
ST6 FAMILY
PROGRAMMING MANUAL

Rev. 2.0

October 2004

1

www.ceibo.com

ST

62xx

ST6200/01/03/08/09/10/15/20/25

ST6218/28

ST6252/53/55/60/62/63/65

Ceibo Emulator

Supporting

ST62xx:

EB-ST62

http://ceibo.com/eng/products/ebst62.shtml

PROGRAMMING MANUAL

ST6 FAMILY
Rev. 2.0

INTRODUCTION
This manual deals with the description of the instruction set and addressing modes of ST6 microcontroller
series. The manual is divided in two main sections. The first one includes, after a general family descrip-
tion, the addressing modes description. The second section includes the detailed description of ST6 in-
struction set. Each instruction is described in detail with the differences between each ST6 series.

Table 1. ST6 Series Core Characteristics

ST6 Series
Stack Levels 6
Interrupt Vectors 5
NMI YES
Flags Sets 3
Program ROM 2K + 2K∗n

20K Max
Data RAM 64 byte*m
Data ROM 64 byte pages in ROM
Carry Flag SUB
Instruction

Reset if A > Source

Carry Flag CP Instruction Set if A < Source
October 2004
 2/45

1

Table of Contents

45

 INTRODUCTION . 2

1 PROGRAMMING MODEL . 4

2 ADDRESSING MODES . 8

3 ST6 INSTRUCTION SET . 9
ADD . 14

ADDI . 15

AND . 16

ANDI . 17

CALL . 18

CLR . 19

COM . 20

CP . 21

CPI . 22

DEC . 23

INC . 24

JP . 25

JRC . 26

JRNC . 27

JRNZ . 28

JRR . 29

JRS . 30

JRZ . 31

LD . 32

LDI . 33

NOP . 34

RES . 35

RET . 36

RETI . 37

RLC . 38

SET . 39

SLA . 40

STOP . 41

SUB . 42

SUBI . 43

WAIT . 44
3/45

PROGRAMMING MODEL
1 PROGRAMMING MODEL

It is useful at this stage to outline the programming model of the ST6 series, by which we mean the avail-
able memory spaces, their relation to one another, the interrupt philosophy and so on.

Memory Spaces. The ST6 devices have three different memory spaces: data, program and stack. All ad-
dressing modes are memory space specific so there is no need for the user to specify which space is be-
ing used as in more complex systems. The stack space, which is used automatically with subroutine and
interrupt management for program counter storage, is not accessible to the user.

Figure 1. ST6 Family Programming Model

V REGISTER

W REGISTER

PROGRAM COUNTER

SIX LEVELS
STACK REGISTER

C

C

C

Z

Z

Z

NORMAL FLAGS

INTERRUPT FLAGS

NMI FLAGS

INDEX
REGISTER

VA000423

b7

b7

b7

b7

b7

b0

b0

b0

b0

b0

b0b11

ACCUMULATOR

Y REG. POINTER

X REG. POINTER
SHORT
DIRECT

ADDRESSING
MODE
4/45

1

PROGRAMMING MODEL
PROGRAMMING MODEL (Cont’d)

Figure 2. ST6 Data Space Example

b7 b0

NOT IMPLEMENTED
000h
03Fh

DATA ROM/EPROM WINDOW 64 BYTE
040h
07Fh

X REGISTER 080h

Y REGISTER 081h

V REGISTER 082h

W REGISTER 083h

DATA RAM 60 BYTES
084h

0BFh

PORT A DATA REGISTER - DRA 0C0h

PORT B DATA REGISTER - DRB 0C1h

PORT C DATA REGISTER - DRC 0C2h

RESERVED 0C3h

PORT A DATA DIRECTION REGISTER - DDRA 0C4h

PORT B DATA DIRECTION REGISTER - DDRB 0C5h

PORT C DATA DIRECTION REGISTER - DDRC 0C6h

RESERVED 0C7h

INTERRUPT OPTION REGISTER - IOR 0C8h

DATA ROM WINDOW REGISTER - DRWR 0C9h

RESERVED
0CAh

0CBh

PORT A OPTION REGISTER - ORA 0CCh

PORT B OPTION REGISTER -ORB 0CDh

PORT C OPTION REGISTER - ORC 0CEh

RESERVED 0CFh

A/D DATA REGISTER - ADR 0D0h

A/D CONTROL REGISTER - ADCR 0D1h

TIMER PSC REGISTER - PSCR 0D2h

TIMER COUNTER REGISTER - TCR 0D3h

TIMER STATUS CONTROL REGISTER - TSCR 0D4h

RESERVED

0D5h

0D6h

0D7h

WATCHDOG REGISTER - WDGR 0D8h

RESERVED

0D9h

0FEh

ACCUMULATOR OFFh
5/45

PROGRAMMING MODEL
Figure 3. ST6 Program Memory Example

Data Memory Space. The following registers in the data space have fixed addresses which are hardware
selected so as to decrease access times and reduce addressing requirements and hence program length.
The Accumulator is an 8-bit register in location 0FFh. The X, Y, V & W registers have the addresses 80h-
83h respectively. These are used for short direct addressing, reducing byte requirements in the program
while the first two, X & Y, can also be used as index registers in the indirect addressing mode. These reg-
isters are part of the data RAM space. In the ST6 for data space ROM a 6-bit (64 bytes addressing) win-
dow multiplexing in program ROM is available through a dedicated data ROM banking register.

b7 b0

NOT IMPLEMENTED
0000h

07FFh

RESERVED
0800h

087Fh

USER PROGRAM ROM
1828 BYTES

0880h

0F9Fh

RESERVED
0FA0h
0FEFh

INTERRUPT VECTOR #4
A/D INTERRUPT

0FF0h
0FF1h

INTERRUPT VECTOR #3
TIMER INTERRUPT

0FF2h
0FF3h

INTERRUPT VECTOR #2
PORT B & C INTERRUPT

0FF4h
0FF5h

INTERRUPT VECTOR #1
PORT A INTERRUPT

0FF6h
0FF7h

RESERVED

0FF8h

0FFBh

INTERRUPT VECTOR #0
NMI INTERRUPT

0FFCh
0FFDh

USER RESET VECTOR
0FFEh
0FFFh

On EPROM versions there are no re-served areas. These reserved bytes are present on ROM/OTP versions.
6/45

PROGRAMMING MODEL
PROGRAMMING MODEL (Cont’d)

For data RAM and I/O expansion the lowest 64 bytes of data space (00h-03Fh) are paged through a data
RAM banking register.

Self-check Interrupt Vector FF8h & FF9h:jp (self-check interrupt routine)

A jump instruction to the reset and interrupt routines must be written into these locations.

ST6 Program Memory Space. The ST6 devices can directly address up to 4K bytes (program counter is
12 bits wide). A greater ROM size is obtained by paging the lower 2K of the program ROM through a ded-
icated banking register located in the data space. The higher 2K of the program ROM can be seen as stat-
ic and contains the reset, NMI and interrupt vectors at the following fixed locations:

Program Counter & Stack Area. The program counter is a 12-bit counter register since it has to cover a
direct addressing of 4K byte program memory space. When an interrupt or a subroutine occurs the current
PC value is forward "pushed" into a deep LIFO stacking area. On the return from the routine the top (last
in) PC value is "popped" out and becomes the current PC value. The ST60/61 series offer a 4-word deep
stack for program counter storage during interrupt and sub-routines calls. In the ST6 series the stack is 6-
word deep.

Status Flags. Three pairs of status flags, each pair consisting of a Zero flag and a Carry flag, are availa-
ble. In the ST6 an additional third set is available. One pair monitors the normal status while the second
monitors the state during interrupts; the third flags set monitors the status during Non Maskable interrupt
servicing. The switching from one set to another is automatic as the interrupt requests (or NMI request for
ST6 only) are acknowledged and when the program returns after an interrupt service routine. After reset,
the NMI set is active, until the first RETI instruction is executed.

ST6 Interrupt Description. The ST6 devices have 5 user interrupt vectors (plus one vector for testing
purposes). Interrupt vector #0 is connected to the not maskable interrupt input of the core. Interrupts from
#1 to #4 can be connected to different on-chip and external sources (see individual datasheets for detailed
information). All interrupts can be globally disabled through the interrupt option register. After the reset
ST6 devices are in NMI mode, so no other interrupts can be accepted and the NMI flags set is in use, until
the RETI instruction is performed. If an interrupt is detected, a special cycle is executed. During this cycle,
the program counter is loaded with the related interrupt vector address. NMI can interrupt other interrupt
routines at any time while normal interrupt can't interrupt each other. If more than one interrupt is awaiting
service, they will be accepted according to their priority. Interrupt #1 has the highest priority while interrupt
#4 the lowest. This priority relationship is fixed.

Figure 4. ST6 Stack Area

Reset Vector FFEh & FFFh:jp (reset routine)

NMI Interrupt Vector FFCh & FFDh:jp (NMI routine)

Non user Vector FFAh & FFBh

Non user Vector FF8h & FF9h

Interrupt #1 Vector FF6h & FF7h jp (Int 1 routine)

Interrupt #2 Vector FF4h & FF5h jp (Int 2 routine)

Interrupt #3 Vector FF2h & FF3h jp (Int 3 routine)

Interrupt #4 Vector FF0h & FF1h jp (Int 4 routine)

WHEN CALL
OR

INTERRUPTREQUEST
OCCURS

STACK LEVEL 1

STACK LEVEL 2

STACK LEVEL 3

STACK LEVEL 4

STACK LEVEL 5

STACK LEVEL 6

PROGRAMCOUNTER

WHEN
RET OR RETI

OCCURS

VA000424
7/45

ADDRESSING MODES
2 ADDRESSING MODES

The ST6 core offers nine addressing modes, which are described in the following paragraphs. Three dif-
ferent address spaces are available: Program space, Data space, and Stack space. Program space con-
tains the instructions which are to be executed, plus the data for immediate mode instructions. Data space
contains the Accumulator, the X,Y,V and W registers, peripheral and Input/Output registers, the RAM lo-
cations and Data ROM locations (for storage of tables and constants). Stack space contains six 12-bit
RAM cells used to stack the return addresses for subroutines and interrupts.

Immediate. In the immediate addressing mode, the operand of the instruction follows the opcode loca-
tion. As the operand is a ROM byte, the immediate addressing mode is used to access constants which
do not change during program execution (e.g., a constant used to initialize a loop counter).

Direct. In the direct addressing mode, the address of the byte which is processed by the instruction is
stored in the location which follows the opcode. Direct addressing allows the user to directly address the
256 bytes in Data Space memory with a single two-byte instruction.

Short Direct. The core can address the four RAM registers X,Y,V,W (locations 80h, 81h, 82h, 83h) in the
short-direct addressing mode. In this case, the instruction is only one byte and the selection of the location
to be processed is contained in the opcode. Short direct addressing is a subset of the direct addressing
mode. (Note that 80h and 81h are also indirect registers).

Extended. In the extended addressing mode, the 12-bit address needed to define the instruction is ob-
tained by concatenating the four less significant bits of the opcode with the byte following the opcode. The
instructions (JP, CALL) which use the extended addressing mode are able to branch to any address of the
4K bytes Program space.

An extended addressing mode instruction is 2-bytes long.

Program Counter Relative. The relative addressing mode is only used in conditional branch instructions.
The instruction is used to perform a test and, if the condition is true, a branch with a span of -15 to +16 lo-
cations around the address of the relative instruction. If the condition is not true, the instruction which fol-
lows the relative instruction is executed. The relative addressing mode instruction is one-byte long. The
opcode is obtained by adding the three most significant bits which characterize the kind of the test, one bit
which determines whether the branch is a forward (when it is 0) or backward (when it is 1) branch and the
four less significant bits which give the span of the branch (0h to Fh) which must be added or subtracted
to the address of the relative instruction to obtain the address of the branch.

Bit Direct. In the bit direct addressing mode, the bit to be set or cleared is part of the opcode, and the byte
following the opcode points to the address of the byte in which the specified bit must be set or cleared.
Thus, any bit in the 256 locations of Data space memory can be set or cleared.

Bit Test & Branch. The bit test and branch addressing mode is a combination of direct addressing and
relative addressing. The bit test and branch instruction is three-byte long. The bit identification and the
tested condition are included in the opcode byte. The address of the byte to be tested follows immediately
the opcode in the Program space. The third byte is the jump displacement, which is in the range of -127
to +128. This displacement can be determined using a label, which is converted by the assembler.

Indirect. In the indirect addressing mode, the byte processed by the register-indirect instruction is at the
address pointed by the content of one of the indirect registers, X or Y (80h,81h). The indirect register is se-
lected by the bit 4 of the opcode. A register indirect instruction is one byte long.

Inherent. In the inherent addressing mode, all the information necessary to execute the instruction is con-
tained in the opcode. These instructions are one byte long.
8/45

ST6 INSTRUCTION SET
3 ST6 INSTRUCTION SET

The ST6 core offers a set of 40 basic instructions which, when combined with nine addressing modes,
yield 244 usable opcodes. They can be divided into six different types: load/store, arithmetic/logic, condi-
tional branch, control instructions, jump/call, and bit manipulation. The following paragraphs describe the
different types.

All the instructions belonging to a given type are presented in individual tables.

Load & Store. These instructions use one, two or three bytes in relation with the addressing mode. One
operand is the Accumulator for LOAD and the other operand is obtained from data memory using one of
the addressing modes.

For Load Immediate one operand can be any of the 256 data space bytes while the other is always imme-
diate data.
Table 2. Load & Store Instructions

Notes:
X,Y. Indirect Register Pointers, V & W Short Direct Registers
. Immediate data (stored in ROM memory)
rr. Data space register
∆. Affected
* . Not Affected

Instruction Addressing Mode Bytes Cycles
Flags

Z C
LD A, X Short Direct 1 4 ∆ *
LD A, Y Short Direct 1 4 ∆ *
LD A, V Short Direct 1 4 ∆ *
LD A, W Short Direct 1 4 ∆ *
LD X, A Short Direct 1 4 ∆ *
LD Y, A Short Direct 1 4 ∆ *
LD V, A Short Direct 1 4 ∆ *
LD W, A Short Direct 1 4 ∆ *
LD A, rr Direct 2 4 ∆ *
LD rr, A Direct 2 4 ∆ *
LD A, (X) Indirect 1 4 ∆ *
LD A, (Y) Indirect 1 4 ∆ *
LD (X), A Indirect 1 4 ∆ *
LD (Y), A Indirect 1 4 ∆ *
LDI A, #N Immediate 2 4 ∆ *
LDI rr, #N Immediate 3 4 * *
9/45

ST6 INSTRUCTION SET
ST6 INSTRUCTION SET (Cont’d)

Arithmetic and Logic. These instructions are used to perform the arithmetic calculations and logic oper-
ations. In AND, ADD, CP, SUB instructions one operand is always the accumulator while the other can be
either a data space memory content or an immediate value in relation with the addressing mode. In CLR,
DEC, INC instructions the operand can be any of the 256 data space addresses. In COM, RLC, SLA the
operand is always the accumulator.
Table 3. Arithmetic & Logic Instructions

Notes:
X,Y. Indirect Register Pointers, V & W Short Direct Registers ∆. Affected
. Immediate data (stored in ROM memory) * . Not Affected
rr. Data space register

Instruction Addressing Mode Bytes Cycles
Flags

Z C
ADD A, (X) Indirect 1 4 ∆ ∆
ADD A, (Y) Indirect 1 4 ∆ ∆
ADD A, rr Direct 2 4 ∆ ∆
ADDI A, #N Immediate 2 4 ∆ ∆
AND A, (X) Indirect 1 4 ∆ ∆
AND A, (Y) Indirect 1 4 ∆ ∆
AND A, rr Direct 2 4 ∆ ∆
ANDI A, #N Immediate 2 4 ∆ ∆
CLR A Short Direct 2 4 ∆ ∆
CLR r Direct 3 4 * *
COM A Inherent 1 4 ∆ ∆
CP A, (X) Indirect 1 4 ∆ ∆
CP A, (Y) Indirect 1 4 ∆ ∆
CP A, rr Direct 2 4 ∆ ∆
CPI A, #N Immediate 2 4 ∆ ∆
DEC X Short Direct 1 4 ∆ *
DEC Y Short Direct 1 4 ∆ *
DEC V Short Direct 1 4 ∆ *
DEC W Short Direct 1 4 ∆ *
DEC A Direct 2 4 ∆ *
DEC rr Direct 2 4 ∆ *
DEC (X) Indirect 1 4 ∆ *
DEC (Y) Indirect 1 4 ∆ *
INC X Short Direct 1 4 ∆ *
INC Y Short Direct 1 4 ∆ *
INC V Short Direct 1 4 ∆ *
INC W Short Direct 1 4 ∆ *
INC A Direct 2 4 ∆ *
INC rr Direct 2 4 ∆ *
INC (X) Indirect 1 4 ∆ *
INC (Y) Indirect 1 4 ∆ *
RLC A Inherent 1 4 ∆ ∆
SLA A Inherent 2 4 ∆ ∆
SUB A, (X) Indirect 1 4 ∆ ∆
SUB A, (Y) Indirect 1 4 ∆ ∆
SUB A, rr Direct 2 4 ∆ ∆
SUBI A, #N Immediate 2 4 ∆ ∆
10/45

ST6 INSTRUCTION SET
ST6 INSTRUCTION SET (Cont’d)

Conditional Branch. The branch instructions achieve a branch in the program when the selected condi-
tion is met.

Bit Manipulation Instructions. These instructions can handle any bit in data space memory. One group
either sets or clears. The other group (see Conditional Branch) performs the bit test branch operations.

Control Instructions. The control instructions control the MCU operations during program execution.

Jump and Call. These two instructions are used to perform long (12-bit) jumps or subroutine calls inside
the whole program space.
Table 4. Conditional Branch Instructions

Notes:
b. 3-bit address rr. Data space register
e. 5-bit signed displacement in the range -15 to +16<F128M> ∆ . Affected. The tested bit is shifted into carry.
ee. 8-bit signed displacement in the range -126 to +129 * . Not Affected

Table 5. Bit Manipulation Instructions

Notes:
b. 3-bit address * . Not Affected
rr. Data space register

Table 6. Control Instructions

Notes:
1. This instruction is deactivated and a WAIT is automatically executed instead of a STOP if the watchdog function is selected.
∆ . Affected
*. Not Affected

Table 7. Jump & Call Instructions

Notes:
abc. 12-bit address
* . Not Affected

Instruction Branch If Bytes Cycles
Flags

Z C
JRC e C = 1 1 2 * *
JRNC e C = 0 1 2 * *
JRZ e Z = 1 1 2 * *
JRNZ e Z = 0 1 2 * *
JRR b, rr, ee Bit = 0 3 5 * ∆
JRS b, rr, ee Bit = 1 3 5 * ∆

Instruction Addressing Mode Bytes Cycles
Flags

Z C
SET b,rr Bit Direct 2 4 * *
RES b,rr Bit Direct 2 4 * *

Instruction Addressing Mode Bytes Cycles
Flags

Z C
NOP Inherent 1 2 * *
RET Inherent 1 2 * *
RETI Inherent 1 2 ∆ ∆
STOP (1) Inherent 1 2 * *
WAIT Inherent 1 2 * *

Instruction
Addressing Mode Bytes Cycles

Flags

Z C

CALL abc Extended 2 4 * *
JP abc Extended 2 4 * *
11/45

ST6 INSTRUCTION SET
Opcode Map Summary. The following table contains an opcode map for the instructions used by the ST6
LOW

0
0000

1
0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111

LOW

HI HI

0
0000

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 LD
0

0000e abc e b0,rr,ee e # e a,(x)
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

1
0001

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 INC 2 JRC 4 LDI
1

0001e abc e b0,rr,ee e x e a,nn
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc 2 imm

2
0010

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 CP
2

0010e abc e b4,rr,ee e # e a,(x)
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

3
0011

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 LD 2 JRC 4 CPI
3

0011e abc e b4,rr,ee e a,x e a,nn
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc 2 imm

4
0100

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 ADD
4

0100e abc e b2,rr,ee e # e a,(x)
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

5
0101

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 INC 2 JRC 4 ADDI
5

0101e abc e b2,rr,ee e y e a,nn
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc 2 imm

6
0110

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 INC
6

0110e abc e b6,rr,ee e # e (x)
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

7
0111

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 LD 2 JRC
7

0111e abc e b6,rr,ee e a,y e #
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc

8
1000

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 LD
8

1000e abc e b1,rr,ee e # e (x),a
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

9
1001

2 RNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 INC 2 JRC
9

1001e abc e b1,rr,ee e v e #
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc

A
1010

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 AND
A

1010e abc e b5,rr,ee e # e a,(x)
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

B
1011

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 LD 2 JRC 4 ANDI
B

1011e abc e b5,rr,ee e a,v e a,nn
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc 2 imm

C
1100

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 SUB
C

1100e abc e b3,rr,ee e # e a,(x)
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

D
1101

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 INC 2 JRC 4 SUBI
D

1101e abc e b3,rr,ee e w e a,nn
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc 2 imm

E
1110

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 DEC
E

1110e abc e b7,rr,ee e # e (x)
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

F
1111

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 LD 2 JRC
F

1111e abc e b7,rr,ee e a,w e #
1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc

Abbreviations for Addressing Modes: Legend:
dir Direct # Indicates Illegal Instructions
sd Short Direct e 5-Bit Displacement
imm Immediate b 3-Bit Address
inh Inherent rr 1byte dataspace address
ext Extended nn 1 byte immediate data
b.d Bit Direct abc 12-bit address
bt Bit Test ee 8-bit Displacement
pcr Program Counter Relative
ind Indirect

2 JRC
e

1 prc

Mnemonic

Addressing Mode

Bytes

Cycle

Operand
12/45

ST6 INSTRUCTION SET
Opcode Map Summary (Continued)
LOW

8
1000

9
1001

A
1010

B
1011

C
1100

D
1101

E
1110

F
1111

LOW

HI HI

0
0000

2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 4 LDI 2 JRC 4 LD
0

0000e abc e b0,rr e rr,nn e a,(y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 3 imm 1 prc 1 ind

1
0001

2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 DEC 2 JRC 4 LD
1

0001e abc e b0,rr e x e a,rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 prc 2 dir

2
0010

2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 4 COM 2 JRC 4 CP
2

0010e abc e b4,rr e a e a,(y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 prc 1 ind

3
0011

2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 LD 2 JRC 4 CP
3

0011e abc e b4,rr e x,a e a,rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 prc 2 dir

4
0100

2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 2 RETI 2 JRC 4 ADD
4

0100e abc e b2,rr e e a,(y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 prc 1 ind

5
0101

2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 DEC 2 JRC 4 ADD
5

0101e abc e b2,rr e y e a,rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 prc 2 dir

6
0110

2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 2 STOP 2 JRC 4 INC
6

0110e abc e b6,rr e e (y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 prc 1 ind

7
0111

2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 LD 2 JRC 4 INC
7

0111e abc e b6,rr e y,a e rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 prc 2 dir

8
1000

2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 2 JRC 4 LD
8

1000e abc e b1,rr e # e (y),a
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 prc 1 ind

9
1001

2 RNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 DEC 2 JRC 4 LD
9

1001e abc e b1,rr e v e rr,a
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 prc 2 dir

A
1010

2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 4 RCL 2 JRC 4 AND
A

1010e abc e b5,rr e a e a,(y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 prc 1 ind

B
1011

2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 LD 2 JRC 4 AND
B

1011e abc e b5,rr e v,a e a,rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 prc 2 dir

C
1100

2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 2 RET 2 JRC 4 SUB
C

1100e abc e b3,rr e e a,(y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 prc 1 ind

D
1101

2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 DEC 2 JRC 4 SUB
D

1101e abc e b3,rr e w e a,rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 prc 2 dir

E
1110

2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 2 WAIT 2 JRC 4 DEC
E

1110e abc e b7,rr e e (y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 prc 1 ind

F
1111

2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 LD 2 JRC 4 DEC
F

1111e abc e b7,rr e w,a e rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 prc 2 dir

Abbreviations for Addressing Modes: Legend:
dir Direct # Indicates Illegal Instructions
sd Short Direct e 5-Bit Displacement
imm Immediate b 3-Bit Address
inh Inherent rr 1byte dataspace address
ext Extended nn 1 byte immediate data
b.d Bit Direct abc 12-bit address
bt Bit Test ee 8-bit Displacement
pcr Program Counter Relative
ind Indirect

2 JRC
e

1 prc

Mnemonic

Addressing Mode

Bytes

Cycle

Operand
13/45

ST6 INSTRUCTION SET
ADD Addition ADD
Mnemonic: ADD

Function: Addition

Description: The contents of the source byte is added to the accumulator leaving the result in
the accumulator. The source register remains unaltered.

Operation: dst ! dst + src
The destination must be the accumulator.

Notes:
rr. 1 Byte dataspace address.
∆: Z is set if the result is zero. Cleared otherwise.

C is cleared before the operation and than set if there is an overflow from the 8-bit result.

Example: If data space register 22h contains the value 33h and the accumulator holds the
value 20h then the instruction,

ADD A,22h

will cause the accumulator to hold 53h (i.e. 33+20).

Addressing Modes: Source: Direct, Indirect

Destination: Accumulator

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
ADD dst,src Z C

ADD A,A 5F FF 2 4 ∆ ∆
ADD A,X 5F 80 2 4 ∆ ∆
ADD A,Y 5F 81 2 4 ∆ ∆
ADD A,V 5F 82 2 4 ∆ ∆
ADD A,W 5F 83 2 4 ∆ ∆
ADD A,(X) 47 1 4 ∆ ∆
ADD A,(Y) 4F 1 4 ∆ ∆
ADD A,rr 5F rr 2 4 ∆ ∆
14/45

ST6 INSTRUCTION SET
ADDI Addition Immediate ADDI
Mnemonic: ADDI

Function: Addition Immediate

Description: The immediately addressed data (source) is added to the accumulator leaving the
result in the accumulator.

Operation: dst ! dst + src

The destination must be the accumulator.

Notes:
nn. 1 Byte immediate data
∆: Z is set if result is zero. Cleared otherwise

C is cleared before the operation and than set if there is an overflow from the 8-bit result

Example: If the accumulator holds the value 20h then the instruction,

ADDI A,22h

will cause the accumulator to hold 42h (i.e. 22+20).

Addressing Modes: Source: Immediate

Destination: Accumulator

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
ADDI dst,src Z C

ADDI A,nn 57 nn 2 4 ∆ ∆
15/45

ST6 INSTRUCTION SET
AND Logical AND AND
Mnemonic: AND

Function: Logical AND

Description: This instruction logically ANDs the source register and the accumulator. The
result is left in the destination register and the source is unaltered.

Operation: dst ! src AND dst

The destination must be the accumulator.

Notes:
rr. 1 Byte dataspace address
*. C is unaffected
∆. Z is set if the result is zero. Cleared otherwise.

Example: If data space register 54h contains the binary value 11110000 and the
accumulator contains the binary value 11001100 then the instruction,

AND A,54h

will cause the accumulator to be altered to 11000000.

Addressing Modes: Source: Direct, Indirect.

Destination: Accumulator

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
AND dst,src Z C

AND A,A BF FF 2 4 ∆ *
AND A,X BF 80 2 4 ∆ *
AND A,Y BF 81 2 4 ∆ *
AND A,V BF 82 2 4 ∆ *
AND A,W BF 83 2 4 ∆ *
AND A,(X) A7 1 4 ∆ *
AND A,(Y) AF 1 4 ∆ *
AND A,rr BF rr 2 4 ∆ *
16/45

ST6 INSTRUCTION SET
ANDI Logical AND Immediate ANDI
Mnemonic: ANDI

Function: Logical AND Immediate

Description: This instruction logically ANDs the immediate data byte and the accumulator.
The result is left in the accumulator.

Operation: dst ! src AND dst

The source is immediate data and the destination must be the accumulator.

Notes:
nn. 1 Byte immediate data
*. C is unaffected
∆. Z is set if the result is zero. Cleared otherwise.

Example: If the accumulator contains the binary value 00001111 then the instruction,

ANDI A,33h

will cause the accumulator to hold the value 00000011.

Addressing Modes: Source: Immediate

Destination: Accumulator

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
ANDI dst,src Z C

ANDI A,nn B7 nn 2 4 ∆ *
17/45

ST6 INSTRUCTION SET
CALL Call Subroutine CALL
Mnemonic: CALL

Function: Call Subroutine

Description: The CALL instruction is used to call a subroutine. It "pushes" the current contents
of the program counter (PC) onto the top of the stack. The specified destination
address is then loaded into the PC and points to the first instruction of a
procedure. At the end of the procedure a RETurn instruction can be used to return
to the original program flow. RET pops the top of the stack back into the PC.
Because the ST6 stack is 4 levels deep (ST60) and 6 levels deep (ST62,ST63),
a maximum of four/six calls or interrupts may be nested. If more calls are nested,
the latest stacked PC values will be lost. In this case returns will return to the PC
values stacked first.

Operation: PC ! dst; Top of stack ! PC

Notes:
abc. the three half bytes of a 12-bit address, the start location of the subroutine.
*. C,Z not affected

Example: If the current PC is 345h then the instruction,

CALL 8DCh

The current PC 345h is pushed onto the top of the stack and the PC will be loaded
with the value 8DCh. The next instruction to be executed will be the instruction at
8DCh, the first instruction of the called subroutine.

Addressing Modes: Extended

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
CALL dst Z C
CALL abc c0001 ab 2 4 * *
18/45

ST6 INSTRUCTION SET
CLR Clear CLR
Mnemonic: CLR

Function: Clear

Description: The destination register is cleared to 00h.

Operation: dst ! 0

Notes:
rr. 1 Byte dataspace address
∆. Z set, ∆. C reset
*. C,Z unaffected

Example: If data space register 22h contains the value 33h,

CLR 22h

will cause register 22h to hold 00h.

Addressing Modes: Direct

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
CLR dst Z C

CLR A DF FF 2 4 ∆ ∆
CLR X 0D 80 00 3 4 * *
CLR Y 0D 81 00 3 4 * *
CLR V 0D 82 00 3 4 * *
CLR W 0D 83 00 3 4 * *
CLR rr 0D rr 00 3 4 * *
19/45

ST6 INSTRUCTION SET
COM Complement COM
Mnemonic: COM

Function: Complement

Description: This instruction complements each bit of the accumulator; all bits which are set to
1 are cleared to 0 and vice-versa.

Operation: dst ! NOT dst

The destination must be the accumulator.

Note:
∆: Z is set if the result is zero. Cleared otherwise.

C will contain the value of the MSB before the operation.

Example: If the accumulator contains the binary value 10111001 then the instruction

COM A

will cause the accumulator to be changed to 01000110 and the carry flag to be set
(since the original MSB was 1).

Addressing Modes: Inherent

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
COM dst Z C

COM A 2D 1 4 ∆ ∆
20/45

ST6 INSTRUCTION SET
CP Compare CP
Mnemonic: CP

Function: Compare

Description: This instruction compares the source byte (subtracted from) with the destination
byte, which must be the accumulator. The carry and zero flags record the result of
this comparison.

Operation: dst - src

The destination must be the accumulator, but it will not be changed.

Note:
rr. 1 Byte dataspace address

ST60 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc ≥ src, cleared if Acc < src.

ST62/63 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc < src, cleared if Acc ≥ src.

Example: If the accumulator contains the value 11111000 and the register 34h contains the
value 00011100 then the instruction,

CP A,34h

will clear the Zero flag Z and set the Carry flag C, indicating that Acc ≥ src (on
ST60)

Addressing Modes: Source: Direct, Indirect

Destination: Accumulator

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
CP dst,src Z C

CP A,A 3F FF 2 4 ∆ ∆
CP A,X 3F 80 2 4 ∆ ∆
CP A,Y 3F 81 2 4 ∆ ∆
CP A,V 3F 82 2 4 ∆ ∆
CP A,W 3F 83 2 4 ∆ ∆
CP A,(X) 27 1 4 ∆ ∆
CP A,(Y) 2F 1 4 ∆ ∆
CP A,rr 3F rr 2 4 ∆ ∆
21/45

ST6 INSTRUCTION SET
CPI Compare Immediate CPI
Mnemonic: CPI

Function: Compare Immediate

Description: This instruction compares the immediately addressed source byte (subtracted
from) with the destination byte, which must be the accumulator. The carry and
zero flags record the result of this comparison.

Operation: dst - src

The source must be the immediately addressed data and the destination must be
the accumulator, that will not be changed.

Note:
nn. 1 Byte immediate data.

ST60 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc ≥ src, cleared if Acc < src.

ST62/63 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc < src, cleared if Acc ≥ src.

Example: If the accumulator contains the value 11111000 then the instruction,

CPI A,00011100B

will clear the Zero flag Z and set the Carry flag C indicating that Acc ≥ src (on
ST60).

Addressing Modes: Source: Immediate

Destination: Accumulator

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
CPI dst,src Z C

CPI A,nn 37 nn 2 4 ∆ ∆
22/45

ST6 INSTRUCTION SET
DEC Decrement DEC
Mnemonic: DEC

Function: Decrement

Description: The destination register's contents are decremented by one.

Operation: dst ! dst - 1

Notes:
rr. 1 Byte dataspace address
*. C is unaffected
∆. Z is set if the result is zero. Cleared otherwise.

Example: If the X register contains the value 45h and the data space register 45h contains
the value 16h then the instruction,

DEC (X)

will cause data space register 45h to contain the value 15h.

Addressing Modes: Short direct, Direct, Indirect.

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
DEC dst Z C

DEC A FF FF 2 4 ∆ *

DEC X 1D 1 4 ∆ *

DEC Y 5D 1 4 ∆ *

DEC V 9D 1 4 ∆ *

DEC W DD 1 4 ∆ *

DEC (X) E7 1 4 ∆ *

DEC (Y) EF 1 4 ∆ *

DEC rr FF rr 2 4 ∆ *
23/45

ST6 INSTRUCTION SET
INC Increment INC
Mnemonic: INC

Function: Increment

Description: The destination register's contents are incremented by one.

Operation: dst ! dst + 1

Notes:
rr. 1 Byte dataspace address
*. C is unaffected
∆. Z is set if the result is zero. Cleared otherwise.

Example: If the X register contains the value 45h and the data space register 45h contains
the value 16h then the instruction

INC (X)

will cause data space register 45h to contain the value 17h.

Addressing Modes: Short direct, Direct, Indirect.

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
INC dst Z C

INC A 7F FF 2 4 ∆ *

INC X 15 1 4 ∆ *

INC Y 55 1 4 ∆ *

INC V 95 1 4 ∆ *

INC W D5 1 4 ∆ *

INC (X) 67 1 4 ∆ *

INC (Y) 6F 1 4 ∆ *

INC rr 7F rr 2 4 ∆ *
24/45

ST6 INSTRUCTION SET
JP Jump JP
Mnemonic: JP

Function: Jump (Unconditional)

Description: The JP instruction replaces the PC value with a 12-bit value thus causing a simple
jump to another location in the program memory. The previous PC value is lost,
not stacked.

Operation: PC ! dst

Notes:
abc. the three half bytes of a 12-bit address.
*. C,Z not affected

Example: The instruction,

JP 5CDh

will cause the PC to be loaded with 5CDh and the program will continue from that
location.

Addressing Modes: Extended

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
JP dst Z C
JP abc c1001 ab 2 4 * *
25/45

ST6 INSTRUCTION SET
JRC Jump Relative on Carry Flag JRC
Mnemonic: JRC

Function: Jump Relative on Carry Flag

Description: This instruction causes the carry (C) flag to be tested and if this flag is set then a
jump is performed within the program memory. This jump is in the range -15 to
+16 and is relative to the PC value. The displacement e is of five bits. If C=0 then
the next instruction is executed.

Operation: If C=1, PC ! PC + e

where e= 5-bit displacement

Notes:
e. 5-bit displacement in the range -15 to +16
*. C,Z not affected

Example: If the carry flag is set then the instruction,

JRC $+8

will cause a branch forward to PC+8. The user can use labels as identifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Addressing Modes: Program Counter Relative

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C
JRC e e110 1 2 * *
26/45

ST6 INSTRUCTION SET
JRNC Jump Relative on Non Carry Flag JRNC
Mnemonic: JRNC

Function: Jump Relative on Non Carry Flag

Description: This instruction causes the carry (C) flag to be tested and if this flag is cleared to
zero then a jump is performed within the program memory. This jump is in the
range -15 to +16 and is relative to the PC value. The displacement is of five bits.
If C=1 then the next instruction is executed.

Operation: If C=0, PC ! PC + e

where e= 5-bit displacement

Notes:
e: 5-bit displacement in the range -15 to +16
*: C,Z not affected

Example: If the carry flag is cleared then the instruction,

JRNC $-5

will cause a branch backward to PC-5. The user can use labels as identifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Addressing Modes: Program Counter Relative

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C
JRNC e e010 1 2 * *
27/45

ST6 INSTRUCTION SET
JRNZ Jump Relative on Non Zero Flag JRNZ
Mnemonic: JRNZ

Function: Jump Relative on Non Zero Flag

Description: This instruction causes the zero (Z) flag to be tested and if this flag is cleared to
zero then a jump is performed within the program memory. This jump is in the
range -15 to +16 and is relative to the PC value. The displacement is of five bits.
If Z=1 then the next instruction is executed.

Operation: If Z=0, PC ! PC + e

where e= 5-bit displacement

Notes:
e. 5-bit displacement in the range -15 to +16.
*. C,Z not affected

Example: If the zero flag is cleared then the instruction,

JRNZ $-5

will cause a branch backward to PC-5. The user can use labels as identifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Addressing Modes: Program Counter Relative

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C
JRNZ e e000 1 2 * *
28/45

ST6 INSTRUCTION SET
JRR Jump Relative if Reset JRR
Mnemonic: JRR

Function: Jump Relative if RESET

Description: This instruction causes a specified bit in a given dataspace register to be tested.
If this bit is reset (=0) then the PC value will be changed and a relative jump will
be performed within the program. The relative jump range is -126 to +129. If the
tested bit is not reset then the next instruction is executed.

Operation: If bit=0, PC ! PC + ee

where ee= 8-bit displacement

Notes:
b. 3-bit address
rr. 1 Byte dataspace address
ee. 8-bit displacement in the range -126 to +129
*. Z is not affected
∆. The tested bit is shifted into carry.

Example: If bit 4 of dataspace register 70h is reset and the PC=110 then the instruction,

JRR 4, 70h, $-20

will cause the PC to be changed to 90 (110-20) and the instruction starting at that
address in the program memory to be the next instruction executed.

The user is advised to use labels for conditional jumps. The relative jump will be
calculated by the assembler. The jump must be in the range -126 to +129.

Addressing Modes: Bit Test

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C
JRR b,rr,ee b00011 rr ee 3 5 * ∆
29/45

ST6 INSTRUCTION SET
JRS Jump Relative if Set JRS
Mnemonic: JRS

Function: Jump Relative if set

Description: This instruction causes a specified bit in a given dataspace register to be tested.
If this bit is set (=1) then the PC value will be changed and a relative jump will be
performed within the program. The relative jump range is -126 to +129. If the
tested bit is not set then the next instruction is executed.

Operation: If bit=1, PC ! PC + ee

where ee= 8-bit displacement

Notes:
b. 3-bit address
rr. 1 Byte dataspace address
ee. 8-bit displacement in the range -126 to +129
*. Z is not affected
∆. The tested bit is shifted into carry.

Example: If bit 7 of dataspace register AFh is set and the PC=123 then the instruction,

JRS 7,AFh,$+25

will cause the PC to be changed to 148 (123+25) and the instruction starting at
that address in the program memory to be the next instruction executed.

The user is advised to use labels for conditional jumps. The relative jump will be
calculated by the assembler. The jump must be in the range -126 to +129.

Addressing Modes: Bit Test

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C
JRS b,rr,ee b10011 rr ee 3 5 * ∆
30/45

ST6 INSTRUCTION SET
JRZ Jump Relative on Zero Flag JRZ
Mnemonic: JRZ

Function: Jump Relative on Zero Flag

Description: This instruction causes the zero (Z) flag to be tested and if this flag is set to one
then a jump is performed within the program memory. This jump is in the range
-15 to +16 and is relative to the PC value. The displacement is of five bits. If Z=0
then next instruction is executed.

Operation: If Z=1, PC ! PC + e

where e= 5-bit displacement

Notes:
e. 5-bit displacement in the range -15 to +16.
*. C,Z not affected

Example: If the zero flag is set then the instruction,

JRZ $+8

will cause a branch forward to PC+8. The user can use labels as identifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Addressing Modes: Program Counter Relative

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C
JRZ e e100 1 2 * *
31/45

ST6 INSTRUCTION SET
LD Load LD
Mnemonic: LD

Function: Load

Description: The contents of the source register are loaded into the destination register. The
source register remains unaltered and the previous contents of the destination
register are lost.

Operation: dst ! src

Either the source or the destination must be the accumulator.

Notes:
rr. 1 Byte dataspace address
*. C not affected
∆. Z is set if the result is zero. Cleared otherwise.

Example: If data space register 34h contains the value 45h then the instruction;

LD A,34h

will cause the accumulator to be loaded with the value 45h. Register 34h will keep
the value 45h.

Addressing Modes: Source: Direct, Short Direct, Indirect

Destination: Direct, Short Direct, Indirect

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
LD dst,src Z C

LD A,X 35 1 4 ∆ *

LD A,Y 75 1 4 ∆ *

LD A,V B5 1 4 ∆ *

LD A,W F5 1 4 ∆ *

LD X,A 3D 1 4 ∆ *

LD Y,A 7D 1 4 ∆ *

LD V,A BD 1 4 ∆ *

LD W,A FD 1 4 ∆ *

LD A,(X) 07 1 4 ∆ *

LD (X), A 87 1 4 ∆ *

LD A,(Y) 0F 1 4 ∆ *

LD (Y),A 8F 1 4 ∆ *

LD A,rr 1F rr 2 4 ∆ *

LD rr,A 9F rr 2 4 ∆ *
32/45

ST6 INSTRUCTION SET
LDI Load Immediate LDI
Mnemonic: LDI

Function: Load Immediate

Description: The immediately addressed data (source) is loaded into the destination data
space register.

Operation: dst ! src

The source is always an immediate data while the destination can be the
accumulator, one of the X,Y,V,W registers or one of the available data space
registers.

Notes:
rr. 1 Byte dataspace address
nn. 1 Byte immediate value
*. Z, C not affected
∆. Z is set if the result is zero. Cleared otherwise.

Example: The instruction

LDI 34h, 45h

will cause the value 45h to be loaded into data register at location 34h.

Addressing Modes: Source: Immediate

Destination: Direct

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
LDI dst,src Z C

LDI A,nn 17 nn 2 4 ∆ *

LDI X,nn 0D 80 nn 3 4 * *
LDI Y,nn 0D 81 nn 3 4 * *
LDI V,nn 0D 82 nn 3 4 * *
LDI W,nn 0D 83 nn 3 4 * *
LDI rr,nn 0D rr nn 3 4 * *
33/45

ST6 INSTRUCTION SET
NOP No Operation NOP
Mnemonic: NOP

Function: No Operation

Description: No action is performed by this instruction. It is typically used for timing delay.

Operation: No Operation

Note:
*. C,Z not affected

Addressing Modes: Program Counter Relative

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C
NOP 04 1 2 * *
34/45

ST6 INSTRUCTION SET
RES Reset Bit RES
Mnemonic: RES

Function: Reset Bit

Description: The RESET instruction is used to reset a specified bit in a given register in the
dataspace.

Operation: dst (n) 0, 0 ≤ n ≤ 7

Notes:
b. 3-bit address
rr. 1 Byte dataspace address
*. C,Z not affected

Example: If register 23h of the dataspace contains 11111111 then the instruction,

RES 4,23h

will cause register 23h to hold 11101111.

Addressing Modes: Bit Direct

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
RES bit,dst Z C

RES b,A b01011 FF 2 4 * *
RES b,rr b01011 rr 2 4 * *
35/45

ST6 INSTRUCTION SET
RET Return from Subroutine RET
Mnemonic: RET

Function: Return From Subroutine

Description: This instruction is normally used at the end of a subroutine to return to the
previously executed procedure. The previously stacked program counter
(stacked during CALL) is popped back from the stack. The next statement
executed is that addressed by the new contents of the PC. If the stack had already
reached its highest level (no more PC stacked) before the RET is executed,
program execution will be continued at the next instruction after the RET.

Operation: PC ! Stacked PC

Note:
*. C,Z not affected

Example: If the current PC value is 456h and the PC value at the top of the stack is 3DFh
then the instruction,

RET

will cause the PC value 456h to be lost and the current PC value to be 3DFh.

Addressing Modes: Inherent

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C
RET CD 1 2 * *
36/45

ST6 INSTRUCTION SET
RETI Return from Interrupt RETI
Mnemonic: RETI

Function: Return from Interrupt

Description: This instruction marks the end of the interrupt service routine and returns the
ST60/62/63 to the state it was in before the interrupt. It "pops" the top (last in) PC
value from the stack into the current PC. This instruction also causes the ST60/
62/63 to switch from the interrupt flags to the normal flags. The RETI instruction
also applies to the end of NMI routine for ST62/63 devices; in this case the
instruction causes the switch from NMI flags to normal flags (if NMI was
acknowledged inside a normal routine) or to standard interrupt flags (if NMI was
acknowledged inside a standard interrupt service routine).

In addition the RETI instruction also clears the interrupt mask (also NMI mask for
ST62/63) which was set when the interrupt occurred. If the stack had already
reached its highest level (no more PC stacked) before the RETI is executed,
program execution will be continued with the next instruction after the RETI.
Because the ST60 is in interrupt mode after reset (NMI mode for ST62/63), RETI
has to be executed to switch to normal flags and enable interrupts at the end of
the starting routine. If no call was executed during the starting routine, program
execution will continue with the instruction after the RETI (supposed no interrupt
is active).

Operation: Actual Flags Normal Flags (1)

PC ! Stacked PC

IM ! 0

(1) Standard Interrupt flags if NMI was acknowledged inside a standard interrupt
service (ST62/63 only).

Note:
∆ C,Z normal flag will be used from now on.

Example: If the current PC value is 456h and the PC value at the top of the stack is 3DFh
then the instruction

RETI

will cause the value 456h to be lost and the current PC value to be 3DFh. The ST6
will switch from interrupt flags to normal flags and the interrupt mask is cleared.

Addressing Modes: Inherent

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C

RETI 4D 1 2 ∆ ∆
37/45

ST6 INSTRUCTION SET
RLC Rotate Left Through Carry RLC
Mnemonic: RLC

Function: Rotate Left through Carry

Description: This instruction moves each bit in the accumulator one place to the left (i.e.
towards the MSBit. The MSBit (bit 7) is moved into the carry flag and the carry
00000000000000 flag is moved into the LSBit (bit0) of the accumulator.

Operation:

dst(0) ! C

C ! dst(7)

dst(n+1) ! dst(n), 0 ≤ n ≤ 6

This instruction can only be performed on the accumulator.

Note:
∆: Z is set if the result is zero. Cleared otherwise.

C will contain the value of the MSB before the operation.

Example: If the accumulator contains the binary value 10001001 and the carry flag is set to
0 then the instruction,

RLC A

will cause the accumulator to have the binary value 00010010 and the carry flag
to be set to 1.

Addressing Modes: Inherent

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C

RLC A AD 1 4 ∆ ∆
38/45

ST6 INSTRUCTION SET
SET Set Bit SET
Mnemonic: SET

Function: Set Bit

Description: The SET instruction is used to set a specified bit in a given register in the data
space.

Operation: dst (n) ! 1, 0 ≤ n ≤ 7

Notes:
b. 3-bit address
rr. 1 Byte dataspace address
*. C,Z not affected

Example: If register 23h of the dataspace contains 00000000 then the instruction,

SET 4,23h

will cause register 23h to hold 00010000.

Addressing Modes: Bit Direct

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
SET bit,dst Z C

SET b,A b11011 FF 2 4 * *
SET b,rr b11011 rr 2 4 * *
39/45

ST6 INSTRUCTION SET
SLA Shift Left Accumulator SLA
Mnemonic: SLA

Function: Shift Left Accumulator

Description: This instruction implements an addition of the accumulator to itself (i.e a doubling
of the accumulator) causing an arithmetic left shift of the value in the register.

Operation: ADD A,FFh

This instruction can only be performed on the accumulator.

Note:
∆: Z is set if the result is zero. Cleared otherwise.

C will contain the value of the MSB before the operation.

Example: If the accumulator contains the binary value 11001101 then the instruction,

SLA A

will cause the accumulator to have the binary value 10011010 and the carry flag
to be set to 1.

Addressing Modes: Inherent

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C

SLA A 5F FF 2 4 ∆ ∆
40/45

ST6 INSTRUCTION SET
STOP Stop Operation STOP
Mnemonic: STOP

Function: Stop operation

Description: This instruction is used for putting the ST60/62/63 into a stand-by mode in which
the power consumption is reduced to a minimum. All the on-chip peripherals and
oscillator are stopped (for some peripherals, A/D for example, it is necessary to
individually turn-off the macrocell before entering the STOP instruction). To
restart the processor an external interrupt or a reset is needed.

Operation: Stop Processor

Note:
*: C,Z not affected

Addressing Mode: Inherent

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C
STOP 6D 1 2 * *
41/45

ST6 INSTRUCTION SET
SUB Subtraction SUB
Mnemonic: SUB

Function: Subtraction

Description: This instruction subtracts the source value from the destination value.

Operation: dst ! dst-src

The destination must be the accumulator.

Note:
rr. 1 Byte dataspace address

ST60 ∆: Z is set if the result is zero. Cleared otherwise.
C is set if Acc ≥ src, cleared if Acc < src.

ST62/63 ∆: Z is set if the result is zero. Cleared otherwise.
C is set if Acc < src, cleared if Acc ≥ src.

Example: If the Y register contains the value 23h, dataspace register 23h contains the value
53h and the accumulator contains the value 78h then the instruction,

SUB A,(Y)

will cause the accumulator to hold the value 25h (i.e. 78-53). The zero flag is
cleared and the carry flag is set (on ST60), indicating that result is > 0.

Addressing Modes: Source: Indirect,Direct

Destination: Accumulator

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
SUB dst,src Z C

SUB A,A DF FF 2 4 ∆ ∆
SUB A,X DF 80 2 4 ∆ ∆
SUB A,Y DF 81 2 4 ∆ ∆
SUB A,V DF 82 2 4 ∆ ∆
SUB A,W DF 83 2 4 ∆ ∆
SUB A,(X) C7 1 4 ∆ ∆
SUB A,(Y) CF 1 4 ∆ ∆
SUB A,rr DF rr 2 4 ∆ ∆
42/45

ST6 INSTRUCTION SET
SUBI Subtraction Immediate SUBI
Mnemonic: SUBI

Function: Subtraction Immediate

Description: This instruction causes the immediately addressed source data to be subtracted
from the accumulator.

Operation: dst ! dst - src

The destination must be the accumulator.

Note:
nn. 1 Byte of immediate data

ST60 ∆: Z is set if the result is zero. Cleared otherwise.
C is set if Acc ≥ src, cleared if Acc < src.

ST62/63 ∆: Z is set if the result is zero. Cleared otherwise.
C is set if Acc < src, cleared if Acc ≥ src.

Example: If the accumulator contains the value 56h then the instruction,

SUBI A,25

will cause the accumulator to contain the value 31h. The zero flag is cleared and
the carry flag is set (on ST60), indicating that the result is > 0.

Addressing Modes: Source: Immediate

Destination: Accumulator

Instruction Format
Opcode (Hex) Bytes Cycles

Flags
SUBI dst,src Z C

SUBI A,nn D7 nn 2 4 ∆ ∆
43/45

ST6 INSTRUCTION SET
WAIT Wait Processor WAIT
Mnemonic: WAIT

Function: Wait Processor

Description: This instruction is used for putting the ST60/62/63 into a stand-by mode in which
the power consumption is reduced to a minimum. Instruction execution is
stopped, but the oscillator and some on-chip peripherals continue to work. To
restart the processor an interrupt from an active on-chip peripheral (e.g. timer), an
external interrupt or reset is needed. For on-chip peripherals active during wait,
see ST60/62/63 data sheets.

Operation: Put ST6 in stand-by mode

Note:
*. C,Z not affected

Addressing Modes: Inherent

Instruction Format Opcode (Hex) Bytes Cycles
Flags

Z C
WAIT ED 1 2 * *
44/45

ST6 INSTRUCTION SET
Notes

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com
45/45

	PROGRAMMING MANUAL
	INTRODUCTION
	1 PROGRAMMING MODEL
	2 ADDRESSING MODES
	3 ST6 INSTRUCTION SET
	Addition ADD
	Addition Immediate ADDI
	Logical AND AND
	Logical AND Immediate ANDI
	Call Subroutine CALL
	Clear CLR
	Complement COM
	Compare CP
	Compare Immediate CPI
	Decrement DEC
	Increment INC
	Jump JP
	Jump Relative on Carry Flag JRC
	Jump Relative on Non Carry Flag JRNC
	Jump Relative on Non Zero Flag JRNZ
	Jump Relative if Reset JRR
	Jump Relative if Set JRS
	Jump Relative on Zero Flag JRZ
	Load LD
	Load Immediate LDI
	No Operation NOP
	Reset Bit RES
	Return from Subroutine RET
	Return from Interrupt RETI
	Rotate Left Through Carry RLC
	Set Bit SET
	Shift Left Accumulator SLA
	Stop Operation STOP
	Subtraction SUB
	Subtraction Immediate SUBI
	Wait Processor WAIT

