

Content Networking

Architecture, Protocols, and Practice

FM.qxd 1/29/05 2:40 AM Page i

Content Networking: Architecture, Protocols, and Practice
Markus Hofmann and Leland R. Beaumont

Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices
George Varghese

Network Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS
Jean Philippe Vasseur, Mario Pickavet, and Piet
Demeester

Routing, Flow, and Capacity Design in Communication and
Computer Networks
Michal Pióro and Deepankar Medhi

Wireless Sensor Networks: An Information Processing
Approach
Feng Zhao and Leonidas Guibas

Communication Networking: An Analytical Approach
Anurag Kumar, D. Manjunath, and Joy Kuri

The Internet and Its Protocols: A Comparative Approach
Adrian Farrel

Modern Cable Television Technology: Video, Voice, and
Data Communications, 2e
Walter Ciciora, James Farmer, David Large, and Michael
Adams

Bluetooth Application Programming with the Java APIs
C Bala Kumar, Paul J. Kline, and Timothy J. Thompson

Policy-Based Network Management: Solutions for the
Next Generation
John Strassner

Computer Networks: A Systems Approach, 3e
Larry L. Peterson and Bruce S. Davie

Network Architecture, Analysis, and Design, 2e
James D. McCabe

MPLS Network Management: MIBs, Tools, and
Techniques
Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service
Providers and Vendors
Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age
Sharon K. Black

Optical Networks: A Practical Perspective, 2e
Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms
Zheng Wang

TCP/IP Sockets in Java: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming, and
Applications
Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications
Bruce Davie and Yakov Rekhter

High-Performance Communication Networks, 2e
Jean Walrand and Pravin Varaiya

Internetworking Multimedia
Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First Course
David G. Messerschmitt

Integrated Management of Networked Systems: Concepts,
Architectures, and their Operational Application
Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard
Neumair

Virtual Private Networks: Making the Right Connection
Dennis Fowler

Networked Applications: A Guide to the New Computing
Infrastructure
David G. Messerschmitt

Wide Area Network Design: Concepts and Tools for
Optimization
Robert S. Cahn

For further information on these books and for a list of
forthcoming titles, please visit our Website at
http://www.mkp.com.

The Morgan Kaufmann Series in Networking
Series Editor, David Clark, M.I.T.

FM.qxd 1/29/05 2:40 AM Page ii

Content Networking

Architecture, Protocols, and Practice

Markus Hofmann and Leland Beaumont

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
MORGAN KAUFMANN PUBLISHERS IS AN IMPRINT OF ELSEVIER

FM.qxd 1/29/05 2:40 AM Page iii

Publishing Director Diane Cerra
Senior Acquisitions Editor Rick Adams
Developmental Editor Karyn Johnson
Assistant Editor Mona Buehler
Publishing Services Manager Simon Crump
Project Manager Justin R. Palmeiro
Cover Design Yvo Riezebos Design
Composition Kolam
Copyeditor Kolam USA
Proofreader Kolam USA
Indexer Kolam USA
Interior printer Maple Press
Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2005 by Lucent Technology and Leland R. Beaumont. All rights reserved.

Figure credit: Image clips in Figure 6.9 used with permission.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In
all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trade-
marks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of the
publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44)
1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk. You may also complete your request on-line via
the Elsevier homepage (http://elsevier.com) by selecting "Customer Support" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data
Hofmann, Markus.

Content networking : architecture, protocols, and practice / Markus Hofmann and Leland Beaumont.
p. cm. — (The Morgan Kaufmann series in networking)

Includes bibliographical references and index.
ISBN 1-55860-834-6
1. Computer networks. I. Beaumont, Leland R. II. Title. III. Series.
TK5105.5.H63 2005
004.6—dc22

2005001732

ISBN: 1-55860-834-6

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
05 06 07 08 09 5 4 3 2 1

FM.qxd 1/29/05 2:40 AM Page iv

Dedicated with great affection to my wife Bettina and our kids Jennifer, Dennis, and Kevin for their
love and support, and to my parents for preparing me to take on such an endeavor.

– Markus Hofmann

Dedicated to my parents, who prepared me to write this, and to my wife Eileen, daughter Nicole,
and son Rick, for their encouragement and support while writing it.

– Leland Beaumont

FM.qxd 1/29/05 2:40 AM Page v

FM.qxd 1/29/05 2:40 AM Page vi

Preface ix

About the Authors xiv

Chapter 1 Introduction 1
1.1 The Early Days of Content Delivery over the Internet 2
1.2 The World Wide Web—Where It Came From and What It Is 4
1.3 The Evolution of Content Networking 13
1.4 The Diversity of Interests in Content Networking 21

Chapter 2 Content Transport 25
2.1 Protocol Architecture and Design Paradigms of the Internet 25
2.2 Hypertext Transport Protocol—HTTP 31
2.3 Multicast Transport 49

Chapter 3 Caching Techniques for Web Content 53
3.1 Local Caching 54
3.2 Motivation and Goals of Web Caching 55
3.3 Basic Operation of a Shared Web Cache 55
3.4 Cacheability Considerations 58
3.5 Placing a Cache in the Network 62
3.6 The Evolution of Caching Systems—Networks of Caches 69
3.7 Performance 73
3.8 Caching Challenges and Myths 76

Chapter 4 Caching Techniques for Streaming Media 81
4.1 Streaming Media 81
4.2 Protocols for Streaming Media 83
4.3 Caching Techniques for Streaming Media 94
4.4 Case Studies 103

Chapter 5 Navigating Content Networks 109
5.1 The Domain Name System 110
5.2 Layer 4–7 Request Switching 120

Contents

vii

FM.qxd 1/29/05 2:40 AM Page vii

viii Contents

5.3 Global Request Routing 128
5.4 Case Studies 144

Chapter 6 Peer-to-Peer Content Networks 147
6.1 What Are Peer-to-Peer Networks? 148
6.2 Technical Challenges in Peer-to-Peer Networks 156
6.3 Case Studies 159
6.5 Business Aspects 173

Chapter 7 Interactive Content Delivery—Instant Messaging 179
7.1 Instant Messaging Defined 181
7.2 Internet-Based Instant Messaging 186
7.3 Convergence 215

Chapter 8 Beyond Web Surfing—Content Services 217
8.1 What is Driving Content Services? 218
8.2 An Architecture for Content Services 220
8.3 Example Content Services 226
8.4 ICAP—The Internet Content Adaptation Protocol 228
8.5 Open Pluggable Edge Services (OPES) 236
8.6 The Web Services Paradigm 246
8.7 Service Personalization and Service Convergence 254

Chapter 9 Building Content Networks 263
9.1 Campus and Enterprise Network Example 264
9.2 Content Network Provider Example 271
9.3 Content Distribution Network Example 275

Chapter 10 Standards Efforts 279
10.1 The Role of Standards 280
10.2 Content Networking Standards Bodies 287
10.3 Content Networking Standards 292

11 Summary and Outlook 299
11.1 Content Networking Architecture Evolution 299
11.2 The Future of Content Networking 304

Appendix—XML Basics 311

Glossary 313

RFC References 325

References 331

Index 345

FM.qxd 1/29/05 2:40 AM Page viii

Why This Book?

People are sociable. They want to stay in touch with each other, share their experi-
ences, and exchange information regarding their common interests. When Markus
and his wife moved to the United States a few years ago, the Internet and the Web
became their main means to stay in touch with family and friends back in Germany.
E-mail, a Web page with guestbook, and instant messaging allowed timely and very
effective exchange of the latest gossip. Photos from recent happenings were
uploaded to a Web page and shared minutes later. A little later, the first personal
video clip found its way from the digital camcorder onto the Web page, allowing
even livelier information sharing across the continents.

Soon, however, the limitations of the underlying technology became obvious.
Parents and friends back in Germany started to complain about long download
times, unavailable Web servers, long playback delays, and the choppy quality of
video clips. Knowing our research and work interests, they posed the challenge of
helping to overcome these problems: “Hey, you are working on data networking and
telecommunications—why can’t you produce something useful and help solve these
problems?” A team at Bell Labs/Lucent Technologies—our employer at that point in
time—took the challenge and worked on designing and developing solutions to
overcome the slowdown on the World Wide Web. It is a very exciting effort, which
brought Bell Labs Researchers together with system engineers, developers, and sales
personnel from Lucent Business Units—working hand in hand, collaborating very
closely, and leveraging each other’s experiences and strengths. This was also the time
when Markus and Lee met, embarking on their very exciting journey into the space
of Content Networking.

People are curious. They want to understand and learn about issues that affect
and impact them. When we first demonstrated the exciting results of the team’s work,
people started to ask how it works, what was done, and how it will help improve the
scalability and reliability of Internet services. Motivated by this interest, we wrote this
book to help people understand the reasons for current problems in the Internet and
to explain both the challenges and possible solutions for building a more reliable and
scalable Internet. Markus has been working as a researcher in content delivery and
related fields for more than 10 years and has gained valuable practical experience,

Preface

FM.qxd 1/29/05 2:40 AM Page ix

which he would like to pass on to the readers of this book. His colleague, Leland
Beaumont, has 30 years of experience in developing data network systems—an
invaluable asset when bringing ideas from the research lab into the real world.

Audience

The Internet, and in particular the World Wide Web (WWW), have become an inte-
gral part of people’s lives. With the increase in popularity, however, users face more
and more problems when using the Internet, such as long access delays, poor qual-
ity of service, and unreliable services. This book is aimed at helping practitioners and
researchers working with network service providers, software and hardware vendors,
and content providers to understand the reasons for these problems. It explains the
challenges in making content available on the WWW, describes basic concepts and
principles for improving the current situation, and outlines possibilities for tapping
into the huge potential of custom-tailored services over the Internet. In particular,
the book describes the pressures that caused the Internet to evolve from the original
End-to-End model to a more complex model that has intelligence embedded within
various intermediaries placed throughout the network.

Approach

The book starts with a discussion of fundamental techniques and protocols for mov-
ing content on the Internet, followed by an introduction to content replication and
Web caching. From there, the book outlines the evolution from traditional Web
caching towards a flexible and open architecture to support a variety of content-ori-
ented services. Evolutionary steps include support for streaming media, systems for
global request routing, and the design of APIs and protocols that enable value-added
services, such as compression, filtering, and transformation. Content navigation,
peer-to-peer networks, instant messaging, content services, standards, and future
directions are all discussed. The book also explains how the different components
interact with each other and how they can be used to build complex content deliv-
ery networks.

We hope the reader will learn how the technology evolved from traditional Web
caching to more sophisticated content delivery services. The reader will get a better
understanding of the key components in modern content delivery networks and the
protocols that make the components interact with each other. Various examples are
provided to help the reader to better understand how this technology can be
deployed and how it could help their business.

The book concentrates mainly on underlying principles, concepts, and mecha-
nisms and tries to explain and evaluate them. While the specific protocols, interfaces,
and languages used in content networking will continue to evolve and change, it is
expected that the core principles and concepts underlying content networks will
remain valid for a long time. As such, the book focuses on principles and attempts

x Preface

FM.qxd 1/29/05 2:40 AM Page x

Preface xi

to explain and evaluate them. Specific protocols and languages are selected as exam-
ples of how the concepts and mechanisms can be incorporated into real-life net-
works. It uses many examples and case studies for illustration. The book is not
intended as a reference guide to Web-related protocols, but as a guide providing a
systematic and architectural view of the content delivery and content services field.
It helps the reader to understand the overall picture and how all the components fit
together. The examples are timely and the principles remain timeless.

Much of the design of the Internet is described in freely available documents
known as RFC, Requests for Comment. These are relied on heavily as references
through the book. RFCs are dynamic. Some classics remain as useful, accurate, and
pertinent as they were when they were written a decade or more ago. Others may be
superseded before this book completes its first printing. Readers working in the field
need to stay abreast of changes as they unfold.

Content

The first chapter serves as introduction to the remainder of the book. It explains the
notion of content networking and establishes the key concepts. A brief look at the
early days of information access over the Internet establishes the roots of modern
content networking—the World Wide Web. The chapter continues with a flashback
to the first half of the 1990s, with a history of the Web setting the stage for a dis-
cussion of fundamental concepts and principles.

The rest of the book takes us on a journey that follows the evolution of content
networks.

Chapter 2 explains the core principles that guided the design of the Internet,
leading into a discussion of how content is transported over the Internet. The focus
is on the Hypertext Transfer Protocol (HTTP) and some of the features that will be
important in later chapters of the book.

Chapter 3 shows how Web caching is used to bring static content closer to the
users and how this helps in improving content delivery over the Internet. These first
three chapters form the foundation for the balance of the book.

Chapter 4 stands alone and extends Web caching to include streaming media
such as audio and video. Optimized techniques are introduced that take into account
the special characteristics of time-constrained streaming media.

Chapter 5 deals with the question of how user requests actually get to the server
or Web cache best suited to serve each user. Different metrics for evaluating closeness
in content networks are introduced and different mechanisms for request routing are
explained.

Chapter 6 introduces the new concept of peer-to-peer networks, in which the
traditional client-server model of the Web is replaced with a federation of end-sys-
tems that help each other in delivering content. Chapters 4, 6, and 7 each stand alone
and may be reading any order, or skipped entirely at the discretion of the reader.

Chapter 7 extends the notion of content networking to include delivery of inter-
active media, such as instant messaging. The chapter explains a variety of standards-

FM.qxd 1/29/05 2:40 AM Page xi

based and proprietary approaches that enable people to interact with each other in
(near) real-time.

Chapter 8 is the centerpiece of the book, describing Content Services. After
developing an architecture for content services, two similar approaches are intro-
duced. These are the Internet Content Adaptation Protocol (ICAP) and the Open
Pluggable Edge services (OPES), the latter one being standardized in the IETF. The
W3C sponsored approach to Web-based services is then described. Finally, the wide
range of services made possible by the convergence of Web services and traditional
telephony are described.

Chapter 9 brings the various technologies and network elements together, and
explains how they can be deployed to build content networks for specific needs.

Chapter 10 provides an overview of the various standards activities relevant to
the field on content networking, and explains which efforts are of interest for each
specific area.

Chapter 11 finally summarizes our journey through the evolution of content
networks and attempts to provide an outlook of what the future might bring.

A glossary at the back of the book includes terms that are unique to this con-
tent area.

The focus of this book is on the architectures and protocols specific to content
networks. It cannot address every single topic in depth. Therefore, the book does not
address other relevant topics such as security issues surrounding content networks
or the operation and management of content networks.

A companion Web site for this book exists at http://www.content-
networking.com/ or at www.mkp.com/?isbn=1558608346. At this site, you will find
additional support material to enhance reading of the book. We suggest that you
visit the page for this book every so often, as we will be adding and updating mate-
rial and establishing new links to content networking related sites on a regular basis.

In this spirit, start the engines, get rolling, and have fun!

Acknowledgments

Clearly, an undertaking such as this book is impossible without the support of oth-
ers. First and foremost, we thank our families—Bettina with Jennifer, Dennis and
Kevin, and Eileen with Nicole and Rick—for their patience, their sympathy, and
their continued encouragement during the sometimes stressful period of writing this
book. The book was written in addition to the commitments of our daytime jobs,
written exclusively on personal time—nights, early mornings, and weekends. It is
time now to make up for some of the lost weekends with beach visits, hikes, biking
tours and canoe and kayak trips.

Many colleagues and co-workers have given us inspiration—too numerous to
mention individually. However, we would like to say special thanks to Wayne Hatter,
whose calm, yet determined and highly motivational leadership helped transition
some of the concepts presented in this book into real-world products. Wayne repre-
sents an entire team of excellent and bright developers that we had the pleasure to

xii Preface

FM.qxd 1/29/05 2:40 AM Page xii

work with. We also thank our management at Bell Labs Research, in particular
Krishan Sabnani and Sudhir Ahuja, for their encouragement in finishing this book.
A special thanks also to Sanjoy Paul, who has been key in starting our efforts around
Content Networking.

The book was made possible only by our own excitement and enthusiasm for the
Content Networking space, fueled even more by active participation and involve-
ment in several international standardizations efforts—not a trivial task! Our col-
league Igor Faynberg provided helpful hints and tips on how to move our work into
the respective standards bodies. Guidance from Allison Mankin ensures that the
work on content services being done by others and ourselves is sensitive to the exist-
ing Internet architecture. Acknowledgments also go to Michael Condry and Hilarie
Orman, who inspired much of the work in the content services field.

The thoughtful and detailed comments of our manuscript reviewers—including
Mark Nottingham, Alex Rousskov, Michael Vernick, and Martin Stecher—have
greatly strengthened the final result. Their critique and suggestions have prompted
improvement in the structure of the book and addition of new subjects. A big
“Thank you!” for their help.

We also wish to acknowledge the editorial staff at Morgan Kaufman/Elsevier
for a great job in giving the book this professional touch. Karyn Johnson has to be
thanked for her extreme patience and persistence getting work back on track after
deadlines slipped. Rick Adams deserves much credit for having the courage to ask
us to write this book.

The content of this book is based on several tutorials and graduate lectures,
which Markus gave before and during the preparation of this book. Notably, we
thank the tutorial chairs and organizers of ACM Multimedia, NGC Workshop,
World Wide Web Conference, and IEEE ICNP for the opportunity to present tuto-
rials accompanying this book. Likewise, we thank the professorship (in particular
Martina Zitterbart) and the administration of University of Braunschweig,
Germany, and University of Karlsruhe, Germany, for the opportunity to present
two 5-day graduate lectures based on the content of this book.

Growing Together

Most of the book was written in the wonderful and vibrant shore region of New
Jersey. Other parts were written during trips in places around the world, including
Karlsruhe (Germany), Juan Les Pins (France), Yokohama (Japan), San Jose (Costa
Rica), London (England), Boulder (Colorado, USA), Los Angeles, San Francisco,
San Diego (California, USA), Atlanta (Georgia, USA), and mid-air between several
of these places. Hopefully, the technology described in this book will help people in
all these places and around the world to grow together even stronger.

Markus Hofmann and Leland Beaumont,
New Jersey, USA, September, 2004

Preface xiii

FM.qxd 1/29/05 2:40 AM Page xiii

Markus Hofmann is Director of Services Infrastructure Research at Bell
Labs/Lucent Technologies. He received his PhD in Computer Engineering from
University of Karlsruhe, Germany, in 1998 and joined Bell Labs Research the same
year. Currently, he is also an Adjunct Professor at Columbia University in New
York, USA. Markus is known for his pioneering work on reliable multicasting over
the Internet and for defining and shaping fundamental principles on content net-
working. He is Chair of the Open Pluggable Edge Services (OPES) Working Group
in the IETF since it has been chartered in 2002. More recently, Markus’ work has
extended into the areas of VoIP and converged communications. Markus is on the
Editorial Board of the Computer Communications Journal, has recently been
elected chair of the Internet Technical Committee (ITC), and has published numer-
ous papers in the multicasting and content delivery area. His PhD thesis won the
1998 GI/KuVS Award for best PhD thesis in Germany in the area of
Telecommunications, and also the 1998 FZI Doctoral Dissertation price awarded by
the German Research Center for Computer Science. More information is available
at www.mhof.com.

Leland Beaumont consults on quality management and product development. Prior
to that, he was responsible for specification and verification of content delivery
products at Lucent, including Web caching and content network navigation. After
graduating with highest honors from Lehigh University, he received his Master of
Science degree in Electrical Engineering from Purdue University. He has worked in
the data communications product development industry for over 30 years.

About the Authors

xiv

FM.qxd 1/29/05 2:40 AM Page xiv

C H A P T E R 1

Introduction

1

Over the last few decades, the Internet has revolutionized our society and our
economy. It has changed the way people communicate with each other and the
way business is conducted. The Internet has created a global environment that is
drawing people from all over the world closer together. Collaboration and inter-
action of individuals through their networked computers have been main appli-
cations on the Internet since the beginning. Electronic mail and Internet chat
rooms are just two examples of popular applications. Over the last decade, the
Internet has been used ever more as a mechanism for information dissemination
and broadcasting, mainly driven by the emergence of the World Wide Web—
also referred to as WWW or the Web. The Web forms a universe of information
accessible via networked computers, offering content in the form of Web pages,
images, text, animations, or audio and video streams. This book examines the
technical concepts and the challenges of distributing, delivering, and servicing
content over the Internet. Business-related aspects are considered when they
have impact on the underlying technology. The focus is on fundamental princi-
ples and concepts rather than providing a reference for specific communication
protocols or implementation details.

The first chapter serves as an introduction, explaining the notion of content
networking and establishing the underlying key concepts. A brief look at the
early days of information access over the Internet segues to the roots of modern
content networking—the World Wide Web. The chapter continues with a flash-
back to the first half of the 1990s, with a history of the Web setting the stage for
a discussion of underlying concepts and principles. These include the represen-
tation, identification, and transport of Web objects, which are most often referred
to as Hypertext Markup Language (HTML), Universal Resource Identifier (URI),
and Hypertext Transport Protocol (HTTP), respectively. The power of URIs
and hyperlinks allows a variety of protocols to link new content types together
and add richness to the original WWW. For example, other protocols such as
RTSP and RTP allow other object types, such as multimedia streams, to be

Ch01.qxd 01/19/2005 12:49 PM Page 1

linked into the WWW. The chapter continues looking at Web applications as a
driving force for the evolution of the Web and for adopting new technology. It
identifies the shortcomings of today’s Web architecture and outlines an evolu-
tionary path toward advanced communication architectures of the future. The
technology-focused part is complemented with a description of the various Web
beneficiaries and their diversity of interests. The chapter concludes with a tour
through the book that outlines the remaining ten chapters.

1.1 The Early Days of Content Delivery over the Internet

Until about a decade ago, most of the world knew little or nothing about the
Internet. It was used largely by the scientific community for sharing resources on
computers and for interacting with colleagues in their respective research fields.
When work on the ARPANET—the origin of today’s Internet—started in the
late 1960s and the 1970s, the prevailing applications were as follows: access to
remote machines, exchange of e-mails, and copying files between computers.
Electronic distribution of documents soon gained importance, as it became
apparent that the traditional academic publication process was too slow for the
fast-paced information exchange essential for creating the Internet. When the
File Transfer Protocol (FTP) [Bhu71, RFC 959] came into use in the early 1970s,
documents were prepared as online files and made accessible on servers via FTP.
Interested parties used an FTP client program to establish a connection to the
server for downloading the document. Over the years, FTP evolved into the pri-
mary means for document retrieval and software distribution over the Internet.
In the early 1990s, FTP accounted for almost half of the Internet traffic [Mer1].

However, FTP did not solve all the problems related to information retrieval
over the Internet—it enabled downloading files from remote machines, but it did
not support users facing the daunting task of navigating through the Internet and
in locating relevant resources. Retrieving documents via FTP required users to
know in advance the exact server to contact and the name of the file to download.
Knowing just the title and the authors of a research paper, for example, was not
sufficient for retrieving an electronic copy of the paper. Moreover, the user was
required to figure out which FTP server was storing the paper and which file name
had been used. The Internet worked very much like a library without a catalog or
index cards—users had to know where to look to find the content they needed.

Locating relevant files on the Internet was simplified to some extent with the
introduction of archie in 1991 [ED92]. The archie system made use of a special
“anonymous” account on FTP servers, which gave arbitrary users limited access
without having to enter a password. Using these “anonymous” accounts, archie
servers periodically searched FTP servers throughout the Internet and recorded
the names of files they found. This information was used to create and maintain
a global catalog of files available for download. Users could use this catalog to
search for file names matching certain patterns. When matches were found,
archie also indicated the FTP servers on which the files were available.

2 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 2

A major restriction of archie was its limitation to pattern matching on file
names rather than the actual content of the files. The Wide Area Information
Server (WAIS) project [KM91] implemented a more powerful concept by
searching through the text of documents in addition to their file names or titles.
Suppose you are interested in finding articles on Michael Jordan’s second come-
back to professional basketball, and you perform an archie search using
“Jordan” as your keyword. Even if the file named “NBA-News-September-
2001.txt” includes a story covering Jordan’s comeback, it would not turn up
under an archie search. As WAIS digs through the entire text of the article, that
file would appear with a WAIS search. Moreover, the WAIS mechanism pro-
vided a scored response, ranking retrieved information based on the quantity of
keyword appearances in the text and on how close to the document’s beginning
they turned up. WAIS was originally developed at the beginning of the 1990s by
a consortium of companies that included Thinking Machines Inc., Dow Jones,
Apple Computer, and KPMG Peat Marwick. The first version of WAIS was
available in the public domain in 1991. By summer 1992, the project had evolved
into a separate company called—not surprisingly—WAIS Inc. This company
can be considered the first to commercialize technology related to content
retrieval over the Internet.

However, the WAIS system was not perfect—the user interface was relatively
difficult to use and the search capabilities were initially limited to text docu-
ments. Besides, it scored documents based on the absolute number of keyword
appearances rather than the density of their appearance. As a result, long docu-
ments were more likely than short documents to end up at the top of the list.
WAIS further lacked the capability for hierarchical organization of content
resources—a feature introduced by the Gopher system [RFC 1436].

Gopher was developed at the University of Minnesota in 1991 and named
after the school’s furry mascot. It let users retrieve data over the Internet with-
out using complicated commands and addresses. Gopher servers searched the
Internet using WAIS and arranged the results in hierarchical menus, using plain
language. As users selected menu items, they were lead to other menus, files,
or images, which might not even have resided on the local Gopher server.
References could move users to remote servers or fetch files from distant loca-
tions. Gopher significantly simplified information retrieval on the Internet. It
handled the details of actually getting requested information, without requiring
users to know how and from where to retrieve those resources. Initially deployed
only on the University of Minnesota campus, other institutions quickly discov-
ered Gopher’s versatility and set up their own Gopher servers. At one time, there
were a few thousand Gopher servers registered with the top-level server
“Gopher Central” at the University of Minnesota or its counterparts in other
countries.

Archie, WAIS, and Gopher emerged in the same era and coexisted for some
time. They all had their advantages and disadvantages, and occasionally, they
are still used today. Nevertheless, in the course of the 1990s, they all were
subsumed into yet another system—the World Wide Web (WWW).

1.1 The Early Days of Content Delivery over the Internet 3

Ch01.qxd 01/19/2005 12:49 PM Page 3

1.2 The World Wide Web—Where It Came From and What It Is

The World Wide Web is an Internet facility that links information accessible via
networked computers. This information is typically represented in the form of
Web pages, which can contain text, graphics, animations, audio/video, and
hyperlinks. Embedding hyperlinks in documents is an important feature of the
Web and differentiates it clearly from Gopher and other approaches. Embedded
hyperlinks connect a Web page to other resources either locally or on remote
computers. Users can follow the links and access referenced resources simply by
pointing to the hyperlink and clicking a mouse button. This intuitive mechanism
allows browsing through a collection of information resources without having to
worry about their actual location or their format.

This section will briefly describe the origin of the Web, where it came from
and why it has been so successful. A description of the architectural components
will help in the understanding of the fundamental design of the Web and, at the
same time, motivate the evolution of the Web. A detailed introduction to the
Web can be found in [KR01].

1.2.1 The Origin of the World Wide Web

The World Wide Web has its origin at the European Organization for Nuclear
Research (CERN) near Geneva, Switzerland. It was initially proposed by Tim
Berners-Lee in 1989 to improve information access and help communication
within the particle physics community [Ber89]. The community included several
hundred members all scattered among various research institutes and universi-
ties. Although the groups were formally organized into a hierarchical manage-
ment structure, the actual working and communication structure looked more
like a loosely coupled mesh whose linkages evolved over time. A researcher look-
ing for specific information was typically given a few references to experts who
may prove helpful. In order to get the desired information, the researcher used
the provided information to contact the respective colleagues. While this com-
munication scheme was principally working fine, a high turnover of people
made project record keeping and locating expertise increasingly difficult. A solu-
tion was required that would support dynamic, non-centralized interaction and
quick access to documents stored at secluded locations.

In this situation, Tim Berners-Lee proposed to his management the idea of
using hypertext for linking information available on individual computers
[Ber89]. The hypertext concept had been envisioned earlier as a method for mak-
ing computers respond to the way humans think and require information
[Bus45, Nel67, EE68]. Hypertext documents embed so-called hyperlinks, which
can be represented as underlined text or as icons in any size and shape. By select-
ing and clicking on a hyperlink, associated information is loaded and displayed.
Tim’s proposal extended the hypertext concept to allow linking of information
not only on a single local machine, but also of information that can be stored on

4 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 4

remote computers connected via a network. Retrieving the associated informa-
tion over the network is transparent to the user, without burdening the user with
having to know the resource location and the network protocol to be used for
retrieval. This scheme proved to be very powerful as it allows users transparent
accesses to documents on remote computers with a click of the mouse.

The CERN management approved the proposal and launched the project in
the second half of 1990. Tim started implementing a hypertext browser/editor
and finished the first version at the end of 1990. The program was running on
a NeXT computer and offered a graphical user interface. It was called
WorldWideWeb but later renamed Nexus to avoid confusion with the abstract
concept of the World Wide Web itself. At the same time, the implementation was
complemented with a separate line-mode browser written by CERN student
Nicola Pellow. Other people soon started implementing browsers on different
platforms. By 1992, first versions of Erwise, ViolaWWW, and MidasWWW were
introduced for the X/Motif system, followed by a CERN implementation for the
Apple Macintosh in 1993.

At that time, there were around 50 known Web servers deployed, and the
WWW was accounting for about 0.1% of the Internet traffic. It was a promising
approach, but the real breakthrough came with the creation of Mosaic, the first
widespread graphical Web browser. Mosaic development was started at the
National Center for Supercomputing Applications (NCSA) by Marc Andreesen
and Eric Bina. They realized that broad acceptance of Web technology would
require a more user-friendly interface. Their browser software added clickable
buttons for easy navigation and controls that let users scroll through text. More
important, Marc and Eric were the first ones to get embedded images working.
Earlier browsers allowed viewing of pictures only in separate windows, while
Mosaic made it possible for images and text to appear in the same window. The
application was trivial to install and the team followed up coding with very fast
customer support. Overall, Mosaic drastically simplified the first step onto the
Web and even allowed beginners to take advantage of the new, exciting Web
technology. The Unix version of Mosaic was available for download from
NCSA in early 1993. The software was provided free of charge and within weeks
tens of thousands of people had downloaded it. Software versions for the PC
and Macintosh followed later the same year, boosting its popularity even
further. The Web started eclipsing competing systems, as it subsumed their main
features and functionality. Users could conveniently access FTP servers as well
as Archie, WAIS, and Gopher from their Web browsers, thus eliminating the
need for these specialized applications.

By 1994, Marc and Eric had graduated and headed for Silicon Valley to com-
mercialize their software. Initially called Mosaic Communications Corporation,
their company was soon renamed Netscape Communications Corporation—the
birthplace of the famous Netscape browser family, also known as Netscape
Navigator and Netscape Communicator. The Web’s popularity increased, and the
number of Web sites grew from approximately 500 in 1994 to nearly 10,000 by the
beginning of 1995. Netscape quickly became the dominant browser and by 1996,

1.2 The World Wide Web—Where It Came From and What It Is 5

Ch01.qxd 01/19/2005 12:49 PM Page 5

about 75% of Web users used Netscape. Noticing the growing importance of the
Web and Netscape’s enormous business success, Microsoft Corporation got into
the act and started the development of its own browser software—Internet
Explorer.

With Microsoft entering the browser market, a bitter fight began to establish
dominance in Web software—often referred to as “The Browser War.” While
the relentless competition between Netscape and Microsoft pushed rapid inno-
vation and created free commercial browser software, it also created problems
and led to incompatibilities in the display of Web sites. Both companies created
and integrated proprietary extensions that were not part of official standards.
Because some of those extensions did not work together, Web page appearance
varied on Netscape browsers and on Internet Explorer. As a result, users and
Web page designers alike were plagued by inconsistent page appearance, essen-
tially defeating the main purpose of a Web browser. Incompatibilities between
the two browsers quickly extended into different kinds of scripting languages
that allowed downloading and running applications locally. After the initial
dominance of Netscape, Microsoft eventually crushed Netscape and other com-
petitors. According to global statistics in July 2004, Microsoft accounts for
about 80–90% of the browsers used on the Internet, while Netscape and its suc-
cessor Mozilla musters only about 5–15% [Cou04, W3S04]. While Microsoft and
Netscape battled over proprietary browsers, it is interesting that Apache domi-
nates the server world with their open source.

Microsoft’s market entry underlined a trend toward increased commercial-
ization of the Web. What started as a way for scientists to better share informa-
tion has grown to include all kinds of commercial services, from information
portals to online shopping malls. People order books, appliances, and even cars
over the Web. They use it to access the most up-to-date headline news. The Web
has become the center of Internet activity, with many people actually not realiz-
ing the difference between the Internet and the Web. Many users are not even
aware that some of the most popular Internet applications, such as e-mail or
news, have been around long before the Web. Nevertheless, ever since the Web
caught people’s attention, the amount of information and services available has
increased at a staggering rate. The tremendous growth of the Web, however,
causes new technical problems—ranging from scalability and reliability prob-
lems to unpredictable service quality and high download delays. The remainder
of the book illuminates these problems, explains where they come from, and
how emerging technology can help solve them. As such, the following section
will describe the main architectural concepts and the service model of the Web.

1.2.2 Basic Concepts of the World Wide Web

The World Wide Web forms a large universe linking information accessible via
the Internet. The information is represented in the form of Web pages—or, more
generally, Web objects—and is made available on computers, which are referred
to as Web servers. A Web object can be anything from a simple text document to

6 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 6

a multimedia presentation or an audio/video clip. Internet users identify Web
objects they are interested in and request them from the corresponding Web
server via the Internet. The application initiating the request to the Web server
is known as the Web client. Figure 1.1 illustrates the client-server–based model
of the Web.

Accessing information on the Web usually starts with typing in the address
of a homepage in a Web browser or clicking on a predefined button. A home-
page is a hypertext document, which typically serves as an entry portal to a Web
site. It can contain hyperlinks to other Web objects, stored either locally on the
same server or anywhere on the Internet. Once the address of the page is typed
into the browser, the Web client sends a request over the Internet and receives a
response back from the Web server. The response includes either the requested
page or an error message.

The Web model involves three elementary concepts: a common representation
format for hypertext documents, a scheme for naming and addressing Web objects,
and a standard mechanism for transmitting control and data messages between
server and client. We will consider each of them in the following paragraphs.

Representing of Web objects—the hypertext markup language
(HTML)

Information on the Web can be represented in different formats and media types,
stretching from simple text documents to rich multimedia content embedding
images and audio/video elements. The lingua franca of the Web is the Hypertext
Markup Language (HTML), which is a standard representation for hypertext
documents and is derived from the more general Standard Generalized Markup
Language (SGML) [ISO86]. The HTML language was originally specified by
Tim Berners-Lee at the beginning of the 1990s, but has since been developed and
extended far beyond its initial form. Standardization of HTML was initially
moved into the Internet Engineering Task Force (IETF) [IETF1] and is now
carried out by the World Wide Web Consortium (W3C) [W3C1].

HTML defines the layout and the formatting of a Web page, and it allows
authors to embed hyperlink references to other resources on the Web. The
HTML syntax is relatively simple and is expressed in plain ASCII format. As

1.2 The World Wide Web—Where It Came From and What It Is 7

Request

Response

Web Client Web Server

Internet

Figure 1.1 The client-server model of the Web.

Ch01.qxd 01/19/2005 12:49 PM Page 7

such, the language is easy to learn and can be authored with any text editor or
word processor. Over the years, various document transformation and publish-
ing tools for automated HTML generation have been developed. Many word
processors and publishing programs now export their documents directly into
HTML, obviating the need for most Web page authors to learn HTML. The
ease of page creation has further fueled the growth of the Web.

While HTML is the fundamental representation language of the Web, not
all Web objects are necessarily authored and represented in this language. It is
possible, for example, to make audio/video clips or unstructured text documents
available on Web servers as well. In contrast to HTML, however, plain data for-
mats do not allow embedding hyperlinks, nor is the author able to specify the
layout and the fonts to be used for displaying the page in Web browsers.

Identifying Web objects—URNs, URLs, and URIs

The World Wide Web is inhabited by a large number of objects that may reside on
any Web server anywhere in the world. To find and access a specific Web object, the
user needs some kind of handle that identifies the object in a unique way. There are
two fundamental ways for identifying objects in the Web space: a name distinguishes
one object from another in a globally unique way, while a location tells where the
object can be found. Historically, the two concepts were reflected in different schemes
for identifying objects on the Web—the Uniform Resource Name (URN) [RFC 1737,
RFC 2141] and the Uniform Resource Locator (URL) [RFC 1738, RFC 1808].

A URN provides a persistent name for a Web object, independent of its cur-
rent location. The name is assigned once and remains unmodified as the location
of the object changes. Moreover, URNs are required to remain globally unique
and persistent even when the object ceases to exist or becomes unavailable.
A URL, in contrast, provides a non-persistent means to uniquely identify an
object based on its current location and its access method. A URL tells the user
where to find an object and how to access it, which implies that the URL
changes when the associated object moves.

To illustrate the difference between these concepts, let us consider how the
authors of this book can be identified among all the people in the United States.
Each author of this book has a Social Security Number, which has been
assigned by the federal Social Security Office. This Social Security Number is
guaranteed to be unique and has an institutional commitment to persistence and
availability. It can be considered a URN for the author of this book. It identifies
and names him in a persistent way, but it does not reveal any information about
his current location. The author’s location is typically given by his home address
or work address, which—at an abstract level—can be considered URLs for him.
Obviously, the author’s URLs can change when he moves or changes jobs.
Moreover, his former URLs can point to other persons in the future, for exam-
ple, when somebody else moves into his house at the given address. This is quite
different from the URN (i.e., the Social Security Number), which will remain the
same for his lifetime and will always refer to this person. The mindful reader may

8 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 8

have noticed a little discrepancy with this comparison—while a URN is required
to stand for an object even when it ceases to exist, Social Security Numbers may
be reused after the lifetime of a person. For the sake of this comparison, though,
we simply assumed this would not be the case.

It is very likely that most readers have already seen and are quite familiar with
URLs, which might look like http://www.content-networking.com/ or http://www.
google.de/. Nowadays, it is quite common to find such URLs on business cards
and in advertisements. Usually, a URL is made up of three parts: a protocol iden-
tifier, a server name, and a path. These parts are represented according to the
following syntax:

<protocol>://<server>/<path>

The protocol part indicates the communication protocol to be used for request-
ing and retrieving the Web object from the server. Various communication pro-
tocols are valid and have well-defined identifiers assigned, for example FTP,
WAIS, and Gopher. The most commonly used communication protocol on the
Web is the Hypertext Transport Protocol (HTTP) and will be discussed in
the following section. The URLs given above, for example, indicate that the
protocol to be used for object retrieval is HTTP.

Immediately following the protocol identifier are the characters “://” and
the server name. The server name is a regular Internet hostname (or an IP
address) and identifies the Web server where the referred Web object can be
retrieved. The server name is terminated by the next forward slash ‘/’ in the
URL string. The server part can optionally include a TCP/IP port number at
its tail, which is separated from the actual server name by a colon. Briefly, a
port number is used to direct messages to the correct application running on
the server. If no port number is given, the default port of 80 is assumed for
HTTP.

Finally, the path component of a URL specifies the exact file and the loca-
tion of that file in the server’s directory structure. If the path component is not
explicitly included in the URL, a default directory location and a default file-
name are assumed (e.g., index.html). As an example, the URL

http://www.content-networking.com/papers/brochure-webdns.pdf

identifies a Web page that can be accessed using the Hypertext Transport
Protocol (“http://”) and is on a server named “www.content-networking.com”.
In the server’s directory structure, the file is located in the directory “papers” and
is named “brochure-webdns.pdf”.

The Uniform Resource Identifier (URI) [RFC 1630, RFC 2396] is an abstrac-
tion that includes both URNs and URLs—it represents a superset of both
schemes. The URI rules of syntax, set forth in RFC 2396, apply for all names
and addresses in the Web space. It is a common misconception that URL and
URI are the same, and quite often, these terms are used interchangeably.
Throughout this book, the popular term URL will be used rather than the more

1.2 The World Wide Web—Where It Came From and What It Is 9

Ch01.qxd 01/19/2005 12:49 PM Page 9

general term URI. An exception will be made whenever the distinction between
these terms is important.

Transporting Web objects—hypertext transfer protocol (HTTP)

The World Wide Web is composed of distributed, heterogeneous servers and
clients. Its operation depends on the capability to communicate and exchange
messages between these components. Just as humans depend on knowing a com-
mon language for communicating with each other, the Web depends on having a
well-defined mechanism for interaction of servers and clients. The rules, the syn-
tax, and the semantics for this interaction are described in the form of a com-
munication protocol. The protocol specifies a message format and semantic
rules indicating how the various parts of the messages have to be interpreted.

The Hypertext Transport Protocol [RFC 1945, RFC 2616] is the primary
mechanism used to transport objects on the Web. It is an application-level pro-
tocol, which has been designed so that it can theoretically run on many under-
lying communication networks. In practice, however, HTTP runs mostly on top
of the TCP/IP protocols of the Internet. HTTP evolved along with the Web in
two major phases: from the initial proposal labeled HTTP/0.9 at the beginning
of the 1990s [Ber92] to the official HTTP/1.0 specification in 1996 [RFC 1945].
The second phase also lasted about four years and moved HTTP from version
1.0 to version 1.1 [RFC 2616].

HTTP is a request-response protocol, which means that a client sends a
request message and the server replies with a response message. The message
headers are text-based, which makes them readable by humans and simplifies
debugging and extensions. A fundamental design principle of HTTP is that each
message exchange is treated separately without maintaining any state across dif-
ferent request-response transactions. Each transaction is processed indepen-
dently without any knowledge of previous transactions, which is why HTTP is
called a stateless protocol. While this design improves simplicity and scalability,
it complicates the implementation of Web sites that react based on previous user
input such as a username or a location. This shortcoming is being addressed
with additional technologies, such as Cookies or JavaScript. Chapter 2 will
elaborate on these and HTTP in general.

Later in this book, we will see that the three elementary concepts mentioned in
this section are not exclusive. Other representation formats and protocols emerged,
for example to transmit audio and video content on the Web. However, most of the
newer technology has been derived in some form from these basic concepts.

1.2.3 Applications on the World Wide Web

The growth and the evolution of the World Wide Web are mainly driven and
heavily influenced by applications that individuals and businesses use. It is
important to understand emerging trends and developments in the applications
area to shape the underlying Web technology in the most appropriate way. The

10 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 10

initial Web application was to facilitate sharing of online documents. Ever since,
the Web evolved into an infrastructure and a development platform for a broad
variety of distributed applications—ranging from simple document retrieval all
the way to delivery of audio or video and interactive collaboration. This section
would fail in attempting to list the diversity of existing and emerging Web appli-
cations. Instead, it discusses four fundamental types of Web applications that
evolved over time, each of them having significant impact on the evolution of
Web technology. New application developments around content services and
Web services will be discussed in Chapter 8.

Retrieving static content

The World Wide Web originated as an Internet facility linking static content.
Static content comprises stored documents that reside on Web servers for
retrieval by users. These documents change infrequently—remaining constant
for days or weeks at a time—and require explicit modification by the author in
order to change their content. As such, they provide the same combination of
text or images to each visitor. Typical applications involving retrieval of static
content are access to personal homepages or fetching research papers from a
document repository. Both types of Web objects are usually static—they are cre-
ated once and are served unmodified for an extended time. Although this appli-
cation model is adequate for many purposes, it allows only limited interaction
with the user. Furthermore, it is not suitable for serving frequently changing data
such as stock quotes or currency exchange rates. The information transmitted to
the user is only as current as the last manual update.

Retrieving dynamic content

Retrieving static content is the most widely used application on the Web so far.
More recently, dynamic content made new levels of user interaction possible,
which is particularly interesting for e-commerce and content portals. Dynamic
content is created only at the time it is requested. Its final form is not stored, but
rather it is created by assembling information gathered at the time of the request.
When a request for dynamic content arrives, the Web server typically runs a spe-
cific program that creates the content immediately. The program may consider
user-specific information obtained from the request, such as the user’s IP address,
her preferred (natural) language or any information the user entered in a Web
form when issuing the request. It is also possible that the program queries a data-
base or retrieves additional information from a user profile. This provides the abil-
ity to deliver customized content to each user based on her individual preference.
Furthermore, dynamic content can be tailored according to the capabilities of the
user’s end-device or network connection. Use cases of dynamic content include
content portals that provide headlines, news, stock quotes, and weather forecasts
based on the user’s interests and location. Such services can be found, for exam-
ple, at My Yahoo! (http://my.yahoo.com/) or My eBay (http://www.ebay.com/).

1.2 The World Wide Web—Where It Came From and What It Is 11

Ch01.qxd 01/19/2005 12:49 PM Page 11

This definition of dynamic content implies that a Web server may deliver
differently assembled content to individual users requesting the same Web object
at the same time. This is different from frequently changing static content. Such
preauthored content is modified in very short time intervals, thus resembling the
behavior of dynamic content. However, frequently updated static content still
looks the same to different users requesting the content in-between update
intervals.

Retrieving streaming content

Streaming is often thought of as the playback of continuously flowing media
such as audio and video. A more accurate description, however, considers the
distinction between true streaming technology and the simple playback of
downloaded audio or video files. Prior to the invention of true streaming tech-
nology, users had to download audio and video files in their entirety before start-
ing playback. This is usually not a problem with relatively small text documents
or images, either of which can be downloaded very quickly. The large sizes of
audio and video files, however, generally translate into painfully long download
delays before playback begins. Streaming technology addresses this problem by
establishing a steady data flow from the server to the client, allowing the client
to listen or view the content as it is downloaded. It is no longer required to fetch
the entire audio or video file before playback starts, which significantly reduces
the initial playback delay.

While streaming technology is mostly associated with audio and video
media, it can also be used in conjunction with other media types such as images.
Most modern Web browsers, for example, start displaying embedded images in
Web pages before the image is received in its entirety. Nevertheless, this book will
refer to “streaming” in the context of time-constrained audio or video playback,
if not otherwise noted. It will further distinguish between two main categories
of streaming—on-demand streaming, which delivers prerecorded content to many
users at different times, and live streaming, which broadcasts live content to
many users at the same time. Example applications include Video-on-Demand
systems and Internet radio, respectively.

Interactive collaboration

The Web has traditionally served as a medium for collaboration, as evidenced by
the success of applications supporting document sharing and discussion archiv-
ing. Most of these applications have been limited to asynchronous activities,
whereby users do not interact in real time. Instead, applications provide interfaces
for working within a shared workspace over an extended period. User activities
are not synchronized and are time-wise decoupled from each other. Recently, the
Web has also been used for interactive collaboration, allowing two or more users
to interact in real time. Example applications include videoconferencing, net-
worked gaming, instant messaging, and Web-based help desk systems. In these

12 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 12

applications, users typically react to previous actions of other users in real time.
In the case of videoconferencing, for example, users respond to other
participants’ questions and comments. Interactive collaboration creates new chal-
lenges for the underlying Web technology, as data has to be transferred synchro-
nously with low delay and in real time to a potentially large number of users.

These different types of applications show that the Web has matured to a
point where it is valued for more than document sharing and exchanging static
content. Businesses and individuals are looking to the Web as a high-quality and
reliable vehicle for delivering rich multimedia content. Recent developments
around multimedia content, interactive applications, and dynamic content
exposed some shortcomings of the traditional Web model and led the industry
to turn to enhanced network technologies overlaying the Internet, mostly
referred to as content networks.

1.3 The Evolution of Content Networking

Over a period of less than ten years, the World Wide Web evolved from an
Internet application for scientists and researchers to become the transforming
business phenomenon it is today. Companies and businesses depend more than
ever on the Web’s ability to instantaneously deliver relevant content and services.
However, an enormous growth in network traffic, driven by rapid acceptance
of broadband access, along with increases in system complexity and content
richness, brings new challenges in managing and delivering content to users.
A decrease in service quality, along with high access delays, led people to rein-
terpret WWW as an acronym for “World Wide Wait.” User frustration, mainly
caused by long download times, has become more of an issue as companies com-
pete for e-commerce over the Web. Recent studies suggest that users abandon
slow loading e-commerce sites, which translates into lost sales and dissatisfied
customers. As Web-based e-commerce represents a significant business and con-
tinues to grow very rapidly, this provides great financial incentive for companies
to improve the service quality experienced by users accessing their Web sites.

As such, the past few years have seen an evolution of technologies that aim
to improve content delivery and service provisioning over the Web. Entire mar-
kets have been created offering novel network appliances, software tools, and
new kinds of network services. When used together, these technologies form a
new type of network, which is often referred to as content network [RFC 3466].
This section examines the problems that led to the emergence of content net-
works and discusses possible solutions in terms of the technologies and services
that comprise a content network.

1.3.1 The Traditional Web Model Comes of Age

The decentralized nature of the World Wide Web—and the Internet, in
general—has very much helped its growth and its propagation. The lack of

1.3 The Evolution of Content Networking 13

Ch01.qxd 01/19/2005 12:49 PM Page 13

central control and management allows any individual or business to quickly set
up a Web site offering content and services. There is no need to go through a cen-
tral bureaucracy. Easy-to-use authoring tools simplify Web page creation. A new
breed of service providers have emerged offering Web site creation and hosting
for individuals and businesses. Most Internet service providers even include
basic Web hosting services in their Internet access offerings, allowing individu-
als to set-up their own private Web page without having to deploy their own Web
server.

The simplicity of Web site creation results in an ever-increasing variety of
content offered over the Web. Almost anything can be found, from personal
photos of one’s last family reunion to the latest headline news and stock quotes.
While the Web offers an almost endless pool of information, its decentralized
nature makes navigating and locating relevant content quite a challenge. Search
engines support users in finding their way through the unorganized mass of
information, while content portals attempt to catalog a relatively small subset
of the most popular Web pages. It is interesting to note that although the num-
ber of Web pages keeps growing at a breathtaking speed, only a surprisingly
small subset of those pages account for the majority of user requests. This fact
not only allows content portals to cover a large percentage of requested infor-
mation, but also provides the opportunity for performance improvements
through Web caching—a technology that will be discussed in more detail in
Chapter 3.

The Web is highly decentralized and distributed. From the perspective of a
single Web site, however, the traditional service model as shown in Figure 1.1 is
actually centralized. All user requests for a particular Web page are handled by
a single Web server storing the requested content. This approach has serious
scalability problems, as illustrated in Figure 1.2. The load on the Web server and
on the network link connecting the server to the Internet increases with the
number of user requests. This is not a problem for specialized Web sites serving
only a small number of interested parties. Highly popular Web sites, however,
easily get overwhelmed with a large number of incoming user requests. When
more and more users request content from a single Web server, either the server’s
processing capacity or the bandwidth available on its connection to the Internet
can easily be exceeded. If this happens, user requests are dropped, which results
in increased access delays or even unavailability of the Web site.

Scalability issues become even more severe when sudden or unique events
occur that are of extreme interest to the public. Such events typically trigger an
extraordinary, and often unexpected, large number of requests at the Web sites
providing relevant information. For example, in September 1998 most Web
sites permitting access to the Starr report were overloaded in the days after the
report was published. A similar behavior was observed when pictures of the
Mars Lander mission became available, or when Victoria’s Secret broadcasted its
first fashion show on the Web [Bor99]. More recently, the tragic events of
September 11, 2001 triggered an enormous interest in the various news sites on
the Web, with millions of users requesting the latest news updates and video

14 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 14

footage. This resulted in extreme traffic peaks at the various Web sites—some-
thing that could not be foreseen. It is important for Web site providers to not
only protect their mission-critical sites from normal traffic peaks, but also from
such unexpected spikes in user interest.

Another problem of the centralized Web service model relates to the dis-
tance between a Web server and potential Web clients. This distance can be
measured using different metrics such as number of hops, delay, packet loss on
the path, or even geographic distance. Even if a Web server has enough resources
to handle all incoming requests in a timely manner, the distance between server
and clients can lead to noticeable delays. In the example given, clients located in
America always have to send their requests to a central server in Europe. This
not only increases the load on transatlantic links, but also results in increased
transmission delays. More important than the geographical distance, however, is
the so-called network distance between server and client. Network distance is
defined as the number of routers on the path between two hosts. Each router on
the path adds to the time required for transmitting data between the hosts.
Consequently, it is desirable to minimize the network distance between Web
clients and Web servers for improved service latency. Geographic proximity does
not necessarily translate into network proximity, though. Users in Germany
accessing a Web server in France, for example, quite often have to connect
through a major peering point located in Washington, DC, USA. This absurd
situation is fairly common and is caused by a lack of local peering agreements
between Internet Service Providers (ISPs) in Europe.

Emerging broadband technologies such as cable modem and DSL aggravate
these performance and scalability problems by forcing servers, routers, and

1.3 The Evolution of Content Networking 15

Web Clients

Web Server

Figure 1.2 Scalability problem of centralized Web servers.

Ch01.qxd 01/19/2005 12:49 PM Page 15

backbone links to carry even more data traffic. High-speed, always-on Internet
access encourages an increase in online time by the average user and makes new
resource-intensive applications possible. In addition, it stimulates the develop-
ment of commercial products for resource intensive playback of streamed video
and audio, which makes the slowdown even worse. As a result, consumers often
experience low service quality due to high delay, unstable throughput, and loss
of packets in the best-effort model of the Internet.

1.3.2 Evolutionary Steps in Overcoming the Web Slowdown

Adding more bandwidth, more processing power and other mechanisms to
improve quality-of-service (QoS) to the Internet infrastructure is one potential
remedy for performance problems. While this may provide some relief, it does
not address the fundamental problem of overloaded servers and data travers-
ing multiple domains and many networks. In addition, deployment of QoS-
enabled systems is costly, difficult, and time-consuming. Even when high-quality
network services are available, people might prefer to use best-effort services
if the cost is lower. Network providers are also concerned with scaling up
to meet spikes in data traffic. It is difficult to engineer network capacity for
unpredictable spikes, such as breaking news stories, which overwhelm Web
sites with unexpected demand. Just throwing in more bandwidth and adding
infrastructure support for quality-based services does not solve all the prob-
lems mentioned above. Additional and complementary approaches are
required for the Web to live up to the higher expectations of today’s and
tomorrow’s users.

Current developments can be seen as evolutionary steps from the traditional
Web model toward more dynamic content networks. The first step of this evo-
lution focused on overcoming the server side bottleneck by deploying load-
balanced server farms. This approach still assumed a centralized Web site
providing content and services. The next step relaxed the centralized model by
distributing content and moving it closer to the user. Replication of content in
geographically dispersed locations and deployment of Web caching systems have
been the main technologies. The second step leads to a model in which static
content is distributed at various sites, but services such as e-commerce or cre-
ation of dynamic content are still being provided at a central server. The next
logical step now is to distribute the services as well, which is currently being
worked on in the context of content services and Web services. Each of those
evolutionary steps is summarized below, with technical details being provided in
subsequent chapters of the book.

Distributing load at a centralized server site

A potential bottleneck in the traditional Web architecture is the Web server
itself, which might run out of resources as more requests arrive at the site. The
most obvious solution to this problem is improving the server hardware by

16 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 16

adding a high-speed processor, more memory and disk space, or maybe even a
multi-processor system. This approach, however, is not very flexible and
improvements have to be made in relatively big steps. It is not possible to start
small and slowly add enhancements as the traffic increases. At some point, it
might even be necessary to completely replace a server system.

A more scalable solution is the establishment of server farms. A server
farm is comprised of multiple Web servers, each of them sharing the burden
of answering requests for the same Web site. The servers are typically installed
in the same location and connected to the same subnet. Incoming requests
first pass through a front-end load balancer. This component dispatches
requests to one of the servers based on certain metrics, such as the current
server load. This approach is more flexible and shows better scalability, as it
can start small with servers being added in incremental steps as they are
needed. Furthermore, it provides the inherent benefit of fault tolerance. In the
case of a server failure, incoming requests can still be satisfied by the remain-
ing active servers in the farm. For this purpose, load balancers implement fail-
ure detection mechanisms and avoid dispatching requests to failed servers.
Over time, load balancers have become increasingly sophisticated, adding
more features and basing their routing decisions on more complex metrics.
These changes are reflected in modern terms describing these devices, such as
Layer 4–7 Switch, Web Switch, or Content Switch. The first term is often used
to describe on which layer of the Internet protocol stack a device operates.
A Layer 4 Switch, for example, bases its switching decision on information
included in the TCP protocol (e.g., the port number), as TCP represents Layer
4 in the TCP/IP protocol stack. Content switching will be discussed in detail
in Chapter 5.

Deployment and growth of server farms normally go hand-in-hand with
appropriate upgrades of the network link that connects the Web site to the
Internet. Further performance gains and improved fault tolerance can be
achieved by connecting a server farm to multiple Internet Service Providers.

Distributing content and centralized services

A promising approach in overcoming the Web’s notorious bottlenecks and slow-
downs is distributing and moving content closer to the user where it becomes
faster to retrieve. User requests are then redirected to, and served from, these
devices. Server replication and proxy caching are examples of such technologies.
A proxy cache, preferably in close proximity to the client, stores requested Web
objects in an intermediate location between the object’s origin server and the
client. Subsequent requests can be served from the cache, thus shortening access
time and conserving significant network resources—namely bandwidth and
processing resources.

A Web cache resides between Web servers (or origin servers) and one
or more clients, and monitors requests for HTML pages, images, and files
(collectively known as objects) as they come by, saving a copy for itself. Then, if

1.3 The Evolution of Content Networking 17

Ch01.qxd 01/19/2005 12:49 PM Page 17

there is another request for the same object, it will use the copy that it has,
instead of requesting it from the origin server.

Caching Web objects has been studied extensively starting with simple
proxy caching [LNB99], followed by improvements in hierarchical caching
and cooperative caching under the Harvest project [CDN+96] and the Squid
project [Wes02], respectively. The latter schemes allow multiple caching sys-
tems to collaborate with each other, improving scalability and fault tolerance
even more. For proxy caching to be effective on a scale required by ISPs
and enterprises, it must integrate methods for cache replacement, content fresh-
ness, load balancing, and replication. Caching will be discussed in detail in
Chapters 3 and 4.

Distributing content and services

As the percentage of dynamic content on the Web increases and users demand
more sophisticated services, it is no longer sufficient to distribute just static con-
tent. Instead, recent developments extend the idea of a distributed content
model to include the services operating on such content as well. Architectures
and systems are being developed that move server-side services out to the edge
of the network, closer to the user. Such services may include dynamic assembly
of personalized Web pages or content adaptation for wireless devices.

Work is also underway to define a framework for distributed Web applica-
tions, which is most often referred to as the Web Services architecture. Web ser-
vices are interoperable building blocks for constructing complex Web
applications. Once a Web service is deployed and published, other applications
can automatically discover and invoke it. As an example, a digital library appli-
cation could be realized by combining Web services for searching, authentication,
ordering, and payment. The traditional Web model enables users to connect to
content and Web applications on centralized servers. The Web Services frame-
work adds open interfaces, which allow more complex applications to be com-
posed of several more basic and universal services, each running on remote
servers. Chapter 8 will deal with these approaches in more detail.

The evolutionary steps outlined above illustrate how the Web is currently
extending from a centralized model toward an architecture that included dis-
tributed content provisioning and distributed applications. The centralized
architecture very much facilitated the Web’s growth because a Web site in a sin-
gle location is much easier to setup and to manage. The distributed architecture
comes at the cost of increased complexity and higher initial investment, but
scales better for large numbers of global users and provides better performance
and reliability.

Example: Server-side load balancing and web caching

Figure 1.3 takes up the previous example scenario and shows how Web caches
can be deployed together with a load-balanced server farm for improved per-

18 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 18

formance and fault tolerance. In the example, a second Web server has been
added to the location of the original server, with a front-end Web switch bal-
ancing the server load. Both servers together with the Web switch form a simple
server farm. Furthermore, two Web caches have been deployed between the
American clients and the Web servers. They watch requests coming from users
in America and temporarily store the responses received. Subsequent requests
for the same object can then be served directly from the Web cache, without hav-
ing to contact the servers in Europe. This not only reduces server load and load
on the transatlantic links, but also improves access delay and service quality
experienced by the American users.

A quick comparison between Figures 1.2 and 1.3 illustrates the added com-
plexity, needed to provide the improved scalability of the extended architecture.

1.3.3 Content Networking Defined

Several different terms and names have been used in the past when referring to
the emerging technologies discussed in the previous sections. Terms such as
“Content Distribution” and “Content Delivery” are probably among the
more popular expressions. Others talked about “Caching Overlays” or “Proxy
Networks.” The vocabulary used in this book largely follows the terminology as
outlined in [RFC 3466]. To facilitate a common understanding and further dis-
cussions, this section defines the meaning of “content” and “content networks,”
followed by an introduction of the functional components that make up a
content network.

1.3 The Evolution of Content Networking 19

Web Clients

Web Servers

Web Caches

Web Switch

Server Farm

Figure 1.3 Improved scalability through Web caches and a server farm.

Ch01.qxd 01/19/2005 12:49 PM Page 19

Definition of terms

The content of a document—or an object, in general—refers to what it says to
the user through natural language, images, sounds, video, animations, etc. This
book uses the term “content” in a more restricted way in the following sense:

The term content refers to any information that is made available to other
users on the Internet. This includes, but is not limited to Web pages,
images, textual documents, audio and video as well as software downloads,
broadcasts, instant messages and forms data.

In particular, content is not limited to a single media type; it can be repre-
sented in various different forms such as text, graphic, or video. Content can
also be represented as a combination of multiple content objects, each of them
having a different media type. Such content is referred to as multimedia content.
Examples include video clips with audio or Web pages incorporating text,
images, and videos.

Content networks provide the infrastructure to better support delivery of rel-
evant content over the Internet. They utilize and integrate the methods mentioned
above, forming a new level of intelligence overlaid on top of packet networks.
Whereas packet networks traditionally have processed information at the protocol
Layers 1–3, content networks include communication components operating on
protocol Layers 4–7. The units of transported data in content networks are appli-
cation-level messages such as images, songs, or video clips. They are typically com-
posed of many smaller-sized data packets, which represent the basic transport unit
of the underlying packet networks. In summary, content networks are defined as
follows:

The term content network refers to a communication network
that deploys infrastructure components operating at protocol
Layers 4–7. These components interconnect with each other,
creating a virtual network layered on top of an existing packet
network infrastructure.

While it might be controversial to include network elements operating on
protocol Layer 4 in the above definition, Layer 4 information can give important
clues for mapping content to applications. Well-known TCP/UDP port numbers
are frequently used for drawing conclusions on the encapsulated application
data. TCP port 80, for example, is by default associated with the HTTP
protocol, indicating that the encapsulated data is most likely related to a Web
transaction.

The necessary ties between overlaid content networks and the underlying
packet network infrastructure are enabled via intermediaries. Intermediaries are
application-level devices that are part of a Web transaction, but are neither the
originating nor the terminating device in the transaction. The most commonly
known and used intermediaries today are proxies and Web caches.

20 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 20

Functional components of content networks

In general, a content network is built of multiple functional components that
work together to accomplish the overall goal of improved content delivery.
These components include:

● Content distribution: Services for moving the content from its source to
the users. These services can comprise Web caches or other devices stor-
ing content intermediately on behalf of the origin Web server. The dis-
tribution component also covers the actual mechanism and the protocols
used for transmitting data over the network.

● Request-routing: Services for navigating user requests to a location best
suited for retrieving the requested content. User requests can be served,
for example, from Web servers or Web caches. The selection of the most
appropriate target location is typically based on network proximity and
availability of the systems and the network.

● Content processing: Services for creating or adapting content to suit user
preferences and device capabilities. This includes modification or con-
version of both content and requests for content. Examples are content
adaptation for wireless devices or added privacy by making personal
information embedded in user requests anonymous.

● Authorization, authentication, and accounting: Services that enable mon-
itoring, logging, accounting, and billing of content usage. This includes
mechanisms to ensure the identity and the privileges of all parties
involved in a transaction, as well as, digital rights management.

It is not required that a content network embodies all of the functional
components listed above. The content network shown in Figure 1.3, for exam-
ple, includes Web caches for improved content distribution and Web switches
for request-routing. However, it is without any component for content
processing.

The remaining chapters of the book will follow-up with a thorough discus-
sion on these logical components, as well as a description of how they are
combined and work together in building more complex content networks.

1.4 The Diversity of Interests in Content Networking

It seems that these days almost everyone has a stake in the Internet and the
World Wide Web. Cable companies and telephone providers are eager to provide
high-speed Internet access to a broad audience, while ISPs providing dial-up
access are trying to gain market share. Backbone service providers are under
pressure to cope with continuing growth in data traffic over the Internet, and
e-commerce companies are concerned about the security, the reliability and
the performance of their Web sites. All these parties have different stakes and
incentives in the Internet business. Understanding the diversity of their interests

1.4 The Diversity of Interests in Content Networking 21

Ch01.qxd 01/19/2005 12:49 PM Page 21

and their role in the value chain of content networking is an important factor to
be considered in the design and deployment of content networks. At a high level,
the value chain of content networking beneficiaries begins with the content
provider and extends to include the content network provider and the content
consumer. This simplified value chain is illustrated in Figure 1.4, with each of
the three parties discussed in more detail below.

Content provider

Large organizations may create and author their own Web pages, but the actual
Web server storing the content is often housed by separate third-party facilities
that provide space and access to the Internet. Such an arrangement is often
referred to as server co-location. Small businesses and home users usually do not
deploy and maintain their own Web servers, but rather use dedicated or shared
hosting options offered by Internet Service Providers. As such, the creator of a
Web page can be different from the entity hosting the Web server. Whenever it is
helpful to distinguish the different roles, this book will refer to the author of Web
pages as the content creator, while the provider of Web server space is called the
content host. If this distinction is not necessary, the term content provider may be
used as an abstraction for both.

Content providers are increasingly faced with the challenge of providing
rich content at consistent, high service levels. They are concerned about response
times for their customers and about permanent availability of their Web sites. In
the past, the lion’s share of content providers have been hosting and managing
all their content themselves, but increased difficulty of meeting customer expec-
tations for content delivery makes partial outsourcing more attractive. Still, con-
tent providers would like to keep full control of the content and the machines

22 C H A P T E R 1 Introduction

Content ProviderContent Network ProviderContent Consumer

Content
Host

Content Creator

Figure 1.4 The value chain of content networking.

Ch01.qxd 01/19/2005 12:49 PM Page 22

that govern the content, access rights, and policies. Furthermore, content
providers rely on insights into content usage through the analysis of usage
statistics. As high access rates often translate into high advertisement revenues,
content providers are typically interested in attracting as many users as the
available infrastructure can handle.

Content networking provider

Content network providers are predominantly in the business of helping content
providers deliver content to the users. Their resources typically provide caching
and replication of data, as well as request-routing and possibly services for con-
tent processing. As their revenue is mainly determined by the amount of data
served out of their network, content networking providers aim to attract as
many content requests as possible. At the same time, they strive to reduce the
aggregate load on their resources and on the network links connecting them,
which leads to serving most content from resources as close to the user as pos-
sible. In Figure 1.4, for example, the content network provider is likely to be
interested in serving most content from the Web cache deployed between the
content consumer and content provider. While this allows revenue generation,
it also relieves load on the link between the Web cache and Web server, thus
reducing the operation costs. As described in the previous section, however,
content providers rely on insights into content usage patterns, which is no
longer available to them if the Web cache serves requests on behalf of the Web
server. In this situation, the diversity of interests requires content networking
providers to deliver detailed usage statistics to the content providers. Otherwise,
it would be unlikely for content providers to let Web caches deliver content on
their behalf.

Enterprises and Internet Access Providers also deploy content networking
technology such as Web caches and Web switches. While this puts them into the
category of content network providers, their primary interest is not in support-
ing content providers. Rather, they want to improve the service quality as expe-
rienced by their customers and optimize resource utilization in their network.
For example, the content networking provider could be seen as an enterprise
deploying Web caches for reducing load on the trunk link between the enter-
prise’s Intranet and the Internet. As providers introduce content networking
technology they reduce their need for transport pipes, which can create a conflict
of business interest between the content networking provider and the providers
of the underlying transport infrastructure.

With profit margins for basic access and hosting services getting slimmer
and slimmer, content networking providers are seeking to differentiate them-
selves from the competition and to add new revenue streams. They are highly
interested in offering value-added content processing services, which allow them
to provide additional customer-tailored services. Akamai is one example of a
content networking provider discussed further in Chapter 5.

1.4 The Diversity of Interests in Content Networking 23

Ch01.qxd 01/19/2005 12:49 PM Page 23

Content consumer

The content consumer is the final destination of the content. Content consumers
are typically Internet users requesting information through their Web browsers.
With the availability of high-speed cable and DSL Internet access, content con-
sumers increasingly thirst for rich multimedia content delivered with high qual-
ity and low service delays. Users of wireless devices, on the other hand, expect
content to be tailored according to their devices’ capabilities and to the available
network connectivity. Furthermore, expectations increase on receiving personal-
ized and location-based content rather than generic content created uniformly
for all users worldwide.

This short digression on the value chain of content networking suggests a
diversity of interests among the parties involved in content networking, quite
often leading to a disparity of interests. Later chapters in this book will discuss
such conflicts and explain their impact on the technology to be developed.

24 C H A P T E R 1 Introduction

Ch01.qxd 01/19/2005 12:49 PM Page 24

C H A P T E R 2

Content Transport

25

Content traverses networks. The World Wide Web is composed of geographi-
cally dispersed servers and clients. Its operation depends on the capability to
interact and to transport messages between these components. Moving bits and
bytes over a network follows certain rules and methods, which are the subject
matter of this chapter. As the Web typically transports its content over the
Internet, we will begin with a discussion about fundamental design paradigms
and protocol architecture. It follows up with a description of the most widely
used transport vehicle on the Web—the Hypertext Transport Protocol (HTTP).
The discussion centers on fundamental characteristics of HTTP, laying the foun-
dation for a better understanding of HTTP-related content networking issues.
Selected HTTP mechanisms and features are described to help illustrate certain
problem areas in content networking. The chapter ends with an introduction
and some thoughts on multicasting, a network technique often used to transmit
data to a large number of recipients.

This chapter is not meant to serve as a detailed introduction or as a refer-
ence to the various Internet and Web protocols. It focuses on fundamental par-
adigms and a few selected technical details insomuch as they will be relevant for
the understanding of content networking issues in later chapters. For a more
detailed coverage and a reference of Internet and Web protocols, the reader is
referred to related books such as [Ste94, Hui95, Com00, KR01].

2.1 Protocol Architecture and Design Paradigms
of the Internet

Just as humans depend on knowing a common language for communicating
with each other, the Web depends on having a well-defined mechanism for inter-
action of servers and clients. The rules, syntax, and semantic interpretation for
this interaction are described in the form of communication protocols. The

Ch02.qxd 1/20/05 2:09 AM Page 25

protocols specify message formats and semantic rules indicating how the various
parts of the messages have to be interpreted, similar to the way foreign languages
specify the words and the grammar to be used for human interaction.
Communication protocols are typically organized in multiple protocol layers,
with each of the layers managing a specific task. Every protocol provides a set
of services to the next higher layer and requests a set of base services from
the next lower layer. Layer interaction takes place via well-defined interfaces.
The division and encapsulation of specific communication functions in layers
enables each protocol to focus on specific sub-tasks, thus modularizing and
simplifying development of complex communication systems. Interoperability
between communication components from different vendors is enabled by
standardization of the protocols and is discussed in more detail in Chapter 10.

The Internet and the World Wide Web follow this architectural principle and
are organized into several protocol layers. The following subsections provide an
overview of this architecture, with focus on two fundamental design paradigms
of the Internet—the hourglass-like protocol layering and the End-to-End
principle.

2.1.1 The Internet Hourglass

Internet applications depend on a suite of communication protocols enabling
message exchange between computers connected to various networks around the
globe. The protocol suite that makes the Internet work consists of five protocol
layers, as depicted in Figure 2.1.

26 C H A P T E R 2 Content Transport

Network Layer

Link Layer

Transport Layer

Application Layer

Physical Layer

IP

TCP

HTTP Telnet DNS

UDP

Wi-FiEthernet

Coax Fiber Radio

Figure 2.1 The hourglass model of Internet protocol.

Ch02.qxd 1/20/05 2:09 AM Page 26

The physical layer is primarily concerned with the electrical and optical
characteristics of the physical medium used to transform bits and bytes into sig-
nals, which the medium will propagate. Widely used transmission media include
copper (both twisted-pair and coax), fiber optics, or radio transmission. The link
layer handles the details of interfacing with the physical communication
medium. It utilizes the serial bit stream service provided by the physical layer to
provide for the transmission of structured data units, such as frames, packets,
or cells, along a single network link. Link layer protocols include Ethernet,
Token Ring, Token Bus, Fiber Distributed Data Interface (FDDI), and Wi-
Fi-compliant protocols based on IEEE standard 802.11. The network layer pro-
vides the forwarding of data packets through the network, across multiple net-
work links and multiple network segments. Network layer protocols reside both
at communication endpoints and at routers inside the network. Some examples
include IP, X.25, and Frame Relay. The transport layer coordinates the data
exchange between endpoints and enhances the service provided by the underly-
ing network layer to meet the needs of the application. Features provided at the
transport layer may include error correction, recovery from packet loss, and con-
gestion control. The most important transport protocols on the Internet are the
Transmission Control Protocol (TCP), which provides loss-less and ordered
packet delivery, and the User Datagram Protocol (UDP), which does not pro-
vide any delivery guarantees. Application-specific communication details are
handled at the application layer, which is typically implemented as part of the
application software. Example protocols include HTTP, Telnet, File Transfer
Protocol (FTP), and the Domain Name System (DNS).

From Figure 2.1, we see that the Internet protocol architecture has the shape
of an “hourglass” [Dee91]. A variety of upper-layer application and transport
protocols is supported by a single, pervasive network layer protocol called
Internet Protocol (IP). IP itself rests upon a diversity of protocols at the data
link layer, which in turn can operate over a variety of physical media. The hour-
glass design, which derives from the “IP over everything” philosophy, provides
the Internet’s immense flexibility in accommodating emerging applications and
new communication technologies. IP acts as a “protocol unifier,” allowing trans-
port protocols to interoperate with IP and not worry about the variety of link
layer protocols. Link layer protocols, on the other hand, have only to support IP
and do not care about the applications running on top of it.

Protocol layering is an effective design principle, which simplifies develop-
ment of complex communication systems. In theory, protocol designers have to
deal with only two interfaces—one to the protocol layer above, and one to the
protocol layer below. If the layering principle is strictly followed, however, cer-
tain optimization opportunities can be lost. In practice, popular protocols have
been designed making some implicit assumptions about other layers in the pro-
tocol stack. Most of these assumptions have not been written down explicitly,
but become apparent with recent changes in technology. As such, transport pro-
tocols have made implicit assumptions about IP that are affected by the under-
lying link layer in use. TCP, for instance, implements a congestion control

2.1 Protocol Architecture and Design Paradigms of the Internet 27

Ch02.qxd 1/20/05 2:09 AM Page 27

scheme based on the assumption that packet loss is caused by network conges-
tion. While this assumption meets the characteristics of traditional wireline net-
works, packet loss on wireless and satellite links can very well be caused by bit
errors rather than congestion. As a result, bit errors on wireless links trigger
TCP’s congestion control mechanism to erroneously reduce its transmission rate.
Similarly, certain protocol mechanisms built into TCP were motivated by early
Internet applications such as FTP and remote login (Rlogin and Telnet). In con-
trast to these applications, a Web client typically establishes multiple simultane-
ous transport connections for parallel downloading of Web objects. While this
can increase overall throughput for an individual user, it can result in unfairness
to other TCP clients and in higher network and server load. Besides, most Web
responses involve only a relatively small amount of data, which does not work
well with TCP’s slow start mechanism [KR01]. These examples make clear that
good performance cannot always be achieved by completely abstracting from
the remaining protocol layers. Instead, assumptions of all other layers have to be
taken into account—whether they have been written down explicitly or not. New
protocols should be tolerant and adaptive, having fewer rigid assumptions about
the characteristics of other protocol layers.

Protocol designers and network architects also need to understand the
impact new mechanisms might have on the existing protocol architecture. This
issue is often raised in the context of content networking, wherein solutions have
been proposed that achieve performance gains by intermixing layer functional-
ity. Message forwarding, for example, is typically considered a network layer fea-
ture. Nevertheless, content networks often use application-specific information
(e.g., URLs or application type) for routing user requests to the most appropri-
ate server. The benefits and the risks of such layer intermingling will be
discussed in later chapters.

Recent design controversies in the Internet community include a related
observation about the progressive fattening of the hourglass waist [Dee91]. Over
time, the Internet has grown immensely and has been forced to adapt to chang-
ing demands and increased stress. Its original design underwent a number of
mutations, and new functionality has been added such as network support for
multicast and service differentiation. As a result, the waist of the hourglass is no
longer as narrow and elegant as it originally was. Added complexity at the IP
layer and the deployment of new types of networking devices (e.g., network
address translators, firewalls, or interception proxies) challenges the Internet’s
core characteristics—mainly the fundamental End-to-End principle, which is
explained in the following section.

2.1.2 The End-to-End Principle

The End-to-End argument is attributed to Dave Clark and his colleagues at MIT,
who identified and named it in a classical paper published in 1984 [SRD84]. The
End-to-End argument describes a design principle that organizes and guides the
placement of functions within a system. When applied to communication net-

28 C H A P T E R 2 Content Transport

Ch02.qxd 1/20/05 2:09 AM Page 28

works, it postulates the sharing of responsibilities between the network and its
connected end hosts. In short, the argument is to keep the core network relatively
simple and move necessary intelligence as much as possible outside the network
into the end hosts. A function or a service should be provided within the net-
work only if it is needed by all end hosts connected to that network. As such, the
core Internet provides only for simple forwarding of individual data packets,
while the end hosts control and provides sophisticated communication services.

The resulting communication architecture, as implemented by the Internet,
is illustrated in Figure 2.2, which depicts the protocols typically involved in a
Web message exchange. Routers inside the network implement protocol layers
one through three, realizing a simple, best-effort packet forwarding service
through the network, across multiple network links, and multiple network seg-
ments. Building on top of IP, end hosts implement higher-layer protocols that
coordinate the message exchange and organize lower-level network resources to
efficiently achieve application-specific design goals. TCP, for example, is often
used to add advanced features such as error control, congestion control, and
ordered packet delivery on top of the basic IP service. These features enable TCP
to provide the underpinning for most application-level protocols such as Telnet,
FTP, and HTTP. The Internet architecture allows many different users with
different applications to share common, lower-level network resources in an
efficient way.

In some sense, the Internet design can be seen analogous to the postal
system. Just as IP provides a best-effort packet delivery service, the standard
postal service makes its best effort to deliver letters to a given address in a timely

2.1 Protocol Architecture and Design Paradigms of the Internet 29

Ethernet

HTTP

TCP

IP

Web Server

HTTP

TCP

IP

Web Client

802.11

End Host Network End Host

Router

802.11 ATM

IP

Router

ATM Ethernet

IP

Figure 2.2 Example placement of protocol functionality in the Internet.

Ch02.qxd 1/20/05 2:09 AM Page 29

manner, but does not give any guarantees for successful delivery. The postal ser-
vice provides such letter delivery based solely on the information written on the
envelope. It does not analyze the content or the purpose of the letter (i.e., the
“application”) when forwarding the letter to its final destination. It is up to the
sender and the receiver of the letter (i.e., the end host) to use the postal delivery
service in the most appropriate way for their specific purpose.

The End-to-End principle, which postulates a dumb network with intelligent
end hosts, is in sharp contrast to the telephone network. In the traditional
telephony world, the network is built of complicated switches, connecting very
simple end devices (i.e., telephones). Building complex functions into the net-
work implicitly optimizes the network for a specific set of applications, while
substantially increasing the cost for different types of uses. This is not a problem
for the circuit-switched telephony network, as its focus is on a single applica-
tion—transmission of real-time voice. The Internet, however, serves as a unify-
ing transmission medium for a variety of applications—ranging from
asynchronous messaging to interactive remote access and real-time distribution
of audio and video. If the Internet had been optimized for circuit-switched,
telephony-style applications, it would hardly have enabled the experimentation
that led to the World Wide Web.

While the End-to-End principle argues that functions be provided within the
network only if they are needed by all clients, it does not preclude the idea of
building a programmable network [RSC98]. Network programmability per se
does not increase functional complexity for all users. It rather allows end hosts
to implement the specific services they need inside the network—possibly result-
ing in improved efficiency and enabling new kinds of applications. This outcome
is in line with the End-to-End argument, which is more about who should pro-
vide and control the code for specific functions rather than about where the code
should be executed. However, as network designers look into ideas and
approaches to provide specific services inside the network, it is important to
understand whether the expected benefits outweigh potential architectural costs,
such as loss of simplicity and potential costs concerning network robustness and
data integrity. Such considerations often lead to highly polarizing discussions, as
seen in the context of active networking [TSS97, RSC98] and, more recently,
in connection with content services at the network edge [RFC 3238]. We will
elaborate on this topic later.

A related concept often mentioned in this context is network transparency. It
refers to the original Internet concept of a single universal logical addressing
scheme and the mechanisms by which packets flow unaltered from source to des-
tination [RFC 2775]. Application messages arrive at their destinations exactly
the way they have been sent from the source—no modifications are made during
message transport. In other words, the network is transparent to applications.
Returning to the postal analogy, the Internet handles data packets just as the
postal system handles letters. The postal service might modify the envelope of a
letter, for example by stamping the postmark, but it will never alter the content
of the enclosed letter. In a different context, postal mail delivery is based on

30 C H A P T E R 2 Content Transport

Ch02.qxd 1/20/05 2:09 AM Page 30

globally unique addresses. It assumes the existence of a single logical address
space covering the entire world. The recipient of a letter is unambiguously given
by the destination address on the envelope, just as the originator can be identi-
fied by the given return address. In analogy, the original Internet design devel-
oped a single logical address space covering the whole Internet, which allows
using network addresses as unique labels for Internet hosts. Whenever a data
packet is sent to a specific network address, the receiving host is unambiguously
given. Similarly, receivers can determine the originating host of an incoming
data packet based on its source address. It was not envisioned that the source
address or the destination address of a data packet would be changed by the
network.

The uniqueness and durability of network addresses have been exploited in
many ways, in particular by incorporating them in higher layer protocols or
application mechanisms. TCP, for example, includes the network address into its
checksum, and many Web applications use a message’s network address for iden-
tification purposes. Nevertheless, driven by the threat of IPv4 address exhaus-
tion and by new business models, new inventions such as Network Address
Translators (NATs) and interception proxies now cause non-uniqueness and
volitility of network addresses. As a result, many applications will fail, unless
they are specifically adapted to avoid the assumption of address transparency.
Possible mechanisms to overcome such problems include insertion of applica-
tion-level gateways, or having the NAT modify message payloads on the fly. In
either case, the mechanism is application-specific and, therefore, not universal.

These observations illustrate that the fundamental design principles of
the Internet and the resulting dependencies play an important role when
introducing new communication mechanisms. This applies in particular to
the area of content networking, as several proposed mechanisms touch those
fundamental principles. Later chapters will take up these considerations
when describing interception proxies or content services provided from inside
the network.

The Internet, with its fundamental design principles, is the main vehicle for
transmitting content between geographically dispersed sites on the Web. The
following section touches on how content is transmitted over the Internet by
introducing the application-level transfer protocol of the Web—the HTTP.

2.2 Hypertext Transport Protocol—HTTP

The HTTP is the lingua franca of the Web. It is an application layer protocol
used for the transfer of Web resources, whether these are documents, Web pages,
or images. Although designed to be usable over any underlying transport-layer
protocol, virtually all implementations of HTTP run on top of the TCP proto-
col. HTTP was originally proposed by Tim Berners-Lee in 1990 and evolved fur-
ther in two distinct phases—from protocol version 0.9 to version 1.0 over a
period of four years, and from version 1.0 to version 1.1 in another four years.

2.2 Hypertext Transport Protocol—HTTP 31

Ch02.qxd 1/20/05 2:09 AM Page 31

This chapter introduces the key concepts of HTTP based on HTTP/1.0 [RFC
2621]. When extensions of HTTP/1.1 [RFC 2616] are discussed, they will be
mentioned explicitly.

2.2.1 HTTP Characteristics

Just as every human language has its own characteristics, communication pro-
tocols can be described by their properties and attributes. This section intro-
duces the Hypertext Transport Protocol by discussing some of its key
characteristics, with focus on the implemented request-response mechanism,
resource identification, protocol statelessness, and its ability to carry metadata
information about Web resources.

Request-response mechanism

Like most application-layer protocols on the Internet, HTTP uses a request-
response–based communication scheme, as illustrated in Figure 1.1. An HTTP
transaction is always initiated by a client sending a request to a server. The pro-
tocol specifies a set of methods that are chosen by the client to indicate which
operation has to be executed. Example operations include the creation, modifi-
cation, or transmission of a Web object. The server generates a response and
transmits it back to the client. The response, for example, may include a
requested Web page. HTTP transactions are always initiated by the client, and a
server never generates a response without being asked for it by a client. It is pos-
sible, however, that a server chooses to not respond to an incoming request.

Although the request-response mechanism occurs directly between server
and client, it is possible that additional systems in the middle participate in the
message exchange. Such systems include proxies, Web caches, gateways, or
other systems. Although these systems can play an active role in a Web trans-
action, they do not change the fundamental scheme of a request-response
mechanism.

Resource identification

HTTP is used by clients to request specific actions on resources that can reside
anywhere on the network. A resource in this context is a Web object, a service,
or any collection of entities that can be uniquely located on the network. For
example, a client could request, via HTTP, transmission of a specific Web page
or the execution of a certain service. As such, HTTP relies on a naming mecha-
nism to uniquely identify global resources. This is achieved by using Uniform
Resource Identifiers (URIs) in all HTTP transactions, as introduced in Section
1.2.2. Each HTTP request includes a URI, indicating the resource to which the
request has to be applied. The server applies the requested method to the given
resource and sends the generated response back to the client.

32 C H A P T E R 2 Content Transport

Ch02.qxd 1/20/05 2:09 AM Page 32

Statelessness

After transmitting an HTTP response back to the requesting client, a server does
not maintain any information about the transaction. Subsequent request/
response pairs are completely independent and are not related to past client
requests. Each HTTP response is generated independently, without any knowl-
edge of previous requests or responses.

The absence of any state preservation across transactions is referred to as
statelessness. HTTP has been designed as a stateless protocol to ensure its scal-
ability and robustness. In contrast, stateful protocols have to maintain the his-
tory of past transactions, which is complex and does not scale well as the
number of incoming requests increases. In addition, the state information may
be inconsistent if a client or a server crashes, thus requiring complex mecha-
nisms for reconciliation. All these problems have been circumvented by not
including any intrinsic support for state maintenance in HTTP.

As the Web evolved, though, the statelessness of HTTP turned out to be a
problem for some emerging applications. E-commerce, for example, requires a
server to keep track of previous customer transactions. It is important for
the server to remember which products a customer has put into her shopping
cart, or which shipping option she has chosen during checkout. Such informa-
tion has to be maintained, even if one of the requests in sequence is aborted.
In an approach to overcome these difficulties, cookies have been introduced.
A discussion of HTTP’s cookie mechanism follows in Section 2.2.5.

Support for metadata

In certain scenarios, it is helpful for the client to receive some additional infor-
mation about the characteristics of a requested resource. For example, the last
modification time of a resource can be used in deciding whether a response
should be cached locally, or when a response should be considered stale.
Likewise, processing is improved with information about the encoding of a
returned Web object. Other examples of additional information include the lan-
guage of a text object or the size of an object. Information describing the attrib-
utes of a resource is referred to as metadata. HTTP has been designed so that
metadata about a resource can be included in the messages exchanged between
client and server. Depending on the resource type and the respective situation,
different metadata can be included. While indicating the language of a text
object might be helpful, for example, the same would not make sense for binary
code or photos. The following section on HTTP message formats includes a
discussion on how metadata is embedded in HTTP messages.

2.2.2 HTTP Message Format

A message is the fundamental communication unit in HTTP. It occurs either in
the form of a request sent from a client to a server, or as a response sent from a

2.2 Hypertext Transport Protocol—HTTP 33

Ch02.qxd 1/20/05 2:09 AM Page 33

server to a client. Designed with user friendliness and extensibility in mind,
HTTP messages are text-based, making them readable by users, simple to debug,
and open for extensions.

Each request message starts with a request line, whereas response messages
begin with a status line. The request or status line is terminated by a carriage
return/line feed (CR/LF), and is followed by zero or more header lines that
together make up the HTTP header. Header lines are intended to carry addi-
tional information—the metadata—associated with the resource that is referred
to in the request. The body of an HTTP message is separated from the last
header line by an additional carriage return/line feed (i.e., by an empty line). The
message body itself is optional, meaning that HTTP messages do not necessar-
ily have to carry a payload (some HTTP message types must not carry a payload
per se). An HTTP request asking for delivery of a Web page, for example, does
not include any data in its body—all the required information is carried in
HTTP headers. In turn, the corresponding HTTP response delivers the
requested HTML code in its message body.

The description above focuses on the most common HTTP header structure,
but does not provide a complete definition. For example, it is possible for a sin-
gle HTTP header field to span multiple lines using what is called linear white
space (LWS). For a comprehensive reference, the reader is referred to the HTTP
standards, RFC 1945, and RFC 2616. More details about the syntax and the
semantics of HTTP request and response messages follow.

HTTP request messages

The format of an HTTP request message is illustrated in Figure 2.3. The mes-
sage begins with a request line that consists of a request method, followed by a
URI indicating the requested Web object (i.e., the “Request-URI”), and the pro-
tocol version. In the given example, a client is using the GET method to request
a file named /index.html via HTTP version 1.0. The request line is termi-
nated by a carriage return/line feed and followed by optional header lines. Each

34 C H A P T E R 2 Content Transport

GET /index.html HTTP/1.0

Host: www.content-networking.com

Date: Sun, 18 Jul 2004 04:28 EST

User-Agent: Mozilla/5.0 [en] (WinNT; U)

Accept-Language: en-us

{no message body here}

Header
Lines

Request Line

CR/LF

Message Body

Figure 2.3 HTTP request message.

Ch02.qxd 1/20/05 2:09 AM Page 34

header line begins with a header field name, which is separated by a colon from
one or more attributes. The example above shows four separate header lines indi-
cating the hostname of the addressed Web server, the date and time the request
was issued, the user agent of the client (e.g., the type of Web browser), as well
as, the preferred language of the client. The message header is terminated by an
empty line (i.e., an additional CR/LF) and followed by an optional message
body. In our example, the message body is empty, which is not necessarily the
case for all HTTP request messages. HTTP requests using the POST method, for
example, typically include a non-empty message body that might carry input
from a Web form.

In general, the method included on the first line of a request message tells a
Web server what action to perform on the Web object identified by the subse-
quent URI. In the example given above, the request line tells the Web server to
apply the GET method to the resource /index.html. The specification of
HTTP 1.0 defined only three methods—GET,POST,and HEAD. Some browser
and server developers soon started to implement additional methods such as
PUT,DELETE,LINK,and UNLINK. The rarely implemented LINK and UNLINK
methods, for example, allowed creation and deletion of Unix-style links between
URIs and other resources. They were dropped in the specification of HTTP,
while some of the other methods survived and are now part of the protocol spec-
ification. The request methods specified in HTTP/1.1 are discussed below.

GET Method

The GET method instructs a Web server to return whatever information is
identified by the Request-URI. Most commonly, the URI refers to an HTML
document or an image, which the server sends to the requesting client. It is
possible, though, that the Request-URI refers to a data-producing program
rather than a static Web object. In this case, the server will execute the identi-
fied program and return the generated data output to the client. Typical exam-
ples include personalized Web pages that are dynamically generated when the
HTTP request comes in. GET certainly is the most commonly used method
today, since retrieval of information still is the main application on the Web.
The previously discussed Figure 2.3 shows an HTTP message carrying a GET
request.

POST Method

While the GET method is used for information retrieval, the POST method is
used to submit information to a Web server. Use cases include posting to a bul-
letin board, the submission of a user form, addition of database entries, or pro-
viding input parameters for a server-side software program. The information to
be submitted is included in the message body of a POST request. The actual
function performed by the POST method usually depends on the Request-URI.

2.2 Hypertext Transport Protocol—HTTP 35

Ch02.qxd 1/20/05 2:09 AM Page 35

Any output generated in response to the submission is sent back to the submit-
ting user. For example, the request

POST /phonebook.cgi HTTP/1.0
Date: Sun, 18 Jul 2002 04:28 EST
User-Agent: Mozilla/5.0 [en] (WinNT; U)
Accept-Language: en-us
Content-Length: 14

700-555-4141

indicates that the server should execute a program named /phonebook.cgi to
look up the phone number 700-555-4141 transmitted in the message body. The
example also shows that a POST request usually includes a Content-Length
header indicating the length of the message body. In the example, the server
would execute the referred program with the given input, and send the search
result to the client indicating the name and address of the customer associated
with the submitted phone number.

While it would have been possible to transmit the phone number in the above
example as part of the URI in a GET request (e.g., in the form of /phone-
book.html?number=700-555-4141), using the POST method yields several
advantages. First, most implementations limit the length of a Request-URI, thus
limiting the number and the length of parameters that could be embedded in a
URI. Second, Request-URIs are typically logged on all systems involved in a
Web transaction. As such, input parameters would end up in the system log files,
which might violate privacy preferences of the user. Data submitted in the body
of a POST request, in contrast, is typically not logged.

HEAD Method

The HEAD method is identical to GET except that the server’s response will not
include a message body. The HTTP headers in the response to a HEAD request
are identical to the information sent in response to a GET request. As such, this
method is practical for obtaining resource metadata without having to transfer
the actual resource, thus reducing network load. It is often used for debugging
purposes and for testing hypertext links for validity, accessibility, and recent
modification. For example, the HTTP request

HEAD /index.html HTTP/1.0
Host: www.content-networking.com
Date: Sun, 18 July 2004 04:30 EST

could be used to verify the existence of the resource /index.html, or for
checking whether the resource has been modified after a specific time. The mes-
sage a server would send in response to the shown HEAD request is identical to
the message the same server would send in response to the GET request shown in
Figure 2.3 except that it has no message body.

36 C H A P T E R 2 Content Transport

Ch02.qxd 1/20/05 2:09 AM Page 36

PUT Method

The PUT method requests a server store the enclosed data under the supplied
Request-URI. If the Request-URI refers to an already existing resource, the
resource enclosed in the message body should replace the existing one. If the
referred resource does not yet exist, it will be created. The PUT method could be
used, for example, to publish Web objects to a Web server. Due to security con-
cerns, however, most Web servers require the content authors to use other mech-
anisms, such as FTP, for Web publishing.

DELETE Method

The DELETE method is used to remove the Web object identified by the Request-
URI from the Web server. It provides a convenient mechanism to remotely delete
objects, without having to actually log into a Web server. Obviously, allowing
remote delete operations can be very risky, which is why the Web server is free to
ignore the request for deletion.

TRACE Method

The TRACE method is used to invoke a remote, application-layer loopback of
the request message. On receiving a TRACE request, a server reflects the received
request back to the requestor as the body of its response message. This method
allows a client to see what is being received at the server. This knowledge can
then be used for testing or diagnostic purposes. By using the Max-Forward
header in the request, it is possible to limit the number of proxies or gateways
that can forward the request to the next inbound server. This can be useful when
targeting a specific intermediary, or when attempting to trace a request chain
that appears to be failing or looping in mid-chain.

OPTIONS Method

The OPTIONS method is used to request information about various communi-
cation options available on the server. It allows the client to detect the options
and requirements associated with a resource, or the capabilities of a server.

HTTP response messages

The syntax of a HTTP response message is very similar to the HTTP request
message format. As illustrated in Figure 2.4 an HTTP response message begins
with a status line, which includes the protocol version, a numerical response
code indicating the result of an operation (e.g., success or failure), and a phrase
explaining the result code (the reason phrase). In the example, the server
supports HTTP version 1.0 and uses a result code of 200, indicating that the

2.2 Hypertext Transport Protocol—HTTP 37

Ch02.qxd 1/20/05 2:09 AM Page 37

request succeeded. The status line is terminated by a carriage return/line feed
and followed by optional header lines. The example shows four header lines indi-
cating the day and time when the response was generated, the server type, the
day and time when the included resource was last modified, and the content type
of the resource. The message header is terminated by an empty line (i.e., an addi-
tional CR/LF) and followed by an optional message body. In most cases, the
message body includes the Web object that was requested by the client using a
GET request.

Result Code and Reason Phrase

The result code is a three-digit integer indicating the outcome of the server’s
attempt to satisfy the client request. The reason phrase is meant to give a short
textual description of the result code. The code itself is intended for use by
machines and computers, while the reason phrase is intended for human inter-
pretation. The first digit of the reason phrase specifies the class of response. The
last two digits do not have any categorization role. The first digit establishes the
following five categories:

● 1xx: Informational—Request received, continuing process.
● 2xx: Success—The action was successfully received, understood, and

accepted.
● 3xx: Redirection—Further action must be taken to complete the

request.
● 4xx: Client Error—The request contains bad syntax or cannot be ful-

filled.
● 5xx: Server Error—The server failed to fulfill an apparently valid

request.

The following humorous interpretation—found on a web discussion forum as “the
real interpretation” of a Web server’s response—may be easier to remember.

38 C H A P T E R 2 Content Transport

HTTP/1.0 200 OK

Date: Sun, 18 Jul 2004 04:30 EST

Server: Apache/1.3.12 (Unix)

Last-Modified: Wed, 26 May 2004 ...

Content-Type: text/html

data data data data...

Header
Lines

Status Line

CR/LF

Message Body

Figure 2.4 HTTP response message.

Ch02.qxd 1/20/05 2:09 AM Page 38

● 1xx: Informational—Not done yet.
● 2xx: Success—You win.
● 3xx: Redirection—You lose, but try again.
● 4xx: Client Error—You lose; your fault.
● 5xx: Server Error—You lose; my bad.

Web applications are not required to understand the meaning of all speci-
fied status codes, though such understanding is obviously desirable. However,
applications must understand the class of any result code, as indicated by the
first digit, and treat any unrecognized response as being equivalent to the x00
status code of that class.

The individual values of numeric status codes and the corresponding reason
phrases are defined in the HTTP protocol specifications RFC 1945 and RFC
2621. Note that the reason phrases can be changed without affecting the opera-
tion of the protocol. Hence, automation scripts should strictly parse for the
numeric code rather than the reason phrase. An example set of result codes and
corresponding reason phrases is given below.

● 200 OK: The request succeeded and the requested information is enclosed
in the response.

● 204 No Content: Indicates successful completion of the request with
no new information to send back. This tells the client that no changes are
to be made from his current document view, that is, the browser display
will not change.

● 300 Multiple Choices: Several instances of the requested resource
are available, with their location and other relevant information being
indicated in the response.

● 301 Moved Permanently: The requested object has moved perma-
nently to a new location, which is indicated in the response. The client
should use the new location from now on.

● 302 Moved Temporarily: The requested object has moved tem-
porarily to a new location, which is indicated in the response. The client
should continue to use the old location in future requests.

● 304 Not Modified: Indicates that the requested resource has not
been changed since the time included in the request. The resource itself
is not returned in the response.

● 400 Bad Request: The server was not able to understand the request
due to malformed syntax.

● 404 Not Found: The server is unable to locate the requested resource.
This result is often caused by a user mistyping the request URI in his or
her browser, or by requesting a non-existent Web page.

● 500 Internal Server Error: The server encountered an unex-
pected internal error and is unable to determine the precise error condition.

There are many more result codes defined. For a complete list and explana-
tion, the reader is referred to RFC 1945 and RFC 2616. Additional result codes
will be discussed later.

2.2 Hypertext Transport Protocol—HTTP 39

Ch02.qxd 1/20/05 2:09 AM Page 39

2.2.3 HTTP at Work—Try It Hands-On!

Now that we have outlined the fundamental format of the HTTP messages, its
semantic meaning, and how it is exchanged between client and server, it might
be interesting to see it working hands-on. Fortunately, HTTP messages are writ-
ten in plain text, so it is not necessary to create and analyze complicated binary
messages. Instead, all we need to do is open a Telnet session to our favorite Web
server, type in a correct HTTP message, and wait for the server’s response. Telnet
is a terminal emulation program that allows users to connect to a server on the
network. Today, Telnet is included in most operating systems.

To illustrate, consider retrieving a page from the Elsevier Web site
(www.elsevier.com). Open a Telnet shell and connect to www.elsevier.com at
port 80 (i.e., a well-known HTTP port) by typing

> telnet www.elsevier.com 80 [return]

at the command prompt. (Do not type the ‘>’ character, it just represents the
command prompt.) Hit the [return] key as indicated and wait for the connection
to be established. The screen typically displays something like

> Trying. . .
> Connected to www.elsevier.com
> Escape character is 'ˆ]’.

It is also possible that the display changes to a blank screen while waiting for
further input. When the connection has been established, type

> GET /index.html HTTP/1.0 [return][return]

and press [return] two times as indicated.1 Depending on your software, however,
you might not be able to see what you are typing. The line you entered represents
a simple, but complete HTTP request consisting of a single request line. The
request issues a GET method asking the server to deliver the resource at
/index.html. The protocol version is indicated as HTTP version 1.0. By hit-
ting the [return] key twice, an empty line is added, terminating the HTTP header
and adding an empty message body. On receiving the HTTP request, the server
generates the appropriate response, which in turn is displayed in your terminal
window. In our example, you can expect a response similar to:

> HTTP/1.1 200 OK
> Content-Type: text/html
> Content-Length: 106
> Last-Modified: Tue, 25 Nov 2003 11:14:18 GMT
> Server: Apache/1.3.20 (Unix)

40 C H A P T E R 2 Content Transport

1This assumes that the Telnet software is configured to send CR/LF for each [return], or the Telnet server is robust
and accepts bare LF as request line terminator. Both assumptions are usually true, but may vary for some users.

Ch02.qxd 1/20/05 2:09 AM Page 40

> Date: Sun, 18 Jul 2004 16:51:57 GMT
>
><HTML>><HEAD>
> {some text here}
> </HEAD></HTML>
>
>Connection closed

The response delivers the corresponding page of Elsevier’s Web server.
Connect to different Web servers, issue different requests, monitor possible error
responses, and experience the difference between a GET and a HEAD request
hands-on. It is a great help when learning HTTP to see exactly how a server
responds to a particular request. It also helps when troubleshooting, and it will
prepare you to understand the more advanced HTTP features discussed in the
following sections.

2.2.4 Improvements in HTTP/1.1

Like many communication protocols, HTTP has been evolving over time.
Version 1.1 has been redefined over the last few years to address new needs and
to overcome some of the shortcomings of version 1.0. Changes were made to
improve the average response time, which is achieved by allowing multiple trans-
actions to take place over a single, persistent TCP connection. Delivery of
dynamically generated pages has been improved by supporting chunked transfer
encoding, which allows a response to be sent before its total length is known.
Other additions allow multiple domains to be served from a single IP address,
enabling a more efficient use of the existing IP address space. While a few more
improvements have been made in HTTP version 1.1, the following section will
focus on the improvements just mentioned.

Persistent connections

HTTP messages are typically transferred over a TCP connection. In HTTP 1.0
and earlier versions, the client has to establish a new, separate TCP connection
for each resource to be retrieved. Since opening and closing TCP connections
causes additional delays and requires a substantial amount of bandwidth, mem-
ory, and CPU time, this approach turns out to be problematic in practice. Most
Web pages embed several components such as images or banners that are likely
to reside on the same server as the page itself. As illustrated in Figure 2.5A, a
HTTP 1.0 client has to open and close separate TCP connections for each of
those objects, which results in increased access delays and in additional protocol
overhead. Much can be saved in HTTP/1.1 with a default behavior allowing
multiple requests and responses to be sent through a single persistent connection.
As shown in Figure 2.5B, HTTP/1.1 default behavior leaves the connection open
after a response has been sent. The client can send subsequent requests to the

2.2 Hypertext Transport Protocol—HTTP 41

Ch02.qxd 1/20/05 2:09 AM Page 41

42 C H A P T E R 2 Content Transport

:.
Repeat above steps

for each request

(a) HTTP/1.0 default behavior

TCP: SYN

TCP: SYN/ACK

TCP: ACK

HTTP: GET
HTTP: Response

TCP: SYN

TCP: SYN/ACK

TCP: ACK

TCP: ACK
TCP: FIN

TCP: FIN

TCP: ACK

Client Server

TCP: SYN

TCP: SYN/ACK

TCP: ACK

HTTP: GET
HTTP: Response

HTTP: GET
HTTP: Response

(b) HTTP/1.1 default behavior

Possibly more
HTTP requests/responses

Client Server

TCP: FIN
TCP: ACK

TCP: FIN

TCP: ACK

Figure 2.5 Client-server interaction in HTTP/1.0 and HTTP/1.1.

same server using the established TCP connection—without the overhead and
delay associated with repeated TCP connection establishment and teardown.
Persistent connections, however, also have drawbacks. For example, a busy
server has to maintain a large pool of idle connections. Servers also proactively
close connections, ending up with unusable connections in a long TIME_WAIT
TCP state.

A related concept often used in conjunction with persistent connections is
request pipelining. Request pipelining allows a client to transmit several requests
in a series over a single connection without having to wait for a response. If a
client pipelines multiple requests, the server has to send responses in the same
order as the requests went out, allowing simple mapping between responses and
their corresponding requests.

A persistent connection can be closed by either one of the peers. If a client
wants to close a persistent connection, it includes a Connection: close
header in the next outgoing request. This indicates that the server should tear-
down the TCP connection after the corresponding response has been sent.
Clients use this mechanism if they do not want to support persistent connec-
tions, or if they know the request will be the last one sent on that connection.
Similarly, a server can include a Connection: close header in a response.
This indicates that the server will close the TCP connection following that
response, and the client should not send any more requests through that connection.

Ch02.qxd 1/20/05 2:09 AM Page 42

2.2 Hypertext Transport Protocol—HTTP 43

Since a server is allowed to close a connection before all outstanding responses
are sent, a client must always keep track of requests and resend them as needed.
The teardown of idle persistent connections is typically triggered by a timeout
period or by a system reaching its limit on the number of idle connections, caus-
ing the oldest idle connection to be closed.

Persistent connections are the default in HTTP/1.1, so no specific indication
is required to use them. They help improve performance for delivering conven-
tional, static Web content but introduce a new challenge in supporting dynam-
ically created content. The following paragraph discusses this issue and explains
a solution—chunked encoding.

Chunked encoding

It is important for a Web client to know when it has received a complete server
response. HTTP/1.0 allows servers to indicate the size of a response message
through the Content-Length header field. The message length can easily be
determined for static resources. For dynamic resources, however, a server has to
wait until the response is fully generated before being able to compute its length.
As a result, if the server wants to keep the underlying TCP connection open, it
cannot start sending a response until the resource has been created in its entirety.
This is not a problem for short response messages, but it introduces noticeable
delay and memory exhaustion for long responses. For these reasons, HTTP/1.0
servers did not use the Content-Length header for dynamic content. Instead,
a server indicated the end of a dynamically generated message by closing the
underlying TCP connection. Since this mechanism does not allow use of per-
sistent connections, an alternative way for indicating the end of a message was
required in HTTP/1.1.

The problem is solved in HTTP/1.1 by introducing chunked transfer encod-
ing, which allows the sender to break a message body into arbitrary-sized chunks
and to transmit them separately. Since the chunks themselves can contain as lit-
tle as one byte of content, their length can easily be determined and precedes the
chunk. The end of the entire message is indicated by adding a zero-length chunk.
Receipt of the zero-length chunk indicates to a receiver that the entire message
has been transmitted and no more chunks for this message are expected to
arrive. Thus, the receiver is ensured that the entire message has successfully been
received. Chunked encoding can be used for both HTTP requests and HTTP
responses, though it is more commonly used for dynamically created response
messages.

As an illustration, consider the response message in Figure 2.6, which is
divided into separate chunks. The Transfer-Encoding: chunked header
indicates that the message is transmitted in several chunks, requiring the receiver
to reassemble the full message from separate pieces. In the example, the message
is split into three chunks, with the first chunk having a length of 542 bytes (21E
in hex), the second one having a length of 97 bytes, and a zero-length chunk to
indicate the message end. Each chunk is preceded by a number indicating its
size.

Ch02.qxd 1/20/05 2:09 AM Page 43

It is important to understand that HTTP chunking has no impact on how
the underlying transport layer treats the various data segments. A single HTTP
chunk might span multiple IP packets, while it is also possible for multiple
chunks to fit into a single IP packet.

2.2.5 Client-Server Interaction

HTTP allows Web clients and Web servers to interact in a variety of different
ways, starting from simple page download to complicated e-commerce transac-
tions. The different types of interactions are supported through several protocol
mechanisms in HTTP. This section examines two representative examples that
are most relevant to content networking—cookies and user authentication.
Additional interaction mechanisms will be discussed in later chapters.

Cookies

HTTP is a stateless protocol, which means that the server does not retain any
information across multiple client requests—the server generates a response and
forgets about the client and its request (except for considering TCP-level infor-
mation that needs to be maintained for persistent connections). Although this
characteristic proved to be crucial for the scalability of the Web, it also turned
out to be a problem for certain applications. A shopping site, for example, needs
to keep track of the goods a user has already put into her virtual shopping cart.
The provider might also be interested to learn whether a customer has visited the
site before, so that appropriate content can be presented. Without alternative
mechanisms, the server would have to maintain such state information over an

44 C H A P T E R 2 Content Transport

HTTP/1.1 200 OK
Server: Apache/1.2.7-dev
Date: Sun, 18 Jul 2004 05:28:00 GMT
Transfer-Encoding: chunked
Content-Type: text/html

21E
<...542 bytes of chunked data...>

61
<...97 bytes of chunked data...>

0

1st Chunk

2nd Chunk

3rd Chunk

Figure 2.6 A chunked HTTP response.

Ch02.qxd 1/20/05 2:09 AM Page 44

extended period for all of its customers—potentially thousands or millions of
users—certainly not a scalable approach.

Cookies are HTTP’s way to manage such information, shifting the burden of
state maintenance from the server to the client. A cookie is a small amount of state
information that a Web server sends to a Web client for storage and presentation
with future requests. The mechanism is illustrated in Figure 2.7. When a client
contacts a cookie-enabled server for the first time, the server’s response includes a
Set-cookie: <cookie> header line, whereby <cookie> represents the
actual cookie value—an arbitrary string selected by the server. The client does not
interpret the cookie string, but simply stores it on the local disk in a so-called
cookie file. For all subsequent requests to the same server, the client software
checks for previously stored cookies from that server and includes the cookie
information in the Cookie header field of outgoing requests. This way, a server is
presented the previously returned state information with each request coming
from the client. For example, a server could assign an ID number to the client on
the first access, and return the ID in the Cookie-set header. Whenever the client
accesses the site again, it presents the previously assigned ID number in the
Cookie header line of the request, allowing the server to recognize the client and
to perform appropriate actions (e.g., a database lookup to retrieve the customer’s
profile). It is also possible to encode information about previous client actions in
the cookie. For example, a server could track a user’s browsing behavior by includ-
ing information about which pages a user has visited in the current session. This
is made possible by allowing a server to modify and to add cookies using the

2.2 Hypertext Transport Protocol—HTTP 45

Usual HTTP request

Usual HTTP response, including
header line Set-cookie: <cookie>

Usual HTTP request, including
header line Cookie: <cookie>

Usual HTTP response

1st Client
Request

2nd Client
Request

Cookie-Specific
Action

Client Server

Figure 2.7 An illustration of the HTTP cookie mechanism.

Ch02.qxd 1/20/05 2:09 AM Page 45

Set-cookie header with any response. The cookie mechanism was first intro-
duced in 1994 by Netscape [Net94]. Further standardization moved into the IETF,
which formalized the use of cookies in RFC 2965.

Cookies represent a simple, yet powerful and scalable mechanism to main-
tain state across multiple HTTP requests. There are many reasons why Web sites
might be interested in using cookies. These range from the ability to personalize
information or to help with online sales and services. Cookies also provide pro-
grammers with a quick and convenient means of keeping site content fresh and
relevant to the user’s interests. Cookies are also used to help with back-end inter-
action, which can improve the utility of a site by being able to store personal
data that the user has shared with a site.

However, cookies are also used for tracking user behavior or demographics,
which caused widespread concerns about user privacy. While cookies themselves
do not act maliciously on computer systems, nor access a machine’s disk or
spread viruses, they can be used to learn about user behavior and for tracking a
user’s path through the Web. Furthermore, cookies are transmitted in clear text
without any encryption applied to them by the network. An eavesdropper is able
to read and possibly modify the content of a cookie. As such, privacy and secu-
rity is reduced when personal data is sent as part of a cookie unless a secure
communication channel is used or the server takes precaution and encrypts the
cookie value itself. All these privacy concerns lead many users to disable the
acceptance of cookies in their browser software, making it impossible for Web
sites to use this mechanism to maintain state information. This fact should be
considered when developing Web sites and networking technology for the Web.
It might be a good idea to include cookies for optimization purposes, but a sys-
tem should also work without relying on users to accept all presented cookies.

The discussion on cookies already touched on the issue of user identifica-
tion. It was not yet explained, however, how users can be authenticated and what
support HTTP offers—a topic addressed in the following section.

User authentication

There are many reasons why we may want a Web server to control access to cer-
tain resources. We do not generally intend for Web pages containing private and
personal information to be viewed by the entire world, but only by our friends
and relatives. Likewise, a company might restrict access to proprietary informa-
tion to its employees only. Providers of paid-for services want to ensure that only
paying users can actually access those services. These examples illustrate the
need for access control, which includes mechanisms for user authentication and
for authorization. The former deals with identifying a user who originated a
request, while the latter verifies whether the user is granted access to the
requested resource. Mechanisms for authorization are implemented locally on
the Web servers and have no direct impact on the communication protocol used
between client and server. Therefore, this section focuses on user authentication
and related features built into HTTP.

46 C H A P T E R 2 Content Transport

Ch02.qxd 1/20/05 2:09 AM Page 46

Users typically authenticate themselves to a system by entering a username
and a password. The server matches this input with a password file stored locally
and either denies the request or proceeds to establish a session with the user. If
the user is accepted, the server remembers the user identity for the duration of
the session. HTTP, however, is stateless and does not include the notion of a ses-
sion. Each user request is handled separately and independently from previous
ones. Hence, a Web server must perform user authentication for each individual
request, even if the same user has been authenticated before. Since it would be
annoying and time-consuming for a user to be required to enter his or her user-
name and password for each individual request, the user’s browser software will
remember previously entered authentication credentials and automatically
include them in the HTTP headers of subsequent requests to the same server.
Having the authentication credentials in each request allows the server to treat
all requests independent from each other. The browser software typically deletes
stored authentication credentials once the browser is closed, unless it is
instructed otherwise by the user.

HTTP allows a server to select from different kinds of authentication meth-
ods, including basic authentication or digest access authentication [RFC 2617].
Figure 2.8. illustrates the basic authentication mechanism, which follows a
simple challenge-response scheme. A user clicks on a Web link pointing to a
protected resource on the server. The click results in an HTTP request being sent

2.2 Hypertext Transport Protocol—HTTP 47

Usual HTTP request

HTTP response with code 401, including
header line WWW-Authenticate:<string1>

Same HTTP request, including
header line Authorization:<string2>

Usual HTTP response

1st Client
Request

2nd Cient
Request

Usual HTTP request, including
header line Authorization:<string2>

Usual HTTP response

Client Server

Ask user for
authentication
credentials

Figure 2.8 Basic authentication in HTTP.

Ch02.qxd 1/20/05 2:09 AM Page 47

to the server. The server realizes that the requested resource is protected and that
it needs to authenticate the user. The server now returns a 401 Unauthorized
response message including a challenge in the WWW-Authenticate header
field. On receiving the response, a browser prompts the user for his username
and password. The client then resends the previously issued request, but includes
the authentication credentials in an Authorization header field of the out-
going request. If the server is satisfied with the credentials, it will respond with
a regular HTTP response message. For all subsequent requests to the same
server, the client’s browser software will automatically include the appropriate
Authorization header field, thus eliminating the additional authentication
step.

While the basic authentication mechanism of HTTP is a first step towards
protecting sensitive data, it needs to be noted that all the authentication creden-
tials are transferred in clear text. Any eavesdropper software capable of inter-
cepting network traffic can be used to learn about exchanged authentication
credentials, enabling the eavesdropper to use it for its own purposes. The next
section addresses this issue in a more general context when talking about
techniques for secured Web transactions.

2.2.6 Secure Web Communication Using SSL

With the growth of e-commerce and the ubiquity of the Internet in everybody’s
life, people are increasingly concerned about the confidentiality and security of
private information traveling the network paths. In the days when the Internet
was primarily an academic resource, all content was transmitted in clear text—
anyone viewing the data in transit could read it using readily available network
tools. With the increasingly sensitive nature of information carried over the
Internet (e.g., personal information, credit card numbers, etc.), mechanisms for
secured information transfer have become paramount.

Security was taken seriously by the Web community relatively early on.
Some security mechanisms were built into HTTP, but attempts were also started
to provide secure communication at a protocol layer below the application. The
efforts resulted in the Secure Socket Layer (SSL) [SSL96] mechanism, which
was introduced by Netscape in 1994, and is further developed into the Transport
Layer Security (TLS) [RFC 2246] standard of the IETF.

The SSL protocol itself is application independent and operates between
the application layer and the transport layer. This means application protocols
such as HTTP, Telnet, Internet Message Access Protocol (IMAP), Simple Mail
Transport Protocol (SMTP), and Network News Transport Protocol (NNTP),
are easily layered on top of SSL, with TCP/IP working underneath it. SSL pro-
vides data encryption, server authentication, message integrity, and optional
client authentication for a TCP/IP connection. When using SSL between a
client and a server, everything in their communication is encrypted, including
all the HTTP headers and, in particular, the Request URI. This will play an

48 C H A P T E R 2 Content Transport

Ch02.qxd 1/20/05 2:09 AM Page 48

important role when we talk about content switching and interception proxies
later on.

An introduction and more detailed discussion of security mechanisms and
encryption techniques are beyond the scope of this book. Readers are referred
to specialized books on Internet and Web security, for example [KR01].

2.3 Multicast Transport

Web documents have become a very popular medium for bringing information
to large numbers of people. As a result, content providers and ISPs are strug-
gling to upgrade their servers and their networks to handle the huge volumes of
Web traffic. These scalability problems partially arise from the client-server
model of the Web. In this model, information is delivered to clients only when
they request delivery—servers themselves never initiate delivery of content to a
client. This requires a server to serve each client individually, meaning the data
is always transmitted via a point-to-point connection between the client and the
server—also referred to as unicast communication. As illustrated in Figure 1.2,
scalability problems are inherent with this solution, and Web caching has previ-
ously been mentioned as a possible remedy. However, more can be done. A net-
working technique that can be used in conjunction with caching to further
improve scalability is multicast transport. With this approach, Web pages are
delivered to multiple awaiting clients using one server response instance.
Although multicast has long been viewed as a promising approach to improve
efficiency and scalability of content delivery to a large number of receivers, its
practical use is still very limited. This section will briefly introduce multicast fun-
damentals, and follow up in an attempt to shed some light on why multicast has
not yet been deployed successfully.

2.3.1 Multicast Support on Different Protocol Layers

Content can be delivered to a group of receivers by repeatedly transmitting data
units using point-to-point transfers to each individual receiver. However, this
approach does not scale well with the number of recipients and increases the net-
work load proportional to the group size. Broadcasting, on the other hand,
seems an acceptable solution for small networks, but it causes a flood of data
packets in global networks such as the Internet. Rather than broadcasting infor-
mation or using multiple unicast transfers, the better approach is for receivers to
subscribe to a multicast group. All data sent to the multicast group is delivered
only to those hosts that have explicitly subscribed to the group. All subscribers
to a multicast transmission receive a single, shared data stream. The amount of
bandwidth saved increases with the number of subscribers. However, efficient
support for multicast communication requires special capabilities and appropri-
ate mechanisms on various layers of the protocol stack, as discussed in the
following paragraphs.

2.3 Multicast Transport 49

Ch02.qxd 1/20/05 2:09 AM Page 49

Link-level multicast

Efficient multicast communication requires appropriate support even below the
network layer, which is to say, on the data link layer. Every data packet received
by a network interface causes an interrupt and stimulates further processing at
higher protocol levels. Therefore, it is desirable that hosts receive and process
only those packets that are destined to them. This goal is achieved by adding
multicast filtering on the network interface hardware. Multicast filters allow a
network interface to receive packets sent to a specific multicast group in addition
to broadcast packets and packets sent specifically to the network interface. This
enables the use of multicast addresses instead of the all hosts address or multi-
ple unicast addresses. Transmitters connected to a broadcast media (e.g.,
Ethernet) need to send only one copy per packet without causing further packet
processing at non-member host locations.

Network-level multicast—the IP multicast model

The network layer plays a central role in supporting multicast communication,
since it is responsible for group addressing and efficient packet forwarding
through the network. Network-level multicast services take a single copy of a
data packet and deliver it to the receiver group specified in the group address.
Replication of data packets is delayed until they have to traverse different links,
thus making most efficient use of the network resources. This requires routers
and switches to incorporate group management facilities as well as mechanisms
to establish and maintain multicast paths.

The Internet multicast model was originally defined by Deering in 1989
[RFC 1112]. It is based on an open service model, which does not restrict users
to create or to join multicast groups. It also allows any host to send data to exist-
ing multicast groups and to receive data from a group. A sender is not required
to be a member of the group, which is referred to as the open group model.
Membership of a group can change at any time. It is possible that multiple
senders share the same multicast address, and there is no way for a sender to pre-
vent other senders from choosing the same multicast address. While the IP mul-
ticast model is highly flexible and supports a variety of applications, its openness
and loose control causes serious problems, as discussed in Section 2.3.2.

Transport-level multicast

The transport layer is responsible for supporting the end-to-end data exchange
between communication partners, typically distinguishing between reliable and
unreliable transport services. Current transport protocols, such as TCP, are
based on pure point-to-point communication. For error control purposes, the
receiver sends an acknowledgment to the sender to signal that data has been
received correctly. Simply extending this mechanism to multicast could mean
that with large groups the sender would have to process a very large number of

50 C H A P T E R 2 Content Transport

Ch02.qxd 1/20/05 2:09 AM Page 50

acknowledgments—namely, from all the members of the group. This is likely to
create an acknowledgment implosion, overwhelming the sender with confirma-
tion messages. Obviously, this approach is not scalable for large groups since the
sender can easily create a bottleneck.

Transport protocols are often responsible for providing reliable services
between users. Once again, it is important to point out the special problems of
group communication that sometimes necessitate the introduction of new relia-
bility classes. The result is that in the future a single transport protocol will no
longer be able to accommodate the diverse requirements placed on multicast
services. It is rather expected that a pool of multicast transport protocols, each
with a specifically designed service, will emerge. Other important aspects include
the degree to which group members are known and the dynamic of a group.
Multicast transport protocols must address all these aspects.

Application layer

Given the limited availability of network level multicast in today’s networks, mul-
ticast support is increasingly provided at the application layer. In this approach,
application entities provide for multicast delivery, utilizing existing unicast trans-
port protocols such as TCP or UDP for data transmission among themselves.
While this approach typically makes less efficient use of network resources, it
leverages well-established features of underlying transport protocols, such as con-
gestion control, error control, etc. The emergence of application level multicast is
mainly driven by the very limited deployment of network-level multicast, which
raises the question about the reasons for this lack of multicast deployment.

2.3.2 Deployment Issues

The deployment of any networking technology is dictated by application needs,
user requirements, and business motivation. It is essential to understand these
aspects when assessing emerging technologies and evaluating their suitability for
practical deployment. For multicast technology being deployed successfully, it
will be required to provide at least the same level of reliability and manageabil-
ity as existing unicast networks. Multicast will become attractive only if it is easy
to install, manage, and maintain—for both the network provider and end users.
Network providers are less likely to accept and deploy a technology requiring
them to train their personnel or even to hire additional experts. Likewise, end
users are likely to refrain from using multicast if it requires installation of addi-
tional software or complex setup and configuration. Furthermore, end users will
expect ubiquitous availability of multicast services, making scalable interdomain
communication a must. Furthermore, content providers using multicast for con-
tent distribution will expect their transmission to be protected from unautho-
rized senders to avoid unwanted interference.

Having these requirements and the current IP multicast model in mind,
limited multicast deployment might no longer be surprising. As mentioned

2.3 Multicast Transport 51

Ch02.qxd 1/20/05 2:09 AM Page 51

before, IP multicast does not allow control of which hosts can send or receive
multicast data. This conflicts with the content providers’ desires for protection
from unauthorized senders and receivers. It also turns out that the installation,
configuration, and debugging of multicast-enabled networks is by far more
complex than managing a unicast network. This discourages network providers
and end users equally. Finally, yet importantly, the lack of good business mod-
els has prevented network providers from figuring out how to make money out
of their investment in multicast technology. Together these aspects have limited
the practical deployment of multicast, driving other solutions for scalable con-
tent delivery and content networking forward.

52 C H A P T E R 2 Content Transport

Ch02.qxd 1/20/05 2:09 AM Page 52

C H A P T E R 3

Caching Techniques for Web
Content

53

Closer is better. It is faster and easier to use materials stored close by than to
retrieve them repeatedly from a distant source. Squirrels gather nuts throughout
a large territory to store them near their nest for easy winter access. Dairy farm-
ers collect milk from cows each day. The milk is trucked to various processing
plants and distribution points before it arrives on the shelf at the neighborhood
supermarket. A few times a week, the family shopper travels a mile or so to the
market to buy milk and bring it home. The milk is stored in the kitchen refrig-
erator, only a few feet away from the kitchen table. Each morning a container of
milk is moved from the refrigerator and placed on the kitchen table, only a few
inches from the family’s breakfast cereal bowls where it is actually used.

Many centuries ago the French used the word cacher, meaning “to hide.”
This became the modern word cache, meaning “a hiding place used especially for
storing provisions.” Computers make good use of caches for storing information
close to where it is used. Modern processors include instruction caches to speed
up instruction access and memory caches to accelerate data access. Web content
moves through many caching mechanisms as it travels from the disk of the ori-
gin server to the Web client. The content is stored on the server disk. It is then
copied to the server’s main memory, then to the processor memory cache on the
way to the network. As it reaches the client, it is captured off the wire, and goes
through the client processor cache on its way to the client’s main memory.

Caches located in several places throughout the network can provide a vari-
ety of benefits to content consumers, content producers, and network operators.
The benefits of locating a cache within a workgroup, at the network gateway to
an enterprise, within an ISP, in the backbone of the network, and as part of a
server farm will each be analyzed.

Finally, performance, capacity, network engineering, myths about caching,
and some other practical considerations in designing and deploying them will be
explored.

Ch03.qxd 1/19/05 12:22 PM Page 53

54 C H A P T E R 3 Caching Techniques for Web Content

3.1 Local Caching

Most Internet browsers include a local cache mechanism tuned to the charac-
teristics of Web pages. This local cache mechanism saves time and bandwidth,
often unbeknownst to the user. For example, each time you use the browser’s
back button to view a previously loaded page, the browser retrieves that page
from the local cache, rather than requesting it again across the network.

Local caches make lots of sense, and most, if not all, browsers have them. It
is easy and instructive to examine the local cache in Internet Explorer (IE). The
example given here is for IE Version 6 but is similar for other browsers. Select
Tools / Internet Options / General / Temporary Internet Files / Settings and a
“Settings” dialog box appears. The first option setting establishes how often the
cache should “Check for newer versions of stored pages.” This is one replace-
ment rule (sometimes also called a replacement algorithm or freshness heuristic)
and is one example of an important cache design decision. This rule is analo-
gous to deciding to discard milk that has passed its freshness date. Replacement
rules affect the freshness of the cache content.

The second option adjusts the amount of disk space dedicated to the
cache. Obviously a bigger cache can store more objects, but how big is big
enough? We will study this question in more depth later in the chapter. The
homeowner faces a similar question in deciding how large a refrigerator to buy.
Smaller local storage requires more trips to the remote source. This is true for
both milk and Web content.

The “Settings” dialog box also includes an option to “view files.” This option
lists many files with generally cryptic names. Each of these is a single object, either
text or a graphic image, which has been part of a Web page recently viewed on the
client computer. A typical Web page consists of many such objects. The Yahoo!
homepage is a typical complex page. Today it includes the graphic Yahoo! logo,
and individual graphics for Personalization, Finance, Shopping, Mail, Messages,
and Shopping. The search window and search button are each individual objects.
It is not unusual for such a page to include fifty or more objects.

The local cache saves time and reduces the load on the network and the ori-
gin server by storing frequently used content close to the user. The design
assumption is that if the user has visited a particular page once, they are likely
to come back again. It makes sense to store a copy of the Yahoo! logo in the
cache, and retrieve this local copy the next time the user visits the page. After all,
the logo has not changed in several years,1 and graphic files are typically large,
so this saves time and reduces network traffic.

But the Yahoo! homepage has much more on it than the corporate logo.
It has news headlines, weather, sports, and timely financial reports. This infor-
mation changes often and can be seriously misleading if stale information is

1Interestingly, the headers of this object show it was last modified in 1994 with an Expires date in the year 2010.

Ch03.qxd 1/19/05 12:22 PM Page 54

mistaken for fresh information. The decision of what to cache, when to refresh,
and who gets to decide is a major topic in the design of any Web cache. This will
be discussed in detail later in this chapter.

3.2 Motivation and Goals of Web Caching

In taking the Hippocratic Oath, doctors around the world swear to “First, do no
harm.” This ancient principle is also important in the design of a Web cache.
The most important requirement is that a Web cache never silently serves up
altered or stale content. Reliability is a related requirement. If a Web cache fails,
it must not disrupt the connection to the origin server. Although a perfect cache
will not store any content marked as uncacheable, it may decide not to store all
objects that are marked as cacheable.

The purpose of a Web cache is to speed up user access to Web content,
reduce network load, and reduce origin server load. If the requested object is
stored in the cache, the presence of the cache is almost certain to accelerate con-
tent access and reduce network load. However, in the case of a cache miss, the
extra steps introduced by a poorly designed Web cache can slow down access
and even increase network load.

Both hit and miss cases have to be analyzed to determine if access is accel-
erated, on average, to all users. The size of the cache store, cacheability rules, the
speed of the cache’s network connection, maximum transaction rate of the
cache, the location in the network, and the characteristics of the content
requested by the users are all factors that affect the access speed and network
traffic impact of a particular installation.

Finally, features to assist with the administration of the Web cache and the
management of the network are helpful. These include easy installation, traffic
and performance reports, logging traffic through the cache, cacheability analysis
of Web objects, and identifying requests that will bypass the cache.

The next sections describe the basic operation of a shared Web cache and
expand on the concepts introduced in Chapter 1 and the discussion of Figure 1.3.

3.3 Basic Operation of a Shared Web Cache

During operation a shared cache located in the network has to make a few
important decisions for each request transaction it handles. Figure 3.1 helps to
illustrate these decisions.

The first client request might look like:

GET /index.html HTTP/1.1
Host: www.content-networking.com
User-Agent: Mozilla/6.0
Accept: text/html, image/gif, image/jpeg

3.3 Basic Operation of a Shared Web Cache 55

Ch03.qxd 1/19/05 12:22 PM Page 55

The cache receives the request and promptly determines if the requested
object is already in the cache object store by examining the inventory of stored
objects. It also has to decide if the stored object is up-to-date and valid for
sharing (fresh) by examining available information about the object creation
date, storage date, expiration date, and client and server preferences. HTTP ver-
sion 1.1 includes many facilities to help make this decision accurately. If the
stored object is fresh, it is retrieved from the local cache object store, and then
sent as an HTTP response to the client. In this scenario, there is no need to go
all the way back to the origin server, saving time and bandwidth.

If a fresh copy of the object is not in the cache, then it must be retrieved from
the origin server. The cache transforms and forwards the original client request to
the server, and receives the object in the response. The response may look like this:

HTTP/1.1 200 OK
Date: Mon, 29 Sep 2003 04:29:01 GMT
Server: Apache/1.3.12 (Unix)
Last-Modified: Mon, 29 Sep 2003 01:10:42 GMT
Content-Type: text/html

<data>

The cache then forwards this object as the response to the client.
The cache now has to decide if it will write a copy of the object into its local

object store. This decision is based on the space available in the object store and

56 C H A P T E R 3 Caching Techniques for Web Content

HTTP: RESPONSE

HTTP: GET

(for index.html)

?

HTTP: GET

Is it Stored?
Is it Fresh?

HTTP: RESPONSE

HTTP: GET

(for index.html)

Yes No

HTTP: RESPONSE

Store Copy?

Client Cache Server

index.html
Modified

Figure 3.1 Basic network cache operation.

Ch03.qxd 1/19/05 12:22 PM Page 56

an estimate of the future value of the object. Replacement rules are the general
scheme that is used to decide what objects get ejected from the local object store
when it is full and new objects need to be stored. Dynamic object rules are used
to examine the characteristics of an object to estimate its future value and
determine if it is worthwhile adding to the local object store.

It is possible that the index.html object was modified and a fresh copy is
stored on the server some time after the previous version was stored by the
cache. To ensure fresh objects are delivered to the client the cache has to decide
freshness on each client request.

3.3.1 Replacement Rules

Since an object store has only finite capacity, it will eventually fill up. With fast
networks and many clients relying on a shared network cache even a very large
cache object store fills, perhaps after a few days of operation. Once the cache is
full, deciding to store the current object requires a decision to remove and
replace an object that is already stored. Several strategies are used to choose the
object to be replaced. Popular strategies are:

● Least Recently Used (LRU)—Replace the object that has gone without
a request for the longest time. Under this policy the cache will eventually
fill with the most recently requested objects.

● First In, First Out (FIFO)—Replace the oldest object, based on when it
was first stored in the object cache. The cache will eventually fill with the
most recently refreshed objects.

● Least Frequently Used (LFU)—Replace the object that has had the
fewest requests, or lowest request rate, since it was first stored. The cache
will eventually fill with the most frequently requested objects.

● Next to Expire (NTE)—Replace the object that is forecast to expire the
soonest. The cache will eventually fill up with the most stable (infre-
quently changed) objects.

● Largest File First (LFF)—Replace the largest object, hoping to free up
the most space for new objects. Often both size and age is considered in
choosing the object to be replaced. The cache will tend to fill with the
smallest objects.

Each of these replacement strategies has its strengths and limitations. They
are often combined and augmented with heuristics to provide the most practical
solutions.

3.3.2 Dynamic Object Rules

Dynamic object rules work to estimate the value an object may have in serving
future requests. Dynamic content, such as news headlines, weather reports,
and stock quotes lose their value very quickly. Personal information such as
travel plans, journals, and family photos interest only a very small number of

3.3 Basic Operation of a Shared Web Cache 57

Ch03.qxd 1/19/05 12:22 PM Page 57

potential clients. Private information, such as bank account balances, account
numbers, and passwords must not be shared with unauthorized clients. One
common dynamic object replacement rule recognizes that URIs containing
/cgi or /cgi-bin are usually Common Gateway Interface (CGI) requests.
These are requests to run programs on the server to generate individualized
responses that incorporate dynamic content. These almost always create
responses having dynamic, personal, or private information and typically should
not be cached. An algorithm that does not cache responses to CGI requests is
conservative but it may not honor the cacheability intent of the content provider.
The primary mechanism for identifying what should and should not be cached
is the HTTP cache control header, described in the next section.

Caches often use the HTTP Conditional GET feature to determine if an
object they already have stored is up to date, and may still have future value.
This feature allows the cache to ask the server to only send the object if it has
been modified recently. This reduces network and server load, but may not
speed up responses, because the requests and responses still have to traverse
the network. The request header includes the If-modified-since field and
might look like:

GET /index.html HTTP/1.1
Host: www.content-networking.com
User-Agent: Mozilla/6.0
Accept: text/html, image/gif, image/jpeg
If-Modified-Since: Mon, 29 Sep 2003 01:10:42

If the requested object has not been modified since the specified time, the
server responds with only the header. The header specifies response code 304,
indicating that the requested object has not been modified “since” and includes
the reply date and no body.

HTTP/1.1 304 Not Modified
Date: Fri, 01 Oct 2003 04:29:01 GMT
Server: Apache/1.3.12 (Unix)

The conditional GET is one example of cache content validation. The next
section describes cacheability considerations in more detail, describing when to
store an object and when a stored object can be used to respond to a request.

3.4 Cacheability Considerations

Section 13 of RFC 2616, the HTTP 1.1 protocol specification, describes caching
considerations in detail. The protocol includes a number of features intended to
make caches work as well as possible, maintaining content accuracy while speed-
ing up access and reducing network traffic. These features include server-
specified expiration times, validation features, and the Cache-Control header
directives.

58 C H A P T E R 3 Caching Techniques for Web Content

Ch03.qxd 1/19/05 12:22 PM Page 58

3.4.1 Expiration

Servers can assist cache operation by specifying the expiration times for objects
using either the Expires header or the max-age directive of the Cache-
Control header. The Expires header specifies the time and date when the
object is considered stale. This is like the freshness date on a container of milk.
The max-age directive specifies how many more seconds the object can be con-
sidered fresh. They are similar because max-age provides a relative time and
Expires provides an absolute time when the object expires. Because the
Expires header relies on accurate clock synchronization between the cache
and the server, the max-age directive is preferred.

Unfortunately content providers don’t use the Expires header very often.
Server administrators may not be aware of the feature, or may not know how to
use it effectively. It may be difficult to predict when an object will become obso-
lete. For example, it is impossible to predict when a news headline will arrive and
make the previous information out-of-date. However, some timely objects such
as stock quotes or weather reports can have a planned currency period, where
they are scheduled to expire and be replaced every 15 minutes, for example.
Some content providers always include an Expires header set to the current
date and time to defeat caches and force requests to always go to the origin
server. Later in this chapter we will see how this can be useful in obtaining accu-
rate statistics about each user request.

Since origin servers do not always provide explicit expiration times, caches
may assign expiration times using heuristic algorithms that use other header val-
ues (such as the Last-Modified time) to estimate a plausible expiration time.
For example, it is likely that documents that have not changed for a long time
are unlikely to change soon. Using a simple 50% rule, a cache may estimate that
a document that was last modified 10 days ago will stay current for another 5
days. Heuristic algorithms are not always accurate, and this can cause stale
objects to be served from a cache. Attempts to standardize these heuristic rules
have not attracted much interest.

Invalidation contracts are a proposed approach to server management of
cached object expiration. In this plan, the server provides each cache that stores
its content with a specific expiration date and time for that content. The server
also keeps track of all of the caches it has contracted with. If the server modi-
fies an object before that expiration date, the server contacts each cache to notify
it of the early expiration of the object. Each cache then invalidates the content.

3.4.2 Validation

The validation features of the HTTP protocol allow a cache to determine if a
stored object is equivalent to the object with the same URI available from
the origin server. The Last-Modified entity-header field is the most often
used cache validator. This works together with the If-Modified-Since
request header directive to create the conditional GET feature, as was described

3.4 Cacheability Considerations 59

Ch03.qxd 1/19/05 12:22 PM Page 59

in Section 3.3.2. Another validator is the entity tag (Etag) response-header
field. This allows the content of a named object to be uniquely identified
(tagged), and is similar to a checksum or version identifier. This allows more reli-
able validation than the Last-Modified field in situations where modification
dates are not suitable. The server is responsible for changing the Etag whenever
the object content changes. The If-Match request-header field is used to make
the GET request conditional on the value of the Etag. The server responds with
the new object only if the Etag has changed.

3.4.3 Cache-Control Directives

The Cache-Control header field allows the client and server to provide spe-
cific directions to the cache regarding their preferences for storing or retrieving
cached objects. Cache request directives appear in the header of requests from
the client to the cache. They are

● Cache-Control: no-cache—Do not use a cached object to satisfy
this request before successfully revalidating the content.

● Cache-Control: no-store—Do not store any portion of this request
or its response object, perhaps because it is private or privileged informa-
tion. This differs from no-cache because it directs that the objects are
never to be copied to durable storage media, such as disk or back-up tape.

● Cache-Control: max-age=delta-seconds—Indicates that the
client is willing to accept a response whose age is no greater than the
specified time in seconds. Note that setting max-age=0 requires the
cache to perform an end-to-end revalidation, confirming with the origin
server that the object is still up-to-date. This differs from Cache-
Control: no-cache if the cache confirms locally that the stored
object has not yet aged beyond delta-seconds.

● The client can use the Cache-Control: min-fresh directive when
the client wants a response that will still be fresh for at least the specified
number of seconds. Using the Cache-Control: max-stale direc-
tive indicates that the client is willing to accept a response that has
exceeded its expiration time.

● Cache-Control: no-transform—This directive forbids the cache
from responding with an object that was compressed or transformed in
any way before it was stored.

● Cache-Control: only-if-cached—Return only those responses
that the cache currently has stored. Do not reload or revalidate with the
origin server. This may be useful in some cases, such as during extremely
poor network connectivity.

Cache response directives appear in the header of responses sent from the
server to the cache. They are:

● Cache-Control: public—The cache is encouraged to store this object.
● Cache-Control: private—Indicates that all or part of the response

is intended for a single user and must not be cached by a shared cache.

60 C H A P T E R 3 Caching Techniques for Web Content

Ch03.qxd 1/19/05 12:22 PM Page 60

● Cache-Control: no-cache—Do not use this object to satisfy any
future requests before successfully revalidating the content.

● Cache-Control: no-store—Do not store a copy of this object,
perhaps because it includes private or privileged information.

● Cache-Control: no-transform—This directive forbids the cache
from modifying the object in any way (such as compressing the object or
using any other transformation on it) before it is forwarded or stored.

● Cache-Control: must-revalidate—The cache, whether shared
or non-shared, must not use the entry after it becomes stale to respond
to any request without first revalidating it with the origin server.

● Cache-Control: proxy-revalidate—This is important for the
operation with shared caches of HTTP authentication applications such
as those described in the User Authentication section accompanying
Figure 2.8. It has the same meaning as must-revalidate, except that
it does not apply to non-shared user-agent caches. This allows the user’s
local cache to operate as described in Chapter 2, while requiring shared
caches to revalidate and trigger the authorization mechanism for each
new user. When using this directive the server allows the non-shared user
agent cache to automatically reconfirm the user’s credentials while
requiring the shared network cache to reconfirm the validity of the object
with the server each time it is used in a response. This is essential to ensure
that a shared cache does not deliver content from password-protected
sites to unauthorized users. Whenever an origin server distributes such an
object, it includes a Cache-Control: proxy-revalidate directive
in the response. A shared cache is allowed to store the object only if it also
includes the public cache control directive, but it has to mark it with
proxy-revalidate. Later, when a request for the object arrives, the
shared cache sends a conditional GET to the origin server. If the condi-
tional GET includes a valid Authorization header, the origin server
responds with 304 Not Modified and the cache forwards the object
to the client. However, if the conditional GET does not include valid
authorization, the origin server responds with 401 Authorization
Required which the cache forwards to the client. This forces the client
to enter the requested authorization information, such as a valid pass-
word. Problems can occur when a cache is installed if the origin server has
not properly used the proxy-revalidate directive. If the origin server
neglects this directive it is possible for password-protected pages to be
served from the cache. Users may be quick to blame the cache, even
though the error is in the origin server’s failure to use this directive.

● Cache-Control: max-age=delta-seconds—This provides an
alternative to the Expires header for allowing the server to specify an
object expiration time. The response becomes stale max-age seconds
after its most recent validation, which may be when it is originally stored,
or some later revalidation. A related directive, s-maxage, overrides the
maximum age specified by either the max-age directive or the
Expires header for a shared cache, but not for a private cache.

3.4 Cacheability Considerations 61

Ch03.qxd 1/19/05 12:22 PM Page 61

3.5 Placing a Cache in the Network

Shared network caches can be located in one of three positions in the network.
A forward proxy acts on behalf of a specific group of content consumers.
A reverse proxy, also called a server accelerator, acts on behalf of the origin
server and helps a specific group of servers deliver content. An interception
proxy serves the network traffic directed to it. These are each described more
fully in the following sections.

3.5.1 Forward Proxy

Most Web browsers support the use of a forward proxy. If your network admin-
istrator has installed a forward proxy it is easy and instructive to examine the
network proxy settings in Internet Explorer. The example given here is for IE
Version 6 but is similar for other browsers. In the browser select Tools / Internet
Options / Connections / LAN Settings. In the dialog box that appears, check
“use a proxy server for your LAN” and then click on the “Advanced” button.
This opens the “Proxy Settings” dialog. In the HTTP row, enter the IP address,
either as a host name or numeric IP address, of the forward proxy. Enter the port
number (the number assigned by the network operator for proxy use), perhaps
8080 or 8000. Now, every user request will be sent to the forward proxy, rather
than directly to the origin server.

Referring to Figure 3.2 we can follow an example forward proxy installation
used to improve content delivery for a workgroup or enterprise. In this example
the Chemistry Department at State University has installed a forward caching
proxy and assigned it the IP address of proxy.stateu.edu.2 Following the exam-
ple in the previous paragraph each of the department members has configured
their Web browsers to use proxy.stateu.edu as their HTTP proxy.

1. Professor C requests the Web page index.html from the Web server
www.content-networking.com. Because a proxy is configured, the Web
browser creates the HTTP request using the absolute URI form (see RFC
2616, Section 5.1.2). It might look like this:

GET http://www.content-networking.com/index.html HTTP/1.1
Host: www.content-networking.com
User-Agent: Mozilla/6.0
Accept: text/html, image/gif, image/jpeg

This request is then sent over the workgroup Local Area Network to the
IP address of the forward proxy (proxy.stateu.edu), not to the origin Web

62 C H A P T E R 3 Caching Techniques for Web Content

2Actual IP addresses are always numeric, in the form of 1.2.3.4. The string “proxy.stateu.edu” is actually a sym-
bolic host name, and not an IP address. However, we use this shorthand form throughout the text whenever the
context of the host name is more important than the value of the IP address. Chapter 5 describes in detail how
host names are resolved to one or more IP addresses.

Ch03.qxd 1/19/05 12:22 PM Page 62

3.5 Placing a Cache in the Network 63

W
eb

 C
lie

nt
s

W
eb

 C
ac

he
F

or
w

ar
d

P
ro

xy
IP

 =
 p

ro
xy

.s
ta

te
u.

ed
u

H
T

T
P

 R
eq

u
es

t:
G
E
T

h
t
t
p
:
/
/
w
w
w
.
c
o
n
t
e
n
t
-
n
e
t
w
o
r
k
i
n
g
.
c
o
m
/
i
n
d
e
x
.
h
t
m
l

H
T
T
P
/
1
.
1

H
o
s
t
:

w
w
w
.
c
o
n
t
e
n
t
-
n
e
t
w
o
r
k
i
n
g
.
c
o
m

U
s
e
r
-
A
g
e
n
t
:

M
o
z
i
l
l
a
/
6
.
0

A
c
c
e
p
t
:

t
e
x
t
/
h
t
m
l
,

i
m
a
g
e
/
g
i
f
,
i
m
a
g
e
/
j
p
e
g

W
or

kg
ro

up
LA

N

W
eb

 S
er

ve
r

IP
=

w
w

w
.c

on
te

nt
-n

et
w

or
ki

ng
.c

om

A

B

C

G
at

ew
ay

R
ou

te
r

W
A

N
 L

in
k

In
te

rn
et

4 5 61
2 3

2 3

Fi
g

u
re

 3
.2

St
at

e
U

ni
ve

rs
ity

 C
he

m
is

tr
y

D
ep

ar
tm

en
t.

A
n

ex
am

pl
e

of
 f

or
w

ar
d

pr
ox

y
in

st
al

la
tio

n.

Ch03.qxd 1/19/05 12:22 PM Page 63

server. When the Web cache receives the request, it examines its object
store and determines that the requested object is not stored.

2. The Web cache requests the index.html page from the Web server by
forwarding the original client request. The request is directed through the
gateway router and then across the wide area Internet to the Web server
with an IP address of www.content-networking.com.

3. The Web server responds to the Web cache with the requested page. The
Web cache then stores a copy of the object, and

4. The Web cache responds to Professor C’s workstation with the requested
page where the browser displays it and the professor can view it.

5. Some time later Professor B requests the same Web page. As in step 1
above, the request is sent to the forward proxy. This time the Web cache
examines its object store and determines that the requested object is stored
and up-to-date. The Web cache retrieves that object from its local store.

6. The Web cache responds to workstation B with the requested page. No
traffic has to go outside of the workgroup Local Area Network to fulfill
Professor B’s request.

The forward proxy provides the workgroup members with several advan-
tages. Because they work together, it is likely that they have common interests
and visit several of the same Web sites. This increases the probability that
browsing by one member of the group will load the cache with content rele-
vant to other members of the group. This increases the probability of a
cache hit. In the case of a cache hit, all of the network traffic is on the LAN,
where it is fast and inexpensive. This reduces the traffic over the slower and
more expensive wide area connection. The forward proxy is easy to install. It
can be placed anywhere on the workgroup LAN and assigned an IP address.
Once this address is known, any workgroup member who wants to take advan-
tage of it can configure their browser to identify it as the HTTP proxy. The
only disadvantage is that the users have to manually configure their browsers
to identify the proxy, and non-members who know the address of an unse-
cured proxy can get a free ride. Security mechanisms should be used to
minimize unauthorized use.

3.5.2 Reverse Proxy

Referring to Figure 3.3 we can follow an example reverse proxy (also known
as a server accelerator or gateway) installation used to improve content delivery
from a content provider site. In this example the content-networking.com
content provider installed a reverse proxy to improve the operation of their
server farm. The reverse proxy is assigned the IP address of www.content-
networking.com so that traffic over the Internet destined for their Web site will
resolve to the proxy, rather than their servers. Each server is assigned an IP
address such as s1.content-networking.com so the reverse proxy can directly
address it.

64 C H A P T E R 3 Caching Techniques for Web Content

Ch03.qxd 1/19/05 12:22 PM Page 64

3.5 Placing a Cache in the Network 65

W
eb

 C
lie

nt
s

W
eb

 C
ac

he
 R

ev
er

se
 P

ro
xy

IP
 =

 w
w

w
.c

on
te

nt
-n

et
w

or
ki

ng
.c

om
S

er
ve

r
F

ar
m

G
at

ew
ay

R
ou

te
r

W
eb

 S
er

ve
r

IP
 =

 s
1.

co
nt

en
t-

ne
tw

or
ki

ng
.c

om

H
T

T
P

 R
eq

u
es

t:
G
E
T

i
n
d
e
x
.
h
t
m
l

H
T
T
P
/
1
.
1

H
o
s
t
:

w
w
w
.
c
o
n
t
e
n
t
-
n
e
t
w
o
r
k
i
n
g
.
c
o
m

U
s
e
r
-
A
g
e
n
t
:

M
o
z
i
l
l
a
/
6
.
0

A
c
c
e
p
t
:

t
e
x
t
/
h
t
m
l
,

i
m
a
g
e
/
g
i
f
,

i
m
a
g
e
/
j
p
e
g

S
er

ve
r

F
ar

m
LA

N

B

A

W
A

N
 L

in
k

IP
 =

 s
2

IP
 =

 s
3

In
te

rn
et

1 4 5 6

2 3

4 5 61

Fi
g

u
re

 3
.3

C
on

te
nt

 n
et

w
or

ki
ng

 s
er

ve
r

fa
rm

.
A

n
ex

am
pl

e
of

 r
ev

er
se

 p
ro

xy
 in

st
al

la
tio

n.

Ch03.qxd 1/19/05 12:22 PM Page 65

1. The user at workstation B requests the Web page index.html from the
Web server www.content-networking.com. The request is routed across
the Internet and arrives at the Web cache reverse proxy assigned the IP
address of www.content-networking.com. When the Web cache receives
the request, it examines its object store and determines that the requested
object is not stored.

2. The Web cache requests the index.html page from one of the Web
servers. The cache can use one of several algorithms to choose the server.
These algorithms are designed to balance network or server traffic, speed
responses, or segregate content types. Server selection algorithms are cov-
ered in depth in Chapter 5. The request is directed across the server farm
Local Area Network to a Web server with an IP address of s1.content-
networking.com.

3. The Web server responds to the Web cache with the requested page. The
Web cache then stores a copy of the object.

4. The Web cache responds across the Internet to workstation B with the
requested page where the browser displays it and the user can view it.

5. Sometime later a user at workstation A requests the same Web page. As
in step 1 above, the request is sent across the Internet to the reverse proxy.
This time the Web cache examines its object store and determines that the
requested object is stored. The Web cache retrieves that object from its
local store.

6. The Web cache responds across the Internet to workstation A with the
requested page. No traffic has to go to the Web server to fulfill user A’s
request.

The reverse proxy gives the content provider several advantages. The proxy
greatly reduces the traffic load on the origin servers. Since the full extent of the
content of all the site’s origin servers is limited, the probability of a cache hit is
quite large. This enables the servers to be optimized for creating and editing con-
tent, rather than for serving heavy volumes of traffic to the network. It also
improves the scalability of the site. If the traffic to the site increases, more server
accelerators can be added to handle the load. This may be more convenient than
adding origin servers. Also, the origin servers can be located remotely from the
server accelerator. This allows the flexibility of locating the reverse proxy near
the customers while locating the origin servers near the content authors. The
disadvantage is that the performance savings might not be great. The wide area
network traffic is not reduced, and the Web cache has to have good performance
to provide a significant advantage over an origin server.

3.5.3 Interception Proxy

Referring to Figure 3.4 we can follow an example interception proxy installa-
tion used to improve content delivery from an Internet service provider. In this
example the ISP installed an interception proxy to improve service to their cus-

66 C H A P T E R 3 Caching Techniques for Web Content

Ch03.qxd 1/19/05 12:22 PM Page 66

tomers while reducing the traffic they receive across the wide area connection
to the Internet. Key to the operation of an interception proxy is the installation
and configuration of a Web switch, although some routers can be configured to
steer traffic directly to an interception proxy. The purpose of the switch is to
direct HTTP traffic to the Web cache. This is done by placing the switch on the
LAN between the Remote Access Server (RAS) and the gateway router and
configuring the switch to intercept traffic on port 80 and send it to the IP
address of the Web cache. Controversy over the use of interception proxies is
discussed in Section 5.2.6. The operation of Web switches is discussed in detail
in Chapter 5.

1. User A requests the Web page index.html from the Web server
www.content-networking.com. At the ISP the Web switch intercepts this
request and directs it to the Web cache. This request is then sent over the
ISP Local Area Network to the IP address of the interception proxy
proxy.thisisp.com, not directly to the gateway router. When the Web cache
receives the request, it examines its object store and determines that the
requested object is not stored.

2. The Web cache requests the index.html page from the Web server. The
request is directed through the ISP’s gateway router and then across the

3.5 Placing a Cache in the Network 67

Web Clients

Web Cache
Interception Proxy

IP = proxy.thisisp.com

ISP
LAN

Gateway
Router

Web Server
IP = www.content-networking.com

A

B

Web Switch

RAS

HTTP Request:
GET index.html HTTP/1.1
Host: www.content-networking.com
User-Agent: Mozilla/6.0
Accept: text/html, image/gif, image/jpeg

WAN Link Internet

1

1

4

4

5
5

6

2
3

2

3

Figure 3.4 Internet service provider. An example of interception proxy installation.

Ch03.qxd 1/19/05 12:22 PM Page 67

Internet to the Web server indicated by the HOST header, if present. In
this case the host is www.content-networking.com.

3. The Web server responds to the Web cache with the requested page. The
Web cache then stores a copy of the object, and

4. The Web cache responds to workstation A with the requested page where
the browser displays it and user A can view it.

5. Sometime later user B requests the same Web page. As in step 1 above,
the request is sent through the Web switch to the Web cache. This time the
Web cache examines its object store and determines that the requested
object is stored. The Web cache retrieves that object from its local store.

6. The Web cache responds to User B with the requested page. No traffic
has to go over the wide area network toward the Internet from the ISP
Local Area Network to fulfill User B’s request.

The interception proxy gives the ISP operator and their customers sev-
eral advantages. Cache hits are delivered to the customer quickly, without
encountering delays while traveling across the network to origin servers.
Customers often choose an ISP located close by, so the total network distance
traveled can be significantly reduced. Also, the delays caused by busy origin
servers are avoided. Perhaps the biggest savings, however, is the reduced need
for wide area bandwidth connecting the ISP with content providers. Figure
3.5 shows a graph of the traffic from an actual ISP running an interception
proxy. The graph was recorded using MRTG [OeRa1] and the horizontal axis
is labeled with the time of day. The jagged black line shows the ISP traffic
delivered to the content consumers. The solid gray area shows the ISP traf-
fic from the content providers. The difference in these two traffic levels is
accounted for by cache hits and is a direct measure of reduced network traf-
fic. For example, at 17:00 (5:00 p.m.) the customer traffic was approximately
4 Mbits per second and the WAN traffic was less than 1 Mbits per second.
This is significant because it allows the ISP to defer the purchase of addi-
tional WAN lines. They have traded the capital expense of the purchase of
the Web cache for the ongoing operational expense of leasing a high-speed
transmission line.

The disadvantage of an interception proxy is the added expense and com-
plexity introduced by the Web switch and modification of the protocol running
between the client and server. The Web switch can complicate certain authori-
zation schemes that rely on the actual IP address of either a client or a content
provider. The interception proxy can modify server-generated error messages.
Finally, while introducing a single Web switch can introduce a single point of
failure, a well-designed Web switching configuration can provide load balanc-
ing and increase reliability of the installation. This is discussed further in
Chapter 5.

An interception proxy located at the WAN gateway of an enterprise, such as
a university campus or office building, combines the advantages of an intercep-
tion proxy with those of a forward proxy. Combinations of these three basic

68 C H A P T E R 3 Caching Techniques for Web Content

Ch03.qxd 1/19/05 12:22 PM Page 68

topologies provide improvements in several areas. The next section explores
interconnecting groups of Web caches into chains and networks.

3.6 The Evolution of Caching Systems—Networks of Caches

If you are home baking a cake and run out of milk, you can ask a neighbor
for a cup of milk, or you can go to the store to buy some. Depending on how
far it is to the store; how far it is to your neighbor’s house; and how likely it is
that your neighbor will be home, have fresh milk, and be willing to give you a
cup; it may be faster to go directly to the store. People who design and config-
ure Web caches face a similar decision between two uncertain options. The first
option is to assume no accessible cache has the object, and to go directly to the
origin server. The second option is to assume an accessible cache has the
object, and to take the time to locate this cache and retrieve the object.
Depending on which assumption is true, the networking is either saving time
or wasting time.

The network infrastructure of the Internet is primarily hierarchical, as is
shown abstractly in Figure 3.6. Local networks connect to regional networks
that connect to national networks that are interconnected around the world.
Peer connections and high usage routes also interconnect networks at various
levels throughout the Internet. Several Web caches are typically located within
each network at each level of the hierarchy. With many Web caches operating in
the network, it is important when a cache receives a request for an object that it
does not have in its store to consider if the cache should request the object from
the origin server or from another cache.

3.6 The Evolution of Caching Systems—Networks of Caches 69

4.4 M

3.3 M

2.2 M

1.1 MB
its

 P
er

 S
ec

on
d

0.0 M
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 5 8

Outgoing Data Traffic Incoming Data Traffic

Figure 3.5 An example of ISP traffic.

Ch03.qxd 1/19/05 12:22 PM Page 69

In the previous section we have seen that ISP operators may have installed
interception proxies in their networks and content providers may have installed
reverse proxies in front of their origin servers. Consequently, a cache may obtain
content from another cache operating within the network without any manage-
ment of requests from one cache to another.

3.6.1 Chaining

A cache that supports chaining can be configured to request objects from
another cache, rather than from an origin server. Typically these Web caches will
be arranged to form a chain up through the network hierarchy. Upon a miss, the
local cache will request the object from a regional cache, which might then
request from a national cache. This is like asking your neighbor to borrow a cup
of milk, who then asks his neighbor, before eventually finding out neither friend
has any to lend you. You might save a trip to the store, but you will certainly
spend time talking to your neighbor. This configuration increases the likelihood
of a cache hit, but increases the time to serve the client’s request. It also does not
take advantage of content stored by peer caches.

Arranging caches into a cooperative network may solve these problems, as
described in the next section.

3.6.2 Networking

The Internet Cache Protocol (ICP) [RFC 2186, RFC 2187], is intended as a fast
way to discover which Web cache has a certain object stored. Caches exchange
ICP queries and replies to learn what cache, if any, is most likely to have the
object. In a second message a HTTP request is sent to the identified cache to
retrieve the object. This simple protocol is typically implemented over UDP to
speed queries and minimize traffic.

70 C H A P T E R 3 Caching Techniques for Web Content

Local
ISP

Local
ISP

Local
ISP

Local
ISP

Local
ISP

Local
ISP

Local
ISP

Local
ISP

US National
ISP

European National
ISP

Regional
ISP

Regional
ISP

Regional
ISP

Regional
ISP

Figure 3.6 Hierarchical structure of the Internet.

Ch03.qxd 1/19/05 12:22 PM Page 70

Although it is not specified by the protocol itself, caches implementing the
protocol typically provide several helpful configuration features. Caches can be
identified as either siblings or parents. The essential difference between a parent
and sibling is that on a cache MISS from the neighbor the protocol specifies the
object may only be subsequently fetched from a parent and not a sibling. As an
optimization, caches will only send requests for cacheable objects to its neigh-
bors. The local cache handles requests for non-cacheable objects directly. As a
security measure, and to keep from overloading certain caches, caches can imple-
ment access control lists to limit the caches it will respond to.

Figure 3.7 illustrates a typical use of the ICP protocol.

1. The client sends an HTTP request to the local cache to obtain a particu-
lar object. In this example the local cache does not have the object stored.

2. Using ICP the local cache sends an ICP_OP_QUERY message to each
cache configured as its siblings. Another strategy would be to query all of
the neighbors, including the parents.

3. Each sibling cache responds with an ICP_OP_HIT message, an
ICP_OP_MISS message, some type of error message, or no timely
response. If any sibling responds with a HIT message, the local cache
would then send an HTTP request message to this cache, requesting the
object. It is sensible to choose the first cache to reply with a HIT for
the subsequent retrieval request. This rapid response may indicate that
the cache is close by on the network, the path is not congested, and the
cache is not overloaded. In our example, we are assuming that none of
the responses indicated a hit. This may be because the response indicated

3.6 The Evolution of Caching Systems—Networks of Caches 71

Sibling Web Caches

Parent Web Caches

Local
Web Cache

Origin Server

8

1

4
7

2
3

2

32

3

5

6

Figure 3.7 Using the ICP protocol.

Ch03.qxd 1/19/05 12:22 PM Page 71

a MISS, or an error, or because the local cache timed out waiting for a
response.

4. Because the object is not available from any sibling, the local cache
requests the object from a cache configured as a parent. It can make the
HTTP request directly to the parent, and expect the parent to retrieve it
from the origin server, if the parent does not have it cached already.
Alternatively, the local cache could send an ICP_OP_QUERY message to
each parent in an attempt to identify a parent that has the object stored.
This would have to be followed by the actual HTTP request to a parent
responding with a HIT. Another strategy would be for the local cache to
send its HTTP request directly to the origin server. This reduces traffic to
the parent, but also denies the parent the opportunity to fetch and store
a copy of this object. It is also possible to query the parents at the same
time the siblings are queried.

5. If the parent cache has the object stored, it would retrieve it and respond
to the local cache. In this example, we are assuming the parent cache does
not have a local copy. In this case it sends an HTTP request to the origin
server.

6. The origin server replies to the parent cache with the requested object.
The parent cache stores a copy.

7. The parent cache replies to the local cache with the requested object. The
local cache stores a copy.

8. The local cache replies to the client with the requested object.

It is not guaranteed that use of ICP or any cache networking arrangement
results in faster responses to the user or decreased network traffic. Only
traffic analysis or careful measurement and experimentation with various
network configurations can identify the best configuration for any particular
situation.

3.6.3 Satellite-Based Web Caching

Combining the capabilities of satellite transmission with Web caching can turn
the network inside out in this innovative architecture.

In this proposed content delivery network, each local ISP has a cache with
a conventional Internet connection, huge storage capacity, and a satellite dish
for receiving content. The central site has a conventional Internet connection
and a satellite transmitter. There are no intermediate regional or national caches
in the network.

When a user request generates a miss at some local cache, that local
cache obtains the requested document from the origin server using
HTTP over a conventional Internet connection. After responding to the user
request, the local cache then sends the URL (but not the actual documents)
to the master site. The master site uses HTTP to obtain the same document

72 C H A P T E R 3 Caching Techniques for Web Content

Ch03.qxd 1/19/05 12:22 PM Page 72

from the origin server, and then transmits (pushes) the document over the
satellite channel to all local caches. The local caches each receive the docu-
ment and cache it. As a result, the user populations at each of the local ISPs
are aggregated together to form one very large user population. Each actual
request is used to predict the future requests of the other users. The greater
the user population, the greater the likelihood of repeated requests, and the
greater the hit rate. High hit rates correspond to low response times and less
wasted bandwidth in the Internet. This brings the Web directly to the edge of
the network, trading network bandwidth for huge storage capacity at the
edge. This architecture is only economical if edge storage is cheap compared
to network bandwidth.

3.7 Performance

Content consumers want correct content delivered quickly. Network operators
want redundant traffic reduced. Content providers want rapid access for
their customers without overloading their servers. To meet these goals, it is
important to understand Web cache performance when choosing a Web cache or
engineering a network that includes Web caches. Relax. Predicting Web cache
performance in actual operation is even easier than forecasting the weather or
predicting stock market behavior!

3.7.1 Measuring Performance

Throughput is expressed in either requests per second or bytes per second and
measures the total amount of traffic that can pass through a Web cache.
Whether it is a hit or a miss, every request and every response passes through the
Web cache. If the traffic load exceeds the throughput capacity of the cache, it
will become a bottleneck on the network. Throughput measured in requests
per second is limited by the processing speed of the Web cache. Throughput
measured in bytes per second can be limited by the bandwidth of the network
connection. Higher throughputs are better. Consider both the peak throughput
numbers and the sustained throughput when selecting a Web cache or engineer-
ing a network.

Response time measures the interval from when a client makes a request until
the client begins to receive the response from the Web cache. In the case of a hit,
this measures the speed of the cache in retrieving and responding with the
object. In the case of a miss, this includes the time for the origin server to
respond to the request. The miss response time can only be assessed if the
response time of the origin server is known. Lower response times are better.
When evaluating a cache, consider the distribution of response times, including
the lowest, average, and longest times.

3.7 Performance 73

Ch03.qxd 1/19/05 12:22 PM Page 73

Hit ratio measures the fraction of traffic that is served from the Web cache.
It can be measured in either transactions or bytes. This is a direct measure of the
network traffic savings provided by the cache. The transaction hit ratio com-
pares the number of requests resulting in hits to the total number of requests.
For example, if 40 requests out of 100 are served from the cache local store, the
hit ratio is 40%. The bandwidth hit ratio compares the total number of bytes
from responses resulting from hits to the total number of bytes from all
responses from the Web cache. For example, if 40 Mbytes of responses are
served from the cache local store out of a total of 100 Mbytes of responses, the
bandwidth hit ratio is 40%. The hit ratio is most accurately defined as the ratio
of client-side traffic to the server-side traffic measured with a representative traf-
fic mix over an extended period of time. The transaction hit ratio is the proba-
bility that the requested object is marked cacheable multiplied by the probability
that the Web cache is able to store that object. The first probability varies greatly
with the workload. The second depends on the size of the object store and the
replacement strategy being used. For a given workload, higher hit ratios are bet-
ter. For example, if 100 requests are made and only 80 of these requests are for
objects marked cacheable, and only 40 of those are stored in the local cache,
then the transaction hit ratio is 40%.

Other Web cache selection factors include price, reliability, recovery from
failures, and total object store size. Throughput normalized by price, for exam-
ple hits per second per $1,000, can give a rough estimate of Web cache cost effec-
tiveness. This is important to help assess the tradeoff between spending money
for an expensive high performance hardware platform, or for better designed
caching software.

Most of these parameters will vary greatly as the workload the cache is
subjected to varies. The people of The Measurement Factory (www.measure-
ment-factory.com) have worked for several years to provide tools for accurately
measuring Web cache performance with realistic workloads. Their Web
Polygraph performance measurement tool (www.web-polygraph.org) provides
rigorous performance tests and is freely available. They have organized
several industry events, called “cache offs,” where Web cache venders have the
performance of their products rigorously measured and the results published.

Several performance characteristics are important when evaluating a cache.
These include throughput, response time, and hit ratio. The importance of each
factor will vary based on user, network provider, and content provider needs. It is
also important to consider manageability, reliability, and support in evaluating
a Web cache.

3.7.2 Estimating Hit Ratios

In engineering a network, it is important to be able to estimate the savings a Web
cache can provide. The actual hit ratio of a Web cache depends on many vari-
ables of the workload and of the cache design itself. These factors include the
number of objects available on the Internet, the size of the cache object store,

74 C H A P T E R 3 Caching Techniques for Web Content

Ch03.qxd 1/19/05 12:22 PM Page 74

the average size of an object, the expiration time of an object, the fraction of
objects that can be accurately cached (cacheability), and the popularity
distribution of objects on the Internet. Although this list is long, reasonable
assumptions can reduce hit ratio estimation to a relatively simple calculation.

Internet content objects vary greatly in size. The smaller an object is, the
more objects can be stored in a given cache. Although the average object size on
the Internet is not well known, an estimate of 5 KB is reasonable. A cache with
an object store of 32GB can store approximately 6.7 million such objects.

The total number of objects making up the worldwide Internet is very large,
growing, and not accurately known. In analyzing cache performance what is
important is the size of the interest set. This is the total collection of objects
that the user community will ever request. This is much smaller that the total
Internet.

Obviously some Internet objects are requested much more often than others.
The Yahoo! logo is requested millions of times a day. Many fewer people visit
this author’s homepage. Attempts to model this popularity distribution have
focused on two probability distributions. The uniform distribution assumes that
each object is equally likely to be requested. This simple assumption is not accu-
rate. Another distribution, called the Zipf distribution, named for Harvard lin-
guistic professor George Kingsley Zipf, can provide a more realistic model.
A Zipf distribution is one where the probability of selecting the ith most popu-
lar item is proportional to 1/i [Li99, Knu73].

The class of Zipf-like distributions model the frequency of occurrence of
some event, (P), as a function of the rank (i), as a power-law function /P i1i+

a

with the exponent α close to unity. Studies suggest that the popularity distribu-
tion of the Internet can be accurately modeled by a Zipf-like distribution with
the exponent α in the range of 0.5 to 0.7. [BCP+98] An approximation of the
sum of the first n elements of the distribution can be shown to be

</ /
() ()

[]i x dx
x n

for Bea1 1 1 1 1 1
() ()

i

n
n

1

1 1

1

. =
-

=
-a a a

=

- -
a a

a a
#!

Taking the ratio of this term to the total number of objects in the interest
set gives the probability that an object selected will be one of the n most popu-
lar. Note that this collapses to the uniform distribution when α = 0.

This provides a simple formula for computing Web cache hit ratio. The
probability of selecting any one of the k objects from population of n objects,
representing a cache storing k items from an Internet of n objects is simply

</ (/)k n k n for 1() () ()1 1 1= a- - -a a a

The formula assumes that all requested objects are cacheable. This is not
realistic, and the result has to be reduced by the cacheability fraction. It also
ignores the effects of traffic to revalidate objects and refresh expired objects.
This formula is relatively insensitive to assumptions about the total number of

3.7 Performance 75

Ch03.qxd 1/19/05 12:22 PM Page 75

objects making up the Internet. Figure 3.8 shows the probability of a cache hit
as a function of cache object size for several choices of α, assuming that the
Internet has one hundred million objects in the interest set, the average object
size is 5 KB, and all objects are cacheable. Higher values of α, perhaps 0.7 or 0.8,
correspond to users with common interests. Workgroups or people at a particu-
lar enterprise location may have this popularity distribution. Lower numbers of
α, perhaps 0.5 or 0.6, correspond to less common interest. This may be accurate
for ISP users served by a interception Web cache. In any case, the result read
from the graph has to be reduced by the cacheability percentage.

3.8 Caching Challenges and Myths

The Internet is remarkably diverse and unpredictable. This creates several
challenges for people who design and operate caches in real world networks
and expect them to work reliably. Dynamic content, secure transactions,
encrypted content, cookies, hit counters, on-line advertisements, access con-
trol, and privacy-concerned users, are several of the conditions that have to
be considered.

76 C H A P T E R 3 Caching Techniques for Web Content

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

16 32 48 64 80 96 112 128 144 160 174 192

Cache Size (GB)

H
it

 r
at

io α = .6
α = .7

α = .8

α = .5

Figure 3.8 Hit ratios for particular Zipf-like distributions.

Ch03.qxd 1/19/05 12:22 PM Page 76

3.8.1 Avoiding Snags

If content providers were careful to mark all content using accurate cache con-
trol directives many problems could be avoided. However, ours is not a perfect
world and not all dynamic content is clearly identified by the Cache-Control
header information. The output of CGI, PHP, and ASP scripts almost always
represent dynamic content. However, the server may not have marked it as no-
cache or no-store. To preserve content transparency, the cache has to
implement rules that prevent this dynamic content from being cached.

Secure transactions and encrypted content are private. As was described in
Section 2.2.6, the URL and the HTTP headers are encrypted in secure, SSL-
based transactions. This means that the entire transaction, including the Cache-
Control header is unintelligible to the cache, and cannot be usefully cached.

Section 2.2.5 described how the cookie mechanism is used to create an asso-
ciation between related transactions of a particular user in a stateless protocol.
For cookies to be effective the information in the Cookie header field of out-
going requests has to be forwarded to the server. The shared cache cannot reuse
the cookie. This makes it difficult or impossible for the request to be terminated
by an intermediary, and, therefore, it cannot be completely handled by the
shared cache.

For server-side hit counters, pay-per-click mechanisms, banner advertise-
ments, and usage monitoring to work correctly, the origin server has to get accu-
rate information about content requests. Often these counts are used to charge for
advertising exposure, or to profile customer interest in particular content. They
are important and content providers expect them to be accurate. If the content is
cached, the requests will not get to the server, and the counts will be low. Also,
information about the source of the request, such as the requesters’ network loca-
tion, time of day, and referring page, is available to the cache but not to the ori-
gin server. There are a few solutions to this problem. One simple solution is to
mark the pages being counted as no-cache. This results in correct counts, but
reduces the savings provided by the cache. A refinement of this approach is to
include a very small object, perhaps a one-pixel transparent graphic, in each page
to be counted. This small object is marked as no-cache and the server can accu-
rately count requests for it while the rest of the page is cached.

Unfortunately use of these small uncacheable objects has attracted enough
attention to earn the pejorative label of “Web bugs.” Many users object to them
because they generate traffic and delays primarily for the purpose of gathering
user information. Also, some of these bugs are used to collect information users
consider private. It is difficult to balance the diversity of interests in every
content delivery system design.

An alternative solution is to make use of transaction logs generated directly
by the Web cache. Because every request and response goes through the Web
cache, it can keep a log of each transaction. This log might include the client IP
address, username, time and date, the HTTP request header, HTTP response
status code, content length, whether the request was handled from the cache or

3.8 Caching Challenges and Myths 77

Ch03.qxd 1/19/05 12:22 PM Page 77

the origin server, and other pertinent information. The log itself can be trans-
mitted to the content provider for analysis, or the Web cache operator can ana-
lyze the log and transmit reports to the content provider. Such a log provides
important information to the operators of the Web cache and the network it is
a part of. The logs can grow quickly in size. If the Web cache is handling 500
requests a second, and each log entry is 256 bytes, then 7.5 megabytes of infor-
mation is being logged each minute of operation.

Previously we mentioned the use of heuristics to estimate the expiration time
of objects. Other heuristics are used to identify non-cacheable dynamic content.
Poor design of these heuristics can increase hit ratio statistics at the cost of deliv-
ering stale or private content. It is helpful to keep caching accuracy in mind
when evaluating hit ratios advertised by various caching vendors. The Web poly-
graph, mentioned previously, can help assess Web cache performance under real-
istically simulated workloads.

Some content providers restrict access to their content based on the client’s
network address or other client identification. The Web cache masks this infor-
mation, and the origin server sees the IP address of the Web cache, not the orig-
inal requester. Moving the access control to the Web cache can solve this
problem. An alternative solution, involving programming of the Web switch, is to
bypass the Web cache for such traffic. This is discussed more fully in Chapter 5.

Some individuals are especially concerned about their privacy and object to
any intermediary that is storing information in the path connecting their client
to the origin servers they are accessing. A Web cache may need to implement
bypass management features that allow the administrator to exclude these users
from obtaining caching services.

3.8.2 Caching Myths

Several fads have swept through the caching industry. Most of them are based
on fallacies and readily disputed myths about management of cache operations.
These myths include prefetching, push technology, and replacement management
strategies such as pin-in-cache directives.

Prefetching describes a strategy where the cache is loaded with specific con-
tent before the first user requests it. Push technology is a form of prefetching
where the origin server, or some content management system, determines what
content to prefetch. The premise of prefetching strategies is that rules can be
established to predict what content users will request, before they actually
request it. The reality of the Internet is that user behavior is very diverse. More
importantly, the potential savings from prefetching are tiny, even if the strategy
works as designed. Consider the case where content A is popular, and the Web
cache has correctly prefetched it. The key to the analysis is recognizing that
prefetching can only improve the response for the first user of each Web cache.
If 100 users request content A from the Web cache, then only 1 in 100 benefit
from the prefetching of content A. The savings diminish further for more popu-
lar objects. If the object is not popular, for example it is never requested, then

78 C H A P T E R 3 Caching Techniques for Web Content

Ch03.qxd 1/19/05 12:22 PM Page 78

the effort of the prefetching has been entirely wasted, and the cache has stored
an object that is never used.

Replacement management strategies are attempts to have human operators
improve on the cache replacement rules, such as those described in Section 3.3.1,
for particular content. One such strategy, called “pin-in-cache,” allows the oper-
ator to ensure that a particular object is not ejected from the local object store.
The problem is that this feature will make it more likely that stale content is
served to the clients. The Expires header, the last modified time, and client
requests provide the cache the information it needs to effectively manage object
replacement. If an object is current, and requested by clients, an up-to-date copy
will be retained in the cache local store.

We have seen how storing content closer to the user can speed access and
reduce network traffic. The next chapter describes approaches to caching
streaming media, where the beginning of a stream needs to be accessed by a
client before the entire stream is transmitted, or even created.

Readers interested in learning more about Web caching are encouraged to
read Web Caching, written by Duane Wessles and Web Proxy Servers, written by
Ari Luotonen [Luo 97, Wes01].

3.8 Caching Challenges and Myths 79

Ch03.qxd 1/19/05 12:22 PM Page 79

Ch03.qxd 1/19/05 12:22 PM Page 80

C H A P T E R 4

Caching Techniques for
Streaming Media

Streams are continuous. Milk arrives at your home in compact containers; how-
ever, water is delivered from the faucet in a continuous stream. Streams are
extensive in length, may start and stop at any time, flow at some expected rate,
are often expected to be continuous and steady, may combine several sources,
and may arrive at several destinations. Important types of content, including
audio programs, video programs, and real-time data streams, such as a stock
ticker or telemetry monitoring applications, traverse the Internet as streams.
This chapter describes protocols and caching techniques suited to the special
characteristics of such streaming media.

Important research continues to address the many interesting problems that
are associated with caching streaming media. The full scope of this research is
too broad to be comprehensively covered in this chapter. However the chapter
describes fundamental problems and basic concepts that establish the most prac-
tical solutions. Several selected techniques are described in detail because of
their practical or promising importance. This background provides the founda-
tion for understanding today’s solutions and ongoing research.

After introducing the basic characteristics of streaming media, several protocols
designed to meet the special needs of streaming media are described. The real-time
transport protocol (RTP), the RTP control protocol (RTCP), and real-time stream-
ing protocol (RTSP) are each described. Also, the Synchronized Multimedia
Integration Language (SMIL) and several proprietary protocols are described. With
this background, several approaches to caching streaming media are explained.
These techniques include fast prefix transfer, object segmentation, cache replacement,
and dynamic caching. The chapter ends with information from several case studies.

4.1 Streaming Media

Streaming refers to media types with time constraints and continuous data flow,
such as audio or video transmissions. Playback begins while the data is being

81

Ch04.qxd 01/19/2005 01:02 PM Page 81

82 C H A P T E R 4 Caching Techniques for Streaming Media

received. This is different from downloading a media file, such as an MP3 audio
recording, for later playback. It is also different from a sequence of data, created
perhaps by monitoring the performance of automated equipment, which is timely
but does not require strict synchronization for playback. The program may be a
simultaneous reception such as listening to a live radio broadcast or viewing news
or sports video broadcasts. Here the content is not prerecorded and the content
consumers tolerate moderate delay before the start of the stream. Live, interactive
applications such as teleconferencing, audio, or video phones, and distributed
multi-player games, can tolerate only minimal delays to effectively support the flow
of the interactive sessions. On-demand applications allow the user to access previ-
ously stored programs, such as movies on the Internet, news archives, and video
clips published on personal Web pages. Here, moderate delays are tolerated before
the start of the stream, but transmission gaps or jitter is not tolerated midstream.

Multicast is often proposed as an effective solution for distributing stream-
ing content to many widely distributed users. Portions of the IP address space
known as Class D Internet addresses are dedicated to multicast use [RFC 1112].
Requirements for multicast protocols have been established, used, and refined
for well over a decade [RFC 1458]. Chapter 2 describes multicast features avail-
able at several layers of the Internet protocols. Let’s take a look at one search for
this Holy Grail.

In the early 1990s a loosely organized group of people began the develop-
ment of the MBONE, the Internet Multicast Backbone. Undaunted by the slow
deployment of IP-level multicast-enabled routers in the Internet, the MBONE
employed a clever workaround. This temporary solution connected islands of
multicast-enabled networks by tunneling multicast packets across unicast
routers. The MBONE is a virtual network formed by a set of routers that agree
to forward multicast traffic on the Internet. The Unix program mrouted is a
freely available implementation of the Distance Vector Multicast Routing
Protocol (DVMRP) [RFC 1075] used by these MBONE routers. The first use of
the network was an audiocast from the March 1992 IETF meeting in San Diego
where live audio from several sessions was multicast to participants at 20 sites
located on three continents [CD92]. Although two-way communications is pos-
sible, the network supports only a few session channels so participants have lim-
ited program choices available at any one time [Eri94]. By 1996 the network grew
to include 3,000 subnets [Dee95]. Since then interest has declined due to the lack
of a revenue model, narrow bandwidth of the network, the temporary nature of
the workaround, limited session capability, limited administrative support for
multicast capabilities in the network, and informal organization of the network
administration.

The availability of the MBONE encouraged development of client programs
for accessing the multimedia streams. Some of the popular, freely available pro-
grams are: [SRL98]

VAT—The Visual Audio Tool.
SDR—The Session Directory Tool is designed to allow the advertisement and
joining of multicast conferences on the MBONE.

Ch04.qxd 01/19/2005 01:02 PM Page 82

VIC—the Video Conferencing Tool implements RTP, the real-time transport
protocol, described later in this chapter.
WB—the Virtual Whiteboard application used for displaying graphics.

Each of these is available for download from ftp://ftp.ee.lbl.gov/conferencing/
vat/ and are described at http://www-nrg.ee.lbl.gov/vic/ except for SDR, which is
available from http://www-mice.cs.ucl.ac.uk/multimedia/software/sdr/.

But as we will see in Chapter 9, revenue enables services. For this reason, the
world of streaming media is presently dominated by commercial software. These
include Real Networks RealOne player and Helix server software, Microsoft’s
Windows Media Player and NetMeeting products, and Apple’s QuickTime Player.

Protocols designed to meet the special needs of streaming media are avail-
able. These protocols accommodate the real-time sensitive, packet sequence,
packet loss, variable bandwidth, multireceiver, extensive, and continuous nature
of various streaming media formats while reducing jitter and monitoring the
performance of the network.

4.2 Protocols for Streaming Media

Although the HTTP protocol is well suited for transferring the text and images
of Web pages it is not a good choice for streaming media. HTTP running over
TCP enforces data integrity without regard to timeliness and is not well suited
to meet the time-critical needs of multimedia. Also, HTTP couples the signaling
channel with the bearer channel, reducing the flexibility of the signaling. Finally,
the signaling capabilities of HTTP do not support random access or time-based
access into a stream, nor precise timing control. When HTTP is used to deliver
streaming media the data downloads through one application thread while
another application thread begins to display what has been received. The user
has very little control of the download.

Several protocols have been developed to meet the special needs of multi-
media. The real-time transport protocol (RTP) and its companion, the RTP con-
trol protocol (RTCP), address the time-critical, high-bandwidth needs of
multimedia. With this pair of protocols, RTP is the bearer channel and RTCP is
the separate signaling channel. The real-time streaming protocol allows the
familiar play, pause, and fast forward functions of a VCR, DVD, or CD player
to be transmitted remotely. The Synchronized Multimedia Integration Language
(SMIL) is a text-based markup language that allows multimedia streams, text,
graphics, and animation to be combined, sequenced, precisely placed on the
screen, and synchronized to create a rich multimedia presentation [Aya01]. Each
of these protocols is described in more detail.

4.2.1 The Real-Time Transport Protocol (RTP)

Streaming media typically use the real-time transport protocol (RTP) [RFC
1889] in place of HTTP as the application transport protocol. RTP provides

4.2 Protocols for Streaming Media 83

Ch04.qxd 01/19/2005 01:02 PM Page 83

end-to-end network delivery services suitable for applications transmitting real-
time data, such as audio, video, or simulation data, over multicast or unicast net-
work services. The protocol services include payload-type identification,
sequence numbering, timestamping, and delivery monitoring. Applications typ-
ically run RTP on top of UDP to make use of its multiplexing and checksum
services, but may have to use TCP to traverse certain firewalls. Both the RTP and
UDP protocols contribute parts of the transport protocol functionality.
However, RTP may be used with other suitable underlying network or transport
protocols. RTP supports data transfer to multiple destinations using multicast
distribution if that is provided by the underlying network [RFC 1889].

RTP includes sequence numbers to allow the receiver to reconstruct the
sender’s packet sequence. These sequence numbers might also be used to deter-
mine the proper location of a packet, for example in video decoding, without
necessarily decoding packets in sequence. The header also includes the M
(marker) bit, which is designed to identify significant events in the stream, such
as a frame boundary. Although RTP does not provide quality-of-service fea-
tures, it does provide sufficient information to allow the client to faithfully play-
back the media stream.

RTP is often used in parallel with its companion signaling protocol, the RTP
control protocol (RTCP). RTCP provides the sender and receiver with timely
reports on the quality of service and conveys information about the participants
in an on-going session. In practice, RTP is sent on an even numbered port, while
the associated RTCP protocol runs on the next higher (and therefore odd) num-
bered port. Many applications choose to omit RTCP and tolerate the perform-
ance level and network monitoring capabilities available without it.

In a typical audio broadcast application, the audio data is sent in small
chunks, perhaps representing 20 ms of real time. An RTP header precedes each
chunk of audio data. This RTP header and data are encapsulated in a UDP
packet. The RTP header indicates what type of audio encoding (such as PCM,
ADPCM, or LPC) is contained in each packet. This may be useful in selecting
the correct codec for the receiver. It may also allow senders or network providers
to change the encoding format used during a conference, for example, to accom-
modate a new participant who is connected through a low-bandwidth link or to
react to indications of network congestion.

The RTP header also contains timing information and a sequence number
that allow the receivers to reconstruct the timing produced by the source. In this
example, chunks of audio are played every 20 ms. This timing reconstruction is
performed separately for each RTP packet source in the conference. The receiver
can also use the sequence number to determine how many packets are being lost.

As participants join and leave during the conference, it is useful to know
who is participating at any moment and how well they are receiving the audio
data. For that purpose, the client of each conference participant periodically
multicasts (on the RTCP port) a reception report identified by the name of the
participant. The reception report indicates how well the current speaker is being
received and may be used to control adaptive encoding. In addition to the user

84 C H A P T E R 4 Caching Techniques for Streaming Media

Ch04.qxd 01/19/2005 01:02 PM Page 84

name, other identifying information may also be included, subject to control
bandwidth limits. Finally a site sends the RTCP BYE packet when it leaves the
conference.

If both audio and video media are used in a session, they are transmitted as
separate RTP streams. RTCP packets are transmitted for each medium using
two different UDP port pairs and/or multicast addresses. There is no direct cou-
pling by RTP between the audio and video sessions, except that a user partici-
pating in both sessions should use the same uniquely identifying name (called a
CNAME) in the RTCP packets for both streams so that the sessions can be
associated. Timestamp information in the RTP packets can be used to provide
synchronization when rendering the associated audio and video streams.

The Synchronization Source (SSRC) is an important concept in the RTP
protocol. This 32-bit number identifies the source of each stream of RTP pack-
ets, and is carried in the RTP header. All packets from a particular synchroniza-
tion source share a common time base and packet sequence, so a receiver groups
packets by synchronization source for playback. Examples of synchronization
sources include the sender of a stream of packets derived from a signal source
such as a microphone or a camera, or an RTP mixer (see below). A synchro-
nization source may change its data format, such as its audio encoding method,
over time. If a participant generates multiple streams in one RTP session, for
example from separate video cameras, each must be identified as a different
SSRC.

The protocol also provides for mixers and translators to accommodate a
variety of network and receiver configurations participating in a single broad-
cast session. A mixer resynchronizes incoming audio packets to reconstruct the
constant (e.g., 20 ms) spacing generated by the sender. It then combines these
reconstructed audio streams into a single stream and forwards the composite
packet stream across the link. It may translate the audio encoding format to a
lower-bandwidth format. The packets might be unicast to a single recipient or
multicast on a different address to multiple recipients. The RTP header includes
a means for mixers to identify the sources that contributed to a mixed packet so
the receivers can provide the correct talker indication information. Because a
mixer acts as a timing source, it writes its own SSRC identifier into each RTP
packet header.

In contrast to a mixer, a translator always forwards RTP packets with their
SSRC identifier intact. It may transform a stream from one audio or video
encoding format to another. It may perform other transformations on the data,
requiring it to regenerate packet sequence numbers, payload type, or timestamp.
It may replicate from unicast to multicast and provide application-level filters to
help transverse firewalls. However, it never resynchronizes packets or acts as a
timing source and never regenerates synchronization source information.

Figure 4.1 illustrates an example distribution system employing five end-
points, two mixers, and one translator, each identified by their SSRC. Endpoints
E1 through E4 may be microphones used by people speaking at a conference.
Endpoint E5 may be the loudspeaker of a personal computer used by a remote

4.2 Protocols for Streaming Media 85

Ch04.qxd 01/19/2005 01:02 PM Page 85

86 C H A P T E R 4 Caching Techniques for Streaming Media

user to monitor the conference proceedings. In practice, both Synchronization
Source Identifiers (SSRCs) and Contributing Source Identifiers (CSRCs) are
randomly chosen 32-bit numbers. For simplicity in the figure, small integers were
chosen, and will be used to identify each component in the diagram. The SSRC
and CSRC of the packets on each stream are indicated in square brackets next
to each stream. Mixer M11 combines the streams from endpoints E1 and E2.
The mixer introduces its own SSRC, but includes the original synchronization
source identifiers of each endpoint as CSRCs. The translator interleaves packets
derived from the mixer M11 and endpoint E3. Because the translator does not
resynchronize the stream, the SSRC of each of these sources is retained. Mixer
M12 combines the streams from the translator and endpoint E4. It establishes
its own SSRC and now includes the CSRC from all four sources.

4.2.2 The RTP Control Protocol (RTCP)

The RTP control protocol (RTCP) relies on periodically transmitting control
packets to all participants in the session. RTCP uses the same distribution mech-
anism as the related data packets, for example using UDP with separate port
numbers. The primary function of RTCP is to provide feedback on the quality
of the data distribution. This is an important part of RTP’s role as a transport
protocol and is related to the flow and congestion control functions of other
transport protocols. The feedback may be directly useful for controlling codecs
that can adapt to changing network conditions. In addition it is important to get
feedback from the receivers to help diagnose faults in the distribution network.

Endpoint
SSRC = 1

Endpoint
SSRC = 2

Mixer
SSRC = 11

Endpoint
SSRC = 3

Endpoint
SSRC = 4

Mixer
SSRC = 12

Endpoint
SSRC = 5

[SSRC = 1]

[SSRC = 2]

[SSRC = 11
CSRC = 1, 2]

[SSRC = 3]

Translator

[SSRC = 11
CSRC = 1, 2]

[SSRC = 3]

[SSRC = 4]

[SSRC = 12
CSRC = 1, 2, 3, 4]

SSRC−−Synchronization Source Identifier, assigned by an endpoint or mixer.
CSRC−−Contributing Source Identifier, collected and inserted by mixers

Figure 4.1 RTP mixers and translators.

Ch04.qxd 01/19/2005 01:02 PM Page 86

Sending reception feedback reports to all participants allows anyone who is
observing problems to evaluate whether those problems are local or global.

The core of the RTCP protocol is the Receiver Report (RR) packet. In
addition to identifying information, each packet contains:

● the fraction of lost packets,
● the cumulative number of packets lost,
● the highest sequence number packet received,
● interarrival jitter, (an estimate of the statistical variance of the RTP data

packet interarrival time),
● the identification of the last Sender Report (SR) packet received from

the sender, and
● the delay since the last SR packet was received.

This information allows calculation of the packet loss rate during the inter-
val between two reception reports. While packet loss indicates persistent conges-
tion, the jitter field provides a short-term measure of network congestion.

With RTP and RTCP providing effective transport of multimedia streams,
the work of starting, stopping, and positioning the stream is left to the real-time
streaming protocol, described in the next section.

4.2.3 The Real-Time Streaming Protocol (RTSP)

Most people are familiar with using a Videocassette Recorder (VCR) or a DVD
player to view movies or other video programs. Here the videotape provides the
stream of video and audio information. The controls on the VCR, including
start, stop, pause, fast forward, and record, are used to control when the video
stream starts and stops playing. In accessing streaming media on the Internet,
the RTP protocol is used to deliver the stream, analogous to the videotape. The
real-time streaming protocol (RTSP) is used to select and play a stream, pause
it, and stop it, analogous to the controls on the VCR [RFC 2326, RTSP].

The RTSP protocol relies on RTP to deliver the actual media streams it con-
trols. RTSP may be transported over UDP or other protocols, but is usually
transported over TCP. RTSP is intentionally similar in syntax and operation to
HTTP/1.1, and it reuses HTTP concepts where it is logical. However, RTSP
introduces a number of new methods and has a different protocol identifier,
among other differences.

The base specification of the protocol is supplemented by a profile specifi-
cation document for each particular application. This profile specification doc-
ument defines a set of payload type codes and their mapping to payload formats
(e.g., media encodings). For example, RFC 1890 defines the RTP Profile for
Audio and Video Conferences, known as the AV Profile. This specifies payload
type definitions for various media including 15 audio formats and a number of
graphic and video formats. A profile may also define extensions or modifications
to RTP that are specific to a particular class of applications. Typically an
application will operate under only one profile.

4.2 Protocols for Streaming Media 87

Ch04.qxd 01/19/2005 01:02 PM Page 87

RTSP provides the methods described below. For each method, its direction,
either client-to-server (C→S), server-to-client (S→C) or both (C↔S), is indi-
cated. Also, its need—Required, Recommended, or Optional—is indicated.

DESCRIBE: (C→S, Recommended) retrieves from a server the description
of a presentation or media object identified by the request URL. The Accept
header can specify the format of the description. A common format is the
Session Description Protocol (SDP) [RFC 2327].

ANNOUNCE: (C↔S, Optional) The ANNOUNCE method serves two pur-
poses: When sent from client to server, ANNOUNCE describes to the server an
available presentation or media object identified by the request URL. When sent
from server to client, ANNOUNCE updates the session description in realtime.

SETUP: (C→S, Required) The SETUP request for a URL specifies the trans-
port mechanism to be used for the streamed media. This method uses the
Transport header to specify the transport parameters acceptable to the client
for data transmission. The response will contain the transport parameters selected
by the server. Typically RTP is chosen and other parameters, such as the RTP pro-
file specification, AV Profile for example, and the port numbers are provided.

PLAY: (C→S, Required) The PLAY method tells the server to start sending
data via the mechanism specified in SETUP. This method, as well as the PAUSE
method allows a Range: header to be included. The Range: header specifies
the start, and optionally, the stop time, when the stream should begin playing.
This can be specified in terms of Normal Play Time (NPT), SMPTE Relative
Time, or absolute time. NPT is the stream position relative to the beginning of
the presentation, and supports the special constant now to indicate the present
time in a live broadcast. SMPTE Relative Time is a standard developed by the
Society of Motion Picture and Television Engineers for expressing time from the
start of the clip in terms of frames and subframes. Absolute time is expressed as
ISO 8601 timestamps, using Coordinated Universal Time (UTC) and optionally
including fractions of a second. One use of the Range: header might be to
specify the start and end times of the sports, news, and weather segments of a
broadcast stored as a single stream.

PAUSE: (C→S, Recommended) The PAUSE request causes the stream deliv-
ery to be interrupted (halted) temporarily. If the request URL names a stream,
only playback and recording of that stream is halted. The PAUSE request may
contain a Range header specifying when the stream or presentation is to be
halted.

TEARDOWN: (C→S, Required) The TEARDOWN request stops the stream
delivery for the given URL, freeing the resources, including the session identifier
associated with it.

GET_PARAMETER: (C↔S, Optional) The GET_PARAMETER request
retrieves the value of a particular parameter of the presentation or stream spec-
ified in the URL. The content of the reply and response is left to the implemen-
tation. GET_PARAMETER with no entity body may be used to test client or server
response, like a ping does in ICMP.

SET_PARAMETER: (C↔S, Optional) This method requests setting the
value of a parameter for a presentation or stream specified by the URL.

88 C H A P T E R 4 Caching Techniques for Streaming Media

Ch04.qxd 01/19/2005 01:02 PM Page 88

REDIRECT: (S→C, Optional) A redirect request informs the client that
it must connect to another server location. It contains the mandatory header
Location, which indicates that the client should issue requests for that URL. It
may contain the parameter Range, which indicates when the redirection takes
effect.

RECORD: (C→S, Optional) This method initiates recording a range of
media data according to the presentation description.

OPTIONS: (C→S, Required, S→C is Optional) This is equivalent to the
Options header in HTTP/1.1. It is used to request information about the com-
munication options available on the request/response chain identified by the
Request-URL.

4.2.4 Protocol Layering

Several protocols interact to deliver streaming media. The upper portion of the
Internet Hourglass of protocols may look like Figure 4.2 for requesting and
delivering a media stream.

Following the example of Figure 4.3 helps to tie these protocols together
into a coherent media session. The example illustrates the steps required for a
user to load a Web page listing audio tracks, select one track, play the track, and
terminate the session.

1. The RTSP Client sends an HTTP GET request to a Web server to obtain
information about a particular media stream or presentation. This is sim-
ilar to going to the video store and asking them if they have a copy of a
particular movie.

2. The Web server responds with information about the session. There are
several options here. One option is for the HTTP response to identify
only the URL of the media stream or streams. In this case the client can
make an RTSP DESCRIBE request to obtain complete session informa-
tion from the RTSP server. Alternatively, the Web server can respond
with the complete session information.

4.2 Protocols for Streaming Media 89

UDPTCP

HTTP RTSP RTP

Network Layer

Transport Layer

Application Layer RTCP

IP

Figure 4.2 Layering of streaming protocol.

Ch04.qxd 01/19/2005 01:02 PM Page 89

90 C H A P T E R 4 Caching Techniques for Streaming Media

3. The Client sends an RTSP SETUP request to the RTSP server, indicat-
ing the URL, sequence number and transport parameters. In this exam-
ple the transport is RTP, using the AV Profile, unicast over UDP on
port number 4588. The associated RTCP session is on port number
4589.

4. The Server sends a response of:

RTSP/1.0 200 OK
CSeq:303
Date: 16 Oct 2003 15:35:06 GMT
Session: 47112344
Transport: RTP/AVP;unicast;

client_port=4588-4589;server_port=6256-6257

which indicates acceptance of the request, incrementing the sequence number,
assigning a session number, and announcing the server transport parameters.

RTSP Client Web Server

RTSP Server

HTTP GET

Session description including
rtsp://audio.example.com/movie/audiotrack

SETUP rtsp://audio.example.com/movie/audiotrack RTSP/1.0
CSeq: 302
Transport: RTP/AVP/UDP;unicast;client_port=4588-4589

PLAY rtsp://audio.example.com/movie/audiotrack RTSP /1.0
CSeq: 304
Session: 47112344

RTP Audio Stream

RTCP Information

TEARDOWN rtsp://audio.example.com/movie/audiotrack RTSP /1.0
CSeq: 391
Session: 47112344

1

2

3

4

5

6

7

8

9

10

Figure 4.3 A simple RTSP session.

Ch04.qxd 01/19/2005 01:02 PM Page 90

5. The Client sends an RTSP PLAY request requesting that the stream start
immediately from the beginning.

6. The server acknowledges the request with a response message similar to
the one described in step 4.

7. The server sends a steady stream of RTP packets. This is the actual
media stream.

8. RTCP information providing feedback on the quality of the data distri-
bution are interleaved with the RTP packets. Steps 7 and 8 take place in
parallel over an extended period of time, not sequentially as may be
implied by the diagram. During this time the user may pause the pro-
gram or move the slider to fast forward to a particular portion of the
stream. In response the client will send PAUSE requests or additional
PLAY requests, specifying a particular range of the stream be sent.

9. The Client sends an RTSP TEARDOWN request requesting the termina-
tion of the session.

10. The server acknowledges the request.

Freely accessible repositories providing streaming media in purely standard
formats are rare on the Internet. Although many video clips are available at sites
such as the multimedia archives of www.nasa.gov and www.video.com, they are
not in standard formats. These files have a suffix of .ram, which is a Real
Networks proprietary file type. However, if the .ram file is opened in a text edi-
tor, you can readily see the underlying RTSP request. This stream can then be
directly requested using an URL beginning with rtsp://.

4.2.5 Synchronized Multimedia Integration Language (SMIL)

The protocols previously discussed provide effective mechanisms for transporting
single streams from servers to clients. However, the problem of sequencing
streams relative to a single time base needs to be solved. This is important for syn-
chronizing an audio stream with an associated graphic or animation display, as
one example. A presentation may consist of several streams, starting and stop-
ping in some sequence, with some transition between clips. A presentation may
include graphics or text that needs to appear and disappear at certain times, per-
haps in time with music or other audio background. Finally the problem of plac-
ing the rendered image in a particular place on the screen needs to be addressed.

The Hypertext Markup Language (HTML) is the markup language used to
lay out and format Web pages consisting primarily of text and static graphics.
The Synchronized Multimedia Integration Language (SMIL—pronounced
“smile”) is an XML-based markup language that provides multimedia screen lay-
out and timing capabilities. SMIL allows users to control spatial layout and tim-
ing sequences to create presentations including sophisticated audio, video, image,
and animation features using tools as simple as a text editor [Aya01, Bul01].

In its simplest form a SMIL file lists multiple media clips played in sequence.
Each media clip is identified by a Media tag, selected from the Table 4-1.

4.2 Protocols for Streaming Media 91

Ch04.qxd 01/19/2005 01:02 PM Page 91

92 C H A P T E R 4 Caching Techniques for Streaming Media

The media tag identifies the actual media clip by its URL, so a simple
reference to an image may look like:

which is remarkably similar to the corresponding HTML tag. SMIL gets its mul-
timedia power from its precise control of screen layout, regions, and timings.

The background screen or canvas is called the root-layout and its size, color
and other attributes are set by a <root-layout> tag within a <layout>
</layout> container. After defining the root-layout, individual regions of the
screen, perhaps each used for a title area, a graphic image area, and a video area
are defined using <region> tags. Each region is assigned a name, so that
subsequent media tags can refer to the region in which they will be displayed.

There are three tags which control the timing of media objects within a
presentation.

These timing tags are:
<seq>—The sequential tag indicates that two or more clips should be played

in sequence. This is the default used if the timing container tags are omitted.
<par>—The parallel tag indicates that one or more clips share a common

time base. They should be played at the same time, or begin at some offset from
a common reference starting time.

<excl>—The exclusive tag indicates that only one of the media clips can
be active at a time. The active tag is typically chosen using the SMIL event
mechanism.

Timing is further controlled for each clip by including beginning (begin),
duration (dur), and ending (end) time parameters in each media tag.

Example 4-1 is a SMIL program that presents “hello world” in images and
audio. You can copy this example, name it hello.smil, and run it using an
available SMIL player device. Real Networks (www.real.com) provides a free
download of their RealOne Player that can render this file. Also, The Center for

Table 4–1 SMIL media tags

Media Tag Use

<animation> Animated vector graphics or other animated format

<audio> Audio clip

 Still image, such as PNG or JPEG

<ref> Generic media reference used for any clip type not covered by other attributes

<text> Text file, of type .txt

<textstream> Streaming text with attributes such as color, height, and clip start time

<video> Video clip

Ch04.qxd 01/19/2005 01:02 PM Page 92

Mathematics and Computer Science (CWI) in Amsterdam makes their AMBU-
LANT open-source SMIL Player available from: http://www.cwi.nl/projects/
Ambulant/.

<smil>
<head>
<layout> <!—Create the canvas and two display regions —>
<root-layout width="248" height="300"

background-color="blue" />
<region id="a" top="20" left="64" />
<region id="b" top="120" left="20"/>

</layout>
</head>
<body>
<par>
<img src="http://www.content-networking.com/smil/hello.jpg"

region="a"
begin="0s"
dur="6s"/> <!—Display "Hello" image now for 6 seconds —>

<img src="http://www.content-networking.com/smil/earthrise.jpg"
region="b"
begin="2s"
end="8s"/> <!—Display the "World" image after 2 seconds —>

<audio src="http://www.content-networking.com/smil/hello.wav"
begin="4s"/> <!— Begin the audio after 4 seconds —>

</par>
</body>
</smil>

Example 4.1. A SMIL File to present “hello world” in images and audio.

In addition to the features and tags described above, the SMIL language
includes rich features for synchronization, iteration, bandwidth determination,
switching between presentation formats, and transition effects between clips,
color, layout, and animation.

Although these standard protocols provide many benefits, several major
software providers have chosen not to use them. The next section describes why
standards are sometimes ignored, and describes the status of several proprietary
implementations.

4.2.6 Proprietary Protocols

Products based on standards are standard products, not differentiated products.
Even when standard protocols provide an excellent technical solution, commercial

4.2 Protocols for Streaming Media 93

Ch04.qxd 01/19/2005 01:02 PM Page 93

94 C H A P T E R 4 Caching Techniques for Streaming Media

organizations that depend on profitable revenue may choose not to use them.
Product differentiation is often essential for distinguishing a product sufficiently
for it to command a price high enough to be profitable. A product based entirely
on standards cannot distinguish itself by the protocol features it provides.
However, distinguished products based on standards can be built by paying
attention to performance, ease of use, reliability, and overall value. Some people
follow the bits while others follow the bucks!

Although using standard protocols would allow more rapid improvement of
streaming technology, the dominant commercial companies in streaming media
software began with proprietary protocols. Real Networks used their PNA—
Progressive Network Architecture—in place of the RTSP standard. They used
their RDT—Real Data Transport protocol—in place of the RTP standard.
Microsoft used their Microsoft Media Server (MMS) proprietary protocol; how-
ever, they have included RTSP support in version 9 of their Windows Media
Player.

More recently they have moved away from their proprietary protocols to
embrace standard, or nearly standard, versions of the streaming protocols
described above. Each provider incorporates proprietary extensions to the
protocols, or includes proprietary elements in some way.

RealNetworks uses proprietary text-based .ram files to launch the RealOne
Player, provide the URL of the actual RTSP file, and set parameters in the
Player [Real1]. Their SureStream technology allows encoding for three different
transmission bandwidths within a single file. They also support proprietary
extensions to the SMIL standard, including RealPix and RealText for annotat-
ing graphics and text. Their Helix Universal Server provides support for live
and on-demand delivery of major file formats, including Real Media, Windows
Media, QuickTime, MPEG 4, MP3, and more.

4.3 Caching Techniques for Streaming Media

We have seen that closer is better and streams are continuous, therefore new
approaches for caching streaming media are needed. Streams are generally much
larger than text or graphic objects. They have important real-time and time syn-
chronization requirements, and these requirements have led to the use of new
protocols for transporting and controlling them. Storing the entire content of
several long multimedia streams would quickly exhaust the storage capacity of
a cache designed for static Web objects. Therefore a scalable caching solution
can only store some portion of each stream. The next sections describe four
techniques to enhance caching systems to better support streaming media over
the Internet. These techniques are audio/video smoothing, fast prefix transfer,
object segmentation and cache replacement, and dynamic caching. Each of these
techniques helps shield the content consumer from the delay, throughput, and
loss properties of the network path between the content server and the cache
employing these techniques.

Ch04.qxd 01/19/2005 01:02 PM Page 94

4.3.1 Audio/Video Smoothing

Bits arrive in bursts. Multimedia content is inherently bursty, even at the
source. Compression techniques increase the variability. As an example, a
23-minute-long video segment of the movie, The Wizard of Oz was encoded in
MPEG [LeG91] and analyzed frame by frame. The number of bits per frame
varied greatly. The sample mean was 41.7 Kbits per frame with a standard devi-
ation of 51.7 Kbits. The smallest frame was only 0.56 Kbits, while the largest
was more than 600 times as large at 343 Kbits. Since frames are displayed at a
constant rate, the variable frame size corresponds directly to variable bandwidth
needs [KH95].

Network channels add delay, packet loss, and congestion and further
increase the burstyness. If video frames were displayed immediately as they
arrive, this variability would appear as annoying jitter—variable intervals
between each displayed frame.

To hide this jitter from the user, multimedia clients typically include a play-
back buffer, which acts as an elastic store. The rendering proceeds smoothly, tak-
ing frames from the front of the buffer at a constant rate, while the network fills
the back of the queue at a variable rate. This buffer may store several seconds of
the stream, trading an initial delay for smooth rendering of the stream. This is
called audio/video smoothing. If the stream arriving over the network is extremely
variable, the buffer may empty, and the rendering then must pause until the
buffer begins to fill.

Figure 4.4 illustrates the delays that occur. Time is somewhat exaggerated
along the vertical scale to better illustrate the sequence of events. The client
request traverses the network to reach the server. The server handles the
request, fetches the multimedia file, and begins the response by repeatedly send-
ing packets of media to the client at the playback rate. The connection delay is
the interval from sending the client request to receiving the first server response.
The length of this connection delay depends on the length, congestion, and
speed of the network path and on the server response time. The client buffer
now begins filling, and introduces a delay until the buffer is sufficiently full to
begin playback.

4.3.2 Fast Prefix Transfer

Television viewers and radio listeners often enjoy “channel hopping”—frequently
and immediately switching channels. Whether to skip advertisements or just
browse the current program—once a consumer gets used to immediate channel
switching, she will never accept a system that adds significant delays when
changing channels. Likewise, TV watchers and radio listeners expect immediate
playback when turning on their TVs or radios.

Internet-based streaming, however, suffers from significant playback delays
that are typically in the range of a few seconds. The majority of the delay is
caused by buffer delay, with some additional connection delay (see Figure 4.4).

4.3 Caching Techniques for Streaming Media 95

Ch04.qxd 01/19/2005 01:02 PM Page 95

96 C H A P T E R 4 Caching Techniques for Streaming Media

The question is how to reduce these delays and provide the consumer with a
responsive streaming delivery system.

Frazzled software developers have asked their colleagues to please “get
started while I go find out what they want.” To minimize delay, firefighters begin
using water stored in the tanker truck immediately while crews take time to
locate a fire hydrant and connect to its steady stream. Similarly, when a cache
has previously stored the beginning of a multimedia stream it is able to quickly
satisfy user requests while it contacts the server for the remaining portions of the
stream. This is the simple essence of prefix transfer mechanisms [SRT99]. Prefix
transfer mechanisms help reduce the connection delay, but they do not help with
the buffer delay. This is where the fast prefix transfer mechanism comes in.

From Figure 4.4, it is obvious that storing less data in the client-side buffer
would help reduce the buffer delay. However, this is not a good option because
a certain amount of data is needed at the client for audio/video smoothing to
absorb network jitter and delay variations. Therefore, the only alternative for
reducing buffer delay is to fill the client buffer faster, which translates into trans-
mitting the data to be buffered at a higher rate. This is the idea behind fast pre-
fix transfer.

Figure 4.5 illustrates how prefix caching reduces connection delay and how
fast prefix transfer further reduces buffer delay. The client request goes to the
cache. The cache begins its response using the previously stored multimedia file
prefix. The cache simultaneously sends a request to the server for the remainder
of the multimedia stream. If the cache is managed by the client’s organization,

Client Request

Playback
Begins

Connection Delay

Buffer Delay

Server Response

Server Client

Figure 4.4 Buffered playback.

Ch04.qxd 01/19/2005 01:02 PM Page 96

it may be possible to locate the cache close to the client and to employ a fast and
lightly loaded connection between the client and the cache. The connection delay
lasts only until the first response is received from the cache. This delay can be
substantially shorter than waiting for a server response, thus reducing the con-
nection delay. The cache then continues to fill the client buffer while it receives
the remainder of the stream from the server. The server stream is buffered in the
cache ready for transmission to the client as soon as the prefix is exhausted. The
cache has the option of storing any portion of the stream for use in subsequent
requests. If this is the first request for this stream, and there is reason to believe
additional requests will be made for this stream, the cache will probably decide
to store a prefix. If the stream is particularly popular, the cache could decide to
store the entire length of the stream for future use. The requests between the
cache and the server can run substantially ahead of the playback, but must not
lag too far behind. To avoid an interruption in playback, the transfers from
server to cache can lag only by the time made available by the playback buffer
and stored prefix.

Fast prefix transfer provides an additional advantage. This scheme transmits
the prefix to the client at data transfer speeds faster than the playback speed.
This fills the client buffer faster and further reduces the delay seen by the client.
If several caches are cascaded from the server to the client, fast prefix transfer is
especially effective when the client uses the closest cache. In this case the fast
transfer is filling the client buffer directly, and directly reducing client delay. If
the transfer is five times as fast as the stream playback rate and the prefix is
as long as the buffer the delay can be reduced by a factor of five compared to a
prefix transfer at the stream rate. A graph showing other results from this

4.3 Caching Techniques for Streaming Media 97

ClientServer

Client Request

Playback
Begins

Connection Delay

Buffer Delay

To Cache Buffer

Cache

From
Stored Prefix

From
Cache Buffer

Figure 4.5 Fast prefix caching.

Ch04.qxd 01/19/2005 01:02 PM Page 97

98 C H A P T E R 4 Caching Techniques for Streaming Media

technique is shown in Figure 4.6. Here each line represents a different length pre-
fix, ranging from zero to five seconds long. In each case the client buffer was five
seconds long. The horizontal axis represents different ratios of fast transfer to
playback rate. Note, for example, that a three-second-long prefix reduced access
delays to only three seconds when the prefix was delivered four times as fast as
the playback speed.

The cache can also be used to replicate (split) a stream to serve many clients
while requiring only one connection to the server. Here several clients are served
simultaneously from the cache, while only one path is used to the server. If the
network connections from the cache to each of the clients are fast and short, the
clients will all see excellent service with minimal traffic across the larger network
to the server. A cache can even serve as an effective multimedia stream splitter
for live broadcasts where prefix caching is impossible. This is analogous to mul-
ticast, where the streaming cache is performing the replication.

Streaming media protocols include features that allow a cache to identify
and store the initial frames making up the prefix, then request the remaining
frames from the server. The RTP protocol includes sequence number and time-
stamp information that enables the cache to identify the frames in the prefix
and request the remaining frames from the server. The Range request header
operation in HTTP 1.1 provides a similar capability for Web servers supporting
the feature. Finally RTSP supports absolute positioning (also known as seeking)
to request an offset from the beginning of the stream.

For some applications the cache can store several portions of the multime-
dia stream in addition to the prefix. For example, the stream may be presented
to the user as a series of chapters or other logical segments. The cache could then

1

2

3

4

5

0

6

Ratio Fast Transfer Rate / Playback Rate
Each line represents a different length prefix.

0 sec

1 sec

3 sec

5 sec

1 2 3 4 5 6 7 8 9 10

A
cc

es
s

D
el

ay
 (

S
ec

on
ds

)

Figure 4.6 Fast prefix delay reductions.

Ch04.qxd 01/19/2005 01:02 PM Page 98

store the beginning of each chapter in anticipation of handling requests for any
chapter. However, arbitrary seeking functions, such as fast forward, and seeking
to an arbitrary position, are not readily accommodated by this scheme.

Modest cache storage requirements can provide substantial user benefits.
For example, a full motion MPEG-2 video stream with a mean rate of 2
Mbits/second requires only 2 Mbytes of buffer space to store an 8-second-long
prefix. This is probably enough time to setup and begin transmission of the orig-
inal stream from the server during most conditions.

The size of the prefix must be chosen carefully. Figure 4.7 illustrates the
importance of segmenting a stream in a size that balances delays and traffic
from the server with the storage capacity of the cache. Without segmenting the
objects, storage limitations cause all of object A to be ejected from the cache
after retrieving B. With segmentation, a portion of A can be retained after B is
stored. The next section describes an approach to segmentation that increases
the caching effectiveness.

4.3.3 Object Segmentation and Cache Replacement

Containerized shipping has improved materials transportation around the
globe. The key innovation is a large, rectangular metal container about the size
of a tractor-trailer or a railroad boxcar. These containers are built in standard
sizes that fit readily onto trucks, rail cars, and ships. Once the containers are
filled they can be loaded onto a truck, then moved easily to a rail car and then
onto a ship or stored at a warehouse. A single container size is chosen to fit each
of the transport vehicles used along the journey. This is shown in Figure 4.8.

Disk storage is allocated in blocks of a particular fixed size. If multimedia
streams are segmented into sections the size of disk blocks, then storage,
retrieval, and replacement in a local cache store is very efficient. Segments of a

4.3 Caching Techniques for Streaming Media 99

Without Segmentation

Initial
Cache Content

A

Cache Content after
Receiving Request

for Object B.
All of A was Ejected.

Initial
Cache Content

Cache Content after
Receiving Request

for Object B.
Part of A was Retained.

With Segmentation

B

AT1AT2

AT1

Figure 4.7 Segmenting streaming objects.

Ch04.qxd 01/19/2005 01:02 PM Page 99

100 C H A P T E R 4 Caching Techniques for Streaming Media

streaming object can now be cached and replaced independently thereby reduc-
ing contention for disk space, and using disk space efficiently [HNG+99].

A drawback of caching and replacing segments independently is that when
a streaming request arrives at the cache, it is likely that only a portion of the seg-
ments making up the entire stream will be present. Serving the entire stream then
requires requests to the origin server, or some cooperating cache, to retrieve the
missing segments. This increases signaling and transport traffic. It also increases
the probability of losing synchronization in the media stream. A technique for
controlling the number of missing gaps (breaks in sequences of adjacent seg-
ments) is needed. Increasing the segment size reduces the number of missing
gaps, but has the serious disadvantage of increasing contention for disk space.
What is needed is a large logical unit for caching, while retaining a fine granu-
larity for disk allocation and replacement.

Figure 4.9 illustrates an effective solution. The streaming object is seg-
mented into logical units called chunks for caching. Each of these chunks is fur-
ther divided into segments corresponding to the disk block size. A chunk is
simply a number of contiguous segments within a streaming object. Each chunk
is cached independently using the following rules as the replacement policy:

Figure 4.8 Containerized shipping.

Ch04.qxd 01/19/2005 01:02 PM Page 100

1. The basic unit of caching and cache replacement is a segment. This opti-
mizes disk storage.

2. Segments allocated for a chunk always form a contiguous prefix of the
chunk. This captures the advantages of prefix caching described in the
previous section.

3. When any segment within a chunk is being accessed, no segment within
the chunk can be ejected from the cache. This rule is based on the conti-
nuity typical of stream access. The most likely portion of a stream to be
requested next is the portion of the same stream that immediate follows.

4. When the replacement algorithm chooses any chunk for ejection, the last
segment of the cached prefix is always chosen for ejection. This rule
preserves the prefix as much as possible.

Choosing the chunk size allows a design trade-off between the number of
gaps and the flexibility in replacing segments. If the chunk size grows very large,
the entire stream becomes one chunk, and this becomes the same as prefix
caching. If the chunk size is very small, it contains very few segments, and the
continuity of the cached stream is lost. Intelligent prefetching may be needed to
retrieve missing segments to preserve the timing requirements of the stream.
More details, including performance numbers measured from a working proto-
type, are given in [HNG+99].

4.3.4 Dynamic Caching

The streaming nature of multimedia provides additional opportunities for band-
width savings. Normally two playback requests require two separate data
streams. However, requests from two clients for playback of the same stream dif-
fer only in the timing of the request. Playback requests for streaming media are
related by their temporal distance, the time from the start of playback at one

4.3 Caching Techniques for Streaming Media 101

Cached Segments

Streaming Multimedia Object

Non-Cached Segments

Segment Size Chosen
to Fit Disk Block Size

Chunk 3Chunk 1Chunk 0 Chunk 2

Figure 4.9 Cache replacement for streaming media.

Ch04.qxd 01/19/2005 01:02 PM Page 101

102 C H A P T E R 4 Caching Techniques for Streaming Media

client to the start of playback of the same stream at the second client. If the dif-
ferences in the timing of the requests can be hidden, then a single stream
can serve both requests. This is the basis for dynamic caching, illustrated in
Figure 4.10.

When a user requests the latest headline news video from CNN, a dedicated
stream is started. When a second user requests the same stream five minutes
later, it is almost certain that the data currently being sent to the first user will
be needed by the second user five minutes later. If a cache shared by both users
can provide a buffer to hold those five minutes of streaming media,1 two users
can be served from a single stream. Also, the buffer only needs to be five min-
utes long, regardless of how long the stream is. The temporal distance of the
users determines the buffer size, in this case, five minutes, rather than the length
of the stream. It forms a sliding window over the stream. Of course, the first five
minutes of the stream has to be retrieved so it can be sent to the second user.

We can formalize the scenario described in the previous paragraph. The
client at receiver R1 requests the streaming object at a particular time t. Some
time later the client at receiver R2 requests the same streaming object. The
difference in time, the temporal distance between the two requests, is represented
by ∆ seconds. When the client at R2 receives the start of the stream, the first
client has already received the first ∆ seconds of the stream. However, all of the
data being streamed to R1 will also be needed by R2. Therefore, by allocating a
ring buffer, a moving window of ∆ seconds of the data stream going to R1 can
be reused to satisfy R2’s request when it occurs ∆ seconds later. The ring buffer
has hidden or absorbed the temporal distance between the two requests. Now,

R1

R2

S t

t + ∆Patch
t t+∆ t+2∆

Serve R2
From cache

Data for R1

Data for R2

Ring
Buffer

Start
Caching

Figure 4.10 Dynamic caching.

1This assumes that the streaming rate is the same as the playback rate. It is possible for the streaming rate to
exceed the playback rate. In that case, the buffer has to be sized according to the playback rate.

Ch04.qxd 01/19/2005 01:02 PM Page 102

R2 still has to obtain the initial ∆ seconds of data that was missed by joining the
stream later. This interval of the stream is called a patch and can be obtained
directly from the origin server, or it may have been stored as a prefix in the cache.

This ring buffer and patching mechanism making up the dynamic cache can
be used several places in the network. They can be used in the local client to
allow the client to join a broadcast stream already in progress. A network cache
can employ these techniques to allow sharing of a stream with several clients,
each served by their own ring buffer. If a single cache serves several clients, it can
allow multiple taps into a single ring buffer to connect each client with the cor-
rect stream delay. Finally, several dynamic caches can cooperate to form a
stream distribution mesh in the network. Here each cache requests patches or
streams with a particular delay from other caches in the network. It is remark-
able that a small ring buffer is sufficient to deliver a complete streaming object
to multiple clients, regardless of the length of the stream. The required size of
the ring buffer depends only on the time difference ∆ between the clients’
requests, and not on the length of the stream. This technique is useful when mul-
tiple requests occur within a small enough time-span to fill the time difference
with the contents of the buffer.

4.4 Case Studies

Proprietary protocols, nonstandard implementations of standard protocols, and
the complexities of building a practical system all present challenges in using the
techniques presented in this chapter. After describing what was learned from a
few surprises, the performance of a practical system is analyzed.

4.4.1 Standard Surprises

Use of open standards is voluntary. They do not come with methods of enforce-
ment or any judicial system. If they help advance influential people’s goals, they
will be chosen, implemented, promoted, and used. If they are not helpful, they
will be selectively implemented, modified, or ignored. Open standards are inter-
esting, but popularly chosen implementations are vital. Chapter 10 discusses the
role of standards in more depth.

Previously we mentioned that major software providers have made use of
proprietary streaming protocols. To provide acceptable hit ratios, a cache needs
to support the protocols used by the most popular clients. Therefore, a streaming
cache (at least one built not long ago) probably needs to support proprietary
protocols. The specifications of proprietary protocols are trade secrets closely
guarded by the companies that expect to profit from them. Implementations of
proprietary protocols are not freely available, and are only rarely available as
source code. Independently verified conformance tests and performance bench-
marking also become impossible. In the arena of proprietary protocols, money
talks and secrecy prevails.

4.4 Case Studies 103

Ch04.qxd 01/19/2005 01:02 PM Page 103

Streaming Web cache designers incorporating proprietary protocols have lit-
tle choice but to pay the licensing fees the owners of those proprietary protocols
require. This can add significantly to the cost of each cache device. It certainly
precludes any open source or freeware distribution model. The cache has to gen-
erate cash; a business model that returns enough revenue to cover the licensing
costs of each cache is essential. This business model is typically based on the
cache providing additional revenue or cost savings to a collection of users, net-
work providers, or content providers. It may be difficult to convince any of these
groups that the financial cost of a cache is less than the additional revenue or
network savings. How convincingly can the cost of media streaming delay be put
into financial terms?

Failure to adopt standards-based solutions can lead to other problems. In
Section 4.2.1 the M (marker) bit was described. This M bit is included in the
header so it can be set to identify the start of each frame sequence. A streaming
Web cache was designed relying on the M bit to identify frame boundaries.
Unfortunately, one of the major suppliers of streaming servers simply failed for
an extended period of time to implement this protocol feature. The cache
designers had little recourse except to find some other, much less efficient, way
to identify the frame boundaries. There is no appeals court set up to hear
standards violations.

In another example, attempts to use fast prefix transfer with proprietary
protocols failed. The streaming software built around the protocols assumed
that the streaming rate was the same as the playback rate. This proprietary soft-
ware simply could not accommodate the faster data transfers required for fast
prefix transfer.

4.4.2 System Performance

A cache device was built incorporating several of the techniques discussed in this
chapter. It includes fast prefix transfer, object segmentation, and dynamic
caching. After a brief description of the implementation, the performance mea-
surements of the system are presented and described.

Figure 4.11 shows the major components of the streaming cache. As with
any intermediary, it must appear as a server to the client and as a client to the
server. Because the intermediary terminates the protocols, it must translate
header information, including timestamps and sequence identifiers between the
server view and the client view of each packet. The following components per-
form those functions:

● The RTSP/RTP Client and Server modules receive and process RTSP
requests from the clients, and interact with the RTSP/RTP client module
to forward them to the server after appropriate header translation. It
also streams data to the clients using RTP. The RTSP/RTP client mod-
ule contacts media servers or other caches across the network to fetch
data for client operations.

104 C H A P T E R 4 Caching Techniques for Streaming Media

Ch04.qxd 01/19/2005 01:02 PM Page 104

● The Buffer Manager forms a pool of buffers from the available memory.
Each buffer is associated with a media object identified by a URL and a
time range. It uses the RTSP/RTP client module to fetch data that is not
available from disk storage. It works with the cache management mod-
ule to store and retrieve media objects to and from the disk storage.

● The Cache Manager maps URLs to filenames and manages the disk
space using a Least Recently Used (LRU) replacement policy. It consol-
idates non-overlapping time segments of a media object into a single file.

● The Scheduler manages a queue of events. This includes client requests,
server fetches, and garbage collection.

Many more details of the implementation are provided in [BGH+00].
The performance of this system was measured as a few design parameters

were varied. The cache was connected to a server holding 12 video clips, ranging
in length from 40 to 70 seconds. Several clients requested whole MPEG video
clips from the cache every 15 seconds using a Zipf popularity distribution. The
traffic into and out of the cache was measured to derive a traffic reduction ratio,
using the formula: R = (Data Out−Data In)/Data In. A perfect cache that
never needs to retrieve data from the server has a traffic reduction ratio of one.
A cache that retrieves as much data from the server as it presents to the client
has a ratio of zero.

Figure 4.12 shows how the traffic reduction ratio improves over time for sev-
eral choices of prefix cache size. The horizontal axis is the length of time passed
since the first client request. The reduction ratio starts out small and increases

4.4 Case Studies 105

Scheduler

Cache
Manager

Buffer
Manager

RTSP Server

RTP Server

To/From
Server

To/From
Client

RTSP Client

RTP Client

Disk
Storage

Figure 4.11 Streaming cache implementation.

Ch04.qxd 01/19/2005 01:02 PM Page 105

0.7

0.6

0.5

0.4

0.3

T
ra

ffi
c

R
ed

uc
tio

n
R

at
io

0.2

0.1

0.8

0
101 201 301 401 501 601

Time (Seconds)
701 801 901 10011 1101

Cache = 10s

Cache = 20s

Cache = 30s

Cache = 40s

Cache = 50s

101 201 301 401 501 601 701 801 901 10011 1101

0.1

0.2

0.3

0.4

0.5

0

0.6

Time (Seconds)

T
ra

ffi
c

R
ed

uc
tio

n
R

at
io

Buffer = 20s

Buffer = 50s

Buffer = 70s

Figure 4.12 Prefix caching benefits.

Figure 4.13 Ring buffer benefits.

Ch04.qxd 01/19/2005 01:02 PM Page 106

while the cache fills until it stabilizes. In this case, the total disk store was large
enough to store the entire working set of media files, so no cache replacement
took place. While caching 10-second-long prefixes provides only a 10% reduc-
tion in traffic, caching 50-second-long prefixes provides a reduction in traffic
increasing to 75%. Note that the prefix size approaches the entire length of the
stream in this example.

The cache incorporates a ring buffer to implement dynamic caching, as
described in Section 4.3.4. Figure 4.13 shows how the traffic reduction ratio
varies over time for several choices of ring buffer size. Here traffic is reduced by
50% when a 70-second-long ring buffer is used. Smaller buffers provide less traf-
fic reduction.

4.4 Case Studies 107

Ch04.qxd 01/19/2005 01:02 PM Page 107

Ch04.qxd 01/19/2005 01:02 PM Page 108

C H A P T E R 5

Navigating Content Networks

109

Transport requires navigation. Travel is erratic and uncertain until a path toward
the destination is known. The mariners of centuries ago who lost countless lives,
ships, and cargo because of inadequate navigation understood its essential role
in the safety, effectiveness, and efficiency of sailing ships. The danger was
demonstrated in tragic human terms on October 22, 1707, when Admiral Sir
Clowdisley Shovell made a fatal navigation error. Nearly 2,000 officers and men
of the Royal Navy perished when the HMS Association, Eagle, Romney, and
Firebrand all struck Gilstone Ledge and sunk to the ocean depths. This tragedy
led to creation of the British Longitude Act of 1714, which promised an
immense prize of £20,000 to anyone who could provide a practicable and useful
method of determining longitude to an accuracy of one half degree on an ocean
voyage across the Atlantic1 [Sob95].

Navigation is also essential in content delivery networks. Even the simplest
content request requires translating hostnames into IP addresses, routing
requests to their destination across the Internet, switching packets to the most
effective server, and returning a response to the client.

Navigation refers to the general problem of locating a destination and
determining a path toward it. In content delivery networks, the terms switching
and routing are most often used to describe navigation through the network.
The terms are sometimes used interchangeably; however, there is often a dis-
tinction. Switching generally refers to choosing among several local endpoints
connected to the switch at Layer 2, the link layer; however, we will see that it is
also used to describe selection based on Layer 4–7 (transport through applica-
tion layer) information. Routing is the process of choosing a path over which to
send packets. Routing typically refers to path selection at Layer 3, the network
layer.

1After devoting a lifetime to the problem, John Harrison finally received half the maximum award in 1764 for
building clocks that retained remarkable accuracy on long sea voyages.

Ch05.qxd 01/19/2005 01:03 PM Page 109

The chapter begins with a description of the Domain Name System
(DNS). This distributed directory is used to translate user-friendly host-
names, like www.content-networking.com into the corresponding IP address.
Then Layer 4–7 request switching is described, including the use of these
switches for server load balancing and Network Address Translation (NAT).
Several approaches to Global Routing are described. Each of these
approaches is designed to locate the server best able to deliver the requested
content. The chapter ends by describing a few case studies that illustrate these
techniques.

5.1 The Domain Name System

Beginning in 1963, the United States Postal Service (www.usps.com) introduced
the Zone Improvement Plan (ZIP) to improve routing mail through the postal
system. In this system each local region is assigned a unique 5-digit number,
called the ZIP code. In 1983, the Postal Service began using an expanded
ZIP Code called “ZIP+4.” This consists of the original 5-digit ZIP Code plus a
4-digit add-on code. The 4-digit add-on number identifies a geographic segment
within the 5-digit delivery area, such as a city block, office building, individual
high-volume receiver of mail, or any other unit that would aid efficient mail
sorting and delivery.

When sending a letter to someone at the Veterans Hospital on Elm Street in
Fargo North Dakota it will probably arrive sooner if it is addressed using the full
ZIP+4 numeric code for that location. The ZIP code is easy to find using a Web
page the USPS provides for translating the familiar form of an address to the
ZIP+4 code. The ZIP+4 code for that address is 58102-2498. Modern mailing
systems, including popular PC-based word processors, write a bar code on
envelopes addressed using the full ZIP+4 code. Sorting machines at the post
office read this bar code to decide on a route for the envelope and sort it into a
bin for transport along the next hop to a post office or regional center closer to
the final destination. When the letter reaches the final post office the postal car-
rier gathers all the mail with his or her ZIP+4 code, and delivers it to the final
destination.

The Internet uses a similar system. Endpoints such as hosts and clients are
assigned numeric IP addresses, but are addressed by name. The Domain Name
System translates hostnames from user-oriented forms such as www.content-
networking.com to the corresponding numeric IP address [RFC 1739]. Popular
operating systems provide the nslookup (Name Server Lookup) command to
translate host and domain names into IP addresses. To try this yourself, begin
with a command prompt (start / run / cmd if you are using a Windows-based
PC, and omnipresent on Unix-based systems) and type:

nslookup www.content-networking.com

110 C H A P T E R 5 Navigating Content Networks

Ch05.qxd 01/19/2005 01:03 PM Page 110

The session will look something like this annotated dialog:

> nslookup www.content-networking.com ¨ Your request
> Server: ns01.plnfld01.nj.comcast.net ¨ Name Server Host Name
> Address: 68.39.224.5 ¨ Name Server IP Address
> Name: www.content-networking.com ¨ Host Name
> Address: 63.219.151.20 ¨ Host IP Address

After entering the nslookup command the system responds with the host-
name and IP address of the Domain Name Server that resolved the request. It
then repeats the hostname and provides its IP address of 63.219.151.20.

Let’s take a more careful look at the domain name system, including the
structure of the names, the distributed nature of the directory, how requests
are resolved, tools for interrogating the directory, and using DNS for load
balancing.

5.1.1 Domain Names

Prior to development of the Domain Name System the Internet host name to
address mappings were maintained by the Network Information Center (NIC,
now called the Internet Assigned Numbers Authority (IANA), www.iana.org) in
a single file known as the host table. This file, hosts.txt, was obtained using FTP
by all hosts in the network [RFC 952, RFC 953]. Remnants of this approach still
exist in many of today’s operating systems. For example, Windows XP has a text
file hosts in the \WINDOWS\system32\drivers\etc directory. While the hosts.txt
file approach is conceptually simple, it does not scale up to meet the needs of the
rapidly expanding Internet. To keep up-to-date, the hosts.txt file had to be mod-
ified whenever a new host was added to the network. The file then had to be dis-
tributed to each host and installed. A new approach was needed.

In November of 1987, RFC 1034 was published to describe the distributed
directory that has become today’s Domain Name System.

The DNS has three major components:

1. The Domain Name Space and Resource Records, which are specifications
for a tree-structured name space and data associated with the names.

2. Name Servers are server programs that manage information about the
domain tree’s structure and records. A particular name server has com-
plete information about a subset of the domain space, and pointers to
other name servers that can be used to find information from any part of
the domain tree.

3. Resolvers are programs that extract information from name servers in
response to client requests. A resolver is typically a system routine that is
directly accessible to user programs.

The Domain Name Space is shown in Figure 5.1. It begins at the root, and
extends to a set of top-level domain (TLD) names. These are further organized

5.1 The Domain Name System 111

Ch05.qxd 01/19/2005 01:03 PM Page 111

into country code TLDs (ccTLD) and generic TLDs (gTLD). RFC 1591, pub-
lished in 1994, discusses these top-level domain names and makes the following
prediction that seems quaint in retrospect:

“There are a set of what are called top-level domain names (TLDs). These
are the generic TLDs (edu, com, net, org, gov, mil, and int), and the two
letter country codes from ISO-3166. It is extremely unlikely that any other
TLDs will be created.”

At that time the list of gTLDs with their intended use was:

● com—for commercial entities, such as corporations
● edu—for all educational institutions,
● net—intended to hold only the computers of network providers, that is

the NIC and NOC computers, the administrative computers, and the
network node computers. It has grown beyond that to include many ISPs
and other organizations.

● org—the miscellaneous TLD for organizations that didn’t fit anywhere
else, and

● int—for organizations established by international treaties, or interna-
tional databases.

112 C H A P T E R 5 Navigating Content Networks

int com edu gov milorg net us de uk jp

stanford

gregorio

purdue fl

cc

valencia

1stplace

id

k12

sd41

freespace

f4

co

bbc

www

nato

www lib

www

itap

www

af navyarmy

usafa

Generic Country Code

state

12circuit

.

Figure 5.1 The DNS name space.

Ch05.qxd 01/19/2005 01:03 PM Page 112

Since then several gTLDs have been added, and more can be expected. The
new designations include:

● aero—for certain members of the global aviation community,
● biz—for businesses,
● coop—for cooperatives,
● info—intended for use by information portals,
● museum—for museums and related persons,
● name—for use by individuals, and
● pro—for licensed professionals [IANA1].

There are two United States-only generic domains. These are:

● gov—used by agencies of the US Federal government and
● mil—used by the US military.

This example illustrates some of the political and social consequences of
designing the DNS name space and assigning TLDs. Although many countries
have militaries, and all have some form of government, these two TLDs are
administered by the United States alone.

As an example of a country domain, the US domain provides for the regis-
tration of all kinds of entities in the United States on the basis of political geog-
raphy, that is, a hierarchy of <entity-name>.<locality>.<state-code>.us. An
example is “Trenton.nj.us”. In addition, branches of the us domain are provided
within each state for schools (k12), community colleges (cc), technical schools
(tec), state government agencies (state), libraries (lib), and several other generic
types of entities. See RFC 1480 for details.

The complete list of country code TLDs is long, presently including 243
entries, and is available at: http://www.iana.org/cctld/cctld-whois.htm.

Descending the name space hierarchy from the root forms hostnames, in
reverse order. For example descending from root to int to “nato” to “www” cor-
responds to the hostname www.nato.int. Descending from root to edu to “pur-
due” to “itap” to “www” corresponds to the host www.itap.purdue.edu.

A domain is a sub-tree of the domain name space. So edu and “purdue.edu”
and “itap.purdue.edu” are all domains.

Name server topology reflects the name space hierarchy. The root name
servers are at the top of the hierarchy and can be queried to begin any name
search. Presently there are 13 root name server hostnames worldwide, with each
hostname often representing several real servers selected by an anycast mecha-
nism (see Section 5.3.1.4) [Abl03]. Their locations are shown in Figure 5.2. The
up-to-date list is available from the Root Server Technical Operations
Association Web site at www.root-servers.org. These servers are quite busy, and
a surprisingly large fraction of the traffic is nonproductive. For example, one
study showed that nearly 98% of the traffic is nonproductive including 12.5% of
the queries for non-existent TLDs, such as .elvis, .local, and .localhost [WF03].

Anyone can run a local name server, and they are typically run by
organizations that have several host computers. These include medium to large

5.1 The Domain Name System 113

Ch05.qxd 01/19/2005 01:03 PM Page 113

organizations, corporations, and Internet service providers. Each name server
knows the addresses of the root servers. In addition, each name server knows the
address of its immediate children in the name tree.

While any name server can learn the IP address of any host, name servers
generally only have complete information about some portion of the domain
name space, called a zone. These name servers are designated as authoritative for
the domain names in their zone, and are said to have authority for that zone. The
root name servers know the location of the authoritative name servers for each
top-level domain.

For example, Lucent technologies owns the lucent.com domain name, and
runs the authoritative name servers for that domain. Because the number of
hosts making up the domain is large, it is further subdivided into zones delegated
to organizations within Lucent. Individual name servers are then authoritative
for their zone within the lucent.com domain. For example, a particular name
server may be authoritative for the scportal.lucent.com zone. The administra-
tor of this name server can configure the network making up this zone without
further coordination with the authoritative name server for lucent.com.
Similarly, the administrator of the lucent.com name server can configure it
independently of the .com root name servers.

114 C H A P T E R 5 Navigating Content Networks

A – VeriSign, Dulles VA (198.41.0.4)
C – Cogent, Herndon VA (192.33.4.12)*
D – UMD, College Park MD (128.8.10.90)
G – DOD, Vienna VA (192.112.36.4)
H – US Army, Aberdeen MD (128.63.2.53)*
J – VeriSign, Dulles VA (192.58.128.30)*

B – ISI, Marina Del Ray CA (192.228.79.201)
L – ICANN, Los Angeles, CA (198.32.64.12)

E – NASA, Mountain View, CA (192.203.230.10)
F – ISC, Palo Alto, CA (192.5.5.241) *

* Several servers are now implemented as anycast networks, with many real servers in diverse geographic
locations all represented by a single IP address. Also, many servers also have IPv6 addresses

M – WIDE Project,
Tokyo (202.12.27.33) *

K – RIPE NCC, London (193.0.14.129) *

I – NORDUnet, Stockholm (192.36.148.17)*

Figure 5.2 The DNS root servers.

Ch05.qxd 01/19/2005 01:03 PM Page 114

Most name servers run a program called BIND—the Berkeley Internet
Name Domain—which is available from the Internet Software Consortium at
www.isc.org. Several other name server implementations are also used.

Efforts to extend the domain name system to include international charac-
ter sets have led to two approaches. The Internationalized Domain Names
(IDN) are based on ASCII and are defined by RFC 3490. The W3C is working
to define a system based on Unicode characters called the Internationalized
Resource Identifiers (IRIs) [IRI1].

5.1.2 DNS Protocol

The DNS Protocol—the communications protocol that runs between resolvers
and name servers—is defined by RFC 1035. Resolvers send messages to name
servers to retrieve resource records, also called RRs. There are several types of
resource records. For the purposes of this book the three most important to
understand are:

1. A records, or Address records that provide a hostname to IP address
mapping,

2. NS records, or Name Server records, which list name servers for a par-
ticular zone, and

3. CNAME, or Canonical Name records, which map an alias (an alternative
name) to its canonical (official or non-aliased) name.

The top-level format of each message is divided into the following 5 sections:

1. Header—which is always included and contains:
● a unique identifier,
● a query/response flag,
● an operation code specifying a standard query, inverse query (find the

name associated with an IP address), or server status request,
● an authoritative answer flag, indicating the responding name server is

an authority for the domain name in question, and
● a recursion desired flag, requesting a recursive query. This is

explained more fully in the following section.
2. Question—the question posed to the name server. This includes:

● the domain name,
● the query class (usually 1 for Internet (IN) or 255 for any class (*)),

and
● the query type, such as a host address, an authoritative name server,

or a request for a transfer of an entire zone.
3. Answer—RRs that answer the question, typically an A, NS, or CNAME

resource record.
4. Authority—RRs that point to an authoritative name server.
5. Additional—RRs that provide additional information about the query,

but are not sufficient answers.

5.1 The Domain Name System 115

Ch05.qxd 01/19/2005 01:03 PM Page 115

Resource Records contain class and type indicators, such as the address of a
host or of an authoritative name server, followed by the resource data. This data
is often a 4-octet Internet address. Each RR also contains a Time To Live (TTL)
field. This specifies how long the resource record may be cached before it should
be discarded. If TTL is set to zero, the RR data can only be used for the current
transaction before it is discarded.

In the next section we will look at how a name server request is resolved.

5.1.3 Iterative and Recursive Requests

Each name server holds only a small portion of the entire domain name space.
Therefore a particular name server will often receive queries that can only be
answered by some other server. The two general approaches to dealing with this
problem are recursive, in which the first server pursues the query for the client at
another server, and iterative, in which the server refers the client to another
server and leaves the client to pursue the query. The domain system requires
name servers (other than the root servers) to implement the iterative approach,
and allows the recursive approach as an option [RFC 1034].

The two request types are shown in Figure 5.3. In a recursive request, shown
in step 1 of Figure 5.3, the local name server is responsible for making succes-
sive requests until the name is finally resolved. In an iterative request, such as
steps 2, 4, and 6, the name server replies with an NS record identifying the
address of a Name Server that is likely to be closer to the authoritative name
server. In the example of Figure 5.3 the following eight steps take place:

116 C H A P T E R 5 Navigating Content Networks

Requesting Client
cyndra.cs.yale.edu

Local Name Server
serv1.net.yale.edu

Recursive Query:
www.content-networking.com?

Root Name Server
a.root-servers.net

Iterative Query:
www.content-networking.com?

Try
a.gtld-servers.net

gTLD Name Server
a.gtld-servers.net

Try
ns0.dnsmadeeasy.com

Commercial Name Server
ns0.dnsmadeeasy.com

Answer:
IP = 63.219.151.20

2 3 4

5

6

7

81

Figure 5.3 Recursive and iterative DNS requests.

Ch05.qxd 01/19/2005 01:03 PM Page 116

1. A client with the address cyndra.cs.yale.edu is preparing to send an
HTTP request to www.content-networking.com. The client’s resolver is
configured to communicate with its local name server at address
serv1.net.yale.edu. The resolver sends a recursive request to the local
name server, asking for the IP address of www.content-networking.com.
This is typical because resolvers are often too simple to interpret the
responses from iterative requests. Because the request was recursive this
local name server is now responsible for resolving the request.

2. The local name server does not know the answer, so it sends an iterative
request to the root name server. To reduce their workload, the root name
servers are not likely to accept recursive requests. Also, various name
server implementations use different algorithms to decide when to query
the root DNS servers.

3. The root name server does not provide the answer; however, it provides
the additional information suggesting the local DNS try the request at
a.gtld-servers.net.

4. The local name server sends an iterative request to the gTLD server,
requesting the address of www.content-networking.com.

5. The gTLD name server does not provide the answer, however it provides
the address of an authoritative name server for the requested domain.
That authoritative name server is ns0.dnsmadeeasy.com.

6. The local name server sends an iterative request to the server at
ns0.dnsmadeeasy.com, requesting the address of www.content-network-
ing.com.

7. The server responds with the authoritative answer, identifying the IP
address as 63.219.151.20.

8. The local DNS (serv1.net.yale.edu) responds to the client (cyndra.cs.
yale.edu) with the answer, IP = 63.219.151.20.

In a recursive request, the queried server either responds with the requested
data, (i.e., an A record identifying the IP address of the requested host) or
returns an error indicating the information is not available anywhere in the DNS
name space. The name server receiving a recursive query that it cannot answer
authoritatively will begin with a query to a name server it knows is responsible
for the domain or TLD of the hostname being resolved.

When a name server finally receives an answer, it typically caches the answer
in anticipation of future requests for the same information. This often saves time
and bandwidth, as was discussed in Chapter 3. The cached entry must be purged
before the TTL specified in the Resource Record expires. Resolvers often include
a similar DNS cache to reduce the number of request they need to make to the
local Name Server.

5.1.4 DNS Tools—nslookup, dig, whois, and ARIN

The DNS name space is remarkably accessible through use of the tools nslookup,
dig, whois, and the ARIN database. The nslookup tool was introduced briefly in

5.1 The Domain Name System 117

Ch05.qxd 01/19/2005 01:03 PM Page 117

the beginning of this chapter, but it has many more useful features. To examine
these, run the tool in an interactive session by typing its name alone on a com-
mand line:

>nslookup
Default server: ns01.plnfld01.nj.comcast.net
Address: 68.39.224.5
>

The system responds with the name of the default name server and its IP
address. The particular server will probably be different for you.

Obtain a list of allowed commands and options by typing help or ?. The
set all command lists all of the options and their current values. Switch to
another name server, for example by typing server serv1.net.yale.edu.
Request a name for which this server is authoritative, for example
cyndra.cs.yale.edu.

By default the tool makes recursive requests. Iterative requests allow you to
explore the series of requests needed to resolve an inquiry. For example type set
norecurse then request the lookup of an uncommon domain name, for exam-
ple fair-haven.us. As each iterative request suggests a next server, set the
server to that suggestion and try again.

The dig utility provides an alternative to nslookup. It is also distributed with
BIND and may be preferable in some cases.

The whois tool helps to identify the owner of each registered domain name.
Although many operating systems provide a whois tool, many do not.
Fortunately Web-based access to the database is readily available. Begin at
http://www.domainwhitepages.com/ or any one of the many domain registration
sites and type in content-networking.com. The system responds with:

● the name of the company through which the name was registered,
● at least two name servers that are authoritative for the domain,
● the date the registration expires, and
● other information.

The whois database is distributed. The information displayed here was
obtained by a query to the server at whois.godaddy.com. Further information
can be obtained by going to the referral URL listed, in this case http://registrar/
godaddy.com. A query here provides the administrative and technical contacts
for the domain.

The American Registry for Internet Numbers (ARIN) (www.arin.net) is one
of several Regional Internet Registries authorized by IANA. Their database
contains information about the owners of particular IP addresses assigned in the
Americas. Access the database beginning at: www.arin.net/whois/index.html. As
an example, look up the IP address 128.210.11.29 and learn that this address is
assigned to Purdue University.

The corresponding registries for numbers assigned in other regions around
the world are:

118 C H A P T E R 5 Navigating Content Networks

Ch05.qxd 01/19/2005 01:03 PM Page 118

● APNIC—Asia Pacific Network Information Center (www.apnic.net),
● LACNIC—Latin American and Caribbean Internet Address Registry

(lacnic.net), and
● RIPE NCC—Réseaux IP Européens Network Coordination Centre

(www.ripe.net).

5.1.5 Using DNS for Load Sharing

A Name Server can easily be configured to share a load across several Web
servers that share a single hostname. This is convenient for popular sites such as
cnn.com that get more traffic than can be handled by a single Web server. In
BIND, the system administrator can enter multiple address records, each speci-
fying a different IP address for the hostname. The Name Server then rotates the
order of these records when answering each new request. The result is that
requests are directed to separate servers in turn. This is called round robin. The
choice of TTL will determine how long a client dwells on any particular server
address. This can be long for sites that get traffic from many newly arriving
clients. To allow rotation, TTL may have to be shortened if the site gets traffic
from a small number of clients that access the site over an extended period of
time. Note that because this simple round robin algorithm distributes requests
equally among the available servers, it does not consider the server capacity or
load. Also, caching of DNS records by servers at various levels of the hierarchy
leads to resolution in an unpredictable pattern. Therefore it is load sharing, not
load balancing.

You can see some of this in operation yourself. Begin with an nslookup
request to cnn.com, or some other very popular site. Note that several IP
addresses are returned. Each address corresponds to an individual server shar-
ing the load on the domain. Now pingcnn.com and notice the IP address. Wait
several minutes (for the TTL to expire.) and ping cnn.com again. Note that
a different IP address is most likely used. The setdebug option of the
nslookup command will display the actual TTL settings.

Readers interested in learning more about the Domain Name System are
encouraged to read AL01.

While DNS load-sharing implementations have the advantages of sim-
plicity and robust support from the existing DNS system, they also have
important limitations. First, the DNS system was not designed as a load-
balancing system. Its primary purpose is as an address directory and
resources spent on load balancing can detract from its primary purpose. It
does not scale well; the TTL chosen to optimize the distributed directory may
not be a good choice for load sharing, and the DNS may be administered by
an authority that is not primarily concerned with load sharing. Second, the
DNS only has access to the domain name, it does not have additional context
to determine what host may be most suitable for the client’s request. Finally,
although the DNS shares the load, it may not balance the load across a variety
of disparate servers.

5.1 The Domain Name System 119

Ch05.qxd 01/19/2005 01:03 PM Page 119

The next section describes how Layer 4–7 request switching provides better
solutions for load sharing.

5.2 Layer 4–7 Request Switching

As content becomes more expressive and as more clients request more content,
the load on Web servers continues to increase. Using a single bigger and faster
Web server to handle the increased load is not an effective solution. A single
server may not have the capacity to handle the load. There is no smooth upgrade
path; the only way to increase capacity is to replace the existing server with a
more powerful one. Also loss of the only server, due to hardware, software, net-
work, or operator failure, will shut down the entire site. The load sharing based
on DNS round robin as described in the previous section is also limited. It does
not consider server load or capacity, or the activity level of each client, and
caching DNS records works against the round robin scheme.

Web switches provide an important solution to these problems of server scal-
ing, load balancing, reliability, flexibility, maintenance, and security. The following
sections introduce Layer 4 switching and describe applications for server load bal-
ancing, and network address translation. Then Layer 7 switching, server health
checks, interception proxies, and other Layer 4–7 applications are described.

5.2.1 Layer 4 Switching

Figure 5.4 shows a typical server-load-balancing configuration. Here the Web
switch is assigned an IP address referred to as a virtual IP (VIP). This VIP is the
IP address returned by the DNS server to clients requesting the IP address of
this particular Web site. Traffic directed to this VIP arrives at the Web switch,
where it is then directed to one of the real Web servers, A through D, at the site,
based on a particular load-balancing policy.

TCP transmission takes place on a particular protocol port number used to
distinguish among multiple destinations within a given host computer. Default
port assignments are documented by IANA in http://www.iana.org/assignments/
port-numbers, but can be specified by the application to be some other number.
For example the default port for HTTP is 80, FTP uses port 20 for data transfer
and port 21 for control, and the RTSP protocol uses port 554 by default. Layer
4 switches direct packets according to rules that consider several parameters,
including these TCP port numbers. For example, the Web switch can be config-
ured to direct all HTTP (port 80) traffic to a group consisting of servers A and
B in our example, while directing all RTSP (port 554) traffic to server C and all
FTP (ports 20, 21) traffic to server D.

Because they examine the TCP port number (they are port aware) in making
switching decisions, they are called Layer 4 switches. Switches that examine IP
address information are Layer 3 switches—most commonly called routers—and
those that look at MAC addresses or ATM addresses are Layer 2 switches.

120 C H A P T E R 5 Navigating Content Networks

Ch05.qxd 01/19/2005 01:03 PM Page 120

Although the VIP in Figure 5.4 is an actual, registered, routable IP address,
traffic is not terminated at that address. Instead, the connection is switched
through to one of the Web servers. Clients only see the VIP address. The IP
addresses of the Web servers never appear across the Internet; they are only used
in the network segments between the servers and the Web switch. This allows
unregistered or unroutable IP addresses such as those selected from 192.168.*.* or
10.*.*.* [RFC 1918] to be used for the Web servers. This has the advantages of con-
serving registered IP address space. In the case of unroutable IP addresses, it pre-
vents contact with the Web servers from outside the private network. This can
increase security. This is an example of Network Address Translation, which is dis-
cussed in more detail—along with its advantages and problems—in Section 5.2.3.

5.2.2 Server-Load Balancing

Layer 4 switches offer a variety of server-load-balancing (SLB) policies. They
fall into three broad classes. The first are designed to provide the best available
server for incoming new sessions. The second are designed to provide persistence,
always connecting the same client to the same server. The third class differenti-
ates services for different user classes (e.g., gold/silver/bronze service levels) pro-
viding premium levels of service. These policies can be used in a variety of
combinations.

Some examples of best available policies are:

● Random Server Selection—Connections are assigned uniformly among
servers in a group but not in a deterministic sequence.

● Round Robin—Connections are assigned sequentially among servers in a
group.

5.2 Layer 4–7 Request Switching 121

Web Site

Web
Switch

VIP

DNS
Server

Client Server A
HTTP

Server C
RTP/RTSP

Server B
HTTP

Server D
FTP

Internet

Figure 5.4 Server-load balancing.

Ch05.qxd 01/19/2005 01:03 PM Page 121

● Weighted Distribution (Static)—Traffic is directed based on server capac-
ity estimates. The administrator specifies the percentage of traffic to be
directed to each of the servers in the group. The switch allocates con-
nections based on these percentages.

● Weighted Distribution (Dynamic)—More traffic is directed to the servers
with the faster response times.

● Least Connections—Assigns the next connection to the server in the
group with the least number of connections.

● Fewest Packets—Assigns the next connection to the server in the group
that has served the fewest packets over a recent time interval.

● Least Busy Server—An agent on the server keeps the switch updated on
server utilization, health, and capacity. Connections are assigned to the
server having the most spare capacity.

There are several circumstances when persistence policies are needed. For
TCP’s protocol acknowledgment mechanisms to work it is essential that all
packets within a TCP session be sent to the same server. Ongoing transactions
between a client and a server, for example during an online shopping and check-
out session, need to be directed to the same Web server for the length of the
application session. Also, SSL sessions also typically span multiple TCP ses-
sions. Layer 4 switches have server selection policies to ensure this session per-
sistence. This policy takes precedence over the “best available” server policies
described above.

A number of techniques are used in these persistence policies. The most
basic approach is to bind a particular server to a particular source IP address,
assumed to represent a client. A timer may be set to monitor inactivity over this
binding, so the association can be released if the session is abandoned. If several
clients are connected through a proxy, for example a Web cache in a forward
proxy configuration, they will share a common IP address, as seen from the Web
switch. These clients will persist on a single server, as long as any of them are
active in a session.

Network Address Translation, or any proxy that terminates TCP, can make
this approach less effective. If several clients are behind a NAT device, they
appear to the network with the same IP address. Persistence mechanisms will
then attempt to direct all of these clients to the same real server. This works
against attempts to balance the load.

Session monitoring can improve the persistence policy. Here the binding is
valid for the duration of a TCP session. In the case of SSL sessions, the SSL ses-
sion ID is tracked (at Layer 7) to determine the length of the session and the
need for persistence. Interspersing secured and unsecured transactions can make
it difficult to determine the length of a session. Finally, it may be possible to
track a cookie to identify an application level session, such as a shopping ses-
sion. This, however, can encounter a number of problems, including the clients’
refusal to accept cookies, selecting identifying information from the cookie
string, and SSL or application encryption of cookies.

122 C H A P T E R 5 Navigating Content Networks

Ch05.qxd 01/19/2005 01:03 PM Page 122

The third class of load-balancing strategies is differential policies which
attempt to allocate scarce resources to the most important use. These policies
identify the most important transaction types or users and provide them with
better service. For example, SSL sessions may indicate credit card use, and there-
fore revenue generation. Cookies may identify some aspects of customers’ past
behavior and allow an estimate of their revenue potential. The site may provide
some form of “pay for premium service” offering gold-, silver-, and bronze-level
user agreements at different price levels.

Service can only be differentiated when server capacity is scarce, but not
overloaded. Basically the premium clients are moved toward the front of the line
at the expense of the other, lower-priority clients. If the line is very short, then
the differentiation is meaningless. If the line is growing very long, then the pre-
mium customers may be waiting behind many other premium customers, and
not get satisfactory service. Therefore, differentiation policies must set a thresh-
old that takes effect when resources begin to become scarce, but are not yet glob-
ally overloaded. Elitism has always had its problems.

5.2.3 Network Address Translation

Connecting individual clients to several real servers behind a Web switch that
presents a single virtual IP address requires the switch to perform Network
Address Translation (NAT) [RFC 1631]. Figure 5.5 illustrates the concept of
Network Address Translation in a Web switch. Here the client with IP address
X sends an IP packet to the switch using its virtual IP address of SW. The
Source IP address field (S IP) and destination IP address field (D IP) of the
packet header are shown set to X and SW, respectively, in the block arrow. The
switch uses a load-balancing algorithm and chooses real server A for the con-
nection. The switch does not terminate the protocol. Instead, the switch adjusts
the header parameters to accommodate the assignment of client to server. Here
the source IP address is changed to SW and the destination IP address is set to
A. The server responds to destination IP address SW, and the switch translates
this to the original destination of Client A. A similar translation (not shown)
may also be required for the source and destination port numbers. Assuming
this is a TCP/IP connection, the header check sums also have to be adjusted in
the TCP header to accommodate the changed IP address and port numbers.
Neither the client nor the server is aware of the address translation that has
taken place.

The switch needs to keep a table of these translations for each active session.
For example, if client Y is connected to server B, then the substitution of Y and
B is correct for this session, but not for the previous session. This table, illus-
trated for associations 1 and 2, is shown within the switch in Figure 5.5. Because
of table sizes and processing limits, Web switches that perform NAT are limited
in the number of simultaneous associations they can support. The number of
supported associations may be very large.

5.2 Layer 4–7 Request Switching 123

Ch05.qxd 01/19/2005 01:03 PM Page 123

Additional translations are needed to handle FTP and ICMP messages
across a NAT switch. Also, none of the fields that carry IP address information
can be encrypted. This reduces the number of available security options.

Although NAT provides many advantages by freeing up addresses for local
administration, NAT use is controversial because it presents a number of prob-
lems [RFC 2993]. Some of these are:

● NATs move connection control away from the endpoints and give some
of that control to the NAT device, within the connection path. This vio-
lates aspects of the End-to-End design principle [SRD84].

● NATs create a single point of failure in the network. Because the NAT
device maintains connection state and dynamic mapping information,
all the connections going through it are lost if the NAT fails.

● To increase the reliability of their Internet connectivity, some sites main-
tain several physical connections to the Internet. This practice, called
multi-homing, is made more complicated by NAT.

● Because NAT cannot work with encrypted IP addresses or headers it is
incompatible with security techniques based on encryption at the IP level.

● NATs complicate or may even invalidate the authentication mechanism
of IP-based authorization schemes such as SNMPv3 [RFC 3411].

Because of their advantages, NAT devices are commonly used and deployed
throughout the Internet despite these complications. Newly developed applica-

124 C H A P T E R 5 Navigating Content Networks

Server A

Server B

Client X

Client Y

S IP = X, D IP = SW S IP = SW, D IP = A

S IP = A, D IP = SWS IP = SW, D IP = X

Association 1:
SIP: X → SW
DIP: SW → A
SIP: SW ← A
DIP: X ← SW

S IP = Y, D IP = SW S IP = SW, D IP = B

S IP = SW, D IP = Y S IP = B, D IP = SW

Association 2:
SIP: Y → SW
DIP: SW → B
SIP: SW ← B
DIP: Y ← SW

Switch SW

Figure 5.5 Network address translation.

Ch05.qxd 01/19/2005 01:03 PM Page 124

tions and algorithms that consider the implications of NAT can interwork suc-
cessfully with this installed base.

5.2.4 Layer 7 Switching

Examining application layer data provides Layer 7 switches even more flexibility
and features than Layer 4 switches alone can provide. Application information
examined by Layer 7 switches includes the URL, HTTP Header information,
cookies, SSL session identifiers and perhaps other information.

There are several applications for Layer 7 switching. Perhaps the most com-
mon is to dedicate certain servers for certain types of content. For example, all
URLs requesting images (e.g., ending in “.gif,” “.jpg,” or “.png”) can be directed
to a particular server. Other URLs indicating dynamic content, such as cgi-bin
scripts or active server pages (“.asp”) can be directed to a server dedicated to
these types of requests. Indications of cacheability, determined, for example, by
direct examination of HTTP headers, allow requests for cacheable content to be
directed to an interception proxy. In addition, Layer 7 switches can examine
cookies, allowing them to identify individual users and Web sites and apply use-
ful policies to each transaction.

Awareness of Layer 7 information helps switches maintain application ses-
sions such as shopping carts, cookie-controlled transactions, and related trans-
actions secured by SSL.

Segregating content by type allows file systems and server hardware and
software to be tuned for each particular content type. Also, images may change
less frequently than HTML text, which changes less frequently than dynamic
applications.

While Layer 4 switches do not terminate TCP connections—they just rewrite
header information—the same is not true for Layer 7 switches. Switching deci-
sions based on Layer 7 information cannot be made during TCP session setup,
when the TCP SYN packet arrives at the switch. The switch must wait for the
HTTP GET request before the decision rule can be evaluated. This requires the
switch to terminate the TCP connection. The connection takes place in the three
steps shown in Figure 5.6.

In step 1, the client sends a request to the IP address of the switch. The
switch accepts the TCP client connection and receives the GET request. In step
2, the switch can examine the Layer 7 information in the GET request and choose
a server. The switch then opens a new connection (or uses an existing connection
drawn from a pool of open connections to the server) and sends a GET to that
server. Finally, in step 3, the switch splices the two connections into a single one
connecting the client and the chosen server. Because this final connection began
as two independent connections, the TCP packet sequence numbers expected by
the client are unrelated to the sequence numbers used by the server. This requires
translating sequence numbers and acknowledgment numbers between the client
view and the server view of the connection. This splicing is similar to what was
described for Network Address Translation, however because the connection is

5.2 Layer 4–7 Request Switching 125

Ch05.qxd 01/19/2005 01:03 PM Page 125

terminated, the sequence number and acknowledgment numbers also need to be
translated in the headers.

Now that we have described Layer 4 and Layer 7 switches, you may be
curious about Layer 5 and Layer 6 switches. Unfortunately we have been told
that protocol Layers 5 and 6 have been delayed in the marketing department
indefinitely!

5.2.5 Server Health Checks

Server health checks improve reliability and flexibility of server farms and clus-
ters of interception proxies. As shown in Figure 5.7, a Web switch connects to
servers at all seven protocol layers. Coverage increases as the health checks are
performed at higher protocol layers. At Layer 3, the switch can initiate an ICMP
echo (ping) message to assess connectivity. Observing TCP connections can pas-
sively assess Layer 4 connections. If none are set up over some a period of time,
the switch can initiate a TCP connection, perhaps to a test port provided by the
server for this function. Operation of HTTP at Layer 7 can be assessed passively
by observing GET requests or actively by initiating GET requests to the server.

126 C H A P T E R 5 Navigating Content Networks

Step 1: Accept client connection and receive GET request.

Switch

Switch

Switch

GET /index.html

Step 2: Choose server, make a connection, and send GET request.

Step 3: Splice connections together (translate sequence numbers).

Client Server

GET /index.html
Client Server

Client Server

Figure 5.6 TCP splicing.

Ch05.qxd 01/19/2005 01:03 PM Page 126

Requesting database lookups periodically can monitor back-end servers and
dynamic applications, such as databases.

Switches may include health checks for specific applications and protocols.
For example the ServerIron Switch, available from Foundry Networks
(www.foundrynetworks.com) includes health checks for FTP, HTTP, IMAP4,
LDAP, NNTP, POP3, SMTP, Telnet, DNS, and RAD.

Typical Layer 7 switches provide a number of options for setting up these
health checks. The request interval, number of retries, and content checks can be
specified. The particular servers to be included in each check can be identified.
If a health check fails, the switch can be configured to promptly remove the fail-
ing server from service. If the failed server is part of a load-balancing cluster, the
remaining servers will then carry its load. This allows redundancy sparing of
servers within the cluster. It also allows for adding and reconfiguring servers
in the cluster. They can be hot plugged on and off the network. It can be quite
convenient to be able to disconnect servers in live operation and know that no
service2 will be disrupted.

5.2.6 Interception Proxies

Section 3.5.3 described interception proxies. A Web switch is key to their opera-
tion. The Web switch can be configured using a Level 4 rule, for example,
requesting that all port 80 traffic be diverted to the interception proxy. This will
divert HTTP requests that use the default HTTP port. Level 7 rules, examining
URLs to identify dynamic content or examining HTTP headers to identify
cacheability directives, can improve operation. A cluster of proxies can be
arranged in a group and the Web switch can balance the load among them.

5.2 Layer 4–7 Request Switching 127

Web
Switch

Servers

Physical

Link

IP ICMP

UDP TCP

HTTP

Application

Layer 7

Layer 4

Layer 3

Layer 2

Layer 1

In
cr

ea
si

ng
 C

ov
er

ag
e

Figure 5.7 Layers of health checks.

2Except that transactions currently in progress will have to be restarted.

Ch05.qxd 01/19/2005 01:03 PM Page 127

In these arrangements, the servers see the IP address of the Web switch,
rather than of the client. This can complicate certain address-based security and
authorization schemes.

Use of interception proxies is quite controversial. Basically, the objections
are based on breaking the end-to-end nature of the communications by redi-
recting traffic to a destination other than the one specified in the IP header.
Also, proxies alter communications without the knowledge or approval of end
users or content providers [Mar00, Moo00]. Despite these concerns, network
operators continue to deploy interception proxies to obtain the advantages they
offer in managing and reducing Web traffic without requiring browser reconfig-
uration.

5.2.7 Other Layer 4–7 Switch Features and Applications

Using a Web switch as a server load balancer, as shown in Figure 5.4, introduces
the Web switch as a single point of failure. If the Web switch fails, access to the
entire server farm is lost. The Virtual Router Redundancy Protocol (VRRP)
[RFC 2338, VRRP1] is often implemented by a Web switch to provide protec-
tion from such a failure. The protocol was originally developed to improve the
reliability of router configurations, but is also used by Web switches. Several of
the terms used in the protocol definition describe routers, even though it is being
used by Web switches.

This protocol allows a single virtual IP address to identify a virtual router,
which consists of at least two physical Web switches. The load is shared by these
physical switches during normal operation. If a switch fails, the protocol shifts
the load onto the remaining switches.

The reliability provided by VRRP and the versatility of Web switch server-
load balancing makes them useful in several other applications. For example, a
pair of switches sandwiching a cluster of firewalls can balance the load across
the individual firewall units [Fou2]. This configuration may be necessary to pro-
vide the reliability and capacity required at the gateway to a large enterprise or
Intranet.

5.3 Global Request Routing

On August 18, 1910, 15 American retail florists agreed to exchange orders for
out-of-town deliveries. Originally called “Florists’ Telegraph Delivery,” FTD
was the world’s first flowers-by-wire service. Fifty-five years later, FTD
expanded to include international transactions. The company was renamed
“Florists Transworld Delivery” to reflect its growing worldwide presence. If you
would like to send flowers to someone at the Veterans Hospital in Fargo, North
Dakota, you can begin with a visit to your local FTD florist. There you can
browse through a catalog or see an actual sample of the flowers that will be sent.
After making your choice, your local florist contacts a florist in Fargo, North

128 C H A P T E R 5 Navigating Content Networks

Ch05.qxd 01/19/2005 01:03 PM Page 128

Dakota and identifies the flowers you have requested. The North Dakota florist
creates the arrangement you chose and delivers it to the local Veterans hospital.

This concept of delegating delivery responsibility to a content source best
able to serve the content consumer is also used in Internet Content Delivery
Networks. In any case, reaching a destination requires two fundamental deci-
sions. One is deciding where to go; the other is deciding how to get there. We
discuss these problems independently. For the same reasons that it is best to
learn to sail the ship before navigating the seas, Section 5.3.1, steering client
requests, first discusses how to get there. Section 5.3.2, estimating proximity, then
discusses deciding where to go.

5.3.1 Steering Client Requests

Once the destination has been selected, several techniques can be used to effi-
ciently direct client requests to that destination. These include Global Server-
Load Balancing (GSLB), DNS-based request routing, HTML rewriting,
Anycasting, and combinations of these approaches. The next sections describe
each of these in more detail. Techniques for identifying the best destination are
discussed in Section 5.3.2.

Global server load balancing—GSLB

At least two Web switch manufacturers include a feature called Global Server
Load Balancing (GSLB) in their Web switches. This extends their Layer 4–7
switches and allows them to navigate world-wide networks. The scope and
operation of this feature is different for the two manufacturers. Figure 5.8 illus-
trates the approach taken by Nortel/Alteon [ALT1]. Service nodes, consisting of
a GSLB-enabled Web switch and a number of real Web servers, are distributed
in several locations around the world, or at least in several places throughout the
market for this content. Two new capabilities extend these service nodes to allow
global server load balancing. The first is global awareness, and the second is
smart authoritative DNS.

In local server load balancing, the Web switch in service node 1 is aware of
the health and performance of the real Web servers attached to it, servers A
and B in this case. In GSLB, service node 1 also includes the virtual IP address
of service node 2 in its list of servers. Similarly, service node 2 is aware of ser-
vice node 1 and includes its VIP in its list of servers. The result is that the Web
switches making up each service node are globally aware, each knowing the
addresses of all the other service nodes. They also regularly exchange perfor-
mance information among the Web switches in the GSLB configuration. This
allows each switch to estimate the best server for any request, choosing not
only from its pool of locally connected real servers, but the remote service
nodes as well.

To make use of this global awareness, the GSLB switches act as intelligent
authoritative DNS servers for certain managed domains. Consider an example

5.3 Global Request Routing 129

Ch05.qxd 01/19/2005 01:03 PM Page 129

of a client in North America requesting content from www.content-networking.
com, which—for the purpose of this example—is assumed to be part of a GSLB
content delivery network (it is not).

1. The client’s DNS resolver requests the IP address of www.content-
networking.com from the local domain name server.

2. This request works its way through the Domain Name System, until it
reaches an authoritative name server for the domain. The system is con-
figured so that the only authoritative DNS servers for that domain are
GSLB-enabled Web switches making up this network. These Web
switches run the DNS protocol and simple DNS server software to allow
them to respond to this request.

3. Since a Web switch is responding to the DNS request, and since each Web
switch is aware of the health and performance of each service node, it can
respond with the IP address of the service node most likely to give the
best performance. For example, because of time zone differences it may
turn out that the servers in Europe are lightly loaded during the business
day in North America. In this case it may be best for the Web switch at
service node 1 to respond to some queries with the virtual IP address of
service node 2.

4. The client request is sent to service node 2, and is served by either real
server X or real server Y. While this may help to balance the load on the
servers, serving a request from a remote site does increase network traf-
fic. Practical GSLB networks are likely to include more service nodes
within a smaller geographic region.

130 C H A P T E R 5 Navigating Content Networks

Service Node 2

Server X

Server Y

Service Node 1

Web Switch
and

Authoritative DNS

Server A

Server B

Local DNS
Server

Web Switch
and

Authoritative DNS

Client

Performance Information Exchange

1

3

2

4

Figure 5.8 Global server load balancing—Approach 1.

Ch05.qxd 01/19/2005 01:03 PM Page 130

Foundry Networks includes estimates of client proximity in their imple-
mentation of GSLB [Fou1]. Each Web switch uses the natural traffic flow
between the client’s browser and itself to measure the roundtrip latency.
Periodically, the Web switches report this information to the master switch, des-
ignated as the GSLB switch. This GSLB switch is configured as either a DNS
proxy, relaying DNS requests to the only authoritative DNS servers, or as the
actual authoritative DNS for the managed domains. The system operation is
illustrated in Figure 5.9.

1. The client’s DNS resolver requests the IP address of www.content-
networking.com from the local domain name server.

2. This request works its way through the DNS, until it reaches an authorita-
tive name server for the domain. The system is configured so that the only
authoritative DNS servers for that domain are attached through the GSLB-
enabled Web switch serving as the master in this network. Alternatively, the
GSLB switch itself can act as the authoritative name server.

3. The DNS request is forwarded to the authoritative DNS for this domain.
The DNS responds with all IP addresses able to serve this request. This
typically includes the virtual IP address of each of the service nodes in
this network.

5.3 Global Request Routing 131

Service Node 2
Server X

Server Y

Service Node 1

GSLB
Web Switch

Server A

Server B

Local DNS
Server

Web Switch

Client 1

Proximity Estimate Information

Client 2

Client 3
Authoritative
DNS Server

Proximity
Estimate

1

4

2
5

3

Figure 5.9 Global server load balancing—Approach 2.

Ch05.qxd 01/19/2005 01:03 PM Page 131

4. The GSLB Web switch is aware of the DNS request and analyzes the
responses flowing through it. Also, it has been collecting health and per-
formance information for each service node. In addition, the GSLB has
been collecting proximity information that estimates the latency between
each Web switch and individual clients. This proximity information is
indexed by network neighborhood. Each network neighborhood is the
group of IP addresses sharing the same high order bits. By default, this
is configured as the top 20 bits of the client IP address, but can be con-
figured to include a different range. Assessing the performance, health,
and proximity information it can respond with the IP address of the
service node most likely to give the best service. In this case the virtual
IP address of service node 1 is returned. It is likely that requests from
client 3 will be directed to service node 2, based on the proximity
information.

5. The client request is sent to service node 1, and is served by either real
server A or real server B.

The Foundry GSLB implementation uses the following criteria for selecting
the best service node:

1. Site, server, and application health checks.
2. The speed of Layer 4 health checks responses, called “flashback” speed

by Foundry. Assuming that heavily loaded servers will be slower to
respond to a health check request, this is used to estimate server respon-
siveness.

3. Geography-based site selection. In some cases RFC 1466 and IANA allo-
cates IP addresses based on the continent of origin. The GSLB switch
can use this information to direct clients to service nodes within the same
continent.

4. Site load conditions are used in GSLB, just as they are in local server
load balancing.

5. Configurable thresholds for site load conditions allow administrative lim-
its to be set for including or excluding sites experiencing certain load con-
ditions.

6. Proximity estimates from Web switches to clients. The natural traffic flow
between the client’s browser and Web switch is used to estimate this
round-trip latency. Some fraction of client requests are not directed based
on existing proximity information. This allows continuous exploration
and gathering of the most up-to-date proximity information.

Although it is difficult to identify one approach as superior to the other, the
two approaches can be summarized at a high level. The Alteon approach con-
siders all switches around the world to form a pool it can draw on to share load.
The Foundry approach considers proximity information to help direct requests
to the closest service node.

132 C H A P T E R 5 Navigating Content Networks

Ch05.qxd 01/19/2005 01:03 PM Page 132

DNS-based request routing

To provide an alternative to GSLB, Lucent Technologies briefly sold their
WebDNS product [Bea01], which provides a proximity solution based on agents
running in reverse proxy Web caches and cooperates with an intelligent author-
itative DNS. Agents running in the reverse proxy Web cache in each service node
gather client latency information each time a client requests content through the
proxy. The WebDNS that acts as the authoritative DNS server collects this prox-
imity data from each proxy. This information is indexed by network neighbor-
hood and is analyzed to identify the service node that is closest to each client.
Figure 5.10 illustrates the system, which operates as follows [Bea01]:

1. The client’s DNS resolver requests the IP address of www.content-
networking.com from the local domain name server.

2. This request works its way through the Domain Name System, until it
reaches an authoritative name server for the domain. The system is con-
figured so that the only authoritative DNS servers for that domain are
WebDNS.

3. The WebDNS uses its proximity information to choose the service node
closest to the client. It responds with the address of that closest service
node. This may be the actual IP address of the reverse proxy, or the vir-
tual IP address of the Web switch serving a cluster of reverse proxies, as
illustrated in Figure 5.4.

4. Based on the response delivered in step 3, the client request is sent to serv-
ice node 1, and is served by the reverse proxy Web cache at that service
node. If the requested content is not in the cache, the cache requests it
from either server A or server B.

Section 5.3.2 discusses proximity-locating algorithms in more detail.

HTML rewriting

The previous techniques routed the client request to a server with capacity and
location best able to handle the request. Another technique called HTML rewrit-
ing responds with content that steers subsequent requests to servers that are
close to the client.

Consider a national company that manages the Web site at www.foo.bar [RFC
3092]. Their homepage, www.foo.bar/index.html, includes a graphic corporate
logo (logo.jpg), descriptive text (text.html), and another graphic (figure1.jpg).
When a request is received from a client located on the East Coast, the foo.bar
server modifies the content of index.html by prefixing each URL within the file
with “ny.rewrite.net/foo” before responding, as is illustrated in Figure 5.11. This
moves the request from the foo.bar address space to the rewrite.net address space.
A content delivery network service provider manages the domain “rewrite.net.”
They have content servers located in many areas around the world. It is assumed
that the server ny.rewrite.net is located in New York. Similarly they have a server,

5.3 Global Request Routing 133

Ch05.qxd 01/19/2005 01:03 PM Page 133

134 C H A P T E R 5 Navigating Content Networks

S
er

vi
ce

 N
od

e
2

S
er

ve
r

X

S
er

ve
r

Y

S
er

vi
ce

 N
od

e
1

W
eb

 C
ac

he
R

ev
er

se
 P

ro
xy

S
er

ve
r

A

S
er

ve
r

B

Lo
ca

l D
N

S
S

er
ve

r

C
lie

nt
 1

P
ro

xi
m

ity
 E

st
im

at
e

In
fo

rm
at

io
n

C
lie

nt
 2

C
lie

nt
 3

W
eb

D
N

S
A

ut
ho

rit
at

iv
e

D
N

S
 S

er
ve

r

P
ro

xi
m

ity
E

st
im

at
e

W
eb

 C
ac

he
R

ev
er

se
 P

ro
xy

1

3

2

4

Fi
g

u
re

 5
.1

0
W

eb
D

N
S

ap
pr

oa
ch

.

Ch05.qxd 01/19/2005 01:03 PM Page 134

called la.rewrite.net, located in Los Angeles. Each of these servers has a file sys-
tem, named /foo, containing the content of the foo.bar Web site. As the East Coast
client’s browser reads the (rewritten) file index.html, the URLs it contains direct
the client to retrieve the corporate logo and other content from the ny.rewrite.net
server. This New York-based server is convenient to the East Coast client.
Similarly, if a client from the West Coast makes the same request to
www.foo.bar/index.com, the server prefixes each URL in the file with
la.rewrite.net/foo. The result is that the West Coast client now retrieves the subse-
quent content from the Los Angeles-based server of rewrite.net.

With this approach, the first request (e.g., for foo.bar/index.html) is within
the foo.bar address space and is served by the foo.bar server. Once the foo.bar
server responds with a rewritten request, subsequent requests are served from
the rewrite.net address space, using their network. Since these requests are now
served by the rewrite.net network, the content delivery network provider, rather
than the original server (foo.bar), now controls billing, traffic surveillance,
network management, ad insertion, etc., for the content delivery activities.

5.3 Global Request Routing 135

. . .
http://ny.rewrite.net/foo/logo.jpg

http://ny.rewrite.net/foo/text.html

http://ny.rewrite.net/foo/figure1.jpg

. . .

. . .
http://la.rewrite.net/foo/logo.jpg

http://la.rewrite.net/foo/text.html

http://la.rewrite.net/foo/figure1.jpg

. . .

Los Angeles
Server
la.rewrite.net

New York
Server
ny.rewrite.net

West Coast
Client

East Coast
Client

. . .
logo.jpg

text.html

figure1.jpg

. . .

index.html

Figure 5.11 HTML rewriting.

Ch05.qxd 01/19/2005 01:03 PM Page 135

The HTML rewriting can be done before the content is placed on the Web
server (called a priori HTML rewriting) or it can be done dynamically as the
content is requested (called on-demand HTML rewriting) [RFC 3568]. This is a
space-time trade-off. The a priori approach requires storing several versions of
each file, each one optimized for clients of a particular location. The on-demand
approach requires processing to analyze and rewrite each page as it is requested.

Several techniques are used to estimate the clients’ location. In addition to
the techniques described previously on DNS-based request routing, several pro-
prietary techniques are used. These are probably based on laboriously created
databases of IP addresses and their physical locations. The whois database and
user address information provided as part of e-commerce transactions and other
online requests for location information are likely sources of this information.

Akamai is a major provider of content delivery services based on HTML
rewriting. To see an example of HTML rewriting, open the source of a Web page
of any of their customers, for example www.1800flowers.net. Notice the large
number of URL references containing the string “akamai.net”. Each of these is
a rewritten URL, pointing to content on a server in the akamai.net content
delivery network.

Anycasting

The police dispatcher broadcasts the request “will the unit closest to Main Street
and First Avenue please respond to assist an accident victim at that location”
over the police-band radio. The request is heard by officers in squad cars
throughout the city. Several cars near the accident site respond to the dispatcher
indicating their location and availability. Finally, after some discussion, the car
in the area best able to assist is identified and heads to the accident scene.

In this example the dispatcher is using a simple anycast network. Anycast
[RFC 1546] is a service that allows a node to connect to one, and perhaps the
“best,” member of a group able to serve each request. The requesting nodes may
be clients, applications, or hosts. The police dispatcher represents this requesting
node; however, officers in any of the squad cars could have made a similar
request. The group is formed of resources that offer interchangeable services.
The various squad cars communicating by radio form such a group because they
are all capable of assisting an accident victim. In a computer network, the group
may consist of computers with spare CPU capacity, or spare storage capacity.
These resources are available to connect to clients needing their processing or
storage capabilities. In a content delivery network, the group can consist of the
surrogates, either servers or proxy caches, which can deliver the desired content.

Discussions among the police officers helped to identify the squad car best
able to respond. It is likely they considered the location of the car, the officers’
current activity and assignment, traffic congestion between the squad car loca-
tion and the accident site, and perhaps other factors to identify the best squad
car. In a content delivery network, proximity, capacity, load, bandwidth, conges-
tion, and content availability are all factors that can determine the best server.

136 C H A P T E R 5 Navigating Content Networks

Ch05.qxd 01/19/2005 01:03 PM Page 136

Although anycasting was described more than a decade ago, very few prac-
tical networks have been built. This is probably because of the technical chal-
lenges inherent in efficiently locating the best server. Figure 5.12 illustrates one
application-level anycast network that has been described and analyzed
[CDK+03]. This figure shows three distinct anycast groups, identified as
resource types A, B, and C. These may represent surrogates in a content delivery
network each capable of delivering different content types. For example, the
nodes labeled A may have news information, the B nodes may have weather
information, and the C nodes may have sports information. Each type of
node is arranged in a separate tree structure, emanating from the corresponding
root node. The group of nodes providing interchangeable services form each
network.

Client 1 attaches to the content delivery network at a type C node. The net-
work follows these steps when Client 1 anycasts for type A services:

1. The request is directed toward the root of the A tree at each hop through
the combined network.

2. When it arrives at a type A node, the node begins a depth-first traversal
of the A tree searching for the best node.

3. Using a variety of criteria, the best node is identified.
4. The selected node responds to the client, and service begins.

The network follows similar steps when Client 2, connected to the network
through a type A node, requests type B services.

5.3 Global Request Routing 137

A

A

A

A

A

A

A

A

A

A

A
Root

B
B

B
Root

B
B

BB

C
Root

C

C C

C

C

C

Client 1
Seeking A

Client 2
Seeking B

1,2

1

4

3

4

3

2

Figure 5.12 Anycast network.

Ch05.qxd 01/19/2005 01:03 PM Page 137

Combined approaches

Local server-load balancing (SLB) complements the global routing algorithms
described in this section. The best systems integrate the two approaches. These
systems use local server load balancing within the service nodes and use global
routing to direct traffic to those service nodes.

When deciding where to serve each request in GSLB networks each switch
assesses its pool of local servers before considering remote nodes. In the DNS
and HTML rewriting approaches each service node typically consists of a num-
ber of servers balanced locally by a Web switch. Global request routing site
selection algorithms can be used with a GSLB network. Here the GSLB network
is providing a very robust and reliable pool of real servers. The global request
routing algorithms then direct traffic to the best starting point in the GSLB
network.

HTML rewriting can be combined with any of the techniques discussed
here. Once the initial URL rewrite directs the requests to the rewriter’s Content
Delivery Network, then this network can employ any of these techniques.

Each of the various approaches described have advantages and disadvan-
tages. The GSLB approaches are relatively simple, but may lead to inaccurate
and suboptimal routing decisions. The DNS-based approaches assume that
clients are close to their local DNS resolvers, but this may not always be true.
Also, once a DNS request is served, it persists in the client until the TTL expires.
If a bad destination is chosen, it cannot be changed until the TTL expires. The
HTML rewriting approach requires that the first request always go to the server,
then relies on one of the proximity estimation techniques (described in the next
section) to select the rewrite prefix. Anycasting is an interesting concept, but
large practical networks are yet to emerge.

5.3.2 Estimating Proximity—Choosing the Closest Service Node

The previous section described how requests can be steered toward a chosen des-
tination. This section describes techniques for choosing the service node closest
to a client. This is important information for selecting the best server. There are
several sensible measures of the distance between client and service node that
can be used to identify the closest node. These distance measures include
geographic distance, transfer delay (measured as round trip time (RTT)), the
number of router hops, packet loss rate along the path, and congestion along the
path.

Standards are not yet available for precisely identifying the geographic loca-
tion of network elements, measuring network distance, and other measures for
selecting the “closest” node. The approaches described here are solutions indi-
vidual organizations have developed. Some aspects of these approaches are pro-
prietary and not available for publication. Therefore, although the key ideas in
each approach are described, some details are left out of the descriptions.

138 C H A P T E R 5 Navigating Content Networks

Ch05.qxd 01/19/2005 01:03 PM Page 138

The approaches described include reactive probing where, in response to each
client request, a specialized DNS probes candidate nodes to estimate their dis-
tance. In proactive probing, the specialized DNS probes clients in advance of
client requests and keeps a record of each of their distances to each well-known
network. Connection monitoring eliminates probes and relies on the measurement
of RTT as connections are naturally made between service nodes and clients.

In each of these examples, the specialized DNS being described has been
made the authoritative DNS for the managed content. Also, each service node
in the diagram can provide the content the client requests. The service nodes may
be Web cache clusters or replicated servers.

Reactive probing

Reactive probing is illustrated in Figure 5.13.

1. The client requests content managed by a reactive probing DNS server.
The request goes from the client to its local DNS sever to the authorita-
tive DNS for this site, which is a reactive probing DNS server.

2. In response to this DNS request, the probing DNS server requests that
each candidate service node measure its round trip time (RTT) to the

5.3 Global Request Routing 139

Local DNS
Server

Reactive Probing
DNS Server

Client

Service Node 1

Service Node 2
4

2

4

2

1

3

1

5

5

3

Figure 5.13 Reactive probing.

Ch05.qxd 01/19/2005 01:03 PM Page 139

client’s local DNS. This is done assuming that the RTT to the local DNS
is a good approximation of RTT to the client. This turns out to be a good
assumption in many cases, and a poor assumption in other cases.

3. Each service node pings the local DNS and measures the round trip time.
4. Each service node reports its RTT to the probing DNS, which chooses

the shortest RTT.
5. The probing DNS returns the IP address of the service node having the

shortest RTT to the local DNS, which returns it to the client.

The client then requests the content from that (closest) service node.
The advantage of this approach is that the RTT measurements are very fresh

and therefore likely to reflect current network status. However, network condi-
tions may change before a cached DNS response expires and it may no longer
represent the shortest RTT. The primary disadvantage is that the DNS response
is delayed significantly while the probing takes place. Other disadvantages are
that firewalls often block the ping traffic used by the probe and the quantity of
traffic generated by the probes toward the local DNS is often objectionable to
the administrators of that DNS.

The primary disadvantage of reactive probing is eliminated by the proactive
probing technique.

Proactive probing

In proactive probing, the probing DNS creates a database of round trip times
from each service node to a list of Autonomous Systems (AS), representing the
universe of known client networks. This is illustrated in Figure 5.14. The data
gathering follows these steps:

1. The proactive probing DNS begins with a list of known autonomous sys-
tems (As). For each network, the list includes the IP address of some real
device on that network. This single IP address is considered representa-
tive of the entire AS.

2. The probing DNS server transmits the list of representative IP addresses
to each service node.

3. Each service node pings the IP address for each AS. The round trip time
(RTT) is measured and recorded.

4. Periodically the RTT measurement results are transmitted to the probing
DNS server. The server assembles this information into a table that
includes the RTT for each service node to each AS.

This data gathering takes place continuously, keeping the probing DNS pre-
pared to serve DNS requests.

As in the other examples, when a client (not shown in Figure 5.14) requests
content managed by the probing DNS, it begins with a DNS resolution request to
its local DNS server. This request is eventually handled by the probing DNS which
has been made authoritative for this domain. The probing DNS responds with the

140 C H A P T E R 5 Navigating Content Networks

Ch05.qxd 01/19/2005 01:03 PM Page 140

IP address of the service node that has the shortest RTT for the Autonomous
System represented by the client’s local DNS. Again it is being assumed that RTT
to the local DNS is a good approximation for RTT to the client.

Although this approach solves the DNS response latency problem that reac-
tive probing suffers from, it does introduce other problems. It is difficult, if not
impossible, to select a single IP address to represent the entire AS. Many ASs are
large and diverse. A server in one corner of the network may provide a very poor
representation of the distance to a client in another corner of the same network.
The same problems of traffic intruding to endpoints that are not part of the
managed network, discussed for reactive probing, are at least as bad in this
approach.

Connection monitoring avoids the problems of active probing.

Connection monitoring

Connection monitoring eliminates probes and relies on measurements of RTT
as connections are naturally made between service nodes and clients. This is an
accurate measurement of the transport distance from the service node to the
client. Also it requires very little processing overhead and no network overhead.
The Web caches making up each service node run kernels that are instrumented
to collect this RTT information. The measurement chosen is shown in the inset

5.3 Global Request Routing 141

Proactive Probing
DNS Server

Service Node 1

Service Node 2

AS 1
Representative

AS 2
Representative

3

3

4

2

4

1

2

3

3

AS

Figure 5.14 Proactive probing—data gathering.

Ch05.qxd 01/19/2005 01:03 PM Page 141

appearing in the lower left hand corner of Figure 5.15. As each TCP connection
is established, it begins with the “triple handshake” of SYN, SYN/ACK, and
finally ACK. The elapsed time from when the cache sends the SYN/ACK until
the ACK is received from the client is the RTT measurement.

The algorithm learns continuously, gathering more accurate and up-to-date
proximity information as it operates.

Operation begins with these steps, illustrated in Figure 5.15:

1. The client begins with a request to the local DNS. This request is even-
tually handled by the monitoring DNS which has been made authorita-
tive for this domain. If the system is early in its operation, it may not have
any information about the proximity of the various service nodes to this
client. In this case, it simply chooses a service node at random, or by
using some heuristic such as IP address similarity.

2. The DNS replies with the IP address of the chosen service node. Because
the system does not yet know if this is a good or bad choice of service node
for this client, it uses a very short TTL in the DNS response. This ensures
that the client is not stuck with that choice for very long, and it reduces the
impact on the client of being assigned to a distant service node.

142 C H A P T E R 5 Navigating Content Networks

Local DNS
Server

Connection Monitoring
DNS Server

Client

Service Node 1

Service Node 2

SYN

SYN/ACK

ACK RTT

Client Cache

4

3

1

2

1

2

Figure 5.15 Connection monitoring.

Ch05.qxd 01/19/2005 01:03 PM Page 142

3. As the connection is established between the client and the service node,
the RTT for this connection is measured by the instrumented Web cache.

4. This RTT measurement information is sent to the monitoring DNS.

The system manages the TTL of the DNS responses it sends to reflect the
knowledge it has about the chosen service node. If the service node is chosen at
random, the TTL is set very low, so that the DNS response cached by the client
will time out soon and the client will have to make other DNS requests. If the
RTT is found to be low, then the TTL is set high, so that clients stick with a
favorable service node. If RTT is high, then TTL is set low, so the client can soon
wander and search for a better service node assignment. Table 5-1 is used to
manage TTL values.

When the TTL of the DNS response eventually times out, the client will
eventually make another request to the monitoring DNS. If the DNS has not yet
found a service node with low RTT to this client, it will choose another service
node at random. Again the connection gets set up and the RTT measured,
recorded, and sent to the monitoring DNS. If the DNS has located a service
node with a low RTT, it returns the address of that node. This design quickly
avoids bad choices of service node assignment and quickly converges on good
choices even if they are not proven optimal.

The system summarizes client IP addresses by collecting them into network
neighborhoods based on the 20 to 24 high order bits of their address. This
results in grouping 256 to 4096 IP addresses together in each network neighbor-
hood. This saves table space and helps the learning process. Although the system
may not have encountered the specific IP address of your client, it may have
learned the best service node for another client in your network neighborhood.
The system responds with this close node on your first request. The learning
algorithm converges quickly. Analysis of several aspects of a related algorithm
is in [ASW+02].

This approach solves the problems faced by probing-type DNS proximity
systems, but is still limited by a few factors. These include the assumption that
clients are located close to their local DNS, the resolution of network neighbor-
hoods, use of the DNS system in ways that were not anticipated in its design,
and learning latency caused by caching DNS responses throughout the network.

5.3 Global Request Routing 143

Table 5-1 Managing time to live

RTT TTL

Unknown Very Short
Low Long
Medium Medium
High Short

Ch05.qxd 01/19/2005 01:03 PM Page 143

5.4 Case Studies

Thomas Edison said, “Genius is 1 percent inspiration and 99 percent perspira-
tion.” The work required to transform the deceptively simple concepts of global
routing described in the previous section into a reliable worldwide content deliv-
ery network illustrate the wisdom of Edison’s remark. Both Lucent/Bell Lab’s
WebDNS and Akamai services began as academic challenges.

5.4.1 Lucent/Bell Labs WebDNS

Several years ago, Researchers from the Networking Research Department at
Bell Laboratories turned their attention to the problem of estimating the net-
work location of clients and finding the most appropriate site for serving a
client’s Web service request. Recognizing that an efficient solution would involve
applied mathematics and algorithms, the networking researchers were joined by
colleagues from the Mathematical Sciences Research Center. The joint team
designed and evaluated several approaches before refining and prototyping one
particularly promising solution. The researchers then approached the develop-
ment organization to demonstrate the work and to explore how best it could be
put to practical use. This is always a critical but highly exciting moment in the
life of a research project, since it has to be proven that the elegance and the fun-
damentally new aspects of the research work can actually be applied to the real
world and provide practical value in real networking environments.

To evaluate the practicality of the ideas and begin the design of a useful
product, a key question was posed by the development organization: What is the
simplest system we can build that will send requests from clients on the East
Coast to servers on the East Coast, and will send requests from clients on the
West Coast to servers on the West Coast? This simple problem helped focus both
the researchers’ and developers’ efforts on a basic practical system, while also
considering more complex and general scenarios in the system design.
Requirements for this practical system were written, developers met regularly
with researchers, and in a joint effort, a flexible system that could serve this sim-
ple scenario, as well as much more complex content networks, was built and
ready to be tested.

It was difficult to select a suitable test environment for a content delivery
network that extends across the globe. The problem was approached in stages.
The first step was to deploy service nodes in labs in two locations within New
Jersey. A very small, invisible graphic object (a Web bug, named tiny.gif) served
from a domain managed by the WebDNS was then incorporated into the
bottom of a Web page that receives modest traffic from around the world (and
is owned by one of the developers). The WebDNS network then managed this
single object. This provided a small but diverse load on the WebDNS and
allowed the developers, testers, business managers, and researchers to monitor,
assess, and improve its operation. System failures and reconfiguration activity

144 C H A P T E R 5 Navigating Content Networks

Ch05.qxd 01/19/2005 01:03 PM Page 144

were invisible to the end users because during a network outage the Web bug
simply did not appear on the bottom of the Web page. This was transparent to
the users, because the graphic was invisible.

In stages, service nodes were added to this test network. Eventually service
nodes were deployed to Germany and California. As the system became more
stable, more traffic was moved onto the network. Managed Web bugs were
placed onto more Web sites, generating more traffic. Finally there was enough
confidence in the system to manage an entire domain. As traffic increased and
requests came from more locations, more problems were identified and solved.

The services of Keynote Systems (www.keynote.com) were used to gather
more information about the network operations. Keynote measures network
performance from the end-user perspective. They have instrumented clients at
dozens of locations around the world. These can be set to request content from
the network being tested and measure the actual performance. The results are
displayed in graphic reports that dramatically reveal the performance of the
network. The client requests also create a small load on the system from points
all around the globe. Using this performance information we continued to tune
the network. Since we knew the location of each Keynote client, and we could
monitor the service node it was directed to, we were able to refine the accuracy
of the location assignment algorithms.

We could tell when the system made an excellent service node assignment,
and when it made poor ones. No amount of willpower was ever sufficient to
reduce the RTT of a DNS response once it was delivered to the network!

This phase of the testing demonstrated that the Internet and the content net-
works that make it up are more diverse than the researchers and developers ever
imagined. Many unanticipated conditions occurred. These include regional dif-
ferences in the administration and use of domain names and hostnames, corpo-
rate security procedures for DNS system changes, difficulties in isolating and
debugging network problems after a change is made, and sparse coverage areas
of the performance monitoring services. Each problem was analyzed and solved,
moving the WebDNS closer to a field-ready product.

Network load, service node locations, and monitoring capabilities continued
to increase until the system became field ready. Eventually it was used to host a
very large and busy Web site of an internationally prominent corporation.

5.4.2 Akamai

Akamai (pronounced AH-kuh-my) is Hawaiian for intelligent, clever, and cool.
Akamai’s beginnings lie in a challenge posed by Tim Berners-Lee at the

Massachusetts Institute of Technology (MIT) in early 1995. He foresaw the con-
gestion that is now very familiar to Internet users, and he challenged colleagues
at MIT to invent a fundamentally new and better way to deliver Internet con-
tent.

MIT Professor of Applied Mathematics Tom Leighton, who had an office
down the hall from Tim Berners-Lee, was intrigued by the challenge. Leighton

5.4 Case Studies 145

Ch05.qxd 01/19/2005 01:03 PM Page 145

recognized that applied mathematics and algorithms could help reduce Web con-
gestion. He solicited the help of graduate student Danny Lewin3 and several
other researchers to tackle the problem.

Together they developed a set of algorithms for intelligently routing and
replicating content over a large network of distributed servers—without relying
on centralized servers typically used by Web site owners today. Jonathan Seelig
joined the founding team and they began building the business plan that would
lead to Akamai’s inception.

In 1998, the group entered the annual MIT $50K Entrepreneurship
Competition, where the company’s business proposition was selected as one of
six finalists among 100 entries. Akamai obtained an exclusive license to certain
intellectual property from MIT, and development efforts began in the fall of
1998.

In late 1998 and early 1999, a group of experienced Internet business pro-
fessionals began to join this founding team. Together, these computer scientists
and experienced Internet professionals founded Akamai, a company dedicated
to ending the “World Wide Wait” through intelligent Internet content delivery.
The company launched commercial service in April 1999 and announced that
one of the world’s most trafficked Web properties, Yahoo!, was a charter cus-
tomer.

Its services are built upon its globally distributed platform for content,
streaming media, and application delivery, which is comprised of more than
13,000 servers within over 1,100 networks in 66 countries. The Akamai network
handles tens of billions of hits per day. The company has a market capitalization
of approximately $1.5 billion [Akam1].

146 C H A P T E R 5 Navigating Content Networks

3Tragically Danny Lewin was killed along with so many others when American Airlines Flight 11 slammed into
the north tower of the World Trade Center on September 11, 2001.

Ch05.qxd 01/19/2005 01:03 PM Page 146

C H A P T E R 6

Peer-to-Peer Content Networks

147

Peers are equals. Huge audiences gather to see and hear rock stars, sports heroes,
politicians, religious leaders, and other famous, interesting, or powerful people.
At the same time, people dialog one-on-one with friends, family, co-workers, and
other peers. Similarly, although millions of clients request content from popular
sites such as CNN, Yahoo!, and Disney, peer-to-peer communications are sym-
metric one-to-one relationships.

Although peers are sometimes selfish, greedy, deceitful, malicious, untrust-
worthy, and unreliable, they are often very helpful and generous and they
do make the best friends. The world is full of them, and there is strength in
numbers.

Peer-to-peer content networks are formed by symmetrical connections
between host computers, which are often the users’ own personal computers.
Just as you and your human peers exchange roles of speaker and listener during
a dialog, here each host computer can act as either client or server in the proto-
col and takes on these roles alternately as required to complete a request.

There are three situations where peer-to-peer content networks provide
unique characteristics compared to client server networks. The first is where con-
tent originates with many peers rather than with a central source. This is impor-
tant in some file sharing applications described in this chapter and it is
fundamental to collaboration systems, such as instant messaging, described in
Chapter 7. The second advantage is that a peer-to-peer network does not have a
single point of failure. While this can increase reliability over client server archi-
tectures, the complexity of peer-to-peer networks can lead to an overall decrease
in reliability. Also, since the software running on each host is similar, if not iden-
tical, a bug in that software is apparent throughout the network and can rapidly
lead to a widespread vulnerability. A third characteristic is related to the first
two. Because content originates at many peers, and there is no central point of
control within the network, the content is more difficult to regulate. Censorship,
enforcing editorial policy, imposing political agendas, restricting or focusing

Ch06.qxd 1/19/05 11:47 PM Page 147

148 C H A P T E R 6 Peer-to-Peer Content Networks

distribution, monitoring or charging for access, and identifying content
providers and content consumers all become more difficult when content origi-
nates with many peers rather than with few servers. Peer-to-peer networks can
shift power to the people and reinvigorate freedom of the press and freedom of
speech.

This chapter explores how peers can be organized into useful content deliv-
ery networks. It begins by characterizing peer-to-peer networks and describes
several types. The technical challenges of creating a reliable network from a ran-
dom collection of unknown peers are discussed. Case studies describe the his-
tory and technical aspects of Napster, Gnutella, and Chord. Finally the business
and legal aspects of peer-to-peer networks are briefly discussed.

6.1 What Are Peer-to-Peer Networks?

Peer-to-peer networks are distributed systems where the software running at
each node provides equivalent functions [SKB01]. A succinct formal definition
of peer-to-peer networking is “a set of technologies that enable the direct
exchange of services or data between computers” [Int01]. Implicit in that defini-
tion are the fundamental principles that peers are equals,1 and peer-to-peer sys-
tems emphasize sharing among these equals. A pure peer-to-peer system runs
without any centralized control or hierarchical organization. A hybrid system
uses some centralized or hierarchical resources. Peers can represent clients,
servers, routers, or even networks.

Figure 6.1 illustrates simple reference architectures for both client-server
systems and peer-to-peer systems. Clients are not equal to servers, and they
depend on a relatively small number of servers for system operation. Peers are
all equal, and they rely only on themselves and their peers.

Client Server Peer-to-Peer

C

C

C

C

C

C

P

P

P

P

P

P

S

Figure 6.1 Reference architectures.

1They are equal because they provide equivalent services, but they may have different capacity such as process-
ing power, storage capacity, bandwidth, etc.

Ch06.qxd 1/19/05 11:47 PM Page 148

The original Internet was designed as a peer-to-peer system. The first
Internet applications were remote machine access, e-mail exchange, and copying
files between computers. These are all peer-to-peer applications where each host
computer can act as either client or server in the protocol and takes on these
roles alternately as required to complete a request. For example, to copy a file
from host A to host B, A acts as the FTP client and B acts as the FTP server.
The roles can be exchanged when a file is copied in the other direction.

Network News, the predecessor of today’s news groups, originally propa-
gated content from host to host using UUCP, the Unix-to-Unix copy protocol.
In this peer-to-peer system, each host ran the same UUCP program and a sym-
metrical protocol [RFC 976].

The DNS includes thousands of name servers which all perform the same
function of serving DNS requests. This forms a peer-to-peer network in which
name servers forward queries to their peers until an answer is found, or it is
determined that no answer exists. The root servers and the hierarchical organi-
zation of the system does, however, make some peers “more equal” than others.

However, over time the Internet became asymmetrical.

6.1.1 Transparency and Asymmetry in the Internet

Originally the Internet was designed to use a single universal logical addressing
scheme and packets would flow unaltered from source to destination. This is
called transparency—because packets could be retrieved unaltered from their
source by knowing only their address [RFC 2775]. This is an important part of
the Internet End-to-End design principle as discussed in Chapter 1 [RFC 1958,
SM94]. This transparency also enables symmetry (without requiring it) because
any endpoint can readily access any other endpoint.

Over time the Internet became asymmetrical. FTP,2 Telnet, and later HTTP
are client-server protocols which allow servers to take on roles different from the
clients they serve. Servers typically have wideband connections to the Internet,
while many clients dialed up over low speed lines. Clients that have broadband
connections often use Asymmetric Digital Subscriber Line (ADSL) modulation
or cable modems. Both of these provide substantially more bandwidth toward
client than away from it [OMH01].

Asymmetry in access technologies reflects the different roles and resources
that are a part of client-server architectures. Limited uplink bandwidth in cable
systems and ADSL restricts high capacity servers to the high capacity side of the
link.

There are other reasons the Internet has become asymmetrical. RFC 2775
provides a long list of causes that reduce the transparency in the Internet and
make it asymmetrical, including:

6.1 What are Peer-to-Peer Networks? 149

2In an earlier paragraph we used FTP to illustrate a peer-to-peer architecture. It is the role of each host, not the
protocol it is running, that distinguishes peer-to-peer from client server architectures.

Ch06.qxd 1/19/05 11:47 PM Page 149

● The Intranet model allows users on the Intranet to access any endpoint
on the Internet, but users outside of the Intranet cannot access it.

● Dynamic address allocation, including SLIP, PPP, and DHCP, changes
the endpoint address each time it connects to the network. Therefore this
transient IP address cannot be used to contact the endpoint after the ses-
sion is completed and the IP address is released.

● Firewalls, including basic firewalls and SOCKS Firewalls [RFC 1928]
act as a one-way gate. They allow anyone inside the internal network to
establish a connection to anyone on the Internet, but prevent untrusted
hosts on the Internet from initiating connections to the internal network.

● Private addresses known only within a private network [RFC 1597] can-
not be used for communication across the Internet.

● Network address translators change IP addresses on the fly and destroy
end-to-end address transparency. They also complicate protocols that
carry the IP address at the application level.

● Application level gateways, relays, proxies, and caches may alter content
in ways that are unknown or uncontrollable by the endpoints.

● Voluntary isolation and peer networks, such as WAP protocol networks,
do not use Internet addressing and protocols but connect endpoints to
the Internet.

● Split DNS allows an organization to run a DNS on their Intranet that
provides hostnames that may not correspond to their Fully Qualified
Domain names (FQDN) used outside the firewall.

● Various approaches to load-sharing hide the real endpoint’s IP address
behind a VPN (see Figure 5.4).

Computer architects have long fought the battle of big Endian vs. Little
Endian [IEN 137]. Now network architects are fighting the battle of End to
Endian! There is no going back.

The symmetry of peer-to-peer network communications cuts across the
grain of this trend toward asymmetry in the Internet.

In the early days of the Internet, the peers that were communicating were a
small number of large professionally managed computers used by research sci-
entists. Today the peers that are communicating are often large numbers of PCs
run by teenagers over networks such as Gnutella and KaZaA. This puts new
stresses on the peer-to-peer systems and the underlying network and leads to
several important system requirements.

6.1.2 System Requirements

Several ideal characteristics desirable for reliable content management systems
are especially interesting in peer-to-peer systems. These include:

● Availability—The services of the system can be accessed 24×7×365, any
time of the day or night, any day of the year.

● Durability—Information stored by the system will be available forever.

150 C H A P T E R 6 Peer-to-Peer Content Networks

Ch06.qxd 1/19/05 11:47 PM Page 150

● Access Control—Information is protected from unauthorized access or
alteration. These include restricting read access to private information,
and write access to shared information.

● Authenticity—The documents are protected against forgery and unde-
tected alteration.

● Robustness—The system is resistant to malicious attacks, such as denial
of service attacks and other assaults.

● Massive Scalability—The system works well with thousands, millions, or
perhaps even billions of peers.

In addition, some systems that have been designed to promote free expression
and publication have stressed:

● Anonymity—The author and publisher of a document are difficult or
impossible to identify.

● Free Expression—The content cannot be censored or altered after it is
delivered to the system.

● Deniability—Users are not certain what content is stored on their indi-
vidual peer machines, so they can reasonably deny responsibility for its
ownership.

These free expression characteristics are easier to attain in a peer-to-peer
system than in a system with centralized control [Kub03].

6.1.3 Creating Order from Chaos

No doubt your human peers form a diverse group. They may include people
who are young or old, rich or poor, fat or thin, ambitious or lazy, arrogant or
humble, cautious or reckless, friendly or hostile, reliable or unreliable. Yet
despite this diversity, you are able to form groups, work together and accom-
plish shared goals. Computing peers are also diverse. They differ in processing
power, storage space, network bandwidth, network location, connection type,
hours of operation, reliability, and user goals. A basic problem is to create a
reliable peer-to-peer content network from this diverse collection of peers.
This section discusses several characteristics of peer-to-peer content networks
[MKL+02].

Whether or not it is a design goal, decentralization is a natural consequence
of interconnecting a worldwide collection of peers. Decentralized systems are
free of bottlenecks and lack single points of failure. Ownership of processing
power, storage space, bandwidth, and access to content is shared among the par-
ticipants in the network. But with no one in charge, it may be difficult to even
find the network, let alone the content you seek.

Since there are no centralized resources to exhaust, peer-to-peer content net-
works have the potential of massive scalability. As long as there are peers will-
ing to participate, there is nothing else to run out of as the networks expand and
become very large. However, we will see that problems in managing connections

6.1 What are Peer-to-Peer Networks? 151

Ch06.qxd 1/19/05 11:47 PM Page 151

to peers and communicating requests and responses require well-thought-out
algorithms to provide acceptable performance in large networks. Organization
can become the scarce resource as the networks grow very large.

Migrating birds such as geese fly in their characteristic V-shaped formation
because this is easiest for each goose, not because the lead goose has directed
them in this pattern. The same set of instructions is running in each goose
[BBC02]. This is an example of self-organizing behavior. Similarly, with no cen-
tral management structure, a peer-to-peer content delivery network must rely on
self organization. The algorithms must achieve scalability, reliable operation, sat-
isfactory performance, and fault resilience from a collection of unreliable peers
with intermittent connections.

Resource ownership is shared in a peer-to-peer content network. The cost of
obtaining, operating, and maintaining each peer is borne by its owner. The
responsibility for creating, publishing, and distributing content is also shared.
As the network grows larger, the increasing total cost of the network is shared
among the increasing number of participants.

The network is made up of ad hoc connections as peers join and leave the net-
work at any time. While it is an exceptional event for resources such as servers to
join and leave a centralized network, it is a normal event in peer-to-peer systems.
It is difficult to provide service guarantees in this environment.

The potentially massive scale of a peer-to-peer network can either help or
hinder performance. Aggregating the combined processing power, storage
space, and network resources from a large number of peers can provide a huge
pool of resources and excellent performance. The SETI@home project har-
nesses the power of millions of personal computers to gather more processing
power than the largest centralized supercomputers. However, the difficulty of
communicating to the many peers in a large, distributed, self-organized network
can reduce performance. As we will see in Section 6.3.2, performance of the
Gnutella network is limited by the large number of organizing messages it
generates.

Security is a special concern when you do not trust, or even know, who you
are collaborating with. Encryption, isolating processing agents through a tech-
nique called sandboxing, managing digital rights, firewalls, and relying on repu-
tation and accountability all add to the security of the network. This is discussed
in more detail in Section 6.2.2.

Because they lack a single point of failure, peer-to-peer networks have the
potential for improved fault resilience. However, disconnections, network con-
gestion or failure, unreachable nodes, isolated networks, and node failures cre-
ate their own set of reliability problems. Also, system maintenance
responsibility is distributed across the peers. Redundancy can provide solu-
tions by replicating content, routing paths, and other essential resources across
many peers.

In a peer-to-peer network the algorithm running in each peer establishes the
character of the network. This leads immediately to interoperability problems
between various peer-to-peer networks. We will see in Section 6.3.1 that Napster

152 C H A P T E R 6 Peer-to-Peer Content Networks

Ch06.qxd 1/19/05 11:47 PM Page 152

does not use the Domain Name System and instead created its own name space.
Peers on network A (e.g., Napster) cannot communicate with peers on network
B (e.g., Gnutella). This seems fundamental, because if A is different from B, then
they are not equal and therefore not peers. This leads to the very important net-
work effect problem discussed in the next section. Perhaps compatible protocols
and gateways can allow interconnection to overcome the network effect, but the
nodes still will not be true peers.

6.1.4 The Network Effect

Choose your friends wisely. This time-honored advice is as true for peer-to-
peer networks as it has always been for social networks. Peer-to-peer networks
are exclusive. The software running on the peer establishes the protocol and
algorithm used to communicate with all other peers. When you choose to run
the original peer-to-peer Napster software you are interconnecting only to
peers that are also running Napster to the exclusion3 of all the systems run-
ning Gnutella and other protocols. You can join only one fraternity, commit
to only one religion, and be only at one party when midnight rings in the New
Year.

Robert Metcalfe, founder of 3Com Corporation and the designer of the
Ethernet protocol, observed that new communications technologies are valuable
only if many people use them. Metcalfe’s Law states that the value of a network
grows as the square of the number of users [Gil02, NWFE1]. When Alexander
Graham Bell invented the telephone in 1876 he had no one to call except his
assistant, Thomas Watson. It took another 55 years, until 1931, for enough peo-
ple to use this new technology that telephone companies put a dial on the instru-
ment. But the idea took off, the telephone network is huge, every phone can
connect to any other phone, and competing networks have long since been gob-
bled up or withered away.

Success breeds success. The best students want to go to the best university
to study with the best professors and the best students. The larger an auction site
like eBay becomes, the more attractive it is because it provides each member with
a larger market.

So the most successful peer-to-peer network is the one that attracts the most,
or at least the most valued,4 users. This emphasizes the importance of massive
scalability, while having acceptable performance, reliability, and ease of use.
Systems that are unattractive will cause the user base to fragment and reduce the
usefulness of the network.

6.1 What are Peer-to-Peer Networks? 153

3While it is true that a wrapper could be created to provide a common user interface to more than one underly-
ing peer-to-peer system, the systems remain distinct and each one manages its own pool of resources.
4For example, users that offer the most interesting contributions to the network while consuming few resources
and annoying few users may be judged most valuable. Also, a small network dedicated to a special interest topic
can be successful if the participants address issues important to the group. The term “valued” can be interpreted
according to any set of values shared by the network users.

Ch06.qxd 1/19/05 11:47 PM Page 153

6.1.5 Types of Peer-to-Peer-Networks

Figure 6.2 decomposes broadly defined peer-to-peer systems into four groups
and gives examples of each [MKL+02].

File Sharing systems are the most important for content networking. These
are subdivided into pure peer-to-peer networks that don’t rely on any centralized
resources and hybrid networks that have servers at their core. Multimedia con-
tent requires large files. Varied interests demand extensive variety in multimedia
content. The resulting storage requirements are enormous. Peer-to-peer file
sharing systems, such as Napster, Gnutella, and others, provide the following
features:

● File Exchange Areas where a peer can retrieve a file stored by another
peer in the network. The storage capacity grows as the network grows,
bounded only by the number of interested peers and the scale of the net-
work. File exchange is provided by Freenet (www.freenetproject.org),
Gnutella (www.gnutella.com), KaZaa (www.kazaa.com), and others.

● Highly available safe storage is provided by duplication and redundancy
policies in some projects. OceanStore [KBC+00] provides safe storage for
nomadic data using an untrusted infrastructure. Chord (pdos.lcs.mit.
edu/chord/) provides a bounded search for any document in the system.

● Anonymity of authors and publishers is the goal of some specialized sys-
tems. Publius [WRC00] is censorship resistant, tamper evident, source
anonymous, and deniable. Freenet allows users to publish and obtain
information on the Internet without fear of censorship.

154 C H A P T E R 6 Peer-to-Peer Content Networks

P2P Systems

Pure:
Gnutella,
Morpheus,
Chord

KaZaA

Hybrid:
Napster,
Aimster

Examples:
SETI@home,
Gnome@home

Examples:
AIM,
Groove,
Magi,
Multiplayer Games

Examples:
JXTA,
.NET

Distributed
Computing

PlatformsFile Sharing Collaboration

Figure 6.2 Types and example peer-to-peer systems.

Ch06.qxd 1/19/05 11:47 PM Page 154

● Manageability enables easy and fast data retrieval. This is often accom-
plished by distributing the data to caches located on the edges of the net-
work. Freenet stores data in many locations in the path between the
provider and the retriever. Manageability is difficult to achieve when
nodes join and leave the network frequently.

Collaboration systems provide real-time interaction allowing users to
cooperate toward a common goal or compete in a game. Applications include
instant messaging, chat, online games and shared applications for business,
education, or home use. Examples include AOL Instant Messaging
(www.aim.com), Groove (www.groove.net), Magi (www.endeavors.com), and a
number of games such as DOOM and Quake. They can be built using peer-to-
peer or client server architectures. Chapter 7 discusses collaborative systems in
detail.

Distributed computing creates a huge virtual supercomputer by aggregating
the processing resources of a large number of individual personal computers
attached to the Internet. Long-running massively parallel computations are
best suited to this approach, as the following examples illustrate. In January
1999 distributed.net harnessed the idle CPU time of approximately 100,000
computers around the world and won the RSA DES III challenge when they
decoded a message in less than 24 hours that was encrypted using a 56 bit key
[MCN99]. SETI@home [ACK+02] harnesses the power of 3 million personal
computers to analyze data collected from the world’s largest radio telescope in
Arecibo, Puerto Rico, in its search for extraterrestrial intelligence.
Genome@home (www.stanford.edu/group/pandegroup/genome/) uses a similar
approach to design new genes that can form working proteins in living cells.

These are each examples of grid computing. Grid computing is defined as
“coordinated resource sharing and problem solving in large, multi-institutional
virtual organizations” [FKe03]. The Global Grid Forum (www.globalgridfo-
rum.org) promotes research and standards related to grid computing.

Because no content is exchanged among the peers, these fascinating appli-
cations of peer-to-peer systems are unrelated to content networking and won’t
be discussed further.

Platforms provide support for naming, discovery, communications, secu-
rity, and resource aggregation for peer-to-peer systems. The popularity of a
small number of widely used operating systems, such as Unix and Windows,
has increased the portability of software. The use of browsers with standard
capabilities and virtual machines such as the Java virtual machine has
increased portability of software distributed over the Internet. Now the cre-
ation of peer-to-peer platforms can ease the development of various peer-to-
peer solutions.

Example platforms are JXTA (www.jxta.org), sponsored by Sun Microsystems
Inc., and .NET (www.microsoft.com/net/), sponsored by Microsoft. Future content
networking solutions may be built using these platforms.

6.1 What are Peer-to-Peer Networks? 155

Ch06.qxd 1/19/05 11:47 PM Page 155

6.2 Technical Challenges in Peer-to-Peer Networks

To distribute content to users, a peer-to-peer network must be able to locate con-
tent, scale to a useful size, and provide reliable operation. Several approaches to
solving these problems are discussed in the following sections.

6.2.1 Locating Content

Bachelors and bachelorettes who move into a new community face the challenge
of meeting new friends and romantic interests. They can take several approaches
to meeting new and interesting people. One approach is to consult Internet-
based information services such as match.com or love.com that hold the names
and profiles of millions of people who want to meet others with compatible
interests. A single query to this centralized database can provide a list of many
peers who claim similar interests.

A more traditional approach might be to quietly let people you meet know
you are interested in meeting more people. If a particularly attractive single con-
veys this information, it can quickly travel through the grapevine. The question
“Have you met the hottie that just moved into the neighborhood?” will quickly
stimulate many discussions among curious peers. This approach is based on
flooding the network with your request and dealing with whatever happens.

Other approaches might involve some form of social referral agent. Trusted
friends or recognized matchmakers suggest compatible contacts they believe you
would like to meet. Some people join health clubs, ski clubs, or book clubs hop-
ing to meet people with similar interests. New approaches to matchmaking
include services such as dinnerintroductions.com which is a social club that
arranges small dinner parties to provide their clients interesting social contacts.
While these referrals often speed the process of finding Mr./Ms. “Right” they
probably only send you in the right direction. You still may end the evening early
asking your blind date if she has any sisters or single girlfriends. This approach
combines elements of both the centralized and flooding approaches. It uses the
special knowledge of the matchmakers to direct the search in a promising direc-
tion, and your own networking skills to continue and refine the search.

A similar problem arises in peer-to-peer file sharing systems that need to
locate content that matches user requests. Three basic algorithms are commonly
used to locate content. These are the centralized directory model, the flooded
request model, and the document routing model [MKL+02].

The centralized directory model is analogous to people consulting
match.com. This approach was used by the original Napster implementations,
and is discussed as a case study in Section 6.3.1. Peers connect to a central direc-
tory where they publish information describing the content they have to share.
When the directory receives a request, it replies with a peer in the directory that
matches the request. Several criteria such as closest, highest bandwidth connec-
tion, highest capacity, least congestion, or least recently used might be used to

156 C H A P T E R 6 Peer-to-Peer Content Networks

Ch06.qxd 1/19/05 11:47 PM Page 156

select the best peer. The requesting peer then directly contacts the peer it has
been referred to and begins the content transfer.

This model depends on a reliable central directory. All the peers share the
fate of that directory and the network stops working whenever the central
directory is not available. The growth of the network is limited by the capacity
of the central directory. This can lead to scalability problems if it is not handled
well in a large network. This centralized approach did not limit the growth of
the original Napster network, which grew to include as many as 150 centralized
servers. It was, however, a fatal element that led to the legal downfall of
Napster.

Nearly a decade earlier, archie [ED92], WAIS [km91], and gopher were cre-
ated to provide centralized directories for locating FTP files located on various
systems. MP3 audio files were not exchanged then, so the turmoil surrounding
Napster never developed around these systems.

The flooded request model is analogous to the buzz speeding through the
grapevine when a hottie arrives in town. This approach is used by Gnutella and
is discussed as a case study in Section 6.3.2. After connecting to the network,
the requesting peer broadcasts a query to its directly connected peers, which
each broadcast to their directly connected peers, and so on through the net-
work. This continues until the request is answered, or some broadcast limit is
reached.

This approach generates a lot of ineffective network traffic and requires a lot
of bandwidth. This network flooding is an important scaling problem and sig-
nificantly limits the size of the network.

The document routing model is analogous to asking a trusted friend for a refer-
ral. This approach is used by Chord and is presented as a case study in Section
6.3.3. Each peer has helpful, but only partially complete referral information.
Each referral moves the requester closer to a peer that can satisfy the query.

The great advantage of this approach is that the systems can reliably com-
plete a comprehensive search in a bounded number of steps. The resulting sys-
tems can grow to be very large and still provide good performance. Section 6.3.3
mentions several systems before presenting a detailed case study of Chord.

6.2.2 Trust, Accountability, and Reputation

Our trust of social peers varies greatly. Although we smile and greet hundreds of
acquaintances, most of us have very few friends we fully trust. How many peo-
ple are you comfortable confiding in? How comfortable are you lending your car
to a friend? Yet the Gnutella network is based on sharing everything with 10,000
anonymous strangers!

Content integrity is the primary trust issue in a content delivery network. If
the original content is tampered with or altered during storage, transport, or
delivery, the requester is misled and the reputation of the author is unfairly and
unknowingly tarnished. It is important for both the author and the requester to
ensure that the content the requester receives is an exact copy of the content the

6.2 Technical Challenges in Peer-to-Peer Networks 157

Ch06.qxd 1/19/05 11:47 PM Page 157

author originally created. By using a digital signature that is authenticated by a
trusted Certifying Agency, such as Thawte [Tha] or Verisign [Ver03], authors
provide a way for requesters to verify that the content they receive is identical to
the original creation. As requesters continue to use this mechanism to obtain
unaltered content, they get an authentic copy of the author’s work. This helps
build the author’s reputation accurately [OWC+01]. Organizations opposed to
file sharing deliberately introduced content integrity violations to discourage
users from downloading files. They place large files in the network and identify
these files as containing popular content, such as a hit movie or song. This
encourages users to download the file only to find it is empty or junk, a Trojan
horse, or some other waste of time, storage space, and bandwidth.

Limited resources that are freely shared are inevitably overtaxed and
often exhausted. Freeways are jammed with traffic, air and water are polluted,
and free rock concerts in the park are jam-packed with people. Bandwidth,
connections, storage space, processor capacity, and search requests are all in
limited supply in a peer-to-peer network. A small number of greedy users can
exhaust these resources for the entire community. This is an example of the
tragedy of the commons [Har68]. The usual solution is to regulate access to the
limiting resource. This is the essence of accountability; where each user accepts
responsibility for the shared resources they consume. Accountable users main-
tain records of the scarce resources they consume.

We will see later that most of the Gnutella network traffic is caused by so-
called free riders. Although these free riders do not provide any files for others
to share they make up 66% of Gnutella users. This is the inevitable consequence
of lack of accountability.

A classic study published in 1842 convincingly argued that the most eco-
nomically efficient toll to charge on an uncongested bridge is zero. This is
because the additional cost of one more person crossing the bridge is zero, while
the total economic cost of collecting the toll is greater than zero. Some resources
may be too cheap to meter. The situation changes considerably, however, when
the traffic wanting to cross the bridge exceeds its capacity. In that case tolls
should be collected whenever they are needed to manage bridge congestion
[Dup2]. Accepting this argument, resources in a peer-to-peer network should be
rationed if and only if they are congested or scarce.

Accountability requires each user to pay their share to use each scarce
resource. Payment can be in financial form or in some other form that represents
a barter or other valuable contribution to the common network. A simple barter
system might require users to upload content roughly comparable in value to the
content they download. More traditional financial models can be used to pay for
bandwidth or any other scarce resource as it is used [ODF+01].

An experimental prototype network, called Mojo Nation, included a flexi-
ble micro payment system. This scorekeeping mechanism provided a flexible
peer-to-peer credit system and a flexible incentive device. Users earned credits
for contributing resources; these credits were used to obtain resources. Free rid-
ers contributed nothing and got like in return [Mcc01].

158 C H A P T E R 6 Peer-to-Peer Content Networks

Ch06.qxd 1/19/05 11:47 PM Page 158

Reputation is the history of accountability and trust behaviors accessible
from past transactions. We use reputation to help set expectations for future
transactions [OL01]. Reputation information eases exchange of valuables and
reduces risk. Online trading sites, such as eBay, help vendors create their repu-
tation by asking customers to rate the quality of every transaction. The result-
ing reputation information is published. This encourages vendors to continue to
provide good service and allows potential buyers to select vendors based on this
reputation. Content delivery networks could use a similar technique to establish
the reputation of content authors and publishers. In peer-to-peer networks, the
reputation of peers could be established based on their contributions to the net-
work, such as the amount of original content authored, the amount of content
stored, uploads to the network, the number of connections they support, and
the number of transactions they assist in processing. To protect the network,
peers who earn a poor reputation can have their participation in the network
limited and eventually be cut off.

Now that we have introduced and described the general challenges in build-
ing peer-to-peer networks, the next section will take a look at real-life peer-to-
peer systems and the mechanisms they use to solve these challenges.

6.3 Case Studies

Several different kinds of peer-to-peer networks emerged over recent years and
gained tremendous popularity. The most well-known system was probably the
original Napster, which achieved infamy through the legal battles fought in the
courtrooms and lively discussion in chat rooms. After Napster was shut down by
the courts, other systems such as Gnutella and KaZaA moved into the spotlight.
While these systems found immediate popularity, the Chord system was started
to research and solve fundamental problems of peer-to-peer networks. This sec-
tion takes a closer look at each of those peer-to-peer networks, their primary
goals, and the mechanisms used.

6.3.1 Napster

The history of Napster is a fascinating example of entrepreneurship during a
period of explosive growth and rapid demise of Internet startups. It fundamen-
tally changed the music industry while it focused worldwide attention on peer-
to-peer systems for content delivery. Readers may also have some interest in the
system architecture.

Company history

In January 1999, 18-year-old Shawn Fanning left Northeastern University after
the first semester of his freshman year to work on the Napster software. On July
1, 1999, the software was complete enough to begin offering service. By November

6.3 Case Studies 159

Ch06.qxd 1/19/05 11:47 PM Page 159

1999 negotiations with major record companies to distribute online music already
failed. On December 7, 1999,5 the Recording Industry Association of America
(RIAA) sued Napster for copyright infringement, asking for damages of $100,000
each time a song is copied. On April 13, 2000, the rock band Metallica sued
Napster for copyright infringement. To show concern, Napster responded quickly
by removing over 300,000 members who had downloaded Mettalica songs from its
service. On July 24, 2000, Napster announced plans to work with digital-rights
technology company Liquid Audio to try to make its music downloads safe for
copyright holders. Two days later U.S. District Judge Marilyn Patel ruled in favor
of the record industry and ordered Napster to stop allowing copyrighted material
to be swapped over its network. The judge set a deadline of midnight only two
days later; however, hours before Napster would have had to shut down, the Ninth
U.S. Circuit Court of Appeals ruled that the company should be allowed to con-
tinue its operations. The turmoil was enough to get Shawn Fanning’s picture on
the cover of the October 2, 2000 issue of Time Magazine [Mar01].

In an ironic turn of direction on October 31, 2000, German media con-
glomerate Bertelsmann (www.bertelsmann.com) formed an alliance with
Napster, signaling a significant shift in the hostile battle between the major
record labels and the start-up. The plan was to support Napster in creating a
legal, paid subscription service. Bertelsmann had been party to the lawsuits that
shut down Napster; however, they promised to drop its lawsuit once the sub-
scription service successfully launches [HHa00].

While courtroom battles continued, Napster put in place a file screening sys-
tem designed to block users from downloading music files specified by an initial
list provided by record company attorneys. However, on July 11, 2001, a district
court judge issued an order prohibiting Napster from enabling file transfers
unless it reaches a 100% success rate identifying and screening out music copy-
ing abuses they were notified of. This order essentially shut down the Napster file
sharing service [Mar01].

The alliance with Bertelsmann, however, was not enough to solve Napster’s
financial crisis. They were on the verge of bankruptcy on May 17, 2002, when
Bertelsmann agreed to purchase Napster’s assets and save them from bank-
ruptcy. Under terms of the deal, Shawn Fanning was reinstated as its chief tech-
nology officer and Bertelsmann agreed to provide $8 million to repay Napster’s
creditors [Chm02].

The road to legal respectability and financial solvency was long and hard.
On October 29, 2003, the Napster 2.0 music service, now a division of Roxio
(www.roxio.com), went live. Under the new pay-to-play model Napster 2.0
offered consumers downloads for 99 cents a song or $9.95 per album. The
service includes CD burning, transfer to portable devices, decades of Billboard
charts, shared playlists within the Napster community, exclusive and original
content, interactive radio, music videos, and access to what was then the

160 C H A P T E R 6 Peer-to-Peer Content Networks

5Ironically this was the 58th anniversary of the infamous Japanese attack on Pearl Harbor.

Ch06.qxd 1/19/05 11:47 PM Page 160

world’s largest music store with more than half a million tracks and growing
[NAP03].

The network was at least as busy as the court room. During this time the
original Napster had more than forty million client downloads [MKL+02]. In
terms of users, the Napster site was the fastest growing in history, passing the 25
million mark in less than a year of operation [Tar00].

The new Napster is a client server system, without peer-to-peer elements. It
was quickly overshadowed by the Apple iTUNES system, which was named one
of Time Magazine’s “coolest inventions of the year” for 2003 [Tay03]. iTUNES
is also a client server system. The rapid growth, short life, and commercial
failure of the original Napster symbolize both the opportunities and business
challenges faced by peer-to-peer networks.

System architecture

The Napster protocol design is everything you would expect to get from a sleep-
deprived teenager. The protocol was never published by Napster, but was even-
tually reverse engineered by the OpenNap project (opennap.sourceforge.net)
who published their interpretation of the protocol specification [Ope00].

Napster uses the centralized directory model to locate content.
Napster communicates using TCP but does not use the DNS namespace to

name the peers. Instead it created its own namespace based on nicknames cho-
sen by the client. Several messages are used between the clients and server to
establish a nickname. Within the protocol descriptions, the nickname appears in
messages as <nick> when referring to another client and as <mynick> when
referring to this client.

Each message to and from the server is in the form of <length>
<type><data> where both <length> and <type> are 2 byte binary num-
bers and <data> is an ASCII string <length> bytes long. Fields in the data
portion are separated by a single ASCII space character, and some fields are
enclosed in double quotes. The following text names each data field in <angle
brackets>, after specifying the value and meaning of the <type> field.

The client uses message code 100 to announce to the server the files it is will-
ing to share. The message has the following format:

Code 100—Client notification of shared file—"<filename>" <md5>
<size> <bitrate> <frequency> <time>

In addition to the filename, an MD5 message-digest hash [RFC 1321] com-
puted over approximately the first 300,000 bytes of the file is used to identify
each content file. This hash can be used to ensure that two files, perhaps having
the same artist name and song name, have identical content.

The recording characteristics of each file are described by the parameters
<size> in bytes, <bitrate> in kbps, <frequency> in hertz, and <time> in
seconds.

6.3 Case Studies 161

Ch06.qxd 1/19/05 11:47 PM Page 161

The messages required for a typical session to search the server and transfer
a file are illustrated in Figure 6.3. They are explained below, where each message
includes the numeric code, descriptor, and format.

The sequence begins with the client A request to the server for a particular
song file:

200—Search request—[FILENAME CONTAINS "artist name"]
MAX_RESULTS <max> [FILENAME CONTAINS "song"] [LINESPEED
<compare> <link-type>] [BITRATE <compare> "
"] [FREQ
<compare> "<freq>"] [WMA-FILE] [LOCAL_ONLY]

The server responds with a list of records each including the filename,
recording parameters, source client’s nickname, and IP address. This list has at
most <max> records. The LOCAL_ONLY parameter limits the results to only the
one server, rather than searching other servers. Each response in the list has the
following format:

201—Search response—"<filename>" <md5> <size> <bitrate>
<frequency> <length> <nick> <ip> <link-type> [weight]

162 C H A P T E R 6 Peer-to-Peer Content Networks

Figure 6.3 Napster protocol session.

Napster Server

200 – Search Request

201 – Search Response

203 – Download Request

204 – Download Ack
Establish TCP/IP Connection

"1"

"GET"

Filesize <data>

218 – Downloading File

220 – Uploading File

219 – Download Complete

220 – Upload Complete

<continuing data>

<mynick>"<filename>"<offset>

Client A Client B

Ch06.qxd 1/19/05 11:47 PM Page 162

The client then requests the server allow the download of the particular file
from the client with the supplied nickname:

203—Download request—<nick> "<filename>"
The server grants this request by providing the IP address, port number, file-

name hash and line speed of the source client to the requesting client:
204—Download ack—<nick> <ip> <port> "<filename>" <md5>

<linespeed>
The role of this 203, 204 sequence is not entirely clear. It does separate the

search and download portions of the exchange. It is probably used for flow con-
trol and load balancing, to allow the server to throttle download requests to any
particular client. Keep in mind that the protocol was never standardized or offi-
cially published, and the implementation varied as conditions changed.

The requesting client A establishes a TCP/IP connection to the source client
B on the indicated port. The source client responds with the single ASCII char-
acter “1”. The requesting client begins with “GET”—not an HTTP GET—this is
the Napster application protocol, not HTTP—then sends <mynick> "<file-
name>"<offset>. The source client responds with the file size immediately
followed by the data of the file itself.

Once the data transfer begins, the requesting client sends a 218—download-
ing file message to the server. Similarly, the source client sends a 220—upload-
ing file message to the server. The transfer continues between the two clients.
The <offset> parameter allows the transfer to be resumed at any place in the
file. Finally, when the transfer is completed, the sending client sends a 219—
download complete message and the source client sends a 220—upload com-
plete message to the server. Since the data transfer is peer-to-peer, the messages
to the server seem nonessential and only serve to track system usage.

The protocol includes other features to retrieve files from behind a firewall,
browse another client’s file directly, obtain server statistics, ignore particular
users, and manage chat sessions.

The legal challenges to Napster focused on the central server. To delay such
legal challenges, the Gnutella protocol allows peer-to-peer file sharing without
any centralized structure.

6.3.2 Gnutella and KaZaA

While Napster was clogging the courtrooms, a pure peer-to-peer system called
Gnutella was clogging the networks. After providing a brief history, the Gnutella
architecture and protocol are described and the traffic is analyzed. A newer sys-
tem named KaZaA that was derived from Gnutella and takes steps to reduce
traffic is then briefly described.

History

Justin Frankel developed Winamp (www.winamp.com), a PC-based audio
player that became very popular after its launch in January 1998. His team then

6.3 Case Studies 163

Ch06.qxd 1/19/05 11:47 PM Page 163

founded Nullsoft (www.nullsoft.com) to continue the development and com-
mercialization of Winamp. The Winamp brand and services were acquired by
America Online, Inc. in May 1999 [Lau00].

As Napster was under legal attack, developers at Nullsoft turned their atten-
tion to peer-to-peer file sharing. Gnutella was developed in only 14 days as a
quick hack, reportedly for sharing cooking recipes. In March 2000 a prototype
was published on the Nullsoft Web site under a GNU General Public License.
After only a few hours, surprised AOL executives recognized the potential of the
development and the likely conflicts of interest it could lead to and demanded it
be taken off the Web site immediately. The Internet is fast. They were too late.
The software was already downloaded several times. The protocol was reverse
engineered and published [Clip2] and many systems were built to use that pro-
tocol [AHA02].

Gnutella architecture

We have seen that Napster is an implementation based on a centralized directory
without a published protocol specification. In contrast, Gnutella is a published
protocol specification without any implementation or any centralized elements.
The lack of a centralized structure delayed legal attacks, and generated lots of
network traffic.

The software running in each Gnutella peer is called a servent. These peers use
TCP/IP to communicate only with each other. Servent software was developed
and distributed by several companies including BearShare (www.bearshare.com),
LimeWire (www.limewire.com), and ToadNode (www.toadnoad.com).

A typical session using the Gnutella protocol is shown in Figure 6.4. The
session proceeds along the following steps [Clip2]:

1. Because each Gnutella network is fully decentralized it takes some work
to find a servent on the network. This problem is not addressed by the
published protocol, but workable solutions were quickly put into place.
Several of the companies that develop and distribute Gnutella servent
software run specialized hosts that cache the IP address of servents that
recently joined their network. A servent wanting to join the network con-
tacts one of these well-known host-cache servers and receives a list of
prospective addresses.

2. The joining servent begins the session by choosing a servent that is likely
to be connected to the network. The joining servent sends a Gnutella
Connect message to one of the addresses on the list of prospective ser-
vents it received from the host-cache server. This also makes the joining
servent address available to the host-cache server.

3. If the contacted servent is running and on the network, it replies to the
Connect message with a Gnutella OK message. If there is no reply,
the joining servent tries another prospective address until it finds an
online peer. Note that it is quite likely that a prospective servent is not

164 C H A P T E R 6 Peer-to-Peer Content Networks

Ch06.qxd 1/19/05 11:47 PM Page 164

available. Since the servents run on PCs they may be powered down, off
line, or using a dynamic IP address newly acquired from DHCP.

Once a servent is connected to the network, it communicates with other ser-
vents by sending and receiving Gnutella descriptors. Each descriptor is preceded
by a descriptor header with the following fields:

Descriptor ID Payload TTL—Time Hops Payload
Descriptor to Live Length

The descriptor ID is a 16-byte string uniquely identifying this descriptor
message in the network. Since the ping and query descriptors (see below) do
not include the servent’s IP address, or any other identification, and the servents
are communicating across several hops (see Figure 6.5), this descriptor ID is the
only way to associate pong and queryhit reply messages with the requesting
servent.

The payload descriptor is a code identifying the type of message:

0x00 = ping—Please respond with pong if you can accept my connection.
0x01 = pong—I can accept your connection at this IP address and port number.

6.3 Case Studies 165

Servent 1
Joining

Servent 2
On Network

Gnutella Connect/0.4\n\n

Gnutella OK \n\n

Ping

Query "foo.mp3"

Push

GET foo.mp3 HTTP/1.1

Gnutella
Host-Cache Server

Pong IP2, Sharing 123 Files

Queryhit File Information

1

2

3

4

5

6

7

8

9

Figure 6.4 Gnutella protocol.

Ch06.qxd 1/19/05 11:47 PM Page 165

0x04 = push—Push the file to me through the firewall.
0x80 = query—If you have a file matching this description, please respond

with queryhit.
0x81 = queryhit—The file you requested is here, at this address and port

number.

The TTL field is used to limit the maximum number of hops for this mes-
sage. The default is seven hops. Each servent receiving a message is responsible
for decrementing the TTL count and incrementing the Hop count before the
message is forwarded. When TTL reaches zero, the message has expired and is
no longer forwarded in the network. This creates a network horizon fully con-
necting nodes within seven hops and isolating nodes farther away. The TTL is
the only mechanism for expiring descriptors in the network. It is important for
servents to examine this field, decrement it, and expire descriptors when TTL
reaches zero.

The joining servent continues by sending these descriptors:

4. The joining servent sends out a ping message to probe the network for
other servents.

5. Servents respond to ping messages with their own pong message, indi-
cating their IP address and port, and providing information on the
amount of data it is sharing on the network. At this point in the proto-
col, the joining servent is aware of several servents on the network, but
does not know what files are being shared.

6. To locate a particular file,6 the servent sends a query message with
search criteria, such as the file name, to each of the directly connected
servents.

7. Servents sharing files that meet the search criteria respond with a
queryhit message. This message includes the IP address and identifier
of the responding servent, the connection speed and the result set which
includes the file index, file size, and file name for each hit.

8. Once a servent receives a queryhit, it may begin downloading a file in
the result set. The file download protocol is HTTP. In the simplest case
the requesting servent sends this HTTP request to the source servent:

GET/get/<File Index>/<File Name>/HTTP/1.0
Connection: Keep-Alive
Range: bytes=0−
User-Agent: Gnutella

If the source servent is behind a firewall that blocks incoming con-
nections to the Gnutella port, the requesting servent sends a push

166 C H A P T E R 6 Peer-to-Peer Content Networks

6Within a Gnutella network each servent only knows about its own content. Servents do not advertise their con-
tent and there is no central directory. The query mechanism described here is the only way to discover which ser-
vents have the content you seek.

Ch06.qxd 1/19/05 11:47 PM Page 166

request. The servent receiving this request opens a new connection to the
requesting servent. Since this originates from inside the firewall it is likely
to succeed. The requesting servent then initiates an HTTP GET to the
servent behind the firewall.

9. The file transfer continues between the two servents using HTTP. The
range feature of HTTP allows interrupted transfers to be restarted mid-
stream.

The protocol includes several rules for routing descriptor messages. Figure 6.5
begins to illustrate how servents use this protocol to meet peers and generate traf-
fic. The routing rules are described along with the example shown in Figure 6.5.

A servent will forward incoming ping and query descriptors to all of its
directly connected servents, except for the one that delivered the incoming ping
or query. We see A’s ping going first to servent B, then B forwarding it to C
and D, and then finally C and D each forwarding the pings to E.

Each servent decrements the descriptor header’s TTL field, and increments
its Hops field, before it forwards the descriptor to any directly connected ser-
vent. If, after decrementing the header’s TTL field, the TTL field is found to be
zero, the descriptor is not forwarded along any connection. In the example, we
are assuming the TTL reached zero after it was decremented at Node E, so the
forwarding stopped there.

To avoid loops in the network, a servent receiving a descriptor with the same
Payload Descriptor and Descriptor ID as one it has received before, should
avoid forwarding the descriptor.

Pong descriptors may only be sent along the same path that carried the
incoming Ping descriptor. This ensures that only those servents that routed the

6.3 Case Studies 167

A

B

C

D

E

Ping

C’s Pong
C’s Pong

B

D

E

E’s Pong

D’s Pong

E’s Pong

Figure 6.5 Gnutella—meeting peers.

Ch06.qxd 1/19/05 11:47 PM Page 167

Ping descriptor will see the Pong descriptor in response. To help enforce this
rule, a servent that receives a Pong descriptor with a Descriptor ID that does not
match a previous Ping Descriptor ID should remove the Pong descriptor from
the network. Following this rule in the example, we see B’s pong descriptor
going directly to Node A, C and D’s pongs routing through B to A, and finally,
E’s pong routing through D to B and finally to A. Note that E sends only one
pong, because the ping it receives from C has the same Payload Descriptor and
Descriptor ID as the ping it has received from D, which is assumed to arrive
first in this example.

In Figure 6.6 we see the query and queryhit descriptors following sim-
ilar rules. Node A sends a query for file foo.mp3 into the network. It gets for-
warded until it reaches Node E. Both Nodes C and E respond with queryhit
descriptors to tell Node A they have the requested file. Both Nodes B and D
are silent because they do not have the requested file. Node A chooses to
retrieve the file with an HTTP GET to Node C. Node C transfers the file using
HTTP.

This approach results in a depth-first comprehensive search of the nodes
within the horizon created by the TTL. If each peer connects to 3 others, the
default TTL of 7 hops creates a horizon including approximately 10,000 nodes.

Traffic analysis

Network traffic resulting from this protocol has been analyzed theoretically and
experimentally. For example, if TTL is set to the default of 7 hops and each node

168 C H A P T E R 6 Peer-to-Peer Content Networks

A

B

C

D

E

Query for foo.mp3

E’s Hit

E’s Hit

C’s Hit
C’s Hit

E’s Hit

GET foo.mp3

foo.mp3

foo.mp3

foo.mp3

Figure 6.6 Gnutella—searching.

Ch06.qxd 1/19/05 11:47 PM Page 168

averages 4 connections to other nodes (C=4), each node forwards each ping to 3
other nodes. This results in:

2 × ∑
i=0

TTL
C × (C−1)i = 2 × ∑

i=0

7
4 × 3i = 26240 messages, including the responses,

resulting from a single ping. The number of messages resulting from a query is
somewhat fewer, because only a few of the nodes reply with a queryhit [AHA02].

On June 1, 2002, a research team from the University of California at
Riverside captured a five-hour-long sample of Gnutella messages. This sample
exceeded 56 million entries. Of these 63% were ping or pong descriptors.
Another 33% were query messages and 4% were queryhit messages. Nearly
two-thirds of the network messages in this sample were simply to discover other
peers. When the query and queryhit messages were analyzed, 19,069,700
query messages resulted in 2,296,800 queryhit messages. Querys outnum-
bered queryhits by more than eight to one [ZYF02].

Another study found that most of the network traffic is caused by free
riders. Free riders do not provide any files to share yet they make up 66% of
Gnutella users. Nearly 37% of all responses are returned by the top 1% of shar-
ing hosts [AHu00].

One study examined the effectiveness of caching popular content within ser-
vents in a Gnutella network. The study concluded that caching does significantly
reduce the amount of traffic seen without using a large amount of memory
[Sri01].

KaZaA

KaZaA (www.kazaa.com) is a proprietary system based on Gnutella that
uses SuperNodes to improve searching and reduce network traffic [MKL+02].
SuperNodes are powerful processors with high bandwidth connections. Peers
connect to their local SuperNodes to upload information about files they are
sharing and to search the network. This creates a hybrid system, intermediate
between the centralized Napster approach and the fully decentralized Gnutella
approach. It has similarities to the DNS system, where peer nodes are arranged
into a hierarchy, and not all peers are created equal.

While this approach reduces network traffic, it still generates substantial
traffic. According to a study done at Cornell University in February 2002, if
everyone on campus turned off the outbound KaZaA traffic, approximately
50% more bandwidth could be freed up for other Internet traffic [Lee03].

6.3.3 Chord

While so much of the world’s attention was focused on Napster, Gnutella, and
their derivatives, several researchers found the quiet time they needed to study
fundamental problems of peer-to-peer networks. Several projects established a
firm theoretical basis for meeting their goals of providing reliable, robust, and
massively scalable peer-to-peer networks.

6.3 Case Studies 169

Ch06.qxd 1/19/05 11:47 PM Page 169

These projects include Pastry [RDr01], Tapestry, CAN [RPH+01], P-Grid
[AHP+02], Random Walker [LCL+02], Farsite [BDE+00], OceanStore
[RWE+01], FreeNet [CMH+02, CSW+01] and Chord [SKB01]. This section will
focus on Chord as an example of these types of document routing systems. The
discussion is more advanced and specialized than previous material in the book.
Readers uninterested in the details of the Chord algorithms may wish to skip
this section.

Chord can comprehensively search the content of a peer-to-peer network in
a bounded number of steps. The complexity of the search grows only as the log-
arithm of the number of nodes in the network [SKB01, LBK02, AHa01].

Figure 6.7 begins to illustrate the Chord search algorithm. The IP address of
each node participating in the network is hashed into a fixed-length binary
string m bits long, called the Node Key. In the example m is chosen as 6, allow-
ing for a total of 26 = 64 nodes. In practice, a much larger value of m is used so
that the 2m possible identifiers are much greater than the number of actual nodes
expected in the network. The result is that most of the possible identifiers are not
used.

The hash is done using the SHA-1 algorithm [FIPS93] and produces a 160-
bit output called a message digest which is the node key. The algorithm results in
a consistent hashing which tends to balance the load because each node receives
roughly the same number of keys [LLP+97].

Similarly a description of each file available for sharing in the network (such
as the title and author) is hashed using the same algorithm. This provides the
Data Keys. Note that the Node Key and the Data Keys are both binary strings
of the same fixed length, so they share the same number space.

The universe of possible node keys can be represented as a circle, with the
key value increasing clockwise. On this circle each node has a successor defined
as the next populated node clockwise around the circle. Mathematically, the suc-
cessor to each populated node is defined as the populated node with the next
higher node key (calculated modulo 2m). Data tables are maintained such that
each populated node knows its successor node.

Each node is also responsible for storing all of the Data Keys that have val-
ues falling within the interval of Node Keys represented by the arc beginning
one past the predecessor node and ending with this node. For the example
shown in Figure 6.7, the predecessor of Node 56 is Node 44. Therefore, Node
56 stores all of the Data Keys that have (hash) values falling between the hash
values for Node Key 45 (one past predecessor Node 44) and Node Key 56.
This is possible because the Data Keys share the same number space as the
Node Keys.

Consider how Node 56 can use this structure to search for a particular file.
Node 56 begins by hashing the file description information into a Data Key. In
this example we will assume the result is a Data Key of 19. The search begins on
the node requesting the search. In this case, Node 56 has the data keys for the
interval 45–56, but not for Node 19. So Node 56 contacts it successor, which is
Node 0. Node 0 does not have the requested key, so it contacts its successor,

170 C H A P T E R 6 Peer-to-Peer Content Networks

Ch06.qxd 1/19/05 11:47 PM Page 170

which is Node 7. This continues until Node 22 is reached. Node 22 has the data
keys for the interval 8–22, which includes Node 19.

Stored with Data Key 19 is additional information needed to retrieve the
requested file. This includes the IP address of the node where it is stored, the file
name, and perhaps other information. This allows Node 56 to directly contact
the node where the actual file is stored, which is probably not Node 22.

This works well in examples where the number of nodes and keys is small.
However, the goal is to handle perhaps billions of files on a network of perhaps
millions of nodes. Clearly this linear and exhaustive search will take too long.
Chord solves this problem by introducing intermediate routing information
called fingers.

Figure 6.8 illustrates the finger table entries from Node 0. To improve
the clarity of the example, Nodes 1, 2, 4, and 8 have also been populated in
this network. Each node stores a finger table with entries pointing to the first

6.3 Case Studies 171

Figure 6.7 Chord search preliminaries.

031

7
22

Node 7 stores all the
Data Keys whose value falls
within the values for
Node Keys 1−7.

Node 0 knows
its successor
is node 7.

Node 22 stores all the
Data Keys whose value falls
within the values for
Node Keys 8−22.

Node 7 knows
its successor is node 22.

56
Node 56 knows
its successor is node 0.

Node 0 stores all the
Data Keys whose value falls
within the values for
Node Keys 57−0.

44
Node 44 knows
its successor is node 56.

Node 56 stores all the
Data Keys whose value falls
within the values for
Node Keys 45−56.

Node Keys are Hash of IP Address
Data Keys are Hash of File Name
Each key is hashed into
fixed length binary strings.

Simple Search Example:
Node 56 seeks Data Key #19
Key not found at Node 56.
Go to Successor(56) = Node 0
Key not found at Node 0
Go to Successor(0) = Node 7
Key not found at Node 7
Go to Successor(7) = Node 22
Node 22 has the Data Key.

Each Populated Node
knows its Successor.

19

M=6 providing 2M=64 unique Node Key identifiers
Some ID slots are populated, most are empty.

Ch06.qxd 1/19/05 11:47 PM Page 171

populated peer that is a successor to each Node Key that is 2i-1 greater than its
own, for i=1, 2, 3 ... m. The finger table for Node 0 is shown in the figure. In this
case, Node 0 stores a finger table with pointers to the nodes that are the popu-
lated successors to 1, 2, 4, 8, 16, and 32. These indices are the numbers in the
“Gap” column of the table. Their successors are Nodes 1, 2, 4, 8, 22, and 44, as listed
in the “Scsr” (Successor) column of the table. The finger table also includes—in
the “Span” column—the key values that pertain to each finger entry. The notation
represents an interval beginning with the Key Value after the square bracket and
ending before the Key Value preceding the closing parenthesis. For example, the
finger pointing to Node 22 is chosen when searching for key values 16 through 31.

What is particularly clever about this choice of finger entries is that it allows
for a binary search of the network. The finger tables have detailed information
for nodes near the present node, but also include entries halfway around the
circle. This allows a rapid binary search of the network.

The search proceeds by selecting the finger entry in the table that spans the
Key Value being searched for. So in searching for key #19, Node 0 would for-
ward the request to Node 22 which has the requested information. The search
converges very rapidly.

172 C H A P T E R 6 Peer-to-Peer Content Networks

031

722

56

44

1

2

4

8

If a fingered node is not populated,
the finger points to the successor.

44[32,1)32

22[16,32)16

8[8,16)8

4[4,8)4

2[2,4)2

1[1,2)1

ScsrSpanGap

Node 0 Finger Table

“Fingers” at each node point
directly to other populated
nodes, allowing a binary search.

Figure 6.8 Chord routing table.

Ch06.qxd 1/19/05 11:47 PM Page 172

Nodes join and depart a dynamic peer-to-peer network any time at random.
This is a normal condition rather than any exceptional condition for such net-
works. Chord plans for these joins and departures and handles them easily. It
preserves two important conditions as nodes join and depart:

● Each node’s successor is correctly maintained, and
● For every key, the successor node to that key is responsible for it.

In addition, the finger tables are adjusted to account for the node addition
or loss. Note that the finger tables are a performance optimization and are not
needed to ensure a correct lookup. Each Chord node maintains a predecessor
pointer to simplify these operations. These important aspects of the protocol are
beyond the scope of this book, but are described fully in [SKB01].

6.4 Business Aspects

The business prospects for peer-to-peer networks remain elusive. It is ironic that
while Napster drew the most popular attention to peer-to-peer networking, it
always used a substantial central directory and re-emerged as a purely client
server network. Nonetheless, several business models are described here, and
more is said in Chapter 9.

6.4.1 Business Models and Commercial Prospects

Let’s follow the money. Bertelsmann poured $85 million into Napster before
Roxio agreed to pay $5 million for Napster’s patent portfolio and other intellec-
tual property [Kin02, Tar00]. The executives at AOL were upset when they
learned that Gnutella was released for free as open source. Chord is a research
project funded by DARPA and the Space and Naval Warfare Systems Center.
How can the potential of peer-to-peer networks lead to a sustainable profit for
a well-run business?

In a sustainable business, users pay for value. In peer-to-peer systems, value
comes from the client software, client hardware, network bandwidth and inter-
connections, search and brokering services, and the authors and publishers of
the content being shared.

In most cases clients purchase the hardware the client software runs on.
They also typically pay an Internet service fee to cover their share of network
bandwidth, interconnections, and access. This is the established client-network
infrastructure that exists independent of peer-to-peer networks, and there is
nothing new here. There are several models that are candidates for capturing
payment for the peer-to-peer elements.

Altruism, including youthful enthusiasm, unfunded projects, ambition,
pride, spite, open source contributions, basic research, freeware, donations,
philanthropy, and wishful thinking got several peer-to-peer projects started.
These include the early days of Napster, Gnutella, and several of the projects

6.4 Business Aspects 173

Ch06.qxd 1/19/05 11:47 PM Page 173

originating in research or special interest communities. But we all need to eat to
live and altruism does not often last long without reciprocation.

Once systems are developed, they may be inexpensive enough to support by
integrated advertising systems. KaZaA offers an advertising supported version of
their client software.

Client software for any number of client applications, including word pro-
cessing, spreadsheets, graphics, databases, personal organizers, money manage-
ment, and entertainment is profitably sold by established software development
and publishing companies. The client software used in peer-to-peer systems can
also be sold to users at a fair price. KaZaA, BearShare, and LimeWire offer this
option as an alternative to their advertiser-supported version. Note that charg-
ing for client software may create a barrier to users deciding to join the system.
This reduces the number of clients, and according to the network effect, it
diminishes the value of the network. To offset this effect, network operators
often give away the clients for free to establish a large network, and then begin
charging later on when the value of the network is established.

It is technologically possible for network providers to charge usage-sensitive
fees for bandwidth and connections. Since popular peer-to-peer systems use sub-
stantial bandwidth, users could be charged their fair share for the resources they con-
sume. Users expect to pay more for broadband access than for dial-up. A T3 data
transmission line costs more than a T1 line because it provides higher bandwidth.

Real estate agents, auction houses, stock brokers, and eBay are all informa-
tion brokers that charge a fee for matching up buyers with sellers. The basic loca-
tion services of peer-to-peer systems perform a similar service. Peer-to-peer
networks could charge for the brokering services they provide. However, this
may require some centralized accounting system.

Authors create value when they create content. Publishers create value when
they bring content to the marketplace. They deserve to be paid fairly for their
work. Authors and publishers get fair pay for their work throughout the creative
industries, including movies, books, television, theatre, art, photography, and
music. Helpful and internationally recognized copyright laws and digital rights
management can potentially turn peer-to-peer networks into a valuable and prof-
itable distribution channel for many types of content. This is especially true when
the content originates from very many sources, rather than from a few large pub-
lishers. However, the lack of a successful business model seems to have prevented
peer-to-peer networks from sustaining profitable commercial operation so far.

6.4.2 Legal Aspects

Copying files between computers is legal.7 Infringing copyrights is illegal. Peer-
to-peer systems have made headlines because they are widely used to share copy-
righted music and video files.

174 C H A P T E R 6 Peer-to-Peer Content Networks

7This section is based primarily on US copyright law and the status of the legal actions RIAA has taken to pro-
tect their current interests as of the time of this writing. Extension of these principles internationally, or into the
future is pure speculation.

Ch06.qxd 1/19/05 11:47 PM Page 174

Peer-to-peer systems fragment the operations and disguise the parties
responsible for the theft, as shown in Figure 6.9.

1. Person A, an artist such as Bruce Springsteen, creates music and gains a
copyright for it, perhaps in partnership with a producer and publisher.

2. Person B, a publisher such as Columbia Records, sells the music on a
Compact Disk.

3. Person C buys a copy of the CD, and
4. Lends it to a friend, D.
5. Person D “rips” a song from the CD and copies it to their computer as

an MP3 file. Now person D can use audio software like Winamp or
Windows Media Player to play the song from his PC.

6. Person D runs a Napster client on his computer and allows the descrip-
tion of the MP3 file to be uploaded, over a network owned by some net-
work operator, to the Napster server. At this point it is likely the “fair
use” provision of the copyright law has been exercised and that no laws
have been broken; however,

7. Now Person E is also a Napster user and requests a copy of the song, the
server identifies Person D as having it, and the song is copied from Person
D to Person E.

6.4 Business Aspects 175

Bruce
Springsteen

Artist Publisher Buyer

Person
C

Borrower Ripper

Uploader

Network
Provider

Napster

Network
Provider

Downloader

Network Provider

Columbia
Records

Person
D

Person
D

Person
E

Person
D

N
o

t
Le

ga
l

Le
ga

l

Figure 6.9 Parties to copyright action.

Ch06.qxd 1/19/05 11:47 PM Page 175

The courts have maintained that the law has now been broken. In fact, it has
been broken by person D who uploaded the file, Napster who brokered the
transaction, and person E who downloaded the file. Removing the central direc-
tory by substituting Gnutella for Napster only makes it harder to prosecute; it
does not change the law.

Copyright law, in section 17 U.S.X. § 106, gives the copyright holder several
important rights. The first and most important is the right to “reproduce the
copyrighted work in copies of phonorecords.” This law goes on to define
“copies” in a broad, detailed, and forward-looking way [Vich1, Copy00].

The defense of computer-network aided music file sharing relies on several
provisions of the copyright laws. The defense argues:

● Napster is a “service provider” and is protected by provisions of the
Digital Millennium Copyright Act.

● The MP3 files are not copies of the original music.
● Napster is a recording device and is protected by laws that allow manu-

facture, importation, or distribution of digital audio recording devices.
● The “Fair Use” of copyrighted material allows for noncommercial

recording by consumers.

The courts have ruled against these arguments [RIAA].
The Digital Millennium Copyright Act [DMCA98] limits the liability of

service providers for the intermediate transmitting, routing, or connection of
material that they do not originate or terminate. The case of A&M Records Inc.
v. Napster Inc. ruled this did not protect Napster.

Ripping music to an MP3 file significantly changes the file format and
slightly changes the audio quality. The case UMG Recordings, Inc. v. MP3.COM,
Inc. ruled that this transformed file is a copy of the original and is protected by
the copyright law, despite these differences.

The Audio Home Recording Act (A.H.R.A.) bars infringements based solely
on “the manufacture, importation, or distribution of a digital audio recording
device.” This law resulted from the case of Sony Corporation of America v.
Universal Studios Inc., which ruled that manufacturing and selling a VCR is
legal, even though the manufacturer knows the product can be used to infringe
copyright [SAM04]. The court held the manufacture and distribution of record-
ing devices does not constitute infringement so long as it “is capable of sub-
stantial non-infringing uses.” The Napster-type provider finds no help in either
the A.H.R.A. or Sony, because Napster is not a “recording device.”

The A.H.R.A. provides protection for noncommercial recording by con-
sumers. This is the so-called “fair use” provision of the copyright laws. The users
of a Napster-type service, it is argued, are not covered by this protection because
their use cannot be considered noncommercial. First, each of the many recipi-
ents8 of the MP3 file are receiving, for free, a product which ordinarily they

176 C H A P T E R 6 Peer-to-Peer Content Networks

8While copying songs from your friend’s CD is probably covered under “fair use” and is legal, the Napster net-
work allowed copying on a huge scale. It is argued that this large scale copying exceeds “fair use.”

Ch06.qxd 1/19/05 11:47 PM Page 176

would have to purchase. The courts held that “The global scale of Napster usage
and the fact that users avoid paying for songs that otherwise would not be free
militates against a determination that sampling by Napster users constitutes per-
sonal or home use in the traditional sense.” This also applies to the individual
who gives her MP3 files away on Napster. This person is not merely taking an
album they purchased and giving it away to someone, which would be perfectly
legitimate. What she is doing is effectively making millions of copies of the
music and giving those copies away.

It is also argued that the user’s transaction does not fall under the “fair use”
exception. There are four factors to be considered in determining whether copy-
ing is fair use. These four factors are: (1) the purpose and character of the use,
including whether the use is of a commercial nature or is for nonprofit educa-
tional purposes; (2) the nature of the copyrighted work; (3) the amount and sub-
stantiality of the portion used in relation to the copyrighted work as a whole;
and (4) the effect of the use upon the potential market for or value of the copy-
righted work.

Napster was determined not fair use because: (1) The downloaded files are
used commercially because users obtain songs for free rather than purchase
them; (2) The entire song is typically downloaded; and (3) record company sales
have declined as a result9 [Fine 1].

In short, the participants in Napster-type transactions were found guilty of
copyright infringement.

The move to decentralized Gnutella-type architectures has not yet stopped
the RIAA’s court actions. They settled with the parents of a 12-year-old who was
accused of sharing more than 1,000 copyrighted songs on KaZaA [Dea03]. In a
recent dispute with Verizon, the courts found that the RIAA can’t subpoena
Internet providers for subscribers’ personal information without going through
the court system [Phi03]. In response RIAA began proceedings against 532 peo-
ple, identified only as “John Doe” and their IP address, alleged to be violating
copyright laws [Dea04].

6.4 Business Aspects 177

9Keep in mind that correlation does not prove causality. Although the sales did decline, it is not proven that
Napster was the cause.

Ch06.qxd 1/19/05 11:47 PM Page 177

Ch06.qxd 1/19/05 11:47 PM Page 178

C H A P T E R 7

Interactive Content Delivery—
Instant Messaging

179

Conversations are interactive. Spoken dialogs, whether face-to-face or over a
telephone system, benefit from a characteristic known to psychologists as inter-
actional coherence. This refers to the expectation that speakers take turns and
their comments “belong together” with each turn intended as a timely response
or follow-up to a previous turn. Speakers’ comments relate to the particular dis-
cussion topic, and changing topics is well managed by the speakers. The greater
the time lag between speakers’ turns, the more difficult it becomes to identify
what comment each response relates to.

So far the book has described content flowing primarily one-way, from a
content producer responding to a request by a consumer. This request-response
model is not truly interactive. Even in peer-to-peer systems the roles of con-
sumer and producer remain largely fixed throughout a session. In contrast,
instant messaging is real-time, interactive content delivery. Users alternate roles
rapidly taking turns as content consumer and content creator. The resulting
communication is a bidirectional and symmetrical dialog. The users benefit from
the interactional coherence of the sessions.

Research on spoken conversations highlights the importance of simultane-
ous feedback on signaling when to listen, the effective timing of taking turns,
and maintaining a continuous interaction. Spoken conversation approaches the
ideal model of precisely alternating turns. Here, the transition from one speaker
to the next occurs quickly, without an undue gap or interruption. The speakers
alternate roles taking turns speaking and listening.

Although text-only interactive systems provide users less feedback than
face-to-face meetings, well-designed interactive systems can achieve interac-
tional coherence, and also allow types of language play that are not common in
face-to-face interactions [Her99].

Interactive systems engage users in ways that are impossible with communi-
cations requiring a significant time lag, such as letter writing or even e-mail.
Interactive systems often rely on the rapid exchange of short messages.

Ch07.qxd 01/19/2005 01:04 PM Page 179

Short messaging has a rather long history.
On September 2, 1837, Samuel Morse sent a telegraph message over a distance

of 1,700 feet. Encouraged by the potential of transmitting messages over longer
distances, in 1843 the U.S. Congress approved $30,000 for Morse to build a tele-
graph line from Washington, D.C., to Baltimore, Maryland. On May 24, 1844,
Morse sat in the Supreme Court chamber of the Capitol and sent the first official
telegraph message: “What hath God wrought!” Not long afterward brokers on
Wall Street used the telegraph to gain quick access to important financial infor-
mation, such as the current price of gold. In 1867, the New York Stock Exchange
introduced stock tickers—telegraph devices that reported the purchase and sale of
stocks. The effects of short messages quickly became far reaching [Bro04].

On May 10, 1869, a crowd gathered at Promontory Summit near Brigham
City, Utah, to witness the completion of the world’s first transcontinental rail-
road. The event was distinguished by setting the Golden Spike—joining the
western span of the railroad built by Central Pacific Company to the eastern
span built by the Union Pacific Company. People gathered in telegraph offices
around the country to hear news of the event. A telegraph wire was attached to
the Golden Spike and another to the sledgehammer. Closing this circuit would
send a single bit of information to many telegraph offices around the country
and signal completion of this cross-country gateway. Leland Stanford swung the
hammer and hit the rail, missing the spike. The telegraph operator quickly
closed the circuit, and then transmitted the short message “Done,” and the era
of transcontinental railroad travel began [Amb00].

On March 10, 1876, Alexander Graham Bell spoke the first words over a
telephone. He was about to test a new transmitter. In another room, his assistant
Thomas A. Watson waited for the test message. Suddenly, Bell spilled some acid
from a battery onto his clothes. He cried out “Mr. Watson, come here. I want
you!” Watson heard every word clearly and rushed into the room, and this short
message began the era of interactive telecommunication that continues today
[Brod04].

On December 14, 1903, when Wilbur and Orville Wright sent a telegraph to
their parents, the short message “. . . success assured keep quiet” foretold
manned flight [Dem03, Jay03].

In 1921, the Detroit Police Department started alerting its officers simply by
transmitting a signal that made a portable device beep. In 1959 Motorola intro-
duced the term “Pager” to refer to a small radio receiver that delivered a radio
message individually to those carrying the pager device. The first pager, as we are
familiar with them today, was Motorola’s Pageboy I, introduced in 1974. It had
no display and could not store messages, but it was portable and notified the
wearer that a pager message had been sent [CEA1].

By 1980, there were 3.2 million pager users worldwide. Pagers had a limited
range, and were used in on-site situations such as by medical workers within a
hospital. By 1990, wide-area paging was practical and over 22 million pagers were
in use. By 1994, pagers became popular for personal use and 61 million were in

180 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 180

service. Short messages came a long way and were immediately connecting mil-
lions of people [Page].

Most of these short messages were not interactive, but by mid 2002 more
than 140 million registered users were exchanging messages on the AOL instant
messaging system [Woo02].

This chapter begins by defining instant messaging and exploring various
types of collaboration. It then introduces a reference model for instant messag-
ing and presence and describes some basic requirements for such systems.
Standard IETF models for presence and instant messaging are described.
Various Internet-based instant messaging and presence systems are described in
detail. These include SIMPLE, based on SIP, and XMPP, based on Jabber. The
presence, pager mode, and message mode approaches of the SIMPLE standard
are each described. SIMPLE and XMPP are briefly compared. Popular IM sys-
tems, including AOL Instant Messenger, MSN Messenger, and Yahoo!
Messenger are introduced. Finally, the wireless Short Messaging System (SMS),
and the Multimedia Messaging Service (MMS) are briefly introduced and
convergence of interactive content delivery systems is discussed.

7.1 Instant Messaging Defined

Instant messaging is real-time, interactive content delivery.1 IM encourages col-
laboration and engages participants in ways that one-way, delayed, asynchro-
nous communications like e-mail cannot. It can provide immediate feedback and
allows true dialog, not a serial monologue.

Collaboration can take many forms, and the IETF created a standard refer-
ence model to describe it.

7.1.1 Collaboration

Face-to-face dialog is the prototype for collaboration. Dialog is a cooperative
exchange of ideas, information, questions, or opinions between peers. It is char-
acterized by timely and symmetrical exchange of short messages communicating
the interaction among the participants. The participants are present and focus
their attention on the dialog. Dialog includes both primary (e.g., verbal or text-
based semantics) and supplementary (e.g., non-verbal or other expressions of
status and mood) information related to the semantics of the discussion, the
nature of the relationship, and the emotions of the participants.

Figure 7.1 illustrates various forms of collaboration that comprise interac-
tive content delivery. A simple dialog between two people is shown in A. They
may be separated by some distance and use an instant messaging service to

7.1 Instant Messaging Defined 181

1IM is most often associated with text-based messaging. Voice messaging is typically referred to as VoIP,
and multimedia messaging is typically referred to as MMS. This chapter describes text-based and multimedia
messaging, including voice.

Ch07.qxd 01/19/2005 01:04 PM Page 181

communicate with each other. It is also possible for a human to communicate
with an intelligent agent or database, as shown in B. Here an instant messaging
system allows the human to exchange information with the agent rather than
with another person. In the spirit of interaction and fun, the agent may simulate
natural language and a playful personality. The agent may be a simple database
responding to queries, or it may be an expert system or game. The expert system
poses questions or provides guidance based on the semantics of the dialog to
help solve a problem or entertain the human peer. Several people may join in a
chat session as shown in C. Here each person sees or hears the contribution of
each session participant. The people may participate in the conversation using a
variety of client devices. These may be IM clients on personal computers, wire-
less instant messaging devices, PDA-based clients, or cell phones using text mes-
saging, text-to-voice, or picture messaging. The chat participants may also be
engaged in a multi-player game. Instant messaging can be used as the human
interface to telemetry; monitoring and controlling remote equipment; or con-
trolling semi-autonomous robots, such as unmanned rovers, aircraft, and space
craft as illustrated in D.

182 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Chat

A B

C

D

Figure 7.1 Collaboration.

Ch07.qxd 01/19/2005 01:04 PM Page 182

7.1.2 A Reference Model

RFC 2778 presents an abstract model for a presence and instant messaging system.
This model describes a very general and universal system, and does not prescribe
any particular implementation. The model introduces vocabulary that is useful in
discussing various approaches and implementations of presence and instant mes-
saging systems. The basic components of the model are shown in Figure 7.2.

People must be present before they can interact by sending messages; there-
fore presence information is important for interactive messaging. Presence
information can be useful alone, without messaging; it can send the simple but
often reassuring message “I am here.” Also, messages can be sent while the
receiving principal (e.g., person) is absent. In this case the message waits for the
principal to return and read it. To accommodate these loosely coupled depen-
dencies, the model describes the presence service independent of the instant mes-
saging service. The figure shows these systems related through principals that
make use of the two systems simultaneously.

To help make this abstract model more concrete, we will use an example of
two friends communicating over the AOL instant messaging system (AIM).
Here, each of the friends is a principal in the system.

7.1 Instant Messaging Defined 183

Visibility Rules

Presence Service

Instant Message Service

Presence Information
Presence Tuple

Status: Open, Closed
Communication Address

Communication Means: IM
Contact Address:

Instant Inbox Address

Presence Tuple
. . .

Principal BPrincipal A

Presence Protocol

Instant Message
Protocol

Delivery Rules

Instant Message

Access Rules

Other Presence Markup

Presentity Watcher

Presence UA Watcher UA

Sender Instant Inbox

Sender UA Inbox UA

Figure 7.2 Presence and IM model.

Ch07.qxd 01/19/2005 01:04 PM Page 183

The principal is the system user and may refer to a human, a group of people
working together, or a program that appears to the system as a single actor. Each
principal accesses the service through user agents. There are four such agents
shown in the figure, labeled Presence UA, Watcher UA, Sender UA, and Inbox
UA. These user agents are often combined into instant messaging clients such as
AIM, Microsoft Windows Messenger, Yahoo! Messenger, and the many others
mentioned throughout this chapter.

The presence service accepts, stores, and distributes presence information.
The instant messaging service accepts and delivers instant messages to instant
inboxes. Instant messages are typically defined as small identifiable units of
data. As we will see, the model extends to include audio and video conferencing
and other modes of interaction.

The presence service has two distinct sets of clients, called the presentity and
the watcher. The authors of RFC 2778 graciously apologize for coining the term
presentity. It refers to the entity (e.g., principal) that is having its presence
watched and reported. The presentity provides the presence information that the
service stores and distributes. The watchers receive the presence information
from the service.

AIM clients display presence information. The icons in the buddy list illus-
trate who is online and who is not. Friend A (the watcher) can easily see if his
Friend B (the presentity) is online or not. The system is symmetrical so Friend
B can watch the presence status of Friend A. The presentity is separate from the
principal in the model because while the presentity represents the principal it is
not actually the principal. For example, a person can be present at their PC and
have their presence status represent them as offline.

Although it is not shown in the figure, there are two kinds of watchers,
called fetchers and subscribers. A fetcher requests the current presence infor-
mation; however, a subscriber is sent notifications of changes in presence
information. A fetcher that periodically requests presence information is called
a poller.

The presence information is formed from a number of presence tuples. Each
tuple includes status information, the communication address, and other
optional presence markup information. The status can be either open, repre-
senting an instant inbox that is ready to accept messages, or closed, representing
an instant inbox that is unable to accept messages. The communication address
consists of a communication means, which can have the value of instant messag-
ing service, and a contact address. The contact address provides the address of an
instant inbox of an instant messaging service.

A presence protocol carries presence information between the presentities,
the presence service, and the watchers.

Similarly, the instant messaging service has two types of clients. A sender
provides instant messages for delivery by the instant messaging service. Each
message is addressed to a particular instant inbox address, and the service
attempts to deliver the message to the corresponding instant inbox.

184 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 184

An instant message protocol carries instant messages from the sender
through the service to the instant inbox.

AIM clients allow sending and receiving instant messages. When Friend A
acts as the sender he types an instant message that gets sent using an instant
messaging protocol to Friend B who receives it in his instant inbox.

The model includes several features designed to protect principals’ privacy.
Access rules determine how presence information is made available to watchers.
This allows presentities to hide their presence information from some or all
watchers. Visibility rules similarly determine how watcher information is made
available. They allow watcher information to be hidden from some or all watch-
ers. Together, these rules are important to prevent unwanted stalking which
refers to using presence information to infer the location of the principal.
Delivery rules allow the receiving principal to decide how instant messages are
filtered from the instant inbox.

RFC 2779 uses this model to recommend general requirements for instant
messaging and presence protocols. These requirements include the following:

1. Support for mobile wireless access devices with low bandwidth, high
latency, intermittent connections, modest computing power, battery
constraints, and small displays and keyboards.

2. The presence service can exist independent of the messaging service, and
vice versa.

3. The namespace can be partitioned into an arbitrary number of domains.
4. The entities in one domain can interoperate with entities in other

domains.
5. The system can scale to serve millions of entities within a single domain,

and millions of domains within a single namespace.
6. A watcher can subscribe to hundreds of presentities, and hundreds of

subscribers can watch a single presentity.
7. Access controls provide principals with control over who sees presence

information and who can send or read instant messages.
8. The network topology supports intermediate proxies and allows or dis-

allows communication through commonly deployed firewalls.
9. The protocol supports encryption and authentication of instant mes-

sages.
10. Presence information must be accessible even when a presentity is out of

contact.
11. The protocol must allow presence information to be cached, updated,

and replicated.
12. Instant messages must identify the sender and the intended recipient,

and include a return address.
13. Instant message transport must be rapid enough to allow for comfort-

able conversational exchanges of short messages.
14. Delivery or non-delivery of a message is reported to the sender.

7.1 Instant Messaging Defined 185

Ch07.qxd 01/19/2005 01:04 PM Page 185

7.2 Internet-Based Instant Messaging

Not long ago, the IETF had three separate working groups dedicated to
Internet-based instant messaging. Two of those groups have successfully fin-
ished their charter and are no longer active. The result of their work is crystal-
lized in the form of several RFCs and is finding deployment in today’s instant
messaging systems. The first concluded working group is the Instant Messaging
and Presence Protocol (IMPP) Working Group, which has defined a general
model for IM. Its work on presence data formats and interoperable instant mes-
sage formats has been adopted by two other IM-related working groups,
namely SIMPLE and XMPP. SIMPLE, which is short for SIP for Instant
Messaging and Presence Leveraging, is defining use of the Session Initiation
Protocol (SIP) for instant messaging. The Extensible Messaging and Presence
Protocol (XMPP) protocol is based largely on the previously implemented
Jabber systems. The results of each of these groups are described below. The
many popular instant messaging systems that use proprietary protocols are also
described.

7.2.1 Presence and IM Protocols

To progress from the abstract reference models described in Section 7.1.2 toward
architecture and protocols, the Instant Messaging and Presence Protocol
(IMPP) Working Group of the IETF has provided several Internet RFCs. These
include the Common Profile for Presence (CPP) [RFC 3859], the Presence
Information Data Format (PIDF) [RFC 3863], and Common Profile for instant
messaging (CPIM) [RFC 3860]. Each of these is briefly described below. The
relationship of these protocols is illustrated in Figure 7.3.

Common profile for presence

The Common Profile for Presence (CPP) specification defines common seman-
tics and data formats for presence so that gateways between presence services
can be built. This includes the semantics of subscribe, response, and notify
operations. CPP also introduces the presentity URI (pres URI) to uniquely iden-
tify presentities and watchers. An example of a pres URI is pres:fred@
example.com.

The subscribe operation is a request from a watcher to a presence service to
subscribe to the presence information of a particular presentity. The subscribe
request includes the watcher, target, duration, subscription identifier, and trans-
action identifier, each described below.

● Watcher—the watcher requesting the subscription, identified by a pres
URI, such as pres:watcher@example.com

● Target—the presentity to be watched, identified by a pres URI

186 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 186

● Duration—the maximum number of seconds that the subscription
should be active. This is set to zero to implement a one time “fetcher”
request rather than to establish a subscription.

● Subscription Identifier (SubscriptID)—a unique reference to this sub-
scription instance, used to unsubscribe

● Transaction Identifier (TransID)—a unique identifier used to correlate
the subscribe operation with the response operation

When a presence service receives a subscribe operation, it immediately responds
with a response operation. This includes the status, TransID, and duration:

● Status—indicates if the subscription request succeeded or failed
● TransID—the same transaction identifier used in the subscription

request
● Duration—the number of seconds for which the subscription service will

be active. This may differ from the value in the subscription request.

If the response operation indicates success, the service immediately sends a
notify operation to communicate the presence information to the watcher. The
notify operation includes the watcher, target, and TransID. The values of
watcher and target are identical to those given in the subscribe operation that

7.2 Internet-Based Instant Messaging 187

Presence
Service A

Presence
Service B

Instant
Messaging
Service A

Instant
Messaging
Service B

CPP–Common Profile for Presence

• subscribe, response, and notify operations
• Pres URI pres:fred@example.com

<presence>
<status>
open, closed
<contact>
. . .

PIDF – Presence Information Data Format
Type = application/pidf+xml

CPIM–Common Profile for Instant Messaging

Content-type: Message/CPIM
(message-metadata-headers)
(encapsulated MIME message-body)

• message and response operations

CPIM Message Format

• IM URI im:fred@example.com

Figure 7.3 Presence and IM protocols.

Ch07.qxd 01/19/2005 01:04 PM Page 187

triggered this notify operation. The TransID is a unique identifier for this
notification.

The notify operation also has content, namely presence information. This
presence information supports the Presence Information Data Format,
described below.

The presence information data format

The Presence Information Data Format specification defines the format
(PIDF) used for expressing presence information. This is a specification for an
XML-based common presence data format and a set of operations and param-
eters to achieve interoperability between different instant messaging and pres-
ence protocols that meet RFC 2779. It defines the new content type
application/pidf+xml for an XML MIME [MIME] entity that contains
presence information.

PIDF is a common presence data format for CPP-compliant presence pro-
tocols that allows presence information to be transferred unmodified across
CPP-compliant protocol boundaries. This provides benefits for both security
and performance.

PIDF defines the base presence format and extensibility required by RFC
2779. It defines a minimal set of presence status values defined by the IMPP
Model document [RFC 2778]. However, a presence application is able to define
its own status values using the extensibility framework provided by PIDF.

Readers unfamiliar with XML may wish to read the Appendix before con-
tinuing. Briefly, XML provides type identifiers for data elements. Each type
identifier begins with the name of the type in angle brackets (e.g., <type>) and
ends with the same type name preceded by a slash (e.g., </type>). The informa-
tion delimited by such a pair is called an element. Elements are often nested. XML
also allows namespaces to be defined for particular applications. The XML
namespace impp is defined for PIDF with the corresponding URN of
urn:ietf:params:xml:pidf.

The presence information is contained in an application/pidf+xml-
type document. The specific XML identifiers for each element are included here
with the name and description of each element:

● Presence element <presence>, which is the root element of every pres-
ence document. It includes the entity identifying the pres URI of the
presentity and the namespace declaration xmlns indicating the name-
space on which the presence document is based.

● List of Presence Tuples <tuple> including
●● Identifier: token to identify this tuple within the presence information.
●● Status <status>—the <basic> value open indicating the person

is accepting messages or closed to indicate absence, and/or some
extension status value.

●● Communication Address: the Communication Means and Contact
Address <contact> of this tuple. This is the URL of the contact

188 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 188

address. This is optional because the presentity may wish to hide its
communication address, or there might be tuples not related to
any communication means. This element can also include the
optional field, Relative Priority, providing a numerical value specifying
the priority of this Communication Address relative to other addresses
for this presentity.

●● Timestamp <timestamp>—the date and time of the status change
of this tuple (optional)

●● Human Readable Comment <note>—a free text memo about this
tuple (optional)

● Presentity Human Readable Comment <note>—a free text memo about
the presentity (optional)

Here is a simple PIDF presence data example using a default XML namespace:

<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:pidf"

entity="pres:someone@example.com">
<tuple id="sg89ae">

<status>
<basic>open</basic>

</status>
<contact priority="0.8">tel:+ 09012345678</contact>

</tuple>
</presence>

This declares that the presentity someone@example.com is open to receive
messages at her telephone number +09012345678 with a contact priority
of 0.8.

Common profile for instant messaging

Analogous to the common profile for presence, the common profile for instant
messaging provides a means for preserving the end-to-end features (especially
security) as messages pass through instant messaging interoperability gateways.
The specification also provides recommendations for instant messaging docu-
ment formats that can be employed by instant messaging protocols.

CPIM specifies the semantics of two operations. Applications use the mes-
sage operation to send a message to an instant inbox. The message service
responds using the response operation.

The message request includes the source, destination, maximum number of
forwards, the transaction identifier, and content as follows:

● Source—the originator of the instant message, identified by an instant
messaging URI. An IM URI is similar to a pres URI, for example:
im:fred@example.com

● Destination—the destination of the instant message, identified by an
instant messaging URI

7.2 Internet-Based Instant Messaging 189

Ch07.qxd 01/19/2005 01:04 PM Page 189

● Maximum number of forwards (MaxForwards)—a hop counter used to
avoid loops through gateways. The count is decremented by each IM
gateway and the message is discarded if the count reaches zero.

● Transaction Identifier (TransID)—a unique identifier used to correlate
the message operation with the response operation

● Content—the instant message itself. As a minimum, the service must
support the mime type Message/CPIM format described below.

When the service receives a message operation, it immediately replies with a
response operation. This includes the TransID, and status:

● TransID—the same transaction identifier used in the message operation
● Status—an indication of whether the message delivery succeeded or

failed. Status values are “success,” “failure,” or “indeterminant” if the
service is acting as gateway or proxy.

CPIM message format

The Common Profile for instant messaging (CPIM) described above specifies
the operations required for interworking diverse instant messaging protocols.
The intent is to allow a variety of different protocols interworking through gate-
ways to support cross-protocol messaging that meets the requirements of RFC
2779 as previously described in Section 7.1.2.

Meeting the security requirements of RFC 2779 requires a common message
format so that end-to-end signatures and encryption may be applied. The com-
mon profile for instant messaging describes a common message format that must
be used by any CPIM-compliant message transfer protocol. This allows signa-
tures to be calculated for end-to-end security.

Existing formats, such as those specified in RFC 2822 and [MIME] have sev-
eral shortcomings for this application. For example:

● Optional encodings and a variety of ways to encode a particular
value lead to variability that can invalidate an end-to-end security sig-
nature.

● Use of 7-bit ASCII in the header causes problems for encoding interna-
tional character sets.

● Changes to header information can invalidate the security signature.

The mime type Message/CPIM is defined to overcome these problems.
A Message/CPIM object has multiple parts where the first part contains

the message metadata and the second part is the message content. The two parts
are separated by a blank line, to keep the message header information separate
from the MIME message content headers.

The complete message looks something like this:

190 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 190

The end of the message body is defined by the framing mechanism of the
transport protocol used.

Here is a simple example, adapted from RFC 3862, of a complete message
employing MIME security features described in RFC 1847:

7.2.2 SIMPLE

The Session Initiation Protocol (SIP) [RFC 3261] is an application-layer control
and signaling protocol for creating, modifying, and terminating sessions with

7.2 Internet-Based Instant Messaging 191

Content-type: Message/CPIM

(message-metadata-headers)

(encapsulated MIME message-body)

Message Header

MIME Overall Header

Encapsulated MIME

Blank Line

Blank Line

Content-Type: multipart/signed; boundary=next;

micalg=sha1;

protocol=application/pkcs7-signature

--next

Content-Type: Message/CPIM

From: MR SANDERS <im:piglet@100akerwood.com>
To: Dopey Donkey <im:eeyore@100akerwood.com>
DateTime: 2000-12-13T13:40:00-08:00
Subject: the weather will be fine today

Content-type: text/xml; charset=utf-8

Content-ID: <1234567890@foo.com>

<body>

Here is the text of my message.

</body>

--next

Content-Type: application/pkcs7-signature

(signature stuff)

:

--next

MIME Overall Header

MIME Security Wrapper

Encapsulated MIME

Blank Line

Blank Line

Message Header

MIME Security Wrapper

Ch07.qxd 01/19/2005 01:04 PM Page 191

one or more participants. Here a session is considered an exchange of data
between some number of participants. These sessions may be voice phone calls
that take place over the Internet (VoIP), multimedia distribution, multimedia
conferences, or many other types of sessions.

An IETF working group is defining extensions to the SIP protocol [RFC
3261] for instant messaging and presence. The group is named SIMPLE, short
for SIP—for Instant Messaging and Presence Leveraging [SIMPLE]. It might
seem odd to extend a signaling and control protocol to carry actual bearer data
in form of instant messages. But SIP features used to initiate a session have a lot
in common with the needs of instant messaging and presence services, such as
those described in Section 7.2.1. This commonality makes it a good choice for
extending to these applications.

A complete description of SIP is beyond the scope of this book, and is
unnecessary for understanding the work of the SIMPLE group. To provide an
introduction to SIP and provide the background needed to understand its use in
presence and instant messaging, the next section describes a few basic elements
of SIP.

The SIP protocol is used to invite users to participate in sessions. The sig-
naling messages sent by the protocol are called invitations, and they carry session
descriptions that allow the invited participants to agree on a set of compatible
media types, such as audio or video, and the specific encoding used. SIP uses
network elements called SIP proxy servers to help route requests to each user’s
current location. These proxies also play a role in authenticating users, author-
izing them to use services, implementing call-routing policies, and providing fea-
tures. SIP also provides a registration function that allows users to announce
their current locations to the system. SIP runs on top of a variety of transport
protocols, notably TCP and UDP.

During or between sessions the participants may move between endpoints. The
participants may be addressable by several means, corresponding to fixed voice
phones, mobile phones, computer-based softphones or other terminals, and they
may communicate using several different media. SIP enables Internet endpoints,
called user agents, to discover one another and to agree on session characteristics
that will best allow them to communicate. SIP is independent of the underlying
transport protocol, the type of media, or the type of session that is being established.

SIP supports five facets of establishing, managing, and terminating multi-
media sessions:

1. User location—determining the address of the end system used for the
communication

2. User availability—presence—determining the user’s willingness to partic-
ipate in a session at this time and place

3. User capabilities—determining the media types and characteristics the
user can support

4. Session setup—ringing—altering users and establishing session parame-
ters at both the calling and called party

192 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 192

5. Session management—transfer and termination of sessions, modifying
session parameters, and invoking services

SIP is based on an HTTP-like request-response transaction model. Like
HTTP, SIP consists of a request that invokes a particular method on the server
to carry out a particular function. The INVITE method is illustrated in the
example in Figure 7.4. Later we will introduce the REGISTER method and then
the SUBSCRIBE and NOTIFY methods and illustrate their use in a presence
server.

Figure 7.4 illustrates a simple example of a SIP message exchange between
two users, named Alice and Bob. Here Alice uses a SIP application running on
her PC (called a softphone) to call Bob on his SIP phone over the Internet. Two
SIP proxies, atlanta.com and biloxi.com, are used to help establish the session.
This typical arrangement is called a SIP Trapezoid because of the shape formed
by the dotted line connections between these four elements. The session follows
these steps:

1. Just as a caller rings your voice phone to invite you to join the conver-
sation, Alice invites Bob to join her in a session. She addresses him using
his SIP identifier, analogous to the pres URI, called a SIP URI. In this
example it is sip:bob@biloxi.com, where biloxi.com is the domain

7.2 Internet-Based Instant Messaging 193

INVITE

ACK

INVITE

100 Trying
100 Trying

180 Ringing

200 OK

200 OK

200 OK
11

8

3

1 2
4

6

9

5

7

10

12

BYE
13

OK
14

INVITE

Alice’s
Softphone

Bob’s
SIP Phone

atlanta.com
proxy

biloxi.com
proxy

180 Ringing

180 Ringing

Media Session (independent of SIP)

Figure 7.4 SIP session setup.

Ch07.qxd 01/19/2005 01:04 PM Page 193

of Bob’s SIP service provider. The annotated text of this message is
shown in Figure 7.5. Alice’s softphone sends the invitation to the local
SIP proxy at atlanta.com. It is interesting to note that Alice addresses
Bob himself (in form of the SIP URI), rather than the device Bob will
use to communicate with Alice. This is different from the traditional
telephony world, where users dial the number of a particular phone
rather than a number that identifies the actual user.

2. The atlanta.com proxy receives the INVITE message. It consults a loca-
tion database and determines the IP address of the biloxi.com SIP
proxy, and forwards the INVITE request to the biloxi.com proxy.

3. Upon receipt of the INVITE, the atlanta.com proxy sends a code
100 Trying message to Alice’s softphone using the same To, From,
Call-ID, CSeq, and branch parameter as the INVITE. This allows
Alice’s softphone to correlate this Trying response with the original
INVITE message sent and indicates the original INVITE message was
received, and has been forwarded.

4. The biloxi.com proxy receives the INVITE and consults a location ser-
vice database to obtain the IP address of the device at which Bob can be

194 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

(Alice's Session Descriptor Protocol (SDP) text not shown)

Alice’s display
name and SIP URI

INVITE Method

Decremented on
each SIP proxy
hop Bob’s SIP URI Protocol

Identifier
Unique Transaction
Identifier

Address to respond to the sender

Identifying Tag

Command Sequence, incremented for each new dialog request.

A SIP URI providing a direct route to
contact Alice, without requiring proxy
services.

This message is a 142 character long Session
Descriptor Protocol. SDP is described more fully in
a later section and shown in Figure 7.9.

The type of message content

Globally
Unique Call
Identifier

Bob’s display name
and SIP URI

Figure 7.5 SIP invite message.

Ch07.qxd 01/19/2005 01:04 PM Page 194

reached. It then forwards the INVITE to Bob’s SIP phone. Bob’s SIP
phone receives the INVITE and alerts Bob to the incoming call, perhaps
by ringing.

5. The biloxi.com proxy responds to the INVITE with a 100 Trying mes-
sage to the atlanta.com proxy.

6. Bob’s phone responds with a 180 Ringing message to the biloxi.com
proxy, using a path based on the updated VIA field parameters.

7. This 180 Ringing message is forwarded to the atlanta.com proxy
where

8. It is forwarded to Alice’s softphone, and it can be used to initiate ring-
back to the caller.

9. Bob decides to answer the call. He picks up the handset and his SIP
phone sends a 200(OK) response to indicate the call has been
answered. The body of this OK message includes a SDP media descrip-
tion of the type of session Bob is willing to establish with Alice.

10. The 200(OK) is forwarded to the atlanta.com proxy.
11. The 200(OK) response is forwarded to Alice’s softphone, which stops

the ringback tone and indicates that the call has been answered.
12. Finally, Alice’s softphone sends an ACK (acknowledgment) message

directly to Bob’s SIP phone, without involving any SIP proxies. The
media session can now begin communicating directly between the two
endpoints. The media session proceeds.

13. Bob decides to terminate the call and hangs up his phone which sends a
BYE to Alice.

14. Alice responds with an OK and the session is terminated.

Although this example is of a very simple call setup, the SIP protocol
accommodates much more complex situations including session parameter
negotiation, security, conferencing, etc.

One might wonder how the correct IP address of Bob’s device gets into the
database that is used in step 4 of the above example. After all, users are mobile
and can roam about different locations using different devices. How does the
network learn about devices that can be used to reach a certain user? Figure 7.6
provides the answer by illustrating the registration method of the SIP protocol.
Here Alice has three separate phones that she uses in SIP sessions at various
times. Upon initialization, and then periodically, each of her phones sends
REGISTER messages to the SIP registration server. The registration server is
addressed within the atlanta.com domain and it may or may not be co-resident
or co-located with the atlanta.com SIP proxy. Each REGISTER message associ-
ates the IP address of her phone with her SIP URI. This association between a
SIP URI and an IP address is stored by the Location Server, and is accessible by
the SIP proxy. Alice may have a single SIP URI, in which case, the most recent
phone to be activated will be bound to that URI; or she may have several SIP
URIs, allowing her to maintain the association between each SIP URI and a
particular device. The signaling protocol also allows for serial or parallel forking
where her several devices can be alerted sequentially or simultaneously.

7.2 Internet-Based Instant Messaging 195

Ch07.qxd 01/19/2005 01:04 PM Page 195

In the next section we will see how particular SIP methods are used to
implement a presence service.

Presence

SIP is well suited as a presence protocol. As we saw in the previous section, the
SIP location services contain presence information in the form of registrations.
Also, SIP networks can route requests to the registration server having the infor-
mation for any particular user. This ability allows SIP networks to be reused to
provide connectivity for presence subscriptions and notifications.

RFC 3265 and the presence event package for the session protocol [RFC
3856] combine to define the SIP SUBSCRIBE and NOTIFY methods. As
defined by the presence event package, these methods allow SIP to be used for
subscriptions and presence notifications. This system complies with the com-
mon presence profile (CPP) framework described previously and can inter-
work with other CPP compliant presence systems. The scheme is illustrated in
Figure 7.7.

Key to the operation of this event package is the newly defined presence
agent. The presence agent accepts subscriptions, stores subscription state, and
generates notifications when there are changes in the presence information. The

196 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Alice’s
Softphone
IP = 12.34.56.78 Bob’s

SIP Phone

atlanta.com
proxy

biloxi.com
proxy

Registration
Server

Location Server

Alice’s Mobile
SIP Phone
IP = 34.56.78.91

Alice’s Wireless
PDA

SIP URI IP Address
sip:alice@atlanta.com 12.34.56.78
sip:alicem@atlanta.com 34.56.78.91

REGISTER

REGISTER

REGISTER

Figure 7.6 SIP registration and location servers.

Ch07.qxd 01/19/2005 01:04 PM Page 196

presence agent must know the presence state of each presentity within its scope.
A presence agent is always addressable by using a SIP URI that uniquely iden-
tifies the presentity. There can be multiple presence agents for a particular pre-
sentity. The presence agent is a logical entity that can reside within the physical
presence server, or within the presence user agent, or elsewhere. It is shown in the
figure as a dotted box, to highlight this flexibility. The presence server is shown
as a host computer to emphasize that it is a physical entity.

Figure 7.7 illustrates the actions involved in subscribing and receiving pres-
ence information. Each step is described below:

1. When a subscriber (watcher) wants to learn about the presence informa-
tion from some user (a presentity) it creates a SUBSCRIBE request. This
request identifies the presentity using a SIP URI, a SIPS URI, [RFC
3261] or a presence URI. More will be said about this choice later. The
SUBSCRIBE request is carried along by SIP proxies, as any other SIP
request. It arrives at a presence server which forwards it to the presence
agent serving the identified presentity. If the presence server hosts the
presence agent, this connection is trivial. If the presence agent is hosted

7.2 Internet-Based Instant Messaging 197

SIP Proxies

SUBSCRIBE

200 OK

NOTIFY + PIDF

200 OK

NOTIFY + PIDF

200 OK

Presence Status
Changes

Presence Server

Presence Status

Presence
Agent

1

2

3

4

5

6

Watcher
(Subscriber) Presence UA

Figure 7.7 SIMPLE presence events.

Ch07.qxd 01/19/2005 01:04 PM Page 197

elsewhere, then the presence server proxies the request to the physical
host of the presence agent. The presence agent first authenticates the
subscription, and then authorizes it. The methods used for this authenti-
cation and authorization are not specified by the protocol, and can take
many forms. Authentication and authorization by the presence agent is
mandatory.

2. If authorized by the presence agent, a 200 OK response is returned.
3. A NOTIFY message is also sent immediately. This message contains pres-

ence information in PIDF format, as described earlier. As a minimum,
this contains the presentity state of either open or closed.

4. The watcher acknowledges receipt of the NOTIFY message with a 200
OK.

5. At some later time the presentity state may change. Presence status
changes are communicated, outside this protocol, from the presence user
agent to the presence agent. In response to this status change, the pres-
ence agent uses a NOTIFY method to send updated presence information
in a PIDF message.

6. The watcher acknowledges receipt of the NOTIFY message with a 200
OK.

Subscribed watchers will receive additional NOTIFY alerts informing them
of subsequent changes in presence information.

The subscription persists for a length of time negotiated in the original
request through use of the EXPIRES field in the SUBSCRIBE and OK messages.
The subscriber can refresh or terminate the subscription by sending subsequent
SUBSCRIBE requests at any time. The presence agent can also terminate
the subscription at any time by sending a NOTIFY request with the
Subscription-State header field set to terminated. A SUBSCRIBE
request with EXPIRES set to zero results in a one-time fetch of the information.

It is common for a user to have both a SIP URI and a presence URI to iden-
tify them. This raises questions about how to use these different identifiers and
how they relate. Using the presence URI has the advantage of supporting inter-
operability through gateways to other CPP-compliant systems. It has the disad-
vantage of requiring resolution to a SIP URI within this network. The SIMPLE
working group addresses this issue in RFC 3861.

The interested reader may wish to study many more protocol details that are
described in the protocol documents RFC 3265 and RFC 3856.

As Figure 7.2 illustrates, a presence server is only one half of the solution.
It needs to be accompanied by an instant messaging service to be complete.
The SIMPLE working group describes two solutions for implementing an
instant messaging service. The pager mode is intended for exchanging a small
number of short messages without the overhead of establishing a SIP dialog.
The message mode, in contrast, is intended for exchanging longer messages
and first establishes a SIP dialog. These two approaches are described in the
following sections.

198 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 198

Pager mode

RFC 3428 introduces the MESSAGE method, which is an extension to SIP that
allows the transfer of instant messages. MESSAGE requests normally carry the
instant message content in the message body, in the form of MIME body parts.

Using this method each message stands alone, and no SIP dialog is created
by the messages. This is similar to using a two-way pager or SMS text messag-
ing, described more fully in Section 7.3. This approach is most sensible when a
small number of short messages are sent to one or only a few recipients over a
short period of time. This is contrasted with the message mode approach,
described in the next section.

A SIP dialog is a peer-to-peer SIP relationship that persists for some time
between two user agents (UAs). A dialog is established by SIP messages, such as
a 2xx response to an INVITE request. A call identifier identifies a dialog, local
tag, and a remote tag. A dialog was previously known as a call leg in RFC 2543.
Each message in a dialog is routed over the same network path. The MESSAGE
method does not establish a SIP dialog and avoids this routing constraint.

SIP also defines the User Agent Client (UAC) and User Agent Server
(UAS). A user agent client is a logical entity that creates a new request, and then
uses the client transaction state machinery to send it. A user agent server is a log-
ical entity that generates a response to a SIP request. The response accepts,
rejects, or redirects the request.

Figure 7.8 illustrates use of the MESSAGE method. The UAC acts as the
Sender UA in the instant message model illustrated in Figure 7.2.

1. The UAC for the principal Alice begins the session by sending a MESSAGE
method to the local SIP proxy. An instant inbox is most generally identi-
fied by an instant message URI, for example im:user@domain.com. To
allow routing through the SIP network, the UAC resolves this into a SIP
URI which appears in the Request-URI of the message request before it is
sent. In this case it is sip:Bob@domain.com. The actual message,
“Watson, come here.” is transmitted as MIME type text/plain with a
length of 18 characters. The message can be any MIME type, including
message/cpim, as described in Section 7.2.1. In most cases, the message
is restricted to a maximum of 1300 bytes.

2. The proxy receives the request and recognizes itself as the server for
domain.com. It looks up Bob in its location database (which has been built
up from registrations) and finds a binding from sip:Bob@domain.com
to a specific client with the address sip:Bob@Bobpc.domain.com. It
forwards the request to Bob, which is the UAS acting as the instant inbox.
The message “Watson, come here” is received by Bob, and displayed.

3. An OK response is generated by the UAS and sent back to the proxy. Note
that most of the header fields are simply reflected in the response.

4. The proxy receives this OK response, strips off the top VIA, and forwards
it to the address in the next VIA, which is Alicepc.domain.com in this

7.2 Internet-Based Instant Messaging 199

Ch07.qxd 01/19/2005 01:04 PM Page 199

case. The UAC receives this OK response, and is assured the message has
been delivered.

Message mode

While the pager mode described above is useful and efficient for sending a small
number of short messages, an effective approach to establishing longer dialogs of
more complex messages is also desirable. The SIMPLE approach to providing this
message mode is to use the Session Description Protocol (SDP) over SIP to describe
the session, and then use the Message Session Relay Protocol (MSRP) over TCP to
transmit the series of messages. This protocol stack is illustrated in Figure 7.9.

The Session Description Protocol [RFC 2327] is described before describing
the Message Session Relay Protocol [CMJ04].

The Session Description Protocol is intended to describe multimedia ses-
sions for the purpose of the session announcement, session invitation, and other
forms of session initiation. The protocol was developed prior to its application
in instant messaging and is used to describe sessions in a variety of environ-
ments, including establishing voice phone calls. The purpose of SDP is to

200 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

SIP proxy
domain.com

MESSAGE sip:Bob@domain.com SIP/2.0
Via: SIP/2.0/TCP Alicepc.domain.com;branch=…
Max-Forwards: 70
From: sip:Alice@domain.com;tag=49583
To: sip:Bob@domain.com
Call-ID: asd88asd77a@1.2.3.4
CSeq: 1 MESSAGE
Content-Type: text/plain
Content-Length: 18

Watson, come here.

MESSAGE sip:Bob@domain.com SIP/2.0
Via: SIP/2.0/TCP proxy.domain.com;branch=…
Via: SIP/2.0/TCP Alicepc.domain.com;branch=…;

received=1.2.3.4
Max-Forwards: 69
From: sip:Alice@domain.com;tag=49394
To: sip:Bob@domain.com
Call-ID: asd88asd77a@1.2.3.4
CSeq: 1 MESSAGE
Content-Type: text/plain
Content-Length: 18

Watson, come here.

SIP/2.0 200 OK
Via: SIP/2.0/TCP proxy.domain.com;branch=…;

received=192.0.2.1
Via: SIP/2.0/TCP Alicepc.domain.com;;branchv =…;

received=1.2.3.4
From: sip:Alice@domain.com;tag=49394
To: sip:Bob@domain.com;tag=ab8asdasd9
Call-ID: asd88asd77a@1.2.3.4
CSeq: 1 MESSAGE
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/TCP Alicepc.domain.com;branch =…;

received=1.2.3.4
From: sip:Alice@domain.com;;tag=49394
To: sip:Bob@domain.com;tag=ab8asdasd9
Call-ID: asd88asd77a@1.2.3.4
CSeq: 1 MESSAGE
Content-Length: 0

Alice Bob

1
2

4
3

Sender UA
(UAC)

Inbox UA
(UAS)

Figure 7.8 SIMPLE message method.

Ch07.qxd 01/19/2005 01:04 PM Page 200

announce information about media streams in multimedia sessions with enough
detail to allow interested parties to participate in the session. SDP is purely a for-
mat for describing a session and it can be used over a variety of transport pro-
tocols. We focus on its use over SIP.

SDP includes this information:

● the session name and purpose,
● times the session is active, such as start and stop times, or periodically

recurring times, such as every Wednesday at 10 a.m.,
● the media used for the session, including:

●● the type of media, such as video, audio, text, etc.,
●● the transport protocol being used. Although SDP allows for a wide

range of protocols, including RTP, H.320, and others, we will focus
on its use with MSRP over TCP, and

●● the format of the media, such as H.261 video, MPEG video, audio,
and others.

7.2 Internet-Based Instant Messaging 201

Figure 7.10 SDP example.

Network Layer

Transport Layer

Application Layer
SDP

SIP

TCP

IP

MSRP

Figure 7.9 Message mode protocol layers.

v=0

s=

c=IN IP4 alicepc.example.com

t=0 0

m=message 9 msrp/tcp *

a=accept-types:text/plain

a=path:msrp://alicepc.example.com:7777/iau39;tcp

o=alice 2890844557 2890844559 IN IP4 alicepc.example.com

1

2

3

4

5

6

7

8

Ch07.qxd 01/19/2005 01:04 PM Page 201

● communications information needed to receive those media, including
network addresses, ports, formats, etc., and

● optional information about bandwidth used and contact information for
the session sponsor.

An SDP session description consists of several lines of text, each having
the form <type>=<value>. The <type> field is always a single character.
Figure 7.10 shows an example SDP message used to establish an MSRP session
initiated by Alice. Each line is described below.

1. Type v specifies the protocol version; in this case it is version 0.
2. Type o specifies the originator, owner, or creator of the session. It includes:

● the username of alice,
● the unique session identifier. Here an NTP-formatted time

stamp is used, but other unique identifiers can be chosen.
● the version of this session announcement. Again an NTP time

stamp was used.
● the network type is IN, indicating the Internet,
● the address type is IP4, indicating Internet Protocol, version 4,

and
● the network address, which is the hostname alicepc.example.

com, which can be resolved by the DNS to an actual IP address.
3. Type s specifies the session name, which is left empty in this example.
4. Type c is an optional field specifying the connection information. It

includes:
● the network type of IN, indicating the Internet,
● the address type of IP4, indicating Internet Protocol, version 4,

and
● the connection address set to alicepc.example.com

5. Type t specifies the time the session starts and stops. Setting the session
start and stop times both to zero, as in this example, establishes a perma-
nent session.

6. Type m specifies media announcement. It includes:
● the media type, which must be message when using MSRP,
● the port number, which is not used by MSRP but is set to 9 in this

example. The actual port used is determined by the session URL
which is explained later as part of MSRP,

● the transport protocol, which is MSRP over TCP in this example,
and

● the fmt lists describing the allowed media formats, which are typ-
ically specified as a media payload type. In MSRP this field is ignored
and is set to * in the example.

7. Type a is an attribute, used to extend SDP. Here the first attribute defines
the MIME body types accepted. In this case it is plain text.

8. The second attribute describes the path with a particular temporary,
session-specific MSRP URL.

202 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 202

Although this example shows only one particular use of SDP, the full pro-
tocol specification allows for powerful and flexible expression of session types.
This enables rich instant messaging sessions, which may include audio and video
components, text, graphics, and file transfers.

The MSRP protocol is being developed to provide message sessions. These
can offer advantages over pager-mode messages. For example, any pager-mode
message exchange that involves more than two MESSAGE requests will generate
more SIP requests than the minimal MSRP session initiation sequence. Also,
once the session is INITIATED, the session-mode messages never cross the SIP
proxies themselves. Any SIP feature that can be applied to other types of media
sessions can also apply to MSRP sessions. This includes conferencing, third-party
call control, call transfer, quality of service integration, and privacy. The MSRP
protocol is currently described by a rapidly evolving series of Internet Drafts. The
following description is based on the most recent Internet Draft available at press
time. Updates are expected and must be consulted for current information.

In contrast to the pager-mode MESSAGE, MSRP transactions do establish a
SIP dialog.

MSRP uses the following two methods:

● SEND, which is used to deliver a complete message or a chunk (a portion
of a complete message), and

● REPORT, which sends a report on the status of an earlier SEND request.

Each endpoint in an MSRP session is identified by a URL. This URL is
used with the SIP INVITE method and specifies the host address, port, trans-
port, and security protection level. After inviting2 a new SIP session, the sender
creates a unique transaction identifier and uses this and the SEND method to cre-
ate an MSRP request start line and begin a new request. Next, the sender places
the target path in a To-Path header, and the sender’s URL in a From-Path
header. An MSRP transaction consists of exactly one request and one response.
The response matches the request if they are bracketed by the same transaction
identifier and arrive on the same connection the request was sent.

Figure 7.10 shows an example MSRP session. Here Alice is a principal and
her softphone is used as a Sender UA in the terminology of Figure 7.2 and as a
sender in the terminology of MSRP. Bob is another principal and his SIP phone
is an Inbox UA in the terminology of Figure 7.2 and as a receiver in the termi-
nology of MSRP. In this session pure SIP messages are intermingled with
MSRP messages. Several of the SIP messages carry payloads in SDP format.

Each message shown in Figure 7.11 is described here in more detail:

1. Alice constructs a local URL of msrp://alicepc.example.com:7777/ iau39;
tcp, and then sends it through the SIP proxies using SDP embedded in a
SIP INVITE message. She then begins to listen on TCP port 7777. The

7.2 Internet-Based Instant Messaging 203

2Traditionally when using a voice phone the invitation rings the called party phone and the conversation does
not begin until the called party answers the phone. In contrast, most IM systems send the first text message
simultaneously with the alert. MSPR implementations should support both modes of operation.

Ch07.qxd 01/19/2005 01:04 PM Page 203

session is described using SDP and corresponds to the SDP example
described above and shown in Figure 7.10. The actual message sent is:

INVITE sip:bob@example.com

v=0
o=alice 2890844557 2890844559 IN IP4 alicepc.

example.com

s=

c=IN IP4 alicepc.example.com

t=0 0

m=message 9 msrp *

a=accept-types:text/plain

a=path:msrp://alicepc.example.com:7777/iau39;tcp

2. Bob listens on TCP port 8888
3. Bob sends a SIP OK, and includes the negotiated SDP parameters

v=0

o=bob 2890844612 2890844616 IN IP4 bob.example.com

s=

c=IN IP4 bob.example.com

204 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

(SDP/SIP) INVITE sip:bob@example.com

(SIP) ACK

Bob Listens on port 8888

Alice’s
Softphone:
Sender UA,
Sender

Bob’s
SIP Phone:
Inbox UA,
Receiver

example.com
proxy

(SDP/SIP) 200 OK

MSRP d93kswow SEND

MSRP d93kswow 200 OK

MSRP dkei38sd SEND

MSRP dkei38sd 200 OK

(SIP) BYE

(SIP) 200 OK

alicepc.example.com bob.example.com

2

3

4

5

6

7

8

9

10

1

Figure 7.11 MSRP session example.

Ch07.qxd 01/19/2005 01:04 PM Page 204

t=0 0

m=message 9 msrp *

a=accept-types:text/plain

a=path:msrp://bob.example.com:8888/9di4ea;tcp

4. Alice replies with a SIP ACK. This is analogous to step 12 in Figure 7.4.
The endpoints are now ready to begin a media session.

5. Alice opens a connection to Bob and uses the MSRP SEND method to
transmit the first text message to Bob. The To-path identifies the target
path and the From-Path includes the sender’s URL. The message being
sent is “Hi, I’m Alice!” A transaction identifier of d93kswow is included
at the start and end of the message and the MIME content type is plain
text. The message text is:

MSRP d93kswow SEND

To-Path:msrp://bob.example.com:8888/9di4ea;tcp

From-Path:msrp://alicepc.example.com:7777/iau39;tcp

Message-ID: 12339sdqwer

Content-Type:text/plain

Hi, I’m Alice!

d93kswow$

6. Bob acknowledges receipt with an MSRP OK message, bracketed by the
transaction identifier. The message text is:

MSRP d93kswow 200 OK

To-Path:msrp://bob.example.com:8888/9di4ea;tcp

From-Path:msrp://alicepc.example.com:7777/iau39;tcp

d93kswow$

7. Now Bob sends text to Alice using the MSRP SEND method. His mes-
sage is “Hi Alice! I’m Bob!” bracketed by the transaction identifier. The
message text is:

MSRP dkei38sd SEND

To-Path:msrp://alice.example.com:7777/iau39;tcp

From-Path:msrp://bob.example.com:8888/9di4ea;tcp

Message-ID: 456

Content-Type:text/plain

Hi, Alice! I’m Bob!

dkei38sd$

8. Alice acknowledges receipt with an MSRP OK message bracketed by the
transaction identifier. The message text is:

MSRP dkei38sd 200 OK

To-Path:msrp://alice.example.com:7777/iau39;tcp

7.2 Internet-Based Instant Messaging 205

Ch07.qxd 01/19/2005 01:04 PM Page 205

From-Path:msrp://bob.example.com:8888/9di4ea;tcp

dkei38sd$

9. Alice sends a SIP BYE to terminate the dialog.
10. Bob responds with a SIP 200 OK and terminates the session.

This example begins to illustrate the advantages of the MSRP protocol men-
tioned in the beginning of this section. Fewer SIP requests are needed, the prox-
ies have dropped out of the path, session parameters are managed, and richer
communications are possible using a variety of media types.

7.2.3 Jabber and XMPP

Readers who find SIMPLE too complex may be interested in Jabber and
the Extensible Messaging and Presence Protocol (XMPP) protocol it has led to.

Most of the core aspects of the Extensible Messaging and Presence Protocol
were developed originally within the Jabber open-source community in 1999. In
2001, the Jabber Software Foundation (www.jabber.org) was formed to manage
extensions to that protocol in the form of Jabber enhancement proposals. In late
2002, the IETF formed the XMPP working group with the mission of adapting
the base Jabber protocol as an IETF-approved instant messaging and presence
technology. The Working Group recently concluded its work after publishing
four RFCs.

XMPP core features

RFC 3920 defines the core features of the Extensible Messaging and Presence
Protocol (XMPP), an open protocol for streaming Extensible Markup
Language (XML) elements to exchange structured information in near real time
between any two network endpoints. While XMPP provides a generalized, exten-
sible framework for exchanging XML data, it is used mainly for the purpose of
building instant messaging and presence applications that meet the requirements
of RFC 2779, as described in Section 7.1.2.

The standards documents defining XMPP consistently use examples from
Shakespeare’s play, Romeo and Juliet. We retain this playful context to simplify
reference to the original standards documents.

The basic elements of the XMPP network architecture are shown in Figure
7.12. Basic elements of the architecture include clients, servers, the Jabber
Identifier, and gateways to foreign networks.

The network relies on servers to manage connections and sessions for clients,
servers, and gateways. The figure shows two servers, named example.com and
example.net. These servers route XML elements, organized into stanzas and
streams, over TCP among the network elements. These servers also usually store
persistent data, such as contact lists, used by clients. Servers typically intercom-
municate using TCP on port 5269.

Clients typically connect directly to a server over a TCP connection on port
5222. The figure shows six clients, with three belonging to the ever popular
Juliet, and one each to Romeo, Mercutio, and Benvolio.

206 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 206

Each network endpoint is identified with a Jabber Identifier, called a JID. JIDs
identify instant message users, servers, and the particular client device, called a
resource. JIDs can also be used to identify a service, such as a particular chat room.
They have the general form of user@host/resource. In the example, Juliet is
a principal who has three JIDs—each one corresponding to one of her three client
devices. Her home PC client is identified by juliet@example.com/home, her
mobile phone is juliet@example.com/cell and her personal digital assistant
is juliet@example.com/pda. She can be reached at any of these devices
through the server named example.com.

A gateway is a special-purpose service whose primary function is to translate
XMPP into the protocol used by a non-XMPP messaging system on a foreign net-
work, as well as to translate the return data back into XMPP. Examples are gateways
to Internet Relay Chat (IRC), Short Message Service (SMS), SIMPLE, SMTP, and
legacy instant messaging networks such as AIM, ICQ, MSN Messenger, and Yahoo!
Instant Messenger. The mapping between XMPP and CPIM is described in RFC
3922. This and other gateway issues are outside the scope of this book.

XML-based communications in XMPP

Communication takes place in the form of XML elements exchanged over TCP
between network elements. These XML elements are organized into streams and
stanzas.

7.2 Internet-Based Instant Messaging 207

Server 1
example.com

Server 2
example.net

Juliet’s
PC Client

Juliet’s Mobile
Phone Client

Juliet’s Wireless
PDA Client

Romeo’s
PC Client

Mercutio’s
PC Client

Benvolio’s
PC Client

benvolio@example.net

juliet@example.com/home

juliet@example.com/cell

juliet@example.com/pda

mercutio@example.com

Gateway

romeo@example.net

Foreign
Network

Figure 7.12 XMPP network architecture.

Ch07.qxd 01/19/2005 01:04 PM Page 207

An XML stream is a container for exchanging XML elements between any
two network entities and it corresponds to an ongoing session. The stream
extends from an initiating client or server to a receiving entity (usually a server),
and corresponds to the initiating entity’s session with the receiving entity. The
XML stream begins with an opening XML <stream> tag (with appropriate
attributes and namespace declarations), and ends with a closing XML
</stream> tag. An XML stream is unidirectional. To enable bidirectional
information exchange, the initiating entity and receiving entity must establish
one stream in each direction (the initial stream and the response stream), nor-
mally over the same TCP connection.

An XML stanza is a unit of information that is sent from one entity to
another over an XML stream; it can be sent completely within a single session.
There are only three defined XML stanzas—<presence/>, <message/>,
and <iq/>.

Table 7-1 introduces each of the three stanzas and illustrates the relationship
of stanzas to streams.

A basic XMPP instant message session

With these basic concepts introduced, Figure 7.13 illustrates a basic instant mes-
sage session, involving the following exchanges:

1. Juliet wants to begin a session. She initiates a <stream> toward her
XMPP server by opening a TCP connection and sending the request
to example.com. The <stream> request includes the to address of
the server, the XML Namespace used by clients called jabber:
client and the XML Namespace reserved for streams called

208 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Table 7-1 An XMPP stream

<stream> Open a stream in one direction with a to or from JID, and optional
session identifier, type, language attribute, and protocol version.

<presence> Publish the initiating client presence status information contained in the
<show/> <show> element. Broadcast this information to all subscribed clients,

</presence> unless a to attribute identifies a single recipient.

<message to='foo'> Send the message in the <body> element to the entity identified by
<body/> the to attribute. In this case send the message to foo.

</message>

<iq to='bar'> This Info/Query stanza provides a request-response mechanism. This is
<query/> used to get a result, set data to a particular value, or report an error.

</iq> In this example a particular roster is requested by the <query> element.

. . . A stream may contain any number of stanzas and remains open indefinitely.

</stream> The stream is closed and the session is ended.

Ch07.qxd 01/19/2005 01:04 PM Page 208

http://etherx.jabber.org/streams. It also announces sup-
port for XMPP version 1.0.

2. Her server responds by opening a stream toward Juliet. This specifies the
from attribute as the server JID of example.com, and includes an arbi-
trary session id of someid. It also includes the namespace and version
declarations.

3. The adventuresome Juliet sends a <message> to Romeo. She sends the
<message> stanza over the connection to her local server example.com.
She includes her JID in the from field and his JID in the to field. She
also indicates that the text is in the natural language English by specify-
ing xml:lang='en'. She encloses the text of the message “Art thou not
Romeo, and a Montague?” inside the <body> element of the stanza.
Juliet’s server forwards the stanza to Romeo’s server, example.net, which
forwards it to his client romeo@example.net.

4. The enamored Romeo responds with his own <message> stanza to his
local server, example.net. He includes his JID as the from address
and her JID as the to address, and again notes the text is in English. His

7.2 Internet-Based Instant Messaging 209

Server 1
example.com

Server 2
example.net

Juliet’s
PC Client

Romeo’s
PC Client

romeo@example.netjuliet@example.com

<?xml version='1.0'?>
<stream:stream to='example.com'

xmlns='jabber:client'
xmlns:stream='http://etherx.jabber.org/streams'
version='1.0'>

<?xml version='1.0'?>
<stream:stream from='example.com'id='someid'

xmlns='jabber:client'
xmlns:stream='http://etherx.jabber.org/streams'
version='1.0'>

<message from='juliet@example.com'
to='romeo@example.net'
xml:lang='en'>

<body>Art thou not Romeo,and a Montague?</body>
</message>

<message from='romeo@example.net'
to='juliet@example.com'
xml:lang='en'>

<body>Neither, fair saint, if either thee dislike.</body>
</message>

</stream:stream>

</stream:stream>

1

2

3

4

5

6

Figure 7.13 A basic XMPP session.

Ch07.qxd 01/19/2005 01:04 PM Page 209

artful message is “Neither, fair saint, if either thee dislike.” and is
enclosed inside the <body> element of the stanza. His server forwards
the message to example.com which sends it to Juliet’s client Juliet@
example.com.

5. Wary of curious onlookers, Juliet terminates the stream and closes the
session by sending </stream:stream> to her local server.

6. Her local server responds with </stream:stream> to her client, and
terminates the stream.

XMPP contact list management

XMPP allows users to manage contact lists, called rosters. These are similar to
the buddy lists of various legacy IM systems. A user’s roster is stored on the
server and can be accessed by the client from any resource.

Rosters are managed by <iq> stanzas using the <query> child element.
Here is a simple example of a client request for roster_1 sent from Juliet’s PC
client, directed to her server example.com:

<iq from='juliet@example.com/home' type='get'
id='roster_1'>
<query xmlns='jabber:iq:roster'/>

</iq>

Her server’s response may look like the stanza shown below, where each of her
three contacts are identified by the JID, name, and subscription status within an
<item> element, and is assigned to the group Friend by the <group> element:

<iq to='juliet@example.com/home' type='result'
id='roster_1'>
<query xmlns='jabber:iq:roster'>
<item jid='romeo@example.net'

name='Romeo'
subscription='both'>

<group>Friends</group>
</item>
<item jid='mercutio@example.org'

name='Mercutio'
subscription='from'>

<group>Friends</group>
</item>
<item jid='benvolio@example.org'
name='Benvolio'
subscription='both'>
<group>Friends</group>

</item>
</query>
</iq>

210 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 210

XMPP provides blocking lists to control message or presence contact from
particular users or lists of users. This implements the access rules, visibility rules,
and delivery rules shown in Figure 7.2. These blocking lists are managed using
the <iq> stanza in a way that is somewhat similar to managing rosters. Among
other parameters, the <item> element can contain child elements to specify
granular control over the types of stanzas to be blocked. The allowable child ele-
ments are:

● <message/>—blocks incoming message stanzas,
● <iq/>—blocks incoming IQ stanzas,
● <presence-in/>—blocks incoming presence notifications, and
● <presence-out/>—blocks outgoing presence notifications.

XMPP includes several security features. These include use over the
Transport Layer Security (TLS) protocol [RFC 2246] and incorporation of the
Simple Authentication and Security Layer (SASL) [RFC 2222]. When these
services are used, the protocol stack looks like Figure 7.14.

This layering is sensible because TCP is the base connection layer used by all
of the protocols stacked on top of it. TLS is often provided at the operating
system layer, SASL is often provided at the application layer, and XMPP is the
application itself.

This concludes the discussion of instant messaging services of XMPP, and
we will move on to discuss presence services.

XMPP presence services

Presence stanzas are used in XMPP to implement presence services. The
<presence> stanza includes attributes for type, and child elements of
<show/>, <status/>, and <priority/>, described below [RFC 3921].

The <type> attribute describes the client’s presence status. If it is omitted,
the client is signaling to the server that it is online and available for communica-
tion. Otherwise, it can be set to anyone of these values:

7.2 Internet-Based Instant Messaging 211

Application Layer

Transport Layer

XMPP

SASL

TLS

TCP

Figure 7.14 XMPP protocol stack.

Ch07.qxd 01/19/2005 01:04 PM Page 211

● unavailable—signals that the entity is no longer available for com-
munication,

● subscribe—the sender wishes to subscribe to the recipient’s presence
information,

● subscribed—the sender has allowed the recipient to receive their
presence information,

● unsubscribe—a notification that an entity is unsubscribing from
another entity’s presence,

● unsubscribed—a previously granted subscription has been cancelled
or the subscription request has been denied,

● probe—a server’s request for an entity’s current presence, and
● error—an error has occurred regarding processing or delivery of a pre-

viously sent presence stanza.

The protocol describes how to use these parameters to exchange presence
information with a single user (called a directed presence); probe for presence
information; broadcast the information to all subscribers; and establish, man-
age, deny, and terminate subscriptions.

The optional <show/> element supplements the presence information
within the type attribute. If it is used, it takes on one of these values:

● away—the entity or resource is temporarily away,
● chat—the entity or resource is actively interested in chatting,
● xa—eXtended Away—the entity or resource is away for an extended

period, and
● dnd—Do Not Disturb—the entity or resource is busy.

If no <show/> element is provided, the entity is assumed to be online and
available.

The values of the <show/> element are not designed to be read by humans.
Instead, the <status/> element contains text, such as “busy in a meeting now”
that can be displayed and read by humans. Finally the <priority/> element
can be used to guide stanza routing to preferred resources.

Here is a simple example, incorporating many of the allowed elements, indi-
cating that although Romeo is available for communications, he prefers not to be
disturbed because he is wooing Juliet:

<presence xml:lang=‘en’>
<show>dnd</show>
<status>Wooing Juliet</status>
<priority>1</priority>

</presence>

Because of the large number of different implementations based on the
Jabber protocols, it is difficult to estimate the number of users. However,
Peter Saint-Andre (Executive Director of the Jabber Software Foundation)
estimates that there are at least 7–10 million end users of various jabber
deployments.

212 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 212

7.2.4 Comparison of SIMPLE and XMPP

The debate comparing the benefits and limitations of SIMPLE and XMPP rages
on [Moo03]. Although we hesitate to add fuel to that fire, the two approaches
can be compared based on their compliance with the requirements of RFC
2779, their ease of implementation, their efficiency, deployment experience, flex-
ibility, and feature richness.

Although these two working groups have taken two different approaches to
similar end goals, it is interesting that they were both chartered by the IETF. The
SIMPLE group was chartered on March 12, 2001, and the XMPP group was
chartered more than a year later on November 6, 2002, long after the first Jabber
systems were available in open source. Apparently the IETF did not want to pre-
judge which approach would be more useful, so they allowed the work to pro-
ceed in parallel. Eventually, technical, business, and popular forces will
determine the long-term future of each approach.

The charters for both the SIMPLE and the XMPP IETF working groups
both include goals for compliance with the requirements of RFC 2779 and RFC
3860, the CPIM specification. The SIMPLE charter expresses a clear goal to
comply with each while the XMPP charter says they will be consistent as much
as is practical. The XMPP group has recently completed work on RFC 3922
having the descriptive title “Mapping the Extensible Messaging and Presence
Protocol (XMPP) to Common Presence and Instant Messaging (CPIM)” and
describing the detailed mapping and extent of compliance. The SIMPLE group
is beginning similar work.

Section 4.1.10 of RFC 2779 states that the common message format should
be based on the IETF-standard MIME. SIMPLE uses MIME for its messages,
while XMPP relies on XML.

Implementations of Jabber clients and servers have been freely available
since 1999. There are thousands of Jabber server deployments on the Internet
today, and millions of people use Jabber clients for instant messaging. With the
recent publication of the RFCs defining XMPP, many of these implementa-
tions are moving to support for the XMPP standard. Jabber is used for text
conferencing of IETF meetings and working group discussions [XMPP1].
SIMPLE clients do not have as long a usage history, although they have the
backing of IBM, Microsoft, and AVAYA [Moo03, Sau04]. SIMPLE relies on
SIP networks.

The pager-mode of SIMPLE requires a minimum of five SIP messages
through SIP proxies to deliver an instant message less than 1300 characters long.
However, the message mode allows peer-to-peer media sessions to be estab-
lished. These sessions may involve text, graphics, file transfer, audio, and video.
The XMPP protocol provides excellent support for text messages, but does not
now support richer multi-media sessions.

In summary, SIMPLE is an up-and-coming system for sharing presence
information, sending a few short messages, or establishing a richer interactive
media session. XMPP is a well thought-out up-and-running system for exchang-
ing text messages and presence information.

7.2 Internet-Based Instant Messaging 213

Ch07.qxd 01/19/2005 01:04 PM Page 213

While the standards battle rages on, millions of people from all walks of life
use instant messaging to gossip with friends, keep in touch with extended family,
and sometimes even exchange important information with coworkers. The next
section describes these popular systems.

7.2.5 Popular Systems

Internet relay chat began in Finland in late August 1988, and instant messaging
got an important boost [Oika]. In May 1993 RFC 1459 published a standard
description of the system. The IRC protocol is a text-based protocol, with the
simplest client being any socket program capable of connecting to the server.
IRC itself is a teleconferencing system based on a distributed system client
server model. A typical setup involves a server forming a central point for clients
(or other servers) to connect to, performing the required message delivery/mul-
tiplexing and other functions. Connections are typically TCP/IP.

In 1997 AOL introduced AIM (AOL Instant Messenger), which allowed its
members to talk with non-members for the first time.

A small Israeli company, named Mirabilis had 12 million registered users of its
free instant messaging software ICQ (I seek you) when AOL purchased the com-
pany in June, 1998 for approximately $287 million. By February 1999 the number
of users grew to 27 million and AOL was ready to showcase its newest service,
called ICQ99 to those ICQ users [Atn99]. Instant messaging quickly became a
household word. By late in the year 2000 AIM claimed to have 80 million registered
users and this grew to more than 140 million registered users by mid 2002 [Gre00,
Woo02].

AIM and ICQ use a proprietary client server protocol called OSCAR. It is
officially unpublished, but is documented in an unofficial protocol specification
[Fri00]. The protocol has changed and expanded since this analysis and publi-
cation.

The proprietary nature of these instant messaging clients quickly causes a
network effect, as described in Section 6.1.4. Users of one proprietary IM
system cannot communicate with users on other systems. The value of the
AIM network grows as the number of users grows. In January 2001, AIM had
grown so large that as a condition of approving their merger with Time
Warner, the FCC restricted AIM from offering advanced instant messaging
features, including videoconferencing, largely because of its dominant market
share [MH03].

Microsoft and Yahoo! did not stand idly by while the AIM network grew in
size and value. They each launched their own services. Microsoft introduced
MSN Messenger in late July 1999 and Yahoo introduced Yahoo! Messenger.
When MSN Messenger was launched it could interoperate with AIM. AOL
immediately responded by changing its protocols, and Microsoft adapted to the
change. The interoperability wars between AOL and Microsoft continued
through 1999 when Microsoft finally retreated [DPT03]. Microsoft distributes

214 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 214

their closely related Windows Messenger product with their Windows XP oper-
ating system.

Although they had virtually zero market share at launch MSN Messenger
grew to 23.1 million unique users and Yahoo messenger reached 19 million
unique users by March 2003. By then AIM had dropped to 31.9 million users
and ICQ had 28.3 million. The FCC lifted its ban on AIM advanced features
[MH03]. Now each of these systems offers voice and videoconferencing in addi-
tion to text messaging.

Cerulean studios (www.ceruleanstudios.com) offers their Trillian client to
help IM users intercommunicate. Working toward the goal of universal IM con-
nectivity, a single Trillian client connects to the major chat networks, including
AIM, MSN, ICQ, Yahoo! and IRC. Unfortunately, recent versions of the AIM
terms of service agreement prohibit using third party clients such as Trillian
[AIM1].

Instant messaging fun and games are not restricted to the courtrooms and
boardrooms. Popular IM clients allow users to play interactive games, and con-
verse with bots (short for robots) having distinct personalities. AIM users can
play checkers and many more modern interactive games with their buddies. The
bot ZolaOnAol will chat with AIM users any time and provides calculator, dic-
tionary, games, horoscope, movies, news, polls, sports, stocks, thesaurus, and
weather information using an interesting interactive natural language interface.
Development systems from Conversagent (www.conversagent.com) enable cre-
ation of customized interactive bots to provide customer service, employee serv-
ices, or many other types of services.

These popular IM clients and services are generally free or advertiser sup-
ported. They are fun and useful for chatting with friends and family. However,
they are not well suited for use within a business setting. Multiple clients make
them cumbersome to use. More importantly lack of security features opens
enterprises to liability and potential loss of trade secrets.

Substantial business potential lies with Enterprise IM systems, which are
gaining in popularity and acceptance. These systems run on private networks
and provide interoperability, security, scalability, integration with other business
platforms, logging, and tracking. In addition to the enterprise offerings from
major public IM providers and products from other established SW suppliers,
such as Lotus SameTime (www.lotus.com), other companies are entering the
enterprise IM market. One example is the Professional Online Desktop (POD)
from Omnipod (www.omnipod.com) which offers secure instant messaging and
file transfer, interoperation with other IM networks, broadcast, search, flexible
access, and integration with wireless SMS services described in Section 7.3.1.

7.3 Convergence

Interactive content delivery solutions are not limited to the Internet. In response
to the popularity of pagers, the alerting and messaging features of wide area

7.3 Convergence 215

Ch07.qxd 01/19/2005 01:04 PM Page 215

paging were combined with cell phone technology to develop the Short
Messaging System. This system allows text messages (no longer than 160 char-
acters) to be exchanged between properly equipped wireless clients such as cell
phones and personal digital assistants [SMS1], [IEC1]. Gateways, such as the
Bigfoot Web SMS service (www.bigfoot.com), use HTTP to connect Internet
users directly with wireless SMS clients using their cell phones or PDAs.

The Multimedia Messaging service (MMS) allows users to send and receive
messaging using a whole array of media types, including text, images, audio, and
video while supporting new wireless client types [3GPP1].

The road from SMS to MMS involves an optional evolutionary path called
EMS (Enhanced Messaging System). EMS is also a standard accepted by the
wireless industry 3rd Generation Partnership Project (3GPP at www.3gpp.org).
For MMS to be deployed the network operators have to upgrade their infra-
structure and devices supporting MMS must be available. Unlike MMS, EMS
can be used over the existing infrastructure—although the features provided by
EMS are not nearly as advanced. EMS can support relatively simple media such
as melodies, simple pictures, sounds, and animations [Mobi1].

Wireless clients, such as the BlackBerry handheld (www.blackberry.com)
and the Nokia 3300 music phone (www.nokia.com) now integrate voice, text,
Web browsing, and e-mail into a single handheld device. The Nokia 3300 music
phone also includes a mobile music player for MP3 and AAC music files, a
stereo FM radio receiver, a digital recorder from the integrated FM radio and
audio line-in, as well as MMS features such as sending, receiving, and storing
images.

If you use AIM as your IM client, and you have some friends who use
Windows Messenger and other friends who use SMS text messaging, you want
a single system that can easily interconnect to all these users. This is why the net-
work effect exerts pressure on networks of successful services to interwork with
other networks offering similar services. Gateways are defined as part of both
the SIMPLE and XMPP standards. Despite resistance from the promoters of
proprietary solutions, gateways inevitably emerge to interconnect services. If the
proprietary operators do not accommodate this interconnection, they will be left
with their own island of users, disconnected from what quickly will become the
majority of users. Eventually the survivors in this type of network battle become
interconnected, and the pattern is well established. Railroads have long used a
standard gauge of track throughout large geographic regions so trains can travel
across territories once owned by competing operators. Western Union integrated
more than fifty separate telegraph systems to allow intercommunication. Phone
systems around the world interconnect using standard interfaces and gateways
to allow voice communication between any two people in the world. Some day,
even AIM and Windows Messenger will either interoperate, or disappear.

216 C H A P T E R 7 Interactive Content Delivery—Instant Messaging

Ch07.qxd 01/19/2005 01:04 PM Page 216

C H A P T E R 8

Beyond Web Surfing—
Content Services

217

Service is personal. Every individual has his or her own interests and prefer-
ences. Dad might enjoy a cup of plain milk in the morning, while his teenage boy
prefers chocolate milk, and his little girl likes the sweet taste of artificial straw-
berry milk. In Chapter 3, we learned that a few times a week the family shopper
travels a mile to the market to buy milk and bring it home. Every family mem-
ber has quick access to the milk in the refrigerator. Every morning, the kids pre-
pare their favorite mug of milk by adding three spoons of chocolate syrup or
pink strawberry powder. Mom and Dad are not required to travel back to the
store and get each kid’s favorite drink. Instead, the kids process the plain milk
and “adapt” it to their individual preferences—right at the kitchen counter, only
a few feet away from the kitchen table.

Just as our family members each prefer a different flavor of milk, computer
users prefer to consume information in different forms. While a European trav-
eler might prefer reading about New York’s current temperature in the Celsius
scale, her American friend is most likely more comfortable with the same tem-
perature being provided in Fahrenheit. The information presented to both trav-
elers is the same; the content is just being processed and presented differently.
Content processing services (content services) are the functional components of
content networks developed to solve the problem of customizing services. These
processing services include creation, modification, conversion, or filtering of
either content or requests for content. While such services have typically been
provided at Web servers, newly defined elements, called service engines, allow
these content processing services to be provided on components within the net-
work. Moving not only content closer to the user, but also the services operating
on it, is a next logical step in the evolution of content networks.

This chapter describes several approaches that are emerging to provide
content processing services. It begins by describing the technical and business
forces that stimulate the creation of value-added service offerings in content
networks. It then describes an overall architecture for distributing services, using

Ch08.qxd 01/19/2005 01:05 PM Page 217

intermediaries to steer selected requests and responses to service engines. Two
examples of the distributed services architectures, the Internet Content
Adaptation Protocol (ICAP) and the Open Pluggable Edge Services (OPES) are
described. The Web services approach to announcing, discovering, describing,
and making use of Web services is then introduced. The Universal Description,
Discovery & Integration (UDDI) specification, the Web Services Description
Language (WSDL), the Simple Object Access Protocol (SOAP), and the XML
backplane they rely on are described. The chapter ends by describing the con-
vergence of a variety of information sources that enable creation of very
convenient, useful, and powerful services. The chapter illustrates how content
services provide important functions for instantly delivering rich relevant
content—anytime, anywhere.

A word of caution: Solutions for providing content services continue to
evolve rapidly. Alternative architectures are proposed by on-going work in stan-
dards organizations. Several of the protocols described here are still under dis-
cussion and development. Some of the solutions are quite extensive in scope.
The chapter introduces the fundamental problems solved by content services,
describes alternative approaches, identifies requirements for functions within
content service architectures, and gives selected details and examples of existing
mechanisms. For more detailed, up-to-date, and emerging information, the
reader is referred to the actual protocol specifications and the work of the IETF
and W3C as they continue to create content services solutions. References are
given in each of the subsections.

8.1 What Is Driving Content Services?

Powerful forces, both technical and business related, drive the evolution of con-
tent networks beyond Web caching and toward an infrastructure that—in addi-
tion to distributing content—also migrates the services operating on content
from centralized servers to distributed application servers. Consumers are no
longer content with plain Internet access, but expect a more exciting and per-
sonalized communications experience—as witnessed by the popularity of per-
sonalized Web portals such as My Yahoo! or My eBay. At the same time,
network providers are eagerly looking for new value-added services to offer,
since basic data transport is quickly becoming a commodity service with mini-
mal revenue opportunities. The following sections explore both the technical and
the business motivation for developing content services.

8.1.1 Technical Drivers

The previous chapters described architectures, protocols, and mechanisms for
distributing static content across the network. Moving content closer to the
consumer allows for faster content delivery and improves overall scalability of
the Internet. It assumes, however, that the content is static and changes infre-

218 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 218

quently—maybe daily, weekly, or monthly—providing the same combination of
text or images to each visitor. This assumption is inconsistent with recent trends,
as consumers increasingly demand a personalized Web surfing experience. When
visiting a Web site with news headlines, for example, users prefer to read about
stories relevant to their personal interest, rather than being served with a general
mix of headlines that are the same for all visitors. Such personalization requires
additional processing and dynamic creation of the Web page for each individual
user, which is typically being done at the origin Web server. As a result, individ-
ual user requests have to be sent to, and be served by, the origin server, elimi-
nating the basic benefits of Web caching and content distribution. The next step
beyond distributing static content, therefore, is to distribute services operating
on and creating personalized content.

For example, while sitting at your desk you would like to get a local weather
report. Typically, this requires the user to manually type in her current location,
perhaps in the form of a ZIP code. If the content delivery system knows your
current location, this step can be made automatic and the system can give you a
report for your local area. If it knows your preferred use of text, graphics, audio,
and video, it can customize the content and format of the information display
to meet these preferences. The language you prefer to speak may be different
from the predominant language spoken at the weather site being reported. What
language should the report use and how will it be translated? Perhaps an
enhanced service, providing more accurate, up-to-date or detailed information is
available. Have you subscribed to the service, or can you pay for a single use of
it? On another day you have moved away from your desk and are traveling inter-
nationally. You request a local weather report from your PDA. The same request
of “give me a local weather report” now refers to a different geographic region,
and also needs to be adapted to fit the PDA capabilities.

The architectures, protocols, and mechanisms we will discuss in this chapter
are aimed at bringing such services to the network edge, close to the consumer—
just as Web caching brings the static content closer to the consumer.

8.1.2 Business Interests

Services generate revenue. And business organizations rely on profitable revenue
for their continued success. As transmission speeds and reliability increase and
costs decrease, plain transport of bits and bytes quickly becomes a commodity
with little profit opportunity. To increase profit levels, business organizations
naturally migrate toward providing value-added services. An open infrastructure
allowing creation of new content services in cooperation with the network pro-
vides attractive opportunities to content providers, the network or service
providers, and the content consumers. An architecture has to be designed that
allows for quick and easy development and deployment of new services to meet
the ever-evolving needs and expectations of the content consumer. This leads to
separate, complementary, and attractive arenas for content providers, network
providers, and content service providers.

8.1 What is Driving Content Services? 219

Ch08.qxd 01/19/2005 01:05 PM Page 219

Furthermore, content services make it possible to isolate content processing
and adaptation from content delivery and storage—activities requiring different
expertise and having different optimization goals.

8.2 An Architecture for Content Services

So far, we have seen an architecture where the content is distributed, for exam-
ple, in Web caches, but the services creating or modifying the content are still
provided at centralized servers, if at all. As the Internet grows, so does the need
for content services that scale with both the number of users and the resources
required. As users understand the increased value of personalized, dynamically
created, and custom-adapted content, the next logical architectural step is to dis-
tribute the services. In the weather report example, identifying the user’s loca-
tion, identifying and interpreting user preferences, translating the report into the
user’s preferred language, and adapting the content to suit the display device are
each services that can be distributed throughout the network. Providing these
services separately from the function of serving static content and close to the
consumer can yield significant benefits.

Figure 8.1 illustrates the network evolution. As we have seen in previous
chapters, Web caches are used to move content closer to the user. It is a logical
next step to also move the services that transform or create the content in the
same way and to provide them on network elements close to the user. Enhancing

220 C H A P T E R 8 Beyond Web Surfing—Content Services

Web Clients

Web Caches

Server Farm

Service Engine

Service Engine

Web Switch

Web Servers

Figure 8.1 Distributing content and services.

Ch08.qxd 01/19/2005 01:05 PM Page 220

Web caches to run additional services, for example, filtering of Web messages, is
a first step in this direction. However, Web caches are typically specialized
devices, highly tuned for efficient and high-performance file storage and Web
retrieval. Running other kinds of processing-intensive services on the same net-
work component is likely to degrade the cache’s performance. Processing inten-
sive services such as virus scanning or multimedia content transformation are
better provided on separate elements, called Service Engines (also called Callout
Servers, as we will discuss later). Having the option to provide these services on
separate elements allows for the separation of content service providers from
providers of other services (e.g., network service providers). Provision of an
open interface between Web caches/proxies and service engines allows content
service providers the required integration with the network. It further allows
service engines to make use of the value added by Web caches by operating on
the locally cached copy of the content. A general example of Content Services
Architecture is shown in Figure 8.2.

This architecture introduces an open standard interface to service engines,
creating the content service providers’ arena. The Web caches or proxies call out
to the service engines when services are needed. The service engine can be
co-located with the callout proxy, or it can be located across the network from
it. A service engine could even be integrated on the Web cache or proxy itself,
assuming the network service provider is also acting as content service provider.
Service engines can be added to the network as the need for their particular ser-
vices is recognized and they become available.

An example illustrates how this architecture works to present the same infor-
mation to content consumers using two different types of client devices. This is
an example of a content adaptation service. The content consumer requests a
Web page from her PC-based client. The request is routed to a cache in the net-
work, which requests the content from an HTTP content server, stores it in the
cache, and forwards it to the PC client. Later on, a PDA user requests the same
page. The request goes to the Web cache, which already has the page stored.
Recognizing the need to adapt the content to a PDA-type client, the cache sends
the content to a service engine and gets back a version adapted for a PDA dis-
play. This adapted page is then forwarded to the PDA-based client. Here, the
entire request has been completed locally, without the need to access the origin
server across the network. This reduces server load, network load, and response
time. It is like adding chocolate syrup to the milk from the refrigerator, rather
than going back to the store for chocolate milk (or searching for a chocolate
cow). This saving becomes more important as the number of different client
device types that have to be served increases. Finally, the Web cache has the
option of storing this adapted page, or not, representing a typical space vs. pro-
cessing time trade off.

How does the Web cache decide which services to invoke for which mes-
sages? For example, how does the Web cache know that an adaptation service
has to be invoked for Web pages that are delivered to PDA users? How does the
Web cache select and communicate with the service engine? Who should the

8.5 An Architecture for Content Services 221

Ch08.qxd 01/19/2005 01:05 PM Page 221

222 C H A P T E R 8 Beyond Web Surfing—Content Services

S
er

vi
ce

 E
ng

in
es

R
un

ni
ng

 S
er

vi
ce

-S
pe

ci
fic

S
of

tw
ar

e

S
ta

nd
ar

d
S

er
ve

r
A

pp
lic

at
io

ns

C
on

te
nt

 S
er

vi
ce

P
ro

vi
de

rs
’ A

re
na

N
et

w
or

k
S

er
vi

ce
P

ro
vi

de
rs

’ A
re

na

C
on

te
nt

 C
on

su
m

er
s’

 A
re

na
C

on
te

nt
 P

ro
vi

de
rs

’ A
re

na

C
on

te
nt

A
da

pt
at

io
n

C
on

te
nt

B
ro

ke
r

Lo
ca

l
P

re
fe

re
nc

es
A

ss
ig

nm
en

t

H
um

an
La

ng
ua

ge
T

ra
ns

la
tio

n

S
ta

nd
ar

d
C

lie
nt

A
pp

lic
at

io
ns

A
ud

io
 /

V
id

eo
S

tr
ea

m
in

g
S

er
ve

r
H

T
T

P
C

on
te

nt
 S

er
ve

r

B
ro

w
se

r
P

D
A

A
/V

 P
la

ye
r

O
pe

n
In

te
rf

ac
e

to
S

er
vi

ce
 E

ng
in

es

S
ta

nd
ar

d
P

ro
to

co
ls

(e
.g

. H
T

T
P

, R
T

S
P

)

S
ta

nd
ar

d
P

ro
to

co
ls

(e
.g

. H
T

T
P

, R
T

S
P

)
N

et
w

or
ke

d
P

ro
xy

 E
ng

in
es

Fi
g

u
re

 8
.2

G
en

er
al

iz
ed

 c
on

te
nt

 s
er

vi
ce

s
ar

ch
ite

ct
ur

e.

Ch08.qxd 01/19/2005 01:05 PM Page 222

content consumer and content provider trust to provide services? What other
requirements are important to address in this architecture? We will see how the
architecture provides answers to each of these questions. We will do this by con-
sidering in more detail the key elements of this architecture, including service
activation points, callout servers, callout protocols, and authorization and trust
issues.

8.2.1 Service Activation Point

In the previous section, we were talking about “Web caches” or “proxies” for-
warding messages to service engines. We can generalize this by saying that some
kind of intermediary is required in the path between content consumer and con-
tent provider. It is a network element aware of, and able to interpret, the appli-
cation-level protocol used between content consumer and content provider
(here, HTTP). In the Web world, the intermediary can take the form of a Web
cache or a simpler Web proxy, for example. The intermediary analyzes incoming
messages and decides whether any service has to be invoked or not. We therefore
refer to such an intermediary as a Service Activation Point.

Figure 8.3 shows more detail of the architecture, focusing on the service acti-
vation point acting as an HTTP intermediary between client and origin server.
It hands received messages off to the local data dispatcher, which is responsible
for examining them, executing filtering rules, enforcing policies, and invoking
services applications. In short—the data dispatcher decides whether any service
has to be performed on an incoming message and what that service will be.
Services may be provided locally, if the service application is running on the

8.5 An Architecture for Content Services 223

Data Dispatcher
Examines Rules,
Enforces Policy,
Invokes services over
 callout protocol

HTTP Protocol

Callout Protocol
Communicates with Data Dispatcher
Invokes services application

Service Application

Requests Requests

Responses Responses

Service Activation Point
(e.g. Services enabled Network Cache)

Service Engine
(May be part of Services
Activation Point, or separate
remote processor)

Client Origin Server

Callout Protocol

Figure 8.3 Service activation point and service engine.

Ch08.qxd 01/19/2005 01:05 PM Page 223

service activation point, or through a callout protocol, if the service application
is running on a remote service engine. The ruleset is the collection of individual
rules or filters, indicating what services need to be executed on messages. For
example, it might include rules such as “if this is a binary download for
Markus, perform a virus check” or “if this request is from Lee for the site
www.tagesschau.de, then translate it to English.” The rules, which are operating
within a data dispatcher, can be created by a local administrator, downloaded to
the dispatcher over the network, or can be configured in any secure and reliable
way that establishes consistent, authorized, and unambiguous rules.

8.2.2 Callout Servers

A dedicated, separate service engine provides better scalability and flexibility for
providing several types of content services than does executing the services on
the service activation point itself. A dedicated processor is the best design alter-
native for processing intensive services such as virus scanning and natural lan-
guage translation. Distributed services, proprietary services, or other services
with special security requirements also benefit from a separate processing
engine. To clearly indicate the existence of a separate, remote service engine, we
will refer to these elements as callout servers. Callout servers improve the scal-
ability of the solution by simplifying the addition or the replacement
of servers. Partitioning the server and the activation point functions into
separate elements also allows separate authorities to operate the server and the
service activation point. This encourages more diversity and innovation in
the types of services that are available. A callout protocol is used for the com-
munication between the service activation point and callout server, as shown
in Figure 8.3.

8.2.3 Callout Protocol

The primary task of the callout protocol is to transfer portions of application
messages, such as HTTP requests and responses, between the service activa-
tion point and the callout server. For example, a service activation point
might determine that the Web page returned from a content provider has to
be translated into a different (natural) language before delivering it to the
content consumer. The service activation point uses a callout protocol to
encapsulate and transfer the relevant parts of the Web page to the callout
server. The callout server performs the requested translation and returns the
modified Web page to the service activation point, again using the callout
protocol.

Why is a separate callout protocol needed when application protocols such
as HTTP already support proxying between network elements? After all, one
might look at a callout server as just another proxy on the path between content
consumer and content provider, forming a proxy chain with the service activa-
tion point. No separate callout protocol would be needed, since application

224 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 224

messages flow through both elements. The advantage of having a separate call-
out protocol is that it does not require both the request and the response of a
Web transaction to pass through the callout server. It is possible to have only one
of the two messages serviced. For example, a virus scanning service provided on
a callout server does not need to see HTTP requests. It only needs to receive
HTTP responses. In the proxy model, both requests and responses would have
to flow through the callout server, while a callout protocol allows forwarding
only the responses to the callout server. This provides better performance and
more efficient resource utilization. Similarly, a request filtering service only has
to examine HTTP requests and does not have to see the corresponding responses
coming back from the server.

More optimizations can be designed into a separate callout protocol. For
example, it may allow transmitting only the relevant parts of an application mes-
sage to the callout server, rather than having to always send the entire applica-
tion message. This capability supports message preview and short-circuit
operations, which allow callout servers to terminate a callout transaction early,
thus improving response times and resource utilization (discussed later).

We will discuss two example callout protocols later in this chapter, when we
describe the Internet Content Adaptation Protocol (ICAP) and the OPES
Callout Protocol (OCP).

8.2.4 Authorization and Trust

While the basic content services architecture outlined above provides many
exciting opportunities and promises appealing benefits to both content con-
sumers and content providers, it also has the potential for misuse. Concerns
center around the possibility of intercepting a message flow between a con-
tent consumer and a content provider without their knowledge. Interception
of a message flow for executing services can cause problems similar to the
ones described in Section 3.5.3 in the context of interception proxies.
Furthermore, consumers and content providers can lose trust in a network
that modifies content without either of the endpoints being aware of it.

To maintain a trusted network and awareness of the services being executed,
each content service has to be authorized by either the content provider or the
content consumer, following a one-party consent model. Surrogate services are
content services provided on behalf of the origin server. These services might
include dynamic assembling of Web pages, watermarking, or content adapta-
tion. The elements making up the surrogate services form a surrogate overlay and
are logically part of the authoritative domain of their respective origin servers.
Similarly, delegate services are services provided on behalf of the content con-
sumers or by the applications they are running. These services might include
virus scanning or content filtering. The elements making up the delegate services
form a delegate overlay and are logically part of the authoritative domain of the
content consumer applications.

8.5 An Architecture for Content Services 225

Ch08.qxd 01/19/2005 01:05 PM Page 225

Policy information, describing what types of services are authorized for var-
ious types of transactions, has to be securely delegated and transmitted from the
authorizing party to the policy enforcement function in the data dispatcher.

8.3 Example Content Services

The architecture previously outlined enables different kinds of content serv-
ices, ranging from simple filtering of Web requests to complex services that
provide content adaptation considering a user’s preferences, location, and
client device.

Services for Web content can be performed on both HTTP requests and
HTTP responses. Services performed on HTTP requests may occur when a
request arrives at or leaves a service activation point. The services performed
on requests can further be divided into two cases: those that intend to modify
requests and those that do not.

A content service may modify a service request on behalf of the content
consumer for various reasons, such as:

● Parents might want control over what Web sites their children can access,
or a corporate policy may require blocking or redirecting a service
request.

● Organizations may restrict or redirect access to certain Web services
based on various criteria such as time of day or employee access privi-
leges.

● Hiding the content consumer’s identity, user’s browser software identi-
fiers (user agent), or referrer may be important in conducting a survey,
collecting anonymous feedback, or even in a dating service.

● Adding user preferences or a device profile to the service request to get
personalized or adapted services. The weather report example described
earlier demonstrates how this can be important.

Content services may also modify a service request on behalf of the origin
server in several ways, such as redirecting the request to a different server to
reduce the server work load or redirecting image requests to improve access time.

Useful services can also be provided by monitoring requests without actu-
ally modifying them, for example:

● administrative functions for the content provider, such as service moni-
toring activity or tracking usage for billing purposes

● customization services for the content consumer, such as analyzing and
profiling their usage patterns (with their consent) to shape adaptation
services later on

Content services may be performed on an HTTP response when a response
arrives at a service activation point or when it is about to leave the service acti-
vation point. In the case of a caching proxy, to ensure the privacy of the stored
data, the first service may be an encoding operation before the content is stored

226 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 226

in the cache, while the latter may be a decoding operation before the content is
returned to the data consumer.

There are several reasons why responses from the content providers might be
modified before delivery to the content consumer:

● The content provider may not have all the device profiles and templates
necessary to transform the original content into a format appropriate for
a variety of mobile devices of limited screen size and display capabilities.
Therefore, this content adaptation is an important content service.

● The content provider may not have all the natural language translation
capabilities needed to deliver the same content in multiple languages
spoken around the world. A single content server may perform the lan-
guage translation or it may invoke different callout servers to perform
different language translation tasks.

A content service may be performed on the responses without modifying
them. Examples include:

● examining and recording each response for monitoring, logging, or
debugging purposes

● a content server may record the usage information and resource require-
ments of each service request for accounting or billing purposes

Content services may dynamically assemble Web pages to create a response.
In the weather-reporting example the content server could choose information
from a variety of content providers to customize and assemble a report to meet
the user’s preferences.

Figure 8.4 shows another example that illustrates how the various architec-
tural components are leveraged in providing a content adaptation service at the
network edge. In step 1, a PC-based Web browser requests a Web page at
www.content-networking.com. The Web cache fetches the page from the ori-
gin server in step 2, stores it on its local disk, and forwards the page to the
requesting PC in step 3. A few minutes later, another user requests the same
page using the embedded Web browser on her cell phone in step 4. When the
request reaches a Web cache, the cache recognizes that the PC version of the
page is available in the local store, but that it will have to be adapted for delivery
to the cell phone. Rather than going back to the origin server to request a ver-
sion for display on a cell phone, the cache acts as a service-activation point and
forwards the previously stored PC version of the page to a callout server in step
5. Communication with the callout server is done using a callout protocol. The
callout server performs the requested adaptation and returns the modified ver-
sion to the cache, which forwards it to the cell phone user in step 6. The same
actions will be performed when a PDA user requests the same Web page later.

It can be seen that the adaptation for the cell phone user and the PDA user
take place locally at the network edge. There is no need to contact the origin
server again, thus reducing server load, network load, and service latency.

A comprehensive list, more detailed discussion, and more examples of ser-
vices can be found in [RFC 3752, BHC00]. The following sections will discuss in

8.3 Example Content Services 227

Ch08.qxd 01/19/2005 01:05 PM Page 227

more detail two example callout protocols, the Internet Content Adaptation
Protocol (ICAP) and the OPES Callout Protocol (OCP).

8.4 ICAP—The Internet Content Adaptation Protocol

Recognizing the need for a standard interface between Web proxies and appli-
cation servers, several companies got together at the end of the last century to
work out and publish an open interface specification. Since the primary focus
was on enabling adaptation services for Web content, the protocol being
worked on was named the Internet Content Adaptation Protocol (ICAP). The
name, however, does not do justice to the capabilities of the protocol. ICAP use
is not limited only to the context of adaptation and transformation services.
It also facilitates the implementation of filtering, tracking, and other types
of services. It is limited, however, to enabling services that operate on HTTP
messages.

When efforts to carry out the work in existing standards organizations
failed, the decision was made to form a separate industry consortium for speci-
fying the protocol—and the ICAP Forum was born. The ICAP Forum
(www.i-cap.org), initially spearheaded by Network Appliance and Akamai
Technologies, had its kick-off meeting in February 2000 in Sunnyvale,
California, USA. A large number of representatives from a variety of companies

228 C H A P T E R 8 Beyond Web Surfing—Content Services

HTTP
Server

Callout Server
with Content
Adaptation

Global
Network

2

1

3

5

6

4

Figure 8.4 Adapting Web pages.

Ch08.qxd 01/19/2005 01:05 PM Page 228

showed up for the meeting, ranging from network infrastructure vendors to
manufacturers of application servers, and application developers. Encouraged
by the turnout at the meeting, a small group of protocol architects from differ-
ent organizations continued to refine the initial protocol specification proposed
by John Martin and Peter Danzig. The work was driven forward through e-mail
discussions and phone conferences and resulted in the specification of ICAP
versions 0.9 and 0.95. Experience with different implementations and first
deployments in the field resulted in a modified version 1.0.

Over time, the desire grew to have the protocol specification documented
through a widely accepted standards authority. As a result, the ICAP specifica-
tion was submitted to the IETF as an individual submission in October 2001—
not on the standards track, but for consideration as an informational RFC.
During this time, the IETF community discussed creating the Open Pluggable
Edge Services (OPES) Working Group, which would be chartered to produce a
standards track specification for a protocol providing a superset of the ICAP
functionality. After chartering the OPES WG, the IETF decided in April 2003
that, given ICAP’s use in production networks, it would be appropriate to doc-
ument the existing specification as informational RFC 3507. It should be noted
that RFC 3507 is not the result of an IETF Working Group and is not endorsed
by the IETF, but rather an individual submission intended to document current
practice.

Today, the ICAP Forum evolved more into a business and marketing vehi-
cle rather than a technology forum. Webwasher joined Network Appliance and
Akamai Technologies as co-host of the ICAP Forum to take care of most of the
remaining activities such as checking Web page feedback and organizing a mail-
ing list (also see Section 10.2.2 for information on the ICAP Forum). When tech-
nical issues come up, they are discussed via a mailing list. However, no new
developments or enhancements to ICAP are being considered, since develop-
ment of a next-generation callout protocol is now being worked on in the
IETF/OPES Working Group.

8.4.1 Motivation and Design Goals

ICAP is designed to provide simple dispatching of HTTP messages for obtain-
ing content services. It allows ICAP clients to pass HTTP messages to ICAP
servers for some specified type of processing. The ICAP server executes the
requested service and sends the (possibly) modified message back to the ICAP
client. Putting this interaction into the context of our general content services
architecture, ICAP clients act as service activation points and ICAP servers act
as callout servers. For example, a Web proxy might use ICAP to send binary
downloads it received to another server for virus checking. The server checks
the data, removes detected viruses, and uses ICAP to return the cleaned-up
data back to the Web proxy. The interaction is similar to executing a remote
procedure call on the message encapsulated in ICAP. These messages can be
either HTTP requests or HTTP responses. Though ICAP has recently been

8.4 ICAP—The Internet Content Adaptation Protocol 229

Ch08.qxd 01/19/2005 01:05 PM Page 229

used to exchange content other than HTTP, this is beyond the original design
of ICAP.

The ICAP design was guided by simplicity and ease of implementation.
The goal was to develop an easy to understand, easy to implement, and
easy to debug protocol—as simple as possible, but no simpler. Since the pro-
tocol evolved to enable services to act on HTTP messages, it is a fair assump-
tion that ICAP developers would be very familiar with HTTP, its syntax, and
its semantics. As such, it was a logical choice to make ICAP look very similar
to HTTP. In fact, it was initially considered that ICAP would be implemented
as either an extension to HTTP or as an application-layer protocol built to
run on top of HTTP. This was desirable for a number of reasons. HTTP is
well understood in the community and has enjoyed significant investments in
software infrastructure, including clients, servers, parsers, etc. The idea was to
leverage that existing work and to make it easy for developers to implement
ICAP.

But as so often happens, the devil proved to be in the details. Certain fea-
tures that were considered important for ICAP were difficult to implement with
HTTP or caused problems when running ICAP over HTTP. For example, HTTP
allows a client to pause the transmission of a message only between the message
header and the message body. The client sends the message header and waits to
receive a 100 Continue response from the server before transmitting the mes-
sage body. With ICAP, however, a different semantic was required. A client
should be able to pause the transmission in the midst of a message body and
wait for a response from the server before transmitting the remainder of the
body. This behavior allows an ICAP server to examine the beginning of a mes-
sage body and then decide if it wants to terminate the transaction early instead
of receiving the remainder of the message body. Such previewing can yield sig-
nificant performance improvements in a variety of situations, as we will see later
in this section when we discuss the ICAP preview feature. Moreover, the exis-
tence of Web proxies or Layer 4–7 switches between ICAP client and ICAP
server needs to be allowed. And certain transformations of HTTP messages by
Web proxies are legal—and harmless for HTTP—but caused problems with
ICAP’s “header-in-header” encapsulation and other features. In the end, it was
decided that the tangle of workarounds required to fit ICAP into HTTP was
more complex and confusing than moving away from HTTP and defining a new
(but similar) protocol.

The ICAP specification describes how to ask for a certain content service
and how to transmit the messages to be serviced to the callout server. This is
referred to as the transaction semantics and specifies the “service invocation”
part of the data dispatcher in our general architecture. However, the ICAP spec-
ification does not indicate at all “when to ask for a content service, what specific
service should be asked for, and from where.” This is referred to as the control
policy, specifying the rules and policy functions of the data dispatcher. Absence
of the control policy is an important limitation of the ICAP specification, and
makes vendor interoperability and end-user control more difficult. There are

230 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 230

workarounds for this limitation, however. For example, manual configuration
can be used to define rules and policy. This includes establishing the rules for rec-
ognizing messages that require processing, the URIs of available content ser-
vices, what transactions are authorized to receive services, and so on. For ICAP
clients and servers to interoperate, the exact method used to define policy does
not have to be consistent across implementations, as long as the policy itself is
consistent.

After introducing the general design philosophy of ICAP in this section, the
following one will explore the protocol’s operation in more detail. The following
section is not intended as a protocol reference, but rather attempts to strengthen
the general understanding of the protocol by giving selected details. The reader
is referred to RFC 3507 for a comprehensive ICAP reference.

8.4.2 Protocol Details

ICAP is a request-response protocol similar in semantics and usage to
HTTP/1.1. Despite the similarity, ICAP is not HTTP, nor is it an application
protocol that runs over HTTP. Instead, it is an application protocol similar to
HTTP that runs over TCP. The default port is 1344, but other ports may be used.
An ICAP transaction is always initiated by the ICAP client, which sends a
request to a passively listening ICAP server. The server performs the requested
service and returns a response to the ICAP client. ICAP requests and responses
are in text format and use the generic message format of RFC 2822—that is,
they are made up of:

● a number of header fields (also known as “headers”), including a start-
line (either a request line or a status line),

● an empty line (i.e., a line with nothing preceding the CR/LF) indicating
the end of the header fields, and

● a message body.

The start-line, or, more precisely, the Request-URI in the start-line, identi-
fies the ICAP resource requested (i.e., the service to be performed). The headers
can include additional metadata, such as cache control information. The mes-
sage body of an ICAP request contains the (encapsulated) HTTP message that
is being processed. As in HTTP/1.1, a single transport connection may be re-
used for multiple request-response pairs. Specifically, requests are matched up
with responses by allowing only one outstanding request on a transport connec-
tion at a time. Multiple parallel connections may be used as in HTTP.

Figure 8.5 illustrates how ICAP encapsulates HTTP messages by adding
ICAP specific headers. The example shows an HTTP GET request from a Web
client arriving at the ICAP client (step 1). The ICAP client encapsulates the orig-
inal Web request into an ICAP message; the original Web request becomes the
message body of the ICAP request (step 2). The service to be performed on the
encapsulated HTTP request is indicated by the URI on the first line of the ICAP

8.4 ICAP—The Internet Content Adaptation Protocol 231

Ch08.qxd 01/19/2005 01:05 PM Page 231

request. Here, a service labeled “serv-1” on server “i-cap.org” is requested. The
example assumes that this specific service removes the cookie from the original
Web request and also changes the path of the requested Web object to “/mod-
path.” After performing the requested service, the ICAP server encapsulates the
modified Web request in an ICAP response and sends it back to the ICAP client
(step 3). The ICAP client than extracts the modified Web requests and forwards
it to the Web server (step 4).

The above example illustrates how ICAP is used to modify an HTTP
request. Similarly, ICAP can be used to request the modification of an
HTTP response. Depending on what kind of message is encapsulated, there are
two different ways in which ICAP can work—Request Modification and
Response Modification.

Request modification

The scenario shown in Figure 8.6 is an example of ICAP request modification
(reqmod). In this situation, an ICAP client encapsulates an HTTP request and
sends it to an ICAP server, as illustrated by request 2.

232 C H A P T E R 8 Beyond Web Surfing—Content Services

ICAP
Server

Web
Client

ICAP
Client

Web
Server

REQMOD icap://i-cap.org/serv-1 ICAP/1.0
Host: i-cap.org
Encapsulated: req-hdr=0, null-body=60

GET /HTTP/1.1
Host: www.origin.com
Cookie: name=ff3@4

GET / HTTP/1.1
Host: www.origin.com
Cookie: name=ff3@4

GET /mod-path HTTP/1.1
Host: www.origin.com

ICAP/1.0 200 OK
Date: Sun, 25 Jul 2004 12:28:21 GMT
Server: ICAP-Server-Software/1.0
ISTag: "428600-2004-1c02798"
Encapsulated: req-hdr=0, null-body=48

GET /mod-path HTTP/1.1
Host: www.origin.com

1

4

3

2

Figure 8.5 Example ICAP messages.

Ch08.qxd 01/19/2005 01:05 PM Page 232

The ICAP server may then:

● Return a modified version of the request 3. The ICAP client may then
perform the modified request by contacting an origin server 4; or, relay
the modified request to another ICAP server for further modification, or

● Return an HTTP response to the request (by creating transaction 6 with-
out contacting the origin server 4 or getting its response 5). This is used
to provide context information to the user in case of an error. A request
filtering service, for example, can send an error message saying “you are
not allowed to see this Web page,” or

● Return an ICAP error that the ICAP client has to handle.

Also a response coming back from the origin server can be forwarded
directly to the client without having the ICAP server in the path.

ICAP clients must be able to handle all three types of responses. However,
ICAP client implementations do have flexibility in handling errors. If the ICAP
server returns an error, the ICAP client may (for example) return the error to the
user, execute the unmodified request as it arrived from the client, or request the
specific service again, perhaps from another ICAP server.

Request filtering or URL blocking is a good example of request modifica-
tion. Consider an intermediary that receives a request from a client for a Web
page on an origin server. The intermediary, acting as an ICAP client, sends the
client’s request to an ICAP server that performs URI-based request filtering. If
access to the requested URI is allowed, the request is returned to the ICAP client
unmodified. However, if the ICAP server chooses to disallow access to the
requested resources, it may either:

● modify the request so that it points to a page containing an error mes-
sage instead of the original URI, or

● return an encapsulated HTTP response that indicates an HTTP error.

8.4 ICAP—The Internet Content Adaptation Protocol 233

Origin
Server

Content Creator

Client

ICAP resource
on ICAP server

ICAPClient
(Surrogate)

1

2 3

4

56

Content Consumer Content Network Provider Content Provider

Figure 8.6 ICAP request modification.

Ch08.qxd 01/19/2005 01:05 PM Page 233

This method can be used for a variety of other applications, such as mask-
ing the identity of the requester, modification of the Accept: headers to han-
dle special device requirements, and so forth.

The specific ICAP method used for an ICAP transaction is indicated by
the first word in the first line of an ICAP request message. In Figure 8.5, for
example, the ICAP requests starts with REQMOD, indicating that the client is
encapsulating an HTTP request.

RESPMOD, in contrast, indicates that the ICAP client is working in Response
Modification mode, as discussed in the following section.

Response modification

Not all services have to process HTTP requests. A large number of services oper-
ate on HTTP responses, instead. Response modification (respmod) has been
defined for this purpose. Here, an ICAP client sends an HTTP response 3 to an
ICAP server as illustrated by request 4 in Figure 8.7.

An origin server typically has generated this response. The ICAP server may
then:

● send back a possibly modified version of the response, or
● return an error.

The response modification method is intended for post-processing performed on
an HTTP response before it is delivered to a client. Examples include content
adaptation, human language translation, and virus checking.

Figure 8.7 illustrates a typical data flow for ICAP response modification.

234 C H A P T E R 8 Beyond Web Surfing—Content Services

Origin
Server

Content Creator

Content ProviderContent Consumer Content Network Provider

Client

ICAP Resource
on ICAP Server

ICAP Client
(Surrogate)

1

4 5

2

36

Figure 8.7 ICAP response modification.

Ch08.qxd 01/19/2005 01:05 PM Page 234

1. A client makes a request to an ICAP-capable intermediary (an ICAP
client) for an object on an origin server.

2. The intermediary sends the request to the origin server.
3. The origin server responds to the request.
4. The ICAP client sends the origin server’s response to the ICAP server.
5. The ICAP server executes the ICAP resource’s service on the origin

server’s response and sends the (possibly) modified response back to the
ICAP client.

6. The ICAP client sends the response, (possibly) modified from the origi-
nal origin server’s response, to the client.

Early drafts of the ICAP specification included a third method, named
“Request Satisfaction.” Consider a scenario in which an ICAP client receives an
HTTP request and sends it to an ICAP server, for request filtering, for exam-
ple. But in this case, the ICAP server actually carries out the request. It fetches
the requested page directly from the origin server or creates an error page,
returning the HTTP response to the ICAP client for relay to the end user. Later
revisions of ICAP removed this method, since it was felt that request satisfac-
tion scenarios can also be implemented using request modification without
major drawbacks.

Message preview

A separate callout protocol between intermediary and callout server has the big
advantage of offering optimizations for specific interaction scenarios. The mes-
sage preview feature defined in ICAP is an important example of such opti-
mization.

The message preview feature allows an ICAP server to receive only the
beginning of an application message and to decide whether it wants to con-
tinue receiving the remainder of the message or if it wants to opt-out of the
transaction early. Such message previewing can yield significant perform-
ance improvements in a variety of situations. For example, by looking at just
the file type and the first few bytes of a file, virus-checkers can quickly deter-
mine whether a thorough virus check is needed or not. If the specific type of
file does not pose any virus threats, it is not necessary to transmit the complete
file to the callout server. Only files potentially carrying viruses need to be trans-
mitted to the virus-checking ICAP server in their entirety. Other services that
can benefit from the preview feature include content filters and any media
transformation services.

The ICAP client makes use of the preview feature by adding a Preview:
header in its outgoing ICAP request. This header indicates the length of the pre-
view in number of bytes. The ICAP client then sends all of the headers of the
respective application message and the beginning of the application message
body, if any, up to the number of bytes advertised in the Preview (possibly 0).

8.4 ICAP—The Internet Content Adaptation Protocol 235

Ch08.qxd 01/19/2005 01:05 PM Page 235

After the Preview has been sent, the client pauses and waits for instructions from
the ICAP server before continuing. The ICAP server can request the remaining
data, in which case the ICAP client continues to transmit the message in its
entirety. Alternatively, the ICAP server can indicate that the remaining data is
not needed, which terminates the callout transaction early.

8.4.3 Limitations and Shortcomings

Although ICAP provides a useful capability, it has serious limitations. It defines
a method for forwarding only HTTP messages, and it does not support other
application protocols. A relevant omission is the lack of support for e-mail-
related protocols. ICAP also does not support streaming media protocols for
audio and video. Furthermore, as was discussed in Section 8.4.1, it defines the
transaction semantics, but not the rules or control policy. Presently, ICAP relies
on encryption provided by the link or network layer protocols for security. It has
no security mechanisms of its own.

The Open Pluggable Edge Services (OPES) Working Group has been
chartered in the IETF to produce a standards track protocol specification
intended to perform similar functions as ICAP, while addressing these and other
shortcomings.

8.5 Open Pluggable Edge Services (OPES)

With the increasing need to provide value-added services on network intermedi-
aries, a growing number of different approaches and solutions emerged—most
of them designed for a specific purpose. Some of the developed solutions were
open, such as ICAP, but several vendors started to implement their own propri-
etary mechanisms, making interoperability a real problem. It became desirable
to have a standardized, open, and extensible services architecture, which would
enable network intermediaries to provide a variety of services for mediation,
modification, and monitoring of application messages.

Driven by a small group of people from different companies, a so-called
“Birds of a Feather” (BoF)1 session was held at the 49th IETF meeting in San
Diego in December 2000. The BoF was named Open Pluggable Edge Services
(OPES) and aimed at forming an IETF Working Group for developing the pro-
tocols and mechanisms for an open content services architecture.

The meeting started a long, very controversial, and heated discussion in
the IETF community—less about technical details, but more about funda-
mental design principles of the Internet and how they would be affected by the

236 C H A P T E R 8 Beyond Web Surfing—Content Services

1BoF sessions are typically held before an IETF Working Group is officially created. The purpose of a BoF is to
determine whether there is enough interest in a specific topic and whether the proposed work is within the scope
of the IETF.

Ch08.qxd 01/19/2005 01:05 PM Page 236

proposed architecture. The discussion again focused attention on several archi-
tectural and policy issues about robustness and the end-to-end integrity of
data—both had been long cited as the overriding goals of the Internet archi-
tecture (see Chapter 2). An architecture that would allow modification of mes-
sages by elements inside the network was considered to have the potential of
eroding these goals. For example, it was feared that at some point in the future
some OPES service will perform inappropriately (e.g., a virus scanner rejecting
content that does not include a virus), or some OPES element will be compro-
mised either inadvertently or with malicious intent. The discussion was very
helpful in identifying potential threats and in helping to focus the proposed
OPES work. But at times the debate degenerated into a more philosophical
and very dogmatic argument, with several participants crossing the line into
truly abusive behavior. It was not until three more BoFs took place, and a
series of intermediate workshops hosted by Intel and Bell Labs/Lucent
Technologies, before the OPES Working Group was finally chartered in
February 2002.

Given the high stakes at play, the Internet Architecture Board (IAB) took
the unusual step of issuing RFC 3238 with comments and recommendations on
the architectural and policy issues related to chartering the OPES Working
Group. The RFC does not recommend specific solutions for OPES, nor does it
mandate specific functional requirements. Instead, it brings to the fore issues on
integrity, privacy, and security that any OPES solution standardized in the IETF
is required to address in one way or another, either directly by demonstrating
appropriate mechanisms or by making a convincing case that there are no
integrity or privacy concerns. The OPES Working Group has responded to this
request by producing RFC 3914, which describes how OPES solutions address
those considerations.

The documents produced by the OPES Working Group introduce an archi-
tectural framework along with a set of requirements to guide standardization of
needed protocols and interfaces. At the time of this writing (November 2004),
the OPES Working Group has finished its initial charter and has put forward a
specification for a next-generation callout protocol. The following sections will
examine the OPES architecture, the callout protocol, and initial work on a rules
language in more detail.

8.5.1 The OPES Architecture

The OPES architecture [RFC 3835] defines a framework for distributing,
authorizing, and invoking networked services at the application level that both
offload origin servers and improve the user experience. It extends the notion of
Web intermediaries, which are commonly deployed to provide services such as
Web caching, request filtering, and virus scanning. While the main focus of
OPES was initially on HTTP-based applications, the architecture has been
designed to enable support for other applications such as e-mail or multimedia
streaming, as well. It follows, in great parts, the generic content services

8.5 Open Pluggable Edge Services (OPES) 237

Ch08.qxd 01/19/2005 01:05 PM Page 237

architecture outlined in Section 8.2 and illustrated in Figure 8.3. Details of the
OPES architecture and its architectural elements are given in the following
section.

Architectural elements

The various architectural elements and their interactions are illustrated in
Figure 8.8. The OPES Processor is an application-level intermediary on the
path between Data Consumer (e.g., Web Client) and Data Producer (e.g., Web
Server, Origin Server). The OPES processor analyzes incoming application
messages and invokes the appropriate applications, such as a virus scanning
service, for example. The specific component responsible for this message
analysis and application invocation is called a Data Dispatcher and is an inte-
gral part of every OPES processor. The Data dispatcher bases its decisions on
a ruleset that specifies what applications to invoke on which messages and how.
For example, a rule might specify that all binary HTTP response messages have
to be scanned for viruses before being forwarded to Markus. The function of
handing messages off for further processing is sometimes called vectoring of
messages. The services that are invoked by an OPES processor are referred to
as OPES Service Applications. They can reside on the OPES processor itself
or be executed remotely on a Callout Server. A single OPES processor can
communicate with multiple callout servers (indicated by A and B in the figure),
just as a single callout server can receive requests from multiple OPES proces-
sors. Communication between OPES processors and callout servers is governed
by the OPES Callout Protocol (OCP). Looking back at the generic content
services architecture illustrated in Figure 8.3, the OPES processor defines a
service activation point, while the callout servers represent remote service
engines.

The architecture is not limited to a single OPES processor between data con-
sumer and data producer. It is possible that a message traverses through multi-
ple OPES processors on its way between the two endpoints. It is required,
however, that the first OPES processor in such a chain is explicitly addressed at
the IP layer. This policy prohibits deploying OPES processors in the form of
interception proxies, thus ensuring that the originating endpoint is always aware
of the first OPES processor its message travels through. This is a first step
towards controllability, as we will see in the next section.

Controllability, integrity, and security considerations

A major focus of the architecture is on features intended to provide control-
lability as content is transformed en route between the endpoints. Learning
from the problems introduced by interception proxies (see Chapter 3), the
intent is to ensure that endpoints are aware of, and in control of, the services
being performed inside the network. Following this principle, OPES requires
that either the data consumer or the data producer must consent to each

238 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 238

content service that can take place. This approach is known as the one-party-
consent model.

In an OPES system, each message flow must follow policies set forth by the
data consumer or the data producer. It is expected that the OPES system imple-
ments a mechanism to resolve possible conflicts. The endpoints communicate
their policies (i.e., what parties are authorized to perform what services) to their
immediate and trusted service provider. This step represents a delegation of
authority—the endpoint allows the service provider to act on its behalf, accord-
ing to the policies it has set forth. For example, a residential customer might
authorize her DSL service provider to perform virus scanning on all binary
downloads. The service provider can configure the network elements accord-
ingly by activating the appropriate rules on its OPES processors.

Delegation of authority can continue to move to more distant entities in a
“stepwise” fashion. Stepwise means that entity A delegates to entity B, and
entity B delegates to entity C, and so forth. The entities thus “colored” by the
delegation are said to form a trust domain with respect to the original delegat-
ing party. In this context, “colored” means that if the first step in the chain is the
data producer, then the stepwise delegation “colors” the chain with that data
“producer” color. The only colors that are defined are the data “producer” and
the data “consumer.” Delegation of authority (coloring) propagates from either
the content producer, start of authority or from the content consumer, start of

8.5 Open Pluggable Edge Services (OPES) 239

Application
Protocol

Messages

Application
Protocol

Messages

Client
(Data Consumer) Origin Server

(Data Producer)

OPES Processor

TCP/IP

HTTP
(for example)

OCP

Data Dispatcher
- OPES Ruleset
- Security & Trust policy
- Tracing

OPES
Service Application

Callout
Server “A”

OCP

Callout
Server “B”

OCP

OPES
Service

Application

OPES
Service

Application

OCP Messages

Figure 8.8 The OPES architecture.

Ch08.qxd 01/19/2005 01:05 PM Page 239

authority to create a trust domain (trust chain) of either the producer or the
consumer.

User-authorized policies typically extend to include encryption require-
ments on the various network links, including possible communication with
callout servers. Callout servers must not violate trust policies by transmitting
information to servers or processes outside of the trust domain. Customer data
identified as private must be kept private throughout each OPES flow, including
transmission to callout servers and processing by those servers. To enable selec-
tion of trusted callout servers, they must be able to announce their privacy capa-
bilities and ability to enforce privacy policies.

To allow verification of its operation, the OPES architecture requires each
OPES system to provide tracing functions. Together with strong end-to-end
integrity checks, such as digital signature techniques, and other safeguards, this
ensures that control over the services provided in the network remains with the
endpoints.

Policy enforcement

The policies described in the previous section are typically compiled into a set of
rules and downloaded onto the relevant OPES processors. The essential feature
of this ruleset is that it is unambiguous. It must enable the OPES processor to
clearly determine which service applications, if any, to invoke for each incoming
message. As a result, the OPES processor—and more precisely, the data dis-
patcher—is a policy enforcement point where policy rules are evaluated and
service-specific data handlers and state information is kept up-to-date.

To enable interoperability, the OPES architecture envisions an open, stan-
dardized language for specifying and interpreting the ruleset. Although the rule
syntax and semantics are precisely specified, the methods for loading the ruleset
into the OPES processor are out of scope of the current OPES charter and may
be chosen by the implementers.

The OPES rules consist of a set of conditions and related actions. The OPES
ruleset determines which service applications will operate on which messages,
and is described more fully in Section 8.5.3. But first, let us have a closer look at
the OPES callout protocol, which is used for exchanging messages between
OPES processors and callout servers.

8.5.2 The OPES Callout Protocol

The OPES callout protocol is close to being published as a proposed IETF
standard as of this writing. While this indicates the finalization of the design
phase, the protocol details still have to prove valid in practice and are subject to
possible modifications. As such, we will not attempt to provide a detailed
description or definitive reference to the protocol, but only provide an overview
of its workings and some of its features, and refer to the Internet Drafts for more
details.

240 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 240

The protocol specification process began by identifying and describing the
requirements the protocol needs to meet. This was used as a basis for selecting
between alternate design choices. These include functional, performance, and
security requirements and are described in RFC 3836.

The primary purpose and value of the protocol is to enable an OPES proces-
sor to forward an application message to a callout server so OPES services can
process the message. The result of the service operation may be a modified appli-
cation message. The protocol then enables the callout server to return the
result—possibly including a modified message—back to the OPES processor.
While the initial goal of the Working Group focused on supporting the exchange
of HTTP messages only, it was soon decided to specify a generic, application-
agnostic protocol core that would be supplemented by application-specific pro-
tocol profiles. The protocol core does not make any assumptions about the
characteristics of the application-layer protocol used in the data path between
the data producer and the data consumer. This approach has the advantage that
features commonly needed for all application protocols have to be implemented
only once in the protocol core. Features specific to each application protocol will
be developed in separate protocol profiles.

The resulting protocol architecture is shown in Figure 8.9. The OPES
Callout Protocol (OCP) Core implements application-agnostic features needed
in support of different application protocols [Rou04]. It is assumed to run on
top of a reliable transport protocol such as TCP. In particular, OCP relies on
the underlying protocol to maintain packet ordering and to provide congestion
control mechanisms in conformance with RFC 2914. OCP does not require
separate transport connections for each individual callout transaction. Instead,
it allows multiple transactions over an established transport connection; simi-
lar to the way HTTP/1.1 uses persistent connections. OCP even allows transac-
tions on a single transport connection to overlap. This is a big difference
compared to how HTTP handles persistent connections! The OCP Core is

8.5 Open Pluggable Edge Services (OPES) 241

OCP Core

HTTP
Profile

RTP
Profile

FTP
Profile

SMTP
Profile

MIME
Profile

...

TCP/IP Other
Transports

Application
Protocol
Agnostic

Application
Protocol
Profiles

TCP Is the Most
Common Transport.

Figure 8.9 OPES callout protocol architecture.

Ch08.qxd 01/19/2005 01:05 PM Page 241

augmented by protocol profiles that are specific to the application protocol
used between the content consumer and the content producer. The Working
Group has written a specification of a profile for HTTP [RoS04], which allows
transmission of Web messages and fragments between OPES processors and
callout servers. Specification of a SMTP profile is currently being considered to
start as a next step.

The OPES Callout Protocol offers a variety of interesting features, includ-
ing:

● Asynchronous Message Exchange—allows multiple outstanding callout
requests on a single transport connection to be issued and provides a
method to correlate callout responses to callout requests.

● Message Segmentation—allows the OPES processor to forward an
application message to a callout server in a series of smaller message
fragments. Provides a method to reassemble these fragments into the
original message.

● Keep-Alive Mechanism—allows both endpoints to detect a failure of the
other endpoint even in the absence of callout transactions.

● Capability and Parameter Negotiations—support for negotiation of
capabilities and callout connection parameters between an OPES
processor and a callout server. These parameters may include callout
protocol version, fail-over behavior, heartbeat rate for keep-alive mes-
sages, security-based parameters, and others.

● Metadata—provides a mechanism for the endpoints of a callout trans-
action to include instructions for the OPES processor and callout server
in callout requests and responses. For example, the OPES processor is
able to include an ordered list of OPES services to be performed on the
forwarded application message. Instructions on keeping a local copy of
the application message and tracing are also provided. The OPES
processor is further able to include information about the forwarded
application message in a callout request. This may be done to specify the
type of forwarded application message or to specify what parts of the
message are forwarded to the callout server.

● Premature Termination—allows a callout server to abort an ongoing
transaction at any time. This is helpful in situations where the callout
server determines that no further actions are required and that it is not
necessary to transmit the remaining parts of the application message.
Virus scanners, for example, can use this feature to stop data transmis-
sion after detecting that the transmitted application message is a text
file and, therefore, not in need of virus scanning. This feature is similar
to ICAP’s message preview, but offers more flexibility and a more
fine-grained control over when to terminate a transaction.

Details on these features and on how they are used can be found in the
protocol specifications [Rou04, RoS04].

242 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 242

An example OCP session is illustrated in Figure 8.10. The session begins
when the OPES processor establishes a transport connection with the callout
server. This is typically done using TCP. A connection start (CS) message
requests the callout server to begin monitoring the connection state. The OPES
processor must then make a negotiation offer (NO). Requiring one of the par-
ties to initiate the negotiation process avoids possible deadlocks, as when each
side would be waiting for the other to make an offer. The negotiation mechanism
allows the OPES processor and callout server to agree on a mutually acceptable
set of features, including optional and application-specific behavior, as well as,
OCP extensions. For example, transport encryption, data format, and support
for a new message can be negotiated. Sending a negotiation response (NR) com-
pletes the initialization portion of the session. A transaction start (TS) message
begins the original data flow, and the callout server begins monitoring the trans-
action state. An application message start (AMS) notifies the callout processor
to begin processing the application message. The OPES processor sends the
application data as the payload portion of one or more data use mine (DUM)
messages and indicates the end of the applications message with an application
message end (AME). The callout processor receives the application data, and
performs the requested content services. The callout processor then begins the
adapted data flow with an application message start (AMS), followed by one or
more data use mine (DUM) messages, including the adapted application data. It
then sends an application message end (AME) message to inform the OPES
processor that there will be no more data for the corresponding application mes-
sage and indicates the end of application message processing. Any number of
application messages can be adapted in a single session. This is indicated by the
second series of AMS, DUM, AME, AMS, DUM, and AME messages.
Furthermore, although it is not illustrated in this example, the callout server can
initiate a session with an AMS message. Messages can be sent asynchronously
and overlap requests and responses. Finally, either side can send a transaction
end (TE) message to end the OCP transaction.

8.5.3 The OPES Rules Language

As transactions proceed through an OPES processor, rules determine what con-
tent gets dispatched to OPES service applications for service processing. These
rules determine if processing is required, what flows are intercepted for pro-
cessing, what OPES service application instance to invoke, and the specific
processing required. The rules must be executed quickly and securely. In addi-
tion, secure mechanisms are needed for establishing, modifying, and storing the
rules.

Performance is critically important in an intermediary like a caching proxy
whose main purpose is to accelerate Web access. Introducing a rules engine into
such an intermediary must not penalize those who do not want to use the addi-
tional services. It must have good performance for all users. The rules engine
should be optimized for performance so that user requests for which no service

8.5 Open Pluggable Edge Services (OPES) 243

Ch08.qxd 01/19/2005 01:05 PM Page 243

modules are executed are not slowed down, compared to a non-OPES environ-
ment.

Trust and security needs establish another primary requirement. The rules
must ensure that services are only invoked under the request and (delegated)
authority of a content producer or content consumer. Logging, authorization,
and collecting accounting information for billing purposes are also required to
establish trust and maintain security.

Rule authors need to be able to specify trigger conditions at a fine level of
detail. This may include specifying conditions based on fields in the header,
body, or trailer of the application message, for example. Other conditions, such
as the time of day, client address, or client device type may also be considered.
Separate rules may be needed for each of the various application protocols, such
as HTTP or SMTP, being used.

244 C H A P T E R 8 Beyond Web Surfing—Content Services

OPES Processor Callout Server

Start monitoring connection state
Initialization

Original data flow

Start processing the application message

Start monitoring transaction state

Receive application dataSending application data

Perform requested content services

Begin Adapted data flow.

Send adapted application data

Receiving adapted application data

Start processing the application message

Receive application dataSending application data

Perform requested content services

Receiving adapted application data

End OCP Transaction End OCP Transaction

End application message processing

Begin Adapted data flow.

Send adapted application data

End application message processing

Transport Connection (e.g. TCP/IP)

Connection Start (CS)

Negotiation Offer (NO)

Negotiation Response (NR)

Transaction Start (TS)

Application Message Start (AMS)

Data Use Mine (DUM)

Application Message End (AME)

Data Use Mine (DUM)

Application Message Start (AMS)

Data Use Mine (DUM)

Application Message End (AME)

Data Use Mine (DUM)

Transaction End (TE)

Application Message Start (AMS)

Application Message Start (AMS)

Application Message End (AME)

Application Message End (AME)

Figure 8.10 Example OCP session.

Ch08.qxd 01/19/2005 01:05 PM Page 244

Because a single intermediary will execute many individual rules derived
from input by several authors, the execution order and interaction of these rules
must be clear. This requires consideration of the dynamic adaptations that can
take place as data flows from one service application to the next.

The rules engine must allow for service modules to be executed at different
points in the round-trip message flow. This allows, for instance, for services to
operate only on messages from the origin server and not from the cache or client.
Figure 8.11 illustrates the various execution points. This figure has been adapted
from Figure 8.8 to emphasize the ruleset portion of the data dispatcher. It iden-
tifies the following four execution points.

Point 1—Client Request. A request from a client has been received. A possible
cache lookup (or other value-added service of the intermediary) has not yet
occurred.
Point 2—Intermediary Request. The requested Web object cannot be served from
the cache and the origin server is about to be contacted for the HTTP response.
Point 3—Origin Server Response. The response from the origin server has been
received. It has not yet been stored in the cache.
Point 4—Intermediary Response. The response from the cache or the origin
server is about to be sent back to the client.

8.5 Open Pluggable Edge Services (OPES) 245

Application
Protocol

Messages

Client
(Data Consumer)

Origin Server
(Data Producer)

OPES Processor

TCP/IP

HTTP

OCP
Data Dispatcher

OPES
Service Application

Callout
Server

OCP

OPES
Service

Application

TCP/IP

HTTP

Cache

Ruleset

Application
Protocol

Messages

4

1

3

2

Figure 8.11 Execution points for OPES rules.

Ch08.qxd 01/19/2005 01:05 PM Page 245

Initially, the OPES Working Group has debated two alternative concepts for
the syntax of the rules language. One approach, called the Intermediary Rule
Markup Language (IRML), is an XML-based language that can be used to
specify rules for the execution of OPES services [BeH03]. A later proposal
dubbed P: Message processing language is based loosely on the syntax of object-
oriented languages such as Java, C++, and JavaScript. It is a simple configura-
tion language designed for efficient and compact specification of message
processing instructions at application intermediaries [Rou03]. After some dis-
cussion, the OPES Working Group decided to follow the “P” approach, but at
the same time, decided to postpone standardization of the rules language until
after the protocols were established. At the time of this writing (November
2004), the OPES Working Group is proposing a new charter that will include
specification of the rules language as one work item.

Open Pluggable Edge Services (OPES) extends the notion of Web interme-
diaries. The next section describes another Web-based approach to services and
applications.

8.6 The Web Services Paradigm

The previous sections on ICAP and OPES summarized efforts centered around
the IETF community. The World Wide Web Consortium (W3C) has taken a dif-
ferent approach to solving a slightly different but related problem. While the
focus of OPES is on rule-based, inline transformation of a data flow between
two Internet hosts, the W3C approach to content services targets on-demand
invocation of remote services (e.g., in a business-to-business environment).
Given the nature of ICAP/OPES style callout transactions, performance and
fine-grained control is of the utmost importance for these protocols. We will see
in this section that the W3C approach to Web services could be used to imple-
ment callout transactions as well, but that its associated overhead is considered
an important drawback for scenarios targeted by ICAP/OPES.

The stated goal of the W3C is to develop interoperable technologies—
including specifications, guidelines, software, and tools—to lead the Web to its
full potential. They are active in defining standards for Web services having
a slightly different character than the standards being worked on in the IETF.
These include traditional business services, such as submitting a purchase order
or finding a plumber, in addition to services automatically invoked by software
programs. These Web services can interwork with intermediaries, but are focused
on communication and information exchanges between application endpoints.
OPES, on the other hand is optimized for communications between an applica-
tion server and an intermediary, such as an HTTP proxy.

The goals of the overall Web services architecture are to promote

● interoperability between Web services,
● integration with the World Wide Web,

246 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 246

● reliability of Web services,
● security of Web services,
● scalability and extensibility of Web services, and
● manageability of Web services.

The W3C defines a Web service as a software system designed to support
interoperable machine-to-machine interaction over a network. The interface to
a specific Web service is described in a machine-processable format called Web
Services Definition Language [WSDL]. Other systems interact with the Web
service using the Simple Object Access Protocol (SOAP)-messages in XML for-
mat, which are typically conveyed using HTTP [BHM+ 04].

The specifications that interwork to make up this Web-based paradigm for
announcing, discovering, describing, locating, and exchanging messages to use
the services are introduced in Table 8-1.

8.6.1 SOAP—The Simple Object Access Protocol

When comedian Lou Costello wanted to know the names of the players on the
baseball team, he engaged his partner Bud Abbott in this famous dialogue:

8.6 The Web Services Paradigm 247

Table 8-1 Components of the web services architecture

Language / Protocol Role

UDDI—The Universal Description, Discovery & Discover Services and their High Level
Integration specification provides a platform- Description—What services are available?
independent way of discovering and describing
Web services and Web service providers.

WSDL—The Web Services Definition Language is a Describe Services Precisely—What services are
format for precisely describing network services provided? What operations can be performed?
in terms of ports, operations, message exchanges What service ports provide access to those
and data formats operations? What messages can be exchanged?

What is the data format for each operation?
SOAP—The Simple Object Access Protocol is a Exchange Messages—Exchange information

lightweight protocol intended for exchanging between service ports described by WSDL.
structured information in a decentralized,
distributed environment.

XML—The Extensible Markup Language is a very Define Data Structures
general and extensible language for identifying
the structure of data, including documents.

HTTP, TCP/IP, and other transport mechanisms. Transport Data—Move information to and from
the service.

Ch08.qxd 01/19/2005 01:05 PM Page 247

Costello: So you go ahead and tell me some of their names. . .
Abbott: ... Now let’s see. We ... have Who’s on first, What’s on second,

I Don’t Know’s on third.
Costello: That’s what I wanna find out.
Abbott: I say Who’s on first, What’s on second, I Don’t Know’s on third.
Costello: You know the fellows’ names?
Abbott: Certainly!
Costello: Well then who’s on first?
Abbott: Yes!
Costello: I mean the fellow’s name!
Abbott: Who!
Costello: The guy on first!
Abbott: Who!
Costello: The first baseman.
Abbott: Who is on first! ...

Messages can be easily misunderstood and communication becomes impos-
sible if the structure of the message and the type of the data are not conveyed.
If Abbott had tagged the information to show its structure and type:

<FirstBase>
<PlayerName> Who </PlayerName>

</FirstBase>
<SecondBase>
<PlayerName> What </PlayerName>

</SecondBase>
<ThirdBase>
<PlayerName> I Don’t Know </PlayerName>

</ThirdBase>

his meaning would have been immediately clear to Costello.
SOAP—The Simple Object Access Protocol is a lightweight protocol

designed to exchange structured information in a decentralized, distributed envi-
ronment. It is an application of XML that defines an extensible messaging
framework and provides a message construct that can be exchanged over a vari-
ety of underlying protocols. The message framework is designed to be inde-
pendent of any particular programming model or other implementation-specific
semantics. Appendix A—XML Basics provides an introduction for readers who
are unfamiliar with XML.

Two major design goals for SOAP are simplicity and extensibility.

248 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 248

8.6.2 Example SOAP Message

The following example shows a simple message expressed in SOAP. This message
may be sent as part of a pager alerting service requesting the service call a pager
number to deliver a message at a specific time. SOAP messages contain an
Envelope, an optional Header, and the Body. This message contains two pieces
of data defined by the “alertcontrol” application. The first is a SOAP header
block with a local name of alertcontrol. The second is a body element with
a local name of alert. In general, SOAP header blocks contain control infor-
mation that might be useful to SOAP intermediaries, as well as the ultimate des-
tination of the message. In this example an intermediary might use the
<priority> information in the SOAP header to prioritize the delivery of the
message. The body contains the actual message payload, in this case the alert
message text.

<env:Envelope xmlns:env="http://www.w3.org/2003/05/
soap-envelope">

<env:Header>
<n:alertcontrol
xmlns:n="http://example.alertservices.org/
alertcontrol">

<n:priority>1</n:priority>
</n:alertcontrol>
</env:Header>

<env:Body>
<m:alert xmlns:m="http://example.alertservices.org/
alert">
<m:msg>Pick up Mary from school at 2pm</m:msg>

</m:alert>
</env:Body>

</env:Envelope>

Example 8.1. SOAP message containing a SOAP header block and a SOAP body.

The ultimate recipient of this SOAP message sent from the client application
is the alert service application, but it is possible that the SOAP message may be
routed through one or more SOAP intermediaries that act in some way on the
message. Some simple examples of such SOAP intermediaries might be ones that
log, audit, or possibly, amend each alert service request.

8.6 The Web Services Paradigm 249

Ch08.qxd 01/19/2005 01:05 PM Page 249

8.6.3 WSDL—The Web Services Description Language

It is difficult to describe exactly how to access a business service. The first time Lee
contacted a particular plumbing supply store, I called the wrong phone extension,
parked in the wrong lot, waited in the wrong line, filled out the wrong forms, did
not bring enough cash, and drove away with the wrong part. WSDL is designed to
describe the operation of Web-based services precisely enough to allow automated
computer-to-computer business transactions to complete successfully.

WSDL—the Web Services Description Language—describes how machines
interwork to access a service. It is an XML grammar for describing network
services as collections of communication endpoints that exchange messages.
WSDL documents specify precisely how messages are used to access the services
provided by distributed systems. This provides a prescription for automating the
details involved in communicating between the applications that request service
and those that provide services.

A WSDL document defines services as collections of network endpoints, or
ports. Note that these ports are different from the protocol ports used by TCP. In
WSDL, the abstract definition of endpoints and messages is separated from their
concrete network address or data formats. This allows the reuse of abstract defi-
nitions called messages, which describe the data being exchanged and port types,
which are collections of operations. The association of concrete protocol and
data format specifications for a particular port type establishes a reusable binding.
A port is defined by associating a network address with a reusable binding. A col-
lection of ports defines a service. Refer to Figure 8.12 for an illustration of the
following elements used in a WSDL document to define a network service.

● Service—a collection of one or more related port specifications. An
example service might be online book sales. Individual ports might cor-
respond to the operations of searching, price inquiry, inventory inquiry,
purchase order submittal, payment submittal, and problem reporting.

● Port—a single endpoint defined as a combination of a binding (identified by
name and referring to an operation) and a network address. For example,
the search port named “SearchPort,” may refer to binding “SearchBinding,”
and exist at network address http://soap.amazon.com/schemas3/Amazon
WebService.wsdl

● Binding—concrete protocol and data format specification for a particu-
lar port type. This consists of a name for the binding; the port type
(identified by name); the transport protocol (e.g., SOAP over http); and
the specification of the action, input, and output data format for each
defined and named operation. For example, the binding might be named
“SearchBinding” and include the transport protocol http://schema.xml
soap.org/soap/http and the operation named “KeywordSearchRequest.”

● Port Type—an abstract set of operations supported by one or more end-
points. This consists of a name for the port type (linking it to the bind-
ing) and a specification for each operation comprising it. Each of these

250 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 250

operations is named, providing linkage to the corresponding binding.
For example, the port type might be named “SearchPort,” and include
the operation “KeywordSearchRequest.”

● Operation—an abstract description of an action supported by the ser-
vice. This begins with a name for the operation linking it to the binding.
Each operation then identifies the input and output messages, by name,
that it requires. For example, the operation “KeywordSearchRequest”
requires input message “KeywordSearchRequest” and creates output
message “KeywordSearchResponse.”

● Message—an abstract, typed definition of the data being communicated.
This consists primarily of the message name linking it to the operation
and an element name linking to the data type specification for each element
of the message. For example, a message named “KeywordSearchRequest”
contains a complex element type of <KeywordRequest>.

8.6 The Web Services Paradigm 251

•Documentation
•Port (name)

•Binding
•Address

Service (name)

•Type (name)
•Transport Protocol
•Operation (name)

•action
•input
•output

Binding (name)

•Operation (name)
•input message (name)
•output message (name)

Port Type (name)

•Part
•Element (name)

Message (name)

•Part
•Element (name)

Message (name)

•Schema
•Element (name)

•type
•Element (name)

•type

Types

A collection of Ports with the associated
bindings and network addresses

An association of:
• A Port to its Operations,
• A Port to a Port Type, and
• A Port to a Transport Protocol

An association of:
• Operations to a Port Type, and
• Each Operation to its Messages

Figure 8.12 WSDL document elements and linkages.

Ch08.qxd 01/19/2005 01:05 PM Page 251

● Types—A container for data type definitions (i.e., schema) correspon-
ding to the elements of each message using a type specification system
(such as XSD). Each element is linked by name to the corresponding ele-
ment in the message it defines. The inquiry message in our example may
have the complex type of <KeywordRequest>, which contains an ele-
ment of type <keyword>, which is of the elementary type string.

WSDL does not introduce a new type definition language. Instead, WSDL is an
XML application and relies on the XML Schema Specification (XSD) as its
canonical type system.

In addition to the core service definition framework, the WDSL specifica-
tion introduces specific binding extensions for the following protocols and mes-
sage formats:

● SOAP 1.1,
● HTTP GET/POST, and
● MIME.

These language extensions are layered on top of the core service definition
framework. Additional binding extensions could be defined for WSDL at a later
time.

8.6.4 UDDI

Web search engines, such as Google, Altavista, and Excite, have helped us locate
content on the World Wide Web for many years. If we are interested in shop-
ping for a dining room table, we enter “table” and get a long list of pages that
contain the search word “table.” In fact, the list includes approximately 250 mil-
lion pages containing the word table. Unfortunately, the search does not distin-
guish between tables as charts, tables as furniture, people selling tables, people
collecting tables, people designing tables, people buying tables, and all the other
concepts and activities involving a table. The information the search engines
use is unstructured, so they cannot determine the particular sense to which a
table is referred. Furthermore, these search engines are oriented toward Web
content, not Web services. They are examples of unstructured Web content
directories.

UDDI is an example of a structured Web services directory. UDDI—The
Universal Description, Discovery & Integration specification provides a plat-
form-independent way of describing, publishing, and discovering Web services
and Web service providers. The UDDI data structures provide a framework for
describing basic service information, and an extensible mechanism to specify
detailed service access information using any standard description language
[C.K03].

In the context of UDDI, the term “Web services” describes a broad range of
business functions made publicly know as an invitation to other people, busi-
nesses, or software programs to make use of the business function. This may

252 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 252

include the ability to send a purchase order or invoice, search a product catalog,
or calculate shipping charges.

Central to UDDI is a registration database used by businesses to publish
services information. This database can be searched by people and programs to
find particular services. The Web services offered by the UDDI Business
Registry’s nodes can be found at http://uddi.org/register.html (for publication of
business services) and http://uddi.org/find.html (for inquiry and discovery
of business services). The goal of this registry is to allow information to be reg-
istered once and published everywhere [UDD00].

The registry consists of specification documents written using the XML-
based UDDI information model and accessed using the UDDI Applications
Program Interface (API). The information model is based on four major infor-
mation structures illustrated in Figure 8.13. They are:

1. Business information, the “yellow pages,” is described in the
businessEntity structure. This is the top-level information related to
the business unit. Searches of this information can be performed to locate
businesses serving a particular industry, product category, or within a
particular geographic region.

2. Business descriptions of Web services, part of the novel “green pages,” is
described in the businessService structure. Groups of related busi-
ness services, such as purchasing, shipping, and billing are described.

3. Technical information binding the services to more detailed descriptions
in the bindingTemplate complete the “green pages” section. This
includes the network address or the service in the accessPoint element
and a pointer to the details of the technical model.

4. The technical model of the services is called the tModel. Each distinct
specification, transport, protocol, or namespace is represented by a dis-
tinct tModel. These descriptions may be based on Web Service
Description Language (WSDL), XML Schema Definition (XSD), or
other documents that describe how to access the Web service. Each
tModel is referenced by its unique tModelKey. This allows a single
tModel to be referenced by any number of businessServices and
bindingTemplate structures. The use of tModels is essential to how
UDDI represents data and metadata.

The specific mapping of WSDL elements to UDDI structures needed to
capture a WSDL document in a UDDI registry are described in detail in
[CoKo3]. This allows queries of many useful types, including these examples:

● If a developer needed to learn the specific methods to access a service over
a particular WSDL port type, the developer could use the name of that
wsdl:portType in a UDDI query to find a tModel representing that
portType.

● If a developer needed to learn all of the services related to a particular
WSDL port type, the developer could use any tModel representing a

8.6 The Web Services Paradigm 253

Ch08.qxd 01/19/2005 01:05 PM Page 253

particular portType in a UDDI query to find all tModels representing
that portType.

To allow software programs to access Web services, the UDDI specifications
include an API. This API is divided into two logical parts, one for searching and
interrogating the registry and the other to publish information to the register.
The complete specification is given in [UDDI V3] and is summarized in the
Table 8-2.

Only allowing authorized individuals to publish or change information
within the UDDI business registry is the approach that is taken to ensure secu-
rity of the information. This principle is enforced by each individual implemen-
tation of the business registry.

8.7 Service Personalization and Service Convergence

Several forces provide information users a proliferation of choices, while simul-
taneously driving the convergence of services. Users typically want rich relevant

254 C H A P T E R 8 Beyond Web Surfing—Content Services

•businessKey=
•discoveryURL
•name
•description
•businessServices
•identifierBag
•categoryBag

businessEntity

•serviceKey=
•businessKey=
•name
•description
•categoryBag
•bindingTemplates

businessService

•bindingKey
•serviceKey
•description
•accessPoint
•tModelInstanceDetails

bindingTemplate

•name
•description
•overviewDoc
•identifierBag
•categoryBag

tModel

•identifierBag

•categoryBag

•tModelKey=
•keyName
•keyValue

keyedReference

•tModelKey=
•Description
•OverviewDoc

tModelInstanceInfo

Figure 8.13 The UDDI information model.

Ch08.qxd 01/19/2005 01:05 PM Page 254

content instantly delivered anytime, anywhere. This content can include a vari-
ety of information, such as news, weather, sports, stock quotes, reports, ratings,
opinions, and assessments. It can include entertainment such as high-fidelity
audio, or high-resolution video of prerecorded music or movies, or of current or
personal events from a Web cam. The content may be important for learning
new technologies, procedures, new recipes, or new skills.

The convergence on digital representation of information, whether in text,
audio, graphics, pictograms [WAP 01], animation, or video form, provides the
user with a wide variety of choices for accessing, retrieving, and representing
information. The success of radio and satellite transmission allows the mobile
user access to information, and also provides a choice of access media when sta-
tionary. The miniaturization of display devices, energy storage devices, informa-
tion storage devices, sound transducers, input devices, and processors allows
powerful hardware devices to be easily carried. These portable devices include
radio receivers, two-way radios, pagers, mobile phones, audio players, PDAs,
digital cameras, television receivers, wireless laptop computers, and GPS
receivers. Increasingly, the functions of several of these devices are integrated
into a single device. Cell phones now include digital cameras, text and multime-
dia messaging, push to talk, GPS, and other features. Wireless PDAs that
include MP3 playback are another example.

People want information customized and personalized. High-resolution
graphics, full motion video, and high fidelity audio generally improve the user’s

8.7 Service Personalization and Service Convergence 255

Table 8-2 UDDI application program interface functions

Inquiry API Functions Publisher API Functions

Find Things: Save Information:
● find_binding ● save_binding
● find_business ● save_business
● find_relatedBusinesses ● save_service
● find_service ● save_tModel
● find_tModel Delete Entries:
Get Details: ● delete_binding
● get_bindingDetail ● delete_business
● get_businessDetail ● delete_publisherAssertions
● get_operationalInfo ● delete_tModel
● get_serviceDetail Manage Publisher Relationship Assertions:
● get_tModelDetail ● add_publisherAssertions

● get_assertionStatusReport
● get_publisherAssertions
● get_registeredinfo
● set_publisherAssertions

Ch08.qxd 01/19/2005 01:05 PM Page 255

experience. This requires representing information in ways that make full use of
the capabilities of the client device hardware, while not exceeding its limitations.
It also requires accommodating the user’s personal preferences, geographic posi-
tion, presence (i.e., focus of attention), and payment options while respecting
their privacy. As the user moves away from the desktop PC, they may use a clas-
sic telephone to access information using only voice over the Public Switched
Telephone Network (PSTN). At some other time they may use a wireless device
with limited display capability and limited bandwidth. Services can better
meet the user’s needs if profiles describing preferences, status, limitations, and
capabilities are available.

8.7.1 Types of User Profiles

The Wireless Application Protocol (WAP) is a series of standards describing the
use of a wide variety of wireless devices to access the Internet [WAP02,
WAP00]. The WAP User Agent Profile (UAProf) specification, which is related
to CC/PP [W3C CCPP], is concerned with capturing classes of device capabili-
ties and preference information [WAP UA]. These classes include the hardware
and software characteristics of the device, as well as information about the net-
work to which the device is connected. The user agent profile contains informa-
tion used for formatting content. A user agent profile is distinct from a user
preference profile, described more fully in the next section.

Table 8-3 lists examples of the information in the fields of the user agent
profile.

256 C H A P T E R 8 Beyond Web Surfing—Content Services

Table 8-3 WAP user agent profile (UAProf) example fields

Display Characteristics
Whether the device supports display of images
The display screen size
Whether the device display supports color
Bits per pixel
Characteristics of the browser being used

Input Device Characteristics
The type of keyboard supported
Whether the device supports text entry
A list of video input encoders supported by the device
A list of audio input encoders supported by the device
Whether the device supports any form of voice input, including speech recognition

Audio Characteristics
Whether the device supports sound output

Continued

Ch08.qxd 01/19/2005 01:05 PM Page 256

8.7 Service Personalization and Service Convergence 257

Table 8-3—cont’d

Security Features
A list of security or encryption mechanisms supported by the device

Language Preferences
A list of preferred document (natural) languages
Pictogram classes supported

Transmission Channel Characteristics
A list of bearers (wireless carrier protocols) supported by the device
Push preferences

Language
Natural language preferences and limitations

Format
Preferences for audio, text, graphics, pictograms, and video representations
Preferences for trading off speed for detail, resolution, and fidelity

Interests
Favorite news topics
Favorite sports and sports teams
Stock quotations and other financial interests
Hobbies, favorite movies, books, and music
Local weather, other weather locations
Horoscope

Accessibility Capabilities and Limitations
Visual acuity
Auditory acuity
Speech characteristics

Payment Options
What services are authorized for payment
How to pay for them

Privacy Options
What information can be revealed to what services
What must remain private

Hardware device manufacturers and software applications providers can sup-
ply this user agent profile information. However, no broadly accepted standards for
user profiles exist. They may be very application specific; however, here are exam-
ples of the types of information that may be included in a user preferences profile:

Example 8.2. Example user preference profile information.

Ch08.qxd 01/19/2005 01:05 PM Page 257

In addition to user preference and presence information, providing information
about the user’s current status is useful in customizing services. Here are examples
of the types of information that may be included in a user status profile:

258 C H A P T E R 8 Beyond Web Surfing—Content Services

Presence Information
Entity Identification
Status (open, closed, or extended status)
Communication address (with optional relative priority)
Time stamp
Human-readable note

User Location
Latitude and longitude
Indoors or outdoors
Home, work, or away
Moving or stationary

User Network Addresses
Client IP Address
Caller and Called PSTN number or mobile phone number

Example 8.3. Example user status profile information.

This information changes often. Also, precise location information may be
unknown to the user, especially while traveling. Therefore, it is best if the user
status profile information is obtained automatically by the client device or net-
work services. The presence information data shown above has previously been
introduced in Chapter 7 as the “Common Profile for Presence.”

8.7.2 Location Services

Several approaches to determining the location of wireless devices are available.
These systems use information from the Global Positioning Satellite System,
from the cell towers in the Radio Access Network, or both. The least accurate
system, cell identification (Cell-ID), identifies the cell site with the strongest sig-
nal. Therefore, the distance between cell sites determines the position accuracy.
This approach has an uncertainty of 150–500 meters in an urban environment,
and the uncertainty may increase to more than 2000 meters in a rural area. One
of the most accurate systems, uplink time difference of arrival (U-TDOA), uses
signal timing information from many cell sites to compute client location to
within approximately 50 meters [TPC].

For any of these systems to work, the network has to communicate with
the client to determine and report the location. This location determination

Ch08.qxd 01/19/2005 01:05 PM Page 258

function is part of the wireless access network that forms a gateway to the
Internet.

The list of services that could be provided using accurate location informa-
tion is quite interesting. Some examples are tracking packages or other assets
during transport, providing emergency services to people in distress, tracking a
fleet of vehicles, navigation, tracking people or animals, recovering stolen vehi-
cles or other property, identifying restaurants or service stations in the area,
advertising opportunities in the area, and providing local weather forecasts.
Privacy is a huge concern in this context, and research is ongoing to protect the
user’s privacy while still enabling location-based services.

8.7.3 Voice Services

VoiceXML, the Voice Extensible Markup Language, is designed for creating
audio dialogs that feature synthesized speech, digitized audio, recognition of
spoken and DTMF key input, recording of spoken input, telephony, and mixed
mode conversations. It allows users to access Web content and services using a
voice interface over wireless or wireline telephones. A VoiceXML implementa-
tion platform includes a Voice XML interpreter and a gateway to the Public
Switched Telephone Network (PSTN) to provide telephone access. This gateway
interprets VoiceXML documents, provides text-to-speech synthesis, voice recog-
nition, digital audio file rendering, and provides connections to the telephone
network and the Internet.

The following VoiceXML document instructs such a gateway to synthesize
the phrase “Hello world!” [TellB, VoiceXML].

<vxml version="2.0">

<form>

<block>

Hello, world!

<exit/>

</block>

</form>

</vxml>

Example 8.4. VoiceXML example to say “Hello world!” in synthetic speech.

Some location information can be inferred from the calling number, which
is available to the VoiceXML application. Domino’s Pizza makes use of this
feature to direct customers calling 1-800-DOMINO to the nearest Domino’s
Pizza Shop [TellA].

8.7 Service Personalization and Service Convergence 259

Ch08.qxd 01/19/2005 01:05 PM Page 259

TellMe Networks, Inc. provides several useful services that can be accessed
by calling 1-800-555-TELL.

8.7.4 Examples

A few examples will help to show how these various components work together
to complete service requests. Refer to Figure 8.15, “Services Transformations,”
and begin with scenario A, where a PC-based client requests a local weather
forecast. The request goes through these steps:

1. The client generates an HTTP message, requesting a local weather fore-
cast from a well-known, global weather Web page. The request is trans-
ported along with the User Status Profile to a Service Activation point,
running on a proxy within the Internet.

260 C H A P T E R 8 Beyond Web Surfing—Content Services

RAN

Access
Wireless
Devices

Location
Server

Calculate
Client
Position

PSTN

Access
Telephone
Devices

VoiceXML
Platform

Transcode
Audio

WAP
Gateway

Transcode
Wireless
Protocols

Service
Activation
Point

Identify
Required
Services

Service
Engine

Provide
Content
Services

Origin
Server

Provide
Content

Local Weather?

“Weather”

Local Weather?

A

B

C

14

1
2

3 3 5 6 8

99

4 7
7

42

8

1 3 5

8

1 3 5

7 6

6 6

6 6

42

8 6

14
13

12

1110

12

Figure 8.15 Services transformations.

Ch08.qxd 01/19/2005 01:05 PM Page 260

2. The rules engine within the service activation point examines the request.
Using the User Status Profile it determines the user’s locality to be New
York City (NYC). It also selects a callout server to perform the requested
service.

3. Using the OPES Callout Protocol, the service activation point forwards
the request to the selected service engine.

4. The service engine chooses an origin server to provide a forecast for NYC
weather. It may extract information from the User Status Profile, or the
User Preferences Profile (if it is available) to request a forecast report cus-
tomized to these preferences.

5. The service engine generates an HTTP request to the selected origin server
requesting a weather forecast for NYC.

6. The origin server responds with the requested report.
7. The service engine relays the response to the service activation point.
8. The service activation point forwards the response to the PC client, where

the user can view the weather forecast.

In scenario B, the user requests a local weather forecast by speaking the
word “weather” into a traditional voice telephone. The request goes through
these steps:

1. The user dials the phone number of a VoiceXML implementation plat-
form.

2. The PSTN connects the caller to the VoiceXML platform.
3. The user speaks the word “Weather.”
4. The Voice XML platform recognizes the audio, and transcodes it into

text. It also uses the calling phone number to estimate the location of the
caller (which we assume to be NYC in this example).

5. Following the instructions of the VoiceXML document controlling this
session, it generates an HTTP request for a weather forecast for NYC and
forwards that request to the service activation point.

6. Actions similar to steps 3 through 7 of scenario A are completed to
obtain the relevant forecast information, which is returned to the
VoiceXML platform.

7. The VoiceXML platform transcodes the text of the weather report into
speech.

8. The synthesized speech report is voiced to the user through the PSTN.

In scenario C, the American-born user has traveled to Munich, Germany,
and requests a local weather forecast from a wireless PDA. The request goes
through these steps:

1. The wireless PDA connects through the Radio Access Network (RAN)
to the Internet. The client generates an HTTP request for a local weather
forecast. The three profiles describing the user agent, user preferences,
and user status are sent along with this request.

8.7 Service Personalization and Service Convergence 261

Ch08.qxd 01/19/2005 01:05 PM Page 261

2. The location server examines the uplink signals from the PDA to deter-
mine its location within Munich. This location information is inserted
into the user status profile.

3. The PSTN routes the request to a WAP Gateway.
4. The WAP gateway uses the Device Profile to transcode the wireless PDA

protocols into general Internet protocols.
5. The transcoded request is forwarded on a service activation point.
6. Using the OPES Callout Protocol, it forwards the request to the selected

service engine.
7. The service engine chooses an origin server to provide a forecast for

Munich Germany.
8. The service engine generates an HTTP request to the selected origin

server requesting a weather forecast for Munich.
9. The origin server generates the requested (German language) response

and returns it to the service engine which replies to the service activation
point.

10. Using the language preference information in the User Preferences
Profile the rules in the service activation point select a service engine to
translate the weather report from German to English.

11. The German language report is forwarded to the selected service engine
for translation into English. Note that this is probably a different service
engine than the one providing the weather information in step 7.

12. The translated report is returned to the service activation point and for-
warded to the WAP gateway.

13. Using the Device Profile, the WAP gateway transcodes the report into
formats suitable to the Wireless PDA.

14. The translated and transcoded report is transmitted to the PDA through
the PSTN and RAN.

These examples illustrate how the various components and features of dif-
ferent approaches to content services can be used to provide a personalized expe-
rience for the consumer. The following chapter will expand on how the various
components of content networks work together and how they are deployed.

262 C H A P T E R 8 Beyond Web Surfing—Content Services

Ch08.qxd 01/19/2005 01:05 PM Page 262

C H A P T E R 9

Building Content Networks

263

Purpose shapes networks. Each of the network elements described in the previ-
ous chapters can be combined in many ways. The variety with which the ele-
ments are combined into networks depends on the purpose and the goals of its
owners. This chapter explores three distinctly different network examples.

The first example is a campus or enterprise network. Here, the same
organization that uses the network owns it and pays to build and run it. The
goal is to provide adequate network services to all users at the minimum over-
all cost.

The second network is owned and operated by a network service provider.
Here the goal is to generate revenue by providing useful services to both content
consumers and content providers. The network spans a large geographic area
and offers a variety of attractive services for each of its customers.

The third network is run by a content distribution company. Their primary
goal is to generate revenue by providing premium content distribution services
to the content providers subscribed to their service. The network also has a large
geographic span, and includes features that ensure rapid content delivery to a
very large number of content consumers. This particular company does not own
the wide area transmission facilities, such as the SONET links they use. Instead
they rent bandwidth from companies that own and operate these transmission
links.

Revenue enables services. Network equipment is expensive to purchase,
install, operate, and maintain. The network can only exist if it provides signifi-
cant cost savings or revenue-producing services for the content consumers or the
content providers, unless, perhaps, it is subsidized.

Services enable revenue. Network operators are in a very competitive busi-
ness. Unless they provide good value compared to their competitors they cannot
expect to attract customers and generate the revenue they need to sustain their
businesses. The Internet bubble has burst. Do not expect business people to soon
repeat the investment mistakes made at the start of this millennium.

Ch09.qxd 1/19/05 9:00 AM Page 263

264 C H A P T E R 9 Building Content Networks

The examples used in this chapter are fictitious. The names “State
University,” “Global Links Networks,” “New World Times,” and “Kala” do not
represent existing organizations. However, the examples are very real because
they represent problems and solutions typical of so many organizations like the
hypothetical ones described here.

9.1 Campus and Enterprise Network Example

In this section we follow a hypothetical example illustrating how a typical uni-
versity campus or enterprise grows its network to include Web caching, stream-
ing caches, and Web switches.

The campus network of State University is illustrated in Figure 9.1. The
chemistry department houses an Ethernet switch that is used to interconnect
each of the several desktop PC Web clients used by the professors in the build-
ing. A Web server and gateway router are also connected to that switch. The uni-
versity has a single T1 wide area link connecting the router to the Internet,
providing a maximum of 1.544 Mbits/second raw bandwidth. Overhead for
framing, TCP headers, and HTTP headers reduce the actual bandwidth available
for transmitting content.

The math department is located in a separate building across the campus,
nearly a half a mile from the chemistry building. The math professors also
want connectivity to the server and Internet. The network administrators
install an optical fiber gigabit Ethernet link between the two buildings. The
system works well and the professors are able to store course materials,
research materials, and other content on the server. At this point the network
has grown large enough that responsibility for managing it has shifted
from the chemistry department to the University’s information technology
department.

To provide Internet access to the students, the network has grown to connect
two separate residence halls to the network. These are also linked to the switch
in the chemistry building using gigabit Ethernet links. The network designers
consulted Table 9-1 [Tech1] summarizing Ethernet LAN characteristics to
choose the media for the local network.

The network administrators use simple network management tools to mon-
itor the traffic in the network. The Ethernet switches come equipped with Web-
based traffic monitoring tools that display traffic measurements for each port.
To automate the traffic monitoring they have installed MRTG (as described in
Section 3.5.3) running on the Web server. This produces traffic level graphs like
the one previously shown in Figure 3.5.

With the growth in network use, the T1 wide area link has become over-
loaded. The network administrators considered several solutions. They con-
sulted Table 9-2 of Trunk-carrier characteristics to help identify their
alternatives. These include:

Ch09.qxd 1/19/05 9:00 AM Page 264

9.1 Campus and Enterprise Network Example 265

Web Server

Web Clients

Web Clients

Ethernet
Switch

Gateway
Router

WAN
Connection

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Web Clients Web Clients

Chemistry Department

Math Department

Residence Hall #1 Residence Hall #2

Gigabit
Ethernet

LAN Connection

cnn.com

yahoo.com

Internet

Figure 9.1 Campus network.

Table 9-1 Ethernet LAN characteristics

Designation Media Distance Standard

Ethernet: 10 megabits per second IEEE 802.3
10Base-T Twisted Pair 100 Meters Clause 14

Fast Ethernet: 100 megabits per second
100BASE-T One of the following: Clauses 22, 28
100Base-TX Cat-5 Twisted Pair 100 Meters Clause 24
100Base-FX Two optical fibers 400 Meters Clause 26

Gigabit Ethernet: 1000 megabits per second
1000Base-SX Duplex multimode optical fibers 550 Meters Clause 38
1000Base-LX Duplex single mode or multimode fibers 5 km Clause 38
1000Base-CX Two pairs of shielded jumper cable 25 Meters Clause 39
1000Base-T Cat-5 Twisted pair 100 Meters Clause 40

Ch09.qxd 1/19/05 9:01 AM Page 265

● purchase a second T1 link,
● replace the T1 link with a T3 link, providing approximately 45 Mbits/sec-

ond raw bandwidth, or
● install a Web cache to reduce the WAN traffic and improve response time.

After considering the costs and other factors, the administrators chose the
Web caching solution. The resulting network is show in Figure 9.2.

The Web cache is configured as a forward proxy. Notices are sent to the stu-
dents and faculty instructing them to configure their browsers to identify the
Web cache as their forward proxy. Those users who follow the instructions enjoy
faster Web access and help reduce the load on the WAN link. Other users ignore
the instructions, or have difficulty following them.

Because of the many shared interests of the university community members,
the cache hit ratios are high, often approaching 30% or more.

Network use continues to grow, and the WAN link is again approaching
overload. To reduce the WAN traffic the network administrators decide to
increase the capacity of the Web cache by introducing a Web switch (also known
as Layer 4–7 switch) and creating a Web cache cluster. This network configura-
tion is shown in Figure 9.3. Here, as previously illustrated in Figure 5.4, the Web
switch translates its single VIP into a balanced load spread across the several real
Web caches attached to it. Users configure their Web browsers using the Web
switch VIP as the proxy address. The Web switch is configured to partition the
URL address space across the various Web caches. This increases the total cache
store capacity, and processing power, and increases the hit ratio. For example, if
all images are directed to cache #1 and all HTML files are directed to cache #2,
then the cache storage space is additive and the probability of a hit increases, as
previously illustrated by the graph in Figure 3.8.

To improve security the network administrators also install a firewall
between the gateway router and the WAN connection. The first application of

266 C H A P T E R 9 Building Content Networks

Table 9-2 Trunk-carrier characteristics

Designation Data Rate

North American Digital Carrier (T Carrier)
T1 1.544 Mbps
T3 44.736 Mbps
European Digital Carrier
E1 2.048 Mbps
E3 34.368 Mbps
Japanese Digital Carrier
J1 1.544 Mbps
J3 32.064 Mbps

Ch09.qxd 1/19/05 9:01 AM Page 266

the firewall was to block incoming traffic on port 80. This prevents access to the
content of the Web server from across the Internet, while allowing free access
from within the university. Soon the firewall was put to another use. Despite
repeated reminders, a significant fraction of the university community failed to
configure their Web browsers to use the Web cache as the forward proxy. This
increased WAN traffic unnecessarily. The network administrators took steps to
enforce use of the proxy. Their plan was to block all port 80 (HTTP) traffic
through the firewall, except for the traffic that passed through the Web cache.
First they configured the Web cache proxy to use port 8000 for HTTP traffic
rather than port 80. They announced this change, and after the grumbling died
down, many users changed their browser configurations to specify port 8000
rather than the default port 80. But of course, many did not. Next they config-
ured the firewall to block port 80 traffic in both directions, except for the traffic
to and from the Web cache. Now the only way university members could
access the Internet is through the forward proxy Web cache. This forced users
to configure their browsers and use the Web cache. After a sharp drop in

9.1 Campus and Enterprise Network Example 267

Web Server

Web Clients

Web Clients

Ethernet
Switch

Gateway
Router

WAN
Connection

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Web Clients Web Clients

Chemistry Department

Math Department

Residence Hall #1 Residence Hall #2

Web Cache
Forward Proxy

IP = proxy.stateu.edu

cnn.com

yahoo.com

Internet

Gigabit
Ethernet

LAN Connection

Figure 9.2 Web cache reduces WAN traffic.

Ch09.qxd 1/19/05 9:01 AM Page 267

popularity, the network administrators’ reputation eventually improved as all
the users enjoyed better network performance.

The chemistry department wanted to broadcast live streaming video of
classroom lectures to students in their residence halls. In addition, students and
faculty were viewing streaming multimedia content available over the Internet.
This put a significant strain on the network bandwidth.

The solution the network administrators chose was to install streaming
caches as forward proxies in the chemistry department and each of the residence
halls. The math department uses streaming video only occasionally so it is satis-
factory for them to share the streaming cache located in the chemistry building.
This is illustrated in Figure 9.4. Many people enjoy these local Webcasts and the
multimedia streams available from the Internet. The streaming caches give
enough of a performance improvement that users readily configure their
browsers to use them.

University officials were becoming increasingly concerned about the number
of students using file sharing programs to download MP3 and other types of
audio files. This uses substantial bandwidth, causing network congestion, and

268 C H A P T E R 9 Building Content Networks

Web Server

Web Clients

Web Clients

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Gateway
Router

WAN
Connection

Ethernet
Switch

Web Clients Web Clients

Chemistry Department

Math Department

Residence Hall #1 Residence Hall #2

Web Cache Cluster
Forward Proxy

Firewall

cnn.com

Internet

Gigabit
Ethernet

LAN Connection

Figure 9.3 Web switch and cache cluster increase capacity.

Ch09.qxd 1/19/05 9:01 AM Page 268

could lead to lawsuits from copyright owners. The first solution the network
administrators implemented was to use the firewall to block access to the TCP/IP
ports used by the popular file sharing programs. However, students outnumber
the network administrators by a large margin, and they began to find ways to cir-
cumvent this barrier. The next solution was to use the Layer 7 features of the Web
switch. The router, firewall, and Web switch were configured to pass all the WAN
traffic through the Web switch. The switch was configured to block access to any
files of type .mp3, and other popular audio file types, from the WAN link. There
is no way to predict how long this deterrent will last, however. For a longer term
solution the network administrators are investigating an OPES service engine
that can implement more sophisticated rules and policies for fine grained, user-
specific content filtering that will initially be used to prevent audio file down-
loads. This scalable OPES solution will also allow the university to implement
virus scanning and content adaptation. The first planned content adaptation will
be used to deliver Web content to the increasing number of WiFi-connected
PDAs becoming popular across the campus.

9.1 Campus and Enterprise Network Example 269

Web Server

Web Clients

Web Clients

Ethernet
Switch

Gateway
Router

WAN
Connection

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Web Clients Web Clients

Chemistry Department

Math Department

Residence Hall #1 Residence Hall #2

Streaming Cache

Streaming Cache
Streaming Cache

Firewall
Web Cache Cluster

Forward Proxy

cnn.com

Internet

Gigabit
Ethernet

LAN Connection

Figure 9.4 Streaming caches enable multimedia.

Ch09.qxd 1/19/05 9:01 AM Page 269

As the network continues to grow, it needs more WAN bandwidth. As more
people depend on the network for more services the reliability and availability of
the network has become very important. The network administrators decide to
obtain several additional WAN links, purchased from at least two different serv-
ice providers. They use VRRP (see Section 5.2.7) and multiple gateway routers,
in some cases connected through load balancing Web switches, to improve reli-
ability. Now the network can continue operation even in the case of a WAN link
failure, a router failure, or a Web switch failure.

Figure 9.5 provides an alternative view of the State University network evo-
lution. The dashed line shows the ever increasing demand over time for band-
width connecting content users to content consumers. The stepped solid line
shows the actual network capacity. Each step increase in capacity is identified
with the network improvement responsible for providing the increase. The uni-
versity network administrators keep this chart up-to-date and use it to forecast
and plan future network improvements.

Although this example is described in a university setting, the principles
illustrated here apply to enterprise networks of many types. This includes office
buildings, branch offices, manufacturing plants, shopping malls, libraries, and
any of the many types of organizations where people in close proximity need to
share information and access the Internet.

270 C H A P T E R 9 Building Content Networks

Demand

Capacity

Time

Bandwidth

Install T1 link

Install Web Cache

Cluster Web Caches

Install Streaming Caches

Add WAN Links

Figure 9.5 Meeting increasing bandwidth demands.

Ch09.qxd 1/19/05 9:01 AM Page 270

Because this network is managed as a cost center, the network administrator
constantly needs to balance overall network performance with overall network
cost. The caches are a good choice because they help to reduce WAN costs and
increase performance.

9.2 Content Network Provider Example

In this section we follow the hypothetical example of Global Link Networks
illustrating how a network provider configures its network and evolves to pro-
vide content services.

Global Link Networks provide a variety of Internet services to content
providers and content consumers over a very large geographic region. Their high
level network map is shown in Figure 9.6. They have backbone nodes in several
of the largest cities across their service area. These are interconnected using
SONET OC48 optical links. Each of these OC48 optical connections provides a
2.488 Gbps link directly between each backbone node router.

SONET is an American National Standards Institute (ANSI) standard
(T1.105:1988) for optical digital transmission at hierarchical rates from 51.840

9.2 Content Network Provider Example 271

Backbone
Node

Backbone
Node

Backbone
Node

Backbone
Node

Regional
Node

Regional
Node

Local
Nodes

SONET
OC48

SONET
OC12

OC3

Figure 9.6 Global link network topology.

Ch09.qxd 1/19/05 9:01 AM Page 271

Mbps (STS-1) to 2.488 Gbps (STS-48) and greater. The Synchronous Digital
Hierarchy (SDH) is the corresponding international standard for optical digital
transmission at hierarchical rates from 155.520 Mbps (STM-1) to 2.488 Gbps
(STM-16) and greater. It is defined by the ITU-T G.707 standard. Table 9-3
[Tech2] lists the hierarchy of the most common SONET/SDH data rates.

The line rate refers to the raw bit rate carried over the optical fiber. A por-
tion of the bits transferred over the line are designated as overhead. The over-
head carries information that provides OAM&P (Operations, Administration,
Maintenance, and Provisioning) capabilities such as framing, multiplexing, sta-
tus, trace, and performance monitoring. The line rate minus the overhead rate
yields the payload rate which is the bandwidth available for transferring user
data such as packets or ATM cells.

Several regional nodes connect to each backbone node using OC12 links
running at 622 Mbps. There are also some links directly between regional nodes
providing a direct path where traffic between the two nodes is especially heavy.

Several local nodes connect to each regional node using OC3 links running
at 155 Mbps. The WAN links from State University, described in the previous
section, connect to one or more of these local nodes.

It is possible and even likely that this entire network will not be owned and
operated by a single business. For example, one business may own and operate
the backbone network. They sell bandwidth connections to other businesses that
own some number of regional nodes. Finally, ownership of the local nodes may
be spread across a large number of businesses, each of which owns several nodes
within some geographic region and purchases connections from the regional
companies.

The equipment in a typical local node is shown in Figure 9.7. Each local
node serves a variety of customers. Enterprise networks purchase WAN services,
content consumers purchase access services, and content providers purchase
hosting services.

The gateway router connects to the regional nodes. It also connects to WAN
links going to various enterprise networks that purchase their WAN access from
Global Link Networks.

272 C H A P T E R 9 Building Content Networks

Table 9-3 SONET / SDH data rates

Electrical Line Rate Payload Rate Overhead Rate
Optical Level Level (Mbps) (Mbps) (Mbps) SDH Equivalent

OC-1 STS-1 51.840 50.112 1.728 -
OC-3 STS-3 155.520 150.336 5.184 STM-1
OC-12 STS-12 622.080 601.344 20.736 STM-4
OC-48 STS-48 2488.320 2405.376 82.944 STM-16
OC-192 STS-192 9953.280 9621.504 331.776 STM-64
OC-768 STS-768 39813.120 38486.016 1327.104 STM-256

Ch09.qxd 1/19/05 9:01 AM Page 272

9.2 Content Network Provider Example 273

R
em

o
te

 A
cc

es
s

S
er

ve
rs

D
ia

l u
p

, D
S

L
, a

n
d

 C
ab

le

N
et

w
o

rk
 P

ro
vi

d
er

O
w

n
ed

W
eb

 S
er

ve
rs

W
eb

 C
ac

he
 C

lu
st

er
In

te
rc

ep
tio

n
P

ro
xy

S
tr

ea
m

in
g

 C
ac

h
e

W
eb

 S
w

it
ch

W
A

N
 L

in
k

to
R

eg
io

n
al

 N
o

d
e

G
at

ew
ay

R
o

u
te

r
E

th
er

n
et

S
w

it
ch

E
th

er
n

et
S

w
it

ch C
o

n
te

n
t

P
ro

vi
d

er
O

w
n

ed
 C

o
-l

o
ca

te
d

W
eb

 S
er

ve
rs

W
A

N
 L

in
ks

 t
o

E
n

te
rp

ri
se

 N
et

w
o

rk
s

Fi
g

u
re

 9
.7

Lo
ca

l n
od

e.

Ch09.qxd 1/19/05 9:01 AM Page 273

Content consumers connect through the Remote Access Servers (RAS).
Users may choose dial up modem, DSL, or cable-based access, determined by
their budgets and access bandwidth needs. Separate remote access servers are
dedicated to each type of access. Each RAS is connected through the Web switch
directing traffic to the Web cache cluster interception proxy before it connects to
the gateway router. This arrangement provides caching services to each content
consumer without the users having to configure their browsers to identify the
proxy as in the previous State University example. This speeds up their access
and reduces the WAN bandwidth needs of the local node. The cache cluster
includes both static and streaming caches. Caches are added as needed to
increase the capacity and hit ratio.

The hierarchical nature of the network is put to use by implementing hier-
archical caching as described in Section 3.6. Large caches are located at each
regional node and even larger caches at the backbone nodes. A cache miss at a
local node is attempted at the regional node cache. If that fails, the regional node
attempts the request at the backbone node cache. If that fails, the request is
routed over the backbone to the origin server. The network operators continue
to measure performance and tune this configuration to get the best balance
between speed and bandwidth savings.

Global Link Networks communicates conscientiously with their customers
regarding the benefits and limitations of their services. As part of this commu-
nication they describe their use of interception proxies. The overwhelming
majority of their customers understand the benefits of the proxy and are pleased
to benefit from it. A few are especially concerned about privacy and object to
using interception proxies. The network operators respect this choice and pro-
gram the Web switch to exclude their requests from interception by the proxy.

Content providers host their content on the Web servers located in local
nodes. Global Link Networks offers their content provider customers several
hosting options. One option is to use the Web servers owned by the network
provider. This option appeals to content providers who do not yet own servers,
who expect to increase their server needs significantly, or do not want to take on
the responsibility of selecting, purchasing, installing, operating, and maintain-
ing the Web servers.

A second option is to co-locate the content provider-owned Web servers
within the network provider’s local node building. Here the servers are owned
and operated by the content provider and the network provider is only supply-
ing bandwidth, along with location services such as physical space, power, and
security. Various arrangements for operating the equipment are also available,
shifting responsibility toward either the content producer or the network
provider.

Fees differ for the various options, so the content provider has their choice
of paying the network provider for:

● bandwidth and location services only,
● bandwidth and operations support, or
● bandwidth, operations support, and servers.

274 C H A P T E R 9 Building Content Networks

Ch09.qxd 1/19/05 9:01 AM Page 274

In any case, the servers are connected through the gateway router and are
accessible across the Internet to any content consumer.

To provide voice services for their customers and to create another revenue
opportunity, Global Link Networks decided to offer Voice over IP (VoIP) serv-
ices. To implement the service they added a SIP proxy to many of their nodes.
With this backbone of SIP proxies in place, they then decided to offer SIMPLE-
based instant messaging and presence services.

One of their major content provider customers is New World Times, a news-
paper that has been printed for more that 100 years and is respected around the
nation and around the world. The online version of their news service has been
successfully hosted by Global Link Networks for many years.

A number of potential readers around the world have complained that the
New World Times is not available in their native language. The business devel-
opment group of New World Times would like to provide their online service in
a large number of natural languages to meet the needs of their global audience.
They approached Global Links Networks looking for a solution.

Together they decided the best solution was to enable OPES services from
the network. The network providers upgraded their caches to provide OPES
processor capabilities and act as the service activation point as previously
described in Section 8.2.1. They also installed additional servers to act as OPES
callout servers, as is shown in Figure 9.8. The New World Times identified a
number of content services providers who offer OPES-capable language trans-
lation services for a large number of natural languages. They made business
arrangements that allow readers to use these translation servers for a fee that is
charged in addition to the basic online news subscription fee. They then pro-
vided simple instructions on the New World Times Web site describing how these
translation services can be invoked.

This provides important opportunities for the newspaper, the network
provider, and the content services provider. The newspaper is opening its online
service to a larger worldwide audience now that it is able to reach readers in their
native languages. Now that the network provider has added OPES capability,
they are offering a wide range of services to their customers, including access
control, virus scanning, anonymous communications services, content personal-
ization and customization, and content adaptation services.

The network providers are also investigating connections to WAP gateways,
location services, PSTN gateways, and VoiceXML platforms to provide a wider
range of services to their various customers.

In addition to the OPES services, several content providers have been offer-
ing Web services, such as those described in Section 8.6, from Web servers
located within the local nodes.

9.3 Content Distribution Network Example

A clever group of entrepreneurs are determined to follow the big money in
content networking. They recognize that while enterprises and content

9.3 Content Distribution Network Example 275

Ch09.qxd 1/19/05 9:01 AM Page 275

276 C H A P T E R 9 Building Content Networks

R
em

o
te

 A
cc

es
s

S
er

ve
rs

D
ia

l u
p

, D
S

L
, a

n
d

 C
ab

le

N
et

w
o

rk
 P

ro
vi

d
er

O
w

n
ed

W
eb

 S
er

ve
rs

W
eb

 C
ac

he
 C

lu
st

er
In

te
rc

ep
tio

n
P

ro
xy

(a
ls

o
ac

tin
g

as
 a

n
O

P
E

S
 p

ro
ce

ss
or

)

S
tr

ea
m

in
g

 C
ac

h
e

E
th

er
n

et
S

w
it

ch
E

th
er

n
et

S
w

it
ch C

o
n

te
n

t
P

ro
vi

d
er

O
w

n
ed

 C
o

-l
o

ca
te

d
W

eb
 S

er
ve

rs

O
P

E
S

 C
al

lo
u

t
S

er
ve

rs

W
A

N
 L

in
k

to
R

eg
io

n
al

 N
o

d
e

G
at

ew
ay

R
o

u
te

r
W

A
N

 L
in

ks
 t

o
E

n
te

rp
ri

se
 N

et
w

o
rk

s

Fi
g

u
re

 9
.8

Lo
ca

l n
od

e
of

fe
rin

g
O

PE
S

se
rv

ic
es

.

Ch09.qxd 1/19/05 9:01 AM Page 276

consumers are willing to pay for network access, the truly deep pockets belong
to the large content providers, such as CNN, MSNBC, and others who are mak-
ing content delivery to very large audiences their core business. They have a plan
for shifting content networking payments from the shallow pockets of the con-
tent consumers to the deep pockets of content producers. The group named
their business Kala, which means “money” in Hawaiian.

Their idea is to create a network that provides global request routing and
then charge the content providers to use this high capacity content distribution
network. The approach they have chosen is to add global request routing capa-
bilities to the existing Global Links Network and either use the existing Web
caches or install others within the local nodes to act as service nodes.

The resulting content distribution network is shown in Figure 9.9. Here a
Domain Name Server is located in a network node location and configured as a
global request router, using the connection monitoring techniques described in
Section 5.3.2. Content providers then subscribe with these content distribution
network operators for premium service. Sufficient Web caches are then located
in each local node and configured as reverse proxies for the content providers

9.3 Content Distribution Network Example 277

Backbone
Node

Backbone
Node

Backbone
Node

Backbone
Node

Regional
Node

Regional
Node

Local
Nodes

SONET
OC48

SONET
OC12

OC3

DNS--Global Request Router

Service Node 1

Service Node 2 Service Node 3

Figure 9.9 Content distribution network.

Ch09.qxd 1/19/05 9:01 AM Page 277

subscribed to this service. The global request router steers user requests to the
service node closest to them, as previously described.

As more content providers subscribe to the Kala services, the network needs
more capacity. To obtain this capacity increase, the network is expanded by
adding service nodes in more cities around the world. This increases the per-
formance of the network for all the subscribers because the newly added service
nodes bring the content of the entire network closer to more content consumers.

To help justify the subscription fee they charge, Kala offers their customers
a particular Service Level Agreement (SLA). They measure the response times
of the prospective customer’s content delivery system before employing the Kala
global request routing solution. Services of Keynote systems, described in
Chapter 5, are used for these measurements. The response times are then mea-
sured after introducing global request routing. Kala guarantees their customers
specific response time improvements. Their knowledge of the Keynote system,
including the location of their monitoring nodes helps to ensure impressive
measured improvements.

278 C H A P T E R 9 Building Content Networks

Ch09.qxd 1/19/05 9:01 AM Page 278

C H A P T E R 1 0

Standards Efforts

279

Standards enable interoperation. Rather than being built as a monolithic, pro-
prietary system, today’s networks are typically made up of separate functional
components. Each of these components can potentially be provided by a sepa-
rate supplier. For this to work, however, the interfaces and functions of each
component have to be specified. Only then can interoperability between compo-
nents from different vendors be achieved.

Standards shift power. Because standardized interfaces allow interopera-
tion, control of the system shifts from owners of the proprietary technology to
providers of each standardized component. The user and system integrator also
gain power, because of the variety of choices they have for each system compo-
nent [Les00]. The user can choose the best alternative from the class of all prod-
ucts that meet the standard. These components can be compared on the equal
basis established by the standard to identify the best in this class of solutions.
The final choice may be based on user needs such as cost, availability, aesthetics,
convenience, reputation, reliability, performance, or other dimensions beyond
those established by the standard.

Open standards are publicly accessible commodities. Anyone can read a
standard and work to implement a component, solution, or system meeting that
standard. Competition shifts toward creating the best implementation meeting
the standard. Over time, this usually leads toward the fastest, most reliable, eas-
iest to use, and most economical solution.

Standards cause controversy. They inevitably represent a compromise
between alternative technical and business solutions. Also, because they shift
power, various stake holders stand to gain or lose substantially depending on the
final form the standard takes.

Most standards are voluntary; standards police are rare. If a provider
ignores a standard or fails to meet the requirements of a standard, most often
there is no useful recourse to the standards body. If there are no government
regulations (e.g., such as for the use of radio spectrum overseen in the United States

Ch10.qxd 01/19/2005 01:06 PM Page 279

280 C H A P T E R 1 0 Standard Efforts

by the FCC) then avoidance, appeals to the errant provider, or influencing the
public opinion may be the only recourse. There are, however, for some standards,
various compliance test suites or compliance test services. These are typically pro-
vided by some third party to assess compliance of a system’s operation with an
identified standard. This may lead to some recognized certification of standards
compliance for the system that has been assessed.

Standards evolve. As implementations are created, lessons are learned and
standards change to meet emerging needs and technology advances.

Standards are not law and have limited scope. Companies may create
proprietary extensions to a standard and thereby create interoperability problems.

This chapter begins by describing the role of standards. It then describes the
major standards bodies that are active in the content networking area. Finally,
emerging standards forming the technologies described in each of the previous
chapters are described.

10.1 The Role of Standards

Broad agreement on the length of a meter and the mass of a kilogram provide
measurement standards that enable parts built anywhere in the world to fit
together and interwork smoothly in complex products and systems. An interface
standard allows a light bulb purchased from one manufacturer to install easily
and operate perfectly in a lighting fixture built, following the same standard, by
any other competent manufacturer. The standard protocols, applications, and
interfaces discussed throughout this book allow applications and other system
elements to interconnect over networks and form distributed systems. The fol-
lowing sections discuss the definition, benefits, evolution, and evaluation of
standards for networks and distributed systems.

10.1.1 Definitions

There is no standard definition for the word standard. The eleven diverse defi-
nitions in one dictionary range from “a flag” to “an acknowledged measure of
comparison for quantitative or qualitative value; a criterion” [dict1]. The word
is undefined in RFC 1983, the Internet User’s Glossary. An ANSI Web site dis-
tinguishes and defines each of these standards-related terms: company stan-
dards, industry standard, international standard, mandatory government
standard, mandatory standards, national standard, regional standard, standard,
standards body, voluntary government standard, and voluntary standard
[ANSI1].

A useful definition that is pertinent to the discussion in this chapter and that
we will adopt is:

Standard: Guideline documentation that reflects agreements on products, prac-
tices, or operations by nationally or internationally recognized industrial, profes-
sional, trade associates or government bodies [ANS01].

Ch10.qxd 01/19/2005 01:06 PM Page 280

10.1.2 Benefits

Systems built using standards allow interconnection and interoperability of
various vendor products. These interchangeable parts increase the number of
supply sources, increase competition, increase the choices available to users,
reduce the risks of relying on single-source suppliers, and increase efficiencies
due to specialization and economies of scale. Standards unleash and focus the
massive creative abilities of all the people who build system elements meeting
those standards. They also allow systems to be disaggregated so that each com-
ponent can be provided in a way best suited to its specialized function. In both
networks and commerce systems, task specialization often leads to increased
productivity.

Figure 10.1 illustrates how standards enable interoperability. A proprietary
monolithic system is illustrated in A. Here, some function gets performed; how-
ever, the details of how it gets performed are hidden. Also, the interfaces to the
application are proprietary. The efforts made to connect to this system and learn
to use it are limited to this particular system and cannot be directly extended to
similar systems.

In contrast, B shows a distributed system based on standards. Because
the application services are standard, connecting to this system and using it is
similar to using other systems that meet this standard. Also, some details of
the interworking of the system are made visible. Here we can see the overall

10.1 The Role of Standards 281

Application Application

Standard
Application
Services

Standard
Protocol
Services

Application
Standard

Application
Protocol
Standard

Application
Standard

Application

Proprietary
Services

Proprietary
Services

Standard
Application
Services

A Proprietary Monolithic System

B Standard Distributed System

Application
Protocol

Figure 10.1 Standards enable interoperability.

Ch10.qxd 01/19/2005 01:06 PM Page 281

application is implemented by two other standard applications communicating
over a standard application protocol.

Figure 10.2 illustrates this with familiar examples. Here Microsoft Word is
chosen as an example of a proprietary monolithic system. The interworkings of
this popular word processing application are a closely held secret of the
Microsoft Corporation. The file format is mysterious and the display formats
are unique to this particular product. In contrast, Web browsing is a distributed
system based on several standards. The HTML standard describes the file for-
mat and provides display guidelines for documents that make up Web pages. The
HTTP standard describes the protocol for transporting information from a Web
server to a Web browser. This allows any manufacturer familiar with these stan-
dards to create a Web browser that will interwork well with any Web server for
any Web page. Similarly any manufacturer can create a Web server that inter-
works with the system, and any content provider can use any text editor or
HTML editor to create content. The standard URL allows content to be
uniquely identified and rapidly located in this vast distributed system.

The content provider, the content networking provider, and the content con-
sumer each have a wide choice of vendors that can meet each of their needs.
Each member making up the diversity of interests described in Section 1.4 has

282 C H A P T E R 1 0 Standard Efforts

Proprietary
File Format

Web Browser Web Server

HTML
File Format

HTTP
Protocol
Services

HTML 4.01
W3C Recommendation

HTTP
RFC 2616

HTML documents
Delivered via HTTP

MS Word

Proprietary
Display Format

HTML Structure and
Presentation Format

A Microsoft Word

B Web Browser

URL RFC 1738

HTML
over

HTTP

Figure 10.2 Examples.

Ch10.qxd 01/19/2005 01:06 PM Page 282

many alternatives to choose from. Standards provide a basis for the design and
evaluation of each component in the system. Regardless of the individual imple-
mentation choices they make, the immense distributed system that results will
continue to work well if each standard is met.

10.1.3 Evolution and Evaluation

Several forces act to create standards and influence their acceptance. These
forces generally originate from technical or business problems or opportunities.
The brief history of the World Wide Web, told in Section 1.2, illustrates how
standards often emerge.

In the late 1980s, CERN faced several business and technical problems,
including:

● Losing information—People leave the organization, and data and rela-
tionships are dynamic or unknown.

● Diverse databases—A wide variety of computing systems, file formats,
and data structures are used by the organization.

● Diverse linking relationships—Trees and keywords are not sufficient to
represent the variety of relationships existing between the various types
of information.

● Remote access—Computers are located in many distant locations.
● Decentralized information—Information is created and used by many

people in the organization and is not routed through any centralized
system.

Tim Berners-Lee proposed using hyperlinks identified by hotspots in text as
a solution. He also identified the importance of separating information brows-
ing from storing and serving information [Ber89]. Just as diamonds are cut along
natural cleavage lines, it is important to decompose a system into modules along
natural boundaries [TPF00]. The Web browser has thrived separately from the
Web server ever since.

Several proprietary Web browser implementations followed. These include
Berners-Lee’s own Nexus browser/editor that featured a GUI and ran on a
NeXT computer. Then other platform-specific browsers were developed at
CERN. The more widely available Mosaic browser and Microsoft’s participation
in the technology generated great interest and highlighted compatibility prob-
lems. Web pages that worked well with the Netscape browser did not work well
with Microsoft’s Internet Explorer browser. Also, the original version of HTTP
used to transport Web pages from server to browser was undocumented.

The business opportunity provided by the World Wide Web, the technical
problems involved in building compatible browsers and servers, and the clear
separation of browser functions from server functions resulted in development
of standards for HTML, HTTP, and URLs. The technical solutions provided by
these standards, along with the many business opportunities created by a reliable
World Wide Web, have resulted in wide acceptance of these standards and

10.1 The Role of Standards 283

Ch10.qxd 01/19/2005 01:06 PM Page 283

explosive growth of the Web. The next two sections describe the technical and
business factors that tend to make a standard successful.

Technical requirements on standards

Distributed systems consist of several modules interconnected by protocols.
Figure 10.3 illustrates several of the criteria used to decompose a distributed sys-
tem into component modules intercommunicating by protocols. The decisions of
where to partition the system into modules and how to design the protocols have
a big effect on the success of the overall system. As in cleaving diamonds, sys-
tem modules are defined so that they have high module strength and loose mod-
ule coupling [Par72, Mye76].

The criteria for designing effective protocols are more complex. The proto-
col must be functional, unambiguous, and clean, as described here:

Functional—The protocol meets the requirements of all of the users. This
includes the requirements of the end users, the system architects, the system

284 C H A P T E R 1 0 Standard Efforts

Modules
Protocols

• Functional
• Unambiguous
• Clean:

• Consistent
• Modular
• Proper and Simple
• General

• High Module Strength
• Loose Module Coupling

Distributed systems
use protocols to
connect modules.

Module
Module

Module

Module

Figure 10.3 Decomposing distributed systems.

Ch10.qxd 01/19/2005 01:06 PM Page 284

implementers, and the system providers. These high level requirements often
lead to many lower level requirements, such as preventing endless loops, imple-
mentation ease, efficiency, and many others.

Unambiguous—The protocol is unambiguous, consistent, and described at the
right level of abstraction. Formal specification notations (such as ABNF, see
RFC 2234) and methods (such as state-machine models) are used when they are
appropriate. Protocol options and requirements are carefully specified using pre-
cise language, such as MUST, MAY, RECOMMENDED or other terms with
similar intent to those defined in RFC 2119.

Clean—The protocol specification is well structured, well balanced, modular,
simple, correct, general, and maintains conceptual integrity. It has each of the
following properties.

● Consistent—The protocol has a regular, coherent design that confirms
expectations based on previous design choices. A consistent protocol
avoids deadlocks which are states where protocol processing cannot con-
tinue. It also avoids livelocks (also know as endless loops) which are
repeated ineffective execution sequences. It avoids improper terminations,
which could cause the unexpected end of protocol processing.

● Modular—Aspects of the system that are independent of each other are
kept separate. The design does not link what is independent and does not
separate what is dependent. The system is decomposed into modules that
are cohesive and independent.

● Proper and simple—The design meets the purpose of the system as sim-
ply as possible. Extraneous elements are eliminated. Only the functions
that correspond to essential, well understood requirements of the users’
and the operating domain are included. Functions are defined exactly
once, and the protocol is not over-specified.

● General—The protocol design anticipates use in several wide-ranging
contexts. The design does not restrict what is inherent in its use, intent,
or implementation. This generality allows robustness in many forms,
leading to flexibility and adaptability to a variety of environments.
Open-endedness allows for future extensions and reuse in other designs
and contexts. A well designed general protocol works well even in unex-
pected conditions. A general protocol is also complete; it considers all
that is relevant. It is not under-specified; it specifies a response to all
possible inputs. It is bounded, working within system limits for all con-
ditions. The protocol is self-stabilizing, returning to a stable state within
a few transitions. The protocol specifies the response to behavior that is
outside of the specification. A complete protocol also considers net-
work management, scalability, security, network stability, and interna-
tionalization. Finally, protocol implementations should be liberal in
what they accept and conservative in what they send [RFC 2360, Sin95,

10.1 The Role of Standards 285

Ch10.qxd 01/19/2005 01:06 PM Page 285

Hol91]—although interpretation of this controversial suggestion is
often debated.

Business requirements on standards

It is widely believed that the BetaMax standard is technically superior to the
VHS standard for video tape recorders. Yet throughout the 1980s the greater
marketing effort behind VHS steadily displaced BetaMax, and eventually
became the universal standard. The network effect created strong forces driving
toward a single standard. Adopting a single format enabled friends to share
video tapes, allowed studios to produce—and rental shops to stock—a single
tape format [Hut1]. This is one of many examples of business conditions play-
ing an essential role in the successful deployment and adoption of a standard.

Because they solve problems and establish new modules, interfaces, and pro-
tocols, standards create an arena for developing new products. Successful new
products often share a list of know criteria. These criteria help to establish the
business conditions that lead to successful new standards.

Standards that solve important problems or create important opportunities
for customers in an attractive market have a big advantage. An attractive market
has these characteristics [Coo96]:

● The market is large and growing.
● A positive economic climate encourages product purchases.
● The market demand is stable over time rather than cyclical.
● Potential customers in the market are willing to try new products.
● Potential customers are relatively price insensitive.
● Potential customers have money to spend on new solutions. This is often

because they run profitable businesses.

In addition, the new standard must provide unique and superior benefits to
the available alternatives. Successful standards are likely to result in products
that:

● Provide good value for the cost, reduce the users’ overall costs of opera-
tion, and offer excellent price and performance characteristics.

● Provide a better solution than the previous or existing alternatives. This
includes meeting users’ needs, offering unique features, or solving a
problem existing with the alternative solutions.

● Offer benefits or features that are highly visible and easily seen as useful
by the customer.

This requires a good understanding of the many customers’ needs and wants
throughout the design of the standard. Some features are critical, others are
important, and still others are at best “nice to have.” The features, performance,
security, reliability, and simplicity of the standard must all be balanced to best
meet the customers’ needs.

286 C H A P T E R 1 0 Standard Efforts

Ch10.qxd 01/19/2005 01:06 PM Page 286

Perception, however, is an important reality. Marketing efforts and other
techniques for influencing the opinions of decision makers and the buying pub-
lic can lead to the success or failure of many ideas, including adopting or avoid-
ing new standards [Cia98].

In summary, giving birth to new standards may be nearly as painful and
messy as giving birth to infants. However, both creations are full of surprises and
potential.

10.2 Content Networking Standards Bodies

The following sections briefly describe several of the standards bodies relevant
to content networking. The reader might also want to refer to Chapter 8, which
holds some additional information on standards bodies related to content
services.

10.2.1 IETF

On April 7, 1969, Steve Crocker of UCLA published a short memo describing
work on configuring the host software running in the ARPA Network. Because
he was interested in receiving feedback from his peers in the Network Working
Group, he titled the memo “Request for Comments.” This became the first of
more than 3,900 Request for Comments documents published by volunteers
interested in contributing their ideas to help shape the Internet [RFC 1, RFC
2555].

In 1986 the Internet Engineering Task Force (IETF) was formed to concen-
trate on short-to-medium term engineering issues related to the Internet
[IETF96].

To briefly describe the operation of the IETF, David Clark, one of the orig-
inal authors of TCP/IP, famously stated: “We reject: kings, presidents, and vot-
ing. We believe in: rough consensus and running code” [Cla92].

The formal statement of the IETF mission is recently expressed in RFC 3935:

“The goal of the IETF is to make the Internet work better. The mission
of the IETF is to produce high quality, relevant technical and engineer-
ing documents that influence the way people design, use, and manage the
Internet in such a way as to make the Internet work better. These docu-
ments include protocol standards, best current practices, and informa-
tional documents of various kinds.”

The RFC identifies these five important operating principals for the IETF:

1. Open process—Any interested person can participate in the work, know
what is being decided, and make his or her voice heard on the issue. Part
of this principle is our commitment to making our documents, our WG

10.2 Content Networking Standards Bodies 287

Ch10.qxd 01/19/2005 01:06 PM Page 287

mailing lists, our attendance lists, and our meeting minutes publicly avail-
able on the Internet.

2. Technical competence—The issues on which the IETF produces its docu-
ments are issues where the IETF has the competence needed to speak to
them, and that the IETF is willing to listen to technically competent
input from any source. Technical competence also means that we expect
IETF output to be designed to sound network engineering principles.
This is also often referred to as “engineering quality.”

3. Volunteer core—Our participants and our leadership are people who
come to the IETF because they want to do work that furthers the IETF’s
mission of “making the Internet work better.”

4. Rough consensus and running code—We make standards based on the
combined engineering judgment of our participants and our real-world
experience in implementing and deploying our specifications.

5. Protocol ownership—When the IETF takes ownership of a protocol or
function, it accepts the responsibility for all aspects of the protocol, even
though some aspects may rarely or never be seen on the Internet.
Conversely, when the IETF is not responsible for a protocol or function,
it does not attempt to exert control over it, even though it may at times
touch or affect the Internet.

Well over 100 Working Groups (WGs) carry out the bulk of the work of the
IETF. The current list of Working Groups is available at http://www.ietf.org/html.
charters/wg-dir.html. These are presently organized into eight areas, with each
area overseen by two Area Directors (AD). Each group has assigned chairs and
technical advisors but, surprisingly, no members. Participation is through the
Working Group mailing list and face-to-face meetings. IETF participants are
individuals, not organizations—anyone can join any Working Group mailing list
[RFC 3160].

The IETF is only one of the several formal organizations that collaborate to
make the Internet work. Other closely related organizations include the Internet
Architecture Board (IAB), the Internet Society (ISOC), and the Internet
Engineering Steering Group (IESG).

The Internet Architecture Board is responsible for defining the overall archi-
tecture of the Internet. They provide guidance and broad direction to the IETF.
The IAB also serves as the technology advisory group to the Internet Society,
and oversees a number of critical activities in support of the Internet.

The Internet Society is a professional membership organization of Internet
experts who comment on policies and practices and oversee a number of other
boards and task forces dealing with network policy issues.

The Internet Engineering Steering Group is responsible for technical man-
agement of IETF activities and the Internet standards process. As part of the
ISOC, it administers the process according to the rules and procedures which
have been ratified by the ISOC trustees. The IESG is directly responsible for the
actions associated with entry into, and movement along, the Internet standards
track, including final approval of specifications as Internet Standards [IETF2].

288 C H A P T E R 1 0 Standard Efforts

Ch10.qxd 01/19/2005 01:06 PM Page 288

The “Request for Comments” (RFC) document series is the official publi-
cation channel for Internet standards documents and other publications of the
IESG, IAB, and Internet community [RFC 1796]. Much of the work concludes
with the publication of RFC documents. There are six distinct types of RFCs:

1. proposed standards,
2. draft standards,
3. internet standards (sometimes called full standards),
4. experimental protocols,
5. informational documents, and
6. historic standards.

Only the first three types are intended to become standards. The current list of
full standards is available at: http://www.rfc-editor.org/rfcxx00.html.

The goals of the Internet Standards Process are:

● technical excellence,
● prior implementation and testing,
● clear, concise, and easily understood documentation,
● openness and fairness, and
● timeliness.

The relationship of intellectual property rights to published standards can
be complex. The intention of the IETF is to benefit the Internet community and
the public at large, while respecting the legitimate rights of others.

Specifications that are intended to become Internet Standards evolve through
a set of four maturity levels known as the standards track. These levels are:

1. Internet Draft—During the development of a specification, draft ver-
sions of the document are made available for informal review and com-
ment by placing them in the IETF’s Internet-Drafts directory. Internet
Drafts (ID) have no formal status, and are subject to change or removal
at any time. If an ID is referred to at all, it may only be referred to as a
work-in-progress.

2. Proposed standard—This is the entry-level maturity for the standards
track. A proposed standard specification is generally stable, has resolved
known design choices, is believed to be well-understood, has received sig-
nificant community review, and appears to enjoy enough community
interest to be considered valuable. However, implementers should treat
proposed standards as immature specifications.

3. Draft standard—A specification from which at least two independent and
interoperable implementations from different code bases have been devel-
oped, and for which sufficient successful operational experience has been
obtained, may be elevated to the draft-standard level.

4. Internet standard—A specification for which significant implementation
and successful operational experience has been obtained may be elevated
to the Internet-standard level [RFC 2026].

10.2 Content Networking Standards Bodies 289

Ch10.qxd 01/19/2005 01:06 PM Page 289

However, there often is a disparity between the documented IETF standards
process and what is used in practice, which can cause confusion on the part of
those people or organizations that use IETF technologies. To address this
problem, the IETF has chartered the “New IETF Standards Track Discussion
(newtrk)” Working Group to study and resolve this disparity.

Forming a Working Group requires a charter and someone who is able to be
Chairperson. This requires work by interested people to help focus the charter
and convince an Area Director that the project is worthwhile. Most Working
Groups start after a face-to-face Birds of a Feather (BoF) meeting is convened
by individuals interested in the topic.

A BOF meeting must be approved by the area director in the relevant area
before it can be scheduled. The purpose of a BOF is to make sure that a good
charter with good milestones can be created, and that there are enough people
willing to do the work needed in order to create standards.

Many BOFs do not turn into WGs for a variety of reasons. A common
problem is that not enough people can agree on a focus for the work. Another
typical reason is that the work would not end up being a standard, perhaps
because the document authors do not really want to relinquish change control
to a WG. Officially only two BOFs on a particular subject can take place; either
a WG has to form, or the topic is dropped. However, it is not unusual to hold
more BOF sessions if progress is continuing toward solving a contentious or dif-
ficult problem.

This amorphous process has resulted in publication of more than 3,900
RFCs, adoption of at least 65 full standards, and continued rapid growth of the
Internet in many dimensions. These form the basis for most of the technologies
described in this book.

10.2.2 ICAP Forum

Sometimes short-term business interests will not wait for rough consensus
and running code. For example the ICAP forum formally introduced the
ICAP specification in 1999, even though the IETF did not publish RFC 3507
defining the ICAP protocol until nearly four years later in April 2003
[Net01].

The ICAP Forum (www.i-cap.org) was created in 1999–2000 by a group of
vendors for the purpose of exchanging and disseminating their ideas and infor-
mation about ICAP’s technical capabilities, improvements, and innovations. The
co-hosts of the forum are Network Appliance and Akami, with Webwasher join-
ing later. The Forum consists of a group of companies with a common goal to
enable communication between edge devices and network-based applications.
The Forum believes that by encouraging vendors to work together it can accel-
erate the availability of their solutions, understand the problems that need to be
addressed, and assist the standards community in developing open standards
incorporating concepts Forum members have previously demonstrated. The
Forum also acts as an important marketing vehicle. Technical work of the ICAP
forum is now limited to discussions of the existing protocol specifications. Other

290 C H A P T E R 1 0 Standard Efforts

Ch10.qxd 01/19/2005 01:06 PM Page 290

technical work and the development of enhanced protocols have moved into the
ITEF OPES Working Group.

10.2.3 W3C

The World Wide Web Consortium (W3C) was founded in October 1994 to lead
the World Wide Web to its full potential by developing common protocols that
promote its evolution and ensure its interoperability. The W3C’s goals and oper-
ating principles are summarized in the following seven points.

1. Universal access—Make the benefits of the World Wide Web available to
all people regardless of their hardware, software, network, native lan-
guage, culture, geographic location, or physical or mental ability.

2. Semantic Web—Enable people to express themselves in terms that com-
puters can interpret and exchange.

3. Trust—Develop a web of trust that provides the confidentiality, confi-
dence, responsibility, and accountability necessary to allow people who
may have never met to collaborate safely and reliably.

4. Interoperability—Promote use of open computer languages and proto-
cols that allow software components to be interchangeable and avoid
market fragmentation.

5. Evolvability—Employ the principles of simplicity, modularity, compati-
bility, and extensibility in designs so tomorrow’s technologies can inter-
work with today’s Web.

6. Decentralization—Employ decentralized solutions to create a distributed
system free of the bottlenecks caused by centralized elements.

7. Cooler multimedia—Continue to enable more interactivity and richer
media, including improved flexibility and fidelity of images, sound,
video, 3D effects, and animation [W3C7].

Currently 363 organizations are members of the consortium. It does not
accept individual members, and their substantial membership fee would dis-
courage individual members even if their policy allowed them. Each W3C
Member organization has one Advisory Committee Representative (AC rep).

The AC rep receives official notices from W3C intended for the organization
they represent. The AC rep responds directly or delegates response to W3C
“Calls for Review,” “Calls for Participation,” and “Calls for Implementations,”
as well as other W3C announcements. AC reps come to semi-annual advisory
committee meetings where they meet and cooperate with other AC reps. The AC
rep also appoints participants in W3C Working Groups.

The W3C presently lists more than 50 topics it is interested in. Work is pro-
gressing or has concluded in each of these areas.

Documents published by the W3C progress through these four maturity levels:

1. Working draft (WD)—a document that W3C has published for review by
the community, including W3C members, the public, and other technical
organizations,

10.2 Content Networking Standards Bodies 291

Ch10.qxd 01/19/2005 01:06 PM Page 291

2. Candidate recommendation (CR)—a document that W3C believes has
been widely reviewed and satisfies the Working Group’s technical require-
ments. W3C publishes a candidate recommendation to gather implemen-
tation experience.

3. Proposed recommendation (PR)—a mature technical report that, after
wide review for technical soundness and implementability, is sent to the
W3C advisory committee for final endorsement, and

4. W3C recommendation (REC)—a specification or set of guidelines that,
after extensive consensus-building, has received the endorsement of W3C
members and the director. W3C recommends the wide deployment of its
Recommendations. W3C Recommendations are similar to the standards
published by other organizations [W3C04].

The major standards developed by W3C and described in this book include:
HTML, SMIL, XML, and the Web services suite of UDDI, WSDL, and SOAP.

10.3 Content Networking Standards

Each of the Chapters 2 through 8 of this book focuses on a particular technol-
ogy important for content networking. Each of the following sections describes
the technical and business conditions that drive the standards efforts related to
the technology of one particular chapter. It also describes the Working Groups
and the standards they are developing. Alternative approaches and the charac-
teristics leading to the recommended solutions are also described.

10.3.1 The Early Days

The potential of the Internet attracted increasing interest from a wide variety of
users and contributors over a period of more than 30 years. This diverse and
widely dispersed group consisting primarily of volunteers organized their efforts
in ways that have led to both the rapid evolution of the Internet, and the creation
of the various standards bodies and ways of working that have sustained and
accelerated this growth.

10.3.2 Content Transport

Chapter 2 describes content transport and the variety of protocols used in the
World Wide Web. These protocols include IP, TCP, UDP, FTP, Telnet, and of
course, HTTP, used to exchange documents written in HTML.

The evolution of the documents that define the HTTP standard provides an
example of the technical and business forces that lead to creating new standards.
It also illustrates how the IETF forms Working Groups to solve a problem and
concludes the group when the work is completed.

The initial specification of the HTTP protocol was kept in hypertext form
and a snapshot circulated as an Internet Draft between November 1993 and

292 C H A P T E R 1 0 Standard Efforts

Ch10.qxd 01/19/2005 01:06 PM Page 292

May 1994. A revision of the specification by Berners-Lee, Fielding, and Frystyk
Nielsen was circulated as an Internet Draft between November 1994 and May
1995. The HTTP Working Group was formed within the IETF to work on the
specification of the Hypertext Transfer Protocol [Mas1].

Table 10-1 shows how the IETF responded to address each of the problems
that began when use of the HTTP protocol grew rapidly, despite its lack of a
formal written specification.

After publishing a total of 12 RFCs, the Working Group concluded in
October 2000.

During the same time frame, the HTML specification evolved through the
work of the IETF and then the W3C. Table 10-2 describes the pattern of emerg-
ing problems and opportunities and the responses the IETF and W3C took to
solve these problems.

10.3 Content Networking Standards 293

Table 10-1 Evolution of the HTTP protocol standards

Problem Solution

Use of HTTP was increasing; however, The IETF formed the HTTP Working Group,
the lack of a formal written specification jointly chartered by the applications area and the
lead to variations in interpretation, transport area. They published RFC 1945
implementation, and incompatible in May 1996 which provided an informational
systems. Extensions to the protocol description of HTTP/1.0. In addition to establish
were difficult to agree on. ing a written description of the common usage of

the protocol, this version allows an open-ended
set of methods to be used to indicate the purpose
of a request. It builds on the discipline of refer-
ence provided by the Uniform Resource Identifier
(URI), as a location (URL) or name (URN), for
indicating the resource on which a method is to be
applied. Messages are passed in a format similar
to that used by Internet mail and the Multi-
purpose Internet Mail Extensions (MIME).

RFC 1945 was informational and not a RFC 2068 was published in January 1997. This
Standards Track document. Also standards track specification defines the protocol
HTTP/1.0 does not sufficiently consider referred to as HTTP/1.1. The protocol includes
the effects of hierarchical proxies, caching, more stringent requirements than HTTP/1.0 to
the need for persistent connections, and virtual ensure reliable implementation of its features.
hosts. In addition, the proliferation of In addition, it specifies features to support
incompletely implemented applications hierarchical proxies, caching and cache control,
called HTTP/1.0 made it difficult to determine the need for persistent connections, and virtual
the actual capabilities of the systems. hosts.

Widespread use of RFC 2068 identified RFC 2616 was published in June 1999. This
ambiguities in the language of the specification specification corrected a list of minor problems
and several minor difficulties with the identified by users of RFC 2068.
defined protocol.

Ch10.qxd 01/19/2005 01:06 PM Page 293

10.3.3 Caching Techniques for Web Content

The majority of the caching techniques described in Chapter 3 rely on the
capabilities defined by the HTTP protocol specification RFC 2616. The caching
features of the protocol enabled the development of network caches by a num-
ber of vendors.

294 C H A P T E R 1 0 Standard Efforts

Table 10-2 Evolution of HTML specifications

Problem or Opportunity Solution

SGML was too complex for the system Tim The HTML document type was designed by Tim
Berners-Lee described in his 1989 Berners-Lee at CERN as part of the 1990 World
WWW proposal. Wide Web project. In 1992, Dan Connolly wrote the

HTML Document Type Definition (DTD) and a
brief HTML specification [W3C2, LC92, W3C3].

No formal specification of HTML was available. RFC 1866 was published by the IETF HTML
Desirable features such as in-line images were Working Group in November 1995. This defined
not uniformly supported. HTML version 2.0.

HTML lacked support for tables. RFC 1942 was published by the IETF HTML
Working Group in May 1996. This established an
experimental description of a rich set of tables.

The IETF HTML Working Group completed After publishing 4 RFCs The IETF HTML Working
the work of their charter. Group concluded in September 1996.

Several vendors including IBM, Microsoft, The HTML 3.2 Reference Specification was published
Netscape Communications Corporation, January 14, 1997 as a W3C recommendation. It
Novell, SoftQuad, Spyglass, and Sun provides a standard definition for widely deployed
Microsystems were facing incompatibility features while providing full backward compatibility
problems because of variation in their with the existing standard HTML 2.0.
approaches used to implement widely
deployed features such as tables, applets,
and text flow around images.

Vendors wanted to provide an even richer set The HTML 4.0 Specification was published on
of features, and improve accessibility for December 18, 1997, then revised on April 24, 1998,
people with disabilities. as a W3C Recommendation. HTML 4.0 extends

HTML with mechanisms for style sheets, scripting,
frames, embedding objects, and improved support
for right-to-left and mixed direction text, richer
tables, and enhancements to forms, and offers
improved accessibility for people with disabilities.

Minor improvements were suggested and The HTML 4.01 Specification was published on
minor errors existed in the HTML 4.0 December 24, 1999, as a W3C Recommendation.
Recommendation.

Ch10.qxd 01/19/2005 01:06 PM Page 294

In 1994 the Harvest project introduced the Internet Cache Protocol (ICP),
described in Section 3.6.2. The protocol was primarily designed to facilitate
cache hierarchies by locating objects stored in neighbor caches. In 1996 the
Harvest cache evolved and split into the Squid project and the NetCache proj-
ect, which later became NetApp. Minor incompatibilities cropped up in the two
implementations of the protocol. Three BOF sessions were held to consider
forming an IETF Working Group specific to ICP. No Working Group was
formed; however, the primary architects of Squid published RFCs 2186 and
2178 as informational documents describing the protocol in September 1997.

10.3.4 Caching Techniques for Streaming Media

Just as the Web content caching techniques described in Chapter 3 rely on the
transport protocol features, the caching techniques for streaming media
described in Chapter 4 rely on the features of the streaming protocols.

The Audio/Video Transport Working Group published RFC 1889 as a stan-
dards track document in January 1996. This defines RTP, described in Section
4.2.1. The multiparty multimedia session control Working Group published
RFC 2326 as a standards track document in April, 1998. This defines RTSP
described in Section 4.2.3.

Although these protocols do not include specific caching features, under-
standing their specification allows development of the streaming caching tech-
niques described in Chapter 4.

Emergence of these standards had another interesting effect. Before they
were published, major corporations including Real and Microsoft stressed their
proprietary protocols for streaming media. After the standards were published
and gained some support, both Real and Microsoft started to show interest in
moving to these standard solutions. There seems to be a tipping point where pro-
prietary solutions give way to standard solutions. Factors influencing when this
shift occurs include the success of proprietary solutions in capturing and hold-
ing market share and the technical and business success of the published stan-
dards.

10.3.5 Switching and Routing in Content Networks

The problems of resolving domain names and the growth of the domain name
system are described in Section 5.1. A long series of RFCs that describe evolv-
ing solutions began in October 1985 with the publication of RFC 952 describ-
ing the host table specification. In November 1987, shortly after the formation
of the IETF, RFCs 1034 and 1035 were published defining the modern Domain
Name System. Since then the DNS Working Group published six RFCs describ-
ing the evolution of the Domain Name System before concluding their work in
March 1994. The DNS Incremental Transfer, Notification, and Dynamic Update
Working Group published 12 RFCs related to zone transfer, change notification,
and dynamic update of the distributed DNS directory before concluding their
work in January 2000. The domain name system security Working Group pub-

10.3 Content Networking Standards 295

Ch10.qxd 01/19/2005 01:06 PM Page 295

lished nine RFCs related to enhancements to the secure DNS protocol designed
to protect the dynamic update operation of the DNS before concluding their
work in December 1999. Presently the DNS Extensions Working Group is
focused on advancing the zone transfer, updating and notifying documents to
draft standard, the rewriting the DNSSEC [RFC 2535] proposed standard. They
have published 22 RFCs so far [IETF3].

Network Address Translation (see Section 5.2.1), first described by RFC
1631 published in May 1994, predates the formation of the network address
translation Working Group. This Working Group provided a forum to discuss
applications of NAT operation, limitations to NAT, and the impact of NAT
operations on Internet protocols and applications. They published 11 RFCs
before concluding their work.

The Virtual Router Redundancy Protocol Working Group is currently
active. They published RFC 2338 defining the VRRP Standard in April 1998.

There are no open standards for the Global Routing Systems, described in
Section 5.3, other than these basic protocols. If standards were to be developed,
the system would have to be decomposed into modules and protocols. Likely
modules could include a standard definition of a distance-sensitive DNS server
and the associated service nodes. Standard protocols could be defined for com-
munications between this distance-sensitive DNS and the service nodes. Perhaps
a standard for explicitly describing the location of clients and service nodes
would develop along with standard definitions for various distance metrics.
Presently proprietary systems dominate this market and have resisted penetra-
tion by standards or suppliers of interchangeable components. This may be
motivated by a transient business condition. Because the owner of an effective
proprietary global routing system can also bundle the service nodes with that
solution, it leads to broader control of this emerging market based on the value
of their global routing algorithm.

10.3.6 Peer-to-Peer Content Networks

The peer-to-peer systems described in Chapter 6 (e.g., Gnutella and KaZaA) rely
only on informal protocol specifications and ad hoc solutions. Perhaps the lack
of a strong business model for these systems is reflected in the lack of standards
work in the area.

10.3.7 Interactive Content Delivery—Instant Messaging

Many Working Groups have contributed to the instant messaging solutions
described in Chapter 7.

The Instant Messaging and Presence Protocol (IMPP) Working Group pub-
lished RFCs 2778 and 2779 in February 2000 defining the Presence and Instant
Messaging Model. Their several recent RFCs define a Common Profile for
Presence (CPP), the Presence Information Data Format (PIDF), Address
Resolution for Instant Messaging and Presence, a Common Presence and

296 C H A P T E R 1 0 Standard Efforts

Ch10.qxd 01/19/2005 01:06 PM Page 296

Instant Messaging: Messaging Format, and a Common Profile for Instant
Messaging (CPIM). They have now concluded their work.

The Multiparty Multimedia Session Control (MUSIC) Working Group
published RFC 2327 defining the Session Description Protocol in April 1998.
The Session Initiation Protocol (SIP) Working Group has published the many
RFCs that define the SIP Protocol.

The SIP for Instant Messaging and Presence Leveraging Extensions
(SIMPLE) Working Group has leveraged the work of all of these groups to
write many Internet Drafts and RFCs working toward an instant messaging sys-
tem based on the SIP Protocol that meets the requirements described by the
IMPP Working Group.

The Extensible Messaging and Presence Protocol (XMPP) Working Group
began with the Jabber Instant Messaging and Presence technology and devel-
oped the RFCs that define the XMPP standard.

It will be interesting to see how acceptance of these standards penetrates the
popular proprietary instant messaging systems in use today.

10.3.8 Content Services

As described in Chapter 8, two major standardization groups are active in the
content services arena today—the IETF and W3C. They can be seen as comple-
mentary, but focusing on different approaches.

As described in Chapter 8, the IETF has chartered the Open Pluggable Edge
Services (OPES) Working Group to focus on supporting services that operate on
data flows between endpoints. So far, the OPES Working Group has developed
an architectural framework to authorize, invoke, and trace such application-level
services. The framework follows a one-party consent model, which requires that
each service be authorized explicitly by at least one of the application-layer end-
points. It further requires that OPES services are reversible by request of the
application endpoints.

In particular, the OPES WG has developed a protocol suite for invocation
and tracking of OPES services inside the network. The protocol suite includes a
generic, application-agnostic protocol core (OCP Core) that is supplemented by
profiles specific to the application-layer protocol used between the endpoints. So
far, the WG has specified an OCP profile for HTTP, which supports OPES ser-
vices that operate on HTTP messages. As of this writing, the WG is proposing
to continue its work and to specify one or more OCP profiles that will support
OPES services operating on SMTP. In particular, the profile to be specified will
enable an OPES processor to encapsulate and forward SMTP data and metadata
to a callout server for additional processing. In addition, the WG will finalize its
work on a rules language to control selection and invocation of services by an
OPES processor.

The W3C, in contrast, focuses on specifying mechanisms and protocols in
support of traditional business services, such as submitting a purchase order or
finding a plumber, in addition to services automatically invoked by software

10.3 Content Networking Standards 297

Ch10.qxd 01/19/2005 01:06 PM Page 297

programs. The W3C has created several specifications for announcing, discover-
ing, describing, locating, and exchanging messages to use the services, which
include SOAP, WSDL, and UDDI, and are described in Chapter 8.

In the early days of content services, the ICAP Forum was created to
develop a first callout protocol for HTTP-based applications. The resulting
ICAP specification has now been published as an informal RFC. No further
enhancements on ICAP are planned, and the work on future callout protocols
moved into the OPES WG of the IETF.

A few more details and a history of the standards groups surrounding con-
tent services are also given in Chapter 8.

298 C H A P T E R 1 0 Standard Efforts

Ch10.qxd 01/19/2005 01:06 PM Page 298

C H A P T E R 1 1

Summary and Outlook

299

Innovation creates opportunity. This book has outlined the rapid progress of the
Internet over the past 35 years, focusing on the explosion of the World Wide
Web over the past decade. This chapter describes that evolution by briefly sum-
marizing the key technologies introduced in each of the previous chapters. Then,
by extending each technology forward along its logical path, we suggest future
directions of the World Wide Web. Only imagination can limit the opportunities
that will result from continued development, integration, and application of
these technologies.

11.1 Content Networking Architecture Evolution

Content traverses networks, and Chapter 2 describes how the End-to-End prin-
ciple guided the original architecture of the Internet. Figure 11.1 shows this
End-to-End architecture. The network is relatively simple and the intelligence is
moved as much as possible outside the network and into the end hosts.

Routers inside the network implement only protocol layers one through
three, realizing a basic, best-effort packet forwarding service through the net-
work, across multiple network links, and multiple network segments. Building
on top of IP, hosts implement higher-layer protocols that coordinate the mes-
sage exchange and organize lower-level network resources to efficiently achieve
application-specific design goals. TCP, for example, adds advanced features such
as error control, congestion control, and ordered packet delivery on top of the
basic IP service. These features enable TCP to provide the underpinning for most
application-level protocols such as Telnet, FTP, and HTTP. The Internet archi-
tecture allows many different users with different applications to efficiently share
common, lower-level network resources.

But closer is better, so Chapter 3 describes how caches are located within
clients, the network, and at server farms. Figure 11.2 illustrates how these inter-
mediaries store content within the network. This speeds up responses while

Ch11.qxd 01/19/2005 01:06 PM Page 299

reducing network and server loads. These intermediaries diverge from the
Internet’s original End-to-End principle to provide their benefits. Even though
streams are continuous, making them different from Web pages, specialized tech-
niques, explained in Chapter 4, bring the benefits of caching to multimedia
streaming content.

Content retrieval requires navigation and Chapter 5 describes how the DNS
routes requests to Web servers, Web caches and Web switches. It also describes
how Web switches improve operations, and how global request routing connects
clients to the best service node. Figure 11.3 illustrates Web switches used to bal-
ance server load, and increase the flexibility and reliability of server farms. Web
switches are also important for directing network traffic to interception proxies.
Global request routing, shown in Figure 11.4, directs client requests to the inter-
mediaries at the service node within the network best able to serve each request.
This speeds up responses while further reducing network and server loads.

300 C H A P T E R 1 1 Summary and Outlook

Ethernet

HTTP

TCP

IP

Web ServerWeb Client

HTTP

TCP

IP

802.11

End Host Network End Host

802.11 ATM

IP

RouterRouter

ATM Ethernet

IP

Request

Response

Web Client Web Server

Internet

Figure 11.1 The End-to-End model.

Ch11.qxd 01/19/2005 01:06 PM Page 300

11.1 Content Networking Architecture Evolution 301

Web Clients

Web Servers

Web Caches

Figure 11.2 Intermediaries store content within the network.

Web Clients

Web Servers

Web Caches

Web Switch

Server Farm

Figure 11.3 Web switches improve operations.

Because peers are equals, Chapter 6 describes how peer-to-peer networks
challenge traditional client-server networks, which serve a large number of
requests from a relatively small number of high capacity server farms. Figure
11.5 illustrates the symmetric traffic patterns of true peer-to-peer content
exchange. This has the potential of improving network reliability and scalability,
although practical networks based on a true peer-to-peer architecture are still
relatively rare and sparsely deployed.

People enjoy conversing directly with others, and these conversations are a
form of interactive content distribution. Figure 11.6 illustrates instant messaging

Ch11.qxd 01/19/2005 01:06 PM Page 301

302 C H A P T E R 1 1 Summary and Outlook

Fi
g

u
re

 1
1.

4
G

lo
ba

l r
eq

ue
st

 r
ou

tin
g

co
nn

ec
ts

 c
lie

nt
s

to
 t

he
 b

es
t

se
rv

ic
e

no
de

.

S
er

vi
ce

 N
od

e
2

S
er

ve
r

X

S
er

ve
r

Y

S
er

vi
ce

 N
od

e
1

W
eb

 C
ac

he
R

ev
er

se
 P

ro
xy

S
er

ve
r

A

S
er

ve
r

B

Lo
ca

l D
N

S
S

er
ve

r

C
lie

nt
 1

P
ro

xi
m

ity
 E

st
im

at
e

In
fo

rm
at

io
n

C
lie

nt
 2

C
lie

nt
 3

W
eb

D
N

S
A

ut
ho

rit
at

iv
e

D
N

S
 S

er
ve

r

P
ro

xi
m

ity
E

st
im

at
e

W
eb

 C
ac

he
R

ev
er

se
 P

ro
xy

1

3

2

4

Ch11.qxd 01/19/2005 01:06 PM Page 302

capabilities that allow immediate interaction and dialog with other people who
may be using a variety of devices from many different locations, both stationary
and mobile. Chapter 7 describes the abstract model for a presence and instant
messaging system and then describes a variety of standards-based and propri-
etary approaches to building such a system. This interactive content delivery
presents another challenge for networks that focus traffic or introduce delays.

Service is personal, and value-added services are necessary to make money.
People will no longer be satisfied by simply being able to access a Web page on
a server in a far away country. They expect far more—instantaneous delivery of
information, custom-tailored to their specific needs and preferences. People also
expect an integrated solution that converges their various communication needs
into a single, easy-to-use system. Content services provide these features by
adding value beyond basic content transport. Figure 11.7 shows how content
services leverage intermediaries throughout the network, bringing together loca-
tion information, voice recognition and synthesis, cell phones, wireless PDA,
broadband, and databases, transforming the way we live and work. Chapter 8
describes the underpinning technology and architectures. This creates the new
arena of the content service provider.

Diverse interests continue to shape these elements into a variety of content
networks designed to serve the needs of enterprise users, network operators,
content distribution companies, and content service providers. Chapter 9 de-
scribes how the various network elements work together to serve the customers’
needs.

Standards enable interoperability of modules connected by protocols. The
decomposition of a system into separate, well-defined functions has several
advantages. First, each of these functions is specialized, which makes them
more efficient to implement. Second, they can each be implemented in sepa-
rate modules, which allows for scalability and flexibility. Such separation

11.1 Content Networking Architecture Evolution 303

P

P

P

P

P

P

Figure 11.5 Peer-to-peer communication creates symmetric traffic.

Ch11.qxd 01/19/2005 01:06 PM Page 303

requires well-defined interfaces, however. Chapter 10 explains how the creative
tension between proprietary solutions and standard solutions continuously
energizes Working Groups to identify, describe, and solve more challenging
problems.

11.2 The Future of Content Networking

Throughout the evolution of content networking the user requirements have
remained constant and are easily stated: Users want systems that instantly deliver
rich relevant content, anytime, anywhere. Content networking capabilities con-
tinue to evolve in both predictable and surprising directions.

Transport continues to get faster and provide substantially greater band-
width with lower delays, fewer errors, and dramatically lower cost. The transport
capabilities available only from wireline connections a short decade ago are now
available to wireless devices. This frees users to access richer content anytime and
anywhere.

Storage continues to increase dramatically in capacity while access speeds
and reliability increase. Cost and the physical size of storage devices continue to
drop dramatically. For example, only a decade or so ago, the 40 Gbytes stored by
today’s pocket-sized iPOD, required rooms full of air-conditioned space filled
with banks of expensive disk drives. This increased storage capacity allows
richer media types to be stored at Web servers and Web caches throughout the
network.

Content will continue to improve until it captures the full richness and inten-
sity of real life and human imagination. Audio will increase in fidelity and video
will increase in resolution, depth, and nuance. Text and graphics will allow for

304 C H A P T E R 1 1 Summary and Outlook

Chat

Figure 11.6 Instant messaging enables interactive communication.

Ch11.qxd 01/19/2005 01:06 PM Page 304

11.2 The Future of Content Networking 305

S
er

vi
ce

 E
ng

in
es

R
un

ni
ng

 S
er

vi
ce

-S
pe

ci
fic

S
of

tw
ar

e

S
ta

nd
ar

d
S

er
ve

r
A

pp
lic

at
io

ns

C
on

te
nt

 S
er

vi
ce

P
ro

vi
de

rs
’ A

re
na

N
et

w
or

k
S

er
vi

ce
P

ro
vi

de
rs

’ A
re

na

C
on

te
nt

 C
on

su
m

er
s’

 A
re

na
C

on
te

nt
 P

ro
vi

de
rs

’ A
re

na

C
on

te
nt

A
da

pt
at

io
n

C
on

te
nt

B
ro

ke
r

Lo
ca

l
P

re
fe

re
nc

es
A

ss
ig

nm
en

t

H
um

an
La

ng
ua

ge
T

ra
ns

la
tio

n

S
ta

nd
ar

d
C

lie
nt

A
pp

lic
at

io
ns

A
ud

io
 /

V
id

eo
S

tr
ea

m
in

g
S

er
ve

r
H

T
T

P
C

on
te

nt
 S

er
ve

r

B
ro

w
se

r
P

D
A

A
/V

 P
la

ye
r

O
pe

n
In

te
rf

ac
e

to
S

er
vi

ce
 E

ng
in

es

S
ta

nd
ar

d
P

ro
to

co
ls

(e
.g

. H
T

T
P

, R
T

S
P

)

S
ta

nd
ar

d
P

ro
to

co
ls

(e
.g

. H
T

T
P

, R
T

S
P

)
N

et
w

or
ke

d
P

ro
xy

 E
ng

in
es

Fi
g

u
re

 1
1.

7
C

on
te

nt
 s

er
vi

ce
s

ad
d

in
te

lli
ge

nc
e

to
 t

he
 n

et
w

or
k.

Ch11.qxd 01/19/2005 01:06 PM Page 305

better page layout and graphic expression. Intermediate forms such as animation
will become easier to create and more realistic. Images, graphics, and video will
become more realistic, portraying 3D effects, dramatic lighting, and lifelike move-
ment—as in the movie Finding Nemo. Dynamic object types, such as stock quo-
tations and database elements will increase in use and importance. Real-time
information such as live Web Cams will increase in utility and usage.

Users at work and play will access this increasingly rich content from a vari-
ety of clients. Their clients will become more powerful at home, at work, and on
the move wherever users go. Processing power, memory, and display resolution
will all increase. Portability, personalization, and specialization will also
increase, providing devices such as a portable network-connected MP3 audio
player or wearable two-way Web Cam and monitor. User preferences will be
communicated that allow the content network to customize semantics, selection,
and format. Content directories evolved from today’s search engines will become
more accurate in identifying content specifically relevant to each user’s needs.

Navigation will improve in accuracy, resolution, and speed. Requests will be
quickly directed ever more precisely to the network device that can best serve
each individual request. Web switches will continue to increase the capacity, reli-
ability, and flexibility of content delivery networks.

Peers will always have good reason to communicate directly. This symmetri-
cal communication creates traffic patterns that are significantly different from
client server traffic. Robust peer-to-peer network algorithms, such as the Chord
system described in Section 6.3.3 may become popular if an attractive business
model for peer-to-peer networks emerges.

People will always want to converse with others. Richer media forms such as
graphics, audio, and video will become popular interactive content. Wireless
transport mechanisms and adaptation to wireless devices will continue to evolve
to bring people closer together. A wide range of alerting signals will convey pres-
ence information unobtrusively or with the panache and personal style each user
prefers.

The potential of content services is unlimited. Services will become highly
differentiated and personalized, as witnessed by the enormous popularity of
personalized Web portals such as My Yahoo!. Just as today there are dozens of
automobile companies making hundreds of different models, there will be many
providers of widely diverse and differentiated content services.

Networks will employ more storage, bandwidth, and processing power while
each network element shrinks in physical size. They will become more special-
ized to meet the needs of increasingly demanding users, while increasing their
capacity and variety of service offerings to meet the needs of more users.
Integration of wired and mobile access will increase. Convergence and integra-
tion of services will also increase. Today’s desk telephone, mobile phone, PDA,
laptop computer, digital camera, video monitor, movie screen, surround sound
system, GPS receiver, DVD player, video recorder, video camera, and portable
audio player will be combined into a few well-designed, well-integrated devices
for accessing a powerful and ubiquitous content delivery network.

306 C H A P T E R 1 1 Summary and Outlook

Ch11.qxd 01/19/2005 01:06 PM Page 306

New standards will emerge providing new content delivery functions by
allowing interoperability of newly conceived modules interconnected by proto-
cols. These will become more and more specialized as new needs and capabilities
are identified and split off into their own modules. The creative tension between
proprietary solutions and standard solutions will continuously propel standards
work into new areas until delivering rich relevant content is as fast, effortless,
satisfying, and personal as pure thought.

Advances in technology will continue to shape the network architecture.
Figure 11.8A illustrates how advances in transport technology, such as increased
bandwidth, decreased delay, and decreased cost can shift the Internet toward the
End-to-End model. If bandwidth is plentiful, then the cost of reaching across
the network for content is small in both monetary and performance terms.
However, if storage technology improves faster relative to bandwidth, then the
“closer is better” Web caching technologies described in Chapters 3 and 4 are
most advantageous. Here high capacity, low latency, high reliability, and inex-
pensive storage can be used in many places throughout the network as a
substitute for bandwidth. In this case, the importance of caching intermediaries
will continue to increase.

Figure 11.8 B illustrates how improvements in processing power relative to
bandwidth may influence the network architecture. Here the alternative
approaches considered are the Web-based services, as described in Section 8.6
and services based on intermediaries, such as OPES, described in Section 8.5. If
bandwidth is abundant, then reaching across the network to the server for cus-
tomization is acceptable. If processing is more plentiful than bandwidth, then
locally applied services are more satisfactory. This requires that service interme-
diaries are available, which depends to some extent on the storage costs consid-
erations illustrated in Figure 11.9 A. The problem is three-dimensional, at least.
The value of global request routing also depends on the relative abundance of

11.2 The Future of Content Networking 307

Bandwidth

Storage
Capacity

Processing
Power

End-to
-End

Model

Caching

Intermediaries

A

Bandwidth

Processing
Power

Storage
Capacity

Server-Based

Web Services

Service Intermediaries,

Global Request Routing

B

Figure 11.8 Technology advances shape the network architecture.

Ch11.qxd 01/19/2005 01:06 PM Page 307

bandwidth and processing capability. Global request routing uses processing to
execute intelligent algorithms to reduce bandwidth needs and transport delays.
If bandwidth is abundant, then the savings diminish and routing across the net-
work to the Web server is satisfactory. Other architectural solutions may depend
on the relative abundance of processing power and storage capacity, but they are
not explored here.

Many powerful forces will continue to drive the evolution of content net-
works. Figure 11.9 illustrates several of them. Terminals used to run client appli-
cations will increase in display resolution, become available instantly after they
are powered on, will render images in three dimensions, and will support virtual
reality. Terminals we carry with us will become more portable and include higher
resolution displays. Terminals we use at home and work will present larger and
more lifelike images and higher fidelity sound. Networking will increase in band-
width and decrease in delay. This allows high speed data transport, fast signal-
ing, and may allow for managing the quality-of-service. Wireless technologies
will also increase in bandwidth, availability, and reliability. Finally, new and
emerging applications will provide a wide range of useful services, including
location-based services, convergence of voice, location, Internet, and wireless
services, personal services, integrated and enhanced messaging, and mobile
commerce.

Large-scale deployment of high-speed, always-on Internet access, as pro-
vided by cable and DSL technology, will also have a significant impact on the
future development of content networks. With the availability of broadband
connectivity to the Internet, it can be expected that the role of creating and dis-
tributing content will no longer be limited to a few well-known content

308 C H A P T E R 1 1 Summary and Outlook

Terminal
Technologies

Advances in
Networking

High-Speed Data

Quality of
Service

Fast
Signaling

High-Resolution
Displays Instant

Availability

3D and
Virtual Reality

New / Emerging
Applications

Converged Services Messaging

Location-Based Services

M-Commerce
Personal Services

Wireless

Miniaturization

Figure 11.9 Powerful forces are driving the evolution.

Ch11.qxd 01/19/2005 01:06 PM Page 308

providers. Instead, every individual Internet user will potentially become a con-
tent source—sharing photos from the backyard BBQ, providing a live image
from the local beach, or posting news articles with multimedia content.
Constant reduction in costs for the hardware and software needed to produce
such content further facilitates this trend. Imagine a world in which every house-
hold is a source for many different types of content—live video, recorded videos,
audio, images, and news. And anyone in the world—with permission of the con-
tent owner—can access this content. New techniques for organizing, identifying,
and locating relevant content will be developed. The network infrastructure will
change to support the dramatically large number of content sources. New mech-
anisms will be introduced that protect the privacy of each individual user.

We are still early in the evolution of content networking. The possibilities
exceed the imagination. Stay tuned, have fun—and dream on!

11.2 The Future of Content Networking 309

Ch11.qxd 01/19/2005 01:06 PM Page 309

Ch11.qxd 01/19/2005 01:06 PM Page 310

Appendix—XML Basics

311

Several of the topics discussed, including PIDF, XMPP, IRML, SOAP, and WSDL are
applications that use XML to exchange data. This appendix provides an introduction to
the basic concepts of XML required to understand these XML applications.

XML, the Extensible Markup Language, is a very general and extensible language
for identifying the structure of data, including documents. It is defined by Extensible
Markup Language (XML) 1.0 (Third Edition) and is a W3C recommendation adopted
February 4, 2004 (www.w3.org/TR/REC-xml). XML has been designed for implementa-
tion ease and for interoperability with both SGML and HTML. Other design goals are
to be easily usable over the Internet, provide support for a wide variety of applications,
and make it easy to write programs which process XML documents.

An XML document consists primarily of a collection of elements. Elements consist
of a pair of start and end tags. These tags encapsulate and delimit the data and identify
its type. In the following simple example, after declaring the XML version in the first line,
the root element bookinfo consists of two elements, the author and the title.

If this example is saved as a file called bookinfo.xml and opened using Internet
Explorer (version 5.0 or later), or any other XML browser, it will be displayed showing
its structure as an XML file.

XML is extensible and flexible because the user is free to define element and tag
names. Only a small number of basic element types, such as character string, integer, and
date are predefined. XML relies on a separate Document Type Definition (DTD) to pro-
vide a grammar specification for a particular document type. Identifying a DTD enables
a parser to determine if the corresponding XML document is valid. A valid XML doc-
ument has the correct nesting of start and end tags and conforms to the rules of the

<?xml version="1.0"?>
<bookinfo>

<author>
Leland R. Beaumont

</author>
<title>

Content Networking: Architecture, Protocols,
and Practice

</title>
</bookinfo>

Example 1. bookinfo.xml.

Appendix.qxd 1/18/05 4:36 AM Page 311

Document Type Definition. Alternatively, the XML Schema Definition (XSD) lan-
guage can be used to define the structure of an XML document. An XML Schema
defines:

● elements and attributes that can appear in a document,
● which elements are child elements along with their order and number,
● whether an element is empty,
● the data types for elements and attributes, and
● the default and value ranges for elements and attributes.

Schema are associated with an XML document by using the schemaLocation=URL
attribute of the Root element.

When a document is defined by XML, the conventions used in displaying the docu-
ment are defined using a separate Cascading Style Sheet (CSS) or the more powerful
eXtensible Stylesheet Language (XSL) to define display characteristics of each element
type. Because the formatting specification is separate from the document content, for-
mats can be chosen to suit the display preferences of the user, or the capabilities of the
display device.

Namespaces avoid element name conflicts and allow reuse of predefined element
types. Because element names can be chosen freely by the user, element name conflicts
can often occur. These are resolved by defining a namespace for each tag. By using the
XML namespace attribute xmlns in the root element start tag and referring to a unique
URL, the prefix b in this example now qualifies each tag as belonging to a unique name
space.

Predefined element types can be reused by selecting the namespace where they are
defined. For example, SOAP is defined as an XML application by the schema at:
http://www.w3.org/2003/05/soap-envelope/. Similarly, WDSL is defined as an XML
application by the schema at: http://schemas.xmlsoap.org/wsdl/.

312 Appendix —XML Basics

<?xml version="1.0"?>
<b:bookinfo xmlns:b="http://www.content-

networking.com/xml/booknamespace" >
<b:author>

Leland R. Beaumont
</b:author>
<b:title>

Content Networking: Architecture, Protocols,
and Practice

</b:title>
</b:bookinfo>

Example 2 bookinfo.xml with namespace declaration.

Appendix.qxd 1/18/05 4:36 AM Page 312

Glossary

313

The special terms used in this book are defined in this glossary. Several of these terms
are taken directly from RFCs or other primary references cited. Many terms defined in
RFC 1983, the Internet User’s Glossary, are not repeated here.

3GPP The 3rd Generation Partnership Project for wireless. See www.3gpp.org.

AAA Authorization, Authentication, and Accounting—Services that enable monitor-
ing, logging, accounting, and billing of content usage. This includes mechanisms to
ensure the identity and the privileges of all parties involved in a transaction, as well as
digital rights management. See RFC 2989.

ABNF Augmented BNF (Backus-Naur Form) for Syntax Specifications. See RFC
2234.

ADSL Asymmetric Digital Subscriber Line—A method for very rapidly moving data
over regular phone lines. See www.dslforum.org/aboutdsl/adsl_tutorial.html.

AIM The AOL Instant Messenger service. See www.aim.com/.

AS Autonomous System—A set of routers under a single technical administration. An
AS is a connected group of one or more IP prefixes run by one or more network opera-
tors that has a single and clearly defined routing policy. See RFC 1930.

ARIN The American Registry for Internet Numbers. See www.arin.net/.

ARPA The Advanced Research Projects Agency, who sponsored the early research
work leading to the Internet. See www.arpa.mil.

Bearer Channel The bearer channel is the primary transmission path and is used to send
the data representing the payload of the communication. Contrast with signaling channel.

BIND The Berkeley Internet Name Domain—Is an implementation of the Domain
Name System (DNS) protocols and provides an openly redistributable reference
implementation of the major components of the Domain Name System. See
www.isc.org/index.pl?/sw/bind/.

Binding Binding is an association between an interface, a concrete protocol, and a data
format. A Binding specifies the protocol and data format to be used in transmitting
messages defined by the associated Interface.

Callout Server A server (e.g., within OPES) providing content services that is distinct
from the service activation point.

Codec Short for either compressor/decompressor, or coder/decoder. A codec is any
technology for compressing and decompressing data or encoding and decoding a signal.

Glossary.qxd 1/19/05 9:06 AM Page 313

Codecs can be implemented in software, hardware, or a combination of both. Some pop-
ular codecs for multimedia include MPEG, and MP3 audio. Lower fidelity audio formats
include PCM, ADPCM, and LPC.

Content The term content refers to any information that is made available for retrieval
from resources on the Internet. This includes, but is not limited to Web pages, images,
textual documents, audio and video, as well as software downloads and broadcasts.

Content Adaptation A content processing service that adapts the format and presenta-
tion of content to suit the characteristics of a particular client device or the preferences
of a particular content consumer.

Content Consumer The final destination for the content to be delivered. Content con-
sumers are typically Internet users requesting information through their Web browsers.

Content Creator The author of content, including Web pages, multimedia files, and
other content forums.

Content Distribution Services Services for moving the content from the source to the des-
tination. These services can comprise Web caches or other devices storing content interme-
diately on behalf of the origin Web server in the network. The distribution component also
covers the actual mechanism and the protocols used for transmitting data over the network.

Content Host The provider of Web server space.

Content Network The term content network refers to a communication network that
deploys infrastructure components operating at protocol Layers 4 through 7. These com-
ponents interconnect with each other, creating a virtual network layered on top of an
existing network infrastructure.

Content Network Provider Organizations responsible for helping content providers
deliver content to the users. Their resources typically provide caching and replication of
data, as well as request-routing and possibly services for content processing.

Content Provider A general term encompassing the content creator, the content host,
or both.

Content Services Services for creating or adapting content or requests for content to
suit user preferences and device capabilities. This includes modification or conversion of
both content and requests for content. Examples are content adaptation for wireless
devices or adding privacy by making anonymous personal information embedded in user
requests. A service engine provides these content services.

CPIM Common Profile for Instant Messaging. See RFC 3860.

CPP Common Protocol for Presence. See RFC 3859.

Delegate Services Content services provided on behalf of the content consumers or by
the applications they are running.

DHCP Dyanamic Host Configuration Protocol. See RFC 2131.

DNS Domain Name System—The distributed directory used to translate human-
friendly hostnames, like www.content-networking.com into the corresponding IP
address. The DNS is defined by RFC 1034, RFC 1035, and others.

314 Glossary

Glossary.qxd 1/19/05 9:06 AM Page 314

Digital Millennium Copyright Act A provision of the U.S. copyright law enacted in
1998 that considers copyright issues in the context of digital media [DMCA98].

Domain A sub-tree of the domain name space. For example, “.edu”, “purdue.edu”, and
“itap.purdue.edu” are all domains.

Domain Name Space The set of all domain names and their corresponding IP
addresses. This forms a tree-structured name space for the data associated with the
names. See RFC 1034.

DTMF Dual Tone Multi-Frequency is the technical name for touch-tone or push-
button dialing. Pushing a button on a telephone keypad generates a sound that is a
combination of two tones, one high frequency and the other low frequency.

Elastic Store An algorithm or device designed to accommodate small timing variations
between two devices that need to interwork in real time. It is typically implemented as a
double-ended queue, where content is removed from the front while it is added to the
back of the queue. The queue is designed to be long enough that timing differences
between content arrival and removal never exhausts the queue.

Element An XML element.

EMS Enhanced Messaging System—Provides an evolutionary path from SMS to
MMS. See www.3gpp.org.

Fetcher Within the model for Presence and Instant Messaging, a fetcher is a form of
watcher that has asked the presence service for the presence information of one or more
presentities to be created, but has not asked for a subscription. See RFC 2778.

Forward Proxy A Web cache working on behalf of content consumers. Traffic is
directed to the forward proxy, for example by identifying it as an HTTP proxy in the
user’s Web browser. Contrast with Reverse Proxy.

Grid Computing Coordinated resource sharing and problem solving in large, multi-
institutional virtual organizations [FKe03].

GSLB Global Server Load Balancing.

HTML Hyper Text Markup Language. See www.w3c.org/MarkUp/.

HTTP Hypertext Transfer Protocol—The protocol predominantly used by the World
Wide Web as defined in RFC 2616.

IAB IETF Internet Architecture Board—The IAB is responsible for defining the
overall architecture of the Internet, providing guidance and broad direction to the
IETF. The IAB also serves as the technology advisory group to the Internet Society,
and oversees a number of critical activities in support of the Internet. See www.
ietf.org/glossary.html.

IANA The Internet Assigned Numbers Authority is in charge of all “unique parame-
ters” on the Internet, including IP (Internet Protocol) addresses. Each domain name is
associated with a unique IP address, a numerical name consisting of four blocks of up to
three digits each (e.g., 204.146.46.8), which systems use to direct information through the
network. See www.ietf.org/glossary.html.

Glossary 315

Glossary.qxd 1/19/05 9:06 AM Page 315

ICAP The Internet Content Adaptation Protocol was the first protocol to be defined
by an RFC for content service applications. It is defined by RFC 3507.

ICAP Resource Similar to an HTTP resource, but the URI refers to an ICAP service
that performs adaptations of HTTP messages. See RFC 3507.

ICAP Server Similar to a callout server, except that the application services ICAP
requests. See RFC 3507.

ICAP Client A program that establishes connections to ICAP servers for the purpose of
sending requests. An ICAP client is often, but not always, a surrogate acting on behalf of a
user. See RFC 3507.

ICAP Forum An industry group formed to advance the use of the ICAP protocol. See
www.i-cap.org.

IESG The Internet Engineering Steering Group is responsible for technical manage-
ment of IETF activities and the Internet standards process. As part of the ISOC, it
administers the process according to the rules and procedures which have been ratified
by the ISOC Trustees. The IESG is directly responsible for the actions associated with
entry into, and movement along, the Internet standards track, including final approval
of specifications as Internet Standards. See www.ietf.org/glossary.html.

IETF The Internet Engineering Task Force is the protocol engineering and develop-
ment arm of the Internet. Though it existed informally for some time, the group was for-
mally established by the IAB in 1986 with Phill Gross as the first Chair. See
www.ietf.org/glossary.html.

IMPP The Instant Messaging and Presence Protocol Working Group of the IETF. See
www.ietf.org/html.charters/OLD/impp-charter.html.

Inbox User Agent (UA) Within the model for Presence and Instant Messaging, an
Inbox UA is the means for a principal to manipulate zero or more instant inboxes con-
trolled by that principal. See RFC 2778.

Instant Inbox Within the model for Presence and Instant Messaging, an Instant Inbox
is a receptacle for instant messages intended to be read by the instant inbox’s principal.
See RFC 2778.

Instant Messaging Real-time, interactive content delivery.

Instant Message Protocol Within the model for Presence and Instant Messaging, the
instant message protocol is the messages that can be exchanged between a sender user
agent and an instant message service, or between an instant message service and an
instant inbox. See RFC 2778.

Interactional Coherence A psychology term referring to the expectation that speakers
take turns and their comments “belong together” with each turn intended as a timely
response or follow-up to a previous turn [Her99].

Intermediaries The necessary ties between overlaid content networks and the underly-
ing packet network infrastructure is enabled via intermediaries. Intermediaries are appli-
cation-level devices that are part of a Web transaction, but are neither the originating
nor the terminating device in the transaction. The most commonly known and used
intermediaries today are probably proxies and Web caches.

316 Glossary

Glossary.qxd 1/19/05 9:06 AM Page 316

ISOC The Internet Society is a professional membership organization of Internet
experts that comments on policies and practices and oversees a number of other boards
and task forces dealing with network policy issues. See www.ietf.org/glossary.html.

Jabber An open source instant messaging system that began the XMPP work. See
www.jabber.org.

Jitter Small quick jumpy movements—any distortion of a signal or image caused by
poor synchronization, such as flicker on a display screen or variable frame display rate
of a video.

MD5 A message-digest hashing algorithm defined by RFC 1321.

Metcalfe’s Law See Network Effect.

Mixer In RTP, an intermediate system that receives RTP packets from one or more
sources, possibly changes the data format, combines the packets in some manner, and
then forwards a new RTP packet. Since the timing among multiple input sources will not
generally be synchronized, the mixer will make timing adjustments among the streams
and generate its own timing for the combined stream. Thus, all data packets originating
from a mixer will be identified as having the mixer as their synchronization source. See
RFC 1889.

MRTG The Multi Router Traffic Grapher is a tool to monitor the traffic load on net-
work links. MRTG generates HTML pages containing graphical images which provide a
live visual representation of this traffic. See www.mrtg.org.

MSRP The Message Session Relay Protocol is used by SIMPLE to send in message
mode [CMJ04].

MMS The Multimedia Messaging Service allow users to send and receive messaging
using an array of media types, including text, images, audio, and video while supporting
new wireless client types [3GPP1].

Multimedia Content Content that is represented as a combination of multiple content
objects, each of them having a different media type. Examples include video clips with
audio or Web pages incorporating text, images, and videos.

MMUSIC The Multiparty Multimedia Session Control Working Group. See www.ietf.
org/html.charters/mmusic-charter.html.

Name Servers Server programs that hold information about the domain tree’s structure
and set information. Name servers run the DNS protocol. See RFC 1034.

Namespace A collection of distinct names represented as strings of characters. Usually
the names in a namespace are constructed according to a set of rules given by the defi-
nition of the namespace. URIs of various kinds are commonly used to construct the
names in namespaces. For example, the namespace for UDDI keys in the recommended
keying scheme consists of the URIs in the “uddi” scheme. See RFC 1034.

NAT Network Address Translation. See RFC 1631.

Navigation The general problem of locating a destination and determining a path
toward it.

Glossary 317

Glossary.qxd 1/19/05 9:06 AM Page 317

Network Effect Also know as Metcalfe’s law, states that the value of a network grows
as the square of the number of users.

OCP The OPES callout protocol, used to invoke a callout server from a data dispatcher.

OPES Open Pluggable Edge Services. See RFC 3835.

OPES Rules A set of instructions that specify when, where, and how to execute OPES
services.

OPES Service A process that performs the actual content service transformation. See
RFC 3835.

PDA A Personal Digital Assistant—Provides pocket-sized access to a personal calen-
dar, contacts, notes, games, and other information. Wireless devices allow access to e-
mail and Internet content. PDAs became popular with the introduction of the palm
pilot, blackberry, and similar devices.

Peer-to-Peer Computing A set of technologies that enable the direct exchange of ser-
vices or data between computers [Int01].

Peer-to-Peer Networks Distributed systems where the software running at each node
provides equivalent functions [SKB01].

PIDF Presence Information Data Format. See RFC 3863.

Poller Within the model for Presence and Instant Messaging, a poller is a fetcher that
requests presence information on a regular basis. See RFC 2778.

Presence Agent Within the SIMPLE protocols, the presence agent accepts subscrip-
tions, stores subscription state, and generates notifications where there are changes to
presence information. See RFC 3856.

Presence Service Within the model for Presence and Instant Messaging, a Presence
service accepts, stores, and distributes presence information. See RFC 2778.

Presence Information Within the model for Presence and Instant Messaging, presence
information consists of one or more presence tuples. See RFC 2778.

Presence Protocol Within the model for Presence and Instant Messaging, the presence
protocol is the messages that can be exchanged between a presentity and a presence ser-
vice, or a watcher and a presence service. See RFC 2778.

Presence Tuple Within the model for Presence and Instant Messaging, a presence tuple
consists of a status, an optional communication address, and other optional presence
markup information. See RFC 2778.

Presence User Agent (UA) Within the model for Presence and Instant Messaging, a
Presence UA is a means for a principal to manipulate zero or more presentities. See RFC
2778.

Presentity (Presence Entity) Within the model for Presence and Instant Messaging, a
presentity provides presence information to a presence service. See RFC 2778.

Principal Within the model for Presence and Instant Messaging, a principal is a
human, program, or collection of humans and/or programs that chooses to appear to the
presence service as a single actor, distinct from all other principals. See RFC 2778.

318 Glossary

Glossary.qxd 1/19/05 9:06 AM Page 318

Proxy In general a proxy is the authority to act for another as an agent or substitute.
In this book it refers to a network element that is an intermediary program, which acts
as both a server and a client for the purpose of making requests on behalf of other
clients. Requests are serviced internally or by passing them on, with possible translation,
to other servers. Examples include Web caches and firewalls. See RFC 2616.

PSTN The Public Switched Telephone Network accesses and interconnects all tradi-
tional telephone devices.

RAS A Remote Access Server—The device in the network that terminates the many
access connections coming from each client. This may be a modem pool, terminal server,
DSLAM (DSL Access Multiplexer) or the head end of a cable segment.

Render To convert graphics, audio, video or other multimedia content from a file or any
other digital format into visual or audio form, such as on a video display.

Request Routing Services Services for navigating user requests to a location best suited
for retrieving the requested content. User requests can be served, for example, from Web
Servers or Web caches. The selection of the most appropriate target location is typically
based on network proximity and availability of the systems and the network.

Resolvers Programs that extract DNS information from name servers in response to
client requests. A resolver is typically a system routine that is directly accessible to user
programs. See RFC 1034.

Resource A network data object or service that can be identified by a URI, as defined
in Section 3.2 of RFC 2616. Resources may be available in multiple representations (e.g.,
multiple languages, data formats, size, resolutions) or vary in other ways. See RFC 2616.

Resource Records The information returned in a primary type of DNS record. These
are often A (address), NS (name server), or CNAME (canonical name)-type records. See
RFC 1034.

Reverse Proxy A Web cache working on behalf of content providers. Traffic is directed
to the reverse proxy by assigning it the IP address of a Web site. It is also called a server
accelerator. Contrast with forward proxy and transparent proxy.

RFC The Request for Comments document series is the official publication channel for
Internet standards documents and other publications of the IESG, IAB, and Internet
community. See RFC 1796.

RIAA The Recording Industry Association of America is a trade group that represents
the U.S. recording industry. See www.riaa.com.

Roster The term used in XMPP for contact lists. Similar to the “buddy lists” used in AIM.

Routing Routing is the process of choosing a path over which to send packets. Routing
typically refers to path selection at Layer 3.

RTP The Real-Time Transport Protocol. See RFC 1889.

RTCP The RTP Control Protocol. See RFC 1889.

RTSP The Real-Time Streaming Protocol. See RFC 2326.

RTT Round Trip Time.

Glossary 319

Glossary.qxd 1/19/05 9:06 AM Page 319

Ruleset The collection of individual rules operating within a data dispatcher.

SDP The Session Descriptor Protocol. See RFC 2327.

Sender Within the model for Presence and Instant Messaging, a Sender is the source of
instant messages to be delivered by the instant message service. See RFC 2778.

Sender User Agent Within the model for Presence and Instant Messaging, a Sender UA
is the means for a principal to manipulate zero or more senders.

Server An application program that accepts connections in order to service requests
by sending back responses. Any given program may be capable of being both a client
and a server; our use of these terms refers only to the role being performed by the pro-
gram for a particular connection, rather than to the program’s capabilities in general.
Likewise, any server may act as an origin server, surrogate, gateway, or tunnel, switch-
ing behavior based on the nature of each request. See RFC 2616.

Server Accelerator A synonym for reverse proxy.

Service Activation Point The element in the content services architecture that recognizes
requests for content services and dispatches requests for those services. See RFC 3835.

Services Engine An element that provides content services.

SHA-1 A 160-bit message digest that results in consistent hashing [FIPS93, LLP+97].

Signaling Channel The transmission path used to send control information. Contrast
with bearer channel.

SIMPLE The SIP for Instant Messaging and Presence Leveraging Extensions IETF
Working Group. See www.ietf.org/html.charters/simple-charter.html.

SIP The Session Initiation Protocol. See RFC 3261.

SLA Service Level Agreement—an agreement or contract establishing the expected
level of service to be provided. This may specify limits on bandwidth, availability, relia-
bility, error rates, delay, transaction rates, and other parameters of the service. As a con-
tract it may specify penalties or other remedies if the service level is not met.

SMPTE The Society of Motion Picture and Television Engineers is a professional organ-
ization that creates industry standards. See www.smpte.org.

SMS The Short Messaging System allows text messages no longer than 160 characters
to be exchanged between properly equipped wireless clients such as cell phones and
PDAs [SMS1].

SMTP The Simple Mail Transfer Protocol is used for sending e-mail messages between
servers. See RFC 2821.

SOAP Simple Object Access Protocol is a lightweight protocol intended for exchang-
ing structured information in a decentralized, distributed environment. See www.
w3c.org/2000/xp/Group/.

Softphone An application that enables a computer to function as a telephone.

Standard Guideline documentation that reflects agreements on products, practices, or
operations by nationally or internationally recognized industrial, professional, trade
associates, or government bodies [ANS01].

320 Glossary

Glossary.qxd 1/19/05 9:06 AM Page 320

Subscriber Within the model for Presence and Instant Messaging, a subscriber is a form
of watcher that has asked the presence service to notify it immediately of changes in the
presence information of one or more presentities.

Surrogate A synonym for reverse proxy.

Surrogate Services Content services provided on behalf of one or more origin
servers.

Switching Choosing among several local endpoints connected to the switch, typically at
Layer 2. Also used to describe selection based on Layer 4–7 information.

TLD Top-Level Domain—the highest level, below the root, of the DNS name space.
These are subdivided into ccTLDs (country code top level domains) and gTLDs (generic
top level domains). See RFC 1591.

Tragedy of the Commons The observation that freely available shared resources quickly
become exhausted [Har68].

Translator In RTP, an intermediate system that forwards RTP packets with their
synchronization source identifier intact. Examples of translators include devices that
convert encodings without mixing, replicators from multicast to unicast, and applica-
tion-level filters in firewalls. See RFC 1889.

Transparent Proxy A Web cache working on behalf of network providers. Traffic is
directed to the transparent proxy by a Web switch. Contrast with forward proxy and
reverse proxy.

TTL Time To Live—A method commonly used to expire packets.

UAC User Agent Client—A logical entity within SIP that creates a new request and
then uses the client transaction state machinery to send it. See RFC 3261.

UAS User Agent Server—A logical entity within SIP that generates a response to a SIP
request. See RFC 3261.

UDDI The Universal Description, Discovery, and Integration specification provides a
platform-independent way of discovering and describing Web services and Web service
providers. See www.uddi.org/.

UDDI Business Registry A publicly available UDDI registry. The Web services
offered by the UDDI Business Registry’s nodes can be found at uddi.org/register.html
(for publication of business services) and uddi.org/find.html (for inquiry and discov-
ery of business services).

UUCP Unix-to-Unix Copy—This was initially a program run under the Unix operat-
ing system that allowed one Unix system to send files to another Unix system via dial-
up phone lines. Today, the term is more commonly used to describe the large
international network which uses the UUCP protocol to forward news and electronic
mail. See RFC 1983 and RFC 976.

Vectoring Directing a request to one of several possible service points based on rules,
content, availability, location, or some other criteria.

VIP Virtual IP address—An IP address that is associated with a pool of real equipment
rather than with a specific interface of real network equipment.

Glossary 321

Glossary.qxd 1/19/05 9:06 AM Page 321

VoiceXML The Voice Extensible Markup Language is designed for creating audio
dialogs that feature synthesized speech, digitized audio, recognition of spoken and
DTMF key input, recordings of spoken input, telephony, and mixed initiative conversa-
tions. Its major goal is to bring the advantages of Web-based development and content
delivery to interactive voice response applications. See www.voicexml.org/.

VRRP The Virtual Router Redundancy Protocol is defined by RFC 2338.

WAP The Wireless Application Protocol is an industry-wide specification for develop-
ing applications that operate over wireless communication networks. See www.openmobile
alliance.org/tech/affiliates/wap/wapindex.html.

Watcher Within the model for Presence and Instant Messaging, a watcher requests
presence information about a presentity, or watcher information about a watcher, from
the presence service. Special types of watcher are fetcher, poller, and subscriber. See RFC
2778.

Watcher User Agent (UA) Within the model for Presence and Instant Messaging, a
watcher UA is the means for a principal to manipulate zero or more watchers controlled
by that principal. See RFC 2778.

W3C The World Wide Web Consortium—Develops interoperable technologies (speci-
fications, guidelines, software, and tools) to lead the Web to its full potential. W3C is a
forum for information, commerce, communication, and collective understanding. See
www.w3c.org.

Web Object Information on the Web is represented in the form of Web Objects. A Web
object can be anything from a simple text document to a multimedia presentation or an
audio/video clip.

WSDL Web Services Description Language is an XML format for describing network
services as a set of endpoints operating on messages containing either document-
oriented or procedure-oriented information. The operations (procedures) and messages
(data) are described abstractly, and then bound to a concrete network protocol and mes-
sage format to define an endpoint. Related concrete endpoints are combined into
abstract endpoints (defining services). WSDL is extensible to allow description of end-
points and their messages regardless of what message formats or network protocols are
used to communicate; however, the only bindings officially documented describe how to
use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME. See
www.w3c.org/2002/ws/desc/.

WSDL Binding Within WSDL, binding is the process of associating concrete protocol
or data format information with an abstract entity like a message, operation, or port
type. A binding defines message format and protocol details for operations and messages
defined by a particular port type. There may be any number of bindings for a given port
type. See www.w3.org/TR/wsdl12-bindings/.

WSDL Message Parts Message Parts are a flexible mechanism for describing the logi-
cal abstract content of a WSDL message. A binding may reference the name of a part to
specify binding-specific information about the part. For example, a part may represent a
parameter in the message for use with a remote procedure call. However, the bindings
must be inspected to determine the actual meaning of the part.

322 Glossary

Glossary.qxd 1/19/05 9:06 AM Page 322

WSDL Ports A port defines an individual network-accessible endpoint by specifying a
single address for a binding. This endpoint is defined as a combination of a WSDL bind-
ing and a network address. This establishes an address that provides a single primitive
WSDL-defined service. This is analogous to a procedure definition in a procedural
programming language.

WSDL Operations An abstract description of an action supported by the service.

WSDL Port Type A named set of abstract WSDL operations and the abstract mes-
sages involved supported by one or more endpoints.

WSDL Services A collection of related network endpoints, or WSDL ports.

XML The eXtensible Markup Language. See the Appendix.

XMPP The Extensible Messaging and Presence Protocol IETF Working Group. See
www.ietf.org/html.charters/OLD/xmpp-charter.html.

Zone The portion of the domain name space that the name server has complete infor-
mation about. See RFC 1034.

Glossary 323

Glossary.qxd 1/19/05 9:06 AM Page 323

Glossary.qxd 1/19/05 9:06 AM Page 324

RFC References

325

Many of the documents referenced throughout this book are Requests for Comments
(RFCs) published by the IETF. To simplify their reference and retrieval, this list of rele-
vant RFCs is presented in numeric order. The full text of any RFC is freely available
from the IETF Web site at www.ietf.org/rfc.html.

RFC 1 Crocker, S.: “Host Software,” April 7, 1969.

RFC 114 Bhushan, A.: “A File Transfer Protocol,” April 1971.

RFC 952 Harrenstien, K., Stahl, M., Feinler, E.: “DoD Internet Host Table
Specification,” October 1985.

RFC 953 Harrenstien, K., Stahl, M., Feinler, E.: “HOSTNAME Server,” October
1985.

RFC 959 Postel, J., Reynolds, J.: “File Transfer Protocol,” October 1985.

RFC 976 Horton, M. R.: “UUCP Mail Interchange Format Standard,” February
1986.

RFC 1034 Mockapetris, P.: “Domain Names—Concepts and Facilities,” November
1987.

RFC 1035 Mockapetris, P.: “Domain Names—Implementation and Specification,”
November 1987.

RFC 1075 Waitzman, D., Partridge, C., Deering, S.: “Distance Vector Multicast
Routing Protocol,” November 1988.

RFC 1112 Deering, S.: “Host Extensions for IP Multicasting,” August 1989.

RFC 1321 Rivest, R.: “The MD5 Message-Digest Algorithm,” April 1992.

RFC 1436 Anklesaria, F., McCahill, M., Lindner, P., Johnson, D., Torrey, D., Alberti,
B.: “The Internet Gopher Protocol,” March 1993.

RFC 1458 Braudes, R., Zabele, S.: “Requirements for Multicast Protocols,” May 1993.

RFC 1459 Oikarinen, J., Reed, D.: “Internet Relay Chat Protocol,” May 1993.

RFC 1466 Gerich, E.: “Guidelines for Management of IP Address Space,” May 1993.

RFC 1480 Cooper, A., Postel, J.: “The US Domain,” June 1993.

RFC 1546 Partridge, C., Mendez, T., Milliken, W.: “Host Anycasting Services,”
November 1993.

References.qxd 01/19/2005 01:07 PM Page 325

RFC 1591 Postel, J.: “Domain Name System Structure and Delegation,” March 1994.

RFC 1597 Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G. J.: “Address
Allocation for Private Internets,” March 1994.

RFC 1630 Berners-Lee, T.: “Universal Resource Identifiers in WWW,” June 1994.

RFC 1631 Egevang, K., Francis, P.: “The IP Network Address Translator (NAT),”
May 1994.

RFC 1737 Sollins, K., Masinter, L.: “Functional Requirements for Uniform Resource
Names,” December 1994.

RFC 1738 Berners-Lee, T., Masinter, L., McCahill, M.: “Uniform Resource Locators
(URL),” December 1994.

RFC 1739 Kessler, G., Shepard, S.: “A Primer on Internet and TCP/IP Tools,”
December 1994.

RFC 1796 Huitema, C., Postel, J., Crocker, S.: “Not All RFCs Are Standards,”April 1995.

RFC 1808 Fielding, R.: “Relative Uniform Resource Locators,” June 1995.

RFC 1847 Galvin, J., Murphy, S., Crocker, S., Freed, N.: “Security Multiparts for
MIME: Multipart/Signed and Multipart/Encrypted,” October 1995.

RFC 1866 Berners-Lee, T., Connolly, D.: “Hypertext Markup Language—2.0,”
November 1995.

RFC 1889 Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: “RTP: A
Transport Protocol for Real-Time Applications,” Audio–Video Transport
Working Group, January 1996.

RFC 1890 Schulzrinne, H.: “RTP Profile for Audio and Video Conferences with
Minimal Control,” January 1996.

RFC 1918 Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.J., Lear, E.:
“Address Allocation for Private Internets,” February 1996.

RFC 1928 Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., Jones, L.: “SOCKS
Protocol Version 5,” March 1996.

RFC 1942 Raggett, D.: “HTML Tables,” May 1996.

RFC 1945 Berners-Lee, T., Fielding, R., Frystyk, H.: “Hypertext Transfer Protocol—
HTTP/1.0,” May 1996.

RFC 2026 Bradner, S.: “The Internet Standards Process—Revision 3,” October 1996.

RFC 2045 Freed, N., Borenstein, N.: “Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies,” November 1996.

RFC 2068 Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.: “Hypertext
Transfer Protocol—HTTP/1.1,” January 1997.

RFC 2119 Bradner, S.: “Key Words for Use in RFCs to Indicate Requirement Levels,”
March 1997.

RFC 2141 Moats, R.: “URN Syntax,” May 1997.

326 RFC References

References.qxd 01/19/2005 01:07 PM Page 326

RFC References 327

RFC 2186 Wessels, D., Claffy, K.: “Internet Cache Protocol (ICP), Version 2,”
September 1997.

RFC 2187 Wessels, D., Claffy, K.: “Application of the Internet Cache Protocol,
Version 2,” September 1997.

RFC 2222 Myers, J.: “Simple Authentication and Security Layer (SASL),” October 1997.

RFC 2234 Crocker, D., Overell, P.: “Augmented BNF for Syntax Specifications:
ABNF,” November 1997.

RFC 2246 Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A., Kocher, P.: “The
TLS Protocol Version 1.0,” January 1999.

RFC 2326 Schulzrinne, H., Rao, A., Lanphier, R.: “Real Time Streaming Protocol
(RTSP),” Network Working Group, April 1998.

RFC 2327 Handley, M., Jacobson, V.: “SDP: Session Description Protocol,” April
1998.

RFC 2338 Knight, S., Weaver, D., Whipple, D., Hinden, R., Mitzel, D., Hunt, P.,
Higginson, P., Shand, M., Lindem A.: “Virtual Router Redundancy
Protocol,” April 1998.

RFC 2360 Scott, G. (ed): “Guide for Internet Standards Writers,” June 1998.

RFC 2396 Berners-Lee, T., Fielding, R., Masinter, L.: “Uniform Resource Identifiers
(URI): Generic Syntax,” August 1998.

RFC 2535 Eastlake, D.: “Domain Name System Security Extensions,” March 1999.

RFC 2543 Handley, M., Schulzrinne, H., Schooler, E., Rosenberg, J.: “SIP: Session
Initiation Protocol,” March 1999.

RFC 2555 RFC editor, et al: “30 Years of RFCs,” April 7, 1999.

RFC 2616 Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,
Berners-Lee, T.: “Hypertext Transfer Protocol — HTTP/1.1,” RFC 2616,
June 1999.

RFC 2617 Frank, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,
Luotonen, A., Sink, E., Stewart, L.: “HTTP Authentication: Basic and
Digest Access Authentication,” RFC 2617, June 1999.

RFC 2775 Carpenter, B.: “Internet Transparency,” IETF, February 2000.

RFC 2778 Day, M., Rosenberg, J., Sugano, H.: “A Model for Presence and Instant
Messaging,” February 2000.

RFC 2779 Day, M., Aggarwal, S., Mohr, G., Vincent, J.: “Instant Messaging/Presence
Protocol Requirements,” February 2000.

RFC 2822 Resnick, P.: “Internet Message Format,” April 2001.

RFC 2914 Floyd, S.: “Congestion Control Principles,” September 2000.

RFC 2965 Kristol, D., Montulli, L.: “HTTP State Management Mechanism,”
October 2000.

RFC 2993 Hain, T.: “Architectural Implications of NAT,” November 2000.

References.qxd 01/19/2005 01:07 PM Page 327

RFC 3092 Eastlake 3rd, D., Manros, C., Raymond, E.: “Etymology of ‘Foo’,” April
1, 2001.

RFC 3160 Malkin, G., Harris, S.: “The Tao of IETF: A Novice’s Guide to the Internet
Engineering Task Force,” August 2001.

RFC 3238 Floyd, S., Daigle, L.: “IAB Architectural and Policy Considerations for
Open Pluggable Edge Services,” January 2002.

RFC 3261 Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J.,
Sparks, R., Handley, M., Schooler, E.: SIP: “Session Initiation Protocol,”
June 2002.

RFC 3265 Roach, A. B.: “Session Initiation Protocol (SIP)-Specific Event
Notification,” June 2002.

RFC 3411 Harrington, D., Presuhn, R., Wijun, B.: “An Architecture for Describing
Simple Network Management Protocol (SNMP) Management
Frameworks,” December 2002.

RFC 3466 Day, M., Cain, B., Tomlinson, G., Rzewski, P.: “A Model for Content
Internetworking (CDI),” February 2003.

RFC 3490 Faltstrom, P., Hoffman, P., Costello, A.: “Internationalizing Domain
Names in Applications (IDNA),” March 2003.

RFC 3507 Elson, J., Cerpa, A.: “Internet Content Adaptation Protocol (ICAP),”
April 2003.

RFC 3568 Barbir, A., Cain, B., Nair, R., Spatscheck, O.: “Known Content Network
(CN) Request-Routing Mechanisms,” July 2003.

RFC 3752 Barbir, A., Burger, E., Chen, R., McHenry, S., Orman, H., Penno, R.:
“OPES Use Cases and Deployment Scenarios,” Internet Request for
Comments, April 2004.

RFC 3835 Barbir, A., Penno, R., Chen, R., Hofmann, M., and Orman, H.: “An
Architecture for Open Pluggable Edge Services (OPES),” August 2004.

RFC 3836 Beck, A., Hofmann, M., Orman, H., Penno, R., and Terzis, A.:
“Requirements for Open Pluggable Edge Services (OPES) Callout
Protocols,” August 2004.

RFC 3856 Rosenberg, J.: “A Presence Event Package for the Session Initiation
Protocol (SIP),” August 2004.

RFC 3859 Peterson, J.: “Common Profile for Presence (CPP),” August 2004.

RFC 3860 Peterson, J.: “Common Profile for Instant Messaging (CPIM),” August 2004.

RFC 3861 Peterson, J.: “Address Resolution for Instant Messaging and Presence,”
August 2004

RFC 3862 Atkins, D., Klyne, G.: “Common Presence and Instant Messaging:
Message Format,” August 2004.

RFC 3863 Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., Peterson, J.:
“Presence Information Data Format (PIDF),” August 2004.

328 RFC References

References.qxd 01/19/2005 01:07 PM Page 328

RFC References 329

RFC 3914 Barbir, A., Rousskov, A.: “Open Pluggable Edge Services (OPES)
Treatment of IAB Considerations,” October 2004.

RFC 3920 Saint-Andre, P. (ed): “Extensible Messaging and Presence Protocol
(XMPP): Core,” October 2004.

RFC 3921 Saint-Andre, P. (ed): “Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence,” October 2004.

RFC 3922 Saint-Andre, P.: “Mapping the Extensible Messaging and Presence
Protocol (XMPP) to Common Presence and Instant Messaging (CPIM),”
October 2004.

RFC 3935 Alvestrand, H.: “A Mission Statement for the IETF,” October 2004.

References.qxd 01/19/2005 01:07 PM Page 329

References.qxd 01/19/2005 01:07 PM Page 330

References

RFCs are listed in a separate RFC reference section. The reference style used through-
out this section is as follows: Author(s) last name, initial(s), title in quotes, publication,
and date. If available, the Web site address appears on a separate line. The references are
alphabetized according to their tag.

[3GPP1] 3rd Generation Partnership Project: “Technical Specifications Group
Services and System Aspects,” Multi Media Messaging Service (MS) Stage
1, Release 6, 3GPP TS 22.140.
www.3gpp.org/ftp/specs/html%2Dinfo/22140.htm

[Abl03] Abley, J.: “Hierarchical Anycast for Global Service Distribution,” Internet
Systems Consortium, 2003.
www.isc.org/index.pl?/ops/f-root/

[ACK+02] Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.:
“SETI@home: An Experiment in Public-Resource Computing,”
Communications of the ACM, 45(11), pp. 56–61, November 2002.
setiathome.ssl.berkeley.edu/cacm/cacm.html

[AHa01] Aberer, K., Hauswirth, M.: “Peer-to-Peer Information Systems: Concepts
and Models, State-of-the-Art, and Future Aystems,” Distributed
Information Systems Laboratory (LSIR).
lsirwww.epfl.ch/

[AHa02] Aberer, K., Hauswirth, M.: “An Overview on Peer-to-Peer information
Systems,” Swiss Federal Institute of Technology (EPFL), Switzerland.
lsirpeople.epfl.ch/hauswirth/papers/WDAS2002.pdf

[AHP+02] Aberer, K., Hauswirth, M., Punceva, M., Schmidt, R.: “Improving Data
Access in P2P Systems.” IEEE Internet Computing 6(1), January/February,
2002.

[AHu00] Adar, E., Huberman, B. A.: “Free Riding on Gnutella,” First Monday,
5(10), 2000.
www.firstmonday.org/issues/issue5_10/adar/index.html

[AIM1] “AIM Terms of Service Agreement.”
“You may access AIM Products only through the interfaces and protocols
provided or authorized by AOL.”
www.aim.com/tos/tos.adp

331

References.qxd 01/19/2005 01:07 PM Page 331

[Akam1] Akami Company History.
www.akami.com/en/html/about/overview.html

[AL01] Albitz, P., Liu, C.: DNS and Bind, O’Reilly, 2001.

[ALT1] Nortel Networks: “Web OS Switch Software 10.0 Application Guide,”
Nortel Networks, Part Number 212777, pp. 207–219, February 2002.
www142.nortelnetworks.com/bvdoc/alteon/webos/webos10.0/212777-A.pdf

[Amb00] Ambrose, S. E.: Nothing Like It in the World: The Men Who Built the
Transcontinental Railroad, 1863–1869, Simon & Schuster, 2000.

[ANS01] American National Standard: “Telecom Glossary 2000, American
National Standard for Telecommunications,” T1.523–2001, February 28,
2001.
www.atis.org/tg2k/_standard.html

[ANSI1] ANSI Standards Course Material.
www.standardslearn.org/courses/wsm/glossary.pdf

[ASW+02] Andrews, M., Bruce Shepherd, F., Srinivasan, A., Winkler, P., Zane, F.:
“Cluster and Server Selection Using Passive Monitoring,” Infocom, 2002.
cm.bell-labs.com/cm/ms/who/bshep/PS/infocom02.ps

[Atn99] atnewyork Staff: “Alley Development Team Readies ICQ for Big Time,”
atnewyork.com article, February 5, 1999.
www.atnewyork.com/news/article.php/247731

[Aya01] Ayars, J., et al: “Synchronized Multimedia Integration Language (SMIL
2.0),” W3C Recommendation, August 7, 2001.

[BBC02] BBC News: “Bird Flight Explained,” December 16, 2002.
news.bbc.co.uk/1/hi/sci/tech/1608251.stm

[BCP+98] Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: “Web Caching and
Zipf-Like Distributions: Evidence and Implications.” Technical report,
University of Wisconsin—Madison, Department of Computer Science,
July 1998.
www.cs.wisc.edu/~cao/papers/zipf-implications.html

[BDE+00] Bolosky, W. J., Douceur, J. R., Ely, D., Theimer, M.: “Feasibility of a
Server-less Distributed File System Deployed on an Existing Set of
Desktop PCs,” In Proceedings of the International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS 2000),
pp. 34–43, 2000.

[Bea01] Beaumont, L. R.: “Meeting World Wide Demand for your Content,
Evolving to a Content Delivery Network,” A Lucent Technologies White
Paper, April 25, 2001.
content-networking.com/papers/world-wide-demand.pdf

[Bea1] Beaumont, L. R.: “Calculating Web Cache Hit Ratios.”
www.content-networking.com/papers/web-caching-zipf.pdf

332 References

References.qxd 01/19/2005 01:07 PM Page 332

[BeH03] Beck, A., Hofmann, M.: “IRML: A Rule Specification Language for
Intermediary Services,” June 24, 2003.
papers.mhof.com/draft-beck-opes-irml-03.txt

[Ber89] Berners-Lee, T.: “Information Management: A Proposal,” Proposal to
CERN Management, March 1989.
www.w3.org/History/1989/proposal.html

[Ber92] Berners-Lee, T.: “Re: Is there a paper which describes the www protocol,”
WWW-Talk Mailing List, January 1992.
lists.w3.org/Archives/Public/www-talk/1992JanFeb/0000.html

[BGH+00] Bommaiah, E., Guo, K., Hofmann, M., Paul, S.: “Design and
Implementation of a Caching System for Streaming Media over the
Internet.”
papers.mhof.com/rtas2000.pdf

[BHC00] Beck, A., Hofmann, M., Condry, M.: “Example Services for Network Edge
Proxie,” November 2000.
papers.mhof.com/draft-beck-opes-esfnep-01.txt

[Bor99] Borland, J.: “Net Video Not Yet Ready for Prime Time,” CNet News,
February 5, 1999.
news.cnet.com/news/0-1004-200-338361.html

[Bor02] Borland, J.: “Roxio Closes Napster Asset Buy,” CNET News.com,
November 27, 2002.
news.com.com/2100-1023_3-975627.html?tag=mainstry

[Bro04] Brodsky, A. R.: “Telegraph.” World Book Online Reference Center. World
Book, Inc. March 3, 2004.
www.worldbookonline.com/wb/Article?id=ar549720

[Brod04] Brodsky, A. R.” “Telephone.” World Book Online Reference Center. World
Book, Inc. March 3, 2004.
www.worldbookonline.com/wb/Article?id=ar549860

[Bul01] Bulterman, D. C. A.: “SMIL 2.0, Part 1: Overview, Concepts, and
Structure,” IEEE Multimedia, October–December 2001.
www.computer.org/multimedia/mu2001/pdf/u4082.pdf

[Bus45] Bush, V.: “As We May Think,” The Atlantic Monthly, July 1945.
www.w3.org/History/1945/vbush/

[CD92] Casner, S., Deering, S.: “First IETF Internet Audiocast,” ACM SIG-
COMM, Computer Communications Review, 22(3), July 1992.

[CDK+03] Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: “Scalable
Application-Level Anycast for Highly Dynamic Groups.”
research.microsoft.com/~antr/PAST/anycast.pdf

[CDN+96] Chankhunthod, A., Danzig, P. B., Neerdaels, C., Sewarts, M. F., Worrell,
K. J.: “A Hierarchical Internet Object Cache,” Usenix Technical
Conference, 1996.

References 333

References.qxd 01/19/2005 01:07 PM Page 333

[CEA1] Consumer Electronics Association, Digital America, History, “Pagers”
www.ce.org/publications/books_references/digital_america/history/
pagers.asp

[Chm02] Chmielewski, D.: “Bertelsmann to Buy Napster for $8 Million,”
SiliconValley.com News Article, May 17, 2002.
www.siliconvalley.com/mld/siliconvalley/3284680.htm

[Cia98] Cialdini, R. B.: Influence: The Psychology of Persuasion, Quill, Revised
edition, October, 1998.

[Cla92] Clark, D.: “By Popular Demand,” Talk given at the IETF Plenary, 1992.

[Clip2] Clip2 Distributed Search Solutions: “The Gnutella Protocol Specification
v0.4.”
www.content-networking.com/papers/gnutella-protocol-04.pdf

[CMH+02] Clarke, I., Miller, S. G., Hong, T. W., Sandberg, O., Wiley, B.: “Protecting
Free Expression Online with Freenet.” IEEE Internet Computing 6(1),
January/February 2002.

[CMJ04] Campbell, B., Mahy, R., Jennings, C.: “The Message Session Relay
Protocol,” draft-ietf-simple-message-sessions-09.txt, IETF SIMPLE
Working Group, Internet Draft, Work in Progress, October 24, 2004.

[CoK03] Colgrave, J., Januszewski, K.: “Using WSDL in a UDDI Registry,”
Technical Note, Version 2.0, June 29, 2003.
www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-
202-20040631.htm

[Com00] Comer, D.: Internetworking with TCP/IP—Volume 1: Principles,
Protocols, and Architecture, Prentice Hall, 2000.

[Coo96] Cooper, R.: “New Products, What Separates the Winners from the
Losers,” In Rosenau, M. D.: The PDMA Handbook of New Product
Development, John Wiley & Sons, 1996.

[Copy00] U. S. Copyright Office: “Copyright Basics (Circular 1),” September 2000.
www.copyright.gov/circs/circ1.html

[Cou04] “TheCounter.com: Global Internet Statistics.”
www.thecounter.com/

[CSW+01] Clarke, I., Sandberg, O., Wiley, B., Hong, T. W.: “Freenet: A Distributed
Anonymous Information Storage and Retrieval System.” In Federrath,
H. (ed): Designing Privacy Enhancing Technologies: International
Workshop on Design Issues in Anonymy and Unobservability number 2009
in Computer Science, Springer Verlag, Berlin, 2001.
www.doc.ic.ac.uk/~twh1/academic/papers/icsi-revised.pdf

[Dea03] Dean, K.: “Schoolgirl Settles With RIAA,” Wired News, September 10,
2003.
www.wired.com/news/digiwood/0,1412,60366,00.htm

[Dea04] Dean, K.: “RIAA Strikes Again at Traders,” Wired News, January 21,
2004.
www.wired.com/news/digiwood/0,1412,61989,00.html

334 References

References.qxd 01/19/2005 01:07 PM Page 334

[Dee91] Deering, S.: “Watching the Waist of the Protocol Hourglass,” Presentation
at IETF 51 Meeting, London, England, August 2001.
www.iab.org/iab/DOCUMENTS/hourglass-london-ietf.pdf

[Dee95] Deering, S.: “IP Multicast and the MBone: Enabling Live, Multiparty,
Multimedia Communication on the Internet.”
ftp://parcftp.xerox.com/pub/net-research/mbone/mbone-talk-dec95.ps

[Dem03] Dempsey, J. A.: A Tale of Two Brothers: The Story of the Wright Brothers,
Trafford, June 2003.

[dict1] Dictionary.com, entry for “standard.”
www.dictionary.com

[DMCA98] “The Digital Millennium Copyright Act of 1998,” U. S. Copyright Office
Summary, December 1998.
www.copyright.gov/legislation/dmca.pdf

[DPT03] Dvorak, J. C., Pirillo, C., Taylor, W.: Online! The Book, Chapter 25 by
Matthew Hunt.
www.omnipod.com/resources/enterprise_IM_chapter.pdf

[Dup42] Dupuit, A. J. E. (1842): “On Tolls and Transport Charges,” Annales des
Ponts et Chausses, trns. 1962.

[ED92] Emtage, A., P.: “Deutsch: archie—An Electronic Directory Service for the
Internet,” Proceedings of the Winter USENIX Conference, San Francisco,
CA, January 1992.

[EE68] Engelbart, D. C., English, W. K.: “A Research Center for Augmenting
Human Intellect,” AFIPS Conference Proceedings of the 1968 Fall Joint
Computer Conference, 33, pp. 395–410, San Francisco, CA, December 1968.
sloan.stanford.edu/mousesite/Archive/ResearchCenter1968/Research
Center1968.html

[Eri94] Eriksson, H.: “MBONE: The Multicast Backbone,” Communications of
the ACM, 37(8), pp. 54–60, August 1994.

[Fine1] Fine, M.: “Soundscan Study on Napster Use and Loss of Sales,” Study
Submitted in A&M Records, Inc., et al. v. Napster, Inc., No. c 99-
05183MHP.
www.riaa.com/news/filings/pdf/napster/fine.pdf

[FIPS93] Federal Information Processing Standards Publication 180–1: “Secure
Hash Standard,” FIPS PUB 180, May 11, 1993.
www.itl.nist.gov/fipspubs/fip180-1.htm

[FKe03] Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 2003.

[Fou1] Foundry Networks: “Global Server Load Balancing with Serveriron,”
Application Note.
www.foundrynet.com/solutions/appNotes/GSLB.html

[Fou2] Foundry Networks: “Firewall Load Balancing,” Application Note.
www.foundrynet.com/solutions/appNotes/PDFs/FWLB.pdf

References 335

References.qxd 01/19/2005 01:07 PM Page 335

[Fri00] Fritzler, A.: “AIM/Oscar Protocol Specification,” April 8, 2000.

[Gil02] Gilder, G.: Telecom: The World After Bandwidth Abundance, Free Press,
May 2002.

[Gre00] Greenwald, J.: “Instantly Growing Up,” Time Magazine, November 6,
2000.

[Har68] Hardin, G.: “The Tragedy of the Commons,” Science, 162: 1243–1248,
1968.

[Her99] Herring, S.: “Interactional Coherence in CMC,” Journal of Computer-
Mediated Communication, 4(4), 1999.
www.ascusc.org/jcmc/vol4/issue4/herring.html

[HHa00] Hu, J., Hansen, E.: “Record Label Signs Deal with Napster,” News.com
article, October 31, 2000.
news.com.com/2100-1023-247859.html?legacy=cnet

[HNG+99] Hofmann, M., et al: “Caching Techniques for Streaming Multimedia over
the Internet” Bell Labs Technical Memorandum, April 1999.
papers.mhof.com/soccer.pdf

[Hol91] Holzmann, G. J.: Design and Validation of Computer Protocols, Prentice-
Hall, 1991.

[Hui95] Huitema, C.: Routing in the Internet, Prentice Hall, 1995.

[Hut1] Hutchinson Encyclopedia: “Videotape Recorder.”
www.tiscali.co.uk/reference/encyclopaedia/hutchinson/m0005365.html

[IANA1] “IANA Report on Establishment of the .pro Top-Level Domain,” May 6,
2002.
www.iana.org/reports/pro-report-06may02.htm

[IEC1] International Engineering Consortium, On-Line Education: “Wireless
Short Message Service (SMS).”
www.iec.org/online/tutorials/wire_sms/topic01.html

[IEN 137] Cohen, D.: “On Holy Wars and A Plea For Peace,” IEN 137, April 1, 1980.
www.ietf.org/rfc/ien/ien137.txt

[IETF1] Internet Engineering Task Force: “Homepage.”
www.ietf.org/

[IETF2] www.ietf.org/glossary.html

[IETF3] Active IETF Working Groups.
www.ietf.org/html.charters/wg-dir.html

[IETF96] Kessler, G. C.: “IETF—History, Background, and Role in Today’s
Internet,” February 1, 1996.
www.garykessler.net/library/ietf_hx.html

[Int01] Intel Press Release: “Intel Forms Peer-To-Peer Working Group,” August
24, 2000.
www.intel.com/pressroom/archive/releases/cn082400.htm

336 References

References.qxd 01/19/2005 01:07 PM Page 336

[IRI1] Internationalized Resource Identifiers.
www.w3.org/International/O-URL-and-ident

[ISO86] International Organization for Standardization: “Information
Processing—Text and office systems—Standard Generalized Markup
Language (SGML),” ISO 8879, Geneva, 1986.

[ISOC1] The Internet Society: “History of the Internet.”
www.isoc.org/internet/history/

[Jay03] Jaynes, R.: “Countdown to Kitty Hawk Moments, Wilbur Wins, but
Loses,” Originally Printed in Flying Magazine, 2003.
www.countdowntokittyhawk.com/news/moments/031126_wilbur_wins.html

[KBC+00] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao,
B.: “OceanStore: An Architecture for Global-Scale Persistent Storage,”
Appears in Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2000), November 2000.
oceanstore.cs.berkeley.edu

[KH95] Krunz, M., Hughs, H.: “A Traffic Model for MPEG-Coded VBR Streams,”
1995 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, Ottawa, May 15–19, 1995.

[Kin02] King, B.: “Napster’s Assets Go for a Song,” Wired News, November 28, 2002.
www.wired.com/news/digiwood/0,1412,56633,00.html

[KM91] Kahle, B., Medlar, A.: “An Information System for Corporate Users: Wide
Area Information Servers,” ConneXions—The Interoperability Report,
5(11), November 1991.

[Knu73] Knuth, D. E.: The Art of Computer Programming, Volume 3, Sorting and
Searching, First Edition, 1973.

[KR01] Krishnamurthy, B., Rexford, J.: Web Protocols and Practice, Addison
Wesley, 2001.

[Kub03] Kubiatowicz, J.: “Extracting Guarantees from Chaos,” Communications of
the ACM, February 2003.

[Kum95] Kumar, V.: Mbone: Interactive Multimedia on the Internet, New Riders
Publishing, Indianapolis, 1995.

[Lau00] Liquid Audio Press Release: “AOL’s Nullsoft Winamp and Liquid Audio
Form Multi-Year Digital Music Alliance,” January 4, 2000.
www.liquidaudio.com/company/press/2000/archive/01_04_00.asp

[LBK02] Liben-Nowell, D., Balakrishnan, H., and Karger, D.: “Analysis of the
Evolution of Peer-to-Peer Systems.” ACM Conference on Principles of
Distributed Computing (PODC), Monterey, CA, July 2002.
www.pdos.lcs.mit.edu/chord/papers/podc2002.pdf

References 337

References.qxd 01/19/2005 01:07 PM Page 337

[LC92] Berners-Lee, T., Connolly, D.: “HyperText Mark-up Language, HTML,”
1992.
www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Mark
Up.html

[LCL+02] Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: “Search and Replication in
Unstructured Peer-to-Peer Networks.” In Proceedings of 16th ACM
International Conference on Supercomputing (ICS’02), New York, June
2002.

[Lee03] Lee, J.: “An End-User Perspective on File-Sharing Systems,” Communi-
cations of the ACM, February 2003.

[LeG91] Le Gall, D.: “MPEG: A Video Compression Standard for Multimedia
Applications,” Communications of the ACM, 34, pp. 47–58, April 1991.

[Les00] Lessig, L.: Code and Other Laws of Cyberspace, Basic Books, June 2000.

[Li99] Li, W.: “Zipf’s Law,” Rockefeller University, New York.
www.nslij-genetics.org/wli/zipf/

[LLP+97] Karger, D., Lehman, E. Leighton, F., Levine, M., Lewin, D., and
Panigrahy: “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web.” In Proceedings
of the 29th Annual ACM Symposium on Theory of Computing,
pp. 645–663, El Paso, TX, May 1997.

[LNB99] Luotonen, A., Nielsen, H. F., Berners-Lee, T.: “Cern httpd,” 1999.
www.w3.org/Daemon/

[Luo97] Luotonen, A.: Web proxy Servers, Prentice Hall, 1997.

[Mar00] Marsan, C. D.: “Caching Debate Rages,” Network World Fusion, April 17,
2000.
www.nwfusion.com/news/2000/0417necp.html

[Mar01] Marcus, S.: “The History of Napster,” Term Paper, University of Tennessee
at Knoxville, December 6, 2001.

[Mas1] Masinter, L.: “HyperText Transfer Protocol (http) Working Group
Charter.”
www.ietf.org/html.charters/OLD/http-charter.html

[Mcc01] McCoy, J.: “Mojo Nation Responds,” The O’Reilly Network, January 11,
2001.
www.openp2p.com/pub/a/p2p/2001/01/11/mojo.html

[McN99] McNett, D.: “US Government’s Encryption Standard Broken In Less Than
A Day,” distributed.net Press Release, January 19, 1999.
www.distributed.net/des/release-desiii.txt

[Mer1] Merit Network, Inc.: “NSFNET History of Usage by Service.”
ftp://nic.merit.edu/nsfnet/statistics/history.ports

[MH03] McCullagh, D., Hu, J.: “FCC Lifts AOL Messaging Limits,” CNET
News.com, August 20, 2003.
news.com.com/2100-1032_3-5065650.html

338 References

References.qxd 01/19/2005 01:07 PM Page 338

[MIME] “Multipurpose Internet Mail Extensions.” See RFC 2045, RFC 2046, RFC
2047, RFC 2048, and RFC 2049.

[MKL+02] Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J.,
Richard, B., Rollins, S., Xu, Z.: “Peer-to-Peer Computing,” HP
Laboratories, Palo Alto, CA, HPL-2002-57, March 8, 2002.
www.hpl.hp.com/techreports/2002/HPL-2002-57.pdf

[Mobi1] mobilemms.com: “Frequently Asked Questions, How Does MMS Contrast
to SMS, EMS and Smart Messaging?”
www.mobilemms.com/mmsfaq.asp#3.1

[Moo00] Moore, K.: “Recommendation against publication of draft-cerpa-necp-
02.txt,” E-mail Message to the IETF, April 6, 2000.
www.mail-archive.com/ietf@ietf.org/msg01333.html

[Moo03] Moore, C.: “XMPP Rises to Face SIMPLE Standard,” InfoWorld, April
18, 2003.
www.infoworld.com/article/03/04/18/16imstandards_1.html

[Mye76] Myers, G. J.: Software Reliability: Principles and Practices, John Wiley &
Sons, 1976.

[BHL99] Bray, T., Hollander, D., Layman, A.: “W3C Recommendation: Namespaces
in XML,” January 14, 1999.
www.w3.org/TR/1999/REC-xml-names-19990114/

[Nap03] Napster Press Release: “Napster’s Back,” October 29, 2003.
www.napster.com/press_releases/pr_031029.html

[Nel67] Nelson, T. H.: “Getting it Out of Our System,” In Schecheter, G. (ed.):
Information Retrieval—A Critical Review, Thompson Books, Washington,
D.C., 1967.

[Net01] Network Appliance: “Internet Content Adaptation Protocol (ICAP),”
White Paper, July 30, 2001.

[Net94] “Netscape: Persistent Client State HTTP Cookies.”
www.netscape.com/newsref/std/cookie_spec.html

[NWFE1] “Network Fusion Encyclopedia” entry for ‘Metcalfe’s Law.”
www.nwfusion.com/links/Encyclopedia/M/771.html

[ODF+01] Dingledine, R., Freedman, M. J., Molnar, D.: “Accountability.” In Oram,
A.: Peer-to-Peer: Harnessing the Power of Disruptive Technologies, O’Reilly
& Associates, March 2001.

[OeRa1] Oetiker, T., and Rand, D.: “The Multi Router Traffic Grapher.”
www.mrtg.org

[Oika] Oikarinen, J.: “IRC History by Jarkko Oikarinen.”
www.irc.org/history_docs/jarkko.html

[OL01] Lethin, R.: “Reputation.” In Oram, A.: Peer-to-Peer: Harnessing the Power
of Disruptive Technologies, O’Reilly & Associates, March 2001.

References 339

References.qxd 01/19/2005 01:07 PM Page 339

[OMH01] Minar, N., Hedlund, M.: “Peer-to-Peer Models Through the History of the
Internet,” In Oram, A.: Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, O’Reilly and Associates, March 2001.

[Ope00] “Napster Messages,” April 7, 2000.
opennap.sourceforge.net/napster.txt

[OWC+01] Waldman, M., Cranor, L. F., Rubin, A.: “Trust,” In Oram, A.: Peer-to-Peer:
Harnessing the Power of Disruptive Technologies, O’Reilly & Associates,
March 2001.

[Page] phone warehouse Web site: “Pager History.”
www.phonewarehouse.com/pager.htm

[Par72] Parnas, D. L.: “On the Criteria To Be Used in Decomposing Systems into
Modules,” Communications of the ACM, Vol. 15, No. 12, December 1972,
pp. 1053–1058.
www.acm.org/classics/may96/

[Phi03] Philipkoski, K.: “Battle Not Over for File Sharers,” Wired News, December
23, 2003.
www.wired.com/news/digiwood/0,1412,61714,00.html

[RDr01] Rowstron, A., Druschel, P.: “Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems.” In
Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001), Heidelberg, Germany,
November 2001.

[Real1] RealNetworks: “Introduction To Streaming Media with RealOne Player,”
2002.
service.real.com/help/library/encoders.html

[RIAA] Record Industry Association of America, Press Room: “Legal Cases.”
www.riaa.com/news/filings/default.asp

[RoS04] Rousskov, A., Stecher, M.: “HTTP Adaptation with OPES,” draft-ietf-
opes-http-2, Work in Progress, January 2004.

[Rou03] Beck, A., Rousskov, A.: “P: Message Processing Language,” draft-
rousskov-opes-rules-01, October 27, 2003.
www.measurement-factory.com/tmp/opes/

[Rou04] Rousskov, A.: “OPES Callout Protocol Core,” draft-ietf-opes-core-05,
Work in Progress, May 2004.

[RPH+01] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: “A Scalable
Content-Addressable Network.” In Proceedings of the ACM SIGCOMM,
2001.

[RSC98] Reed, D. P., Saltzer, J. H., Clark, D. D.: “Comment on Active Networking
and End-to-End Arguments,” IEEE Network, 12(3), May/June 1998.
web.mit.edu/Saltzer/www/publications/endtoend/ANe2ecomment.html

[RTSP] “RTSP Information Portal,” Started by RealNetworks.
www.rtsp.org

340 References

References.qxd 01/19/2005 01:07 PM Page 340

[RWE+01] Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weatherspoon, H.,
Kubiatowicz, J.: “Maintenance-free Global Data Storage.” IEEE Internet
Computing 5(5), September/October 2001.

[Sam04] Samuelson, P.: “What is at Stake in MGM V. Grokster?,” Communications
of the ACM, 47(2), February 2004.

[Sau04] Saunders, C.: “VoIP Gets SIMPLE For Avaya,” InstantMessagingPlanet.
com., February 23, 2004.

[SIMPLE] “SIP for Instant Messaging and Presence Leveraging Extensions,” IETF
Working Group.
ietf.org/html.charters/simple-charter.html

[Sin95] van Sinderen, M. J.: “On the Design of Application Protocols.” PhD
Thesis, University of Twente, Enschede, The Netherlands, 1995.
wwwhome.cs.utwente.nl/~sinderen/publications/thesis.html

[SKB01] Stoica, I., Morris, R., Karger, D., Frans Kaashoek, M., and Balakrishnan,
H.: “Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications,” ACM SIGCOMM, pp. 149–160, San Diego, CA, August 2001.
www.pdos.lcs.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf

[SMS1] smsforum.net/

[Sob95] Sobel, D.: Longitude: The True Story of a Lone Genius Who Solved the
Greatest Scientific Problem of His Time, Walker & Co, October 1995.

[SRD84] Saltzer, J. H., Reed, D. P., Clark, D. D.: “End-to-End Arguments in System
Design,” ACM Transactions on Communications, 2(4), 1984.
web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

[Sri01] Sripanidkulchai, K.: “The Popularity of Gnutella Queries and Its
Implications on Scalability,” Carnegie Mellon University, February 2001.
www-2.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html

[SRL98] Savetz, K., Randall, N., Lepage, Y.: “MBONE: Multicasting Tomorrow’s
Internet,” 1998.
www.savetz.com/mbone/

[SRT99] Sen, S., Rexford, J., Towsley, D.: “Proxy Prefix Caching for Multimedia
Streams,” IEEE Infocom, New York, March 1999.

[SSL96] Netscape Communications: “The SSL Protocol, Version 3.0,” November
1996.
wp.netscape.com/eng/ssl3/

[Ste94] Stevens, W. R.: TCP/IP Illustrated—Volume 1: The Protocols, Addison
Wesley, 1994.

[Tar00] Taro, K.: “Meet the Napster,” CNN, September 25, 2000.
www.cnn.com/ALLPOLITICS/time/2000/10/02/napster.html

[Tay03] Taylor, C.: “Invention of the Year, the 99¢ Solution,” Time Magazine, 2003.
www.time.com/time/2003/inventions/invmusic.html

References 341

References.qxd 01/19/2005 01:07 PM Page 341

[Tech1] TechFest Ethernet Technical Summary.
www.techfest.com/networking/lan/ethernet4.htm

[Tech2] SONET / SDH Technical Summary.
www.techfest.com/networking/wan/sonet.htm

[TellA] Tellme Networks, Inc.: “Our Clients.”
www.tellme.com/clients.html

[TellB] Tellme Networks, Inc.: “Tellme Studio VoiceXML 2.0 Essentials.”
studio.tellme.com/vxml2/ovw/essentials.html

[Tha] Thawte Certification Authority. www.thawte.com

[TPC] TruePosition Corporation: “The Location Equations: Sub-50M
Accuracy, Any Phone, Anywhere.”

[TPF00] Telling, R. H., Pickard, C. J., Payne, M. C., Field, J. D.: “Theoretical
Strength and Cleavage of Diamond,” Physical Review Letters, 84(22),
May 29, 2000.
www.tcm.phy.cam.ac.uk/~cjp20/publications/PRL84_5160.pdf

[TSS97] Tennenhouse, D. L., Smith, J. M., Sincoskie, W. D., Wetherall, D. J.,
Minden, G. J.: “A Survey of Active Network Research.” IEEE
Communications Magazine, 35(1), January 1997.

[UDD00] uddi.org: “UDDI Technical White Paper,” September 6, 2000.

[UDDI V3] uddi.org: “UDDI version 3.0, UDDI Spec Technical Committee
Specification,” 19 July 2002.

[Ver03] VeriSign,,Inc.: “VeriSign Trusted Web Transactions Solution,” 2003.
www.verisign.com/products/trustedTransaction/trustedTransaction.pdf

[Vich1] Vichinsky, J. H.: “Napster and the Law,” Course Notes, Thomas M.
Cooley Law School.
www.doylepc.com/cyberlaw/napsteressay.html

[VoiceXML] McGlashan, S., et al: “Voice Extensible Markup Language
(VoiceXML) Version 2.0,” W3C Candidate Recommendation,
February 20, 2003.

[W3C CCPP] “Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies,” W3C Working Draft, July 28, 2003.
www.w3.org/TR/CCPP-struct-vocab/

[W3C04] World Wide Web Consortium: “World Wide Web Consortium Process
Document,” February 5, 2004.
www.w3.org/2004/02/Process-20040205

[W3C1] World Wide Web Consortium: “Homepage.”
www.w3.org/

[W3C2] W3C: “Some Early Ideas for HTML.”
www.w3.org/MarkUp/historical

342 References

References.qxd 01/19/2005 01:07 PM Page 342

[W3C3] W3C: “HTML Home Page.”
www.w3.org/MarkUp/

[W3C7] W3C in 7 points: “World Wide Web Consortium.”
www.w3.org/Consortium/Points/

[W3S04] W3Schools.com: “Browser Statistics.”
www.w3schools.com/browsers/browsers_stats.asp

[WAP00] Wireless Application Protocol Forum, Ltd.: “Wireless Application
Protocol, Architecture Specification,” WAP-210-WAPArch-20010712,
July 12, 2000.

[WAP01] Wireless Application Protocol Forum, Ltd.: “WAP Pictogram
Specification” version April 6, 2001, Wireless Application Protocol,
WAP-213-WAPInterPic-20010406-a

[WAP02] Wireless Application Protocol Forum, Ltd.: “WAP 2.0 Technical White
Paper,” January 2002.

[WAP UA] Wireless Application Protocol Forum, Ltd.: “WAG UAProf,” version
October 20, 2001. Wireless Application Protocol, WAP-248-UAPROF-
20011020-a.
www.wapforum.org/

[WDNS] imminet: “WebDNS 100, Building Smarter Faster Networks to Satisfy
Global Users,” Product Description, Lucent Technologies, 2001.
content-networking.com/papers/brochure-webdns.pdf

[Wes01] Wessels, D.: Web Caching, O’Reilly, 2001.

[Wes02] Wessels, D.: “Squid Web Proxy Cache,” 2001.
www.squid-cache.org/

[WF03] Wessels, D., Fomenkov, M.: “Wow, That’s a Lot of Packets,”
Proceedings of Passive and Active Measurement Workshop (PAM),
April 2003.

[WiZ01] Witmann, R., Zitterbart, M.: Multicast Communication—Protocols and
Applications, Morgan Kaufmann Publishing, 2001.

[Woo02] Woods, B.: “Review—AOL’s AIM,” atnewyork.com, May 24, 2002.
www.atnewyork.com/news/article.php/1144451

[WRC00] Waldman, M., Rubin, A., Cranor, L.: “Publius: A Robust, Tamper-
Evident, Censorship-Resistant Web Publishing System,” Proceedings of
the 9th USENIX Security Symposium, August 2000.
publius.cdt.org/publius.pdf

[BHM+04] Booth, D. et al: “Web Services Architecture,” W3C Working Draft,
February 11, 2004.
www.w3.org/TR/ws-arch/

[XMPP1] “IETF Text Conferencing.”
xmpp.org/ietf-chat.html

References 343

References.qxd 01/19/2005 01:07 PM Page 343

[ZYF02] Zeinalipour-Yazti, D., Folias, T.: “A Quantitative Analysis of the
Gnutella Network Traffic,” University of California, Department of
Computer Science, Riverside, CA, June 17, 2002.
www.cs.ucr.edu/~csyiazti/cs204.html

344 References

References.qxd 01/19/2005 01:07 PM Page 344

Page numbers in italics denote illustrations and tables.

Index

345

A

A priori, HTML rewriting, 136
A records, 115
Absolute positioning, 98
Absolute time, 88
Accept, 234
Access control, 46, 151
Access rules, 185
Accountability, 158
Accounting, 21
ACK, 205
AD, see Area Director
Ad hoc connections, 152
address, 202
address type, 202
AIM, 181, 183, 214
Akamai, 145–146
AME, 243
American National Standards

Institute, see ANSI
American Registry for Internet

Numbers, see ARIN
AMS, 243
ANNOUNCE, 88
Anonymity, 151, 154
ANSI, 271
Answer, 115
Anycast network, 136, 137
Anycasting, 136–137
AOL Instant Messenger, see

AIM
APNIC, 119
Apple’s QuickTime Player, 83
Application layer, 26, 27, 51, 89,

201, 211
Application message end, see

AME

Application message start, see
AMS

Archie, 2–3
Architecture

content services, 220–226
authorization, 225–226
callout protocol, 224–225
callout servers, 224
service activation point,

223–224
trust, 225–226

content networking,
evolution, 299–304

content services, 200–226
OPES, 237–240

architectural elements, 238
callout protocol, 241
controllability, 238–240
integrity, 238–240
policy enforcement, 240
security considerations,

238–240
Area director, 288
ARIN, 118
ARPANET, 2
Asymmetry, 149–150
Asynchronous message

exchange, 22
Audio/video smoothing, 94, 95
Authentication, 21, 46–48

basic, 47–48, 47
credentials, 47
digest access, 47

Authenticity, 151
Authority, 114, 115
Authoritative name servers, 113
Authorization, 21, 48, 225–226

Authorization header, 61
Availability, 150
away, 212

B

Bandwidth, 270, 274
<basic>, 188
Basic network cache operation,

56
begin, 92
Beginning, 92
Berners-Lee, Tim, 4, 145, 283
Best available policies, 121–122
bindingTemplate, 253
Binding, 250
BlackBerry handheld, 216
Blocking lists, 211
Body, SOAP message, 249
“Browser War, The,” 6
Buffer manager, 105
Buffered playback, 96
businessEntity, 253
Business interests, 219–220
businessService, 253
BYE, 85, 206
Bytes per second, 73

C

Cache(s), 53, 56, 299
cluster, 268
local, 54, 71
manager, 105
networks, 69–73

chaining, 70
networking, 70–72

Index.qxd 1/20/05 9:29 PM Page 345

Cache(s) (continued)
satellite-based Web caching,

72–73
parents, 71
placing in the network,

62–69
forward proxy, 62–64
interception proxy, 66–69
reverse proxy, 64–66

replacement, 81, 99–101,
101

siblings, 71
streaming, 105, 269

Cacheability, 58, 75
Cacheability considerations,

58–61
Cache-Control directives,

60–61
expiration, 59
validation, 59–60

Cache-Control directives, 58,
60–61, 77

request, 60
response, 60–61

Cache-Control:
max-age, 60, 61

Cache-Control: min-fresh,
60

Cache-Control: must-
revalidate, 61

Cache-Control: no-cache,
60, 61

Cache-Control: no-store,
60, 61

Cache-Control: no-
transform, 60, 61

Cache-Control: only-if-
cached, 60

Cache-Control: public,
60

Cache-Control: private,
60–61

Cache-Control: proxy-
revalidate, 61

Caching, 53–79
challenges and myths,

76–79
dynamic, 81, 101–103, 102
evolution, 69–73

chaining, 70

networking, 70–72
satellite-based Web caching,

72–73
local, 54–55
overlays, 19
satellite-based, 72–73
techniques

for streaming media,
81–107, 295

for Web content, 53–79,
294–295

Caching techniques for
streaming media, 81–107

case studies, 103–107
standard surprises, 103–104
system performance,

104–107
protocols for streaming

media, 83–94
proprietary protocols,

93–94
protocol layering, 89–91
real-time streaming

protocol (RTSP), 87–89
real-time transport protocol

(RTP), 83–86
RTP control protocol

(RTCP), 86–87
synchronized multimedia

integration language
(SMIL), 91–93

streaming media, 81–83
techniques, 94–103

audio/video smoothing,
95

cache replacement,
99–101

dynamic caching, 101–103
fast prefix transfer, 95–99
object segmentation,

99–101
Caching techniques for Web

content, 53–79
basic operation of a shared

Web cache, 55–58
dynamic object rules,

57–58
replacement rules, 57

caching challenges and myths,
76–79

caching myths, 78–79
avoiding snags, 77–78

cacheability considerations,
58–61

cache-control directives,
60–61

expiration, 59
validation, 59–60

evolution of caching systems,
69–73

chaining, 70
networking, 70–72
satellite-based Web caching,

72–73
goals of Web caching, 55
local caching, 54–55
motivation of Web caching,

55
networks of caches, 69–73

chaining, 70
networking, 70–72
satellite-based Web caching,

72–73
performance, 73–76

estimating hit ratios, 74–76
measuring, 73–74

placing a cache in the
network, 62–69

forward proxy, 62–64
interception proxy, 66–69
reverse proxy, 64–66

Call leg, SIP, 199
Callout protocol, 224–225

OPES, 240–243
Callout servers, 221, 224, 238
Campus network, 265
Candidate recommendation, 292
Capability, 242
Carriage return/line feed, see

CR/LF
ccTLDs, 112
CGI, 58, 77
Centralized directory model,

156–157
CERN, see European

Organization for Nuclear
Research

Cerulean, 215
Chaining, 70
Change notification, 295

346 Index

Index.qxd 1/20/05 9:29 PM Page 346

chat, 212
Chord, 169–173

routing table, 172
search preliminaries, 171

Chunks, 100
Chunked encoding, 43–44
Chunked transfer encoding,

43, 44
Class, 116
Clean, 285–286
Client, 56, 96, 97, 206
Client requests, 129–138, 245
Client-server interaction, 42,

44–48
cookies, 44–46
user authentication, 46–48

Client-to-server, 88
closed, 188
Closed tuples, 184
CNAME, 85, 115
Collaboration, 181–182
Collaboration systems, 154,

155
Common Profile for Instant

Messaging, see CPIM
Common Profile for Presence,

see CPP
Communication address,

188–189
Communication means, 184,

188
Compatibility, 291
Compliance test services, 280
Conditional GET, 58, 61
connection address, 202
Connection monitoring, 139,

141–143, 142
Consent model, 239
Consistent, 285
Consistent hashing, 170
<contact>, 188
Contact address, 184, 188
Containerized shipping, 100
Content, 1, 190

definition of terms, 20
distributing, 220
integrity, 157
interactive delivery,

179–216
convergence, 215–216

instant messaging defined,
181–185

Internet-based instant
messaging, 186–215

locating, 156–157
Content adaptation, 221
Content consumer, 24
Content creator, 22
Content delivery, 2, 19

early days, 2–3
interactive, 296–297

Content distribution, 19, 21,
277

Content host, 22
Content networks, 13, 277

building, 263–278
campus and enterprise

network example, 264
content distribution

network example,
275–278

content network provider
example, 271–275

definition of terms, 20
functional components, 21
navigating, 109–146

case studies, 144–146
domain name system,

110–120
global request routing,

128–143
layer 4–7 request switching,

120–128
peer-to-peer, 147–177

business aspects, 174–177
case studies, 159–174
definition, 148–155
technical challenges,

156–159
provider, 23
switching and routing,

295–296
Content networking, 1, 13

architecture evolution,
299–304

defined, 19–21
diversity of interests, 21–24
evolution, 13–21
future, 304–309
provider, 23–24

standards, 292–298
caching techniques for

streaming media, 295
caching techniques for Web

content, 294–295
content services, 297–298
content transport, 292–294
early days, 292
interactive content

delivery—instant
messaging, 296–297

peer-to-peer content
networks, 296

switching and routing in
content networks,
295–296

standards bodies, 287–292
ICAP forum, 290–291
IETF, 287–290
W3C, 291–292

value chain, 22
Content processing, 21, 217
Content provider, 22–23
Content services, 217–262,

297–298, 305
architecture, 220–226

authorization, 225–226
callout protocol, 224–225
callout servers, 224
generalized, 222
service activation point,

223–224
trust, 225–226

driving, 218–220
business interests,

219–220
technical drivers, 218–219

ICAP—the Internet Content
Adaptation Protocol,
228–236

design goals, 229–231
limitations, 236
motivation, 229–231
protocol details,

231–236
shortcomings, 236

Open Pluggable Edge
Services, 236–246

architecture, 237–240
callout protocol, 240–243

Index 347

Index.qxd 1/20/05 9:29 PM Page 347

Content services (continued)
rules language, 243–246

service convergence,
254–262

examples, 260–262
location services,

258–259
types of user profiles,

256–258
voice services, 259–260

service personalization,
254–262

examples, 260–262
location services, 258–259
types of user profiles,

256–258
voice services, 259–260

Web services paradigm,
246–254

example SOAP message,
249

SOAP—the Simple Object
Access Protocol,
247–248

UDDI, 252–254
WSDL—the Web Services

Description Language,
250–252

Content transport, 25–52,
292–294

design paradigms of the
Internet, 25–31

End-to-End principle,
28–31

Internet hourglass,
26–28

HTTP, 31–49
at work, 40–41
characteristics, 32–33
client-server interaction,

44–48
improvements in version

1.1, 41–44
message format, 33–39
secure Web communication

using SSL, 48–49
multicast transport, 49–52

deployment issues, 51–52
support on different

protocol layers, 49–51

protocol architecture, 25–31
Content validation, 58
Control policy, 230
Controllability, 238
Convergence, 215–216
Common Gateway Interface, see

CGI
Communication protocols, 25
Cookies, 33, 44–46, 45
Copyrights, 174, 175
CPIM, 186, 187, 189–191, 297
CPP, 186–188, 296
CR/LF, 34, 38
CSRC, 86

D

Data Consumer, 238
Data Dispatcher, 238
Data gathering, 141
Data Producer, 238
Data Keys, 170
Data use mine, see DUM
Deadlocks, 285
Decentralization, 151, 291
Decentralized information,

283
Default behavior, 42
Delegate overlay, 225
Delegate services, 225
DELETE, 37
Delivery rules, 185
Deniability, 151
Deployment issues, 51–52
Descriptors, 165
Design paradigms of the

Internet, 25–31
DESCRIBE, 88, 89
Destination, 189
Dialog, 199
Differential policies, 121, 123
Dig utility, 118
Directed presence, 212
Distance Vector Multicast

Routing Protocol, see
DVMRP

Distributed computing, 154, 155
Diverse databases, 283
Diverse linking relationships,

283

dnd, 212
DNS, 27, 110–120

domain names, 111–115
iterative requests, 116–117
load sharing, 119–120
name space, 112
protocol, 115–116
recursive requests, 116–117
requests, 116
request routing, 133, 300
root servers, 114
smart authoritative, 129
tools, 117–119
using DNS for load sharing,

119–120
DNS-based request routing, 133
Document routing model, 156,

157
Domain, 113
Domain name space, 111
Domain Name System, see

DNS
Draft standards, 289
DUM, 243
dur, 92
Durability, 150
Duration, 92, 187
DVMRP, 82
Dynamic caching, 81, 101–103,

102
Dynamic content, 11–12
Dynamic object rules, 57–58
Dynamic update, 295

E

E-commerce, 48
Eject, 57
Element, 188
EMS, 216
end, 92
Ending, 92
Endless loops, 285
End-to-End argument, 28
End-to-End model, 300
End-to-End principle, 26, 28–31,

299
Enhanced Messaging System,

see EMS
Envelope, 249

348 Index

Index.qxd 1/20/05 9:29 PM Page 348

error, 212
Ethernet LAN characteristics,

265
European Organization for

Nuclear Research, 4
Evolvability, 291
<excl>, 92
Exclusive tag, 92
Experimental protocols, 289
Extensibility, 291
Extensible Messaging and

Presence Protocol, see
XMPP

F

Fanning, Shawn, 159
Fast prefix

caching, 97
delay reductions, 98
transfer, 81, 94, 95–99

Fault resilience, 152
FDDI, 27
Fetchers, 184
Fewest packets, 122
Fiber Distributed Data

Interface, see FDDI
File exchange areas, 154
File sharing systems, 154
File Transfer Protocol, see FTP
Fingers, 171
First in, first out strategy, 57
Flashback, 132
Flooded request model, 156,

157
fmt lists, 202
Foreign networks, 206, 207
Forward proxy, 62–64
Free expression, 151
Free riders, 158
Fresh, 56
Freshness heuristic, 54
FTP, 2, 27
Full standards, 289
Functional, 284

G

Gateway, 64, 206
GET, 35, 89

GET_PARAMETER, 88
Global awareness, 129
Global Link Networks, 271, 274
Global request routing,

128–143, 302
estimating proximity,

138–143
connection monitoring,

141–143
proactive probing, 140–141
reactive probing, 139–140

steering client requests,
129–138

anycasting, 136–138
DNS-based request routing,

133
global server load

balancing, 129–132
HTML rewriting, 133–136

Global routing, 110
Global server load balancing,

see GSLB
Gnutella, 163–169

architecture, 164–168
descriptors, 165
history, 163–164
meeting peers, 167
protocol, 165
searching, 168
traffic analysis, 168–169

Gopher, 3–4
Grid computing, 155
GSLB, 129–132

approach 1, 130
approach 2, 131

gTLDs, 112–113

H

HEAD, 36
Header, 249
Header lines, 34, 38, 115
Helix Server, 83
Heuristics, 54
Highly available safe storage,

154
Historic standards,

289
HIT, 72
Hit ratio, 74–76, 76

Homepage, 7
Host-cache servers, 164
Hosts, 111
Host table, 111
Hot plugged, 127
HTML, 1, 7, 91

representation of Web objects,
7–8

rewriting, 132–136, 135
specifications, 294

HTTP, 1, 10, 25, 31–49
at work, 40–41
characteristics, 32–33

request-response
mechanism, 32

resource identification,
32–33

statelessness, 33
support for metadata, 33

client-server interaction,
44–48

cookies, 44–46
user authentication,

46–48
improvements in version 1.1,

41–44
chunked encoding, 43–44
persistent connections,

41–43
message format, 33–39
request messages, 34–37
response messages, 37–39

request messages, 34–37
DELETE method, 37
HEAD method, 36
GET method, 35
OPTIONS method, 37
POST method, 35–36
PUT method, 37
TRACE method, 37

response messages, 37–39,
38

reason phrase, 38–39
result code, 38–39

secure Web communication
using SSL, 48–49

version 1.0, 34, 42
version 1.1, 42

Human readable comment, 189
Hyperlinks, 4

Index 349

Index.qxd 1/20/05 9:29 PM Page 349

HTTP (continued)
Hypertext Markup Language,

see HTML
Hypertext Transport Protocol,

see HTTP

I

IANA, 111
ICAP, 218, 225, 228–236

clients, 229, 235
design goals, 229–231
example messages, 232
limitations, 236
motivation, 229–231
protocol details, 231–236

message preview,
235–236

request modification,
232–234

response modification,
234–235

request modification, 233
response modification, 234
servers, 229
shortcomings, 236

ICAP forum, 290–291
ICP, 70, 71
ICP_OP_QUERY, 72
ICQ, 214
Identification, 1
Identifier, 188
IDN, 115
IETF, 7, 287–290

open process, 287–288
protocol ownership, 288
rough consensus, 288
running code, 288
technical competence, 288
volunteer core, 288

IMAP, 48
IMPP, 186
IMPP Working Group, 186,

296
Improper terminations, 285
Inbox UA, 183, 184
Incoming data traffic, 69
Informational documents, 289
Initial stream, 208
INITIATED, 203

Instant inboxes, 183, 184
Instant Message Access

Protocol, see IMAP
Instant messaging, 179–216, 304

convergence, 215–216
defined, 181–185

collaboration, 181–182
reference model, 182–185

Internet-based, 186–215
comparison of SIMPLE

and XMPP, 213–214
IM protocols, 186–191
Jabber, 206–212
popular systems, 214–215
presence protocols, 186–191
SIMPLE, 191–206
XMPP, 206–212

model, 183, 184
protocol, 185
service, 183, 184

Instant Messaging and Presence
Protocol, see IMPP

Integrity, 238–240
Interactional coherence, 179
Interactive collaboration, 12–13
Interactive content delivery,

179–216
convergence, 215–216
instant messaging defined,

181–185
collaboration, 181–182
reference model, 182–185

Internet-based instant
messaging, 186–215

comparison of SIMPLE
and XMPP, 213–214

IM protocols, 186–191
Jabber, 206–212
popular systems,

214–215
presence protocols, 186–191
SIMPLE, 191–206
XMPP, 206–212

Interception proxy, 62, 66–69,
127–128

installation, 67
Interest set, 75
Interface standards, 280
Intermediaries, 20, 223, 301
Intermediary request, 245

Intermediary response, 245
Intermediary Rule Markup

Language, see IRML
Internationalized Domain

Names, see IDN
Internationalized Resource

Identifiers, see IRI
Internet Architecture Board,

288
Internet Assigned Numbers

Authority, see IANA
Internet-based instant

messaging, 186–215
comparison of SIMPLE and

XMPP, 213–214
instant messaging protocols,

186–191
common profile, 189–190
CPIM message format,

190–191
Jabber, 206–212
presence protocols, 186–191

common profile, 186–188
presence information data

format, 188–189
popular systems, 214–215
SIMPLE, 191–206

comparison to XMPP,
213–214

message mode, 200–206
pager mode, 199–200
presence, 196–198

XMPP, 206–212
basic instant message

session, 208–210
comparison to SIMPLE,

213–214
contact list management,

210–211
core features, 206–207
presence services, 211–212
XML-based

communications, 207–208
Internet Cache Protocol, see

ICP
Internet Content Adaptation

Protocol, see ICAP
Internet Draft, 289
Internet Engineering Task

Force, see IETF

350 Index

Index.qxd 1/20/05 9:29 PM Page 350

Internet Engineering Steering
Group, 288

Internet Explorer, 6, 54
Internet Hourglass, 26–28, 89
Internet Protocol, see IP
Internet Service Providers, see

ISP
Internet Society, 288
Internet standards, 289
Interoperability, 152, 281, 291
INVITE, 193
Invitations, 192
IP, 27
IP multicast model, 50
IRI, 115
IRML, 246
ISP, 15, 69
Iterative requests, 116–117

J

Jabber, 206–212
Jabber identifier, see JID
JID, 206

K

KaZaA, 169
Keep-alive mechanism, 242

L

LACNIC, 119
Largest file first strategy, 57
Layer 4 switching, 120–121
Layer 4–7 switching

applications, 128
features, 128
request switching, 120–128

interception proxies,
127–128

Layer 4 switching, 120–121
Layer 7 switching, 125–126
network address

translation, 123–125
other Layer 4–7 switch

features and applications,
128

server-heath checks,
126–127

server-load balancing,
121–123

Layer 7 switching, 125–126
Least busy server, 122
Least connections, 122
Least frequently used strategy,

57
Least recently used strategy,

57
Link layer, 26, 27
Link-level multicast, 50
Livelocks, 285
Load sharing, 119–120
Local caches, 54
Local caching, 54–55
Local node, 273, 276
Location services, 258–259
Losing information, 283
Lotus SameTime, 215
Lucent/Bell Labs WebDNS,

144–145

M

Manageability, 155
Massive scalability, 151
Maturity levels, 289
MaxForwards, 190
Maximum number of forwards,

see MaxForwards
MBONE, 82
Measurement standards, 280
media, 202
message, 202
<message>, 209
MESSAGE, 203
Message, 189–190, 251

content, 190
destination, 189
MaxForwards, 190
source, 189
TransID, 190

Message body, 34, 38
Message preview, 225, 235
Message processing language,

246
Message/CPIM, 190
Message mode, 198, 200–206
Message digest, 170
Message segmentation, 242

Message Session Relay Protocol,
see MSRP

Metadata, 33, 242
Metcalfe’s Law, 153
Metcalfe, Robert, 153
Methods, 32
Microsoft Corporation, 6
MIME, 191
Mixers, 85, 86
MMS, 181, 216
Modular, 285
Modularity, 291
Mosaic, 5
Mozilla, 6
mrouted, 82
MSN Messenger, 181
MSRP, 200, 204
Multicast transport, 49–52

application layer, 51
deployment issues, 51–52
IP multicast model, 50
link-level multicast, 50
on different protocol layers,

49–51
application layer, 51
IP multicast model, 50
link-level multicast, 50
network-level multicast,

50
transport-level multicast,

50–51
network-level multicast, 50
transport-level multicast,

50–51
Multimedia, 291
Multimedia Messaging Service,

see MMS
Multiparty Multimedia Session

Control, see MUSIC
MUSIC Working Group, 297

N

Name Server Lookup, see
nslookup

Name servers, 111
Napster, 159–174

company history, 159–161
protocol session, 162
system architecture, 161–163

Index 351

Index.qxd 1/20/05 9:29 PM Page 351

National Center for
Supercomputing
Applications, see
NCSA

NATs, 31, 110, 122, 123–125,
124

Navigating content networks,
109–146

case studies, 144–146
Akamai, 145–146
Lucent/Bell Labs WebDNS,

144–145
domain name system,

110–120
DNS protocol, 115–116
DNS tools, 117–119
domain names, 111–115
iterative requests, 116–117
recursive requests, 116–117
using DNS for load

sharing, 119–120
global request routing,

128–143
estimating proximity,

138–143
steering client requests,

129–128
Layer 4–7 request switching,

120–128
interception proxies,

127–128
Layer 4 switching, 120–121
Layer 7 switching,

125–126
network address

translation, 123–125
other Layer 4–7 switch

features and applications,
128

server-heath checks,
126–127

server-load balancing,
121–123

Navigation, 109
NCSA, 5
NetMeeting, 83
Netscape Communications

Corporation, 5
Netscape Communicator, 5
Netscape Navigator, 5, 48

Network Information Center,
111

Network architecture, 307
Network distance, 15
Network effect, 153
Network layer, 26, 27, 89, 201
Network-level multicast, 50
Network neighborhood, 132
Network News Transport

Protocol, see NNTP
Network transparency, 30
network type, 202
Networking, 70–72
Networks, see specific kinds
Next to expire strategy, 57
NNTP, 48
Node Key, 170
Normal Play Time, see NPT
<note>, 189
NOTIFY, 193
Notify, 186, 187–188
NPT, 88
NS records, 115
nslookup, 110, 117–118

O

Object segmentation, 81, 99–101
Objects, 17
OCP, 225, 238, 240–243, 244
On-demand, 136
One-party consent model, 225
Open group model, 50
Open Pluggable Edge Services,

see OPES
Open process, 287–288
Open tuples, 184
OPES, 218, 229, 236–246, 276
OPES Callout Protocol, see

OCP
OPES Processor, 238
OPES rules, 245
OPES Service Applications, 238
OPES Working Group, 229,

236–246
architecture, 237–240

architectural elements, 238
controllability, 238–240
integrity, 238–240
policy enforcement, 240

security considerations,
238–240

callout protocol, 240–243
rules language, 243–246

Operation, 250, 251
OPTIONS, 89
Organization, 152
Origin server, 17, 238
Origin server response, 245
OSCAR, 214
Outgoing data traffic, 69
Ownership, 152

P

Pager mode, 198, 199–200
<par>, 92
Parallel tag, 92
Parameter negotiations, 242
Parents, 71
Password, 47
Patch, 103
Path, 9
PAUSE, 88, 91
Peer-to-peer architecture, 147
Peer-to-peer content networks,

147–177, 296
business aspects, 173–177

commercial prospects,
173–174

legal aspects, 174–177
models, 173–174

case studies, 159–174
Chord, 169–174
Gnutella, 163–169
KaZaA, 163–169
Napster, 159–161

definition, 148–155
asymmetry in the Internet,

149–150
creating order from chaos,

151–153
network effect, 163
system requirements,

150–151
transparency in the

Internet, 149–150
types, 154–155

technical challenges, 156–159
accountability, 157–159

352 Index

Index.qxd 1/20/05 9:29 PM Page 352

locating content, 156–157
reputation, 157–159
trust, 157–159

types, 154–155
collaboration, 154, 155
distributed computer, 154,

155
grid computing, 155
file exchange areas, 154
platforms, 154, 155

Peer-to-peer communication,
303

Performance, 73–76, 152
estimating hit ratios, 74–76
measuring, 73–74

Persistence policies, 121, 122
Persistent connections, 41–43
Physical layer, 26, 27
PIDF, 188–189, 296
Pin-in-cache directives, 78
Platforms, 154, 155
PLAY, 88, 90
Policy enforcement, 240
Poller, 184
Port, 250
Port aware, 120
Port type, 250–251
POST, 35–36
Precisely alternating turns,

179
Prefetching, 78
Prefix caching, 106
Premature termination, 242
Presence, 196–198
Presence agent, 196
Presence element, 188
Presence information, 183, 184,

188
Presence Information Data

Format, see PIDF
Presence model, 183
Presence protocol, 185
Presence service, 183, 184,

211–212
Presence tuples, 184, 188

communication address,
188

human readable comment,
189

identifier, 188

status, 188
timestamp, 189

Presence UA, 183, 184
Presentity, 183, 184
Presentity human readable

comment, 189
Preview, 235
Previewing, 230
Principals, 182
Proactive probing, 139, 140–141
probe, 212
Professional Online Desktop,

215
Profile, 87
Proposed recommendation, 291
Proposed standards, 289
protocol, 202
Protocol, 9

architecture, 25–31
callout, 224–225
DNS, 115–116
experimental, 289
Extensible Messaging and

Presence, see XMPP
functionality, 29
HTTP standards, 293
ICAP details, 231–236
instant messaging, 185,

186–191
common profile, 189–190
CPIM message format,

190–191
Instant Messaging and

Presence, see IMPP
layers, 26, 49–51, 89–91, 201
Napster, 162
OPES callout, 225
ownership, 288
presence, 185, 186–191

common profile, 186–188
information data format,

188–189
proprietary, 93–94
real-time streaming, 87–89
real-time transport, 81, 83–86
RTP control, 81, 84, 86–87
Session Initiation, see SIP
stateful, 33
streaming media, 83–94

proprietary, 93–94

protocol layering, 89–91
real-time streaming

protocol (RTSP), 87–89
real-time transport protocol

(RTP), 83–86
RTP control protocol

(RTCP), 86–87
synchronized multimedia

integration language
(SMIL), 91–93

virtual router redundancy, 128
Proximity, 138–143
Proxy networks, 19
Proxy servers, 192
PSTN, 256
public, 60
Public Switched Telephone

Network, see PSTN
push technology, 78
PUT, 37

Q

Quality-of-service, 16
Question, 115
QoS, see Quality-of-service

R

Random server selection, 121
RAS, see Remote Access Server
RDT, 94
Reactive probing, 139–140
Real Data Transport, see RDT
Real Networks RealOne player,

83, 92
Real-time streaming protocol,

see RTSP
Real-time transport protocol,

see RTP
Reason phrase, 38–39
Receiver, 203
Receiver Report, see RR
RECORD, 89
Recursive requests, 116–117
REDIRECT, 89
Reference architecture, 148
Reference model, 182–185
REGISTER, 193
Registration, 192, 195, 196

Index 353

Index.qxd 1/20/05 9:29 PM Page 353

Relative priority, 189
Remote access, 283
Remote Access Server, 67,

274
Replacement algorithm, 54
Replacement management

strategies, 79
Replacement rule, 54, 57
REPORT, 203
Representation, 1
Reputation, 159
reqmod, 232
Request, 32, 33, 232

directives, 60
line, 34
messages, 34–37
DELETE method, 37
HEAD method, 36
GET method, 35
OPTIONS method, 37
POST method, 35–36
PUT method, 37
TRACE method, 37

pipelining, 42
switching, 120–128

interception proxies,
127–128

Layer 4, 120–121
Layer 7, 125–126
network address

translation, 123–135
server health checks,

126–127
server-load balancing,

121–123
Request for comments, see RFC
Request modification, 232–234
Requests per second, 73
Request-response mechanism,

32
Request routing, 21
Resolvers, 111
Resource, 207
Resource identification, 32
Resource records, 111
Resources, 32
respmod, 234
Response, 32, 33, 186, 190

directives, 60–61
duration, 187

messages, 37–39, 38
reason phrase, 38–39
result code, 38–39

status, 187, 190
stream, 208
time, 73
TransID, 187, 190

Response modification, 232,
234–235

Result code, 38–39
Reverse proxy, 62, 64–66
RFC, 289
Ring buffer, 102, 106
RIPE NCC, 119
Robustness, 151
Roster, 210
Rough consensus, 288
Round robin, 119, 121
Round trip time, see RTT
Routers, 120
Routing, 109
RR, 87, 115
RTCP, 81, 86–87
RTP, 81, 83–86
RTP control protocol, see RTCP
RTSP, 81, 87–89, 90
RTSP/RTP client and server

modules, 104
RTT, 138
Rules, 243
Ruleset, 224, 238
Running code, 288

S

Sandboxing, 152
SASL, 211
Satellite-based Web caching,

72–73
Scheduler, 105
SDH, 272
SDP, 200, 201
SDR, 82
Secure Socket Layer,

see SSL
Security, 152
Seeking, 98
Self organization, 152
Self-organizing behavior, 152
Semantic Web, 291

SEND, 203
Sender, 183, 184, 203
Sender Report, see SR
Sender UA, 183, 184
<seq>, 92
Sequential tag, 92
Servent, 164
Server, 56, 96, 97, 206
Server-load balancing, 121–123

best available policies,
121–122

differential policies, 123
persistence policies, 122

Server accelerator, 62, 64
Server name, 9
Server farms, 17, 19
Server health checks, 126–127
ServerIron Switch, 127
Server-to-client, 88
Service, 250
Service activation point,

223–224
Service convergence, 254–262

examples, 260–262
location services, 258–259
types of user profiles,

256–258
voice services, 259–260

Service engine, 217, 220, 221,
223

Service Level Agreement, 278
Service personalization,

252–262
examples, 260–262
location services, 258–259
types of user profiles,

256–258
voice services, 259–260

Services transformations, 260
Session Description Protocol,

see SDP
session identifier, 202
Session Initiation Protocol, see

SIP
Session management, 193
Session setup, 192
Sessions, 191
SET_PARAMETER, 88
Settings dialog box, 54
SETUP, 88, 90

354 Index

Index.qxd 1/20/05 9:29 PM Page 354

SGML, 7
Shared network caches, 62–69

forward proxy, 62–64
interception proxy, 66–69
reverse proxy, 64–66

Short-circuit, 225
Short Messaging System, see

SMS
Siblings, 71
SIMPLE, 181, 191–206, 297

comparison to XMPP,
213–214

message method, 200
message mode, 200–206
pager mode, 199–200
presence, 196–198

Simple Authentication and
Security Layer, see SASL

Simple Mail Transport Protocol,
see SMTP

Simple Object Access Protocol,
see SOAP

Simplicity, 291
SIP, 186, 191–193

call leg, 199
invite message, 194
location servers, 196
user availability, 192
user capabilities, 192
user location, 192
registration, 196
session management, 193
session setup, 192, 193
trapezoid, 193

SLB, 121–123
Smart authoritative DNS,

129
SMIL, 81, 91–93

file, 93
media tags, 92

SMPTE Relative Time, 88
SMS, 181
SMTP, 48
SOAP, 218, 247–248

body, 249
example, 249
header block, 249
message, 249

SONET, 263, 272
Source, 189

SR, 87
SSL, 48–49
SSRC, 85, 86
Stalking, 185
Standard Generalized

Markup Language,
see SGML

Standards, 279–298
business requirements,

286–287
content networking standards,

292–298
caching techniques for Web

content, 294–295
caching techniques for

streaming content, 295
content services,

297–298
content transport, 292–294
early days, 292
interactive content

delivery—instant
messaging, 296–297

peer-to-peer content
networks, 296

switching and routing in
content networks,
295–296

content networking standards
bodies, 287–292

ICAP forum, 290–291
IETF, 287–290
W3C, 291–292

role of standards,
280–281

benefits, 281–283
definitions, 280
evaluation, 283–287
evolution, 283–287

technical requirements,
284–286

Standards track, 289
Stanzas, 206, 207
Static content, 11
Stateful protocols, 33
Statelessness, 33
<status>, 188
Status, 187, 188, 190
Status line, 38
Streaming, 81

Streaming content, 12, 300
Streaming media, caching

techniques, 81–107, 295
case studies, 103–107

standard surprises, 103–104
system performance,

104–107
protocols for streaming

media, 83–94
proprietary protocols,

93–94
protocol layering, 89–91
real-time streaming

protocol (RTSP), 87–89
real-time transport protocol

(RTP), 83–86
RTP control protocol

(RTCP), 86–87
synchronized multimedia

integration language
(SMIL), 91–93

streaming media, 81–83
techniques, 94–103

audio/video smoothing, 95
cache replacement, 99–101
dynamic caching, 101–103
fast prefix transfer, 95–99
object segmentation,

99–101
Streaming protocol, 89
<stream>, 208
Streams, 206, 207
subscribe, 212
SUBSCRIBE, 193
Subscribe, 186–187

duration, 187
SubscriptID, 187
target, 186
TransID, 187
watcher, 186

subscribed, 212
SubscriptID, 187
Subscription identifier, 187
Successor, 170
Summary, 299–209

content networking
architecture evolution,
299–304

future of content networking,
204–209

Index 355

Index.qxd 1/20/05 9:29 PM Page 355

SuperNodes, 169
Surrogate overlay, 225
Surrogate services, 225
Switching, 109

Layer 4, 120–121
Layer 7, 125–126

Synchronization Source, see
SSRC

Synchronized Multimedia
Integration Language,
see SMIL

System requirements of
peer-to-peer networks,
150–151

access control, 151
anonymity, 151
authenticity, 151
availability, 150
deniability, 151
durability, 150
free expression, 151
massive scalability, 151
robustness, 151

T

Target, 186
TCP, 27
TCP splicing, 126
TEARDOWN, 88
Technical competence, 288
Technical drivers, 218–219
Telnet, 40, 48
Temporal distance, 101
Throughput, 73
Time to live, see TTL
<timestamp>, 189
Timestamp, 189
TLD

names, 111, 112
country code TLDs, see

ccTLDs
generic TLDs, see gTLDs

TLS, 48, 211
tModel, 253
tModelKey, 253
To-Path, 203
Top-level domain, see

TLD
TRACE, 37

Transaction identifier, see
TransID

Transaction semantics, 230
TransID, 187, 190
Translators, 85, 86
Transmission Control Protocol,

see TCP
Transparency, 149–150
Transport, 1

layer, 26, 27, 89, 201, 211
multicast, 49–52

application layer, 51
deployment issues, 51–52
IP multicast model, 50
link-level multicast, 50
network-level multicast,

50
on different protocol layers,

49–51
transport-level multicast,

50–51
Transport Layer Security, see

TLS
Transport-level multicast,

50–51
Trillian, 215
Trunk-carrier characteristics,

266
Trust, 225–226, 291
Trust chain, 240
Trust domain, 240
TTL, 116
<tuple>, 188
<type>, 202
Type, 115, 252
Type a, 202
Type c, 202
Type m, 202
Type o, 202
Type s, 202
Type t, 202
Type v, 202

U

UAProf, 256
UDDI, 218, 247, 252–254,

255
UDP, 27
Unambiguous, 285

unavailable, 212
Uncongested bridge, 158
Unicast communication, 49
Uniform distribution, 75
Uniform Resource Identifier,

see URI
Uniform Resource Language,

see URL
Uniform Resource Name,

see URN
Universal access, 291
Universal Description,

Discovery, and
Integration, see
UDDI

unsubscribe, 212
unsubscribed, 212
Uplink time difference of

arrival, 258
URI, 1, 9

identifying Web objects,
8–10

URL, 8
identifying Web objects,

8–10
URN, 8

identifying Web objects,
8–10

User Agent Profile, see
UA Prof

User agents, 192
User availability, 192
User authentication, 46–48
User capabilities, 192
User Datagram Protocol,

see UDP
User location, 192
User preference profile,

257
User status profile, 257
username, 202
Username, 47

V

VAT, 82
Vectoring, 238
version, 202
VIC, 83
Video-Audio Tool, see VAT

356 Index

Index.qxd 1/20/05 9:29 PM Page 356

Video conferencing Tool,
see VIC

Virtual router, 128
Virtual Router Redundancy

Protocol, see VRRP
Virtual Whiteboard, 83
Visibility rules, 185
Voice services, 259–260
VoiceXML, 259
VoIP, 192
Volunteer core, 288
VRRP, 128

W

W3C, 246, 291–292
W3C recommendation, 292
WAIS, 3
WAN connection, 265, 267,

268, 269
WAN traffic, 267
WAP, 256
Watcher, 183, 184, 186
Watcher UA, 183, 184
WB, 83
Web Services Description

Language, see WSDL
Web, The

client-server model, 7
overcoming slowdown, 16–19

distributing content and
centralized services,
17–18

distributing load at a
centralized server site,
16–17

example, 18–19
server-side load balancing,

18–19
Web caching, 18–19

Web caches, 267, 300
basic operation of a shared,

55–58
improved scalability, 19
parents, 71
siblings, 71

Web caching, 53–79
motivation and goals, 55
satellite-based, 72–73

Web client, 7, 238

Web communication, secure,
48–49

Web content, caching
techniques, 53–79,
294–295

basic operation of a shared
Web cache, 55–58

dynamic object rules,
57–58

replacement rules, 57
caching challenges and myths,

76–79
caching myths, 78–79
avoiding snags, 77–78

cacheability considerations,
58–61

cache-control directives,
60–61

expiration, 59
validation, 59–60

evolution of caching systems,
69–73

chaining, 70
networking, 70–72
satellite-based Web caching,

72–73
goals of Web caching, 55
local caching, 54–55
motivation of Web caching,

55
networks of caches, 69–73

chaining, 70
networking, 70–72
satellite-based Web caching,

72–73
performance, 73–76

estimating hit ratios,
74–76

measuring, 73–74
placing a cache in the

network, 62–69
forward proxy, 62–64
interception proxy,

66–69
reverse proxy, 64–66

WebDNS, 133, 134, 144–145
Web objects, 6

HTML, 7–8
HTTP, 10
identifying, 8–10

location, 8
name, 8
representation, 7–8
transport, 10
URNs, URLs, and URIs,

8–10
Web of trust, 291
Web model, 13–16
Web pages, 228
Web server, 6, 238, 300

distributing load at a
centralized server site,
16–17

scalability problem of
centralized, 15

Web services paradigm,
246–254

example SOAP message,
249

SOAP, 247–248
UDDI, 252–254
WSDL, 250–252

Web switch, 268, 300, 301
Weighted distribution

(dynamic), 122
Weighted distribution (static),

122
whois tool, 118
Wide Area Information Server,

see WAIS
Windows Media Player, 83
Wireless Application Protocol,

see WAP
World Wide Web, 1, 4–13

applications, 10–13
interactive collaboration,

12–13
retrieving dynamic content,

11–12
retrieving static content, 11
retrieving streaming

content, 12
basic concepts, 6–10
origin, 4–6

World Wide Web Consortium,
see W3C

Working draft, 291
Working Groups, 288
WSDL, 218, 247, 250–252
WWW, see World Wide Web

Index 357

Index.qxd 1/20/05 9:29 PM Page 357

X

xa, 212
XML MIME, 188
XMPP, 186, 206–212, 297

basic instant message session,
208–210

comparison to SIMPLE,
213–214

contact list management,
210–211

core features, 206–207
network architecture, 207
protocol stack, 211
presence services, 211–212
stream, 208
XML-based communications,

207–208

Y

Yahoo! Messenger, 181, 214

Z

Zipf distribution, 75, 76
Zipf, George Kingsley, 75
Zone, 114
Zone transfer, 295

358 Index

Index.qxd 1/20/05 9:29 PM Page 358

