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Slowly varying ~SV! regressors arise commonly in empirical econometric work,
particularly in the form of semilogarithmic regression and log periodogram regres-
sion+ These regressors are asymptotically collinear+ Usual regression formulas for
asymptotic standard errors are shown to remain valid, but rates of convergence
are affected and the limit distribution of the regression coefficients is shown to be
one dimensional+ Some asymptotic representations of partial sums of SV func-
tions and central limit theorems with SV weights are given that assist in the devel-
opment of a regression theory+ Multivariate regression and polynomial regression
with SV functions are considered and shown to be equivalent, up to standardiza-
tion, to regression on a polynomial in a logarithmic trend+ The theory involves
second-, third-, and higher-order forms of slow variation+ Some applications to
the asymptotic theory of nonlinear trend regression are explored+

1. INTRODUCTION

Empirical models of economic time series often involve deterministic trend func-
tions+ Time polynomials and sinusoidal polynomials are the most common func-
tions to appear in such models, and the properties of regressions of time series
on these trend functions have been extensively explored in the literature, an
early and definitive contribution being Grenander and Rosenblatt ~1957, Ch+ 7!+
A common element in much of the asymptotic theory that has been developed
is a requirement of the type that ensures the existence of a positive definite
limit to a suitably normalized sample second moment matrix of the regressors+
Frequently, this requirement appears as one of a general set of conditions on
the sample variances and autocovariances of the regressors, such as those that
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are often characterized ~e+g+, Hannan 1970, p+ 215! as “Grenander’s condi-
tions” ~see Grenander and Rosenblatt, 1957, pp+ 233–234!+

Not all deterministic functions of interest are covered by these requirements,
and when the conditions fail some adjustments to the asymptotic theory are
usually needed+ One example that is important in certain empirical applications
is the semilogarithmic growth model

ys � a� b log s � us s � 1, + + + , n, (1)

where us is an unobserved error process+ This type of formulation arises natu-
rally in the study of growth convergence problems and economic transition+
For instance, in the study of growth convergence ~Barro and Sala-i-Martin,
2004!, if st

2 denotes the variation across economies of the logarithm of per
capita real output at time t, then under s convergence, this dispersion declines
over time+ Accordingly, if we model dispersion in a power law form as st

2 �
at beut for some a � 0,b � 0 and with accompanying disturbances ut , then
yt � log~st

2! follows ~1!, and s convergence may be tested using a robust sign
test on the slope coefficient b+

In quite a different context, an analogous formulation arises in the log peri-
odogram analysis of long memory, a subject on which there is now a large
literature ~see Robinson, 1995; Hurvich, Deo, and Brodsky, 1998; Phillips, 1999;
and the references therein!+ In that case ~discussed in Example ~a! in Sec-
tion 3!, ys is the periodogram of the data measured at the Fourier frequencies
ls � 2ps0n, s � 1, + + + ,m � n, and the slope coefficient b � �2d, where d is
the memory parameter+

The reason model ~1! fails to fit within the usual framework is that the sam-
ple moment matrix of the regressors is asymptotically singular+ Indeed, setting
Dn � diag~Mn ,Mn log n!, and Fn

�1 � diag~Mn0~ log n!,Mn !, we have ~cf+ eqns+
~26! and ~27! in Section 3!

Dn
�1� n (

s�1

n

log s

(
s�1

n

log s (
s�1

n

log2 s�Dn
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So, both the sample second moment of the regressors and its inverse have sin-
gular limits after standardization, thereby failing Grenander’s conditions+

The same problem arises when the logarithmic function in ~1! is replaced by
any slowly varying ~SV! function L~s!+ In effect, the intercept and any SV func-
tion are asymptotically collinear after appropriate standardization+ The phenom-
enon is manifest in a more serious way when one considers polynomial versions
of ~1! such as

ys � (
j�0

p

bj log j s � us s � 1

or similar regressions involving polynomials in an SV function+ In such cases,
one finds that the sample moment matrix of the regressors, whereas of rank
p � 1 for all n � p, is singular and of rank unity in the limit after suitable
normalization+ More generally still, the singularity persists when the regressors
constitute a vector of different SV functions, such as $log s,10log s% involving
a logarithmic and inverse logarithmic trend+

In practical statistical work the phenomenon arises in nonlinear regressions
of the type

ys � bsg � us s � 1, + + + , n, (2)

where the trend exponent g � � 1
2
_ is to be estimated along with the regression

coefficient b+ The affine linear form of ~2!, taken about the true values of the
parameters ~denoted by b0 and g0!, involves the regressors sg0 and sg0~ log s!,
which are regularly varying and whose second moment matrix is asymptoti-
cally singular upon appropriate ~multivariate! normalization ~cf+ eqn+ ~55! in
Section 6!+ It follows that statistical models like ~2! manifest asymptotic collin-
earity analogous to that of the linear regression ~1!+ Wu ~1981, p+ 509! noted
that model ~2! failed his conditions ~which require a single normalizing quan-
tity and a positive definite limit matrix for the second moment matrix of the
affine model! for asymptotic normality and consequently did not provide a limit
distribution theory for this model+

The present paper provides a detailed treatment of regressions of this type+
The discussion is conducted in terms of SV regressors, and some results on
polynomial and multivariate functions of slow variation are obtained that may
be of interest outside the present study+ The paper is organized as follows+ Sec-
tion 2 lays out some assumptions and preliminary theory+ Results for simple
regression are given with some common examples in Section 3+ Polynomial
regressions in SV regressors are covered in Section 4+ Some general multivar-
iate extensions are reported in Section 5+ Section 6 applies the theory to the
nonlinear trend model ~2!+ Sections 7 and 8 contain supplementary technical
results and proofs+ Notation is tabulated as follows:
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ra+s+ almost sure convergence SV slowly varying
rp convergence in probability SSV smoothly slowly varying
�d distributional equivalence n, rd weak convergence
:� definitional equality @{# integer part of
~a!k a~a � 1! + + + ~a � k � 1! r ∧ s min~r, s!
B~r! standard Brownian motion ; asymptotic equivalence
C k class of continuously differentiable op~1! tends to zero in probability

functions to order k oa+s+~1! tends to zero almost surely

2. ASSUMPTIONS AND PRELIMINARY RESULTS

It will be convenient to use some standard theory of SV functions, and, in so
doing, we shall repeatedly reference Bingham, Goldie, and Teugels ~1987!, here-
after designated as BGT+ From the Karamata representation ~e+g+, BGT, Thm+
1+3+1, p+ 12!, any SV function L~x! has the representation

L~x! � c~x!exp��
a

x «~t !

t
dt� for x � a (3)

for some a � 0 and where c~{! is measurable with c~x! r c � ~0,`! and
«~x! r 0 as x r `+ The function « in ~3! is referred to as the «-function
corresponding to L+

The present paper works with the subclass of ~so-called! normalized SV func-
tions for which c~x! is a constant+ In the development of an asymptotic theory
of regression, little seems to be lost in making the restriction to constant c func-
tions because the asymptotic behavior of L~x! is equivalent to that of ~3! with
c~x! � c+ It is also known that for every SV function L there is an asymptoti-
cally equivalent SV function that is arbitrarily smooth ~e+g+, BGT, Thm+ 1+3+3,
p+ 14!+ This property is especially helpful in developing asymptotic representa-
tions and working with transforms that arise from the process of integration
and differentiation+ The limit behavior studied subsequently is determined by L
and «, and some properties, as we shall see, are invariant to the particular SV
function+

To validate the expansions needed in our development of an asymptotic theory
of regression, we shall make the following assumption+

Assumption SSV+

~a! L~x! is a smoothly slowly varying ~SSV! function with Karamata
representation

L~x! � c exp��
a

x «~t !

t
dt� for x � a (4)

for some a � 0 and where c � 0 is a constant, « � C`, and «~x!r 0 as
x r `+
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~b! 6«~x!6 is SSV, and « has Karamata representation

«~x! � c« exp��
a

x h~t !

t
dt� for x � a (5)

for some ~possibly negative! constant c« and where h � C ,̀ 6h6 is SSV,
and h~x!2 � o~«~x!! r 0 as x r `+

We call «~x! and h~x! the «- and h-functions of L~x!+ Under Assumption
SSV we have

«~x! �
xL'~x!

L~x!
r 0 and h~x!�

x« '~x!

«~x!
r 0 as xr `

and, more generally,

x mL~m! ~x!

L~x!
,

x m«~m! ~x!

«~x!
,

x mh~m! ~x!

h~x!
r 0 for all m � 1,2, + + + as xr `

~BGT, p+ 44!+ The class for L~x! covered in Assumption SSV includes all of
the common SV deterministic functions such as ~for g � 0! logg x, 10logg x,
log log x, and 10log log x that might appear directly in simple regression formu-
lations or indirectly in nonlinear regression through the corresponding affine
linear models+ The «- and h-functions of these functions are given in Examples
~a!–~e! in Section 3+

Because we contemplate the use of L as a time series regressor, the value of
the initialization a in ~4! is not important+ In fact, we may reset a � 0 by taking
«~t !� 0 over t � @0,d# for some small d � 0 and by interpolating « over @d,a#
so that « � C` @0,`# , thereby assuring existence, integrability, and smooth
behavior for L over @0,a# + We shall henceforth presume that this change has
been made and that we can majorize L~rn!0L~n! � 1 as follows:

� L~rn!

L~n!
� 1� � K~n!g~r!,

where K~n! is SSV and g~r! � C @0,1# + In consequence, and using the fact that
for any SV function K, K~n!0nh r 0 for arbitrary h � 0, we have, given some
a � 0 and any positive integer k,

�
0

10na � L~rn!

L~n!
� 1�k

dr � o� 1

nd
� as nr `, (6)

where d � a � h � 0+
To deliver an asymptotic theory of regression we need to appeal to a central

limit result+ For this purpose, it is convenient to assume that the regression errors
us satisfy the following linear process condition+
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Assumption LP+ For all t � 0, ut has Wold representation

ut � C~L!et �(
j�0

`

cj et�j , (
j�0

`

j 6cj 6 � `, C~1!� 0, (7)

with et � iid~0,se
2! and m2p � E6ut 62p � ` for some p � 2+

It is well known ~e+g+, Phillips and Solo, 1992, Thm+ 3+4! that Assumption
LP is sufficient for the partial sums St � (s�1

t us to satisfy the functional law
~10Mn !S@n{# rd B~{!, where B~{! is Brownian motion with variance s 2 �
se

2 C~1!2+ Further, extending the probability space as needed, the partial sum
process St may be uniformly strongly approximated by a Brownian motion
such as B, in the sense that

sup
1�t�n

� St�1

Mn
� B� t � 1

n �� � oa+s+� 1

n ~102!�~10p!�, (8)

for some integer p � 2+ Strong approximations such as ~8! have been proved
by many authors and are reviewed in Shorack and Wellner ~1986! and Csörgö
and Horváth ~1993!+ A strong approximation justifying ~8! in the case where ut

is a linear process is given in Phillips ~2006! for time series data under Assump-
tion LP+ Akonom ~1993! gave ~8! with an op~n�~102!�~10p! ! error under Assump-
tion LP using the weaker moment requirement that mp � E6ut 6 p � ` for some
p � 2+

It seems likely that the results of the present paper may be extended under
suitable conditions to allow for long memory in ut + It has been shown by Wang,
Lin, and Gulati ~2003!, for instance, that partial sums of long memory pro-
cesses satisfy a strong approximation analogous to ~8! in which the limit pro-
cess B is replaced by a fractional Brownian motion+ After suitable adjustments
in convergence rates, that result may be used to extend some of the limit theory
of the present paper, including ~9! and Lemma 2+1+ These extensions are not
pursued here and are left for subsequent work+

Under Assumption LP, it follows by partial summation and by taking weak
limits that for any f � C 1

1

Mn
(
s�1

n

f� s

n
�usrd �

0

1

f ~r! dB~r! � N�0,s 2�
0

1

f ~r!2 dr�+ (9)

Some related results hold when f is SV+ In particular, we have the following
lemma+

LEMMA 2+1+ If L~t ! satisfies Assumption SSV, OL � n�1(t�1
n L~t ! , and ut

satisfies Assumption LP, then
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(i) ~10MnL~n!!(t�1
n L~t !ut rd B~1! �d N~0,s 2! as n r `.

(ii) ~10MnL~n!«~n!!(t�1
n ~L~t ! � OL!ut rd *0

1~1 � log r! dB~r! �d

N~0,s 2! as n r `.
(iii) ~10Mn«~n! j !(t�1

n @~L~t !0L~n!! � 1# jut rd *0
1 log j rdB~r! �d

N~0,s 2~2j !!! as n r `.

2.1. Heuristics

As shown in ~60! in Section 7 and Lemma 7+2, one of the implications of
Assumption SSV is that we have the following asymptotic representation of
L~t ! for t � nr with r � 0:

L~rn!

L~n!
� 1 � exp $«~n! log r @1 � o~1!#%� 1 � «~n! log r @1 � o~1!# + (10)

Such a function may be called second-order SV ~cf+ de Haan and Resnick, 1996,
who discuss second-order regular variation!+ For the sample mean OL, we have

OL � L~n!� L~n!«~n!� o~L~n!«~n!!+

In consequence, the standardized sums that appear in ~i!–~iii! of Lemma 2+1
have the approximate asymptotic forms

1

MnL~n!
(
t�1

n

L~t !ut ;
1

Mn
(
t�1

n

ut ,

1

MnL~n!«~n!
(
t�1

n

~L~t !� OL!ut ;
1

Mn
(
t�1

n �1 � log� t

n
��ut ,

1

Mn«~n! j (
t�1

n � L~t !

L~n!
� 1� j

ut ;
1

Mn
(
t�1

n

log j� t

n
�ut ,

to which we may apply a standard central limit argument like that of ~9!+ These
cases indicate that, as far as first-order asymptotic theory is concerned, weighted
means of ut with arbitrary SV weights behave in a common way, at least up to
a normalization factor that depends on the asymptotic form of the SV function
and its corresponding «-function+ The “common” form that appears in these
expressions is that of a logarithmic trend function log t, whereas the influence
of the particular SV function affects the normalization by way of L~n! and «~n!+
This characteristic will be seen to apply more generally in regression asymptotics+

3. SIMPLE REGRESSION

We start with the simple regression model

ys � a� bL~s!� us s � a, + + + , n for some a � 1, (11)
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where us satisfies Assumption LP+ Initialization of ~11! at some suitable finite
integer a ensures that L~s! is well defined for s � a in cases such as L~s! �
10log s where L~1! is undefined+ In such cases, L~s! may be redefined as L~s!�
L~a! for 1 � s � a and some suitable finite a with no effect on subsequent
results+ Henceforth, it will be assumed that such adjustments have been made+

Let [a and Zb be the least squares regression coefficients+ The limit behavior
of these regression coefficients depends on that of the first and second sample
moments

OL �
1

n (s�1

n

L~s!,
1

n (s�1

n

~L~s!� OL!2 �
1

n (s�1

n

L~s!2 � �1

n (s�1

n

L~s!�2

+ (12)

The natural approach is to approximate these sample sums by an integral using
Euler summation and then determine the asymptotic form of the resulting inte-
grals as n r `+ Lemma 7+1 gives for the kth moment

(
t�1

n

L~t !k ��
1

n

L~t !k dt � O~nd !, (13)

where d � 0 is arbitrarily small, and Lemma 7+2 gives the following explicit
asymptotic expansion:

1

n (t�1

n

L~t !k � L~n!k � kL~n!k«~n!� k 2L~n!k«~n!2 � kL~n!k«~n!h~n!

� k 3 @L~n!k«~n!3 � 3L~n!k«~n!2h~n!� L~n!k«~n!h~n!2 #

� o~L~n!k @«3~n!� «~n!2h~n!� «~n!h~n!2 # !+ (14)

The first two moments are then

OL � L~n!� L~n!«~n!� L~n!«~n!2 � L~n!«~n!h~n!

� L~n!«~n!3 � 3L~n!«~n!2h~n!� L~n!«~n!h~n!2

� o~L~n!@«3~n!� «~n!2h~n!� «~n!h~n!2 # ! (15)

and

1

n (t�1

n

L~t !2 � L~n!2 � 2L~n!2«~n!� 4L~n!2«~n!2 � 2L~n!2«~n!h~n!

� 8@L~n!2«~n!3 � 3L~n!2«~n!2h~n!� L~n!2«~n!h~n!2 #

� o~L~n!2 @«3~n!� «~n!2h~n!� «~n!h~n!2 # !, (16)

from which we deduce that

1

n (t�1

n

~L~t !� OL!2 � L~n!2«~n!2$1 � o~1!%,

as in Lemma 7+3+
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Then

MnL~n!«~n!~ Zb� b! � � 1

nL~n!2«~n!2 (t�1

n

~L~t !� OL!2��1

�
1

MnL~n!«~n!
(
t�1

n

~L~t !� OL!ut ,

and

Mn«~n!~ [a� a! � «~n!
1

Mn
(
t�1

n

ut � MnL~n!«~n!~ Zb� b!@1 � ~«~n!!#

� �MnL~n!«~n!~ Zb� b!� op~1!+ (17)

The limit theory for the regression coefficients now follows directly from ~17!
and Lemma 2+1+

THEOREM 3+1+ If L~t ! satisfies Assumption SSV and ut satisfies Assump-
tion LP, then

� Mn«~n!~ [a� a!

MnL~n!«~n!~ Zb� b!
�rd N�0,s 2� 1 �1

�1 1
��. (18)

Examples

~a! L~s!� log s+ This gives the semilogarithmic model+ Here, «~n!� @10~log n!# ,
L~n!«~n! � 1, and ~18! is

�
Mn

log n
~ [a� a!

Mn ~ Zb� b!
� rd N�0,s 2� 1 �1

�1 1
��+ (19)

This example also covers log periodogram analysis of long memory+ In this
case we have the regression

log~IX ~ls !! � [c � 2 Zd log ls � residual, s � 1, + + + ,m, (20)

where IX~ls! is the periodogram of a time series ~Xt !t�1
n and ls � 2ps0n are

fundamental frequencies+ The spectrum of Xt is assumed to have the local form
fx~l! ; Cl�2d for l r 0�, and, correspondingly, the regression ~20! is taken
over a band of frequencies that shrink to the origin, so that ~10m!� ~m0n!r 0+
Then ~20! has the alternate form

log~IX ~ls !! � � [c � 2 Zd log
2p

n
�� 2 Zd log s � residual

� [cn � 2 Zd log s � residual, (21)
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where [cn � [c � 2 Zd log~2p0n!+ Set c � log C, cn � c � 2d log~2p0n!+ The
moment matrix of the regressors in ~21! is asymptotically singular, just as in
~1!+ Although the details of the central limit theory differ from Lemma 2+1
because of the properties of the residual terms in ~20! ~cf+ Robinson, 1995;
Hurvich et al+, 1998!, we nevertheless end up with a result analogous to ~19!
but with sample size m, namely,

�
Mm

log m
~ [cn � cn !

�2Mm~ Zd � d !
� rd N�0,

p2

6
� 1 �1

�1 1
��+

Because [cn � cn � ~ [c � c! � 2~ Zd � d ! log~2p0n!, we have

Mm

log n
~ [cn � cn ! �

Mm

log n
~ [c � c!� 2Mm~ Zd � d !� Op� 1

log n
�� op~1!,

from which we deduce that

�
Mm

log n
~ [c � c!

2Mm~ Zd � d !
� rd N�0,

p2

6
� 1 �1

�1 1
��,

a result obtained by Robinson ~1995, Thm+ 3!+ The perfect negative asymptotic
correlation between the estimates [c and Zd induces a corresponding property
between the estimates ZC and Zd of the original parameters appearing locally in
fx~l! ; Cl�2d+
~b! L~s! � 10~ log s!+ This example arises when the regressor decays slowly+

Here «~n! � �@10~ log n!# , L~n!«~n! � �@10~ log2 n!# , and ~18! is

�
Mn

log n
~ [a� a!

Mn

log2 n
~ Zb� b!� rd N�0,s 2� 1 �1

�1 1
��+ (22)

~c! L~s! � log log s+ Here, «~n! � @10~ log log n!# @10~ log n!# , L~n!«~n! �
@10~ log n!# , and ~18! is

�
Mn

log log n log n
~ [a� a!

Mn

log n
~ Zb� b! � rd N�0,s 2� 1 �1

�1 1
��+ (23)
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~d! L~s! � @10~ log log s!#+ Here, «~n! � �@10~ log log n!# @10~ log n!# ,
L~n!«~n! � �@10~ log2 log n!# @10~ log n!# , and ~18! is

�
Mn

log log n log n
~ [a� a!

Mn

log2 log n log n
~ Zb� b!� rd N�0,s 2� 1 �1

�1 1
��+

~e! L~s! � logg s, g � 0+ In this case, «~n! � @g0~ log n!# , L~n!«~n! �
g logg�1 n, and ~18! is

�
gMn

log n
~ [a� a!

gMn logg�1 n~ Zb� b!
� rd N�0,s 2� 1 �1

�1 1
��+

In all these cases the limit behavior is identical up to appropriate normaliza-
tion of the coefficients, which is determined solely by L and its «-function+
Some intuition explaining the results is as follows+When L~n!r ` as nr `,
the convergence rate of the slope coefficient, Zb, exceeds that of the intercept,
[a, because the signal from the regressor L~s! in ~11! is stronger than that of a

constant regressor+When L~n!r 0 as nr `, the convergence rate of Zb is less
than that of [a, because the signal from the regressor L~s! is weaker than that of
a constant regressor+ The singularity in the asymptotic distribution arises because
the regressor and the intercept are asymptotically collinear+

Some of the first-order asymptotic approximations implied by the preceding
theory may not be good in finite samples+ Refinements of the limit theory can
be developed using asymptotic expansions in suitable powers of the SV func-
tions+ When L~s!� 10log s, for example, example ~b! given previously is ana-
lyzed in Phillips and Sun ~2003!, where the following asymptotic expansion of
the moment matrix of the regressors is developed in powers of L~n!:

1

n (t�2

n

$L~t !� OL%2

�
1

log4 n
�1 �

8

log n
�

56

log2 n
�

408

log3 n
�

3,228

log4 n
�

28,032

log5 n
�

267,264

log6 n
�

� O� 1

log11 n
�+ (24)

This series ~24! is an asymptotic refinement of ~58! in Section 7 for the case
where L~s! � 10log s and shows that the error in such approximations is in
powers of 10log n and therefore goes to zero rather slowly as n r `+ How-
ever, such expansions are not needed in practical work because expressions such
as (t�2

n $L~t !� OL%2 may be calculated directly from the data+ Phillips and Sun
~2003! provide some alternate approximations based on the logarithmic inte-
gral in this case+
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3.1. Standard Errors

These are computed by scaling the square root of the diagonal elements of the
inverse of the second moment matrix with an estimate of s 2 obtained from the
regression residuals ~either the sample variance, in the case where ut is iid~0,s2!,
or an estimate of s 2 � se

2 C~1!2 obtained by kernel methods in the stationary
time series case ~7!!+ Using ~13! and ~14!, we have

(
s�1

n � 1 L~s!

L~s! L~s!2
� � n� 1 L12~n!

L12~n! L22~n!
�� O~nh !, (25)

where

L12~n! � L~n!� L~n!«~n!� L~n!«~n!2 � � L~n!«~n!h~n!

� o~L~n!«~n!@h~n!� «~n!# !

and

L22~n! � L~n!2 � 2L~n!2«~n!� 4L~n!2«~n!2 � 2L~n!2«~n!h~n!

� o~L~n!2«~n!@h~n!� «~n!# !+

Upon standardization with the diagonal matrix Dn � diag~Mn ,MnL~n!!, ~25!
becomes

Dn
�1(

s�1

n � 1 L~s!

L~s! L~s!2
�Dn

�1 � �1 1

1 1
��� 0 �«~n!

�«~n! �2«~n!
�� o~«~n!!

r �1 1

1 1
� + (26)

Similarly, upon inversion, we have

�(
s�1

n � 1 L~s!

L~s! L~s!2
���1

�
1

n(
s�1

n

~L~s!� OL!2
(
s�1

n � L~s!2 �L~s!

�L~s! 1
�

�
1

nL~n!2«~n!2 � o~nL~n!2«~n!@h~n!� «~n!# !
�L22~n! L12~n!

L12~n! 1
�

� �
1

n«~n!2
�

1

nL~n!«~n!2

�
1

nL~n!«~n!2
1

nL~n!2«~n!2
� @1 � o~nL~n!«~n!@h~n!� «~n!# !# ,

(27)
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which, upon standardization by Fn
�1 � diag~Mn«~n!,Mn«~n!L~n!!, gives

Fn
�1 	� n (

s�1

n

L~s!

(
s�1

n

L~s! (
s�1

n

L~s!2�

�1

Fn
�1r � 1 �1

�1 1
� +

It follows from these formulas that, in spite of the singularity in the limit matrix,
the covariance matrix of the regression coefficients is consistently estimated as
in conventional regression when an appropriate estimate s 2 of s 2 is employed+

4. POLYNOMIAL REGRESSION IN L (x )

In this model the regressors are polynomials in the SSV function L~s!, and the
data are generated by

ys � (
j�0

p

bj L~s! j � us � b 'Ls � us , (28)

where the regression error us satisfies Assumption LP+ This model may be ana-
lyzed using the approach of the previous section+ But, as the degree p increases
in ~28!, the analysis becomes complicated because higher order expansions
than ~14! of the sample moments of L~s! are needed to develop a complete
asymptotic theory+ An alternate approach is to rewrite the model ~28! in a form
wherein the moment matrix of the regressors has a full rank limit+ The degen-
eracy in the new model, which has an array format, then passes from the data
matrix to the coefficients and is simpler to analyze+

The process is first illustrated with model ~1!, which we can write in the
form

ys � a� b log n � b log
s

n
� us

� an � b log
s

n
� us , say+ (29)

The regressors $1, log~s0n!% in ~29! are not collinear+ Writing k~r! � @1, log r# '

and using standard manipulations, we obtain

Mn� [an � an

Zb� b
�rd N�0,s 2��

0

1

k~r!k~r!' dr��1� � N�0,�1 1

1 2
��1�+

Because [an � an � [a � a � ~ Zb � b! log n, we deduce that

Mn

log n
~ [a� a! � �Mn ~ Zb� b!� Op� 1

log n
�,

which leads directly to the earlier result ~19!+
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Extending this process to the model ~28! gives the representation

ys � (
j�0

p

bj �L~n!� L~s!

L~n!
� 1�� L~n!� j

� us ,

� (
j�0

p

bj L~n! j(
i�0

j �j

i
�� L~s!

L~n!
� 1� i

� us ,

� (
j�0

p

anj� L~s!

L~n!
� 1� j

� us ,

where

an0 � (
j�0

p

bj L~n! j, (30)

ank �(
j�k

p

bj L~n! j�j

k
� k � 1, + + + , p � 1, (31)

anp � bp L~n! p+ (32)

Define

Knj� s

n
� � � L~s!

L~n!
� 1� j

� � L� s

n
n�

L~n!
� 1�

j

, j � 0,1, + + + , p,

and the model ~28! becomes

ys � (
j�0

p

anj Knj� s

n
�� us :� an

'Kn� s

n
�� us + (33)

Least squares estimation gives

[an � an � �(
t�1

n

Kn� t

n
�Kn� t

n
�'��1�(

t�1

n

Kn� t

n
�ut� + (34)

The limit behavior of these coefficient estimates depends on that of the regres-
sors Knj~t0n!, and sample moment asymptotics for Knj follow from that of its
sample mean+ Define the vector Kn~t0n! � ~Knj~t0n!! and the normalization
matrix Dn« � diag@1,«~n!,«~n!2, + + + ,«~n! p# +
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THEOREM 4+1+

(i) If L~t ! satisfies Assumption SSV, then

1

n
Dn«

�1(
t�1

n

Kn� t

n
�r �

0

1

�p~r! dr

� @1, �1, 2!, �3!, + + + , ~�1! pp!# ',

where �p~r! � @1, log r, + + + , log p r# ' and

1

n
Dn«

�1(
t�1

n

Kn� t

n
�Kn� t

n
�'Dn«

�1

r �
0

1

�p~r!�p~r!
' dr

� �
1 �1 2! �3! J ~�1! pp!

�1 2! �3! 4! J ~�1! p�1~ p � 1!!

2! �3! 4! �5! J ~�1! p�2~ p � 2!!

�3! 4! �5! 6! J ~�1! p�3~ p � 3!!

I I I I L I

~�1! pp! ~�1! p�1~ p � 1!! ~�1! p�2~ p � 2!! ~�1! p�3~ p � 3!! J ~2p!!

� ,

(35)

which is positive definite.
(ii) If L~t ! satisfies Assumption SSV and ut satisfies Assumption LP, then

MnDn« @ [an � an #rd N�0,s 2��
0

1

�p~r!�p~r!
' dr��1�. (36)

Next, we rewrite this limit distribution in terms of the original coefficients
using relations ~30!–~32!+ It transpires that only the final component, [anp, in [an

~which translates to the component Zbp in the original coordinates! determines
the nondegenerate part of the limit theory for the full set of coefficients+

THEOREM 4+2+ If L~t ! satisfies Assumption SSV and ut satisfies Assump-
tion LP, then

Mn«~n! pDnL~ Zb� b! � mp�1MnL~n! p«~n! p~ Zbp � bp !

� op~1!rd N~0, v p�1, p�1mp�1mp�1
' !,

where DnL � diag~1, L~n!, + + + , L~n! p!, mp�1
' � @~�1! p, ~�1! p�1~p1!, + + + , ~�1!

~ p
p � 1!,1# , and v p�1, p�1 � ~ p!!�2 is the p � 1th diagonal element of

@*0
1 �p~r!�p~r!

' dr#�1+
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The limit distribution of Mn«~n! pDnL~ Zb � b! has a support given by the
range of the vector mp�1 and is therefore of dimension one+ The variance matrix
of Zb is given by

v p�1, p�1

n«~n!2p
DnL

�1mp�1mp�1
' DnL

�1 , (37)

which, as we now show, is consistently estimated by the usual regression for-
mula+ The following result gives expressions for the asymptotic form of L'L �

(s�1
n Ls Ls

' and ~L'L!�1, showing that, indeed, ~37! is the asymptotic form of
~L'L!�1+

THEOREM 4+3+ If L~t ! satisfies Assumption SSV, then

(i)

L'L � nDnL ip�1 ip�1
' DnL @1 � o~1!# , (38)

where ip�1 is a p � 1 vector with unity in each element.
(ii)

~L'L!�1 �

ep�1
' ��

0

1

�p~r!�p~r!
' dr��1

ep�1

n«~n!2p

� DnL
�1mp�1mp�1

' DnL
�1 @1 � o~1!# , (39)

where �p~r! and mp�1 are given in Theorems 4.1 and 4.2.

It follows from ~39! that, in spite of the singularity in the limit matrix, the
covariance matrix of the regression coefficients is consistently estimated as in
conventional regression by s2~L'L!�1 whenever s2 is a consistent estimate of s2+

5. REGRESSION WITH MULTIPLE SSV REGRESSORS

Multiple regression with different SV functions as regressors is also of some
interest in applications+ One such formulation is given in the example that
appears later in this section and involves an SV growth component in conjunc-
tion with a trend decay component that slowly adjusts the intercept in the regres-
sion to a lower level+ Such a model is relevant in empirical research where one
wants to capture simultaneously two different opposing trends in the data+ Such
models can be analyzed by the methods of the previous section, with the SV
regressors replacing the polynomials in a given function L~s!+We shall provide
results for a model with two different regressors, which is the case of principal
interest in practice and where our assumptions allow for a full treatment+ We
also briefly discuss the general case, where more structure is needed for a com-
plete treatment+
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Let Lj~s! ~ j � 1,2! be SSV functions with corresponding «- and h-functions
«j and hj ~ j � 1,2!+ We consider the two-variable regression model

ys � b0 � b1 L1~s!� b2 L2~s!� us � b 'Ls � us , say, (40)

where the regression error us satisfies Assumption LP+ An asymptotic theory of
regression in this model is obtained by showing that ~40! has an alternate, asymp-
totically equivalent, form involving a quadratic function of the simpler regres-
sor log~s0n!+ Analysis similar to the previous section then applies+

Rewrite ~40! as follows:

ys � b0 � b1 L1~n!� b2 L2~n!

� b1 L1~n! � L1�n
s

n
�

L1~n!
� 1� � b2 L2~n! � L2�n

s

n
�

L2~n!
� 1� � us +

To transform the regressors in this version of the model, we note from Lemma
7+5 that Lj has a higher order representation in terms of its «- and h-functions
that has the asymptotic form

Lj ~rn!

Lj ~n!
� 1 � «j ~n! log r �

1

2
«j ~n!@«j ~n!� hj ~n!# log2 r @1 � o~1!# , r � 0+

(41)

Equation ~41! shows Lj to be third-order SV in the sense that

lim
nr`

Lj ~rn!

Lj ~n!
� 1

«j ~n!
� log r

1

2
@«j ~n!� hj ~n!#

� log2 r, r � 0,

thereby extending the concept of second-order slow variation that appears in
the earlier expression ~10!+ Using the expansion ~41! we write

ys � b0 � b1 L1~n!� b2 L2~n!

� b1 L1~n!«1~n! log
s

n
�

1

2
b1«1~n!@«1~n!� h1~n!# log2

s

n
@1 � o~1!#

� b2 L2~n!«2~n! log
s

n
�

1

2
b2«2~n!@«2~n!� h2~n!# log2

s

n
@1 � o~1!#� us

� an0 � an1 log� s

n
�� an2 log2� s

n
� @1 � o~1!#� us , say, (42)
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giving a new form of the model with regressors that comprise a quadratic func-
tion in log~s0n!+ The new coefficients satisfy the system

�
an0

an1

an2

� � �
1 L1~n! L2~n!

0 L1~n!«1~n! L2~n!«2~n!

0
1

2
L1~n!«1~n!@«1~n!� h1~n!#

1

2
L2~n!«2~n!@«2~n!� h2~n!#

� �b0

b1

b2

�

� �
1 1 1

0 «1~n! «2~n!

0
1

2
«1~n!@«1~n!� h1~n!#

1

2
«2~n!@«2~n!� h2~n!#

�
� �

1 0 0

0 L1~n! 0

0 0 L2~n!
� �
b0

b1

b2

� + (43)

For further asymptotic analysis, we impose the condition

d~n! � @«2~n!� h2~n!#� @«1~n!� h1~n!#� 0, (44)

which is necessary if we are to solve ~43! for the original coefficients in ~40!+
If ~44! does not hold, then the regressors L1 and L2 are collinear to the second
order in ~41!+ In that case, the situation is more complex—higher order repre-
sentations are needed to develop an asymptotic theory, and rates of conver-
gence need to be adjusted+ The following result holds under ~44!, uses only the
second-order form ~41!, and gives the limit theory for the original coefficients
in ~40!+

THEOREM 5+1+ If L~t ! satisfies Assumption SSV, ut satisfies Assumption LP,
and d~n! � 0, then

Mnd~n! �
«min~n!~ Zb0 � b0 !

«1~n!L1~n!@ Zb1 � b1#

«2~n!L2~n!@ Zb2 � b2 #
� ; �

1«

�1

1
�Mn @ [an2 � an2 #

rd N 	0,
s 2

2! �
1 �1« 1«

�1« 1 �1

1« �1 1
�
 , (45)
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where

«min~n! � �«2~n! if «2~n!� o~«1~n!!

«1~n! if «1~n!� o~«2~n!!

and

1« � ��1 if «2~n!� o~«1~n!!

1 if «1~n!� o~«2~n!!.

5.1. Discussion

1+ Equation ~42! indicates that multiple regression with different SV func-
tions is asymptotically equivalent to polynomial regression on a logarith-
mic function+ Theorem 5+1 shows that the outcome is analogous to that of
a polynomial regression, but the rates of convergence are affected by the
respective natures of the SV functions+ The actual rate of convergence of
the estimates depends not just on the asymptotic behavior of the func-
tions Lj~n! and their «-functions but also on the divergence, d~n!, between
the sum of the «- and h-functions of the two regressors L1 and L2+ In
effect, the more divergent are the Lj asymptotically, then the faster the
rate of convergence of the regression estimates+

2+ The scaling factor «min~n! in ~45! relates to the constant in the regression
and determines that its rate of convergence is affected by that of the more
slowly converging regression coefficient+

3+ If Li~x!� log x for some i then there is no second-order term in ~41! and
«i~n! � hi~n! � 0 in that case+ The first matrix in ~43! is simpler in this
case and can be made upper triangular by permuting coefficients if
necessary+

4+ Just as in the polynomial regression case, the limit distribution ~45! is
singular and has rank unity+

Example

The following example has iterated logarithmic growth, a trend decay compo-
nent, and a constant regressor:

ys � b0 � b1

1

log s
� b2 log log s � us +

The secondary functions are «1~n! � �@10~ log n!# , h1~n! � �@10~ log n!# ,
«2~n!� @10~ log log n!# @10~ log n!# , and h2~n!� �@10~ log log n!#� @10~ log n!# +
Then
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«1~n!� h1~n! � �
2

log n
,

«2~n!� h2~n! � �
1

log log n
� o� 1

log log n
�,

d~n! � �
1

log log n
� o� 1

log log n
�,

«min � «2~n!�
1

log log n

1

log n
+

We deduce that

Mn

log log n





 1

log log n

1

log n
~ Zb0 � b0 !

~�1!

log2 n
@ Zb1 � b1#

1

log n
@ Zb2 � b2 # 






; �
�1

�1

1
� Mn

log n log log n
@ Zb2 � b2 #

rd N 	0,
s 2

2! �
1 1 �1

1 1 �1

�1 �1 1
�
 +

The coefficient of the growth term converges fastest but at less than an Mn
rate+ The intercept converges next fastest, and finally the coefficient of the evap-
orating trend+ All of these outcomes relate to the strength of the signal from the
respective regressor+

5.2. The General Case

Consider the model

ys � (
j�0

p

bj Lj ~s!� us � b 'Ls � us , say, (46)

where L0~s!�1+ As in the preceding two-variable case, this model can be rewrit-
ten as

ys � (
j�0

p

bj Lj ~n!�(
j�1

p

bj Lj ~n! � Lj�n
s

n
�

Lj ~n!
� 1� � us + (47)

576 PETER C.B. PHILLIPS



Assume that each Lj has a higher order representation extending ~41! in terms
of the following asymptotic expansion:

Lj ~rn!

Lj ~n!
� 1 � (

i�1

p�1

«ji ~n! logi r � «jp~n! log p r @1 � o~1!# , r � 0, (48)

where «j1~n! � «j~n! and

«ji ~n! � o~«ji�1~n!!, (49)

for each j and each i � 1, so the coefficients, «ji~n!, in ~48! decrease in order
of magnitude as i increases+ Such a higher order expansion can be developed
under conditions analogous to Assumption SSV in which each function in the
sequence L, «, h, + + + itself has a Karamata representation with an «-function
that is SSV+ Applying ~48! in ~47!, we obtain the transformed model

ys � (
j�0

p

bj Lj ~n!�(
j�1

p

bj Lj ~n!

� �(
i�1

p�1

«ji ~n! logi� s

n
�� «jp~n! log p� s

n
� @1 � o~1!#� � us

� an0 � (
i�1

p�1

(
j�1

p

bj Lj ~n!«ji ~n! logi� s

n
�

�(
j�1

p

bj Lj ~n!«jp~n! log p� s

n
� @1 � o~1!#� us

� an0 � (
i�1

p�1

ani logi� s

n
�� anp log p� s

n
� @1 � o~1!#� us +

The coefficients in this system satisfy

�
an0

an1

an2

I

anp

� � �
1 1 J 1

0 «1~n! J «p~n!

0 «12~n! J «p2~n!

I I L I

0 «1p~n! J «pp~n!

� �
1 0 J 0

0 L1~n! J 0

I I L I

0 0 J Lp~n!
� �
b0

b1

b2

I

bp

�
� �

1 1 J 1

0 1 J 1

0 h12~n! J hp2~n!

I I L I

0 h1p~n! J hpp~n!

� �
1 0 J 0

0 L1~n!«1~n! J 0

I I L I

0 0 J Lp~n!«p~n!
� �
b0

b1

b2

I

bp

� ,
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where

hji ~n! �
«ji ~n!

«j ~n!
� o~1! as nr `+

Define

Jn � �
1 J 1

h12~n! J hp2~n!

I L I

h1p~n! J hpp~n!
�

and note that, in view of ~49!, we have

hji ~n! � o~hji�1~n!!,

so that the final row ~i � p! of Jn has elements of the smallest order and the
other rows decrease in magnitude as i increases+ Then,

Jn
�1 �

1

detJn �
h11~n! J h1p~n!

h21~n! J h2p~n!

I L I

h p1~n! J h pp~n!
� �

1

detJn

Mn , say,

and, in view of the property of Jn just mentioned, the first p � 1 columns of
Mn � det~Jn !Jn

�1 are of smaller order as n r ` than the final column of Mn+
~Indeed, the columns of Mn progressively increase in order of magnitude from
left to right+! We therefore have

det~Jn ! �
L1~n!«1~n! J 0

I L I

0 J Lp~n!«p~n!
� �
b1

b2

I

bp

�
� �
h11~n! J h1p~n!

h21~n! J h2p~n!

I L I

h p1~n! J h pp~n!
� �
an1

an2

I

an2

� � �
h1p~n!

h2p~n!

I

h pp~n!
�anp @1 � op~1!# ,
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so that

Mn det~Jn ! �
L1~n!«1~n!

h1p~n!
J 0

I L I

0 J
Lp~n!«p~n!

h pp~n!

� �Mn ~ Zb1 � b1!

I

Mn ~ Zbp � bp !
�

; �
1

I

1
� @Mn ~ [anp � anp !#rd �

1

I

1
�N�0,

s 2

~ p!!2
�+

Turning to the intercept, we have an0 � @1, L1~n!, + + + , Lp~n!#b+ Define

«min � min
j�p

«j ~n!

h jj~n!

to be the ratio with the smallest order of magnitude as n r `+ Then, we have

Mn ~ Zb0 � b0 ! � Mn ~ [an0 � an0 !�(
j�1

p

Lj ~n!Mn ~ Zbj � bj !,

and scaling by det~Jn!«min and noting that det~Jn!«min � o~1! as n r `, we
deduce that

Mn det~Jn !«min~ Zb0 � b0 !

� Mn det~Jn !«min~ [an0 � an0 !�(
j�1

p

Lj ~n!Mn det~Jn !«min~ Zbj � bj !

� op~1!� Mn
Lj ~n!«j ~n!

h jj~n!
det~Jn !~ Zbj � bj !rd N�0,

s 2

~ p!!2
�,

giving the following result+

THEOREM 5+2+ If L~t ! satisfies Assumption SSV, ut satisfies Assumption LP,
and detJn � 0, then

Mn det~Jn !





 «min 0 J 0

0
L1~n!«1~n!

h1p~n!
J 0

I I L I

0 0 J
Lp~n!«p~n!

h pp~n! 





�
Mn ~ Zb0 � b0 !

Mn ~ Zb1 � b1!

I

Mn ~ Zbp � bp !
�

; ip�1 @Mn ~ [anp � anp !#rd N�0,
s 2

~ p!!2
ip�1 ip�1

' �, (50)
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where

«min � min
j�p

«j ~n!

h jj~n!

is the ratio with the smallest order of magnitude as n r `.

In ~50! the scale coefficients Lj~n!«j~n!0h jp~n! and also «min are implicitly
signed+ That is, the elements «j~n!0h jj~n! may have positive or negative signs+
In consequence, because the signs are built into the normalization factor, the
covariance matrix of the limit distribution,

s 2v p�1, p�1ip�1 ip�1
' �

s 2

~ p!!2
ip�1 ip�1

' ,

displays perfect positive correlation among the elements of the standardized
vector in the limit+

6. NONLINEAR TREND REGRESSION

In the nonlinear trend model ~2!, let us satisfy Assumption LP, let u0 � ~b0,g0!
be the true values of the parameters, and assume that ~b0,g0! lies in the inte-
rior of the parameter space Q � @0,b# � @� 1

2
_ , c# where 0 � b, c � `+ Wu

~1981, Exmp+ 4, pp+ 507, 509! considered the case where us is iid~0,s 2 � 0!
and noted that the model satisfies his conditions for strong consistency of the
least squares estimator Zu � ~ Zb, [g! but not his conditions for asymptotic nor-
mality+ There are two reasons for the failure: ~i! the Hessian requires different
standardizations for the parameters b and g ~whereas Wu’s approach uses a
common standardization!; and ~ii! the Hessian is asymptotically singular because
of the asymptotic collinearity of the functions sg0 and sg0 log s that appear in
the score ~whereas Wu’s theory requires the variance matrix to have a positive
definite limit!+ Both issues are addressed by a version of the methods given
earlier in the paper designed to deal with extremum estimation problems+

Setting Qn~b,g! � (s�1
n ~ ys � bsg!2, the estimates ~ Zb, [g! solve the extre-

mum problem

~ Zb, [g! � arg min
b,g

Qn~b,g!

and satisfy the first-order conditions

Sn~ Zb, [g! � 0, (51)

where

Sn~u! � �(
s�1

n � sg

bsg log s
�~ ys � bsg !+
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Expanding Sn~u! about Sn~u0!, we have

0 � Sn~u0 !� Hn~u0 !~ Zu� u0 !� @Hn
*� Hn~u0 !# ~ Zu� u0 !, (52)

where the Hessian Hn
* is evaluated at mean values between u0 and Zu and

Hn~u! � (
s�1

n �
s 2g

bs 2g log s � us sg log s

� ~b0 sg0 � bsg !sg log s

bs 2g log s � us sg log s

� ~b0 sg0 � bsg !sg log s

b2s 2g log2 s � usbsg log2 s

� ~b0 sg0 � bsg !bsg log2 s
� +

The following lemmas assist in characterizing the asymptotic behavior of these
quantities+

LEMMA 6+1 Let L be an SV function satisfying Assumption SSV and sup-
pose us satisfies Assumption LP. Let Cn be a diagonal matrix all of whose ele-
ments diverge to ` as nr `+ Define Nn

0 � $u � Q : 7Cn~u� u0!7 � 1% to be a
shrinking neighborhood of u0 for any point u0 in the interior of a compact param-
eter space Q. Let f ~r;u! � C 2 over ~r,u! � @0,1# � Q and let the derivatives
fu � ]f0]u, fr � ]f0]r, fru � ]2f0]u]r be dominated as follows:

sup
u�Nn

0
6 fu~r;u!6 � g1~r!, sup

u�Nn
0
6 fr ~r;u!6� g2~r!, sup

u�Nn
0
6 fru~r;u!6� g3~r!

by functions $gi : i � 1,2,3%, which are absolutely integrable over @0,1# . Then

1

MnL~n!
(
s�1

n

f� s

n
;u�L~s!usrd �

0

1

f ~r;u0 ! dB~r! � N�0,s 2�
0

1

f ~r;u0 !2 dr�
(53)

uniformly over u � Nn
0.

LEMMA 6+2+ Suppose us satisfies Assumption LP and let the true parameter
vector u0 � ~b0,g0! lie in the interior of Q � @0,b# � @� 1

2
_ , c# where 0 � b,

c � `. Define the normalization matrices

Dn � diag@ng0�~102!, ng0�~102! log n# ,

Fn �
1

log n
Dn � diag� ng0�~102!

log n
, ng0�~102!� .

Define Cn � Dn0nd for some small positive d � ~0,g0 � 1
2
_ ! and the following

shrinking neighborhood of u0:

Nn
0 � $u � Q : 7Cn~u� u0 !7� 1%.
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Then

(i)

Dn
�1 Sn~u0 !rd ��

0

1�r g0

b0 r g0
� dB~r! � N�0,

s 2

2g0 � 1
� 1 b0

b0 b0
2��,

(54)

(ii)

Dn
�1 Hn~u0 !Dn

�1rp

1

2g0 � 1
� 1 b0

b0 b0
2� , (55)

(iii)

lmin~Fn
�1 Hn~u0 !Fn

�1! � O~ log n!r `,

(iv)

Fn Hn~u0 !
�1Fn

�
~2g0 � 1!3

2b0
2 �b0

2 �
2b0

2

log n

1

~2g0 � 1!
�
b0

2

log2 n

2

~2g0 � 1!2
�b0 �

b0

log n

1

~2g0 � 1!

�b0 �
b0

log n

1

~2g0 � 1!
1 �

� op� 1

nd
�

rp

~2g0 � 1!3

b0
2 � b0

2 �b0

�b0 1
� ,

(v)

sup
u�Nn

0
7Cn

�1 @Hn~u!� Hn~u0 !#Cn
�17 � op~1!.

Remarks+

~a! Part ~i! of Lemma 6+2 reveals that the order of convergence of the first
member of ~52!, the score Sn~u0!, is determined by the scaling factor
Dn

�1+ However, from part ~ii!, the Hessian matrix under the same stan-
dardization by Dn

�1 evidently has a singular limit as n r `, which pre-
vents the application of the usual approach of solving ~52! to find a limit
theory for a standardized form of ~ Zu � u0!+ Part ~iv! shows that upon
standardization by Fn, rather than Dn, the inverse Hessian matrix con-
verges but also has a singular limit+
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~b! Part ~v! is useful in showing that, after rescaling, the third term of ~52!
can be neglected in the asymptotic behavior of Zu � u0+

~c! As the following result shows, the appropriate scaling factor for ~52! is
the matrix Fn

�1 , not Dn
�1 , even though Dn

�1 Sn~u0 ! is Op~1!+

THEOREM 6+3+ In the model (2), let us satisfy Assumption LP and let the
true parameter vector u0 � ~b0,g0! lie in the interior of Q � @0,b# � @� 1

2
_ , c#

where 0 � b, c � `. Then, the least squares estimator Zu� ~ Zb, [g! is consistent
and has the following limit distribution as n r `:

Fn~ Zu� u0 !rd ~2g
0 � 1!3� 1

�10b0
��

0

1

r g0�log r �
1

2g0 � 1
� dB~r!

� � 1

�10b0
�N~0,s 2~2g0 � 1!3 !.

Remarks+

~a! The estimator Zu has a convergence rate that is slower by a factor of
log n than that of the score Sn~u0!+ The reason is that the ~convention-
ally standardized! Hessian Dn

�1 Hn~u0 !Dn
�1 has an inverse that diverges

at the rate log2 n and this divergence slows down the convergence rate
of the estimator+ Both the score and the Hessian need to be rescaled to
achieve the appropriate convergence rate for Zu+ With the new scaling
we have

0 � Fn
�1 Sn~u0 !� Fn

�1 Hn~u0 !Fn
�1 Fn~ Zu� u0 !

� Fn
�1 @Hn

*� Hn~u0 !#Fn
�1 Fn~ Zu� u0 !,

and then

Fn~ Zu� u0 ! � �@I � ~Fn Hn~u0 !
�1Fn !Fn

�1 @Hn
*� Hn~u0 !#Fn

�1#�1

� ~Fn Hn~u0 !
�1Fn !Fn

�1 Sn~u0 !+

From Lemma 6+2~iv!, the matrix Fn Hn~u0!
�1Fn � Op~1! and has a singu-

lar limit+ Also, as shown in ~98! in Section 8, the matrix Fn
�1 @Hn

* �
Hn~u0 !#Fn

�1 is op~1!+ Then

Fn~ Zu� u0 ! � �~Fn Hn~u0 !
�1Fn !Fn

�1 Sn~u0 !� op~1!,

from which the limit distribution follows+ Interestingly, even though the
individual elements of Fn

�1 Sn~u0 ! diverge, the relevant linear combina-
tion ~Fn Hn~u0 !

�1Fn !Fn
�1 Sn~u0 ! is Op~1!+
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~b! The variance matrix for Zu is singular but is consistently estimated by
s 2Hn~ Zu!�1, where s 2 is a consistent estimator of s 2, because

Fn Hn~ Zu!�1Fn �
~2g0 � 1!3

b0
2 �b0

2 �
2b0

2

log n

1

~2g0 � 1!
�
b0

2

log2 n

2

~2g0 � 1!2
�b0 �

b0

log n

1

~2g0 � 1!

�b0 �
b0

log n

1

~2g0 � 1!
1 �

� op� 1

Mn
�+

7. TECHNICAL SUPPLEMENT

LEMMA 7+1 ~Averages of SV functions!+ If L~t ! satisfies Assumption SSV, then
for B � 1

(
t�B

n

L~t ! ��
B

n

L~t ! dt � O~nd ! as nr `,

where d � 0 is arbitrarily small.

Proof+ Using Euler summation ~e+g+, Knopp, 1990, p+ 521! we have

(
t�B

n

L~t ! ��
B

n

L~t ! dt �
1

2
@L~B!� L~n!#��

B

n�t � @t #�
1

2
� L'~t ! dt+ (56)

Because

tL'~t !

L~t !
� «~t !r 0 and

L~t !

t d
r 0,

for all d � 0, we may choose a constant C such that for all t � C and any d � 0

�«~t ! L~t !

t d � � 1+

Then, the final term in ~56! may be bounded as follows:

��
B

n�t � @t #�
1

2
� L'~t ! dt� �

1

2
�

B

n 1

t
6«~t !L~t !6 dt

�
1

2
�

C

n 1

t 1�h
dt �

1

2 ��B

C

6«~t !L~t !6
1

t
dt�

�
1

2h
@t d #C

n � O~1!

� O~nd !+
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It follows that

(
t�B

n

L~t ! ��
B

n

L~t ! dt � O~nd � L~n!!��
B

n

L~t ! dt � O~nd !,

for any d � 0 as n r `+ �

LEMMA 7+2+

1

n (t�1

n

L~t !k � L~n!k � kL~n!k«~n!� k 2L~n!k«~n!2 � kL~n!k«~n!h~n!

� k 3 @L~n!k«~n!3 � 3L~n!k«~n!2h~n!� L~n!k«~n!h~n!2 #

� o~L~n!k @«~n!3 � «~n!2h~n!� «~n!h~n!2 # !.

Proof+ From Assumption SSV~b!, 6«~x!6 is SSV and

«~x! � c« exp��
1

x h~t !

t
dt�,

where h~n! r 0 as n r `+ Like «, h � C`, and if 6h6 is SSV

x mh~m! ~x!

h~x!
r 0+

Then, using repeated integration by parts and the formulas L'~t ! � L~t !«~t !0t
and « '~t ! � «~t !h~t !0t, we find

�
1

n

L~t !k dt

� @tL~t !k #1
n � k�

1

n

tL~t !k
«~t !

t
dt

� nL~n!k � k�
1

n

L~t !k«~t ! dt � O~1!

� nL~n!k � k@tL~t !k«~t !#1
n � k�

1

n

t�kL~t !k
«~t !2

t
� L~t !k«~t !

h~t !

t
� dt

� O~1!

� nL~n!k � knL~n!k«~n!� k�
1

n

@kL~t !k«~t !2 � L~t !k«~t !h~t !# dt � O~1!
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� nL~n!k � knL~n!k«~n!� k 2nL~n!k«~n!2 � knL~n!k«~n!h~n!

� k 2�
1

n

t�kL~t !k
«~t !3

t
� L~t !k2«~t !2

h~t !

t
� dt

� k�
1

n

t�kL~t !k
«~t !2

t
h~t !� L~t !k«~t !

h~t !2

t
� L~t !k«~t !h '~t !� dt

� O~1!

� nL~n!k � knL~n!k«~n!� k 2nL~n!k«~n!2 � knL~n!k«~n!h~n!

� k 3 @nL~n!k«~n!3 � nL~n!k2«~n!2h~n!#

� k 2 @nL~n!k«~n!2h~n!� nL~n!k«~n!h~n!2 � nL~n!k«~n!h '~n!#

� o~nL~n!k @«~n!3 � «~n!2h~n!� «~n!h~n!2 � «~n!h '~n!# !

� nL~n!k � knL~n!k«~n!� k 2nL~n!k«~n!2 � knL~n!k«~n!h~n!

� k 3 @nL~n!k«~n!3 � 3nL~n!k«~n!2h~n!� nL~n!k«~n!h~n!2

� nL~n!k«~n!h '~n!#

� o~nL~n!k @«~n!3 � «~n!2h~n!� «~n!h~n!2 # !

� nL~n!k � knL~n!k«~n!� k 2nL~n!k«~n!2 � knL~n!k«~n!h~n!

� k 3 @nL~n!k«~n!3 � 3nL~n!k«~n!2h~n!� nL~n!k«~n!h~n!2 #

� o~nL~n!k @«~n!3 � «~n!2h~n!� «~n!h~n!2 # !,

because nh '~n!0h~n! � o~1! and h~n!2 � o~«~n!! as n r `, thereby giving
the stated result+ �

Example

In the logarithmic case L~t ! � log t, and «~t ! � @10~ log t !# and h~t ! �
�@10~ log t !# + Lemma 7+2 then gives the expansion

�
1

n

logk tdt � n logk n � kn logk�1 n � k 2n logk�2 n � kn logk�2 n

� o~n logk�2 n!

� n logk n � kn logk�1 n � k~k � 1!n logk�2 n � o~n logk�2 n!,

(57)
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whereas successive integration by parts gives the exact result

�
1

n

logk tdt � n(
j�0

k

~�k!j logk�j n,

so that the expansion in ~57! is accurate to the third order+

LEMMA 7+3+

1

n
�

1

n

@L~t !� OL# 2 dt � L~n!2«~n!2$1 � o~1!%.

Proof+ Applying the expansion from Lemma 7+2 and using expressions ~15!
and ~16!, we get

1

n (t�1

n

~L~t !� OL!2

�
1

n
�

1

n

L~t !2 dt � �1

n
�

1

n

L~t ! dt�2

� �2L~n!2«~n!� 4L~n!2«~n!2 � 2L~n!2«~n!h~n!

� 8@L~n!2«~n!3 � 3L~n!2«~n!2h~n!� L~n!2«~n!h~n!2 #

� $L~n!2«~n!2 � L~n!2«~n!2h~n!2 � 2L~n!2«~n!%

� $2L~n!2«~n!2 � 2L~n!2«~n!h~n!%

� $�2L~n!2«~n!3 � 6L~n!2«~n!2h~n!� 2L~n!2«~n!h~n!2 %

� L~n!2«~n!2 � 8@L~n!2«~n!3 � 3L~n!2«~n!2h~n!� L~n!2«~n!h~n!2 #

� $L~n!2«~n!2h~n!2 � 2L~n!2«~n!3 � 6L~n!2«~n!2h~n!

� 2L~n!2«~n!h~n!2 %

� o~L~n!2 @«3~n!� «~n!2h~n!� «~n!h~n!2 # !

� L~n!2«~n!2$1 � o~1!%, (58)

because h~n!2 � o~«~n!!+ �

LEMMA 7+4+ If L~t ! is SV and satisfies Assumption SSV and (6), then

�
0

1� L~rn!

L~n!
� 1�k

dr � ~�1!kk!«~n!k @1 � o~1!# ,

as n r `.
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Proof+ In view of Assumption SSV, we have

log
L~rn!

L~n!
� ��

rn

n «~t !

t
dt, (59)

and, because 6«~t !6 is SV, it follows by Karamata’s theorem ~e+g+, BGT, Prop+
1+5+9a, p+ 26! that for all r � 0

�
rn

n «~t !

t
dt � «~n!�

rn

n dt

t
@1 � o~1!#

� �«~n! log r @1 � o~1!# as nr `+

Then

L~rn!

L~n!
� 1 � exp $«~n! log r @1 � o~1!#%� 1 � «~n! log r @1 � o~1!# + (60)

The function L is second-order SV ~for second-order regular variation, see de
Haan and Resnick, 1996!, in the sense that

lim
nr`

L~rn!

L~n!
� 1

«~n!
� log r, r � 0+

Integration by parts gives

�
0

1

logk rdr � ~�1!kk!, (61)

and so

�
0

1� L~rn!

L~n!
� 1�k

dr � «~n!k�
0

1

logk rdr @1 � o~1!#

� ~�1!k«~n!kk!@1 � o~1!# , (62)

giving the stated result+ �

LEMMA 7+5+ If L~t ! satisfies Assumption SSV, then for all r � 0

L~rn!

L~n!
� 1 � «~n! log r �

1

2
«~n!@«~n!� h~n!# log2 r � o~«~n!h~n!� «~n!2 !,

(63)

as n r `.
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Proof+ Because both L and « are SSV functions we have both ~59! and

log
«~rn!

«~n!
� ��

rn

n h~t !

t
dt,

and, as in ~60!, we get for «

«~rn!

«~n!
� 1 � h~n! log r � o~h~n!!+

Then

log
L~rn!

L~n!
� ��

rn

n «~t !

t
dt � �«~n!�

rn

n
«�n

t

n
�

«~n!

dt

t

� �«~n!�
rn

n�1 � h~n! log
t

n
� o~h~n!!� dt

t

� «~n! log r � «~n!h~n!�
r

1

log s
ds

s
� o~«~n!h~n!!

� «~n! log r �
1

2
«~n!h~n! log2 r � o~«~n!h~n!!,

and we deduce that

L~rn!

L~n!
� 1 � exp�«~n! log r �

1

2
«~n!h~n! log2 r � o~«~n!h~n!!� � 1

� «~n! log r �
1

2
«~n!@«~n!� h~n!# log2 r � o~«~n!h~n!� «~n!2 !,

as stated+ �

Example

L~n! � @10~ log n!# , «~n! � �@10~ log n!# , and h~n! � �@10~ log n!# + Then, by
direct expansion we have for large n

L~rn!

L~n!
� 1 �

�log r

log r � log n
�

�log r

log n
�1 �

log r

log n
��1

� �
log r

log n (j�0

`

~�1! j� log r

log n
�j

,

which agrees with the third-order expansion given in ~63!+
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LEMMA 7+6+

�
1

n

logk tdt � n(
j�0

k

~�k!j logk�j n,

where ~�k!j � ~�k!~�k � 1! + + + ~�k � j � 1!+

Proof+ This follows by successive integration by parts+ �

LEMMA 7+7+

(i) (j�0
p�k�1 ~ p

p � j!~
p�j

k !~�1! p�j � ~�1! p�k�1~pk!.
(ii) (j�k

p ~�1! p�j~pj!~
j
k!� 0.

Proof+ Both parts follow by direct calculation+ �

LEMMA 7+8+

(i)

�
0

1

�p~r!�p~r!
' dr � Hp Fp

2 Hp
' ,

where

Hp �







1 0 0 0 J 0 0

�1 1 0 0 J 0 0

1 �2 1 0 J 0 0

�1 3 �3 1 J 0 0

I I I I L I I

~�1! p�1 ~�1! p�p � 1

1
� ~�1! p�1�p � 1

2
� ~�1! p�2�p � 1

3
� 1 0

~�1! p ~�1! p�1�p

1
� ~�1! p�2�p

2
� ~�1! p�3�p

3
� J ~�1!2p�1� p

p � 1
� 1 






and

Fp � diag@1,1,2!,3!, + + + , ~ p � 1!!, p!# .

(ii) det@*0
1 �p~r!�p~r!

' dr# � Pj�1
p ~ j!!2.

(iii) ~ @*0
1 �p~r!�p~r!

' dr#�1 !p�1, p�1 � 10~ p!!2.

Proof+ Note that the ~i, j !th element of the matrix *0
1 �p~r!�p~r!

' dr is
~�1! i�j�2~i � j � 2!!+ Consider the ~i, j ! th element of the matrix product
Hp Fp

2 Hp
' and let j � k � i+ By direct calculation and using the representation

�a

�
� � ~�1!�

~�b!�

�!
, ~�b!� � ~�b!~�b � 1! + + + ~�b � � � 1!,
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we find that this element is

(
m�0

~i�1!∧~ j�1!

~�1!i�1�m�i � 1

m
�~i � 1!!~ j � 1!!�j � 1

m
�~�1! j�1�m

� ~�1!i�k~i � 1!!~k � 1!!(
m�0

k�1

~�1!2m
~1 � i !m~1 � k!m

m!~1!m

� ~�1!i�k~i � 1!!~k � 1!! 2 F1~1 � i,1 � k,1;1!, (64)

where 2 F1~a,b, c; z! � (j�0
` ~~a!j ~b!j 0j!~c!j !z j is the hypergeometric function+

Noting that the series terminates ~because 1 � k is zero or a negative integer!
and applying the summation formula ~e+g+, Erdélyi, 1953, p+ 61!,

2 F1~a,b, c;1! �
G~c!G~c � a � b!

G~c � a!G~c � b!
,

where G is the gamma function, ~64! reduces to

~�1!i�k~i � 1!!~k � 1!!
G~i � k � 1!

G~i !G~k!
� ~�1!i�k�2~i � k � 2!!,

giving the required result and part ~i!+ Parts ~ii! and ~iii! follow directly+ �

8. PROOFS

Proof of Lemma 2+1+ Part (i). By partial summation we have

1

Mn
(
t�1

n

L~t !ut � L~n!
Sn

Mn
�

1

Mn
(
t�1

n

@L~t !� L~t � 1!#St�1, (65)

where St � (s�1
t us + So

1

MnL~n!
(
t�1

n

L~t !ut �
Sn

Mn
�

1

MnL~n!
(
t�1

n

@L~t !� L~t � 1!#St�1

�
Sn

Mn
�

1

L~n! (t�1

n �L�n
t

n
�� L�n

t � 1

n
�� St�1

Mn
+ (66)

We now use the embedding of the standardized partial sum St�1 0Mn in Brown-
ian motion given in equation ~8! following Assumption LP, namely,

sup
1�t�n

� St�1

Mn
� B� t � 1

n �� � oa+s+� 1

n ~102!�~10p!�+
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Then

1

L~n! (t�1

n �L�n
t

n
�� L�n

t � 1

n
�� St�1

Mn

�
1

L~n!
�

0

1

B~r! dL~nr!� oa+s+� 1

n ~102!�~10p!
�+ (67)

Next ~10L~n!!*0
1 B~r! dL~nr! has mean zero and variance

2

L~n!2
�

0

1�
0

r

sdL~ns! dL~nr!+ (68)

Observe that

�
0

r

sdL~ns! ��
0

r

nsL'~ns! ds ��
0

r

L~ns!«~ns! ds

�
1

n
�

0

nr

L~t !«~t ! dt �
1

n
@nrL~nr!«~nr!� o~nrL~nr!«~nr!!# +

(69)

For the last equality, note that L~t !«~t ! is ~up to sign! on SSV function+We can
then use Karamata’s theorem, namely, that for a � �1 and an SV function �,
we have the asymptotic equivalence

�
a

x

t a�~t ! dt ;
x a�1

a� 1
�~x! as xr ` (70)

~e+g+, BGT, Prop+ 1+5+8, p+ 26!, setting a� 0 to obtain ~69!+ Using ~69! in ~68!,
the dominant term is

2

L~n!2
�

0

1

rL~nr!«~nr! dL~nr! �
2

L~n!2
�

0

1

nrL'~nr!L~nr!«~nr! dr

�
2

L~n!2
�

0

1

L~nr!2«~nr!2 dr

�
2

nL~n!2
�

0

n

L~t !2«~t !2 dt

� 2«~n!2 � o~«~n!2 !� o~1!,

by applying ~70! again+ It follows that

1

L~n!
�

0

1

B~r! dL~nr! � op~1!, (71)
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as n r `+ We deduce from ~66!, ~67!, and ~71! that

1

MnL~n!
(
t�1

n

L~t !ut �
Sn

Mn
� op~1!rd N~0,s 2 !+

Part (ii). We have

(
t�1

n

~L~t !� OL!ut � (
t�1

n

L~t !ut � OLSn +

Lemma 7+2 gives

OL � L~n!� L~n!«~n!� L~n!«~n!2 � L~n!«~n!h~n!� o~L~n!«~n!h~n!!,

and using ~66! and ~67!

1

Mn
(
t�1

n

L~t !ut � L~n!
Sn

Mn
��

0

1

B~r! dL~nr!� oa+s+� 1

n ~102!�~10p!
�,

so that

1

Mn
(
t�1

n

~L~t !� OL!ut

� L~n!
Sn

Mn
��

0

1

B~r! dL~nr!� oa+s+� 1

n ~102!�~10p!
�

� @L~n!� L~n!«~n!� L~n!«~n!2 � L~n!«~n!h~n!

� o~L~n!«~n!h~n!!#
Sn

Mn

� ��
0

1

B~r! dL~nr!� oa+s+� 1

n ~102!�~10p!
�� L~n!«~n!

Sn

Mn

� Op~L~n!«~n!
2 !

� ��
0

1 B~r!

r

L'~nr!nr

L~nr!
L~nr! dr � L~n!«~n!�

0

1

dB~r!� Op~L~n!«~n!
2 !

� ��
0

1 B~r!

r
«~nr!L~nr! dr � L~n!«~n!�

0

1

dB~r!� Op~L~n!«~n!
2 !+

(72)

Now, in view of the local law of the iterated logarithm for Brownian motion,
we have
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lim sup
rr0

B~r!

M2r log log 10r
� 1+

So, as in ~70!, we have

�
0

1 B~r!

r
«~nr!L~nr! dr � «~n!L~n!�

0

1 B~r!

r
dr @1 � op~1!#

� �«~n!L~n!�
0

1

~ log r! dB~r!@1 � op~1!# + (73)

It follows from ~73! that ~72! is

�
0

1

~1 � log r! dB~r!� op~1!rd N�0,s 2�
0

1

~1 � log r!2 dr� �d N~0,s 2 !,

as stated+
Part (iii). Start by considering n�102(t�1

n Knj ~t0n!ut + By partial summation
and the strong approximation in equation ~8! following Assumption LP, we
obtain, as in ~67!,

1

Mn
(
t�1

n � L~t !

L~n!
� 1� j

ut � �(
t�1

n St�1

Mn
D� L�n

t

n
�

L~n!
� 1�

j

� ��
0

1

B~r! d� L~nr!

L~n!
� 1� j

� oa+s+� 1

n ~102!�~10p!
�

��
0

1� L~nr!

L~n!
� 1� j

dB~r!� oa+s+� 1

n ~102!�~10p!
�+

From ~60! we have

L~rn!

L~n!
� 1 � exp $«~n! log r @1 � o~1!#%� 1 � «~n! log r @1 � o~1!# ,

so that

�
0

1� L~nr!

L~n!
� 1� j

dB~r! � «~n! j�
0

1

log j rdB~r!@1 � o~1!# +

Thus,

1

Mn«~n! j (
t�1

n � L~t !

L~n!
� 1� j

ut rd �
0

1

log j rdB~r! �d N�0,s 2�
0

1

log2j rdr�
� N~0,s 2~2j !!!,

as required+ �
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Proof of Theorem 4+1+ Using Euler summation with f ~t !� @~L~t !0L~n!!�1# j

we obtain, as in Lemma 7+1,

1

n (t�1

n

Knj� t

n
�

�
1

n (t�1

n � L~t !

L~n!
� 1� j

�
1

n
�

1

n� L~t !

L~n!
� 1� j

dt �
1

2n
$ f ~1!� f ~n!%

�
j

n
�

1

n�t � @t #�
1

2
�� L~t !

L~n!
� 1� j�1 L'~t !

L~t !
dt

�
1

n
�

1

n� L~t !

L~n!
� 1� j

dt � O� 1

n1�d�
��

10n

1 � L~rn!

L~n!
� 1� j

dr � O� 1

n1�d�
��

0

1� L~rn!

L~n!
� 1� j

dr � O� 1

n1�d�, (74)

for arbitrarily small d � 0, in view of ~6!+ Hence, from ~62! in the proof of
Lemma 7+4, we have

1

n (t�1

n

Knj� t

n
� � «~n! j�

0

1

log j rdr @1 � o~1!#� O� 1

n1�d�
� ~�1! jj!«~n! j @1 � o~1!# ,

so that

1

n«~n! j (
t�1

n

Knj� t

n
�r �

0

1

log j rdr � ~�1! jj!,

from which the stated limit results follow+ The matrix *0
1 �p~r!�p~r!

' dr is pos-
itive definite because

�
0

1

@a '�p~r!#
2 dr � 0

implies a '�p~r! � 0 for all r, which implies a � 0, and part ~i! is established+
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To prove part ~ii!, we note by Lemma 2+1~iii! that

1

Mn«~n! j (
t�1

n

Knj� t

n
�ut rd �

0

1

log j rdB~r!,

and proceeding in the same way as in the proof of that lemma but with an
arbitrary linear combination of the preceding elements for j � 0,1, + + + , p, we
get

(
j�0

p bj

Mn«~n! j (
t�1

n

Knj� t

n
�ut � (

j�0

p

bj�
0

1

log j rdB~r!@1 � oa+s+~1!#

rd (
j�0

p

bj�
0

1

log j rdB~r!+

By the Cramér–Wold device, we deduce that

1

Mn
Dn«

�1(
t�1

n

Kn� t

n
�ut rd �

0

1

�p~r! dB~r!, �p~r! � ~1, log r, + + + , log p r!+

(75)

Then, from ~34!, ~35!, and ~75! we obtain

MnDn« @ [an � an # � � 1

n
Dn«

�1(
t�1

n

Kn� t

n
�Kn� t

n
�'Dn«

�1��1

� � 1

Mn
Dn«

�1(
t�1

n

Kn� t

n
�ut�rd N~0,s 2V �1 !+ �

Proof of Theorem 4+2+ From ~32! and ~36!, we get for the final coefficient

MnL~n! p«~n! p~ Zbp � bp ! � Mn«~n! p @ [anp � anp #rd N~0, v p�1, p�1 !,

where V �1 � ~v i, j! and V � *0
1 �p~r!�p~r!

' dr+ A calculation ~see Lemma
7+8~iii!! gives the final diagonal element of the inverse matrix V �1 ,

v p�1, p�1 �
1

~ p!!2
+

For the next coefficient, we have

anp�1 � �p � 1

p � 1
�bp�1 L~n! p�1 � � p

p � 1
�bp L~n! p

� bp�1 L~n! p�1 � pbp L~n! p,
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and so

bp�1 L~n! p�1 � anp�1 � pbp L~n! p,

leading to

MnL~n! p�1«~n! p~ Zbp�1 � bp�1!

� Mn«~n! p~ [anp�1 � anp�1!� � p

p � 1
�MnL~n! p«~n! p~ Zbp � bp !

� Op~«~n!!� � p

p � 1
�MnL~n! p«~n! p~ Zbp � bp !

� �� p

p � 1
�MnL~n! p«~n! p~ Zbp � bp !� op~1!

� �� p

p � 1
�Mn«~n! p @ [anp � anp #� op~1!

rd �� p

p � 1
�N~0, v p�1, p�1 !+

Next, for k � p � 2 we have

bp�2 L~n! p�2 � anp�2 ��� p � 1

p � 2
�bp�1 L~n! p�1 � � p

p � 2
�bp L~n! p� ,

so that

MnL~n! p�2«~n! p~ Zbp�2 � bp�2 !

� Mn«~n! p~ [anp�2 � anp�2 !

� � p � 1

p � 2
�L~n! p�1Mn«~n! p~ Zbp�1 � bp�1!

� � p

p � 2
�L~n! pMn«~n! p~ Zbp � bp !

� O~«~n!2 !���p � 1

p � 2
�� p

p � 1
�� � p

p � 2
��L~n! pMn«~n! p~ Zbp � bp !

� O~«~n!2 !��~ p � 1!p �
1

2!
p~ p � 1!�L~n! pMn«~n! p~ Zbp � bp !

� � p

p � 2
�L~n! pMn«~n! p~ Zbp � bp !� op~1!+

SLOWLY VARYING REGRESSORS AND NONLINEAR TRENDS 597



More generally, proceeding in this way for p � 1 � k � 0 ~under the conven-
tion that ~ j

0!� 1!, we have

ank �(
j�k

p

bj L~n! j�j

k
�� �k

k
�bk L~n!k � �k � 1

k
�bk�1 L~n!k�1

� {{{� �p

k
�bp L~n! p, (76)

so that

bk L~n!k � ank ���k � 1

k
�bk�1 L~n!k�1 � {{{� �p

k
�bp L~n! p� +

We establish by induction ~for decreasing k! that

MnL~n!k«~n! p~ Zbk � bk ! � ~�1! p�k�p

k
�MnL~n! p«~n! p~ Zbp � bp !� op~1!+

(77)

We have already shown ~77! to be valid for k � p � 1 and p � 2+ Assume that
it is valid for k � 1+ Then, using ~76! and Lemma 7+6 we have

MnL~n!k«~n! p~ Zbk � bk !

� Mn«~n! p~ [ank � ank !

� ��k � 1

k
�L~n!k�1«~n! p~ Zbk�1 � bk�1!

� {{{� �p

k
�L~n! p«~n! p~ Zbp � bp !�

� O~«~n! p�k !��~�1! p�k�1� p

k � 1
��k � 1

k
�

� {{{� ~�1!� p

p � 1
��p � 1

k
�� �p

k
��

� MnL~n! p«~n! p~ Zbp � bp !

� O~«~n! p�k !� (
j�0

p�k�1� p

p � j
��p � j

k
�~�1! p�jMnL~n! p«~n! p~ Zbp � bp !

� ~�1! p�k�p

k
�MnL~n! p«~n! p~ Zbp � bp !� op~1!,

showing that the result holds for k also+
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Equation ~77! gives an asymptotic correspondence between the elements of
the least squares estimate Zb and its final component Zbp that has the form

Mn«~n! pDnL~ Zb� b! � mp�1MnL~n! p«~n! p~ Zbp � bp !� op~1!,

where DnL � diag~1, L~n!, + + + , L~n! p! and mp�1
' � @~�1! p, ~�1! p�1~p1!, + + + ,

~�1!~ p
p � 1!,1# + We deduce that

Mn«~n! pDnL~ Zb� b!rd N~0, v p�1, p�1mp�1mp�1
' !,

giving the stated result+ The explicit formula v p�1, p�1 � 10~ p!!2 follows from
Lemma 7+8~iii!+ �

Proof of Theorem 4+3+ First, transform the regressor space in ~28! as follows:

ys � b 'Ls � us � b 'Jn Jn
�1 Ls � us � an

' Xs � us , (78)

where

Jn
' �







1 L~n! L~n!2 J L~n! p�1 L~n! p

0 L~n!«~n! �2

1
�L~n!2«~n! J �p � 1

1
�L~n! p�1«~n! �p

1
�L~n! p«~n!

0 0 L~n!2«~n!2 J �p � 1

2
�L~n! p�1«~n! �p

2
�L~n! p«~n!2

I I I L I I

0 0 0 J L~n! p�1«~n! p�1 � p

p � 1
�L~n! p«~n! p�1

0 0 0 J 0 L~n! p«~n! p 





� En H 'DnL , say,

and En � diag@1,«~n!,«~n!2, + + + ,«~n! p# , DnL � diag@1,L~n!,L~n!2, + + + ,L~n! p# ,
and

H ' �





1 1 1 J 1 1

0 1 �2

1
� J �p � 1

1
� �p

1
�

0 0 1 J �p � 1

2
� �p

2
�

I I I L I I

0 0 0 J 1 � p

p � 1
�

0 0 0 J 0 1 





+
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In ~78! an � Jn
' b � Enan where an is the parameter vector in ~33! whose ele-

ments anj are given in ~30!–~32!+ Because Xs � Jn
�1 Ls � En

�1 H�1DnL
�1 Ls , we

may rewrite ~78! as

ys � an
' En

�1 Kn� s

n
�� us +

In view of ~60!, the vector En
�1 Kn~s0n! has elements

1

«~n! j
Knj� s

n
� �

1

«~n! j
� L� s

n
n�

L~n!
� 1�

j

� log j� s

n
� @1 � o~1!# ,

and so

an
' En

�1 Kn� s

n
� � b 'Jn En

�1 Kn� s

n
�� b 'Jn �p� s

n
� @1 � o~1!#

� b 'DnL HEn �p� s

n
� @1 � o~1!# +

The sample second moment matrix, L'L, of the regressors can now be written
as

L'L � Jn�(
s�1

n

�p� s

n
��p� s

n
�'�Jn

' @1 � o~1!#

� nJn��
0

1

�p~r!�p~r!
' dr�Jn

' @1 � o~1!#

� DnL HEn�(
s�1

n

�p� s

n
��p� s

n
�'�En H 'DnL @1 � o~1!#

� nDnL H�En�
0

1

�p~r!�p~r!
' drEn�H 'DnL @1 � o~1!# +

Because «~n! r 0 as n r `, the matrix En � e1 e1
' � o~1!, where e1 � ~1,0,

+ + + ,0!', and the final expression given previously is

nDnL H�e1 e1
'�

0

1

�p~r!�p~r!
' dre1 e1

' � o~1!�H 'DnL @1 � o~1!#

� nDnL He1 e1
'H 'DnL @1 � o~1!#

� nDnL ip�1 ip�1
' DnL @1 � o~1!# ,
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where ip�1 is the p � 1 sum vector ~i+e+, it has unity in each component!+ This
gives the first result ~38!+

Next, consider the inverse sample moment matrix

~L'L!�1 � Jn
�1'�(

s�1

n

�p� s

n
��p� s

n
�'��1

Jn
�1 @1 � o~1!#

�
1

n
Jn

�1'��
0

1

�p~r!�p~r!
' dr��1

Jn
�1 @1 � o~1!#

�
1

n
DnL

�1 H�1'En
�1��

0

1

�p~r!�p~r!
' dr��1

En
�1 H�1DnL

�1 @1 � o~1!# +

Now observe that En
�1 is dominated by its final diagonal element, and so we

can write En
�1 � ~10«~n! p !ep�1 ep�1

' @1 � o~1!# where ep�1 � ~0,0, + + + ,1!'+ The
final expression given previously is asymptotically equivalent to

1

n«~n!2p
DnL

�1 H�1'ep�1 ep�1
' ��

0

1

�p~r!�p~r!
' dr��1

ep�1 ep�1
' H�1DnL

�1

�

ep�1
' ��

0

1

�p~r!�p~r!
' dr��1

ep�1

n«~n!2p
DnL

�1 H�1'ep�1 ep�1
' H�1DnL

�1

�

ep�1
' ��

0

1

�p~r!�p~r!
' dr��1

ep�1

n«~n!2p
DnL

�1mp�1mp�1
' DnL

�1 , (79)

giving the stated result+ The second equality ~79! holds because H�1'ep�1 �mp�1,
the final column of H�1', as is apparent from the fact that H 'mp�1 � ep�1,
which can be verified by direct multiplication using Lemma 7+7~ii!+ �

Proof of Theorem 5+1+ Solving ~43! for b1 and b2, we get

�b1

b2
� � �L1~n! 0

0 L2~n!
��1

� �
«1~n! «2~n!

1

2
«1~n!@«1~n!� h1~n!#

1

2
«2~n!@«2~n!� h2~n!#�

�1

�an1

an2
�
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� �L1~n!«1~n! 0

0 L2~n!«2~n!
��1

� �
1 1

1

2
@«1~n!� h1~n!#

1

2
@«2~n!� h2~n!#�

�1

�an1

an2
�

� �L1~n!«1~n! 0

0 L2~n!«2~n!
��1 2

d~n! �
1

2
@«2~n!� h2~n!# �1

�
1

2
@«1~n!� h1~n!# 1 �

� �an1

an2
� ,

and so

Mn

2
�d~n!«1~n!L1~n!@ Zb1 � b1#

d~n!«2~n!L2~n!@ Zb2 � b2 #
� � �

1

2
@«2~n!� h2~n!# �1

�
1

2
@«1~n!� h1~n!# 1 �

� �Mn @ [an1 � an1#

Mn @ [an2 � an2 #
� +

Because «j~n! � hj~n! � o~1! for j � 1,2, we have

Mn

2
�d~n!«1~n!L1~n!@ Zb1 � b1#

d~n!«2~n!L2~n!@ Zb2 � b2 #
� � ��1

1
�@Mn @ [an2 � an2 ##

� op~1!rd N�0,
s 2

~2!!2
� 1 �1

�1 1
��,

(80)

where the coefficient 10~2!!2 comes from the third diagonal element of the
inverse matrix @*0

1 �2~r!�2~r!
' dr#�1+ Finally, the constant term satisfies

b0 � a0 � L1~n!b1 � L2~n!b2 ,

602 PETER C.B. PHILLIPS



which, in combination with ~80!, leads to

Mn

2
d~n!«min~n!~ Zb0 � b0 !

� 
�L2~n!
Mn

2
d~n!«2~n!~ Zb2 � b2 !� op~1! if «2~n!� o~«1~n!!

�L1~n!
Mn

2
d~n!«1~n!~ Zb1 � b1!� op~1! if «1~n!� o~«2~n!!

� ��Mn @ [an2 � an2 #� op~1! if «2~n!� o~«1~n!!

Mn @ [an2 � an2 #� op~1! if «1~n!� o~«2~n!!

� 1«Mn @ [an2 � an2 #� op~1!rd N�0,
s 2

~2!!2
�,

where

«min~n! � �«2~n! if «2~n!� o~«1~n!!

«1~n! if «1~n!� o~«2~n!!

and

1« � ��1 if «2~n!� o~«1~n!!

1 if «1~n!� o~«2~n!!
+

We deduce that

Mnd~n!

2 �
«min~n!~ Zb0 � b0 !

«1~n!L1~n!~ Zb1 � b1!

«2~n!L2~n!~ Zb2 � b2 !
� � �

71

�1

1
�Mn @ [an2 � an2 #

rd N 	0,
s 2

~2!!2 �
1 61 71

61 1 �1

71 �1 1
�
 ,

which gives the stated result upon scaling+ �

Proof of Lemma 6+1+ Setting St � (s�1
t us , using partial summation, and

proceeding as in the proof of Lemma 2+1~i! we have

1

MnL~n!
(
t�1

n

f� t

n
;u�L~t !ut

� f ~1;u!
Sn

Mn
�

1

L~n! (t�1

n �f� t

n
;u�L�n

t

n
�� f� t � 1

n
;u�L�n

t � 1

n
��

�
St�1

Mn
+ (81)
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Assume that the probability space is constructed so that we can embed the stan-
dardized partial sum St�1 0Mn in Brownian motion as in equation ~8! following
Assumption LP, namely,

sup
1�t�n

� St�1

Mn
� B� t � 1

n �� � oa+s+� 1

n ~102!�~10p!�+
Then, the first term of ~81! clearly satisfies

f ~1;u!
Sn

Mn
rd f ~1;u0 !B~1!, (82)

as n r ` uniformly over u � Nn
0 + The second term of ~81! is

1

L~n! (t�1

n �f� t

n
;u�L�n

t

n
�� f� t � 1

n
;u�L�n

t � 1

n
�� St�1

Mn

�
1

L~n! (t�1

n

f� t

n
;u��L�n

t

n
�� L�n

t � 1

n
�� St�1

Mn

�
1

L~n! (t�1

n

L�n
t � 1

n
��f� t

n
;u�� f� t � 1

n
;u�� St�1

Mn

� T1 � T2 + (83)

Start with T1+ We have f ~t0n;u! � f ~t0n;u0! � fu~t0n;u*!~u � u0! for some
u* � Nn

0 , and so

sup
u�Nn

0 � 1

L~n! (t�1

n �f� t

n
;u�� f� t

n
;u0���L�n

t

n�� L�n
t � 1

n �� St�1

Mn �

� sup
u�Nn

0
�(

t�1

n �fu� t

n
;u*���L�n

t

n
�� L�n

t � 1

n
��

L~n!

St�1

Mn
�6u� u0 6

� sup
u�Nn

0
6u� u0 6

1

n (t�1

n

sup
u�Nn

0 � fu� t

n
;u*��� L'~t * !

L~n! ��
St�1

Mn �
� sup
u�Nn

0
6u� u0 6

1

n (t�1

n

g1� t

n�� L'~t * !

L~n! ��
St�1

Mn �
� sup
u�Nn

0
6u� u0 6��

0

1

g1~r!� B~r!

r �� L'~nr!nr

L~nr! �� L~nr!

L~n! � dr � op~1!�
� op~1!, (84)
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as

� L~nr!

L~n! �r 1, � L'~nr!nr

L~nr! �r 0 for all r � 0 and

sup
u1,u2�Nn

0
6u1 � u2 6r 0

as n r `+ It follows that

T1 �
1

L~n! (t�1

n

f� t

n
;u0��L�n

t

n
�� L�n

t � 1

n
�� St�1

Mn
� op~1!

uniformly over u � Nn
0 + But, just as in the proof of Lemma 2+1~i!,

1

L~n! (t�1

n

f� t

n
;u0��L�n

t

n
�� L�n

t � 1

n
�� St�1

Mn

�
1

L~n!
�

0

1

f ~r;u0 !B~r! dL~nr!� Op~«~n!!� op~1!,

and so T1 � op~1! uniformly over u � Nn
0 +

Next, consider T2+ We have f ~t0n;u! � f ~~t � 1!0n;u! � fr~t
*0n;u! for some

t * � ~t � 1, t !, and then

T2 �
1

L~n! (t�1

n

L�n
t � 1

n
��f� t

n
;u�� f� t � 1

n
;u�� St�1

Mn

�
1

L~n!n (t�1

n

L�n
t � 1

n
� fr� t *

n
;u� St�1

Mn
+ (85)

Now fr~t *0n;u! � fr~t *0n;u0! � fru~t *0n;u*!~u � u0! for some u* � Nn
0 and

1

L~n!n (t�1

n

L�n
t � 1

n
� fr� t *

n
;u� St�1

Mn
�

1

L~n!n (t�1

n

L�n
t � 1

n
� fr� t *

n
;u0� St�1

Mn

�
1

L~n!n (t�1

n

L�n
t � 1

n
��fr� t *

n
;u�� fr� t *

n
;u0�� St�1

Mn

�
1

L~n!n (t�1

n

L�n
t � 1

n
� fru� t *

n
;u*� St�1

Mn
~u� u0 !,
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and, just as in ~84!, we find that

sup
u�Nn

0 � 1

L~n!n (t�1

n

L�n
t � 1

n � fru� t *

n
;u*� St�1

Mn
~u� u0 !�

� sup
u�Nn

0
u� u0���

0

1

g3~r!� B~r!

r �� L'~nr!nr

L~nr! �� L~nr!

L~n! � dr � op~1!�
� op~1!+

Moreover,

1

L~n!n (t�1

n

L�n
t � 1

n
� fr� t *

n
;u0� St�1

Mn

��
0

1 L~nr!

L~n!
f ~r;u0 !B~r! dr � op~1!rp �

0

1

f ~r;u0 !B~r! dr, (86)

as n r `+ It follows from ~85! and ~86! that

T2 �
1

L~n!n (t�1

n

L�n
t � 1

n
� fr� t *

n
;u0� St�1

Mn
� op~1!rd �

0

1

fr ~r;u0 !B~r! dr,

(87)

uniformly over u � Nn
0 + We deduce from ~81!–~83! and ~87! that

1

MnL~n!
(
t�1

n

f� t

n
;u�L~t !ut � f ~1;u0 !

Sn

Mn
� ~T1 � T2 !rd f ~1;u0 !B~1!

��
0

1

fr ~r;u0 !B~r! dr

��
0

1

f ~r;u0 ! dB~r!, (88)

uniformly over u � Nn
0 , giving the stated result+ �

Proof of Lemma 6+2+ Part (i). For any slowly varying function L satisfying
Assumption SSV and any function f � C 1, we can show in the same way as
Lemma 6+1 that

1

MnL~n!
(
s�1

n

f� s

n
;u0�L~s!usrd �

0

1

f ~r;u0 ! dB~r! � N�0,s 2�
0

1

f ~r!2 dr�,
(89)

extending ~9!+ The limit ~54! follows directly+
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Part (ii). Using Lemma 6+1 and ~89!, the asymptotic form of Dn
�1 Hn~u0 !Dn

�1

is

�
1

n
(
s�1

n � s

n
�2g0 1

n log n
(
s�1

n �b0� s

n
�2g0

log s � us� s

n
�g0

log s�
1

n log n
(
s�1

n �b0� s

n
�2g0

log s � us� s

n
�g0

log s� 1

n log2 n
(
s�1

n �~b0 !
2� s

n
�2g0

log2 s � usb0� s

n
�g0

log2 s��
� �

1

n
(
s�1

n � s

n
�2g0 1

n log n
(
s�1

n

b0� s

n
�2g0

log s

1

n log n
(
s�1

n

b0� s

n
�2g0

log s
1

n log2n
(
s�1

n

~b0 !
2� s

n
�2g0

log2 s� � Op� 1

Mn
�

� � �
0

1

r 2g0 dr b0�
0

1

r 2g0 dr �
b0

log n
�

0

1

r 2g0 log rdr

b0�
0

1

r 2g0 dr �
b0

log n
�

0

1

r 2g0 log rdr
b0

2

log2 n
�

0

1

r 2g0~ log n � log r!2 dr �
� Op� 1

Mn
�

rp � �
0

1

r 2g0 dr b0�
0

1

r 2g0 dr

b0�
0

1

r 2g0 dr b0
2�

0

1

r 2g0 dr� �
1

2g0 � 1 �
1 b0

b0 b0
2� , (90)

as stated+
Part (iii). Upon calculation of ~90! and rescaling, we deduce that

Fn
�1 Hn~u0 !Fn

�1 � log2 nDn
�1 Hn~u0 !Dn

�1

�
log2 n

2g0 � 1 � 1 b0 �
b0

~2g0 � 1! log n

b0 �
b0

~2g0 � 1! log n
b0

2 �
2b0

2

~2g0 � 1! log n
�

2b0
2

~2g0 � 1!2 log2 n
�

� op~1!

�
log2 n

2g0 � 1 
� 1 b0

b0 b0
2�� � 0 �

b0

~2g0 � 1! log n

�
b0

~2g0 � 1! log n

2b0
2

~2g0 � 1! log n
�� � Op~1!,

whose eigenvalues are evidently O~ log2 n! and O~ log n!, respectively, pro-
vided b0 � 0+
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Part (iv). First calculate

dn~u0 ! � det@Dn
�1 Hn~u0 !Dn

�1#

� � b0
2

log2 n
�

0

1

r 2g0~ log n � log r!2 dr��
0

1

r 2g0 dr

� �b0�
0

1

r 2g0 dr �
b0

log n
�

0

1

r 2g0 log rdr�2

� Op� 1

Mn
�

�
b0

2

log2n
��

0

1

r 2g0 log2 rdr��
0

1

r 2g0 dr�� ��
0

1

r 2g0 log rdr�2�
� o� 1

log2 n
�

�
b0

2

log2 n
��

2

~2g0 � 1!
�

0

1

r 2g0 log rdr�
0

1

r 2g0 dr � ��
0

1

r 2g0 log rdr�2�
� o� 1

log2 n
�

�
b0

2

log2 n
� 2

~2g0 � 1!3
�

0

1

r 2g0 dr � � 1

2g0 � 1
�

0

1

r 2g0 dr�2�
� o� 1

log2 n
�

�
b0

2

~2g0 � 1!4 log2 n
+

Then

Dn Hn~u0 !
�1Dn

�
1

dn~u0 ! �
b0

2�
0

1

r 2g0 dr �
2b0

2

log n
�

0

1

r 2g0 log rdr

�
b0

2

log2 n
�

0

1

r 2g0 log2 rdr

�b0�
0

1

r 2g0 dr �
b0

log n
�

0

1

r 2g0 log rdr

�b0�
0

1

r 2g0 dr �
b0

log n
�

0

1

r 2g0 log rdr �
0

1

r 2g0 dr
�

� Op� log2 n

Mn
�
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�
1

dn~u0 ! �
b0

2

log2 n

2

~2g0 � 1!3
�

2b0
2

log n

1

~2g0 � 1!2
�

b0
2

2g0 � 1
�

b0

2g0 � 1
�
b0

log n

1

~2g0 � 1!2

�
b0

2g0 � 1
�
b0

log n

1

~2g0 � 1!2
1

2g0 � 1
�

� Op� log2 n

Mn
�

�
~2g0 � 1!3 log2 n

b0
2 �b0

2 �
2b0

2

log n

1

~2g0 � 1!
�
b0

2

log2 n

2

~2g0 � 1!2
�b0 �

b0

log n

1

~2g0 � 1!

�b0 �
b0

log n

1

~2g0 � 1!
1 �

� Op� log2 n

Mn
�+

We deduce that

Fn Hn~u0 !
�1Fn

�
~2g0 � 1!3

b0
2 �b0

2 �
2b0

2

log n

1

~2g0 � 1!
�
b0

2

log2 n

2

~2g0 � 1!2
�b0 �

b0

log n

1

~2g0 � 1!

�b0 �
b0

log n

1

~2g0 � 1!
1 �

� Op� 1

Mn
�

rp

~2g0 � 1!3

b0
2 � b0

2 �b0

�b0 1
� , (91)

as given+
Part (v). Define Cn � Dn0nd for some small positive d � ~0,g0 � 1

2
_ !, so that

Cn Dn
�1 � O~n�d!� o~1! and lmin~Cn!r ` as nr `, where lmin denotes the

smallest eigenvalue+ Construct the following shrinking neighborhood of u0:

Nn
0 � $u � Q : 7Cn~u� u0 !7� 1%

and define the matrix

Cn
�1 @Hn~u!� Hn~u0 !#Cn

�1 � �a11, n a12, n

a21, n a22, n
� +

We show that

sup
u�Nn

0
7Cn

�1 @Hn~u!� Hn~u0 !#Cn
�17 � op~1!+ (92)
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Note that in Nn
0 we have

sup
u�Nn

0
6g� g0 6 �

1

ng0�~102!�d log n
, sup
u�Nn

0
6b� b0 6�

1

ng0�~102!�d
+

Also, because g0 � � 1
2
_ we can choose « � 0 such that g0 � � 1

2
_ � «, and then

we have the dominating function

sup
u�Nn

0
6r g 6 � r�~102!�«+ (93)

Consider the individual elements of Cn
�1 @Hn~u! � Hn~u0 !#Cn

�1 in turn+ First,
for g* between g and g0, we have

a11, n �
1

n2g0�1�2d (
s�1

n

~s 2g � s 2g0 !�
2

n2g0�1�d (
s�1

n

s 2g* log s~g� g0 !

�
2 log n

n2~g0�g
* !�2d

� 1

n log n (s�1

n � s

n
�2g*

log s�~g� g0 !+

Next

1

n log n (s�1

n � s

n
�2g*

log s �
1

n (s�1

n � s

n
�2g*

�
1

n log n (s�1

n � s

n
�2g*

log
s

n

r �
0

1

r 2g0 dr,

uniformly for u � Nn
0 in view of the majorization ~93!+ It follows that for large

enough n

sup
u�Nn

0 � 1

n2g0�1�2d (
s�1

n

~s 2g � s 2g0 !� � O� 2 log n

n2~g0�g
* !�2d

sup
u�Nn

0
6g� g0 6�

� O� 1

nd
1

ng0�~102!�d log n
�� o~1!+ (94)

Next,

a12, n �
1

n2g0�1�2d log n (s�1

n

@bs 2g log s � us sg log s � ~b0 sg0 � bsg !sg log s#

�
b

n2g0�1�2d log n (s�1

n

s 2g log s �
1

n2g0�1�2d log n (s�1

n

us sg log s

�
1

n2g0�1�2d log n (s�1

n

~b0 sg0 � bsg !sg log s

� T1 � T2 � T3 +
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We find

sup
u�Nn

0
~6T16� 6T3 6! � o~1!

in the same way as ~94!+ For term T2, in view of ~89! we have for each g � Nn
0

1

n2g0�1�2d log n (s�1

n

us sg log s �
ng

n2g0�~102!�2d

1

Mnng log n
(
s�1

n

us� s

n
�g log s+

By Lemma 7+1 we have

1

Mn log n
(
s�1

n

us� s

n
�g log srd �

0

1

r g0 dB~r!,

uniformly over u � Nn
0 , and

ng

n2g0�~102!�2d
� Op� 1

n2d�,
uniformly over u � Nn

0 for large enough n+ Hence,

sup
u�Nn

0
6T2 6 � op~1!,

as nr `+ The argument for the term a22, n is entirely analogous, and ~92! there-
fore follows+ �

Proof of Theorem 6+3+ Standard asymptotic arguments of nonlinear regres-
sion for nonstationary dependent time series ~e+g+,Wooldridge, 1994, Thm+ 8+1!
may be applied+ But, modifications to the arguments need to be made to attend
to the singularity arising from the asymptotically collinear elements sg0 and
sg0 log s that appear in the score Sn~u0!+ First, the demonstration that there is a
consistent root of the first-order conditions ~51! in an open, shrinking neigh-
borhood of u0 follows as in the proof of Wooldridge’s Theorem 8+1 using ~52!
and Lemma 6+2~v!+ There are two changes in the proof that are needed: ~i! the
standardizing matrix is Fn

�1 in place of Dn
�1 , as discussed in Remark ~c! fol-

lowing Lemma 6+2; ~ii! the scaled Hessian matrix Fn
�1 Hn~u0 !Fn

�1 does not
tend to a positive definite limit with finite eigenvalues bounded away from
the origin+ Instead, as shown in the proof of Lemma 6+2~iii!, Fn

�1 Hn~u0 !Fn
�1

is positive definite for all large n and has eigenvalues of order O~ log2 n! and
O~ log n!, and the smallest eigenvalue lmin~Fn

�1 Hn~u0 !Fn
�1! � O~ log n! r `+

With these changes, the remainder of the consistency argument in Wool-
dridge’s Theorem 8+1 holds, and we obtain Fn~ Zu � u0! � Op~1!+
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Next, scaling the first-order conditions ~52!, we have

0 � Fn
�1 Sn~u0 !� Fn

�1 Hn~u0 !Fn
�1 Fn~ Zu� u0 !

� Fn
�1 @Hn

*� Hn~u0 !#Fn
�1 Fn~ Zu� u0 !,

and then

Fn~ Zu� u0 ! � �@I � ~Fn Hn~u0 !
�1Fn !Fn

�1 @Hn
*� Hn~u0 !#Fn

�1#�1

� ~Fn Hn~u0 !
�1Fn !Fn

�1 Sn~u0 !+ (95)

Note that Fn � ~10log n!Dn � diag@ng0�1020log n, ng0�102 # and because
Dn

�1 Sn~u0 ! � Op~1! from Lemma 6+2~i!, we have Fn
�1 Sn~u0 ! � Op~ log n!+

However, from ~91! in the proof of Lemma 6+2~iv! we have

Fn Hn~u0 !
�1Fn

�
~2g0 � 1!3

b0
2 �b0

2 �
2b0

2

log n

1

~2g0 � 1!
�
b0

2

log2 n

2

~2g0 � 1!2
�b0 �

b0

log n

1

~2g0 � 1!

�b0 �
b0

log n

1

~2g0 � 1!
1 �

� Op� 1

Mn
�

� Op~1!, (96)

and from Lemma 6+2~v! we have

sup
u�Nn

0
Fn

�1 @Hn~u!� Hn~u0 !#Fn
�1 � sup

u�Nn
0
Cn

�1 @Hn~u!� Hn~u0 !#Cn
�1

� op~1!, (97)

where Nn
0 � $u � Q : 7Cn~u � u0!7 � 1%, a shrinking neighborhood around u0

with Cn � Dn0nd for some small d � 0+ Because Fn~ Zu� u0!� Op~1!, it follows
that Zu,u* � Nn

0 with probability approaching unity as n r `, where u* is a
generic mean value between Zu and u0+ Hence

Fn
�1 @Hn

*� Hn~u0 !#Fn
�1 � op~1!, (98)

and so combining ~96! and ~98! we have

~Fn Hn~u0 !
�1Fn !Fn

�1 @Hn
*� Hn~u0 !#Fn

�1 � op~1!+ (99)
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Then, from ~91!, ~95!, and ~99! we deduce that

Fn~ Zu� u0 !

� �~Fn Hn~u0 !
�1Fn !Fn

�1 Sn~u0 !� op~1!
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Mn
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n
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� b0

2� s

n
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� ~2g0 � 1!3� 1

�10b0

� 1

Mn
(
s�1

n �� s

n�g0

log
s

n
�

� s

n
�g0

~2g0 � 1!
� us � Op� 1

log n�� op~1!

rd ~2g
0 � 1!3� 1

�10b0

��
0

1

r g0�log r �
1

2g0 � 1� dB~r! �� 1

�10b0

�N~0,s 2~2g0 � 1!3 !,

giving the stated result+ �
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