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NOTICE

This report was prepared at the M.I.T. Energy Laboratory, Cambridge,
Massachusetts as an account of a portion of work performed on a subcontract
to Exxon Research and Engineering Co., Linden, New Jersey, as part of a
program sponsored by the U.S. Environmental Protection Agency. None of
these organizations nor any person acting in behalf of these organizations
(a) makes any warranty or representation, express or implied, with respect
to the accuracy, completeness, or usefulness of the information contained
in this report, or that the use of any information, apparatus, method, or
process disclosed in this report may not infringe privately owned rights;
or (b) assumes any liabilities with respect to the use of, or for damages
resulting from the use of, any information, apparatus, method, or process
disclosed in this report.
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ABSTRACT

* .Mass and energy balances of fluidized bed energy technologies are to a
significant degree dependent upon the specific design being investigated. It
is difficult to make any generally accurate comments.about these balances. This
study attempts to solve this difficulty by displaying a large amount of available
data, especially on parametric experiments, for the specific designs. To the
extent that generalizations about the efficiencies and emissions of these cycles
are possible empirical correlation models have been developed, along with
measures of the predictive quality of these models over existing data bases.
These empirical correlations consist of probabilistic models that have been
fit to published experimental data. In several instances, there have been
comparison of these empirical models with available analytic models. In
the cases of unavailable experimental data, such as for the potassium
topping cycles, models have been fit to analytic data. Although the
overall scale of this effort was very small compared to other fluidized bed
reviews, such as those performed at Babcock and Wilcox, Burns and Roe, and
Battelle-Columbus, the empirical models are new and in the narrow scope of
this study some of the literature reviews are more comprehensive than
others available at this time. Extensive bibliographic research and
identification of on-going projects is also included in this report.
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1. Summary

This report contains probabilistic models of the energy efficiencies
and emissions of various fluidized bed coal (FBC) combustion
configurations. There are several intended uses for these types of models,
the primary ones being:

1. a means of generating information on FBC performance that can

be useful in larger models that investigate national policy
questions,

2. an input to an assessment of various energy cycles on a
comparative basis,

3. a method for measuring the gap between analytical
models and empirical models,

4. a method of directing the search fr the most
attractive values of design and operating
parameters, and

5. a systematic method of identifying and quantifying
the extent of need for key pieces of information
that are now inadequately known.

There are still a number of conceptual uncertainties with respect
to the "overall best" design, conceptual uncertainties that
examinations with models can be helpful in resolving; some of these
are shown in Table 1.1. In the final analysis, however, it will be
a complex evaluation of tradeoffs that will determine the efficiency
and emissions of the "optimum" system, and in this effort the modeling
will be indispensible.
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2. Introduction

The objective of this study is to develop probabilistic models of
the energy efficiencies and the emissions of the various fluidized bed

coal combustion configurations. This is accomplished by fitting those
models to the experimental data available in the literature. It is

not a difficult task to fit models to data, once format and parameters
have been decided; it is however a time consuming task. The amount of

experimental data available on the atmospheric and the pressurized
fluidized bed combustors now exceeds that which can be handled
effectively by manual efforts. Revisions of these analytic models

must be performed on a computerized data management system. EPRI has
sponsored a data base on atmospheric experimental results that is now

available (Strom, et al., 1976). No parallel data base is currently
available for pressurized systems, although one is presently being
undertaken at M.I.T. Energy Lab under DOE sponsorship.

This particular study has been kept tractable by focusing only on
the endpoints of efficiencies and emissions; internal modeling efforts
which do not aid in efficiency and emission characterizations, as

interesting as they may be, are not included. An attempt has been
made to mention analytic modeling efforts whenever these have been
found, and to describe the gaps that exist between their predictions
and the actual experimental results.

Clearly, the fact that experimental data have been used does not
assure that these results are correct, or that they have been
interpreted properly. Where conflicts in information have been found

these are noted. An additional confounding difficulty is caused by
the fact that much of the available data, particularly the earlier
data, is far from the range of current interesting operating
conditions and was often obtained on designs that are well below the
current state-of-the-art. It is difficult or impossible, on sight, to

determine the degree of validity of available results. Since there is

continuing interest in improving the empirical models that are
presented, it would be very helpful if experts in this field could
forward critical responses. In addition, the sheer size of the
bibliography is no guarantee that the important sources are included
and additions would be appreciated.



3. Plant Design Configurations

Even within the categories of atmospheric, pressurized, and metal
topping fluidized bed combustors there are considerable variations in the
designs of the facilities. Variations occur, for example, in the placement
of the tubes, shapes and size of combustion chamber, number of reheats,
methods of returning fines, and so on. Some of the resulting differences
in performance are not striking and the efficiency and emission information
from these variations are comparable. Some variations are amenable to
quantification such as cross-sectional area of combustion chambers.
Unfortunately, however, some of the variations in configurations are not
comparable or quantifiable and must essentially be accounted separately.
After a description of FBC programs in progress, the design variations are
enumerated.

3.1 Fluidized Bed Combustion Programs in Progress

The greatest advances and attention have revolved around the larger
sized experimental facilities. The same organizations that have been
involved in FBC research in the past have worked with these larger
experimental rigs. New organizations have been introducing themselves to
the field by way of paper studies.

In terms of analytic studies at the most general level, there are
several programs that propose comprehensive across-the-board assessments of
environmental aspects of energy technologies. These general assessments
require results of analytic engineering evaluations such as those presented
in this report and, in turn, these narrower scope studies must direct their
search for information to be of most use to those broader programs. DOE
sponsored overview programs include the National Coal Utilization
Assessment being carried out by Argonne as part of their Regional Studies
Program and the Environmental Control Technology Program also at Argonne
[see (Gruhl, et al., 1976)].

Most of the more important of the other overall assessments have and
are being developed with EPA sponsorship. One of the initial programs,
conducted at EPA with help from Battelle-Columbus was completed in 1974
(Hall, Choi, and Kropp; 1974). This was one of the original projects to
use modularization of fuel types, combustion types, and abatement types.
The information from the module for high-pressure fluidized-bed combustion
with combined cycle is shown in the following table and footnotes.
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Table 3.1-1

Environmental Data for Module (Hall, Choi, Kropp, 1974).

Module - Fluid-Bed Combustion Plus Combined Cycle Unit - 106 Btu

(input to combustion cycle).

_ ~, ,-, _

Environm-.ental Parameters Fuel Input, Coal, ast

---- ._NOx, lb
S02 lb

- CO, lb
Particulate lb
Total organic material,

- eat, i0 --Btu-

Ila ter

Suspcnded solids, lb
Dissolved solids, lb
Total organic miaterial, lb
Heat, 106 Bu
Acid (112504), lb

0
0
0

Negligible after cooling tower
0

Solid

'-. Slag, lb
Ash, lb
Sludgc, lb
Tailings, lb
Hazardous, lb

.By-Products

0

17.3(5)
0
0
0

1. 9(6)

Occupational lealth

Deaths
Total Injuries
-:an Days Lost

.ancl Use. acre-h-/10 6 Btu7n _U-e.

1.5 x 10- 9 ( 7 )

3.6 x 10-ot )
1.4 x 10-5(9)

0.12(10)

Approx. I'a., r ffiicinc

lb

0.14(1)
0.7(2)
o
.02(3)

0
.0.62(4)



Footnotes for Table 3.1-1

(1) a. Average value of 0.07 and 0.22 lb/10 6 BTU reported in
Westinghouse Report.

(2) a. SO emission factor reported = 1 b/106 BTU.
b. Adjustment factor for sulfur content = 0.7 (i.e., 3.0/4.3).

(3) a. Particulate emission factor reported = 0.02 lb/106 BTU.

(4) a. Efficiency of the module (assumed) = 38%.

(5) a. Ash content of eastern coal (assumed) = 1 .4%.
b. Heating value of coal (assumed) = 24 x 10 BTU/ton.
c. Limestone requirement per pound of sulfur = 1.75 lb.

(6) a. The sole by-product is elemental sulfur.
b. Sulfur content of coal (assumed) = 3%.
c. 90% of sulfur is collected by limestone gassumed).
d. Sulfur loss from Claus unit = 0.35 lb/10 BTU.

(7) a. Injuries calculated from fluid-bed combustion plant and gas-
fired power plant operations.

b. 40 men operate a 500 ton coal/hr capacity combustion plant
(assumed).

c. Using chemical industry data fr gasification plant, injuries
per man hour = 8.1 injuries/10 man hours

d. Death rate (assume) = 5% of injuries.
e. Death attributed to a 100 MW gas-fired power plant = 0.01

deaths/year

(8) a. Injuries attributed to a 1000 MW gas-fired power plant = 0.6
injuries/year.

(9) a. Using chemical industry data fog gasification plant, man-days
lost per man hour = 528 days/10 man hours.

b. Man days lost per death (assumed) = 6000 days/death.
c. Man days lost attributed to a 1000 MW gas-fired power plant =

197 man-days/year.

(10)a. Land requirement for a 1000 MW coal-fired power plant
(assumed) = 800 acres.

b. Additional land requirement for fluid-bed combustion unit
(assumed) = 150 acres.

(11)a. Efficiency 38%.

Q



Table 3.1-2 INTEGRATED TECHNOLOGY ASSESSMENT
(by Teknekron, Inc.)

Program: 1976-1979 to study 1975-2000

Initial Task Emphasis:

- Fossil fuel electricity generation
- Primary and secondary air pollutants
- Short-range and long-range dispersion of air
- Human populations exposed to air pollutants

Next Task Examines:

- Key assumptions
- Reliability of data
- Accuracy of models

Levels of confidence on economic and
environmental impacts



In terms of ongoing electric power assessment programs the Teknekron

project is currently the most detailed under EPA sponsorship. Above is a
brief description of the emphasis of that ITA program. A number of
different assumptions will be used to create the inputs to many sensitivity
studies planned for the ITA. The variables for these different scenarios
are shown on the following page. The flow chart for the ITA mechanism is
shown on the next following page in Figure 3.-1. It is important to note
that the ITA goes through the physically significant environmental modeling
process and thus will require some kind of duration models for the
emissions to make possible the exposure computations shown as an ITA
module.
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Table 3.1-3 STRATEGIC ENVIRONMENTAL ASSESSMENT SYSTEM

The SEAS project, initiated at EPA and later receiving considerable
revision from DOE, is briefly described in Table 3.1-3. It is a model of
the interaction of energy and environmental problems with the entire
national economy (modelled using a large input/output scheme). Thus, SEAS
takes into consideration material and resource availability,capabilities of
supportive industries, and so on. The list of atmospheric pollutants
collected in SEAS is given on the following page, and the flow chart for
SEAS on the next page after that. There may soon be revisions to the list
and setup of SEAS pollutants, and anticipating these as near-future changes
could be worthwhile. First, since respirability of particulates is
strqngly dependent upon particle size (around one to one-half micron being
most deposited on lung surface) it would be useful to collect spectra of
particle sizes. Hydrocarbons definitely should be split to inert,
reactive, and different strengths of carcinogenic potential. These are
areas where research on the emissions from FBC technologies is just now
underway.

SEAS as shown in Figure 3.1-3 uses the shortcut of emission-to-ambient
scaling rather than dispersion modeling, and uses emission-to-damage

16

Program: in modules 1974-1976 combined 1977-1980

for period 1975-1985 (eventually 1990)

Purpose: tool for assessing the potential impact of existing and

proposed:

- environmental regulations

- environmental and energy policies

based on alternative sets of assumptions for:

- economic trends

- demographic trends
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scaling rather than dose-response modeling (the former using NEDS ratios of
1973 concentrations to emissions by industry and pollutant, and the later
using 1971 damage estimates by regions).

If policy decisions about fluidized bed energy technologies are to be
made using SEAS, then an updating of the FBC economics is necessary, as
well as a quantification of constraints (resource, manpower, fabrication,
and so on) to underscale FBC use. Retrofit potential of conventional
boilers to the fluidized bed technology will also be needed.

I.



Table 3.1.4 AIR POLLUTANTS IN SEAS

Particulates
Sulfur Oxides
Nitrogen Oxides
Hydrocarbons
Carbon Monoxide
Photochemical Oxidants
Other Gases and Mists
Radionuclides to Air
Antimony -
Arsenic
Asbestos
Beryllium
Cadmium
Chromium
Lead -
Mercury
Selenium
Thallium
Vanadium

Intermediate between ITA and SEAS in the hierarchy of assessments is

the Energy Alternatives/EMDB/ MERES system. With initial sponsorship from
CEQ this system now resides largely in DOE-funded national labs. As a

resource to fluidized bed assessments, it is probably most useful as a data
base on emissions from all of the various steps in a fuel cycle, that is,
extraction, transportation, and so on. Figure 3.1-6 shows the fuel cycles
that are modeled in the MERES system. Figure 3.1-7 shows more specifically
how advanced cycles fit into the MERES schematic and the following page
shows Table 3.1-5 with some comparative results, including fluidized bed
cycle emissions. None of these overall energy assessment models have
appropriate data about the fluidized bed technologies. Any research about
the economics, performance, and environmental effects of FBC's should at
some point make a conscious effort to get the appropriate information to
these data bases and models that may play a central role in decisions about
the research priorities and incentives accorded to the use of fluidized bed

energy- cycles. - : 

ExDerimental Studies

Leaving these across-the-board assessments there are several projects
that have been specifically designed to deal with fluidized-bed combustion.
The experimental studies are treated with a sharp emphasis on recent
research. The often seen table of current facilities is expanded in Table
3.1-6. The larger the facility the closer analogy it is to a commercial
plant and in that light the Woodall-Duckham (formerly Babcock and Wilcox)
10 foot by 10 foot plant is of most interest. There is apparently no data
yet from that plant. The DOE schedule for gradually scaling up from

17
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Table 3.1-6 - Fluidized-Bed Combustion Facilities (contin).

Location Organization Combustion and ressure Gas Temp., Status/Purpose
Regenerator Size atm Veloc. F

Conn. Combustion NA 1 NA 70 76-77/
Mai Engineering NA 1 NA NA 77-77/
Mas. IT ha a facility forthcoming end of 1977

i~~~~~~~~~~~
Minn. Fluidyne Eng. 18 in. 1 76-77/

Corp. 40"X64" 1 77-77/

N.J. Foster-Wheeler 72"X72" 1 4-12 70 NA

New York General Electric lft2 1 NA 70 75-77/

N.Dakota Grand Forks 6"diam. 1 NA NA 76-77/
Energy Research
Center

W.Va. Morgantown (2)18"diam. 1 NA 1600 76-77/
Energy Research 
Center 6ft 1 NA 70 77-77/

Oregon Oregon State o10ft2 1 NA 70 75-77/
University

Penn. Pittsburgh 1.48"diam. 1 8-8.2 1750 75-77/
Energy Research
Center 1.48"diam. 1 1.84-2 1620 75-77/

Virginia University of 
Virginia 3.5-8.5 1 NA 70 76-77/
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experimental units to pilot plants is shown in Table 3.1-7. On the

international scene, Great Britian is pushing an advanced program. As of

1970, its projections are shown in Figure 3.1-8. Table 3.1-8 lists

experimental studies that have recently concluded or are ongoing.

)/I



Table 3.1-7

Approximate Schedule for DOE Units (EPA, 1977).

Unit Size and/or Contractor and/or Approximate Starting Dates(b)
Designation(a) Location Design Construction Operation

0.5 MWe PDU Pope, Evans, & Robbins - In operation
AFBC Alexandria, VA

1.0 Je PDU Combustion Power Co. -- - In operation
PFBC(C) · Menlo Park, CA

3.0 .MWe CTIU Argonne National Lab. Hid '76 ed '77 Late 78
PFBC - Argonne, IL

. . S .-

30 MWe CTIU Internatl. Energy Agcy. Late '76 Hid '77 Late '79
PFB3C- - Grimesthorpe, U.K.

6.0 ewCTIU - Horgantown Energy Res. - Late '76 ' at* 77 -. Litai '79 .
AYBC Center

Morgantown, WV

13.0 MlWe Pilot Curtis-Wright Late '76 Late '77 Late '79
Plant, FBC(d) Woodridge, NJ

-30.0 MWe Pilot Pope, Evans, & Robbins - In Progress Sept., '76
Plant, AFBC Rivesville, WV

MIUS PDU Oak Ridge National Lab. In Progress Late '76 Late '77
AFBC(e) Oak Ridge, TN

mILUS Pilot Plant Oak Rdge National Lab. Mid '78 Late '80 Mid '81
AFBC(e) Oak Ridge, TN

Industrial and Various( f ) Late '76(g) Late '77(g) Late '79(8)
institutional
Applications ( f)

(a) PDU is process development unit (1-10 tons coal/day), TIU is component test and
integration urunit (10-100 tons coal/day), pilot plant is 100-1000 tons coal/day, AFBC
is atmospheric pressure and PFBC is pressurized fluidized-bed combustor, MIUS is
modular integrated utility system. All are boilers except where noted.

(b) Approximate schedule as of May, 1976.

(c) Flue gas drives turbine. No heat transfer surfaces.
(d) Flue gas mixed with air heated in tubes to drive turbine.
(e) Air heated in tubes to drive turbine and provide heat and cooling.
(f) Aerojet Energy/Ideal Basic Industries co produce combustion gas for cement kiln;

Fluidyne Engineering/Owatonna Tool for hot process air heater; Battelle Memorial
Institute/Fluidized Combustion, Combustion Engineering/Great Lakes Naval Training
Center, Dow Cheniqa!/Babcock & Wilcox, Zurn Industries/Burns & Roe, and GeorgetownL
University/Fluidized Combustion for boilers; Exxon for crude oil still.

(g) Earliest starting date of any of the projects.
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Figure 3.1-8

Cost and Time Scale of Developing Fluidised-Bed Combustion for Central

Station Boilers (present day prices). (EPA, 1970).
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Table 3.1-8 RECENT AND ONGOING EXPERIMENTAL FBC STUDIES

Aerotherm/Acurex:
- detailed emissions analysis of CPC filter (for EPA)

Agricultural Research Service:
- evaluation of FBC solid waste use (for DOE)

Argonne National Lab:
- testing of 6" pressurized combustor
- 4" pressurized sorbent regenerator (EPA/DOE)
- SOx control
- sorbent regeneration (EPA/DOE)

- NO formation and control (EPA/DOE)
X

- particulate characterization and control (EPA/DOE)
- trace metal and hydrocarbon emissions (EPA/DOE)
- engineering support studies
- economic analysis
- combustion efficiency
- process control requirements (for DOE)

Babcock and Wilcox Co.:
- industrial application AFBC (DOE)
- effluent assessment
- demonstration plant (DOE/TVA), (EPRI)
- effect of sorbent particle size (EPRI)

Battelle Columbus Labs:
- multi-solid FBC plant (DOE)
- emissions analysis of atmospheric FBC (EPA)
- atm-24" agglomerating FBC to be built
- materials for corrosion/erosion conditions (EPRI)
- heat exchange materials (DOE)

Bergbau-Forschung:
- atmospheric FBC
- plans 8-atm FBC-15MW

Bharat Heavy Electricals:
- FBC development program

Bradford University:
- cold modeling of fluid mechanics of fines (EPRI)

British Coal Utilization Research Association:
- emissions analysis of 2'x3' pressurized unit
- atmospheric unit of utility size
- high temperature operations

Brookhaven National Laboratory:
- regeneration of CaSO4 using SiO2

"-7



Combustion Engineering Inc.:

- industrial FBC development (DOE)

- atmospheric FBC demonstration plant (TVA)

Combustion Power Company:
- turbine corrosion and erosion
- moving bed filter for hot gas cleanup (DOE)
- detailed emissions analysis (EPA)
- municipal waste combustion

Combustion Systems (formerly NCB, BP, & NRDC):
- FBC boiler construction (DOE/TVA)

- corrosion/erosion effects (EPRI)
- comprehensive analysis of emissions from pressurized
FBC (EPA)

Commonwealth Scientific & Ind. Research Organization:

- heat transfer experiments
- burning Australian coals

Consolidation Coal Company:
- desulfurization with sorbents
- regeneration of dolomite

Construction Engineering Research Laboratory, Department of Army:

- fine particle precipitating in AFBC (DOE)

Curtis- Wright
- forthcoming pressurized unit in 1980 (DOE)

DOE
- commercialization potential at Rivesville and Morgantown

units

EPA:
- limestone beds for SOx control
- low temperatures
- sampling and analytic test rig, atmospheric pressure
- emissions analysis
- alternative add-on control devices (EPA)

Exxon Research & Engineering Company:
- emissions analysis of pressurized bench-scale (EPA)
- 8" pressurized sorbent regenerator
- emissions analysis of pressurized Miniplant - .65 MW (EPA)

- SO control
- sorbent regeneration (EPA)
- NO formation and control

x
- particulate characterization and control
- trace metal and hydrocarbon emissions
- deep bed combustion

28



Fluidyne Engineering Corp:
-. .- -industrial FBC (DOE)

Foster-Wheeler:
- demonstration plant AFBC (DOE/TVA)
- coal feeder development (DOE)
- cold test modeling of Rivesville plant

Fuel Research Institute:
- two-stage combustion of high ash coal
- solid and liquid fuel interchangeability
- retrofit of old boilers

General Electric:
- fluid dynamics and heat transfer using cold beds (EPRI)

Georgetown University:

- industrial FBC (DOE)

Grand Forks Energy Research Center:

- precipitation tests (DOE)
- alternative SO2 control methods (DOE)

Ingersoll-Rand:
- dry coal screw development (DOE)

International Energy Agency:
- design, construction, and operation of FBC (DOE)

Jet Propulsion Laboratory:
- coal pump development (DOE)

Kennedy Van Saun:
- coal grinding and feed preparation (DOE)

Lehigh University
- centrifugal FBC (DOE)

Lockheed Missles and Space Company Inc.:
- candidates for coal feeders (DOE)
- corrosion chemistry (EPRI)

Lurgi Gesellschaft:
- FBC combustion of low grade fuels

Mechanical Technology Inc.:
- centrifuge gas cleaning (DOE)

Midwest Research Institute:
- sampling and characterization of AFBC and PFBC gaseous
species (DOE)

John L. Minnick:
- field testing and theoretical evaluations of FBC waste uses

(DOE)
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MIT Energy Laboratory:
- heat transfer and corrosion (DOE)

Morgantown Energy Research Center:
- AFBC bench scale studies (DOE)
- AFBC fuel possibilities (DOE)
- fueling and slagging (DOE)

National Coal Board:
- utility sized atmospheric unit
- pressurized combined cycle unit

National Research Development Corporation:

- industrial and utility FBC applications

New York University:
- fluid dynamic and heat exchanger interrelationships (DOE)

Oak Ridge National Laboratory:
- evaluation of MIUS applications (DOE)

Ohio State University:
- corrosion chemistry (EPRI)

Oregon State University:
- cold modeling of heat exchangers (EPRI)

Pope, Evans and Robbins:
- modular cells with water walls
- carbon burnup cells
- once-through sulfur removal system
- limestone regeneration
- salt additions
- Rivesville Station - 30 MW (DOE)
- coal feeding systems
- distributor designs
- fly-ash sizes (DOE)

Rice University:
- heat transfer in counter-current FBC

Societe Anonyme Activit & Babcock-Atlantique:
- agglomeration of ash in 25-MW plant

Tennessee Valley Authority:
- characterization of solid and liquid wastes
- laboratory and field studies of solids leaching and solids
degeneration (EPA)

- solid waste treatment
- laboratory studies on potential for marketable products
from wastes
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TRW Inc.:
detailed emissions analysis of CPC filter (EPA)

U.S. Bureau of Mines:
- use of various American coals
- ash as bed material

University of Idaho:
- bubble behavior in scale-up of FBC (DOE)

University of Illinois:
- cold model of FBC (DOE)

University of Maryland:
- chemical additives effects on SO removal (EPRI)

University of Virginia:
- gas solids interactions in FBC (DOE)

Virginia Agricult. Exper. Station:
- use of wastes in agricultural projects

Virginia Polytechnic Institute and State University:
- solid waste use for crops (DOE)

Washington State University:
- fate and behavior of fuel sulfur (DOE)

Western Michigan University:
- mechanisms of NOx formation (DOE)

Westinghouse:
- laboratory scale studies
- SOx control
- sorbent regeneration (EPRI)
- NO formation and controlx
- particulate characterization and control
- trace metals and hydrocarbons
- turbine blades for FBC

Woodall-Duckham:
- commercial operation of large-scale boiler
- retrofit of old boilers

31



Analytic Studies

The paper studies in progress include a wide range of modeling,

evaluation, and fundamental research. The most comprehensive examples are
being undertaken by Exxon and by Battelle. Other studies are listed in
Table 3.1-9.

Table 3.1-9 RECENT AND ONGOING ANALYTIC FBC STUDIES

Babcock and Wilcox Ltd.:
- conceptual design studies
- literature survey and correlation of data AFBC (EPRI)

Battelle Columbus Labs:
- environmental assessment including emissions character-
ization, control, and impacts, state-of-art, R & D plan

Burns and Roe:
- conceptual design of AFBC (DOE)

Coal Research Establishment:
- atmospheric pressure combustors

Commonwealth Scientific & Indu. Research Organization:
- experimental programs

Consolidation Coal Company:
- experimental programs

Dow Chemical:
- scale up of unit sizes and effects on emissions (EPA)

EPA:
- comprehensive program on environmental characterization

EPRI:
- optimize heat transfer
- corrosion and erosion characteristics
- manufacturer's evaluation of data
- general program on technical development

Exxon Research and Engineering Company:
- energy, economic and environmental assessment of FBC

industrial boilers (DOE/EPA)

Foster-Wheeler:
- conceptual designs - 800MW
- Rivesville design guidance

GCA/Technology Division:
- identification of new pollutants (EPA)
- control technology possibilities
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General Electric:
- technical and economic assessment

Gilbert Associates:
- technical and economic study of FBC (DOE)

John Thompson Ltd.:
- conceptual design studies

Arthur G. McKee and Company:
- technical assistance on industrial FBC (DOE)

MIT:
- engineering support studies
- modeling and data base of FBC (DOE)

Mitre Corporation:
- manuals of FBC process variations indicating alternative

sampling and analytic procedures (EPA)
- engineering support studies

NASA:
- technical-and economic-assessment, ECAS (DOE/NSF/NASA) -- -- -----

National Research Development Corp.:
* -.experimental programs

Oak Ridge National Lab:
- design studies and vendor surveys (DOE)

Preece, Cardew & Rider Ltd.:
- conceptual design studies

Ralph Stone & Company:
- solid and liquid waste disposal (EPA)

SATR:
- comprehensive FBC analysis (EPA)

Stone and Webster:
- conceptual design of AFBC (DOE)

Tennessee Valley Authority:
- characterization of solid and liquid wastes (EPA)
- marketing potential of wastes (DOE)
- designs and cost comparisons of AFBC, PFBC, and
conventional plant with FGD (EPA)

U.S. Bureau of Mines:
- experimental programs

U.S. Department of Transportation:
- solid waste use in soil modification (DOE)
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U.S. Office of Coal Research:
- experimental programs

Westinghouse Research Lab:
- Technical and economic assessment
- conceptual designs of atmospheric and pressurized boilers
- alternative FBC configurations
- environmental assessment of FBC solid waste (EPA)
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3.2 Basis for Comparison

Fluidization is a conventional technique in the chemical process
industries for compact and efficient heat and mass transfer. The newer
concept of coal combustion in a fluidized bed makes possible rapid energy
release from the fuel and efficient heat transfer to the working fluid. A
fluidized bed combustor is a column of dense coal, lime, and ash particles
that are suspended in an (usually) upward flowing air stream. The velocity
of this upward combustion air, 2 to 15 ft/sec, sets the particles in a
homogeneous turbulent motion, that resembles a boiling fluid, which enables

(1) high volumetric flow through rates for the air stream,
(2) very high heat transfer coefficients, partly due to

reasonably uniform temperature distributions, and
(3) relatively low combustion temperatures.

Fluidized bed combustion can result in 25 times the (per unit volume
per time) heat release rates. Heat transfer from the particles and
combustion air to the heat transfer tubes placed inside the combustor can
be 5 to 6 times that in conventional pulverized coal-fired boilers (per
unit area per time) (Rao, 1975). The low combustion temperatures (1400 -
1900 F versus 3000 F for conventional power plants) have several
advantages:

(1) They maximize the capture of SO2 by the limestone or
dolomite in the bed, thus forming solid calcium sulfate
which is collected as spent bed material;

(2) They minimize the conversion of atmospheric nitrogen
into N, thus considerably reducing NOx emissions; and

(3) They minimize klinker problems and may reduce trace
metal emissions due to temperatures being below slagging
and ash constituent volatilization points.

The principal configurations that can be used to categorize the
different fluidized bed combustion designs include:

(1) atmospheric fluidized bed,
(2) pressurized fluidized bed, and
(3) liquid metal topping fluidized bed.

In atmospheric configurations the combustion chamber is at
near-atmospheric pressure. Power is generated by a steam turbine. A
pressurized- system operates between 5 and 20 atmospheres, although 8-to 10
atmospheres seems optimum, and includes a gas turbine as well as the steam
turbine. The gas turbine operates on the high pressure hot combustion
gases and, in addition to creating extra electric power, drives the
compressor to pressurize new combustion air. The primary motivation for
using pressurized systems is the potential for smaller equipment size for
the same heat output. In some "closed cycle" systems, pressurized air is
used as a working fluid, thus there is no steam turbine. Liquid metal
topping cycles, usually potassium, are also being considered in fluidized
bed configurations. Although there are several other designs, one that is
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occasionally considered is the adiabatic combustor. In these combustors
the fluidizing air throughout is greatly increased, so that all of the heat

of combustion is carried by these gases. Thus, no bed submerged heat
transfer tubes are used. The adiabatic combustor gases expand through a
gas turbine and waste heat is recovered in a boiler which drives a steam
turbine. Figure 3.2-1 shows a general comparison of sizes and components
of comparable FBC technologies.

The next section lists some of the operating and design parameters
that are useful variables for modeling cycle efficiencies and emissions.
The following sections describe the more common FBC designs. Since this is
in no way meant to be a text, these descriptions have been kept very brief.

3.2.1. Oeratinz and Design Parameters

There is some merit in treating the results from each different
experimental rig as incomparable with other results. The insight that can

be gained by such a procedure is, however, then limited to the particular
parametric investigations that have been performed at any one facility. If
there is to be comparability, then a common set of operating and design
parameters must be defined and collected for the various sets of
experiments. An exhaustive list prepared at the M.I.T. Energy Lab for a
DOE sponsored FBC data base is listed here in Table 3.2.1-1.
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Table 3.2.1-1 FBC Data Base Categories (J.F. Louis, S.E. Tung, 1977)

Source (reference or site)

Bed Design
Geometry
Rectangular

Length (meters)
width (meters)

Circular Diameter (meters)
Static Bed Height
Bed Height at Min. Fluidization (meters)
Bed Height at Oper. Cond. (meters)

Free Board Height (meters)

Inlet Gas Conditions
Species Present

Composition (mol basis)
Molecular Weight
Temperature (Kelvin)
Pressure (Pascals)
Molar Flow Rate (KG-mole/sec)
Velocity (M/sec) 3
Density (KG-mole/meter)
Viscosity (Centipoise)

Sampling Point Conditions
Height above Dist. (meter)
Length or Radial Direction (meter)
Width or Theta Direction (meter or deg)
Gas or Solid Species Present

Composition
Temperature (Kelvin)
Pressure (Pascals)
Molecular Weight (Ks/Kg mole)

Fluidization Characteristics at Sampling Point
Gas Velocity (Mag = dir)(meter/sec)
Gas Viscosity (Centipoise)3
Gas Density (KG-mole/meier )
Solid Density (Kg/meter )
Mean Particle Diameter (meter)
Particle Size Dist. (meters)
Min. Fluidization Velocity (meters/sec)
Voildage at Min. Fluidization
Observed Voidage
Fluidization Region (turbulent or bubbling)
Mean Bubble Volume (meters)
Bubble Height (meter)
Bubble Width (meter)
Bubble Frequency (see )
Bubble Voidage
Emulsion Voidage
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Coal Feed
Coal Composition wt. Basis

C

H
0
N

S
ASH

H20

Vol. Frac.
Coal Type

Lower Heating Value (kcal/KG-mole)
Feed Rate (KG/sec)
Particle Size Distribution (meter)

Reacted Coal
Sampling Point

Heigh above Dist. (meter)
Length or Radial Coordinate (meter)
Width or Theta Coordinate (meter or deg)

Temperature Gas (Kelvin)
Pressure (Pascals)
Gas Composition Mole Basis

O2

HC

CO2

H20

H

2
N2

SO2

NO

NO2

Temperature Solids (Kelvin)
Mean Coal Particle Size (meter)
Coal Particle Size Distribution (meter)
Mean Ash Particle Size (meter)
Ash Particle Size Distribution (meter)
Reacted Coal Composition Wt. Basis

C

H
0

N

S
ASH
H20
Vel. Frac.

Mean Residence Time (see)
Residence Time Distribution
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Material of Const.
Outside Diameter (meter)
Inside Diameter (meter)
Pitch
Spacing
Aligment
No. of Tubes
Age of Tube (Time of Use)(hr)
Sampling Point

Height above Dist. (meter)
Length or Radial Direction (meter)
Width or Theta Direction (meter or deg)

Tube Wall Mean Temp. (Kelvin)
Tube Wall Temp. Dist. (Kelvin)
Local Bed Temp. (Kelvin) 2
Total Surface Area (meter2 )

Heat Transfer Rate (Joule/sec)
Heat Transfer Coefficient (Joule/sec M)
Working Fluid (steam, etc.)
Mass Flow Rate (KG/sec)
Inlet Cond. of Working Fluid

Temp. (Kelvin)
Pressure (Pascals)
Quality

Outlet Cond. of Working Fluid
Temp. (Kelvin)
Pressure (Pascals)
Quality

Acceptor Feed
Type of Acceptor
Origin of Acceptor
Acceptor Composition CaO (CO2)p (MgO(CO2)q)R

P

Q
R

Mass Feed Rate (KG/sec)
Mean Particle Size (meter)
Particle Size Dist. (meter)3
Density Bulk (KG-mole/meter )
Pore Size Distribution (meter)
Mean Pore Size (meter)
Pore Fraction 2
Surface Area (meter )
Percent Sulfated
Number of Regenerations
Regeneration Conditions

Temp. (Kelvin)
Pressure (Pascals)
Res. Time (sec)

Overall Ca/S Ratio in Feed
Temperature (Kelvin)
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Reacted Acceptor
Sampling Point

Height above Dist. (meter)
Length or Radial Direction (meter)
Width or Theta Direction (meter or theta)

Acceptor Specie
Molecular Weight
Temperature (Kelvin)
Velocity (mag + dir)(meter/sec)
Mean Particle Diameter
Particle Size Dist. (meter)

Min. Fluidization Velocity Smeter/sec)
Density Bulk (KG-mole/meter)

Density True (KG-mole/meter3 )
Pore Size Distribution (meter)
Mean Pore Size (meter)

Pore Fraction 2
Surface Area (meter )
Percent Sulfated
Mean Res. Time (see)
Res. Time Distribution (see)
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To collect and correlate this number of variables is well beyond this
small, uncomputerized effort. The intent of this effort has been,
therefore, to isolate the several dominant variables and make initial
correlations between these and the performance measures of efficiency and
emissions. The several dominant variables identified and used in the
empirical models in this report are listed in Table 3.2.1-2.

Table 3.2.1-2. Fluidized Bed Operating and Design Variables

Bed Temperature
Static Bed Height
Superficial Velocity
Calcium to Sulfur Ratio in Bed
Combustible Losses
Fuel Source and Size
Fuel Constituents
Sorbent Source and Size
Pressure
Excess Air
Sulfur Absorbent Regeneration
Number and Temperature of Reheats
Addition of Salt
Secondary Air Injection
Steadiness of Coal Feed
Types of Particulate Controls

Although there are many possible performance measures, (see
Table 3.2.1-3), the efficiencies and emissions are the only indicators of
desirability modeled in this report.

Table 3.2.1-3. Fluidized Bed Combustor Indicators of Operating
Effectiveness

Overall Energy Efficiency
Combustion Efficiency
Emissions
Heat Transfer
Corrosion and Erosion
Fouling
Combustion Stability
Waste Solids
Agglomeration
Reliability
Heat Release
Control and Turndown Ability
Startup Ability
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3.2.2 AtmosDheric FBC Designs

The general schematic of the atmospheric FBC configuration is shown in
Figure 3.2.2-1. The water/steam cycle usually includes:

(1) a feedwater pump sending the water to
(2) an economizer and evaporator that heat the feedwater

using the flue gas heat and combustion air heat,
(3) a first heating in the tubes immersed in the bed,
(4) the steam turbine,
(5) at least one reheat back in the bed,
(6) a second trip through the turbine, and
(7) the condensation

The air cycle includes coming in through:

(1) forced draft fans, then through the
(2) air preheater, then up through the
(3) fluidized bed,
(4) through the evaporator, then

(5) supplying heat to the air preheater
(6) through particulate removal devices,
(7) through the economizer,
(8) then through an induced draft fan, and
(9) up the stack.

Coal and sorbent enter into the bed at the feedpoints. Coal ash
generally leaves the bed with the combustion air and is collected in the
precipitators. The inburned carbon in this ash is either recycled to the
bed or burnt in a separate carbon burning cell, as shown in Figure 3.2.2-2.

- The sorbent leaves the bed as spent material, and can either be regenerated
and cycled back into the bed, or can be disposed either directly or after
some treatment. Tables 3.2.2-1 and -2 show the different atmospheric FBC's
used in the ECAS study comparing economics and efficiencies.

The operational configurations that are pushing the sizes of
atmospheric FBC's up toward commercial sizes (about 220 MWe) are the
Morgantown MWe unit (see Figure 3.2.2-3), and the Rivesville 30 MWe unit
(see Figure 3.2.2-4).

A relatively new configuration is the Battelle Multi-Solids FBC (see
Figure 3.2.2-5). The MS-FBC process consists of two beds: a dense or
conventional bed of high specific gravity and a superimposed or entrained
bed. The entrained bed circulates through the dense bed picking up the
heat of combustion. All of the heat exchange surfaces are contacted to the
entrained bed. The perceived advantages include:

(1) much higher fluidizing velocities, 30-40 ft/seo,
(2) excellent limestone utilization, and
(3) much better response and control characteristics to changes

in load.
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Table 3.2.2-1

Surfacing Data

Advanced Steam Cycle - Atmospheric Fluidized Bed (General Electric, 1976).

MAI CARBON
BED BR NUP

CmL S CELLS

NUMBER 6 1

BED TEMP. 1550 2"-3
GAS EXIT TEMP. 730 730

(° F)

% DUTY 90 10

EX,-..S AIR 20% ' %

DIMENSIONS:
BED-PLAN 12 x 34 12 x 34

- HEIGHT 4 4
(FEET)

SUPERFICIAL
VELOCITY 10 9
(FT/SEC)

HEAT
TRANSFER
COEFFICIENT

-BED 40 40
- CONVECTION 13 13

(Btu/HR FT2 °F)

L0



Table 3.2.2-2

Surfacing Data

Closed Gas Turbine Cycle - Atmospheric Fluidized Bed (General Electric, 1976).

UPPEr - 2ND STAGE LOWE - ST STAGE
SUAN "I-TEM~'EflATW'ZE
BED (AD CAREN

CELLS uphElD CELLS

NUMBER 4 4

BED TEMP. 1550 2000
GAS EXIT TEMP. 1 100 1550

(OF)

% DUTY 54 46

EXCESSAIR 21% 22 +%

DtIMENSIONS:
BED-PLAN 11 x40 9x40

- HEIGHT 4 4-
(FEET)

SUPERFICIAL
VELOCITY (FT/SEC) 8.1 4.4

O/A HEAT
TRANSFER

r!fFr t- 'T

-£D 39 43
CONVECTION 10 7
(Btu / HE R T2 °F)

47



Ce*
o o

Im1~- L4
F--)3

u ·

MA~ ~ ~ AIk 

~~~............. _ .;----' .... fr £l5\ * . . . c.^. % ........ ,,,,,, ..... -
I _ _ _ _
I
I *

CJ~..=Gi O
O2 f.

I = 1~~

I

I I-I G
U =a, L"..

c

-i
I-

4*_'a

0coU.

UC~n

0C-~0

cy, CJ

Im-0

-c-4

o.o

.I- 4-U

U- 0OW u
e 
*_

r_

0

C'ato
c

48

I-a-o,

I

I

I

4-1



ItI

=o00

49

LUI

z
Lu-J
I C

I1

LU

LI-

LU
0.

r)
U-
0;

0,.~

"0

C,,to..
0Ja

I-

.__

Ci 0

-oil)
CMJ

N* r.L .
::*_

"1
' " m

I~ laIei _
lo 1

I
.I

I

I

I

I

I

I



Sta

3rd --
Cyclone

(8" di)

Recycle
Aix . Soli , 

Leve
lndicatO:. 

Alterna iv
Ash Retur.¥ --

y Vibrator

'sA 

---- _ 

Cable

Flue Gas
Samp LinS
Poret

Housing for

- AirPlate

Figure 3.2.2-5

Schematic Diagram of the 6-inch MS-FBC Combustor (Vaughan, et al., 1977).

0SO

.I

II-

L;X6i



3.2.3-...Pressurized FBC Designs

The general schematic for the combined gas turbine/steam cycle
pressurized FBC configuration is shown in Figure 3.2.3-1. The water/steam
usually-travels through the same combination of components as it does in
the atmospheric configuration. The combustion air cycle is different for
the'pressurized system:

(1) the air compressor operated in conjunction with the gas turbine
pressurizes the air and sends it to,

(2) the fluidized bed, from which it must go to

(3) some combination of "hot side" particulate collectors to protect
the blades in the

(4) gas turbine from which the gases go through

(5) an-economizer, and then up the

(6) stack.

A schematic of a pressurized FBC test rig is shown in Figure 3.2.3-2.

There are a number of other configurations that can be built around
the pressurized-FBC central theme. In the pressurized adiabatic FBC, as
previously described, heat transfer tubes are not used in the fluidized bed
or the combustion gases above the bed (see Figure 3.2.3-3). Instead, the
bed.temperature is controlled by sending 200 to 500 percent excess air
through the bed.and into a gas turbine. This arrangement is that used by
Combustion Power Co. in their CPU-400 facility.

In the pressurized air tube FBC the bed temperature is controlled by
heat transfer tubes but the working medium is air instead of steam/water.
A small test of this concept is being operated by Oak Ridge National Lab
and is called the MIUS, Modular-Integrated Utility System.

3.2.4. Potassium ToDoing FBC Designs

Although cesium has been considered, potassium is likely to be the
liquid metal working fluid of the metal topping cycle FBC. A schematic of
this system is shown in Figure 3.2.4-1. Except for the topping cycle,-this
configuration is very much like the gas turbine/steam cycle pressurized
FBC. An- alternative configuration makes use of the availability of heated
process air and steam to operate a fluidized bed gasification subsystem
(See Figures 3.2.4-2 and -3). By providing clean gaseous fuel to the
combustion chamber, the need for "hot side" particulate removal is
eliminated.
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3.3 Enervgy Balance Evaluations

The only energy balances that have been developed for the various
advanced cycles are analytic point-by-point accountings of the BTU inputs
and outputs of each of the modules in the energy facilities. The two
recent studies for which these were developed are (Wolfe et al., 1976) and
(General Electric, 1976). The information from the latter study is
available and an example is given in Figure 3.3.2-1. The Westinghouse
research (Wolfe et al., 1976) involved an extensive parametric investiga-
tion of energy balances, and these results, unfortunately, have not been
published. This data for the parametric studies from Westinghouse is of
the format of the example in Table 3.3-1. Some of the assumptions used in
computing these thermodynamic performances of the cycle configurations are
shown in Table 3.3-2. The conversion of these assumptions into the
performance data was accomplished at Westinghouse using their Generalized
Performance and Heat Balance Program. Tables of the parametric studies of
closed-cycle FBC performed as part of the ECAS project are listed in Tables
3.3-1 and -2. 

In the absence of the Westinghouse data, the GE data are presented

without comparison. It is, however, possible to investigate in a
comparative manner the overall power plant efficiency, defined as the BTU
output divided by BTU input, and the boiler efficiency as functions of
several of the operating and design parameters. It must be emphasized that
all such figures are projected values since there are not any large-scale
fluidized bed combustors that are operational. It has not been possible to
make probabilistic point-by-point energy or mass balance comparisons
primarily due to the tremendous number of different FBC configurations and
operating and design variations. Such probabilistic comparisons are beyond
the scope of this report, but may be forthcoming from the DOE/MIT
computerized FBC data base project.

3.3.1 ComDarison of Fuels

The majority of evaluations of the constituent analysis of coals used

in FBC experiments have been limited to the major characteristics and
components of those coals. Some recent studies have also included analyses
of coal ash components, particularly those of concern in corrosion/erosion
of turbine blades (see Table 3.3.1-1). Although there have not generally
been any more detailed analyses, the 20 or so different coals that have
been used in FBC experiments are from coal seams that have been analyzed.
Composition of coal will vary even within a seam, but these generally
available analyses can be useful in finding components of coals that seem
to be responsible for peculiar effects (such as the sulfur removal
efficiencies on high chlorine coals). In addition, the general analyses
can be useful in predicting trace metal emissions from future use of
various U.S. coals (see Table 3.3.1-2). Trace metal analysis of the
sorbents are unfortunately rarer, but nonetheless important, in predicting
trace metal emissions (see Table 3.3.1-3 and Table 3.3.1-4).
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Table 3.3-1

Parameters for Combined Closed-Cycle Gas Turbines (NASA, 1976).

Paramcter

Primary loop:
Compressor discharge pressure, psia
Helium turbine-inlet temperature, F
Compressor pressure ratio
Recuperator pressure drop, AP/P
Recuperator effectiveness
Compressor inlet temperature, F

Helium heater pressure change, AP/P
Precooler
Vapor generator pressure drop, AP/P

Pressurizing loop: 
Turbine-inlet temperature, F
Pressure ratio
Combustor pressure drop, AP/P

Vapor generator pressure drop, AP/P

Bottoming loop:

Turbine-inlet pressure, psia

Turbine-inlet temperature, F

Helium pinch-point AT

Turbine reheat pressure, psia

Turbine reheat temperature, F

Desuperheating recuperator

Cooling tower type

Coad type

;t.,) rtcup)crator.

General Electric

Fumace

Atmospheric fluidized bed

Fuel

Coal

Bottoming-cycle fluid

11-22 FL-85 Steam

Number of parametric points

7

1000

1500

2.5
0.03

0.85, 0.9
80

0.015
With

0.01

1500, 600, 1700

390, 400, 410, 430

30, 50, 70

None

Wet, dry

nlinois 6

1

1000

1500

2.5
0.03
0.6
80

0.015
With

0.01

650

460

50

None

Wet

Illinois 6

5

1000

1500
2.5

0.03
0, 0.5, 0.85, 0.9

80

O. 015

With

0.01

125, 100, 400, 800

384, 413, 561, 900

30

None

Wet, dry

Illinois 46
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Table 3.2-1 (continued)

Westinghouse

Furnace

Prcssurized furnace Pressurized
fluldized bed

Fuel

Distillate HBTU gas LBTU gas Coal

!t~~~~ ~Bottoming-cycle fluid

R-12 |Mctethyl- SO, Steam

amine 

Number of parametric points,

1000

1500
2.5
(a)

(a)
200

0.02
None

0.02

2200

10

0 06

0.04

1800

950

40
_________

None

Wet

Illinois - ,

40

500. 1000, 2000

1200. 1500. 1800
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Table 3.3-2

Contractors' Base-Case Parameters for Closed-Cycle Gas Turbines (NASA, 1976).

General Electric Westinghouse
case-1 ''

Case 25R Case 4R Case 5C

Furnace A FB PFB Convcntiornal Pressurized
atmospheric

Fuel Illinois 6 Illinois # 6 I Distillate Distillate

Compressor discharge pressure, psia 1000 1003 1000 1000

Helium loop:
I~~~~~~~~Turbine-inlet temperature, F 1500 1500 1500 1500

Compressor pressure ratio. 2.5 2.5 2.5 2.5
Recuperator effectiveness 0.65 0.9 0.9 -
Recuperator pressure drop, P/P 0.03 0. 02 0.02 _

Loop pressure drop, a AP/P 0.08733 0.059 0.059 0.040
Compressor inlet temperature, OF 80 96.5 96.5 200
Cooling tower type - Wet Wet Wet WVet

Pressurizing loop:
Turbine-inlet temperature, OF 170u- - . . .. 2200
Pressure ratio .. . . .10 _ 10

Bottoming loop:
Turbine-inlet pressure, psia -------- __ 10
Turbine-inlet temperature, °F ------- --- 3500
Working fluid ---- Steam

aCalculated as 1 - (Turbine pressure ratio)/(Compressor pressure ratio).
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Table 3.3.1-1

Analyses of Coals Used in Various

,-,.ple No.

FBC Experiments (Babcock and Wilcox, 1977).

C-1 4237 C-14239

',X.ple Description Coal
Pittsburgh

Coal
Pittsburgh #8#8ro

Date Received

Test No.'s

Total Moisture, %

Proximate Analysis (Dry), 

Volatile Matter

Fixed Carbon

Ash

·tu per lb (Dry)

Btu per lb (M&A Free)

Sulfur (Dry), %

Ash Analysis (Spectrographic), 

Silicon as SiO2*

Aluminum as A 203

Iron as Fe2 03

Titanium as TiO2

Calcium as CaO

Magnesium as MgO

Sodium as Na2 0**

Potassium as K2 0*

Sulfur as S03*

*

10/22/76

26-30

5.0

11/5/76

31-41

5.0

40.0

50.1

9.9

40.3

49.8

9.9

13260

14720

13310

14770

3.0 3.0

47.0

20.

24.

0.6

1.0

0.6

1.2

1.7

1.0

44.7

20.

25.

0.6

1.6

0.5

1.1

1.7

1.8

*Gravimetric

**By Flame Photometer
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Table 3.3.1-2

Probabilistic Display of the Constituents of 101 Representative U.S. Coals

(Ruch,et al., 1974).
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Table 3.3.1-3

Coal Ash Contamination* of Benificated Lime/Anhydrite (Mesko, 1974).

*Sewickley
Anhydri te

coal ash 9.5 percent Al. On this basis the

contains approximately 3% coal ash.
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Raw Limestone #1359 Lime/Anhydrite

Ca 38.8% 39.0%

Mg 0.51% 0.43%

Fe 0.101% . 0.42%

A1 0.15% 0.42%

Si 0.23% 1.14%

Na 0.027% 0.20%

K 0.08% 0.34%

Ti 0.012% 0.0380%

Zn 4 ppm 35 ppm

Cu 10 ppm 35 ppm

Ni 36 ppm 195 ppm

Co 28 ppm 90 ppm

Pb 43 ppm 180 ppm

As 70 ppm

P 1.6 ppm 1.6 ppm

Lime/



Table 3.3.1-4

Composite Analysis of Elements in Coal and Sorbents (g/g) (Murthy, Nack, 1977).

Element Coal Limestone

Aluminum 12900.00 3998.49
Antimony 1.30 2.70
Arsenic 5.00 2.00
Barium 130.00 100.00
Beryllium 1.60 0.80
Bismuth 0.10 0.00
Boron 102.00 18.00
Bromine 15.00 5.00
Cadmium 2.50 1.00
Calcium 6780.00 374053.62
Carbon 730000.00 113711.95
Cerium 11.00 0.00
Cesium 1.00 0.00
Chlorine 1400.00 55.00
Chromium 20.00 11.00
Cobalt 9.60 100.00
Copper 15.00 47.00
Dysprosium 1.00 0.00
Europium 0.20 0.00
Fluorine 61.00 230.00
Gallium 3.10 0.00
Germanium 6.60 0.30
Hafnium 0.97 0.00
Indium 0.04 0.00
Iodine 2.78 0.00
Iron 21300.00 4295.92
Lanthanum 6.90 1.60
Lead 34.80 30.00
Lithium 25.00 0.00
Magnesium 500.00 3269.60
Manganese 25.00 500.00
Mercury 1.20 0.08
Molybdenum 7.50 37.00
Neodymium 6.40 0.00
Nickel 21.10 75.00
Nitrogen 13800.00 0.00
Phosphorus 71.10 187.00
Potassium 2300.00 1600.55
Praseodymium 76.00 0.00
Rhodium 290.00 0.00
Rubidium 14.00 0.00
Scandium 3.20 0.00
Selenium 2.10 0.32
Silicon 30300.00 12713.88
Silver 0.20 0.00
Sodium 1800.00 699.57
Strontium 200.00 490.00
Sulfur 43000.00 0.00
Tantalum 0.40 0.00
Tellurium 0.30 0.00
Terbium 0.23 0.00
Thorium 2.00 0.00
Tin 4.80 40.00
Titanium 700.00 399.27
Tungsten 1.90 0.00
Uranium 1.60 0.00
Vanadium 32.70 16.80
Ytterbium 0.55 0.00
Zinc 272.30 30.00
Zirconium 180.00 25.50
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3.3.2 Atmosoheric FBC Energv Balance

The two energy efficiency topics that are addressed in these various

subsections include the overall power plant efficiencies and the combustion
efficiencies. The results concerning overall plant efficiencies are

correlations of various operating configurations and parameters to
published analytic projections of what the efficiencies are likely to be.
The last portion of this subsection contains an empirical correlation of a
model to published combustion efficiencies.

In the temporary absence of a component-by-component program for

energy balance calculations it is instructive to compare some of the bottom
line results of different energy balance computations (see Table 3.3.2-1).
These results do in fact bunch very closely. The range of values from
33.5% to 39.9% observed in the Westinghouse parametric studies is examined
further in Table 3.3.2-2. The parametric points investigated in that
research were obviously chosen to isolate, one at a time, some of the key
design and operating parameters to point out the variations due to effects
of each.

Figure 3.3.2-1 typifies the close relationship between the fluid bed

and the conventional steam furnace systems. That close relationship shows
the fluid bed system as consistently 0.2 to 0.3% lower in efficiency than

the conventional furnace system. With this close correlation in mind and
thus using all the atmospheric furnace parameterizations, Figures 3.3.2-2,
-3, -4, -5, and -6 suggest overall efficiency variations as functions of
bed temperature, condenser pressure, power plant total MWe output, coal
type, and reheat temperatures, respectively. Correlations of those
parameters to overall energy efficiency analytic projects are:

Ep = overall plant efficiency, %

Et = thermodynamic efficiency, %

n = parameter for type of coal
n = .7955 for bituminous
n = .8065 for subbituminous
n = .7719 for lignite

Pt = steam turbine throttle pressure, psia

T = throttle temperature, 0F
t

T1 = first reheat temperature, 0F

T2 = second reheat temperature, °F

T3 = third reheat temperature, 0F

Cp = condenser pressure, in.Hg abs.



Table 3.3.2-1 Atmospheric FBC Overall Efficiency Calculations

Description Overall References
Plant Eff.

Loss Factor 11.4%

Northern Application Coal

Northwest Coal

7.32% Aux. Power Loss,
87.92% AFB efficiency,

Various Operating points

36%

36.8%

36.8%

36%

33.5%
to

39.9%

(Keairns, et al., Sept. 1975)

(Hittman, 1974)

(Hittman, 1974)

(G.E. Co., 1976)

(Wolfe, et al., 1976)
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Table 3.3.2-2

Parametric Studies of Atmospheric FBC Performed by Westinghouse (Wolfe, et al.,

Parametric Point
Power Output, MWe
Fuel 

Subbituminous Coal
Lionite Coal

Furnarr Tuna
Atmrcnharir iCnnuantinnai)
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Throttle Press . si .... _.... Throttle Pfress. psia
Th rottlie Temp F f
First Reheat Temp , °F
Second Reheat Temp, °F 
Third Reheat Tem . F
Condenser Press, in. HQAbs

Thermodynamic Eff, % , -
Powerplant Eff, %

ovR2II ff .

Total Capital Costx o- 6 $-
Capital CqostsI$LAYe.

CI nf Foirt MillskWh
Capital
Fuel 
OPer. &Maint
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1100 1200 1300
Steam Temperature, °F

Figure 3.3.2-1

Effect of Temperature on Overall Efficiency for a 500 MWe Steam Plant with an

Atmospheric Furnace (Wolfe, et al., 1976, p. 12-35).
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Figure 3.3.2-2

Effect of Steam Turbine Throttle Temperature on Overall Efficiency for a 500 MWe Steam

Plant with an Atmospheric Furnace (Wolfe, et al., 1976, p. 12-34).
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Figure 3.3.2-3

Effect of Condenser Pressure on Overall Efficiency for a 500 MWe Steam Plant with

an Atmospheric Furnace (Wolfe, et al., 1976, p. 12-36).
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Figure 3.3.2-4

Effect of Plant Size on Overall Efficiency for a Steam Plant with an

Atmospheric Furnace (Wolfe, et al., 1976, p. 12-38).
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Figure 3.3.2-5

Effect of Coal Type on Overall Efficiency for a 500 MWe Steam Plant with

an Atmospheric Furnace (Wolfe, et al., 1976, p. 12-39).
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Figure 3.3.2-6

Effect of Steam Throttle Conditions on Overall Efficiency for a 500 MWe

Steam Plant with an Atmospheric Furnace (Wolfe, et al., 1976, p. 12-40).
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For no reheats:

and Cp 2, Tt 1400, Pt = 2400 to 3500

Et = 46.5 + [Pt - 2400) 1100 1

Ep n Et

For one reheat:

andCp 2, Pt = 3500, Tt = 1200, T1 1400

Et 48.5%

p 
Ep _ n Et

for Cp = 3.5, Tt = T1 = 1000 to 1400

Et = 42.6 + .0125 Tt - 1000] + 0.9 [Pt - 2400] 1100- 1
t~~~~~~~~~~~~

Ep = n Et tgsd = 1.004]

For three reheats:

and Cp = 3.5,T3=1000,Pt=5000,Tt=T 1=T2 =1000 to 1400

Et = 50.2-5.6[1400 - Tt]400'1
t .

Ep = n E [gsd = 1.007]
p t

Detailed mass and energy balances of the various Westinghouse ECAS
atmospheric FBC designs have not been published; the General Electric
evaluation is shown in'Figure 3.3.2-7. Of the total energy input to that

- facility, in the form of coal (to the combustor and the spent solids
- cooler), the approximate breakdown of energy outputs is given in Table
3.3.2-3. The auxiliary components that have been assumed are shown in

Table 3.3.2-3

Energy Expenditures in GE Atmospheric.FBC

Sensible heat loss to water 49.7%
Electric generation 38.8%

Auxiliaries 2.8%
Net Plant 36.0%

Sensible heat loss to air 11.3%
Sensible heat loss to solids 0.2%

L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table 3.3.2-4. The overall material balance for the FBC with the carbon
burnup cell is shown in Figure 3.3.2-8. Similarly, the material and energy
balance for the Multi-Solids FBC is displayed in Figure 3.3.2-9.
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FLUE GAS: 11824 b-mole/hr-
PARTICULATE: 1.71 ton/hr
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PARTICULATE:
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COAL:
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I!

If
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!Ib-nole
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° ~~~~~~~~l
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L.S.-

SPENT LIMESTONE:

1.85 ton/hr
CaSO4: 34.4 w/o

Ilb-mole
FLUE GAS: 361.4 -more

(SO2 : 7.42 mole %

SOLIDS:. 0.14 ton/hr

SPENT LIMESTONE:

817 ton/hr
CaS0 4: 33.8 w/o

7.23 ton/hr

CaS04 : 11.4 w/o
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L

LIMESTONE
REGENERATOR
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iAIR: 321 -!b er

6.96 ton/hr
CaSO4 : 13.2 w/o
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CaSO4 : 13.2 wo

DISCARDED

Figure 3.3.2-8

Overall Material Balance (Archer, Keairns, Yang, 1970).
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Combustion efficiency, consisting of losses due to elutriated solid
carbon and unburned combustibles, such as CO and hydrocarbons, has been the
topic of a great deal of research. These analytic and experimental studies
have been motivated by attempts to optimize the conceptual designs of FBC
modules. The combustion efficiency information from the General Electric
design was shown in Table 3.3.2-4 and a review of atmospheric FBC
combustion efficiency experiments is shown in Table 3.3.2-5. These inves-
tigations have resulted in several general conclusions;. one is that the
unburned hydrocarbons do not represent a significant portion of the
combustion losses, and are particularly insignificant when the oxygen in
the flue gas is greater than 2% (see Figure 4.1.2.3-1). A second general
conclusion is that bed design is critical in determining combustion
efficiency. In (Archer etal., Nov. 1971, Vol. II), measurements indicate
that'much of the CO in the gas leaving the bed is formed from the reduction
of CO2 by carbon fin8s in the region 5 to 8 inches above the bed, where the
temperatures are 200--C higher than bed averages.

In (Bloom et al., 1977) it is shown that, with proper design,
combustion efficiencies can easily exceed 95 percent. This conclusion,
however, requires the further combustion of the carbon fines, as the
combustion efficiency of a "once-through" system is generally less than 92
percent. The two existing methods for the use of the fines are (1) the
carbon burnup cell (Pope, Evans, and Robbins, June 1974, PB 236 254) in
which the fines are fed to a separate bed running at higher temperature and
with higher excess air, and (2) recycling the fines back to the riginal
bed, (McLaren and Williams, August 1969) and (Rice and Coats, 1971). These
references show an improvement in combustion efficiency from 85 up to 99
percent for the carbon burnup cell and from 93.3 up to 99.5 percent for
fines return.

In (Bloom et al., 1977) it is speculated that the most suitable method
for use of fines in systems with velocities ..greater than 10 fps is the
carbon burnup cell and below 10 fps is the fines return. In addition to
changing the strategy. for use of .fines, gas velocity has a more direct

-effect on combustion efficiency in that for increased gas velocities the.
time for the combustion is decreased and elutriation is increased. This
effect has been shown experimentally (see Figures 3.3.2-10 and 11), and
substantiated by other tests (McLaren and Williams, 1969). Tests on the
effects of excess air, again similar to (McLaren and Williams, 1969)
results, show a clear decreasing marginal return in efficiency for excess
air greater than 15 percent, see Figures 3.3.2-12 and -13.

Increases in temperature, of course, also promote combustion
efficiency, as shown in Figures 3.3.2.-14 and 15. Although efficiency
would certainly increase at bed temperatures greater than 1800 F other
problems such as ash agglomeration, volatilization of alkalis, and rapid
drops in efficiencies of sulfur sorbents currently outweigh the combustion
efficiency advantages at these higher temperatures. Effects of sorbent
particle size on efficiency are shown in Figure 3.3.2-16.

On the basis of these parameteric studies and the EPRI data base
(Stroh, et a., 1976) an empirical model has been fit to the atmospheric
combustion efficiency data (Gruhl, Tung, Schweppe, 1978).

This model is shown in Table 3.3.2-6 with scatterplot in Figure
3.3.2-17.
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Table 3.3.2-5

Summary of the Results of Combustion Losses from Experiments Conducted by OAP Contractors

and NCB Laboratories at Atmospheric Pressure (Archer, Staly, Nov. g1971, Vol. 2).
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Combustion Efficiency Versus Excess Air in Fluidized Combustion

(Locke, Lunn, Hoy, Roberts, 1975).
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Effect of Temperature on Combustion Efficiency in the BCURA Pressurized Combustor
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AL

Table 3.3.-6 Empirical models of combustion efficiencies for which values
of all modeling parameters were available('ruhl, et al., 1978)

00

Symbols:
E = combustion efficiency, in percent

V = superficial velocity, in m/sec
D = static bed depth, in cm
X = excess air, in percent

A = bed area, in square meters
C = calcium to sulfur mole ratio
F = 1 or 0 indicator of fines recycled or not
M = calcium particle mean size, in microns

Model based upon parametric experiments and examination of trends:

E=96.1[l.-.036V][l.+.Ollmax(-4.,[4.-.787D])](.972+.0035D)*

(.97+.008abs[min(7.,X)] )

Model based on data base for all experiments and least squares, rather than
main trend, modeling:

E = 77.79 + 14.11(1.- .1434V)(1.+.02433max[-4.,(4.-.787D)])(1.+.0746*

abs[min(7.,X)])(1l.-.215A)(1.-.038C)(1l.+.231F)(1l.-.00016M)

[fit=arithmetic stand dev 2.95%]
on 144 experiments
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An empirical regression model was fitted by Pope, Evans, and Robbins
to data from an FBC fitted with a carbon burnup cell (Ehrlich, 1970, PB 231
977). Although this fitting was done to data outside of the range of
current combustion efficiencies, that is, the data is in the range from 65
to 90 percent, this is the only published data from the carbon burnup cell
configuration. The formula developed was

Le = 112.12 - .0935T - .367A - 1.028D + 6.93 C + 1.51I - .170C I

(gsd = 1.12 = geometric standard deviation of the fit to the
experimental data)

where
L = combustion losses
T = bed temperature, 0 F;

A= air rate, hr/lb;
D= static bed depth, in.;
C = carbon rate, hr/lb; and
I = inert rate, hr/lb.

This formula fits the data in (Ehrlich, 1970, PB 231 977) with 0%
arithmetic mean for the difference between predicted and actual data and
2.21% arithmetic standard deviation. A later version of this model, based
on studies of various numbers of feedpoints, does not show the accuracy of
this earlier model (see Figure 3.3.2-18). There are, however, quite a few
more points and the different design changes which both have an effect on
the fit of correlation models.

Recycling of fines can have an order of magnitude effect on combustion
efficiency and is likely to depend on the coal type used. Some preliminary
research on industrial application of FBC's shows some results for
different coal (see Figure 3.3.2-19).

3.3.3 Pressurized FBC Energy Balance

Here again the analytic predictions of overall plant efficiency are
presented first with the experimental data on combustion efficiency
presented later.

The results of the Westinghouse ECAS parametric investigations are

shown in Figures 3.3.3-1 through -11. The model that fits these results
is:

E = overall plant efficiency %
p

n = parameter for type of coal
n = 1.000 for bituminous

n = 1.040 for subbituminous
n = 1.015 for lignite

It= gas turbine inlet temperature, F 1600 to 1800

P = gas turbine pressure ratio, 5 to 15
r
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SYMBOL
- * TEST USED IN DERIVATION OF MODEL
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+ 0.0020 (carbon feed rate

lb2/hr2ft 4 )

70 80
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. i
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o 0
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Figure 3.3.2-li

Comparison of Observed and Calculated Combustion Efficiency Using Equation from

Previous One Feeder Tests (Reed, 1977).
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Figure 3.3.2-19
Combustion Efficiency Vs. Bed Temperature Measured in 18" FBC Test Program(Hanson, DeCoursin, 1977).
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Figure 3.3.3-4

Effect Steam Throttle Temperature on Overall

Fl uidized Boi 1 er Plant (Wolfe, et al.,
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1976).
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Effect of Coal Type on Overall Efficiency for a Nominal 600 MWe Steam Plant with a

Pressurized Fluidized Bed Boiler (Wolfe, et al., 1976).
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for a Nominal 600 MWe Steam Plant with a Pressurized Fluidized Bed Boiler

(Wolfe, et al., 1976).

1 Aw

42

40

et

Q
C
W

4-0-

L".CU
L-0.-
L"

34

32

*.. - 30

6

A _ .
I -

_§



Ae = gas turbine air equivalence ratio, nominal 1.1 to 1.8

Tp = steam turbine throttle pressure, 3500 to 5000 psia

T = steam turbine throttle temperature, 1000 to 1400°F
t

Rt = steam turbine reheat temperature 1000 to 1400°F
t

Cp = condenser pressure, in.Hg abs, 2.0 to 9.0

one reheat

for Rt Tt

Ep = n {37.55 + .018[Tp-3500] + .005 Rt - 1000] + 0.5 Ae -1.1]

+ 0.4513.5-C p] + 0.41[It-1600] 100- 1 -0.8 abs val
p t

11.0-Pr 1}
r

Parametric analytic studies of the energy efficiency of adiabatic
combustors is shown in Figure 3.3.3-12.

Mass and energy balances for the pressurized FBC are given in Figure
3.3.3-12 for the General Electric ECAS results and in Figure 3.3.3-13 and
Tables 3.3.3-1 and -2 for the Westinghouse ECAS results.

Combustion efficiency should be better for pressurized FBC's than for
atmospheric FBC's. Figures 3.3.3-14 and -15, however, show very poor
combustion efficiencies even for very high excess air percentages. On the
other hand, Figure 3.3.3-16 displays much better combustion efficiencies
for excess air at 15%. These results do not agree with the (Nack, et al.,
1975k 1470 F, 2 ft/sec, 3.5 atm at 97%, 140O F, 2 ft/sec, 5 atm at 99%,
1650 F, 2 ft/sec, 4.8 atm at 99%, and 1750 F, 2 ft/sec, 4.8 atm at 99.5%.
An empirical model has been developed using Figure 3.3.3-16 for
temperature, gas velocity, and a fixed point for excess air, and the
previous figures are used for effect of excess air changes. This results
in the empirical equation:

L c 10(.01Tb - 13.5)- 1 + (.003Tb - 4.75) (Vg -2)2

x ANTILOG [(log2)x(0.6 - .04Ae)]

[No gsd was calculated because the data set was so small that the fit was
unreasonably good. Within a year ther should be available at MIT Energy
Laboratory a data base for pressurized FBC. Until this equation has been
fine-tunned on such a data base it should be considered useful for
determining functional forms, but presently without useful coefficients].

where

Lc = combustion losses, %
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Table 3.3.3-1

Advanced Steam Pressurized Fluidized Bed Boiler Base Case (Parametric Point 7)

(Wolfe, et al., 1976).

Flow Rate
of Steam

X 10- 3, lb/hr

4000.0

3639.8

3639.8

3386.0

3166.1

219.9

2.919

2742.7

177.8

182.4

135.9

117.9
81.6

64.4

153.8

123.6

2962.6

4000.0

4000.0

.,__,

T, F
or

(l-x)*

1000

557

1000

617

617

617

4.9%

7.5%

650

557

843

617

434

341

240

3.4%

117

530

608

59

595.8

595.8

1600

866.6

470

844.4

584

275

P.
psia

3500

608

534

121

121

121

1.7

1.7

925

608

304

121

47.9

28.1

15.0

5.2

1.7

= 4000

= 4000

14.7

145.9

145.9

134.2

15.3

145.9

15.3

15.0

14.7

Flow Rate
Gas, lb/s

1520

92.7

1427.3

1563. 2

1563. 2

92. 7

1655.9

1655.9

1655.9
__

__

__

__m

__m

__

__

1520

92.7

1427.3

1563.2

1563.2

92.7

1655.9

1655.9

1655.9

* 1-x = % moisture
x = quality
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Location

1

2

3

4

5

6

7

8

9

10
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14

15

16

17

18
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Table 3.3.3-2

Advanced Steam Pressurized Fluidized Bed Boiler - Preferred Case (Parametric Point 31)

(Wolfe, et al., 1976).

.4

Flow Rate
of Steam

X 10-3 lb/hr
i .. ..

4000.0

3640.4

3640.4

3387.0

- 3167.1

219.9
219.9

2743.5

177.5

182.1

135.7

117.7

81.5

64.5

153.9

123.7

2963.4

4000.0

4000.0

--_

__ 

__

__

__

T *F
or
(l-x)*

1000

557

1000

617

617

617

4.9%

7.5%

650

557

843

617

434

341

240

3.4%

117

530

642

59

595.8

595.8

1800

1008.9

470

970.4

584

275

P,
psia

3500

608

534

121

121

121

1.7

1.7

925

608

304

121

49.9

28.1

15.0

5.2

1.7

= 4000

: 4000

14.7

145.9

145.9

134.2

15.3

145.9

15.3

15.0

14.7

Flow Rate
Gas, lb/s

1520

120.1

1399.9

1538.3

1538.3

120.1

1658.4

1658.4

1658.4

* 1-x = % moisture
x quality
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1

2

3

4
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9
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Figure 3.3.3-14

Comparison of Combustion Efficiencies (Hoke, et al., 1976).
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Effect of Excess Air on Combustion Efficiency (Vogel, Swift, Montagna, Lenc, and Jonke, 1975).
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T = bed temperature, F, valid (450 to 1650 F)
b

V = fluidizing velocity, ft/sec, valid 2.0 to 5.0
g

Ae= excess air, in %, valid 0 to 140%
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It should be pointed out that, even if they are exactly correct,
specific terms in these empirical relations cannot be exploited without
affecting a number of other FBC performance measures. For example,
decreasing the fluidizing velocity causes a sharp increase in combustion
efficiency. Figure 3.3.3-17 shows the lower limit on fluidizing velocity
imposed by particle sizes. Figure 3.3.3-18, however, shows another
advantage to decreasing velocity. In addition, each of the emissions will
be affected in one way or another by velocity changes, and it can quickly
be seen that many of the FBC parameters must be chosen with careful
consideration to all effects.

3.3.4 Potassium TooDpinz FBC Enerzv Balances

Tables 3.3.4-1 through -4 show the best design, parametric points from
the Westinghouse ECAS study. When all of the liquid metal topping cycle
designs are considered,the following model fits their efficiencies:

Ep = net overall plant efficiency, %

n = parameter for effect of different fuels
n = 1.000 bituminous

n = 0.986 subbituminous
n = 0.962 lignite

Re = recuperator effectiveness range 0.0 to 0.8

Cr = liquid metal circulation, ratio 1:1 to 2.5:1

Gf = gas feedwater heater, 1 if yes, 0 if no

Ge = gas economizer, 1 if yes, 0 if no

Sr = stages of steam reheat, 0 or 1

Pr = compressor pressure ratio, 5 to 15

A = air equivalence ratio, 1.2 to 3.0
r

TI = gas turbine inlet temperature F, 1600 to 1800

TL = liquid metal inlet temperature, 0F, 1400 to 1600

0
Tc = liquid metal condenser temperature, F, 1100 to 1300

Tt = steam turbine throttle temperature, 0 F, 1000 to 1200

Pt = steam turbine throttle pressure, psia, 2400 to 3500

PB = steam turbine back pressure, in.Hg abs, 2 to 9

M = cycle power in MWe, 400 to 1600
s

= parameter for effect of liquid metal
1.000 for potassium
1.014 for cesium
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114

02
�'D

e A

I I



i~~~~~~~~ --Coal in 1 ". , _ 

· s *'-0 ,

o

..

. a

0 S I0

.^ \ ~Veloctyi tt.s

Figure 3.3.S-18

Area of Bed/Power Output Versus Fluidizing Velocity in Fluidized Combustion

(Locke, Lunn, Hoy, Roberts, 1975). -

115

- m --

I



·. ·~ , . · 9 · 9 ·0 0 0 0 0 0 0450 000 000* >v 

*

_1 U
U aa- 9

A b :14 _

_ a U A o5 -4

45 e1 _ - 0a -_~4t 5 0 5

IJ 4 1 ~"._~ ~~~~~~~~~~~~~.

.4 4 P - 40i m . '0 

.4

14 _5.
41

_ _

U z'

.4

s: C a

4W VO6 -0 0".a U
a 01 .
a a5 0

0.aZ

I

41.
_ U

V a
0 -

U W
cJ -

a 4

u a

4W. 

o u 
* C 0_ 

. _4 2 .

4 - : 0 0

45 45 0 .
* C0 0.C

ta " . a X_a0 I 2 q

145

le

4

,a 0
14 a0

" a * 0 N '
4U. -4 _

_I

-2
4J1~~~~~~~~4

0

2

U .

A A. I3 LA

Z.

a

0 2
U.15.

.L 
a

0.5

- :s aa1 a 0

fI Cb

5, >a la u

V5 -4;

2 ti I

_ U -4

a45

e
D

-

-g

_ -0

, I
cr -

'0 ·5 N
. . -

.0
0

.4a

'a I.

_ -4 
r. 4

0. 45 4o .
_ uU
45._ U

00a ;
0 oon

" 4 5

. -4
4.
z U.

2 -

IZo 41

E.1 111
I 0

_ 0

45 v5 4

I14 U 4

I5
45I

II

4-.

I

I

0

I5

'U5
0 0

g < 1
.-, = Z 

45
u 40 45

2 0 
41- f5 - -4 0

0

I0

451

31

a
a

a

-4
45

I

45

0
so

g 1
- 0

§ 

I0

K11

000.

'O 0

" , _El K

I _
4-

v

- . ~ 0 .la _ .0
D I O O la

*- a 0 - .

ON ° °°° .1 A a 

v

.I

.41-

* *5 * 41-4
-4 0

2 014-

a 01 5 4

x= =3

a
U

41

. 0
4 -

I..

I
a L.

4 1

iIV].0D. 4n 

a001-

C'IUX -

=,,

45I,,9 a. .
_X °

'lI
N

a

I.

Oa N

_. O

av

g 0

E. 
eI 1

0 .0 
-4 4-

g o *a o 
oW1 I o ..0 '0

°'o. 8 °-
0 o O r'
.. .0

o Ao on

0- K

._

X . 0

0 N

. -~~~~~~~4

45

14

&. .J

45

a-5!

C4I0

Uu)4

a

0
u

0

45 0.C 40

116

Ii
.A

It

W

.

1

4-

0
IC-0

o.,-

aJ

0L~n

CsU0,

-.

II

.J

.o avr
CV F
W- 

10r-

t1

C]0C

45

0.

- - -

..

-

_



O - 0 0 9 
o 0 0 0 0 0 0 0c; c; co c o o; o o o

:

I a
-
.4_

Aw * a
- .

a c_ 2 ia a a

6

a C 6w

a _
_ _0-o e
ow 

w " Xa* cp v
m 4 '4 0 4

Ch 40

W4

. c
IW 6
to u
4 -
_ h 

w4 -i ..460

10 I. 1
_14.a

A. - _
- 6

6 i 
6 c U

S

it6I
6 .

- u

e U

U. u
V .4

.4 4

a 0
J@6

-0

0 

-4 Ei .40 'm 
-4 A. .4 . .4 -

I

.4
a

I4.

m 0

A.2 '0 aX aiS - -
A 0. 3 -

x, .

Z V

0

*. .

0 i 
e _1

v .
e a

C 6c. h 

.4 6 >_i 0A . 6

-0 i cA 41 -
hi I 2-
2 4 . 0.J -

P.

.4
. .6

4 a
UCA

* 0 A

a i

V -a,

I U

.., _S. ;

a .

0

10 "1%

p. .% o1M1
.1 _ 

a a6 .4 _i

a-6
0. 6

O U

0.C A=

u I
I

4

I
i"

A

0 0 #.g g .
y _ _ N

V.6

II0

.0 -
'-4 

2 4
a, 41.

41.

2

a

0

2

A.

o

hiw 0

41

66

C .-
a 6

0 U1
, hi0 -

, 

8 

a
41

.0

A
2

4-
I
CAI

0 

g 9 <: n

.* .4

6 A.

, -

0.: a

.1 ,a vha

. - -,hi

a C I
c a * C -

A AA. 6 634 . St

Ii

C,
2c

A

a,
0

C

4.

0
a

C0

Ua.M).4

6

-

0 -
-I °

'ma
.4

. m

N
46 .4

a

Aa

I
v

: *I_
o40

* a F
.4 0
2 0 U-
U Z

410 41 h
0 u it

0

0.

0

o .
V

.40
a6.4

0.

.1
- 4

.

-
, .C

6 a

ba

'4

_

'A a

4; o

fA o

-"
0.

.
a0

A

q 00
t. O
.4 g4

.l6
6I

g a

. . . .4

i'4 84 4a

#0 a

o o o 

.* .41" e4

0 W
eh 0

x i I,6 IC-

C i"'4 41% -
* N

I
* hi
1 6

a C 00A 66
hi 6 hi 

S 0
a -

S . U a V

i
,A

.0

Ai

117

0

c0
.C

0

C.

.,

0),-

*6,JC;

.r-

4-). q)0)

-

-

(/)

0) e

b- L
qj r~

V

C

z

.0
U1

ta

0

w4I

'I

411

A.1

.0)
r_

+1cn

CL'ci

|

Oq,



- 0 0 80 < .4' .1. . .~ . . . . . . . . . .
0 0 0 0 0 0 0 0 0 o00 . 4 .

41.

.24 41 2 -
-. 41 41

� I .� :
.24 41 h. .4 41

'a 41
C
41 41

� 41404141 .C I.
A - Il C C I .2
-4 41 3 41 4- 41 41 A

C 4141 'a 2
- 41 .4 C 41 C 41 41

- A 41 0 41 0 41 U
414.4114 C) 143412
000
1441,,-

0

N . . . .
eN O00 ''ft ft .00 NCa I a "

,a

341 .24

2.441. -4
U -4
C .4

41.41 1
U -
C U
(I 41 -'� 41 41.

U -. 0 .24 41
414Le-.. 3.3

4�41. 41
14.0 - -41

4141 41 U
41 41 41 41 41
CCC 041

410 14 14 04

0. 41.4 41 4-
-. � C

� 414141

44 0. 0 41
41 .9 - C

C. 014 *�0 �J

0
0
-t

.0

0

0 o

41. 41 la 490. _ o -4-

S

41 0

D .4

24 O . 41
E1410

C 4 1 4 1 4 1

2 41 C 41 U
' 1 0. _ 41 C

C 41 '
-*s * _ C >

4 1 O 1 2 4 1 a'
041 A - 0. X
O. 5 41D 1 * 4C

14: E 1 14 *n E 
214 : X 

.. 4

C1

.A
I-au2

-' a'41

a
00

c a

* ua g
Q1 -
1. - C

C C -

= z 

I-

,a C

1- 

o .

-C

I

C

;4I

tJ

1.

11C

0 
o 0 --_.
.. 4 _, _N

00 0 o
0 0 0 4

4 90
In 4 _ 9

* * .0 4

. 4. *4 0 0

2 - 2 4 C

0.4 a _ . 41 41 c
*f 1 0 :1. 41 Q1 

-1 C 414 _ _ 

C CE O1 C C 41 0

A 'a U .0 A 41 4

2-14. O 1 - - 2 - Q

.2

0

I 
1 9
-~I0

I.0'

0 a 0 Ift

t-2

a
.o4

0 -

2

la M - PI a,
ae 0 -I

A

4 4 1 1

_ . a

11 O F
-4 a

a 21 4 41 h.
N w C, " 

a = 1. 2==

a
0.

0
U

C

41

_ o
a -

0

.41.
- -c r

C a
0 4

g.

4,;,0 c

I 0' .-

41e41o

3-C

C

410

_d.

_4

C

0

A

N 0

C O
It 

.

.

0 0
C a'

It 0
dh N

'.0 0

· la .o 0

. , . .49 N .40

0oo oo0
.40 0 )4

In In "a. 0 4. 

0 la
-I a.

O - 0

o 41 
o 1.

4 a X

...24 0.0'. ._.0 1~ .,

41 I

C 00

2 C C
F- e4 C _1

' a 1 _1
40 C u 0
1. I 0 0
3. . U u

C

0.

4=1

-C 4

118

tI
4.)Pl

0ON

4-f:

C)

CL
C.c-4

.4--

C-
M

M
*,-0l-

a).-

-n 4
·. .,

0

14

1
41
I
41
aU

T'

ie.
:.

l

I

i

i
I

II

i



0 0 0 0 04% 0 C 04 -e - .
I. cr. '@0 00 X 

000000O00O 

V _
o Il
0 -

0

- 4 .41-4 1 0_ . s : e X.4
.o *. * c % c1 .5 - 41

* * _ 0o . 0 c A 41 x_

34 A0 1 0 0 4

us '_ F

C1' V. i i I
1

ft" " "4 .w rw " e _
don

u .-

e - ,-04I .

i6 -t -

1. I _1
a ' 

- 4 14. 4 .4o1 4. -

C 0.*J

iI
-

;I .
2 &I_

_ a

U

0 eb

t; -1 I

_ WO "
o.

0

434

It 0
0. .. ao4- N

- _0 1!
4 0. - -4

I e1ICA

0

1 0.

'1. .I

10 41

.0 0
u 

1 30g3

0

t .. 4

t a

04 >

0% 41G1 -
0 a4VI- 04-_ O >44.441$
41 Q1 0

0 44 

.4 l N

. 5
o

I b.
e -

o.A -
0 4
_ .4 .

la.: a 0.4a &* U
4c 'a U

I
1

.4

C

I1

i

A

o 0 ..

I - -4

A

.1

.

1.

.4 4

E O 
_ C.C 4 0

, 'i C -_ o-4 . .4
I- 0 la 0

A~ 0 U
I u uk

C

IO41
A
41

0

A

I-

41

0

0 o .0

-4 4 

.0
* la

a 0%
41
.4 4

E ..4. 4

0 _
. C

0 _

-I-

00
C.. a1 O14 

w ..

41 0

'4 a

a1 .5

a1 0
04 U

410

tJ
41

41

_ C
o .400~ 

o0

0 00-
44

o' a'* _00 -

la . 4

-4

41 ~ ~ ~ ~ ~ ~ ~ ~ ~ a4
0D 4 4- I .'a

o0 o. .4 " 5 oO. 0 .4 . g 0 4 .

- 1 o o% o o o

.C 0000 .444 A 00

I
41

1

* * -

1 O o

° 2 , I4 a.444 N 4. 4
OCOJO 4 a 6
to Zu b = =

I

0
0

a0.
Q

01
U

a

01

a -is

a C
.5

vs
f i ,;..4411 04.441

1-41 a44

.P 04oU*-0J
41

_4 -

0c

a

41
0%

@4~ '
co -

4.

i0

0 o

I e

O- *

- .4

0 .4 0
P. P. .44

~o oo ^^ ll "!

O 4.4 'I 0

0 014 c4 Ni1

0 la

P. -0%1~ 4

N !14-' O
I It

.-

0 00

a. I10 .aW -
e |O O4

.4 z < s '
3 . V U

119

1
04

z

0
w

41
4.

'I

a

CU0I_-I-

*0mc

0

0I-

O

,w

4-).)-o

0=L

.-

')

'U

- E
-o c

*- =

41

14

1

I.

- -

l

.-

A



Ep = ne {.370 + 0.0073 Re + O.OOM3 + 0.00 Cr

2
+ 0.075 GF + 0.038 Ge - 0.00043 (15-Pr)

+ (.493 A -.4108) + .00482 (Pt - 3500)

-10 -6 G (TI - 1800)2

+ Sign (3.5 - PB) x .006 (abs val I 3 5-PB | ).5

+ .0085 S + .01 (.006 + .001 S ) (T - 1000)
r r t

+ 5.0 x 106 (T + TC - 2500) + .022-5.5x10-7

(TI - 1600)2}

Figures 3.3.4-1, -2, and -3 with Table 3.3.4-5 show the mass and

energy balances of the potassium topping cycle FBC. There are at this time
no experimental data to which empirical combustion efficiency models can be
fit. The results would be very much like the pressurized FBC case, except
the combustion chamber operating points would be quite different, probably
set to optimize other portions of the system than the very flexible topping
cycle.
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4. Environmental Assessment .. . ..

The primary impetus for developing fluidized bed technologies for

combustion of coal is the economic potential. Part of the economic gain

results from the lack of need for scrubbers. It does seem that there are

other enviromental gains that are possible through the use of fluidized bed
combustion of coal, but environmental data is lacking on many key points.

In FBC there are at least 602 inorganic potential pollutants and 491
organic potential pollutants (ERDA, 1977).

4.1 Air Emissions of AtmosDheric FBC

Those air emissions that have been measured on experimental rigs and

the analytie projections show that the potential hazards of these emissions

are about the same as those for conventional coal-fired units with

scrubbers. There is, however, serious lack of experimental-data on the

emissions of trace elements and compounds, and organic compounds (Battelle-
Columbus, 1977). A list of these potentially troublesome air emissions is

shown in Figure 4.1-1.

4.1.1 Air Balance

No experimental data has been- found on air balances around fluidized
bed combustion systems. The analytic data that is available is that which
was developed for the ECAS study and is shown in section 3.3.2.

4.1.2 Flue Gas Emissions

Air emissions that have received the most experimental study are those

represented-in the new source performance standards, see Table 4.1.2-1.
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* Dole(ies: *-CC-CC- e.g. bucadleae, pfciLen4, etd.
* OlefLa.s: -C-C- e.. ehylene, propylete. etc.

Arottes: '~ e.g. benzenes toLumna, etCo

* ?olynucLta: .roatic$: e.g. nChraceae, pene e4.
* Cyclic Hydrocabns: Q [ e.g. cyclopentaG.,

cyeLopeaciene, ce.
xWrOM CC.//'~qOS-

* ?TditAs: e.g. pyrtdLne, quinoalltue, et.

* ?yrroiesi *J*

* HICrosolaae: 1R-!-e 0
* Azo-avenes: 3- t -'a

SUMLFIR CO-TMPOS

* RzS. CS2. COS

Sz
* Thlopenes: 

S
• Jtercaptans: -S3 e.g. cthyl -mercapcan, penyl carcaptm.
· Sulfates: e.f. FeSO4, 4bSO,, etc.

* General coounds
- ILL2!NTAL - CROXATES
- CXI£DES - C"W:.S=
- SAT£S - CI.ORMFZS
- CA.3IDES - NITRAUS
- SFZ~DES - 5ILICATES

* Examples: :;ICKEL: UIS, MtO, Nt3, fi(CO)g,
sLSO, ULco3, t;iC 2 . MLC) 42

UArTCIM~ES

* Size dstcrbutlo
- 2 tts
- S >:20 O
- 20 .

Figure 4.1-1

Selected Examples of Conceivable Pollutants Which Could Form in Coal Fired

Fluidized-Bed Combustion (Fennelly, Durochee, Klemm, Hall, 1975).
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Table 4.1.2-1 ?rimary ew Source Performance Standards
(NSIS) for Solid-Fueled Air Pollution
Sources

So urc e:

S'aivI (Ze E WRAT RS

Fossil-fuel
fired6

= 250xlO
Btu/hr
input

Pollutant:

Particulate
:Latter

Sulfur Dioxide

Threshold:

O.1 lb/100

3tu input
20% opacity

1.2 lb/106 Btu

iNitroten Oxides
(as v02)

0.7 lb/106 Btu
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For the other air pollutants the models developed here have relied in
varying degrees on implications of other fluidized bed types and existing
data on conventional boilers.

4.1.2.1 Sulfur Oxides

Principles of in-situ removal of sulfur dioxide in an atmospheric FBC
are not totally understood but the parameters of importance are known (see
Table 4.1.2.1-1), and experimental data on the apparent effects of changes
in these parameters is available.

Table 4.1.2.1-1
Parameters Affecting In-Bed Sorption of Sulfur Oxides

Major Parameters:
Ca/S ratio
Bed temperature
Superficial gas velocity

Minor Parameters:
Stone type and source
Gas-solid mixing factors
Regenerated stone activity factors
Sorbent size and feed location
Bed depth and internals
Coal type and constituents
Coal feed location and means
Excess air
Addition of salt and other additives
Oxidized reducing conditions in bed
Recycling of fine particles
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Effect -of Calcium to Sulfur Ratio

To a great extent there are large nonlinear effects from the
variations of two or more of the parameters affecting sulfur oxide
sorption. In general, however, the Ca/S ratio is the dominant variable
with sulfur retention increasing sharply for increasing Ca/S ratios;
typical results are shown in Figure 4.1.2.1-1 to -12. The reaction that
takes place at atmospheric pressure is the endothermic calcination:

CaCO3 = CaO + CO2

from which the calcium oxide is then sulfated:

CaO + S 2 + 1/2 0 2 = Ca S04

In the development of empirical models for SO2 capture in the bed the
most important initial modeling task is the effect of Ca/S ratio.

Effect of Bed Tem!erature -

Particularly in an FBC at atmospheric pressure, the bed temperature
can be an important operating parameter. In the coarse limestone (490-g30
pm) studies (Jonke et l., 1972), Illinois coal peaked for 1500 to 1550 F
and Pittsburgh coal showed optimum SO retention at 1450 to 1470 F (see
Figure 4.1.2.1-13). In (Ehrlich et aI., 1972, p. 231), these types of
observations are supported. Recent experimental data at CPC (Nack et al.,
1975, p. 360) shows that these optimum temperature effects, while present
for Ca/S ratios of 1.5, were "little" for Ca/S ratios of 3 to 5, contrary
to the Pittsburgh data in Figure 4.1.2.1-13.

It should also be noted, from Figure 4.1.2.1-14, that the optimum
temperature for retention is dependent upon the Ca/S mole ratio. Figures
4.1.2.1-15 through -17 show additional temperature effects. The reason for
the downturn in sulfur capture has not been explained by available
thermodynamic or kinetic data. guch analytic models show SO2 levels
decreasing up to and beyond 2000 F, thus there exists ere a gap between
the empirical and analytic models. The possible explanation that slag
buildup, fouling, or some irreversible factor was responsible for reduced
sulfur capture efficiencies at higher temperatures has been dismissed by
experiments which have approached the optimum temperature from both the
higher and the lower.temperatures.

Effect of SuDerficial Gas Velocity

There is good agreement in the available data on the effects of
superficial gas velocity on sulfur retention. There is little effect for
high Ca/S ratios (3-5) and lower gas velocities (<10 fps). Low Ca/S
ratios (1.5) show significant sulfur retention with increased gas velocity
(see Figure 4.1.2.1-18). The factors responsible for decreased sulfur
capture with increasing fluidizing velocities are :
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Figure 4.1.2.1-1

Effect of Calcium/Sulfur Mole Ratio on S02

Removal with Fine Limestone Additive

(Anastasia, et al., 1970).
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Figure 4.1.2.1-3

Effect of Gas Velocity on S02

Removal with Fine Limestone Additive

(Anastasia, et al., 1970).
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Effect of Combustion Temperature on S02

Removal with Fine Limestone Additive

(Anastasia, et al., 1970).
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(Anastasia, et al., 1970).
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Effect of Makeup Rate on Desulphurising Efficiency (Moss, 1970).
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So2 Reduction -- Effect of Limestone-to-Sulfur Ratio (Glenn, Robison, 1970).
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Figure 4.1.2.1-9

Sulfur Reduction Vs. Ca/S Mole Ratio (Wright, 1973).
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Effect of Fluidized-Bed Combustion Temperature on SO2 Removal
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(Jonke, et al., 1972) and (Nack, et al., 1975, p. 360).
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(1) reductions in gas and solids residence time.

(2) decrease in bed density.

(3) increase in production of large bubbles causing SO2
bypassing, and

(4) increase in elutriation of under-utilized sorbent material.

Effects of Minor Parameters

The interaction of three parameters is shown in Figure 4.1.2.1-19 as

performed at the Pope, Evans and Robbins facility. Limestone particle size
has an insignificant effect in the range above 200 u. However, sulfur
retention is sharply increased with sizes decreasing below 200 u. A sharp
trade-off between elutriation and sulfur retention is evident in particle
sizes at and below the 44 u size. If both coal and sorbents are ground to
these fine sizes then low fluidizing velocities are necessitated, producing
low system throughput, with undersirable economics. Babcock and Wilcox
have performed extensive studies on the size of sorbents and its effect on
sulfur retention. Figures 4.1.2.1-20 and -21 clearly show the size
distributions associated with different meshes. Figures 4.1.2.1-22 and -23
display the parametric sulfur reductions as a function of sorbent size.

Figure 4.1.2.1-19 shows the expected increase in capture rate with
deeper beds, due to greater interaction times (for constant gas
velocities). This effect is corroborated in (Jonke et al., 1972, p. 231)

but not to the extent shown in Figure 4.1.2.1-19. The reverse effect has
been reported (Hammons and Skopp, 1972), but discounted due to small bed
diameter (3 inch) causing the prevalance of slugging.

Bed depth effects may not be exploitable, since bed depth is
proportional to bed pressure drop, which may be limited by available fans.

Compositional variations among different limestone sources are shown
in Table 4.1.2.1-2. Recent experiments (Nack et al., 1975, p. 360) show
however that dolomite, and not limestone, is likely to be the better

sorbent in atmospheric beds. Most dolomites investigated have had nearly
equal molar amounts of CaCO and MgCO. The MgCO3 calcinating to MgO
appears to account for better utilization of CaO, as shown in data from
(Skopp, Sears and Bertrand, 1969) in Figure 4.1.2.1-24. The postulated
mechanism of MgO maintaining porosity of dolomite to facilitate sorption
has been supported experimentally, (Jonke et al., June 1970) and (National
Coal Board, February 1971). Original porosity of the different stone
sources can be of paramount importance in sulfur retainability (Potter,
1969). No method has been found to predict the reactivity of different
limestones and dolomites.

140



0

.20

oi
4

U

Xo 40

60U

-

4

80

1.

1O0

060.- - 200 400 600 800 1000 1200 1400 1600 1800

LIMESTONE PARTICLE SIZE. microns

Figure 4.1.2.1-19

S02 Reduction -- Effect of Limestone Particle Size, Bed Depth, and Temperature

(Ehrlich, et al., 1972, p. 231).

141



o 0 0 0 0 0
o co 

od

cn
w
(JI
z
&

zwz
C-0
w

w

0
c~

o o o o 0 0o0 CO t C '
IN33U3d A IVflNno

142

,

c-0

-r-

4-JU.0

r-CU

r
C:

_ 0

n

WLLwI UM

o o0

- E_ NZw * a
C. *¢ C
O o

W 4- 

. -J

0n L 



0 0

0~

o~~

¢-.,

0~~
-

u

o~~ 0

C) Q~~~~~~~~f,,-
o o0

a-

E -o

0 -o
CN 

a-a
C
0
4)
U)

8

o , .
o4

.

C\ .

¢ 0

OX N
._ *_-
L U0

o0 0 0 0 0 0
co CD c, N

0 3Avln3n

1 '



0

-0+ 

BASE TES

0 1/4 INCH

O °i./ Vs= 8 fps
-15500F

TESTS AT 8 FPS, 1550 °

0 1/4 INCH TOP SIZI

0 8 MESH TOP SIZE

0

/a
/

TS:

TOP SIZE

F:

E

A 16 MESH TOP SIZE

0 PULVERIZED

* HYDRATED LIME

TESTS AT OTHER VELOCITIES OR

TEMPERATURES:

-e- v ,.5 FPS
S

Vs 12 FPS

0 BED TEMP. 1650°F

'% BED TEMP. - 1450°F

2
Ca/S IN FEED,

3
MOLAR RATIO

Figure 4.1.2.1-22

Sulfur Fixation Versus Ca/S for Lowelville Limestone and Hydrated Lime

(Strom, et al., 1976).
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1 / r

0z

Be

X

G:
LL

U.-jU,

90

80

70

60

50

40

30

20

10

0



Table 4.1.2.1-2

Composition of Limestones Used in Kinetic and in Pilot-Plant Studiesa

(Horio and Wen, 1975).

Coates and Rice I
Author Borgwardt Davidson and Smale Davidson and Smale

Jonke et.al.
Robinson et. al.

System Kinetic Study Fluidized-Bed Combustor

Typec ofdLimestone |Type 3c Type 4 d BCR 1343 BCR i359 British Limestone
Limestone

CaCO 9a.3 97.8 96.0 97.8 > 97.0

mgCO3 3.89 0.00 G.96 1.3 b
FI'20.3 0.20 0.31 0.38 0.12 b

2 

A203 ND 0.01 b 0.16 b

SiO2 ND 1.53 1.70 0.60 _ b
Ignition loss 43.67 43.15 42.8 43.6 b

a Only the data related to this paper are presented.

b ;Not reportcd.

c Type 3: calcite limestone with few scattered fine-grained dolom.ite rhombos.

d Type 4: calcitic limestone, very fine, equant granular, and dense.
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The use of regenerated sorbent decreases the collection of sulfur.
There are several more or less well studied reasons for this effect. It
may be possible to simply scale down the reactivity of the sorbent
depending upon the amount of recycled material in the bed.

Figures 4.1.2.1-25 through -28 show some of this decreased reactivity.

Excess air can be used to increase sulfur retention in the bed, see
Figures 4.1.2.1-29 through -32. A much more important factor in setting
excess air levels is, however, the maximization of combustion efficiencies
which occur in the excess air range of 5% to 15%.

Bed size may be important for small test units, with wall effects and
slugging from bubble sizes approaching bed areas. Larger units should be
free of these effects.

Effects of coal and sorbent feeds on sulfur retention could be
substantial. The position of sulfur released in the bed and extent of
oxidizing and reducing zones are the important factors.

Although the naturally occurring limestone and dolomites have been
shown to be effective sorbents, and are attractive from a cost per unit
basis, the search for alternative sorbents has been extensive. Problems
that have arisen with the natural sorbents include rapid declines in
reactivity upon regeneration (due to sintering, pore plugging, and
poisoning by ashes of various coals as described in section 4.5) or very
large quantities to be paid for and disposed of in the non-regenerated
configurations. Alternative sorbents have been studied at Radian
Corporation (Lowell and Parson, 1975), Argonne (Snyder et al., 1975), and
Catalytrica Association (Cusumano and Levy, 1975). Table 4.1.2.1-3 shows
the list of potential sorbents that is being considered.

Table 4.1.2.1-3
Alternative Sorbents

CaO
SrO
LiAlO

LiFeO3

LiTiO
NaAlO3

NaFeO
CaAl2_

SrAl 04
SrTi_
BaAl.S4

BaTi 3

With the exception of CaO and CaAl2 0O4 there is no experimental data on
effectiveness of these materials. Models are available for representation
of the SO2 removal efficiency of the CaA1204 sorbent in (Snyder et al.,
1975).
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* The' effect of coal type on sulfur retention is not well understood.
Figure 4.1.2.1-10,-12, and -13 show some results; Figure 4.1.2.1-33
displays additional findings. Of course, the sulfur content of the coal is
the primary factor effecting SO2 emissions. Other factors have not been
identified but could include:

(1) ash content;
(2) volatile content;
(3) ash composition;
(4) swelling index, and;
(5) ratio of organic to inorganic sulfur.

Decrease in coal particle size should increase sulfur retention due to
contact and reaction rates. Such effects have not been experimentally
verified.

The addition of salt (NaC1) to the bed has at times almost doubled the
effective Ca/S ratio in the control of SO2 emission (U.S. Office of Coal
Research, 1974). The data on chlorine as the potential chemical attriter
in this process is shown in Table 4.1.2.1-4.

Table 4.1.2.1-4
Effect of Chlorine on Effective Ca/S Ratio

Increase in
Low Cl Raised to Effective
Coal Cl Level Ca/S Ratio Reference

0.08% 0.2% 75% Henschel, 1970
0% 2% 60% USOCR, 1974
.0% - 0.7 - 1% 60% Nacket al.,

1975 

Although there can be raised some severe questions of desirability of
intentionally adding salt to an environ already hampered by corrosion
problems, the chlorine content model is the only available mechanism for
describing variability in SO removal that is due only to variations in
coal source sulfur content as been dismissed as a potential important
parameter (Archer et al., 1971)]. In (Pope, Evans, and Robbins, 1975)
effects of salt addition were observed to be:

(1) decrease in carbon content of bed, flyash, and dust;

(2) increase in chlorine content of flyash with negligible change
in chlorine content of bed;

(3) increase in sulfur content of flyash and dust with little bed
affect; and

(4) decrease in flyash collection.rate.

The results of their studies with and without salt are shown in Figure
4.1.2.1-34.
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Effect of Salt on Sulfur Capture (Gasner, 1977).
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In recent experiments, the Multi Solid FBC has performed slightly
better than the conventional design FBC's (see Figure 4.1.2.1-35).

Beginning with a model of the sulfur reduction as a function of Ca/S
ratio, the Ca/S ratio effect can be eliminated from parametric studies on
temperature. In this way a temperature model can be developed, and both
temperature and Ca/S ratio effects can be removed from bed depth effects.
This solution of the sets of parametric experiments eventually results in a
model of SO emission from the atmospheric FBC. Models built up directly
from theoretical grounds, based on population balance equations and
considering residence time distributions of particles in the bed, have
shown accuracy +6.5% of SO2 removal percentage (Horio and Wen, 1975); see
Figure 4.1.2.1-36 for example. These calculations are for coarse
limestone, steady state and other assumptions and require the use of an
iterative procedure of formulas and lookup graphs. It does represent one
of the complex analytic models that can be compared to the following
empirical models. These models were developed on the EPRI data base
(Strom, et a., 976) and are discussed further in (Gruhl, Tung, Schweppe,
1978). Table 4.1.2.1-5 shows the original model with Figure 4.1.2.1-37 the
scatterplot of tne fit. Table 4.1.2.1-6 and Figures 4.1.2.1-38 show a
refined model. Table 4.1.2.1-7 and Figures 4.1.2.1-39 and -40 show the
best model over the mass of data.

4.1.2.2 Nitrogen Oxide Emissions

NO emissions in atmospheric FBCs with inert beds range from 450 to
800 ppm (Pereira, Beer, Gibbs, and Hedley, 1974). With the addition of
limestone these levels drop to 250 to 600 ppm (Nack et al., 1975). There
is a potential for a problem here as the USEPA's new source performance
standards gor coal-fired utility boilers limits NO emissions to 0.7 lb of
NO2 per 10 BTU of heat input, or roughly 525 ppm fn emissions (Strom
et- al., 1976). An average of 353ppm was found in the massive data
collection effort of (Strom, et al., 1976), see Figure 4.1.2.2-1.

Experiments in which argon was substituted for atmospheric nitrogen
showed little change in these NO concentrations (Jonke et al., 1969),
(Shaw and Thomas, 1968); using nztrogen-free fuel substantially eliminated
NO formation (Jonke et al., June 1970), thus placing the source clearly as
the nitrogen bound in the coal. The amounts of nitrogen bound in coal are
clearly capable of producing these levels of NO concentrations, with
1.0-1.5% nitrogen coal capable of yielding 2025-2850 ppm NO emissions.
Two reactions have been proposed as actors in the freeing o the 80-90% of
the bound nitrogen that does not become NO . One reaction is

x

2NO + 2C0 = N2 + 2C02 ,

and the contention that this takes place is substantiated by experiments in
pressurized FBCs where increasing excess air reduces the availability of CO
(see Figures 4.1.2.2-2 through -6). The effects of excess air is not as
apparent, however, when all of the data is plotted on a single display, as
shown in Figure 4.1.2.2-7. Additional experiments where stage combustion
was used, secondary air injection into the freeboard, apparently also shows
that with better mixing there is improved use of the CO and subsequent
reductions in NO emissions, see Figure 4.1.2.2-8.
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Table L.-5 Empirical models of sulfur removal for observations where
removal equalled or exceeded 80%

Symbols:
S = sulfur removed, as percent
C = calcium to sulfur mole ratio

V = fluidizing velocity. in m/sec

T = bed temperature in degrees centigrade
D = static bed depth, in cm
A = bed area, in square meters
M = calcium mean size, in microns
P = parameter for effect of coal source
Q = parameter for effect of calcium source
R = number of times sorbent reused, l+number of recycles

Model from a limited number of parametric experiments:

S = 100.-(30.6/C)[(V/3048) 25.30][l+ 429(Q'8T-l492+45.5abs(235C))2]
· ' ' - ' ~~~~~~~127.3

[fit=arithmetic standard dev. 5.43%]

Model on data base where all experiments with these parameters and S over 80%:

S = (100.- 41.4 )(.923+.0762V)(.997+.0247A)[1.23-.00015(l.8T+32)]*
C+.414

(1.0058-.000013M)(.99337 P Q)

[fit=arithmetic standard dev. 3.46%]

on 41 experiments

Tables of parameters:

coal source Pparam Pdata base calcium source dtb
paramPdata base Qa~_bae

Pitt seam 8 washed 0.48 1.05 BCR1337 dolom 0.98

Pitt seam 8 unwashed 0.83 1.00 BCR1360 limes 1.00

Peabody Coal Co. 0.80 1.01 BCR1359 limes 0.99

Pitt seam unspecified 0.92 1.00 BCR1359H hyd lm 1.01

Commonw. Edison supplied 0.97 0.98 Tymochtee dolom 1.04

Park Hill coal 1.04 1.00 US limestone 18 1.02

Illinois coal unspec. 1.13. 1.00 UK limestone 1.02

Welbeck coal unspec. 1.28 0.975 Stow-on-Kent 0.92

- . - -- -. ~. . .... -'1 59 -

[2-.24( ' )--25 I(R--5)P
2.54
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Table4.L2.1-4 Empirical model of sulfur removal for observations exceeding 
80% removal, eliminating calcium mean as a variable to
increase the number of applicable experiments where all
variables were reported

161

Symbols:
S = sulfur removed, as percent

C = calcium to sulfur mole ratio
V = fluidizing velocity, in m/sec
T = bed temperature, in degrees centigrade
A = bed area, in square meters
F = 1 oro 0 for fines recycled or not
G = MgO/CaO in sorbent

P = parameter for effect of coal sources
Q = parameter for effect of calcium sources

Model on data base where all experiments with these variables reported and
with S over 80%:

S -{(101.- 30.97 )(1.208+ 40 12
S (101 C+. 3097 )(1.208+ 2+.0151V) (1l.+.0095A)[I1.-.00022(1.8T+32.)]

*(1.-.0012F)(l.-..00O476G)[l.-.00000246(1.BT+1500.)2] 1.002 P Q

[fit=arithmetic stand dev 3.976%]
on 62 experiments

Table of parameters:

coal source Pdata base calcium source Qdata base
.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. . .. , ., . -,,....

Pitt seam 8 washed 0.993 BCR1337 dolom 0.995
Pitt seam 8 unwashed 1.000 BCR1360 limes 0.991
Peabody Coal Co. 1.015 BCR1359 limes 0.992
Pitt seam unspecified 1.002 BCR1359H hyd lm 1.023
Cononw. Edison supplied 0.998 Tymochtee dolom 1.031
Park Hill coal - 0.974 USlimestone 18 1.007
Illinois coal unspec. 0.991 UK limestone 1.014
Welbeck coal unspec. 0.959 Stow-on-Kent 0.925
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Tabl e4.Z 1-7 Empirical model of sulfur removal for all observations for

which values of all parameters were available

Symbols:

S = sulfur removed, as percent

C = calcium to sulfur mole ratio
V = fluidizing velocity, in m/sec

A = bed area, in square meters
M = calcium particle mean size, in microns
L = sulfur content of coal, in percent
X = excess air, in percent

P = parameter for effect of coal source
Q = parameter for effect of sorbent source

Model on data base for all experiments:

S = (100o. -
209.58
C+2 0 96) (1 .-. 0912V) (1 .+.0108A) (1.-.OOO11M)*

(l.-.0000117L)(1l.-.000516X) P Q

[fit=arithmetic stand dev
on 296 experiments

13.2% ]

Tables of parameters:

coal source Pdata base calcium source Qdata base

Pitt seam 8 washed 1.789 BCR1337 dolom 1.033

Pitt seam 8 unwashed 1.688 BCR1360 limes 1.160

Peabody Coal Co. 1.615 BCR1359 limes 0.971

Pitt seam unspecified 1.721 8CR1359H hyd m 1.228

Com .onwealth Edison 1.404 Tynmochtee dolom 1.230

Park Hill coal 1.712 US limestone 18 1.065

Illinois coal unspec. 1.535 UK lirestone 1.000

Welbeck coal unspec. 1.693 Stow-on-Kent 1.000
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Correlation of 02 and NO Concentrations in the Exhaust Gas from Fluidized Combustion

(Locke, Lunn, Hoy, Roberts, 1975).
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(Keairns, et al., 1977).
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The other reaction (Skopp et al., 1971) has

4NO + 2S02 + 2CaO = 2N2 + 2CaSO 4 + 02

which has been supported by low NO emissions (70-100 ppm) in two-stage
combustion experiments (Nack et al., 1975, p. 362). Effects of availability
of CaO and SO2 on NO are shown in Figures 4.1.2.2-9 and -10, respectively.
The two sets of reactions may in fact be coupled, based on work of (Hammons
and Skopp, 1971), (Robison, et al., 1970) and (Jonke, et al., 1969),

although their results are somewhat conflicting. It appears that the CaSO4
from the second reaction is a selective catalyst for the first reaction,
from the reference (Hammons and Skopp, 1971). CaSO4 as bed material
produced the lowest NO levels, and CaO beds eventually reached that lowest
NO level after CaSO4 formation had built up that substance in the bed. The
higher Ca/S ratios of Figure 4.1.2.2-9 substantiate this result in that
CaSO4 is in lower concentrations with higher Ca/S ratios. The addition of
limestone reduces NO emissions by 30-40%, (Jonke, et al., 1969).

Differences in NO emissions due to char particle sizes are shown in
Figure 4.1.2.2-11, with the effect being due apparently to differences in
diffusion and surface area (Beer and Martin, 1976).

The effect of gas velocity and Ca/S ratio on NO formation is shown in
Figure 4.1.2.2-12. The effect of fluidizing velocity on NO emissions is
two-fold (Beer and Martin, 1976); the initial rise of concentrations with
velocity, see Figure 4.1.2.2-13, is apparently due to increased oxygen
supply and shortened residence time in the reducing environment of the
char, then the decrease in NO emissions at higher velocities is due to
backwashing. The observation that NO reduction is directly proportional to
the gas residence time supports the hypothesis, that a large part of the
fuels' nitrogen is converted to NO then reduced by reaction with CO or SO
or both. 

Catalytic decomposition of NO with nickel powders added to the bed
have been observed, and although nickel would be too expensive the
possibility of other catalysts exits.

The influence of bed temperature upon NO emissions is apparently not
as pronounced as it was once thought to be. There seems to be little
disagreement on the fact that there is oxidation of atmospheric nitrogen
that begins in the fluidized bed temperature range. A possible cause for
this fixation at such low temperatures is that the coal surface
temperatures may reach 2000 F which could cause the atmospheric nitrogen
fixation (Strom, et al., 1976). In (Strom, et al., 1975) it is claimed
that when bed temperatures increase above 1650°F there is a significant
increase in NO formation (see Figure 4.1.2.2-14), due both to increased

x
fixation of atmospheric N at higher temperatures and reduced availability
of CO. In (Pereira, et ., 1974) this so-called thermal NO formation is
noted to add 0% to total NO at about 1300 F with a linear rise to account
for almost 20% of the total NO at about 1800 0 F. However, in the (Pereira,

et al., 1974) experiments it was determined that the fuel bound nitrogen
was producing decreased NO emissions in this range with essentially a
leveling-off of total NO emissions, see Figure 4.1.2.2-15, -16, and -17.
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Figure 4.1.2.2-9

1 2

Ca/S MOLE RATIO

Nitric Oxide Reduction with -325 Mesh (<44 um) Tymochtee Dolomite

(Jarry, et al., 1970).
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Figure 4.1.2.2-10

Typical NOx Emissions with Limestone Bed (Hammons and Skopp, 1970).

174

40

*ze
0

W 30

0 *
Z
Z
z
U 200* 2-- . 1

10

. . .. ..

A

_ . - . . . , _

.·... .. ~~~~~~~~~. -.. . .

.·- . - ..

~~~~~~~~~~~~~~~~~~~~~~~o. 
- , ~~-~ , . - ' . - ' 

.~~ ~~~~~~~~~ . ..

. ~ ~ ~ ~ ~ ~~~ ~ . - - ,, . -. * .. .

.- ' i ..

ju1

3

. -Z.

_ . -:

I Z.
. _t .1 

0

2502
..

Z-

S c

;Z

.2.

f I

5

qNI

sscn

nfL

I I - -

I
I
i

1

1

I

I I I I

-

'0-- I

01

m=.

SO2

I I



C)
o000

E
::1.

L

wLl
.-_J

<:E'O -
< "I

0
q-
0

0
._

0

&-)m,0o,)

- OI- a..4.

Cm"

,-

qJ% . ,~* 0) a* 004) Q
* ~ -Q (

aJ W -.

C0

· O-==, C=,=i,- . - U " & ;N,, i . ,. "i _ ' I ,_ .l. _W ,. it-4 /

175

I 00
C0
(%J

-

E

COco

0
(N

OW)

-f
m.

l

i

i

I

0C)

b

0
CO

C
t. L

C)
I

i

i

II I

i I

.-- d

! I !



GAS
V_-OCTlY.

ft/sec

LIMESTINE
NO. 1359

.t,' _

02.7. 25
* 2.7 --- 25
A8.6- 25
*A8.6 25
a2.7 - - 600

- V8.6 - .1400
. .. .

TEMPERATURE: 1600 °F
CAL. FEED: 4.5 v.t % S
A'-ITIVE: LIMESTONE NO.

UIDIZED 8ED: ALUMIN

-?. --. ' .
. - - * - .
S-.... .. .

60

- - _

NO ,
YES <
N O O
YES D
NO U.
NO z

zo
I-

UJrl

ti

IA , xU1359 0'A xO
(3

I-
* Z

50

46

30

20

10

n
0 1 2 3 4 5 6

. .... -Ca/S MOLE, RAT!O

Figure 4.1.2.2-12

Effect of Gas Velocity on Nitric Oxide Reduction in Flue Gas (Jarry, et al., 1970).

176

.. I t i I

/

LOW-VELOCITY GAS

I Os °c I' ' "I o 8 o Ic. "

I-^ 
I0 I I00

I , , I

, tt- -- Io
I V I

I I--3 V ~~~I

- tGH-,.LCCtTY GAS

I' I I I l I

IU

I



- .... O0 COAL -(0- 5g)
&- CHAR--- (2-09g)

~- \ 720 °oC

C

A

690°0 C

- ahOC

A

884 0C
A

I

40
I

25

I

30 35

Figure 4.1.2.2-13 FL IDIZ.; "'EL0CT, c m i s (HOTr)
. -.

Effect of Fluidizing Velocity on NO Emissions Gas: 21% 0 in Argon, Coal and Char, 1300 m.

1 77(Periera and Ber, 1975).

3?-5-
f.

'-'-O

. I..% - ..

.0 
Z ___

....,

.

.
.
~ 2~0

* -eX 

I

15

I

20

f ,

I w ,

I

4-
I

1



EPA STANDARO FOR NEW COAL-FIRED UITS. ._ _ _ _ _ _
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NOx Versus Temperature from Sources Claiming an Upturn in Emissions (EPA, Feb. 1977).
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Total and Char Emission Indexes as a Function of Bed Temperature (Pereira, et al., 1974).
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Effect of Bed Temperature on NO Concentration (Archer, et al., 1971).
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NO Emission as a Function of Bed Temperature (Skopp, et al., 1971).
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It has been suggested (Pereira, et al., 1974) that some of the

discrepancies in measurements may be due to differences in the location of
the reported emissions. In the collection of all available data (Strom,
et al1., 1976) Strom did not attempt to sort out the appropriate and
misleading data. That report does display the Pope, Evans and Robbins
model that matches the data displayed in Figure 4.1.2.2-14:

NO = 0.28 x 106 (1 + 1.7N)K

where NO = volume ppm
x

K =-equilibrium constant

N = nitrogen content of fuel, wt%

where K = 8.67 x 10- 5 at 1340°F, 2.33 x 10- at 1520°F,

.4 o 3 
5.31 x 10 4 at 1700°F, 1.07 x 10 3 at 1880°F,

1.94 x 10- 3 at 2060°F.

Under assumptions of baseloaded operation, a preliminary model has
been developed on the basis of correlations to experimental data. This
empirical model is also based upon data for systems that had no secondary

reheat and is matched to the data that 1s reported in the EPRI data base
(Strom, et al., 1976). Table-4.1.2.2-1 and Figure 4.1.2.2-18 show this
NOx model, for details see (Gruhl, Tung, Schweppe, 1978).
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Table4.LZ-I Empirical model of NO at utlet based on data base
experiments 

Symbols:

N = NO equivalent of NO at outlet, in ppm
C = calcium to sulfur mofe ratio
V = fluidizing velocity, in m/sec
T = bed temperature, in degrees centigrade
X = excess air, in percent
Q = parameter for effect of sorbent source

Model on all data base experiments for which the above variables

were available:

N=(-5819-+82.41C+ 6.43CV + 362.V + 6.9(1.8T+32.) - .267V(1.8T+32.)

-.065C(1.8T+32.) - .00182(1.8T+32.)2 ) (1.106-.0074X) 1.053 Q

[fit=arithmetic stand dev 91ppm]
on 198 experiments

Table of parameters:

calcium source Qdata base

BCR1337 dolom 0.90
BCR1360 limes 0.85
BCR1359 limes 1.00
BCR1359H hyd m 0.70
Tymochtee dolom 0.85

US limestone 18 1.00
UK limestone 1.00
Stow-on-Kent 0.85

-
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An alternative model has been fit to the group of data which is

initially level with bed temperature and then rises sharply:

Alternative NO Emission Correlation for Atmospheric FBCx

No = NOx emissions in ppm [NO,dry]

Na = nitrogen in coal in %, valid 1.4 to 2.0%

T = temperature in bed, in 0F, valid in range 1500° to 1800°F
b

N0 = .22[N - .48][1 + .01 l -. 101[1 + .0027 (max[1640, Tb ] - 1640)]

Two stage combustion drastically reduces the NOx emissions. Given
that there are no parametric studies, probably due to the extremely low

levels being out of interest (70 to 100ppm at Argonne, 110 to 280 at Esso
England, and 200 to 620 ppm at Esso R & D, see Figure 4.1.2.2-19), and
assuming the same types of mechanisms are effecting emission the one-stage
combustion NO emissions are simply scaled:

x

NOx = NOx emissions in ppm dry basis

NO (two stage) NO (one stage) 2.17 - .0035 Min (620, NOx (one
Xstage))

(gsd = 1.26)

Carbon burnup cell experiments at Pope, Evans, and Robbins show that
NO emissions from that cell range from 350 to 800ppm (see Figure
4.A.2.2-20). This could be a factor in overall emissions, as shown in
(Strom, et al., 1976) if 15% of the total air is used in the carbon burnup
cell with 800ppm of NOx then the primary combustor emission must be less
than 476ppm to meet the overall 525 ppm stack emission standard. An
empirical model for the emissions from the carbon burnup cell has been
developed by Pope, Evans, and Robbins:

NOx = -464.3 + 0.4257 T + 0.329 Rair + 4.468 H - 2.337 Rc

- 0.7829 RI + 0.005372 Rc RI

where NO = ppmx

T = bed temperature, OF

Rair = air rate, lb/hr-ft 2

air

H = bed height, in.

R = carbon rate, lb/hr-ft2
c

RI = inert rate, lb/hr-ft

A comparison between observed and calculated values is shown in Figure
4.1.2.2-21.
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Figure 4.1.2.2-21

Comparison of Observed and Calcinated Nitric Oxide Emission from CBC Tests

(Robison, 1972).
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4.1.2.3 Hydrocarbon Emissions

Data concerning the extent of hydrocarbon emission in FBCs is limited
to the observation, of the gaseous hydrocarbon emission (see Figure
4.1.2.3-1). These gaseous hydrocarbons are inert compared to the
carcinogenic hydrocarbons represented by the polycyclic compounds (see
Table 4.1.2.3-1). While there is general knowledge that the formation of
these larger compounds, such as benzapyrene 6 is in fact favored by
combustion temperatures in the 1500 to 1700 F range (ANL-EC/1, 1976,

section 6.3.5) little data on their concentrations exist. In fact, little
is known about quantities of these compounds found in conventional
coal-fired power plants, with some qualitative information available (see
Table 4.1.2.3-2).

Based on data in (Strom, et a., 1976) the model for CH4 is shown in
Table 4.1.2.3-3 and Figure 4.1.2.3-2.

If oxygen is modltfl instead of excess air, it appears (Nack, et al.,
1975) that the relationship between oxygen and excess air is
appproximately:

EA = excess air in percent, valid for 0 to 85% EA
or 0 to 9.5% 0F

EA = 5 0 F + 5 0 F - 1

It has been speculated that increases in the bed temperature have an
inverse effect on the hydrocarbon levels. This was not observed over the
data base. The magnitude of this supposed effect has not been recorded,
the 10% drop for 100 F increase from 1500 0F is sometimes assumed. The
fundamental reason for this decrease arises from a decrease with
temperature in the

(1) number of hydrocarbons that will survive after cleavage of

structural hydrocarbon networks of the coal;

(2) hydrocarbon decomposition products that will condense

(Fennelly, Durochee, Kemm, Hall, 1975).

Using the ratio of 10- 5 for beno (x) pyrene to CH4 in coal combustion
(Hangebruck, von Lehmden, Meeker, 1964) and the fact that substituted
polynuclear aromatic hydrocarbon will be in smaller concentrations
{especially for chlorine substitute as HCe in the predominant Ce form at
FBC temperatures):

BAPe = Benz (a) pyrene in emissions in ppb

PCBe = polychlorinated biphenyls

H = hydrocarbons from Table 4.1.2.3-3

BAP = .01 H
e

PCB e<BAPe

There is a sharp conflict between this estimate an~ the uncontrolled
polycyclic organic material levels of 5 to 72 mg/m from 6" Battelle unit
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Table 4.1.2.3-1

Classes of Known or Suspected Carcinogenic or Cocarcinogenic Compounds Associated

with Processing and Utilization of Coal

Copound C I as;

Po IZvr, uea r .c: ,. I . droa ,rbons

An thracenes

Ch rysenes

Lenz; thracenes

Fluoran thenes

Cholanth renes

epResentatve C ,,-

3; 1 C-di ,ethy 1 on ttnr cene

chrysene

benzo (a )anthraCene

benzo(j If luoranthene

£O-retIly: Chol anthrenp

Structure

CCH3
-043 '~ 

C, 1

cask0

C" $: Senzopyreres

Dibenzpyrenes

'4i trCccn-. Sul fur-.

rn.ono-and dibenzacridines

benzocarbazoles

dibenzocartbazoles

benz a thrones

benzo(a )Dvrene

dibenzo(a.h)pyrene

e rvcen-Containinq olvycvclic C.o~urds

dibenz(ah)Ocridine

.Zii-bcnzo(c)carazole

7P-ben2z(c .9)carbaZole

ll-benz(d.e)anthraen-7-oe

C,

I'l
Ian

1 qQ

- -



Table 4.1.2.3-1 oti;ne)

Carcinogenic Polycyclic Organic Materials

CC7¶-,-) Cund

1. 7,12 Direchylben a,-

t2. DiLhren:,aenhr n
2. Db..en:L'a ,3nchraccne

3. Ben:ot[i]henanLhrcnc

4. 3 ehylcholaathrcna

S. enzo[jpyrene

6. Dibenzoa,l. pvrene

7. Dbcnzoa ,'pvrene

8. Dben:o[c,g2carba:ole

Cfl3
+4

+3

+3

+4

+3

+3

cc?
c#6

II

&L9)

+3

190

Ca reeins.;- n si c v



Table 4.1.2.3-2

Polycyclic Organic Material (POM) in Conventional Coal-Fired Power Plant Emissions

Lccation Whero Fownd
Stack

Tesot t:o. Ccal Ashes G3

PC:4-- 106 0 0 0 0 0 0 0
*7-12

c~x 78 G9 0 0 0 0 0 0 0 0 0
[aIan :r,--sene 0 0 0

PQ:.-2 166 0 0 0 0 0 0 0 0
*b=r.cf(al

pyn 169 0 0 0 0 0 0 0 0 0
0 0 0

F0:M-3 166 00 0 0 0 0 0 0 0
3 rat.hyl-
Chol-thraoe! 6 9 0 0 0 0 0 a 0 

PC:I-4 166 0 0 0 0 0 0 0 0 0
*dizen: [ah1
ant.race:e 169 0 0 0 0 0 0 0 

0 00

0 :ai- fouwnd no PCl

0 : Analysis found soma PiO4

: Data missing

*Iistr,-e=r.ts calLbatd for iscrar sl-o:n. The prcsanzo
of tc ic-rers rlative to othe: iomers wa3 not
verified.

1Q1



Table4.t.2.3-3 Empirical model of CH4 equivalent of the hydrocarbon

at the outlet

192

Symbols:

H = CH4 equivalent of hydrocarbon concentrations at
outlet, in ppm

A = bed area, in square meter
N = number of the reference from which the data was

collected
C = calcium to sulfur ratio in bed, molar ratio
Z = coal top particle diameter n microns

X = excess air, in percent

Model based on all data in base:

H = 146.(1.+10.65A)(0 if N greater than 4.5 else 1.)(1.-.2249C)*

(1.-.000125Z)(1. if X less than 0. else 11.98/(X+.15))

[fit=arithmetic stand dev 11.1]
over 196 experiments
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(Battelle, Feb. 1977). To account for this wide disagreement the formula
is changed by a factor of 100 and a large geometic standard deviation is
assumed:

BAP = H
(gsd = 15.0) e

Other hydrocarbon material is expected to be emitted (Fennelly,
Durochee, Klemm, Hall, 1975) in the following concentrations:

E(X) = emission of X in ppm

E(C 2H4, C2 H6) = 10.

E(Diolefims, aromatic hydrocarbons, phenols, azoarenes) = .001

E(Carboxylic acids, sulfonic acids, polychlormated bephenyls,
alkynes, cyclic hydrocarbons, amines, pyridines, pyroles, furans,
ethers, esters, epoxides, alcohols, aldehydes, ketones,
thiophenes, mercaptans) = .0001

(gsd = 3.16 for these order of magnitude estimates)
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4.1.2.4 Trace Metals

In sources as recent as February 1977 (Bloom et al., 1977) trace
emissions are dismissed in 2 or 3 sentences as needing study, and indeed no
work on atmospheric FBC trace emissions is published. Experiments that
have been conducted on pressurized FBCs do show significant improvement in
trace element retention over conventional steam-fired power plants. The
mechanisms responsible for this performance are listed in Table 4.1.2.4-1
and many are likewise at work in atmospheric FBCs.

Table 4.1.2.4-1
Mechanisms that Reduce Trace Element Emissions in FBCs

1. Combustion temperatures below volatility of
some elements.

2. Sorbent reaction with elements.
3. Larger coal particle sizes.
4. Agglomeration and precipitation.

In experimental data (Ruth, 1975) obtained by neutron activation of
materials collected in cyclone diplegs and filters, and even disregarding
solids lost in handling, the recovery of many trace elements was high [see
Table 4.1.2.4-2; also in (Hoke, Nutkis and Ruth, 1974)].

The data from Argonne (NTIS report CONF-750616-4, Vogel et al., 1975),
and other sources, shown in Table 4.1.2.4-3, was developed using
pressurized FBC's. It is necessary to go to this data despite its limited
applicability to atmospheric FBCs due to the lack of atmospheric bed trace
element data. Tables 4.1.2.4-4 and -5 suggest the beginnings of modeling
information necessary for simulating trace metal-changes due to bed
temperature variations and different sorbents. Such models have been
developed for this report but only on those trace elements that are
currently suspected of being carcinogenic health hazards (see Table
4.1.2.4-6).
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Table 4.1.2.4-5

Mass Balances for Trace And Minor Elements Around ANL's 6.0 in. Diameter.

Pressurized Fluidized-Bed Combustor (Swift, Vogel, Pek, Jonke, 1975).

Reco cry' 
Combustion in ('ombu.llao in
Alumina Bed Dolos it e kd Afapee

Flement - TR-3 TR-SA TR4B TR6

Mwas Balances BlH d on Sol.- ,.4 I uc;as Aalvis

lag 56 29 43 25 3S
F 120 180 110 240 160

': BIlances Based on Solids Analysis (Only
lip 37 26 9 20 23
I . S 23 62 56 36
Ptb 110 120 78 95 100
Be 63 S6 71 87 69
As 85 1' 8S >83 8S
Br 0 3 36 1 18is
Co 79 100 88 96 91
Cr 27 64 83 1 2 74
I'e 92 120 95 92 100
K 120 1 77 74 90
La 120 >74 89 1 104
Mn 110 1'0 110 1 330
Na 79 120 85 100 96
Sc 110 110 83 .88 98

*Percent of element entering combustur accouned for in product steams.
"Avtr.ge rcover) for experiments in which a balaice as determined.
e10l mejns indeterminate due u incomplete concentration data for some
amples.
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Table 4.1.2.4-6

Classes of Known or Suspected Carcinogenic or Cocarcinogenic Compounds 
Associated

with Processing and Utilization of Coal (continued).

Inca,'n. C St.t-ncos

As

Se

Co

;li

Be

Cr

Pb

Zn

Hg

Cd

tricalcium rsenate

selenide salt

cobalt ulfide

nickel carboyl

Beryllium o::ide

chromate salts

lead chrcate

zinc chrcrlate

eleumantal mercury

cadmium sulfide
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Ca3 (AsO4) 2

- [r.+2]Se

CoS

:i (CO)4

BeO

[t-l2] CrO4

PbCrO4

ZnCrO4

Hg

CdS



Figure 4.1.2.4-1 shows the levels of some of the carcinogenic trace
metals as they have been recorded as varying with temperature. The
deviations for this figure represents two standard deviations or
approximately the 5% and 95% confidence range. This tentative model of
emissions is for pressurized FBC as no atmospheric data is available.

It would be useless to-attempt at this time to draw out any other
parameters for the trace metal models due to the lack of a wide range of
operating or design parameters in the available experiments (see Table
4.1.2.4-7).

The forms of the trace element emissions are as follows (Fennelly,
Durochee, Klemm, Hall, 1975)

Gas Phase (<2um material)
1 ppm F, Na
1 ppb As,Pb,Hg,Br,Cr,Ni,Se,Cd,V,Be

Solids (>2ummaterial)
1 ppm AL,Ca,Fe,K,Mg,Si,Ti,Cu,Zn,Ni,U,V
1 ppb Ba,Co,Mn,Rb,Sc,Sr,Cd,Sb,Se,Ca,
0.1 ppb Eu,La,Sn,Ta,Th

Based upon a worst case analysis in that study, where all input of the
trace element is emitted, the following elements show cause for concern
from the health effects perspective:

In emitted phase: Be,As,U,Pb,Cr,V,Cl
Possible enrichment on <2um particles: Pb, Cr, Se, Br, Hg

The compounds formed by the trace elements are extremely important in
determining health impacts, for example, Ca (As04) , N(CO 4), CO(CO),
ZnCrO4 and others in Table 4.1.2.4-6 are potentialy potent pollutants.
Analysis of emissions as minute as these, however, is not available and may
well be beyond present analytic capabilities.

The possibility of additives or sorbents being used in the bed to
reduce trace element and alkali metal emissions has been an area of some
investigation. The focus of these studies has been to reduce the corrosive
potential of the combustion gas stream before it reaches the turbine
blades. Numbers useful for trace element modeling are not yet available.

A potentially useful control measure that can be used on trace metals
is physical coal cleaning. Although no specific results are available, it
is known that arsenic, beryllium, copper, and antimony are closely -
correlated with the pyritic material in coals.

Another important control device for trace metals may be the use,
especially in atmospheric FBC, of unnecessary additional particulate
collection devices. Table 4.1.2.4-8 distinctly shows the preferential
collections at further downstream collectors, due to the smaller sizes
predominant in the downstream catches (see Figure 4.1.2.4-2).
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beryllium 30% + 10%o

coLJalt 15% 7%

mercury 85% 5%
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Figure 4.1.2.4-1i

Trace Metals Released from Pressurized Fluidized Bed Combustors.
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Table 4.1.2.4-7

Summary of Average Operating and Flue-gas Compositions for Trace-Element Experiments

(W.M. Swift, G.J. Vogel, A.F. Panek and A.A. Jonke, 1975).

IlueGas Analyss
Run Bed System :ced Rates Gas Dry Basis

Time. Tump. Prchsure Cual. Dolumite. Air. CaIS Velocity. O,. (O. SO,. NO. cO.
I:%pt. - F atim lb/hr Ib/hr scdm Ratio fseC P i, ppm ppm ppm

Experimcnts'in a Fluidied Bed of Atumin;

TR-SA 6.(0 1670 8 29.4 0.0 67.1 0.0 3.3 30 16.0 2180 110 70
TR-3 4.0 1560 10 24.9 0.0 63.0 0.0 2.4 3.9 I6J 16600 180 120

.xpcriments in a Iluidiicd Ied of Tymoshtee Dolomite

TR.6 7.5 1660 8 29.7 6.1 .67.9 1.2 3.4 2.9 16.S 440 150 39
TR-40 4.75 1550 I 28.2 14.2 75.5 2.9 .,0 3.8 19.0 140 200 35

-- . ... . . .. ...... .. . . . . I 

tAll experimenls mude with as-r.ceived Arkwright coual
Low value due to malfunction o(SO t IR analyyr.
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'able 4.1.2.4-8

Concentrations of Trace, Minor, and Major Elements in Particulate Matter Recovered at

Various Stages of Removal from Flue Gas (Vogel, Sept. 1974).

Trace Emissions
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Figure 4.1.2.4-2

Particle Size Distributions of Primary and Secondary Cyclone Catch (Strom, et al., 1976).
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Concentration Carbon Free
Pb,,Be 9 Ca, Pb, Be,

Source of Solids pp t wt . ppm pp
m_ i

(Experiment TRACE-3)

Primary Cyclone 95 2.65 51.3 0.86 1.29 195 5.44

Secondary Cyclone 260 5.95 29.2 1.80 1.80 367 8.40

(Experiment TRACE-4B)

Primary Cyclone 70 1.55 2.3 4.5 15.4 72 1.59

Secondary Cyclone 180 5.20 13.1 2.6 5.58 207 5.98

Filter 300 6.77 8.4 3.1 6.65 328 7.39

(ExDeriment TRACE-SA)

Primary Cyclone, 15 2.29 34.1 1.8 2.11 22.8 3.47

Secondary Cyclone 13 6.62 16.8 2.5 2.02 15.6 7.96

Primary Filter 22 6.75 6.6 4.9 2.89 23.6 7.23

Secondary Filter 46 8.05 - - - -

(Exoeriment TRACE-6)

Primary Cyclone 16 2.24 19.6 4.8 8.11 19.9 2.79

Secondary Cyclone 27 5.63 11.3 3.1 4.89 30.4 6.35

Primary Filter 96 7.70 5.2 4.3 5.44 101.3 8.12

I- i -i - - - - i

0.1 0.2

._ 

.
_

.. A_

mm

_
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4.1.2.5 Particulates

The problems that have been recognized in the area of particulate
loadings in the fluidized combustor flue gas have been "significantly, but .
not hopelessly difficult" (ANL, 1976). Thus, the experimental
investigations of fluidized bed particulate emissions have been aimed not
at the parametric studies, as for the preceding emissions, but at

alternative technologies for bringing particulate levels down to reasonable
levels. Some add-on technologies that have been studied are the "hot side"
electrostatic precipitators, cyclones (centrifugal collectors), wet
scrubbers, and stone, ceramic, porous metal, granular bed, and various
other types of gravity and momentum collectors and filters.

The reasons for the high particulate levels in the offgases include:

(1) presence in combustor of numerous additive and sorbent
incombustible particles,

(2) the entraining and elutriating capabilities of the upward flow of

fluidizing air, and

(3) combustion temperatures below slagging point of coal ash.

There are a number of predictions from design studies that particulate
loadings can be controlled down to the 0.1 lb/10 Btu (.00095 lb/kWh
electric, .01 g/kWh thermal) EPA New Source Performance Standard (Farmer,
Magee, Spooner, 1977), (Shaw 1977) (GE, 1976). The actual experimental
data are for uncleaned emissions and pressurized (8 atm) combustors, and
show ranges of 7 to 39 lb/10 Btu heat input depending upon original size
and degradation of sorbent (Jonke, July 1976), Ca/S mole rates (see Figure
4.1.2.5-1), fluidizing velocity (Vogel, Swift, Montagna, Lenc, and Jonke,
1975) (see Figures 4.1.2.5-2 to -6), design (bed internals, freeboard), bed
depth (Keairns, et al., Sept. 1975) and apparently depending on combustor
size (Dow Chemical, July 1975).

The constituents of the particulate material include (Keairns, et al.,
Sept. 1975):

(1) fly ash,
(2) soot

(3) unburned or partially-burned coal, and
(4) calcined or sulfated SO2 sorbent.

The mean size and size distributions of uncleaned particulate matter
have been characterized as shown in Table 4.1.2.5-1.

205



26

%A
a

22

20

0o

0-II

81I;E-14-j12

W= 10
G!

bS9
z
a Ga
4

0
-O 1I 2 3 4

CeIS RATIO

Figure 4.1.2.5-1

Solids Loading of Flue Gas Leaving Combustor

(G.J. Vogel, W.M. Swift, J.C. Montagna, J.F. Lenc and A.A. Jonke, 1975).
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Particulate Emission Rate Versus Superficial Velocity - Stone 1 (Strom, et al., 1976).
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Particulate EmissionRateVersus Superficial Velocity - Stone 3 (Strom, et al., 1976).
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Figure 4.1.2.5-5

Particulate Emission Rate Versus Superficial Velocity - Stone 8 (Strom, et al., 1976).
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Entrainment as a Function of Superficial Gas Velocity

(G.J. Vogel, W.M. Swift, J.C. Montagna, J.F. Lenc and A.A. Jonke, 1975).
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Table 4.1.2.5-1 Characterization of Particulates

Mass Media Particle Size

20 m
100 m
"shifted to larger size", >20um
"looks favorably coarser", >20um
design studies 35um to 150um

~71m

95% less than 10um,
85% less than um

Reference

conventional combustor
(Jonke, Swift, Vogel, 1975)
(Osborne, Bulger, 1976)
(Iammartimo, 1976)
(Keairns, et al., Sept. 1975)

(Fennelly, Durocher, Klemm, Hall
1975)

(Nack, et al., 1977)

Properties

not soft or friable
highly resistive

(Shange and Chronowski, 1975)
(Strom, et al., Feb. 1976)

The empirical model developed for uncleaned particulate emissions is
shown in Table 4.1.2.5-2 and Figure 4.1.2.5-7, see (Gruhl, Tung, Schweppe,
1978) for details.

The size characterization of mass median diameter of uncontrolled
particulates, using only the experimental studies (with >20 modeled as
40Um) and heavily weighting (3 times) to the smaller measurement due to the
expert sentiment (ANL,1976) that it is far more accurate in the smaller
particle range:

Ps = uncontrolled particulate size (by weight) distribution

geometric means:

Ps = 9.1Um
(gsd = 4.3)

geometric standard deviation of size = 2.25
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Table 4.L.2.5-2 Empirical model of outlet dust loading for all observations

for which values of all variables were published

Symbols:
U = outlet dust loading, in tonnes/day
V = fluidizing velocity, in m/sec
A = bed area, in square meters
X = excess air, in percent

C = calcium to sulfur mole ratio

Z = coal top particle diameter, in microns

F= 1 or 0 indicator of fines recycled or not

G = MgO to CaO ratio in sorbent
T = bed temperature in degrees centigrade
P = parameter for effect of coal source

Q = parameter for effect of calcium source

Model based on data base for all experiments: 

U = .1576(1.+min[O.,{-16.774+24.56V-3.54V
2 ]) (1.+3.53A) (1 .-. 0055X)*

(1.+. 2124C+.00627C2 )(1.+. 000097Z) (l.+.2165F)(1.-.014G)*

(1.+.0000122[1.8T-1555.] 2 ) P Q

[fit=arithmetic stand dev 2.94]

on 118 experiments

Tables of parameters:

coal source Pdata base calcium source Qdata base

Pitt seam 8 washed 0.783 BCR1337 dolom 3.090

Pitt seam 8 unwashed 0.927 BCR1360 limes 1.720

Peabody Coal Co. 0.067 BCR1359 limes 3.713

Pitt seam unspecified 1.000 BCR1359H hyd lm 2.674

Commonwealth Edison 0.117 Tymochtee dolom 3.707

Park Hill coal 0.328 US limestone 18 0.143

Illinois coal unspec. 0.063 UK limestone 2.785

Welbeck coal unspec. 2.794 Stow-on-Kent 1.000

<
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Figure 4.1.2.5-8 shows a counter distribution, while 4.1.2.5-9 and -10
show mass distributions including those after a cyclone dust collector.

Ps = particle size (by weight) distribution after cyclone dust
collector, microns

geometric mean P = 5.6 microns

(gsd = 1.3)

geometric standard deviation of size = 2.38

(gsd = 1.09)

From Figure 4.1.2.5-11 it can be seen that some idea of streams 1 and
portions of 3 have been modeled. Figure 4.1.2.5-12 shows the emissions
from the carbon burnup cell tests, so if one is used this emission can be
modeled. Regression models have been fit to the carbon burnup cell
emissions by Pope, Evans and Robbins:

E(part) = particulate emissions lbs/hr/ft 2

Bd = bed depth (static), inches

T = temperature, OF

A = air feed rate, lb/hr/ft2

C = carbon feed rate, lb/hr/ft

I = inert feed rate, lb/hr/ft2

E(part) = 15.57 - 0.00664T - 0.00134A + 0.02 3 6Bd
-0.03034C + 0.00461 I
+0.0034 CI

(geometric mean error = .956)
(gsd 1.51)

To complete this picture it is necessary to have mass and size
collection efficiencies for all of the control technologies for FBC
emissions. This is not available. For atmospheric FBC, where turbine
blade corrosion is not a problem, "it seems probable" that available
control technologies can bring particulate levels down to the standard..
Low temperature electrostatic precipitators probably won't work well due to
high electrical resistivity, and hot precipitators may not perform well due
to low combustion temperatures, that will leave the important alkalis
unvaporized (Strom, et al., 1976). It is believed, however, that a
combination of "two cyclones in succession to collect the coarser particles
followed by a low-pressure-drop bag house for finer particulates would be
suitable (ANL, 1976). Figure 4.1.2.5-13 shows typical abatement
performances for conventional combustors, which is of limited
applicability.
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Particle Size Distribution of Elutriated Ash in Inert Bed Tests (Strom, et al., 1976).
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Figure 4.1.2.5-10

Flyash Size Distribution (Pope, Evans, and Robbins, 1974).
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Fluidized Bed Combustion System Flow Sheet (Strom, et al., 1976).
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Survey of Particle-Collection-Systems (Stairmand, 1956).
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The speculation about a 0.02 lb/10 BTU standard for fine particulates
(Balzhiser, 1976) apparently would also not cause a problem for the
atmospheric FBC. Meeting this standagd may well bring down the overall
particulate level to below 0.05 lb/10 BTU.

4.1.2.6 Carbon Monoxide

Emission levels of CO from the fluidized bed are not of concern
technologies. There are several reactions that influence the CO levels,
but it is generally believed (Beer, 1977) that CO concentrations are
proportional to both the level of feed of coal volatiles and the level of
fines in the feed (see Figure 4.1.2.6-1). CO is possibly produced in the
dense phase of the bed (Louis, Tung, 1977) and by carbon fines carried to
the freebgard. Concentrations between 0.04 (General Electric, 1976) and
1.2 lb/10 BTU (Shaw and Cain, 1977) and 2000ppm (ANL, 1976) have been
projected for atmospheric FBC. There does not appear to be any manner of
correlating the experimental levels with measured parameters. An inverse
relationship with excess air is somewhat (Coates and Rice, 1973) indicated,
but is not elsewhere borne out.

Table 4.1.2.6-1 shows a series of CO measurements for experiments
that all have excess air greater than 10%, thus 461ppm is the prediction
from the above model. The results of that Table show an arithmetic average
of 2042ppm and an arithmetic standard deviation of 3761ppm, and the EPA
analysis at Battelle (Battelle-Columbus, 1977) shows a range of 790-
2090ppm. Obviously the CO concentrations are very much dependent upon
variations in designs. The model developed on the EPRI data base (Strom,
et al., 1976) is shown in Table 4.1.2.6-2 and Figure 4.1.2.6-2.
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Table 4.1.2.6-1

Flue Gas Compositions (Strom, et al., 1976).

FREEBOARD

VOL.X,D.B. PPM, D.B.TEST -- -- ------
NO. 02 C02 S02 CO

5.3
4.2
4.0
4.5
4.3
3.7
5.6
3.9
4.0
3.6
3.4
4.2
3.8
3.6
4.3
3.a
3.2
3.0
4.1
3.6
4.1

12.6
12.5
13.2
12.8
13.4
12.3
12.4
13.9
14.2
14.5
13.9
13.7
14.0
14.6
13.3
13.9
14.1
14.5
13.4
14.1
13.4

683.
1943.
1717.
1648.
1477.
1342.
790.
850.

1012.
384.

1316.
1140.
961.
623.

1540.
1062.
696.
983.
282.
318.
581.

8100.
10800.

6750.
6210.
5400.

12960.
3240.
5940.
5400.
5670.
5400.
1 890.
9450.
7020.
7020.
5670.
18630.
14040.
11 3 40.
3375.
7290.

NOTE: CO MEASUREMENTS REPORTED
AS HEAT-EQUIVALENT CO.

DUST
LOAD
GRN/SCF

12.9
12.3
11.8
13.0
13.2
14. 2
12.0
12.1
12.0
13.6
11 .1
10.0
13.8
15.9
11.4
18.8
27.1
22.0
19.3
17.4
19.1

WET-SCRUBBER INLET
…__ _ __ _ __-…_-- - - - , - - -m….__….__ ___

VOL.X,D.B. PPM, D.B.
_________ - - - - -- - - -- - -- - - - --

02 C02 S02 CO NOX GRN/SCF

DUST
LOAD

2.7
2.5
3.0
3.0
3.1
2.9
3.0
2.9
3.4
3.0
3.3
3.2
3.0
2.7
3.5
2.7
3.1
2.9
3.0
3.1
3.0

14.1
13.3
14.1
14.3
14.8
13.8
14.6
14.6
14.6
15.2
14.5
14.5
14.8
15.1
14.4
14.6
14.4
14.1
14.3
14.3
14.6

839.
1475.
11 2 6.
1107.
1673.
1403.
1265.
379.
849.
589.

11 4 3.
1502.
1035.
676.
1546.
992.
930.
-895.
387.
524.
484.

2700.
5400.
3240.
270.

1 90.
270.

0.
1350.
1080.
810.

O.
O.
O.
0.
O.
O.

162G 00.
8910.
2700.

0.
0.

285.
212.
334.
215.
300.
213.
56.

213.
285.
322.
233.
303.
233.

0.
269.
246.
296.
190.
199.
313.
265.

3.3
3.7
3.3
3.5
3.9
3.4
2.7
3.9
3.9
4.3
3.4
3.2
4.0
4.4
3.5
6.4
7.2
7.3
9.2

.68.6
8.1

IN THIS TA9LE ARE TOTAL COPSUSTIBLES REPORTED

D.B. = Dry Basis
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Table 41.Z.G-2Empirical model of CO concentrations at outlet

223

Symbols:

0 = CO concentration at outlet, in ppm
A = bed area, in square meters
Z = coal top particle diameter, in microns

X = excess air, in percent

F = 1 or 0 variable if fines recycled or not
L = sulfur content of coal, in percent
V = fluidizing velocity, in m/sec

Model based on least-squares best fit to all available data:

0o = max[ 50., (-303+149.A- 1-2.6A- 2 )(l.-.00008Z)(-22.276+l.lg99cX+15]

+98.12EX+15]- )(l.+1.087F)(1.-.04116L)(l.-. 0 3 7 7 V) ]

[fit=arithmetic stand dev 1010 ppm]
on 124 experiments
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4.1.2.7 Other Flue Gas Emissions

Based on rough estimates using equilibrium calculations based on free.

energy minimization (Fennelly, Durochee, Klemm, Hall, 1975) the following

concentrations are likely (ranges are assumed to be spreads of one
geometric standard deviation)

E(X) emissions of X

E(CO2) = 15.4%

(gsd 1.10)

E(HF) = .24ppm

(gsd = 2.96)

E(HCN) = .118ppm

(gsd = 1.69)

E(NH3) = 3.6ppm

(gsd = 1.99)

E(HC1) = 40.0 ppm

(gsd = 1.09)

E(SO 3) = 5.5ppm

(gsd = 17.)

E(C2N2,COS,H2SH 3S0O4,HNO3) = 1.0 ppm

(gsd = 3.16)

E(O03 ) = .0001ppm

(gsd = 3.16)

4.1.3 Other Than Flue Gas Air Emissions

Aside from the flue gas emissions the major air pollution concerns at

fluidized bed power plants will involve the process of handling coal and
sorbent. A list of these potential problems (Jahnig and Shaw, 1976)
includes:

- Wind action on coal storage and handling

- Wind action on sorbent and wastes
- Water vapor from grinding
- Air and rust from cooling tower
- Possible fugitive dust from area
- Transients due to upsets, cleaning, and so on

There is no reason to believe that the same control measures developed

for conventional coal-fired power plants with scrubbers and cooling towers
would not be sufficient to control these emissions.
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4.2 Air Emissions of Pressurized FBC

In most cases the emissions from pressurized FBC can be described in
terms of the atmospheric FBC emission projections. There have been a
couple of experiments that use pressure as a parameter, and from these
pressure could be an additional term in the previous empirical equations.
There are several reasons why this is not advantageous:

(1) the relationships would be based on very few data points,

(2) the empirical equations for pressurized FBC seem to be quite
different from the atmospheric equations, and

(3) only pressures in the 8 to 10 atmospheric range are of interest.

These new empirical equations are fit to the pressurized data.

4.2.1 Air Balance

The air balance n the pressurized combined cycle design of
(General Electric, 1976) is shown in Figure 3.3.3-1Z, Tables 3.3-1 and -2
show the gas and steam flow rates for two of the parametric cases
investigated by Westinghouse for ECAS (Wolfe, et al., 1976).

4.2.2 Flue Gas Emissions

In general, the. emissions situation for the pressurized FBC is much
like the atmospheric FBC except for sightly smaller magnitudes. These
smaller magnitudes are not solely due to the decreased used of coal for
given power levels, but also includes more favorable kinetic reaction rates
for key reactions.

Sulfur Oxides

Experimental data on pressurized FBC emissions is not as abundant due
to the substantially fewer number of parametric studies conducted on
pressurized vessels. In addition, there are apparently no systematic
collections of pressurized data as there is for the atmopheric FBC
emissions (Strom, et al., 1976). Parametric studies of the effect of Ca/S
ratio on sulfur retention are shown in Figures 4.2.2-1 through -10. In
terms of ppm emissions these results can be seen in 4.2.2-11. Temperature
has very little effect at the high pressures (see Figure 4.2.2-12) and thus
it is readily apparent that the addition of a new pressure parameter to the
atmospheric FBC SO emission model is not going to be adequate.

Fluidizing velocity is the other parameter of concern in this
empirical model. BCURA has also conducted pressurized studies (Nack,
et al., 1975). The net results of all these studies can be shown in the
empirical equation:

Nso sulfur NOT removed in percent

Ca = Ca/S ratio valid in range 0.4 to 2.5
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Figure 4.2.2-1

Comparison of SO2 Removal Results - Limestone Sorbent (Hoke, et al., 1976).
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Sulfur Retention Capabilities of Additives Compared Mass Basis.
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Effect of Excess Combustion Air on Sulfur Retention.
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Effect of Ca/S Net Ratio on Sulfur Retention.

9'

V9

tI [.
tC . _

I-- I)
-.

C

.. 

_-4

I I~~~~~~~~~~

<-I"~~-r - - - - ' '' *- ' - -r ow~~' 
L \\ |1

0 rs YRt-1:-1:
1_ *, * I ! i . u I

co L ; C. )
';crpcraurc (°C)

Figure 4.2.2-12

Effect of Temperature on Sulfur Retention.
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Comparison of Desulfurization Results, Batch and Miniplant Units

(Hoke, Nutkis, Kinzler, 1977).
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Figure 4.2.2-9

Effect of Low Temperature Operation on SO2 Retention (Hoke, Nutkis, Kinzler, 1977).
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Tb = bed temperature in 0 C, valid in range from 800° to 950°C

Vf = fluidizing velocity in ft/sec, valid in range from 2.0 to
5.0

Sp = parameter for effectiveness of dolomite used, by source

N = S 098 0.04 - - 8001[0.95 + 2Vf ]N P tsooI I

a 1500 Ca]

[gsd = 1.10]

This formula has not been fit to a data base, as none currently is
available, so although the functional forms may be considered useful, the
coefficients are highly speculative.

A smoothed parametric SO2 model developed at Argonne National Labs is

shown in Figure 4.2.2-13. The mathematical fit to this model is:

No [5 + 3 C -3][2.86 - 0.00128 TI
so a 5+4 Ca

x .238 Vf - .191

where T = bed temperature in OF. This model does not, however, fit as

well as that previously derived.

Nitrogen Oxides

Nitrogen oxides levels from pressurized FBC's are much lower than
those from atmospheric combustors. The reason is apparently that elevated
pressure offers an overall more effective NO reduction environment. The
limited data available on adiabatic pressurized FBC (that is the type
without heat transfer surfaces in the bed and with temperature controlled
by large amounts of excess air) show levels higher than the more common
design (Keairns, et al., 1975).

Argonne National Laboratory experiments (Nack, et al., 1975) show a
sharp drop in NO emissions as the pressure moves from 1 to 4 atmospheres,
at which point tere is a leveling off (see Figure 4.2.2-14).
Concentrations ranged from 120 to 270 ppm and correlated with Ca/S ratios,
(see Figure 4.2.2-15). Experiments at ESSO have verified the occurrence of
an NO and SO reaction. BCURA showed ranges of 70 to 250 ppm. Experiments
at Exxon (Hole, et al., 1976) indicated increasing NO levels with
increasing excess air, although some of these points ave been contradicted
by similar tests at CPC (Nack, et al., 1975), (see Figures 4.2.2-16 through
-18.
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a

Figure 4.2.2-13

Effect of Bed Temperature, Fluidizing Gas Velocity and Ca/S Mole Ratio on

Sulfur Retention in the Bed During Combustion

(G.J. Vogel, W.M. Swift, J.C. Montagna, J.F. Lenc and A.A. Jonke, 1975).
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Effect of Pressure on NO with Inert and Dolomitic Bed Materials

(Vogel, Swift, Montagna, Lenc, Jonke, 1975).
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NO Emissions (Hoke, Nutkis, Kinzler, 1977).
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The correlations of NOx emissions pressurized FBC is:

No = NOx emissions in ppm NO,dry]

Nc = nitrogen in coal in %; valid in range 0.8% to 1.7%

Ae = excess air in %; valid in range 10% to 70%

P = pressure in psia; valid in range 15 to 120psia

T = bed temperature in °C; valid in range 625° to 1000°C

-Ca = calcium to sulfur mole ratio, valid in range 1.0 to 3.0

p
N = No 205 + 9.2Ae][1- - .66 log1 0 15 )]
o1 a e 01

[1.1 -.1T 125)2 ] + 40 Ca-2.0]
125

[1.31 = gsd]

This equation has not been fit to a data base, so although the functional
forms may be useful, the coefficients should not be considered accurate.
The addition of fluidizing velocity and other parameters would reduce the
uncertainty in this prediction, but parametric experiments indicating the
effect of other parameters are not available.

The adiabatic FBC 6would have NO emissions of about 330 ppm (NO,dry)
or about 0.4 lb N02/10 BTU input (Keairns, et al., Sept. 1975). This is
based upon CPC data and is verified by extrapolations of Exxon and NRDC
data. Figure 4.2.2-19 shows excess air requirements of adiabatic
combustors, and Figure 4.2.2-18 showed the experimental levels at these
levels.

N = NO emissions in ppm NO,dry]0 x

N = 330

Hydrocarbons and Trace Metals

The only available hydrocarbon data is displayed and fitted with a
model in section 4.1.2.3, although this is for the atmospheric pressurized
system. The trace metal emissions have been experimentally studied and
these models, for the pressurized FBC, are displayed in section 4.1.2.4.

Particulates

As we displayed in section 4.1.2.5 the particulate levels and sizes
for a pressurized FBC can be modeled by the empirically derived formula
given in that section. For combined cycle configurations it is estimated
(Keairns, et al., Sept. 1975) that the constraining factor in particulate
levels may well be the permissable erosion and loading of he turbine
blades, not the EPA standard. Thus, levels below .1 lb/10 BTU are likely
if pressurized FBC are to be feasible..
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The only proven "hot-side" control for particulates is form of
cyclone (Strom, et al., Feb. 1976). The best results to date (see Table
4.2.2-1) have come from two cyclones in series after a 6 inch combustor,
reducing the loading by .91 to .93 (Vogel, Swift, Montagna, Lenc, Jonke,
1975):

Pc = controlled particulate emissions in ib/10 BTU input

P = uncontrolled particulate emissions0

np = efficiency of a particular control configuration

np = .91 to .93 for two cyclones in series

n = .988 to .996 for two cyclones and a single granular bed
filter

n = .9999 for two cyclones and two granular filters
(Nack, et al., 1977)

= (1-n )P

Additional efficiencies are shown in Figure 4.1.2.5-1. It would appear
that the problem is easily solves, the two cyclones and one filter
translates to .085 to .148 lb/10 BTU, with two filters this yields .0017
lb/10 BTU. It is, in fact, true that the emission standard is apparently
easily met, compared to the requirements of the turbine blades.
Westinghouse research as shown in Table 4.2.2-1 displays the severe
requirements of the blades on particulate loadings in certain size ranges.
If the FBC emissions were in proportion to the acceptable loads at the
various sizes, then .11 to .16 lb/10 BTU would be the acceptable range (a
little above the standard). With the FBC, particulate size distribution as
it apparently is, he overall particulate emission may well have to be as
low as 0.010 lb/10 BTU to meet the turbine requirements (ANL, 1976)
r0.0017 from (Nack, et al., 1975) seems to be a one digit mispring]. This
would, of course, automatically satisfy the speculated 0.03 lb/10 BTU
emission standard for 3um or smaller particulates.

Stating the turbine blade requirements in terms of size versus
loadings carries and implicit assumption about the corrosive potential of
the particulates. Alkali constituencies of coal ashes vary to such an
extent that the size versus loading requirements will have to be made with
specific coals in mind (Strom, et al., 1976) (Burns & Rec, 1977). The major
portion of this corrosion/erosion research, as outlined in section 3.1, is
yet to be completed.

Carbon Monoxide

As in the atmospheric FBC the pressurized FBC shows a very large, but
still insignificant, rang! of CO concentrations; levels between 0.in 6
(Nutkis, 1975),0.02 lb/10 BTU in (General Electric, 1976) and 0.93 lb/10
BTU (Shaw and Cain, 1977) or 170 ppm ANL, 1976), 150 to 650 ppm averaging
400 ppm for the Exxon batch unit, 50 to 150 ppm in the Exxon Miniplant,
(Hoke, 1975). These figures range from 1/2 to 1/12 of the atmospheric FBC
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Table 4.2.2-2

Proposed Dust Loading Distribution Acceptable for Gas Turbine Feed (Archer, et al., 1971).

.~ ~ ~ ~~%. --. ~-. -~. ~.-- _

Avec. parti::Ic dia. wt. in

lira Size rnee

< 1 76.8
w

1-2

2-3

16.6
4.7

3-4 1.6

4-5 .2

5-6 .1

6-7 0
.:_ :=- . .. I=-_ : .

Cccetr= in
Coxicentrations

gr/SCF

.08-.12 .c

.02-.03
.005-.008

. 002-.003
.0002-.0003
.0001-.0002

0
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levels. The reason for the decline with pressure is not definitely
decided, but the equation (Strom, et al., 1976)

2NO + 2CO 2C02 + N

provides a reasonable explanation. Experimental data show a nearly
constant value of CO + CO2 concentrations. Although, this reaction is by
itself very slow, it is catalyzed by CaO or dolomite, and inhibited by CO2
levels higher than 17%.

Experiments at Exxon have shown a considerable variation, a factor of
four, due to unsteadiness of coal feed (Hoke, 1975). This source also
claims a temperature dependent term, but without published backup
information. In the absence of other information the same type of model as
was used in the atmospheric CO prediction is used here, scaled to reflect
the lower values:

Eco = emissions of CO from pressurized FBC in ppm dry]co

Cf= nondimensional parameter for regularity of coal feed

Cf= 1.0 for unsteady batch feed

Cf = 0.25 for very smooth constant flow

P = pressure, in atm

Eco = Cf 1.10 - .099P] Eco (atmospheric)

[gsd 2.43]

4.2.3 Other Air Emissions

The kinds and amounts of these emissions would be nearly identical to
those listed in section 4.1.3. There would be some scaling necessary due
to slightly different distributions of waste heat and different energy
efficiencies. Experimental data is limited to the conventional coal-fired
power plant experiences.

4.3 Air Emissions from Potassium Tooping FBC

Although no experimental data are available for this advanced energy
cycle, it is useful to relate the analytic speculations of the manner in
which emissions would be scaled in comparison with the other FBC
technologies. These scalings are primarily due to differences in
efficiencies and changed output configurations.

4.3.1 Air Balance

Published analytic models of the materials balances are limited to
those displayed in section 3.3.4. These can be useful for determining new
values of gaseous, liquid, and solid emissions.
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4.3.2 Flue Gas Emissions

Emissions from a potassium topping cycle using a pressurized FBC heat
source are essentially the same as the pressurized FBC emissions--at least
for HC and particulates there has been little change predicted from
analytic studies.

Table 4.3.2-1 Summary of Analytic Projections
for Potassium Topping FBC Emissions

Emission lb/106 Btu 10- 4 lb/kwhr

SO2 0.692c , 0 .7 2 3 , 1.18 8 53.3c 54.-74.a, 83.3bSO2~~ ~ ~~~ ~ ~ , , 83.
NOx 0.0a 0.164

0 193b 0.0 a, 12.5c , 13.2bN0~~~ ~ ~~~~~~~ ' ~ 0.9 a· 
HC 0.0 ac 0.0a

'c

CO 0 .0a, 0 .0 20
c, 0 .0 9 6 -0.3 7 9 b 0 .0a, 1.5c, 6 .6-2 6 .3b

Particulates <0.006b , 0.037-0.042a , 0.100c 0.07b , 3.1-3.5a , 7.7c

a: (Deegan, 1976)

b: (Shaw and Cain, 1977)

c: (General Electric, 1976)

It should be noted that there are no experimental data in this area, so
these results are speculative. Minor differences have been perceived for
SOx and NOx emissions as described in the following text.

Sulfur Oxides

Design studies have shown a 0.6% increase in sulfur oxide emissions
from the pressurized FBC case (General Electric, 1976), (Shaw and Cain,
1977). The same formula is, therefore, used with this slight scaling. The
per Btu input effects are changed by:

No [pot top] = 1.006 No [press FBC)

The mechanism supposely responsible for this effect is not explained.
Considering the (speculated) substantial increase in efficiency of the
potassium cycle with about 18% (Jahnig and Shaw, 1977) less sulfur entering
the system about 18% less would be emitted in the flue gases.

Trace Metals

In the absence of speculation to the contrary, it perhaps could be
assumed that trace metals would experience a similarly reduced level of
emission, that is, in proportion to the ratio of cycle efficiencies.
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Nitrogen Oxides

Based on design studies the potassium topping cycle shows 8% higher
NO emissions than pressurized FBC's in (General Electric, 1976) and 25%
lower emissions in (Shaw and Cain, 1977).

Any increase would be counterintuitive, considering the 11% decrease
in use of fuel. The scaled down formula as for pressurized FBC is thus
assumed:

NO = NOx emissions in ppm [NO, dry]

Nc = nitrogen in coal in %; valid in range 0.8% to 1.7%

Ae = excess in air in %; valid in range 10% to 70%

P = pressure in psia; valid in range 15 to 120 psia

T = bed temperature in C; valid in range 625° to 1000°C
assuming vertical coils

Ca = calcium to sulfur rates, valid in range from 1.0 to 3.0

No = 0.75 N [205 + 9 .2Ae] [r-.66 log1 0 P ] x
15

[1.1 - .1 (T-875)2] + 40 [Ca - 2.0)
- 125

It would be possible on the basis of (Beer, 1977) to separate the fuel
and atmospheric sources of nitrogen to get a more exact formula. In the
absence of any experimental data, this effort does not seem to be
warranted.

Carbon Monoxide

The analytic study (General Electric, 1976) projects no difference
between potassium topping pressurized FBC, while (Shaw and Cain, 1977)
projects a 20% reduction in the topping cycle's emissions. In light of
these comparative results, a slightly reduced (perhaps 10%) version of the
pressurized FBC may be useful if a preliminary analytic model is desired.
The geometric standard deviation would have to be adjusted upward
accordingly.

4.3.3 Other Air Emissions

Aside from the same concerns outlined in section 4.1.3 the liquid
metal topping cycle has an additional concern. Any failure in the liquid
metal cycle would probably result in the emission of hazardous metal
hydroxides through the flue. Special control and containment procedures
would probably be required to limit these emissions.
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4.4 Emissions to Water

It is generally believed that heat and other aquatic emissions "at
power plants equipped with fluidized-bed coal combustors can be
accomplished by standard industrial practices such as are now in use in
conventional coal-fired utility plants" (Argonne Nat. Lab, ANL-ECT-1,
1975). Since there are no published experimental data for fluidized bed
combustor facility water emissions, the information on conventional
coal-fired facilities is presented in Table 4.4-1.

Table 4.4-1 Water Emissions of Conventional Power Plants (Teknekron, 1977)

Central Central National National
Region Region Controlled Uncontrolled
Controlled Uncontrolled

Acids 0 21.9 0 19.9

Bases Unknown Unknown Unknown Unknown

Other Dissolved
Solids 0 41.1 0 37.2

Suspended Solids 37.8 98.1 5.14 53.0

Chemical Oxygen
Demand 0 0 0 0

All values in tons/106 BTU input.

In (CEQ, 1975) is the result that pressurized FBC have 18.2 tons/101 2

BTU total dissolved solids and .003 tons/10 Btu organics. Other than
this the best that can be done to make the Table 4.4-1 values applicable to
the various fluidized bed cycles is to scale these numbers by plant
efficiencies.

Other water emissions data, created by various analytic studies is
presented in Table 4.4-2. The potential additional concern of water
contamination by the liquid metal cycle accidental releases is nowhere
addressed quantitatively. In addition, there is considerable potential
(Strom, et al., 1976) for highly acidic water emissions due to leaching of
the landfilled ash and sorbent (see Table 4.4-3). Quantities of CaO, on
the order of- 60% of the spent additive, would be the prime concern (see
Table 4.4-4), although CaS forming H S would also occur. Leaching of trace
metals from fluidized bed residues is another potential concern (see Table
4.4-5). The thixotropic nature of scrubber sludge, if caused by Ca S03,
would not be a concern in fluidized bed residues.

4.5 Solid Effluents

Solid waste from FBC cycles is composed of several types of materials
(see Tables 4.5-1 and -2). Identification of levels of wastes is a fairly
straight forward analytic procedure, depending to a certain extent upon
design and operating parameters (see Table 4.5-3).
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TABLE 4.4-2 Water Use in FBC Cycles
(given by references, since there
are obviously discrepancies in designs
and definitions).

Total Water cd Conventional Atmospheric Pressurized Potass Top
Furnance FBC FBC FBC

gals/Kw-hr - 1.208-.905 .973-.837 .839-.653
-cooling waterCd 1.035-.757 .822-.694 .662-.530

c,d
-condensate makeupc d - .01033-.01027 .00851-.00693 .00697-.00494
-waste handling slurr d - .1063-.0899 .0985-.0887 .1097-.0797
-scrubber waste water - .05619-.04753 .05275-.04751 .06012-.04369

Total Water , gals/,whr - 0.611 0.548 0.414
Cooling Evaporation
gals/kw hr b - 0.453 0.405 0.306
Cooling Blowdown ,
gals/kw hr b 0.140 0.127 0.096
Plant General Use,
gals/kw hr b 0.018 0.016 0.012
Condensate Makeup ,
gals/kw hr b - 0.0 0.0 0.0
Water Discharge ,
lb/kw hr - 1.32 1.19 0.90

Makeup Water
tons/day/MWe 32.7 31.1 23.8 17.0

Cooling Water
tons/day/MWe 2864 - 2260 1611

Note: Extreme cases in (c) and (d) were omitted
conversion factors of 96 x gal/kwhr = tons/day/MWe
and 12 x lb/kwhr = tons/day/Mle do not reconcile the differences in numbers.

a: (Jahnig and Shaw, 1977)
b: (General Electric, 1976)
c: (Wolfe, 1976)

d: (Deegan, 1976)
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Table 4.4-4

Leaching of Bed Material from the Pressurized Combustor (NRDC, no date).

Taken during NCB/APCO Test 2.5
Coal: Pittsburgh; Additive: U.S. Dolomite
Temperature 1465°F; Pressure 3.5 atm

1337

Taken during NCB/APCO Test 3.2
Coal: Pittsubrgh; Additive: U.S. Dolomite 1337
Temperature 1480°F; Pressure 5.0 atm

Taken after Test 3 (Present work)
Coal: Illinois; Additive: U.S. Dolomite
Temperature 1655°F; Pressure 5.6 atm

1337

Taken after Test 4 (Present work)
Coal: Illinois; Additive: U.K. Limestone
Temperature 1740°F; Pressure 5.9 atm
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Sample A B C D

. ~ ~~~~~~~~~~~~ ,

Analysis of Samples

CaO wt % 31.3 30.2 30.0 43.4

MgO wt % 21.6 20.9 22.1 1.76

S wt % 9.0 8.3 11.80 9.60

CO2 wt % 10.0 11.0 0.33 0.07

Analysis of Solutions

pH 10.5 10.8 11.1 11.6

Ca mg/1 107 101 163 224

Mg mg/1 2.0 1.9 0.2 0.2

SO03 mg/1 237 219 217 201

.~ ~~~~~~~~~~~~~ ,

Proportion Dissolved

Ca % 47 46 76 72

Mg % 2 2 0.2 0.2

SO3. % 100 100 73 83
i3 iiiii iii

Sample A

Sample B

Sample C

Sample D
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Table,4.5-1 Composition of Solid Waste Material (General Electric, 1976)

Atmospheric FBC Pressurized FBC Potassium Too. FBC

Ash
Calcium Sulfate
Unreacted Lime
Magnesium Oxide
Carbon

31%
42%

24%
0%

3%

26%
13%
16%

42%
26%

13%
16%

4%
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TABLE 4.5-3 Solid Wastes and Materials Use in FBC Cycles

Conventional Atmospheric Pressurized Potass. Tp
Furnance FBC FBC FBC

Coal d, lb/kwhr .936-.792 .819-.740 1.421-.728

c,d
Sorbent d

, lb/kwhr .495-.419 .476-.392 .530-.385

Coal , lb/kwhr .776 .778 .715 .582

a
Sorbent , lb/kwhr .186-.207 .264 .186 .152

a
Total Waste Solids,
lb/kwhr .294 .353 .236-.259 .192

b
Coal , lb/kwhr - .884 .808 .714

Sorbentb , lb/kwhr .227 .372 .326

Spent Solidsb
Conglomerate lb/kwhr .292 .342 .302

Note: Extreme cases in (c) and (d) were
12 x lb/kwhr = tons/MWe-day

a: (Jahnig and Shaw, 1977)
b: (General Electric, 1976)
c: (Wolfe, 1976)
d: (Deegan, 1976)

omitted conversion factots of
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.. The most difficult effect to model is the regeneration process.
Regenerated sorbent is less reactive than fresh sorbent, thus the calcium
to sulfur ratio must be higherofgr a given desired level of sulfur
reduction, in fact R = 0.77 N ' where R is the utilization efficiency and
N is the number of cycles was the best fit in an experimental study of this
phenomenon (Zielke, et al., 1970). This effect will somewhat offset the
effect of the average number of reuses of sorbent before it is disposed.
This number will be determined by the particular regeneration scheme (see
Figure 4.5-1), as well as the operating parameters chosen for that scheme.
The following analytic models are for solid wastes from any of the FBC
cycles:

As ash output, tons/hour

S = spent sorbent output, tons/hour
0

S = sulfur content of coal, %
c

Ca = calcium to sulfur mole ratio used in bed

Ip = percent inerts in additive

A = ash content of coal %

Bc = btu content of coal btu/lb

Ms = megawatt size of facility
. .

Ef = efficiency of facility %

..... n_= average number of uses of sorbent, 1.0 for no regeneration;
up to 7.0 for regeneration

As = 1.706 x 103 A M B -1 Ef 1

S = 4.73 x 10 3 Sc a Ms B 1 Ef 1(1-.01I)-1 R -1
Th rageo c c f C1.1p nJ

The range of values of ash output for the ECAS liquid metal topping
cycles (Deegan, 1976) was .033 to .045 tons/MWhr. Spent sorbent outputs
ranged from 0.182 to 0.188 tons/MWhr.

Although some specific mass balances are presented in sections 3.3,2,
3.3.3, and 3.3.4, some general balance computations are possible using
Figures 4.5-2 and -3, and the following definitions:

.. -X = fraction excess air

Y = amount of elutriated char expressed as a fraction by weight of the
-coal fed to the combustion zone

Z = fraction of sulfur in coal appearing in stack gas
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Figure 4.5-2

General Mass Balance for Fluidized Bed Combustor (Strom, et al., 1976).

IASIS: RA -l0
X - G10
Y Y Q0

Z 0.10

LIMESTONE (25-C)

G S

CCO3 37.4736
SiO2 1.1589

3LS325

COAL 100 (2°C)

GMS

C 73
H2 S
oz 7
ASH 10
S 4

100I20 17
H2Ct 4.17

0.3744

0.0192
0.3936

Ml

&o
2.4
0.2
0.1
u. -c,

0357
0.1043
41231S

5TC GaS (1550F - 3Q
GUS

Co2 25&9437
1H20 4JL1366

2 23.5072

.i D80 m
K2 77.2826

1103.6709

SOLIS (843V

CHAR

GL4S

C14 7.732

S 0.261

ASH 2000

10.000

ASH

SoNT IUE

60PF - 31 6

GUS _OL

N2 774.2823 2.

135O 8 7J455
10a 333 3 IL737

LOW 0.13320

C30 S111663

C.50 4 14.1S31

SaC2 1.158S
34779

FiSure 4.5-3

Specific Mass Balance for Fluidized Bed Combustor (Strom, et al., 1976).
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R mole ratio of Ca in limestone to S in coal

Ao = area of bed cross section, ft2

0
V0 = superficial gas velocity, ft/sec

W = coal feed rate, tons/hr
s

Q1 = heat transferred to cooling surface, Btu/hr

Q2 = heat release from combustion of coal, Btu/hr

o = approximate nominal retention time of solids in bed, hrs.

then from (Strom, et al., 1975)

-1
Ao = 294.7 Ws V0

Q1 = 1.67 x 107 W

Q2
= 2.38 x 107 Ws

Q1/Ao = 5.66 x 10 V0

Q /A = 808 x 10 4V2 0 0

e = 83.0 H(1-e) Vo

where e appears to be the basis of the natural log system [although a
sample computation shows e = .70 in (Strom, et al., 1976)].

4.6 Noise. Odor. and Aesthetics

Effects of noise pollution on the general public can generally be
effectively dealt with by proper siting of the facility. Occupational
hazards in the form of measurable hearing impairment have been observed in
most power plant employees. Potential solutions to these problems are the
same as those outlined for conventional power plants (Jannig and Shaw,
1976).

The primary odors from FBC are likely to come from SO2 collections
during stagnant atmospheric episodes. These and the other emission and ash
pond smells will be very similar to conventional power plant odors. There
is, however, the potential for much larger quantities of H2S from the FBC
cycles, and this could pose a distinct odor problem.

Aesthetics has been a problem for conventional power plants and is
likely to receive about the same magnitude of concern for the FBC cycles.
The fact that the pressurized units will be smaller in size is one
potential advantage, otherwise the conventional types of aesthetic
solutions are likely to be considered: various types of shielding,
clustering, enclosing and squaring off structures, imaginative painting of
larger structures, and simulation of high-rise apartments.
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4.7 Other Fuel Cycle Effects

There are undesirable environmental impacts that result from all of
the various processes within the total fuel cycle of fluidized bed coal
combustors: mining, transportation, handling, storage, and preparation of
coal and sorbent stone. To the extent that these effects have been
examined, (Argonne National Lab, ANL-ECT-1, 1976) and (CEQ, 1975) for
example, these problems are presumed to be of the same type and the same
magnitude as those currently controlled by "standard industrial practices
such as now in use at conventional coal-fired utility plants" (Argonne
National Lab, ANL-ECT-1, section 6.3.6, 1976). Of course, with the FBC
cycles requiring significantly less coal per MWe, they will thus have
proportionately less impact than the conventional systems. The best data
base for computing these fuel cycle effects is the EMDB at Brookhaven
National Labs. This data base contains information about the common
pollutants but is deficient concerning the various trace elements and
different kinds of hydrocarbons. Another deficiency, not only of this data
base, but of the available knowledge, is the lack of quantified
occupational hazards. Table 4.7-1 is a list of the types of hazards that
are likely to be of concern for FBC's.
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'lable 4.7-1 Combustion hazards
steps, from Rao,

in BC
1975,

systems and preventive
pp. 352-7)

COMOi F.NT SAlET lY CAUSI! EI:1I:CT PREVF.NTIV!. STliPS
HAZARD IN DESIGN IN OPERATION

COAL PREPARATION
Coal crusher

Coal dryer

COAL STORAGE
Silos
Hunkers
Bins

COAL TRANSPORT
C(onveyorn
(M :chanical)

Conveyors
IPncumatic

Ducts

Fire Igrition due t mech-
t-xplosion anical riction. and

mechanical impact.

F:ire !gnition of coal fines
Explosion and volatilc gascs

evolving from coal
due to heatinr.

Fire Ignition of coal dust
Explosion duc to accumulation

of combustible gasc
and coal lines. due to
local temperature
buildup.

Fire Ignition

Fire Ignition due to mech-
Lxplosion anical friction and

heating. and due to
electrostatic charge
buildup and lame
proparation.

Rupture Explosion r rnmeci-
anical failure due to
crosion.

Ruptutar: Same as above.

Fire fgnitioln due to mech-
Explosion anical friction. heat-

ing. clecitostatic
chalrge buildup nd
flnime pioplratioatn.

Propaga tion of firc
and cxploion
through ducts to
other components.

Propagation of fire
through ducts and
devielpmenct of
detonation.

Damace vwill be cx.
tensyve. affecting the
total plant and sur-
round ings.

Propagatlion of fire
to other components
and sul)sstems.

Propaga:inn of fire
and developmcnt of
detonation. 'ropaga-
lion of ha.al;d to
other huh%) steltis
and componcnit,.

l.eakage of coal lines
Int: the ,utrounding
air can result in
econdary htres and

explosil.s.
Sal-C as above.

Propag;lton of flame
and Jdcvclpmnt ol'
detonation. Illiad
prlI;a lin t1 oilh:er

Provide pressure relief
valve alhlow proper wpa.
ration from other cornm-
ponents and sut,.y.tcms,
design to operate with
Ilow vclocity greitcr
than flame speed. Con-
sider installing a rupture
disc.

Provide pressure relief
valvecs. alloUw props'r
spartion fironl oither
cuilIlponelnts.

Provide ventilation and
air circu!ation, file d,
tection and fire fighting
equipment. ounding
alarm. and relief valves,
allow proper enaration
fron the plant. Provide
saleguards t proletv
ftn tiatural calai-
tics (flir example.
li'htning arrestcr).

.Allow proper physical
separation. provide fiare
detection and firc fight-
ing lquipment. and
sounding alarm.

Provide physical harriers
and amnle eparation,
dc .. st, vecp a mini-
munim flow veloclit.
grc.ater than l.amte
velocitl,. provide good
rroundin. and alety
valves.

l)csign with adequate
lacltir of .atty.

Same as ahove.

'rovide lphyical harrie.s
and atmple sep'ralion.
goid gr-unding and
sItcly vulvs.

Us lss reactive crrcr
gas, maintain coal'air ratio
beyond combustion limits.
maintain proper llow vloc.
ity to prevent flatme prorpa-
giin uptreatil. Monitor
(, concentration. tenrmpera-
lure and pressure.

Same as above.

Minimi/c coal dust accu-
nulation by periodic re-
inoval of coal fines.
Monitor temnperature 3t
"critical" I)cation to
detect snouldering
fires and lames at an
early %stafe.

Monitor emperatury
at critical l'alion%.
ntinintmue aitumulation
of coal l ne,. cIJhlichi
iperating condllon%
and procedurc, and
ope'atle accoirding t
the net proe'ures.
Monior emrpratlure
at rltiel locJtions us
les reactive c.arier lct sJ.
nliitain.ll cijl .'air ratil
lieytond oiobuslion
llm . mint, mllllc leaking
t te sur-und ilng
amosiphlcre.

Periodir chc:k lot ncth
anneal intmrtl).

Same % abtn e.

t les reactwive c:lrrlle
g:a. minnimc lejaking tat
the urroundlng ajtlno%
phere.
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Table 4.7-1

COM'PONENT SAFEtTY
HAZARD

(continued)

CAUSE .EI:r.'Cr PRIVIKNTIVE STIPS
IN D.Sl;N IN OPE:RATIlON

COAL :ELDERS
Pneumatic fceders
(tor coal. coa! fines
and carbon-contain-
ing fly ash)

Mechanical feeders
rjavity feeders,

screw feeders)

AIR SUPPLY
Air compressor
Air blower

Fire Ignition due to heat Flame propagation
Explosion feedback. electro- and explOsion can

static chargc buildup. spread to other sub.
and flash b ,ck of systems and corm-
flame. Coat/salt ponents.
feeder plugging due
t.o ) groscpic sawit
and caking coal can
induce flame prupa.
Falloin upstream.

Fire Ignitiun due to heat Same as above.
Explosion feedbacl. mechanical

friction. heating and
pressurialion due to
plugaing.

IFalure Mechanical or Incomplete Ambut-
,lectrical. lion or coal yields

Vsplsive mixture
of combustible gas.

Explosln Accumulation of Intiition of wc'nd.
lubricating il. ay fire and expluiaun

haard.

Provide means to unplug.
design to maintain a mini.
mum flow rate exceding
fnam:- spced. Provide
vents and alety alves,
rupture diw.

Provide mea.ns to unpl -
provide safety ah-ce
and adequate conrols.

PIwovide adequate ar.-
ttols, and stand-by

sure for ail supply

Same as above.

itonitleli temperature and
pesuur. . It Litilcal kLat.
lions. maintain the de-
ugncd fnninun laaw
fate. uc ic le actVe
carrier gas.

Monitor temperature at
sutical localion.

Monitor gafs ompoltian
at criti'al Ilationts.

Pevent amumulatbd of
oil.

WAIl FR SUPPLY
Water pumps

FB COMBiUSTOR
Combustor vessel

Ailr distributor

Start-up burner

Iailure fMeeianieal nr
clctrical.

Rupture I xCcsive stres.ses
I'xplhason due tIs, thernial and

dynamic slrssws.
picssiure induvced
sltc-. thermal shiwk,
f:tigu.!. and accumu-
Iition of cunmbustible
gass in V.llae iludes
uol Olevratin. run
away ctalhusticn.

Failure 'Thermal strc.s.
I'aligue, bucklitrg.

F:ire Flame pripagatin
I-xplOsiun upstream due ts heat

feedback. and devel-
up:nent taf detina-
tlin.

I leat exchange tubes
and watrf wallIetl
yaver heated and
rapture pressurising
Ceolliobustr.

)esttuction of avilef.
tire and explosion
propapgtlon tit 1the
parts of the plant.

Changes in luidi/a.
tien chaoctertistis
may esult in bd
lempeLatur, est;ul-
sa in stine t:regions%

Flame pspapatlion
upstream tt tther sub
systems and tam-
ponent. esplilsin
ol bhsilvr asnpsannts.

Pronwvide ,fand-by watfer
supply w'urce. adequate
cont.rls. including
presUre relief valve.

Prvwide adequate pressure
rlief and cuntrls. sound.
in alarmn arid lire fight.
ing equipmen:. and
pity skl barrier between
the bailer and operating
petssmnel.

Allow for thermal c%-
p.ansin.

Provide flame arrester.
and pressure. relief. and
adequate Contnls.

Manit. %eat. exchant
ktall tteerature at critical

oisatisnsp. ati idi

M,,nrit-Ia apeuatasg rafldfri
tlhni. maintain neat no'r
nmal dvesign tandatiins:
·nal. ait and limest-ne fIed

rates need adequate con

,lnitr temperatule ,af
t'd material at illlerent
lwatians. I'eridac h hairk.

Istablish safe toraing
prtedures. llow the op.
latinf provdues. motm.na-

lIr critical vafriAhls ef
itpelatilon. and qualit ef
lioidtatian.
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Table 4.7-1 (continued)

(alt)MN;N r SAI L' Y C'AUs.
IIAZ KI)

...... Pu VI IV. _S I 
I.I. l.('r PrI VI.IIVF 11 s

I I SI;N IN OPI ItA! I )N

lI Wa t XCI.&NGI.RS
InitlrfmA lub.s I!'r;lie I".miin. hnical
and tutW bundles and %fc s :4amfiotn.

' thetmjIl and dynamic
'kINM'.vi!bfdlhm i-tduo'.' dimaln l-

Indl tlftipivaluef.
theftinal ahik. lati-
gue. and pedtatatn
in tedu'm.n: lliaq
phetr.

I 11I MAI' RIAL
'I ANSPit)t 
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FUl 'i'L4.*a

r.41 rlc Ll.
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itp hIdi,
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5. Conclusions

This study of mass and energy balances has been aimed at the
development of empirical correlation models of the energy efficiencies and 
environmental emissions of various fluidized bed combustion technologies.
These empirical correlations consist of probabilistic models that have been
fit to published experimental data. In several instances, there have been
comparisons of these empirical models with available analytic models.
Extensive bibliographic research and identification of on-going projects
was also completed as a portion of this task.

From the standpoint of recommending future work in this area it would
be desirable to have an updated data base of fluidized bed emissions and
efficiency information. An on-going project at MIT is concerned with
putting together just such a data base. There are several advantages to
having such data bases available for all of the advanced energy
technologies:

(1) they can be used as design tools to search for
attractive configurations and operating parameters,
particularly those unexpected synergistic effects that
could be identified and exploited;

(2) they can be a ready source of latest information
on the performance of that energy cycle;

(3) analytic models can be systematically tested against
such a data base to evaluate the gap between theoretical
and experimental information; and finally,

(4) they can be used to systematically identify and quantify
the need for key pieces of information that are now
inadequately known.

This final objective is perhaps the most important in that it could be
a mechanism for developing R & D strategies. The process involved in
developing the R & D priorities begins with the use of probabilistic
empirical models to define probabilistic data on economic, efficiency, and
emission performance. This type of data can be compared for alternative
energy cycles to develop ratings of the relative attractiveness of those
alternatives. It may be that the data is too uncertain to allow for
necessary decisions between alternatives in which case R & D efforts can be
aimed directly at the key pieces of information needed to reduce the
uncertainties. In addition, the risk of potential problems in the
economic, efficiency, and emission areas can be quantified. The relative
attractiveness of the various energy cycles can also be used to set
priorities on R & D projects that would increase the chance for
technological feasibility of those energy cycles. In the fluidized bed
technologies, some of the areas which are highlighted (because they
contribute the greatest uncertainties in the probabilistic models) include,
in order of importance as perceived during the work of this project:
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(1) particulate removal to achieve as-turbine
reliability and long life (in pressurized units);

(2) up-to-date economic data and projections of the FBC
retrofit potential of conventional boilers;

(3) combustion efficiencies;

(4) coal and sorbent feed continuity;

(5) boiler tube material and heat transfer information;

(6) turndown, load following, combustion transients and

instabilities;

(7) trace metal control;

(8) reductions in solid waste amounts and data effectiveness
of disposal schemes;

(9) hydrocarbon control; and

(10) sulfur oxide control predictions due to sorbent and coal
characteristics and design configuration variations.

All of these areas of uncertainty must be investigated with due regard
to the consequences of scale-up to commercial sizes.
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