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ETH-Zürich, Zürich, Switzerland
E-mail: raetsch@inf.ethz.ch



Hercules: a profile HMM-based hybrid error correction algorithm for long reads 
Can Firtina,  Ziv Bar-Joseph,  Can Alkan*,  A. Ercument Cicek* 

 
Choosing whether to use second or third generation sequencing platforms can lead to trade-offs between accuracy and 

read length. Several studies require long and accurate reads including de novo assembly, fusion and structural variation detection. 

In such cases researchers often combine both technologies and the more erroneous long reads are corrected using the short reads. 

Current approaches rely on various graph based alignment techniques and do not take the error profile of the underlying 

technology into account. Memory- and time efficient machine learning algorithms that address these shortcomings have the 

potential to achieve better and more accurate integration of these two technologies.  

We designed and developed Hercules, the first machine learning-based long read error correction algorithm. The 

algorithm models every long read as a profile Hidden Markov Model with respect to the underlying platform’s error profile. The 

algorithm learns a posterior transition/emission probability distribution for each long read and uses this to correct errors in these 

reads.  

The pipeline is shown in Figure 1 with a toy example. Initially 

(1), short reads are aligned to long reads using an external tool. Here, red 

bars on the reads correspond to erroneous locations. Then, for each long 

read Hercules creates a profile HMM with priors set according to the 

underlying technology as shown in (2). Using the starting positions of the 

aligned short reads, Forward-Backward algorithm learns posterior 

transition and emission probabilities. Finally, Viterbi algorithm finds the 

most likely path of transitions and emissions as highlighted with red colors 

in (3). The prefix and the suffix of the input long read in this example is 

“AGAACC...GCCT”. After correction, substring “AT” inserted right after 

the first “A”. Third “A” is changed to “T” and following two basepairs are 

deleted. Note that deletion transitions are omitted other than this arrow, and 

only two insertion states are shown for clarity of the figure. On the suffix, a 

“T” is inserted and second to last basespair is changed from “C” to “A”.  

Using datasets from two DNA-seq BAC clones (CH17-157L1 

and CH17-227A2), and human brain cerebellum polyA RNA-seq, we show that Hercules-corrected reads have the highest 

mapping rate among all competing algorithms  (Table 1) and highest accuracy when most of the basepairs of a long read are 

covered with short reads (Table 2). Full paper is available at https://www.biorxiv.org/content/early/2017/12/13/233080 and 

source code is available at https://github.com/BilkentCompGen/Hercules. 

	
	
	
	

Figure 1. Overview of the Hercules algorithm.  
	



Realignment of short reads around short tandem repeats
significantly improves accuracy of genomic variants detection

Accurate detection  and genotyping of  genomic variants  from short  reads produced by high
throughput sequencing technologies is a fundamental feature of any successful data analysis
production pipeline for applications such as genetic diagnosis in medicine or genomic selection
in plant  and animal breeding.  Our research group maintains a well  established open-source
software solution that tightly integrates algorithms for discovery of different types of genomic
variants, which can be efficiently used from the command line, a rich graphical interface or a
web environment. Understanding that incorrect alignments around small indels and especially
short tandem repeats (STRs) are a main sources of false positives in variants discovery, we
present our solution for realignment of short reads spanning these variants. Users can explicitly
provide STRs predicted from other specialized tools such as tandem repeats finder (TRF) to
realign consistently reads spanning these STRs and to genotype them as a single variation
locus.   Variable  mononucleotide  runs  are  also  predicted  directly  from  aligned  reads.  We
performed extensive benchmark experiments comparing our solution to state-of-the-art software
using both simulated datasets and real  data from four species with different  distributions of
repetitive elements and varying conditions of ploidy, read length, average read depth and read
alignment  software.  Figure 1 shows the accuracy of  different  tools  in  one of  the evaluated
scenarios.  Our solution consistently  shows equal  or  better  accuracy and efficiency than the
other  solutions  under  different  conditions.  We  expect  that  this  work  will  contribute  to  the
continuous  improvement  of  quality  in  variant  calling  needed  for  applications  such  as
personalized medicine.

Figure 1. Precision and recall of different tools for detection of heterozygous and homozygous SNVs,
indels and STRs. A diploid individual was simulated from a real 400Mbp genome with 50% repetitive 
content. Reads were simulated with length=200, error rate 0.01 and average RD=20x.



Convolutional filtering for mutation signature discovery
There are a number of computational methods for mutation signatures detection from genome sequencing

of cancer. Most of these methods take both the base being mutated and also the bases immediate to the left
and right of it into consideration (a trinucleotide sequence). In total, there are 43× (4−1) = 192 different types
of mutations (from AAA → ACA to TTT → TGT ). But in many cases, because of the reverse-complementary
property of DNA, AAC → ACC on one strand is equivalent to GTT → GGT on the other, and therefore there
are 96 different types of mutations in total, considered by most methods.

The standard approach for identifying mutation signatures has been popularized by [?] who used non-
negative matrix factorization (NNMF) to decompose a 96× S count matrix (of all the trinucleotide mutations
identified from the sequence data of S samples) into two low-rank 96 × K and K × S matrices, where K is
the number of mutation signatures. The first factor matrix contains the so-called mutation signatures, i.e. the
patten of mutations, whilst the second contains the mutational rate/activity of each signature for each sample
(Figure 1A). One limitation is that the trinucleotide context is chosen arbitrary and mutational processes
might be related to more extended sequence contexts [?]. However, at present only one computational method,
pmsignature, has addressed this problem. Furthermore, all methods do not implement model selection and
estimate the number of signatures K. This parameter is usually pre-defined.

Here, we propose a novel approach for mutation signature identification based on convolutional filtering. The
premise is that each mutational process can be described as a mutational filter which scans the genome. Each
filter has coefficients which gives it more affinity to certain sequence types. When a filter encounters a sequence
that it has high affinity for, there is an increase probability that a mutation will occur here. The inference
task is to examine the set of mutations detected from genome sequencing of a cancer (and its sequence context)
and to infer the set of mutational filters (the coefficients) that is likely to have given rise to that observed data
(Figure 1B-D). This approach is therefore fundamentally very different to NNMF of mutation count matrices
and has a qualitative link to the potential biochemical processes that might produce such mutations.

We phrase this problem within a Bayesian statistical inference framework called convSig and demonstrate
performance on 3-bp and 5-bp windows that rivals pre-existing techniques. Furthermore, by embedding multiple
layers of convolutional filters, we are able to extend to larger sequence contexts and learn novel mutation
signatures associated with mutational clusters. Our framework allows for the rigorous assessment of model
complexity (number of signatures) and convolutional filters are easily transferable allowing them to easily
applied to novel genomes to identify previously discovered signatures. We believe this to be the first time that
convolutional neural networks have been applied to mutation signature detection.

Figure 1: Overview of convolutional filtering model for mutation signature identification. (A)
Schematic of standard matrix factorization approach for mutational signature discovery. (B) Mutation processes
can be modelled as convolutional filters that screen the genome. (C) These convolution filters each has an affinity
for certain sequence contexts based on their filtering coefficients. High affinity sub-sequences will lead to an
increased probability that a mutation will occur. (D) A cancer genome can be considered as the output after a
number of mutational filters have passed through the genome. The learning task is to take the set of observed
mutations and their local sequence context and to learn the most plausible set of mutational filters that could
have given rise to these observations.
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Quantification of private information leakage and privacy-preserving file 
formats for functional genomics data 
 
Functional genomics experiments on human subjects present a privacy 
conundrum. On one hand, many of the conclusions we infer from these 
experiments are not tied to the identity of individuals but represent universal 
statements about disease and developmental stages. On the other hand, by 
virtue of the experimental procedures, the reads from them are tagged with small 
bits of patients’ variant information, which presents privacy challenges in terms of 
data sharing. There are many benefits to sharing the data as broadly as possible. 
Measuring the amount of variant information leaked in a variety of experiments, 
particularly in relation to the amount of sequencing, will allow us to uncover ways of 
reducing information leakage and determine an appropriate set point for sharing 
information with minimal leakage. To this end, we aimed to derive information-
theoretic measures for the private information leaked in experiments and develop 
various file format manipulations to reduce much of the leaked variants. We 
showed that high-depth experiments such as Hi-C provide accurate genotyping that 
can lead to large privacy leaks. Counter intuitively, noisy and partial genotypes 
from low-depth experiments such as ChIP-Seq and single-cell RNA-Seq, although 
not useful genotypes, can be used as strong quasi-identifiers for re-identification 
purposes through linking attacks. We showed that these incomplete genotypes 
could further be used to construct an individual’s complete variant set and infer 
individual identifying phenotypes when combined with imputation. We then 
provide a proof-of-concept theoretical framework, in which the amount of leaked 
information can be estimated from the depth and breadth of the coverage as well 
as the sequencing bias of the functional genomics experiments. In order to solve 
the dilemma between data sharing and privacy leakage, we propose a file 
formatting system that enables the sharing of a large amount of data while 
protecting individuals’ sensitive information and preserving the utility of the data. 
The proposed file format can achieve different levels of privacy and utility 
balance. At the highest level of privacy, our file format masks all the variant 
information leaked from reads, which can be used to calculate signal profiles with 
99% recovery of the original profiles and 100% recovery of the original gene 
expression levels. 
	



Allelic decomposition and exact genotyping of
highly polymorphic and structurally variant

genes

Ibrahim Numanagić1,2, Salem Malikić1, Michael Ford1, Xiang Qin3, Lorraine
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Publication Details

Aldy has been published in Nature Communications in February 2018 (doi:10.1038/s41467-
018-03273-1). The presenter will be Ibrahim Numanagić or Salem Malikić. The abstract is
intended for ISMB HitSeq 2018.
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Abstract

High-throughput sequencing provides the means to determine the allelic decomposition for
any gene of interest— the number of copies and the exact sequence content of each copy of
a gene. However, this is a challenging task, as many clinically and functionally important
genes are highly polymorphic and have undergone structural alterations. Despite the clinical
and scientific need, no high-throughput sequencing data analysis tool has yet been designed to
effectively solve the full allelic decomposition problem.

Here we introduce a combinatorial optimization framework (Figure 1) that successfully resolves
the number of copies and the exact sequence content of each copy of a gene, including for genes
that have undergone structural alterations. We provide an associated computational tool Aldy
that performs allelic decomposition of highly polymorphic, multi-copy genes through the use of
whole or targeted genome sequencing data. For a large and diverse data set obtained through
the use of various sequencing platforms, Aldy identifies multiple rare and novel alleles for several
important pharmacogenes, significantly improving upon the accuracy and utility of current
genotyping assays. Aldy has minimal impact on computational resources, and is capable of
analyzing a high-coverage BAM file in less than a minute on a typical laptop machine. As more
data sets become available, we expect Aldy to become an essential component of genotyping
toolkits.

Aldy is available for download at http://aldy.csail.mit.edu.
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Figure 1: Graphical representation of steps performed by Aldy.
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Dear ISMB HiTSeq 2018 Committee, 
 

Metagenomics is revolutionizing the study of microbes in their natural environments, such as the 
human gut, the oceans, or soil, and is revealing the enormous impact of microbes on our health, 
our climate, and ecology. In metagenomics, DNA or RNA of bacteria, archaea and viruses are 
sequenced directly, making the 99% of microbes that cannot be cultivated in the lab amenable to 
investigation. Combined with the enormous drop in sequencing costs by a factor of ten thousand 
in just ten years, this has led to an explosive growth in the amount of sequence data in public 
databases.  

To predict functions for these new sequences, very fast sequence search tools have been 
developed in recent years, but the increase in speed was paid by lower search sensitivity. Yet 
many of the microbes investigated by metagenomics have no close relatives in the sequence 
databases, and current search tools are too insensitive to detect them. Consequently, for the 
large majority of metagenomic sequences no functions can be predicted.  

To address the need for very fast yet sensitive sequence search, we developed the software 
MMseqs2 (Many-against-Many sequence searching). The most important distinction of MMseqs2 
to previous fast search tools, is its ability to search with sequence profiles and not only with 
simple sequences. Since PSI-BLAST made its debut 20 years ago, sequence profiles have been 
known to improve search sensitivity enormously. But until now, no way had been found to 
drastically speed up sequence profile searches.  

We developed a very fast, and sensitive sequence prefilter algorithm at the core of MMseqs2. It 
preselects the most promising database sequences for subsequent, slower, and more accurate 
comparison. Whereas all recent tools use exact matches between short words (k-mers), we 
extend a 27 year old idea from BLAST to detect similar instead of exact k-mer matches. This 
algorithm can generate lists of similar k-mers both for sequences and sequence profiles. To gain 
further sensitivity, we were able to increase the word length k from three to seven. We also 
developed a very efficient method to detect when two neighboring k-mer matches occur on the 
same diagonal, which excluded most chance matches.  

MMseqs2 scales almost inversely with the number of used processor cores. It can automatically 
split and distribute query or target databases across several servers, allowing even users with 
relatively modest computing resources to cluster or search databases with billions of sequences. 
It also enables users to analyze jointly collections of datasets that could so far only be analyzed 
separately.  

MMseqs2 improves on current search tools over the full range of speed-sensitivity trade-off, 
achieving sensitivities better than PSI-BLAST at more than 400 times its speed. Sensitive 
searches enabled us to annotate 1.1 billion sequences in 8.3 hours on 28 cores. MMseqs2 
therefore offers great potential to increase the fraction of annotatable (meta)genomic sequences.  
 
Best regards, 
Martin Steinegger and Johannes Söding 
 
Reference:  

Steinegger, M., and Söding, J. (2017) MMseqs2 enables sensitive protein sequence searching 
for the analysis of massive data sets. Nature Biotechnol., 16 October 2017, doi: 
10.1038/nbt.3988. 



Probabilistic inference of clonal gene expression through integration 
of RNA & DNA-seq at single-cell resolution 
 
Kieran R Campbell1,2, Alexandre Bouchard-Côté2, Sohrab P Shah1,3 
 
1. Department of Molecular Oncology, BC Cancer Agency 
2. Department of Statistics, University of British Columbia 
3. Department of Pathology and Laboratory Medicine, University of British Columbia 
 
Background Human cancers form clones - sets of cells that exhibit similar mutations and genomic 
rearrangements. As clones evolve to resist chemotherapy understanding their molecular properties is 
crucial to designing effective treatments. While it is possible to measure both the DNA (that defines 
clonal structure) and RNA (that defines cell state) in single-cells through assays such as G&T-seq 
(Macaulay, 2015), these assays are time consuming and hard-to-scale. In practice, it is far more common 
to have large datasets where DNA and RNA are measured in separate cells through scalable technologies 
such as DLP sequencing (Zahn, 2017) for DNA and 10x genomics single-cell RNA-seq (Zheng, 2017). 
Although the destructive nature of each measurement process means the same cell will never be observed 
twice, if such assays are applied to the same tumor samples we expect the same clones to be present in 
both data views. However, it remains an open problem to link data across the expression space and 
genomic space that would allow for clone-specific expression estimates.  

		
Figure 1. (A) Single-cells measured in gene expression space to be assigned to cancer clones inferred from single-
cell DNA-sequencing. (B) Assuming a noisy relationship between copy number and expression allows us to relate 

two distinct views.	

 
Results Here we present clonealign, a highly scalable statistical method to probabilistically assign each 
cell as measured in gene expression space (scRNA-seq) to a clone defined in copy number space 
(scDNA-seq) (figure 1A) by assuming a copy-number-dependent effect on expression (figure 1B). We 
derive an expectation-maximization (EM) algorithm that parallelizes across the genes present allowing 
thousands of cells to be assigned to clones in minutes on commodity hardware. Through simulations we 



demonstrate that relatively few (<20%) genes must exhibit CNV-gene expression relationships for such 
assignment to be feasible and highly accurate.  
 
We apply our method to independently generated whole genome scDNA-seq and 10x genomics scRNA-
seq from a patient-derived breast cancer xenograft to characterize the gene expression of expanding 
clones over time (figure 2 A-B). We show the method infers expected clonal proportions and validate 
clonealign’s clone assignments through held-out gene predictions (figure 2C ) and loss-of-heterozygosity 
analyses. We also apply clonealign to a large dataset of 4000 cells from an ovarian cancer cell line, 
demonstrating gene expression assignment to clones defined by cutting the overall genomically inferred 
phylogenetic tree at different levels. Finally, we demonstrate how our framework serves as a basis for 
generalized multiview clustering from unpairable data sources for which we present a proof-of-concept. 
 

	
Figure 2. (A) clonealign assigns single-cell RNA-seq to three distinct clones inferred from scDNA-seq data in the 
SA501 breast cancer cell line. (B) The cells separate by inferred clone along the first and third principal 
components in gene expression space. (C) Predicting the expression of held-out genes displays far higher accuracy 
than could be expected at random. (D) An example of a clonealign fit on the OV2295 ovarian cancer cell line 
containing over 4000 single-cells. 

Conclusions We describe clonealign, a method to assign gene expression states to cancer clones by 
aligning single-cell RNA-seq to copy number profiles measured using single-cell DNA-seq. We validate 
our method through multiply orthogonal analysis and demonstrate its utility on multiple datasets for 
which single-cell RNA and DNA-seq have been performed. 

Bibliography 
Macaulay, I. C. (2015). G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nature Methods. 
Zahn, H. a. (2017). Scalable whole-genome single-cell library preparation without preamplification. Nature 

methods. 
Zheng, G. X. (2017). Massively parallel digital transcriptional profiling of single cells. Nature communications. 
 



IsoCon: Deciphering highly similar multigene family transcripts from Iso-Seq data 
 

Background: A significant portion of genes in vertebrate genomes belongs to multigene families, with each 
family containing several gene copies that have arisen via duplication. Such copies vary in sequence identity 
and can produce different alternatively spliced forms (i.e. isoforms). Many duplicate genes have been 
associated with important human phenotypes, including a number of diseases, and in some of such cases, 
individual gene copies play different roles in disease etiology.  The copy number of multigene families can be 
assayed using microarrays, quantitative PCR, droplet digital PCR, or DNA sequencing using Nanostring 
Technologies or Illumina platforms. The sequences of individual shorter exons can be obtained from Illumina 
DNA or RNA-seq data; however, alternative splicing and repetitive nature of duplicate gene copies complicates 
their de novo  assemblies. Long PacBio reads from the Iso-Seq protocol overcome the assembly challenge by 
sequencing transcripts end to end, and has been successfully applied to reveal several complex isoform 
structures in, e.g., humans, plants, and fungi. However, the error rate in these reads makes it difficult, in the 
case of highly similar gene copies, to reconstruct end to end transcripts with nucleotide-level precision or 
assign alternatively spliced transcripts to their respective gene copies. 
 
Results: We develop IsoCon, a de novo  algorithm for error-correcting and removing redundancy of PacBio 
circular consensus sequence reads generated from targeted sequencing with the Iso-Seq protocol. Our 
algorithm allows one to decipher isoform sequences down to the nucleotide level and hypothesize how they 
are assigned to individual, highly similar gene copies of multigene families. IsoCon combines computational 
and statistical techniques to correct obvious errors and link variants across the transcript. Furthermore, IsoCon 
statistically integrates the large variability in read quality, which decreases as the transcript gets longer.  
    We evaluate IsoCon on simulated data and demonstrate that IsoCon has substantially higher precision and 
recall than its main competitor, ICE1, across a wide range of sequencing depths, as well as of transcript 
lengths, similarities, and abundance levels. We also apply IsoCon to biological data from Y chromosome 
ampliconic gene families, a particularly interesting and challenging dataset to decipher, because each family 
contains several nearly identical (up to 99.99%) copies2 with a potentially varying number of isoforms. We used 
a targeted design to isolate and sequence all nine Y chromosome ampliconic gene families from the testes of 
two men. Our validation using Illumina reads, previously annotated transcripts, and consistency in predictions 
between the two samples, shows that IsoCon drastically increases precision compared to both ICE and 
Illumina-based error correction with proovread 3 (Figure 1A) and has significantly higher recall than ICE (based 
on matches to database; Figure 1A). We show that IsoCon can detect rare transcripts that differ by as little as 
one base pair from dominant isoforms that have two orders of magnitude higher abundance. IsoCon’s high 
sequence accuracy of the predicted transcripts enables us to further separate transcripts into putative gene 
copies and derive copy-specific exon sequences and splice variants. A demonstration of this is shown in 
Figure 1B-C, where IsoCon’s predicted transcripts for the RBMY family is stacked on an artificially created 
reference for comparison.  
 
Conclusions: We presented IsoCon, a method for deriving accurate transcript sequences from targeted 
Iso-Seq data. We showed that IsoCon de novo  corrects reads and its accuracy allows us to phase highly 
similar transcripts on a SNV difference level. While demonstrating the applicability to decipher highly similar 



transcripts from multi-gene families, we believe IsoCon will be useful also for phasing copies from diploid or 
polyploid organisms, or general error correction of Iso-Seq reads where high quality reference genome is not 
available.  

 
Figure 1. Summary of results for the 9 ampliconic gene families datasets. The upper table in panel A shows 
the number of unique predicted sequences in each sample for original reads, Illumina corrected reads 
(proovread), ICE, and IsoCon, respectively. The lower table shows summary metrics obtained from evaluating 
the predicted sequences using support from Illumina reads, exact matches to ENSEMBL database, and 
predictions shared between samples. Panel B: An IGV illustration of the multiple-alignment between the 61 
RBMY transcripts predicted by IsoCon and shared by both samples. (C) Illustrates the relationship between the 
61 transcripts as a graph. Vertices are transcripts and a vertex is boldfaced if it is predicted to be 
protein-coding. An edge between two transcripts means that they are potential isoforms from the same gene 
copy (i.e., only exon presence/absence differences). To simplify the visualization, some of the vertices are 
surrounded by boxes, and a double-edge between two boxes indicates that all pairs of transcripts, between the 
two boxes, are potential isoforms from the same gene copy. Each maximal clique (i.e. group of vertices) 
greater than four vertices is shown as a colored circle and should be interpreted as transcripts potentially 
originating from the same gene copy. 
 

1. Gordon, S. P. et al. Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA 
Sequencing. PLoS One  10, e0132628 (2015). 

2. Bhowmick, B. K., Satta, Y. & Takahata, N. The origin and evolution of human ampliconic gene families and 
ampliconic structure. Genome Res. 17, 441–450 (2007). 

3. Hackl, T., Hedrich, R., Schultz, J. & Förster, F. proovread: large-scale high-accuracy PacBio correction through 
iterative short read consensus. Bioinformatics 30, 3004–3011 (2014). 



Bridging Linear to Graph-based Alignment with Whole Genome Population 
Reference Graphs 

Recently, several attempts are devoted into building comprehensive catalogues of known genomic variants. However, read 
alignment approaches that efficiently utilize them are scarce. Since the catalogues contain hundreds of alleles which in general 
share most of their sequences except where the instant variations appear, that makes a graph of these alleles a reasonable and 
efficient representation of the data. Unfortunately, the lack of efficient implementations and algorithms for graph-based 
alignment makes graph-based approaches computationally expensive for practical application. 

Our approach takes advantage of graph representation in obtaining prominent levels of data compressions, and efficiently 
linearizes the variants graph by sacrificing a portion of the compression ratio. Our model for linearizing the variants graph depends 
on our previous work in transcriptome segmentation for RNAseq. For each gene of interest, we start from the multiple sequence 
alignment (MSA) of the individual alleles (which can be already provided in the catalogue or derived from VCF files). Then we use 
Yanagi1 to generate a set of maximal L-disjoint segments representing the linearized MSA graph (Figure 1). The segments library 
is then used by any alt-aware linear alignment tool. 

The advantage of using our approach over the standard alt-aware aligners that uses a reference of the genome sequence 
appended by the population haplotypes is that segments sequences are highly compressed which is space efficient and speeds 
up the alignment process (Table 1). On the other hand, our approach is potentially flexible such that the generated segments can 
be used with most linear aligners rather than being limited to a specific graph model. Moreover, it avoids the expensive 
computational demands of aligning over graphs.  

As a proof of concept, we test our approach on IPD-IMGT/HLA database to study six class I and class II HLA genes2 with significant 
medical importance. In addition to testing using graph aligners (HISAT-genotype3), linear aligners (BWA-MEM), and linear aligners 
with segments (BWA-MEM), we also included a test for using fast and lightweight RNAseq aligners (RapMap) to examine the 
possibility of using fast RNAseq aligners for the task of read extraction. We simulated three datasets simulating three scenarios: 
1) ClassI-Easy: reads are simulated from HLA class I alleles that are not very different from the reference genome, 2) ClassI-Hard: 
uses HLA class I alleles that are different from the reference, and 3) ClassII-Hard: uses HLA class II alleles that are much different 
from the reference. Preliminary results (Table 2) showed that the more divergent the samples are, the harder for linear aligners 
to correctly align reads. However, assisting linear aligners with the population segments can achieve comparable results to graph 
aligners without compromising the space and computational requirements (Table 3). Although RNAseq aligners with the 
reference alone performed the worst, adding segments elevated its performance back. 

 

                                                           
1 Gunady, Mohamed K., et al. "Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification." LIPIcs-Leibniz International 
Proceedings in Informatics. Vol. 88. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. (WABI-2017) 
2 The six genes: HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, HLA-DRB1. We use L=150 for Yanagi in all experiments.  
3 Kim, Daehwan, Joseph M. Paggi, and Steven Salzberg. "HISAT-genotype: Next Generation Genomic Analysis Platform on a Personal 
Computer." bioRxiv (2018): 266197. 

Figure 1: Illustrative examples for our segmentation model in two steps. (Top) 
Construct a flattened MSA graph of the gene's alleles. (Bottom) Create maximal 
L-disjoint segments of the population graph using Yanagi. 

Table 1: Genome library size for the six HLA genes. In case of graph, number of 
bases is counted as the bases sum of the graph nodes. 

Table 2: Number of correctly aligned reads from simulated reads using: HISAT-
genotype (graph aligner), BWA-MEM (linear alt-aware aligner), and RapMap 
(RNAseq lightweight aligner). In case of both BWA-MEM and RapMap, results 
are shown either when using only the reference genome or the reference 
combined with yanagi's segments for the six HLA genes. 

Table 3: Running time for alignment of real sample NA12878. 

4 alleles (A1, A2, A3, A4) 
(-) same as the first allele 
(.) indel 



 
 
 
De novo single-cell transcript sequence reconstruction with Bloom filters 

Background: 
De novo transcript sequence reconstruction from RNA-seq data is a difficult problem due to the short                

read length and the wide dynamic range of transcript expression levels. Although more than 10 algorithms                
for bulk RNA-seq were published over the past decade, very limited effort was made for de novo single-cell                  
transcript sequence reconstruction, likely due to the technical challenges in analyzing single-cell RNA-seq             
(scRNA-seq) data. Compared to bulk RNA-seq, scRNA-seq tend to yield more variable read depth across               
each transcript, lower transcript coverage, and lower overall signal-to-noise ratio. Therefore, isoform            
structure analysis at the single-cell level is almost non-existent and scRNA-seq is primarily used for gene                
expression analysis. Here, we present a fast and lightweight method for de novo single-cell transcript               
sequence reconstruction that leverages sequence reads across multiple cells. 

Results: 
Our method is implemented in a program called “RNA-Bloom,” which utilizes lightweight probabilistic             

data structures based on Bloom filter for the in-memory storage of (i) de Bruijn graph (DBG), (ii) k-mer                  
counts, (iii) k-mer pairs in input reads, and (iv) k-mer pairs in reconstructed read fragments. The overall                 
workflow of RNA-Bloom for scRNA-seq data is summarized in Figure 1. To alleviate the detrimental effects                
of low transcript coverage and variable read-depth of scRNA-seq, a shared DBG, generated by pooling the                
input reads from all cells, is used for correcting errors in reads and reconstructing the read fragments for                  
individual cells. To maintain cell-specificity during transcript reconstruction for each cell, the shared DBG is               
discarded and a new DBG is generated using only the reconstructed fragments of the corresponding cell. 

RNA-Bloom was benchmarked against Trans-ABySS and Trinity, two state-of-the-art de novo           
assemblers for bulk RNA-seq, for the overall performance and accuracy using a 2x150-bp Illumina              
scRNA-seq dataset of 7 mouse B cells. This dataset was selected because it has complementary long reads                 
from Oxford Nanopore Technologies, which are valuable for assessing the accuracy of the assembled              
transcripts. Using 12 CPUs, RNA-Bloom has a peak memory usage of 1.64 GB and a total runtime of 3.85                   
minutes. Trans-ABySS has a peak-memory usage of 0.71 GB and total runtime of 13.9 minutes. Trinity has                 
a peak-memory usage of 5.38 GB and total runtime of 80.6 minutes. As shown in Figure 2, RNA-Bloom has                   
better overall transcript reconstruction than Trans-ABySS and Trinity. 

 
Figure 1. Workflow of RNA-Bloom.     Figure 2. Isoforms ≥ 50% assembled by a single contig. 

Conclusions: 
In summary, RNA-Bloom is a lightweight method for transcript reconstruction from scRNA-seq data.             

RNA-Bloom’s performance and accuracy surpasses state-of-the-art methods that were designed for bulk            
RNA-seq data. While scRNA-seq has traditionally been used for gene expression analysis, this work              
unlocks new territory for identifying unique isoform structures at the single-cell level. 



Jointly aligning a group of DNA reads improves accuracy of identifying large
deletions

Split-alignments, which are alignments where two different portions of a read align to disjoint genomic
locations on the reference, are direct evidence of structural variants (SV), and a crucial step in the analysis of
high throughput sequencing assays. Accurately computing split-alignments remains a very challenging problem
[1, 2], owing to the highly repetitive nature of genomes and the propensity of genomic rearrangements to
accumulate in the vicinity of repeats [3]. This affects the ambiguity of reported pairwise alignments in a severe
way. Indeed, by analysing the variants reported in the Venter genome [4], we showed that this issue cannot be
ignored, as even under ideal conditions of no sequencing errors and very high coverage, 40% of deletions
≥ 32bp cannot be identified with certainty by pairwise alignments of 100bp-long reads (13% for paired-end
reads).

In this regard, current techniques based on split-alignment have two major shortcoming: (1) they do not
account for alignment uncertainties that could be computed using probabilistic models [5], and (2) reads are
aligned independently of each other. Since those reads are in fact highly correlated, utilizing information from
the group as a whole, can mitigate misalignment issues arising due to repeat-rich genomic context of SVs or
due to sequencing errors.

Here we take a slight departure from the conventional align-and-call workflow, and propose a new framework
of jointly aligning a group of reads identifying a common genomic structural variant. Our method measures
the uncertainty of each reported joint split-alignment, based on a probabilistic model of sequence alignment.
Additionally, we show how to incorporate paired-end reads in our workflow by using pairing information to
improve the confidence value of a prediction.

We demonstrated the advantages of our method, JRA, over other split-aligners, by applying it to the problem
of identifying medium and large deletions (≥ 20bp) from typical human genome resequencing datasets, both
simulated (Fig. 1A) and real (Fig. 1B, [6]).

Figure 1: Performance of split alignment for simulated and real data (A) Performance on simulated reads (100bp) from chr. 1+2 of

the C. Venter genome, for two values of expected coverage, with JRA (our method), LAST, Splazers, and Segemehl (B) Performance

for Illumina paired-end reads (101bp, 41x coverage) from the CHM1 cell line (SRX652547). The deletions were annotated from

long read PacBio sequencing of the same cell line [6]. Comparison of JRA (our method paired-end and default mode), LAST (min.

read support: 1, 5), Lumpy, Delly, and Platypus (default, assembly option activated).

We also contrasted our technique of bolstering otherwise ambiguous split alignments by combining read group
and paired-end information to the conventional method of detecting deletions through discordant alignments
of paired-end reads. Quite surprisingly, we found that these conventional methods have lower sensitivity in
practice, as they miss a majority of deletions in their attempt to account for variability in fragment size.
Finally, we showed that the computational overhead of our method is small with an overall running time well
within the range of contemporary methods.
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ABySS-LR: de novo Assembly Pipeline for Linked Reads 
 

Background 

Recently, 10x Genomics introduced the Chromium library preparation protocol for augmenting Illumina 

paired-end reads with long range linkage information ("linked reads"). Under the Chromium protocol, each 

read pair is tagged with a 16 bp barcode that associates it to one or more long DNA molecule(s) up to 100 kbp 

in length, providing invaluable information for resolving genomic repeat structures during de novo assembly.  

Results 

Here we present ABySS-LR, a linked read assembly pipeline that uses the Chromium barcode information to 

resolve repeat components, detect and cut misassemblies, and build long-range scaffolds. In the first step (Fig. 

1A), we perform an ordinary de Bruijn graph assembly of the linked reads, without using barcode information. 

In the second step (Fig. 1B), we link unitigs across unresolved repeat components based on unitig-to-barcode 

associations. In particular, we test the validity of connecting paths between unitigs using a statistical model 

that relates the fraction of shared barcodes between two sequences to their distance. In the third step (Fig. 

1C), we use the Tigmint misassembly detection tool identify and cut probable misassemblies in contigs. 

Tigmint calculates the physical coverage profile of the Chromium long molecules and locates gaps in coverage 

to identify probable misassemblies. In the final step (Fig. 1D), we use ARCS to build a scaffold graph in which 

nodes represent contigs, and edge weights represent the number of Chromium barcodes shared between 

contig heads/tails. We then traverse high-confidence paths within the ARCS graph to generate the output 

scaffold sequences. 

ABySS-LR is being developed for assembly of large genomes with multiple Chromium libraries, in conjunction 

with other sequencing data types such as paired-end reads, mate pair reads, and long reads.  On a linked reads 

data set for human chromosome 21, ABySS-LR yields an NA50 length of 5.1 Mbp, which represents a 50X 

improvement over a standard ABySS v2.0 assembly. 

Conclusion 

ABySS-LR leverages the long-range information provided by Chromium linked reads to substantially improve 

the contiguity and correctness of de novo genome assemblies. 



 

Figure 1: ABySS-LR linked reads assembly pipeline. (A) Unitigs are assembled using a standard de Bruijn graph assembly. 

(B) Unitigs are linked across unresolved repeat components using barcode information. (C) Tigmint detects and cuts 

misassemblies based on gaps in the physical coverage of Chromium long molecules. (D) ARCS links contigs into 

scaffolds using shared barcode information. 
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Abstract

Motivation: Long-read sequencing and novel long-range assays have revolutionized de novo genome
assembly by automating the reconstruction of reference-quality genomes. In particular, Hi-C sequencing
is becoming an economical method for generating chromosome-scale scaffolds. Despite its increasing
popularity, there are limited open-source tools available. Errors, particularly inversions and fusions across
chromosomes, remain higher than alternate scaffolding technologies.
Results: We present a novel open-source Hi-C scaffolder that does not require an a priori estimate of
chromosome number and minimizes errors by scaffolding with the assistance of an assembly graph. We
demonstrate higher accuracy than the state-of-the-art methods across a variety of Hi-C library preparations
and input assembly sizes.
Availability and Implementation: The Python and C++ code for our method is openly available at
https://github.com/machinegun/SALSA
Contact: sergey.koren@nih.gov, adam.phillippy@nih.gov
Supplementary information: Not available online.

1 Introduction
Genome assembly is the process of reconstructing a complete genome
sequence from significantly shorter sequencing reads. Most genome
projects rely on whole genome shotgun sequencing which yields an
oversampling of each genomic locus. Reads originating from the same
locus are identified using assembly software, which can use these
overlaps to reconstruct the genome sequence (Nagarajan and Pop, 2013;
Miller et al., 2010). Most approaches are based on either a de Bruijn
(Pevzner et al., 2001) or a string graph (Myers, 2005) formulation.
Repetitive sequences exceeding the sequencing read length (Nagarajan
and Pop, 2009) introduce ambiguity and prevent complete reconstruction.
Unambiguous reconstructions of the sequence are output as "unitigs" (or
often "contigs"). Ambiguous reconstructions are output as edges linking
unitigs. Scaffolding utilizes long-range linking information such as BAC
or fosmid clones (Venter et al., 1996; Gnerre et al., 2011), optical maps

(Schwartz et al., 1993; Dong et al., 2013; Shelton et al., 2015), linked
reads (Zheng et al., 2016; Weisenfeld et al., 2017; Yeo et al., 2017),
or chromosomal conformation capture (Simonis et al., 2006) to order
and orient unitigs. If the linking information spans large distances on
the chromosome, the resulting scaffolds can span entire chromosomes
or chromosome arms.

Hi-C is a sequencing-based assay originally designed to interrogate the
3D structure of the genome inside a cell nucleus by measuring the contact
frequency between all pairs of loci in the genome (Lieberman-Aiden et al.,
2009). The contact frequency between a pair of loci strongly correlates with
the one-dimensional distance between them. Hi-C data can provide linkage
information across a variety of length scales, spanning tens of megabases.
As a result, Hi-C data can be used for genome scaffolding. Shortly after
its introduction, Hi-C was used to generate chromosome-scale scaffolds
(Burton et al., 2013; Kaplan and Dekker, 2013; Marie-Nelly et al., 2014;
Bickhart et al., 2017; Dudchenko et al., 2017).

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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LACHESIS (Burton et al., 2013) is an early method for Hi-C
scaffolding which first clusters unitigs into a user-specified number of
chromosome groups and then orients and orders the unitigs in each
group independently to generate scaffolds. Thus, the scaffolds inherit
any assembly errors present in the unitigs. The original SALSA (Ghurye
et al., 2017) method first corrects the input assembly, using a lack of Hi-
C coverage as evidence of error. It then orients and orders the corrected
unitigs to generate scaffolds. However, SALSA requires manual parameter
tuning for each dataset which affects the contiguity and correctness of the
final scaffolds. Recently, the 3D-DNA (Dudchenko et al., 2017) method
was introduced and demonstrated on a draft assembly of the Aedes aegypti
genome. 3D-DNA also corrects the errors in the input assembly and then
iteratively orients and orders unitigs into a single megascaffold. This
megascaffold is then broken into a user-specified number of chromosomes,
identifying chromosomal ends based the on Hi-C contact map.

There are several shortcomings common across currently available
tools. They require the user to specify the number of chromosomes a priori.
This can be challenging in novel genomes where no karyotype is available.
An incorrect guess often leads to mis-joins that fuse chromosomes.
They are also sensitive to input assembly contiguity and Hi-C library
variations and require tuning of parameters for each dataset. Inversions
are common when the input unitigs are short, as orientation is determined
by maximizing the interaction frequency between unitig ends across all
possible orientations (Burton et al., 2013). When unitigs are long, there
are few interactions spanning the full length of the unitig, making the true
orientation apparent from the higher weight of links. However, in the case
of short unitigs, there are interactions spanning the full length of the unitig,
making the true orientation have a similar weight to incorrect orientations.
Biological factors, such as topologically associated domains (TADs) also
confound this analysis (Dixon et al., 2012).

In this work, we introduce SALSA2 – an open source software that
combines Hi-C linkage information with the ambiguous-edge information
from a genome assembly graph to better resolve unitig orientations. We
also propose a novel stopping condition, which does not require an a
priori estimate of chromosome count, as it naturally stops when the Hi-C
information is exhausted. We show that SALSA2 has fewer orientation,
ordering, and chimeric errors across a wide range of assembly contiguities.
We also demonstrate robustness to different Hi-C libraries with varying
intra-chromosomal contact frequencies. When compared to 3D-DNA,
SALSA2 generates more accurate scaffolds across all conditions tested.
To our knowledge, this is the first method to leverage assembly graph
information for scaffolding Hi-C data.

2 Methods
Figure 1(A) shows the overview of the SALSA2 pipeline. A draft assembly
is generated from long reads such as Pacific Biosciences (Eid et al., 2009)
or Oxford Nanopore (Jain et al., 2016). SALSA2 requires the unitig
sequences and, optionally, a GFA-format graph (Li, 2016) representing the
ambiguous reconstructions. Hi-C reads are aligned to the unitig sequences,
and unitigs are optionally split in regions lacking Hi-C coverage. A
hybrid scaffold graph is constructed using both ambiguous edges from
the GFA and edges from the Hi-C reads, scoring edges according to a
"best buddy" scheme. Scaffolds are iteratively constructed from this graph
using a greedy weighted maximum matching. A mis-join detection step is
performed after each iteration to check if any of the joins made during this
round are incorrect. Incorrect joins are broken and the edges blacklisted
during subsequent iterations. This process continues until the majority
of joins made in the prior iteration are incorrect. This provides a natural
stopping condition, when accurate Hi-C links have been exhausted. Below,
we describe each of the steps in detail.
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Fig. 1. (A) Overview of the SALSA2 scaffolding algorithm. (B) Linkage information
obtained from the alignment of Hi-C reads to the assembly. (C) The assembly graph obtained
from the assembler. (D) A hybrid scaffold graph constructed from the links obtained from
the Hi-C read alignments and the overlap graph. Solid edges indicate the linkages between
different unitigs and dotted edges indicate the links between the ends of the same unitig. (E)
Maximal matching obtained from the graph using a greedy weighted maximum matching
algorithm. (F) Edges between the ends of same unitigs are added back to the matching.

2.1 Read alignment

Hi-C paired end reads are aligned to unitigs using the BWA aligner (Li
and Durbin, 2009)(parameters: -t 12 -B 8) as single end reads. Reads
which align across ligation junctions are chimeric and are trimmed to retain
only the start of the read which aligns prior to the ligation junction. After
filtering the chimeric reads, the pairing information is restored. Any PCR
duplicates in the paired-end alignments are removed using Picard tools
(Wysoker et al., 2013). Read pairs aligned to different unitigs are used
to construct the initial scaffold graph. The suggested mapping pipeline is
available at http://github.com/ArimaGenomics/mapping_pipeline.

Suspicious intervals 
for different cutoffs

C
utoffs

Split mis-assembled unitig

Fig. 2. Example of the mis-assembly detection algorithm in SALSA2. The plot shows the
position on x-axis and the physical coverage on the y-axis. The dotted horizontal lines
show the different thresholds tested to find low physical coverage intervals. The lines at the
bottom show the suspicious intervals identified by the algorithm. The dotted line through the
intervals shows the maximal clique. The smallest interval (purple) in the clique is identified
as mis-assembly and the unitig is broken in three parts at its boundaries.
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2.2 Unitig correction

As any assembly is likely to contain mis-assembled sequences, SALSA2
uses the physical coverage of Hi-C pairs to identify suspicious regions
and break the sequence at the likely point of mis-assembly. We define the
physical coverage of a Hi-C read pair as the region on the unitig spanned
by the start of the leftmost fragment and the end of the rightmost fragment.
A drop in physical coverage indicates a likely assembly error. We extend
the mis-assembly detection algorithm from SALSA which split a unitig
when a fixed minimum coverage threshold was not met. A drawback of
this approach is that coverage can vary, both due to sequencing depth and
variation in Hi-C link density.

Figure 2 sketches the new unitig correction algorithm implemented
in SALSA2. Instead of a single coverage threshold, a set of suspicious
intervals is found with a sweep of thresholds. Using the collection of
intervals as an interval graph, we find the maximal clique. This can be
done in O(NlogN) time, where N is the number of intervals. For any
clique of a minimum size, the region between the start and end of the
smallest interval in the clique is flagged as a mis-assembly and the unitig
is split into three pieces — the sequence to the left of the region, the
junction region itself, and the sequence to the right of the region.

2.3 Assembly graph construction

For our experiments, we use the unitig assembly graph produced by Canu
(Koren et al., 2017) (Figure 1(C)), as this is the more conservative graph
output. SALSA2 requires only a GFA format (Li, 2016) representation of
the assembly. Since most long read genome assemblers such as FALCON
(Chin et al., 2016), miniasm (Li, 2016), Canu (Koren et al., 2017), and
Flye (Kolmogorov et al., 2018) provide assembly graphs in GFA format,
their output is compatible with SALSA2 for scaffolding.

2.4 Scaffold graph construction

The scaffold graph is defined as G(V,E), where nodes V are the ends of
unitigs and edgesE are derived from the Hi-C read mapping (Figure 1B).
The idea of using unitig ends as nodes is similar to that used by the string
graph formulation (Myers, 2005).

Modeling each unitig as two nodes allows a pair of unitigs to have
multiple edges in any of the four possible orientations (forward-forward,
forward-reverse, reverse-forward, and reverse-reverse). The graph then
contains two edge types - one explicitly connects two different unitigs
based on Hi-C data, while the other implicitly connects the two ends of
the same unitig.

We normalize the Hi-C read counts by the frequency of restriction
enzyme cut sites in each unitig. This normalization reduces the bias in the
number of shared read pairs due to the unitig length as the number of Hi-C
reads sequenced from a particular region are proportional to the number
of restriction enzyme cut sites in that region. For each unitig, we denote
the number of times a cut site appears as C(V ). We define edges weights
of G as:

W (u, v) =
N(u, v)

C(u) + C(v)

whereN(u, v) is the number of Hi-C read pairs mapped to the ends of the
unitigs u and v.

We observed that the globally highest edge weight does not always
capture the correct orientation and ordering information due to variations in
Hi-C interaction frequencies within a genome. To address this, we defined
a modified edge ratio, similar to the one described in (Dudchenko et al.,
2017), which captures the relative weights of all the neighboring edges for
a particular node.

The best buddy weight BB(u, v) is the weight W (u, v) divided by
the maximal weight of any edge incident upon nodes u or v, excluding

the (u, v) edge itself. Computing best buddy weight naively would take
O(|E|2) time. This is computationally prohibitive since the graph, G,
is usually dense. If the maximum weighted edge incident on each node
is stored with the node, the running time for the computation becomes
O(|E|). We retain only edges where BB(u, v) > 1. This keeps only the
edges which are the best incident edge on both u and v. Once used, the
edges are removed from subsequent iterations. Thus, the most confident
edges are used first but initially low scoring edges can become best in
subsequent iterations.

For the assembly graph, we define a similar ratio. Since the edge
weights are optional in the GFA specification and do not directly relate to
the proximity of two unitigs on the chromosome, we use the graph topology
to establish this relationship. Let ū denote the reverse complement of the
unitig u. Let σ(u, v) denote the length of shortest path between u and
v. For each edge (u, v) in the scaffold graph, we find the shortest path
between unitigs u and v in every possible orientation, that is, σ(u, v),
σ(u, v̄), σ(ū, v) and σ(ū, v̄). With this, the score for a pair of unitigs is
defined as follows:

Score(u, v) =

min
x′∈{u,ū}−{x},y′∈{v,v̄}−{y}

σ(x′, y′)

min
x∈{u,ū},y∈{v,v̄}

σ(x, y)

where x and y are the orientations in which u and v are connected
by a shortest path in the assembly graph. Essentially, Score(u, v) is
the ratio of the length of the second shortest path to the length of the
shortest path in all possible orientations. Once again, we retain edges
where Score(u, v) > 1. If the orientation implied by the assembly graph
differs from the orientation implied by the Hi-C data, we remove the Hi-
C edge and retain the assembly graph edge (Figure 1D). Computing the
score graph requires |E| shortest path queries, yielding total runtime of
O(|E| ∗ (|V |+ |E|)) since we do not use the edge weights.

2.5 Unitig layout

Once we have the hybrid graph, we lay out the unitigs to generate
scaffolds. Since there are implicit edges in the graph G between the
beginning and end of each unitig, the problem of computing a scaffold
layout can be modeled as finding a weighted maximum matching in a
general graph, with edge weights being our ratio weights. If we find the
weighted maximum matching of the non-implicit edges (that is, edges
between different unitigs) in the graph, adding the implicit edges to this
matching would yield a complete traversal. However, adding implicit
edges to the matching can introduce a cycle. Such cycles are removed
by removing the lowest weight non-implicit edge. Computing a maximal
matching takes O(|E||V |2) time (Edmonds, 1965). We iteratively find a
maximum matching in the graph by removing nodes found in the previous
iteration. Using the optimal maximum matching algorithm this would
take O(|E||V |3) time, which would be extremely slow for large graphs.
Instead, we use a greedy maximal matching algorithm which is guaranteed
to find a matching within 1/2-approximation of the optimum (Poloczek
and Szegedy, 2012). The greedy matching algorithm takes O(|E|) time,
thereby making the total runtime O(|V ||E|). The algorithm for unitig
layout is sketched in Algorithm 1. Figure 1(D - F) show the layout on an
example graph.

Junctions in the graph can prevent some nodes from being included
in larger scaffolds. At a junction, only one of the possible unitigs can
be included in the matching, demoting the other unitigs at the junction
to alternate matchings. To account for this, we try to insert unitigs from
small scaffolds (less than five unitigs) into all possible positions in the large
scaffolds in all possible orientations. A unitig is inserted into the scaffold
at the position and orientation which maximizes the sum of edge weights
between it and all adjacent unitigs at that location. If the gain in the sum
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of edge weights is not sufficient, the unitig is not inserted into any of the
existing scaffolds but can be scaffolded in subsequent iterations.

Algorithm 1 Unitig Layout Algorithm
E : Edges sorted by the best buddy weight
M : Set to store maximal matchings
G : The scaffold graph
while all nodes in G are not matched do
M∗ = {}
for e ∈ E sorted by best buddy weights do

if e can be added to M∗ then
M∗ = M∗ ∪ e

end if
end for
M = M ∪M∗

Remove nodes and edges which are part of M∗ from G
end while

2.6 Iterative mis-join correction

Since the unitig layout is greedy, it can introduce errors by selecting a
false Hi-C link which was not eliminated by our ratio scoring. These errors
propagate downstream, causing large chimeric scaffolds and chromosomal
fusions. We examine each join made within all the scaffolds in the last
iteration for correctness. Any join with low spanning Hi-C support relative
to the rest of the scaffold is broken and the links are blacklisted for further
iterations.

We compute the physical coverage spanned by all read pairs aligned
in a window of size w around each join. For each window, w, we
create an auxiliary array, which stores −1 at position i if the physical
coverage is greater than some cutoff δ and 1, otherwise. We then find
the maximum sum subarray in this auxiliary array, since it captures the
longest stretch of low physical coverage. If the position being tested
for a mis-join lies within the region spanned by the maximal clique
generated with the maximum sum subarray intervals for different cutoffs
(Figure 2), the join is marked as incorrect. The physical coverage can
be computed in O(w + N) time, where N is the number of read pairs
aligned in window w. The maximum sum subarray computation takes
O(w) time. If K is the number of cutoffs(δ) tested for the suspicious
join finding, then the total runtime of mis-assembly detection becomes
O(K(N + 2 ∗w)). The parameter K controls the specificity of the mis-
assembly detection, thereby avoiding false positives. The algorithm for
mis-join detection is sketched in Algorithm 2. When the majority of joins
made in a particular iteration are flagged as incorrect by the algorithm,
SASLA2 stops scaffolding and reports the scaffolds generated in the
penultimate iteration as the final result.

3 Results

3.1 Dataset description

We created artificial assemblies, each containing unitigs of same size, by
splitting the GRCh38 (Schneider et al., 2017) reference into fixed sized
unitigs of 200 to 900 kbp. This gave us eight assemblies. The assembly
graph for each input is built by adding edges for any adjacent unitigs in
the genome.

For real data, we use the recently published NA12878 human dataset
sequenced with Oxford Nanopore (Jain et al., 2017) and assembled
with Canu (Koren et al., 2017). We use a Hi-C library from Arima
Genomics (Arima Genomics, San Diego, CA) sequenced to 40x coverage

Algorithm 2 Misjoin detection and correction algorithm
Cov : Physical coverage array for a window size w around a scaffold
join at position p on a scaffold
A : Auxiliary array
I : Maximum sum subarray intervals
for δ ∈ {min_coverage, max_coverage} do

if Cov[i] ≤ δ then
A[i] = 1

else
A[i] = −1

end if
sδ, eδ = maximum_sum_subarray(A)

I = I ∪ {sδ, eδ}
end for
s, e =maximal_clique_interval(I)
if p ∈ {s, e} then

Break the scaffold at position p
end if

(SRSXXX). We compare results with the original SALSA, SALSA2
without the assembly graph input, and 3D-DNA. We did not compare
our results with LACHESIS because it is no longer supported and is
outperformed by 3D-DNA (Dudchenko et al., 2017). SALSA2 was run
using default parameters, with the exception of graph incorporation, as
listed. For 3D-DNA, alignments were generated using the Juicer alignment
pipeline (Durand et al., 2016b) with defaults (-m haploid -t 15000 -s 2),
except for mis-assembly detection, as listed. The chromosome number
was set to 23 for all experiments. A genome size of 3.2 Gbp was used for
contiguity statistics for all assemblies.

For evaluation, we also used the GRCh38 reference to define a set
of true and false links from the Hi-C graph. We mapped the assembly
to the reference with MUMmer3.23 (nucmer -c 500 -l 20) (Kurtz et al.,
2004) and generated a tiling using MUMmer’s show-tiling utility. For this
"true link" dataset, any link joining unitigs in the same chromosome in
the correct orientation was marked as true. This also gives the true unitig
position, orientation, and chromosome assignment. We masked sequences
in GRCh38 which matched known structural variants from a previous
assembly of NA12878 (Pendleton et al., 2015) to avoid counting true
variations as scaffolding errors.
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Fig. 3. Precision at different cutoffs for Hi-C links. The plot on the left shows the curve
for the SALSA2 best buddy weight cutoffs and the plot on the right shows the curve for a
fixed Hi-C pair count cutoff, used in SALSA1, across changing coverage.
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Fig. 4. Comparison of orientation, ordering, and chimeric errors in the scaffolds produced by SALSA2 and 3D-DNA on the simulated data. As expected, the number of errors for all error
types decrease with increasing input unitig size. Incorporating the assembly graph reduces error across all categories and most assembly sizes, with the largest decrease seen in orientation
errors. SALSA2 utilizing the graph has 2-4 fold fewer errors than 3D-DNA.

3.2 Scoring effectiveness

For correct scaffolding, we want to filter false edges and retain only
the correct linkage information between pairs of unitigs. Our previous
algorithm used a fixed, user-defined minimum for edges connecting a pair
of unitigs. The drawback of a fixed cutoff is that it cannot handle variations
in coverage within the assembly and varies between any pair of sequencing
datasets. To compare the scoring methods, we down-sample the alignments
into three different sets with 0.25, 0.5 and 0.75 of the original coverage
and computed the precision of filtering based on the ratio score and a fixed
threshold. The precision remained almost constant for the ratio cutoff on
all datasets, whereas the precision changes rapidly for different coverages
and a fixed threshold (Figure 3).

3.3 Evaluation on simulated unitigs

3.3.1 Assembly correction
We simulated assembly error by randomly joining 200 pairs of unitigs from
each simulated assembly. All erroneous joins were made between unitigs
that are more than 10 Mbp apart or were assigned to different chromosomes
in the reference. The remaining unitigs were unaltered. We then aligned
the Arima-HiC data and ran our assembly correction algorithm. When
the algorithm marked a mis-join within 20 kbp of a true error we called
it a true positive, otherwise we called it a false positive. Any unmarked
error was called a false negative. The average sensitivity over all simulated
assemblies was 77.62% and the specificity was 86.13%. The sensitivity
was highest for larger unitigs (50% for 200 kbp versus >90% for untigs
greater than 500 kbp) implying that our algorithm is able to accurately
identify errors in large unitigs, which can have a negative impact on the
final scaffolds if not corrected.

3.3.2 Scaffold mis-join validation
As before, we simulated erroneous scaffolds by joining unitigs which
were not within 10 Mbp in the reference or were assigned to different
chromosomes. Rather than pairs of unitigs, each erroneous scaffold
joined 10 unitigs and we generated 200 such erroneous scaffolds. The
remaining unitigs were correctly scaffolded (ten unitigs per scaffold) based
on their location in the reference. The average sensitivity was 68.89%

and specificity was 100% (no correct scaffolds were broken). Most of
the un-flagged joins occurred near the ends of scaffolds and could be
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Fig. 5. (A) NGA50 statistic for different input unitig sizes and (B) The length of longest
error-free block for different input unitig sizes. Once again, the assembly graph typically
increases both the NGA50 and the largest correct block.

captured by decreasing the window size. Similar to assembly correction,
we observed that sensitivity was highest with larger input unitigs. This
evaluation highlights the accuracy of the mis-join detection algorithm to
avoid over-scaffolding and provide a suitable stopping condition.

3.3.3 Scaffold accuracy
We evaluated scaffolds across three categories of error: orientation, order,
and chimera. An orientation error occurs whenever the orientation of a
unitig in a scaffold differs from that of the scaffold in the reference. An
ordering error occurs when a set of three unitigs adjacent in a scaffold have
non-monotonic coordinates in the reference. A chimera error occurs when
any pair of unitigs adjacent in a scaffold align to different chromosomes
in the reference. We broke the assembly at these errors and computed
corrected scaffold lengths and NGA50 (analogous to the NGA50 defined
by Salzberg et al. (Salzberg et al., 2012)). This statistic corrects for large
but incorrect scaffolds which have a high NG50 but are not useful for
downstream analysis because of errors.

Hi-C scaffolding errors, particularly orientation errors, increased with
decreasing assembly contiguity. We evaluated scaffolding methods across
a variety of simulated unitig sizes. Figure 4 shows the comparison of these
errors for 3D-DNA, SALSA2 without the assembly graph, and SALSA2
with the graph. SALSA2 produced fewer errors than 3D-DNA across
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(A) (B) (C)

Fig. 6. Feature Response Curve for (A) assemblies obtained from unitigs as input (B) assemblies obtained from mitotic Hi-C data and (C) assemblies obtained using Dovetail Chicago data.
The best assemblies lie near the top left of the plot, with the largest area under the curve. The FRC for 3D-DNA scaffolds with Chicago input is a straight line because 3D-DNA generated a
single 2.7 Gbp super-scaffold which contained the majority of the genome sequence.

Dataset Method NG50(Mbp) NGA50(Mbp) Longest Chunk (Mbp) Orientation Errors Ordering Errors Chimeric Errors
Arima-HiC SALSA2 true links 83.31 79.48 172.19 78 101 0

SALSA2 w graph 125.34 57.20 165.11 156 289 142
SALSA2 wo graph 101.96 56.84 155.68 168 302 152

3D-DNA 137.88 28.61 130.88 233 405 178
SALSA1 19.09 14.81 73.14 99 176 96

Mitotic Hi-C SALSA2 w graph 69.23 26.46 145.53 117 98 58
3D-DNA w correction 16.34 0.064 0.96 12017 11687 7217

3D-DNA wo correction 141.18 21.47 84.00 345 320 163
Chicago SALSA2 w graph 6.15 4.63 34.60 59 72 128

3D-DNA w correction 2,641.31 2.62 12.76 244 186 1550
3D-DNA wo correction 1,648.92 4.52 34.60 119 100 711

Table 1. Assembly scaffold and correctness statistics for NA12878 assemblies scaffolded with different Hi-C libraries. The NG50 of human reference GRCh38
is 145 Mbp. The ratio between NG50 and NGA50 represents how many erroneous joins affect large scaffolds in the assembly. A high ratio between NGA50 and
NG50 indicates a more accurate assembly. We observe that 3D-DNA mis-assembly detections shears the input with both the mitotic Hi-C and Chicago data so we
include results both with and without this assembly correction. In case of Chicago data, 3D-DNA generates a large super-scaffold containing more than 50% of the
genome, giving a very high NG50 but a poor NGA50 and ratio.

all error types and input sizes. The number of correctly oriented unitigs
increased significantly when assembly graph information was integrated
with the scaffolding, particularly for lower input unitig sizes (Figure 4).
For example, at 400 kbp, the orientation errors with the graph were
comparable to the orientation errors of the graph-less approach at 900 kbp.
The NGA50 for SALSA2 also increased when assembly graph information
was included (Figure 5). This highlights the power of the assembly graph
to improve scaffolding and correct errors, especially on lower contiguity
assemblies. This also indicates that generating a conservative assembly,
rather than maximizing contiguity, can be preferable for input to Hi-C
scaffolding.

3.4 Evaluation on NA12878

Table 1 lists the metrics for NA12878 scaffolds. We include an idealized
scenario, using only reference-filtered Hi-C edges for comparison. As
expected, the scaffolds generated using only true links had the highest
NGA50 value and longest error-free scaffold block. SALSA2 scaffolds
were more accurate and contiguous than the scaffolds generated by
SALSA1 and 3D-DNA, even without use of the assembly graph. The
addition of the graph further improved the NGA50 and longest error-free
scaffold length.

We also evaluated the assemblies using Feature Response Curves
(FRC) based on scaffolding errors (Vezzi et al., 2012). An assembly
can have a high raw error count but still be of high quality if the errors

1   2   3      4   5       6   7  8   9 10 1112

13 14 15    16 1718     19 20 2122      X

1   2   3      4   5       6   7  8   9 10 1112

13 14 15    16 1718     19 20 2122      X

Fig. 7. Chromosome ideogram generated using the coloredChromosomes (Böhringer et al.,
2002) package. Each color switch denotes a change in the aligned sequence, either due to
large structural error or the end of a unitig/scaffold. Left: input unitigs aligned to the
GRCh38 reference genome. Right: SALSA2 scaffolds aligned to the GRCh38 reference
genome. More than ten chromosomes are in a single scaffold. Chromosomes 1 and 7 are
more fragmented due to scaffolding errors which break the alignment.

are restricted to only short scaffolds. FRC captures this by showing
how quickly error is accumulated, starting from the largest scaffolds.
Figure 6(A) shows the FRC for different assemblies, where the X-axis
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Fig. 8. Contiguity plot for scaffolds generated with (A) standard Arima-HiC data (B) mitotic Hi-C data and (C) Chicago data. The X-axis denotes the NGAX statistic and the Y-axis denotes
the corrected block length to reach the NGAX value. SALSA2 results were generated using the assembly graph, unless otherwise noted.

denotes the cumulative % of assembly errors and the Y-axis denotes the
cumulative assembly size. The assemblies with more area under the curve
accumulate fewer errors in larger scaffolds and hence are more accurate.
SALSA2 scaffolds with and without the graph have similar areas under the
curve and closely match the curve of the assembly using only true links.
The 3D-DNA scaffolds have the lowest area under the curve, implying that
most errors in the assembly occur in the long scaffolds. This is confirmed
by the lower NGA50 value for the 3D-DNA assembly (Table 1).

Apart from the correctness, SALSA2 scaffolds were highly contiguous
and reached an NG50 of 125 Mbp (cf. GRCh38 NG50 of 145 Mbp).
Figure 7 shows the alignment ideogram for the input unitigs as well as
the SALSA2 assembly. Every color change indicates an alignment break,
either due to error or due to the end of a sequence. The input unitigs are
fragmented with multiple unitigs aligning to the same chromosome, while
the SALSA2 scaffolds are highly contiguous and span entire chromosomes
in many cases. Figure 8(A) shows the contiguity plot with corrected NG
stats. As expected, the assembly generated with only true links has the
highest values for all NGA stats. The curve for SALSA2 assemblies with
and without the assembly graph closely matches this curve, implying
that the scaffolds generated with SALSA2 are approaching the optimal
assembly of this Arima-HiC data.

3.5 Robustness to input library

(A) (B) (C)

Fig. 9. Contact map of Hi-C interactions on Chromosome 3 generated by the Juicebox
software (Durand et al., 2016a). The cells sequenced in (A) normal conditions, (B) during
mitosis, and (C) Dovetail Chicago

We next tested scaffolding using two libraries with different Hi-C
contact patterns. The first, from (Naumova et al., 2013), is sequenced
during mitosis. This removes the topological domains and generates fewer

off-diagonal interactions. The second, the L1 library from (Putnam et al.,
2016), is an in vitro chromatin sequencing library (Chicago) generated by
Dovetail Genomics. It also removes off-diagonal matches but has shorter-
range interactions, limited by the size of the input molecules. As seen from
the contact map in Figure 9, both the mitotic Hi-C and Chicago libraries
follow different interaction distributions than the standard Hi-C (Arima-
HiC in this case). We ran SALSA2 with defaults and 3D-DNA with both
the assembly correction turned on and off.

For mitotic Hi-C data, we observed that the 3D-DNA mis-assembly
correction algorithm sheared the input assembly into small pieces, which
resulted in more than 12,000 errors and more than half of the unitigs
incorrectly oriented or ordered. Without mis-assembly correction, the 3D-
DNA assembly has a higher number of orientation (345 vs. 117) and
ordering (320 vs. 98) errors compared to SALSA2. The feature response
curve for the 3D-DNA assembly with breaking is almost a diagonal
(Figure 6(B)) because the sheared unitigs appeared to be randomly joined.
SALSA2 scaffolds contain longer stretches of correct scaffolds compared
to 3D-DNA with and without mis-assembly correction (Figure 8(B)).

For the Chicago libraries, 3D-DNA mis-assembly detection once again
sheared the input unitigs. It generated a single 2.7 Gbp scaffold and
was unable to split it into the requested number of chromosomes. 3D-
DNA uses signatures of chromosome ends (Dudchenko et al., 2017) to
identify break positions which are not present in Chicago data. As a
result, it generated more chimeric joins compared to SALSA2 (1,550 vs.
128 errors). However, the number of order and orientation errors was
similar across the methods. Even in the large single scaffold generated
by 3D-DNA, the sizes of the correctly oriented and ordered blocks were
smaller than SALSA2 (Figure 8(C)). Since Chicago libraries do not provide
chromosome-spanning contact information for scaffolding, the NG50
value for SALSA is 6.15 Mbp, comparable to the equivalent coverage
assembly (50% L1+L2) in (Putnam et al., 2016) but much smaller than
Hi-C libraries. SALSA2 is robust to changing contact distributions. In the
case of Chicago data it produced a less contiguous assembly due to the
shorter interaction distance. However, it avoids introducing false joins,
unlike 3D-DNA, which appears tuned for a specific contact model.

4 Conclusion
In this work, we present the first Hi-C scaffolding method that integrates an
assembly graph to produce high-accuracy, chromosome-scale assemblies.
Our experiments on both simulated and real sequencing data for the human
genome demonstrate the benefits of using an assembly graph to guide
scaffolding. We also show that SALSA2 outperforms alternative Hi-C
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scaffolding tools on assemblies of varied contiguity, using multiple Hi-C
library preparations.

Hi-C scaffolding has been historically prone to inversion errors
when the input assembly is highly fragmented. The integration of the
assembly graph with the scaffolding process can overcome this limitation.
Existing Hi-C scaffolding methods also require an estimate for the number
of chromosomes in the genome. Since SALSA2’s mis-join correction
algorithm stops scaffolding after the useful linking information in a
dataset is exhausted, no chromosome count is needed as input. As the
Genome10K consortium (Koepfli et al., 2015) and independent scientists
begin to sequence novel lineages in the tree of life, it may be impractical
to generate physical or genetics maps for every organism. Thus, Hi-C
sequencing combined with SALSA2 presents an economical alternative
for the reconstruction of chromosome-scale assemblies.
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CliqueSNV: Scalable Reconstruction of Intra-Host Viral

Populations from NGS Reads
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E. Campbell2, W. M. Switzer2, P. Skums1,2, and A. Zelikovsky1,5

1Georgia State University, Atlanta, GA, USA, 2Centers for Disease Control and Prevention,
Atlanta, GA, USA, 3Guardant Health Inc., Redwood City, CA, USA 4ITMO University, St.
Petersburg, Russia, 5I.M. Sechenov First Moscow State Medical University, Moscow, Russia

1 Background

Highly mutable RNA viruses such as influenza A virus, human immunodeficiency virus and hepatitis C
virus exist in infected hosts as highly heterogeneous populations of closely related genomic variants. The
presence of low-frequency variants with few mutations with respect to major strains may result in an immune
escape, emergence of drug resistance, and an increase of virulence and infectivity. Next-generation sequencing
technologies permit detection of sample intra-host viral population at extremely great depth, thus providing
an opportunity to access low-frequency variants. Long read lengths offered by single-molecule sequencing
technologies allow all viral variants to be sequenced in a single pass. However, high sequencing error rates
limit the ability to study heterogeneous viral populations composed of rare, closely related variants.

In this article, we present CliqueSNV, a novel reference-based method for reconstruction of viral variants
from NGS data. It efficiently constructs an allele graph based on linkage between single nucleotide variations
and identifies true viral variants by merging cliques of that graph using combinatorial optimization tech-
niques. The full paper text is available at https://www.biorxiv.org/content/early/2018/03/31/264242

2 Results

CliqueSNV is designed to accurately reconstructintra-host viral variants from noisy next-generation and
third-generation sequencing data. A novel method eliminates the need for preliminary error correction and
assembly and infers haplotypes from patterns in distributions of SNVs in sequencing reads. It is applicable
to both long single-molecule reads (e.g., PacBio) as well as high volume short paired reads (e.g., Illumina).
CliqueSNV uses linkage between single nucleotide variations (SNVs) to accurately and effciently distinguish
them from sequencing errors. It constructs an allele graph with edges connecting linked SNVs and finds
all cliques as well as unlikely linked SNV pairs referred as forbidden SNV pairs. CliqueSNV reports viral
variants corresponding to maximal connected subsets of cliques without forbidden SNV pairs.

Validation of different haplotype reconstruction methods should report similarity between reconstructed
and true variants by simultaneously taking into account sequences and frequencies. We propose to use
the Earth Mover’s Distance (EMD) [1] as a distance measure between populations, which generalizes edit
distance between genomes of individual variants taking into account theyr frequencies.

We have compared four haplotyping tools CliqueSNV, 2SNV [2], PredictHaplo [3], and aBayesQR [4] on 4
benchmarks. The first benchmark IAV PacBio represent PacBio sequencing data from 10 similar Iinfluenza A
virus (IAV) [2] and the second benchmark Reduced labmix represent MiSeq sequencing data from 5 different
HIV subtypes [5]. The remaining 2 benchmarks IAV MiSeq and HIV MiSeq represent simulated MiSeq reads
from 10 similar IAV variants and 7 HIV variants from the same subtype accordingly.

The results of comparison are presented in Table 1. CliqueSNV outperforms all other methods on
all benchmarks. For IAV PacBio and HIV MiSeq, it reconstruct all haplotypes without mismatches. For
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Table 1: Comparison of four haplotype reconstruction methods on simulated and real datasets

Dataset EMD # variants
CliqueSNV 2SNV PredictHaplo aBayesQR

TP EMD TP EMD TP EMD TP EMD
IAV Pacbio 4.22 10 10 0.22 9 0.23 7 0.38 - -

Reduced labmix 19.4 5 3 6.52 - - 3 6.8 0 19.2
IAV MiSeq 4.22 10 7 0.0939 - - 1 3.03 0 3.64
HIV MiSeq 11 7 7 0.018 - - 0 5.84 3 0.84

TP = the number of variants predicted without errors

Reduced labmix and IAV MiSeq it reconstruct 3 and 7 haplotypes with a single mismatch, and accurately
identifies all haplotypes for the HIV Sim MiSeq dataset. CliqueSNV is significantly faster than the other
tools in our study. For example, the Reduced labmix benchmark the runtimes of aBayesQR and SAVAGE
were more than 10h, PhedictHaplo’s runtime was 24 min, and CliqueSNV took 79 seconds.

3 Conclusions

We developed CliqueSNV, a new method for inference of rare genetically-related viral variants, which allows
for accurate haplotyping in the presence of high sequencing error rates and which is also suitable for both
single-molecule and short-read sequencing. CliqueSNV infers viral haplotypes by detection of clusters of
statistically linked SNVs rather than through assembly of overlapping reads. Using experimental data, we
demonstrate that CliqueSNV can detect haplotypes with frequencies as low as 0.1%, which is comparable
to the sensitivity of many deep sequencing-based point mutation detection methods [6, 7]. Furthermore,
CliqueSNV can successfully infer viral variants, which differ by only a few mutations, thus demonstrating
the high sensitivity of identifying closely related variants. Another significant advantage of CliqueSNV is its
low computation time, which is achieved by fast searching of linked pairs of SNVs and the application of the
special graph-theoretical approach to SNV clustering.

The ability to accurately infer the structure of intra-host viral populations makes CliqueSNV applicable
for studying evolution and examining genomic compositions in RNA viruses. However, we envision that
the application of our method can be extended to other highly heterogeneous genomic populations, such as
metagenomes, immune repertoires, and cancer cells. The open source implementation of CliqueSNV is freely
available for download at https://github.com/vyacheslav-tsivina/CliqueSNV
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Graph-guided assembly for novel HLA allele discovery

Accurate typing of human leukocyte antigen (HLA), a histocompatibility test, is important
because HLA genes are crucial to the regulation of immune system. Also, they play various roles
in transplant rejection as well as infectious and autoimmune diseases. The current gold stan-
dard for HLA typing uses DNA sequencing technology combined with sequence enrichment tech-
niques using specially designed primers or probes, requiring additional experiments. Although there
exist enrichment-free computational methods that use various types of sequencing data, hyper-
polymorphism found in the HLA region makes it challenging to type HLA genes with high accuracy
from whole genome sequencing (WGS) data. Furthermore, WGS-based methods developed up to
this point are database-matching approaches where their output is inherently limited by the in-
completeness of already known types, forcing them to find the best matching known alleles from a
database, thereby causing them to be unsuitable for discovery of rare or novel alleles.

In order to ensure both high accuracy as well as the ability to recover novel alleles (HLA
gene sequences), we developed a graph-guided HLA assembler called Kourami, which is capable of
assembling phased, full-length haplotype sequences of typing exons given high-coverage (> 30-fold)
WGS data (an overall workflow of Kourami is shown in Figure 1). Kourami first uses partial order
graphs to compactly capture variant regions among related sequences to fully take advantage of
known alleles. Then read alignments are projected onto the graphs so that each read alignment is
stored as a path in the graphs and read depths on edges naturally become edge weights. During
this step, the graphs are modified by adding nodes and edges to incorporate differences found by
alignment such as substitutions and indels. Finally, with the weighted graphs with alignment paths,
we formulate the problem of constructing the best pair (diploid, therefore 2 alleles per loci) of HLA
allele sequences as finding the pair of paths through the graph, which explains the read mapping
data best. When finding the pair, we select the pair that maximizes the adjusted coverage (with a
use of base quality scores) and the consistency of phasing information.

Kourami can type with high accuracy (>98%), comparable to that of the gold-standard typing
assays, when tested across various WGS datasets such as simulation, Illumina Platinum Genomes
and 1000 Genomes. At the same time, Kourami only takes a fraction of time compared to other
available methods with a moderate use of memory. Additionally, Kourami is the first method that
directly assembles both haplotypes of HLA genes, capable of discovering novel alleles rather than
inferring the best matching alleles in the database.

(d) Finding the best 
pair of paths 

(b) partial order 
graphs

(a) gene-wise MSA

IMGT/
HLA DB

WGS Reads 
aligning to 

HLA regions

SAM/
BAM

alignment projection

(c) modified weighted 
partial order graphs

Figure 1: An overall workflow of Kourami. The haplotype assembly of two solution alleles is
obtained by finding two paths (shown in (d) – drawn in red and blue; overlap in purple) through
the graph.



 
HiVA: a web platform for haplotyping and copy number analysis of single-cell genomes and mosaicism 
detection in bulk DNA 

Single-cell sequencing offers numerous research and clinical opportunities in reproductive genomics, cancer, 
etc. Genetic mosaicism can affect diverse organs at different developmental stages during the course of a human 
life-time, such that it may cause miscarriages, birth defects, developmental disorders, cancer or simply 
contribute to the normal spectrum of phenotypic variation. Genetic variation arises through a diversity of 
mechanisms. Identifying the nature and origin of acquired numerical and structural chromosome aberrations in 
healthy or diseased tissues via single-cell or bulk DNA analyses are imperative for understanding mutational 
processes and elucidating their impact on phenotypes and diseases. This is more challenging when complex 
genomes should be characterized, including single-cell genomes or mosaic/chimeric genome. Given all of these, 
analyzing data towards the interpretation need a well-designed algorithm. We named our algorithm 
Haplarithmisis. While the Haplarithmisis algorithm is promising in both research and clinics, needs of an 
interactive visualization is crucial. Therefore, we chose to develop a user-friendly web tool with a rich user 
interface to let users analyze their data easily without being worried about the infrastructure and expertise 
needed to run the analysis. 

We prototyped HiVA (Haplarithm inference of Variant Alleles), an interactive web application that determines 
genome-wide haplotypes, the copy number of those haplotypes, the level of genetic mosaicism/chimaerism, 
and the parental and segregational origin of haplotype aberrations in DNA samples derived from a large number 
of cells down to a single cell. This method can be carried out using data from SNP arrays or from single-cell 
sequencing. It provides a novel approach for reduced-representation genome sequencing of single cells and bulk 
DNA, as well as novel insight into genomic composition that are missed by conventional bulk analysis methods. 

Users can submit their data analysis request to the system after registration. Input parameters are divided into 
four categories: (1) analysis parameters, (2) family structure, (3) list of chromosome loci on which the user wants 
to focus, (4) and genotype file. As soon as the results gets ready HiVA integrates data into a visualization tools 
which allow users to interact with the results. HiVA result’s explorer is an interactive visualization to observe the 
results of Haplarithmisis. The visual output illustrates haplotype blocks, the paternal and maternal origin, 
relative copy number (logR values), SNP BAFs, and haplarithms across the entire genome for a single or multiple 
samples simultaneously. Additionally, HiVA provide several quality control measurements that help the users to 
discover the underlying basis of the analysis.  

We are showing that HiVA 
enables concurrent haplotyping 
and copy-number profiling of 
single cells. Haplarithmisis 
decodes the number of 
haplotypes for genomic regions 
across the genome. In contrast 
to conventional family-based 
haplotyping methods that make 
use of discrete bi-allelic SNP 
genotypes (AA, AB and BB) to 
reconstruct haplotypes, 
haplarithmisis uses continuous 
SNP genotypes values (i.e., SNP 
B allele fractions (BAFs)), which 
potentially harbor quantitative 
(haplotype) and qualitative 
(copy number) assessment of 
genomes. Haplarithmisis 
enables blueprinting these 
information into parental haplarithms (i.e., paternal haplarithm and maternal haplarithm). Parental haplarithms 
harbor haplotype and copy number state of genomic regions and reveal the segregational origin of aberrations, 
such that an aberration can be traced back to meiosis I, meiosis II or mitosis. 
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