Datasheet | Switches

Allied Telesis

Advanced Gigabit Layer 3+ Expandable Switches

The x900 Layer 3+ switches have high-speed 60Gbps expansion bays which provide a high level of port flexibility and application versatility unmatched by any other IRU Gigabit Ethernet switch on the market.

The x900 Layer 3+ switches use **VCStack™** to deliver chassis-like resiliency and redundancy features without the high price tag.VCStack allows two devices to be connected in a Virtual Chassis (VC) Stack. This provides total device redundancy - if either device in the stack fails, the traffic is seamlessly routed to the other, ensuring there is minimal network disruption. Using VCStack also allows stacked devices to appear as a single node on the network, greatly simplifying your management.

The x900 Layer 3+ switches utilize a sophisticated, **highly modular design**, allowing them to grow in response to your network demands. There is a comprehensive range of copper and fiber expansion modules (XEMs) available, from 10/100/1000Mbps to 10 Gigabit Ethernet (10GbE). These XEMs are fully hot-swappable, which means maintenance and network re-configuration do not affect your network uptime. Dual redundant Power Supply Units (PSUs) are also hot-swappable, adding to the impressive list of high-availability features.

The x900 Layer 3+ switches run the advanced **AlliedWare Plus™ Layer 3 Fully Featured Operating System** delivering a rich feature set and an industry-standard CLI. AlliedWare Plus™ is Allied Telesis' next generation operating system, providing you with advanced IPv4 and IPv6 features combined with even greater robustness and ease of management.

Key Features

Resilient - VCStack provides fast failover for uninterrupted network service. Sophisticated high availability features ensure traffic flow continues even during outages.

Scalable - Add more XEMs as your network grows. Create a VCStack to increase port density and resiliency without increasing management complexity.

Reliable - Hot-swappable XEMs, redundant hot-swappable PSUs ensure no network interruptions during maintenance or reconfiguration.

High-performing - Non-blocking architecture and superior QoS ensure wire-speed delivery of all your critical IPv4 and IPv6 traffic.

Easy to manage - The industry standard CLI reduces training requirements, and each VCStack appears as one virtual chassis with a single IP address to simplify management.

Secure - Advanced security features protect your network - from the edge to the core. Network Access Control (NAC) gives unprecedented control over user access to your network.

Resilient

VCStack provides fast failover for uninterrupted network service. High availability features ensure traffic flow continues even during outages.

VCStack

Create a VCStack with two units using the XEM-STK. Each XEM can provide 60Gbps of stacking bandwidth. VCStack provides a highly available system where network resources are spread out across stacked units, reducing the impact if one of the stacked units fails. Aggregate switch ports on different units across the stack to provide excellent high availability.

Control Plane Prioritization (CPP)

Ensure maximal performance and prevent network outages with CPP. CPP prevents the Control Plane from becoming flooded in the event of a network storm or Denial of Service (DoS) attack.

Scalable

Add more XEMs as your network grows.Add more devices to a VCStack to increase port density and resiliency without increasing management complexity.

Our high speed XEMs provide both copper and fiber connectivity, delivering the ultimate in flexibility. XEM options are:

- AT-XEM-1XP 1 × 10GbE (XFP)
- AT-XEM-12S 12 × 100/1000BASE-X SFP ports
- AT-XEM-12T 12 × 10/100/1000BASE-T (RJ-45) ports
- AT-XEM-STK Stacking

XEMs are also compatible with the SwitchBlade x908 Advanced Layer 3 Modular Switch. All XEMs provide non-blocking performance. XEMs are ideal for aggregating gigabit to the desktop or for gigabit uplinks from Fast Ethernet switches.

Reliable

Hot-swappable XEMs, redundant hot-swappable PSUs and replaceable fans ensure no network interruptions during maintenance or reconfiguration.

10GbE expansion modules and hotswappable XFPs provide high-speed, high-capacity fiber uplinks, with the option of either 10Gbps or 20Gbps uplink capacity to the network core.

The x900 Layer 3+ switches operate with one PSU - installing a second PSU provides redundancy. Internal PSUs eliminate the need for an external Redundant Power Supply (RPS) that occupies valuable rack space. Built-in redundancy guarantees the continued delivery of essential services.

The x900 switches also feature front-to-back cooling, maximising their reliability.

High-performing

Non-blocking architecture and superior QoS ensure wire-speed delivery of all your critical IPv4 and IPv6 traffic.

Ethernet Protected Switched Rings (EPSR)

EPSR and 10 GbE modules allow several x900-24X switches to form a protected ring with 50ms failover. This feature is perfect for high performance at the core of enterprise or provider access networks.

Wire speed switching

The x900 Layer 3+ switches have fully non-blocking switching on all ports, so IPv4 Layer 2 switching and Layer 3 routing occur at wire speed. This is ideal for high-end server deployments, and when aggregating gigabit connections.

Aggregation at Layer 2 and Layer 3

A large L3 route table provides support for thousands of IP interfaces, essential when aggregating complex IP networks.

Industry-leading Quality of Service (QoS)

Comprehensive low-latency wire-speed QoS provides flow-based traffic management with full classification, prioritization, traffic shaping and min/max bandwidth profiles. Enjoy boosted network performance and guaranteed delivery of business-critical Ethernet services and applications. Time-critical services like voice and video applications take precedence over non-essential services like file downloads, maintaining responsiveness of Enterprise applications. Unmatched QoS accuracy is achieved with a bandwidth limit resolution down to 1 Kbps, which is ideal for precise control of Enterprise desktop-based VoIP applications.

Easy to manage

The industry standard CLI reduces training requirements, and each VCStack appears as one virtual chassis with a single IP address to simplify management.

The x900 Layer 3+ switches run the advanced AlliedWare Plus™ Layer 3 Fully Featured Operating System delivering a rich feature set and an industrystandard CLI.

Using VCStack allows stacked devices to appear as a single node on the network, greatly simplifying your management.

Administrators can choose from a range of secure remote management options including SNMPv3 and SSH.

Triggers automatically run user-defined scripts when specified events occur.

Loop Protection detects and warns you if a network loop occurs. You can also specify remedial action, such as shutting down the affected ports.

Secure

Advanced security features protect your network - from the edge to the core.

802.1x User Authentication

The x900 Layer 3+ switches have 802.1× user authentication. This is essential for Enterprise networks needing to prevent intruders from accessing their network. Other security features include Private VLANs.

Network Access Control (NAC)

NAC allows for unprecedented control over user access to the network, in order to mitigate threats to network infrastructure. The x900 Layer 3+ switches support NAC by using 802.1× port-based authentication in partnership with standards-compliant dynamic VLAN assignment to enable a user's adherence to the network's security policies to be assessed and authentication either granted or remediation offered.

Allied Telesis NAC also supports alternatives to 802.1x port-based authentication, such as web authentication to enable guest access, and MAC authentication for end points that do not have an 802.1x supplicant. Furthermore, if multiple users share a port then multi-authentication can be used and a Guest VLAN (also known as Default VLAN) can be configured to provide a catch-all for users without an 802.1x supplicant. As well as supporting a RADIUS client for remote authentication, the x900 Layer 3+ switches have a built-in RADIUS server for local authentication.

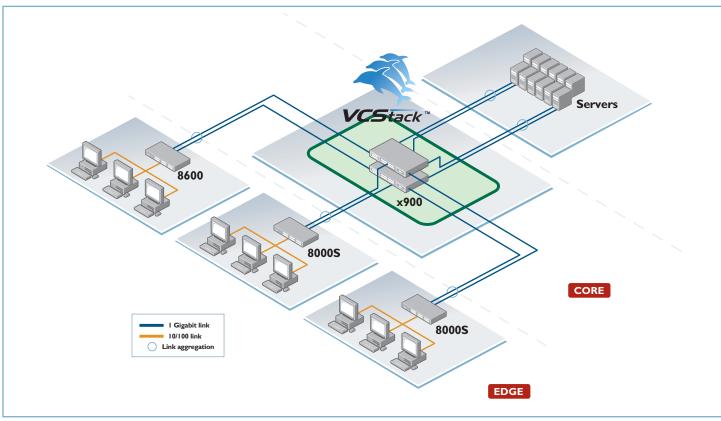
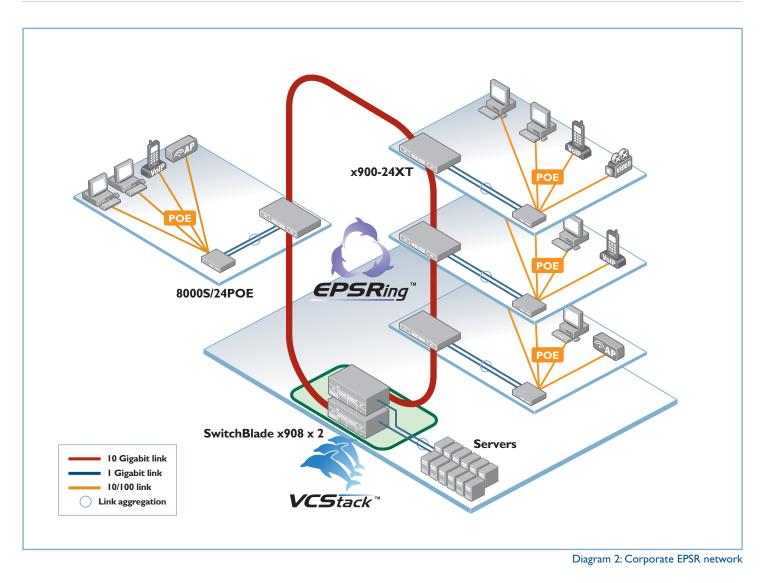


Diagram I: Resilient Core

Virtual Chassis Stacking (VCStack) - Resiliency and Stability

Today's enterprises rely on Information Technology resources and applications to access business-critical information, and for day-to-day work. A high-availability infrastructure is now of paramount importance, starting with a resilient network core. The Allied Telesis expandable x900 series switches provide the ideal solution - without the expense of a full chassis.


Using Virtual Chassis Stacking (VCStack) at the core of your network allows multiple switches to appear as a single virtual chassis. In normal operation, this virtual chassis acts as a single switch, simplifying management.

The above diagram shows link aggregation between the core VCStack and the edge switches. With link aggregation across ports on different virtual chassis members, there is no perceptible disruption in the case of a link failure, and the full bandwidth of the network is available.

VCStack and link aggregation provide a solution where network resources are spread across the virtual chassis members, ensuring device and path resiliency. Virtualization of the network core ensures access to information when you need it.

With the benefits of high availability, increased capacity and ease of management, VCStack makes networking reliable and simple.

Ethernet Protection Switching Ring (EPSR) - Resiliency and Fault Tolerance

The increased convergence of services and applications in the enterprise has led to increasing demand for highly available networks with minimal downtime. High bandwidth is also required for the multiple applications simultaneously using the network. Real-time applications like surveillance, video streaming and voice over IP (VoIP) are used right alongside data and Internet access.

When you want a high-performing, resilient network for your enterprise core, using EPSR with the Allied Telesis SwitchBlade x908 and x900 series switches provides the ideal solution. EPSR creates a high-speed resilient ring that can utilize today's maximum Ethernet standard of 10Gbps, and provide extremely fast failover between nodes. EPSR enables rings to recover within as little as 50ms, preventing a node or link failure from affecting customer experience, even with demanding applications such as IP telephony and video monitoring.

The above diagram shows a corporate network based on a central EPSR ring. The inclusion of Allied Telesis Virtual Chassis Stacking (VCStack) technology at the core of the network adds a further layer of resiliency, increasing the availability of critical resources.

Now that technology has made high-availability and high-bandwidth so accessible; corporate business, education providers and other enterprise network users can enjoy the benefits that EPSR has to offer. By ensuring always-available online applications and resources, this advanced self-healing network technology meets the insatiable demand for information at the fingertips.

The x900 12X and 24X Series:

x900-24XT

2 x 60Gbps expansion bays

24 × 10/100/1000BASE-T (RJ-45) copper ports

x900-24XT-N NEBS Compliant¹

2 x 60Gbps expansion bays 24 × 10/100/1000BASE-T (RJ-45) copper ports

x900-24XS

2 x 60Gbps expansion bays 24 × 100/1000BASE-X SFP ports

x900-12XT/S

I x 60Gbps expansion bay 12 x combo ports (10/100/1000BASE-T copper or SFP)

Performance

- Forwarding Rate: x900-24X 71.4Mpps² x900-12XT/S 35.7Mpps3
- · Extensive wire-speed traffic classification for ACLs and QoS
- · Supports IOKB Jumbo frame size for data center and server aggregation applications
- Wire-speed multicasting
- Switching Fabric x900-24X 168Gbps x900-12XT/S 84Gbps
- Up to 256K IPv4 routes
- Up to 16K MAC addresses
- Up to 4K layer 2 multicast groups
- 4K layer 3 interfaces
- Up to 1K layer 3 IPv4 multicast groups
- 4K VI ANs
- 512MB DDR SDRAM
- Separate packet buffer memory
- 64MB Flash Memory

Reliability

MTRF

x900-24X With I PSU and I fan module: 93,700 hours With 2 PSUs: 249,400 hours (calculated using Telcordia SR-332 (Issue I,

May 2001) at 25°C ambient operating temperature)

x900-12XT/S

MTBF 103.000 hours

 NEBS (Network Equipment Building System) is a series of safety and conformance standards applied to telecommunications equipment in North America.
 With two 12x1GbE expansion modules (SFP or RJ45) installed 3 With one 12x1GbE expansion module (SFP or R[45) installed

- Modular AlliedWare Plus operating system
 - The x900-24X switches feature dual hot-
 - swappable PSUs with I + I redundancy • Dual feed support - a separate power circuit can
 - feed each power supply providing extra reliability Hot-swappable XEMs
 - Full environmental monitoring of PSUs, fans,
 - temperature and internal voltages, with SNMP traps to alert network managers in case of any failure

Power Characteristics

- AC Voltage: 100 to 240V (+/-10% auto ranging)
- Frequency: 47 to 63Hz
- DC Voltage: : 40 to 60V

Power Consumption x900-24X

With I PSU and I fan module: 110 Watts (375 BTU/hr) With 2 PSUs and 2 XEM-1XP modules: 191 Watts (652 BTU/hr)

x900-12XT/S

With 1 XEM-12: 104 Watts (355 BTU/hr) With no XEM: 68 Watts (232 BTU/hr)

Environmental Specifications

- Operating Temperature Range: 0°C to 40°C (32°F to 104°F) Derated by 1°C per 305 Meters (1000ft)
- Storage Temperature Range: -30°C to 70°C (-13°F to 158°F)
- Operating Relative Humidity Range: 5% to 80% non-condensing
- Storage Relative Humidity Range: 5% to 95% non-condensing
- Altitude:
- 3,050 Meters maximum (10,000ft)

Expandability

- 2 high speed 60Gbps expansion bays
- IPv6 routing option

Flexibility and compatibility

- 60Gbps expansion bays supporting a choice of modules, including 1x 10GbE, 12 x 1GbE (SFP), and 12 x 1GbE (RJ45) for port flexibility and application versatility
- XEM modules also compatible with the SwitchBlade x908 Advanced Layer 3 modular switch
- Gigabit SFP ports will support any combination of 10/100/1000BASE-T, 100BASE-X, or 1000BASE-X SFPs 100BASE-FX, 100BASE-BX, 1000BASE-SX, 1000BASE-LX, 1000BASE-ZX or 1000BASE-ZX CWDM SFPs

Resiliency

- STP, RSTP, MSTP (802.1s)
- Link Aggregation (802.3ad LACP)
- VRRP • EPSR
- Stack two units with the XEM-STK

VLAN support

- Supports 4096 VLANs
- VLAN Double Tagging

Security

- Private VLANs, providing security and port isolation of multiple customers using the same VIAN
- Dynamic VLAN assignment
- NAC
- 802.1x support

Quality of Service

- Policy based QoS features
- Highly configurable traffic classification
- Extensive remarking capabilities, to fit in with any network's QoS scheme
- Control plane traffic prioritization
- Mixed scheduling, to support complex traffic queuing requirements
- 8 QoS queues per port
- Two-rate three-color (green, yellow, red) bandwidth metering, with burst sizes for improved TCP-IP bandwidth limiting performance and bandwidth resolution down to IKbps
- Low switching latency essential for Voice over IP (VoIP) and real-time streaming media applications

Management

- Out of band 10/100/1000 Ethernet management port and console management port, both on the front panel for ease of access
- An SD memory card socket on the front panel, allowing software release files, configurations and other files to be stored for backup and distribution to other switches
- Port mirroring
- SSH and SNMPv3 for secure management
- RADIUS Authentication
- RMON (4 groups)

Physical Dimensions

Model	Height	Width	Depth	Mounting
x900-24X	44.5mm	440mm	440mm	IRU
x900-12XT/S	44.5mm	440mm	350mm	IRU
XEM	45mm	109mm	253mm	n/a
PSU	40mm	84mm	299mm	n/a

Weights

Product	Configuration	Weight
x900-24X	With I PSU and I fan module, unpackaged	7.3 kg
	With I PSU and I fan module, packaged	8.8 kg
	With 2 PSUs and 2 XEM-1XP modules, unpackaged	9.3 kg
	With 2 PSUs and 2 XEM-1XP modules, packaged	10.8 kg
x900-12XT/S	No XEM, unpackaged	5.3 kg
	No XEM, packaged	7.9 kg
	With XEM-I XP, unpackaged	6 kg
	With XEM-I XP, packaged	8.6 kg
AT-PWR01	AC, unpackaged	l kg
	AC, packaged	1.8 kg
	DC, unpackaged	l kg
	DC, packaged	1.5 kg
AT-FAN01	Unpackaged	0.6 kg
	Packaged	1.4 kg
XEM	Unpackaged	0.82 kg
	Packaged	1.4 kg
PSU	Unpackaged	1.32 kg
	Packaged with I cable	1.9 kg

Electrical Approvals and Compliances

EMC: EN55022 class A, FCC class A, VCCI class A Immunity: EN55024, EN61000-3-levels 2 (Harmonics), and 3 (Flicker) - AC models only NEBS: GR63, GR1089 level 3. x900-24XT-N and XEM-12S

Safety

Standards: UL60950-1, CAN/CSA-C22.2 No. 60950-1-03, EN60950-1, EN60825-1, AS/NZS 60950.1

Certification: UL, cUL, TUV

Restrictions on Hazardous Substances (RoHS) Compliance EU RoHS Compliant

Country of Origin

Singapore

Standards and Protocols

AlliedWare Plus[™] Operating System Version 5.3.1

Alledware Plus ¹ Operating System version 5.3		
Auther RFC 1321	ntication MD5 Message-Digest Algorithm	
RFC 1828	IP Authentication using Keyed MD5	
Border	Gateway Protocol (BGP)	
	ic Capability	
BGP Gracefu	ul Restart	
BGP Outbou	Ind Route Filtering	
	ommunities Attribute	
RFC 1771	Border Gateway Protocol 4 (BGP-4)	
RFC 1772		
	in the Internet	
RFC 1997	BGP Communities Attribute	
RFC 2385	Protection of BGP Sessions via the TCP MD5	
	Signature Option	
RFC 2439	BGP Route Flap Damping	
RFC 2796	BGP Route Reflection - An Alternative to Ful	
	Mesh IBGP	
RFC 2858	Multiprotocol Extensions for BGP-4	
RFC 2918	Route Refresh Capability for BGP-4	
RFC 3065	Autonomous System Confederations for BGP	
RFC 3107	Carrying Label Information in BGP-4	
RFC 3392	Capabilities Advertisement with BGP-4	
Diagno	stic Tools	
BIST (Built-I		
Ping Polling		

to Full

Ping	Polling
Trace	Route

Encryption

FIPS 180-1	Secure Hash Standard (SHA-1)
FIPS 186	Digital Signature Standard (RSA)
FIPS 46-3	Data Encryption Standard (DES & 3DES)

Ethernet

IEEE	802.2 Logical Link Control
IEEE	802.3 Ethernet CSMA/CD
IEEE	802.3ab 1000BASE-T
IEEE	802.3ad Link Aggregation (static & LACP-based dynamic)
IEEE	802.3ae 10 Gigabit Ethernet
IEEE	802.3u 100BASE-T
IEEE	802.3x Flow Control - Full Duplex Operation
IEEE	802.3z Gigabit Ethernet

General Routing

0			
Broadcast Forwarding			
ECMP Equal Cost Multi Path routing			
UDP Broadcast helper	UDP		
RFC 768 User Datagram Protocol (UDP)	RFC		
RFC 791 Internet Protocol (IP)	RFC		
RFC 792 Internet Control Message Protocol (ICMP)	RFC		
RFC 793 Transmission Control Protocol (TCP)	RFC		
RFC 826 Address Resolution Protocol (ARP)	RFC		
RFC 894 Standard for the transmission of IP datagrams	RFC		
over Ethernet networks			
DEC 002 D	DEC		

RFC 903	Reverse	ARP
---------	---------	-----

RFC 919	Broadcasting Internet Datagrams
RFC 922	Broadcasting Internet Datagrams in the
	presence of subnets
RFC 925	Multi-LAN ARP
RFC 932	Subnetwork addressing scheme
RFC 950	Internet Standard Subnetting Procedure
RFC 951	Bootstrap Protocol (BootP) relay and server
RFC 1027	Proxy ARP
RFC 1035	DNS Client
RFC 1042	Standard for the transmission of IP
	datagrams over IEEE 802 networks
RFC 1071	Computing the Internet checksum
RFC 1122	Internet Host Requirements
RFC 1191	Path MTU discovery
RFC 1256 RFC 1518	ICMP Router Discovery Messages An Architecture for IP Address Allocation with
KFC 1510	An Architecture for IP Address Allocation with CIDR
RFC 1519	Classless Inter-Domain Routing (CIDR)
RFC 1542	Clarifications & Extensions for the Bootstrap
110 1942	Protocol
RFC 1700	Assigned Numbers
RFC 1812	Requirements for IPv4 Routers
RFC 1918	IP Addressing
RFC 2131	DHCP for IPv4
RFC 2132	DHCP Options and BOOTP Vendor Extensions
RFC 2581	TCP Congestion Control
RFC 3046	DHCP Relay Agent Information Option (DHCP
	Option 82)
RFC 3232	Assigned Numbers
RFC 3993	Subscriber-ID Suboption for DHCP Relay Agent
	Option
IPv6 Fe	atures
6to4 Tunnel	
	Pvő Dual Stack
IPv6 Manag	ement via Ping, TraceRoute, Telnet and SSH
	st Routes for IPv6
RFC 1886	DNS Extensions to support IPv6
RFC 1887	An Architecture for IPv6 Unicast Address
	Allocation
RFC 1981	Path MTU Discovery for IPv6
RFC 2460	IPv6 specification
RFC 2461	Neighbour Discovery for IPv6

RFC 2461 Neighbour Discovery for IPv6 RFC 2462 IPv6 Stateless Address Autoconfiguration

- RFC 2463 ICMPv6
- RFC 2464 Transmission of IPv6 Packets over Ethernet Networks
- RFC 2526 Reserved IPv6 Subnet Anycast Addresses
- RFC 2553 Basic Socket Interface Extensions for IPv6
- RFC 2711 IPv6 Router Alert Option
- RFC 2851 Textual Conversions for Internet Work Addresses
- RFC 2893 Transition Mechanisms for IPv6 Hosts and Routers
- RFC 3056 Connection of IPv6 Domains via IPv4 Clouds
- RFC 3484 Default Address Selection for IPv6
- RFC 3513 IPv6 Addressing Architecture
- RFC 3587 IPv6 Global Unicast Address Format
- RFC 4443 Internet Control Message Protocol (ICMPv6)

Manage	ment
AT Enterprise	MIB
Control Plane	Prioritisation
SNMP Traps	
RFC 1155	Structure and Identification of Management
	Information for TCP/IP-based Internets
RFC 1157	Simple Network Management Protocol (SNMP)
RFC 1212	Concise MIB definitions
RFC 1213	MIB for Network Management of TCP/
	IP-based internets: MIB-II
RFC 1215	Convention for defining traps for use with
	the SNMP
RFC 1227	SNMP MUX protocol and MIB
RFC 1239	Standard MIB
RFC 1493	Bridge MIB
RFC 2011	SNMPv2 MIB for IP using SMIv2
RFC 2012	SNMPv2 MIB for TCP using SMIv2
RFC 2013	SNMPv2 MIB for UDP using SMIv2
RFC 2096	IP Forwarding Table MIB
RFC 2574	User-based Security Model (USM) for SNMPv3
RFC 2575	View-based Access Control Model (VACM) for
	SNMP
RFC 2674	Definitions of Managed Objects for Bridges
	with Traffic Classes, Multicast Filtering and
	Virtual LAN Extensions (VLAN)
RFC 2741	Agent Extensibility (AgentX) Protocol
RFC 2790	Host MIB
RFC 2819	RMON MIB
RFC 2863	Interfaces Group MIB
RFC 3164	Syslog Protocol
RFC 3412	Message Processing and Dispatching for the SNMP
RFC 3413	SNMP Applications
RFC 3418	MIB for SNMP
RFC 3635	Definitions of Managed Objects for the Ethernet-
	like Interface Types
RFC 3636	IEEE 802.3 MAU MIB
RFC 4188	Definitions of Managed Objects for Bridges
RFC 4318	Definitions of Managed Objects for Bridges with RSTP
RFC 4560	Definitions of Managed Objects for Remote
	Ping, TraceRoute, and Lookup operations
Multicas	t Support
Bootstrap Rou	uter for PIM-SM
IGMP Proxy	
IGMP Snoopin	
MLD Snooping	g (vI and v2)
RFC 1112	Host extensions for IP multicasting
RFC 2236	Internet Group Management Protocol v2 (IGMPv2)
RFC 2362	PIM-SM

- RFC 2715 Interoperability Rules for Multicast Routing Protocols
- RFC 3376 IGMPv3
- RFC 3973 PIM-DM
- RFC 4541 IGMP & MLD snooping switches

Open Shortest Path First (OSPF)

Graceful OSPF Restart **OSPF** Link-local Signaling **OSPF MD5** Authentication OSPF Restart Signaling **OSPF TE Extensions** Out-of-band LSDB Resync RFC 1245 OSPF protocol analysis Experience with the OSPF protocol RFC 1246 RFC 1370 Applicability Statement for OSPF RFC 1765 OSPF Database Overflow RFC 2328 OSPFv2 RFC 2370 **OSPF** Opaque LSA Option RFC 3101 OSPF Not-So-Stubby Area (NSSA) Option Alternative Implementations of OSPF Area Border RFC 3509 Routers

Quality of Service

ACLs Access	Lontrol Lists
IEEE 802.1p	Priority Tagging
RFC 2211	Specification of the Controlled-Load Network
	Element Service
RFC 2474	DiffServ Precedence for 8 queues/port
RFC 2475	DiffServ Architecture
RFC 2597	DiffServ Assured Forwarding (AF)
RFC 2697	A Single-Rate Three-Color Marker
RFC 2698	A Two-Rate Three-Color Marker
RFC 3246	DiffServ Expedited Forwarding (EF)

Resiliency Features

Dynamic Link Failover Ethernet Protection Switched Rings (EPSR) Loop Protection - Loop Detection Loop Protection - Thrash Limiting STP Root Guard IEEE 802.1D Spanning Tree Protocol (STP) - MAC Bridges IEEE 802.1s Multiple Spanning Tree Protocol (MSTP) IEEE 802.1t - 2001 802.1D maintenance IEEE 802.1w - 2001 Rapid Spanning Tree Protocol (RSTP) RFC 3768 Virtual Router Redundancy Protocol (VRRP)

Routing Protocols

Route Maps	
Route Redist	ribution (OSPF, BGP, RIP)
RFC 1058	Routing Information Protocol (RIP)
RFC 2080	RIPng for IPv6
RFC 2081	RIPng Protocol Applicability Statement
RFC 2082	RIP-2 MD5 Authentication
RFC 2453	RIPv2

Security Features

Security reatures				
BPDU Protection				
Dynamic VLAN Assignment				
Guest VLAN support (IEEE 802.1x)				
IEEE 802.1x Port Based Network Access Control				
IEEE 802.1x Authentication protocols (TLS, TTLS, PEAP & MD5)				
IEEE 802.1x Multi Supplicant authentication				
MAC-based authentication				
Port Security				
SSH Remote Login				
SSLv2				
SSLv3				
Web-based Authentication				
RFC 2246 TLS Protocol vI.0				
RFC 2865 RADIUS				
RFC 2866 RADIUS Accounting				
RFC 2868 RADIUS Attributes for Tunnel Protocol Support				
RFC 3546 Transport Layer Security (TLS) Extensions				
RFC 3748 PPP Extensible Authentication Protocol (EAP)				
RFC 4251 Secure Shell (SSHv2) Protocol Architecture				
RFC 4252 Secure Shell (SSHv2) Authentication Protocol				

secure Shell (SSHv2) Authentication Protocol KFC 4252

- RFC 4253 Secure Shell (SSHv2) Transport Layer Protocol
- RFC 4254 Secure Shell (SSHv2) Connection Protocol

Services

SCP	Secure	Сору
RFC	854	Telnet protocol specification
RFC	855	Telnet Option Specifications
RFC	857	Telnet Echo Option
RFC	858	Telnet Suppress Go Ahead Option
RFC	1091	Telnet terminal-type option
RFC	1305	NTPv3
RFC	1350	Trivial File Transfer Protocol (TFTP)
RFC	1985	SMTP Service Extension
RFC	2049	MIME
RFC	2554	SMTP Service Extension for Authentication
RFC	2616	Hypertext Transfer Protocol - HTTP/1.1
RFC	2821	Simple Mail Transfer Protocol (SMTP)
RFC	2822	Internet Message Format

User Interface Features

Event-based Triggers Graphical User Interface (GUI) Industry-standard CLI with built-in Help Powerful CLI scripting tool

VLAN Support

Private VLANs IEEE 802.1ad VLAN double tagging (Q-in-Q) IEEE 802.1Q Virtual LANs IEEE 802.1v VLAN classification by protocol & port IEEE 802.3ac VLAN tagging

Ordering Information

Product	Description
AT-x900-24XT	Advanced Gigabit Layer 3 + Expandable Switch 2 x High Speed Expansion Bays + 24 x 10/100/1000BASE-T (RJ-45) ports
AT-x900-24XT-N	NEBS Compliant Advanced Gigabit Layer 3+ Expandable Switch 2 x High Speed Expansion Bays + 24 x 10/100/1000BASE-T (RJ-45) ports
AT-x900-24XS	Advanced Gigabit Layer 3 + Expandable Switch 2 x High Speed Expansion Bays + 24 x 100/1000BASE-X SFP ports
AT-x900-12XT/S	Advanced Gigabit Layer 3 + Expandable Switch I x High Speed Expansion Bay + 12 x combo ports (10/100/1000BASE-T copper or SFP) I fixed AC PSU
AT-PWR01	Hot-swappable load-sharing power supply
AT-FAN01	Fan only module
AT-XEM-IXP	I x IOGbE (XFP)
AT-XEM-12S	NEBS compliant 12 x 100/1000BASE-X SFP ports
AT-XEM-12T	12 x 10/100/1000BASE-T (RJ-45) ports
AT-XEM-STK⁴	2 x stacking ports
AT-XEM-STK-CBL0.5	Half meter stacking cable
AT-XEM-STK-CBL2.0	Two meter stacking cable

Key

Where xx = 00 or 60 for all power cords 20 for no power cord 80 for 48V DC power supply Where zz = 10 for U.S. power cord 20 for no power cord 30 for U.K. power cord 40 for Asia/Pacific power cord 50 for European power cord 80 for 48V DC power supply

4 The XEM-STK ships with no stacking cables.

SFP Modules

Module	Description
AT-SPFX/2	100BASE-FX 1310nm fiber up to 2km
AT-SPFX/15	100BASE-FX 1310nm fiber up to 15km
AT-SPFX/40	100BASE-FX 1310nm fiber up to 40km
AT-SPFXBD-LC-13	100BASE-BX Bi-Di (1310nm Tx, 1550 Rx) fiber up to 15km
AT-SPFXBD-LC-15	100BASE-BX Bi-Di (1550nm Tx, 1310 Rx) fiber up to 15km
AT-SPTX ⁵	10/100/1000BASE-T 100m Copper
AT-SPSX	1000BASE-SX GbE multi-mode 850nm fiber
AT-SPLX10	1000BASE-LX GbE single-mode 1310nm fiber up to 10km
AT-SPLX40	1000BASE-LX GbE single-mode 1310nm fiber up to 40km
AT-SPLX40/1550	1000BASE-LX GbE single-mode 1550nm fiber up to 40km
AT-SPZX80	1000BASE-ZX GbE single-mode 1550nm fiber up to 80km

I0GbE XFP Modules

For use with XEM-IXP

Module	Description	Specifics
AT-XPSR	10GBASE-SR	850nm Short-haul, 300m with MMF
AT-XPLR	10GBASE-LR	1310nm Medium-haul, 10km with SMF
AT-XPER40	10GBASE-ER	1550nm Long-haul, 40km with SMF

Feature licenses

Name	Description	Includes
AT-FL-X900-01	x900 Advanced Layer 3 license	 OSPF BGP4 PIMv4 VLAN double tagging (Q in Q)
AT-FL-X900-02	x900 IPv6 Pack	 IPv6 Static Routes IPv6 Management RIPng MLD Snooping

5 The AT-SPTX is not supported on the x900-12XT/S.

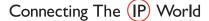
About Allied Telesis

Allied Telesis is part of the Allied Telesis Group. Founded in 1987, the company is a global provider of secure Ethernet/IP access solutions and an industry leader in the deployment of IP Triple Play networks over copper and fiber access infrastructure. Our POTS-to-10G iMAP integrated Multiservice Access Platform and iMG intelligent Multiservice Gateways, in conjunction with advanced switching, routing and WDM-based transport solutions, enable public and private network operators and service providers of all sizes to deploy scalable, carrier-grade networks for the cost-effective delivery of packet-based voice, video and data services.

Visit us online at www.alliedtelesis.com.

Service and Support

Allied Telesis provides value-added support services for its customers under its Net.Cover programs. For more information on Net. Cover support programs available in your area, contact your Allied Telesis sales representative or visit our website.


RoHS

Allied Telesis RoHS-compliant product conforms to the European Union Restriction of the Use of Certain Hazardous Substances (RoHS) in Electrical and Electronic equipment. Allied Telesis ensures RoHS conformance by requiring supplier Declarations of Conformity, monitoring incoming materials, and maintaining manufacturing process controls.

USA Headquarters | 19800 North Creek Parkway | Suite 100 | Bothell | WA 98011 | USA | T: +1 800 424 4284 | F: +1 425 481 3895 European Headquarters | Via Motta 24 | 6830 Chiasso | Switzerland | T: +41 91 69769.00 | F: +41 91 69769.11 Asia-Pacific Headquarters | 11 Tai Seng Link | Singapore | 534182 | T: +65 6383 3832 | F: +65 6383 3830

www.alliedtelesis.com

© 2008 Allied Telesis Inc. All rights reserved. Information in this document is subject to change without notice. All company names, logos, and product designs that are trademarks or registered trademarks are the property of their respective owners. 617-000169 Rev H

