Technical Publication 92-03

A THREE-DIMENSIONAL FINITE DIFFERENCE GROUND : WATER FLOW MODEL OF THE FLORIDAN AQUIFER SYSTEM IN MARTIN, ST. LUCIE AND EASTERN OKEECHOBEE COUNTIES, FLORIDA

April 1992

Technical Publication 92-03

A THREE-DIMENSIONAL FINITE DIFFERENCE GROUND WATER FLOW MODEL OF THE FLORIDAN AQUIFER SYSTEM IN MARTIN, ST. LUCIE AND EASTERN OKEECHOBEE COUNTIES, FLORIDA

April 1992

DRE 311

Technical Publication 92-03

A THREE-DIMENSIONAL FINITE DIFFERENCE GROUND WATER FLOW MODEL OF THE FLORIDAN AQUIFER SYSTEM IN MARTIN, ST. LUCIE AND EASTERN OKEECHOBEE COUNTIES, FLORIDA

 byJohn Lukasiewicz, P.G.

April 1992

This publication was produced at an annual cost of $\$ 1590.00$ or $\$ 3.18$ per copy to inform the public. 500392 Produced on recycled paper.

DRE Inventory Control \#311

Hydrogeology Division
Department of Research and Evaluation
South Florida Water Management District
West Palm Beach, Florida

EXECUTIVE SUMMARY

The Upper East Coast Planning Area (UECPA) ground water flow model simulating conditions in the Floridan Aquifer System was developed using the U.S. Geological Survey modular three-dimensional finite-difference ground water flow code, commonly known as MODFLOW. This code was used because it allows a detailed evaluation of ground water flow, it is available in the public domain, it is compatible with most computer systems, and it contains many features which make it easy to use and modify. MODFLOW simulates ground water levels and flow using data describing the aquifers, such as hydraulic conductivity, transmissivity, leakance, and storage. Stress on the aquifers also can be simulated, such as recharge and well withdrawals.

The Upper East Coast Planning Area consists of Martin, St. Lucie, and portions of eastern Okeechobee counties. It is underlain by two aquifer systems: the Surficial Aquifer System and the deeper Floridan Aquifer System. Ground water in the Floridan Aquifer System ranges from moderately to highly mineralized and is currently used almost exclusively for agricultural irrigation. The Floridan Aquifer System includes an upper aquifer and a lower aquifer. The upper aquifer contains major producing zones which yield water for agricultural and potable purposes. The lower aquifer is highly mineralized.

The ground water flow model is composed of four layers representing the Surficial Aquifer System, the Upper Floridan Aquifer, and two of the uppermost portions of the Lower Floridan Aquifer. Confining zones between aquifers are not represented by separate layers within the model. Rather, the confining zones are represented by vertical conductance terms within the top three layers of the model. The horizontal model grid has 54 rows and 53 columns, with a uniform spacing of one mile.

The model was calibrated by adjusting aquifer parameters to match computed water levels with observed levels for the period May 1989 through March 1991. Ground water withdrawal information for the calibration period was obtained from individual water use permits for irrigation issued by the South Florida Water Management District and St. John's River Water Management District. The permits supplied information on the location of wells,
their capacities and well construction data. Further information was obtained by asking the permit holders to estimate their water usage during the calibration period. This was done by mailing questionnaires to the majority of permit holders in the UECPA. The responses to these questionnaires, combined with data from the permits, were used to estimate actual monthly water use during the calibration period. In some cases, agricultural and public water supply monthly water use reports were submitted to the District. These also were used in the model.

Recommendations

This model should be used in the evaluation of water-use permit applications for the Floridan Aquifer System in the UECPA. Where a finer scale or site-specific model is required, the regional model could be used to provide the boundary conditions. The current SFWMD Basis of Review manual specifies a Floridan Aquifer System restricted allocation of 1.5 acre inches for areas within the eastern Okeechobee-northwestern St. Lucie Basin. The current maximum month restriction of 1.5 acre inches should be reviewed using this model. This should be done by making predictive model runs using the maximum withdrawals allowed and observing the impacts on water levels in the aquifer system. The model should continue to be refined and updated whenever additional information becomes available.

Minimum water levels should be established for the Upper Floridan Aquifer in the Upper East Coast Planning Area. All permitted withdrawals should be regulated to ensure the minimum levels are maintained. The establishment of minimum water levels should be a part of the development of the water-supply plan for this area. Model results indicate water quality deterioration in the Upper Floridan Aquifer is likely in the future, therefore, increased monitoring for dissolved solids and chlorides in the Floridan Aquifer System well water is recommended for areas where large water withdrawals are occurring.

Agricultural water use accounted for 90 percent of the Floridan Aquifer System water outhows in the UECPA for the 23 month time period modeled. Accurate estimates of the amount of water being used from Floridan Aquifer wells are essential
in maintaining an accurate ground water flow model. It is recommended that permittees be required to submit monthly water use reports to the District. The reports should indicate the amount of time wells were allowed to flow freely in each month of the year.

Model results and field observations indicate that water levels fluctuate as much as eight feet in three distinct areas in St. Lucie County where intense citrus irrigation withdrawals from the Floridan Aquifer System occur. Caution should be exercised when allocating new withdrawals, and restrictions on additional development of the Floridan Aquifer System should be considered in these areas.

Hydrogeologic studies should be undertaken in areas where existing information is scarce. The areas should be located where future use of the Floridan Aquifer System as a public water supply source is probable. Cities in Martin and St. Lucie counties are currently using the Surficial Aquifer System as a sole source of potable water. There is concern that this source may not provide enough water to meet future demands. The availability of water from the Surficial Aquifer System is limited due to the lack of storage capacity, problems with wetland impacts and susceptibility of the aquifers to contamination by various land use activities.

TABLE OF CONTENTS

i
i
EXECUTIVE SUMMARY v
LIST OF FIGURES vii
LIST OF TABLES ix
ACKNOWLEDGEMENTS xi
ABSTRACT1
INTRODUCTION 1
Purpose and Scope 1
Location of Study Area 1
Topography 1
Hydrogeology 6
Surficial Aquifer System 6
Upper Confining Unit 9
Floridan Aquifer System
MODEL DESCRIPTION 16 16
Introduction
Discretization 16
Layer 1 16
Layer 2 20
Layer 3 and 4 20
Boundary Conditions 20
Boundary Cell Types 21
Constant Head 21
Head Dependent Flux Boundary
23
23
Geographic Limits and Locations of Boundaries 23
Hydraulic Characteristics 23
Transmissivity 26
Specific Yield 38
Storage 38
Vertical Conductance 38
Ground Water Use 39
Agricultural 41
Public Water Supply Wells 41
Industrial Uses
44
CALIBRATION 44
Steady State Calibration 44
Methods 44
Results
44
44
Layer 2 (Upper Floridan Aquifer)
49
49 49
Layer 3 (Lower Floridan Aquifer Producing Zone 1)
Layer 3 (Lower Floridan Aquifer Producing Zone 1)
Transient Calibration 49
Methods 62
Vertical Conductance 62
Refinements to Wells Package 63
Prescribed Head Levels Layer 4 63
Results
63
63
Layer 2 (Upper Floridan Aquifer) 70
SENSITIVITY TESTING
Layer 2 (Upper Floridan Aquifer) 73
RESULTS 76
CONCLUSIONS AND RECOMMENDATIONS 77
REFERENCES 79
APPENDIX A: Geologic and Hydrostratigraphic Data 81
APPENDIX B: Monthly Water Use Reports Submitted to the South Florida Water Management District 105
APPENDIX C: Water Use Permit Information 121
APPENDIX D: Observed Water Levels in the Upper Floridan Aquifer Used in Model Calibration 243
APPENDIX E: \quad Computed and Observed Hydrographs Representing Monitor Wells, May 1989 through March 1991 253
APPENDIX F: Questionnaire Results 285

LIST OF FIGURES

Figure
Page
1 Location Map 22
3
17 Modified Regression Curve Used to Calculate Transmissivity using Specific 17Capacity Data27
18 Location of Wells with Transmissivity and Specific Capacity Data Used in Model,
Layer 2 28
Transmissivity of the Upper Floridan Aquifer 34 19
Location of Structural Feature Associated with Hydraulic Discontinuity, Transmissivity and Vertical Conductance Variance Used in Model 35 20
36
21 Location of Wells with Transmissivity Data, Layer 3 and Layer 4
22 40
Study Area 3
Topography of Study Area 4
Generalized Hydrogeologic Cross Section 5
Top of the Upper Confining Interval 7
Thickness of the Upper Confining Interval 8
Top of the Floridan Aquifer System 10
Depth to the Unconformity Between the Suwannee Formation and the Ocala Group 11
Depth to the Unconformity Between the Ocala Group and the Avon Park Formation 12
Top of Lower Floridan Aquifer Producing Zone 1 13
Location of Class I Injection Facilities in Florida 15
Model Grid in Relation to Surveyed Section Borders 18
Hydrogeologic Units and Corresponding Model Layers 19
Cell Types, Layer 2 and Layer 3 22
Model Boundary Conceptualization, Layers 1 through 4 24
Bathymetry in Respect to Floridan Aquifer System Outcrop Area 25

LIST OF FIGURES (Continued)

Figure
Page
23
Public Water Supply Use for March 1990 Used in Steady State Model 43
24
Location of Monitoring Wells Used to Verify Modeled Water Levels 45
25
March 1990 Observed Minus Steady State Computed Water Levels, Layer 2 46
26
Simulated Steady State Computed Water Levels, Layer 2 47
27
March 1990 Observed Water Levels Minus Simulated Steady State Water Levels, Layer 2 (Upper Floridan Aquifer) 48
28
Simulated Steady State Horizontal Flow Vectors, Layer 2 (Upper Floridan Aquifer System) 50
29
Simulated Steady State Vertical Flow Vectors Between Layers 1 and 2 51
30 Simulated Steady State Vertical Flow Vectors Between Layers 2 and 3 52
31 Volumetric Budget, Layer 2 (Upper Floridan Aquifer), Steady State Conditions 53
32
Simulated Steady State Water Levels, Layer 3 54
33
March 1990 Observed Minus Steady State Computed Heads, Layer 3 55
3435Average Observed Minus Transient Computed Heads, Layer 2(Upper Filoridan Aquifer)61
39
Location of Areas in Model Where the Largest Annual Water Level Fluctuations Occur in Layer 2 (Upper Floridan Aquifer) and Where Original Water Use Estimates Were Decreased 6540
Cells in Model Where Changes to Original Prescribed Water Levels were made to Layer 4 67
Simulated Water Levels, Layer 2 (Upper Floridan Aquifer), May 1990 68
42 Simulated Water Levels, Layer 2 (Upper Floridan Aquifer), September 1990 69

LIST OF FIGURES (Continued)

Figure Page
43 Simulated Water Levels, Layer 3 (Lower Floridan Aquifer Producing Zone 1), May 1990 71
44 Simulated Water Levels, Layer 3 (Lower Floridan Aquifer Producing Zone 1), September 1990 72
LIST OF TABLES
Table Page
1 Modflow Packages Used in the UECPA Model 17
2 Aquifer Performance Test Data Used in the Model, Layer 2 (Upper Floridan Aquifer) 29
3 Aquifer Performance Test Data Used in the Model, Composite Layers 2, 3 and 4 37
4 Citrus Chloride Tolerance Levels for Common Irrigation Methods 39
5 Average Hours Floridan Aquifer System Wells were Allowed to Flow Freely in the Period from January 1989 through May 1990 (Taken From Survey Responses) 42
6 Decreases to Initial Pumping Estimates for Calibration Enhancement 64
7 Changes Made to Specified Head, Layer 4 from March 1990 Observed Heads 66
8 Sensitivity Responses in Layer 2 Computed Heads Due to Changes in Model Parameters 74
9 Sensitivity Responses in Layer 2 Volumetric Budgets Due to Changes in Model Parameters 75

ACKNOWLEDGEMENTS

There are a number of people whose guidance, help, and assistance were essential to producing this document. The author gratefully acknowledges them:

Sharon Trost, of the Upper District Planning Division and former Director of the Hydrogeology Division, who provided leadership in conceptualizing this project and whose fine work on an unpublished two-dimensional model (Trost, 1985) constituted a solid foundation for the three-dimensional model documented in this publication.

Dr. Leslie Wedderburn for his technical review and encouragement during the review process.

Keith Smith, Acting Director of the Hydrogeology Division whose technical review and administrative skills greatly improved this report's technical content while at the same time streamlined the review process.

Scott Burns, Director of the Water Use Division and former Director of the Hydrogeology Division for providing the resources needed to support the field data collection portion of this study.

Charles Tibbals, Rick Bower, Jorge Restrepo and Don Padgett, ail of whom provided invaluable assistance in model conceptualization and design as well as technical review.

Barbara Dickey for her many hours of assistance in developing computer programs for both pre and post processing of model data sets.

Mark Wilsnack of the Upper District Planning Division who led the quality assurance and quality control review process for this model which resulted in a much improved final model version.

His technical editorial comments were also greatly appreciated. Mandy Krupa of the Upper District Planning Division who provided an excellent editorial review.

Karin Adams, whose guidance in the use of post processing computer programs and the Unix language was unrivaled.

The peer review committee, whose review was indispensable in producing an accurate and comprehensive document, they include:

Charles Tibbals, Louis Murray, and David Sumner of the Altamonte Springs USGS office, Michael Merritt of the Miami USGS office, Tom Tessier of Geraghty \& Miller, Inc., Fred Meyer of Camp, Dresser and McKee, Jon Shaw of Blasland, Bouck \& Lee and Linda Horne of the Martin County Utilities Department.

Diane Bello, David Demonstranti, James McDermott, Pete Dauenhauer and most especially Janet Wise, all of whom worked long hours on the excellent series of graphics presented in this report.

The Field Operations Supervisor, Martin Braun, who coordinated drilling activities on the St. Lucie County aquifer performance test site, and the excellent staff on the SFWMD drilling team: Tony Lubrano, Paul Benton, Arthur Tassinari and James McDermott.

Lastly, but certainly not least, the author wishes to thank Hedy Marshall for her expert services and patience displayed while editing and compiling the multiple drafts involved with this report.

Abstract

A three-dimensional ground water flow model representing the Floridan Aquifer System (FAS) in the Upper East Coast Planning Area (the study area) was developed as a tool for evaluating the impacts on the aquifer system resulting from present and future water uses. The FAS flows naturally at land surface and is used primarily for citrus irrigation in the study area. The water is moderately to highly mineralized and is usually blended with surface waters before being applied to citrus trees. Despite its high total dissolved solids content, the aquifer is utilized extensively, especially in St. Lucie County.

The extent and composition of the FAS and three permeable zones within it were defined using previously available and newly collected data. With few exceptions, agricultural ground water supply wells are drilled to the upper portion of the FAS where water quality is best and adequate yields are attained. Model results showed the majority of recharge to the Upper Floridan Aquifer is from deeper portions of the Aquifer System. A smaller, less important, source of recharge is from the north and west model boundaries, coinciding with the boundaries of Okeechobee and Indian River counties.

Present permitted allocations seasonally lower ground water levels as much as eight feet in three distinct areas of St. Lucie County. Survey results indicate that permittees in these areas are observing increasing chlorides in their FAS well water. Water quality degrades with depth in the

FAS and intensive withdrawals increase the potential for upward movement of that degraded water. Additional development of the FAS is not recommended in these three areas encompassing 28 square miles in St. Lucie County.

At present demand levels, ground water from the FAS should be available to meet present and future agricultural needs in the UECPA without adversely impacting water quality or the ability for wells to flow naturally at land surface. The potential for further ground water development will be analyzed using this model by simulating future water use scenarios.

The FAS is utilized on a small scale as a source for public water supply on Hutchinson Island. The water is processed by reverse osmosis to render it potable. The aquifer is providing an adequate quantity for the current level of use. Model results indicate the FAS does not have large scale production potential east of the Intracoastal Waterway, north of Stuart. Previous studies indicate a structural anomaly (possible fault) exists, the axis of which follows the Intracoastal Waterway in a north to south direction. Permeability in the upper FAS is drastically reduced east of this anomaly as is the vertical hydraulic connection between the upper and lower FAS. These factors taken together are responsible for the low yielding wells observed on Hutchinson Island and limit future large scale development of the aquifer in this area.

INTRODUCTION

PURPOSE AND SCOPE

The purpose of this study was to develop a calibrated three-dimensional ground water flow model simulating the Floridan Aquifer System (FAS) underlying the Upper East Coast Planning Area (UECPA). Two aquifer systems underlie the study area, the shallow Surficial Aquifer System and the deeper FAS. There are over 1,300 permitted wells tapping the FAS in the study area, the predominant use being citrus irrigation. Agricultural water demands in the study area are met primarily by surface water and secondarily by FAS water. Public water supplies presently rely primarily on the Surficial Aquifer System rather than the FAS. However, attention is shifting toward the high yielding FAS to augment current public water supplies.

The model was developed as part of the South Florida Water Management District's (SFWMD) effort to develop regional comprehensive water supply plans. These plans will be based on quantitative assessments of the available water resources, of which the Floridan Aquifer is a significant component. Evaluation of existing water supply problem areas, identification of potential problem areas, and development of management guidelines will be integral components of these water supply plans. The model will have immediate use as a regulatory tool to the SFWMD in evaluating requests for large ground water withdrawals.

This report represents the third phase of a four phase Floridan Aquifer System resource assessment of the UECPA. The first phase was completed in 1980 and involved collection and compilation of data in the UECPA, namely structural, flow zone, and water quality mapping (Brown and Reece, 1979), aquifer test data and analysis (Brown, 1980) and lithologic, geophysical, and well construction data (Reece, Brown and Hynes, 1980). The second phase involved developing an interim two-dimensional numerical flow model to evaluate immediate permitting issues arising from large FAS water withdrawal requests (Bower, 1988). One of the recommendations of phase two was that as part of phase three, a three-dimensional calibrated model be developed using the USGS MODFLOW code. This three-dimensional model will be followed by a fourth phase which will include documenting and analyzing the latest resource assessment data gathered over the past three years. The next publication will
include recently gathered water quality data, structural and flow zone mapping, results from a multi-zone FAS Aquifer Performance Test (APT) conducted by the SFWMD in St. Lucie County, and discussions regarding water level fluctuations.

LOCATION OF STUDY AREA

The UECPA is located on the southeast coast of Florida and covers all of St. Lucie, Martin, and parts of Okeechobee counties within the SFWMD (Figure 1). The model area includes all of the UECPA and includes an area approximately five miles outward from the UECPA into the adjacent counties of Indian River, Palm Beach, Okeechobee, and Osceola. It lies generally within Townships 33 through 41 South and Ranges 35 through 43 East, and encompasses approximately 2,862 square miles, 1,500 of which are in the UECPA (Figure 2).

TOPOGRAPHY

Land surface is relatively featureless, with elevations ranging from 0 feet to 60 feet above the National Geodetic Vertical Datum (NGVD), averaging approximately 25 feet NGVD in most of the study area. The major feature is a ridge trending southeast, which occurs in the western portion of the study area. The ridge trends southeast starting in the northwest portion of the UECPA with a maximum elevation of approximately 60 feet above NGVD (Figure 3). The Floridan Aquifer System potentiometric surface is $5-35$ feet above land surface in most of the study area, but is at or below land surface in the topographically high areas along the ridge where land surface is 45 feet (NGVD) or higher.

HYDROGEOLOGY

The two major aquifer systems underlying the study area are the Surficial Aquifer System and the Floridan Aquifer System. They extend from land surface to over 1,500 feet in depth. Figure 4 is a generalized hydrogeologic cross section taken from A-A' as shown in Figure 1. The scope of this document includes a brief summary of the hydrogeology which supports the model development. Readers interested in a more detailed discussion of the geology of the Floridan Aquifer System are referred to the following publications: Applin and Applin (1944), Cooke (1945), Puri and Vernon (1959), Stringfield (1966) and Tibbals (1991).

FIGURE 1: Location Map

FIGURE 2. Study Area

FIGURE 3: Topography of Study Area

Surficial Aquifer System

The uppermost water-bearing interval in the UECPA is the Surficial Aquifer System (SAS). The SAS is the source of most of the potable water used in Martin, St. Lucie and Okeechobee counties. It is comprised of all saturated sediments and rocks from the water table down to the clays and silts of the Hawthorn confining unit and is generally composed of two producing zones. The sediments are composed of unconsolidated fine to medium quartz sand with interbedded lenses of limestone, sandstone, shell and clay of late Miocene and Pleistocene age. These surficial geologic units are areally discontinuous and extremely difficult to correlate stratigraphically over large areas. Aquifer thicknesses range from less than 50 to greater than 250 feet (Brown and Reece, 1979).

The Surficial Aquifer System is unconfined and is recharged locally by rainfall, canals, ditches, small reservoirs, and irrigation water. A small amount of recharge is derived from downward seepage of irrigation water derived from the Floridan Aquifer System (Lichtler, 1960) and, to a lesser extent, upward leakance from the FAS.

Water leaves the Surficial Aquifer System by seepage to canals and ditches, direct flow into the Atlantic Ocean, evapotranspiration where the water table is near land surface, and by pumping wells.

The scope of this investigation does not include a detailed discussion of the Surficial Aquifer System. Due to its role as a primary supply of fresh water to the public, it is covered in two separate studies currently in review: A Three-Dimensional Finite Difference Ground Water Flow Model of the Surficial Aquifer System in Martin County, Florida (Adams, 1992) and A Three-Dimensional Finite Difference Ground Water Flow Model of the Surficial Aquifer in St. Lucie County, Florida (Padgett, in press). The reader is referred to these publications for a more detailed discussion of this aquifer system.

Upper Confining Unit

The upper confining unit consists of Miocene age sediments of the Hawthorn Group. The geologic contact between the Pliocene age basal surficial sediments and Miocene age Hawthorn sediments is conformable and nearly imperceptible. Lithologic logs generally describe the contact as a change from a gray-green silty sand to a dark green fairly dense clay. The upper confining beds are equated with the upper portion of the Hawthorn Group and are contained wholly within the Hawthorn Group (Wedderburn and Knapp, 1983). The sequence is composed of low permeability, phosphatic, silty and clayey sediments that separate and effectively
confine the FAS from the SAS over the entire UECPA study area.

The top of the upper confining beds in the study area is shown in Figure 5. Structurally, the top of the Hawthorn is highest in the northwest corner of St. Lucie County (-80 feet NGVD). It gently dips to the southeast across the study area, occurring as deep as 200 feet NGVD in the extreme southeast portion of Martin County. The thickness of the Hawthorn is somewhat variable (Figure 6), and follows a general thickening trend to the southeast. It is thinnest (250 to 300 feet thick) in the northwest corner of the study area, thickens gradually to the south up to State Road 70 (St. Lucie County), where it flattens out and remains a constant 400-450 feet of thickness into Martin County near State Road 76. Here the Hawthorn Group begins to thicken to the southeast, getting as thick as 750 feet in extreme southeast Martin County.

The Hawthorn Group is separated into two formations (Scott, 1988). They include an upper silty, clayey, phosphatic, fine to very fine grained clastic zone (Peace River Formation) and a lower carbonate zone (Arcadia Formation) that is interbedded with low permeability carbonate muds and clays. The upper zone is generally devoid of permeable intervals. It varies in thickness from 100 to 300 feet. Rubble beds are sometimes present near the base of the upper zone and give a characteristically high response on natural gamma ray logs (Knapp, 1988).

Directly below the rubble beds is a dense dolomite layer sometimes described by local drillers as chert. This dolomite layer is typically between 3 to 10 feet thick and marks the top of the lower carbonate zone. Because of its consolidated, indurated nature, drilling contractors typically use this interval as an anchor to set the base of surface pipe when constructing FAS wells. Most FAS wells are completed as open hole below this dolomite layer. Below the dolomite bed and above the Floridan Aquifer are low permeability, poorly indurated limestones interbedded with calcareous clays and silts. The clay content typically increases with depth until the unit becomes dominated by sandy, plastic, olive gray clay. Thin beds of silty sand and shell also are found in this interval. The potential of the lower section of the Hawthorn to yield water was investigated by Hydro Designs (1988). The results were inconclusive; however, the potential is generally considered poor.

FIGURE 5: Top of the Upper Confining Interval

FIGURE 6: Thickness of the Upper Confining Interval

Floridan Aquifer System

Underlying the upper confining beds is a sandy, chalky, phosphatic limestone. Based on the definition by Parker and others (1955), this limestone unit is considered to comprise the upper portion of the Floridan Aquifer System. The phosphatic component of this unit makes it easily identifiable on gamma ray logs as peaks or intervals of high natural gamma ray activity. Wells completed to this interval or deeper flow naturally at ground level in most of the UECPA.

The Floridan Aquifer System is composed of a sequence of limestones, dolomitic limestones, and dolomites ranging in age from Eocene to early Miocene. It persists areally and ranges from 2,700 to 3,400 feet thick in the UECPA (Miller, 1982). The top occurs at -300 feet NGVD in the extreme northwest corner of the study area and dips to the southeast where it is found at -900 feet NGVD in the extreme southeast corner (Figure 7). Few wells penetrate the entire thickness of the FAS.

The Floridan Aquifer System is classified as an aquifer "system" because multiple permeable intervals sandwiched between confining materials exist in this thick sequence of carbonates. Permeable zones are identified using downhole flowmeter and temperature tools. Flow meter and temperature logs show that each permeable zone contributes varying amounts of flow to the borehole. Flow (permeable) zones are associated with solution cavities and formational unconformities, the latter being correlatable over large regions (Brown and Reece, 1979).

Tibbals (1991) divided the FAS into two aquifers based on the vertical occurrence of two highly permeable zones. These two aquifers are the "Upper Floridan" and the "Lower Floridan" aquifers. The two are separated by a low permeability confining interval dubbed the "middle semi-confining unit". The term Lower Floridan Aquifer should not be confused with the basal portion of the Lower Floridan Aquifer typically referred to as the "boulder zone". Tibbals' nomenclature is adopted in describing the hydrogeology and in model conceptualization for this UECPA study.

The Upper Floridan Aquifer (UFA), in the UECPA, is approximately 500 feet thick and composed of two continuous, correlatable flow zones. These flow zones are penetrated by most wells in the UECPA. They oceur along unconformities between the Suwannee Formation and the Ocala Group, and the Ocala Group and the Avon Park Formation (Figures 8 and 9). These stratigraphic
unconformities are areally persistent and easily mapped over the study area (Brown and Reece, 1979). However, additional flow zones exist in the UFA that are much harder to correlate. These somewhat random zones are created by solutioning and dolomitization and are not stratigraphically controlled. The UFA was found to have from one to as many as eight separate flow zones associated with it.

The middle semi-confining unit was found at -900 feet NGVD in test well SLF- 73 located in central St. Lucie County ($\mathrm{C}-24 \&$ Shinn Road). It is approximately 200 feet thick and consists largely of chalky calcilutite interbedded with limestones and dolomites. Chalk and calcilutite are relatively impermeable and account for the confining nature of this unit at SLF-73. Few wells in the UECPA fully penetrate the middle semi-confining unit; therefore, data on its variability in thickness and lithology are limited. The confining unit is evident in deep well data (wells generally deeper than 1,000 feet) in the study area.

The upper permeable portion of the Lower Floridan Aquifer (ULFA) was penetrated by deep wells drilled in the study area. It follows the same structural trend as the UFA and is found 200 to 400 feet below its base (Figure 10). The ULFA is 400 feet thick and occurs approximately $-1,100$ feet NGVD in well SLFF-73, central St. Lucie County. Hydraulic testing of this zone was conducted at three sites in St. Lucie and Okeechobee counties. One of these tests was conducted for the SFWMD by an engineering firm (CH2M Hill, 1989); a second test was conducted by the SFWMD (unpublished C-24, St. Lucie County APT Test at SLF 73) and a third test was conducted by Ebasco for Florida Power and Light (1990). The well names respectively are OKEEASR-DEEP, SLF73, LFM-1. The first two aquifer performance tests (APT"s) listed above were performed by the SFWMD to determine the ability of the Lower Floridan interval to store water. The technology of injecting and storing fresh water in an aquifer for future recovery is commonly referred to as Aquifer Storage and Recovery (ASR). This portion of the Lower Floridan was determined to have good potential as an ASR target horizon due to its capacity to receive large volumes of injected water pumped from surface water bodies. This capacity is due to its high porosity and permeability.

The ULFA is traceable throughout the study area. Sources of available data include the two ASR sites mentioned above (CH2M Hill, 1989, SLF-73), two Florida Power and Light cooling water supply wells near Indiantown (Ebasco, 1990), as well as lithologic and geophysical logs from injection wells.

FIGURE 7: Top of the Floridan Aquifer System

FIGURE 8: $\begin{aligned} & \text { Depth to the Unconformity Between the Suwannee Formation and } \\ & \text { the Ocala Group }\end{aligned}$

FIGURE 9: Depth to the Unconformity Between the Ocala Group and the
Avon Park Formation

FIGURE 10: Top of Lower Floridan Aquifer Producing Zone 1

Data collection associated with the construction of injection wells typically does not provide detailed data for this portion of the aquifer; the target (the Boulder Zone) is approximately 1,500 feet deeper. However, in most cases, open hole geophysical logs are run before casing is set, and flowmeter and temperature logs from injection wells demonstrate the persistence of the ULFA in the study area.

Borehole geophysical and drill stem tests performed at ASR sites indicate the permeability is cavernous in nature. The cavities occur in two distinct places within the upper 400 feet of the ULFA, separated by an interval of low permeability. The top of the upper and lower cavity systems are found at $-1,100$ feet NGVD and $-1,400$ feet NGVD, respectively, at well SLF-73. For ease of reference, hereafter these zones are referred to as the Lower Floridan Aquifer permeable zone 1 (LFAPZ1) and the Lower Floridan Aquifer permeable zone 2 (LFAPZ2) in descending order (refer to Figure 14). Water samples were collected from the LFAPZ1 and the LFAPZ2 intervals using drill stem packers in well SLF-73 and were analyzed for several parameters including, total dissolved solids (TDS) and chlorides. Water samples also were collected from the confining unit between the two intervals and analyzed for TDS and chlorides. The laboratory analyses of the samples collected indicate that water quality is significantly different in each of the permeable zones. Dual packer tests and geophysical logs run in the 250 foot thick interval between flow zones demonstrate its confining nature. Measured heads in LFAPZ1 and LFAPZ2 were nearly the same (approximately 39 feet above NGVD).

Below the ULFA, water quality deteriorates rapidly with depth. An extremely thick confining interval of dense limestones and dolomites extends approximately 1,500 feet below the ULFA. The thickness and lack of porosity in these confining beds effectively preclude water movement.

Underneath the thick confining interval below the ULFA is a highly permeable interval known informally as the Boulder Zone. The Boulder Zone is an extremely permeable, cavernous section at the base of the lower FAS. Its unofficial name was coined from drillers who describe it as drilling a layer of loose, boulder size rocks. It does not significantly affect the Floridan Aquifer System (Tibbals, 1991), because it is hydraulically separated from it. The water levels generally fall below ground level, considerably lower than levels in the Floridan Aquifer System which rise on average 15 feet above ground level. The Boulder Zone is important in south Florida only from the perspective of disposing wastewater through injection wells. Injection wells are receptacles for secondarily treated wastewater and industrial wastes and are located throughout most of southeast Florida (Figure 11). Stratigraphically, the Boulder Zone is in the Oldsmar Formation, which represents the oldest Eocene Age sediments in the section. It is approximately 3,100 to 4,100 feet deep in the UECPA (Miller, 1982b).

FIGURE 11. Location of Class I Injection Facilities in Florida (Adapted from DER)

MODEL DESCRIPTION

INTRODUCTION

The U.S. Geological Survey modular three-dimensional finite difference ground water flow model code (McDonald and Harbaugh, 1988), commonly known as MODFLOW was used in this study. This code was selected for the following reasons:

1. It is available in the public domain.
2. It is compatible with most computers with only minor modifications.
3. The modular structure and excellent documentation allow easy modification and the addition of new modules for specialty applications.
4. MODFLOW allows good flexibility of data file structure and management. This facilitates the utilization of and interaction with other software for data manipulation.
5. The ability to record cell-by-cell flow terms feature of the code can be used to:
A. Evaluate in detail, flow and head changes associated with various withdrawal scenarios, and
B. Generate boundary conditions for higher-resolution models within the regional flow model.
The MODFLOW code contains modules which simulate recharge, evapotranspiration, rivers, drains, wells, and other sources and sinks of water external to the model. The modules utilized for this model are shown in Tuble 1. Three iterative solution schemes are available for simulating flow problems: slice successive over relaxation (SSOR), strongly implicit procedure (SIP), and the preconditioned conjugate gradient (PCG) method (Kuiper, 1987). SSOR is the better solution method for some strongly layered conditions. However, it is not as direct as SIP; therefore, it requires more time to arrive at a solution. SIP was used for this model application with favorable results.

DISCRETIZATION

Discretization is the process of breaking a continuous section into a set of discrete elements or cells by use of a grid to represent the system numerically. The study area was discretized into a horizontal grid of 54 rows and 53 columns. The cells in the grid are equidimensional and measure one
mile (5,280 feet) a side. The origin of the model grid was set to correspond as closely as possible with the government survey grid, with each model cell representing approximately one section of land (Figure 12). Variations in the survey grid made this somewhat difficult, especially in Okeechobee County, but overall the fit was good.

MODFLOW offers two options for vertical discretization. In a fully three-dimensional model, the confining zones are represented in the model as individual layers. Values of transmissivity, storage, and vertical hydraulic conductivity for the confining zone are required for this approach. A fully three-dimensional model would more accurately simulate flow conditions where horizontal flow in the confining zone is an important part of the flow regime. In a quasi-three-dimensional model, the confining zones are not represented as individual layers, but as vertical conductance terms (Vcont) for beds separating the model layers representing aquifers. Within the study area, the values of hydraulic conductivity exhibited by the aquifers are several orders of magnitude greater than those in the confining zones. Therefore, it can be assumed that on the regional scale of the model flow in the aquifers is primarily horizontal, and flow across the confining zones is primarily vertical, and the quasi-three-dimensional approach is a good approximation of the ground water flow regime in the UECPA.

The UEC FAS model contains four layers (Figure 13). Layer 1 represents the Surficial Aquifer System, layer 2 the UFA, layer 3 and 4 represent LFAPZ1 and LFAPZ2, respectively. A more thorough breakdown including brief layer description follows.
Layer 1: Surficial Aquifer System (SAS). The interval between ground level and the top of the Hawthorn Group is approximately $90-240$ feet in depth and composed of fine to medium sands, shell, limestone, sandstone, silt and clays. Lithology alternates in composition with depth and is lumped together as one unconfined layer.
Layer 2: Upper Floridan Aquifer (UFA). The UFA includes a series of flow zones associated with solution cavities and erosional surfaces. The UFA, despite its multiple flow zones, was simulated as one model layer rather than multiple layers for three reasons: 1) the vast majority of permitted irrigation wells completed into the Upper Floridan Aquifer

TABLE 1. MODFLOW PACKAGES USED IN THE UECPA MODEL

MODFLOW PACKAGE	FUNCTION	USE IN MODEL
BASIC	Model Administration	Used
BLOCK CENTERED FLOW	Computation of conductance and storage components of finite-difference equations.	Used
WELL	Simulates a source/sink to the aquifer that is not affected by heads in the aquifer.	Used to represent discharge from irrigation and public water supply water use.
GENERAL HEAD BOUNDARY	Simulates a source/sink of water providing rechargel discharge to the aquifer at a rate proportional to the head difference between the source/sink and the aquifer.	Used along all model boundaries in layers 2 and 3.
STRONGLY IMPLICIT PROCEDURE (SIP)	Solves the model's finite difference equations using the Strongly Implicit Procedure.	Used
OBSERVATION NODES	Generates a file of computed water levels for selected model cells.	Used to generate comparative hydrographs and calibration agreement.

FIGURE 13: Hydrogeologic Units and Corresponding Model Layers
penetrate all or most of the flow zones mentioned above so that withdrawals are from a composite of zones, 2) monitor wells used to calibrate the model are open to multiple zones within the Upper Floridan, making calibration of multiple layers impossible and 3) previous model work by the U. S. Geological Survey discretized the Floridan in East Central Florida in the same manner (Tibbals, 1991).

Geophysical and lithological data abound for the Upper Floridan, because the vast majority of water users in the area complete wells into this portion of the aquifer. There are much less data available for the Lower Floridan Aquifer and the middle semi-confining unit.

The middle semi-confining unit separates the UFA from the LFAPZ1. It is approximately 200-400 feet thick and leaky. The hydraulic connection between the Upper and Lower Floridan Aquifers has been tested via aquifer performance tests in three District-sponsored studies within the modeled area (Wedderburn \& Knapp, 1981; CH2M Hill, 1989; SLF-73, SFWMD unpublished APT data). Leakance values obtained from these tests are very similar and average 0.04/day. With few exceptions, this leakance value was employed throughout the modeled area.

Layer 3 and 4: LFAPZ1 and LFAPZ2, respectively. The portion of the Lower Floridan Aquifer reflected by these layers is approximately $-1,000$ to $-1,500$ feet NGVD, and 500 feet thick. It is composed of limestones, dolomitic limestones, and dolomites of Eocene age. The entire Lower Floridan Aquifer is 2,000 feet thick in the study area and extends vertically to the top of the Cedar Keys formation (3,000 feet deep). The model conceptualization includes only the upper 500-foot portion of the Lower Floridan, the base of which is commonly found just above the $10,000 \mathrm{mg} / \mathrm{l}$ TDS water quality demarcation. An erosional surface exists at the contact between the middle confining interval and the top of the Lower Floridan Aquifer. The surface is considered the top of the Lake City Limestone as described by Applin and Applin (1944). It is easily recognized in borehole geophysical logs by its relatively high electrical resistance and is persistent throughout the study area. It marks the top of layer 3 in the model. In recent writings, the USGS has chosen to meld the former Lake City limestone with the Avon Park formation.

Recent drill stem packer tests (SFWMD, unpublished 1991) indicate the top 500 - foot portion of the Lower Floridan contains at least two separate flow zones hydraulically separated by a semiconfining interval composed of homogeneous dolomitic limestones. These two flow systems,

LFAPZ1 and LFAPZ2, are conceptualized in the model as layers 3 and 4, respectively.

BOUNDARY CONDITIONS

The function of boundaries is to impose the effects of the external regional flow system on the modeled area. Several types of boundary conditions are available in MODFLOW. Prescribed flux, specified or constant head and no-flow boundaries were used in this model. Specified head boundaries are those where the head at the boundary remains constant for the model duration. Prescribed flux is used to simulate boundary head changes with time. No-flow boundaries are used where the ground water flow regime is such that flow across a boundary is not expected to occur.

The general head boundary package was used to generate prescribed flux boundaries in layers two and three. According to MeDonald and Harbaugh (1988), a general head boundary consists of a water source outside the modeled area which supplies or removes water to a model cell at a rate proportional to the head difference between the source and the adjacent cell. The rate at which water is supplied to a cell is given by:

$$
\begin{equation*}
Q_{m}=C_{m}\left(H_{m}-h\right) \tag{I}
\end{equation*}
$$

where
Q_{m} is the flow rate to or from the cell from boundary m ($\mathrm{fl} 3 /$ day)
C_{m} is the constant of proportionality for boundary m (ft3/day)
H_{m} is the average head at the source boundary m (ft), and
h is the average head in the cell (ft)
The constant of proportionality for boundary m defined herein as the horizontal conductance, C_{m}, ($\mathrm{ft} 2 /$ day) was calculated using equation 2 :

$$
\begin{equation*}
C_{m}=K_{h} b W / F_{c} L \tag{2}
\end{equation*}
$$

where
K_{h} is the horizontal hydraulic conductivity of the cell (ft /day);
b is the average thickness of the layer (ft);
W is the width of the cell (ft)
F_{c} is a dimensionless calibration factor for general head boundary representation;
L is the length of the assumed flow path line (ft)

A potential problem in the use of specified head boundaries is that the model may overestimate the
flow into the model if steep ground water gradients (such as those around a pumping well) approach the boundary. A breakdown of boundary cell types and geographic limits are discussed below.

Boundary Cell Types

Constant Head

Layer 1: All cells in layer 1 (SAS), are assigned specified (constant) heads. Layer 1 is effectively separated from layer 2 (FAS) by thick clays and silts of the Hawthorn confining zone. Since the SAS is independent of the FAS and because the scope of this project does not include calibrating the SAS, layer 1 heads were held constant to reduce unnecessary work in further simulating this unconfined system. For the purposes of this study, water levels for layer 1 were assumed to be approximately 5 feet lower than ground level elevation. Topographic levels were obtained from USGS quadrangle maps of the study area, heads for each cell were obtained by subtracting five feet from the topographic levels as referenced to mean sea level. The resultant heads were not permitted to fall below zero. The resultant levels are presented graphically in Appendix A, Figure A-3.

The Surficial Aquifer System was modeled independently in two separate studies currently in press (Adams, 1992, and Padgett, in press).

Laver 4: All cells in layer 4 (LFAPZ2), are assigned specified heads. Heads in this layer were found to be approximately equivalent to heads in layers 2 and 3, however, there were no temporal data available documenting head changes if they exist. Calibration of this layer was not possible due to the lack of head data. Water levels in the Upper Floridan Aquifer (layer 2) fluctuate seasonally in response to stresses induced by pumping. However, since there were no significant well withdrawals from the Lower Floridan Aquifer (layers 3 and 4) and because there is over 500 feet of confinement between layers 2 and 4 it was assurned that fluctuations in layer 4 heads were minimal. Based on those assumptions, all cells in layer 4 were simulated as constant head. The specified head value for each boundary cell in layer 4 was set equal to the boundary cell heads in layer 2 observed in March, 1990.

Head Dependent Flux Boundary

Lavers 2 and 3: Potentiometric data have been gathered monthly in the Upper Floridan Aquifer (layer 2) corresponding to each stress period in the model simulation and were used to develop a general head package. Figure 14 shows the type cells comprising both layers 2 and 3. Potentiometric
maps indicate a small change in flux with time across the boundaries, justifying the need for a specified flux boundary. The water levels in the LFAPZ1 (layer 3) are influenced by and nearly equal to those in the UFA (layer 2) as evidenced by hydrographs in wells completed into these zones. Therefore, it was assumed the heads at all boundaries in layers 2 and 3 were equal. These head values were determined for each cell of all boundaries by interpolating existing monthly UFA (layer 2) water level data.

Conductance terms are required input for specified flux cells. Conductance values are initially based on the length, width, layer thickness, and hydraulic conductivity of the boundary cell and adjacent variable head cell. The physical basis for conductance between two adjacent cells was previously discussed and is expressed by equation 2 in the Boundary Conditions section. Equation 2 simplifies to $\mathrm{C}=\mathrm{T}$ when the following assumptions and conditions are met:
$\mathrm{L}=\mathrm{W}$; given for equidimensional cells
$\mathrm{K}_{\mathrm{h}}{ }^{*} \mathrm{~b}=\mathrm{T}$; given
$\mathrm{F}_{\mathrm{c}}=1.0$; default calibration factor
In general, however, it should be recognized that formulation of a single conductance term to account for a three-dimensional flow process is inherently an empirical exercise, and that adjustment during calibration is almost always required (McDonald and Harbaugh, 1988). In order to better simulate a constant head boundary around the active edges of the model and to best calibrate the transient model, the calibration factor Fc , as shown in equation 2, was set to 0.1 . Using the assumptions given above for values of L and T, and setting $F c$ equal to 0.1 , the solution to equation 2 is $\mathrm{C}=10 \mathrm{~T}$. Therefore, the conductance value for all boundary cells was set equal to ten times the cell's transmissivity.

Increasing the conductance term caused the prescribed flux boundary cells to function as prescribed head cells. Prescribed head cells differ from constant head cells in that the head values can change between stress periods. The setting of $\mathrm{Fc}=$ 0.1 was considered the best adjustment for two reasons:

Monitor wells on the boundaries calibrated better.
2) Volumetric budget data reflect a significant influx of water into the system from the boundaries rather than exclusively from below through vertical leakance.

FIGURE 14: Cell Types, Layer 2 and Layer 3

Geographic Limits and Locations of Boundaries

Figure 15 shows the boundaries and type cells used for every layer in the model. Layer 1 (SAS) is composed entirely of constant head cells. The boundaries are also constant head cells and were set varying distances outside the study area. In a clockwise direction, the distance each boundary extends outside the study area were: north eight miles, east five miles from the coastline, south five miles, and west approximately five miles. Layers 2 and 3 consist of general head boundaries which extend outside the study area the same distance as layer 1 in all directions except the east. This eastern boundary was extended five miles east of the barrier island toward the Atlantic Ocean. Layer 4, like layer 1 , is composed of constant head cells, its boundaries are located in the same place as layers 2 and 3 .

In all layers, the north boundary was set eight miles (cells) into Indian River County in order to include the large withdrawals from the UFA north of the study area political boundary (St. Lucie-Indian River County Line). Dense citrus groves irrigate with Floridan Aquifer System water from more than 500 wells in this northern eight miles of the model area. Utilities in southern Indian River County operate R.O. plants which together withdrew approximately 70 million gallons in March, 1990. The combined agricultural and public water supply stresses alter the flow system in the study area and are, therefore, necessarily included in the simulation.

Layers 2 and 3 are composed of active cells and are represented at the boundaries by general head cells (head dependent flux). The placement of the boundaries for these two layers is identical. Layer 2 (the UFA) and layer 3 (the LFAPZ1) are confined and occur -400 to $-1,000$ feet NGVD and -600 to $-1,300$ feet NGVD respectively near the coast. These layers are not hydraulically connected with the ocean at the east model boundary. The FAS outcrops ten to twenty miles east of the coast in the Straits of Florida at a depth of approximately 900 feet below sea level (Figure 16). The boundary was placed five miles east of the coast to avoid boundary effects within the study area. For this modeled system, five miles is an acceptable buffer area separating an area of interest from a boundary (Richard Bower, verbal communication, 1989).

The remaining south and west model boundaries were set a minimum of five miles (cells) outside the study area to avoid boundary effects as explained above.

HYDRAULIC CHARACTERISTICS

Transmissivity

Layer 1

MODFLOW requires input of hydraulic conductivity values for unconfined layers. However, as discussed previously, all cells in layer 1 are the prescribed head (constant head) type. This designation causes one value of head for each cell to be maintained throughout the simulation, thus heads are not calculated for cells in this layer. Therefore, aquifer parameter values provided, with the exception of starting head and Vcont values, are irrelevant to the model run.

Layer 1 is specified as unconfined in the model. MODFLOW calculates the transmissivity of unconfined aquifers by multiplying the userspecified hydraulic conductivity by the saturated thickness of the aquifer. Initial saturated thickness is calculated from the starting head and aquifer bottom data, both of which are required input for an unconfined aquifer.

A hydraulic conductivity of $50 \mathrm{ft} /$ day was applied regionally for layer 1 representing the SAS. This value represents an approximate average of values obtained in APT tests in the area (Padgett, Adams, verbal communications). Elevation at the layer bottom was identified using borehole geophysical logs and available lithological information (Appendix A-1). A matrix of values was obtained by applying a kriging interpolation technique to these data points.

Layer 2

Layer 2 (UFA) is specified as confined in the model. In a confined system, the water level does not usually fall below the top of the aquifer, so the transmissivity remains constant since the aquifer remains completely saturated. Therefore, a direct value for transmissivity is the required input rather than hydraulic conductivity and thickness.

Transmissivity values were obtained from several sources:

Bower (1988) specific capacity regression curve methodology. A new, but similar regression curve was generated for this study.
Recent consultant reports.
Indian River Hydrogeology publication; USGS (1988).

Results of a recent drilling and testing project conducted by the SFWMD on C- 24 canal (SLF73), St. Lucie County.

FIGURE 15: Model Boundary Conceptualization, Layers 1 through 4

[^0]Most transmissivity values were obtained using the same procedure originally outlined by Trost (unpublished report, 1985) and later adopted by Bower (1988). Here, specific capacity values are related to transmissivity by using a regression analysis on 19 values of corrected specific capacity and associated values of transmissivity. The relationship is described in the equation:

$$
\begin{equation*}
\log _{10}\left(T_{e}\right)=4.056+0.816\left(\log _{10}\left(S_{c c}\right)\right) \tag{3}
\end{equation*}
$$

where
$\mathrm{T}_{\mathrm{e}}=$ estimated transmissivity value (gpd/ft)
$\mathrm{S}_{\mathrm{cc}}=$ corrected specific capacity value (gpm/ft)
The correlation coefficient, r, determined in the regression analysis was 0.83 (Bower, 1988).

For this study, a new regression curve was generated (Figure 19) using the same data originally used by Trost (Brown, 1980) with minor modifications. When generating the regression curve, three new data points were incorporated into the analysis. The transmissivity and specific capacity data added are denoted in Tables 2 and 3. Where possible, the raw data from the aquifer performance tests were analyzed by the author to determine aquifer parameters independently. The new regression curve is presented in Figure 17. The new correlation coefficient calculated was 0.73 which indicates a statistically high reliability for the linear relationship established. Specific capacity data for 56 wells in the UECPA then were used to predict transmissivity for those wells. The locations of all transmissivity values from sources listed above are shown in Figure 18. Their values are cross referenced to Table 2. These values were regionalized using a kriging interpolation technique to create an array. A regional map of transmissivity for layer 2 (UFAS) used in this model is presented in Figure 19.

Transmissivity was altered to $670 \mathrm{ft}^{2 /} / \mathrm{day}$ ($5,000 \mathrm{gpd} / \mathrm{ft}$) in grid cells east of a structural feature indicative of faulting or downwarping. A trace of this feature follows the Intracoastal Waterway from Vero Beach to north Martin County, where it veers east toward the ocean (Figure 20). Hydraulic discontinuity is suspected along this line. For ease of reference, the term "fault" is applied loosely in describing the hydraulic characters associated with this structural and hydrogeologic anomaly. The emphasis here is not the cause of the feature, but the effects it has on the hydrogeology of the area. Previous works by Lichtler (1960), Law Engineering (1975), Mooney (1980), and Armstrong (1980) describe and discuss its nature in detail.

Permeability contrasts are observed between FAS wells on either side of the fault. East of the fault, wells have lower yield and drastically reduced permeabitity than wells on the west side. The model's sensitivity to transmissivity near the fault trace has a limited effect on modeled water levels in cells on either side of the fault. The value applied regionally to the downthrown (eastern) portion of the fault was estimated based on well yields and APT's from wells drilled in the FAS at Brynn Mawr Boy's Club and Joe's Point. Both wells indicate very low permeability in the UFAS. Hydrographs of observation wells SLF-46 and SLF-47 on the east (downthrown) side show considerably more drawdown than would be expected if transmissivity were higher. The geographic location and placement of the fault trace was based on the following:

1) the assumption that the wells discussed above with anomalously low permeability in the FAS are located east of the fault line,
2) study of cores in the Martin County area by Armstrong (1980), and
3) a thorough analysis of the available geophysical logs along both sides of the fault.

Layers 3 and 4

Figure 21 shows the locations of all wells in the modeled area where aquifer parameters are a vailable for layers 3 and 4. Well construction and aquifer parameters are listed in Table 3 along with the model layers penetrated by each well.

Only three composite (layers 3 and 4) transmissivity values exist for these layers: the Lake Okeechobee ASR project ($535,000 \mathrm{ft} 2 / \mathrm{day}$), the C-24 canal Floridan drilling project ($100,000 \mathrm{ft} 2 / \mathrm{day}$ (tentative)) and the Florida Power \& Light study near Indiantown ($334,000 \mathrm{ft} 2 / \mathrm{day}$, Ebasco Envir., 1990). It was conservatively assumed that these transmissivity values may be higher than the regional value, so a composite estimate of 66,845 $\mathrm{ft}^{2} /$ day was used. The $66,845 \mathrm{ft} 2 /$ day ($500,000 \mathrm{gpd} / \mathrm{ft}$) value is divided equally between layer 3 (LFAPZ1), and layer 4 (LFAPZ2) and applied regionally for every cell in both layers. The model's sensitivity to changes in transmissivity was analyzed for layers 3 and 4; it was found to be minimal.

Specific Yield

Specific yield of the SAS (layer 1) was set at 0.2 , which represents the average value of the sediments that make up the aquifer (Fetter, 1980). Since the layer is comprised of cells assigned constant heads, the value given is irrelevant but necessary to input.

FIGURE 17: Modified Regression Curve Used to Calculate Transmissivity using Specific Capacity Data

FIGURE 18: Location of Wells with Transmissivity and Specific Capacity
TABLE 2: LAYER 2 (Upper Floridan Aquifer) AQUIFER PERFORMANCE TEST DATA USED IN MODEL

$\begin{gathered} \text { MAP } \\ \# \end{gathered}$	WELL NAME	STATE PLANE COORDINATES (FT)			CASING DEPTH (Feet)	TRANS MISSI- VITY (gpd/ft)	ANALYSIS METHOD	STORA. TIVITY (E-4/D)	SOURCE
		X	Y						
1	MF-6*	635487	1027110	1052	400	104900	SR		BROWN, 80-1
2	MF-9*	673410	1030384	880	342	104300	SR		BROWN, 80-1
3	MF-23 ${ }^{\text {* }}$	642188	996134	1119	456	73500	SR		BROWN, 80-1
4	OKF.2*	593433	1166945	666	218	153400	SR		BROWN, 80-1
5	OKF-5*	562688	1083782	1181	440	341600	SR		BROWN, 80-1
6	OKF-7*	569511	1102271	963	412	27200	SR		BROWN, 80-1
7	OKF-13*	584276	1155313	1200	600	556000	SR		BROWN, 80-1
8	SLF-4*	667351	1141435	993	482	461700	SR		BROWN, 80-1
9	SLF-9*	632615	1131915	1058	256	531526	SR		BROWN, 80-1
10	SLF-15*	639063	1090535			629200	MR	9.5	BROWN, 80-1
11	SLF-20*	604518	1127187	896	311	81495	SR		BROWN, 80.1
12	SLF-21*	693823	1124791	707	156	49000	SR		BROWN, 80-1
13	SLF-23*	672337	1049363	894	350	106700	SR		BROWN, 80-1
14	SLF-24*	686340	1125563			208500	MR	1.9	BROWN, 80-1
15	SLF-28*	734915	1093704	883	200	24600	SR		BROWN, 80-1

[^1]TABLE 2: LAYER 2 (Upper Floridan Aquifer) AQUIFER PERFORMANCE TEST DATA USED IN MODEL

$\begin{gathered} \text { MAP } \\ \# \end{gathered}$	WELL NAME	STATE PLANE COORDINATES (FT)		TOTAL DEPTH (Feet)	CASING DEPTH (Feet)	TRANS- MISSI- VITY (gpd/ft)	ANALYSIS METHOD	STORA. TIVITY (E-4/D)	SOURCE
		x	Y						
16	SLF-51*	662505	1092238	1000	600	107077	WALT	2.7	Wedderburn, 83-7
17	FBW-1**	709923	1130728	904	508	309000	SR		CH2M HILL, 1988
18	GM.IR37F	693717	1184269	745	N/A	50000	USGS	4	Schiner, 1988
19	SJ.IR40F	694252	1185282	704	N/A	56800	USGS	3.9	Schiner, 1988
20	SLF75	659259	1092023	700	480	210000	WALT	2.3	SFWMD, Unpublished
21	SLF'76	659259	1092023	860	790	110000	WALT	6.4	SFWMD, Unpublished
22	JUP-R.O.	781929	945861	1500	1073	36890	MR	8	Ceraghty \& Miller, 1989
23	LFM1-S**	642688	996090	1202	800	94000	WALT	7.0	Ebasco Environ., 1990
24	BRYN MAWR	722002	1162199	1730	640	253	SR		Geraghty \& Miller, 1990
25	OKF-26	556377	1081248	825	625	54945	SC		Trost, Unpublished
26	OKF-27	556377	1081248	725	477	51695	SC		Trost, Enpublished
27	FGS-IR202	573587	1190634	700	209	126082	SC		Trost, Lnpublished
28	FGS-IR243	695094	1197000	900	220	81666	SC		Trost, U" n published
29	FGS-IR245	697706	1178129	850	220	100083	SC		Trost, Unpublished
30	FGS-IR251	683885	1189474	700	220	123915	SC		Trost, Unpublished
31	FGS-IR253	675286	1180751	800	220	119582	SC		Trost, Unpublished
32	FGS-M-29	617612	1023723	1100	450	82750	SC		Trost, L'npublished
33	FGS-M-34	664652	984707	1100	450	372713	SC		Trost, Enpublished
34	FGS-M-88	759605	1040536	1180	700	75167	SC		Trost, Lnpublished
35	FGS-M-143	711689	1033897	958	272	139804	SC		Trost, Linpublished
36	FGS-M-146	640332	1010264	1155	432	217440	SC		Trost, Unpublished

TABLE 2: LAYER 2 (Upper Floridan Aquifer) AQUIFER PERFORMANCE TEST DATA USED IN MODEL

$\begin{gathered} \text { MAP } \\ \# \end{gathered}$	WELL NAME	STATE PlaNE COORDINATES(FT)		TOTAL DEPTH (Feet)	CASING DEPTH (Feet)	TRANS MISSI. VTTY (gpd/ft)	ANALYSIS METHOD	STORA- TIVITY (E-4/D)	SOUFCE
		X	Y						
37	FGS-M-168	641808	1001484	1080	500	183136	SC		Trost, Lnpublished
38	FGS-M-443	737038	1039085	951	275	70472	SC		Trost, Unpublished
39	FGS-M-740	733492	995745	990	474	278827	SC		Trost, Ünpublished
40	FGS-M-741	727512	998235	890	460	71917	SC		Trost, Unpublished
41	FGS-M. 742	729510	996530	1003	460	67945	SC		Trost, Unpublished
42	FGS-M-746	669159	1031881	510	360	103332	SC		Trost, Limpublished
43	FGS-M-748	726237	1032561	773	397	76611	SC		Trost, Lnpublished
44	FGS-M-759	676080	1039584	853	650	164719	SC		Trost, Lnpublished
45	FGS-M-901	655486	993658	1110	490	91777	SC		Trost, L-npublished
46	FGS-M-909	620247	1018480	1095	470	99360	SC		Trost, Unpublished
47	FGS-M-913	663174	992779	1100	500	93944	SC		Trost, Cnpublished
48	FGS-M-919	646966	974744	950	636	176636	SC		Trost, Unpublished
49	FGS-M-920	640226	988554	1033	488	74444	SC		Trost, Unpublished
50	FGS-M-921	638228	991072	1032	455	87444	SC		Trost, Lnpublished
51	FGS-M-923	664539	990361	1000	500	155692	SC		Trost, Unpublished
52	FGS-M-927	658408	1032645	792	450	109110	SC		Trost, Unpublished
53	FGS-STL44	680828	1169163	691	125	150637	SC		Trost, Unpublished
54	USGS-M-1	632877	1024072	NA	NA	104700	SC		Trost, Unpublished
55	USGS-M-2	696936	1002924	NA	NA	112200	SC		Trost, Unpublished
56	USGS-ST1.2	631458	1099699	NA	NA	464000	SC		Trost, Unpublished
57	L'SGS-STL3	631684	1085563	NA	NA	168000	SC		Trost, Lnpublished

TABLE 2: LAYER 2 (Upper Floridan Aquifer) AQUIFER PERFORMANCE TEST DATA USED IN MODEL

$\begin{gathered} \text { MAP } \\ \# \end{gathered}$	WELL NAME	STATE PLANE COORDINATES (FT)				TRANS MISSI. VITY (gpd/ft)	ANALYSIS METHOD		SOURCE
		X	Y						
58	IR7F	671990	1172961	940	NA	258319	SC		Schiner, 1988
59	1R12F	673781	1175190	900	NA	279472	SC		Schiner, 1988
60	1R20F	643803	1177697.		NA	323745	SC		Schiner, 1988
61	IR21F	716332	1178730	943	NA	40508	SC		Schiner, 1988
62	IR26F	606897	1181217	900	NA	284558	SC		Schiner, 1988
63	IR28F	660076	1181596	880	NA	734668	SC		Schiner, 1988
64	IR42F	660240	1185434	836	NA	366662	SC		Schiner, 1988
65	1R47F	669582	1189108	860	NA	149033	SC		Schiner, 1988
66	IR53F	625673	1190764		NA	507890	SC		Schiner, 1988
67	IR54F	682165	1191587	900	NA	344646	SC		Schiner, 1988
68	IR57F	699153	1194798	660	VA	94309	SC		Schiner, 1988
69	IR61F	622778	1196107	960	NA	539193	SC		Schiner, 1988
70	IR64F	616298	1197602	570	NA	238340	SC		Schiner, 1988
71	IR72F	689587	1201215	671	NA	55619	SC		Schiner, 1988
72	IR76F	683379	1201691	750	NA	61336	SC		Schiner, 1988
73	IR77F	674565	1201853	746	NA	86492	SC		Schiner, 1988
74	IR80F	649290	1202357		NA	165091	SC		Schiner, 1988
75	IR84F	573834	1202752		NA	111344	SC		Schiner, 1988
76	IR95F	570407	1208199	960	NA	237501	SC		Schiner, 1988
77	SLF27	657833	1111002	900	300	229062	SC		Trost, Linpublished
78	SLF49	662479	1121219	NA	376	111364	SC		Trost, Unpublished

TABLE 2: LAYER 2 (Upper Floridan Aquifer) AQUIFER PERFORMANCE TEST DATA USED IN MODEL

$\begin{gathered} \text { MAP } \\ \# \end{gathered}$	WELL NAME	STATE PLANE COORDINATES (FT)		total DEPTH (Feet)	CASING DEPTH (Feet)	TRANS. Missi. vity (gpd/f)	ANALYSIS METHOD	STORA. TIVITY (E-4/D)	SOURCE
		x	γ						
79	SLF61	682099	1066875	695	350	61119	SC		Trost, Unpublished
80	SLF62	672318	1075011	935	480	83132	SC		Trost, Unpublished
81	SLF67	611696	1105597	NA	300	107007	SC		Trost, Unpublished
82	SLF69	680591	1101403	NA	300	218429	SC		Trost, Unpublished
83	MF2	661770	1027509	NA	300	94933	SC		Trost, Unpublished
84	IR370	643803	1177697	NA	300	260087	SC		Trost, Unpublished

FIGURE 19: Transmissivity of the Upper Floridan Aquifer

FIGURE 20: \quad Location of Structural Feature Associated with Hydraulic Discontinuity, Transmissivity and Vertical Conductance Variance Used in Model

FIGURE 21: Location of Wells with Transmissivity Data, Layer 3 and Layer 4
TABLE 3: LAYER 2, $3 \& 4$ (FAS) - AQUIFER PERFORMANCE TEST DATA USED IN MODEL

WELL NAME	state plane COORDINATES(FT)		total DEPTH (Feet)	CASING DEPTH (Feet)	TRANS. MISSI. VITY (gpd/ft)	anatysis METHOD	STORA- TIVITY (E-4D)	Leak- ANCE (Day ${ }^{-1)}$	source	MODEL LAYERS pene. TRATED
	x	Y								
OKEASR-DEE	569590	1056025	1700	1268	4,380,000	HANJ	12.5	$\begin{gathered} .01- \\ .001 \end{gathered}$	CH2M HILL, 1989	3, 4
LFM-1DEEP**	642688	996090	1648	800	2,500,000	HANJ	7	. 0022	EBASCO ENVIR, 1990	3,4
SL.F-13*	625457	1115937	1238	344	553,771	SR			BROWN, 80-1	2,3
SLF-14*	639149	1091949	1286	318	412,800	SR			BROWN, 80-1	2,3
SLF-17*	639073	1087809	1286	320	166,600	SR			BROWN, 80-1	2,3
BRYN MAWR	722002	1162199	1730	640	253	SR			CARTER ASSOC., 1990	2,3
FGS-M-145	659636	995794	1485	425	223,579	SC			TROST, UNPUBLISHED	2,3,4
SLF73	659259	1092023	1550	1080	350,000	WALT	2.6	0.044	SFWMD, UNPUBLISHED	3, 4
SAILPT	770566	1035356	1525	630	12,700	HANJ	5		GEE \& JENSON, 1977	2,3

[^2]
Storage

Storage coefficients for the UFA (layer 2) were obtained from aquifer tests in the area, are limited in number, and range between 0.00019 and 0.00095 (Table 2). Based on these available data and a review of recent model literature (Bower, 1988), a uniform storage coefficient of 0.0004 was assigned to all of the active model cells in layer 2. Very few storage coefficients for layers 3 and 4 are available. Those existing range from 0.0012 (CH2M Hill, ASR, 1989) to 0.00026 (SFWMD). A sensitivity analysis of this parameter shows very little change in water levels with large changes to the storage coefficient. Since the lithologic and permeability characteristics of this lower Floridan Aquifer section are very similar to those in the Upper Floridan Aquifer section, the same value of 0.0004 was used for storage coefficient for all cells in layers 3 and 4.

Vertical Conductance

Base Laver 1: (Upper Confining Unit)

MODFLOW uses the term Vcont to define the degree of confinement between layers. It is employed in the quasi-three-dimensional modeling approach discussed in the previous section. It is defined for each cell and is the average vertical hydraulic conductivity of the confining unit divided by the thickness of that confining unit. The vertical hydraulic conductivity of the upper confining unit (in this case the Hawthorn) was estimated based on the lithologic composition of the Hawthorn (Driscoll, 1986). A standard vertical hydraulic conductivity of $3.1 \times 10^{-4} \mathrm{ft} /$ day was applied regionally throughout the model. The upper confining unit ranges from 250 to 800 feet thick in the study area; thickness was estimated using lithologic and geophysical data compiled for this project (see Appendix A). Values of thickness for each cell were determined using a kriging interpolation technique. The range of leakance values used was from 7.7×10^{-2} to 3.8×10^{-7} per day.

Base Layer 2: (Middle Semi-Confining Unit)

Three values of leakance were obtained in the study area via aquifer performance tests. The APT leakance results are similar and far enough apart areally to justify a regional assumption of leakance. The values range between $0.05 /$ day to $0.001 / \mathrm{day}$. Most of the more reliable data report leakance values of $0.04 / \mathrm{day}$ to $0.05 / \mathrm{day}$. Paucity of data for both vertical hydraulic conductivity and thickness of this confining unit necessitated the broad application of a vcont (leakance) value of $0.04 /$ day over the entire model area with the exception of the coastal area.

Vcont was reduced three orders of magnitude from the St. Lucie-Indian River County border south to Martin County, and east of the Intracoastal Waterway along the structural anomaly shown in Figure 20. Structural and lithologic data support a plausible fault or downwarping hinged on this boundary. Hydrographs of the two a vailable monitor wells on the St. Lucie barrier island suggest very low overall leakage rates and are successfully brought into calibration using this method.

Base Layer 3:

No direct Vcont (leakance) data is available for the base of layer 3. One value was used regionally determined through sensitivity analysis. The thickness of this confining interval is approximately 250 feet at SLF- 74 and the Okeechobee ASR well. The value of Vcont applied regionally is $0.00032 /$ day. The approximate value of vertical hydraulic conductivity for the above wells where thickness is defined at 250 feet is 0.08 fuday.

Base Layer 4:

MODFLOW does not require a Vcont term for the base of the lowest layer. It is implicit that there is no flow at this boundary.

GROUND WATER USE

Upper Floridan Aquifer water use estimates for the model were determined using data from individual water use permits issued by the District coupled with the results of a comprehensive questionnaire issued to permit holders in the UECPA. Individual water use permits are required by the District if the average daily water withdrawals equals or exceeds 100,000 gallons per day (gpd). The District also issues general water use permits to all uses less than 100,000 gallons per day. The only exceptions are single family homes, duplexes, and water use strictly for fire-fighting (SFWMD, 1985). General water use permits were not included in the determination of water use estimates because few exist for the FAS. By far, the major use of water from the FAS is for agricultural purposes.

A modification to the MODFLOW code was made to enable the program to input three individual well package files. This modification was used to segregate into files three classifications of wells. The classifications used were: agricultural wells within the District boundaries, agricultural wells outside the boundaries and all wells with monthly pumping reports submitted to the SFWMD including public water supplies, agricultural and industrial wells. The wells are indexed in separate files by row and column, each line represents one well and is referenced by permit number.

Agricultural

Agricultural water use accounts for over 99 percent of the permitted FAS ground water use in the UECPA. Figure 22 shows the estimated agricultural water use for each cell in the model. Most agricultural enterprises are involved in citrus production. With a few exceptions, records of water withdrawn generally do not exist for agricultural uses. Therefore, agricultural water use was estimated.

Data on all agricultural water uses from individual water use permits were assembled into several spreadsheets organized by county (Appendix C). Information pertinent to calculating water withdrawals included permit number, well construction data, capacity (natural flow rate in gallons per minute), planar coordinates (location) of the wells, and status (e.g. is well currently existing or proposed). Data for wells in Indian River County were obtained from St. John's River Water Management District and compiled into separate spreadsheets. Other data in the water use spreadsheets include crop type, permitted annual allocation, soil type, irrigation efficiency, total irrigated acres, rain station code, etc. These additional permit data were included to provide flexibility in applying the traditional Blaney-Criddle method for estimating water withdrawals.

Water requirements of various crops generally is estimated by the District using a method described by the U.S. Soil Conservation Service (USDA, 1970). This method uses the modified Blaney-Criddle formula. Factors such as crop type, soil type, air temperature, daylight hours, effective rainfall, and irrigation system efficiency are used to estimate the irrigation requirements of various crops. This method is useful for estimating crop water needs but does nol address the source water for these needs. In the study area, surface water systems in the form of major canals and feeder ditches are the dominant
irrigation source. Unblended FAS water is highly mineralized and marginally tolerable to citrus.

The tolerance range of citrus trees to chloride levels in irrigation waters varies depending on the tree type (e.g. orange, grapefruit, tangerine, etc.) and the irrigation method. The leaves of the trees are more sensitive to saline irrigation water than their roots are; therefore, methods of irrigation like overhead spray require water with lower chloride concentrations than a method like drip or flood. The tolerance range for the average citrus tree type for three common irrigation methods employed in the UECPA are listed in Table 4 (Calvert, 1982). Chloride concentrations in waters from FAS wells range between 300 milligrams per liter (mg / l) to $3,000 \mathrm{mg} / 1$ and average $900 \mathrm{mg} / 1$ throughout the UECPA. It was found that in areas where surface water supply is available (close to major canals,etc.), existing FAS wells are only occasionally used during the normal growing season.

To address the FAS utilization issue, a questionnaire was developed and distributed to the majority of permit holders in the UECPA (Appendix F). Agricultural water withdrawals were estimated using the results of this questionnaire. They were distributed to 360 agricultural permit holders in the study area. A comprehensive series of questions about FAS water use was included in the survey. Among other things, the questions were designed to allow quantitative analysis of the water withdrawn for the 1989 to 1990 time period as well as "average year" patterns. Part of the questionnairc asked for the amount of time FAS wells were allowed to flow freely during each month of the calibration period (May 1989 to March 1991). Responses to 130 questionnaires, 36 percent of those delivered, were entered into a database software program (DBASE). The program was used to calculate the average hours Floridan aquifer wells were allowed to flow freely

Table 4. $\begin{aligned} & \text { Citrus Chloride Tolerance Levels for Common Irrigation Methods } \\ & \text { (Calvert, 1982) }\end{aligned}$

Irrigation Method

Overhead Sprinkler
Drip
Flood

Chloride Concentration
Tolerance Level (ppm)
800 to 1,000
1,500 to 2,000
$<2,000$

FIGURE 22: Estimated Agricultural Water Use for March 1990 Used in Steady State Model
during each month of the model simulation. The results are listed in Table 5.

The assumption made in the water use calculations was that the hours a well is open and flowing in any one month ($\mathrm{hrs} /$ month), multiplied by that well's capacity (gals $/ \mathrm{hr}$.), will equal the water volume withdrawn for that well in that month (gals/month). The capacity of each well was taken from the permits where available, or was estimated based on well diameter (Trost, unpublished). A program was developed to perform the above calculations for each permitted FAS well in the study area. The months of June 1990 through March 1991 were not included on the questionnaire; therefore, the previous years' monthly averages were used in the calculations. Fortunately, precipitation was very similar in these months for 1990 and 1991, so water use was likely very similar.

In cases where no questionnaire response was received for a specific permit, withdrawals were calculated using the average hours outlined above. For those permits where a response was received, the hours per month response was used directly to calculate withdrawals.

In some circumstances, agricultural pumpage reports are submitted to the District on a monthly basis (Appendix B). Those reports were updated using phone contacts and are represented in a separate model file. In all cases, each line (well) includes the permit number for reference. The agricultural pumpage reports and public water supply wells are combined into this file.

Public Water Supply Wells

FAS water is rarely used for public water supply due to its high chloride content. The exceptions are reverse osmosis (R.O.) water purifying facilities on Hutchinson Island, R.O. facilities in southern Indian River County, a Fort Pierce Utilities FAS.blending well, and Jupiter R.O. wells. Monthly pumpage from the above wells was obtained either from DER operating reports or verbally from utility operators (Appendix B). The locations of cells with public water supply wells and their total discharge in March 1990 is shown in Figure 23. In cases where there were multiple wells per facility, utility personnel were contacted to obtain a breakdown of water withdrawn per well. All verbal and written contacts were documented in spreadsheet form. The public water supply wells are represented in the same file as mentioned above.

Industrial Uses

One industrial water use of the FAS was found in the study area: Caulkins Fruit Processing Plant near Indiantown, Martin County. Water withdrawal volumes were obtained verbally from the plant operator. This well also appears in the same model file mentioned above.

TABLE 5: AVERAGE HOURS FLORIDAN AQUIFER SYSTEM AGRICULTURAL WELLS USED PER MONTH FROM 1990 SURVEY (HOURS LEFT FLOWING NATURALLY PER MONTH)

YEAR	MONTH	HOURS
1989	January	71
	February	84
	March	107
	April	132
	May	135
	June	59
	July	45
	August	37
	September	42
	October	51
	November	76
	December	100
1990	January	79
	February	83
	March	130
	April	158
	May	165

Note: Date of Questionnaire, May 1990.

FIGURE 23: Public Water Supply Use for March 1990 Used in Steady State Model

CALIBRATION

The UECPA model was calibrated to both steady state and transient conditions. Layer 2 is the only calibrated layer in this model; it represents the Upper Floridan Aquifer. Wells providing temporal head data in the lower layers were non-existent in the study area; therefore, calibration of those layers was not possible. Locations of observation wells used in the calibration process are shown in Figure 24. The calibration period was May 1989 through March 1991, an interval of 23 months. It was chosen to correspond with the period that monthly UFA water levels were collected by the District. UFA water levels have been collected semi-annually by the District since 1979 as part of a cooperative program with the USGS. During the period between September 1989 and Augusi 1991, the frequency of data collection was increased to monthly, and the number of wells on the monitor well network was increased to 54 specifically for this study. The last five months of the data collection period (April to August 1991) were not used in this model but may be incorporated into future versions. All monitor wells in the network were surveyed by District personnel. Each well's elevation, referenced to NGVD datum, was obtained and used for all head calculations in the model. A multi-year period was chosen so that the effect of annual variations in irrigation practices could be seen.

STEADY STATE CALIBRATION

Methods

Steady state is a theoretical condition which defines the aquifer system in a state of equilibrium. In other words, given the average water budget (inflows and outflows) of the aquifer and given enough time for water levels to stabilize, a definable water level will be attained. Heads computed by the steady state model should emulate that theoretical water level.

The theoretical steady state water level is not a physical property measurable in the field. Rather, it is based on an educated guess of what that equilibrium level should be. Measuring the degree of calibration of the steady state model, therefore, is not an exact science and is assessed by comparing how close the model comes to computing a hypothetical steady state water level based on speculative average budget conditions.

The goal was to simulate steady state water levels representing the average month in a year. Therefore, average month conditions were input into the model. Those conditions included well
withdrawals and boundary fluxes. Hydrographs of FAS wells in the study area demonstrate water level fluctuations ranging from as little as one foot to as high as eight feet between the ends of wet (September) and dry seasons (May). The larger fluctuations are found in areas of high well densities. The average observed water levels for the majority of UFA wells occur in the month of March. Therefore, March 1990 levels were assumed to approximate steady state levels under average annual conditions. March 1990 stresses and fluxes were implemented as inputs to the steady state model. The resultant computed heads were compared to March 1990 observed water levels. A well was considered calibrated if the difference between computed levels and March 1990 observed levels fell within the minimum to maximum annual water level range for that well. Figure 25 illustrates the difference between the simulated steady state levels and the March 1990 levels.

The steady state and transient models were calibrated interactively. Changes made to one were incorporated into the other. Initial steady state runs served to make the first adjustments to the model parameters. Transient calibration runs were then made and aquifer parameters as well as pumping estimates were refined. These refinements then were applied back into the steady state model. This ilerative process was repeated until both models were satisfactorily calibrated.

Results

Layer 2 (Upper Floridan Aquifer)

Figure 26 shows the simulated head distributions within layer 2 (Upper Floridan Aquifer) for March 1990 conditions. All wells fell within the calibration tolerance range. Meeting that criteria was somewhat difficult in one area of the model in particular, which extends from north central St. Lucie County north into south central Indian River County. This area was considered a problem because it displayed the largest difference between computed and March 1990 observed heads. The difference was between 5 to 8 feet and cari be seen in Figure 27. This area has a high density of FAS wells, which combined withdrew several million gallons per day in March. Observation wells in this area include SLF-3, SLF-70 and IR-312. Minimum and maximum annual water levels range 6.5, 6 , and 8 feet respectively in these wells. Satisfactory calibration was attained but just within the range

FIGURE 24: Location of Monitoring Wells Used to Verify Modeled Water Levels

FIGURE 25: $\begin{aligned} & \text { March } 1990 \text { Observed Minus Steady State Computed Water Levels, } \\ & \text { Layer } 2\end{aligned}$

FIGURE 26: Simulated Steady State Computed Water Levels, Layer 2

FIGURE 27: March 1990 Observed Water Levels Minus Simulated Steady State Water Levels, Layer 2 (Upper Floridan Aquifer)
defined. In all other model areas, the difference between computed and March levels was much closer and easily met the calibration criteria.

Figure 28 shows the direction and magnitude of simulated horizontal flow in the Upper Floridan Aquifer. Each arrow represents the direction and magnitude of flow from an individual cell. The horizontal flow arrows generally point toward areas of intensive ground water use. The largest and most numerous flow vectors are in west central and north central St. Lucie County. These two dense clusters point toward two areas of intense water use from the FAS. Large clusters of flow vectors are also seen in all the north central and western portions of Indian River County. Figure 29 is a representation of the vertical flow vectors between layer 1 and layer 2. Downward flow from layer 1 to layer 2 is seen in the Highlands area of Okeechobee County where water levels of the SAS are higher than the FAS because of the high ground level elevation. Upward flow is generally the rule since water levels are higher in the FAS than in the SAS over the rest of the study area. Figure 30 illustrates the simulated vertical flow vectors between layer 2 and layer 3 . It can be seen that most vectors are upward and the largest flow vectors are associated with areas of intense well discharges.

Figure 31 illustrates the volumetric budget in layer 2 for steady state conditions. Approximately 91.1% or 140 million gallons per day (MGD) of the total inflow to this layer is recharge from the LFAPZ1 (layer 3), 8.7% (13.4 MGD) is from the general head cells, and 0.2% (0.25 MGD) is from downward leakage from the Surficial Aquifer System (layer 1). The flow from the general head (specified flux) cells represents flow into the modeled area from Okeechobee and Indian River counties. Or the total outflows, 4.8% (7.4 MGD) is downward leakage to layer 3 (LFAPZ1), 4.5% (6.6 MGD) is upward leakance to the Surficial Aquifer (layer 1), $.01 \%$ (1.5 MGD) is to general head cells, 53.3% (81.8 MGD) is to agricultural wells in the UECPA, 27.2% (41.7 MGD) is to wells in Indian River County, 9.4% (14.5 MGD) is to all other wells whose pumpage is reported. Generally, water supply pumpage is balanced by upward leakage from lower parts of the FAS. Outflow to the general head cells represents horizontal flow out of the modeled area, mainly to northeastern Indian River County and to a limited degree to the ocean.

Laver 3 (Lower Floridan Aquifer Producing Zone 1)

Figure 32 shows the water levels within layer 3 (LFAPZ1) for March 1990 conditions, Layer 3 observed minus steady state computed heads is
shown in Figure 33; they range between 0 and 9 feet with the highest drawdowns in areas with intense agricultural water withdrawals from layer 2 (UFA). Figure 34 shows the magnitude and direction of simulated horizontal flow in layer 3 (LFAPZ1). It can be seen that the vectors are similar to those in layer 2. The larger clusters point in the direction of intensive water use from layer 2. Although there is negligible pumping from layer 3, water in layer 3 flows in response to pumping from layer 2 (the UFA). The vertical flow representing leakage between layers 3 and 4 can be seen in Figure 35. Most of the flow is upward providing recharge to layer 3 . Large upward flows are seen in areas of intensive withdrawals from layer 2.

The volumetric budget for layer 3 is illustrated in Figure 36. The majority of inflow, 82.8% (134.8 MGD) is upward leakance from the LFAPZ2, 12.7% (20.6 MGD) comes from general head cells, 4.5% (7.4 MGD) comes in from layer 2 (UFAS). The flow from the general head cells represent flow into the modeled area from Okeechqbee and Indian River counties. Total outflow consists of 85.9% (139.9 MGD) to upward leakage, 13.1% (21.3 MGD) to downward leakage, 0.01% (1.5 MGD) to general head cells. The outflow to general head cells represents flow out of the modeled area into northeastern Indian River County and partially to the ocean.

Figure 37 shows the combined volumelric budget for the entire model. Total inflow consists of 79.7% (4.12 billion gallons per day (BGD)) from constant head cells, 20.3% (1.0 BGD) from general head cells. Constant head sources are either layer 4 (LFAPZ2) or the north and west boundaries of layer 4. Total outflow consists of 16.6% (851.7 MGD) to constant head cells, 1.9% (100.1 MGD) to general head cells, 48.3% (2.5 BGD) to UECPA agricultural wells, 24.6% (1.3 BGD) to Indian River wells, 8.6% (446.4 MGD) to other reported well pumping including public water supplies. The outfow through the constant head cells represents movement out of the northeastern boundary of layer 4 (LFAPZ2) boundaries, layer 4 itself, and to a smaller extent layer 1 (SAS).

TRANSIENT CALIBRATION

Methods

The transient model differs from the steady state in that several time periods (stress periods) representing months are simulated. The model calculates heads for each stress period of the simulation based on defined boundary conditions and stresses for each month simulated in the model. The transient model comprised 23 stress periods

FIGURE 28: Simulated Steady State Horizontal Flow Vectors, Layer 2 (Upper Floridan Aquifer System)

FIGURE 29: Simulated Steady State Vertical Flow Vectors Between Layers 1 and 2

FIGURE 30: Simulated Steady State Vertical Flow Vectors Between Layers 2 and 3
(million gallons per day)

FIGURE 31: Volumetric Budget, Layer 2 (Upper Floridan Aquifer),

FIGURE 32: Simulated Steady State Water Levels , Layer 3

FIGURE 33: March 1990 Observed Minus Steady State Computed Heads, Layer 3

FIGURE 34: Simulated Steady State Horizontal Flow Vectors, Layer 3

FIGURE 35: $\begin{aligned} & \text { Simulated Steady State Vertical Flow Vectors Between } \\ & \text { Layers } 3 \text { and } 4\end{aligned}$

FIGURE 37: Volumetric Budget for Entire Model
representing 23 months. Each stress period contained five time steps. The number of time steps was found to have little effect on final computed head solutions.

Calibration is based on a good match between computed heads for each stress period and monthly water levels observed at monitor wells. Computed and observed heads cannot always match perfectly for reasons which will be addressed later. A tolerance range is typically defined for calibration criteria. In this case, the tolerance range for the average difference between modeled and observed heads averaged over the calibration period was ± 4 feet. This range was chosen based on previous studies where ranges from 4 to 5 feet were applied to deeper confined aquifer systems (Bower, 1990; Smith, 1990). The model was considered to be satisfactorily calibrated, within the tolerance range, to all 54 observation wells on the network. The range of observed versus simulated average head differences was between -2.0 and +2.7 feet (Figure 38).

The tolerance range for confined aquifers is generally higher than the range for unconfined for the following reasons:

1. In unconfined aquifers, small changes in water levels reffect potentially large impacts, particularly to wetlands, and
2. The aquifer parameters, especially storativity, of the deeper confined aquifers cause heads within these aquifers to fluctuate more in response to stress when compared to unconfined aquifers.
Comparative hydrographs for observed and simulated water levels were generated for those cells that correspond to the locations of monitor wells (Appendix E). These were used to aid in the interpretation of the numerous model runs. Where a month's data was not available, a value of 20.10 feet was assigned to fill in the data gap. This was necessary due to limitations in the program that generated the plot. Therefore, all 20.10 foot values on the comparison plots should be disregarded.

The agreement of a computed water level with its counterpart observed level can be affected by the following conditions:

1. MODFLOW simulates well withdrawals from a cell as a single stress located at the node, or center of the cell. In reality, the area represented by a cell may contain many pumping wells. This situation is common throughout the UECPA model, due to the large size of the cells. Combining all the well
withdrawals located within a cell and locating the total withdrawal at the center of the cell is not a completely accurate simulation. In addition, the computed head in a cell represents the average of all heads within the cell. In reality, the head will vary throughout the area represented by a cell in response to the actual stresses. In areas of higher ground water gradients, such as those caused by intensive well withdrawals, water levels throughout a cell can vary significantly from the average. If a cell contains both a monitor well and intensive well withdrawals, or a monitor well is located in a cell adjacent to a cell or cells containing intense well withdrawals, or if a monitor well is not located near the center of the corresponding cell, the agreement of simulated water levels with observed levels can be affected significantly. This situation is referred to as cell-wide averaging, and occurs at several locations in
the UECPA model.
2. The model was run using one month stress periods, and the simulated heads represent end of the month levels. Observed water levels were taken on various days throughout a given month. The discrepancy caused by this situation can be minimized by averaging the difference between observed and simulated heads over the calibration period when comparing the results.
Initially, the model was run with the input data sets as discussed in the Model Description section of this report. Modifications to these data sets necessary to achieve calibration are discussed in the following sections.

Layer 2 (UFA) is the only layer calibrated in this model so most changes were made to the parameters and pumping estimates of this layer. Layer 1 (Surficial Aquifer System) had no effect on layer 2 calibration because the layer 1 Vcont (leakance) term was extremely small. Confidence in layer 1 Vcont is relatively high since the thickness and impermeable nature of the Hawthorn conlining unit is well known. The SAS was modeled as a separate layer primarily to see the amount of recharge it received from the UFA. That volume was determined in the steady state run volumetric budget and is approximately 6 million gallons per day.

The adjustments to the model were made in three ways listed in order of importance:

1. Vertical conductance (Vcont) of layer 2 and layer 3

FIGURE 38: Average Observed Minus Transient Computed Heads, Layer 2 (Upper Floridan Aquifer)

- Refinements to water use estimates, and

3) Prescribed head levels in layer 4.

Each of these adjustments merit their own discussion and are documented in the following three subsections.

Vertical Conductance

Because layer 2 (UFA) is well confined and because the natural head gradient favors upward flow, very little water enters layer 2 from above. The only exception is in the high ground level elevation areas where the flow gradient is reversed. Most of the recharge sources typical for an unconfined system such as rivers, canals, and rainfall do not reach the UFA (layer 2) in the study area. Rather, the recharge source is either from below through upward vertical leakance or from the boundaries. It became clear early in the calibration process that most water taken from the UFA via wells is replaced with vertically migrating water from below the UFA.

The model was sensitive to vertical conductance (Vconl) adjustments to both layers 2 and 3. Relatively little is known about the degree of interconnection between the UFA (layer 2) and LFAPZ1 (layer 3). Less is known about the interconnection between the LFAPZ1 (layer 3) and LFAPZ2 (layer 4). Layer 2 and layer 3 vertical conductance was varied from $0.05 \mathrm{day}^{-1}$ to 0.00001 day ${ }^{-1}$, which represents the range reported in UFA (layer 2) aquifer performance tests. It was determined that calibration of layer 2 could be attained using many combinations of layer 2 Vcont and layer 3 Vcont. One of the two unknown Vcont variables had to be held constant and the other adjusted to proceed with calibration. Lacking any information on layer 3 Vcont and knowing the average layer 2 Vcont value obtained from aquifer performance tests, Vcont in layer 2 was uniformly set to .04/day in most of the cells in this layer. The cells not set to this value are east of the coastal fault.

UFA water levels fluctuate radically in monitor wells east of the fault in response to small volumes of withdrawn water. Relatively small volumes are used because agricultural enterprises are virtually non-existent east of the Intracoastal Waterway. Observed and computed heads best matched in barrier island monitor wells when a uniform Vcont value of 0.00004 day $^{-1}$ for layer 2 was used east of the fault. The positioning of this fault is discussed in the Transmissivity Section of this report. A large data gap exists in the FAS on the barrier island between monitor well SLF-46 and

SLF-47. Refinements to the model should be made here in the future if data becomes available.

After layer 2 Vcont was established, layer 3 Vcont was adjusted until computed and observed water levels in layer 2 best matched. The final uniform value of Vcont used for all cells in layer 3 was 0.00032 day $^{-1}$. This value was multiplied by the thickness of the confining zone to ensure that the corresponding values of vertical hydraulic conductivity remained reasonable. The range for vertical hydraulic conductivity was 0.064 to 0.16 ft/day, which is within the expected range for dolomitic limestone (Driscoll, 1986).

Refinements to Wells Package

Once the Vcont terms were specified, pumping estimates needed to be adjusted. The pumping estimates were adjusted up in some areas, down in others. The estimates were adjusted upward in all wells for the following months:

May 1989	$+30 \%$
June 1989	$+20 \%$
May 1990	$+34 \%$
June 1990	$+32 \%$
July 1990	$+5 \%$

This represents changes made to five out of 23 stress periods. Based on model results, actual UFA water use was higher than the average survey response reflected in these months. Water use estimates may have been low for the following reasons:

1) Withdrawals by non permitted users were not factored in to the estimates.
2) Since these were unusually dry years more water was used than the average permittee responding to the survey was aware of.
3) The estimates of use in these months were understated in the survey responses due to concerns about exceeding permitted allocations.
All well withdrawals in Indian River County were decreased by 30 percent. Thirty one percent of all water discharged to wells in the model was from cells in Indian River County. A regional cone of depression caused by these concentrated withdrawals for agricultural irrigation occurred in the south-central portion of the county. The initial estimates were decreased to bring both the steady state and transient models into calibration. Initial water use estimates may have been high because all survey responses were from permittees inside the

SFWMD boundaries and did not reflect Indian River County water use. It appears FAS wells may have been used less there than in the UECPA during the calibration period. The changes to cells in Indian River County do not directly impact model results within the UECPA; they merely alter the fluxes at the boundary of the UECPA. The impacts were considered minimal.

Decreases in water use estimates were made for all stress periods to four small areas in the model where initial estimates created unrealistically high cones of depression. The cells affected and percentage decrease are listed in Table 6 and plotted in Figure 39.

Cells in these four areas have the highest water withdrawals in the model. It is possible those withdrawals were overestimated by $20-30 \%$ due to decreased capacity of wells caused by lowered heads. The inherent property of artesian wells to flow less in areas with lower heads is not addressed in this model. Well capacities were obtained either directly from the permit file or were assumed based on the diameter of the wells. The assumptions based on well diameter are based on the average observed capacities relative to casing size. Relatively low heads were observed in those cells where the modifications to pumpage were applied. Therefore, wells in those areas produce less than the original estimates. Modifications to account for this problem is needed in future model versions.

Additions to the initial well package were made in one case where unpermitted wells were withdrawing substantial volumes of water. Lakewood Park is a residential community in north-central St. Lucie County that uses FAS water to fill its numerous man made ponds. Monitor well SLF-70 is owned by the community and used to fill one of approximately 20 ponds on site. There are no records of water withdrawals for the calibration period so estimates were made knowing the number of wells and their capacities. Those estimates were refined by running the model enough times to closely match the observed monthly heads seen at SLF-70.

One addition was made on the St. Lucie County coast where an irrigation well exists, is utilized, and no pumpage reports are kept. That addition was for a single well named SLF-46. The well is also a monitor well. There are no other known FAS wells in the same cell as SLF-46. Reasonable withdrawal estimates were made knowing the well's capacity and purpose. Those estimates were refined by numerous transient model runs until the computed and observed heads closely matched for that cell.

Prescribed Head Levels Layer 4

Prescribed heads in layer 4 were generated initially by interpolating layer 2 (UFAS) March 1990 observed water levels to obtain an array with a head value for each cell in the layer. This was done based on the observation that heads in layers 2, 3 and 4 are generally the same to within ± 3 feet. During the transient calibration process, that array was altered slightly. Initial model runs computed heads in some cells both higher and lower than observed in monitor wells corresponding to those cell locations. The differences between computed and observed values at cells corresponding to monitor wells were recorded. They ranged between -2 to +5 feet. Where those recordings were one foot or higher, they were added to the original March 1990 observed recordings for each respective well. This modified list of water levels then was used to generate a new array of prescribed heads using the interpolative statistical method of kriging. This new array was substituted for the original layer 4 prescribed heads file in subsequent model runs resulting in an improved transient calibration. The modified heads used to generate layer 4 prescribed heads as well as the amount and percent the original value of head changed are listed in Table 7. The cell locations of those wells with modified heads are shown in Figure 40.

The layer 4 prescribed heads represent the steady state water level in that layer. There are not enough data a vailable on layer 4 heads spatially to dispute the final values used in the model calibration.

Results

Layer 2 (Upper Floridan Aquifer)

The model was considered to be satisfactorily calibrated, within the tolerance range, to all 54 observation wells on the network. The range of observed versus simulated average differences was between -2.0 and +2.7 feet. Figures 41 and 42 show the simulated head distributions in May 1990 (end of dry season) and September 1990 (end of wet season), respectively in layer 2 . Generally, the highest water levels occur in the south portion of the model. Higher water levels represented by the 48 foot contour line are furthest north in central Martin County. The highest water levels are found in Palm Beach County. The natural flow direction is best described by the end of wet season map when water levels are rebounded fully. This map shows the direction of flow is north in Palm Beach and Martin counties. Soon after crossing the St. Lucie County border, the direction of flow veers more easterly,

TABLE 6: DECREASES TO INITIAL PUMPING ESTIMATES FOR CALIBRATION ENHANCEMENT

AREA	ROW	COLUMN	\% DECREASE
Area 1	10	$25-26$	30%
	11	$25-26$	30%
	12	$25-26$	30%
Area 2	13	25	30%
	18	$20-22$	30%
	19	$18-22$	30%
Area 3	20	$19-22$	30%
	26	$18-20$	30%
	27	$19-20$	30%
Area 4	28	$19-20$	30%
	6	$25-26$	20%
	7	$25-26$	20%
	8	25	20%

TABLE 7: CHANGES MADE TO SPECIFIED HEAD LAYER 4 FROM MARCH 1990 OBSERVED HEADS

Monitor Well Name	Original Mar/90 Head NGD (ft)	New Mod. Head NGVD (ft)	Changes (ft)
MF-3	45.0	47.0	2.0
MF-33	45.7	46.7	1.0
MF-55	42.1	41.1	-1.0
OKF-31	44.5	45.5	1.0
OKF-73	41.3	40.3	-1.0
SLF-3	37.9	43.0	5.1
SLF-4	38.4	39.4	1.0
SLF-17	42.4	44.4	2.0
SLF-21	36.1	37.1	1.0
SLF-36	38.9	42.9	4.0
SLF-40	39.3	41.3	2.0
SLF-50	40.8	41.8	1.0
SLF-61	45.8	43.8	-2.0
SLF-64	40.4	41.4	1.0
SLF-69	40.7	43.7	3.0
SLF-71	39.3	40.3	1.0
IR-312	35.6	37.6	2.0

FIGURE 40: Cells in Model Where Changes to Original Prescribed Water Levels were made to Layer 4

FIGURE 41: $\begin{aligned} & \text { Simulated Water Levels, Layer } 2 \text { (Upper Floridan Aquifer), } \\ & \begin{array}{l}\text { May } 1990\end{array}\end{aligned}$

FIGURE 42: Simulated Water Levels, Layer 2 (Upper Floridan Aquifer), September 1990
becoming eastward near the City of Ft . Pierce, St. Lucie County. At this point, the water seems to flow out under the Atlantic Ocean. The end of dry season map shows a marked warping of the end of wet season contour lines. The contours move in toward areas of intense water well withdrawals. Water levels change between 0 to 8 feet between wet and dry season; the average change is approximately three feet.

Layer 3 (Lower Floridan Aquifer Producing Zone 1)

Figures 43 and 44 show the simulated head distribution in May and September for layer 3. Comparison to figures 41 and 42 show the general head distributions, and, therefore, the regional flow patterns, to be similar to the UFA. Water levels in the LFAPZ1 (layer 3) react fairly quickly to changes in water levels in the UFA (layer 2) due to its fairly good hydraulic connection to it and the large differences in gradient established by lowered heads in layer 2 resulting from pumping.

FIGURE 43: Simulated Water Levels, Layer 3 (Lower Floridan Aquifer Producing Zone 1), May 1990

SENSITIVITY TESTING

The model was tested to check its sensitivity to changes in the boundary conditions, aquifer parameters, and layer 4 prescribed head conditions. Boundary conditions were tested two ways:

1. By replacing the existing specified boundaries with constant head boundaries. This, in effect, provided the boundary cells with a constant head through all stress periods of the simulation. The model then was run using steady state conditions and the constant head configuration, and the resulting heads were compared to the steady state calibration run (baserun). This resulted in an average head difference of - 0.12 feet, the majority of that change was in the boundary cells themselves. The impact on layer 2 (Upper Floridan Aquifer System) volumetric budget was a 6.7 percent decrease of net inflows and outflows.
2. MODFLOW was modified by SFWMD personnel to permit the user to incorporate a multiplier to conductance values in the General Heads package. The conductance multiplier used in the general head package (specified flux boundary cells) was changed from the initial value of 10.0 to $0.1,1.0,100.0$. 1000.0 , and $10,000.0$. The conductance parameter controls the rate of flow through the boundary cells.
The results of these changes demonstrated small, relatively insignificant changes in computed heads ranging between (-0.18 to 0.02 feet). Most head differences occurred in boundary cells, whereas very little changes occurred in the majority of model cells. The percent the volumetric budget change inflows and outflows changed from the base run ranged from -2.6% for a conductance multiplier of 0.1 to $+1.1 \%$ differences for conductance multiplier greater than or equal to 100.0 . Significant head differences resulting from the various types of boundary conditions are limited to a range of two cells inward from the location of the specified boundary. The specified flux boundary used is considered a conservative and accurate method of defining boundaries and should be valid for the various uses planned for this model.

Aquifer parameters were tested by altering the following: prescribed heads in constant head layer 1, layer 2 transmissivity, Vcont between layers 1 and 2, storage coefficient in layer 2, layer 3 transmissivity, Vcont between layers 2 and 3, Vcont
between layers 3 and 4, and prescribed heads in constant head layer 4. The impacts these changes had on layer 2 computed steady state heads and volumetric budgets are presented in Tables 8 and 9. It was assumed that testing this range of values would bracket the range of uncertainty for each parameter. Only head and volumetric changes which occurred in layer 2 (UFAS) cells were recorded since this was the only calibrated layer in the model and represents the most important portion of the FAS from a water resource point of view.

LAYER 2 (UPPER FLORIDAN AQUIFER)

Simulated heads in layer 2 are highly sensitive to the following changes: Vcont between layers 2 and 3, Vcont between layers 3 and 4 and, prescribed heads in layer 4 (constant head layer). Computed heads were moderately sensitive to transmissivity of layers 2 and 3, and generally insensitive to changes to all other parameters. Doubling Vcont in layer 2 resulted in a maximum change of +1.85 feet, with an average change of +0.01 feet, the volumetric budget showed a 0.15% increase in water originating from layer 3. Halving layer 2 Vcont caused a maximum change in simulated heads of -2.0 feet, with an average change of -0.02 feet, the volumetric budget demonstrated water supplied to leyer 2 from layer 3 decreased 0.2%. Doubling Vcont in layer 3 resulted in a maximum change of +2.49 feet, with an average change of +0.38 feet, the budget shows 3.3% more water was supplied from layer 3. Halving layer 3 Vcont resulted in a maximum decrease in layer 2 simulated heads of -3.56 feet, with an average change of -0.71 feet, 2.5% less water was supplied by layer 3. Doubling transmissivity in layer 2 resulted in a maximum increase of +2.34 feet, with an average rise of +0.20 feet in layer 2, the budget showed a 0.4% increase of water from all sources into layer 2. Doubling the transmissivity of layer 3 resulted in a maximum head rise of 0.88 feet and an average of 0.04 feet, a 3.0% increase of water from all sources was indicated by the volumetric budget. Layer 2 is more sensitive to changes in transmissivity than layer 3 because it has lower transmissivity values. The largest changes in head were near areas of large withdrawals. Therefore, impacts parameter changes had on computed heads were most evident near large withdrawals and negligible where withdrawals were nonexistent.

SENSITIVITY RESPONSES IN LAYER 2 COMPUTED HEADS DUE TO CHANGES IN MODEL PARAMETERS (In feet above steady-state base run)					
Layer in Which Change Made	Parameters Changed from Calibration Run	Max. Increase in Water Level (Layer 2)	Max. Decline in Water Level (Layer 2)	Average Change in Water Level (Layer 2)	Standard Deviation (Layer 2)
Layer 1	Starting Head +5 Starting Head -5 Layer 1-2, VCONT x2 Layer 1-2, vCONT $\times 10$ Layer 1-2, vCONTX. 5 Layer 1-2, VCONTx. 1	$\begin{aligned} & 0.07 \\ & 0.03 \\ & 0.01 \\ & 0.23 \\ & 0.22 \\ & 0.39 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.00 \\ -0.03 \\ -0.46 \\ -3.51 \\ -0.01 \\ 0.07 \\ \hline \end{array}$	$\begin{array}{r} 0.01 \\ -0.01 \\ -0.06 \\ -0.38 \\ 0.02 \\ 0.04 \\ \hline \end{array}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.05 \\ & 0.41 \\ & 0.02 \\ & 0.02 \end{aligned}$
Layer 2	Starting Head +10 Transmissivity $\times 2$ Transmissivity $\times 5$ Layer 2-3, vCONT x2 Layer 2-3. vCont $\times 10$ Layer 2-3, vCONT $\times .5$ Layer 2-3, vCONT X. 1 Storage Coeff. x. 1 Storage Coeff. $\times 10$ Storage Coeff. 100	0.00 2.34 4.89 1.85 4.85 0.09 0.25 0.07 0.15 1.18	$\begin{array}{r} 0.00 \\ -0.32 \\ -0.85 \\ -0.08 \\ -0.17 \\ -2.00 \\ -6.14 \\ -0.03 \\ -0.06 \\ -0.31 \end{array}$	$\begin{array}{r} 0.00 \\ 0.20 \\ 0.13 \\ 0.01 \\ 0.03 \\ -0.02 \\ -0.13 \\ 0.00 \\ 0.02 \\ 0.13 \end{array}$	$\begin{aligned} & 0.00 \\ & 0.20 \\ & 0.22 \\ & 0.02 \\ & 0.22 \\ & 0.12 \\ & 0.44 \\ & 0.01 \\ & 0.04 \\ & 0.29 \end{aligned}$
Layer 2 (Layer 2 Gen. Heads Package Conductivity Term Adjusted)	Constant Head Cond. $\times 1$ Cond. $\times 1$ Cond. $\times 100$ Cond. $\times 1,000$ Cond. $\times 10,000$	$\begin{aligned} & 1.38 \\ & 0.44 \\ & 0.37 \\ & 1.61 \\ & 1.95 \\ & 1.96 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.94 \\ & -4.45 \\ & -3.09 \\ & -0.20 \\ & -0.24 \\ & -0.24 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.12 \\ -0.18 \\ -0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ \hline \end{array}$	$\begin{aligned} & 0.26 \\ & 0.39 \\ & 0.19 \\ & 0.06 \\ & 0.07 \\ & 0.07 \end{aligned}$
Layer 3	Transmissivity $\times 2$ Transmissivity $\times 10$ Transmissivity x. 5 Transmissivity x. 1 Layer 3-4, vCONT $\times 2$ Layer 3-4, vCONT $\times 10$ Layer 3-4. vCONT x. 5 Layer 3-4, vCONT x. 1	$\begin{aligned} & 0.88 \\ & 3.37 \\ & 0.28 \\ & 0.84 \\ & 2.49 \\ & 5.88 \\ & 0.60 \\ & 0.51 \end{aligned}$	$\begin{array}{r} -0.40 \\ -1.93 \\ -0.86 \\ -3.67 \\ -0.56 \\ -1.36 \\ -3.56 \\ -16.56 \end{array}$	$\begin{array}{r} 0.04 \\ 0.18 \\ -0.03 \\ -0.06 \\ 0.38 \\ 0.70 \\ -0.71 \\ -4.63 \end{array}$	0.20 0.95 0.15 0.32 0.57 0.70 0.90 4.59
Layer 4	Starting Head +5 Starting Head -5	$\begin{aligned} & 4.97 \\ & 0.00 \\ & \hline \end{aligned}$	$\begin{aligned} & -28.04 \\ & -29.73 \end{aligned}$	$\begin{aligned} & -0.12 \\ & -7.23 \end{aligned}$	$\begin{array}{r} 7.68 \\ 5.80 \end{array}$

TABLE 9. SENSITIVITY RESPONSES IN LAYER 2 VOLUMETRIC BUDGETS DUE TO CHANGES IN MODELPARAMETERS

Layer in Which Change Made	Parameters Changed from Calibration Run	IN \% Change into Layer 2 from:				\% Change out of Layer 2 to:			
		Layer 1	Layer 3	Head Dep Bounds	Total In	Layer 1	Layer 3	Head Dep Bounds	Total Out
Layer 1	Starting Head +5 Starting Head -5 Layer 1-2, VCONT x^{2} Layer $1-2$, VCONT $\times 10$ Layer 1-2, vCONT x. 5 Layer 1-2, vCONT x. 1	$\begin{array}{r} 61.4 \\ -44.9 \\ 10.1 \\ 894.5 \\ -50.0 \\ -90.0 \end{array}$	$\begin{array}{r} -1.0 \\ 0.8 \\ 5.4 \\ 35.8 \\ -1.8 \\ -3.1 \\ \hline \end{array}$	$\begin{array}{r} -0.8 \\ 0.8 \\ 4.2 \\ 24.3 \\ -1.3 \\ -2.3 \end{array}$	$\begin{array}{r} -0.7 \\ 0.7 \\ 5.3 \\ 36.3 \\ -1.8 \\ -3.2 \end{array}$	$\begin{array}{r} -2.6 \\ 19.7 \\ 138.9 \\ 880.4 \\ -49.9 \\ -90.0 \end{array}$	$\begin{array}{r} 0.9 \\ -1.9 \\ -12.2 \\ -26.2 \\ 6.3 \\ 12.7 \end{array}$	$\begin{array}{r} 1.1 \\ -1.2 \\ -6.1 \\ -26.2 \\ 2.1 \\ 4.0 \end{array}$	$\begin{array}{r} 0.6 \\ 0.7 \\ 5.3 \\ 36.3 \\ -1.8 \\ -3.2 \end{array}$
Layer 2	Starting Head +10 Transmissivity x2 Transmissivity $\times 5$ Layer 2-3, VCONT x2 Layer 2-3, vcont x 10 Layer 2-3, vcont x. 5 Layer 2-3, vCont x. 1 Storage Coeff. x. 1 Storage Coeff. $\times 10$	$\begin{aligned} & 0.0 \\ & 0.7 \\ & 2.2 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.3 \\ & 0.0 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.0 \\ -1.4 \\ -2.2 \\ 0.2 \\ 0.3 \\ -0.2 \\ -1.3 \\ 0.0 \\ -0.2 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.0 \\ 20.1 \\ 68.2 \\ 1.6 \\ 6.9 \\ -1.8 \\ -7.2 \\ 0.0 \\ -0.8 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.0 \\ 0.4 \\ 4.0 \\ 0.3 \\ 0.9 \\ -0.4 \\ -1.8 \\ 0.0 \\ 0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.0 \\ 0.3 \\ 1.0 \\ 0.0 \\ 0.1 \\ -0.1 \\ -0.6 \\ 0.0 \\ 0.2 \\ \hline \end{array}$	0.0 6.5 69.5 5.0 16.9 -6.6 -31.9 0.0 0.0	$\begin{array}{r} 0.0 \\ 12.8 \\ 58.4 \\ 3.3 \\ 6.8 \\ -5.4 \\ -24.7 \\ 0.0 \\ -1.1 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.0 \\ 0.5 \\ 4.0 \\ 0.3 \\ 0.9 \\ -0.4 \\ -1.8 \\ 0.0 \\ 0.0 \\ \hline \end{array}$
Layer 2 (Layer 2 Gen. Heads Package Conductivity Term Adjusted)	Constant Head Cond. x. 1 Cond. $x 1$ Cond. $\times 100$ Cond. $\times 1,000$ Cond. $\times 10,000$	$\begin{array}{r} -22.7 \\ 4.3 \\ 2.0 \\ -0.5 \\ -0.6 \\ -0.6 \end{array}$	$\begin{array}{r} -1.4 \\ 3.6 \\ 1.0 \\ 0.9 \\ 1.3 \\ 1.0 \end{array}$	$\begin{array}{r} -100.0 \\ -86.4 \\ -39.6 \\ 3.0 \\ -8.0 \\ -10.0 \end{array}$	$\begin{array}{r} \hline-6.7 \\ -4.2 \\ -2.6 \\ 1.1 \\ 0.5 \\ 0.1 \end{array}$	$\begin{array}{r} -5.5 \\ -1.0 \\ -0.5 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	$\begin{aligned} & -73.9 \\ & -66.4 \\ & -37.0 \\ & -14.0 \\ & -46.3 \\ & -56.9 \end{aligned}$	$\begin{array}{r} -100.0 \\ -98.0 \\ -78.0 \\ 177.1 \\ 275.1 \\ 286.3 \end{array}$	$\begin{array}{r} -6.7 \\ -4.2 \\ -2.6 \\ 1.1 \\ 0.5 \\ 0.1 \end{array}$
Layer 3	Transmissivity $\times 2$ Transmissivity $\times 10$ Transmissivity x. 5 Transmissivity x. 1 Layer 3-4, vCONT x2 Layer 3-4. vCont $\times 10$ Layer 3-4, vCONT X. 5 Layer 3-4, vCONT X. 1	$\begin{array}{r} 0.7 \\ 2.2 \\ -0.4 \\ -0.7 \\ -2.2 \\ -4.1 \\ 1.8 \\ 40.0 \\ \hline \end{array}$	$\begin{array}{r} 0.7 \\ 3.3 \\ 1.2 \\ 2.5 \\ 3.3 \\ 6.8 \\ -2.5 \\ -11.1 \\ \hline \end{array}$	$\begin{array}{r} 26.4 \\ 156.0 \\ -11.4 \\ -21.5 \\ 156.0 \\ 72.0 \\ 12.2 \\ 98.8 \\ \hline \end{array}$	$\begin{array}{r} 3.0 \\ 16.6 \\ 0.1 \\ 0.5 \\ 16.6 \\ 12.4 \\ -1.2 \\ -1.4 \\ \hline \end{array}$	$\begin{array}{r} 0.3 \\ 1.5 \\ -0.2 \\ -0.4 \\ 1.5 \\ 4.8 \\ -4.5 \\ -26.6 \\ \hline \end{array}$	$\begin{array}{r} 54.1 \\ 307.3 \\ 1.1 \\ 12.1 \\ 307.3 \\ 243.0 \\ -20.7 \\ 6.1 \\ \hline \end{array}$	$\begin{array}{r} 35.6 \\ 169.8 \\ -5.4 \\ -9.7 \\ 169.8 \\ 52.1 \\ -4.3 \\ -59.1 \\ \hline \end{array}$	$\begin{array}{r} 3.0 \\ 16.6 \\ 0.5 \\ 0.5 \\ 16.6 \\ 12.4 \\ -1.2 \\ -1.4 \\ \hline \end{array}$
Layer 4	Starting Head +5 Starting Head -5	$\begin{array}{r} -29.9 \\ 39.4 \end{array}$	$\begin{array}{r} 48.8 \\ 9.5 \end{array}$	$\begin{array}{r} 751.1 \\ 1,182.8 \end{array}$	$\begin{aligned} & 110.0 \\ & 111.7 \end{aligned}$	$\begin{array}{r} 13.0 \\ -22.3 \end{array}$	$\begin{aligned} & \hline 1,954.1 \\ & 2,357.3 \end{aligned}$	$\begin{array}{r} 1,526.0 \\ -100.0 \end{array}$	$\begin{aligned} & 109.8 \\ & 111.7 \end{aligned}$

RESULTS

1. Regional water levels identified by well observations have been simulated by a ground water flow model for the upper Floridan Aquifer in the Upper East Coast Planning Area. The impacts of additional FAS water use now can be determined with the aid of the three dimensional ground water flow model which was developed and validated using 54 wells to 23 months of water level data.
2. Model results indicate that the most significant source of recharge to the Upper Floridan Aquifer in the Upper East Coast Planning Area is leakance from the Lower Floridan Aquifer. Approximately 91 percent (140 MGD) of the recharge in the study area was provided by upward leakance. The remaining nine percent (13.4 MGD) mostly comes from the borders of the study area across Okeechobee and Indian River counties. Leakance values more than transmissivity values are critical for determining expected well yields in the FAS.
3. Withdrawals from agricultural wells account for approximately 90 percent (138 MGD) of the outflow from the modeled area. The remaining outflow is comprised of 4.5 percent (6.6 MGD) upward and 4.8 percent (7.4 MGD) downward leakance. Ground water flow out of the modeled area boundaries is minor and accounts for 1.0 percent of the total (1.5 MGD). The majority of that water escapes to the Atlantic Ocean east of St. Lucie and Indian River counties.
4. Permeability and vertical leakance in the UFA is drastically reduced east of a structural anomaly, a trace of which follows the Intracoastal Waterway from Vero Beach to north Martin County, where it veers east toward the ocean. These factors are responsible for low yielding wells observed on Hutchinson Island and limit future large scale development of the aquifer in this area.

CONCLUSIONS AND RECOMMENDATIONS

1. Currently, portions of the UECPA are limited by the SFWMD to allocations of 1.5 acre-inches per month. The FAS model can be used to test the basis for this number.
2. Since the water quality of the lower Floridan Aquifer is probably inferior to that of the upper Floridan Aquifer, and the lower Floridan Aquifer System is the major source of recharge to the upper system, water quality deterioration in the upper Floridan Aquifer System can be expected in the future, especially in areas of intense water withdrawals. Model results and field observations indicate that water levels fluctuate annually as much as eight feet in three areas of intense citrus irrigation located in north and north-central St. Lucie County (refer to Figure 42). Permitted FAS user surveys showed that water quality deterioration has already been observed in these areas. Additional development of the FAS should not be permitted in these three areas.
3. Since deteriorating water quality is a probability in the future, water from selected Floridan Aquifer wells should be monitored for total dissolved solids and chlorides on a quarterly basis. The monitor wells should be in areas of high water use. Water quality changes with time then can be used to characterize the water quality of the lower Floridan Aquifer and continue to verify current assumptions about upward leakance and its impacts on the Upper Floridan Aquifer.
4. Leakance and head differentials between the Upper and Lower portions of the Floridan Aquifer proved to be the most important parameters in the calibration process. Such data are obtained by drilling a test site containing two lower Floridan Aquifer wells to approximately $-1,600$ feet NGVD and two upper Floridan Aquifer wells to approximately $-1,000$ feet NGVD, followed by two aquifer performance tests. There were only three aquifer performance tests of this type performed in the entire study area. It is recommended that at least two additional test sites be constructed and tested to obtain verification of the leakance and water level
parameters used in the model. The well sites should be located in areas where the FAS is projected to be used for future public water supply. The FAS will probably be utilized as a public water supply source in the near future in parts of Martin and St. Lucie counties because of problems with Surficial Aquifer ground water contamination and wetland impacts.
5. This was the first calibrated three dimensional regional Floridan Aquifer system model developed for SFWMD needs. It is recommended that future regional FAS modeling projects incorporate information regarding leakance and head values in the lower portions of the FAS. Those data are obtained by testing the interconnection between the upper and lower Floridan Aquifer by drilling and testing deep wells as described in Recommendation 4 above. Since construction of deep aquifer performance test sites is very expensive, it is recommended that the feasibility of developing future regional models of the Floridan Aquifer System with respect to budgetary constraints be carefully analyzed.
6. The accuracy of any model depends on proper assumptions. It was found that agricultural water use accounted for 90 percent of the FAS water withdrawals in the study area. Accurate estimates of the amount of agricultural withdrawals were paramount in developing this model. A survey was used to obtain critical information on water withdrawals in the period modeled. It was found that water use habits of UFA permittees in the study area varied considerably. The survey provided adequate answers for making crude water use estimates, but more exact data are necessary to be able to model the system more precisely. It is recommended that permittees in the study area be required to submit monthly pumpage reports to the District. The reports should show the amount of time wells were allowed to flow freely for each month of the year. A small percentage of UFA permittees already are submitting these monthly reports since it was stipulated as a special condition in their water use permit. Actual water use records would provide valuable data in the calibration of future
models, particularly in areas of heavy ground water use.
7. This model can be used to simulate proposed water use scenarios on a regional basis. Where a finer scale or site-specific evaluation is required, the regional model can be used to provide boundary conditions. The District is currently working on a software program capable of zooming in on user-specified areas of the regional model and extracting data to form a submodel, or model within a model.

Submodels will have a finer grid resolution and be capable of simulating small scale impacts on adjacent users. The model in its present configuration is limited in its ability to assess impacts on a small scale due to the regional nature of the model grid. As a result, small scale impacts on adjacent users may be overlooked due to cell-wide averaging. Improved grid resolution is needed to better assess these small scale impacts.

REFERENCES

Applin, P.L., E.R. Applin, 1944. Regional Subsurface Stratigraphy and Structure of Florida and Southern Georgia. American Association of Petroleum Geology Bulletin., Volume 28.
Armstrong, J.R., 1981. The Geology of the Floridan Aquifer System in Eastern Martin and St. Lucie Counties, Florida. Unpublished Masters Thesis, Florida State University.
Black, Crow and Eidness, Inc., 1975. Drilling and Testing of Deep Disposal and Monitoring Wells, The City of Stuart, Martin County, Florida, Project No. 307-74-52: unpublished engineering report, Gainesville, Florida.
Brown, M.P., 1980. Aquifer Recovery Test Data and Analysis for the Floridan Aquifer System in the Upper East Coast Planning Area. South Florida Water Management District, Technical Publication \#80-1.

Brown, M.P. and D.E. Reece, 1979. Hydrogeologic Reconnaissance of the Floridan Aquifer System, Upper East Coast Planning Area. South Florida Water Management District, Technical Map Series \#79-1.
Bower, R.F., 1988. Permittable Water Use Estimates of the Floridan Aquifer System in the Upper East Coast Planning Area. South Florida Water Management District Technical Memorandum.

Bower, R.F., K.M. Adams and J.I. Restrepo, 1990. A Three-Dimensional Finite Difference Ground Water Flow Model of Lee County, Florida. South Florida Water Management District, Technical Publication \#90-01.
Calvert, D.V., 1982. Effect of Ground Water Quality on Crops in Florida. Proceedings of the ASCE Specialty Conference on Environmentally Sound Water and Soil Management, Orlando, Florida. July 20-23, 1982, p. 440-444.
CH2M Hill, 1979, Hydrogeologic Report for Hercules, Inc., Injection Test Well, Indian River Plant, Project No. 0-W54801.80: Unpublished Consultants Report.
CH2M Hill, 1982. Rehabilitation of the Deep Injection and Monitoring Wells at the Stuart Wastewater Treatment Plant for the City of Stuart, Florida: Unpublished Engineering Report.

CH2M Hill, 1987. North Port St. Lucie WWTP Injection System for General Development: Unpublished Engineering Report.
CH2M Hill, 1988. Lawnwood Well Field Expansion and Floridan Aquifer Blending Well: Unpublished Engineering Report, \#SEF38101.L1.
CH2M Hill, 1989. Construction and Testing of the Aquifer Storage Recovery (ASR) Demonstration Project For Lake Okeechobee, Florida. Unpublished engineering report, developed for the South Florida Water Management District, \#SEF24270.B0.61.
Cooke, C.W., 1945. Geology of Florida. Florida Geological Survey Bulletin No. 29.
Driscoll, F.G., 1986. Groundwater and Wells. Johnson Division, St. Paul, Minnesota, p. 75.
Ebasco Environmental, Bellevue, Washington, 1990. Ground water Modeling of the Floridan Aquifer System at the Martin Site, Florida., unpublished engineering report, prepared for Florida Power and Light.
Fetter, C.W., 1988. Applied Hydrogeology. MerrilI Publishing Company, Columbus, Ohio., p. 80.
Florida Power and Light, 1990 Gee and Jensen, 1977. Water Supply Test Well at Sailfish Point, for Mobil Oil Estates. Gee and Jenson, West Palm Beach, Florida.
Gee \& Jensen, 1977. Water Supply Test Well at Sailfish Point. For Mobil Oil Estates LTD, submitted as part of permit application to SFWMD.
Geraghty and Miller, Inc., 1987. North Martin County Deep Injection Well System: unpublished consultants report.
Geraghty and Miller, Inc., 1989. Report prepared for Town of Jupiter, File \#PF0318FA02.
Geraghty and Miller, lnc., 1990. Exhibit 8A-G, Water Use Permit Application, Permit \#56-000342.

Healy, Henry G., 1966. Water Levels in Artesian and Nonartesian Aquifers of the Floridan Aquifer in Florida, May 1974. Florida Department of Natural Resources, Bureau of Geology, Map Series No. 73.
Hydro Designs, 1988. Safe Casing Depths for Floridan Aquifer System Wells in Martin, St. Lucie and Okeechobee Counties, Florida. Unpublished Engineering report developed for the SFWMD.

Kaufmann, M.I. and D.J. McKenzie, 1975. Upward Migration of Deep Well Injection Fluids in the Floridan Aquifer System, South Florida. Journal of Research, U. S. Geological Survey, Volume 3, No.3, May-June 1975, p.261-271.
Kuiper, L.K., 1987. Computer Program for Solving Ground Water Flow Equations by the Preconditioned Conjugate Gradient Method. U. S. Geological Survey, Water Resources Investigations Report 87-4091.

Law Engineering and Testing Company, 1975. PSAR St. Lucie Unit 2 (Rev. 26-1/8/75) Docket No. 50-335: Unpublished Engineering Report.
Lichtler, W.F., 1957. Ground Water Resources of the Stuart Area, Martin County, Florida. Florida Geological Survey, Information Circular No. 12.
Lichtler, W.F., 1960. Geology and Ground Water Resources of Martin County, Florida: Florida Geological Survey Report of Investigations 23.
McDonald, M.G., and A.W. Harbaugh, 1988. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. Techniques of Water Resources Investigations of the U.S. Geological Survey, Book 6, Chapter A1.
Meyer, F.W., 1983. Hydrogeology of the Floriden Aquifer System, South Florida. U.S. Geological Survey Professional Paper 1403.
Miller, J.A., 1982. Thickness of the Tertiary Limestone Aquifer System, Southeastern United States. U.S. Geological Survey, Open File Report 81-1174.
Miller, J.A., 1982. Geology and Configuration of the Base of the Tertiary Limestone Aquifer System. Southeastern United States: U.S. Geological Survey Open File Report 81-1176.
Mooney, Thomas R., 1980. The Stratigraphy of the Floridan Aquifer System East and Northeast of Lake Okeechobee, Florida. South Florida Water Management District, Technical Publication \#80-9.
Parker, G.G., G.E. Ferguson, Love, S.K., and others, 1955. Water Resources of Southeastern Florida: U.S. Geological Survey Water Supply Paper 1255.

Pauli, C.K., W.P. Dillon, 1979. The Subsurface Geology of the Florida-Hatteras Shelf, Slope, and Inner Blake Plateau. U.S. Geological Survey, Open File Report \# 79-448.
Puri, H.S. and R.O. Vernon, 1964. Summary of the Geology of Florida and a Guidebook to the Classic Exposures: Florida Geological Survey, Special Publication \#5 (revised).

Reece, D.E., M.P. Brown, S.D. Hynes, 1980. Hydrogeologic Data Collected From the Upper East Coast Planning Area, South Florida Water Management District, Technical Publication No. 80-5.
Smith, K.R., 1990. A Three-Dimensional Finite Difference Ground Water Flow Model of Hendry County. South Florida Water Management District, Technical Publication \#90-04.
Scott, Thomas M., 1988. The Lithostratigraphy of the Hawthorn Group (Miocene) of Florida. Florida Geological Survey, Bulletin No. 59.
Schiner, G.R., C.P. Laughlin, and D.J. Toth, 1988. Geohydrology of Indian River County, Florida. U.S. Geological Survey, Water-Resources Investigations Report 88-4073.
Shaw, J.E. and S.M. Trost, 1984. Hydrogeology of the Kissimmee Planning Area. South Florida Water Management District, Technical Publication \#84-1.
Shrivan, James A. and M.R. Karlinger, 1983. Semi-Variogram Estimation and Universal Kriging Program, U.S. Geological Survey WRD-WRI-80-064.
South Florida Water Management District, 1985. Management of Water Use Permitting Information, Volume III.
Stringfield, V.T., 1936, Artesian Water in the Florida Peninsula. U.S. Geological Survey, Water Supply Paper 773-C.
Tibbals, C.H., 1981. Computer Simulation of the Steady-State Flow System of the Tertiary (Floridan) Limestone Aquifer System in East-Central Florida. U.S. Geological Survey Water Resources Investigations 81-681.
Tibbals, C.H., 1991. Hydrology of the Floridan Aquifer System in East-Central Florida. U.S. Geological Survey Professional Paper 1403-E.
Trost, S.M., 1985. Floridan Aquifer Resource Assessment, Upper East Coast Planning Area. South Florida Water Management District. Unpublished Technical Publication.
United States Department of Agriculture, Soil Conservation Service, 1970. Irrigation Water Requirements. Technical Release No. 21.
Wedderburn, Leslie A., M.S. Knapp, 1983. Field Investigations into the Feasibility of Storing Fresh Water in Portions of the Floridan Aquifer System, St. Lucie County, Florida. South Florida Water Management District, Technical Publication \#83-7.

APPENDIX A

GEOLOGIC AND HYDROSTRATIGRAPHIC DATA

APPENDIX A
 LIST OF FIGURES

FigurePageA-1 Location of Geologic Control and Water Quality Wells as Indexed in Table 2 85
A-2 Thickness of the Surficial Aquifer in Study Area 86
A-3 Water Levels in the Surficial Aquifer in Study Area 87
A-4 Cell Types Used in Model, Layer 1 88
A-5 Cell Types Used in Model, Layer 2 89
A-6 Cell Types Used in Model, Layer 3 90
A-7 Cell Types Used in Model, Layer 4 91
APPENDIX A
LIST OF TABLES
Table Page
A-1 Specific Capacity Data Used to Calculate Transmissivity 92
A-2 Geologic and Water Quality Data from FAS Well Inventory in UEC 95

FIGURE A-1: Location of Geologic Control and Water Quality Wells as Indexed in Table 2

FIGURE A-2: Thickness of the Surficial Aquifer in Study Area

FIGURE A-3: Water Levels in the Surficial Aquifer in Study Area

FIGURE A-4: Cell Types Used in Model, Layer 1

FIGURE A-5: Cell Types Used in Model, Layer 2

FIGURE A-6: Cell Types Used in Model Layer 3

FIGURE A-7: Cell Types Used in Model, Layer 4

TABLE A- $7: \quad$ Specific Capacity Data Used to Calculate Transmissivity

SPECIFIC CAPACTIY DATA USED TO CALCULATE TRANSMSSIVITY

WEIIE	TOTAL DEPTH (FI)	CASING DEPTH (FI)	$\begin{aligned} & \text { CASING } \\ & \text { DIA. } \\ & \text { (INCH) } \end{aligned}$	AQUFP PENET (FI)	$\begin{gathered} \text { DISCH } \\ \text { Q } \\ (\mathrm{GPM}) \end{gathered}$	$\begin{gathered} \text { W.L. } \\ \text { DRWD } \\ \text { (FI) } \end{gathered}$	UNCOR. SP.CAP GAL/M	CORR DRWD (FI)	CORR. SPCAP GAUM	CALC. TRANS. GALJDFT
MF-2		300	6		217	15.0	14.5	13.5	16.1	94933
MF-4	1525	630	6	400	240	83.0	2.9	83.0	2.9	12700
MF-6	1052	400	5	653	72	7.5	9.6	6.8	10.5	104900
MF-9	880	342	6	538	83	9.0	9.2	8.6	9.7	104300
MF-23	1119	456	5.5	663	167	15.3	10.9	12.7	13.1	73500
LFM-1	1282	800	8	482	600	15.2	39.5	8.6	70.0	94000
FGS-M-29	1100	450	4	650	150	20.8	7.2	11.8	12.7	82750
FGS-M-34	1100	450	6	650	400	12.2	32.8	4.3	93.0	372713
FGS-M-88	1180	700	5	380	250	36.3	6.9	23.7	10.6	75167
FGS-M-143	958	272	6	686	550	27.5	20.0	19.3	28.5	139804
FGS-M-146	1155	432	5	723	300	16.8	17.9	6.0	50.0	217440
FGS-M-168	1080	500	5	580	300	19.9	15.1	7.4	40.5	183136
FGS-M-443	951	275	6	676	300	35.0	8.6	32.3	9.3	70472
FGS-M-740	990	474	6	516	650	28.7	22.6	9.7	67.0	278827
FGS-M-741	890	460	6	430	235	27.5	8.5	24.3	9.7	71917
FGS-M-742	1003	460	6	543	225	29.0	7.8	26.2	8.6	67945
FGS-M-746	510	360	6	150	325	22.0	14.8	17.7	18.4	103332
FGS-M-748	773	397	6	376	300	31.2	9.6	27.2	11.0	76611
FGS-M-759	853	650	6	203	400	23.0	17.4	11.3	35.4	164719
FGS-M-901	1110	490	8	620	150	10.3	14.6	9.9	15.2	91777
FGS-M-909	1095	470	6	625	300	22.0	13.6	17.3	17.3	99360
FGS-M-913	1100	500	6	600	120	8.0	15.0	7.6	15.8	93944
FGS-M.919	950	636	8	314	750	27.0	27.8	19.4	38.7	176636
FGS-M-920	1033	488	5	585	225	28.0	8.0	21.7	10.4	74444
FGS-M-921	1032	455	5	577	250	26.0	9.6	17.8	14.0	87444
FGS-M.923	1000	500	8	500	300	10.3	29.1	9.1	32.9	155692
FGS-M-927	792	450	6	342	350	23.8	14.7	17.5	20.0	109110
FGS-STL44	691	125	5	691	350	15.0	23.3	11.1	31.5	150637
OKF-2	666	218	5.7	468	93	15.3	6.1	14.9	6.2	153400
OKF-5	1181	440	6	593	176	1.5	117.3	1.0	172.5	341600
OKF-7	963	412	8	515	265	26.2	10.1	22.8	11.6	27200
OKF-13	1200	600	12	600	789	7.0	112.7	4.2	188.8	556000
OKF-26	825	625	12	216	400	80.0	5.0	79.6	50	5494

TABLE A-1: Specific Capacity Data Used to Calculate Transmissivity (Continued)

SPECIFIC CAPACITY DATA USED TO CALCULATE TRANSMISSIVITY

WELL NANE	TOTAL DEPTH: (FT)	CASING DEPTH (FI)	$\begin{aligned} & \text { CASNV } \\ & \text { DIA } \\ & \text { (IWCH) } \end{aligned}$	AQUIF PENET (FI)	$\begin{gathered} \text { DSCC } \\ \mathbf{Q} \\ (\mathbf{Q P M}) \end{gathered}$	WTL. DRWD (FI)	UNCOR. SP.CAP GALM	CORR DRWD (FI)	CORR. SPCAP CALM	CALC. TRANS. GALIDIFT
OKF-27	725	477	12	248	346	85.0	4.1	84.8	4.1	51695
SLF-4	993	482	9	511	752	11.8	63.7	8.2	91.7	461700
SLE-9	1058	256	10	795	906	14.0	64.7	12.4	73.1	531526
SLF-13	1238	344	12	894	881	14.5	60.7	13.6	64.8	553771
SLF-14	1700	1268	24	950	688	14.1	48.8	10.6	64.9	412800
SLF-15					808	14.1	57.3	14.1	57.3	629200
SLF-20	896	311	5	585	71	13.3	5.3	12.7	5.6	81495
SLF-21	707	156	3.5	544	91	12.4	7.3	9.8	9.3	49000
SLF-23	894	350	6	544	283	12.2	23.2	9.1	31.1	106700
SLF-24			10		229	15.3	14.9	14.8	15.5	208500
SLF-27	900	300	8	600	463	10.2	45.4	8.7	53.2	229062
SLF-28	883	200	4	683	28	7.9	3.5	7.6	3.7	24600
SLF-40		376	6		264	15.6	16.9	12.8	20.6	111367
SLF-51	1000	600	6	175	388	35.4	10.9	25.5	15.2	107077
SLF61	695	350	5	345	104	16.6	6.3	15.5	6.7	61119
SLF62	935	480	5	455	178	18.0	9.9	13.9	12.8	83132
SLF67		300	6		200	11.6	17.2	10.3	19.4	107007
SLF69		300	6		734	16.6	44.2	14.6	50.3	218429
SLF75	700	480	8	220	550	13.7	40.1		40.1	210000
SLF76	860	790	8	70	260	14.44	18.0	13.0	18.0	110000
FBW-1	904	508	12	396	700	13.0	54.0	12.22	57.0	309000
FGS-IR202	700	209	6	491	440	22.0	20.0	17.8	24.7	126082
FGS-IR243	900	220	6	680	450	41.0	11.0	36.2	12.4	81666
FGS-IR245	850	220	4	630	330	37.0	8.9	18.9	17.5	100083
FGS-IR251	700	220	4	480	200	16.0	12.5	8.3	24.1	123915
FGS-IR253	800	220	5	580	240	14.0	17.1	10.5	22.9	119582
IR7F	940		8		650	12.0	54.0	10.6	61.3	258319
IR12F	900		8		700	12.0	64.0	10.42	67.2	279472
LR20F			8		850	13.0	94.0	10.7	79.4	323745
[R21F	943		6		30	30.0	1.0	29.94	1.0	40508

TABLE A-1: $\begin{aligned} & \begin{array}{l}\text { Specific Capacity Data Used to Calculate Transmissivity } \\ \text { (Continued) }\end{array}\end{aligned}$
SPECIFIC CAPACITY DATA USED TO CALCULATE TRANSMISSIVITY

MAP	$\begin{aligned} & \text { WELL } \\ & \text { NAME } \end{aligned}$	$\begin{aligned} & \mathbf{D} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	STATE PLANARS		TOP OP FORMATION NGVD (FEET)				DEPTR	cond	CHIOR	TEMP	FLOW	DIAM	G/L,
			EAST (FEET)	NORTH (FBET)	HAWTH	OLIC	OCALTA	AVON:	$\begin{array}{r} \text { RT. } \\ \mathrm{B}, \mathrm{~S} \end{array}$	H.S.		9	OPM	INCH:	FT. sGuD
1	WA-727	G	681817	1169470	-80	-410	-464	-568	1000	6010	1770	84.6	2430	10	20
													600	8	5
2	WA-815	G	718920	1133099	-113	-641	-763	-830	995	2982	530	79	600	0	5
3	WA-820	G	681712	1112819	-90	-446	-520	-570	922	1260	420	79.6	254	8	20
		G	664197	1141826	-96	-428	-472	-528	640	1280	350	82	135	4	20
4	WA-823	G													
5	WA-825	G	702475	1124530	-124	-494	-574	-625	670	1390	250	80	360	3	16
		G		1137987	-100	-486	-530	-594	814	3230	870	82.9	249	5	20
6	WA-826		663853												
7	WA-827	G	606769	1127698	-85	-435	-485	-575	830	1510	870	81	153	4	25
				1089763	-100	-530	-580	-660	741	3050	967	84	360	5	20
8	WA-829	G	674420												20
9	WA-875	G	663214	1117587	-90	-472	-520	-584	704	2080	510	81	95	4	20
		G	648530	1115814	-90	-434	-488	-574	766	3050	811	82	1000	10	20
10	WA-878					4	-521	-583	894	1450	214	78	243	5	17
11	WA-887	G	704887	1128784	-89										
12	* 1000	G	672933	1100158	-104	-4.64	-537	-608	888	3710	726	82	258	5	15
				11	-100	-474	-518	-590	830	2975	885	82	217	4	20
13	WA-1005	G	668690	1101352	-100							79 2	221	5	20
14	WA-1009	G	695779	1148834	-112	-404	-468	-630	904	2168	492	79.2	221	5	20
		G	680298	1106451	-117	-489	-553	-613	876	2838	695	82	425	8	20
15	WA-1016	G	680298			-392	-450	-616	686	1935	283	79	135	4	20
16	WA-1031	G	693006	1163564	-90	-392	450								
17	*4-1032	G	728097	1151125	-108	-706	-910	-990	1020	6270	1734	76.5	250	5.5	20
17	Wh				-84	-368	-428	-622	740	1990	367	78.1	219	4	20
18	WA-1033	G	694281												
19	WA-1083	G	672844	1120959	-100	-459	-504	-568	646	612	275	76.8	156	4	20
			66693	1111846	-98	-456	-496	-568	784	1780	375	79.8	124	4	20
20	WA-1085						-500	- 572	624	2046	435	79.4	202	4	20
21	WA-1087	G	671903	1109141	-90	-460	-								

TABLE A-2:

(Continued)

$\begin{aligned} & \text { MAP } \\ & \# \end{aligned}$	WELL NAME	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	STATE PLANARS		TOP OF FORMATIONRGVD (FEET)				DEPTH	COND	CHIOR	THus.	FLON	DTAS	$\begin{aligned} & \text { G. L, } \\ & \text { ELEV } \end{aligned}$
			EAST (FEET)	NORTH (PEET)	HAWLP	OHIG	OCALA.	AVOYS	${ }_{8} \mathrm{PFT}_{1}$,	H.S.	Melt.	$0 F$	GPM	INCH	ELEV
62	WA-699	G	699517					\%	$\stackrel{\square}{4}$	$\stackrel{1}{4}$	\%	$\stackrel{\square}{ }$			D
63	WA-708	G	715616	1127527	-100	-495	-575	-640	900	1910	420	79	600	6	25
64	WA-1082	G	628231	$\underline{1127527}$	-91	-570 -517	-690	-800	920	1496	708	75	125	4	$\frac{25}{10}$
65	WA-1175	G	632262	1074457	-95	-517	-625	-761	1324	4558	1098	85	571	7	25
66	WA-1186	G	716989	1074457	-95	-421	-519	NDE	750	1512	325	77.7	150	4	25
67	WA-1195	G	651586	$\frac{1140258}{1045645}$	-110 -100	$\frac{-580}{-530}$	-720	-804	B24	1928	330	76.6	500	6	10
68	WA-612	G	693638	$\underline{1045645}$	-100	$\frac{-530}{-620}$	-630	-770	950	3138	778	82.1	1000	8	30
69	WA-611	G	701918	1069251	-110 -100	-620	-726	-800	870	1590	799	79.6	75	5	0
70			701918	1073633	-100	-516	-590	-666	750	3582	940	79.2	25		0
71	WA-615	G	695629	1068048	-100	-620	-700	-8				79.2	25	6	0
	WA-625	6	715418	1046034	-	-	-	-	1012	4580	880	78.2	100	6	0
72	HD-3	G	678795	1160772			- ${ }^{-}$			4060	1010	81.6	50	4	0
73	HD-4	G	653763	1160772	-88	-393	-443	-	934	-		-	-	- -	
				1090790	-105	-550	-613	-715	1125	-	-				
74	HD18	G	62488 B	1124923	-61	-451	-51		1125		-	-	-	-	28
75	HD22	G	682541	1068795	-101	-531	-594	-	638	-	-	-	-	-	29
76	HD23	G	682380	1064453	-120	-573		-	695	$-$	-	-	-	-	24
77	FB-1	GL	682380				-678	-780	930		-				
			709923	1130728	-70	-486	-556	-632	904	630	320	-	-	-	27
78	NPSLI	GL	710753	1092360	135	-563						-	-	12	20
	SPSLI						-705	-815	3324	-	-	-			
79		GL	727706	1060642	-	-685	-860	-985					-	-	15
80	W-4086	G	704804		-	-594	-660	$\underline{-985}$	$3500 ?$	4500	1500		-	-	157
81 E	FPLAG	GI		1091723			-660	-800	5159	-	-	-			
	FpLAg	GL	722748	1092424		-523	-680	-	711						31
											-	-	-	-	15%

TABLE A-2:

Geologic and Water Quality Data from FAS Well Inventory in UEC (Continued)

Geologic and Water Quality Data from FAS Well Inventory in UEC (Continued)
TABLE A-2:

TABLE A-2: Geologic and Water Quality Data from FAS Well Inventory in UEC
(Continued)

APPENDIX B

MONTHLY WATER USE REPORTS SUBMITTED TO THE SOUTH FLORIDA WATER MANAGEMENT DISTRICT

APPENDIXB LIST OF TABLES

Table PageB-1 1989 Monthly Agricultural Pumpage Reports109
B-2 1990 Monthly Agricultural Pumpage Reports 113
B-3 1989 Monthly Public Water Supply Pumpage Reports 118
B-4 1990 Monthly Public Water Supply Pumpage Reports 119

TABLE B-1: 1989 Monthly Agricultural Pumpage Reports

TABLE B-1:
1989 Monthly Agricultural Pumpage Reports (Continued)

TABLE B-1: 1989 Monthly Agricultural Pumpage Reports (Continued)

BCRHITI BACIITY	MOPSILCOORDS														
	SYY	ROW	0 CL	IAN.	IEEP	MAR	APR	MAY	TUN	JUL	406		OCT	NOF	DEC
5600116-13	2	34	18	0.01	0.02	0.04	0.14	0.58	0.04	0.00	0.00	0.00	0.00	0.01	000
5600147. if	2	15	23	0.00	0.00	000	0.00	000	1.30	0.09	000	3.02	0.00	* 000	000
5600147.2	2	15	23	0.00	0,00	0.00	0.00	0.00	1.30	0.00	0.00	3.02	0.00	000	0.00
5600147.3	2	15	3	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	3.02	0.00	000	0.00
5600147-4	2	\pm	23	0.00	0.00	0.00	0.00	0.00	130	0.00	0.00	3.02	000	0.00	000
5600417-1	2	17	27	0.00	0.00	000	0.00	0.00	0.00	000	0.00	000	000	0.00	0.00
5600417.2	2	17	28	000	0.00	000	0.00	0.00	0.00	000	0.00	000	0.00	0.00	000
5600417-3	2	17	28	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Q.00	0.00
5600420-16	2	30.	28	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	0.00
5600428-19	2	28	27	000	0.00	0,00	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00
5600428-21	2	27	26	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	000
5600428-22	2	27	26	000	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00
5600428.23	2	27	24	000	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5600428-25	2	77	26	0.00	0.00	0.00	000	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
5600428-18	2	30	27	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5600.73-1	2	10	14	639	680	0.00	0.24	8.76	3.45	0.60	0.00	0.00	0.00	1.8	3.11
5600473-3	2	11	14	639	6.80	000	0.24	8.76	3.45	0.60	0.00	0.00	0.00	1.98	3.11
5600-73-4	2	12	14	639	6.80	0.00	0.24	876	3.45	0.60	0.00	0.00	0.00	1.98	311
5600.73-5	2	12	15	639	6.80	0.00	0.24	886	3.45	0.60	0.00	0.00	000	1.98	3.11
5600473-6	2	12	14	6.39	6.80	000	0.24	8876	3.45	0.60	000	000	0.00	1.98	3.11
5680473.7	2	12	16	6.39	6.80	0.00	0.24	8.76	3.45	0.60	0.00	0.00	0.00	1.88	3.11
5600473-8	2	12	16	639	6.80	0.00	0.34	8.76	3.45	0.60	000	000	0.00	1.98	3.11
5600473-9	2	14	16	6.39	6.80	000	0.24	8.76	3.45	0.60	0.00	0.00	0.00	19\%	3.11
5600473-10	2	14	16	4.39	4.80	0.00	0.24	8.76	3,45	0.60	0.00	0.00	000	1.98	3.11
5600473-11	2	14	17	6.39	6.80	0.00	0.24	8.76	3.45	0,60	0200	0.00	0.60	1.98	3.11
5600473-12	2	12	17	6.39	6.80	0.00	02.24	8.76	3.45	0.60	0.00	0.00	0.00	196	3.11
5600473-13	2	15	17	6.39	6.80	0.00	0.24	8.76	3.45	060	0.00	0.00	0.00	1.98	3.11
5600473-14	2	15	17	6.39	680	0.00	0.24	8.76	3.45	0.60	0.00	0.00	0.00	1.98	3.11
5600473-16	2	13	17	6.39	6.80	0.00	0.24	8.76	3.45	0.60	0.00	0.00	0.00	4.98	3,11
5600473-17	2	15	18	6.39	6.80	0.00	0.24	8.76	3.45	0.60	0.00	0.00	0.00	1.98	3.11
5600473-18	2	15	16	6.39	6.80	0.00	0.24	8.76	3.45	0.60	0.00	0,00	0.00	198	3.11
5600473-19	2	15	18	6.39	680 =	0.00	0.24	876	3.45	0.60	000	0.00	0.00	1.98	3.11
5600473-20	2	15	16	6.39	6.80	0.00	0.24	B. 76	3.45	0.60	0.00	000	0.00	198	3.11

TABLE B-1:
1989 Monthly Agricultural Pumpage Reports (Continued)

TABLE B-2: 1990 Monthly Agricultural Pumpage Reports

TABLE B-2: 1990 Monthly Agricultural Pumpage Reports (Continued)

TABLE B-2: 1990 Monthly Agricultural Pumpage Reports (Continued)

$\begin{aligned} & \text { PEMIIT/ } \\ & \text { PACnITY } \end{aligned}$	MODFL COORDS				SO PUMP	TS IN Mit	ON GA	NS PER	ONTH	
				HAN	FEB	MAR	AFR		TUN	$\pi \mathrm{LL}$
	LAT	ROW	COL							
5600147/1	2	15	23	0.00	0.00	0.78	0.00	0.00	1.30	0.00
5600147/2	2	15	23	0.00	0.00	0.78	0.00	0.00	1.30	0.00
	2	15	23	0.00	0.00	0.78	0.00	0.00	1.30	0.00
	2	15	23	0.00	0.00	0.78	0.00	0.00	1.30	0.00
	2				0.00	0.00	0.00	0.00	0.00	0.00
$5600417 / 1$		17	27	0,00	0.00					
$5600417 / 2$	2	17	28	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5600417/3	2	17	28	0.00	0.00	0.00	0.00	0.00	0.00	0.00
56004173	2			0.00	0.00	0.00	0.00	0.00	0.00	0.00
$5600417 / 4$		17	28				0.00	0.00	0.00	0.00
$5600417 / 5$	2	17	28	0.00	0.00	0.00	0.00			
5600417/6	2	17	28	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5600417/7	2		28	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		17					0.00	0.00	0.00	0.00
$5600417 / 8$	2	17	28	0.00	0.00	0.00				
$5600417 / 9$	2	17	28	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5600417/10	2	17	27	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$5600417 / 11$	2			0.00	0.00	0.00	0.00	0.00	0.00	0.00
		17	28						0.00	0.00
5600417/12	2	17	28	0.00	0.00	0.00	0.00	0.00		
5600417113	2	17	28	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5600417/14			28	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2	17				0.00	0.00	0.00	0.00	0.00
$5600428 / 16$	2	30	28	0.00	0.00	0.00				
5600428/19	2	28	27	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5600428/21		27	26	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				0.00	0.00	0.00	0.00	0.00	0.00	0.00
5600428/22	2	27	26	0.00					000	0.00
5600428/23	2	27	24	0.00	0.00	0.00	0.00	0.00		
5600428/24	2	27	26	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					0.00	0.00	0.00	0.00	0.00	0.00
5600428/25	2	30	27	0.00	0.00					
5600428/26	2	33	28	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5600428/27			28	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2						0.24	15.74	4.54	1.21
5600473/1	2	10	14	1.38	0.49	1.38				
5600473/2	2	11	14	1.38	0.49	1.38	0.24	15.74	4.54	1.21
					0.49	1.38	0.24	15.74	4.54	1.21
5600473/3	2	12	14	1.38						
5600473/4	2	12	15	1.38	0.49	1.38	0.24	15.74	4.54	1.21
5600473/5	2	12	14	1.38	0.49	1.38	0.24	15.74	4.54	1.21
	2		14	138	0.49	1.38	0.24	15.74	4.54	1.21
5600473/6	2	12	16	1.38						
	2	12	16	1.38	0.49	1.38	0.24	15.74	4.54	1.21

TABLE B-2:
1990 Monthly Agricultural Pumpage Reports (Continued)

TABLE B-2: 1990 Monthly Agricultural Pumpage Reports (Continued)

n
n
n
n
n
n
n
n
等
年
诠
분
$10.00 \quad 10.00$
2.40
2.90
TABLE B-4: 1990 Monthly Public Water Supply Pumpage Reports

莫	1		1	E	8	1	*	$\stackrel{y}{7}$	$\stackrel{8}{8}$	8	1	1	1	1	1		8	욱	8
3	1	1	1	$\stackrel{7}{4}$	8		웅	$\stackrel{8}{8}$	8	8	,	1	1	1	1	$\stackrel{0}{0}$	8	第	-

APPENDIX C
 1 WATER USE PERMIT INFORMATION

APPENDIX C

INTROIUCTION

This appendix contains information on individual water use permits issued by the Water Use Division, Regulation Department, South Florida Water Management District. The one exception is the Indian River water use permits which were issued by the St. John's River Water Management District. The information on these spreadsheets was used to compile well withdrawal data used in this model.

Permits issued through January 1991 are included in this appendix. The information is organized into five spreadsheets. The five sections are organized by county. They are listed in the following order: St. Lucie, Martin, Okeechobee, Indian River and Osceola counties.

APPENDIX C
 WATER USE DATA LIST OF SPREADSHEETS BY COUNTY

Page126
Key to the Codes 128
St. Lucie County 200
Martin County 206
Okeechobee County 211
Indian River County 241
Osceola County

Key to the Codes

```
    AN.ALL, = Annual PeermiEted Allocation
            Annual Allocation Unizs
            01 = MGD
            02 M MGM
    OJ=MGY
    04 = AC-FT
    MAXMO = Maximum Monchly Fermiteed Allocacion
        O1 = MGE
    O2 = MGM
    03=AC-FT
    CO - County Code (from permit number)
    DATE IsS * Date Permit Issued (mo/yr)
    USE TYPE * AG,IND,GLE,PWS,COM, REC
    SRC = Source {Sw,GW, BOTH)
    NO.WLS. - Number of ACTIVE permitted wells
    SWPMPS = Number of Surface Water Pumps
    DEVNO. - Develapmenc Numberfor
    AO. * Aquifer prajected uses only)
            01 = Hacer Table
        02 = Surficial (Semi-confined)
        03 = Lower Tamiami
        04 = Sandstone
        OS = mid-Hawthorn
        06 = lower Hawthorn
        07 = Suwannee
        08= Floridan
    09 = Biscayne
CROP TYPE = Blaney-criddle Code
            1I =Alfalfa
            12 = Avacado
            13-Cisrus
            14 - Grapes
            15=Turf
            16 - Suger Bete
            20 = Paseume
            51 = Dry Eeans
            52 - Green Beans
            53=Grain Corn
            54 - Silage Corn
            55 - Sweet corn
            56 = Melons
            57 = Peas
            S8= Potaco
            59 = Soybeans
            60= Tomato
            61 = Small vegetable
            5 or $70 = Nursery
            air Station Code Number
            = NAPLES
            = FT. MYERS
            - WEST PALM BEACH
            = STUART
            - FT. LAUDERDALE
            = KISSIMMEE
            - melbourne
            = ORLANDO
            - TITUSVYLLE
            - FEILSMERE
            * ET. PIERCE
            = OKEECHOBEE
            = AVGN PARK
            =- MOORE HAVEN
            = LABELIE
            = BELLE GLADE
            = LOXAhATCHEE
            = JUPITER
            = TAMIAMI 4
            = HOMESTEAD
            = YOMPANO UEACH
            = INDIANTOWN
            = HYPOLUXO
    = BIG CYPRESS
    = Everglades
    = HIALEAH
    = IAKE P:ACIO
    * MERRIT ISLANO
    = VERO SEACH
```


Key to the Codes (Continued)

```
LOS = Levei of Service lleave blankl
STs= Starus
    O1=Existing
    02 = Proposed
    03 = Stand By/Backup
    04 = To Be Plugged
DPTH CODE = Darum for Elevations
    01 = NGVD
    02=Land Sisface
    FINT = Depth to Pump Intake (wells Onlyl
PUMP TYPE
            01 - Centrificai (suction)
            02 = Liff (turbine. jet, submersible)
            03 = Unknown (SN (Gacilities)
    03 = Capacity in GPM (SH & GN Facilities)
            01 = Unxnown
    MTR? = Is use Metered by Volume of Powe Distyict?
            Consumption and Reported to the Distitet
                    Y & Yes
                    N = No
    YPLNR = North Planar Coordinate
    XPLNR = East planar Coordinace
```


St. Lucie County

Water Use Spreadsheets

 PERMIT AN.
MO.
LIME 2+ MEADINGS (Iable 1-Existing Water Use - facilitien Information for Each Permit)

\bigcirc	\cdots	\cdots	$\%$	0	4	\cdots	6	\cdots
O	N	管	8	\％	\％	${ }_{\sim}^{5}$	m	¢
$=$	$=$	$=$	\checkmark	$*$	$=$	こヲ	$=$	＝
$\stackrel{\square}{-}$	$\stackrel{0}{\square}$	$\stackrel{m}{\sim}$	9	\bullet	$\stackrel{0}{0}$	$\stackrel{\sim}{\sim}$	$\xrightarrow{\sim}$	∞
m	m	m	\cdots	\cdots	［	MN	m	¢
\％	8		8	8	8	88	罗	\％

2012.5 | is auess | | | |
| :--- | :--- | :--- | :--- |
| 08 | 13 | 1.5 | 11 |

 종ㅈㅇㅇ立总 apk
in

5

8
等

龺芳

8

 N

LINE 24 MEADIMGS (table 1 - Existing Later Use. Facllities Information for Each Permit)

8

0
\div

9

 운

 8888888888888888888 K $\stackrel{\circ}{\circ}$

 N $\stackrel{m}{0}$
\qquad
家
苟

$5600118-21$	083	01
$5600118-19$	083	01

$\begin{array}{lrr} & 86.8 & 04 \\ 5600122-1 & 072 & 01 \\ 5600122-2 & 072 & 01\end{array}$

落

[^3]

LIME 2＋HEADIMGS（1able 1 －Existing Uater Use－Facilities Information for Each Perwit）

n

今 88988888888888888888888888

88
NㅡㅇNㅇㅇ 888
mu

吅：：：
 988

MES
NN
n
$\stackrel{+}{+}$
$5600144 \mathrm{~W} \quad 5600144^{10.1^{10}}$
n

5600146 H

枵员串莒
天 동응

MEO
NNㅡㅇ

560014 N

HPLugced, cap estimated
Cep. estimated
Cap est.
Cap est.
Cap est.
Cep eat.
Cep est.

88888888888888888888888888888888888888

LIWE 2+ HEADIMGS (Toble 1 - Existing Water Use - Facilities Information for Each Permit)

8	in
	只
$=$	$=$
$\underline{\sim}$	\cdots
m	m
8	8

\qquad Cep estimated
cap eat.
$c-1,24 "$ quap
$c-1,24$ mpump
$c-18,24$ mpup
$c-1,26$ ". c-1, 26 UPANP, to

备
31670 AGR OM
OUAD. HELL DPTM
NO. STSDIA. COD

56002196	10		03	3.302
	5600219-1	61	1	602
	5600219-2	61	1	302
56002204	10		03	3.402
	5600220-1	72	1	802
5600221w	729		03	268.5

LIME 2+ HENDIMGS CTable 1-Existing Water Us
PERMIT FACIITIY
MO. MUMER

 All MAX MO. OATE USE SACNO.
UWI WO. UTS CD IS. TYPE ULS

문	吕	\%	\%	\%	4	0
盛	$\stackrel{8}{i}$	$\stackrel{9}{9}$		-	$\begin{aligned} & \text { 우 } \\ & \text { in } \end{aligned}$	$\stackrel{\square}{\square}$
F=	$=$	$=$	F	$=$	$F=$	$=$
$\stackrel{0}{\circ}$	$\stackrel{\square}{-2}$	$\stackrel{0}{0}$	$\stackrel{\sim}{2}$	¢	$\stackrel{0}{0}$	$\stackrel{\circ}{0}$
¢ ${ }^{\text {m }}$	m	\cdots	2	\cdots	$\cdots m$	가N
88	¢	8	\%	8	88	8

LIME 2+ MENDIMGS (Table 1 - Existing Water Use - Facilities Information for Each Perwit)

6473781128205 an 00

 $\begin{array}{lllllll}\text { ALL } & \text { max } & \text { Mo. } & \text { DATE } & \text { USE SRCWO. } & \text { SW } \\ \text { UNT } & \text { MO. } & \text { UTS CO } & \text { TSS. } & \text { TTPE } & \text { MS. PTMNS }\end{array}$

[^4]

 MO.

[^5]

LINE 2+ MEADIWGS (Table 1 - Existing Water Use - Facilities Information for Emch Pernit)

PERMIT AN.
wo. ALI

2 EvaMs phoperties, iWC. cep. is eatimeted ${ }^{56}$

$$
3
$$
\[

$$
\begin{gathered}
8.28 \\
5600378-1 \\
\\
\\
\hline
\end{gathered}
$$
\]

\qquad
88888888

$$
50241150
$$

$$
\begin{array}{lllll}
500 & 124 & \text { It } & 5.6 & \text { at } \\
90 \\
590 & 81 & \text { H } & 00 & \text { at } \\
00
\end{array}
$$

$$
71000 \text { ACA }
$$

$$
\begin{array}{ll}
3 & 2 \\
6 & 2
\end{array}
$$

823

8888
56

56003034
突

LIME 2+ MEADIMGS (Table 1- Existing Water Uke - Fecilities Information for Eech Pernit)

 PEFE==
PERMIT AM. NO. MLL.
LTWE 2+ HEAOIMGS (Teble 1-Existing Water Use - Facilitied Information for Each Permit)

 MO.

	0 0 0 0 0	M 0 8	$\begin{aligned} & \mathbb{K} \\ & \mathbf{~} \\ & = \end{aligned}$	$\begin{aligned} & \text { m } \\ & \dot{0} \\ & \text { o } \end{aligned}$
	$=$	F	＊	$=$
	\because	$\stackrel{n}{2}$	$\stackrel{0}{0}$	$\stackrel{\infty}{0}$
	포	m	n	m
	8	8	¢	8
$\frac{\dot{ }}{\mathbf{t}}$	友 突		$\begin{aligned} & R \\ & k \\ & \text { 䓌 } \\ & \text { N } \end{aligned}$	梙
	$\begin{array}{r} 8 \\ 8 \\ ! \end{array}$	요	N	8
8 8 0 0			嵒	
88888：		． 9888	청	8
 天 88 二＝二＝＝	 	莫元五云云 3p㐌品 		
	 		第第	
$8 \text { 880 }$			－	$-x$
\cdots＊＊		$\begin{gathered} * *-F \\ 5 \quad n= \end{gathered}$	$\begin{aligned} & \text { 最 } N \\ & \text { N } \end{aligned}$	${\underset{8}{8}}_{\substack{8 \\ 8}}^{*}$
Opirio				$\frac{0}{6}$
		Nar	읒	N
$\begin{array}{r} 888 \\ 60 \\ \hline \end{array}$	人28888888888888888888888888888888 		8	mid
RRERE		NREN	MN \％	m
	앙 呂 		－	8
	5600473 184	$\begin{aligned} & \text { N } \\ & \text { 苍 } \\ & \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 曷 } \end{aligned}$	哭

PERMIT AN.
MO. ALL.
mx=
LIME 24 MEADIWGS (Table 1 - Existing Water Use - Facilities Information for Each Permit)

91384 PUSgM 20 EASTLINO DEVELOPERS, IWC.

==:
 permit AN.
no.
LINE 2+ MEADIMGS (TAble 1-Existing Water Use - Facilities Information for Each Permit)

 LIME 1 HEADIWGS (jeble 1 - Existing Weter

[^6]

LIME 2+ WENDINGS (Table 1-Existing Water Use - Facilitlen Information for Euch Pefmit) PERHIT PACILITY GUMD. WELL OPTH PMP PUM PUNP

 IINE 1 HEAOINGS（Toble－EXISting Wal

PERMII AN．
wO．
ALL
LIME 24 HEADIMGS（iable 1．Existing Water Use－Fecilities Informotion for Eech Permit）

	$\begin{aligned} & 6 \\ & \vdots \\ & \mathbf{6} \end{aligned}$		N	\sim \sim \sim			$\begin{aligned} & \stackrel{\sim}{0} \\ & 0 \\ & 0 \end{aligned}$	\％ 家 8.
	F			$=$			$=$	$=$
	$\underline{\sim}$			\cdots			\cdots	\cdots
	0	\cdots		8			m	\cdots
N	\％	응	\％	8	N	$\underset{0}{ }$	8	8

$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { 带 } \\ & \text { 落 } \end{aligned}$	$$	$\begin{aligned} & \text { Z } \\ & \text { N } \\ & \text { 宽 } \end{aligned}$		$\begin{aligned} & \text { Z } \\ & \text { N } \\ & \stackrel{y}{4} \\ & \end{aligned}$	8 8 8 8 8	2 友 8	
n	8	i_{0}	\％	\％	8	옹	8	8

- 品－ 8 －n Nmo
- 呙－n－n ～ 8 品

5600722
5600723
5600727
5600731

8 0 忽 5600739

5600740
5600747
5600748

MO. ALi
LIME 2+ HEADIMGS \{Table 1-Existing Uater Ust Fecilities informetion for Each Perwit)

 LIME 1 headings (rable • Existing Uater Use - Permit Information and Toble 2 - Forcasted Agricultural Demand for Each Permit)

LIME 2+ HEADIMGS (Table 1-Existing Mater Use - Facilities information for Eech Permit)

(inas

Martin County

Water Use Spreadsheets

Martin County

[^7]

Floridan majifer System Nells Owly

LIME 1 HEMOIMGS (lable 1-EXisting Weter Use - Permit Information and Table 2 - Forcasted Agricultural Demand for Each Permit)

Okeechobee County
 Water Use Spreadsheets

Okeechobee County

LIWE 24 MEADIMGS（TAble 1 －Existing Water Une－Fecilitidtinformation for Ench Permit）

\cdots	\cdots	$\stackrel{0}{0}$	\cdots		0
9	R	会	$\div \frac{9}{6} \frac{\tilde{\sim}}{2}$		$\underset{\sim}{\sim}$
N	～	$=$	$\sim \sim$	\simeq	N
\cdots	\odot	\cdots	∞	$\stackrel{4}{8}$	0
8	간	$\stackrel{m}{ }$	OM	\cdots	只
8	8	8	88	8	8

z ${ }^{\text {NOS }}$	릉	즘	쥰		중	7
0	\％	5	¢		$\stackrel{9}{8}$	
오ㅇㅛㅠ응	0	우N		388888888	E8，	EpgR8
	－	\bigcirc			${ }^{5} \mathrm{C}$	号号号
	N	N			\％	
$\cong \infty \infty$	$\min _{\mathrm{m}}$	$\leqslant 8$			58	8888

4700005	482.08	03
	4700005－1	8003
	4700005－2	8003
	4700005－3	8003
	4700005－4	8003
4700014	1780	04
	4700014－1	9201
4700022	278.1	03
	4700022－1	5901
$\begin{aligned} & 4700023 \\ & 4700023 \end{aligned}$	1663.45	03
	4700023－1	5901
	4700023－2	5901
	4700023－3	5901
	4700023－4	5901
	4700023－5	7001
	4700023－6	7001
	$4700023 \cdot 1$	70.1
	4700023－8	7001
	4700023－9	7001
	4700023－10	7001
	4700023－11	7002
4700036	171.23	03
	4700036.1	8001
4700039	241．04	03
	4700059－1	9301
	4700039－2	9301
	4700039－3	9301
	4700039－8	9301

مi	in	$\stackrel{0}{0}$
8	啚	$\stackrel{\sim}{\sim}$
9	\simeq	$\stackrel{ }{\sim}$
$\stackrel{\square}{8}$	\％	$\stackrel{\text { ¢ }}{0}$
$\stackrel{\sim}{\sim}$	Σ	m
男	g	8

R

룾

\＆

 ¢88888 88888888888888888888888888888888芴

豆票另析甬票彩总

名易 융 9898888989798它

n
$\%$
8

\cong
0

m	8
$\%$	8

8

$\stackrel{\mathrm{C}}{\mathrm{N}}$

Nㅜㅇ옹 888 © 0

4700055

	－	ต9y	N
	5	必忩	首
	$\underset{\sim}{\sim}$	N N	N
	θ	$\theta 0$	
	8	禺	
最	8	日88	8

중
응

M8 $F{ }^{8}$

퐁풍

 888
43.200
12.000

8
$\mathbf{8}$

88888888888888 mioㅇ

Man
\％
80 ${ }_{4700081-\mathrm{kl}}^{470081-\mathrm{W} 2}$
4700081

> Indian River County Water Use Spreadsheets
Indian River County

PERYIT AN.
NO. ALI.
LINE 2+ HEADIMGS (lable 1 - Existing Mater Use - facilitiea Information for fach Perait

6100073	$\begin{aligned} & 479.7 \\ & 6100073-1 \\ & 6100073-2 \end{aligned}$	$\begin{array}{r} 03 \\ 6001 \\ 60 \end{array}$	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \end{aligned}$	$\begin{gathered} 61 \mathrm{~B} / 77 \\ 968 \\ 1050 \end{gathered}$			$\begin{aligned} & 900 \\ & 900 \\ & 900 \end{aligned}$	BECKER GRONES 4 5	59	$\begin{aligned} & \text { of } \\ & \text { 00 } \end{aligned}$	$\begin{aligned} & 11,12,13,14 / 33 / 37 \\ & 11,12,13,14 / 33 / 37 \end{aligned}$	08	13	0.8	31	12800.50
8100076	$6100076-1^{T .1}$	$\begin{array}{r} 03 \\ 6001 \end{array}$	5.00	02	61 6/77	AG		300^{1}	COL. ChARLES	$\begin{aligned} & \text { R. } \mathrm{CAR} \\ & 20 \mathrm{Cu} \end{aligned}$	$\begin{gathered} \text { TER } \\ 00 \end{gathered}$	16/33/38	08	13	0.8	31	180.50
6100077	$\begin{aligned} & 6100077-1 \\ & 6100077-2 \\ & 6100077-3 \end{aligned}$	$\begin{array}{r} 03 \\ 6101 \\ 6101 \\ 6101 \\ 6101 \end{array}$			11/85	AG	G	3 200 200 200	BUEMA VISTA 8 8 8	$\begin{aligned} & \text { CRONES } \\ & 24 \mathrm{GW} \\ & 24 \mathrm{cw} \\ & 24 \mathrm{GM} \end{aligned}$	$\begin{aligned} & \text { 08 Cap.Est } \\ & \text { 08 Guess } \\ & \text { of } \end{aligned}$	31/33/39	Oat	13	0.6	31	1900.50
6100078	```8100078-1 6400070-2 6100078-3 4 1 . 0```	$\begin{aligned} & 03 \\ & 01 \\ & 01 \\ & 01 \end{aligned}$	$\begin{aligned} & 10.00 \\ & 10.00 \\ & 10.00 \end{aligned}$	02 02 02	$\begin{aligned} & 616 / 77 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	AG	GN	$\begin{array}{r} 3 \\ 750 \\ 300 \\ 400 \end{array}$	$\begin{gathered} \text { D. S. beaty } \\ 3 \\ 3 \\ 3 \end{gathered}$	$\begin{aligned} & 19 \mathrm{~cm} \\ & 19 \mathrm{~cm} \\ & 20 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 04,05 / 33 / 38 \\ & 04,05 / 33 / 38 \\ & 04,05 / 33 / 38 \end{aligned}$	08	13	0.8	31	1200.50
6700079	$6100079-1$ $6109079-2$ $6100079-3$	$\begin{aligned} & 03 \\ & 61 \\ & 61 \\ & 61 \\ & 61 \\ & 61 \\ & 61 \end{aligned}$	4.00 4.00 4.00	$\begin{aligned} & \mathbf{0 2} \\ & 02 \\ & 02 \end{aligned}$	61 6/77	AG	CH	$\begin{array}{r} 3 \\ 125 \\ 100 \\ 100 \end{array}$	$\begin{gathered} \text { D. S. geaty } \\ 4 \\ 4 \\ 4 \end{gathered}$	$\begin{aligned} & 23 \mathrm{GW} \\ & 23 \mathrm{GW} \\ & 23 \mathrm{cw} \end{aligned}$	$\begin{aligned} & 08 \\ & \text { OB } \\ & \text { 00 } \end{aligned}$	12/33/38 12/33/3a 12/33/38	08	13	0.8	31	400.50
6100082	$\quad 13.1$ $6100082-1$ $6100082-2$ $6100082-3$ $6100082-4$	$\begin{aligned} & 03 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \end{aligned}$	$\begin{aligned} & 5.00 \\ & 5.00 \\ & 5.00 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \\ & 02 \\ & 02 \end{aligned}$	$616 / 77$ 400 400 400 400	Ac	CuI	$\begin{array}{r} 4 \\ 230 \\ 135 \\ 135 \\ 135 \end{array}$		$\begin{aligned} & 25 \mathrm{~cm} \\ & 25 \mathrm{ow} \\ & 25 \mathrm{cw} \\ & 25 \mathrm{ow} \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	05,00/33/39 05,00/33/39 05,08/33/39 05,08/33/39	08	13	0.8	31	350.50
${\underset{C N}{N 1}}_{N}^{N} 6100083$		$\begin{aligned} & 03 \\ & 60 \\ & 60 \\ & 60 \\ & 60 \\ & 60 \\ & 60 \\ & 60 \\ & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{array}{r} 6.00 \\ 4.00 \\ 6.00 \\ 4.00 \\ 10.00 \\ 8.00 \end{array}$	027	$615 / 85$ 750	AG	OH	$\begin{array}{r} 5 \\ 250 \\ 100 \\ 250 \\ 100 \\ 400 \\ 400 \end{array}$	BANYAM GROVE 6 6 6 6 6 6	IMC. 22 GN 22 GM 22 GH 22 GN 22 EM 22 cm	08 CAP,EST. de CAP.EST. de CAP.EST. 06 CAP.ESI. OO CAP.EST. 08 CAP.EST.	233338	08	13	0.8	31	1850.85
6100085	$\begin{aligned} & 6100005-1 \\ & 6100005-2 \end{aligned}$	$\begin{array}{r} 03 \\ 5901 \\ 5901 \end{array}$	$\begin{aligned} & 4.00 \\ & 4.00 \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \end{aligned}$	$\begin{aligned} & 616 / 77 \\ & 300 \\ & 300 \end{aligned}$	AG	CW	$\begin{array}{r} 2 \\ 75 \\ 305 \end{array}$	E. W. MATHEWS	149 14 Cu	$\begin{aligned} & \mathbf{0 6} \\ & 06 \end{aligned}$	$\begin{aligned} & 09 / 33 / 37 \\ & 09 / 33 / 37 \end{aligned}$	08	13	0.8	31	1000.50
6100086	$\begin{aligned} & 6100006-1 \\ & 6100006-2 \end{aligned}$	$\begin{array}{rl} 03 \\ 60 & 01 \\ 60 & 01 \\ 60 & 01 \end{array}$	$\begin{aligned} & 6.00 \\ & 6.00 \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \end{aligned}$	$\begin{aligned} & 617 / 78 \\ & 500 \\ & 500 \end{aligned}$	AG	CN	$\begin{array}{r} 2 \\ 360 \\ 360 \end{array}$	$\begin{gathered} \text { GRAVES BROTMER: } \\ 7 \\ 7 \end{gathered}$	$16 \mathrm{Gw}$ $\begin{aligned} & \text { ERS CONP } \\ & 15 \mathrm{CH} \\ & 16 \mathrm{GM} \end{aligned}$	$\begin{aligned} & \text { PaNY } \\ & \text { of } \\ & \text { oe } \end{aligned}$	$\begin{aligned} & 26,27 / 33 / 37 \\ & 26,27 / 33 / 37 \end{aligned}$	06	13	0.8	31	2000.50
6100089	3960.0 $6100009 \cdot-\mathrm{A}$ $6100009 \cdot-\mathrm{B}$ $6100069-\mathrm{C}$ $6100009 \cdot-\mathrm{D}$ $6100009-\mathrm{E}$ $6100089-\mathrm{F}$ $6100009 \cdot \mathrm{G}$	$\begin{aligned} & 03 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \\ & 01 \end{aligned}$	$\begin{aligned} & 12.00 \\ & 10.00 \\ & 10.00 \\ & 10.00 \\ & 10.00 \\ & 10.00 \\ & 12.00 \end{aligned}$	$\begin{aligned} & 01 \\ & 02 \\ & 02 \\ & 02 \\ & 02 \\ & 02 \\ & 02 \\ & 02 \\ & 02 \end{aligned}$	$\begin{gathered} 112 \\ 60 \\ 80 \\ 80 \\ 80 \\ 570 \\ 82 \\ 112 \end{gathered}$	PWS	01 02 02 02 02 02 02 02	$\begin{array}{r} 500 \\ 200 \\ 250 \\ 290 \\ 1200 \\ 450 \\ 400 \end{array}$	cITY OF VERO 727705. 10606	日EACH $G \mathbf{G H}$ $G \mathbf{G H}$ $G \mathbf{G H}$ GH GH GH GH	02 02 02 02 08 02 02 02			13			185

DITE USE SRC.NO. SU DATE USE SRC.NO.
ISS. TYPE 425.
LIME 24 MEADINGS (Table 1 - Existing Water Use - Facilitien Information for Each Permit)

08	13	0.8	31	160	0.50
00	13	0.8	31	240	0.50
08	13	0.8	31	120	0.50
08	13	0.8	31	60	0.50
08	13	0.8	31	40	0.50
08	13	0.8	31	240	0.85
08	13	0.8	31	60	0.50

29／33／39

03／33／38

janice meiman mosenthal
 ： 88产部 जn若 mm
－
\dot{j}

7	\％	3	\％	z	ㄹ	完
$\underline{4}$	8	9	8	$\underline{4}$		\％
$\underset{8}{9}$	$\stackrel{4}{5}$	$\stackrel{\pi}{6}$	$\stackrel{\text { M }}{8}$	$\stackrel{N}{\Sigma}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\frac{8}{2}$
6员号吕	－呂员号名灾	\square	－	\％ 8		5
§8\％			\％	§	NㅡㅇNㅇㅇㅇㅇ	종
888 ∞	88888 ©0．	$\begin{aligned} & 88 \\ & \text { ninin } \end{aligned}$	$\underset{6}{8}$	$\underset{\substack{8 \\ \hline \\ \hline}}{ }$	8888 00.0	88
$\begin{array}{r} 5555 \\ 888 \end{array}$	$\begin{array}{r} 55555 \\ 488888 \end{array}$	$\begin{array}{r} 6555 \\ 885 \end{array}$	5	$\begin{array}{r} 55 \\ 8 \end{array}$	$\begin{array}{r} \text { m65 } 5 \overline{5} \\ 8888 \end{array}$	$\begin{array}{r} 555 \\ 88 \end{array}$
			$\begin{gathered} \infty \\ \stackrel{\infty}{\circ} \\ \frac{8}{8} \\ \frac{8}{6} \end{gathered}$			

888898888889888888 Nِ

1000.50
1240.85

N
$\stackrel{\circ}{\circ}$
N
會
0
0
8
0
8
9
0
0
0
0
0
$\begin{array}{lll}0 & 0 & n \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}$

\bar{m}	\bar{m}	-	\bar{m}	\bar{m}	\bar{m}
$\stackrel{\circ}{6}$	$\stackrel{\circ}{\circ}$	$\stackrel{0}{0}$	$\underset{\sim}{\infty}$	-0	$\stackrel{\bullet}{0}$
\cdots	m	\cdots	m	m	\cdots
\%	8	8	¢	8	8

m	in
$\stackrel{0}{0}$	$\stackrel{0}{0}$
m	m
8	8

$23 / 33 / 38$

$19 / 33 / 39$

$12 / 33 / 37$

$24 / 33 / 37$

$36 / 33 / 36$

$10 / 33 / 38$
$10 / 33 / 38$

$04 / 33 / 39$
$06 / 33 / 39$
$04 / 33 / 39$
$04 / 33 / 39$
$04 / 33 / 39$

$39 / 33 / 39$
$39 / 33 / 39$
$39 / 33 / 39$
$39 / 33 / 39$

$26 / 33 / 38$

응

$6100253 \quad \underset{6100253-1}{143.9} \quad 03$

6900255

6100262 - $^{10.8} \quad 6001$

$6100267 \quad 36.4 \quad 03$

LIME 2＋MEADIMGS（Iable 1－Existing tater Use－Facilitiez Information for Each Perwit）

$32 / 33 / 36$
$09 / 33 / 36$
$27 / 33 / 36$
$26 / 33 / 30$
$31 / 33 / 39$
$30 / 33 / 40$
$04 / 33 / 30$
$28 / 33 / 39$
$28 / 33 / 39$
$27 / 33 / 38$
$04 / 33 / 36$
$09 / 33 / 37$
 WILLINM L．MICHOLAS

$\begin{array}{r} 65 \\ 8 \end{array}$	$\begin{array}{r} 55 \\ 8 \end{array}$	$\begin{array}{r} 10 \\ 0 \\ 0 \end{array}$	$\frac{35}{6}$	$\begin{array}{r} 85 \\ 8 \end{array}$	me	SE	$\begin{array}{r} \text { Mo } \\ 505 \end{array}$	$\begin{array}{r} 85 \\ 8 \end{array}$	$\begin{array}{r} \text { 영 } \\ 8 \end{array}$	$\begin{array}{r} 5 \% \\ 0 \\ \hline \end{array}$
						$\begin{aligned} & \stackrel{y}{3} \\ & \hline \text { 焄 } \\ & \frac{0}{6} \end{aligned}$				兼
$\frac{8}{6}$	$\begin{aligned} & \infty \\ & \stackrel{0}{0} \\ & \stackrel{6}{6} \end{aligned}$	$\frac{8}{6}$	$\begin{aligned} & \text { 号 } \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 合 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { O} \end{aligned}$	$\stackrel{F}{\bar{\circ}}$	$\begin{aligned} & \stackrel{N}{0} \\ & \frac{0}{6} \\ & \frac{6}{6} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \frac{0}{0} \\ & \hline \end{aligned}$	皆

	6100317-1	60.01	6.00		900		500		4	21 cw	dod		10/33/38						
6100318	$6100318-22^{24.98}$	$\begin{array}{r} 03 \\ 6001 \end{array}$	6.00		${ }_{900}^{615 / 84 ~ A G}$		403	PAYES	${ }_{4}^{483}$	ROVE 21 cw	0.		10/33/38	08	13	0.8	31	40	. 50
6100319	710.4	03			$617 / 84 \mathrm{nlm}$	SW		1 ImDian	IM RIVER	$\begin{gathered} 120 . \\ 21 \\ 21 \\ 51 \end{gathered}$	$\begin{gathered} \text { tireucc } \\ 99 \end{gathered}$		34/33/38	99	13	0.8	31		
6100321	$610032 t-10^{164}$	03 6101			61 5/84 GLF	8014		vista	Proper	Ritis of	V Vero meach			08	15	0.4	31		
	$6100321-11$	8101	4.00	02			205			30 cm	$081 / 2 \mathrm{cm.w}$	1/2 s.w.	10 19/33/40		15	0.4	31	$1 / 5$. $\sqrt{3}$
	$8100321 \cdot 12$	6101	4.00	02			186		5	30 cm 30 cm	${ }^{08}$		1819/33/40						
	6100321-13	6101	4.00	02			205			30 Gm	08		18 19/33/40						
	6100321-6	6101	4.00	02			222			30 cm	08		12. $19 / 33 / 40$						
	$6100321-7$	6101	4.00	02			205		6	30 cm	08		(1) 19/33/40						
	$6100321-8$ $6100321-9$	6101	4.00	02			212			30 m	$0{ }^{0}$		18 19/33/40						
	$6100321-9$	6101	4.00	02			602			30 kw	08		18 19/33/40						
6100328	$6100328-1^{1.4}$	$\begin{aligned} & 03 \\ & 01 \end{aligned}$	6.00	02	61 8/84 AE	Ew	$\begin{array}{r} 1 \\ 1326 \end{array}$	framik	${ }_{3}^{6 .} \text { EARA }$	${ }_{23}^{\text {RATA }}$	08		01/33/38	08	13	0.4	31	20	. 50
6100329	83.74	03			61 11/86 AG	GH	2	4 BEM HIL	Lt CRIF										
	$6100329-1$ $8100329-2$	59 59	0.00	02	800		575			$13 \mathrm{Gu}$	0s mutt acre			08	13	0.0	31	122	. 85
	6100329-2	59	8.00	02	800		575		6	13 cu	08.2		$\begin{aligned} & 20 / 33 / 37 \\ & 23 / 37 \end{aligned}$						
	6100329.2	5901					2000			13 sw	99		20/33/37						
6100331	20.7	03			$6111 / 8 \mathrm{AG}$	CH	1	JaCKSON	的的s.										
	6100331-1		8.00	02			575		5	$24 \mathrm{cu}$	08 cap.est.		16/33/39	68	13	0.0	31	40	. 85
No 6100333	68.43	03			61 9/88 GLF	morn	14	vISTA	PROPERT	T1ES Of	VERO Beach			08					
	$\begin{aligned} & 6100335-1 \\ & 6100335-8 \end{aligned}$	01 04		02			376		3	24 cm	08		06/33/39	0	15	0.8	31	72	. 85
	6100333-C	01		02			488		3	24 24 2604	08		06/33/39						
	6100333-D	01		02			482		3	${ }_{24} 46$	${ }^{08}$		06/33/39						
	6100333 -A	01		02			500		3	${ }_{24}{ }^{24} 5$	99		06/33/39						
	6100333-0	01		02			482		3	24 SW	99		06/33/39						
	6100533 - B	04		02			500		3	24 sw	99		06/33/19						
	6100333 -0	01		02			402		3	24 54	99		06/33/39						
	$6100333-\mathrm{C}$	01		02			250		3	26 54	99		06/33/39						
	$6100335-\mathrm{D}$	01		02			482		3	24 SW	9		06/33/39						
	$6100533-0$	01		02			180		3	24 54	99		06/33/39						
	6100333-D	01		02			482		3	26 SH	99		06/33/39						
	$6100333-E$ $6100333-D$	01		02			180		3	24 SU	99		06/33/39						
	6100333-F	01		02			482 180	3	3		9		06/33/39						
6100334	68.38	03			61 8/\% GLF	G		YISTA P											
	$6100334 \cdot 1$	6101	3.00	02			93	VISta	5 Propert	29	vero beach			08	15	0.4	31	70	. 75
	$6100334-2$	6101	3.00	02			212	5	5	29 cm	08		13, 18/33/39,40						
	6100334-3	6101	3.00	02			96	5	5	30 cm	00		$13,18 / 33 / 39,40$ $13,18 / 33 / 30.40$						
	6100334-4	6101	3.00	02			186	5	5	30 cm	00		13, 18/53/39,40						
	6100334.5	6101	3.00	D2			186	5	530	30 cu	08		13,18/33/39,40						

permit мо. 	AM. ALL.		ALL	max mo. 	mo. uIS. 푸주줄	co	DATE 1ss.		SRC.	wo. WLS.	SM	Ps OMmer			co	PERMIT MO.	DEV wo.	AO	$\begin{aligned} & \text { CROP } \\ & \text { TYPE } \end{aligned}$	$\underset{\text { Tyolt }}{\text { Solt }}$	$\underset{\mathbf{S T}}{\text { RAIM }}$	1RR ACRES	
LINE 2+ Henolmas (Table 1 - Existing Water Use - Facillities Information for Each Permit) PERMIT FACILITY OUAD. HELL DPTM PHP PIMP PIMP \qquad																							
PERMIt ${ }^{\omega}$	FACILITY MUNER					IN TD	cD		$\begin{aligned} & \text { PUMP } \\ & \text { TYPE } \end{aligned}$				colum sa	ma. conments		S/T/R							
6700337	$6100337-1^{15.8}$			8.00	02	1000^{81}		AG	CM	$\begin{array}{r} 1 \\ 366 \end{array}$		$\operatorname{HILLIAM}_{8}^{T}$	T. brant 16 GI	06		35/33/37		08	13	0.8	31	40	. 50
6100340	$6100340-1{ }^{37.2}$			8.00		611	12/86	6 AG	G	$\begin{array}{r} 1 \\ 575 \end{array}$		$\begin{gathered} \text { DICK SIMOI } \\ 5 \end{gathered}$	$\text { mett } 21 \mathrm{Gw}$	O8 CAP EST.		15/33/38		08	13	0.8	31	72	. 85
6100341	$6100341-1{ }^{27.1}$			8.00			3/87	46	Gu	$\begin{array}{r} 1 \\ 7 t 5 \end{array}$		W.E.ORTM	21 GW			34/33/38		08	13	0.8	31	35	. 50
6100344	$\begin{aligned} & 21.4 \\ & 6100344-1 \\ & 8100344-2 \end{aligned}$		03 01 01	$\begin{aligned} & 6.00 \\ & 6.00 \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \end{aligned}$		3/87	AG	GH	$\begin{array}{r} 2 \\ 250 \\ 250 \end{array}$		$\begin{gathered} \text { F.G. Garal } \\ 3 \\ 3 \end{gathered}$	IIA 24 GN 24 GW	$\begin{aligned} & 00 \mathrm{CAP} . \text { EST. } \\ & 00 \mathrm{n} \end{aligned}$		$\begin{aligned} & 06 / 33 / 39 \\ & 06 / 33 / 30 \end{aligned}$		08	13	0.t	31	47	.t5
6100347	$\begin{aligned} & 6100347-1^{2.6} \\ & 6100347-2 \end{aligned}$	$\begin{array}{r} 03 \\ 6101 \\ 6101 \end{array}$		$\begin{aligned} & 6.00 \\ & 6.00 \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \end{aligned}$		3/87	AG	GW	$\begin{array}{r} 2 \\ 250 \\ 250 \end{array}$		$\begin{gathered} \text { JOHII AHOS } \\ 7 \\ 7 \end{gathered}$	$\begin{aligned} & 24 \mathrm{ck} \\ & 24 \mathrm{Gw} \end{aligned}$	$\begin{aligned} & 08 \text { CAP.EST. } \\ & 08 \mathrm{n} \end{aligned}$		$\begin{aligned} & 30 / 33 / 39 \\ & 30 / 33 / 39 \end{aligned}$		00	13	0.8	31	40	. 50
6100351	$\begin{aligned} & 6100351-1 \\ & 6100351-2 \end{aligned}$	$\begin{aligned} & 03 \\ & 6101 \\ & 6100 \end{aligned}$		$\begin{aligned} & 4.00 \\ & 4.00 \end{aligned}$	$\begin{aligned} & 02 \\ & 02 \end{aligned}$			AG	64	$\begin{array}{r} 2 \\ 700 \\ 100 \end{array}$		$\begin{gathered} \text { thomas bat } \\ 4 \\ 4 \end{gathered}$	ames 27 cN 27 GW	$\begin{aligned} & \text { OB CAP.EST. } \\ & 08 \end{aligned}$		$\begin{aligned} & 10 / 33 / 39 \\ & 10 / 33 / 39 \end{aligned}$		08	13	0.4	31	7	. 50
6100358	$6100358 \cdot{ }^{10.1}$	$\begin{array}{r} 03 \\ 6001 \end{array}$		6.00		618	/85	AG	GW	250		$\text { J.E. Washa }_{5}$	$20 \mathrm{an}$	Of Cap.est.		16/33/38		08	13	0.8	31	54	. 50
6100365	$\begin{aligned} & 14.7 \\ & 6100365-1 \\ & 6100365-2 \end{aligned}$	$\begin{array}{r} 03 \\ 6101 \\ 6101 \end{array}$			027	$\begin{aligned} & 614 / \\ & 760 \\ & 760 \end{aligned}$		16	CW	$\begin{aligned} & 2 \\ & 20 \\ & 20 \end{aligned}$		$\begin{gathered} \text { PRISCILLA } \\ 6 \\ 6 \end{gathered}$	anerikamo 25 cu 25 GM	$\begin{aligned} & \text { OS } \\ & 00 \\ & 00 \end{aligned}$		20/33/39		00	13	0.8	31	30	. 50
6100367	$6100367-1^{253}$	$\begin{array}{r} 03 \\ 5901 \end{array}$		6.00		${ }_{1100}^{615 / 4}$		AG	GW	$\begin{array}{r} 1 \\ 600 \end{array}$		EVAMS PROP 8	PERTIES :M IS GN			32 33/33/37		08	13	0.8	31.	550	. 85
6100368	$6100360^{243.8}$	$\begin{array}{r} 03 \\ 5901 \end{array}$		8.00		$\begin{gathered} 613 / 4 \\ 1100 \end{gathered}$		MG	OW	$\begin{array}{r} 1 \\ 8000 \end{array}$		EVANS phop	PRTIES im 13 GN			29/33/37		08	13	0.8	31	530	. 85
6100369	210.7		3			61 3/		${ }^{\text {ag }}$	W	1		E.e. enove	Es imc.					0\%	13	0.8	31	450	. 8

	$\stackrel{\square}{n}$	\cdots	－	8	$\stackrel{0}{\square}$		k	5	$\stackrel{0}{7}$	\cdots
	\％	9	8	들	\cdots		\bullet	\％	8	m
	\bar{m}	\bar{m}	m	m	\bar{m}	m	\bar{m}	m	\bar{m}	\cdots
	－	$\stackrel{\infty}{6}$	$\stackrel{0}{0}$	$\stackrel{\infty}{6}$	$\stackrel{\infty}{0}$		$\stackrel{*}{*}$	$\stackrel{0}{0}$	$\stackrel{\infty}{0}$	$\stackrel{\infty}{6}$
	m	m	m	m	m		in	m	m	m
	g	g	8	8	8	Nㅡㅇ	8	8	8	8
		$\frac{2}{2}$	侖		$$	$\stackrel{8}{8}$	Nim	$\stackrel{\sim}{i}$	 \＄8	
88： 결를 중 ざざさ mmm	シ 㟶 动8琞888 			$\begin{aligned} & \frac{1}{5} \\ & \frac{4}{5} \\ & =1 \end{aligned}$ 8 영 8室西而百出以～～寮 5mmm					浮 ギさざざきさせまささせさ	
우ㅇㅜㅜㅇㅠN		N号品	－突		－品	- 号	～800	－		mo ${ }^{\text {co }}$
	7	7	Z	\％	E	家	石	3	\％	元
	¢	$\underline{0}$	욜	2	9	喜	$\underline{4}$	9	$\underline{8}$	\％
	$\stackrel{\stackrel{\circ}{6}}{6}$	$\frac{4}{6}$	$\underset{N}{8}$	$\frac{6}{8}$	䇿	8	$\stackrel{6}{\circ}$	管	苍	留
유슝	\bigcirc	$\bar{\circ}$	5	\square	－	－	－888	$\bar{\square}$		5
	天	중정	\％	증Nㅡㅇ	\％	\％	중			Nㅇㅇ응
$\begin{array}{r} 888 \\ 0.80 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 8888 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & 88 \\ & \text { ig } \end{aligned}$	$\stackrel{8}{8}$		8	$\begin{aligned} & \text { 号 } \end{aligned}$	80	¢	8888969888	$\begin{array}{r} 888 \\ 0.60 \end{array}$
	$\begin{array}{r} \text { M } 555 \overline{05} \\ 550 \% \end{array}$	$\begin{array}{r} \text { Mo } \\ \hline 50 \end{array}$	$\begin{array}{r} 8 \% \\ 88 \end{array}$	$\begin{array}{r} 655 \\ 505 \end{array}$	M5	끙	ME5 $5 \overline{6}$	$\begin{array}{r} 50 \\ \overline{0} \end{array}$		M55
									${ }^{n}$ －Onmenurno 	
	$\begin{aligned} & \text { 気 } \\ & \frac{0}{6} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { 若 } \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{0}{2} \\ & \frac{0}{6} \end{aligned}$	$\begin{aligned} & \text { 害 } \\ & \frac{0}{6} \end{aligned}$	$\begin{aligned} & \text { 喜 } \\ & \text { 号 } \end{aligned}$	$\begin{gathered} \bar{\circ} \\ \frac{0}{6} \\ 233 \end{gathered}$	N $\frac{3}{6}$	$\frac{m}{\square}$	花

LINE 2+ MEADIMGS (Table 1-Existing Water Use - Facitities Information for Each Permit) LTME 2

22 an 02

01/33/38

61 12/86 AG GW 4 ramge lime groves imc.

6.00	02
4.00	02

01
03
6101
002
ME5
88%
M
B M
M

6100487-3
610048 A 6100488 ${ }^{-1} 2.7$

8
$6100500 \underset{6100500-9}{18.11}$

	8	9	4		0		\％		4	\％	$\stackrel{\square}{\square}$		0
	\％	\％	$\stackrel{\sim}{0}$		x		\％		\cong	\％	E	－	¢
	\bar{m}	\bar{m}	m		m		m		m	m	\bar{m}	m	\bar{m}
	$\stackrel{\square}{0}$	$\stackrel{\circ}{\circ}$	$\stackrel{8}{8}$		$\underset{0}{0}$		O゙		$\stackrel{0}{0}$	$\stackrel{0}{0}$	$\stackrel{1}{\circ}$	$\stackrel{\text { ¢ }}{0}$	$\stackrel{\square}{0}$
		m	\cdots		\cdots		\％	害	m	m	m	＂	m
	8	8	8	\％	8	8	8	ェ	8	8	8	8	8
品品品品號盛含尽路	罗	$\begin{aligned} & \text { min } \\ & \text { min } \\ & \text { min } \end{aligned}$	$\stackrel{\text { NㅜN }}{\stackrel{N}{N}}$	$\stackrel{g}{\beta}$	$\frac{\text { 翤 }}{\mathbf{N}}$	呙号	各合品	$\begin{aligned} & \text { on } \\ & \text { Nin } \\ & \end{aligned}$	$\frac{y^{2}}{8}$			忍	
－						8							
$\begin{aligned} & \dot{4} \\ & \stackrel{y}{4} \\ & \text { 害 }=3 \\ & 8888 \end{aligned}$		$\begin{aligned} & \text { 岕 } \\ & 0 \\ & 5 \\ & 8 \end{aligned}$		区	8	88	$\begin{aligned} & \text { 㞿 } \\ & \mathbf{3} \\ & 8 . \\ & 88 \end{aligned}$		888			8	
즐 졏			홍	Σ^{3}	$\leq \frac{3}{5}$		我要	$\begin{aligned} & 8 \\ & \text { B } \\ & \text { B } \\ & 3 \\ & 8 \\ & 8 \end{aligned}$	근줄 UNN		毕ニニニ	婁	
ハNべい						$\begin{gathered} \text { AMCELES CORP. } \\ 4 \\ 4 \end{gathered}$							
	－9	－8	－n	\cdots	－8	－88080	－88	－88	M気馬这	MRER	M最上里名	－8	\sim
	3	3	3	后	즁	쥰	7	3	z	\bar{G}	쿤	7	Z
	$\underline{4}$	2	8	年	9	S	4	ك	8	9	8		\％
	$\stackrel{\text { ® }}{\ddagger}$	$\underset{\underset{\sim}{\gtrless}}{2}$	$\stackrel{4}{3}$	$\frac{0}{6}$		oㅜㅇ	$\frac{5}{6}$ － 8	$\frac{6}{6} k n$			5		5
증NNㅇNㅇ	\％	\％	N		상	Nㅜㅇ	중	Nㅡㅇ	N Nㅜㅇ	NㅓㅇNㅇㅇ	정덩앙	웅	
$\begin{aligned} & 8888 \\ & 0.80 \\ & 0.0 \\ & 0 \end{aligned}$	8	8	8		8	$\begin{aligned} & 88 \\ & 68 \\ & 6 \end{aligned}$	¢ 8	$\begin{aligned} & 88 \\ & 0.8 \\ & 0 \end{aligned}$	888	889	8888		
55 5 －～～宽宫嵒 	$\begin{array}{r} 58 \\ 8 \end{array}$	8	$\begin{array}{r} \text { BĨ } \\ 8 \end{array}$	․ㅏㅇ	씅 엉		$\underset{8}{965}$	$5 \frac{5}{6}$	888	둥ㅈㅇㅇ		$\begin{array}{r} 15 \\ 8 \end{array}$	\cdots
			$\stackrel{9}{\dot{\circ}}$	$$								宫	\％
	$\begin{aligned} & \text { K } \\ & \frac{0}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 읓 } \\ & \frac{0}{6} \end{aligned}$	$\begin{aligned} & \frac{N}{\mathrm{~N}} \\ & \frac{\mathrm{e}}{6} \end{aligned}$	$\frac{m}{6}$	$\begin{aligned} & \because \\ & \frac{0}{6} \\ & \hline \end{aligned}$	웅	$\begin{aligned} & \stackrel{N}{\mathrm{H}} \\ & \frac{0}{\circ} \\ & 239 \end{aligned}$	$\frac{0}{\frac{0}{6}}$	$\begin{aligned} & \bar{N} \\ & \text { 苟 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 蒚 } \end{aligned}$	$\begin{aligned} & \text { 㺃 } \\ & \frac{0}{6} \end{aligned}$	－

LINE 1 ML

Osceola River County

Water Use Spreadsheets
Osceola County

E	Z
岩	¢
E	$\stackrel{i}{\infty}$
-68888480	0
	N
888888	

APPENDIX D

OBSERVED WATER LEVELS IN THE
UPPER FLORIDAN AQUIFER SYSTEM USED IN MODEL CALIBRATION
MAY 1989 THROUGH MARCH 1991

APPENDIXD
 LIST OF TABLES

Table Page
D-1 1989 Observed Water Levels from Monitor Well Network 247
D-2 1990 Observed Water Levels from Monitor Well Network 249
D-3 1991 Observed Water Levels from Monitor Well Network 251

TABLE D-1: 1989 Observed Water Levels from Monitor Well Network

MODEL COORDS			WEI. NO.	STATE PLANARS (FEBI)		1989 ORGERVED WATER LEVEL								
			WATER LEVELS IN FEEET OF HEAD/NGVD											
Lay	ROW\%	COL		EAST	NOKTH	MAY	JiN	SuL	AJG	SEP	OCT	Nov	DEC	
2	36	22		MF-2	661770	1027509	48.1	48.82				49.08	49.46	48.54
2	32	42	MF-3	766873	1047651	42.54	42.44	42.94	43.94	44.24	44.94	45.79	44.69	
2	35	24	MF.9	673406	1031495	47.93	48.54	49.35			49.57	50.18	49.11	
2	42	19	MF-23	642188	996134	48.05	47.12	47.76	48.03	48.66	48.85	49.28	48.49	
2	36	43	MF-31	768744	1024135	41.75	39.55	41.6	44.75		45.05	44		
2	38	17	MF-33	634439	1016100	46.36	46.78	47.03			47.64	45.87	45.47	
2	47	23	MF-35	668237	970484	48.8	49.34	49.64	47.15	47.94	48.74	50.04	49.14	
2	42	29	MF-51	699609	992233	49.67	51.02				50.89	50.28	50.04	
2	41	29	MF-52	699928	1001121	49.17	49.49				50.05	49.7	48.55	
2	34	43	MF-53	770566	1035356	44.01					20.1	44.71	44.46	
2	35	43	MF-54	769853	1034038	42.86					42.36	44.86	44.06	
2	30	41	MF-55	762663	1056410	41.15	40.65		,		41.45	31.35	- 42.05	
2	33	10	OKF-3	595533	1039922	43.16	42.63	42.91	43.57		44.12	44.58	43.65	
2	22	5	OKF-7	569511	1102271	43.55	44.09	45			45.41	46.11	45.2	
2	29	1	OKF-23	547290	1061446	41.2	43.43	42.2			45.43	43.15	42.3	
2	31	1	OKF-31	550550	1052261	43.98	43.55	44.86	46.72		45.81	46.47	44.91	
2	11	7	OKF-71	583728	1159048	40.47	41.23				41.89	42.66	41.73	
2	12	8	OKF-72	585990	1154003	39.65	40.82				40.97	41.7	39.77	
2	25	4	OKF-73	562777	1084287	38.82	40.55				41.26	41.88	40.97	
2	26	5	OKF-74	569100	1079147	42.61					43.37	43.87	42.86	
2	49	48	PBF- -	797130	959197	45.25	44.9	44.9	46	46.9	46.9	48.05	47.35	
2	12	26	SLF-3	682529	1151296	37.03	37.34	36.16	38.26		38.33	39.29	37.72	
2	14	23	SLF-4	667172	1141333	36.73	37.87				38.46	39.13	38.19	
2	10	17	SLF-11	635027	1164842	38.33	39.77				39.94	41.06	39.72	
2	24	18	SLF-17	639345	1087204	41.56	42.29				43.37	43.92	41.94	
2	17	28	SLF-21	693824	1124690	35	30.69	34.29	33.24	35.88	36.36	36.77	35.81	
2	32	24	SLF-23	672337	1049363	47.19	48.38	47.55	48.88		49.07	49.59	48.6	
2	20	34	SLF-26	723181	1111916	36.34	36.81				37.13	37.88		
2	20	22	SLF-27	657924	1110699	38.61	35.48	35.14	37.84		39.34	39.7	37.62	

TABLE D-1: $\begin{aligned} & 1989 \text { Observed Water Levels from Monitor Well Network } \\ & \text { (Continued) }\end{aligned}$

MODEL COORDS			$\begin{aligned} & \text { WEIL. } \\ & \text { NO. } \end{aligned}$	STATE PLANARS (FEET)		1989 OBSERVED WATER LEVEI								
			WATER LEVELS IN FEET OF HEAD/NGVD											
Lay	Row	col		EAST	norte	may	JEM	JuL	AUG	SEP	oct	Nov	dec	
2	15	21		SLF-36	657278	1137759	39.03	36.29	37.26	38.45		38.72	39.62	38.42
2	18	22	SLF-40	662479	1121219	37.69	38.1	39.29	38.89	38.71	39.17	40.03	38.77	
2	12	34	SLF-46	724567	1154337	25.91	26.41				29.21	26.36	31.91	
2	24	39	SLF-47	749646	1088844	34.01	3386	33.66	32.66	34.66	36.16	37.11	36.26	
2	24	22	SLF-50	662956	1092240	39.8	38.54	39.57	39.63	40.62	41.08	41.6	40.47	
2	28	26	SLF-61	682099	1066875	46.9	46.73				48.15	46.65	45.52	
2	27	24	SLF-62	672318	1075011	41.96	43.64				42.13	45.4	43.4	
2	14	16	SLF-63	627530	1144319	37.99	39.27				39.72	40.4	39.32	
2	12	15	SLF-64	62.1462	1155509	38.98	39.97				40.55	41.32	40.06	
2	10	14	SLF-65	616214	1164480	38.31	39.2				38.68	40.12	39.62	
2	17	19	SLF-66	644611	1127917	36.25	38.32				39.61	40.27	38.5	
2	21	13	SLF-67	611696	1105597	41.17	43.06				44.99	44.24	$=43.02$	
2	17	10	SLF-68	598300	1127575	41.21	42,53				42.77	43.23	42.81	
2	22	26	SLF-69	680591	1101403	43.5	40.57				41.15	41.53	40.38	
2	10	28	SLF-70	693278	1163162	25.11	29.05				29.03	30.94	31.85	
2	23	33	SLF-71	719118	1096443	38.15	38.92				38.92	39.92	38.86	
2	27	16	SLF-60	629924	1071824						44	44.24	43.64	
2	7	33	1R-10	716602	1178731	33.13					31.93	32.88	33.13	
2	6	28	IR-40	694162	1185281	34.8					33.29	33.92	32.69	
2	7	27	IR-312	684383	1179075	35.13					35.23	36.71	35.49	
2	2	27	(R-3[3-	684626	1204423	35.03					36.57	37.01	35.85	
2	1	1	[R-365	545220	1216241	49.2					50.28	49.79	50.08	
2	8	30	[$\mathbf{R}^{\text {-368 }}$	705010	1175338	34.07					33.68	34.13	33.18	
2	7	19	[R-370	643803	1177697						38.01	38.67	36.83	
2	3	14	IR-373	620153	1201754	40.73					42.07	42.09	40.83	

TABLE D-2: 1990 Observed Water Levels from Monitor Well Network

WED L NAME	1990 OBSERYED WATER LEVEIS IN FEET OF HEADMNG											
	JAN	FES	MAR	APR	MAY	IUN	Јй	AUG	SEP	OCT	NOV	DEC
MF-	48.4	48.3	48.6	48.0	46.7	47.58	48.2	None	49.01	48.99	None	48.53
MF-3	44.8	44.6	45.0	44.1	43.8	44.69	45.2	Taken	45.29		Taken	44.89
MF-9	48.9	49.38	48.63		47.4	48.09	48.7		49.38	49.24		48.71
MF-23	47.9	48.17	48.53	48.02	46.73	47.31	48.8		48.76			48.33
MF-31					43.6	44.25	44.85		45.75	45.6		45.35
MF-33	46.8	45.66			45.54	46.67	46.82		46.74			
MF-35	47.49	48.69	48.99	48.34	46.68	47.14	48.61		49.54	49.49		48.99
MF-51	50.1	49.85	50.84	49.55	48.54	49.42	50.29					
MF-52	47.33	49.66			50.22	50.22						49.67
MF-53	44.76											
MF-54	43.73	43.56			42.36	43.11	43.86		44.76			43.41
MF-55	40.1	42.05	40.35		37.2	40.7	41		39.7			37.15
OKF-3	43.12	43.41	44	42.81	41.03	41.9	43.22		44.33	44.17		43.72
OKF-7	44.72	45.02	45.54	44.08	41.66	43.43	44.75		45.55	45.76		44.88
OKF-23	42.08	40.88	42.28	40.68	39.97	40.56	41.59		41.5			
OKF-31	44.48	43.94			42.15	43.4	45.7		46.92	46.82		45,2
OKF-71	41.05	41.4	41.84	40.39	37.59	39.35	40.99		42.32	41.57		40.79
OKF-72	41.65	41.91	40.48		37.82	39.56	40.98		42.01	42.01		40.29
OKF-73	40.46	40.65	41.32	40.01	38.25	39.34	40.88		42.1	42.14		41.49
OKF-74	43.27	42.58	43.22	41.66	39.89	41.2	42.98		43.7	43.48		42.83
PBF-1	46.9	47.1	47.15		46.4	46.65	47.35		48	47.7		47.8
SLF-3	37.14	37.65	37.86	36.16	32.6	36.31	37.1		39.05	38.85		36.76
SLF-4	37.56	37.95	38.4	36.93	33.86	36.23	37.4		38.44	38.56		37.59
SLF-11	39.22	39.45	40.03	38.43	34.65	37.5	39.16					39.06
SLF-17	40.87	42.47	42.39	40.94	36.07	41.1	42.4		43.45	43.41		42.65
SLF-21	35.63	35.28	36.09	34.62	28.97	34.45	36.21		37.26	37.52		34.78
SLF-23	48.19	48.2	48.22	47.77	43.46	46.01	46.62					
SLF-26												
SLF-27	38.18	38.25	38.75	37.49	33.3	36.89	38.45		38.97	39.21		37.4

TABLE D-2: $\quad 1990$ Observed Water Levels from Monitor Well Network (Continued)

WETL MAME	1990 OBSERVED WATER LEVELS IN FEET OF HEAD/NGYD											
	JAN	EEB	MAR	APR	MAY	IUN	J!4	AUG	SEP	OCT	NOV	DEC
SLF-36	38.02	38.20	38.86	37.52	35.45	36.6	38.11		39.13	39.14		37.67
SLF-40	38.61	38.69	39.29	37.88	34.83	37.07	38.47		39.56	39.87		38.44
SLF-46	29.21	31.31	25.46	30.11	28.26	30.11						30.91
SLF-47	32.46	32.41	32.81	29.76	31.51	34.16	33.51		34.71	33.31		36.91
SLF-50	40.34	40.48	40.77	39.78	37.28	39.09	40.19		41.17	41.15		40.19
SLF-61	45.47	45.49	45.8	44.97	42.7	44.25	45.02		46.1	46.03		45.4
SLF-62	43.37	43.40	43.56	42.89	40.91	42.29	43.53		44.06	44.16		43.86
SLF-63	38.71	38.92	27.69	37.91	35.7	36.82	38.82		40.06	40		38.47
SLF-64	39.68	40	40.38	39.05	36.71	37.93	40.1		41	41.22		39.48
SLF-65	39.04	39.26	39.77	38.42	31.68	37.29	39.35		40.08	39.99		38.94
SLF-66	38.51	38.39	39.23	37.13	35.25	36.53	38.58		39.73	39.57		37.72
SLF-67	42.94	42.88	43.23	42.06	39.57	41.44	42.73		43.64	43.44		42.19
SLF-68	42.72	42.84	43.12	42.19	39.26	41.22	42.56		43.64			42.55
SLF-69	40.34	40.37	40.66	39.8	36.92	39.09	40.19		41.11	41.15		39.68
SLF-70	31.48	31.78	32.54	30.38	26.01	30.21	32		33.86	33.66		30.63
SLF-71	37.86	38.81	39.31	38.11	37.01	37.91	39.11		40.36	40.21		39.51
SLF-60.	43.65	43.44			42.53	43.08	43.85		43.95			
IR-10				.								
IR-40	32.24	32.48	33.08	31.54	28.95	30.5	31.78		33.35	33.29		32.29
IR-312	33.69	34.23	35.62	33.41	29.04	33.74	34.32		36.11	37.15		33.52
ER-313	34.98	35.75	35.99	34.72	31.74	33.24	34.64		36.42	36.26		35.41
IR-365	49.85	50.29	49.63		48.14	48.69	49.6		51.31	51.37		50.81
[R-368	32.73	33.78	34.53	32.83	29.88	31.23	32.13		33.48	33.53		32.48
ER-370	37.25	37.46	36.29		31.92	35.41	36.71		38.13	38.01		36.6
IR-373	40.23	40.7	41.18	39.68	35.95	37.52	40.13		41.45	41.57		40.55

TABLE D-3: 1991 Observed Water Levels from Monitor Well Network

1991 OBSERVED WATER LEVELS EN FEET OF HEAD/NGVD							
WEII	JAN	FE8	MAR	WELL	JAN	FES	MAR
MF-2	47.86	48.89	48.75	SLF-26			
MF-3	44.24	45.24	45.19	SLF-27	36.12	39.37	38.97
MF. 9	48.42	49.83	49.27	SLF-36	36.75	38.94	38.76
MF-23	47.69	48.43	48.45	SLF-40	37.21	39.29	39.17
MF-31	44.7	45.4	45.45	SLF-46	28.56	28.31	31.81
MF-33				SLF-47	32.16	34.21	35.36
MF-35	46.96	47.94	48.49	SLF-50	39.38	40.98	40.72
MF-51				SLF-61	44.65	45.86	
MF-52	47.48	49.94	49.8	SLF-62	43.01	44.23	44.35
MF-53				SLF-63	37.61	39.83	40.10
MF-54	43.41	43.96	44.96	SLF-64	38.52	41.04	40.81
MF-55	40.50	43.6	40.05	SLF-65	37.91	39.79	39.67
OKF-3	42.76	43.94	43.92	SLF-66	36.06	38.93	38.74
OKF-7	44.3	45.46	45.29	SLF-67	41.47	43.60	43.37
OKF-23				SLF-68	42.12	44.46	44.22
OKF-31	43.62	45.38	45.07	SLF-69	39.34	41.23	40.67
OKF-71	39.88	41.88	43.36	SLF-70	29.68	33.82	33.46
OKF-72	42.27	41.97		SLF-71	38.46	40.06	39.56
OKF-73	40.74	42.2	41.91	SLF-60			
OKF-74	42.74	43.98	43.83	[R-10			
PBF-1	46.9	47.75	48.2	IR-40	31.10	33.36	32.98
SLF-3	35.67	38.82	38.4	IR-312	32.60	36.69	35.89
SLF-4	36.52	38.74	38.36	IR-313	34.06	36.30	36.77
SLF-11	37.87			IR-365	50.57	51.02	50.84
SLF-17	39.45	43.43	43.88	[R-368	31.53	33.38	33.13
SLF-21	33.11	36.86	36.9	IR-370	35.71		
SLF-23				IR-373	38.86	41.72	41.38

APPENDIX E

COMPUTED AND OBSERVED HYDROGRAPHS REPRESENTING MONITOR WELLS MAY 1989 THROUGH MARCH 1991

APPENDIX E

INTRODUCTION

Comparative hydrographs were developed to compare computed and observed monthly water levels. The period of record graphed was May 1989 to March 1991. Some wells did not have a complete record of 23 observed water levels. In these cases, a standard value of +20 feet was assigned the missing month. Therefore, when reading the hydrographs, ignore all observed levels with this value.

The codes used were:

* $=$ Observed water level
$\mathrm{X}=$ Computed water level

(a) $3 ก 7 \nleftarrow$ A

(i) $3 \cap 7 \%$ ค

(1) $3 ก 7 \times \wedge$

(H) (กาษก

(1) $3 ก 7 \% \wedge$

(a) 3)

(1) $3 \cap 7 \forall \wedge$

(a) $3 ก 7 \times \wedge$

(1) 3กางค

(1) $3 \cap ก ร$

(1) 3 ก7\%

(1+) 307 ma

(i) $3 ก 7 \times \wedge$

(w) $3 \cap 7 ฟ \wedge$

(1)) $3 ก$ (ษィ

APPENDIX F

QUESTIONNAIRE RESULTS

APPENDIX F

INTRODUCTION

The following questionnaire was mailed in May 1990 to 360 FAS permittees in the UECPA. The amount returned was 130 , a 36 percent return rate. The answers to each question were entered into a software database program named DBASE and the percentage of each type answer was calculated. Answers to Section 2 were used to compute an average number of hours wells were allowed to flow freely for each month in 1989 and 1990. The results are listed in Table 4 of the main report.

QUESTIONNAIRE

8ECTION 2
 WATER USE HABITS

1)

Check each water source used routinely for irrigation.
19\% : Surface
314 : Flowing wells
02\% : Water Table wells
50% : Combination of Surface and Flowing wells 00\%: Other. Please explain below.
2) Check the water source used for frost protection.

14告: Surface
248 : Flowing wells
02\% : Water Table wells
60\% : Combination of Surface and Flowing wells
00\% : Other. Please explain below.
3) Indicate your PRESENT reliance on each of the water sources listed below in percentage during normal yearly irrigation practices (eg. 70\% Flowing Wells, 20\% Surface Water, 10\% Water Table from pumps).

PERCENT
448
54\%
02\%

00\%

Water source
FLOWING WELLS (FLORIDAN AQUIFER SYSTEM) SURFACE WATER BODIES (EG. CANALS, RESERVOIR, ETC.)

WATER TABLE AQUIFER (SHALLOW WELLS LESS THAN 200', PUMPED NOT FLOWING NATURALLY)

OTHER. PLEASE EXPLAIN OTHER WATER SOURCE BELOW.
4) Would you say the purpose of the Floridan wells on your property can be summed up as simply insurance water supply in the event of a drought or a freeze ?

55\% Yes 45\% No

The following section 2 was used to estimate the average hours a Floridan Aquifer System well was allowed to flow freely in each month of the calibration period.

sECTION 2 (continued)

3) During an average, typical year for your Flowing wells oNIY (Floridan Aquifer Wells), please check the months they are used. Indicate number of days used in each month, number of hours in each day and the volume of water per month. We are looking for approximate use and seasonal patterns, not exact figures.

CHECK
MONTH.

Average \# HOURS each DAY

4) During the course of 1989-90, for your Flowing wells only Please check the months they were used. Fill in Days and Hours as above. Here we are asking for 1989 water use, conversely in $\# 2$ above we are asking for an average, typical year. The purpose of this question is to compare our water levels from our monitor wells this year with exact water use patterns for the year 1989.

January
February

March \quad Days \quad Hrs. \quad\begin{tabular}{l}
Jan.

Jeb.

\quad

Fen
\end{tabular}

Briefly describe how the flowing wells are used for freeze protection. Are the wells opened continuously and for how long before and after a frost warning? TYpical Year:

The average response was:
57 Hours before a freeze
10 Hours after in freeze

1989: December 24, 1989 and $\operatorname{Feb} 2,1990$.

BECTION 3
WATER QUALITY AND QUANTITY

1) Over the course of time has the quality (saltiness) of water from your flowing wells :

02\% IMPROVED
13\% DETERIORATED
85\% REMAINED THE SAME

How many years have the wells been in use ?

25.5 yetars

2) Since you have been using the FLOWING WELLS, what have you observed about the flow pressure (water quantity) ?

24\% The amount of water naturally flowing now is less than the flow I used to get.

0\% I now get more flow than before.
769 I have not observed any change in the amount of flow.

If you checked the first choice above, in your opinion is the decrease of flow attributed to the aging well condition or is it due to less water pressure currently available in the aquifer.

54\% : less pressure in the aquifer system.
46: : Aging, corroded pipe and possible cavings downhole.
3) Over the course of the last few years has your reliance on flowing wells :

129 Increased
43\% Decreased
45\% Remained the same

[^0]: FIGURE 16:

[^1]: LEGEND FOR METHODS OF ANALYSIS:
 WAL: WALTON TYPE CURVE MATCHING, MONITOR WELL AVAILABLE SINGLE WELL RECOVERY TEST/JACOB STRAIGHT LINE

 USGS WATER INVESTIGATIONS REPORT 88-4073 SPECIFIC CAPACITY FIT TO REGRESSION CURVE

 MONITOR WELL RECOVERY TEST/JACOB STRAIGHT LINE USGS PROVISIONAL DATA TYPE UNKNOWN; TROST UNPUB. WALTON TYPE CURVE MATCHING DENOTES WELLS USED IN REGRESSION ANALYSIS

 NEWEST DATA USED IN REGRESSION ANALYSIS

 WR:
 USGS:
 USGS:
 SC:
 usGs: WALT: **:

[^2]: WALTON TYPE CURVE MATCHING, MONITOR WELL AVAILABLE HANT: HANTUSH-JACOB CURVE MATCHING

 SR: SINGLE WELL RECOVERY TEST/JACOB STRAIGHT LINE
 SC: SPECIFIC CAPACITY FIT TO REGRESSION CURVE
 *: DENOTES WELLS USED IN REGRESSION ANALYSIS
 **: NEWEST DATA USED IN REGRESSION ANALYSIS

[^3]: DATE USE SRCWO. SW
 DAIE USE SRCWO.
 ISS. TYPE WLS.

 LIME 2+ MEADIMGS (Table 1. Existing Water Ust - Ficilities Information for Each Permit)

 MO.
 $=\pi=$

[^4]:

[^5]: LINE 2+ HEADINGS (Table 1-EXisting Mater Use - Facilities Informion for Each Permit)

[^6]: LIME 2- HEADIMGS (Table 1-Existing Uater Use - Facilitios Information for Each Permit)
 PERNIT FACILITY OUND. UELI DPTH PAP PLM PLOP
 WO. MUNAER WO. STSOIA. COO TO CD IWT TYP CAP. NTRT XPLMR YPLWR SRC MO COMTENTS

[^7]: JNE 2+ MEADJGS (Teble 1 . Existing Water Use - Facilities Information for Each Permit)
 MIMEER NO. SIS DIA. CDOE TD CD IWT TYPE CAP. MTRT XPLINR YPLINR SRC no. CONENTS

