Mini8 - 8 Loop Process Controller

1.		CHAPTER 1 INSTALLATION AND OPERATION	
	1.1	WHAT INSTRUMENT DO I HAVE?	
	1.2	MINI8 ORDERING CODE	
	1.3	HOW TO INSTALL THE CONTROLLER	
	1.3.1	Dimensions	9
	1.3.2	To Install the Controller	9
	1.3.3	Environmental Requirements	9
	1.4	ELECTRICAL CONNECTIONS	
	1.4.1	Power Supply	10
	1.4.2	Fixed IO Connections	11
	1.4.3	Digital Communications Connections	11
	1.4.4	Configuration Port	11
	1.4.5	Modbus	11
	1.4.6	DeviceNet	13
	1.4.7	Typical DeviceNet Wiring Diagram	14
	1.4.8	Thermocouple Input TC8	15
	1.4.9	Logic Output DO8	16
	1.4.10	Analogue Output AO8	17
	1.4.11	Current Transformer input Module CT3	18
	1.5	ADDING OR REPLACING AN IO MODULE.	
	1.6	MINI 8 LED INDICATORS	20
2.		CHAPTER 2 USING THE MINI8	21
۷.	2.1	iTOOLS	
	2.1.1	iTools OPC Open server	21 21
	2.1.1	MODBUS, SINGLE REGISTER, SCADA ADDRESSING	
	2.2	MODBUS (FLOATING POINT)	21
	2.3	FIELDBUS	
	2.4	MINIS EXECUTION.	
	2.6	THE ITOOLS OPERATOR INTERFACE	
	2.6.1	Scanning	23 23
	2.6.1	Browsing and Changing Parameter Values	23
	2.0.2	RECIPE EDITOR	
	2.7.1	Recipe Menu Commands	25 25
	2.7.1	OPCSCOPE	
	2.8.1	OPC Scope List Window Context Menu	20 27
	2.8.2	OPC Scope Chart Window	27
	2.8.3	OPC Server	29
	2.6.3	Of C Server	29
3.		CHAPTER 3 CONFIGURATION USING ITOOLS	30
	3.1	CONFIGURATION	30
	3.1.1	On-Line/Off-line Configuration	30
	3.2	CONNECTING A PC TO THE MINIS CONTROLLER	30
	3.2.1	Configuration Cable and Clip	30
	3.2.2	Scanning	30
	3.3	CONFIGURING THE MINI8	31
	3.3.1	Function Blocks	31
	3.3.2	Soft Wiring	32
	3.4	SIMPLE WORKED EXAMPLE	33
	3.4.1	The I/O	33
	3.4.2	Wiring	35
		GRAPHICAL WIRING EDITOR	38

	3.5.1	Graphical Wiring Toolbar	39
	3.5.2	Function Block	39
	3.5.3	Wire	39
	3.5.4	Block Execution Order	39
	3.5.5	Using Function Blocks	39
	3.5.6	Tooltips	40
	3.5.7	Function Block State	41
	3.5.8	Using Wires	42
	3.5.9	Using Comments	43
	3.5.10	Using Monitors	44
	3.5.11	Downloading	44
	3.5.12	Selections	44
	3.5.13	Colours	45
	3.6	DIAGRAM CONTEXT MENU	
	3.6.1	Wiring Floats with Status Information	46
	3.6.2	Edge Wires	47
4.		CHAPTER 4 MINI8 OVERVIEW	
	4.1	COMPLETE LIST OF FUNCTION BLOCKS.	49
5.		CHAPTER 5 ACCESS FOLDER	50
c		CHARTER C INCTRIMENT FOLDER	E4
6.	<i>c</i> 1	CHAPTER 6 INSTRUMENT FOLDER	
	6.1	INSTRUMENT / OPTIONS	
	6.2 6.3	INSTRUMENT / INSTINFO	
7.	7.1	CHAPTER 7 I/O FOLDER	
	7.1.1	Modules	55
	7.2	LOGIC OUTPUT	56
	7.2.1	Logic Out Parameters	56
	7.2.2	Logic Output Scaling	56
	7.2.3	Example: To Scale a Proportioning Logic Output	57
	7.3	THERMOCOUPLE INPUT	
	7.3.1	Thermocouple Input Parameters	58
	7.3.2	Linearisation Types and Ranges	59
	7.3.3	CJC Type	59
	7.3.4	Sensor Break Value	60
	7.3.5	Fallback	61
	7.3.6	PV Offset	61
	7.3.7 7.4	Using TC8 input as a mV input ANALOGUE OUTPUT	61 62
	7. 4 7.4.1	Example – 4 to 20mA Analogue Output	62
	7.4.1 7.5	FIXED IO	_
	7.6	CURRENT MONITOR	
	7.6.2	Single Phase Configurations	65
	7.6.3	Three Phase Configuration	67
	7.6.4	Parameter Configuration	68
	7.6.5	Commissioning	69
	7.6.6	Calibration	71
			, -
0		CHADTED O ALADMO	70
8.	8.1	CHAPTER 8 ALARMS FURTHER ALARM DEFINITIONS	
		HILE I HERE AL A D'AL IN HINLINI III INS	

8.2	ANALOGUE ALARMS	73
8.2.1	Analogue Alarm Types	73
8.3	DIGITAL ALARMS	7 4
8.3.1	Digital Alarm Types	74
8.4	ALARM OUTPUTS	7 4
8.4.1	How Alarms are Indicated	74
8.4.2	To Acknowledge an Alarm	74
8.5	ALARM PARAMETERS	75
8.5.1	Example: To Configure Alarm 1	76
8.6	DIGITAL ALARM PARAMETERS	
8.6.1	Example: To Configure DigAlarm 1	78
8.7	ALARM SUMMARY	
8.8	ALARM LOG	81
9.	CHAPTER 9 BCD INPUT	82
9.1	BCD PARAMETERS	82
9.1.1	Example: To wire a BCD Input	83
10.	CHAPTER 10 DIGITAL COMMUNICATIONS	84
10.1	CONFIGURATION PORT	84
10.1.1	Configuration Communications Parameters	84
10.2	FIELD COMMUNICATIONS PORT	85
10.3	MODBUS	85
10.3.1	Modbus Connections	85
10.3.2		86
10.3.3	3	86
10.3.4		87
10.3.5		87
10.3.6	5	87
10.3.7	J	87
10.4	MODBUS BROADCAST MASTER COMMUNICATIONS	
10.4.1		88 89
10.4.2 10.5	Wiring Connections DEVICENET	
11.	CH 44 COUNTERS TIMERS TOTAL ISSUE DT CLOCK	0.4
11.1	CHAITERS, TIMERS, TOTALISERS, RT CLOCK.	
11.1 11.1.1	COUNTERS Counter Parameters	91 92
11.1.1 11.2	TIMERS	
11.2.1	-	93
11.2.2	J F	93
11.2.3		94
11.2.4		95
11.2.5	Compressor or Minimum On Timer Mode	96
11.2.6	<u>.</u>	97
11.3	TOTALISERS	98
11.3.1	Totaliser Parameters	99
11.4	REAL TIME CLOCK	100
11.4.1	Real Time Clock Parameters	100
12.	CHAPTER 12 HUMIDITY CONTROL	101
12.1.1		101
12.1.2		101
12.1.3		101
12.2	HUMIDITY PARAMETERS	102

13.	CHAPTER 13 INPUT MONITOR	103
13.1.1	Maximum Detect	103
13.1.2	Minimum Detect	103
13.1.3	Time Above Threshold	103
13.2	INPUT MONITOR PARAMETERS	104
14.	CHAPTER 14 LOGIC AND MATHS OPERATORS	105
14.1	LOGIC OPERATORS	
14.1.1	Logic 8	105
14.1.2		106
14.1.3	Logic Operator Parameters	107
14.2	EIGHT INPUT LOGIC OPERATORS	108
14.3	MATHS OPERATORS	
14.3.1	Math Operations	110
14.3.2		111
14.3.3		112
14.4	EIGHT INPUT ANALOG MULTIPLEXERS	113
14.4.1	Fallback	113
15.	CHAPTER 15 INPUT CHARACTERISATION	114
15.1	INPUT LINEARISATION	
15.1.1	Compensation for Sensor Non-Linearities	115
15.1.2	Input Linearisation Parameters	116
15.2	POLYNOMIAL	117
16.	CHAPTER 16 LOAD	119
16.1	LOAD PARAMETERS	
17.	CHAPTER 17 CONTROL LOOP SET UP	
17. 17.1		121
1/.1		
17.2	WHAT IS A CONTROL LOOP?	121
17.2 17.3	WHAT IS A CONTROL LOOP?LOOP PARAMETERS - MAIN	121 122
17.3	WHAT IS A CONTROL LOOP?LOOP PARAMETERS - MAINLOOP SET UP	121 122 122
17.3 17.3.1	WHAT IS A CONTROL LOOP?LOOP PARAMETERS - MAINLOOP SET UP	121 122 122
17.3 17.3.1 17.4	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN LOOP SET UP Types of Control Loop PID CONTROL	121122122123123
17.3 17.3.1 17.4 17.4.1	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN LOOP SET UP Types of Control Loop PID CONTROL Proportional Term	121122123123123
17.3 17.3.1 17.4 17.4.1 17.4.2	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL Proportional Term Integral Term	121122123123124124
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL Proportional Term Integral Term Derivative Term	121122123123124124124
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL. Proportional Term Integral Term Derivative Term High and Low Cutback	121122123123124124124125
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL. Proportional Term Integral Term Derivative Term High and Low Cutback Integral action and manual reset	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL. Proportional Term Integral Term Derivative Term High and Low Cutback Integral action and manual reset Relative Cool Gain	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL. Proportional Term Integral Term Derivative Term High and Low Cutback Integral action and manual reset Relative Cool Gain Loop Break Time	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL. Proportional Term Integral Term Derivative Term High and Low Cutback Integral action and manual reset Relative Cool Gain Loop Break Time Cooling Algorithm	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7 17.4.8	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL. Proportional Term Integral Term Derivative Term High and Low Cutback Integral action and manual reset Relative Cool Gain Loop Break Time Cooling Algorithm Gain Scheduling	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7 17.4.8 17.4.9	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7 17.4.8	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL. Proportional Term Integral Term Derivative Term High and Low Cutback Integral action and manual reset Relative Cool Gain Loop Break Time Cooling Algorithm Gain Scheduling PID Parameters TUNING.	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7 17.4.8 17.4.9 17.4.1	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL. Proportional Term Integral Term Derivative Term High and Low Cutback Integral action and manual reset Relative Cool Gain Loop Break Time Cooling Algorithm Gain Scheduling PID Parameters TUNING. Automatic Tuning	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7 17.4.8 17.4.9 17.4.1 17.5 17.5.1	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP. Types of Control Loop PID CONTROL. Proportional Term Integral Term Derivative Term High and Low Cutback Integral action and manual reset Relative Cool Gain Loop Break Time Cooling Algorithm Gain Scheduling PID Parameters TUNING. Automatic Tuning One-shot Tuning	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7 17.4.8 17.4.9 17.5.1 17.5.1	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.5 17.4.6 17.4.7 17.4.8 17.4.9 17.4.1 17.5 17.5.1 17.5.2 17.5.3	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7 17.4.8 17.4.9 17.5.1 17.5.2 17.5.3 17.5.3	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP	121 122 123 124 124 125 125 125 125 125 125 126 127 128 128 128
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7 17.4.8 17.4.9 17.5.1 17.5.2 17.5.3 17.5.4 17.5.5	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN LOOP SET UP Types of Control Loop PID CONTROL Proportional Term Integral Term Derivative Term High and Low Cutback Integral action and manual reset Relative Cool Gain Loop Break Time Cooling Algorithm Gain Scheduling PID Parameters TUNING Automatic Tuning One-shot Tuning Calculation of the cutback values Manual Tuning Setting the Cutback Values Multi-zone applications.	
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.8 17.4.9 17.4.1 17.5 17.5.1 17.5.2 17.5.3 17.5.4 17.5.5	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN LOOP SET UP Types of Control Loop PID CONTROL Proportional Term Integral Term Derivative Term High and Low Cutback Integral action and manual reset Relative Cool Gain Loop Break Time Cooling Algorithm Gain Scheduling PID Parameters TUNING Automatic Tuning One-shot Tuning Calculation of the cutback values Manual Tuning Setting the Cutback Values Multi-zone applications.	121 122 123 124 124 124 125 125 125 125 125 125 126 127 128 128 128 129 130 130
17.3 17.3.1 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 17.4.8 17.4.9 17.4.1 17.5 17.5.1 17.5.2 17.5.3 17.5.4 17.5.5 17.5.6	WHAT IS A CONTROL LOOP? LOOP PARAMETERS - MAIN. LOOP SET UP	121 122 123 124 124 124 125 125 125 125 125 125 126 127 128 128 128 129 130 130

	17.6.3	Manual Tracking	132
	17.6.4	Rate Limit	132
	17.6.5	Setpoint Parameters	132
	17.7	OUTPUT FUNCTION BLOCK	
	17.7.1	Effect of Control Action, Hysteresis and Deadband	136
	17.7.1	21.000 01 001.001.101.01., 11,000.101.0 11.11 2 0 11.001.11	150
18	1	SETPOINT PROGRAMMER	137
	,,	PROGRAMMER OPERATING STATES	
	18.1.1	Reset	138
	18.1.2	Run	138
	18.1.3	Hold	138
	18.1.4	Program Cycles	138
	18.1.5	Servo	138
	18.1.6	Skip Segment	138
	18.1.7	Advance Segment	138
	18.1.8	Fast x10 mode	138
	18.1.9	Sensor break recovery	138
	18.1.10	-	139
	18.1.11	,	140
	18.1.12	\mathcal{E} 71	140
	18.1.12	,	141
	18.1.13	CONFIGURING THE PROGRAMMER	
	18.3	TO SELECT, RUN, HOLD OR RESET A PROGRAM	143
	18.4	CREATING A PROGRAM	1/15
	18.5	PROGRAM EDITOR	
	18.5.1	Analog View	145
	18.5.2	Digital View	147
	18.5.3	Printing a Program	148
	18.6	WIRING THE PROGRAMMER FUNCTION BLOCK	
	10.0	WINING THE I ROGRAMMER FUNCTION BLOCK	147
19)_ (CHAPTER 19 SWITCH OVER	150
	19.1.1	Example: To Set the Switch Over Levels	150
	19.1.2	Switch Over Parameters	151
20)	CHAPTER 20 TRANSDUCER SCALING	152
_		AUTO-TARE CALIBRATION	_
	20.2	LOAD CELL	
	20.3	COMPARISON CALIBRATION	
	20.4	TRANSDUCER SCALING PARAMETERS	
	20.4.1	Parameter Notes	155
	20.4.2	Tare Calibration	155
	20.4.3	Load Cell	156
	20.4.4	Comparison Calibration	156
		companion canonation	100
_		OHARTER OF THOSE WALLES	457
21		CHAPTER 21 USER VALUES	
	21.1	USER VALUE PARAMETERS	157
22	<u>).</u> (CHAPTER 22 CALIBRATION	158
	22.1	USER CALIBRATION	158
	22.1.1	Set Up	158
	22.1.2	Zero Calibration	158
	22.1.3	Voltage Calibration	158
	22.1.4	CJC Calibration	158
	22.1.5	Sensor-Break Limit Check	158

22.2 22.3	TO RETURN TO FACTORY CALIBRATIONCALIBRATION PARAMETERS	
23. 23.1	APPENDIX A MODBUS SCADA TABLE	
23.2	SCADA TABLE	160
24.	APPENDIX B DEVICENET PARAMETER TABLES	183
24.1	IO RE-MAPPING OBJECT	183
24.2	APPLICATION VARIABLES OBJECT	
24.2.1		188
25.	APPENDIX C SAFETY AND EMC INFORMATION	189
26.	APPENDIX D TECHNICAL SPECIFICATION	192
26.1	ENVIRONMENTAL SPECIFICATION	192
26.2	NETWORK COMMUNICATIONS SUPPORT	192
26.3	CONFIGURATION COMMUNICATIONS SUPPORT	192
26.4	FIXED I/O RESOURCES	192
26.5	TC8 8-CHANNEL TC INPUT CARD	
26.6	DO8 8-CHANNEL DIGITAL OUTPUT CARD	
26.7	TOOLKIT BLOCKS	
26.8	CT3 3-CHANNEL CURRENT-TRANSFORMER INPUT CARD	
26.9	LOAD FAILURE DETECTION	
26.10	AO8 8 CHANNEL 4-20MA OUTPUT CARD	
26.11	PID CONTROL LOOP BLOCKS	
26.12	PROCESS ALARMS	
26.13	SETPOINT PROGRAMMER	196
26.14	RECIPES	106

Issue Status of This Manual

Issue A of this manual applies to software version 1.04.

Mini8 8 Loop Process Controller

1. CHAPTER 1 INSTALLATION AND OPERATION

1.1 What Instrument Do I Have?

Thank you for choosing this Mini 8 Controller.

The Mini8 is a compact DIN rail mounting 8 loop PID controller and data acquisition unit. It offers a choice of I/O and a choice of field communications.

The Mini8 mounts on 35mm Top Hat DIN Rail. It is intended for permanent installation, for indoor use only, and to be enclosed in an electrical panel.

The Mini8 is pre-assembled in the factory to give the I/O required for the application as specified in the order code. With standard applications the Mini8 is also supplied configured. Alternatively the Mini8 is configured using Eurotherm's iTools configuration suite running on a personal computer.

Whenever the symbol @ appears in this handbook it indicates a helpful hint

1.2 Mini8 Ordering Code

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Mini8	Loops	Programs	PSU	Comms	Units	I/O Slot1	I/O Slot2	I/O Slot3	I/O Slot4
11	12 .	13.	14.	15.					
Application	Recipe	Wires	Manual	Config					

1	
MINI8	Mini 8 controller
2	Control Loops
ACQ	IO Acquisition only
8LP	8 Control loops
3	Programs
0PRG	No Programs
1PRG	1 Profile - 50 programs
4	PSU
VL	24Vdc
5	Communications
MODBUS	Non Isolated Modbus RTU slave
ISOLMBUS	Isolated Modbus RTU slave
DEVICENET	Devicenet Slave
6	Temperature Units
С	Centigrade
F	Fahrenheit

7-10	IO Slots 1-4
XXX	No module fitted
TC8	8 Channel TC Input
AO8	8 Channel 4-20mA output
DO8	8 Channel logic output
СТЗ	3 Channel CT input
11	Application
STD	No configuration
EC8	8 Loop Extrusion Controller
12	Wires
30	30 User Wires
60	60 User Wires
120	120 User Wires
250	250 User Wires
13	Recipes
None	No Recipes
RCP	8 Recipes
14	Manual
ENG	English
GER	German
FRA	French
SPA	Spanish
ITA	Italian
15	Configuration Software
NONE	No CD
ITOOLS	Itools CD & Mini8 documentation

1.3 How to Install the Controller

This instrument is intended for permanent installation, for indoor use only, and to be enclosed in an electrical panel.

Select a location where minimum vibrations are present and the ambient temperature is within 0 and 50°C (32 and 122°F).

Please read the safety information, Appendix C at the end of this guide, before proceeding and refer to the EMC Booklet part number HA025497 for further information.

1.3.1 Dimensions

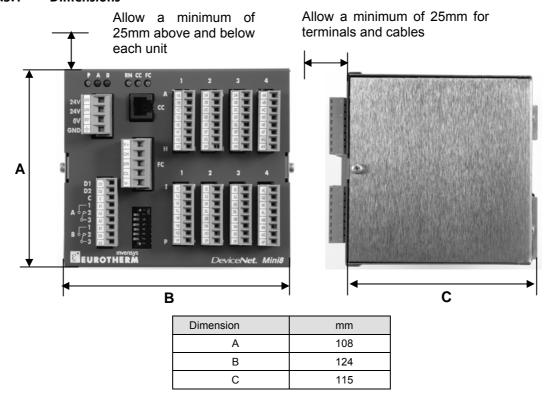


Figure 1-1: Mini8 Dimensions

1.3.2 To Install the Controller

- 1. Use 35mm symmetrical DIN Rail to EN50022-35 \times 7.5 or 35 \times 15,
- 2. Mount the DIN Rail horizontally as indicated in Figure 1.1. The Mini8 is NOT designed to be mounted in other orientations.
- 3. Hook the upper edge of the DIN rail clip on the instrument on the top of the DIN rail and push.
- 4. To remove use a screwdriver to lever down the lower DIN rail clip and lift forward when the clip has released.
- 5. A second unit on the same DIN rail may be mounted adjacent to the unit.
- 6. A second unit mounted above or below the unit requires a gap of at least 25mm between the top of the lower one and the bottom of the higher one.

1.3.3 Environmental Requirements

Mini8	Minimum	Maximum
Temperature	0°C	55°C
Humidity (non condensing)	5% RH	95% RH
Altitude		2000m

1.4 Electrical Connections

The Mini8 is intended for operation at safe low voltage levels. No Voltage above 42 volts should be applied to the system on any terminal.

A protective earth connection is not required but a good earth connection is required to provide a ground for EMC purposes.

Do not replace the battery. Return to factory if replacement battery is required.

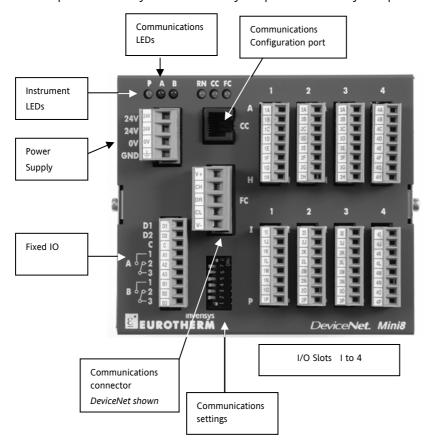
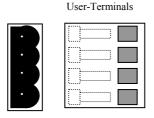



Figure 1-2: Terminal Layout for Mini8 Controller

1.4.1 Power Supply

The power supply requires a supply between 17.8 to 28.8 V dc, 15 watts maximum

24V	Ø	24 V dc
24V	Ø	24 V dc
0V	Ø	0 V dc
GND	Ø	Ground

Connector terminals will accept wire sizes from 0.5 to 2.5, 24 to 12 awg.

Note: If the Min8 is used with the VT505 panel ensure that the power supply connectors **cannot** be mistakenly changed over. The connectors are physically the same, but the electrical connections are not compatible. Plugging the VT505 connector into the Mini8 will short-circuit the 24 volt supply.

1.4.2 Fixed IO Connections

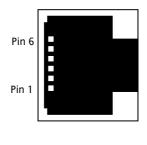
These I/O are part of the power supply board and are always fitted.

D1	Ø	Digital Input 1	
D2	Ø	Digital Input 2	
С	C Ø Digital Input common		
A1	Ø	Relay A n/open	
A2	Ø	Relay A n/closed	┞९╭╵
A3	Ø	Relay A common	—
B1	Ø	Relay B n/open	
B2	Ø	Relay B n/closed	「
В3	Ø	Relay B common	•

Digital Inputs : ON requires > 10.2V with 2mA drive, 30V max.

Relays contacts: 1 amp max, 42Vdc.

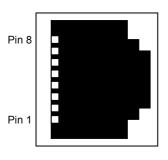
1.4.3 Digital Communications Connections


 $Two\ communications\ connections\ are\ fitted-a\ Modbus\ Configuration\ port\ (RJ11)\ and\ a\ Fieldbus\ port.$

The Fieldbus is either Modbus (2 x RJ45) or DeviceNet

1.4.4 Configuration Port

The configuration port (Modbus) is on an RJ11 socket, just to the right of the power supply connections. It is a point to point RS232 connection. Eurotherm supply a standard cable to connect a serial COM port on a computer to the RJ11 socket, part no. **SubMin8/cable/config**.


9 pin DF to PC	RJ11	Function
COM port (RS232)	Pin	
-	6	N/c
3 (Tx)	5	Rx
2 (Rx)	4	Tx
5 (0v)	3	0v (gnd)
	2	N/c
	1	Reserved

1.4.5 Modbus

For a full description of the installation of a communications link, including line matching resistors, see Eurotherm 2000 series communications handbook, part no. HA026230.

RJ45 pin	3 wire	5 wire
8	Receive (RX+)	RxA
7	Transmit (TX+)	RxB
6	Common	Ground
5		
4		
3	Ground	Ground
2	D+	TxA
1	D-	ТхВ

Two RJ45 sockets are provided – one for the incoming connection, the second to loop onto the next instrument or for a line terminator.

For the address switch see Chapter 10.3.2

The RS485 standard allows one or more instruments to be connected (multi dropped) using a two wire connection, with cable length of less than 1200m. 31 instruments and one master may be connected.

To use RS485, buffer the RS232 port of the PC with a suitable RS232/RS485 converter. The Eurotherm Controls KD485 Communications Adapter unit is recommended for this purpose. The use of a RS485 board built into the computer is not recommended since this board may not be isolated, which may cause noise problems or damage to the computer, and the RX terminals may not be biased correctly for this application.

Either cut a patch cable and connect the open end to the KD485 converter or, using twin screened cable, crimp an RJ45 plug on the Mini8 end.

The communication line must be daisy chained from device to device and, if the communications line is more than a metre or two long, it must be correctly terminated. A Modbus terminator containing the correct termination resistors is available from Eurotherm, order code:

SubMin8/RESISTOR/MODBUS/RJ45. The Modbus terminator is BLACK.

See also the 2000 series Communications Handbook, part number HA026230, available on www.eurotherm.co.uk. for further information on digital communications.

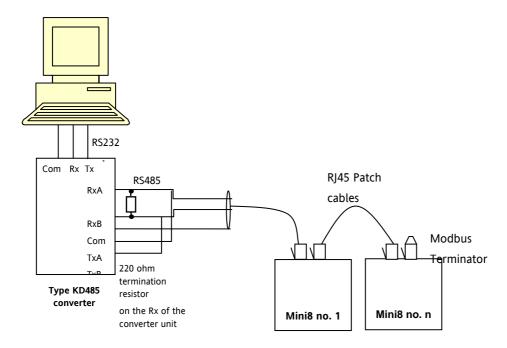


Figure 1-3: RS485 two-wire Connections

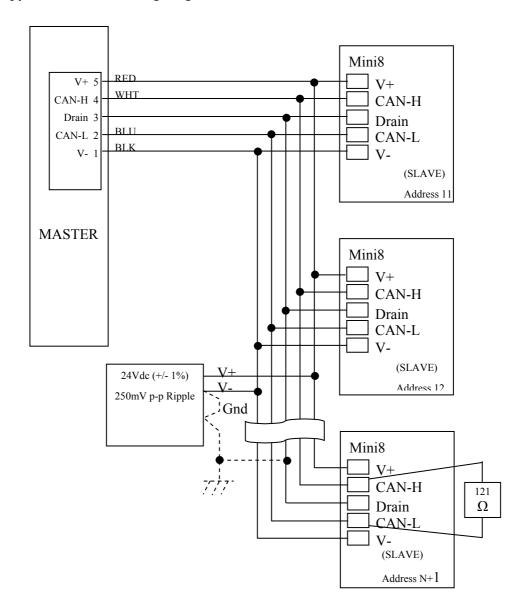
For the 4 wire connection the TxA and TxB are not connected to RxA and RxB but connected separately through another twisted pair.

1.4.6 DeviceNet

DeviceNet uses the CAN open connector screw terminal, 5 way with 5.08mm pitch. The mating DeviceNet connector (female Open Connector) is supplied to facilitate screw-in user wiring. The DeviceNet bus is powered (24V) from the system network, not from the instrument. The Mini8 requirement is a load of around 100mA. For the address switch see Chapter 10.5

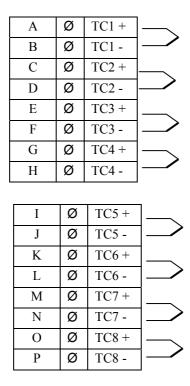
Legend	Function
V+	V+
СН	CAN HIGH
DR	DRAIN
CL	CAN LOW
V-	V-

The DeviceNet specification states that the bus terminators (121 ohm) should not be included as any part of a master or slave. They are not supplied but should be included in the cabling where required.


Mini8	Colour	Description
Label		
V+	Red	DeviceNet network power positive terminal. Connect the red wire of the DeviceNet cable here. If the DeviceNet network does not supply the power, connect the positive terminal of an external 11-25 Vdc power supply.
CAN_H	White	DeviceNet CAN_H data bus terminal. Connect the white wire of the DeviceNet cable here.
SHIELD	None	Shield/Drain wire connection. Connect the DeviceNet cable shield here. To prevent ground loops, the DeviceNet network should be grounded in only one location.
CAN_L	Blue	DeviceNet CAN_L data bus terminal. Connect the blue wire of the DeviceNet cable here.
V-	Black	DeviceNet network power negative terminal. Connect the black wire of the DeviceNet cable here. If the DeviceNet network does not supply the power, connect the negative terminal of an external 11-25 Vdc power supply.

Network length depends on Baud rate.

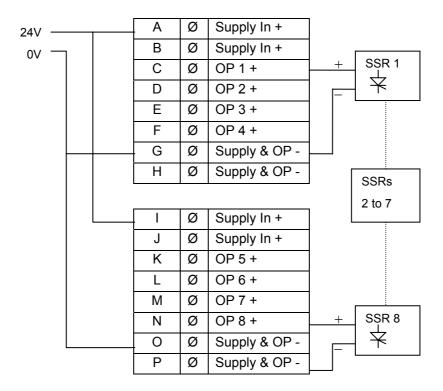
Network Length	Varies w/speed, up to 4000m possible w/repeaters		
Baud Rate	125	250	500
Thin trunk	100m (328ft)	100m (328ft)	100m (328ft)
Max drop	6m (20ft)	6m (20ft)	6m (20ft)
Cumulative drop	156m (512ft)	78m (256ft)	39m (128ft)


See the DeviceNet Communications Handbook HA027506

1.4.7 Typical DeviceNet Wiring Diagram

1.4.8 Thermocouple Input TC8

The thermocouple module takes 8 thermocouples. It may be placed in any slot in the Mini8. Up to 4 may be fitted in a Mini8. Each input can be configured to any thermocouple type or a linear mV input. In version 1.04 the linear input can be scaled to engineering units using an Analogue Operator block.



Channel to channel isolation is 42V.

Channel to system isolation is 42V.

1.4.9 Logic Output DO8

The DO8 module provides 8 logic outputs.

Channel to channel isolation - none.

Channel to system isolation – none if power supply shared with Mini8.

42V if independent isolated 24V power supply is used.

Supply In + (A,B,I,J) are all linked internally.

Supply In – (G,H,O,P) are all linked internally.

1.4.10 Analogue Output AO8

The AO8 modules provides 8 analogue outputs of 0 to 20 mA , max load 360 ohm.

Only one module may be fitted and in slot 4 only.

Ø	OP 1 +
Ø	OP 1 -
Ø	OP 2 +
Ø	OP 2 -
Ø	OP 3 +
Ø	OP 3 -
Ø	OP 4 +
Ø	OP 4 -
	Ø Ø Ø Ø Ø Ø

I	Ø	OP 5 +
J	Ø	OP 5 -
K	Ø	OP 6 +
L	Ø	OP 6 -
М	Ø	OP 7 +
N	Ø	OP 7 -
0	Ø	OP 8 +
Р	Ø	OP 8 -

Channel to channel isolation is 42V.

Channel to system isolation is 42V.

1.4.11 Current Transformer input Module CT3

This provides inputs for 3 current transformers. The heater load cables are threaded through the transformers. Each input is 50mA max into 5 ohms.

Α	Ø	Reserved
В	Ø	Reserved
С	Ø	Reserved
D	Ø	Reserved
Е	Ø	Reserved
F	Ø	Reserved
G	Ø	Reserved
Н	Ø	Reserved

I	Ø	In 1 A
J	Ø	In 1 B
K	Ø	no connection
L	Ø	In 2 A
М	Ø	In 2 B
N	Ø	no connection
0	Ø	In 3 A
Р	Ø	In 3 B

The current transformers provide channel isolation; there is no channel to channel isolation in the module.

It is recommended that the current transformer is fitted with a voltage limiting device such as two back to back zener diodes between 3 and 10 volts, rated for 50mA.

There are 3 CT inputs, one for each phase. Up to a maximum of 16 heaters may be threaded through the CTs but with a further limit of 6 heater wires through each individual CT.

See Chapter 7.6 for typical circuit arrangements.

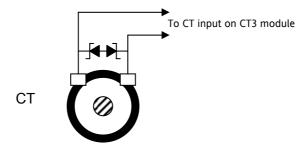


Figure 1-4: CT Input Protection

1.5 Adding or replacing an IO module.

The modules are not covered leaving antistatic sensitive electronic devices exposed. Take full antistatic protection when replacing modules by working on an earthed mat with an earthed wrist strap. Avoiding touching components, keep fingers on the green connectors or the edge of the printed circuit boards.

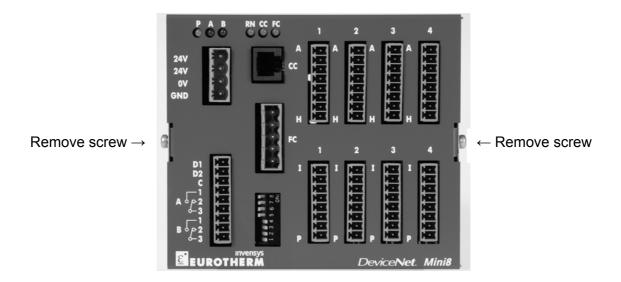
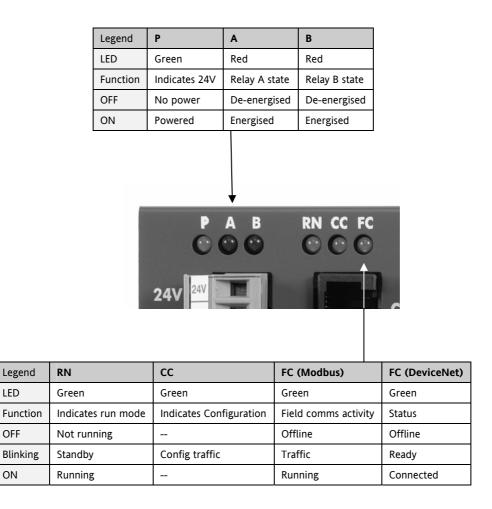


Figure 1-5: Mini8 Cover Retaining Screws

- 1. Remove all connectors.
- 2. Remove the 2 screws indicated above
- 3. Remove the cover.
- 4. If removing a module gently prise it out using the green connectors.
- 5. Insert the new module carefully using the guides on the side of the case to help to line up the lower connector with its mate on the motherboard. This requires great care as the guides provide mechanical support rather than being plug in guides.
- Once you are certain the two connectors are lined up, push the module gently into place. Do NOT force.
- 7. Replace cover and the 2 cover screws.
- 8. Replace all connectors onto their correct modules.


Mini 8 LED Indicators 1.6

LED

OFF

ON

Two sets of 3 LEDs on the front panel indicate the power, the output relays and the status of the Mini8 and communications activity.

The Mini8 is controlling normally ONLY if the green RN LED is permanently ON.

2. CHAPTER 2 USING THE MINI8

The Mini8 Controller does not have a display. The only means of configuring it, and of interfacing with it during normal operation is via communications.

The auxiliary communications port (RJ11) gives a Modbus interface, usually connected to iTools for configuration and commissioning.

The main configuration port offers Modbus or DeviceNet, normally connected to the system of which the Mini8 is part, and is the means by which the Mini8 is operated.

Here are ways the Mini8 may be used in a system. iTools is the best PC based solution. The Modbus single register addressing is best for Operator panels, PLCs where floating point may not be available or necessary. Use the Modbus floating point addressing with care.

2.1 iTools

iTools offers a pc based solution. The iTools suite allows configuration, commissioning, trend graphs and logging with OPC Scope, Program Editing, Recipes and User pages with View Builder.

2.1.1 iTools OPC Open server

With an OPEN OPC server running on a PC all the Mini8 parameters are available to any third party package with an OPC client. The advantage of this is that all the parameters are addressed by name – the iTools OPC server handles all the physical communication addresses. An example would be with Wonderware inTouch using OPCLink. In this situation the user would not have to know any of the parameter addresses, and would just select a parameter by browsing through the namespace.

e.g. Eurotherm.ModbusServer.1.COM1.ID001-Mini8.Loop.1.Main.PV

2.2 Modbus, single register, SCADA addressing

The key parameters of the Mini8 are available at a fixed address, independent of its configuration. This can be used with any device with a serial Modbus master (Modbus function 4). The parameters are listed in full with their addresses in Appendix A.

This area does not have all the parameters within the instrument. If other parameters are required they can be obtained by using the **Commstab** folder. This allows up to 250 other parameters to be made available using indirection addressing. This is explained in Appendix A.

Also note that in this area the resolution (number of decimal points) has to be configured and the serial Master has to scale the parameter correctly. Again the **Commstab** folder offers an alternative solution where a parameter can be indirectly addressed and configured as a floating point or double register value.

2.3 Modbus (Floating Point)

During configuration the Modbus addresses of the parameters required by the system can be obtained from iTools in decimal or in hex format. This can be used with any device e.g. PC or plc, with a serial Modbus master, able to decode double register for floating point numbers (Modbus function 7) and long integers (Modbus function 8). These parameters are displayed on the iTools parameter lists.

Use this method with care. These parameter addresses are not fixed – a common parameter on two differently configured Mini8s may be at a different address. Similarly if the configuration of a Mini8 is changed, the addresses of some of the parameters may also have changed.

2.4 Fieldbus

The Mini8 may be ordered with the option of a DeviceNet slave. This comes pre-configured with the key parameters of the 8 PID loops and alarms (60 input parameters process variables, alarm status etc and 60 output parameters – setpoints etc.). See Appendix B.

2.5 Mini8 Execution

The nominal update of all inputs and function blocks is 110ms. However, in complex applications the Mini8 will automatically extend this time in multiples of 110ms.

For example, eight simple heat/cool loops each with two alarms (40 wires) will run at 110ms, while the full EC8 configuration will run at 220ms because of the extra wiring and functionality.

The communications traffic will also have some effect on the update rate.

For example, an application using every function block and all 250 wires will run at 220ms with light communications traffic but may be slowed to 330ms with heavy traffic.

Note that as loading changes, the sample rate may increase or decrease automatically. In order to recover to a faster sample rate, the Mini8 must be running consistently with processing power to spare for at least 30s.

2.6 The iTools Operator Interface

Much of this manual is about configuring the Mini8 with iTools. However iTools also provides an excellent commissioning tool and can be used as a long-term operator view if convenient.

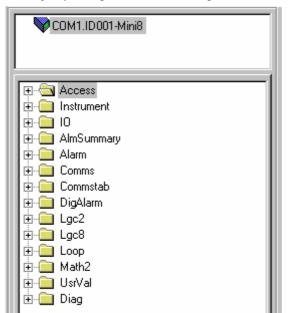
First it is necessary to go 'on-line' to the Mini8(s). This assumes the communication ports have been wired up to the COM port on the iTools computer (Chapter 10).

2.6.1 Scanning

Open iTools and, with the controller connected, press on the iTools menu bar. iTools will search the communications ports for recognisable instruments. Controllers connected using the RJ11 configuration port or with the configuration clip (CPI), may be found at address 255 (as a single point to point connection) or on a multidrop RS485 or RS422 network will be found at the address configured in the controller.

The iTools handbook, part no. HA026179, provides further step by step instructions on the general operation of iTools. This and the iTools software may be downloaded from www.eurotherm.co.uk.

When an instrument is found on the network it will be shown as, for example

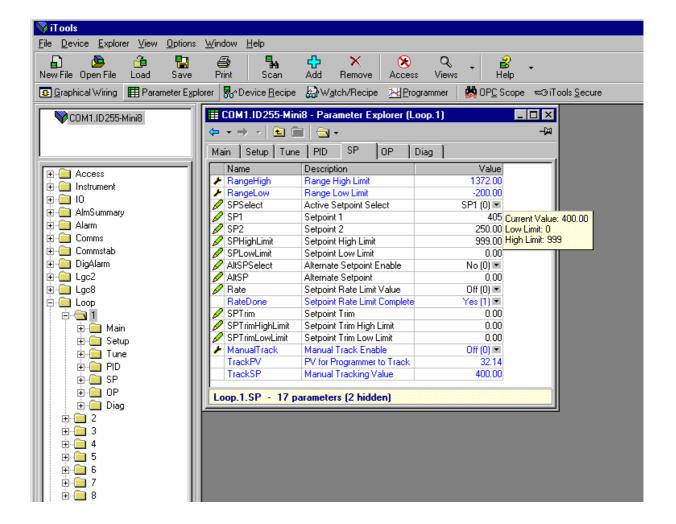

'COM1.ID001-Min8' which represents <computer com port>.ID<instrument address>-<Instrument type> Stop the scan once all the instruments have been found.

Once an instrument is found on the network a message "sync pending" or synchronizing is displayed next to it whilst iTools extracts the exact configuration from the instrument. Wait until this message disappears.

2.6.2 Browsing and Changing Parameter Values

Once the instrument is synchronized the parameter navigation tree is displayed. The contents of this tree will vary depending on the actual configuration of the instrument.

The folders shown will be some of those which are always present –


e.g Instrument, IO, Comms, Access

as well as the configuration dependent ones-

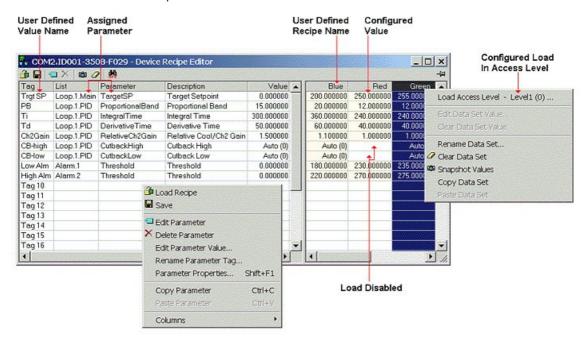
e.g. Loops, Alarm, Lgc2 etc. which have been configured.

To view or change a parameter:

- 1. Highlight the folder
- 2. Press Parameter Explorer to get the parameter window or open up the parameter list by clicking on the required folder. Right click in the parameter list to reveal or hide columns.
- 3. To change the value of a parameter,
 - a. click the parameter value,
 - b. write in the new value. Note a pop-up window indicates the current value, and the high and low limits
 - c. Hit <Enter> to enter the new value or <Escape> to cancel.

The 'Access' button puts the controller into configuration mode. In this mode the controller can be set up without its outputs being active. Press 'Access' again to return to operating level.

To find a parameter use the 'Find' tab at the bottom of the folder list.


Tip: In parameter lists: Parameters in BLUE are read only
 Parameters in BLACK are read/write.

© Tip: Every parameter in the parameter lists has a detailed description in the help file – just click on a parameter and hit Shift-F1 on the keyboard or right click and select parameter help.

2.7 Recipe Editor

Press Press for this feature. Up to 8 recipes can be stored. They can also be named by the user. Recipes allow the operator to change the operating values of up to 24 parameters in an instrument for different batch items/processes by simply selecting a particular recipe to load. Recipes are important for reducing error in setup and they remove the need for operator instructions fixed to the panel next to the instrument.

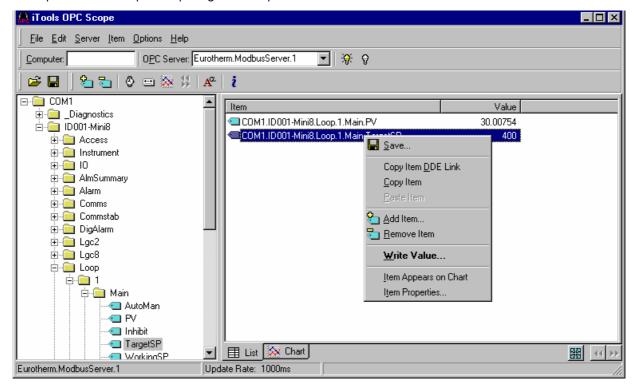
The Recipe Editor is used during configuration to assign the required parameters and to set up the values to be loaded for each recipe.

2.7.1 Recipe Menu Commands

Command	Description
Load Recipe	Used to load a recipe file into the instrument
Save	Used to save the current recipe configuration into a file
Edit Parameter	Used to assign a parameter to a Tag. Parameters can also be assigned by 'drag and drop' from the iTools parameter list
Delete Parameter	Used to delete an assigned parameter from the recipes
Edit Parameter Value	Used to edit the current value of the assigned parameter
Rename Parameter Tag	Allows the user to rename the Tag of the associated parameter. This tag is used on the instrument to identify assigned parameters (default Value1 - Value24)
Parameter Properties	Used to find the properties and help information of the selected parameter
Copy Parameter	Used to copy the currently selected parameter
Paste Parameter	Used to assign a previously copied parameter to the selected Tag
Columns	Used to hide/show the Description and Comment Columns
Load Access Level	Used to configure the lowest access level in which the selected recipe is allowed to load
Level1	Permitted to load when the instrument is in any of the access levels
Config	Permitted to load when the instrument is in the Config access level
Never	Never permitted to load
Edit Data Set	Used to edit the value of the selected assigned parameter within the selected recipe.

Command	Description
Value	Values can also be edited via double left clicking the value itself
Clear Data Set Value	Used to clear the value of the selected assigned parameter within the selected recipe, thus disabling it from loading when the recipe is selected to load
Rename Data Set	Allows the user to rename the selected recipe. This name is used to identify individual recipes (default Set1 - Set8). Note: Number of recipes dependent upon features
Clear Data Set	Used to clear all values in the selected recipe, thus disabling all from loading when the recipe is selected to load
Snapshot Values	Used to copy all of the assigned parameters current values into the selected recipe
Copy Data Set	Used to copy all values of the selected recipe
Paste Data Set	Used to paste all values of a previously copied recipe into the selected recipe

2.8 OPCScope


OPC scope is a standalone OPC client that can be used to attach to the iTools OPCserver. It offers real time trend charts and data logging to disc in a .csv (comma separated variable) format which can easily be opened by a spreadsheet such as Excel.

With iTools open OPC Scope can be started using the icon

But it can also be started on its own using the Windows Start/Programs/Eurotherm iTools/OPC Scope

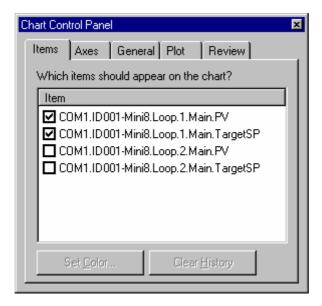
Select Server/Connect or click the icon and the OPC server will start up (if it is not running) and will display the active ports on the computer. Opening the COM port will show the attached instruments as shown below.

The 'ID001-Mini8' folder will contain all the same folders for the instrument that would have been seen in iTools itself.

Expand the folder and double click on the blue item tag to add to the List Window. The List Window shows all the selected parameters and their current value.

Right click on a parameter to get the context menu.

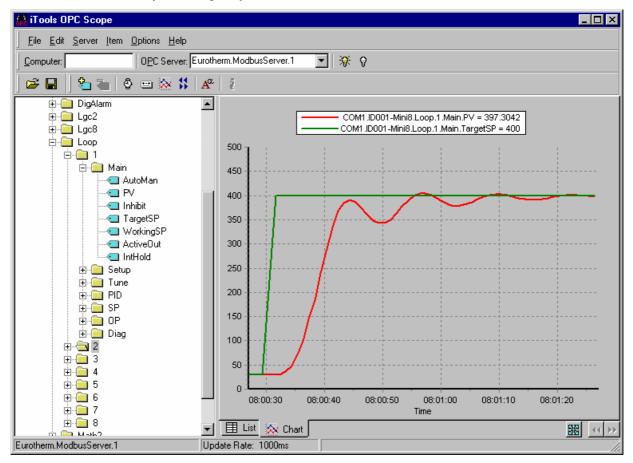
2.8.1 OPC Scope List Window Context Menu


Command	Description
Save	Saves the OPC Scope configuration as <filename>.uix See Section 2.8.3</filename>
Copy Item DDE link	Saves the DDE path to the clipboard.
	'Paste Special' in an Excel cell and select 'Paste Link' and the current parameter value will be displayed in the cell.
Copy/Paste Item	Copy & Paste
Add Item	Add a new variable by name (easier to browse the navigation tree)
Remove Item	Remove the selected item.
Write Value	Write a new value (not if the item is Read Only).
Item appears on Chart	Up to 8 items can be tended on the Chart Window
Item Properties	Gives the item properties as seen by OPC

The OPC List can contain parameters from any instrument attached to the Modbus network.

If you have iTools Open (not iTools Standard) then OPC Scope can run on a remote networked computer. Enter the name of the server computer (attached to the instruments) the 'Computer' window and browse for the 'Eurotherm.ModbusServer1'.

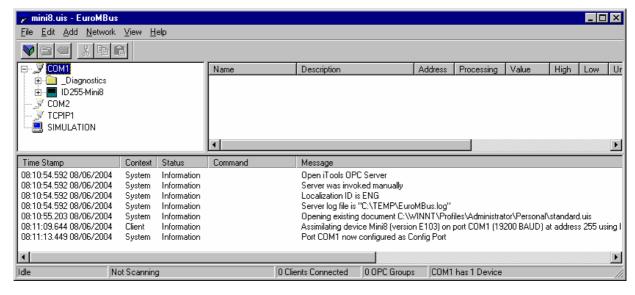
2.8.2 OPC Scope Chart Window


Click the Chart tab tab chart at the bottom of the display window and select Chart Control Panel.

These are also available on the toolbar.

- Items. Includes all the items in the list window. Those items ticked (up to 8) will appear on the chart.
- 2. **Axes.** Allows time intervals from 1 minute to 1 month. Vertical axes can be 'auto' scaled or a fixed range may be entered.
- 3. **General.** Allows selection of colours, grid, legends and a data box.
- 4. **Plot.** Allows selection of line thickness and printing
- 5. **Review.** Allows review of early history charts.

iTools Trend Graph showing Loop1 SP and PV


The icon allows the chart to occupy all the window space.

2.8.3 OPC Server

ITools and OPC Scope all use the Eurotherm OPC Server to provide the connection between the instruments and the computer displays. When you 'scan' for instruments on iTools it is in fact the OPC Server that is actually doing the work in background (the window is not usually displayed).

OPC Scope can run on its own but for it to find the instruments on the network it is necessary to tell the server where they are.

- 1. Start OPC Server (Windows Start/Programs/Eurotherm iTools/OPC Server)
- 2. On the menu go to 'Network' and select 'Start One-Shot Scan'
- 3. Stop the scan when all the instruments have been found.

- 4. On the menu go to 'File' and select 'Save As' and save the file with a suitable name.
- 5. Once saved you will be asked 'Would you like to make this file the default start server address file?' select 'Yes'.
- 6. Close the server.

Now if you double click on an OPC Scope file e.g. Mini8 Project.uix then this file will open OPC Scope and in turn, in background, OPC scope will open the OPC Server with this instrument file loaded. OPC Scope will then be active with live data from the instrument(s).

3. CHAPTER 3 CONFIGURATION USING ITOOLS

WARNING

Configuration level gives access to a wide range of parameters that match the controller to the process. Incorrect configuration could result in damage to the process being controlled and/or personal injury. It is the responsibility of the person commissioning the process to ensure that the configuration is correct.

In configuration level the controller is not controlling the process or providing alarm indication. Do not select configuration level on a live process.

3.1 Configuration

The Mini8 is supplied unconfigured, unless ordered preconfigured, e.g. EC8. An unconfigured Mini8 has to be configured for use in an application. This is performed using iTools.

The iTools handbook, part no. HA026179 provides further step by step instructions on the general operation of iTools. This and the iTools software may be downloaded from www.eurotherm.co.uk.

3.1.1 On-Line/Off-line Configuration

If iTools is connected to a real Mini8 then all the parameter changes made will be written to the device immediately. Once the Mini8 is configured and working as required, its final configuration can be saved to disk as a 'clone' file of the format <name>.uic.

Alternatively iTools can be used 'off-line' without a real Mini8 connected at all. This virtual Mini8 can be created in iTools and again saved to disk as a clone file. This file can later be loaded into a real Mini8 to create the required real application.

3.2 Connecting a PC to the Mini8 Controller

3.2.1 Configuration Cable and Clip

The controller may be connected to the PC running iTools using the Eurotherm cable **SubMin8/Cable/Config** from the RJ11 port connecting to a serial port on the PC.

Alternatively a Configuration Clip is available from Eurotherm that can be fitted into the rear of the controller.

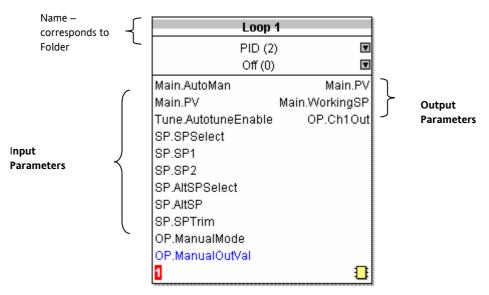
The benefit of using this arrangement is that it is not necessary to power the controller, since the clip provides the power to the internal memory of the controller.

3.2.2 Scanning

Open iTools and, with the controller connected, press scan on the iTools menu bar. iTools will search the communications ports and TCPIP connections for recognisable instruments. Controllers connected using the RJ11 configuration port or with the configuration clip (CPI), will be found at address 255 regardless of the address configured in the controller. These connections only work from iTools to a single controller.

The iTools handbook, part no. HA026179, provides further step by step instructions on the general operation of iTools. This and the iTools software may be downloaded from www.eurotherm.co.uk.

In the following pages it is assumed that the user is familiar with iTools and has a general understanding of Windows.


3.3 Configuring the Mini8

Once iTools is successfully connected to a Mini8, it can be configured for the application in hand. Configuration involves selection of the required elements of functionality called 'function blocks' and setting their parameters to the correct values. The next stage is to connect all the function blocks together to create the required strategy of control for the application.

3.3.1 Function Blocks

The controller software is constructed from a number of 'function blocks'. A function block is a software device that performs a particular duty within the controller. It may be represented as a 'box' that takes data in at one side (as inputs), manipulates the data internally (using internal parameter values) and 'outputs' the results. Some of these internal parameters are available to the user so that they can be adjusted to suit the characteristics of the process that is to be controlled.

A representation of a function block is shown below.

Internal Parameters

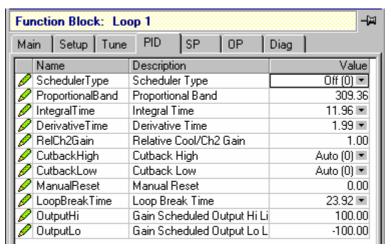


Figure 3-1: Example of a Function Block

In the controller, parameters are organised in simple lists. The top of the list shows the list header. This corresponds to the name of the function block and is generally presented in alphabetical order. This name describes the generic function of the parameters within the list. For example, the list header 'AnAlm' contains parameters that enable you to set up analogue alarm conditions.

3.3.2 Soft Wiring

Soft Wiring (sometimes known as User Wiring) refers to the connections that are made in software between function blocks. Soft wiring, which will generally be referred to as 'Wiring' from now on is created during the instrument configuration using the iTools configuration package.

In general every function block has at least one input and one output. Input parameters are used to specify where a function block reads its incoming data (the 'Input Source'). The input source is usually wired to the output from a preceding function block. Output parameters are usually wired to the input source of subsequent function blocks.

All parameters shown in the function block diagrams are also shown in the parameter tables, in the relevant chapters, in the order in which they appear in iTools.

Figure 3.2 shows an example of how the thermocouple is wired to the PID Loop input and the PID Loop channel 1 (heat) output is wired to the time proportioning logic output.

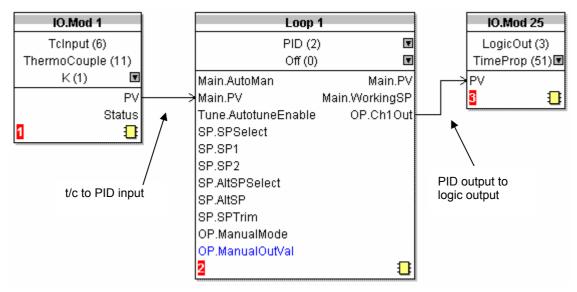


Figure 3-2: Function Block Wiring

3.4 Simple Worked Example

Using function blocks and wiring the following sections will show a blank Mini8 being configured to have one PID loop.

3.4.1 The I/O

With the Mini8 successfully connected to iTools configuration can begin.

Tip: In parameter lists:

Parameters in BLUE are read only

Parameters in BLACK are read/write.

© Tip: Every parameter in the parameter lists has a detailed description in the help file – just click on a parameter and hit Shift-F1 on the keyboard or right click and select parameter help.

The I/O will already have been installed in the Mini8 and can be checked in iTools.

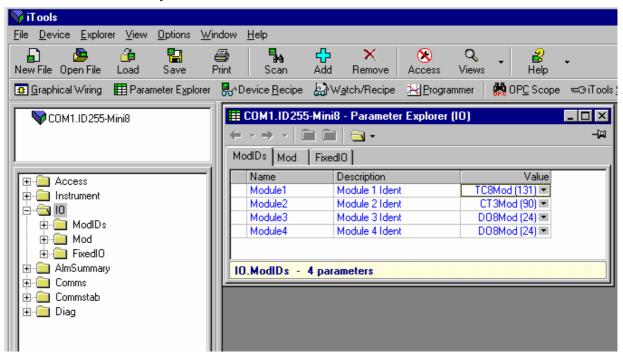


Figure 3-3: Mini8 I/O Modules

This unit has an 8 thermocouple input board in slot 1, a CT3 input card in slot 2, and 2 DO8 output cards in slot 3 and slot 4.. Clicking on the 'Mod' tab will enable the first channel of the thermocouple card to be configured. Firstly the Mini8 has to be put into configuration mode. Go to Device/Access/Configuration or click on the Access button:

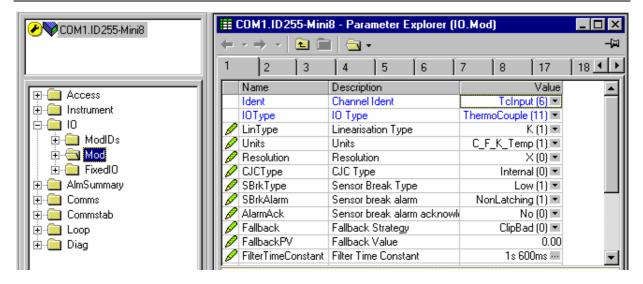


Figure 3-4: Thermocouple Input

Select the I/O type, linearisation, units, resolution etc. required. Parameter details are in Section 7.3.

The other thermocouple channels can be found by using the 2,3,4...7,8 tabs on the top of the parameter window.

Slot 2 in the Mini8 has a CT3 input card and this is configured elsewhere so the Tabs 9 to 16 are not shown.

Slot 3 has a DO8 output card and the first channel of this will be on tab 17 (to 24)

Slot 4 has a DO8 output card and the first channel of this will be on tab 25 (to 32)

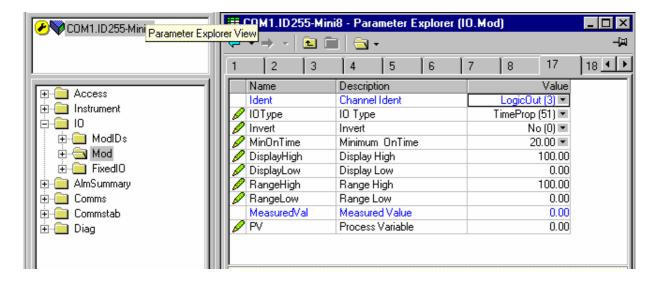


Figure 3-5: Digital Output Channel

Set this channel up as required, IOType, MinOnTime etc. as required. The parameters are detailed in Section 7.2.

The remaining channels on this slot will be found under the tabs 18 to 24.

Slot 4 also contains a DO8 output card with outputs under tabs 25 to 32.

The fixed I/O is always there and there is nothing that has to be configured.

The Current Monitor is covered in Chapter 7.6.

3.4.2 Wiring

The IO that has been configured now needs to be wired to PID loops and other function blocks.

Select Graphical Wiring (GWE) to create and edit instrument wiring.

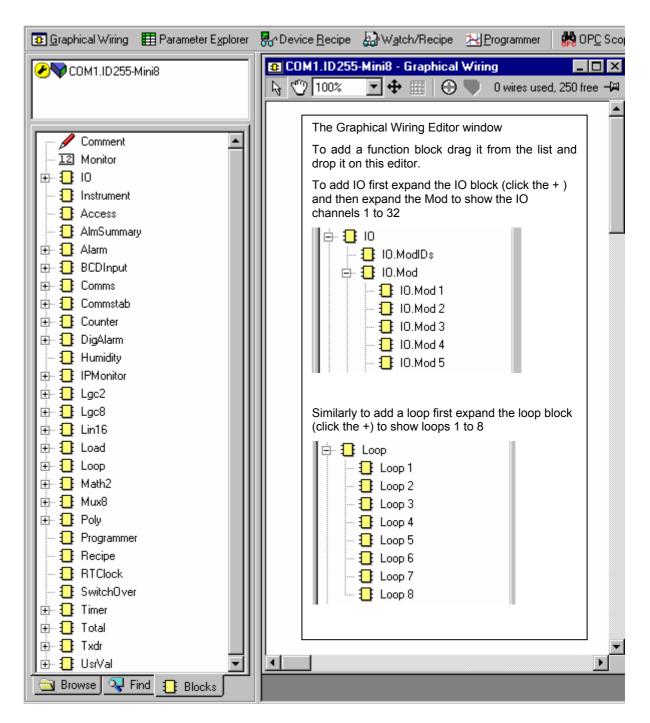
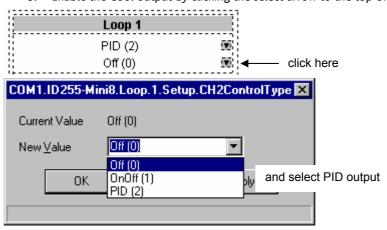


Figure 3-6: List of Function Blocks & Graphical Wiring Window

The left window now contains a list of the function blocks available.


Use drag and drop to select the first thermocouple from IOMod 1, the Cool output from IOMod 17 and the Heat output from IOMod 25 and drop them on the wiring window.

Finally take the first PID block from Loop/Loop 1 and drop it on the wiring window. Note that as each block is used it greys out on the list.

There should now be 4 blocks on the window. Those blocks are shown with dotted lines, as they have not been loaded into the Mini8.

First make the following wire connections.

- 1. Click on IO.Mod1.PV and move the pointer to Loop 1.MainPV and click again. A dotted wire will have connected the two together.
- 2. Similarly join Loop1.OP.Ch1Out to IOMod 25.PV (heat output)
- 3. Enable the Cool output by clicking the select arrow to the top of the loop block:

4. Loop1.OP.Ch2Out to IOMod 17.PV (cool output)

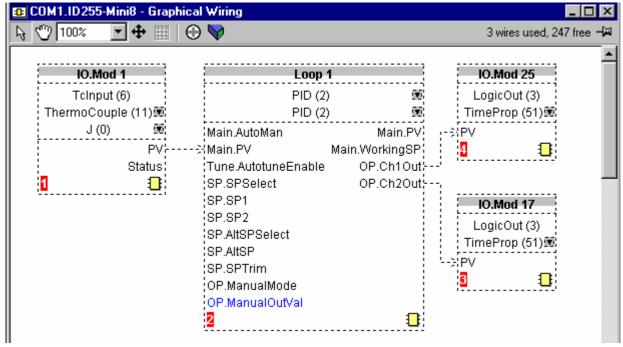


Figure 3-7: Wired Blocks before download

5. Right click on the Loop 1 function Block and select 'Function Block View'. This opens the Loop parameter list on top of the wiring editor.

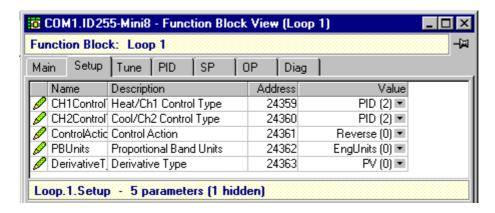
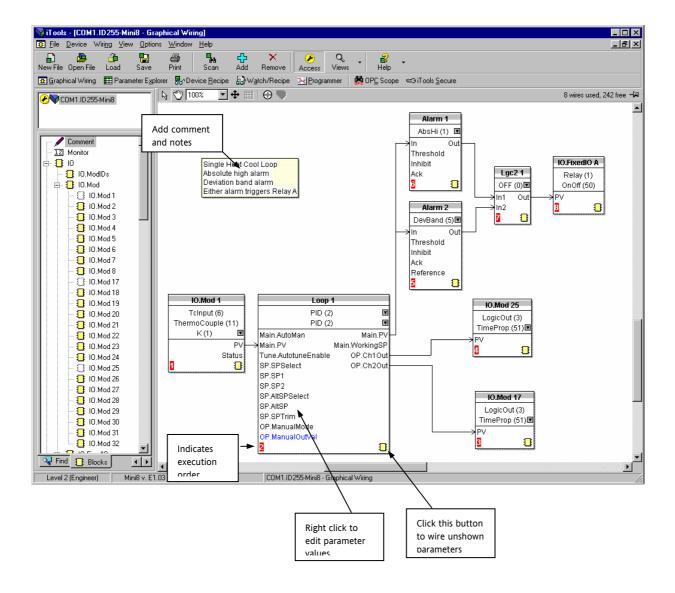


Figure 3-8: PID Function Block

This enables the PID function block to be set up to suit the required application. See Chapter 17 for details.

6. Click on the instrument button to download the application:

- 7. Once downloaded the dotted lines around the function blocks and the wires will become solid to show that the application is now in the Mini8. The upper status line also shows that 3 of wires have been used out of those available. Max is 250 but quantity depends on number of wires ordered (30, 60, 120 or 250).
- 8. Put the Mini8 back into Operating mode by clicking the Access button:



9. The Mini8 will now control the Loop1 as configured.


3.5 Graphical Wiring Editor

Select Graphical Wiring (GWE) to view and edit instrument wiring. You can also add comments and monitor parameter values.

- 1. Drag and drop required function blocks into the graphical wiring from the list in the left pane
- 2. Click on parameter to be wired from and drag the wire to the parameter to be wired to (do not hold mouse button down)
- 3. Right click to edit parameter values
- 4. Select parameter lists and switch between parameter and wiring editors
- 5. Download to instrument when wiring completed
- 6. Add comments and notes
- 7. Dotted lines around a function block show that the application requires downloading

3.5.1 Graphical Wiring Toolbar

3.5.2 Function Block

A Function Block is an algorithm that may be wired to and from other function blocks to make a control strategy. The Graphical Wiring Editor groups the instrument parameters into function blocks. Examples are: a control loop and a mathematical calculation.

Each function block has inputs and outputs. Any parameter may be wired from, but only parameters that are alterable may we wired to.

A function block includes any parameters that are needed to configure or operate the algorithm.

3.5.3 Wire

A wire transfers a value from one parameter to another. They are executed by the instrument once per control cycle.

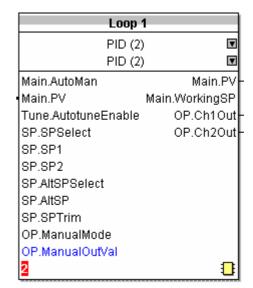
Wires are made from an output of a function block to an input of a function block. It is possible to create a wiring loop, in this case there will be a single execution cycle delay at some point in the loop. This point is shown on the diagram By a | | symbol and it is possible to choose where that delay will occur.

3.5.4 Block Execution Order

The order in which the blocks are executed by the instrument depends on the way in which they are wired. The order is automatically worked out so that the blocks execute on the most recent data.

3.5.5 Using Function Blocks

If a function block is not faded in the tree then it can be dragged onto the diagram. The block can be dragged around the diagram using the mouse.


A labelled loop block is shown here. The label at the top is the name of the block.

When the block type information is alterable click on the box with the arrow in it on the right to edit that value.

The inputs and outputs that are considered to be of most use are always shown. In most cases all of these will need to be wired up for the block to perform a useful task. There are exceptions to this and the loop is one of those exceptions.

If you wish to wire from a parameter, which is not shown as a recommended output click on the icon in the bottom right, and a full list of parameters in the block will be shown, click on one of these to start a wire.

To start a wire from a recommended output just click on it.

Click the icon in the bottom right hand corner to wire other function block parameters not shown on the list on the right hand side.

3.5.5.1 Function Block Context Menu

Right clicking displays the context menu with the following entries.

Function Block View.
Re-Route Wires
Re-Route Input Wires
Re-Route Output Wires
Сору
Delete
Jndelete
Bring To Front
Push To Back
Edit Parameter Value
Parameter Properties
Help

Function Brings up an iTools parameter list which shows all the parameters in the function block. If Block View... the block has sub-lists these are shown in tabs Re-Route Throw away current wire route and do an auto-route of all wires connected to this block Wires Re-Route Only do a re-route on the input wires **Input Wires** Re-Route Only do a re-route on the output wires **Output Wires** Сору Right click over an input or output and copy will be enabled, this menu item will copy the iTools "url" of the parameter which can then be pasted into a watch window or OPC Scope Delete If the block is downloaded mark it for delete, otherwise delete it immediately Undelete This menu entry is enabled if the block is marked for delete and unmarks it and any wires connected to it for delete **Bring To** Bring the block to the front of the diagram. Moving a block will also bring it to the front Front **Push To Back** Push the block to the back of the diagram. Useful of there is something underneath it

Push To BackPush the block to the back of the diagram. Useful of there is something underneath itEditThis menu entry is enabled when the mouse is over an input or output parameter. WhenParameterselected it creates a parameter edit dialog so the value of that parameter can be changed

Value

Parameter Selecting this entry bri

Selecting this entry brings up the parameter properties window. The parameter properties window is updated as the mouse is moved over the parameters shown on the function block

Selecting this entry brings up the help window. The help window is updated as the mouse is moved over the parameters shown on the function block. When the mouse is not over a parameter name the help for the block is shown

3.5.6 Tooltips

Properties

Help

Hovering over different parts of the block will bring up tooltips describing the part of the block beneath the mouse.

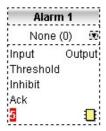
If you hover over the parameter values in the block type information a tooltip showing the parameter description, its OPC name, and, if downloaded, its value will be shown.

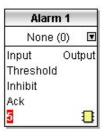
A similar tooltip will be shown when hovering over inputs and outputs.

3.5.7 Function Block State

The blocks are enabled by dragging the block onto the diagram, wiring it up, and downloading it to the instrument

When the block is initially dropped onto the diagram it is drawn with dashed lines.

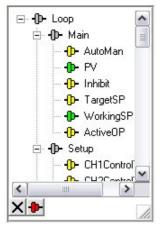

When in this state the parameter list for the block is enabled but the block itself is not executed by the instrument.


Once the download button is pressed the block is added to the instrument function block execution list and it is drawn with solid lines.

If a block which has been downloaded is deleted, it is shown on the diagram in a ghosted form until the download button is pressed.

This is because it and any wires to/from it are still being executed in the instrument. On download it will be removed from the instrument execution list and the diagram. A ghosted block can be undeleted using the context menu.

When a dashed block is deleted it is removed immediately.



3.5.8 Using Wires

3.5.8.1 Making A Wire Between Two Blocks

- Drag two blocks onto the diagram from the function block tree.
- Start a wire by either clicking on a recommended output or clicking on the icon at the bottom right corner of the block to bring up the connection dialog. The connection dialog shows all the connectable parameters for the block, if the block has sub-lists the parameters are shown in a tree. If you wish to wire a parameter which is not currently available click the red button at the bottom of the connection dialog. Recommended connections are shown with a green plug, other parameters which are available are yellow and if you click the red button the unavailable parameters are shown red. To dismiss the connection dialog either press the escape key on the keyboard or click the cross at the bottom left of the dialog.
- Once the wire has started the cursor will change and a dotted wire will be drawn from the output to the current mouse position.
- To make the wire either click on a recommended input to make a wire to that parameter or click anywhere
 except on a recommended input to bring up the connection dialog. Choose from the connection dialog as
 described above.
- The wire will now be auto-routed between the blocks.

New wires are shown dotted until they are downloaded

3.5.8.2 Wire Context Menu

The wire block context menu has the following entries on it.

where the value which is written to the block input comes from a block which was last executed during the previous instrument execute cycle thus introducing a delay. This option tells the instrument that if it needs to make a break it should be on this

wire

Re-Route Wire Throw away wire route and generate an automatic

route from scratch

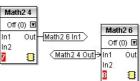
Use Tags If a wire is between blocks which are a long way apart,

then, rather than drawing the wire, the name of the wired to/from parameter can be shown in a tag next to the block. Draw the wire first then use this menu to toggle this wire between drawing the whole wire and drawing it

as tags

Force Exec Break

Re-Route Wire


Use Tags

Delete

Undelete

Bring To Front

Push To Back

Delete If the wire is downloaded mark it for delete, otherwise delete it immediately

Undelete This menu entry is enabled if the wire is marked for delete and unmarks it for delete

Bring To Front Bring the wire to the front of the diagram. Moving a wire will also bring it to the front

Push To Back Push the wire to the back of the diagram

3.5.8.3 Wire Colours

Wires can be the following colours:

Black Normal functioning wire.

Red The wire is connected to an input which is not alterable when the instrument is in operator mode and

so values which travel along that wire will be rejected by the receiving block

Blue The mouse is hovering over the wire, or the block to which it is connected it selected. Useful for tracing

densely packed wires

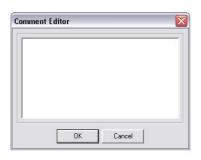
Purple The mouse is hovering over a 'red' wire

3.5.8.4 Routing Wires

When a wire is placed it is auto-routed. The auto routing algorithm searches for a clear path between the two blocks. A wire can be auto-routed again using the context menus or by double clicking the wire.

If you click on a wire segment you can drag it to manually route it. Once you have done this it is marked as a manually routed wire and will retain it's current shape. If you move the block to which it is connected the end of the wire will be moved but as much of the path as possible of the wire will be preserved.

If you select a wire by clicking on it, it will be drawn with small boxes on it's corners.


3.5.8.5 **Tooltips**

Hover the mouse over a wire and a tooltip showing the names of the parameters which are wired and, if downloaded, their current values will also be shown.

3.5.9 Using Comments

Drag a comment onto the diagram and the comment edit dialog will appear.

Type in a comment. Use new lines to control the width of the comment, it is shown on the diagram as typed into the dialog. Click OK and the comment text will appear on the diagram. There are no restrictions on the size of a comment. Comments are saved to the instrument along with the diagram layout information.

Comments can be linked to function blocks and wires. Hover the mouse over the bottom right of the comment and a chain icon will appear, click on that icon and then on a block or a wire. A dotted wire will be drawn to the top of the block or the selected wire segment.

3.5.9.1 Comment Context Menu

The comment context menu has the following entries on it.

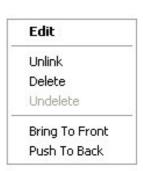
Edit Open the comment edit dialog to edit this comment

Unlink If the comment is linked to a block or wire this will unlink it

Delete If the comment is downloaded mark it for delete, otherwise

delete it immediately

Undelete This menu entry is enabled if the comment is marked for


delete and unmarks it for delete

Bring To Front Bring the comment to the front of the diagram. Moving a

comment will also bring it to the front

Push To Back Push the comment to the back of the diagram. Useful if

there is something underneath it

3.5.10 Using Monitors

Drag a monitor onto the diagram and connect it to a block input or output or a wire as described in 'Using Comments'.

The current value (updated at the iTools parameter list update rate) will be shown in the monitor. By default the name of the parameter is shown, double click or use the context menu to not show the parameter name.

3.5.10.1 Monitor Context Menu

The monitor context menu has the following entries on it.

Show Names Show parameter names as well as values

Unlink If the monitor is linked to a block or wire this will unlink it

Delete If the monitor is downloaded mark it for delete, otherwise delete it immediately

Undelete This menu entry is enabled if the monitor is marked for delete and unmarks it for delete

Bring To Front Bring the monitor to the front of the diagram. Moving a monitor will also bring it to the front

Push To Back Push the monitor to the back of the diagram. Useful if there is something underneath it

3.5.11 Downloading

The wires have to be downloaded to the instrument together. When the wiring editor is opened the current wiring and diagram layout is read from the instrument. No changes are made to the instrument function block execution or wiring until the download button is pressed. Any changes made using the instrument front panel after the editor is opened will be lost on download.

When a block is dropped on the diagram instrument parameters are changed to make the parameters for that block available. If you make changes and close the editor without saving them there will be a delay while the editor clears these parameters.

When you download, the wiring is written to the instrument that then calculates the block execution order and starts executing the blocks. The diagram layout including comments and monitors is then written into instrument flash memory along with the current editor settings. When you reopen the editor the diagram will be shown positioned the same as when you last downloaded.

3.5.12 Selections

Wires are shown with small blocks at their corners when selected. All other items have a dotted line drawn round them when they are selected.

3.5.12.1 Selecting Individual Items

Clicking on an item on the drawing will select it.

3.5.12.2 Multiple Selection

Control click an unselected item to add it to the selection, doing the same on a selected item unselects it.

Alternatively, hold the mouse down on the background and wipe it to create a rubber band, anything which isn't a wire inside the rubber band will be selected.

Selecting two function blocks also selects any wires which join them. This means that if you select more than one function block using the rubber band method any wires between them will also be selected.

Pressing Ctrl-A selects all blocks and wires.

3.5.13 Colours

Items on the diagram are coloured as follows:

reems on the diagram are coloured as rollows

Function blocks, comments and monitors which partially obscure or are partially obscured by other items are drawn red. If a large function block like the loop is covering a small one like a math2 the loop will be drawn red to show that it is covering another function block. Wires are drawn red when they are connected to an input which is currently unalterable. Parameters in function blocks are coloured red if they are unalterable and

the mouse pointer is over them

Blue Function blocks, comments and monitors which are not coloured red are coloured blue when the mouse pointer is over them. Wires are coloured blue when a block to which the wire is connected is selected or the

mouse pointer is over it. Parameters in function blocks are coloured blue if they are alterable and the mouse

pointer is over them

Purple A wire which is connected to an input which is currently unalterable and a block to which the wire is

connected is selected or the mouse pointer is over it is coloured purple (red + blue)

3.6 Diagram Context Menu

The diagram context menu has the following entries on it:-

Re-Route Throw away current wire route and do an auto-route of all Wires selected wires. If no wires are selected this is done to all wires

on the diagram

Align Tops Line up the tops of all the selected items except wires

Align Lefts Line up the left hand side of all the selected items except

wires

Space Evenly This will space the selected items such that their top left

corners are evenly spaced. Select the first item, then select the rest by control-clicking them in the order you wish them

to be spaced, then choose this menu entry $% \left(t\right) =\left(t\right) \left(t$

Delete, or mark for delete (series 3000 instruments) all

selected items

Undelete This menu entry is enabled if any of the selected items are

marked for delete and unmarks them when selected

Copy Graphic If there is a selection it is copied to the clipboard as a

Windows metafile, if there is no selection the whole diagram is copied to the clipboard as a Windows metafile. Paste into your favourite documentation tool to document your application. Some programs render metafiles better than others, the diagram may look messy on screen but it should

print well

Save Graphic Same as Copy Graphic but saves to a metafile rather than

putting it on the clipboard

Re-Route Wires
Align Tops
Align Lefts
Space Evenly

Delete
Undelete

Copy Graphic
Save Graphic...

3.6.1 Wiring Floats with Status Information

There is a subset of float values which may be derived from an input which may become faulty for some reason, e.g. sensor break, overrange, etc. These values have been provided with an associated status which is automatically inherited through the wiring. The list of parameters which have associated status is as follows:-

Block	Input Parameters	Output Parameters
Loop.Main	PV	PV
Loop.SP		TrackPV
Math2	In1	Out
	In2	
Programmer.Setup	PVIn	
Poly	In	Out
Load		PVOut1
		PVOut2
Lin16	In	Out
Txdr	InVal	OutVal
IPMonitor	In	Out
SwitchOver	In1	
	In2	
Total	In	
Mux8	In1 to 8	Out
Lgc2	In1	
	In2	
UsrVal	Val	Val
Humidity	WetTemp	RelHumid
	DryTemp	DewPoint
	PsychroConst	
	Pressure	
IO.MOD	1.PV to 32.PV	1.PV to 32.PV

Parameters appear in both lists where they can be used as inputs or outputs depending on configuration. The action of the block on detection of a 'Bad' input is dependent upon the block. For example, the loop treats a 'Bad' input as a sensor break and takes appropriate action; the Mux8 simply passes on the status from the selected input to the output, etc.

The Poly, Lin16, SwitchOver, Mux8, IO.Mod.n.PV blocks can be configured to act on bad status in varying ways. The options available are as follows:-

0: Clip Bad

The measurement is clipped to the limit it has exceeded and its status is set to 'BAD', such that any function block using this measurement can operate its own fallback strategy. For example, control loop may hold its output to the current value.

1: Clip Good

The measurement is clipped to the limit it has exceeded and its status is set to 'GOOD', such that any function block using this measurement may continue to calculate and not employ its own fallback strategy.

2: Fallback Bad

The measurement will adopt the configured fallback value that has been set by the user. In addition the status of the measured value will be set to 'BAD', such that any function block using this measurement can operate its own fallback strategy. For example, control loop may hold its output to the current value.

3: Fallback Good

The measurement will adopt the configured fallback value that has been set by the user. In addition the status of the measured value will be set to 'GOOD', such that any function block using this measurement may continue to calculate and not employ its own fallback strategy

4: Up Scale

The measurement will be forced to adopt its high limit. This is like having a resistive pull up on an input circuit. In addition the status of the measured value will be set to 'BAD', such that any function block using this measurement can operate its own fallback strategy. For example, the control loop may hold its output to the current value.

5: Down Scale

The measurement will be forced to adopt its low limit. This is like having a resistive pull down on an input circuit. In addition the status of the measured value will be set to 'BAD', such that any function block using this measurement can operate its own fallback strategy. For example, the control loop may hold its output to the current value.

3.6.2 Edge Wires

If the Loop.Main.AutoMan parameter were wired from a logic input in the conventional manner it would be impossible to put the instrument into manual via communications. Other parameters need to be controlled by wiring but also need to be able to change under other circumstances, e.g. Alarm Acknowledgements. for this reason some Boolean parameters are wired in an alternative way. These are listed as follows:-

SET DOMINANT

When the wired in value is 1 the parameter is always updated. This will have the effect of overriding any changes through digital communications. When the wired in value changes to 0 the parameter is initially changed to 0 but is not continuously updated. This permits the value to be changed through digital communications.

Loop.Main.AutoMan Programmer.Setup.ProgHold Access.StandBy

RISING EDGE

When the wired in value changes from 0 to 1, a 1 is written to the parameter. At all other times the wire does not update the parameter. This type of wiring is used for parameters that start an action and when once completed the block clears the parameter. When wired to, these parameters can still be operated via digital communications.

Loop.Tune.AutotuneEnable Txdr.ClearCal Alarm.Ack
Txdr.StartCal DigAlarm.Ack

Programmer.Setup.ProgRun Txdr.StartHighCal AlmSummary.GlobalAck

Programmer.Setup.AdvSeg Txdr.StartTare

Programmer.Setup.SkipSeg Instrument.Diagnostics.

ClearStats

IPMonitor.Reset

BOTH EDGE

This type of edge is used for parameters which may need to be controlled by wiring or but should also be able to be controlled through digital communications. If the wired in value changes then the new value is written to the parameter by the wire. At all other times the parameter is free to be edited through digital communications.

Loop.SP.RateDisable Loop.OP.RateDisable

4. CHAPTER 4 MINI8 OVERVIEW

Input and output parameters of function blocks are wired together using software wiring to form a particular control strategy within the Mini8. An overview of all the available functions and where to get more detail is shown below.

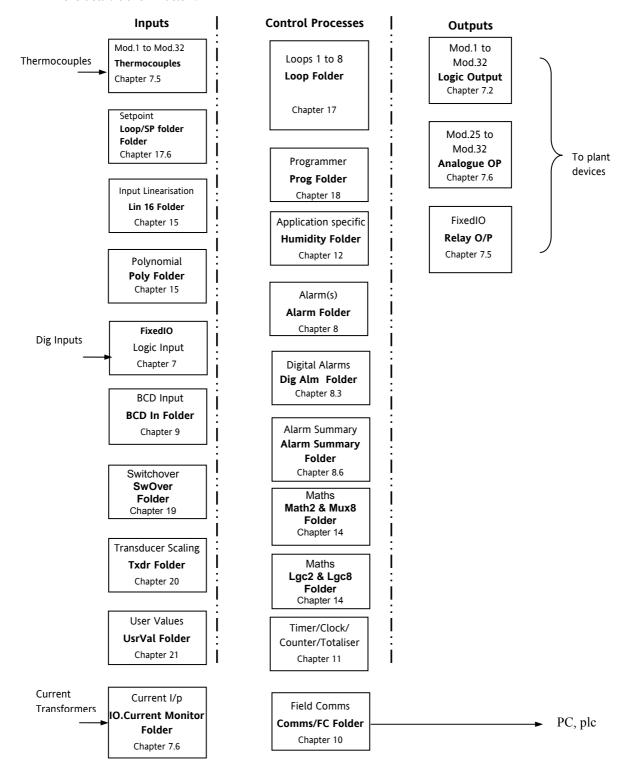
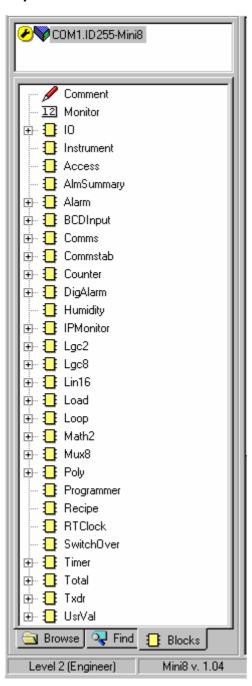


Figure 4-1: Controller Example


Mini8 series controllers are supplied unconfigured, and with those blocks included in the order code. Option EC8 is supplied with function blocks pre-wired to give an 8 loop heat/cool controller suitable for Extrusion. See data sheet HA028519.

The purpose of the PID control blocks is to reduce the difference between SP and PV (the error signal) to zero by providing a compensating output to the plant via the output driver blocks.

The timer, programmer and alarms blocks may be made to operate on a number of parameters within the controller, and digital communications provides an interface to data collection and control.

The controller can be customised to suit a particular process by 'soft wiring' between function blocks.

4.1 Complete list of Function Blocks.

The list opposite represents an unconfigured Mini8 that has been ordered with all features enabled.

If a particular block or blocks do not appear in your instrument then the option has not been ordered. Check the order code of your instrument and contact Eurotherm.

Examples of features that may not have been enabled are:

Loops

Programmer

Recipe

Humidity

Once a block is dragged and dropped onto the graphical wiring window, the block icon in the block list opposite will be greyed out. At the same time a folder containing the blocks parameters will have been created in the Browse List.

5. CHAPTER 5 ACCESS FOLDER

Folder: Access		Sub-folder: none			
Name	Parameter Description	Value		Default	Access Level
ClearMemory	Cold start the instrument	No App LinTables InitComms Wires AllMemory Programs NewFware	Disabled Mini8 memory reset but comms and linearisation tables retained Custom Linearisation tables are deleted Comms ports reset to default configurations Clear all wiring All instrument memory is set to default values All Programs cleared Initialise all memory except Linearisation tables after firmware upgrade	No	Conf
CustomerID	Customer Identifier	Reference nu	umber for customer use	0	Oper
Standby	Set Instrument to standby	No / Yes		No	Oper

6. CHAPTER 6 INSTRUMENT FOLDER

6.1 Instrument / Options

The following table lists the options that can be enabled in the instrument.

Enable flags are one bit for each item - i.e.Bit (0=1) enables item 1, Bit 1 (=2) item 2, Bit(3=4) item 3 and so on to Bit7(=128) enables Item 8. All 8 items enabled adds up to 255.

Tip: Features are not normally enabled this way. Dragging and dropping a function block onto the graphical wiring window automatically sets the required enable flag.

Folder: Instru	Folder: Instrument Sub-folder: Options				
Name Parameter Description		Value	Default	Access Level	
Units	Units	°C,°F or Kelvin scale for all temperature parameters	DegC	Oper	
AlarmEn1	Analogue alarms Enable Flags	Alarms 1 to 8 0 (none) to 255 (all 8)	0	Conf	
AlarmEn2	Analogue alarms Enable Flags	Alarms 9 to 16 0 (none) to 255 (all 8)	0	Conf	
AlarmEn3	Analogue alarms Enable Flags	Alarms 17 to 24 0 (none) to 255 (all 8)	0	Conf	
AlarmEn4	Analogue alarms Enable Flags	Alarms 24 to 32 0 (none) to 255 (all 8)	0	Conf	
BCDInEn	BCD switch input Enable Flags	BCD input 1 and 2 0 (none) to 3 (both)	0	Conf	
CounterEn	Counters Enable Flags	Counters1 and 2 0 (none) to 3 (both)	0	Conf	
CurrentMon	Current Monitor Enable Flag	0 = Off 1 = On	0	Conf	
DigAlmEn1	Digital alarms Enable Flags	Dig Alarms 1 to 8 0 (none) to 255 (all 8)	0	Conf	
DigAlmEn2	Digital alarms Enable Flags	Dig Alarms 9 to 16 0 (none) to 255 (all 8)	0	Conf	
DigAlmEn3	Digital alarms Enable Flags	Dig Alarms 17 to 24 0 (none) to 255 (all 8)	0	Conf	
DigAlmEn4	Digital alarms Enable Flags	Dig Alarms 24 to 32 0 (none) to 255 (all 8)	0	Conf	
HumidityEn	Humidity control Enable Flag	0 = off 1 = On	0	Conf	
IP Mon En	Input monitor Enable Flags	Input Monitor 1 and 2 0 (none) to 3 (both)	0	Conf	
Lgc2 En1	Logic operators Enable Flags	Logic operators 1 to 8 0 (none) to 255 (all 8)	0	Conf	
Lgc2 En2	Logic operators Enable Flags	Logic operators 9 to 16 0 (none) to 255 (all 8)	0	Conf	
Lgc2 En3	Logic operators Enable Flags	Logic operators 17 to 24 0 (none) to 255 (all 8)	0	Conf	
Lgc8 En	Logic 8 operator Enable Flags	8 input Logic operators 1 & 2 0 (none) to 3 (both)	0	Conf	
Lin16Pt En	Input linearisation 16 point	Input Linearisation 1 and 2 0 (none) to 3 (both)	0	Conf	
Load En	Load Enable Flags	Loads 1 to 8 0 (none) to 255 (all 8)	As order code	Conf	
Loop En	Loop Enable Flags	Loops 1 to 8 0 (none) to 255 (all 8)	As order code	Conf	
Math2 En1	Analogue (Maths) Operators Enable Flags	Analogue operators 1 to 8 0 (none) to 255 (all 8)	0	Conf	
Math2 En2	Analogue (Maths) Operators Enable Flags	Analogue operators 9 to 16 0 (none) to 255 (all 8)	0	Conf	
Math2 En3	Analogue (Maths) Operators Enable Flags	Analogue operators 17 to 24 0 (none) to 255 (all 8)	0	Conf	
Mux8 En	Multiplexor Enable Flags	8 input multiplexor 1 and 2 0 (none) to 3 (both)	0	Conf	
Poly En	Polynomial linearisation block Enable Flags	Poly Linearisation 1 and 2 0 (none) to 3 (both)	0	Conf	
Progr En	Programmer Enable Flags	0 = off 1 = Enabled	0	Conf	
RTClock En	Real time clock Enable Flags	0 = off 1 = On	0	Conf	

Folder: Instrument Sub-folder: Options		Sub-folder: Options		
Name	Parameter Description	Value	Default	Access Level
SwOver En	Switch over block Enable Flags	0 = off 1 = On	0	Conf
Timer En	Timers Enable Flags	Timers 1 to 4 0 = none to 15 = 4	0	Conf
Totalise En	Totalisers Enable Flags	Totalisers 1 & 2 0 (none) to 3 (both)	0	Conf
TrScale En	Transducer scaling Enable Flags	Transducer scalers 1 and 2 0 (none) to 3 (both)	0	Conf
UsrVal En1	User values Enable Flags	User Values 1 to 8 0 (none) to 255 (all 8)	0	Conf
UsrVal En2	User values Enable Flags	User Values 9 to 16 0 (none) to 255 (all 8)	0	Conf
UsrVal En3	User values Enable Flags	User Values 17 to 24 0 (none) to 255 (all 8)	0	Conf
UsrVal En4	User values Enable Flags	User Values 24 to 32 0 (none) to 255 (all 8)	0	Conf

6.2 Instrument / InstInfo

Folder: Instrum	ent	nt Sub-folder: InstInfo		
Name	Parameter Description	Value	Default	Access Level
InstType	Instrument Type		MINI8	NONE
Version	Version Identifier		-	NONE
Serial No	Serial Number			NONE
Passcode1	Passcode1	0 to 65535		Oper
Passcode2	Passcode2	0 to 65535		Oper
Passcode3	Passcode3	0 to 65535		Oper
CompanyID	CompanyID		1280	NONE

6.3 Instrument / Diagnostics

This list provides fault finding diagnostic information as follows:-

Folder: Instrument	Sub-folder: Dia	agnostics			
Name	Parameter Desc	ription			
CPU % Free	This is the amou	nt of free CPU Time left. It shows the percentage of the tasks ticks that are idle.			
CPU % Min	A benchmark of	A benchmark of the lowest reached value of the CPU free percentage.			
Con Ticks	This is the numb	This is the number of ticks that have elapsed while the instrument was performing the control Task.			
Max Con Tick	A benchmark of control Task	the maximum number of ticks that have elapsed while the instrument was performing the			
Clear Stats	Resets the instru	ment performance benchmarks.			
Error Count		rrors logged since the last Clear Log. Note: If an error occurs multiple times only the first be logged each event will increment the count.			
Error1	The first error	0 There is no error			
Error2	to occur The second	1 Bad or unrecognised module ident. A module has been inserted and has a bad or unrecognised ident. Either the module is damaged or the module is unsupported.			
	error to occur	3 Factory calibration data bad. The factory calibration data has been read from an I/O module and			
Error3	The third error to occur	has not passed the checksum test. Either the module is damaged or has not been initialised. 4 Module changed for one of a different type. A module has been changed for one of a different type.			
Error4	The fourth error to occur	The configuration may now be incorrect 10 Calibration data write error. An error has occurred when attempting to write calibration data back			
Error5	The fifth error to occur	to an I/O module's EE. 11 Calibration data write error. An error occurred when trying to read calibration data back from the			
Error6	The sixth error to occur	EE on an I/O module. 18 Checksum error. The checksum of the NVol Ram has failed. The NVol is considered corrupt and			
Error7	The seventh error to occur	there the instrument configuration may be incorrect. 20 Resistive identifier error. An error occurred when reading the resistive identifier from an i/o module.			
Error8	The eight error to occur	The module may be damaged. 43 Invalid custom linearisation table. One of the custom linearisation tables is invalid. Either it has failed checksum tests or the table downloaded to the instrument is invalid.			
		55 The Instrument wiring is either invalid or corrupt.			
		56 Non Vol write to volatile			
		58 An attempt was made to perform a checksummed Non Vol write to a non checksummed address.			
		59 Bad User CT			
		60 Bad Factory CT			
		61 QS Error			
		62 to 65 Slot1 card DFC1 to DFC4 error			
		66 to 69 Slot2 card DFC1 to DFC4 error			
		70 to 73 Slot3 card DFC1 to DFC4 error			
		74 to 77 Slot4 card DFC1 to DFC4 error			
Clear Log	Clears the error	log entries and count.			
String Count	Number of User	Strings Defined			
String Space	Space Available F	For User Strings.			
Segments Left	Number of Avail	able Program Segments			
	Gives the numbe reduced by one.	r of unused program segments. Each time a segment is allocated to a program, this value is			

Folder: Instrument	Sub-folder: Diagnostics
Name	Parameter Description
Ctl Stack Free	Control Stack Free Space (words)
	The number of words of un-used stack for the control task
Comms Stack	Comms Stack Free Space (words)
Free	The number of words of un-used stack for the comms task
Idle Stack Free	Idle Stack Free Space (words)
	The number of words of un-used stack for the idle (background) task.
Max segments	Max number of setpoint programmer segments available
MaxSegsPerProg	Specifies the maximum number of segments that can be configured for a single program
CntrlOverrun	Indicates the amount of control overrun.
PSUident	Shows type of PSU fitted 0 = Mains 1= 24V dc
PwrFailCount	Counts the number of times the instrument power has been switched off.
Cust1Name	Name for custom linearisation table 1
Cust1Name	Name for custom linearisation table 1
Cust1Name	Name for custom linearisation table 1

7. CHAPTER 7 I/O FOLDER

This lists the modules fitted into the instruments, all the IO channels, the fixed IO and the current monitoring.

The IO folder lists all the channels of each of the IO boards in the 4 available slots. Each board has up to 8 inputs or outputs making a maximum of 32 channels. The channels are listed under Mod1 to Mod32.

Slot	Channels
1	IO.Mod.1 to IO.Mod.8
2	IO.Mod.9 to IO.Mod.16
3	IO.Mod.17 to IO.Mod.24
4	IO.Mod.24 to IO.Mod.32

Note that the current transformer input, CT3, is not included in this arrangement. There is a separate folder for current monitoring under IO.CurrentMonitor. If this board is fitted into slot 2 the IO.Mod.9 to Mod.16 would not exist.

7.1 Module ID

Folder: IO		Sub-folder: ModIDs		
Name	Parameter Description	Value	Default	Access Level
Module1	Module1Ident	0 NoMod – No Module	0	Read
		24 DO8Mod – 8 logic outputs		Only
Module2	Module2Ident	24 DOGWOU – 8 togic outputs	0	Read
		90 CT3Mod – 3 current transformer inputs		Only
Module3	Module3Ident	131 TC8Mod – 8 thermocouple inputs	0	Read
		201 AO8Mod – 8 mA outputs (Module 4 only)		Only
Module4	Module4Ident	201 Addivide – 6 fila dutputs (widdule 4 diffy)	0	Read
				Only

7.1.1 Modules

The content of the Mod folders depends on the type of IO module fitted in each slot. These will be covered in sections 7.2 to 7.5.

7.2 Logic Output

If a slot is fitted with a DO8 board then 8 channels will be available to be configured and connected to Loop outputs, alarms or other logic signals.

7.2.1 Logic Out Parameters

Folder – IO		Sub-folder Mod.1 to .32			
Name	Parameter Description	Value		Default	Access Level
Ident	Channel Identity	LogicOut			Read Only
IOType	IO Type	OnOff	On off output		Conf
		Time Prop	Time proportioning output		
Invert	Sets the sense of the logic input or output	No Yes	No inversion Inverted	No	Conf
The next five pa	 arameters are only shown when 'IO Type' = '	<u> </u> Time Prop' output	S		
Min OnTime	Minimum output on/off time. Prevents relays from switching too rapidly	Auto 0.01 to 150.00 seconds	Auto = 20ms. This is the fastest allowable update rate for the output	Auto	Oper
Disp Hi	The maximum displayable reading	0.00 to 100.00		100.00	Oper
Disp Lo	The minimum displayable reading	0.00 to 100.00		0.00	Oper
Range Hi	The maximum (electrical) input/output level	0.00 to 100.00			Oper
Range Lo	The minimum (electrical) input/output level	0.00 to 100.00			Oper
Always displaye	rd			•	•
Meas Val	The current value of the output demand signal to the hardware	0 1	On (unless Invert = Yes) Off (unless Invert = Yes)		Read only
PV	When configured as an output, this is the desired output value; when configured as an input the current state of the digital input is displayed	0 to 100 or 0 to 1 (OnOff)			Oper

PV can be wired from the output of a function block. For example if it is used for control it may be wired from the control loop output (Ch1 Output).

7.2.2 Logic Output Scaling

If the output is configured for time proportioning control, it can be scaled such that a lower and upper level of PID demand signal can limit the operation of the output value.

By default, the output will be fully off for 0% power demand, fully on for 100% power demand and equal on/off times at 50% power demand. You can change these limits to suit the process. It is important to note, however, that these limits are set to safe values for the process. For example, for a heating process it may be required to maintain a minimum level of temperature. This can be achieved by applying an offset at 0% power demand which will maintain the output on for a period of time. Care must be taken to ensure that this minimum on period does not cause the process to overheat.

If Range Hi is set to a value <100% the time proportioning output will switch at a rate depending on the value - it will not switch fully on.

Similarly, if Range Lo is set to a value >0% it will not switch fully off.

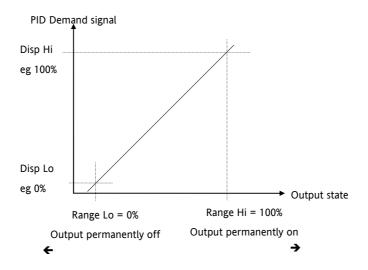
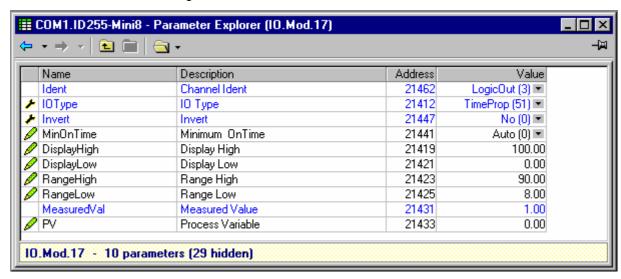



Figure 7-1: Time Proportioning Output

7.2.3 Example: To Scale a Proportioning Logic Output

Access level must be configuration.

In this example the output will switch on for 8% of the time when the PID demand wired to 'PV' signal is at 0%

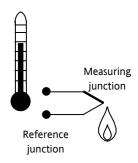
Similarly, it will remain on for 90% of the time when the demand signal is at 100%

7.3 Thermocouple Input

If a TC8 board is fitted then 8 thermocouple input channels will be available.

7.3.1 Thermocouple Input Parameters

Folder – IO		Sub-headers	headers: Mod .1 to .32			
Name Parameter Description		Value		Default	Access Level	
Ident	Channel Ident	TCinput				Read
IO Tuno	IO Time	Thermoco				Only
IO Type	IO Type	uple				Com
Lin Type	Input linearisation	see section 7.3.2				Conf
Units	Display units used for units conversion	see section 7.3.2				Conf
Resolution	Resolution	XXXXX to X.XXXX	Sets scaling for digita using the SCADA tab			Conf
CJC Type	To select the cold junction compensation method	Internal 0°C 45°C 50°C External Off	See description in section 6.2.2. for further details		Internal	Conf
SBrk Type	SBrk Type Sensor break type		Sensor break will be impedance is greater			Conf
		High	Sensor break will be detected when its impedance is greater than a 'high' value			
		Off	No sensor break			
SBrk Alarm	Sets the alarm action when	ManLatch	Manual latching	see also the alarm		Oper
	a sensor break condition is detected	NonLatch	No latching	Chapter 11 Alarms		
		Off	No sensor break alar	m		
AlarmAck	Sensor Break alarm acknowledge	No Yes			No	Oper
Fallback	Fallback Strategy	Downscale	Meas Value = Input r	ange lo - 5%		Conf
	See also section 6.2.5.	Upscale	Meas Value = Input r	ange Hi + 5%		
		Fall Good	Meas Value = Fallback PV			
		Fall Bad	Meas Value = Fallback PV			
		Clip Good	Meas Value = Input r	ange Hi/lo +/- 5%		
		Clip Bad	Meas Value = Input r	range Hi/lo +/- 5%		
Fallback PV	Fallback value See also section 6.2.5.	Instrument range			Conf	
Filter Time	Input filter time.		Off to 500:00 (hhh:m	m)	0:00.4	Oper
	An input filter provides damp input signal. This may be new prevent the effects of excess the PV input.	cessary to	m:ss.s to hh:mm:ss to hhh:mm			
Measured Value	The current electrical value of input	of the PV				R/O


Folder – IO		Sub-headers: Mod .1 to .32				
Name	Parameter Description	Value		Default	Access Level	
PV	The current value of the PV in linearisation	nput after	Instrument range		R/O	
Offset	Used to add a constant offset see section 6.2.6.	t to the PV	Instrument range		Oper	
CJC Temp	Reads the temperature of the rear terminals at the thermocouple connection				R/O	
SBrk Value	Sensor break Value Used for diagnostics only, and the sensor break trip value	d displays			R/O	
Cal State	Calibration state Calibration of the PV Input is described in Chapter 22. 3	Idle			Conf	
Status	PV Status	0	Normal operation		R/O	
	The current status of the PV.	1	Initial startup mode			
	1 V.	3	Input in sensor break PV outside operating limits			
		4	Saturated input			
		5	Uncalibrated channel			
		6	No Module			

7.3.2 Linearisation Types and Ranges

Input Type		Min Range	Max Range	Units	Min Range	Max Range	Units
J	Thermocouple type J	-210	1200	۰C	-238	2192	۰F
K	Thermocouple type K	-200	1372	۰C	-238	2498	۰F
L	Thermocouple type L	-200	900	۰C	-238	1652	۰F
R	Thermocouple type R	-50	1700	۰C	-58	3124	۰F
В	Thermocouple type B	0	1820	۰C	32	3308	۰F
N	Thermocouple type N	-200	1300	۰C	-238	2372	۰F
Т	Thermocouple type T	-200	400	۰C	-238	752	۰F
S	Thermocouple type S	-50	1768	۰C	-58	3214	۰F
PL2	Thermocouple Platinel II	0	1369	۰C	32	2466	۰F
С	Custom						
Linear	mV or mA linear input	-10.00	80.00				
SqRoot	Square root						
Custom	Customised linearisation tables						

7.3.3 CJC Type

A thermocouple measures the temperature difference between the measuring junction and the reference junction. The reference junction, therefore, must either be held at a fixed known temperature or accurate compensation be used for any temperature variations of the junction.

7.3.3.1 Internal Compensation

The controller is provided with a temperature sensing device which senses the temperature at the point where the thermocouple is joined to the copper wiring of the instrument and applies a corrective signal.

Where very high accuracy is needed and to accommodate multi-thermocouple installations, larger reference units are used which can achieve an accuracy of $\pm 0.1^{\circ}$ C or better. These units also allow the cables to the instrumentation to be run in copper. The reference units are contained basically under three techniques, Ice-Point, Hot Box and Isothermal.

7.3.3.2 The Ice-Point

There are usually two methods of feeding the EMF from the thermocouple to the measuring instrumentation via the ice-point reference, the bellows type and the temperature sensor type.

The bellows type utilises the precise volumetric increase which occurs when a known quantity of ultra pure water changes state from liquid to solid. A precision cylinder actuates expansion bellows which control power to a thermoelectric cooling device. The temperature sensor type uses a metal block of high thermal conductance and mass, which is thermally insulated from ambient temperatures. The block temperature is lowered to 0°C by a cooling element, and maintained there by a temperature sensing device.

Special thermometers are obtainable for checking the 0°C reference units and alarm circuits that detect any movement from the zero position can be fitted.

7.3.3.3 The Hot Box

Thermocouples are calibrated in terms of EMF generated by the measuring junctions relative to the reference junction at 0°C. Different reference points can produce different characteristics of thermocouples, therefore referencing at another temperature does present problems. However, the ability of the hot box to work at very high ambient temperatures, plus a good reliability factor has led to an increase in its usage. The unit can consist of a thermally insulated solid aluminium block in which the reference junctions are embedded.

The block temperature is controlled by a closed loop system, and a heater is used as a booster when initially switching on. This booster drops out before the reference temperature, usually between 55°C and 65°C, is reached, but the stability of the hot box temperature is now important. Measurements cannot be taken until the hot box reaches the correct temperature.

7.3.3.4 Isothermal Systems

The thermocouple junctions being referenced are contained in a block which is heavily thermally insulated. The junctions are allowed to follow the mean ambient temperature, which varies slowly. This variation is accurately sensed by electronic means, and a signal is produced for the associated instrumentation. The high reliability factor of this method has favoured its use for long term monitoring.

7.3.3.5 CJC Options in Mini8 Series

- 0: CJC measurement at instrument terminals
- 1: CJC based on external junctions kept at 0C (Ice Point)
- 2: CJC based on external junctions kept at 45C (Hot Box)
- 3: CJC based on external junctions kept at 50C (Hot Box)
- 4: CJC based on independent external measurement
- 5: CJC switched off

7.3.4 Sensor Break Value

The controller continuously monitors the impedance of a transducer or sensor connected to any analogue input. This impedance, expressed as a % of the impedance which causes the sensor break flag to trip, is a parameter called 'SBrk Trip Imp' and is available in the parameter lists associated with analogue inputs. The table below shows the typical impedance which causes sensor break to trip for various types of input and high and low SBrk Impedance parameter settings. The impedance values are only approximate (±25%) as they are not factory calibrated.

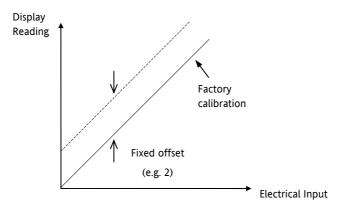
TC8 Input	SBrk Impedance – High	~ 12KΩ
Range -77 to +77mV	SBrk Impedance – Low	~ 3KΩ

7.3.5 Fallback

A Fallback strategy may be used to configure the default value for the PV in case of an error condition. The error may be due an out of range value, a sensor break, lack of calibration or a saturated input.

The Status parameter would indicate the error condition and could be used to diagnose the problem.

Fallback has several modes and may be associated with the Fallback PV parameter


The Fallback PV may be used to configure the value assigned to the PV in case of an error condition. The Fallback parameter should be configured accordingly.

The fallback parameter may be configured so as to force a Good or Bad status when in operation. This in turn allows the user to choose to override or allow error conditions to affect the process.

7.3.6 PV Offset

All ranges of the controller have been calibrated against traceable reference standards. This means that if the input type is changed it is not necessary to calibrate the controller. There may be occasions, however, when you wish to apply an offset to the standard calibration to take account of known errors within the process, for example, a known sensor error or a known error due to the positioning of the sensor. In these instances it is not advisable to change the reference calibration, but to apply a user defined offset. It is also possible to apply a two point offset and this is described in the next section.

PV Offset applies a single offset over the full display range of the controller and can be adjusted in Level 3. It has the effect of moving the curve up a down about a central point as shown in the example below:-

7.3.6.1 Example: To Apply an Offset:-

- Connect the input of the controller to the source device which you wish to calibrate to
- Set the source to the desired calibration value
- The controller will show the current measurement of the value
- If the value is correct, the controller is correctly calibrated and no further action is necessary. If you wish to offset the reading use the Offset parameter where

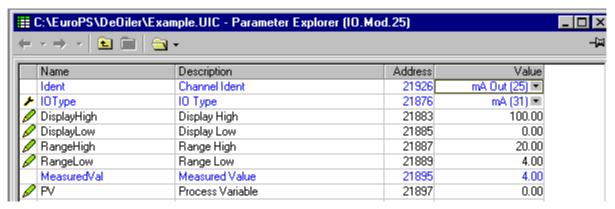
Corrected value (PV) = input value + Offset.

7.3.7 Using TC8 input as a mV input

Leave the IO type as Thermocouple

- 1. Set the Linearisation Type as Linear.
- 2. Use a Maths2 block to scale the mV into engineering units.

Maximum input range is ± 77 mV


7.4 Analogue Output

If an AO8 module is fitted in Slot 4 then 8 analogue output channels are available.

Folder – IO		Sub-folder: Mod.25 to Mod.32				
Name	Parameter Description	Value		Default	Access Level	
Ident	Channel ident	mAout			R/O	
IO Type	To configure the output drive signal	mA	milli-amps dc		Conf	
Resolution	Display resolution	XXXXX to X.XXXX	Determiones scaling for SCADA communications		Conf	
Disp Hi	Display high reading	-99999 to 9	9999 decimal points depend on resolution	100	Oper	
Disp Lo	Display low reading			0	Oper	
Range Hi	Electrical high input level	0 to 20		20	Oper	
Range Lo	Electrical low input level			4	Oper	
Meas Value	The current output value				R/O	
PV					Oper	
Cal State	Calibration state	Idle Lo Hi Confirm Go Abort Busy Passed Failed Accept	Non calibrating state Select calibration of the low position Select calibration of the high position Confirm the position to calibrate Start calibration Abort calibration Controller automatically calibrating Calibration OK Calibration bad To store the new values	Idle	Conf	
Status	PV Status The current status of the PV.	0 1 2 3 4 5	Normal operation Initial startup mode Input in sensor break PV outside operating limits Saturated input Uncalibrated channel No Module		R/O	

7.4.1 Example – 4 to 20mA Analogue Output

In this example 0% (=Display Low) to 100% (=Display High) from a Loop PID Output wired to this PV input will give a 4mA (=Range Low) to 20mA (=Range High) control signal.

7.5 Fixed IO

There are two digital inputs, designated D1 and D2.

Folder: IO		Sub-folder: Fixed IO.D1 and .D2			
Name	Parameter Description	Value	Default	Access Level	
Ident	Channel Ident	LogicIn	LogicIn	Read Only	
IO Type	ІО Туре	Input	Input	Read Only	
Invert	Invert	No/Yes – input sense is inverted	No	Conf	
Measured Val	Measured Value	On/Off	Off	Read Only	
PV	Process Variable	On/Off	Off	Read Only	

There are two fixed relay outputs, designated A and B

Folder: IO		Sub-folder: Fixed IO.A and .B				
Name	Parameter Description	Value	Default	Access Level		
Ident	Channel Ident	Relay	Relay	Read Only		
IO Type	ІО Туре	OnOff	OnOff	Read Only		
Invert	Invert	No/Yes = output sense is inverted.	No	Conf		
Measured Val	Measured Value	On/Off	Off	Read Only		
PV	Process Variable	On/Off	Off	Oper		

7.6 Current Monitor

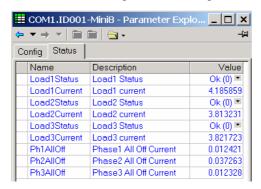
The Mini8, with a CT3 card, has the capability of detecting failures of up to 16 heater loads by measuring the current flowing through them via 3 current transformer inputs. The failures that can be detected are:

SSR Fault

If current is detected flowing through the heater when the controller is requesting it to be off then this indicates that the SSR has a short circuit fault. If current is not detected when the controller is requesting the heater to be on it indicates that the SSR has an open circuit fault.

Partial Load Fault (PLF)

If less current is detected flowing through the heater than the PLF threshold then this indicates that the heater has a fault; in applications that use multiple heater elements in parallel then it indicates that one or more of the elements has an open circuit fault.


Over Current Fault (OCF)

If more current is detected flowing through the heater than the OCF threshold then this indicates that the heater has a fault; in applications that use multiple heater elements in parallel then it indicates that one or more of the elements has short circuit fault.

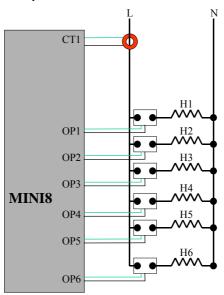
Heater failures are indicated via individual load status parameters and via four status words. In addition, a global alarm parameter will indicate when a new CT alarm has been detected, which, will also be registered in the alarm log.

7.6.1.1 Current Measurement

Individual LoadCurrent parameters indicate the current measured for each heater. The Current Monitor function block utilises a cycling algorithm to measure the current flowing through one heater per measurement interval (default 10s, user alterable). Compensation within the control loop minimises the disturbance to the PV when current through a load is being measured.

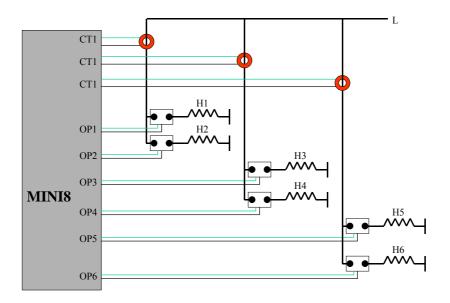
The interval between successive measurements is dependent upon the average output power required to maintain SP. The recommended absolute minimum interval can be calculated as follows:

Minimum interval (s) > 0.25 * (100/average output power to maintain SP).

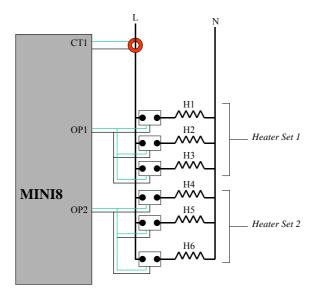

For example, if average output power to maintain SP is 10%, using the above rule, the recommended minimum interval is 2.5 seconds. The interval may need to be adjusted depending upon the response of the heaters being used.

7.6.2 Single Phase Configurations

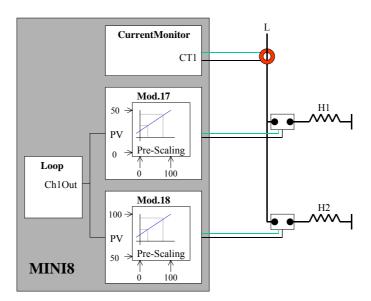
7.6.2.1 Single SSR triggering


With this configuration, failures of individual heater loads can be detected. For example, if the current detected flowing through Heater 3 is less than its PLF threshold then this will be indicated as Load3PLF

Example1 - Using one CT input

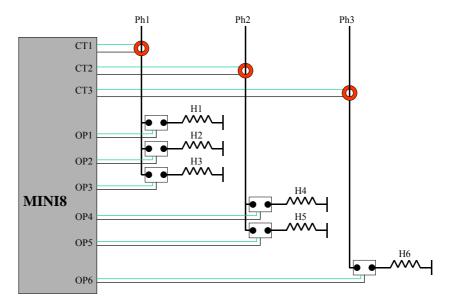

Note: Maximum of 6 Heaters can be connected to one CT input

Example2 - Using three CT inputs


7.6.2.2 Multiple SSR triggering

With this configuration, failure of a set of heater loads can be detected. For example, if the current detected flowing through Heater Set 1 is less than Load1's PLF threshold then this will be indicated as Load1PLF. Further investigation will then be required to determine which heater within set1 has failed.

7.6.2.3 Split Time Proportioning Outputs


This is where a single power demand is split and applied to two time proportioning outputs, that have been scaled, allowing the loads to switch on incrementally as the output power increases. For example, Heater1 will deliver any demand from 0-50%, and Heater2 will deliver any demand from 50-100% (with Heater1 fully on).

As the Mini8 has the capability of detecting faults with up to 16 heater loads it can handle this type of application even if all 8 loops have split time proportioning outputs.

7.6.3 Three Phase Configuration

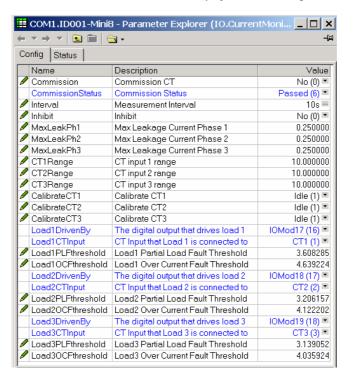
Configuration for Three Phase supply applications is similar to that for Single phase using three CT inputs.

Note: Maximum of 6 Heaters can be connected to one CT input

7.6.4 Parameter Configuration

If Current Monitor is enabled in the folder Instrument/Options/Current Monitor then the current monitor configuration folder appears as a subfolder in IO.

Folder: IO		Sub-folder: CurrentMonitor/Config				
Name	Parameter Description	Value		Default	Access Level	
Commission	Commission CT	No See Chapter 7.11.2 and 7.11.4 Auto Manual Accept Abort		No	Oper	
CommissionStatus	Commission Status	Not commissioned Commissioning NoDO8 card fitted NoloopTPouts SSRfault MaxLoadsCT1/2/3 NotAccepted Passed	Not commissioned Commissioning in progress There are no DO8 cards installed in the instrument. The digital outputs are either not configured as time proportioning or are not wired from loop heater channels. Either a SSR short circuit or open circuit fault is present. More than 6 heaters have been connected to CT input 1or 2 or 3. Commissioning failed Successfully auto commissioned	0	Read Only	
Interval	Measurement Interval	ManuallyConfigured Configured manually 1s to 1m		10s	Oper	
Inhibit	Inhibit	No – current is measured Yes –current measurement is inhibited		No	Oper	
MaxLeakPh1	Max Leakage Current Phase 1	0.25 to 1 amp		0.25	Oper	
MaxLeakPh2	Max Leakage Current Phase 2	0.25 to 1 amp		0.25	Oper	
MaxLeakPh3	Max Leakage Current Phase 3	0.25 to 1 amp		0.25	Oper	
CT1Range	CT input 1 range	10 to 1000 amps		10	Oper	
CT2Range	CT input 2 range	10 to 1000 amps		10	Oper	
CT3Range	CT input 3 range	10 to 1000 amps		10	Oper	
CalibrateCT1	Calibrate CT1	Idle See Chapter 7.12 0mA -70mA LoadFactorCal SaveUserCal		Idle	Oper	
CalibrateCT2	Calibrate CT2	As CT1		Idle	Oper	
CalibrateCT3	Calibrate CT3	As CT1	Idle	Oper		

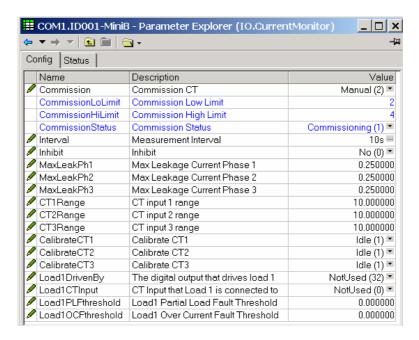

7.6.5 Commissioning

7.6.5.1 Auto Commission

Auto commissioning of the Current Monitor is a feature that automatically detects which time proportioning outputs drive individual heaters (or heater sets), detects which CT input individual heaters are associated with and determines the Partial Load and Over Current thresholds using a 1:8 ratio. If auto commissioning fails, a status parameter indicates the reason why.

How to Auto Commission

- Ensure the process is enabled and powered for full operation of the heating circuit with the digital outputs configured as Time Proportioning and 'soft' wired to the appropriate loop heater channels.
 During auto commissioning digital outputs will switch on and off.
- 2. Put instrument into Operator Mode.
- 3. Set Commission to Auto and CommissionStatus will display 'Commissioning'.
- 4. If successful, CommissionStatus will display Passed and configured load parameters will become available. If unsuccessful, CommissionStatus displays the offending fault.



7.6.5.2 Manual Commission

Manual Commissioning is also available and is intended for those users who want to commission the Current Monitor off-line or do not want to accept auto commissioned settings.

How to Manual Commission

.

- 1. Set Commission to Manual. CommissionStatus will display Commissioning and Load1 configuration parameters will become available
- 2. Set Load1DrivenBy to the IO Module that is connected to the heater load.
- 3. Set Load1CTInput to the CT input number that is connected to the heater load.
- 4. Set Load1PLFthreshold and Load1OCFthreshold to appropriate values for the heater load.
- 5. Repeat for other loads.
- To use the commissioned settings set Commission to 'Accept'. CommissionStatus will display ManuallyConfigured.
- 7. To stop manual commissioning set Commission to 'Abort'. CommissionStatus will display NotCommissioned.

7.6.6 Calibration

A Mini8 supplied from factory with the CT3 card already installed the CT inputs will have been factory calibrated. If the CT3 card is installed at a later date then default calibration values are automatically loaded into the instrument. However, three calibration parameters, one for each CT input, are provided to allow the inputs to be calibrated in the field.

Note: DC Current Source, capable of outputting a -70mA signal, is required to calibrate the inputs.

The CT inputs are calibrated individually.

How to Calibrate

- 1. Apply the stimulus (0mA or -70mA) from the DC current source to the CT input to be calibrated.
- Set CalibrateCT1, to reflect the stimulus being applied to the input.
- 3. CalibrateCT1 displays 'Confirm'. Select 'Go' to proceed with the calibration process.
- 4. After selecting Go, CalibrateCT1 displays 'Calibrating'.
- 5. If calibration was successful, CalibrateCT1 displays 'Passed'. Select 'Accept' to keep the calibration values.
- 6. If calibration was unsuccessful, CalibrateCT1 displays 'Failed'. Select 'Abort' to reject the calibration.
- 7. Select 'SaveUserCal' to save the calibration values into non-volatile memory.
- 8. Select 'LoadFactCal' to restore calibration values to the factory calibrated or default settings.
- 9. Note: It is possible to stop the calibration process at anytime by selecting 'Abort'.

Follow the same procedure for CT2 and CT3.

8. CHAPTER 8 ALARMS

Alarms are used to alert the system when a pre-set level has been exceeded or a particular condition has changed state. As the Mini8 has no display to show alarms the alarm flags are all available over communications in status words See Alarm Summary (Section 8.7). They may also be wired directly or via logic to an output such as a relay.

Alarms can be divided into two main types. These are:-

Analogue alarms - operate by monitoring an analogue variable such as the process variable and comparing it with a set threshold.

Digital alarms – operate when the state of a boolean variable changes, for example, sensor break.

Number of Alarms - up to 32 analogue and 32 digital alarms may be configured.

8.1 Further Alarm Definitions

Hysteresis	is the difference between	the point at which the alarm switch	nes 'ON' and the point at which
------------	---------------------------	-------------------------------------	---------------------------------

it switches 'OFF'. It is used to provide a definite indication of the alarm condition and to

prevent alarm relay chatter.

Latching used to hold the alarm condition once an alarm has been detected. It may be configured Alarm as:-

None Non A non latching alarm will reset itself when the alarm condition is

latching removed

Auto Automatic An auto latching alarm requires acknowledgement before it is

reset. The acknowledgement can occur BEFORE the condition

causing the alarm is removed.

Manual Manual The alarm continues to be active until both the alarm condition is

removed AND the alarm is acknowledged. The acknowledgement can only occur AFTER the condition causing the alarm is removed.

Event Event Alarm output will activate.

Blocking Alarms The alarm may be masked during start up. Blocking prevents the alarm from being activated until the process has first achieved a safe state. It is used, for example, to ignore start up conditions which are not representative of running conditions. A blocking alarm is re-

initiated after a setpoint change.

Delay A short time can be set for each alarm which prevents the output from going into the alarm

state. The alarm is still detected as soon as it occurs, but if it cancels before the end of the delay period then no output is triggered. The timer for the delay is then reset. It is also

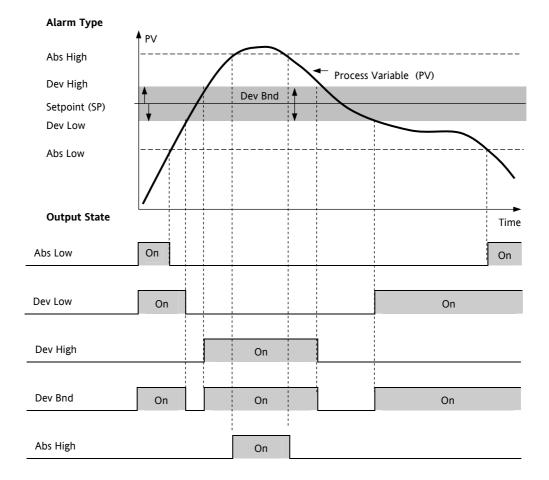
reset if an alarm is changed from being inhibited to uninhibited.

8.2 Analogue Alarms

Analogue alarms operate on variables such as PV, output levels, etc. They can be soft wired to these variables to suit the process.

8.2.1 Analogue Alarm Types

Absolute High - an alarm occurs when the PV exceeds a set high threshold.


Absolute Low - an alarm occurs when the PV exceeds a set low threshold.

Deviation High - an alarm occurs when the PV is higher than the setpoint by a set threshold

Deviation Low - an alarm occurs when the PV is lower than the setpoint by a set threshold

Deviation Band - an alarm occurs when the PV is higher or lower than the setpoint by a set threshold

These are shown graphically below for changes in PV plotted against time. (Hysteresis set to zero)

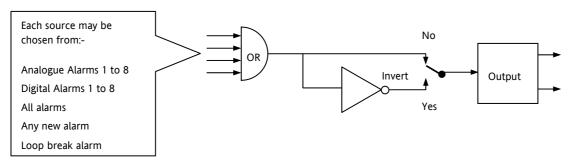
8.3 Digital Alarms

Digital alarms operate on Boolean variables. They can be soft wired to any suitable Boolean parameter such as digital inputs or outputs.

8.3.1 Digital Alarm Types

Pos Edge The alarm will trigger when the input changes from a low to high condition

Neg Edge The alarm will trigger when the input changes from a high to low condition


Edge The alarm will trigger on any change of state of the input signal

High The alarm will trigger when the input signal is high

Low The alarm will trigger when the input signal is low

8.4 Alarm Outputs

Alarms can operate a specific output (usually a relay). Any individual alarm can operate an individual output or any combination of alarms, up to four, can operate an individual output. They are wired as required in configuration level.

8.4.1 How Alarms are Indicated

Alarm states are all embedded in 16 bit status words. See Alarm Summary in Section 8.7

8.4.2 To Acknowledge an Alarm

Set the appropriate alarm acknowledge flag to acknowledge that particular alarm. Alternatively the GlobalAck in the AlmSummary folder can be used to acknowledge ALL alarms that require acknowledging in the instrument.

The action, which now takes place, will depend on the type of latching, which has been configured

8.4.2.1 Non Latched Alarms

If the alarm condition is present when the alarm is acknowledged, the alarm output will be continuously active. This state will continue for as long as the alarm condition remains. When the alarm condition clears the output will go off..

If the alarm condition clears before it is acknowledged the alarm output goes off as soon as the condition disappears.

8.4.2.2 Automatic Latched Alarms

The alarm continues to be active until both the alarm condition is removed AND the alarm is acknowledged. The acknowledgement can occur **BEFORE** the condition causing the alarm is removed.

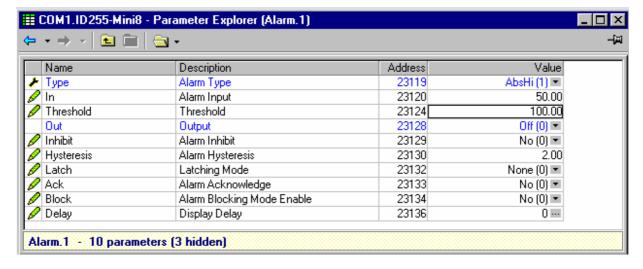
8.4.2.3 Manual Latched Alarms

The alarm continues to be active until both the alarm condition is removed AND the alarm is acknowledged. The acknowledgement <u>can only occur</u> **AFTER** the condition causing the alarm is removed.

8.5 Alarm Parameters

Four groups of eight **analogue** alarms are available. The following table shows the parameters to set up and configure alarms.

Name	Parameter Description	Value		Default	Accoun
Name	Parameter Description	value		Detault	Access Level
Туре	Selects the type of alarm	None	Alarm not configured		Conf
		Abs Hi	Full Scale High		
		Abs Lo	Full Scale Low		
		Dev Hi	Deviation High		
		Dev Lo	Deviation Low		
		Dv Bnd	Deviation band		
Input	This is the parameter that will be monitored and compared against the threshold value to see if an alarm condition has occurred	Instrumen	t range		Oper
Reference	The reference value is used in deviation alarms and the threshold is measured from this reference and not from its absolute value.	Instrumen	t range		Oper
Threshold	The threshold is the value that the input is compared against to determine if an alarm has occurred.	Instrument range			Oper
Out	The output indicates whether the alarm is on or	Off	Alarm output		R/O
	off depending on:	On	deactivated		
	the alarm condition, latching and acknowledge, inhibiting and blocking.		Alarm output activated		
Inhibit	Inhibit is an input to the Alarm function. It allows	No	Alarm not inhibited	As order	Oper
	the alarm to be switched OFF. Typically the Inhibit is connected to a digital input or event so that during a phase of the process alarms do not	Yes	Inhibit function active	code	
	activate. For Example, if the door to a furnace is opened the alarms may be inhibited until the door is closed again.				
Hysteresis	Hysteresis is used to prevent signal noise from	Instrumen	l t range		Oper
,	causing the Alarm output to oscillate. Alarm outputs become active as soon as the PV exceeds the Alarm Setpoint. They return to inactive after the PV has returned to the safe region by more than the hysterisis value. Typically the Alarm hysterisis is set to a value that is greater than the oscillations seen on the instrument display				
Latch	Determine the type of latching the alarm will use,	None	No latching is used		Oper
Lattii	if any. Auto latching allows acknowledgement	Auto	Automatic		Opei
	while the alarm condition is still active, whereas	Manual	Manual		
	manual latching needs the condition to revert back to safe before the alarm can be acknowledged.	Event	Event		
	See also the description at the beginning of this chapter				
Ack	Used in conjunction with the latching parameter.	No	Not acknowledged		Oper
	It is set when the user responds to an alarm.	Yes	Acknowledged		


Folder: Alarm Sub-folders: 1 to 32						
Name	Parameter Descrip	ption	Value		Default	Access Level
Block	activating during st the measurement a condition until the control. Blocking c until the system is	art-up. In some applications, at start-up is in an alarm system has come under causes the alarms to be ignored under control (in the safe y deviations trigger the alarm	No Yes	No blocking Blocking		Oper
Delay	condition and displ the two, the alarm	y between sensing the alarm laying it. If in the time between goes safe, then no alarm is ay timer is reset. It can be used e prone to noise.	0:00.0 to 500 mm:ss.s hh:mm:ss hhh:mm		0:00.0	Oper

8.5.1 Example: To Configure Alarm 1

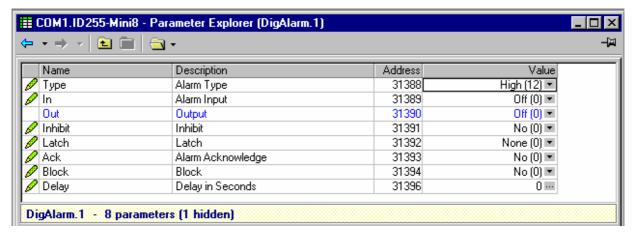
Change Access level to configuration.

In this example the high alarm will be detected when the measured value exceeds 100.00.

The current measured value is 50.00 as measured by the 'Input' parameter. This parameter will normally be wired to an internal source such as a thermocouple input. In this example the alarm will cancel when the measured value decreases 2 units below the trip level (at 98 units)

8.6 Digital Alarm Parameters

Four groups of eight **digital** alarms are available. The following table shows the parameters to set up and configure alarms.


Folder: DigAlarm Sub-folders: 1 to 32						
Name	Parameter Description	Value		Default	Access Level	
Туре	Selects the type of alarm	None	Alarm not configured		Conf	
		PosEdge	On rising edge			
		NegEdge	On falling edge			
		Edge	On change			
		High	High (1)			
		Low	Low (0)			
In	This is the parameter that will be monitored and checked according to the AlarmType to see if an alarm condition has occurred	0 to 1			Oper	
Out	The output indicates whether the alarm is on or off depending on:	Off On	Alarm output deactivated		R/O	
	the alarm condition, latching and acknowledge, inhibiting and blocking.		Alarm output activated			
Inhibit	Inhibit is an input to the Alarm function. It allows the alarm to be switched OFF. Typically the Inhibit is connected to a digital input or event so that during a phase of the process alarms do not activate. For Example, if the door to a furnace is opened the alarms may be inhibited until the door is closed again.	No Yes	Alarm not inhibited Inhibit function active	As order code	Oper	
Latch	Determine the type of latching the alarm will use,	None	No latching is used		Oper	
	if any. Auto latching allows acknowledgement	Auto	Automatic			
	while the alarm condition is still active, whereas manual latching needs the condition to revert	Manual	Manual			
	back to safe before the alarm can be acknowledged.	Event	Event			
	See also the description at the beginning of this chapter					
Ack	Used in conjunction with the latching parameter.	No	Not acknowledged		Oper	
	It is set when the user responds to an alarm.	Yes	Acknowledged			
Block	Alarm Blocking is used to prevent alarms from	No	No blocking		Oper	
	activating during start-up. In some applications, the measurement at start-up is in an alarm condition until the system has come under control. Blocking causes the alarms to be ignored until the system is under control (in the safe state), after this any deviations trigger the alarm	Yes	Blocking			
Delay	This is a small delay between sensing the alarm	0:00.0 to 5	00	0:00.0	Oper	
	condition and displaying it. If in the time between	mm:ss.s				
	the two, the alarm goes safe, then no alarm is shown and the delay timer is reset. It can be used	hh:mm:ss				
	on systems that are prone to noise.	hhh:mm				

8.6.1 Example: To Configure DigAlarm 1

Change Access level to configuration.

In this example the digital alarm will come on if Timer 1 expires.

Timer.1.Out is wired to the alarm input. The DigAlarm.1.Out will turn on if the timer expires.

8.7 Alarm Summary

This is a summary of all the alarms in the Mini8. It provides global alarm and acknowledge flags as well as 16 bit status words which can be read over communications by the supervisory system.

Name	Parameter Description	Value		Default	Access Level
NewAlarm	A new alarm has occurred since the last reset (excludes CT alarms)	Off/On			R/O
RstNewAlarm	Resets the NewAlarm flag	Yes / No		No	Oper
NewCTAlarm	A new Current alarm has occurred since the last reset	Off/On			R/O
RstNewCTAlarm	Resets the NewCTAlarm flag	Yes / No		No	Oper
AnyAlarm	Any new alarm since the last reset	Off/On			R/O
GlobalAck	Acknowledges every alarm in the Mini8 requiring acknowledgement.	No Yes	Not acknowledged Acknowledged		Oper
AnAlarmStatus1	16 bit word for analogue alarms 1 to 8	Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15	Set if Alarm 1 active Alarm 1 ack'd Set if Alarm 2 active Alarm 2 ack'd Set if Alarm 3 active Alarm 3 ack'd Set if Alarm 4 active Alarm 4 ack'd Set if Alarm 5 active Alarm 5 ack'd Set if Alarm 6 active Alarm 6 ack'd Set if Alarm 7 active Alarm 7 ack'd Set if Alarm 8 active Alarm 8 ack'd		R/O
AnAlarmStatus2	16 bit word for analogue alarms 9 to 16	Same form	nat as above		R/O
AnAlarmStatus3	16 bit word for analogue alarms 17 to 24	Same form	nat as above		R/O
AnAlarmStatus4	16 bit word for analogue alarms 25 to 32	Same form	nat as above		R/O
DigAlarmStatus1	16 bit word for digital alarms 1 to 8	Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14	Set if Alarm 1 active Alarm 1 ack'd Set if Alarm 2 active Alarm 2 ack'd Set if Alarm 3 active Alarm 3 ack'd Set if Alarm 4 active Alarm 4 ack'd Set if Alarm 5 active Alarm 5 ack'd Set if Alarm 6 active Alarm 6 ack'd Set if Alarm 7 active Alarm 7 ack'd Set if Alarm 8 active		R/O
DigAlarmStatus2	16 bit word for digital alarms 9 to 16	Bit 15	Alarm 8 ack'd		R/O

Folder: AlmSummary Sub-folders: General						
Name	Parameter Description	Value		Default	Access Level	
DigAlarmStatus3	16 bit word for digital alarms 17 to 24	Same format as above			R/O	
DigAlarmStatus4	16 bit word for digital alarms 25 to 32	Same format as above			R/O	
SBrkAlarmStatus1	16 bit word for IO channels Mod.1 to 8	Bit 0 Bit 1	Set if Mod.1 fault Alarm 1 ack'd		R/O	
		Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10	Set if Mod.2 fault Alarm 2 ack'd Set if Mod.3 fault Alarm 3 ack'd Set if Mod.4 fault Alarm 4 ack'd Set if Mod.5 fault Alarm 5 ack'd Set if Mod.6 fault			
		Bit 11 Bit 12 Bit 13 Bit 14 Bit 15	Alarm 6 ack'd Set if Mod.7 fault Alarm 7 ack'd Set if Mod.8 fault Alarm 8 ack'd			
SbrkAlarmStatus2	16 bit word for IO channels Mod.9 to 16	Same form	nat as above		R/O	
SbrkAlarmStatus3	16 bit word for IO channels Mod.17 to 24	Same form	nat as above		R/O	
SbrkAlarmStatus4	16 bit word for IO channels Mod.25 to 32	Same form	nat as above		R/O	
CTAlarmStatus1	16 bit word for CT alarms 1 to 5 16 bit word for CT alarms 6 to 10	Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 Bit 0	Set if Load1 SSR fail Set if Load1 PLF Set If Load1 OCF Set if Load2 SSR fail Set if Load2 PLF Set If Load3 OCF Set if Load3 SSR fail Set if Load3 OCF Set if Load4 SSR fail Set if Load4 PLF Set If Load4 OCF Set if Load5 SSR fail Set if Load5 OCF Set if Load5 OCF - Set if Load6 SSR fail		R/O	
S		Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15	Set if Load6 PLF Set If Load6 OCF Set if Load7 SSR fail Set if Load7 PLF Set If Load7 OCF Set if Load8 SSR fail Set if Load8 PLF Set If Load8 OCF Set if Load9 SSR fail Set if Load9 OCF Set if Load9 PLF Set If Load10 SSR fail Set if Load10 SSR fail Set if Load10 PLF Set If Load10 OCF			
CTAlarmStatus3	16 bit word for CT alarms 11 to 15		nat as CTAlarmStatus1		R/O	
CTAlarmStatus4	16 bit word for CT alarm 16	Same form	nat as CTAlarmStatus1		R/O	

8.8 Alarm Log

A list of the last 32 alarms to have occurred is maintained in an Alarm Log.

Folder: AlmSummary Sub-folder: AlmLog					
Name	Parameter Description	Value	Default	Access Level	
ClearLog	Clear Alarm Log	Yes/No	No	Oper	
Entry1Ident	Most recent alarm activation	All analogue alarms	NoEntry	R/O	
		All digital alarms			
		All sensor break alarms			
		All current alarms			
Entry1Day	The day the first entry activated	NoEntry, Monday/TuesdaySunday.	NoEntry	R/O	
Entry1Time	The time the first entry activated	hh:mm:ss	0	R/O	
Entry2Ident	2 nd most recent alarm activation	All analogue alarms	NoEntry	R/O	
		All digital alarms			
		All sensor break alarms			
		All current alarms			
Entry2Day	The day the second entry activated	NoEntry, Monday/TuesdaySunday.	NoEntry	R/O	
Entry2Time	The time the second entry activated	hh:mm:ss	0	R/O	
etc					
Entry32Ident	32 nd most recent alarm activation	All analogue alarms	NoEntry	R/O	
		All digital alarms			
		All sensor break alarms			
		All current alarms			
Entry32Day	The day the 32 nd entry activated	NoEntry, Monday/TuesdaySunday.	NoEntry	R/O	
Entry32Time	The time the 32 nd entry activated	hh:mm:ss	0	R/O	

9. CHAPTER 9 BCD INPUT

The Binary Coded Decimal (BCD) input function block uses a number of digital inputs and combines them to make a numeric value. A very common use for this feature is to select a setpoint program number from panel mounted BCD decade switches.

The block uses 4 bits to generate a single digit.

Two groups of four bits are used to generate a two digit value (0 to 99)

The block outputs four results

- 1. Units Value: The BCD value taken from the first four bits (range 0-9)
- 2. Tens Value: The BCD value taken from the second four bits (range 0-9)
- 3. BCD Value: The combined BCD value taken from all 8 bits (range 0 99)
- 4. Decimal Value: The decimal numeric equivalent of Hexadecimal bits (range 0 255)

The following table shows how the input bits combine to make the output values.

Input 1			
Input 2	Units value (0 – 9)		
Input 3	Offics value (0 – 9)		
Input 4		BCD value (0 – 99)	Decimal value (0 – 255)
Input 5			
Input 6	Tons value (0 0)		
Input 7	Tens value (0 – 9)		
Input 8			

Since the inputs cannot all be guaranteed to change simultaneously, the output will only update after all the inputs have been stable for two samples.

9.1 BCD Parameters

Folder – BCDInput		Sub-Folders: 1 and 2					
Name	Parameter Description	Value		Default	Access Level		
In 1	Digital Input 1	On or Off	Alterable from the operator	Off	Oper		
In 2	Digital Input 2	On or Off	interface if not wired	Off	Oper		
In 3	Digital Input 3	On or Off		Off	Oper		
In 4	Digital Input 4	On or Off		Off	Oper		
In 5	Digital Input 5	On or Off		Off	Oper		
In 6	Digital Input 6	On or Off		Off	Oper		
In 7	Digital Input 7	On or Off		Off	Oper		
In 8	Digital Input 8	On or Off		Off	Oper		
Dec Value	Decimal value of the inputs	0 – 255	See examples below		R/O		
BCD Value	Reads the value (in BCD) of the switch as it appears on the digital inputs	0 – 99	See examples below				
Units	Units value of the first switch	0 – 9	See examples below		R/O		
Tens	Units value of the second switch	0 – 9	See examples below		R/O		

In 1	In 2	In 3	In 4	In 5	In 6	In 7	In 8	Dec	BCD	Units	Tens
1	0	0	0	0	0	0	0	1	1	1	0
1	1	1	1	0	0	0	0	15	9	9	0
0	0	0	0	1	1	1	1	240	90	0	9
1	1	1	1	1	1	1	1	255	99	9	9

9.1.1 Example: To wire a BCD Input

The BCD digital input parameters may be wired to digital input terminals of the controller. There are two standard digital input terminals which may be used, D1 and D2.

10. CHAPTER 10 DIGITAL COMMUNICATIONS

Digital Communications (or 'comms' for short) allows the Mini8 to be part of a system by communicating with a PC or a programmable logic controller (PLC).

The Mini8 also has a configuration port for 'cloning' or saving/loading instrument configurations for future expansion of the plant or to allow you to recover a system after a fault.

10.1 Configuration Port

The configuration port is on an RJ11 socket, just to the right of the power supply connections. This will normally be connected to a personal computer running iTools. Eurotherm supply a standard cable to connect a serial COM port on a computer to the RJ11 socket, part no. **SubMini8/cable/config**.

This port conforms to MODBUS RTU \circledR protocol a full description of which can be found on www.modbus.org.

9 pin DF to PC COM port (RS232)	RJ11 Pin	Function
-	6	N/c
3 (Tx)	5	Rx
2 (Rx)	4	Tx
5 (0v)	3	0v (gnd)
	2	N/c
	1	Reserved

10.1.1 Configuration Communications Parameters

Folder - Comms		Sub-folders: CC (Config Comms)					
Name	Parameter Description	Value		Default	Access Level		
Ident	Identification of the module fitted.	Modbus always.		Modbus	R/O		
Protocol	Digital communications protocol	MODBUS		MODBUS	R/O		
Baud Rate	Communications baud rate	4800		19200	Conf		
		9600					
		19k2 (19200)					
Parity	Communications parity	None	No parity	None	Conf		
		Even	Even parity				
		Odd	Odd parity				
Address	Instrument address	1 to 254	•	1	Oper		
Wait	Rx/tx wait states	No	No delay	No	Conf		
		Yes	Fixed delay. This inserts a delay				
			between Rx and Tx to ensure that				
			the drivers used by intelligent RS232/RS485 converters have				
			sufficient time to switch over.				

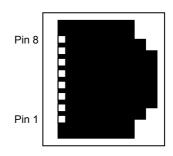
When connecting to iTools the instrument on this port will be found at address 255. iTools will also optimise the baud rate to suit the conditions.

This port can be used as a 'permanent' connection but it is limited to one instrument, it is a RS232 point to point connection.

Configuration is also possible through the Field Communications port but ONLY if that port is Modbus. In that situation the Mini8s can be multi-dropped to iTools.

10.2 Field Communications Port

The Min8 controller has a number of communication options. These have to be ordered from the factory as part of the instrument build. A change of protocol is not usually possible in the field. The physical port and the connections will vary depending on the field communications protocol. Mini8 version 1.04 offers Modbus and DeviceNet.


10.3 Modbus

This port conforms to MODBUS RTU \circledR protocol a full description of which can be found on www.modbus.org.

10.3.1 Modbus Connections

This uses two parallel RJ45 connectors for use with screened Cat5e patch cables. The connection is usually 2 wire but 4 wire is also available. This is selected by the top switch of the address switches below the RJ45 ports – OFF (to the left) 2 wire, ON (to the right) 4 wire.

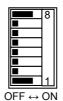
RJ45 pin	3 wire	5 wire
8	Receive (RX+)	RxA
7	Transmit (TX+)	RxB
6	Common	Ground
5		
4		
3	Ground	Ground
2	D+	TxA
1	D-	TxB

10.3.2 Modbus Communications Parameters

The following table shows the parameters available.

Folder – Comm	s	Sub-folde	r: FC (Field Communications		
Name	Parameter Description	Value		Default	Access Level
Ident	Identification of the module fitted.	Comms	Comms		R/O
Protocol	Digital communications protocol	MODBUS	MODBUS		
Baud Rate	Communications baud rate	4800 9600 19k2 (1920			Conf
Parity	Communications parity	None Even Odd	No parity Even parity Odd parity	None	Conf
Address	Instrument address	1 to 254		1	Oper
Resolution	Communications resolution	Full Int	Full Integer	Full	Oper
Network Status	Network Status	For Profibus and DeviceNet only. Displays status of the network and connection			R/O
Comms Delay	Rx/tx delay time	No Yes	No delay Fixed delay. This inserts a delay between Rx and Tx to ensure that the drivers used by intelligent RS232/RS485 convertors have sufficient time to switch over.	No	Conf
Broadcast Enabled	To enable broadcast master communications. (See 10.4)	No Yes	Not enabled Enabled	No	
Broadcast Address	Address of the parameter being written to slaves.	0 to 32767	See Appendix A for addresses of all Mini8 parameters.		
Broadcast Value	Value to be sent to instruments on the network. This would normally be wired to a parameter within the master	Range of the parameter wired. In the case of a Boolean the value will be 0 or 1.			

10.3.3 Communications Identity


The instrument recognizes the type of communication board fitted. The identity 'id' displayed so that you can verify that the instrument is built to your requirement.

10.3.4 Modbus Address Switch

On a network of instruments an address is used to specify a particular instrument. Each instrument on a network MUST have a unique address. Address 255 is reserved for configuration using the configuration port or the configuration clip

The switch is situated at the bottom of the Comms module. The switch gives addresses from 1 to 31. If Address 0 is set the Mini8 will then take the address and parity settings entered in the configuration of the instrument, see folder above. This allows for addresses above 31.

S	OFF	ON
w		
8	3 wire	5 wire
7	NO Parity	Parity
6	Even	Odd
5	-	Address 16
4	-	Address 8
3	-	Address 4
2	-	Address 2
1	-	Address 1

Example shows 5 wire and address 1

10.3.5 Baud Rate

The baud rate of a communications network specifies the speed that data is transferred between instrument and master. A baud rate of 9600 equates to 9600 Bits per second. Since a single character requires 8 bits of data plus start, stop, and optional parity, up to 11 bits per byte may be transmitted. 9600 baud equates approximately to 1000 Bytes per second. 4800 baud is half the speed – approx. 500 Bytes per second.

In calculating the speed of communications in your system it is often the Latency between a message being sent and a reply being started that dominates the speed of the network.

For example, if a message consists of 10 characters (10msec at 9600 Baud) and the reply consists of 10 characters, then the transmission time would be 20 msec. However, if the Latency is 20msec, then the transmission time has become 40msec.

10.3.6 Parity

Parity is a method of ensuring that the data transferred between devices has not been corrupted.

Parity is the lowest form of integrity in the message. It ensures that a single byte contains either an even or an odd number of ones or zero in the data.

In industrial protocols, there are usually layers of checking to ensure that the first byte transmitted is good. Modbus applies a CRC (Cyclic Redundancy Check) to the data to ensure that the package is correct.

10.3.7 RX/TX Delay Time

In some systems it is necessary to introduce a delay between the instrument receiving a message and its reply. This is sometimes caused by communications converter boxes which require a period of silence on the transmission to switch over the direction of their drivers.

10.4 Modbus Broadcast Master Communications

Broadcast master communications will to allow the Mini8 series controllers to send a single value to any slave instruments using a Modbus broadcast using function code 6 (Write single value). This allows the Mini8 to link through digital communications with other products without the need for a supervisory PC to create a small system solution.

Example applications include multi-zone profiling applications or cascade control using a second controller. The facility provides a simple and precise alternative to analogue retransmission.

Warning

When using broadcast master communications, be aware that updated values are sent many times a second. Before using this facility, check that the instrument to which you wish to send values can accept continuous writes. Note that in common with many third party lower cost units, the Eurotherm 2200 series and the 3200 series prior to version V1.10 do not accept continuous writes to the temperature setpoint. Damage to the internal non-volatile memory could result from the use of this function. If in any doubt, contact the manufacturer of the device in question for advice.

When using the 3200 series fitted software version 1.10 and greater, use the Remote Setpoint variable at Modbus address 26 if you need to write to a temperature setpoint. This has no write restrictions and may also have a local trim value applied. There is no restriction on writing to the 2400 or Mini8 series.

10.4.1 Mini8 Broadcast Master

The Mini8 broadcast master can be connected to up to 31 slaves if no segment repeaters are used. If repeaters are used to provide additional segments, 32 slaves are permitted in each new segment. The master is configured by selecting a Modbus register address to which a value is to be sent. The value to send is selected by wiring it to the Broadcast Value. Once the function has been enabled, the instrument will send this value out over the communications link every control cycle typically every 110ms.

Notes:-

- 1. The parameter being broadcast must be set to the same decimal point resolution in both master and slave instruments.
- 2. If iTools, or any other Modbus master, is connected to the port on which the broadcast master is enabled, then the broadcast is temporarily inhibited. It will restart approximately 30 seconds after iTools is removed. This is to allow reconfiguration of the instrument using iTools even when broadcast master communications is operating.

A typical example might be a multi zone application where the setpoint of each zone is required to follow, with digital accuracy, the setpoint of a master.

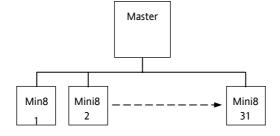


Figure 10-1: Broadcast Comms

10.4.2 Wiring Connections

The Digital Communications module for the master must be the Field Comms and is only RS485/RS422. RS232 is not available.

The Digital Communications module for the slave can be the Config port (RS232 only) or the Field Comms port (Not RS232)..

Standard patch cables cannot be used, as the connections do not 'cross over.' Wire using twisted pair(s) cable and crimp on the appropriate RJ45 or RJ11 plug.

RS485 2-wire

Connect A (+) in the master to A (+) of the slave

Connect B (-) in the master to B (-) of the slave

This is shown diagrammatically below

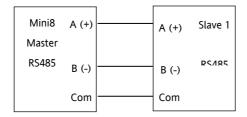


Figure 10-2: Rx/Tx Connections RS485 2-wire

RS422, RS485 4-wire

 $\ensuremath{\mathsf{Rx}}$ connections in the master are wired to $\ensuremath{\mathsf{Tx}}$ connections of the slave

Tx connections in the master are wired to Rx connections of the slave

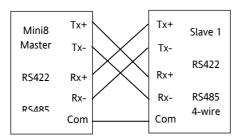
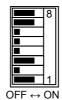



Figure 10-3: Rx/Tx Connections for RS422, RS485 4-wire

10.5 DeviceNet

Only 2 parameters have to be set on the Mini8 for use with DeviceNet, baud rate and address. Both can be set on the hardware address switch situated under the DeviceNet connector. Each Mini8 must have a unique address on the DeviceNet network and all units must be set to the same Baud rate. The switch gives addresses from 0 to 63.

S	OFF	ON
w		
8	Baud rate	Baud rate
7	Baud rate	Baud rate
6	-	Address 32
5	-	Address 16
4	-	Address 8
3	-	Address 4
2	-	Address 2
1	-	Address 1

Example shows 500k baud rate and address 5

S	Baud rate				
w	125k	250k	500k		
8	OFF	OFF	ON		
7	OFF	ON	ON		

Use 500k unless the total length of the DeviceNet network is longer than 100m.

In iTools the DeviceNet Network Status is available and will return the following status:

Offline: No DeviceNet traffic detected

Ready: DeviceNet traffic detected but not for this address

Running: DeviceNet traffic detected addressing this instrument.

11. CH. 11 COUNTERS, TIMERS, TOTALISERS, RT CLOCK

A series of function blocks are available which are based on time/date information. These may be used as part of the control process.

11.1 Counters

Up to two counters are available. They provide a synchronous edge triggered event counter.

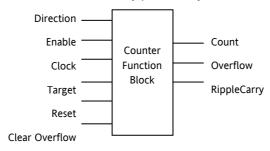


Figure 11-1: Counter Function Block

When configured as an Up counter, Clock events increment Count until reaching the Target. On reaching Target RippleCarry is set true. At the next clock pulse, Count returns to zero. Overflow is latched true and RippleCarry is returned false.

When configured as a down counter, Clock events decrement Count until it reaches zero. On reaching zero RippleCarry is set true. At the next clock pulse, Count returns to the Target count. Overflow is latched true and RippleCarry is reset false

Counter blocks can be cascaded as shown in the diagram below

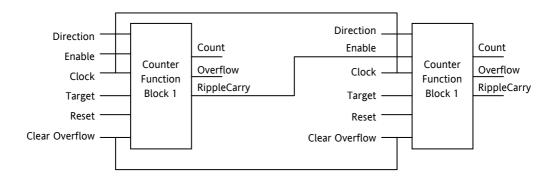


Figure 11-2: Cascading Counters

The RippleCarry output of one counter acts as an enabling input for the next counter. In this respect the next counter in sequence can only detect a clock edge if it was enabled on the previous clock edge. This means that the Carry output from a counter must lead its Overflow output by one clock cycle. The Carry output is, therefore, called a RippleCarry as it is NOT generated on an Overflow (i.e. Count \geq Target) but rather when the count reaches the target (i.e. Count = Target). The timing diagram below illustrates the principle for the Up Counter.

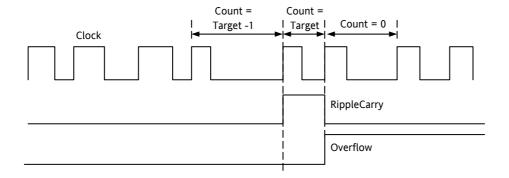


Figure 11-3: Timing Diagram for an Up Counter

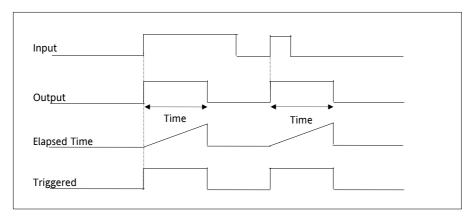
11.1.1 Counter Parameters

Folder - Counter		Sub-folders: 1 to 2				
Name	Parameter Description	Value		Default	Access Level	
Enable	Counter enable. Counter 1 or 2 is enabled in the Instrument Options folder but they can also be turned on or off in this list	Yes No	Enabled Disabled	No	Oper	
Direction	Defines count up or count down. This is not intended for dynamic operation (i.e. subject to change during counting). It can only be set in configuration level.	Up Down	Up counter Down counter	Up	Conf	
Ripple Carry	Ripple carry to act as an enabling input to the next counter. It is turned On when the counter reaches the target set	Off			R/O	
Overflow	Overflow flag is turned on when the counter reaches zero				R/O	
Clock	Tick period to increment or decrement the count. This is normally wired to an input source such as a digital input.	0	No clock input Clock input present	0	R/O if wired	
Target	Level to which the counter is aiming	0 to 99999		9999	Oper	
Count	Counts each time a clock input occurs until the target is reached.	0 to 99999	1		R/O	
Reset	Resets the counter	No Yes	Not in reset Reset	No	Oper	
Clear Overflow	Clear overflow flag	No Yes	Not cleared Cleared	No	Oper	

11.2 Timers

Up to four timers can be configured. Each one can be configured to a different type and can operate independently of one another.

11.2.1 Timer Types


Each timer block can be configured to operate in four different modes. These modes are explained below

11.2.2 On Pulse Timer Mode

This timer is used to generate a fixed length pulse from an edge trigger.

- The output is set to On when the input changes from Off to On.
- The output remains On until the time has elapsed
- If the 'Trigger' input parameter recurs while the Output is On, the Elapsed Time will reset to zero and the Output will remain On
- The triggered variable will follow the state of the output

The diagram illustrates the behaviour of the timer under different input conditions.

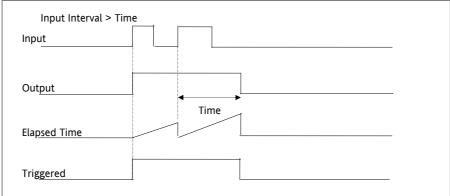


Figure 11-4: On Pulse Timer Under Different Input Conditions

11.2.3 Off Delay Timer Mode

This timer provides a delay between the trigger event and the Timer output. If a short pulse triggers the Timer, then a pulse of one sample time (110ms) will be generated after the delay time.

- The Output is set to Off when the Input changes from Off to On.
- The Output remains Off until the Time has elapsed.
- If the Input returns to Off before the time has elapsed, the Timer will continue until the Elapsed Time equals the Time. It will then generate a pulse of one Sample Time duration.
- Once the Time has elapsed, the Output will be set to On.
- The Output will remain On until the Input is cleared to Off.
- The Triggered variable will be set to On by the Input changing from Off to On. It will remain On until both the Time has elapsed and the Output has reset to Off.

The diagram illustrates the behaviour of the timer under different input conditions.

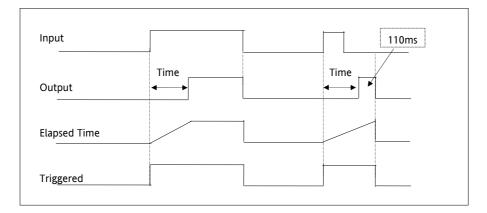
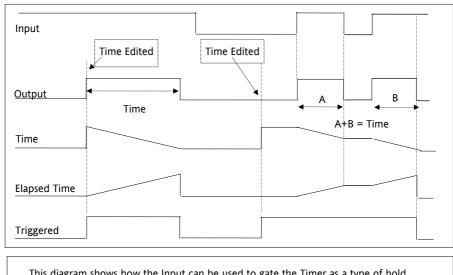


Figure 11-5: Off Delay Timer Under Different Input Conditions

11.2.4 One Shot Timer Mode


This timer behaves like a simple oven timer.

- When the Time is edited to a non-zero value the Output is set to On
- The Time value is decremented until it reaches zero. The Output is then cleared to Off
- The Time value can be edited at any point to increase or decrease the duration of the On time
- Once set to zero, the Time is not reset to a previous value, it must be edited by the operator to start the next On-Time
- The Input is used to gate the Output. If the Input is set, the time will count down to zero. If the Input is cleared to Off, then the Time will hold and the Output will switch Off until the Input is next set.

Note: since the Input is a digital wire, it is possible for the operator to NOT wire it, and set the Input value to On which permanently enables the timer.

 The Triggered variable will be set to On as soon as the Time is edited. It will reset when the Output is cleared to Off.

The behaviour of the timer under different input conditions is shown below.

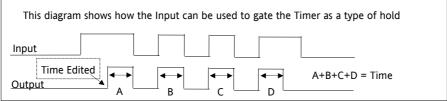


Figure 11-6: One Shot Timer

11.2.5 Compressor or Minimum On Timer Mode

This timer has been targeted at guaranteeing that the output remains On for a duration after the input signal has been removed. It may be used, for example, to ensure that a compressor is not cycled excessively.

- The output will be set to On when the Input changes from Off to On.
- When the Input changes from On to Off, the elapsed time will start incrementing towards the set Time.
- The Output will remain On until the elapsed time has reached the set Time. The Output will then switch Off.
- If the Input signal returns to On while the Output is On, the elapsed time will reset to 0, ready to begin incrementing when the Input switches Off.
- The Triggered variable will be set while the elapsed time is >0. It will indicate that the timer is counting. The diagram illustrates the behaviour of the timer under different input conditions.

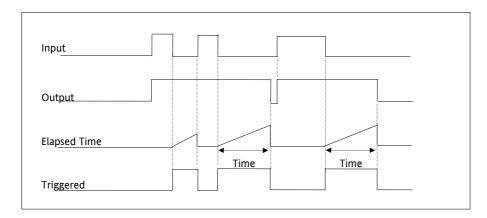


Figure 11-7: Minimum On Timer Under Different Input Conditions

11.2.6 Timer Parameters

Folder – Timer		Sub-folders: 1 to 4				
Name	Parameter Description	Value		Default	Access Level	
Туре	Timer type	Off	Timer not configured	Off	Conf	
		On Pulse	Generates a fixed length pulse from an edge trigger			
		Off Delay	Provides a delay between input trigger event and timer putput			
		One Shot	Simple oven timer which reduces to zero before switching off			
		Min-On Ti	Compressor timer guaranteeing that the output remains ON for a time after the input signal has been removed			
Time	Duration of the timer. For re-trigger timers this value is entered once and copied to the time remaining parameter whenever the timer starts. For pulse timers the time value itself is decremented.	0:00.0 to 99:	0:00.0 to 99:59:59		Oper	
Elapsed Time	Timer elapsed time	0:00.0 to 99:	59:59		R/O	
In	Trigger/Gate input. Turn On to start timing	Off On	Off Start timing	Off	Oper	
Out	Timer output	Off	Output off		R/O	
		On	Timer has timed out			
Triggered	Timer triggered (timing). This is a status output to indicate that the timers input has been detected	Off On	Not timing Timer timing		R/O	

The above table is repeated for Timers 2 to 4.

11.3 Totalisers

There are two totaliser function blocks which are used to measure the total quantity of a measurement integrated over time. A totaliser can, by soft wiring, be connected to any measured value. The outputs from the totaliser are its integrated value and an alarm state. The user may set a setpoint which causes the alarm to activate once the integration exceeds the setpoint.

The totaliser has the following attributes:-

1. Run/Hold/Reset

In Run the totaliser will integrate its input and continuously test against an alarm setpoint.

In Hold the totaliser will stop integrating its input but will continue to test for alarm conditions.

In Reset the totaliser will be zeroed, and alarms will be reset.

2. Alarm Setpoint

If the setpoint is a positive number, the alarm will activate when the total is greater than the setpoint.

If the setpoint is a negative number, the alarm will activate when the total is lower (more negative) than the setpoint.

If the totaliser alarm setpoint is set to 0.0, the alarm will be off. It will not detect values above or below.

The alarm output is a single state output. It may be cleared by resetting the totaliser, or by changing the alarm setpoint.

3. Limits

The total is limited to a maximum of 99999 and a minimum of -19999.

4. Resolution

The totaliser ensures that resolution is maintained when integrating small values onto a large total.

11.3.1 Totaliser Parameters

Folder – Tot	al	Sub-Folders: 1 to 2				
Name	Parameter Description	Value		Default	Access Level	
TotalOut	The totalised value	99999 t o-1	9999		R/O	
In	The value to be totalised	-9999.9 to 9	9999.9.		Oper	
		Note:- the t	otaliser stops accumulating if the input is 'Bad'.			
Units	Totaliser units	None			Conf	
		AbsTemp				
		V, mV, A, m	A,			
		_	H, mmHg, psi, Bar, mBar, %RH, %, mmWG, inWG, inWW, phms, PSIG, %O2, PPM, %CO2, %CP, %/sec,			
		RelTemp				
		mBar/Pa/T				
		sec, min, hr	s,			
Resolution	Totaliser resolution	XXXXX		XXXXX	Conf	
		XXXX.X				
		XXX.XX				
		XX.XXX				
		X.XXXX				
Alarm SP	Sets the totalised value at which an alarm will occur	-99999 to 99999			Oper	
AlarmOut	This is a read only value	Off	Alarm inactive	Off	Oper	
	which indicates the alarm output On or Off.	On	Alarm output active			
	The totalised value can be a positive number or a negative number.					
	If the number is positive the alarm occurs when					
	Total > + Alarm Setpoint					
	If the number is negative the alarm occurs when					
	Total > - Alarm Setpoint					
Run	Runs the totaliser	No	Timer not running	No	Oper	
		Yes	Select Yes to run the timer			
Hold	Holds the totaliser at its	No	Timer not in hold	No	Oper	
	current value	Yes	Hold timer			
	Note:					
	The Run & Hold parameters are designed to be wired to (for example) digital inputs. Run must be 'on' and Hold must be 'off' for the totaliser to operate.					
Reset	Resets the totaliser	No	Timer not in reset	No	Oper	
		Yes	Timer in reset		Opc.	

11.4 Real Time Clock

A real time clock (day of week and time only) is used to provide a daily and weekly scheduling facility and provides two corresponding outputs. The configuration for an output is an On-Day and an On-Time and an Off-Day and an Off-Time.

The day options supported are:-

Day Option	Description
Never	Disables the output feature
Monday	Output will only be available on a Monday
Tuesday	Output will only be available on a Tuesday
Wednesday	Output will only be available on a Wednesday
Thursday	Output will only be available on a Thursday
Friday	Output will only be available on a Friday
Saturday	Output will only be available on a Saturday
Sunday	Output will only be available on a Sunday
Mon-Fri	Output will only be available between Monday to Friday
Mon-Sat	Output will only be available on between Monday to Saturday
Sat-Sun	Output will only be available on between Saturday to Sunday
Everyday	Output always available

For example, it is possible to configure an output to be activated at 07:30 on Monday and deactivated at 17:15 on Friday

The output from the Real Time Clock outputs may be used to place the instrument in standby or to sequence a batch process.

The Real Time Clock function will set/clear the output outputs only at the time of the output. Therefore, it is possible to manually override the outputs by editing the output to On/Off between output activations. The Real Time Clock does not display date or year.

11.4.1 Real Time Clock Parameters

Folder – RTClock		Sub Folders: None			
Name	Parameter Description	Value		Default	Access Level
Mode	This parameter can be used to set the clock	Running Edit Stopped	Normal operation Allows the clock to be set Clock stopped (saves battery life)	Stopped	Oper
Day	Displays the day or allows the day to be set when in Edit mode	Monday to S	unday		Oper
Time	Displays the time or allows the time to be set when in Edit mode	00:00:00 to 23:59:59			Oper
On Day1 On Day2	Days when output 1 and 2 are activated	See table above			Oper
On Time1 On Time2	Time of day when output 1 and 2 are activated	00:00:00 to 23:59:59			Oper
Off Day1 Off Day2	Days when output 1 and 2 are de- activated	See table abo	ove		Oper
Off Time1 Off Time2	Time of day when output 1 and 2 are de-activated	00:00:00 to 23:59:59			Oper
Out1 Out2	Output 1 and 2	Off On	Output not activated Output activated		Oper

12. CHAPTER 12 HUMIDITY CONTROL

12.1.1 Overview

Humidity (and altitude) control is a standard feature of the Mini8 controller. In these applications the controller may be configured to generate a setpoint profile (see Chapter 18 'Programmer Operation').

Also the controller may be configured to measure humidity using either the traditional Wet/Dry bulb method or it may be interfaced to a solid state sensor.

The controller output may be configured to turn a refrigeration compressor on and off, operate a bypass valve, and possibly operate two stages of heating and/or cooling

12.1.2 Temperature Control of an Environmental Chamber

The temperature of an environmental chamber is controlled as a single loop with two control outputs. The heating output time proportions electric heaters, usually via a solid state relay. The cooling output operates a refrigerant valve which introduces cooling into the chamber. The controller automatically calculates when heating or cooling is required.

12.1.3 Humidity Control of an Environmental Chamber

Humidity in a chamber is controlled by adding or removing water vapour. Like the temperature control loop two control outputs are required, i.e. Humidify and Dehumidify.

To humidify the chamber water vapour may be added by a boiler, an evaporating pan or by direct injection of atomised water.

If a boiler is being used adding steam increases the humidity level. The humidify output from the controller regulates the amount of steam from the boiler that is allowed into the chamber.

An evaporating pan is a pan of water warmed by a heater. The humidify output from the controller humidity regulates the temperature of the water.

An atomisation system uses compressed air to spray water vapour directly into the chamber. The humidify output of the controller turns on or off a solenoid valve.

Dehumidification may be accomplished by using the same compressor used for cooling the chamber. The dehumidify output from the controller may control a separate control valve connected to a set of heat exchanger coils.

12.2 Humidity Parameters

List Folder - Humidity		Sub-folder: None			
Name	Parameter Description	Value		Default	Access Level
Resolution	Resolution of the relative humidity	XXXXX			Conf
	Hamaicy	XXXX.X			
		XXX.XX			
		XX.XXX			
Psychro Const	The psychrometric constant at a given pressure (6.66E-4 at standard atmospheric pressure). The value is dependent on the speed of air-flow across the wet bulb, and hence the rate of evaporation. 6.66E-4 is for the ASSMANN ventilated Psychrometer.	0.0 to 10.0		6.66	Oper
Pressure	Atmospheric Pressure	0.0 to 2000.0		1013.0 mbar	Oper
WetTemp	Wet Bulb Temperature	Range unit	S		
WetOffset	Wet bulb temperature offset	-100.0 to 1	00.0	0.0	Oper
DryTemp	Dry Bulb Temperature	Range unit	S		
RelHumid	Relative Humidity is the ratio of actual water vapour pressure (AVP) to the saturated water vapour pressure (SVP) at a particular temperature and pressure	0.0 to 100.0		100	R/O
DewPoint	The dew point is the temperature to which air would need to cool (at constant pressure and water vapour content) in order to reach saturation	-999.9 to 999.9			R/O
Sbrk	Indicates that one of the probes is broken.	No Yes	No sensor break detection Sensor break detection enabled		Conf

13. CHAPTER 13 INPUT MONITOR

There are two Input monitors. Each input monitor may be wired to any variable in the controller. It then provides three functions:-

- 1. Maximum detect
- 2. Minimum detect
- 3. Time above threshold

13.1.1 Maximum Detect

This function continuously monitors the input value. If the value is higher than the previously recorded maximum, it becomes the new maximum.

This value is retained following a power fail.

13.1.2 Minimum Detect

This function continuously monitors the input value. If the value is lower than the previously recorded minimum, it becomes the new minimum.

This value is retained following a power fail.

13.1.3 Time Above Threshold

This function increments a timer whenever the input is above a threshold value. If the timer exceeds 24 hours per day, a counter is incremented. The maximum number of days is limited to 255. A time alarm can be set on the timer so that once the input has been above a threshold for a period, an alarm output is given.

Applications include:-

- Service interval alarms. This sets an output when the system has been running for a number of days (up to 90 years)
- Material stress alarms if the process cannot tolerate being above a level for a period. This is a style of
 'policeman' for processes where the high operating point degrades the life of the machine.
- In internal wiring applications in the controller

13.2 Input Monitor Parameters

Folder - IPMo	nitor	Sub-Folders: 1 or 2			
Name	Parameter Description	Value		Default	Access Level
In	The input value to be monitored	-	wired to an input source. The range will on the source		Oper R/O if wired
Max	The maximum measured value recorded since the last reset	As above	As above		R/O
Min	The minimum measured value recorded since the last reset	As above	e		R/O
Threshold	The input timer accumulates the time the input PV spends above this trigger value.	As above	e		Oper
Days Above	Accumulated days the input has spent above threshold since the last reset.	only. Th	Days is an integer count of the 24 hour periods only. The Days value should be combined with the Time value to make the total time above threshold.		R/O
Time Above	Accumulated time above the 'Threshold' since last reset.	The time value accumulates from 00:00.0 to 23:59.9. Overflows are added to the days value			R/O
AlarmDays	Days threshold for the monitors time alarm. Used in combination with the Alarm Time parameter. The 'Out' is set to true if the inputs accumulated time above threshold is higher than the timer high parameters.	0 to 255		0	Oper
AlarmTime	Time threshold for the monitors time alarm. Used in combination with the Alarm Days parameter. The 'Out' is set to true if the inputs accumulated time above threshold is higher than the timer high parameters.	0:00.0 tc	0:00.0 to 99:59:59		Oper
Out	Set true if the accumulated time that the input spends above the trigger value is higher than the alarm threshold.	Off Normal operation On time above setpoint exceeded			R/O
Reset	Resets the Max and Min values and resets the time above threshold to zero.	No Yes	Normal operation Reset values	No	Oper
In Status	Monitors the status of the input	Good Bad	Normal operation The input may be incorrectly wired		R/O Oper

14. CHAPTER 14 LOGIC AND MATHS OPERATORS.

14.1 Logic Operators

Logic Operators allow the controller to perform logical calculations on **two** input values. These values can be sourced from any available parameter including Analogue Values, User Values and Digital Values.

The parameters to use, the type of calculation to be performed, input value inversion and 'fallback' value are determined in Configuration level.

The Logic Operators folder is only available if the operators have been enabled in 'Instrument' folder subfolder 'Options'.

There are 24 separate calculations – they do not have to be in sequence. When logic operators are enabled a Folder 'Lgc2' exists where the 2 denotes two input logic operators.

Figure 14-1: 2 Input Logic Operators

Logic Operators are found under the folder 'Lgc2'. Note that the logic operators can also be enable by dragging a block onto the graphical wiring screen in iTools.

14.1.1 Logic 8

Logic 8 operators can perform logic calculations on up to **eight** inputs. The calculations are limited to AND,OR,XOR. Up to two 8 input operators can be enabled. The folder is labelled **'Lgc8'** to denote eight input logic operators.

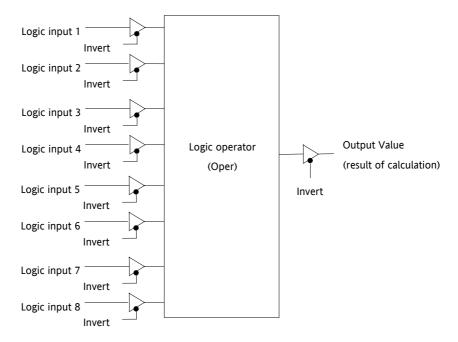


Figure 14-2: 8 Input Logic Operators

14.1.2 2 input Logic Operations

The following calculations can be performed:

Oper	Operator description	Input 1	Input 2	Output
0: OFF	The selected logic operator is turned off			Invert = None
1: AND	The output result is ON when both Input 1	0	0	Off
	and Input 2 are ON	1	0	Off
		0	1	Off
		1	1	On
2: OR	The output result is ON when either Input 1	0	0	Off
	or Input 2 is ON	1	0	On
		0	1	On
		1	1	Off
3: XOR	Exclusive OR. The output result is true	0	0	Off
	when one and only one input is ON. If both	1	0	On
	inputs are ON the output is OFF.	0	1	On
		1	1	Off
4: Latch	Input 1 sets the latch, Input 2 resets the	0	0	
	latch.		0	
		0	1	
		1	1	
5: Equal (==)	The output result is ON when Input 1 = Input 2	0	0	On
,		1	0	Off
		0	1	Off
		1	1	On
6: Not equal (<>)	The output result is ON when Input 1 =	0	0	Off
	Input 2	1	0	On
		0	1	Off
		1	1	On
7: Greater than (>)	The output result is ON when Input 1 >	0	0	Off
	Input 2	1	0	On
		0	1	Off
		1	1	Off
8: Less than (<)	The output result is ON when Input 1 <	0	0	Off
	Input 2	1	0	Off
		0	1	On
		1	1	Off
9: Equal to or	The output result is ON when Input 1 ≥	0	0	On
Greater than (=>)	Input 2	1	0	On
		0	1	Off
		1	1	On
10: Less than or	The output result is ON when Input 1 <	0	0	On
Equal to (<=)	Input 2	1	0	Off
		0	1	On
		1	1	On

Note 1: The numerical value is the value of the enumeration

Note 2: For options 1 to 4 an input value of less than 0.5 is considered false and greater than or equal to 0.5 as true.

14.1.3 Logic Operator Parameters

Folder – Lgc2 (2 Input Operators)		Sub-Folders: 1 to 24			
Name	Parameter Description	Value		Default	Access Level
Oper	To select the type of operator	See previous table		None	Conf
In1	Input 1	Normally wired to a logic, analogue or user value. May be set to a constant value if not wired.		0	OPER
In2	Input 2				
FallbackType	The fallback state of the output if one or both of the inputs is bad	0: FalseBad	The output value is FALSE and the status is GOOD.		Conf
		1: TrueBad	The output value is FALSE and the status is BAD		
		2: FalseGood	The output value is TRUE and the status is GOOD		
		3: TrueGood	The output value is TRUE and the status is BAD.		
Invert	The sense of the input value, may be used to invert one or both of the inputs	0: None	Neither input inverted		Conf
		1: Input1	Invert input 1		
		2: Input2	Invert input 2		
		3: Both	Invert both inputs		
Out	The output from the operation is a boolean (true/false) value.	On	Output activated		R/O
		Off	Output not activated		
Status	The status of the result value	Good			R/O
		Bad			

14.2 Eight Input Logic Operators

The eight input logic operator may be used to perform the following operations on eight inputs.

Oper Operator description		
0: OFF	The selected logic operator is turned off	
1: AND	The output result is ON when ALL eight inputs are ON	
2: OR	The output result is ON when one or more of the 8 inputs are ON	
3: XOR	Exclusive OR. The output result is true when one and only one of the 8 inputs is ON.	

Eight Input Logic Operator Parameters

Folder – Lgc8 (8 Input Operators)		Sub-Folders	: 1 to 2		
Name	Parameter Description	Value		Default	Access Level
Oper	To select the type of operator	0: OFF 1: AND 2: OR 3: XOR	Operator turned off Output ON when all inputs are ON Output ON when one input is ON Exclusive OR	OFF	Conf
NumIn	This parameter is used to configure the number of inputs for the operation	1 to 8		2	Conf
InInvert	Used to invert selected inputs prior to operation. This is a status word with one bit per input, the left hand bit inverts input 1.	The invert parameter is interpreted as a bitfield where: 1 (0x1) - input 1 2 (0x2) - input 2 4 (0x4) - input 3 8 (0x8) - input 4 16 (0x10) - input 5 32 (0x20) - input 6 64 (0x40)- input 7 128 (0x80)- input 8 (e.g. 255 = all eight)		0	Oper
Out Invert	Invert the output	No Yes	Output not inverted Output inverted	No	Oper
In1 to In8	Input state 1 to 8	Normally wired to a logic, analogue or user value. When wired to a floating point, values less than or equal to –0.5 or greater than or equal to 1.5 will be rejected (e.g. the value of the lgc8 block will not change). Values between –0.5 and 1.5 will be interpreted as ON when greater than or equal to 0.5 and OFF when less than 0.5. May be set to a constant value if not wired.		Off	Oper
Out	Output result of the operator	On Off	Output activated Output not activated		R/O

14.3 Maths Operators

Maths Operators (sometimes known as Analogue Operators) allow the controller to perform mathematical operations on two input values. These values can be sourced from any available parameter including Analogue Values, User Values and Digital Values. Each input value can be scaled using a multiplying factor or scalar.

The parameters to use, the type of calculation to be performed and the acceptable limits of the calculation are determined in Configuration level. In normal operation the values of each of the scalars may be changed via communications or iTools.

There are 24 separate calculations – they do not have to be in sequence. When maths operators are enabled (in Instrument/Options folder) a Folder 'Math2' exists (where the 2 denotes two input maths operators).

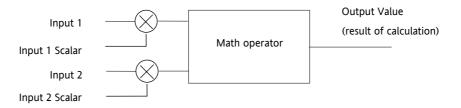


Figure 14-3: 2 Input Math Operators

8 input multiplexers are also available and are described in the next section.

14.3.1 Math Operations

The following operations can be performed:

0: Off	The selected analogue operator is turned off				
1: Add	The output result is the addition of Input 1 and Input 2				
2: Subtract (Sub)	The output result is the difference between Input 1 and Input 2				
	where Input 1 > Input 2				
3: Multiply (Mul)	The output result is the Input 1 multiplied by Input 2				
4: Divide (Div)	The output result is Input 1 divided by Input 2				
5: Absolute Difference (AbsDif)	The output result is the absolute difference between Input 1 and 2				
6: Select Max (SelMax)	The output result is the maximum of Input 1 and Input 2				
7: Select Min (SelMin)	The output result is the minimum of Input 1 and Input 2				
8: Hot Swap (HotSwp)	Input 1 appears at the output provided input 1 is 'good'. If input 1 is 'bad' then input 2 value will appear at the output. An example of a bad input occurs during a sensor break condition.				
9: Sample and Hold	Normally input 1 will be an analogue value and input B will be digital.				
(SmpHld)	The output tracks input 1 when input 2 = 1 (Sample).				
	The output will remain at the current value when input 2 = 0 (Hold).				
	If input 2 is an analogue value then any non zero value will be interpreted as 'Sample'.				
10: Power	The output is the value at input 1 raised to the power of the value at input 2. I.e. input 1 input 2				
11: Square Root (Sqrt)	The output result is the square root of Input 1. Input 2 has no effect.				
12: Log	The output is the logarithm (base 10) of Input 1. Input 2 has no effect				
13: Ln	The output is the logarithm (base n) of Input 1. Input 2 has no effect				
14: Exp	The output result is the exponential of Input 1. Input 2 has no effect				
15: 10 x	The output result is 10 raised to the power of Input 1 value. I.e. 10input 1. Input 2 has no effect				
51: Select	Any logic value may be used to control which Analogue Input is switched to the output of the Analogue Operator. If the output from the logic operator is true input 1 is switched through to the output. If false input 2 is switched through to the output. See example below:-				
	Logic input 1 Logic input 2 Logic Op 1 An input 1 Logic Op 1 An input 1 Select Logic 1 input 2 An Op 1 The output is An input 1 when logic input and logic input 2 are true				

When Boolean parameters are used as inputs to analogue wiring, they will be cast to 0.0 or 1.0 as appropriate. Values <= -0.5 or >= 1.5 will not be wired. This provides a way to stop a Boolean updating. Analogue wiring (whether simple re-routing or involving calculations) will always output a real type result, whether the inputs were booleans, integers or reals.

Note: The numerical value is the value of the enumeration

14.3.2 Math Operator Parameters

Folder – Math2 (2 Input Operators)		Sub-Folders: 1 to 24			
Name	Parameter Description	Value		Default	Access Level
Oper	To select the type of operator	See previous to	See previous table		
In1Mul	Scaling factor on input 1	Limited to max	(float *	1.0	Oper
In2 Mul	Scaling factor on input 2	Limited to max	(float *	1.0	Oper
Units	Units applicable to the output	None		None	Conf
	value	AbsTemp			
		V, mV, A, mA,			
			, Bar, mBar, %RH, %, mmWG, inWG, PSIG, %O2, PPM, %CO2, %CP, %/sec,		
		RelTemp			
		mBar/Pa/T			
		sec, min, hrs,			
Resolution	Resolution of the output value	XXXXX. XXXX.	(, XXX.XX, XX.XXX, X.XXXX		Conf
LowLimit	To apply a low limit to the output	Max float* to I on resolution)	High limit (decimal point depends		Conf
HighLimit	To apply a high limit to the output	Low limit to M on resolution)	ax float* (decimal point depends		Conf
Fallback	The state of the Output and Status parameters in case of a fault condition. This parameter could be used in conjunction with fallback value	Clip Bad Clip Good Fall Bad Fall Good Upscale DownScale	Descriptions, see section 3.4.5.		Conf
Fallback Val	Defines (in accordance with Fallback) the output value during fault conditions.	Limited to max resolution)	c float * (decimal point depends on		Conf
In1	Input 1 value (normally wired to an input source – could be a User Value)	Limited to max resolution)	float * (decimal point depends on		Oper
In2	Input 2 value (normally wired to an input source – could be a User Value)	Limited to max float * (decimal point depends on resolution)			Oper
Out	Indicates the analogue value of the output	Between high and low limits			R/O
Status	This parameter is used in conjunction with Fallback to indicate the status of the operation. Typically, status is used to flag fault conditions and may be used as an interlock for other operations.	Good Bad			R/O

^{*} Max float in this instrument is $\pm 9,999,999,999$

14.3.3 Sample and Hold Operation

The diagram below shows the operation of the sample and hold feature.

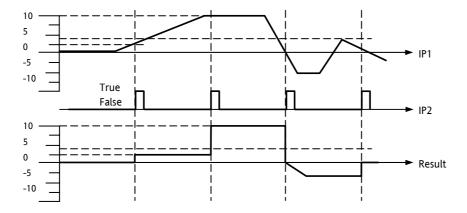


Figure 14-4: Sample and Hold

14.4 Eight Input Analog Multiplexers

The eight Input analogue multiplexers may be used to switch one of eight inputs to an output. It is usual to wire inputs to a source within the controller that selects that input at the appropriate time or event. It is possible to enable four multiplexers from the 'Instrument/Options' folder.

Multiple Input Operator Parameters

Folder – Mux8 (8 Input Multiplexers)		Sub-folders: 1 to 4			
Name	Parameter Description	Value		Default	Access Level
LowLimit	The high limit for all inputs and the fall back value.	-99999 to High resolution)	limit (decimal point depends on		Conf
HighLimit	The low limit for all inputs and the fall back value.	Low limit to 99 resolution)	999 (decimal point depends on		Conf
Fallback	The state of the Output and Status parameters in case of a fault condition. This parameter could be used in conjunction with Fallback Val.	Clip Bad Clip Good Fall Bad Fall Good Upscale DownScale	Descriptions see section 3.4.5		Conf
Fallback Val	Used (in accordance with Fallback) to define the output value during fault conditions	-99999 to 99999 (decimal point depends on resolution)			Conf
Select	Used to select which input value is assigned to the output.	Input1 to Inpu	t8		Oper
Input1 to 8	Input values (normally wired to an input source)	-99999 to 99999 (decimal point depends on resolution)			Oper
Out	Indicates the analogue value of the output	Between high and low limits			R/O
Status	Used in conjunction with Fallback to indicate the status of the operation. Typically, status is used to flag fault conditions and may be used as an interlock for other operations.	Good Bad			R/O

14.4.1 Fallback

The fallback strategy will come into effect if the status of the input value is bad or if the input value is outside the range of Input Hi and Input Lo.

In this case the fallback strategy may be configured as:-

Fallback Good – the output value will be the fallback value and the output status will be 'Good'.

Fallback Bad – the output value will be the fallback value and the output status will be 'Bad'.

Clip Good – If the input is outside a limit the output will be clipped to the limit and the status will be 'Good'.

Clip Bad – If the input is outside a limit the output will be clipped to the limit and the status will be 'Bad'.

Upscale – the output value will be Output Hi and the output status will be 'Bad'.

Downscale – the output value will be Output Lo and the output status will be 'Bad'.

15. CHAPTER 15 INPUT CHARACTERISATION

15.1 Input Linearisation

The Lin16 function block converts an input signal into an output PV using a series of up to 15 straight lines to characterise the conversion.

The function block provides the following behaviour.

- 1. The Input values must be monotonic and constantly rising.
- 2. To convert the MV to the PV, the algorithm will search the table of inputs until the matching segment is found. Once found, the points either side will be used to interpolate the output value.
- 3. If during the search, a point is found which is not above the previous (below for inverted) then the search will be terminated and the segment taken from the last good point to the extreme (In Hi-Out Hi) see following diagram.

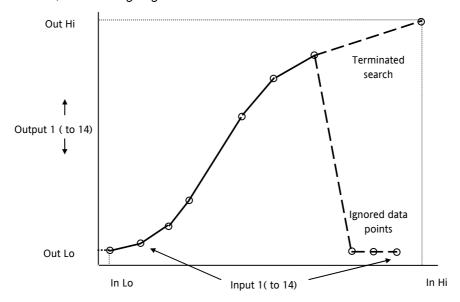


Figure 15-1: Linearisation Example

Notes:

1. The linearisation block works on rising inputs/rising outputs or rising inputs/falling outputs. It is not suitable for outputs which rise and fall on the same curve.

2. Input Lo/Output Lo and Input Hi/Output Hi are entered first to define the low and high points of the curve. It is not necessary to define all 15 intermediate points if the accuracy is not required. Points not defined will be ignored and a straight line fit will apply between the last point defined and the Input Hi/Output Hi point. If the input source has a bad status (sensor break, or overrange) then the output value will also have a bad status.

- If the input value is outside the translated range then the output status will indicate Bad, and the value will be limited to the nearest output limit.
- The units and resolution parameters will be used for the output values. The input values resolution and units will be specified by the source of the wire.
- If the 'Out Low' is higher than the 'Out High' then the translation will be inverted.

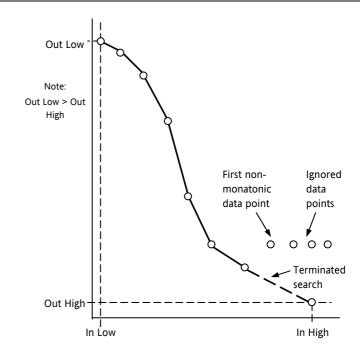


Figure 15-2: How an Inverted Curve will Terminate its search when it detects non-monatonic data

15.1.1 Compensation for Sensor Non-Linearities

The custom linearisation feature can also be used to compensate for errors in the sensor or measurement system. The intermediate points are, therefore, available in Level 1 so that known discontinuities in the curve can be calibrated out. The diagram below shows an example of the type of discontinuity which can occur in the linearisation of a temperature sensor.

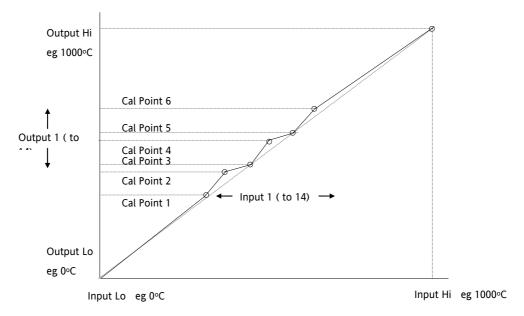


Figure 15-3: Compensation for Sensor Discontinuities

The calibration of the sensor uses the same procedure as described above. Adjust the output (displayed) value against the corresponding input value to compensate for any errors in the standard linearisation of the sensor.

15.1.2 Input Linearisation Parameters

List Folder – Lin	16	Sub-folders: 1 to 2				
Name	Parameter Description	Value		Default	Access Level	
Units	Units of the linearised output	PH, mmHg,	AbsTemp V, mV, A, mA, PH, mmHg, psi, Bar, mBar, %RH, %, mmWG, inWG, inWW, Ohms, PSIG, %O2, PPM, %CO2, %CP, %/sec, RelTemp mBar/Pa/T		Conf	
Resolution	Resolution of the output value	XXXXX. XXX	(X.X, XXX.XX, XX.XXX, X.XXXX		Conf	
In	Input measurement to linearise. Wire to the source for the custom linearisation	Between In	LowLimit and InHighLimit	0	Oper	
FallbackType	Fallback Type The fallback strategy will come into effect if the status of the	Clip Bad	If the input is outside a limit the output will be clipped to the limit and the status will be BAD	ClipBad	Oper	
	input value is bad or if the input value is outside the range of input high scale and input	Clip Good	If the input is outside a limit the output will be clipped to the limit and the status will be GOOD			
	low scale. In this case the fallback strategy may be configured as:	Fall Bad	The output value will be the fallback value and the output status will be BAD			
comigured as.	Fall Good	The output value will be the fallback value and the output status will be GOOD				
	Upscale	The output value will be output high scale and the output status will be BAD				
		DownScale	The output value will be the output low scale and the output status will be BAD			
Fallback Value			e configured to adopt the fallback e output in the event of a fault being	0	Oper	
Out	Linearisation Result	Between O	utLowLimit and OutHighLimit		R/O	
InLowLimit	Adjust to the low input value	-99999 to I	nHighLimit	0	Conf	
OutLowLimit	Adjust to correspond to the low input value	-99999 to 0	DutHighLimit	0	Conf	
InHighLimit	Adjust to the high input value	InLowLimit	to 99999	0	Conf	
OutHighLimit	Adjust to correspond to the high input value	OutLowLim	it to 99999	0	Conf	
In1	Adjust to the first break point			0	Oper	
Out1	Adjust to correspond to input 1			0	Oper	
etc up to				0		
In14	Adjust to the last break point			0	Oper	
Out14	Adjust to correspond to input 14			0	Oper	
Status	Status of the block. A value of zero indicates a healthy conversion.	Good Bad	Within operating limits A bad output may be caused by a bad input signal (perhaps the input is in sensor break) or an output which is out of range		R/O	

The 16 point linearisation does not require you to use all 16 points. If fewer points are required, then the curve can be terminated by setting the first unwanted value to be less than the previous point.

Conversely if the curve is a continuously decreasing one, then it may be terminated by setting the first unwanted point above the previous one.

15.2 Polynomial

Folder – Poly		Sub-Folders: 1 to 2			
Name	Parameter Description	Value		Defaul t	Access Level
LinType	To select the input type. The linearisation type selects which of the instruments linearisation curves is applied to the input signal. The instrument contains a number of thermocouple and RTD linearisations as standard. In addition there are a number of custom linearisations that may be downloaded using iTools to provide linearisations of nontemperature sensors.	J , K, L, R, Linear, Sq	B, N, T, S, PL2, C, PT100, Root	J	Conf
Units	Units of the output	mmWG, ir	g, psi, Bar, mBar, %RH, %, hWG, inWW, Ohms, PSIG, , %CO2, %CP, %/sec,	None	Conf
Resolution	Resolution of the output value	XXXXX. XX X.XXXX	XXX.X, XXX.XX, XX.XXX,	XXXXX	Conf
In	Input Value The input to the linearisation block	Range of	the input wired from		Oper
Out	Output value	Between (Out Low and Out High		R/O
InHighScale	Input high scale	In Low to	99999	0	Oper
InLowScale	Input low scale	-99999 to	In High	0	Oper
OutHighScale	Output high scale	Out Low t	o 99999	0	Oper
OutLowScale	Output low scale	-99999 to	Out High	0	Oper
Fallback Type	Fallback Type The fallback strategy will come into effect if the status of the input value is bad or if the input value is outside the range of input high scale and	Clip Bad	If the input is outside a limit the output will be clipped to the limit and the status will be BAD		Conf
	input low scale. In this case the fallback strategy may be configured as:	Clip Good	If the input is outside a limit the output will be clipped to the limit and the status will be GOOD		
		Fall Bad	The output value will be the fallback value and the output status will be BAD		
		Fall Good	The output value will be the fallback value and the output status will be GOOD		

Folder – Poly	Folder – Poly		Sub-Folders: 1 to 2			
Name	Parameter Description	Value	Value		Access Level	
		Upscale	The output value will be output high scale and the output status will be BAD			
		Down- Scale	The output value will be the output low scale and the output status will be BAD			
FallbackValue	Value to be adopted by the output in the event of Status = Bad				Oper	
Status	Indicates the status of the linearised output:	Good	Good indicates the value is within range and the input is not in sensor break.		R/O	
		545	Indicates the Value is out of range or the input is in sensor break.			
			Note: This is also effected by the configured fallback strategy			

16. CHAPTER 16 LOAD

The load simulation block provides styles of load which can be used to allow an instrument configuration to be tested before connection to the process plant. In the current issue of firmware the simulated loads available are Oven and Furnace.

16.1 Load Parameters

Folder – Load		Sub-Folders: None			
Name	Parameter Description	Value		Default	Access Level
Туре	The type of load simulation to use. Oven is a simple load of 3 first order lags, providing a single process value for connection to the control loop. Furnace consists of 12 interactive first order lags giving a slave PV, followed by 6 interactive first order lags giving a master PV.	Oven Furnace	Simulates the characteristics of a typical oven Simulates the characteristics of a typical furnace	Oven	Conf
Resolution	The display resolution of the resultant PV Out.				Conf
Units	The Units of the resultant PV.				Conf
Gain	The gain of the load, the input power is multiplied by gain, before use by the load.				Oper
TimeConst1	The time constant of lag 1 in the Oven load and slave lags (1-12) of the Furnace load. The time constant has units of seconds.				Oper
TimeConst2	The time constant of lag 2/3 of the Oven load and master lags (13-18) of the furnace load.				Oper
Attenuation	Attenuation Between PV1 and PV2 Stages.				Oper
(Furnace load only)	Used in the advanced furnace load and defines an attenuation factor between the slave and master lags				
Ch 2 Gain	Defines the relative gain when cooling is requested, applied to the input power when the power requested is < 0.				Oper
PVFault	The load function block provides 2 PV	None	No fault conditions.		Oper
	outputs, sensor fault can be used to generate a fault condition on these PV's such that the bad status is passed along a wire to be	PVOut1	Fault on the first output (slave).		
	consumed by another block such as the loop. The sensor fault can be confiured as:	PVOut2	Fault on the second output (master).		
		Both	A fault on first and second outputs (master and slave).		
PV Out1	First Process Value				R/O
	The PV in Process Value an Oven load or the Slave PV in a furnace load.				
PV Out2	Second Process Value				R/O
(Furnace load only)	Second process value, lagged from PVOut1, used as a cascade master input. The Master PV in the Furnace load.				

Folder – Load	Folder – Load		Sub-Folders: None			
Name	Parameter Description	Value		Default	Access Level	
LoopOutCh1	Loop output channel 1 input. The output of the loop as wired to the load simulation, this is the power requested of the load. This can be used as the heat demand.				Oper	
LoopOutCh2	Loop output channel 2 input. The output of the loop as wired to the load simulation, this is the power requested of the load. This can be used as the cool demand.				Oper	
Noise	Noise Added to PV This is used to make the PV of the load appear noisy, and hence more like a real measurement.	Off 1 to 99999	The amount of noise is specified in engineering units.	Off	Oper	
Offset	Process offset Used to configure an offset in the process. In a temperature application this could represent the ambient operating temperature of the plant.				Oper	

17. CHAPTER 17 CONTROL LOOP SET UP

The Mini8 has eight loops of control. Each Loop has two outputs, Channel 1 and Channel 2, each of which can be configured for PID or On/Off.

The control function block is divided into a number of sections the parameters of which are all listed under the Folder **'Loop'**.

The 'Loop' folder contains sub-folders for each section as shown diagrammatically below.

17.1 What is a Control Loop?

An example of a heat only temperature control loop is shown below:-

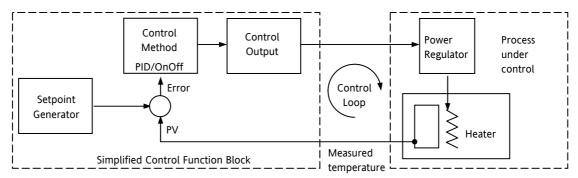


Figure 17-1: Single Loop Single Channel

The actual temperature measured at the process (PV) is connected to the input of the controller. This is compared with a setpoint (or required) temperature (SP). If there is an error between the set and measured temperature the controller calculates an output value to call for heating or cooling. The calculation depends on the process being controlled but normally uses a PID algorithm. The output(s) from the controller are connected to devices on the plant which cause the heating (or cooling) demand to be adjusted which in turn is detected by the temperature sensor. This is referred to as the control loop.

17.2 Loop Parameters - Main

Folder – Loop.1 to Loop.8		Sub-Folder: Main			
Name	Parameter Description	Value		Default	Access Level
AutoMan	To select Auto or Manual operation.	Auto Man	Automatic (closed loop) operation Manual (output power adjusted by the user) operation	Auto	Oper
PV	The process variable input value. This is typically wired from an analogue input.	Range	of the input source		Oper
Inhibit	Used to stop the loop controlling. If enabled the loop will stop control and the output of the loop will be set to the safe output value. On exit from inhibit the transfer will be bumpless. This may be wired to an external source	No Yes	Inhibit disabled Inhibit enabled	No	Oper
TargetSP	The value of setpoint at which the control loop is aiming. It may come from a number of different sources, such as internal SP and remote SP.	Betwe	en setpoint limits		Oper
WorkingSP	The current value of the setpoint being used by the control loop. It may come from a number of different sources, such as internal SP and Remote SP. The working setpoint is always read-only as it is derived from other sources.	Between setpoint limits			R/O
ActiveOut	The actual output of the loop before it is split into the channel 1 and channel 2 outputs.				R/O
IntHold	Stops Integral action	_		No	Oper

17.3 Loop Set up

These parameters configure the type of control.

Folder – Loop.1	to Loop.8	Sub-folder: Setup			
Name	Parameter Description	Value	Value		Access Level
Ch1 ControlType	Selects the channel 1 control algorithm. You may select different algorithms for channels 1 and 2. In temperature control applications, Ch1 is usually the heating channel, Ch2 is the cooling channel.	Off OnOff PID	Channel turned off On/off control 3 term or PID control	PID	Conf
Ch2 ControlType	Control type for channel 2				
Control Action	Control Action	Rev	Reverse acting. The output increases when the PV is below SP. This is the best setting for heating control. Direct acting. The output increases when the PV is above SP. This is the best setting for cooling control	Rev	Conf
PB Units	Proportional band units.	Eng Percent	Engineering units eg C or F Per cent of loop span (range Hi - Range Lo)	Eng	Conf

Derivative	Selects whether the derivative	PV	Only changes in PV cause changes to	PV	Conf
Type	acts only on PV changes or on Error (either PV or Setpoint changes).	Error	the derivative output. Changes to either PV or SP will cause a derivative output.		
The above two parameters do not appear if either Ch1 or Ch2 are configured for Off or OnOff control					

17.3.1 Types of Control Loop

17.3.1.1 On/Off Control

On/Off control simply turns heating power on when the PV is below setpoint and off when it is above setpoint. If cooling is used, cooling power is turned on when the PV is above setpoint and off when it is below. The outputs of such a controller will normally be connected to relays – hysteresis may be set as described in the Alarms section to prevent relay chatter or to provide a delay in the control output action.

17.3.1.2 PID Control

PID control, also referred to as 'Three Term Control', is a technique used to achieve stable straight line control at the required setpoint. The three terms are:

P = Proportional band

I = Integral time

D = Derivative time

The output from the controller is the sum of the contributions from these three terms. The combined output is a function of the magnitude and duration of the error signal, and the rate of change of the process value. It is possible to turn off integral and derivative terms and control on only proportional, proportional plus integral or proportional plus derivative.

17.4 PID Control

The PID controller consists of the following parameters:-

Parameter	Meaning or Function
Proportional Band 'PB'	The proportional term, in display units or %, delivers an output that is proportional to the size of the error signal.
Integral Time 'Ti'	Removes steady state control offsets by ramping the output up or down in proportion to the amplitude and duration of the error signal.
Derivative Time 'Td'	Determines how strongly the controller will react to the rate of change in the measured value. It is used to prevent overshoot and undershoot and to restore the PV rapidly if there is a sudden change in demand.
High Cutback 'CBH'	The number of display units, above setpoint, at which the controller will increase the output power, in order to prevent undershoot on cool down.
Low Cutback 'CBL'	The number of display units, below setpoint, at which the controller will cutback the output power, in order to prevent overshoot on heat up.
Relative Cool Gain 'R2G'	Only present if cooling has been configured. Sets the cooling proportional band, which equals the heat proportional band value divided by the cool gain value.

17.4.1 Proportional Term

The proportional term delivers an output which is proportional to the size of the error signal. An example of this is shown below, for a temperature control loop, where the proportional band is 10°C and an error of 3°C will produce an output of 30%.

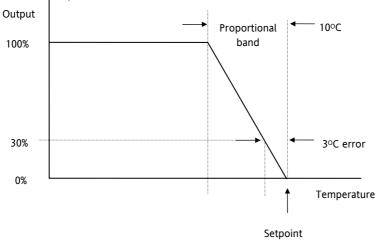


Figure 17-2: Proportional Action

Proportional only controllers will, in general, provide stable straight line control, but with an offset corresponding to the point at which the output power equals the heat loss from the system.

The proportional term may be set in engineering units, as shown in the above example, or as a percentage of the controller range. In the above example, if the inout range is 0 to 1000°C the proportional band is set to 1%.

17.4.2 Integral Term

The integral term removes steady state control offset by ramping the output up or down in proportion to the amplitude and duration of the error signal. The ramp rate (reset rate) is the integral time constant, and must be longer than the time constant of the process to avoid oscillations.

17.4.3 Derivative Term

The derivative term is proportional to the rate of change of the temperature or process value. It is used to prevent overshoot and undershoot of the setpoint by introducing an anticipatory action. The derivative term has another beneficial effect. If the process value falls rapidly, due, for example, an oven door being opened during operation, and a wide proportional band is set the response of a PI controller can be quite slow. The derivative term modifies the proportional band according to this rate of change having the effect of narrowing the proportional band. Derivative action, therefore, improves the recovery time of a process automatically when the process value changes rapidly.

Derivative can be calculated on change of PV or change of Error. For applications such as furnace control, it is common practice to select Derivative on PV to prevent thermal shock caused by a sudden change of output following a change in setpoint.

17.4.4 High and Low Cutback

While the PID parameters are optimised for steady state control at or near the setpoint, high and low cutback parameters are used to reduce overshoot and undershoot for large step changes in the process. They respectively set the number of degrees above and below setpoint at which the controller will start to increase or cutback the output power.

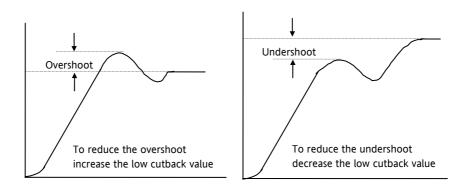


Figure 17-3: High and Low Cutback

17.4.5 Integral action and manual reset

In a full three-term controller (that is, a PID controller), the integral term automatically removes steady state errors from the setpoint. If the controller is set as a PD controller, the integral term will be set to 'OFF'. Under these conditions the measured value may not settle precisely at setpoint. The Manual Reset parameter (MR) represents the value of the power output that will be delivered when the error is zero. You must set this value manually in order to remove the steady state error.

17.4.6 Relative Cool Gain

The gain of channel 2 control output, relative to the channel 1 control output.

Relative Ch2 Gain compensates for the different quantities of energy needed to heat, as opposed to that needed to cool, a process. For example: water cooling applications might require a relative cool gain of 4 (cooling is 4 times faster than the heat-up process).

(This parameter is set automatically when Autotune is used). A nominal setting of around 4 is often used.

17.4.7 Loop Break Time

The loop is considered to be broken if the PV does not respond to a change in the output. Since the time of response will vary from process to process the Loop Break Time parameter allows a time to be set before a loop break alarm is initiated. In these circumstances the output power will drive to high or low limit. For a PID controller, if the PV has not moved by 0.5 x Pb in the loop break time the loop is considered to be in break. The loop break time is set by the Autoune, a typical value is 12 x Td. For an On/Off controller Loop Break Time is not shown and loop break alarm is inhibited.

17.4.8 Cooling Algorithm

The method of cooling may vary from application to application.

For example, an extruder barrel may be cooled by forced air (from a fan), or by circulating water or oil around a jacket. The cooling effect will be different depending on the method. The cooling algorithm may be set to linear where the controller output changes linearly with the PID demand signal, or it may be set to water, oil or fan where the output changes non-linearly against the PID demand. The algorithm provides optimum performance for these methods of cooling.

17.4.9 Gain Scheduling

Gain scheduling is the automatic transfer of control between one set of PID values and another. It may be used in very non-linear systems where the control process exhibits large changes in response time or sensitivity, see diagram below. This may occur, for example, over a wide range of PV, or between heating and cooling where the rates of response may be significantly different. The number of sets depends on the non-linearity of the system. Each PID set is chosen to operate over a limited (approximately linear) range.

In the Mini8 controller, this is done at a preset strategy defined by the parameter 'Scheduler Type'. The choices are:

No.	Туре	Description
0	Off	Just one fixed set of PID values
1	Set	The PID set can be selected manually or from a digital input
2	SP	The transfer between one set and the next depends on the value of the SP
3	PV	The transfer between one set and the next depends on the value of the PV
4	Error	The transfer between one set and the next depends on the value of the error
5	OP	The transfer between one set and the next depends on the value of the OP demand
6	Rem Sched IP	The transfer between one set and the next depends on the value from a remote source for example, a digital input

The Mini8 controller has three sets of PID values for each loop – the maximum number, which you may wish to use, is set by 'Num Sets' parameter.

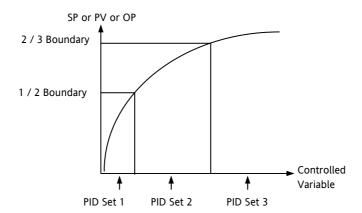


Figure 17-4: Gain Scheduling in a Non-Linear System

17.4.10 PID Parameters

Control loops must be specifically ordered – Order Code MINI8 - LP8. To enable a loop place one of the Loop function blocks on the graphical wiring page.

Folder – Loop		Sub-folders: Loop1.PID to Loop8.PID				
Name	Parameter Description	Value		Default	Access Level	
SchedulerType	To choose the type of gain scheduling	Off Set SP PV Error OP Rem	See above for explanation Parameters displayed will vary depending on type of scheduling selected.	Off	Oper	
Num Sets	Selects the number of PID sets to present. Allows the lists to be reduced if the process does not require the full range of PID sets.	1 to 3		1	Oper	
Active Set	Currently working set	Set1 Set2 Set3		Set1	R/O except type 'Set'	
Boundary 1-2	Sets the level at which PID set 1 changes to PID set 2	Range unit	S	0	Oper	
Boundary 3-4	Sets the level at which PID set 2 changes to PID set 3	Range unit	S	0	Oper	
ProportionalBand 1, 2, 3	Proportional band Set1/Set2/Set3	0 to 99999 Eng units		300	Oper	
IntegralTime 1, 2, 3	Integral term Set1/Set2/Set3			360s	Oper	
DerivativeTime 1, 2, 3	Derivative term Set1/Set2/Set3			60s	Oper	
RelCh2Gain 1, 2, 3	Relative cool gain Set1/Set2/Set3			1	Oper	
CutbackHigh 1, 2, 3	Cutback high Set1/Set2/Set3			Auto	Oper	
CutbackLow 1, 2, 3	Cutback low Set1/Set2/Set3			Auto	Oper	
ManualReset 1, 2, 3	Manual reset Set1/Set2/Set3. This must be set to 0.0 when the integral term is set to a value			0.0	Oper	
LoopBreakTime 1, 2, 3	Loop break time Set1/Set2/Set3			100	Oper	
OutputHi 1, 2, 3	Output High Limit Set1/Set2/Set3			100	Oper	
OutputLo 1, 2, 3	Output Low Limit Set1/Set2/Set3			-100		

17.5 Tuning

In tuning, you match the characteristics (PID parameters) of the controller to those of the process being controlled in order to obtain good control. Good control means:

Stable, 'straight-line' control of the PV at setpoint without fluctuation

No overshoot, or undershoot, of the PV setpoint

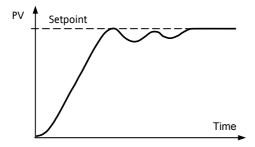
Quick response to deviations from the setpoint caused by external disturbances, thereby rapidly restoring the PV to the setpoint value.

Tuning involves calculating and setting the value of the parameters listed in the above table.

17.5.1 Automatic Tuning

This controller uses a one-shot tuner that automatically sets up the initial values of the parameters listed in the table on the previous page.

17.5.2 One-shot Tuning


The 'one-shot' tuner works by switching the output on and off to induce an oscillation in the measured value. From the amplitude and period of the oscillation, it calculates the tuning parameter values.

If the process cannot tolerate full heating or cooling being applied, then the levels can be restricted by setting the high power limit ('Output Hi') and low power limit ('Output Lo'). However, the measured value *must* oscillate to some degree for the tuner to be able to calculate values.

A One-shot Tune can be performed at any time, but normally it is performed only once during the initial commissioning of the process. However, if the process under control subsequently becomes unstable (because its characteristics have changed), you can re-tune again for the new conditions.

It is best to start tuning with the process at ambient conditions and with the SP close to the normal operating level. This allows the tuner to calculate more accurately the low cutback and high cutback values which restrict the amount of overshoot, or undershoot.

Typical automatic tuning cycle

Autotune starts 1 minute after being turned on to determine steady state conditions.

Tuning normally takes place at a PV which has a value of setpoint x 0.7.

The power is automatically turned on and off to cause oscillations. From the results the values shown in the table are calculated

17.5.3 Calculation of the cutback values

Low cutback and High cutback are values that restrict the amount of overshoot, or undershoot, that occurs during large step changes in PV (for example, under start-up conditions).

If either low cutback, or high cutback, is set to 'Auto' the values are fixed at three times the proportional band, and are not changed during automatic tuning.

To tune the cutback values, first set them to values other than Auto, then perform a tune as usual.

17.5.4 Manual Tuning

If for any reason automatic tuning gives unsatisfactory results, you can tune the controller manually. There are a number of standard methods for manual tuning. The one described here is the Ziegler-Nichols method.

With the process at its normal running conditions:

Set the Integral Time and the Derivative Time to OFF.

Set High Cutback and Low Cutback to 'Auto'.

Ignore the fact that the PV may not settle precisely at the setpoint.

If the PV is stable, reduce the proportional band so that the PV just starts to oscillate. If PV is already oscillating, increase the proportional band until it just stops oscillating. Allow enough time between each adjustment for the loop to stabilise. Make a note of the proportional band value 'PB' and the period of oscillation 'T'.

Set the proportional band, integral time and derivative time parameter values according to the calculations given in the table below:-

Type of control	Proportional band (PB)	Integral time (Ti) seconds	Derivative time (Td) seconds
Proportional only	2xPB	OFF	OFF
P + I control	2.2xPB	0.8xT	OFF
P + I + D control	1.7xPB	0.5xT	0.12xT

17.5.5 Setting the Cutback Values

The above procedure sets up the parameters for optimum steady state control. If unacceptable levels of overshoot or undershoot occur during start-up, or for large step changes in PV, then manually set the cutback parameters.

Proceed as follows:

Set the low and high cutback values to three proportional bandwidths (that is to say, 'CBH'= 'CBL' = $3 \times PB$).

Note the level of overshoot, or undershoot, that occurs for large PV changes (see the diagrams below).

In example (a) increase Low Cutback by the undershoot value. In example (b) reduce Low Cutback by the overshoot value.

Where the PV approaches setpoint from above, you can set High Cutback in a similar manner.

17.5.6 Multi-zone applications.

The tuning of one loop can be unduly influenced by the controlling effect of adjacent zone(s). Ideally the zone either side of the one being tuned should be turned OFF, or put in manual with the power level set to keep its temperature at about the usual operating level.

17.5.7 Tune Parameters

Folder – Loop	.Loop.1 to Loop.8	Sub-folder: Tune				
Name	Parameter Description	Value	Value		Access Level	
AutoTune	To start self tuning	Off On	Stop Start	Stop	Oper	
OutputHigh Limit	Set this to limit the maximum output power level which the controller will supply during the tuning process.	Between Low Output and 100.0		!00.0	Oper	
	If the high output power limit set in the output list is lower the autotune high limit will be clipped to this value.					
OutputLow Limit	Set this to limit the minimum % output power level which the controller will supply during the tuning process.	Between High Output and 0.0		0.0	Oper	
	If the low output power limit set in the output list is higher the autotune low limit will be clipped to this value.					
State	Shows if self tuning is in progress	OFF			R/O	
Stage	Shows the progress of the self tuning	Reset			R/O	
Stage Time	Time in the particular stage				R/O	

17.6 Setpoint Function Block

For each of the 8 loops, the controller setpoint is the **Working Setpoint** that may come from a number of alternative sources. This is the value ultimately used to control the process variable in each loop.

The working setpoint may be derived from:-

- 1. SP1 or SP2, both of which are individually set, can be selected by an external signal or via the SPSelect parameter over communications.
- 2. From an external (remote) analogue source
- 3. The output of a programmer function block and will, therefore, vary in accordance with the program in use.

The setpoint function block also provides the facility to limit the rate of change of the setpoint before it is applied to the control algorithm. It will also provide upper and lower limits. These are defined as setpoint limits for the local setpoints and instrument range high and low for other setpoint sources. All setpoints are ultimately subject to a limit of range hi and range lo.

User configurable methods for tracking are available, such that the transfer between setpoints and between operational modes will not cause a bump in the setpoint.

17.6.1 Setpoint Function Block

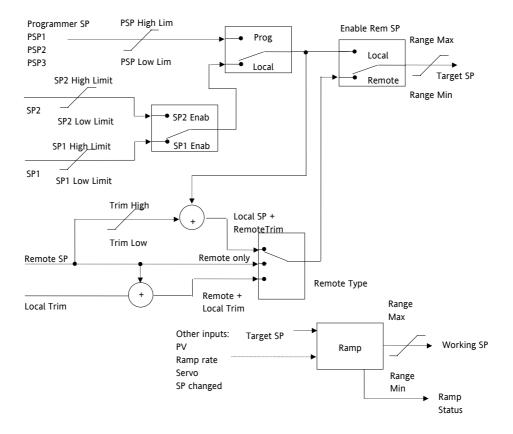


Figure 17-5: Setpoint Function Block

17.6.2 SP Tracking

When setpoint tracking is enabled and the local setpoint is selected, the local setpoint is copied to 'TrackSP'. Tracking now ensures that the alternate SP follows or tracks this value. When the alternate setpoint is selected it initially takes on the tracked value thus ensuring that no bump takes place. The new setpoint is then adopted gradually. A similar action takes place when returning to the local setpoint.

17.6.3 Manual Tracking

When the controller is operating in manual mode the currently selected SP tracks the PV. When the controller resumes automatic control there will be no step change in the resolved SP.

17.6.4 Rate Limit

Rate limit will control the rate of change of setpoint. It is enabled by the 'Rate' parameter. If this is set to Off then any change made to the setpoint will be effective immediately. If it is set to a value then any change in the setpoint will be effected at the value set in units per minute. Rate limit also acts on SP2 and when switching between SP1 and SP2.

When rate limit is active the 'RateDone' parameter will display 'No'. When the setpoint has been reached this parameter will change to 'Yes'.

When 'Rate' is set to a value (other than Off) an additional parameter 'SPRate Disable' is displayed which allows the setpoint rate limit to be turned off and on without the need to adjust the 'Rate' parameter between Off and a value.

17.6.5 Setpoint Parameters

Folder – Loop.1	to Loop.8	Sub-folder: SP			
Name	Parameter Description	Value		Default	Access Level
Range High	The Range limits provide a set of absolute	Full range of the input type			Conf
Range Low	maximums and minimums for setpoints within the control loop.				Conf
	Any derived setpoints are ultimately clipped to be within the Range limits.				
	If the Proportional Band is configured as % of Span, the span is derived from the Range limits.				
SP Select	Select local or alternate setpoint	SP1 Setpoint 1		SP1	Oper
		SP2	Setpoint 2		
SP1	Primary setpoint for the controller	Between	SP high and SP low limits		Oper
SP2	Setpoint 2 is the secondary setpoint of the controller. It is often used as a standby setpoint.				Oper
SP HighLimit	Maximum limit allowed for the local setpoints	Between	Range Hi and Range Lo		Oper
SP LowLimit	Minimum limit allowed for the local setpoints				Oper
Alt SP Select	To enable the alternative setpoint to be	No	Alternative setpoint disabled		Oper
	used. This may be wired to a source such as the programmer Run input.	Yes	Alternative setpoint enabled		
Alt SP	This may be wired to an alternative source such as the programmer or remote setpoint				Oper

Folder – Loop.1 to Loop.8		Sub-folder: SP			
Name	Parameter Description	Value	Value		Access Level
Rate	Limits the maximum rate at which the working setpoint can change.	Off or 0 per min	.1 to 9999.9 engineering units ute	Off	Oper
	The rate limit may be used to protect the load from thermal shock which may be caused by large step changes in setpoint.				
RateDone	Flag which indicates when the setpoint is changing or completed	No Yes	Setpoint changing Complete		R/O
Rate Disable	Setpoint rate disable	No Yes	Enabled Disabled		Oper
SP Trim	Trim is an offset added to the setpoint. The trim may be either positive or negative, the range of the trim may be restricted by the trim limits	Betweer	o SP Trim Hi and SP Trim Lo		Oper
	Setpoint trims may be used in a retransmission system. A master zone may retransmit the setpoint to the other zones, a local trim may be applied to each zone to produce a profile along the length of the machine				
SPTrim HighLimit	Setpoint trim high limit				Oper
SPTrim LowLimit	Setpoint trim low limit				Oper
ManualTrack	To enable manual tracking. When the loop is switched from Manual to Auto, the Setpoint is set to the current PV. This is useful if the load is started in Manual Mode, then later switched to Auto to maintain the operating point.	Off On	Manual tracking disabled Manual tracking enabled		R/O
SP Track	Setpoint tracking ensures bumpless transfer in setpoint when switching between a local and an alternate setpoint such as the programmer.	Off On	Setpoint tracking disabled Setpoint tracking enabled		Conf
	This enables the tracking interface provided by TrackPV and TrackVal, which is used by the programmer and other setpoint providers external to the control loop				
Track PV	The programmer tracks the PV when it is servoing or tracking.				R/O
Track SP	Manual Tracking Value. The SP to track for manual tracking.				R/O

17.7 Output Function Block

The output function block allows you to set up output conditions from the control block, such as output limits, hysteresis, output feedforward, behaviour in sensor break, etc.

Folder – Loop.1	to Loop.8	Sub-folder: OP				
Name	Parameter Description	Value		Default	Access Level	
Output High Limit	Maximum output power delivered by channels 1 and 2. By reducing the high power limit, it is possible to reduce the rate of change of the process, however, care should be taken as reducing the power limit will reduce the controllers ability to react to disturbance.	Between Output Lo and 100.0%		100.0	Oper	
Output Low Limit	Minimum (or maximum negative) output power delivered by channels 1 and 2	Between	Output Hi and -100.0%	-100.0		
Ch1 Out	Channel 1 (Heat) output. The Ch1 output is the positive power values (0 to Output Hi) used by the heat output. Typically this is wired to the control output (time proportioning or DC output).	Between	output Hi and Output Lo		R/O	
Ch2 Out	The Ch2 output is negative portion of the control output (0 – Output Lo) for heat/cool applications. It is inverted to be a positive number so that it can be wired into one of the outputs (time proportioning or DC outputs).	Between output Hi and Output Lo			R/O	
Ch2 DeadBand	Ch1/Ch2 Deadband is a gap in percent between output 1 going off and output 2 coming on and vice versa. For on/off control this is taken as a percentage of the hysteresis.	Off to 100.0%		Off	Oper	
Rate	Limits the rate at which the output from the PID can change in % change per second. Output rate limit is useful in preventing rapid changes in output from damaging the process or the heater elements.	Off to 99 minute	99.9 engineering units per	Off	Oper	
Rate Disable	Output rate disable	No	Enabled		Oper	
		Yes	Disabled			
Ch1 OnOff Hysteresis	Channel hysteresis only shown when channel 1 is configured as OnOff.	0.0 to 20	0.0	10.0	Oper	
Ch2 OnOff Hysteresis	Hysteresis sets the difference between output on and output off to prevent (relay) chatter.	0.0 to 20	0.0	10.0	Oper	
SensorBreak Mode	Defines the action taken if the Process Variable is bad, i.e. the sensor has failed. This can be configured as hold, in which case the output of the loop is held at its last good value. Alternately the output can switch to a safe output power defined at configuration.	Safe Hold	To select the level set by 'Safe OP' To hold the current output level at the point when sensor break occurs	Safe	Oper	
Safe OP Val	Sets the output level to be adopted when loop is inhibited	Between	output Hi and Output Lo	0	Oper	
SbrkOp	Sets the output level to be adopted when in sensor break condition.	Between	output Hi and Output Lo	0	Oper	

Folder – Loop.1	to Loop.8	Sub-folder: OP			
Name	Parameter Description	Value		Default	Access Level
Manual Mode	Selects the mode of manual operation.	Track Step	In auto the manual output tracks the control output such that a change to manual mode will not result in a bump in the output. on transition to manual the output will be the manual op value as last set by the operator.		Oper
ManualOutVal	The output when the loop is in manual. Note: In manual mode the controller will still limit the maximum power to the power limits, however, it could be dangerous if the instrument is left unattended at a high power setting. It is important that the over range alarms are configured to protect your process. We recommend that all processes are fitted with an independent over range "policeman"	Between output Hi and Output Lo			R/O
Cool Type	Selects the type of cooling channel characterisation to be used. Can be configured as water, oil or fan cooling.	Linear Oil Water Fan	These are set to match the type of cooling medium applicable to the process		Conf
FeedForward Type	Feedforward type The following four parameters appear if FF Type ≠ None	None Remote	No signal fed forward A remote signal fed forward Setpoint fed forward	None	Conf
FeedForward Gain	Defines the gain of the feedforward value, the feed forward value is multiplied by the	PV	PV fed forward		Conf
FeedForward Offset	gain Defines the offset of the feedforward value this is added to the scaled feedforward.				Oper
FeedForward Trim Limit	Feedforward trim limits the effect of the PID output. Defines symmetrical limits around the PID output, such that this value is applied to the feedforward signal as a trim.				Oper
FF_Rem	Remote Feedforward signal. Allows an another signal to be used as Feedforward.	This is not Gain or O	affected by FeedForward		R/O
FeedForward Val	The calculated Feedforward Value.				R/O
TrackOutVal	Value for the loop output to track when OP Track is Enabled.				
Track Enable	When enabled, the output of the loop will follow the track output value. The loop will bumplessly return to control when tracking is turned off.	Off On	Disabled Enabled		Oper
RemOPL	Remote output low limit. Can be used to limit the output of the loop from a remote source or calculation. This must always be within the main limits.	-100.0 to 100.0			Oper
RemOPH	Remote output high limit	-100.0 to	100.0		Oper

17.7.1 Effect of Control Action, Hysteresis and Deadband

For temperature control 'Loop.1.Control Action' will be set to 'Reverse'. For a PID controller this means that the heater power decreases as the PV increases. For an on/off controller output 1 (usually heat) will be on (100%) when PV is below the setpoint and output 2 (usually cool) will be on when PV is above the setpoint

Hysteresis applies to on/off control only. It defines the difference in temperature between the output switching off and switching back on again. The examples below shows the effect in a heat/cool controller.

Deadband (**Ch2 DeadB**) can operate on both on/off control or PID control where it has the effect of widening the period when no heating or cooling is applied. However, in PID control its effect is modified by both the integral and derivative terms. Deadband might be used in PID control, for example, where actuators take time to complete their cycle thus ensuring that heating and cooling are not being applied at the same time. Deadband is likely to be used, therefore, in on/off control only. The second example below adds a deadband of 20 to the above example.

18. SETPOINT PROGRAMMER

In a setpoint programmer you can set up a profile in the controller in which the setpoint varies in a predetermined way over a period of time. Temperature is a very common application where it is required to 'ramp' the process value from one level to another over a set period of time.

The **Program** is divided into a flexible number of **Segments** - each being a single time duration. The total number of segments available is **200** or **50 per program** and it is possible to store up to **50 separate programs**.

It is often necessary to switch external devices at particular times during the program. Up to eight digital 'event' outputs can be programmed to operate during those segments.

An example of a program and two event outputs is shown below.

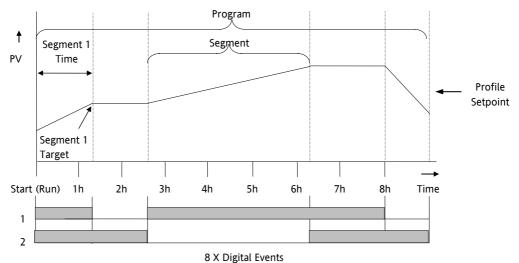


Figure 18-1: A Setpoint Program

Each individual segment can be configured as **Time-to-Target** or **Ramp-Rate**. A program with all segments configured as Time-to-Target is shown below.

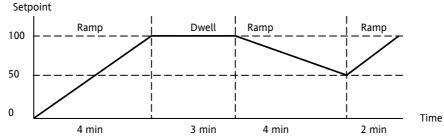


Figure 18-2: Time to Target Programmer

A ramp rate programmer specifies ithe ramp segments as maximum setpoint changes per time unit. The diagram below demonstrates a ramp rate programmer.

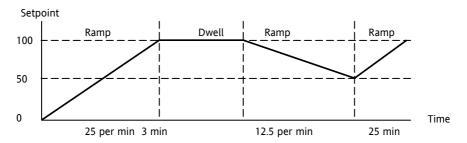


Figure 18-3: Ramp Rate Programmer

18.1 Programmer Operating States

18.1.1 Reset

In reset the programmer is inactive and the controller behaves as a standard controller. It will:-

- 1. Continue to control with the setpoint determined by the next available source, SP1, SP2, Alternative Setpoint.
- 2. Allow edits to all segments
- 3. Return all controlled outputs to the configured reset state.

18.1.2 Run

In run the programmer working setpoint varies in accordance with the profile set in the active program. A program will always run – non configured programs will default to a single Dwell end segment.

18.1.3 Hold

A programmer may only be placed in Hold from the Run or Holdback state. In hold the setpoint is frozen at the current programmer setpoint and the time remaining parameter frozen at its last value. In this state you can make temporary changes to program parameters such as a target setpoint, ramp rates and times. These changes will only remain effective until the end of the currently running segment, when they will be overwritten by the stored program values.

18.1.4 Program Cycles

If the Program Cycles parameter is chosen as greater than 1, the program will execute all its segments (including calls to other programs) then repeat from the beginning. The number of cycles is determined by the parameter value. The Program Cycles parameter has a range of 0 to 999 where 0 is enumerated to CONTinuous.

18.1.5 Servo

Servo can be set in configuration so that when a program is run the setpoint can start from the initial controller setpoint or from the current process value. Whichever it is, the starting point is called the servo point. This can be set in the program.

Servo to PV will produce a smooth and bumpless start to the process.

Servo to SP may be used in a Ramp Rate programmer to guarantee the time period of the first segment. (Note: in a Time to Target programmer the segment duration will always be determined by the setting of the Segment Duration parameter.)

18.1.6 Skip Segment

Moves immediately to the next segment and starts the segment from the current setpoint value.

18.1.7 Advance Segment

Sets the program setpoint equal to the target setpoint and moves to the next segment.

18.1.8 Fast x10 mode

Executes the program at 10x the normal speed. It is provided so that programs can be tested **but the process should not be run in this state**.

18.1.9 Sensor break recovery

On sensor break, the program state changed to HOLD if the current state is RUN or HOLDBACK. Sensor break is defined as status bad on the PV Input parameter. If the program state is in HOLD when PV input status returns to OK, the program state is automatically set back to RUN.

18.1.10 Holdback (Guaranteed Soak)

Holdback freezes the program if the process value (PV) does not track the setpoint (SP) by more than a user defined amount. The instrument will remain in HOLDBACK until the PV returns to within the requested deviation from setpoint.

In a **Ramp** it indicates that the PV is lagging the SP by more than the set amount and that the program is waiting for the process to catch up.

In a **Dwell** it freezes the dwell time if the difference between the SP and PV exceeds the set limits.

In both cases it guarantees the correct soak period for the product.

Each program can be configured with a holdback value. Each segment determines the holdback function.

Holdback will cause the execution time of the program to extend, if the process cannot match the demanded profile.

Holdback state will not change the user's access to the parameters. The parameters will behave as if in the RUN state.

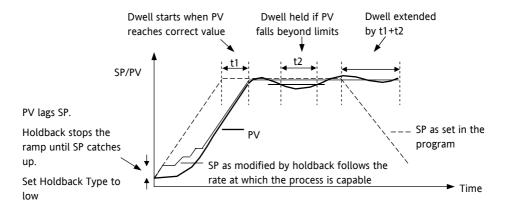


Figure 18-4: Effect of Holdback to Produce Guaranteed Soak

The above diagram demonstrates that the demanded setpoint (SP) will only change at the rate specified by the program when the PV's deviation is less than the holdback value. When the Deviation between the setpoint and PV is greater than the holdback value (Holdback Val) the setpoint ramp will pause until the deviation returns to within the band.

The next segment will not start until the deviation between Setpoint and PV is less than the holdback value.

Four types of Holdback are available:-

None Holdback is disabled for this segment.

High Holdback is entered when the PV is greater than the Setpoint **plus** Holdback Val.

Low Holdback is entered when the PV is lower than the Setpoint **minus** Holdback Val.

Band Holdback is entered when the PV is **either** greater than the Setpoint **plus** Holdback Val **or** lower than the Setpoint **minus** Holdback Val

18.1.11 Segment Types

A segment may be set as:-

Ramp	A Ramp segment provides a controlled change of setpoint from an original to a target setpoint. The duration of the ramp is determined by the rate of change specified. Two styles of ramp are possible in the range, Ramp-Rate or Time-To-Target. The ramp is specified by the target setpoint and the desired ramp rate. The ramp rate parameter is
	presented in engineering units (°C, °F, Eng.) per real time units (Seconds, Minutes or Hours). If the units are changed, all ramp rate are re-calculated to the new units and clipped if necessary.
Dwell	The setpoint remains constant for a specified period at the specified target. The operating setpoint of a dwell is inherited from the previous segment.
Step	The setpoint changes instantaneously from its current value to a new value at the beginning of a segment. A Step segment has a minimum duration of 1 second.
Call	A CALL segment may only be selected in instruments offering multiple programs.
	The segment allows programs to be nested within each other.
	To prevent re-entrant programs from being specified, only higher number programs may be called from a lower program.
	i.e. program 1 may call programs 2 through 50, but program 49 may only call program 50.
	When a CALL segment is selected the operator may specify how many cycles the called program will execute. The number of cycles is specified in the calling program. If a called program has a number of cycles specified locally, they will be ignored.
	A CALL segment will not have a duration, a CALL segment will immediately transfer execution to the called program and execute its first segment.
	Called programs do not require any modification, the calling program treats any END segments as return instructions.
	The example shows Prog 50
	(Ramp/Dwell/Ramp) inserted in Prog1 → Prog50 → Prog1
	Prog 50 can be made to repeat
	using the 'Cycles' parameter. Prog50 Seg1 Seg2 Seg5
	Prog1 Seg1 Seg2 Seg3 Seg4 Seg5
End	A program may contain one End segment. This allows the program to be truncated to the number of segments required.
	The end segment can be configured to have an indefinite dwell or to reset the program. This is selectable by the user.
	If a number of program cycles are specified for the program, then the End segment is not executed until the last cycle has completed.

18.1.12 Power Fail Recovery

In the event of power fail to the controller, a strategy may be set in configuration level, which defines how the controller behaves on restoration of the power. These strategies include:

Continue The program setpoint returns immediately to its last value prior to the power down. This

may cause full power to be applied to the process for a short period to heat the process

back to its value prior to the power failure.

Ramp back This will servo the program setpoint to the measured value (the PV Input parameter

value), then return to the target setpoint at the current (or previous) ramp rate. The setpoint is not allowed to step change the program setpoint. The outputs will take the

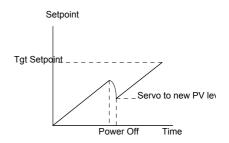
state of the segment which was active before power was interrupted.

Reset The process is aborted by resetting the program. All event outputs will take the reset

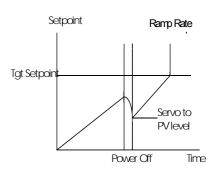
state.

18.1.12.1 Ramp back (Power fail during Dwell segments.)

If the interrupted segment was a Dwell, then the ramp rate will be determined by the previous ramp segment.


On achieving the Dwell setpoint, the dwell will continue from the point at which the power was interrupted.

Note: If a previous ramp segment does not exist, i.e. the first segment of a program is a dwell, then the Dwell will continue at the "servo to PV" setpoint.


18.1.12.2 Ramp back (power fail during Ramp segments)

If the interrupted segment was a ramp, then the programmer will servo the program setpoint to the PV, then ramp towards the target setpoint at the previous ramp rate. Previous ramp rate is the ramp rate at power fail.

18.1.12.3 Ramp back (power fail during Time-to-target segments)

If the programmer was defined as a Time-to-Target programmer then when the power is returned the previous ramp rate will be recovered. The Time remaining will be recalculated. The rule is to maintain RAMP RATE, but alter TIME REMAINING.

18.1.13 Sync mode

This mode will allow two or more programmers to by synchronised together. This means that the start of each segment (excluding the first) will begin at the same time. Two or more instruments may be synchronised by wiring the "end of segment" and "sync input" parameters between units. (see diagram below).

Set "SyncMode" to Yes

Wire instruments as follows:-

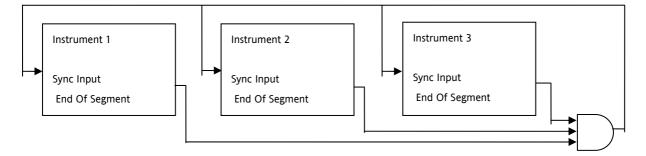


Figure 18-5: Synchronisation of three controllers

At the end of a segment, the program will be put into a temporary hold state (program status will continue to show that the program is running) and the End_of_Segment parameter will be true. Once all segments have completed, the SyncInput goes high and the next segment is started.

If the "SyncMode" is disabled, the "End_of_Segment" parameter is guaranteed to be true for 1 tick at the end of every segment.

18.2 Configuring the Programmer

Programmer.1.Setup contains the general configuration settings for the Programmer Block. Programs are created and stored in the **Program** Folder. Once a Program exists it can be run using the parameters in the **Programmer.1.Run** folder..

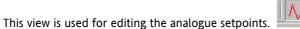
Folder – Progra	mmer.1	Sub-folder: Setup			
Name	Parameter Description	Value		Default	Access Level
Units	Units of the Output			None	Conf
Resolution	Programmer Output resolution	X to X.XXX	X		Conf
PVIn	The programmer uses the PV input for a number of functions In holdback, the PV is monitored against the setpoint, and if a deviation occurs the program is paused. The programmer can be configured to start its profile from the current PV value (servo to PV). The programmer monitors the PV value for Sensor Break. The programmer holds in sensor break.	The PV Input is normally wired from the loop TrackPV parameter. Note: This input is automatically wired when the programmer and loop are enabled and there are no existing wires to track interface parameters. Track interface parameters are Programmer.Setup, PVInput, SPInput, Loop.SP, AltSP, Loop.SP, AltSPSelect. SP Input is normally wired from the loop Track SP parameter as the PV input.			Conf
SPIn	The programmer needs to know the working setpoint of the loop it is trying to control. The SP input is used in the servo to setpoint start type.				Conf
Servo	The transfer of program setpoint to PV Input (normally the Loop PV) or the SP Input (normally the Loop setpoint).	PV SP	See also section 18.1.5.		Conf
PowerFailAct	Power fail recovery strategy	Ramp Reset Cont	See section 18.1.12.		Conf
SyncIn	The synchronise input is a way of synchronising programs. At the end of a segment the programmer will inspect the sync. input, if it is True (1) then the programmer will advance to the next segment. It is typically wired from the end of segment output of another programmer. Only appears if 'SyncMode' = 'Yes'	0	This will normally be wired to the 'End of Seg' parameter as shown in section 18.1.13.		Oper
Max Events	To set the maximum number of output events required for the program. This is for convenience to avoid having to scroll through unwanted events when setting up each segment	1 to 8			Conf
SyncMode	Allows multiple controllers to be synchronised at the end of each segment	No Yes	Sync output disabled Sync output enabled		Conf
Prog Reset	Flag showing reset state	No/Yes	Can be wired to logic		Oper
Prog Run	Flag showing run state	No/Yes	inputs to provide remote program		Oper
Prog Hold	Flag showing hold state	No/Yes	control		Oper
AdvSeg	Set output to target setpoint and advance to next segment	No/Yes			Oper
SkipSeg	Skip to the next setpoint and start the segment at the current output value.	No/Yes			Oper
EventOut1 to 8	Flags showing event states	No/Yes			R/O
End of Seg	Flag showing end of segment state	No/Yes			R/O

18.3 To Select, Run, Hold or Reset a Program

The 'Run' folder allows an existing program to be selected and run. The folder also shows the current program status

Folder – Progra	ammer.1	Sub-folder: Run	Sub-folder: Run		
Name	Parameter Description	Value	Default	Access Level	
CurProg	Current Program Number	0 to 50. Change only when Programmer is in Reset.	0	Oper R/O	
CurrSeg	Current Running Segment	1 to 255	1	R/O	
ProgStatus	Program Status	Reset –		Oper	
		Run –			
		Hold —			
		Holdback –			
		End –			
PSP	Programmer Setpoint		0	R/O	
CyclesLeft	Number of Cycles Remaining	0 to 1000	0	R/O	
CurSegType	Current Segment type	End	End	R/O	
		Rate			
		Time			
		Dwell			
		Step			
		Call			
SegTimeLeft	Segment Time Remaining	Hr Min Sec Millisec	0	R/O	
ResetEventOP	Reset Event Outputs	0 to 255, each bit resets its corresponding output	0	Oper	
SegTarget	Current Target Setpoint Value			R/O	
SegRate	Segment Ramp Rate	0.1 to 9999.9	0	R/O	
ProgTimeLeft	Program Time Remaining	Hrs Min Sec Millisec	0	R/O	
FastRun	Fast Run	No (0) Normal	No	Conf	
		Yes (1) Program executes at 10 times real time			
EndOutput	End Output	Off (0) Program not in End	Off	R/O	
		On (1) Program at End			
EventsOut	Event Outputs	0 to 255, each bit represents an output.	0	R/O	

18.4 Creating a Program


A folder exists for each Program containing a few key parameters listed below. This folder would normally be viewed via the iTools Program Editor under the Program Parameters tab. The Program Editor is used to create the segments of Program itself using the Segment Editor tab.

Folder – Program		Sub-folder: 1 to 50			
Name	Parameter Description	Value		Default	Access Level
Name	Program Name	Up to 8 characters		Null	Oper
Holdback Value	Deviation between SP and PV at which holdback is applied. This value applies to the whole program.	Minimum setting 0		0	Oper
Ramp Units	Time units applied to the segments	Sec	Seconds	sec	Oper
		Min	Minutes		
		Hour	Hours		
Cycles	Number of times the whole program repeats	Cont (0)	Repeats continuously	1	Oper
		1 to 999	Program executes once to 999 times		

18.5 Program Editor

The Program Editor in iTools provides the method of entering and editing programs directly in the controller. Setpoint programs can be created graphically, stored and downloaded into the controller. From the iTools menu select 'Program Editor OR Press Programmer to create/edit a Program.

18.5.1 Analog View

- 2. Double click Program Name and enter a name for the program "Example"
- 3. Right click in the blank area and choose 'Add Segment'

Segment Type	Description	Parameters	Values
End	Ends Program	Reset	Reset – returns to Loop setpoint
			Dwell – remains at final setpoint
Rate	Ramp at a rate	Target SP	SP range
		Ramp rate	0.1 – 9999.9
Time	Ramp to a target over	Target SP	SP range
	an interval	Duration	hh:mm:ss
Dwell	Soak at a fixed SP	Duration	hh:mm:ss
Call	Call another Program	Program Number	1 to 50
		No. of cycles	1 to 999

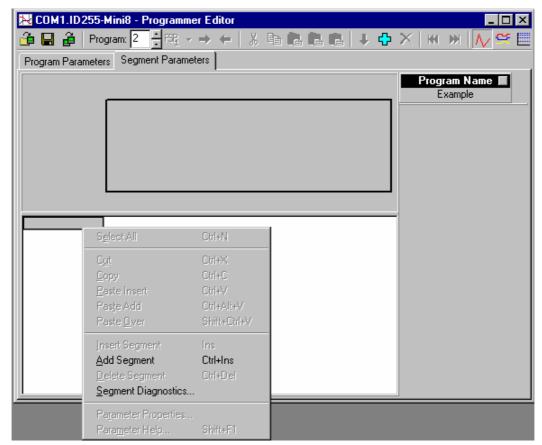


Figure 18-6: Blank Programmer editor - Right Click to add segment

- 4. Use the drop down to select segment type. Each segment type has the necessary parameters to suit.
- 5. Right click to insert more segments. End with an 'End' segment.

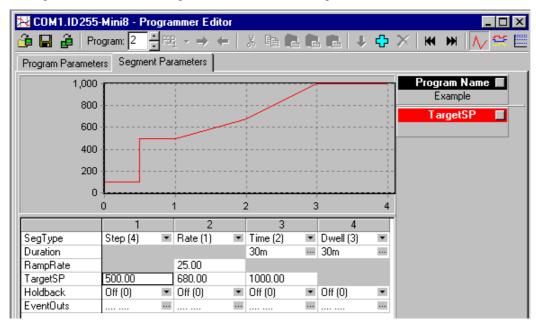
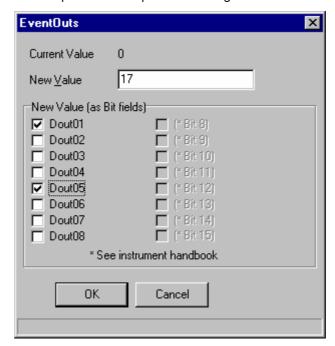



Figure 18-7: Spreadsheet Editor with 4 different segment types

The dots in EventsOut show which outputs are on in each segment.

6. Click on 'EventsOuts' to set up the event outputs for each segment.

18.5.2 Digital View

Alternatively click the icon and the Digital Editor is shown (or hit Cntrl D)

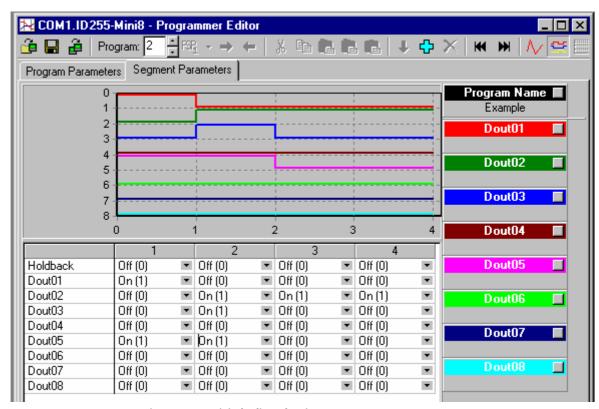


Figure 18-8: Digital Editor showing event outputs

7. Once the program is complete it may be saved to file, or loaded to an instrument.

If you are online to an instrument the program is already 'loaded'. The only option is to save it to file. This example would be saved as 'Example.uip'

If you are working offline a program can be loaded from or saved to disk. If there are instruments connected the program can be sent to them one by one.

18.5.3 Printing a Program

if you select all segments, Cntrl N (or right click 'Select All') and copy spreadsheet cells they are put on the clipboard as tab separated values which can be pasted into Microsoft Excel.

There is no direct printing support in the Programmer Editor, but you can generate a report using Microsoft Excel as follows:

- Right click on the graph and choose 'Copy Chart'.
- Open a new spreadsheet in Excel and paste the chart, position to taste.
- Go back to the Programmer Editor and Choose 'Edit| Select All' followed by 'Edit| Copy'.
- Switch to Excel, choose the top left cell for the segment data and then choose 'Edit| Paste'.
- Optionally delete any columns that have no settings and format the cells.
- Print the spreadsheet.

The program is listed down rather than across the page so long programs can be printed.

18.6 Wiring the Programmer Function Block.

The Programmer block is invariably used with the Loop blocks. When a programmer block is placed on the graphical wiring editor it will **automatically** make the essential connections between itself and the Loop1 block.

These connections ensure that the program setpoint goes to the loop and that 'servo' and other program options work correctly.

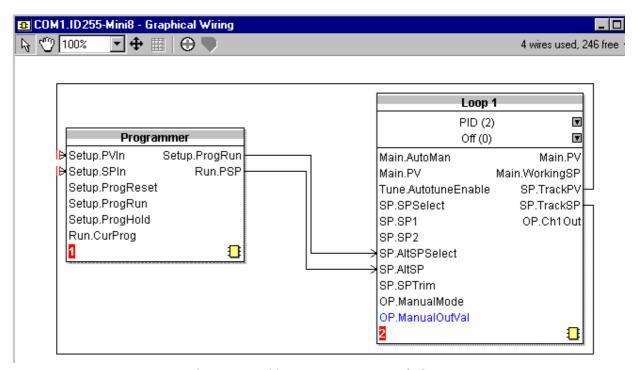
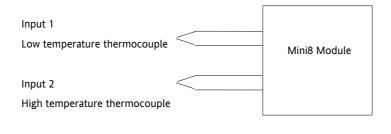



Figure 18-9: Wiring Programmer to Loop Block

19. CHAPTER 19 SWITCH OVER

This facility is commonly used in temperature applications which operate over a wide temperature range. A thermocouple may be used to control at lower temperatures and a pyrometer then controls at very high temperatures. Alternatively two thermocouples of different types may be used.

The diagram below shows a process heating over time with boundaries which define the switching points between the two devices. The higher boundary (2 to 3) is normally set towards the top end of the thermocouple range and this is determined by the 'Switch Hi' parameter. The lower boundary (1 to 2) is set towards the lower end of the pyrometer (or second thermocouple) range using the parameter 'Switch Lo'. The controller calculates a smooth transition between the two devices.

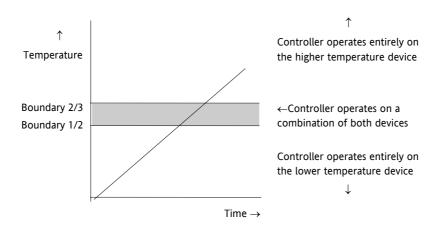


Figure 19-1: Thermocouple to Pyrometer Switching

19.1.1 Example: To Set the Switch Over Levels

Set Access to configuration level

- 1. Open the 'SwOver' Folder
- 2. Set 'Switch Hi' to a value which is suitable for the pyrometer (or high temperature thermocouple) to take over the control of the process
- 3. Set 'Switch Lo' to a value which is suitable for the low temperature thermocouple to control the process

19.1.2 Switch Over Parameters

Folder – SwitchOver		Sub-folders: .1				
Name	Parameter Description	Value		Default	Access Level	
InHigh	Sets the high limit for the switch over block. It is the highest reading from input 2 since it is the high range input sensor.	Input range		Oper		
InLow	Sets the low limit for the switch over block. It is the lowest reading from input 1 since it is the low range input sensor				Oper	
Switch High	Defines the high boundary of the switchover region	Between Input	: Hi and Input Lo		Oper	
Switch Low	Defines the low boundary of the switchover region.				Oper	
In1	The first input value. This must be the low range sensor.	thermocouple	mally be wired to the /pyrometer input sources via the PV		R/O if wired	
In2	The second input value. This must be the high range sensor		Input or Analogue Input Module. The range will be the range of the input chosen.			
Fallback Value	In the event of a bad status, the output may be configured to adopt the fallback value. This allows the strategy to dictate a safe output in the event of a fault being detected	Between Input Hi and Input Lo		0.0	Oper	
Fallback Type	Fall back type	Clip Bad Clip Good Fall Bad Fall Good Upscale Downscale		Clip Bad	Conf	
Selectin	Indicates which input is currently selected	Input 1 Input 2	0: Input 1 has been selected 1: Input 2 has been selected 2: Both inputs are used to calculate the output		R/O	
ErrMode	The action taken if the selected input is BAD	UseGood ShowBad	0: Assumes the value of a good input If the currently selected input is BAD the output will assume the value of the other input if it is GOOD 1: If selected input is BAD the output is BAD	Use Good	Conf	
Out	Output produced from the 2 input measurements				R/O	
Status	Status of the switchover block	Good Bad			R/O	

20. CHAPTER 20 TRANSDUCER SCALING

The Mini8 controller includes two transducer calibration function blocks that may be enabled in configuration level in the 'Instrument/Options' folder. These are a software function blocks that provide a method of offsetting the calibration of the input when compared to a known input source. Transducer scaling is often performed as a routine operation on a machine to take out system errors. For this reason it can be carried out in operator mode.

Transducer scaling can be applied to any input or derived input, i.e. the PV Input or Analogue Input fitted in one of the module slots. These can be wired in configuration level to the above inputs.

Three types of calibration are explained in this chapter:-

- Auto-tare
- Load Cell Calibration
- Comparison Calibration

20.1 Auto-Tare Calibration

The auto-tare function is used, for example, when it is required to weigh the contents of a container but not the container itself.

The procedure is to place the empty container on the weigh bridge and 'zero' the controller. Since it is likely that following containers may have different tare weights the auto-tare feature is always available.

Further parameters are available which are used to pre-configure the tare measurement or for interrogation purposes. Tare calibration may be carried out no matter what type of transducer is in use.

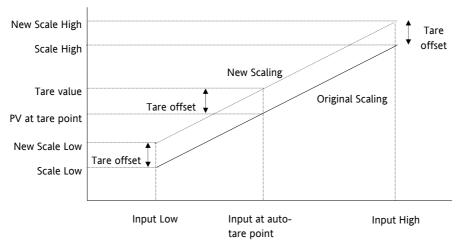


Figure 20-1: Effect of Auto Tare

20.2 Load Cell

A load cell provides an analogue output which can be in Volts, milli-Volts or milli-Amps. This may be connected to the PV Input or Analogue Input.

When no load is placed on the cell the output is normally zero. However, in practice there may be a residual output and this can be calibrated out in the controller.

The high end is calibrated by placing a reference weight on the load cell and performing a high end calibration in the controller.

20.3 Comparison Calibration

Comparison calibration is used to calibrate the controller against a second reference instrument.

The load is removed (or taken to a minimum) from the reference device. The controller low end calibration is done using the 'Cal Enable' parameter and entering the reading from the reference instrument.

Add a weight and when the reading has become stable select the 'Cal Hi Enable' parameter then enter the new reading from the reference instrument.

20.4 Transducer Scaling Parameters

Folder – Txdr		Sub-folders: .1 or .2				
Name	Parameter Description	Value		Default	Access Level	
Cal Type	Used to select the type of transducer calibration to perform See descriptions at the beginning of this chapter.	1: Off 1: Shunt 2: Load Cell 3: Compare	Transducer type unconfigured Shunt calibration Load Cell Comparison	Off	Conf	
Cal Enable	To make the transducer ready for calibration. Must be set to Yes to allow calibration to be done at L1. This includes Tare Cal.	No Yes	Not ready Ready	No	Conf	
Range Max	The maximum permissible range of the scaling block	Range min to	99999	1000	Conf	
Range Min	The minimum permissible range of the scaling block	-19999 to Range max		0	Conf	
Start Tare	Begin tare calibration	No Yes	Start tare calibration	No	Oper if 'Cal Enable' = 'Yes'	
Start Cal	Starts the Calibration process. Note: for Load Cell and Comparison calibration 'Start Cal' starts the first calibration point.	No Yes	Start calibration	No	Oper if 'Cal Enable' = 'Yes'	
Start HighCal	For Load Cell and Comparison calibration the 'Start High Cal' must be used to start the second calibration point.	No Yes	Start high calibration	No	Oper if 'Cal Enable' = 'Yes'	

Folder – Txdr		Sub-folders: .1 or .2				
Name	Parameter Description	Value		Default	Access Level	
Clear Cal	Clears the current calibration constants. This returns the calibration to unity gain	No Yes	To delete previous calibration values	No	Oper	
Tare Value	Enter the tare value of the container				Conf	
InHigh	Sets the scaling input high point				Oper	
InLow	Sets the scaling input low point				Oper	
Scale High	Sets the scaling output high point. Usually the same as the 'Input Lo'				Oper	
Scale Low	Sets the scaling output low point. Usually 80% of 'Input Hi'				Oper	
Cal Band	The calibration algorithms use the threshold to determine if the value has settled. When switching in the shunt resistor, the algorithm waits for the value to settle to within the threshold before starting the high calibration point.				Conf	
CalAdjust	The adjust is used in the Comparison Calibration method.	When edited, the Adjust parameter can be set to the desired value. On confirm, the new adjust value is used to set the scaling constants			Oper	
ShuntOut	Indicates when the internal shunt calibration resistor is switched in. Only appears if 'Cal Type' = 'Shunt'	Off On	Resistor not switched in Resistor switched in		Oper	
Cal Active	Indicates calibration taking place	Off On	Inactive Active		R/O	
InVal	The input value to be scaled.	-9999.9 to 9	999.9		Oper	
OutVal	The Input Value is scaled by the block to produce the Output Value				Oper	
Status	The status of the output accounting for sensor fail signals passed to the block and the state of the scaling.	Good Bad			Conf	
Cal Status	Indicates the progress of calibration	0: Idle 1: Active 2: Passed 3: Failed	No calibration in progress Calibration in progress Calibration Passed Calibration Failed		L1 R/O	

20.4.1 Parameter Notes

Enable Cal This may be wired to a digital input for an external switch. If not wired, then the value may be changed.

When enabled the transducer parameters may be altered as described in the previous sections. When the parameter has been turned On it will remain on until turned off manually even if the controller is powered

cycled.

Start Tare This may be wired to a digital input for an external switch. If not wired, then the value may be changed.

Start Cal This may be wired to a digital input for an external switch. If not wired, then the value may be changed.

It starts the calibration procedure for:

Shunt Calibration

The low point for Load Cell Calibration

The low point for Comparison Calibration

Start Hi Cal This may be wired to a digital input for an external switch. If not wired, then the value may be changed.

It starts:-

The high point for Load Cell Calibration

The high point for Comparison Calibration

Clear Cal This may be wired to a digital input for an external switch. If not wired, then the value may be changed.

When enabled the input will reset to default values. A new calibration will overwrite the previous

calibration values if Clear Cal is not enabled between calibrations.

20.4.2 Tare Calibration

The Mini8 controller has an auto-tare function that is used, for example, when it is required to weigh the contents of a container but not the container itself.

The procedure is to place the empty container on the weighbridge and 'zero' the controller. The procedure is as follows:-

- 1. Place container on weighbridge
- 2. Go to Txdr.1 (or .2) Folder.
- 3. Transducer calibration Type must be 'Load Cell'.
- 4. CalEnable must be set to 'Yes'.
- 5. Set StartTare to 'yes'
- The controller automatically calibrates the to the tare weight which is measured by the transducer and stores this value.
- 7. During this measurement Cal Status will show progress. If the cal fails it is probably an 'out of range' problem.

20.4.3 Load Cell

A load cell output must be within the range 0 to 77 mV to go into a TC8 input. Use a shunt for mA inputs, mV can possibly go direct, Volt inputs must use a potential divider.

To calibrate a load cell.

- 1. Remove all load from the transducer to establish a zero reference.
- 2. Go to Txdr.1 (or .2) Folder.
- 3. Transducer calibration Type must be 'Load Cell'.
- 4. CalEnable must be set to 'Yes'.
- 5. Set Start Cal to 'yes'
- 6. The controller will calibrate the low point.
- 7. Set StartHighCal to 'yes'
- 8. The controller will calibrate the high point.

Cal Status advises progress and result.

20.4.4 Comparison Calibration

Comparison calibration is used to calibrate the input against a second reference instrument. Typically this might be a local display on the weighing device itself.

To calibrate against a known reference source:-

- 1. Add a load at the low end of the scale range
- 2. Go to Txdr.1 (or .2) Folder.
- 3. Transducer calibration Type must be 'Comparision'.
- 4. CalEnable must be set to 'Yes'.
- 5. Enter the reading from the reference instrument into 'Cal Adjust'.
- 6. Add a load at the high end of the scale.
- 7. Set StartHighCal to 'yes'
- 8. The controller will calibrate the high point.

Cal Status advises progress and result.

21. CHAPTER 21 USER VALUES

User values are registers provided for use in calculations. They may be used as constants in equations or temporary storage in extended calculations. Up to 32 User Values are available provided they have been enabled in the "Instrument/Options" folder. They are arranged in 4 groups of 8. Each User Value can then be set up in the **'UserVal**' folder.

21.1 User Value Parameters

Folder – UsrVal		Sub-Folders: .1 to .32			
Name	Parameter Description	Value		Default	Access Level
Units	Units assigned to the User Value	None			Conf
		Abs Temp °C	:/ºF/ºK,		
		V, mV, A, m	۹,		
			osi, Bar, mBar, %RH, %, mmWG, inWG, s, PSIG, %O2, PPM, %CO2, %CP, %/sec,		
		RelTemp °C \	°F\°K(rel),		
		Custom 1, Co 5, Custom 6,	ustom 2, Custom 3, Custom 4, Custom		
		sec, min, hrs	,		
Resolution	Resolution of the User Value	XXXXX to X.	XXXX		Conf
High Limit	The high limit may be set for each user value to prevent the value being set to an out-of-bounds value.				Oper
Low Limit	The low limit of the user value may be set to prevent the user value from being edited to an illegal value. This is important if the user value is to be used as a setpoint.				Oper
Val	To set the value within the range limits	See note 1			Oper
Status	Can be used to force a good or bad status onto a user value. This is useful for testing status inheritance and fallback strategies.	Good Bad	See note 1		Oper

Note 1.

If 'Val' is wired into but 'Status' is not, then, instead of being used to force the Status it will indicate the status of the value as inherited form the wired connection to 'Val'.

22. CHAPTER 22 CALIBRATION

In this chapter calibration refers to calibration of the TC input of the TC8 module. Calibration is accessed using the 'Cal State' parameter that is only available in configuration level. Since the controller is calibrated during manufacture to traceable standards for every input range, it is not necessary to calibrate the controller when changing ranges. Furthermore, a continuous automatic check and correction of the calibration during the controllers' normal operation means that it is calibrated for life.

However, it is recognised that, for operational reasons, it may be a requirement to check or re-calibrate the controller. This new calibration is saved as a User Calibration. It is always possible to revert to the factory calibration if necessary.

Tip: Consider using the 'Offset' parameter for User Cal (e.g. Mod.1.Offset). This can be set to correct any measured difference between the Mini8 given PV and a calibration value obtained from another source.

22.1 User calibration

22.1.1 Set Up

No pre-calibration warm-up is required.

As calibration is a single-point on 8 channels, quick enough (a few minutes) to avoid self-heating effects, there are no special environmental, mounting position or ventilation requirements for calibration. Calibration should be performed at a reasonable ambient temperature (15°C to 35°C). Calibration outside

Every channel of every TC8 card must be individually connected to the calibrator source using thick copper wire (so the sensor-break voltage drop in the wires and source impedance is minimal).

The voltage source, monitor DVM and the target Mini8 should be at the same temperature (to eliminate added series e.m.f. due to thermocouple effects).

The Mini8 must be in Configuration Mode.

22.1.2 Zero Calibration

No "zero" calibration point is required.

22.1.3 Voltage Calibration

- 1. Set the Calibrator voltage source to an accurate 50.005mV. (The extra 5uV is to compensate for self-heating tempco effect).
- 2. Connect the 50mV to channel 1
- 3. Set Mod.1.CalState to HiCal (23) and then select 'Confirm'

these limits will compromise the expected working accuracy.

4. When complete set CalState to SaveUser(25)

22.1.4 CJC Calibration

No CJC calibration required; the sampled values are ratiometric, providing uncalibrated uncertainty of ±1°C.

22.1.5 Sensor-Break Limit Check

Apply a 900Ω resistor to each channel in turn, Sensor Break Type to 'Low', filter to off (0). Verify the SBrkValue is greater than 24.0 and less than 61.0

22.2 To Return to Factory Calibration

To clear the User calibration and restore the calibration from the factory.

- 1. Put Mini8 into Configuration Mode
- 2. Set the 'Mod.1.Calibration State' to LoadFact (25).
- 3. Return Instrument to Operating Mode.

22.3 Calibration Parameters

List Header - IO		Sub-headers:	:: Mod.1 to Mod.32				
Name	Parameter Description	Value		Default	Access Level		
Cal State	Calibration state of the input	Idle Hi-50mV Load Fact Save User Confirm Go Busy Passed Failed	Normal operation High input calibration for mV ranges Restore factory calibration values Save the new calibration values To start the calibration procedure when one of the above has been selected Starting the automatic calibration procedure Calibration in progress Calibration successful Calibration unsuccessful	Idle	Conf		
Status	PV Status The current status of the PV.	0 1 2 3 4 5	Normal operation Initial startup mode Input in sensor break PV outside operating limits Saturated input Uncalibrated channel No Module		R/O		

The above list shows the values of CalState, which appear during a normal calibration procedure. The full list of possible values follows – the number is the enumeration for the parameter.

1: Idle

2: Low calibration point for Volts range

3: High calibration point for Volts range

4: Calibration restored to factory default values

5: User calibration stored6: Factory calibration stored

11: Idle

12: Low calibration point for HZ input

13: High calibration point for the HZ input

14: Calibration restored to factory default values

15: User calibration stored

16: Factory calibration stored

20: Calibration point for factory rough calibration

21: Idle

22: Low calibration point for the mV range

23: Hi calibration point for the mV range

24: Calibration restored to factory default values

25: User calibration stored

26: Factory calibration stored

30: Calibration point for factory rough calibration

31: Idle

32: Low calibration point for the mV range

33: High calibration point for the mV range

34: Calibration restored to factory default values

35: User calibration stored

36: Factory calibration stored

41: Idle

42: Low calibration point for RTD calibration (150 ohms)

43: Low calibration point for RTD calibration (400 ohms)

44: Calibration restored to factory default values

45: User calibration stored

46: Factory calibration stored 51: Idle

52: CJC calibration used in conjunction with Term Temp parameter

54: Calibration restored to factory default values

55: User calibration stored

56: Factory calibration stored

200: Confirmation of request to calibrate

201: Used to start the calibration procedure

202: Used to abort the calibration procedure

210: Calibration point for factory rough calibration

212: Indication that calibration is in progress

213: Used to abort the calibration procedure 220: Indication that calibration completed successfully

221: Calibration accepted but not stored

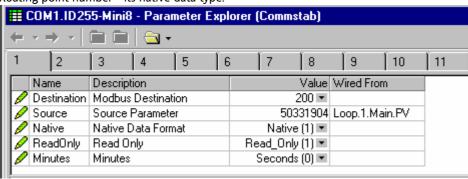
222: Used to abort the calibration procedure

223: Indication that calibration failed

23. APPENDIX A MODBUS SCADA TABLE

These parameters are single register Modbus values for use with Third Party Modbus masters in SCADA packages or plcs. Scaling of the parameters has to be configured – the Modbus master scaling has to match the Mini8 parameter resolution to ensure the decimal point is in the correct position.

23.1 Comms Table


The tables that follow do not include every parameter in the Mini8. The Comms Table is used to make most parameters available at any SCADA address.

Folder – Commstab		Sub-folders: .1 to .250		
Name	Parameter Description	Value Defa		Access Level
Destination	Modbus Destination	Not Used	Not used	Conf
		1 to 16011		
Source	Source Parameter	Taken from source parameter		Conf
Native	Native Data Format	0 Integer	Integer	Conf
		1 Native		
ReadOnly	Read Only	0 Read/Write	R/W	Conf
	Read/Write only if source is R/W	1 Read Only		
Minutes	Minutes	0 Seconds	Seconds.	Conf
	Units in which time is scaled.	1 Minutes		

Entering a value in the Source parameter may be done in two ways:

- 1 drag the required parameter into the Source
- 2 right click the Source parameter, select Edit Wire and browse to the required parameter.

In the Example below the PV of Loop 1 would be available at addresses 200 and 201 as a two register floating point number - its native data type.

There are 250 comms tables entries available.

23.2 SCADA Table

The parameters in the tables following are available in scaled integer format, accessed via their associated Modbus address.

Wherever possible use an OPC client with the iTools OPCserver as the server. In this arrangement the parameters are all referenced by name and the values are floating point so the decimal point for all parameters is inherited.

Description	ModBus	HEX	Description	ModBus	HEX
Access.CustomerID	4739	1283	Alarm.6.Out	10329	2859
Access.InstrumentMode	199	00c7	Alarm.6.Reference	10323	2853
Alarm.1.Ack	10250	280a	Alarm.6.Threshold	10321	2851
Alarm.1.Block	10246	2806	Alarm.6.Type	10320	2850
Alarm.1.Delay	10248	2808	Alarm.7.Ack	10346	
Alarm.1.Hysteresis	10242	2802	Alarm.7.Block	10342	
Alarm.1.Inhibit	10247	2807	Alarm.7.Delay	10344	
Alarm.1.Latch	10244	2804	Alarm.7.Hysteresis	10338	
Alarm.1.Out	10249	2809	Alarm.7.Inhibit	10343	
Alarm.1.Reference	10243	2803	Alarm.7.Latch	10340	
Alarm.1.Threshold	10241	2801	Alarm.7.Out	10345	
Alarm.1.Type	10240	2800	Alarm.7.Reference	10339	
Alarm.2.Ack	10266		Alarm.7.Threshold	10337	
Alarm.2.Block	10262	2816	Alarm.7.Type	10336	
Alarm.2.Delay	10264	2818	Alarm.8.Ack	10362	
Alarm.2.Hysteresis	10258	2812	Alarm.8.Block	10358	
Alarm.2.Inhibit	10263	2817	Alarm.8.Delay	10350	
Alarm.2.Latch	10263	2814	Alarm.8.Hysteresis	10350	
Alarm.2.Cut	10265	2819	Alarm.8.Inhibit	10354	
Alarm.2.Reference	10259	2813	Alarm.8.Latch	10359	
Alarm.2.Threshold	10259	2811	Alarm.8.Out	10356	
	10257	2810	Alarm.8.Reference	10351	
Alarm.2.Type Alarm.3.Ack					
Alarm.3.Ack Alarm.3.Block	10282	282a	Alarm.8.Threshold	10353 10352	
	10278	2826	Alarm.8.Type		
Alarm.3.Delay	10280	2828	Alarm.9.Ack	10378	
Alarm.3.Hysteresis	10274	2822	Alarm.9.Block	10374	
Alarm.3.Inhibit	10279	2827	Alarm.9.Delay	10376	
Alarm.3.Latch	10276	2824	Alarm.9.Hysteresis	10370	
Alarm.3.Out	10281	2829	Alarm.9.Inhibit	10375	
Alarm.3.Reference	10275	2823	Alarm.9.Latch	10372	
Alarm.3.Threshold	10273	2821	Alarm.9.Out	10377	
Alarm.3.Type	10272	2820	Alarm.9.Reference	10371	
Alarm.4.Ack	10298	283a	Alarm.9.Threshold	10369	
Alarm.4.Block	10294	2836	Alarm.9.Type	10368	
Alarm.4.Delay	10296	2838	Alarm.10.Ack	10394	
Alarm.4.Hysteresis	10290	2832	Alarm.10.Block	10390	
Alarm.4.Inhibit	10295	2837	Alarm.10.Delay	10392	
Alarm.4.Latch	10292		Alarm.10.Hysteresis		2892
Alarm.4.Out	10297	2839	Alarm.10.Inhibit	10391	
Alarm.4.Reference	10291	2833	Alarm.10.Latch		2894
Alarm.4.Threshold	10289		Alarm.10.Out	10393	
Alarm.4.Type	10288		Alarm.10.Reference	10387	
Alarm.5.Ack	10314		Alarm.10.Threshold	10385	
Alarm.5.Block	10310		Alarm.10.Type	10384	
Alarm.5.Delay	10312		Alarm.11.Ack		28aa
Alarm.5.Hysteresis	10306	2842	Alarm.11.Block	10406	28a6
Alarm.5.Inhibit	10311	2847	Alarm.11.Delay	10408	28a8
Alarm.5.Latch	10308	2844	Alarm.11.Hysteresis	10402	28a2
Alarm.5.Out	10313	2849	Alarm.11.Inhibit	10407	28a7
Alarm.5.Reference	10307	2843	Alarm.11.Latch	10404	28a4
Alarm.5.Threshold	10305	2841	Alarm.11.Out	10409	
Alarm.5.Type	10304	2840	Alarm.11.Reference	10403	28a3
Alarm.6.Ack	10330		Alarm.11.Threshold	10401	
Alarm.6.Block	10326	2856	Alarm.11.Type	10400	28a0
Alarm.6.Delay	10328	2858	Alarm.12.Ack	10426	28ba
Alarm.6.Hysteresis	10322	2852	Alarm.12.Block	10422	28b6
Alarm.6.Inhibit	10327	2857	Alarm.12.Delay	10424	28b8
Alarm.6.Latch	10324	2854	Alarm.12.Hysteresis	10418	28b2

ModBus

HEX

292a

293a

294a

295a

296a

Description	ModBus	HEX	Description
Alarm.12.Inhibit	10423	28b7	Alarm.18.Delay
Alarm.12.Latch	10420	28b4	Alarm.18.Hysteresis
Alarm.12.Out	10425	28b9	Alarm.18.Inhibit
Alarm.12.Reference	10419	28b3	Alarm.18.Latch
Alarm.12.Threshold	10417	28b1	Alarm.18.Out
Alarm.12.Type	10416	28b0	Alarm.18.Reference
Alarm.13.Ack	10442	28ca	Alarm.18.Threshold
Alarm.13.Block	10438	28c6	Alarm.18.Type
Alarm.13.Delay	10440	28c8	Alarm.19.Ack
Alarm.13.Hysteresis	10434	28c2	Alarm.19.Block
Alarm.13.Inhibit	10439	28c7	Alarm.19.Delay
Alarm.13.Latch	10436	28c4	Alarm.19.Hysteresis
Alarm.13.Out	10441	28c9	Alarm.19.Inhibit
Alarm.13.Reference		28c3	Alarm.19.Latch
Alarm.13.Threshold	-	28c1	Alarm.19.Out
Alarm.13.Type	-	28c0	Alarm.19.Reference
Alarm.14.Ack		28da	Alarm.19.Threshold
Alarm.14.Block		28d6	Alarm.19.Type
Alarm.14.Delay		28d8	Alarm.20.Ack
Alarm.14.Hysteresis		28d2	Alarm.20.Block
Alarm.14.Inhibit		28d7	Alarm.20.Delay
Alarm.14.Latch		28d4	Alarm.20.Hysteresis
Alarm.14.Out	10457		Alarm.20.Inhibit
Alarm.14.Reference		28d3	Alarm.20.Latch
Alarm.14.Threshold	10449		Alarm.20.Out
Alarm.14.Type		28d0	Alarm.20.Reference
Alarm.15.Ack	-	28ea	Alarm.20.Threshold
Alarm.15.Block		28e6	Alarm.20.Type
Alarm.15.Delay	_	28e8	Alarm.21.Ack
Alarm.15.Hysteresis	-	28e2	Alarm.21.Block
Alarm.15.Inysteresis	10400		Alarm.21.Delay
Alarm.15.Latch	-	28e4	•
Alarm.15.Dut	10400		Alarm.21.Hysteresis Alarm.21.Inhibit
	-		Alarm.21.Latch
Alarm 15. Reference	10467		
Alarm 15 Type	10465		Alarm 21 Deference
Alarm.15.Type	_	28e0	Alarm.21.Reference
Alarm.16.Ack	10490		Alarm.21.Threshold
Alarm 16 Block	10486		Alarm.21.Type
Alarm 16 Uniteresia	10488		Alarm.22.Ack
Alarm.16.Hysteresis	10482	28f2	Alarm.22.Block
Alarm.16.Inhibit	10487	28f7	Alarm.22.Delay
Alarm.16.Latch	10484	28f4	Alarm.22.Hysteresis
Alarm.16.Out	10489		Alarm.22.Inhibit
Alarm.16.Reference	10483		Alarm.22.Latch
Alarm.16.Threshold	10481	28f1	Alarm.22.Out
Alarm.16.Type	10480		Alarm.22.Reference
Alarm.17.Ack	10506		Alarm.22.Threshold
Alarm.17.Block	10502		Alarm.22.Type
Alarm.17.Delay	10504		Alarm.23.Ack
Alarm.17.Hysteresis	10498		Alarm.23.Block
Alarm.17.Inhibit	10503		Alarm.23.Delay
Alarm.17.Latch	10500		Alarm.23.Hysteresis
Alarm.17.Out	10505		Alarm.23.Inhibit
Alarm.17.Reference	10499	2903	Alarm.23.Latch
Alarm.17.Threshold	10497	2901	Alarm.23.Out
Alarm.17.Type	10496	2900	Alarm.23.Reference
Alarm.18.Ack	10522	291a	Alarm.23.Threshold
Alarm.18.Block	10518	2916	Alarm.23.Type
,	•		

Description	ModBus	HEX	Description	ModBus	HEX
Alarm.24.Ack	10618		Alarm.29.Threshold	10689	
Alarm.24.Block	10614		Alarm.29.Type	10688	
Alarm.24.Delay	10616		Alarm.30.Ack	10714	
Alarm.24.Hysteresis	10610		Alarm.30.Block	10710	
Alarm.24.Inhibit	10615		Alarm.30.Delay	10712	
Alarm.24.Latch	10613		Alarm.30.Hysteresis	10712	
Alarm.24.Later	10617	2979	Alarm.30.Inhibit	10700	29d7
Alarm.24.Reference	10611	2973	Alarm.30.Latch	10711	
Alarm.24.Threshold	10609		Alarm.30.Dut	10703	
Alarm.24.Type	10608		Alarm.30.Reference	10713	
Alarm.25.Ack	10634	298a	Alarm.30.Threshold	10707	
Alarm.25.Ack Alarm.25.Block	10634		Alarm.30.Type	10703	
	10630		Alarm.31.Ack	1	
Alarm.25.Delay	1			10730	
Alarm.25.Hysteresis	10626		Alarm.31.Block	10726	
Alarm.25.Inhibit	10631	2987	Alarm.31.Delay	10728	
Alarm.25.Latch	10628		Alarm.31.Hysteresis	10722	
Alarm.25.Out	10633		Alarm.31.Inhibit	10727	29e7
Alarm.25.Reference	10627	2983	Alarm.31.Latch	10724	
Alarm.25.Threshold	10625		Alarm.31.Out	10729	
Alarm.25.Type	10624		Alarm.31.Reference	10723	
Alarm.26.Ack	10650		Alarm.31.Threshold	10721	29e1
Alarm.26.Block	10646		Alarm.31.Type	10720	
Alarm.26.Delay	10648		Alarm.32.Ack	10746	
Alarm.26.Hysteresis	10642		Alarm.32.Block	10742	29f6
Alarm.26.Inhibit	10647	2997	Alarm.32.Delay	10744	29f8
Alarm.26.Latch	10644	2994	Alarm.32.Hysteresis	10738	29f2
Alarm.26.Out	10649	2999	Alarm.32.Inhibit	10743	29f7
Alarm.26.Reference	10643		Alarm.32.Latch	10740	
Alarm.26.Threshold	10641	2991	Alarm.32.Out	10745	29f9
Alarm.26.Type	10640	2990	Alarm.32.Reference	10739	29f3
Alarm.27.Ack	10666	29aa	Alarm.32.Threshold	10737	29f1
Alarm.27.Block	10662	29a6	Alarm.32.Type	10736	29f0
Alarm.27.Delay	10664	29a8	AlmSummary.General.AnAlarmStatus1	10176	27c0
Alarm.27.Hysteresis	10658	29a2	AlmSummary.General.AnAlarmStatus2	10177	27c1
Alarm.27.Inhibit	10663	29a7	AlmSummary.General.AnAlarmStatus3	10178	27c2
Alarm.27.Latch	10660	29a4	AlmSummary.General.AnAlarmStatus4	10179	27c3
Alarm.27.Out	10665	29a9	AlmSummary.General.AnyAlarm	10213	27e5
Alarm.27.Reference	10659	29a3	AlmSummary.General.CTAlarmStatus1	4192	1060
Alarm.27.Threshold	10657	29a1	AlmSummary.General.CTAlarmStatus2	4193	1061
Alarm.27.Type	10656	29a0	AlmSummary.General.CTAlarmStatus3	4194	1062
Alarm.28.Ack	10682	29ba	AlmSummary.General.CTAlarmStatus4	4195	1063
Alarm.28.Block	10678		AlmSummary.General.DigAlarmStatus1	10188	
Alarm.28.Delay	10680	-	AlmSummary.General.DigAlarmStatus2	10189	
Alarm.28.Hysteresis	10674		AlmSummary.General.DigAlarmStatus3	10190	
Alarm.28.Inhibit	10679		AlmSummary.General.DigAlarmStatus4	10191	27cf
Alarm.28.Latch	10676		AlmSummary.General.GlobalAck	10214	
Alarm.28.Out	10681		AlmSummary.General.NewAlarm	10212	
Alarm.28.Reference	10675		AlmSummary.General.NewCTAlarm	4196	
Alarm.28.Threshold	10673		AlmSummary.General.RstNewAlarm	10215	
Alarm.28.Type	10672	-	AlmSummary.General.RstNewCTAlarm	4197	
Alarm.29.Ack	10698	-	AlmSummary.General.SBrkAlarmStatus1	10200	
Alarm.29.Block	10694		AlmSummary.General.SBrkAlarmStatus2	10201	
Alarm.29.Delay	10694		AlmSummary.General.SBrkAlarmStatus3	10201	
Alarm.29.Hysteresis	10690		AlmSummary.General.SBrkAlarmStatus4	10202	
Alarm.29.Inhibit	10690		Comms.FC.Ident	12963	
		-			
Alarm 20 Out	10692	-	DigAlarm 1 Plack	11274	
Alarm 20 Reference	10697		DigAlarm 1 Dalay	11270	
Alarm.29.Reference	10691	29c3	DigAlarm.1.Delay	11272	2c08

Description	ModBus	HEX
DigAlarm.1.Inhibit	11271	2c07
DigAlarm.1.Latch	11268	2c04
DigAlarm.1.Out	11273	2c09
DigAlarm.1.Type	11264	2c00
DigAlarm.2.Ack	11290	2c1a
DigAlarm.2.Block	11286	2c16
DigAlarm.2.Delay	11288	2c18
DigAlarm.2.Inhibit	11287	2c17
DigAlarm.2.Latch	11284	2c14
DigAlarm.2.Out	11289	2c19
DigAlarm.2.Type	11280	2c10
DigAlarm.3.Ack	11306	2c2a
DigAlarm.3.Block	11302	2c26
DigAlarm.3.Delay	11304	2c28
DigAlarm.3.Inhibit	11303	2c27
DigAlarm.3.Latch	11300	2c24
DigAlarm.3.Out	11305	2c29
DigAlarm.3.Type	11296	2c20
DigAlarm.4.Ack	11322	2c3a
DigAlarm.4.Block	11318	2c36
DigAlarm.4.Delay	11320	2c38
DigAlarm.4.Inhibit	11319	2c37
DigAlarm.4.Latch	11316	2c34
DigAlarm.4.Out	11321	2c39
DigAlarm.4.Type	11312	2c30
DigAlarm.5.Ack	11338	2c4a
DigAlarm.5.Block	11334	2c46
DigAlarm.5.Delay	11336	2c48
DigAlarm.5.Inhibit	11335	2c47
DigAlarm.5.Latch	11332	2c44
DigAlarm.5.Out	11337	2c49
DigAlarm.5.Type	11328	2c40
DigAlarm.6.Ack	11354	2c5a
DigAlarm.6.Block	11350	2c56
DigAlarm.6.Delay	11352	2c58
DigAlarm.6.Inhibit	11351	2c57
DigAlarm.6.Latch	11348	2c54
DigAlarm.6.Out	11353	2c59
DigAlarm.6.Type	11344	2c50
DigAlarm.7.Ack	11370	2c6a
DigAlarm.7.Block	11366	2c66
DigAlarm.7.Delay	11368	2c68
DigAlarm.7.Inhibit	11367	2c67
DigAlarm.7.Latch	11364	2c64
DigAlarm.7.Out	11369 11360	2c69
DigAlarm 9 A ak		2c60
DigAlarm 8 Block	11386	2c7a
DigAlarm 8 Dalay	11382	2c76
DigAlarm 8 Inhihit	11384 11383	2c78
DigAlarm 8 Latch		2c77
DigAlarm.8.Latch DigAlarm.8.Out	11380 11385	2c74 2c79
DigAlarm.8.Type	11376	
DigAlarm.9.Ack	11402	2c70 2c8a
DigAlarm.9.Block	11398	2c86
DigAlarm.9.Delay	11400	2c88
DigAlarm.9.Inhibit	11399	2c87
DigAlarm.9.Latch	11399	2c84
Dig. vaiii. J. Latoii	11380	2004

Engineering Handbook

Description	MadDua	LIEV
Description DigAlarm.9.Out	ModBus 11401	HEX 2c89
DigAlarm.9.Out DigAlarm.9.Type	11392	2c80
DigAlarm.10.Ack	11418	2c9a
DigAlarm.10.Block	11414	2c96
DigAlarm.10.Delay	11416	2c98
DigAlarm.10.Inhibit	11415	2c97
DigAlarm.10.Latch	11412	2c94
DigAlarm.10.Out	11417	2c99
DigAlarm.10.Type	11408	2c90
DigAlarm.11.Ack	11434	2caa
DigAlarm.11.Block	11430	2ca6
DigAlarm.11.Delay	11432	2ca8
DigAlarm.11.Inhibit	11431	2ca7
DigAlarm.11.Latch	11428	2ca4
DigAlarm.11.Out	11433	2ca9
DigAlarm.11.Type	11424	2ca0
DigAlarm.12.Ack	11450	2cba
DigAlarm.12.Block	11446	2cb6
DigAlarm.12.Delay	11448	2cb8
DigAlarm.12.Inhibit	11447	2cb7
DigAlarm.12.Latch	11444	2cb4
DigAlarm.12.Out	11449	2cb9
DigAlarm.12.Type	11440	2cb0
DigAlarm.13.Ack	11466	2cca
DigAlarm.13.Block	11462	2cc6
DigAlarm.13.Delay	11464	2cc8
DigAlarm.13.Inhibit	11463	2cc7
DigAlarm.13.Latch	11460	2cc4
DigAlarm.13.Out	11465	2cc9
DigAlarm.13.Type	11456	2cc0
DigAlarm 14 Block	11482	2cda
DigAlarm.14.Block	11478 11480	2cd6 2cd8
DigAlarm.14.Delay DigAlarm.14.Inhibit	11479	2cd7
DigAlarm.14.Latch	11479	2cd4
DigAlarm.14.Out	11481	2cd9
DigAlarm.14.Type	11472	2cd0
DigAlarm.15.Ack	11498	2cea
DigAlarm.15.Block	11494	2ce6
DigAlarm.15.Delay	11496	2ce8
DigAlarm.15.Inhibit	11495	2ce7
DigAlarm.15.Latch	11492	2ce4
DigAlarm.15.Out	11497	2ce9
DigAlarm.15.Type	11488	2ce0
DigAlarm.16.Ack	11514	2cfa
DigAlarm.16.Block	11510	2cf6
DigAlarm.16.Delay	11512	2cf8
DigAlarm.16.Inhibit	11511	2cf7
DigAlarm.16.Latch	11508	2cf4
DigAlarm.16.Out	11513	2cf9
DigAlarm.16.Type	11504	2cf0
DigAlarm.17.Ack	11530	2d0a
DigAlarm.17.Block	11526	2d06
DigAlarm.17.Delay	11528	2d08
DigAlarm.17.Inhibit	11527	2d07
DigAlarm.17.Latch	11524	2d04
DigAlarm.17.Out	11529	2d09
DigAlarm.17.Type	11520	2d00

<u> </u>		
Description	ModBus	HEX
DigAlarm.18.Ack	11546	2d1a
DigAlarm.18.Block	11542	2d16
DigAlarm.18.Delay	11544	2d18
DigAlarm.18.Inhibit	11543	2d17
DigAlarm.18.Latch	11540	2d14
DigAlarm.18.Out	11545	2d19
DigAlarm.18.Type	11536	2d10
DigAlarm.19.Ack	11562	2d2a
DigAlarm.19.Block	11558	2d26
DigAlarm.19.Delay	11560	2d28
DigAlarm.19.Inhibit	11559	2d27
DigAlarm.19.Latch	11556	2d24
DigAlarm.19.Out	11561	2d29
DigAlarm.19.Type	11552	2d20
DigAlarm.20.Ack	11578	2d3a
DigAlarm.20.Block	11574	2d36
DigAlarm.20.Delay	11576	2d38
DigAlarm.20.Inhibit	11575	2d37
DigAlarm.20.Latch	11572	2d34
DigAlarm.20.Out	11577	2d39
DigAlarm.20.Type	11568	2d30
DigAlarm.21.Ack	11594	2d4a
DigAlarm.21.Block	11590	2d46
DigAlarm.21.Delay	11592	2d48
DigAlarm.21.Inhibit	11591	2d47
DigAlarm.21.Latch	11588	2d44
DigAlarm.21.Out	11593	2d49
DigAlarm.21.Type	11584	2d40
DigAlarm.22.Ack	11610	2d5a
DigAlarm.22.Block	11606	2d56
DigAlarm.22.Delay	11608	2d58
DigAlarm.22.Inhibit	11607	2d57
DigAlarm.22.Latch	11604	2d54
DigAlarm.22.Out	11609	2d59
DigAlarm.22.Type	11600	2d50
DigAlarm.23.Ack	11626	2d6a
DigAlarm.23.Block	11622	2d66
DigAlarm.23.Delay	11624	2d68
DigAlarm.23.Inhibit	11623	2d67
DigAlarm.23.Latch	11620	2d64
DigAlarm.23.Out	11625	2d69
DigAlarm.23.Type	11616	2d60
DigAlarm.24.Ack	11642	2d7a
DigAlarm.24.Block	11638	2d76
DigAlarm.24.Delay	11640	2d78
DigAlarm.24.Inhibit	11639	2d77
DigAlarm.24.Latch	11636	2d74
DigAlarm.24.Out	11641	2d79
DigAlarm.24.Type	11632	2d70
DigAlarm.25.Ack	11658	2d8a
DigAlarm.25.Block	11654	2d86
DigAlarm.25.Delay	11656	2d88
DigAlarm.25.Inhibit	11655	2d87
DigAlarm.25.Latch	11652	2d84
DigAlarm.25.Out	11657	2d89
DigAlarm.25.Type	11648	2d80
DigAlarm.26.Ack	11674	2d9a
DigAlarm.26.Block	11670	2d96
		_

Description	ModBus	HEX
DigAlarm.26.Delay	11672	2d98
DigAlarm.26.Inhibit	11671	2d97
DigAlarm.26.Latch	11668	2d94
DigAlarm.26.Out	11673	2d99
DigAlarm.26.Type	11664	2d90
DigAlarm.27.Ack	11690	2daa
DigAlarm.27.Block	11686	2da6
DigAlarm.27.Delay	11688	2da8
DigAlarm.27.Inhibit	11687	2da7
DigAlarm.27.Latch	11684	2da4
DigAlarm.27.Out	11689	2da9
DigAlarm.27.Type	11680	2da0
DigAlarm.28.Ack	11706	2dba
DigAlarm.28.Block	11702	2db6
DigAlarm.28.Delay	11704	2db8
DigAlarm.28.Inhibit	11703	2db7
DigAlarm.28.Latch	11700	2db4
DigAlarm.28.Out	11705	2db9
DigAlarm.28.Type	11696	2db0
DigAlarm.29.Ack	11722	2dca
DigAlarm.29.Block	11718	2dc6
DigAlarm.29.Delay	11720	2dc8
DigAlarm.29.Inhibit	11719	2dc7
DigAlarm.29.Latch	11716	2dc4
DigAlarm.29.Out DigAlarm.29.Type	11721 11712	2dc9 2dc0
DigAlarm.30.Ack	11712	2dda
DigAlarm.30.Block	11736	2dd6
DigAlarm.30.Delay	11734	2dd8
DigAlarm.30.Inhibit	11735	2dd7
DigAlarm.30.Latch	11732	2dd4
DigAlarm.30.Out	11737	2dd9
DigAlarm.30.Type	11728	2dd0
DigAlarm.31.Ack	11754	2dea
DigAlarm.31.Block	11750	2de6
DigAlarm.31.Delay	11752	2de8
DigAlarm.31.Inhibit	11751	2de7
DigAlarm.31.Latch	11748	2de4
DigAlarm.31.Out	11753	2de9
DigAlarm.31.Type	11744	2de0
DigAlarm.32.Ack	11770	2dfa
DigAlarm.32.Block	11766	2df6
DigAlarm.32.Delay	11768	2df8
DigAlarm.32.Inhibit	11767	2df7
DigAlarm.32.Latch	11764	2df4
DigAlarm.32.Out	11769	2df9
DigAlarm.32.Type	11760	2df0
Humidity.DewPoint	13317	3405
Humidity.DryTemp	13318	3406
Humidity Pressure	13313	3401
Humidity.PsychroConst Humidity.RelHumid	13315 13316	3403 3404
Humidity.Resolution	13320	3404
Humidity.SBrk	13314	3408
Humidity.WetOffset	13312	3400
Humidity.WetOnset Humidity.WetTemp	13319	3407
Instrument.Diagnostics.CntrlOverrun	4737	1281
Instrument.Diagnostics.ErrCount	4736	1280
		00

Description	ModPus	HEX
Description Instrument.Diagnostics.PSUident	ModBus 13027	32e3
Instrument.InstInfo.CompanyID	13027	0079
Instrument.InstInfo.InstType	122	007a
Instrument.InstInfo.Version	107	006b
Instrument.Options.Units	4738	1282
IO.CurrentMonitor.Config.CalibrateCT1	4170	104a
IO.CurrentMonitor.Config.CalibrateCT2	4171	104b
IO.CurrentMonitor.Config.CalibrateCT3	4172	104c
IO.CurrentMonitor.Config.Commission	4096	1000
IO.CurrentMonitor.Config.CommissionStatus	4097	1001
IO.CurrentMonitor.Config.CT1Range	4103	1007
IO.CurrentMonitor.Config.CT1Resolution	4198	1066
IO.CurrentMonitor.Config.CT2Range	4104	1008
IO.CurrentMonitor.Config.CT2Resolution	4199	1067
IO.CurrentMonitor.Config.CT3Range	4105	1009
IO.CurrentMonitor.Config.CT3Resolution	4200	1068
IO.CurrentMonitor.Config.Inhibit	4099	1003
IO.CurrentMonitor.Config.Interval	4098	1002
IO.CurrentMonitor.Config.Load1CTInput	4107	100b
IO.CurrentMonitor.Config.Load1DrivenBy	4106	100a
IO.CurrentMonitor.Config.Load1OCFthreshold	4109	100d
IO.CurrentMonitor.Config.Load1PLFthreshold	4108	100c
IO.CurrentMonitor.Config.Load1Resolution	4201	1069
IO.CurrentMonitor.Config.Load2CTInput	4111	100f
IO.CurrentMonitor.Config.Load2DrivenBy	4110	100e
IO.CurrentMonitor.Config.Load2OCFthreshold	4113	1011
IO.CurrentMonitor.Config.Load2PLFthreshold	4112	1010
IO.CurrentMonitor.Config.Load2Resolution	4202	106a
IO.CurrentMonitor.Config.Load3CTInput	4115 4114	1013
IO.CurrentMonitor.Config.Load3DrivenBy IO.CurrentMonitor.Config.Load3OCFthreshold	4114	1012 1015
IO.CurrentMonitor.Config.Load3PLFthreshold	4116	1013
IO.CurrentMonitor.Config.Load3Resolution	4203	106b
IO.CurrentMonitor.Config.Load4CTInput	4119	1017
IO.CurrentMonitor.Config.Load4DrivenBy	4118	1016
IO.CurrentMonitor.Config.Load4OCFthreshold	4121	1019
IO.CurrentMonitor.Config.Load4PLFthreshold	4120	1018
IO.CurrentMonitor.Config.Load4Resolution	4204	106c
IO.CurrentMonitor.Config.Load5CTInput	4123	101b
IO.CurrentMonitor.Config.Load5DrivenBy	4122	101a
IO.CurrentMonitor.Config.Load5OCFthreshold	4125	101d
IO.CurrentMonitor.Config.Load5PLFthreshold	4124	101c
IO.CurrentMonitor.Config.Load5Resolution	4205	106d
IO.CurrentMonitor.Config.Load6CTInput	4127	101f
IO.CurrentMonitor.Config.Load6DrivenBy	4126	101e
IO.CurrentMonitor.Config.Load6OCFthreshold	4129	1021
IO.CurrentMonitor.Config.Load6PLFthreshold	4128	1020
IO.CurrentMonitor.Config.Load6Resolution	4206	106e
IO.CurrentMonitor.Config.Load7CTInput	4131	1023
IO.CurrentMonitor.Config.Load7DrivenBy	4130	1022
IO.CurrentMonitor.Config.Load7OCFthreshold	4133	1025
IO.CurrentMonitor.Config.Load7PLFthreshold	4132	1024
IO.CurrentMonitor.Config.Load7Resolution	4207	106f
IO.CurrentMonitor.Config.Load8CTInput	4135	1027
IO.CurrentMonitor.Config.Load8DrivenBy	4134	1026
IO.CurrentMonitor.Config.Load8OCFthreshold	4137	1029
IO.CurrentMonitor.Config.Load8PLFthreshold	4136	1028
IO.CurrentMonitor.Config.Load8Resolution	4208	1070

Description	MadDua	LIEV
Description IO.CurrentMonitor.Config.Load9CTInput	ModBus 4139	HEX 102b
	4139	102b
IO.CurrentMonitor.Config.Load9DrivenBy		102a 102d
IO.CurrentMonitor.Config.Load9OCFthreshold	4141	
IO.CurrentMonitor.Config.Load9PLFthreshold	4140	102c
IO.CurrentMonitor.Config.Load9Resolution	4209	1071
IO.CurrentMonitor.Config.Load10CTInput	4143	102f
IO.CurrentMonitor.Config.Load10DrivenBy	4142	102e
IO.CurrentMonitor.Config.Load10OCFthreshold	4145	1031
IO.CurrentMonitor.Config.Load10PLFthreshold	4144	1030
IO.CurrentMonitor.Config.Load10Resolution	4210	1072
IO.CurrentMonitor.Config.Load11CTInput	4147	1033
IO.CurrentMonitor.Config.Load11DrivenBy	4146	1032
IO.CurrentMonitor.Config.Load11OCFthreshold	4149	1035
IO.CurrentMonitor.Config.Load11PLFthreshold	4148	1034
IO.CurrentMonitor.Config.Load11Resolution	4211	1073
IO.CurrentMonitor.Config.Load12CTInput	4151	1037
IO.CurrentMonitor.Config.Load12DrivenBy	4150	1036
IO.CurrentMonitor.Config.Load12OCFthreshold	4153	1039
IO.CurrentMonitor.Config.Load12PLFthreshold	4152	1038
IO.CurrentMonitor.Config.Load12Resolution	4212	1074
IO.CurrentMonitor.Config.Load13CTInput	4155	103b
IO.CurrentMonitor.Config.Load13DrivenBy	4154	103a
IO.CurrentMonitor.Config.Load13OCFthreshold	4157	103d
IO.CurrentMonitor.Config.Load13PLFthreshold	4156	103c
IO.CurrentMonitor.Config.Load13Resolution	4213	1075
IO.CurrentMonitor.Config.Load14CTInput	4159	103f
IO.CurrentMonitor.Config.Load14DrivenBy	4158	103e
IO.CurrentMonitor.Config.Load14OCFthreshold	4161	1041
IO.CurrentMonitor.Config.Load14PLFthreshold	4160	1040
IO.CurrentMonitor.Config.Load14Resolution	4214	1076
IO.CurrentMonitor.Config.Load15CTInput	4163	1043
IO.CurrentMonitor.Config.Load15DrivenBy	4162	1042
IO.CurrentMonitor.Config.Load15OCFthreshold	4165	1045
IO.CurrentMonitor.Config.Load15PLFthreshold	4164	1044
IO.CurrentMonitor.Config.Load15Resolution	4215	1077
IO.CurrentMonitor.Config.Load16CTInput	4167	1047
IO.CurrentMonitor.Config.Load16DrivenBy	4166	1046
IO.CurrentMonitor.Config.Load16OCFthreshold	4169	1049
IO.CurrentMonitor.Config.Load16PLFthreshold	4168	1048
IO.CurrentMonitor.Config.Load16Resolution	4216	1078
IO.CurrentMonitor.Config.MaxLeakPh1	4100	1004
IO.CurrentMonitor.Config.MaxLeakPh2	4101	1005
IO.CurrentMonitor.Config.MaxLeakPh3	4102	1006
IO.CurrentMonitor.Status.Load1Current	4173	104d
IO.CurrentMonitor.Status.Load2Current	4174	104e
IO.CurrentMonitor.Status.Load3Current	4175	104f
IO.CurrentMonitor.Status.Load4Current	4176	1050
IO.CurrentMonitor.Status.Load5Current	4177	1051
IO.CurrentMonitor.Status.Load6Current	4178	1052
IO.CurrentMonitor.Status.Load7Current	4179	1053
IO.CurrentMonitor.Status.Load8Current	4180	1054
IO.CurrentMonitor.Status.Load9Current	4181	1055
IO.CurrentMonitor.Status.Load10Current	4182	1056
IO.CurrentMonitor.Status.Load11Current	4183	1057
IO.CurrentMonitor.Status.Load12Current	4184	1058
IO.CurrentMonitor.Status.Load13Current	4185	1059
IO.CurrentMonitor.Status.Load14Current	4186	105a
IO.CurrentMonitor.Status.Load15Current	4187	105b

Description	ModBus	HEX
IO.CurrentMonitor.Status.Load16Current	4188	105c
IO.CurrentMonitor.Status.Ph1AllOff	4189	105d
IO.CurrentMonitor.Status.Ph2AllOff	4190	105e
IO.CurrentMonitor.Status.Ph3AllOff	4191	105f
IO.FixedIO.A.PV	4226	1082
IO.FixedIO.B.PV	4227	1083
IO.FixedIO.D1.PV	4224	1080
IO.FixedIO.D2.PV	4225	1081
IO.Mod.1.AlarmAck	4260	10a4
IO.Mod.1.MinOnTime	4292	10c4
IO.Mod.1.PV	4228	1084
IO.Mod.2.AlarmAck	4261	10a5
IO.Mod.2.MinOnTime	4293	10c5
IO.Mod.2.PV	4229	1085
IO.Mod.3.AlarmAck	4262	1005 10a6
	4202	10a0
IO.Mod.3.MinOnTime		1086
	4230	
IO.Mod.4.MinOnTime	4263	10a7
IO.Mod.4.MinOnTime	4295	10c7
IO.Mod.4.PV	4231	1087
IO.Mod.5.AlarmAck	4264	10a8
IO.Mod.5.MinOnTime	4296	10c8
IO.Mod.5.PV	4232	1088
IO.Mod.6.AlarmAck	4265	10a9
IO.Mod.6.MinOnTime	4297	10c9
IO.Mod.6.PV	4233	1089
IO.Mod.7.AlarmAck	4266	10aa
IO.Mod.7.MinOnTime	4298	10ca
IO.Mod.7.PV	4234	108a
IO.Mod.8.AlarmAck	4267	10ab
IO.Mod.8.MinOnTime	4299	10cb
IO.Mod.8.PV	4235	108b
IO.Mod.9.AlarmAck	4268	10ac
IO.Mod.9.MinOnTime	4300	10cc
IO.Mod.9.PV	4236	108c
IO.Mod.10.AlarmAck	4269	10ad
IO.Mod.10.MinOnTime	4301	10cd
IO.Mod.10.PV	4237	108d
IO.Mod.11.AlarmAck	4270	10ae
IO.Mod.11.MinOnTime	4302	10ce
IO.Mod.11.PV	4238	108e
IO.Mod.12.AlarmAck	4271	10af
IO.Mod.12.MinOnTime	4303	10cf
IO.Mod.12.PV	4239	108f
IO.Mod.13.AlarmAck	4272	10b0
IO.Mod.13.MinOnTime	4304	10d0
IO.Mod.13.PV	4240	1090
IO.Mod.14.AlarmAck	4273	10b1
IO.Mod.14.MinOnTime	4305	10d1
IO.Mod.14.NIIIOITTINE	4303	1001
IO.Mod.15.AlarmAck	4274	10b2
IO.Mod.15.MinOnTime	4306	1002 10d2
IO.Mod.15.PV	4242	
IO.Mod.16.AlarmAck	1	1092
	4275	10b3
IO.Mod.16.MinOnTime	4307	10d3
IO.Mod.16.PV	4243	1093
IO.Mod.17.AlarmAck	4276	10b4
IO.Mod.17.MinOnTime	4308	10d4

5		
Description	ModBus	HEX
IO.Mod.17.PV	4244	1094
IO.Mod.18.AlarmAck	4277	10b5
IO.Mod.18.MinOnTime	4309	10d5
IO.Mod.18.PV	4245	1095
IO.Mod.19.AlarmAck	4278	10b6
IO.Mod.19.MinOnTime	4310	10d6
IO.Mod.19.PV	4246	1096
IO.Mod.20.AlarmAck	4279	10b7
IO.Mod.20.MinOnTime	4311	10d7
IO.Mod.20.PV	4247	1097
IO.Mod.21.AlarmAck	4280	10b8
IO.Mod.21.MinOnTime	4312	10d8
IO.Mod.21.PV	4248	1098
IO.Mod.22.AlarmAck	4281	10b9
IO.Mod.22.MinOnTime	4313	10d9
IO.Mod.22.PV	4249	1099
IO.Mod.23.AlarmAck	4282	10ba
IO.Mod.23.MinOnTime	4314	10da
IO.Mod.23.PV	4250	109a
IO.Mod.24.AlarmAck	4283	10bb
IO.Mod.24.MinOnTime	4315	10db
IO.Mod.24.PV	4251	109b
IO.Mod.25.AlarmAck	4284	10bc
IO.Mod.25.MinOnTime	4316	10dc
IO.Mod.25.PV	4252	109c
IO.Mod.26.AlarmAck	4285	10bd
IO.Mod.26.MinOnTime	4317	10dd
IO.Mod.26.PV	4253	109d
IO.Mod.27.AlarmAck	4286	10be
IO.Mod.27.MinOnTime	4318	10de
IO.Mod.27.PV	4254	109e
IO.Mod.28.AlarmAck	4287	10bf
IO.Mod.28.MinOnTime	4319	10df
IO.Mod.28.PV	4255	109f
IO.Mod.29.AlarmAck	4288	10c0
IO.Mod.29.MinOnTime	4320	10e0
IO.Mod.29.PV	4256	10a0
IO.Mod.30.AlarmAck	4289	10c1
IO.Mod.30.MinOnTime	4321	10e1
IO.Mod.30.PV	4257	10a1
IO.Mod.31.AlarmAck	4290	10c2
IO.Mod.31.MinOnTime IO.Mod.31.PV	4322	10e2
	4258	10a2
IO.Mod.32.AlarmAck	4291	10c3
IO.Mod.32.MinOnTime	4323	10e3
IO.Mod.32.PV	4259	10a3
IO.ModIDs.Module1	12707	31a3
IO.ModIDs.Module2	12771	31e3
IO.ModIDs.Module3	12835	3223
IO.ModIDs.Module4	12899	3263
IPMonitor.1.Max	4915	1333
IPMonitor.1.Min	4916	1334
IPMonitor.1.Reset	4919	1337
IPMonitor.1.Threshold	4917	1335
IPMonitor.1.TimeAbove	4918	1336
IPMonitor.2.Max	4920	1338
IPMonitor.2.Min	4921	1339
IPMonitor.2.Reset	4924	133c

Description	ModBus	HEX	Description	ModBus	HEX
IPMonitor.2.Threshold	4922	133a	Lgc2.19.Out	4878	
IPMonitor.2.TimeAbove	4923		Lgc2.20.ln1	4879	
Lgc2.1.In1	4822	12d6	Lgc2.20.ln2	4880	
Lgc2.1.ln2	4823		Lgc2.20.Out	4881	1311
Lgc2.1.Out	4824	12d8	Lgc2.21.ln1	4882	
Lgc2.2.In1	4825		Lgc2.21.ln2	4883	
Lgc2.2.ln2	4826		Lgc2.21.Out	4884	
Lgc2.2.Out	4827	12db	Lgc2.22.ln1	4885	
Lgc2.3.ln1	4828		Lgc2.22.ln2	4886	
Lgc2.3.ln2	4829	12dd	Lgc2.22.Out	4887	1317
Lgc2.3.Out	4830		Lgc2.23.ln1	4888	
Lgc2.4.ln1	4831	12df	Lgc2.23.ln2	4889	
Lgc2.4.ln2	4832		Lgc2.23.Out	4890	
Lgc2.4.0ut	4833		Lgc2.24.ln1	4891	
Lgc2.5.ln1	4834	12e1		4892	
3	4835		Lgc2.24.ln2	4893	
Lgc2.5.In2	4836		Lgc2.24.Out	4894	
Lgc2.5.Out			Lgc8.1.ln1	1	
Lgc2.6.ln1	4837	12e5	Lgc8.1.ln2	4895	
Lgc2.6.ln2	4838		Lgc8.1.ln3	4896	
Lgc2.6.Out	4839		Lgc8.1.ln4	4897	
Lgc2.7.ln1	4840		Lgc8.1.ln5	4898	
Lgc2.7.ln2	4841	12e9	Lgc8.1.ln6	4899	
Lgc2.7.Out	4842	12ea	Lgc8.1.ln7	4900	
Lgc2.8.ln1	4843	12eb	Lgc8.1.ln8	4901	
Lgc2.8.ln2	4844	12ec	Lgc8.1.Out	4902	
Lgc2.8.Out	4845	12ed	Lgc8.2.ln1	4903	
Lgc2.9.ln1	4846		Lgc8.2.ln2	4904	
Lgc2.9.ln2	4847	12ef	Lgc8.2.ln3	4905	
Lgc2.9.Out	4848		Lgc8.2.In4	4906	
Lgc2.10.ln1	4849		Lgc8.2.ln5	4907	132b
Lgc2.10.ln2	4850		Lgc8.2.ln6	4908	
Lgc2.10.Out	4851	12f3	Lgc8.2.ln7	4909	
Lgc2.11.ln1	4852	12f4	Lgc8.2.ln8	4910	
Lgc2.11.ln2	4853	12f5	Lgc8.2.Out	4911	
Lgc2.11.Out	4854	12f6	Lin16.In	4960	
Lgc2.12.ln1	4855	12f7	Lin16.ln1	4929	
Lgc2.12.ln2	4856		Lin16.ln2	4930	
Lgc2.12.Out	4857	12f9	Lin16.ln3	4931	1343
Lgc2.13.ln1	4858		Lin16.ln4	4932	
Lgc2.13.ln2	4859	12fb	Lin16.In5	4933	1345
Lgc2.13.Out	4860	12fc	Lin16.In6	4934	
Lgc2.14.ln1	4861		Lin16.ln7	4935	1347
Lgc2.14.ln2	4862	12fe	Lin16.ln8	4936	1348
Lgc2.14.Out	4863		Lin16.ln9	4937	
Lgc2.15.ln1	4864	1300	Lin16.ln10	4938	134a
Lgc2.15.ln2	4865	1301	Lin16.ln11	4939	134b
Lgc2.15.Out	4866	1302	Lin16.ln12	4940	1340
Lgc2.16.ln1	4867	1303	Lin16.In13	4941	134d
Lgc2.16.ln2	4868	1304	Lin16.ln14	4942	134e
Lgc2.16.Out	4869	1305	Lin16.InHighLimit	4943	1341
Lgc2.17.ln1	4870	1306	Lin16.InLowLimit	4928	1340
Lgc2.17.ln2	4871	1307	Lin16.Out	4961	1361
Lgc2.17.Out	4872	1308	Lin16.Out1	4945	1351
Lgc2.18.ln1	4873	1309	Lin16.Out2	4946	1352
Lgc2.18.ln2	4874	130a	Lin16.Out3	4947	1353
Lgc2.18.Out	4875	130b	Lin16.Out4	4948	1354
Lgc2.19.ln1	4876	130c	Lin16.Out5	4949	1355
Lgc2.19.ln2	4877	130d	Lin16.Out6	4950	1356

Lin16.Out7 4951 1355 Lin16.Out8 4952 1358 Lin16.Out9 4953 1355 Lin16.Out10 4954 1356 Lin16.Out11 4956 1351 Lin16.Out12 4956 1356 Lin16.Out14 4958 1356 Lin16.Out14 (Mission and Properties) 4947 1356 Lin16.OutLowLimit 4958 1356 Lin16.OutLowLimit 4959 1356 Lin16.Outlag.Integratul 1356 1356 Loop.1.Diag.Sched 110 0077 Loop.1.Diag.Sched 110 0077	D : #	l	1.15.4
Lin16.Out8	Description	ModBus	HEX
Lin16.Out9 4953 1356 Lin16.Out10 4954 1356 Lin16.Out11 4955 1356 Lin16.Out13 4957 1356 Lin16.Out14 4958 1356 Lin16.OutHighLimit 4958 1356 Lin16.OutLowLimit 4944 1356 Loop.1.Diag.DerivativeOutContrib 113 0077 Loop.1.Diag.Berror 113 0077 Loop.1.Diag.IntegralOutContrib 118 0076 Loop.1.Diag.LoopBreakAlarm 116 0074 Loop.1.Diag.LoopBreakAlarm 116 0074 Loop.1.Diag.BopPropOutContrib 111 0076 Loop.1.Diag.SorbedCBH 32 0026 Loop.1.Diag.SchedCBH 32 0026 Loop.1.Diag.SchedCBL 33 0022 Loop.1.Diag.SchedCBL 33 0022 Loop.1.Diag.SchedOPLo 38 0024 Loop.1.Diag.SchedOPLo 38 0024 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTd			
Lin16.Out10 4954 1356 Lin16.Out11 4955 1351 Lin16.Out12 4956 1357 Lin16.Out13 4957 1356 Lin16.Out14 4958 1356 Lin16.OutLowLimit 4959 1356 Lin16.OutLowLimit 4944 1350 Loop.1.Diag.DerivativeOutContrib 119 9077 Loop.1.Diag.Berror 113 9077 Loop.1.Diag.LoopBreakAlarm 116 9074 Loop.1.Diag.LoopMode 114 9072 Loop.1.Diag.LoopMode 114 9072 Loop.1.Diag.SchedCBH 32 9026 Loop.1.Diag.SchedCBH 32 9026 Loop.1.Diag.SchedCBL 33 9022 Loop.1.Diag.SchedCBL 33 9022 Loop.1.Diag.SchedCBL 34 9022 Loop.1.Diag.SchedCBL 33 9022 Loop.1.Diag.SchedCBL 38 9026 Loop.1.Diag.SchedCBL 38 9026 Loop.1.Diag.SchedTa 31 90			
Lin16.Out11 4955 135t Lin16.Out12 4956 135c Lin16.Out13 4957 135c Lin16.Out14 4958 135c Lin16.OutHighLimit 4959 135c Lin16.OutLowLimit 4944 135t Loop.1.Diag.DerivativeOutContrib 119 0077 Loop.1.Diag.IntegralOutContrib 118 0076 Loop.1.Diag.LoopBreakAlarm 116 0074 Loop.1.Diag.LoopBreakAlarm 116 0074 Loop.1.Diag.LoopBreakAlarm 117 0075 Loop.1.Diag.LoopBreakAlarm 117 0075 Loop.1.Diag.ShedCBH 120 0076 Loop.1.Diag.ShedCBH 32 0020 Loop.1.Diag.SchedCBH 32 0020 Loop.1.Diag.SchedCBL 33 0022 Loop.1.Diag.SchedDBR 34 0022 Loop.1.Diag.SchedDBR 34 002 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedTi			
Lin16.Out12 4956 1356 Lin16.Out13 4957 1356 Lin16.Out14 4958 1356 Lin16.OutLowLimit 4959 135 Lin16.OutLowLimit 4944 1350 Loop.1.Diag.DerivativeOutContrib 119 0077 Loop.1.Diag.Error 113 0076 Loop.1.Diag.IntegralOutContrib 118 0076 Loop.1.Diag.LoopMode 114 0077 Loop.1.Diag.LoopMode 114 0077 Loop.1.Diag.SoredCBH 32 0020 Loop.1.Diag.SchedCBH 32 0020 Loop.1.Diag.SchedCBH 32 0020 Loop.1.Diag.SchedBH 34 0022 Loop.1.Diag.SchedDBR 34 0022 Loop.1.Diag.SchedOPLo 38 0024 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedTI 31 001 Loop.1.Diag.SchedTI 30 014 Loop.1.Diag.SchedTI 30 014 Loop.1.Diag.SchedTi 30			
Lin16.Out13 4957 1356 Lin16.OutHighLimit 4958 1356 Lin16.OutLowLimit 4959 135 Lin16.OutLowLimit 4944 1350 Loop.1.Diag.DerivativeOutContrib 119 007 Loop.1.Diag.Error 113 007 Loop.1.Diag.LoopBreakAlarm 116 007 Loop.1.Diag.LoopBreakAlarm 116 007 Loop.1.Diag.LoopMode 114 007 Loop.1.Diag.CoopMode 117 007 Loop.1.Diag.SoredCBH 120 007 Loop.1.Diag.SoredCBH 32 002 Loop.1.Diag.SchedCBH 32 002 Loop.1.Diag.SchedDBR 34 002 Loop.1.Diag.SchedDPI 37 002 Loop.1.Diag.SchedOPLo 38 002 Loop.1.Diag.SchedPB 29 001 Loop.1.Diag.SchedTB 29 001 Loop.1.Diag.SchedTI 30 001 Loop.1.Diag.SchedTI 30 001 Loop.1.Diag.SchedTi 30			
Lin16.OutHighLimit 4958 1356 Lin16.OutLowLimit 4944 1351 Loop.1.Diag.DerivativeOutContrib 119 0077 Loop.1.Diag.Error 113 0077 Loop.1.Diag.IntegralOutContrib 118 0076 Loop.1.Diag.LoopBreakAlarm 116 0077 Loop.1.Diag.LoopMode 114 0072 Loop.1.Diag.SpropOutContrib 117 0076 Loop.1.Diag.SpropOutContrib 117 0076 Loop.1.Diag.SpropOutContrib 117 0076 Loop.1.Diag.SchedCBH 32 0020 Loop.1.Diag.SchedCBH 32 0020 Loop.1.Diag.SchedDB 33 002 Loop.1.Diag.SchedDPBrk 35 002 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedR2G 36 0024 Loop.1.Diag.SchedTi 31 001 Loop.1.Diag.SchedTi 30 001 Loop.1.Diag.SchedTi 30 001 <td< td=""><td></td><td>4956</td><td></td></td<>		4956	
Lin16.OutHighLimit 4959 135 Lin16.OutLowLimit 4944 1350 Loop.1.Diag.DerivativeOutContrib 119 0077 Loop.1.Diag.IntegralOutContrib 113 0076 Loop.1.Diag.IntegralOutContrib 118 0076 Loop.1.Diag.LoopBreakAlarm 116 0076 Loop.1.Diag.LoopMode 114 0076 Loop.1.Diag.ShedCBL 117 0078 Loop.1.Diag.ShedCBH 32 0026 Loop.1.Diag.SchedCBH 32 0026 Loop.1.Diag.SchedCBL 33 0027 Loop.1.Diag.SchedMR 34 0022 Loop.1.Diag.SchedOPHi 37 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0014 Loop.1.Diag.SchedTi 30 0014 Loop.1.Diag.SchedTi 30 0014 Loop.1.Diag.		4957	135d
Lin16.OutLowLimit 4944 1350 Loop.1.Diag.DerivativeOutContrib 119 0077 Loop.1.Diag.Error 113 0077 Loop.1.Diag.IntegralOutContrib 118 0076 Loop.1.Diag.LoopBreakAlarm 116 0076 Loop.1.Diag.Sophode 114 0076 Loop.1.Diag.PropOutContrib 117 0078 Loop.1.Diag.ShedCBH 32 0026 Loop.1.Diag.SchedCBH 32 0026 Loop.1.Diag.SchedCBL 33 002 Loop.1.Diag.SchedMR 34 0022 Loop.1.Diag.SchedOPHi 37 0026 Loop.1.Diag.SchedOPLo 38 0024 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedTG 31 001 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0014 Loop.1.Diag.SchedTi 30 0014 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Diag.TargetOutVal 115 0073 Loop.1	Lin16.Out14		135e
Loop.1.Diag.DerivativeOutContrib 119 0077 Loop.1.Diag.Error 113 0077 Loop.1.Diag.LoopBreakAlarm 116 0074 Loop.1.Diag.LoopMode 114 0072 Loop.1.Diag.CopMode 114 0072 Loop.1.Diag.PropOutContrib 117 0078 Loop.1.Diag.ShedCBH 32 0022 Loop.1.Diag.SchedCBH 32 0022 Loop.1.Diag.SchedCBL 33 002 Loop.1.Diag.SchedCBL 33 002 Loop.1.Diag.SchedDPB 32 0022 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedTB 29 0016 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0014 Loop.1.Diag.SchedTi 30 0014 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.NorkingSP 2 0007 Loop.1.OP.Ch1OnOffHysteres	ū		135f
Loop.1.Diag.Error 113 007 Loop.1.Diag.IntegralOutContrib 118 0076 Loop.1.Diag.LoopBreakAlarm 116 0074 Loop.1.Diag.LoopMode 114 0072 Loop.1.Diag.PropOutContrib 117 0078 Loop.1.Diag.SerkedCBH 32 0022 Loop.1.Diag.SchedCBH 32 0022 Loop.1.Diag.SchedCBL 33 002 Loop.1.Diag.SchedDPBrk 35 002 Loop.1.Diag.SchedOPLo 38 002 Loop.1.Diag.SchedOPLo 38 002 Loop.1.Diag.SchedTB 29 001 Loop.1.Diag.SchedTB 29 001 Loop.1.Diag.SchedTG 36 002 Loop.1.Diag.SchedTi 30 001 Loop.1.Diag.SchedTi 30 001 Loop.1.Diag.TargetOutVal 115 007 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.Inhibit 20 001 Loop.1.Main.TargetSP 2 0002 Loop.1.Main.WorkingSP		4944	1350
Loop.1.Diag.IntegralOutContrib 118 0076 Loop.1.Diag.LoopBreakAlarm 116 0074 Loop.1.Diag.LoopMode 114 0072 Loop.1.Diag.SchedCBH 120 0078 Loop.1.Diag.SchedCBH 32 0020 Loop.1.Diag.SchedCBL 33 0022 Loop.1.Diag.SchedLPBrk 35 0022 Loop.1.Diag.SchedOPHi 37 0028 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedTB 29 0016 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.SchedTi 30 0016 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.Inhibit 20 0011 Loop.1.Main.Inhibit 20 0011 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch2OnOff	Loop.1.Diag.DerivativeOutContrib	119	0077
Loop.1.Diag.LoopBreakAlarm 116 0074 Loop.1.Diag.LoopMode 114 0072 Loop.1.Diag.PropOutContrib 117 0078 Loop.1.Diag.SBrk 120 0078 Loop.1.Diag.SchedCBH 32 0020 Loop.1.Diag.SchedCBL 33 002 Loop.1.Diag.SchedDPBrk 35 0023 Loop.1.Diag.SchedOPHi 37 0022 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedTB 29 0016 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0014 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0002 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.WorkingSP 5 0002 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch2Out 83 0055 Loop.1.OP.FeedForwardGain<	Loop.1.Diag.Error	113	0071
Loop.1.Diag.LoopMode 114 0072 Loop.1.Diag.PropOutContrib 117 0078 Loop.1.Diag.SBrk 120 0078 Loop.1.Diag.SchedCBH 32 0020 Loop.1.Diag.SchedCBL 33 0022 Loop.1.Diag.SchedMR 34 0022 Loop.1.Diag.SchedOPHi 37 0028 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0014 Loop.1.Diag.SchedPB 29 0014 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 001e Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.TargetSP 2 0007 Loop.1.Main.TargetSP 2 0007 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch2OnoffHysteresis 85 0055 Loop.1.OP.Ch2OnoffHysteresis 85 0055 Loop.1.OP.EedFor		118	0076
Loop.1.Diag.PropOutContrib 117 0075 Loop.1.Diag.SBrk 120 0076 Loop.1.Diag.SchedCBH 32 0026 Loop.1.Diag.SchedCBL 33 0027 Loop.1.Diag.SchedPBrk 35 0023 Loop.1.Diag.SchedOPHi 37 0025 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedTB 29 0016 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 004 Loop.1.Diag.SchedTi 30 004 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.TargetSP 2 0002 Loop.1.Main.WorkingSP 5 0008 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch2Deadband 16 0014 Loop.1.OP.Ch2Out 83 0055 Loop.1.OP.Ch2Out 83 0055 Loop.1.OP.Ch2Out 83 0055 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardTrimLimit 97 00	Loop.1.Diag.LoopBreakAlarm	116	0074
Loop.1.Diag.SBrk 120 0078 Loop.1.Diag.SchedCBH 32 0020 Loop.1.Diag.SchedCBL 33 002 Loop.1.Diag.SchedLPBrk 35 0023 Loop.1.Diag.SchedMR 34 0022 Loop.1.Diag.SchedOPHi 37 0026 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedR2G 36 0024 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0000 Loop.1.Main.AutoMan 10 0000 Loop.1.Main.Inhibit 20 001 Loop.1.Main.NorkingSP 2 0002 Loop.1.Main.WorkingSP 5 0000 Loop.1.OP.Ch1OnOffHysteresis 84 0056 Loop.1.OP.Ch2Deadband 16 0016 Loop.1.OP.Ch2OnOffHysteresis 85 0056 Loop.1.OP.Ch2OnOffHysteresis 85 0056 Loop.1.OP.CedFeedForwardGain 95 0056 Loop.1.OP.FeedForwardGain 95 0056 Loop.1.OP.FeedForwardTrimLimit 97 0066 Loop.1.OP.	Loop.1.Diag.LoopMode	114	0072
Loop.1.Diag.SchedCBH 32 0020 Loop.1.Diag.SchedCBL 33 002 Loop.1.Diag.SchedLPBrk 35 0023 Loop.1.Diag.SchedOPHi 37 0028 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedR2G 36 0024 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0001 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.TargetSP 2 0002 Loop.1.Main.WorkingSP 5 0002 Loop.1.OP.Ch1OnOffHysteresis 84 0052 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0053 Loop.1.OP.Ch2OnUt 83 0053 Loop.1.OP.EedForwardGain	Loop.1.Diag.PropOutContrib	117	0075
Loop.1.Diag.SchedCBL 33 002 Loop.1.Diag.SchedLPBrk 35 0023 Loop.1.Diag.SchedMR 34 0022 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedR2G 36 0026 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0006 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.WorkingSP 2 0002 Loop.1.Main.WorkingSP 5 0008 Loop.1.OP.Ch1Out 82 0052 Loop.1.OP.Ch2Deadband 16 0016 Loop.1.OP.Ch2OnOffHysteresis 85 0058 Loop.1.OP.Ch2OnOffHysteresis 85 0058 Loop.1.OP.EedForwardGain 95 0056 Loop.1.OP.FeedForwardGain 96 0056 Loop.1.OP.FeedForward	Loop.1.Diag.SBrk	120	0078
Loop.1.Diag.SchedLPBrk 35 0023 Loop.1.Diag.SchedMR 34 0023 Loop.1.Diag.SchedOPHi 37 0028 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedR2G 36 0024 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 000 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.NorkingSP 2 0002 Loop.1.Main.WorkingSP 5 0006 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch1Out 82 0052 Loop.1.OP.Ch2OnOffHysteresis 85 0056 Loop.1.OP.Ch2OnOffHysteresis 85 0056 Loop.1.OP.EedForwardGain 95 005 Loop.1.OP.EedForwardGain 95 005 Loop.1.OP.FeedForwardTrimLimit 97 0066 Loop.1.	Loop.1.Diag.SchedCBH	32	0020
Loop.1.Diag.SchedMR 34 0022 Loop.1.Diag.SchedOPHi 37 0028 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedR2G 36 0024 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.WorkingSP 2 0002 Loop.1.Main.WorkingSP 5 0006 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch1Out 82 0052 Loop.1.OP.Ch2Dadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0058 Loop.1.OP.Ch2OnType 93 0056 Loop.1.OP.Ch2OnType 93 0056 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardGin 95 005 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode		33	0021
Loop.1.Diag.SchedMR 34 0022 Loop.1.Diag.SchedOPHi 37 0028 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedR2G 36 0024 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.WorkingSP 2 0002 Loop.1.Main.WorkingSP 5 0006 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch1Out 82 0052 Loop.1.OP.Ch2Dadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0058 Loop.1.OP.Ch2OnType 93 0056 Loop.1.OP.Ch2OnType 93 0056 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardGin 95 005 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode	Loop.1.Diag.SchedLPBrk	35	0023
Loop.1.Diag.SchedOPHi 37 0028 Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedR2G 36 0024 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.NorkingSP 2 0002 Loop.1.Main.WorkingSP 5 0005 Loop.1.OP.Ch1OnOffHysteresis 84 0052 Loop.1.OP.Ch1OnOffHysteresis 85 0055 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0055 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.CoolType 93 0056 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardGffset 96 0066 Loop.1.OP.FeedForwardTrimLimit 97 0066 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 00056 Loop.1.		34	0022
Loop.1.Diag.SchedOPLo 38 0026 Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedR2G 36 0024 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.PV 1 0007 Loop.1.Main.WorkingSP 2 0002 Loop.1.Main.WorkingSP 5 0006 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch1OnOffHysteresis 85 0056 Loop.1.OP.Ch2OndfHysteresis 85 0056 Loop.1.OP.Ch2Out 83 0056 Loop.1.OP.CoolType 93 0056 Loop.1.OP.EedForwardGain 95 005 Loop.1.OP.FeedForwardGffset 96 0066 Loop.1.OP.FeedForwardTrimLimit 97 0066 Loop.1.OP.FeedForwardVal 98 0066 Loop.1.OP.FeedForwardVal 98 0066 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0006 Loop.1.OP.Masure		37	0025
Loop.1.Diag.SchedPB 29 0016 Loop.1.Diag.SchedR2G 36 0024 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.Hibit 20 0014 Loop.1.Main.PV 1 0007 Loop.1.Main.WorkingSP 2 0002 Loop.1.Main.WorkingSP 5 0008 Loop.1.OP.Ch1OnOffHysteresis 84 0052 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2Dout 83 0053 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.CoolType 93 0056 Loop.1.OP.EedForwardGain 95 005 Loop.1.OP.FeedForwardGfiset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 0066 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.Rate 86		38	0026
Loop.1.Diag.SchedR2G 36 0022 Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0002 Loop.1.Main.Hibit 20 0014 Loop.1.Main.PV 1 0007 Loop.1.Main.WorkingSP 2 0002 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch2Deadband 16 0016 Loop.1.OP.Ch2DonOffHysteresis 85 0052 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.EedForwardGain 95 005 Loop.1.OP.EedForwardGain 95 005 Loop.1.OP.FeedForwardTrimLimit 97 0066 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0052 Loop.1.OP.ManualMode 90 0052 Loop.1.OP.OutputHighLi			001d
Loop.1.Diag.SchedTd 31 001 Loop.1.Diag.SchedTi 30 0016 Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 000a Loop.1.Main.Inhibit 20 0014 Loop.1.Main.PV 1 0007 Loop.1.Main.WorkingSP 2 0002 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch2OnOffHysteresis 85 0052 Loop.1.OP.Ch2OnOffHysteresis 85 0053 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.EedForwardGain 95 0054 Loop.1.OP.EedForwardGain 95 0054 Loop.1.OP.FeedForwardOffset 96 0066 Loop.1.OP.FeedForwardTrimLimit 97 0066 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0056 Loop.1.OP			0024
Loop.1.Diag.SchedTi 30 001e Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0002 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.PV 1 0007 Loop.1.Main.WorkingSP 2 0002 Loop.1.OP.Ch1OnOffHysteresis 84 0052 Loop.1.OP.Ch1Out 82 0052 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0052 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.EnablePowerFeedforward 91 0054 Loop.1.OP.EedForwardGain 95 005 Loop.1.OP.FeedForwardOffset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 0066 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 005a Loop.1.OP.ManualOutVal 3 0005 Loop.1.OP.ManualOutVal 3 0005 Loop.1.OP.OutputHighLimit 80 0050 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0055 Loop.1.OP			001f
Loop.1.Diag.TargetOutVal 115 0073 Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.PV 1 0007 Loop.1.Main.WorkingSP 2 0002 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch2OnOffHysteresis 85 0052 Loop.1.OP.Ch2OnOffHysteresis 85 0052 Loop.1.OP.Ch2Out 83 0052 Loop.1.OP.Ch2Out 83 0052 Loop.1.OP.CoolType 93 0056 Loop.1.OP.EedForwardGain 95 005 Loop.1.OP.FeedForwardGffset 96 0060 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 005a Loop.1.OP.ManualOutVal 3 0005 Loop.1.OP.OutputHighLimit 80 0050 Loop.1.OP.Rate 86 0056 Loop.1.OP.RemO		30	001e
Loop.1.Main.ActiveOut 4 0004 Loop.1.Main.AutoMan 10 0006 Loop.1.Main.Inhibit 20 0014 Loop.1.Main.PV 1 0007 Loop.1.Main.TargetSP 2 0002 Loop.1.OP.Ch1OnOffHysteresis 84 0052 Loop.1.OP.Ch1OnOffHysteresis 84 0052 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0052 Loop.1.OP.Ch2Out 83 0052 Loop.1.OP.CoolType 93 0056 Loop.1.OP.EnablePowerFeedforward 91 0058 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardOffset 96 0060 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0058 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.OutputHighLimit 80 0050 Loop.1.OP.Rate 86 0056 Lo			0073
Loop.1.Main.AutoMan 10 000a Loop.1.Main.Inhibit 20 001a Loop.1.Main.PV 1 000a Loop.1.Main.TargetSP 2 000a Loop.1.Main.WorkingSP 5 000a Loop.1.OP.Ch1OnOffHysteresis 84 005a Loop.1.OP.Ch2OnOffHysteresis 82 005a Loop.1.OP.Ch2OnOffHysteresis 85 005a Loop.1.OP.Ch2Out 83 005a Loop.1.OP.Ch2Out 83 005a Loop.1.OP.EnablePowerFeedforward 91 005a Loop.1.OP.EnablePowerFeedforward 91 005a Loop.1.OP.FeedForwardGain 95 005a Loop.1.OP.FeedForwardOffset 96 006a Loop.1.OP.FeedForwardTrimLimit 97 006a Loop.1.OP.FeedForwardVal 98 006a Loop.1.OP.FeedForwardVal 98 006a Loop.1.OP.ManualMode 90 005a Loop.1.OP.ManualOutVal 3 000a Loop.1.OP.MeasuredPower 92 005a Loop.1.OP.OutputHighLimit 80 005a Loop.1.OP.Rate 86 005a Loop.1.OP.RemOPH 102 006a			0004
Loop.1.Main.Inhibit 20 0014 Loop.1.Main.PV 1 0007 Loop.1.Main.TargetSP 2 0002 Loop.1.Main.WorkingSP 5 0008 Loop.1.OP.Ch1OnOffHysteresis 84 0052 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0058 Loop.1.OP.Ch2Out 83 0050 Loop.1.OP.CoolType 93 0050 Loop.1.OP.EnablePowerFeedforward 91 0050 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardGffset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 0066 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0050 Loop.1.OP.Rate 86 0056 Loop.1.OP.RemOPH 102 0066			
Loop.1.Main.PV 1 000 Loop.1.Main.TargetSP 2 0002 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch1Out 82 0052 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0053 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.CoolType 93 0050 Loop.1.OP.EnablePowerFeedforward 91 0051 Loop.1.OP.FeedForwardGain 95 0050 Loop.1.OP.FeedForwardOffset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 0060 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.MeasuredPower 92 0050 Loop.1.OP.OutputHighLimit 80 0050 Loop.1.OP.Rate 86 0056 Loop.1.OP.RemOPH 102 0066	·		
Loop.1.Main.TargetSP 2 0002 Loop.1.Main.WorkingSP 5 0008 Loop.1.OP.Ch1OnOffHysteresis 84 0054 Loop.1.OP.Ch1Out 82 0052 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0052 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.CoolType 93 0056 Loop.1.OP.EnablePowerFeedforward 91 0056 Loop.1.OP.FeedForwardGain 95 0056 Loop.1.OP.FeedForwardOfffset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 0063 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0050 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0053 Loop.1.OP.RemOPH 102 0066			
Loop.1.Main.WorkingSP 5 0008 Loop.1.OP.Ch1OnOffHysteresis 84 0052 Loop.1.OP.Ch1Out 82 0052 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0058 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.CoolType 93 0050 Loop.1.OP.EnablePowerFeedforward 91 0058 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardOffset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 0063 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0050 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0052 Loop.1.OP.RemOPH 102 0066			
Loop.1.OP.Ch1OnOffHysteresis 84 0052 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0058 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.CoolType 93 0056 Loop.1.OP.EnablePowerFeedforward 91 0051 Loop.1.OP.FeedForwardGain 95 0056 Loop.1.OP.FeedForwardOffset 96 0067 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0057 Loop.1.OP.RemOPH 102 0066			
Loop.1.OP.Ch1Out 82 0052 Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0058 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.CoolType 93 0050 Loop.1.OP.EnablePowerFeedforward 91 0051 Loop.1.OP.FeedForwardGain 95 0050 Loop.1.OP.FeedForwardOffset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 0061 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0005 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.Rate 86 0056 Loop.1.OP.RemOPH 102 0066			
Loop.1.OP.Ch2Deadband 16 0010 Loop.1.OP.Ch2OnOffHysteresis 85 0053 Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.CoolType 93 0056 Loop.1.OP.EnablePowerFeedforward 91 0056 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardOffset 96 0066 Loop.1.OP.FeedForwardTrimLimit 97 0066 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.OutputLowLimit 81 0057 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0057 Loop.1.OP.RemOPH 102 0066			
Loop.1.OP.Ch2OnOffHysteresis 85 0058 Loop.1.OP.Ch2Out 83 0056 Loop.1.OP.CoolType 93 0056 Loop.1.OP.EnablePowerFeedforward 91 0058 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardOffset 96 0066 Loop.1.OP.FeedForwardTrimLimit 97 0067 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FF_Rem 103 0067 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0005 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0056 Loop.1.OP.RemOPH 102 0066			
Loop.1.OP.Ch2Out 83 0053 Loop.1.OP.CoolType 93 0056 Loop.1.OP.EnablePowerFeedforward 91 0058 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardOffset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 0067 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FF_Rem 103 0067 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.OutputLowLimit 81 0057 Loop.1.OP.Rate 86 0056 Loop.1.OP.RemOPH 102 0066	· · · · · · · · · · · · · · · · · · ·		
Loop.1.OP.CoolType 93 0050 Loop.1.OP.EnablePowerFeedforward 91 0051 Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardOffset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 006 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FF_Rem 103 0067 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0050 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0057 Loop.1.OP.RemOPH 102 0066			
Loop.1.OP.EnablePowerFeedforward 91 005t Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardOffset 96 006t Loop.1.OP.FeedForwardTrimLimit 97 006t Loop.1.OP.FeedForwardType 94 005t Loop.1.OP.FeedForwardVal 98 006t Loop.1.OP.FF_Rem 103 006t Loop.1.OP.ManualMode 90 005t Loop.1.OP.ManualOutVal 3 000t Loop.1.OP.MeasuredPower 92 005t Loop.1.OP.OutputHighLimit 80 005t Loop.1.OP.OutputLowLimit 81 005t Loop.1.OP.Rate 86 005t Loop.1.OP.RateDisable 87 005t Loop.1.OP.RemOPH 102 006t	•		
Loop.1.OP.FeedForwardGain 95 005 Loop.1.OP.FeedForwardOffset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 0063 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FF_Rem 103 0063 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.OtputLowLimit 81 0057 Loop.1.OP.Rate 86 0056 Loop.1.OP.RemOPH 102 0066			
Loop.1.OP.FeedForwardOffset 96 0060 Loop.1.OP.FeedForwardTrimLimit 97 0060 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FF_Rem 103 0060 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.OptputLowLimit 81 0057 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0057 Loop.1.OP.RemOPH 102 0066	*		
Loop.1.OP.FeedForwardTrimLimit 97 006 Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FE_Rem 103 0067 Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.OutputLowLimit 81 0057 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0057 Loop.1.OP.RemOPH 102 0066	-		
Loop.1.OP.FeedForwardType 94 0056 Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FF_Rem 103 0067 Loop.1.OP.ManualMode 90 005a Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 005a Loop.1.OP.OutputHighLimit 80 005a Loop.1.OP.OutputLowLimit 81 005a Loop.1.OP.Rate 86 005a Loop.1.OP.RateDisable 87 005a Loop.1.OP.RemOPH 102 0066a	•		
Loop.1.OP.FeedForwardVal 98 0062 Loop.1.OP.FF_Rem 103 0067 Loop.1.OP.ManualMode 90 005a Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 005a Loop.1.OP.OutputHighLimit 80 005a Loop.1.OP.OutputLowLimit 81 005a Loop.1.OP.Rate 86 005a Loop.1.OP.RateDisable 87 005a Loop.1.OP.RemOPH 102 006a			
Loop.1.OP.FF_Rem 103 0063 Loop.1.OP.ManualMode 90 0053 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.OutputLowLimit 81 0056 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0057 Loop.1.OP.RemOPH 102 0066		—	
Loop.1.OP.ManualMode 90 0056 Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.OutputLowLimit 81 0056 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0057 Loop.1.OP.RemOPH 102 0066			
Loop.1.OP.ManualOutVal 3 0003 Loop.1.OP.MeasuredPower 92 0056 Loop.1.OP.OutputHighLimit 80 0056 Loop.1.OP.OutputLowLimit 81 0056 Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0056 Loop.1.OP.RemOPH 102 0066			
Loop.1.OP.MeasuredPower 92 005c Loop.1.OP.OutputHighLimit 80 005c Loop.1.OP.OutputLowLimit 81 005c Loop.1.OP.Rate 86 005c Loop.1.OP.RateDisable 87 005c Loop.1.OP.RemOPH 102 006c	•		005a
Loop.1.OP.OutputHighLimit 80 0050 Loop.1.OP.OutputLowLimit 81 0050 Loop.1.OP.Rate 86 0050 Loop.1.OP.RateDisable 87 0050 Loop.1.OP.RemOPH 102 0060	-		0003
Loop.1.OP.OutputLowLimit 81 005 Loop.1.OP.Rate 86 005 Loop.1.OP.RateDisable 87 005 Loop.1.OP.RemOPH 102 006			005c
Loop.1.OP.Rate 86 0056 Loop.1.OP.RateDisable 87 0057 Loop.1.OP.RemOPH 102 0066			0050
Loop.1.OP.RateDisable 87 0057 Loop.1.OP.RemOPH 102 0066			0051
Loop.1.OP.RemOPH 102 0066	•		0056
	*		0057
			0066
	•	101	0065
		89	0059
Loop.1.OP.SensorBreakMode 88 0058	Loop.1.OP.SensorBreakMode	88	0058

Loop.1.OP.TrackCutVal 99 0063	Description	ModBus	HEX
Loop.1.OP.TrackOutVal	·		
Loop.1.PID.Boundary1-2			0063
Loop.1.PID.Boundary2-3	Loop.1.PID.ActiveSet	28	001c
Loop.1.PID.CutbackHigh 18 0012 Loop.1.PID.CutbackHigh2 46 002e Loop.1.PID.CutbackHigh3 56 0038 Loop.1.PID.CutbackLow 17 0011 Loop.1.PID.CutbackLow2 47 002f Loop.1.PID.DerivativeTime 9 0009 Loop.1.PID.DerivativeTime 9 0009 Loop.1.PID.IntegralTime 8 002d Loop.1.PID.IntegralTime 8 0008 Loop.1.PID.IntegralTime 8 0036 Loop.1.PID.LoopBreakTime 40 002c Loop.1.PID.LoopBreakTime 40 0028 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.ManualReset3 58 003a Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputLo2 50 0034	Loop.1.PID.Boundary1-2	26	001a
Loop.1.PID.CutbackHigh2 46 002e Loop.1.PID.CutbackLow 17 0011 Loop.1.PID.CutbackLow2 47 002f Loop.1.PID.CutbackLow3 57 0039 Loop.1.PID.DerivativeTime 9 0009 Loop.1.PID.DerivativeTime2 45 002d Loop.1.PID.IntegralTime3 55 0037 Loop.1.PID.IntegralTime3 55 0037 Loop.1.PID.IntegralTime3 54 0036 Loop.1.PID.LoopBreakTime 40 0028 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.NumSets 64 0040 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputH0 42 002a Loop.1.PID.ProportionalBand 6 003e Loop.1.PID.ProportionalBand3 63 003s	Loop.1.PID.Boundary2-3	27	001b
Loop.1.PID.CutbackLow 17 0011 Loop.1.PID.CutbackLow 17 0011 Loop.1.PID.CutbackLow3 57 0039 Loop.1.PID.DerivativeTime 9 0009 Loop.1.PID.DerivativeTime 45 002d Loop.1.PID.DerivativeTime3 55 0037 Loop.1.PID.IntegralTime 8 0008 Loop.1.PID.IntegralTime2 44 002c Loop.1.PID.LoopBreakTime 40 0028 Loop.1.PID.LoopBreakTime3 54 0036 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.ManualReset3 58 003a Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo 42 002a Loop.1.PID.ProportionalBand 6 0030 Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 9 0013 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 <tr< td=""><td>Loop.1.PID.CutbackHigh</td><td>18</td><td>0012</td></tr<>	Loop.1.PID.CutbackHigh	18	0012
Loop.1.PID.CutbackLow		46	002e
Loop.1.PID.CutbackLow3 47 002f Loop.1.PID.DerivativeTime 9 0009 Loop.1.PID.DerivativeTime2 45 002d Loop.1.PID.DerivativeTime3 55 0037 Loop.1.PID.IntegralTime 8 0008 Loop.1.PID.IntegralTime2 44 002c Loop.1.PID.IntegralTime3 54 0036 Loop.1.PID.LoopBreakTime3 54 0036 Loop.1.PID.LoopBreakTime3 59 0031 Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.ManualReset3 58 003a Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo 42 002a Loop.1.PID.ProportionalBand 6 003e Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.RelCh2Gain2 50 0032 <			
Loop.1.PID.CutbackLow3 57 0039 Loop.1.PID.DerivativeTime 9 0009 Loop.1.PID.DerivativeTime2 45 002d Loop.1.PID.IntegralTime3 55 0037 Loop.1.PID.IntegralTime8 8 0008 Loop.1.PID.IntegralTime9 44 002c Loop.1.PID.LoopBreakTime 40 0028 Loop.1.PID.LoopBreakTime2 49 0031 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 002b Loop.1.PID.ManualReset3 58 003a Loop.1.PID.NumSets 64 0040 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi2 51 0033 Loop.1.PID.OutputH03 61 003a Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.ProportionalBand3 63 0035 Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain3 60 0032 Loop.1.PID.RelCh2Gain3 60 0032 <			
Loop.1.PID.DerivativeTime 9 0009 Loop.1.PID.DerivativeTime2 45 002d Loop.1.PID.DerivativeTime3 55 0037 Loop.1.PID.IntegralTime 8 0008 Loop.1.PID.IntegralTime2 44 002c Loop.1.PID.LoopBreakTime 40 0028 Loop.1.PID.LoopBreakTime2 49 0031 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.ManualReset3 58 003a Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo 42 002a Loop.1.PID.ProportionalBand 6 003e Loop.1.PID.ProportionalBand 6 003e Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerType 63 003c Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.Cht2ControlType 23 0017	,		
Loop.1.PID.DerivativeTime3 55 0037 Loop.1.PID.IntegralTime 8 0008 Loop.1.PID.IntegralTime2 44 002c Loop.1.PID.IntegralTime3 54 0036 Loop.1.PID.LoopBreakTime 40 002a Loop.1.PID.LoopBreakTime2 49 0031 Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi12 51 0033 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.RelCh2Gain3 60 003c Loop.1.Setup.Ch11ControlType 23 0017	'		
Loop.1.PID.DerivativeTime3 55 0037 Loop.1.PID.IntegralTime 8 0008 Loop.1.PID.IntegralTime2 44 002c Loop.1.PID.IntegralTime3 54 0036 Loop.1.PID.LoopBreakTime 40 0028 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset2 48 0030 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.MumSets 64 0040 Loop.1.PID.OutputHii 41 0029 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputHL02 52 0034 Loop.1.PID.OutputL03 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerType 63 003f			
Loop.1.PID.IntegralTime 8 0008 Loop.1.PID.IntegralTime2 44 002c Loop.1.PID.LoopBreakTime 40 0028 Loop.1.PID.LoopBreakTime2 49 0031 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset2 48 0030 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi2 51 0033 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.DerivativeType 23 0017 Loop.1.Setup.PBUnits 24 0018 <	•		
Loop.1.PID.IntegralTime2 44 002c Loop.1.PID.LoopBreakTime 40 0028 Loop.1.PID.LoopBreakTime2 49 0031 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset2 48 0030 Loop.1.PID.NumSets 64 0040 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi2 51 003a Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gaina 19 0013 Loop.1.PID.RelCh2Gaina 19 0013 Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.Setup.CH2ControlType 23 003f Loop.1.Setup.Ch2ControlType 23 0017	· · · · · · · · · · · · · · · · · · ·		
Loop.1.PID.IntegralTime3 54 0036 Loop.1.PID.LoopBreakTime 40 0028 Loop.1.PID.LoopBreakTime2 49 0031 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.Output. 41 0029 Loop.1.PID.OutputHii 41 0029 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gaina 19 0013 Loop.1.PID.RelCh2Gaina 60 003e Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.Ch2ControlType 23 0017			
Loop.1.PID.LoopBreakTime 40 0028 Loop.1.PID.LoopBreakTime2 49 0031 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset2 48 0030 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.NumSets 64 0040 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi2 51 003a Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo3 62 003e Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ReiCh2Gain 19 0013 Loop.1.PID.ReiCh2Gain3 60 003c Loop.1.PID.ReiCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 004 Loop.1.Setup.CH1ControlType 22 0016			
Loop.1.PID.LoopBreakTime2 49 0031 Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset2 48 0030 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.NumSets 64 0040 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi2 51 0033 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH2ControlType 22 0016			
Loop.1.PID.LoopBreakTime3 59 003b Loop.1.PID.ManualReset 39 0027 Loop.1.PID.ManualReset2 48 0030 Loop.1.PID.NumSets 64 0040 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi2 51 0033 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.Ch2ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 </td <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td>	· · · · · · · · · · · · · · · · · · ·		
Loop.1.PID.ManualReset2 48 0030 Loop.1.PID.ManualReset3 58 003a Loop.1.PID.NumSets 64 0040 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi2 51 0033 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.RangeLow 11 000b	<u> </u>	59	003b
Loop.1.PID.ManualReset3 58 003a Loop.1.PID.NumSets 64 0040 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.DerivativeType 25 0019 Loop.1.SP.AltSP 68 0044		39	0027
Loop.1.PID.NumSets 64 0040 Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi2 51 0033 Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 <td>Loop.1.PID.ManualReset2</td> <td>48</td> <td>0030</td>	Loop.1.PID.ManualReset2	48	0030
Loop.1.PID.OutputHi 41 0029 Loop.1.PID.OutputHi2 51 0033 Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.ProportionalBand 62 003e Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.PBUnits 24 0018 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RateDiable 71 0047 Loop.1.SP.RateDone 79 004f <	Loop.1.PID.ManualReset3	58	003a
Loop.1.PID.OutputHi2 51 0033 Loop.1.PID.OutputHi3 61 003d Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.ReICh2Gain 19 0013 Loop.1.PID.ReICh2Gain2 50 0032 Loop.1.PID.ReICh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.PID.SchedulerType 63 003f Loop.1.PID.SchedulerType 20 0016 Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.RangeLow 11 0006 Loop.1.SP.RateDisable 71 0047	Loop.1.PID.NumSets	64	0040
Loop.1.PID.OutputLIO 42 002a Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.PID.SchedulerType 63 003f Loop.1.PID.SchedulerType 22 0016 Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.RangeLow 11 000b </td <td>Loop.1.PID.OutputHi</td> <td>41</td> <td>0029</td>	Loop.1.PID.OutputHi	41	0029
Loop.1.PID.OutputLo 42 002a Loop.1.PID.OutputLo2 52 0034 Loop.1.PID.ProportionalBand 62 003e Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.PID.SchedulerType 63 003f Loop.1.PID.SchedulerType 22 0016 Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.RangeLow 11 000b Loop.1.SP.RateDone 79 0046 <td></td> <td>51</td> <td>0033</td>		51	0033
Loop.1.PID.OutputLo3 52 0034 Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.LoopType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.RangeHigh 12 000c Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 L	·		003d
Loop.1.PID.OutputLo3 62 003e Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.PID.SchedulerType 22 0016 Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.DerivativeType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SPHighLimit 66 0042			
Loop.1.PID.ProportionalBand 6 0006 Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.PBUnits 24 0018 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.RangeHigh 12 000c Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SPLowLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.PID.ProportionalBand2 43 002b Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.DopType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SPLowLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f	·		
Loop.1.PID.ProportionalBand3 53 0035 Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.Ch2ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.DerivativeType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDone 79 004f Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SPLowLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f	·		
Loop.1.PID.RelCh2Gain 19 0013 Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.Ch2ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.DerivativeType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDone 79 004f Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.PID.RelCh2Gain2 50 0032 Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.DerivativeType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.PID.RelCh2Gain3 60 003c Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.DerivativeType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f	•		
Loop.1.PID.SchedulerRemoteInput 65 0041 Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.LoopType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.PID.SchedulerType 63 003f Loop.1.Setup.CH1ControlType 22 0016 Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.LoopType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f	•	65	
Loop.1.Setup.CH2ControlType 23 0017 Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.LoopType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f		63	003f
Loop.1.Setup.ControlAction 7 0007 Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.LoopType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f		22	0016
Loop.1.Setup.DerivativeType 25 0019 Loop.1.Setup.LoopType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f	Loop.1.Setup.CH2ControlType	23	0017
Loop.1.Setup.LoopType 21 0015 Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f	Loop.1.Setup.ControlAction	7	0007
Loop.1.Setup.PBUnits 24 0018 Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f	Loop.1.Setup.DerivativeType	25	0019
Loop.1.SP.AltSP 68 0044 Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f		21	
Loop.1.SP.AltSPSelect 69 0045 Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.SP.ManualTrack 75 004b Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.SP.RangeHigh 12 000c Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f	,		
Loop.1.SP.RangeLow 11 000b Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.SP.Rate 70 0046 Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.SP.RateDisable 71 0047 Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f	-	_	
Loop.1.SP.RateDone 79 004f Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.SP.SP1 13 000d Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.SP.SP2 14 000e Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.SP.SPHighLimit 66 0042 Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f	•		
Loop.1.SP.SPLowLimit 67 0043 Loop.1.SP.SPSelect 15 000f			
Loop.1.SP.SPSelect 15 000f			
			000f

Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FF_Rem 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157	D	l. 4 15	1151
Loop.1.SP.SPTrimLowLimit 73 004a Loop.1.SP.SPTrimLowLimit 74 004a Loop.1.SP.TrackPV 77 004d Loop.1.SP.TrackSP 78 004e Loop.1.Tune.AutotuneEnable 108 006c Loop.1.Tune.OutputHighLimit 105 006a Loop.1.Tune.Stage 111 006 Loop.1.Tune.StageTime 112 0070 Loop.1.Tune.StageSize 109 006d Loop.1.Tune.StageSize 109 006d Loop.1.Tune.Type 104 006a Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.DerivativeOutContrib 374 0176 Loop.2.Diag.IntegralOutContrib 374 0176 Loop.2.Diag.IntegralOutContrib 374 0176 Loop.2.Diag.BopMode 370 0172 Loop.2.Diag.SobedCBH 288 0120 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBH 288 0121 Loop.2.Diag.SchedPB 288 0114 </td <td>·</td> <td></td> <td></td>	·		
Loop.1.SP.TrackPV 77 004d Loop.1.SP.TrackSP 78 004e Loop.1.Tune.AutotuneEnable 108 006c Loop.1.Tune.OutputHighLimit 105 006a Loop.1.Tune.OutputLowLimit 106 006a Loop.1.Tune.Stage 111 007c Loop.1.Tune.Stage Ime 112 007c Loop.1.Tune.Stage Ime 112 007c Loop.1.Tune.Stage Ime 110 006d Loop.1.Tune.Stage Ime 110 006d Loop.1.Tune.Stage Ime 104 006a Loop.2.Diag.Beror 369 017t Loop.2.Diag.Beror 369 017t Loop.2.Diag.LoopMode 370 017z Loop.2.Diag.LoopMode 370 017z Loop.2.Diag.SchedCBH 288 0125 Loop.2.Diag.			
Loop.1.SP.TrackSP 78 004e Loop.1.Tune.AutotuneEnable 108 006c Loop.1.Tune.OutputHighLimit 105 006a Loop.1.Tune.OutputLowLimit 106 006a Loop.1.Tune.Stage 111 006a Loop.1.Tune.Stage Ime 112 0070 Loop.1.Tune.Stage Ime 112 0070 Loop.1.Tune.Stage Ime 112 0070 Loop.1.Tune.Stage Ime 100 006a Loop.2.Diag.Deror 369 0171 Loop.2.Diag.Deror 369 0171 Loop.2.Diag.LoopBreakAlarm 372 0172 Loop.2.Diag.BendCob 370 0172 Loop.2.Diag.ShedCBH 288 0120 Loo			
Loop.1.SP.TrackSP 78 004e Loop.1.Tune.AutotuneEnable 108 006c Loop.1.Tune.OutputHighLimit 105 0069 Loop.1.Tune.OutputLowLimit 106 006a Loop.1.Tune.Stage 111 0060 Loop.1.Tune.StageTime 112 0070 Loop.1.Tune.StageTime 112 0070 Loop.1.Tune.StageSize 109 006d Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.BerivativeOutContrib 374 0176 Loop.2.Diag.LoopBreakAlarm 372 0174 Loop.2.Diag.LoopBode 370 0172 Loop.2.Diag.SophedCBH 288 0120 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedCBL 289 0122 Loop.2.Diag.SchedCBL 290 0122 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedPB 285 011d <td></td> <td>-</td> <td></td>		-	
Loop.1.Tune.AutotuneEnable 108 006c Loop.1.Tune.OutputI-lighLimit 105 0069 Loop.1.Tune.OutputLowLimit 106 006a Loop.1.Tune.Stage 111 0070 Loop.1.Tune.Stage 111 0070 Loop.1.Tune.Stage 111 006e Loop.1.Tune.Stage 119 006e Loop.1.Tune.Stage 109 006d Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.Berror 369 0171 Loop.2.Diag.IntegralOutContrib 374 0176 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBH 288 0121 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedPB 285 011d <			
Loop.1.Tune.OutputHighLimit 105 0069 Loop.1.Tune.OutputLowLimit 106 006a Loop.1.Tune.Stage 111 006 Loop.1.Tune.Stage Iime 112 0070 Loop.1.Tune.StepSize 109 006d Loop.2.Diag.Berior 369 0171 Loop.2.Diag.Berror 369 0171 Loop.2.Diag.LoopBreakAlarm 372 0174 Loop.2.Diag.LoopBreakAlarm 372 0174 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.SpropOutContrib 373 0175 Loop.2.Diag.SpropOutContrib 373 0175 Loop.2.Diag.SpropOutContrib 373 0178 Loop.2.Diag.SchedCBH 288 0121 Loop.2.Diag.SchedCBH 288 0121 Loop.2.Diag.SchedGBL 289 0122 Loop.2.Diag.SchedGBL 293 0125 Loop.2.Diag.SchedGBL 294 0124 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTG 292 0124 <t< td=""><td>-</td><td></td><td></td></t<>	-		
Loop.1.Tune.Stage 111 006 Loop.1.Tune.Stage 111 0070 112 0070 Loop.1.Tune.StageTime 112 0070 112 0070 Loop.1.Tune.StageSize 109 006d 109 006d Loop.1.Tune.Type 104 0068 104 0068 Loop.2.Diag.DerivativeOutContrib 375 0177 369 0171 Loop.2.Diag.IntegralOutContrib 374 0176 370 0174 Loop.2.Diag.LoopBreakAlarm 377 0174 370 0172 Loop.2.Diag.LoopMode 370 0172 370 0172 Loop.2.Diag.SpropOutContrib 373 0175 370 0178 Loop.2.Diag.SpropOutContrib 373 0175 370 0178 Loop.2.Diag.SchedCBH 288 0120 280 0121 Loop.2.Diag.SchedCBH 288 0120 280 0121 Loop.2.Diag.SchedCBL 299 0122 290 0122 Loop.2.Diag.SchedDPlri 293 0125 290 0122 Loop.2.Diag.SchedOPHi 293 0125 290 0124 Loop.2.Diag.SchedPB 285 011d 280 011d Loop.2.Diag.SchedTd 292 0124 280 011d Loop.2.Diag.SchedTd 287 011f 286 011e Loop.2.Diag.SchedTi 286 011e 280 011e Loop.2.Diag.SchedTi 286 011e 280 011e Loop.2.Diag.Main.PV 267 011 260 0104			
Loop.1.Tune.Stage 111 006f Loop.1.Tune.StageTime 112 0070 Loop.1.Tune.State 110 006e Loop.1.Tune.Type 104 0068 Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.LoopBreakAlarm 372 0174 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.SpropOutContrib 373 0175 Loop.2.Diag.SpropOutContrib 373 0175 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedDPBrk 291 0123 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 <			
Loop.1.Tune.StageTime 112 0070 Loop.1.Tune.State 110 006e Loop.1.Tune.StepSize 109 006d Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.IntegralOutContrib 374 0176 Loop.2.Diag.IntegralOutContrib 374 0176 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.SopMode 370 0175 Loop.2.Diag.SBrk 376 0178 Loop.2.Diag.SBrk 376 0178 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedCBL 289 0122 Loop.2.Diag.SchedCBL 293 0125 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedPB 285 0112 Loop.2.Diag.SchedPB 285 0114 Loop.2.Diag.SchedTd 287 0114 Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.SchedTi 286 011e Loop.2			
Loop.1.Tune.State 110 006e Loop.1.Tune.StepSize 109 006d Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.Error 369 0171 Loop.2.Diag.IntegralOutContrib 374 0176 Loop.2.Diag.LoopBreakAlarm 372 0174 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.ShedCBH 378 0178 Loop.2.Diag.ShedCBH 288 0121 Loop.2.Diag.SchedCBL 288 0121 Loop.2.Diag.SchedCBL 289 0122 Loop.2.Diag.SchedCBL 290 0122 Loop.2.Diag.SchedCBL 290 0122 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedR2G 292 0124 Loop.2.Diag.SchedTd 287 0114 Loop.2.Diag.SchedTd 287 0114 Loop.2.Diag.SchedTd 287 0114 Loop.2.Diag.SchedTi 280 014 Loop.2			
Loop.1.Tune.StepSize 109 006d Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.Error 369 0171 Loop.2.Diag.IntegralOutContrib 374 0176 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.SpropOutContrib 373 0175 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedCBL 299 0123 Loop.2.Diag.SchedCBL 299 0122 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTB 285 011d Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.SchedTi 286 011e L			
Loop.1.Tune.Type 104 0068 Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.Error 369 0171 Loop.2.Diag.LoopBreakAlarm 372 0174 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.SopOutContrib 373 0175 Loop.2.Diag.SRk 376 0178 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedOPH 293 0125 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTB 285 011d Loop.2.Diag.SchedTd 227 0114 Loop.2.Diag.SchedTd 227 0111 Loop.2.Diag.SchedTd 226 0104 Loop.2.Diag.SchedTd 226 0114 Loop.2.Diag.SchedTd 227 0111 Loop.2.Diag.Sched			
Loop.2.Diag.DerivativeOutContrib 375 0177 Loop.2.Diag.Error 369 0171 Loop.2.Diag.IntegralOutContrib 374 0176 Loop.2.Diag.LoopBreakAlarm 372 0174 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.PropOutContrib 373 0175 Loop.2.Diag.SehedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedDBrk 291 0123 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTB 285 011d Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTd 287 0111 Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.SchedTi 286 011e <			
Loop.2.Diag.Error 369 0171 Loop.2.Diag.IntegralOutContrib 374 0176 Loop.2.Diag.LoopBreakAlarm 372 0174 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.PropOutContrib 373 0175 Loop.2.Diag.SBrk 376 0178 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedDB 285 0122 Loop.2.Diag.SchedDPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTB 285 011d Loop.2.Diag.SchedTG 292 0124 Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.SchedTi 281 011e Loop.2.Diag.Sche			
Loop.2.Diag.IntegralOutContrib 374 0176 Loop.2.Diag.LoopBreakAlarm 372 0174 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.SorpOutContrib 373 0175 Loop.2.Diag.SBrk 376 0178 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedMR 290 0122 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTB 285 011d Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.Inhibit 276 0114 Loop.2.Main.Inhibit 276 0114 Loop.2.Main.TargetSP 258 0102 Loop.2.OP.Ch1OnOffHysteresis 340 0154			
Loop.2.Diag.LoopBreakAlarm 372 0174 Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.SorpoOutContrib 373 0175 Loop.2.Diag.SSRk 376 0178 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedDBrk 291 0123 Loop.2.Diag.SchedDBrk 290 0122 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTB 285 011d Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2			
Loop.2.Diag.LoopMode 370 0172 Loop.2.Diag.PropOutContrib 373 0175 Loop.2.Diag.SBrk 376 0178 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedLPBrk 291 0123 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedR2G 292 0124 Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0111 Loop.2.Main.WorkingSP 258 0102 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Dodband 272 0110 Loop.2.OP.Ch2OolType 349 015d Loop.2.O			
Loop.2.Diag.PropOutContrib 373 0175 Loop.2.Diag.SBrk 376 0178 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedLPBrk 291 0123 Loop.2.Diag.SchedMR 290 0122 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTa 287 011f Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.WorkingSP 257 0101 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2Ootfflye 349 0153 Loop.2.OP.Ch2Ootfflye 349 0153 Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardOffset 352 0160			
Loop.2.Diag.SBrk 376 0178 Loop.2.Diag.SchedCBH 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedLPBrk 291 0123 Loop.2.Diag.SchedMR 290 0122 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedR2G 292 0124 Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Main.AutoMan 266 010a Loop.2.Main.AutoMan 2			
Loop.2.Diag.SchedCBL 288 0120 Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedLPBrk 291 0123 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTG 292 0124 Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.WorkingSP 258 0102 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.EedForwardGain 351 016 Loop.2.OP.Feed			
Loop.2.Diag.SchedCBL 289 0121 Loop.2.Diag.SchedLPBrk 291 0123 Loop.2.Diag.SchedMR 290 0122 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.Nov 257 0101 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2OnType 349 015d Loop.2.OP.EedForwardGain 351 015f Loop.2.OP.FeedForwardTrimLimit 353 0161			
Loop.2.Diag.SchedLPBrk 291 0123 Loop.2.Diag.SchedMR 290 0122 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedR2G 292 0124 Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOfffHysteresis 340 0154 Loop.2.OP.Ch1Out 338 0152 Loop.2.OP.Ch2OnOfffHysteresis 341 0155 Loop.2.OP.Ch2OnOfffHysteresis 341 0155 Loop.2.OP.EedForwardGain 351 0151 Loop.2.OP.EedForwardGain 351 0156			
Loop.2.Diag.SchedMR 290 0122 Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedR2G 292 0124 Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.WorkingSP 258 0102 Loop.2.OP.Ch1OnOfffHysteresis 340 0154 Loop.2.OP.Ch1Out 338 0152 Loop.2.OP.Ch2OnofffHysteresis 341 0155 Loop.2.OP.Ch2OnofffHysteresis 341 0155 Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.EedForwardGain 351 015f Loop.2.OP.FeedForwardTrimLimit 353 0161			
Loop.2.Diag.SchedOPHi 293 0125 Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedR2G 292 0124 Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.Inhibit 276 0114 Loop.2.Main.WorkingSP 258 0102 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOfffHysteresis 340 0154 Loop.2.OP.Ch1Out 338 0152 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.EedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 015e			
Loop.2.Diag.SchedOPLo 294 0126 Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedR2G 292 0124 Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.WorkingSP 258 0102 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch1OnUt 338 0152 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2OnColType 349 0154 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.EedForwardGain 351 0156 Loop.2.OP.FeedForwardGfiset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161	· •		
Loop.2.Diag.SchedPB 285 011d Loop.2.Diag.SchedR2G 292 0124 Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2DonOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.EedForwardGain 351 0156 Loop.2.OP.FeedForwardGain 351 0156 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 359 0167			
Loop.2.Diag.SchedR2G 292 0124 Loop.2.Diag.SchedTd 287 011f Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch1Out 338 0152 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.EedForwardGain 351 0156 Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162			
Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.SchedTi 286 011e Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.Ch2Out 349 015d Loop.2.OP.EedForwardGain 351 015f Loop.2.OP.EedForwardGain 351 015f Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.ManualMode 346 015a			
Loop.2.Diag.SchedTi 286 011e Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.EedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualMode 346 015a			
Loop.2.Diag.TargetOutVal 371 0173 Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.TargetSP 258 0102 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2DonOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.Rate 342 0156 Loop.2.OP.Rate 343 0157			
Loop.2.Main.ActiveOut 260 0104 Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.TargetSP 258 0102 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualMode 346 015a Loop.2.OP.MasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.Rate 342 0156 Loop.2.OP.Rate 343 0157			
Loop.2.Main.AutoMan 266 010a Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.TargetSP 258 0102 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Oadband 272 0110 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.CoolType 349 015d Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualMode 346 015a Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151			
Loop.2.Main.Inhibit 276 0114 Loop.2.Main.PV 257 0101 Loop.2.Main.TargetSP 258 0102 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.CoolType 349 015d Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualMode 346 015a Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151			
Loop.2.Main.PV 257 0101 Loop.2.Main.TargetSP 258 0102 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.CoolType 349 015d Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualMode 346 015a Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 337 0151 Loop.2.OP.Rate 342 0156			
Loop.2.Main.TargetSP 258 0102 Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.CoolType 349 015d Loop.2.OP.FeadForwardGain 351 015f Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.Rate 342 0156 Loop.2.OP.Rate 343 0157	•		
Loop.2.Main.WorkingSP 261 0105 Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch1Out 338 0152 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.CoolType 349 015d Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.Rate 343 0157	-		
Loop.2.OP.Ch1OnOffHysteresis 340 0154 Loop.2.OP.Ch1Out 338 0152 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2Deadband 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.CoolType 349 015d Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157			
Loop.2.OP.Ch1Out 338 0152 Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.CoolType 349 015d Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157			
Loop.2.OP.Ch2Deadband 272 0110 Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.CoolType 349 015d Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 343 0157	-		
Loop.2.OP.Ch2OnOffHysteresis 341 0155 Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.CoolType 349 015d Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FeedForwardVal 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 343 0157			
Loop.2.OP.Ch2Out 339 0153 Loop.2.OP.CoolType 349 015d Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FF_Rem 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157	-		
Loop.2.OP.CoolType 349 015d Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FF_Rem 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 343 0157			
Loop.2.OP.EnablePowerFeedforward 347 015b Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FF_Rem 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157			015d
Loop.2.OP.FeedForwardGain 351 015f Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FF_Rem 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157	• • • • • • • • • • • • • • • • • • • •		015b
Loop.2.OP.FeedForwardOffset 352 0160 Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FF_Rem 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157			015f
Loop.2.OP.FeedForwardTrimLimit 353 0161 Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FF_Rem 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157			
Loop.2.OP.FeedForwardType 350 015e Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FF_Rem 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157	·		0161
Loop.2.OP.FeedForwardVal 354 0162 Loop.2.OP.FF_Rem 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157			015e
Loop.2.OP.FF_Rem 359 0167 Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157			0162
Loop.2.OP.ManualMode 346 015a Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157	-		0167
Loop.2.OP.ManualOutVal 259 0103 Loop.2.OP.MeasuredPower 348 015c Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157	_ ·	346	015a
Loop.2.OP.OutputHighLimit 336 0150 Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157	Loop.2.OP.ManualOutVal	259	0103
Loop.2.OP.OutputLowLimit 337 0151 Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157	Loop.2.OP.MeasuredPower	348	015c
Loop.2.OP.Rate 342 0156 Loop.2.OP.RateDisable 343 0157		336	0150
Loop.2.OP.RateDisable 343 0157	Loop.2.OP.OutputLowLimit	337	0151
	Loop.2.OP.Rate	342	0156
Loop.2.OP.RemOPH 358 0166	Loop.2.OP.RateDisable	343	0157
	Loop.2.OP.RemOPH	358	0166

Description	ModPus	LIEV
Description Loop.2.OP.RemOPL	ModBus 357	HEX 0165
Loop.2.OP.SafeOutVal	345	0159
Loop.2.OP.SensorBreakMode	344	0158
Loop.2.OP.TrackEnable	356	0164
Loop.2.OP.TrackOutVal	355	0163
Loop.2.PID.ActiveSet	284	011c
Loop.2.PID.Boundary1-2	282	011a
Loop.2.PID.Boundary2-3	283	011b
Loop.2.PID.CutbackHigh	274	0112
Loop.2.PID.CutbackHigh2	302	012e
Loop.2.PID.CutbackHigh3	312	0138
Loop.2.PID.CutbackLow	273	0111
Loop.2.PID.CutbackLow2	303	012f
Loop.2.PID.CutbackLow3	313	0139
Loop.2.PID.DerivativeTime	265	0109
Loop.2.PID.DerivativeTime2	301	012d
Loop.2.PID.DerivativeTime3	311	0137
Loop.2.PID.IntegralTime	264	0108
Loop.2.PID.IntegralTime2	300	012c
Loop.2.PID.IntegralTime3	310	0136
Loop.2.PID.LoopBreakTime	296	0128
Loop.2.PID.LoopBreakTime2	305	0131
Loop.2.PID.LoopBreakTime3	315	013b
Loop.2.PID.ManualReset	295	0127
Loop 2 PID ManualReset2	304 314	0130 013a
Loop.2.PID.ManualReset3 Loop.2.PID.NumSets	320	0134
Loop.2.PID.OutputHi	297	0129
Loop.2.PID.OutputHi2	307	0133
Loop.2.PID.OutputHi3	317	013d
Loop.2.PID.OutputLo	298	012a
Loop.2.PID.OutputLo2	308	0134
Loop.2.PID.OutputLo3	318	013e
Loop.2.PID.ProportionalBand	262	0106
Loop.2.PID.ProportionalBand2	299	012b
Loop.2.PID.ProportionalBand3	309	0135
Loop.2.PID.RelCh2Gain	275	0113
Loop.2.PID.RelCh2Gain2	306	0132
Loop.2.PID.RelCh2Gain3	316	013c
Loop.2.PID.SchedulerRemoteInput	321	0141
Loop.2.PID.SchedulerType	319	013f
Loop.2.Setup.CH1ControlType	278	0116
Loop.2.Setup.CH2ControlType	279	0117
Loop.2.Setup.ControlAction	263	0107
Loop 2 Setup Loop Type	281	0119
Loop.2.Setup.LoopType Loop.2.Setup.PBUnits	277 280	0115 0118
Loop.2.SP.AltSP	324	0114
Loop.2.SP.AltSPSelect	325	0145
Loop.2.SP.ManualTrack	331	014b
Loop.2.SP.RangeHigh	268	010c
Loop.2.SP.RangeLow	267	010b
Loop.2.SP.Rate	326	0146
Loop.2.SP.RateDisable	327	0147
Loop.2.SP.RateDone	335	014f
Loop.2.SP.SP1	269	010d
Loop.2.SP.SP2	270	010e
Loop.2.SP.SPHighLimit	322	0142

Loop.2.SP.SPLowLimit 323 0143	Description	ModBus	LIEV
Loop.2.SP.SPSelect 271 010f Loop.2.SP.SPTrack 332 0146 Loop.2.SP.SPTrim 328 0148 Loop.2.SP.SPTrimHighLimit 329 0148 Loop.2.SP.SPTrimLowLimit 330 014a Loop.2.SP.TrackSP 334 014e Loop.2.Tune.OutputHighLimit 361 016a Loop.2.Tune.OutputHighLimit 361 016a Loop.2.Tune.Stage 367 016a Loop.2.Tune.Stage 367 016a Loop.2.Tune.StageTime 368 0170 Loop.2.Tune.StageTime 360 016e Loop.2.Tune.StepSize 365 016a Loop.2.Tune.StepSize 365 016d Loop.3.Diag.Berior 625 0271 Loop.3.Diag.Berior 625 0274 Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.BeroductOrdoutcontrib 620 0272 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBH 544 0221 <			HEX 0143
Loop.2.SP.SPTrim 328 0148 Loop.2.SP.SPTrim 328 0148 Loop.2.SP.SPTrimHighLimit 329 0149 Loop.2.SP.SPTrimLowLimit 330 014a Loop.2.SP.TrackPV 333 014d Loop.2.SP.TrackSP 334 014e Loop.2.Tune.OutputHighLimit 361 0169 Loop.2.Tune.OutputHowLimit 362 016a Loop.2.Tune.Stage 367 016f Loop.2.Tune.Stage 367 016f Loop.2.Tune.StageTime 368 0170 Loop.2.Tune.StageSize 366 0168 Loop.2.Tune.StageSize 366 0168 Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.Berivarity 630 0168 Loop.3.Diag.Berivarity 625 0271 Loop.3.Diag.Berivarity 625 0271 Loop.3.Diag.Berivarity 620 0275 Loop.3.Diag.SchedCBL 626 0272 Loop.3.Diag.SchedCBR 544 0220 <t< td=""><td>•</td><td></td><td></td></t<>	•		
Loop.2.SP.SPTrim 328 0148 Loop.2.SP.SPTrimHighLimit 329 0149 Loop.2.SP.SPTrimLowLimit 330 014a Loop.2.SP.TrackPV 333 014e Loop.2.SP.TrackSP 334 014e Loop.2.Tune.AutotuneEnable 364 016c Loop.2.Tune.OutputHighLimit 361 016a Loop.2.Tune.Stage 367 016f Loop.2.Tune.StageTime 368 0170 Loop.2.Tune.StageTime 365 016d Loop.2.Tune.StageSize 365 016d Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.SchedCBH 642 0272 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBH 544 0222 Loop.3.Diag.SchedCBH 544 0222 Loop.3.Diag.SchedCBH 544 0222 <td></td> <td></td> <td></td>			
Loop.2.SP.SPTrimLowLimit 329 0149 Loop.2.SP.SPTrimLowLimit 330 014a Loop.2.SP.TrackPV 333 014d Loop.2.SP.TrackSP 334 014e Loop.2.Tune.AutotuneEnable 364 016c Loop.2.Tune.OutputHighLimit 361 016g Loop.2.Tune.Stage 367 016f Loop.2.Tune.StageTime 368 0170 Loop.2.Tune.StageTime 368 0170 Loop.2.Tune.Stage 365 016d Loop.3.Diag.Error 625 0271 Loop.3.Diag.Berror 626 0272 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.BerchedCBH 634 0220 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedOPHi			
Loop.2.SP.SPTrimLowLimit 330 014a Loop.2.SP.TrackPV 333 014d Loop.2.TrackSP 334 014e Loop.2.Tune.AutotuneEnable 364 016a Loop.2.Tune.OutputHighLimit 361 016a Loop.2.Tune.Stage 367 016f Loop.2.Tune.Stage Iime 368 0170 Loop.2.Tune.Stage Iime 368 016a Loop.2.Tune.StepSize 365 016a Loop.2.Tune.StepSize 365 016a Loop.3.Diag.Berror 625 0271 Loop.3.Diag.Berror 625 0271 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedCBL 545 0222 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.			
Loop.2.SP.TrackPV 333 014d Loop.2.SP.TrackSP 334 014e Loop.2.Tune.AutotuneEnable 364 016c Loop.2.Tune.OutputHighLimit 361 016c Loop.2.Tune.Stage 367 016f Loop.2.Tune.StageTime 368 0170 Loop.2.Tune.StageTime 366 016e Loop.2.Tune.StageSize 365 016d Loop.2.Tune.Type 360 0168 Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.Berror 625 0271 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedDPhrk 547 0223 Loop.3.Diag.SchedDPhrk 549 0224 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedPB 541 021d Loop.3.D			
Loop.2.SP.TrackSP 334 014e Loop.2.Tune.AutotuneEnable 364 016c Loop.2.Tune.OutputHighLimit 361 016g Loop.2.Tune.Stage 367 016a Loop.2.Tune.Stage 367 016f Loop.2.Tune.Stage 368 0170 Loop.2.Tune.Stage 365 016d Loop.2.Tune.Stage 365 016d Loop.2.Tune.Stage 365 016d Loop.3.Diag.Bror 362 0271 Loop.3.Diag.Berror 625 0271 Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.IntegralOutContrib 629 0272 Loop.3.Diag.BropOutContrib 629 0272 Loop.3.Diag.ShedCopMode 626 0272 Loop.3.Diag.ShedCBH 544 022 Loop.3.Diag.SchedCBH 544 022 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedCBL 545 0222 Loop.3.Diag.SchedPB 541 021 Loop.3.Diag.S			
Loop.2.Tune.AutotuneEnable 364 016c Loop.2.Tune.OutputHighLimit 361 0169 Loop.2.Tune.Stage 367 016a Loop.2.Tune.StageTime 368 0170 Loop.2.Tune.StageTime 366 016e Loop.2.Tune.Stage 365 016d Loop.2.Tune.StepSize 365 016d Loop.3.Diag.Berror 625 0271 Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopBreakAlarm 628 0272 Loop.3.Diag.SpropOutContrib 629 0275 Loop.3.Diag.SpropOutContrib 629 0275 Loop.3.Diag.SpropOutContrib 629 0272 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedDPli 540 0222 Loop.3.Diag.SchedPB 541 0214 Loop.3.Diag.SchedTd 543 0214 <			
Loop.2.Tune.OutputLowLimit 361 0169 Loop.2.Tune.OutputLowLimit 362 016a Loop.2.Tune.Stage 367 016f Loop.2.Tune.Stage Time 368 0170 Loop.2.Tune.Stage Time 366 016e Loop.2.Tune.StepSize 365 016d Loop.3.Diag.Breror 625 0271 Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.SpropOutContrib 629 0275 Loop.3.Diag.SpropOutContrib 632 0278 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedDPHi 549 0225 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedTd 543 021t Loop.3.Diag.SchedTd 542 021e			
Loop.2.Tune.OutputLowLimit 362 016a Loop.2.Tune.Stage 367 016f Loop.2.Tune.StageTime 368 0170 Loop.2.Tune.StageTime 368 0170 Loop.2.Tune.StageSize 365 016d Loop.2.Tune.Type 360 0168 Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.Broro 625 0271 Loop.3.Diag.LoopMode 626 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.SopoutContrib 629 0275 Loop.3.Diag.SobedCBH 544 0220 Loop.3.Diag.SobedCBH 544 0220 Loop.3.Diag.SobedMR 546 0222 Loop.3.Diag.SobedPB 541 021d Loop.3.Diag.SobedTd 543 021t	•		
Loop.2.Tune.Stage 367 016f Loop.2.Tune.StageTime 368 0170 Loop.2.Tune.State 366 016e Loop.2.Tune.Stype 360 016d Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.Error 625 0271 Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.SpropOutContrib 629 0275 Loop.3.Diag.SpropOutContrib 629 0275 Loop.3.Diag.ShedCBH 544 0220 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedCBL 545 0222 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedPB 541 0214 Loop.3.Diag.SchedTd 543 0224 Loop.3.Diag.SchedTd 543 0224 Loop.3.Diag.SchedTi 542 021e			
Loop.2.Tune.State 368 0170 Loop.2.Tune.State 366 016e Loop.2.Tune.StepSize 365 016d Loop.2.Tune.Type 360 0168 Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.Sophode 626 0272 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBH 545 0221 Loop.3.Diag.SchedDBrk 547 0223 Loop.3.Diag.SchedOBH 546 0222 Loop.3.Diag.SchedOBH 546 0222 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedTB 541 021d Loop.3.Diag.SchedTB			
Loop.2.Tune.State 366 016e Loop.2.Tune.StepSize 365 016d Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.SophotContrib 629 0275 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBH 545 0221 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedMR 546 0222 Loop.3.Diag.SchedDPHi 549 0225 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedTd 548 0224 Loop.3.Diag.SchedTd 543 021f Loop.3.Diag.SchedTi 542 021e Loop.3.Main.AutoMan 522 021a Loop.3.Main.Inhibit 532 0214			
Loop.2.Tune.StepSize 365 016d Loop.2.Tune.Type 360 0168 Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.Error 625 0271 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.SopOutContrib 629 0275 Loop.3.Diag.SerkedCBH 544 0220 Loop.3.Diag.SchedCBH 545 0221 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedCBL 545 0222 Loop.3.Diag.SchedOPL 540 0222 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedTB 541 021d Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.NorkingSP 517 0205 Loop.3.O	·		
Loop.2.Tune.Type 360 0168 Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.Error 625 0271 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.PropOutContrib 629 0275 Loop.3.Diag.SBrk 632 0278 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedDPBrk 547 0223 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedTB 548 0224 Loop.3.Diag.SchedTB 548 0224 Loop.3.Diag.SchedTB 541 021d Loop.3.Diag.SchedTB 541 021d Loop.3.Diag.SchedTB 543 021f Loop.3.Diag.SchedTB 541 021d Loop.3.Diag.SchedTB 542 021e Loop.3.Diag.Sch	-		
Loop.3.Diag.DerivativeOutContrib 631 0277 Loop.3.Diag.Error 625 0271 Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.PropOutContrib 629 0275 Loop.3.Diag.Serk 632 0278 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedDBrk 547 0223 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedTB 541 021d Loop.3.Diag.SchedTd 543 0224 Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Main.AutoMan 522 020a Loop.3.Main.AutoMan 522 020a L	<u> </u>		
Loop.3.Diag.Error 625 0271 Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.Serbk 632 0278 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedCBL 546 0222 Loop.3.Diag.SchedOPBrk 547 0223 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedR2G 548 0224 Loop.3.Diag.SchedTd 543 021f Loop.3.Diag.SchedTi 542 021e Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.Inhibit 532 0214 Loop.3.Main.WorkingSP 514 0202 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Lo			
Loop.3.Diag.IntegralOutContrib 630 0276 Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.PropOutContrib 629 0275 Loop.3.Diag.SBrk 632 0278 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedPBrk 547 0223 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedTB 541 021d Loop.3.Diag.SchedTG 548 0224 Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.Inhibit 532 0214 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 <			
Loop.3.Diag.LoopBreakAlarm 628 0274 Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.PropOutContrib 629 0275 Loop.3.Diag.SBrk 632 0278 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedPBrk 547 0223 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedTd 543 021f Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.TargetSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.FeedForwardGain 607 0256			
Loop.3.Diag.LoopMode 626 0272 Loop.3.Diag.PropOutContrib 629 0275 Loop.3.Diag.SBrk 632 0278 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedLPBrk 547 0223 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedTd 543 021f Loop.3.Diag.SchedTd 543 021f Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.NowingSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Ontype 605 025d <td< td=""><td></td><td></td><td></td></td<>			
Loop.3.Diag.PropOutContrib 629 0275 Loop.3.Diag.SBrk 632 0278 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedLPBrk 547 0223 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedTG 548 0224 Loop.3.Diag.SchedTd 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Nalin.Inhibit 532 0214 Loop.3.Main.TargetSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0215 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.EedForwardGain 607 025d			
Loop.3.Diag.SBrk 632 0278 Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedLPBrk 547 0223 Loop.3.Diag.SchedMR 546 0222 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedR2G 548 0224 Loop.3.Diag.SchedTd 543 021f Loop.3.Diag.SchedTi 542 021e Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.WorkingSP 517 0205 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2OnoffHysteresis 597 0255 Loop.3.OP.Ch2OnoffHysteresis 597 0255 Loop.3.OP.FeedForwardGain 607 0254 Loop.3.OP.FeedForwardGrin 607 0254			
Loop.3.Diag.SchedCBH 544 0220 Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedLPBrk 547 0223 Loop.3.Diag.SchedMR 546 0222 Loop.3.Diag.SchedOPLi 549 0225 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedTG 548 0224 Loop.3.Diag.SchedTd 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.EnablePowerFeedforward 603 025d Loop.3.OP.EedForwardGain 607 025d			
Loop.3.Diag.SchedCBL 545 0221 Loop.3.Diag.SchedLPBrk 547 0223 Loop.3.Diag.SchedMR 546 0222 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedPB 541 0216 Loop.3.Diag.SchedR2G 548 0224 Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.TargetSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.EedForwardGain 607 025d Loop.3.OP.FeedForwardGrin 607 025d Loop.3.OP.FeedForwardTrimLimit 609 026e </td <td>' š</td> <td></td> <td></td>	' š		
Loop.3.Diag.SchedLPBrk 547 0223 Loop.3.Diag.SchedMR 546 0222 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedR2G 548 0224 Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 599 0253 Loop.3.OP.EedForwardGain 607 025d Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 025e			
Loop.3.Diag.SchedMR 546 0222 Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedR2G 548 0224 Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.WorkingSP 517 0205 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.FeedForwardGain 607 0256 Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0262 <t< td=""><td></td><td></td><td></td></t<>			
Loop.3.Diag.SchedOPHi 549 0225 Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedR2G 548 0224 Loop.3.Diag.SchedTd 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch1Out 594 0252 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.EedForwardGain 607 0256 Loop.3.OP.FeedForwardGffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0254 Loop.3.OP.FeedForwardTrimLimit 609 0254 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a <tr< td=""><td></td><td></td><td></td></tr<>			
Loop.3.Diag.SchedOPLo 550 0226 Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedR2G 548 0224 Loop.3.Diag.SchedTd 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch1Out 594 0252 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.EedForwardGain 607 025d Loop.3.OP.FeedForwardGfiset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0262 Loop.3.OP.FeedForwardVal 610 0262			
Loop.3.Diag.SchedPB 541 021d Loop.3.Diag.SchedR2G 548 0224 Loop.3.Diag.SchedTd 542 021e Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.TargetSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250			0226
Loop.3.Diag.SchedR2G 548 0224 Loop.3.Diag.SchedTd 543 021f Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.WorkingSP 514 0202 Loop.3.OP.Ch1OnOfffHysteresis 596 0254 Loop.3.OP.Ch1Out 594 0252 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.EedForwardGain 607 025f Loop.3.OP.FeedForwardGfiset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualMode 604 025c Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.OutputHighLimit 592 0250			
Loop.3.Diag.SchedTd 543 021f Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.WorkingSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.FeedForwardGain 607 0256 Loop.3.OP.FeedForwardGfiset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0254 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250 <td></td> <td></td> <td></td>			
Loop.3.Diag.SchedTi 542 021e Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.TargetSP 514 0202 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.CoolType 605 025d Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250			021f
Loop.3.Diag.TargetOutVal 627 0273 Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.TargetSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2OnUt 595 0253 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.EedForwardGain 607 0256 Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.OutputHighLimit 592 0250			021e
Loop.3.Main.ActiveOut 516 0204 Loop.3.Main.AutoMan 522 020a Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.TargetSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.CoolType 605 025d Loop.3.OP.EedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 025a Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.OutputHighLimit 592 0250			0273
Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.TargetSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch1Out 594 0252 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 025d Loop.3.OP.CoolType 605 025d Loop.3.OP.EeadForwardGain 607 025f Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.OutputHighLimit 592 0250			0204
Loop.3.Main.Inhibit 532 0214 Loop.3.Main.PV 513 0201 Loop.3.Main.TargetSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch1Out 594 0252 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 025d Loop.3.OP.CoolType 605 025d Loop.3.OP.EeadForwardGain 607 025f Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.OutputHighLimit 592 0250	Loop.3.Main.AutoMan	522	020a
Loop.3.Main.PV 513 0201 Loop.3.Main.TargetSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch1Out 594 0252 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.CoolType 605 025d Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.OutputHighLimit 592 0250			0214
Loop.3.Main.TargetSP 514 0202 Loop.3.Main.WorkingSP 517 0205 Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.CoolType 605 025d Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250			
Loop.3.OP.Ch1OnOffHysteresis 596 0254 Loop.3.OP.Ch1Out 594 0252 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.CoolType 605 025d Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250			0202
Loop.3.OP.Ch1Out 594 0252 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.CoolType 605 025d Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250	Loop.3.Main.WorkingSP	517	0205
Loop.3.OP.Ch1Out 594 0252 Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.CoolType 605 025d Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250	Loop.3.OP.Ch1OnOffHysteresis	596	0254
Loop.3.OP.Ch2Deadband 528 0210 Loop.3.OP.Ch2OnOffHysteresis 597 0255 Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.CoolType 605 025d Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FeedForwardVal 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250		594	0252
Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.CoolType 605 025d Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.F_Rem 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250	-	528	0210
Loop.3.OP.Ch2Out 595 0253 Loop.3.OP.CoolType 605 025d Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.F_Rem 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250		597	0255
Loop.3.OP.CoolType 605 025d Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.F_Rem 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250		595	0253
Loop.3.OP.EnablePowerFeedforward 603 025b Loop.3.OP.FeedForwardGain 607 025f Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FF_Rem 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250		605	025d
Loop.3.OP.FeedForwardOffset 608 0260 Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FF_Rem 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250		603	025b
Loop.3.OP.FeedForwardTrimLimit 609 0261 Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FF_Rem 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250	Loop.3.OP.FeedForwardGain	607	025f
Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FF_Rem 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250	Loop.3.OP.FeedForwardOffset	608	0260
Loop.3.OP.FeedForwardType 606 025e Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FF_Rem 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250	-		0261
Loop.3.OP.FeedForwardVal 610 0262 Loop.3.OP.FF_Rem 615 0267 Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250		606	025e
Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250		610	0262
Loop.3.OP.ManualMode 602 025a Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250		615	0267
Loop.3.OP.ManualOutVal 515 0203 Loop.3.OP.MeasuredPower 604 025c Loop.3.OP.OutputHighLimit 592 0250		602	025a
Loop.3.OP.MeasuredPower604025cLoop.3.OP.OutputHighLimit5920250		515	0203
Loop.3.OP.OutputHighLimit 592 0250		604	025c
Loop.3.OP.OutputLowLimit 593 0251	Loop.3.OP.OutputHighLimit	592	0250
	Loop.3.OP.OutputLowLimit	593	0251

Loop.3.OP.Rate 598 0256 Loop.3.OP.RemOPH 614 0266 Loop.3.OP.RemOPL 613 0265 Loop.3.OP.SensorBreakMode 600 0258 Loop.3.OP.TrackCutVal 611 0263 Loop.3.OP.TrackCutVal 611 0263 Loop.3.OP.TrackCutVal 611 0263 Loop.3.PID.ActiveSet 540 021c Loop.3.PID.Boundary1-2 538 021a Loop.3.PID.Boundary2-3 539 021b Loop.3.PID.CutbackHigh 530 0212 Loop.3.PID.CutbackHigh3 568 0238 Loop.3.PID.CutbackHigh3 568 0238 Loop.3.PID.CutbackLow2 559 022f Loop.3.PID.CutbackLow3 569 0239 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.IntegralTime2 557 022d Loop.3.PID.IntegralTime3 566 0236 Loop.3.PID.IntegralTime3 566 0236	Description	ModBus	HEX
Loop.3.OP.RateDisable 599 0257 Loop.3.OP.RemOPH 614 0266 Loop.3.OP.SafeOutVal 601 0258 Loop.3.OP.SafeOutVal 601 0258 Loop.3.OP.TrackEnable 612 0264 Loop.3.PID.ActiveSet 540 0216 Loop.3.PID.Boundary1-2 538 021a Loop.3.PID.Boundary2-3 539 021b Loop.3.PID.CutbackHigh 530 0212 Loop.3.PID.CutbackHigh2 558 022e Loop.3.PID.CutbackHigh3 568 0238 Loop.3.PID.CutbackLow 529 021 Loop.3.PID.CutbackLow2 559 022f Loop.3.PID.DerivativeTime 520 020 Loop.3.PID.DerivativeTime 520 020 Loop.3.PID.IntegralTime 520 020 Loop.3.PID.IntegralTime 520 022c Loop.3.PID.LoopBreakTime 552 022c Loop.3.PID.ManualReset 551 022c Loop.3.PID.ManualReset3 570 023a	,		
Loop.3.OP.RemOPH 614 0266 Loop.3.OP.RemOPL 613 0265 Loop.3.OP.SafeOutVal 601 0259 Loop.3.OP.SensorBreakMode 600 0258 Loop.3.OP.TrackCutVal 611 0264 Loop.3.PID.Boundary1-2 538 021a Loop.3.PID.Boundary2-3 539 021b Loop.3.PID.CutbackHigh 530 0212 Loop.3.PID.CutbackHigh 530 0212 Loop.3.PID.CutbackHigh3 568 0238 Loop.3.PID.CutbackLow 529 0211 Loop.3.PID.CutbackLow2 559 022f Loop.3.PID.CutbackLow3 569 0239 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.IntegralTime 521 0209 Loop.3.PID.IntegralTime 520 022t Loop.3.PID.IntegralTime 520 022t Loop.3.PID.IntegralTime3 566 0236 Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.ManualReset 551 0227 <t< td=""><td>•</td><td></td><td></td></t<>	•		
Loop, 3.OP, RafeOutVal 611 0259 Loop, 3.OP, SafeOutVal 601 0258 Loop, 3.OP, TrackEnable 612 0264 Loop, 3.OP, TrackOutVal 611 0263 Loop, 3.PID, ActiveSet 540 021c Loop, 3.PID, Boundary1-2 538 021a Loop, 3.PID, CutbackHigh 530 021b Loop, 3.PID, CutbackHigh 530 0212 Loop, 3.PID, CutbackHigh3 568 0228 Loop, 3.PID, CutbackLow 529 0211 Loop, 3.PID, CutbackLow2 559 022f Loop, 3.PID, CutbackLow3 569 0239 Loop, 3.PID, DerivativeTime 521 0209 Loop, 3.PID, DerivativeTime 521 0209 Loop, 3.PID, DerivativeTime3 567 0237 Loop, 3.PID, IntegralTime 520 0208 Loop, 3.PID, IntegralTime 520 0208 Loop, 3.PID, LoopBreakTime 552 0228 Loop, 3.PID, ManualReset 561 0231 Loop, 3.PID, ManualReset3 <t< td=""><td></td><td>614</td><td>0266</td></t<>		614	0266
Loop, 3.OP. SensorBreakMode 600 0258 Loop, 3.OP. TrackCnable 612 0264 Loop, 3. PID. ActiveSet 540 021c Loop, 3. PID. Boundary1-2 538 021a Loop, 3. PID. Boundary2-3 539 021b Loop, 3. PID. CutbackHigh 530 0212 Loop, 3. PID. CutbackHigh2 558 022e Loop, 3. PID. CutbackLow 529 0211 Loop, 3. PID. CutbackLow 529 0221 Loop, 3. PID. CutbackLow2 559 0226 Loop, 3. PID. DerivativeTime 521 0209 Loop, 3. PID. DerivativeTime 521 0209 Loop, 3. PID. IntegralTime 520 0208 Loop, 3. PID. IntegralTime 520 0208 Loop, 3. PID. LoopBreakTime 552 022c Loop, 3. PID. LoopBreakTime 552 022a Loop, 3. PID. ManualReset 551 0227 Loop, 3. PID. ManualReset3 570 024 Loop, 3. PID. NumSets 576 0240 Loop, 3. PID. Outputt-H		613	0265
Loop.3.OP.TrackEnable 612 0264 Loop.3.PID.ActiveSet 540 021c Loop.3.PID.Boundary1-2 538 021a Loop.3.PID.Boundary2-3 539 021b Loop.3.PID.CutbackHigh 530 0212 Loop.3.PID.CutbackHigh 530 0212 Loop.3.PID.CutbackHigh3 568 0238 Loop.3.PID.CutbackLow 529 0211 Loop.3.PID.CutbackLow2 559 0226 Loop.3.PID.CutbackLow3 569 0239 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.IntegralTime 520 0228 Loop.3.PID.IntegralTime 520 0228 Loop.3.PID.IntegralTime 560 0236 Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset 560 0230 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.ProportionalBand 564 0234 <td>Loop.3.OP.SafeOutVal</td> <td>601</td> <td>0259</td>	Loop.3.OP.SafeOutVal	601	0259
Loop.3.OP.TrackOutVal 611 0263 Loop.3.PID.ActiveSet 540 021c Loop.3.PID.Boundary1-2 538 021a Loop.3.PID.Boundary2-3 539 021b Loop.3.PID.CutbackHigh 530 021c Loop.3.PID.CutbackHigh3 568 0238 Loop.3.PID.CutbackLow 529 0211 Loop.3.PID.CutbackLow2 559 022f Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.LoopBreakTime 556 022c Loop.3.PID.LoopBreakTime 552 022a Loop.3.PID.LoopBreakTime3 561 0231 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.ManualReset3 570 023a Loop.3.PID.OutputHi 553 022a Loop.3.PID.OutputHi 553 022a Loop.3.PID.OutputHi 553 022a Loop.3.PID.OutputLo 564 023a Loop.3.PID.RelCh2Gain 574 023e	Loop.3.OP.SensorBreakMode	600	0258
Loop.3.PID.ActiveSet 540 021c Loop.3.PID.Boundary1-2 538 021a Loop.3.PID.Boundary2-3 539 021b Loop.3.PID.CutbackHigh 530 021c Loop.3.PID.CutbackHigh3 568 0238 Loop.3.PID.CutbackLow 529 0211 Loop.3.PID.CutbackLow2 559 022f Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime 521 020 Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime2 556 022c Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 0230 Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0223 </td <td>Loop.3.OP.TrackEnable</td> <td>612</td> <td>0264</td>	Loop.3.OP.TrackEnable	612	0264
Loop.3.PID.Boundary1-2 538 021a Loop.3.PID.Boundary2-3 539 021b Loop.3.PID.CutbackHigh 530 0212 Loop.3.PID.CutbackHigh2 558 022e Loop.3.PID.CutbackLow 529 0211 Loop.3.PID.CutbackLow2 559 022f Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime2 557 022d Loop.3.PID.IntegralTime3 560 023 Loop.3.PID.IntegralTime3 566 0236 Loop.3.PID.IntegralTime3 566 0236 Loop.3.PID.LoopBreakTime 552 022a Loop.3.PID.LoopBreakTime3 571 023a Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi 553 022a Loop.3.PID.OutputHi 554 022a	Loop.3.OP.TrackOutVal	611	0263
Loop.3.PID.Boundary2-3 539 021b Loop.3.PID.CutbackHigh 530 0212 Loop.3.PID.CutbackHigh3 568 0228 Loop.3.PID.CutbackLow 529 0211 Loop.3.PID.CutbackLow2 559 022f Loop.3.PID.CutbackLow3 569 0239 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.IntegralTime 520 0220 Loop.3.PID.IntegralTime3 566 0236 Loop.3.PID.IntegralTime4 556 022c Loop.3.PID.LoopBreakTime5 552 0228 Loop.3.PID.LoopBreakTime6 552 0228 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset 551 0220 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi 553 0222 Loop.3.PID.OutputHi 554 0234 <	Loop.3.PID.ActiveSet	540	021c
Loop.3.PID.CutbackHigh 530 0212 Loop.3.PID.CutbackHigh2 558 022e Loop.3.PID.CutbackLigh3 568 0238 Loop.3.PID.CutbackLow2 559 0211 Loop.3.PID.CutbackLow3 569 0239 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime1 521 0209 Loop.3.PID.DerivativeTime2 557 022d Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime3 566 022c Loop.3.PID.LoopBreakTime2 551 022c Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.NumSets 576 024a Loop.3.PID.OutputHi 553 022a Loop.3.PID.OutputHi 553 023a Loop.3.PID.OutputHi 553 023a Loop.3.PID.ProportionalBand 574 023a Loop.3.PID.ProportionalBand3 566 0234		538	021a
Loop.3.PID.CutbackHigh3 558 022e Loop.3.PID.CutbackLow 529 0211 Loop.3.PID.CutbackLow 529 022f Loop.3.PID.CutbackLow3 569 022g Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime 557 022d Loop.3.PID.DerivativeTime3 567 0237 Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime2 556 022c Loop.3.PID.IntegralTime3 566 0236 Loop.3.PID.LoopBreakTime3 561 0231 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.ManualReset3 570 023a Loop.3.PID.OutputHi 553 0223 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo3 574 023a Loop.3.PID.ProportionalBand 518 022a Loop.3.PID.RelCh2Gain 531 023 </td <td>Loop.3.PID.Boundary2-3</td> <td>539</td> <td>021b</td>	Loop.3.PID.Boundary2-3	539	021b
Loop.3.PID.CutbackHigh3 568 0238 Loop.3.PID.CutbackLow 529 0211 Loop.3.PID.CutbackLow2 559 022f Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime2 557 022d Loop.3.PID.IntegralTime3 567 0237 Loop.3.PID.IntegralTime6 520 0208 Loop.3.PID.LoopBreakTime 556 022c Loop.3.PID.LoopBreakTime3 566 0236 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0223 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 020e Loop.3.PID.RelCh2Gain 531 0213		530	
Loop.3.PID.CutbackLow 529 0211 Loop.3.PID.CutbackLow2 559 0226 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime3 567 0227 Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime 556 0226 Loop.3.PID.LoopBreakTime 556 0226 Loop.3.PID.LoopBreakTime3 566 0236 Loop.3.PID.LoopBreakTime2 561 0231 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0223 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 0234 Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo 554 022a Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain3 562 0232 Loop.3.PID.RelCh2Gain3 572 0236		558	022e
Loop.3.PID.CutbackLow2 559 022f Loop.3.PID.CutbackLow3 569 0239 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime2 557 022d Loop.3.PID.IndegralTime3 567 0237 Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime3 566 0236 Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime2 561 0231 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.MumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi3 573 023a Loop.3.PID.OutputHi3 573 023a Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 020e Loop.3.PID.RelCh2Gain 531 0213 <			0238
Loop.3.PID.CutbackLow3 569 0239 Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime2 557 022d Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime2 556 022c Loop.3.PID.IntegralTime3 566 0236 Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime2 561 0231 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 020e Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213	•		
Loop.3.PID.DerivativeTime 521 0209 Loop.3.PID.DerivativeTime2 557 022d Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime3 566 0236 Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset2 560 0230 Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain3 572 023c			
Loop.3.PID.DerivativeTime3 557 022d Loop.3.PID.DerivativeTime3 567 0237 Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime2 556 022c Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime2 561 0231 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset2 560 0230 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 020e Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain3 572 023c			
Loop.3.PID.DerivativeTime3 567 0237 Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime2 556 022c Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime2 561 0231 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset2 560 0230 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo 554 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 020e Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain3 572 023c </td <td>•</td> <td></td> <td></td>	•		
Loop.3.PID.IntegralTime 520 0208 Loop.3.PID.IntegralTime2 556 022c Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime2 561 0231 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset2 560 0230 Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.OrtportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023a Loop.3.PID.SchedulerType 575 023f <td>·</td> <td></td> <td></td>	·		
Loop.3.PID.IntegralTime2 556 022c Loop.3.PID.LoopBreakTime 566 0236 Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime2 561 0231 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0232 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.RelCh2Gain3 572 023c	•		
Loop.3.PID.IntegralTime3 566 0236 Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime2 561 0231 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.ManualReset3 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ReiCh2Gain 531 0213 Loop.3.PID.ReiCh2Gain2 562 0232 Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.Setup.CH2ControlType 535 0217			
Loop.3.PID.LoopBreakTime 552 0228 Loop.3.PID.LoopBreakTime2 561 0231 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset2 560 0230 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerType 575 023f </td <td></td> <td></td> <td></td>			
Loop.3.PID.LoopBreakTime2 561 0231 Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset2 560 0230 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.OutputHii 553 0229 Loop.3.PID.OutputHii 553 0229 Loop.3.PID.OutputHii3 573 023d Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gaina 531 0213 Loop.3.PID.RelCh2Gaina 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.Ch2ControlType 535 0217 Loop.3.Setup.Derivative Type 537 </td <td></td> <td></td> <td></td>			
Loop.3.PID.LoopBreakTime3 571 023b Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHii 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.Ch2ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.DerivativeType 530 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect	·		
Loop.3.PID.ManualReset 551 0227 Loop.3.PID.ManualReset2 560 0230 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.Ch2ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.DerivativeType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.RangeHigh			
Loop.3.PID.ManualReset3 560 0230 Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.Ch1ControlAction 519 0207 Loop.3.Setup.DerivativeType 537			
Loop.3.PID.ManualReset3 570 023a Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.Ch2ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.RangeHigh 524 020c Loop.3.SP.Rate 582 0246 <td>·</td> <td></td> <td></td>	·		
Loop.3.PID.NumSets 576 0240 Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.RangeHigh 524 020c Loop.3.SP.Rate 582 0246 </td <td>·</td> <td></td> <td></td>	·		
Loop.3.PID.OutputHi 553 0229 Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245	·		
Loop.3.PID.OutputHi2 563 0233 Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.RangeHigh 524 020c Loop.3.SP.Rate 582 0246	•		
Loop.3.PID.OutputHi3 573 023d Loop.3.PID.OutputLo 554 022a Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	Loop.3.PID.OutputHi2	563	0233
Loop.3.PID.OutputLo2 564 0234 Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	Loop.3.PID.OutputHi3	573	023d
Loop.3.PID.OutputLo3 574 023e Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSP 580 0244 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	Loop.3.PID.OutputLo	554	022a
Loop.3.PID.ProportionalBand 518 0206 Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	Loop.3.PID.OutputLo2	564	0234
Loop.3.PID.ProportionalBand2 555 022b Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.PID.SchedulerType 534 0216 Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	Loop.3.PID.OutputLo3	574	023e
Loop.3.PID.ProportionalBand3 565 0235 Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			0206
Loop.3.PID.RelCh2Gain 531 0213 Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247		555	022b
Loop.3.PID.RelCh2Gain2 562 0232 Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			0235
Loop.3.PID.RelCh2Gain3 572 023c Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	· ·		
Loop.3.PID.SchedulerRemoteInput 577 0241 Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	'		
Loop.3.PID.SchedulerType 575 023f Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	-		
Loop.3.Setup.CH1ControlType 534 0216 Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			
Loop.3.Setup.CH2ControlType 535 0217 Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			
Loop.3.Setup.ControlAction 519 0207 Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			
Loop.3.Setup.DerivativeType 537 0219 Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			
Loop.3.Setup.LoopType 533 0215 Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	·		
Loop.3.Setup.PBUnits 536 0218 Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			
Loop.3.SP.AltSP 580 0244 Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			
Loop.3.SP.AltSPSelect 581 0245 Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			
Loop.3.SP.ManualTrack 587 024b Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	·		
Loop.3.SP.RangeHigh 524 020c Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247	•		
Loop.3.SP.RangeLow 523 020b Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			
Loop.3.SP.Rate 582 0246 Loop.3.SP.RateDisable 583 0247			020b
Loop.3.SP.RateDisable 583 0247			0246
Loop.3.SP.RateDone 591 024f	·		0247
	Loop.3.SP.RateDone	591	024f

Description	ModBus	HEX
Loop.3.SP.SP1	525	020d
Loop.3.SP.SP2	526	020e
Loop.3.SP.SPHighLimit	578	0242
Loop.3.SP.SPLowLimit	579	0243
Loop.3.SP.SPSelect	527	0201
Loop.3.SP.SPTrack	588	0240
Loop.3.SP.SPTrim	584	0248
Loop.3.SP.SPTrimHighLimit	585	0249
Loop.3.SP.SPTrimLowLimit	586	024a
Loop.3.SP.TrackPV	589	024d
Loop.3.SP.TrackSP	590	024e
Loop.3.Tune.AutotuneEnable	620	0260
Loop.3.Tune.OutputHighLimit	617	0269
Loop.3.Tune.OutputLowLimit	618	026a
Loop.3.Tune.Stage	623	0261
Loop.3.Tune.StageTime	624	0270
Loop.3.Tune.State	622	026e
Loop.3.Tune.StepSize	621	026d
Loop.3.Tune.Type	616	0268
Loop.4.Diag.DerivativeOutContrib	887	0377
Loop.4.Diag.Error	881	0371
Loop.4.Diag.IntegralOutContrib	886	0376
Loop.4.Diag.LoopBreakAlarm	884	0374
Loop.4.Diag.LoopMode	882	0372
Loop.4.Diag.PropOutContrib	885	0375
Loop.4.Diag.SBrk	888	0378
Loop.4.Diag.SchedCBH	800	0320
Loop.4.Diag.SchedCBL	801	0321
Loop.4.Diag.SchedLPBrk	803	0323
Loop.4.Diag.SchedMR	802	0322
Loop.4.Diag.SchedOPHi Loop.4.Diag.SchedOPLo	805	0325
Loop.4.Diag.SchedPB	806 797	0326 031d
Loop.4.Diag.SchedR2G	804	0324
Loop.4.Diag.SchedTd	799	0311
Loop.4.Diag.SchedTi	798	031e
Loop.4.Diag.TargetOutVal	883	0373
Loop.4.Main.ActiveOut	772	0304
Loop.4.Main.AutoMan	778	030a
Loop.4.Main.Inhibit	788	0314
Loop.4.Main.PV	769	0301
Loop.4.Main.TargetSP	770	0302
Loop.4.Main.WorkingSP	773	0305
Loop.4.OP.Ch1OnOffHysteresis	852	0354
Loop.4.OP.Ch1Out	850	0352
Loop.4.OP.Ch2Deadband	784	0310
Loop.4.OP.Ch2OnOffHysteresis	853	0355
Loop.4.OP.Ch2Out	851	0353
Loop.4.OP.CoolType	861	035d
Loop.4.OP.EnablePowerFeedforward	859	035b
Loop.4.OP.FeedForwardGain	863	0351
Loop.4.OP.FeedForwardOffset	864	0360
Loop.4.OP.FeedForwardTrimLimit	865	0361
Loop.4.OP.FeedForwardType	862	035e
Loop.4.OP.FeedForwardVal	866	0362
Loop.4.OP.FF_Rem	871	0367
Loop.4.OP.ManualMode	858	035a
Loop.4.OP.ManualOutVal	771	0303

Description	MadDua	LIEV
Description	ModBus	HEX
Loop.4.OP.Output limit	860	035c
Loop.4.OP.OutputHighLimit	848	0350
Loop.4.OP.OutputLowLimit	849	0351
Loop.4.OP.Rate	854	0356
Loop.4.OP.RateDisable	855	0357
Loop.4.OP.RemOPH	870	0366
Loop.4.OP.RemOPL	869	0365
Loop.4.OP.SafeOutVal	857	0359
Loop.4.OP.SensorBreakMode	856	0358
Loop.4.OP.TrackEnable	868	0364
Loop.4.OP.TrackOutVal	867	0363
Loop.4.PID.ActiveSet	796	031c
Loop.4.PID.Boundary1-2	794	031a
Loop.4.PID.Boundary2-3	795	031b
Loop.4.PID.CutbackHigh	786	0312
Loop.4.PID.CutbackHigh2	814	032e
Loop.4.PID.CutbackHigh3	824	0338
Loop.4.PID.CutbackLow	785	0311
Loop.4.PID.CutbackLow2	815	032f
Loop.4.PID.CutbackLow3	825	0339
Loop.4.PID.DerivativeTime	777	0309
Loop.4.PID.DerivativeTime2	813	032d
Loop 4 PID Integral Time	823	0337
Loop.4.PID.IntegralTime	776	0308
Loop.4.PID.IntegralTime2 Loop.4.PID.IntegralTime3	812 822	032c 0336
Loop.4.PID.LoopBreakTime	808	0330
Loop.4.PID.LoopBreakTime2	817	0328
Loop.4.PID.LoopBreakTime3	827	033b
Loop.4.PID.ManualReset	807	0327
Loop.4.PID.ManualReset2	816	0330
Loop.4.PID.ManualReset3	826	033a
Loop.4.PID.NumSets	832	0340
Loop.4.PID.OutputHi	809	0329
Loop.4.PID.OutputHi2	819	0333
Loop.4.PID.OutputHi3	829	033d
Loop.4.PID.OutputLo	810	032a
Loop.4.PID.OutputLo2	820	0334
Loop.4.PID.OutputLo3	830	033e
Loop.4.PID.ProportionalBand	774	0306
Loop.4.PID.ProportionalBand2	811	032b
Loop.4.PID.ProportionalBand3	821	0335
Loop.4.PID.RelCh2Gain	787	0313
Loop.4.PID.RelCh2Gain2	818	0332
Loop.4.PID.RelCh2Gain3	828	033c
Loop.4.PID.SchedulerRemoteInput	833	0341
Loop.4.PID.SchedulerType	831	033f
Loop.4.Setup.CH1ControlType	790	0316
Loop.4.Setup.CH2ControlType	791	0317
Loop.4.Setup.ControlAction	775	0307
Loop.4.Setup.DerivativeType	793	0319
Loop.4.Setup.LoopType	789	0315
Loop.4.Setup.PBUnits	792	0318
Loop.4.SP.AltSP	836	0344
Loop.4.SP.AltSPSelect	837	0345
Loop.4.SP.ManualTrack	843	034b
Loop.4.SP.RangeHigh	780	030c
Loop.4.SP.RangeLow	779	030b

Description	ModPuo	HEV
Description Loop.4.SP.Rate	ModBus 838	HEX 0346
Loop.4.SP.RateDisable	839	0340
Loop.4.SP.RateDone	847	0347 034f
Loop.4.SP.SP1	781	030d
Loop.4.SP.SP2	782	030d
	834	0306
Loop 4 SP SPL out imit		
Loop.4.SP.SPLowLimit Loop.4.SP.SPSelect	835 783	0343 030f
Loop 4 SP SPTrim	844	034c 0348
Loop.4.SP.SPTrim Loop.4.SP.SPTrimHighLimit	840 841	0349
Loop.4.SP.SPTrimLowLimit	842	034a
Loop.4.SP.TrackPV	845	034d
Loop.4.SP.TrackSP Loop.4.Tune.AutotuneEnable	846 876	034e 036c
Loop.4. Tune. Autotune Eriable Loop.4. Tune. Output High Limit	873	0369
Loop.4. Tune. Output light limit Loop.4. Tune. Output Low Limit	874	
	_	036a
Loop 4 Tune StageTime	879 880	036f 0370
Loop.4.Tune.StageTime Loop.4.Tune.State		0370 036e
Loop.4.Tune.State Loop.4.Tune.StepSize	878 877	036d
Loop.4. Tune. StepSize Loop.4. Tune. Type	877	0368
Loop.5.Diag.DerivativeOutContrib	1143	0300
Loop.5.Diag.Error	1143	0477
Loop.5.Diag.IntegralOutContrib	1142	0471
Loop.5.Diag.LoopBreakAlarm	1142	0470
Loop.5.Diag.LoopMode	1138	0472
Loop.5.Diag.PropOutContrib	1141	0475
Loop.5.Diag.SBrk	1144	0478
Loop.5.Diag.SchedCBH	1056	0420
Loop.5.Diag.SchedCBL	1057	0421
Loop.5.Diag.SchedLPBrk	1059	0423
Loop.5.Diag.SchedMR	1058	0422
Loop.5.Diag.SchedOPHi	1061	0425
Loop.5.Diag.SchedOPLo	1062	0426
Loop.5.Diag.SchedPB	1053	041d
Loop.5.Diag.SchedR2G	1060	0424
Loop.5.Diag.SchedTd	1055	041f
Loop.5.Diag.SchedTi	1054	041e
Loop.5.Diag.TargetOutVal	1139	0473
Loop.5.Main.ActiveOut	1028	0404
Loop.5.Main.AutoMan	1034	040a
Loop.5.Main.Inhibit	1044	0414
Loop.5.Main.PV	1025	0401
Loop.5.Main.TargetSP	1026	0402
Loop.5.Main.WorkingSP	1029	0405
Loop.5.OP.Ch1OnOffHysteresis	1108	0454
Loop.5.OP.Ch1Out	1106	0452
Loop.5.OP.Ch2Deadband	1040	0410
Loop.5.OP.Ch2OnOffHysteresis	1109	0455
Loop.5.OP.Ch2Out	1107	0453
Loop.5.OP.CoolType	1117	045d
Loop.5.OP.EnablePowerFeedforward	1115	045b
Loop.5.OP.FeedForwardGain	1119	045f
Loop.5.OP.FeedForwardOffset	1120	0460
Loop.5.OP.FeedForwardTrimLimit	1121	0461
Loop.5.OP.FeedForwardType	1118	045e
Loop.5.OP.FeedForwardVal	1122	0462

Description	ModBus	HEX
Loop.5.OP.FF Rem	1127	0467
Loop.5.OP.ManualMode	1114	045a
Loop.5.OP.ManualOutVal	1027	0403
Loop.5.OP.MeasuredPower	1116	045c
Loop.5.OP.OutputHighLimit	1104	0450
Loop.5.OP.OutputLowLimit	1104	0450
Loop.5.OP.Rate	1110	0456
	1111	
Loop.5.OP.RateDisable		0457
Loop.5.OP.RemOPH	1126	0466
Loop.5.OP.RemOPL	1125	0465
Loop.5.OP.SafeOutVal	1113	0459
Loop.5.OP.SensorBreakMode	1112	0458
Loop.5.OP.TrackEnable	1124	0464
Loop.5.OP.TrackOutVal	1123	0463
Loop.5.PID.ActiveSet	1052	041c
Loop.5.PID.Boundary1-2	1050	041a
Loop.5.PID.Boundary2-3	1051	041b
Loop.5.PID.CutbackHigh	1042	0412
Loop.5.PID.CutbackHigh2	1070	042e
Loop.5.PID.CutbackHigh3	1080	0438
Loop.5.PID.CutbackLow	1041	0411
Loop.5.PID.CutbackLow2	1071	042f
Loop.5.PID.CutbackLow3	1081	0439
Loop.5.PID.DerivativeTime	1033	0409
Loop.5.PID.DerivativeTime2	1069	042d
Loop.5.PID.DerivativeTime3	1079	0437
Loop.5.PID.IntegralTime	1032	0408
Loop.5.PID.IntegralTime2	1068	042c
Loop.5.PID.IntegralTime3	1078	0436
Loop.5.PID.LoopBreakTime	1064	0428
Loop.5.PID.LoopBreakTime2	1073	0431
Loop.5.PID.LoopBreakTime3	1083	043b
Loop.5.PID.ManualReset	1063	0427
Loop.5.PID.ManualReset2	1072	0430
Loop.5.PID.ManualReset3	1082	043a
Loop.5.PID.NumSets	1088	0440
Loop.5.PID.OutputHi	1065	0429
Loop.5.PID.OutputHi2	1075	0433
Loop.5.PID.OutputHi3	1085	043d
Loop.5.PID.OutputLo	1066	042a
Loop.5.PID.OutputLo2	1076	0434
Loop.5.PID.OutputLo3	1086	043e
Loop.5.PID.ProportionalBand	1030	0406
Loop.5.PID.ProportionalBand2	1067	042b
Loop.5.PID.ProportionalBand3	1077	0435
Loop.5.PID.RelCh2Gain	1043	0413
Loop.5.PID.RelCh2Gain2	1074	0432
Loop.5.PID.RelCh2Gain3	1084	043c
Loop.5.PID.SchedulerRemoteInput	1089	0441
Loop.5.PID.SchedulerType	1087	043f
Loop.5.Setup.CH1ControlType	1046	0416
Loop.5.Setup.CH2ControlType	1047	0417
Loop.5.Setup.ControlAction	1031	0407
Loop.5.Setup.DerivativeType	1049	0419
Loop.5.Setup.LoopType	1045	0415
Loop.5.Setup.PBUnits	1048	0418
Loop.5.SP.AltSP	1092	0444
Loop.5.SP.AltSPSelect	1093	0445
<u>.</u>		

Description	ModBus	HEX
Loop.5.SP.ManualTrack	1099	044b
Loop.5.SP.RangeHigh	1036	040c
Loop.5.SP.RangeLow	1035	040b
Loop.5.SP.Rate	1094	0446
Loop.5.SP.RateDisable	1095	0447
Loop.5.SP.RateDone	1103	044f
Loop.5.SP.SP1	1037	040d
Loop.5.SP.SP2	1038	040e
Loop.5.SP.SPHighLimit	1090	0442
Loop.5.SP.SPLowLimit	1091	0443
Loop.5.SP.SPSelect	1039	040f
Loop.5.SP.SPTrack	1100	044c
Loop.5.SP.SPTrim	1096	0448
Loop.5.SP.SPTrimHighLimit	1097	0449
Loop.5.SP.SPTrimLowLimit	1098	044a
Loop.5.SP.TrackPV	1101	044d
Loop.5.SP.TrackSP	1101	044e
Loop.5.Tune.AutotuneEnable	1132	046c
Loop.5.Tune.OutputHighLimit	1129	0469
Loop.5.Tune.OutputLowLimit	1130	046a
	1135	046f
Loop 5 Tune Stage	1136	0470
Loop.5.Tune.StageTime		
Loop.5.Tune.State	1134	046e
Loop.5.Tune.StepSize	1133	046d
Loop.5.Tune.Type	1128	0468
Loop.6.Diag.DerivativeOutContrib	1399	0577
Loop.6.Diag.Error	1393	0571
Loop.6.Diag.IntegralOutContrib	1398	0576
Loop.6.Diag.LoopBreakAlarm	1396	0574
Loop.6.Diag.LoopMode	1394	0572
Loop.6.Diag.PropOutContrib	1397	0575
Loop.6.Diag.SBrk	1400	0578
Loop.6.Diag.SchedCBH	1312	0520
Loop.6.Diag.SchedCBL	1313	0521
Loop.6.Diag.SchedLPBrk	1315	0523
Loop.6.Diag.SchedMR	1314	0522
Loop.6.Diag.SchedOPHi	1317	0525
Loop.6.Diag.SchedOPLo	1318	0526
Loop.6.Diag.SchedPB	1309	051d
Loop.6.Diag.SchedR2G	1316	0524
Loop.6.Diag.SchedTd	1311	051f
Loop.6.Diag.SchedTi	1310	051e
Loop.6.Diag.TargetOutVal	1395	0573
Loop.6.Main.ActiveOut	1284	0504
Loop.6.Main.AutoMan	1290	050a
Loop.6.Main.Inhibit	1300	0514
Loop.6.Main.PV	1281	0501
Loop.6.Main.TargetSP	1282	0502
Loop.6.Main.WorkingSP	1285	0505
Loop.6.OP.Ch1OnOffHysteresis	1364	0554
Loop.6.OP.Ch1Out	1362	0552
Loop.6.OP.Ch2Deadband	1296	0510
Loop.6.OP.Ch2OnOffHysteresis	1365	0555
Loop.6.OP.Ch2Out	1363	0553
Loop.6.OP.CoolType	1373	055d
Loop.6.OP.EnablePowerFeedforward	1371	055b
Loop.6.OP.FeedForwardGain	1375	055f
Loop.6.OP.FeedForwardOffset	1376	0560

December 1	MaralD	1157
Description	ModBus	HEX
Loop.6.OP.FeedForwardTrimLimit	1377	0561
Loop.6.OP.FeedForwardType	1374	055e
Loop.6.OP.FF Rem	1378	0562
<u> </u>	1383 1370	0567 055a
Loop 6 OP Manual Mode		
Loop.6.OP.ManualOutVal	1283	0503
Loop 6 OP Output light imit	1372	055c
Loop.6.OP.OutputHighLimit	1360	0550
Loop 6 OR Rote	1361	0551
Loop.6.OP.Rate	1366	0556
Loop.6.OP.RateDisable	1367	0557
Loop.6.OP.RemOPH	1382	0566
Loop.6.OP.RemOPL	1381	0565
Loop.6.OP.SafeOutVal	1369	0559
Loop.6.OP.SensorBreakMode	1368	0558
Loop.6.OP.TrackEnable	1380	0564
Loop.6.OP.TrackOutVal	1379	0563
Loop.6.PID.ActiveSet	1308	051c
Loop.6.PID.Boundary1-2	1306	051a
Loop.6.PID.Boundary2-3	1307	051b
Loop.6.PID.CutbackHigh	1298	0512
Loop.6.PID.CutbackHigh2	1326	052e
Loop.6.PID.CutbackHigh3	1336	0538
Loop.6.PID.CutbackLow	1297	0511
Loop.6.PID.CutbackLow2	1327	052f
Loop.6.PID.CutbackLow3	1337	0539
Loop.6.PID.DerivativeTime	1289	0509
Loop.6.PID.DerivativeTime2	1325	052d
Loop.6.PID.DerivativeTime3	1335	0537
Loop.6.PID.IntegralTime	1288	0508
Loop.6.PID.IntegralTime2	1324	052c
Loop.6.PID.IntegralTime3 Loop.6.PID.LoopBreakTime	1334 1320	0536
Loop.6.PID.LoopBreakTime2	1320	0528 0531
	1329	
Loop.6.PID.LoopBreakTime3 Loop.6.PID.ManualReset		053b
	1319 1328	0527
Loop.6.PID.ManualReset2 Loop.6.PID.ManualReset3	1328	0530 053a
<u> </u>		0000
Loop 6 PID OutputHi	1344 1321	0540 0529
Loop.6.PID.OutputHi Loop.6.PID.OutputHi2	1331	0533
Loop.6.PID.OutputHi3	1341	053d
Loop.6.PID.OutputLo	1322	053u
Loop.6.PID.OutputLo2	1332	0524
Loop.6.PID.OutputLo3	1342	0534 053e
Loop.6.PID.ProportionalBand	1286	0506
Loop.6.PID.ProportionalBand2	1323	052b
Loop.6.PID.ProportionalBand3	1333	0535
Loop.6.PID.RelCh2Gain	1299	0513
Loop.6.PID.RelCh2Gain2	1330	0532
Loop.6.PID.RelCh2Gain3	1340	0532 053c
•		0530
Loop.6.PID.SchedulerRemoteInput Loop.6.PID.SchedulerType	1345	
	1343	053f
Loop 6 Sotup CH2ControlType	1302	0516
Loop 6 Setup Control Action	1303	0517
Loop.6.Setup.ControlAction	1287	0507
Loop 6 Setup Loop Type	1305	0519
Loop.6.Setup.LoopType	1301	0515

Description	ModDuo	LIEV
Description Loop.6.Setup.PBUnits	ModBus 1304	HEX 0518
Loop.6.SP.AltSP	1348	0516
Loop.6.SP.AltSPSelect	1349	0545
Loop.6.SP.ManualTrack	1355	054b
Loop.6.SP.RangeHigh	1292	050c
Loop.6.SP.RangeLow	1292	050b
Loop.6.SP.Rate	1350	0546
Loop.6.SP.RateDisable	1351	0547
Loop.6.SP.RateDone	1359	054f
Loop.6.SP.SP1	1293	050d
Loop.6.SP.SP2	1294	050e
Loop.6.SP.SPHighLimit	1346	0542
Loop.6.SP.SPLowLimit	1347	0543
Loop.6.SP.SPSelect	1295	050f
Loop.6.SP.SPTrack	1356	054c
Loop.6.SP.SPTrim	1352	0548
Loop.6.SP.SPTrimHighLimit	1353	0549
Loop.6.SP.SPTrimLowLimit	1354	054a
Loop.6.SP.TrackPV	1357	054d
Loop.6.SP.TrackSP	1358	054e
Loop.6.Tune.AutotuneEnable	1388	056c
Loop.6.Tune.OutputHighLimit	1385	0569
Loop.6.Tune.OutputLowLimit	1386	056a
Loop.6.Tune.Stage	1391	056f
Loop.6.Tune.StageTime	1392	0570
Loop.6.Tune.State	1390	056e
Loop.6.Tune.StepSize	1389	056d
Loop.6.Tune.Type	1384	0568
Loop.7.Diag.DerivativeOutContrib	1655	0677
Loop.7.Diag.Error	1649	0671
Loop.7.Diag.IntegralOutContrib	1654	0676
Loop.7.Diag.LoopBreakAlarm	1652	0674
Loop.7.Diag.LoopMode	1650	0672
Loop.7.Diag.PropOutContrib	1653	0675
Loop.7.Diag.SBrk	1656	0678
Loop.7.Diag.SchedCBH	1568	0620
Loop.7.Diag.SchedCBL	1569	0621
Loop.7.Diag.SchedLPBrk	1571	0623
Loop.7.Diag.SchedMR	1570	0622
Loop.7.Diag.SchedOPHi	1573	0625
Loop.7.Diag.SchedOPLo	1574	0626
Loop.7.Diag.SchedPB	1565	061d
Loop.7.Diag.SchedR2G	1572	0624
Loop.7.Diag.SchedTd	1567	061f
Loop.7.Diag.SchedTi	1566	061e
Loop.7.Diag.TargetOutVal	1651	0673
Loop.7.Main.ActiveOut	1540	0604
Loop.7.Main.AutoMan	1546	060a
Loop.7.Main.Inhibit	1556	0614
Loop.7.Main.PV	1537	0601
Loop.7.Main.TargetSP	1538	0602
Loop.7.Main.WorkingSP	1541	0605
Loop.7.OP.Ch1OnOffHysteresis	1620	0654
Loop.7.OP.Ch1Out	1618	0652
Loop.7.OP.Ch2Deadband	1552	0610
Loop.7.OP.Ch2OnOffHysteresis	1621	0655
Loop.7.OP.Ch2Out	1619	0653
Loop.7.OP.CoolType	1629	065d

Description	MadDua	LIEV
Description	ModBus	HEX
Loop.7.OP.EnablePowerFeedforward	1627	065b
Loop.7.OP.FeedForwardGain	1631	065f
Loop.7.OP.FeedForwardOffset	1632	0660
Loop.7.OP.FeedForwardTrimLimit	1633	0661
Loop.7.OP.FeedForwardType	1630	065e
Loop.7.OP.FeedForwardVal	1634	0662
Loop.7.OP.FF_Rem	1639	0667
Loop.7.OP.ManualMode	1626	065a
Loop.7.OP.ManualOutVal	1539	0603
Loop.7.OP.MeasuredPower	1628	065c
Loop.7.OP.OutputHighLimit	1616	0650
Loop.7.OP.OutputLowLimit	1617	0651
Loop.7.OP.Rate	1622	0656
Loop.7.OP.RateDisable	1623	0657
Loop.7.OP.RemOPH	1638	0666
Loop.7.OP.RemOPL	1637	0665
Loop.7.OP.SafeOutVal	1625	0659
Loop.7.OP.SensorBreakMode	1624	0658
Loop.7.OP.TrackEnable	1636	0664
Loop.7.OP.TrackOutVal	1635	0663
Loop.7.PID.ActiveSet	1564	061c
Loop.7.PID.Boundary1-2	1562	061a
Loop.7.PID.Boundary2-3	1563	061b
Loop.7.PID.CutbackHigh	1554	0612
Loop.7.PID.CutbackHigh2	1582	062e
Loop.7.PID.CutbackHigh3	1592	0638
Loop.7.PID.CutbackLow	1553	0611
Loop.7.PID.CutbackLow2	1583	062f
Loop.7.PID.CutbackLow2	1593	0639
Loop.7.PID.DerivativeTime	1545	
Loop.7.PID.DerivativeTime2		0609
	1581	062d
Loop.7.PID.DerivativeTime3	1591	0637
Loop.7.PID.IntegralTime	1544	0608
Loop.7.PID.IntegralTime2	1580	062c
Loop.7.PID.IntegralTime3	1590	0636
Loop.7.PID.LoopBreakTime	1576	0628
Loop.7.PID.LoopBreakTime2	1585	0631
Loop.7.PID.LoopBreakTime3	1595	063b
Loop.7.PID.ManualReset	1575	0627
Loop.7.PID.ManualReset2	1584	0630
Loop.7.PID.ManualReset3	1594	063a
Loop.7.PID.NumSets	1600	0640
Loop.7.PID.OutputHi	1577	0629
Loop.7.PID.OutputHi2	1587	0633
Loop.7.PID.OutputHi3	1597	063d
Loop.7.PID.OutputLo	1578	062a
Loop.7.PID.OutputLo2	1588	0634
Loop.7.PID.OutputLo3	1598	063e
Loop.7.PID.ProportionalBand	1542	0606
Loop.7.PID.ProportionalBand2	1579	062b
Loop.7.PID.ProportionalBand3	1589	0635
Loop.7.PID.RelCh2Gain	1555	0613
Loop.7.PID.RelCh2Gain2	1586	0632
Loop.7.PID.RelCh2Gain3	1596	063c
Loop.7.PID.SchedulerRemoteInput	1601	0641
Loop.7.PID.SchedulerType	1599	063f
Loop.7.Setup.CH1ControlType	1558	0616
Loop.7.Setup.CH2ControlType	1559	0617
	1000	5517

<u> </u>		
Description	ModBus	HEX
Loop.7.Setup.ControlAction	1543	0607
Loop.7.Setup.DerivativeType	1561	0619
Loop.7.Setup.LoopType	1557	0615
Loop.7.Setup.PBUnits	1560	0618
Loop.7.SP.AltSP	1604	0644
Loop.7.SP.AltSPSelect	1605	0645
Loop.7.SP.ManualTrack	1611	064b
Loop.7.SP.RangeHigh	1548	060c
Loop.7.SP.RangeLow	1547	060b
Loop.7.SP.Rate	1606	0646
Loop.7.SP.RateDisable	1607	0647
Loop.7.SP.RateDone	1615	064f
Loop.7.SP.SP1	1549	060d
Loop.7.SP.SP2	1550	060e
Loop.7.SP.SPHighLimit	1602	0642
Loop.7.SP.SPLowLimit	1603	0643
Loop.7.SP.SPSelect	1551	060f
Loop.7.SP.SPTrack	1612	064c
Loop.7.SP.SPTrim	1608	0648
Loop.7.SP.SPTrimHighLimit	1609	0649
Loop.7.SP.SPTrimLowLimit	1610	064a
Loop.7.SP.TrackPV	1613	064d
Loop.7.SP.TrackSP	1614	064e
Loop.7.Tune.AutotuneEnable	1644	066c
Loop.7.Tune.OutputHighLimit	1641	0669
Loop.7.Tune.OutputLowLimit	1642	066a
Loop.7.Tune.Stage	1647	066f
Loop.7.Tune.StageTime	1648	0670
Loop.7.Tune.State	1646	066e
Loop.7.Tune.StepSize	1645	066d
Loop.7.Tune.Type	1640	0668
Loop.8.Diag.DerivativeOutContrib	1911	0777
Loop.8.Diag.Error	1905	0771
Loop.8.Diag.IntegralOutContrib	1910	0776
Loop.8.Diag.LoopBreakAlarm	1908	0774
Loop.8.Diag.LoopMode	1906	0772
Loop.8.Diag.PropOutContrib	1909	0775
Loop.8.Diag.SBrk	1912	0778
Loop.8.Diag.SchedCBH	1824	0720
Loop.8.Diag.SchedCBL	1825	0721
Loop.8.Diag.SchedLPBrk	1827	0723
Loop.8.Diag.SchedMR	1826	0722
Loop.8.Diag.SchedOPHi	1829	0725
Loop.8.Diag.SchedOPLo	1830	0726
Loop.8.Diag.SchedPB	1821	071d
Loop.8.Diag.SchedR2G	1828	0724
Loop.8.Diag.SchedTd	1823	071f
Loop.8.Diag.SchedTi	1822	071e
Loop.8.Diag.TargetOutVal	1907	0773
Loop.8.Main.ActiveOut	1796	0704
Loop.8.Main.AutoMan	1802	070a
Loop.8.Main.Inhibit	1812	0714
Loop.8.Main.PV	1793	0701
Loop.8.Main.TargetSP	1794	0702
Loop.8.Main.WorkingSP	1797	0705
Loop.8.OP.Ch1OnOffHysteresis	1876	0754
Loop.8.OP.Ch1Out	1874	0752
Loop.8.OP.Ch2Deadband	1808	0710

5	l I	
Description	ModBus	HEX
Loop.8.OP.Ch2OnOffHysteresis	1877	0755
Loop.8.OP.CoolTime	1875	0753
Loop.8.OP.CoolType	1885	075d
Loop.8.OP.EnablePowerFeedforward	1883	075b
Loop 8 OP Food Forward Officet	1887	075f
Loop 8 OD Food Forward Trim Limit	1888	0760 0761
Loop.8.OP.FeedForwardTrimLimit Loop.8.OP.FeedForwardType	1889 1886	
Loop.8.OP.FeedForwardVal	1890	075e 0762
Loop.8.OP.FF_Rem	1895	0767
Loop.8.OP.ManualMode	1882	075a
Loop.8.OP.ManualOutVal	1795	0703
Loop.8.OP.MeasuredPower	1884	075c
Loop.8.OP.OutputHighLimit	1872	0750
Loop.8.OP.OutputLowLimit	1873	0751
Loop.8.OP.Rate	1878	0756
Loop.8.OP.RateDisable	1879	0757
Loop.8.OP.RemOPH	1894	0766
Loop.8.OP.RemOPL	1893	0765
Loop.8.OP.SafeOutVal	1881	0759
Loop.8.OP.SensorBreakMode	1880	0758
Loop.8.OP.TrackEnable	1892	0764
Loop.8.OP.TrackOutVal	1891	0763
Loop.8.PID.ActiveSet	1820	071c
Loop.8.PID.Boundary1-2	1818	071a
Loop.8.PID.Boundary2-3	1819	071b
Loop.8.PID.CutbackHigh	1810	0712
Loop.8.PID.CutbackHigh2	1838	072e
Loop.8.PID.CutbackHigh3	1848	0738
Loop.8.PID.CutbackLow	1809	0711
Loop.8.PID.CutbackLow2	1839	072f
Loop.8.PID.CutbackLow3	1849	0739
Loop.8.PID.DerivativeTime	1801	0709
Loop.8.PID.DerivativeTime2	1837	072d
Loop.8.PID.DerivativeTime3	1847	0737
Loop.8.PID.IntegralTime	1800	0708
Loop.8.PID.IntegralTime2	1836	072c
Loop.8.PID.IntegralTime3	1846	0736
Loop.8.PID.LoopBreakTime	1832	0728
Loop.8.PID.LoopBreakTime2	1841	0731
Loop.8.PID.LoopBreakTime3	1851	073b
Loop.8.PID.ManualReset	1831	0727
Loop.8.PID.ManualReset2	1840	0730
Loop.8.PID.ManualReset3	1850	073a
Loop.8.PID.NumSets	1856	0740
Loop.8.PID.OutputHi	1833	0729
Loop.8.PID.OutputHi2	1843	0733
Loop.8.PID.OutputHi3	1853	073d
Loop.8.PID.OutputLo	1834	072a
Loop.8.PID.OutputLo2	1844	0734
Loop.8.PID.OutputLo3	1854	073e
Loop.8.PID.ProportionalBand	1798	0706
Loop.8.PID.ProportionalBand2	1835	072b
Loop.8.PID.ProportionalBand3	1845	0735
Loop.8.PID.RelCh2Gain	1811	0713
Loop.8.PID.RelCh2Gain2	1842	0732
Loop.8.PID.RelCh2Gain3	1852	073c
Loop.8.PID.SchedulerRemoteInput	1857	0741

Description	ModBus	HEX	Description	ModBus	HEX
Loop.8.PID.SchedulerType	1855	073f	Math2.9.In1	4774	12a6
Loop.8.Setup.CH1ControlType	1814	0716	Math2.9.In2	4775	12a7
Loop.8.Setup.CH2ControlType	1815	0717	Math2.9.Out	4776	12a8
Loop.8.Setup.ControlAction	1799	0707	Math2.10.In1	4777	12a9
Loop.8.Setup.DerivativeType	1817	0719	Math2.10.In2	4778	12aa
Loop.8.Setup.LoopType	1813	0715	Math2.10.Out	4779	12ab
Loop.8.Setup.PBUnits	1816	0718	Math2.11.In1	4780	
Loop.8.SP.AltSP	1860	0744	Math2.11.In2	4781	12ad
Loop.8.SP.AltSPSelect	1861	0745	Math2.11.Out	4782	
Loop.8.SP.ManualTrack	1867	074b	Math2.12.In1	4783	
Loop.8.SP.RangeHigh	1804	070c	Math2.12.In2	4784	
Loop.8.SP.RangeLow	1803	070b	Math2.12.Out	4785	
Loop.8.SP.Rate	1862	0746	Math2.13.In1	4786	
Loop.8.SP.RateDisable	1863	0747	Math2.13.In2	4787	
Loop.8.SP.RateDone	1871	074f	Math2.13.Out	4788	
Loop.8.SP.SP1	1805	070d	Math2.14.In1	4789	
Loop.8.SP.SP2	1806	070e	Math2.14.In2	4790	
Loop.8.SP.SPHighLimit	1858	0742	Math2.14.0ut	4791	12b7
Loop.8.SP.SPLowLimit	1859	0743	Math2.15.In1	4792	
Loop.8.SP.SPSelect	1807	070f	Math2.15.In2	4793	
Loop.8.SP.SPTrack	1868	074c	Math2.15.0ut	4794	
Loop.8.SP.SPTrim	1864	0748	Math2.16.In1	4794	
Loop.8.SP.SPTrimHighLimit	1865	0749	Math2.16.In2	4796	
Loop.8.SP.SPTrimLowLimit	1866	074a	Math2.16.Out	4797	
Loop.8.SP.TrackPV	1869	074d	Math2.17.In1	4798	
Loop.8.SP.TrackSP	1870	074u	Math2.17.In2	4790	
Loop.8.Tune.AutotuneEnable	1900	074c	Math2.17.Out	4800	
Loop.8.Tune.OutputHighLimit	1897	0769	Math2.17.0ut Math2.18.In1	4800	12c1
Loop.8.Tune.OutputLowLimit	1898	076a	Math2.18.In2	4802	
Loop.8.Tune.Stage	1903	076f	Math2.18.Out	4803	
Loop.8.Tune.StageTime	1903	0770	Math2.19.In1	4804	
Loop.8.Tune.State	1902	076e	Math2.19.In2	4805	
Loop.8.Tune.State Loop.8.Tune.StepSize	1902	076d	Math2.19.0ut	4806	
Loop.8.Tune.Type	1896		Math2.20.In1	4807	12c7
Math2.1.In1	4750	128e	Math2.20.In2	4808	
Math2.1.ln2	4751	128f	Math2.20.Out	4809	
Math2.1.Out	4752	1290	Math2.21.In1	4810	
Math2.2.In1	4753		Math2.21.In2	4811	
Math2.2.In2	4754		Math2.21.Out	4812	
Math2.2.Out	4755		Math2.22.In1	4813	
Math2.3.In1	4756		Math2.22.In2	4814	
Math2.3.In2	4757	1295	Math2.22.Out	4815	
Math2.3.Out	4757		Math2.23.In1		12d0
Math2.4.In1	4759		Math2.23.In1	4817	
Math2.4.In2	4760		Math2.23.0ut		12d1
Math2.4.Out	4760	1299	Math2.24.In1	4819	
Math2.5.In1	4761	1299 129a	Math2.24.In1	4820	
Math2.5.In2	4762		Math2.24.Out	4821	
Math2.5.Out	4763		Program.Cycles	8196	
Math2.6.In1	4765		Program.DwellUnits	8195	
Math2.6.In2	4765		Program.HoldbackVal	8193	
Math2.6.Out	4760	129e	Program.RampUnits	8194	
Math2.7.In1	4767		Programmer.CommsProgNum	8192	
Math2.7.In2	4769		Programmer.Run.CurProg	8201	
Math2.7.Out	4709		Programmer.Run.CurSeg	8202	
Math2.8.In1	4770	12a2 12a3	Programmer.Run.CurSegType	8202	
Math2.8.In1	4771		Programmer.Run.CyclesLeft	8205	
			·		
Math2.8.Out	4773	12a5	Programmer.Run.EventOuts	8212	2014

Programmer.Run.FastRun 8216 2018 Programmer.Run.ProgStatus 8203 200b Programmer.Run.ProgTimeLeft 8209 2011 Programmer.Run.RseyP 8204 200c Programmer.Run.SegTaget 8208 2010 Programmer.Run.SegTarget 8207 200f Programmer.Run.SegTimeLeft 8213 2015 Programmer.Setup.AdvSeg 8217 2019 Programmer.Setup.EndOfSeg 8214 2016 Programmer.Setup.EndOfSeg 8214 2016 Programmer.Setup.DevoerFailAct 8197 2005 Programmer.Setup.Povin 8219 2012 Programmer.Setup.Servo 8198 2006 Programmer.Setup.Septin 8211 2013 Programmer.Setup.SyncMode 8199 2007 Recipe.LastDataset 4913 3131 Recipe.LoadingStatus 4914 1332 Recipe.LoadingStatus 4914 1332 Regment.1.CallCycles 8259 2042 Segment.1.EndType 8263	5		
Programmer.Run.ProgStatus 8203 200b Programmer.Run.Psp 8204 2002 Programmer.Run.ResetEventOuts 8200 2006 Programmer.Run.SegRate 8208 2010 Programmer.Run.SegTarget 8207 2006 Programmer.Run.SegTimeLeft 8213 2015 Programmer.Setup.AdvSeg 8217 2019 Programmer.Setup.EndOfSeg 8214 2016 Programmer.Setup.PowerFailAct 8197 2005 Programmer.Setup.PvIn 8210 2012 Programmer.Setup.PowerFailAct 8198 2006 Programmer.Setup.PvIn 8212 2013 Programmer.Setup.SepNo 8198 2006 Programmer.Setup.Synch 8218 2017 Programmer.Setup.SynchMode 8199 2007 Recipe.LastDataset 4913 331 Recipe.LastDataset 4913 333 Recipe.LastDataset 4914 332 Recipe.LastDataset 4913 333 Recipe.LastDataset 4914	Description	ModBus	HEX
Programmer.Run.ProgTimeLeft 8209 2011 Programmer.Run.ResetEventOuts 8200 2008 Programmer.Run.SegRate 8208 2010 Programmer.Run.SegTarget 8207 2006 Programmer.Run.SegTimeLeft 8213 2015 Programmer.Setup.AdvSeg 8217 2019 Programmer.Setup.EndOfSeg 8214 2016 Programmer.Setup.PowerFailAct 8197 2005 Programmer.Setup.PowerFailAct 8197 2005 Programmer.Setup.Servo 8198 2006 Programmer.Setup.Servo 8198 2006 Programmer.Setup.Syncln 8215 2017 Programmer.Setup.Syncln 8215 2017 Programmer.Setup.Syncln 8215 2017 Programmer.Setup.Syncln 8199 2007 Recipe.LastDataset 4913 3131 Recipe.LastDataset 4913 3131 Recipe.LastDataset 4913 3131 Recipe.LastDataset 4913 3133 Recipe.LastDataset 4911 </td <td><u> </u></td> <td></td> <td></td>	<u> </u>		
Programmer.Run.PSP 8204 200c Programmer.Run.SegRate 8208 2010 Programmer.Run.SegTarget 8207 2006 Programmer.Run.SegTimeLeft 8213 2015 Programmer.Run.SegTimeLeft 8213 2015 Programmer.Setup.AdvSeg 8217 2019 Programmer.Setup.EndOfSeg 8214 2016 Programmer.Setup.PowerFailAct 8197 2005 Programmer.Setup.PowerFailAct 8198 2006 Programmer.Setup.PowerFailAct 8199 2007 Programmer.Setup.Sevo 8198 2001 Programmer.Setup.Sevo 8198 2001 Programmer.Setup.SyncMode 8199 2007 Recipe.LeastDataset 4913 1331 Recipe.LastDataset 4913 1332 Recipe.LastDataset 4912 <td< td=""><td></td><td>+</td><td></td></td<>		+	
Programmer.Run.SegRate 8200 2008 Programmer.Run.SegRate 8208 2010 Programmer.Run.SegTimget 8207 2007 Programmer.Run.SegTimeLeft 8213 2015 Programmer.Setup.AdvSeg 8217 2019 Programmer.Setup.EndOfSeg 8214 2016 Programmer.Setup.PvowerFailAct 8197 2005 Programmer.Setup.PvIn 8210 2012 Programmer.Setup.SkipSeg 8188 2006 Programmer.Setup.SkipSeg 8218 201a Programmer.Setup.Synclm 8215 2017 Programmer.Setup.SynchMode 8199 2007 Recipe.LastDataset 4913 1331 Recipe.LastDataset 4913 1331 Recipe.LastDataset 4911 1330 Regment.1.CaliCycles 8259 2043 Segment.1.CaliCycles 8259 2043 Segment.1.CaliCycles 8259 2043 Segment.1.EventOuts 8264 2048 Segment.1.EventOuts 8262 20	<u> </u>		
Programmer.Run.SegRate 8208 2010 Programmer.Run.SegTarget 8207 200f Programmer.Run.SegTimeLeft 8213 2015 Programmer.Setup.AdvSeg 8217 2019 Programmer.Setup.EndOfSeg 8214 2016 Programmer.Setup.PowerFailAct 8197 2005 Programmer.Setup.PvIn 8210 2012 Programmer.Setup.Sevo 8198 2006 Programmer.Setup.Synch 8218 201a Programmer.Setup.Synch 8215 2017 Programmer.Setup.SynchMode 8199 2007 Recipe.LoadingStatus 4913 1331 Recipe.LoadingStatus 4913 1331 Recipe.RecipeSelect 4912 1330 Segment.1.CallCycles 8259 2043 Segment.1.Duration 8260 2044 Segment.1.EventOuts 8264 2048 Segment.1.EventOuts 8264 2048 Segment.1.RampRate 8261 2045 Segment.2.CallCycles 8275 2053		+	
Programmer.Run.SegTarget 8207 200f Programmer.Run.SegTimeLeft 8213 2015 Programmer.Setup.AdvSeg 8217 2019 Programmer.Setup.EndOfSeg 8214 2016 Programmer.Setup.PowerFailAct 8197 2005 Programmer.Setup.PVIn 8210 2012 Programmer.Setup.Servo 8198 2006 Programmer.Setup.Synclm 8211 2013 Programmer.Setup.Syncln 8215 2011 Programmer.Setup.SynclMode 8199 2007 Recipe.LastDataset 4913 1331 Recipe.LoadingStatus 4914 1332 Recipe.LoadingStatus 4914 1332 Segment.1.CallCycles 8259 2043 Segment.1.CallCycles 8259 2043 Segment.1.CallCycles 8259 2043 Segment.1.EventOuts 8264 2048 Segment.1.EventOuts 8261 2045 Segment.2.CallCycles 8275 2041 Segment.2.CallProg 8276 2050 <td>9</td> <td></td> <td></td>	9		
Programmer.Run.SegTimeLeft 8213 2015 Programmer.Setup.AdvSeg 8217 2019 Programmer.Setup.EndOfSeg 8214 2016 Programmer.Setup.PowerFailAct 8197 2005 Programmer.Setup.PvIn 8210 2012 Programmer.Setup.Servo 8198 2006 Programmer.Setup.Syncln 8211 2013 Programmer.Setup.Syncln 8215 2017 Programmer.Setup.SyncMode 8199 2007 Recipe.LastDataset 4913 1331 Recipe.LastDataset 4913 1331 Recipe.RecipeSelect 4912 1330 Segment.1.CallCycles 8259 2043 Segment.1.CallProg 8258 2042 Segment.1.EndType 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.SegType 8255 2040 Segment.1.SegType 8256 2040 Segment.2.CallCycles 8275 2051 Segment.2.EventOuts 8262 2048 <		1	
Programmer.Setup.AdvSeg 8217 2019 Programmer.Setup.ProwerFailAct 8197 2005 Programmer.Setup.PvIn 8210 2012 Programmer.Setup.Servo 8198 2006 Programmer.Setup.SkipSeg 8218 201a Programmer.Setup.Synch 8211 2013 Programmer.Setup.Synch 8215 2017 Programmer.Setup.SyncMode 8199 2007 Recipe.LastDataset 4913 313 Recipe.LastDataset 4913 133 Recipe.LoadingStatus 4914 1332 Regenel.LoadingStatus 4914 1332 Segment.1.CallCycles 8259 2043 Segment.1.CallCycles 8259 2043 Segment.1.CallCycles 8259 2043 Segment.1.EndType 8263 2042 Segment.1.EndType 8263 2044 Segment.1.SegType 8264 2048 Segment.1.SegType 8262 2046 Segment.2.CallCycles 8275 2053		_	
Programmer.Setup.EndOfSeg 8214 2016 Programmer.Setup.PowerFailAct 8197 2005 Programmer.Setup.PVIn 8210 2012 Programmer.Setup.Servo 8198 2006 Programmer.Setup.Synch 8211 2013 Programmer.Setup.Synch 8215 2017 Programmer.Setup.SynchOde 8199 2007 Recipe.LastDataset 4913 1331 Recipe.LoadingStatus 4914 1332 Recipe.RecipeSelect 4912 1330 Segment.1.CallCycles 8259 2043 Segment.1.Duration 8260 2044 Segment.1.EndType 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.EventOuts 8264 2048 Segment.1.FampRate 8261 2045 Segment.1.TargetSP 8262 2046 Segment.2.CallCycles 8275 2041 Segment.2.CallCycles 8275 2053 Segment.2.EndType 8276 2054			
Programmer.Setup.PowerFailAct 8197 2005 Programmer.Setup.PVIn 8210 2012 Programmer.Setup.Servo 8198 2006 Programmer.Setup.SkipSeg 8218 201a Programmer.Setup.Syncln 8215 2017 Recipe.LastDataset 4913 1331 Recipe.LastDataset 4913 1332 Recipe.LastDataset 4914 1332 Segment.LastDataset 4912 1330 Segment.LastCondingStatus 4914 1332 Segment.1.CallCycles 8259 2044 Segment.1.EventOuts 8264 2048 Segment.Segrype 8276 2054			
Programmer.Setup.Servo 8198 2006 Programmer.Setup.Servo 8198 2006 Programmer.Setup.ShipSeg 8218 201a Programmer.Setup.Syncln 8211 2013 Programmer.Setup.Syncln 8215 2017 Programmer.Setup.SyncMode 8199 2007 Recipe.LastDataset 4913 1331 Recipe.LoadingStatus 4914 1332 Recipe.RecipeSelect 4912 1330 Segment.1.CallCycles 8259 2043 Segment.1.CallProg 8258 2042 Segment.1.EndType 8263 2042 Segment.1.EndType 8263 2042 Segment.1.EventOuts 8264 2048 Segment.1.EventOuts 8264 2048 Segment.1.SegType 8262 2046 Segment.1.SegType 8262 2046 Segment.2.CallCycles 8275 2053 Segment.2.CallCycles 8276 2050 Segment.2.EventOuts 8280 2058 Segm			
Programmer.Setup.Servo 8198 2006 Programmer.Setup.SkipSeg 8218 201a Programmer.Setup.Sprln 8211 2017 Programmer.Setup.Syncln 8215 2017 Programmer.Setup.SyncMode 8199 2007 Recipe.LastDataset 4911 1331 Recipe.LoadingStatus 4914 1332 Recipe.RecipeSelect 4912 1330 Segment.1.CallCycles 8259 2043 Segment.1.CallProg 8258 2042 Segment.1.Duration 8260 2044 Segment.1.EventOuts 8264 2048 Segment.1.EventOuts 8264 2048 Segment.1.RampRate 8261 2045 Segment.1.RampRate 8261 2045 Segment.2.CallCycles 8275 2040 Segment.2.CallCycles 8275 2053 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EndType 8279 2057 Segment.		_	
Programmer.Setup.SkipSeg 8218 201a Programmer.Setup.SPIn 8211 2013 Programmer.Setup.SyncIn 8215 2017 Programmer.Setup.SyncMode 8199 2007 Recipe.LastDataset 4913 1331 Recipe.LoadingStatus 4914 1332 Recipe.RecipeSelect 4912 1333 Segment.1.CallCycles 8259 2043 Segment.1.CallProg 8258 2042 Segment.1.Duration 8260 2044 Segment.1.EventOuts 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.RampRate 8261 2045 Segment.1.RampRate 8261 2045 Segment.2.CallCycles 8275 2040 Segment.2.CallCycles 8275 2053 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EndType 8279 2057 Segment.2.EventOuts 8280 2058 Segment.2.Ra	-	1	
Programmer.Setup.SPIn 8211 2013 Programmer.Setup.SyncIn 8215 2017 Programmer.Setup.SyncMode 8199 2007 Recipe.LastDataset 4913 1331 Recipe.LoadingStatus 4914 1332 Recipe.RecipeSelect 4912 1330 Segment.1.CallCycles 8259 2043 Segment.1.Duration 8268 2042 Segment.1.Duration 8260 2044 Segment.1.EventOuts 8264 2048 Segment.1.RampRate 8261 2045 Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.1.SegType 8262 2046 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2057 Segment.2.EndType 8279 2057 Segment.2.EventOuts 8280 2058 Segment.2.RampRate 8277 2055 Segment.3.CallProg <td></td> <td>1</td> <td></td>		1	
Programmer.Setup.SyncIn 8215 2017 Programmer.Setup.SyncMode 8199 2007 Recipe.LastDataset 4913 1331 Recipe.LoadingStatus 4914 1332 Recipe.RecipeSelect 4912 1330 Segment.1.CallProg 8258 2043 Segment.1.CallProg 8263 2044 Segment.1.Duration 8260 2044 Segment.1.EndType 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.Holdback 8257 2041 Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.1.SegType 8262 2046 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.EndType 8279 2057 Segment.2.EndType 8279 2054 Segment.2.EndType 8279 2055 Segment.2.EndType 8279 2055 Segment.2.EndType <		+	
Programmer.Setup.SyncMode 8199 2007 Recipe.LastDataset 4913 1331 Recipe.LoadingStatus 4914 1332 Recipe.RecipeSelect 4912 1330 Segment.1.CallProg 8258 2042 Segment.1.Duration 8260 2044 Segment.1.EndType 8263 2047 Segment.1.EndType 8263 2047 Segment.1.RampRate 8261 2048 Segment.1.RampRate 8261 2045 Segment.1.RampRate 8262 2046 Segment.1.TargetSP 8262 2046 Segment.2.CallCycles 8275 2051 Segment.2.CallCycles 8275 2053 Segment.2.CallCycles 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EventOuts 8280 2058 Segment.2.EventOuts 8280 2058 Segment.2.RampRate 8277 2055 Segment.3.CallCycles 8291 2063 Segment.3.EventOuts		_	
Recipe.LastDataset 4913 1331 Recipe.LoadingStatus 4914 1332 Recipe.RecipeSelect 4912 1330 Segment.1.CallCycles 8259 2043 Segment.1.Duration 8260 2044 Segment.1.EundType 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.Holdback 8257 2041 Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.1.TargetSP 8262 2046 Segment.2.CallCycles 8275 2053 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.RampRate 827			
Recipe.LoadingStatus 4914 1332 Recipe.RecipeSelect 4912 1330 Segment.1.CallCycles 8259 2043 Segment.1.Duration 8260 2044 Segment.1.EndType 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.Holdback 8257 2041 Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.1.SegType 8256 2040 Segment.2.GallCycles 8275 2053 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.RampRate 8272 2050 Segment.3.CallCycles 8291 2063 Segment.3.EndType		_	
Recipe.RecipeSelect 4912 1330 Segment.1.CallCycles 8259 2043 Segment.1.Duration 8260 2044 Segment.1.EndType 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.Holdback 8257 2041 Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.1.TargetSP 8262 2046 Segment.2.CallCycles 8275 2053 Segment.2.CallCycles 8275 2053 Segment.2.CallCycles 8274 2052 Segment.2.CallCycles 8274 2052 Segment.2.CallCycles 8279 2057 Segment.2.EndType 8279 2057 Segment.2.EndType 8279 2057 Segment.2.EndType 8280 2058 Segment.2.EventOuts 8280 2058 Segment.2.RampRate 8277 2055 Segment.3.CallCycles 8291 2063 Segment.3.EndType	·		
Segment.1.CallCycles 8259 2043 Segment.1.Duration 8260 2044 Segment.1.EndType 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.Holdback 8257 2041 Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.1.TargetSP 8262 2046 Segment.2.CallCycles 8275 2053 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EndType 8279 2057 Segment.2.EndType 8279 2057 Segment.2.EndType 8279 2057 Segment.2.EndType 8277 2055 Segment.2.RampRate 8277 2055 Segment.2.RampRate 8272 2050 Segment.3.CallCycles 8291<			
Segment.1.CallProg 8258 2042 Segment.1.Duration 8260 2044 Segment.1.EndType 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.Holdback 8257 2041 Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EventOuts 8280 2058 Segment.2.EventOuts 8280 2058 Segment.2.RampRate 8277 2055 Segment.2.RampRate 8277 2055 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EventOuts 8295 2067 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8	<u> </u>		
Segment.1.Duration 8260 2044 Segment.1.EndType 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.Holdback 8257 2041 Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.1.TargetSP 8262 2046 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EndType 8279 2057 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.RampRate 8272 2050 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EventOuts 8296 2068 Segment.3.FampRate 8293 2065 Segment.3.SegType 8288 </td <td>-</td> <td></td> <td></td>	-		
Segment.1.EndType 8263 2047 Segment.1.EventOuts 8264 2048 Segment.1.Holdback 8257 2041 Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EndType 8279 2057 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.RampRate 8272 2050 Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.Duration 8292 2064 Segment.3.EventOuts 8296 2068 Segment.3.RampRate 8293 2065 Segment.3.TargetSP 8284 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 830		1	
Segment.1.EventOuts 8264 2048 Segment.1.Holdback 8257 2041 Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EndType 8279 2057 Segment.2.EventOuts 8280 2058 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.SegType 8272 2050 Segment.3.CallCycles 8291 2063 Segment.3.CallCycles 8291 2063 Segment.3.Duration 8292 2064 Segment.3.EventOuts 8296 2068 Segment.3.RampRate 8293 2065 Segment.3.RampRate 8293 2065 Segment.4.CallCycles 8307 2073 Segment.4.Duration	· ·	_	
Segment.1.Holdback 8257 2041 Segment.1.RampRate 8261 2045 Segment.1.SegType 8262 2046 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EventOuts 8280 2058 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.SegType 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.TargetSP 8288 2060 Segment.4.CallCycles 8307 2073 Segment.4.CallCycles 8307 2073 Segment.4.EventOuts <td< td=""><td></td><td>1</td><td></td></td<>		1	
Segment.1.RampRate 8261 2045 Segment.1.SegType 8256 2040 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EventOuts 8280 2058 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.SegType 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.TargetSP 8288 2060 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.EventOuts 8311 2077 Segment.4.RampRate 8	· ·	_	
Segment.1.SegType 8256 2040 Segment.2.CallCycles 8275 2053 Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EndType 8280 2058 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.SegType 8272 2050 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.Duration 8292 2064 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.TargetSP 8288 2060 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.EndType 8311 2077 Segment.4.EndType 8311 </td <td></td> <td>_</td> <td></td>		_	
Segment.1.TargetSP 8262 2046 Segment.2.CallCycles 8275 2053 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EventOuts 8280 2058 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.RampRate 8277 2055 Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallCycles 8291 2063 Segment.3.Duration 8292 2064 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.TargetSP 8288 2060 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.EventOuts 8311 2077 Segment.4.RampRate 8309 2075 Segment.4.SegType <t< td=""><td></td><td>1</td><td></td></t<>		1	
Segment.2.CallCycles 8275 2053 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EventOuts 8280 2058 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.SegType 8272 2050 Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EventOuts 8311 2077 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304			
Segment.2.CallProg 8274 2052 Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EventOuts 8280 2058 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.SegType 8272 2050 Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EventOuts 8311 2077 Segment.4.RampRate 8305		_	
Segment.2.Duration 8276 2054 Segment.2.EndType 8279 2057 Segment.2.EventOuts 8280 2058 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.SegType 8272 2050 Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.Holdback 8289 2061 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.4.CallCycles 8307 2073 Segment.4.Duration 8306 2072 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 <td></td> <td>_</td> <td></td>		_	
Segment.2.EndType 8279 2057 Segment.2.EventOuts 8280 2058 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.SegType 8272 2050 Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.Holdback 8305 2071 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 <td></td> <td></td> <td></td>			
Segment.2.EventOuts 8280 2058 Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.SegType 8272 2050 Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.TargetSP 8288 2060 Segment.4.CallCycles 8307 2073 Segment.4.Duration 8306 2072 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.RampRate 8305 2071 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 83		_	
Segment.2.Holdback 8273 2051 Segment.2.RampRate 8277 2055 Segment.2.SegType 8278 2050 Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.FortOuts 8312 2078 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323<			
Segment.2.RampRate 8277 2055 Segment.2.SegType 8278 2050 Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.Duration 8306 2072 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083			
Segment.2.SegType 8272 2050 Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.Duration 8306 2072 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083		+	
Segment.2.TargetSP 8278 2056 Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083			
Segment.3.CallCycles 8291 2063 Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083	0 107 100		
Segment.3.CallProg 8290 2062 Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083		1 1	
Segment.3.Duration 8292 2064 Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083	<u> </u>	_	
Segment.3.EndType 8295 2067 Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083		+ +	
Segment.3.EventOuts 8296 2068 Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083		_	
Segment.3.Holdback 8289 2061 Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083		+ +	
Segment.3.RampRate 8293 2065 Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083		1	
Segment.3.SegType 8288 2060 Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083			
Segment.3.TargetSP 8294 2066 Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083			
Segment.4.CallCycles 8307 2073 Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083		_	
Segment.4.CallProg 8306 2072 Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083		+	
Segment.4.Duration 8308 2074 Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083		+	
Segment.4.EndType 8311 2077 Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083	<u> </u>		2074
Segment.4.EventOuts 8312 2078 Segment.4.Holdback 8305 2071 Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083		8311	2077
Segment.4.RampRate 8309 2075 Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083	Segment.4.EventOuts	8312	2078
Segment.4.SegType 8304 2070 Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083	Segment.4.Holdback	8305	2071
Segment.4.TargetSP 8310 2076 Segment.5.CallCycles 8323 2083	Segment.4.RampRate	8309	2075
Segment.5.CallCycles 8323 2083	Segment.4.SegType	8304	2070
	Segment.4.TargetSP	8310	2076
Segment.5.CallProg 8322 2082	Segment.5.CallCycles	8323	2083
	Segment.5.CallProg	8322	2082

Description	ModBus	HEX
Segment.5.Duration	8324	2084
Segment.5.EndType	8327	2087
Segment.5.EventOuts	8328	2088
Segment.5.Holdback	8321	2081
Segment.5.RampRate	8325	2085
Segment.5.SegType	8320	2080
Segment.5.TargetSP	8326	2086
Segment.6.CallCycles	8339	2093
Segment.6.CallProg	8338	2092
Segment.6.Duration	8340	2094
Segment.6.EndType	8343	2097
Segment.6.EventOuts	8344	2098
Segment.6.Holdback	8337	2091
Segment.6.RampRate	8341	2095
Segment.6.SegType	8336	2090
Segment.6.TargetSP	8342	2096
Segment.7.CallCycles	8355	20a3
Segment.7.CallProg	8354	20a2
Segment.7.Duration	8356	20a4
Segment.7.EndType	8359	20a7
Segment.7.EventOuts	8360	20a8
Segment.7.Holdback	8353	20a1
Segment.7.RampRate	8357	20a5
Segment.7.SegType	8352	20a0
Segment.7.TargetSP	8358	20a6
Segment.8.CallCycles	8371	20b3
Segment.8.CallProg	8370	20b2
Segment.8.Duration	8372	20b4
Segment.8.EndType	8375	20b7
Segment.8.EventOuts	8376	20b8
Segment.8.Holdback	8369	20b1
Segment.8.RampRate	8373	20b5
Segment.8.SegType	8368	20b0
Segment.8.TargetSP	8374	20b6
Segment.9.CallCycles	8387	20c3
Segment.9.CallProg	8386	20c2
Segment.9.Duration	8388	20c4
Segment.9.EndType	8391	20c7
Segment.9.EventOuts	8392	20c8
Segment.9.Holdback	8385	20c1
Segment.9.RampRate	8389	20c5
Segment.9.SegType	8384	20c0
Segment.9.TargetSP	8390	20c6
Segment.10.CallCycles	8403	20d3
Segment.10.CallProg	8402	20d2
Segment.10.Duration	8404	20d2
Segment.10.EndType	8407	20d7
Segment.10.EventOuts	8408	20d8
Segment.10.Holdback	8401	20d0
Segment.10.RampRate	8405	20d1
Segment.10.Kampkate Segment.10.SegType	8400	20d0
Segment.10.SegType Segment.10.TargetSP	8406	20d6
Segment.11.CallCycles	8419	2006 20e3
Segment.11.CallCycles Segment.11.CallProg	8418	20e3 20e2
	-	
Segment 11 EndType	8420	20e4
Segment 11 EventOuts	8423	20e7
Segment 11 Holdback	8424	20e8
Segment.11.Holdback	8417	20e1

Description	ModBus	HEX
Segment.11.RampRate	8421	20e5
Segment.11.SegType	8416	20e0
Segment.11.TargetSP	8422	20e6
Segment.12.CallCycles	8435	20f3
Segment.12.CallProg	8434	20f2
Segment.12.Duration	8436	20f4
Segment.12.EndType	8439	20f7
Segment.12.EventOuts	8440	20f8
Segment.12.Holdback	8433	20f1
Segment.12.RampRate	8437	20f5
Segment.12.SegType	8432	20f0
Segment.12.TargetSP	8438	20f6
Segment.13.CallCycles	8451	2103
Segment.13.CallProg	8450	2102
Segment.13.Duration	8452	2104
Segment.13.EndType	8455	2104
Segment.13.EventOuts	8456	
	8449	2108 2101
Segment 13 Romp Rate		
Segment 13 SegType	8453	2105 2100
Segment.13.SegType	8448	
Segment.13.TargetSP	8454	2106
Segment.14.CallCycles	8467	2113
Segment 14 Duration	8466	2112
Segment.14.Duration	8468	2114
Segment.14.EndType	8471	2117
Segment.14.EventOuts	8472	2118
Segment.14.Holdback	8465	2111
Segment.14.RampRate	8469	2115
Segment.14.SegType	8464	2110
Segment.14.TargetSP	8470	2116
Segment.15.CallCycles	8483	2123
Segment 15 Duration	8482	2122
Segment 15 EndTine	8484	2124
Segment.15.EndType	8487	2127
Segment 15 Lightney	8488	2128
Segment 15 DempRete	8481	2121
Segment 15 SegType	8485 8480	2125
Segment 15 Torquet SD		2120
Segment 16 Call Cycles	8486	2126
Segment 16 CallProg	8499	2133
Segment.16.CallProg Segment.16.Duration	8498 8500	2132 2134
Segment.16.EndType Segment.16.EventOuts	8503 8504	2137
	8504 8497	2138
Segment 16 PampPate	+	2131
Segment.16.RampRate Segment.16.SegType	8501 8496	2135 2130
Segment 17 Call Cycles	8502 8515	2136
Segment.17.CallCycles Segment.17.CallProg	8515 8514	2143 2142
Segment 17 EndType	8516 8510	2144
Segment 17 EventOuts	8519 8520	2147
Segment 17 Holdback	8520	2148
Segment 17 RempRete	8513	2141
Segment 17 SegType	8517	2145
Segment 17 Torquet SD	8512	2140
Segment 18 Call Cycles	8518	2146
Segment.18.CallCycles	8531	2153

Description	ModBus	HEX
Segment.18.CallProg	8530	2152
Segment.18.Duration	8532	2154
Segment.18.EndType	8535	2157
Segment.18.EventOuts	8536	2158
Segment.18.Holdback	8529	2151
Segment.18.RampRate	8533	2155
Segment.18.SegType	8528	2150
Segment.18.TargetSP	8534	2156
Segment.19.CallCycles	8547	2163
Segment.19.CallProg	8546	2162
Segment.19.Duration	8548	2164
Segment.19.EndType	8551	2167
Segment.19.EventOuts	8552	2168
Segment 19 RempRete	8545	2161
Segment 19 SegTime	8549 8544	2165
Segment 19 Terrort SP		2160 2166
Segment.19.TargetSP Segment.20.CallCycles	8550 8563	2173
Segment.20.CallProg	8562	2172
Segment.20.Duration	8564	2174
Segment.20.EndType	8567	2177
Segment.20.EventOuts	8568	2178
Segment.20.Holdback	8561	2171
Segment.20.RampRate	8565	2175
Segment.20.SegType	8560	2170
Segment.20.TargetSP	8566	2176
Segment.21.CallCycles	8579	2183
Segment.21.CallProg	8578	2182
Segment.21.Duration	8580	2184
Segment.21.EndType	8583	2187
Segment.21.EventOuts	8584	2188
Segment.21.Holdback	8577	2181
Segment.21.RampRate	8581	2185
Segment.21.SegType	8576	2180
Segment.21.TargetSP	8582	2186
Segment.22.CallCycles	8595	2193
Segment.22.CallProg	8594	2192
Segment.22.Duration	8596	2194
Segment.22.EndType	8599	2197
Segment.22.EventOuts	8600	2198
Segment.22.Holdback	8593	2191
Segment.22.RampRate	8597	2195
Segment.22.SegType	8592	2190
Segment 22 Call Cycles	8598	2196
Segment 23 CallProg	8611 8610	21a3 21a2
Segment.23.CallProg Segment.23.Duration	8612	21a2 21a4
Segment.23.EndType	8615	21a7
Segment.23.EventOuts	8616	21a8
Segment.23.Holdback	8609	21a1
Segment.23.RampRate	8613	21a5
Segment.23.SegType	8608	21a0
Segment.23.TargetSP	8614	21a6
Segment.24.CallCycles	8627	21b3
Segment.24.CallProg	8626	21b2
Segment.24.Duration	8628	21b4
Segment.24.EndType	8631	21b7
Segment.24.EventOuts	8632	21b8
		

Segment.24.Holdback 8625 21b1 Segment.24.RampRate 8629 21b5 Segment.24.TargetSP 8630 21b6 Segment.25.CallCycles 8643 21c3 Segment.25.CallCycles 8643 21c3 Segment.25.Duration 8644 21c4 Segment.25.EndType 8647 21c7 Segment.25.EndType 8641 21c1 Segment.25.Holdback 8641 21c1 Segment.25.Holdback 8641 21c1 Segment.25.RampRate 8645 21c5 Segment.26.SegType 8640 21c0 Segment.26.CallCycles 8659 21d3 Segment.26.CallProg 8658 21d2 Segment.26.CallCycles 8659 21d3 Segment.26.Duration 8660 21d4 Segment.26.EndType 8663 21d7 Segment.26.EndType 8664 21d6 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8656 21d Segment.27.Duration <th>Description</th> <th>MadDua</th> <th>LIEV</th>	Description	MadDua	LIEV
Segment.24.SegType 8624 21b0 Segment.24.SegType 8624 21b0 Segment.25.CallCycles 8643 21c3 Segment.25.CallCycles 8643 21c3 Segment.25.Duration 8644 21c4 Segment.25.EndType 8647 21c7 Segment.25.EventOuts 8648 21c3 Segment.25.EventOuts 8641 21c1 Segment.25.RampRate 8645 21c5 Segment.25.SegType 8640 21c0 Segment.25.SegType 8640 21c0 Segment.26.CallCycles 8659 21d3 Segment.26.CallCycles 8659 21d3 Segment.26.Duration 8660 21c4 Segment.26.Duration 8663 21c7 Segment.26.EndType 8663 21c7 Segment.26.EventOuts 8664 21d5 Segment.26.EventOuts 8667 21c1 Segment.26.SegType 8656 21d0 Segment.27.CallCycles 8675 21c3 Segment.27.Durat	Description	ModBus	HEX
Segment.24.SegType 8624 21b0 Segment.25.CallCycles 3630 21b6 Segment.25.CallCycles 3643 21c3 Segment.25.CallProg 8644 21c2 Segment.25.Duration 8644 21c4 Segment.25.EventOuts 8647 21c7 Segment.25.EventOuts 8648 21c8 Segment.25.EventOuts 8640 21c0 Segment.25.EventOuts 8640 21c0 Segment.25.TargetSP 8640 21c0 Segment.26.CallCycles 8659 21d3 Segment.26.CallCycles 8659 21d3 Segment.26.CallCycles 8663 21d2 Segment.26.EventOuts 8664 21d6 Segment.26.EventOuts 8664 21d8 Segment.26.EventOuts 8667 21d1 Segment.26.EventOuts 8667 21d1 Segment.26.EventOuts 8667 21d2 Segment.27.EndType 8662 21d0 Segment.28.Teyleype 8665 21d3 Segmen			
Segment.24.TargetSP 8630 21b6 Segment.25.CallCycles 8643 21c3 Segment.25.Duration 8644 21c2 Segment.25.Duration 8644 21c4 Segment.25.EventOuts 8647 21c7 Segment.25.EventOuts 8648 21c8 Segment.25.Holdback 8641 21c1 Segment.25.TargetSP 8640 21c0 Segment.25.TargetSP 8640 21c0 Segment.26.CallCycles 8659 21d3 Segment.26.CallProg 8658 21c2 Segment.26.CallProg 8658 21c2 Segment.26.EventOuts 8660 21d4 Segment.26.EventOuts 8661 21d5 Segment.26.EventOuts 8661 21d0 Segment.27.CallCycles 8675 21c3 Segment.			
Segment.25.CallProg 8643 21c3 Segment.25.CallProg 8644 21c2 Segment.25.Duration 8644 21c4 Segment.25.EndType 8647 21c7 Segment.25.EventOuts 8648 21c8 Segment.25.Holdback 8641 21c1 Segment.25.RampRate 8645 21c5 Segment.25.TargetSP 8664 21c0 Segment.25.TargetSP 8664 21c0 Segment.26.CallCycles 8659 21d3 Segment.26.CallProg 8658 21d2 Segment.26.CallProg 8663 21d7 Segment.26.Duration 8660 21d4 Segment.26.EventOuts 8664 21d5 Segment.26.EventOuts 8664 21d5 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8662 21d0 Segment.27.CallCycles 8675 21e3 Segment.27.Duration 8676 21e3 Segment.27.EventOuts 8680 21e8 Segment.27.EventO			
Segment.25.CallProg 8642 21c2 Segment.25.Duration 8644 21c4 Segment.25.EventOuts 8647 21c7 Segment.25.EventOuts 8641 21c1 Segment.25.EventOuts 8641 21c1 Segment.25.Holdback 8641 21c1 Segment.25.RampRate 8645 21c2 Segment.25.SegType 8664 21c0 Segment.25.TargetSP 8646 21c0 Segment.26.CallCycles 8659 21d3 Segment.26.CallCycles 8658 21d2 Segment.26.Duration 8660 21d4 Segment.26.EventOuts 8663 21d7 Segment.26.EventOuts 8664 21d8 Segment.26.EventOuts 8667 21d1 Segment.26.EventOuts 8661 21d5 Segment.26.EventOuts 8667 21d1 Segment.26.EventOuts 8667 21d2 Segment.27.CallCycles 8675 21e3 Segment.27.CallCycles 8675 21e3 Segment			
Segment.25. Duration 8644 21c4 Segment.25. EndType 8647 21c7 Segment.25. EventOuts 8648 21c8 Segment.25. Holdback 8641 21c1 Segment.25. Holdback 8644 21c1 Segment.26. CallProg 8640 21c0 Segment.25. TargetSP 8646 21c2 Segment.26. CallProg 8653 21d2 Segment.26. CallProg 8653 21d2 Segment.26. Duration 8660 21d4 Segment.26. EndType 8663 21d7 Segment.26. EndType 8663 21d2 Segment.26. EndType 8663 21d3 Segment.26. EndType 8664 21d8 Segment.26. RampRate 8661 21d5 Segment.26. RampRate 8662 21d6 Segment.27. CallCycles 8675 21e3 Segment.27. CallCycles 8675 21e3 Segment.27. LordType 8679 21e7 Segment.27. FundType 8679 21e7 Seg	<u> </u>		
Segment.25.EndType 8647 21c7 Segment.25.EventOuts 8648 21c8 Segment.25.Holdback 8641 21c1 Segment.25.RampRate 8645 21c5 Segment.25.SegType 8640 21c0 Segment.26.CallCycles 8659 21d3 Segment.26.CallProg 8658 21d2 Segment.26.Duration 8660 21d4 Segment.26.EventOuts 8663 21d7 Segment.26.EventOuts 8664 21d8 Segment.26.Holdback 8657 21d1 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8662 21d6 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8672 21e2 Segment.27.CallProg 8674 21e2 Segment.27.EventOuts 8679 21e7 Segment.27.EventOuts 8670 21e3 Segment.27.TangetsP 8672 21e0 Segment.28.CallCycles 8671 21e3 Segment.28.Even			
Segment.25.EventOuts 8648 21c8 Segment.25.Holdback 8641 21c1 Segment.25.RampRate 8645 21c5 Segment.25.SegType 8640 21c0 Segment.26.SegType 8646 21c6 Segment.26.CallCycles 8659 21d3 Segment.26.CallProg 8658 21d2 Segment.26.EventOuts 8660 21d4 Segment.26.EventOuts 8663 21d7 Segment.26.Holdback 8657 21d1 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8662 21d6 Segment.26.TargetSP 8662 21d6 Segment.27.CallProg 8674 21e3 Segment.27.CallProg 8674 21e3 Segment.27.EndType 8679 21e3 Segment.27.EventOuts 8680 21e8 Segment.27.EventOuts 8680 21e8 Segment.27.TargetSP 8672 21e0 Segment.28.CallCycles 8679 21e0 Segment.28.EventOu			
Segment.25.Holdback 8641 21c1 Segment.25.RampRate 8645 21c5 Segment.25.SegType 8640 21c0 Segment.26.CallCycles 8659 21d3 Segment.26.CallCycles 8659 21d3 Segment.26.CallProg 8658 21d2 Segment.26.EndType 8663 21d7 Segment.26.EndType 8663 21d7 Segment.26.Holdback 8657 21d1 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8656 21d0 Segment.27.CallCycles 8675 21c1 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e2 Segment.27.Duration 8676 21e4 Segment.27.EventOuts 8680 21e3 Segment.27.EventOuts 8680 21e3 Segment.27.TangetSP 8672 21e3 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8699 21f2 Segment.28.Even	• • • • • • • • • • • • • • • • • • • •		
Segment.25.RampRate 8645 21c5 Segment.25.SegType 8640 21c0 Segment.26.CallCycles 8659 21d3 Segment.26.CallProg 8658 21d2 Segment.26.Duration 8660 21d4 Segment.26.EndType 8663 21d7 Segment.26.EventOuts 8664 21d8 Segment.26.Holdback 8657 21d1 Segment.26.RampRate 8661 21d5 Segment.26.RampRate 8661 21d6 Segment.26.SegType 8655 21d0 Segment.26.TargetSP 8662 21d6 Segment.26.TargetSP 8662 21d6 Segment.27.CallCycles 8675 21e2 Segment.27.CallProg 8674 21e2 Segment.27.EndType 8679 21e7 Segment.27.EventOuts 8680 21e8 Segment.27.RampRate 8677 21e5 Segment.27.TargetSP 8678 21e6 Segment.28.CallCycles 8691 21f3 Segment.28.Duration			
Segment.25.SegType 8640 21c0 Segment.25.TargetSP 8646 21c6 Segment.26.CallCycles 8659 21d3 Segment.26.Duration 8665 21d2 Segment.26.EndType 8663 21d7 Segment.26.EventOuts 8663 21d7 Segment.26.Holdback 8657 21d1 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8656 21d0 Segment.26.SegType 8665 21d0 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e3 Segment.27.CallProg 8674 21e3 Segment.27.Duration 8676 21e4 Segment.27.EndType 8679 21e7 Segment.27.EndType 8679 21e7 Segment.27.EventOuts 8680 21e8 Segment.27.EventOuts 8680 21e8 Segment.27.SegType 8672 21e0 Segment.28.CallCycles 8691 21f3 Segment.28.CallCycles	-		
Segment.25.TargetSP 8646 21c6 Segment.26.CallCycles 8659 21d3 Segment.26.CallProg 8658 21d2 Segment.26.EndType 8660 21d4 Segment.26.EndType 8663 21d5 Segment.26.Holdback 8667 21d1 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8662 21d6 Segment.26.TargetSP 8662 21d6 Segment.27.CallCycles 8675 21e3 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e2 Segment.27.Darion 8676 21e4 Segment.27.EndType 8679 21e7 Segment.27.EndType 8679 21e7 Segment.27.EndType 8679 21e3 Segment.27.EndType 8679 21e3 Segment.27.TendOuts 8680 21e8 Segment.27.TendOuts 8667 21e3 Segment.27.SegType 8672 21e3 Segment.28.CallCycles	o i	8645	
Segment.26.CallCycles 8659 21d3 Segment.26.CallProg 8658 21d2 Segment.26.EndType 8660 21d4 Segment.26.EventOuts 8664 21d8 Segment.26.EventOuts 8667 21d1 Segment.26.Holdback 8657 21d1 Segment.26.RampRate 8661 21d5 Segment.26.TargetSP 8662 21d6 Segment.27.CallCycles 8675 21e3 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e2 Segment.27.Duration 8676 21e4 Segment.27.EventOuts 8680 21e7 Segment.27.EventOuts 8680 21e8 Segment.27.EventOuts 8672 21e1 Segment.27.TargetSP 8672 21e0 Segment.27.TargetSP 8672 21e0 Segment.28.CallCycles 8691 21f3 Segment.28.EndType 8692 21f4 Segment.28.EventOuts 8698 21f6 Segment.29.		8640	21c0
Segment.26.CallProg 8658 21d2 Segment.26.Duration 8660 21d4 Segment.26.EndType 8663 21d7 Segment.26.EventOuts 8664 21d8 Segment.26.RampRate 8661 21d5 Segment.26.RampRate 8661 21d5 Segment.26.TargetSP 8662 21d0 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e2 Segment.27.CallCycles 8679 21e7 Segment.27.Louration 8676 21e4 Segment.27.EndType 8679 21e7 Segment.27.EndType 8679 21e7 Segment.27.EventOuts 8680 21e8 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.TargetSP 8678 21e6 Segment.28.CallCycles 8691 21f3 Segment.28.EndType 8690 21f2 Segment.28.EndType 8695 21f4 Segment.28.EndType<	Segment.25.TargetSP	8646	21c6
Segment.26.Duration 8660 21d4 Segment.26.EndType 8663 21d7 Segment.26.EventOuts 8664 21d8 Segment.26.Holdback 8657 21d1 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8656 21d0 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e2 Segment.27.CallProg 8674 21e2 Segment.27.CallProg 8674 21e2 Segment.27.CallProg 8679 21e7 Segment.27.EndType 8679 21e7 Segment.27.EventOuts 8680 21e8 Segment.27.EventOuts 8680 21e8 Segment.27.TagetSP 8672 21e0 Segment.27.TagetSP 8672 21e0 Segment.28.CallCycles 8691 21f2 Segment.28.CallProg 8695 21f7 Segment.28.EndType 8695 21f7 Segment.28.EndType 8695 21f8 Segment.28.EndType	Segment.26.CallCycles	8659	21d3
Segment.26.EndType 8663 21d7 Segment.26.EventOuts 8664 21d8 Segment.26.Holdback 8657 21d1 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8656 21d0 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e2 Segment.27.Duration 8676 21e4 Segment.27.EndType 8679 21e7 Segment.27.EventOuts 8680 21e8 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.SegType 8672 21e0 Segment.28.CallCycles 8691 21f3 Segment.28.CallCycles 8691 21f3 Segment.28.Duration 8692 21f4 Segment.28.EventOuts 8696 21f8 Segment.28.RampRate 8693 21f5 Segment.28.RampRate 8693 21f5 Segment.29.CallCycles 8707 2203 Segment.29.LallG	Segment.26.CallProg	8658	21d2
Segment.26.EventOuts 8664 21d8 Segment.26.Holdback 8657 21d1 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8656 21d0 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e2 Segment.27.Duration 8676 21e4 Segment.27.EndType 8679 21e7 Segment.27.EventOuts 8680 21e8 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8672 21e0 Segment.27.SegType 8672 21e0 Segment.28.CallCycles 8691 21f3 Segment.28.CallCycles 8691 21f3 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.RampRate 8690 21f2 Segment.28.RampRate 8693 21f3 Segment.28.SegType 8688 21f0 Segment.29.CallCycles 8707 2203 Segment.29.CallPro	Segment.26.Duration	8660	21d4
Segment.26.Holdback 8657 21d1 Segment.26.RampRate 8661 21d5 Segment.26.SegType 8656 21d0 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e2 Segment.27.Duration 8676 21e4 Segment.27.EndType 8679 21e7 Segment.27.EndType 8679 21e7 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.RampRate 8677 21e5 Segment.27.TargetSP 8678 21e0 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f6 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.29.CallCycles 8707 2203 Segment.29.Duration 8708 2204 Segment.29.EventOuts<	Segment.26.EndType	8663	21d7
Segment.26.RampRate 8661 21d5 Segment.26.SegType 8656 21d0 Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e2 Segment.27.Duration 8676 21e4 Segment.27.EndType 8679 21e7 Segment.27.EndIOuts 8680 21e8 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.SegType 8672 21e0 Segment.27.TargetSP 8678 21e6 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f7 Segment.28.EndType 8695 21f7 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.EventOuts 8705 2201 Segment.29.EventOuts		8664	21d8
Segment.26.SegType 8656 21d0 Segment.27.CallCycles 8675 21a3 Segment.27.CallProg 8674 21e2 Segment.27.Duration 8676 21e4 Segment.27.EndType 8679 21e7 Segment.27.EventOuts 8680 21e8 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.SegType 8672 21e0 Segment.27.TargetSP 8678 21e6 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EventOuts 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.RampRate 8693 21f5 Segment.28.RampRate 8693 21f5 Segment.29.CallCycles 8707 2203 Segment.29.CallCycles 8707 2203 Segment.29.Duration 8708 2204 Segment.29.Even	Segment.26.Holdback	8657	21d1
Segment.26.TargetSP 8662 21d6 Segment.27.CallCycles 8675 21e3 Segment.27.Duration 8676 21e4 Segment.27.EndType 8679 21e7 Segment.27.EventOuts 8680 21e8 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.SegType 8672 21e0 Segment.27.TargetSP 8678 21e6 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.TargetSP 8688 21f0 Segment.29.CallCycles 8707 2203 Segment.29.Duration 8706 2202 Segment.29.EventOuts 8711 2207 Segment.29.RampRa	Segment.26.RampRate	8661	21d5
Segment.27.CallCycles 8675 21e3 Segment.27.CallProg 8674 21e2 Segment.27.Duration 8676 21e4 Segment.27.EventOuts 8680 21e8 Segment.27.EventOuts 8680 21e8 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.SegType 8672 21e0 Segment.27.TargetSP 8678 21e6 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EventOuts 8696 21f8 Segment.28.EventOuts 8696 21f8 Segment.28.RampRate 8693 21f5 Segment.28.RampRate 8693 21f5 Segment.29.CallCycles 8707 2203 Segment.29.CallCycles 8707 2203 Segment.29.Duration 8708 2204 Segment.29.EventOuts 8711 2207 Segment.29.	Segment.26.SegType	8656	21d0
Segment.27.CallProg 8674 21e2 Segment.27.Duration 8676 21e4 Segment.27.EventOuts 8680 21e8 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.TargetSP 8678 21e0 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.CallProg 8690 21f2 Segment.28.CallProg 8695 21f4 Segment.28.CallProg 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.SegType 8688 21f0 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EventOuts 8711 2207 Segment.29.RampRate 8709 2205 Segment.29.SegTyp	Segment.26.TargetSP	8662	21d6
Segment.27. Duration 8676 21e4 Segment.27. EndType 8679 21e7 Segment.27. EventOuts 8680 21e8 Segment.27. Holdback 8673 21e1 Segment.27. RampRate 8677 21e5 Segment.27. TargetSP 8678 21e0 Segment.28. CallCycles 8691 21f3 Segment.28. CallProg 8690 21f2 Segment.28. CallProg 8695 21f7 Segment.28. EndType 8695 21f8 Segment.28. EventOuts 8696 21f8 Segment.28. EventOuts 8696 21f8 Segment.28. RampRate 8693 21f5 Segment.28. SegType 8688 21f0 Segment.28. TargetSP 8694 21f6 Segment.29. CallCycles 8707 2203 Segment.29. CallProg 8706 2202 Segment.29. Duration 8708 2204 Segment.29. EventOuts 8712 2208 Segment.29. FampRate 8709 2205 <t< td=""><td>Segment.27.CallCycles</td><td>8675</td><td>21e3</td></t<>	Segment.27.CallCycles	8675	21e3
Segment.27. Duration 8676 21e4 Segment.27. EndType 8679 21e7 Segment.27. EventOuts 8680 21e8 Segment.27. Holdback 8673 21e1 Segment.27. RampRate 8677 21e5 Segment.27. TargetSP 8678 21e0 Segment.28. CallCycles 8691 21f3 Segment.28. CallProg 8690 21f2 Segment.28. CallProg 8695 21f7 Segment.28. EndType 8695 21f8 Segment.28. EventOuts 8696 21f8 Segment.28. EventOuts 8696 21f8 Segment.28. RampRate 8693 21f5 Segment.28. SegType 8688 21f0 Segment.28. TargetSP 8694 21f6 Segment.29. CallCycles 8707 2203 Segment.29. CallProg 8706 2202 Segment.29. Duration 8708 2204 Segment.29. EventOuts 8712 2208 Segment.29. FampRate 8709 2205 <t< td=""><td>·</td><td>8674</td><td>21e2</td></t<>	·	8674	21e2
Segment.27.EndType 8679 21e7 Segment.27.EventOuts 8680 21e8 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.TargetSP 8678 21e6 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.SegType 8688 21f0 Segment.28.TargetSP 8684 21f0 Segment.29.CallCycles 8707 2203 Segment.29.Duration 8708 2202 Segment.29.EndType 8711 2207 Segment.29.Holdback 8709 2205 Segment.29.FampRate 8709 2201 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles		8676	21e4
Segment.27.EventOuts 8680 21e8 Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.TargetSP 8678 21e6 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.TargetSP 8688 21f0 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.Holdback 8709 2201 Segment.29.RampRate 8709 2201 Segment.29.RampRate 8709 2205 Segment.30.CallCycles 8723 2213 Segment.30.CallPr		8679	21e7
Segment.27.Holdback 8673 21e1 Segment.27.RampRate 8677 21e5 Segment.27.SegType 8678 21e0 Segment.28.CallCycles 8691 21f3 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.RampRate 8693 21f5 Segment.28.TargetSP 8688 21f0 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.RampRate 8709 2205 Segment.29.TargetSP 8704 2200 Segment.30.CallCyc		8680	21e8
Segment.27.RampRate 8677 21e5 Segment.27.SegType 8672 21e0 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.TargetSP 8688 21f0 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.TargetSP 8704 2200 Segment.30.CallCycles 8723 2213 Segment.30.Duration 8724 2217 Segment.30.EventOut			21e1
Segment.27.SegType 8672 21e0 Segment.27.TargetSP 8678 21e6 Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.RampRate 8694 21f6 Segment.29.CallCycles 8707 2203 Segment.29.CallCycles 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.EndTy	3		
Segment.27.TargetSP 8678 21e6 Segment.28.CallCycles 8691 21f3 Segment.28.Duration 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.RampRate 8693 21f5 Segment.28.TargetSP 8688 21f0 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.CallProg 8708 2204 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.30.CallCycles 8723 2213 Segment.30.CallCycles 8723 2217 Segment.30.Even			
Segment.28.CallCycles 8691 21f3 Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.SegType 8688 21f0 Segment.28.TargetSP 8694 21f6 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.EndType 8722 2212 Segment.30.EventOuts 8728 2218 Segment.30.RampRate 8725 2215 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.28.CallProg 8690 21f2 Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.SegType 8688 21f0 Segment.28.TargetSP 8694 21f6 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.EventOuts 8724 2217 Segment.30.RampRate 8725 2215 Segment.30.SegType<			
Segment.28.Duration 8692 21f4 Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.SegType 8688 21f0 Segment.28.TargetSP 8694 21f6 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.TargetSP 8704 2200 Segment.30.CallCycles 8723 2213 Segment.30.Duration 8722 2212 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.RampRate 8725 2215 Segment.30.SegType <td></td> <td></td> <td></td>			
Segment.28.EndType 8695 21f7 Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.SegType 8688 21f0 Segment.28.TargetSP 8694 21f6 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.EventOuts 8724 2214 Segment.30.Holdback 8721 2217 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.28.EventOuts 8696 21f8 Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.SegType 8688 21f0 Segment.28.TargetSP 8694 21f6 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EventOuts 8728 2218 Segment.30.RampRate 8725 2215 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.28.Holdback 8689 21f1 Segment.28.RampRate 8693 21f5 Segment.28.SegType 8688 21f0 Segment.28.TargetSP 8694 21f6 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.30.CallCycles 8723 2213 Segment.30.CallCycles 8723 2213 Segment.30.Duration 8724 2214 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210	<u> </u>		
Segment.28.RampRate 8693 21f5 Segment.28.SegType 8688 21f0 Segment.28.TargetSP 8694 21f6 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.30.CallCycles 8723 2213 Segment.30.CallCycles 8723 2212 Segment.30.Duration 8724 2214 Segment.30.EventOuts 8724 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.28.SegType 8688 21f0 Segment.28.TargetSP 8694 21f6 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.30.CallCycles 8723 2213 Segment.30.CallCycles 8723 2213 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210	0 100 B B 1		
Segment.28.TargetSP 8694 21f6 Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.29.CallCycles 8707 2203 Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210	<u> </u>		
Segment.29.CallProg 8706 2202 Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.29.Duration 8708 2204 Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.29.EndType 8711 2207 Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.29.EventOuts 8712 2208 Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.29.Holdback 8705 2201 Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.29.RampRate 8709 2205 Segment.29.SegType 8704 2200 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.29.SegType 8704 2200 Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.29.TargetSP 8710 2206 Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.30.CallCycles 8723 2213 Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.30.CallProg 8722 2212 Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.30.Duration 8724 2214 Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.30.EndType 8727 2217 Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210	<u> </u>		
Segment.30.EventOuts 8728 2218 Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.30.Holdback 8721 2211 Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			2217
Segment.30.RampRate 8725 2215 Segment.30.SegType 8720 2210			
Segment.30.SegType 8720 2210		8721	
		8725	2215
Segment.30.TargetSP 8726 2216		8720	2210
	Segment.30.TargetSP	8726	2216

Description	ModBus	HEX
Segment.31.CallCycles	8739	2223
Segment.31.CallProg	8738	2222
Segment.31.Duration	8740	2224
Segment.31.EndType	8743	2227
Segment.31.EventOuts	8744	2228
Segment.31.Holdback	8737	2221
Segment.31.RampRate	8741	2225
Segment.31.SegType	8736	2220
Segment.31.TargetSP	8742	2226
Segment.32.CallCycles	8755	2233
Segment.32.CallProg	8754	2232
Segment.32.Duration	8756	2234
Segment.32.EndType	8759	2237
Segment.32.EventOuts	8760	2238
Segment.32.Holdback	8753	2231
Segment.32.RampRate		
·	8757 8752	2235
Segment.32.SegType		2230
Segment.32.TargetSP	8758	2236
Segment.33.CallCycles	8771	2243
Segment.33.CallProg	8770	2242
Segment.33.Duration	8772	2244
Segment.33.EndType	8775	2247
Segment.33.EventOuts	8776	2248
Segment.33.Holdback	8769	2241
Segment.33.RampRate	8773	2245
Segment.33.SegType	8768	2240
Segment.33.TargetSP	8774	2246
Segment.34.CallCycles	8787	2253
Segment.34.CallProg	8786	2252
Segment.34.Duration	8788	2254
Segment.34.EndType	8791	2257
Segment.34.EventOuts	8792	2258
Segment.34.Holdback	8785	2251
Segment.34.RampRate	8789	2255
Segment.34.SegType	8784	2250
Segment.34.TargetSP	8790	2256
Segment.35.CallCycles	8803	2263
Segment.35.CallProg	8802	2262
Segment.35.Duration	8804	2264
Segment.35.EndType	8807	2267
Segment.35.EventOuts	8808	2268
Segment.35.Holdback	8801	2261
Segment.35.RampRate	8805	2265
Segment.35.SegType	8800	2260
Segment.35.TargetSP	8806	2266
Segment.36.CallCycles	8819	2273
Segment.36.CallProg	8818	2272
Segment.36.Duration	8820	2274
Segment.36.EndType	8823	2277
Segment.36.EventOuts	8824	2278
Segment.36.Holdback	8817	2271
Segment.36.RampRate	8821	2275
Segment.36.SegType	8816	2270
Segment.36.TargetSP	8822	2276
Segment.37.CallCycles	8835	2283
Segment.37.CallProg	8834	2282
Segment.37.Duration	8836	2284
Segment.37.EndType	8839	2287

D : #		1151
Description	ModBus	HEX
Segment.37.EventOuts	8840	2288
Segment.37.Holdback	8833	2281
Segment.37.RampRate	8837	2285
Segment.37.SegType	8832	2280
Segment.37.TargetSP	8838	2286
Segment.38.CallCycles	8851	2293
Segment 38 Duration	8850	2292
Segment 38 EndType	8852	2294
Segment 38 FrantOuts	8855	2297
Segment 38 Leidheak	8856	2298
Segment 38 RempRete	8849	2291 2295
Segment 38 SegType	8853 8848	2290
Segment.38.SegType Segment.38.TargetSP	8854	
Segment.39.CallCycles	8867	2296 22a3
Segment.39.CallProg	8866	22a3
Segment.39.Duration	8868	22a2
Segment.39.EndType	8871	22a4 22a7
Segment.39.EventOuts	8872	22a8
Segment.39.Holdback	8865	22a0
Segment.39.RampRate	8869	22a5
Segment.39.SegType	8864	22a0
Segment.39.TargetSP	8870	22a6
Segment.40.CallCycles	8883	22b3
Segment.40.CallProg	8882	22b2
Segment.40.Duration	8884	22b4
Segment.40.EndType	8887	22b7
Segment.40.EventOuts	8888	22b8
Segment.40.Holdback	8881	22b1
Segment.40.RampRate	8885	22b5
Segment.40.SegType	8880	22b0
Segment.40.TargetSP	8886	22b6
Segment.41.CallCycles	8899	22c3
Segment.41.CallProg	8898	22c2
Segment.41.Duration	8900	22c4
Segment.41.EndType	8903	22c7
Segment.41.EventOuts	8904	22c8
Segment.41.Holdback	8897	22c1
Segment.41.RampRate	8901	22c5
Segment.41.SegType	8896	22c0
Segment.41.TargetSP	8902	22c6
Segment.42.CallCycles	8915	22d3
Segment.42.CallProg	8914	22d2
Segment.42.Duration	8916	22d4
Segment.42.EndType	8919	22d7
Segment.42.EventOuts	8920	22d8
Segment.42.Holdback	8913	22d1
Segment.42.RampRate	8917	22d5
Segment.42.SegType	8912	22d0
Segment.42.TargetSP	8918	22d6
Segment.43.CallCycles	8931	22e3
Segment.43.CallProg	8930	22e2
Segment.43.Duration	8932	22e4
Segment.43.EndType	8935	22e7
Segment.43.EventOuts	8936	22e8
Segment.43.Holdback	8929	22e1
Segment.43.RampRate	8933	22e5
Segment.43.SegType	8928	22e0
5 5 7F -		

Description	ModPus	HEV
Description Segment.43.TargetSP	ModBus 8934	HEX 22e6
Segment.44.CallCycles	8947	22f3
Segment.44.CallProg	8946	22f2
Segment.44.Duration	8948	22f4
Segment.44.EndType	8951	22f7
Segment.44.EventOuts	8952	22f8
Segment.44.Holdback	8945	22f1
Segment.44.RampRate	8949	22f5
Segment.44.SegType	8944	22f0
Segment.44.TargetSP	8950	22f6
Segment.45.CallCycles	8963	2303
Segment.45.CallProg	8962	2302
Segment.45.Duration	8964	2304
Segment.45.EndType	8967	2307
Segment.45.EventOuts	8968	2308
Segment.45.Holdback	8961	2301
Segment.45.RampRate	8965	2305
Segment.45.SegType	8960	2300
Segment.45.TargetSP	8966	2306
Segment.46.CallCycles	8979	2313
Segment.46.CallProg	8978	2312
Segment.46.Duration	8980	2314
Segment.46.EndType	8983	2317
Segment.46.EventOuts	8984	2318
Segment.46.Holdback	8977	2311
Segment.46.RampRate	8981	2315
Segment.46.SegType	8976	2310
Segment 47 Call Cycles	8982	2316
Segment 47 Call Drog	8995 8994	2323
Segment.47.CallProg Segment.47.Duration	8996	2322 2324
Segment.47.EndType	8999	2327
Segment.47.EndType Segment.47.EventOuts	9000	2328
Segment.47.Holdback	8993	2321
Segment.47.RampRate	8997	2325
Segment.47.SegType	8992	2320
Segment.47.TargetSP	8998	2326
Segment.48.CallCycles	9011	2333
Segment.48.CallProg	9010	2332
Segment.48.Duration	9012	2334
Segment.48.EndType	9015	2337
Segment.48.EventOuts	9016	2338
Segment.48.Holdback	9009	2331
Segment.48.RampRate	9013	2335
Segment.48.SegType	9008	2330
Segment.48.TargetSP	9014	2336
Segment.49.CallCycles	9027	2343
Segment.49.CallProg	9026	2342
Segment.49.Duration	9028	2344
Segment.49.EndType	9031	2347
Segment.49.EventOuts	9032	2348
Segment.49.Holdback	9025	2341
Segment.49.RampRate	9029	2345
Segment.49.SegType	9024	2340
Segment.49.TargetSP	9030	2346
Segment.50.CallCycles	9043	2353
Segment.50.CallProg	9042	2352
Segment.50.Duration	9044	2354

Description	ModBus	HEX
Segment.50.EndType	9047	2357
Segment.50.EventOuts	9048	2358
Segment.50.Holdback	9041	2351
Segment.50.RampRate	9045	2355
Segment.50.SegType	9040	2350
Segment.50.TargetSP	9046	2356
SwitchOver.SelectIn	4927	133f
SwitchOver.SwitchHigh	4925	133d
SwitchOver.SwitchLow	4926	133e
UsrVal.1.Val	4962	1362
UsrVal.2.Val	4963	1363
UsrVal.3.Val	4964	1364
UsrVal.4.Val	4965	1365
UsrVal.5.Val	4966	1366
UsrVal.6.Val	4967	1367
UsrVal.7.Val	4968	1368
UsrVal.8.Val	4969	1369
UsrVal.9.Val	4970	136a
UsrVal.10.Val	4971	136b
UsrVal.11.Val	4972	136c
UsrVal.12.Val	4973	136d
UsrVal.13.Val	4974	136e
UsrVal.14.Val	4975	136f
UsrVal.15.Val	4976	1370
UsrVal.16.Val	4977	1371
UsrVal.17.Val	4978	1372
UsrVal.18.Val	4979	1373
UsrVal.19.Val	4980	1374
UsrVal.20.Val	4981	1375
UsrVal.21.Val	4982	1376
UsrVal.22.Val	4983	1377
UsrVal.23.Val	4984	1378
UsrVal.24.Val	4985	1379
UsrVal.25.Val	4986	137a
UsrVal.26.Val	4987	137b
UsrVal.27.Val	4988	137c
UsrVal.28.Val	4989	137d
UsrVal.29.Val	4990	137e
UsrVal.30.Val	4991	137f
UsrVal.31.Val	4992	1380
UsrVal.32.Val	4993	1381

24. APPENDIX B DEVICENET PARAMETER TABLES

24.1 IO Re-Mapping Object

The Mini8 DeviceNet communicates is supplied with a default input assembly table (80 bytes) and output assembly table (48 bytes). The parameters included are listed below.

To modify these tables see the next section.

The default Input assembly table

Input Parameter	Offset	Value (Attr ID)
PV – Loop 1	0	0
Working SP – Loop 1	2	1
Working Output – Loop 1	4	2
PV – Loop 2	6	14 (0EH)
Working SP – Loop 2	8	15 (0FH)
Working Output – Loop 2	10	16 (10H)
PV – Loop 3	12	28 (1CH)
Working SP – Loop 3	14	29 (1DH)
Working Output – Loop 3	16	30 (1EH)
PV – Loop 4	18	42 (2AH)
Working SP – Loop 4	20	43 (2BH)
Working Output – Loop 4	22	44 (2CH)
PV – Loop 5	24	56 (38H)
Working SP – Loop 5	26	57 (39H)
Working Output – Loop 5	28	58 (3AH)
PV – Loop 6	30	70 (46H)
Working SP – Loop 6	32	71 (47H)
Working Output – Loop 6	34	72 (48H)
PV – Loop 7	36	84 (54H)
Working SP – Loop 7	38	85 (55H)
Working Output – Loop 7	40	86 (56H)
PV – Loop 8	42	98 (62H)
Working SP – Loop 8	44	99 (63H)
Working Output – Loop 8	46	100 (64H)
Analogue Alarm Status 1	48	144 (90H)
Analogue Alarm Status 2	50	145 (91H)
Analogue Alarm Status 3	52	146 (92H)
Analogue Alarm Status 4	54	147 (93H)
Sensor Break Alarm Status 1	56	148 (94H)
Sensor Break Alarm Status 2	58	149 (95H)
Sensor Break Alarm Status 3	60	150 (96H)
Sensor Break Alarm Status 4	62	151 (97H)
CT Alarm Status 1	64	152 (98H)
CT Alarm Status 2	66	153 (99H)
CT Alarm Status 3	68	154 (9AH)
CT Alarm Status 4	70	155 (9BH)
New Alarm Output	72	156 (9CH)
Any Alarm Output	74	157 (9DH)
New CT Alarm Output	76	158 (9EH)
Program Status	78	184 (B8H)
TOTAL LENGTH	80	

The default **output** assembly table.

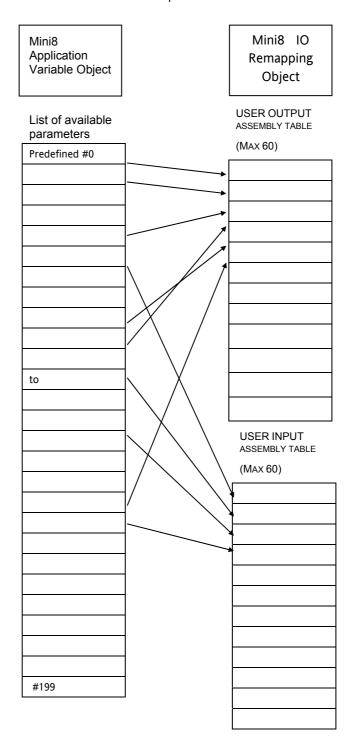
Output Parameter	Offset	Value
Target SP – Loop 1	0	3
Auto/Manual – Loop 1	2	7
Manual Output – Loop 1	4	4
Target SP – Loop 2	6	17 (11H)
Auto/Manual – Loop 2	8	21 (15H)
Manual Output – Loop 2	10	18 (12H)
Target SP – Loop 3	12	31 (1FH)
Auto/Manual – Loop 3	14	35 (23H)
Manual Output – Loop 3	16	32 (20H)
Target SP – Loop 4	18	45 (2DH)
Auto/Manual – Loop 4	20	49 (31H)
Manual Output – Loop 4	22	46 (2EH)
Target SP – Loop 5	24	59 (3BH)
Auto/Manual – Loop 5	26	63 (3FH)
Manual Output – Loop 5	28	60 (3CH)
Target SP – Loop 6	30	73 (49H)
Auto/Manual – Loop 6	32	77 (4DH)
Manual Output – Loop 6	34	74 (4AH)
Target SP – Loop 7	36	87 (57H)
Auto/Manual – Loop 7	38	91 (5BH)
Manual Output – Loop 7	40	88 (58H)
Target SP – Loop 8	42	101 (65H)
Auto/Manual – Loop 8	44	105 (69H)
Manual Output – Loop 8	46	102 (66H)
TOTAL LENGTH	48	

24.2 Application Variables Object

This is the list of parameters available to be included in the input and output tables.

Parameter	Attribute ID
Process Variable – Loop 1	0
Working Setpoint – Loop 1	1
Working Output – Loop 1	2
Target Setpoint – Loop 1	3
Manual Output – Loop 1	4
Setpoint 1 – Loop 1	5
Setpoint 2 – Loop 1	6
Auto/Manual Mode – Loop 1	7
Proportional Band – Loop 1 working Set	8
Integral Time – Loop 1 working Set	9
Derivative Time – Loop 1 working Set	10
Cutback Low – Loop 1 working Set	11
Cutback High – Loop 1 working Set	12
Relative Cooling Gain – Loop 1 working Set	13
Process Variable – Loop 2	14
Working Setpoint – Loop 2	15
Working Output – Loop 2	16
Target Setpoint – Loop 2	17
Manual Output – Loop 2	18
Setpoint 1 – Loop 2	19
Setpoint 2 – Loop 2	20
Auto/Manual Mode – Loop 2	21
Proportional Band – Loop 2 working Set	22
Integral Time – Loop 2 working Set	23
Derivative Time – Loop 2 working Set	24
Cutback Low – Loop 2 working Set	25
Cutback High – Loop 2 working Set	26
Relative Cooling Gain – Loop 2 working Set	27
Process Variable – Loop 3	28
Working Setpoint – Loop 3	29
Working Output – Loop 3	30
Target Setpoint – Loop 3	31
Manual Output – Loop 3	32
Setpoint 1 – Loop 3	33

Parameter	Attribute ID
Setpoint 2 – Loop 3	34
Auto/Manual Mode – Loop 3	35
Proportional Band – Loop 3 working Set Integral Time – Loop 3 working Set	36
Derivative Time – Loop 3 working Set	38
Cutback Low – Loop 3 working Set	39
Cutback High – Loop 3 working Set	40
Relative Cooling Gain – Loop 3 working Set Process Variable – Loop 4	41
Working Setpoint – Loop 4	42
Working Output – Loop 4	44
Target Setpoint – Loop 4	45
Manual Output – Loop 4	46
Setpoint 1 – Loop 4	47
Setpoint 2 – Loop 4 Auto/Manual Mode – Loop 4	48
Proportional Band – Loop 4 working Set	50
Integral Time – Loop 4 working Set	51
Derivative Time – Loop 4 working Set	52
Cutback Low – Loop 4 working Set	53
Cutback High – Loop 4 working Set Relative Cooling Gain – Loop 4 working Set	54 55
Process Variable – Loop 5	56
Working Setpoint – Loop 5	57
Working Output – Loop 5	58
Target Setpoint – Loop 5	59
Manual Output – Loop 5 Setpoint 1 – Loop 5	60
Setpoint 2 – Loop 5	62
Auto/Manual Mode – Loop 5	63
Proportional Band – Loop 5 working Set	64
Integral Time – Loop 5 working Set	65
Derivative Time – Loop 5 working Set Cutback Low – Loop 5 working Set	66
Cutback High – Loop 5 working Set	68
Relative Cooling Gain – Loop 5 working Set	69
Process Variable – Loop 6	70
Working Setpoint – Loop 6	71
Working Output – Loop 6 Target Setpoint – Loop 6	72
Manual Output – Loop 6	74
Setpoint 1 – Loop 6	75
Setpoint 2 – Loop 6	76
Auto/Manual Mode – Loop 6	77
Proportional Band – Loop 6 working Set Integral Time – Loop 6 working Set	78 79
Derivative Time – Loop 6 working Set	80
Cutback Low – Loop 6 working Set	81
Cutback High – Loop 6 working Set	82
Relative Cooling Gain – Loop 6 working Set	83 84
Process Variable – Loop 7 Working Setpoint – Loop 7	85
Working Output – Loop 7	86
Target Setpoint – Loop 7	87
Manual Output – Loop 7	88
Setpoint 1 – Loop 7	89
Setpoint 2 – Loop 7 Auto/Manual Mode – Loop 7	90
Proportional Band – Loop 7 working Set	92
Integral Time – Loop 7 working Set	93
Derivative Time – Loop 7 working Set	94
Cutback Low – Loop 7 working Set	95
Cutback High – Loop 7 working Set Relative Cooling Gain – Loop 7 working Set	96
Process Variable – Loop 8	98
Working Setpoint – Loop 8	99
Working Output – Loop 8	100
Target Setpoint – Loop 8	101
Manual Output – Loop 8	102


Setpoint 1 - Loop 8	Parameter	Attribute ID
AutoManual Mode - Loop 8 105		
Proportional Band - Loop 8 working Set 106 107 107 108 107 107 108 107 108 107 108	Setpoint 2 – Loop 8	
Integral Time – Loop 8 working Set		
Derivative Time − Loop 8 working Set 108 Cutback Loop 109 working Set 110 Relative Cooling Gain − Loop 8 working Set 111 Module PV − Channel 1 112 Module PV − Channel 2 113 Module PV − Channel 3 114 Module PV − Channel 3 114 Module PV − Channel 4 115 Module PV − Channel 5 116 Module PV − Channel 6 117 Module PV − Channel 6 117 Module PV − Channel 7 118 Module PV − Channel 8 119 Module PV − Channel 9 120 Module PV − Channel 9 120 Module PV − Channel 9 120 Module PV − Channel 10 121 Module PV − Channel 11 122 Module PV − Channel 11 122 Module PV − Channel 12 123 Module PV − Channel 14 125 Module PV − Channel 15 126 Module PV − Channel 16 127 Module PV − Channel 17 128 Module PV − Channel 18 128 Module PV − Channel 19 129 Module PV − Channel 19 120 Module PV − Channel 17 128 Module PV − Channel 18 129 Module PV − Channel 19 130 Module PV − Channel 19 130 Module PV − Channel 20 131 Module PV − Channel 21 132 Module PV − Channel 21 133 Module PV − Channel 22 133 Module PV − Channel 23 134 Module PV − Channel 24 135 Module PV − Channel 25 138 Module PV − Channel 26 139 Module PV − Channel 27 138 Module PV − Channel 28 139 Module PV − Channel 29 140 Module PV − Channel 29 140 Module PV − Channel 20 131 Module PV − Channel 21 138 Module PV − Channel 25 138 Module PV − Channel 26 136 Module PV − Channel 27 138 Module PV − Channel 28 139 Module PV − Channel 29 140 Module PV − Channel 20 140 M		
Cutback Low – Loop 8 working Set 109 Cutback High – Loop 8 working Set 110 Relative Cooling Gain – Loop 8 working Set 111 Module PV – Channel 1 112 Module PV – Channel 3 114 Module PV – Channel 3 114 Module PV – Channel 5 116 Module PV – Channel 5 116 Module PV – Channel 6 117 Module PV – Channel 7 118 Module PV – Channel 8 119 Module PV – Channel 9 120 Module PV – Channel 10 121 Module PV – Channel 11 122 Module PV – Channel 12 123 Module PV – Channel 13 124 Module PV – Channel 14 125 Module PV – Channel 15 122 Module PV – Channel 16 127 Module PV – Channel 17 128 Module PV – Channel 18 129 Module PV – Channel 19 130 Module PV – Channel 16 127 Module PV – Channel 17 128 Module PV – Channel 18 129		
Cubback High – Loop 8 working Set 111 Medule PV – Channel 1 112 Module PV – Channel 2 113 Module PV – Channel 3 114 Module PV – Channel 4 115 Module PV – Channel 5 116 Module PV – Channel 6 117 Module PV – Channel 7 118 Module PV – Channel 8 119 Module PV – Channel 9 120 Module PV – Channel 10 121 Module PV – Channel 11 122 Module PV – Channel 12 123 Module PV – Channel 13 124 Module PV – Channel 14 125 Module PV – Channel 15 128 Module PV – Channel 14 125 Module PV – Channel 15 126 Module PV – Channel 16 127 Module PV – Channel 17 128 Module PV – Channel 18 129 Module PV – Channel 18 129 Module PV – Channel 19 130 Module PV – Channel 19 131 Module PV – Channel 19 132 Module PV – Channel 2		
Relative Cooling Gain – Loop 8 working Set		
Module PV - Channel 3 114 Module PV - Channel 4 115 Module PV - Channel 5 116 Module PV - Channel 6 117 Module PV - Channel 7 118 Module PV - Channel 8 119 Module PV - Channel 8 120 Module PV - Channel 9 120 Module PV - Channel 10 121 Module PV - Channel 11 122 Module PV - Channel 12 123 Module PV - Channel 13 124 Module PV - Channel 14 125 Module PV - Channel 15 126 Module PV - Channel 15 126 Module PV - Channel 16 127 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 25 138 Module PV - Channel 26		111
Module PV - Channel 3 114 Module PV - Channel 5 116 Module PV - Channel 6 117 Module PV - Channel 7 118 Module PV - Channel 8 119 Module PV - Channel 9 120 Module PV - Channel 10 121 Module PV - Channel 11 122 Module PV - Channel 12 123 Module PV - Channel 13 124 Module PV - Channel 14 125 Module PV - Channel 14 125 Module PV - Channel 15 126 Module PV - Channel 16 127 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 21 131 Module PV - Channel 21 132 Module PV - Channel 21 133 Module PV - Channel 21 133 Module PV - Channel 23 133 Module PV - Channel 24 135 Module PV - Channel 25 136 Module PV - Channel 26 137 Module PV - Channel 27		112
Module PV - Channel 5 115 Module PV - Channel 6 117 Module PV - Channel 7 118 Module PV - Channel 8 119 Module PV - Channel 9 120 Module PV - Channel 10 121 Module PV - Channel 11 122 Module PV - Channel 12 123 Module PV - Channel 13 124 Module PV - Channel 13 124 Module PV - Channel 14 125 Module PV - Channel 15 126 Module PV - Channel 15 128 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 23 134 Module PV - Channel 23 134 Module PV - Channel 23 134 Module PV - Channel 24 133 Module PV - Channel 25 133 Module PV - Channel 28 139 Module PV - Channel 29		
Module PV - Channel 6		
Module PV - Channel 7 118 Module PV - Channel 8 119 Module PV - Channel 9 120 Module PV - Channel 10 121 Module PV - Channel 11 122 Module PV - Channel 12 123 Module PV - Channel 14 123 Module PV - Channel 15 126 Module PV - Channel 16 125 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 25 138 Module PV - Channel 28 139 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 29 140 Module PV - Channel 31 141 Module PV - Channel 31 <td></td> <td></td>		
Module PV - Channel 8 118 Module PV - Channel 9 120 Module PV - Channel 10 121 Module PV - Channel 11 122 Module PV - Channel 13 124 Module PV - Channel 13 124 Module PV - Channel 14 125 Module PV - Channel 15 126 Module PV - Channel 16 127 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 21 132 Module PV - Channel 23 133 Module PV - Channel 24 135 Module PV - Channel 25 138 Module PV - Channel 24 135 Module PV - Channel 25 138 Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 31 141 Module PV - Channel 31 144 Module PV - Channel 34 <td></td> <td></td>		
Module PV - Channel 9 120 Module PV - Channel 10 121 Module PV - Channel 11 122 Module PV - Channel 12 123 Module PV - Channel 13 124 Module PV - Channel 14 125 Module PV - Channel 15 126 Module PV - Channel 16 127 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 23 134 Module PV - Channel 23 134 Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 25 136 Module PV - Channel 25 136 Module PV - Channel 27 138 Module PV - Channel 28 137 Module PV - Channel 29 140 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 32 143 Module PV - Channel 35 </td <td></td> <td></td>		
Module PV - Channel 10 120 Module PV - Channel 11 121 Module PV - Channel 12 123 Module PV - Channel 13 124 Module PV - Channel 15 125 Module PV - Channel 16 127 Module PV - Channel 16 127 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 22 133 Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 25 136 Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 29 140 Module PV - Channel 31 141 Module PV - Channel 32 143 Module PV - Channel 33 144 Module PV - Channel 34 149 Module PV - Channel 35<		
Module PV - Channel 11 121 Module PV - Channel 12 123 Module PV - Channel 13 124 Module PV - Channel 14 125 Module PV - Channel 15 126 Module PV - Channel 16 127 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 22 133 Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 25 136 Module PV - Channel 25 138 Module PV - Channel 25 138 Module PV - Channel 25 138 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 31 142 Module PV - Channel 31 144 Module PV - Channel 32 143 Analogue Alarm Status 1 142 Module PV - Channel 31		
Module PV - Channel 12 123 Module PV - Channel 13 124 Module PV - Channel 14 125 Module PV - Channel 15 126 Module PV - Channel 16 127 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 23 133 Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 25 136 Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 29 140 Module PV - Channel 31 142 Module PV - Channel 32 134 Analogue Alarm Status 4 141 Module PV - Channel 32 143 Analogue Alarm Status 2 144 Analogue Alarm Status 3 146 Analogue Alarm Statu		121
Module PV - Channel 13	Module PV – Channel 11	122
Module PV - Channel 15 125 Module PV - Channel 16 127 Module PV - Channel 16 127 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 22 133 Module PV - Channel 22 133 Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 25 136 Module PV - Channel 25 136 Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 29 140 Module PV - Channel 30 141 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 32 143 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 32 143 Module PV - Channel 31 144 Module PV - Channel 31 145 Module PV - Channel 31 145 Module PV - Channel 31 146 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 31 143 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 30 141		
Module PV - Channel 16 126 Module PV - Channel 17 128 Module PV - Channel 18 129 Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 23 133 Module PV - Channel 23 134 Module PV - Channel 24 133 Module PV - Channel 25 136 Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 31 142 Module PV - Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 143 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 4 147 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT		
Module PV − Channel 17 128 Module PV − Channel 18 129 Module PV − Channel 19 130 Module PV − Channel 20 131 Module PV − Channel 21 132 Module PV − Channel 22 133 Module PV − Channel 23 134 Module PV − Channel 24 135 Module PV − Channel 25 136 Module PV − Channel 26 137 Module PV − Channel 27 138 Module PV − Channel 28 139 Module PV − Channel 29 140 Module PV − Channel 30 141 Module PV − Channel 31 142 Module PV − Channel 31 142 Module PV − Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 143 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm		
Module PV - Channel 18		
Module PV - Channel 19 130 Module PV - Channel 20 131 Module PV - Channel 21 132 Module PV - Channel 22 133 Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 25 136 Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 143 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 3 150 CT Alarm Status 3 155 CT Alarm Status 3<		
Module PV - Channel 19		
Module PV - Channel 21 132 Module PV - Channel 22 133 Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 25 136 Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 143 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 3 150 Sensor Break Alarm Status 4 156 CT Alarm Status	Module PV – Channel 19	
Module PV - Channel 21 132 Module PV - Channel 23 133 Module PV - Channel 24 135 Module PV - Channel 25 136 Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 145 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 3 155 New Alarm Output <td>Module PV – Channel 20</td> <td></td>	Module PV – Channel 20	
Module PV - Channel 23 134 Module PV - Channel 24 135 Module PV - Channel 25 136 Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 31 142 Module PV - Channel 32 143 Module PV - Channel 32 143 Manalogue Alarm Status 1 144 Analogue Alarm Status 2 145 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 156 Any Alarm Output 158 Reset New Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 5 165 CT Load Current 6 166 CT Load Status 1 169 CT Load Status 2 170 CT Load Status 1 169 CT Load Status 2 170 CT Load Status 2 170 CT Load Current 8 170 CT Load Status 2 170 CT Load Status 1 170 CT		132
Module PV - Channel 24 135 Module PV - Channel 25 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 1 144 Analogue Alarm Status 2 145 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 3 150 CT Alarm Status 4 151 CT Alarm Status 3 155 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 156 Any Alarm Output 157 New CT Alarm 160 CT Load Current 1 161		
Module PV - Channel 25 136 Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 145 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 5 148 Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 158 Reset New Alarm 160 CT Load Current 1 161 CT Load Current 3 163 CT Load Current 4 164 <tr< td=""><td></td><td></td></tr<>		
Module PV - Channel 26 137 Module PV - Channel 27 138 Module PV - Channel 28 139 Module PV - Channel 29 140 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 145 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 4 147 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 156 Any Alarm Output 158 Reset New Alarm 159 Reset New Alarm 160 CT Load Current 1 161 CT Load Current 3 163		
Module PV - Channel 28 138 Module PV - Channel 28 139 Module PV - Channel 30 141 Module PV - Channel 31 142 Module PV - Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 145 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 3 163 CT Load Current 5 165 CT Load Current 6 166		
Module PV – Channel 29 140 Module PV – Channel 30 141 Module PV – Channel 31 142 Module PV – Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 145 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 3 150 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 156 Any Alarm Output 158 Reset New Alarm 150 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load C		
Module PV – Channel 30 141 Module PV – Channel 31 142 Module PV – Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 145 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 156 Any Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2		
Module PV – Channel 30 141 Module PV – Channel 31 142 Module PV – Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 145 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 8 169 CT Load Status 1 <td></td> <td></td>		
Module PV - Channel 32 143 Analogue Alarm Status 1 144 Analogue Alarm Status 2 145 Analogue Alarm Status 3 146 Analogue Alarm Status 4 147 Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		141
Analogue Alarm Status 2		142
Analogue Alarm Status 2		
Analogue Alarm Status 3		
Analogue Alarm Status 4 Sensor Break Alarm Status 1 Sensor Break Alarm Status 2 Sensor Break Alarm Status 3 Sensor Break Alarm Status 3 Sensor Break Alarm Status 4 CT Alarm Status 1 CT Alarm Status 2 CT Alarm Status 2 CT Alarm Status 3 CT Alarm Status 4 Total Alarm Output Total Current 1 Total Current 2 Total Current 3 Total Current 4 Total Current 5 Total Current 6 Total Current 7 Total Current 8 Total Current 9 T		
Sensor Break Alarm Status 1 148 Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Status 1 169 CT Load Status 2 170		
Sensor Break Alarm Status 2 149 Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
Sensor Break Alarm Status 3 150 Sensor Break Alarm Status 4 151 CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
CT Alarm Status 1 152 CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Status 1 169 CT Load Status 2 170		
CT Alarm Status 2 153 CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170	Sensor Break Alarm Status 4	151
CT Alarm Status 3 154 CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		152
CT Alarm Status 4 155 New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Status 1 169 CT Load Status 2 170		
New Alarm Output 156 Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Status 1 169 CT Load Status 2 170		
Any Alarm Output 157 New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Status 1 169 CT Load Status 2 170		
New CT Alarm Output 158 Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Status 1 169 CT Load Status 2 170		
Reset New Alarm 159 Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
Reset New CT Alarm 160 CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
CT Load Current 1 161 CT Load Current 2 162 CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
CT Load Current 3 163 CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
CT Load Current 4 164 CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
CT Load Current 5 165 CT Load Current 6 166 CT Load Current 7 167 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
CT Load Current 6 166 CT Load Current 7 167 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
CT Load Current 7 167 CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
CT Load Current 8 168 CT Load Status 1 169 CT Load Status 2 170		
CT Load Status 1 169 CT Load Status 2 170		
CT Load Status 2		
	CT Load Status 3	171

Parameter	Attribute ID
CT Load Status 4	172
CT Load Status 5	173
CT Load Status 6	174
CT Load Status 7	175
CT Load Status 8	176
PSU Relay 1 Output	177
PSU Relay 2 Output	178
PSU Digital Input 1	179
PSU Digital Input 2	180
Program Run	181
Program Hold	182
Program Reset	183
Program Status	184
Current Program	185
Program Time Left	186
Segment Time Left	187
User Value 1	188
User Value 2	189
User Value 3	190
User Value 4	191
User Value 5	192
User Value 6	193
User Value 7	194
User Value 8	195
User Value 9	196
User Value 10	197
User Value 11	198
User Value 12	199

24.2.1 Table Modification

Make a list of parameters required in the input and output tables to suit the application. If the parameter is listed in the predefined list then use the attribute number of that parameter.

To set up the controller so that the required parameters are available on the network requires setting up the INPUT and OUTPUT data assembly tables with the IDs from the Application Variable Object.

25. APPENDIX C SAFETY AND EMC INFORMATION

Eurotherm Controls Ltd manufactures this controller in the UK.

Please read this section carefully before installing the controller

This controller is intended for industrial temperature and process control applications when it will meet the requirements of the European Directives on Safety and EMC. Use in other applications, or failure to observe the installation instructions of this handbook may impair safety or EMC. The installer must ensure the safety and EMC of any particular installation.

Safety

This controller complies with the European Low Voltage Directive 73/23/EEC, by the application of the safety standard EN 61010.

Electromagnetic compatibility

This controller conforms with the essential protection requirements of the EMC Directive 89/336/EEC, by the application of EMC standard EN61326

GENERAL

The information contained in this manual is subject to change without notice. While every effort has been made to ensure the accuracy of the information, your supplier shall not be held liable for errors contained herein.

Unpacking and storage

The packaging should contain an instrument and an Installation guide. It may contain a CD.

If on receipt, the packaging or the instrument are damaged, do not install the product but contact your supplier. If the instrument is to be stored before use, protect from humidity and dust in an ambient temperature range of -10° C to $+70^{\circ}$ C.

SERVICE AND REPAIR

This controller has no user serviceable parts. Contact your supplier for repair.

Cleaning

Do not use water or water based products to clean labels or they will become illegible. Isopropyl alcohol may be used to clean labels. A mild soap solution may be used to clean other exterior surfaces of the product.

INSTALLATION SAFETY REQUIREMENTS

Personnel

Installation must only be carried out by suitably qualified personnel.

Wiring

It is important to connect the controller in accordance with the wiring data given in this guide. Take particular care not to connect AC supplies to the low voltage sensor input or other low level inputs and outputs. Only use copper conductors for connections (except thermocouple inputs) and ensure that the wiring of installations comply with all local wiring regulations. For example in the UK use the latest version of the IEE wiring regulations, (BS7671). In the USA use NEC Class 1 wiring methods.

Power Isolation

The installation must include a power isolating switch or circuit breaker. The device should be mounted in close proximity to the controller, within easy reach of the operator and marked as the disconnecting device for the instrument.

Overcurrent protection

The power supply to the system should be fused appropriately to protect the cabling to the units.

Voltage rating

The maximum continuous voltage applied between any of the following terminals must not exceed 33Vac:

- relay output to logic, dc or sensor connections;
- any connection to ground.

The controller must not be wired to a three phase supply with an unearthed star connection. Under fault conditions such a supply could rise above 264Vac with respect to ground and the product would not be safe.

Conductive pollution

Electrically conductive pollution must be excluded from the cabinet in which the controller is mounted. For example, carbon dust is a form of electrically conductive pollution. To secure a suitable atmosphere, install an air filter to the air intake of the cabinet. Where condensation is likely, for example at low temperatures, include a thermostatically controlled heater in the cabinet.

This product has been designed to conform to BSEN61010 installation category II, pollution degree 2. These are defined as follows:-

Installation Category II

The rated impulse voltage for equipment on nominal 24V dc supply is 800V.

Pollution Degree 2

Normally only non conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation shall be expected.

Grounding of the temperature sensor shield

In some installations it is common practice to replace the temperature sensor while the controller is still powered up. Under these conditions, as additional protection against electric shock, we recommend that the shield of the temperature sensor is grounded. Do not rely on grounding through the framework of the machine

Over-Temperature Protection

When designing any control system it is essential to consider what will happen if any part of the system should fail. In temperature control applications the primary danger is that the heating will remain constantly on. Apart from spoiling the product, this could damage any process machinery being controlled, or even cause a fire.

Reasons why the heating might remain constantly on include:

- the temperature sensor becoming detached from the process
- thermocouple wiring becoming short circuit;
- the controller failing with its heating output constantly on
- an external valve or contactor sticking in the heating condition
- the controller setpoint set too high.

Where damage or injury is possible, we recommend fitting a separate over-temperature protection unit, with an independent temperature sensor, which will isolate the heating circuit.

Please note that the alarm relays within the controller will not give protection under all failure conditions.

INSTALLATION REQUIREMENTS FOR EMC

To ensure compliance with the European EMC directive certain installation precautions are necessary as follows:

- For general guidance refer to EMC Installation Guide, HA025464.
- When using relay outputs it may be necessary to fit a filter suitable for suppressing the conducted emissions. The filter requirements will depend on the type of load. For typical applications we recommend Schaffner FN321 or FN612.
- If the unit is used in table top equipment which is plugged into a standard power socket, then it is likely that compliance to the commercial and light industrial emissions standard is required. In this case to meet the conducted emissions requirement, a suitable mains filter should be installed. We recommend Schaffner types FN321 and FN612.

Routing of wires

To minimise the pick-up of electrical noise, the low voltage DC connections and the sensor input wiring should be routed away from high-current power cables. Where it is impractical to do this, use shielded cables with the shield grounded at both ends. In general keep cable lengths to a minimum.

26. APPENDIX D TECHNICAL SPECIFICATION

The I/O electrical specifications are quoted as factory calibrated worst-case; for life, over full ambient temperature range and supply voltage. Any "typical" figures quoted are the expected values at 25°C ambient and 24Vdc supply.

The nominal update of all inputs and function blocks is every 110ms. However, in complex applications the Mini8 will automatically extend this time in multiples of 110ms.

26.1 Environmental Specification

Power Supply Voltage: 17.8Vdc min to 28.8Vdc max.

Supply Ripple:2Vp-p max.Power Consumption:15W max.Operating Temperature:0 to 55°C

Storage Temperature: -10°C to +70°C

Operating Humidity: 5% to 95% RH non-condensing

EMC: EN61326 for Industrial Environments

Safety: Meets EN61010, installation category II, pollution degree 2.

Max. applied voltage any terminal: 42Vpk.

The Mini8 must be mounted in a protective enclosure.

26.2 Network Communications Support

Modbus RTU: RS485, 2 x RJ45, user select switch for 3-wire or 5-wire.

Baud rates: 4800, 9600, 19200

DeviceNet: CAN, 5-pin standard "open connector" with screw terminals.

Baud rates: 125k, 250k, 500k

Modbus and DeviceNet are mutually exclusive options; refer to the Mini8 order code document.

26.3 Configuration Communications Support

Modbus RTU: 3-wire RS232, through RJ11 configuration port.

Baud rates: 4800, 9600, 19200

All versions of Mini8 support one configuration port.

The configuration port can be used simultaneously with the network link.

26.4 Fixed I/O Resources

The PSU card supports 2 independent and isolated relay contacts

Relay Output Types: On/Off (C/O contacts, "On" closing the N/O pair)

Contact Current: <1A (resistive loads)

Terminal Voltage: <42Vpk
Contact Material: Gold

Snubbers: Snubber networks are NOT fitted.

Contact Isolation: 42Vpkmax.

The PSU card supports 2 independent and isolated logic inputs

Input Types: Logic (24Vdc) Input Logic 0 (off): < 5Vdc. > 10.8Vdc. Input Logic 1 (on):

Input Operating Range: -30Vdc to +30Vdc.

Input Current: 2.5mA (approx.) at 10.5V; 10mA max @ 30V supply.

Detectable Pulse Width: 110ms min. Isolation to system: 42Vpkmax.

26.5 TC8 8-Channel TC Input Card

The TC8 supports 8 independently programmable and electrically isolated channels, catering for all standard and custom thermocouple types.

Channel Types: TC, mV Input Range: -77mV to +77mV.

Resolution: 20 bit ($\Sigma\Delta$ converter), 1.6 μ V with 1.6s filter time

Temperature Coefficient: $< \pm 50$ ppm (0.005%) of reading/ °C

Cold Junction Range: -10°C to +70°C

> 30:1 CJ Rejection: CJ Accuracy: ± 1°C

Linearisation Types: C, J, K, L, R, B, N, T, S, LINEAR mV, custom. Total accuracy: \pm 1°C \pm 0.1% of reading (using internal CJC)

Channel PV Filter: 0.0 seconds (off) to 999.9 seconds, 1st order low-pass.

Sensor Break: AC detector: Off, Low or High resistance trip levels.

Input Resistance: >100 M

Input Leakage Current: <100nA (1nA typical). Common mode rejection: >120dB, 47 - 63Hz Series mode rejection: >60dB, 47 - 63Hz

Isolation channel-channel: 42Vpkmax Isolation to system: 42Vpkmax

26.6 DO8 8-Channel Digital Output Card

The DO8 supports 8 independently programmable channels, the output switches requiring external power supply. Each channel is current and temperature protected, holdback limiting occurring at about 100mA.

The supply line is protected to limit total card current to 200mA.

The 8 channels are isolated from the system (but not from each other). To maintain isolation it is essential to use an independent and isolated PSU.

Channel Types: On/Off, Time Proportioned

Channel Supply (Vcs): 15Vdc to 30Vdc

Logic 1 Voltage Output: > (Vcs - 3V) (not in power limiting) < 1.2Vdc no-load, 0.9V typical Logic 0 Voltage Output: Logic 1 Current Output: 100mA max. (not in power limiting)

Min. Pulse Time: 20ms

Channel Power Limiting: Current limiting capable of driving short-circuit load Card supply is protected by 200mA self-healing fuse **Terminal Supply Protection:**

Isolation (channel-channel): N/A (Channels share common connections)

42Vac/dc max. Isolation to system:

26.7 Toolkit Blocks

User Wires: Orderable options of 30, 60 120 or 250

User values: 32 real values 2 Input Maths: 24 blocks

Add, subtract, multiply, divide, absolute difference, maximum, minimum, hot swap, sample and hold, power, square root, Log, Ln, exponential,

switch

2 Input Logic: 24 blocks

AND, OR, XOR, latch, equal, not equal, greater than, less than, greater

than or equal to, less than or equal to

8 Input Logic: 2 blocks

AND, OR, XOR

8 Input Multiplexer: 4 blocks

8 sets of 8 values selected by input parameter

BCD Input: 2 blocks

2 decades (8 inputs giving 0 to 99).

Input monitor: 2 blocks

Max, min, time above threshold

16 Point Linearisation: 2 blocks

16-point linearisation fit

Polynomial Fit: 2 blocks

Characterisation by Poly Fit table

Switchover: 1 block

Smooth transition between two input values

Timer blocks: 4 blocks

OnPulse, OnDelay, OneShot, MinOn Time

Counter blocks: 2 blocks

Up or down, Directional flag

Totaliser blocks: 2 blocks

Alarm at Threshold value

Real time clock: 1 block

Day & time, 2 time based alarms

26.8 CT3 3-Channel Current-Transformer Input Card

The CT3 supports 3 independent channels designed for heater current monitoring. A scan block allows periodic test of nominated outputs to detect load (failure) changes.

Channel Types: A (current)

Factory set accuracy: better than ±2% of range

Current Input Range: 0mA to 50mA rms
Transformer Ratio: 10/0.05 to 1000/0.05

Input Load Burden: 1W

Isolation: None (provided by CT)

26.9 Load Failure Detection

Requires CT3 module

Max number of loads: 16 Time Proportioned Outputs

Max loads per CT: 6 loads per CT input

Alarms: 1 in 8 Partial load failure, Over current, SSR short circuit, SSR open circuit

Commissioning: Automatic or manual

Measurement interval: 1 sec - 60 sec

26.10 AO8 8 Channel 4-20mA Output Card

The AO8 supports 8 independently programmable and electrically isolated mA output channels for 4-20mA current-loop applications.

Channel Types: mA (current) Output Output Range: $0-20mA, 360\Omega$ Setting Accuracy: $\pm 0.1\%$ of reading

Resolution: 1 part in 10000 (1uA typical)

Isolation channel-channel: 42Vpkmax
Isolation to system: 42Vpkmax

26.11 PID Control Loop Blocks

Number of Loops: 0 or 8 Loops (order options)

Control modes: On/Off, single PID, Dual channel OP

Control Outputs: Analogue 4-20mA, Time proportioned logic,

Cooling algorithms: Linear, water, fan, or oil

Tuning: 3 sets PID, One-shot auto-tune.

Auto manual control: Bumpless transfer or forced manual output available

Setpoint rate limit: Ramp in units per sec, per min or per hour.

Output rate limit: Ramp in % change per second

Other features: Feedforward, Input track, Sensor break OP, Loop break alarm, remote SP,

2 internal loop setpoints

Part No HA028581 | Issue 1 | Jun-04 | 195

26.12 Process Alarms

Number of alarms: 32 analogue, 32 digital, 32 Sensor break,

Alarm types: Absolute high, absolute low, deviation high, deviation low, deviation band,

sensor break

Alarm modes: Latching or non-latching, blocking, time delay.

26.13 Setpoint Programmer

The Setpoint Programmer is a software orderable option

Number of programs: 50 Number of segments: 200 Number of event outputs: 8

Digital inputs: Run, Hold, Reset, Program Advance, Skip, Segment, Sync

Power failure action: Ramp, Reset, Continue

Servo start: PV, SP

26.14 Recipes

Recipes are a software orderable option

Number of recipes: 8

Tags: 24 tags in total