested here, though, that the conventional Petrochemical Civil Fhagineering cont modal
is, by the same token, relatively easy to abuse. Lack of theoretical or scientific consideration of its formulation renders the model incapable of preventing the user from entering information into it which bears no relationship whatever to the design and, therefore, to any current or eventual facts. Further, "ease of use", though welcome, hardly constitutes "scientific" justification for the use of a model.
"Ease of use", "systematic structure" and the likse are desirable features of a model, but it must be borne in mind that the fact that the ${ }^{5}$ model undeniably possesses some intrinsio merit, based on its structure alone, is insufficient to guarantee that what it models is necessarily what ought to be modelled. Without rational consideration of what the "tacts" to be modelled ought to be, and this might affect the model's structure, the situation arises whereby in interpreting the model the user can do no better than takse such "fects" at face value. Thus, conventionally, the exercise risks remaining puraly an act of data collection; it can only be presumed that the "true facts" are being modelled.

Tong and L_{11} (1992) recognised that the "olient-provided quantities" model, as they termed it, possessed the properties of being prone to variation and prone to abuse. Howevar they dealt rather with the ways in which the tenderer might so abuse the model and exploit the potential variations rather than with the causes of such properties, to wit the content of the model, brought about by its manner of formulation.

5.3 Wenknesces in Exising Cost modeminga Thisoris: The Myth of gtandardmanton

The idea of standard Elements, and of standardisation of coat behsviour for cost anabyals, is weak as long as conventional definitions of Elements are retained. Using conventional Elemental cost clasaifications, it is argued, Element conts are inherentiky variable to mome degree. Standardisation of what is inherently variable to zome degree must therefore be an unnstural practice. Etandardisation, then, can only remain furtiftable to a certain degree. This statement requires some elaboration. Let us make two working propositions:

Proposition 1: Any standard model ascribing standard traits of cost behaviour to something which is variable can never fit any individual observable situation to which it might be applied. It will atways distort or misrepresent this behaviour. The degree of misrepresentation is proportional to the degree of variability of the behsviour misrepresented, and

Proposition 2: For the model to adequately represent a characteristic set of cost behaviour its constituent parameters need to be defined following empirical observation of that cost behaviour. Otherwise the model is nothing but a figment of the imagination. Worse; parameters not defined following empirical observation will compound the induced distortion in Proposition 1. In effect the model will compel the user to structure and format the data so as to $\boldsymbol{f t}$ the model (an ideological model) rather than the model int the observed behsviour (a logical model).

The conventional model, therefore, is very much like the Proorastian Bed of Greek Mythology (see Graves, 1959). Procrastes would offer accommodation to passing travellers. He bade his guests sleep on a certain bed in his house. The bed was of a certain sire. Little did his guests know how Procrastes would ecsot payment for the hospitality. If they were too long for the bed he cut off their feet If they were too short he would stretch them on a raok until they acquired the required length. He insisted on them fitting the bed eractiy. Thus "the facts shall fit the model".

It follows that the data could be made to obey the artificial parameters of an ideological model instead of the data dictating the parametars whioh a logioal modal ought to poseess. This is conssistent with lakk of theoretical grounding. In using such an ideological model we will lose some meaningful content of cost behsuiour which the model was not deedgned to recognise. It eeems plain that the ideological model cannot be teated againet malient factsif it was not formulated on the basts of, or the deaigner merely ignored, salient tacts. "Suoh ideology is 'succeastul' not because it agrees 50 well with the teder it is succestul because no facts have been specified which could conettute a teat, and becevse some suah tects have been removed. lis suocess' is euttrely men-meds" (Feyerabend, 1870).

Do any conventional models exhibit the properties in Propositions 1 and 2? Yes, it is argued. It is not disputed in the literature, or in practice, that conventional Elements were formulated to represent design features. No bones are made about the fact. However design bears but a weak functional relationship to construction cost. The factors of production bear a stroing relationship, but design team models tend not to recognise them.

The sublime contradiction is that models which attempted to, such as Operational Bills of Quantities (see, for example, Skoyles and Fletcher, 1964 and 1970) gained little acceptance in practice, largely because they had the infuriating property of being structured according to those cost determinants. Such practice is regarded as leas reprehensible when it comes to certain logistics of Civil Engineering work, though the cost determinants are no different in that field: they just manifest themselves in different propartions than in conventional building work

Thus the parameters of conventional building models represent what the building looks like, not what the cost behaviour looks liks. Cost is incidental to the conventional Elemental structure (it flows out of it artificially), not a condition precedent to its formulation (it does not flow into the model, naturally, according to observed behaviour). This illustrates Turner's brilliant concept of "the secret of the sausage": we do not know what tts ingredients are, but we still eat it! A myth, and hence a paradigm, if there ever was one. What are its ingredients; how did it come to poseess them; what should its ingredients be? We talse risks eating what the model (the sausage machine) produces if we never took the trouble to look at what flowed into it in the first place. The ingredients matter, always. The meohanimen does not matter, until the point is reached where the meahanism in some way begins to pervert the ingredients, in the manner of the Procrastion Bed.

Models, for various purposes, but ewchibiting similar charecteristios to the work attempted here have been independentiy formulated contemporary with, and since, this work commenced. The success (or otherwise) of suoh work shall be used to help eatablish, mutatis mutandis, the usefulneas and applicability (or otherwise) of this work

Kenley and Wilson (1986) axgued in favour of an idiographic approach to modelling on construction projects. Their principal claim was that specific "laws" should be sought pertinent to specific "situations". Nomothetic approaches, that is, "ideal" models based on "averages" of grouped project data, which seek "general" laws for all projects, are inappropriate and potentially meaningleas. The underiving, questionsble assumption (see Newton, 1891) behind nomothetic models is that individual project variations from the "mean" or "ideal" of all projects analysed are the result of random error, and that this "mean" or "ideal" is consequently an entity of some reliability or significance is erroneous.

Random error results from observation of the natural physical world; the phenomena being observed are ontologically aliker they have the same properties. The phenomena being observed on construction projects are not the phenomens of the nstural world (belonging to natural science); they are phenomena resulting from deliberate decisions made in the commercial worid of construction management (belonging to social soience). This supports earlier arguments, for example Cirillo (1879) and Druaker (1978).

Such phenomena, therefore, are ontologically disatmilar, the "errors" around the dubious "mean" are not occurrences wholly of ohance. Such errors are systematio errors, which Kenley and Wilson (1986) argued to be "the result of the individual ontology of each project systematio error - rather than random error from an ideal". Kenley and Wilson further argued that even if a nomothetic approach were conceptually and functionally feasible it would be difloult to ectrapolate from an "Ideal" nomothetic model. This is taken to be support of an eariier argument (vide aupray) that whilst it is difinoult to generalise from singularties (the idiographic approach) it must therefore be equally as difinoult to singularise from a generality (the nomothetio approach). Therrafore there e.dsts the possibility that truly "standard" models and techniques have lees in their fevour than would first eppear.

Criticisms of the idiographic approach have the potential to formder on two rocke. Finsty, if We cannot extrapolate from idiographic models then, by the same tomen, we cannot extrapolate from nomothetio models. Secondy, the proponents of the nomothetio modelen
who point out the difficulty of generalising from singularities, assume that there is necessarily an intention to ganeralise. This is not really the case on construction projects. It is beyond dispute that current modelling practice on construction projects is unashamediy dedicated to singularising from generalities. Conventionally, the modeller starts with "general" cost planning models, which are vague and of dubious theoretical worth (vide supra) and attempts to devalop models which become more and more unique to the project in question (or, at worst, to a fairty discreet and limited set of projeots) as further design information becomes available. This contravennes the socalled scientific approach which starts with the unique and atempts to generalise. See Ferry and Brandonon (1891), who illustrate the dubious (in scientific terms) transition from generality models to uniqueness during the design period.

There is a well-haokneyed phrase used in the construction industry that "every project is unique". This does not explain the industry's batining propensity immediately to seek "standard" and "general" techniques for dealing with suoh projects. Therefore, it is argued, it might be better to seek models unique to individual projects, or to small sets of projects with similar ontological properties, at the outset. Instead of modelling projects in the earty deaign period on the besis of oversimplified abstraction from the detailed data of individual projects which already exist in abundance (see Davies and Greenwood, 1894), a better approach might be to commence with the detailed project data at the start, by finding an individual project which its best. The subsequent cost planning eftort of trying to adjust for percetved differences between projects would be significantly reduced had the perceived differences not been deliberately introduced into the model in the inst place.

Though Kenley and Wilson's work dealt primarily with modelling of cash flow and expenditure on construction projects the prinoiples which they discorssed have implications for the search for a measurement and cont control technique for Petrochemical Civil Fingineering work. A nomothetic approach is not necesaarity the answer; a narrower, idioannoratic approach, together with the model proliferation which it would bring is potentially healithy. It is not the intemtion to generalise begond a limited ect of Petroahemical Ctill Fngineering projects which poseas an ontological makeup of their own. Ayztematio error is eliminated, or at any rate reduced, by idiographic approaches. The concept of a single, univermal method of meamurement would accemtuate the number and soale of the
systematic errors brought about by an increased range of ontological dissimilarities in the individual project data used. The greater idiosyncratic content would tend to produce a model which was "splendidly average" and "patently unrepresentative" of any individual situation which it was likely to encounter. At least singularities actually fitsomething.

One way to produce a single, universal method of measurement for construction work would be to concatenate the truly idiographic content of measurement models and amalgamate their truly nomothetic content. How many such idiographic models would be involved, though, is a matter of conjecture. There would be idiographic and nomothetic content: the respective contents of conventional measurement models overlap with each other (vide infra). Kenley and Wilson (1986) provided suttable ramarks with which to sum up: The nomothetic approach assumes that there are consistent similarties between projects and the proponents of this approach then produce what are viewed as non-transient industry averages for groups of projects, discounting their significance as random (hence implying unimportant) error... if the above assumptions are violated, nomothetic prediction is invalid and probably meaningless. it is contended that the conditions required.. are not fulfilled".

5.5 FORmulamion of this Civil Ennginahring Cost Modin

Barmes (1971) developed, for Civil Engineering Work, a "Method-Ralated" Bill of Quantities model which recognised that cost determinants much as the construction operations themselves (and the associated deployment of plant and equipment) could have a significant cost effect independent of the measured quantities of finished work oharacterintio of conventional models. Barnes' work was the basde for the formulation of the Civl Fngineering Standard Method of Meaurement (1976), the Ctvil Engineering Etandard Method of Meemurement 2nd Edition (198v) and the Ctvil Fhagineering Standard Method of Measurament 3rd Edition (1991). It was noteworthy in that th highlighted the tendenay for most of the cont of a conitruction project to be attributable to a relstivaly mall proportion of the mearured parameters in the comventional Ctill Ergineering cont modal.

It is worth noting that the character of the construction work in this study was somewhet of a "hybrid" blend of "olamioal" Civil Hnginearing and "olamioal" Building Conatruotion.

Unfortunately the data available for this study were produced by the application of the conventional "building" model. Detailed comparisons with Barnes' work, therefore, were impossible to achieve, though the basic prinoiple of establishing rank order distributions of cost could be adopted.

Barnes' main criticisms of his own work were centred around the diffculties posed by his methodology, together with the attitudes of model users. His programme of application of the formulated model, on a number of live projects, proved timeoonsuming and very expensive and required an inordinately large amount of cooperation from industrial collaborators. This problem was compounded by scepticism; what Barnes termed "the inertia attached to current practice", which is, it is argued, typical of the paradigms of professional practice and which was discuseed earlier.

5.6 Formulation of the Building Cost Modm

The Standard Method of Measurement of Building Works, Seventh Edition (1988) started development concurrently with the early stages of this work. It took 10 years to develop and was expensive to produce. It concentrated on redefinition of traditional work sections by way of a Common Arrangement shared with the drewings and specification. It adopted a tabular format resembling that of the Civil Frigineering Standard Method of Measurement (1971), the Civil Fingineering Btandard Method of Mearurement, 2nd Edtion (1985) and the Civil Fngineering Etandard Method of Measurement, 3rd Fdition (1891). It is alleged that its aim was to reduce the number of measured Bill of Quantities items by up to 50\%. SMMM7 has by no means been untversally adopted in the construction induatry deapite offidal endorsement by ths sponsoring profesional bodies. There has also been citticism of ths aims; indeed, there has been citioism of whether tis aims have actually been sohieved.

Strotton (1983), in an eariy review of SMMM7, obeerved drating problems associated therewith (mainty doubts as to which unmearured thems are deemed to be included with whiah unmeasured ttems). Skrotton doubted its suttability, given that most projectes do not go to Tender on the baals of complete deadig: "There appears to be a conflict between general rule $8-11$ and the normally understood meaning of the phrase 'deemed to be induded' ...
having given the materials in the description surely there is no need to state in the rules that they are deemed included...". Strotton continued: "The building industry todsy is being required to provide completed buildings in very short design/building programmes. I can see very little reason to believe that SMLM7 will assist in achieving these reduced times. BQs [sic] might be marginally smaller and QSs may have to measure fewer labours but I do not believe the saving in time and volume will be significant".

Strotton doubted, therefore, whether sufficient time and volume savings had been effected by SMMM7 and doubted its suitability for the majority of construction projects, those for which the design is incomplete at time of Tender. "If the SMMM7 rules and the other common arrangement documents are followed stricthy as intended then fully detailed drawings and a complete specification is necessary before the BQs can be completed and the Tenders invited". It is curious that Strotion bewailed the necessity to provide a complete specinication, without which the tenderer has no realistic hope of prioing the work property. Such bewilderment was found among potential users during validation of the hypothetical Petrochemical civil engineering measurement model (vide infra) and is, frankty, bafling. An insdequate specification would render the contract document into greater works of fiction than they already were.

SMM17, then, appears not to have gone far enough down the road to simplification. Strotion conoluded: "In conalusion I believe that SMMM7 goes some way along the path whioh the brief of the development unit sent them but the end of that path has not yet been reeohed". Bennett (1986) asked whether the complentiy of Bills of Quantities reflects a deaire to have Bills of Quantities per ser rather than a deaire to have them represent something meaningful. Thus, in terms of epistemology, the conventional building model has obviousity been subjected to a modelbuilding phase, but ths modellers masy be displeying the tendency orticised by Findneas (1978) of being somewhet arbitrany in their salection of the facts with which it deals.

Bennett (1986) expremed doubt as to the flucts to whioh the BMMM7 could actually prove to be applicable: "..inevitably, the use of Bills is increasingiv queationed as the indurtry's methoda change ever more rapidity and so tnhibit the emengence of any wideupread established form of construction. Bills have beoome overcomplicated in the face of this obange in an attempt
to retain their use. Indeed, the SIMM development unit's original terms of reference required the production of different levels of measurement in an attempt to cope with the fundamentally changed nature of the industry's work. In the absence of any clear and wellinformed decision on the type of projects to which SMMM7 is intended to apply, the new method will inevitably remain an awkward compromisen". The attempt to retain the use of a model for the sole purpose of retaining its use would seem to be an example of the "moderblindness" criticised by Brandon (1982). Curiously, Bennett (1983) had earlier argued that SMM was, in its developmemt, "moving in the right direction" and appears, therefore, to have revised his view over time.

Benham and Capon (1983) were dissatistied with the philosophy behind the proposed SMM7. It seemed to be designed for a "Utopian" stuation and therefore seemed relatively pointless: "As all practising quantity survegors know, no building is fully designed at tender stage, (at least not in our combined 60 years of experience). Although a desirable objectiva, this is, and will remain, unobtainable. The method of measurement that a quantity surveyor requires should cover the prevailing situstion where buildings are not fulty designed at Tender stage. This is the document that has been called for as a second stage of SMMM7, whereas we believe it should have been given first priority. We are aware, of course, that to achieve this goal an initial approach muat be to assume the firat option, namely that a building is a complete design, but more emphasis must be given to the second etage of the discussion. We do not want to end up with two SMMM, or the one for use with a fully deaigned building will never be used". Whether more then one method of meanurement, or a single method, is needed has already been discunsed (vide surura).

However it seems clear enough: methods of measurement expeoting measurement in extreme detail based on some ecrreme detail of deaign appear saldom to be applicable, as the deaign is meldom truly complete at the times when the application of the detailed conventional modal is expected to be applied. Simpler veraions (the only ones pomale if deadgn is laoking) are therefore lilsely to be more applicable in mont casea. Mower (188e) said of the proposed SMRM7: "The... brief wan primerily to produce propomals whioh would (a) consider the problems which arise where deaign information is not complete at Tender ctage and (b) atisy the demand for dmpler and leas detailed Bilis". SMMM7, th seems, addreased (b), at leadt to some extent, but not (a).

Mower continued: "The assumption that a change in the rules of measurement can help overcome the problems arising from incomplete design is quite erroneous. Problems arise under building contracts, not because of shortcomings on the part of earlier editions of the SMM, but because of shortcomings on the part of professional consultants on the one hand and of contract managers on the other". Thus, if Mower was correct, changes to measurement rules which simplify the product of measurement will not cause subsequent problems, because ohanges to measurement rules do not cause problems. Measurement cannot be blamed for certain problems whose causes lie outside the measurement domain and in any event cannot be a substitute, with rules set in stone, for profeasional judgement and competence. It cannot be hid behind, by insistence on the pedantic, religious devotion to, and purveyance of, its rigidity.

It should be desirable that changes to measurement rules (for whatever reason) do not produce unnecessary complexity. If neither ohanges which simplity nor changes which complicate are problematio then at least what is simpler must be easier and oheaper. If the simple model and the complex model both poseess equifinality (vide supna) then it would makse sense to use the simple one. Mower concluded: "I would suggest that all thet is needed to improve the current sctuation is a sensible editing of SMMM6, primarily to eliminate measurement of ttems which have little adgnificance. All the other matters dealt with by the $D U$ (the SMMM7 development unit) are questions of profeasional practice and, while they may be of importance, they have no place in considering the rules of measurement" (this author's Italics and perentheses). Interestingty, the hypothetical Petroohemical Civil Fingineering model deecribed here was obtained principally by eliminating the apparemtly insignificant from SMMM6 baed data, using prior analyais of cost data behaviour.

SMMM7 appears to be part of the answer, but appears not to reatrict its attiontion to pure measurement considerations. It almo eppears to be deadgned for use on projects which seldom, if ever, ocour - projects which are completely deaigned and which are lees illsely to experience poat contract varistions suoh projectes are rare in Petroohemical Civil Fngineering. The valuation of these variations is the main function of the Bill of Quantitien; the document produced (until now) by detailed measurement. The need even for the amount of detail in SMMM7, therefore, muat be challenged.

5.7 FORMULATION OF A COMMIFRGIAL RIVAL TO THE BUILDING MODEHL

"Shorter Bills of Quantities" (1986) was formulated using similar philosophy to the Petrochemical Civil Engineering Model proposed here; that of effecting large percentage reductions in measurable (but redundant and insignificamt) "cost centres". At first it was targeted at international markets where conventional measurement models characterised by "traditional" levels of detail are not so well-favoured, doubtleas for oultural (sociological) reasons. To this end, "Shorter Bills" was made available with a version of phraseology couched according to the principles of the Principles of Measurement (International) For Works of Construction, which is recognised by practitioners in various continents.

A salient feature of "Shorter Bills of Quantities" is that its standard phraseology for ftem descriptions simultaneousiy acts as a simplified method of measurement for building work It dictates what to measure and how to measure it in a different way to the "mainstream" methods of measurement. That it was formulated intuitively without eutensive recourse to the type of analysis undertaken here was made known by one of its authors during intarview with this author (Quier, 1998). The following additional information was obtained during said interview.

1) Although no substantial empirical analysis was undertaken, some mariset researoh into the likely demand for the product was carried out. The methodology behind ths formulation was largely intuitive. However, upon hearing the indinge of Hardcantle et al (1987a, 1987b and 1988) one of the authors enquired whether these findinge might conceivably have provided certain empirical evidence which the "shorter Bills of Quantities" model lacked. Some consultation with contractors and eubcontractors was undertaken. Thus if it resembled the hypothetical model for Petrochemical Civil Engineering it may provide inductive support for it.
2) The publication has many subecribers: the publishing company ceased reconding sales after more than 100 ovetomers purohased it.
3) Subcontractors frequently purchase indtvidual specialist woris sections rather than the entire paokage.
4) Numerous surveying practices are avid users of "Shorter Bills" and will use it in preference to other measurement systems unless there is some overriding reason not to.
5) The model has been used on projects of varying values and degrees of complexity (even as complex as hospitals worth $£ 8$ million) with no significant problems.
6) No undue complaints have been received from contractors regarding its use save from one contractor who, aggrieved at its parent company for not awarding it a contract without competition, was lodging every possible objection to the contractual arrangements for the project.
7) The model has apparently operated with no undue problems on projects using minor amendments to the forms of contract which refer to "Shorter Bills of Quantities" rather than to some other method of measurement.

Two other of its authors, Moore and Ashworth (1986), olaimed that item reductions of up to 50% can be achieved using the system. They assert that "Shorter Bills" can benefit commercial clients interested in rapid procurement of buildings. Petrochemical companies are such clients. Praise for "Shorter Bills of Quantities" is not restricted to its authors. Emmett (1980) bore testimony to ths efficacy: "atter some initial reluctance from trade subcontractors, who were unfamiliar with the contents and requirements of shorter bills, we have not experienced any negative response. The method of measurement is logical and quickly understood by the BQ preparer and reoipient eatimator. Nor have we found that the use of SBQ has detrimentally influenced the settlement of final accounts and we welcome the opportunity to use SBQ on future projects".

Thus Frmmett supported "Shorter Bills of Quantities". More importantly, Fmmett found that the use of a simpler meaurement model does not appear unduly to impair the ability of the Bill of Quantities to perform ths principal funotions. Were the hypothetical model deacribed here no simpler than "Shorter Bills of Quantities" there is good reason to conolude that th will be able to operate in practice with reasonable succees.

5.8 FORMULATION OFTHE ITTHRATIVE CIVIL ENGINGHERNG MODEH

Saket (1986), Saket (undated), Horner et al (1986) and Horner and Saket (1984) deacribed the development of an approach to contractors' tender estimating called "iterative estimating", based on the principle of pricing a small proportion of ttems (the most costsignificant items) which would otherwise constitute a conventional Bill of Quantities. Effectively only 30\% of the items (by rank order distribution by cost) would be priced. Saket discovered cost distributions in Civil Engineering Bills of Quantities to be similar to those discussed here. The Property Services Agency (1983) found, in Bills exaluding Civil Engineering Work, that such distributions existed in individual work sections within Bills of Quantities (that is, in subsets of the data samples). This was also found in the data used here (vide infra). Sakset's iterative estimating approach has been teated on 6 live projects and is olaimed to have achieved:

1) Tenders on average 0.7% lower than those prepared by conventional methods,
2) More consistent tenders and
3) A minimum saving of 50% in the time talsen to price tenders.

These results could be used to further underpin the argument that the Tendering process will not be unduly hampered by the use of a measurement aystem whioh embodies simplioity, if anything they could, in the long term, maks things better.

Saket considered the application of iterative eatimating to the valuation of variations and settilememt of Final Accounts. It is argued here, though, that to use an extmating tool (that is, a predictive tool) to actually settie a Final Account would be relatively pointleas; a prediction tool is not needed for a eet of events which have already occurred and which, therefore, do not need to be predicted. However, if the acournancy information is somehow fed into the prediotive modal in order to improve the qualities of the original eutmste, then Ealcetis point becomes valid. The Bill of Quantities, though, rematns an accounting tool whowe effective contribution to predictive models is pomalble, but Hmitted. Balset has shown, however, is that
obsession with detail is perhaps unnecessary, this is taken as further support for the approach adopted in this work

5.9 FORMULATION OFTHE BUILDER'S QuANITIES MODEL

Pasquire (1993) introduced the "Builder's Quantities" model, which stood as a method of measurement for small-to medium-simed contractors to use in the preparation of tenders. It classified subsections and work groups which more alosely represented the sequence of construction operations on site than the "trade" divisions of conventional models. This model bore some similarities to (for example) Barnes' (1971) model for Civil Engineering in that it recognised, in certain cases, the need to consider items of plant and equipment as separately-identifiable determinants of cost.

A fundamental tenet of Pasquire's philosophy (and of that of the contractors involved) was that clients should not impose a model structured to reflect the preferences of alients. Pasquire's model, therefore, was purely intended for the internal needs of contractors whilet preparing tenders. Thus it is not a tender dooument it performs a disadmilar function to the conventional Petrochemical Civil Fngineering and Building models, which require contractors to break those prices down into a format dictated by the preferences of the deaign team.

Pasquire's methodology of formulation consisted of studving builder's quantities data and their usefulness to the various intarnal management functions of the collaborating contractors. By the author's own adminaton the data 50 collected were qualtative in character and thus potentially subjective. Therefore some validation was undertaisen by meens of triangulation; that is, of verification by potental expert uners outwide the participeting organisations.

Were it Paquire's intention to formulate a nomothetio model the technique of verification at Other oxganisations other than thome at which the original data were colleoted ponecaces some virtue. Pasquire has perhaps collected evidence that generalinetion may be poeible, mutatis mutandia from the reaults of the studics at the individual orgenisation. Further
benefit may have accrued from verification at the original organisation in order to ascartain whether the model could have served as a idiographic model.

5.10 FORMULATION OF THE INIERRATIONAL ENGINHERTING CONBIFUCIION MODEH

The Standard Method of Measurement for International Engineering Construotion (1984) was formulated "to contribute to the framework of project dooumentation, and in particular to provide measurement principles for the estimating, tendering, contract management and cost control aspects of industrial engineering construction" (perbation from said document). Thus, like other conventional measurement models, it is in fact idiographic in oharacter, despite its title of "Standard". It seeks to apply to an individual, "speoial" situation. It is not a "general, universal" model. Like other conventional measurement models it contains specific recommendations to use other models in other attuations.

Curiously, it is typical of other convemtional models of ths type in that it covers certain construction work also covered by other methods of measurement. It illustrates a typical property of conventional models; they are not truly idiographio in oharacter (their respective contents are not mutuallyescolusive). Neither are they truly nomothetio. Their authors talse pains to point out the limitations of the model's potential application; as if they (or at any rata, the bodies formulating them) were not couvinced that they were truly standard or "general" models. The more limitations a theory or model puts upon theolf the leas explanatory it becomes.

In the method of formulation (quoted verbatim from the Btandard Method of Mearurement for Internstional Fingineering Construction, 1984) "particular attention was directed towards consultation with trade amooistion [selc), contractors, client orgenimations and profentonal bodies" (this author's thalics and parentheers). Though it is not made entiraly clear what the methodology was it is evident that "oonsultative docrmemts" were semt to various of these parties and that 55 bodies reaponded. It in also alear that variovs Members, Consultancies and Regional Committees of the Sponsoring Bodien the Anmoointion of Cont Fhagineers and the Royal Institution of Chartered Surveyons) comerlbuted Technioal advice and practice guidance". Owing to lack of evidence as to the nature of this advice and gurdance it can onity
be speculated as to whether the document was formulated within some implied, accepted tenets of paradigm practice.

5.11 FORMULATION OF A RATIONAL BIIL OF Quanitiies MODEL FOR CIVIL Enganderring

 WorkSingh and Banjoko (1990) criticised the shortcomings of conventional Bill of Quantities models. That such criticisms have often been voiced, but seemingiy to little effect, was brought into context by Singh and Banjoko by virtue of their assertion that the Methodrelated model developed by Barnes (1971) has not superseded the use of its conventional forerunners.

In like manner to the Building model (SMMM7, 1988) the sociological inertia of profeesional practice has prevailed despite the official endorsement of the respective profesaional societies, whose presumed vested interest it is to see their models purchased and used. The strength of Barnes' model lies in the fact that some rational theoretical and analytical treatment preceded its formulation. However it would seem from Singh and Banjolso's that the question of whether the offcially sponsored modal, or axy model, was formulated on a rational basis would appear to matter little and that the question of whether the sponsoring bodies are actually using "rational approach" as a reason for so sponsoring them would appear to matter lees.

The practitioners, collectively, appear unwilling to sponsor's infuence, or to consider as a prerequiste for seleoting a modal the fact that some rational means of formulation might have been attempted. Lisewise, they appear unwilling to consider lack of rational approach to formulation as a prerequiatte for the demelection of the "comventional forerunner". Bingh and Banjolso (1890) was based on Banjolso (1985). Centeal to the methodology was the "worth evaluation" of different forms of Bills of Quantitica; of meamures of their suttability to matimety finanoial control and extimeting requirements of olients and contractors. By determining the deviation of the "peroetved worth" to weers of a given Bill of Quantities from the "mean percetved worth" of all of the Bills studied Banjoko determined whether any given Bill of Quantities formet was biseod towards the requirements of one or other of the userm.

Banjoko established that Barnes' (1871) Method-related model performed better overall than traditional Civil Engineering models. However in attempting to overoome the problem of conventional design-based models being dictated by, and hence biased towards, the design team, they overcompenssted in respect of the requirements of the production team. A set of criteria for a rational form of Bills of Quantities for Civil Engineering was recommended.

Though Banjoko's work treated measured quantities of finished work and factors of produotion as potentially significant determinants of cost tts main purpose was to deal with Bill of Quantities format rather than directiv attack conventional methods of measurement. Therefore this work has limited applicability to the study undertaken here.

5.12 FORMULATION OF Bt minimital MODEHS

It can be said that conventional definitions of building Elements have been arrived at regardless of the materials used, let alone the methods of construction (De Troyer, 1986). Accepting de Troyer's account, it would appear birarre that the parameters of an Flemental cost model are defined irrespective of how they are built and the components from which they are made. This is tantamount to saying that a cost model should not reoognise cost determinants and cost behaviour.

Diffloulties assooisted with "standard" sets of Flements were enoountered on Civl Fhgineering projects by Mariss of al (1896). The inherent variability of these types of construotion makses the dertvation of a single set of standard Elements a daunting task. It is argued that a better approach for Petrochemical Ctivl Fhagineering would be to eatablish individual, idiographic sets of predictable cost centres appropriate to indtvidual types of bvilding or dructure rather than force the coet data to conform to a nomothetio, ideal, predetermined set of parameters which mas be inappropriate to any types of building or structure encoumtered.

In other words we should conaider changing our eets of EHementa, or aboliahing them and replacing them with something elsa, which amounts to muoh the eame thing. A solution is needed with identification of signtificant cont detercminande as a ouncition precedent to model
formulation. The model must fllw from logical oosts; oosts must not flow from an ideological model. Such is the predicament of the conventional Elemental model; Elements ware invented without prior cost investigation and inconsistent cost behaviour was observed to flow casually (not causally) from its invented parameters.

Diederichs and Hepermann (1985), in the domain of housing and administrative buildings, identified some 45 key cost parameters which they allege exist practically independent of the type of structure. These parameters are claimed to be prone only to marginal variation in cost behaviour and to be predictable to relatively high degrees of accuracy. Pertinently, these key cost parameters are not Elements in the sense that they are "classically" -defined in United Kingdom practice. Howevar they can be apportioned to Elements (factors of design) or to labour, plant and materials (factors of production) if desired. Thus this model olaims to bridge the "gap of definition" between the design team model and the building team model. Additionally, it permits input by the builder during deaign and planning, if desired. The true resourcebased cost determinants must come from the produotion team; they aannot come from the design team. It has long been held that there is a highty-distinct separation between design and production in the construation industry. The Diederiaho-Hepermann model, or one similar, promises to be an interface between the two.

An endearing feature of the Diederichs-Hepermann model is that tt does what the "heretics" knew it should. It refuses to conform. It will not admit that Elements (as conventionally defined) have a part to play in identitying aignificant cont centres. EMemants do not determine oosts; they purport to represent thern, and they do it badly. This model refuses to standardise a postariori, it etandardives a priori, that is by deduction from prior observations of cost behaviour. Thus it reduces the "Propostion 1" and "Propoation $2^{\prime \prime}$ distortions discuseed supre it follows cont behaviour. It eadsts at what is argued to be a more appropriate level of abstraction; that between Bill of Quantitics and Elememal cost analyda.

Further, its key cont parameters can be replicated by equivalent United Kingdom parameters which already erdet, but whiah ere not as yot used in cont planning. These cont contres are not the conventional EHementa, but are features ontologicallyald to, and at the equivelent leval of abstraction of the Coordinated Project Information Work Eections or of the old NFBDO Work Categories (whioh, inoldentally, can be caediy expremed in terms of inputs of
the factors of production). It seems ironic that the factors of production can be seen to be important in a model for settling Final Accounts, but not in a pre contract model. Nothing, therefore, needs to be invented; we can use what we already have. It is only necessary to change the bad habit of not analysing cost behaviour first

Southgate (1988a, 1988b) suggested an alternative set of design-based building elements which claimed better to relate structural form to the manner, sequence and phasing of construction operations. This work, however, constituted a mere regrouping of existing elements and did not propose any ideal, or optimal, level of abstraction of the component cost parameters of the Elements it espoused.

The DiederichsHepermann model (1985) identified a level of abstraction of building cost data consistent with the above requirement and identifed in the data a relatively small, but highly predictable, set of significant cost centres, which they called "Lead Positions". Thus the model embodies the prinoiple that it is not the pursuit of quantity of detail, but pursuit of an appropriate level of detall which is deairable. Further, the costs in the model can be expressed in terms of resource inputs, thus affording the facility to commute expressions of cost between the domains of designbosed parameter and produotion-based parameter, if desired. Diederichs and Hepermann (1985) easentially provided a "dictionary" via which the translations between the design and production terminologies can be made. It is argued here that such a language need not be truly common as convemtional Bills of Quantities do not seek, nor could they aohieve, a truly "Common Speeah". A simple device of translation is needed, but it must be based upon an appropriate leval of detail and be capable of being commutable between the design and production domains.

The frot that significant cont determinants can belong to more than one building Element (like, for erample, Coordinsted Project Information Work Beotions or NiHDO Work Categories) and the tact that a building FMement can poseess more than one suoh cont determinant rearves to illustrate the rather artotracy niture of conventional FHement clasaifications. Building conts are not determined by the wey in which wo alosaty cont information. Therefore we ahould expect suah clasdifications to follow coet and not vioe versa"(Davies and Greenwood, 1994).

5.13 PROPOBALS FOR THE FORMULATION OF A HYPOIHHETICAL PEIROCHEMIGAL CIVIL ENGINRHERING MODEL

An approach to the formulation of a hypothetical Petrochemical Civil Engineering Cost model should consider the following requirements:

1) The model must have some theoretical basis upon which to deoide which are the important facts to collect. Otherwise we have a model-building phase and nothing else: what flows through the model is arbitrary and meaningleas.
2) A better theoretical body must be developed in order to have the existing types of model better represent the facts which they are supposed to represent. However, improvement of the existing type of model is suggested, as it is not olear what the recommended alternative departures from the basic model type are.
3) It is diffoult to stendardise what is inherently variable, so the hypothetical model should not attempt to become a "general, universal standard". Etandard models are ideological; they cannot fit any individual observable adtuation. In obeying a standard model we must distort the observations so as to 䭪 the model. Model proliferation is desirable. A move towards a completely nomothetic approach, that is, an attempt to overgeneralise, as was partly attempted during the formulation of the Builder's Quantities model, should be reasisted at this etage, at least until the idionyncratio behaviour of the Petrochemical Civl Engineering data is better understood. A nomothetio model mas not be appropriate.
4) Individual models based on prior empirical observation, though they have limitations, are more logical. They do not place their own limitations outside the boundaries of the area to which they intend to apply in any evem. Overstretahing has caused theorien and paradigms to feil. The problem with conventional models is that thes are nether nomothetic nor idiographio models; there is unnecemeng overisp. The features of the hypothetical Petroohemical Ctvil Frogineering model should obey empirical obeervation of the coat bahsviour of the data. It should not be an ideological model.
5) Rank order distributions of cost of the type characterised by the Method-Related Civil Engineering model and the Iterative Civil Engineering Model should be identified in the Petroohemical Civil Engineering data and used to define the guiding parameters of a hypothetical model for Petrochemical Civil Engineering.
6) A move towards greater simplification of detail should be sought than was achieved by the Building Cost Model (SMMM7), which has been criticised as having fallen short of the objective of simplification (among other objectives).
7) Behsviour of costs of Elements should be observed in the data, with a view to redefining, or finding alternatives to, conventional Element olasaifications. Cost planning and measurement data could eventually be subsumed into a single model, at an appropriate level of abstraction between that of the overcomplicated Bill of Quantities and the oversimplified Conventional Elemental Cost Analysis. That the industry seeks "standard, general models", yet structures its conventions suoh that models start as "general" models and develop into "unique" models (singularities) is a contradiotion.
8) The most detailed of these unique models (the Bill of Quantities model and its surrounding conventions of measurement) is a party entropio informstion system. Much of its detail constitutes mere noise, liable to distort the intended measage. The detailed requirements of the measurement conventions demand facts to ft the model, as opposed to a model to fit the facts.

5.14 SUMAMATY RGMarims

It is evident that much detall sought by measurers and often demanded by eadeting measurement conventions is indeed superfluovs in terms of worth to the Tendering and Final Account procesees. There is evidence that the "oreving" for detail is not necesearily founded on the certain knowledge that suoh detail is the right detail, conatituties "the frovis", or is of significant benefit to the process or to the user, though the user might deem the information recetved to be intrinsically correct, necemary and beneficial, being unaware of poseible distortions brougint about by the model theili, being a device for transmitting
information. There is the suggestion that, conventionalty, all is geared towards having the user satisfy the requirements of the model rather than having the model satisfy the needs of the user.

Chapter 6 will deal with the formulation of the hypothetical Petroohemical Civil Engineering model. Results of the statistical analyses of the data in the conventional model will be presented, results of the "experimental test" will be presented and discussed, and comparisons of performance shall be made between with the hypothetical model and similar "rivals", in pursuance of healthy debate (see Feyerabend and Lakatos).

Chapter 6:

The Formulation of a Hypothetical Petrochemical Civil

 Engineering measurement and Cost Conitol Model
6.1 Level of Absipacion: Individual Billor Quanities Itibma: Prem manary ANALYBTS (AFPEMNDIX A1.1)

Whilst further data were being collected 3 Bills of Quantities for Petrochemical Civil Engineering projects were analysed to ascertain the general distribution of their costs among "small value" and "least value" items, as defined by Barnes (1971). "Least Value Itams" were defined as those which collectively amoumted to leas that 20% of the Tender Sum. "Small Value Items" were defined as that 40% of all the items in the Bill which had the loweat individual values. Barnes ascertained that such ttems contributed between 0.3\% and 3\% of their respective Tender Sums.

6.2 Level of Absiracion: Individual Bill of Quanitibs Itebme: Rebsulte of Prthimmariy Analysis (Appindix A1.1)

The preliminary analysis revealed that between 77% and 87% of measured items and between $\mathbf{8 0 \%}$ and 88% of all ttems in the contract atudied contributed oniy 20% of the total value of the contract (Bee Table 2). There can be ttems in Bills of Quantities whioh are not quantified, but which are presumed worthy of cost consideration. Clearty, though, the mafority of unmeasured and measured ftems were relativaly oostunimportant. The comparison with Barnes' findings, in respect of "Simall Value Items", was reasonably fevourable. The 40\% of "Small Value Items" in the contractes under study ranged between 2.18 and 4.03\% of the contract sum; a miniscule contribution in coet terms considering their contribution to the overall population of twems (See Table 3).

The initial evidence appeared to surgest that conadiarable effort is being expended processing ttems which have litule to contribute in coet terms, efther for intilal tendering considerstions or for use in valuing subeequent varistions. Contract 01 was besed on

CESMM (1976), contract 02 was based on SMMM5 (1968) and contrect 13 was based on SMM6 (1981). All three methods of measurement appeared to have similar behaviour with respect to the preliminary analysis described above.

6.3 Level of Absiracion: Individual Bill of Quanitites Itimab: COMprinhmisive ANALYBIB (APFENDIX A1.2)

Data from 15 Petrochemical Civil Engineering Bills of Quantities, were collected and statistically analysed. Fight Bills were originally measured using SMM5 and seven using SMM6. Comments are offered regarding the quantity, adequacy and suttability of the data and the constraints surrounding such dsta, in Appendir 1.

For each of the 15 Bills of Quantities the items in the Bill were ranked in order of value (highest first) and cumulative totals computed for each item as follows:

1) Percentage of ttems generated as each item was added and
2) Percentage of total value generated as each item was added.

Talking the figure of $\pm 5 \%$ "acouracy" (if such a word can be regarded as appropriate) in construction price forecasting to which practitioners aspire, but which certain commentators, inoluding Ashworth and Slatmore (1983), view with sceptioism, the smallest value items amounting onity to 5% of the total project cost were isolated. The following calculations were made for each Bill:

1) The number of items so removed and
2) The percentage of the total of all Bill items 60 removed.

6.4 Level of Abeiracion: Bill of Quanitibs Itimas: Rebsulis of Comiprifiensive ANALYBIS (APFENDDIX A1.3)

The results are presented in full in Table 5 and are summarised as follows:

1) The ranked order distribution results showed that in all of the 15 Bills of Quantities studied, costs were generated extremely rapidly by a low percentage of high value items. There were high proportions of "zero value" (i.e. unpriced) ttems, both measured and unmeasured. The results indicated that SMMM5 Bills generated a greatar proportion of lowvalue items than SIMM6 Bills, but in both cases the proportion was high. The generally accepted " $80 / 20^{\prime \prime}$ distribution were frequently excoeeded; in some cases Druaksr's (1978) "90/10" distribution were observed.
2) The analysis involving "removal" of those items which collectively amounted to only 5% of their respective Bill totals revealed the following.
a) The minimum proportion of items so removed from any contract was 52.86\%.
b) The msximum proportion of ttems 80 removed was 84.25%.
c) The range for SMM5 Bills was 52.86% to 84.25%.
d) The mean for BMM5 Bills was 70.70\%.
e) The range for BMMM6 Bille was 57.70% to $\mathbf{7 8 . 8 5 \%}$.
3) The mean for SMM 6 Bills was $\mathbf{6 3 . 8 0 \%}$.

It appears that SMMM6 has produced simplification, but only marginaliy. Acrome all projects analywed high proportions of thems are considered by Tenderens to be of ittie importance in cost terms. This result wes obearved vividy and consistentiy. On the basis of thewe remulta a large proportion of effort appeared to be expended on a large proportion of thems whioh contribute litile of importance to the ovemell cont. If suoh trems attreot ittile coutrignfificence
in tendering they attract (by definition) little costsignificance in the process of valuation of variations. Indeed, there were high proportions of unpriced items (zero value).

The results suggested that the bulk of cost was consistently generated by a small proportion of higheralue items. The results suggested, also, that SMMM5 Bills generate a greater proportion of cost-insignificant items than do SMMM6 Bills. In the data analysed, however, this proportion appeared to be marginally greater. For both SMM5 and SMMM6 Bills the proportion of such ttems was very high. On the basis of such results it was recommended that further analysis be carried out to identify such costinsignificant ftems in detail with a view to investigating whether such items can be removed from the measurement system altogether, the justification being that they have ittle to contribute to overall costs.

Cognisance should be taken, however, of the argument that whilst a large number of items might be considered by the Tenderer to be unworthy of pricing, the nature and extent of their proliferation communicates to the Tenderer an indication of the detail or intricacy of the intended work. Whilst this is, prima tacia, a sensible argument, it is rejected for the following reasons:

1) If the detail of the ftems truly reflects the detail of the drawings then tt should be sufficient (exoept for the major cost ttems) to refor to the drawings.
2) During data collection, large numbers of inatanoes were observed where not only were the quantities fictitious, but also the ttems of "worin" themselves, they were merely inserted to attract "usable" rates and not necemarily to repreeent the state of the deaign.

The argument in (\%) could be eutended further given the apparentity wild exoesses of "abuse of Bills of Quantties" (vide supuci). There was at least one erample in the datn analymed of the entire Plumbing Trade in a Bil of Quantities being priced as "inoluded elsowhere". There was no indication of emactidy "where". As this partioular mection contained sanitary fittings and pipework which were, by visual inspection, cleacky worth eoveral thoumand pounde, it could be wondered what "cont-ignoficant" really meant. Fhadicetion from the meerurement conventions of ttems suah as that, though, would be reokices behsuiour on the measureres part (to sey nothing of the apparent reokiemanes of the Tenderar).

6.5 "Normaidising" the Data (Appendix A1.4)

Data for all 15 Petrochemical Civil Engineering Bills of Quantities, representing thousands of items were analysed in order to produce the following statistics representative of the nature of their cost distribution within their respective Bills of Quantities (Tables 6 and 8):

1) Frequencies,
2) Mean values (normalised for ease of reference),
3) Standard Deviations,
4) Skewnees of Distribution and
5) Maxdmum values.

These statistics were then reproduced following the removal of unmeasured ttems from the data sample, in order to gain indications of the effect upon the results of $s 0$ doing. The results were tabulated (Tables 7 and 9. Comments are offered in respect of the data and their validity in Appendis 1. The results were of great intereat. Clear differences could be seen between Bills produced using SMMM5 and Bills produced using SMMM6. The reaults are summarised as follows:

1) The statistical analyses showed that the ttem cost distributions in the Bills are not normal, but very highly showed such that the vast majority of items have values considerably lower that their respective Bill means. This may surprise observers who assume such distributions to be normal, as if obeervation of the physical world were talding place. Druaker's (1878) comments, that we are not obeerving the natural worid but obeerving the effects of social or commercial activity, eppear to be vincicated.
2) The impremion comveyed by inspection of the tupical diaterbutions is actually distorted by the tact that the monetary value (or the bulk of it) is contained in a fow very high
value items which lie in the long tail of the distribution. Such itams have a very low frequency, but a very high proportional contribution to the total value of any given Bill.
3) The skewness (an indicator of such a longtailed distribution) is in no Bill less than 4.47 (for all items of the Bill) and is in no Bill less than 3.71 (for measured items only in the Bill). For a distribution reasonably approaching normal a skewneas measure of nearer +1 or -1 would be expected, depending upon which side of the mean the bulk of the items lie. For a true normal distribution the proportion of items on each side of the mean would be more or less equal. This is most certainly not the case for the data studied here.
4) The maximum item value (an indicator of the length of the tail of the distribution) is in no Bill leas than $\mathbf{2 7 . 6 5}$ times the mean for all ttems in the Bill and is in no Bill less than 14.3 times the mean for measured items in the Bill. This result is perhaps seen in better contert if it is realised that for this analyais the minimum value is 0 and the mean value for each Bill is 1.
5) By removing unmeasured items from SMDM5 Bills (Contracts 2, 3, 4, 5, 6, 7, 8, 9) the mean standard deviation, skewneas and maximum value are, without exception, all reduced. This is probably explained by the fact that, in SMMM Bills, there are a largar proportion of high value unmeasured items; indeed, the highest value item in every Bill is unmeasured.
6) By removing unmeasured items from SMMM6 Bills (Contracts 11, 12,13, 14, 15, 16, 17) the results were somewhat different:
a) In 4 Bills (Contracts 11, 14, 16, 17), the mean and standand deviation were reduced and the maximum value reduced. In 3 Bills (Contracts 12, 13, 15), the mean and standard devistion were increased and the maxdmum value unohanged. This, it sugegected, is due to the fact that mearured tiems in Contracts 12,13 and 15 tend to heve relatively high values and that in those contracts the higheat value ftem in the entre Bill is a meanred ttem.
b) A different result occurred in contracts 14 and 17, whose alsewness inoreased upon removal of unmeacured trems from the analyide (similar Billa, ic

Abstract

Contracts 11 and 16, had their skewness decreased). In all such contracts it is clear that the highest value item in the Bill was unmeasured. It is suggested that in contracts 11 and 16 there were a greater preponderance of lowvalue unmeasured items than existed in Contracts 14 and 17. Removal of highvalue items would tend to reduce skewness. This is not a definitive statement, however.

7) The descriptive statistics (for all items in the Bills of Quantities) are given in Table 6.

Investigation of, for example, the value of the second or third highest item, would, on the froe of these results, appear to be unnecessary given that it has already been demonstrated, vide supra, that 15.75% of the items in a Bill of Quantities can provide 95% of its total value. What is more, some of those 15.75% were not measured items in any event. The descriptive statistics (for measured items only) are given in Table 7.

The results showed onity marginally lees spectacularty the properties shown in Table 6 (for all Bill tems). What was clearky noticeable was that SMMM Bills appeared to produce higher value measured items than did SMMM5 Bills. This would appear to indicate that SMMM6 did, to some extent, achieve the simplification and eradication of spurious detail which it is alleged it sought. Further discoussion of these results (in general and of nusnces) is offered later. The general conalusions to be drawn from comparing the deacriptive statitios for the BMMM5 and SMM6 Bills under etudy are:

1) SMM6 Bills had a higher mean for measured trems incticating a greater preponderance of influential high value measured ttoms;
2) SMMM6 Bills had a greater etandard devietion of measured them value from the mean.
3) SMMM6 Bills had maginally lens slownees, not withetanding the provious statement.
4) SMMB Bills had higher maximum tiem veluea, frferring agoin that they have a tendency to have large value mearured thems and fowar large value unmeanured tiems,
indicating, perhaps, that their desired simplification of detail has to some extent been achieved.

The overriding consideration was, however, that in both SMM5 and SMM6 Bills the vast majority of items were of very low value and did not contribute more than marginally towards the total cost generated. The frequency of the loweat value item (ie zero value) in some examples exceeded 100. It was recommended, therefore, that some measure be attempted of the costs of production of Bills of Quantities items to ascertain whether disproportionate effort is expended on the majority of low value items. This recommendation was not acted upon at the time because of (a) practical time constraints and (b) the possibility of offending the sensitivity of employees by such an investigation and breaching the confidentiality of the records of surveyors involved, a large proportion of whom were not employed "in-house". It was recommended at this atage that further anslyses of the relative significance of items and groupe of items (ie. sub-populations of the data and their relative behaviour) be undertaken.

That many measured ttems are of no real monetary worth, for the purpose of tendering and for the purpose of valuing variations, is further and clearty demonstrated by the analyais in this ohapter. This appears to be the case regardleas of which method of measurement is used. The fact that SMMM6 would, from the analyais in this chapter, appear to produce leas costinsignificant detail would appear to have demonstreted that it has, at least in part, satisfied certain of the original objectives regarding aimplification. It does not necesearily follow, though, that the soope and level of detail demanded by that (or any) set of messurement rules necesearity reflects the soope of the woris to which it is being applied (vide supra). What certainity could not be said at this stage is that GMMM6 is pertectily sutted to the type of construction work under study, athough it would certainty be moxe appropitite than CESIMM in mand reapects.

What appeared to be somowhat lem consiatent than the gemeral trend of "highty alsowed" bebaviour and the vagualy dincernible tendence for EMMM5 Bille to produce more highly priced unmearured ttems was the behswiour of unmearured thems in BMM6 Bille. It would be benefioial here to dircuas the effect of unmeasured ttems in ganecal and to thy to apphy suah principles to the detie in quaution.

Description is offered (vide infra) of the definition of an "unmeasured item" and argument has already been offered (vide supra) regarding the use and abuse of items in Bills of Quantities. These notions, in the case of unmeasured items, require elaboration Even though the remit of this work was to concentrate upon that what is measured there is no doubt that the pricing of unmeasured items could have an effect upon the pricing of measured items (and vice versee) if the overall Tender figure is considered immutable.

It is commonly held that unmeasured items can take the following forms:

1) Preliminary Items (items which are required for the general exeoution of the work but, by virtue of the fact that they are not uniquely attributable to any given section or element of the design, cannot be so quandified).
2) Prime Cost Sums for specialist work (based on consultantes pretender estimates for specialist work such as Meohanical and Electrical Installation). Strictily speaking theae are measurable as they are frequently based on separate Bills of Quantities for specialist work.
3) Provisional Sums for work which it is known will be required, but the eract nature and extent of which cannot be effectively measured at the time of Tender.
4) Dayworks (a "Prime Cost" allowance for work not yet envisaged and which, if it ocours, will be of suoh a nature that it will be dificult to phyidicalty meerure).

Thus it can be seen that items of major cost importance can be unmeasured (by deliberate choice or force of ciroumstance). It is further commonity held that the choice of whether work should be priced as "measured" or "unmeasured" is trequentidy the Tenderer". Where the Tenderar is given the opporturity to price some Proliminang Item, suoh as "Watar for the Works", the Tenderer might price it as a lump sum in the Preliminaries mection. Alternatively th could be inserted as percemages of all (or cortain) prices in the mearured sections of the Bills, thereby risking that if the quantity of suoh work varied the payment for the general proliminaries ttem would abo vary. Such is the riak thems can be priced as Preliminaries pursuant to some policy or strategy or be submumed in seotions of measured work and payment be foregone should such sections be found to be "tiotional".

It is ubiquitousty argued that Bills can be "strategically loaded" or "abused" by Tenderers to facilitate their cash flow. This can be applied to unmeasured items as well as to measured ones. The tenderer could allow for certain costs in the "unmeasured" or the "measured" sectins of the Bills. What is not too clear from this (or any) analysis is the eatent to whioh this ocours. Tenderers were ever reluctant to disclose their Tendering policies and (vide supra) the surveyor has no precise notion in any event of whether the prices so induded are realistic.

It is contended that due to the phenomena just described, serious attempts at Elemental (or equivalent) analysis of unmeasured ftems are more difficult to achieve than such analyses for measured items. The approach to pricing unmeasured items is leas able to be standardised and less consistent. This comparative inconsistency, though, nevertheless does not prevent the general cost behsaviour of unmeasured ttems from being different in nature to that of measured ttems. Gray (1983) recognised that in certain situations 90% of the Preliminaries cost can be found in the six largest such items priced. This is a noteworthy given that a Bill of Quantities is capable of possessing more than 200 items of "general" or "Preliminaries" work

Difficult though it mas be to understand the detail behind the prioing of such ttems (owing to our inherent vaguenees regarding the Tenderers' policy decisions involved) it could not be but valuable to acquire greater knowledge thereof. Amaro of al(1887) argued thus: "a muoh better understanding is needed of the most eenatitve aspect of tendering - the preliminaries estimate".

The inherent variability of unmeasured item contemt is illustrated by the frat that Flanagan (1980) found Preliminaries to range between 12.6 to 64.4% of project coet. The Building Cost Information service (1900) found that survesors, when exdmoting usually append percentage additions of between 10 and 15% of the value of the mearured items. As it is not immedistaly apparant that Preliminaries allowances made by practitioners are based rigorounty on empirical analydes of historical data th is eugegented that aurveyors' perceptions regarding the detailed behsviour of unmearured thems are not too clear.

6.6 Cosi-Insignificant Paranmeitrs and Generrac Familibs of Parameiters

It was the purpose at this stage to identify thoee Trades in which costinsignificant items (see working definition, supra) proliferated. The data tended to be grouped in Trades (not necessarily in Elements; Element codes frequently had to be added to the data). This was with a view to experimenting with reduction of the number of ttems generated by the measurement system, by:

1) Investigation of those items which, by virtue of being of low value, might feasibly be considered for elimination from the measurement conventions and
2) Investigation of "generic families" of ttems of similar oharacter which, by virtue of attracting similar or equal prices and rates, could be grouped together, have their measurement rules simplified or have the number of their measurement categories reduced.

6.7 Level of Abgiraction: Trade: Analysus of Coer-Ingicnificnnt parambinirs

The data were split by Trade and tabulations produced showing.

1) what percentage of all items belonged to each Trade,
2) What percantage of ttems in the lowest 20% value band realded in each Trade.
3) What percentage of ttems in the lowest 15\% value band readied in ceah Trade,
4) What percentage of items in the lowent 10% velue band readed in eaoh Trade and
5) Whet percentage of ttoms in the loweat 5\% velue band reaided in each Trade.

Thus, for example, if an item resided in, say, the lowest 15% value band that item was one of those items which collectively amounted to only 15% of their respective Bill Total, based on the technique of "ranked order" distribution, lowest first.

6.8 Leveh of Absiracion: Trade: Resulits of Analysis of Cost-Insignificant PARAMEHLERS (APFENDIX 2)

The results are presented in Tables 9.1 and 9.2, Diagrams 1.1-1.3 and Diagrams2.1-23. The most noticeable result was that behaviour across Trades was remarksbly consistent. The "percentage of all items" results show that cartain Trades predominate, but marginally. What was interesting was that the relative percentages in each Trade did not significantly vary from cost band to cost band. Thus, generally, any given Trade retained tts "share" of the total number of small items and large items. For ecample, Briokwork and Blookwork in SMM5 possesses about 7\% of all items and about 7\% of low value items. Metakwork in SMM6 possessed about 4\% of allitems and about 4\% of low valueitems.

Whilst, on the basis of eartier evidence, it is true that all Trades have a preponderanoe of low value items, there are very few Trades which appear to have a considerably greater proportion of them than other Trades. Trades where the percentage of trems rises as the percentage cost band falls will presumably eachibit the property of having relatively more small value items. Trades where the percentage of items falls as the percentage cont band falls will presumably exchibit the property of having relatively fower small value thems. It is apparent that, with one or two ewoeptions, the percantage rises and percentage falls are marginal. The following results can be reported, however.

Trades with a preponderance of emall value ttems (\% risea) (marginalyy) were:

SMMM5 Bills or GuANiribs: Briokworis and Blookwork / Cerpentry and Joinery / Brructural Steelwork / Flectrical In allation / Claning / Drainage

SMM6 Bilisof Quanitirs: Excavation and Earthwork / Briokwork and Blockwork / Woodwork / Structural Steelwork / Electrical Installation / Glaming / Painting and Decorating /Finishings

Trades with a preponderance of small value items (\% rises) (discernibly) were:

SMMM5 Bilis of Quanitims: Plumbing/ Painting and Decorating

SMMM6 BIIL 8 OF QUANITIES: Plumbing/ Painting and Decorating

Trades where item spread appeared even (no discernible \% change) were:

SMM5 Bilis Of QuAnitides: Piling/Metatwork/Fenoing/Finishings

SMM6 Bill of Quanirins: Piling / Asphait Work (not encountered in SMM5 data studied) /Roofing/ Metalwork

Trades with a preponderance of larger value thems (\% falls) (marginally) were:

SMDM Bilis or Quanitics: Ercaavation and Earthwork/ Metaiwork/Roofing

SMM 6 Bilis of Quanifies: Demolttions / Fencing

Trades with a preponderance of larger value ttems (\% falls) (discernibly) were:

SMME Bilus or Guanimiss: Conorete Work / Fenoing

The above obeecritions, it must be noted, were not epectecular obearvations; rather they were marginal trends. All Trades posemed large numbers of amall thems and the percentage varintions between coet bands were generally elight. It was noticeabla, however, that in all Bille studied, Flumbing and certain Finishing Trades cleariy showred percemtage shifis towards the "low cowt bands and Concrete Work showed a clear tendency towards "larger" trems. Further anatyits (vide infuy) will reveal that for the Potroohemical Ctvil

Engineering data studied, Preliminaries vary between 3.35 and 17.81% of the contract total. Proposals for better understanding of the behaviour of such subpopulations of the data will be offered in that Chapter.

6.9 LevEl of Absiraciion: Trade Subsections: Analysus of Costhngignificant PARAMETERRS

The data were further split by Trade subsection within eaoh Trade and tabulations of the same cost band percentages as in Appendix 2 were produced. The tabulations so produced are provided in Tables 10.1, 10.2, 11.1 and 11.2 and in Diagrams 4.1-4.18 and Diagrams 5.15.18.

6.10 Level of Absiraction: Trade Subewciong: Rebsults of Analysus of Coetr INBIGNLFICANT PARAMETEERS (APPEFDIX \&)

Based on these more detailed tabulations the following results can be reported:

1) The results revealed that the tendency for the vast bulk of ttems to reaide in the category "costinsignificant" is true even for subsections within Trades. The figure in parentheses after each "subsection" heading gives the percentage of ttems in that subeection which reside in the "bottom 5\% of cost" band. There are some eadrecnely high percentages.
2) As the analyais further breaks down the data into amaller and maller subpopulations of previous deta subpopulations, one would expect presence of sefy, one large item in such a subpopulation will have a greater overall effect on that mubpopulation. Were such a large item removed therefrom, a greater "peccentage obange" than previoualy obeerved at overall Trade level would be expected. This indeed happened. However, though te tendency of the Trede subeeotions towards "maller" or "larger" tteme was indeed evident, it must be borne in mind that the expreadons"monller "and "larger" are reinthe In all tradee conts are dominsted by a amall proportion of high-velue ftems. In this conterd a "larger" ittem is one which reaides in the "lowest 20\%" cout band.

ingignificant paramethrs of a Hypotherical Pertrochmaical Civil encanngernng Meagurhmient and Cost Conirol moden

These recommendations are based on the empirical cost behaviour observed following analysis of the data in the conventional model (see Appendiz 4). It should be noted that the analyses upon which these recommendations were based were excocuted twice; once upon the project Bills identified in Appendix 2 and once with the addition of 3 further project Bills. The second analysis replicated eatremely closely the characteristics of the first (though obviously there were differences in minute detail). In onder to avoid unnecessary repetition, the recommendations shown here are those based upon the second anskysis.

6.12 Lever of Absiraction: Fh mathint. A Comifrtheringive Annlybis

It was suggested eariier that there mas be scope for extending the prinoiple of nonmeasurement of costinsignificant mattens to emtire functional Elements of building work Each such Element will contain a subpopulation of items, ie of the data, and it may be that an entire EHement could be of sufficiently low costeignificance to warrant the suggestion that tits costs be dealt with other than by detailed physical measurement.

An "Element" is invariably defined as that part of a building or structure whioh always performs the same function regardleas of ths conatituent materiahe, method of conatruction, sive, shape, form or physical appearance. Thus "structural frame", "subetructures" and "roof" are Elements by definition. This definition, it was argued earier, is a weak one. It diaregards potentially important cost determinante. It is widely held that buildings of different function will exhibit different Elemental characteristice and, hence, obaractaristic balanoes of oont distribution by FHement. From this it mey be pontted that certain types of bulloing or structure will show a tendency to pomees consitemity coctinaignticent EHements whioh could be deatt with es suggeated above, as their very indignificance migith not jurtity the attemtion.

Data for all 15 projects were analysed to detect the behaviour of Elements across all such construction projects. The Element classifications used were those devised control purposes by the Bill users and were largely adpted from the conventional "Building" classifications. Comments about the suitability of the Element classifications themselves are added later, using the benefit of hindsight. It was suspected, however, that olassifications such as those of the Building Cost Information Service (1989) did not wholly reflect Petrochemical Civil Engineering work.

The data were split by contract Bill and aggregate statistics computed to axrive at total values for each Bill. The data were then split by Elements within each Bill and for each such Element the proportion of ths value as a percentage of ths own Bill total was computed (Diagrams 3 Refer). Tabulations were then produced whioh showed the incidence of Flements across all Bills and which showed the distributions of cost in the Elements (Tables 13.1-13.3).

6.13 Leveh of Absiracion: Elumaent: Rtgsults of Comartiatinngive Annlybus
 (APPENDIX 5.1)

The results were inconclusive for establishing predictability of costs using conventional Element classifications. The results were highty conclustve for establishing inconsistency of costs using conventional Flement clasifications. This mas eupport the asmertion that the conventional clasaifications are unsuttable for their purpose and that a more representative set of cost centres should be identified. The following could be discerned:

1) Element incidence was inconsistent, though this would seem obvious for buildings or structures of dfferent function. The intilal surgeation wee thet buildinge of diferent function would behave diffecenty. For eremple, a Roade and Pavinge contract would show different Flements to an Erifuead Pipeline combract. Were data available for, eag, 15 Ehnuent Plpeline Cootractes them the lirelihood is that Etrong petterns would emenge whioh were peculiar to that type of etructure; thue comindignificant Elements would be more readily identifiable.
2) Element behaviour as a proportion of total cost was almost as inconsistent across projects, but it was of interest to note that the following Flements never attained as much as 5\% of their respective Bill totals:

Site Preparation (maximum 0.76\%) / Chimneys and Cooling Towers (maximum 0.97\%) / Onplot Stairs (ma-imum 220\%) / Onplot Stairs, Litts (maximum 2.36\%)/ Onplot Fittings (maximum 4.02\%) / Onplot BWIC Mechanical (maximum 3.55\%)/ Onplot BWIC Electrical (maximum 0.64\%) / Bridges (maximum 1.93\%)

6.14 Conclusions and Recomanendanions

It was recommended on the basis of these results that the data were of insufficient quantity for any conalusive evidence to be discerned and that a greater number ofprojects be analysed by Element. Stronger patterns would petterns would then be expected to emerge. emerge. The compliation of a matrix of Project types and Element types, as an aid to prediction of Flement incidence and Flement cont, was recommended. This would olearty be a medium to longterm strategy, as construction projects of the type under study did not oome "on stream" in vast numbers simultaneousity. Analyseas of leas recent historical dets were suggested for this reason.

It is clear from inspection of the reeultes shown (Tables 15.1-15.4) thet Morrison and Stevens' (1983) "prinoiple of controlled fierobility", that an EHement should have a reletively low coefficient of variance in order to be retained as a reliable cont centre in the own right, has been violated almont without eweption it is recommended, therefore, that constuent components of Flements be sought whilh are more predictable, or that a set of reliable, signtificant cont centres be eatablished which are not founded on conventional definitions of Element structure. It would seem contradiotory to have defined "etandard" EHements for a cost model whoee cont behnviour are by no means atandard. Conaistent with the extablishment of a metictz meructure of EMementer ocet centres would be the need to establiah functional relationahipe between FMements.

If the behaviour of one element varies as a function of the behaviour of another related Element then it would seem sensible to pair them together rather than to categorise them separately. As they would not be independent of one another there could be no logical reason to olassify them as though they were mutuallyyerolusive.

Worthington's (1995) account of commutative and non-commutative relationships between Elements is worthy of scrutiny. Commutative relationships were defined by Worthington as being of the following oharacter: where 2 elements, E_{1} and E_{2} are related a commutative relationship is defined by the expreesion $\Delta \mathrm{E}_{1} \rightarrow \Delta \mathrm{E}_{2} \Rightarrow \Delta \mathrm{E}_{2} \rightarrow \Delta \mathrm{E}_{1}$. Non-oommutative relationships were defined as being of the following character. where 2 elements, E_{1} and E_{2} are related a non-commutative relationship is defined by the expreasion $\Delta \mathrm{E}_{1} \rightarrow \Delta \mathrm{E}_{2} \sim \Delta \mathrm{E}_{2} \rightarrow$ ΔE_{1}. Thus in a commutative relationship an Flement or cost centre can affect another and be affeoted by it. In a non-commutative relationship an Flement or coat centre could affect another but not be aftected by it. By way of a simple example, consider the Elements Internal Walls and Partitions and Internal Finishings. The Wall Finiahings could be heavily influenced by the type of wall construction selected, but the However the cost of the Internal Walls and Partitions in no wexy infuenced by the Wall Finishings selected.

An interesting further feature of Worthington's work was the partial identification of unerpeoted relationships between Flements. Worthington was able to obearve deaign consultants cleariy indicating that (for ersmple) certain superstructure Elements were dependent upon the subatructure selected. Clamically, an inverse relationship is supposed; that the subetructures are deaigned to be dependent upon the superstruoture selected; that is, that is, to do no other then ensure that the deadged bullding can be held in postition.

It is interesting to note that the Bill users at the thme of the inveatigation could not see ady mert in establishing a matcis of bvilling types and FHememt types, aguing that patterns would not replicate if, easy, the neut building analywed was not the same type of building as the previous one. It could only be streaned to the unars that a project of a different type would be axpocted to have different Elemental malse up; the ability to ectually prodift the
incidence and costsignificance of Elements of buildings of differing function would be of great use in deciding what to measure in detail and what not to measure in detail, depending upon the expected cost - significance of the Elements in question.

Ferry and Brandon (1991) offered useful comments about Elemental Cost analysis: "Meticulous allocation of trivial sums of money... should be avoided. If there is no time to prepare a full analysis an outline analysis will be better than nothing and may take leas than an hour to prepare". Ferry and Brandon continued: "The informstion should be in a standard form and should also be in a suitable form for use; costs which require measurement of details in order to apply them to an eatimate will not be very helpful at cost plan stage". These comments are endorsed to the extent that for some Elements th may not be necessary to measure amything at all; their costs may prove to be easily predictable and so insignificant that allowance could be made for them by other means. The argument for standardisation, however, is dificult to support (vide supra).

Engeinghring Bills Of Quantities

On the basis of the fact that when Bill thems in general were analysed some patterns of "major" and "minor" cost generation were discernible, tt was deoided cautiousty to eutend this principle to Flements and eramine the rate at which Flements (ie subpopulations of items) generated couts relative to each other.

It had already been eatablished to a certain cutent that certain Flemente and, hence, entire subpopulations of the data contributed little to the overall cout. Elavish noceptance of this based on what (for the purpose of EFtrmantal ansibyis) was surpected to be an inadequate quantity of data sole would have been unwibe, howver. Further triventigation of some deecription was alearty necemary, but there was ittle prowpect of being able to gether more suah data for reasons disouned earifer.

6.17 "Normalisho" Rate of COET GEnerration by Erbment In Petrochimmical Civil Encoingerring Bilis of Quantitifs

The data were split by contract Bill and aggregate functions were computed for mean Bill item values. Each item was divided by the mean item value for that Bill as absolute values were not required; the purpose being to study behaviour relative to some "bench-mark". The data were then split further by Element within each Bill and a mean item value was computed for each such Element.

The mean Element item value was taken to represent the mean rate at which that Flement generated costs. The mean item value for the entre Bill was talsen to represent the mean rate at which the Bill as a whole generated costs. Any Element which generated mean costs more rapidly than did the Bill as a whole was termed, for the purpose of the exarcise, a "Major Cost Generator". Angy Flement which generated meen oosts more slowiy than did the Bill as a whole was termed, for the purpose of the exaroise, a "Minor Cost Generator". These relative values ware tabulated and compared (Tables 16.1-16.4). Comments are offered regarding the data and the analysis in Appendtr 5.

6.18 Resulis of Analysis of Coet Genneramon by fr maintr in Penfochenachl civil

 envangherting Bills of Quanititirs (Appindix 5.2)It would be spurious to claim that the reaultes of this analyals could be any more conclunive than were the results of the previous enshyis (vide surpria) but it wae diecernible that cortain Flements did generate costs at a slower rate than did the Bill as a whole (and vicoveraa). Based on the reaults of the analyais for all ftems in Bills, Minor Coat Generatore were perceived to be:
Demolitions / Ehroavations / Foundetions / Reservoirs and Tank: / Ehtecnal Services /
Dratnage / Chimnegre and Cooling Towers / Onplot Etsternal Walle / Onplot Interenal
Walle / Onplot Etairs / Onplot Windowe and Doove / Onplot Evinis and Litim / Onplot
Internal Finishings / Omplot Fititngs / Onplot BWIC Flumbing/E-ternal Woriss/
Bridges / Dayworkes

At this point a limitation of the data is recognised. Unmeasured items are frequently of high value and will possibly distort the results. Bearing in mind that approaches to measured items was the objective, the analysis was performed with measured ttems removed. Based on the results of the same analysis for measured ttems only, Minor Cost Cenerators were perceived to be:

Demolitions / Reservoirs and Tanks / Eisternal Services / Drainage / Chimneys and Cooling Towers / Onplot Frame / Onplot Roof / Onplot Stairs / Onplot Windows and Doors / Onplot Stairs and Ltts / Onplot Internal Finishings / Onplot Fitings/ Onplot BWIC Meohanical / Onplot BWIC Electrical / Onplot BWIC Plumbing/ Bridges

It is interesting to note that the two lists are very similar. It is more interesting to select certain of the above Elements in the content of eartier comments (see Chaptar \&) regarding "fictional" items in Bills of Quantities. It was observed, during data collection, that there appeared to be large tracts of "Fiction" in the Flements. In Builder's Work in Connection with Mechanical, Flectrical and Plumbing Installation, for ecample, it was posadble to encounter (for example) some 60 consecutive Bill items with identical numerical quantities. This invited suspicion that this section of the Bill of Quantities was inserted for the purpose of

1) Representing some deadred sum of money for "budget" purposes and

2) Attracting "eample" prices and rates for valuing suah varistions as will inevitably have been caused by the fect that the mearurements do not repreaent the intended (or eny) design.

That Tenderses chooee not to price some of thene thems anyway would seem to be evidence that the ersercise of "truenting" of suah thems (if undertalsen for sariover reamons) it, to a considerable eutent, futtle. More dinoumion of this point shall be offered following the conolusions and recommendetions for this gection. Wishout further anelyis of spection individual detail the reaulte are conariment with thoe of the previove Elemental analyde they offered no strong patterns of behswiour. Cartain obearvations could, however, be made. For example:

1) Drainage and External Services (work types which are similar in character) generate costs slowty per item except where the project consists entirely of that Element (eg project 11 - Methanol Offoading Plant) - which seems obvious, perhaps.
2) Elements such as BWIC Mechanical and Ehternal works show the property of generating costs slowiy per item when subjected to measurement. When they are the subject of Prime Cost or Provisional Sums (ie not measured) however, they trequently have major cost importance as entire Elements (see projects 7, 8, 9 and 16). The suggestion made here is that, whereas an insignificant Flement could be dealt with by "non-measurement", even significant Elements can appear to have insignificant ttems in them when subjected to existing measurement rules.
3) There are clearty times when indtidual Flements become important and times when they do not. Therefore a model for predioting the inoidence of Elements and their variability of importance would appear to be a useful teohnique to develop.

6.19 Conclusions and Recommandations

On the basis of the foregoing results it was conoluded that it had not been poesible (with the given dsta sample) to establish conoluatvely a reliable measure of the inoldence and importance of Elements soroes projects.

The incidence of EHememts at this stage of the work could not be seen as a function of any given Method of Measurement exoept in terms of incidence of their constituent items; rether It was seen as a function of a given derign. It was concluded that the data wecre insufficient for suoh a specitio purpoee but was recognised that there had to be correlation between function of building and EHement makoup. It was recommended, therefore, that further work be undertalsen thvolving more detailed correlation analyisis to attempt to eatablish what reletionahipe erint between:

1) FHemente and Deaign/Burliding Function,

2) Element "make-up" and Method of Measurement used and

3) Elements and other Elements (mutual coeristence).

It was recommended that rather than exclude Flements an bloc at this stage on the basis of inconclusive (but persuasive) results, steps be taken to develop a Design / Measurement Work Type Matrix which will attempt to standardise Elements by Plant or Design type. By compiling Elemental cost analyses of a greater number of Petroohemical Civil Engineering projects than the 15 studied so far, it should prove posable to identity patterns of Elemental behaviour and make, with confidence, prediotions of their ralative cost importance and consistency. Therefore if the construction of a certain Plant or Building of recognised function is contemplated, it should be possible to predict with certainty that some Elements will have minuscule cost input; in such cases the following options could be choeen as the basis for experiment:

1) Elimination of such Flements from detailed design and measurement considerations at such stage(s) and inserting notional (but predictable) provisional sums where design is incomplete, or
2) Inviting Tenderers to insert their own prices for predefined minor seotions and/or components where design is complete, but the precticted oont thereof is low enough not to justify the effort of detailed mearurement.

This work can be undertalsen to develop a flecible aystem whereby if an Fhement is predicted to be "importanf" its important detall can be dealt with appropriatily. If an Element is predicted to be "unimportant", consideration of detail is less lisely to be suoh a etringemt requirement.

620

Although no conoluytve procts can be drawn trom the analy is in this Chapter tt te plain that function should dictate form and that form should dictate cout. It if plain, aleo, that
comprehensive Elemental analysis of projects will reveal much. The important question to ask is "if Elements are to be used to analyse costs, what Elements should we have?" If Elements are to be used to model costs they need to reflect construction costs rather than physical design appearance; otherwise there was can be no justification in having seleoted the Elements.

Although earlier argument as to the suitability of Element classifications was muted to permit anatysis of what existed to talse place, some persuastve points from that analysis suggest that it ought to be asked when an Flement not an Flement. This would, admittedly, appear to be a somewhat ridiculous question but there is suffient evidence to suggest that if an Element has inconsistent cost behsviour then an Element, by definition, it cannot be. Classical argument would say that there already erists 2 definition of what an Element is; therefore anything which satisfies suah a definition must be an Flement and anything which does not, is not. But is the definition correot?

It is submitted that there are times when it is necessary to look not at Elements, but at constituent parts of Flements (let them be called "sub-Elements") in order to truty ascertain what is important or not important about the costs of buildings or structures. It is apparent from the (albeit exploratory) analysis in this ohapter that Flements are preaent in greater or lesser magnitude (or greater or lesser cont) acroes projects. That a particular Element is of greater or leaser cost importance in one bullding compared with another is due to the fact that

1) The Element itsali is greater or smaller in phyidcal magnitude, or
2) Flements of equal phyidcal magnitude have different speoifications of qualty (conventional FHemental Cont Analywes are inadequate for the purpose of measuring speaification effects as the FHements are defined regardlems of what the speoification might be), or
3) Some conatituent part or parts of an Ficment exint in one building but not in another (evean if the EHement thealf always edrats in come form).

Thus an Element could exist in every project but differences between projects could be caused by the presence or absence of various sub-Elements of that Element. It is postulated that existing Element olassifications, whilst rightly recognising the existence of functional Flements in the "cost make-up" of buildings or structures, are not sensitive enough (if at all) to the way in whioh the behaviour of constituent sub-Elements affect the cost patterns of buildings. Existing Elemental classifications do not recognise (or reflect) cost behaviour patterns which are functions of the mere existence (or otherwise) of constituent subElements. These sub-Flements, if they do exist, might themselves be immutable even if the Element, as a whole, is not. It might be possible (indeed, fruitful) either to:

1) Universally identify and represent Elements in terms of recognisable sub-Elements or constituent parts which are leas inherently variable or
2) Redefine whst should be Elements: defining parts of buildings which are more immutable (and whose costs, consequently, are more predictable).

Consistent with eariler recommendetions, it must prove posesible to identify constituent parts of buildings which, if they erist, will eadst in some predictable form. By inference, if this level of predictability exints, deoisions can be better made as to what effort to expend on detalled measurement of Elements. Lisowise, constituent parts of buildings which can be predicted not to exist can be dealt with accordingty. This axgument builds on an cariier notion that considering Flements as a whole might be mialeading and that truer cont behspiour is discovered by sub-dividing the EHements themselves. Work by Brown (1984), relating specifically to the Element of Building Services, would eeem to surgent that the existence of a sub-Flement is a function of the erdstence of "zub-Fiunotions" of buildings. In other worde, the frot that a buildingfs function is (eay) "a Hoapital" can only give incticative information as to the broad range of lizoly cons for the Buflding Services Element of Euah a building.

However, were one to ank "what type of Hompteal is if?" then one is dealing with subfunctions of buildinge and one can be more confident about ecoumacy and Hikely rangee of "Element" cons or oosts of "Constituent parts of EMements" in suoh a contere For erample, "Payohisteio" Hosptitals will erifibit ohsractaristio coat patterns somewhat difierent to, esg,
"Dental" Hospitals. Thus we have a less nebulous arrangement than "general Elements" and "general functions" of buildings.

Indeed, in cost planning in the health sector, "Capricode", long reoognised "functional" distinctions and would allocate "Departmental" costs, that is different unit costs to different areas of the same building which produce slightly difterent types of medical or health provision. There is no reason to suppose that the above arguments cannot be investigated in respect of "petroohemical" buildings and plant which, atthough they offer "petroohemical" provision, perform slightly different "subfunotions" of "petrochemical" provision.

De Troyer (1990) recognised the significance of building cost breakdown, by means of "macro Element" and "sub-Flement", as a tool to aid design. De Troyer observed, with some dismay, that conventional Element olasatifoations can be standardised completely regardleas of the phenomena which give rise to their costs. Marks of al (1990) have striven to establish, by means of research at a (then) public utility company, a aystem of Elemental analysis for civil engineering construction with the aim of improving cost prediction and oontrol.

Diederichs and Hepermann (1985) olaimed to have identified between 40 and 50 key coat parameters which exist for all construction work specifications which are practically independent of the kind of building structure. They olaim that these key parameters are subject only to marginal variation and that the coate of such variation can be predicted to high degrees of acouracy. Their work andigns costs of labour, plant and materials rather than design parameters.

Indeed, it is besed on $\operatorname{DIN} 878[6]$, an FHemental Cont Anstyis used in the Fedecal Republic of Germany which is very similar to those used in the UK. In foct, Diederiohs and Hepermann do not pay detailed attention to any building FHement whioh does not comprise $>1 \%$ of total Cont. The use of fictors of production appeare, effectively, to link deadgness" and producens" cost models at all deeign stages and could well prove to be an improvement to UK prectice if teated in UK conditions.

Elements can be subdtided, and should be when the droumstances warcant it it if contended hece that the droumrances abwast werant it. Morrison and Evevens (1883)
introduced the conoept of "controlled flexibility" when dealing with Element costs as they, too, found that conventional Element classifications gave rise to inconsistent element cost behaviour. They advocated that Elements contributing leas than 1.5\% of the project total, or for which no further Subelement classifications exist, should not be "finely" estimated. This implies that they need not be measured in detail according to conventional rules. Further, Morrison and Stevens (1981) suggested that cost centres whose coefficient of variation exceed 36% should be restructured so as to be more predictable. Elements are just such cost centres; in the data analysed here there are Elements which satisfy such oriteria.

Morrison and Stevens did not directly address the the idiographio properties of projects; that is, that the Elements which satistied suoh "etandard" citteria could vary from project to projech, but they were correct to criticise the eutreme cost varisbilty arising from conventional cost planning models. They were also right to recognise the the importance of identifying Elements as significant or insigntificant coet centres. This must be done empirically, it cannot arise from a non-isomorphic deaignbased model. An isomorphio model (Naohmias and Nachmias, 1976) is one where the structure or shape of the data is similar to the structure or shape of the "reality" which the model is purporting to deacribe. It is argued that the conventional cost planning model is not isomorphic; although it is called a cost model it structures the data independent of the factors which give rise to the costs.

The phenomenon dominsting these conoluding disousaions is the unpredictability, in terms of conventional Elemental analyis, of the projectes studied, oharacterised by the hetercgeneous nature of the data sample (500 , again, Fianagin, 1080). The Petrochemioal Chwl Engineering projects atudied are obaracterised by dimimilarity, not by similarity. Therefore it is debatable whether a singie olasithication of Elements (in the conventional sense) could be made to apply. Further consideration of Kenley and Wilson's (1986) axgument for idiographio studien. of projects is urged. The nature of projects of theae typen suggests that a homogeneoves eample is unlifsely to be obtainable.

Chaptar 7 demoribee the commencement of the teating and validation of the hypothetion Petroahemion Ctill Fhagineering mearurement and cont control modal.

Chapter 7:
 VALIDATION OFTHE HYPOTHETICAL PETROCHEMICAL CIVIL ENGINEERING Measuremment and Cost control Moder

7.1 Genkrrally

It was eatablished that the work sections which appeared most prominently to display costinsignificant items and "generic families" of items attracting like prices were:

> Excavation and Earthwork / Conarete Work / Builder's Work in Connection with Services (which included Eternal Service Mains eto) / Finishings.

Accordingly, draft measurement rules were drawn up for those sections based on these (Annex 1). It was proposed at first to test whether the drat measurement rules appeared to satisty the stated objectives (simplification and eradication of costinsignificance) by interview based on a structured queationnaire with lesy expert personnel involved in preparing Petrochemical Civil Fngineering Bills of Quantities.

The original plan was to interview 7 users in the North-Weat of Fngiand and 6 in the NorthEast. Stafi commitments resulted in only the North-Weat ueers being available to comment at this stage. Comments are offered reganding the murvey in Appendtr 6.

The results are preseated in Diacrams 6.16:83 The reapondente falt very etronety thet the drat measurement iules would sohiove the following tated objectives (compared with SMME):
a) Fewer items to measure (q)
b) Reduced measurement time (q̌) (q3)
c) Hypothetical model was easier to read
d) Rules were simpler and clearer
(q)
e) Reduced workingup time
(q6) (q7)

It can be coonoluded that the respondents, in the main, considered them to have been realised. It should be noted, however, that the respondents did not all neceasarily agree with the objectives as stated.

The respondents were, by and large, happy to see no more or leas detail than produced by the proposed rules (q8). This is perhaps understandable given the conservative nature of the industry, netther was there any deare other than to proceed cautiousty in the development of the experimemtal model; "step by step".

Most respondents had doubts about where the coets of previousity measurable items were deemed to be included (q10): confusion reigned as to whether suoh oots were deffined in some preamble or explanstory note, or with the costs of mearured thems. Although the hypothetical model contained numeroves suoh explanatory notea, it was olear that more attention needed to be paid to the drating of the document. Mont reapondents falt that the proposals regarding speotications were olearer (qit).

As atated cartier th wis orighnally planned that the Drat Mearurament Propomels for Ercavation and Earthwork, Concrete Work, Bulder's Work in Connection with Bervicea and Finishings would firt be preaeated to user personnal in the North Weat and then to user pernomal in the North Enat. Problems of eafir avilabitty aroee at this time, however, and it
became apparent that these staff would have no time available to deal with a limitted number of Draft Sections and then undergo the seme process upon production of a complete set of measurement rules, as was the original intention.

It was agreed, therefore, that the proceas be "tastracked", i.e. that as complete a set of measurement rules as possible be dratted and presented to North East user personnel. Action would be taksen on behalf of the entire organisation based on the results of the "detailed" survey carried out in the North East. To lend weight to the results the "detailed" North East survey would be participated in by 3 staff members in the North West who were available. The number of respondents, therefore, would be 9. This represented all leey staff likely to use such a measurement document. Thus as complrehensive a set hypothetical measurement rules as posable was drawn up using the same prinoiples as had already been established. The sets of rules, corresponding to the two survey stages, are Appended (Annex 1for Stage 1 and Annex 2 for Stage 2).

7.5 Summarty of resulis fiom Uskar Eurvey (Etace \&) (Affenidix 7)

The results are presented in Digrams 7.1-7.23. The respondents falt strongiy that the hypothetical model would echieve the following stated objectives:

1) Ferwer items to measure
2) Reduced mearurement time altogether
3) Reduced measurement time on small tiems (q3)
4) Reduoed woridingup time ovecall
5) Reduced woridingup time on "rmoll" itemes
6) Adequate units of meecurement
7) A more acceptable level of detail
8) No foreseeable problems in pricing Bills of Quantities

The respondents were reasonably or slightidy of the view that the following stated objectives would be achieved:

1)	A simpler and clearer document	(q)
2)	Provision for speotications was olearer	(q12) 12
3)	Information for tendering purposes was no more or leas adequate	(q] 16
4)	Reduced time valuing varistions	(q31)
5)	Slightiy less time preparing interim valuations	(930)

There were mired fealings as to whether the following etated objectives would be achieved:

1) A more readable document
(this appears to contenet with the reaponse to:
2) Adequacy of the document for the purpose of andiging prices to Bills of Quantities
(this eppears to contradiot the reuponee to:

The rempondents harbovred doubta, however, regarding the following stated objectiven:

1) Where the costs of previously-measureable items were included (q10)	
2) Problems foreseen with Bill of Quantities preparation (q14) (notwithstanding the responses to: (q1) (q2) (q3)	
	(q6)

These last two points gave most cause for concern. Many of the doubts expressed were about "laok of familiarity", "learning curve" and the likelihood of inconsistency, given that it is debatable whether the experimental method would ever be universally adopted. Speoific discussion has been offered elsewhere. It is retreshing to note, though, that some respondents tempersed these doubts with expressions to the effect that their fears were sometimes based on not really knowing what would happen until the experimental measurement model was actually tested. Suoh a test is described later.

As a result of this stage of the researoh, has been made olear that the measurement document contains drafting deffciencies which have induced feelings of laok of clarity in the minds of the respondents. The commercial and time pressure on Bill users led to the agreement and recommendation that the modal be nevertheleas teated, "warts and all". All in all, it was felt that the proposals ware not reviled by the respondents, in thot, they certainity supported the exsercise and in maxy cases agreed with the objectives, whioh was encouraging. In the long run it mas prove fruttitul to experiment with Tenderens asaigning labour, plant and matarials costs to the out cenres identified in the model. Thus costs of labour ttems previousily measureable migit be somewhat easier to locate.

The hypothetical meesurement model, hwoing been dratted for as many trades / work sections as poestble, was used to measure a historical project at the collaborating organisation, vaing the original Tender Drawinge for that project. An expertmental Bill of Quantities was thus produced and sant to one of the collaborating organimation's panal of approved Tendering contractors.

The contractor's estimator was to use the experimental Bill of Quantities in the normal manner as an aid to preparing a Tender for the project. The Tender was to be submitted to the collaborating organisation as a bona fide Tender. The test project was a warehouse building incorporating roads, pavings. drainage and external services installation. Its value was some $£ 180000$. Allowing for time differences and the like the "new" Tender submitted was within $£ 400$ of the original. To claim success on the basis of one test would be ludicrous; not all swans are white (see Popper, 1959), but the following can be said:

1) The simplified approach to measurement, i.e. the omission of much detail whioh some measurers claim the Tenderer needs, did not prevent the Tenderer from arriving at a figure which was within one quarter of one percent of the total axrived at using a more detailed method of measurement.
2) This is more evidence, however tentative, to support the notion that the effort spent on said detail is an act of overadministration. The absence of said detail did not appear to have any material detrimental effect, "learning ourve" problems apart.
3) What is olear is that the amount of detail whioh, collaboratively, adds up to little money, need not be communicated to the Tenderer purely for cost reasons. The proximity of the Tender total in the "experiment" to the original Tender total suggesta, also, that the Tenderar lost little in scope definition as a result of the absence of some previousidy measured items.

7.7 Crmous

A disappointment at this stage of the research was an inability to make prolonged contect with the Tenderer involved. Commumication was handled by the Bill users, who tended to be somewhat neoretive about the handing and dimolowre of informition. Some detailed enquiry among Tenderecs would heve been benefioial but, alos, it wes not to be. The surveyor who meanured the experimental Bill of Quanteties and the Tenderer's extimetor, however, offered eome commemis on thedr first uee of eaid hypothedical model (vide intra).

The feedback from measurer and tenderer was largely of a teohnical nature, illustrating the conventional tendency in practice to judge models on the basis of their internal consistency rather than the external factors surrounding their formulation. The colleotive comments received were as follows:

ExCAVATION \& EARTHWORK

1) "Working space (single allowance) is too generous for (eg.) simple strip foundations".
2) "Eroavation for pits (eg. through hardoore; not from reduced level): provide for a statement for where the dig commenoes. No need for an individual datum level for each pit".
3) "Ercoavating alongride services: do we specity precautions in detail or leave tt up to the contractor? Probably not a measurement problem".

Concreste Worrx
4) "Treating surfaces: confirm that each type of treatment is separately identified".
5) "Agreed after diecusaion that aithough formwork to plain and reinforced conorete is not separately identified this need not be a problem as you can tall by the conorete feature what would be reinforoed and what would not be".
6) "No need to give a width for formwork over 500 wide -fust give it all m 2 ".
7) Better to state Nr of bases for grouting and give thickneen. Bome grouts are expensive. You cannot ahwajs tell how many baces as iteelworiz is often a soparate contrect".
8) Perhape reinforcement categories can be grouped together acoording to firing location rather than strictily following the conorete categories".
9) "State Nr of decimal places for tonnes of reinforcement as a General Rule at the front. We prefer 2 d.p".

DRAINACt

10) It is better to give beds and surrounds as a composite item with the pipe rather than with the drain trench. Some drains are above OGL and require no excavation. They are all on standard details anyway".
11) Pipes in branches: enumerating them causes confusion as to what to include. The simple answer is to measure as other drains (do not separately olasaify branches)".
12) "Fittings should be extra over".
13) Manholes: Keep covars and frames and manhole channels as saparate items, otherwise every manhole description is difteremt."

Ginneraily
14) What is deemed to be included is not always olear; eg. is bedding and pointing deemed included with copingr? Some people might imply this, but some people might argue. Tighten these rules up".
15) Finsert a General Item stating that rates for each type of excavation should inolude for all water diapoeal and for working below water table leval. And inseat an them for "eudra; ercevating below water table". What if the quantity of suah work doubles in the portoontreat?"
16) The measurement aytem is not disuituilar from BMMS. The general prindiles are the nome".
18) "Excavation, Concrete, Brickwork and Drainage threw up most items in the take-ofi. No item saving could be immedistely discerned in Ercoavation and Concrete".

7.9 DISCUSSION OF FHHDRACK FROM MEASURTGRAND EEIIMATOR

ItEMS (1), (2), (4), (7), (8), (9), (10), (13), (14) AND (15) are useful suggestions for how to "tighten $u^{n}{ }^{n}$ the drafting of the experimental measurement model. It is interesting to observe the phenomenon of the conventional model caussing the user to make the data fit the model. In ITEM (13) the respondent is suggesting that the use of different descriptions for things which are different is not a good idea; that the use of the same description for things whioh are not the same is perhaps better.

ITEMS (6) AND (11) are useful suggestions for how to achieve further simplification without detrimental effect, or so may it be interpreted.

ITEM (16), as a general comment, was interesting, given that the experimental mearurement model was dertved by simplification of SMMM6, not SMMM5 or SMMF7. It was intareating to not the user comment that the general principles of measurement have not been forsalsen, despite simplification.

ITEM (17) is taken as a sign that the stated objective of simplification has been achieved in respect of Drainage Work

ITEM (18) is talsen as an indication that in Froavation and Concrete Work there is atill scope to achieve simplification.

It ought to be stated at this point that the Tendererts eatimator opined that overall the experimental model eeemed to "make more work". To what extemt this was due to unfemiliarity was not made plain.

It can be seen that most of the comments wrere teohnical in neture, that is to medy they ware concerned with the intermal coherence of the hypothetical modal as opponed to the
philosophical standpoint. The need for the model to be internally consistent and unambiguous is recognised. The surveyor (as measurer) is trained to sorutinise suoh detail and the comments were welcomed as aids to future drating refinement. However the internal consistency of the model is not neceasarily a gign that it represents what it ought to represent. What was interesting to note, however, is that no comments were received to the effect that the experimental measurement system prevented either measurar or estimstor from doing their work, ie.:

1) Preparing a document which purports to represent some finished design, as a possible aid to tendering and as a source of prices for valuing subsequent design changes
and
2) Preparing a tender for the project thus deecribed.

Whilst "one swallow doth not a summer malse" it must be stated that on the basis of this test alone, the absence of large amounts of previously measurable detail did not substantially affect the end result. Indeed, so close was the "experimental" Tender Sum to the one quoted in practice that the temptation must be reairted to speculate that the detail required by the conventional model and not contained in the hypothetical model made no material difference to the Tendering process.

7.10 Concinestons

The test exsecuted presented no major diffloultice to the partioipants. The experimental measurement document did not prevent the Tenderer from submiting a Tender quotation so close to the original figure as to be easily attributable to the inherent inacouracles which exist in extmating. Ominaion of large amounts of meanurement detail appeared not to render the contractor unable to furaith a "realisto" and bons ficie Tender.

It was conoluded also that sufficient evidence was revealed that imperfections in drating would tend to pose problems in the pontoontrect as suoh imperfections would cause debeate
about definition, clarity and the like. It was considered, however, that drafting was not a model validity problem. In fact, it is believed that better drafting would more oleariy demonstrate that the proposition that "conventional Standard Method of Measurement based Bills of Quantities... are a cause of overedministration" is a good one.

7.11 FURTHERR DIECUSEION

It is difficult to see how any particular measurement method can materially affect an estimator's ability to prepare a Tender. If design is incomplete, or there are no measuraments at all, one can still tender, the proportion of "risk" pricing will alter. Problems will ocour in the postcontract only if variations to the original scheme ocour and the original scheme was, somehow, not reasonably denned. It is contended that the omisaion of some costinsignificant ttems does not constitute bad definition of a soheme, as this could constitute the elimination of "noise distortion" (vide suppra), which theelf could constitute bad definition of a soheme. Bills of Quantities alone will never be the sole definition of a soheme, let alone the Method of Measurement.

Hughes (1983) asaisted in this reapect: "The contract documents of which the BQ (but not the SMM) is a part must refleot the total sttuation obtaining at the time if tender. If the design is incomplete and ttems have to be "invented" (to whatever degree) then the contract, not the method of measurement, must provide for the consequencer". At this point it muat be repeated that if suoh "invention" is to talse plece then it need not ocour so as to conform with the requirements of a model too detailed to be applicable to a state of incomplete deaign. Further, inventing meanrements which represent nothing in partioular is likely to make the postronntect problems more teohnically and legalistically complex than would the use of a simpler (but approximate anough) model.

What is evident from the user responses regarding the hypothetioal modal is that it if not the ftems mearured which are insoly to cavee problems, but the defintitions of what thowe theme repreeents either in their dewcriptions, by virtue of what they are doemed to inolude, or in the speoiflications to which they refer. Hughes (1983) continued:
"If the design is not complete we cannot measure in detail, at least not with any certainty. On the matter of simpler and leas detailed Bills of Quantities, it must not be overicoked that however the work set out in the Bills is itemised, the ttems must in total reflect the total work required. If the number of individual ttams is reduced ... then the content of those items ... must be made clear in the descriptions. That is not to advocate that BQ trems must develop into verbose essays (though a specification would help reduce the pressure). Unless it is clearly understood what must be said expreasly and how little can be safely implied, however, more problems will have been created than solved". Hence the need for further dratting work on the hypothetical model.

It should be noted that "incomplete design" does not mean, in this conterct, "nerct to no design", otherwise it would be'wrongful to give a tenderer to understand that the measurements represent what is not known. What is argued here is that in a situation where a reasonable amount of design has occurred a reasonable (but not excesatve) amount of measurement detail would be quantum sufficit for practical purposes. Apything more detailed would be spurious and would have an inherent tendency to oreate over administration by virtue of possessing "oulltin" variations.

Paradorically, it could be argued that should the deagign ever be complete, we need not measure it at all. There will be no variations. Silverton (1983) lent waigitt to this point: "Wildif incomplete deaign renders (BQ) quantities an improper basis for contracting, and the quantity surveyor should not heatate to asy mo. A defence of I did what [the] SMMM - in which I heve no confidence - told me' is not calculated to ingpire the olient in the independence and judgement of his profeasional advieer".

It should be recognised that measurement can all too earily become a thing driven by procedure. Fhditing procedures can be unnecemerity detailed. The BMMM should be the slave to the survejor, not vice prisa. If tt can be sccopted hypothetically that a mothod of mearurement can be devised which places unfounded reliance upon the detall th contains then it can be acoepted hypothetically that meacurements can be areated for the sole purpose of matinaing the provisions of an umuttable mothod of meerurement mether than for some vaitd purpose.

It is debatable whether simple measurements can disable the Tendering process. The one test carried out on the experimental model for Petrochemical Civil Engineering did not do so and many construction projects are succeasfully conoluded in the absence of detailed Bills of Quantities. It is equally debatable whether simple measurements can disable the postcomtract process either, provided that what is measured is so dratted as to be adequately defined and understandable.

7.12 A COMPARUSON OF SMMM7, THE HYPOTHETIGAL MODEL AND "SHORTER BIILS OF QUaNIITIES"

In order to effect a brief comparison of these three measurement models in terms of relative simplification, this having been a prinoipal adm of all three, Bills of Quandities for 2 projects in the Petroohemical/Civil Engineering fileld were analywed. Both Bills were originally produced using SMMM7. The items in the Bills were "reprocessed" to represent what would or would not have been measured using the hypothetical model and "Shorter Bills of Quantities" respectively. The projects were a Paint Manufacture Amenties Building and an Accommodation Butlding for Sewage Operatives. They were acquired from sources outside the original collaborating organisation. The results are shown in Tables 14.

of Quannimes

Overrall

The hypothetioal model performed edmilariy to "Bhorter Bills of Quantities" (BBQ).

Ameniligs Bulldino

"SBQ" had 34\% fewer thems than SMMM7. The hypothetioal modal had 30\% fower. (Twhil 14.1 refers).

Oferatives' AcCommodation

"SBQ" had 22\% fewer items than SMMM7. The hypothetical model had 25\% fewer (Table 14.2 refers).

Behaviour across all Trades or work sections was more variable. "Shorter Bills of Quantities" tended to outstrip the hypothetical model in all Trades except Cladding/Coverings, Glaving and Drainage which, in the hypothetical model, were considerably more simplified. It has proved very difficult to simplity the Woodwork section: timber components have different sizes: it is difficult to conceive of how to describe than other than by size of crosssection. In the Operatives' Accommodation project it appeared at furst surprising that very little simplification was achieved in the Concrete Work section. In truth the foundasions for this building were extramely simple in construction styje; simpler measurement could not have been attained. Had the foundations displayed anything other than gross aimplicity of design then measurement reductions would have resulted (al Amenities Building).

7.14 CONCLUSIONB FROM COMPARISON

On the basis of the 2 tests deacribed "Shorter Bills of Quantities" had simplifiled the measurement conventions to a greater extemt than had the hypothetical model. Overall, the Experimental Model had fower items due to maentve sexings in one or two Trades. It is suggested, therefore, that the hypothetical model would operate satisfactorily in practice on the basis that "Shorter Bills of Quantities" can be utilised for the same purpomes without causing discernible problems in the proceases of eatimating, tendering, valuing variations and final socounts.

It appears demonstrable that certain detailed measurement demanded by some existing measurement syitems is, indeed, a cause of ovecadminintration: the "dimappearanoe" of the detail does not hemper the procemes to which conventional meanurement is dedicated. The experimental model, heving been baced on simplification of BMMM6, in admpler than BMMM7. SMDM7 appears not to have achieved admplification on the scale which tis users had been glven to anticipate.

TABLE 14.1: COMPAFISON OF SMMM7, the hypothencal moder and "Shorier Bill of Quanitiliss"

ACCOMMODATION FOR SEWACIE OPERATIVES	SMM7: Nrof. ITEMMS	"SBQ": NROF THEMS	\% OF IIEMM SAVED	HYP. MODEM: NR OFITEMB	\% Of TIEMMS SAVED	Remmaress
Total	400	203	84	255	86	Ercoludes*
Excoavation + Earthwork	45	35	22	30	83	Inal underpinning
Conorete Work	87	56	88	64	26	
Masonry	32	28	-19	29	θ	
Structural Steelwork	32	11	67	n/a	n/a	*
Woodwork (exol. ironmongery	48	42	\oplus	48	7	Matniy futinge
Cladding/Coverings	9	7	ees	7	+2	
Asphalt Work	5	4	20	n/2	1/2	*
Flnishings	24	15	87	19	21	
Metatwork	5	5	0	5	0	
Glaping	8	4	50	0	-100	+
Printing + Decorating	19	12	87	12	87	
Plumbing +Meohanical Installn	87	82	41	88	44	
Drainage	51	89	84	18	88	

* $=$ Not analyned

+ = In hypothetical model was given with aesoointed joinery componemts

TABLE 14.2: COMPAFISON OF SMIMT, THE HYPOTHEICAL MODEL AND "SHORIERR BIILS OF Quantims

Amenities Bullding For Paint Manufacturd	SMM17: Nrofr ITEMS	"SBQ": NROF TIEMMS	\% OF TIEMMS SAVERD	HYP. MODPH: Nror ITEMMS	\% OF IIEMMS SAVED	REMMAFKSS
Total	482	377	22	360	25	Eratudes*
Excavation +Earthwork	47	31	\&	38	23	Inal. Underpinning
Demolition + Alteration	5	2	∞	4	20	
Concrete Work	55	55	0	51	7	
Masonry	72	48	88	87	21	
Structural Bteelwork	-	-	-	-	-	*
Woodwork (excel. ironmongery	78	70	-10	24	6	Mainly fitinge
Cladding/Covering	40	80	205	28	85	
Asphalt Work	-	-	-	-	.	*
Finishings	28	16	80	16	80	
Metalwork	7	7	7	0		
Glaving	2	2	0	0	-100	+
Painting + Decorating	25	15	40	17	88	
Plumbing + Mechanical Installn	22	17	18	21	6	
Etternal Services	16	18	-10	14	-18	
Drainage	80	$\%$	-17	88	60	

[^0]
7.15 SUMMARY

(1) SMMM7, not in universal use, and CESMMM (and its successors) have become the Methods of Measurament sponsored by the relevant professional societies in the field of measurement. There is evidence to suggest, however, that the simplification of measurement which was intended by the issue of SMMM7 in tis present form is possibly inappropriate in the majority of cases, that is when design detail is incomplete. Therefore it could be argued that much of the detail required by SINM7 cannot be derived from the design of most construction projects.
(2) The Hypothetical Model dertved for Petroohemical Civil Engineering has attained greater simplification than has SMMM7 and, if fully developed and teated, seems Hikely to be usable without undue hindrance to the process of Tendering and valuing varistions.
(3) "Shortar Bills of Qusntities", developed as a commercial pacirage, using intution rather than the type of analysis deacribed hera, appears to be opersting eatisfictority in practice, apparently with very little complaint from measurecs and contractors (initial trepidation apart). Given that the brief comparisons (vide supra) reveal that in most work sections "SBQ" is simpler than the Experimental Model, there appear to be grounds for optimism. A fully - developed Frperimental Model seems liksly to perform no worse than does "SBQ" (which has subecribers in "triple figuree").
(4) The "iterative eetimating" model (Balcet, 1886), using muah the mame prinoiples an the Experimental Model deacribed here, appears to have performed reaconably well in that it can produce Tenders more quiakdy than, and very aloee to, thowe produced by conventional methods. This would appear to lend support to the argument behind the Experimental Model, certainity as far as the Tendering process is copoerned.

It appears that much detall sought by meanurars and often demended by eaditing mearurement convertions is Euperfuovis in terms of worth to the Tendering and Final Account procemes. There is evidence that the "craving " for devill is not necemerity founded On the cartain knowiedge that such detall is deairable, or, indeed, of significant beneit to the process or to the usar. Much of tt appeans to constitute "noteo" (cee Ficeth and Bryent (1901)).

There remains, though, a rather painful contradiction which ought to be resolved. The industry, ever eager to point out that each project is unique, still professes a desire to use "standard" models with which to describe these projects. Then, to increase the confusion, the models so devised are neither truly nomothetic nor truly idiographic. That there is suoh overlap of measurable work (and, hence, replication of measurement rules) is illustrated by Table 15, which shows the types of construction work common to three typical methods of measurement, all of which (at least in part) could be applied to Petrochemical Civil Engineering Work

Table 15: Commonalit of Measurthinant Coveraces in 3 Sen bicterd Gtandard Mehthods of Measurrhient

Worksercion	Ribchons in Which The Meagurumant Rungs Rasme
General Rules	SMMMYCEESMEM SIMMMEC
Preliminaries	SMMM7nCESMMM SIMMIES
Demolitions	SMMM7才CESMMM
Earthworks	SMMMTNCESMMM
Pling	SMMM7TCESMMM
Insitu Concrete	SMMMY
Precast Conorete	SMMM7
Masonry	SMMM7TCESMMM
Structural Metalwork	SMMM7NCESMMM
Ateetwork	SMMM7nCFSMMM SSMMIEC
Struotural Tlmber	EMMM7ACESLMM
Cladding / Roofing	BMMY
Waterproofing	SMMM7TCOESMMM
Lininge + Paxtitions	SMMM7
Windowe Doors, Etairs	SMMM
Finishings	SMMY
Furniture + Fiting	SMMM

Tabie 15: Commonality of Measurxhment Coveracie in 3 Sth bcied Standard Methods of Measurehment (CONID.)

WORK SECTION	Fibgions in Which The Measuremment Fulus Rysme
Joinery	SMMM7
External Services	SMMM7 \sim CESSMM
Roads + Pavings	SMMV7^CESMM
Fencing + Gates	SMMM ${ }^{\text {CHESSMM }}$
Drainage	SMMM7CCESMMM
Mechanical Services	SMMM7 SSMMMIEC
Electrical Installation	SMMM7TSSMLIEEC
Painting	SMMM7 ${ }^{\text {CPSEMM }}$ SMMMIEC
Ground Investigation	CBSMMM
Geotechnical Proceeses	CPESMM
Pipework	SMMM7 COESMMM SMMMIEC
Rail Traok	CESMMM
Tunnels	CPSMMM
Sewer Renovation	CEFSMM
Scaftolding	SMMITEC
Plant	SMMMIEC
Ductwork	SMMM7TSMMMIEC
Instrumentation	SMMMIEC
Insulation	BMMYTSMMMDEC

Chapter 8 will present Conoluaions and Recommendsations.

Chapter 8: CONCLUSIONS AND RECOMMENDATIONS

8.1 Regarding Problimm Statimarant

Chapter 1 identified the problem of a collaborating Petroohemical Civil Fingineering Organisation needing to identity an appropriate measurememt and cost control model for use on capital construction comtracts in the field of Petrochemical Ctill Engineering. The Chapter concluded that the conventional model consisted basically of the general building model, adopted without material revision, and that there were assumptions regarding tis applicability as opposed to empirical evidence to justify its applicability. This was partly attributed to the fact that criticisms of such models tend to cemtre around their internal consistency, as it were assuming their inherent validity, as opposed to the theoretical underpinning behind the formulation of their constituent parameters.

82 Riscarding Thiboremichl Undifrpinimg of Modems

Chapter 2 discuseed aspects of theoretical underpinning of models and conoluded that there is a laok of true theoretical developmemt in building economion, characterised by the practice of group paradigme prior to theory formulation. The conventional Petroohemical Civil Engineering cost model is a manifatation of auch practice. There in intie rational evidence to justin the formulation or adoption of this model. The modal (as wall as the gemeral Bullaing model, of whioh it is an umberdged vernion) is too often meroly premued to poseses intainsio merti.

Chapter 3 dinouseed the requirementis of cont models of the type under titudy and artionsed the Couventional Purochemion Civil Ihagheering Cout Modal as an firformation
communication medium. The Chapter then discussed the requirements of such a cost model and criticised the Conventional Petrochemical Civil Engineering Cost Model in terms of level of abstraction of detail. Chapter 2 then discussed the requirements of a cost model and criticised the Conventional Petrochemical Civil Fngineering Cost Model in terms of its relevance to the design and costs of the building or structure which it purports to represent. The Chapter concluded that conventional measurement and cost planning models do not reoognise the true determinants of building cost. This is not inconsistent with the intention that the models are for the use of the design team for the purpose of approximating the cost not of changes to the mothods of production, but to ahanges in deaign. However, muoh of the content of this model carries litule cost importance and in cases can bear little resemblance to the actusl, or any intanded, design.

This is a severe criticism given that it is supposed to be primarity a denignbesed model. A hypothetical model for Petroohemical Civil Ehngineering ahould be oharacterised by a reduotion in the amount of redundant or entropio information comsained in the conventional model. Chapter 3 criticised the basis of the conventional model's formulation and comaluded that the conventional measurement and cost planning modals are presoriptive of oost behsviour rather than representative of it. Their undertying measurement conventions are capable of produoing "noise" for the salse of heving th. Due to their manner of formulation their constituent parameters maks no attermpt to refect the relative cost importance of cost centres. A model should be formulsted on the basis of prior empirical observation of cost behaviour in the appropriate data. The model should be made to tit the "moter", muah as they are. The "facts" should not be so formuleted sis to sativ to the preaciptive requirements of the model. This approach will not undecmine the group paradigm, as it enviages the utilimetion of a modiel of the same generic type as the paxadigm model, but will conterbute towarde a rational, rather than sociologioal, etep towards the devalopment of meannement and cont planning theory.

Chspter 3 further comoluded thet the paradigen preotioe of abwacting an ovandimplified cont planning modal from en overdetailed meacurement modal is an unnecemany duplication of effort and produces two inappropulate modale at inappropriate levels of abracion. The identification should be attempted of conaistemt cont centres which erint et a sutmble leval of abatraction for use in both modala, or in a adneite model which periorms both functions
simultaneousily. The consistent cost centres so identifed should be capable of being expressed in terms of design perameters, but the facility should be available to input costs of the factors of production if desired. These cost centres should therefore take the form of a "neutral" language capable of being commutative between these two domsins.

8.4 Regaringa Review Of Reseafch Methods

Chapter 4 briefly reviewed the overall state of research development in building economics, pointed out some of its weaknesses and reported some proposed agenda for cost modelling research. The Chapter set out a basic stretegy for the research in this thesis and then reviewed and criticised the research methods (the data collection tools) used in the thesis. Chapter 4 concluded that in respect of models of the type disounsed in this theais uttle attempt has been made to verify conventional practice. Current understanding is limited to experience and intuition and future inveatigations should attempt to build on a factual basis, not on the posedbility of false assumptions. There is a need for empirical work on the natve cost planning methods ourremtly in use, and for research into the "human expertise" which forms a rather vague or subjective reasoning behind the conventional models. There is a need to focus on the inherent or implicit assumptions convemtionally built into coet models and also to focus on the inherent asumptions made about their validity.

Chapter 4 identified a commenoing inductive strategy for the work; the main objective being to use obeervations of behsviour of cont data in the conventional Petroohemical Civil Engineering cont model to formulate a hypothetion model. This is conadiared to be a atep towards a more rational formulation for the sooiological paradigen, which is empirically weak, and will bring to oloser to true "theoretical" status. The paradign ts not being teated as suah, but a rational bacis for the formulation is argued for. Owing to a hak of theoretioal development in the fiald of Potroabemical Civil Fhogineacing cont modelling and the general Building coet modelling fleld from whioh it is drewin, Chapter 4 rejected a etrategy of middle range theory. An emphnis on a grounded theors epproach wien recommended which would encourage modal formulation without preconoatved theoretion "truthen".

Chapter 4 recommended statistical analysis of the conventional Petrochemical Civil Engineering measurement and cost control data in order to obtain empirical observations of its cost behaviour patterns. The Chapter then proposed a survey among all likely end-users, inviting their judgement on the hypothetical measurement model so formulated. Suoh interviews should seek to ascertain whether the end-users consider that the hypothetical model would achieve its stated objectives. Such a survey would also enable the respondents to comment on whether they agree with its stated objectives, given that its hypothetical statements have been formulated following empirical observation. The Chapter then proposed an experimental measurement ersercise whereby a known historical project would be re measured using the hypothetical model and priced as a bons Iidetender. This would constitute the beginning of a hypothetico-deductive phase; that is of modeltesting.

Chapter 4 questioned whether there need be an overt intention (as pure and social soientists often presume) to generalise to the whole population (in this case the whole industry). It was suggested that an empirical model which follows an indtvidual situation or a limited number of situstions of similar character, be sought. Thus the Chapter recommended some further discussion and study of the prinoiples of idiographio models.

8.5 Regarinng the Fofenulation of Cobr Modmis in Rematim Fiemds

Chapter 5 commenced by giving some brief overall treetment of the epistemology of modet building and pointed out the epistemological requirement for a theoretioal beata upon which to found the actural building of the model. Without some theoredical bads, the model is vacuous. In the general contert there is a need for a more subutantial body of theory upon which to base modalbullding.

Chapter 5 argued that "eane of use" and "practioalty" do not, alone, constitute "vaidity". The perceived "etrength" of the conventional building model, that it parallals the denign procens and is therefore relatively cany to uea, can in fort be a wealcoear: by the meme tolsen it is relatively eary to abvee. Inak of empirion formulation readens the conventional model (or its user) tncapable of preventing the incorporation of tiformation which bears no

of a model, measured against the degree of its internal consistency alone, is insufficient to guarantee that what it models is necessarily what ought to be modelled. Without rational consideration of what the "tacts" to be modelled ought to be the exsercise is no more than one of data collection. This is expecially likely if the conventional rules of measurement have been formulated more by a process of negotiation between interested parties than by any prior substantial data analyzis.

Chapter 5 then argued that the idea of standard Elements, and of standardisation of Elemental cost behaviour for cost anslysis and plaming purposes, is a weak idea as long as conventional deflitions of Elements are retained. Conventional Elemental cost classifications display high cost variability. Standardisation can therefore only remain justifiable to a certain degree, owing to the inherentidy uniqe nature of the entities which are being observed and modelled. Conventional models which seek to universally etandardise what the construction industry freely admits to be variable in character are much lise the Frocrastian Bed of Greek Mythology. The data could be made to obey the parameters of an ideological model instead of the data dictating the parametars which a logical model ought to posseas. Chapter 5 proceeded to review the idiographio approach to the modelling of construction projeots and argued for serious consideration of suah approaches.

Chapter 5 then briefly reviewed the formulation of, and discumed some methodologioal issues concerning the formulation of models in releted fields bearing dimilar oharecterintics to the hypothetical model formuleted in this worle The modale so revievped were: the Civil Engineering Cout Model, the Building Cont Modil, the Bhorter Bills of Curantitios Model, the Iterative Civl Fingineering Model, the Buflderts Guaptities Model, the Internetional Ehagneering Construction Modal, a Rational Bill of Quantities Modal for Civl Fhagineering Work and Flemental Modals.

Chapter 5 conoluded that the formuletion of a hypothetion Petroohemioal Civil Fingineering Cost model should involve the requirement for some theoretical bads upon whilah to deoide which are the important flets to colleot. This is in order to have the modal beter represent what it is supposed to reprement. Also, the hypothetical model should not mempt overtiy to become a "general, untvereal standard". Brandiard modals are ideological; they cannot ent any individual obeervable sturation. In obeging a standard modal wre muat distort the
observations so as to fit the model. Chapter 5 further suggested that individual models based on prior empirical observation, though they have limitations, are more logical than those which do not. They do not place their own limitations outside the boundaries of the population segments to which they have been formulated to apply. Overstretching has caused theories and paradigms to fail. The Chapter suggested that a feature of conventional models is that they are neither truly nomothetic nor truly idiographic; there is unnecessary overiap. The Chapter also suggested that the hypothetical Petroohemical Civl Fngineering model should obey empirical observation of the cost behsviour of the data. It should not be an ideological model.

Chapter 5 proposed that rank order distributions of cost of the type characterised by the MethodRelated Civil Engineering model, and by the Iterative Civil Engineering Model, should be identified in the Petrochemical Civil Engineering data. The significant cost centres so identified should be used to define the guiding parameters of a hypothetical model for Petrochemical Civil Engineering. A move towards greater simplification of detail should be sought than was aohieved by the Bullding Cont Model (SMMMy), which has been criticised as having fallen short of the objective of simplification.

Chapter 5 proposed that the beheviour of coste of Elements should be obeerved in the Petrochemioal Civil Engineering data with a view to redefining or finding alternatives to, conventional Flement clasaifications. Cost planning and mearurement dsta could eventually be subsumed in a aingle model, at an appropriate leval of abstraction between that of the overcomplicated conventional Bill of Quantities and the ovarimplified conventional EMemental Cost Anslysis. That we structure our conventions suoh that the models start as "general" models and develop into "unique" modele (ingularties) is a reversel of the normal direction of ecientific development.

Chapter 5 finally concluded that the conventional meanurement modal containe 20 muah detall in toto that muah of it constitutes mere notae, liable to distort the intended menage. Further, its detailed legalistio rulen damand factas to fit the model, as opponed to a modal to fit the tacts.

8.6 Regarding the formulation of a Hypothencal Peifochienical Civil Engeingering Measurthatent and Cost Conirol Model

Chapter 6 described the statistical analyses used to formulate (by empirical observation) the hypothetical Petrochemical Civil Fngineering model. The Preliminary Anakysis at Bill of Quantities Item Level of Abstraction" section deacribed the analysis of historical cost data in numerous Bills of Quantities by rank order distribution of cost (apportioned by builders). It was shown that invariably a large proportion of items have little significance to builders in pure cost items and that such ttems agesregste to a veny small proportion of the total cost of any given construction project. Distinction was drawn betveen ttems which are measurable by virtue of being observable physical entities and ttems which, although not direotly visible as a function of building design, can nevertheleas be priced separately from the measurement provided.

The section "Comprehensive Analysis at Bill of Quantities Item Level of Abstraction" described analysis of data following "normalisation". Item values in Bills of Quantities were standardised by dividing each item velue by the mean ttem velue. For each Bill of Quantities tabulations were produced of meen ttem value, standerd devistion and skewnees. It was shown that in all Bills of Quantities item cost distributions were highily skeved, that in not normaliy distributed. Invariably a few very high value items contribute the bulk of the total cost. Removal of unmeasured ittems in SMMM5 Bills reduced the mean them value, wuggeating a preponderance of high value items which are not mearured (quantified). Removal of unmeasured thems in BMMM Bills sometimes tnoreased the mean them vatuo, sucgenting that in some cases the higheat value ftemen were eubject to measurement (quantification).

The sections "Analysis at Trade and Trade Subection Lovel of Abrtewotion" illuatrated that the "abnormal" cont dintelbutions replicate at thew higher levale of abmernotion (La at lower levels of detail). Thowe Trades and Trade Subeections in which cowinaigniticent Bill thems proliferate were identified. A cominaignifionat them was defined for the purpowe of the atudy as being one of the lowest velue Bill Hems which collectivaly ageregrte to the leat 8% of the Bill Totel (when placed in demcending rank order of vilua). Prwattioners frequentity expect to achieve suoh lovels of extimating acouracy, thiugh this olatm in largaly untented. It was shown that in all Bille cectain Tradee constatenity geooctad a merginally higher proportion
of the total of cost-insignificant items. It was recommended that eliminstion of costinsignificant items from the measurement system should commence with those Trades. Preliminary conclusions were oftered regarding the scope for not measuring (or ohanging the approach to the measurement of) costinsignificant items.

The section "Recommendations Regarding Costinsignificant Parametars and Generic Families of Parameters" identified those thems which permanentily resided in the cost insignificant category previousty described. Their omission from the measurement system was suggested. Those generic families of items which are similar in nature but conventionally classified in separate measurement rules, and identically or similarty priced, were identified. The simplification of their measurement was suggested, by virtue of reducing the number of measurement categories for such items or by amalgamating suoh items into composite items. At this stage further conolusions were offered concerning the results and the validity of the original hypothesis. Proposals for an experimental method of measurement were set out.

In the section "Anslysis at Flementel Leval of Abstraction" the data were grouped by building Element. Elemental cost distributions by projeot and inoidence of Flements acroes all projects were computed. It was axgued that the data were insurficient to yield conolu ive Elemental breakdowns and incidence. It was concluded that this type of anabyis requires a greater number of construction projects than ware available. It was ahown, however, that for certain types of building certain Elements will have sufficienty negigible cont input to warrant detailed mearurement attention. Discuman was oftered as to whether data olassification using conventional Fhements is capable of leading to standardination of contas in terms of being consinterat.

Btudy of idiographic, as opposed to nomothetio, modals for cont anslyde and planning wea recommended. The heterogeneovs nuture of the Flemental Cont deta must be etremed. Future work in this aree should be exeouted with this in mind, as the data have the capaoty to contradict the underifing aesumption behind EMemental coet analyds and pianning that buildings be selected which are obaractecined by atmillactity.

Chapter 6 classied Flements by the rate at which they generate costs (attract prices from Tenderers). It was shown that classification can be attempted on the basis of an Element being a Major Cost Generator or a Minor Cost Generator. Minor Cost Generators will display the property of generating costs more slowiy per item than do items acroes the whole project. It was suggested that Minor Cost Generator Elements may have scope for being subject to simplified measurement conventions; alternativaly there mas be soope for removing them entirely from the measurement system.

8.7 Regarding the Valmation of a Hypotherical Peirochenacal Civil Enganghering Mragurbhathet and Cost Control Modeh

Chapter 7 desoribed the validation of the hypothetical modal which was formulated on the besis of the empirical obearvations in Chapter 6. A survay of all potential model users was erecouted in order to solioit the judgement of theee experts as to whether the proposed method of measurement would achieve its atated objectivee. The reapondents conoluded that the hypothetical model would produce fower ttems to measure, reduced measurement time overall, reduced measurement time on "wall" thems, reduced woridngup time overall, reduced workingup time on "small" treme, adequate unthe of mearurement, reduced time in preparing Tenders, a more acceptable leval of detail, and no foreaeeeble problems in prifing Bills of Quantitices.

The respondemts conoluded that the hypothetioal model would be a simpler and clearer document, would make olearer proviaion for speatioations, would provide adequate information for tendering prrposes, would achieve reduced time valuing pont contract variations and preparing interim valuations. The reapondents were seen to have mbred feelings as to whether the hypothetical modal would be a more readable document (though thife appeares to contrant with earifier remponmeajor would be adequate for the purpoee of asaigning prices to Bills of Quantites (which also appears to contradict eariler reaponsea). The rerpondents wece seen to harbour doubte to whether the hypothetical model adequataly defines where the conte of small itteme no longer meanured ware inoluded, and foremw problecms with Bill of Quantition preparation (though some carifor recponmes suggented otherviso).

In Chapter 7 the first test of the hypothetical model was carried out by remeasuring an existing historical project using the hypothetical model as the method of measurement and having one of an approved panel of contractors price the project again as a bons fide Tender. Comment by the Tenderer and the expert user who "re measured" the project on the use of the document for Tendering purposes was incorporated. The feedback from measurer and tenderar was largely of a teohnical nature, illustrating the conventional tendency to appraise models on the basis of their internal consistency rather than on the epistemologioal factors surrounding their formulation. It was seen that the bons fide Tender so produced came in exceptionally close to the original and that the Tendering process was not signtificanty affected by the use of a simplified model for measurement. it was argued that the Experimental system of measurement, lacking the detall of conventional systems, did not materially obstruct the Tendering process.

Chapter 7 described two brief teats to compare BMIMF7, The Fypothetioal Modal and "Shorter Bills of Quantities" in terms of their relative simplification of detall. On the basis of the two tests described "Shortar Bills of Quantities" was seen to have simplified the measurement conventions to a greater erdent than the hypothetical model. Overall, the hypothetical model had fewer items due to masave savings in a small number of Trades. It was surgested that the hypothetical modal would operate aatisfactorily in practice on the basis that "Shorter Bills of Quantities" can be utilised for the same purposes whithout caving dincernible problems in the procesees of eatimeting, tendering, valuing variations and final e0counts.

It should be stressed that the teating of the modal was limitted and constrained comewhat by an inability to obtain or sustain prolonged direct contact with tenderers. Future work in the area should concentrate on the parcoptions of tenderers regarding auch modala.

8.8 Faccondindmatrons

The formuletion of a hypothetion meanrement and cont control modal for Petroohemion Civil Fragineecing work has comtributed to the proitfantion of euoh modals on a rational, as opposed to sociologioal batis. Insufficient recognition of the sooiologion thotors surrounding model formulation and practice eadits in the induatry. In the procem, though
an idiographic approach to modelling has been argued to be worth studying, an overlap of idiographic and nomothetic characteristics has been identified in some conventional models. Thus they are not truly "standard", and reliance on "standard" models may be imappropriate to the "umique" siturtions likely to be enooumtared. Therefore a range of relstively unique models is angued for. However, the statistical methods employed in this thesis are capable of replication should generalisation be considered desirable.

The Element costs studied have violated every principle of cost consistency suggested by Morrison and Stevens (1983). The coefficiemts of varistion of the conventional Element classifications were so great as to require (following Morrison and Stevens' account) their breakdown into subelements or consthuent components of greater predictability. Elements as currentidy defined are inconsistemt in their cost behaviour, wo have defined them as design parameters rather than on true cost determinants; it megy be that immutable components of Elements could be identified which give greater consistency of oont behsviour. An alternative set of cost centres should be idantified and applied which can be recognised and predicted as being signtficant or insignificant in cont terms.

Given the nature of the construction work under study, the cost model used should be capable of tacilitating inputs of the costs of the factors of production into the deaign-baged cost centres. This could interface between the deaign and production team during deaign and should suit some of the requirements of this type of construction work (and probably others). To this end, equtvalems to the Lead Ponttions of the Diederiaha-Fiepermann model (1985) should be inveatigated and applied.

It is argued that if the Petrochemicel cont modal is produced in the format of a comowhat more detailed Elemental Cont Analyais than thoee ourremty emplojed (La a lenodetalled Bill of Quantities than is comventionally emplojed) then auflident detall will be provided to enable the procemses of tendering and valuntion of poes combet variations to 0000 r without undue hindrance. Bimultancousty, a better leval of detall will be provided tor the purpowe of more objectively carrying out FHemental Cont Fienning. Also, as the two docrments would thus become a singie docrment, the eflort of produoing a Bill of Quantities and then uing it to produce an Elemental Cont Analyisis is diapensed with. It is argued that theas reparato
efforts are undesirable because neither Bill of Quantities nor Elemental Cost Analysis have an adequate enough format for the uses to which they are put.

It is argued that the most suitable model to test in the given contert would be the Diedariohs Fepermann model. Its attempt to link designer and producer at an earty stage is perceived to be of potential benefit. Indeed, it may well have usafulness in other domains, if it be accepted that involving the builder in the earty stages of the process has fintrinsio value, which it presumably does. Also, the model can be made to fit an existing set of design-based Elements with which design teams ought to be familiar, though its recognisable cost centres are not Elementally based. The set of "yignificent cost contres" upon which it is based is, itself, perceived to be an improvement on its United Kingdom counterpart. There are United Kingdom equivalents to these cost centres which could be rased and adapted for this purpose, though they ere not currently employed in that wey.

RHFERENCES

Ashworth, A. (1994). "Cost Studies of Buildings", 2nd Edition Longman Soientific and Technical. 313328.

Ashworth, A. and Skitmore, R. M. (1983). "Accuracy in Estimating". Chertered Institute of Building. Occasional Paper Nr 27.

Azrarro, D., Hubbard, J. and Robertson, D. (1987). 'Contractors' Estimating Procedures: AnOverview".

Baccarini, D. J. (1984a) "Brickwork - Faiffice and Facework". Chartered Quantity Surveyor. April. 352.

Baccarini, D. J. (1984b). "Formwork". Chartered Quantity Eurveyor. June. 417.

Barnes, N. M. L (1971). The Design and Use of Erperimental Bille of Quantities for Civil Engineering Works". PhD Thesis. University of Manoheater Institute of Science and Technology.

Barnes, N. M. L (1977). "Measurement in Contract Control". Inatitution of Civil Ingineers. 2.

Benham, N. and Capon, K. (1883). "EIMMIF". In Chartered Guantity Eurvejor. 394.

Bennett,J. (1890). "QS as Don". In Chartered Quanetity Surveyor. 3031.

Bennet, J. (188\%). "BMMM7". In Chartered Quantity Surveyor. 363.

Bowen, P. A. and Edwande, P. J. (1080). Cont Modelling and Price Foreonating Practice and Theory in Perspectiva. In Construction Management and Eronomica. IF \& F. N. Spon. 3|180815.

Brandon, P. S. (1982). "Building Cost Researoh: Need for a Paradigm Shiff". Transections. Building Cost Techniques: New Directions. Portsmouth Polytechnic. 8.

Brown, H. W. (1884). "Cost Prediotion of Bullding Services, A Holistic Appraisal in the Context of Design Management". MSc Thesis. Heriot-Watt University.

Building Cost Information Service (1969). "Standard Form of Cost Analysis". Royal Institution of Chartered Surveyors.

Building Cost Information Service (1880). "Study of Preliminary Percentages". Royal Institution of Chartered Surveyors. Study Nr 17A.

Civil Engineering Standard Method of Measurement (1976). Institution of Civil Engineers. Thomas Telford.

Cirmo, R (1979). The Eoonomics of Vitredo Pareto. Frank Case. 6187.

Civil Engineering Standard Method of Measurement, \&nd Edition (1885). Institution of Civil Engineers. Thomas Telford

Civil Engineering Standard Method of Measurement, 3rd Edition (1991). Institution of Civil Engineers. Thomas Telford.

Daly. I M (1981). What's the Use of the Bill of Cuanstices". In Building Economiat.

Devies, A. J. and Greeawood, D. J. (1904). "A Proponed Now Approach to Elemental Cost Planning for Deaigners and Builders". Transactions. Assooistion of Reacarohers in Construction Management. Bxitmore, R. M. and Betts, M., Eda. Loughborough Untvenity of Technology. 402-409.

[^1]Deutsches Institut für Normung (1984). DIN 276 - Kostengliederung für Hoohbeuten.

Diederichs, CJ. and Hepermann, H. (1985) "Rosteneinflusfaktoren bei den Leitpositionen von Standardleistungsbeschreibungen fïr die Kostengruppe 3.1 naoh DIN 276". Bergisohe Universitàt Wuppertal.

Dirksen, H-G. (1982). "A German Contractor Thinks Aloud". Chartered Quantity Surveyor. 312.

Dobeon, C. B., Hardy, M. R., Heyes, 8. W., Humphreys, A. and Humphreys, P. W. (1980). "Understanding Paychology".

Dominowiki, R. L (1980). "Researoh Methods". PremticeHall, Ino. 178.

Drucker, P. F. (1978). "People and Performance". Heinemann. 104-105.

Emmett, J. J. (1990). "Bhorter Bills of Quantities for Simpliotity and Emeiency". Building. August. 24.

Ferry, D. J. and Brandon, P. 8 (1984). "Coat Planning of Buildings", Eth Edition. Collins. 101188.

Feyerabend, P. K. (1870). "Consoletions for the Speoialint. In Cutionsm and the Growth of Knowiedge. Cambridge Untvecuty Preas. 197830.

Feyerabend, P. K. (1870). "Agrinat Mathod". New Lat Bools. 45, 47.

Fejerabend, P. K (1978). "in Defence of Artatotio". In Progreas and Rationality in Eoience. Radnitelty, G. R. and Andermon, G., Ede. vLVII. Raidal 148180.

Fine, B. (1882). The Une of Btmulation as a Revearoh Tool". Transactions "Building Cont Teohniquer: New Directions". Portmouth Polytechnia. E \& F N Epon Brandon, P. B., Bd. 68.

Fine, B. and Haokemar, G. (1970). "Estimating and Bidding Strategy". Building Technology and Management. 89.

Flanagan, R (1880). "Tender Price and Time Prediction for Construction Work". PhD Thesis. University of Aston.

FletoherMoore, Monk-Dunstone (1886). "Shorter Bills of Quantities. The Conoise Standard Phraseology and Library of Descriptions". The Builder Group.

Gates, M. (1967). "Bidding Strategies and Probabilities". ASCE Journal of the Construction Division. 75-107.

Goldratt, E. M. (1990). The Haystack Eyndrome: Sitting Information Out of the Data Ocean. North Rivar Preas.

Grünbaum, A. (1978). "Popper vs Inductivism". In Progress and Rationality in Boience. Radniterky, G. and Andersson, G. (Eds). Reidel. 117-142.

Hardcastle, C. (1992) "An Information Model Of The Construction Cout Extimating Procesa". PhD Thesis. HeriotWatt Untversity.

Hardoastle, C., Brown, H. W. and Devies, A. J. (1987a). "Statistioal Modelling of Civil Engineering Costs in the Petrochemical Industry". Transactions. Building Cont Modelling and Computers. Univensity of Baliord.

Hardcastle, C., Brown H. W. and Davien A. J. (1987b). Etatitical Modelling of Ctwll Engineering Cows in the Petroohemioal Induatry". Transactions. CIB Fourth Internetional Eympoatum on Building Foonomics, Copenhagen.

Hardonatle, C., Brown, H. W. and Devies, A. J. (1988). Control of Putroohemioal Civil
 International Cout Ehafinearng Congremen Now York, NY.

Harsanyi, J. (1955). "Cardinal Welfare, Individual Ethics and Interpersonal Comparisons of Utility". In J. political Econ. 63.

Heath, R. L and Bryant, J. (1992). Human Communication Theory and Research. Lewrence Eribaum Associates.

Heather, N. (1976). "Radical Perspeotives in Paychology". Methuen.

Hindnees, B. (1977). Philosophy and Methodology in the Social Soiences. John Spiers. 148 163.

HAAI (1984). Verordmungen ther die Honortive und Leistungen der Architekten und Ingenieure". Bundesministarium für Paumordnung, Bauwesen und Setidtebau.

Holt, G. D., Olomolatye, P. O. and Haxris, F. C. (1994). Evaluating Performance Potential in the Selection of Construction Contractors". In Fingineering, Construction and Arohtteotural Management. Blackwell Science. 1|1,2060.

Hooker, R. J. (1885). "Btandard Method of Meanurement 7h Edition". In The Quantity Surveyor. 166-170.

Hooker, RJ. Towarde the Twenty Fint Century - Mearurement Conventions for the Future". In the Quantity Surveyor. $\mathbf{V 3 5} 12.284869$.

Horner, R. M. W. and Easct, M. M. (1984). "Cow Bignificance and Itecutve Eramating'. University of Dundee.

Hormer, R. M. W. MoKis, K. J. and Balcet, M. M. (1080). "Btmple Computer Models of the Construction Process'. Tranactionas. Imecrnational Amooimion for Bildge and Eiructurel Engineering, Zurioh
 Untrensity OLDundee.

Hughes, G A. (1983) "SMMM7". In Chartered Quamity Surveyor. May. 324325.

Katona, G. (1963). Paychological Analysis of Economio Behsviour. McGram-Hill 67-73.

Keating, C. J. (1977). Tooking Baok at Cost Estimating and Control". Transactions. American Association of Cost Fingineers. 12-20.

Kenley, R and Wilson, O. D. (1986). "A Construation Project Cash Flow Model - an Idiographic Approach". In Construction Management and Economics. 4|213232.

Kenny, D. A. (1979). Correlation and Causalty. John Wiley and Sons, Inc. 1-12.

Koertge, N. (1978). "Towards a New Theory of Scientific Enqquiry". In Progreas and Rationality in Science. Radnityky, G. and Andermann, G. (Ede).. Reidel. 253-278.

Kuhn, T. S. (196x). The Ecucture of Solentifo Revolutions. Chicago Untversity Preas.

Kuhn. T. S. (1972). The Essential Tension. Chicago Universty Prees.

Leyder, D. (1893). New Strategies in Social Researoh. Polity Preas. 1970.

Lubracs, G. (1971). History and Clase Consoioumena. Merlin Prema.

Mariss, P L, Jagear, D M, AlGhaswi, M and Bird, D (1990). Deatign Coat Control in Civil Frogineering Projecte - the Development of a Viable Eyntem". Transactiona Counsed International du Batiment pour la Recherohe, Lirude at la Dooumentation. Univenaty of Teahnology, Eydney. 164-171.

Masterman, M. (1970). "The Neture of a Paradigm". In Cettioism and the Growth of Knowledge. Cambridge Untveredty Preas. 5080.
 Ed. Hutahineon 344.

Medswar, P. (1982). "Pluto's Republic". Ouford University Press. 86.

Moore, T. and Ashworth, G. (1886). "Publication Produces Shorter Bills". Chartered Quantity Surveyor. 5.

Morrison, N. and Stevens, S. (1981). "Coast Planning and Computers". Untversity of Reading and the Property Services Agenoy. 29.

Mower, K (1982). "SMMM7". Chartered Quantity Surveyor. 165.

Musgrave, A. (1978). "Evidential Support, Falsification, Heuristics, and Anarchism". In Progreas and Rationality in Bcience. Radnitidy, G. R and Anderneon, G., Eds. viVII. Reidel. 181-201.

Nachmias, D. and Nachmiss, C. (1976). Reseerch Methods in the Sooial Soiences. Edward Arnold. $58-53$.

National Consultative Counoil Working Group on Indices for Burlding Contracts (1879). "Price Adfustment Formulae for Building Contrectes (Series 2 Revised): Description of the Indices". Property Servioes Agenay.

Neale, J. M. and Liebert, R. M (1090). Soience and Behsaiour. An Introduction to Methods of Research PromticeHall

Newton, 8. (1901). "An Agenda for Cowt Modelling Reaearah". In Conatruction Management and Economice. E. \&. N. Spon. 9|97-112.

Ng 8. T. and Exthmore, R M. (189). Deolion Eupport Eyptem for Conetruction Prequaltficetion". Transactions. Ancoointion of Researohers in Construation Management.

Pasquire, C. (19e5). Bullders Quantition for Conenctors Management, Conrtered Institse of Builders. Occuatonn Paper Nr 55. it-1.

Popper, K R. (1959). "The Logic of Soientific Disoovery". Hutahinson.

Post, H. (1978). "Objectivism vs. Sociologism". In Progreas and Rationality in Soience. Radnitzky, G. R. and Andersson, G., Eds.. vLVII. Reidel. 311318.

Principles of Measurement (Internationa) For Works of Construation (Undated). Royal Institution of Chartered Surveyors.

Property Services Agency (1983). "Estimating Information - Bignificant Items and Average Measured Rates".

Putnam, H. (1891). 'The 'Corroboration' of Theories'. In The Fhillosophy of Soience. Boyd, R, Gasper, P. and Trout, J. D.. Eds.. Masseohuseetts Institute of Teohnology Preas. 121-137.

Quier, J. A. (1892). Author, "Shorter Bills of Quantities: The Concise Exandard Phraseology and Library of Descriptions". Interview. Augunat.

Rattery, J. (1891). "Models for Construotion Cost and Forecauting". Transactions. First National RICS Research Conference. E. \& F. N. Spon. Chapman and Hall.

Royal Institution of British Arohitectes (187J). Handbook of Arohitectural Practice and Management Plan of Workn. ve/®3.2e0.

Saket, M. M. (1896). "Cont Bignifionce Applied to E-timeting and Control of Construction Conss". FhD Theate. Univeruty of Dumdee.

Balcet, M. M. (Undeted). "Reculte of Tending Itecative Ertmintig". Untvarity of Dundee. Repont Nr 84|18.

Seeleg, I. H. (1088). "Building Quanettice Eh 9 phined", thh Fidtion. Mnomillan Erducetion3.

Ben, A. (1870). "Rational Fooir: A Cuttique of the Bahawioural Foundatione of Eoonomio

Siverton, G. R. (1983). "SMM77". In Chartered Quantity Surveyor. 325.

Singh, G. and Banjoks, O. O. (1990). "The Development of a Rational Bill of Quantities". In Construction Management and Economics. 8|31-47.

Skinner, D W H. (1979). "An Analysis of the Utility of Bills of Quantities in the Process of Building Contracting". PhD Thesis. University of Aston.

Skinner, D. W. H. and Jepson, W. (1980). "The Contractor's Use of Bills". In Chartered Quantity Surveyor. September.

Skoyles, E. R. and Fletcher, L (1964). "Introduction to Operational Bills". Building Researoh Station. Paper CP DS 32.

Slsoyles, E. R and Fletcher, L (1870) "Bill of Quantities or the Operational Bill". Arohiteot's Journal.

Skoyies, E. R. (1986). Research and the 96". In Chartered Quantity Survajor. 34.

Smith, G. M. (1879). "Can the Quality of Data Be Improved in BOQs". Buriding Trades Journal. 16.

Snell, R. G. (1873). "The Bill - Ite Une and Abveo". Chartered Quantty Surveyor. 13-14.
Southgate, A. (1988a). "A New Approech [Part 15". In Chartered Quantity Eurvegor. November. 3538.

Southgate, A. (1988b). "A Now Apprioah [Part ej". In Chartered Qumntity Eurvejor. December. 25.

Stamper, R. (1973). "Information in Buainees and Adminitrative Eybtems". B. T. Bateford. 24R7, 4850, 7879.

Standard Method of Measurement of Building Works, 5th Edition (Metric) (1968). Royal Institution of Chartered Surveyors.

Standard Method of Measurement of Building Works, 6th Edition (1981). Royal Institution of Chartered Surveyors.

Standard Method of Measurement of Building Woriss, 7th Edition (1888). Royal Institution of Chartered Surveyors and Building Employers' Confederation.

Standard Method of Measurement for International Fingineering Construotion (1884). The Association of Cost Engineers and the Royal Institution of Chartered Surveyors. 9.

Strotton, C. (1888). 'SMMM7 Reviewf. In Chartered Quantity Surveyor. April. 27.

Tong. Y. and Lu, Y. (1992). Unbalanced Biddting on Contracts with Variation Trends in Client-Provided Quantities". In Construotion Management and Eoonomics. E. \& F. N. Spon 10 6080.

Toulmin, 8. (1970). "Does the Distinction Between Normal and Revolutionary Soience Hold Wader?". In Criticiam and the Growth of Knowledge. Cambridge Univenity Prees. 3948.

Townsend, A. (1990). "Computeriding Contr". In New Civil Engineer. December. 36.

Wilis, C. J. and Newman, D. (1983). "Flemente of Quantity Survoging", 8th Edition. BSP Proferaional Books.1th.

Worthington, S. (1886). Conaruction Deadgn: the Dedign Procees end the Role of the Bite Survey within this Prooems". Dinmartation. Untventify of Northumbria

Bibliography

Ashworth, A. (1994). "Cost Studies of Buildings", 2nd Edition Longman Scientific and Technical. 313328.

Ashworth, A and Skitmore, R. M. (1983). "Aocuracy in Estimating". Chartered Institute of Building. Occasional Paper Nr 27. 10.

Azrarro, D., Hubbard, J. and Robertson, D. (1987). 'Contractors' Estimating Procedures: An Overview"

Ashworth, A. and Barnes, N. M. L. (1981). "A Method to Reokon With". CIRIA. Report Nr 34.

Baccarini, D. J. (1984a) "Brickwork - Fairface and Facework". Chartered Quantity Surveyor. April. 352.

Baccarini, D.J. (1984b). "Formwork". Chartered Quantity Surveyor. June. 417.

Barnes, N. M. L (1971). "The Design and Use of Experimental Bills of Quantities for Civil Engineering Works". PhD Thesis. University of Manchester Institute of Science and Technology.

Barnes, N. M. L (1975). "The Standard Method of Measurement - Seventh Edition". In the Quantity Surveyor. March.

Barnes, N. M. L (1977). "Measurement in Contract Control". Institution of Civil Engineers. 2.

Barnes, N. M. L (1979). "Measurement Theory". In Chartered Quantity Surveyor.

Barry, P. (1985). "Getting Involved". In Chartered Quantity Surveyor. July. 482-483.

Beeston, D. (1980). "Measurement Theory Itatistics Understated". In Chartered Quantity Survejor. 『2|8. 209.

Benediot, J. (1972). "The Unpriceable Items in Bills of Quantities". In Building Trades Journal. February.

Benham, N. and Capon, K (1983). "SMIMT". In Chartered Quantity Surveyor. April. 324.

Bennett, J. (1983). "SMMM7". In Chartered Quantity Surveyor. 363.

Bennett, J. (1986). "QS as Don". In Chartered Quantty Surveyor. 3031.

Bennett, J. and Barnes, N. M. L (1979). "Outline of a Theory of Measurement". In Chartered Quantity Surveyor. October. 5356.

Bishop, D. (1986). "Operational Bills and Coat Commumications". Bullding Researah Seation. Paper CP DS 55.

Bowen, P. A. and Edwards, P. J. (1980). "Cont Modalling and Price Forecanting. Practice and Theory in Perspeotive". In Construation Management and Economics. E. \& F. N. Spon. 3|199215.

Brandon, P. S. (1982). "Building Cont Rewearoh: Noed for a Paradigen Shtap". Transactiona. Building Cost Teohniques: New Directions. Portamouth Polyteohnio. 8.

Brown, H. W. (1884). "Cost Prediotion of Buriding Servioes, A Holistic Appraieal in the Contant of Design Management". MBo Theals. HeriotWatt Untverity.

Braint, A K. (1980). "E-athenating and Cont Control". Computer Teohnoloey in Conatruation. Telford. 2935.
 Institution of Chartered Eurreyors.

Building Cost Information Service (1980). "Study of Preliminary Percentages". Royal Institution of Chartered Surveyors. Nr 17A.

Burge, T. (1991). "Individualism and Psyohology". In the Fhilosophy of Science. Boyd, R., Gasper, P. and Trout, J. D., Eds.. Massachussetts Institute of Teohnology Preas. 687-712.

Burrows, M. (1983). "Problems in Measurement and Construotion". In Building Trades Journal. v185, Nr 5510. 20.

Carnap, R. (1991). "Logical Foundations of the Unity of Soience" In the Philosophy of Science. Boyd, R, Gasper, P. and Trout, J. D, Eds.. Maseachussetts Institute of Technology Press. 121-137.

Cirillo, R. (1979). "The Economics of Viffredo Pareto". Frank Cass. 6167.

Civil Engineering Standard Method of Measurement (1976). Institution of Civll Engineers. Thomas Telford.

Civil Engineering Standard Method of Measurement, znd Edition (1985). Institution of Civil Engineers. Thomas Telford.

Civil Engineering Standard Method of Measurement, 3rd Edition (1991). Institution of Civil Engineers. Thomas Telford.

Coles, D C H. (1973). "A ReThink On Operational Bills". In the Quantity Survegor. Juky and August.

Copping P. J. (1890). The Pragmatio Method of Measurement". In the Building Eoonomint March. 5.

Daty, I. M. (1981). Whatis the Une of the Bill of Cuantitierp". In Building Eronomint. September.

Davies, A. J. and Greenwood, D. J. (1994). "A Proposed New Approach to Elemental Cost Planning for Designers and Builders". Transactions. Association of Researchers in Construction Management. Skitmore, R. M. and Betts, M., Eds.. Loughborough University of Teohnology. 402409.

Department of the Environment (1872). "A Report on the Arrangement of Information for Building Projects". HMSO.

De Troyer, F. (1990). "Cost Breaksdown in Functional Macroelememts and Sub-EHements - A Design Tool". Transections. Counsell International du Batiment pour la Recherche, LEtude et la Documentation. University of Technology, Sydney. 100-111.

Deutsches Institut für Normung (1984). DIN 276-Kostengliederung fïr Hochbauten.

Diederichs, CJ. and Hepermann, H. (1985) "Kosteneinfuafaktoren bei den Leitpositionen von Standardleistungsbeschreibungen fir die Kostengruppe 3.1 naoh DIN 276". Bergisohe Universitut Wuppertal.

Dirksen, H-G. (1982). "A German Contractor Thinks Aloud". In Chartered Quantity Surveyor. May. 312.

Dobson, C. B., Hardy, M. R., Heyea, S. W., Humphreys, A. and Humphreys, P. W. (1980). "Understanding Paychology".

Dominowski, R.L (1980). "Reeearch Methods". PrenticeHall, Inc.. 178.

Druaker, P. F. (1978). "People and Performance". Heinemann 104-105.

Duhem, P. (1954). "The Aim and Structure of Phydical Theory" [Trans. Wiener, P. P.]. Princeton University Preas.

Emmett, J. J. (1890). "Shorter Bms of Quantities for Simplioity and Freioncy". In Building. August. 24.

Ferry, D. J. and Brandon, P. S. (1984). "Cost Planning of Buildings", 5th Edition. Collins. 101188.

Feyerabend, P. K. (1970). "Consolations for the Specialist". In Criticism and the Growth of Knowledge. Cambridge University Press. 187-230.

Feyerabend, P. K (1975). "Against Method". New Let Books. 45, 47.

Feyerabend, P. K. (1978). "In Defence of Aristotle". In Progreas and Rationality in Science. Radnitzky, G. R. and Andersson, G., Eds. vLVII. Reidel. 143-180.

Fine, B. (1982). "The Use of Simulation as a Research Tool". Transactions. "Building Cost Techniquess New Directions". Portsmouth Polyteohnic. E. \& F. N. Spon. Brandon, P. S., Ed. 68.

Fine, B. (1986). "Kitohen Sink Economics and the Construction Industry". Transactions. "Building Cost Modelling and Computers". Brandon, P. S., Ed. University of Salford. E. \& F. N. Spon.

Fine, B. and Hackemar, G. (1970). "Eatimating and Bidding Strategy". Building Teohnology and Management. 89.

Flanagan, R. (1880). "Tender Price and Time Prectiotion for Construction Work". PhD Theais. University of Aston.

Fletcher, L, Browne, G. R., Crisp, P., Deacon, J. E. A., Harrison, R. C., Hooker, R. J., Morris, H., Morris, P, Tompling, W., White, P. and Ferry, D. J. (1972). "Report of the Joint Woridng Party on Measurement Conventions". Royal Instatition of Chartered Survegors and National Federation of Bullding Trades Frmplogers. App. C| A8-A17.

Fletcher-Moore, Monk-Dumstone (1880). "Shorter Bills of Quantities: The Conolve Btandard Phraseology and Library of Deacriptions". The Buflder Group.

Franois, D. H. (1975). "Method Related Charges and the Quantity Surveyor in Civil Engineering'. In the Quantity Surveyor. March.

Freeman, G. (1987). "Quantity Surveying in Australia Todsy". In the Building Eoonomist. December. 34.

Gates, M. (1967). "Bidding Strategies and Probabilities". ASCE Joumal of the Construction Division. 75-107.

Goldratt, E. M. (1990). "The Haystack Syndrome: Sifing Information Out of the Data Ocean". North River Press.

Graves, R. (1959). "The Greek Myths". Penguin Books.

Gray, C. (1983). "Esthmating Preliminaries". In Building Technology and Management.

Greig, M. D. (1981). Construction Cost Advice, Is the Customer Setisfied?. A Study of Construction Cost Forecasting and Levels of Client Batisfaction". MSc Thesis. Heriot-Watt University.

Grünbeum, A. (1878). "Popper vs Inductivism". In Progreas and Rationslity in Science. Radnitvky, G. and Anderseon, G. (Eds.).. Reidel. 117-142.

Hardoastle, C. (1978). "An Inveatigation of Curremt Methods of Presenting Prices for Construction Workn". Miso Theais. Univeraity of Strathyolyyde.

Hardcastle, C. (1902) An Information Model Of The Construction Cont Frimating Proceas. PhDTheais. HeriotWat Untveratity.

Herdoantle, C., Brown, H. W. and Davien, A. J. (1987a). "Etetiatical Modelling of Civl Fingineering Coats in the Potrochemical Industry". Transactions. Building Cont Modalling and Computers. P.S. Brandon, Ed.. Univenthy of EaHord.

Hardcastle, C., Brown, H. W. and Davies, A. J. (1987b). "Statistical Modelling of Civil Engineering Costs in the Petrochemical Industry". Transactions. CIB Fourth International Symposium on Building Economica, Copenhagen.

Hardcastle, C., Brown, H. W. and Davies, A. J. (1988). "Control of Petrochemical Civil Engineering Costs". Transactions. American Associstion of Cost Engineers, Tenth International Cost Engineering Congreas, New York, NY.

Harsanyi, J. (1955). "Cardinal Weltare, Individual Ethics and Interpersonal Comparisons of Utility". In J. political Econ. 63.

Heath, R. L and Bryant, J. (1992). "Human Communication Theory and Researoh". Lawrence Eribaum Associates.

Heather, N. (1976). "Radical Perspeotives in Paychology". Methuen.

Hindness, B. (1977). "Phillosophy and Methodology in the Social Soiences". John Spiers. 142 163.

HOAI (1884). "Verordnungen über die Honorkre und Leistungen der Arohitekten und Ingenieure". Bundesministerium fïr Raumordnung, Bauwesen und Stłdtebau.

Hodgetts, M. F. (1987). "Risk Management and Cost Control". In the Building Eoonomist. December. 17-20.

Holt, G. D., Olomolatya, P. O. and Harris, F. C. (1994). Evaluating Performance Potential in the Selection of Construction Contractors". In Fingineering, Construotion and Arohitectural Management. Blackwell Science. 1|1,2950.

Hooker, R. J. (1885). "Etandard Method of Meacurement 7th Edition". In the Quantity Surveyor. 168-170.

Hooker, RJ. "Towards the Twenty First Century-Measurement Conventions for the Future". In the Quantity Surveyor. v35|2. 264269.

Horner, R. M. W. and Saket, M. M. (1984). "Cost Significance and Iterative Estimating". University of Dumdee.

Horner, R. M. W., McKay, K. J. and Saket, M. M. (1986). ESimple Computer Models of the Construction Process". Transactions. International Association for Bridge and Structural Engineering, Zurioh.

Horner, R. M. W. and Saket, M. M. (1984). "Cost Significance and Iterative Estimating". University of Dundee.

Hughes, GA. (1983) "SMMM7". In Chartered Quantity Surveyor. May. 324325.

Hibbert, P. (1982). "The Case for Analytical Bills". In Chartered Quantity Surveyor. October. 9697 .

Hill, G C. (1969). "The Practical Operation of an Operational Bill by a London Borough". In the Quantity Surveyor. Max.

Holes, L G. (1990). "Finding an Alternative". In Chartered Quantity Surveyor. May. 10-11.

Holes, I G. and Thomas, R. (1873). "Integrated Measurement". In Building. February.

Hooker, R. J. (1975). "Btandard Method of Measurement 7h Edition". In the Quamtity Surveyor. February. 166-170.

Hooker, RJ. "Towerds the Twemf First Century - Measurement Conventions for the Future". The Quantity Surveyor. v35, Nr 2. 284869.

Horne, A. (188\%). "CESSMM \& SMDM6: The Differences". In Chartered Quantity Surveyor. November. 130-131.

Horner, R. M. W., MoKay, K. J. and Saket, M. M. (1886). "Simple Computer Models of the Construction Process". Transactions. Workshop, International Assooiation for Bridge and Structural Engineering, Zurioh.

Horner, R. M. W. and Saket, M. M. (1984). "Cost Significance and Iterative Estimating". University of Dundee. November.

Hucker, M. (1993). "Measurement Legacies in Developing Commonwealth Countries". In the Building Economist. March. 1415.

Hughes, G. A. (1983). "CESMMM". In Chartered Qusntity Surveyor. October. 78.

Hughes, G. A. "SMMM7". In Chartered Quantity Surveyor. May 1983. 324325.

Hughes, G. A. (1970). "The Civil Engineering Standard Method of Measurement". In the Quantity Surveyor. July.

Hunt, G. J. (1970). "Changing the Bill of Quantities". In the Quantty Surveyor. July.

January, M. (1990). "A Proposed New Method of Measurement". In the Building Economist. March. 45.

Jordan, P. (1982). "SMMM7: Simplitying the Bills". In Building. 18 June. 25.

Katona, G. (1963). "Paychological Analysis of Economic Behaviour". MoGraw-Hill. 67-73.

Keating, C. J. (1877). "Looking Back at Cost Eatimating and Control". Transactions. American Associstion of Cont Fingineers. 1280.

Kanley, R. and Wilson, O. D. (1886). "A Construction Project Cash Flow Model - an Idiographio Approach". In Construction Management and Economice. 4|213-232.

Kenny, D. A. (1879). Correlation and Caumality. John Wiley and Sons, Ino. 1-12.

Koertge, N. (1978). "Towards a New Theory of Soientific Enquiry". In Progress and Rationality in Science. Radnitzkly, G. and Andersson, G., Eds. Reidel. 253-278

Kuhn, T. S. (1962). "The Stucture of Scientific Revolutions". Chicago University Preas.

Kuhn, T. S. (1972). "The Essential Tension". Chicago University Press.

Layder, D. (1993). "New Strategies in Social Research". Polity Press. 1970.

Leon, G. (1971). "The Implications of a Simplified Method of Measurement for Site Management". Institute of Building Information Service. Nr 37. March.

Lees, M. A. (1986). "Abuse of Erroneous Rates Advantage". In Chartered Quantity Surveyor. March. 4.

Liddle, C. (1879). "Process Engineering - the QS Role". In Chartered Quantity Surveyor. October. 5860.

Luksos, G. (1971). "History and Class Consoiousmees". Meriln Press.

Marks, P I, Jaggar, D M, Alshawi, M. and Bird, D. (1890). "Deaign Coast Control in Cwill Fngineering Projeots - the Development of a Viable System". Transactions. Counsell International du Batiment pour la Recherche, LiEtude et la Documentation. University of Teohnology, Sydney. 164-171.

Masterman, M. (1870). "The Nature of a Paradigm". In Criticism and the Growth of Knowledge. Cambridge Untversity Preas. 5089.

MoDonough, R. (1878). "Ideology as False Consoioumees". In On Ideology. Bohwase W, Ed. Hutahinson. 344.

Method of Meamrement for Roed and Bridge Works (1887). Department of Trampont. July.

Medswar, P. (1982). "Pluto's Republic". Oxford University Press. 86.

Miles, K. A. (1988). "Raising the Standard". In Chartered Quantity Surveyor. May.

Moore, T. and Ashworth, G. (1986). "Publication Produces Shorter Bills". In Chartered Quantity Surveyor. March. 5.

Morrison, N. and Stevens, S. (1981). "Cost Planning and Computers". University of Reading and the Property Services Agency. 29.

Mower, K. (1982). "SMMMT". Chartered Quantity Surveyor. December. 165.

Musgrave, A. (1978). "Evidential Support, Falsification, Heuristics, and Anarohism". In Progress and Rationality in Science. Radnitek'y, G. R. and Andersson, G., Eds.. vLVII. Reidel. 181-201.

Nachmias, D. and Nachmias, C. (1976). "Research Methods in the Sooial Soiences". Edward Arnold. $52-53$.

National Consultative Coundil Working Group on Indices for Building Contracts (1979). "Price Adjustment Formulae for Building Contracts (Series 2 Revised): Desoription of the Indices". Property Services Agency.

Neale, J. M. and Liebert, R. M. (1980). Soience and Behsviour. An Introduction to Methods of Research. Prentice-Hall.

Newton, S. (1991). "An Agenda for Cout Modelling Research". In Construation Management and Economics. E. \& F. N. Spon. 9|97-112.

Ng S. T. and Skitmora, R. M. (1994). "Deoision Support Eyatem for Construction Prequalification". Transactions. Aseociation of Reacarchers in Construction Management. Battmore, R.M. and Betts, M, Eds. Loughborough Untversity of Teohnology.

Ogunlana, S. O. (1989) Acouracy In Design Cost Estimating. PhD Thesis. Loughborough University Of Technology.

Oppenheim, P. and Putnam, H. (1991). "Unity of Science as a Working Hypothesis". In the Philosophy of Science. Boyd, R., Gasper, P. and Trout, J. D., Eds.. Massachussetts Institute of Technology Press. 405-427.

Pasquire, C. (1993). Builders' Quantities for Contractors' Management. Chartered Institute of Builders. Occasional Paper Nr 55. iili-1.

Flowden, A. (1977). "CESMMM: Brevity at All Costr". In Building. 15 April.

Popper, K. R. (1959). "The Logic of Soientific Discoverg". Hutahinson.

Post, H. (1978). "Objeotivism vs. Sociologism". In Progreas and Rationality in Science. Radnitiky, G. R. and Andersson, G., Fds.. vLVII. Reidel. 311318.

Principles of Measurement (International) For Works of Construction (Undated). Royal Institution of Chartered Surveyors.

Property Services Agency (1983). "Eatmating Information - Bignificant Items and Average Measured Rates".

Putnam, H. (1991). "The 'Corroboration' of Theories". In the Philosophy of Solence. Boyd, R, Gesper, P. and Trout, J. D., Eda. Masachuseots In

Quier, J. A. (1892). Author, "Shortar Bills of Quantities: the Concise Gtandard Phraseology and Library of Deacriptions". Interview. August.

Raitery, J. (1991). "Models for Construotion Coat and Forecasting". Transactions. Firat National RICS Remearch Conference. E. \&F. N. Epon. Chapman and Hall.

Redding, J. (1987). "Building services and the Challenge of Bills of Quantities". In the Building Economist. March. 910.

Rimmer, G. (1882). "SMMM7 Progress Report". In Building. 2 April.

Roberts, C. F. (1987). "The Australian Standard Method of Measurement: Further Problems". In Building Economist. v25, Nr 4. 10-12.

Royal Institution of British Architects (1973). "Handbook of Arohitectural Practice and Management: Plan of Worx". v2|s3:220.

Saket, M. M. (1886). "Cost Significance Applied to Estimating and Control of Construotion Costs". PhD Thesis. Untversity of Dundee.

Saket, M. M. (Undated). "Results of Testing Iterative Estimating". University of Dundee. Report Nr 84|12.

Schlick, M. (1991). "Positivism and Realism". In the Philosophy of Soience. Boyd, R., Gasper, P. and Trout, J. D., Eds.. Massachussetts Institute of Technology Press. 37.55.

Scotiond, A. (1990). "New Standard Method of Measurement". In the Building Eoonomist. 11.

Seeley, I. H. (1988). "Building Quantities Explained", 4th Edition. Msomillan Education. 3.

Sen, A. (1970). Rational Fools: A Critique of the Behsvioural Foundations of Economio Theory". In Criticism and the Growth of Knowledge. Cambridge University Preas. 195.

Sidwell, A. C. (1978). The Measurement of Meohanical and Engineering Services in Buildings". In the Quantity Surveyor. V35, Nr 4. 316317, 319321.

Silverton, G. Ru (1983). "EMMMY". In Chartered Quantty Surveyor. Mey. 325.

Sims, J. (1978). "Drawing on Discipline". In Building. 3 November. 7.

Singh, G. and Banjoko, O. O. (1890). "The Development of a Rational Bill of Quantities". In Construction Management and Economics. 8|31-47.

Skinner, D. W. H. (1979). "An Analysis of the Utility of Bills of Qusantities in the Process of Building Contracting". PhD Thesis. University of Aston.

Skinner, D. W. H. and Jepson, W. (1980). "The Contractor's Use of Bills". In Chartered Quantity Surveyor. September.

Skoyles, E. R. and Fletoher, L (1964). "Introduction to Operational Bills". Building Researoh Station. Paper CP DS 32.

Skoyles, E. R. and Fletcher, L (1970) "Bill of Quantities or the Operational Bill". Arohitect's Journal. 28 January.

Skoyles, E. R. (1986). "Research and the QS". In Chartered Quantity Surveyor. January. 34.

Smith, G. M. (1878). "Can the Quality of Data Be Improved in BOQs". In Building Trades Journal. 16.

Smith, J. and Wong, K. H. (1985). "Bills of Quantities in Singapore - A Survey of their Use and Application". In the Building Economist. September. 1822.

Smith, R. (1987a). "Development Economics: Omioes / Industrial Buildings". In Architect's Journal. 3 June. 57.

Smith, R. (1987b). "Development Economics: Fectories / Warehouses, Initial Cost Estimating". In Architectis Journal. 21 October. 65.

Snell, R. G. (1973). "The Bill - Its Use and Abusa". In Chartered Quantity Surveyor. 13-14.

Southgate, A. (1988a). "A New Approach [Part 1]". In Chartered Quantity Surveyor. November. 3536.

Southgate, A (1988b). "A New Approach [Part 2]". In Chartered Quantity Surveyor. December. 25.

Stamper, R. (1973). "Information in Business and Administrative Systems". B. T. Batsford. 24-27, 48-50, 76-79.

Standard Code of Procedure for Measurement of Building Works (1988). Royal Institution of Chartered Surveyors and Building Fimplqyers Confederation.

Standard Method of Measurement for Mechanical Construction Works (1970). Standard Methods Publications Itd.

Standard Method of Measurement for Onshore Pipeline Works (1982). Pipeline Industries Guild.

Standard Method of Measurement of Building Workss, Eth Edtion (Metrio) (1968). Royal Institution of Chartered Surveyors.

Standard Method of Measurement of Building Works, 6th Edition (1981). Royel Institution of Chartered Survejors.

Standard Method of Measurement of Building Works, 7 th Edition (1988). Royal Institution of Chartered Surveyors and Building Fhmployers' Confederation.

Standard Method of Measurement for International Fingineering Construotion (1984). The Aseocistion of Cost Fhgineers and the Rogal Institution of Chartered Survegors. 9.

Brotion, C. (1989). "BMMM7 Reviewn". In Chartered Quantity Surveyor. April. 27.

Summers, D. R. (1990). "Quantity Surveyor's Approach to Cost Control". In the Building Economist. June. 47.

Swanston, R. "Standard Method of Measurement of Building Works". In Chartered Surveyors Weekly. v111, Nr 5. 16-18.

Tong, Y. and Lu, Y. (1992). "Unbelanced Bidding on Contracts with Variation Trends in Client-Provided Quantities". In Construction Management and Economics. E. \& F. N. Spon. 1016980.

Toulmin, S. (1970). "Does the Distinction Between Normal and Revolutionary Science Hold Water?". In Criticism and the Growth of Knowledge. Cambridge University Press. 39-48.

Townsend, A. (1990). "Computerising Costs". In New Civil Engineer. December. 36.

Turner, W. (1982). "Dispense With BGs - At Your Feril". In Chartared Quantity Surveyor. June. 345346.

Unattributed (1970). "Operational Bills-Users' Comments". Arohitect's Journal 11 March.

Unattributed (1978). The New Standard Method of Measurement of Building Works (SMMM) Z. Pitfells for Flectrical Contractors Erist in Revised Guide". EMectrical Contractor. v76, Nr 10. $25,28$.

Watkins, J. (1991). "Methodological Indtvidualism and Social Tendencies". In the Philosophy of Solence. Boyd, R, Gesper, P. and Trout, J. D., Eds.. Maseachuseetts Institute of Technology Preas. 121-137.

Watson, B. (1980). "Counting the Cost". In Building Services. V2, Nr $2.42-43$.

Willis, C. (1978). "Sith Sense". In Bullding. 21 April.

Willis, C. (1988). "GMaM7 Progreas Report". In Building. 30 April. 28.

Willis, C. J. and Newman, D. (1988). "Elements of Quantity Surveying", 8th Edition. BSP Professional Books. 1-2.

Wood, R. D. (1973). "Is There a Need for a New Standard Method?". In Building Trades Journal. 4 May.

Worthington, S. (1985). "Construction Design: the Design Process and the Role of the Site Survey within this Process". Dissertation. University of Northumbria

Towards a Method of Measuremient and Cost Control for CIVIL ENGINEERING WORK IN THE PETROCHEMICAL INDUSTRY

by
Alan James Davies
in collaboration with
Imperial Chemical Industries

A Theals Submitted in Partial Fulfiment of the Requirements for the Award of Dootor of Philosophy

Univarsitit of Northumbria at Newcastle

August 1895

Volume 2 of 2

Appendty 1
Appendte:
Appendie8
Appendtes 4
Appendir 5
Appeadte6
Appandtry

APPENDEX 1:
FORMULATION OF A HYpotheitcal Petrochemical Civil Enginehering measurbment and Cost Control Model (Ch. 5.1-5.5)

A1.1 Lever of Abstraction: Individual Bill of quantities lithme: Resulis of Prebininary Analysis (Ch. 5.1 \& 5.2)

Contract Nr	\% Of Measured Items to give 20\% vahe of Contract Bum	\% Of All Items to give 20\% value of Conkraot Burn
$2977[01]$	77%	80%
$80142 / 80309[02]$	78%	85%
$72757[18]$	87%	88%

CONIRACTNR	\% Of Coniract Sumcontannid in "GMALLVALUE" MEASURRDItEMGS EMMNARST 40\%]	\% OfCOMRACT BUM CONLANEDIN "Gmanl Vander Itemb [All Itimib] EMALzast 40\%]
Foundations, Dratnage, Roads + Superetructury [01]	2.65	2.18
Demolition + Superincuoture [02]	4.83	2.65
Eloekword [Anoillayd [18]	-	-

It should be noted thet contract 13 was a separate contrect for steelwork only and was not included in this section of the analyis.

A1.2 Level of Absiraction: Individual Bill of Quanititis Itemis: Regulis of COMPREHHENSIVE ANALYSIS (Ch. 5.3 \& 5.4)

Data from 15 contract Bills of Quantities for Petrochemical Civil Engineering, representing thousands of items (measured and unmeasured) were collected and statistically analysed. Fight of the Bills were measured using SMMM5 and seven were measured using SMM6. The following comments are offered regarding the quantity, adequacy and suitability of the data and the constraints surrounding such data:

1) The 15 contracts available were regarded as being as comprehensive a sample as was possible to obtain; they represented an almost complete current or recent workload at the organisation in question.
2) The decision to exolude CESIMM Bills from the analymis was based on the fact that there was only one such contract available. Results from one such contract could not be construed as being raliable, although there is persuasive evidence (see above) that Bills prepared using CESMM behave muoh like Bills prepared from SMMM5 or SMM6.
3) No data on SMMM (1988), which was at the time undergoing development elsewhere, were available. No data using other measurement ayztems were available.
4) Any experimentation or recommendations for a new approach to mearurement, therefore, were considered best if they were based on the analyads of the bulk of the data whioh were available, ie from SMMM5 and SMMM6.
5) The total number of Bill Items (etatistical cases) analysed was some 10900 , of which some 7100 were in SMMM5 Bills and some 3800 trom SMMM6 Bills. Infarences from this would be illedvised. Whilst it is true that SMMM6 was intended to produce fewer ftems of detail this could not have been said with certainty prior to the anatyis. Some buildings are large and some
small. Sometimes one building is "Billed", sometimes more than one, in the same document. The contracts anslysed were as in Table 4.

TABLE 4: PRONECIS ANALYBEHD (SMM5 ANDSMMG)

SMM5 Bills		EMMM6 Eills	
Bill2	Molinar Piant (1085-玉110 100)	Bill 11	Methanol Olloading (1884-583700)
Bill 3	Ethorylates Plant (1980-8981 800)	Ein 12	Erimuent Pipoline (1094-290 200)
Bill 4	Ammontum Nitete Pinat $(1880-8211700)$	Em 18	Cauntio Pent Etructural Bteohworis (1994-2463 800)
Bill 5	Contol Room Burilding + Alterations $(1877=£ 180800)$	Bin 14	HCI Reaction + Compremor Bections (1805-277 000)
Bill 6	Prowin Plant 8its Dovelopment Wha (1977-2801 100)	Em 15	Bacreed Galt Warehoumo Extansion $(1084-890600)$
Bill 7	Control Room Burliding $(1974=82038500)$	Bill 16	Anhydroun Cuntio Plant (1084-2007 100)
Bm8	Eubstation $(1090-9870400)$	Bill 17	Cool Fring Comant Finat (1084-2A10 800)
Bing	Laboratory Pherandon \& Refurb $(1989-\varepsilon 149500)$		

Abstract

A1.3 Level of Absiraction: Indrvidual Bill of Quanitibs ligmes Resulit of COMPRTHHENSIVE ANALYBIB (CH. 5.3 \& 5.4)

For each of the 15 Bills of Quantities the items in the Bill were ranked in order of value (highest first) and cumulative totals computed for each item as follows:

1) Percentage of items generated as each item was added and
2) Percentage of total value generated as each item was added.

The data at 5% intervals from (1) and (๕) were then used to produce plots showing the rate of cost generation in each Bill (see Diagram 1). A technique was then applied which inveetigated whether the removal of small value items (which form the majority of tems in axy Bill) would produce only a marginal reduction of the total cost. Taling the figure of $+5 \%$ accuracy in construotion price forecasting to which practitioners aspire, but which certain commentators, inoluding Ashworth and Skitmore (1983), consider to be over optimistic the smallest value items which together amounted only to some 5\% of the total contract cost were isolated. The following calculations were made for each Bill:

1) The number of ttems so removed and
2) The percentage of the total of all Bill ttems eo removed

The results were tabulated (see Table ©).

Tabte 5: Effect of ramoving from Peirochemical Civil. Ennginkering Blis of quantities the "Smallest
VALIE" IEMA WHICH COLLBCIIVELY COMPRIBED ONLY 5\% OFTHEBLLLTOTAL (ALLITEMMS)

Bmanr	NROFTTEMSREEMOVED	\% ofltemas Removed	SIMM
2	194	5288	5
3	542	64.18	5
4	788	08.61	5
5	882	78.69	5
6	636	70.59	5
7	877	84.25	5
8	827	77.07	5
9	438	73.87	5
11	208	57.70	6
12	88	7885	6
13	207	73.67	6
14	288	57.80	6
15	87	81.27	6
16	1154	08.41	6
17	518	00.70	6

A1.4 "Normalising" the Dath (Ch. 5.5)

Data for all 15 Fetroohemical Civil Fagineering Bills of Quantities, representing thousande of Items (meesured and unmeasured), were analywed in order to produce the following statistios representative of the nsture of their cost distribution within their reapective Bille of Quantitiea:
a) Frequenoies,
b) Mean values (normalised for ease of reference),
c) Standard Deviations,
d) Skewness of Distribution and
e) Maximum values.

These statistics were then reproduced following the removal of unmeasured items from the data sample, in order to gain indications of the effect upon the results of so doing. The results were tabulated (see Tables 6 and 7).

Table 6. Descrifitive Statistics indicaima cost disiribution in Peirochimical Civi Efnainemering Bills of QuANITITRS (SIMMD)

| BMNr | 2 | 8 | 4 | 6 | 0 | 7 | 8 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

GNMW [All Ftomel[1]

Meen	01.00	01.00	01.00	01.00	01.00	01.00	01.00	01.00
Brandard Dovistion	06.16	04.98	08.82	07.58	04.77	08.00	05.46	10.18
Blawneen	1421	1827	00.52	17.88	1128	18.80	11.47	21.86
Maxdmum Vahe	88.67	100.08	88.08	188.46	74.82	217.68	89.01	200.85

SMMSD [Measured hemel

Mean	00.64	00.05	0080	00.57	00,28	00.87	00.51	00.31
Eeandard Dopination	0128	02.16	02.08	0108	08.01	01.40	0131	00.8
8lowneme	07.78	0880	0880	07.17	00.81	07.84	00.00	00.4
Mindmum Vahe	15.45	31.21	30.01	14.01	4388	18.08	1787	1481

Bron of Difiterenco [1-2]

Mean
GandardDorintion
Skeownem
Meadmum Valve

Table 7: Descrifive statisics indicating cost disiribumon in Peirochemical Civil Enginemring Blus of Quanities (SMMG)

Bill Nr	11	12	13	14	15	18	17.

SMMM6 [All Hams [1]

Moan	01.00	01.00	01.00	01.00	01.00	01.00	01.00
Beandand Doviation	0285	03.08	0289	03.08	02.86	04.12	04.10
Sluernees	06.35	04.47	06.17	07.85	00.98	11.00	08.54
Maximum Vahue	27.05	21.31	Se. 14	31.45	28.90	78.66	55.19

SMM16 Mcenared Iteme: [2]

Mean	00.85	01.38	01.03	00.78	0122	00.81	00.86
Btandand Dovtation	0202	08.56	03.09	00.14	03.23	0284	08.58
Skownees	05.82	03.71	0028	08.08	0038	00.80	08.00
Magimum Vaho	20.77	21.31	32.14	31.18	28.00	54.31	45.96

Bipn of Difiorenco [1-2]

Mean	-	+	+	-	+	-	-
Geandard Doviation	-	+	+	-	+	-	-
Slaturness	-	+	+	+	+	-	+
Maximum Vehue	-	-	-	-	-	-	

The following comments are offered in respect of the data and their validity:

1) The entire population of cases were used (vide suppra)
2) For ease of reference the dats were first standardised by dividing the value of each case by its own Bill mean value. This removed the effect of "abeolute" values as absolute values were not of prime importance for the purpose of this exarciee. Also this provided a common basis for comparison and removed the eflect of time.
3) It is worth noting that although all the data in the sample used had poattive valuea (in cont terms) per case, it is poasible for an them to have a negative value. This occurs, for erample,
in demolition work, where a Tenderer may offer the owner a credit in respect of some saleable valuable material recovered during the demolition work. This phenomenon would not alter the validity of such data or results.
4) Aggregate functions were computed by Bill Number. That is, the data were first split by Bill Number and statistics produced by Bill, rather than by entire population, for comparison purposes.

Table 8:Skewness of distribution of cost data in Peirochimical Civl Enaingering blis of quanities (AllitemminBQ)

Stavisic		
Ghawneen	009.52-081.80	004.47-011.00
Maxdmum Vahuo	058.08-280.85	021.31-003.66
Mean Vahue	001.00	001.00
Exandard Doviation	008.02-010.18	00205-004.12

 (MEASURED Titmis only)

Eranspe	GMM以 Buscopernnomits	Gunte Buscor
Bloumpen	08.00-00.94 [purere 08.00]	0871-0080 [mane 07.04]
Mradmurn Vahue	1481-4882 [verspe 83.14	20.77-5481 [viemesserd
Mean Vehe	00.31-00.89 [avere 00.80]	00.78-0188 [verere0090]
Erandard Devtation	00.88-08.01 [vern 01.71]	0390-0888 [ume 0 0909

APPENDIX 2:
 Formulation of a Hypothetical Petrochemical Civil Enginerering Measuremment and Cost Control Model (Ch. 5.7-5.8)

Level of Abstraction: Trade: Resulits of Analysis of Cosi-Insignificant Paraneters

The data were split by Trade and tabulations produced showing:
a) What percentage of all items belonged to each Trade,
b) what percentage of items in the lowest 20% value band reaided in each Trade,
0) What percentage of items in the lowest 15% value band readded in each Trade,
d) what percentage of items in the lowest 10% value band reaided in each Trade and
e) What percentage of items in the lowest 5\% value band reaided in each Trade.

Thus, for example, if an ttem resided in, say, the lowest 15% value band that item was one of those items which collectively amounted to only 15% of their respective Bill Total, besed on the technique of "ranked order" distribution, loweat first. The following comments are offered regarding the data and their validity:
(1) The entire data population was analysed (see Chaptar 3.2.).
(2) Those items which collectively comprised onity 5% of their reapective Bill Totals (see earlier) were talsen to be costinsignificant items.

Table 9.1: COSTHNsicinificantitems In "Lowest Cosi" Bands By Trade (SMM5)

Demolitions	3.9	3.6	3.3	3.1	22
Eheravation + Earthworis	9.6	8.4	8.2	8.1	8.2
Pling	0.1	0.1	0.1	0.1	0.1
Cononde Work	21.3	19.7	19.3	18.5	173
Briokwork + Bloakwork	6.8	6.7	6.7	6.9	72
Roofing	0.8	0.6	0.6	0.5	0.4
Carpontry	0.7	0.8	0.7	0.8	0.9
Joinery	8.4	0.0	02	0.1	9.6
Bruchural Bteotwork	1.5	1.4	1.4	1.5	1.6
Metatwork	4.1	4.0	4.0	3.0	4.0
Plumbing	10.8	123	127	18.1	140
Etrectrioal Intallation	4.7	4.0	5.0	5.0	5.0
Finishing	6.1	5.8	5.9	5.9	6.0
Gtaring	0.7	0.8	0.0	0.8	0.9
Paiming + Decornting	4.6	40	8.0	8.1	5.1
Dreinare	15.7	16.8	17.0	17.4	17.8
Frongis + Comer	0.1	0.1	0.1	0.1	0.1
	100.0	100.0	1000	100.0	100.0

Diagram 1.2: SMM5 BQ: Trade Items As \% Of "Lowest Cost" Bands

Diagram 1.3: SMM5 BQ: Trade Items As \% Of "Lowest Cost"
Bands

Tabie 9.2: COSt \quad ngignificant ltenns In "Lowest Cosi" Bands By Trade (SMMM6)

CNME BTIS	\% Or	1 mp	In		
Trades	Trade	LOWEST	Lowners	Lownest	LOWEST 5% -
	Total	20\% Band	15\% Band	10\% Band	Band

Domolitions	0.9	0.6	0.8	0.8	0.7
Elcosvation + Farthwork	19.7	20.4	20.8	20.9	20.6
Filing	0.7	0.7	0.7	0.7	0.8
Conorde Work	39.8	38.9	35.9	34.8	32.5
Brichwork + Blockwork	24	25	26	28	28
Asphali Work	0.8	0.8	0.8	0.8	0.8
Roofing	0.1	0.1	0.1	0.1	0.1
Woodvork	3.8	4.4	4.4	4.5	4.7
Etructural Eteokworts	5.4	5.5	5.7	6.0	8.5
Metahwork	4.1	38	3.7	3.8	4.0
Phumbing	20	8.2	3.4	3.6	4.1
Eleotrical Installation	0.8	0.9	0.9	1.0	1.1
Frinhing:	3.8	3.6	3.6	88	48
Ofoxing	0.8	0.4	0.4	0.4	0.5
Painting + Docoratin:	20	28	84	2.8	80
Drainare	11.6	18.7	189	13.0	132
Fenoing	1.1	0.0	0.0	0.8	0.7
	100.0	100.0	100.0	100.0	100.0

Diagram 2.1: SMM6 BQ:Trade Items As \% Of "Lowest Cost"
Bands

Diagram 2.2:SMM6 BQ: TradeItemsAs \% Oi"Lowest Cost" Bands

Diagram 2.3: SMM6 BQ: Trade Items As \% Of "Lowest Cost"
Bands

Finishings	
	Glazing
	Decorating
	Drainage
	Fencing + Gates
\sim	

APPENDIX 3:

Formulation of a Hypotheitcal Petrochemical Civil Enginekring Measuremient and Cost Control Model (Ch. 5.9-5.10)

Level of Absirachion: Trade Subseciion: Rebsulte of Analysis of Cost-Ineicinmicant Paramethrs (CH. 5.95.10)

Table 10.1: COST Disiributionsin "Lowest Cosin Bands by Trade subsicilion (SMMM5 BQ)

Pinava					
\% "Lowest Coat" Band	100	20	15	10	5
Generally	25	33.3	33.3	40	50
Wood or Concrete Plies	57.5	335	833	20	0
Bheet Greol Piling	87.5	88.3	238	40	50
Trado Total	100	100	100	100	100

CONCCRETE WORK					
\% "Loweot Cost" Band	100	80	15.	10	5
Generaly	0.3	03	0.2	0.1	0.2
Prain + Roinforced Conorve	827	31.1	S0,	29.1	20
Roinforcemant	152	14.4	14.4	14	133
Formwort	87.5	87.4	888	80.5	20.5
Precaet Conorete Units	0.2	0.1	0	0	0
Contrectordenirped conetruotion	0.1	0	0	0	0
Sundries	14.7	18.2	18.1	165	15.8
Proteotion	28	28	8.1	8.6	4.7
Trado Total	100	100	100	100	100

Brackworrx + BTOCKWORX					
\%"Lowent Cow" Band	100	20	18	10	5
Brinimorts	20.8	17.7	17.4	17.7	18.1
Briak Feocmorts	5.3	5.4	4.7	5.1	5.8
Eraing Bral mork	203	18	17	16.	15.7
Elockwat	80.1	18.8	180	10.4	10.7
Damprapot Counsen	0.6	18	12	189	187
Ounctrias	21.5	83.7	288	80	88.7
Probection	84	8	80	3A	4
Tracototel	100	100	100	100	100

ROOFING					
\% "Loweet Cost" Band	100	20	15	10	5
Pronlod Sheet Roofing	28.7	20.7	23.1	21.7	13.3
Binumenfolt Roofing	47.4	448	462	43.5	40
Fhashings + Ghuters	21.1	24.1	18.2	21.7	28.7
Protection	78	10.3	11.5	13	20
Trade Total	100	100	100	100	100

CARPEENITY					
\% "Loweet Coen" Band	100	20	15	10	5
Exuctural Timbers	40.5	44.7	45.7	45.7	41.8
Boanding	48	26	20	20	82
Fillets, Grounds, Butnens + Eraolats	81	81.6	28.6	83.6	828
Sundries	110	10.5	11.4	11.4	9.7
Carpentorts Metatuorts	11.0	10.5	11.4	11.4	129
Trade Totel	100	100	100	100	100

JOINEXYY					
\% "Loweat Cown ${ }^{\text {Band }}$	100	80	15	10	5
Eevee + Vergo Boanding	26	27	2.6	2.1	2.1
Uning Comin ${ }^{\text {a }}$ + Partition	1.4	1.1	12	1.3	1.5
Doows Whadown Elotight	68	6.4	6.5	6.7	5.7
Frames Gills, Rents	140	16.7	15.6	18.5.	14.8
	11.7	124	18	18.7	28.7
	4.4	4	35	3.6	3.8
Sbolven Tablation + Sopt	8	88	28	88	8
	0.4	0.4	0.5	0.5	0.6
	28	28	28	88	84
Evirama	1	1.1	18	1.8	1.5

Etandard Units	14.3	10.8	8.8	6.7	5.1
Sundries	2.6	27	28	28	2.7
Ironmongery	34.1	38.7	37.7	39.9	42.4
Proteotion	1.4	15	1.6	1.8	1.8
Trade Total	100	100	100	100	100

GIRUCIURAL EITHFRWORK					
\% "Loveest Cost" Band	100	20	15	10	5
Conoraly	75	8.8	8.8	9.7	11.1
Grillares + Girders	6.5	28	20	32	0
Exanohions, Columme Portal Frames	18.1	6.9	20	1.6	0
Roof Mombers, Braces, Exuts + Ralla	67.7	702	88.4	888	858
Sundries	22	28	s	3.5	3.7
Trade Totel	100	100	100	100	100

Mercalmorrs					
\% Thomeat Coex" Band	100	20	15	10	5
Plsteg, Bars, Eectiona + Tubes	40.4	42	488	808	41.8
WroMeah, Erpandod Metal	24	2.6	27	3	22
Comporthe Units	40	5.5	48	48	8.1
Exandard Unths	88.7	81	80.5	80.1	88.8
Bundriea	10.6	18	18.4	15.1	15.0
Protection	40	6	6.4	72	8.7
Trado Total	100	100	100	100	100

Overflow Installation	26	28	8.8	8	8.5
Weate installation	11.6	11.4	11.8	123	13.6
Soil + Vent Installation	78	8.3	82	8.1	7.4
Cold Wetar Service	1.4	1.5	1.5	1.6	1.0
Trade Total	100	100	100	100	100
Wetar Mains	6	5.8	5.9	5.4	4.7
Equipment	0.2	02	02	02	02
Appliances	4.4	42	35	20	1.4
Gundries	20	8.1	82	8.2	8.7
Buthders Work	58.1	58.1	58.8	58.7	53.9
Protection	2.1	2.1	22	23	2.1
Trado Total	100	100	100	100	100

Frotection	6.2	6.2	8.8	82	11
Fitted Carpeting	0.3	0.3	0	0	0
Trado Toral	100	100	100	100	100

Table 10.2: Cost Distrubutions in "Lowest Cosi" Bands by Trade Subsection (SMMM6 BQ)

Dembolitions + Alchermions					
\% "Loweat Coses" Band	100	80	15	10	5
Generally	88.7	88.4	86	85.5	88.3
Protection	3.3	3.6	4	45	6.7
Trado Total	100	100	100	100	100

EXCAVAITON + EARIHWORKS					
\% LLoweet Cox" Band	100	20	15	10	8
Coneraly	0.6	0.7	0.7	0.7	0.9
Exte Preparation	10	2.1	2	22	2
Ercoverion	480	432	427	41	87.1
Earthwork Surpport	15.8	18	18.5	19.8	28
Dispomal of Water	5.8	6.4	6.6	7.1	8.8
Dimponal ofthemexted Metorial	72	5.6	5	5.8	4.6
Fring	18	108	10.1	10.1	82
Gurace Theedmonts	184	13.4	18.7	18.4	14.5
Protection	0.3	0.8	0.8	0.4	0.4
Tredotatel	100	100	100	100	100

Pring					
\% Towet Cown Band	100	80	15	10	5
Filing	88.5	88.4	0	88.	88.
Disphrerm Welling	88	45	0	0	0
Protection	88	45	E	5.6	6.
Unmpenured worts	88	45	8	8.6	50
Trado Total	100	100	100	100	100

CONCREETEWORK					
\%"Loweat Cost" Band	100	20	15	10	5
Gemerally	5	6.3	6.9	78	8.7
Instan Concrato	443	44.6	44.3	438	420
Roinforcement	198	18.9	15.8	14.4	11.8
Formwork	20.2	25.7	28	28.1	202
Preosest Conoreto	3.3	3.4	3.7	42	4.7
Hollow Bloak Construction	0.1	0.1	0.1	0.1	0.1
Proteotion	24	8	82	8.7	4.6
Trade Total	100	100	100	100	100

BRICKWORK + BLOCXWORK					
\% Loveet Coes" Bend	100	20	15	10	5
Ceneralky	0.8	10.7	11	11.6	127
Briokwork	29.1	89.8	30.1	29	87
Fecin\% Brickuork	200	17.8	16.4	17.4	17.8
Elockworls	8.1	6.7	5.5	5.8	48
Dampproot Conrzes	7	8	82	8.7	0.5
Eumaries	20.1	24	247	288	288
Propection	85	4	4.1	48	48
Trado Totel	100	100	100	100	100

ROOFING					
\% "Loweet Coat" Band	100	20	15	10	5
Btaumentilt Roofing	100	100	100	100	100
Trado Total	100	100	100	100.	100

WOODWORK					
\%"Loweet Cost" Band	100	20	15	10	8
Carcasaing	3	8.1	32	25	20
Frut Fring	8.2	8.4	8.1	8.5	8.6
Second Fledngo / Componita Ftroms	45.5	44.3	427	42.4	40
Gumaries	45	4.6	48	42	8.8
Ironmongery	88.1	38.0	40.3	41.5	48.8
Prorection	0.7	0.8	0.8	0.8	1
Trado Total	100	100	100	100	100

SIRRUCTURALSTHMEN WOITK					
\%"Lowent Cox" Band	100	80	16	10	5
Conorally	11.7	188	18.7	14.1	18.3
Eceekruort	88	818	80.7	80.8	702
Protection	32	3.8	3.7	8.8	42
Unmeagured Worts	8.1	1.8	1.9	18	1.4
Trado Torel	100	100	100	100	100

Meraumaris					
\%"Lownet Cone Bard	100	80	15	10	5
Compotiontra	ERA	80	80	81	68.4
Pren Bax en	88.	57.7	28.7	38	375
Shoet Matal Man do	8.5	0.1	5.7	8	45
Holen Bon elo	65	4.4	88	4	88

Protection	1.4	1.8	1.9	2	23
Trade Total	100	100	100	100	100

Plumbrat eic					
\%"Lowest Con" Band	100	20	15	10	5
Genorally	11.7	18.3	13.7	14.1	15.3
Gutherwors	4	4.1	42	3.2	33
Painvater Inctallation	8.	0.8	0.4	0.6	10
Santagy Installation	28.7	28.9	28.1	28.7	30
Hot + Cold Water Installation	5	52	52	5.3	5.6
Finefighting Installation	2	1	1.	1.1	0
Chemicel In talletion	2	1	1	1.1	1.1
Other Bquipmemt In tallation	3	3.1	3.1	32	33
Equipment + Anoillarien	15.8	16.5	16.7	17	15.6
Sundrioe	78	82	88	8.5	88
Builderts Work	6	62	63	48	88
Protection	18.	13.4	13.5	13.8	14.4
Trado Total	100	100	100	100	100

BLECLRTCALINSTALEATION					
\% "Loweet Cown Band	100	20	15	10	5
Genemelly	74	7.7	8	8	88
Conduts Trunidn ${ }^{\text {ctos }}$	74	7.7	8	8	83
Cubles	11.1	7.7	8	8	88
Buridere Work	70.4	78.1	78	72	70.8
Protertion	37	28	4	4	48
Trade Torel	100	100	100	100	100

Finiships					
\% "Lowest Cost" Band	100	20	15	10	5
Cenerally	32	3.7	3.9	4.1	4.3
Inctun Finishes	238	22.4	21.6	21.4	21.7
Beds + Backings	4.8	3.7	3.8	4.1	4.8
Tile, Slab + Blook Finishes	27	27.1	28.5	25.5	23.0
Fleudble Sheot Finiahes	20.6	19.6	20.6	20.4	20.7
Dry Linings + Partitions	1.6	10	2	2	1.1
Gusponded Ceilings	10.8	118	10.8	112	12
Protection	8.7	103	10.8	11.2	12
Trado Total	100	100	100	100	100

Glatava					
\% "Loweet Cost" Band	100	20	15	10	5
Clam in Openin ${ }^{\text {ces }}$	81.8	81.8	81.8	818	80
Mrros	0.1	9.1	9.1	0.1	0
Protection	0.1	9.1	9.1	9.1	10
Trado Total	100	100	100	100	100

Painingo + Decoraiting					
\%"Loweat Cow" Band	100	80	18	10	6
Patning + Polinhin:	88.6	88.6	83.5	83.5	08.5
Proteotion	1.4	1.4	1.5	1.5	1.5
Trado Total	100	100	100	100	100

Manholes ete	40.9	42.6	429	42.4	44.5
Connections to Sewvers de.	12	1.3	1.4	12	1
Touting	4.2	4.5	4.6	5	5.5
Protection	1.7	1.8	1.8	2.1	2.4
Trade Total	100	100	100	100	100

Table 11.1: COSTunsignificant Items In "Lowest Cosi" Bands By Trade Subsection (SMM5 BQ)

SMM5 Trade	SMM5 Subeection	Tendency Towards Cost-Insignificant Items
Alterations	1 Generally	no data
	2 Demolitions	no real tendency
	3 Alterations	no real tendency
	4 Sundries	generally larger items [discernible]
	5 Protection	no real tendency

Diagram 4.1

Demolitions and Alterations: SMM5 BQ

Table 11.1: COstunsignificant Items in "Lowest Cost" Bands By Trade Subsection

SMM5	SMM5 Subsection	Tendency Towards Cost-Insignificant Items
4 Exceavation + Earthwork	1 Generally	no real tendency
	2 Site Preparation	generally larger items [marginal]
	3 Excavation	generally larger items [marginal]
	4 Disposal of Water	no real tendency
	Planking + Strutting	generally smaller items [discernible]
	6 Handcore Filling	no real tendency

Diagram 4.2

Table 11.1: COstunsignificant Items in "Lowest Cosi" Bands By Trade Subsection

SMM5	SMM5 Subsection	Tendency Towards Cost-Insignificant Items
5 Piling	1 Generally	no real tendency
	2 Site Preparation	generally larger items [marginal]
	3 Contractor-Designed Concrete	no data
	Piles	
	4 Sheet Steel Pling	no real tendency

Diagram 4.3
Piling: SMM5 BQ

Table 11.1: COstinsignificant Items in "Lowest Cost" Bands By Trade Subsection

SMMM5	SMMM5 Subeection	Tendency Towands Cost-Insignificant Items
6 Concrete Work	1 Generally	no real tendency
	2 Plain + Reinforced Concrete	generally larger items [margina]
	3 Reinforcement	generally larger items [margina]
	4 Formwork	no real tendency
	5 Precast Concrete Units	no real tendency
	6 Hollow-block Suspended Construction	no data
	7 Prestressed Concrete	no data
	8 Precast Prestressed Units	insufficient data
	9 Contractor-designed Construction	no real tendency
	10 Sundries	no real tendency
	11 Protection	generally small items (discernible)

Diagram 4.4
Concrete Work: SMM5 BQ

Table 11.1: COstunsignificant Items In "Lowest Cosi" Bands By Trade Subsection

BMM5 Trade	SMM 5 Subsection	Tendency Towards Cost Insignificant Items
	Brickwork + Blockwork	no data
	2 Brickwork	generally larger items (discernible)
	3 Brick Facework	no real tendency
	4 Facing Brickwork	generally larger items (discernible)
	5 Brickwork in connection with Boilers	no data
	6 Blockwork	no real tendency
	7 Dampproof Courses	generally small items (discernible)
	8 Sundries	generally small items (discernible)
	9 Centering	no data
	10 Protection	

Diagram 4.5

TABLE 11.1: COSTHNSIGNIFICANTITEMS IN "LOWEST COST" Bands By Trade Subsection

SMIM5	SMM 5 Subsection	Tendency Towards Cost Insignificant Items
12 Roofing	1 Generally	no data
	2 Slate or Tlle Roofing	no data
	3 Corrugated or Troughed Sheet	no real tendency
	Roofing	
	4 Thatch Roofing	no data
	5 Roof Decking	no data
	6 Bitumen-Felt Roofing	generally larger items (marginal)
	7 Sheet Metal Roofing	no data
	8 Sheet Metal Flashings + Gutters	generally small ttems (discernible)
	9 Protection	generally small items (discernible)

Diagram 4.6
Roofing: SMM5 BQ

TABIE 11.1: Costunsignificant Items In "Lowest Cost" Bands By Trade Subsection

SMM5	SMM5 Subsection	Tendency Towards Cost-Insignificant Items
13 Carpentry	1 Generally	no data
	3 Structural	generally small ttems (discernible)
	4 Boarding	insufficient data
	5 Fillets Grounds Battens + Bracketing	generally small items(marginal)
	6 Sundries	no real tendency
	7 Metalwork	generally small items (marginal)

Diagram 4.7

Carpentry: SMM5 BQ

Table 11.1: COstungignificant liems in "Lowest Cosi" Bands By Trade Subeechion

GNMMS	SMMMS Subeoction	Tendency Towarde Cow-Ingionificant Itome
14 Joinery	1 Generally	nodata
	2 Flooring	nodata
	3 Eaves + Verseoanding	Penatally lapror theme (marrdinal
	5 Pain or Panolled Lininges, Carings + Parthions	incurfoient data
	6Doors, Windiows, Slalights + Lanters:	no real tandency
	7 Framenesine + Karbs	noreal trond
	8 Fubte Chasing Beads 4 Grounde	generally small theme(marginal)
	9 Bldringeg, Arohtriseve, Picture rilh + Corniope	generally largor thems (marginal)
	108botves, Tuble Tope + Seray	incumilantidas
	11 Stnla, Draindngeoards + Beolboards	treufflolent data
		incurnotent data
	18 Exirchane	insufficiont data
	14 Evandand Units	
	15 Sundries	noreal tandenay
	161rammaprex	cepenily mall texp (discermbe)
	17 Probetion	

Diagram 4.8

Joinery: SMM5 BQ

Diagram 4.8

Joinery: SMM5 BQ

Table 11.1: COst-INsignificant Items in "Lowest Cosi" Bands By Trade Subsection

SMM5	SMM Subsection	Tendency Towards Cost-Insignificant Items
15 Gtructural Eteelwork	1 Generally	generally smaller items discernible)
	2 Grillages + Girders	generally small items (discernible)
	3 Stanchions, Columns + Portal Frames	generally larger items (discernible)
	4 Roof Members, Braces, Struts + Rails	generally larger items (discernible)
	5 Sundries	generally small items (discernible)

Diagram4.9

TABLe 11.1: COSTHINSIGNIFICANT Items In "Lowest COST" Bands By Trade Subsection

SMIM5	SMM Subsection	Tendency Towards Cost-Insignificant Items
16 Metalwork	1 Generally	no data
	2 Plates, Bars, Sections + Tubes	no real tendency
	3 Sheet Metal	no data
	4 Wire Mesh or Expended Metal	no real tendency
	5 Composite Units	generally small items (marginal)
	6 Standand Units	generally larger items (discernible)
	7 Sundries	generally small items (discernible)
	8 Carpenter's Metalwork	no data
	9 Protection	generally small items (discernible)

Diagram 4.10

Metalwork: SMM5 Bills

Tabie 11.1: Costrnsignificant Itemms In "Lowest Cosi" Bands By Trade Subsection

SMMMS	EMM Eubrection	Tondency Towards Coet- Indignifioant Iferme
17 Prumbing	1 Cenerally	no data
	2 Guttorworic	no roel tondency
	3 Rainveter In tallation	Penorally laperttoms (marinal)
	4 Overfiow Inctallation	Senorally mall tome (dicoerniblo)
	5 Waste In tallation	Senoraly mall thems (marginal)
	6 Eoil + Vent In ${ }^{\text {a }}$ (llation	no real tendoncy
	7 Cold Weter Sorvice	peparally emall ttams (discorniblo)
	8 High Premure Cold Wetor	nodman
	8Wator Mains	Pemernily larer ftems (dincorniblo)
	10 Coolin ${ }^{\text {W Watar Intalln }}$	nodata
	11 Condense Wetar In	nodatan
	12 Hot Water Servios	nodeta
	13 Low Premare Hot Weter Heating Inctaln	no data
	14 High Prearure Hot Weter Heating In walln	no data
	15 Evean Heating	nodata
	16 Low Prenour Eivdrautio In	nodata
	18 Gen Pipenork	nodata
	10 Cormpremed Con Pipee	nodatm
	80 Compremed Air Plpes	nodata
	21 Oll Pipework	nodata
	22 Smole Ihao Plpomorts	nodata
	23 GenFup Pipenots	nodata
	84 Chaminal Flpowers	nodman
	25 Equipman	In unimologt data

Table 11.1: COST-INSIGNIFICANT ITEMS In "LOWEST COST" BANDS BY TRADE SUBSECTION

SMM5	Tendency Towards Cost - Insignificant Items	
	SMM Subsection	generally larger items (discernible)
	26 Appliances	generally small items (discernible)
	29 Sundries	no real tendency
	31 Builder's Work	generally small items (discernible)

Diagram 4.11

Diagram 4.12

Table 11.1: COStinsignificant Items In "Lowest Cosi" Bands By Trade Subsection

SMM5	SMM Subsection	Tendency Towands Cost-Insignificant Items
18 Electrical Installation	1 Generally	no data
	2 Equipment + Control Gear	insufficient data
	3 Conduits, Trunking + Tray	no data
	4 Cables +Conductors	no data
	5 Fittings +Accessories	no data
	6 Sundries	generally small items (marginal)
	7 Builder's Work	generally larger items (marginal)
	8 Protection	generally small items (discernible)

Diagram 4.13
:
Electrical Installation: SMM5 Bills

TABLe 11.1: COST-INSIGNIFICANT Iteims In "LOWEST COST" Bands By Trade Subsection

SMM5	SMM Subsection	Tendency Towards Cost -Insignificant Items
19 Floor, Wall+ Ceiling Finishings	1 Generally	no data
	2 Insitu Finishings	no real tendency
	3 Tile, Slab or Block Finishings	generally small items (marginal)
	4 Plain Sheet Finishings	generally larger items (marginal)
	5 Beds + Backings	generally larger items (discernible)
	6 Lathing + Baseboanding	insufficient data
	7 Suspended Plain Sheet Linings	generally larger items (marginal)
	8 Flbrous Plaster	no data
	9 SelfFinished Partitions	no data
	10 Protection	generally small items (discernible)
	11 Fitted Carpeting	insufficient data

Diagram 4.14

Floor, Wall + Ceiling Finishes: SMM5 Bills

Table 11.1: COST-INSIGNificant Items In "Lowest Cost" Bands By Trade Subseciion

SMM5	SMM Subsection	Tendency Towards Cost-Insignificant Items
20 GHaring	1 Generalky	no data
	2 Glass in Openings	no real tendency
	3 Leaded Lights + Copper Lights	
	no data	
	4 Mirrors	
	5 Patent Glaging	insufficient data
	6 DomeLights	no data
	9 Protection	no data

Diagram 4.15

Glazing: SMM5 Bills

Table 11.1: COSTHNSIGNIFIGANT Items In "LOWEST COST" Bands By Trade Subsection

SMM5	SMM Subeection.	Tendency Towands Cost-Insignificant Items
	1 Generally	no data
	2 Painting etc	no real tendency
	3 Polishing	insufficient data
	4 Signwriting	no data
	5 Paperhanging	no data
	6Protection	generally small items (discernible)

Diagram 4.16

TABLE 11.1: COST-INSIGNIFICANT ITEMS In "LOWEST COST" BANDS BY Trade Subsection

SMIM5	SMM Subsection	Tendency Towards Cost-Insignificant Items
22 Drainage	1 Generally	no data
	2 Work in All Trades	no real tendency
	3 Protection	generally small items (discernible)
	4 Thrust Boring (BWIC	no real tendency

Diagram 4.17

Drainage: SMM5 Bills

Table 11.1: COSt-insignificant Items in "Lowest Cosi" Bands By Trade Subsection

SMM5	SMMSubsection	Tendency Towands Cost-Insignificant Items
	1 Generally	no data
	2 Open-Type Fencing	insufficient data
	3 Close-Type Fencing	no data
	4 Gates	no data
	5Sundries	insufficient data

Diagram 4.18

Tabie 11.2: COst-insignificant Items In "Lowest Cosi" Bands By Trade Subsection

SMM6	SMMSubsection	Tendency Towands Cost-Insignificant Items
3 Demolitions +	1 Generally	generally larger items (marginal)
	2Protection	insufficient data

Diagram 5.1

Table 11.2: COStunsignificant Items in "Lowest Cosi" Bands By Trade Subseciion

SMM6	SMM Subsection	Tendency Towands Cost-Insignificant Items
4 Exceavation + Earthwork	1 Generally	insufficient data
	2 Site Preparation	no real tendency
	3 Excavation	generally larger items (marginal)
	4 Earthwork Support	generally small items discernible)
	5 Water Disposal	generally small items (discernible)
	6 Excavated Material Disposal	generally larger items (discernible)
	7 Filling	generally larger items (discernible)
	8 Surface Treatments	generally small items (marginal)
	9 Protection	insufficient data

Diagram 5.2

Table 11.2: COST-INSIGNIFICANT ITEMS In "LOWEST COST" BANDS By Trade Subsection

SMM6	SMM Subsection	Tendency Towands Cost-Insignifioant Items
5Plling etc	1Pling	no real tendency
	2 Diaphragm Walling	insufficient data
	3 Protection	insufficient data
	4 Unmeasured Work	insufficient data

Diagram 5.3

Piling: SMM6 Bills

TABLE 11.2: COSt-INSIGNIFICANT Items In "Lowest Cost" Bands By Trade Subsection

SMM6	SMM Subsection	Tendency Towards Cost-Insignificant Items
6 Concrete Work	1 Generally	generally small items (discernible)
	2 Insitu Concrete	generally larger items (marginal)
	3 Reinforcement	generally larger items (discernible)
	4 Formwork	no real tendency

6 Concrete Work (Contd)	5 Precast Concrete	generally small items (marginal)
	7 Composite Insitu Concrete	no data
	8 Composite Reinforcement	no data
	9 Composite Formwork	no data
	11 Hollow Block Construction	insufficient data
	12 Prestressed Insitu Concrete	no data
	13 Prestressed Reinforcement	no data
	14 Prestressed Formwork	no data
	16 Prestressed Precast Concrete	no deta
	Prestressed Tendons etc	no data
	18 Contractor-Designed Concrete	no data
	19 Protection	generally small items (discernible)

Diagram 5.4

Concrete Work: SMM6 Bills

Table 11.2: COSt-insignificant Items In "Lowest Cosin Bands By Trade Subsection

SMM6	SMM Subsection	Tendency Towards Cost-Insignificant Items
7 Brickwork + Blockwork	1 Generally	generally small items (discernible)
	2 Brickwork	generally larger items (marginal)
	3 Brick Facework	no data
	4 Facing Brickwork	generally larger items (marginal)
	5 Brickwork in Connection with Boilers	no data
	6 Blockwork	insufficient data
	7 Damp proof Courses	insufficient data
	8 Sundries	generally small items (marginal)
	9 Protection	insufficient data

Diagram 5.5

TABLE 11.2: COST-INSIGNIFICANT ITEMS IN "LOWEST COST" BANDS BY TRADE SUBSECIION

SMM6	SMM Subsection	Tendency Towands Cost-Insignificant Items
	1 Generally	no data
	2 Mastic Asphalt	no real tendency
	3 Protection	no data

Diagram 5.6

Table 11.2: COST-INSIGNIFICANT ITEMS In "LOWEST COST" Bands By Trade Subsection

SMMM6	SMM Subeection	Tendency Towards Cost-Insignificant Items
12 Roofing	1 Generally	no data
	2 Slate or Tile Roofing	no data
	3 Sheet Roofing + Cladding	nodata
	4 Roof Deoking	nodata
	5 Bitument-Felt Roofing	insumiment data
	6 Sheet Metal Roofing	nodata
	7 Flashings + Gutters	nodata
	8 Protection	nodata

Diagram 5.7

Table 11.2: COSthnsignificant Items in "Lowest Cosi" Bands By Trade Subsection

GMM6	SMM Subeection	Tendency Towards Cost-Insignificant Items
13 Woodwork	1 Carcassing	insufficient data
	2First Fixings	generally small items (marginal)
	3 Second Fixings + Composite	generally langer items (manginal)
	Items	
	4Sundries	insufficient data
	5 Ironmongery	generally small items (discernible)
	6Protection	insufficient data

Diagram 5.8

Table 11.2: COSTHSIGNIFICANT Items In "Lowest Cost" Bands By Trade Subsection

SMM6	SMM Subsection	Tendency Towards Cost-Insignificant Items
	1 Generally	generally small items (discernible)
	2Steelwork	generally larger items (marginal)
	3 Protection	insufficient data
	4 Unmeasured Work	insufficient data

Diagram 5.9

Struotural Steelwork: SMM 6 Bills

Table 11.2: COSt-insignificant Items in "Lowest Cosi" Bands By Trade Subsection

SMM6	SMM Subsection	Tendency Towards Cost-Insignificant Items
	no real tendency	
	1 Composite Items	generally small ttems (marginal)
	2 Plates Bars etc	insufficient data
	3 Sheet Metal + Mesh etc	insufficient data
	4 Holes Bolts etc	insufficient data
	5 Protection	

Diagram 5.10

Metalwork: SMM6 Bills

Table 11.2: COST-INSIGNIFICANTITEMSIN "LOWESTCOST" BANDS BY TRADE SUBSECTION

SMIM6	SMM S Subeection	Tendency Towands Cost-Insignificant Items
16 Plumbing etc	1 Generally	insufficient data
	2 Gutterwork	insufficient data
	3 Rainwater Installation	generally small items (discernible)
	4 Sanitary Installation	no real tendency
	5 Hot + Cold Water Installation	insumincient data
	6 FireFighting Installn	no data
	7 Heated Water Installn	no data
	8 Fuel Oil Installation	no data
	9 Fuel Gas Installation	no data
	10 Refrigeration Installn	no data
	11 Compressed Air Instn	no data
	12 Hydraulic Installation	no data

TABIE 11.2: COST-TNSIGNIFICANT ITEMS IN "LOWEST COST" BANDS BY TRADE SUBSECTION

Diagram 5.11

Diagram 5.12

Plumbing etc: SMM6 Bills

Table 11.2: COSt-insignificant Items In "Lowest Coss" Bands By Trade Subsection

SMM6	SMMM Subsection	Tendency Towards Cost-Insignificant Items
17 Electrical Installation	1 Generally	insufficient data
	2 Equipment + Contro-Gear	no data
	3 Fittings + Accessories	no data
	4 Conduit, Trunking etc	insufficient data
	5 Cables	insufficient data
	6 Final Sub-Circuits	no data
	7 Earthing	no data
	8 Ancillaries	no data
	9 Sundries	no data
	10 Builder's Work	generally small items discernible)
	11 Protection	insufficient data

Diagram 5.13

Table 11.2: COSTHNSIGNIFIGANT ItEMS In "Lowest COST" Bands By Trade Subsection

SMM6	SMM Subsection	Tendency Towards Cost-Insignificant Items
18 Finishings	1Generally	insufficient data
	2 Insitu Finishings	generally larger items (marginal)
	3 Beds + Backings	insufficient data
	4Tile Slab + Block Finishings	generally larger items (marginal)
	5Mosaic Work	no data
	6 Flexible Sheet Finishings	no real tendency
	7 Dry Linings+ Partitions	insufficient data
	8 Suspended Ceilings	generally small items (marginal)
	9 Fibrous Plaster	no data
	10 Fitted Carpeting	no data
	11 Protection	generally small items (disoernible)

Diagram 5.14

Finishes: SMM6 Bills

TABLe 11.2: COSTHNSIGNIFICANT ItEMS In "LOWEST COST" BANDS BY Trade Subsection

SMM6	SMIM Subsection	Tendency Towards Cost-Insignificant Items
19 Glaring	1 Glass in Openings	generally small items (discernible)
	2 Leaded + Copper Lights	no data
	3 Mirrors	insufficient data
	4 Patent Claring	no data
	5 Domelights	no data
	6 Protection	insufficient data

Diagram 5.15

Glazing: SMM6 Bills

Tabie 11.2: COgt-INsignificant Iteims In "Lowest Cosi" Bands By Trade Subsection

SMM6	SMM Subsection	Tendency Towards Cost -Insignificant Items
	1 Painting + Polishing	generally small items (marginal)
	2Signwriting	no data
	3 Paperhanging etc	no data
	4 Protection	insufficient data

Diagram 5.16

Table 11.2: COStunsignificant Items In "Lowest Cosi" Bands By Trade Subsection

SMM6	SMM Subsection	Tendency Towands Cost-Insignificant Items
21 Drainage	1 Generally	generally small items (discernible)
	2 Pipe Trenches	generally larger items (discernible)
	3 Manholes etc	generally small items (marginal)
	4 Connections to Sewers etc	insufficient deta
	5 Testing	generally small items (discernible)
	6 Protection	generally small items (discernible)

Diagram 5.17

Table 11.2: COStunsignificant Iteims In "Lowest Cosi" Bands By Trade Subsection

22 Fencing + Gates	SMM Subsection	Tendency Towards Cost-Insignificant Items
	1 Open-Type Fencing	generally larger items (marginal)
	2 Closed-Type Fencing	no data
	3Gates	insufficient data
	4Sundries	generally larger items (marginal)
	5 Protection	insufficient data

Diagram 5.18

Fencing + Gates: SMM6 Bills

APPENDIX 4:
 Formulation of a Hypotheitcal Petrochemical Civil Engineering Measuremient and Cost Control Model (Ch. 5.11)

Recommended Measurement Conveniions for Cobtgignificant and Cost-ingicnificant Parameters of a Hypothetical Petrochimmical Civil Enganemering Measurbment and Cost Control Model (Ch. 5.11)

Tabie 12.1: Recommendations fegarding "cannhelc famides" of mems (latcar data SAMPIE)

Erscavation	Pits for bases	Sinde thom; no thicknees ategories	5
	Frundation trenahes	Fownor dopth etages	5,6
	Break out reinforced concrete	Sincie ttom reqandlees of type of dig	5,6
	Earth gllling	Inconolustvo	5
	Treat manmoes of filling	Single ttom, dismegard slopes to	5
	Working Epeces pits / trenabes	Sincjo standard allowance	6
	Pipe tronches	Seo BWIC rervices	6
	Break out roald briokworld tarmad concretel	Singio tham regardiens of type of exospation	6
	Working specer ground boams	Bincio etandard allowance	6
	Rectuoed lovel	No dopth tepore	6
	Solt mpote	Binglo them recrardien of type of dio.	6
	Woridng eppecer rectuced lovel eroevation	Bingle tanderd allowance	6
	Flbromating	Sinciottern m^{2}	6

Hemm Fraity		Action	GMM
Dispocel of Wetor	Bping water	Deemed included with rates	5
Earthwork Support	Trenches / rechuced lovel excreation/ generally/ neut roadweys/ next existing buildings	Deemed inchuded in ercervation rates Give entra over items for excoavating neut roadways, existing buildings etc	5/5 6/6/6
Hardoore Fluling	To make up levele/ filling around foundations	Inconclusive	5/5
	Sand blinding eto	Givo with assooisted fill ftem	5
	Handpaclaing	Singie m^{2} tomm recrandleas of alopes eto	5
Insitu Conarete	Foundations in trenobed kertb foundstione/ Small mschine or pipe basea/ blinding beda/ stanchion casinga/ beams	Bingle iterm, no thicimese or sime categricas Sute number of baco, bearns, caaings eta	$5,6 / 5 /$ 5,6/5/ 5,6/5
	Treeting unoet surfacen	Binde trom rerandioss ofslopee der	5,6
	Large machine or ptpe besee/cohmmns etropedis/ foundation basea/ ground beams	Singio them, no thiokneas or alme categories Skste number of basea, beams, columne to	$5,6 / 5 /$ 6/6/ 6
	Ferto haunohines	Gtuo whth lorth. Or ceem inahrded	6
	Grouting in poolotes eto	Gtoo with reoolated componomt	6
	Deadrnodjoints	Inconolurive	6
	Peain prountin reto	Give with empocieted component	6
	Wallej roads and pevinges	Bingide them no thiolneen or iso coderorion	616

Hem Family	Action	GMM

Formwork	Kertos and upetands	Fowner width cetegories	5
	Walls and balustrades	Single them	5
	Cohumns, piers and stanchioncasing	Single ma^{2} item, tate number	5,6
	Fisera/toundations, ground beems, etc/ edges of suspended toors and roons	Flower width categories	5/5/5
	Fnds of laerbs, gtops eta.	Add to korb or step quantity	5
	Groones	Give with ampocisted component	6
	Holes in machino bases	Smaller number of sime categries	6
Precast Concrete	Keabs	Inconchustive	5
Concrete Work Sundries	Morticed/outting grooved	Give with associated component	5/5
	Boncing agentel haolding tero 23 low for fintinhings	Give with finishinges specticestion	8/5
	Dampprool membranes	Bincile m^{2} itam	5
Brickrporik	Coming cavtries	Groupjambs, sills eto tinto aincie trom	5,6
Blockwork	Walls	Inconoluatyo	6
	Fair retourng/ rough outting obamfired angiea/ hir cuttingy bond to evinting blook wally bond to brioir walls	Deomed inchuded with retem	5/5 $5 / 5$ 5
Dampprool Courres	Generaly	Inconohustio	
	Mortioes/ holestor pipes eta	Simalior number of tro categoricas	$5 / 6$
Bytalwork + Blockarork Eundries	Eriak reinforcement	Inconolustre	5
	Bed tramea and ailla	Doenoed inghuded in ratee	8.6

From Farnily		Action	GMM
Bructural Eteotwork (Contd)	Site bolts	Single item by weight	6
	Shoppainting	Single m^{2} itom	6
	Gatvanising	Qive in specification	6
Metalwork	Handrail bracketed/mat framea/ toeboards etol floor platee/handraile/ balusters eta.	Inconcluatve	$5 / 51$ 6/61 5/5
	Holes	Deomed included in rates	5
Flumbing Installation	Gutterworis outiets	Inconahusive	5
BWIC Flumbing Installation	Concrete plpe beds and surrounde/ carthworks support to pita/ bar reinforcoment to basee and bloolod tmbrica beses and blocked holes for ducterefor chamber pttel anchor baseas bloaks da.	Compostte ftems for plpe trenahes and ohsmbera Exandard apecifications and detrile recommended	5/5/ 5/5/ $5 / 5 / 5$
BWIC Electrical Installation	Granular beds in ceble trenchea/ holes for ducter dod earthwork support to ceble trenchea/ concrete oable duct murrounde/ foundetions in trenabeal formworks to foundstions, bases etco/cable duade	Compontio ttems for pipe tronohes	5/5/ $5 / 5$ 5/5/6

Item Family		Action	GMM
Insitu Flnishings	Floors and pavemonte/coilings	Sincle thom, nosmall areas	$5 / 5$
	Fair joints to exdsting finishinga/ make good around pipes etc	Deemed inohuded in reter	5/5
	8xirtinge de	Sincie thom. m^{2}	5
Tlle, Blab and Block Finishings	Floors and pevermente/ pavings to drain outfalls ete	Bingle ttem, no small areas	5/5
	Rounded edree/plain borders	Inconohratuo	5
	Stritings eto/ walls	Singlo tram m^{2}	5
Beds + Backings	Soreeded floord/ trownelied Hoons	Alingle trem, no small areas	$5 / 5$
Plain Bheet Finishinge	Fhoors	Single ithem, no amall areas	5
	Coved angieal ecisotrim	Inconoluntuo	5/5
	Cut and It around pipea, bars eta.	Deemed inchuded in rates	5
Suspended Linings	Coilinos	Singlo tham, no mall areas	5
	Erigotrim	Inconolurive	5
Lathing and Beocboarding	Cut and itt around plpes eto	Deemed inolurded in ratee	5
Ctaping	In:ufiniont dasa		
Printing eto	Wallay windows and doced collinged radistons/ vellay and parupet ruttrar:	Bingio m^{2} trem	$5 / 5$ 565

Item Family	Action	SMM

Drainage	BWIC Thrust boring	Inconchustue	5
	Formwork to chamber based/ fabrio to ohamber basea/ concrete chamber basea/ eucowating pita/branch bends/tabric to chamber cover slabs	Composite items for chambers Standand spectfications and details recommended	$5 / 5$ 5,6/5/ 5/5
	Brickwork chamber walla/ blindingbeda/benohinga/ modily manholes ded concrete ohamber surroundey formworix to pipe holes	Composite thems for chambers Evandard epectications and detaila recommended	$\begin{aligned} & 5 / 5 / \\ & 5 / 6 / \\ & 6 / 6 \end{aligned}$
	Pipea/plpe fitingel granular pipo beda/ grub up draing fill in	Compodte itrems for pipe trenohes Standard apecificationa and details recommended	5/5/ 55
	Pipea/pipe fittinge/ granular plpe beda/ grub up drains, fill in	Compontto itterns for pipe trenahes Elandand epecifications and detalls recommended	$\begin{aligned} & 5 / 8 / \\ & 5 / 5 \end{aligned}$
Fencing and gates	Reerect exdisting atgne etod Armoo	Inconalutive	5/6
	Throsvate and ill in behustor boles	Inconoluatve	6

TABLE 12.2: RECOMMIENDATIONS FEGARDING COSITNSIGNIICACANTIEMMS (LARGERDATA SAMPIE)

Items	Action	gaMM

Erccevation + Earthworts Generally	Particulars of weter table	Drawing or preamble	5
Excavation	Erecevating in ground water	Do not measure. Deem inchuded in rates	5
Earthwork Support	Generally	Deemed included in empavation rates	6
	Cuttinges/ neat roadwayl/ nexct existing buildings	Meamure extra ovor for emoeveting nout roadways and existing buildinges	$5,6 / 6 /$ 6
Disposal	Surtace watar	Deomed inchuded with ercouvation rates	6
Surface Treatments	Embanimentelsolling sloping ercenvations	Single them; dismegand alopes	6/6\%
Pling		Inconolyatvo	
Insifun Concrete	RTickers	Connectorts disorvion	5
	Joimtanples	Deom inchuded with joint	6
	Cut robates	Give with ammooistad componont	6
	Tanioing fllats	Inconchuatve	6
Roinforcement	Rating curved outing bending fabric	Deem inchuded with ratee for tmbrio	5,6/6/ 6
Frormwork	Uppersariaces	Only mearure it > 15° from harimantal	5
	Throatel grocved/ ohamed jorgico/ anidings	Emaller number of uiss categoriea	5/5,4 5/5/5
	Wall mortices	Glve with amoocinted compononts	6
	Fincis of walle/wall mofits	Inohude with wall formwork	$6 / 8$
	Blab holed chamfera/ maohine beac holer/ rebedes	Exnallar number of dro andegorion	689 6
	Elab holed/ chameres/ machino beace holec/ rebotes	Smallor number of dae aetegoriea	646 8

Item Family		Action	SMMM
Precast Concrebe	Holes for pipes eta.	Smallor number of aize catergories	6
Hollowblook Construction	Cut holes	Smaller number of sime categories	6
Concrete Sundries	Hacking surfaces as loey for Enishinge	Gtue with finishings spec	5
	Holes for duoting, trunking etc	Bmaller number of sive categories	5
	Work around pipeacto	Deermed inchuded with rates	5
	Holes for bolls de	Give with associsted compononts	5
	Dishing intogullies eto	Deemed included with rates	5
Brickwork	Bond now walls to old	Deomed Inchuded with rates	5,6
Brick facowork	Frair cutting	Deemed included wetth rates	5
Fracing briokwork	Fair returns	Deomend Inoluded with retes	6
	Closing centues	Grour jambs, sills de as singio them	8
Blookwork	Rough outing/ rough chamfered angled/bond walls to brickurats	Deamed inoluded with rates	5/5/5
	Cloming cautioe	Grouptambs ellin eto asedncio tham	5
Brickwork + Blochwork Gundries	Bed tramen, platen, wills dec	Deemed incluxied with rates	5,6
	Pake out joints for flashinga/ shating	Gtive with amoolsted oomponents	6
	Burid in windows	Deomed inolusied with window	5
	Holes for pipes etof boles for cuoting, trunidng etol ohaces	Smaller number ofeim oategortes	6/5,6
	Poolate/ holea for bolli	Glye with enoodeted component	5/5
	Cut end int eround exding pipes did meepholee.	Deemed inchuded with retee	48

Herms	Adtion	BMM

Asphat Work	Turning nibs into grooves	Give with assooiated slidrtings	5
	Working into outlets	Deemed inchuded with rates	6
	Angles on akirtings	Deemed inchuded with skirtinge	6
Sheet Rooting	Ralding cutting forming small openings	Deomed inchuded in rates	5/6
Bitumen-felt Frooting	Turn-down at vergea/ turn- down at aprons/turndown at caves	Amalgamate	5,6/5/ 6
Woodwork Cancaming etc	Notohed ends	Deemed included in rater	6
	Trimming around openinges	Add to timber quantty	6
Fint Fix	Scribing	Deomed included with rates	6
Second Fix	Mitred angiea/ notabes	Deomed inolunded with raten	$6 / 6$
	Lipolnje	Clvo with amoooleted trems	5
Woodwork Compostte Untts	Fitting and hanging casements	Deomed included with camement	5
	Labours on doors and windown/rebated tile	Gtive with door or window	$5 / 5$
Woodwork Bundries	Fioles tor pipes de	Simaller number of dwe caveriorion	5,0
	Packeres	Contractor's dimanetion	5

Itoms	Action	SMMM

Ironmongery	Kiching plated/knobecte/ bolts/ sash fasteners/ padlocise/ dowels/ eacutcheons/mortice deadlooks/ panic latchea/ delector mechanisma/platea/ cleate/ door grillea/ door seals and smokontope/ trilet roll boldera/ indicatorbolta/ cost hoolad namoplatea/door repol cupboard Door catahea/ doorlippinge/ barrelbolted casementetryal doorstayk/ ash trayd/ doormata/ spring hingea/ mex symbole/ shower ourtaing/ panic looloy/ moap trayd towolraila/ weder bary/bolteochetw/ pusih plated/ door channels ete/ bethroom locka/ rebate neted lever listah handlee/ dipms	Enumerabe as packs from door/ window echedule	5/5,6/ 5/5/5/ 5/5/ 5,6/ 5.6/ 5,6/5/ 5/5/5/ 5/5/5/ 5,6/5/ 5/5/5/ $5 / 515$ $5 / 54$ 6/6/6/ 6/6/6/ $6 / 6$
Encuctural Eteohvork Generally	General deeoription of wroks	Preamble or Drewring	6
Steolwrork	Welds on unfamed teabroric	Deamed inoluded with rexeos	5
Sueobiork Bundrise	Eranhion paoknom to	Compratores dismotion	6
	Hole	Deomed inchuded in reten	6
	gup wolds	Inconaluntro	0
	Qalvanising	Civo in epectiontion	6

Iterms	Action	GMM

Metalwork Plates, Bars, Sections + Tubes	Pahing outting ...	Deemed included in rates	5
Metabwork Sundries	Slots/ holes	Small number of dime categories or deem included	5/6
Rainweter Installstion	Connections to ftetinges/ connections to drains/ connections to other matarials	Deamed inoluded with rates for filtings etc	6/6\%
	Pipoolipe/plpobrackets	Give in pipe speoification	5/5
	Conneotions to gullies	Deem inchuded with qullies	5
Overfiow Instellstion	Eplay out pipe ends	Deermed inolunded with rates	5
Waste Installation	Connections to difmerant materialy/ connections to appliancea/ connections to draing	Deemed inchuded with fitings eto	5/5/5
	Splay cut pipe ends	Deomed indulded in ratee	5
Soil and Vent Installation	Connections to different materials	Deemed included whth fitinge to	5
	Pipobracloce/ plpehangors	Gtve with pipe specification	$5 / 5$
	Connections to draina/ connections to appliancea/ pipeconnectors	Deomed inchuded with applisanoes, 	5/8/5
Sanitary Installation	Connections to apolianoes	Deemed inatuded weth epplingore	6
	Epley cut pipe ands	Deomed inclurded in ratea	6
Hot Cold Weter Installetion	Connections to difmeremt materials	Deemed inaluded with fitinge deo	5
	Holdertbet/plpo-han eren	Qtiv in plpe epocifioation	5
	Joint to tryen	Inchuded with tape	5

Hot/ Cold Water Installation (Contd0	Tenk connectora/ connections to appliances	Deomed inoluded with appliances	5
	Splay cut pipe ends	Deemed included in rates	6
Water Main Installation	Prepare pipe ends to receive	Deemed included vith fltings	
	fittings	5	
Plumbing Sundries	Mark positions of holes,	Deemed included in rates	5,6
Testing	mortices etc.		6

Ftoms	Action	GMMM

BWIC Plumbing	Keep eucavations free from water/ treat surfaces of excervation/ steel plates etc in chambers/ fill around absmberd/blindingbeda/ cover slabel formwork to slab somilis/ formwork to chamber siab edged/flush pointing chamber walla/building in pipe ends/ ahamber overwalling cournea/ out tormwork around plpes etc\| concrate lsorba/ ainitnges in concrete/ hardcore beda/ leorb formworkd diesposal of spoily concrete ohamber wiella/ formwork to ohamber wallad expaniton jointy/ treat uneet concrete/ thabrio to cover alabad formwork to obamber beaed rebates in alabel carthwork anpport to trenches eted chsmber phts eted treat surfaces of inling working Epece tabric to ohamber beces and sand beds to plpea end earthwork alopport to pfth	Componite thems for service trenches and chambers Standard specifications and details recommended	5,6/ 5,6/5/ 5,6/5/ 5/5/5 5/55/ 555 히 $5 / 5 / 5 /$ 5/5/5/ 5,65/ 5,8/5/ 5816 8/6/6

Items	Action	SMM

Ellectrical Installation Sundries	Cut ewny, malse grod for equipment pointig/ cat awsey, make good for fitting outlet points	Amaigamste	5/5
BWIC Electrical Installation	Fitting outlot pointa/ eoolect outlet points	Amalgamate	6/6
BWIC Eleotrical Installation (Contd)	Cable trenoh fillingt cable covere/ noteh timber around cables etc/ treat surfices of erovalion/ heepp excovation free from weter earthwork aupport to cable trenches etcod formwork to duat surrounded earthwork aupport to chsmber pitse cto/filling around obambers etod concrete chamber covera/ formwork to cover somity formwork to edges of coveral briok chamber wally/tunh point chamber valla/ chamber covese and tramed hardoore bede/ concrete leecte/ telbeio to chamber bemes etof formoracis to keribal jaint ald duates to now	Composite ttams for servioe trenohes and chambers Btandard epecifications and details recommended	5/6/6/ 5/55/ $5 / 5 / 5 /$ $5 / 5 / 5 /$ 585 5/5/5/ $5 / 5$

Itoms	Action	GMM

Insitu Finishinges	Fair edged/malse good sround steel sections/ malce good around pipes, bars etcl maksegood around ducting, trunking etco/ work into pipes. outlets eto/ dish into gullies etc	Deemed included in rates	5,6/5/ 5,6/ 5,6/ 5,6/5
	Tack-coets for pavinges	Give in pevings specification	5
	Rounded cutarnal anolee/ eutornal ancien	Inconclustivo	6
	Joints to eedstinginishinge	Deomed inchuded with rates	6
	Prepare existing to recetve now	Ctive in spectication for now tinishinge	6
Tile. Slab and Block Finishings	Frinde ofeteps	Add to stops quantity	5
	Fair cutting to other finishingel fair outting to surrounds of openingel out and 㫙 around pipea, bacs etry ort and fit around ducting trunking etol ralding cuttingef angio unity/ cut and itit into reoesmed covert etol out and int around stael mectiona/ tair edres	Deemed Inoluded in rates	5,6/5/ 5,6/5/ 5/6/61 $6 / 6$

Iterms	Antion	BMM

Items	Action	BMM

Drainage Generally	Disposal of gonoral water' disposeal of ground wetery disposal of surface wether	Deemed included in drainace rates	5/5,61 $8 /$
Drainage Trenches	Joints toexisting pipes	Inconchustive	6
	Holee for pipen	Smallor number of alse categories	6
Teoting Drainage	Testing	Deemed included in rates	6
Manhole Chambers to	Earth backfllinge treat surfaces of fillinget treat surfaces of ermevation/ hardoore to make up lovela/ concrete chamber beacs etid thuah pointing ahamber walla/ render chamber wally branch benda/ abamber channole/blindinebeoda/ tabrio in chamber basea/ conorete chamber walla/ reinforcement to ahamber walle/ build in pipe enday disposel of epoll to emplayerin tip/ formworis to wall hickerel formworls to pipe holes	Compoatite items for chambers Etandand apectifications and details recommended	5/5/ 5,6/5/ 5/5,6/ 5/5,5/ $5.6 / 5$ 5/6 $8 / 6$ $8 / 6$
Fending and Gates	Bends on metal fenceal connect to erdinting fencese	Inconolusive	5/5,6
Coneral heme In All Trades	Protection Hema/treting Heema/ provide + remove plant maintain plant	Deemed inohuded in rates for reespeotvo tradee	5.4 5,4 6 6

APPENDIX 5:

Formulation of a Hypothetical Petrocheimical Civil Engineering Measuremient and Cost Control Model (Ch. 5.12-5.20)

A5.1 LEVHL OF ABETRACTION: ELAMENT: RESUUTB OF COMPREHHENBIVEANALYSIS (CH. 5.12)

The data for all 15 Petrochemical Civil Engineering Bills of Quantities were anslysed to detect the behaviour of Elements across all such construction projects:
(1) The entire population of cases were used.
(2) The Element classifications used were those devised control purposes by the Bill users. These would be more readily identifiable by the users. Comments about the suttability of the Element classifications themselves are added later, using the beneflt of hindsight. It was suspected, however, that classifications such as those of the BCIS (1969) did not wholly rafleot Petrochemical Civil Engineering work.
(3) Analysis by Trade or Work Section is undertaken elsewhere. Trades and Work Sections can form parts of Elements.

The data were split by Elements within each Bill and for each such Element the proportion of its value as a percentage of its own Bill total was computed Tabulations were then produced which showed the inoidence of Elements across all Bills and which showed the distributions of cost in the EMements (see Tables 13.1-13.3).
 BuIs)

Elementa [All Items] Incidence	Bill Nr [BMM5]	Bill Nr [SMMG]

	2	3	4		5	6		7	8		9	11		12	13		14	15		16	17	
Preliminaries		*		-	*	*	,	*	*	,	*	*		*	*	*	*			*	*	
Flued, Time Charges	*										*							*				
Bite Preparation				*		-	,										*					
Demolitions	-	*			-						*	*					*			*	*	
Erceavedions	*	*									*	*					*			*	*	-
Foundations	*	*		*					*	*	-	*					*			*	*	-
Marine, Rever Works						*	*															
Repervoirs Tanks	-	*			*															*		
Road, Pavinge		*		-	*		*			*				*			*			*	*	-
Extornal Servioes		*					-			*		-		-						-		*
Drainage	*	*		*	*		*	*		*	*	-					*	*		*		*
Pipe Suppose Cupuers		*												*								
Chimneyese		*																		*		-
Substructure				*	*			*		*								*		-		-
Frame					*			*		*	*					*						*
Fhoors	*			*	*			*		*	*	-				*			,			-
Roor				*	*					*	*					-	*			*		*
Endomal Walla	*			-	*			*		*	*	*				-	-			*		-
Intornal Walls	*				*			*		*	*									*		
Stain					*			*		*	-	-				-	-			*		-
Windowe Doors	*			-	*			*		*	-						*			-		*
Stain, Lhes				*	*		*															
Internal Finithen				*	-			*		*	*		-				*		-	*		*
Fhainge				*	*			-			*		*				-			-		-
BWICM Meohanioal		*		*	*			-			*					*				*		*
BWIC Elootical				*	*			*		-	*		*							-		-
BWIC Fhrmbing				*	-			*		*	*									*		*
FryernalWork		*					*			*	-		*							-		
Brdgen																*						
Ofolot Frame																*						
Deyworke													*	*		*	*		*	*		*

TABLE 13.2: INCIDENCE OF ET EMIENISIN PETROCHEMICAL CIVIL ENGHEARFING BILLS (MEASUREED ITEMSOSNY)

Flements [Measured	Bill Nr [SMMD]	Bill Nr [BMMM6]
Items] Incidence		

Table 13.3: Consistency of Ei bhannis Across Peirochenmical Civil BQ

Eloment [Measured Items] Where	SMMS	BMMs	SMM6	EMMM6	All	All
Oocurring[As \% OfTotal Cost]	Min\%	Max\%	Min\%	Max\%	Min\%	Max\%

Preliminaries						
Flised, Time Changes						
Site Preparation	0.02	0.02	0.76	0.76	0.02	0.76
Demolitions	0.20	18.97	0.01	5.02	0.01	18.97
Exacavations	4.68	10.54	4.98	17.00	4.68	17.00
Foundations	4.61	33.06	3829	8728	4.61	67.28
Marine + River Works	-	-	-	-	-	-
Reservoirs Tanios	0.04	28.43	1.84	1.94	0.04	28.43
Poads, Peving	1.72	58.88	0.53	13.83	0.58	58.88
Fral Services	5.87	12.55	0.18	288	0.12	1265
Drainage	1.02	27.91	1.32	20.65	1.08	27.91
FipeSupports, Culverts	5.01	5.01	89.82	89.92	5.01	89.82
Chimners Cooling Towers	-	-	0.68	0.97	0.68	0.97
Subetructure	3.40	31.17	0.82	75.20	3.40	75.20
Frame	0.42	12.64	0.08	42.77	0.02	48.77
Floors	1.42	9.18	0.85	28.24	0.85	2824
Roof	3.08	985	0.46	289	0.46	0.85
Etarnal Walls	8.70	20.38	1.04	4.02	1.04	20.38
Intermal Walls	0.09	8.53	0.07	0.07	0.07	8.68
Exairs	0.07	203	0.01	220	0.01	229
Windows Doors	0.01	11.23	0.58	1.05	0.01	11.28
Spairs, Itme	0.81	288	-	-	0.81	298
Intornal Finishings	3.77	16.81	0.08	10.85	0.08	10,55
Futinge	0.65	4.02	0.85	3.50	0.55	408
BWICMechanical	0.14	0.52	0.07	3.55	0.07	3.55
BWIC EHectrical	0.08	0.64	0.01	0.11	0.01	0.64
BWIC Phumbing	0.15	5.88	0.06	0.10	0.08	5.88
Ethernal Work	0.08	14.67	1.10	883	0.08	14.67
Bridges	-	-	1.83	1.88	1.98	108
Oftot Frame	-	-	21.78	21.78	81.78	21.78
Dayworlas	-	-		-		

Table 15.1:
COEFFICIENT OF VAFIATION OF ET mMENTAL COST beHHAVIOURACROSS
Petrochemicial Civil Engainfariring BQ (SMMM)

Elbmenis [Aulitems] As \% of Total Cost	BA2	BCB	Ba4	BAS	BA8	Bal	BA8	BA9	Coefl Varn (\%)
Proliminaries		14.70	15.54	16.45	13.27	9.70	17.81	3.35	38.34
Froed, Time Chargea	41.84							18.42	54.86
Stpe Preparation			0.02		0.17				111.65
Demolitions	8.38	0.13		230				1.46	124.77
Encervations	5.21	4.35						1.36	55.52
Foundstions	16.50	520	14.31				11.21	1.77	6293
Marino + Rtvor Works					0.50				
Reservoirs Tanks	0.06	16.50		0.01					172.11
Roads, Pevin ${ }^{\text {a }}$		20.04	28.03	0.48	4280		3.00		87.82
Fhtramal Berviose		8.0			17.68		3.16		78.10
Drainage	288	6.88	0.61	020	20.84	1.81	3.20	1.18	120.57
Pipe Supporth Culverts		3.18							
Chimnes, Cooling Townas		11.87							
Bubetructure			256	4.50		4.94	13.07		7252
Frame				17.58		14.15	16.57	888	60.88
Hhors	3.91		1.07	4.68		6.50	3.55	0.78	64.89
Rood			3.17	0.80			6.90	287	73.80
\%-tarnal Walls	0.71		7.58	13.00		16.85	7.86	381	47.5
Intornal Walls	0.04			2.68		2.18	8.02	1.02	00.00
Exirs				0.02		0.50	0.10	020	111.00
Whindown Doors	10.58		5.95	5.81		274	8.18	327	56.60
Botin Lime			1.84	2.04	0.88				78.19
Internal Piniahing			284	508		6.06	2,44	8.06	48,41
Futin			0.50	11.50		0.71		0.46	10080
EWICMEohanioal		028	5.20	200		28.72		40.88	117.50
EWIC Emoctical			2.54	7.00		5.48	0.18	7.11	1 08A8
BWIC Phumbin\%			0.68	0.77		0.78	0.18	1.07	780.08
E-tarnal Worla		0.06			0.24		480	487	7107.87
Bridara									
Onolot Fanme									
Dewores									

TABIE 15.2: Comprycient of Vardaition of Ei binanial Cosi hehtaviour Across

Peifochemical Civil Fhain herining BQ (SMMM6)

Eh mandis [Allitimms] As\% of TotalCogr	BQ11	BQ12	EQ13	BQ14	BQ15	BQ16	BQ17 $\begin{aligned} & \text { C } \\ & \mathrm{V} \\ & \mathrm{O}\end{aligned}$	Coell Varn (\%)
Prellminaries	19.03	420	4.31	13.09		0.23	13.32	03.84
Frued, Timo Charges					0.20			
Site Preparation				0.54				
Demolitions	0.25			0.18		0.01	0.04	85.97
Ercevations	1232			3.55		4.93	13.88	65.04
Foundations	51.26			42.86		28.45	54.83	31.04
Marino + Rivor Works								
Reservoirs Taniss						1.58		
Roeds, Pavinge		7.00		0.38		10.88	5.88	75.46
Ehat Servioen	2.10	189				0.49	0.10	00.16
Drainago	285			0.94	18.79	5.43	1.84	118.60
Plpe Supponts Culvents		84.04						
Chimnorg Coolin Townes						0.58	0.80	57.66
Subutructure					00.96	17.71	0.50	116.57
Prame			8808					
FYoOr	1.17		20.14		2.11		0.69	14528
Rool			238	207		124	0.08	55.12
External Walls	208		0.58	1.06		3.15	085	6445
Intornal Walls						0.06		
Beairs	1.31		1.53	1.03		0.78	0.01	08.10
Windown Doore				0.48		1.01	0.48	55.18
Beatre Im:								
Intornal Finiahing	0.08			1680	1.68	208	0.87	152.01
Futinge	2.88			248		0.58	0.80	68.47
EWICMeohanical			3.16			8.01	0.80	381.80
BWIC Emootrioal	0.08					1.54	0.01	1 1408
EWIC Prumbing						0.05	0.08	48.00
Enternal W].	207					0.87		67.10
Brdaten			172					
Ofllot Framo			1080					
Deymores	805	1.07	8.77	12.8	727	0.87	4.40	- 678

TABLE 15.3:
CORFFicient of Vartation of Ethmenntal Cost behtaviour across
Petrochimmical Civil Encainfririvg BQ (SMMM5)

Elumienis[MeAsured ITEMS ONLY As\% OF Total Cost \qquad	BCR	B03	BQ4	BQ5	B98	BC7	BCB		Coeff Varn \%)
Preliminaries									
Fiwed, Time Charges									
Site Preparation			0.02						
Demolitions	18.97	0.20		8.21				5.02	8827
Ercoavations	10.54	6.97						4.68	39,93
Foundations	33.06	4.61	18.88				788	6.08	85.00
Marine + River Works									
Reservoirs, Tanks	0.13	26.43		0.04					171.55
Roads, Pavings		40.45	37.18	1.72	5888		8.57		80.81
Eroll Services		6.20			12.55		5.97		4532
Drainage	5.71	10.05	12.50	1.02	27.91	5.6r	8.08	404	8838
Fipe Gupports, Culverts		5.01							
Chimneys, Cooling Towers									
Subetructure			3.40	17.50		16.1	31.17		65.76
Frame				0.42		12.64	0.18	11.27	110.67
Froors	791		1.42	9.18		7.40	6.48	248	58.90
Roof			420	3.08				9.85	64.08
Extemal Walls	18.65		9.80	16.41		2288	17.56	8.70	34.38
Internal Walls	0.00			8.58		7.47	7.20	8.40	60.45
Stans				0.07		208	0.28	0.68	118.27
Windowe Dooms	3.88		7.10	8.18		6.97	0.01	1128	61.72
Statas Lifle				286	0.81				108.58
Internal Finishings			3.77	16.81		15.48	5.82	10.51	54.76
Fithige			0.80	408		0.65		1.56	99.97
BWIC Mechanical			0.14	0.32		0.52			58.18
BWIC Eleotrical			0.08	0.31		0.64		0.88	65.41
BWIC Frumbing.			0.84	1.87		1.88	0.15	588	108.06
Erearnal Whas		0.08			0.34		0.88	14.67	179.38
Bridges									
Omplot Frame									
Davwordos									

Table 15.4:
COEFFICIENT OF VARIATION OF EL AMIENTAL COST BERHAVIOURACROSS

Peirochtemical Civil Encinkerring BQ (SMMM6)

Fhemenis [Mibasurem Itemas Only As\% OpTGEaLCost	BQ11	Ba12	BQ13	BQ14	BQ15	BQ16	BQ17 $\begin{aligned} & \text { C } \\ & \\ & V \\ & \\ & \end{aligned}$	Coeff Vern (\%)
Proliminaries								
Fbred, Time Charges								
Site Preparation				0.78				
Demolitions	0.32			1.68		0.01	0.18	13930
Erceveations	16.18			4.88		6.29	17.00	57.14
Foundations	67.13			59.45		36.20	6728	25.48
Marine + Rivor Worics								
Reservoirs, Tankes						1.94		
Roade, Pevinges		8.07		0.53		13.83	7.14	73.70
Frot Sorvicee	286	201				0.03	0.12	80,A2
Draingae	3.78			1.52	20.65	6.83	2.19	114.40
Pipe Supports, Culvorts		89.82						
Chimners Cooling Touners						0.68	0.97	24.86
Subetructure					7520	22.50	0.02	11688
Hrame			42.77				0.02	14180
Fhoore	1.53		2824		288		0.85	162.18
Roof				280		0.46	0.77	80.50
Ehternal Walls	286			2.75		4.02	1.04	4 46.68
Internal Wals						0.07		
Senira	0.14		1.72	220		0.87	0.01	180.84
Windoiven Doors				0.65		1.05	0.58	3887
Goaing Im:								
Internal Finimhin	0.08			1085	1.88	208	088	8 100.11
Futing	3.12			380		0.55	0.48	889.60
EWICMEehanical			3.505			0.07	0.80	0148.94
BWIC EHPotrical	0.08					0.11	0.01	176.87
EWIC Plumbin:						0.06	0.10	0858
Eti Woris	223					1.10		47.80
Bridres			1.93					
Ofrlot Frame			21.78					
Drymer								

A5.2 Rbsults of analysis of Cost-Genimration by Elbanehnt in Peirochibmical Civil Einginghring Bilus of Quanitites (Ch. 5.18)

The data were split by contract Bill and aggregate functions were computed for mean Bill item values. Each item was divided by the mean item value for that Bill as absolute values were not required; the purpose being to study behaviour relative to some "bench-mark". The data were then split further by Element within each Bill and a mean item value was computed for each such Element.

The mean Element item value was taken to represent the mean rate at which that Element generated costs. The mean item value for the entire Bill was talsen to represent the mean rate at which the Bill as a whole generated costs. Any Element which generated mean costs more rapidly than did the Bill as a whole was termed, for the purpose of the excroise, a "Major Cost Generator". Any Element which generated mean costs more slowty than did the Bill as a whole was termed, for the purpose of the exercise, a "Minor Cost Generator". These relative values were tabulated and compared (Tables 16.1-16.4 refer). The following comments are offered regarding the data and the analysis:

1) As in previous ansiyses, the whole data population was used.
2) For consistency, the original Element classifications were retained.
3) Anslysis by Trade of Work Section was deferred for reasons discussed earlier.
4) Although it was suspeoted following the previous anakyis (vide supra) that the data ware possibly insuffient in quantity it was nevertheleas considered that further knowiedge might be gained by further exploration of the exdsting data.

Tabie 16.1: Major and Minor Cost Gemerrating Elbmenis in Peirochemical Civil
Enginempang Bilis of Quanities

	BuL2	Bra 3	Bur 4	Buc5	Bund	Bald 7	Brax	Bux 9
Rate of Cost Generration								
[SMIMD]								
Preliminaries		7.33	1.16	1.08	1.14	0.62	127	20.00
Fixed, Time Changes	8.51							
Site Preparation			0.20		1.50			
Demolitions	0.89	1.08		028				0.26
Ercavations	0.54	128						0.58
Foundations	0.80	0.61	0.82				3.16	0.53
Marine + Fiver Worios								
Recervoirs Tanks	023	0.61		0.12				
Roads + Pavings		1.34	1.65	0.45	280		0.78	
Eutarnal Servicen		0.62			0.67		0.38	
Drainago	0.28	0.46	0.44	0.80	0.63	0.18	029	0.13
Pipe Suppork, Cukvents								
Chimners Cooling Towers								
Substructure								
Frame								
FHoors	0.57		1.81	1.38		229	0.45	1.08
Roof								
Ehtarnal Wala								
Intornal Walls	0.64			1.08		0.78	0.61	0.61
Exairs								
Windown + Doors								
Spirs + Intm								
Intornal Finishing			0.41	0.48		058	0.4	0.80
Fwinge								
EWICMochanical								
BWIC EHoctrioal			150	8.07		1.78	0.71	808
BWIC Purmbing			020	0.12		0.00	0.41	0.18
Enternal Worls		0.18			0.11		4.10	0.85
Bridquen								
Onplot Frame								
Drywory								
Binl Mean	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Tabie 16.2: Major and Minor Cost Generating Etemmenis in Petrochemical Civil Enginemring Blus of Quanities

Bhamientr[Alliftinaj: Minan Rate OF COSTGENGRATION/BMMM6]	Baz 11	BnI 12	Buz13	Bac 14	Banc 15	Bur 16	BuI 17
Preliminaries	4.85	4.57	6.06	456		7.51	7.00
Froed, Time Charges					0.08		
Bite Preparation				263			
Demolitions	0.29			0.41		0.12	0.21
Etcorvations	0.65			0.35		0.46	1.76
Foundstions	1.05			0.76		1.04	1.57
Marine + River Worlss							
Resorvoirs + Tankrs						0.38	
Roads + Peurin:s		263		1.84		1.61	0.52
Etremal Sorvices	1.12	0.33				0.20	0.18
Drainace	0.42			024	0.58	0.54	0.18
Fipo Supports + Culverts		1.14					
Chimngy + Cooling Towers						0.60	0.31
Qubetruature					1.74	1.50	095
Frame			0.81				0.11
Floors	0.50		1.41		3.00		0.18
Roof			2.17	0.48		0.80	028
Ehtromal Walls	0.68		0.54	120		0.03	0.50
Internal Walle						0.11	
Q60in	1.58		2.15	150		081	0.51
Windowe + Dooms				0.88		0.47	0.11
Elatres + Iners							
Indernal Finighin	0.06			280	280	089	027
Futnos	0.77			0.00		029	0.87
EWTCM Meohanioal			0.40			780	0.61
EWIC Erectrical	0.11					1.87	0.08
EWIC Pumbing						0.05	0.08
Etramal Wort	0.74					0.88	
Brides			0.57				
Onplot Frama			2.48				
Drwours	0.57	0.00	0.56	2.48	0.47	7.02	188
Bill Mina	1.00	1.00	1.00	100	1.00	100	1.00

Table 16.3: Majorand Minor Cost Genkirainng Eibminisis Peirochemical Civil Engingering Bills of Quanities

El mannis Mifasuremp himej: MeanRateof CostGeneriation [SMMMD]	BuL2	Bra3	Bill 4	Binc5	Bul 6	Bill 7	BuL 8	Bal9
Froed, Time Chergee								
Sito Preparation			0.20					
Demolttions	0.39	1.08		023				0.26
Ercasvations	0.54	128						0.57
Foundations	0.82	0.34	0.81				0.98	0.53
Marino + Rivor Works								
Reaervoirs Tanlos	0.28	0.61		0.12				
Roads + Pavinge		1.31	1.05	0.45	280		0.76	
External Servicen		0.31			0.35		027	
Drainage	026	0.42	0.44	0.20	0.51	0.12	029	0.13
Pipe Supports, Culverts		0.32						
Chimners Cooling Tomers								
Subetructuro			1.08	1.19		0.47	0.77	
Frame				0.10		1.01	0.11	0.47
Fhoors	0.57		1.81	1.31		0.85	0.38	1.08
Root			3.30	0.92				1.14
Fhternal Walle	0.68		1.01	0.88		121	0.70	0.18
Intornal Walls	0.05			1.08		0.78	0.61	0.61
Exairs				0.12		0.19	0.09	0.94
Windovie + Dooks	0\%		0.83	0.18		0.18	0.01	0.84
Exaire + Inte				0.18	0.08			
Intornal Finiahin			0.41	0.87		0.48	0.84	0.80
Fiting:			0.10	1.87		0.08		0.85
EWICMeohanion			0.10	0.08		020		
EWIC EHectical			0.07	0.05		0.08		0.07
BWIC Phumbing			0.80	0.08		0.05	021	0.18
Eternal Woria		0.13			0.11		0.46	0.85
Briduen								
Onfot Frame								
Demacts								
Rmmon	0.54	0.06	080	0.57	0.83	0.87	0.51	0.31

Table 16.4: Majorand Minor Cost Gennerating Elemmeis in Peirochemical Civil Enginemring Bills of Quanitites

Elummints Mieasurem Itrimb: MeanRatiof CobtGenmertion [SMME]	B HL 11	BILI 12	BILI 13	Bixd 14	Bua 15	Bimi 16	BILI7
Preliminaries							
Flued, Time Chargee							
Site Preparation				2.63			
Demolitions	0.29			0.41		0.12	021
Eberavations	0.65			0.35		0.46	1.76
Foundations	1.05			0.75		1.04	1.57
Marine + River Works							
Reservoirs Tanlos						0.38	
Foosds + Pevings		2.63		1.84		1.02	0.52
Entornal Sarvicen	1.12	0.38				0.20	0.18
Drainage	0.42			0.24	0.56	0.54	0.18
Piposupport, Culverts		1.42					
Chimnevs, Cooling Towers						0.60	0.31
Subetruature					1.74	1.50	025
Frame			0.81				0.11
Fhoors	0.00		1.41		3.00		0.18
Root				0.48		0.34	0.22
Enternal Walle	0.68			1.20		0.63	0.90
Intornal Walls						0.11	
Staira	0.19		215	1.59		0.31	0.08
Windown + Doors				0.38		0.41	0.11
Stairs + Lims							
Intornal Finimhing	0.08			282	888	0.80	0.08
Fiting	0.77			0.69		0.18	0.14
BWICMeohanioal			0.40			0.30	0.01
BWIC Erlectrical	0.11					0.00	0.08
BWIC Pumbing						0.05	0.08
Endernal Works	0.88					0.80	
Bragaen			0.57				
Omplot Frame			2.48				
Daxwork							
Bim Moan	0.85	188	1.09	0.78	189	0.81	0.80

Appendix 6
 Valmation of the Hypotheitcal Modeli Results of Structured Interview Survey of Model Users (Stage 1) (Ch. 6.1-6.5)

Results of Survey of Userr Atitiudes to Hyponherical Model (Stage 1) (Ch. 6.3)

The original plan was to interview 7 users in the North-West of Fngland and 6 in the North-East. Staff availability dictated that only the North-West users were available to comment on the Draft Measurement Rules at this stage, but see Appendix 7. The following comments are offered regarding the survey.

1) A possible total of 13 respondents appears small and, hence, limits the reliability of any results obtained. These 13 respondents, however, represented all of the personnel who were likely to become involved in preparation of Bills of Quantities. The sample size could not realistically have been increased.
2) The parties to the research project were satisfied therefore that consultation with all likely users of the hypothetical measurement model would yield sufficient information to enable reasoned comment to be drawn from the results.

1 VERY STRONG FEELING THAT THERE WOULD BE FEWER ITEMS TO MEASURE.

	MORE	NO EFFECT	FEWER	
Generally	0	0	7	7
Excavation + Earthwork	0	0	7	7
Concrete Work	0	1	6	7
BWICBervices	0	1	6	7
Finishings	0	0	7	7

Items to Measure Using the Hypothetical Model

STRONG FEEL ING THAT MEASUREMENTTIME WOULD REDUCE.

	INCREASE	NO EFFECT	R	
Genducerally	0	3	4	7
Excavation + Earthwork	0	2	5	7
Concrete Work	0	3	4	7
BWICGervices	0	2	5	7
Finishings	0	0	7	7

Effect on Measurement Time Using the Hypothetical Model

3 UNIVERSAL FEREI ING THATLESS TIME WOULD BE SPENT MEASURING "LOW COST" TTEMS.

DIAGRAM 6.3	InCREASE	NOEFFECT	RERUCE	
Generally	0	0	7	7
Excavation + Earthwork	0	0	7	7
Concrete Work	0	0	7	7
BWICServices	0	0	7	7
Finishings	0	0	7	7

Effect on Measurement Time Using the Hypothetical Model ("Low Cost" Items)

4 STRONG FEEL ING THAT THE DRAFT MEASUREMENT RULES WERE EASIER TO READ.

DIAGRAM 6.4	MORE	Noempect		
Generally	1	2	4	7
Excavation + Earthwork	1	2	4	7
Concrete Work	1	2	4	7
BWIC Services	1	2	4	7
Finishings	1	2	4	7

Readability of Measurement Rules in Hypothetical Model

The one respondent who considered the rules in the hypothetical to be more difficult to read offered no reason why.

5 STRONG FEELING THAT THE MEASUREMENT RULES IN THE HYPOTHETICAL MODEL WERE SIMPIER AND CLEARERR

DIAGRAM 6.5	Lass simple andcisar	No ErFEECT	More GIMPIE AND CIEAR	
Generally	1	2	4	7
Excavation + Earthwork	1	2	4	7
Concrete Work	1	2	4	7
BWIC Services	1	2	4	7
Finishings	1	2	4	7

Simplicity and Clarity of Measurement Rules in Hypothetioal Model

6 STRONG FEEI ING THAT WORKING-UPTIME WOULD REDUCE WHEN USING THE HYPOIHEIICAL MODEL

	INCREASE	NO EFFECT	READUCE	
Generally	0	3	4	7
Excavation + Earthwork	1	2	4	7
Concrete Work	0	3	4	7
BWICServices	0	2	5	7
Finishings	0	1	6	7

Effect on Working-up Time of Hypothetioal Model

7 UNIVERSAL FEEI ING THAT WORKINGUP TIME ON LOW COST TTEMS WOULD REDUCE USING THE

 HYPOTHETICAL MODEL| | INCREASE | NO EFFFECT | REDUCE | |
| :--- | :--- | :--- | :--- | :--- |
| GIAGRAM 6.7 | 0 | 0 | 7 | 7 |
| Excavation + Earthwork | 0 | 0 | 7 | 7 |
| Concrete Work | 0 | 0 | 7 | 7 |
| BWIC Services | 0 | 0 | 7 | 7 |
| Finishings | 0 | 0 | 7 | 7 |

DIAGRAM 6.8	More NEREDED	Detall APPROPFIAT E	Lass NEETDED	
Generally	1	6	0	7
Exxcavation + Earthwork	1	6	0	7
Concrete Work	1	6	0	7
BWIC Services	1	6	0	7
Finishings	1	6	0	7

Appropriateness of the Detail in the Hypothetical Model ("Low Cost" Items)

It is considered that this result reflects the desire to proceed with the experiment in cautious stages (on the author's part) and innate conservatism (on the part of practitioners). The one respondent who desired more detail expressed a desire to see specific worded statements or preambles explaining what (previously measurable) is deemed to be included with what (still measurable). Whilst it is conceded that the drafting of these rules was by no means perfect, the rules contained numerous such statements.

	DOUBT	NODOUBT	
DIAGRAM 6.9	6	1	7
Generally	6	1	7
Concavation + Earthwork	6	1	7
BWICBervices	6	1	7
Finishings	6	1	7

Doubt as to Where Unmeasured Items are Deemed to Be Included in the Hypothetical Model

Most respondents cited confusion as to whether information was in the specification, in a Preamble or with the measured item itself. This is a clear indication that the experimental model would have to be more meticulously drafted. One respondent mentioned the risk of claims if the work changed drastically. It is contended that there is precedent for declaring Bills of Quantities rates invalid if the work changes drastically, it would no longer be the work (and working conditions) originally tendered for. It would matter little which measurement model was involved; no Bill of Quantities could be adequate if the eventual work done did not remotely resemble that described by said Bill. It has already been mentioned that certain sections of the Petrochemical Civil Engineering Bills analysed appeared not to have been derived from the
design, but merely inserted in order to cover the allowed budget. There would seem little point, therefore, in adding overcomplexity to inherent inadequacy.

	DIAGRAM 6.10	VAGUER	NO EFFECT	CIEARERR
Generally	1	2	4	7
Excavation + Earthwork	1	2	4	7
Concrete Work	1	2	4	7
BWICBervices	1	2	4	7
Finishings	1	2	4	7

Clarity of the Proposals Regarding Speoification in the Hypothetioal Model

This seems to contradict some of the responses to Question 10. Perhaps Question 10 could be taken to be a response to the proposed measurement document in general as opposed to Specifications in particular. It is nevertheless puzzling to witness the apparent confusion which arises when a statement is made that "what is measured must be specified". It would seem obvious. SMM7 (1988), which was still being developed at the time of this survey, eventually placed heavy reliance on reference to the specification as being the only information without which builders could not price construction work (vide supra).

	INADEQUATE	ADEQUAIE	
Generally	0	7	7
Excavation + Earthwork	0	7	7
Concrete Work	0	7	7
BWIC Services	1	6	7
Finishings	2	5	7

Adequacy of the Measurement Units in the Hypothetical Model

One or two respondents harboured personal doubts as to whether Finishings ought to be simplified. The results of the data analyses used to test the conventional model, however, would suggest otherwise. MEASUREMENT RULES FOR PREPPARING BIILS OF QUANIITIES.

DIAGRAM 6.12	PROBLEMS FOFRSEREN	No FROBIEMS FORESEEEN	
Generally	4	3	7
Excavation + Earthwork	4	3	7
Concrete Work	4	3	7
BWIC Services	4	3	7
Finishings	4	3	7

15 OFTHE RESPONDENIS WHO FORESAW PROBL EMMS, NUMEROUS STATEMENIS WERE OFFERED:
a) "The confusion in Question 10". This is not disputed.
b) "Simplification of Finishings". The simplification was based on the observed tendency for the only marginal effect of the inclusion of complexity.
c) "The Client dictates what Method of Measurement to use." It is contended here that the surveyor should so advise, as a relative expert in these matters.
d) The difficulty of persuading an entire industry to adopt the model at present under experiment". Whilst this cannot be gainsaid, it does not necessarity constitute a defect. This is more evidence that the criteria underpinning model selection can be sociologioal, and can be applied without recourse to empirical evidence.
e) "Lack of familiarity and "the learning curve". Again, this is undeniable, but not necessarily a defect. Another sociological oriterion.

1) "Problems cannot be foreseen; the model needs a "test project". A field experiment was, in fact, planned. Comments regarding whether the user group demand the same treatment of the conventional model are pertinent (vide supra).

Escoept for (a), none of the perceived problems appeared to be direotly attributable to the meesurement model itself. TENDERFS.

DIAGRAM6.13	Less ADPrintr	Norminct	Mores ADPMETS:	
Gonomelly	3	2	2	7
Primelation + Earthwork	3	2	2	7
Conarato Work	8	2	2	7
BWIC Sorvioen	8	2	2	7
Miniahing	8	2	2	7

Comments offered included:
a) "The Tenderer would have to think about the scope of the work or be given some indicative drawings". The case has been already for referring to the drawings for whatever degree of detail exists. A Tender can be prepared without a Bill of Quantities regardless of its level of detail.
b) "By not giving the Tenderer much information more risk is apportioned to him/her". See remarks about drawings and about whether this information was "created out of nothing" by the method of measurement itself.
c) "Tenderers are not interested in Bills of Quantities with thousands of items". The results of the analyses of the conventional model strongly support this respondent's statement.
d) "Tenderers should be given detailed drawings". This can only occur if detailed drawings exist. If not, as is very often the case, detailed measurement would seem inappropriate. As this respondent appears to suggest, there would be no need for the measurements themselves to convey the detail to be communicated twice.
e) "If the design is not detailed the takeoff cannot be detailed, so a concise SMM has to be a winner".
f) "The proposals are better when it comes to my (the respondent"s) site operations".
g) "Learning curve working out new Standard prices and rates; thereatter they can be reused".
h) "Proposals are less adequate as the design information is not atways available at Tender Stage". It is dififcult to understand this comment: whence, therefore, does the detail come? What relevance do the measurements have? Vide supra
i) "The reliance on specification gives ground for concern". Work cannot be priced without a specification. This response is extremely curious. It could not be the case that people did not specify things; therefore they should be relied upon.

Comments (c), (d) and (e) were most welcome. They echoed some of the "foundation"arguments behind the approsch to the research (see Chapter 2).

DIACRAM 6.14	Ims ADPETMET	Nonrymer	$\begin{aligned} & \text { Morte } \\ & \text { Anmyser } \end{aligned}$	
Conomaly	0	4	3	7
Eheovation + Earthewrix	0	4	8	7
Concuto Work	0	4	8	7
BWIC Eorvice:	0	4	3	7
Finiahin:	0	4	3	7

Adequacy of the Hypothetical Model for Pricing Bill Items

20 A STRONG FEELING THAT THE TIME TAKEN TO TENDER WILL REDUCE.

DIAGRAM 6.15	Incireabeid TIME	NOEFFECT	Remuckid TIME	
Generally	1	1	5	7
Excavation + Earthwork	1	1	5	7
Concrete Work	1	1	5	7
BWIC Services	1	1	5	7
Finishings	1	1	5	7

Time Taken to Tender Using the Hypothetical Model

21 A STRONG FEEL ING THAT THE USERS WERE HAPPIER ABOUT THE AMOUNT/ LEVEL OF PRICEABLE DETAIL

	LIASSHAPPY	NO EFFECT	HAPPIER	
Generally	1	1	5	7
Excavation + Earthwork	1	1	5	7
Concrete Work	1	1	5	7
BWIC Services	1	1	5	7
Finishings	1	1	5	7

Happiness of Users With the Amount / Level of Prioeable Detail In the Hypothetioal Model

The one respondent who thought otherwise thought that lack of detail gave Tenderers more to think about and that this might cause higher "risk" pricing. However, the respondent thought that this was a general Tendering problem not necessarily attributable to any given Method of Measurement.

22 A STRONG FEEL ING THAT THE MEASUREMENT RULES SHOULD BE SUPPLEMENTED BY FURTHER INFORMATION TO ASSIST TENDEERING.

DIAGRAM 6.17	LASGAPPY	NOEFFECT	HAPFIER	
Generally	6	0	1	7
Excavation + Earthwork	6	0	1	7
Concrete Work	6	0	1	7
BWIC Services	6	0	1	7
Finishings	6	0	1	7

The Measurement Rules In theHypothetioal Model Should Be Supplemented By Further Information to Assist Tendering

Comments included:
a) "Indicators of scope and detail". It is argued that this would be difficult in the case of incomplete design.
b) "Where to allow money for unmeasured items". See Question 8. Also, it has to be said that with any existing Method of Measurement, nobody but the Tenderer knows where the true costs of things have been included. The hypothetical model could not be any worse in this respect.
c) "Diagrams for unusual items". This is fair comment. It is accepted as good practice so to do. It is debatable, though, whether it would be wise to misdirect effort on the invention of measurement rules to cater for the measurement of what seldom occurs.
d) "Specifications". This is in contrast to Question 18 (i).
e) "Better explanation of item coverage, what is deemed to be included etc.". This is accepted as a shortcoming of drafting.

24 A STRONG FEERLING THAT THERE IS SOME SUPPLEMENTARY INFORMATION NECESSARY TO ASSISTIN PRICING BILL ITEMS.

	DIASSHAPPY	NOEFFECT	HAFPIER	
Generally	5	0	2	7
Excavation + Earthwork	5	0	2	7
Conorete Work	5	0	2	7
BWIC Services	5	0	2	7
Finishings	5	0	2	7

Despite the apparent contrast to the response to Question 18, responses included:
a) As Question 22 .
b) "Phasing restrictions on proposed construction work".

25 MIXED FEELINGS AS TO PROBL FIMS FORESEEEN IN PREIPARING TENDERS (DRAFTING PROBL EMS APART).

DIAGRAM 6.19	Problems FORESEEN	No PRORIEMS FORFSEEN	
Generally	3	4	7
Excavation + Earthwork	3	4	7
Concrete Work	3	4	7
BWIC Services	3	4	7
Finishings	3	4	7

Problems Foreseen In Using theHypothetioal Model to Prepare Tenders

Problems foreseen included:
a) As question 22 .
b) "Learning curve". See previous comments.
c) "Acceptance by industry". See previous comments.
d) "We need a "test" project". See previous comments.
e) "Less measurement detail needs more advanced design". Again, it may be a contradiction in terms to expect detailed measurement of a 'not-detailed' design. Agreed, in the case of advanced design, simple measurement is easy, but in the case of incomplete design it is difficult to envisage how complex measurements could have aotually been obtained, save by creation for creation's sake.

DIAGRAM 6.20	Promimms PORbseris	No FFORTYME FORTBE:MnN	
Generally	0	7	7
Frocevation + Elarthwork	0	7	7
Concrete Work	0	7	7
BWIC Sorvicen	0	7	7
Finishings	0	7	7

THE USES OF MEASUREED BILL OF QUANITIES SECTIONS IN THE PRERPARATION OF TENDERRS (AS EXPRESSEED BY THE USEHR GROUP OF MEASUREMRS).

Responses were (with one or two exceptions of detail) comparatively vague, suggesting that the respondents were not too sure. This appeared to contradiot any misgivings the respondents may have had about the suitability of the drat measurement rules in the Tendering Period (Questions 1629). Having doubted the suitability of the document for tendering the respondents seemed to have no clear view of how it was actually used used by tenderers. Curiously, the respondent who was most critical of the hypothetical model actually confessed to being "not really sure" how it was used. This invites the assertion that surveyors are in no position to makse firm conclusions as to the suitability of tender doouments if they do not know how builders use them.

31 POLARISATION OF OPINION ON WHETHER TIME SPENT VALUING VARIATIONS WOULD REDUCE USING THE HYPOTHETICAL MODEL

	INCREASED TIME	NO EFFECT	REDUCED TIME	
Generally	3	1	3	7
Excavation + Earthwork	3	1	3	7
Concrete Work	3	1	3	7
BWIC Services	3	1	3	7
Finishings	3	1	3	7

Comments included:
a) "Time problems in breaking down composite items".
b) "The time effect if "narrow widths" change dramatically". Again, it must be contested that if such things are unpriced, derisorily priced or priced the same as "wide areas" then "narrow width classifications" become a timewasting irrelevance. It would matter little if their quantities varied in the extreme.
c) "Claims due to complexity changes". If the Tenderer attaches no importance to such items in the first place then such claims cannot involve much money.
d) "Learning curve and initially working out new standard prices". This was a common response.

32 SUGGESTIONS FROM THE USERR GROUP OF MEASUREFRS AS TO HOW MEASURED ITEMS ARE USEED IN POST CONIRACT PRODUCIION FLANNING INCUUDEHD:
a) Mandatory completion against programme.
b) Working out hourly calculations for production.
c) Bonuses for workforce.
d) Ordering materials (despite ofliol discouragement)
e) Internal cost control to contractor.

33 A SIRONG FEHEH ING THATT NO ADDITIONAL INPORMATION NEHBD BE GIVEN TO ABSIBT WITH FOGT CONIRACT PRODUCTION FLANNING.

DIAGRAM 6.22	Incresagid thas	Nourfict	Rabucad TME	
Generally	2	0	5	7
Eresevation + Earthwork	2	0	5	7
Conarte Worts	2	0	5	7
BWIC Serrioen	2	0	5	7
Flniahinge	2	0	6	7

The Hypothetical Model Should Be Supplemented By Further Information To Assist
With Post Contract Production Planning

The respondents did not consider that measured sections were necessarily used for that purpose. Suggestions, though, included:
a) Ground conditions (which can vary); but this is not a method of measurement fault.
b) Constraints on phasing of work/Employer"s programme.
c) "Do not impart too much information; you might be held to it" This was a very interesting comment. Detailed measurements derived from design lacking in detail could be construed as being too much information about nothing of particular relevance.
d) "I can't think of anything to aid the contractor in actually building". The Bill of Quantities never purprted to represent the building process; therefore it could never define the true costs of building.
e) "Drawings are far more important".
f) "Do not dictate to the builder how to do the work, this is dangerous".

35 A FEEL ING THAT THE TIME SPENT ON INTERIM VALUATIONS WOULD REDUCE.

	Increased time	No effect	Reduced time	
Generally	0	3	4	7
Excavation + Earthwork	0	3	4	7
Concrete Work	0	3	4	7
BWIC Services	0	3	4	7
Finishings	0	3	4	7

The Time Spent On Interim Valuations Using the Hypothetioal Model

Comments included:
a) "Most people do not use individual items for such a purpose".
b) "Could increase if complexity changes". See previous discussions.
c) "Valuations depend upon people's attitudes rather than any other factors".
d) "Much less. Much better".

APPENDIX 7:
 VALIDATION OF THE HYPOTHETICAL MODEL: RESULTS OF STRUCTURED Interview Survey of Model Users (Stage 2)(Ch. 6.4-6.11)

Furiher Valmation

As stated in Appendix 6 it was originally planned that the Draft Measurement Proposals for Escavation and Earthwork, Concrete Work, Builder's Work in Connection with Services and Finishings would first be presented to user personnel in the North West and then to user personnel in the North East. Problems of staff availability arose at this time, however, and it became apparent that these staff would have no time available to deal with a limited number of Draft Seotions and then undergo the same process upon production of a complete set of measurement rules, as was the original intention.

It was agreed, therefore, that the process be "fast-tracked", i.e. as complete a set of measurement rules as possible would be drafted and presented to North East user personnel. Action would be taken on behalf of the entire organisation based on the results of the "detailed" survey carried out in the North East. To lend weight to the results the "detailed" North East survey would be participated in by 3 staff members in the North West who were available. The number of respondents, therefore, would be 9. This still represented a large proportion of the lsey staff who would ever be liksely to use such a measurement document. As complete a set of hypothetical measurement rules as possible was drawn up using the same prinoiples as were used in Chapter 6.3 (Appendtx 6).

Resultis of Survey of User Attitudes to Hypothetical Model (STAGe 2) (Ch. 6.5)

1 There would be a reduction in the number of tems to measure using the HYPOTHETICAL MODEL

	Increase	No effect	Reduction	
Overall	0	0	9	9
Excavation + Earthwork	0	1	8	9
Underpinning	0	1	8	9
Piling	0	5	4	9
Concrete Work	0	1	8	9
Brickwork + Blockwork	0	1	8	9
Roofing	0	1	8	9
Woodwork	0	2	7	9
Metatwork	0	1	8	9
Glaring	0	3	6	9
Painting + Decorating	0	1	8	9
Fencing + Gates	0	2	7	9
BWICServices	0	0	9	9
Finishings	0	0	9	9

The Effect Of the Hypothetical Model On the Number of Items to Measure

2 There would be reddced measureminnt time using the measuremment fules in the HYPOTHETICAL MODEL

	Increase	No effect	Reduction	
Overall	0	3	6	9
Excavation + Earthwork	0	4	5	9
Underpinning	0	4	5	9
Piling	0	4	5	9
Concrete Work	0	3	6	9
Brickwork + Blockwork	0	3	6	9
Roofing	0	3	6	9
Woodwork	0	4	5	9
Metalwork	0	3	6	9
Glaring	0	4	5	9
Painting + Decorating	0	3	6	9
Fencing + Gates	0	4	5	9
BwIC Services	0	2	7	9
Finishings	0	1	8	9

Measurement Time Using the Measurement Rules In the Hypothetical Model

3 THE TIME SPENT MEASURING "COST-INSIGNIFICANI" TTEMS WILL REDUCE USING THE HYPOTHETICAL MODEL.

	Increase	No effect	Reduce	
Overall	0	0	9	9
Excavation + Earthwork	0	0	9	9
Underpinning	0	1	8	9
Piling	0	2	7	9
Concrete Work	0	0	9	9
Brickwork + Blockwork	0	2	7	9
Roofing	0	1	8	9
Woodwork	0	2	7	9
Metalwork	0	1	8	9
Glaring	0	1	8	9
Painting + Decorating	0	0	9	9
Fencing + Gates	0	2	7	9
BWIC Services	0	0	9	9
Finishings	0	0	9	9

Time Spent Measuring "Cost-insignificant" Items Using the Hypothetioal Model

4 MIXED VIEWS REGARDING THE READABLITY OF THE HYPOTHETICAL MODEL

	More Difficult	No effect	Easier	
Overall	3	3	3	9
Excavation + Earthwork	3	3	3	9
Underpinning	3	3	3	9
Piling	3	3	3	9
Concrete Work	3	3	3	9
Brickwork + Blockwork	3	3	3	9
Roofing	3	3	3	9
Woodwork	3	3	3	9
Metahwork	3	3	3	9
Glaring	3	3	3	9
Painting + Decorating	3	3	3	9
Fencing + Getes	3	3	3	9
BwIC Services	3	3	3	9
Finishings	3	3	3	9

The Readability of the Hypothetical Model

The respondents had obviously been confronted with a document with which they were completely unfamiliar, the results, therefore, are perhaps not surprising. It is again clear that the drafting of the document requires more attention.

	Less simple and clear	No effect	Simpler and clearer	
Overall	0	5	4	
Excavation + Earthwork	0	5	4	
Underpinning	0	5	4	
Piling		5	4	
Concrete Work	0	5	4	
Brickwork + Blockwork	0	5	4	
Roofing	0	5	4	
Woodwork	0	5	4	
Metakwork	0	5	4	
Glaring	0	5	4	
Painting + Decorating	0	5	4	
Fencing + Gates	0	5	4	
BWIC Services	0	5	4	
Finishings	0	5	4	

The Simplicity and Clarity of the Hypothetical Model

There appeared to be a contradiction. The respondents simultaneusly considered the hypothetical model to be "more difficult to read" and "simpler and clearer". An interpretation could be that they consider the format to be better and the detailed wording to be wanting.

6 WORKING-UPTIME WILL REDUCE USING THE HYPOTHETICAL MODEL.

	Increase	No effect	Reduce	
Overall	0	2	7	9
Excavation + Earthwork	0	3	6	9
Underpinning	0	3	6	9
Piling	0	3	6	9
Concrete Work	0	2	7	9
Brickwork + Blockwork	0	2	7	9
Roofing	0	2	7	9
Woodwork	0	3	6	9
Metalwork	0	2	7	9
Glaring	0	3	6	9
Painting + Decorating	0	2	7	9
Fencing + Gates	0	3	6	9
BWIC Services	0	1	8	9
Finishings	0	1	8	9

The Effect Of the Hypothetical Model On Working up Time

7 WORKING-UPTIME ON "COSTINSIGNIFICANT" TTEMS WILLREDUCE USING THE HYPOTHETICAL MODEL

	Increase	No effect	Reduce	
Overall	0	0	9	9
Excavation + Earthwork	0	0	9	9
Underpinning	0	0	9	9
Piling	0	0	9	9
Concrete Work	0	0	9	9
Brickwork + Blockwork	0	1	8	9
Roofing	0	1	8	9
Woodwork	0	1	8	9
Metalwork	0	1	8	9
Glazing	0	1	8	9
Painting + Decorating	0	0	9	9
Fencing + Gates	0	1	8	9
BWIC Services	0	0	9	9
Finishings	0	0	9	9

The Effect Of the Hypothetical Model On Working-up Time ("Cost-insignifioant" Items)

8 THE LEVEL OF DETAILIN THE HYPOTHETICAL MODEL IS APPROPRIATE.

	More detail needed	About right	Less detail needed	
Overall	1	7	1	9
Excavation + Earthwork	1	7	1	9
Underpinning	1	7	1	9
Piling	1	7	1	9
Concrete Work	1	7	1	9
Brickwork + Blockwork	1	7	1	9
Roofing	1	7	1	9
Woodwork	1	7	1	9
Metalwork	1	7	1	9
Glaring	1	7	1	9
Painting + Decorating	1	7	1	9
Fencing + Gates	1	7	1	9
BWICServices	1	7	1	9
Finishings	1	7	1	9

Appropriateness Of the Level Of Detail In the Hypothetical Model

It is interesting to note that one of the respondents was of a conservative bent and one of them was more radical in approach.
(a) The amount of detail given in the measurement depends upon the type of contract. What type of contracts will the proposed SMM be used for?" It would, of course, be used for petrochemical civil engineering contracts. It is contended, moreover, that the efficacy of a measurement model is not necessarily affeoted by the type of contract used (vide "Shortar Bills of Quantities, supra).
(b) "Given advance design the Bills can refer to drawings / standard details and the need for long item descriptions will reduce". This is agreed. It is repeated that the measurer needs to use imagination to create detail which incomplete design does not contain.
(c) "We need specific provision for things such as work below water tables and work in toxio areas. Use either an elaborated description, a separate measured item or a general 'aide memoire' somewhere in the document." This respondent offered fair comment.
(d) "The detail is about right. There should be no less or more. It would be better to "take ofl" a job using the draft document and you couls tell better". A flattering remark for the author of the hypothetical model. Indeed, to use the document on a contract was a subsequent planned stage of the research.
(e) 'You may need a few explanatory notes, eg worked or formed angles on insitu finishings' - what are they and when are they measured?" Eristing methods of measurement explain such things no better or worse than the experimental document, but the point was taken.
(t) "The danger of over - simplification is obvious. It should not have more detail". A key argument is that the "danger" so deacribed may well be evaggerated.
(g) "There may be scope later for amplifying or simplifying certain sections to suit". This is indeed the case. Such is the virtue of cautious progress and refinement.
(h) "We have no united front regarding this project. We shall rationalise and agree our approach upon production of the final document. It will be a long time before we use a now SMM formally. Each QS is left to produce his own Bill of Quantities on whatever SMM (in his judgement) is most suitable. I may use your proposed SMM, but it would not be offcial policy if I did. We have many interested parties and they need to be educated". A well - put point, but with a hint of the over - cautious...?

10 A MEASURE OF DOUBT AS TO WHERRE THE COEIS OF UNMEASURER ITEMMS ARE INCLUDEDD IN THE HYPOTHETICAL MODEL

DIAGRAM 7.9	No doubt	Doubt	Unable to ansurer	
Overall	2	6	1	9
Ercosvation + Farthwork	2	6	1	9
Underpinning	2	6	1	0
Pling	2	6	1	9
Comareto Work	2	6	1	0
Brioknork + Blockworis	2	6	1	0
Roofing	2	6	1	0
Woodivorts	2	6	1	0
Motatworis	2	8	1	8
Graing	2	6	1	9
Pointing + Deconeting	8	6	1	0
Fendng + Cutes	2	6	1	0
BWICEervicen	2	6	1	0
Finiahing	2	6	1	9

Drafting needed to be more meticulous. Unfamiliarity, though cmay be an influencing factor. In the first user survey there were several comments about "familiarity" and "learning curves.

11 FURTHERUSER GROUP COMMENIS FOLLOWING QUESTION 10:

1] "There are some instances of items being deemed included, whilst there is a requirement to specify it. This should be more explicit: either deemed included or specified". It is suggested that whether something is measured or not, it should be specified if it is required to be provided. Otherwise the builder cannot allow for its costs. In contracts without Bills of Quantities, where nothing is measured, things must be specified. This must still hold in contracts like the Petrochemical Civil Engineering projects analysed, where some things are not measured but still have to be included in the Tender.

2] "Who decides what items are not measureable? I can foresee problems with contractors at postcontract stage, especially as the preamble clauses are brief'. It is the Method of Measurement which dictates what to measure, at least in a conventional (ideological) model. In this case it is a hypothetical (logical) model, based on copious analysis of data. In the case of conventional (ideological) methods of measurement the drafting committees include the post
contract "victims", the builders, but regrettably this could not be the case with the experimental method. However it will be shown (see Chapter 5) that a similar parallel development, drafted with little contractor involvement, appears not to exhibit the "problems" foreseen.

3] I would like a trial run using the proposed method before answering the questions. I have some reservations". This is perhaps understandable. It has already been stated that a trial was being planned.

4] "Doubt through lack of familiarity (in part). An explanatory booklet...?". It has already been accepted that "unfamiliarity" is playing a part. That an explanatory booklet is considered necessary is not disastrous. It eventually happened with (eg) SMM7.

5] "Cannot already answer until tests show results. I am happy with the principles behind the document". This is fair comment.

6] "OkRy overall, but watch out for the word 'specity', which could be misunderstood. Your idea on specification is olsay, but too many people treat the SMMM as a 'bible', not as a guide. You should obviously give more or less information as you think $n t=$ ".

The requirement to specity is reemphasised. It is unsvoidable. Certainty, though, it is regarded as good practice to provide information additional to that provided by the SMM if inevitably, it fails to cope with the unusual or the unique. It is interesting that this respondent alludes to the existence of a sociological paradigm as an article of religious faith; in deo fidemus.

7] I see a danger in the use of composite items, eg the problem of prices if, aey, the specification of a pipe surround in a trenoh obanged. If people took alitule more time to produce a decent specification it would be ology. My doubt may be due to unfamiliarity." This respondent appears to support the idea of the importance of the specincation addreseed in the guidance notes to the hypothetical model.

DIAGRAM 7.10	Vaguer	No more or less vague	Clearer	
Overall	0	5	4	9
Excavation + Earthwork	0	5	4	9
Underpinning	0	5	4	9
Piling	0	5	4	9
Concrete Work	0	5	4	9
Brickwork + Blockwork	0	5	4	9
Roofing	0	5	4	9
Woodwork	0	5	4	9
Metalwork	0	5	4	9
Glaring	0	5	4	9
Painting + Decorating	0	5	4	9
Fencing + Gates	0	5	4	9
BWIC Services	0	5	4	9
Finishings	0	5	4	9

Specification Proposals In the Hypothetical Model Are Clearer

No respondent appeared to think that the proposed document was worse than existing ones, despite the individual criticisms voiced earlier.

13 PROPOSALS REGARDING UNITS OF MEASUREMENT IN THE HYPOTHETICAL MODEL ARE ADEQUATE.

	DIAGRAM 7.11	Adequate	Inadequate
Overall	9	0	9
Excavation + Earthwork	9	0	9
Underpinning	9	0	9
Piling	9	0	9
Concrete Work	9	0	9
Brickwork + Blockwork	9	0	9
Roofing	9	0	9
Woodwork	9	0	9
Metatwork	9	0	9
Glaring	9	0	9
Painting + Decorating	9	0	9
Fencing + Gates	9	0	9
BWICServices	9	0	9
Finishings	9	0	9

Adequacy of Units of Measurement in the Hypothetical Model

One of the respondents considered the approach to Finishings to be too simplistic. The proposals, however, were based on empirical analysis of data, which detected measurement complexity which had no substantial influence on pricing.

14 PROBLEMS FORESEEN WITH BLLL OF QUANITTIES PREPARATION USING THE HYPOTHETICAL MODEL

	Problems foreseen	Problems not foreseen	Could not respond	
Overall	5	3	1	9
Excavation + Earthwork	5	3	1	9
Underpinning	5	3	1	9
Piling	5	3	1	9
Concrete Work	5	3	1	9
Brickwork + Blockwork	5	3	1	9
Roofing	5	3	1	9
Woodwork	5	3	1	9
Metalwork	5	3	1	9
Glazing	5	3	1	9
Painting + Decorating	5	3	1	9
Fencing + Gates	5	3	1	9
BWIC Services	5	3	1	9
Finishings	5	3	1	9

Problems Foreseen With Bill Preparation Using the Hypothetical Model

1] Need for acclimatisation. Time saving will only be achieved long term by adopting the new model on all projects". This is not disputed.

2] The danger of getting rid of narrow widths in Finishings, especially when using Bills of Approximate Quantities". Approximate Quantities Bills imply that there may be insufficient drawn detail for the measurer to ascertain the extent of such naxrow widths, exceept by the the use of the imagination...?

3] "Problems in introducing a new SMM to the industry, especially if contractors have had no inputn". This comment is valid, but vide supra

4] Throughput of Bills is not continuous. The learning curve may repeat itself for outside consultants". This would be true of any method of measurement were it not in continuous use.

5] "Initially, problems with people familiarising themselves with the document. But for how long, I do not known. This is applicable to any document. There are user guides for, and training courses in the use of, methods of measurement. There are even teat books explaining how they differ from their predecessors. Equal treatment should be demended of anymodel.

6] "No problems, learning curve apart".
7) It is debatable whether the problems are insurmountable. Whatever the SMMM something will crop up which you will not know how to measure. You will always have problems regardless of SIMM type". This respondent offers support. OF PREPARING TENDERS.

	WIAGRAM 7.13	No better or worse	Better	
Overall	2	6	1	9
Excavation + Earthwork	2	6	1	9
Underpinning	2	6	1	9
Piling	2	6	1	9
Concrete Work	2	6	1	9
Brickwork + Blockwork	2	6	1	9
Roofing	2	6	1	9
Woodwork	2	6	1	9
Metalwork	2	6	1	9
Glazing	2	6	1	9
Painting + Decorating	2	6	1	9
Fencing + Getes	2	6	1	9
BWICServices	2	6	1	9
Finishings	2	6	1	9

Hypothetical Model No Better Or Worse For the Purpose of Preparing Tenders

There remains a "balance of neutrality".

1] "There appears to be a greater contractor's risk". The respondent did not identify the risk

2] The simplified approach will put greater onus on the contractor initially. This should, of course, reduce as he becomes more proficient in the use of the Method of Measurement. I think overall he will do more work".

3] "It is more adequate for estimators, who do not involve themselves with SMM intricacy. They do not like to read detailed SMMs. At least in the draft they can see "at a glance"; they do not have to look far to see where small items are included. However, how can they tell how intricate the work is? How can they gauge complexity?" Fulsome praise, tempered by a "sting in the tail". If the detail is representative of the design it exists on the drawings, for it was derived thence. If not, the detail is potentially misleading.

4] "The question should have read "suitable or better" instead of inadequate, in which case I should have answered [c]". Better use of semantics in the questionnaire would have resulted in the proposals being a marginal improvement...

5] "There may be problems with Bill format, i.e. the same prices but in a different order of presentation. But the contractor still has basically the same information as he had before. Same product, leas volume". This is talsen to be a reference to the fact that traditional "Trade" format has not been strictly adhered to. The last 2 sentences have been eagerty awratted. By simplification and eradication of unnecessary detall, one arrives at the same product. If two models possess the property of equifinality, the simpler one has to be preferred.

6] "Design is always late. Contractors should be given more time to Tender. But this is not a function of SMM type. Even though BQ produotion time might reduce with your drat document, to use this as an exouse to reduce further an already "equeezed" programme would be unfair". ADEQUATE FOR THE PURPOSE OF ASSIGNING PRICES AND RATES TO BLLLS OF QUANITIIES.

	Less adequate	No more or less adequate	More adequate	
Overall	3	3	3	9
Excavation + Earthwork	3	3	3	9
Underpinning	3	3	3	9
Piling	3	3	3	9
Concrete Work	3	3	3	9
Brickwork + Blockwork	3	3	3	9
Roofing	3	3	3	9
Woodwork	3	3	3	9
Metalwork	3	3	3	9
Glazing	3	3	3	9
Painting + Decorating	3	3	3	9
Fencing + Gates	3	3	3	9
BWIC Services	3	3	3	9
Finishings	3	3	3	9

Adequacy of the Hypothetical Model For the Purpose of Assigning Prices and Rates to Bills of Quantities

The respondents commented as follows:

1] "It contains the same information as before". This appears to support the argument that the simplified approach does not significantly affect the pricing of the work

2] It is more attuned to "Builder's Quantities and therefore more adequate. Another respondent favoured a simpler approach. Vide infra.

3] There may be mileage into breaking down the Bill rates into labour, materials and plant... this is critical on large projects as they can run out of control". Operational Bills never found much support in "traditional" construction. But see Diederichs and Hepermann (1985).

4] "This is difmoult. I am not a contractor. The answer is between [b] and [c], really". Better use of semantics would have gained a more tavourable result.

19 COMMENIS FOLIOWING FROM QuEsTION 18:

1] "Surely this is not a function of any method of measurement. The difllculty or otherwise of assigning prices is directly related to the adequacy or otherwise of the Bill Items and the specification". It is argued that it must be a function of the SMMM. It is the SMM which dictates what items to measure and is influential in dictating how to describe the trems so measured. Also, the experimental method of measurement, for good reason, exchorts its usens to pay attention to specification.

2] Contractors are involved in additional Tendering costs in setting up new eatimating data. This must eventually be paseed on to the Client". So it was with SMMM6, CESMMM and CESMMM2. So shall it prove with SMMM7 and CESMMM3.

3] The contractor will still need to look at drawings to study complexity. This is okay given that design is fairly well established". This is fair comment. If design is distinctly undeveloped then no SMM could be totally adequate.

4] It conflicts with existing databases which are geared up for other SMMs. There will not be a constant flow of data from [this organisation]. Separate databeses would be needed for [our] jobs". This is fair comment as far as it applies to contractors, who deal with the idiosynorasies of many clients and design teams. It is less easy to see it being a problem "in-house". In the end analysis, if contractors want the work they will have to deal with the data as structured and presented.

20 THE TIME TAKIEN TO PREPARE TEHNEERS, USING THE HYPOTHEIICAL MODEL WILL REEDUCE.

DIAGRAM7.15	Increaso	No erbect	Reduceo	Could not rempond	
Overall	0	3	5	1	0
Erowertion + Farthwork	0	3	5	1	0
Underpinning	0	3	5	1	9
Piling	0	8	5	1	9
Concrite Wark	0	8	5	1	0
Briakwork + Blookwork	0	3	5	1	0
Roofing	0	3	5	1	0
Woodworis	0	3	5	1	0
Mexatuotis	0	3	5	1	9
Glatin:	0	3	5	1	0
Painting + Decorating	0	3	5	1	0
Fenoing + Gater	0	8	5	1	0
BWIC Sorvioen	0	8	5	1	0
Fintahin ${ }^{\text {a }}$	0	8	5	1	9

Time Taken to Prepare Tenders Using the Hypothetical Model

Respondents commented as follows:

1] "A marginal reduction owing to the numbers of items generally being reduced".

2] "It will reduce when the contractor becomes familiar with the method of measurement".

3] II cannot answer. I cannot generalise. Could reduce where estimators work ad hoo instead of using standard systems". Here is an exposition of the fact that it is difficult to generalise from singularities, and that idiographic approaches may be more suitable than nomothetic ones.

4] "Subcontractors include the small items in with the large ones anyway". This could be interpreted as being supportive.

5] "Once our contractors are familiar with the document it should reduce. Give them a month in which to Tender... give them 2 weeks or 5 weeks... and they will do it in the last week of that period". Interesting it is to note that if all Tenders are produced at the "last moment" then perhaps a simplified document would be a help rather than a hindrance.

6] "It should reduce, but not first time round". Learning curve, again.

7] "The builder still has to build up his prices regardless of where he has to include them". An allusion to the fact that the Bill is a breakdown of a Tender rather than a build-up thereof..

There are more statements that familiarisation would be an obstacle, but not insurmountable. It is conceded that to ohange to a "not commonly-used" method of measurement might cause some inconvenience. However there are already diverse systems in use (whether applicable to Petrochemical Civil Engineering or not; probably not). Construction activity is such that "continuous throughput" can never be guaranteed.

21 RESPONDENIS ARE HAPFIER WIIH THE AMOUNT OF DETAIL IN THE HYPOTHETICAL MODEL WHICH TENDERREFR HAVE TO FFRCE.

DIAGRAM 7.16	Lees happy	No eneot	$\begin{aligned} & \text { More } \\ & \text { hapgy } \end{aligned}$	
Overall	2	2	5	9
Elcoavation + Earthwork	2	2	5	9
Underpinning	2	2	5	9
Pling	2	2	5	9
Conarato Work	2	2	5	9
Briokworis + Bloakwork	2	2	5	8
Roofing	2	2	5	9
Woodvork	2	2	5	8
Metahworis	2	2	5	8
Charing	2	2	5	8
Painting + Decorrating	2	2	5	8
Fencing + Getes	2	2	5	9
BWIC Eervices	2	2	5	8
Flinimhinge	2	2	5	8

Respondents commented as follows:

1] "Items must be explicit in order that Tenderers know exactly what they are pricing". See 'Specification".

2] "There is more time spent arguing over small items than over large ones. I am happier. Contractors were happier with the old "Housing Small Code" which is similar in principle to your draft". Obsession with the trivial content of the ranked order distribution consumes time and money. The professional societies show that they are not averse to proliferation of codes of measurement for socalled "specialist" situations, if only on the grounds of vested interest rather than on "scientific fact".

3] "Ideas about complexity can be had from drawings. The answer rreally depends on having seen the proposed SMM used".

4] "The more detail is provided, the more diverse are the arguments which can arise. My answer is [c] provided your explanatory notes are clear and unambiguous". More drafting
comments, and an interesting suggestion that information as "noise" can create disputes which might not otherwise have arisen.

5] "Again I express reservations about specifications changing". The argument all along has not been that specifications should change, but that they should exist, identify what is required and be incorporated in [or referred to in] the item descriptions. "Referred to" is a better and neater option.

By and large the respondents seemed reasonably happy with the proposals and, in instances, began to "echo" some of the initial arguments about measurement approach.

THERE IS SOME INFOPMATION WHICH OUGHT TO BE GKVEN SUPPLEMENTAL TO THE DRAFT MEASURELD THEMS TO ASSIET WITH PRREPARING TENDERRS

DIAGRAM 7.17	Information needed	No enluat	Information not needed	Did not know
Ovorall	6	0	2	1
Erecavation + Earthwork	6	0	2	1
Underpinning	6	0	2	1
Pling	6	0	2	1
Conoreto Work	6	0	2	1
Brickwork + Blockwork	6	0	2	1
Roofing	6	0	2	1
Woodwork	6	0	2	1
Metatworts	6	0	2	1
Glasing	6	0	2	1
Painting + Deoorating	6	0	2	1
Fenoing + Gates	6	0	2	1
BWIC Eervices	6	0	2	1
Finishings	6	0	2	1

Respondents commented as follows:

1] "There is no more or less information to give, except maybe on specialist or proprietary items, eg... give trade literature (which the client must have looked at and must possess anyway)". Measurement and specification can (and should) be separated.

2] "Once again, specification is important. It should be adequate. Much more specification should be given than is given in the draft document". The defence is offered that the draft document was a measurement document, not a specification document. It gave guidelines as to what the relationship should be between measurement and specification. It did not purport to be a specification document. No method of measurement should (or could) so purport.

Overall it was made clear that there is information other than that created by measurement conventions which influences the pricing decisions of Tenderers. The method of measurement, therefore, is not the single most important document in this respect. Perhaps this puts the necessity for detailed measurement into better perspective. Specification is indispensible to client and contractor. The latter cannot know it until the former knows it.

1] "Preamble clause for what is and what is not included. Refer measurement to drawings. Preliminaries. Where is the value of unmeasured items? Borehole and trial pit reports etc.". It is debatable, once the Tenderer has priced the Bill, whether inspection by parties other than the contractor's estimator could ever reveal exactly what costs were included where. Obsession with the detail of the measurement conventions cannot prevent the tenderer from pricing the BQ as he or she chooses. MEASUREHD ITEMMS TO ASSISTIN ASSIGNING PRICFPS AND RATES TO BIIIS OF QUANITIIES.

DIAGRAM 7.18
Information No eflect Information

needed		not needed		
Overall	4	1	4	9
Erecavation + Earthwork	4	1	4	9
Underpinning	4	1	4	9
Pling	4	1	4	9
Conoreto Work	4	1	4	9
Briokwork + Blookwork	4	1	4	9
Roofing	4	1	4	9
Woodwork	4	1	4	9
Metalwork	4	1	4	9
Claning	4	1	4	9
Painting + Decoreting	4	1	4	9
Fencing + Gates	4	1	4	9
BWICBervios	4	1	4	9
Finishinge	4	1	4	9

The respondents commented as follows:

1] "There is nothing to be gained by it". This is highly debatable. Unfortunately the respondent gave no grounds for making the statement.

2] "Your draft will allow them to price a job. Unusual features should be highlighted." An encouraging comment.

3] "No, as long as descriptions are adequate. I assume we employ intelligent people who employ the correct techniques and give adequate information in descriptions. An SMM cannot cover everything. By all means amplify things if you judge it necessary". No criticism is inferred here. It would be interesting, nevertheless, to compare the possible criteria used to define a "correct" technique.

1] "Ground and surface water details, and which items should cover such costs". The measurer is powerless to prevent the Tenderer from allocating such costs, undetectably, to items other than those indicated.

2] "Presumably, a copy of the new SMM which will tell him what is included where". Again, instances were found during the data analysis where some quite significant costs were, demonstrably, not included where they should have been. There was no way of guessing, either, where they had been included. Therefore it may well be a waste of effort to dictate to buliders where to allow for things. They may well ignore such instructions and the reader of the Bill cannot always tell if such instructions have been ignored.

3] "Sketches, Bill Diagrams - as with the existing SMM". This would appear to be entirely reasonable in the case of unusual features.

Comments in this section appear to have been very constructive.

	Problems foreseen	 Problems not foreseen	
Overall	4	5	9
Excavation + Earthwork	4	5	9
Underpinning	4	5	9
Piling	4	5	9
Concrete Work	4	5	9
Brickwork + Blockwork	4	5	9
Roofing	4	5	9
Woodwork	4	5	9
Metalwork	4	5	9
Glaring	4	5	9
Painting + Decorating	4	5	9
Fencing + Getes	4	5	9
BWIC Services	4	5	9
Finishings	4	5	9

Problems Foreseen With Preparation of Tenders Using the Hypothetioal Model

Specific comments were:

1] "I never see the problems. We can get round them anyway".

2] "I cannot foresee problems. They will manifest themselves when tests are done".

3] "Not once contractors get used to it".

4] "Again, I think there are doubts about specification". A respondent with conviction. See earlier comments.

27 COMMENIS FOLIOWING FROM QUESTION 26:

1] Tack of familiarity. Low frequency of Tenders (ie. iterative learning curve for our consultants)". This comment was made (and addressed) elsewhere. Regarding the relative infrequency of Tenders and the new databases involved, it may be that this fear is exaggerated. It is not unheard of for a company which specialises in (say) Civil Engineering contracts to work occasionally on (say) a "building" contract, with its attendant differing documentation and data requirements.

2] "Knowledge of intentions of SMMM? Contractors' pricing basis. Acceptance within industry". This point has also been addressed elsewhere.

3] "Getting the new method of measurement accepted within the industry. A new set of pricing data, has to be prepared by the Employer and the Contractor's QSs. More Contractor's risk would mean more problems from the Contractor if the contract went wrong for him". It is debatable whether a simpler measurement document (alone) constitutes a risk Fisk is inherent in construction projects as a fucnction of the uncertainties surrounding productivity of
the factors of production. Methods of Measurement tend not deal with such factors and, if they did, could never predict the likely required amounts of such uncertain factors.

4] The major problem will be one of familiarity. Tenderers must be allowed adequate time to tender. Initially, perhaps, an extended Tender period will be necessary. Once approved Tenderers have become familiar with the document and the types of Bills resulting from its use, I see no problem. Non-approved firms will find problems initially". Familiarity (again).

28 Problems forbseren with with assigning prices and rates to Bilis of Quanitiles USING THE HYPOTHEHICAL MODEL

DIAGRAM 7.20	Probloms forresen	Problems not toreseen	
Overall	1	8	8
Erceevation + Earthwork	1	8	9
Underpinning	1	8	9
Pling	1	8	9
Concreta Work	1	8	9
Briokwork + Blockwork	1	8	8
Rooing	1	8	9
Woodwort	1	8	0
Metalworis	1	8	9
Gloming	1	8	9
Painting + Decorating	1	8	9
Fencing + Clates	1	8	9
BWIC Services	1	8	8
Finishinge	1	8	9

29 COMMENIS FOLLOWING FROM QUESTION 28:

1] "Lack of familiarity. Low frequency of [our] Tenders (iterated learning curve)".

Respondenis' understanding of how the measured Bll sections are used by CONTRACTORS WHEN PREPPARING TENDERS:

1] "Sections are sent out en bloc for specialist subcontract quotations. For concrete, brickwork, joinery, some external works and drainage the main items are priced by labour, materials and plant to produce a nett priced Bill. Subsequently preliminaries are added. Then at a Tender Meeting profit etc is decided upon for bidding purposes. As a form of front loading Trades 'in the ground' will have profit in the rates as these Trades are subject to most 'upward variation'. If he makes no money in the 'ground Trades' he will never make any later". Evidence to support earlier arguments. The Bill rates are a notional breakdown of a Tender. They do not purport to represent the cost of doing the work. They are prone to abuse.

2] "Subcontract quotations. They clearly get information from Bills. But there are cases where the Bills might not be used for the stated purpose. They are obviously useful". For what, the respondent did not say.

3] "Labour, materials and plant content are assigned to all Bill items for domestic work. Bill sections are sent to subcontractors, for quotations. Overheads and profit are spread around the measured items if desired".

	Increase	No effect	Reduce	
Overall	2	4	3	9
Excavation + Earthwork	3	3	3	9
Underpinning	2	3	4	9
Piling	2	3	4	9
Concrete Work	3	3	3	9
Brickwork + Blockwork	3	3	3	9
Roofing	2	3	4	9
Woodwork	2	3	4	9
Metalwork	2	3	4	9
Glaring	2	3	4	9
Painting + Decorating	2	3	4	9
Fencing + Getes	2	3	4	9
BWICServices	3	3	3	9
Finishings	2	3	4	9

 MODEL TO ASSIST IN POSTCONTRACT PRODUCTIO P PLANNING.

DIAGRAM 7.22	Information needed	No effect	Information not needed	Did not understand question
Overall	4		4	1
Excavation + Earthwork	4		4	1
Underpinning	4		4	1
Piling	4		4	1
Concrete Work	4		4	1
Brickwork + Blockwork	4		4	9
Roofing	4		4	1
Woodwork	4		4	1
Metakwork	4		4	9
Glaring	4		4	9
Painting + Decorating	4		4	9
Fencing + Gates	4		4	9
BWIC Services	4		4	9
Finishings	4		4	9

Information Supplementary to the Hypothetical Model to Assist With Post Contract
Production Planning

DIAGRAM 7.23	Increase	No effect	Reduce	Unable to respond	
Overall		6	2	1	9
Excavation + Earthwork		6	2	1	9
Underpinning		6	2	1	9
Piling		6	2	1	9
Concrete Work		6	2	1	9
Brickwork + Blockwork		6	2	1	9
Roofing		6	2	1	9
Woodwork		6	2	1	9
Metalwork		6	2	1	9
Glaring		6	2	1	9
Painting + Decorating		6	2	1	9
Fencing + Gates		6	2	1	9
BWICServices		6	2	1	9
Finishings			2	1	9

Time Spent on Interim ValuationsUsing the Hypothetical Model

APPENDIX 8:

A Suggested Level of Abstraction for Cost Centres for Cost Planning and Control in Petrochemical Civil Engineering Work

This Appendix is an expanded version of Davies and Greenwood (1994); being a further investigation carried out pursuant to the aims of this thesis.

The Currant Problem

The building Element classifications traditionally used in the United Kingdom for Cost Analysis and Cost Planning purposes do little, if anything, to prevent the separation of design and production. These Elements are defined on the basis of their physical function in their finished state, assuming that a building's function dictates its physical form and, hence, its cost.

Such Element classifications use not the costs of the factors of the production but some notional breakdown of a Tender, derived in many cases from priced Bills of Quantities. These contain measurements of design features and mask the relative contribution of the factors of production. This invites the suggestion that only vague notions regarding the true determinants of Element costs can be gleaned from such Elemental Cost Analyses. If the costs of labour, material and plant are not separated then the cost planner can only subjectively judge regarding the true effects of, inter alia, specification and labour intensity.

Traditional Elements are inconsistent in terms of their cost behaviour, despite the fact that they are called standard Elements and are so defined for cost purposes. It is increasingly being suggested that costs cannot be effectively standardised at Elemental level and that SubElements need to be defined which exhibit better consistency of cost behaviour. The variable Element costs may be a function of the existence of one or more (relatively more cost-consistent) Sub-Elements. Design-based Element costs are merely visual manifestations, in the format which we choose, of the behaviour of the true determinants of cost and, in their traditional
format, do not enable those determinants to be recognised. Assuming that builders attempt to compute costs using estimates of labour, material and plant costs, it is suggested that in the Design and Build domain it would be more desirable to the design and production processes by adopting an approach to Cost Analysis and Prediction which feeds the costs of the factors of production into the design-based Element framework.

It is argued that the factors of production themselves may provide more stable and definable cost inputs and may, in fact, act as more stable Subelements. This may facilitate improvements to Cost Analysis, Planning and Prediction and simultaneously improve communication between designer and builder by providing a logical link between the previously- separated design team and building team cost models. This is perceived to be of potential benefit in the Design and Build domain as, by logical inference, designer and builder are expected to cooperate more readily during the Design Stage.

Such an approach to Cost Analysis and Planning, however, might also have application in domains other than Design and Build because, prima facie, there can be no disadvantage in inviting input from builders at any stage of the process. Even if a Design Team did not wish to involve the builder in the Design Stage, it is argued that if the Cost Analyses available to the Design Team were structured according to the factors of production then this would be a better tool for aiding Cost Planning in any event. It could not be but advantageous to have such a cost model which could be structured for ready use either by designer or producer.

In order for published Elemental Cost Analyses to be so structured, however, it would, of course, be necessary to structure Bills of Quantities such that the successful tenderer had to apportion labour, material and plant costs to the items contained therein. In the current climate, and until the possible benefits of so doing are recognised, it is considered expedient to commence the investigation in the Design and Build domain, where such obstacles, presumably, do not exist. Perhaps as a result of such investigation the benefits will be perceived to have wider application.

A Suggested ELbiment Classification

Diederichs and Hepermann (1985), in the domain of housing and administrative buildings, claim to have identified some 45 key cost parameters which exist for construction work practically independent of the type of structure. These parameters are allegedly subject only to marginal variation and are predictable to high degrees of accuracy. Significantly, these costs are expressly structured in terms of the factors of production (labour, materials and plant) but are assigned to an existing design-based set of building Elements (Deutsches Institut für Normung, 1983). Thus this model claims to bridge the "gap of definition" between the design team cost model and the building team cost model. Additionally, it permits meaningful input by the builder during design and planning. It has long been held that there is a separation between Design and Production in the Construction Industry, and the Diederichs-Hepermann Model, or one similar, appears to be a useful interface to help bring them together.

Design and production matters aside, there is a measure of opinion in the professions that existing Elemental Cost Models such as the BCIS Standard Form of Cost Analysis (1969) are inadequate in terms of the way in which they require the cost information to be formatted. The $B C I S$ Form is defective in certain respects; eg in certain Elements [eg Roof] it is impossible to discern between Roof structure and Roof coverings, which invites subjectivity at best.

It is suggested that a suitable Form of Elemental Cost Analysis has already been devised which structures the information into a better logical format than the BCIS form. This Form is DIN 276 (Deutsches Institut für Normung, 1983), the Standard form of Cost Analysis used in the Federal Republic of Germany. It should be readily adaptable to use in the United Kingdom as it exists in a format recognisable to UK users, but with the recognition of structural and nonstructural function suggested by Southgate (1988a, 1988b). It does this not by grouping Elements together, but by separating each individual Element into its structural, non-structural, cladding and interior or exterior components.

This, it is argued, is a more logical approach, enabling the user to deal with Element costs at any desired level of detail; from costs of discrete components of Elements to costs of whole Elements. This cannot be effectively done using the BCIS Form. A further advantage of DIN 276 is that it groups Elements with other Elements to which they are related. It separates, eg, Internal Finishings into those pertaining to Interior and Exterior Walls of buildings; this is not possible with the BCIS and Southgate Models and serves to illustrate the potential of DIN 276 to offer a subtler approach to Elemental Cost Planning.

Similarly, DIN 276 does not express the costs of the Structural Frame Element as a single "vague" cost, rendered devoid of any of the detail of, eg a Bill of Quantities; it identifies separately, and relates to other Elements which give rise to them, the constituent parts of the Structural Frame. For example, "Beams" belong in the Element "Upper Floors", thus more adequately recognising their specific function, and "Columns" are associated with the Wall Elements to which they are proximate. Such logic and sophistication of analysis cannot be obtained using the BCIS Form.

Shortcomings of Existing Cost Analyses and Bills of Quanitites

Elemental Cost Analyses, for the most part, are derived by abstraction of detailed price data in Bills of Quantities, which are, arguably, the most prolific source of building cost data available. Most cost data, regardless of the form in which they are eventually published, first appeared in Bills of Quantities which were priced by builders. The prices of the many detailed items in the Bills are aggregated together in order to arrive at overall costs of defined building Elements.

Bills of Quantities, arguably, contain too much detail for the uses to which they are put. Successive Standard Methods of Measurement for Bills of Quantities have sought to reduce the amount of measurement detail commensurate with the types of construction work (or, more appropriately, design features) which they purport to represent. There exists some opinion in the industry that even the latest editions of such Standard Methods of Measurement still contain
too much unnecessary detail. Moreover, even if the level of detail which they provide was appropriate, Elemental Cost Analyses misuse and, in fact, ignore it. Even were this an appropriate level of detail, conventional Elemental Cost Analyses are not structured to use it. Existing BCIS Cost Analyses are oversimplifications of, and use insufficient of the detail of, such Bills to be effective tools for meaningful cost analysis and prediction. The detail even of Detailed Cost Analyses is insufficient to enable Elemental Cost Planning to be carried out as effectively as it might be. A new approach to these cost models is suggested.

The Bill Of Quantities And The Elemental Cost analysis Should Be The Same DOCUMENT

Traditional Bills of Quantities contain more detail than do existing the Detailed Cost Analyses prepared therefrom. Much of the detail of traditional Bills of Quantities is, arguably, superfluous on the grounds that (a) tenderers attach little cost significance thereto and (b) such detail is often created to satisfy the rules of measurement rather than for any other reason. Existing Detailed Cost Analyses contain insufficient detail of the required type, which, in cases, reduces Elemental Cost Planning to a somewhat subjective exercise.

It is argued that if the Bill of Quantities is produced in the format of a somewhat more detailed Elemental Cost Analysis than those currently employed, then sufficient detail will be provided to enable the processes of tendering and valuation of postcontract variations to occur. Simultaneously, a better level of detail will be provided for the purpose of more objectively carrying out Elemental Cost Planning. Also, as the two documents will become a single document, the effort of producing a Bill of Quantities and then using it to produce an Elemental Cost Analysis is dispensed with. It is argued that these separate efforts are undesirable because neither Bill of Quantities nor Elemental Cost Analysis have an adequate enough format for the uses to which they are put.

There is no reason not to attempt to produce a document which simultaneously fulfils both of the above functions; the functions, in fact, are much the same as each other. The Bill of Quantities is the basis for costing variations to an existing representation of a design in the post contract (an accountancy exercise) and the Elemental Cost Analysis is the basis for costing variations to representations of design in the pre contract (a prediction exercise). Given that both mechanisms are the same (they just occur at different times) a single document with dual purpose would appear feasible.

A Proposed Investigation of a Cost analysis and Planning Model Which Interfaces Design and Production

It is considered that the most suitable model to test in the Design and Build domain would be the Diederichs-Hepermann model. Its attempt to link designer and producer at an early stage is perceived to be of potential benefit. Indeed, it may well have usefulness in other domains, if it be accepted that involving the builder in the early stages of the process has intrinsic value, which it presumably does. Also, the model fits an existing set of design-based Elements with which design teams ought to be familiar. The set of design-based Elements upon which it is based is, itself, perceived to be an improvement on its United Kingdom counterpart.

It is proposed not to investigate pure Civil Engineering matters, as work done in this area by other researchers would, presumably, be more useful in that context. The DiederichsHepermann model, in any event, uses the relative effects of labour, plant and material inputs based on "traditional" building construction. The balance of these inputs, as discussed earlier, is expected to be somewhat different in pure Civil Engineering.

A Suggested Design-Based Set of Elemeinis To Facilitate the Input of the Costs of the FACTORS OF PRODUCTION

The Diederichs-Hepermann model was derived, in the domain of housing and public buildings, on behalf of a German Ministry. It uses DIN 276. DIN 276 is the German equivalent of the BCIS Standard Form of Cost Analysis. It defines Elements as design features, as does the BCIS Cost Analysis, but is in many respects more logically set out and is considered to have certain advantages.

For example, DIN 276 recognises the distinction between structure and cladding/ finishings to external walls less clumsily than does the BCIS Form. DIN 276 separates internal and external wall finishings. The BCIS Form does not. DIN 276 identifies separately the structural and nonstructural components of all Elements. BCIS does not. DIN 276 classifies separately openings in floors and ceilings, external walls, internal walls and roofs. BCIS only classifies "Internal Doors" and "External Doors and Windows". This is somewhat illogical and serves rather to mask the true contributions of individual components. The BCIS Form of Cost Analysis has not had any meaningful revision to its format for some three decades and it would be healthy to contemplate some improvement.

Tables 17 and 18 illustrate the Elemental Classifications of BCIS Cost Analysis and DIN 276 respectively. It should be noted that DIN 276 is not intended for use with Building Services; some other document should be consulted in that regard, or suitable Classifications added to DIN 276. BCIS has 15 classifications for Building Services, not all of which will exist on any given project and which are frequently covered by a single Prime Cost Sum in any case. Although the Building Services classifications in BCIS are more complex, their cost breakdowns are frequently vague.

The converse could be argued for the other Elements of the building. Excluding Building Services, Fittings and Furniture and the sitedependent Elements (Preliminaries, Substructure, Site Work, Drainage, External Services, Minor Building Works and the DIN 276 equivalents),

BCIS possesses 11 classifications compared to 28 in DIN 276. The Elements in question in BCIS are 1 (Substructure) to 3C (Ceiling Finishes) (inclusive). The corresponding Elements in DIN 276 are AWF (Aussenwandfläche) (External Wall Surfaces) to DAF (Dachfläche) (Roof Surfaces) (inclusive).

It appears that the BCIS Cost Analysis is too crude and simplistic to enable any truly systematic Cost Analysis to be carried out. In contrast, DIN 276 appears to be sufficiently logically formatted and sophisticated to enable a better and more systematic such exercise to be undertaken. DIN 276 is structured in 3 hierarchical levels as opposed to BCIS's 2: it defines design Subelements better than does BCIS. BCIS Cost Analyses inadequately represent the costs of functional parts of buildings because its Element classifications are too crude even to identify them all. It would be better, for such purposes, to use a system such as DIN 276. Tables 1 and 2should reveal that it is a more logical and systematic classification of component parts of buildings.

The Basic Pranciples Of The Diederichs-Hepermann Model

1 Consistent with counterpart thinking in the UK, it recognises that most cost in a construction project is generated by a relatively small number of cost determinants, and that the costs of these determinants should be addressed as early as possible during design, which does not really happen using customary practice.

2 It is structured to accord with HOAI [12], which is the equivalent of the RIBA Plan of Work [13] used in the UK. Both systems define appropriate design phases and time points for appropriate stages of cost forecasting, but HOAI goes further than the RIBA Plan of Work in that it defines the types of costs which should be concentrated upon at the key time points which are identified. The RIBA Plan of Work makes no such definitions as UK conventions leave such matters to a cost planner who is not, in fact, the designer. Thus, in customary practice, the UK cost planner will not necessarily isolate the most significant determinants of cost for special
attention. Diederichs and Hepermann recognise a similar shortcoming by alleging that relatively few practitioners actually use HOAI, preferring to rely on their own idiosyncratic practices.

The "significant determinants of cost" are called Lead Positions. They are 45 in number, exist in various combinations on all projects regardless of type of structure and invariably account for $80-90 \%$ of total cost. They are listed in Table 19 and are structured according to a widely-recognised set of Work Category Classifications; therefore no user should fail to recognise them. Lead Positions represent relatively immutable constituents of Elements and illustrate the notion that Element costs are manifestations of the existence or otherwise of such constituent entities: a Lead Position can belong to more than one Element and a single Element can be made up of several different Lead Positions. Thus Element Classifications become somewhat arbitrary, because building costs do not depend upon such Classifications, but they have to exist in order that we might recognise what the building design looks like.

4 The Lead Positions were selected on an intuitive basis at first, but the list of Lead Positionswas verified and refined following analysis of 10 projects (housing and administrative buildings). The Lead Positions are very similar to the Work Categorieswhich are used in the UK for valuing fluctuations on building contracts; that is to say, they represent types of construction work which have their own inherent characteristics and whose costs are calculable using weighted inputs of labour, plant and materials. Thus it is argued that it may be possible to use, e.g., the widely-recognised NEDO or CPI Work Categories in an attempt to find Lead Positions or significant determinants of cost applicable to UK construction projects during design. Work Categories in the UK are customarily used in a single, very limited situation in the post contract. The attribution of allegedly unique models to allegedly unique situations belies the fact that changes to design and cost in the pre contract are essentially the same as changes to design and cost in the post contract. Culturally, we assume that models in the post contract must in some way to be fundamentally different to those in the pre contract, despite the fact that the determinants of cost remain fundamentally the same.

Lead Positions, whilst always being significant determinants of cost, can possess different "levels of influence" on cost. For example, some cost-determinants can have a range of possible design or construction options, some relatively few. the wider the range of design or construction options, the wider the expected ranges of possible cost and. hence, the greater the "level of influence". This is consistent with UK thinking on "cost-sensitivity" of Elements; the difference now being that attempts to measure costsensitivity can be made on cost-determinant Work Categories rather than on a rather arbitrary, vaguer set of Elements.

There exist Remainder Positions, as Diederichs and Hepermann term them, which comprise those work categories which contribute the minority of overall cost. These can be costed as an overall parcel of cost, rather than costed out individually. Examples are listed in Table 4. They never singly contribute more than, say, 1% of total cost.

7 The model can accommodate design changes in the pre contract or the post contract, by very virtue of the fact that it uses significant building Work Categories, calculated in terms of material, plant and labour costs: it does not use one technique for one phase of the project and another for another: cost is determined by the same things at all times: there is no need to cloud the issue by inventing techniques which are (often mistakenly) considered only to apply to a unique situation.

8

The model defines Special Positionswhich are cost -determining Work Categories which occur relatively uniquely, or only occasionally, to buildings which have particular requirements not common to buildings in general. They should be costed individually, on an ad hoo basis, as well as possible. They are likely to prove to be Lead Positions when they have occurred on sufficient occasions for cost records to become reliable enough. Because they are special or unique requirements, their costs on such a unique project are likely to be significant for that project. an example could be a Work Category called "Soil Improvement Techniques" which occur on a minority of construction projects but, if required, would almost certainly be costsignificant for that project. If it subsequently occurred on many projects it would be become defined as a Lead Position.

9 It should be expected that the Lead Positions exhibited for buildings in Germany should be exhibited for buildings in the UK as construction techniques and architecture do not vary a great deal between countries nowadays. Obviously there may be minor differences reflecting traditional building practice (e.g. timber ground floors would seldom be encountered in Germany and hard, cold floor finishings would be less common in the UK) but it is seen as a suitable starting point to select, say, the NEDO or CPI Work Categories which most closely reflect the Lead Position categories: therefore this has been done in Table 19.

Comparability Of Lead Positions and Work Categorites

There are some differences attributable to design and construction tradition (styles of Finishings are somewhat different and concrete floor construction is almost universal in Germany). There is no complete overlap between the Lead Positions and the UK Work Categories. However, Lead Positions and UK Work Categories are sufficiently alike to enable testing, in the UK, of a model which substitutes Work Categories for Lead Positions at a level of detail between that of the overdetailed UK Bill of Quantities and the underdetailed UK Elemental Cost Analyses, and which could be used during the pre contract and the post contract. UK Work Categories are used in the post contract with the design-based Bill of Quantities as a basis for calculation. Therefore they should be adaptable, mutatis mutandis, for use in the precontract.

Table 17: DIN 276 ELement CLASSIFICATION

Grobel mmente: Basisfläche	CRUDE ELEMENIS: BASE SURFACES
Gebäude-Elemente	Building Elements
3.1.1.1 Baugrube	Excavation + Earthwork
3.1.1.2 Fundamente und Unterboden	Foundations + Fllling
GROBEI LMMENTE: AUBENWANDFLÄCHE	Crude Elemenis: External Wallplanes
Gebäude-Elemente	Building Elements
3.1.2.1 Tragende Außernwände, Außenstützen	Loadbearing External Walls, External Columns
3.1.3.1 Nichttragende Außenwände und zugehörige Konstruktionen	Non-loadbearing External Walls and Associated Construction

GROBEI EIMENTE: INNENWANDFLÄCHE

Gebäude-Elemente	CRUDE ELEMMENT: INTERNAL WALLSURFACES
3.1.2. Tragende Innenwände, Innenstützen	Loadbearing Internal Walls, Internal Columns Element
3.1.32 Nichttragende Innenwände und zugehörige Konstruktionen	Non-loadbearing Internal Walls and Associated Construction

Gebäude-Unterelemente	Building Subelements
3.1.1.1 [1] Baugrube	Excavation + Earthwork
3.1.1.2 [1] Fundamente	Foundations
3.1.1.2 [2] Unterboden	Filling
3.1.1.2 [3] Bauwerksohlen	Ground Floor
3.1.1.3 [6] Bodenbelage auf Bauwerksohle	Finishings to Ground Floor

Gebäude-Unterelemente
3.1.2.1 [1] Tragende Außenwände, Tragkonstruktionen Loadbearing External Walls, Loadbearing Construction 3.1.2.1 [2] Außenstützen, Tragkonstruktionen External Columns, Loadbearing Construction 3.1.3.1 [1] Nichttragende Aussenwände, Konstruktionen Non-loadbearing External Walls, Construction 3.1.3.1 [2] Außentüren, Außenfenster External Doors, External Windows 3.1.3.1 [3] Wandbekleidungen außen External Wall Finishings Externally 3.1.3.1 [4] Wandbekleidungen innen Außenwand External Wall Finishings Internally 3.1.3.1 [5] Fassadenelemente Facade Elements 3.1.3.1 [6] Schutzelemente Außenwand External Wall Protection Elements

Gebäude-Unterelemente	Building Subelements
3.1.22 [1] Tragende Innenwände, Tragkonstruktionen	Loadbearing Internal Walls, Loadbearing Construction
3.1.22 [2] Innenstützen, Tragkonstuktionen	Internal Columns, Loadbearing Construction
3.1.32 [1] Trennwände	Internal Partitions
3.1.32 [2] Innentüren, Innenfenster	Internal Doors, Internal Windows
3.1.32 [3] Innenwandbekleidungen	Internal Wall Finishings
3.1.3.2 [4] Wandelemente	Demountable Partitions
3.1.32 [5] Schutzelemente Innenwand	Internal Wall Protection Elements
CRude Elfment: Horizontale Trennfläche	CRude Elemment. Horizontal Division Surfaces
Gebäude-Elemente	Building Flement
3.1.2.3 Tragende Decken, Treppen	Loadbearing Upper Floors, Stairs
3.1.3.3 Nichttragende Konstruktionen der Decken, Treppen und zugehörige Baukonstruktionen	Nonloadbearing Upper Floors, Stairs and Associated Construction
GROBEL EIMENIE: DACHFLÄCHE	CRUDE Elemment: Roof Planes
Gebäude-Elemente	Building Element
3.1.2.4 Tragende Décher, Dachstuhle	Loadbearing Roofs
3.1.3.4 Nichttragende Konstruktionen der Dächer und zugehörige Baukonstruktion	Nonloadbearing Roof Construction and Associated Construction
Grobeleimente: Sonstige Konsiruktionen	CRUDE ELEMENT: OTHER CONSTRUCTION
Gebäude-Flemente	Building Element
3.1.9.1 Baustelleneinrichtung	Preliminaries
3.1.9.9 Sonstige Baukonstruktionen	Other Construction
Gebäude-Unterelemente	Building Subelements
3.1.2.3 [1] Deckemplatten, Balken, Tragkonstruktionen	Upper Floors, Beams, Loadbearing Construction
3.1.2.3 [2] Treppenlaufe, Zwischenpodeste, Tragkonstruktionen	Stair Flights, Landings, Loadbearing Construction
3.1.3.3 [1] Bodenbelage	Floor Finishings to Upper Floors
3.1.3.3 [2] Treppenbelage	Floor Finishings to Stairs, Landings
3.1.3.3 [3] Deckenbekleidungen	Ceiling Finishings
3.1.3.3 [4] Treppenbekleidungen	Ceiling Finishings to Stairs, Landings
3.1.3.3 [5] Schutzelemente Decken	Floor Protection Elements

Gebäude-Unterelemente	Building Subelements
3.1.2.4 [1] Tragende Dachkonstruktionen	Roof Structure
3.1.3.4 [1] Dachbelage	Roof Finishings
3.1.3.4 [2] Dachbekleidungen	Ceiling Finishings to Roofs
3.1.3.4 [3] Dachöffnungen	Roof Openings
3.1.3.4 [4] Schutzelemente Dächer	Roof Protection Elements
3.1.9.1 [1] Baustelleneinrichtung	Preliminaries
3.1.9.9 [1] Schachte, Kanäle	Drainage, Internal + External
3.1.9.9 [2] Räumliche Fertigbauteile	Prefabricated Building Compartments
3.1.9.9 [3] Abbruch von Baukonstruktionen	Demolitions

TABLE 18: BCIS Element CLASSIFICATION

Bullining Group Euriment	Bullding Eitement
1 Substructure	1 Substructure
2 Superstructure	2A Frame
	2B Upper Floors
	2 C Roof
	2 D Stairs
	2 E External Walls
	2F Windows and External Doors
	2 G Internal Walls and Partitions
	2H Internal Doors
3 Internal Finishes	3A Wall Finishes
	3B Floor Finishes
	3C Ceiling Finishes
4 Fittings and Furnishings	4 Fittings and Furnishings
5 Services	5A Sanitary Appliances
	5B Services Equipment
	5C Disposal Installations
	5D Water Installations
	5E Heat Source
	5F Space Heating and Air Treatment
	5G Ventilating System
	5H Electrical Installations
	$5 I$ Gas Installations
	5J Lift and Conveyor Installations
	5 K Protective Installations
	5 L Communication Installations
	5M Special Installations
	5 N Builder's Work in Connection With Services
6 External Works	50 Builder's Profit and Attendance on Services
	6A SiteWork
	6B Drainage
	6C External Servioes
	6D Minor Building Works
UUnnumbered Preliminaries	[Unnumbered] Preliminaries

Table 19: Lead Positions and their UK Equivaleinis

"Lead Posmions"	CORRESPONDING UK WORK Categories
002.01 Aushub Baugrube	Site + Reduced Level Excavation (01)
002.02 Aushub Fundamente und Rohrgräben	Excavation For Foundations and Pipe Trenches
012.01 Mauerwerk $\mathrm{d}<=0.30 \mathrm{~m}$	Masonry (Walls + Partitions) (02)
012.02 Mauerwerk $\mathrm{d}=0.24 \mathrm{~m}$	Masonry (Walls + Partitions)
012.03 Mauerwerk d $<=0.175 \mathrm{~m}$	Masonry (Walls + Partitions)
012.04 Mauerwerk $\mathrm{d}=0.115 \mathrm{~m}$	Masonry (Walls + Partitions)
012.05 Mauerwerk d<0.115m	Masonry (Walls + Partitions)
012.06 Sichtmauerwerk $\mathrm{d}>=0.24 \mathrm{~m}$	Facework (02)
012.07 Sichtmauerwerk $\mathrm{d}<=0.175 \mathrm{~m}$	Facework
012.08 Verblendmauerwerk $\mathrm{d}<=0.115 \mathrm{~m}$	Facework
013.01 Rand-und Seitenschalung	Formwork Edges + Sides (generally) (03)
013.02 Schalung. Brüstungen, Überzüge und Attiken	Formwork Projections, Upstands
013.03 Schalung der Wände	Formwork Walls
013.04 Schalung der Stützen	Formwork Columns
013.05 Schalung der Decken	Formwork Upper Floors
013.06 Schalung der Balken und Unterzüge	Formwork Beams, Downstands
013.11 Stabstahl	Bar Reinforcement
013.12 Mattenstahl	Fabric Reinforcement
013.21 Beton für Fundamente, Platten, Decken etc	Concrete: Foundations, Slabs, Upper Floors etc
013.22 Beton für Stützen und Wainde	Concrete: Columns + Walls
014.01 Bodenbelag aus Werksteinplatten	Precast Finishes: Floors (04)
014.02 Treppenbelag aus Werksteinplatten	Precast Finishes: Stairs (04)
016.01 Kantholz liefern	Structural Timber: Supply (05)
016.02 Kantholz verzimmern	Structural Timber: Construction
016.03 Dachschahung	Roof Boarding
020.01 Dachdeckung	Tiled Roof Coverings (06)
020.02 Dachabdichtung	Sheet Roof Coverings (O)
020.03 Dachrinne/Fallrohr	Rainwater Installation

Table 19: Lead Postion and their UK Equivalenis

"LeAD Posinons"	CORRasponding UK Work CATEGORIEs
023.01 Innenputz Wände	Plastering and Rendering to Walls: Internally
023.02 Innenputz Decken	Plastering and Rendering to Ceilings: Internally
023.03 Außenputz Wände	Plastering and Rendering to Walls: Externally
023.04 Gipskartonarbeiten	Dry Partitions + Linings
024.01 Wandfliesen	Wall Tlling: Ceramic (04)
024.02 Bodenfliesen	Floor Tiling: Ceramic (O4)
025.01 Schwimmender Estrich (08)	Screeds
025.02 Verbundestrich	Screeds
027.01 Holgfenster	Timber Windows
027.02 Holztüren	Timber Doors
027.03 Holzverkleidungen	Timber Cladding + Linings: Internally
031.01 Metallfenster	Metal Windows
031.02 Metallgeländer	Metal Balustrades,Balconies,Handrails etc (04)
034.01 Anstrich auf mineralischem Untergrund	Painting: Mineral Bese Surfaces
034.02 Anstrich auf Holz und Metall	Painting: Timber + Metal Surfaces
034.03 Tapeaierung	Wallpapering etc
036.01 Elastischer und textiler Bodenbelag	Tile and Sheet Floor Finishings: Nonceramic

Typical Compostion of a Lead Position

Table 20 shows the facility to input costs of the factors of production, if desired, into the cost centre. Alternatively, it can merely be quantified in the from of an Element Unit Quantity, in the manner of the design-based model.

Table 20 Lertposition: 013.21: Beton fur Abfullungen, Fundamente, Böden, Platten, Decken / Lead Position 013.21: Concrete for Filuing, Foundations, Ground Fioors, Slabs, Upper Floors

Ausführungagvarianie	Einhert	LOHNAUF WANDEWERT ($\mathrm{L} \mathrm{H} / \mathrm{M} \mathrm{M}$)	Materialkosten (DM/M2)
Designand Sphcimication Variations	UnIt/QuANTITY FACTOR	Labour Cosis (Hrs/m2)	MaterlalCosts (£/M2)

This is the basic Lead Position (Significant Cost Centre):

013.21 .01	Für alle Bauteile, B25 For all features, Grade B25	m 3 m 3	0,6 0.6	115,00

These are $\mathrm{Z}=\mathrm{Zulage}=$ "extra over" cost for each stated design or specification variation:

013.21Z1	Zulage für B35 Extra; Grade B35	$\begin{aligned} & \mathrm{m} 3 \\ & \mathrm{~m} 3 \end{aligned}$	$\begin{aligned} & 0,6 \\ & 0.6 \end{aligned}$	+8,00
013.2172	Zulage für B35 Extra; Grade B35	$\begin{aligned} & \mathrm{m} 3 \\ & \mathrm{~m} 3 \end{aligned}$	$\begin{aligned} & 0,6 \\ & 0.6 \\ & \hline \end{aligned}$	+13,00
013.21.73	Zulage für das abreiben der Betonoberfliche Extra; polishing top surfaces	m3	+0,5	
		m3	+0.5	

NOTES:

(01) General site excavation and Excavation directly atrributable to the actual foundations are kept separate, which is a useful improvement on UK practice.
(02) UK Work Categories for Masonry are not separated by relative thickness ("d" = Dicke, "Dichte" = thickness).
(03) Formwork to edges and sides only applies to edges and sides $<10 \mathrm{~cm}$ wide.
(04) The use of hard precast granolithic or terramo floor finishes, and of metal balustrading and balconies, is common in German construction and, hence, always significant in cost analyses.
(05) The supply and the installation costs of structural timbers are kept separate in German cost analyses; though it is not immediately apparent why the cost of the supply of these components, and no others, should be expressly and separately identified as a Lead Position in its own right.
(06) Costs of Pitched and Flat Roof Coverings are kept separate in the cost model under scrutiny, such sophistication is not usually seen in conventional UK Cost Analyses.
(07) The literal meaning of Dachabdiohtung is "Roof Waterprooning". Built-up Felt Roofing, Sheet Roof Coverings and the like are the UK equivalents. The CPI Work categories (SMMT) now reoognise this and classify certain roof coverings under "Waterproofing".

Annex 1:

Hypotheitical Petrochemical Civil Enginegrring Measurement Model (Prior to Valmation Stage 1)

SECIION: CONCRETE WORTK
Subsection: Insitu Conorete

frimpamay	Meagurimient Catriofy	UNI	Coviraces
Foundations in trenohes		m^{3}	
Isolated foundation bases Casings to steel grillages Pile caps Isolated beams Isolated beams casings Isolsted cohumns Isolated cohumn casings Machine basea Ground beams Casings to steol beams	${ }^{-N r}$	m^{3}	Ehcoludes sttrached beams. Column length thioknese ratio-4:1.
Beds or pavings Suspended floors or roots Profled sofitit aumpended floors or rooks Upatanda or beerbe Wals Duct or ahannal welle Eteps and staircases Tope and abeeks ol dormers Flliling hollow wall Mine flling Blinding		mm^{3}	Bects and paringe inchurio thioksoninge. Froom roote and bede ewohude luerba and upetanda. Fhors and rocks inobudo atteched beame and beam couinge and molid margins to profled woric Walls inchude projectiona and ridiones. Walle thiolmen ratiomes:1. Etepre and exircenes inohyde tringe and assoctated handinga.

Subsection:
Joints in Concrete

ItemFamily	Mensurtemient Catbocity	UNI T	COVERAGE
Designed joints	..wride	m	Inchudes ends, angles, intersections and the lilisa.

Subsection:
Labours on Concrete

Item Family	Measuremment Catbgoay	$\begin{aligned} & \hline \text { UNI } \\ & \mathrm{T} \\ & \hline \end{aligned}$	COVERACE
Treating surfaces Grinding Sandblarting Working around heating pipes and cables	Generally Mangins	m^{2}	
Holes $<=1 \mathrm{~m}$ girth Holes 12 m girth Holes 23m girth	<75 deep 75-150 deop 150225 deop 225800 deop .deop	Nr	Inchudes maiding grod concrete by speotifed means. 15300 deop, atato depth. If 73 mm grth, olaentif in other catregories elsewhere.
Channels or chases	Small Large Ehatra large	m	Inchudes malding good conoreto by apeoified moank
Mortices			Otve with member for which it is provided Otherwies meamue an boles, chamnele and chraces, orns formwork
Anohorbolits Fhangedertoes	.diameter Secial Nr .-	Nr	Inoludes temporary boudicia mortices groover, pooletes grouting and the lice. If not apeotificd, is at contractort dimantion.

| Grouting under bases, grillages
 and the like | s-25 thick | |
| :--- | :--- | :--- | :--- |
| 2550 thick | | |
| -thiak | $\mathbf{N r}$ | If over 50 thick, state thicknees. |

Subsection:
Reinforcement

Item Fammy	Mimasurament Cantiofy	UnIT	
Horimontal or sloping $<=30^{\circ}$ from horivontal	Foundstions, bases, ground beems, pile caps and the like	m^{2}	m^{2} for fabria. tfor bas.
		t	
Horizontal or sloping < 30° from horizontal, bars >12m long	Bods and pavings		
			Clasality as straight or bent, or as
	Suspended floors and rooks		curved
Vertical or sloping $>80^{\circ}$ from horibontal			Includes links and the likses, raling and curved cutting and bending.
	Walls		
Vertical or sloping $>30^{\circ}$ from horizontal, bars $>5 \mathrm{~m}$ long	Cohumns, cohumn casings, beams, beam casings and lintels		
	Stops and staircaces		
	Tops and obeelns of dormors		
	Mrahine bases		

Subsection:
Formwork

ITEM FAMIIY	MEASUREMIENTS CATHGORY	UNTT	
Edges of beck, pile capse and foundations Edges of suappended floors or roof, landinga, risers and stops in floors or roots	<-250 wide 250500 wide 2500 wide	m m m^{2}	Includes all cutting. Iepore Nr of surficeen Where not plain and vertical, apeodity. Ignore ends of atepa. No alope catogorice. If proflo complex, apeodty. For tapering ceotiona give no dimenaion rangee exoupt where >500 wide to boums and beem crainge.
Upper auxfices aloping $>15^{\circ}$ from hortrontal	Walte beame, beam coainges bede sumponded flooss or roote	m^{2}	Inahuden all outting Ignore Nr of surfose

Solits of suspended floors or roots, stairs or landings	Horivontal or sloping < 15° from horizontal Sloping $>15^{\circ}$ from horizontal	m^{2}	Inohudes all cutting. Do not distinguish in measurements between flat and profled work Specity the profle.
Strings	< $=300$ wide 300600 wide -. wide	m	Inchudes all cutting. Skate width if >600.
Atrached beams and beam casings Kerts and upstands Recesses Projecting eaves	Horimontal Sloping	ma^{2}	Inahudes all cutting. Add adjacent slab edges [ewcoept recesses] to quantity. If prodie complex, apeoity.
Walls	Vertical Sloping	m^{2}	Inchudes all cutting. Ignore Nr of surfaces and whether intormpled by projections. Add atsached piects, ends of walle and pilisters to quantity. Inchuden ldalcorss if not deaigned.
Wall projeotions, hortrontal or sloping $<=15^{\circ}$ trom horizontal Wall projections, sloping $>15^{\circ}$ from hortrontal	-x-	m	Brate cromereotion and prodis [ii complex. Hevertioal clacitif as walla.
Deajgned wall kioksers		m	If not dealgned do not mearure.
Holes < 1 m girth Holes 12mongirth Holen 23m girth	<-75 deep 78-150 deep 150885 deop 206500 deep -. deop	Nr	Inoludes malding spod conarte thy upedtied meane. IDSOO doep, atato dopth Iflein girth olawitiy in othor categorien elmewhers.

Channels or chases	Small Large Extra lange	m	Includes maling grod concrote by apecified means
Mortces			Gtwe with member for which it is provided Otherwise meacure as holes, channels and chases, or as formwork
Isolated columns and cohumn casings Isolated beams and beam cesings	${ }^{-} \mathrm{Nr}$	m^{2}	If not rectangular, deecribe shape.

Subsection: Precast Concrete			
Item Family	MRASSUREMENTT CATECOATY	UNIT	
Sumpended fioor or roof units Wall or partition units	Horimonal Bloping Ventical	m^{2}	Inchudes temporary support joint treatmenter roinforcement and surface finich, all of whiah muat be apeotified If profiso unusual epecity.
Copings Kerbs Chanisols Lintals Beaths Steps Dubid dover Sholves	Smaight Curved. .. radius Curved. \times mm radius Rederenco .- BS_ Fig .-	m	Inaludes relnforcoment turtiocs finiah, bedding and jointing and shape of unitm, all of which muat be specified. Suste ractive if $<=4 \mathrm{~m}$. Inchudee onda anglea, infermeotions and the liles.
Etaircasea and asacoiated landings	-misex misex - going Reference nr ... Draving Nr ...	Nr	Inoludee redinforceement murthoe finish, bedding and jointing and shape of unith, all of which munt be speodified.

Concrete Sundries

Dampproof membranes		m^{2}	Includes turn-ups, laps and the Fibse, the requirements for which must be specified.

SECTION: ExCAVATION AND EARIHWORK

Subsection:
Site Preparation

Liting turf and preeerving		m^{2}	Etate distanco to spoil heap.
Remoring isolated trees	$\begin{aligned} & \text { < } 000 \text { girth } \\ & >600 \text { girth } \end{aligned}$	Nr	Specify ground treatment affer removal
Remoring hedges		m	If $\times 600$ girth meanure as treen.
Removing undergrowth		m^{2}	
Froseveting topaoil and presarving $<=0.2>\mathrm{m}$ deep	- average depth	m^{2}	State distance to apoll heap.
Ercosvating topeoil and preserving $>0.25 \mathrm{~m}$ deop		m^{9}	

Subsection: Ercavation			
Reduce loval		m^{3}	No depth teges
Basoments Pits for foundations and baces	$<=1 \mathrm{~m}$ total depth <-2min total depth <-4m total depth c-6m total depth	$\mathrm{m}^{\mathbf{3}}$	Caloulato total depth from reduced lovel. Continue dopth clamiticettions in 2managen.
Pits for foundetions and basea, each $\ll 1 \mathrm{~m}^{3}$..-Nr	ma^{3}	
Foundation trenabes <- 300wide Foundation trenchen >500 wide	$\ll 1$ m total depth s-im total depth <-4m total dopth efom total depth	max^{8}	Caloulate total dopth from rechuced level. Continue depth olentificetions in 2magen.

Working space and backfill with specified material other than excavated material	< $=10$ total depth <-2m toteal depth $<=4 m$ total depth <-6m total depth	m^{3}	Calculate total depth from reduced bevel Continue depth olaesifications in $2 m$ stagea. Measure only where backfll matorial apeocified is other than excravatod material; Otherwise the use of woriding apace is at contractor's discretion.
Extra; breaking up parings	--thick	m^{2}	Do not classity by type of excoavation to which it applies. Eppodify type of paving. Assume thickness if unknown. Applien to all surfice matoriala
Frtra; brealing up pavinges and reinstating	...thiok	m^{2}	Do not clasesity by type of emavation to which it applice. Speoity type of paring and exact reinatatoment materials and dimensiona Anmume thiaknees if unknown. Appliew to all aurthoo matoriala
Froavating alongatide services	... deep	m	State type of mervice.
Erecavating acrios services	- deop x - long		Blate type of sarvios and the length of excouvation whilioh arcmesit
Frase cucavation adjacent to roads pavements or erdating buildings	<-1m total dopth <-2m total dopth $<=4 \mathrm{~m}$ total depth <-6m total dopth	m^{2}	Thewe theme are at contructorte dimpertion. Continue depth olemathoetiona in $2 m$ stagen.

Subsection: EarthworkSupport			
Generally In running sand or silt	< $=10$ total depth <=2m total depth <-4m total depth $<=8 \mathrm{~m}$ total depth [continuing depth claestifications in 2 m stages]	m^{2}	These two methods of olsasifying earthworks support are equally permitted options. Disregand type of ercervation to which the thoms apply. Measure earthwork support to working epece only if the working space is expresely required to be measured.
Gonerally In running sand or silt		m^{2}	

Subsection: Disposal of Elcoavated Material

Subsection: Filling			
To excesvations		m^{3}	Inahude ainkinge in the mearured quantity.
To make up levels <-0.20me thiak	- average thicknees	m^{2}	Inoluden handpeaking.
		m^{3}	Frlling to working rpence is mearured according to the Erecavation Subrection. Specifi detallas of ill materianan havers and compaction.

Landscaping	m^{2}	Bpecify soiling seeding surface treatments mulahing fortlising and the Hise as appropriste, using composite thems to the tullest possible extent Disregard alopea, but give details of unusual profiles.

SECIION: Drainage
Subsection: Pipe Trenches

ITEM FAMIIY	MEASUREMIENNT CATEGORY	UNIT	
For pipes < $=200$ nominal diameter For pipes .. nominal diameter	<-2m deep [stating average depth to neareat 400 mm] < $=4 \mathrm{~m}$ deop [stating average depth to neareet 400 mm] <6m deep [stasting evorage depth to neareat 400 mm]	m	Inoludes ercesvation earthwork support murfice treatmont, flling beds, surroundas coveringes and disponal of material [speotity theoo]. Working space is at comtractorts disorvition. Exate pipe ind if >200 nominal diameter. Continue depth olenafliontiona in im stages.
For pipes < 200 nominal dismeter, in branohea < $\mathbf{3 m}$ long For plpes _ nominal diameter, in brenches <-3m long		$\mathbf{N r}$	Elate if pipe run curved. discegarding radura. Nr of plpe bends in branahea is at contrectorts diranction.

Subsection: Manholes, Inspeotion Chambers and the Like			
Manholes	$\text { -x - intornal aime } x \text { _ deop to }$ invert level	Nr	Round depthe up to neareet 500 mm .
Inspection Chambers			
Soaldaways	\qquad		Includes ercoevation, aurface treatmentan blinding, bapa, briok or concrete walle, conorteto ringen,
Silt Baxes			pointing rendaring benohing. cover alab, reintorcement
Ceespites			formwork filling mep trona and the lilse. These muth be
Septiotanks			apeoified Use of manderd detaile is recommended.
Potrol Interceptors			
Greane Trapa			Ifahated mato holght and internal dimenulone of mbat and intermedisto alab.
[5 coc]			Itemise covers and frumes ecparataly following the Plpework Accemorten conventional

Subseotion:

Plpe Entries

Main run	--diameter	Nr	Inoludee bullding in
Branch <-8m long			Nr of brunch bends is ent contractores diecrevion

ANNEX 2:
Hypothetical Petrochemical Civil Engineering Measurement Model (Prior to Valmation Stage 2) ${ }^{--}$

Section: Prriliminafues			
Subsection: Generall			
Item Family	MEASUREMENT CATEGOFY	UNTT	
Safoty. Health and Weltare		Item	
Temporasy Accommodation			
Notices and Fees to Local authorities and Public Undertakings			
Telephones			
Power for the Works			
Water for the Works			
Temporary Roads and Hardstandings			
Insurances as defined			
stat			
Plant, Toolk, Scaftiolding and Hoists			
Maintenance of Prtvete and Public Roads			

SECTION:
Subsection:

Itim Family	Misasuriminhnt CATEGORY	UNIT	
Luting turf and preserving		m^{2}	State distance to spoll heap.
Femoring inolated trees	< 600 girth >000 girth	Nr	Epecity ground treetment after removal.
Remoring hedges		m	If 9000 gith measure as treen.
Femoring undergrowth		m^{2}	
Erceaviting topeoil and precerving <-020m deep	-. average depth	m^{2}	Suate how and where atored
Elecevating topeoll and precerving: 20.25m deop		m^{8}	

Subsection: Excavation			
ITEM FAMILY	MEASUREMENT CATEGORY	UNIT	
Reduce level		m^{3}	No depth stages
Basements Pits for foundations and bases Flle orps Ground beams Working space and backsfill Foundation trenahes $<=300$ wide Foundation trenches >300 wide	$<=1 \mathrm{~m}$ total depth <-2m total depth <-4m total depth <-6m total depth	m^{3}	Calculate total depth from reduced level. Continue depth olacadrications in 2 m stages Speodity fill matorial Allow 600 woridng space from thice of any work needing formwork or operatives to work from outside. Dismegard type of exceavation to which working space relstes.
Fits for foundations and bases, each $<=1 \mathrm{~m}^{3}$	- Ni	m^{3}	
Brealdng up pavings Breaking up pavings and reinstating	-thiok average ... thiok	m^{2}	Do not olasadity by type of ecosavation to which ti applicen. Specify type of paving. Specify cuact reinetatement materials. and dimenalons.
Ercavating alongide services	- deop	m	Do not daentify by type of excavestion to which it appiliea State type of servico and its average dopth bolow tarting beval of exceavetion.
Ereavating acroes sorvioes	- deep x .. long	Nr	Do not damity by type of ecoavation to whiloh it applice. Exate type of service, the averace depth bolow tarting loval of cucevation and the lang th of emervition which crocece it
Preavation neat roada Ehrowation neart buildings Supporting running sand or all	$<1 \mathrm{Im}$ total depth <-2m total depth <-4m totel depth	m^{2}	Continue depth olamedications in 2 m tragen. Dheregard woriding apeco when calculeting quantition.

Subsection
Disposal of Excavated Material

ITEMFAMIIY	MEASUREMENT CATEGORY	UNTT	
OIf site			Specity multiple handing. On Site To Employer's dip Multiplo handling

Subsection: Filling			
ITEMFAMILI	Mrasuremaint Category	UNIT	
To encervations 		m^{3}	Include sinkings in quantity. Filling to working space is measured according to the Ehcavation Subeection. Epeority details of fill materiala, leyyers and compaction.
To make up levels < 00.20 m thick	- average thioknems	m^{2}	

Subsection:
Surface Treatments

Itimmanily	MEASUREMEENT CATEGORY	UNIT	
Gurfaces of filling Gurfaces of excavations Surfices of excevations in hand materials		m^{2}	Where illing measured superficially, speotity surface troetmentis with the fllling itame. Group hormontal and sloping work together, quve unumual profiles noparreto ittom; trato if vertical surfices. Speoify the exurfice treatmentin
Lendscaping		m^{2}	Bpecify soiling, meoding aurfoce treatmenta, mulohing fertiliadng and the live as eppropriate, uaing comportite thems. Group hortiontal and aloping work trogether, but give unumal proflica a erparite itromes, state if vertical surfeces.

SECIION: UNDEPRPININNG			
Subsection: Erscravation			
ITEMFAMILY	MEASUREMENT CATEGORY	UNIT	
Preliminary trenches Fhrosvating below base of existing foundation	$\begin{aligned} & <1 m \text { total depth } \\ & <=2 m \text { total depth } \\ & <=4 m \text { total depth } \\ & <=6 m \text { totel depth } \end{aligned}$	m^{3}	Continue depth clasaifications in 2 m stages. Inchudee water diaposal. Proparing old work to recelve now deemed to be inaluded.
Erdra; ecorvating next existing building		m^{3}	Single measurement from ground level to bottom of ecreavation below base of erdeting foundation Repleces earthwork eupport
Working space and filling		m^{3}	Speoify fill matarial. Allow 2 m wording epeoce thom thoe of erdeting wall regardleen of dopth

Subsection: Surface Treatments

ITEMFANIIIY	Mriasurienibnt Category	UNIT	
Surfaces of excavations Burface of flling		m^{2}	Group together regardicen of alopes eta. Steste nature of murfice treatment and of earrice boing treated.

Subsection:
All other Work

Itimmamily	MRASUREMENT CATEGORY	UNIT	
			Meanure scoording to other Sectionse ebewhere in this document

SECTION:
Piling
Subsection:
Piling

Item Family	Measuremment CATbGORY	UNIT	
Preformed concrete piles, ...Nr Preformed prestreesed concrete piles, -Nr Preformed concrete sheet piles, .-Nr Timber piles, ... Nr Isolated steel piles, ...Nr	Total completed length <-5m Total completed length 5 10 m Total completed length 10 15m	m	Continue length categories in 5 m stages. State whether preliminary, teeth contiguous or ralring pilee. Btate angle of rake in 15° incremonts. Group by crosesectional area [nominal weighti/m in case of steel pilese.
Preformed concrete piles, $\mathbf{~ - ~ N r ~}$ Preformed preatreased concrete piles, - Nr Preformed concrete sheet piles, $\mathbf{- N r}$ Traber piles, _ Nr Isolated steel piles, _ Nr	Total driven length	m	State level at which driving commencers measure drtving from there to bottom of toe or driven casing. Lengths measured for preformed concrete, timber and steel pilea shall be thowe which the contrector is instructed to provide.
Bored castin-place concrete piles, ... Nr Driven castin-place concreto pilem, ...Nr	Total bored or driven dopth <-5m Total bored or driven depth 5-10m Total bored or driven depth 10-15m	m	Continue length categories in 5m tregen. Exate whether proliminary, teet, contiguous or raling pilea. Elesto angio of rakso in 15° incrementra Group by aromeectional area [nominal weight/min ceee of theal pilese.
Bored cestin-place concrute pllem, ...Nr Driven cartin-place concrete piles, \quad Nr	Total completed length of plles	m	Exato loval at whilah ditiving commences, meenure drtving from there to bottom of too. Lengthen meacured ahall be thowe which the confaractor in instruated to provide.

Interlocking steel piles, ...total driven area	Total completed area of piles of length $<=5 \mathrm{~m}$ Total completed area of piles of length $5-10 \mathrm{~m}$ Total completed area of piles of length $10-15 \mathrm{~m}$	m	Continue length categories in 5 m stages. Etate whether proliminary, teet, contiguous or raling piles. State angle of ralce in 15° increments. Group by section moduhus State lovel at which driving commences measure driving from there to bottom of toe or driven casing. Longths measured shall be those which the contractor is instructed to provide.

Subsection:
Extras on Piling

Item Family	MEASUREMENT CATEGORY	UNIT	
Eharas corner piles		m	Stato anticipeted rook strata
Eutraj function piles			Eppedity types of pile casinge
Ehara; closuro piles			Speatiy baokfill matorial
Extra; taper piles			Speotity mitx of conarete flling.
Fhira; boring through rook			tremie placing inchudes edjustment of mete proportiona
Extra; permanent pile casinge			
Ehtre; placing concrete by tremio pipe			Mearuro pile cutting hortromtally.
Enpreesty required proboring			
Beokfiling empty bores			
Erpreesty required jetting			
Filling hollow piles with conarete			
Plo ertemaionc, -. Nr			
Cutting tope off interioolding pibs			

Cutting tops off isolated piles		Nr	Continue longth classifications in 5 m stages.
Preparing concrete pile heads and reinforcement for capping			State sive and type of pilea.
Forming enlarged bases			
Heads			
Shoes			
Cutting intertooking piles to form holes			
Removing piles	Pile length $<=5 \mathrm{~m}$	m^{3}	Btate type and size of piles.
	Pile longth 5-10m		
	Fise length 10-15m		
Disposal of excesvated material arising from piling operations			Quste how and where dispoeed.
			Calculate from bored longth and nominal aroeseoction aime.
			Deduot amounts baoksilled.
			Do not mearure in cace or displacement pilea.
Authorised etanding time for pile rige and associated labour		$\mathbf{H r}$	Do not cleseitif by type of obutruction.
Boring through artifiolal obetructions			

Subsection: Plle Testing			
Item Family	Mifasuremment Catbgory	UNIT	
Teeting piles			Specify full particulars of teets.

Siccion:
 CONCRETE WORK

Subsection:
Insitu Conorete

Item Fanily	Measuremminvt CATEGORY	UNIT	
Foundations in trenabee		m^{8}	

Isolated foundation bases	${ }_{-} \mathbf{N r}$	m^{3}	Column length: thickness ratio-s 4:1.
Casings to steel grillages			
File caps			No sime or thiolmeas categories.
Isolated beams and beam casings			
Isolated columns			
Isolated column casings			
Machine bases			
Ground beams			
Casinge to strel beams			
Beds or pavings		m^{3}	Beds and pavings inchude thicksonings.
Suspended floors or roots			
Profiled sofilt suspended floors or roofs			Floors, roofis and beds emolude learbs and upetands.
Upstands or learts Walls			Floors and roots inchude attsohed beams and beam casinges and solid margins to profiled work
Duct or channel walls			Walls inolude projections and kickers.
Eleps and staircases			
Tops and cheoks of dormers			Walks thicimeen ratio \rightarrow 4:1.
Filling hollow walls			Bbope and stairoasea inolude atringe and amoolated landinga
Mass filling			No thilamen or atis categrices.
Blinding			

Subsection:
Joints in Concrete

ItemFanily	MEASUREMMENT Cathoory	UNIT	
Deadgned joints	-wide	m	Inoludee endes angies internections and the lilke. Beate if vartical Group hortmontal and aloping work together. Applies to platn joints whth no dowela sealant or the lifes.

ItemFamily	MEASUREMENT CATEGORY	UNTT	Coverage
Treating surfaces	Generally Margins	m^{2}	Covers trowelled additives, floating, screeding, grinding. blasting and the likso. Do not diflerentlate between horizontal and sloping work State if vertical No narrow widthe
Holes, mortices, pookets and the like < im girth Holes, mortices, pooksets and the likse 12 m girth Holes, mortices, pookets and the like 2 3mgirth	<-75 deep $75-150$ deep 150.205 deep 225300 deep -deep	Nr	I\$300 deep, state depth If $>3 \mathrm{~m}$ girth, olaentif in other categories elsewhere. Stato if sidee not vertioal Etate if non-rectangular. Stasto if ath formed or drilled. Holea, morticear pookess and the lilke ameocisted with a component should be given with the ithem for that component. Give detalls of grouting and the Hike, falling whioh it (and the fixing of any componemt) is at the diveretion of the contractor.
Channela, chases, grooves and the like	$<=0.05 \mathrm{~m}^{2}$ moctional area $0.050 .10 \mathrm{~m}^{2}$ sectional arca $0.10025 \mathrm{~m}^{2}$ seotional area -x-		Y $7020 \mathrm{~m}^{2}$, mata dime State if rides not vertionl or if nor rectangular. Atato if out or formed Group horisontal or sloping work together. State if vertical Channale, abacca, groovee and the illee aroodited with a component ahould be gtven wth the them for that component. Inchuclee grouting and the liks, whichifi not epeositied, is et the discrition of the contractor.

Anchorbolts Fringdevices	..diameter Serial Nr ..	Nr	Inchudes termporary boxings, mortices, grooves, pookets, grouting and the kilw. If not epecified, is at contractor's discretion.
Grouting under bases, grillages and the biles	<=25 thick 2550 thick ..thiok	Nr	If over 50 thiok, state thioknees.
Damp-proof membranes Fibre underigy and the like		m^{2}	Includes turn-upe, laps and the likse, the requirements for which must be specified. Meamure net.

Subsection: Reinforcement

ITEM FAMILY	MeAsureminnt CAIEGORY	UNIT	COVERAGE
Bars	[Clasalfications as for Insitu Concrete	m^{2}	m^{2} for tabria tfor bace
Bars $>12 \mathrm{~m}$ long	Bubeection]	t	Clansify as stanight or bemt or as curved.
Fabric			
			Inohudea linke and the liles, raking and. curved cutting and bending.
			Group horisontal and aloping fibrio together. State if vertionl

Subsection:
Formwork

IIEM FAMIIY	Measurbmient CATEDCORY	UNIT	COVERPAGE
Frderes of beda, pile caps and foundstions	<-250 wide	m	Inoludee all cutting. No alope caterorica.
Edges of suspended floors or rook,	<250 wide, tapering	m	
landinger risers and steps in floors or rook	$250-500$ wide	m^{2}	Ignore Nr of surbices. Where not plain and vertioal spectity. If profibe complex, eppodify.
Upper surfacea sloping $>15^{\circ}$ from bortrontal	250.500 wide, tapering 2500 wide		Ignore enda of etoops abuting walle eta.
Bloping upper surfoes of walle, beams, beam cadnges and the liles	2500 wida, tapering from - + -		For tapering ecotions give no dimendon ranges emeopt where 2500 wide to beams and beam casinges.

Sollits of suspended floors or roots, stairs or landings	Horizontal or sloping < 15° from horivontal Sloping $>15^{\circ}$ from horisontal	m^{2}	Includes all cutting. Do not distinguish between flat and profiled work Specity the profile.
Strings	$<=300$ wide $300-600$ wide .-wide	m	Inchudes all cutting. State width if >600. If not plain and vertical, state. Specity if profle complex.
Attrched beams and beam casings Kerbs and upstands Recerses Projecting eaves	Horivontal Sloping	m^{2}	Includes all cutting. If profile complexs, specify. Add adjacent alab edges [ewoept recessed] to quanitity. Blate setbaok of recesmes
Walls	Vertical Sloping	m^{2}	Inchudes all cutting and kioksers [if not deaigned]. Ignore Nr of surferces and interruptions by projections. Add attached piors, ends of walls and pilantors to quantity.
Wall projections, horizontal or sioping $<=15^{\circ}$ from horivontal Well projections, sloping $>15^{\circ}$ from horivontal	- \times -	m	Siate croaserotion and profle [if complexd. If vertical clasily as walle.
Deaigned wall kioloors Ibolsted cohumns and column casings Irolsted beams and beam casings	${ }_{\sim}^{\sim} \mathbf{N r}$	m m^{2}	If not deaigned do not mearure. If not rectangular, deecribe ahapo. No aime catogoriea.

Subsection:
Precast Concrete

ITEMFAMIIX	MEASUREMENT: CATEGORY	UNIT	COVERAGE
Suspended floor or roof units Wall or partition units	Horinontal or sloping $<15^{\circ}$ trom hortrontal Bloping 15° from horimontal Vertical	m^{2}	Inoluden temporary support joint treatmenta reinforcoment and surfice finiah all of whilah must be apeodifed. If profio unusual, apectity.

Copings	Straight Curved, .. radius	m	Inchudes reinforcement, surface finish, bedding and jointing, all of which must be specifled.
Channels	Curved, $>4 \mathrm{~mm}$ radius		Seste radiua if $<=4 m$.
Lintols			Includes ends, angleas, intersections and the lilse.
Beams			Specity abape of units.
Bteps			
		$\mathbf{N r}$	
Sholves	Proprietary Reforence Nr		
Staircases and associated landings	_glae x ..ribe X ... going Reference nr .	Nr	Inoludes reinforcement surface Inish, bedding and jointing, all of which must be apecilied.
	Drewolig Nr --		Specity shape of unita

SECIION:

BRICKWORTK AND BLOCKWORXK

Subsection: Generally			
ItEMFAMIIY	MEASUREMGENT CATHGORY	UNTT	Coverrace
Projections of attsohed piers, plinths, bands, oversailing courses and the lilse Isolated columns, piers, casinge and the like	- \times -	m	Projections of attrahed piers, plinthes, banck oversailing coursees and the lileo are defined hy length: thickneme ratio <-4:1. All cutting fair returne and and maredina are deemed included. Spectity matariala and workmanahip. No meparato rulee for berlokwork, blookwork, feoting briokworts and facing blookwork Etate if bullt overhand.

Wails and partitions	straight	m^{2}	Work assumed vertical
FIlling existing openings Skins of hollow walls	curved, .. radius curved, $>4 \mathrm{~m}$ radius		State whether battering [uniform thioknees] or tapering [varying thickness, atating mean thiokness or rangel.
Dwarf support walls Projections of footings and chimney			Group together all work $>4 \mathrm{~m}$ radius
Projections of footings and chimney stacks			State radius if $<=4 \mathrm{~m}$.
Backing to masonry or the like			For work bonded to diswimilar work specify how bonded.
			State if used as formwork; temporary strutting deemed included.
			State if work is in raising ecorating structures, staing starting bevel above ground level
			State if work in in thiokening existing work
			All cutting fair recturns and and margina are deemed inchuded.
			Speodify matarials and workmanship. No eoparato rules tor briokwork, blookwork, thaing brickwork and faoing blockwork

Subsection:
Brickwork and Blookwork Features

Itempamily	Measuramernt Catibory	UNIT	COVERACE
Plain or ornamental bands $<=300$ wide	Horimontal Raing Vertioal Curved	m	Bteto whethor fuxh receemed, or projecting. Elate aetbeok or projection. Epeodify materiale, bonding and workmanship if dimimilar to the gurrounding gonoral work All encm, ancies, pair returnas maryin and outting are deomed inchuded If 2800 wide meamure as general brickwork and blookwork

Bricksonedge bands brick-on-end bands Plinth cappings Moulded string courses Comices	-	m	State width, and any setbeck or projection. Specify materiala, bonding and workmanship if dissimilar to the surrounding goneral work All onds, angles, fair returns, margins and cutting are deemed included.
Exura: quoins, angles or the like	Flush Sunk Projecting	m	Measure according to this alaesificetion if brioks or blocks differ in sive and/or specification to the surrounding genoral work
Sills Threaholds Copings Steps	Horizontal Raking Vertical Curved	m	State sive and shape. All ends, angles, fair returns, margins and cutting are deemed included.
Boiler seatings, plinths, pipe supports and the like		Nr	State sing.

Subsection:
Brickwork and Blockwork Sundries

Item Family	MEASUREMERNT CATEGORY	UNIT	COVERAGE
Forming cavities		m^{2}	Scate width. Specify tiea and their spacing.
Closing cavties		m^{2}	Group work to heade, jamben, wall ends, aills and the like together. Speolify meterials and method. Gtve preolse cevity aloser dimensions where eupreasty required.
Faking out joints		m	If amsodisted with some lineer teature [ag. aldrtinges, coveringe or finishingel give with that teeture.
Weather and angle illeta	-wide	m	Group together. Fhods angiea and the lifoe are deomed inchuded.

Haoking or beying		m^{2}	Speoity method.
Cut angles on brickwork or blockwork Cut chases, groovea, channels and the like on briokwork or blockwork	Horizontal Raling Vertical Curved	m	Stasto shapo and stron [if expreasly required of angle. Ends angles interections, mitres and the libe deemed inoluded. Chases, channels, grooves and the lilse associated with some component ahould be given with that component, failing which they are deemed to be at the contractor discrotion.
Damp-proof courses Cavity trays	Horizontal Stepped Vertical Horizontal, .. wide Stepped, ... wide Vortical, .. wide	m^{2} m	m^{2} if >225 wide. m if <-225 wide. State width if <-205 wida. Endes angles, interneotions, mitrea, lape and the libee doemed inoluded Speoify lape.
Brick or block reinforcoment		m	If amocisted with a linear feeture Of brickworks or blockworik give with that tyem. If a regularty cocurring feature in a superficial them of brickwork or blockwork cave with that tiom. If an isolatod or irregularity occurring feature meaaure hera. Epeodity lapa, which are deemed included.
Weding and pinning to underside of eristing worts where loads transtioned to new worls		m	Etate thiolnem Epeotify metrorisia
Bedding pleten, trames, allle, profied shoets and the lile	--wide	m	Group together. Exate if polnted on ope or both alden.

Designed joints		m	Etate sive. Specity matarials. Finds, angles and the likso are deemed inoluded.
Building in ends of pipes, steel sections, bars, tubes, rails, lintels, brachects, steps and the likse			Deemed included in retes for other ftrems.
Holes for pipes, bars, tubes, cables, conduit and the likse	$<=110$ nominal diameter >110 nominal diameter	$\mathbf{N r}$	Specify and include sleeves if expreasily required, othorwise deemed to be at contractorts discration. Do not discern betwreen briakwork and blookworic
Holes for gratings, ducting, trunking. trays and the lile	$<-0.15 \mathrm{~m}^{2}$ eectional area. $0.150 .50 \mathrm{~m}^{2}$ erctional area		Continue hole dive clan ifficetions in $0.15 \mathrm{~m}^{2}$ stager. State depth or thioleness.
Air briclss and the like		Nr	Brate adre. Building in is deemed included. Epecity and include lintols and the lilse tif expreenty required, otherwise deemed to be at contractor's dimoretion.

EECTION:

ROOFING
Subsection:
Profled Sheet Roofing

ItemFamily	Measuremment CATEGORY	UnIT	COVERAGE
Coverings	Horivontal or sloping < 50° trom horimontal Vertical or aloping $=50^{\circ}$ from hortwontal	m^{2}	Specify any underinininga All mquare outting deamed included.
Eheras cranks Firrac uputands		m	8katogirth
Holes for plpes, ctandards and the lliso		Nr	Clamidy interpeotve of eime.

Ralaing cutting Curved cutting		m	Classity irrespective of radius. Do not classify separately by location.
Fbrming openings $<=1 \mathrm{~m}^{2}$		Nr	State shape if non-rectangular. Associsted cutting, fller pieces, fashings, framing and the like should be specified, trilling which they are deemed to be at contractor's discretion. For openings $>1 \mathrm{ma}^{2}$ associsted componems should be measured according to the conventions elsowhere in this and in other Subeections.
Flller pieces	Eaves Jambe Above or under roof glaeding and the like Over lintals		Epecily bedding and pointing which are deemed to be inoluded.
Cappings	Padge Hip Vertical anglo	m	All anda, anglies and interrections are deomed incluyded.
Vent units		Nr	Ancoiated labour and materials thould be eppeaified, taling whiah they ase deemed to be at contractorls diecretion.
Ehtra; rocolightis Fritai transhucent or transparont sheots Ehtra; ventilstor sheets Eherap louvie units	sise.. Reforence Nr -	Nr	Bpeotify claxing where appropristo [deemed inchuded]. Ansoleted lebour and material ahould be eppodiled, teilling which they ere deomed to be at contrectorte disarition.
Extai shects with soaker finges Roof ventilation			

Barge boards		m	Associated labour and materials should be specified, falling which Corner pieces they are deamed to be at clashings Expansion joints

Subsection: Roof Deoking

Subsection: Felt Roofing

Itimm Family	Measuremment Categofy	UNIT	Coverrage
Coverings	Horizontal or aloping $<=50^{\circ}$ from horizontal Vertical or sloping 250° from horivomtal	m^{2}	Spectify lapa, which are deemed included. All catting, notahing, bonding. turning into grooves, wediging. anglem ende and the lileo aro deamed included.
Skirtings and kerb coverings	Total longth ...m	m^{2}	Steste totell length for each diflerent apecification. Btate if elepped or raling [group togethers. All raling out jolntan cutting, thir edgem, drowing over Alletm. notahing, bending turning into grooven, wedding, angies, endm, intarneotiona, lape and the like are deemed inchuded.

Linings	Gutter Valley Channels Ehtra; working coverings into channels	m	State girth. All raking out jointas, outting, fair edges, dreesing over fillets, notohing bending, turning into grooves, wedging, angles, ends, intersections, laps and the like are deemed included.
	To ceespools, sumps and the like	Nr	State sive. State outlets if applicable.
Collars to pipes, standards and the libe		Nr	Stato sive.

Subsection: Sheet Metal Roofing			
ITEMFAMIIY	Mrasurement Category	UNIT	Coverace
Coverings	Hortromal or sloping $<=50^{\circ}$ from horizontal Vertical or aloping 250° from horisontal	m^{2}	Add small areas to general quantity. Specity method of firing. Epecify lapes whith are deemed inchuded. Cutting, notahing, bending, droesing over dripe and rolle and drousing into outiets and gullies are deemed included.
Welted edges Beaded edges Wedeing into grooves Burned or brased anglea Welted seams Burned or braeed meams		m	Otive relidng out grooves eto. with apectication; otherwise they are deamed to be at contractorla discretion. Fhder material and workmanahip tor dripan meame, wolle rolle. upetands and lapa are doemed Included with the rempeotive thems
Dreeaing over profiled roofing Dreaning over gianing bars		m	State type of untis over whiloh dremed, tating rolative direotion of wah units or barn. Dreeang over dripa and rolle deemed inchuded.
Nalling			Deemed inoluded with the rexpeotive ittoma.

Underisy		Follow the conventions in Slate and Tile Roofing Subeection.
Dressing into hollows Dreasing into condensation channels Dresing over mouldings Dressing over rolls	m	All ends, angles and intersections are deemed inchuded. Fhara matertal and labour are deemed inaluded.
Collars to pipes, standards and the like	Nr	Group together. Specity typee of joints. Ehdra labour and material deomed inoluded. Btato adres.
Lininge to ceespools, sumps and the lilme	Nr	Group together. Evate almoe outloter and type of anglea.

Subsection:
Slate and Tile Roofing

ItmmFamily	Mifasuremuent CATEGORY	UNIT	COVERAGE
Coverings		m^{2}	Bleate pitach. Etate if vertical Speodity battens, which are deomed incloluded. All outting and 1.1/2 width units are deemed inaluded.
Eutray forming eaves Ehdre; forming verges Extra; forming ridges Ehtra; forming hipe	Straight Curved Raling	m	Give all hbour, metariala, outting. epecial unithe and componenta undoroloais, bedding and pointing as a compotite trom; theme are all deemed included in the ratem.
Ehtratiforming valloys Ehara; forming ertioal angles			

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Ventilating units } \\ \text { Finials } \\ \text { Purposemade units }\end{array} & & \begin{array}{l}\text { Give all labour, materials, cutting } \\ \text { and components as a composite } \\ \text { item; these are all deemed } \\ \text { inoluded in the rates. }\end{array} \\ \text { Any such feature not specified is } \\ \text { deemed to be at the contractors } \\ \text { discretion. }\end{array}\right]$

Subsection:
Flashings and Gutters

Itempanily	Measurbinent Catbgory	UNIT	COVERAOE
Flanhings		m	Stato girth profle, and how flused and jointed.
Ecopped flashings			
Aprona			Speodify shaped edgen wedging into groovel, dreeding intoo or
Comicowratherings			over fillets, hollow, ahannols, mouldinge, glaming bars and
Hipouppings			prodled rooing untim [stating general directionl, which are all deemed inchuded to the ratos.
Fidgocapping			
Kerboappinge			Frida, anclea, interseotiona, hollowh condeneation ahannole and mouldings aro doemed inchuded.

Parapet and fiat gutter linings Sloping gutter linings	-- girth, profle .-	m	State girth and profile. Specity dreeaing over fillets, wredging into grooves eta, which are deemed inchuded. Dreasing into outlets, rainwater hheads and the likse are deemed inchuded.
Preformed flashings	- girth, profile - Reference Nr -	m	State girth and profile, or give proprietary reforence Nr if appropriste.
Supplying soakers Supplying metal slates Saddles		Nr	Btate alize and ahape. Gtetse how saddles are dreesed and fired.

SECTION: METALWORK

Subsection: Composite Items

Item Family	Measurement CATETORY	UNTT	Coverage
Foller shutters	... x ... Reference Nr ...	$\mathbf{N r}$	State alme and proprictary rederence Nr if appropriate. Speolity acocolated fittinga, trames, guldea, traoke and fateninge. The ume of tandard drewinge and speoffreations is recommended. Sundry paolding piecea, holea, mortices poolecte and the lifo ahould be epeoified, tralling whioh they are at the contractor's dimonetion
Duct covers and trames	... x ... x ... Reference $\mathrm{Nr}_{\text {r }}$..	m	Elate atmo, thioknees and proprictary rederence Nr if appropriata. Fhnd, angiea, interwections and the lileo are deemed inchuded, but ahould be spedified if formed from epeodal unite

Windows	Sixe --	Nr	State sive. Etate reference $\mathbf{N r}$ if appropriats.
Doors	Reference $\mathbf{N r}$..		
Openinggear	Drawing Nr --		The use of standerd drawn detaiks is recommended; in which case give drawing Nr .
Window sesemblies			
Door frames not integral with door			labours holes, fastenings, mortices pockets and the like shall be specified and are deemed included; failing which
Roofights			they are at the contractor's deisoretion.
Staircases and associated landings			Specify frames, subsills, sills, window boards, window surrounds and the lilse with the appropriste measured thems.
Isolated balustrades and newels			Finds, bends, wreaths, internections, angles and the likse on handralls and
Cloakroom fitings			bahustredes are deemed inoluded.
Cyole racks			
Storage racks			
Grilles			
Matwells			
Ladders			
Tanks			
Extra; opening portions on balustrades	-x-	Nr	Stato adze and associated ironmongery.

Subsection: Plates, Bars, Sections and the Like

Itimpamily	Mrasurbinent Catbgory	UNIT	COVERACEE
Frames		m	Gtae sives and reforenco Nru as appeoprista
Arahbars	Refferenco Nr		
Bearers			Ehde, ancies intersections and the likeo are deemed included.
Stays			Speodity rmoodiated hrga, tanger firing devices and the lilico, which
Toe boands			are deemed included.
Sliringes and the lilso			

Btraps	$\ldots x_{\ldots} .$	Nr	State sives and reforence Nrs as appropriate.
Collars	Reference Nr		
Hangers			\cdots
Brackets			
Corbels			

Subsection: Sheet Metal, Mesh and Expanded Metal

Item Family	MEASUREMENT Category	UNIT	Coverrage
Coverings	Walls and partitions Floors	m^{2}	Etate gauge and/or reference Nr as approprista. No separate category for narrow widths Do not deduct vods < = m^{2}. All criting, morewing and nalling deemed inohuded.
Weltred edgea Beaded edges Welted seams		m	
Angles	Burned Braged Welded	m	Angles, intrersections and the like on these features are deemed inchuded.
Dreasing into hollows or over kerts	-girth	m	
Holes, bolts and rivets		$\left[\begin{array}{l} {[\mathrm{Nr}]} \\ {[\mathrm{m}]} \end{array}\right.$	Where pomalble give holee with their aceoolated componentes and bolin atvets and the lileo with amodistod mesared troma. Othorwise enumerate or give in mating appoding. Where ahown on a druwing or upecification to which an them meemured elmewhere in thir document refers, they shall be deemed inchuded with thet them.

Secion: Glazing

Subsection:
Glass in Openings

ITEM FAMILY	Measuremient CATEGORY	UNIT	COVERAGE
Gleving associsted with doors, doorsets, casements, windows, screens and the like			Spedify with those themss do not measure here. Apecify bedding otherwise at contractor's disoretion. All colting and bending of materials deemed inchuded.
Items invoking specialist work	Grinding Sandblasting Embossing Acid teahing	$\mathbf{P C}$ Sum	Isesve dravorings and specifications.
Hacking out glass and preparing to recetve now work		m	Etate exdent to which beeda and the lifeo are to be reveed, ex. by \%.

Subsection: Glass in Mirrors

Item Fammy	MEASUREPMERTT Category	UNIT	COVErace
Mirrors	-x-x...thiok	Nr	Epectity materials and componem.

Subsection:
Patent Glaring

Itempamily	Mbasurbinemit CATEGOFY	UNIT	COVErage
Roots Blayights Lantern lights Vortioal surfaces		m^{2}	Stato leneth ofand spacing of gleang bern, neture of bearing and apan between bearinge. Do not ando Nr of separate Eurferon. Square and ralding outting deemed inoluded.
Curved outting		m	
Extra; opening portions		Nr	Brate inde. Epecify opening gear.

Subsection: Domelights

Item Family	MEASUREMENT Category	UNIT	Coverrage
Domelights	Sipe-,	Nr	Spectiy typer, sive, method of fluing [inchuding fixing componentis] and shape. The use of standard drawings and specifications is recommended

Section: Painilngand Deoorating

Gratings Rainwater heads Flushing-cisterns		$\mathbf{N r}$	Classidy irreapective of size.
Valley- or parapetgutters Eaveogutiors Pipes, lagged pipes, cables, ducting. trunking standards, bars, handrails and the like Frames, linings and associsted mouldings Slirtinge, rails and the liks Mouldings or bands picked out in different colours from surrounding work	< $=150$ girth 150300 girth \$300 girth	m m m^{2}	Work to brackests, olips, beseplates, fitings and the likre are deemed included.
Colour coded bands on service pipes	For pipes <-200 nominal diameter For pipes ... nominal diameter	$\mathbf{N r}$	Buate Nr of coded colours. Btate nominal plpe diameter if >200.
Individual cartoons or motits		Nr	Provide drevering or catalogue reference.

Subsection: Signwriting			
Item Family	MEASURHMENT Catergory	UNTT	COVERAGE
Signwiting		Prove or PC Sum]	Provide drawinges and rpeoticationa.

Subsection: Paperhanging, Sheet Plastic and the Like

Motifs		Nr	Speoity materials and workmanship, or give PC Sum tor supply.
Border strips		m	Spochity matorials and workmanship, or glve PC Sum for supply. Add small areas and narrow widths to general quantiny. Do not stato Nr of piecees All cutting, ends, angle and intersections deemed inohuded.

SECTION: FENCING AND Gatbs

Subsection: Fencing

Item Familiy	Measuremient Catrgory	UNIT	Covereate
Poot and wire Fost and rall Chain link Wire meah Cleat pale Pallisade Metal bar Close boanded Open boarded	Straigint Curved. _ radus Stredght deadgrod for sloping ground Curved, .. radiua, dedgred for aloping ground	m	State height [mearure trom fininhed ground level to top of alling top rail, top wire or top bar. State if deaigned for aloping ground. suxte radtus if curved. Stasto maidng and filling of poat boles in apecification. Specity method of firing filling: ralle, wirea, etraining wiree or bars to poster Stesto apeaing of potan fining members. ralle, wirea, etrainting wires or base.
Extra; filling post holes with matarial other then in general specification Fhatra; end poets Ebtra; angle poats Ahtray maning poiss Eutra; potes difiering from general upeoticeetion		Nr	Specity construction, meterinis and worimanahip

Subsection: Gates			
ITEMFAMIIY	MEASUREMMENT Category	UNIT	COVERACE
Gates	${ }^{-x}$	Nr	State sime and speciliy materials and workmanship including hinges, books, tasteninges, gate posta, poot holes and filling, gate stopa, gate catcher, gato stays and the likse, all of which are deemed included

Subsection: Sundries			
ITEM FAMILY	Measurenient CATEGORY	UNIT	COvErate
Concrete spurs for timber posts	xise $-\mathrm{x}-\mathrm{x}$ -	Nr	State sise and how fixed. Specily bolts and holet, which are deemed included.

SECTION: BUILDER'S WOFIK In CONNPCIIONWITH SEHRUCES			
Subsection: Service Trenches			
Itimm Fanily	Measuremment Cathiory	UNIT	COVErRat
For drain pipes <-200 nominal diametor For drain pipes .. nominal diametor For groups of drain pipes For pipes or cable ducts <-55 nominal aive For pipes or cable ducts .. nominal ndes Fbr groups of plpes or ceblo ducts	Average 500 doep Average 1000 deep Average 1500 deep Average 2000 doep	m	Inchudes ercoevation, earthwork support aurface treatment filling. beda, surrounde, oovering, and dispoceal of matritial [eprectity themos. Ehrcavation, aurfice treatonente, earthworis support and all necemany formwork are all deemed inahuded. Woriding epace is at contrectorts divaretion Btate drain plpe adse if 2000 nominal diameter. Seate plpe or cable duot atme if 265 nominal diameter Continue depth clan thications in 500 tages.

Subsection: Pipework			
ITEM FAMILY	MEASUREMENT CATEGORY	UNIT	COVERACE
Pipework not in trenches Vertioal pipework not in tronches Pipework in trenches Vortical pipework not in trenches	- nominal diameter	m	Specifysupports and fixinga Applies to all types of plpowork
Extra; pipe fitings	- nominal diameter -x- .. \mathbf{x}... \mathbf{x}... .-..., reduoing	Nr	Spectit. Uso reference Nrs if appropriato.
Plpes in trenches, in branches $<=3 \mathrm{~m}$ long	nominal diameter $<=200$. nominal diametor	m	State nominal diameter if 2800 . Do not eoparate vertical pipoworis in branahes. Coonections to gullies and the likso, and the contractorls ammemont of pipe benda and iftinges are deemed included.

Subsection:

Item Family	Measuramant CATEGOFY	UNIT	COVERAGE
Gullies	-- nominal diamoter.	Nr	Specify. Etxe nominel diameter.
Shoes			Gulliea, rodding eyes and the live are deemed to include additional
Outhets			cucavestion, aurfice treatimentan conorver, illinge formwork,
Fraps			carthwork mupport, reat benche and the lilse ; the requirement
Trapa			for which muat be speothed.
-			Ohve cratinge, reicing procos and the like with the appropritato accemory.

Subseotion: Appliances			
ITEMFAMILY	Measurement Category	UNIT	Coverace
Sinks	Sive -.	Nr	Specily. Atate adrees.
Beths	Reference Nr .-		Otive reforence Nis if appropriate.
WC Suites			Specity all accessoriea fixing devices and the like, which are
Water heeters			deemed inoluded.
Cookers			All connections to pipe work are deomed inchuded.
Taps			
Shower trays			
-			

Subsection: Gutters, Channels and the Like			
Item Family	MEASUREMENT CATEGOFY	UNIT	COVERAGE
Rainwater gutters Proprietary drainage channels	- nominal ade Reference $\mathrm{Nr}_{\text {. }}$	m	Speodity. Etate also. Etate reforionco Nr if appropriato. Where erometion and the lilise for channels in required apecity flling, beden, murrounde, haunohing and spoll diaposal. whilah are deemed included. Where ecraverition and the like for channele is required cacevition, carthwork mupport surfece treatments and any necemery formwork are deemed inchuded. Bnde, angies, Interrections and tho likeo are deemed inoluded.
Fitinge Silk boves: Rainwater heade	- nominal ade - X $\mathbf{- x}$ - deep to invert Reterence $\mathrm{Nr}_{\text {.-. }}$	Nr	Epeodity. Exato sisco. Sute rederence Nr II approcpriato.

Subsection:
Miscellaneous Drainage Items

ITEMFAMIIY	Measurement CATEGORY	UNIT	Coverace
Encra; breaking up pavings Extra; breaking up pavings and reinstating Elcoavating alongside services Ercosvating acroes services Extra; excavation adjacent to roads, pavements or existing buildings	\ldots	m^{2}	Bill in BWIC Services Section. but measure according to Encravation Subsection. Applies to work associated with pipe trenches and work asscocisted with manholes and inspection ahambers.
Building in pipe ends to chambers and the likse	- nominal stre	Nr	Stato nominal aime.

Subsection: Manholes, Inspection Chambers and the Like

ItEMFAMIIY	MEASUREMENTT CATBGORY	UNTT	COVERAGE
Manholes Inspection Chambers Silt Bores Petrol Interoeptors Telecom joint boued Btop cook pithe	500 deep macdmum 1000 deep madimum 1500 deep maximum 2000 deep meadmum	Nr	Round deptha up to nearest 500 mm Continue depth olamenfortions in 500 thagen. Depthe are to invert Eleste excervetion depth if partially in III. IF wholly in till area so terta. Inchudes diepposal of excervated material, blinding bava brick or conorete wall, conortete ringe, pointing, rendering benching, ocver alab, reinforcement formwork alling, atep irons and the like. Theee must be apectifed. Use of tandard detalis is recommended. Eh-oevation and earthworis aupport are deemed inoluded. If inated stato holght and internal dimenaions of ahot and intermedinte alah. Itemine covers and tramee erparately following the Plpeworir Acocemorien conventiona.

SECHON:

Subsection:

Finishingas
Generally

Subsection:
Sundries on Insitu Work

Item Family	MEASUREMEENT Category	UNIT	COvErage
Working into shallow channels	$\left\lvert\, \begin{aligned} & -x-x \\ & - \text { girth }^{-x} \end{aligned}\right.$	Nr m	Stategirth or profla. Plain rectangular angles are not measurable.
Worked or formed internal anglee Worked or formed external angles	Walls or cohumns Ceilings, beams or beam casings Floors, pavinges stairs, strings and the liks	m	The use of etandard drawings and apecifications is recommended. Nosings, and angles associsted wth channels, areolaseified hers.

Subsection:

Sundries on Tile, Slab or Block Work

ITEM FAMIIY	MEASUREMENTT Category	UNIT	COVERAGE
Exatra; special units		$\mathbf{N r}$	Specity. Steato nive and thiaknees ofunith
Etrasa angle units			
Eritra; corner pieco units			Where units conform to a regular or fibed pettern, spedity pattern. Do not measure separate ittoma.
Eritre accees units			

Subsection: Sundries on Fitted Carpet Work

ItzM FAMIIY	Mrasurimient CATEGORY	UNTT	COVERAGE
Forming oponings $\ll 1 \mathrm{~m}^{2}$ each		$\mathbf{N r}$	State ahape if non-rectangular.
Fkir sown heeding joint in openings or doorwas		m	Etate method of perimeter fixing.
Perrmotor fluing			

Subsection:

Item Family	MIRASUREMENT CATBGORY	UNIT	COVIRRACE
Intermectiona Anglea		m	Anglee are deemed 90° and inderneotions 9way unleas Otherwien aterted.
Internal ancice Ehternal angles			Bpecify materials and worlomanahip, whioh are deemed inoluded; otherwiee deemed to be at contractor's dimaretion

Cutting to profile of openings	<-1mgirth 1-2m girth 23mgirth 34mgirth 45 mg grth	Nr	Not classified as openings if 26 m girth Materials and workmanship are deemed inobuded and ahould be specified; athorwise deemed to be at contractors discretion. Skate shape if openings nonrectangular.
Erdra; access panels	-x-		Etato exise of access panols.

Subsection:
Sundries on Suspended Ceiling and Lining Work

Item Family	Measuremient Catbgory	UNIT	COVERAGE
Forming openings Forming openings Forming openings	<-1mgirth 1-2m girth 28 mg gith	Nr	Not clacatied as openinge if $73 m$ girth; incorporate in general quantities. State ahape if openinge nor-rectangular. Meterials and workmanahip are deomed inchuded and should be specified; otherwise deerned to be at contractore disoretion.
Forming accees panols	- x^{-}		8tatosata.

SECHON: WOODWORTK

Subsection: Carcassing

TIEMFAMILY	Mieasuremaint Category	UNIT	COVErage
Mombers in floor Members in partitions Mambers in flat roch Members in plached roots	- ${ }^{\text {- }}$	m	Epeodey matariale and workmanahip. Stasto if mombers wiought regularised or sewn. Slate diseo of momberin.
Scutting and brideing Kertes beareres and the lileo		m	Add trimming around opening to gromal quantitien. Meature struting fint over jotitat
Cloata aprockete and the lilice Omamental ende		Nr	Etate shape of ornamental endm

Subsection: First Fixing			
ITEM FAMILY	MEASUREMENT Category	UNIT	Coverage
Boarding	Fhoors Rook, Alat or sloping $<=15^{\circ}$ from horirontal Roots, aloping $>15^{\circ}$ from horivontal or vertical Walls, vertical Walls, sloping Ceilings and beams, fist or aloping < $=15^{\circ}$ from hortrontal Coilings and beams, aloping $>15^{\circ}$ from hortrontal or vertical Topes and oheelas of dormers Gutbers and sidea Elves, vergea, peroisa, bargoboarding and the lise	m^{2}	Speodity materials and workmanship, otherwise deemed to be at contractor's discretion. Do not deduct for voids $<=1 \mathrm{~m}^{2}$. Add mall areas and narrow widths to general quantities. No saparate items for short longthes. All notechees, rounded corners, cutting, acribing and stope on labours are deomed included. State lapa, which are deemed included
Sindinge	-x-x-	Nr	Statosiso.
Tongued edges		m	Meesure here only iftonguing is not the genornal jolnting mothod.
Firringe Dripe and noaing Margins and the lileo Angle or tilingallets Rolle Grounde Bettena and bearess	- ${ }^{-1}$ - $\mathbf{x . . .}^{\text {(averages }}$	m	Bleto adso or average niso. No erparate thems for ahort lengthe.

Subsection: Second Fixing			
Itimpamily	MeAsuremient Category	UNTT	Coverrage
Bkirtings, ralls and the like Architraves, cover fillets, stops, giaring beads and the liks Shelves, worktops, seets and the lilse Window boands, nosings, bed moulds and the likse Handrails	- \mathbf{x}.. - In^{-}(average)	m	State continuous labours, which are deemed inchuded. For buillup mombers, state aises of,and labours on, each component Stato if components are tongued or otherwise jointed. Speodity applied coveringes, which are deemed included.
Beokboards, plinth blooks and the like	- $\mathbf{x - x}^{-}$	Nr	
Sinldings on second fix trems		Nr	State silso and to which trem.
Sheet linings and coasings	Walls and attached projections Coilings and attached beams Isolsted cohumans, sides of openings pipe casings and the like	Nr	Specify materials and workmanship. State thicknees and how jointed and fined. Inchude framing in specification. Add narrow widthe and mall areas to general quandition. All outting, labours, thope on labours, notahes and rounded corners are deemed inoluded. Do not deduct for voide $<=1 \mathrm{~m}^{2}$.
Rounded angles on sheok lininge or cosinge Coved anglea on aboct lininga or casing	$-\mathrm{x}$ - garth	m	
Forming openinge in abeet linings or candige $<=1 \mathrm{~m}^{2}$.		Nr	Specity metoriala and workromanhip, witioh aro deemed inchuded
Forming ecoene panole in aheot lininge or cuangis:	- ${ }^{-1}$	Nr	Speodity meteriale and workmanehip, which are deemed inchuded Blato eder dimenstons.

Subsection: Composite Items

Item Family	MEASURHMENT CATBGORY	UNTT	COVERAGE
Truseed ratters	-x-mx-	Nr	State dimensions, sidres and/or
Rooftrusees	Sira ...		
Doors	--wide x . rise x - groing		Spectify materiale and workmanship, which are deemed included
Door, frame and lining sets			
Casements and frames			Epecify amsoolated peoling pleces firding devices and the
Windows and surrounds			like, which are deemed inoluded; otherwise they are deomed to be at the contractor's discretion.
Lantorn lights			
Skylights			Otve amocisted laboura, Hippinge and the liko with doors and doorsed.
Screens			
Borrowed lights Staircases and the libe			Where doors not in eota, meanure eeah ieat as a door. Do not mearure frames and lininger to doornets as separato titoma.
Fitungs			Doors integral with screens and the lilse ahould be spectifed with mareans.
			Bahustrades integral wtih tairceaces and the lilee ahould be appocified with stalroasea.
			Identity typee of fininge as moparato itema. No moparato theme for suapply and fix.
			Outting and fiting around obatructiona, notohing and the tiles are deemed inoluded.
			Epeodify merodatad giaring with the compoifto treme meanured

Subseotion: Sundries

ItemFAMIIY	Mirasurimaint CATBGORY	UNIT	Coveratas
Flusing		$\begin{aligned} & {[m]} \\ & {\left[\mathrm{m}^{\mathrm{d}}\right.} \end{aligned}$	May be specifled with the components to whiah they relato.

Subsection:
Metalwork

Itimm Family	Mifasurrevient CATEGORY	UNIT	
Bolls	--diametor \times-.long	Nr	Blate niven and/or reberence Nsm where aponoprieto.
Joder hangers	Feferenco Nix - long		
	Sivo ...x		Where a druwing or apeoticoution roleting to an ftom meanured ebewhere in this document
	Tosulttimber		indicetces ruah a bolit it in deemed inoluced with thet thecen
			Grato beoleground to whiah jolt hangers freed, and how fleed. Burlating in in deemed inoluded.

Subseotion:
Ironmongery

ITEM FAMIIY	Measurbmient Category	UNIT	
Ironmongery scheduled in combinations or sets		Nr	Issue such sobedules. Reference and enumerate these acts according to the achedule. State beckeground to which ficed, and how flred. All mortiose, labours, sinkings in structure or finishes, maling good and the like are deemed included.
Individual ironmongery thoms			Enumerate indtvidually. Btate beokeground to whioh flued. and how flred. All mortices, labours, sindings in structure or finishes, maling good and the likse are deemed tnoluded.

THESIS FONT SPECIFICATIONS:
Font: Clarendon Light DTC
General Font Size: 11
Table Font Size: 9
Character Compression: 0.5

[^0]: * $=$ Not analymed
 + = In Er perimental Model was given with encocteted joinery componems

[^1]: Design Tool". Transections. Councell International du Betiment pour la Rocheraha, LErude et la Docrmentation. Untrecrity of Technology, Eysineg. 100-111.

