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Abstract

In this paper we present the results from a combined experimental, analytical, and computational
penetration program. First, we conducted a series of depth-of-penetration experiments using 0.021 kg,
7.11mm diameter, 71.12mm long, vacuum-arc-remelted 4340 ogive-nose steel projectiles. These projectiles
were launched with striking velocities between 0.5 and 1.3 km/s using a 20mm powder gun into 254mm
diameter, 6061-T6511 aluminum targets with angles of obliquity of 151, 301, and 451. Next, we employed
the initial conditions obtained from the experiments with a new technique that we have developed to
calculate permanent projectile deformation without erosion. With this technique we use an explicit,
transient dynamic, finite element code to model the projectile and an analytical forcing function derived
from the dynamic expansion of a spherical cavity (which accounts for compressibility, strain hardening,
strain-rate sensitivity, and a finite boundary) to represent the target. Results from the simulations show
the final projectile positions are in good agreement with the positions obtained from post-test radiographs.
Published by Elsevier Science Ltd.

1. Introduction

Currently both analytical and computational modeling of oblique penetration is an active field
of research. When a long rod projectile strikes a target at an oblique angle, it experiences
asymmetric loading which produces bending moments and stresses in the projectile that cause it to
rotate. Furthermore, when obliquity is coupled with both pitch and yaw (pitch being in the plane
of the angle of obliquity) the event is fully three dimensional and a fully numerical solution of the
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Nomenclature

a cavity radius;
’aa cavity expansion velocity;
b elastic–plastic interface position;
c1 constant term nodal pressure coefficient;
c2 linear term nodal pressure coefficient;
c3 quadratic term nodal pressure coefficient;
d position of dilational wave front or free surface;
f decay function;
g flow stress;
i tensor indice;
j tensor indice;
m strain rate sensitivity exponent;
n strain hardening exponent;
~nn unit outward normal vector;
p hydrostatic pressure;
pI pressure at node I
r radial Eulerian coordinate;
sij deviatoric stress tensor;
t time;
u partical displacement;
A constant term dimensionless fitting coefficient;
B linear term dimensionless fitting coefficient;
C quadratic term dimensionless fitting coefficient;
E Young’s modulus;
I integer variable with range 1–4 corresponding to element side nodes;
K bulk modulus;
~VV1 velocity vector at node I ;
Vs striking velocity of the projectile;
Y quasi-static yield strength of target material;
Yp quasi-static yield stress of the penetrator material;
dij Kronecker delta;
eii volumetric strain;
ep effective plastic strain;
ep0 reference plastic strain;
’eep effective plastic strain rate;
’eep0 reference plastic strain rate;
er radial strain;
ey tangential strain;
n Poisson’s ratio;
r density of deformed material;
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problem still poses extreme calculational difficulties. For further details on the subject of oblique
impact the reader is referred to the recent review article by Goldsmith [1] that provides an
extensive survey, which summarizes past and present experimental, analytical, and computational
work on the subject.
Analytical methods for penetration mechanics began with the work of Bishop et al. [2]. They

developed equations for the quasi-static expansion of cylindrical and spherical cavities and used
these equations to estimate forces on conical nose punches pushed slowly into metal targets.
Later, Goodier [3] developed a model to predict the penetration depth of rigid spheres launched
into metal targets. That penetration model included target inertial effects, so Goodier [3]
approximated the target response by results from the dynamic, spherically symmetric, cavity-
expansion equations for an incompressible target material derived by Hill [4] and discussed by Hill
[5] and Hopkins [6]. More recently, Forrestal et al. [7], Forrestal et al. [8], Forrestal et al. [9],
Warren and Forrestal [10], Piekutowski et al. [11] developed spherical cavity-expansion
penetration models for rigid projectiles that penetrate ductile metal targets. They developed
closed-form expressions for the depth of penetration of rigid projectiles with different nose shapes
and demonstrated good agreement with experimental results for normal impact.
Roisman et al. [12] recently performed oblique penetration experiments in order to validate the

analytical penetration model developed by Roisman et al. [13]. In their penetration experiments
they launched hard tungsten sinter alloy, ogive-nosed rods into 6061-T651 aluminum plate targets
with striking velocities between 0.5 and 0.7 km/s and angles of obliquity of 01, 301 and 451. With
their model they assume the projectile is rigid and target to be rigid-perfectly plastic in the plastic
region and linear elastic in the elastic region. Their theoretical results show good agreement with
the experiments provided the projectile can be assumed to be rigid; however, if the projectile bends
they overpredict the final depth of penetration.
Throughout the twentieth century there has been considerable effort and progress in the

development of various computer codes (based on different representations of the conservation
laws for a continuum: Lagrangian, Eulerian, Arbitrary Lagrangian–Eulerian, etc.) that serve as
powerful and versatile computational tools which are used to solve complex problems. A detailed
summary and survey that discusses several of the more widely used computer codes for high
velocity impact is given by Zukas [14]. However, at present, the time required to complete a single
fully three dimensional penetration run is still excessive and prohibits any prospect for
streamlining the penetration analysis for use in an overall design tool that would permit numerous
simulations.

ro density of the undeformed target material;
rp density of the undeformed projectile material;
sij Cauchy stress tensor;
sr radial stress;
sy hoop stress;
%ss Von-Mises effective stress;
u partical velocity;
c caliber-radius-head (CRH);
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Recently, Warren and Tabbara [15] employed a new technique to simulate experiments
performed by Forrestal and Piekutowski [16] in which spherical-nosed 4340 steel projectiles
penetrated 6061-T6511 aluminum targets at normal incidence with pitch and yaw. In this study
good agreement was obtained for projectile deformation and final depth of penetration. With this
new technique [17] we use an explicit transient dynamic finite element code to model the projectile
and an analytical forcing function derived from the dynamic expansion of a spherical cavity to
represent the target. This methodology eliminates the need for discretizing the target as well as the
need for a contact algorithm, which reduces the computer time and memory requirements.
Furthermore, this method avoids the problems due to excessive mesh distortion associated with
Lagrangian formulations as discussed by Camacho and Ortiz [18]. The method does however
suffer from a disadvantage if the tail of the projectile continues to significantly whip back and
forth well into the tunneling region. In this case the simulation method loses accuracy due to the
fact the current cavity expansion algorithm applies a load on the shank whenever there is a
component of velocity in the outward normal direction and does not account for material that has
been moved out of the way in the tunneling region.
The method employed by Warren and Tabbara [15] gave good results provided free surface

effects are minimal which is the case for normal incidence with small angles of pitch and yaw.
However, as angle of obliquity is increased free surface effects become more significant as will be
shown in this paper. Recently, Macek and Duffey [19] used a spherical cavity expansion forcing
function derived for a cavity of finite size to account for near-surface effects in the penetration of
geologic media. With their forcing function they consider the target to be an incompressible,
damaged Mohr–Coulomb material, and as they point out it is essential to assume
incompressibility because without this assumption time dependent wave propagation and
reflections would need to be tracked relative to the moving penetrator. The use of a fully
incompressible forcing function however will cause an over prediction of the target resistance [10].
An alternative method to address free surface effects has been proposed by Longcope et al. [20].
With their method they require the forcing function acting on the surface of the penetrator to
depend on a nondimensional distance to the free surface, d �=a as shown in Fig. 1. The distance d�
is taken from a surface node to the free surface along a normal to the penetrator surface and a is a
radius, characteristic of the local penetrator geometry at the node (it is noted that in our analysis
we use d ¼ d � þ a instead of d� to define the distance to the free surface). The loading on the
penetrator is taken to be zero if d �=a is less than a critical value (which is obtained empirically or
from the analysis of a spherical cavity expanding quasistatically in a finite sphere of the target
material) otherwise it is the full cavity expansion pressure. This method however neglects inertia
effects which are shown in this paper to increase with cavity expansion velocity.
In the present study we conducted a suite of depth-of-penetration experiments using ogive-nose,

steel, long rod projectiles and 6061-T6511 aluminum targets. The projectiles were launched with
striking velocities between 0.5 and 1.3 km/s and angles of obliquity of 151, 301, and 451. Next, we
used the initial conditions obtained from the experiments with the simulation technique outlined
by Warren and Tabbara [17] with modifications to account for the free surface effects encountered
during oblique penetration. These modifications involve constructing a decay function that is
based on the solution of a dynamically expanding spherical cavity in a finite sphere of target
material which is assumed to be incompressible and perfectly plastic. We then multiply the cavity
expansion pressure used by Warren and Tabbara [15] (which accounts for compressibility, strain
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hardening, and strain-rate sensitivity) by the decay function in order to account for the free
surface effects. Results from the simulations are compared with the final projectile configurations
obtained from post-test radiographs.

2. Experiments

The dimensions of the ogive-nose, steel projectiles used in this series of penetration experiments
are given in Fig. 2. The projectile material was vacuum-arc-remelted (VAR) 4340 steel [21] that
had an approximate nominal hardness of Rc=44.5, tensile yield strength of 1430MPa, and
fracture toughness of 104MPa (m)1/2. Hardness measurements were taken at the center of a piece
cut from the projectile rod material adjacent to where the projectile nose was machined. The 6061-
T6511 aluminum targets were 254mm in diameter with the face of the target machined at angles
of 151, 301, and 451 as illustrated in Fig. 3. The lengths of the targets were determined to be the
sum of the maximum anticipated depth of penetration plus the length of the rod. The targets were
installed in the target chamber with the angle of obliquity of the target face in the X2Y plane as
shown in Fig. 3. Target obliquity angles were aligned relative to the projectile trajectory using a
laser beam that was aligned to the gun bore and a mirror that was set at a complementary angle.
The mirror was placed on the target face and reflected the laser beam back onto itself when the
target was properly aligned.

Fig. 1. Geometry of the free surface effect model.

Fig. 2. Geometry for the ogive-nose rod with a 3.0 caliber-radius-head (CRH), L ¼ 59:3mm, l ¼ 11:8mm, and
2a ¼ 7:11mm.
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The projectiles were encased in a plastic sabot and launched using a 20mm powder gun. After
exiting the muzzle, aerodynamic pressure separated the sabot from the projectile. A steel sabot
stripper plate with a small hole aligned to the projectile trajectory was located a few feet in front of
the target. The plate stripped away the sabot preventing it from striking the target. Projectile
striking velocities were measured with an accuracy of better than 0.5% using four laser-
photodetector stations installed at various locations along the flight path. The pitch and yaw of
the projectile were obtained from radiographs obtained with use of an orthogonal pair of 150 kV
flash X-rays positioned in front of the face of the target. The final depth of penetration and shape
of the projectile were determined, after each test, from a radiograph of a 38mm thick slice of the
target. The slice was cut from each target along vertical planes parallel to the projectile flight path.
Table 1 summarizes the penetration data from the experiments.

3. Spherical cavity expansion model and numerical simulation

In this section, we develop an expression that approximates the target response with results
from a dynamic, spherically symmetric cavity-expansion problem. This involves obtaining an
approximate expression for the radial stress at a cavity surface that accounts for compressibility,
strain hardening, strain-rate sensitivity, and a finite boundary. We then employ this expression for
radial stress with the computational procedure developed by Warren and Tabbara [17] for
obtaining the trajectory and final spatial configuration of a projectile.
In the work by Forrestal et al. [7] with steel rods penetrating aluminum targets it was observed

from photomicrographs that there was 5–15mm layer normal to the tunnel surface that had

Fig. 3. Experimental configuration.
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undergone microstructural changes consistent with very localized melting. Furthermore, a simple
transient heat conduction analysis considering heat transferring into a semiinfinite solid indicates
heat will transfer only very short distance into the plastic region at this size scale due to the short
event time. These results are further substantiated by the recent detailed computational work
of Camacho and Ortiz [18]. Camacho and Ortiz [18] performed finite-element simulations
corresponding to experiments conducted by Forrestal et al. [22] on the perforation of 5083-H131
aluminum plates with tungsten, conical-nosed projectiles. These simulations use a new adaptive
meshing technique and a constitutive material law that includes rate-dependent plasticity, heat
conduction, and thermal–mechanical coupling. They conclude there is an exceedingly thin melted
layer in the target next to the projectile that provides a nearly frictionless interface. Therefore,
based on these results we neglect both sliding frictional resistance at the projectile–target interface
along with thermal softening effects in the target material due to heat conduction at the projectile–
target interface, and feel these are reasonable assumptions for the striking velocities considered in
this work.

Table 1
Penetration data for VAR 4340, Rc=44.5, 3-CRH-nosed, steel rods (Targets were 254mm diameter bars of 6061-T6511

aluminum with lengths shown below. For Pitch, D=Down and U=Up. For Yaw, R=Right and L=Left)

Penetrator

Shot
number

Striking velocity,
VS (m/s)

Penetrationa

(mm)
Mass
(g)

Hardness
RC

Pitch
(1)

Yaw
(1)

Target length
(m)

451 Target

1-0468 1184 217 20.452 44.6 0.50 U 0.75 L 0.236
1-0467 963 168b 20.454 44.7 0.75 U 1.00 R 0.236
1-0466 802 109c 20.475 44.5 2.00 U 1.50 L 0.219

1-0465 553 37d 20.456 44.3 1.25 U 0.75 R 0.227

301 Target
1-0453 1156 188 20.448 44.4 3.25 U 0 0.236

1-0451 853 108 20.469 44.5 2.75 U 0.75 L 0.236
1-0450 753 91 20.450 44.9 0.75 D 0.25 L 0.236
1-0463 577 62 20.475 44.6 0.50 D 0.75 L 0.236

151 Target
1-0447 1209 213 20.457 44.5 0.75 U 0.50 L 0.284

1-0445 985 136 20.478 44.5 2.50 U 0.75 L 0.183
1-0461 759 92 20.443 44.4 0.50 U 0.75 L 0.183
1-0462 590 60 20.456 44.2 0.50 D 0.50 R 0.183

aDepth of penetration measured along the channel path to the point of the projectile.
bProjectile nose exited front face of target 145mm below the entrance hole measured along the target face. Exit angle

was 95–1001 to the shot-line axis. 12mm of projectile nose protruding from target.
cProjectile exited front face of target 99mm below the entrance hole measured along the target face. Exit angle was

90–951 to the shot-line axis and exit velocity is estimated at 80m/s. Bent rod recovered.
dProjectile exited front face of target 40mm below the entrance hole measured along the target face. Exit angle was

85–901 to the shot-line axis and exit velocity is estimated at 300m/s. Bent rod recovered.
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3.1. Spherical cavity expansion model

To obtain the target response function we consider the expansion of a spherically symmetric
cavity from zero initial radius to radius a: As shown in Fig. 4, this expansion produces plastic and
elastic response regions. The plastic region is bounded by the radii r ¼ a and r ¼ b; where r is the
radial Eulerian coordinate and b is the interface position between the plastic and elastic response
regions. Similarly, the elastic region is bounded by r ¼ b and r ¼ d; where d corresponds to the
position of the dilatational wave front or free surface. Next, we present the equations that govern
this problem and derive our solution.
The equations of momentum and mass conservation in Eulerian coordinates with spherical

symmetry are

qsr
qr

þ
2ðsr � syÞ

r
¼ �r

qu
qt

þ u
qu
qr

� �
; ð1aÞ

ro
q
qr

½ðr� uÞ3� ¼ 3rr2; ð1bÞ

where sr;sy are the radial and hoop components of the Cauchy stress, measured positive in
compression, and ro and r are the densities in the undeformed and deformed states and are equal
when the material is assumed incompressible. Particle displacement u and particle velocity u in the
radial direction (outward motion taken positive) are related by

qu
qt

¼ u 1�
qu
qr

� �
: ð2Þ

The solution to the dynamic, spherically symmetric cavity-expansion problem with
compressibility is contingent on the use of a similarity variable [23]. This requires the cavity to
be opened from a zero initial radius at a constant velocity in an infinite domain. Using the
similarity variable in the equations of mass and momentum conservation given by (1) transforms
the system of nonlinear partial differential equations into a system of nonlinear ordinary

Fig. 4. Response regions for the cavity-expansion problem.
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differential equations. This system is then solved numerically to obtain the radial stress at a cavity
surface as a function of cavity expansion velocity. Details of the dynamic, spherically symmetric
cavity-expansion solution that accounts for compressibility, strain hardening, and strain-rate
sensitivity are given by Warren and Forrestal [10], and only the final result will be presented here.
Using a least squares fit to the numerical data allows the radial stress at the cavity surface to be
accurately represented by a function of the form

srðaÞ
Y

¼ Aþ B

ffiffiffiffiffi
ro
Y

r
’aa

� �
þ C

ffiffiffiffiffi
ro
Y

r
’aa

� �2

; ð3Þ

where ð ’??Þ 	 dð?Þ=dt (i.e. material derivative operator), ’aa is the cavity expansion velocity, Y is
the quasi-static yield strength of the target material, and A; B; and C are dimensionless fitting
coefficients. Warren and Forrestal [10] give the parameters in (3) for 6061-T6511 aluminum that
account for compressibility, strain hardening, and strain-rate sensitivity. These values are
summarized in Table 2. The constitutive model used for the target material in [10] was fit to
compressive stress–strain data at strain rates between 10�3 and 105 1/s. Adiabatic heating of the
material due to plastic deformation was not accounted for explicitly; however, some of this is
swept into the model through curve fitting of the experimental data. Additionally, experimental
stress–strain data for the 6061-T6511 aluminum rounds indicated minor anisotropy for strains less
than 25% as shown in [10]; however, for the model we assumed the material to be isotropic.
Next, we obtain the solution for the dynamic, spherically symmetric cavity-expansion problem

with a finite boundary. For this problem we assume the material is perfectly plastic and
incompressible. The assumption of incompressibility allows the equation for conservation of mass
given by (1b) to be directly integrated to give the radial particle displacement as

u ¼ r 1� 1�
a3

r3

� �1=3
" #

: ð4Þ

Particle velocity in the radial direction is obtained by differentiating (4) and substituting into (2)
giving

u ¼
a2 ’aa

r2
; ð5Þ

where the cavity radius a is only a function of time. As discussed by Hill [5], the state of stress due
to symmetry is just a hydrostatic tension superposed on a uniaxial compressive stress. Thus, the
yield criterion for a perfectly plastic material is

sr � sy ¼ Y : ð6Þ

Table 2
6061-T6511 aluminum data

Y (MPa) ro (kg/m
3) A B C

276 2710 5.0394 0.9830 0.9402
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Using (5) and (6) in conservation of momentum (1a) and integrating throughout the plastic region
aprpb gives the radial stress at the cavity surface as

srðaÞ ¼ srðbÞ þ 2Y ln
b

a

� �
� r ð .aaa2 þ 2a ’aa2Þ

1

b
�
1

a

� �
�

a4 ’aa2

2

1

b4
�

1

a4

� �� �
: ð7Þ

In the elastic region bprpd displacements and strains are assumed small. Response equations
for the elastic region are presented by Hopkins [6]. The particle displacement and particle velocity
in the radial direction are

u ¼
a3

3r2
; u ¼

a2 ’aa

r2
: ð8Þ

The elastic strains are

er ¼ �
qu
qr

¼
2a3

3r3
; ey ¼ �

u

r
¼ �

a3

3r3
ð9Þ

and Hook’s law for an incompressible material provides the relation

sr � sy ¼
2Ea3

3r3
; ð10Þ

where E is Young’s modulus. Using (10) with (1a) and integrating throughout the elastic region
bprpd gives the radial stress at the elastic–plastic interface as

srðbÞ ¼ srðdÞ þ
4Ea3

9

1

b3
�

1

d3

� �

þ r ð .aaa2 þ 2a ’aa2Þ
1

b
�
1

d

� �
�

a4 ’aa2

2

1

b4
�

1

d4

� �� �
; ð11Þ

where srðdÞ ¼ 0 as d-N or becomes a free surface. For an incompressible material, the
Hugoniot interface conditions require that the displacement, velocity, and traction normal to the
elastic–plastic interface be continuous [6]. Equating (6) and (10) at the elastic–plastic interface
gives

a

b
¼

3Y

2E

� �1=3

ð12Þ

Using (11) and (12) in (7) and considering the cavity to be opening at a constant velocity (i.e.
.aa ¼ 0) gives the radial stress at the cavity surface as

srðaÞ ¼
2Y

3
ln

2E

3Y

� �
þ 1�

2E

3Y

a

d

	 
3� �
þ

r ’aa2

2
3þ

a

d

	 
4
�4

a

d

	 
� �
; ð13Þ

which is valid until the elastic-plastic boundary reaches the free surface (i.e. dXb). For subsequent
expansion with dob; the radial stress will steadily decrease as

srðaÞ ¼ 2Y ln
d

a

� �
þ

r ’aa2

2
3þ

a

d

	 
4
�4

a

d

	 
� �
; ð14Þ
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which is the result given by Hill [5] if the inertia term is neglected. Plots of the radial stress as a
function of d=a obtained from (13) and (14) for several expansion velocities are shown in Fig. 5. It
is observed that free surface effects extend to larger distances as expansion velocity is increased.
We now construct a decay function, which allows us to employ the results from (13), and (14)

with the expression given in (3) that accounts for compressibility, strain hardening, and strain-rate
sensitivity in infinite medium. This is done by normalizing (13) and (14) with the result given by
(13) letting d-N: Thus,

f ðd; a; ’aaÞ ¼
2Y=3 ln 2E=3Y

� �
þ 1� 2E=3Y a=d

� �3h i
þ r ’aa2=2 3þ a=d

� �4�4 a=d
� �h i

2Y=3 1þ ln 2E=3Y
� �� �

þ 3=2ðr ’aa2Þ
; dXb

ð15aÞ

f ðd; a; ’aaÞ ¼
2Y ln d=a

� �
þ r ’aa2=2 3þ a=d

� �4�4 a=d
� �h i

2Y=3 1þ ln 2E=3Y
� �� �

þ 3=2ðr ’aa2Þ
; dob ð15bÞ

where 0pf ðd; a; ’aaÞp1: Using (15) with (3) gives

srðaÞ
Y

¼ Aþ B

ffiffiffiffiffi
ro
Y

r
’aa

� �
þ C

ffiffiffiffiffi
ro
Y

r
’aa

� �2
" #

f ðd; a; ’aaÞ: ð16Þ

This result provides a solution that accounts for compressibility, strain hardening, and strain-rate
sensitivity along with the effects of a finite boundary which is obtained through the analogous
incompressible problem.

Fig. 5. Radial stress at the cavity surface vs. distance to the free surface obtained from the incompressible solution
given by Eqs. (13) and (14).
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3.2. Finite element method

The spherical cavity-expansion forcing function given by (16) has been implemented in the
Sandia developed explicit transient dynamic finite element code PRONTO 3D [24] as a normal
traction (or pressure) boundary condition that acts on a prescribed surface. In PRONTO 3D four
nodal pressures are calculated for each element side (i.e. a side of a hexagonal continuum element
or mid-surface of a structural shell element) that is included in a prescribed side set as shown in
Fig. 6. These nodal pressures are obtained from

pI ¼ ½c1 þ c2ð~VVId~nnÞ þ c3ð~VVId~nnÞ
2�f ðd; a; ~VVId~nnÞ ðI ¼ 1; 4Þ; ð17Þ

where the dot represents a scalar product, ~VVI is the nodal velocity vector, ~nn is the outward unit
vector normal to the diagonals of the element side, and the constant nodal pressure coefficients are
related to the dimensionless fitting coefficients in (16) as c1 ¼ AY ; c2 ¼ BðroYÞ1=2; and c3 ¼ Cro:
In (17), the distance d is obtained by projecting a line segment from node I in the direction of ~nn to
the free surface and calculating its length. If the length of d is greater than 200a; where a is the
distance from the centerline of the undeformed penetrator in the direction of ~nn to node I ; then the
free surface effect is neglected. The values of pI are updated during each time increment using the
current values of ~VVI and ~nn: If the scalar product ð~VVId~nnÞ at a node is zero, negative, or if the node
lies outside the bounds of where the cavity-expansion forcing function is defined then the pressure
is set to zero for that node. A set of consistent global forces arising from these pressures over an
element side are calculated as discussed by Taylor and Flanagan [24]. These forces are
accumulated into an applied load vector as each element side in the side set is considered. The
applied load vector is then incorporated into the equations of motion for the body which are
integrated using a modified central difference integration scheme as discussed by Taylor and
Flanagan [24].

Fig. 6. Definition of a pressure boundary condition that acts on an element side.
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The finite element mesh used to model the ogive-nosed projectiles in all of the simulations is
illustrated in Fig. 7. This mesh is constructed with 2816 eight-node constant strain hexahedral
continuum elements, and has a total of 3197 nodes.

3.3. Constitutive model for VAR 4340 steel

The constitutive equations used for modeling the projectile in PRONTO 3D assume that the
volumetric (dilatational) response is governed by a pressure–volumetric strain relation while the
shear (deviatoric) response obeys a conventional flow theory of plasticity. Decomposing the
Cauchy stress tensor into hydrostatic and deviatoric components gives

sij ¼ �pdij þ sij ; ð18Þ

where p is the hydrostatic pressure, dij is the Kronecker delta, and sij is the deviatoric stress tensor.
The pressure–volumetric strain relation is

p ¼ �
1

3
sii ¼ �Keii ¼ K 1�

rp
r

� �
; ð19Þ

where K is the bulk modulus, eii is the volumetric strain, rp is the density of the undeformed
projectile material, and r is the density of the material in the deformed configuration.

Fig. 7. Finite element mesh of a ogive-nose projectile.
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Plastic flow is introduced through a Von-Mises elastic–viscoplastic material model similar
to that used by Camacho and Ortiz [18]. With this model we assume the material is isotropic and
that data from uniaxial tests can describe the multiaxial behavior through a relationship between
Von-Mises effective stress and equivalent plastic strain and strain rate. As with the target material
we neglect transient heat conduction due to the size scale and short event time. Additionally,
the majority of the penetrator deformation occurs early in the penetration process which further
justifies this assumption. We also neglect explicitly accounting for adiabatic heating due to
plastic deformation. Some of this however is accounted for through the curve fitting to
experimental data.
Effective plastic strain rate is defined through the power law relationship

’eep ¼ ’eep0
%ss

gðepÞ

� �m

�1
� �

; %ssXgðepÞ; ð20aÞ

’eep ¼ 0; %ssogðepÞ; ð20bÞ

where %ss ¼
ffiffiffiffiffiffiffiffi
3=2

p
ðsijsijÞ

1=2 is the Von-Mises effective stress, g is the flow stress, ep is the effective
plastic strain, ’eep0 is a reference plastic strain rate, and m is the strain rate sensitivity exponent. We
also employ a power hardening law in which

g ¼ Yp 1þ
ep
ep0

� �1=n

; ð20cÞ

where n is the strain hardening exponent, ep0 is a reference plastic strain, and Yp is the quasi-static
yield stress of the material. The constitutive model in (20) uses a rate tangent modulus method [25]
for integration and was implemented in PRONTO 3D following the procedure described by
Taylor and Flanagan [24] for adding new constitutive models.
Additionally, default values of hourglass control and artificial bulk viscosity are applied to the

numerical solution as discussed by Taylor and Flanagan [24]. Hourglass control is required
because PRONTO 3D uses one point integration of an element which under-integrates the
element resulting in a rank deficiency which manifests itself into spurious zero energy modes
(hourglass modes) that must be constrained. Artificial bulk viscosity is employed to prevent high
velocity gradients from collapsing an element before it has a chance to respond and also to quiet
truncation frequency ringing.
We obtained constants for the constitutive Eq. (20) from compressive true stress–strain data for

VAR 4340 Rc=45 steel obtained by Ravichandran [26] at nominal strain rates [27] of 0:001;
0:1; 1643; 2313 and 4255 1=s; and also from pressure-shear data obtained by Ramesh [28] at a
nominal strain rate of 115470 1=s: The model parameters were obtained from curve fits to these

Table 3
VAR 4340 steel data

VAR 4340 Yp (MPa) ep0 ’eep0 (1/s) n m

Rc=39 1225 5.947
 10�3 5.940
 10�4 25.0 83.3
Rc=45 1481 7.189
 10�3 5.690
 10�8 25.0 139.3

Rc=44.5 1462 7.1
 10�3 5.690
 10�8 25.0 139.3
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Fig. 8. True stress–strain data and data fit for VAR 4340 Rc=45 steel at a nominal strain rate of ’ee ¼ 0:001 1=s:

Fig. 9. Rate sensitivity diagram for VAR 4340 Rc=45 steel at a fixed strain of 7%.
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Table 4
Penetration resultsa

Striking

velocity

(m/s)

Angle of

obliquity

(1)

Pitch

(1)

Yaw

(1)

Experimental SCE/PRONTO 3D with

free surface effects

SCE/PRONTO 3D without

free surface effects

Tip Tail Tip Tail Tip Tail

X

(mm)

Y

(mm)

X

(mm)

Y

(mm)

X

(mm)

Y

(mm)

X

(mm)

Y (mm) X

(mm)

Y

(mm)

X

(mm)

Y

(mm)

1184 45 0.5 U 0.75 L �203.3 �7.25 �141.3 �35.0 �190.0 �5.4 �127.4 �33.0 �185.0 �81.2 �116.6 �67.8
963 45 0.75 U 1.0 R �149.9 8.63 �90.1 �24.5 �136.1 4.7 �75.5 �22.8 �129.7 �62.9 �63.2 �40.8
802 45 2.0 U 1.5 L Projectile exited the target at X ¼ �100 �104.3 �8.9 �36.1 �15.2 �91.4 �56.2 �30.0 �21.8
553 45 1.25 U 0.75 R Projectile exited the target at X ¼ �40 Projectile exited the target at X ¼ �38 �51.5 �26.1 8.7 9.6

1156 30 3.25 U 0 �113.2 �149.5 �66.4 �96.8 �88.7 �138.1 �47.6 �77.6 �83.1 �133.8 �42.3 �72.5
853 30 2.75 U 0.75 L �68.7 �83.4 �21.5 �32.3 �69.4 �97.1 �27.2 �40.0 �60.2 �96.3 �22.1 �35.8
753 30 0.75 D 0.25 L �71.4 �55.2 �14.3 �15.0 �69.1 �65.2 �16.6 �18.6 �61.6 �73.5 �15.2 �2.0
577 30 0.5 D 0.75 L �50.6 �35.4 5.7 5.0 �47.8 �42.8 4.6 3.3 �42.0 �50.2 4.5 2.8

1209 15 0.75 U 0.5 L �70.5 �201.2 �45.7 �136.0 �63.2 �205.5 �40.9 �138.4 �68.6 �201.8 �42.6 �135.9
985 15 2.5 U 0.75 L �39.1 �130.7 �17.6 �63.7 �29.9 �133.0 �14.8 �62.4 �32.8 �130.8 �15.0 �60.8
759 15 0.5 U 0.75 L �34.4 �85.0 �7.1 �20.0 �30.4 �95.5 �8.8 �28.0 �29.5 �95.8 �8.5 �28.0
590 15 0.5 D 0.5 R �26.1 �54.7 6.8 8.3 �22.2 �60.6 1.7 �6.1 �21.3 �61.0 �1.8 �6.1

aNote: UFnose up, DFnose down, LFnose left, RFnose right, XFhorizontal distance from the origin, and YFvertical distance from the
origin.
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data and are listed in Table 3. We used the same strain hardening exponent as Warren and
Tabbara [15] did for Rc=39 and 37; however, the Rc=45 was found to be less strain rate sensitive,
and those parameters were changed. The undeformed density, Young’s modulus, and Poisson’s
ratio of the VAR 4340Rc=45 steel are taken to be rp ¼ 8025 kg=m3 (the actual value is 7830 kg/m3;

Fig. 10. Simulation with free surface effects for Vs ¼ 1184m/s, 451 angle of obliquity, 0.51 pitch up, and 0.751 yaw left:

(a) t ¼ 0 s, (b) t ¼ 48ms, (c) t ¼ 208 ms, and (d) t ¼ 368 ms.
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however, we increased the value slightly to account for mass lost in the discretization process),
E ¼ 206GPa, and n ¼ 1=3; respectively. Fig. 8 compares the stress–strain data obtained by
Ravichandran [26] with the results from (20) and show good agreement. Fig. 9 compares the true
stress data obtained by Ravichandran [26], and Ramesh [28] at a fixed true strain of 7% with the
results from (20) and good agreement is observed over the wide range of strain rates. We also
require constants for VAR 4340 Rc=44.5 steel which we obtained by reducing the quasi-static
yield strength. This required a change in ep0; however, all the other parameters remained the same
as those obtained for the VAR 4340 Rc=45 steel as shown in Table 3 (it is noted that the quasi-
static yield strength in compression is slightly larger than that in tension which is consistent with
the results given by Chait [29]).

4. Results and discussion

In this section, we present results from our simulations and compare these with the
experimental results. Unless stated otherwise the projectiles for all of the simulations are
modeled as VAR 4340 Rc=44.5 steel with 3 CRH ogive-noses that strike 6061-T6511 aluminum
targets. Table 4 summarizes the initial conditions obtained from the experiments and final
projectile positions in the angle of obliquity plane for both experiment and simulation.
Measurements are obtained from the point of impact with the target to the final positions of the
nose tip and center of the tail. From the trajectories of the experiments in which the projectile
exited the target it was observed that the out of plane displacements (in the yaw direction) were of
the order of a few millimeters. This result is consistent with that obtained from the simulations
and out of plane displacements will not be considered further.
For all of the simulations we used a Digital Personal Workstation 600 au-Series computer with

the Digital Unix V4.0D operating system and Digital Fortran compiler. With this system a 300ms
penetration simulation requires approximately 5500CPU s with the elastic–viscoplastic material

Fig. 11. Final projectile position for Vs ¼ 1184m/s, 451 angle of obliquity, 0.51 pitch up, and 0.751 yaw left: (a) post-
test radiograph, (b) simulation with free surface effects, and (c) simulation without free surface effects.
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model. However, this time came be significantly reduced to approximately 570CPU s using a
simpler elastic-linear hardening material model.

4.1. 451 angle of obliquity

First we consider the case of a projectile striking a target with a striking velocity of 1184m/s.
Images of the simulation that accounts for free surface effects at four specific times are shown in
Fig. 10. From these images it is observed that the projectile initially bends and then follows a
curved path until it finally comes to rest at approximately 368 ms. In Fig. 11 we compare final
projectile configurations obtained from simulations that account for and neglect free surface
effects with the post-test radiograph obtained from the corresponding experiment. It is observed
that when free surface effects are included the simulation provides a very reasonable prediction of

Fig. 12. Final projectile position for Vs ¼ 963m/s, 451 angle of obliquity, 0.751 pitch up, and 1.01 yaw right: (a) post-

test radiograph, (b) simulation with free surface effects, and (c) simulation without free surface effects.

Fig. 13. Final projectile position for Vs ¼ 802m/s, 451 angle of obliquity, 2.01 pitch up, and 1.51 yaw left: (a) post-test

radiograph, (b) simulation with free surface effects, and (c) simulation without free surface effects.
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the trajectory and final projectile configuration. However, if the free surface effects are neglected
then the projectile will not turn enough because the resistance is greater in the direction of the free
surface.

Fig. 14. Simulation of a VAR 4340 ogive-nose projectile penetrating 6061-T6511 aluminum with Vs ¼ 802m/s, 451
angle of obliquity, 2.01 pitch up, and 1.51 yaw left: (a) Rc=42 with free surface effects (b) Rc=42 without free surface

effects (c) Rc=47 with free surface effects (d) Rc=47 without free surface effects.
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Next, we consider the case of a projectile striking a target with a velocity of 963m/s. In Fig. 12
we compare final projectile configurations obtained from simulations with and without free
surface effects to the corresponding experimental results. In this case the projectile just barely
breaks through the surface of the target at the end of its trajectory. Again, the simulation that

Fig. 15. Simulation with free surface effects for Vs ¼ 553m/s, 451 angle of obliquity, 1.251 pitch up, and 0.751 yaw
right: (a) t ¼ 0 s, (b) t ¼ 30ms, (c) t ¼ 80ms, and (d) t ¼ 250ms.
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accounts for free surface effects does a very good job of predicting both the trajectory and final
projectile configuration.
In Fig. 13 we compare our simulations with the experimental results for a projectile striking a

target with a velocity of 802m/s. For this case the projectile exited the face of the target
approximately 100mm from the point of impact. A post-test examination of the projectile
revealed a thin covering of aluminum deposited over the steel surface. This thin layer increased the
pre-test mass of the projectile by 1.5mg. The simulation which includes free surface effects
predicts the projectile will come to rest just below the face of the target which is a little short of
what actually occurred but still much closer than the simulation that neglects free surface effects.
For this particular case we illustrate the effect of projectile strength on trajectory by decreasing
and increasing the quasi-static yield strength of the projectile by 100MPa. This is equivalent to
Rockwell hardnesses of Rc=42 and 47, respectively. Final projectile configurations obtained from
simulations with and without free surface effects for Rc=42 and 47 projectiles are shown in
Fig. 14. It is observed in Fig. 14a that the projectile exits the face of the target at approximately
90mm from the point of impact, which is consistent with the experiment. The results in Fig. 14
indicate that decreasing the projectile yield strength by approximately 7% has a dramatic effect on
the trajectory when the projectile is near the free surface. This is due to the fact that the projectile
exhibits less resistance to bending when the strength is decreased and when coupled with the free
surface effect causes it to rotate more and exit the target. Similar results are also observed if the
target strength is increased, in which case the projectile will bend more and exit the target face.
Images at four specific times are shown in Fig. 15 of the simulation which accounts for free

surface effects for a projectile striking a target with a velocity of 553m/s. For this case the
projectile initially bends significantly and essentially ricochets from the face of the target
approximately 38mm from the point of impact. In Fig. 16 we compare final projectile
configurations obtained from simulations that account for and neglect free surface effects with
the post-test radiograph obtained from the corresponding experiment. As with the previous case,
a thin layer of aluminum was deposited over surface of the projectile in the experiment and

Fig. 16. Final projectile position for Vs ¼ 553m/s, 451 angle of obliquity, 1.251 pitch up, and 0.751 yaw right: (a) post-
test radiograph, (b) simulation with free surface effects, and (c) simulation without free surface effects.
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increased its pre-test mass by 5.7mg. When free surface effects are neglected, the simulation does
not predict the ricochet effect that is observed experimentally and with the simulation in Fig. 15.
These results illustrate that the free surface has a significant effect on the trajectory of steel

projectiles striking aluminum targets with a 451 angle of obliquity over a wide range of striking

Fig. 17. Simulation with free surface effects for Vs ¼ 1156m/s, 301 angle of obliquity, 3.251 pitch up, and 01 yaw: (a)
t ¼ 0 s, (b) t ¼ 50 ms, (c) t ¼ 88ms, and (d) t ¼ 296 ms.
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velocities. It is also observed that as striking velocity is increased the projectile enters the target
quicker, which reduces the amount of initial bending that it undergoes. This causes the projectile
to stay in the target longer and at the higher velocities the projectile will not exit the face of the
target.

4.2. 301 angle of obliquity

Images at four specific times are shown in Fig. 17 of the simulation which accounts for free
surface effects for a projectile striking a target with a velocity of 1156m/s. This particular case had
the largest measured pitch and it is observed in the simulation that the tail of the projectile

Fig. 18. Final projectile position for Vs ¼ 1156m/s, 301 angle of obliquity, 3.251 pitch up, and 01 yaw: (a) post-test

radiograph (b) simulation with free surface effects, and (c) simulation without free surface effects.

Fig. 19. Final projectile position for Vs ¼ 853m/s, 301 angle of obliquity, 2.751 pitch up, and 0.751 yaw left: (a) post-
test radiograph, (b) simulation with free surface effects, and (c) simulation without free surface effects.
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violently whips back and forth as it proceeds through the target and sustains significant plastic
deformation. In Fig. 18 we compare final projectile configurations obtained from simulations that
account for and neglect free surface effects with the post-test radiograph obtained from the
corresponding experiment. Both of the simulations exhibit the notable tail motion with plastic
deformation. Effects of tail bending are also observed in the channel of the post-test radiograph.
With this high velocity and large angle of inclination the tail whips back and forth well into the
tunneling region. For this situation the simulation method loses accuracy and under predicts the
final depth of penetration. As discussed earlier, the reason for this is due to the fact the current
cavity expansion algorithm applies a load on the shank whenever there is a component of velocity

Fig. 20. Final projectile position for Vs ¼ 753m/s, 301 angle of obliquity, 0.751 pitch down, and 0.251 yaw left: (a) post-
test radiograph, (b) simulation with free surface effects, and (c) simulation without free surface effects.

Fig. 21. Final projectile position for Vs ¼ 577m/s, 301 angle of obliquity, 0.51 pitch down, and 0.751 yaw left: (a) post-
test radiograph, (b) simulation with free surface effects, and (c) simulation without free surface effects.
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in the outward normal direction and does not account for material that has been moved out of the
way in the tunneling region. It is also noticed in both simulations that the final projectile positions
are very close with the case with free surface effects only going slightly further in both the vertical
and horizontal directions.
In Figs. 19–21 we compare our simulations with the experimental results for projectiles striking

targets with velocities of 853, 753, and 577m/s, respectively. For these three cases the simulations
that include free surface effects cause the projectile to travel further in the horizontal direction and
less in the vertical direction than when free surface effects are neglected. The final projectile
positions with free surface effects are in good agreement with the experimental results in the
horizontal direction; however, they slightly over predict the depth in the vertical direction, which
indicates that the projectile in the simulation is not rotating quite enough. This can possibly be
attributed to the fact that we are neglecting thermal effects from both heat transferring into the
projectile from the target along with adiabatic heating of the projectile from its own plastic
deformation. Both of these thermal mechanisms will cause the projectile to soften and bend more
causing greater rotation. From these results it is observed that free surface effects are important
for predicting the trajectory; however, the effect is not as significant as at 451.

4.3. 151 angle of obliquity

In Figs. 22–25 we compare our simulations with the experimental results for projectiles striking
targets with velocities of 1209, 985, 759, and 590m/s, respectively. For these four cases it is
observed that the free surface effect has less of an influence on the trajectory than the cases with
301 and 451 angles of obliquity. In fact, for striking velocities of 1209 and 985m/s the simulations
that neglect free surface effects attain slightly larger distances in the horizontal direction than the

Fig. 22. Final projectile position for Vs ¼ 1209m/s, 151 angle of obliquity, 0.751 pitch up, and 0.51 yaw left: (a) post-

test radiograph, (b) simulation with free surface effects, and (c) simulation without free surface effects.
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simulations that include free surface effects giving a result that is a slightly closer to that obtained
experimentally.

5. Summary

In this paper we have presented the results from a series of depth-of-penetration experiments in
which VAR 4340 Rc=44.5 steel ogive-nosed projectiles were launched into 6061-T6511 aluminum

Fig. 23. Final projectile position for Vs ¼ 985m/s, 151 angle of obliquity, 2.51 pitch up, and 0.751 yaw left: (a) post-test

radiograph, (b) simulation with free surface effects, and (c) simulation without free surface effects.

Fig. 24. Final projectile position for Vs ¼ 759m/s, 151 angle of obliquity, 0.51 pitch up, and 0.751 yaw left: (a) post-test

radiograph, (b) simulation with free surface effects, and (c) simulation without free surface effects.
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targets at oblique angles. Next, we conducted simulations of the penetration experiments in order
to validate the use of experimentally verified analytical functions to represent the target resistance
in ballistic events. Comparison with experimental results indicates that over a wide range of
striking velocities this method allows for the accurate prediction of the trajectory and permanent
projectile deformation provided the projectile does not deform excessively and free surface effects
are accounted for with increasing angle of obliquity. Thus, for the class of problems within the
realm of assumptions considered here, this technique is efficient and robust and can be included in
a broader software tool which can be utilized for design purposes. Furthermore, it has been
recently shown by Danielson and Adley [30] that this method exhibits excellent scalability in a
parallel computing architecture.
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