
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

A Methodological Study
of Factorization Machines

Tesis de Licenciatura en Ciencias de la Computación

Sebastián Prillo

Director: Leandro Lombardi

Buenos Aires, 2019

UN ESTUDIO METODOLÓGICO SOBRE MÁQUINAS DE
FACTORIZACIÓN

La tarea de un sistema de recomendación es recomendarle a usuarios (tales como un
usuario de Netflix, un usuario navegando Amazon, o un usuario escuchando música en
Spotify) productos nuevos e interesantes (tales como peĺıculas nuevas para mirar, produc-
tos para comprar, ó música para escuchar). Con la llegada del e-commerce, los sistemas
de recomendación se han vuelto ubicuos y la investigación en sistemas de recomendación
ha prosperado.

En este trabajo estudiamos las Máquinas de Factorización (FMs), un modelo de apren-
dizaje automático que forma parte del estado del arte en problemas de recomendación.
Nuestro objetivo es estudiar dos aspectos de las FMs: la asimetŕıa de la ecuación del
modelo FM, y la viabilidad de parametrizar de forma continua el orden de interacción de
las FMs como propuesto en las FMs de orden intermedio. Más en general, en este tra-
bajo tratamos de desarollar una comprensión más profunda sobre el sesgo inductivo de las
FMs. Este trabajo se basa en [1] y complementa la propuesta original con experimentación
extensiva y análisis.

Con respecto a la asimetŕıa de las FMs, mostramos que esto tiene un impact no trivial
sobre las predicciones de las FMs. Por este motivo, mostramos que ensamblar dos FMs,
una entrenada sobre los datos originales y otra entrenada luego de negar el valor de la
variable respuesta, puede llevar a mejoras inusualmente grandes de performance (cuando se
lo compara con la mejora de performance t́ıpicamente observada al ensamblar dos modelos
de la misma clase). También consideramos una formulación simétrica de FMs para la cual
la estrategia de ensamblado puede ser vista como una estrategia efectiva de regularización.

Con respecto a parametrizar de forma continua el orden de interacción de FMs,
mostramos que esto puede ser efectivo cuando las FMs se usan como predictor general,
en algunos casos obteniendo performance comparable a la de predictores generales es-
tado del arte como los gradient boosted decision trees (GBDTs). Por otra parte, cuando
lo utilizamos en el contexto de problemas de recomendación, obtenemos poca o ninguna
mejora.

Palabras claves: Aprendizaje Automático, Sistemas de Recomendación, Máquinas de
Factorización, Factorización de Matrices, Kernel ANOVA

i

A METHODOLOGICAL STUDY OF FACTORIZATION MACHINES

The task of a recommender system is to recommend to users (such as a Netflix user, a user
browsing on Amazon, or a user listening to music on Spotify) interesting, novel products
(such as new movies to watch, products to purchase, or music to listen to). With the
advent of e-commerce, recommender systems have become ubiquitous and research on
recommender systems has thrived.

In this work we study Factorization Machines (FMs), a state-of-the-art machine learn-
ing model which excels at recommendation problems. Our goal is to study two aspects
of FMs: the asymmetry of the FM model equation, and the viability of continuously pa-
rameterizing the interaction order in FMs as proposed by Intermediate-Order FMs. More
generally, in this work we try to develop a deeper understanding about the inductive bias
of FMs. This work is based on [1] and complements the original proposal with thorough
experimentation and analysis.

Regarding the asymmetry of FMs, we show that it has a non trivial impact on the
predictions of FMs. Because of this, we show that ensembling two FMs, one trained on the
original data and another trained after reversing the value of the response variable, can
lead to unusually large performance improvements (when compared to the performance
improvement typically observed by ensembling two models from the same model family).
We consider a symmetric formulation of FMs for which the ensembling strategy can be
seen as an effective regularization technique.

Regarding continuously parameterizing the interaction order in FMs, we show that
this can be effective when FMs are used as a general predictor, in some cases nearing the
performance of state-of-the-art general predictors such as gradient boosted decision trees.
On the other hand, when used in the context of recommendation problems, we obtain
little to no improvement.

Keywords: Machine Learning, Recommender Systems, Factorization Machines, Matrix
Factorization, ANOVA Kernel

iii

CONTENTS

1. Introduction . 1

1.1 Motivation . 1

1.2 Organization of the Thesis . 2

2. Types of Recommender Systems . 5

2.1 Content-Based Recommender Systems . 5

2.2 Collaborative Filtering . 7

2.2.1 User-Based Collaborative Filtering 7

2.2.2 Item-Based Collaborative Filtering 8

2.3 Latent-Factor Models . 9

2.3.1 The Matrix Factorization Model . 10

3. Learning Pairwise Feature Interactions . 15

3.1 The Degree 2 Polynomial Model . 15

3.2 The Factorization Machine Model . 16

3.3 The Field-Aware Factorization Machine Model 17

4. Asymmetry of Factorization Machines . 19

4.1 Motivation . 19

4.2 Reformulating FMs . 19

4.3 Asymmetry of FMs . 20

4.4 Exploiting or Addressing Asymmetry . 23

5. Intermediate-Order Factorization Machines . 25

5.1 Motivation . 25

5.2 Implementation . 26

6. Experimental Results . 27

6.1 Small Datasets . 28

6.1.1 phishing dataset . 30

6.1.2 adult dataset . 32

6.1.3 rna dataset . 34

6.1.4 ijcnn dataset . 35

6.1.5 movielens-100K dataset . 36

6.1.6 movielens-100K-all dataset . 37

6.2 Criteo Dataset . 39

6.2.1 Table of Results . 39

6.2.2 Correlation Between Predictions . 41

6.2.3 Varying Symmetry Type and Order 42

6.3 Avazu Dataset . 43

6.3.1 Table of Results . 43

6.3.2 Correlation Between Predictions . 44

6.3.3 Varying Symmetry Type and Order 45

v

6.4 Summary . 46

7. Conclusion and Future Work . 47

8. Appendix . 49
8.1 Results with Linear Terms . 49

8.1.1 Results on Criteo Dataset with Linear Terms 49
8.1.2 Results on Avazu Dataset with Linear Terms 49

8.2 A Remark on L2-Regularization used for FMs 50

1. INTRODUCTION

1.1 Motivation

If you have ever viewed videos on YouTube, watched movies on Netflix, listened to music
on Spotify, purchased products on Amazon, or used Facebook (among so many other
examples), then you have already interacted with recommender systems. The task of a
recommender system, broadly speaking, is to recommend novel, relevant items to users.
Depending on the context, items could be videos, movies, songs, books, or even other
people (as in Facebook friend recommendations).

Paired with the increasing growth of e-commerce in recent years, recommender systems
research has thrived and recommender systems have become one of the most successful
applications of machine learning. Unlike physical stores which are constrained by physical
space, e-commerce websites can host a plethora of different products, giving rise to what
is known as the long-tail phenomenon: many relevant products are unknown to users.
Recommender systems solve the problem of bubbling up these relevant items to users.
The following image1 illustrates the long-tail phenomenon:

Fig. 1.1: Long-tail phenomenon

Here is a good example of how recommender systems help solve the long-tail problem:
In 1988 a book called Touching the Void was published but did not receive much attention.
A decade later, in 1997, a similar book called Into Thin Air was released and people started
buying it. Amazon’s recommender system noticed that some users who had bought Into
Thin Air had also bought Touching the Void, and so started to recommend Touching the
Void to users who had bought or considered Into Thin Air. In the end, Touching the Void
became quite popular, even more that Into Thin Air. Amazon’s recommender system
allowed Touching the Void reach its intended audience, benefiting both the book and the
audience.

1 Borrowed from http://dataaspirant.com/2015/05/25/collaborative-filtering-recommendation-engine-
implementation-in-python/

1

2 1. Introduction

When it comes down to the end-goal of a recommender system, this might be to
increase purchases, user engagement, or the customer base. These are called the busi-
ness metrics. Unfortunately, business metrics are hard to measure and optimize without
running the recommender system in production (known as the online setting). For this
reason, simpler metrics that can be measured offline are used, such as precision and re-
call of the recommender system when evaluated against past user activity. The hope is
that offline metrics will correlate well with online metrics, so that we can now focus on
optimizing our offline metrics. Even then, offline metrics are not differentiable and so still
hard to optimize efficiently. For this reason, differentiable surrogates called loss functions
are used to train the machine learning models, such as root-mean-squared-error (RMSE)
of cross-entropy loss (logloss).

Examples of problems recommender systems directly try to solve are: minimizing the
RMSE when predicting the rating that a user would give to a movie, or minimizing the
logloss when predicting the probability that a user would click on an ad or sponsored
product (called click-through-rate prediction or CTR prediction for short). To make such
predictions, recommender systems typically rely on information (called observed variables)
such as past user activity, the user’s age, gender, country, and attributes of the item such
as (in the context of movie recommendations) genre, director, and starred actors.

The difficulty of making predictions lies in the fact that the target variable, such as the
movie rating in the case of movie recommendations, depends heavily on combinations or
interactions among the observed variables. This is obvious because the rating a user gives
to a movie cannot be explained independently by just who the user is and what the movie
is. For example, a user that tends to give high ratings might rate a highly rated movie low
because it does not belong to the genre he is interested in. For this reason, classical machine
learning techniques such as linear models fall short at the recommendation problem and
specialized techniques have been developed.

In this work we focus on Factorization Machines (FMs), a class of models which excel
at learning pairwise feature interactions from data and thus at the recommendation task.
We explore two technical aspects of FMs: the asymmetry of the FM model equation, and
continuously parameterizing the interaction order of FMs. Our goal is to determine if
these two aspects can be used to improve the performance of FMs as measured by loss
functions. More generally, we try to develop a deeper understanding about the inductive
bias of FMs.

1.2 Organization of the Thesis

The thesis is organized as follows:

• Chapter 2 introduces content-based recommender systems, followed by collaborative
filtering techniques, and finally latent-factor models, specifically Matrix Factoriza-
tion (MF).

• Chapter 3 discusses the problem of learning pairwise feature interactions from data,
and in this context introduces the degree 2 polynomial model (Poly2), and finally
the Factorization Machine (FM) model, as well as the Field-Aware Factorization
Machine (FFM) model.

• Chapter 4 introduces and discusses the asymmetry of the FM model equation from

1.2. Organization of the Thesis 3

a theoretical point of view. We trace this back to the inductive bias of FMs, which
we try to characterize in more detail.

• Chapter 5 discusses how the interaction order of FMs could be continuously param-
eterized, deriving in what we call Intermediate-Order Factorization Machines.

• Chapter 6 contains the experimental results where we assess the impact of asymmetry
on the performance of FMs, and the viability of Intermediate-Order FMs. We ana-
lyze these aspects in the context of both recommendation and non-recommendation
datasets.

• Chapter 7 presents the conclusions of our work, and discusses several areas that
could be explored in the future.

4 1. Introduction

2. TYPES OF RECOMMENDER SYSTEMS

There are several approaches to try to solve the recommendation problem. Broadly speak-
ing, recommender systems models can be categorized into three main groups: content-
based models, collaborative filtering models, and latent-factor models. In this chapter we
discuss them in turn.

2.1 Content-Based Recommender Systems

The simplest kind of recommender system builds a user profile based on the items con-
sumed by the user, and then uses this profile to generate recommendations. For example,
in the movie recommendation domain, the profile of a user might indicate how much that
user likes action, romance, comedy, and so on, in a movie. With these user profiles, the
recommender systems can recommend to users movies that match their interests.

Formally, for each item i, let vi ∈ Rk be a vector quantifying the characteristics of the
item. In the case of movies, the first entry of vi might contain a 1 if the movie is an action
movie and 0 if not, the second entry of vi might contain a 1 if the movie is a romance
movie and 0 if not, and so on. Continuous values between 0 and 1 could be used instead
to specify the degree to which the movie meets the criteria.

Regardless of the choice of the item representation, based on these item representations
we can build a user profile vu ∈ Rk (also called a user representation) by averaging the
representations of the items she liked. To recommend new items, we find those items
whose representation is most similar to the user’s representation, for example as measured
by cosine similarity, which is the angle between the user and the item representations:

sim(vu, vi) =
vu · vi

||vu||2||vi||2

As a concrete example, suppose we are trying to recommend movies to users, and that
we have the following ratings matrix at our disposal:

Star Trek Star Wars Titanic Notting Hill Alien

Alice 1 4 1

Bob 5 4 3

Charlie 5 3 4

Daniel 1 5 4

Fig. 2.1: Observed ratings matrix. Unknown entries are highlighted in yellow.

Furthermore, we know that the content of the movies is as follows:

5

6 2. Types of Recommender Systems

Sci-Fi Action Romance Comedy

Star Trek 1 1 0 0

Star Wars 1 1 0 0

Titanic 0 0.5 1 0

Notting Hill 0 0 1 1

Alien 1 0.5 0 0

Fig. 2.2: Movie content matrix

Then, if we define a user to like a movie if his rating is at least 4, then the user
representations would be the following:

Sci-Fi Action Romance Comedy

Alice 0 0.5 1 0

Bob 1 1 0 0

Charlie 1 0.75 0 0

Daniel 0 0.25 1 0.5

Fig. 2.3: User representations

For example, to find the representation of Daniel we must average the representations
of Titanic and Notting Hill, which are (0, 0.5, 1, 0) and (0, 0, 1, 1) respectively (we do not
average Star Trek because he did not like it according to our arbitrary cutoff score of 4).
This way we obtain (0, 0.25, 1, 0.5).

Now, to make recommendations for all users, we first compute the cosine similarity
between all user and item representations:

Star Trek Star Wars Titanic Notting Hill Alien

Alice 0.32 0.32 1.00 0.63 0.20

Bob 1.00 1.00 0.32 0.00 0.95

Charlie 0.99 0.99 0.27 0.00 0.98

Daniel 0.15 0.15 0.88 0.93 0.10

Fig. 2.4: Cosine similarity matrix between user and item representations

For example, the cosine similarity between Alice and Star Trek is:

sim(Alice, Star Trek) =
〈(0, 0.5, 1, 0), (1, 1, 0, 0)〉
||(0, 0.5, 1, 0)||2||(1, 1, 0, 0)||2

=
0.5√

1.25
√

2
∼= 0.32

With these similarities, we can now recommend Notting Hill to Alice, Alien to Bob,
Star Trek to Charlie, and nothing (because the similarities are too low!) to Daniel.

The main problem with content-based recommendation is that the representation of
each item has to be hand-crafted and there is no principled way to get this right. Also,
while the content-based approach could be viable for movie recommendations, it is totally
unusable once the set of items is heterogeneous. For example, Amazon sells all kinds of

2.2. Collaborative Filtering 7

different items, and knowing that a user bought a Harry Potter movie is a strong indicator
that he might enjoy reading the book. But movies and books are from different domains,
and comparing item content across domains is a daunting task.

Finally, item content can be noisy or missing completely. For example, if users upload
video content to YouTube, they might not specify an accurate title or video description. All
these issues make content-based recommendation only viable when content and similarity
can be easily and robustly defined. Even then, as soon as data gets large, approaches
based on collaborative filtering outperform content-based approaches by a large margin.

2.2 Collaborative Filtering

Collaborative filtering (CF) solves the problem of making product recommendations with-
out the need of any item content information. The key insight behind collaborative filtering
is that if two users have a similar opinion about an item, then they are more likely to share
a similar opinion about another item than two randomly chosen users. For example, if user
U likes products A and B, and user V likes product A, we could recommend product B to
user V , even if we do not know anything about the content of items A or B. The point is
that even though we do not know this, the fact that user U liked both A and B, implicitly
tells us that they have something in common. For example, products A and B might both
be from the Harry Potter franchise. This allows collaborative filtering approaches to be
applicable to homogeneous sets of items. For example, we can now easily recommend the
Harry Potter books to users who have bought the Harry Potter movies.

2.2.1 User-Based Collaborative Filtering

User-based CF makes recommendations by finding users similar to a given user.
Let us start by introducing some definitions; later we will give a concrete example. Let

Iu be the set of items user u has rated, ru,i be the rating that user u has given to item i,
and ru be the average rating of user u. We can then define the similarity of two users u1
and u2 as the centered cosine similarity between their ratings:

sim(u1, u2) =

∑
i∈Iu1∩Iu2

(ru1,i − ru1)(ru2,i − ru2)√∑
i∈Iu1

(ru1,i − ru1)2
√∑

i∈Iu2
(ru2,i − ru2)2

This is the same as computing the Pearson correlation between the ratings of users u1 and
u2 after their ratings have been centered and missing ratings treated as 0.

Now, to predict the rating that user u would give to item i, we can consider:

r̂u,i =
1

k

∑
v∈U

rv,i

where U is the set of k most similar users to u which have rated item i. More sophisticated
approaches such as a weighted sum are possible:

r̂u,i =

∑
v∈U sim(u, v)rv,i∑
v∈U sim(u, v)

Let us go back to our movie ratings example. How would we predict the rating that
Bob gives to Alien? In this small-scale example, let us use user-based CF with k = 1, so

8 2. Types of Recommender Systems

that we are looking for the most similar user to Bob which has rated Alien. Since Alice
and Charlie have both rated Alien, we must determine which of the two is most similar
to Bob. The mean user ratings are rAlice = 2, rBob = 4, rCharlie = 4 and rDaniel = 3.33.
After subtracting these mean ratings from each user, we obtain the following user-centered
ratings matrix :

Star Trek Star Wars Titanic Notting Hill Alien

Alice -1 2 -1

Bob 1 0 -1

Charlie 1 -1 0

Daniel -2.33 1.67 0.67

Fig. 2.5: (User-) Centered ratings matrix. Unknown entries are highlighted in yellow.

Now we can compute the centered cosine similarity between Bob and Alice as:

sim(Bob,Alice) =
〈(1, 0, 0,−1, 0), (0,−1, 2, 0,−1)〉
||(1, 0, 0,−1, 0)||2||(0,−1, 2, 0,−1)||2

=
0√
2
√

6
= 0

And similarly between Bob and Charlie as:

sim(Bob,Charlie) =
〈(1, 0, 0,−1, 0), (0, 1, 0,−1, 0)〉
||(1, 0, 0,−1, 0)||2||(0, 1, 0,−1, 0)||2

=
1√
2
√

2
= 0.5

This way, Charlie is the most similar user to Bob which has rated Alien, and hence we
can now estimate the rating of Bob for Alien using the rating of Charlie: a 4.

The problem with user-based collaborative filtering is that when there are many users
in the system, finding the users similar to a given user is time-consuming. Therefore,
user-based CF systems do not scale well. The first recommender systems were of this
kind, but where soon replaced by item-based CF upon their inception.

2.2.2 Item-Based Collaborative Filtering

Instead of trying to find users similar to a given user, item-based collaborative filtering
tries to find items similar to a given item.

Once again we start with some definitions and follow with a concrete example. Let
Ui be the set of users that have rated item i and let ri be the mean rating for item i.
Then, we can define similarity between items in the same way as we did for users, with
the centered cosine:

sim(i1, i2) =

∑
u∈Ui1

∩Ui2
(ru,i1 − ri1)(ru,i2 − ri2)√∑

u∈Ui1
(ru,i1 − ri1)2

√∑
u∈Ui2

(ru,i2 − ri2)2

To predict the rating that user u would give to item i, let I be the set of k most similar
items to i which user u has rated. Then, we can predict with the sum:

r̂u,i =
1

k

∑
j∈I

ru,j

2.3. Latent-Factor Models 9

In our example, let us determine the rating that Bob would give to Alien, but this time
using item-based CF. Again, let us choose k = 1, so that we are looking for the movie
most similar to Alien which Bob has rated. The candidates are Star Trek, Star Wars, and
Notting Hill. We start by centering the item ratings, subtracting rStar Trek = 3, rStar Wars =
3.33, rTitanic = 4.5, rNotting Hill = 3.33 and rAlien = 2.5 from each item column respectively:

Star Trek Star Wars Titanic Notting Hill Alien

Alice -2.33 -0.5 -1.5

Bob 2 0.67 -0.33

Charlie 1.67 -0.33 1.5

Daniel -2 0.5 0.67

Fig. 2.6: (Item-) Centered ratings matrix. Unknown entries are highlighted in yellow.

We can now compute the centered cosine similarities as follows:

sim(Alien, Star Trek) =
〈(−1.5, 0, 1.5, 0), (0, 2, 0, 2)〉
||(−1.5, 0, 1.5, 0)||2||(0, 2, 0, 2)||2

= 0

sim(Alien,Star Wars) =
〈(−1.5, 0, 1.5, 0), (−2.33, 0.67, 1.67, 0)〉
||(−1.5, 0, 1.5, 0)||2||(−2.33, 0.67, 1.67, 0)||2

= 0.96

sim(Alien,Notting Hill) =
〈(−1.5, 0, 1.5, 0), (0,−0.33,−0.33, 0.67)〉
||(−1.5, 0, 1.5, 0)||2||(0,−0.33,−0.33, 0.67)||2

= −0.29

Therefore, we estimate Bob’s rating for Alien by using his rating on Star Wars: a 4.
Since items are typically much less numbered than users, item-based CF scales better

to more users. Also, using similarity across items tends to empirically give better results,
possibly because it is more meaningful to compare items to items than to compare users
to users. Indeed, items are a lot simpler to characterize than users. For example, a movie
can typically be categorized into one or a few genres, whereas a user might like several,
unrelated genres, leading to more diversity among users than among items.

Item-based CF was introduced by Amazon in 2003 [2] and represented one of the major
breakthroughs in recommender systems. They still enjoy widespread use, which earned
Amazon an IEEE test-of-time award in 2017 [3] for their original work. The simplicity
and strong performance of item-based CF makes the method very attractive, even when
faced against latent-factor models, which we discuss next. For example, the YouTube
recommender system used item-based CF methods until as late as 2010 [4] before moving
on to latent-factor models [5].

2.3 Latent-Factor Models

The development of latent-factor models was propelled by the Netflix Prize competition,
launched in October 2006. The Netflix Prize challenged teams to predict the ratings of
users on movies. The available training data consisted of 100M ratings of 480K users on
18K movies. Ratings were on a 1 to 5 scale, and the goal was to minimize the RMSE on
3M withheld test ratings dated posterior to the training data. The winning team would be
the first to improve the RMSE of Netflix’s recommender system by 10%. The competition
ended in September 2009, when the 10% improvement was achieved.

10 2. Types of Recommender Systems

The best approaches to the Netflix Prize competition relied on what are known as
latent-factor models. These can be thought of as machine-learnt versions of content-based
models, and are actually a more involved form of CF (however, since they work in a very
different way from the traditional CF-based approaches we discussed earlier, we keep them
out of the CF taxonomy).

In latent-factor models we pose (in the simplest setting) that each item and user can
be represented by k latent (that is to say, unobserved) factors or dimensions, and that the
preference of a user for an item is given by a function of the latent vector of the user and
the item, such as the similarity between the user and item latent vectors. These latent
dimensions could represent the action, romance, etc. contents of a movie, and how much
a user likes action, romance, etc. respectively. This is very similar to the content-based
methods. However, unlike content-based methods, where the dimensions are explicitly
specified, in latent-factor models the dimensions are automatically learnt from data. We
now discuss the Matrix Factorization model, the first latent-factor model introduced for
recommendation.

2.3.1 The Matrix Factorization Model

The Matrix Factorization (MF) model was introduced during the Netflix Prize competi-
tion, motivated by the SVD matrix decomposition1. The original Netflix recommender
system relied on item-based CF [6]. MF outperformed Netflix’s item-based CF approach
by around 4%; the following figure from [6] shows this, as well as the effectiveness of
different methods on the Netflix Prize competition (note that SVD corresponds to MF):

Fig. 2.7: Detail of distribution of leading submissions indicating possible techniques

In MF the central object of study is the partially observed matrix M of user-item
interactions. Each row of M corresponds to a user and each column of M corresponds
to an item. The interaction of user i with item j correspond to the entry (i, j) of this
matrix. For example, in the context of movie recommendations, entry (i, j) would contain
the rating of user i on movie j, or be empty if it is unknown. This is the same as the
ratings matrix in our toy example 2.1. This way, the problem of recommendation can be

1 https://sifter.org/simon/journal/20061211.html

2.3. Latent-Factor Models 11

framed as a matrix completion problem: given the partially observed user-item interaction
matrix, we must infer the unobserved entries. If we can do this effectively, then we can
use the predictions of our model on the unobserved entries to generate recommendations.

It is in general impossible to predict accurately (by which we mean better than ran-
domly) the unobserved entries of an arbitrary matrix. However, the user-item interaction
matrix is far from random. The existence of such structure is suggested by empirical ev-
idence that users whose opinions agree on a set of items usually agree on the remaining
set of items, which we already discussed as the basis for collaborative-filtering methods;
this is the reason why latent-factor models are a form of collaborative filtering.

A successful approach to modeling the user-item interaction matrix is with the matrix
factorization model : Let M ∈ Rm×n be the matrix of user-item interactions. Then, we
pose that M can be well approximated by a low rank matrix. That is, we pose that
M ∼= UV for some U ∈ Rm×k and V ∈ Rk×n, where k is significantly smaller than m and
n.

Why does this make sense? Recall content-based methods, where each user and item
had representations vu and vi respectively, and we ranked recommendations using the
cosine similarity between user and item representations. If instead of using cosine similarity
(which results in a value between −1 and 1) we take the inner product 〈vu, vi〉, and pose
that this is exactly the rating that user u gives to item i, then we obtain the MF model
equation. Indeed, if we let U be the matrix of user representations and V be the matrix
of movie representations, what we are stating is precisely that M = UV t.

MF can be seen as a machine-learnt version of content-based methods. In both models
each item has its set of attributes, each user is represented by how much he likes each
attribute, and ratings are the result of the compatibility between the representations of
the item and the user. However, in MF we do not specify what the dimensions of the
latent factors are. We just specify how they are related to the rating, and statistical
methods are used to learn the dimensions and the representations of the users and items
by trying to match the observed ratings. These dimensions need not make intuitive sense
at all. In fact, note that UV = (UW−1)(VW t)t for any invertible W ∈ Rk×k, so that
if U is the matrix of user representations, then UW−1 could also be the matrix of user
representations, and similarly for items.

Back to our previous example where Bob (B) has rated Star Wars (SW) a 4, Star Trek
(ST) a 5, and Charlie (C) has rated Star Wars a 5, let us see what MF would predict
about the rating of Charlie for Star Trek.

Fig. 2.8: Rating prediction example

There are four latent vectors involved: vB, vC , vSW , vST . Since Bob rated Star Trek
highly, then 〈vB, vST 〉must be large, which encourages vB and vST to be close in embedding
space. Similarly vB and vSW must be close, and finally also vC and vSW . But then, by

12 2. Types of Recommender Systems

transitivity, vC are vST are likely to be close too, and so 〈vC , vST 〉 must be large. This
way MF predicts a high rating for Charlie on Star Trek.

In general, MF embeds all users and items into the same k-dimensional space Rk,
trying to put users close to movies they rated highly and far from movies they disliked.
In our example, a 2-dimensional embedding space might (roughly) look like this:

Fig. 2.9: Embedding users and items together with Matrix Factorization

To learn the low rank representation of M when M contains continuous values (such as
movie ratings), we pose the learning problem as minimizing the (root mean) squared error
between the observed entries of the matrix and the predicted values (plus a regularization
term to avoid overfitting):

arg min
U,V

λ(||U ||22 + ||V ||22) +
∑

(i,j)∈I

(uivj −mi,j)
2

Here I is the set of observed entries of the matrix M and λ ≥ 0 is a regularization
hyperparameter. Stochastic gradient descent (SGD) can be used to find a local minimum,
as well as alternating least squares since the objective is separately convex in U and V .
When the matrix M is binary, say with values in {−1, 1} (for example in a CTR-prediction
task), we can use the logarithmic loss instead:

arg min
U,V

λ(||U ||22 + ||V ||22) +
∑

(i,j)∈I

log(1 + exp(−mi,juivj))

The choice of this loss arises from posing the problem as maximum likelihood estimation
under the probabilistic model given by

ui, vj ∼ N (0, λ−1)

mi,j |ui, vj ∼ Be(σ(uivj))

2.3. Latent-Factor Models 13

where σ(t) = 1
1+e−t is the logistic function. The general probabilistic framework gives

rise to probabilistic matrix factorization [7] and point estimates can be replaced by ac-
tual (intractable) probabilistic inference, which typically outperforms maximum likelihood
methods, at the expense of computational time.

Other loss functions such as Bayesian Personalized Ranking (BPR) Loss [8] can be used
to train the model, and the choice of loss function actually has a big impact on the model’s
generalization performance and on online metrics, but this dimension is orthogonal to our
work so we do not discuss it.

The matrix factorization model can also be enriched with user and item biases buseri

and bitemj respectively, as well as a global bias b. In this case, we would predict entry (i, j)

of the ratings matrix as b+ buseri + bitemj + uivj .
The main drawback of MF is that it cannot deal with data beyond user and item. For

example, what if we wanted to leverage other data like the gender of the user? In other
words, MF is not a general predictor. Research in this area of recommender systems has
led to the proposal of several variants of MF which can take into account side information,
the most successful and encompassing of which are Factorization Machines, and which
will be the center of our discussion.

14 2. Types of Recommender Systems

3. LEARNING PAIRWISE FEATURE INTERACTIONS

In this chapter we discuss models that are able to capture pairwise feature interactions in
data beyond user and item, overcoming the limitations of MF. We start by introducing
the degree 2 polynomial model (Poly2), and then introduce Factorization Machines (FMs)
and their variant Field-Aware Factorization Machines (FFMs).

3.1 The Degree 2 Polynomial Model

The simplest way to model pairwise feature interactions in data is to consider a degree 2
polynomial mapping. If x is the vector of explanatory features, then:

ŷPoly2(x) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

wijxixj (3.1)

where wi, wij ∈ R. This model is able to capture any set of pairwise feature interactions
because it has one weight wij per feature pair. In fact, the model is so expressive that
it is hardly useful in practice. Indeed, imagine a recommendation scenario where we
have a million users and a million items. In this case, we would need on the order of
1012 parameters for such a model, which is inviable. Also, we would not be able to
learn anything about interactions we have not observed in the data: In our example,
imagine trying to predict the rating of Charlie on Star Trek. In that case, the weight
wCharlie,Star Trek will have no training signal because the product xCharliexStar Trek is
always 0, and so the prediction of the model is meaningless. In the best case we have
a prior on wCharlie,Star Trek which drives it to 0 during training and then we predict a
‘mean-type’ rating of w0 + wCharlie + wStar Trek.

One possible way to bound the expressiveness of the Poly2 model is by using what is
known as the hashing trick. Consider instead the mapping:

ŷPoly2(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

wh(i,j)xixj (3.2)

where h is a hash function, for example h(i, j) = (12(i+ j)(i+ j + 1) + j) mod B for some
positive integer B. This effectively cuts the number of pairwise interaction weights from(
n
2

)
to B, tying together the weights of all feature pairs which happen to get hashed into

the same bucket.
This model, however, is still unable to learn anything meaningful about unobserved

interactions. Back to our example, what would we predict about the rating Charlie
gives to Star Trek? In this case, the interaction weight for Charlie and Star Trek is
wh(Charlie,Star Trek), which has been learned from all other feature pairs whose hash col-
lided with that of (Charlie, Star Trek). But the rating Alice gives to Titanic is certainly
not immediately useful for predicting the rating Charlie gives to Star Trek, so even though
we have learned something about wh(Charlie,Star Trek), it is meaningless for predicting the
value of unobserved interactions.

Factorization Machines take the best from both worlds: like the Poly2 model, they are
able to model pairwise feature interactions across any set of variables. However, they also

15

16 3. Learning Pairwise Feature Interactions

leverage the inductive bias of MF, which allows them to learn meaningful interactions for
pairs of variables that have never been observed to co-occur in the data.

3.2 The Factorization Machine Model

The Factorization Machine (FM) [9] model generalizes MF by embedding every feature
into Rk, not just user and item. This way, if we are trying to predict the rating that user
u of gender g would give to movie i, we embed user u with embedding vu, item i with
embedding vi, and also gender g with embedding vg. FMs finally pose that the rating is
given by:

〈vu, vi〉+ 〈vu, vg〉+ 〈vi, vg〉
This generalizes MF because setting vg = 0 for all g falls back to MF.

In general, given a vector of explanatory features x ∈ Rn (where categorical vari-
ables such as user, item and gender have been one-hot encoded), the FM model equation
(without linear terms) is given by:

ŷFM (x) =
n∑

i=1

n∑
j=i+1

〈vi, vj〉xixj (3.3)

where V ∈ Rn×k are parameters. The term xixj is used to scale the inner product
〈vi, vj〉 by xi and xj , allowing us to use numeric features. k plays the role of the latent
representation dimension in MF. Let us formally show (based on equation 3.3) that FMs
generalize MF: For a MF model with parameters UMF ∈ Rm×k and VMF ∈ Rk×n, let us
represent the feature vector x for FMs as the concatenation of the one-hot encoding of the
user and the item. Then x ∈ Rm+n has exactly two coordinates equal to 1, one within the
first m positions and one within the last n. We let VFM ∈ R(m+n)×k be the concatenation
of UMF and V t

MF along the first dimension. Then this FM reproduces MF exactly.
The following example from the paper on FMs [9] shows how FMs could extend the

MF model with more features beyond user and item:

Fig. 3.1: Feature engineering example for Factorization Machines

Just like with MF, we can enrich FMs with linear terms wi ∈ R to obtain:

ŷFM (x) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

〈vi, vj〉xixj (3.4)

3.3. The Field-Aware Factorization Machine Model 17

This is the original formulation of FMs as in [9].

Note the stark similarity between the FM model equation (3.4) and the Poly2 model
equation (3.1): the FM model can be thought of as a polynomial model of degree 2
where the pairwise interaction weights wij have been factored out as the inner product
of two latent vectors vi and vj . In other words, if W = (wij) is the pairwise interaction
weight matrix, then FMs pose that W = V V t. This allows FMs to model pairwise
feature interactions with nk parameters rather than

(
n
2

)
, yet unlike the Poly2 model with

hashed feature interactions, it is able to infer unobserved interactions (such as user-item
interactions) by leveraging the inductive bias of the MF model.

As shown in [9], FMs also generalize a number of previous attempts to extend MF
with metadata, such as SVD++ [10], PITF [11], and FPMC [12].

3.3 The Field-Aware Factorization Machine Model

A successful variant of FMs, called Field-Aware Factorization Machines (FFM) [13], con-
siders several small embedding spaces instead of a large unique one.

Let the features x1, x2, . . . , xn ∈ R in the dataset be grouped into fields. For example,
in the context of predicting movie ratings, let U and I be the set of users and items
respectively. Let x1, x2, . . . , x|U | constitute the one-hot representation of the user (so that
xu ∈ {0, 1} indicates the presence of user u), and let x|U |+1, . . . , x|U |+|I| constitute the one-
hot representation of the item. Then there are n features but only two fields: user and
item; x1, x2, . . . , x|U | are features corresponding to the user field, and x|U |+1, . . . , x|U |+|I|
are features corresponding to the item field.

To each unordered pair of possibly repeated fields we associate an embedding space,
obtaining

(
f+1
2

)
embedding spaces. Each feature has its own embedding in each of the

f embedding spaces corresponding to its field. This results in a total of fk parameters
per feature. Note that this means that the value of k in FFMs is typically much smaller
than the value of k in FMs: to achieve the same number of parameters, we must have
kFFM = kFM

f .

To compute the FFM model equation, we add up all pairs of similarities between
features present in the dataset, where the similarity between features i and j is defined as
the inner product of their embeddings in the embedding space corresponding to their two
fields. When there are only two fields, such as in the user-item case, only one embedding
space is used (interactions between two users or two movies are never considered), and
so FFMs are equivalent to FMs. Similarly, when all features are grouped under the same
field, there is only one embedding space and FFMs are equal to FMs. However, when
there are more than two fields, FFMs and FMs start to differ.

With the same example as before, where we had a user u, item i, and user’s gender g,
the FFM model equation would be:〈

vuser-itemu , vuser-itemi

〉
+
〈
vuser-genderu , vuser-genderg

〉
+
〈
vitem-gender
i , vitem-gender

g

〉
In general, rearranging notation slightly and scaling by xixj to allow for numeric features,
the FFM model equation is given by:

ŷFFM (x) =

n∑
i=1

n∑
j=i+1

〈
vi,f(j), vj,f(i)

〉
xixj (3.5)

18 3. Learning Pairwise Feature Interactions

where the vi,f(j) ∈ Rk and f(i) and f(j) are the respective fields of features i and j. Here
the intuition is that vi,f(j) stands for the embedding of feature i in the embedding space
corresponding to i’s field and j’s field. We can extend the FFM model equation with linear
terms to obtain:

ŷFFM (x) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

〈
vi,f(j), vj,f(i)

〉
xixj (3.6)

FFMs have been shown to outperform FMs on a number of recommendation datasets:
they have been the key model in the winning team’s approach in the Avazu CTR Prediction
competition1 and in the Criteo Display Advertising Challenge2, both in Kaggle. FFMs
will serve as our state-of-the-art to compare against when we experiment with our variants
of FMs.

1 https://www.kaggle.com/c/avazu-ctr-prediction
2 https://www.kaggle.com/c/criteo-display-ad-challenge

4. ASYMMETRY OF FACTORIZATION MACHINES

4.1 Motivation

In this work we explore an interesting phenomenon underlying the FM model equation,
which is that it is not symmetric with respect to the response variable. To state this
precisely, let

FM+
k = {ŷ : Rn → R | ∃w ∈ Rn+1, V ∈ Rn×k : ŷ(x) = w0+

n∑
i=1

wixi+
n∑

i=1

n∑
j=i+1

〈vi, vj〉xixj}

(4.1)
be the FM hypothesis space, and let:

FM−k = {−ŷ : ŷ ∈ FM+
k } (4.2)

be the result of negating each hypothesis. Then, as we will see, it is in general not true
that FM+

k = FM−k . In particular, this means that something as simple as changing the
label of the response variable in a binary classification task might affect the performance
of FMs. For example, when training a FM classifier to distinguish cats from dogs, labeling
cat as 0 and dog as 1 makes a difference compared to labeling cat as 1 and dog as 0.
Similarly, in a regression setting, multiplying the target variable by −1 might inherently
affect the way that FMs learn and make predictions.

This might come as a bit of a surprise because we do not expect the ability of FMs to
learn pairwise feature interactions to be related in any way to the encoding or sign of the
response variable. There is a gap between how we expect the model to behave, and how
it behaves in practice. In the following we explain why this asymmetry arises and relate
it to the inductive bias of FMs, which we try to shed some light on.

4.2 Reformulating FMs

Recall that the FM model equation is given by:

ŷFM (x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

〈vi, vj〉xixj (4.3)

where vi are k-dimensional vectors. Note that naive computation would require O(n2k)
time. Compare this against the O(n) computational cost of linear models and the fact
that in typical recommender system applications n is in the millions, and it looks like
FMs are too expensive for any practical purpose. However, the FM model equation can
be rewritten as follows, as shown in [9]:

ŷFM (x) = w0 +
n∑

i=1

wixi +
1

2

k∑
j=1

((n∑
i=1

vi,jxi

)2
−

n∑
i=1

v2i,jx
2
i

)
(4.4)

This, instead, can easily be computed in linear time O(nk). In fact, this can be computed
in time O(ñk) where ñ is the number of non-zero entries in x (and which is typically equal

19

20 4. Asymmetry of Factorization Machines

to f , the number of fields of the dataset). Similarly, each gradient ∂
∂vi,j

ŷFM (x) can be

computed in time O(ñ):

∂

∂vi,j
ŷFM (x) = xi

(n∑
i=1

vi,jxi

)
− vi,jx2i (4.5)

Moreover, since for a fixed j the sum
∑n

i=1 vi,jxi is shared across all gradients ∂
∂vi,j

ŷFM

for 1 ≤ j ≤ n, then computation can be arranged to compute all gradients in linear time
O(ñk). Hence both evaluation and gradient computation of FMs (for a single training
example) can be carried out in time O(ñk). The following pseudocode shows how we
would train FMs this way:

Algorithm 1 SGD training of FMs under logarithmic loss (without regularization)

1: Initialize wi ∈ R, vi ∈ Rk randomly, and let η be the learning rate (which in general
can be adaptive and per-coordinate)

2: Repeat until convergence:
3: for (x, y) ∈ Training Set do
4: loss = log(1 + exp(−yŷ(x)))
5: dloss

dŷ = −y
1+exp(yŷ(x))

6: w0 ← w0 − η dloss
dŷ

7: for i ∈ {1, 2, . . . , n} such that xi 6= 0 do
8: wi ← wi − η dloss

dŷ xi
9: end for

10: for j ∈ {1, 2, . . . , k} do
11: s =

∑n
i=1 vi,jxi

12: for i ∈ {1, 2, . . . , n} such that xi 6= 0 do
13: vi,j ← vi,j − η dloss

dŷ xi(s− vi,jxi)
14: end for
15: end for
16: end for

4.3 Asymmetry of FMs

The reformulation of FMs is interesting in its own right, but not only because it allows
efficient learning of FMs, but because it also reveals the asymmetric nature of the FM
model equation. Indeed, the pairwise interaction terms got regrouped as a sum of k squared
hyperplanes (modulo the self-interaction terms

∑n
i=1 v

2
i,jx

2
i). These squared hyperplanes

are all convex and so impose a convex shape to the FM model equation. One (brutal)
way to think about this is that FMs are to a linear model as the function f(x) = x2 is to
f(x) = x. In fact, if we omit the linear term w0 +

∑n
i=1wixi from the FM model equation

and drop the self-interaction terms
∑n

i=1 v
2
i,jx

2
i in the inner sum, then FMs are simply a

sum of squared hyperplanes and cannot make negative predictions at all:

ŷFM (x) =
1

2

k∑
j=1

(n∑
i=1

vi,jxi

)2
(4.6)

This perspective, where we reason about FMs in terms of sums of squared hyperplanes as in
reformulation 4.4 rather than as a polynomial model of degree 2 with factored interaction

4.3. Asymmetry of FMs 21

weights as in 4.3, is what is referred to as the elementary view on FMs in [1]. It is meant
to be elementary in the sense that much of the original intuition based on inner products
is dropped in favour of what is arguably an easier way to reason about the actual shape
of the FM model equation. Indeed, the asymmetry of the FM model equation has now
become apparent.

The natural question now is: how does this asymmetry relate to the inductive bias of
Factorization Machines? How are FMs learning pairwise feature interactions? The next
is an good example to reason about this.

Consider the following dataset, which portrays the impact of several factors on life
expectancy:

smokes sedentary unhealthy life
life diet expectancy

0 0 0 10

1 0 0 8

0 1 0 8

0 0 1 8

1 1 0 2

1 0 1 2

Fig. 4.1: Toy dataset

We purposefully omitted the observation (0, 1, 1, 2) from the dataset to use it as our test
case. What will FMs learn about the interaction between sedentary life and unhealthy diet
from this dataset? Out intuition demands they interact in a harmful way. However, for
FMs, note that smokes (S) has similar interactions with sedentary life (SL) and unhealthy
diet (UD) for predicting life expectancy. In other words, 〈vS , vSL〉 ∼ 〈vS , vUD〉 << 0.
This puts vSL and vUD diametrically opposite from vS . But then vSL and vUD will be
close in the embedding space. Hence 〈vSL, vUD〉 > 0 and FMs will infer that sedentary life
and unhealthy diet must have a joint positive contribution to life expectancy. This is the
opposite of what we were expecting! What went wrong?

Let us explain the previous example with concrete numbers. To make our point we
will consider k = 1, but as we will prove, a similar result holds in higher dimensions. The
FM model equation for k = 1 is:

ŷFM (x) = w0 + w1x1 + w2x2 + w3x3 + v1v2x1x2 + v1v3x1x3 + v2v3x2x3 (4.7)

where wi, vi ∈ R. Let us fit this FM to the data and see what it learns about the pairwise
interaction between the features sedentary life and unhealthy diet ; our intuition demands
this weight to be negative. Note that the weights for the pairwise interactions are v1v2, v1v3
and v2v3, whose product is a perfect square. Thus, if the FM infers from the data that
smoking and having a sedentary life should have a negative impact on life expectancy, and
similarly that smoking and having an unhealthy diet should have a negative impact on life
expectancy, then the FM must conclude that having a sedentary life and an unhealthy
diet should have a positive impact on life expectancy. For example, the FM could learn
the weights

(w0, w1, w2, w3, v1, v2, v3) = (10,−2,−2,−2,−2, 2, 2)

22 4. Asymmetry of Factorization Machines

which fit the data, but will surprisingly predict a life expectancy of 10 for point (0, 1, 1).
Note that if we reverse the effect of the independent variables on the dependent variable,
say by multiplying the life expectancy by −1 (call this death expectancy due to lack of a
better term) as in figure 4.2, then the FM can learn weights

(w0, w1, w2, w3, v1, v2, v3) = (−10, 2, 2, 2, 2, 2, 2)

and correctly predict a value of −2 for point (0, 1, 1).

smokes sedentary unhealthy life
life diet expectancy

0 0 0 10

1 0 0 8

0 1 0 8

0 0 1 8

1 1 0 2

1 0 1 2

0 1 1 10

(a) FMs fail to infer the interaction
as desired

smokes sedentary unhealthy ‘death’
life diet expectancy

0 0 0 -10

1 0 0 -8

0 1 0 -8

0 0 1 -8

1 1 0 -2

1 0 1 -2

0 1 1 -2

(b) FMs infer the interaction
as desired

Fig. 4.2: Effect of reversing the response variable on FM’s inductive bias. Toy dataset.

In the general case (k ≥ 1), it is not necessarily true that if 〈v1, v2〉 and 〈v1, v3〉 are
negative, then 〈v2, v3〉 is positive. For larger values of k, the high-dimensionality of the
embedding space allows the vectors to accommodate in more sophisticated ways. However,
the following result holds:

Theorem. Given n + 2 vectors in Rn (n ≥ 1), there are two whose inner product is
non-negative.

Proof. We prove the proposition by induction on n. For n = 1 it is trivial. Suppose
it is true for some n− 1 ≥ 1 and let us prove it for n. Let v1, v2, . . . , vn+2 be n+ 2 vectors
in Rn. If v1 = 0 we are done, so suppose otherwise. If any of the other vi (i 6= 1) forms
a non-obtuse angle with v1 we are also done, so suppose 〈vi, v1〉 < 0 for all i 6= 1. Write
vi = 〈vi, v1〉 v1

|v1|2 + ui where ui ∈ 〈v1〉⊥. Then u2, u3, . . . , un+2 are n + 1 vectors in an

n − 1-dimensional space isomorphic to Rn−1, so by the inductive hypothesis there exist
2 ≤ s < t ≤ n+ 2 such that 〈us, ut〉 ≥ 0. Since 〈vs, v1〉 , 〈vt, v1〉 are both negative it follows

that 〈vs, vt〉 =
〈
〈vs, v1〉 v1

|v1|2 + us, 〈vt, v1〉 v1
|v1|2 + ut

〉
= 〈vs,v1〉〈vt,v1〉

|v1|2 +〈us, ut〉 > 〈us, ut〉 ≥ 0,

and we are done. �

As a corollary, given a FM with embedding of dimension k, for any k+2 chosen features
there will always be two whose pairwise interaction weight is non-negative. This is an easy
to grasp result showing a limitation of FMs. Of course, the result is false if ‘non-negative’
is changed by ‘non-positive’, which displays the asymmetric nature of FMs.

Our analysis raises some questions regarding the inductive bias of FMs: we would like
to know intuitively what criterion FMs are using to infer the pairwise interaction weights,
and why this criterion is asymmetric. To answer this question, it is again convenient to
look at the case k = 1 (larger values of k are just meant to generalize this intuition to

4.4. Exploiting or Addressing Asymmetry 23

higher dimensions) and consider a graph on n vertices, one vertex per feature. Let the
edge between two vertices be assigned the weight of the pairwise interaction between those
features. Assume for simplicity that all weights are non-zero. Then one can prove that
FMs can model precisely those graphs where:

1. For every cycle of even length, the two alternating products of edge weights are
equal.

2. For every cycle of odd length, the product of its weights is positive.

From this, it is clear that FMs (with k = 1) have only n degrees of freedom: fix the weights
of a spanning tree and an edge forming an odd cycle (in a way that does not violate
condition 2), and from the above restrictions all other weights are uniquely determined.
FM−1 changes (2) to read ‘for every cycle of odd length, the product of its weights is
negative’. With some poetic license, we can say that FMs work under the assumption
that the friend of my friend is my friend, and the friend of my enemy is my enemy. FMs
‘fail’ in our toy dataset because our intuition want us to infer from two negative edges in
a triangle a third negative edge, but the inductive bias of FMs will do the exact opposite.

Explaining why this issue does not arise in the toy user-movie dataset is a bit more
subtle, and has to do with the fact that in this dataset the pairwise weights that are
only ever exercised are induced by a bipartite graph with users on one side and movies
on the other, but FM+

k and FM−k are equally expressive in this context: they are both
equivalent to MF. Formally, FM+

k = FM−k when we restrict the domain of the functions
in FM+

k and FM−k to the set X of vectors x ∈ {0, 1}U+I (U, I ∈ N fixed) such that
exactly one of x1, . . . , xU is 1, and exactly one of xU+1, . . . , xU+I is 1. The proof for
this is easy: if f ∈ FM+

k is parametrized by the weights (w0, . . . , wn, v1, . . . , vU+I), then
−f ∈ FM+

k , parametrized by the weights (−w0, . . . ,−wn,−v1, . . . ,−vU , vU+1, . . . , vU+I),
hence FM+

k = FM−k .

4.4 Exploiting or Addressing Asymmetry

The previous discussion suggests a trivial trick to try to improve the performance of FMs:
since FM+

k 6= FM−k (except specific cases as the one discussed), just by reversing the value
of the response variable in the dataset (which is equivalent to training a model from FM−k
instead of FM+

k) the performance of FMs might improve. Ensembling models from FM+
k

and FM−k might be another good idea, which we will explore extensively later.

If we talk about ‘fixing’ the asymmetry of FMs, some good ideas can be taken from
the work of [14]. Indeed, we can consider:

ŷ(x) = w0 +
n∑

i=1

wixi +
1

2

k∑
j=1

λi
((n∑

i=1

vi,jxi
)2 − n∑

i=1

v2i,jx
2
i

)
(4.8)

where λi ∈ R. Since the absolute value of λi can be absorbed into the right hand
factor, this hypothesis space is as expressive as limiting each λi to take the value −1 or
1. From our elementary point of view, the squared hyperplanes can now be either added
or subtracted. A middle ground approach which does not require fitting λ is to just force
half the λi in equation 4.8 to be 1 and the other half to be −1. We will refer to these

24 4. Asymmetry of Factorization Machines

symmetric FMs as neutral FMs1, and denote their family by

FM±k = {ŷ : Rn → R | ∃w ∈ Rn+1, V ∈ Rn×k :

ŷ(x) = w0 +

n∑
i=1

wixi +
1

2

k∑
j=1

(−1)j
((n∑

i=1

vi,jxi

)2
−

n∑
i=1

v2i,jx
2
i

)
}

Interestingly, equation 4.8 is closely related to the following model, also derived from
[14]:

ŷ(x) := w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

〈ui, vj〉xixj (4.9)

where w0 ∈ R, w ∈ Rn and U, V ∈ Rn×k. In essence, the asymmetry we have discussed is
directly related to the positive semi-definiteness of the pairwise interaction weight matrix
W . By relaxing the representation of W from W = V V T to W = UV T , the positive
semi-definiteness of W is bypassed. The results in [14] suggest that the models defined by
equations 4.8 and 4.9 should be of comparable performance when the embedding size of
the former is twice the one of the latter.

Finally, unlike FMs, FFMs do not typically exhibit the asymmetry that FMs do.
Indeed, if only one feature is active per field each time (that is, if xixj 6= 0⇒ f(i) 6= f(j))
which is typically the case by the choice of fields, then the FFM model equation can be
easily reversed by multiplying each wi by −1 and multiplying each vi,g with f(i) < g by

−1. The intuition behind this is that in each of the
(
f
2

)
embedding spaces corresponding

to two distinct fields we choose the embeddings corresponding to one of the two fields
and multiply them by -1. When might a field have more than one feature active at a
time, and so this argument fail? For example, this could be the case if for a movie we
have a list of one or more genres associated to that movie, and we choose to group all
genre indicator variables under the same field. Even then, this asymmetry is quite mild
and ‘local’ in nature: notice that in this example simply removing the genre field would
restore the symmetry of the FFM model equation. On the other hand, the asymmetry of
the FM model equation appears to be more ‘global’ in nature.

Before moving on, let us remark a trivial fact which we will use later on:
Observation. If we ensemble a model from FM+

k with a model from FM−k , then the
resulting model belongs to the class of models FM±2k. In fact:

{f + g : f ∈ FM+
k , g ∈ FM

−
k } = FM±2k

This is interesting because it tells us that training a model from FM+
k and a model from

FM−k and ensembling them can be seen as a (very unconventional) way to train a model
from FM±2k. In our experiments we will compare this with training a model from FM±2k
directly. Since FMs are known to overfit, ensembling can be seen as a way to regularize
the training of a model from FM±2k. We will show in our experiments that this ensembling
trick is quite effective on the recommendation datasets.

1 We prefer to call them neutral FMs rather than symmetric FMs not to overload the already widely
used mathematical term symmetric.

5. INTERMEDIATE-ORDER FACTORIZATION MACHINES

5.1 Motivation

One line of research on FMs involves exploring higher-order interactions. FMs model
interactions of order 2, assigning a weight of wij = 〈vi, vj〉 to the interaction term xixj .
The idea behind higher-order FMs is to model the 3-way interaction terms xixjxl, the
4-way interaction terms xixjxlxt, and so on, in a similar way. The original FM paper by
Rendle [9] proposes generalizing FMs from 2-way to d-way via:

ŷHOFM(x) = w0 +
n∑

i=1

wixi +
d∑

l=2

n∑
i1=1

· · ·
n∑

il=il−1+1

(l∏
j=1

xij

)(kl∑
q=1

l∏
j=1

v
(l)
ij ,q

)
(5.1)

The intuition is simpler than the equation suggests: just as in standard FMs the weight wij

of the pairwise interaction xixj is the inner product 〈vi, vj〉, for 3-way interactions we just

let the weight wijl corresponding to xixjxl be the ‘triple vector product’
∑k

q=1 vi,qvj,qvl,q.
We do this for all orders from 2 to d, with different embeddings v each time, and finally
add up all terms.

Later work [15] shows how to efficiently implement these Higher-Order Factorization
Machines (HOFMs) with dynamic programming. HOFMs have not received much adop-
tion though, possibly because they are a lot more complex than standard 2-way FMs to
implement and do not show much performance improvement.

In this work we take a different approach, motivated by equation 4.4. We attempt to
simplify the HOFM proposal and at the same time to generalize FMs in a new direction.
The idea is that the essence of FMs lies in the distributive law: when squaring a hyperplane
pairwise interaction terms arise naturally, and similarly when cubing a hyperplane 3-
way interaction terms arise. Of course, this also generates some unwanted terms such
as v2i vjx

2
ixj which we must deal with. But clearly, there is nothing stopping us from

exponentiating a hyperplane to an arbitrary d-th power. By doing so, we can interpret it as
giving rise to d-way interactions, but more importantly, provides us a way to continuously
parameterize the interaction order in the FM model equation. Concretely, we explore
generalizing standard FMs of order 2 to order d in the following way:

ŷFMd
(x) := w0 +

n∑
i=1

wixi +
1

2

k∑
j=1

∣∣∣∣∣
n∑

i=1

vi,jxi

∣∣∣∣∣
d

−
(n∑

i=1

v2i,jx
2
i

) d
2

 (5.2)

When d = 2 this is the same as the original FM model equation 4.4. Of course, as d
varies further away from 2 the model diverges more and more from HOFMs. Think about
d = 4 for example, where expanding we get a variety of unwanted terms besides xixjxlxt
(i < j < l < t), such as xix

2
jxl. Even for d = 3 the use of the absolute value in equation

5.2 makes it unclear what the interpretation of the weight for term xixjxl (i < j < l) is.
But we do not care about any of this: we abandon our original interpretation in favor of
increased flexibility and mathematical convenience. All models are wrong anyway!

25

26 5. Intermediate-Order Factorization Machines

5.2 Implementation

Adapting 2-way FMs to support Intermediate-Order FMs as in equation 5.2 is easy in the
case of SGD learning. We believe it might not be possible to do so efficiently in the case
of ALS and MCMC learning, because the key property of multi-linearity, which leads to
multi-convexity, is lost. See [16] for a full exposition on these learning procedures applied
to FMs.

When d ≥ 1, equation 5.2 has continuous partial derivatives with respect to the vi,j ,
given by:

∂

∂vi,j
ŷFMd

(x) =
d

2
xisign(D1)|D1|d−1 −

d

2
vi,jx

2
iD

d−2
2

2 (5.3)

where D1 =
∑n

i=1 vi,jxi and D2 =
∑n

i=1 v
2
i,jx

2
i . This is similar to the derivatives of 2-way

FMs and can also be computed efficiently with minor modifications to the code. The only
caveat is that exponentiating a floating point number to an arbitrary exponent is a priori
a slow operation, but this can be overcome by restricting ourselves to suitable values of
d, such as d ∈ {1.25, 1.50, 1.75, . . . } for which exponentiation can be efficiently computed
by taking only square roots. Note also that equation 5.2 can be easily differentiated with
respect to d, allowing us to learn the interaction order from the data if we wish (at the
expense of computational cost).

6. EXPERIMENTAL RESULTS

We compare our FM variants against state-of-the-art FFMs following the FFM paper [13].
The paper’s source code is publicly available1, allowing us to reproduce their results and
extend their code with our own FM variants. Most of our experiments are based off this
paper, with the exception of experiments on the MovieLens dataset, which we included
because it constitutes the prototypical recommendation scenario of rating prediction and
is also a regression problem, unlike all of the other experiments.

The libFFM library2 benefits from the use of the SSE instruction set and parallelism
through the OpenMP library. This speeds up training considerably (by an order of mag-
nitude in our experiments). The libFFM library has also been widely used at Kaggle
competitions and was the key to a first place win at both the Criteo Display Advertising
Challenge3 and the Avazu CTR Prediction competition4, won by the authors of the FFM
paper [13].

The datasets consist of binary classification tasks, with the exception of the MovieLens
dataset, and can be divided into two categories:

• Small Datasets: Four of these are generic datasets unrelated to recommender
systems, named phishing, adult, rna and ijcnn. The other two small datasets
are movielens-100K and movielens-100K-all, from the recommendation domain.
The difference between these two variants of MovieLens is that the former contains
only user and item information, whereas the latter is enriched with user and item
metadata, allowing us to appreciate how the inclusion of metadata increases the
performance of FMs.

The small size of these datasets allows us to tune the hyperparameters of all models
with grid search in an automated fashion. The non-recommendation datasets allow
us to judge the impact of asymmetry and interaction order on the performance of
FMs as a general predictor.

• Large Datasets: These are the criteo and avazu CTR-prediction datasets from
the aforementioned Kaggle competitions. Like the MovieLens dataset, this is the
kind of setting where FM-based models are meant to excel at, particularly FFMs.

Unlike the small datasets, exhaustive hyperparameter search is not possible and so we
stick to the original hyperparameters in the FFM paper [13]; we just explore varying
FM order and symmetry type while keeping the other hyperparameters fixed. The
goal in this case is not to find the best possible model, but rather to determine how
readily exploitable asymmetry and interaction order are.

The models considered are:

• LM: The standard linear model, ŷLM (x) = w0 +
∑n

i=1wixi.

1 https://www.csie.ntu.edu.tw/ cjlin/ffm/exps/
2 https://www.csie.ntu.edu.tw/ cjlin/libffm/
3 https://www.kaggle.com/c/criteo-display-ad-challenge
4 https://www.kaggle.com/c/avazu-ctr-prediction

27

28 6. Experimental Results

• Poly2: The polynomial model of degree 2 with hashed cross features as in equation
3.2. The number of buckets is always 107 (to match the experiments in [13]).

• FFM: FFMs as in 3.6. When we explore the effect of reversing the value of the
response variable on FFMs we will call these FFM-Reversed. Of course, since
in most cases explored the class of FFM models is by construction symmetric with
respect to the response variable, any difference in performance between FFM and
FFM-Reversed is attributed to noise in the optimization procedure (specifically,
model initialization).

• FM: We explore standard FMs as in 4.1, which we call simply FM-Standard.
When reversing the value of the response variable as in 4.2 we call these FM-
Reversed. Finally, we consider the symmetric variant of FMs as in 4.8 and call
these FM-Neutral.

We also explore Intermediate-Order FMs as in 5.2. When the interaction order is
different from 2, we indicate this by appending the order to the name, i.e. FM-
1.25-Standard indicates a 1.25-way standard Factorization Machine as in 5.2. The
interaction orders explored are 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, since these can
be efficiently implemented with square root operations only.

• Gradient-Boosted Decision Trees (GBDT): GBDTs are state-of-the-art gen-
eral predictors. We use the XGBoost implementation on the four small, non-
recommendation datasets, and the LightGBM implementation on the MovieLens
dataset (because LightGBM is more efficient at handling high-dimensional categor-
ical variables such as user and item).

• When we ensemble two models A and B, we term this model A+B. Of particular
interest is the ensemble FM-Standard + FM-Reversed, which as discussed in
section 4.4, belongs to the class of FM-Neutral models.

With regard to the inclusion or exclusion of linear terms in the Poly2, FM, and FFM
models, these are included for the small datasets and excluded for the large
datasets so as to follow the FFM paper [13]. In our experiments, inclusion of linear
terms for the large datasets does not change results much. These results are included in
the appendix for completeness. All models are trained with the Adagrad optimizer [17].

One goal of this thesis has been to make our work fully reproducible. As a result, we
have provided code for reproducing every result reported. The code can be found here:

https://bitbucket.org/sebaprillo/thesis-fms/src/master/

Submissions to the Kaggle platform have also been automated. Running our main
script will re-run all experiments and re-compile the thesis with the new results.

6.1 Small Datasets

The following table summarizes the characteristics of the small datasets:

6.1. Small Datasets 29

Data set Type # Training Instances # Test Instances # Features # Fields

phishing Classification 8860 2195 100 30
adult Classification 32561 16281 308 14

cod-rna Classification 59535 271617 8 8
ijcnn Classification 49990 91701 22 22

movielens-100K Regression 80000 20000 2625 2
movielens-100K-all Regression 80000 20000 2689 6

Fig. 6.1: Characteristics of the small datasets

The training protocol for a model (which is taken from the FFM paper for the sake of
reproducibility) is the following:

1. The training set is randomly split with a 80-20 ratio into a sub-training and validation
set.

2. For each setting of hyperparameters, the model is trained on the sub-training
set and evaluated on the validation set. We record the best loss achieved on the
validation set and the number of iterations required to achieve that loss (this is a
form of early-stopping).

3. After all hyperparameter settings have been tried, the best performing one is re-
trained on the full training set for the number of iterations recorded, and finally
evaluated on the test set. This is what is reported in the tables.

All grids for all models have been chosen of the same size to allow for a fairer compar-
ison. As in the FFM paper, we grid search for the regularization hyperparameter λ and
the embedding size k. However, we also grid search for the learning rate, as it has a big
impact on performance. For the details, refer to the code of the thesis.

30 6. Experimental Results

6.1.1 phishing dataset

The phishing dataset from the UCI Machine Learning Repository5 contains 11055 in-
stances each corresponding to a website, with 8860 training instances and 2195 test in-
stances. From each website 30 categorical fields, each of which takes on 2 or 3 different
values, are extracted, and the task is to predict whether the website is a phishing website
or not. After one-hot encoding the number of features is 100.

We extend the table in the FFM paper ([13, Table 4]) with our best FM variant,
and also report the performance of FFM-Reversed to get a grasp of the noise underlying
our experimental procedure; recall that FFM and FFM-Reversed should have similar
performance because the FFM model equation is symmetric in this case, so any discrepancy
can be attributed to optimization noise due to model initialization.

LM Poly2 FM FFM FFM- FM-1.25- GBDT
Reversed Neutral

FFM paper 0.14211 0.11512 0.09229 0.10650 - - -
Ours 0.13810 0.09123 0.09559 0.08344 0.09020 0.06992 0.06225

Fig. 6.2: Grid search results for the phishing dataset. The best logloss (excluding GBDT) is
underlined.

Fig. 6.3: Grid search results (logloss) for varying symmetry type and order of FMs

• The phishing dataset is the smallest one considered, and so we should be very
careful in our analysis. Indeed, observe the performance gap between FFM and
FFM-Reversed: it is quite large and simply due to optimization noise. In particu-
lar, the great performance of FM-1.25-Neutral in the table above likely has a noise
component to it. This does not mean we cannot spot some consistent patterns from
the results, we just have to be careful.

• Unlike the FFM paper, we found that Poly2 and FFMs match or outperform (stan-
dard) FMs on this dataset.

5 http://archive.ics.uci.edu/ml/datasets/Phishing+Websites

6.1. Small Datasets 31

• Surprisingly, an order of 2 for FMs appears to be a bad choice on this dataset.
Performance seems to improve as we decrease or increase the interaction order,
outperforming Poly2 and FFMs.

• Asymmetry has no clear impact on performance given the level of noise we are
dealing with.

• There is not much benefit from ensembling FM-Standard and FM-Reversed on this
dataset.

• GBDT is the best model, but FM-1.25-Neutral does a reasonable job as a general
predictor.

32 6. Experimental Results

6.1.2 adult dataset

The adult dataset from the UCI Machine Learning Repository6, also known as the census
income dataset, contains a mix of 14 categorical and continuous variables describing socio-
economical characteristics of 48842 people. The training set size is 32561 and the test set
size 16281. Attributes include age, occupation, and gender. The goal is to predict whether
a person’s yearly income exceeds $50K. The numerical features are discretized into 94 bins
(following the FFM paper [13]), leading to a total of 308 features. GBDT is trained on
the raw data without any discretization.

LM Poly2 FM FFM FFM- FM-3.0- GBDT
Reversed Neutral

FFM paper 0.30970 0.30655 0.30763 0.30565 - - -
Ours 0.30899 0.30620 0.30781 0.30568 0.30580 0.30588 0.27514

Fig. 6.4: Grid search results for the adult dataset. The best logloss (excluding GBDT) is under-
lined.

Fig. 6.5: Grid search results (logloss) for varying symmetry type and order of FMs

• We see that the experimental protocol is more robust for this dataset, as FFM and
FFM-Reversed both achieved close performance.

• Asymmetry has a big impact on the performance of FMs when contextualized with
the performance of FFMs: FM-Neutral outperforms its asymmetric counterparts
and significantly closes the performance gap with FFMs.

• Despite the merits of FM-Neutral, the ensemble of FM-Standard and FM-Reversed
outperforms FM-Neutral most times. The ensemble is quite robust across all orders,
even as the performance of its parts vary. Ensembling seems effective here.

• Order has a marked impact on the performance of FM-Neutral, with higher order
performing better, but does not impact much on the performance of FM-Standard

6 http://archive.ics.uci.edu/ml/machine-learning-databases/adult/

6.1. Small Datasets 33

and FM-Reversed.

• GBDT outperforms all other models by a huge margin. In fact, the impact of
symmetry type and interaction order on the performance of FMs is meaningless
when contextualized with the performance of GBDTs.

34 6. Experimental Results

6.1.3 rna dataset

The rna dataset7 consists of 331152 instances with 8 numerical fields each. Of these,
59535 belong to the training set and 271617 to the test set (an unusual split). The task
is to predict whether a given sequence of RNA is coding or not. Features correspond to
statistics on this sequence. No bucketization is performed, so there is the same number of
features as there are fields.

LM Poly2 FM FFM FFM- FM-3.0- GBDT
Reversed Reversed

FFM paper 0.13829 0.12874 0.12580 0.12914 - - -
Ours 0.13310 0.12874 0.12334 0.12545 0.12540 0.12270 0.08825

Fig. 6.6: Grid search results for the rna dataset. The best logloss (excluding GBDT) is underlined.

Fig. 6.7: Grid search results (logloss) for varying symmetry type and order of FMs

• FFM and FFM-Reversed have very similar performance, as desired.

• Asymmetry has a visible impact on the performance of FMs when contextualized
with the performance of FFMs. FM-Neutral is outperformed by both FM-Standard
and FM-Reversed, as well as by their ensemble by a large margin. This is interesting
as FM-Neutral should be able to model the best of FM-Standard and FM-Reversed,
and so suggests issues with the optimization of FM-Neutral.

• Higher orders generally lead to better performance, but the effect is not as marked
as for symmetry type.

• GBDT once again outperforms all other models by a huge margin. And just as in the
adult dataset, the impact of asymmetry and interaction order on the performance
of FMs is meaningless when viewed in the context of the performance of GBDTs.

7 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html#cod-rna

6.1. Small Datasets 35

6.1.4 ijcnn dataset

The ijcnn dataset8 belongs to an old neural network competition. It consists of 141691
instances each 22 fields with of which 49990 belong to the training set and 91701 to the
test set. All features are numerical and no bucketization is performed, so as in the rna
dataset we are left with the same number of features as there are fields.

LM Poly2 FM FFM FFM- FM-1.25- GBDT
Reversed Neutral

FFM paper 0.20093 0.08981 0.07087 0.06920 - - -
Ours 0.20991 0.07006 0.06984 0.06714 0.06560 0.04346 0.04282

Fig. 6.8: Grid search results for the ijcnn dataset. The best logloss (excluding GBDT) is under-
lined.

Fig. 6.9: Grid search results (logloss) for varying symmetry type and order of FMs

• FFM and FFM-Reversed have close performance, as desired.

• Results are quite similar to those of the phishing dataset (but with significantly
less noise thanks to the larger dataset size).

• Order has an outsized impact on performance - even in the context of the perfor-
mance of GBDTs - with small and large orders performing best.

• Asymmetry has little to no impact on performance, with just FM-Standard perform-
ing worse than its counterparts for the higher orders.

• There is no benefit from ensembling FM-Standard and FM-Reversed on this dataset.

• GBDT is the best performing model, but FMs achieve similar performance with
FM-1.25-Neutral.

8 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html

36 6. Experimental Results

6.1.5 movielens-100K dataset

The movielens-100K dataset9 consists of 100K ratings of 943 users on 1682 movies, on
a scale from 1 to 5. This is a prototypical recommendation problem, and the MovieLens
dataset in particular has been extensively studied [18].

Note that since the dataset consists of only user and item, then the model families
FM-2.0-Standard, FM-2.0-Neutral, FM-2.0-Reversed, FFM, FFM-Reversed all coincide.
Any difference in performance between these classes is therefore randomness in our exper-
imental procedure.

LM Poly2 FM FFM FFM- FM-2.0- GBDT
Reversed Neutral

0.93277 0.93275 0.89867 0.89677 0.89917 0.89629 1.00839

Fig. 6.10: Grid search results for the movielens-100K dataset. The best RMSE is underlined.

Fig. 6.11: Grid search results (RMSE) for varying symmetry type and order of FMs

• FM-2.0-Standard, FM-2.0-Neutral, FM-2.0-Reversed, FFM and FFM-Reversed all
have close performance within a range of 0.006, as desired.

• Order has a mild impact on performance, but unlike the ijcnn dataset, standard
interaction terms of order 2 work best.

• Asymmetry, on the other hand, has little impact on performance. This we know is
true in theory for order 2, but it translates to other orders as well.

• The ensemble of FM-Standard and FM-Reversed (which is the same as ensembling
two models from FM-Standard in this case) offers little improvement.

• GBDT performs very poorly, which is no surprise as the dataset consists of two high-
cardinality categorical variables (user and item). One of the strengths of GBDTs
is that they are robust to the scale of numerical variables (because they work with
quantiles), which is also of no use in this setting.

9 https://grouplens.org/datasets/movielens/

6.1. Small Datasets 37

6.1.6 movielens-100K-all dataset

The movielens-100K-all dataset extends the movielens-100K dataset with user and
item metadata. These are:

• the user’s age, gender, and occupation

• the movie’s genre(s).

User age has been bucketized into 5 same-sized bins. This way, all features are categorical.
Note that due to the inclusion of metadata, the classes FM-Standard, FM-Neutral,

FM-Reversed, and FFM are all different.10

LM Poly2 FM FFM FFM- FM-2.0- GBDT
Reversed Neutral

0.93251 0.91715 0.89294 0.89527 0.89557 0.88956 0.93904

Fig. 6.12: Grid search results for the movielens-100K-all dataset. The best RMSE is underlined.

Fig. 6.13: Grid search results (RMSE) for varying symmetry type and order of FMs

It is interesting to note how the performance of the linear model has not improved with
the inclusion of metadata (the performance of LM for movielens-100K and movielens-
100K-all is almost the same), whereas for all other models, which are able to capture
pairwise feature interactions, the performance has improved. This is most dramatical for
the Poly2 and GBDT models, which seem to benefit more from metadata than the latent-
factor models (FM and FFM), presumably because the latent-factor models are based on
matrix factorization, which is already tailored to the user-item case.

In terms of the impact of order and asymmetry, results are pretty similar to the
movielens-100K dataset: order has little impact and FM-Standard, FM-Neutral and
FM-Reversed all perform similarly. However, there is one clear difference with respect
to the movielens-100K dataset: the ensemble of FM-Standard with FM-Reversed is

10 In fact, since a movie can have more than one genre associated to it, and we have chosen all genres to
fall under the same field, we have FFM 6= FFM-Reversed for the first time.

38 6. Experimental Results

stronger this time, across all orders. For example, the drop in RMSE obtained by ensem-
bling FM-Standard with FM-Reversed is 0.0049 for movielens-100K-all, which is al-
most twice the improvement for movielens-100K, which is 0.0029. In contrast, we found
that the ensemble of FFM with FFM-Reversed dropped its improvement from 0.0029 on
movielens-100K to 0.0023 on movielens-100K-all. The asymmetry of FMs would ex-
plain this phenomenon: as features are added beyond user and item, the predictions of
FM-Standard and FM-Reversed start to differ, and their ensemble gets stronger.

6.2. Criteo Dataset 39

6.2 Criteo Dataset

The criteo dataset11 from the Criteo Display Advertising Challenge consists of 7 days of
display ads served by Criteo, for a total of 45M training instances. The task is to predict
whether the ad was clicked or not, and the metric to optimize is logloss. The test set
contains 6M instances from the day following the training data. Each display is described
by 13 numerical features and 26 categorical features, all undisclosed (no description of the
features is given). After preprocessing and bucketizing numerical features, the features
are hashed down to 1M different values with the hashing trick12.

We would like to point out that the hashing trick might actually asymmetrize the FFM
model equation, but the picture is somewhat contrived (features suddenly get shared across
fields), so we leave it out of the discussion. We found this to have no practical impact, for
the correlation between the predictions of FFM and FFM-Reversed in our experiments is
almost perfect.

6.2.1 Table of Results

We reproduce [13, Table 3 (a)] and extend it with FM-Neutral and FM-Reversed (note
that FM-Standard in our table stands for FM in the original table [13, Table 3 (a)]). For
readability, we exclude results for intermediate order FMs from this table.

training time public set
Model parameters (seconds) logloss rank

LM η = 0.2, λ = 0, t = 13 289 0.46261 96

Poly2 η = 0.2, λ = 0, B = 107, t = 10 4424 0.44969 14

FM-Standard η = 0.05, λ = 2× 10−5, k = 100, t = 9 2042 0.44862 11
FM-Neutral η = 0.05, λ = 2× 10−5, k = 100, t = 9 1952 0.44860 11
FM-Standard + FM-Reversed - - 0.44671 6
FM-Reversed η = 0.05, λ = 2× 10−5, k = 100, t = 9 1920 0.44860 11

FFM η = 0.2, λ = 2× 10−5, k = 4, t = 9 3671 0.44616 3
FFM-Reversed η = 0.2, λ = 2× 10−5, k = 4, t = 9 3698 0.44600 3
FFM + FFM-Reversed - - 0.44581 3

FM-Standard + Poly2 - - 0.44726 6
FM-Neutral + Poly2 - - 0.44718 6
FM-Reversed + Poly2 - - 0.44723 6
FM-Standard + LM - - 0.44999 15
FM-Neutral + LM - - 0.44976 14
FM-Reversed + LM - - 0.44986 15
LM + Poly2 - - 0.45188 17

Fig. 6.14: Criteo results. Training time is only for reference as different models are trained for a
different number of iterations.

We were able to closely reproduce the results reported in the FFM paper. How-
ever, we used 8 threads to train the models, which causes non-determinism, and leads
to slightly different results but lower training times compared to [13, Table 3 (a)]. All

11 http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
12 https://www.csie.ntu.edu.tw/ r01922136/kaggle-2014-criteo.pdf

40 6. Experimental Results

of FM-Standard, FM-Neutral and FM-Reversed have similar performance. However, the
ensemble of FM-Standard and FM-Reversed is a lot stronger, decreasing loss by around
0.4% from 0.44860 down to 0.44671 and surpassing all other ensembles considered (other
than the ensemble of FFM with FFM-Reversed, of course). Contrast this to the ensemble
of FFM and FFM-Reversed, which decreases loss by less than 0.1%.

6.2. Criteo Dataset 41

6.2.2 Correlation Between Predictions

To understand why the ensemble of FM-Standard with FM-Reversed is so strong, we
analyze how the predictions between these two models correlate with each other compared
to the predictions between other models.

(a) FM-Standard vs FM-Reversed (b) FFM vs FFM-Reversed

Fig. 6.15: Effect of swapping the class label on (logit) predictions of FMs and FFMs, Criteo dataset.

Fig. 6.16: Correlation between test set predictions, Criteo dataset.

42 6. Experimental Results

We observe that, the linear model left aside, FM-Standard and FM-Reversed are the
less correlated pair of models. Contrast this to the very high correlation between the
predictions of FFM and FFM-Reversed, which is expected since this model class is essen-
tially symmetric. The pairwise plot between the (logit) predictions of FM-Standard and
FM-Reversed shows more spread compared to those of FFM and FFM-Reversed.

The performance of the ensemble of FM-Standard and FM-Reversed was not matched
by FM-Neutral. To account for the possibility that we need a larger embedding size in
FM-Neutral to match the performance of the ensemble, we doubled the embedding size
of FM-Neutral from k = 100 to k = 200, re-computed the number of training epochs by
cross-validation (which turned out to be 5) and obtained a score of 0.44760, which is indeed
closer to the performance of the ensemble but still far from it. Not content with this, we
tried to grid search for better hyperparameters for FM-Neutral too: while keeping k = 200
fixed, we grid searched for λ ∈ {2× 10−4, 2× 10−5, 2× 10−6} and η ∈ {0.02, 0.05, 0.1}, but
the original setting of λ = 2× 10−5 and η = 0.05 was already the best. This hints at the
value of ensembling.

6.2.3 Varying Symmetry Type and Order

We now explore varying the symmetry type and interaction order of FMs. We use the same
hyperparameters as in the FFM paper (η = 0.05, λ = 2× 10−5, k = 100). Since we found
that using a lower interaction order makes FMs overfit faster, we used cross-validation
to find the number of training iterations for each model. When we did this, we found
that FMs of orders 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0 required 3, 5, 6, 7, 7, 7, 7, 7 epochs
respectively before starting to overfit. Intermediate order FMs were at most 15% slower
to train per epoch than standard FMs. The test set performances are shown in the next
matrix.

Fig. 6.17: Grid search results (logloss) for varying symmetry type and order of FMs

We found the results on the criteo dataset to be largely insensitive to order, and an
order of 2.0 already works best, just like on the MovieLens dataset. The ensemble of
FM-Standard and FM-Reversed consistently outperforms all of the variants, and is never
matched by FM-Neutral.

6.3. Avazu Dataset 43

6.3 Avazu Dataset

The avazu dataset13 from the Avazu Click-Through Rate Prediction Kaggle competition
consists of 11 days of click-through data. The data from the first 10 days makes up the
training set and the data from the last day makes up the test set. The task is to predict
whether an impression was clicked or not, and the metric to optimize is logloss. All
available fields are categorical, such as the ad identifier, hour, banner position and site id.
As in the criteo dataset, after feature engineering the features are hashed down to 1M
different values14.

For this dataset, rather than training one model on all the data, the dataset is split
into two parts and a different model is trained on each. This is the strategy used by the
winning team of the competition (the authors of the FFM paper [13]).

6.3.1 Table of Results

training time public set
Model parameters (seconds) logloss rank

LM η = 0.2, λ = 0, t = 10 55 0.39016 55

Poly2 η = 0.2, λ = 0, B = 107, t = 10 170 0.38555 10

FM-Standard η = 0.05, λ = 2× 10−5, k = 40, t = 8 221 0.38611 11
FM-Neutral η = 0.05, λ = 2× 10−5, k = 40, t = 8 183 0.38485 7
FM + FM-Reversed - - 0.38449 6
FM-Reversed η = 0.05, λ = 2× 10−5, k = 40, t = 8 219 0.39217 159

FFM η = 0.2, λ = 2× 10−5, k = 4, t = 4 137 0.38389 6
FFM-Reversed η = 0.2, λ = 2× 10−5, k = 4, t = 4 138 0.38394 6
FFM + FFM-Reversed - - 0.38348 6

FM-Standard + Poly2 - - 0.38463 6
FM-Neutral + Poly2 - - 0.38412 6
FM-Reversed + Poly2 - - 0.38558 10
FM-Standard + LM - - 0.38541 10
FM-Neutral + LM - - 0.38518 10
FM-Reversed + LM - - 0.38675 11
LM + Poly2 - - 0.38529 11

Fig. 6.18: Avazu results. Training time is only for reference as different models are trained for a
different number of iterations.

Again, we were able to closely reproduce the results reported in the FFM paper. This
time, surprisingly, reversing the value of the response variable significantly degrades the
performance of FMs, to the point that they are outperformed even by the linear model.
However, against all odds, the ensemble of FM-Standard with FM-Reversed outperforms
all other ensembles considered except for FM-Neutral + Poly2. The performance boost
over FM-Standard by ensembling FM-Standard with FM-Reversed is again around 0.4%,
compared to barely 0.1% for FFMs. We found it surprising that a model ranked 11th in
the competition would climb up to the 6th position when ensembled with a model ranked

13 https://www.kaggle.com/c/avazu-ctr-prediction
14 https://www.csie.ntu.edu.tw/ r01922136/slides/kaggle-avazu.pdf

44 6. Experimental Results

as low as 159th. We attribute this to the complementing inductive biases of FM-Standard
and FM-Reversed.

6.3.2 Correlation Between Predictions

(a) FM-Standard vs FM-Reversed (b) FFM vs FFM-Reversed

Fig. 6.19: Effect of swapping class labels on (logit) predictions of FMs and FFMs, Avazu dataset.

Fig. 6.20: Correlation between test set logits, Avazu dataset.

6.3. Avazu Dataset 45

The pairwise plot between the predictions of FM-Standard and FM-Reversed confirms
the conflicting predictions made by the two models, revealing an asymmetric and bimodal
shape. This bimodality is explained by the fact that the predictions are the result of
merging the predictions from two different models. Again, we see that the correlation
between the (logit) predictions of FM-Standard and FM-Reversed is the lowest among
any pair of models, even comparable to those involving the linear model. In general, we
note that the predictions across all model pairs are less correlated than for the Criteo
dataset.

Finally, FM-Neutral shows much better performance compared to FM-Standard and
FM-Reversed but is worse than their ensemble. As in the criteo dataset, we try to
compensate for this by doubling the embedding size of FM-Neutral from k = 40 to k = 80
and recomputing the number of training epochs with cross validation, but when we do
this, the score obtained is 0.38527, which is actually worse than before. Once again we
grid search with λ ∈ {2×10−4, 2×10−5, 2×10−6} and η ∈ {0.02, 0.05, 0.1} keeping k = 80
fixed, but the best score obtained was 0.38491 for λ = 2× 10−4 and η = 0.02, again worse
than originally. This shows the difficulties of training FMs that can generalize well.

6.3.3 Varying Symmetry Type and Order

We follow the same protocol as in the criteo dataset, whereby we determine the number
of iterations to train for with cross-validation. Intermediate order FMs were at most 40%
slower to train per iteration than standard FMs.

Fig. 6.21: Grid search results (logloss) for varying symmetry type and order of FMs

We see that on the avazu dataset asymmetry has a major impact on performance,
while interaction order has a mild impact on performance. Lower orders tend to perform
better for FM-Standard and FM-Neutral. It is interesting to see that the performance
of the ensemble of FM-Standard with FM-Reversed is not necessarily correlated with the
performance of its parts: for example, each of FM-3.0-Standard and FM-3.0-Reversed
is worse than FM-1.25-Standard and FM-1.25-Reversed respectively, yet the ensemble is
stronger at 0.38413. We find this a bit surprising but possible given the low level of
correlation that the predictions of FM-Standard and FM-Reversed exhibit on avazu.

46 6. Experimental Results

6.4 Summary

We have seen that symmetry type and interaction order affect the performance of FMs
very differently depending on the dataset. In general terms, interaction order proved
effective on the non-recommendation datasets, whereas asymmetry was not very relevant.
On the other hand, on the recommendation datasets, we could not exploit interaction
order but were able to harness the asymmetry of FMs through ensembles. This allowed us
to significantly close the performance gap with FFMs. We encountered difficulties training
FMs reliably and found ensembling to be an effective strategy to consistently improve the
performance of FMs.

7. CONCLUSION AND FUTURE WORK

In this work we have attempted to answer two questions regarding Factorization Machines
(FMs): How does asymmetry impact the performance of FMs? Can interaction order as
continuously parameterized by Intermediate-Order FMs be exploited to improve perfor-
mance? We have analyzed these questions in the context of both non-recommendation sce-
narios (the phishing, adult, rna, ijcnn datasets) where FMs are used as general predic-
tors, and in the context of recommendation scenarios (the movielens-100K, movielens-
100K-all, criteo, avazu datasets).

We have seen that interaction order can significantly improve the performance of FMs
as a general predictor, in some cases (the phishing and ijcnn datasets) nearing the
performance of GBDTs. Symmetry can affect the predictions of FMs too, as we saw in the
adult and rna datasets. However, these differences were meaningless when contextualized
within the performance of GBDTs.

For the recommendation scenarios explored, the picture was reversed: intermediate
orders were of little use, while we were able to successfully exploit the asymmetry of
FMs to get unusually large performance improvements by ensembling FM-Standard with
FM-Reversed (when compared to other ensembles). We saw how adding metadata to the
MovieLens dataset led to stronger ensembles too, in line with our observation that as
features are added beyond user and item the FM model equation asymmetrizes and the
predictions of FM-Standard and FM-Reversed start to diverge.

Despite our efforts to get the same performance as the ensemble of FM-Standard and
FM-Reversed out of FM-Neutral on the criteo and avazu datasets - which should be
theoretically possible - we were not able to achieve this. We attribute this to how easily
FMs tend to overfit, and suggest that ensembling might be an effective way to regularize
the training of neutral FMs. This is of course not the best scenario as we would like our
optimizers to do the hard work, and challenges the effectiveness of our optimization and
regularization strategies. Some preliminary analysis (included in the appendix) shows that
L2-regularization for FM-based models might be an aspect to investigate in the future.

Also, although we have exploited the additive structure of the FM model class (specifi-
cally, that FM+

k +FM−k = FM±2k), more work could follow in this direction. For example,
boosted versions of FMs could be considered, with ANOVA kernels as weak learners. This
sequential way to train FMs might help deal with overfitting in a different way.

One aspect we have not explored in this work and could be interesting is how model
asymmetry plays with class disbalance. Specifically, the asymmetry of FMs might be
exacerbated by class disbalance. For example, as the ratio of classes changes from 1
(perfectly balanced) to 0.1, 0.01 and so on, the loss gap between FM+ and FM− might
get worse, and ensembles might get stronger.

Finally, experiments on synthetic data could give us further insights. For example, we
could generate data from a model in FM+

k and try to fit models from FM−k′ on it with
varying values of k′. We know that when k′ = n (where n is the number of features),
FM−k′ will fit the data perfectly. But what happens for intermediate values of k′? What
does loss as a function of k′ look like? And hence, for what values of k′ - as a function of
n - can we consider asymmetry to be noticeable?

47

48 7. Conclusion and Future Work

8. APPENDIX

8.1 Results with Linear Terms

Recall that FM-based models were trained without linear terms w0 +
∑n

i=1wixi for the
criteo and avazu datasets. In this appendix we include the results for varying symmetry
type and order when linear terms are included. Results are mostly similar, perhaps with
the exception of FM-Reversed on the criteo dataset, which seems to perform slightly
worse when linear terms are included, and as a consequence the ensemble also appears to
perform slightly worse.

8.1.1 Results on Criteo Dataset with Linear Terms

Fig. 8.1: Grid search results (logloss) for varying symmetry type and order of FMs. Linear terms
included.

8.1.2 Results on Avazu Dataset with Linear Terms

Fig. 8.2: Grid search results (logloss) for varying symmetry type and order of FMs. Linear terms
included.

49

50 8. Appendix

8.2 A Remark on L2-Regularization used for FMs

As studied in [13], FFMs (and FM-based models in general) are quite prone to overfitting.
They achieve the best generalization performance with a low level of regularization paired
with early stopping. The following figure from [13] illustrates this:

Fig. 8.3: Impact of regularization parameter λ on the generalization performance of FFMs during
training

We tried to investigate this and found one interesting fact: both the libFFM [13] and
libFM [16] libraries implement a weighted form of L2-regularization for SGD learning.
Rather than applying the standard L2-penalty:

Ω =
λ

2

(n∑
i=1

w2
i +

k∑
j=1

n∑
i=1

v2i,j

)
(8.1)

what is applied is the following weighted L2-penalty:

Ω′ =
λ

2

(n∑
i=1

piw
2
i +

k∑
j=1

n∑
i=1

piv
2
i,j

)
(8.2)

where pi is the probability that xi 6= 0 in the dataset. This happens because regularization
updates are only performed for weights whose corresponding feature is non-zero in the
current training example. Indeed, the pseudocode for training FMs (and similarly FFMs)
with L2-regularization is the following:

8.2. A Remark on L2-Regularization used for FMs 51

Algorithm 2 SGD training of FMs under logarithmic loss with L2-regularization

1: Initialize wi ∈ R, vi ∈ Rk randomly, and let η be the learning rate (which in general
can be adaptive and per-coordinate), and λ the regularization parameter.

2: Repeat until convergence:
3: for (x, y) ∈ Training Set do
4: loss = log(1 + exp(−yŷ(x)))
5: dloss

dŷ = −y
1+exp(yŷ(x))

6: w0 ← w0 − η dloss
dŷ

7: for i ∈ {1, 2, . . . , n} such that xi 6= 0 do
8: wi ← wi − η (dlossdŷ xi + λwi)
9: end for

10: for j ∈ {1, 2, . . . , k} do
11: s =

∑n
i=1 vi,jxi

12: for i ∈ {1, 2, . . . , n} such that xi 6= 0 do
13: vi,j ← vi,j − η (dlossdŷ xi(s− vi,jxi) + λvi,j)
14: end for
15: end for
16: end for

As can be seen, the discrepancy arises as a result of only performing weight updates
for the non-zero entries of the current training example (lines 7 and 12 in algorithm 2).
This is of course convenient for computational reasons. However, the stochastic gradient
update due to regularization is now ∇Ω′ in expectation rather than ∇Ω.

On one hand, Ω′ is not the regularization penalty that is applied when using other
solvers such as alternating least squares in libFM (see [19, section 4.3.1]), which uses Ω.
On the other hand, the weighted regularization term Ω′ is analogous to the weighted-λ-
regularization term used in [20] which apparently gave good empirical results. Therefore,
the effects of using Ω′ over Ω are unclear to us. To the best of our knownledge, we were
not able to find comments about this difference in the works on FMs and FFMs. We did
find research on efficient regularization for sparse models such as [21]. Applying these
strategies to FMs could be a line of future work.

52 8. Appendix

BIBLIOGRAPHY

[1] Sebastian Prillo. An elementary view on factorization machines. In Proceedings of
the Eleventh ACM Conference on Recommender Systems, RecSys ’17, pages 179–183,
New York, NY, USA, 2017. ACM.

[2] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-
to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80, January 2003.

[3] Brent Smith and Greg Linden. Two decades of recommender systems at amazon.com.
IEEE Internet Computing, 21(3):12–18, May 2017.

[4] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi
Sampath. The youtube video recommendation system. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys ’10, pages 293–296, New York,
NY, USA, 2010. ACM.

[5] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM Conference on Recommender
Systems, RecSys ’16, pages 191–198, New York, NY, USA, 2016. ACM.

[6] James Bennett, Stan Lanning Netflix, and Netflix. The netflix prize. 2007.

[7] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Pro-
ceedings of the 20th International Conference on Neural Information Processing Sys-
tems, NIPS’07, pages 1257–1264, USA, 2007. Curran Associates Inc.

[8] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages
452–461, Arlington, Virginia, United States, 2009. AUAI Press.

[9] Steffen Rendle. Factorization machines. In Proceedings of the 2010 IEEE Interna-
tional Conference on Data Mining, 2010.

[10] Yehuda Koren. Factorization meets the neighborhood: A multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’08, pages 426–434, New York, NY,
USA, 2008. ACM.

[11] Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization
for personalized tag recommendation. In Proceedings of the Third ACM International
Conference on Web Search and Data Mining, WSDM ’10, pages 81–90, New York,
NY, USA, 2010. ACM.

[12] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing per-
sonalized markov chains for next-basket recommendation. In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, pages 811–820, New York,
NY, USA, 2010. ACM.

53

54 Bibliography

[13] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factor-
ization machines for ctr prediction. In Proceedings of the 10th ACM Conference on
Recommender Systems, 2016.

[14] Mathieu Blondel, Masakazu Ishihata, Akinori Fujino, and Naonori Ueda. Polynomial
networks and factorization machines: New insights and efficient training algorithms.
In Proceedings of the 33rd International Conference on International Conference on
Machine Learning - Volume 48, ICML’16, pages 850–858. JMLR.org, 2016.

[15] Mathieu Blondel, Akinori Fujino, Naonori Ueda, and Masakazu Ishihata. Higher-order
factorization machines. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
3351–3359. Curran Associates, Inc., 2016.

[16] Steffen Rendle. Factorization machines with libfm. ACM Trans. Intell. Syst. Technol.,
3, 2012.

[17] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011.

[18] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, December 2015.

[19] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme.
Fast context-aware recommendations with factorization machines. In Proceedings
of the 34th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’11, pages 635–644, New York, NY, USA, 2011. ACM.

[20] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale
parallel collaborative filtering for the netflix prize. In Proceedings of the 4th Inter-
national Conference on Algorithmic Aspects in Information and Management, AAIM
’08, pages 337–348, Berlin, Heidelberg, 2008. Springer-Verlag.

[21] Zachary Lipton and Charles Elkan. Efficient elastic net regularization for sparse linear
models. 05 2015.

