
Proven COMPUTER Performance

A Subsidiary of GOULD INC.

REFERENCE MANUAL

SYSTEMS 32/70 SERIES

Computer

• Specifications Subject to Change Without Notice • © 1979 Systems Engineering Laboratories, Incorporated • Printed in USA
• Publication Number 301-320070-001

32/70 SERIES INSTRUCTIONS BY CATEGORY

U!!!! !!!!!!!!!!£ ~ ~ ~ MHEMlNIC ~ ~

LOAD INSTRUCTIONS
SHIFT INSTRUCTIONS

AC08 LB LOAD BYTE 6-10
ACOO LH LOAD HALflollRD 6-11 6000 NOR NORMALIZE 6-ll3
ACOO LW LOAD _0 6-12 6400 NORD NORMALIZE IlGlJ8lE 6-ll4
ACOO LO LOAD OOUBL~ 6-13 6BOO SCZ SHIFT AND COUNT ZEROS 6-ll5
BOOS UII LOAD MASKED BVTE 6-)4 6C40 SLA SHIFT LEfT ARITHMETIC 6-ll6
BOOO IJti LOAD MASKED HALFlIORD 6-15 7040 SLL ·SHIFT LEfT LODICAL 6-117
BOOO I.HW LOAD MASKED WORD 6-16 1-.,; SLC SHIFT LtFT CIRCULAR 6-118
800D 00 LOAD MASKED DOUBlEllORD 6-17 7840 SLAO SHIFT LEfT ARITl<METlC DOUBLE 6-ll9
8408 LNB LOAD NEGATIVE BYTE 6-18 7C.40 SLLO SHIFT LEFT LOGICAL DOUBLE 6-120
84DO LNN LOAD NEGATIVE HALf WORD 6-19 6COO SRA SHIFT RIGHT ARiTHMETIC 6-121
8400 LNII LOAD NEGATIVE WORD 6-20 7000 SRL SHIFT RIGHT LOGICAL 6-122
B400 LHO LOAD NEGATIVE DOUBLEWORD 6-21 7400 SRC SHIFT RIGHT CIRCULAR 6-123
C800 LI LOAD IMMEDIATE 6-22 7800 SRAD SHIFT RIGHT ARrTHMfTIC DOU8LE 6-12.
DODO LEA LOAD EFFECTIVE ADDRESS 6-23 7eoa SRLD SHIFT RIGHT LOGICAL OOUBLE 6-125
BODO LEAR LDAO EfFECTIVE ADORESS REAL' 6-2'
3400 LA lOAD ADDRESS'" 6-25

8IT MANIPULATION INSTRUCTIONS

CCOO Lf LOAD FILE 6-28 9808 S8M SET BIT IN MEMlRY 6-128
1BOO SBR SET BrT IN REGISTER 6-129

STORE INSTRUCTIONS 9C08 IBM ZERD B rT IN MEMORY 6-130
lCOO ZBR ZERO BIT IN REGISTER 6-131

G40B STB STORE 8YTE 6-29 A008 ABH ADO BIT IN MEMORY 6-132
0400 STH STORE HALf WORD 6-30 2000 ABR ADO BIT IN REGISTER 6-133
0400 SN STORE WORD 6-31 A408 TBM TEST BrT IN MEMORY 6-134
0400 STD STORE DOUBLEWORD 6-32 2400 T8R TEST BIT IN REGISTER 6-135
DB08 STMB STORE MASKED gYTE .-33
D800 STNN STORE MASKED HAlFWORD 6-34
0800 S_ STORE "ASKEO WORD 6-35 FIXED-POINT ARlTHNETIC INSTRUCTIONS
1l800 STMO STORE MASKED OGU8LE1IORO 6-36
DCOO STF STORE FILE 6-37 BBOB ADMII ADO MEMlRY BYTE 6-140

8800 ADMH ADD _RY HALFWORD 6-141
8800 ADMW ADD MEMORY WORD 6-142

ZERO INSTRUCTIONS B800 ADMD ADD _ftY OOUBLEWORO 6-143
3800 ADR ADO REGISTER TO REGISTER 6-144

F808 2M11 ZERO MElIORY BYTE 6-39 3808 ADAM ADO REGISTER TO REGISTER MASKED 6-145
fBDO ZMH ZERO MEMORY HALFWORO 6-40 EBOB ARMII ADO REGISTER TO MEMlRY BYTE 6-146
F800 ZMW ZERO MEMORY WORD 6-41 £800 ARMH ADO REGISTER TO MEMORY HAlfWORO 6-147
f800 ZMO ZERO MEMORY DQUBLEWORO 6-42 E800 ARMW ADO REGISTER TO MEMlRY I«lRD 6-148
acoo ZR ZERO REGISTER 6-43 EBOO ARHO AGO REGISTER TO MEMORY OGU8LElIORO 6-149

C801 AOI ADO IMMEDIATE 6-150
BCOB SUMIl SUBTRACT MEMORY BYTE 6-151

TRANSFER INSTRUCTIONS BCOO SUMH SUBTRACT MEMORY HALFWORD 6-152
BCOO S_ SUBTRACT MEMORY \/ORO 6-153

2eOF TSCR TRANSFER seRATeHPAD TO REGISTER 6-45 BCOO SUMO SUBTRACT "EMlRY OOUBLEI«lRD 6-15.
2COE TRSC TRANSFER REGISTER TO SCRATCHPAD 6-40 3COO SUR SUBTRACT REGISTER FROH REGISTER 6-155
2COO TRR TRANSFER REGISTER TO REGISTER 6-47 3C08 SUAM SUBTRACT REGISTER FROM REGISTER MASKED 6-156
2C08 TRRM TRANSFER REGISTER TO REGISTER MASKED 6-48 C802 SUI SU8TRACT IMMEDIATE 6-157
F800 TRP TRANSfER REGISTER TO PROTECT REGISTER 6-49 eoOB MPMII MULTIPLY BY HEttlRY BYTE 6-158
F800 TPR TRANSFER PROTECT REGISTER TO REGISTER 6-50 COOO MPMH MULTIPLY BY MEMlRY HALf\/ORD 6-159
2C04 TAN TRANSfER REGISTER NEGATIVE 6-51 COOO NPMW MULTIPLY BY MEMlRY WORD 6-160
2CDC TRNM TRANSFER REGISTER NEGATIVE MASKED 6-52 4000 MPR MULTIPLY REGISTER 8Y REGISTER 6-161
2C03 TRC TRANSFER REGISTER COMPLEMENT 6-53 C803 "PI MULTIPLY IMNEDIATE 6-162
2C08 TRCM TRANSFER REGISTER COMPLEMENT MASKED 6-54 C408 DVNB DIVIDE 8Y MEMORY BYTE 6-163
2CD5 XCR EXCHANGE REGISTERS 6-55 C400 OVMH DlVIll£ BY MEMORY HALf\/ORD 6-164
2COD XCRM EXCHANGE REGISTERS MASKED 6-56 C400 OVMW D!VIDE BY MEMORY WORD 6-165
2800 TRSW TRANSFER REGISTER TO PSWR 6-57 4400 OVR DlvlO£ REGISTER BY REGISTER 6-166

CB04 OVI OIVIDE IMM€OIATE 6-167
MEMORY MANAGEMENT INSTRUCTIONS 0004 ES EXTEND SIGN S-16S

0005 RND ROUND REGISTER 6-169

0000 SEA SET EXTENOED ADDRESSING 6-59
ODOF CEA CLEAR EXTENDED AODRESSING 6-60
2A07 LHAP LOAD MAP* 6-61 FLOATING-POINT ARlTHNETIC INSTRUCTIONS

2COA TMAPR TRANSFER MAP TO REGISTER' 6-62
EOOB ADFW ADO FLDATING-POINT WORD 6-172

WRITABLE CONTROL STORAGE INSTRUCTIONS EOOB ADFO AOD FLOATING-POINT OOUBlEWORD 6-173
£000 SUFW SUBTRACT FLOATING-POINT WORD 6-17"

ODOC INCS WRITE \liRITABLE CONTROL STORAGE 6-65 EGOO SUfO SUBTRACT FLOATING-POINT DOUBLElIORD 6-175

0008 AWeS READ WRITABLE CONTROL STQRAGE 6-66 E408 MPFW MULTIPLY FLOATING-POINT WORD ... , 6-176

FAOO JWCS JUMP TO WRITABLE CONTROL STORAGE 6-67 E408 MPFO MULTIPLY FLOATING-POINT 00U8LEIoIlRD 6-177
E400 OVFW DIVIDE FLOATING-POINT WORD 6-178

BRANCH INSTRUCTIONS E400 OVFD DIVIDE fLOATING-POINT DOUBLElIORD 6-179

ECOO au BRANCH UNCONDITIONALLY 6-72
FOOD BCF BRANCH CONDITION FALSE 6-73 CONTROL INSTRUCTIONS
ECDO BCT BRANCH CONDITION TRUE 6-74
FOOD 8FT BRANCH FUNCTION TRUE 6-75 F900 BRI BRANCH ANO RESET INTERRUPT 6-181
FBBO BL BRANCH AHO LINK 6-76 F9S0 lPSO LOAD PROGRAM STATUS DOUBLEIIORD' 6-182
F400 BIB 8RANCH AfTER INCREMENTING BYTE 6-77 FABG lPSOCII LOAD PROGRAM STATUS DOUBLEWORD AND CHANGE MAP' 6-183
F420 BIH BRANCH AFTER INCREMENTING HALFWORD 6-78 0003 Les LOAD CONTROL SWITCHES 6-184
F440 BIW BRANCH AFTER INCREMENTING WORD 6-79 CB07 EXR EXECUTE REGISTER 6-185
F460 BID BRANCH AFTER !NCREMENTING OOUBLEWORO 6-80 ca07 EXRR EXECUTE REGISTER RIGHT 6-186

ABOO EXM EXECUTE MEMORY 6-187
COMPARE INSTRUCTIONS 0000 HALT HALT 6-188

0001 WAIT WAlT 6-IS9
9008 CAMB COMPARE ARITHMETIC WITH MEMORV BYTE 6-83 0002 NOP NO OPERATION 6-190
9000 CANH COlo1PARE ARITHMETIC WITH MEMORY HALFWORO 6-84 OOOA SIPU Signal IPU 6-191
9000 C_ COMPARE ARITHMETIC wITH MEMORY WORD 6-85 3000 CALM CALL MON ITOR 6-192
9000 CAND COMPARE ARITHMETIC wITH MEMORY OOUBLEWORD 6-86 C806 SVC SUPERVISOR CAlL* 6-193
1000 CAR COMPARE ARITHMETIC WITH REGISTER 6-87 2C09 SETCPU SET CPU HOOE 6-194-
C805 CI COMPARE IMMEDIATE 6-88 0009 ROSTS READ CPU 5T ATUS WORD" 6-195
9408 CMMB COMPARE MASKED WITH MEMORY BYTE 6-89 0008 EAE ENA8LE ARITHMETIC EXCEPTION TRAP' 6-197
9400 CMMtI COMPARE MASKED WiTH MEMORY HALF'WORO 6-90 OOOE DAE OISABLE ARITHMETIC EXCEPTION TRAP" 6-19S
9400 C_ COHPARF MASKED WITH Mt:MORY WORD 6-91
9400 CHMO COMPARE MASKED WITH MEMORY OOU6LEWORO 6-92
1400 CMR COMPARE MASKED WITH REGISTER 6·93 INTERRUPT INSTRUCTIONS

LOGICAL AND INSTRUCTIONS FCnD El ENABLE INTERRUPT 6-202
FC02 RI REQUEST INTERRUPT 6-203

B40B ANMB AND MEMORY BYTE 6-95 Fc.o3 A1 ACTIVATE INTERRUPT 6-204

8400 ANMH AND MEMORY HALFWORD 6-96 FCOI 01 DISABLE INTERRUPT 6-205
8400 AHMW AND MEMORY WORD 6-97 FCG4 DAI DEACTIVATE INTERRUPT 6-206
8400 ANMO ANO MEMORY OOU8LEWORD 6-98 Fcn ACI ACTIVATE CHANNEl INTERRUPT" 6-207
0400 ANR AND REGISTER ANO REGISTER 6-99 Fe67 ECI ENABLE CHANNel INTERRUPT· 6-20a

FC6F OCI DISABLE CHANNEL INTERRUPT* 6-209
LOGICAL OR INSTRUCTIONS FC7F DACI DEACTIVATE CHANNEL INTERRUPT' 6-2IG

0006 BEl BLOCK EXTERNAL INTERRUPTS· 6-211
880B ORMII OR MEMORY SYTE 6-100 OOOE VEl uNBL<lCK EXTERNAL INTERRUPTS" 6-212

8BOO ORMH OR MEMORY HAlF\rJORO 6~lOl

8800 ORMW OR MEMORY WORD 6-102
8800 ORHO OR MEMORY OOiJBU:WORO 6-103 INPUT/OUTPUT INSTRUCTIONS
0800 ORR OR REGISTER ANO REGISTER 6~104

080B ORRM OR REGISTER ANO REGISTER MASKED 6-105 fC06 CD COMMAND DEVICE 6~216

FCOS TO TEST DEVICE 6a 217
LOGICAL EXCLUSIVE OR INSTRUCTIONS FCll SIO START I/O" 6a218

FC1F TIO TEST I/O" 6-219-
8C08 EOMS EXCLUSIVE OR MEMORY BYTE 6-106 FC27 STP!O STOP I/O'" 6-220
8eoo EOMH EXCLUSIVE OR MEMORY HAlFWORO 6-107 FC2f RSCHNL RESET CHANNEL" 6·221
SCOO E_ EXCLUSIVE OR MENORY WORD 6-108 fC37 H!O HALT I/O" 6-222
8CDO EDI«l EXCLUSIVE OR MEMORY OOIJHLEWORO 6-109 FC3f GRIO GRA8 CONTROLLER * 6-223
OCOO EOR EXCLUSIVE OR REGISTER AND REGISTER 6-110 FC47 RSCTL RESET CONTROLLER" 6-224
OCOB EORM EXCLUSIVE OR REGISTER AND REGISTER MASKED 6-111 FC4f ECweS ENABLE CHANNEl -WCS LOAO" 6-225

FC5F WCWCS W~ITE CHANNEL WCS" 6-226

·PSO mode instructions only

ii

REVISION INSTRUCTIONS AND MANUAL HISTORY

EQUIPMENT: 32/70 Series Computer PUBLICATION NO. 301-320070-001

PURPOSE: This reissue upgrades the manual reflecting the requirements of the Model 2005 Internal Processing Unit (lPU)

REVISION INSTRUCTIONS: Delete and add pages as shown on the following table.

DELETE ADD

N/A N/A

NOTE: Revised pages are marked with the Rev. No. in the upper unbound corner. Revised areas are marked with a vertical bar.

MANUAL HISTORY

REV. REV. DATE
TYPE NO. ISSUED

1st Ptg 1/79
R . 1/80

I '" INTERIM REVISION
F = FORMAL REVISION
R'" REISSUE
A = ADDENDUM

CONTROL REV. REV. DATE CONTROL
DOC. NO. ECl TYPE NO. ISSUED DOC. NO. ECl

301·320070-001 iii

iv

LIST OF EFFECTIVE PAGES

The total number of pages is in this manual is 398 consisting of
the following:

Page

Title
Instructions
iii through xiv
Frontispiece
1-1 through 1-18
2-1 through 2-32
3-1 through 3-12
4-1 through 4-22
5-1 through 5-22
6-1 through 6-228
7-1 through 7-18
8-1 through 8-6
A-I through A-6
B-1 through B-8
C-l through C-2
D-l through 0-2
E-l through E-2
F-l through F-2
G-l through G-2
OP Codes

Issue

Original
Orig inal
Original
Original
Original
Orig inal
Original
Orig inal
Original
Or ig inal
Original
Or ig inal
Or ig ina 1
Original
Original
Original
Original
Original
Original
Original

TABLE OF CONTENTS

SECTION I GENERAL DESCRIPTION

Page

Introduction .. 1-]
System Overview ... 1-1
General Characteristics ... 1-1.
Standard and Optional Features .. 1-4
General Purpose Features .. 1-5
Real-Time Features .. 1-6
Multiusage Features ... 1-7
Multip,rocessing Features .. 1-8

Functional Description .. 1-8
Major System Elements ... 1-8
SelBUS .. 1-11
Central Processor Unit .. 1-11

General Purpose Registers ... 1-11
Floating-Point Arithmetic Processor ... l-11
CPU Modes ... 1-11

Control Modes ... 1-13
Addressing Modes .. 1-13
Address Submodes .. 1-13

-Hardware Memory Management .. 1-14
Memory Map .. 1-14

Write Protection .. 1-14
Optional Writable Control Storage ... 1-15
Optional High-Speed Floating-Point Unit 1-15

Real-Time Option Module , .. 1-15
Interval Timer .. 1-15

>Main Memory ... 1-15
Memory Unit ... 1-15
Memory Module ... 1-16
Memory Interl eavi ng ... 1-16
Memory Unit Address Identity : 1-16
Memory Bus Contro 11 ers .. 1-16
Memory Lock and Unlock .. 1-17
Private Memory .. 1-17

Input/Output Subsystem .. 1-17
10M ... 1-17
Regional Processing Unit .. 1-17
General Purpose Multiplexer Controller 1-18

SECTION II CENTRAL PROCESSOR

Introduction ... 2-1
Instruction Repertoi reo ... 2-1
General Purpose Registers ... 2-2
CPU Control Modes .. 2-2

v

vi

TABLE OF CONTENTS (Cont'd)

SECTION II CENTRAL PROCESSOR (Cont'd)

Page

Program Status Word .•• 2-2
Program Status Doubleword ••• 2-2
Condition Codes ••..•••.....•.•..••.•....•.••.•..•.•••••.•.•..••..•..••.••...•• 2-2
Privileged and Unprivileged Operation ••• 2-2

CPU Addressing Modes ••••••••••••.••• 2-6
512 KB Mode ••• 2-7
512 KB Extended Mode •• 2-7
512 KB Mapped Mode •• 2-7
Mapped Extended Mode •• 2-7

CPU Majo~ Elements •• 2-7
CPU Data Structure •• 2-7
CPU Microprogrammable Processor ••• 2-9
Implementation Logic •• , •• 2-9
SelBUS Interface •• 2-9

Optional Writable Control Storage ••••••••••••••••••••••••••••••• : ••••••••••••••• 2-9
Optional High-Speed Floating-Point Unit ••• 2-12
Internal Processing Unit •• 2-12

Introduction •• 2-12
General_ ••• 2-12
General Characteristics ••• 2-14

Instruction Repertoire ••••••..•• 2-15
General Purpose Registers ••• 2-16
IPU Control Mode •• 2-16
Program Status Doubleword ••• 2-16
Condition Codes ••• 2-16
Privileged and Unprivileged Operation ••• 2-16
IPU Addressing Modes •••••••••.•• 2-19

512-KB Mode ••• 2-19
512-KB Extended Mode •• 2-19
512-KB Mapped Mode •• 2-19
Mapped Extended Mode •••••••••••••••••••••••••••••••••.•••••••••••••••••••••• 2-19

Functional Description •• 2-19
Major System Elements ••• 2-19

Central Processing Unit ••• 2-21
IPU Major Elements •• 2-21

IPU Data Structure •••.•• 2-21
IPU Microprogrammable Processor ••• 2-22
Implementation Logic •• 2-22
SelBUS Interface •• 2-22

Optional High-Speed Floating-Point Unit ••••••••••••••••••••••••••••••••••• 2-22
Optional Scientific Accelerator ••• 2-24
Optional Writable Control Storage ••• 2-24

Traps ••• 2-24
New Traps ••• 2-24
Operating Mode •• 2-24
Trap Context Switching •• 2-24

Trap Format ••••••••••••••.•• 2-24
IPU Status Word ••• 2-27

CPU/IPU Interface Operation •• · ••••••••• 2-27
Start IPU Trap (Vector Address 2E4) ••••••••••••••••••••••••••••••••••••••• 2-27
Restart IPU o •• 2-28

TABLE OF CONTENTS (Cont~d)

SECTION" CENTRAL PROCESSOR (Cont'd)

Page

IPU Error Condition Trap (Vector Address 2EC) ••••••••••••••••••••••••••••• 2-28
IPU Call Monitor Trap (Vector Address 2FO) •••••••••••••••••••••••••••••••• 2-31
IPU Supervisor Call Trap (Vector Address 2E8} ••••••••••••••••••••••••••••• 2-31
Stop IPU Trap Vector Address 2F4 •• 2-31
CPU (End IPU Processing) Trap (Vector Address 2EO) •••••••••••••••••••••••• 2-31
Memory Management ••• 2-31
Input/Output System ••• 2-32
Scratchpad Memory ••• 2-32

Initialization •• 2-32
Introduction •• 2-32
Initial Program Load •• 2-32
Power Fail-Safe Feature •••.••••••• 2-32

SECTION 11/ TRAPS AND INTERRUPTS

Introduction •• 3-1
Traps •••.••••..••• 3-1
Interrupts •• 3-1
Operating Modes ••• 3-1
PSW Mode •• 3-4
PSD Mode •• 3-5

IVL and IeB ••..•••.••••••••••••••••• 3-6
IeS Formats ••••••••••••••••••••••••••••••••••••••• · ••••••••••••••••••.••••••••• 3-6

Old and New PSD ••• 3-6
External and Non-Class F Format ••• 3-6
Trap Fonna t ... 3-6
Class F I/O Fonnat •••.•• 3-8
Supervisor Call Format •••.•••• 3-8

PSD Macro Instructions •••••••••••••••••••••••••••••••••.••..•••••••••..••••••• 3-10
Automatic Trap Halts ••••••••••••••••••••••••••••••••••.•••••••••••••••.••••••••• 3-10

PSW Trap Halts •••••••••••••••••••••.•••••••••••••••••.•••••••.•••••••••.••.••• 3-10
PSD Trap Halts •••••••••••••••.••••••••.•••••••••••••••••••••••••.••••••••••••• 3-10

Machine Check Trap ••••••••••.••••.•••••.•••••••••••••••••••••.•••••••••••••• 3-10
System Check Trap •••••••••••••..•.••••••••••••••••.••••••••••••••••.•••••••• 3-11
Block Mode Time-Out Trap ... 3-11
PSD Trap Halt Implementation •• 3-11

vii

vii i

TABLE OF CONTENTS (Cont'd)

SECTION IV MEMORY MANAGEMENT

Page

I ntroducti on ..•. 4-1
Overvi ew .. 4-1
MaS and Core Memory ... 4-1

600/900 ns Core Memory Modules .. 4-2
Mixed Memory Rules .. 4-2

Memory Reference Instructions ... 4-3
F- and C-Bits ... 4-4
Oi rect Address i ng ... 4-4
Indirect and Indexed Addressing ... 4-5

Indexed Addres sing .. 4-5
Indi rect Addressing ... 4-6

Words, Ha 1 fwords, and Bytes ... 4-6
Word and Ooub 1 eword Operands .. 4-6

Hardware Memory Management ...• , 4-8
Address i ng Modes ...•........ 4-8

512 KB Mode ...•... 4-8
512 KB Extended Mode ...•........ 4-8
512 KB Mapped Mode .. 4-9
Mapped Extended Mode•..•................................ 4-9

Memory Mappi,ng .. 4-9
Memory Prot~ction ... 4-12
Program Status Ooub leword ... 4-12

PSD Fiel!ds ...•........ 4-12
Condi t i dn Codes ... 4-14
MAP Des~ri pt ion ... 4-15
Master Process List ...•........ 4-15

Address Generation ...•.......• 4-17

SECTION V INPUT/OUTPUT SYSTEM

I ntroduct ion•... 5-1
Defi ni t ions ... 5-1
I/O Processor Classifications ... 5-4
Operation With Class 0, 1, 2, and E I/O Processors 5-4

Command Device Instruction : 5-5
Tl'ansfer Control Word ... 5-5
Test Device Instruction ... 5-10
I nput/Output Processor .. 5-10

Se 1 BUS Interface .. 5-10
Transfer Responses .. 5-11
10M Data Structure .. 5-11
Arithmetic Logic Unit ... 5-11
Data Structure Control ...•............ 5-11
Test Structure .. 5-11

TABLE OF CONTENTS (Cont'd)

SECTION V INPUT/OUTPUT SYSTEM (Coot'd)

Page

Interrupts , ... 5-11
Class F I/O Operation ... 5-11.

Cl ass F I/O Processor ... 5-13
Memory Addressing Method .. 5-13
PSD Mode I/O Instructions ... 5-16

Start I/O ... 5-16
Test I/O .. 5-16
Ha lt . I/O .. 5-16
Enable Channel WCS load ... 5-16
Write Channel WCS ... 5-16
Enable Channel Interrupt .. 5-16
Disable Channel Interrupt ... 5-17
Activate Channel Interrupt .. 5-17
Deactivate Channel Interrupt .. 5-17
Reset Channel Interrupt ... 5-17
Stop I/O .. 5-17
Reset Contro 11 er .. 5-17
Grab Contro 11 er ... 5-17

Input/Output Command list Address ... 5-17
Input/Output Command Doubleword ... 5-17
I nput/Output Commands ... 5-18

Wri teo .. 5-18
Read .. 5-18
Read Backword ... 5-18
Contro 1 ... 5-18
Sense ... 5-18
Transfer In Channel ... 5-18
Channel Control ... 5-18

Input/Output Termi nat ion .. 5-18
Input/Output Status Words ... 5-20
I nput/Output Interrupts ...) . 5-20

SECTION VI INSTRUCTION REPERTOIRE

Introduction .. 6-1
Mnemoni c .. 6-1
Instruction Name .. 6-1
Operation Code .. 6-1
Format .. 6-1
Definition .. 6-1
Summary Expression .. 6-1
Assembly Codi ng Conventions ... 6-1

Condition Code Results .. 6-4

ix

TABl.E OF CONTENTS (Cont'd)

SECTION VI INSTRUCTION REPERTOIRE (Cont'd)

Page

Examp 1 es .. 6-4
Instruction Mnemonics ... 6-4
Assembler Coding Conventions .. 6-5
Instruction Definition Format ... 6-5
Load/Store Instructions ... 6-7
Regi ster Transfer Instructions .. 6-44
Memory Management Instructions .. 6-58
Writable Control Storage (WCS) Instructions 6-63
Branch Instructions ... 6-68
Branch Programmi ng .. 6-69
Compare Instructions .. 6-81
Logical Instructions ; 6-94
Shift Ope rat i on Instructions .. 6-112
Bit Manipulation Instructions , 6-126
Fixed-Point Arithmetic Instructions ... 6-136
Floating-Point Arithmetic Instructions .. 6-170
Cont ro 1 Ins t ruct ions .. 6-180
Interrupt Instructions ...••......... 6-199
Input/Output Instructions 0 •••••••••••••••••••••••• 6-213

Class F I/O Instructions .. 6-214
lOCO Format for Class F I/O WCS ... 6-227

SECTION VII CONTROL PANEL

Genera 1 ..•........•....••..• 7-1
Pane 1 Lock .. 7-1
Power ... 7-1
Run/Halt .. 7-1
System Reset .. 7-1
Attention ... 7-1
Initial Program Load .. 7-1
Clock Override .. 7-1
Operation/Mode Indicators ... 7-1

Parity Error .. 7-1
Interrupt Active .. 7-3
Clock Override .. 7-3
Run , .. 7-3
Halt .. 7-3
Wait .. 7-3

Keyboards .. 7-3
Hexadecimal Keyboard .. 7-3
Function Keyboard ... 7-4

x

TABLE OF CONTENTS (Cont'd)

SECTION VII CONTROL PANEL (Cont'd)

Page

WRITE Key•.. 7-4
-X
READ Key .. 7-4
-y-
WRITE & INC IAI Key ... 7-4
INC IAI & READ Key .. 7-4
EXT FUNCT Key ... 7-5
INS~ STOP Key .. 7- 5
OPRND R STOP Key .. 7- 5
OPRND W STOP Key .. 7- 5
INSTR STEP Key .. 7-5
KEYBOARD Key .. 7- 5

Panel Displays .. 7-6
A-Display ... 7-6
B-Display ..•........................ 7-7
Odd/Even Indicators ... 7-8

EVEN REGISTER Indicator ... 7-8
ODD REGISTER Indicator .. 7-8

Mi sce 11 aneous Indi cators .. 7-8
MEMORY ADDRESS Indicator .. 7-8
PSW Indicator ... 7-8
PROGRAM COUNTER Indi cator ... 7-8
OPERATOR FAULT Indicator .. 7-8
MEMORY DATA Indicator ... 7-9
EFFECTIVE ADDRESS Indicator ... 7-9
ERROR Indicator ... 7-9
CONTROL SWITCHES Indicator .. 7-9
KEYBOARD Indicator .. 7-9
INSTRUCTION I ndi cator ... 7-9
STOP Indicator .. 7-9
INSTR STOP Indicator .. 7-10
OPERAND READ STOP Indicator : 7-10
OPERAND WRITE STOP Indicator .. 7-10
OPERATOR FAULT Indicator .. 7-10
ERROR Indicator ... 7-10
Miscellaneous Indications ... 7-11

Operating Instructions .. 7-11
Load B-Display From Hex Keyboard .. 7-11
Load A-Display .. " 7-11

Write Memory Address .. 7-12
Write PSW ... 7-12
Read PSW .. 7-12
Write PSD2 .. 7-13
Read PSD2 ... 7-13
Wri te Program Counter ... 7-13
Read Program Counter .. 7 -13
Write Memory (Single Address) ... 7-14
Read Memory (Single Address) .. 7-14

Instruction Step .. 7-15
Read Effective Address .. 7-15

xi

xii

TABLE OF CONTENTS (Cont'd)

SECTION VII CONTROL PANEL (Cont'd)

Page

Convert Address ... 7-16
Stop Sequence ... 7-16
Control Switches Sequence ... 7-17

Write Control Switches•................................•• 7-17
Read Control Switches•...........•............•.................. 7-17

Initial Program load Sequence•.....•..•...............•.................. 7-18

SECTION VIII SYSTEM INITIALIZATION

Initial Program load (IPl)•...•. 8-1
Formats of the Initial Configuration load (ICl)•........•......•........ 8-1

Format #1•...............................•.•......... 8-2
Format' #2•.............•....•..•........................•.........•..•.. 8-3
Format #3•..••. 8-3

Examples of Initial Configuration Load (ICl) Records) 8-3

APPENDICES

APPENDIX A Instruction Set (Functionally Grouped)•....•.•... ' ...•.. A-1
APPENDIX B Hexadecimal-Decimal Conversion Table•................ B-1
APPENDIX C Hexadecimal Conversion Table•.•....•...•..... C-1
APPENDIX D Hexadecimal Additions•.......•........ D-1
APPENDIX E Numerical Information ... E-1
APPENDIX F Table of Powers of Sixteen and Tables of Powers of Ten F-1
APPENDIX G ASCII Interchange Code Set with Card Punch Codes ...•......•.....•... G-1

LIST OF ILLUSTRATIONS

Figure

1-1

1-2

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12

2-13
2-14
3-1

3-2
3-3
3-4
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
6-1
7-1
8-1

Page

System Block Diagram Example: Typical 32/70 Series System with
Core Men1ory •• 1-18
System Block Diagram Example: Typical 32/70 Series System with
~S Memory ••• e _ •• 1-19
Program Status Word (PSW) Format ••• 2-4
Program Status Doubleword (PSD) Format ••••••••••••••••••••••••••••••••••••• 2-6
CPU - Simplified Block Diagram •••••••••••.••••••••••••••••••••••••••••••••• 2-8
Microinstruction Format •• 2-10
Functional Interrelationship: CPU. WCS. and High-Speed FPU •••••••••••••••• 2-11
Optional High-Speed Floating-Point Unit •••••••••••••••••••••••••••••••••••• 2-13
Program Status Doubleword (PSD) Format ••••••••••••••••••••••••••••••••••••• 2~17
System Block Diagram •••••••••••••••••••••••••••••••••••••••.•••••••••.•.••• 2-20
IPU Simplified Block Diagram ••• 2-21
Microinstruction Format ••••••••••••••••••••••• ~ ••••••••••••••••••••••••• ••• 2-23
Optional High-Speed Floating-Point Unit •••••••••••••••••••••••••••••••••••• 2-25
Functional Interrelationship of the IPU. WCS. and High-Speed Floating
Point Unit ••• 2-26
Trap Context Block Format (Internal Processing Unit) ••••••••••••••••••••••• 2-28
CPU/IPU Interface Operational Flow ••• 2-29
Interrupt Context Block Format - External Interrupts and Non-Class
F I/O Interrupts ••••••••••••••• ~ •••••••••••••••••••••••••••• ••••••••••••••• 3-7
Trap Context Block Fonmat •• 3-7
Interrupt Context Block Format - Class F I/O Interrupts •••••••••••••••••••• 3-9
Supervisor Call (SVC) Trap Context Block Format •••••••••••••••••••••••••••• 3-9
Information Boundaries in Memory ••• 4-7
Map Image Descriptor List •• 4-10
Memory Management Components ••• 4-11
Fonmats for PSDI and PSD2 •• 4-13
Map Segment Control Descriptor (MSCD) •••••••••••••••••••••••••••••••••••••• 4-18
Map Segment Descriptor (MSD) ••• 4-18
Map Image Descriptor (MID) ••• 4-18
Address Generation (512 KB Mode) ••• 4-19
Address Generation (512 KB Extended Mode) •••••••••••••••••••••••••••••••••• 4-20
Address Generation (512 KB Mapped Mode) •••••••••••••••••••••••••••••••••••• 4-21
Address Generation (Mapped. Extended Mode) ••••••••••••••••••••••••••••••••• 4-22
32/70 Series Input/Output Organization ••••••••••••••••••••••••••••••••••••• 5-2
Block Diagram - Regional Processing Unit (RPU) ••••••••••••••••••••••••••••• 5-3
Class 0, 1. 2. and E I/O Organization •••••••••••••••••••••••••••••••••••••• 5-6
Command Device Instruction Format •• 5-6
Command Device Function Bit Fonnat for Peripheral Devices •••••••••••••••••• 5-7
Transfer Control Word Format ••••••••••••.•••••••••••••••••.•.•••••••••..••• 5-8
Test Device Instruction Format ••• 5-9
Test Device 2000 Status Information •• 5-9
Block Diagram _ I/O Microprogrammable Processor •••••••••••••••••••••••••••• 5-12
System Configuration With Class F I/O Processor •••••••••••••••••••••••••••• 5-14
I/O Control Words (Class F} •••••••••••••.••••••••••••.•••.••••••••••••••••• 5-15
Input/Output Command Doubleword (IOCD) ••••••••••••••••••••••••••••••••••••• 5-19
Positioning of Information Transferred Between Memory and Registers •••••••• 6-9
32/70 Series Serial Control Panel •• 7-2
System Initial Configuration Load (ICL) Deck ••••••••••••••••••••••••••••••• 8-8

xiii

xiV

LIST OF TABLES

Table

1-1
2-1
2-2
2-3
2-4
3-1
5-1
6-1
6-2
6-3

Relationship of CPU
PSW and PSD Modes:

Page

Modes •• 1-12
Functional Differences ••••••••••••••••••••••••••••••••• 2-3

PSD Mode (IPU) ••••• : ••• 2-18
CPU/IPU Communication Traps .••• 2-27
IPU Status Word Bit Definitions •• 2-30
PSW/PSD Mode Re 1 at ive Trap/l n terrupt Pri or it i es •••••••••••••••••••••••••••• 3-2
Transfer Control Word Format Code •• 5-8
Symbol Definitions ••• 6-2
Assembler Coding Symbols ••• 6-6
32/70 Series Relative Trap/Interrupt Priorities •••••••••••••••••••••••••••• 6-199

WARNING I
nus equipment generates, uses, and can radiate radio frequency energy, and if not
installed and used in accordance with the instructions manual, may cause interference
to radio communications. As temporarily permitted by regulation it has not been tested
for compliance with the limits for Class A computing devices pursuant to subpart J of
part 15 of FCC rules, which are designated to provide reasonable protection against
such interference. Operation of this equipment in a residential area is likely to cause
interference in which case the user at his own expense will be required to take
whatever measures mt;ly be required to correct the interference.

32/75 Computer N6786

INTRODUCTION

SYSTEM
QVERVIEW

GENERAL CHAR­
ACTERISTICS

SECTION I

GENERAL DESCRIPTION

The 32/70 Series computer systems are high-speed, general purpose,
digital systems that are designed for a variety of scientific, data
acquisition, and real-time applications. A basic system includes a
centra 1 processor, mai n memory subsystem, and mi croprogrammed i nput/
output controllers. Each majol' system element operates semi-independ­
ently with respect to the other elements.

The bas i c system can be readily expanded to accommodate the user IS

requirements. Main memory (Core or MOS) has addressing space for 16
million bytes. In a multiprocessor environment, memory can be con-

·figured with up to 20 access routes. Input/output capability can be
increased by adding more I/O Micro-programmable Processors (laMs),
Regional Processing Units (RPUs), multiplexers, device controllers, and
I/O devices.

The CPU has a large instruction set that includes fixed- and floating­
point arithmetic instructions. A special lookahead feature enables the
CPU to overlap instruction execution with memory accessing, thereby
reducing program execution time. A large main memory of up to 16 million
bytes (4M words} is available. The memory can consist of up to 16 module
increments on each of up to 16 memory buses. Memory can be shared
by up to eight CPUs and their associated I/O processors.

Each memory module operates independently of all others and address
interleaving can be provided between adjacent modules. This multiaccess
memory subsystem with interleaving provides system performance far
superi or to other des i gn concepts. A 32/70 Seri es system can support
up to 16 independent I/O processors of four types - laMs, RPUs, multi­
plexers, and high-speed data interfaces - with a maximum aggregate data
transfer rate of up to 16.67 million bytes, per second, concurrent with
CPU instruction execution.

The exi st i ng 32/35 and 32/55 programs can be run on a 32170 Seri es
computer in the PSW mode. The upward compatibility of the software
(assemblers, compilers, mathematical and utility routines, and appli­
cation packages) virtually eliminates reprogramming.

All 32/70 Series computer systems contain features and functional char­
acteristics that promote efficient operation in general purpose, multi­
processing, real-time, and multiusage environments.

• Byte-oriented memory (8-bit byte plus one parity bit) which can be
addressed and altered as bit, byte (8-bit), halfword (2-byte), word
(4-byte), and doubleword (8-byte) quantities.

• 600- or 900-nanosecond core memory.

• 900-nanosecond MOS memory with error checking and correction.

1-1

1-2

• Both core and MOS memory expandab 1 e to 16,777,216 (I6M) bytes in
some models.

• Indexed addressing capability (PSW or PSD mode with extended ad­
dressing) of entire memory.

• Multilevel indirect addressing with indexing at each level.

• Immediate operand instructions for greater storage efficiency
and increased speed.

• Eight general purpose registers that may be used for arithmetic,
1 ogi ca 1, and shi ft operations, as well as maski ng, 1 i nki ng, and
indexing.

• Hardware memory mapping to reduce memory fragmentation and to
provide dynamic program relocation.

• Memory write protection to prevent inadvertent destruction of
critical areas of memory.

• Real-time priority interrupt system of up to 112 ,levels with auto­
mat i c i dent i fi cat i on and pri ori ty ass i gnment; externa 1 interrupt
levels which can be individually enabled, disabled and requested
by program.

• Automatic traps (for error or fault conditions) that have masking
capability and maximum recoverabi1ity under program control.

• Power fail-safe for automatic shutdown in the event of power fail­
ure and resumption of processing after power is restored.

• Multiple interval timers with a choice of resolutions for in­
dependent time bases.

• Privileged instruction logic for program integrity in mu1tiusage
env i ronments.

• A complete instruction set that includes the following:

- Bit, byte, hal fword , word, and doub1eword operations.

- Register-to-register operations with halfword instructions to
improve program execution time.

- Fixed-point integer arithmetic operations on byte, ha1fword,
word, and doubleword operands.

Floating-point arithmetic operations in single and double pre­
cision formats.

- Full complement of logical operations (AND, OR, Exclusive OR)
for bytes, hal fwords , words, and doub1ewords.

- Comparison operations for bit, byte, ha1fword, word, and doub1e­
word operands.

- Call Monitor and Supervisory Call instructions that allow a pro­
gram access to operating system functions.

Shi ft operations (1 eft and ri ght) of word or doub 1 eword, i n­
cluding logical, circular, and arithmetic shifts.

• Built-in reliability and maintainability features:

- Full parity checking of all memory accesses.

- Address stop feature that permi ts operator or mai ntenance per­
sonnel to:

Stop on any instruction address.
Stop on any memory read reference address.
Stop on any memory write reference address.

- CPU traps, which provide for detection of a variety of CPU and
system fault conditions, designed to enable a high degree of
system recoverability.

• Independently operating I/O system with up to 16 I/O processors
per CPU.

• General Purpose Multiplexer Controller (GPMC) that provides for
the concurrent operation of up to 16 devices on one I/O processor.

• High-Speed Data interface (HSD) for use with high-speed devices,
that allows data transfer rates of up to 3.2 million bytes per
second.

• Comprehensive software that is upward program compatible with
the 32/35 and 32/55 computers.

- Expands in capability and speed as system grows.

- Real-Time Monitor (RTM and Mapped Programming Executive (MPX32».

- Language processors that inc 1 ude: Extended FORTRAN IV, ANS
COBOL, BASIC, assembler, utilities, and applications software
for real-time and scientific users.

• Standard and special purpose peripheral equipment:*

- Cartridge Disc Units - 10 million byte capacity per unit, peak
transfer rate of 312K bytes per second, average access time of
35 milliseconds.

- Moving-Head Fixed Media Disc - 24 million byte capacity per
unit, transfer rates of 1.2 million bytes per second, average
access time of 40 milliseconds.

- Moving-Head Disc - Units available with 40, 80, or 300 million
byte per unit capacity, transfer rates of 1.2 million bytes per
second, average access time of 30 milliseconds.

1-3

1-4

STANDARD AND
OPTIONAL
FEATURES

- Magnetic Tape Units 9-track, 800/1600 bpi, IBM compatible,
high-speed units operating at 75 inches per second with transfer
rates up to 120,000 bytes per second; other units operating at 45
inches per second with transfer rates up to 72,000 bytes per
second.

- Card Equipment Reading speeds up to 1,000 cards per minute.

- Line Printers Fully buffered with speeds up to 900 lines per
minute, 132 print positions with 64 characters.

- Keyboard/Printers 30 characters per second.

- Paper Tape Equipment Readers with speeds up to 300 characters
per second, punches with speeds up to 120 characters per second.

- Data Communications Equipment Asynchronous, synchronous, and
bisynchronous communications equipment to connect remote user
terminals to the computer system via common carrier lines and
local terminals directly.

* Some packaged 32/70 Series systems are
restricted in regard to peripherals due
to environmental requirements.

A basic 32/70 Series System has the following standard features:

• A CPU that includes:

- Floating-point arithmetic
- Memory map with access protection
- Memory write protection
- Power fail-safe

• Real-Time Option Module that includes:

- A real-time clock
- A programmable interval timer
- Sixteen interrupt levels

• Core or MOS memory (maximum amount and type varies depending on
model).

• Teletype, Line Printer, and Card Reader (TLC) controller with three
subchannels.

A 32/70 Series system can have the following optional features:

• High-Speed Floating-Point option with up to four times the perfor­
mance of the standard unit for both single and double precision
operands.

GENERAL
PURPOSE

FEATuRES

• Six additional Real-Time Option Modules

• Writable Control Storage (WCS): up to 4,096 64-bit words.

• An additional 96 external priority interrupts per CPU.

• Up to 13 High-Speed Data interfaces (HSD)

• Up to five General Purpose Multiplexer Controllers (GPMCs).

• Memory shared by up to eight CPUs.

• Up to 16 device controllers with each GPMC.

• Up to 13 user-microprogrammable General Purpose I/O modules (GPIOs)
and Regional Processing Units (RPUs).

• Up to 13 high-speed controllers, such as magnetic tape and disc.

All 32/70 Seri es Computer systems inc 1 ude the fo 11 owi ng general purpose
features:

Indirect addressing facilitates table linkages and permits keeping data
sect i cns of a program separate from procedure sections for ease of
maintenance

The large instruction set (up to 189 instructions in some models)
permits short. highly optimized programs to be written that minimize
both program space and execution time.

Monitor and Supervisory Call instructions permit access to specified
operating system services.

A four-bit condition code simplifies the checking of results by
automatically providing information on instruction execution. It
includes indicators for arithmetic exception, zero, minus. and plus, as
appropriate.

Regional Processing Units (RPU) implement intelligent I/O controllers.
Once initialized, an RPU operates independently of the CPU, leaving it
free to provide fast response to system needs. The RPU requires minimal
interaction with the CPU. Thus, many I/O devices can operate simul­
taneously without overloading the CPU.

The Hi~h-speed Data Interface (HSD) is a single channel parallel
contro ler that interfaces directly to the SelBUS. Once initiated, I/O
operations proceed independently of the CPU. The HSD sustains a data
transfer rate of up to three million bytes per second.

1-5

1-6

REAL-TIME
FEATURES

Hardware Memory Management of 32/70 Series core or MOS memory - which is
available in sizes up to 16 million bytes and provides the needed
capacity while assuring the potential for expansion - makes efficient
use of avai lable memory. The memory map hardware permits storing a
user's program in segments of 8,192 words, wherever space is available.
All segments appear as a single, contiguous block of storage at
execution time. The memory map also automatically handles dynamic
program relocation so the program appears to be stored in a standard way
at execution time. Actually, it can be stored in a different set of
locations each time it is brought into memory.

Real-time appl ications require: (1) hardware to respond quickly to an
external environment, (2) speed to keep up with the real-time process
and (3) input/output flexibility to handle a wide variety of data types
at varying speeds. A 32/70 Series system provides the following real­
time computing features:

Multilevel, Priorit~ Interruet Structure of the real-time oriented 32/70
Series systems provldes a qUlck response to interrupts with a maximum of
112 interrupt levels. The source of each interrupt is automatically
i dent ifi ed and responded to accordi ng to its pri ori ty. For further
flexibility, each level can be individually disabled to discontinue
input acceptance and to defer responses.

The way interrupt 1 eve 1 s are programmed is not affected by the
priority assignment.

Programs that deal with interrupts from special purpose devices often
require checkout before the equipment is actually available. To
simulate special equipment, any external interrupt level can be
requested by the CPU by executing a single Request Interrupt (RI)
instruction. This capability is also useful in establishing a modified
hierarchy of responses. For example, when servicing a high-priority
interrupt and the urgent processing is finished, it i soften desirable
to assign a lower priority to the rest of the service routine so that
the interrupt system can respond to other critical stimuli. A service
routine can do this by requesting a lower-priority interrupt level, and
thereby process the remai ni ng data after other interrupts have been
serviced.

Real-Time Clocks are needed to handle the real-time functions that must
be timed to occur at specific instants. Other timing information is also
needed, such as elapsed time since a given event or the. current time of
day. Clocks also allow easy handling of separate time bases and
relative time priorities. A 32/70 can support up to seven real-time
clocks synchronized to aline frequency of 50 Hz or 60 Hz. The clocks
can a 1 so run at twi ce the line frequency, 100 Hz or 120 Hz, or on an
external source.

Programmable Interval Timers can be set to request an interrupt after
any specified time period with a 300-nanosecond resolution. In addition
to the r.eal-time clocks, the system can support seven programmable
interval timers.

Context Switching must be done quickly with a minimum of time overhead.
When responding to a new set of interrupt-initiated circumstances, a
computer system must preserve the current operating environment, so the
program can continue later, while setting up the new environment. In a
32/70 Series system, all relevant information about the current
environment (instruction address, privilege state, condition codes,
address modes, etc.) is kept in a 32-bit Program Status Word (PSW) or
64-bit Doubleword (PSD).

MULTIUSAGE
FEATURES

When an interrupt occurs, the CPU stores the current PSW or PSD in the
memory location(s) selected by the interrupt level and loads a new PSW
or PSD to establish a new environment.

Every 32/70 Series system also includes a Load File and StoY'e File
instruction so that the entire set of general purpose registers can be
loaded or stored with one instruction. These instructions help make
context switching fast and easy.

Quick Response is a 32/70 Series feature which involves the following
combination: rapid context switching, store file and load file
instructions, and a priority interrupt system. These features benefit
all users because more of the system's resources are available for
usesful work at any given time.

Memory Protection features that protect each user from every un­
privileged user also guar'antee the integrity of programs essentiai to
critical real-time applications. '

Input/Output requirements are available for a wide range of capacities
and speeds. The 32/70 Seri es I/O system sat is fi es the needs of many
'different appl i cati on areas economi ca l1y and effici ently in terms of
equipment and programming.

A 32/70 Series system can run programs from two or more computer appli­
cation areas concurrently. The most difficult general computing problem
is the rea l-t i me app 1 i cat i on because it has several requi rements. The
most difficult multi usage problem is a terminal-oriented application
that includes one or more real-time processes. Because tne 32/70 Series
systems have been designed on a real-time base, they are uniquely qual­
ified for a mixture of applications in a multiusage 2nvironment. Many
hardware features that prove valuable for one application area are useful
in others, although in different ways. This multiple capability makes a
32/70 Series system particularly effective in multiusage appl ications.

The Instruction Set is large enough to provide the computational and
data-handling capabilities required for widely differing application
areas. This allows user programs to be short and fast.

Memory Protection makes it possible to run both real-time and batch
programs concurrently in a 32/70 Series system. Real-time programs are
protected against destruction by unchecked batch programs. Under Real­
Time Monitor Control, the memory write-protection feature prevents
destruction of information in protected memory.

Variable Precision Arithmetic is important in real-time systems where
the data encountered is often 16 bits or less. To process this data
efficiently, as well as the data in a batch environment, the 32/70
Series computers provide bit, byte, halfword, word, and doubleword
arithmetic.

Priority Interrupts are especially useful because they make it possible
for many elements to operate simultaneously and asynchronously. An
interrupt system allows the computer to respond quickly and in proper
sequence to the many demands made upon it.

1-7

MULTI PROCESS ING
fEATURES

1-8

FUNCTIONAL
DESCRIPTION

MAJOR SYSTEM
ELEMENTS

Every 32/70 Series computer is designed to function as a shared-memory.
multiprocessor system. It can support up to 20 Central Processor Units
that share memory. and may have up to 16 Input/Output Microprogrammable
Processors per CPU. All processors in a 32/70 Series system can address
shared memory using identical addresses.

The 32/70 Series computers have the following major features that allow
expansion of a single processor to a multiprocessor system:

Multiprocessor Interlock. In a multiprocessor system. a Central
Processor Unit (CPU) often needs exclusive control of a system resource.
This resource can be a region of memory. a particular peripheral device.
or in some cases. a specific software routine. The 32/70 Series com­
puters have a special set of instructions to provide this required
multiprocessor interlock. The special instructions are Set Bit in
Memory. Reset Bit in Memory, Test Bit in Memory, and Add Bit in Memory.
The Set Bit in Memory instruction sets a bit in the selected position of
the referenced memory location before other CPUs are allowed to access
that memory location. If this bit had been previously set by another
CPU. the interlock is set and the testing program proceeds to another
task. On the other hand. if the bit of the tested location is a zero,
the resource is allocated to the testing CPU. Simultaneously. the
interlock can be set to lock out any other CPU.

Private Memory. Each CPU in a multiprocessor system must retain some
private memory for its trap and interrupt locations, I/O communication
locations, and other dedicated locations. This private memory consists
of at least 8.192 words for each CPU. This private memory must begin
with real address zero. The implicitly assigned trap locations and
interrupt locations occupy the first 1.096 words of private memory. The
remaining words in private memory can be used as private. independent
storage by the CPU. .

The major elements of a typical 32/70 Series computer system include:
the Se1BUS. a Central Processor Unit. a Real-Time Option Module, main
memory, an input/output subsystem, and a System Control Panel (see
Figures 1-1 and 1-2 for system block diagram examples). The overall

. computer system can be viewed as a group of program-controlled sub­
systems communicating with a common memory. Each subsystem operates
semi-independently with automatic overlap of subsystem operation occur­
ring when conditions permit. This overlap greatly enhances the speed of
operation. The major elements are listed below along with a brief func­
tional description.

1. Se1BUS - provides for high-speed communication between
the major system elements.

2. Central Processor Unit - performs overall control and
data reduction tasks.

3. Real-Time Option Module - implements internal and external
interrupts and traps.

4. Main Memory - provides for private and shared storage.

I-'
I

'"

-i
'<'"T1
'"'Ct.
..... <.Q
nc
IlI-,;
-'Ill
WI-'
N' ,
---.J •
o
VI VI ro,<
-';(1)
..... M-
Illro
(1)3

VI OJ
'<-'
(1)0
M-()
III 7<"
3

Cl
:Ii:
..... QI
M-<O
:;r-,;

til
("")3
o
-';rr1
rox

til
3:3
1ll"C
3
oro
-,; ..
'<

CORE
MEMORY
MODULE •••

NO 1

1

I
TTY LP, CR

CONTROLLER
(Tlel

CORE CORE
MEMORY MEMORY
MODULE ••• MOOULE

N04 N016

MEMORY BUS NO 1 I
MEMORY BUS SERIAL
CONTROLLER CONTROL

(MBC) PANEL

SElBUS

-

INPUT /OUTPUT
MICROPRO·

GRAMMABLE

PROCESSOR

110M)

•

CORE CORE
MEMORY MEMORY
MODULE •••••••• MODULE

NO 17 NO 32

WRITABLE CONTROL
STORAGE (WCS)

t I
I HIGH-SPEED (HSFP) MEMORY BUS NO 2

FLOATING-POINT OPTION 1 -CENTRAL MEMORY BUS
PROCESSOR

CONTROLLER
~ UNIT I--- (MBC)

(CPU)

! SElBUS I SE LBUS

t I !
REGIONAL RANDOM

REAL·TlME REAL-TIME

PROCESSING
~ ACCESS

OPTION OPTION

••• UNIT (RPU) MEMORY MODULE MODUL~

(RTOM) (RTOM)

1
USER

FURNISHED
DEVICE

......
I

o

-l-n
'< ~.
"D (Q
~.c:
() ,
OJrD

.....
WI
NN ,.
'-l
a(/)
V1'<
rDtr>
,rI"
~·rD
rD3
tr>

o:J
(/)
'<0
tr>()
rI" A
rD
35:
:£0.1
~.(Q

rI"""'i
:yOJ
3;3
o rrI
(/)X

OJ
~3
rD-o
3
OrD

~

/ 2048 KB MAX

~~
MOS

MEMMOD MEMMOD • • • 256 KB 256KB

(I) (2)

I MEMORY BUS

•
MOS

MEMORY BUS
CONTROLLER

r----J-----,
I ADDITIONAL I
I REAL·TIME
I OPTION MODULE I
I I

Li~~-::~~~-(
16 EXT

INTERRUPTS

!
FIRST

REAL·TIME
OPTION MODULE

i·· ·1
6 EXT

INTERRUPTS

•

" r----'
I MOS I I MEMMOD I
I 256 KB I

I (8) I L. _____ ...I

!
.--------...,
I I
I HIGH SPEED I
I FLOATING POINT ...-.
I I

I...----r-----'

MAGNETIC
TAPE

CONTROLLER

75 IPS ,

M!U f ~
~ I \\
. "2) l.. " ',,,---,./. I " (3) _

'~I41~.:

1
A/N
CRT

TLC
CONTROLLER

/ ~~~ " r----' r-----' r-----l
I MOS I I MOS I I MOS I
I MEM MOD I I MEM MOD I I MEM MOD I
I 256 KB 1 • • • • : 256 KB I I 256 KB I
I I I I I I
I 1111 I 171 I I (81 I

MEMORY BUS

.... --c-J '---r--- L_] __

r---=---: --:_J==- -
I WRITABLE I I MOS I k-J CONTROL I I MEMORY BUS I

I .! STORAGE I I CONTROLLER I L ________ ...I I... _________ ~

SELBUS (26.67 MB/SEC) !
1

CARTRIDGE
DISC

CONTROLLER

T
,-

y-'
1"-4 1
\ I ,
I I L -""(2"')--.J
I i -rn--""
I 4.-,4i--r' " __ ."_J

CARD
READER

·(300CPM)

r----t----, r---------,
I REGIONAL I I RANDOM I PROCESSING W ACCESS I
I UNIT I I MEMORY I

L----r----J I...--------~
r---- ----,
I USER I
I FURNISHED I
I DEVICE I
L ________ J

_____ OPTIONAL EQUIPMENT

SelBUS

CENTRAL PRO­
CESSOR UNIT

GENERAL
PURPOSE

REGISTERS

FLOATING-POINT
ARITHMETIC

PROCESSOR

CPU MODES

5. Input/Output Subsystem - enables information exchange
between memory and selected peripheral devices.

6. System Control Panel - provides for user interaction
with the system.

The SelBUS is a 184-line bidirectional bus that sends and receives data
between the CPU, the memory subsystem, the Regional Processing Unit (RPU),
the Input/Output Microprogrammable Processors (iOMs) on 32 data lines at
a continuous data rate of 26.67 mill ion bytes per second. Twenty-four
address lines are used to address the selected 10M or memory interface
for a read or write operation. Both data and address 1 ines operate
concurrently, and the transfers occur every 150 nanoseconds.

In a multiprocessor or special system configurations, remote memory sub­
systems, dual-processor shared-memory options, and memory ports may be
connected to the Se1BUS to support remote, shared, or private memory.

The 32/70 Series Central Processor Unit (CPU) is contained on three
plug-in circuit boards. Two of the boards are the Micro Arithmetic/
Logic Unit. The third board is the Micro Control Unit, which is some­
times referred to as the personality board.

Instructions on a 32/70 Series computer are continuously and auto­
matically fetched for processing. This occurs concurrently with ex­
ecution and decoding of previous instructions. Decoding is by pro­
prietary parsing logic which employs parallel Read-Only Memories (ROMs)
for high-speed decoding.

Eight integrated-circuit, 32-bit general purpose registers (GPRs) are
used by the CPU. These eight registers of fast memory are referred to
as the general purpose file.

Each general purpose register is identified by a 3-bit code in the range
000 through 111 (0 through 7 in decimal). Any general purpose register
can be used as a fixed-point accumulator, floating-point accumulator, or
temporary data storage location. A register can also contain control
information such as a data address, count, or pointer. General purpose
registers 1 through 3 can be used as index registers. Register 4 can be
used as a mask register. Register 0 is a link register and an interval
timer count.

A firmware floating-point arithmetic processor is standard with the
Central Processor Units. The firmware floating-point arithmetic pro­
cessor executes all floating-point instructions significantly faster
than normal software floating-point routines.

A 32/70 Series computer can operate in eight different modes: four
control modes (PSW-Privi1eged, PSW-Unprivileged, PSD-Privi1eged, PSD­
Unprivileged) and four addressing modes (512 KB, 512 KB Extended, 512
KB Mapped, Mapped Extended).

The Extended mode can mean either 1 megabyte or 16 megabytes depending
on the mapping mode. Table 1-1 shows the interrelationships among the
control and address modes.

1-11

Table 1-1. Relationship of CPU Modes

Control
Modes PSW PSD

Addressing
Modes Pri vil eged Unprivileged Privileged Unpri vil eged

Unmapped

512 KB X X X X

512 KB Extended X X X X

Mapped

512 KB NA NA X X

Extended NA NA X X

1-12

Control Modes

Addressing
Modes

Addressing
Submodes

The basic control mode is designated either Program Status Word (PSW) or
Program Status Doubleword (PSD) mode. The PSW mode allows a 32/70
Series computer to emulate the environment required to run the Real-Time
Monitor (RTM); whereas the PSD mode makes it possible to create the
environment required to run the Mapped Programming Executive (MPX).

The CPU. when in the PSW mode or PSD mode. can run in either the Priv­
ileged,or Unprivileged mode.

Privileged operation allows the CPU to perform all of its control func­
tions and to modify any part of the system. It is assumed that the
resident operating system (operating in the Privileged mode) controls
and supports the execution of other programs (which can operate in the
Privileged or Unprivileged mode).

Unprivileged operation is the problem-solving mode of the CPU. In this
mode. memory protection is in effect. and all privileged operations are
prohibited. Privileged operations are those relating to input/output
and to changes in the basic control state of the computer. All priv­
ileged operations are performed by a group of privileged instructions.
Any attempt by a program to execute a privileged instruction while the
computer is in the Unprivileged mode results in a trap.

The Privileged/Unprivileged mode control bit can be changed when the
computer is in the Privileged mode. An Unprivileged mode program can
gain direct access to certain executive program operations by means of
Supervisory Call or Call Monitor instructions. The operations available
through these instructions are established by the resident operating
system.

The basic addressing modes are designated either Unmapped or Mapped. Ad­
dressing submodes are 512 KB or extended addressing (refer to Table 1-1).

Unmapped addressing establishes a one-to-one relationship between the
effective virtual address of each operand or instruction and the physi­
cal address in memory.

Mapped addressing uses the memory management hardware to convert effec­
the virtual operand and instruction addresses into physical (real)
memory addresses located anywhere in up to 16 megabytes of phys i ca 1
memory. The memory management hardware contains a MAP which allows
the privil eged user to defi ne how vi rtua 1 addresses are converted to
real addresses.

The MAP contains thirty-two 16-bit registers; the first 16 registers
contain the Primary MAP to define a 512 KB primary logical address
space. and the second 16 registers contain the Extended Operand Map
to define an additional 512 KB extended operand address space for
additional data storage.

The addressing submodes are 512 KB and extended addressing. 512 KB
addressing allows direct addressing of 512K bytes (128K words) of memory.­
In the 512 KB mode. this address space consists of the first 512K bytes
i nmemory. In the 512 KB Mapped mode. thi s address space is the 512K
bytes of primary logical address space for each user.

1-13

HARDWARE MEMORY
MANAGEMENT

1-14

Memory Map

WRITE
PROTECTION

Extended Address i ng allows a program through i ndexi ng to extend the
address space beyond 512K bytes. In the Unmapped Extended mode, the
extension is to 16 megabytes. In Mapped-Extended mode, provision is
made for up to 1 megabyte of logical address space for each user. The
mappi ng hardware can locate thi s 512 KB space in 8, 192-word segments
anywhere in up to 16 megabytes of physical memory.

The Hardware Memory Management feature of 32/70 Seri es computers use
dynamic Memory Allocation and Protection (MAP) This allows programs to
be loaded in one area of phys i ca 1 memory, ro 11 ed out to di sc, rolled
back into another area of memory, and to continue execution without
requiring time-consuming software relocation biasing. In addition,
user programs may be write protected and distributed throughout physical
memory in 32K-byte blocks. Thus, the full utilization of available
memory is a practical possibility.

A memory map deals with virtual and real addresses. A virtual address
pertains to the logical space used by a machine-level program and is
normally derived from programmer-supplied labels through an assembly
(or compilation) process followed by a loading process. Virtual ad­
dresses may be used to des i gnate an element of data, the 1 oeat i on of
an instruction, and either an indirect or immediate (explicit) address.
A real (physical) address is the address a processor sends to the memory
address register to access a specific physicaJ memory location for
storage or retrieval of information. Real addresses are determined
by the hardware, whereas virtual addresses include all addresses.

The memory map provi des dynami c program re 1 ocat ion into di scont i guous
segments of memory. When the CPU is operating in Mapped 'mode, a program
can be segmented into an integral number of 8,192-word blocks and dis­
tributed throughout memory in whatever space is available. The memory
map transforms virtual addresses, as seen by the individual program,
into real addresses, as seen by the memory system.

When the CPU is not in the Mapped mode, as determi ned by a control bi t
in the Program Status Doubleword (PSD), all virtual addresses are used
by the CPU as real addresses. When the CPU is operating in the Mapped
mode, all virtual addresses are transformed into real addresses by
rep 1 aci ng the hi gh-order four or fi ve bi ts (dependent upon extended
addressing) of the virtual address with a 9-bit value obtained from the
memory map register.

The memory protection system provides write protection for individual
memory pages. When the CPU is in the Mapped mode (ei ther 512 KB or
Extended), each 32 KB memory block of logical program address space may
be write protected. Write protection for a 32 KB memory block is se­
lected by setting the protect/unprotect bit that is stored, along with
the block address, in the MAP register of the CPU.

When the CPU is in either the Unmapped or Mapped mode (either 512 KB or
Extended) , 512-word memory pages may be write protected. Up to 256
pages (l28K words) can be protected at a time. Sixteen 16-bit Page
Protect registers are provided in the CPU for write protection in the
Unmapped or Mapped mode.

Write protection may be overridden by a CPU operating in the Privileged
mode.

OPTIONAL
WRITABLE

CONTROL
STORAGE

OPTIONAL
HIGH-SPEED

FLOATING-POINT
UNIT

REAL-TIME
OPTION MODULE

INTERVAL
TIMER

MAIN MEMORY

MEMORY UNIT

The optional Writable Control Storage (WCS) may be used to ex­
pand the 32/70 Series computer instruction repertoire and to enhance
the performance of user programs. By microprogramming a 32/70 Series
computer with firmware subroutines. the optional Writable Control Stor­
age (weS) can tailor the computer to perform specific applications such
as Fourier transforms. coordinate transformation. polynomial evaluation.
and number system conversion.

Further improvement in overall performance is achieved by using micro­
programs for frequently executed subroutines in the FORTRAN Run-Time
Package. the FORTRAN Compiler. the BASIC Interpreter. and the 32/70
operating system. All high-speed firmware subroutines can be invoked
from main memory for execution as needed.

Up to 4.096 64-bit words of Writable Control Storage (WCS) can be added
to a 32/70 Series computer in increments of 2.048 64-bit words .. Each
increment plugs into the Se 1 BUS for power and clock. However.
communication with the CPU is independent of SelBUS operation.

The optional High-Speed Floating-Point Unit functions as an extension of
the 32/70 Series central processor to perform high-speed execution
of floating-point arithmetic instructions. Addition. subtraction. multi­
plication and division of single-precision (32-bit) or double-precision
(64-bit) operands are possible with execution times that are signifi­
cantly greater than with the standard floating-point feature of the CPU.

The first RTOM in the system provides the 10 basic interrupts and traps
which comprise the system integrity features. These basic interrupts and
traps include: Power Fail-Safe. System Override. Memory Parity. Non­
present Memory. Undefined Instruction, Privilege Violation. Attention.
Call Monitor. Real-Time Clock. and Arithmetic Exception.

The first RTOM also provides the six highest external interrupt levels.
one of which may be used for the standard interval timer.

The programmable interval timer provides a 32-bit counter that can be
loaded examined. started. or stopped by way of a Command Device (CD)
instruction. The Command Device (CD) enables the counter at one of four
program-selectable rates. When the counter is decremented to zero. the
interval timer requests a priority interrupt.

An introduction to the basic organization and operation of the main mem­
ory subsystem is provided in the paragraphs that follow.

A 32/70 Series system may have either core or MOS memory. Packaged sys­
tems are sold with one or the other but not both for the same system.
The user may elect to mi x the two types of memory. but on 1y if it is
done in accordance with the configuration rules specified in Section III
of this manual.

The main memory for a 32/70 Series system is physically organized as a
group of units. A memory unit is the smallest logically complete part of
the system. and the smallest part that can be logically isolated from
the rest of the memory system. A memory unit consists of 1 or 2 memory
chassis. a power supply. 1 to 4 Memory Bus Controllers (MBCs). and 1 to
16 memory modules. Memory units with MaS memory also include a
Refresh board.

1-15

MEMORY MODULE

MEMORY
INTERLEAVING

MEMORY UNIT
ADDRESS

IDENTITY

1-16

MEMORY BUS
CONTROLLERS

A memory module is the basic functionally independent element of the
memory system. Each module can operate concurrently with all others
in a memory unit. A memory module consists of storage elements. drive

'and sense electronics. control timing. and data registers. Core and MOS
memory modules are described separately. as follows:

1. Core memory modules have either 8.I92-word (32K-byte)
locations with a 600-nanosecond cycle time or I6.384-word
(64K-byte) locations with a 900-nanosecond cycle time.
Each word contains a total of 36 bits: 32 data bits
and 4 parity bits (1 parity bit per byte). Byte.
halfword. word. or doubleword addresses may be used
to access memory.

2. MOS memory modules have either 65,S36-word (2S6K-byte)
or I3I,072-word (SI2K-byte) locations; both have a
cycle time of 900 nanoseconds. MOS memory is
organized into 39-bit words: 32 data bits plus 7
error checking and correction (ECC) bits. The
seven error correction bits report and correct
single-bit errors. The ECC bits also detect and
report (but do not correct) double-bit errors.

When a system consists of two memory modules (or a multiple thereof).
memory can be two-way interleaved. If a system has four modules (or a
multiple thereof). memory can be four-way interleaved~ Memory inter­
leaving is a built-in hardware feature that distributes sequential
addresses into independently operating memory modules., Interleaving
increases the probability that a processor can gain access to a given
memory location without encountering interference from other processors.
Thus. interleaving significantly reduces cycle time and increases the
throughput rate.

With two-way interleaving. even addresses are assigned to even-numbered
memory modules and odd addresses to odd-numbered memory modules. Four­
way interleaving assigns every fourth address to its respective memory
module and can occur when a multiple of four memory modules are included
in a unit.

Each memory unit in a 32/70 Series system is provided with an individual
identity by means of address range switches. These switches define the
range of addresses to which the unit responds when servicing memory re­
quests. All addresses. including the starting address. for a given unit
should be the same for all Memory Bus Controllers (MBCs) in that unit;
that is. the address of a given byte remains the same regardless of the
MBC used to access the byte. The starting address of a unit must be on a
boundary equal toa multiple of the size of the memory modules in the
unit. If the unit is interleaved. the unit must contain a multiple of
the memory mOdules'size times the number of interleaves.

The Memory Bus Controllers (MBCs) in a memory unit act as an interface
between the process i ng uni ts (CPUs • IOMs. and RPUs) on the Se 1 BUS and
the memory modules. Each memory unit can have from one to four MBCs.
Each MBC is capable of managing up to 16 memory modules with overlapped
operation. All memory modules assigned to one MBC must be of the same
type (either MOS or core but not both) and have the same cycle and
access time.

MBCs exami ne i ncomi ng addresses to determi ne if the request is for a
memory module within the memory unit. In addition. an MBC determines
the priority of memory requests that are received simultaneously.
Computer memory requests can be i ni t i ated every ISO nanoseconds due to
the overlapped memory design.

MEMORY LOCK
AND UNLOCK

PRIVATE MEMORY

INPUT/OUTPUT
SYSTEM

10M

REGIONAL
PROCESSING

UNIT

The 32/70 Series systems can include from one to eight MBCs per SelBUS.
All processors, either CPUs or I/O processors, must interface to memory
by way of an MBC. MBCs are located, along with the memory modules, in a
separate chass i s from the CPU and I/O processors. Dependi ng on the
particular system and the needs of the user, an MBC may be configured in
a variety of ways. For example, an MBC can connect directly to the
SelBUS; or, a Memory Interface Adapter (MIA) and/or Memory Bus Adapter
(MBA) may be employed to provide indirect connection between the SelBUS
and an MBC.

MBCs can be locked and unlocked by a CPU. A Memory Lock signal can be
sent to the MBC in conjunction with a read transfer, and a Memory Unlock
signal can be sent during a write transfer. The Read and Lock transfer
is used to access a word instruction in memory and to lock out all other
processors from the MBC. A Write and Unlock transfer causes information
to be written into memory and enables access to the MBC by other SelBUS
devices. Only CPUs can use the Lock and Unlock feature.

When a Read and Lock transfer is received, the MBC involved is
temporarily inhibited from accepting any additional transfer requests.
However, all transfer requests already accepted by the MBC, but not yet
'comp 1 eted, wi 11 be processed normally.

In a 32/70 Series multiprocessing system, all processors address memory
in the same manner. The CPUs do not share the same interrupt or trap
systems. Thus, it is necessary to provide private storage for each CPU
to contain its trap and interrupt locations, I/O communication loca­
t ions, and scratchpad 1 ocat ions. Thi s pri vate memory must begi n at 0
and extend at least to 2,048 memory locations (bytes).

The Input/Output Microprogrammable Processor is the basic hardware
structure of the I/O processor and consists of a SelBUS interface, a
microprocessor, and interface logic for an external device.

The SelBUS interface provides for communication between the 10M and the
CPU, or between the 10M and memory. The mi croprocessor has a Control
Read-Only Memory (CROM) that contains the microprogram (firmware) for
controlling the SelBUS interface, microprocessor, and device interface
logic. The device interface logic may consist of some control logic for
operating the I/O interface and the receivers/drivers necessary to
communicate with the I/O device or external interface.

There are three classes of I/O processors in a 32/70 Series system: the
10M, the RPU, and the General Purpose Multiplexer I/O processor. The I/O
processor can also be used to provide a General Purpose Input/Output
interface (GPIO). The customer must design the device interface logic
and supporting firmware to make the I/O processoor and device dependent
interface operate as an I/O processor for some sped fi c type of I/O
device(s).

The 10M is the basic I/O processor which contains the microprogrammable
processor, the SelBUS interface, and the device interface on a single
logic card.

The Regional Processing Unit (RPU) serves as a General Purpose Input!
Output interface (GPIO) for the peripheral device(s). The RPU connects
directly to the SelBUS, the major artery for transmitting information.
The RPU consists of three individual elements which are self-contained
on separate modules: the regional processor, the device interface, and
optional high-speed Random Access Memory (RAM). The major characteristic
of the RPU ;s that it supports Random Access Memory or Writable Control
Storage that can be programmed to suit the user's requirements.

1-17

1-18

GENERAL
PURPOSE

MUTIPLEXER
CONTROLLER

A third type of I/O processor is the General Purpose Multiplexer Con­
troller (GPMC) which controls a number of individual controllers that
are located at various distances from the processor. The GPMC can
schedule requests for main memory between several controllers. The GPMC
also connects each dependent controller to the CPU for initiation or
termination of an I/O operation.

I

INTRODUCTION

INSTRUCTION
REPERTOIRE

SECTION II

CENTRAL PROCESSOR

This section of the manual describes the 32/70 Series Central Processor
Unit (CPU). Included are an introduction to the instruction repertoire
and descriptions of the modes of operation, their format, and the major
functional elements of the CPU.

The functional classifications and corresponding number of instructions
for the 32/70 Series computer are as follows:

Classifications

Fixed-Point Arithmetic
Floating-Point Arithmetic
Boolean
load/Store
Bit Manipulation
Zero
Shift
Interrupt
Compare
Branch
Register Transfer
Input/Output
Control
Hardware Memory Management
Writable Control Storage

Total

Number

30
8

17
29
8
5

13
13
11

9
13
10
16

4
3

189

Of particular significance are the bit manipulation and floating-point
instructions. The eight bit manipulation instructions provide the capa­
bility to selectively set, zero, add, or test any bit in memory or
register.

The eight floating-point instructions are unique because they can either
be executed by the firmware in the CPU, or by the optional High-Speed
Floating-Point Arithmetic Unit. Except for the execution speed, the
presence or absence of the optional Floating-Point Arithmetic Unit is
transparent to the user. .

All of the instructions in the repertoire are classified as either being
halfword instructions (16 bits) or word instructions (32 bits). The

. word instructions primarily reference memory locations; the halfword
instructions primarily deal with register operands. Because approxi­
mately one-third of the instructions are halfword instructions, program
core space can be conserved by packing two consecutive instructions into
one memory location.

The 32/70' s use instruction lookahead for fast instruction execution.
Instruction fetches are made concurrently with instruction execution and
with decoding a previously fetched instruction.

2-1

GENERAL PURPOSE
REGISTERS

CPU CONTROL
MODES

PROGRAM STATUS
WORD

PROGRAM STATUS
DOUBLEWORD

CONDITION
CODES

PRIVILEGED AND
UNPRIVILEGED

OPERATION

2-2

The 32/70 Seri es CPU has a set of ei ght hi gh-speed, general purpose
registers for use by the programmer for arithmetic, logical, and shift
operations. Three general purpose registers - Rl, R2, and R3 - can also
be used for indexing operations. Register RO can also be used as a link
register. Register R4 can be used as a mask register.

The CPU operates in either of two basic control modes: the PSW mode or
the PSD mode. The PSW mode provides an environment to run the Real-Time
Monitor (RTM) Operating System. The PSD mode provides an environment to
run the optional Mapped Programming Executive (MPX-32) Operating System.
The funct iona 1 di fference between the PSW and PSD modes are out 1 i ned in
Tab 1 e 2-1.

A Program Status Word (PSW) is used to record all machine conditions
that must be preserved prior to context switching when in the' PSW mode
of operation. The PSW supports only the Class 0,1,2,3, and E I/O devices
using the Command Device (CD) and Test Device (TO) instructions. The
format of the PSW is shown in Figure 2-1.

A Program Status Doubleword (PSD) is used to record all machine
conditions that must be preserved prior to context switching when in the
PSD mode of operation. The format of the PSD is shown in Figure 2-2.
Execution of any Branch-and-Link instruction replaces the contents of
bits 13-30 of the PSD with the effective address specified by the
instruction. In addition, if the Branch instruction specifies an
Indirect Branch operation, the contents of bits 1-4 of the PSD are
replaced by the contents of the corresponding bit positions in the
indirect address location.

A 4-bit Condition Code is stored in the PSW or PSD upon completion of
the execution of most instructions. These conditions may be tested to
determine the status of the results obtained.

CCl is set if an Arithmetic Exception occurs
CC2 is set if the result is greater than Zero
CC3 is set if the result is less than Zero
CC4 is set if the result is equal to Zero

The Branch Condition True (BCT), Branch Condition False (BCF), and the
Branch Function True (BFT) instructions allow testing and branching on
the condition codes.

The CPU is capable of either privileged or unprivileged operation in
both the PSW and PSD modes. Privileged operation allows the CPU to
perform all of its control functions and to modify any part of the
system. Privileged operation relates to input/output and to changes
in the bas i c control state of the computer. Unpri vil eged operation
is the problem-solving mode of the CPU. In this mode, memory protection
is in effect and all privileged operations are prohibited.

One bit in the Program Status Doubleword (PSD) or Program Status Word
(PSW) is designated as the Privileged State bit. If the Privileged State
bit is set, privileged instructions can be executed. If the Privileged
State bit is reset, any attempt to execute a privileged instruction will
cause a Privileged Violation trap.

Table 2-1. PSW and PSD Modes: Functional Differences

Characteristics PSVl ~/ode* PSD Mode**

Program Status Hord Doubleword

Number of Instructions 160 189

Integrity Features Interrupts on first Traps
RTOM

Memory Addressing

Nonmapped

Nonextended 512 KB 512 KBt

Extended 16 MB 16 MBt

Mapped

Nonextended None 512 KB per user

Extended None 1 MB per user

CD I/O Yes Yes

Addressing 512 KB 512 KB

Extended I/O No Yes

Addressing None 16 MB

* RTM supported
** MPX supported
t No software support

2-3

2-4

H . .
P C, C2 c3 C4 EA

I 0 0 o 0 o 0 PROGRAM COUNTER C 0
I ~ I I I I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BITO

BIT 1-4

BIT5

DESIGNATES THE PRIVILEGED STATE BIT

DESIGNATE THE CURRENT CONDITION CODE

DEFINES THE EXTENDED ADDRESSING MODE (ABOVE 128K)

BIT 5=0 NON EXTENDED ADDRESSING
BIT 5=1 EXTENDED ADDRESSING

BITS 6 DEFINES THE POSITION OF THE LAST INSTRUCTION EXECUTED

BIT 6 = 0 LEFT HALFWORD OR FULLWORD
81T 6 = 1 RIGHT HALf WORD

BITS 7·12 UNASSIGNED, MUST BE ZERO

BITS 13·29 CONTAIN THE WORD ADDRESS (PC) COUNT OF THE NEXT
INSTRUCTION TO BE EXECUTE"D

BIT 30 DEFINES THE POSITION OF THE NEXT INSTRUCTION
(LEFT OR RIGHT INSTRUCTION)

BIT 30=0 LEFT HALFWORD
BIT 30=1 RIGHT HALFWORD

Figure 2-1. Program Status Word (PSW) Format

P
CONDITION E H A P B

R I E S N L
I CODES X S X

T T P D R K.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
,~ 6 ! f)

: . '+1
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

BIT 0 = 0
= 1

BITS 1-4

BIT 5 = 0
= 1

BIT 6 = 0
= 1

BIT 7 = 0
= 1

*BIT 8 = 0
= 1

*BIT9=0
= 1

BITS 10-12
BITS 13-29
BIT 30

* BIT 31
BITS 32-33
BITS 34-45
BIT46
BIT47
BITS 48-49

BITS

48 49

0 0
0 1
1 0
1 1

BITS 50-61
BITS 62-63

UNPRIVILEGED MODE
PRIVILEGED MODE

ARE CONDITION CODES
BIT 1 = CCl

2 = CV2
3 = CC3
4 = CC4

EXTENDED MODE (OFF) CEA
EXTENDED MODE (ON) SEA

LAST INSTRUCTION EXECUTED WAS NOT A RIGHT HALFWORD
LAST INSTRUCTION EXECUTED WAS A RIGHT HALFWORD

ARITHMETIC EXCEPTION TRAP MASK (OFF)
AR ITHMETIC EXCEPTION TRAP MASK (ON)

COMPUTER IS IN PSW MODE (DISPLAYED PSD ONLY) *
COMPUTER IS IN PSD MODE (DISPLAYED PSD ONLY) *

UNMAPPED (DISPLAYED PSD ONLY) *
MAPPED (DISPLAYED PSD ON L Y) *

ARE NOT USED
ARE LOGICAL WORD ADDRESS
NEXT INSTRUCTION IS ARIGHT HALFWORD
BLOCKED (DISPLAYED PSD ONLY) *
INDICATE MAP GRANULARITY, OO=UNMAPPED AND ALL OTHERS =8K MAP GRANULARITY
PROVIDE A WORD INDEX INTO THE MASTER PROCESS LIST (MPL) FOR THE BASE PROCESS
NOT USED
RETAIN CURRENT MAP CONTENTS
INTERRUPT CONTROL FLAGS

OPERATE WITH UNBLOCKED INTERRUPTS
OPERATE WITH BLOCKED INTERRUPTS
RETAIN CURRENT BLOCKING MODE
RETAIN CURRENT BLOCKING MODE

PROVIDE WORD INDEX INTO MASTER PROCESS LIST (MPLl FOR CURRENT PROCESS
NOT USED

THESE BITS ARE USED FOR DISPLAY ONLY AND ARE NOT PRESENT IN THE PSD STORED IN MEMORY,

Figure 2-2. Program Status Doubleword (PSD) Format

2-5

CPU ADDRESSING
MODES

2-6

The following instructions are privileged:

1. All interrupt related instructions such as Enable
Interrupt or Request Interrupt.

2. All instructions that can modify the memory mapping
registers.

3. All Input/Output instructions.

4. All instructions that can place the machine in a state
that requires operator intervention to continue
processing, such as Halt.

5. All instructions that modify Writable Control Storage.

User programs operating in the unprivileged state should use the Call
Monitor (CALM) or Supervisor Call (SVC) instruction with the appropriate
program flags to use the system features guarded by the privileged/
unprivileged system.

Certain events can change the processor from the unprivileged to the
privileged state by loading a new Program Status Word or Doubleword.
These are:

1. An interrupt from an external event or the I/O system.

2. A hardware trap caused by addressing nonpresent memory,
executing undefined instruction, executing privileged
instruction by nonprivileged program, or writing to
protected memory.

3. A hardware trap caused by a nonrecoverable condition
such as an uncorrectable error on a memory read, or an
arithmetic exception.

4. The execution of the Call Monitor or Supervisor Call
instruction by a user requesting monitor services.

In all cases, traps or interrupts are vectored to monitor routines for
proper handling. Both the interrupt/trap vectors and the monitor service
routines are in protected memory. This insures that an unprivileged
user has no way to become privileged or to alter protected state.

The execution of the Branch and Reset Interrupt (SRI) or the Load Pro­
gram Status Doubleword (LPSD) instruction can cause the system to change
from the privileged to the unprivileged state.

The operator can push the SYSTEM RESET button to initialize a 32170
Series computer. SYSTEM RESET clears the eight general purpose registers,
resets all memory protection, and sets the Privileged State bit.

The 32/70 Series CPU has four modes for accessing memory:

1. 512 KB mode

2. 512 KB Extended Mode

3. 512 KB Mapped mode

4. Mapped, Extended mode

512 KB
~

512 KB
EXiENDEl)

MODE

512 KB
MAmD
MOnr

MAPPED
EX"i'ENil'Ei)

MODE

CPU
MAJOR

ELEMENTS

CPU
Dill

STRUCTiJRE

The 512 KB addressing mode allows the 32/70 Series CPU to access in­
structions or operands (bit, byte, halfword, word, or doubleword) in the
first 512K bytes of memory directly without mapping, indexing, or
address modification. A 19-bit Address field is provided in memory
referencing instructions for that purpose.

Bit addressing is accomplished by using the Register (R) field in the
instruction word to select a bit in the byte specified by the 19-bit
address. Therefore, any bit in the first 512K bytes of memory can be
directly addressed by the Bit Manipulation instructions.

The 512 KB Extended mode provi des the same capabi 1 it i es as the 512 KB
mode descri bed above, and, in addi t ion, it permits operand address i ng
beyond the first 512K bytes of memory. The effective address can
reference any bit, byte, halfword, word, or doubleword residing any­
where within 16 megabytes of physical memory.

The 512 KB Mapped mode allows a 32/70 Series CPU to access any instruc­
tion or operand (bit, byte, halfword, word, or doubleword) within a
logical primary address space. This space consists of 512K bytes of
logical memory, distributed within 16 megabytes of physical memory.

The 32/70 Series CPU allows multiple primary address spaces. A user can
access instructions and operands within the logical primary address
space in which his program resides. Physical blocks of memory can be
common to many logical primary address spaces; thus, users in different
spaces can share common blocks of memory.

The 512 KB Mapped addressing mode can be used only when the CPU is in
the PSD control mode.

The Mapped Extended mode provides all the capabilities of the 512 KB
Mapped mode, plus access to a logical extended operand address space.
This space consists of 512K bytes of memory beyond the logical primary
address space and allows users additional memory space to store data
(operands). Each 1 ogi ca 1 extended operand address space can be 512K
bytes long, dispersed anywhere within 16 megabytes of physical memory.
The combination of logical primary address space and the logical
extended operand address space supports programs up to one megabyte
long. The executable code must lie within the logical primary address
space, but operands can be in either the logical primary or extended
operand address space.

The Mapped Extended addressing mode can be used only when the CPU is in
the PSD control mode.

A brief description of some major elements of the CPU are provided in
the paragraphs that follow. They include: the data structure, a micro­
programmable processor, the implementation logic, and the SelBUS inter­
face. A simplified block diagram of the CPU is shown in Figure 2-3. For
a more comprehensive discussion of the CPU, refer to the 32/70 Series
Computer Technical Manual.

The data structure contains the eight general purpose file registers and
10 hardware registers organized around an Arithmetic Logic Unit (ALU).
Key circuits in the data structure include the following:

2-7

IMPLEMENTATION .. CONTROL
LOGIC I'

DATA (LITERALS) , • I
DATA .. CONTROLS MICROPROGRAMMABLE

STRUCTURE
,

PROCESSOR

ADDRESS DATA
LDTO()'23) (LDOO-31)

CONTROL

,
SELBUS INTERFACE

SELBUS

EXTERNAL UNITS:
IOMS

RTOM,MEMORY

Figure 2-3. CPU Si~plified Block Diagram

2-8

CPU
MICmF

PROGRAMMABIT
PROCESSOR

IMPLEMENTATION
LOGIC

SelBUS
I NTE'RFA'CE

OPTIONAL
WRITABLE
CONTROL
STORAGE

l. Arithmetic Logic Unit (ALU)

2. A-Multiplexer

3. B-Multiplexer

4. Literal Multiplexer

5. General File Register

6. Memory Address Register

7. Program Counter Register

8. N-Counter Register

9. Shift Register

10. Temporary Register/Data Output Register

11. Data Input Register

12. Instruction Register 0

13. Instruction Register 1

The Mi croprogrammab 1 e Processor of the CPU is on board C of the three
CPU circuit boards. The logic circuit board which contains the Micro­
programmable Processor is commonly referred to as the personality board.

The Microprogrammable Processor utilizes Read-Only Memory (ROM)
integrated circuits which house the CPU's Elementary Operations (EO).
The EOs, with the associ ated circuitry, control the CPU operations by
testing, controlling, and directing the various functions to be
performed. The format for the EOs (also referred to as microinstruc­
tion) is shown in Figure 2-4.

The Implementation Logic includes the ALU Decode PROM, a Scale circuit,
the Floating-Point Assist PROMs, and a Multiply Assist PROM, all of
which serve to implement CPU functions.

The SelBUS interface logic is implemented on all three of the CPU cir­
cuit boards and provides control and temporary storage for information
being output to and input from the SelBUS. Since the SelBUS is the
high-speed communication link between system modules external to the CPU,
the SelBUS interface logic plays a vital role in CPU operation.

Writable Control Storage is an option which may be used with the 32/70
Series CPU to expand the instruction set, to enhance the performance of
user programs, or to tailor the computer to speci fi c user needs.

Up to 4,096 64-bit words of Writable Control Storage (WCS) can be added
to a 32/70 Series computer in increments of 2,048 64-bit words. Each
increment plugs into the SelBUS for power and clock. However,
communication with the CPU is independent of SelBUS operation.

The block diagram in Figure 2-5 shows two optional WCS units as they
could be implemented in conjunction with a 32/70 Series CPU and the
optional High-Speed Floating-Point Unit.

2-9

T

CROMOO·03

TEST

o 11 1 2 13

HARDWARE
FLOATING·
PT. CONTROL

It

" X

CREG32·36

X·ORDER

32133134135

W·TEST

'''- CREG

S·TEST

U·ORDER

S·ORDER

[

2-10

B M A B * D R Y

CROM04·0f CROM07-09 CREG10·12 CREG13·15 CREG16·19 CROM20·23 CREG2426 CREG27·31

SEQUENCE CONTROL A B
CONTROL EXTENDED MUX MUX ALU DESTlNAT10N FILE READ Y·ORDER

41 5 1 6 71 S 1 9 10 111112 13 114[15 161 118 119 20 121 122 123 24125126 27128129130131

HARDWARE FLOATING·POINt CONTROL

P C H

12·BIT BRANCH ADDRESS HARDWARE FLOATING·POINT CONTROL

36137138139 40/41142143 44145 r6 147 48 149 150 I 51152i5315'Q 55156157/58/59/60 161 162 163

Z·TEST 8·BIT BRANCH ADDRESS
CREG

EXTENDED TEST 4·BIT
CROM ~RANCH ADDR

CC'S' SHIFT • CONDITIONAL
CREG CREG ORDER CREG

HOWR F-PT
FILE NUMBER ROM PAGE ORDER

8·BIT LITERAL

FLIP/FLOP 1

FLIP/FLOP 2 *ROM ALTERNATE SOURCE

FLIP/FLOP 3

13·BIT WRITABLE CONTROL STORAGE JUMP

HARDWARE
F.P. ORDER NOTES: 1. BITS 0-47 OF EACH MICROINSTRUCTION

ARE IN THE CPU'S CONTROL ROM.

2. PORTIONS OF THE FORMAT DESIGNATED
FOR HARDWARE FLOATlNG·POINT APPLY
TO THE OPTIONAL HIGH·SPEED FLOATING·
POINT UNIT (FPU).

3. BITS 48-63 ARE PHYSICALLY PART OF
A CONTROL ROM IN THE OPTIONAL
HIGH·SPEED FPU.

Figure 2-4. Microinstruction Format

I'"

...,

32·BIT
DATA

~

SELBUS

13-BIT MICROINSTRUCTION ADDRESS

I ,
CPU 32-BIT CPU CPU WCS

A-BOARD B-BOARD C·BOARD OPTION

MICROPROCESSOR DATA MICROPROCESSOR CROM NO 1
148 BITS) (64 BITS)

t I t I t I 1
32·81T DATA I CONTROL LINES 48-81T MICROINSTRUCTION

1

HIGH·SPEED· HIGH·SPEED
FPU FPU

PROCESSOR
DIE PROM E

t
16·BIT MICROINSTRUCTION 16·BIT MICROINSTRUCTION

Fi~ure 2-5. Functional Interrelationship of the CPU, WCS, and
High-Speed Floating-Point Unit

,
WCS

OPTION
NO 2

(64 BITS)

I

2-11

OPTIONAL
HIGH·SPEED

FLOATING·POINT
UNIT

2-12

INTERNAL
PROCESSING

UNIT

INTRODUCTION

GENERAL

The High-Speed Floating-Point Unit (FPU) is an option that may be used
with a 32/70 Series CPU to increase the speed of floating-point arith­
metic operations. The unit consists of two circuit boards which may be
plugged in adjacent to the CPU. No alternations in the software are
requ ired.

If the High-Speed Floating-Point Unit (FPU) is installed. addition,
subtraction, multipl ication. and division of single-precision (32-bit)
or double-precision (64-bit) operands can be executed much faster than
with the CPU's standard floating-point feature.

An operand in floating-point fonnat has three parts: a sign bit. a
fraction. and an exponent. The sign bit indicates whether the fraction
is a positive or negative value. The fraction is a binary number with
an assumed rad ix point immediately to the left of its most significant
bit. The exponent is a 7-bit binary power to which the base 16 is
ra ised. The quantity that the floating-point number represents can be
determined by multiplying the fraction by the number 16 raised to the
power represented by the exponent.

Two operands of the same format and length are received by the FPU for
each arithmetic operation. One operand is input from a CPU general
purpose register (GPR), whereas the other operand is input from memory.
The precise GPR and memory location are specified in the floating-point
instruction. Upon completion of an operation, the result is returned to
the CPU general purpose register.

Figure 2-6 illustrates the major functional elements of the FPU. the
general routing of operands. and the relationships between the FPU. the
CPU, and the SelBUS.

The Model 2005 Processing Unit is a high-performance processor which
has been added to the SYSTEMS 32/70 Series Computer 1 ine. The Model
2005 processor's role as a Central Processing Unit (CPU) or Internal
Processing Unit (IPU) is selected by a jumper on the C board of the
processor. Both CPU and IPU on the same SelBUS must be Model 2005
processors. The IPU is designed for a computer configuration in which
a large amount of arithmetic calculation is anticipated and is ideal
for compute-bound number processing tasks and subroutines. The IPU.
a three-board plug-in module. operates on the same SelBUS with a CPU and
shares all of memory (including the resident operating system area)
with the CPU.

The IPU and CPU operate in parallel. with the IPU executing task level.
SYSTEMS 32 code at the same time the CPU is executing. The capability
of paralleled processing of instructions allows for faster completion of
code which would normally be processed in a serial manner by the CPU.
The CPU is responsible for all task scheduling I/O and system services
as well as for the execution of its own scheduled tasks.

Options available with the IPU are the Model 2341 High-Speed Floating
Point and the Model 2343 and 2347 Scientific Accelerator.

The IPU is similar. in many instances. to the CPU. Because of this
similarity, the IPU information presented in this section will em­
phasize only the di fferences and the unique aspects compared to the
CPU as presented throughout this manual.

SELBUS

1 32- OR 64-BIT
32- OR 64-BIT MEMORY

REGISTER OPERAND OPERAND ,... CENTRAL
PROCESSOR UNIT

'II'

r-- ------- - ----- -,
ADDRESS

ORDERS INPUT
AND CROM

MUX
SHIFT

CONTROL I 8
V

~, ~ J, • 4 EXPONENT FRACTION /8
V

/
CONTROL CONTROL

,

I I

L -~-
FRACTION EXPONENT

LOGIC LOGIC

56 ~ , , 8

CONDITION OUTPUT
CODES MUX

I
32- OR 64-BIT

I RESULT

L ________ ~L~N~I~N~ _______ --J

Figure 2-6. Optional High-Speed Floating-Point Unit

2-13

2-14

GENERAL
CHARACTER­

ISTICS
• I NSTRUCTI ONS

New Instruction - SIGNAL IPU (SIPU)

Instructions not used by IPU

Control Instructions

Branch and Reset Interrupt (BRI)

Interrupt Instructions

All Interrupt Instructions
except UEI

Input/output instructions

All instructions

• TRAPS - Six new traps for IPU/CPU Operation

End IPU Process 1ng

Start IPU Processing

IPU Supervisor CALL

IPU Errors

IPU Call Monitor

Stop IPU Processing

• Software

Under MPX-32 the IPU can be transparent to the user, or the user
can des ignate wh ich programs run on the IPU and wh ich run on the
CPU.

Two programs can run simultaneously because of the parallel oper­
ation of the IPU and CPU on the SelBUS.

I NSTRUCTI ON
REPERTOIRE

The functional classifications and corresponding number of instructions
of the Internal Processing Unit are as follows:

Classification

Fixed-Point Arithmetic

Floating-Point Aritlvnetic

Boolean

load/Store

Bit Manipulation

Zero

Shift

Interrupt

Compare

Branch

Register Transfer

Input/Output

Control

Hardware Memory Management

Writable Control Storage

Total

Number of Instructions

30

8

17

26

8

5

13

1 UEI

11

9

13

o Unimplemented in
IPU

15 BRI
unimplemented

4

_3

163

in IPU

Of particular significance are the bit manipulation and floating-point
instructions. The eight bit manipulation instructions provide the cap­
ability to selectively set,-zero, add, or test any bit in memory or
register.

The eight floating-point instructions are unique because they can either
be executed by the finnware in the IPU, or by the optional High-Speed
Floating-Point Arithmetic Un it. Except for the execution speed, the
presence or absence of the optional Floating-Point Arithmetic Unit is
transparent to the user.

All of the instructions in the repertoire are classified as either being
halfword instructions (16 bits) or word instructions (32 bits). The
word instructions primarily reference memory locations; the halfword
instructions primarily deal with register operands. Because
approximately one-third of the instructions are halfword instructions,
program core space can be conserved by packing two consecutive in­
structions into one memory location.

2-15

GENERAL PURPOSE
-REGISTERS

IPU CONTROL
MODE

PROGRAM STATUS
DOUBLEWORD

CONDITION CODES

PRIVILEGED AND
UNPRIVILEGED

OPERATION

2-16

The IPU uses instruction lookahead for fast instruction execution. In­
s truct ion fetches are made concurrently with instruct ion execut ion and
with decoding a previously fetched instruction.

The IPU includes a set of eight high-speed, general purpose registers
for programmer use for arithmetic, logical, and shift operations. Three
general purpose registers (Rl, R2, and R3) can also be used for indexing
operations. Register RO can also be used as a link register. Register
R4 can be used as a mask register. These registers are distinctly sep­
arate from the registers used in the controlling CPU.

The IPU operates in the PSD mode. The PSD mode provides an environment
to run the Mapped Programming Executive (MPX-32) Operating System. The
PSD mode is outlined in Table 2-2.

A Program Status Doubleword (PSD) is used to record all machine con­
ditions that must be preserved prior to context switching when in the
PSD mode of operation. The format of the PSD is shown in Figure 2-7.
Execution of any Branch-and-L ink instruction replaces the contents of
bits 13 through 30 of the PSD with the effective address specified by
the instruction. In addition, if the Branch instruction specifies
an Indirect Branch operation, the contents of bits 1 through 4 of the
PSD are replaced by the contents of the corresponding bit positions
in the indirect address location.

A four-bit Condition Code is stored in the PSD upon completion of the
execution of most instructions. These conditions may be tested to
determine the status of results obtained.

CCl is set if an Arithmetic Exception occurs

CC2 is set if the result is greater than zero

CC3 is set if the result is less than zero

CC4 is set if the result is equal to zero

The Branch Condition True (BCT), Branch Condition False (BCF), and the
Branch Function True (8FT) instructions allow testing and branching of
the condition codes.

The IPU is capable of either privileged or unprivileged operation in
the PSD mode. Privileged operation allows the IPU to perform all of
its control functions and to modify any part of the system; it relates
to changes in the basic control state of the computer. Unprivileged
operation is the problem-solving mode of the IPU. In this mode, memory
protection is in effect and all privileged operations are prohibited.

One bit in the Program Status Doubleword (PSD) is designated as the
Privileged State bit. If the Privileged State bit is set, privileged
instructions can be executed. If the Privileged State bit is reset,
any attempt to execute a privileged instruction will cause a Privilege
Violation trap.

P CONDITION E HAp
R I E S N B

L
R K I CODES X S X D

T T P
PROGRAM COUNTER

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

BIT 0 = 0
= 1

BITS 1·4

BIT 5 = 0
= 1

BIT 6 = 0
= 1

BIT 7 = 0
= 1

* BIT 8 = 0
= 1

*BIT 9 = 0
= 1

BITS 10·12
BITS 13-29
BIT 30

*BIT 31
BITS 32·33
BITS 34·45
BIT46
BIT 47
BITS 48-49

BITS

48 49

0 0
0 1
1 0
1 1

BITS 50-61
BITS 62-63

UNPRIVILEGED MODE

PRIVILEGED MODE

ARE CONDITION CODES
BIT 1 = CCl

2 = CC2
3 = CC3
4 = CC4

EXTENDED MODE (OFF) CEA
EXTENDED MODE (ON) SEA

LAST INSTRUCTION EXECUTED WAS NOT A RIGHT HALFWORD
LAST INSTRUCTION EXECUTED WAS A RIGHT HALFWORD

ARITHMETIC EXCEPTION TRAP MASK (OFF)
ARITHMETIC EXCEPTION TRAP MASK (ON)

COMPUTER IS IN PSW MODE (DISPLAYED PSD ONL Y)' (PSW MODE NOT USED BY IPU)
COMPUTER IS IN PSD MODE (DISPLAYED PSD ONLY)'

UNMAPPED (DISPLAYED PSD ONLY) •
MAPPED (DISPLAYED PSD ONLY)'

ARE NOT USED
ARE LOGICAL WORD ADDRESS
NEXT INSTRUCTION IS A RIGHT HALFWORD
BLOCKED (DISPLAYED PSD ONL Y) •
INDICATE MAP GRANULARITY, OO=UNMAPPED AND ALL OTHERS =8K MAP GRANULARITY
PROVIDE A WORD INDEX INTO THE MASTER PROCESS LIST (MPL) FOR THE BASE PROCESS
NOT USED
RETAIN CURRENT MAP CONTENTS
INTERRUPT CONTROL FLAGS

OPERATE WITH UNBLOCKED INTERRUPTS
OPERATE WITH BLOCKED INTERRUPTS
RETAIN CURRENT BLOCKING MODE
RETAIN CURRENT BLOCKING MODE

PROVIDE WORD INDEX INTO MASTER PROCESS LIST (MPL) FOR CURRENT PROCESS
NOT USED

THESE BITS ARE USED FOR DISPLAY ONLY AND ARE NOT PRESENT IN THE PSD STORED IN MEMORY.

Figure 2-7. Program Status Doubleword (PSD) Format

2-17

2-18

Table 2-2. PSD Mode (IPU)

Characteristic PSD Mode

Program Status Doub1eword

Number of instructions 163

Integrity Features Traps

Memory Addressing

Norvnapped

Nonextended 512 KB+

Extended 16 MB+

Mapped

Nonextended 512 KB per user

Extended 16 MB per user

+ No software support

The following IPU instructions are privileged:

1. All instructions that can modify the memory mapping registers.

2. All instructions that can place the machine in a state that re-
quires CPU intervention to continue processing, such as Halt.

3. All instructions that modify Writable Control Storage.

Certain events can change the processor from the unprivileged to the
privileged state by loading a new Program Doub1eword. These are:

• A hardware trap caused by address ing nonpresent memory, execut 1ng
undefined instruction, executing a privileged instruction by a
nonprivi1eged program, or writing to protected memory.

• A hardware trap caused by a nonrecoverable condition such as an
uncorrectab1e error on a memory read, or an arithmetic exception.

• The execution of the Call Monitor or Supervisor Call instruction
by a user requesting monitor services.

As long as traps are set they are vectored to monitor routines for
proper handling. The trap vectors and the monitor service routines
are in protected memory. This insures that an unprivileged user
has no way to become privileged or to alter protected state.

The execution of the Load Program Status Doub1eword (LPSD) instruc­
tion can cause the system to change from the privileged to the un-
privileged state. .

The operator can depress the SYSTEM RESET pushbutton to initial ize
a 32/70 SERIES computer and IPU. SYSTEM RESET clears the eight
general purpose registers, resets all memory protection, and sets
the Privileged State bit.

I PU ADDR ESS I NG
MODES

512-KB MODE

512-KB EXTENDED
MODE

512-KB MAPPED
MODE

MAPPED EXTENDED
MODE

FUNCTIONAL
DESCRIPTION

MAJOR SYSTEM
ELEMENTS

1. 512-KB mode

2. 512-KB Extended mode

3. 512-KB Mapped mode

4. Mapped, Extended mode

The 512-KB addressing mode allows the IPU to access instructions or
operands (bit, byte, halfword, word, or doubleword) in the first
512K bytes of memory directly without mapping, indexing, or address
modification. A 19-bit address field is provided in memory ref­
erencing instructions for that purpose.

Bit addressing is accomplished by using the register (R) field in the
instruction word to select a bit in the byte specified by the 19-bit
address. Therefore, any bit in the first 512K bytes of memory can be
directly manipulated by the Bit Manipulation instructions.

The 512-KB Extended mode provides the same capabil ities as the 512-KB
mode described above, and, in addition, it pennits operand addressing
only beyond the first 5I2K bytes of memory. The effective address can
reference any bit, byte, halfword, word, or doubleword residing anywhere
within 16 megabytes of physical memory.

The 512-KB Mapped mode allows the IPU to access any instruction or
operand (bit, byte, halfword, word, or doubleword) within a logical
primary address space. This space consists of 512K bytes of logical
memory map, distributed within 16 megabytes of physical memory.

The IPU allows mult ipl e primary address spaces. A user can access in­
structions and operands within the logical primary address space in
which his program resides. Physical blocks of memory can be common
to many logical primary address spaces; thus, users in different
spaces can share common blocks of memory.

The Mapped Extended mode provides all the capabilities of the 512 KB
Mapped mode, plus access to a logical extended operand address space.
This space consists of 5I2K bytes of mapped memory beyond the logical
primary address space and allows users additional memory space to store
data (operands). Each logical extended operand address space can be
512K bytes long, dispersed anywhere within 16 megabytes of physical
memory. The combination of logical primary address space and the logical
extended operand address space supports programs up to one megabyte long.
The executable code must lie within the logical primary address space,
but operands can be in either the logical primary or extended operand
address space.

The major elements of a typical SYSTEMS 32/70 SERIES Computer System
with an IPU include: 32/70 CPU, the SelBUS, Real-Time Option Module,
main memory, input/output system (not supported by the IPU), Serial
Control Panel, optional High-Speed Floating Point. and Scientific Accel­
erator modules. (See Figure 2-8 for a system block diagram.) The per­
formance gains of a CPU and IPU system over a CPU alone system is appli­
cation dependent. The IPU allows the user to run two tasks simultan­
eously in the computer system.

2-19

N
I

N
o

"Tl

<0
c
""'S
ID

N
I

CO

~
VI
<"+
1'1>
3

CO
~

o
(")

A

o
OJ

<0
""'S
OJ
3

~--,.

r-----,
t SCIENTIFIC I
I ACCELERATOR t
I PCS OR WCS I
L _____ -1

r-- --,
I SCIENTIFIC t
I ACCELERATOR I
I PCS OR WCS I
L ____ _ --.J

2048 KB MAX -- .-/'~--.-."'----,----,
I I
I MEM MOD I •
I I

r---'
t I

• • • • t MEM MOD t
I t
,-_._18lJ

CDNTROL
PANEL

W HEX DISP

r---,
I MOS I
I MEM MOD t
I 256 KB I

r--, r--,
I MOS I I MOS I

• • • • • I MEM MOD I I MEM MOD
256 KB I 256 KB I

,--

MEMORY BUS
CONTROLLER

I ADDITIONAL
I REALTIME

l:O::::~r
16 EXT

INTERRUPTS

..,i21J

MEMORY BUS

SELBUS 126.67 MBfSECI

FIRST
REALTIME

OPTION MDDULE

6 EXT
INTERRUPTS

,-----,
I HIGH SPE ED :... y - t-I
I FLOATING POINl
I
L.._

MAGNETIC
TAPE

CONTROLLER

\.
111 I I',..

I " ,,~2l_~:I' ,
",,2.1 ~ ~ I

" -!~I_~::J

CENTRAL
PROCESSOR

UNIT

TLC
CONTROLLER

t ,-.,

I I ,-_[:..J '-l~MJ L_ :.!.;J

- .. MEMORY BUS . ..:1_---- --t- -
,-- --,
I INTERNAL I
I PROCESSOR

r-- ., ._t._,
I I I MOS I

HSFPU t I MEM()HY>JUS I
I CONTROLLUI I UNIT I

L _ _ _ J _ L __ . __ J

DISC
CONTROLLER

r-----, r----'
I REGIONAL I I RANDOM I
I PROCESSING..--.. ACCESS I
I UNIT I I MEMORY
I I ~ __ ._-' L.. ____ ..

r--t.--,
I USE R I
I FURNISHED I
I DEVICE I ,-, r

, , 1« 121 ' «
, I" -- - _,oJ

'----_ ...

LINE
PRINTER
1600 LPMI

131 .J /&"_--"T
&.. __ ~!! _..1

READER
1300 CPMI

_____ OPTIONAL EQUIPMENT

Central
Processing

Unit

IPU Major
Elements

IPU Data
Structure

IPU
Microprogram­

mable Processor

Implementation
Logic

SelBUS
Interface

The CPU in the system plays the dominant role in its relationship with
the IPU. The CPU is responsible for all task scheduling I/O and system
services as well as for the execution of its own scheduled tasks.

A brief description of some major elements of the IPU are provided in
the paragraphs that follow. They include: the data structure, a micro­
programmable processor, the implementation logic, and the SelBUS inter­
face. A simplified block diagram of the IPU is shown in Figure 2-9.

The data structure contains the eight general purpose file registers
and ten hardware registers organized around an Arithmetic Logic Unit
(ALU). Key circuits in the data structure include the following:

1. Arithmetic Logic Unit (ALU)

2. A Multiplexer

3. B Multiplexer

4. Literal Multiplexer

5. General File Register

6. Memory Address Register

7. Program Counter Register

8. N Counter Register

9. Shift Register

10. Temporary Register/Data Output Register

11. Data Input Register

12. Instruction Register a
13. Instruction Register 1

The Microprogrammable Processor of the IPU is on board C of the three
IPU circuit boards. The logic circuit board. which contains the Micro­
programmable Processor, is commonly referred to as the personality
board.

The Microprogrammable Processor util izes Read-Only Memory (ROM)
integrated circuits which house the IPU's Elementary Operations
(EO). The EOs, with the associated circuitry, control the IPU
operations by testing, controll ing, and directing the various functions
to be perfonned. The fonnat for the EOs (al so referred to as micro­
instruction) is shown in Figure 2-10.

The Implementation Logic includes the ALU Decode PROM, a Scale circuit,
the Floating-Point Assist PROMs, and a Multiply Assist PROM, all of
which serve to implement IPU functions.

The SelBUS interface logic is implemented on all three of the IPU cir­
cuit boards and provides control and temporary storage for infonnation
being output to and input from the SelBUS. Since the SelBUS is the
high-speed communication link between system modules external to the
IPU, the SelBUS interface logic plays a vital role in IPU operation.

2-21

OPTIONAL
HIGH-SPEED

FLOATING-POINT
UNIT

2-22

IMPLEMENTATION CONTROL

lOGIC
,

DATA (LITERALS)

~, • I
DATA L.. CONTROLS MICROPROGRAMMABlE

STRUCTURE PROCESSOR

ADDRESS DATA CONTROL
(lDTOO-23) (lDOO-31)

~,

SElBUSINTERFACE

SElBUS

EXTERNAL UNITS:
CPU,

MEMORY

Figure 2-9. IPU Simplified Block Diagram

The High-Speed Floating-Point Unit (FPU) is an option that may be used
with an IPU and CPU to increase the speed of floating-point arithmetic
operations. The unit consists of two circuit boards which may be plug­
ged in adjacent to the IPU. No alterations in the software are required.

If the High-Speed Floating-Point Unit (FPU) is installed, addition,
subtraction, multiplication, and division of single-precision (32-
bit) or double-precision (64-bit) operands can be executed much
faster than the IPU's standard floating-point feature.

An operand in floating-point format has three parts: a sign bit,
a fraction, and an exponent. The sign bit indicates whether the
fraction is a positive or negative value. The fraction is a binary
number with an assumed radix point immediately to the left of its
most-significant bit. The exponent is a 7-bit binary power to which
the base 16 is raised. The quantity that the floating-point number
represents can be determined by multiplying the fraction by the
number 16 raised to the power represented by the exponent.

Two operands of the same format and length are received by the FPU
for each arithmetic operation. One operand is input from an IPU
general purpose register (GPR), whereas the other operand is input
from memory. The precise GPR and memory location are specified in
the floating-point instruction. Upon completion of an operation,
the result is returned to the CPU general purpose register.

It is recommended that any option which is added to the system be
for both the IPU and CPU. This will allow the same runtime library
to be utilized for the respective software programs.

T

CROMOO-03

TEST

o 11 1 2 13

HARDWARE
FLOATING-
PT. CONTROL

!I

" X

CREG32-36

X-ORDER

32133134135

W-TEST
~ CREG

S-TEST

U-ORDER

S-ORDER

I

B M A B * D R Y

CROM04-0! CROM07-09 CREG10-12 CREG1315 CREG16-19 CROM20-23 CREG2426 CREG27-31

SE~UENCE CONTROL A B
CONTROL EXTENDED MUX MUX ALU DESTINATION FILE READ - Y-ORDER

4-1 5 1 6
71 8 1 9 10 1"1 12 13114115 16

1 1
18

1
19 20121122123 24125126 27128129130131

HARDWARE FLOATING-POINT CONTROL

P C H

12-BIT BRANCH ADDRESS HARDWARE FLOATING-POINT CONTROL

36137138139 40 141 r 42 143 44145 146 r 4 7 48 149 r 50151152153154155156157158159160161 162 / 63

Z-TEST 8-BIT BRANCH ADDRESS
CREG

EXTENDED TEST 4BIT
CROM BRANCH ADDR

CC'S' SHIFT • CONDITIONAL
CREG CREG ORDER CREG

HDWR F-PT
FILE NUMBER ROM PAGE ORDER

8-BIT LITERAL

FLIP/FLOP 1

FLIP/FLOP 2 *ROM ALTERNATE SOURCE

FLIP/FLOP 3

13-BIT WRITABLE CONTROL STORAGE JUMP

HARDWARE
F.P. ORDER NOTES: 1. BITS 0-47 OF EACH MICROINSTRUCTION

ARE IN THE IPU S CONTROL ROM.

2. PORTIONS OF THE FORMAT DESIGNATED
FOR HARDWARE FLOATING-POINT APPLY
TO THE OPTIONAL HIGH-SPEED FLOATING­
POINT UNIT (FPU).

3. BITS 48-63 ARE PHYSICALLY PART OF
A CONTROL ROM IN THE OPTIONAL
HIGH-SPEED FPU.

Figure 2-10. r1icroinstruction Format

IJ

'"

2-23

OPTIONAL
SCIENTIFIC

ACCELERATOR

OPTIONAL
WRITABLE

CONTROL

TRAPS

NEW TRAPS

OPERATI NG MODE

TRAP CONTEXT
SWITCHING

Trap Fonnat

2-24

Figure 2-11 illustrates the major functional elements of the FPU,
the general routing of operands, and the relationship between the FPU,
the IPU, and the SelBUS.

The optional Model 2343 Scientific Accelerator (with PROM control
store PCS). or Model 2347 with Writable Control (WCS), may be used
in the IPU system. The Scientific Accelerator provides fu 11 y­
integrated hardware, software, and finnware to improve user program
execution speeds.

It is recommended that any option which is added to the system be
for both the IPU and CPU. This will allow the same runtime 1 ibrary
to be utilized for the respective software programs.

Writable Control Storage is an option which may be used with the IPU
to expand the instruction set, to enhance the performance of user pro­
grams, or to tailor the computer to specific user needs.

Up to 4,096 64-bit words of Writable Control
added to an IPU in increments of 2,048 64-bit
pl ugs into the Se1 BUS for power and clock.
with the IPU is independent of Se1BUS operation.

Storage (WCS) can be
words. Each increment
However, communication

The block diagram in Figure 2-12 shows two optional WCS units as they
could be implemented in conjunction with an IPU and the optional
High-Speed Floating-Point Unit.

For synchronization and communication between the IPlJ and CPU, six
new traps are dedicated in low memory. These traps are 1 isted in
Table 2-3. The trap vector location 2EO is used by the CPU when
the IPU has executed the SIPU (X 'OOOA') instruction. The CPU
handles this trap in the same manner as any other CPU trap. The
trap vectors found at locations 2E4, 2E8, 2EC, 2FO, and 2F4 are
traps used by the IPU during IPU processing. A brief description
of the communications between the IPU and CPU follows later in this
section and involves primarily the use of new traps.

The IPU uses the Program Status Doubleword Mode of operation to run
the Mapped Programming Executive, MPX-32. This mode identifies the
finnware routing and method of handling traps.

In the IPU mode, the firmware will not execute control instruction
BRI, any I/O i nstructi ons, nor interrupt control i nstructi ons except
UEI.

Trap Context Switching in the IPU is accompl ished through the use of
the Program Status Doubleword Mode using the Trap Context Block (rCB)
format. Trap context switching by the IPU is functionally identical
to the CPU, except that the trap entry by the IPU is not assoCiated
with a service interrupt.

The Trap Context Block (TCB) format type (see Figure 2-13) is used
for the PSD mode traps. Words one through four of the TCB contain
the IPU Ending and Starting PSDs. Word five of the TCB contains
the IPU Hardware Status Word. This status word is assembled by
firmware at the time the trap occurs, and is stored in the TCB.
The IPU Hardware Status Word is defined later in this section.
Word 6 of the TCB is not used.

~

~

J
;'

SELBUS

32- OR 64-BIT
32- OR 64-BIT MEMORY

REGISTER OPERAND OPERAND INTERNAL --PROCESSOR UNIT

r-- ------- - -----
ADDRESS

ORDERS INPUT
AND CROM

MUX
SHIFT

CONTROL r
,r • r 1,
EXPONENT FRACTION .. 8
CONTROL CONTROL

,

I I

L +
FRACTION EXPONENT

LOGIC LOGIC

56 ~ V , , 8

CONDITION OUTPUT
CODES MUX

32- OR 64-BIT

-

8

-,
I
I
I
I
I
I
I
I
J

I
I
I
I

I I RESULT

L _____ 2.LOATING-POINTUN~ ____ J

2-25

32-BIT
DATA

2-26

..

SELBUS

13·BIT MICROINSTRUCTION ADDRESS

.I ,
IPU 32·BIT IPU IPU WCS

A-BOARD B·BOARD C-BOARD OPTION

!MICROPROCESSOR DATA MICROPROCESSOF CROM NO 1
(48 BITS) (64 BITS)

I I t I t ~
32·BIT DATA ICONTROL LINES 48·BIT MICROINSTRUCTION

HIGH-SPEED HIGH-SPEED
FPU FPU

PROCESSOR PROM E DIE

t J, II"
l6-BIT MICROINSTRUCTION l6-BIT MICROINSTRUCTION

Figure 2-12_ Functional Interrelationship of the IPU, WCS, and
High-Speed Floating-Point Unit

,
wcs

OPTION
NO 2

(64 BITS)

I

II"

IPU STATUS
WORD

CPU/IPU
INTERFACE
OPERATION

START IPU TRAP
(VECTOR ADDRESS

2E4)

Table 2-3. CPU/IPU Communication Traps

Trap
Trap Vector
Relative Location
Priority TVL Description User

78 2EO Ending of IPU Processing CPU
79 2E4 Start IPU Processing IPU
7A 2E8 Supervisor Call IPU
7B
7C
70

2EC Error Trap IPU
2FO Ca 11 Mon itor IPU
2F4 Stop IPU Processing IPU

The IPU status word is a 32-bit word that is used by IPU finnware to
track trap error processing and internal operating modes. The status
word is available to software in either of two methods as follows:

1. The Read Status (RDSTS) instruction (when executed by the IPU)
causes the status word to be loaded into the general purpose
register specified by the instruction.

2. Automatically, upon occurrence of an error trap which causes the
status word to be stored in the fifth word of the trap context
block.

The status word can be divided into a 24-bit field and an 8-bit
field. The 24-bit field is used for error flag reporting and is
cleared to zeros after the status word has been reported to software.
The 8-llit field of the status word is used for IPU mode control
and will always reflect the current operating mode of the IPU. Table
2-4 lists the bits of the status word and their definitions.

The following discussion provides infonnation pertaining to the CPU
and IPU interface operation. This discussion is centered primarily
around the use of the six new traps, wh ich are used to control the
synchronization and communication between the CPU and IPU. The bas ic
interface operational flow between the CPU and IPU is shown in Figure
2-14.

To start IPU processing, the CPU stores the new Program Status Doub1e­
word (PSD) into words 3 and 4 of the Start IPU tra~ context block which
was po inted to from the address conta ined in the Start IPU trap vector
location 2E4. The CPU then executes the SIPU X'OOOA' instruction which
sends a start signal to the IPU and infonns the IPU that a new PSD is
available for execution. The IPU then fetches the Start IPU trap Con­
text Block pointer at the 2E4 trap location, stores the old PSD into
words 1 and 2 of the Start IPU Trap Context block and the IPU Status
into word 5. The I PU then reads the new PSD words 3 and 4 from the
context block and begins to execute the instructions in memory as
directed by the new PSD.

2-27

o TVL 31 o TCB 31

I VECTOR ADDRESS
I ...

IPU ENDING PSD1 I .. WORD 1 +0

RESTART IPU

IPU ERROR
CONDITION TRAP

(VECTOR ADDRESS
2EC)

2-28

WORD 2 IPU ENDING PSD2 +4

WORD 3 IPU STARTING PSDl +8

WORD 4 IPU STARTING PSD2 +12

" WORD 5 IPU STATUS WORD +16
"

~ WORD 6 NOT USED +20
;

Figure 2':p. Trap Context Block Fonnat (Internal Processing Unit)

If the Signal IPU instruction {SIPU} is issued by the CPU to an act,ive
IPU,~ the second SIPU will cause the following events in the IPU to
occur:

1. The IPU will tenninate present active execution, and vector to
'the start IPU Trap Vector Address (TVA) 2E4. The old PSD is stored

into Words 1 and 2 of the Context Block as was pointed by the con­
, tents of the TVA.

2. The old IPU status word is stored into the context block and the
new PSD is used to begin execution of another group of 32/70 macro­

, assembler ins truct ions.

-The End of IPU trap is not generated until the IPU has completed
execution as directed by the interrupting SIPU instruction.

The vector address found at memory location 2EC points to the TCB which
is used upon the occurrence of an error condition within the IPU. The
error conditions include non-present memory, undefined instruction, par­
ity error, arithmetic exception, and privilege violation. The undefined
instruction error is caused by the execution of any I/O instruction
(e.g., CD, TO), any interrupt instruction (BRI, AI), or any instruction
not defined in the PSD mode 32/75 instruction set.

N
i

N
<0

'"T1

<0
C
-s
ro
N
I

......

..".

n
'"0
c:
'-.
'"0
c:
.....
::s
c+
ro
-S
-+.
s:u
n
ro
0
-0
ro
-S
OJ
M-

0
::s
OJ

."

0
:E:

w

W

w

W

w

CPU PROGRAM

~
SIGI<AL IPU (SIPU!

CPU
II<STRUCTION

+
CONTINUE PROCESSING

(CPU CODE!

2EO

FIELD TRAP
FROM IPU

0 TCB 31

~ OLD PSDl

1

lRD
2

OLD PSD2

WORD

WORD
2

WORD

WORD

WORD
5

)RD

3
NEW PSDl

lRO
NEW PSD2

4

}'"oc'" CPU
CODE

lRD CPU
5 ST AT US

IPU OPERATION

/~--I\ ,
START IPU - GET
TRAP COl<TEXT
BLOCK AODRESS

I IPU ~--"l~~GO TO IPU CODE ~ PROGRAM

LOCATION 2E4

TCB 31

OLD PSD (FINAL)

OLD PSD (FINAL!

NEW PSOl

NEW PSD2

IPU

STATUS

WO!!

WORD
2

m',;~"' r" PROCESSING 3
UNTIL

HALT OR WAIT WORD
INSTRUCTION 4
IS EXECUTED

WORD

TCB

OLD PSDI

OLD PSD2

NEWPSD2

NEW PSD2

IPU STATUS

" TRAP CPU

ADDRESS 2EO

t
PROCESS IPU COOE

31 wW TCB 31

I OLD PSDI
1

WORD
2 OLD PSD2

WORD
3

NEWPSDI

WORD NEWPSD2

WORD
IPU STATUS

5

SECONDARY VECTOR TABLE TRAP CONTEXT BLOCK a
SECONDARY VECTOR 0 OLD PSDI

SECONDA'IY VECTOR 1

NOT USED

TRAP CONTEXT BLOCK 1

}'"~. IPU

CODE

OLD PSDI

OLD PSD2 .. NEW PSOl

NEW PSD2

SECONDARY VECTOR F -~-, CALL No , ,
I

NOT USED

IPROCfSS
. IPU

~ COD~

IpROCESS

f IPU
CODE

2-30

Table 2-4. IPU Status Word Bit Definitions

Bit Definition

o =0, Class 0, I, 2, or E Error*
=1, Class F (Extended I/O) Error*

1 =0, I/O Processing Error*
=1, Interrupt Processing Error*

2 Final Bus Transfer Error
3 Bus No Transfer Error
4 I/O Channel Busy or Busy Status Bit Error*
5 Ready Timeout Error*
6 I/O DRT Timeout Error*
7 Retry Count Exhausted Error*
8 Operand Fetch Parity Error
9 Instruction Fetch Parity Error

10 Operand Nonpresent Error
11 Instruction Nonpresent Error
12 Undefined PSD Mode Instruction Error
13 Memory Fetch DRT Timeout Error
14 Reset Channel Error*
15 Channel WCS not Enabled Error
16 Map Register Address Overflow

(Map Context Switch)
17 Unexplained Memory Error
18 BRI I/O Error*
19 Undefined Instruction PSW Mode Only*
20 Map Invalid Access or Map Mode Restrict Register
21 IPU Privileged Violation
22 Not Used
23 IPU Arithmetic Exception
24 Enable Arithmetic Exception Trap
25 Disable PSD Mode Traps
26 Block Mode is Active
27 IPU Status
28 Not Used
29 CPU ELSA Mode*
30 Not Used
31 =1. IPU Mode PSD

*Not Applicable to IPU.

IPU CALL
MONITOR TRAP

(VECTOR ADDRESS
2FO)

IPU SUPERVISOR
CALL TRAP

(VECTOR ADDRESS
2ES)

STOP I PU TRAP
VECTOR ADDRESS

2F4

CPU (END IPU
PROCESSING)

TRAP (VECTOR
ADDRESS 2EO)

MEMORY
MANAGEMENT

The privilege violation error ;s generated by the IPU attempting to
execute an instruction which is defined as privileged but does not
have the privileged bit set in the PSD. HALT and WAIT in the IPU
must be privileged.

The error status is reflected in the IPU status word as stored into
the fifth word of the IPU error TCB (vector location 2EC). The PSD
at the time the error occurs is stored into words 1 and 2 of that
TCB. The next executed instruction is dictated by the new PSD found
in words 3 and 4 of the error TCB.

When the IPU executes a Call Monitor (CALM) instruction, control is
transferred to the IPU call mon itor trap located at memory address
2FO. The execution which follows the call monitor instruction, as
well as any other trap within the IPU, is directed by the contents
of the context block related to that specific trap. Execution is
directed to the code as defined by the new PSD within the IPU CALM
Trap Context Block.

When the IPU executes a Supervisor Call (SVC) instruction, control
is transferred to the SVC trap. The address of the context block for
the IPU service of a SVC instruction is located at trap address 2ES.

This address is the beginning of the 16-entry secondary vector address
table. Bits 16 through 19 of the SVC instruction direct the IPU to one
of the 16 secondary vector addresses. The secondary vector address
selected points the IPU to a TCB for that SVC.

Once the IPU has the address of the TCB, trap processing is handled as
a normal trap. The IPU stores the present PSD into words 1 and 2 of the
TCB and the status into word 5. Then the IPU uses the new PSD from
words 3 and 4 to continue execution.

To stop the IPU processing, the CPU stores a new PSD in words 3 and 4
of the STOP IPU Trap Context Block (TCB) which is pointed to by the
address contained in the stop IPU trap vector location 2F4. The STOP
IPU TCB is used when the IPU executes an SIPU (X'OOOA') instruction
which is imbedded in the IPU software code. The IPU stores the old
PSD into words 1 and 2 of the context block and the IPU Status into
word 5 of the context block. The IPU then traps the CPU at location
2EO which indicates that the IPU execution of the SIPU instruction
has taken pl ace. The IPU then fetches the new PSD from words 3 and
4 of the context block which can point to a privileged HALT or WAIT
instruction to stop the IPU.

The new PSD in the STOP IPU context block may direct the IPU to execute
code other than a HALT or WAIT instruction. This utilization of the
STOP Trap allows the IPU to signal the CPU at milestones with­
out stopping IPU execution. In either use of this stop IPU trap, the
present PSD is stored into words 1 and 2 of TCB and the present IPU
status into word 5. The IPU done signal is sent to the CPU after
storage of the present PSD and IPU status word and before vectoring
to the new PSD address.

The End IPU Process ing trap address 2EO is used by the CPU when the
IPU generates the IPU done signal. The CPU handles this trap in the
same manner as any other CPU Trap, except that this trap can be
blocked at the CPU by setting the block mode.

All informat ion as presented in Sect ion IV for the Memory Management
is valid for the IPU.

2-31

INPUT/OUTPUT
SYSTEM

SCRATCHPAD
MEMORY

INITIALIZATION

INTRODUCTION

INITIAL PROGRAM
LOAD

POWER FAIL-SAFE
FEATURE

2-32

The Internal Processing Unit does not perfonn I/O operations. All
I/O operations are perfonned by the CPU in the system.

Except for the Scratchpad locations related to I/O and interrupts,
the IPU util izes the internal scratchpad in the same manner as the
CPU uses its internal scratchpad.

The scratchpad locations loaded by the IPL are not used by the IPU.
Thus, no loading procedure is necessary. The IPU can execute the
TRSC and TSCR instructions if the user deems it necessary to load
or read scratchpad locations.

The Internal Processing Unit is initialized by a system reset and re­
mains quiescent until a Signal IPU (SIPU) Instruction occurs.

The IPU does not perfonn an IPL. This procedure is controlled by the
CPU and the I/O device. Refer to Section VIII for CPU-IPL operation.

The Power Fail Safe feature as implemented in the CPU is not applicable
to the IPU operation. The saving of the IPU scratchpad information is
not necessary by the IPU since the CPU must re-initialize any IPU operation
when the CPU ;s restarted.

INTRODUCTION

TRAPS

INTERRUPTS

OPERATING
MODES

SECTION III

TRAPS AND INTERRUPTS

Traps and interrupts report asynchronous or synchronous events to the
software. Traps are error conditions that are generated internally
and interrupts are requests that are generated externally. The events
that caused the trap or interrupt can be generated asynchronously by
hardware or synchronously scheduled by software when an interrupt con­
trol instruction is executed. The trap or interrupt causes a transfer
of control to unique vector locations in main memory (see Table 3-1).

The traps for the PSW mode (in order of priority) are:

1. Power Fa il

.2. Memory Parity

3. Nonpresent Memory

4. Undefined Instruction

5. Privileged Violation

6. System Override

Six additional traps are present in the PSD mode. They are:

1. Supervisor Call Trap (software generated)

2. Machine Check Trap

3. System Check Trap

4. MAP Fault Trap

5. Block Mode Timeout (Watchdog) Trap

6. ,Arithmetic Exception Trap

7. End of IPU processing

Interrupts consist of the following:

1. Any external event scheduled through the Real-Time Option
Module (RTOM)

2. Input/Output (I/O) termination interrupts

3. Software request interrupt control instruction

The 32/70 Series CPU is capable of operating in two modes: the PSW mode
and the PSD mode. The two modes identify the firmware routing required
to operate with a FSW, thereby allowing existing 32/55 software to
operate on a 32/70 Series CPU without modifications. The PSD mode is
the default at system reset and remains in effect until a Set CPU Mode
macro instruction is executed or an Initial Program Load (IPL) sequence
is set up to force the CPU into PSW mode of operation.

3-1

INTERRUPT
AND TRAP
RELATIVE
PRIORITY

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14

I- 15--
16
17
18
19
lA
1B
lC
10
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31

THRU
77

3-2

Table 3-1. PSW/PSD Mode Relative Trap/Interrupt Priorities

INTERRUPT
INTERRUPT VECTOR TCW IOCD
LOGICAL LOCATION ADDRESS ADDRESS
PRIORITY (IVL) ** **

OF4
OFC
OE8*
190
194
198
180
184
188
18C

OE4
1A4*

00 OFO
01 OF8
12 OE8*
13 OEC
14 140 100 700

-15-- __ 144 104 708
16 148 108 710
17 14C 10C 718
18 150 110 720
19 154 114 728
1A 158 118 730
IS 15C 11C 738
1C 160 120 740
ID 164 124 748
IE 168 128 750
IF 16C 12C 758
20 170 130 760
21 174 134 768
22 178 138 770
23 17C 13C 778
24 190*
25 194*
26 198*
27 19C
28 lAO
29 1A4*
2A 1A8
2B lAC
2C 1BO
2D 1B4
2E 1B8
2F 1BC
30 1CO
31 1C4

THRU THRU
77 2DC

*
**

Vector Locations Shared With Traps
For NonextendedI/O Devices

DESCRIPTION

Power Fail Safe Trap
System Override Trap (Not used)
Memory Parity Trap
Nonpresent t1emory Trap
Undefined Instruction Trap
Privilege Violation Trap
Supervisor Call Trap
t1achi ne Check Trap
System Check Trap
MAP Fault Trap
Not Used
Not Used
Not Used
Not Used
Block Mode Timeout (Watchdog) Trap
Arithmetic Exception Trap
Power Fail Safe Interrupt
System Override Interrupt

~**Memory Parity Trap
Attention Interrupt
I/O Channel 0 Interrupt
I/O Channel 1 Interrupt
I/O Channel 2 Interrupt
I/O Channel 3 Interrupt
I/O Channel 4 Interrupt
I/O Channel 5.Interrupt
I/O Channel 6 Interrupt
I/O Channel 7 Interrupt
I/O Channel 8 Interrupt
I/O Channel 9 Interrupt
I/O Channel A Interrupt
I/O Channel B Interrupt
I/O Channel C Interrupt
I/O Channel D Interrupt
I/O Channel E Interrupt
I/O Channel F Interrupt

**Nonpresent Memory Trap
***Undefined Instruction Trap
***Privilege Violation Trap .

Call ~onitor Interrupt
Real-Time Clock Interrupt

***Arithmetic Exception Interrupt
External/Software Interrupts
External/Software Interrupts
External/Software Interrupts
External/Software Interrupts
External/Software Interrupts
External/Software Interrupts
External/Software Interrupts
External/Software Interrupts

THRU
External/Software Interrupts

PSW Function-Now External/Software Interrupts-For PSD Mode
IPU Related Traps

All Interrupts Are Externally Generated

Table 3-1. PSW/PSD Mode Relative Trap/Interrupt Priorities (Cont'd)

INTERRUPT INTERRUPT
AND TRAP INTERRUPT VECTOR TCW lOCO
RELATIVE LOGICAL LOCATION ADDRESS JlDDRESS
PRIORITY PRIORITY (IVL) ** ** DESCRIPTION

78 2EO**** Ending of IPU Processing
Trap (Used by CPU)

79 2E4**** Start IPU Processing Trap
(Used by IPU)

7A 2E8**** Supervisor Call Trap (Used
by IPU)

76 2EC**** Error Trap (Used by IPU)
7C 2 FO**** Call Monitor Trap (Used

by IPU)
70 7D 2F4**** Stop IPU Processing Trap

(Used by IPU)
7E 7E 2F8 External/Software Interrupts
7F 7F 2FC External/Software Interrupts

~* For Nonextended I/O Devices
**** IPU Related Traps (See Section II)

All Interrupts Are Externally Generated

3-3

PSWMODE

3-4

The PSW mode identifies traps and interrupts on a prioritized, scheduled
basis No distinction is made between traps and interrupts, and both are
scheduled by some mechanism external to the CPU (i.e., 10M or RTOM).
The trap conditions that are created internally within the CPU are
scheduled by the firmware on an RTOM board if the following requirements
are met:

1. Trap level is enabled.

2. Trap level is not active.

3. Any other higher priority level is not active or requesting.

If any of the above requi rements are not met, the fi rmware wi 11 reset
the condition that caused the trap and continue to the next sequential
instruction as if the trap never occurred.

Traps and interrupts in the PSW mode require the participation of three
component levels in order to function properly. The three component
levels are the 10M or RTOM, the CPU, and the software.

The 10M or RTOM schedul es a hardware- or software- i ni t i ated interrupt
service request. When the requesting level becomes the highest
contending level, the CPU acknowledges the interrupt request. In order
to enqueue the associated software processing, the 10M or RTOM advances
from requesting to active, blocking interrupt requests from lower pri­
ority levels. When the software interrupt handler completes its
processing, the software dequeues itself by executing a Deactivate
Interrupt (DAI) or Branch and Reset Interrupt (BRI) instruction which
allows the currently active level and all other lower priority levels to
resume requesting for interrupts. This operating mode is also referred
to as Block with Activate. In summary, the six steps shown below are
required to enqueue or dequeue an interrupt process:

1. The 10M, RPU, or RTOM requests an interrupt.

2. The CPU acknowledges the interrupt.

3. The 10M or RTOM goes active, blocking lower priority interrupts.

4. The software handler is given control. (First instruction is
noninterruptible)

5. The software executes a Deactivate Interrupt (DAI) or Branch and
Reset Interrupt (BRI).

6. The 10M or RTOM deactivates, allowing lower priority levels to
resume requesting.

PSD MODE Two types of software trap and interrupt queueing methods exist in the
PSD mode. The first method is identical to the queueing described as
the PSW mode, where the requesting level advances to active state,
blocking all lower priority levels to insure that software is not
interruptible by its level or any lower priority levels during the
interrupt processing. This method applies to all classes of I/O
interrupts and external (RTOM) interrupts.

The second method applies to traps, I/O interrupts and external
interrupts. The enqueueing of the software interrupt and trap handlers
does not rely on the active state of the applicable channel or RTOM to
prevent interrupts or traps for the specific or lower priority levels.
The enqueueing function blocks externally generated interrupt requests
(channel or RTOM) from being sensed by the CPU firmware. Software must
now explicitly dequeue its process with an Unblock External Interrupts
(UE1) or a Load PSD (LPSD) macro instruction. The general sequence is:

1. The 10M, RPU, or RTOM requests an I/O interrupt.

2. When the requesting level becomes the highest contending level, the
CPU acknowl edges the interrupt request and blocks all interrupts
until the UNBLOCK command is received (if bits 48 and 49 of the
PSD are 0 and 1, respectively).

3. The channel does not go active and is now free to continue I/O
related processing.

4. The software is given control with all interrupts blocked.

5. When the software interrupt handler completes its enqueued pro­
cessing, it will execute an Unblock External Interrupt (UE!) or
a Load Program Status Doubleword (LPSD) macro instruction which
will allow externally generated interrupts to be sensed by the
CPU firmware. This operating mode is also referred to as Block
without Activate.

3-5

3-6

IVL AND ICB

ICB
FORMA'fS

OLD AND NEW
PSD

EXTERNAL
AND

NON-CLASS F
FORMAT

TRAP
FORMAT

Each trap or interrupt that may occur in the PSD mode has an associated
Interrupt Vector Location (IVL) and an Interrupt Context Block (lCB).
The IVL contains a 24-bit real address that points to the starting
memory address of the ICB. Table 3-1 includes a 1 ist of the memory
locations dedicated for IVLs.

Generally speaking, an ICB consists of six consecutive memory words.
However, for some types of ICBs only four or five words are required.
The four different ICB formats are listed as follows:

1. External and Non-Class F I/O Format

2. Trap Format

3. Class F I/O Format

4. Supervisor Call Format

Figures 3-1 through 3-4 illustrate the four ICB formats.

The first four words of all ICB formats are identical in that they
contain the old PSD followed by the new PSD.

The old PSD is stored in the ICB whenever a trap or interrupt occurs and
is acknowledged. The old PSD locations provide storage for hardware and
software CPU context information current at the time a particular trap
or interrupt occurs. Normally. when the software interrupt processing is
completed. a BRI. LPSD or LPSDCM instruction will be used to restore the
old PSD context information.

The new PSD information must be loaded in the ICB by software before a
trap or interrupt occurs. The new PSD must conta in the necessary
information to set up the hardware and software in the appropriate
context for servicing the interrupt.

The External and Non-Cl ass F ICB format type (see Figure 3-1) is used
with all RTOM interrupts and all CD and TO I/O interrupts. RTOM inter­
rupts include: Console Interrupt (Panel Attention). Call Monitor Inter­
rupt. and Real-Time Clock-Interrupt.

Words 1 through 4 contain the old and new PSDs.

Words 5 and 6 of this ICB format type are optional and may be omitted.

The Trap ICB format type (see Figure 3-2) is used for PSD mode traps.

Words 1 through 4 of the Trap ICB contain the old and new PSDs.

Word 5 of the Trap ICB contains the CPU hardware status word. This is
stored in the 1GB at the time a trap occurs. The CPU status word may
provide additional descriptor bits for defining the error condition.
For a detailed description of the CPU status word. refer to the 32/70
Series Technical Manual.

Word 6 of the Trap ICB is optional.

o IVL 31 o ICB 31

I VECTOR ADDRESS I
I

.. OLD PSD WORD 1

OLD PSDWORD 2 +4

NEW PSD WORD 1 +8

NEW PSDWORD 2 +12

NOT REQUIRED +16

NOT REQUIRED +20

Figure 3-1. Interrupt Context Block Format - External Interrupts and Non-Class F I/O Interrupts

o IVL 31 o ICB 31

I VECTOR ADDRESS
I .. OLD PSDWORD 1
I .

OLD PSD WORD 2 +4

NEWPSDWORD 1 +8

NEWPSDWORD 2 +12

CPU STATUS WORD +16

NOT REQUIRED +20

Figure 3-2. Trap Context Block Format

3-7

3-8

CLASS F I/O
FORMAT

SUPERVISOR
CAll

FORMAT

The Class F I/O format type (see Figure 3-3) requires the use of all six
ICB words.

Words 1 through 4 contain the old and new PSDs.

Word 5 of the Class F I/O ICB provides the Input/Output Command list (IOCl)
address for the associated Class F I/O channel. This word must be set
up in the ICB by software prior to the execution of either a Start I/O
or Write Channel WCS instruction. The ICL address is transmitted to
the I/O channel by the CPU duri ng the Start I/O or Wri te Channel WCS
SelBUS sequences. The IOCl address must be in a 24-bit real address
format.

Word 6 of the Class F I/O ICB contains the 24-bit real address of the
channe 1 status word. Whenever the channel reports status to the CPU
(and software), the channel stores the channel status word in memory.
The CPU then stores the memory address of the channel status word into
word 6 of the ICB.

The channel may report status when anyone of the following events
occur:

1. An interrupt is acknowledged (a hardware event).

2. A Start I/O instruction is executed.

3. A Test I/O instruction is executed.

4. A Halt I/O instruction is executed.

When status is stored during a Start I/O, Test I/O, or Halt I/O
instruction, the channel rejects the instruction, and the CPU Condition
Codes are set to reflect the Status Stored condition. Under the Status
Stored condition, the channel clears its status pending flags, as well
as any interrupt pending flags that are relative to the status just
reported.

The Supervisor Call (SVC) instruction is provided with up to 16 dif­
ferent ICBs. These multiple ICBs are provided to reduce the amount
of time required for a user program to request service from the op­
erating system program. The address of a specific ICB is obtained by
adding a 4-bit word index value from bits 16-19 of the SVC instruction
to the 24-bit address that is in the SVC Interrupt Vector location (IVl).
The sum of these values provides a 24-bit real address of a S~condary
Vector location. The contents of the Secondary Vector Location is the
24-bit real address of the appropriate Supervisor Call ICB. Reference
Figure 3-4.

Words 1 through 4 of the Supervi sor Call ICB contai n the 01 d and New
PSD.

Word 5 of the ICB is avai 1 ab 1 e for use by the software SVC Trap
processor as an index (call number) for the requested operating system
service~ Bits 20 through 31 of the SVC instruction are used by the CPU
to format word 5 of the Supervisor Call ICB.

Word 6 of the Supervisor Call ICB is optional.

o IVL 31 o ICB 31

l VECTOR ADDRESS I ..
OLD PSD WORD 1 I +0

OLD PSD WORD 2 +4

NEW PSD WORD 1 +8

NEW PSD WORD 2 +12

10CL ADDRESS +16

I/O STATUS ADDRESS +20

Figure 3-3. Interrupt Context Block Format - Class F I/O Interrupts

o IVL 31 o ICBO 31

VECTOR ADDRESS 4-BIT INDEX r-t OLD PSD 1
FROM SVC BITS

+0

16-19 OLD PSD 2 +4

L ~. J
Y NEW PSD 1 +8

SECONDARY NEW PSD 2 +12
0 VECTOR BLOCK 31

r-- VECTOR 0 +0 SVCCALL NO. +16

r-- VECTOR 1 +4 NOT REQUIRED +20

f4 VECTOR 2 --+8------,
I

~~ :: ;, I
I 0 ICBl 31

r--- VECTOR 14
-------,

I +56 I

I I 4 OLD PSD 1

4 ------, VECTOR 15 +60 I I I

I I OLD PSD 2
I

I • I
I

I NEW PSD 1
I

+0

+4

+8
I • I NEWPSD 2 +12 ,.

SVCCAlL NO. +16

NOT REQUIRED +20

Figure 3-4. Supervisor Call (SVC) Trap Context Block Format

3-9

PSO MACRO
INSTRUCTIONS

3-10

AUTOMATIC
TRAP HALTS

PSW TRAP
HALTS

PSO TRAP
HALTS

The eight PSO interrupt and trap related macro instructions are:

1. Block External Interrupts (BEl)

2. Unblock External Interrupts (UEI)

3. Load Program Status Ooubleword (LPSO)

4. Load Program Status Ooubleword Change Map (LPSOCM)

5. Set CPU Mode (SETCPU)

6. Supervisor Call (SVC)

7. Enable Arithmetic Exception Trap (EAE)

8. Disable Arithmetic Exception Trap (DAE)

All of the above macro instructions, except SVC, can be executed only in
the privileged state and BEl, UEI, LPSD, EAE, OAE, and SVC will be valid
instructions only if the CPU mode is set to other than the PSW mode. If
the PSW mode is set, an undefined instruction trap will occur.

In the PSD mode, traps cannot be inhibited by the Blocked mode or by the
activation of any high level interrupt.

A list of the traps, interrupts, and vector addresses is presented
in Table 3-1.

The 32/70 Series CPU provides for automatic trap halts in both the PSW
and PSD modes of operation.

A PSW mode trap halt* can occur under any of the following conditions:

1. A Memory Parity Error or Nonpresent Memory Error, while handling
the dedicated memory locations associated with an interrupt level.
Thi s error must occur duri ng the fi rmware interrupt Store, Pl ace,
and Branch sequence or the Branch and Reset Interrupt (BRI)
sequence.

2. An I/O communication protocol violation during the interrupt or
BRI communication sequence.

*Implementation of the PSW trap halt is the same as described in the
PSO trap halt discussion.

A PSO mode trap halt only occurs if the software has not enabled the
PSD mode traps by the SETCPU Enable Trap instruction. The PSD mode
traps that arm the Trap Halt logic are:

1. Memory Parity Error

2. Nonpresent Memory

3. Undefined Instruction

4. Privileged Violation Trap

5. Machine Check Trap

6. System Check Trap

7. MAP Fault Trap

MACHINE
CHECK TRAP

SYSTHl
CHECK TRAP

BLOCK MODE
TIME-OUT TRAP

PSD TRAP HALT
IMPLEMENTATION

The PSD mode traps that do not arm the Trap Halt logic are:

1. Supervisor Call Trap

2. Arithmetic Exception Trap

3. Call Monitor Interrupt Trap

A Machine Check trap is a hardware/firmware failure that has occurred
during an interrupt or context switch. These failures include Memory
Parity error, Nonpresent tlemory error, or I/O and Interrupt Sel BUS
protocol violations. The specific type of error that causes the trap
is described by the CPU Status Word that is stored in the interrupt
(trap) context block.

A System Check trap is primarily a software failure that attempted to
force the CPU into an illogical sequence. The specific type of error
that caused the trap is described by the CPU status word stored in the
interrupt (trap) context block.

The Block Mode Time-Out (watchdog) trap occurs under the following
cond it ions:

1. If a Wait instruction is executed with interrupts blocked.

2. If the Block Mode Time-Out trap has been enabled by a SETCPU in­
struction and more than 128 instructions have been executed with
interrupts blocked.

The detection of a PSD trap condition causes the following events to
occur if traps are not enabled:

1. The CPU is halted.

2. The Interrupt Active 1 ight on the Serial Control Panel is
turned on.

3. The PC portion of the PSW (PSD1) contains the dedicated memory
address for the trap causing the halt.

4. The CPU halfword indicator (PSDl, bit 5) mayor may not be on.

5. Starting at memory location 53016' the following error infor­
mation is stored:

Location Contents

530 Error PSW (PSDl)

534 Error PSD2 (PSD mode only)

538 CPU Status Word

53C R(RDEV) Device Table Entry

540 R(INTRTAB) Device Interrupt Entry

3-11/3-12

INTRODUCTION

OVERVIEW

MOSANDCORE
MEMORY

SECTION IV

MEMORY MANAGEMENT

This section provides information that includes the rules for configur­
ing MOS and core memory, as well as memory management programming methods
and formats. For a functional description of the major elements in a
32/70 Series Memory Subsystem, the reader should refer to Section I of
this manual.

All memory subsystems in the 32/70 Series are configured with a Memory
Bus Controller (MBC) that communicates with the SelBUS and controls the
memory bus to which the memory modules are attached. The MBC and CPU
provide for byte, halfword, or word accesses of memory. The Memory Bus
Controller is capable of managing up to 16 overlapped memory modules
which operate asynchronously on their bus. Computer memory requests can
be initiated every 150 nanoseconds due to the overlapped memory design.
All modules under one Memory Bus Controller have the same cycle and
access time; however, other MBCs may manage up to 16 fully overlapped
modules.

Depending on the model, 32/70 Series systems can have either core or MOS
memory. Core memory systems are organized into 36-bit words: 32 data
bits plus 4 parity bits. MOS memory systems are organized with 39-bit
words: 32 data bits plus 7 error checking correcting (ECC) bits. The
MOS memory module corrects single-bit errors and has the capability of
detecting and reporting double-bit errors.

Core memory packages include the following components:

1. Core memory modules

2. Memory chassis

3. Power supply

4. Memory Bus Controller

Core memory for 32/70 Series computers is available in the following
forms:

1. The basic 32,768-byte core memory modules with a full memory cycle
time of 600 nanoseconds

2. 65,536-byte core memory packages of 600-nanosecond memory

3. 131,072-byte core memory packages of 600-nanosecond memory

4. 65,536-byte core memory modules with a full memory cycle time of
900 nanoseconds

5. 131,072 core memory packages of 900-nanosecond memory

4-1

4-2

600/900
NANOSECOND

CORE MEMORY
MODULES

MIXED MEMORY
RULES

MOS memory packages include the following components:

1. 128 KB or 256 KB 900-nanosecond MOS memory modules(s)

2. Memory chassis

3. Power supply

4. Refresh board

5. Memory Bus Controller (MBC)

The 32170 Series computers will support both 600- and 900-nanosecond
core memory modules if they are not intermixed with one memory interface.
Since the individual memory modules connected to the memory interface
have a fu 11 cyc 1 e t; me of 600 or 900 nanoseconds, and the Se 1 BUS op­
erates synchronously with full 32-bit word transfers occurring every 150
nanoseconds, the memory chass i s handl es the fo 11 owi ng combi nat ions of
overlapped memory operations:

1. a. Four memory write operations (26.67M bytes/second)
(for 600 ns memory)

b. Six memory write operations (26.67M bytes/second)
(for 900 ns memory)

2 .. a. One memory read and two memory write operations
(19.99M bytes/second) (for 600 ns memory)

b. One memory read and two memory write operations
(22.22M bytes/second) (for 900 ns memory)

3. a. Two memory read operations (13.33M bytes/second)
(for 600 ns memory)

b. Three memory read operations (10.00M bytes/second)
(for 900 ns memory)

MOS and core memory may be mixed on 32170 Series systems. However,
it should be done only in accordance with the rules listed below:

1. Mixed memory can be accomplished on 32170 Series systems only.

2. The higher speed memory must be the low order address space.

3. Separate MBCs, chass is, and power supp 1 i es must be used for the
different memory types.

4. The core memory should occupy the low order address space.

5. The total amount of core memory in the low order address range
must be equal to or a multiple of the MOS memory module size.

MEMORY
REFERENCE

INSTRUCTIONS

An amplification of the preceding rules is provided in the paragraphs
that follow.

Mixing MOS and core memory should not be attempted on systems other than
the 32/70 Series. For example, the 32/35 and 32/55 cannot support MOS
memory. The 32/30 and 32/57 cannot have mixed memory because they use
a split backplane.

Separate MBCs, chassis, and power supplies are necessary because MOS and
core memory uni ts have different requi rements in thi s regard. When
addi ng core memory to a Model 32177 processor, it is necessary to add
Model 2332 Memory Carriage for 900 ns core memory. The Memory Carriage
includes. the chassis, power supply, and MBC required to support the
core memory. This MBC will not support MOS memory. To add MaS memory
to a Model 32/75 processor, a Model 2375 or 2380 Memory Package is re­
quired and provides the chassis, power supply, MBC, and memory.

Core memory should occupy the low order address space. This is to
ensure that register save areas are in nonvolatile memory locations. If
a customer is unconcerned about the state of the processor at the time
of a power failure, then the core memory could be high address

. locations.

Assuming the core memory is in the low order address space, it is
necessary to protect the memory from unwanted discontiguous memory
locations (holes). The amount of memory on the first MBC will be
dictated by the incremental granularity of the MaS memory modules on
successive MBCs. Since the smallest granularity of the MOS memory
boards is 32 KW, there would have to be at least 32 KW of core on the
first MBC. If the MOS memory module used contained 64 KW, the amount of
core on the first MBC would have to be 64 KW. After the first MOS
memory board size is established, any additional boards must be of the
same size. An example would be a Model 32/75 CPU with four 8 KW, 600 ns
core memory modules (Model 2152). If a customer wished to add the 64 KW
MOS Memory Package (Model 2380) to the CPU, a prerequisite would be to
add four additional 8 KW, 600 ns core memory modules (2152) to the first
MBC. This establishes the memory on the first MBC (64 KW) and is equal
to the granularity of the MOS Memory Package of 64 KW. Additional 64 KW
memory modules (Model 2381) can then be added to the MOS Memory Package.

Bits 9-31 have the same format in every memory reference instruction
whether the effective address is used for storage or retrieval of an
operand, as an indirect address operand, or to alter program flow.
The Memory Reference instruction format is shown below:

I , ~ ~D~ , I, R: I x I, I ,I ~RDADDR~
I' I' I : ' , , : ' I '

: , I ,e I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4-3

4-4

Bits 9 and 10 specify the general purpose register (GPR) to be used as
an index register, bit 11 is the indirc:!ct bit, and bits 12-31 define
the word address and data type. [he effective address of the instruc­
tion depends on the values of I, X, and bits 12-31. If I and X are
both Zero bits 12-31 address the data type defined by bits 13-29.

_ xl'l'l : ~RDADDR~ : , '" " ", " ,
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F- AND C-BITS

DIRECT
ADDRESSING

The format of the F- and C-bits have been selected so that any selected
data type (byte, 16-bit halfword, 32-bit word, or 64-bit doubleword) can
be conviently indexed by that data type. The possible combinations of F­
and C-bits are as follows:

F C Data Type

0 00 32-bit word

0 01 16-bit left halfword (bits 0-15)

0 10 64-bit doubleword

0 11 16-bit right halfword (bits 16-32)

1 00 Byte 0 (bits 0-7)

1 01 Byte 1 (bits 8-15)

1 10 Byte 2 (bits 16-23)

1 11 Byte 3 (bits 24-31)

When an X is equal to Zero (no indexing), and I is equal to Zero (no
indirect), the effective memory address is taken directly from bits
13-29 of the Memory Reference instruction.

The Store Word instruction is coded:

STW 0,0

and is assembled as hexadecimal 04000000. When executed, this instruc­
tion stores the contents of General Purpose Register 0 directly into
memory byte location O.

The Store Byte instruction is coded:

STB 0,1

and is assembled as hexadecimal 04080001. Note that the F- and C-fields
of the instruction have been altered. When executed, this instruction
stores the least significant byte of General Purpose Register 0 directly
into memory byte location 1.

INDIRECT AND
INDEXED

ADDRESSING

INDEXED
ADDRESSING

Indirect addressing can be combined with indexing at any indirect level.
An example of indirect addressing with indexing follows:

Location Machine Byte Label Operation Operand
Counter Instruction Address

PROGRAM
POOOOO REL
POOOOO C9800004 STRT LI 3,4
POOO04 AC90000C POOOOC LW 1,*LOCl
POOO08 3055 CALM X'55'
POOOOA 0002
POOOOC 00100010 POOOIO LOCI ACW *LOC2
POOOIO 00700014 POOO14 LOC2 ACW *LOC3,3
POOO14 00000000 LOC3 DATAW 0
POOO18 OOOOOOIC POOOIC ACW LOC4
POOOIC OOOOFFFF LOC4 DATAW X'OOOOFFFF'
POO020 POOOOO END STRT

The fi rst executable instruction is a Load Immedi ate (LI) to load a
value of 4 into GPR3 (index register). The next instruction to be
executed is the Load Word (LW). This instruction directs the machine to
load GPRl, indirectly using the contents of LOCI as the operand address.
The address in LOCI, however, has the indirect bit on; the machine uses
this address to fetch the contents of LOC2. The contents of LOC2 has an
indirect bit on, but it also points to GPR3 for indexing. The machine
then takes the address contents of LOC2 and adds to it the contents of
GPR3 (which increases the address by four bytes). The resulting address
points to LOC4. The address stored in LOC4 has the indirect bit off.
The machi ne then uses the address POOOIC stored in LOC4 as the fi na 1
operand logical address and loads GPRI with the hexadecimal value
OOOOFFFF. The ACW statement is a Macro Assembler directive used to
generate an address constant. The DATAW is also a Macro Assembler
directive.

Any data type may be indexed by adding a bit at the bit position corres­
ponding to the displacement value for each data type. These are as
follows:

Data Type Bit Position

Byte 31
Halfword 30
Word 29
Doubleword 28

If X is nonzero (specifying indexing), bits 13-31 are used to produce a
memory address by addi ng it to the contents of the general purpose
register specified by X. Only General Purpose Registers 1, 2, and 3
function as index registers.

For selective or indexed addressing, the displacement is a two comple­
ment integer wi thi n one of the general purpose regi sters used for i n­
dexing. For word indexing, bit 29 of the index register is the .least
significant bit of the address. If bit 29 of GPR3 is set to One to
provide a displacement of one word, the indexed Store Word instruction
is coded:

STW 0,0,3

This now stores the contents of GPRO in memory indexed by the contents
of GPR3. The instruction would assemble as 04600000. The calculated
logical effective word operand address (after indexing) would be 00004.
Therefore, the contents of GPRO will be stored in memory location 00004.

4-5

4-6

INDIRECT
ADDRESSING

WORDS6 HALF­
WOR SA AND yfES

WORD AND
DOUBLEWORo

OPERANDS

If I h equal to Zero, addressing is direct, and the address already
determined from X and bits 12-31 is the effective address used in the
execution of the instruction.

If I is equal to One, addressing is indirect, and the processor re­
trieves another address specified by the operand address. In this
new address, bi ts 9 and 10 select the index regi ster and bi t 11 is
the indirect bit; bits 12-31 specify the effective address as in the
memory reference instructions. To use the indirect addressing cap­
ability the instruction would be coded:

STW 0,*0

which causes bit 11, the indirect bit, to be set to One. When executed,
this instruction stores the contents of GPRO in the memory location
whose address is stored in memory location O.

Multilevel indirect addressing can be performed when each new address
taken from memory has the indirect bit (bit 11) set to One. The process
of fetching indirect addresses continues until an address has bit 11
equal to Zero. This address is the logical effective operand address.

Each fullword instruction (32 bits) must be stored in memory on a word
boundary (bits 30 and 31 equal to Zero). Memory information boundaries
are illustrated in Figure 4-1.

Halfword instructions are stored two per word. When a halfword is
followed by a word instruction, the Assembler positions the instruction
in the left half of the word and stores a No Operation (NOP) instruction
in the right half of the word. This maintains the word boundary dis­
cipl ine.

Memory Reference instructions which address a byte in memory do not
alter the other three bytes in the memory word containing the specified
byte. Memory instructions which address a halfword do not alter the
other halfword of the memory location. The exeception to the preceding
is that the Add Bit in Memory instruction may propagate a carry to the
most significant bit of the word containing the specified bit.

Word operands must be stored in memory on a word boundary. The most
significant word of a doubleword operand must be stored in a memory
location having an even word address with the lea~t significant word
stored in the next sequentially higher (i.e., odd word) location. Some
examples of memory addressing follow:

Byte Halfword Word Doubleword

00000 00000 00000 00000
00001
00002 00002
00003
00004 00004 00004
00005
00006 00006
00007
00008 00008 00008 00008
00009
OOOOA OOOOA
OOOOB
OOOOC OOOOC OOOOC
00000
OOOOE OOOOE
OOOOF
00010 00010 00010 00010

32·BIT WORDS

BITS

32·BIT WORDS

BITS

WORO ADDRESS
N (EVENI

WORD ADDRESS
N+1 (0001

, A , , A'-____ ~\

BBBBBBBB
f'-v-J '-v-I: '-v-' '--y-J
I BYTE BYTE I BYTE BYTE
I 0 l' 2 , ,
I'---v--' I '---v--'

3

'--.,rJ '-..r-' I '-v-' ,"",,-':
BYTE BYTE I BYTE BYTE I

o 1 I 2 3 I

'---v--' : '---v--'I
, LEFT RIGHT LEFT RIGHT
I HALFWORD HALFWORD HALFWORD HALFWOAD

I
~o 31 0 31
I'-------~v,.---------JI ~'---------~V,._------..JI ,
I MOST SIGNIFICANT WORD LEAST SIGNIFICANT WORD

I

'0 ~ I ~\... ____________ ~,.--------------------..I' - V

DOUBLEWORD

WORD ADDRESS
N+2 (EVENI

,,.---------..IA'-------~\

B 18--15111~ .. 23112~-.31 I
!'-v-' '-..r-' I '--y-J '--v--'
: BYTE

I
BYTE I BYTE BYTE

I 0 1 I 2 3

I I
I'---v--' I '---v--'
I LEFT RIGHT
I HALFWORD HALFWDRD

WORD ADDRESS

N+3 (~\".D_D_I ____ ,

DB 116--231124"'311

'-v-' '--v--' l '-v-' '-v-'I
BYTE BYTE I BYTE BYTE:

o I 2 3

I I

'---v--' I '---v--'l
LEFT RIGHT I

HALFWORD HALFWORD
I

10
I~

31 0 3~1
V 'I' V I I

1 I
MOST SIGNIFICANT WORD LEAST SIGNIFICANT WORD , I

I I
to 63 1
h V

f I

DOUBLEWORD

Figure 4-1. Information Boundaries in Memory

4-7

HARDWARE
MEMORY

MANAGEMENT

ADDRESSING
MODES

512 KB MODE

512 KB
EXTENDED MODE

4-8

The 32170 Series computer features Hardware Management that provides
full utilization of all available memory. The memory management hardware
includes: hardware Memory Allocation and Protection (MAP). extensions to
the interrupt. I/O. and memory sUbsystems. Thi s feature also allows
programs to be loaded in one area of phys i ca 1 memory. rolled out to
disc. rolled back into another area of memory. and to continue execution
without requiring time-consuming software relocation biasing.

In addition. these programs may be distributed throughout physical
memory in 32K-byte blocks to take complete advantage of available
memory. Hardware Memory Management. inc 1 udi ng automat i c context
switching. is accomplished through the processing and control of the
MAP. The MAP consists of up to thirty-two 16-bit halfwords. The first
16 halfwords (the Primary MAP) are used to define a 512K-byte logical
primary address space into which may be loaded either data or executable
programs. The second 16 halfwords (the Extended Operand MAP) are used
to define a 512K-byte logical extended operating address space into
which only data may be loaded.

By using the MAP. a Sl2K-byte logical primary address space may be
distributed in 32K-byte blocks throughout the 16.777.216 bytes of
physical memory and may contain data or instructions. The 32/70 Series
computer can access and execute programs up to S12K bytes in size.
located anywhere within physical memory (16M bytes). The user can also
use an additional 512-K byte logical extended operand address space for
data storage. The combination of the logical primary address space and
the additional extended operand address space provides support through-

. out physical memory. provided that the executable code . lies entirely
within the logical primary address space.

The 32/70 Series computer provides the capability of accessing memory in
any of the following modes:

1. S12 KB mode

2. 512 KB Extended mode

3. 512 KB Mapped mode

4. Mapped. Extended mode

The 512 KB mode of memory address allows the 32/70 Series Central Pro­
cessor Unit to directly access any byte. halfword. word. or doubleword
in the first 512K bytes of memory without mapping. indexing. or address
modification. A 19-bit address field is provided in all Memory Ref­
erence instructions for this purpose.

Bits are addressed by using the R (register) field of the instruction
word to designate a bit in the byte specified by the 19-bit address.
Therefore. any bit in 512K bytes of memory can be directly addressed by
the Bit Manipulation instructions.

The 512 KB Extended mode of memory address i ng provi des the same cap­
abilities as the 512 KB mode plus operand addressing beyond the first
512K bytes of memory to reference all bi ts. bytes, ha lfwords, words,
and doub1ewords residing anywhere within 16 megabytes of physical memory,
This mode of addressing combines the contents of an index register
with the 19 bits of locica1 address in the Memory Reference instruction
to produce a 24-bit physical memory address anywhere in the 16 megabytes
of memory. All memory above the first 512K bytes is usable only for
data storage and retrieval and not for executable instructions. This
mode of memory address i ng is app 1 i cab 1 e to both the PSW and the PSD
modes of operation.

512 KB
MAPPED MODE

MAPPED/
EXTENDED

MODE

MEMORY
MAPPING

The 512 KB Mapped mode of memory addressing allows a 32/70 Central Pro­
cessor Unit to access any byte, halfword, word, or doubleword within
16 megabytes of memory through memory mapping. In this mode, the memory
management hardware supports up to 16 logical address pages (a page is
32K bytes) di stri buted throughout 16 megabytes of phys i ca 1 memory by
providing mapping and automatic context, MAP, and protection switching.
All 16 pages of 1 ogi ca 1 address pages may be used for executable code
instructions or for data storage and retrieval. Physical blocks of
memory may be common to multiple address spaces, providing a way for
users indifferent address spaces to share common blocks of memory.

The Mapped/Extended mode of memory address i ng allows a 32/70 Seri es
Central Processor Unit to access any byte, halfword, word, or doubleword
within 16 megabytes of memory through memory mapping. In this mode, the
memory management hardware supports up to 32 1 ogi ca 1 address pages (a
page is 32K bytes) di stri buted throughout 16 megabytes of phys i ca 1
memory by provi di ng mappi ng and automatic context, MAP, and protection
switching. The first 16 pages of logical address pages may be used for
executable code or data, and the last 16 pages of logical address pages
must be used for data storage and retrieval only. Multiple-user
programs may be loaded into any or all of the first 16 pages of logical

. address pages. A 32/70 Seri es Computer allows each of these users to
directly address any bit, byte, halfword, word or doubleword within the
address space in which it resides. Physical blocks of memory may be
common to multiple address spaces, providing a way for users in dif­
ferent address spaces to share common blocks of memory.

The 32/70 Series computer includes thirty-two 16-bit (halfword) loca­
tions, the Primary MAP, and the Extended Operand MAP. The Primary
MAP and the Extended Operand MAP are used to map the 512K-byte logical
primary address space and the 512K-byte logical extended operand address
space, respectively, onto physical memory addresses. Each of the 16-bit
MAP locations associates 32K bytes of the logical primary address space
or logical extended operand address space with 32K bytes (8K words) of
physical memory. Logical address spaces are defined by building MAP
Image Descriptor Lists (MIDL) as shown in Figure 4-2.

Each MIDL contains up to 32 halfword page entries (a page is 32K bytes
or 8K words), which contains a 12-bit Page Entry, a Page Valid or
Nonvalid bit, and a Write Protect/Unprotect bit. Any or all of the 32
pages may be designated as Write Protected. The first 16 page entries
(logical primary address space) may be used for executable instructions
or for data storage and retrieval. The second 16 page entries (Extended
Operand MAP Image) may only be used for data storage and retrieval
purposes. For a complete description of the Memory Mapping, refer to
the Memory Addressing section of the Instruction Repertoire.

A logical representation of the components involved in the memory
management process of a 32/70 Series system are depicted in Figure 4-3.

4-9

~
I ...
o

"T1
10
c:
-s
CD

~
I

N

~
"
i
10
CD

~
II)

n
-s
u
~ o
-s
r
II)

~

, , BIT , , , , ,
WORD 16

, ,
0

1

2

3

4

5

6

7

8

9

A

B

e

D

E

F

IVIPI I v J PI
IAI RJ I A I Rf
I LI O I I L I ° I
161 ~, I ~ I ~ I
I lei I Ie J
I I T I EVEN HALFWORDS I I T I ODD HALFWORDS

o 11 121 3 4 5 6 7 8 9 10 1112 13 14 15 16117 P8J 19 20 21 22 23 24 25 26 27 28 29 30 31

I ! ! I ; : I I I PRIMARY MAP PAGE 0 PRIMARY MAP PAGE 1

i I I PRIMARY MAP PAGE 2 j i I PRIMARY MAP PAGE 3

I ! PRIMARY MAP PAGE 4 ! t ! PRIMARY MAP PAGE 5

I I I PRIMARY MAP PAGE 6 I I I PRIMARY MAP PAGE 7 i

'I I PRIMARY MAP PAGE 8 i I I PRIMARY MAP PAGE 9 !

l ! PRIMARY MAP PAGE 10 I 1 I PRIMARY MAP PAGE 11

I I I PRIMARY MAP PAGE 12 I I I PRIMARY MAP PAGE 13

I ; PRIMARY MAP PAGE 14 ; I I PRIMARY MAP PAGE 15

I I
i 1 I 1

! I EXTENDED OPERAND MAP PAGE 0 I ! ! EXTENDED OPERAND MAP PAGE 1

I i EXTENDED OPERAND MAP PAGE 2 i i i EXTENDED OPERAND MAP PAGE 3

! ! EXTENDED OPERAND MAP PAGE 4 ! : ! EXTENDED OPERAND MAP PAGE 5

I I I EXTENDED OPERAND MAP PAGE 6 I I i EXTENDED OPERAND MAP PAGE 7

; EXTENDED OPERAND MAP PAGE 8 ; i i EXTENDED OPERAND MAP PAGE 9

! I ! EXTENDED OPERAND MAP PAGE 10 ! t 1 EXTENDED OPERAND MAP PAGE 11 .
I I I EXTENDED OPERAND MAP PAGE 12 I I I EXTENDED OPERAND MAP PAGE 13 ,

; I I EXTENDED OPERAND MAP PAGE 14 ; ; i EXTENDED OPERAND MAP PAGE 15

iii i i j

.p­
I --

"T1
to
C
-s
Cl)

""" I
(.oJ

:s:
~
o
~
3:
III
::s
III
to
Cl)

3
Cl)
::s
rl-

C"")

~
-0
o
::s
Cl)
::s
rI­
V>

PROGRAM STATUS DOUBLEWORD (PSD)

cc's I
GRANI BPIX

I

'~ + + ,
ADO 0

4

... ..

PROGRAM COUNTER

I CPIX

I
I

WORDa

1 = USE BPIX
• '---BORROW BIT

I SDC I MSDL
POINTER

MAP
SEGMENT CONTROL

DESCRIPTORS

SEGMENT DESCRIPTOR CT ,
16BITSI a SDC

MSDL
POINTER

MASTER PROCESS LIST
(MPL)

SCRATCHPAD

I X'83'

MPL BASE ADDRESS
MAP SEGMENT

DESCRIPTOR LIST (MSDL)

' .. SPC
MIDL ... POINTER

MIDL
SPC

POINTER

.... 784 ,

\(MAP
SEGMENT DESCRIPTORS

... ...

SOC = SEGMENT DESCRIPTOR COUNT
SPC = SEGMENT PAGE COUNT

MAP SEGMENT
DESCRIPTOR LIST (MSDL)

MIDL ... SPC POINTER

'7 MAP
SEGMENT DESCRIPTORS

'"7Fc ...

r

--- ~

I-- '\(
r

..
~

r

\(...

r

'V ...
r

MAP IMAGE
DESCRIPTOR LIST (MIDL)

PAGE PAGE
ENTRY a ENTRY 1

PAGE
ENTRY 2

PAGE
ENTRY 3

MAP
IMAGE DESCRIPTORS

(MIDL)

PAGE PAGE
ENTRY ENTRY

MAP
IMAGE DESCRIPTORS

(MIDL)

PAGE PAGE
ENTRY ENTRY

MAP
IMAGE DESCRIPTORS

4-12

MEMORY
PROTECTION

PROGRAM STATUS
OOUBLEWORO

PSD FIELDS

The memory protection system provides write protection for individual
memory pages. When the CPU is in the Mapped mode (either 512 KB or
Extended), each 32 KB memory block of logical program address space may
be write protected. Write protection for a 32 KB memory block is
selected by setting the protect/unprotect bit that is stored, along with
the block address, in the MAP register of the CPU.

When the CPU is in the Unmapped mode (either 512 KBor Extended),
512-word memory pages may be write protected. Up to 256 pages (128K
words) can be protected at a time. The sixteen 16-bit Page Protect
registers are provided in the Unmapped mode.

Write Protection may be overridden by a CPU operating in the Privileged
mode.

The Program Status Ooubleword (PSO) provides information relating to the
operation that was interrupted or trapped (Old PSO), and the mode and
instruction address that is to be given control during context switching
(New PSO). The format of the PSO is shown in Figure 4-4. .

Execution of any Branch or Branch-and-Link instruction replaces the
contents of bits 13-30 of the PSO with the effective address specified
by the instruction. In addition, if the Branch instruction specifies an
Indirect Branch operation, the contents of bits 1-4 of the PSD are
replaced by the contents of the corresponding bit positions in the
indirect addresss location.

The PSO fields are coded as follows:

1. PRIV (bit 0) indicates the Privileged mode.

o = Nonprivileged
1 = Privileged

2. CCs (bits 1-4) indicate the condition codes.

Bit 1 = CC1

Bit 2 = CC2

Bit 3 = CC3

Bit 4 = CC4

3. EXT (bit 5) . indicates Indexing mode.

o = Off
1 = On

4. HIST (Bit 6) indicates last instruction was a right halfword
(Old PSO only).

5. AEXP (Bit 7) indicates Arithmetic Exception Trap Mask.

o = OFF (Do not generate Arithmetic Exception Trap)
1 = ON (Generates Arithmetic Exception Trap)

6. PSO (Bit 8) indicates PSO mode.

o = PSD mode off (Displayed PSO only)
1 = PSD mode on (Displayed PSD only)

P
CONDITION E H A P M B

R I E N

10 CODES X S X S A PROGRAM COUNTER L
D P R K T T P

j~l j I I I I I I I I I I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35

BIT 0 = 0
= 1

BITS 1-4

BIT 5 = 0
= 1

BIT 6 = 0
= 1

BIT 7 = 0
= 1

BIT 8 = 0
= 1

BIT 9 = 0
= 1

BITS 10-12
BITS 13-29
BIT 30
BIT 31
BITS 32-33
BITS 34-45
BIT46
BIT47
BITS 48-49

BITS

48 49

0 0
0 1
1 0
1 1

BITS 50-61
BITS 62-63

B~IX 10 I f I ~~; I
I ; , • . .FLAG. '

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

UNPRIVILEGED MODE
, PRIVILEGED MODE

ARE CONDITION CODES
BIT 1 = CCl

2 = CC2
3 = CC3
4 = CC4

EXTENDED MODE (OFF)
EXTENDED MODE (ON)

51 52 53 54 55 56 57 58 59 60 61 62 63

LAST INSTRUCTION EXECUTED WAS NOT A RIGHT HALFWORD
LAST INSTRUCTION EXECUTED WAS A RIGHT HALFWORD

AR ITHMETIC EXCEPTION TRAP MASK (OFF)
ARITHMETIC EXCEPTION TRAP MASK (ON)

COMPUTER IS IN PSW MODE (DISPLAYED PSD ONLY)*
COMPUTER IS IN PSD MODE (DISPLAYED PSD ON L Y) *

UNMAPPED (DISPLAYED PSD ONLY) *
MAPPED (0 ISPLA YEO PSD ON L Y) *

ARE NOT USED
ARE LOGICAL WORD ADDRESS
NEXT INSTRUCTION ISA RIGHT HALFWORD
BLOCKED (DISPLAYED PSD ONLY) *
INDICATE MAP GRANULARITY, OO=UNMAPPED AND ALL OTHERS =8K MAP GRANULARITY
PROVIDE A WORD INDEX INTO THE MASTER PROCESS LIST (MPL) FOR THE BASE PROCESS
NOT USED
RETAIN CURRENT MAP CONTENTS
INTERRUPT CONTROL FLAGS

OPERATE WITH UNBLOCKED INTERRUPTS
OPERATE WITH BLOCKED INTERRUPTS
RETAIN CURRENT BLOCKING MODE
RETAIN CURRENT BLOCKING MODE

PROVIDE WORD INDEX INTO MASTER PROCESS LIST (MPL) FOR CURRENT PROCESS
NOT USED

.. THESE BITS ARE USED FOR DISPLAY ONLY AND ARE NOT PRESENT IN THE PSD STORED IN MEMORY,

Figure 4-4. Formats for PSDI and PSD2

4-13

4-14

CONDITION
CODES

7. MAP (Bit 9) indicates Mapped mode

o = Unmapped mode (Displayed PSD only)
1 = Mapped mode (Display PSD only)

8. PROGRAM COUNTER (Bits 10-29) indicate the logical program counter
(Word Address).

Bits 10-12 are reserved for possible later use. (They must be
zero)
Bits 13-29 are the logical address.

9. NR (Bit 30) indicates next instruction is a right halfword.

10. Blocked (Bit 31) indicates Blocked mode (Displayed PSD only).

11. MAP MODE (Bits 32-33) indicate the Granularity as:

00 = Unmapped
01 = Mapped 8K Granularity
10 = Mapped 8K Granularity
11 = Mapped 8K Granularity

12. BPIX (Bits 34-46) provide a word index into the Master Process List
(MPL) for the base process. (Bit 46 is ignored.)

13. Bit 47 = Retain current MAP contents. (New PSD only)

14. EXT INT FLAG (Bits 48 and 49) indicate external interrupt state.

Bits
48 49

0 0
0 1

1 0
1 1

= Operate with Unblocked interrupts (interrupt level active)
= Operate with Blocked interrupts (interrupt level not

active)
= Retain Current Blocking Mode (New PSD only)
= Retain Current Blocking Mode (New PSD only)

15. CPIX (Bits 50-63) provide a word index into the Master Process List
(MPL) for the current process. Bits 62 and 63 are ignored.

A 4-bit Condition Code is stored in the PSD on completion of the execu­
tion of most instructions. These conditions may be tested to determine
the status of the results obtained.

CC1 is set if an Arithmetic Exception occurs
CC2 is set if the result is greater than zero
CC3 is set if the result is less than zero
CC4 is set if the result is equal to zero

The Branch Condition True (BCT) , Branch Condition False (BCF), and the
Branch Function True (BFT) instructions allow testing and branching on
the Condition Codes.

MAP
DESCRIPTION

MASTER PROCESS
LIST (MPL)

The second word of the PSD contains two 12-bit fields whose primary
purpose is to provi de the 1 i nkage from that PSD to the correct map
entries for execution of the process associated with that PSD. The
CPU MAP consists of a RAM with 32 locations, and the firmware will
locate the appropri ate entri es for thi s RAM in main memory through a
set of software-mai ntai ned tables whi ch are interpreted by fi rmware on
these two values from the PSD.

The 12-bit fields are named as follows:

1. BPIX - Base Process Index

2. CPIX - Current Process Index

The software maintains a Master Process List in memory. The base address
is kept in a known (scratchpad) location. It contains one entry for
every value which can appear in either the BPIX or CPIX fields,and it .
is quite reasonable for PSDs to exist where the CPIX and BPIX are iden­
tically equal. This Master Process List is maintained by the most
privileged code of the system, and destruction of its contents will
surely lead to immediate disaster.

The address of the MPL is set by the CPU firmware at System Reset time
by the loading of a predetermined scratchpad cell with the 24-bit physi­
cal MPL address. The MPL entries contain the physical address of the
MAP Segment Descriptor List (MSDL) and a 6-bit count of the number of
Map Segments which concantenates to form the appropriate map contents.

When a PSD is being entered into the CPU, the firmware is faced with one
of three possible actions relating to the map:

1. The PSD being loaded has its mode set to Unmapped, which basically
means that it is going to operate with physical rather than logical
memory addresses. Firmware action when loading this type of PSD is
simply to leave the map contents as they are, and cause them to
become inactive for the duration of this PSD execution.

The Unmapped i ndi cat ion in the PSD overri des the Load Program
Status Doubleword And Change Map (LPSDCM) instruction.

2. The PSD is being loaded as a result of the software instruction
LPSD. In this event, firmware is being assured by the software that
the map contai ns the appropri ate contents and the only fi rmware
action necessary is to reactivate the map circuitry. The basic
function of this is to avoid the cost of reloading the map when
returning from an excursion into an unmapped function, and software
will insure that no other mapped process has intervened.

3. With the exception of the two preceding cases, the entry of a new
PSD into the CPU always results in a total initialization of the
map cirucit.

The MAP RAM will be loaded from page 0 up with values obtained from
main memory. .

The PSD being loaded contains sufficient information for the firmware to
make its way through the series of software-maintained tables in main
memory to assemble the information necessary to initialize the map cir­
cuit. The objective of the table design is to provide for the assemb­
lage of an addressabil ity for that PSD from three distinct types of
elements:

4-15

4-16

1. Private data which is unique to that process.

2. Statically shared data which is shared between several processes.
This sharing is known at load (map creation) time. Since there
exists in reality only a single copy of the data, it is important
to software that a single physical copy of its logical/physical map
exists, and that all PSDs using this shared data are funnelled
through that copy for both software sanity and usage statistics.

3. Data that is shared by means of dynamic invocation. This data
(like a Task Service Area (TSA» is logically "ownedll by a part­
icul ar process, but needed by a vari ety of other processes whi ch
ar.e invoked by the original process in the course of its execution.
Thi s data is generally of the type that it is a Ilper process
global" set of data where any number of Operating System (OS)
services need a random subset of the information which defies the
organi zat i on as a reasonable parameter package, and is 1 i ke ly
unalterable directly by the II owningll process. The as services
which need this data essentially have a partial map in memory
coveri ng thei r pri vate code and data, whi ch must be completed by
addi ng thi s i nvocat i on page for them to correctly perform thei r
functions.

It would be possible to accomplish this dynamic completion of the as
servi ce map by mov; ng into the servi ce map image in memory, but the
complexity of maintaining a stack of these invocations and returns
(which are totally unsequenced due to the dispatching strategy) is
large, and a dynamic link through the PSD relieves both complexity
and overhead in this area. .

The key elements of the PSD which provide firmware with the ability to
satisfy these requirements are two 12-bit fields in the second word of
the PSD, the CPIX (Current Process Index), and the BPIX (Base Process
Index) .

These two fields are both direct word indices into a software-maintained
Master Process List (MPL) which is located in physical memory. It is
both reasonable and frequent that the BPIX and CPIX fi e 1 ds of a PSD
contain the identical number. The MPL is maintained by the most
privileged OS code and any destruction will result in immediate
disaster.

When the firmware must initialize the map circuit during the loading of
a PSD, the following procedure is followed:

1. Using CPIX, locate the MAP Segment Control Descriptor (MSCD) in the
MPL. This word is the controlling factor in map initialization.
This word consists of three fields (see Figure 4-5):

a. Borrowed Bit (Bit 0) - Tells the firmware (1) that the first
set of map entri es are to be obtai ned from the BPI X MSCD to
satisfy the invocation sharing time of creation of this entry,
and (2) the numeric value of the BPIX was unknown (and there
exists a multiplicity of BPIXs).

b. Segment Descriptor Count (SOC) - The count of the number of
Segment Descriptors which are required to describe the ad­
dressability of the PSD.

c. MAP Segment Descriptor List (MSDL) Pointer - The physical ad­
dress in main memory of the first (or second if the borrowed
bit was set) CPIX Segment Descriptor.

ADDRESS
GENERATION

A MAP Segment Descriptor (MSD) is a single word entry which has two
fields (see Figure 4-6):

1. Segment Page Count (SPC) - A count of the number of pages (map
locations) which this Segment Descriptor covers.

2. Map Image Descriptor List (MIDL) Pointer - The starting physical
address of the map cell block which contains the MAP Image Descrip­
tors (MID). A MAP Image Descriptor is a single word with one or
two halfword page entries (see Figure 4-7).

If the borrowed bit is set when the firmware locates the MSCD, the first
segment descriptor is taken from the segment list which is described by
the BPIX, and the second and subsequent segment descriptors are taken
from the list described by this MSCD. When this indirection has been
completed, the only noticeable impact on further processing is that the
first map cell to be loaded from this list is "n" rather than "On (if
the borrow bit had not been set).

The variable length of pages described by each segment descriptor word
are concantenated into the map until the segment count from the MPL is
exhausted. The initialization is complete.

Address generation is accompli shed by addi ng the contents of the i n­
struct i on to the contents of the index regi ster to form a 1 ogi ca 1 ad­
dress. In the Unmapped modes, the 1 ogi ca 1 address is the same as the
physical address. In Mapped modes, a portion of the logical address
is used to address the MAP, while the remaining portion is used in the
physical address. A graphical representation of the address generation
process for each of the four modes is presented in Figures 4-8 to 4-11.

4-17

4-18

SEGMENT I I I

DESCRIPTOR MAP SEGMENT DESCRIPTOR LIST POINTER
1 .c0~N1 • I I I I ' •• 1.1 •• I • • • I • 1 i L :OT·~D 8 • 10 11 12 13 " 16 18 17 18 ,. '" 21 22 23 .. 26 20 '" 20 29 30 31

~ BORROW BIT .. 0 IGNORE BPIX
= 1 SATISFY BPIX MAP SEGMENT CONTROL DESCRIPTOR FIRST.

(IGNORED IF CONTAINED IN MSDC, POINTED TO BY BPIX)

SEG!'I~ENT
PAGE

COUNT

Figure 4-5. MAP Segment Control Descriptor (riSCO)

I I I

MAP IMAGE DESCRIPTOR LIST POINTER

I

• • • • • 1 • I I I I ••• I •• 1 .. 1

01234567 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BITS 0-7 NUMBER OF MAP PAGES TO BE LOADED
BITS 8-31 MAIN MEMORY LOCATION OF MAP IMAGE DESCRIPTORS (MID'S)

Figure 4-6. MAP Segment Descriptor (MSD)

H II : NU P~G~ E~R: I I I H II : NU ~AG~ E~R.Y I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BITS 0 + 16 = NOT USED

BITS 1 + 17 .. 0 INVALID PAGE ENTRY
= 1 VALID PAGE ENTRY

BITS 2 + 18 = 0 NOT WRITE PROTECTED
.. 1 WRITE PROTECTED

(NOT PRIVILEGED CONNECTED)

Figure 4-7. MAP Image Descriptor (MID)

INSTRUCTION (X)

ADDRESS I I INDEX

9 10 13 31 13

00000 lOGICAL MAR

00000 REAL MAR

NOTE: THIS METHOD MAY ADD OR SUBTRACT INDEXED ADDRESSES DEPENDING ON THE SIGN OF
THE INSTRUCTION.

Figure 4-8. Address Generation (128 KW)

4-19

4-20

INSTRUCTION (X)

I ZERO
EXTENDED

13

ADDRESS I
32 8

LOGICAL ADDRESS

PHYSICAL ADDRESS

NOTE: THE INSTRUCTION BEING ZERO EXTENDED DOES
NOT ALLOW SUBTRACTION OF INDEXED ADDRESSES.

Figure 4-9. Address Generation (512 KB Extended Mode)

INDEX I
31

INSTRUCTION

I Cg~E lxll ADDRESS

o 3

PRIMARY MAP PRIMARY MAP
PAGE 0= 8 KW PAGE 1

PRIMARY MAP PRIMARY MAP
PAGE 2 PAGE 3

• I •
MAP ~AGE
DESC~IPTOR

L~T
(PRIMAflY MAP)

I
I
I
I
I
I
I

•
PRIMARY MAP PRIMARY MAP

PAGE 14 PAGE 15

1

1\

II

(X)

INDEX I
13 31

LOGICAL MAR

./

en
en
w
a:
0
0
<!
w
t!)
<!
Q. 15 ADDRESS BITS = 8 KW = 32K BYTES
~
<!
:::E
!::
OJ
.t

>--

BANK & MODULE
9·BIT MAP ADDITION

, ,
"'-
I PHYSI~AL ADDRESS I PHYSICAL MAR

I.!!----~~; r"!r"'-----~~ (REAL) 24 BITS
8 16 17 31 = 16M BYTES

=4M WORDS

Figure 4-10. Address Generation (512 KB Mapped Mode) (Non-Extended)

4-21

E'XECUTABLE

OPERANDS

4-22

o

7

8

INSTRUCTION (X)

ADDRESS I I INDEX I
13 21 8 31

.
L9GICAL ADDRESS

XXXXX

-'"

1'\ ~ 1 PRIMARY MAP PRIMARY MAP w 15 BITS =8 KW
PAGE 0 PAGE 1 a:

0 · 0
MAP ~MAGE ~

DESC~IPTOR w
(,!)

LI:n ~

(PRIMAI'IY MAP) ~ ~ , CI..
I ~

PRIMARY MAP PRIMARY MAP • ~ ,
PAGE 14 PAGE 15

, , t: I , !II ,
~ I •

EXTENDED OPERAND EXTENDED OPERAND
,

9-BIT PRIMARY MAP ADDITION OR I

MAP MAP '. -- .. _-------------------------.
PAGE 0 PAGE 1

, , ,
•

, ,
MAP It..iAGE p..~O ,,1
DESC~IPTOR .?- "i ~,

9-BIT EXTENDED OJ::""
Ll15T - ------------------, ~-

MAP ADD ITION
(EXTENDED ct>ERAND MAP) , I · PHYSICAL , ADDRESS .

EXTENDED OPERAND EXTENDED OPERAND
,

MAP MAP 16 17 31
PAGE 14 PAGE 15

1.1

Figure 4-11. Address Generation (Mapped, Extended Mode)

INTRODUCTION

DEFINITIONS

SECTION V

INPUT/OUTPUT SYSTEM

Input/Output (I/O) operations consist of transferring blocks of bytes,
hal fwords , or words between core memory and peripheral devices. Trans­
fers are performed automatically, requiring minimal CPU involvement.

All system components which participate in the execution of an I/O
operation are illustrated in Figure 5-1. The peripheral device(s) shown
may be either data processing devices such as disc files, magnetic tape
uni ts , 1 i ne pri nters, card readers, and card punches; or they may be
real-time system devices such as data acquisition subsystems, communi­
cations control units, or system control units .

. There are two modes of I/O operation possible, the first being the
Program Status Word (PSW) mode which responds only to Class 0, 1, 2, 3,
and E 1/0 processors. The second is the Program Status Doubleword (PSD)
mode, which will respond to all of the preceding I/O processors as well
as Class F I/O processors.

The I/O processors used in a 32/70 Series computer are available in
three types. The first type is the standard Input/Output Micropro­
grammable Processor (10M) containing a SelBUS interface, Micropro­
grammable Processor, and Device Dependent,logic. The second type of I/O
processor is the Integrated Channel Controller, also known as the
Regional Processing Unit (RPU) (Figure 5-2) which combines the functions
of a channel and a controller into one unit. The function of a channel
is to schedul e the requests for mal n memory between a number of con­
trollers. The channel also interfaces the controller with the CPU to
initiate or terminate an I/O operation. The third type of I/O processor
is the General Purpose Multiplexer Controller (GPMC) and General Purpose
Device Controller (GPDC) combination. The GPMC functions as the SelBUS
interface, and as the decode and control logic for up to 16 device
addresses. The GPMC also controls a number of independent device con­
trollers that are located some distance from itself. The independent
device controllers (GPDCs) function as device interface logic for one or
more devices per GPDC.

The following definitions are presented to aid in understanding the
Input/output operations.

1. I/O Processor-The entire subsystem that interfaces the SelBUS and
provides t70 ports to the devices.

2. External Media-A general term for punched cards, printed forms,
magnetic tape, or discs.

3. Input/Output Devi ces-The peri phera 1 devi ces interfaced to a 32/70
Series computer, e.g .• card reader, card punch, paper tape reader,
paper tape punch, line printer, and magnetic tape drives.

5-1

MEMORY MODU LES

MEMORY I I I 1 I RTOM BUS
CPU CONTROLLER

I MEMORY

SELBUS
BUS

SELBUS

I
INTEGRATED INTEGRATED

CHANNEL CHANNEL CHANNEL
CONTROLLER CONTROLLER

(RPU) (RPU)

,11111111, 11111111
CHANNEL BUS ", .. V

,
1/0 DEVICES 1/0 DEVICES

10M CONTROLLER CONTROLLER CONTROLLER

III I I 11111 I I I
"''''--v~--~

I/O DEVICES I/O DEVICES I/O DEVICES I/O DEVICE

Figure 5-1. 32/70 Series Input/Output Organization

5-2

SELBUS INTERFACE ,~ __ A, __ ~

iii

~
z
iii
:!
en
~

iii
en
~
~

Ii;
w
o
c(

~ o
c.:l
W
0::
CD

ALU BRANCH ADDRESS BITS 108·19)

STATUS

J.
BRANCH SIGNALS~

I.. TEST
~ TEST STRUCTURE CONTROL MEMORY BRANCH

~BITS()'7) PROGRAM
if. ... LOGIC 32 BITS X 4096 WORDS ~ COUNTER MUX

64 BITS 1150 NS CYCLE) 12:1 MUX)

~ INTERRUPT .. .- CROM I iii

~L.
ENABLE iii

W
BRANCH

~ 0
BRANCH CONTROL CROM ADDRESS SELECT iii 8

LOGIC ENABLE en en
0:: 0:: ORDER

§ l- I-
w w iii iii
0 ~ « z en I-
0::

BRANCH SIGNALS...-1.
:;) l- I- en

0 0 iii « w
u 0 0

:I:
ORDER ENABLE CONTROL :. u « z .. en REGISTER a:: c(

~I;=-
<.:l 0::

ICREG) 0 III

ORDER :::~ 0:: I-o.. u
STRUCTURE

~i
w
0::

LOGIC
'f 0

32 BITS ~
0 ~. "J. en

:;)
~ « I I B
I- A en

r' MUX :;) MUX

h ..J
« .. .,. ..

RB (BKOl RB IBK1) ALU RA IBKO) RA (BK1)

16.16 16.16 DATA AND 16.16 16.16

REG. REG. CC REG. REG.
LATCH .. "T J.

iii
.. J. •

~ iii ALU RAM DATA
0 ;; RAM ADDRESS
~ 0 16 BITS

COUNTER
INPUT DRIVERS

X Z ~ (SCRATCHPAD) w
:! '" «
en

iii :! 8 ,.
I-
iii

~
en en
l- I- 0::;::

en iii iii 0-
~ 00 RAM
:;) en l- I-
o.. !:: :;) :;) «8 CONTROL
~ o.. o.. :'en

'" ~ I- «~ ..J ~ :;) :;) a:: iii « :;) 0 0
Z o.. <.:l ,.
0:: ~ W
W :;) a::
I- 0
X e WCS RAM
w « ~~ RAM OUTPUT DRIVERS

r-<
I 32 BITS X 4096 WORDS J ~ f v HRAMDATA 100·31)

EXTERNAL DEVICE
INTERFACE

ILAIN 00·151 AND (LBIN 00·15)

(LEXT 00·15)

·OPTIONAL ACCESSORY

Figure 5-2. Block Diagram - Regional Processing Unit (RPU)

iii

~
~
<1
:!
en
I-
iii
Ii;
w
0
«
I-«
0
<.:l
w
a::
<i:

~

5-3

I/O PROCESSOR
CLASSIFICATION

OPERATION WITH
CLASS

0,1,2, AND E
I/O PROCESSORS

5-4

4. Di rect Access Devi ces-A type of storage dev; ce wherei n access to
the next position from which information is to be obtained is in
no way dependent on the position from whi ch i nformat i on was pre­
viously obtained. Magnetic disc drives and magnetic drums are
examples of direct access devices.

5. Communications Devices-Real-time devices, such as teletypewriters
and process control devices, that interface to a 32/70 Series
computer.

6. Controllers-A general term used to describe the peripheral device
interface logic. One controller may handle several devices.

7. Channel-That portion of an I/O processor containing the logic to
interface the SelBUS and to control the device interface logic.
One channel may handle one or more controllers.

8. Commands-Commands are di rect i ves that are decoded and executed by
the channel, controller, and I/O devi ce to i ni t i ate the I/O op­
eration.

9. Instructions-Directives to the CPU that are decoded and executed by
the CPU. Instructions are a part of the CPU program.

10. Command List-One or more commands arranged for sequential execution.

11. -Data Chaining-Data Chaining is specified by a flag in the lOCO and
causes a channel to fetch the next lOCO when the byte count in the
current lOCO reaches zero. .

12. Local Store-Another name for the CPU scratchpad memory.

13. Channel End-A termination condition that indicates all information
associ ated with the ope rat i on has been recei ved or prov; ded, and
that the channel and controller are no longer needed. Thi s cond;­
t i on resets a 11 condi t ions in the CPU scratchpad pertai ni ng to
the specific channel and controller.

14. Device End-An indication from the controller to the channel that an
170 device has terminated execution of its operation.

15. Controller End-Operations that keep the controller busy after
reporting a Channel End cause Controller End reporting (at the
end of its operation) indicating that the controller is available
for initiation of another operation.

I/O processors are classified as types 0, 1, 2, 3, E, and F. The type
0, 1, and 2 I/O processors are associ ated wi th the teletype. 1i ne
printer, and card reader respectively, and are contained on a single
10M. The type 3 I/O Processor is the RTOM Interval Timer. A type E I/O
processor is one which is controlled by the use of the Command Device
(CD) and Test Device (TO) instructions and has the capability of only
address i ng 512 KB of memory. The type F I/O processor responds to the
32/70 Series I/O instructions, has the capability of addressing 'memory
throughout a 16 MB range, and in some cases supports an opt i ona 1
Writable Control Storage (WCS) unit.

Input/Output (I/O) operations with the Class 0, I, 2, and E I/O pro­
cessors consist of transferring blocks of bytes, halfwords, or words
between core memory and peri phera 1 devi ces. Core memory 1 ocat ions ad­
dressed by these I/O processors are limited to the first 128K words
(512K bytes) of contiguous memory. Transfers are possible at rates up
to 1.2 million bytes per second. The system components which participate
in the execution of an I/O operation are illustrated in Figure 5-3.

COMMAND
DEVICE

I NSTROCTTON

TRANSFER
CONTROL WORD

A 32/70 Series system will support a total of 16 I/O processors. Each
I/O processor may in turn support as many as 16 devi ce addresses,
allowing as many as 128 separate addressed devices to be connected to
a 32/70 Series computer at one time.

Two types of I/O instructions, Command Device (CO) and Test Device (TO),
are executable by Class 0, 1, 2, and E I/O processors.

Transfer of a block of information is initiated by execution of a
Command Device instruction in the CPU. This instruction, illustrated
in Figure 5-4, specifies the device, the direction of transfer, and
other control parameters requi red to condi t i on the devi ce to generate
or accept data. The control parameters are defined in Figure 5-5. The
I/O processor, consisting of an 10M and Device Dependent logic, accepts
the Command Device from the CPU, routes the device control parameters to
the device specified in the instruction, and initializes the transfer of
a block of data. A Transfer Control Word contains the starting memory
address and the number of transfers to be made, and is contained in a
memory location dedicated to each device address.

The Transfer Control Word (TCW) contains a 20-bit address which defines
the memory location for each transfer. It also contains a positive
12-bit binary Transfer Count (TC). The Transfer Count plus the Format
Code (FC) permits transfers of blocks of information having any number
of bytes, hal fwords , or words up to 4,096. The format of the Transfer
Control Word (TCW) is shown in Figure 5-6.

The presence of the Format Code in the TCW permits transfers of bytes,
halfwords, or words. The Format Code is designed such that when F is
equal to One in a given TCW, the address is incremented in bit position
31 each time a transfer occurs. Therefore, each transfer is stored in
or read from a consecutive byte in memory in this order:

Word N Word N+l

---Byte O.Byte I,Byte 2.Byte 3 Byte O,Byte I.Byte 2.Byte 3---

The proper binary value of Format Code for accessing consecutive
ha 1 fwords in memory is F equal to 0, C equa 1 to Yl, where Y equal to
Zero des i gnates 1 eft hal fword and Y equal to One des i gnates ri ght
halfword. With this value of Format Code, the address is incremented in
bit position 30 each time a transfer is made. This results in the
desired accessing of consecutive halfwords.

The proper value of Format Code for consecutive word accessing is TCW
equa 1 to 000. When thi s value is present ina gi ven TCW, the I/O
processor increments the TCW in bit position 29 each time a transfer
occurs.

The Format Code values discussed above are summarized in Table 5-1.

Each time the address is incremented. the Transfer Count is decre­
mented. Therefore, the block length is always defined by the number of
memory accesses and not by the number of words transferred. For specific
I/O processors (i.e., GPMC, HSD, ADI, and FMS), the TCW address field
is used to supply an Input/ Output Command Doubleword (lOCO) address.

The dedi cated memory addresses used wi th the 16 I/O Processors are
included in the 1 ist of Relative Trap/Interrupt Priorities (reference
Table 3-1).

5-5

5-6

MEMORY MEMORY
CENTRAL PROCESSOR MODULE MODULI:

UNIT (CPU)

t
REAL·TlME MEMORY BUS

OPTION CONTROLLER
MODULE SELBUS (MBC)
(RTOM)

r--------- • ~/O_;,~OTLE;_ - - - -.,

I I INPUT/oUTPUT

I
MICRO· I PROGRAMMABLE SELBUS

I PROCESSOR INTERFACE I (10M)

I I MICROPROGRAMMABLE

I PROCESSOR (MP) I I DEVICE DEPENDENT I I I FIRMWARE (PROMS)

I DEVICE DEPENDENT I
I

INTERFACE LOGIC I
L _______

-- -- _______ ..J
C D S
0 A T
N T A
T A T
R U
0 S
L

PERIPHERAL
DEVICE(S)

Figure 5-3. Class 0, 1, 2, and E I/O Organization

• AUGMENT I

1 1 1 1 1 1 DEVICE ADDRESS I CODE I COMMAND CODE
I I J I I I I 1 I 1 1 1 0 ·1 I 1 1 I. I. I.'

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

" FVC ' "--v-'6 J" v {
• REFER TO FIGURE 5·5

I
"...-"-....

BIT16=0

BIT 16 = 1

BIT POSITIONS 20 THROUGH 31 OF THE FUNCTION CODE ARE UNIQUE TO THE DEVICE
BIT POSITIONS 18 AND 19 PROVIDE THE FOLLOWING INFORMATION:

BIT 1B = 1 TRANSFER CURRENT WORD ADDRESS
BIT 19= 1 TERMINATE (RESET I/O CONTROLLER)

A TRANSFER IS TO BE INITIALIZED AND BITS 18 AND 19 OF THE FUNCTION CODE Will
I'ROVIDE THE FOLLOWING INFORMATION:

BIT 19 = 0 OUTPUT TRANSFER (WRITE)
BIT 19 = 1 INPUT TRANSFER (READ)

Figure 5-4. Command Device Instruction Format

(J1 ,
"-l

.."
->.

<.C
C
""5
ro
(J1

I
(J1

n

~
QJ

::s
0..

o
ro
<
->.
n
ro
.."
c::
::s
n
r+
->.
o
::s
O:J

r+

.."
o
""5
3
QJ

r+

.."
o
""5

-0
ro
""5
~.

-0
:::r
ro
""5
OJ

o
ro
<
(')

ro
V1

~ DEVICE

CARD
READER

LINE
PRINTER

TELETYPE

OR
CRT

CONSOLE

MAGNETIC
TAPE {9-TKI

MAGNETIC
TAPE (7·TKI

CARTRIDGE
DISC
#9008

MOVING-
HEAD DISC

#9010

FIXED-
HEAD DISC

#9014

16

0
NONDATA

,
ROIWA

0
NONDATA

1
PRINT

0
NON DATA

,
RDIWR

0
NONDATA

1
ADIWA

0
NONOATA

1
AD,wA

0
NON DATA

,
RDIWR

0
NON DATA

1
RDIWR

0
NONDATA

1

RDIWR

17 18

N,U. 0

N.U 0

N.U 0

N.U 0

N.U. 0

N.U 0

TRANSFER

N.U
CURRENT
ADDR·l

N.U
,

TRANSFER

CURRENT
N.U ADDA -,

N.U ,

TRANSFER

N.U CURRENT
ADDR = 1

INITIALIZE
N.U PLATTER +

RD + WR., 1

TRANSFER

N.U CURRENT
AD DR ~ 1

INITIALIZE

PACK = 1
N.U

RDSEC o l
WR SEC" 1

TRANSFER
N.U CURRENT

ADDR 1

WRllE
RELEASE

N.U SECTOR ~ 1

I .. _I UNIQUE TO THE DEVICE -,
19 20 21 22 2:l 24 26 26 27 28 29 30 31

TERMINATE

"'
PROGRAM

BINARY AUTO
VIOL" 0

MODE MODE • IF ZEROS· TRANSLATE MODE" 1/2 ASCII '" FUNNY CODE

INPUT = 1

TERMINATE

"1

OUTPUT FORMAT FORMAT AOV LINE
"0 ADVANCE , 2

OR
FORM FORMAT t ·FORMAT MEANS USE PAPER ADVANCE BY VERT FORMAT LOOP CHAN 000:2 1112

PAOG VIOL" 1

TERMINATE

"'
INPUT ~ 1 KEYBOARD

ECHO

OUTPUT" 0
,

BACKSPACE ERASE 3.5" AOVTD
TERMINATE ONE RECORD TAPE EOF • REWIND COMMAND BITS 20,21. AND 22 '" ,

"1 .. WRITE EOF AECORD BITS 21 AND 22 ~ 1 BACKSPACE TO EOF RECORD BITS 20 AND 22" 1

INPUT = 1

OUTPUT ~ 0

TERMINATE BACKSPACE ERASE 3.5" ADvTO 800 BPI ~ 0

0' ONE RECORO TAPE EOF 556 BPI = 1 -REWINO COMMAND BITS 20,21, AND 22 ., 1
• "WRITE EOF RECORD BITS 21 AND 22 '" 1"
···BACKSPACE TO EOF RECORD BITS 20 AND 22 ~ 1

INPUT 1 INTER EVEN
CHANGE PARITY ~ 1

OUTPUT = 0 MODE" 1

TERMINATE RECAl SEEK TRACK TRACK TK 128 TK 64 TI(32 TI< 16 TK 8 '<, TK2 T< ,

·1 512 256
NEGATIVE OFFSET - 1

HEAD OFFSETCONT. = 1'2 DIRECT = 1 RESET ~ 0

!NPUT ~ 1
READ TK 0 HEAO INHIBIT

HEADO ANO HEADER HEAD SECTOR SECTOR SECTOR SECTOR

SECTOR 0 SECTOR'" 1 CHECK + 0/1 8 , 2 1
OUTPUT" 0 INIT =0 IN IT "0

TERMINATE RECAL SEEK TK 512 TK 256 TK 128 TK 64 TK 32 TK 16 TK 8 TK' TO TK 1
·1

SET READ SET READ STROBE STROBE OFFSET OFFSET

MARGINS MARGINS LATE EARLY MINUS PLUS·

INPUT = 1 WR/RD WRIRD SECTOR SECTOR SECTOR
DIAGNOSTIC SECTOR 128 64 32 SECTOR SECTOR SEC·,·OR SECTOA SECTOR

16 8 , 2 1
OUTPUT ~ 0

READ TK 0, HEAD 0,

SECTOR 0, F :c 1 '2

TERMINATE
1 SEEK TR(CK '" BITS 16·19" 0 AND TRACI ADDRESS IN Blr 20 31

RELEASE DISC PORT", BITS 15 AND 22 = 1 I
I I

WRITE SECTOR'" BITS 18 AND 21'" 1 AND SECTOR NUMBER IN 81TS 27·31
RESERVE DISC PORT'" BITS 18,19, AND 22 = 1, READ SECTOR", BITS 18,19, AND 21:; 1 AND SECTOR NUMBER IN BITS 27·31

IPL BOOT READ TK 0, seYOR 0 '" BITS 18"r 21'" 1 READ REllEASE SECTOR =IBITS 18 ANO 19.1 AND SECTOR ~UMBER IN BITS 27·31

5-8

TC WA
, , , , , , , , , , I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BITS 0-11

BITS 12,30,31

BITS 13-29

DESIGNATE THE NUMBER OF TRANSFERS TO BE MADE BETWEEN MEMORY AND THE
DEVICE CONTROLLER CHANNEL.

SPECIFY THE FORMAT CODE FOR EACH TRANSFER (SEE TABLE 5-1J.

DESIGNATE THE MEMORY LOCATION FOR EACH TRANSFER.

THE WA FIELD IS INTERPRETED AS A 24-BIT REAL ADDRESS BY THE I/O
PROCESS. THEREFORE, THE ADDRESS RANGE IS LIMITED TO THE FIRST
512 KB OF MEMORY.

Figure 5-6. Transfer Control Word Format

Table 5-1. Transfer Control Word Format Code

Information Format FC

Byte 1XX
Halfword on
Word 000

XX = Byte number
y = a designates 1 eft ha lfword
y = 1 designates right halfword

I
TEST'CODE

,

1 1 1 1 1 1 DEVICE ADDRESS 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
I I l , I I I I I I I I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 , .. .,....., II ~"
FC

I
NOTE: ~

8000(H) TEST CCl
~ , UNDEFINED

4OOO(H) TEST

CC2
CHANNEL

ACTIVE

CC3
10M

ERROR

CC4
DEVICE
STATUS
PRESENT

IF CC1·4=F,
CHANNEL (10M)
NOT PRESENT
(OFF·L1NE)

~ L CCl CC2 CC3 CC4
2000(H) TEST INVALID MEMORY PROGRAM UNDERFLOW

MEMORY PARITY VIOLATION OR L ACCESS ERROR OVERFLOW

CAUSES A TRANSFER OF H) .. BITS OF CONTROLLER STATUS INFORMATION TO THE MEMORY
LOCATION SPECIFIED IN THE TCW DEDICATED LOCATION .. THE MEANING OF EACH BIT IN

UPPER HW

LOWERHW

LINE
PRINTER

MAG
TAPE

MOVING-
HEAD
DISC

FIXEO-
HEAD
DISC

CARO
READER!
PUNCH

THE H) .. BIT STATUS HALFWORD DIFFERS ACCORDING TO DEVICE TYPE. SEE FIGURE 5 .. 8.

CC2= 0 STATUS TRANSFER WAS PERFORMED
CC2 = 1 STATUS TRANSFER WAS NOT PERFORMED
CC4 = 1 CONTROLLER IS ABSENT OR POWERED OFF

Figure 5-7. Test Device Instruction. Format

0 1 2 3 4 5 6 7 8 9 10 11

16 17 18 19 20 21 22 23 24 25 26 27

0 PROG DEV 0 0 0 0 0 0 80F 0 0

VIOL INOP

0 PROG DEV VRC 0 REW CRC 0 0 EOT 80T EOF

VIOL INOP ERROR IN LRC
PROG

0 PROG DEV UNCORR 0 FILE SEEK CORR 0 0 AOOR 0
VIOL INOP DATA UN- IN DATA ERROR

ERROR SAFE PROG ERROR

o PROG DEV CHK 0 0 0 0 0 0 SECTOR 0
VIOL INOP SUM ERROR

0 0 FILE READ 0 STACKER PUNCH HOPPER 0 PICK TRANSMIT INCORRECT

MARK CHECK FULL CHECK EMPTY FAILURE ERROR LENGTH

RO

,
12 13

28 29

0 DEV
BUS'!'

0 DEV
BUSY

0 0

MUX 0
8SY

tgp~~L
UNWS ILLEGAL
CHAN END
END

THE STATUS HALFWORD ISSTORED IN THE MEMORY HALFWORD SPECIFIED BY THE ASSOCIATED
TRANSFER CONTROL WORD (TCW).

Figure 5-8. Test Device 2000 Status Information

14 16

30 31

0 0

FILE 000
PROT REC
VIO LGT

0 SEEK
TRACK
ERROR

FILE SEEK
PROT TRACK
VIO ERROR

INT CHAN
PEND END

5-9

TEST
DEVICE

I NSTRliC'i'IO'N

INPUT/OUTPUT
PROCESSOR

5-10

SelBUS
INTERFACE

The Test Device (TO) instruction is used to acquire status information
from the Input/Output processor and the associated device(s). Three
levels of the TO instruction (8000, 4000 and 2000) may be used to ac­
quire this information. The status information is 1n the form of four
condition code bits for each level of test. The TO instruction does
not initiate any action in the dev;'ce. The TO 8000 instruction is
used by the CPU to test the general status of the addressed device and
associated I/O processor. The TO 4000 instruction is used by the CPU to
allow further definition of the errors indicated in the TO 8000. The
TO 2000 instruction is used by the CPU to obtain 16 bits of status in­
formation from the device/processor. This instruction causes the ad­
dressed I/O processor to transfer a 16-bit status word to the memory
address specified by the TCW. The 16-bit status word may be placed in
memory in either the right or left halfword position. depending on bits
30 and 31 of the TCW address. A TCW used with a TO 2000 should always
specify halfword memory addressing. Figure 5-7 provides a breakdown of
the Test Device instruction format. Figure 5-8 provides the status in­
formation returned from standard peripheral devices upon execution of
TO 2000 instructions.

Each Input/Output processor consists of an Input/Output Micropro
grammable Processor (10M) and Device Dependent Interface logic. The
Microprogrammable Processor (MP) and the Device Dependent Interface
logic are customized for each device. The firmware for a given
Input/Output processor is contained in a set of PROMs that plug into the
processor board. The i nformat ion contai ned wi thi n the PROMs is device
dependent.

This design technique provides extreme flexibility for custom designed
interfaces since the basic MPand SelBUS interface-. are also available as
a General Purpose I/O Processor (GPIO). All t.hat is needed to convert
the GPIO processor into a speci a 1 purpose I/O'· processor is the Devi ce
Dependent Interface logic and the firmware microprogram.

The maximum throughput of an Input/Output processor is 1.2 million bytes
per second.

There are two types of Input/Output processors:

1. Multiple Device Controller (MDC)

2. Multiple Controller Controller (MCC)

The MDC controls like devices, such as four magnetic tapes. The MCC
emulates multiple controllers such as the TLC Input/Output processor
that controls a teletype, a card reader, and a printer. MCC Input/
Output processors are multiplexed processors handHng more than one
devi ce simultaneously access i og memory. The Asynchronous Data Set
Interface (ADS) is an example of a multiplexed processor. The ADS
handles four half- or full-duplex lines directly to memory on a
message bas is. Four memory input buffers and four output buffers
can be active at one time.

The Input/Output SelBUS interface contains the registers and Se1BUS
drivers for a full 32-bit data transfer. The main function of this
logic is to receive and drive communications on the SelBUS. All the
interface control logic, including processor address recognition,
interrupt polling, and data transfer to and from the SelBUS, are in­
cluded in the interface.

The bus priority logic is controlled by the interface control logic.
It poll s for the Se 1 BUS, determi nes when it wi ns the poll, and then
drives the transfer on the bus. Priorities are set through physical
switches in the Input/Output processor.

TRANSFER
RESPONSES

10M DATA
STRUCTURE

ARITHMETIC
LOGIC UNIT

DATA STRUCTURE
CONTROL

TEST STRUCTURE

INTERRUPTS

CLASS F
1/0 OPERATION

An Input/Output processor wi 11 respond to all bus transfers that it
receives. It has three immediate responses:

1. Retry
2. Busy
3. Transfer Acknowledge

The sending bus device can determine the status of its transfer to the
Input/ Output processor by monitoring these lines. A Retry answer means
that the Input/Output processor of the MCC type is temporarily busy. A
Busy means to set the busy condition code bit in the software instruc­
tion and proceed with the next instruction. An Input/Output processor
of the MDC type woul d generate such a return. A Transfer Acknowl edge
indicates that the transfer was accepted and is being processed. If
no answer is present in the bus cycle following the transfer, a non­
present Input/Output processor was addressed.

The 10M data structure provides for the transfer of data, arithmetic and
logical manipulation of data, storing of device and processor status,
decoding of commands, and data buffering. Figure 5-9 provides a block
diagram of the 10M.

Two 16- by 16-bit word register groups, RA and RB, are available as
worki ng read/write memory. The output for each regi ster pai r is the
input to the Arithmetic/Logic Unit.

The destination address and the most significant 16 bits of the data bus
are directed to the RA register group. The program counter and the ALU
output are also directed to the RA register group. The least signif­
icant 16 bits of the data bus and 16 bits of data from the peripheral
devices are directed to the RB register group. The ALU output and a
16-bit literal from the control register are also input to the RB
register group.

The data structure includes a full 16-bit Arithmetic/Logic Unit which
inputs from RA and RB. The ALU is equipped with a 3-bit status register
which contains previous carry, all zeros condition, and the most signif­
icant bit.

A 32-bit by 1,024-word microprogrammed control memory and a 48-bit test
structure (32 implemented) control the flow of data and commands between
the SelBUS and peripheral devices.

The 10M test structure is used with the Wait and Conditional Branch
operations to control the sequencing and timing of instructions.

The 10M has a single Master Interrupt line. For device controllers
requi ri ng more interrupts, the necessary mask regi ster and Pri ori ty
Decode logic is included in the Device Interface logic.

The following discussions refer to the organization and operation of
Series Class F I/O processors.

Class F Input/Output operations consist of transferring blocks of bytes,
halfwords, or words between core memory and the peripheral devices.
Transfers are performed automatically requiring a minimum of CPU in­
volvement.

A typical configuration for Class F I/O operation is illustrated
in Figure 5-10. The I/O devices include card readers, line printers,
discs, magnetic tapes, and telecommunications equipment. The controller
provides the logical and buffering capabilities necessary to operate an
I/O devi ceo The controller is attached to a channeL The channel's
funct ion is to schedul e the requests for mai n memory between a number
of controllers. The channel also connects the controller to the CPU to
initiate or terminate an I/O operation.

5-11

/

S
li
S
!
i
e

i
c
III
Q

8 INT

'" :>
l-

i «
I-

'" :>
-' to «

III
l-

TEST STRUCTURE
LOGIC

8UITS

BRANCH
CONTROL

LOGIC

ORDER
STRUCTUIIE

LOGIC
3ZBITS

BRANCH
SELECT
ORDER

(PULSED
OUTPUT)

SELBUS INTERFACE

A

BRANCH,ADORE. (FORMAT IITS ... ,

CONTROL MEMORY
TEST (BITS:M.31, 3Z BITS X 1024 WORDS PROGRAM GJ 11110 NSlEC CYCLE' COUNTER MUX

BRANCH

i
SELECT

BITS 00, 01, 03
ORDER

I! '. PROGRAM COUNTER

{ _.m~A I
-- +++++++

()fIOEII ADORESS ~
INTERNAL
CONTROL
SIGNALS

MU_B_X ___ --'II

RB
llX 11

REGISTER

DATA
ace

LATCH

r-AL:i

~

A
MUX

RA
'8X'" REGISTER

,

j i I
i It

! ! !
I ! !
~ I I

Ii
Q

i
S! II c c
c •

•

~,--~,,~--~/
DEVICE DEPENDENT INTERFACE

Figure 5-9. Block Diagram - I/O Microprogrammable Processor

5-12

CLASS F
I/O PROCESSOR

MEMORY
ADDRESSING

METHOD ---

The integrated channel controller, also known as the RPU, combines the
functions of a channel and a controller into an indistinguishable unit.

An I/O processor consists of two or more distinct logic subassemblies
which are:

1. The Channel-which interfaces with the SelBUS to send and receive
information between the channel, the CPU, and/or memory. The other
side of the channel interfaces with one or more controllers to
provide control signal and data paths to/from the controllers.

2. The Controller-which interfaces between the channel and the device
i tse If. The purpose of the controller is to provi de the proper
protocol for the device and to convert that protocol to a standard
protocol for use by the channel.

3. Writable Control Storage-which interfaces the channel, provides
a source of ReadfWr; te memory for the channel. The use of the
Writab 1 e Contro 1 Storage is to customi ze an I/O processor for
specific uses. The Writable Control Storage is loaded by special
software instructions and may contain any program the user
requires.

The main subassembl ies common to all Class F I/O processors are the
controller and channel, with the Writable Control Storage being an
option.

Dedicated memory locations are associated with each I/O processor and
provide main memory locations to transmit or receive control information
required to initiate or terminate an I/O operation. The control
information consists of:

1. Service Interrupt Vector Address

2. Input/Output Command Ooubleword (lOCO) Address

3. Status Address

4. New Program Status Ooubleword (PSO)

5. Old Program Status Ooubleword (PSD)

A graphic representation of the I/O control words ;s shown in
Figure 5-11.

Memory addresses are transferred to the channel when a Start I/O (SIO)
or Write Channel Write Control Storage (WCWCS) instruction ;s executed
by the CPU. Prior to the execution of the I/O instruction, the software
stores the address of the first Input/Output Command Ooubleword (lOCO)
to be executed into the word indicated by adding 20 (decimal) to the
contents of the Service Interrupt Vector (SIV). The word indicated is
referred to as the Input/Output Command List Address (IOCLA).

The memory addressing method used for Class F I/O is real addressing.
Real addressing is the capability to directly address any memory
location within the 16 MB maximum capacity of the system without any
address translation. This method of addressing differs from the method
norma lly used by the software programmer, who re 1 i es on a hardware
address conversion to transform the logical address to a real address in
order to address memory locations greater than 512K bytes.

5-13

CPU

INTEGRATED
CHANNEL

CONTROLLER
(RPU)

..
I/O DEVICES

5-14

RTOM

SELBUS

INTEGRATED
CHANNEL

CONTROLLER
(RPU)

~
I/O DEVICES

MEMORY
BUS

CONTROLLER
(MBC)

MEMORY BUS

MEMORY MODULES
~ ________ ~A, __________ ~,

Figure 5-10. System Configuration with Class F I/O Processor

I

40

7C

OP CODE R SIO
I I I

1
I

AUG
CODE

1

I •

I

CONhA~T 1 0 CHANNEL SUB ADDRESS
I 0 I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25' 26 27 28 29 30 31

IF R 1'0

GENERAL
REGISTERS

Rn

~ ~~----______ V~--------_J
I

o
LOGICAL
CHANNEL

SUB"
ADDRESS

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

~~------~v~------~J'~------~v~------~t
SCRATCHPAD ADD"RESS I

LOCAL
STORE

DEVICE ENTRY
INTERRUPT LEVEL

(ONES COMPLEMENT) o
PHYSICAL
CHANNEL

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
~~ ______ ~v~ ______ ~J

I
~'------------------------~v~-------------------------,t 148 DISC I DESTINATION

SI LOCATIONS BUS (0-23) »
VECTOR ADDRESS ~

~ OLD DATA BUS (8-31) » I
PT INTERRU

CONTEXT
BLOCK

"'"---------
PSD

NEW

PSD

lOCO LIST ADDRESS
-- --- -- ---
I/O STATUS ADDRESS

COMMAND

o 7 8

, A

" p: .01 . J REAL lOCO ADDRESS ..
I -'

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31
V t

REAL DATA ADDRESS AND FLAG o .. NU .. 0
XFER BYTE COUNT

31 32 37 38 47 48 63

Figure 5-11. I/O Control Words (Class F)

5-15

PSD MODE I/O
INSTRUCTIONS

START I/O (SIO)

TEST I/O (TIO)

HALT I/O- (HIO)

ENABLE CHANNEL
WCS LOAD

(ECWCS)

WRITE CHANNEL
WCS (WCWCS)

ENABLE CHANNEL
INTERRUPT (ECl)

5-16

When operating in the PSD mode, a set of special instructions augments
or replaces those used for the PSW mode of operation. The PSD I/O
instructions include the following:

l. Start I/O (SIO)

2. Test I/O (TIO)

3. Halt I/O (HIO)

4. Stop I/O (STPIO)

5. Grab Controller (GRIO)

6. Reset Controller (RSCTL)

7. Reset Channel (RSCHNL)

8. Enable Channel WCS Load (ECWCS)

9. Write Channel WCS (WCS)

10. Enable Channel Interrupt (ECI)

11. Disable Channel Interrupt (DCI)

12. Activate Channel Interrupt (ACI)

13. Deactivate Channel Interrupt (DACI)

For all Class F I/O instructions, the logical channel and device
addresses are specified by bits 16-31 of the instruction plus the
contents of the General Purpose Register (GPR) specified by the
instruction (if the GPR specified is nonzero). The channel will ignore
the subaddress for operations that pertain only to the channel.

The Class F I/O instructions can be executed only when the CPU is in
privileged mode and operating in the PSD mode.

The Start I/O initiates an I/O operation. If the necessary channel,
subchannel or controller is available, the SIO is accepted and the CPU
continues to the next sequential instruction. The channel/controller
independently governs the I/O device specified by the instruction.

The Test I/O interrogates the current state of the channel, subchannel,
controller and device and may be used to clear pending interrupt
conditions.

The Halt I/O terminates a channel, controller, and/or device operation.

The Enable Channel WCS Load conditions the channel to have its WCS
loaded.

The Write Channel WCS is the second part of a two-instruction sequence
and causes the specified channel's WCS to be loaded.

The Enable Channel Interrupt allows the channel to request interrupts
froin the CPU.

DISABLE
CHANNEL

INTERRUPT
(DCI)

ACTIVATE
CHANNEL

INTERRUPT
(ACI)

DEACTIVATE
CHANNEL

INTERRUPT
(DACI)

RESET CHANNEL
(RSCHNl)

STOP I/O
(STPIO)

RESET
CONTROllER

(RSCTl)

GRAB
CONTROllER

(GRIO)

INPUT/OUTPUT
COMMAND liST

ADDRESS

The Disable Channel Interrupt prohibits the channel from requesting an
interrupt. Pending status conditions can only be cleared by the ex­
ecution of a Start I/O, Test I/O, or Halt I/O if the channel is disabled.

The Activate Channel Interrupt causes the channel to actively contend
for interrupt priority except that the channel never requests an in­
terrupt. The instruction has no effect on pending status conditions ex­
cept that it can be cleared by a Start I/O, Test I/O, or Halt I/O.

The Deactivate Channel Interrupt causes the channel to suspend con­
tention for interrupt priority. If an interrupt request is queued, the
channel may then request interrupt. All OACI instruction abnormal ities
or I/O protocol violations are connected to the System Check Trap unless
an initial channel nonpresent or inoperable condition is found.

The Reset Channel resets all activity in the channel. All requesting
and pending conditions are cleared.

The Stop I/O terminates the operation in the controller after the com­
pletion of the current lOCO. The termination is orderly. The channel
will suppress command and data chaining.

The Reset Controller resets a specific controller if the resetting
channel maintains ownership. The reset is immediate.

The Grab Controller takes away control of a controller which is re­
served to another channel. The grabbing channel is ass igned as the
reserving channel.

Successful execution of the SIO and WCWCS causes the CPU to transmit
the Input/Output Command list Address (IOClA) to the channel/controller.
The IOClA is located in main memory at locations specified by the ser­
vice interrupt vector plus 16 (decimal). Each of the 16 channels has a
corresponding service interrupt vector. The format for the IOClA in­
dicated by the contents of the service interrupt vector 11 is:

1.,.,.,':.,.,.,.1",:" ,R~L,I()'iD~D~R~S":,,, '"
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

INPUT/OUTPUT
COMMAND

DOUBlEWORD
(lOCO)

The real IOClA is passed to the channel/controller on the data bus.

The address indicated in the IOClA specifies the word address of the
first lOCO to be executed. The lOCO format is shown in Figure 5-12.

The SIO is the only instruction that is able to cause the Channell
Controller to fetch an lOCO. One or more lOCOs create an Input/Output
Command list (IOCl).

The command field specifies one of the following seven commands:

Write
Read
Read Backward
Control
Sense
Transfer in Channel
Channel Control

5-17

INPUT/OUTPUT
COMMANDS

WRITE

READ

READ BACKWARD

5-18

CONTROL

SENSE

TRANSFER IN
CHANNEL

CHANNEL
CONTROL

INPUT/OUTPUT
TERMINATION

If more than one lOCO is specified, the lOCOs are fetched sequentially
except when Transfer in Channel (TIC) is specified. Search (compare)
commands can cauSe the skipping of the next sequential lOCO if the
condition becomes true (i.e., Search Equal, Search Low, or Search High).
The channel or contro 11 er wi 11 then increment by 16 rather than 8.

The real data address specifies the starting address of the data area.
The data address will be a byte address and the channel will internally
align the information transferred to or from main memory. Exclusions to
the byte ali gnment may be requi red by the lower pri ced channel (s)
operating in Burst mode in high performance controllers.

The byte count specifies the number of bytes that are to be transferred
to or from main memory. The actual number of memory transfers performed
by the channel will be dependent upon the channel implementation.

The Write command causes a Write (output) operation to the selected I/O
device from the specified main memory address.

The Read command causes a Read (input) operation from the selected I/O
device to the specified main memory address.

The Read Backward command causes a Read (input) operation from the
selected I/O device to the specified main memory address in descending
order.

The Contro 1 command causes control i nformat i on to be passed to the
selected device. A Control command may provide a data address and byte
count for additional control information that may be stored in main
memory.

Control information is device dependent and may instruct a magnetic tape
to rewind or a printer to space a certain number of lines.

The Sense command causes the storing of controller/device information in
the specified location of main memory. One or more bytes of information
will be transferred depending upon the device. The sense information
provides additional device dependent information not provided in the
status flags.

The Transfer in Channel (TIC) command specifies the address of the next
lOCO to be executed. The TIC command allows the programmer to change
the sequence of the lOCOs executed. The IOCLA cannot specify a TIC as
the fi rst lOCO ina command 1 i st nor can a TIC specify another TIC
command.

The Channel Control command causes the transfer of information to or
from a specific location in main memory. One or more bytes of infor­
mation will be transmitted or received from the channel. The channel
control provides for the passing of information required to initialize
all channel s.

An I/O operation terminates when the channel, controller, and/or device
indicates the end of an operation. All I/O operations accepted by the
channel will always terminate with at least one termination status being
presented to software.

An I/O operation can also fail to be accepted by the channel during I/O
initiation. Conditions that prevent I/O initiation are: (1) channel or
subchannel busy, (2) channel not operational or nonexistent, or (3)
pending termination status from a previously initiated liD operation.

lOCO MSW

COMMAND
, , ; ,

o 123 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lOCO LSW

I

FLAGS 0 0 0 0 0 0 0 0 0 0 0 BYTE TRANSFER COUNT
I I I I I I . ,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
n ~ a

BIT ASSIGNMENTS IN THE COMMAND ARE:

x x x x 0 0 o 0 CHANNEL CONTROL
MMMM01 0 0 SENSE
X X X X 1 o 0 0 TRANSFER IN CHANNEL
M M M M 1 1 0 0 READ BACKWARD
MMMMMMO 1 WRITE
MMMMMM1 0 READ
MMMMMM11 CONTROL

FLAG BIT ASSIGNMENTS ARE:

1 0 0 000
o 1 0 0 0 0
00100 0
000 1 0 0
o 0 0 0 0

DATA CHAIN (HOLDS OFF TERMINATION WHEN XFER CT = 0)
CMD CHAIN
SUPPRESS INCORRECT LENGTH
SKIP
POST PROGRAM CONTROLLED INTERRUPT

C· BIT ASSIGNMENTS ARE:

BIT 30 BIT 31

o
o

o
1
o

BYTE 0 OR FULLWORD
BYTE lOR FIRST HALFWORD
BYTE 2 OR DOUBLEWORD*
BYTE 3 OR SECOND HALFWORD

*IF DOUBLEWORD IS INDICATED TO A CHANNEL, AMBIGUOUS RESULTS
MAY OCCUR.

Figure 5-12. Input/Output Command Ooubleword (lOCO)

5-19

5-20

INPUT/OUTPUT
STATUS WORDS

I/O initiation failures are reported to software by the setting of
condition codes and. where applicable. the storing of status.

The status words are maintained and stored by the channel. The address
of the status words is transmitted to the CPU when an interrupt is
acknowledged or when another I/O instruction is executed. The status
words contain information relating to the execution of the last lOCO or
from an asynchronous condition requiring software notification (i.e .•
tape loaded. disc pack mounted). The status words are in the following
format:

STATUS WORD 1

I, s:"'~D~RE:"" '" ,,~EA; 'D,COtD~R;SS, " '" ,. ,. I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

STATUS WORD 2

I ., , , : s;-A ~us ,F~GS, ,. '" I I I ;E~D~AC,B~EC~u,NT , I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

INPUT/OUTPUT
INTERRUPTS

The status flags contain termination information pertaining to both the
channel and controller. IOMs that function as integrated channel
controllers will maintain both sections.

The address of the status is stored in main memory and can be located by
adding 2010 = 1416 to the contents of the service interrupt vector.

Input/Output interrupts can be caused by a response to a probe instruc­
tion (i.e .• TIO) by the termination of an I/O operation. by operator in­
tervention at the I/O device, or when a post program controlled
interrupt is requested by an lOCO. The associated I/O interrupt causes
the status address. and· the current PSO to be stored in the memory
location specified by the service interrupt address. The new PSO
(specified by the contents of the service interrupt vector +8) is then
loaded.

An I/O interrupt can be caused by the device. controller. or channel.
If a channel or controller has multiple I/O interrupt requests pending.
it establishes a priority sequence for them before initiating an I/O
interrupt request to the CPU. Th'is priority sequence is maintained when
the channel stores the status and reports the status address to the CPU.

The mode in which the channel operates during the software interrupt
processing is determined by the mode setting of the channel and the
implementation of the channel. The software may use bits 48 and 49 of
the new PSO to select one of two options: Unblocked or Blocked
operation.

Unblocked operation specifies that the CPU. upon receipt of an
interrupt. causes the channel to 90 active and block all interrupts of a
lower priority. The channel serVlces the interrupt. and the software in
turn issues a OACI or BRI command to restore the interrupt processing.

Blocking specifies that the CPU, upon receipt of an interrupt, causes
the channel to deactivate. The CPU blocks all incoming interrupts and
services the pending interrupt. The software in turn issues an UEI
command or a BRI, LPSD, or LPSDCM to the CPU, thereby restoring
interrupt processing. The target PSD of the BRI, LPSD, or LPSDCM
instruction should specify Unblocked operation in bits 48 and 49.

5-21/5-22

INTRODUCTION

MNEMONIC

INSTRUCTION
NAME

OPERATION CODE

FORMAT

DEFINITION

SUMMARY
EXPRESSION

ASSEMBLY CODING
CONVENTIONS

SECTION VI

INSTRUCTION REPERTOIRE

This section contains the description of each computer instruction.
The following paragraphs list the standard information given with
each instruction.

A two- to six-letter symbolic representation of the instruction name
accepted by the assembler program.

A title that indicates the function perfonned by the instruction.

The Operation Code for each instruction is given in left-justified hexa­
decimal format. This format is presented in a 16-bit skeleton fonn and
takes into consideration the Augmenting Code and the fonnat bit used with
byte-oriented instructions.

A 16- or 32-bit machine language representation of the instruction. The
operation code and all other fixed bits are given in their binary value.

The function perfonned by the instruction is described following the in­
struction format. All registers or memory locations which are modified
are defined. Special considerations are given in notes following the
basic functional description.

This expression supplements the verbal description of most instructions
by symbolically showing the function performed by execution of the in­
struction. The symbols are defined in Table 6-1. The abbreviations are
listed in Table 6-2.

Summary expression examples are given below:

(s24-31) - (d24-31)

The contents of bits 24-31 of GPR d are replaced with the contents of bits
24-31 of GPR s.

[zerosO_23 ' byte operand] -+ (d)

The byte operand is appended with zeros in positions 0-23 and the resulting
word replaces the contents of GPR d.

(m). (m+l) is a doubleword effective memory address.
(d), (d+l) is a doubleword even/odd GPR pair.

A symbolic representation of the assembler coding format. Table 6-2 lists
all abbreviations and symbols used in the operand coding fonnat.

6-1

6-2

Symbol

+1

>

<

+

x

/

&

EA

EBA

EBl

EDA

EDl

EHA

EHl

EWA

Table 6-1. Symbol Definitions

Definition

logical NOT function, for example (5) is the ones
complement of the GPR number s.

Replaces; the data to the left of the symbol replaces
data to the right. For example, (s) + (d) means the
contents of GPR number s replaces the contents of GPR
number d.

The register number or memory address is incremented
by one register number or one memory word.

Greater Than.

lesser Than.

Algebraic Addition.

Algebraic Subtraction.

(or no symbol) Algebraic Multiplication.

Algebraic Division.

logical AND.

Bits m through n of a computer word.

Bit n of a computer word where Bo always refers to the
most significant bit of a computer word (the letter n
is also used to indicate scaling; e.g., 115 indicates a
1 scaled at bit position 15).

Condition Code bit n.

Comparison Symbol.

Concatenation Si9n (e.9., R, R+1 indicates a doubleword
consisting of (R) and (R+1), where R must be an even
numbered register).

Effective Address of an operand or instruction stored in
memory.

Effective Byte Address.

Eight-Bit location in .memory specified by the EBA.

Effective Doubleword Address.

Sixty-four bit location in memory consisting of an even
numbered word location and the next higher word location.
specified by the EDA.

Effective Halfword Address.

Sixteen-bit location in memory specified by the EHA.

Effective Word Address.

Symbol

EWL

I

lSI

IW

()

@

MIDL

PSDR

PSWR

R

SCC

SE

v

x

-y

y

Table 6-1. Symbol Definitions (Cont'd)

Definition

Thirty-two bit location in memory specified by the EWA.

Indirect Address bit.

Is Set If, used to indicate conditions which set
referenced bit locations.

Instruction Word.

Contents of.

Exclusive OR.

Memory Image Descriptor List.

Program Status Doubleword Registers.

Program Status Word Register.

General Register 0-7 (RO-R7).

Bits m through n of General Register R.

Bit n of General Register R.

Specified Bit Location with a byte (used as a subscript
to designate that the bit location is specified in the
Instruction Word).

Sets Condition Code bits.

Used as a subscript to denote a sign extended halfword.

Logical OR.

Index Register:

X Value
00
01
10
11

GPR Used for Indexing
None
R1
R2
R3

Twos complement of Y.

Ones completion of Y, logical NOT function.

6-3

CONDITION CODE
RESULTS

EXAMPLES

INSTRUCTION
MNEMONICS

6-4

An interpretation of the resulting 4-bit Condition Code in the Program Status
Doubleword register. This code defines the result of the operation. The
circumstances in which these Condition Codes are set (i.e., equal to One) are
noted with each instruction.

Included in the examples with many of the instructions are memory and register
contents before and after execution.

The 32/70 Series instruction mnemonics follow a very simple format. The
basic types are:

L
ST
AD
ADM
ARM
SU
SUM
MP
DV

ADFJ SUF
MPF
DVF
B
AN
OR
EO
C

load or LM load masked
store or STM store masked
add
add memory to register
add register to memory
subtract
subtract memory from register
multiply
divide

floating-point arithmetic

branch
AND
logical OR
exclusive OR
compare

These basic mnemonics are then augmented to define the operand data type. (A
special set of instructions are provided for bit manipulation.) The five
basic data types are:

B
H
W
D
I

Byte
Halfword
Word
Doubleword
Immediate

(8 bits)
(16 bi ts)
(32 bits)
(64 bits)
(16 bits)

Therefore, the resulting instruction mnemonics have the form:

LB Load Byte
LMH Load Masked Halfword
STMW Store Masked Word
ADI Add Immediate to Register
SUMO Subtract Memory Doubleword

A complete summary of the 32/70 Series instructions is presented in the
Appendix of this manual.

ASSEMBLER
CODING

CONVENTIONS

INSTRUCTION
DEFINITION

FORMAT

The basic assembler coding format for memory reference instructions is:

xxxxxx \Sl
Id\

*m, x

which translates to

xxxxxx
IS I
Idi

*
m

x

Instruction mnemonic

Source or destination General Purpose Register

Indirectly (optional)

Memory operand

Indexed by register number x

Nonmemory reference instruction coding is similar to the memory reference
format. Table 6-2 lists all codes used in defining the Assembler coding
formats.

Each instruction definition includes the following information:

Instruction
Name

Op Code

Assembler
Coding
Format

Instruction
Definition

Summary
Expression

Condition
Codes

The full name of the instruction.

The four most significant hexadecimal digits of the instruction
word are listed. Additional bits in the op code are set when
the instruction is coded to address a General Purpose Register
(GPR), for indirect addressing, or for byte addressing.

The coding format used by the 32 Macro Assembler. Table 6-2
includes all the abbreviations and symbols used in the
operand coding format.

A definition of the operation performed by executing the
instruction.

A symbolic or graphic description of the operation performed
by the instruction. Summary expressions use the same abbre­
viations used in the assembler coding format, Table 6-2. In
addition, Table 6-1 lists the codes and symbols used in the
summary expressions.

The Condition Codes are set based on the results obtained by
executing an instruction. The circumstances in which these
condition codes are set (i.e., equal to one) are noted with
each instruction.

6-5

Code

Capital Letters

b

c

d

f

m

n

s

v

x

*

•
z

6-6

Table 6-2. Assembler Coding Symbols

Description

Instruction Mnemonic

Bit number (0-31) in a General
Purpose Register

Bit number (0-7) within a byte

Destination General Purpose Register
number (0-7)

Function

Operand Memory Address

Device Address

Source General Purpose Register
number (0-7)

Value for Immediate Operands,
number of shifts, etc.

Index register number I, 2. or 3.
Optional

Indirect Addressing. Optional

Assembler Syntax

Special register field for
instructions requiring three
register fields

LOADISTORE
INSTRUCTIONS

GENERAL
DESCRIPTION

I NSTRUCTI ON
FORMATS

MEMORY
REFERENCE

The Load/Store instruction group is used to manipulate data between memory
and General Purpose Registers. In general, Load instructions transfer
operands from specified memory locations to General Purpose Registers; Store
instructions transfer data from General Purpose Registers to specified memory
locations. Provisions have also been made to Mask or Clear the contents of
General Purpose Registers, memory bytes. halfwords. words. or doub1ewords
during instruction execution.

The Load/Store instructions use the following three formats:

The format for most memory reference instructions is defined below. These
instructions contain two addresses: a register number R and a memory address
with a 20-bit format.

II ~"7 ~ I I I R: I : I' I, I I , : , I :' ~ , , , ~ , , , ~ I I ~ I
. 0 I 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-10

Bit 11

Bits 12-31

define the Operation Code.

designate a General Purpose Register address (0-7).

designate one of three General Purpose Registers to be
used as an index register.

x = 00

x = 01

X = 10

X = 11

designates that no indexing operation is to
be performed.

designates the use of Rl for indexing.

designates the use of R2 for indexing.

designates the use of R3 for indexing.

designates whether an indirect addressing operation is to
be performed.

I = 0 designates that no indirect addressing operation
is to be performed.

I = 1 designates that an indirect addressing operation
is to be performed.

specify the address of the operand when the X and I fields are
equal to zero.

6-7

IMMEDIATE

I NTERREGISTER

6-8

In immediate operand instructions, the right halfword of the instruction
contains the 16-bit operand value. The format for these instructions is
given below.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5 define the Operation Code.

Bits 6-8 designate a General Purpose Register address (0-7) •

Bits 9-12 unassigned.

Bits 13-15 define Augmenting Operation Code.

Bits 16-31 contain the 16-bit operand value.

Arithmetic operands are assumed to be represented in two's complement with
the sign in bit 16.

Interregister instructions are halfword instructions and as such may be stored
in either the left or right half of a memory word. The format for inter­
register instructions is given below.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Left Halfword Right Halfword

Bits 0-5 16-21 define the Operation Code.

Bits 6-8 22-24 designate the register to contain the
result of the operation.

Bits 9-11 25-27 designate the register which contains
the source operand.

Bits 12-15 28-31 define the Augmenting Operation Code.

CONDITION CODE
UTILIZATION

MEMORY TO
REGISTER

TRANSFERS

A Condition Code is set during most Load instructions to indicate if the
operand being transferred is greater than, less than, or equal to zero.
Arithmetic exceptions are also reflected by the Condition Code results. All
Store instructions leave the Condition Code unchanged.

Figure 6-1 depicts the positioning of information for transfer from
memory to any General Purpose Register.

MEMORY CELL

BYTE
o

BYTE BYTE BYTE
2 3

o 31

r---.,r-----,
I I, I, I
I II II I
L ___ .JL __ .JL ___ .J"----'

o 23 24 31

REGISTER

(A) BYTE TRANSF ERS

MEMORY CELL

o 31

o 31

REGISTER

(Cl WORD TRANSFERS

o

MEMORY CELL

LEFT
HALFWORD

RIGHT
HALFWORD

31

r-----'r-----.....
I I
I I L _____ ...J ____ ~

o 15 16 31

REGISTER

(B) HALFWORD TRANSFERS

EVEN MEMORY
WORD

ODD MEMORY
WORD

0

o

~,

EVEN
REGISTER

31 0

31 0

"

ODD
REGISTER

(D) DOUBLEWORD TRANSFERS

31

31

Figure 6-1. positioning of Inforr.Jation Transferred Betlleen
flemory and Regi sters

6-9

LB
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE 1

Before
Execution

After
Execution

Note

EXAMPLE 2

. Before
Execution

After
Execution

LOAD BYTE

AC08

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and transferred to bit positions 24-31 of the General Purpose Register (GPR)
specified by R. Bit positions 0-23 of the GPR specified by R are cleared
to zeros.

(EBL)

o RO-23

CCl: Always zero
CC2: lSI RO-3l is greater than zero
CC3: Always zero
CC4: lSI RO-31 is equal to zero

Memory Loca t ion: 01000
Hex Instruction: AC 88 11 01 . (R=l, X=O, 1=0)
Assembly Language Coding: LB 1,X'l10l'

PSWR
00001000

PSWR
20001004

GPR1
517CD092

GPR1
000000B6

Memory Byte 01101
B6

f·1emory Byte 01101
B6

The contents of memory byte 01101 are transferred to bits 24-31 of GPR1,
bits 0-23 of GPR1 are cleared. CC2 is set because the contents of GPR1 are
greater than zero.

Memory Location: 01000
Hex Instruction: AD 28 14 00 (R=2, X=l, 1=0)
Assembly Language Coding: LB2,X'1400',1

PSWR
10001000

PSWR
20001004

GPR1
00000203

GPR1
00000203

GPR2
12345678

GPR2
OOOOOOAI

Memory Byte 01603
Al

Memory Byte 01603
Al

Note The contents of memory byte 01603 are transferred to bits 24-31 of GPR2.
Bits 0-23 are cleared, and CC2 i~ set.

6-10

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD HALFWORD

ACOO

LH
d,*m,x

H!ALFWORD OPER~AND ADDREJ I
I I I I I I I I ~ I I I I I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and the sign bit (bit 16) is extended left 16 bit positions to
form a word. This word is transferred to the GPR specified by R.

(EHL)SE - R

CC1: Always zero
CC2: lSI ~-31 is greater than zero
CC3: lSI ~ 31 is less than zero
CC4: lSI RQ:31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10000408

PSWR
1000040C

GPR4
5COOD34A

GPR4
FFFF930C

00408
AE 00 05 03 (R=4, X=O, 1=0)
LH 4,X'502'

Memory Halfword 00502
930C

Memory Halfword 00502
930C

Note The contents of memory halfword 00502 are transferred to bits 16-31 of
GPR4. Bits 0-15 of GPR4 are set by the sign extension, and CC3 is set.

6-11

LW
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD WORD

ACOO

• ~ , x " H WO·f",,·"DADf·~ ~ : '·101 I I I I I I I I I I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 .24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is
accessed and transferred to the GPR specified by R.

(EWL) - R

CC1: Always zero
CC2: lSI RO-31 is greater than zero
CC3: lSI RO-31 is less than zero
CC4: lSI RO-31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding.:

PSWR
00002390

PSWR
20002394

GPR7
0056879A

GPR7
4D61A28C

02390
AF 80 27 A4 (R=7, X=O, 1=0)
LW 7,X'27A4'

Memory Word 027A4
4D61A28C

Memory Word 027A4
4D61A28C

Note The contents from memory word 027A4 are transferred to GPR7. and CC2 is
set.

6-12

DEFINITION

NOTE

SUMMARY
EXPRESSION

COND I TI ON CODE
RESULTS

EXAMPLE

Before
Execution

After
Execution

LOAD DOUBLEWORD

ACOO

LD
d,*m,x

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and transferred to the GPR specified by Rand R+l. R+l is the
GPR one greater than specified by R. The least significant memory word is
accessed first and transferred to the GPR specified by R+l. The most
significant memory word is accessed last and transferred to the GPR
specified by R.

The GPR specified by R must have an even address.

('EWL+l) - R+l

(EWL) - R

CCl: Always zero
CC2: lSI (R.R+l) is greater than zero
CC3: lSI (R,R+l) is less than zero
CC4: lSI (R,R+l) is equal to zero

281C4 Memory Location:
Hex Instruction:
Assembly Language Coding:

AF 02 8B 7A (R=6, X=O, 1=0)
LD 6,X'28B78'

PSWR
400281C4

GPR6
03F609C3

Memory Word 28B7C
137F8CA2

PSWR
100281C8

GPR6
F05B169A

Memory Word 28B7C
137F8CA2

GPR7
39BB510E

GPR7
137F8CA2

Memory Word 28B78
F05B169A

Memory Word 28B78
F05B169A

Note The contents of memory word 28B78 are transferred to GPR6 and the contents
of memory word 28B7C are transferred to GPR7. CC3 is set.

6-13

U1B
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

COND I TI ON CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD MASKED BYTE

B008

I,,', 'I ':'1 'II': I; 1,1'11 I : ~"~",:'+Dt~"'~: I I I: I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and masked (Logical AND function) with the least significant byte (bits 24-31)
of the Mask register (R4). The result of the mask operation is transferred
to bit positions 24-31 of the GPR specified by R. Bit positions 0-23 of
the GPR specified by R are cleared to zeros.

(EBL)&(R424_31)_ (R24-31)

0- RO- 23

CC1: Always zero
CC2: lSI RO_31 is greater than zero
CC3: Always zero
CC4: lSI RO-31 is equal to zero

00900 Memory Location:
Hex Instruction:
Assembly Language Coding:

BO 88 00 A3 (R=l, X=O, 1=0)
LMB l,X'A3'

PSWR
00000900

PSWR
20000904

GPR1
AA3689BO

GPR1
00000020

GPR4
OOOOOOFO

GPR4
OOOOOOFO

Memory Byte OOOA3
29

Memory Byte 000A3
29

Note The contents of memory byte 000A3 are logically ANDed with the rightmost
byte of GPR4, and the result is transferred to bits 24-31 of GPR1. Bits
0-23 of GPR1 are cleared, and CC2 is set.

6-14

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD MASKED HALFWORD

BOOO

U~H
d,*m,x

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed. and the sign bit (bit 16) is extended 16 bit positions to the
left to form a word. This word is then masked (Logical AND Function) with
the contents of the Mask register (R4). The resulting word is transferred
to the GPR specified by R.

CCl: Always zero
CC2: lSI ~-31 is greater than zero

'CC3: lSI RO-31 ~s less than zero
CC4: lSI RO-31 1S equal to zero

Memory Location: 00300
Hex Instruction:
Assembly Language Coding:

B2 80 03 Al (R=5. X=O. 1=0)
LMH 5.X'3AO'

PSWR
08000300

PSWR
20000304

GPR4
OFFOOFFO

GPR4
OFFOOFFO

GPR5
C427B3l9

GPR5
OFF00580

Memory Halfword 003AO
A58D

Memory Halfword 003AO
A58D

Note The contents of memory halfword 003AO are accessed. the sign is extended
16 bit positions. the result is logically ANDed with the contents of GPR4.
and the final result is transferred to GPR5. CC2 is set.

6-15

LMI~

d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD MASKED WORD

BOOO

I \ 'I', ':" 'II': 1 ; I' H I I :WO~D~';+~D·tSI : I I I : I 1'1'1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is accessed
and masked (Logical AND Function) with the contents of the Mask register (R4).
The resulting word is transferred to the GPR specified by R.

(EWL)&(R4) - R

CC1: Always zero
CC2: lSI &3-31 is greater than zero
CC3: lSI RO-31 ~s less than zero
CC4: lSI RO-31 1S equal to zero

Memory Location: OOFOO
Hex Instruction:
Assembly Language Coding:

B3 80 OF FC (R=7. X=O. 1=0)
LMW 7.X'FFC'

PSWR
OOOOOFOO

PSWR
10000F04

GPR4
FF00007C

GPR4
FF00007C

GPR7
12345678

GPR7
89000068

Memory Word OOFFC
8923F8E8

Memory Word OOFFC
8923F8E8

Note The contents of memory word OOFFC are ANDed with the contents of GPR4.
The result is transferred to GPR7. and CC3 is set.

6-16

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD MASKED DOUBLEWORD

BOOO

LMD
d,*m,x

24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed, and the contents of each word are masked (Logical AND Function)
with the contents of the Mask register (R4). The least significant memory
word is masked first. The resulting masked doubleword is transferred to the
GPR specified by Rand R+l. R+l is the GPR one greater than specified by R.

(EWL+l)&(R4)-. R+l

(EWL)&(R4) - R

eCI: Always zero
CC2: lSI (R,R+l) is greater than zero
CC3: lSI (R,R+I) is less than zero
CC4: lSI (R,R+l) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
00000200

GPR4
3F3F3F3F

Memory Word 002FO
AE69DIOC

PSWR
20000204

GPR4
3F3F3F3F

Memory Word 002FO
AE69DIOC

00200
B3 00 02 F2 (R=6, X=O, 1=0)
LMD 6,X'2FO'

GPR6
12345678

GPR7
9ABCDEFO

Memory Word 002F4
63B208FO

GPR6
2E29110C

GPR7
23320830

Memory Word 002F4
63B208FO

Note The contents of memory word 002F4 are ANDed with the contents of GPR4, and
the result is transferred to GPR6. CC2 is set.

6-17

LNB
d,*m.x

DEFINITION

SUMMARY
EXPRESSION

CONDITHIN CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD NEGATIVE BYTE

8408

11 0 1 11 0 11 I R' I X 11111 1 .vn~~AOO.<m ~ I I
.11111 '.' 11~1!1~111!!11!'1'_
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

. The byte in memory specified by the Effective Byte Address (EBA) is
accessed, and 24 zeros are appended to the most significant end to form a
word. The two's complement of this word is then taken and transferred to the
GPR specified by R.

- [00-23, (EBt>] -R

eC1; Always zero
CC2: Always zero
CC3: lSI RO-31 is less than zero
CC4: lSI RO- 31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
00000000

PSWR
10000004

GPR1
00000000

GPRI
fFffFfC6

00000
84 88 01 02 (R=l, X=l, 1=0)
LNB 1,X'DI02'

tlemory Byte OD102
3A

Memory Byte 00102
3A

Note The contents of memory byte 00102 are prefixed with 24 zeros to form a
word; the result is negated and transferred to GPRl. CC3 is set.

6-18

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD NEGATIVE HALFWORD

8400

LNH
d,*m,x

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified b~ the Effective Halfword Address (EHA) is
accessed. and the sign bit (bit 16) is extended 16 bit positions to the left
to form a word. The two's complement of this word is then transferred to the
GPR specified by R.

- [(EHL)SE] - R

CC1: Always zero
CC2: lSI ~-31 is greater than zero
CC3: lSI ~-31 !s less than zero
~C4: lSI RO-31 1S equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
40008000

PSWR
20008004

GPR4
12345678

GPR4
000069F4

08000
86 00 84 03 (R=4. X=O. I=O)
LNH 4.X'8402'

Memory Halfword 08402
960C

Memory Halfword 08402
960C

Note The contents of memory halfword 08402 are sign extended and negated. The
result is transferred to GPR4. and CC2 ;s set.

6-19

lNW
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

£XAMPLE

Before
Execution

Afte·r Execution

LOAD NEGATlV£ WOlD

B400

.: I ' I, H . .+ +... ~ . : H ·1 1 .J .. " ",11' '" ,
o f 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effecthe Word Address' (EWA) is
accessetil,andits two's ,complement i.s transferred to the GPR specified by R.

-(EWL) - R

eel: lSI Arithmetic Exception
eez: lSI RO- 31 is ,greater than zero
ee3: lSI RO_31 is ~es:s than zero
CC4: lSI RO_31 is ,equal to zero

:Memory location:
Hex Instruction:
Assembly Language Codi ng:

PSWR
llBO00500

PSlIlR
10000504

GPR5
00000000

GPR5
E7AlF28A

00500
8.680 06C8 (R='5, 1=:0. I=O)
lNW5,X'6C8'

Memory.Word 006ca
185£0076

Memory Word OO6C8
185E0076

'Note The contents of memory word ,006e8 are ,negated and transferred to GPR5, and
CC3~s set.

6-20

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD NEGATIVE DOUBLEWORD

B400

LND
d,*m,x

6 7 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address
(EDA) is accessed and its two's complement is formed. The least significant
memory word is complemented first and the result is transferred to the GPR
specified by R+l. R+l is the GPR one greater than specified by R. The
most significant memory word is complemented, and the result ;s transferred
to the GPR specified by Rl.

-(EDL) - R,R+1

CC1: 151 Arithmetic Exception
CC2: 151 (R,R+1) is greater than zero
CC3: 151 (R,R+l) is less than zero
CC4: 151 (R,R+l) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
00002344

GPR2
01234567

Memory Word 024AO
00000000

PSWR
10002348

GPR2
FFFFFFFF

Memory Word 024AO
00000000

02344
B5 00 24 A2 (R=2, X=O, 1=0)
LND 2,X'24AO'

GPR3
89ABCDEF

Memory Word 024A4
00000001

GPR3
FFFFFFFF

Memory Word 024A4
00000001

Note The doubleword obtained from the contents of memory words 024AO and 024A4 is
negated, and the result is transferred to GPR2 and GPR3. CC3;s set.

6-21

LI
d,v

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD IMMEDIATE

C800

11 1 0 0 I 1 0 I R I I 0 0 0 I 0 I 0 0 0 I IMMEDIA!~E OPERAND I . I I
- I I I ! I _ I ! _ I I I I I I I _ I I I ! I I I ! I I I _

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword immediate operand in the Instruction Word (IW) is sign-extended
(bit 16 extended 16 positions to the left) to form a word. This word is
transferred to the GPR specified by R.

CC1 :
CC2 :
CC3 :

Always zero
lSI (RO-31)
lSI (R)
lSI (RO- 31)

is greater than zero
is less than zero

CC4: 0-31 is equal to zero

Memory Location:
Hex Instruction~
Assembly Language Coding:

PSWR
0000630C

PSWR
10006310

GPR1
12345678

GPR1
FFFFFFFB

0630C
C8 80 FF FB (R=l)
LI 1,-5

Note The halfword operand is sign-extended and the result is transferred to
GPRl. CC3 is set.

6-22

DEFINITION

LOAD EFFECTIVE ADDRESS LEA
d,*m,x

0000

I ,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 5 26 27 28 29 30 31

The effective address (bit 12-31) of the LEA instruction is generated in the
same manner as in all other memory reference instructions and then is trans­
ferred to bit positions 12-31 of the GPR specified by R.

In PSD mode or PSW mode extended. bits 2-7 are cleared and bits 8-31 indicate
results of EA.

Notes 1. If I-X-O. the entire 32-bit Instruction Word is transferred to the GPR .

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After
Execution
(PSD Mode)

specified by R. (512 KB mode only)

2. If 1-0 and X-O. bit positions 0-11 of the GPR specified by R will contain
the sum of bit positions 0-11 of the Instruction Word and bit positions
0-11 of the index register specified by X. (512 KB mode only)

3. If I-I. bit positions 0-11 of the GPR specified by R will contain the
sum of bit positions 0-11 of the last word of the indirect chain and
bit positions 0-11 of the index register specified (if any) in the last
word of the indirect chain. (512 KB mode only)

4. In cases 2 and 3 above. an additional bit may be added to bit position
11 of the GPR specified by R as a result of overflow in the sum of the
address and the index values. (512 KB mode only)

EA -- R12-31

eCl: No change
eC2: No change
ee3: No change
eC4: No change

Memory Location:
Hex Instruction:
Assembly Language eodings:

PSWR GPR1
08001000 00000000

PSWR GPRI
08001004 00804000
08001004 COO04000

1000
DO 804000 (R-l. X-I-O)
LEA l,X'4000'

Memory Word 4000
AC881203

Memory Word 4000
AC881203
AC881203

6-23

LEAR
d,*m,x

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

NOTES

6-24

LOAD EFFECTIVE ADDRESS REAL

8000

I, , 0 , 0 , 0 :. , 0 I R , x, I, I F I " ,,~E;A~D ~OO,RE~, ' , : Ie lei
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31

This instruction causes the Effective Real (nonmapped) Address of the
referenced operand to be transferred to bit positions 7-31 of the GPR
specified by R.

The format of the 25-bit Effective Real Address transferred to the GPR
is as follows:

I ZER~ I F I : ~FFECTIVE ADDRESS: : I ~ I C I
• I I I ~ I I . . I I I . I I I ; I I I ~ I I I . I I I • I • • _

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ERA -- R7-31

o -- RO_6

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: LEAR

1. Privileged Instruction

d,*m,x

2. Attempt to execute in PSW mode will result in an undefined
instruction trap.

3. This instruction may not be the target of an execute instruction.

DEFINITION

CONDITION CODE
RESULTS

LA LOAD ADDRESS

3400
d,*m,x

EFFECTIVE ADDREss
" ",;, I , ~ I , , : , ! ! I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

Loads the Effective Address (EA) into R. Bits 0-7 are cleared in RD.
~its 8-11 receive the results of ExtendQd Indexing (if active). Bit 12
is the F-bit if 512 KB mode and is an Effective Address (EA) bit
if in 512 KB Extended mode.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: LA d.*m.x

6-25

DELETED

6-26

DELETED

6-27

LF
d,*m,x

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD FILE

CCOO

I' 1 ' 1 ' 1 ' : ' 1 'I l' : I ; I' H 1 ~+; A~':" : I I I : I I I '" I"j 0 I 0 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This instruction is used to load from one to eight GPR's. The word in memory
specified by the Effective Word Address (EWA) in the Instruction Word is
accessed and transferred to the GPR specified by R. Next, the EWA and the
GPR address are incremented. The next sequential memory word is then
transferred to the next sequential GPR. Successive transfers continue until
GPR7 is loaded from memory.

The EWA must be specified such that, when incremented, no carry will be
propagated from bit position 27. Therefore, if all eight registers are to
be loaded, bit positions 27-29 must initially be equal to zero.

(EWL) - R

(EWL)+1 - R+1

. .
(EWL+N) - R7

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
08000300

GPR4
00000000

Memory Word 00200
00000001

Memory Word 0020C
00000004

PSWR
08000304

GPR4
00000001

Memory Word 00200
00000001

Memory Word 0020C
00000004

00300
CE 00 02 00 (R=4, X=O, 1=0)
LF 4,X'200'

GPR5
00000000

Memory Word 00204
00000002

GPR5
00000002

Memory Word 00204
00000002

GPR6
00000000

GPR7
00000000

Memory Word 00208
00000003

GPR6
00000003

GPR7
00000004

Memory Word 00208
00000003

Note The contents of memory word 00200 are transferred to GPR4, of memory word
00204 to GPR5, of memory word 00208 to GPR6, and of memory word 0020e to
GPR7.

6-28

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

STORE BYTE

D408

STB
s,*m,x

The least significant byte (bits 24-31) of the GPR specified by R is
transferred to the memory byte location specified by the Effective Byte
Address (EBA) in the Instruction Word. The other three bytes of the memory
word containing the byte specified by the EBA remain unchanged.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10003708

PSWR
1000370C

GPR1
01020304

GPR1
01020304

03708
D4 88 3A 13 (R=l, X=O, 1=0)
STB 1,X'3A13'

Memory Byte 03A13
78

Memory Byte 03A13
04

Note The contents of bits 24-31 of GPR1 are transferred to memory byte 03A13.

6-29

STH
s,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

STORE HALFWORD

D400

I' , , ,I, 'I ,I I X /1 I 0 I HALF!~ORD OPERAN!. A"'= I I I; I
- I , I ! I _ I ! . I . . . I , . I I , . I I I ! I I I ! I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The least significant halfword (bit 16-31) of the GPR specified by R is
transferred to the memory halfword location specified by the Effective
Halfword Address (EHA) in the Instruction Word. The other halfword of the
memory word containing the halfword specified by the EHA remains unchanged.

CC1: No chan,ge
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
000082A4

PSWR
000082A8

GPR4
01020304

GPR4
01020304

082A400
D6 00 83 13 (R=4, X=O, I=O)
STH 4,X'8312'

Memory Halfword 08312
A49C

Memory Halfword 08312
0304

Note The contents of the right halfword of GPR4 are transferred to memory
hal fword 08312.

6-30

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

STORE WORD

0400

STW
s,*m,x

I 'I 'r 0 I ': 0 I 'I I' : I ; I' H ~;o ~,,~,,; A~O+ I I I : I I I : I I '" I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 2" 30 31

The word in the GPR specified by R is transferred to the memory word location
specified by the Effective Word Address in the Instruction ~Jord.

(R) -- EWL

CC1 :
CC2:
CC3:
CC4:

No change
No change
No change
No change

.Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10003904

PSWR
10003908

GPR6
0485A276

GPR6
0485A276

03904
07 00 38 3C (R=6, X=O, 1=0)
STW 6.X'3B3C'

Memory Word 0383C
00000000

Memory Word 03B3C
0485A276

Note The contents of GPR6 are transferred to memory word 0383C.

6-31

STD
s,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

STORE DOUBLEWORD

0400

o 1 234 5 6

The doubleword in the GPR specified by Rand R+1 (R+1 is the GPR one
greater than specified by R) is transferred to the memory doubleword
location specified by the Effective Doubleword Address (EDA). The word
in the GPR specified by R+1 is transferred to the least significant word
of the doubleword memory location first.

(R+1) - EWL +1

(R) - EWL

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
2000596C

GPR6
E24675C2

Memory Word 05C48
0A400729

PSWR
20005970

GPR6
E24675C2

Memory Word 05C48
E24675C2

0596C
07 00 5C 4A (R=6, X=O, 1=0)
STD 6,X'5C48'

GPR7
5923F8E8

Memory Word 05C4C
8104A253

GPR7
5923F8E8

Memory Word 05C4C
5923F8E8

Note The contents of GPR6 are transferred to memory word 05C48,
and the contents from GPR7 are transferred to memory word 05C4C.

6-32

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

STORE MASKED BYTE ST~m
s,*m,x

0808

I " " '1 ': '1·1 I': 1 ~ I, I ,I 1 th"~"~ +~" 1 1 : 1 1 1 : 1 1 I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The least significant byte (bits 24-31) of the GPR specified by R is masked
(Logical AND Function) with the least significant byte of the Mask register
(R4). The resulting byte is transferred to the memory byte location
specified by the Effective Byte Address (EBA) in the Instruction Word. The
other three bytes of the memory word containing the byte specified by the
EBA remain unchanged.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory location:
Hex Instruction:
Assembly language Coding:

PSWR
10001080

PSWR
10001084

GPRO
AC089417

GPRO
AC089417

01080
08 08 IE 91 (R=O, X=0, I=n)
STMB 0,X'IE91'

GPR4
OOOOFFFC

GPR4
OOOOFFFC

Memory-Byte 01E91
94

Memory Byte 01E91
14

Note The right-hand byte of GPRO is AN Oed with the right-hand byte of GPR4. The
result is transferred to memory byte 01E91.

6-33

STMH
s,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

STORE MASKED HALFWORD

0800

I' I " -I ': 'I -I I" : I ~ I' I-I I ~AC~t· ~~+ ~~~ : I I I : I I I, I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The least significant halfword (bits 16-31) of the GPR specified by R is
masked (Logical AND Function) with the least significant halfword of the
Mask register (R4). The resulting halfword is transferred to the memory
halfword location specified by the Effective Halfword Address (EHA) in the
Instruction Word. The other halfword of the memory word containing the
halfword specified by the EHA remains unchanged.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
20001000

PSWR
20001004

GPR4
00003FFC

GPR4
00003FFC

01000
DA 80 11 AF (R=5, X=O, 1=0)
STMH 5,X'llAE'

GPR5
716A58AB

GPR5
716A58AB

Memory Halfword 011AD
0000

Memory Halfword 011AD
18A8

Note The right-hand halfword of GPR5 is ANDed with the right-hand halfword of
GPR4, and the result is transferred to memory halfword 011AD.

6-34

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

STORE MASKED WORD

0800

STMW
s,*m,x

+0 "," .. 0 ;DO'''': : I 'I' I I I I I I I I I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

The word in the GPR specified by R is masked (Logical AND Function) with the
contents of the Mask register (R4). The resulting word is transferred to
the memory word location specified by the Effective Word Address.

(R)&(R4) - EWL

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
08004000

PSWR
08004004

GPR4
OOFFOOFF

GPR4
OOFFOOFF

04000
DB 00 43 7C (R=6, X=O, I=O)
STM W 6,X'4376'

GPR6
718C3594

GPR6
718C3594

Memory Word 0437C
12345678

Memory Word 0437C
008C0094

Note The contents of GPR6 are ANDed with the contents of GPR4.
The result is transferred to memory word 0437C.

6-35

STMD
s,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

STORE MASKED DOUBLEWORD

0800

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2324 25 26 27 28 29 30 31

Each word of the doubleword in the GPR specified by Rand R+1 is masked
(Logical AND Function) with the contents of the Mask register (R4). R+1 is
GPR one greater than specified by R. The resulting doubleword is transferred
to the memory doubleword location specified by the Effective Doubleword
Address (EDA) in the Instruction Word.

(R+1)&(R4)-. EWL+1

(R) &(R4) -. EWL

CC1: No change
CC2 : No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
1000A498

GPR4
0007FFFC

Memory Word OA650
51CD092

PSWR
1000A49C

GPR4
0007FFFC

Memory Word OA650
OOOOA818

OA498
DB 00 A6 52 (R=6. X=O. I=O)
STMI) 6.X'A650'

GPR6
AC88A819

Memory Word OA654
AE69D10C

GPR6
AC88A819

Memory Word OA654
00031404

GPR7
98881407

GPR7
988B1407

Note The contents of GPR6 are ANDed with the contents of GPR4. and the result is
transferred to memory word OA650. The contents of GPR7 are ANDed with the
contents of GPR4. and the result transferred to memory word OA654.

6-36

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

STF STORE FILE

DCOO
s,*m,x

I ' , ' , ' , ' : ' , 'I I': I ~ I' I 'I I I : ":";0 ~+'7 I I : I I 1,1'1'1'1' I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This instruction is used to transfer the contents from one to eight GPR's to
the specified memory locations. The contents of the GPR specified by Rare
transferred to the memory location specified by the Effective Word Address
(EWA). The next sequential GPR is then transferred to the next sequential
memory location. Successive transfers continue until GPR7 is loaded into
memory.

The EWA must be specified such that, when incremented, no carry will be
propagated from bit position 27. Therefore, if all eight General Purpose
Regis~ers are transferred, bit positions 27-29 must initially be equal to
zero.

(R) - EWL

(R+1) - EWL+1

. .
(R7) - EWL+N

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR GPR4
40002000 11111111

Memory Word 02100
00210000

Memory Word 02108
00210800

PSWR GPR4
40002004 11111111

Memory Word 02100
11111111

Memory Word 02108
33333333

02000
DE 00 21 00 (R=4, X=O, 1=0)
STF 4,X'2100'

GPR5
22222222

Memory Word 02104
00210400

Memory Word 0210C
00210COO

GPR5
22222222

Memory Word 02104
22222222

Memory Word 0210C
44444444

GPR6
33333333

GPR6
33333333

GPR7
44444444

GPR7
44444444

Note The contents of GPR4 are transferred to memory word 02100, of GPR5 to 02104,
of GPR6 to 02108, and of GPR7 to 0210C.

6-37

DELETED

6-38

DEFINITION

SUftf.1ARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ZERO MEMORY BYTE

F808

2MB
*m,x

The byte in memory specified by the Effective Byte Address (EBA) is cleared
to zero. The other three bytes of the memory word containing the byte
specified by the EBA remain unchanged.

o -EBL

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

00308
F8 08 04 9F
2MB X'49F'

PSWR
10000308

Memory Byte 0049F
6C

PSWR
1000030C

Memory Byte 0049F
00

Note The contents of memory byte 0049F are cleared to zero.

6-39

ZMH
*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ZERO MEMORY HALFWORD

F800

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
cleared to zero. The remaining halfword containing the l6-bit location in
memory specified by EHA remains unchanged.

0- EHL

CCl:
CC2:
CC3 :
CC4:

No change
No change
No change
No change

Memory Location: 2895C
F8 00 2A 42 7 (X=O, 1=0)
ZMH X' 2A426 1

Hex Instruction:
Assembly Language Coding:

PSWR
0802895C

PSWR
08028960

Memory Halfword 2A426
9AE3

Memory Halfword 2A426
0000

Note The contents of memory halfword 2A426 are cleared to zero.

6-40

DEFINITION

SU~l~lARY
EXPRESSION

CONDITION CODE
RESULTS

ZERO MEMORY WORD

F800

ZMW
*m,x

I I : I I I : I I 0 I 0 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 7 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Hord Address (HJA) is cleared
to zero.

o -EWL

CC1: No change
CC2: No change
CC3: No change
CC4: No change

EXAMPLE . Memory Location: 05A14

Before
Execution

After Execution

Hex Instruction: F8 00 5F 90 (X=O, 1=0)
Z~lH X I 5F90 I Assembly Language Coding:

PS\~R
00005A14

PSWR
00005A18

Memory Word 05F90
12345678

Memory Word 05F90
00000000

Note The contents of memory word 05F90 are cleared to zero.

6-41

ZMO
*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ZERO MEMORY DOUBLEWORD

F800

1 1 1 1 1 0 0 o 0 X 1 0 DOUBLEWORD OPERAND ADDRESS 0 1 0 .
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31

The doubleword in memory specified by the Effective Doubleword Address
(EOA) is cleared to zero.

0- EWL

0- EWL+1

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 15B3C
Hex Instruction:
Assembly Language Coding:

F8 01 50 6A (X=O. 1=0)
ZMD X' 15068'

PSWR
10015B3C

PSWR
10015B40

Memory Word 15068
617E853C

Memory Word 15068
00000000

Memory Word 15D6C
A2976283

Memory Word 15D6C
00000000

Note The contents of memory words 15068 and 15D6C are cleared to zero.

6-42

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ZERO REGISTER

OCOO

R

I I

ZR
d

1···,-I I I
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2:) 26 27 28 29 30 31

The word in the GPR specified by R (bits 6-8) is logically Exclusive ORed
with the word in the GPR specified by R (bits 9-11) resulting in zero. This
result is then transferred to the GPR specified by R. The contents of the
two R fields must specify the same GPR.

(R):±.XR) R

CCl: Always zero
CC2: Always zero
CC3: Always zero
CC4: Always one

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
100309A6

PSWR
080309A8

GPRI
8495A6B7

GPRI
00000000

309A6
DC 90 (R=1)
ZR 1

Note The contents of GPRI are cleared to zero, and CC4 is set.

6-43

REGISTER
TRANSFER

INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION
FORMATS

INTERREGISTER

CONDITION CODE
UTILIZATION

6-44

The Register Transfer instruction group provides the capability to perform
a transfer or exchange of information between registers. Provisions have
also been made in some instructions to allow two's complement, one's com­
plement, and Mask operations to be performed during execution.

The following basic instruction format is used by the Register Transfer
instruction group.

I ",ro~, 1 ':1 's I~~ _ I I I I 0 I I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-11

Bits 12-15

define the Operation Code.

designate the register to contain the result of
the operation.

designate the register which contains the source
operand.

define the Augmenting Operation Code.

A Condition Code is set during execution of most Register Transfer
instructions to indicate whether the contents of the Destination register
(RD) are greater than, less than, or equal to zero.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

NOTES

TRANSFER SCRATCHPAD TO REGISTER TSCR
s.d

2COF

I 0 0 1 0 1 1 IRD I RS 11 1 1 1

.11111.11.11.1 •• -
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

The word in the.S~ratchpad specified by RS' bits .8-15. is tr~nsferred
to the GPR spec1f1ed by RD' The contents of RS lS not modif1ed and
only bits 8-15 are used by the instruction.

Scratchpad addressed by RS - RD

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: TSCR RS,RD

1. TSCR is a halfword privileged instruction.

2. The valid address range for R~ to address
the 256 Scratchpad locations 1S
XXOOXXXXH to XXFFXXXXH.

6-45

TRSC
s,d

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

TRANSFER REGISTER TO SCRATCHPAD

2COE

RD As /1110
1111_111-

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word located in the General Purpose Register (GPR) specified by RS
is transferred to the Scratchpad location specified by RD bits 8-15.
The contents of RD is not modified by the instruction and only bits 8-15
are used by the instruction.

Scratchpad addressed by RD 8-15

CCl: No change
CC2: No change
CC3: No change
CC4: No change
Assembly Language Coding:

NOTES 1. TRSC is a halfword privileged instruction.

6-46

2. The valid address range for RD to address the 256 $cratchpad

locations is XXOOXXXX H to XXFFXXXXHo

(.:
,

~

OEFINITION

SUMMARY
EXPRESSION

CONOITJ it! CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

TRANSFER REGISTER TO REGISTER

2COO

TRR
s.d

",',',':','1 to: I, ... 1·,""'_
o 1 2 3 4 5 6 7 8 9 10 11 I? 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RS is transferred to the GPR specified
by RD.

(RS) - RO

CC1: Always -zero
CC2: 151 (RO) is greater than zero
CC3: lSI (RO) is less than zero
CC4: lSI (RO) is equal to zero

Memory Location
Hex Instruction
Assembly Language Coding:

PSWR
00000206

PSWR
20000208

GPR1
00000000

GPR1
000803AB

00206
2C AO (RO=l. RS=2)
TRR 2,1

GPR2
000803AB

GPR2
000803AB

Note The contents of GPR2 are transferred to GPR1 and CC2 is set.

6-47

TRRM
s,d

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

TRANSFER REGISTER TO REGISTER MASKED

2C08

The word in the GPR specified by RS is masked (Logical AND Function) with
the contents of the r1ask register (R4). The resulting word is transferred
to the GPR specified by RD.

(Rs)&(R4) - RO

CC1: Always zero
CC2: lSI (RO) is greater than zero
CC3: lSI (RO) is less than zero
CC4: lSI (RO) is equal to zero

Memory Location: 00206
Hex Instruction:
Assembly Language Coding:

2C A8 (RO=l, RS=2)
TRRM 2,1

PSWR
00000206

PSWR
20000208

GPR1
00000000

GPR1
000003A9

GPR2
000803AB

GPR2
000803AB

GPR4
0007FFFO

GPR4
0007FFFO

Note The contents of GPR2 are ANOed with the contents of GPR4, and the result is
transferred to GPR1. CC2 is set.

6-48

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

TRANSFER REGISTER TO PROTECT REGISTER

FBOO

The word in the GPR specified by R is transferred to the Protect register
specified by the Protect register field (bits 9-12) in the Instruction
Word. The Protect register address is the same as the four high order
memory address bits used to specify all memory locations within a
given module.

(R) - PR

CC1: No change
CC2: No change

. CC3: No cha nge
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
800005CO

PSWR
80000510

GPR7
OOOOFFFE

GPR7
OOOOFFFE

0050C
FBOF (R=7, Protect Register=l)
TRP 7,1

Protect Register 1
0000

Protect Register 1
FFFE

TRP
s,p

Note The contents of bits 16-31 of GPR7 are transferred to Protect Register 1.
The protection status of Memory Module 1 ;s established such that a program
operating in the unprivileged state can store information only in locations
8000 through 87FF without generating a Privilege Violation trap.

6-49

TPR
d,p

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

TRANSFER PROTECT REGISTER TO REGISTER

FB80

I ' I " " ': 'J I ': 'I"~' ;": I I' I I, I I :"N;'''~N~': I , , : , I ,
o 1 2 3 4 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the Protect register specified by the Protect register field
(bits 9-12) is transferred to the GPR specified by R. The Protect register
address is the same as the four high order memory address bits used to
specify all memory locations within a given module.

(PR) - R

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
0000050C

PSWR
00000510

GPR7
00000000

GPR7
OOOOFFFE

0050C
FB8F (R~7, Protect Register=l)
TPR 1,7

Protect Register 1
FFFE

Protect Register 1
FFFE

Note The contents of Protect Register 1 are transferred to bits 16-31 of GPR7.
This value defines the protection status of Memory Module 1.

6-50

OEFINITION

SUMMARY
EXPRESSION

CONOITION COOE
RESULTS

EXAMPLE

Before
Execution

After Execution

TRANSFER REGISTER NEGATIVE

2C04

R
S

I I

TRN
s,d

o 1 2 3 4 5 6 7 8 9 10 11 1, 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

The word in the GPR specified by RS is two1s complemented and transferred to
the GPR specified by RO'

-(RS) - RO

CCl: lSI Arithmetic exception
CC2; lSI (RO) is greater than zero
CC3: lSI (RO) is less than zero
CC4: lSI (RO) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
OOOOOAAE

PSWR
lOOOOABO

GPR6
OOOOOFFF

GPR6
OOOOOFFF

OOAAE
2F E4 (RO=7, RS=6)
TRN 6,7

GPR7
12345678

GPR7
FFFFFOOI

Note The contents of GPR6 are negated and transferred to GPR7. CC3 is set.

6-51

TRNM
s,d

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

TRANSFER REGISTER NEGATIVE MASKED

2COC

~"",,:,,'I,": 1,\ I" , ','_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RS is two's complemented and masked
(Logical ANO Function) with the contents of the Mask register (R4). The
resulting word is transferred to the GPR specified by RO'

-(RS)&(R4) - RD

cel: lSI Arithmetic exception
CC2: lSI (RO) is greater than zero
CC3: lSI (RD) is less than zero
CC4: lSI (RO) is equal to zero

Memory Location: OOAAE
Hex Instruction:
Assembly Language Coding:

2F EC (RO=7, RS=6)
TRNM 6,7

PSWR
OOOOOAAE

PSWR
20000ABO

GPR4
7FFFFFFF

GPR4
7FFFFFFF

GPR6
OOOOOFFF

GPR6
OOOOOFFF

GPR7
12345678

GPR7
7FFFFOOI

Note The contents of GPR6 are negated; the result is ANOed with the content
of GPR4 and transferred to GPR7. CC2 is set.

6-52

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

TRANSFER REGISTER COMPLEMENT

2C03

TRC
s,d

The word ;n the GPR specified by RS is one's complemented and transferred to
the GPR specified by RD.

CR$)

CC1: Always zero
CC2: lSI (RO) ;s greater than zero
CC3: lSI (RO) is less than zero
CC4: lSI (RO) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
0800100A

PSWR
1000100C

GPR6
55555555

GPR6
55555555

01001
2F E3 (RO=7, RS=6)
TRC 6,7

GPR7
00000000

GPR7
AAAAAAAA

Note The contents of GPR6 are complemented and transferred to GPR7. CC3;s set.

6-53

TRCM
s,d

DEFINITION

SUMMARY
EXPRESSION

CONOITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

TRANSFER REGISTER COMPLEMENT MASKED

2COB

The word in the GPR specified by RS is one's complemented and masked
(Logical ANO Function) with the contents of the Mask register (R4). The
result is transferred to the GPR specified by RD.

(R;")&(R4) -RO

CC1: Always zero
CC2: lSI (RO) is greater than zero
CC3: lSI (RO) is less than zero
CC4: lSI (RO) is equal to zero

Memory Location: 0100A
Hex Instruction:
Assembly Language Coding:

2F EB (RO=7, RS=6)
TRCM 6,7

PSWR
0800100A

PSWR
2000100C

GPR4
OOFFFFOO

GPR4
OOFFFFOO

GPR6
55555555

GPR6
55555555

GPR7
00000000

GPR7
OOAAAAOO

Note The content of GPR6 are complemented and ANDed with the contents of GPR4.

6-54

The result is transferred to GPR4. The result is transferred to GPR7.
CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

EXCHANGE REGISTERS

2COS

The word in the GPR specified by RS ;s exchanged with the word in the GPR
specified by RD.

(RS) - RO

(RI) - RS

CC1: Always zero
CC2: lSI Original (RO) is greater than zero
CC3: lSI Original (RO) is less than zero
CC4: lSI Original (RO) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
40002002

PSWR
08002004

GPRI
00000000

GPRI
AC8823Cl

02002
2C AS (RO=l, RS=2)
XCR 2,1

GPR2
AC8823Cl

GPR2
00000000

XCR
s,d

Note The contents of GPRI and GPR2 are exchanged. CC4 is set.

6-55

XCRM
s.d

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

EXCHANGE REGISTERS MASKED

2COD

1',',',':\'11\ 1\ 1'1'1'1'-'
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the GPR specified by RS and RD are each masked (Logical AND
Function) with the contents of the Mask register (R4). The results of both
masked operations are exchanged.

CC1: Always zero
CC2: lSI original (RD) and (R4) is greater than zero
CC3: lSI original (RD) and (R4) is less than zero
CC4: lSI original (RD) and (R4) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
40002002

PSWR
08002004

GPR1
6BOOOOOO

GPR1
000823C1

02002
2C AD (RD=l. RS=2)
XCRM 2.1

GPR2
AC8823C1

GPR2
00000000

GPR4
OOOFFFFF

GPR4
OOOFFFFF

Note The contents of GPR1 and GPR2 are each ANDed with the contents of GPR4. The
results of the masking operation are exchanged and transferred to GPR2 and
GPR1. respectively. CC4 is set.

6-56

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

TRANSFER REGISTER TO PSWR

2800

TRSW
s

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bit positions 1-4 and 13-30 af the General Purpose Register (GPR)
specified by R are transferred to the corresponding bit positions
of the Program Status Word Register (PSWR).

R 1-4, 13-30 - PSWRl _4, 13-30

CC1 : lSI (R1) is equal to one
CC2: lSI (R2) is equal to one
'CC3 : lSI (R3) is equal to one
CC4: lSI (R4) is equal to one

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
6000069E

PSWR
20000B4C

GPRO
AOOOOB4C

GPRO
AOOOOB4C

0069E
28 00 (R=O)
TRSW 0

Note 1. The contents of GPRO, bits 1-4 and 13-30 are transferred to the PSWR.
PSWR bits 0, 5-12, and 31 are unchanged.

2. This instruction can be used in PSD mode to modify CC and PC portions
of PSW1.

6-57

MEMORY
MANAGEMENT
INSTRUCTIONS

6-58

GENERAL
DESCRIPTION

The 32/70 Series Computer provides the capability of accessing memory in
any of the following four modes:

1. 512 KB Mode
2. 512 KB Extended Mode
3. 512 KB Mapped Mode
4. Mapped, Extended Mode

The fonnat for the Memory Management instructions vary to the extent that no
single fonnat can represent them. The instructions are presented on the
fo 11 owi ng pages.

DEFINITION

CONDITION CODE
RESULTS

NOTES

SET EXTENDED ADDRESSING

0000

SEA

I.,.,.,.:.,.,.,.:.,.,.,.: """'~
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 <3 27 28 29 30 31

The CPU enters the Extended Addressing mode.

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: SEA

1. This is a nonprivileged instruction.
2. Sets bit 5 in PSD. word 1.

6-59

CEA

DEFINITION

CONDITION CODE
RESULTS

NOTES

6-60

CLEAR EXTENDED ADDRESSING

OOOF

10000:000,0:0000:", ,_
I I I " "! I I ,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The CPU enters the Normal (Nonextended) Addressing mode.

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: CEA

1. This is a nonprivileged instruction.
2. Clears bit 5 in PSD, word 1.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

LOAD MAP

2C07

U1AP
d

I " " ' , · I, I ' I Rr : I· I • I • I · , ' I ' I ' I· , 0 .. , 0 :. .. , 0 , 0 :0 I 0 , • I 0 :. I 0 I' , 0 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Loads the MAP Image Descriptor List (MIDL) from main memory into the CPU
MAP Registers. RD contains the Real Address of a PSD to be used in the
MAP loading process.

(MIDL) - MAP Registers

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: LMAP RD

NOTES 1. This instruction primarily used for diagnostic purposes.

2. The CPU must be unmapped.

3. Only MAP Load functions are performed, with no context switching.

4. Attempts to execute this instruction in PSW mode will result in an
undefined instruction trap.

5. This is a privileged instruction.

6. This is a fullword instruction.

6-61

TMAPR
s,d

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

NOTES

6-62

TRANSFER MAP TO REGISTER

2COA

1°,0",0:",1 ~< 1,"S, 1"0,,,0_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 222324 25 26 27 282930 31

This instruction causes the even and odd map entries. specified by RS
bits 27-31 to be transferred to the GPR specified by RD. The least
significant map address bit (RS bit 31) is ignored by the instruction.

MAP addressed by RS 27-31 -+ RD

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: TMAPR RS,RD

1. If this instruction is executed in the PSW mode, an undefined
instruction trap will occur.

2. This is a halfword privileged instruction.

3. The format for RS is as follows:

NOT USED ~UST BE ZER~ : : I MAP ADDRESS I
, , ~ , " ,.,:,' ,: """.;"'.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4. The CPU must be Unmapped.

WRITABLE
CONTROL STORAGE

(WCS)
INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION
FORMAT

. CPU ASSOCIATED
WCS FORMAT

Writable Control Storage (WCS) is an option available for use with the CPU
or Class F I/O controller. The WCS consists of one or two Random Access
Memory (RAM) logic boards. each containing 2K- x 64-bits of RAM memory. The
WCS is use~ to supplement the firmware in the CPU or the Class F I/O
controller.

There are two instruction formats used for WCS instructions. one for the CPU
associated WCS. and one for the Class F I/O Controller associated WCS. The
formats are as follows:

[opcoo~ I RD: I As IAUGCODE"""
I " " '" I ,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

. Bits 0-5

Bits 6-8

Bits 9-11

Bits 12-15

Bits 16-31

Define the Operation Code •

Varies in usage as follows:

Instruction

WWCS

RWCS

Usage

Specifies the register containing the
WCS address.

Specifies the register containing the
Logical Address in main memory that is
to receive the WCS contents.

Varies in usage as follows:

Instruction

WWCS

RWCS

Usage

Specifies the register containing the
Logical Address in main memory containing
the information to be loaded into WCS.

Specifies the register containing the
WCS address.

Define the Augmenting Operating Code.

Not used. This is a halfword instruction.

6-63

CLASS F I/O
CONTROLLER
ASSOCIATED
WCS FORMAT

CONDITION CODE
UTI LI ZATI ON

WCS PROGRAMMING

6-64

OP coDE I R : I cwcs coDE I c~~~ I : ~ON;TANT .
, , : ' . ' .. ' , ; . ' , . ' , , . ' , , ; , " ,,'

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 1819 20 21 22 23 24 25262728 29 30 31

Bits 6-8

Bi ts 9-12

Bits 13-15

Bits 16-31

Specify the GPR, when nonzero, whose contents will be added
to the constant to fonn the logical channel and subaddress.

Specifies the Channel WCS Operation Code.

Define the Augmenting Operation Code.

Specifies a constant that will be added to the contents of R
to fonn the logical Channel and subaddress. If R is zero,
only the constant will be used to specify the logical Channel
and subaddress.

The Condition Codes remain unchanged when using the CPU associated WCS. When
using the class F I/O controller associated WCS, the Condition Codes are
changed in accordance with the WCS instructions. Refer to the individual
Class F I/O controller WCS instructions for details.

Programming the CPU associated WCS is accomplished by the use of the Write
WCS (WWCS) instruction. The contents of the WCS are in the fonn of micro­
instructions, which are used to augment the firmware in the CPU. It is be­
yond the scope of this publication to provide the microinstruction tech­
niques used in the implementation of WCS.

The WCS is organized in 64 bits by 2K modules, allowing up to two modules to
be used (4K x 64 bits). Reading or writing WCS is accomplished by alternately
placing the first 32-bit word in the first 32 bits and then the second 32-bft
word in the second 32 bits. A graphic representation of the Read/Write
sequence is shown as follows:

Accessing the CPU associated WCS is accomplished through the use of the Jump
to WCS (JWCS) instruction. More complete information of the programming of
the WCS is contained in the Writable Control Storage Technical Manual.

Programming of the Class F I/O controller associated WCS is presented in the
individual I/O Processor publications.

DEFINITION

CONDITION
CODE

RESULTS

WRITE WRITABLE CONTROL STORAGE

OOOC

~J~~(

o 0 0 0 0 0 RD 1 1 0 0

.:; -,,'
:I) '1

o 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 1B 19 20 21 22 23 24 25 26 27 28 29 30 31

This privileged instruction causes the WCS to be written with a single 54-bit
word at the location specified by the contents of RD, with two words in main
memory specified by the logical addresses contained in RS'
The contents of RS must contain a logical word address that specifies the .
first word of a two-word pair. F- and C-bits. if specified, are ignored an'}
the address will be interpreted as a word address.

The contents of RD must contain a right-justified. zero-filled address of
.the WCS location that is to be written.

If the WCS option is not present or if the WCS address is greater than 4095:
CCl will be set, an Undefined Instruction Trap will occur. and no writing
into WCS will take place.

CCl: WCS option not present or address out of range
CC2: Zero
CC3: Zero
CC4: Zero

Assembly Language Coding: WWCS RS,RO

6-65

RWCS
s,d

DEFINITION

CONDITION CODE
RESULTS

6-66

READ WRITABLE CONTROL STORAGE

OOOB

1°,°,°,':°,°1,"0: 1,"',1',°,','_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This privileged instruction causes the contents of a single 64-bit location
of WCS specified by the contents of RS to be written into main memory at
the location specified by the logical address contained in RD·

The contents of RO must contain a logical word address that specifies the
first word pair. F- and C-bits. if specified. are ignored and the address
will be interpreted as a word address.

The contents of RS must contain a right-justified. zero-filled address of
the WCS location that is to be read.

If the WCS option is not present or if the WCS address is greater than 4095:
CC1 will be set. an Undefined Instruction Trap will occur. and no information
will be stored into main memory.

CC1: WCS option not present or address out of range
CC2: Zero
CC3: Zero
CC4: Zero

Assembly Language Coding: RWCS RS' RO

(,

DEFINITION

JUMP TO WRITABLE CONTROL STORAGE

FAOO

JWCS
*m,x

1""",>+,·>1: H_ :~D~?~"
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This instruction causes an Unconditional Branch to the location specified by
the resolved Effective Address. The rules for the Effective Address are as
follows:

• Nonindirect - the least significant 6 bits of the Effective Address
(index and address) will be used as the WCS entry point address

• Indirect - the least significant 6 bits of the final resolved Effect4ve
Address after the resolution of all indirect addresses will be used as
the WCS entry point address.

Only the least significant 6 bits of the Effective Address are used and all
other bits will be ignored.

When execution in WCS is complete, control will be returned to the next
sequential instruction after this instruction.

NOTES 1. Since no registers can be specified by this instruction, the authors
of the WCS instructions and the software instructions must mutually
agree upon the parameter registers. In general cases, registers 0

CONDITION CODE
RESULTS

and 1 can be used. If the WCS facility is not supported, an Undefined
Instruction Trap will ocCur.

2. If indirect accesses are used, the F-bit must be present in each
indirect word.

CC1:} CC2: All condition code settings will be
CC3: determined by the WCS routines.
CC4:

Assembly Language Coding: JWCS X'WCS Branch Addr'

6-67

BRANCH
INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION
FORMAT

MEMORY REFERENCE

CONDITION CODE
UTILIZATION

Branch instructions provide the capability of testing for certain conditions
and branching to another address if the conditions specified by the in­
struction are satisfied. Branch instructions pennit referencing subroutines.
repeating segments of programs, or returning to the next instruction within
a sequence.

The Branch instruction group uses the following instruction fonnat:

, ~~D: " ,RI~ I ~ I, IF I" ,,~R~C~A,DD~E~, I I : I I ~ I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 222324 252627 28 29 30 31

Bits 0-5
Bits 6-8

Bits 9-10
Bit 11

Bit 12
Bits 13-30
Bit 31

define the Operation Code.
vary in usage as follows:

Instruction

BU. BFT
BCT, BCF
BIB. BIH,
BIW, BID
BL
BRI

Contents/Usage

000
D field
Register Number

001
010

designate one of three index registers.
indicates whether an indirect addressing operation
is to be perfonned.
is zero.
specifies the branch address when X and I fields are zero.
is zero.

Condition Code results during branching operations are unique because they
reflect the state of the indirect bit of the instruction and the state of
bits 1. 2, 3, and 4 of the indirect address obtained from the specified
memory location.

BRANCH
pROGRAMMING

The usual procedure for calling a subroutine is to execute a Branch and Link
(BL) whose effective address is the starting location of the routine. Since
PC+l is saved in GPRO. a subsequent return can be made to the location following
the BL by executing a TRSW O. The PSW including the PC+1 word is saved in GPRO.
Hence. the subroutine can be reentrant (pure); i.e., memory is not modified
by calling it. If we wish to use GPRO in the subroutine, we can store the
return address in a convenient location in memory, location B, with an
STW 0, B. and then return with a BU *B.

Consider a move subroutine to move 50 words beginning at TAB. The routine
begins at MOVE, whose address is stored in C.MOVE. The main program would
contain:

BL *C.MOVE

; Return here

GPRI is used as an Index register for counting through the table and GPR5
is used to output the data. The starting address of the table is in TAB 1.
The subroutine is as follows:

MOVE
LOOP

LI 1,
LW 5,

STW 5,
BIW 1.

TRSW 0

Argument Passing

COUNT EQU 50
-COUNT
TAB+COUNT.1
TAB1 +COUNT ,1
LOOP

Negative of table length
Get next word
Store in new buffer
Increment and test for end
Return

Given an arithmetic subroutine that operates on arguments in GPR5 and GPR6,
leaving the result in GPR6. the subroutine call is as follows:

BL SQRT Call with arguments in GPR5 and GPR6

The subroutine is as follows:

SQRT Arithmetic operations

.
TRSW 0 Return to Call + 1 word

In the preceding example. the calling program must load the General Purpose
Registers before calling the subroutine. It is often convenient for the
program to supply the arguments (or the addresses of the locations that
contain them) with the call, and for the subroutine to handle the data
transfers. With this method, the program gives the arguments in the two
memory locations following the BL.

BL SQRT

Argument 1
Argument 2
Return here with result in GPR6

6-69

6-70

The return is made to the location following the second argument with the
result in GPR6.

SQRT TRR
LD

ADI
TRSW

0,1
6,0,1

0,8

°

Pick up Arguments 1 and 2

Increment return address by 2 words
Return to Call + 3 words

An alternate method which allows up to six arguments to be passed per
instruction utilizes the Load File instruction as follows:

SQRT TRR
LF

ADI
TRSW

0,1
2,0,1

0,24

°

Pick up Arguments 1-6

Increment return address by 6 words
Return to Call + 7 words

The next method passes an address list instead of arguments following
the BLi otherwise, it is identical to the method described above.

SQRT

BL SQRT

TRR
LW
ADI
LW

.
ADI
TRSW

0,1
6,*0,1
1,4
7,*0,1

0,8

°

Address of Argument 1
Address of Argument 2

Pick up Argument 1

Pick up Argument 2

Increment return address by 2 words
Return to Call + 3 words

The next method is the same as the previous example except that argument 1
is a table, and the result replaces the second argument 1n memory:

SQRT

BL SQRT

TRR
TRR
ABR
LW

0,3
0,1
29,1
6,*0,1

Address of Argument 1
Address of Argument 2 and resul t

Pick up base address of table, Argument 1

Increment return address by 4 words
Pick up Argument 2

The final method is similar to the previous versions except that GPRI-GPR7
are not disturbed:

SQRT

SAVE

STF
TRR
LW
ADI
LW

ST
LF
ADI
TRSW
REZ

0, SAVE
0,1
6, *0,1
1,4
7,*0,1

6,*0,1
0, SAVE
0,8
o
IF

Save General Purpose Registers

Pick up Arguments

Store result
Restore General Purpose Registers
Increment return address by 2 words
Return to Call + 3 words
Eight zero-filled words on a file boundary

6-71

BU
*In,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE 1

Before
Execution

After Execution

Note

EXAMPLE 2

Before
Execution

After Execution

BRANCH UNCONDITIONALLY

ECOO

1\',',':','1',':'1; 1,101 ,,;+~OO~'~: I I I: I I I: 111'1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Effective Address (bits 13-30) in the instruction is transferred to the
corresponding bit positions in the Program Status Word Register (PSWR). This
causes program control to be transferred to any word or halfword location
in memory. Bit positions 1-12 of the PSWR remain unchanged if the indirect
bit is equal to zero. If the indirect bit of the Instruction Word is equal
to one, bit positions 1-4 of the last memory word in the indirect chain are
transferred to the corresponding bit positions of the PSWR. Bit 0 (priv­
ileged state bit) of the PSWR remains unchanged. The Extended mode bit
remains unchanged. Bits 0 and 5 are changed only by a BRI indirect.

EA13-30 - PSWR13_30 , IF 1=0

(EWLl _4 and 13-30) -PSWRl _4 and 13-31" IF 1=1

If the indirect bit is equal to zero, the Condition Code remains unchanged.

CC1: lSI (I) is equal to one and (EWL1~
CC2: lSI (I) is equal to one and (EWL
CC3: lSI (I) is equal to one and (EWL~)
CC4: lSI (I) is equal to one and (EWL4)

Memory Location: 01000
Hex Instruction: EC 00 14 14
Assembly Language Coding: BU X' 1414 1

PSWR
20001000

PSWR
20001414

is equal to one
is equal to one
is equal to one
is equal to one

(X=O, 1=0)

The contents of bits 13-30 of the instruction replace the corresponding
portion of the PSWR. The Condition Code remains unchanged.

Memory Location:
Hex Instruction:
Assembly Language Coding:

01000
EC 10 14 14 (X=O, 1=1)
BU *X ' 1414 1

PSWR
80001000

Memory Word 01414
700015AC .

PSWR
F00015AC

Memory Word 01414
700015AC

Note The contents of bits 1-30 of memory word 01414 replace the previous
contents of bits 1-4 and 13-31 of the PSWR.

6-72

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

BRANCH CONDITION FALSE

FOOO

BCF
v,*m,x

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Effective Address (bits 13-30) in the instruction is transferred to
the corresponding bit positions in the Program Status Word Register (PSWR),
if the condition specified by the D field (bits 6-8 of the instruction) is
present. The seven specifiable conditions are tabulated below. If the
condition is not as specified, the next instruction in sequence is executed.
If the indirect bit of the Instruction Word is equal to one, and the branc~
occurs, bit positions 1-4 of the last memory word in the indirect chain are
transferred to the corresponding bit positions of the PSWR. Bits 0, and 5-15
are unchanged.

D Field (Hex) Branch Condition (Branch if):

1 CC1=zero
2 CC2=zero
3 CC3=zero
4 CC4=zero
5 CC2 and CC4 both = zero
6 CC3 and CC4 both = zero
7 CC1, CC2, CC3, and CC4 all = zero

The resulting Condition Code remains unchanged if the indirect bit (bit 11)
is equal to zero.

CC1: lSI (I) is equal to one and (EWL1) is equal to one
CC2: lSI (I) is equal to one and (EWL2) is equal to one
CC3: lSI (I) is equal to one and (EWL3) is equal to one
CC4: lSI (I) is equal to one and (EWL4) is equal to one

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10002094

PSWR
1000214C

02094
F1 00 21 4C (C1C2C3=2,X=0,I=0)
BCF 2,X'214C'

Condition Code bit 2 is not set. The Effective Address (in this case
bit 13-30 of the instruction) is transferred to the PSWR.

6-73

BCT
v,*m,x

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

6-74

BRANCH CONDITION TRUE

ECOO

I " ' I 'I 0: 'I ,I I ! I ~ I' I 0 I I I ·h" ;"DI~~ I I I : I I I : I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Effective Address (bits 13-30) in the instruction is transferred to the
corresponding bit positions in the Program Status Word Register (PSWR). if the
condition specified by the D field (bits 6-8) is present. The seven specifiable
conditions are tabulated below. If the indirect bit of the Instruction Word
is equal to one. bit positions 1-4 of the last memory word in the indirect
chain are transferred to the corresponding bit positions of the PSWR. Bits
o and 5-12 are unchanged.

0 Field (Hex) Branch Condition (Branch if):

1 CC1=one
2 CC2=one
3 CC3=one
4 CC4=one
5 CC2 v CC4=one
6 CC3 v CC4=one
7 CCl v CC2 v CC4=one

The resulting Condition Code remains unchanged if the indirect bit (bit 11)
is equal to zero.

CC1: lSI (I) is equal to one and (EWL1) is equal to one
CC2: lSI (I) is equal to one and (-EWL2) is equal to one
CC3: lSI (I) is equal to one and (EWL3) is equal to one
CC4: lSI (I) is equal to one and (EWL4) is equal to one

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
50001000

PSWR
50001414

01000
EC 80 14 14 (Condition=l. X=O. I=O)
BCT. 1.X'1414'

The contetns of bits 13-30 of the instruction are transferred to bits 13-30
of the PSWR.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

BRANCH FUNCTION TRUE

FOOO

BFT
*m,x

f\' .. : "I": ·1 ' I, H '~ANC",D"~! ~ : 1 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Effective Address (bits 13-30) in the instruction is transferred to the
corresponding bit positions in the Program Status Word Register (PSWR) if
the function bit in the mask register (R4) for the Condition Code, 1 of
the 16 possible combinations of the 4 Condition Code bits which corresponds
to the current condition code, is equal to one. The function F is defined
by the 16 least significant bits of the mask register. All 16 Condition
Codes of the 4 variables A=CCI. B=CC2. C=CC3. D=CC4 are defined below.

F = ABeD R416V ABED R417v ABCD R418v ABeD R419

ABeD R420v ABeD R421V ABeD R422v ABCD R423

ABCD R424v ABCD R42Sv ABCD R4Z6v ABCD R427

ABeD R428V ABCD R429v ABeD R430v ABeD R431

Therefore. any logical function of the four variables stored in the
Condition Code register can be evaluated by storing the proper 16-bit
function code in the mask register. The next instruction in sequence
is executed if the function is equal to zero. If the Indirect bit of
the instruction word is equal to one. bit positions 1-12 of the last
memory word in the indirect chain are transferred to the corresponding
bit positions of the PSWR. Bits 0 and 5 are unchanged.

If F=l & 1=0. EA13_30 - PSWR13_30

If F=1 & 1=1. EAI _30 - PSWRl_30

If F=O PSWR13_30 + 129 - PSWR13_30

The resulting condition code remains unchanged if the indirect bit (bit 11)
is equal to zero.

CCl: lSI (I) is equal to one and EA1 is equal to one
CC2: lSI ~I} is equal to one and EA2 is equal to one
CC3: lSI I is equal to one and EA3 is equal to one
CC4: lSI I is equal to one and EA4 is equal to one

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
70001000

PSWR
70002000

GPR4
00000002

GPR4
00000002

01000
FO 00 20 00 (X=O. I=O)
BFT X'2000' .

Note Bit 30 of GPR4 defines a function for which CCl=CC2=CC3=1.CC4=0. This
function is true. so a branch is effected.

6-75

BL
*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

BRANCH AND LINK

F880

I ' I ' I " ': " 'I " ': 'I : I' H I I +~" ~D;~ I I I : I I I : I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the Program Status Word Register (PSWR) are incremented
by one word and transferred to General Purpose Register O. If the indirect
bit of the Instruction Word is equal to zero, the Effective Address (bit 13-30)
is transferred to the corresponding bit positions of the PSWR. Bit positions
1-12 of the PSWR remain unchanged. If the indirect bit of the Instruction
Word is equal to one, bit positions 1-4 of the last memory word in the indirect
chain are also transferred to the corresponding bit positions of the PSWR.
Bit 0 (privileged state bit), and bits 5-12 of the PSWR remain unchanged.

(PSWR) -- RO

EA -- PSWR13_30 , if I=zero

EWL l _12 , EA -- PSWR l _4 and 13-30' if I=one

If the indirect bit is equal to zero, the Condition Code remains unchanged.

CC1: (lSI) (I) is equal to one and (EWL1) is equal to one
CC2: (lSI) (I) is equal to one and (EWL2) is equal to one
CC3: (lSI) (I) is equal to one and (EWL3) is equal to one
CC4: (lSI) (I) is equal to one and (EWL4) is equal to one

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
1000894C

PSWR
1000A378

GPRO
12345678

GPRO
10008950

0894C
F8 80 A3 78 (X=O, 1=0)
BL X'A378'

Note The contents of the PSWR are transferred to GPRO. The contents of bits 13-30
of the instruction are transferred to bits 13-30 of the PSWR.

6-76

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Notes

BRANCH AFTER INCREMENTING BYTE

F400

BIB
d,*m

The contents of the GPR specified by R are incremented in bit position 31.
If the result is nonzero the Effective Address (EA) is transferred to the
Program Status Word Register (PSWR) bit positions 13-30 and bit positions
1-4 of the PSWR remain unchanged. If the result is equal to zero after
incrementing, the next instruction is executed. Bits 0 and 5 are unchanged.

(R) + 131 R

EA PSWR13_30 , if result ~ 0

. CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
2001B204

PSWR
2001B208

GPRO
FFFFFFFF

GPRO
00000000

1B204
F4 01 B1 AS (R=O, 1=0)
BIB O,X'lB1AS'

1. The contents of the GPRO are incremented by one at bit position 31.
Since the result is zero, no branch occurs.

2. Indexing is not allowed.

3. If the indirect bit of the Instruction Word is equal to one, and the
branch occurs, bit positions 1-4 of the last memory word in the indirect
chain are transferred to the corresponding bit positions of the PSWR.
Bits 0 and 5-12 are unchanged.

4. The instruction following may not be the target of the System Control
Panel or Serial Control Panel Halt .

...... ,

6-77

BTH
d,*m

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

BRANCH AFTER INCREMENTING HALFWORD

F420

I' , , ,:, 'I .: 1 ' 'I' I 'I ~.,"," '0'+ : : I
I I I I! I 'I' " '" I " '" o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the GPR specified by R are incremented in bit position 30.
If the result is nonzero the Effective Address (EA) is transferred to the
Program Status Word Register (PSWR) bit positions 13-30 and bit positions
1-4 of the PSWR remain unchanged. If the result is equal to zero after
incrementing, the next instruction is executed.

(R) + 130 - R

EA - PSWR13_30 , if result t 0

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
100039AO

PSWR
10003948

GPR2
FFFFD72A

GPR2
FFFFD72C

039AO
F5 20 39 48 (R=2, 1=0)
BTH 2,X'3948'

Notes 1. The contents of GPR2 are incremented by one in bit position 30. The
result is replaced in GPR2 and a branch occurs to address 03948.

6-78

2. Indexing is not allowed.

3. If the indirect bit of the Instruction Word is equal to one, and the
branch occurs, bit positions 1-4 of the last memory word in the indirect
chain are transferred to the corresponding bit positions of the PSWR.
Bits 0 and 5-12 are unchanged.

4. The instruction following may not be the target of the System Control
Panel or Serial Control P~nel H~lt.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

BRANCH AFTER INCREMENTING WORD

F440

BIW
d,*m

I ' I '. ' I ' : ' I 'I I': I, I ' I 'H I I : I ~'';+'~''~ I : I I I : I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the GPR specified by R are incremented in bit position 29.
If the result is nonzero, the Effective Address (EA) is transferred to the
Program Status Word Register (PSWR) bit positions 13-30 and bit positions 1-4
of the PSWR remain unchanged. If the result is equal to zero after incre­
menting, the next instruction is executed.

(R) + 129 R

EA PSWRI3_30 , if result f 0

CCl~ No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
60004A38

PSWR
60004B2C

GPR6
FFFFDC18

GPR6
FFFFDCIC

04A38
07 40 4B 2C (R=6, 1=0)
BIW 6,X'4B2C'

Notes 1. The content of GPR6 is incremented by one at bit position 29, and the
result is transferred to GPR6. The Effective Address of the BIW instruction,
(04B2C). replaces the previous contents of the PSWR. bits 12-30.

2. Indexing is not allowed.

3, If the indirect bit of the Instruction Word is equal to one, and the
~ranch occurs. bit positions 1-4 of the last memory word in the direct
chain are transferred to the corresponding bit positions of the PSWR.
Bits 0 and 5-12 are unchanged.

4. The instruction following may not be the target of the System Control
Panel or Serial Control Panel Halt.

6-79

BID
d,*m

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

BRANCH AFTER INCREMENTING DOUBLEWORD

F460

11 I 1! 1 I 1: 0 I 1 I I R: 11 I 1 I' I 0 I I I : I ~RA~CH: AOjRE,SS I : I I I : ! I , I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the GPR specified by R are incremented in bit position 28.
If the result is nonzero the Effective Address (EA) is transferred to the
Program Status Word Register (PSWR) bit positions 13-30 and bit positions
1-4 of the PSWR remain unchanged. If the result is equal to zero after
incrementing, the next instruction is executed.

(R) + 128 -R

EA - PSWR13_30 , if result .,. 0

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
0800930C

PSWR
08009310

GPR3
FFFFFFF8

GPR3
00000000

0930C
F5 EO 91 A6 (R=3. 1=0)
BID 3,X'91A6'

Notes 1. The content of GPR3 is incremented by one at bit position 28 and replaced.

6-80

Since the result is zero, no branch occurs.

2. Indexing is not allowed.

3. If the indirect bit of the Instruction Word is equal to one, and the
branch occurs, bit positions 1-4 of the last memory word in the direct
chain are transferred to the corresponding bit positions of the PSWR.
Bits 0 and 5-12 are unchanged.

4. The instruction following may not be the target of the System Control
Panel or Serial Control Panel Halt.

COMPARE
I NSTR UCTIONS

GENERAL
DESCRIPTION

I NSTRUCTI ON
FORMAT

MEMORY
REFERENCE

Compare instructions provide the capability of comparing data
in memory and General Purpose Registers. These operations can be
performed on bytes, halfwords, words, or doublewords. Provisions have
also been made to allow the result of compare operations to be masked
with the contents of the Mask register before final testing.

The Compare instruction group uses three instruction formats.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-10

Bit 11

Bit 12-31

define the Operation Code.

designate a General Purpose Register address (0-7).

designate one of three index registers.

indicates whether an indirect addressing operation is to
be performed.

specify the address of the operand when the X and I fields
equal to zero.

Note Additional information on the Memory Reference instruction format is
included with the Load/Store instruction formats.

IMMEDIATE

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5 define the Operation Code.

Bits 6-8 designate a General Purpose Register address (0-7).

Bits 9-12 unassigned.

Bits 13-15 define Augmenting Operation Code.

Bits 16-31 contain the 16-bit operand value.

6-81

INTERREGISTER

COND I TI ON CODE
UTILIZATION

6-82

R
S

I , :I~~!-
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5 define the Operation Code.

Bits 6-8 designate the register to contain the result of the
operation.

Bits 9-11 designate the register which contains the source
operand.

Bits 12-15 define the Augmenting Operation Code.

A Condition Code is set during most Compare instructions to indicate
whether the operation produced a result greater than, less than, or
equal to zero.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

COMPARE ARITHMETIC WITH MEMORY BYTE

9008

CAMB
d,*rn,x

1',',',':','1,': I ~ 1·1'1" :~",,,~+~";'~: '" :," I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 :'9 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed,
right justified, and subtracted algebraically from the word in the GPR
specified by R. The result of the subtraction causes one of the Condition
Code bits (2-4) to be set. The contents of the GPR specified by R and the
byte specified by the EBA remain unchanged.

(R) - (EBl) - 5CC2_4

CC1: Always zero
CC2: lSI (R) is greater than (EBl)
Ce3: lSI (R) is less than (EBl)
CC4: I S I (R) is equa 1 to (EBl)

Memory location:
Hex Instruction:
Assembly language Coding:

PSWR
08001000

PSWR
10010004

GPR1
000000B6

GPR1
000000B6

01000
90 88 10 B5 (R=l, X=O, 1=0)
CAMB 1,X'10B5'

Memory Byte 010B5
C7

Memory Byte 010B5
C7

Note CC3 is set, indicating that the contents of GPR1 are less than the contents
of memory byte 010B5.

6-83

CAMH
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

COND I TI ON CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

COMPARE ARITHMETIC WITH MEMORY HALFWORD

9000

I' , , ,I, 'I ,I I X /1 10 I ~!ALFWORDOPE!RANDADDRESS! I I' I
- I I I ! I _ I ! . I _ . . I I . I I I . I I I . I I I I I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed, and the sign bit is extended 16 bits to the left to form a word.
The resulting word is subtracted algebraically from the word in the GPR
specified by R. The result of the subtraction causes one of the Condition
Code bits (2-4) to be set. The word in the GPR specified by R and the
halfword specified by the EHA remain unchanged.

(R) - (EHL)SE

CC1: Al ways zero
CC2: lSI (R) is greater than (EHL)SE
CC3: lSI (R) is less than (EHL)SE
CC4: lSI (R) is equal to (EHL)SE

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
0800379C

PSWR
200037 AO

GPR4
00008540

GPR4
00008540

0379C
92 00 39 77 (R=4, X=O, I=O)
CAMH 4,X'3976'

Memory Halfword 03976
8640

Memory Halfword 03976
8640

Note CC2 ;s set indicating that the contents of GPR4 are greater than the contents
of memory halfword 03976 (a negative value).

6-84

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

COMPARE ARITHMETIC WITH ~1EMORY WORD

9000

CAMW
d,*m,x

The word in memory specified by the Effective Word Address (EWA) is
accessed and subtracted algebraically from the word in the GPR specified
by R. The result of the subtraction causes one of the Condition Code
bits (2-4) to be set. The word in the GPR specified by R and the word
specified by the EWA remain unchanged.

(R) (EWL) - SCC2_4

CC1: Always zero
CC2: 151 (R) is greater than (EWL)
CC3: lSI (R) is less than (EWL)
CC4: lSI (R) is equal to (EWL)

Memory Location: 05B20
Hex Instruction: 93 00 5C 78 (R=6, X=O,
Assembly Language Coding: CAMW 6,X'5C78'

PSWR GPR6 Memory Word 05C78
40005820 9E038651 A184F207

PSWR GPR6. ~1emory Word 05C78
10005824 9E038651 A184F207

CC3 is set indicating that the contents of the GPR6
contents of memory word 05C78.

1=0)

are less than the

6-85

CAMD
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

6-86

COMPARE ARITHMETIC WITH MEMORY DOUBLEWORD

9000

I'I""':"'II"~ I ~ 1,1-1 I 1"~D~~;'7+"I"'II: I I I: 11+1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and subtracted algebraically from the doubleword in the GPR
specified by Rand R+l. R+l is the GPR one greater than specified b~ R. The
result of the subtraction causes one of the Condition Code bits (2-4) to be
set. The doubleword in the GPR specified by Rand R+l, and the doubleword
specified by the EDA remain unchanged.

(R. R+l) (EDL)

CCl: Al ways zero
CC2: lSI (R. R+l) is greater than (EDL)
CC3: lSI (R. R+l) is less than (EDL)
CC4: lSI (R. R+l) is equal to (EDL)

Memory Location: 27C14 .
Hex Instruction: 92 02 7F 52 (R=4, X=O,
Assembly Language Coding: CAMD 4,X'27F50 '

PSWR GPR4 GPR5
20027C14 7AE0156D 47B39208

Memory Word 27F50 Memory-Word 27F54
7AE0156D 47B39208

PSWR GPR4 GPR5
08027C18 7AE0156D 47B39208

Memory Word 27F50 Memory Word 27F54
7AE0156D 47B39208

1=0)

CC4 is set indicating that the doubleword obtained from GPR4 and GPR5 is
equal to that obtained from the memory words 27F50 and 27F54.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

COMPARE ARITHMETIC WITH REGISTER

1000

The word in the GPR specified by RS is subtracted algebraically from the
word in the GPR specified by RD. The result of the subtraction causes one
of the Condition Code bits (2-4) to be set. The words specified by RS and
RO remain unchanged.

eC1: Always zero
CC2: lSI (RO) is greater than (RS)
Ce3: lSI (RO) is less than (RS)
CC4: lSI (RO) ;s equal to (RS)

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
0800B3C2

PS~IR
1000B3C4

GPRO
580F620A

GPRO
580F620A

OB3C2
10 10 (RO=O. RS=l)
eAR 1,0

GPR1
6A92B730

GPRI
6A926730

Note Ce3 is set indicating that the contents of GPRO are less than the contents
of GPRl.

CAR
s,d

6-87

CI
d.y

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

COMPARE IMMEDIATE

C805

I ' " · ~ "I ; I I 0 0 0 I 0 0 1 I IMMEOI~ATE ",'"AND I I I
- I I I ! I . I ! . I I . , I I . , , , . , , , ! , , , ~ , , , _

o 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The sign bit (bit 16) of the immediate operand is extended 16 bit positions
to the left to form a word. This word is subtracted from the word in the
GPR specified by R. The result of the subtraction causes one of the
Condition Code bits (2-4), to be set. The word in the GPR specified by R
and the immediate operand (bit 16-31) remain unchanged.

(R)

CC1: Always zero
CC2: lSI (R) is greater than (IW16-31)SE
CC3: lSI (R) is less than (IW16-31)SE
CC4: lSI (R) is equal to (IW16-31)SE

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
4000A794

PSWR
1000A798

GPR1
00005719

GPR1
00005719

OA794
C8 85 71 A2 (R=l)
CI l,X I 71A2 I

Note CC3 is set, indicating that the contents of GPR1 are less than the
immediate operand.

6-88
... . .
.j

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

CMr~B COMPARE MASKED WITH MEMORY BYTE

9408
d,*m,x

I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2:1 21 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is
accessed, and 24 zeros are appended to the most significant end to form a
word. This word is logically compared (Exclusive OR Function) with the
word in the GPR specified by R. The resulting word is then masked (Logical
AND Function) with the contents of the Mask register (R4). The masked result
is tested and Condition Code bit 4 is set if all 32 bits equal zero. The
word in the GPR specified by R and the byte specified by the EBA remain
unchanged.

[(R) CD 00-23' (EBL)] & (R4) -

CC1: Always zero
CC2: Always zero
CC3: Always zero
CC4: lSI Result is equal to zero

Memory Locati on:
Hex Instruction:
Assembly Language Coding:

00800
94 08 09 17 (R=O, X=O. 1=0)
Ct1r1B O. X I 917 I

PS~JR GPRO GPR4 ~1emory Byte 00917
10000800 000000A1 OOQOOOFO A9

PSWR GPRO GPR4 Memory Byte 00917
08000804 000000A1 OOOOOOFO A9

The contents of GPRO and memory byte 00917 are identical in those
positions specified by the contents of GPR4. CC4 is set.

bit

6-89

CMMH
d,*m,x

DEFINITION

SUMr1ARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

COMPARE MASKED WITH MEMORY HALFWORD

9400

l' 0 0 1 I 0 1 I R I I X I' I 0 I I HALFWORD O!PERAND ADDRE!.. I l' I
- , , , ! , . , ! . , . .. '!" , . , , , . , , I I , I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address {EHA} is
accessed, and the sign (bit 16) is extended 16 bits to the left to form a
word. The resulting word is logically compared (Exclusive OR Function) with
the word in the GPR specified by R. The resulting word is then masked
(Logical AND Function) with the contents of the Mask register (R4). The
masked result is tested and Condition Code bit 4 is set if all 32 bits
equal zero. The word in the GPR specified by R and the halfword specified
by the EHA remain unchanged.

[(R) 0 (EHL)SE] & (R4)

CC1: Always zero
CC2: Always zero
CC3: Always zero
CC4: lSI result is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
100061B8

PSWR
080061BC

GPR2
09A043B6

GPR2
09A043B6

061B8
95 00 62 93 CR=2, X=O, 1=0)
CMMH 2,X'6293'

GPR4
00004284

GPR4
00004284

Memory Halfword 06292
46FC

Memory Ha1fword Q6292
46FC

Note The contents of GPR2 and memory ha1fword 06292 are identical in those bit
positions specified by the contents of GPR4. CC4 is set.

6-90

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAt1PLE

Before
Execution

After Execution

Note

COMPARE MASKED WITH MEMORY WORD

9400

The word in memory specified by the Effective \~ord Address (EWA) is

CMMW
d,*m,x

accessed and logically compared (Exclusive OR Function) with the word in the
GPR specified by R. The result of the comparison is then masked (Logical
AND Function) with the contents of the Mask register (R4). The masked
result is tested and Condition Code bit 4 is set if all 32 bits equal
zero. The word in the GPR specified by R and the word specified by the EWA
remain unchanged.

((R) <D (EWL)] & (R4)

eel: Always zero
eC2: Always zero
eC3: Always zero
CC4: lSI result is equal to

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSL~R GPR4
08013A74 OOFFFFOO

PSWR GPR4
00013A78 OOFFFFOO

SCC4

zero

13A74
97 01 3C 94 (R=6, X=O, 1=0)
CMMW 6,X'3C94'

GPR6 rlemory Hord
132AICQ4 ·472A3D04

GPR6 Memory Hord
132A1C04 472A3D04

The contents of GPR6 and memory word 13C94 are not equal
positions specified by the contents of GPR4.

13C94

13C94

within the bit

£-91

01110
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

COMPARE MASKED WITH MEMORY DOUBLEWORD

9400

1 0 0 1 0 1 R X I 0 DOUBLEWORD OPERAND ADDRESS 0 1 0
,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and compared (Exclusive OR Function) with the doubleword in the
GPR specified by Rand R+l. R+l is the GPR one greater than specified by R.
Each result from the comparison is then masked (Logical AND Function) with
the contents of the Mask register (R4). The doubleword masked result is
tested and Condition Code bit 4 is set if all 64 bits equal zero. The
doubleword in the GPR specified by Rand R+l and the doubleword specified
by the EDA remain unchanged •

•
[(R) 0 (EWL)] & (R4), [(R+l) 0 (EWL+l)] & (R4)

CC1: Always zero
CC2: Always zero
CC3: Al ways zero
CC4: lSI result is equal to

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10003000

GPR4
OOOFFFFF

Memory Word 031B8
0003791B

PSWR
00003004

GPR4
OOOFFFFF

Memory Word 031B8
0003791B

zero

03000
97 00 31 BA (R=6, X=O, 1=0)
CMMD 6,X'31B8'

GPR6
FFF3791B

GPR7
890A45D6

Memory Word 031BC
890A45C2

GPR6
FFF3791B

GPR7
890A45D6

Memory Word 031BC
890A45C2

Note The contents of GPR7 and memory word 031BC differ within the bit positions
specified by the contents of GPR4.

6-92

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODF.
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

COMPARE MASKED WITH REGISTER

1400

01R
s,d

I'I'I'I':'I'II"~ I RI""= ISI.III_
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1" 20 21 22 23 21 25 2[; ?7 28 29 30 31

The word in the GPR specified by RO is logically cor.~pared (Exclusive OR
Function) with the word in the GPR specified by R. The result of the
comparison is then masked (Logical AND function) ~ith the contents of the
Mask register (R4). The result is tested and Condition Code bit 4 is
set if all 32 bits equal zero. The words specified by RS and RO remain
unchanged.

[(RD) 0 (RS)] & (R4) - SCC4

CC1: Always zero
.CC2: Always zero
CC3: Always zero
CC4: lSI result is equal to zero

~lemory Location: 05002
Hex Instruction: XXXX14 AO (RO=l, RS=2)
Assembly Language Coding: C~1R 2,1

PSWR GPR1 GPR2 GPR4
10005002 583C94A2 OC68C5F6 AAAAAAAA

PSWR GPR1 GPR2 GPR4
08005004 583C94A2 OC68C5F6 AAAAAAAA

The contents of GPRI and GPR2 are identical within the bit pos iti ons
specified by the contents of GPR4. CC4 is set.

6-93

LOGICAL
INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION
FORMATS

MEMORY
REFERENCE

INTERREGISTER

CONDITION CODE
UTILIZATION

6-94

The Logical instruction group provides the capability of performing AND, OR,
and Exclusive OR operations on bytes, halfwords, and doublewords in memory
and General Purpose Registers. Provisions have also been made to allow the
result of Register-to-Register OR and Exclusive OR operations to be masked
with the contents of Mask register (R4) before final storage.

The Logical instruction group uses the following two instruction formats:

I ~ 70
.: , I ,': lx, I' I, I I I : I I I : lOA I I : I I I : I I C I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-10

Bit 11

Bits 12-31

define the Operation Code.

designate a General Purpose Register address (0-7).

designate one of three index registers.

indicates whether an indirect addressing operation is to
be performed.

specify the address of the operand when the X and I fields
are equal to zero.

De 000.: I '.: I " I AU",DO. _
I I I I I I 'I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-11

Bits 12-15

define the Operation Code.

designate the register to contain the result of the operation.

designate the register which contains the source operand.

define the Augmenting Operation Code.

A Condition Code is set during execution of most Logical instructions to
indicate whether the result of that operation was greater than, less than,
or equal to zero.

DEFINITION

SUMMARY

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

AND ME~10RY BYTE

8408

o 1 2 3 4 5 6 7 8 9 10 11 12 1:3 14 1" 16 17 18 1 ~ 20 21 22 n 24 2,) /U 27

.ANMB
d,*m,x

, , ,J
The byte in memory specified by the Effective Byte Address (EBA) is accessed
and logically ANDed with the least significant byte (bits 24-31) of the
GPR specified by R. The result is transferred to bit positions 24-·31 of
the GPR specified by R. Bit positions 0-23 of the GPR specified by R remain
unchanged.

(EBL)&(R24_31) - R24- 31

RO-23 Unchanged

Cel: Always zero
CC2: lSI R24-31 is greater than zero
CC3: Always zero
CC4: lSI R24- 31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
00000200

PSWR
20000204

GPRI
36AC718F

GPRI
36AC7187

00200
84 88 03 73 (R=l, X=O, 1=0)
ANr1B 1 ,X' 373'

r1emory Byte 00373
C7

Memory Byte 00373
C7

Note The contents of memory byte 00373 are ANDed with the right-hand byte of GPRl,
and the result replaces the byte in GPRI. CC2 is set.

6-95

ANNH
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

AND MEMORY HALFWORD

8400

I""" ':', 'I,': I; I, 1,1 ";+;O~'7+;O';",:",:" 1,1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and logically ANDed with the least significant halfword (bits 16-31)
of the GPR specified by R. The result is transferred to bit positions
16-31 of the GPR specified by R. Bit positions 0-15 of the GPR specified
by R remain unchanged.

(EHL)&(R16_31) _ R16-31

RO-15 Unchanged

CONDITION CODE CC1: Always zero
RESULTS CC2: lSI R16-31 is greater than zero

EXAMPLE

Before
Execution

CC3: Always zero
CC4: lSI R16-31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
40001000

GPR6
4F638301

01000
87 00 12 A3 (R=6, X=O, 1=0)
ANMH 6,X'12A2'

Memory Halfword 012A2
70F6

After Execution PSWR
08001004

GPR6
4F630000

Memory Halfword 012A2
70F6

6-96

Note The contents of memory halfword 012A2 are ANDed with the right halfword
of GPR6, and the result replaces the halfword in GPR6. CC4 is set.

DEFINITION

SU~1MARY
EXPRESSION

CONDITION CODE
RESULTS

EXA~1PLE

Before
Execution

After Execution

AND MEMORY ~JORD

8400

I I I

ANMW
d,*m,x

: I I'l'l
o 1 2 3 4 5 6 7 8 9 10 II 12 13 14 1'0 Ili 17 12 19 "~I ! I 2:' 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective \~ord Address (EWA) is accessed
and logically ANDed with the word located in the GPR specified by R.

(EWL)&(R) -- R

CC1: Always zero
CC2: IS I RO 31 is greater than zero
CC3: lSI RO- 31 is less than zero
CC4: lSI RO=31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
08000FlC

PSWR
10000F20

GPR7
FOFOFOFO

GPR7
90D03050

OOFlC
87 80 OF DO (R=7, X=O, 1=0)
AN~1W 7, X I FDO I

Memory Word OOFDO
9ED13854

Memory Word OOFDO
9ED13854

Note The contents of memory word OOFDO are ANDed with the contents of GPR7, and
the result replaces the contents of that register. CC3 is set.

6-97

ANMD
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

COND I TI ON CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

AND MEMORY DOUBLEWORD

8400

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and logically ANDed with the doubleword in the GPR specified by
Rand R+l. R+l is the GPR one greater than specified by R. Theresultfng
doubleword is transferred to the GPR specified by Rand R+l.

(EWL+l)&(R+l) - R+l

(EWL)&(R) - R'

CC1: Always zero
CC2: lSI (R,R+l) is greater than zero
CC3: lSI (R,R+l) is less than zero
CC4: lSI (R,R+l) is equal to zero

Memory Location: 00674
Hex Instruction: 86 00 08 lA (R=4, X=O,
Assembly Language Coding: ANMD 4,X'8l8'

PSWR GPR4 GPR5
00000674 9045C64A 32B08FOO

Memory Word 00818 Memory Word 0081C
684A711C 8l04A2BC

PSWR GPR4 GPR5
20000678 00404008 00008200

Memory Word 00818 Memory Word 0081C
684A711C 8l04A2BC

1=0)

Note The contents of memory word 00818 are ANDed with the contents of GPR4, and
the result replaces the contents of GPR4. The contents of memory word
0081C are ANDed with the contents of GPR5, and the result replaces the
contents of GPR5. CC2 is set.

6-98

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

AND REGISTER AND REGISTER

0400

ANR
s,d

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1~ 17 18 1a 20 2, 22 23 24 25 20 27 .os 2" .lO 31

The word in the GPR specified by RO is logically ANOed with the word in the
GPR specified by RS. The resulting word is transferred to the GPR specified
by RD.

(RS)&(RO)- RO

CC1: Always zero
Ce2: lSI (RO) is greater than zero
CC3: lSI (RO) is less than zero
CC4: lSI (Ro) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
40003812

PSWR
20003814

GPR1
AC881101

GPRI
00081101

03812
04 FO (RO=I, RS=7)
ANR 7,1

'GPR7
OOOFFFFF

GPR7
OOOFFFFF

Note The contents of GPR1 and GPR7 are ANOed, and the result is transferred to
GPR1. CC2 is set.

6-99

ORMB
d,*m,x

DEFINITION

Sur·1MARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

OR MEMORY BYTE

8808

012345 6 7 8 9 10 11 1'2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and logically ORed with the least significant byte (bits 24-31) of the GPR
specified by R. The resulting byte is transferred to bit positions 24-31
of the GPR specified by R. Bit positions 0-23 of the GPR specified by R
remain unchanged.

RO-23 Unchanged

CC1: Always zero
CC2: lSI RO-31 ~s greater than zero
CC3: lSI RO 31 1S less than zero
CC4: lSI RO=31 is equal to zero

r1emory Location:
Hex Instruction:
Assembly Language Coding:

PS\~R
00000600

PSWR
20000604

GPR1
40404040

GPR1
4040407C

00600
88 88 08 A3 (R=l, X=O, 1=0)
ORriB 1 ,X '8A3'

~1emory Byte 8A3
3C

Memory Byte 8A3
3C

Note The contents of memory byte 8A3 are logically ORed with the right-hand byte
of GPR1, and the result replaces that byte in GPR2. CC2 is set.

6-100

\

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

OR MEMORY HALFWORD

8800

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

o Rt-1H
d,*m,x

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and logically ORed with the least significant halfword (bits 16-31)
of the GPR specified by R. The resulting halfword is transferred to bit
positions 16-31 of the GPR specified by R. Bit positions 0-15 of the GPR
specified by R remain unchanged.

(EHL}v(R16_31) - R16-31

Ro-15 Unchanged

CC1: Always zero
CC2: lSI RO-31 ~s greater than zero
CC3: lSI RO-31 1S less than zero
CC4: lSI RO-31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
000018AC

PSWR
100018BO

GPR6
BD71A4C6

GPR6
BD71E5F7

018AC
8B 00 19 45 (R=6, X=O, I=O)
ORMH 6,X'1944'

Memory Halfword 01944
45F3

Memory Halfword 01944
45F3

Note The contents of memory halfword 01944 are ORed with the right halfword from
GPR6. and the result replaces that halfword in GPR6. CC3 is set.

6-101

OR~lvl
d,*m,X

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

OR r·1E~1ORY WORD

8800

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is accessed
and logically ORed with the word in the GPR specified by R. The result is
transferred to the GPR specified by R.

(EWL)v(R) - R

CC1: Always zero
CC2: lSI RO-31 ~s greater than zero
CC3: lSI RO 31 1S less than zero
CC4: lSI RO=31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
40005000

PSWR
10005004

GPR
88888888

GPR3
8EDCCEDF

05000
89 80 52 OC (R=3, X=O, 1=0)
ORMltJ 3 ,X I 520C I

Memory Word 0520C
OEDC4657

Memory Word 0520C
OEDC4657

Note The contents of memory word 0520C are ORed with the contents of GPR3, and
the result is transferred to GPR3. CC3 is set.

6-102

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

OR MEMORY DOUBLEWORD

8800

omiD
d,*m,x

The doubleword in memory specified by the Effective Ooubleword Address (EDA)
is accessed and logically ORed with the doubleword in the GPR specified by
Rand R+1. R+1 is the GPR one greater than specified by R. The result is
transferred to the GPR specified by Rand R+l.

(EWL+1)v(R+1) - R+1

(EWL)v(R) - R

CC1: Always zero
CC2: lSI (R,R+l) is greater than zero
CC3: lSI (R,R+1) is less than zero
CC4: lSI (R,R+1) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10000B68

GPR6
002A0031

Memory Word 00C30
18004COO

PSWR
20000B6C

GPR6
182A4C31

Memory Word 00C30
18004COO

00B68
8B 00 OC 32 (R=6, X=O, 1=0)
ORMO 6,X'C30'

GPR7
00100039

Memory Word 00C34
09002400

GPR7
09102439

Memory Word 00C34
09002400

Note The contents of memory word 00C30 are ORed with the contents of GPR6, and
the result is transferred to GPR6. The contents of memory word 00C34 are
ORed with the contents of GPR7, and the result ;s transferred to GPR7.
CC2 is set.

6-103

ORR
s,d

DEFINITION

SUMMARY
EXPRESSION

CONDITION COOE
RESULTS

EXAf'.1PLE

Before
Execution

After Execution

OR REGISTER ANO REGISTER

0800

The word in the GPR specified by RO is logically ORed with the word in the
GPR specified by RS. The result is transferred to the GPR specifi ed by RD.

(RS)v(RD) - RD

CC1: Always zero
CC2: lSI (RO) is greater than zero
CC3: lSI (RD) is less than zero
CC4: lSI (RD) is equal to zero

~1emory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
40000F8A

PSWR
10000F8C

GPR1
000ID63F

GPRI
88890635

00F8A
08 AD (RD=l, RS=2)
ORR 2,.1-

GPR2
88880000

GPR2
88880000

Note The contents of GPR1 and GPR2 are ORed, and the result is transferred to
GPRI. CC3 is set.

6-104

\

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

OR REGISTER AND REGISTER MASKED

0808

ORRM
s,d

The word in the GPR specified by RO is logically ORed with the word in the
GPR specified by RS' The resulting word is then masked (Logical AND
Function) with the contents of the Mask register (R4). The result is then
transferred to the GPR specified by RD.

(RS)v(RO)&(R4) - RD

CC1:
CC2:
CC3:
CC4:

Always zero
lSI (RO) is greater than zero
lSI (RO) is less than zero
lSI (RO) is equal to zero

r·1emory Location: 03956
Hex Instruction:
Assembly Language Coding:

OB 58 (RD=6, RS=5)
ORRM 5,6

PSWR GPR4 GPR5 GPR6
08003956 EEEEEEEE 37735814 2561CA95

PSWR GPR4 GPR5 GPR6
10003958 EEEEEEEE 37735814 2662CA84

The contents of GPR5 and GPR6 are ORed; the result is ANOed with
contents of GPR4 and transferred to GPR6. CC3 is set.

the

6-105

EOt$
d,*m,x

DEFINITION

SUr4MARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

EXCLUSIVE OR MEMORY BYTE

8C08

I" 'I " ': " \ I': I ; I, 1'1 1 1 +~"~~DAh'~ 1 : 1 1 1 : 1 1 1 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is
accessed and logically Exclusive ORed with the least significant byte
(bits 24-31) of the GPR specified by R. The result is transferred to bit
positions 24-31 of the GPR specified by R. Bits 0-23 of the GPR specified
by R remain unchanged .

. (EBl) 0 (R24-31) _ R24-31

CC1: Always zero
CC2: lSI RO-31 ~s greater than zero
CC3: lSI RO 31 1S less than zero
CC4: lSI RO:31 is equal to zero

Memory location:
Hex Instruction:
Assembly language Coding:

PSWR
000012F8

PS~JR
100012FC

GPRO
D396F458

GPRO
D396F4F1

012F8
8C 08 13 Al (R=O. X=O. 1=0)
EOMB 0.X'13A1'

Memory Byte 013A1
A9

Memory Byte 013A1
A9

Note The contents of memory byte 013A1 are Exclusive ORed with the right-hand
byte of GPRO; the result replaces that byte in GPRO. Ce3 is set.

6-106

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

EXCLUSIVE OR MEMORY HALFWORD

BCOO

EOMH
d,*m,x

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and logically Exclusive ORed with the least significant halfword
(bits 16-31) of the GPR specified by R. The result is transferred to bit
positions 16-31 of the GPR specified by R. Bit positions 0-15 of the GPR
specified by R remain unchanged.

RO-15 Unchanged

CC1: Always zero
CC2: lSI ~ 31 is greater than zero
CC3: lSI ~:3l is less than zero
CC4: lSI RO-3l is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
40000958

PSWR
l000095C

GPR5
96969696

GPR5
9696CA3D

00958
8E 80 OA 41 (R=5, X=O, 1=0)
EOMH 5,X'A40'

Memory Halfword 00A40
5CAB

Memory Halfword 00A40
5CAB

Note The contents of memory halfword 00A40 are Exclusive ORed with the right
halfword of GPR5. and the result replaces that halfword in GPR5. CC3 is set.

6-107

EOMW
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

EXCLUSIVE OR MEMORY WORD

8COO

o 1 :' :; 4 b 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is accessed
and logically Exclusive ORed with the word in the GPR specified by R. The
result is transferred to the GPR specified by R.

(EWL) CD (R) - R

CC1: Always zero
CC2: lSI RO-31 is greater than zero
CC3: lSI RO-31 is less than zero
CC4: lSI RO-31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
010185BC

PSWR
200185CO

GPR7
13579BDF

GPR7
3175B9FD

I85BC
8F 81 86 94 (R=7, X=O, I=O)
EDM\~ 7 ~X I 18694 I

Memory Word 18694
22222222

Memory Word 18694
22222222

Note The contents of memory word 18694 are Exclusive ORed with the contents of
GPR7. The result replaces the contents of GPR7. CC2 is set.

6-108

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

EXCLUSIVE OR MEMORY DOUBLEVJORD

BCOO

EOMD
d,*m,x

o 1 2 3 4 5 6 7 8 9 10 11 1? 13 14 15 16 17 18 19 :>0 21 22 23 21 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and logically Exclusive ORed with the doubleword in the GPR
specified by Rand R+l. R+l is the GPR one greater than specified by R.
The result is transferred to the GPR specified by Rand R+l.

(EWL+l) 0 (R+l) -- R+l

(EWL) 0 (R) -- R

CCl: Always zero
CC2:
.CC3:
CC4:

lSI (R,R+l) is greater than zero
lSI (R,R+l) is less than zero
lSI (R,R+l) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
00000448

GPR6
OOFFFFOO

Memory Word 00538
482144CO

PSWR
2000044C

GPR6
48DEBBCO

Memory Word 00538
482144CO

00448
8F 00 05 3A (R=6, X=O, 1=0)
Eorm 6, X I 538 I

GPR7
OOFFFOOO

rlemory Word 0053C
2881433A

GPR7
287EB33A

Memory Itlord 0053C
288l433A

Note The contents of memory word 00538 and GPR6 are Exclusive ORed and the
result is transferred to GPR6. The contents of memory word 0053C and
GPR7 are Exclusive ORed and the result is transferred to GPR7. CC2 is set.

6-109

EOR
s,d

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

EXCLUSIVE OR REGISTER AND REGISTER

OCOO

I' • • ,~, 'I ": 1 " ,. • • ._
' " " '" I I o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RD is logically Exclusive ORed with the
word in the GPR specified by RS. The result is transferred to the GPR
specified by RD.

(Rs) (±) (RD) - RO

CCl: Always zero
CC2: lSI (RO) is greater than zero
CC3: lSI (RO) is less than zero
CC4: lSI (RO) is equal to zero

Memory Location: Ol39E
Hex Instruction: OF EO (RO=7, RS=6)
Assembly Language Coding: EOR 6,7·

PSWR
0100l39E

PSWR
2000l3AO

GPR6
33333333

GPR6
33333333

GPR7
55555555

GPR7
66666666

Note The contents of GPR6 and GPR7 are Exclusive ORed, and the result is
transferred to GPR7. Ce2 is set.

6-110

11
~

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

EXCLUSIVE OR REGISTER AND REGISTER MASKED EORM
s,d

ocoa

I'" .:, 'I ": 1 " I", ._ I I I I I I I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by Ro is logically Exclusive ORed with the
wo.rd in the GPR specified by RS' The resulting word is then masked (logical
AND Function) with the contents of the Mask register (R4). The result is
transferred to the GPR specified by RD'

(RS) <D (RD) & (R4) - Ro

CC1: Always zero
CC2: lSI (RO) is greater than zero

.CC3: lSI (~) is less than zero
CC4: lSI (RD) is equal to zero

25A32 Memory Location:
Hex Instruction:
Assembly Language Coding:

OF E8 (RD=7, RS=6)
EORM 6,7

PSWR
00025A32

PSWR
08025A34

GPR4
OOFEDFOO

GPR4
OOFEDFOO

GPR6
9725A2C8

GPR6
9725A2C8

GPR7
6C248237

GPR7
00000000

Note The contents of GPR6 and GPR7 are Exclusive ORed. The result is ANDed
with the contents of GPR4 and transferred to GPR7. CC4 is set.

6-111

SHIFT
OPERATION

INSTRUCTIONS

GENERAL
DESCRIPTIoN

I NSTRUCTI ON
FORMATS

SHIFT
INFORMATION

INTERREGISTER

COND I TI ON CODE
UTILIZATION

6-112

This group of instructions provides the capability to perform Arithmetic,
Logical, and Circular Left or Right shift operations on the contents of
words or doublewords in General Purpose Registers. Provisions have also
been made to allow Normalize operations to be performed on the contents of
words or doublewords in General Purpose Registers.

The following two instruction formats are used by the Shift instruction
group:

II ~,~"': I II': 10101+'~~NTI _
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bit 9

Bit 10

Bi ts 11-15

I ",oro,:
I I I

define the Operation Code.

designate a General Purpose Register address (0-7).

designates direction.

0=1 designates shift left
0=0 designates shift right

unassigned.

define the number of shifts to be made.

I '0: I " ~"GOO", _ I I I I I I
o 1 2 3 4 5 6 7 8 9 10 11 1? 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-11

Bits 12-15

define the Operation Code.

designate the register to contain the result of the
operation.

designate the register which contains the source operand.

define the Augmenting Operation Code.

Most Shift instructions leave the Condition Code unchanged.

DEFINITION

Note

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

NORMALIZE

6000

NOR
d,s

RS 10 0 0 0 "."'-o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RS is shifted left, 4 bit positions at
a time, until the contents are normalized for the base 16 exponent.
The contents of RS are less than one or equal to or greater than 1/16
(1 > (RS}~1/16.) The exponent is set to 4016 and is decremented once
for each group of 4 shifts performed. When normalization is complete,
the exponent is stored in bit positions 25-31 of the GPR specified by RD.
Bit positions 0-24 of the GPR specified by RS are cleared to zeros. If
the contents of the GPR specified by RS are equal to zero, the exponent
stored in bit positions 25-31 of the GPR specified by RO will equal zero
and no shifting will be performed.

The normalized result must be converted to the format defined on page 6-171
prior to use by the floating-point arithmetic unit or standard FORTRAN
floating-point subroutines. In addition, a test must be made for minus full
scale (lXXX XXXX 0000 0000 --- OOOO) and a conversion made to (lYYY YYYY
1111 0000 --- OOOO). where YYY YYYY is one less .than XXX XXXX.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
20000032

PSWR
20000034

GPR1
12345678

GPR1
00000030

00032
63 10 (RS=6. RO=l)
NOR 6.1

GPR6
0002E915

GPR6
2E915000

Note The content of GPR6 is normalized by three left shifts of four bits each.
The exponent is determined by decrementing 40H once for each shift and
transferred to GPR1.

6-113

NORD
s,d

DEFINITION

Note

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

NORMALIZE DOUBLE

6400

1',1,1,.:',11 ,.~ I,'S, 1·"",,_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in the GPR specified by RS and RS+1. is shifted left, 4 bit
positions at a time, until the contents are normalized for the base 16
exponent (1 > (RS,RS+1) ~ 1/16). The contents of RS and RS+1 are less than
one or equal to or greater than 1/16. RS+1 is the GPR one greater than
specified by RS. The exponent of the doubleword is set to 4016 and is
decremented once for each group of four shifts performed. When normalization
is complete, the exponent is stored in bit positions 25-31 of the GPR
specified by RD. Bit positions 0-24 of the GPR specified by RD are cleared
to zeros. If the contents of the doubleword specified by RS and RS+1 are
equal to zero, the exponent stored in bit positions 25-31 of the GPR
specified by RD will equal zero, and no shifting will be performed.

The normalized result must be converted to the format defined on page 6-171
prior to use by the floating-point arithmetic unit or standard FORTRAN
floating-point subroutines. In addition, a test must be made for minus full
scale (lxxx XXXX 0000 0000 --- 0000) and a conversion made to (lyYY YYYY
1111 0000 --- 0000), where YYY YYYY is one less than XXX XXXX.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
1000046E

PSWR
10000470

GPR1
9ABCDEFO

GPR1
00000037

0046E
67 10 (Rs=6, RD=l)
NORD 6,1

GPR6
FFFFFFFF

GPR6
F3AD9150

GPR7
FF3AD915

GPR7
00000000

Note The doubleword obtained from the contents of GPR6 and GPR7 is normalized by
nine left shifts of four bit positions each. The result is returned to
GPR6 and GPR7, and the exponent (40H-9) is transferred to GPR1.

6-114

. .

DEFINITION

SHIFT AND COUNT ZEROS

6800

SCZ
d,s

I 0 1 1 0: 1 0 R, 0 : RS : 0 0 0 0

_"'." .. "'.",-o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RS is shifted left, one bit position at a
time, until the sign (bit 0) changes fro~ zero to one. The contents are then
shifted left one more bit position, and the total number of shifts minus one
is placed in bit positions 27-31 of the GPR specified by RD. Bit positions
0-26 of the GPR specified by RO are set to zeros. The shift count specifies
the r,lost significant bit position (0-31) of RS that was equal to one.

111
o 1

NOTES 1. If the contents of the GPR specified by RS are equal to zero, the shift

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

count placed in bit positions 27-31 of the GPR specified by RO is
zero. and Condition Code bit 4 is set to one.

2. If the sign (bit 0) of the GPR specified by RS is equal to one, the
shift count placed in bit positions 27-31 of the GPR specified by
RO is zero. and Condition Code bit 4 is set to zero.

CC1: Always zero
Ce2: Always zero
CC3: Always zero
CC4: lSI RS 0-31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
2000399E

PSWR
000039AO

GPR2
12345678

GPR2
OOOOOOOA

0399E
6A 20 (RS=4, RO=2)
SCZ 2.N

GPR4
00300611

GPR4
80308800

Note The content of GPR4 are left shifted 10 bits when bit 0 is equal to one.
The contents are then shifted one more bit position, and the zero count of
10 (AH) is transferred to GPR2 .

6-115

SLA
d,v

DEFINITION

CONDITION CODE
RESULTS

EXA~1PLE

Before
Execution

After Execution

SHIFT LEFT ARITHMETIC

6C40

",','1':'1'11': 1'1'1 :~i~1 1_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bit positions 1-31 of the GPR specified by R are shifted left the number of
bit positions specified by the shift field (bits II-IS) in the Instruction
~Jord. Bit position 0 (sign bit) of the GPR specified by R remains unchanged.
Condition Code bit 1 is set to one if any bit shifted out of position 1
differs from the sign bit.

I I I
o 1

.-J
CC1: lSI arithmetic exception
CC2: Always zero
CC3: Always zero
CC4: Always zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10000106

PSWR
00000108

GPR6
000013AD

GPR6
013ADOOO

, r-0
31

00106
6F 4C (R=6, Shift Count=12io)
SLA 6,12

Note The contents of GPR6 are left shifted 12 bit positions and then zero-filled
from the right. The result is transferred to GPR6.

EXAI·1PLE 2

Before
Execution

After Execution

r,lemory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10000106

PSWR
40000108

GPR6
001FAD58

GPR6
7AD58000

00106
6F 4C (R=6, Shift Count=1210)
SLA 6,12

Note Overflow occurs and is indicated by CCL

6-116

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SHIFT LEFT LOGICAL

7040

SLL
d,v

1',',',':','1,': 1'1'1 :;~i~I'_
o 1 2 3 4 5 6 7 8 9 10 11 12 n 14 1 ') 16 1 7 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is shifted left the number of bit
positions specified by the shift field (bits 11-15) in the Instruction Word.

111
o 1

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
A0000812

PSWR
A0000814

GPR7
12345678

GPR7
67800000

R ~O
31

00812
73 04 (R=7, Shift Count=2010)
SLL 7,20

Note The contents of GPR7 are left-shifted 20 bits and replaced.

,
6-117

SLC
d,v

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SHIFT LEFT CIRCULAR

7440

I',',',':','!,": !'!'I :~;f~, , _
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 7 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is shifted left the number of bit
positions specified by the shift field (bits 11-15) in the Instruction
Word. Bits shifted out of bit position 0 are shifted into bit position 31.

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
00000IFA

PSWR
000001FC

GPR7
12345678

GPR7
56781234

R

001FA
77 CF (R=7, Shift Field=1610)
SLC 7,16

Note The contents of GPR7 are shifted left circular for 16 bit positions .

..
6-118

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SHIFT LEFT ARITHMETIC DOUBLE

7840

SLAD
d,v

The doubleword in the GPR specified by Rand R+l is shifted left the number
of bit positions specified by the shift field (bits 11-15) in the Instruction
Word. R+l is the GPR one greater than specified by R. The sign (bit D) of
the GPR specified by R remains unchanged. Condition Code bit 1 is set to One
if any bit shifted out of position 1 differs from the sign bit, position O.

~1~1~! ________ R ______ ~IM4~--~~ ________ R+_' ______ ~~O
o 1 31 0 31

...J
CCI: lSI arithmetic exception
CC2: Always zero
CC3: Always zero
CC4: Always zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
80002DF6

PSWR
80002DF8

GPR4
FFFFFFA3

GPR4
A39A1788

02DF6
7A 58 (R=4, Shift Field=2410)
SLAD 4,24

GPR5
9A178802

GPR5
02000000

Note The doubleword obtained from the contents of GPR4 and GPR5 is left-shifted
24 bit positions, then zero-filled from the right. The result is returned
to GPR4 and GPR5.

6-119

SLLD
d,v

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SHIFT LEFT LOGICAL DOUBLE

7C40

I 0 1 1 1 I 1 1/ R I 11 I 0 I sjFT FIELD

- I I I ! I _ I ! . . . I I I I -o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in the GPR specified by Rand R+1 is shifted left the number
of bit positions specified by the shift field (bits 11-15) in the Instruction
Word. R+1 is the GPR one greater than specified by R.

~ I I R r I I i R+l ~o
0 1 31 0 1 31

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 001FE
Hex Instruction: 7F 58 (R=6, Shift Field=24)
Assembly Language Coding: SLLD 6,24

PSWR GPR6 GPR7
100001FE 01234567 89ABCDEF

PSWR GPR6 GPR7
10000200 6789ABCD EFOOOOOO

Note The doubleword obtained from GPR6 and GPR7 is left-shifted 24 bit positions.
then zero-filled from the right. The result is returned to GPR6 and GPR7.

6-120

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SHIFT RIGHT ARITHMETIC

6COO

The word in the GPR specified by R is shifted right the number of bit
positions specified by the shift field (bits 11-15) in the Instruction
Word. Bit position 0 (sign bit) is shifted into bit position 1 on each
shift. The sign bit remains unchanged.

~IE~: ___ R __ ~~
o 1 ~

eC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10000372

PSWR
10000374

GPR4
B69825F1

GPR4
FFEDA609

00372
6D OA (R=4, Shift Field=1010)
SRA 4,10

Note The contents of GPR4 are shifted right 10 bit positions. Since that value
is negative, a one is entered into bit position 1 with each shift.

SRA
d,v

6-121

SRL
d,v

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SHIFT RIGHT LOGICAL

7000

1',',',':','1 1': I'I'I+:"~DI_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is shifted right the number of bit
positions specified by the shift field (bits 11-15) in the Instruction Word.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly language Coding:

PSWR
10000372

PSWR
10000374

GPR4
B69825F1

GPR4
002DA609

00372
72 OA {R=4, Shift Field=1010)
SRl 4,10

Note The content of GPR4 is shifted right 10 bit positions, then zero-filled
from the left.

6-122

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SHIFT RIGHT CIRCULAR

7400

SRC
d,v

1',',',','1'11': 1'1'1 :~;~i _
o 1 7 3 4 " 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is shifted right the number of bit
positions specified by the shift field (bits 11-15) in the Instruction Word.
Bits shifted out of bit position 31 are shifted into bit position o.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
20000372

PSWR
20000374

GPR4
01234567

GPR4
56701234

R

00372
76 OC (R=4, Shift Field=1210)
SRC 4,12

Note The contents of GPR4 are shifted right circular 12 bit positions and
replaced in GPR4.

6-123

SRAD
d,v

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SHIFT RIGHT ARITHMETIC DOUBLE

7800

1',',',':\'1,': 1'1'1 :::i~,,_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in the GPR specified by Rand R+1 is shifted right the number
of bit positions specified by the shift field (bits 11-15) in the Instruction
Word. R+l is the GPR one greater than specified by R. The sign (bit 0) of
the GPR specified by R remains unchanged. Bit position 0 (sign bit) is shifted
into bit position 1 with each shift.

EEl R I ~ Ii R+l ~
0 31 0 31

CCl: No change
CC2 : No change
CC3 : No change
CC4: No change

Memory Location: 02B46
Hex Instruction: 7B 18 (R=6. Shift Field=2410)
Assembly Language Coding: SRAD 6.24

PSWR GPR6 GPR7
20002B46 8E2A379B 58C1964D

PSWR GPR6 GPR7
20002B48 FFFFFF8E 2A379B58

Note The doubleword obtained from the contents of GPR6 and GPR7 is shifted
right 24 bit positions. with the sign extended 24 bits from the left. The
result is transferred to GPR6 and GPR7.

6-124

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SHIFT RIGHT LOGICAL DOUBLE

7COO

SRLD
d,v

1','1',':','11': 1'1,1 :::i~:II_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in the GPR specified by Rand R+1 is shifted right the
number of bit positions specified by the shift field (bits 11-15) in the
Instruction Word. R+1 is the GPR one greater than specified by R.

01 I 1
R I i I ! R.,.l ~

0 31 0 31

CC1: No change
. CC2: No change

CC3: No change
CC4: No change

Memory Location: 02B46
Hex Instruction: 7F 18 (R=6, Shift Field=2410)
Assembly Language Coding: SRLD 6,24

PSWR GPR6 GPR7
20002B46 8E2A379B 58C19640

PSWR GPR6 GPR7
20002848 0000008E 2A379858

Note The doubleword obtained from the contents of GPR6 and GPR7 is shifted right
24 bit positions, then zero-filled from the left. The result is transferred
to GPR6 and GPR7.

6-125

BIT
MANIPULATION
INSTRUCTIONS

GENERAL
DESCRI PTION

INSTRUCTION
FORMATS

MEMORY
REFERENCE

INTERREGISTER

6-126

The .Bit Manipulation instruction group provides the capability to set, read,
or add a bit to a specified bit location within a specified byte of a
memory location or General Purpose Register. Provisions have also been made
to test a bit in memory or a General Purpose Register by transferring the
contents of that bit position to the Condition Code register.

The Bit Manipulation instruction group uses the following two instruction
fonnats:

1 "'I "7' : I'~~'": I : I, 1 ,I 1 , : 1 1 1 : 1 ~A 1 : 1 1 1 : 1 1 ~ 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24. 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-10

Bit 11

Bi ts 12-31

define the Operation Code.

specify a bit (0-7).

designate one of three index registers.

indicates whether an indirect addresssing operation
is to be perfonned.

specify the address of the operand when the X and I fields
are equal to zero.

1177': ,I'=,~,: 11"11'1'17_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-11

Bits 12-13

Bits 14-15

define the Operation Code.

specify a bit (0-7).

deSignate a General Purpose Register address (0-7).

unassigned.

specify a byte (0-3).

CONDITION CODE
UTILIZATION

INTERPROCESSOR
SEMAPHORES

A Condition Code is set during execution of Set Bit, Zero Bit, and Test
Bit operations, if the bit on which the operation is being performed is equal
to one. During Add Bit operations, a Condition Code is set to indicate
whether the execution of the instruction caused a result greater than zero,
less than zero, equal to zero, or an arithmetic exception.

When two processors share memory and other resources, a simple positive
method must be provided for dynamically reserving/releasing shared memory
pages and the other shared resources. The Set Bit in Memory, Zero Bit in
Memory, or Add Bit in Memory instructions (SBM, ZBM) are used for this pur­
pose. If both processors attempt to set (or zero) the same semaphore bit at
the same time, one processor will actually access the memory location before
the other processor by virtue of the shared memory bus design. The first pro­
cessor to access the bit will copy the previous contents of the bit into its
Condition Code register before setting (or clearing) the bit. On the very
next memory cycle, the other processor will copy the state of the bit as set
by the first processor into its Condition Code register and then set (or
clear) the bit again. Both processors then execute Branch on Condition Code
instructions to test the status of the bit prior to changing it. The first
processor will find the bit previously not set (or set), indicating that it
was able to reserve the resource which the user has associated with the bit.
Tbe second processor will find the bit already set (or not set), indicating
that the resource is currently reserved by the other processor and that
subsequent attempts should be made.

6-127

SB~l

c,*m,x

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SET BIT IN MEMORY

9808

The byte in memory specified by the Effective Byte Address (EBA) is
accessed, and the specified bit (bit field) within the byte set to
one. All other bits within the byte remain unchanged. The resulting
byte is replaced in the location specified by the EBA. Condition Code
bit 3 (CC3) is transferred to CC4, CC2 is transferred to CC3, CC1 is
transferred to CC2, and the original status of the specified bit of
the byte specified by the EBA is transferred to eC1.

Since the contents of the Condition Code register are shifted to the
next highest position before the specified bit is loaded into CC1, any
4 bits in memory or the GPR's can be stored in the Condition Code register
for a combined Conditional Branch test.

(CC3) - CC4
(CC2) - CC3
(CC1) - CC2
(EBLSBL) CC1
1 - EBLSBL

CC1: lSI EBLSBL is equal to one
CC2: lSI CC1 was one
CC3: lSI CC2 was one
CC4: lSI CC3 was one

Memory Location: 01000
Hex Instruction: 98 88 14 03 (bit field = I)

SB!11,X'1403' Assembly Language Coding:

PSWR
20001000

PSWR
10001004

Memory Byte 01403
1A

Memory Byte 01403
5A

Note Bit 1 of memory byte 01403 is set to one.

6-128

I~ \4

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SET BIT IN REGISTER

1800

I ~OOlI101,~u>1 'looIF~::~
_ , , , ! , . J! " I I

SBR
d,b

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The specified bit (bit field) of the specified byte (byte field) in the
GPR specified by R is set to one. All other bits within the GPR specified
by R remain unchanged. Condition Code bit 3 (CC3) is transferred to CC4,
CC2 is transferred to CC3, CC1 is transferred to CC2, and the original
status of the specified bit in register R is transferred to CC1.

Since the contents of the Condition Code register are shifted to the next
highest position before the specified bit 1s loaded into CC1, any four
bits in memory or the GPR's can be stored in the Condition Code register
for a combined Conditional Branch test •

. (CC3)- CC4
(CC2)- CC3
(CC1)- CC2
(RSBL)- CC1
1 - EBLSBL

CC1: lSI RSBL h equal
CC2: lSI CC1 was one
CC3: lSI CC2 was one
CC4: lSI CC3 was one

Memory Location
Hex Instruction:

to one

Assembly Language Coding:

PSWR
10001002

PSWR
08001004

GPRO
03748891

GPRO
0374B991

01002
XXXX1B 82 (bit field=7, R=O. byte field=2)
SBR 0,2

Note Bit 23 of GPRO 1s set to one.

6-129

ZBM
c,*m,x

. DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

6-130

ZERO BIT IN MEMORY

9C08

The byte in memory specified by the Effective Byte Address (EBA) is
accessed and the specified bit (bit field) within the byte is set to
zero. All other bits within the byte remain unchanged. The resulting
byte is replaced in the location specified by the EBA. Condition Code
bit 3 (CC3) is transferred to CC4. CC2 is transferred to CC3, CCI is
transferred to CC2 and the original status of the specified bit of the
byte specified by the EBA is transferred to CCI.

Since the contents of the Condition Code register are shifted to the
next highest position before the specified bit is loaded into CCl, any
four bits in memory or the GPR's can be stored in the Condition Code
register for a combined Conditional Branch test.

(CC3) -
(CC2) -
(CCl) -
(EBLSBd
o -

CC4
CC3
CC2

CC1
EBLSBL

CC1: lSI EBLSBL is equal
CC2: lSI CC1 was one
CC3: lSI CC2 was one
CC4:. lSI Ce3 was one

Memory Location:
Hex Instruction:
Assembly Language Coding:

to one

PSWR
100IF684

Memory Byte 20122
34

PSWR
4801F688

Memory Byte 20122
30

1F684
9E 8A 01 22 (bit field=5)
2MB 5,X'20122'

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE

EXAHPLE

Before
Execution

After Execution

ZERO BIT IN REGISTER

ICOO

ZBR
d,b

The specified bit (bit field) of the specified byte (byte field) in the
GPR specified by R is set to zero. All other bits within the GPR specified
by R remain unchanged. Condition Code bit 3(CC3) is transferred to CC2,
and the original status of the specified bit of the specified byte in
register R is transferred to CCI.

Since the contents of the Condition Code register are shifted to the next
highest position before the bit is loaded into CCI, any four bits in
memory or the GPR's can be stored in the Condition Code register for a
combined Conditional Branch test.

(CC3) - CC4
(CC2) - CC3
(CCI) - CC2
(RSBL) - CCI
o - EBLEBL

CCI: lSI RSBL is equal to one
CC2: lSI CCI was one
CC3: lSI CC2 was one
CC4: lSI CC3 was one

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
lOOOOC56

PSWR
48000C58

GPR5
76A43BI9

GPR5
76243619

OOC56
1C51 (bit field=O, R=5, byte field=I)
ZBR 5,8

Note Bit 8 of GPR5 is cleared to zero. CC4 is set.

6-131

AB~l
c,*m,x

DEFINITION

SU~l~lARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ADD BIT IN tlEr10RY

A008

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and one is added to the bit position specified by the bit field. The
addition is performed on the entire memory word containing the byte specified
by the EBA. Therefore, a carry may be propagated left to the sign bit. The
resulting word is transferred to the memory word location containing the byte
specified by the EBA.

(EBL)+lSBL - EBL

CC1: lSI arithmetic exception
CC2: lSI (EWL) is greater than zero
CC3: lSI (EWL) is less than zero
CC4: lSI (EWL) is equal to zero

Memory Location: 03000
Hex Instruction: A2 08 31 92 (bit field=4, X=O, 1=0)

AB~1 4,X'3192' Assembly Language Coding:

PSWR
00003000

PSWR
20003004

~temory Word 03190
51A3F926

r:emory Word 03190
51A40126

Note A one is added to bit position 2010 of memory word 03190 (byte 2, bit 4)
which propagates a carry left to bit position 1310. The result is returned
to memory word 03190. CC2 is set.

6-132

DEFINITION

SU~1MARY
EXPRESSION

CONDITION CODE
RESULTS

EXA~lPLE

Before
Execution

After Execution

ADD BIT IN REGISTER

2000

ABR
d,b

A one ;s added to the specified bit (bit field) of the specified byte (byte
field) in the GPR specified by R. The addition is performed on the entire
word of the GPR specified by R. Therefore, a carry may be propagated left
to the sign bit. The result is then transferred to the GPR specified by R.

(R)+lSBL - R

CC1: lSI arithmetic exception
CC2:
CC3:
.CC4:

lSI Ro-31 is greater than zero
lSI Ro-31 is less than zero
lSI Ro-31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
0800184E

PSWR
20001850

GPR6
3BE9AC48

GPR6
3C09AC48

0184E
21 61 (bit field=2, R=6, byte field=1)
ABR 6,10

Note A One is added to bit positi.on 1010 of GPR6, and the result is replaced in
GPR6. CC2 is set.

6-133

TBn
c,*m,x

DEFINITION

NOTE

SUH~lARY
EXPRESSION

CONDITION CODE
RESULTS

EXAr,lPLE

Before
Execution

After Execution

TEST B IT IN NEI'10RY

A408

The specified bit in memory is transferred to the Condition Code register.
Condition Code bit 3 (CC3) is transferred to CC4, CC2 is transferred to CC3,
CC1 is transferred to CC2, and the specified bit (bit field) of the byte
specified by the Effective Byte Address (EBA) is transferred to CC1.

Since the contents of the Condition Code register are shifted to the next
highest position before the specified bit is loaded into CC1, any four bits
in memory or the GPR's can be stored in the Condition Code register for a
combined Conditional Branch test.

(CC3) - CC4
(CC2) - CC3
(CC1) - CC2
(EBLSBL) - CC1

CC1: lSI RSBL is equal to one
CC2: lSI CCI was equal to one
CC3: lSI CC2 was equal to one
CC4: lSI CC3 was equal to one

Memory Location: 05A38
Hex Instruction:
Assembly Language Coding:

A6 08 5B 21 (bit field=4, X=O, 1=0)
TBM 4,X'5B21'

PSWR
lO005A38

PSWR
48005A3C

Memory Byte 05B21
29

Memory Byte 05B21
29

Note Bit 4 of memory byte 05B2l is transferred to CCI. CC3 is transferred to
CC4.

6-134

DEFINITION

NOTE

sur·1MARY
EXPRESSION

CONDITION CODE
RESULTS

EXArlPLE

Before
Execution

After Execution

TEST BIT IN REGISTER

2400

TBR
d,b

I 0 0 1 0 I 0 1 I F~~:DI R

- I I I ! I . I! I I
IOlol:':t~_

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

The specified bit in the GPR specified by R is transferred to the Condition
Code register. Condition Code bit 3 (CC3) is transferred to CC4, CC2 is
transferred to CC3, CC1 is transferred to CC2, and the specified bit (bit
field) of the specified byte (byte field) in the GPR specified by R is
transferred to CC1.

Since the contents of the Condition Code register are shifted to the next
highest position before the specified bit is loaded into CC1, any four bits
in memory or the GPR's can be stored in the Condition Code register for
a combined Conditional Branch test.

(CC3) - CC4
(CC2) - CC3
(CC1) - CC2
(RSBL)-CCl

CC1: lSI RSBL was equal to one
CC2: lSI CC1 was equal to one
CC3: lSI CC2 was equal to one
CC4: lSI CC3 was equal to one

Nemory Location
Hex Instruction:
Assembly Language Coding:

PSWR
18001982

PSWR
08001984

GPR5
81A2C64D

GPR5
81A2C64D

01982
25 D3 (bit field=3, R=5, byte field=3)
TBR 5,27

Note CC2 through CC4 are right-shifted one bit position. CC1 is cleared to zero
since bit 2710 of GPR5 is zero.

6-135

FIXED·POINT
ARITHMETIC

INSTRUCTIONS

GENERAL
DESCRI PTI ON

INSTRUCTION
FORMATS

6-136

MEMORY
REFERENCE

IMMEDIATE

The Fixed-Point Arithmetic group is used to perfonn addition, subtraction,
multiplication, division, and sign control functions on bytes, halfwords.
words, and doublewords in memory and General Purpose Registers. Provisions
have also been made to allow the result of a register-to-register addition or
subtraction to be masked before final storage.

The Fixed-Point Arithmetic instructions use the following three instruction
fonnats:

: I I I : I ~A I : I I I : I I c
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-10

Bi t 11

Bits 12-31

define the Operation Code.

designate a General Purpose Register address (0-7).

designate one of three index registers.

designates whether an Indirect Addressing operation is
to be perfonned.

specify the address of the operand when the X and fields
are equal to zero.

I ·OP CODE I !~ R I 10 0 0 I 0/ t~GE I J:ERAND VALU! I I
tll!~I.I~.II~.II.III;'II;III!I!!_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bits 16-31

define the Operation Code.

des ignate a General Purpose Register address (0-7).

unassigned.

define Augmenting Operation Code.

contain the 16-bit operand value.

INTERREGISTER

Data Fonnats

Byte

Halfword
(Sign Extended)

Word

Doubleword

II ~~O,: I I to: 11\ h~O'1 _
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5 define the Operation Code.

Bits 6-8

Bits 9-11

Bits 12-15

designate the register to contain the result of the operation.

designate the register which contains the source operand.

define the Augmenting Operation Code.

The Fixed-Point Arithmetic instructions use the following data fonnats:

10 0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I
- I I I ! I I I ! I I I ! I I I ! I I I ! I I I .

INTEG!ER

I I I . I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1'1 11 : 11 :11 :1117'~"1 : 1':111:111
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I ' I I I : I I I : I I 1 : 1 1 ~"'G': 1 I : 1 1 1 : 1 1 I : I I 1
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

6-137

CONDITION CODE
UTILIZATION

TREATMENT OF
SIGNED NUMBERS

6-138

Execution of most Fixed-Point Arithmetic instructions causes a Condition
Code to be set to indicate whether the result of the operation was greater
than, less than, or equal to zero. Arithmetic exceptions produced by an
arithmetic operation are also reflected by the Condition Code results.

To perform logical operations. the hardware interprets operands as logical
words. For fixed-point arithmetic operations, operands are treated as
unsigned numbers. Logical and arithmetic operations can be performed on any
of the data types available in the SEL 32 Series Computer bytes. 16-bit
halfwords, 32-bit words, and 64-bit doublewords. A program executing on the
SEL 32 Series Computer however, can interpret any of the available data types
as a two's complement notation number. It is a property of two's complement
arithmetic that operations on signed numbers using two's complement con­
versions are identical to operations on unsigned numbers; in other words,
the hardware treats the sign as the most significant magnitude bit.
Consider a General Purpose Register that contains:

o o

As an unsigned

82
16

Interpreted as

7E16

o o
I

number,

a signed

=

o

this would be equivalent to:

130
10

number using two's complement notation,

12610

it would be:

It makes no difference as to how the programmer interprets data as far as
p.rocessor operation is concerned. However. the programmer is aided in the
use of two's complement notation by the Condition Code (CC) bits of the
Program Status Word (PSW). which are generally set based on two's complement
notation.

Numbers in two's complement notation are symmetrical in magnitude around a
zero representation, so all even numbers, both positive and negative, will
end in zero, and all odd numbers will end in one (binary word containing all
one's represents minus one).

I a a a a a a a 1 I +1

I I a a a a a a a a a

I I ,

If one's complement notation was used for negative numbers, a negative
number could be read by attaching significance to the zeros instead of
the one's.

In two's complement notation, each number is one greater than the complement
of the positive number of the same magnitude, so a negative number can be
read by attaching significance to the right-hand one and to the zeros to the
left of it. (The negative number of the largest magnitude has a one only
in the sign position.) Assuming a binary integer, one's may be discarded at
the left in a negative integer in the same way that leading zeros may be
dropped from a positive integer.

Associated with the Arithmetic/Logic Unit is a 4-bit Condition Code
register which forms the CC portion of the PSW. These CC bits are altered
during all Arithmetic/Logical operations and data transfers. The CC bits
indicate such conditions as arithmetic exception, overflow, zero, and
positive or negative magnitude.

6-139

ADMB
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After
Execution

ADD MEMORY BYTE

B808

I " "I "/ :~ / x /'.1 11 1 ""~'''!OAOO",$ 1 1
- I I I ! I . . I . I . . . I I ! I I I ; ! I I ! I I I ! I I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and 24 zeros are appended to the most significant end to form a word. This
word is algebraically added to the contents of the GPR specified by R. The
resulting word is then transferred to the GPR specified by R.

00-23' (EBL)+(R) - R

CC1: lSI arithmetic exception
CC2: lSI RO 31 is greater than zero
CC3: lSI RO=31 ~s less than zero
CC4: lSI RO-31 1S equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10000800

PSWR
20000804

GPR4
00000099

GPR4
00000123

00800
BA 08 09 15 (R=4. X=O, 1=0)
ADMB 4;X'915'

Memory Byte 00915
8A

Memory Byte 00915
8A

Note The contents of memory byte 00915, with zeros prefixed, are added to the
contents of GPR4, and the result is transferred to GPR4. CC2 is set.

6-140

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
. RESULTS

EXAMPLE

Before
Execution

After Execution

ADD MEMORY HALFWORD

B800

AOMH
d.*m.x

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and the sign bit (bit 16) is extended 16 bits to the left to form a
word. Thi sword is a 1 gebrai ca lly added to the contents of the GPR specifi ed
by R. The resulting word is then transferred to the GPR specified by R.

CC1: lSI arithmetic exception
CC2:
CC3:

.CC4:

lSI RO-31 ~s greater than zero
lSI RO 31 1S less than zero
lSI RO=31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
20040068

PSWR
1004006C

GPR7
000006C4

GPR7
FFFF9306

40068
BB 84 10 97 (R=7. X=O. 1=0)
Am1H 7.X'41096'

Memory Halfword 41096
8C42

Memory Halfword 41096
8C42

Note The contents of memory halfword 41096 with sign extension are added to the
contents of GPR7. and the result replaces the contents of GPR7. CC3 is set.

6-141

ADMW
d,*m,x

. DEFINITION

SUMMARY
EXPRESSION

COrtDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ADD MEMORY WORD

B800

o 1 ·2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is'accessed
and algebraically added to the contents of the GPR specified by R. The
resulting word is then transferred to the GPR specified by R.

(EWL)+(R) - R

CC1: lSI arithmetic exception
CC2: lSI RO-31 ~s greater than zero
CC3: lSI RO-31 ~s less than zero
CC4: lSI RO-31 1S equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
400000[)50

PSWR
200000054

GPR6
0037C1F3

GPR6
00878469

00050
BB 00 11 AC (R=6, X=O, 1=0)
AOMW 6,X 'lIAC I

Memory Word 011AC
004FC276

Memory Word 011AC
004FC276

Note The contents of memory word OIlAC are added to the contents of GPR6. The
result is transferred to GPR6. CC2 is set.

6-142

DEFINITION

SUMMARY
EXPRESSION

CONDIT! ON CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ADD MEMORY DOUBLEWORD

B800

ADMD
d,*m,x

The double~ord in memory specified by the Effective Doubleword Address (EDA)
is accessed and algebraically added to the contents of the GPR specified by
Rand R+1. R+1 is the GPR one greater than specified by R. The contents of
the GPR specified by R+1 are added to the contents of the least significant
word of the doubleword first. The contents of the GPR specified by Rare
added to the contents of the most significant word of the doubleword last.
The resulting doubleword is transferred to the GPR specified by Rand R+1.

(EWL + 1) + (R+1)-+R+1 + Carry

(EWL) + (R) + Carry -+ R

CC1: lSI arithmetic exception
CC2: lSI (R, R+1) is greater than zero
CC3: lSI (R, R+l) is less than zero
CC4: lSI (R, R+l) is equal to zero

Memory Location: 08E3C
Hex Instruction: BA 00 92 52 (R=4,
Assembly Language Coding: ADMD 4,X'9250'

PSWR GPR4 GPR5
08008E3C 000298A1 815BC63E

Memory Word 09250 . Memory Word 09254
3B69A07E 7F3549A4

PSWR GPR4 GPR5
20008E40 3B6C3920 00913FE2

Memory Word 09250 Memory Word 09254
3B69A07E 7F3579A4

X=O, 1=0)

Note The doubleword obtained from the contents of memory words 09250 and 09254
is added to the doubleword obtained from the contents of GPR4 and GPR5.
The result is transferred to GPR4 and GPR5. CC2 is set.

6-143

ADR
s,d

. DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ADD REGISTER TO REGISTER

3800

I 0 0 " ~: 1 0 I RO:
.. ' I , • ' • ' • I I ,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RO is algebraically added to the word in
the GPR specified by RS. The resulting word is then transferred to the GPR
specified by RD. .

(RS+RO) - RO

CC1: lSI arithmetic exception
CC2: lSI (RO) is greater than zero
CC3: lSI (RO) is less than zero
CC4: lSI (RO) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
08003FA2

PSWR
20003FA4

GPR6
FF03C670

GPR6
036034BC

03FA2
3B 70 (RO=6, RS=7)
AOR 7,6

GPR7
045C6E3F

GPR7
045C6E3F

Note The contents of GPR6 and GPR7 are added and the result is transferred to
GPR6. CC2 is set.

6-144

DEFINITION

SUMMARY
EXPRESSION

CONDITION COOE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

AOO REGISTER TO REGISTER MASKED

3808

ADR~l

s,d

I"""'~"'I to:: ,", 1'1',','_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RO is algebraically added to the word in
the GPR specified by RS. The sum of this addition is masked (Logical AND
Function) with the contents of the Mask register (R4). The resulting word
is then transferred to the GPR specified by RO'

(RS)+(RO)&(R4) - RO

CC1:
CC2:
CC3:

.CC4:

lSI arithmetic exception
lSI (RO) is greater than zero
lSI (RO) is less than zero
lSI (RO) is equal to zero

Memory Location: 16A9A
Hex Instruction:
Assembly Language Coding:

3B 78 (RO=6, RS=7)
AORM 7,6

PSWR GPR4 GPR6 GPR7
40016A9A 007FFFFC 004FC276 0037CIF3

PSWR GPR4 GPR6 GPR7
20016A9C 0007FFFC 00078468 0037CIF3

The contents of GPR6 and GPR7 are added; the result is ANOed with
contents of GPR4 and transferred to GPR6. CC2 is set.

t'

the

6-145

AR~1B
s,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ADD REGISTER TO MEMORY BYTE

E808

I ' , , 0:' 0 I ': I ' I, I, I : '+''',"0 AD~"" : I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and algebraically added to the contents of the GPR specified by R. Bits 24-31
of the result are then transferred to the memory byte location specified by
the EBA. The GPR and the other three bytes in the word which contains the
byte specified by the EBA remain unchanged.

(R)+(EBL) - EBL

CC1: Undefined
CC2: Undefined
CC3: Undefi ned
CC4: lSI the 32-bit sum is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
0000lA64

PSWR
00001A68

GPR6
0000004A

GPR6
0000004A

01A64
EB 08 lA 97 (R=6, X=O, 1=0)
ARMB 6,X'lA97'

Memory Byte 01A97
39

Memory Byte 01A97
83

Note The contents of GPR6 and memory byte 01A97 are added and the result is
transferred to memory byte 01A97.

6-146

/

\

.. rf I.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ADD REGISTER TO ~lEMORY HALHJORD

E800

ARMH
s,*m,x

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and algebraically added to the least significant halfword
(bits 16-31) of the GPR specified by R. The result is then transferred to
the memory halfword location specified by the EHA. The other halfword of
the word which contains the halfword specified by the EHA remains unchanged.

(R16-31)+(EHA) - EHL

CC1: Undefined
CC2: Undefined
CC3: Undefined
CC4: lSI (EHL) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
00020084

PSWR
000200B8

GPR5
FFFF8C42

GPR5
FFFF8C42

20084
EA 82 09 19 (R=5, X=O, 1=0)
ARMH 5,X'20918'

r1emory Ha 1 fword 20918
06C4

Memory Halfword 20918
9306

Note The contents of bits 16-31 of GPR5 and memory halfword 20918 are added and
the result is transferred to memory halfword 20918.

6-147

ARtiW
s,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ADD REGISTER TO MEMORY WORD

E800

o I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (HIA) is accessed
and algebraically added to the word in the GPR specified by R. The resulting
word is then transferred to the memory word location specified by the EWA.

(E)+(E\'JL) - EWL

CC1: lSI arithmetic exception
CC2: lSI (EWL) is greater than zero
CC3: lSI (EWL) is less than zero
CC4: lSI (EWL) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
08003000

PSWR
20003004

GPR7
245C6E3F

GPR7
245C6E3F

03000
EB 80 31 00 (R=7, X=O, 1=0)
ARMW 7,X '3100'

~lemory Word 03100
FF03C67D

Memory Word 03100
236034BC

Note The contents of GPR7 and memory word 03100 are added and the result is
transferred to memory word 03100. CC2 is set.

6-148

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ADD REGISTER TO MEMORY DOUBLEWORD

E800

ARt10
s,*m,x

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2~ 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and algebraically added to the doubleword in the GPR specified
by Rand R+1. R+1 is the GPR one greater than specified by R. The contents
of the GPR specified by R+1 are added to the contents of the least signifi­
cant word of the doubleword first. The resulting doubleword is transferred
to the memory doubleword location specified by the EDA.

(R+1)+(EQL+1) - EWL+1+Carry

(R)+(EWL)+Carry - EWL

·CC1 : lSI arithmetic exception
CC2:
CC3:
CC4:

lSI (EOL) is greater than zero
lSI (EOL) is less than zero
lSI (EDL) is equal to zero

Memory Location: 0819C
Hex Instruction: EB 00 83 AA (R=6, X=O,
Assembly Language Coding: ARMD 6,X'83AS'

PSWR GPR6 GPR7
4000S19C 01A29SA1 F15BC63E

Memory Word OS3A8 Memory Word 083AC
3B69A07E 7F3579A4

PSWR GPR6 GPR7
2000S1AO 01A298A1 F15BC63E

Memory Word OS3A8 Memory Word OS3AC
300C3920 70913FE2

1=0)

Note The doubleword obtained from GPR6 and GPR7 is added to the doubleword from
memory words 083AS and OS3AC. The result is transferred to memory words
083A8 and 083AC. CC2 is set.

6-149

ADI
d.v

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ADD IMMEDIATE

C801

IT 1 0 0 11 0 I R I I 0 0 0 I 0 0 0 1 I ',MMEDIATE OP!ERAND I
- , , , ! I . I ! . I I . , , I . I , I ! , I I . , I , ! , , ,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The sign of the least significant bit (bit 16) of the Instruction Word
is extended 16 bits to the left to form a word. This word is algebraically
added to the word in the GPR specified by R. The resulting word is trans­
ferred to the GPR specified by R.

CC1: lSI arithmetic exception
CC2: lSI RO 31 is greater than zero
CC3: lSI RO=31 ~s less than zero
CC4: lSI RO- 31 1S equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
20000088

PSWR
08000D8C

GPRO
0000794E

GPRO
00000000

00088
C8 01 86 B2 (R=O)
ADI 0.)('86B2'

Note The immediate operand. sign extended. is added to the contents of the GPRO
and the result replaces the previous contents of GPRO. CC4 is set.

6-150

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After
Execution

SUBTRACT MEMORY BYTE

BC08

SUMB
d,*m,x

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and 24 zeros are appended to the most significant end to form a word. This
word is algebraically subtracted from the word in the GPR specified by R.
The resulting word is transferred to the GPR specified by R.

(R)-[00-23,(EBL)] -R

CC1: lSI arithmetic exception
CC2: lSI RO-31 ~s greater than zero
£C3: lSI RO- 31 1S less than zero
CC4: lSI RO- 31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
40001000

PS~~R
20001004

GPR1
0194A7F2

GPR1
0194A758

01000
Be 88 12 01 (R=1, X=O, 1=0)
SUMB l,X'1201'

Memory Byte 01201
9A

Memory Byte 01201
9A

Note The contents of memory byte 01201, with 24 zeros prefixed, are subtracted
from the contents of GPR1. The result is transferred to GPR1. CC2 is set.

6-151

SUMH
d,*m,x

DEf:'INITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SUBTRACT MEMORY 8ALFWORD

BCOO

I' , , ,I" I I R f I X II 10 I I I HALFWO!RDOPERANDA!DD.'" I 11 I
. I I I ! I. I. I I " I I . I I I . I I I ! I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address is
accessed and the sign bit (bit 16) is extended 16 bits to the left to form
a word. This word is algebraically subtracted from the word in the GPR
specified by R. The resulting word is then transferred to the GPR specified
by R.

(R}-(EHL)SE - R

CC1: lSI arithmetic exception
CC2: lSI RO 31 is greater than zero
CC3: lSI RO=31 ~s less than zero
CC4: lSI RO-31 1S equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10001604

PSWR
20001608

GPR6
00024CB3

GPR6
000217ED

01604
BF 00 18 77 (R=6, X=O, 1=0)
SUMH 6,X'1876'

t1emory Ha lfword 01876
34C6

Memory Halfword 01876
34C6

Note The contents of memory halfword 01876, sign extended, are subtracted from the
contents of GPR6. The result is transferred to GPR6. CC2 is set.

6-152

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SUBTRACT MEMORY WORD

BCOO

I I

SUM~J

d,*m,x

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address is accessed and
algebraically subtracted from the word in the GPR specified by R. The
resulting word is then transferred to the GPR specified by R.

(R) - (EWL) - R

CC1: lSI arithmetic exception
CC2: lSI RO- 31 ~s greater than zero
CC3: lSI RO- 31 ~s less than zero
CC4: lSI RO- 31 1S equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
0406C208

PSWR
2006C20C

GPRI
00A6264D

GPRI
009EDA8A

6C208
BC 86 F9 14 (R=l, X=O, 1=0)
SUMW l,X'6F914'

Memory Hord 6F914
000748C3

Memory Word 6F914
00074BC3

Note The contents of memory word 6F914 are subtracted from the contents of GPRI
and the result is transferred to GPR1. CC2;s set.

6-153

SU~1D

d,*m,x

DEFINITION

SUMr·1ARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SUBTRACT MEMORY DOUBLEWORD

·BCOO

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and algebraically subtracted from the doubleword in the GPR
specified by Rand R+1. R+1 is the GPR one greater than specified by R. The
word located in the GPR specified by R+1 is subtracted from the least
significant word Of the doubleword .first. The resulting doubleword is trans­
ferred to the GPR specified by Rand R+1.

(R+1)-(EWL+l) - R+1-Borrow

(R)-(EWL)-Borrow - R

CCl: lSI arithmetic exception
CC2: lSI (R, R+1) is greater than zero
CC3: lSI (R, R+1) is less than zero
CC4: lSI (R, R+1) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10003000

GPR6
5AD983B7

Memory Word 03100
153B0492

PSWR
20003004

GPR6
459E7F25

Memory Word 03100
153B0492

03000
BF 00 31 02 (R=6, X=O, 1=0)
SUMD 6,X'3100

GPR7
C833D509

Memory ~/ord 03104
5BE87A16

GPR7
6C4B5AF3

Memory Word 03104
5BE87A16

Note The doubleword obtained from memory words 03100 and 03104 is subtracted from
the doubleword in GPR6 and GPR7. The result is transferred to GPR6 and GPR7.
CC2 is set.

6-154

\

DEFINITION

SUMMARY
EXPRESSION

CONDITI ON CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SUBTRACT REGISTER FROM REGISTER

3COO

SUR
s,d

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RS is algebraically subtracted from the word
in the GPR specified by RD' The resulting word is then transferred to the
GPR specified by RD'

(RD) - (RS) - RD

CC1: lSI arithmetic exception
CC2: lSI (RD) is greater than zero
<:C3: lSI (RD) is less than zero
CC4: lSI (RD) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
100106AE

PSWR
080106BO

GPR1
12345678

GPRI
00000000

106AE
3C AO (R D=l, RS=2)
SUR 2,1

GPR2
12345678

GPR2
12345678

Note The contents of GPR2 are subtracted from the contents of GPRI. The result is
replaced in GPRI. CC4 is set.

6-155

SURM
s,d

OEFINITION

SUMMARY
EXPRESSION

SUBTRACT REGISTER FROM REGISTER MASKED

3C08

I· · , ':' ,I .. : I .. I' · · ._ I I I " I I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RS is algebraically subtracted from the word
in the GPR specified by RO. The dlfference of this subtraction is then
masked (Logical AND Functlon) with the contents of the Mask reg;ster (R4).
The resulting word is transferred to the GPR specified by RD.

(RO)-(RS)&(R4) - RO

CONDITION CODE CC1: lSI arithmetic exception
RESULTS CC2: lSI (Ro) is greater than zero

CC3: lSI (RO) is less than zero
• CC4: lSI (RD) is equal to zero

EXAMPLE

Before
Execution

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
10000496

GPR4
OOFFFFOO

00496
3F 58 (RO=6, RS=5)
SURM 5,6

GPR5
00074BC3

GPR6
00A62640

After Execution PSWR
20000498

GPR4
OOFFFFOO

GPR5
000748C3

GPR6
009EOAOO

6-156

Note The contents of GPR5 are subtracted from the contents of GPR6. The result
is ANOed with the contents of GPR4 and transferred to GPR6. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

SUBTRACT IMMEDIATE

C802

The sign of the least significant halfword (bits 16-31) of the Instruction
Word is extended 16 bits to the left to form a word. This word is
algebraically subtracted from the word in the GPR specified by R. The
resulting word is transferred to the GPR specified by R.

CC1: 151 arithmetic exception
CC2: lSI RO- 31 ~s greater than zero
CC3: 151 RO-31 ~s less than zero
CC4: 151 RO- 31 1S equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
100019B8

PSWR
080019BC

GPR7
FFFF839A

GPR7
00000000

019B8
CB 82 83 9A (R=7)
SUI 7,X'839A'

Note The immediate operand with sign extension is subtracted from the contents
of GPR7. The result is transferred to GPR7. CC4 is set.

SUI
d,v

6-157

~lP~IB
d,*m,x

DEFINITION

MULTIPLY BY MEMORY BYTE

C008

11 ,1 ,0,0 10 , 0 1 I R f I X, /1 11 I I ImEOO,"AN·fADORm ~ I
" I , ! , , I ! , , I . I I , ! I , , _

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) .is accessed
and 24 zeros are appended to the most significant end to form a word. This
word is algebraically multiplied by the word in the GPR specified by R+l.
R+1 is the GPR one greater than specified by R. The double-precision result
is transferred to the GPR specified by Rand R+l.

NOTES 1. An arithmetic exception will never occur since the result of a

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

multiplication can never exceed the length of the doubleword register.

2. GPR specified by R must have an even address.

00_23,(EBA)x(R+1) - R,R+1

CC1: Always zero
CC2: lSI (R, R+1) is greater than zero
CC3: lSI (R, R+l) is less than zero
CC4: lSI (R, R+l) is equal to zero

Memory Location:
Hex Instruction:
Assemb ly Language Codi ng:

PSWR
0002BA28

GPRO
12345678

Memory Byte 2C3D9
40

PSWR
2002BA2C

GPRO
0000001B

Memory Byte 2C3D9
40

2BA28
CO OA C3 D9
MPMB O,X'2C3D9'

GPRI
6F90C859

GPRI
E4321640

Note The contents of memory byte 2C3D9, with zeros prefixed, are multi pled by the
contents of GPR1. The result is transferred to GPRO and GPRI. eC2 is set.

6-158

I

\

DEFINITION

MULTIPLY BY MEMORY HALFWORD

COOOO

MPMH
d,*m,x

I, , ' " I ' ~, I 'I I" ~ I ; I' I, I I I ~ , I ",'+:' ~';+~'7"1 : I , I, I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and the sign bit (bit 16) is extended 16 bits to the left to form a
word. This word is algebraically multiplied by the word in the GPR specified
by R+1. R+1 is the GPR one greater than specified by R. The double-precision
result is transferred to the GPR specified by Rand R+1.

NOTES 1. An arithmetic exception will never occur since the result of a multi-

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

plication can never exceed the length of the doubleword register.

2. GPR specified by R must have an even address.

CC1: Always zero
CC2: ISI(R, R+1) is greater than zero
CC3: lSI (R, R+1) is less than zero
CC4: lSI (R, R+1) is equal to zero

Memory Location: 096A4
Hex Instruction:
Assembly Language Coding:

C1 00 9B 57 (R=2, X=O, 1=0)
MPMH 2,X'9B56'

PSWR
080096A4

PSWR
100096A8

GPR2
12345678

GPR2
FFFFFFFF

GPR3
00000003

GPR3
FFFFFFF7

Memory Halfword 09B56
FFFD

Memory Halfword 09B56
FFFD

Note The contents of GPR3 are multiplied by the contents of memory halfword
09B56. The doubleword result is transferred to GPR2 and GPR3. CC3 is set.

6-159

MPMW
d.*m.x

DEFINITION

MULTIPLY BY MEMORY WORD

COOO

I WORD OPERA~ND ADDRESS I
, , ! , , , . , , , ! , " : I 1+1

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
- -

The word in memory specified by the Effective Word Address (EWA) is accessed·
and algebraically multiplied by the word GPR specified by R+1. R+1 is the
GPR one greater than specified by R. The double-precision result is trans­
ferred to the GPR specified by Rand R+1.

NOTES 1. An arithmetic exception will never occur since the result of a

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

multiplication can never exceed the length of the doubleword register.

2. GPR specified by R must have an even address.

(EWL)x(R+1) - (R,R+I)

CC1: Always zero
CC2: lSI (R, R+1) is greater than zero
CC3: lSI (R, R+1) is less than zero
CC4: lSI (R, R+1) is equal to zero

Memory Location: 04AC8
Hex Instruction:
Assembly Language Coding:

C3 00 4B IC (R=6. X=O, 1=0)
MPMW 6,XI~lC'

PSWR
10004AC8

PSWR
20004ACC

GPR6
00000000

GPR6
40000000

GPR7
80000000

GPR7
00000000

~emory Word 04B1C
8.0000000 .

Memory 140rd 04BIC
80000000

Note The contents of GPR7 and memory word 04B1C are multiplied, and the result is
transferred to GPR6 and GPR7. CC2 is set.

)

6-160

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

MPR
s,d

MULTIPLY REGISTER BY REGISTER

4000

·1,1~10~,I'III"o:II\I"" 1'1'1'1'_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word GPR, specified by RS is algebraically multipned by the word in the
GPR specified by RO+1. RO+1 is the-~PR one greater than specified by RD.
The double-precision result is transferred to the GPR specified by RO and
RO+1.

1. The multiplicand register RS can be any register, including register
RO+1; however, RO must be an even-numbered register.

2. An arithmetic exception will never occur since the result of a multi­
plication can never exceed the length of the doubleword register.

CC1: Always zero
CC2: lSI (Ro,RO+1) is greater than zero
CC3: lSI (RO,RO+1) is less than zero
CC4: lSI (RO,RO+l) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
1000098E

PSWR
20000990

GPRO
00000000

GPRO
00000000

0098E
40 10 (RO=O,RS=l)
MPR 1,0

GPR1
Ooooooor
GPRl
OOOOOOE!

Note The content of GPRI is multiplied by itself, and the doubleword product is
transferred to GPRO and GPRI. CC2 is set.

6-161

MPI
d,v

DEFINITION

MULTIPLY IMMEDIATE

C803

1"":"":,,,+,,,1 ,~~.,. ... ~: I
I " I I I I " I '" '" '" '" o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The sign of the least significant halfword (bits 16-31) of the Instruction
Word is extended 16 bits to the left to form a word. This word is alge­
braically multiplied by the word in the GPR specified by R+1. R+1 is the
GPR one greater than specified by R. The result is transferred to the GPR
specified by Rand R+1.

NOTES 1. An arithmetic exception will never occur since the result of a multi-

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
txecution

After Execution

plication can never exceed the length of the doubleword register.

2. The GPR specified by R must have an even address.

CC1: Always zero
CC2: lSI (R,R+1) is greater than zero
CC3: lSI (R,R+1) is less than zero
CC4: lSI (R,R+1) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
20000634

PSWR
10000638

GPR6
12345678

GPR6
FFFFFFF3

00634
CB 03 01 00 (R=6)
MPI 6,x'ofOo'

GPR7
F37A9B15

GPR7
7A9B1500

Note The immediate operand, sign extended, is multiplied by the contents of GPR7.
The result is transferred to GPR6 and GPR7. CC3 is set.

6-162

I

I
\

DEFINITION

DIVIDE BY MEM0RY BYTE

C408

DVMB
d,*m,x

: 'n""~,"oAOO"~ : I
I I I I I I I I I I I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and 24 zeros are appended to the most significant end to form a word. This
word is algebraically divided into the doubleword in the GPR specified by R
and R+1. R+1 is the GPR one greater than specified by R. The resulting
quotient is then transferred to the GPR specified by R+l, and the remainder
is transferred to the GPR specified by R. The sign of the GPR specified by
R (remainder) is set to the original sign of the dividends. The sign of the·
GPR specified by R+1 (quotient) will be the algebraic product of the original
signs of the dividend and the divisor except when the absolute value of the
dividend is less than the absolute value of the divisor. In that case, the
resulting quotient (GPR specified by R+l) will be set to zero.

NOTES 1. An arithmetic exception occurs if the value of the quotient exceeds

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

32 bits. If an arithmetic exception occurs, the original dividend will
be restored in the GPR specified by Rand R+1.

2. GPR specified by R must have an even address.

(R,R1) / [00_23,(EBL)] --R+l

Remainder -- R

CC1: lSI arithmetic exception
CC2: lSI (R+10 31) is greater than zero
CC3: lSI (R+10-31) is less than zero
CC4: lSI (R+10: 31) is equal to zero

03000 Memory Location:
Hex Instruction:
Assembly Language Coding:

C4 08 30 BF (R=O, X=O, 1=0)
DVMB 0,X'30BF'

PSWR
10003000

PSWR
20003004

GPRO
00000000

GPRO
00000001

GPRI
00000139

GPRI
0000004E

r·lemory Byte 030BF
04

r·1emory Byte 030BF
04

Note The doubleword contents of GPRO and GPR1 are divided by the content of
memory byte 030BF with 24 zeros prefixed. The quotient is transferred to
GPR1 and the remainder is transferred to GPRO. CC2 is set.

6-163

DVfvlH
d,*m,x

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

6-164

DIVIDE BY MEMORY HALFWORD

C400

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed, and the sign is extended 16 bits to the left to form a word. This
word is algebraically divided into the doubleword in the GPR specified by R
and R+1. R+1 is the GPR one greater than specified by R. The resulting
quotient is then transferred to the GPR specified by R+1 and the remainder
is transferred to the GPR specified by R. The sign of the GPR specified by
R (remainder) is set to the original sign of the dividend. The sign of the
GPR specified by R+l (quotient) will be the algebraic product of the original
signs of the dividend and the divisor, except when the absolute value of the
dividend is less than the absolute value of the divisor. In that case, the
resulting quotient (GPR specified by R+1) will be set to zero.

1. An arithmetic exception occurs if the value of the quotient exceeds
32 bits. If an arithmetic exception occurs, the original dividend will
be restored in the GPR specified by Rand R+l.

2. The GPR specified by R must have an even address.

(R,R+1)/(EHL)SE - R+l

Remainder - R

CC1: lSI arithmetic exception
CC2: lSI R+I 0_31 is greater than zero
CC3: lSI R+1 0_31 is less than zero
CC4: lSI R+10_31 is equal to zero

Memory Location: 05A94
Hex Instruction:
Assembly Language Coding:

C7 00 5D 6B (R=6, X=O, 1=0)
DVMH 6,X'5D6A'

PSWR GPR6 GPR7 Memory Halfword
08005A94 00000000 0000003B FFF8

PSWR GPR6 GPR7 Memory Halfword
10005A98 00000005 FFFFFFF9 FFF8

05D6A

05D6A

The doubleword contents of GPR6 and GPR7 are divided by the contents of
memory halfword 05D6A with sign extension. The quotient is transferred
GPR7 and the remainder is transferred to GPR6. CC3 is set.

to

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

DIVIDE BY MEMORY WORD

C400

DVMW
d ;*m,x

o 0 10 1 I R I I X II I 0 I I WORD OJERAND ADDRESS~ I 10 I ~ I
I I ! I . I ! . I . . . I I! I I ; I I I I I I I I . . _

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Hord Address (EViA) is accessed
and algebraically divided into the doubleword in the GPR specified by Rand
R+l. R+1 is the GPR one greater than specified by R. The resulting quotient
is then transferred to the GPR specified by R+1, and the remainder is trans­
ferred to the GPR specified by R. The sign of the GPR specified by R (re­
mainder) is set to the original sign of the dividend. The sign of the GPR
specified by R+1 (quotient) will be the algebraic product of the original
signs of the dividend and the divisor, except when the absolute value of the
dividend is less than the absolute value of the divisor. In that case, the
resulting quotient (GPR specified by R+l) will be set to zero.

·1. An arithmetic exception occurs if the value of the quotient exceeds
32 bits. If an arithmetic exception occurs, the original dividend will
be restored in the GPR specified by Rand R+1.

2. The GPR specified by R must have an even address.

(R , R+1) / (EWl) - R+ 1

Remainder - R

CC1:
CC2:
CC3:
CC4:

lSI arithmetic exception
lSI R+1 0_31 is greater than zero
lSI R+I0_31 is less than zero
lSI R+I 0_31 is equal to zero

Memory Location: 078CO
Hex Instruction:
Assembly language Coding:

C6 00 7B 5C (R=4, X=O, 1=0)
DVMW 4,X'7B5C'

PSWR GPR4 GPR5 Memory l~ord
400078CO 00000000 039A20CF FCOOOOOO

PSWR GPR4 GPR5 t1emory Hord
080078C4 039A20CF 00000000 FCOOOOOO

07B5C

07B5C

The doubleword obtained from GPR4 and GPR5 is divided by the contents of
memory word 07B5C. The quotient is transferred to GPR5, and the remainder
is transferred to GPR4. CC4 is set.

6-165

OVR
s,d

DEFINITION

DIVIDE REGISTER BY REGISTER

4400

1',',',':','1,'0: 11"11°,'1'1'_
o 1 ? 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RS is algebraically divided into the
doubleword in the GPR specified by RO and RD+1. RO+1 is the GPR one
greater than specified by RD. The resulting quotient is then transferred to
the GPR specified by RO+1, and the remainder is transferred to the GPR
specified by RD. The sign of the GPR specified by RO (remainder) is set to
the original slgn of the dividend. The sign of the GPR specified by RO+1
(quotient) will be the algebraic product of the original signs of the
dividend and the divisor, except when the absolute value of the dividend is
less than the absolute value of the divisor. In that case, the resulting
quotient (GPR specified by RO+l) will be set to zero.

NOTES 1. An arithmetic exception occurs if the value of the quotient exceeds 32
bits. If an arithmetic exception occurs, the original dividend will
be restored in the GPR specified by Rand R+l.

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

6-166

2. The GPR speci fi ed by RO must have an even address.

3. RS must not equal RO or RO+l.

(RO,RO+1)/RS - RO+l

Rema i nder - RO

CC1: lSI arithmetic exception
CC2: lSI RO+I0_31 is greater than zero
CC3: lSI RO+I0_31 is less than zero
CC4: lSI RO+1 0_31 is equal to zero

Memory Location: 04136
Hex Instruction:
Assembly Language Coding:

47 20 (RO=6,RS=2)
DVR 2,6

PSWR GPR2 GPR6 GPR7
10004136 OOOOOOOA 00000000 OOOOOOFF

PSWR GPR2 GPR6 GPR7
20004138 OOOOOOOA 00000005 00000019

The doubleword obtained from GPR6 and GPR7 is divided by the contents of
GPR2. The quotient is transferred to GPR7, and the remainder is trans-
ferred to GPR6. CC2 is set.

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

DIVIDE IMMEDIATE

C804

R: 10 0 0 10 0 0 I : IMMEDIAT! OPERAND :
I I I I I I I I I I I I I I I I I

DVI
d,v

o 1 2 3 4 5 6 7 8 9' 10 11 12 13 14 1 ~ Hi 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

The sign of the least significant halfword (bits 16-31) of the Instruction
Word is extended 16 bits to the left to form a word. This word is
algebraically divided into the doubleword in the GPR specified by Rand R+1.
R+1 is the GPR one greater than specified by R. The resulting quotient is
then transferred to the GPR specified by R+1, and the remainder is trans­
ferred to the GPR specified by R. The sign of the GPR specified by R
(remainder) is set to the original sign of the dividend. The sign of the
GPR specified by R+1 (quotient) will be the algebraic product of the
original signs of the dividend and the divisor, except when the absplute
value of the dividend is less than the absolute value of the divisor. In
that case, the resulting quotient (GPR specified by R+1) will be set to zero.

L An arithmetic exception occurs if the value of the quotient exceeds 32
bits. If an arithmetic exception occurs, the original dividend will be
restored in the GPR specified by Rand R+1.

2. The GPR specified by R must have an even address.

(R,R+l)/(IW16_31)SE - R+1

Rema i nder - R

CC1: lSI arithmetic exception
CC2: lSI R+10_31 is greater than zero
CC3: lSI R+I O_31 is less than zero
CC4: lSI R+1 0_31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
04008000

PSWR
10008004

GPR2
00000000

GPR2
00000001

08000
C9 04 FF FD (R=2)
DVI 2,-3

GPR3
000001B7

GPR3
FFFFFF6F

Note The doubleword obtained from GPR2 and GPR3 is divided by the immediate
operand, sign extended. The quotient is transferred to GPR3, and the
remainder is transferred to GPR2. CC3 is set.

6-167

ES
d

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

EXTEND SIGN

0004

The sign (bit 0) of the contents of the GPR specified by R+1 is extended
through all 32 bit positions of the GPR specified by R.

(R+10) -RO-31

CC1: Always zero
CC2: lSI RO 31 is greater than zero
CC3: lSI RO-31 is less than zero
CC4: lSI RO=31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
0800083A

PSWR
1000083C

GPR1
0000B074

GPR1
FFFFFFFF

0083A
00 84 (R=l)
ES 1

GPR2
8000C361

GPR2
8000C361

Note Bits 0-31 of GPRI are set to one's. CC3 is set.

6-168

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

ROUND REGISTER

0005

RND
d

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the GPR specified by R are incremented by one if bit
position 0 of the GPR specified by R+l is equal to one. R+l is the GPR
one greater than specified by R.

(R)+l,if(R+IO)=l

CC1: lSI arithmetic exception
CC2: lSI RO-31 ~s greater than zero
CC3: lSI RO- 31 1S less than zero
CC4: lSI RO- 31 is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
40000FFE

PSWR
20001000

GPR6
783A05B2

GPR6
783A05B3

OOFFE
03 75 (R=6)
RND 6

GPR7
92CD061F

GPR7
92CD061F

Note The contents of GPR6 are incremented by one, and the result is returned to
GPR6. CC2 is set.

6-169

FLOATING-POINT
ARITHMETIC

INSTRUCTION

GENERAL
DESCRIPTION

I NSTRUCTI ON
FORMAT

MEMORY
REFERENCE

CONDITION CODE
UTILIZATION

6-170

The Floating-Point Arithmetic instructions provide the capability to add,
subtract, multiply, or divide operands of large magnitude with precise
results. A floating-point number is made up of thl"ee parts: a sign, a
fraction, and an exponent. The sign applies to the fraction and denotes
a positive or negative value. The fraction is a binary number with an
assumed radix point between the sign bit and the most significant bit.
The exponent is a 7-bit binary power to which the base 16 is raised. The
quantity that the floating-point number represents is obtained by multi­
plying the fraction by the number 16 raised to the power represented by
the exponent.

The following instruction format is used for all floating-point operations:

I, ~~,: , I ,': I ~ I, I, I , ,: I ~'D:A.~'':', : , , , : , I ~ I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-10

Bit 11

Bi ts 12-31

define the Operation Code.

designate a General Purpose Register address (O-7).

designate one of three index registers.

indicates whether an indirect addressing operation is
to be performed.

directly specifies the address of the operand when the X and
I fields are equal to zero. If X is not equal to zero,
indirect addressing is specified. Bit 12 (F) is used as
an augment bit by the Floating-Point instructions.

Execution of all Floating-Point Arithmetic instructions causes a Condition
Code to be set to indicate whether the result of the operation was greater
than, less than, or equal to zero. Arithmetic exceptions produced by a
Floating-Point operation are a,lso reflected by the Condition Code results.

The meaning of the Condition Codes differ for the execution of the
Floating-Point instructions. CC1 is set by an Arithmetic Exception
condition (underflow or overflow). To differentiate between these ex­
ceptions, CC4 is also set when the overflow condition occurs. In both
instances, either Ce2 or CC3 is used to indicate the state of what would
have been the sign of the resultant fraction had the arithmetic exception
not occurred. The following table reflects the possible Condition Code
settings:

Condition Code Definition

CCI CC2 CC3 CC4 - -

1 0 0 0 Arithmetic exception
0 1 0 0 Positive fraction
0 0 1 0 Negative
0 0 0 1 Zero fraction
1 1 0 0 Exponent Underflow, positive fraction
1 0 1 0 Exponent Underflow, negative fraction
1 1 0 1 Exponent Overflow, positive fraction
1 0 1 1 Exponent Overflow, negative fraction

FLOATING-POINT
ARITHMETIC

OPERANDS

A floating-point number can be represented in two different formats: word
and doubleword. These two formats are the same except that the doubleword
contains eight additional hexadecimal digits of significance in the fraction
These two formats are shown below.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

o 1

,+.. I : ~~"",,~,o~ : : , , , , , , , , " "I'" ", I I I I ,

, , , , , , " , w " " "" : "CO" ;, ;c; '" ffi '" ;, ;, '" 00 eo " eo

The floating-point number, in either format, is made up of three parts: a
sign, a fraction, and an exponent. The sign bit (bit 0) applies to the
fraction and denotes a positive or negative value. The fraction is a
hexadecimal normalized number with a radix point to the left of the highest
order fraction bit (bit 8). The exponent (bits 1-7) is a 7-bit binary
number to which the base 16 is raised.

Negative exponents are carried in the two's complement format. To remove
the sign and therefore enable exponents to be compared directly, both
positive and negative exponents are biased up by 4016 (excess 6410 notation).
The quantity that a floating-point number represents is obtained by multi­
plying the fraction by the number 1610 raised to the power of the exponent
minus 4016 •

A positive floating-point number is converted to a negative floating-point
number by taking the two's complement of the positive fraction and the one's
complement of the biased exponent. If the minus one case is ruled illegit­
imate, all floating-point numbers can be converted from positive to negative
and from negative to positive by taking the two's complement of the number
in floating-point format. Signed numbers in the floating-point format can
then be compared directly. one with another, by using the Compare Arithmetic
class of instructions.

All floating-point operands must be normalized before being operated on by
a floating-point instruction. A positive floating-point number is normalized
when the value of the fraction is less than one and greater than or equal
to one-sixteenth (1) F~ 1/16). A negative floating-point number is normalized
when the value of the fraction is greater than minus one and less than or
equal to minus one-sixteenth (-1< F~-1/16). All floating-point answers ar.e
normalized by the CPU. If a floating-point operation results in a minus
one of the form 1 XXX XXXX 0000 .•• 0000, the CPU will convert that result
to a legitimate normalized floating-point number of the form 1 YYY YYYY
1111 0000 •.• 0000, where YYY YYYY is one less than XXX XXXX.

A hexadecimal guard digit is appended to the least significant hexadecimal
digit of the floating-point word operands by the CPU. This guard digit is
carried throughout all floating-point word computations. The most signif­
icant bit of the guard digit is used as the basis for rounding by the CPU at
the end of every floating-point word computation.

6-171

ADFW
d,*m,x

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

6-172

ADD FLOATING-POINT WORD

E008

The floating-point operand in memory is accessed. If either of the floating­
point numbers is negative, the one's complement of the base 16 exponent
(bits 1-7) is taken of the negative number. Both exponents are then
stripped of their 4016 bias and algebraically compared. If the two ex-
ponents are equal, the signed fractions of the two numbers are algebrai­
cally added. If the exponents differ, and the difference is greater than
or equal to one, or less than or equal to six (1 exponent difference 6),
the fraction of the operand containing the smaller exponent is shifted
right one hexadecimal digit. After exponent equalization, the fractions
are added algebraically. The normalized and rounded sum of the two fractions
is placed in bit positions 0 and 8-31 of GPR d. The resulting exponent is
biased up by 4016 , and, if the resulting fraction is negative, the one's
complement of the exponent is placed in bit positions 1-7 of GPR d.

1. If the resulting fraction equals zero, the exponent and fraction are
set to zero in GPR d.

2. Operands are expected to be normalized.

3. If the exponent difference is greater than six, the operand having
the larger exponent is normalized and placed in the GPR specified
by R.

(R)+(EWL) - (R)

CC1 :
CC2 :
CC3 :
CC4:

lSI arithmetic exception
lSI RO 8-31 is greater than zero
lSI RO:8-31 ~s less than zero
lSI RO,8-31 1S equal to zero

DEFINITION

ADFO ADD FLOATING POINT DOUBLEWORD

E008
d,*m,x

The floating-point operand in memory is accessed. If either of the
floating-point numbers is negative, the one's complement of the base 16
exponent (bits 1-7) is taken of the negative number. Both exponents are
then stripped of their 4016 bias and algebraically compared. If the two
exponents are equal, the signed fractions of the two numbers are alge­
braically added. If the exponents differ, and the difference is greater
than or equal to one, or less than or equal to six (1~ exponent difference
~6), the fraction of the operand containing the smaller exponent is shifted
right one hexadecimal digit. After exponent equalization, the fractions
are added algebraically. The normalized and rounded sum of the two
fractions is placed in bit positions ° and 8-63 of GPR d+1. The resulting
exponent is biased up by 4°16 , and, if the resulting fraction is negative,
the one's complement of the exponent is placed in bit positions 1-7 of GPR d.

NOTES 1. If the resulting fraction equals zero, the exponent and fraction are

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

set to zero in GPR d+1.

2. Operands are expected to be normalized.

3. If the exponent difference is greater than 13, the operand having
the larger exponent is normalized and placed in the GPR specified
by R, R+1.

(R),(R+1)+(EWL),(EWL+1)- (R),(R+1)

CC1: lSI arithmetic exception

CC2: lSI RO,8-31 is greater than zero
CC3: lSI Ro,8-31 is less than zero
CC4: lSI RO,8-31 is equal to zero

Assembly Language Coding: ADFD R,X'(DW Op Addr) ,

6-173

SUFW
d,*m,x

DEFINITION

SUBTRACT FLOATING-POINT WORD

EOOO

"~ 1 x I' I, 1 : >C",O.+OOA"""': : I' I, I
, , I I '" '" '" I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The floating-point operand in memory is accessed. If either the floating­
point number in the GPR or memory is negative. the one's complement of the
base 16 exponent (bits 1-7) is taken. Both exponents are then stripped of
their 4016 bias and algebraically compared. If the two exponents are equal.
the 24-bit signed fractions are algebraically subtracted (i.e •• the memory
operand is subtracted from the GPR or GPR s). If the exponents differ. and
the difference is greater than one. or less than six (ls exponent difference
S 6). the fraction of the operand containing the smaller exponent is shifted
right one hexadecimal digit at a time until the exponents are equalized.
The exponent of this operand is effectively incremented by one each time
the fraction is shifted right one hexadecimal. After exponent equalization.
the fractions are subtracted algebraically. The normalized and rounded
difference between the two fractions is placed in bit positions 0 and 8-31
of GPR d. The resulting exponent is biased up by 4016 , and. if the result-
ing fraction is negative. the one's complement of the exponent is placed in
bit positions 1-7 of GPR d.

NOTES 1. If the resulting fraction is equal to zero. the exponent and fraction

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

6-174

are set to zero in the GPR or GPR s.

2. Operands are expected to be normalized.

'3. If the exponent difference is greater than six. the operand having
the larger exponent is normalized and placed in the GPR specified
by R.

(R)-{EWL) - (R)

CC1: lSI arithmetic exception
CC2: lSI RO S-31 is greater than zero
CC3: lSI RO' S-31 ~s less than zero
CC4: lSI RO:S-31 1S equal to zero

Assembly Language Coding: SUFW R. X'{W Op Addr) ,

\

DEFINITION

SUBTRACT FLOATING-POINT DOUBLEWORD

EOOO

SUFD
d,*m,x

The floating-point operand in memory is accessed. If either the floating­
point number in the GPR or memory is negative, the one's complement of the
base 16 exponent (bits 1-7) is taken. Both exponents are then stripped of
their 4016 bias and algebraically compared. If the two exponents are equal,
the 24-bit signed fractions are algebraically subtracted (i.e., the memory
operand is subtracted from the GPR or GPR s). If the exponents differ. and
the difference is greater than or equal to one. or less than or equal to
six (1~ exponent difference S 6). the fraction of the operand containing
the smaller exponent is shifted right one hexadecimal digit at a time until
the exponents are equalized. The exponent of this operand is effectively
incremented by one each time the fraction is shifted right one hexadecimal
digit. After exponent equalization. the fractions are subtracted algebra­
ically. The normalized and rounded difference between the two fractions is
placed in bit positions 0 and 8-63 of GPR d+1. The resulting exponent is
biased up by 4016 , and. if the resulting fraction is negative. the one's
complement of the exponent is placed in bit positions 1-7 of GPR d.

NOTES 1. If the resulting fraction is equal to zero. the exponent and fraction

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

are set to zero in the GPR or GPR s.

2. Operands are expected to be normalized.

3. If the exponent difference is greater than 13. the operand
having the larger exponent is normalized and placed in the
GPR specified by R. R+1.

(R).(R+1)-(EWL).(EWL+1) -+ (R).(R+1)

CC1: lSI arithmetic exception
CC2: lSI ~.8-31 is greater than zero
CC3: lSI RO 8-31 is less than zero
CC4: lSI RO:8-31 is equal to zero

Assembly Language Coding: SUFD R.X'(DW Op Addr) ,

6-175

MPFW
d,*m,x

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

6-176

MULTIPLY FLOATING-POINT WORD

E408 f

/ U . U II r d J' -, 7J ~

11 1 1 0 I 0 1 I R I I x· II 11 Ii I ~"O O~PERAND ADDR!ESS

- I I I ! I . I ! . I . . . I I ! I I I . I I I . I I I
o 1 2 3 4 !; 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

.. j

The floating-point operand fraction is multiplied by the fraction of GPR d.
If either one or both of the floating-point numbers are negative, the
exponent of the negative number is changed to its one's complement. Both
exponents are then stripped of their 4016 bias and algebraically added. The
normalized and rounded product of the multiplication is placed in bits 0 and
8-31 of GPR d. The resulting exponent is biased up by 4016, and, if the
resulting fraction is negative, the one's complement of the resulting exponent
is placed in bits 1-7 of GPR d.

Operands are expected to be normalized.
•

(EWLO ,8-31)x(RO ,8-31) - RO ,8-31
(EWLl _7)+(Rl _7) - Rl _7

CC1: lSI arithmetic exception
CC2: lSI RO 8-31 ~s greater than zero
CC3: lSI RO'8-31 ~s less than zero
CC4: lSI RO:8-31 1S equal to zero

Assembly Language Coding: MPFW R,X'(W Op Addr) ,

\

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

MULTIPLY FLOATING-POINT DOUBLEWORD

E408

MPFD
d,*m,x

The floating-point operand fraction is multiplied by the fraction of GPR d+1.
If either one or both of the floating-point numbers are negative, the
exponent of the negative number is changed to its one's complement. Both
exponents are then stripped of their 4016 bias and algebraically added. The
normalized and rounded product of the multiplication is placed in bits 0 and
8-63 of GPR d+1. The resulting exponent is biased up by 4016, and if the
resulting fraction is negative, the one's complement of the resulting "exponent
is placed in bits 1-7 of GPR d.

Operands are expected to be normalized.

(tWLO•8_31 • EWL+10_31)x(RO,8_31·R+10_31)

-.RO.8-31·R+10-31

(EWL l _7)+(Rl _7) -+ Rl _7

CC1: lSI arithmetic exception
CC2: lSI RO 8-31 ~s greater than zero
CC3: lSI RO' 8-31 ~s less than zero
CC4: lSI RO:8-31 1S equal to zero

Assembly Language Coding: MPFD R,X'(DW Op Addr) ,

6-177

DVFW
d,*m,x

. DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

6-178

DIVIDE FLOATING-POINT WORD

E400

I I +~ +- : I I I I I I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The floating-point operand in memory (divisor) is accessed, and the fraction
is divided into the fraction of GPR d. If either one or both of the
floating-point numbers are negative, the one's complement of the exponent is
taken. Both exponents are then stripped of their 4016 bias, and the exponent
of the divisor is subtracted algebraically from the exponent of the dividend.
The normalized and rounded quotient is placed in bit 0 and bit positions 8-31
of the GPR d. The resulting exponent is biased up by 4016, and, if the
resulting fraction is negative, the one's complement of the resulting fraction
is placed in bits 1-7 of GPR d.

Operands are expected to be normalized.

(RO,8_31}/(EWLO,8_3l) - RO,8-31

(Rl _7}-(EWLl _7) - Rl _7

CCl: 151 arithmetic exception
CC2: 151 RO 8-31 ~s greater than zero
CC3: 151 RO'8-31 ~s less than zero
CC4: 151 RO:8-3l 1S equal to zero

Assembly Language Coding: DVFW R,X'(W Op Addr} ,

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

DIVIDE FLOATING-POINT DOUBLEWORD

E400

o 1 234 567

DVFD
d,*m,x

The floating-point operand in memory (divisor)is accessed and the ·fraction
is divided into the fraction of GPR d+1. If either one or both of the
floating-point numbers are negative, the one's complement of the exponent is
taken. Both exponents are then stripped of their 4016 bias, and the exponent
of the divisor is subtracted algebraically from the exponent of the dividend.
The normalized and rounded quotient is placed in bit ° and bit positions
8-63 of the GPR d+l. The resulting exponent is biased up by 4016, and, if
the resulting fraction is negative, the one's complement of the resulting
fraction is placed in bits 1-7 of GPR d.

Operands are expected to be normalized.

(RO,8_31,R+IO_31)/(EWLO,8_31,EWL+I0_31)

- RO,8-31 ,R+I0_31

(R l _7)-(EWL l _7) - Rl _7

CC1:
CC2:
CC3:
CC4:

lSI arithmetic
lSI R is
lSI RO,8-31 is
lSI RO,8-31 is

0,8-31

exception
greater than zero
1 ess than zero
equal to zero

Assembly Language Coding: DVFD R,X'(DW Op Addr) ,

6-179

CONTROL
INSTRUCTIONS

GENERAL
DESCRIPTION

I NSTRUCTI ON
FORMATS

MEMORY
REFERENCE

INTERREGISTER

CONDITION CODE
UTILIZATION

6-180

This group of instructions allows the mainframe to perform Execute, No Op •
Halt, and Wait operations.

Control instructions use the Memory Reference and Interregister instruction
formats. Several of the Control instructions vary the basic Interregister
format in that certain portions are not used and are left blank.

o 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-8

Bits 9-10

Bit 11

Bits 12-31

define the Operation Code.

designate a General Purpose Register address (0-7).

designate one of three index registers.

indicates whether an indirect addressing operation is
to be performed.

specify the address of the operand when the X and I fields
are equal to zero.

I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 21 25 26 27 28 29 30 31

Bits 0-5 define the Operation Code.

Bits 6-8 designate the register to contain the result of the
operation.

Bits 9-11 designate the register which contains the source operand.

Bits 12-15 define the Augmenting Operation Code.

Condition Code results for Execute operations will be dependent on the
instruction that was performed. All other control operations leave the
current Condition Code unchanged.

DEFINITION

CONDITION CODE
RESULTS

BRANCH AND RESET INTERRUPT

F900

BRI
*m,X

[, ' , " ' :. , + , ' :, I ~ I, 10 I" '" :R~NC~ A~O:ES: " '" I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This instruction resets the highest active interrupt level and branches to
the address indicated.

When coded indirect, this instruction causes the target PSW or PSD to
be loaded into the CPU, resets the highest active interrupt level, and
branches to the address in the PSW or PSD.

CC1: lSI if (I) is equal to one and (EWL1) is equal
CC2: lSI if (I) is equal to one and (EWL2) is equal
CC3: lSI if (I) is equal to one and (EWL3) is equal

. CC4: lSI if (I) is equal to one and (EWL4) is equal

Assembly Language Coding: BRI X'(Branch Addr)'

to one.
to one.
to one •
to one.

NOTES 1. Used only with interrupts operating in Active mode.

2. Privileged instruction.

3. If granularity of PSD is MAP, the contents of the MAP are changed
in accord with the instructions in PSD word 2.

4. This instruction cannot be used with Post-indexing.

6-181

LPSD
*In,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

LOAD PROGRAM STATUS DOUBLEWORD

F980

j, I 1 I 1 , 1 : 1 ,0 ,0 " : 1 I ~ I, H 'I I I I ~D ~D~RE~, I I I I '
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526 27 282930 31

Causes the PSD addressed by the instruction to be loaded into the Program
Status Doubleword Registers.

(EDL) - (PSDR)

CC1: Changed by the PSD being loaded
CC2: Changed by the PSD being loaded
CC3: Changed by the PSD being loaded
CC4: Changed by the PSD being loaded

Assembly Language Coding: LPSD X'(PSD Addr) ,

NOTES 1. Privileged instruction.

6-182

2. Causes system to go Mapped or Unmapped in accordance with codes in PSD
that is being loaded. .

3. This instruction does not modify contents of the MAP •.

4. Attempt to execute this instruction in PSW mode will result in an
undefined instruction trap.

5. The Block External Interrupts will be changed in accord with bits 48 and
49 of the PSD.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

LOAD PROGRAM STATUS DOUBlEWORD AND CHANGE MAP

FABO

LPSDC~l
d,*m,x

[1 1 1 , " 1 : 1 , 0, " 0 : 1 I : I, I 0 I" ",: ~o ~O~RE~, f , : , , , I
o 1 2 3 4 5 6 7 .8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Causes the PSD addressed by the instruction to be loaded into the Program
Status Doubleword Registers. and the MAP to be loaded in accord with the
BPIX and CPIX contents of the PSD. If the PSD defines the mapped condition.
this instruction will cause the CPU to go mapped.

(EDl) - (PSDR)
(MIDl) - Map Registers

eC1: Changed by the PSD being loaded
CC2: Changed by the PSD being loaded

C3: Changed by the PSD being loaded
CC4: Changed by the PSD being loaded

Assembly language Coding: lPSDCM X'(PSD Addr)'

NOTES 1. Privileged instruction.

2. The Block External Interrupts will be changed in accord with bits 48
and 49 of the PSD.

3. Attempt to execute this instruction in PSW mode will result in an
undefined instruction trap.

6-183

LCS
d

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

LOAD CONTROL SWITCHES

0003

1""",:",1,.: 1"",1,1"",_
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ?2 23 24 25 26 27 28 29 30 31

The contents of Control Switches (CSW) 0-15 are transferred to bit positions
0-15 of the GPR specified by R. Bit positions 16-31 of the GPR specified
by R are cleared to zeros.

(CSO_15) -- RO-15

0-- R15-31

CC1: Always zero
CC2: lSI (RO-31) is greater than zero
CC3: lSI (~-31) is less than zero
CC4: lSI (RO-31) is equal to zero

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
00006002

PSWR
10006004

GPR7
FFFFFFFF

GPR7
82000000

06002
03 83 (R=7)
LCS 7

Control Switches 0, 6 set

Note Bit positions 0 and 6 of GPR7 are set and all other bits are cleared.
CC3 is set.

6-184

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXECUTE REGISTER

C807

EXR
S

I' , · .:, '1 .: I' • + ' , , I : ""~''''~ : 1'1 I ,I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is transferred to the Instruction register
to be executed as the next instruction. If this instruction is not a Branch,
the next instruction executed (following execution of the instruction in
register R) is in the sequential memory location following the EXR instruction.
If the GPR specified by R does contain a Branch instruction, the Program Status
Word Register (PSWR) is changed accordingly.

1. If two halfword instructions are in the GPR specified by R, only the
left halfword instruction is executed.

2. An Unimplemented Instruction trap is generated if an EXR instruction ~
attempts to execute an Unimplemented instruction or another Execute
instruction.

3. The "PSD mode only" instructions cannot be targets of EXR, EXRR, or EXM.

(R) I

Defined by the executed instruction.

Assembly Language Coding: EXR R

6-185

EXRR
S

. DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

6-186

EXECUTE REGISTER RIGHT

C80l

1',',',':','1,': 1',',+11'1,11 II :777~ III: 11,11
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31

The contents of the least significant halfword (bits 16-31) of the GPR
specified by R are transferred to the most significant halfword position
(bits 0-15) of the Instruction register to be executed as the next instruction.
If this halfword instruction is not a Branch. the next instruction executed
(following execution of the halfword instruction transferred to the Instruction
register) is in the sequential memory location following the EXRR instruction.
If the instruction transferred to the Instruction register is a Branch in­
struction. the Program Status Word Register (PSWR) is changed accordingly.

1. An unimplemented Instruction trap is generated if an EXRR instruction
attempts to execute an Unimplemented instruction or another Execute
instruction.

2. The "PSD mode only" instructions cannot be targets of EXR. EXRR. or EXM.

Defined by the executed instruction.

Assembly Language Coding: EXRR R

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXECUTE MEMORY

A800

£XM
*m,x

I' ,',' ,':' ,'1',':'1 ~ 1,1'11 I : I I IO~'~":O~+ I I' : , I'
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Address (EA) is accessed and
executed as the next instruction. If this instruction is. not a Branch, the
next instruction executed (following execution of the instruction specified
by the EA) is in the next sequential memory location following the EXM in­
struction. If the instruction in memory specified by the EA is a Branch
instruction, the Program Status Word Register (PSWR) is changed accordingly.

1. If two halfword instructions are in the memory location specified by
the EA, bit 30 of the EA determines which halfword instruction is
executed. When bit 30 equals zero, the left halfword is executed.
When bit 30 equals one, right halfword is executed.

2. An Unimplemented Instruction trap is generated if an EXM instruction
attempts to execute an Unimplemented instruction or another Execute
instruction.

3. The "PSD mode only" instructions cannot be targets of EXR, EXRR, or EXM.

(EWLO-31) - I, if EA30=O

(E~JL16-31) - I, if EA30=1

Defined by the executed instruction.

Assembly Language Coding: EXM X'(Op Addr) ,

6-187

HALT

DEFINITION

CONDITI ON CODE
RESULTS

HALT

0000

The execution of this instruction causes computer operation to be stopped.
This includes input/output transfers and the servicing of priority interrupts.
I/O in progress will be completed, but no interrupts will be serviced.
Leaving a HALT condition requires depressing the RUN/HALT switch on the
Systems Control Panel.

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: HALT

NOTE This is a privileged instruction.

6-188

DEFINITION

CONDITION CODE
RESULTS

WAIT

0001

WAIT

o 1 2 3 4 5 6 7 8 9 1') 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The execution of this instruction causes the CPU to enter the Idle mode and
lights the Wait indicator on the System Control Panel. Input/output
transfers and priority interrupt servicing continue. If an interrupt occurs
during a Wait condition, a return to the Wait occurs after the interrupt is
serviced.

CC1:
CC2:
CC3:
CC4:

No change
No change
No change
No change

Assembly Language Coding: WAIT

NOTE If there is an attempt to execute a WAIT with interrupts blocked, a Block
Mode Timeout Trap will be generated.

6-189

NOP

DEFINITION

CONDITION CODE
RESULTS

6-190

NO OPERATION

0002

I' , , ':' ,I, ':'1' , '" ' , ,_ I I I I I I I I I I
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Assembler uses the No Operation instruction to pad a halfword instruction
which forces the next instruction to start on a word boundary. if the next
instruction is a word instruction. It is also used whenever there is a
need for an executable instruction that does not alter the machine status.

CC1:
CC2:
CC3:
CC4:

No change
No change
No change
No change

Assembly Language Coding: NOP

DEFINITION
INTRODUCTION

START IPU
TRAP 2E4

STOP IPU
TRAP 2F4

CONDITION CODE
RESULTS

SIGNAL IPU SIPU

OOOA

10000> 0 0 <000 <'0'0_
I " I I I I I I ,,'

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This instruction is a control class unprivileged instruction used to start
and stop the operation of the Internal Processing Unit. When the SIPU in­
struction is executed, this instruction functions as a START IPU instruction
in the CPU and a STOP IPU instruction in the IPU.

To start IPU processing, the CPU stores the new Program Status Ooubleword
(PSO) into words 3 and 4 of the Start IPU Trap Context Block which is pointed
to by the address contained in the Start IPU trap vector location 2E4. The
CPU then executes the SIPU X'OOOA' instruction which sends a start signal to
the IPU and informs the IPU that a new PSD is available for execution. The
IPU.stores the old PSO into words 1 and 2 of the Start IPU Trap Context Block
and IPU Status into word 5. The IPU then fetches the new PSD words 3 and 4
from the context block and begins to execute the instructions in memory as
directed by the new PSO.

To stop the IPU processing, the CPU stores a new PSD in words 3 and 4 of the
Stop IPU Trap Context Block (TCB) which is pointed to by the address contained
in the Stop IPU Trap vector location 2F4. The Stop IPU Trap Context Block (TCB)
is used when the IPU then executes an SIPU (X'OOOA') instruction which is im­
bedded in the IPU software code. The IPU stores the old PSD into words 1 and 2
of the context block and the IPU Status into word 5 of the context block. The
IPU then traps the CPU at location 2EO which indicates that the IPU execution
of the SIPU instruction has taken place. The IPU then fetches the new PSD
from words 3 and 4 of the context block which can point to a privileged HALT
or WAIT instruction to stop the IPU.

The new PSD in the STOP IPU context block may direct the IPU to execute code
other than a HALT or WAIT instruction. This utilization of the Stop Trap allows
the IPU to signal the CPU at milestones without stopping IPU execution. In
either use of this stop IPU trap. the old PSD is stored into words 1 and 2
of TCB and the ending IPU status into word 5. The IPU DONE signal is sent
to the CPU after storage of the old PSD and IPU status word and before
vectoring to the new PSD address.

No change.

Assembly Language Coding: SIPU

6-191

CALM
V

DEFINITION

CONDITION CODE

NOTES

6-192

CALL MONITOR

3000

I' , , ,', "I l""G"M"AG~' =
.III!I.I;III.II_

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 '24 25 26 27 28 29 30 31

The execution of this instruction causes an interrupt request signal to be
applied to interrupt priority 2716 , Bit positions 6-15 of the Instruction
Word may be used to contain program flags which can be examined by the
interrupt service routine.

CC1:
CC2:
CC3:
CC4:

No change
No change
No change
No change

Assembly Language Coding: CALM PROGRAM. FLAGS

1. Interrupt level 27 must be enabled prior to execution of this
instruction.

2. This instruction must not be executed with a higher priority
level active.

SUPERVISOR CALL

C806

SVC
IND, CALL#

1",,0, 0:"010,0:010,0,0101,,,,01,,:°, '" ~AC,LN,UM~E: , , ,

DEFINITION

180
SVC VECTOR

CONDITION CODE
RESULTS

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The execution of this instruction causes a pseudo-trap to the trap/interrupt
vector for relative priority level 6. Bits 16-19 may be used to index the
interrupt vector (location 180) with up to 16 locations. This index vector
address will point to a SVC vector table whose content will point to the
trap subroutine.

Bits 20-31 are used for the call number. This call number serves as an
identifier parameter for the software use.

Interrupt Context Block 0
Secondary Vector Table

I

CC1:
CC2:
CC3:
CC4:

•

zero
zero
zero
zero

SECONDARY VECTOR 0

SECONDARY VECTOR 1

SECONDARY VECTOR F

Assembly Language Coding: SVC

-..
I
I
I

I
I
I

I ..
· · --- · I I

I

I

IND. CALL#

.. OLD PSDI
OLD PSD2

NEW PSDI
NEW PSD2

CALL #
NOT USED

Interrupt Context Block 1

.. OLD PSDI
OLD PSD2
NEI-J PSDI
NEVJ PSD2

CALL #
NOT USED

NOTE The CPU must have previously been set to PSD mode.
Otherwise. an Undefined Instruction Trap will occur.

6-193

SETCPU
S

DEFINITION

CONDITION CODE

SET CPU MODE

2C09

100,0:,,1 ':10001,00,_
' " I I I I "t

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The execution of this instruction causes the operating characteristic of the
CPU to change to the mode specified by the contents of R.

The contents of R will be:

RESERVED
.

MODE RESERVED o 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,
~i 1 I I I I

o 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-13

Bit 14

Bi t 15

Bit 16-18

Bit 19

Must be zeros and reserved for future use.

Enable Block Mode Timeout Trap.

Enable PSD Traps (m/c halts if not enabled)

Reserved (must be zero).

O=PSW mode 55
1=PSD mode 75

CC1:
CC2 :
CC3:
CC4:

No change
No change
No change
No change

Assembly Language Coding: SETCPU S

NOTE The PSD mode of operation must be enabled (allowed) by way of a hardware
jumper on the C Board. or an Undefined Instruction Trap will occur.

6-194

DEFINITION

READ CPU STATUS WORD

0009
RDSTS

d

10000:001 RD: 1~00110ol~
-",_,_, __ "_",-o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This instruction places the CPU Status Word into Register RD. The source of
the CPU Status Word is location 91H in the CPU Scratchpad. After reporting
status, bits 00-23 of the Status Word (in the Scratchpad) are set to zero.
Bits 24-31 of the Scratchpad Status Word remain unchanged. The CPU Status
Word in Register RD is defined as follows:

Bit

o
.1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

=0, CLASS 0,1,2, OR E ERROR
=1, CLASS F (EXTENDED I/O) ERROR
=0, I/O PROCESSING ERROR
=1, INTERRUPT PROCESSING ERROR
FINAL BUS TRANSFER ERROR
BUS NO RESPONSE ERROR
I/O CHANNEL BUSY OR BUSY STATUS BIT ERROR
READY TIMEOUT ERRO
I/O DRT TIMEOUT ERROR
RETRY COUNT EXHAUSTED ERROR
OPERAND FETCH PARITY ERROR
INSTRUCTION FETCH PARITY ERRO
OPERAND NONPRESENT ERROR
INSTRUCTION NONPRESENT ERROR
UNDEFINED PSD MODE INSTRUCTION ERROR
MEMORY FETCH DRT TIMEOUT ERROR
RESET CHANNEL ERROR
CHANNEL WCS NOT ENABLED ERROR
MAP NOT FOUND
MAP REGISTER ADDRESS OVERFLOW (MAP
CONTEXT SWITCH)
UNEXPLAINED MEMORY ERROR
BRI I/O ERROR
UNDEFINED INSTRUCTION PSW MODE ONLY
MAP INVALID ACCESS OR MAP MODE RESTRICTION ERROR
IPL I/O OR MEMORY ERROR FLAG
CPU WCS NOT PRESENT ERROR
NOT USED
ENABLE ARITHMETIC EXCEPTION TRAP
DISABLE PSD MODE TRAPS
BLOCK MODE IS ACTIVE
CPU POWER FAIL UP MEMORY ERROR
NOT USED
NOT USED
NOT USED
=0, CPU MODE PSW 55
=1, CPU MODE PSD 75

6-195

CONDITION CODE
RESULTS

NOTES

6-196

CC1: Not used
CC2: lSI PSD mode
CC3: lSI interrupts are blocked
CC4: lSI RD bits 0-23 equal zero

Assembly Language Coding: RDSTS Ro
1. This instruction is a Privileged Halfword instruction.

2. This instruction may not be the target of an Execute instruction.

3. The PSD mode of operation must be enabled (allowed) by way of a
hardware jumper on the C-board. or an undefined instruction trap
will occur.

DEFINITION

CONDITION CODE
RESULTS

NOTES

ENABLE ARITHMETIC EXCEPTION TRAP

0008

EAE

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 242526 27 28 29 30 31

Sets bit 7 of PSD to enable Arithmetic Exception Trap.

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: EAE

1. Halfword Instruction.

2. Attempt to execute this instruction in PSW mode will result in an
Undefined Instruction Trap.

6-197

DAE

DEFINITION

CONDITION CODE
RESULTS

DISABLE ARITHMETIC EXCEPTION TRAP

OOOE

10 00 % 010 0:0 0 0 011 1 10
.. I I , .. ' .. ' .. ' I I .. I I ,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Resets bit 7 of PSD to disable Arithmetic Exception Trap.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: DAE

NOTES 1. Halfword Instruction.

6-198

2. Attempt to execute this instruction in 55 mode will result in an
Undefined Instruction Trap.

INTERRUPT
INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION
FORMATS

INTERRUPT
CONTROL

CONDITION CODE
UTILIZATION

The Interrupt Control instruction group provides the availability to permit
selective Enable, Disable, Request, Activate, and Deactivate operations to
be performed on any addressed interrupt level. These instructions can only
be executed when bit 0 of the PSWR equals one (Privileged State).

The following instruction format is used for all Interrupt Control
operations: (Trap/Interrupt priorities are shown in Table 6-3.)

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5

Bits 6-12

Bits 13-15

Bits 16-31

define the Operation Code.

define the binary priority level number of the interrupt
being commanded.

define the Augmenting Operation Code.

unassigned.

All Interrupt Control instructions leave the current Condition Code
unchanged.

6-199

Table 6-3. 32/70 Series Relative Trap/Interrupt Priorities

INTERRUPT INTERRUPT
AND TRAP INTERRUPT VECTOR TCW lOCO
RELATIVE LOGICAL LOCATION ADDRESS ADDRESS
PRIORITY PRIORITY (IVL) ** ** DESCRIPTION

00 OF4 Power Fail Safe Trap
01 OFC System Override Trap (Not Used)
02 OE8* Memory Parity Trap
03 190 Nonpresent Memory Trap
04 194 Undefined Instruction Trap
05 198 Privilege Violation Trap
06 180 Supervisor Call Trap
07 184 Machine Check Trap
08 188 System Check Trap
09 18C Map Fault Trap
OA Not Used
DB Not Used
OC Not Used
00 Not Used
OE OE4 Block Mode Timeout Trap
OF 1A4* Arithmetic Exception Trap
10 00 OFO Power Fail Safe Interrupt
11 01 OF8 System Override Interrupt
12 12 OE8* ***Memory Parity Trap
13 13 OEC Attention Interrupt
14 14 140 100 700 I/O Channel 0 Interrupt
15 15 144 104 708 I/O Channel 1 Interrupt
16 16 148 108 710 I/O Channel 2 Interrupt
17 17 14C 10C 718 I/O Channel 3 Interrupt
18 18 150 110 720 I/O Channel 4 Interrupt
19 19 154 114 728 I/O Channel 5 Interrupt
1A 1A 158 118 730 I/O Channel 6 Interrupt
1B 1B 15C llC 738 I/O Channel 7 Interrupt
1C 1C 160 120 740 I/O Channel 8 Interrupt
10 10 164 124 748 I/O Channel 9 Interrupt
IE IE 168 128 750 I/O Channel A Interrupt
IF IF 16C 12C 758 I/O Channel B Interrupt
20 20 170 130 760 I/O Channel C Interrupt
21 21 174 134 768 I/O Channel 0 Interrupt
22 22 178 138 770 I/O Channel E Interrupt
23 23 17C 13C 778 I/O Channel F Interrupt
24 24 190* ***Nonpresent Memory Trap
25 25 194* ***Undefined Instruction Trap
26 26 198* ***Privilege Violation Trap
27 27 19C Call Monitor Interrupt
28 28 lAO Real-Time Clock Interrupt
29 29 1A4* ***Arithmetic Exception Interrupt
2A 2A 1A8 External/Software Interrupts
2B 2B lAC External/Software Interrupts
2C 2C 1BO External/Software Interrupts

6-200

Table 6-3. 32/70 Series Relative Trap/Interrupt Priorities (Cont'd)

INTERRUPT INTERRUPT
AND TRAP
RELATIVE
PRIORITY

20
2E
2F
30
31

THROUGH

77
78

79

7A

7B
7C

70

7E
7F

INTERRUPT VECTOR TCW
LOGICAL LOCATION ADDRESS
PRIORITY (IVL) **

20 1B4
2E 1B8
2F 1BC
30 1CO
31 1C4

THROUGH THROUGH

77 2DC
2EO****

2E4****

2E8****

2EC****
2FO****

7D 2F4****

7E 2F8
7F 2FC

* Vector Locations Shared With Traps
** For Nonextended I/O Devices

lOCO
ADDRESS

** DESCRIPTION

External/Software Interrupts
External/Software Interrupts
External/Software Interrupts
External/Software Interrupts
External/Software Interrupts

THROUGH

External/Software Interrupts
Ending of IPU Processing Trap
(Used by CPU)
Start IPU Processing Trap
(Used by IPU)
Supervisor Call Trap (Used
by IPU)
Error Trap (Used by IPU)
Call Monitor Trap (Used
by IPU)
Stop IPU Processing Trap
(Used by IPU)
External/Software Interrupts
External/Software Interrupts

*** PSW Function - Now External/Software Interrupts - For PSD Mode.
**** IPU Related Traps (See Section II)

All Interrupts Are Externally Generated

6-201

EI
V

DEFINITION

ENABLE INTERRUPT

FCOO

1 1 1 1 1 1
I I I

AUG
PRIORITY LEVEL CODE 0 0

I I . 10.0 0 I

1

0 0 0 0 0 0 0 0 0 0 0 o 0 0

I . . I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If bit position 0 of the PSWR is equal to one (Privileged State). the
priority interrupt level specified by the priority level field (bits 6-12)
in the Instruction Word (IW) is conditioned to respond to an interrupt
signal. If bit position 0 of the PSWR is equal to zero (Unprivileged State).
execution of this instruction will generate the Privileged Violation trap.

NOTES 1. This instruction does not operate with priority levels 216 - 1116'

INSTRUCTION
PRIORITY

LEVEL FIELD

CONDITION CODE
RESUL TS

6-202

ASSEMBLY
LANGUAGE

COOING

NOTE

2. Any stored requests for the specified level are eligible to become
active.

3. In the PSDmode. traps are always enabled.

4. This instruction has no affect on levels assigned to Class F I/O
and is treated as NOP.

5. For levels 0 and 1. the RTOM jumpers provide either constant enable
or software enable/disable.

Bits 6 through

0010010

0010011

0010100

-
-
-
-

1111110

1111111

CC1: No change
CC2: No change
CC3: No change
CC4: No change

EI ,LEVEL

12 Priority Level (Hex)

12

13

14

-
-
-
-
7E

7F

Any stored requests for the specified level are el igible to becCllle acttve. '~

DEFINITION

REQUEST INTERRUPT

FC02

1 1 1 1 1 1

I

I

AUG
PRIORITY LEVEL CODE 0

1 1_ o 1 ,0

0 0 0 0 0 0 0

I I

0 0 o 0 0 0 0 0

RI
V

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If bit position 0 of the PSWR is equal to one (Privileged State), an
interrupt request signal is applied to the interrupt level specified by
the priority level field (bits 6-12) in the Instruction Word (IW). This
signal simulates the signal generated by the internal or external condition
connected to the specified level. If bit position 0 of the PSWR is equal to
zero (Unprivileged State), execution of this instruction will generate the
Privileged Violation Trap. The interrupt request signal is stored in the
specified level whether or not it is enabled and/or active.

NOTES 1. This instruction does not operate with priority levels 216 - 1116'

INSTRUCTION
PRIORITY

LEVEL FIELD

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE CODING

2. For RI's on levels 0 or 1, the RTOM jumpers select either that levels
o and 1 are enabled, or that software enables are required.

3. This instruction has no affect on levels assigned to Class F I/O
and is treated as NOP.

Bits 6 through 12

CCl: No change
CC2: No change
CC3: No change
CC4: No change

RI LEVEL

0000000

0000001

0010010

-
-
-

1111110

1111111

Pri ori ty Level (Hex)

00

01

12

-
-
-

7E

7F

6-203

AI
V

DEFINITION

NOTES

I NSTRUCTI ON
PRIORITY

LEVEL FIELD

CONDITION CODE
RESULTS

6-204

ASSEMBLY
LANGUAGE

CODING

ACTIVATE INTERRUPT

FC03

1 1 1 1 1 1 PRIORITY lEVEL

AUG
CODE
0 1 1 0 0

I

.
0 0 0 0 0 0 o .0 ,0 0 0 0 0 0

I I •
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If bit position 0 of the PSWR is equal to one (Privileged State), a signal
is applied to set the active condition in the priority interrupt level
specified by the priority level field (bits 6-12) in the Instruction Word
(IW). The active level is set in the specified level whether or not that
level is enabled. This condition prohibits this level and any lower levels
not already in service from being serviced until this level is deactivated.
However, request signals occurring at this or lower levels are stored for
subsequent servicing. If bit position 0 of the PSWR is equal to zero
(Unprivileged State), execution of this instruction will generate the
Privileged Violation Trap.

1. This instruction does not operate with priority levels 216 - 1116 ,

2. This instruction has no affect on levels assigned to Class F I/O
and is treated as NOP.

Bits 6 through 12

CC1: No change
CC2: No change
CC3: No change
CC4: No change

AI LEVEL

0000000

0000001

0010010

-
-
-

1111110

1111111

Priority Level (Hex)

00

01

12

-
-
-
7E

7F

(

DEFINITION

DISABLE INTERRUPT

FCOl
z' ,'-

I

1 1 1 1 1 1 PRIORITY LEVEL
J I I I

AUG
CODE

0 o 0 1
0 0 0 0 0 0 0 0

I I

0 0 0 0 0 0

Dr
v

0

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If bit position 0 of the PSWR is equal to one (Privileged State), the priority
interrupt level specified by the priority level field (bits 6-12) in the
Instruction Word (IW) is disabled and will not respond to an interrupt
Signal. If bit position 0 of the PSWR is equal to zero (Unprivileged State),
execution of this instruction will generate the Privileged Violation Trap.
The active state of the interrupt is not affected.

NOTES 1. Any unserviced request signal at this level is cleared by execution of

INSTRUCTION
PRIORITY

LEVEL FIELD

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE

CODING

this instruction.

2. This instruction does not operate with priority levels 216 - 1116 •
3. In the PSD mode, traps are always enabled.

4. This instruction has no affect on levels assigned to Class F I/O
and is treated as NOP.

5. For levels 0 and 1, the RTOM jumpers provide either constant enable
or software enable/disable.

Bits 6 through 12 Priority Level (Hex)

0010010 12

0010011 13

0010100 14

- -
- -
- -

1111110 7E

1111111 7F

CC1: No change
CC2 : No change
CC3: No change
CC4: No change

01 LEVEL

6-205

DAI
V

DEFINITION

DEACTIVATE INTERRUPT

FC04
.

1 1 1 1 1 1 PRIORITY LEVEL , , ,

AUG
CODE 0 0 0
1 0,0 ,

•
o 0 0 0 0 0 0 0 0 0 0 0 0 , , . , • , ,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If bit position 0 of the PSWR is equal to one (Privileged State). a signal
is applied to reset the active condition for the priority interrupt level
specified by the priority level field (bits 6-12) in the Instruction Word.
The specified level is set inactive whether the level is enabled or disabled.
Execution of the Deactivate Interrupt instruction does not clear any request
signals on the specified level or any other level. If bit position 0 of the
PSWR is equal to zero (Unprivileged State), execution of this instruction
will generate the Privileged Violation Trap.

NOTE 1. This instruction does not operate with priority levels 216 - 1116 •

I NSTRUCTI ON
PRIORITY

LEVEL FIELD

COND I TI ON CODE
RESULTS

6-206

ASSEMBLY
LANGUAGE

CODING

2. This instruction has no affect on levels assigned to Class F I/O
and is treated as a NOP.

3. In PSD mode, DAI and the following instruction are executed as an
uninterruptible pair.

4. Using a Deactivate Interrupt and then LPSD (Load Program Status Doubleword)
or a Deactivate Interrupt and then LPSDCM, is preferable to using a BRI (faster)

Bits 6 through 12

0000000

0000001

CC1: No change
CC2 : No change
CC3: No change
CC4: No change

DAI LEVEL

0010010

-

-
-

1111110

1111111

Priority Level (Hex)

00

01

12

-
-
-
7E

7F

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE

COOING

NOTES

ACTIVATE CHANNEL INTERRUPT

FC77

ACI
s,v

,
AUG

OPCODE R CODE CHANNEL SUBADDRESS
1 1 1 1 1 1 1 1 1 0 1 1 1 0 0

• • I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Activate Channel Interrupt will cause the addressed channel to begin
actively contending with other interrupt levels, causing a blocking of its
level, and all lower priority levels, from requesting an interrupt. If a
request is currently pending in the channel, the request interrupt is
removed but the interrupt level remains in contention.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress
field to form the logical channel and subaddress.

specify the operation as an ACI, hex E.

specify the augment code, octal 7.

specify a constant that will be added to the contents
of R to form the logical channel and subaddress. If R
is zero only, constant will be used to specify the
logical channel and subaddress.

CCI. 2. 3. and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condition Codes on page 6-214 of this
manual.

ACI R, I (Constant) I

1. Condition Codes, after execution of the ACI" will be set and can be
tested by a subsequent BCT or BCF to determine if the ACI was accepted
by the channel.

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

6-207

Eer
s,v

DEFINITION

CONDITION CODE
RESUL TS

6-208

ASSEMBLY
LANGUAGE

CODING

NOTES

ENABLE CHANNEL INTERRUPT

FC67
,

~UG
OP CODE R ECI C9DE CHANNEL SUBADDRESS

1 1 1 1 1 1 1 1 0 0 1 1 1 0 0
L I I I.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Enable Channel Interrupt causes the addressed channel to be enabled
to request interrupts from the CPU.

Bits 0-5

Bits 6-8

Bits 9-12

Bi ts 13-15

Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero,
whose contents will be added to the channel and
subaddress field to form the logical channel and
subaddress.

specify the operation as ECI, hex C.

specify the augment code, octal 7.

specify a constant that will be added to the
contents of R to form the logical channel and
subaddress. If R is zero only constant will be
used to specify the logical channel and subaddress.

CCI, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted, For other Condition
Code combinations, refer to the Class F Condition Codes on Page 6-214
of this manual.

ECI R,'(Constant)'

1. Condition Codes after execution of the ECI will be set and can be
tested by a subsequent BCT or BCF to determine if the ECI was
accepted by the channel.

2. If this instructfon is executed for a Non-Class F channel, an
Undefined Instruction Trap will occur.

DESCRIPTION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE

COOING

NOTES

DISABLE CHANNEL INTERRUPTS

FC6F

OP CODE R DCI
1 1 1 1 1 1 1 1 0

DCI
s,v

AUG
~ODE CHANNEL SUBADDRESS

1 1 1 1 0 0

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 2526 27 28 29 30 31

The Disable Channel Interrupt causes the addressed channel to be disabled
from requesting interrupts from the CPU.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

specify the operation code. octal 77.

specify the General Purpose Register. when nonzero.
whose contents will be added to the channel and
subaddress field to form the logical channel and
subaddress.

specify the operation as DCI. hex D.

specify the augment code. octal 7.

Bits 16-31 specify a constant that will be added to the contents
of R to form the logical channel and subaddress. If R is
zero. only constant will be used to specify the logical
channel and subaddress.

CC1. 2. 3. and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition
Code combinations refer to the Class F Condition Codes on page 6-214 of
this manual.

DCI R,'(Constant)'

1. Condition Codes after execution of the DCI will be set and can be
tested by a subsequent BCT or BCF to determine if the DCI was
accepted by the channel.

2. If this instruction is executed for a Non-Class F channel. an
Undefined Instruction Trap will occur.

6-209

OACI
s,V

DEFINITION

CONDITION CODE

6-210

ASSEMBLY
LANGUAGE

CODING

NOTES

DEACTIVATE CHANNEL INTERRUPT

FC7F

AUG
OP CODE R DACI ~ODE CHANNEL SUBADDRESS

1 1 1 1 1 1 1 1 1 1 1 1 1 0
1

0 _1

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Deactivate Channel Interrupt will cause the addressed channel to remove
its interrupt level from contention. If a request interrupt is currently
queued, the deactivate will cause the queued request to actively request if
the channel is enabled.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero,
whose contents will be added to the channel and
subaddress fields to form the logical channel and
subaddress.

specify the operation as DACI, hex F.

specify the augment code, octal 7.

specify a constant that will be added to the contents
of R to form the logical channel and subaddress. If R
is zero, only constant will be used to specify the logical
channel and subaddress.

CC1, 2, 3. and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations, refer to the Class F Condition Codes on page 6-214 of this
manual.

DACI R,'(Constant)'

1. Condition Codes after execution of the DACI will be set and can be tested
by a subsequent BCT or BDF to determine if the DACI was successfully
executed.

2. On PSD mode, the DACI and following instructions are executed as an
uninterruptible pair.

3. Using Deactivate Channel Interrupt and LPSD or Deactivate Channel
Interrupt and LPSDCM is preferable to using a BRI.

4. If this instruction ;s executed for a Non-Class F channel, an
Undefined Instruction Trap will occur.

5. All DACI instruction abnormalities or I/O protocol violations
are connected to the System Check Trap unless an initial channel
nonpresent or inoperable condition is found.

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE

CODING

NOTE

BLOCK EXTERNAL INTERRUPTS BEl

0006

I; 0 0 0:0 010 0:010 a 010 110
0111.1.1 •• 110111-

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 2526 27 2829 30 31

The execution of this instruction prevents the CPU from sensing all
interrupt requests generated by the I/O channel and RTOM.

CCl: No change
Ce2: No change
CC3: No change
CC4: No change

BEl

'The CPU must have previously been set to PSD mode.

6-211

UEI

DEFI NITION

CONDITION CODE
RESULTS

6-212

ASSEMBLY
LANGUAGE

CODING

NOTE

UNBLOCK EXTERNAL INTERRUPTS

0007

10000:001; o:oJo 0 0101 1 1~
."'.'.' .. '.'."'-o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25' 26 27 28 29 30 31

The execution of this instruction causes the CPU to sense all interrupt
requests generated by the I/O channel and RTOM.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

UEI

The CPU must have previously been set to PSD mode.

INPUT/OUTPUT
INSTRUCTIONS

GENERAL
DESCRIPTION

I NSTRUCT I ON
FORMATS

INPUT/OUTPUT

The Input/Output instructions provide the capability to perform Command or
Test operations to attached peripheral devices. Both the Command Device
and the Test Device instructions cause a 16-bit function code to be sent
to the device specified by the instruction.

The following instruction format is used by both Input/Output instructions.

AUG
OPCODE DEVICE NO CODE FUNCTION CODE

-' -'~ ~L~ • •• ••
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

Sits 0-5

Bits 6-12

Bi ts 13-15

Bits 16-31

define the Operation Code.

designate the device number.

define the Augmenting Operation Code.

contain the 16-bit function code.

CONDITION CODE ''fThe Condition Code is set during execution of a Test Device instruction to
UTILIZATION indicate the result of the test being performed. The Command Device in­

struction leaves the current Condition Code unchanged.

6-213

CLASS F I/O
I NSTRUCTI ONS

6-214

I NSTRUCTI ON
FORMAT

NOTES

All Class F I/O instructions will be in the following format:

. AUG
OP CODE R SUB OP CODE CHANNEL SUBADDRESS

1 1 1 1 1 1 1 1 1 0 I , 0

o 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 lB 19 20 21 22 23 24 25 26 27 2B 29 30 31

Op Code bits 0-5 and Aug Code bits 13-15 must contain ones. The R field
(bits 6-S), if nonzero. specifies the general register whose contents will be
added t~ the channel and subaddress field bits 16-31 to form the logical
channel and subaddress. If R is specified as zero. only the channel and
subaddress fields will be used. The format of the computed logical
channel and subaddress is:

.
LOGICAL CHANNEL SUBADDRESS

0 0,0,0 o 10 10 0 0 o ,0 0 0, 0,0 0 0, I I 0. • • •
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The subaddress will be ignored by the channel if the operation does not
apply to a controller or device.

The sub op field bits 09-12 specify the type of operation that is to be
performed as described below:

BITS 09-12

o 0 0 0 - X'O'
0001-X'I'
o 0 1 0 - X'2'
o 0 1 1 - X'3'
o 1 0 0 - X'4'
o 1 0 1 - X'5'
0110-X'6'
o 1 1 1 - X'?'
1 0 0 0 - X'S'
1 0 0 1 - X'9'
1 0 1 0 - X' A'
1011-X'B'
1100-X'C'
1 1 0 1 - X'D'
1110-X'E'
1 1 1 1 - X' F'

SUB OP

Unassigned
Unassigned
START I/O (SIO)
TEST I/O (TIO)
STOP I/O (STPIO)
RESET CHANNEL (RSCHNL)
HALT I/O (HIO)
GRAB CONTROLLER (GRIO)
RESET CONTROLLER (RSCTL)
ENABLE WRITE CHANNEL WCS (ECWCS)
Unassigned
WRITE CHANNEL wcs (WCWCS)
ENABLE CHANNEL INTERRUPT (ECI)
DISABLE CHANNEL INTERRUPT (DCI)
ACTIVATE CHANNEL INTERRUPT (ACI)
DEACTIVATE CHANNEL INTERRUPT (DACI)

1. Channel must be ICl'd as Class F.

2. EXR. EXRR, and EXM may not be used.

3. Must be in PSD mode.

4. CCs must be tested after each instruction.

5. CD. TO. EI. 01, AI, DAI, and RI cannot be executed to Class F channel.

-~----

CLASS F
CONDITION CODES

The condition codes will be set for the execution of all Class F I/O
instructions and indicate the successful or unsuccessful initiation
of an I/O instruction. The condition codes can be set by the CPU,
for channel busy and inoperable or undefined channel, or by the
infonmation passed directly from the channel. The assignments for
the condition codes are:

CC1 CC2 CC3 CC4

0 0 0 0 REQUEST ACTIVATED, WILL ECHO STATUS
0 0 0 1 CHANNEL BUSY
0 0 1 0 CHANNEL INOPERABLE OR UNDEFINED
0 0 1 1 SUBCHANNEL BUSY
0 1 0 0 STATUS STORED
0 1 0 1 UNSUPPORTED TRANSACTION
0 1 1 0 UNASSIGNED
0 1 1 1 UNASSIGNED
1 0 0 0 REQUEST ACCEPTED AND QUEUED, NO ECHO STATUS
1 0 0 1 UNASSIGNED
1 0 1 0 UNASSIGNED
1 0 1 1 UNASSIGNED
1 1 0 0 UNASSIGNED
1 1 0 0 UNASSIGNED
1 1 1 0 UNASSIGNED
1 1 1 1 UNASSIGNED

Although 16 encoded condtions are possible, only the assigned patterns
will occur.

--- ------------------------ -----------"--"--------- ------. --- -- "--"- ------ ---

6-215

CD
n,f

DEFINITION

CONDITION CODE
RESULTS

6-216

ASSEMBLY
EXAMPLE

NOTES

COMMAND DEVICE

FC06

1 1 1 1 1 1 oe:Y1(::E ,A.D~~E~S
. ,

.
1 1 (j COMMAND CODE

• . • • • .
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the Command Code field (bits 16-31) are transferred to the
Device Controller Channel specified by the device address contained in
bit positions 6-12 of the Instruction Word.

CC1: No change
CC2: No change
CC3: No change
CC4: No change

CD

CD

Dev Comm
Add Code

X ' 7 A' , X ' 8000 '

X'78' ,X'9000'

Command

Output data to device 7A

Input data from device 78

1. Class 0,1,2,3, and E I/O Processor instruction only.

2. If the CPU is in the PSW mode and a CD instruction to a
Class F channel is attempted, a No Operation (NOP) will be
executed instead.

3. If the CPU is in the PSD mode and a CD instruction to a Class F
channel is attempted, a System Check Trap will occur.

\

DEFINITION

NOTE

CONDITION CODE
RESULTS

ASSEMBLY
EXAMPLE

TEST DEVICE

FCOS

TD
nJ

,
1 1 1 1 1 1 DEVICE ADDRESS 1 0 1 TEST CODE 0 0 0 0 . . I . ,
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the Test Code field (bits 16-27) are transferred to the
Device Con troll er Channel (DCC) specified by the device address contained
in bit positions 6-12 of the Instruction Word. The device test defined by
the Test Code is performed 1'n the DCC, and the test results are stored in
Condition Code bits 1-4 (CC1_4).

A TD having a unique Test Code is available with most peripheral devices.
Execution of a TD with this code causes a snapshot of all device and DCC
status to be stored in memory. The individual peripheral device reference
manuals define the operation of this instruction with each device.

Test results defined for specific peripheral device.

TO

TO

Dev Comm
Add Code

X'10' ,X'BOOO'

X'10' ,X'2000'

Command

Request the Controller Status for unit 10

Request the Device status for unit 10

NOTES 1. Class 0,1,2,3, and E 1/0 Processor instruction only.

2. If the CPU is in the PSW mode and a TO instruction to a Class F
channel is attempted, the following Condition Codes will be set:

a. TO BOOO - CC3 (Channel Error)

b. TO 4000 - CC3 (Program Violation

c. TO 2000 - CC2 (Status Transfer Not Performed)

3. If the CPU is in the PSO mode and a TO instruction to a Class F
channel is attempted, a System Check Trap will occur.

6-217

SIO
s,v

DEFI NITION

CONDITION CODE
RESULTS

6-218

ASSEMBLY
LANGUAGE

CODING

NOTES

START I/O

FCl7

OP CODE
1 1 1 1

R SIO
1 1 0 0 1

AUG
CODE CHANNEL SUBADDRESS

0 1 1 1 0 0 ,
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

Start I/O will be used to begin I/O execution or to return appropriate
Condition Codes and status if I/O execution could not be accomplished.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress
fields to form the logical channel and subaddress.

specify the operation as an SIO, hex 2.

specify the augment code, octal 7.

specify a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CC1, 2, 3, and 4 = (00002) or (10002)

This indicates that the instruction was accepted. For other Condition
Code combinations refer to the Class F Condition Codes on page 6-214
of this manual.

SIO R,'(Constant)'

1. Condition Codes, after execution of an SIO, will be set and can be
tested by a subsequent BCT or BCF to ascertain if the I/O was
accepted.

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

DEFINITION

COND I TI ON CODE
RESULTS

ASSEMBLY
LANGUAGE

CODING

NOTES

TEST I/O

FClF

OP CODE

1 1 1 1 1

R TIO

1 . I I a a 1

TIO
s,v

AUG
CODE CHANNEL SUBADDRESS

1 1 1 1 a a
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Test I/O will be used to test controller state and to return appropriate
Condition Codes and status reflecting the state of the addressed controller
and/or device. Channel implementation will dictate the depth that the
channel must test to determine current state.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress
fields to form the logical channel and subaddress.

specify the operation as a TIO, hex 3.

specify the augment code, octal 7.

Specify a constant that will be added to the contents of
R to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CC1, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condition Codes on Page 6-214 of this
manual.

TIO R,'(Constant)'

1. Condition Codes, after execution of the TIO, will be set and can be
tested by a subsequent BCT or BCF to ascertain channel/controller/device
state.

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

6-219

STPIO
s,v

DEFINITION

CONDITION CODE
RESULTS

6-220

ASSEMBLY
LANGUAGE

CODING

NOTES

STOP I/O

FC27

1 1
OP CODE

1 1 1
R

1 0

AUG
STPIO CODE CONSTANT

1 0 0 1 1 1

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The STOP I/O (STPIO) is used to terminate the current I/O operation after
the completion of the current lOCO. The STOP I/O applies only to the
addressed subchannel, and the only function is to suppress command and
data chain flags in the current lOCO.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress fields
to form the logical channel and subaddress.

specify the operation as a STPIO, hex 4.

specify the augment code, octal 7.

specify a constant that will be added to the contents of
R to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CC1, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condition Codes on page 6-214 of this
manual.

STPIO R,'(Constant)'

1. Condition Codes, after execution of an STPIO, will be set and can be
tested by a subsequent BCT or BCF to ascertain the channel/controller/
device state.

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE

CODING

RSChNL
RESET CHANNEL

FC2F

OP CODE
1 1 1 1 1

R RSCHNL

1 I 0 1 0

s,v

I\UG

CODE CHANNEL SUBADDRESS

1 1 1 1 0 I I I I 0

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23242526 27 28 29 30 31

The Reset Channel (RSCHNL) causes the addressed channel to cease and
reset all activity and to return to the idle state. The channle will
also reset all subchannels. No controller or device will be affected.
Any requesting or active interrupt level will be reset.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress fields
to form the logical channel and subaddress.

specify the operation as a RSCHNL, hex 5.

specify the augment code, octal 7.

specify a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CC1, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condtion Codes on page 6-214 of this manual.

RSCHNL R,'(Constant)'

NOTES 1. Condition Codes, after execution of a RSCHNL, will be set and can be
tested by a subsequent BCT or BCF to ascertain the channel/controller/
device state.

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

6-221

HID
S,v

DEFINITION

CONDITION CODE
RESULTS

6-222

ASSEMBLY
LANGUAGE

CODING

HALT I/O

FC37

OPCODE
1 1 1 1 1

R HIO
1 0 1

AUG
CODE CHANNEL SUBADDRESS

1 0 1 1 1 0 , 0

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

Halt I/O (HIO) is used to cause an immediate but orderly termination in the
controller. The Device End condition will notify the software of the actual
termination in the controller; thus, indicating its availability for new
requests. If the Halt I/O caused the generation of status relating to the
terminated I/O operation, then the Device End condition for the termination
of the I/O operation will be the only Device End condition generated.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bists 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress fields
to form the logical channel and subaddress.

specify the operation as a HIO, hex 6.

specify the augment code, octal 7.

specify a constant that will be added to the contents of
R to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CC1, 2. 3. and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condition Codes on page 6-214 of this
manual.

HID R,'(Constant)'

1. Condition Codes after execution of the HIO, will be set and be tested by
a subsequent BCT or BCF to ascertain if the HIO was successfully
executed.

2. If this instruction is executed for a Non-Class F channel. an Undefined
Instruction Trap will occur.

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE

CODING

NOTES

GRAB CONTROLLER

FC3F

GRIO
S,v

I
AUG

OPCODE R GRIO CODE CHANNEL SUBADDRESS
1 1 1 1 • 1 1 o 1 1 1 1 1 1 0 I 0

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Grab Controller (GRIO) will cause the addressed controller to release
itself from the currently assigned channel and to reserve itself for the
grabbing channel.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress fields
to form the logical channel and subaddress.

specify the operation as GRIO, hex 7.

specify the augment code, octal 7.

specify a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CC1, 2. 3. and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Codes on page 6-214 of this manual.

GRIO R,'(Constant)'

1. Condition Codes. after execution of the GRIO, will be set and can be
tested by a subsequent BCT or BCF to determine if the GRIO was
successfully executed.

2. If this instruction is executed for a Non-Class F channel, an
Undefined Instruction Trap will occur.

6-223

RSCTL
s,V

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE

CODING

RESET CONTROLLER

FC47

I AUG I I

R RSCTL CODE CHANNEL SUBADDRESS
1 1 ,1 , 1 , 1 1 , 1 0 O~O J 0 I~_ i , 0 I ,
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This instruction causes the addressed controller to be completely reset. In
addition, the subchannel and all pending and generated status conditions are
cl eared.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register (R), when nonzero,
whose contents will be added to the channel and subaddress
fields to form the logical channel and subaddress.

specify the operation as RSCTL, hex 8.

specify the augment code, octal 7.

specifies a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CCI. 2, 3, and 4 = (000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condition Codes on page 6-214 of this
manual.

RSCTL R,'(Constant)'

NOTE If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

6-224

it
1\

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE

CODING

NOTES

ENABLE CHANNEL WCS LOAD

FC4F

ECWCS
s,v

3 FFF TOP ADDRESS

I OPCODE: : 11 E~W~S: 1 11 ;9UD
\ I oj 0 I

.. ' I I • I '. I I 't I : , , , 10 I. . : . . . I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Enable Channel WCS Load (ECWCS) sets an interlock within the CPU to
enable the loading of WCS. The ECWCS must be the first of a 2-instruction
sequence.

Bits 0-5

Bits 6-8

Bits 9-12

Bits 13-15

Bits 16-31

Specify the operation code, octal 77.

Specify the general register, when nonzero, whose contents
will be added to the channel and subaddress fields to form
the logical channel and subaddress.

Specify the operation as an ECWCS, hex 9.

Specify the augment code, octal 7.

Specify a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CC1, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations, refer to the Class F Condition Codes on page 6-214 of this
manual.

ECWCS R,'(Constant)'

1. Condition Codes after the execution of the ECWCS instruction will be
set and can be tested by a subsequent BCT or BCF to ascertain whether
the ECWCS instruction was successfully executed.

2. If this instruction is executed for a Non-Class F channel, an
Undefined Instruction Trap will occur.

6-225

WCWCS
s,V

DEFINITION

CONDITION CODE
RESULTS

6-226

ASSEMBLY
LANGUAGE

CODING

NOTES

WRITE CHANNEL WCS

FC5F

.
OPCODE

t • 1 , 1 1 , 1 • 1
R
. .

WCWCS
1,0 1 1

3 FFF

AUG
CODE
1 1 1 0 0 •• 0 I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Write Channel WCS (WCWCS) causes the loading of the channel WCS. The
WCWCS must be the second instruction executed to the Class F I/O controller,
the first being ECWCS, without any intervening I/O instructions to the
Class F I/O controller to be loaded.

Bits 0-5

Bits 6-8

Bi ts 9-12

Bits 13-15

Bits 16-31

Specify the operation code, octal 77.

Specify the general register, when nonzero, whose contents
will be added to the channel and subaddress fields to form
the logical channel and subaddress.

Specify the operation as a NCWCS, hex B.

Specify the augment code. octal 7.

Specify a constant that will be added to the contents of
R to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CC1, 2. 3. and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condition Codes on page 6-214 of this
manual.

WCWCS R.'(Constant)'

1. The information that is required by the WCS load will be passed to the
Class F I/O controller by a parameter list. The lOCO address location
specified for this controller will be initialized by software prior to
the execution of this instruction. The subaddress field will be ignored.

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

3. If the WCWCS instruction is not preceded by an ECWCS instruction, a
System Check Trap will occur.

('

lOCO FORMAT FOR
cLAss F 170 wcs

o 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 2526 27 26 29 30 31

01234567 6 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 26 29 30 31

Real Data Address: Bits 8-31 (MSW) will contain the address of the
memory location for the first word to be loaded.

Start WCS Address: Bits 0-15 (LSW) will contain the address of WCS
where the first word is to be loaded.

Byte Count: Bits 16-31 (LSW) will contain the number of bytes
to be loaded.

6-227/6-228

INTRODUCTION

PANEL LOCK

POWER

RUN/HALT

SYSTEM RESET

ATTENTION

INITIAL
PROGRAM LOAD

CLOCK
OVERRIDE

OPERA T10N/MODE
INDICATORS

PARITY
"""'£"IfImR

INTERRUPT
ACTIVE

SECTION VII

CONTROL PANEL

This section describes the function and operation of the Serial System
Control Panel of the 32/70 Series Computer. Figure 7-1 shows the
contro 1 s, keyboards, and di sp 1 ays of the Seri a 1 System Control Panel.

The PANEL lOCK switch is a two-position rotary key switch having an
unlocked and locked position. The turnkey can be removed in .either .
position. When the switch is in the unlocked position, all panel keys
on the Serial System Control Panel are operational. In the locked
position, all panel keys are disabled except for the ATTENTION key and
those panel keys for write/read of control switches on the Hexadecimal
Keyboard and the Function Keyboard whi ch remai n operat i ona 1 at all
times.

The POWER switch is a two-position latching pushbutton which provides
the capability to power the system on or off. The state of the power is
determined by the RUN and HALT indicators. When the power is on, either
the RUN or HALT indicator is on. When the power is off, all indicators
on the panel will be off.

Depressing the RUN/HALT key while the CPU is in the Halt mode causes the
CPU to enter the Run mode and begin executing instructions from the
location specified in the Program Status Word.

Depressing the RUN/HALT key while the CPU is in the Run mode causes the
CPU to enter the Halt mode. In the Halt mode, the CPU no longer
executes instructions from memory; instead, it is placed in a micro­
routine which monitors selected panel support functions.

Depressing the SYSTEM RESET key when the system is in the Halt mode
initializes all appropriate logic in all SelBUS devices.

Depressing the ATTENTION key causes an interrupt to occur at the
Attention Interrupt level, priority level 1316 •

Depress i ng the INITIAL PROGRAM lOAD key when the CPU is in the Halt
mode puts the CPU in the Initial Program load mode. This initiates the
microprogram loading sequence which consists of reading a dedicated
device address and then reading from the specified device. The device
number is entered through the Serial System Control Panel.

Depressing the ClK OVRD key activates the override condition; no further·
interrupts from the Real-Time Clock or the Interval Timer will be per­
mitted. A second depression of this key deactivates the clock override
condition.

The Operation/Mode indicators consist of single-bit, light-emitting
diodes. These indicators display either the operational mode of the CPU
or a conditioned interruption in computer operation.

The PARITY ERROR display, when lit, indicates that a memory parity error
has occurred during a CPU memory access.

The INTERRUPT ACTIVE di sp 1 ay is on if any interrupt (I/O or externa 1)
is in the active state.

7··1

--.J
I

N

"
<0
C
-;
fD

--.J
I
~

-I
:::r
fD

W
N
--.J
o
Vl
fD
-;
fD
VI

("")

o
::;,
r+
-;
o

-0

'" ::;,
fD

~

DISPLAY A

EVEN REG e ~~~~~ eSTOP

e psw e INSTR STOP

o 1 2 3 14 5 6 7 Is 9 10 11 112 13 14 1S 16 11 18 19 120 21 22 23 124 25 26 21 128 29 30 31

• • •• •••• •••• •••• •••• •••• •••• •••• •••• • ~~:~~~ • R,::;~~gp

DISPLAY B • OP:A~:~R • w':,~~~~~p
ODD REG _ M;:TOARY e ERROR

• E=~~~~';SE • ~~T~~~;

• • •• • 1 •••• 1 •••• 1. .. •• • ••• 1 1, •••• 1. it •• • INSTRUCTION • KEYBOARO
L-__ _ ___ _

ENGINEERING LABORATORIES

t R~G J r I 1 R~G
. ;------<

3

"e
ReG . ,

INSTA
STOP

~ J~ r R~G I 1
ReG

~----' ..
B L~ L~J

B
MA PC csws . . .'
C D I PS~2 F

Mo €A CONv KEYBOARD l
~

I I INITIAL T
ATTENTION PROGRAM LOAD .

sID I SYSTEM RESET
elK RUN

OVRD HALT
,~ . .-

POWER PANEL LOCK

UNLOCKED_LOCKED

"w"

CLOCK
OVElmDt

RUN

HALT

WAIT

KEYBOARDS

HEXADECIMAL
KEYBOARD

The CLOCK OVERRIDE display is on when the clock override condition is
active (The ClK OVRD key is depressed.)

The RUN display is on when the CPU is in the Run mode. While in the Run
mode, the CPU is executing instructions.

The HALT display is on when the CPU is in the Halt mode. In this mode,
no instructions are executed.

The WAIT display is on when the CPU is in the Wait state: that is, no
instructions are being executed. However, I/O operations continue to
completion.

The Hexadecimal keyboard and the Function keyboard operate in con­
junction with the panel displays as a unified Input/Output device to
the CPU. Operation of the keyboards provides the capabi 1 ity to se­
lectively store and/or read data in memory or in registers.

The Hexadecimal keyboard, referred to as the "Hex keyboard," is used to
either enter data into the B-Display or to enter the source/destination
of the panel function to be- performed. The dual function of each Hex
keyboard key is indicated by the upper and lower case values printed on
each key.

The upper case values are used when data is entered into the B-Disp1ay.
The upper case values are enabled by first depressing the Function
keyboard KEYBOARD key. The Function keyboard KEYBOARD key causes the
B-Display to be cleared and the KEYBOARD indicator to illuminate. When
the KEYBOARD indicator is illuminated, all entries from the Hex keyboard
are interpreted as data and are entered into the B-Di sp 1 ay by a 4-bi t
left shift of the contents of the B-Disp1ay and insertion of the hex
value of the depressed key into the four least significant bit positions
(hex digit) of the B-Disp1ay. If the 32-bit capacity of the B-Display is
exceeded, the most significant four bits of the B-Disp1ay are shifted
out of the display and lost, and the new digit is loaded into the least
significant bit positions.

The lower case values of the Hex keyboard are used to specify the
source/destination of a function to be performed by the Serial System
Control Panel. The lower case values are enabled by first depressing

the Function keyboard ~ key or the RE~D keys, causing the subsequent

entry from the Hex keyboard to be interpreted as the source/destination
_of the Write or Read function. When a source/destination is entered in
the Hex keyboard, it causes a correspondi ng i ndi cator- to i 11 umi nate on
the Serial System Control Panel. The Hex keyboard keys that cause an
indicator to illuminate are listed as follows:

1. The ~ , ~ ,~ , and ~ keys cause the EVEN regi ster Hex

indicator to indicate the hexadecimal value of the even register
addressed.

2. The ~ , R~ , ~ , and ~ keys cause the ODD REGISTER Hex in­

dicator to indicate the hexadecimal value of the odd register ad­
dressed.

3. The M\ key causes the MEMORY ADDRESS i ndi cator to ill umi nate.

7-3

7-4

FUNCTION
KEYBOARD

WRITE
-X-

KEY

READ
-X-

KEY

WRITE &
INC 'A'

KEY

INC 'A'
& READ

KEY

4.

5.

6.

7.

8.

9.

10.

The p-fw- key causes the PSW (Program Status Word) indicator to

ill umi nate.

A The PC key causes the PROGRAM COUNTER i ndi cator to ill umi nate.

The dks key causes the CONTROL SWITCHES i ndi cator to ill umi nate.

The ~ key causes the MEMORY DATA indicator to illuminate.

The ~A key causes the EFFECTIVE ADDRESS indicator to illuminate.

The k- key causes the second word of the PSD to be di sp 1 ayed

in the B-Display.

F
The arnv
verted to
Display.

key causes a logical address in the A-Display to be con­

a 24-bit physical address and be displayed in the B-

The Function keyboard sets the function to be performed by the Control
Pane 1 accordi ng to the key that is depressed. The functions that can
be selected by the Function keyboard keys are as follows:

Depress i ng the WR;TE key causes the operand in the B-Di sp 1 ay to be

stored in the destination specified by a subsequent depression of a
Hex keyboard key. The lower case value of the Hex keyboard key
describes the destination of the opet'and and the function indicator

that will illuminate. The use of the Hex keyboard ~ key is prohibited

for the destination of a Write function. If the Hex keyboard ~D is de­

pressed, the contents of the A-Display (which must contain a valid
memory address, PSW, or Program Counter Value) are used to address
memory. The operand in the B-Displayis stored at that memory address.

Depressing the R~AD key causes the operand specified by a subsequent de­

pression of a Hex keyboard key to be loaded into either the A- or
B-Display. The lower case value of the Hex keyboard key describes the
source of the operand and the function indicator that will illuminate.

The use of the Hex keyboard ~A key is prohi bited as a source of a Read

function.

If the Hex keyboard ~ key is depressed, the contents of the A-Display

(which must contain a valid memory address, PSW, or Program Counter
Value) are used to address memory. The contents of the addressed
memory location are loaded into the B-Display.

Depressing the WRITE & INC 'A' key causes the operand in the B-Display
to be stored in the memory 1 ocat i on addressed by the A-Di sp 1 ay. The
A-Display is then incremented by four (one memory word). The A-Display
must contain a valid memory address, and the B-Display must contain
the operand to be stored in memory. The WRITE & INC 'A' key is used
for Write functions to sequential memory locations.

The INC I A I & READ key causes the address in the A-Di sp 1 ay to be i n­
cremented by four (one memory word), and the updated address is used
to address memory. The contents of the addressed memory location are
then loaded into the B-Display. The A-Display must contain a valid
memory address. The INC 'A' & READ Key is used for Read functions of
sequential memory locations.

EXT FUNCT
KEY

INSTR STOP
KEY

OPRND
R STOP

KEY

OPRND
W STOP

KEY

INSTR
STEP

KEY

KEYBOARD
KEY

The EXT FUNCT key is used for extended functions, such as a 1 amp test
routine.

Depressing the INSTR STOP key causes the Instruction Stop function to
become active or inactive. If the Instruction Stop function was active,
and the INSTR STOP indicator was illuminated, depressing the Function
keyboard INSTR STOP key would deactivate the Instruction Stop function
and turn off the indicator. If the Instruction Stop function was
inactive, and the INSTR STOP indicator was off, depressing the Function
keyboard INSTR STOP key would activate the Instruction Stop function,
illuminate the INSTR Stop indicator and load the memory address from the
B-Di sp 1 ay into the Address Compare regi ster. When the CPU fetches an
instruction from the memory location specified by the Address Compare
register, the STOP indicator illuminates, and the CPU halts. The
B-Display must be loaded with the instruction address by way of the Hex
keyboard before depressing the Function keyboard INSTR STOP key.

Depressing the OPRND R STOP key causes the Operand Read Stop function
to become active or inactive. If the Operand Read Stop function was
active, and the OPERAND READ STOP indicator was illuminated, depressing
the Function keyboard OPRND R STOP key would deactivate the Operand Read
Stop function and turn off the i ndi cator. If the Operand Read Stop was
inactive, depressing the Function keyboard OPRND R STOP key would
activate the Operand Read Stop function and load the memory address from
the B-Display into the Address Compare register. When the CPU reads an
operand from the specified memory location, the STOP indicator
ill umi nates, and the CPU halts. The B-Di sp 1 ay must be loaded wi th the
operand memory address by way of the Hex keyboard before depressing the
OPRND R STOP key. The address in the B-Display for Compare Halt must be
entered in a 24-bit physical address format.

Depressing the OPRND W STOP key causes the Operand Write Stop function
to become active or inactive. If the Operand Write Stop function was
active, and the OPERAND WRITE STOP indicator was illuminated, depressing
the function keyboard OPRND W STOP key would deactivate the Operand
Wri te Stop function and turn off the i ndi cator. If the Operand Wri te
Stop was inactive, depressing the Function keyboard OPRND W STOP key
would activate the Operand Write Stop function, illuminate the OPERAND
WRITE STOP i ndi cator, and load the memory address from the B-Di sp 1 ay
into the Address Compare register. When the CPU stores an operand in the
specified memory location, the STOP indicator illuminates, and the CPU
halts. The B-Display must be loaded with the operand memory address by
way of Hex keyboard before depressing the OPRND W STOP key. The address
in the B-Display for Compare Halt must be entered in a 24-bit physical
address format. .

Depressing the INSTR STEP key causes both the A- and B-Displays and all
function indicators, except the Instruction and Operand STOP indicators,
to be cleared. It then causes the CPU to execute one software instruc­
tion that is addressed by the CPU Program Status Word Register. After
one instruction has been executed, the CPU halts, the A-Display will in-.
dicata the next Program Status Word, and the B-Display will indicate the
new Instruction word.

Depressing the KEYBOARD key causes the B-Display to be cleared, the KEY­
BOARD indicator to illuminate, and any subsequent Hex keyboard entries
to be interpreted at their upper case values and inserted into the four
rightmost bit positions of the B-Display. The KEYBOARD key is normally
used to clear the B-Display before entering an operand into the
B-Display from the Hex keyboard.

7-5

7-6

PANEL
DISPLAYS

A-DISPLAY The A-Display consists of 32 binary indicators that are divided into
eight 4-bit fields for easy hexadecimal read-out. When the Hex Display
option is included in the Serial Control Panel, a hex display indicator
above each 4-bit field provides a direct hexadecimal read-out of the
contents of the field.

The contents of the A-Display are described by the function indicators
di rect ly to the ri ght of the A-Di sp 1 ay or by the EVEN REGISTER hex
di sp 1 ay i ndi cator to the 1 eft of the A-Di sp 1 ay. The contents of the
A-Display can be any of the following:

1. A memory address in bit positions 8-31.

2. The contents of the CPU Program Status Word Register.

3. The Program Counter bits from the CPU Program Status Word Register
in bit positions 8-31.

4. The most significant word of the Program Status Doubleword.

5. The contents of any of four even-numbered CPU general purpose
registers.

The A-Display can be loaded in either a Write or a Read function, as
specified by the corresponding keys of the Function keyboard. In a
Write function, the A-Display is loaded as follows:

1. The B-Display is loaded with an operand or address by way of the
Hex keyboard.

2. The Function keyboard ~TE key is depressed to specify the Write

function.

3. The Hex keyboard lower case value (operand destination) is spec­
ified by depressing one of the even-numbered register keys on
the MA, PSW. or PC keys.

In a Read function, the A-Display is loaded as follows:

1. The Function keyboard ~ key is depressed to specify the Read

function.

2. The Hex keyboard lower case value (operand source) is specified by
depressing one of the even-numbered register keys, the PSW or the
PC key.

When the Read function is complete, the operand specifi ed by the Hex
keyboard will be loaded into the A-Display, and the corresponding
function indicator will illuminate to define the contents of the
A-Display. The exception being the E key which will load PSD word 2 into
the B-Display.

When the A-Display contains a memory address, Program Status Word, or
Program Counter, the contents of the A-Display can be used to address
memory during memory Read or Write functions. In these types of
funct ions, the WRITE & INC I A I and the INC I A I & READ keys of the
Function keyboard can be used to access memory and increment the
contents of the A-Display to the next sequential memory word address.

B-DISPLAY The B-Display consists of 32 binary indicators that are divided into
eight 4-bit fields for easy hexadecimal read-out. When the Hex Display
option is included in the Serial System Control Panel, a hex display
indicator above each 4-bit field provides a direct hexadecimal read-out
of the contents of the field.

The contents of the B-Display are described by the function indicators
to the ri ght of the B-Di sp 1 ay or by the ODD REGISTER hex di sp 1 ay
indicator to the left of the B-Display. The contents of the B-Display
can be any of the following:

1. Keyboard data being entered from the Hex keyboard.

2. A memory data word.

3. An Effective Address of the instruction addressed by the PSW or PC
in the A-Display.

4. An instruction addressed by the PSW or PC in the A-Display.

5. The contents of the CPU Control Switches in bit positions 0-11.

·6. The contents of any of four odd-numbered CPU General Purpose Reg­
isters.

7. The least significant word of the Program Status Doubleword (PSD).

8. The physical address in an address conversion operation.

The B-Display can be loaded in either a Write or Read function, as
specified by the corresponding keys of the Function keyboard. In a
Write function, the B-Display is loaded as follows:

1. An operand is loaded from the Hex keyboard.

2. The Function keyboard ~ key is depressed to specify the Write
function.

3. The contents of the B-Display can be transferred to the A-Display
by depressing any even-numbered regi ster key, the MA key, the PSW
key, or the PC key to specify the operand destination.

4. The contents of the B-Display can be transferred directly to an
odd-numbered register, the CPU Control Switch register, or to the
memory location addressed by the A-Display by depressing one of
the odd-numbered regi ster keys, the CSWS key, or the MD key, res­
pectively, to specify the operand destination.

In a Read function, the B-Display is loaded as follows:

1. The Function keyboard ¥ key is depressed to specify a Read
function.

2. The Hex keyboard lower case value (operand source) is specified
by depressing an odd-numbered register key, the CSWS key, the MD
key, the EA key, or the PSD2 key.

When the Read function is complete, the corresponding indicator will
illuminate to define the contents of the B-Display.

7-7

ODD/EVEN
INDICATORS

EVEN REGISTER
INDICATOR

ODD REGISTER
INDICATOR

MISCELLANEOUS
INDICATORS

MEMORY ADDRESS
INDICATOR

PSW
INDICATOR

PROGRAM
COUNTER

INDICATOR

OPERATOR FAULT
INDICATOR

7-8

The EVEN REGISTER indicator consists of a hexadecimal display (optional)
indicator that provides a direct read-out of the even-numbered register
being addressed by the Serial System Control Panel. The contents of
this register are displayed to the left of the A-Display. The EVEN
REGISTER indicator will be illuminated only when the A-Display contains
the contents of an even-numbered register.

The four binary indicators directly below the EVEN REGISTER indicator
correspond to the even register address.

The ODD REGISTER indicator consists of a hexadecimal display (optional)
indicator that provides a direct read-out of the odd-numbered register
bei ng addressed by the Seri a 1 System Control PaneL The contents of
this register are displayed in the B-Display. The ODD REGISTER
indicator will be illuminated only when the B-Display contains the
contents of an odd-numbered register.

The four binary displays directly below the ODD REGISTER indicator
correspond to the odd register address.

The MEMORY ADDRESS i ndi cator is a I-bit di sp 1 ay that defi nes the con­
tents of the A-Di sp 1 ay as a memory address. The memory address can
only be loaded into the into the A-Display with a Write function. The
memory address is primarily used for memory addressing in subsequent
memory read or write operations.

The PSW indicator is a I-bit display that defines the contents of the
A-Display as the CPU Program Status Word Register. The PSW can be used
for changi ng the contents of the CPU PSW and for memory address i ng in
subsequent memory read or write operations. In PSD mode, the A-Display
represents the most significant word of the PSD.

The PROGRAM COUNTER indicator is a I-bit display that defines the con­
tents of the A-Display as the current value of the CPU Program Counter
port i on of the Program Status Word Regi ster. The Program Counter can
be loaded into the A-Display with either a Write or a Read function.
The Program Counter can be used for changing the Program Counter
portion of the Program Status Word Register and for memory addressing
in subsequent memory read or write operations.

The OPERATOR FAULT indicator is a I-bit display that indicates that an
operator fault has occurred on the Serial System Control Panel. Two
types of Operator Faults can normally occur:

1. The function selected by the Function keyboard was illogical with
respect to the operand source/destination selected by the Hex
keyboard.

2. The function selected by the Function keyboard combined with the
operation and source/destination specified by the Hex keyboard
cannot be performed because the CPU is ina Run mode and the spec­
ified function is not is not allowed.

The specific type of Operator Fault that has occurred must be determined
by the Serial System Control Panel operator.

MEMORY DATA
INDICATOR

EFFECTIVE
ADDRESS

INDICATOR

ERROR
INDICATOR

CONTROL
SWITCHES

INDICATOR

KEYBOARD
INDICATOR

INSTRUCTION
INDICATOR

STOP
INDICATOR

The MEMORY DATA indicator is ii I-bit display that defines the contents
of the B-Di sp 1 ay as memory data from the memoryl ocat i on addressed by
the A-Display. For the MEMORY DATA indicator to be illuminated, the
A-Display must contain a memory address and the MEMORY ADDRESS indicator
must be illuminated. Memory data can be manually loaded into the
B-Display and the addressed memory location in a Write function or read
into the B-Display from the addressed memory location in Read function.

The EFFECTIVE ADDRESS i ndi cator is a I-bi t di sp 1 ay that defi nes the
contents of the B-Display as an effective address of a software memory
reference instruction that is addressed by the contents of the
A-Display. The A-Display must contain either a PSW or Program Counter
Value, which is used by the CPU to access the software memory reference
instruction. The CPU then computes the instruction's effective address
based on any indexed or indirect addressing specified by the instruc­
tion. When the addressing is complete, the effective address can only
be loaded into the B-Display by a Read function.

The ERROR indicator is a I-bit display that defines the contents of
the B-Di sp 1 ay as an i nterna 1 error code. The i nterna 1 errors exc 1 ude
operator errors and inc 1 ude Seri a 1 System Control Pane 1 errors, CPU
acknowledge errors, SelBUS transmission errors, and memory errors.

The CONTROL SWITCHES indicator is a I-bit display that defines the con­
tents of the B-Display as the CPU Control Switches. The Control Switches
can be loaded into the B-Display in either a Write or a Read function.
In a Write function, the B-Display is loaded from the Hex keyboard.
The contents of the B-D; sp 1 ay (Control Swi tches) are then loaded into
a dedicated memory location. In a Read function, the Serial System
Control Panel reads the dedicated memory location and transfers its
contents (Control Switches) to the B-Display.

The specific dedicated memory address used for storage of the Control
Switches is a function of the computer system configuration and CPU
firmware.

The KEYBOARD indicator is a I-bit display that indicates when the upper
case values (hex digits 0 through F) can be loaded into the B-Display
from the Hex keyboard. The KEYBOARD indicator illuminates in response
to the KEYBOARD switch on the Function keyboard.

The INSTRUCTION indicator is a I-bit display that defines the contents
of the B-Display as an instruction addressed by a PSW or Program Counter
Value in the A-Display. An instruction can be manually loaded into the
B-Display and addressed memory location in a Write function or read into
the B-Di sp 1 ay from the addressed memory 1 ocat ion ina Read function.
The Seri a 1 System Control Panel defi nes the contents of any memory
location as an instruction if the A-Display contains a PSW or Program
Counter Value. If the A-Display contains a memory address (the MEMORY
ADDRESS indicator is illuminated), the contents of the addressed memory
location is defined as memory data, which illuminates the MEMORY DATA
indicator.

The STOP indicator is a I-bit display that indicates when the CPU has
been halted by the Instruction Stop, Operand Read Stop, or Operand Write
Stop logic. In addition to the STOP indicator, one or more of the INSTR
STOP, OPERAND READ STOP, or OPERAND WRITE STOP indicators should also be
illuminated indicating the type of stop logic that is active. When the
STOP indicator illuminates and CPU halts, the A-Display will contain the
current contents of the CPU PSW, and the B-Display will contain the
instruction addressed by the Program Counter portion of the PSW
(A-Display).

7-9

7-10

INSTR STOP
INDICATOR

OPERAND
READ STOP
INDICATOR

OPERAND
WRITE STOP

INDICATOR

OPERATOR
FAULT

INDICATOR

ERROR
INDICATOR

The INSTR STOP indicator is a I-bit display that defines the active
condition of the Instruction Stop logic. When the Instruction Stop is
active, a memory address is in the Address Compare register. When the
CPU fetches an instruction from that memory location, the CPU will halt
and the STOP indicator will illuminate.

The OPERAND READ STOP indicator is a I-bit display that defines the
active condition of the Operand Read Stop logic. When Operand Read Stop
is active, a memory address is in the Address Compare register. When
the CPU performs a memory read from that memory location, the CPU will
halt and the STOP indicator will illuminate.

The OPERAND WRITE STOP i ndi cator is a I-bit di sp 1 ay that defi nes the
active condition of the Operand Write Stop logic. When the Operand
Write Stop is active, a memory address is in the Address Compare regis­
ter. When the CPU performs a memory write to that location, the CPU will
halt and the STOP indicator will illuminate.

The Serial System Control Panel is equipped with an OPERATOR FAULT
i ndi cator that ill umi nates when the panel detects an operator fault
condition. When the OPERATOR FAULT indicator lights, the rightmost
digit of the B-Display will indicate the source of the fault as follows:

Fault
Number

l.

2.

3.

4.

5.

6.

7.

Description

Does not Apply to the Serial Panel

Operation Not Allowed - Run on Lock Restrictions

Invalid Operand Source or Destination

A-Display Not Valid for Operation to be Performed

Invalid Extended Function

Special Extended Function Not Enabled

Does not Apply to the Serial Panel

The Serial System Control Panel is equipped with an ERROR indicator that
ill umi nates when a panel error is detected. When the ERROR i ndi cator
lights, the rightmost digit of the B-Display will indicate the source
of the fault as follows:

Fault
Number

1.

2.

3.

4.

5.

6.

7.

Description

CPU Uart Error

Transmission Error other than CPU Uart

No Response from Memory

Nonpresent Memory

Parity Error in Memory

Write/Read Compare Error in Memory

Bus Interchange or Memory is Broken

MISCELLANEOUS
INDICATIONS

OPERATING
INSTRUCTIONS

LOAD B-
DlsPCAy

FROM
HEX

KEYBOAim

LOAD A­
DISPLAY

Severa 1 i ndi cators are ava i1 ab 1 e to the operator when the computer,
whi 1 e in the PSD mode, enters the Halt mode or when the PSW is read
by the panel switches. They are as follows:

1. Bit 6 indicates last instruction executed was a right halfword.

2. Bit 7 indicates Arithmetic Exception.

3. Bit 8 indicates PSD mode if set or PSW mode if zero.

4. Bit 9 indicates Mapped if set or Unmapped if zero.

5. Bit 32 indicates Interrupts Blocked if set.

The following discussions provide step-by-step instructions for using
the controls and indicators of the Serial System Control Panel .. Each
heading designates a specific function to be performed and the
sequential steps necessary to complete the function. Each discussion
includes two significant conditions necessary for each function: Panel
Lock position and CPU mode.

Description of the Load B-Display from Hex keyboard and description of
the Load A-Display provide the primary functions of the Serial System
Control Panel that are necessary for all other functions. After these
descriptions are initially presented, they are referred to by title only
in subsequent descriptions.

1.

2.

3.

4.

5.

6.

The Panel lock must be in the Unlocked mode.

The CPU can be in the Run or Halt mode.

Depress the KEYBOARD key on the Function keyboard.

Observe that the B-Display clears and the KEYBOARD indicator illum­
inates.

Enter the operand into the B-Di sp 1 ay by depress i ng the correct
hex digit key on the Hex keyboard, one digit at a time.

Observe that the last digit entered from the Hex keyboard is loaded
into the four least significant bit positions of the B-Display and
that any previous contents of the B-Display is left-shifted by four
bit positions.

7. When the B-Display is full, or the complete operand has been enter­
ed into the B-Display, the operation is complete.

8. If the 32-bit capacity of the B-Display is exceeded, the four
most significant bit positions of the B-Display will be lost as
each new digit is entered into the B-Display ..

9. If a mistake is made while entering the operand, depress the KEY-
BOARD key on the Function keyboard and return to step 4.

The Load A-Display function can be divided into seven subfunctions that
described separately in the following descriptions. The seven sub­
functions are:

1. Write Memory Address

2. Write PSW (Program Status Word)

3. Read PSW (Program Status Word)

7-11

I

WRITE
MEMORY

ADDRESS

WRITE PSW

READ PSW

7-12

4. Write PSD2

5. Read PSD2

6. Write Program Counter

7. Read Program Counter

l.

2.

3.

4.

5.

6.

The Panel Lock must be in the Unlocked mode.

The CPU can be in the Run or Halt mode.

Enter the memory address into the B-Display from the Hex keyboard.
(See Load B-Display from Hex keyboard.)

Depress the ~ key on the Function keyboard.

Depress the ~A key .on the Hex keyboard.

Observe that the memory address is transferred from the B-Display
to the A-Display and that the MEMORY ADDRESS indicator illuminates.

7. The operation is complete. Ifa mistake was made during the se­
quence, return to Step 3.

1. The Panel Lock must be in the Unlocked mode

2. The CPU must be in the Halt mode.

3. Enter the PSW operand into the B-Di sp 1 ay from the Hex keyboard.
(See Load B-Display from Hex keyboard.)

4. Depress the WR~TE key on the Function keyboard.

5. Depress the ~ key on the Hex keyboard.
PSW

6. Observe that the PSW operand is transferred from the B-Display
to the A-Display and that PSW indicator illuminates. At this time,
the PSW operand has also been loaded into the CPU Program Status
Word Register.

7. The operation is complete. If a mistake was made during the
sequence, return to Step 3.

1. The Panel Lock must be in the Unlocked mode.

. 2. The CPU must be in the Halt mode.

3. Depress the R~AD key on the Function keyboard.

4. Depress the p~w key on the Hex keyboard.

5. Observe that the Program Status Word is transferred from the CPU
Program Status Word Reg; ster to the A-Di sp 1 ay and that the PSW
indicator illuminates.

WRITE PSD2

READ PSD2

WRITE
PROGRAM
COUNTER

READ
PROGRAM
COUNTER

6. The ope rat ion is complete. If a mi stake was made duri ng the se­
quence, return to Step 3.

1. The Panel Lock must be in the Unlocked mode.

2. The CPU must be in the Halt mode.

3. Enter the PSD2 (least significant word of the PSD) operand into
the B-Display from the Hex keyboard. (See Load B-Display from
Hex keyboard).

4. Depress the ~ key on the Function keyboard.

5. Depress the ~ key on the Hex keyboard.

6. The operation is complete. If a mistake was made during the se­
quence, return to Step 3 .

. 1. The Panel Lock must b~ in the Unlocked mode.

2. The CPU must be in the Halt mode.

3. Depress the ~ key on the Function keyboard.

4. Depress the ~ key on the Hex keyboard.

5. The operation is complete. If a mistake was made during the se­
quence, return to Step 3.

1. The Panel Lock must be in the Unlocked mode.

2. The CPU must be in the Halt mode.

3. Enter the Program Counter Value into bits 8-31 of the B-Display
from the Hex keyboard. (See Load B-Display from Hex keyboard.)

4. Depress the ~ key on the Function keyboard.

5. Depress the ~ key on the Hex keyboard.

6. Observe that bits 13-31 of the B-Display are'transferred to the
A-Display and that the PROGRAM COUNTER indicator illuminates. At
this time, the Program Counter Value has been loaded into the
Program Counter porti on of the CPU Program Status Word Regi ster.

7. The operation is complete. If a mi stake was made duri ng the se­
quence, return to Step 3.

1. The Panel Lock must be in the Unlocked mode.

2. The CPU must be in the Halt mode.

3. Depress the ~ key on the Function keyboard.

7-13

7-14

WRITE
Mrnm

(STN'GIt
ADDRESS)

READ
MEMORY

(SIN'(;U
ADDRESS)

4. Depress the ~ key on the Hex keyboard.

5. Observe that the Program Counter Value is transferred from the CPU
Program Status Word Register and transferred to bits 13-31 of the
A-Display and that the PROGRAM COUNTER indicator illuminates.

6. The operation is complete. If a mistake was made during the se­
quence, return to Step 3.

The Write Memory sequence is dependent on a valid address (Memory Ad­
dress, PSW, or Program Counter Value) in the A-Di sp 1 ay. Thi s value
can be set in the A-Display by using any of the subfunctions described
in the Load A-Display discussion.

1. The Panel Lock must be in the Unlocked mode.

2. Enter a Memory Address, PSW, or Program Counter Value into the
A-Display as described in the Load A-Display discussion.

3. Enter the operand to be stored in memory into the B-Display from
the Hex keyboard. (See Load B-Display from Hex keyboard.)

4. Depress the ~ key on the Function keyboard.

5. Depress th~key on the Hex keyboard.

6. Observe that the operand in the B-Di sp 1 ay remai ns unchanged and
that either the MEMORY DATA or INSTRUCTION indicator illuminates
as follows:

a. If the A-Display contains a memory address, the MEMORY DATA
indicator should illuminate.

b. If the A-Display contains either a PSW or Program Counter
Value, the INSTRUCTION indicator should illuminate.

7. The operation is complete. If a mistake was made during the se-
quence, return to Step 3.

The Read Memory sequence is dependent on a va 1i d address (Memory Ad­
dress, PSW, or Program Counter Value) in the A-Display. This value can
can be set in the A-Display by using any of the subfunctions described
in the Load A-Display discussion.

1. The Panel Lock must be in the Unlocked mode.

2. Enter a Memory Address, PSW, or Program Counter Value into the
A-Display as described in the Load A-Display discussion.

3. Depress the INC IAI & READ key on the Function keyboard.

4. Observe that the A-Display is incremented by four to the next
sequential memory address.

5. Observe that the MEMORY DATA or INSTRUCTION indicator illuminates
as follows:

a. If the A-Display contains a memory address, the MEMORY DATA
indicator should illuminate.

INSTRUCTION
STEP

READ
EFFECTIVt

ADDRESS

b. If the A-Display contains a PSW or Program Counter Value,
the INSTRUCTION indicator should illuminate.

6. The operand in the B-Display should be the contents of the memory
location addressed by the A-Display.

7. If no mistakes occurred in the above sequence, return to Step 4
to read the next memory location.

S. If a mistake was made, the same memory address can be reread by
performing the Read Memory (Single Address) sequence beginning
with Step 4.

When using the Read Memory (Sequential Addresses) sequence, the first
address entered into the A-Display will not be read. To read the first
address, perform the Read Memory (Single Address) sequence, then enter
the Read Memory (Sequential Addresses) sequence beginning with Step 4.

The Instruction Step function causes the CPU to enter the Run mode and
execute one software instruction. After the instruction has been

. executed, the CPU returns to the Halt mode.

The sequence for the Instruction Step function is as follows:

1. The Panel Lock must be in the Unlocked mode.

2. The CPU must be in the Halt mode.

3. If the CPU Program Status Word Regi ster does not poi nt to the
instruction to be executed, load a Program Counter or PSW Value
into the A-Display and CPU register as described in the Load A­
Display description.

4. Depress the INSTR STEP key on the Function keyboard.

S. Observe that the PANEL HALT indicator is illuminated.

6. The system halts with the updated PSW Value in the A-Display and
instruction addressed by the A-Display (PSW) in the B-Display.

7. To execute the next instruction, return to Step 4.

The Read Effective Address sequence causes the CPU to fetch the i n­
struction addressed by the Program Counter of PSW Value in the A-Display.
The instruction fetched should be a memory reference instruction to
,generate a val id effective address. After the i nstructi on has been
fetched, the CPU calculates the instruction's effective memory address
by performing the indexing and indirect addressing specified by the in­
struction. When the address computations are complete, the CPU transfers
the effective address to the Serial System Control Panel's B-Display.

The Read Effective Address sequence is as follows:

1. The Panel Lock must be in the Unlocked mode.

2. The CPU must be in the Halt mode.

3. Enter a PSW or Program Counter Value into the A-Di sp 1 ay as de­
scribed in the Load A-Display discussion.

4. Depress the ~ key on the Funct10n keyboard.

7-15

7-16

CONVERT
ADDRESS

STOP
SEQurNcr

S. Depress the ~ key on the Hex keyboard.

6. Observe that the EFFECTIVE ADDRESS i ndi cator ill umi nates and the
effective address is loaded into the B-Display.

7. The operation is complete. If a mistake occurred, return to Step 3.

The Convert Address sequence causes conversion of a logical address in
the A-Display to a 24-bit physical address in the B-Display.

The Convert Address sequence is as foll ows:

1. The Panel Lock must be in the Unlocked mode.

2. The CPU must be in the Halt mode.

3. The CPU must be in the PSD mode.

4. Enter a PSW, Program Counter Value, or memory address in the A­
Display as described in the Load A-Display discussion.

S. Depress the RE~D key on the Function keyboard.

6. F Depress the CONV key on the Hex keyboard.

7. The operation is complete. If a mistake occurred, return to Step 4.

The Stop sequence includes the Instruction Stop, Operand Read Stop, and
Operand Write Stop functions. Each function has its own key.on the
Function Keyboard and its own indicator to indicate when that function
is active.

The sequence for the Stop functions is as follows:

1. The Panel Lock must be in the Unlocked mode.

2. The CPU must be in the Halt mode.

3. Enter the memory stop address into the B-Display from the Hex
keyboard.

4. Depress the INSTR STOP, OPRND R STOP, or OPRND W STOP key on the
Function keyboard.

S. Observe that the indicator for the Stop function selected by the
Function keyboard illuminates.

6. If the CPU is in the Run mode and the specified memory location
is accessed in the correct operating mode (Instruction Fetch,
Operand Read, or Operand Write), the following events should occur.

a. The PANEL HALT indicator should illuminate.

b. The STOP indicator should illuminate.

c. The current contents of the CPU PSWR should appear in the
A-Display. and the PSW indicator should illuminate.

I'

'<i

CONTROL
SWITCHES
SEQUENCE

WRITE
CONTROL

SWITCHES

READ
CONTROL

SWITCHES

d. The instruction addressed by the Program Counter portion of
the PSW should appear in the B-Display, and the INSTRUCTION
indicator should illuminate.

7. To clear any active Stop function, perform the following steps:

a. Depress the Function keyboard key that corresponds to the
function to be cleared.

b. Observe that the corresponding Stop function indicator turns.

When using the Stop function, multiple Stop functions can be set by
entering the Stop functions sequentially; however, if a different Stop
address is entered with each Stop function, the most recently entered
Stop address will be used for all active Stop functions.

The Control Swi tches sequence is used to set or moni tor the CPU
Control Switches that are stored in a dedicated memory location. The
Control Switches sequence is divided into the Write Control Switches
function that sets the Control Switches in the dedicated memory location
and the Read Control Switches function that reads the contents of the
dedicated memory location.

1. The Panel Lock must be in the Unlocked mode.

2. Enter the Control Switch configuration into bit positions 0-12 of
the B-Display from the Hex keyboard. (See Load B-Display from Hex
keyboard).

3. Depress the ~ key on the Function keyboard.

4. Depress the ~ key on the Hex keyboard.

5. Observe that the CONTROL SWITCHES indicator illuminates. At this
time. the contents of the B-Display have been transferred to the
control switches dedicated memory location.

6.

1.

2.

3.

4.

5.

The operation is complete. If a mistake was made, return to Step 3.

The Panel Lock must be in the Unlocked mode.

The CPU can be in the Run or Halt mode.

Depress the RE~D key on the Function keyboard.

Depress the ~ key on the Hex keyboard.

Observe that the CONTROL SWITCHES i ndi cator ill umi nates, and the
contents of the control swi tches dedi cated memory 1 ocat i on are
transferred to the B-Display.

6. The operation is complete. If a mistake was made, return to Step 3.

7-17

7-18

INITIAL
PROGRAM

LOAD
SEQUtNCt

The Initial Program Load (IPL) sequence is a function of the Serial
System Control Panel and CPU firmware. The IPL sequence is as follows:

1. The Panel Lock must be in the Unlocked mode.

2. The CPU must be in the Halt mode.

3. Depress the SYSTEM RESET key.

4. Enter the peripheral device address of the IPL device into the
B-Display from the Hex keyboard. (See Load B-Display from Hex
keyboard.) Note: If an all-zeros device address is entered into the
B-Display, the CPU firmware will default to a firmware-specified
IPL device address.

5. Depress the INITIAL PROGRAM LOAD key.

6.When the IPL sequence is complete, the CPU will be in the Halt
mode. Any changes in the software program can be made at this
time.

7. The operation is complete .. Refer to the software description of
the Bootstrap program for operati ng instructions of the Bootstrap
program.

INITIAL PROGRAM
LOAD (lPL)

FORMATS OF THE
INITIAL

CONFIGURATION
lOAD (ICl)

SECTION VIII

SYSTEM INITIALIZATION

Initialization and configuration of a 32/70 Series System is accom­
plished through the use of the Initial Program load (IPl) sequence.
This sequence initializes the system, sets up the 1/0 configuration, and
boots in the operating system. The usual method of initializing the
system is through the use of the card reader to read in a deck of cards
containing the I/O device configuration and assigned interrupt. organ-·
ization. The IPl sequence is initiated by placing the Initial Con­
figuration load (ICL) deck of cards in the card reader, setting up of
the address of the card reader on the system front panel, and depressing
the IPL button on the system front panel.

It should be noted that if the mode jumper on the CPU is set up for the
PSD mode, the CPU will come up in the PSD mode. If, when placing the
address of the IPl device in the B-Display of the front panel,
additional information is added, then the CPU can be made to come up in
the PSW mode of operation. The procedure for establishing the PSW mode
of operation is as follows:

1. If using either the parallel or serial front panel for data entry,
add 8000 to the device address (sets bit 16 to One). For example,
if the address of the card reader is 7800, then by the setting of
bit 16 to One (or adding 8000), the resultant address becomes
F800.

2. If using the serial front panel, entering a 55 plus the card reader
address results in the CPU coming up in the PSW mode. The re­
sultant address in the B-Display is then 00557800.

After the cards are read into the system, the SYSTEM RESET button is
depressed, the address of the device (disc) containing the operating
system is entered on the front panel, and the IPl button is again
depressed, thereby booting in the operating system.

The Initial Configuration load (ICl) deck of cards contains three basic
record formats. The fo 11 owi ng sections provi de descri pt ions for each
format.

Initial Configuration load (ICl) records are read from a default or
selected peripheral device. The ICl records are converted into in
formation that is used to initialize the 256- x 32-bit Configuration RAM
(CR) contained in the 32/70 Series Central Processor Unit (CPU).·
Information contained in the CR is used by the CPU to address and main­
tain the status of the 128 possible devices and the 112 possible
interrupts.

Initial Configuration Load records must be in the following ASCII or
Hollerith formats:

8-1

FORMAT #1

8-2

*DEVXX=FCILCASA (,NN)

where:

*DEV defines that the record contains a controller definition
entry.

XX is the hexadecimal address that will be used by macro level
input/output instructions to address the controller.

= is a necessary delimiter. Each letter to the right of this
delimiter represents one hexadecimal digit (four binary
bits).

F flags used by the CPU for input/output emulation. Presently,
this field is always zero.

C defines the class of controller being emulated. Presently,
this field can contain one of the following values:

0 = LINE PRINTER
1 = CARD READER
2 = TELETYPE
3 = INTERVAL TIMER
4 = PANEL
5 to D = Unassigned
E = ALL OTHERS
F = EXTENDED I/O

Il is the hexadecimal interrupt priority level of the Service
Interrupt (1. e., priority levels 1416 through 2316) for the
defined controller.

CA is the hexadecimal controller address as defined by the hard­
ware switches on the 10M.

SA is the lowest hexadecimal device subaddress used by the con­
troller. This field is normally zero when more than one
device is configured.

() denotes optional parameter.

is a de limiter that must be used when more than one device
is configured.

NN is a 2-digit hexadecimal number that specifies the number
of devices configured on the controller.

NOTE 1: The subaddress (SA) field must reflect the following for the
Teletype, Line Printer, Card Reader (TlC) controller:

1. Card Reader is subaddress 016 •

2. Teletype is subaddress 116 ,

3. Line Printer is subaddress 216 ,

FORMAT #2 *INTXX RS

where:

*INT defines that the record contains an interrupt definition
entry.

XX is the hexadecimal interrupt priority level that is to be
emulated.

= is a necessary delimiter. Each letter to the right of this
delimiter represents one hexadecimal digit (four binary
bits).

R is the hexadecimal RTOM board number to which the interrupt
XX is ass i gned.

S is the hexadecimal subaddress on the RTOM board to which the
interrupt XX is assigned.

NOTE 1: RTOM physical controller address 7916 is RTOM board number 1,
address 7A16 is RTOM board number 2, etc.

NOTE 2: Real-Time Clock hardware is connected to subaddress 616 on
the RTOM board.

NOTE 3: Interval Timer hardware is connected to subaddress 416 on
the RTOM board.

NOTE 4: RTOH physical controller addresses must be 7916 or above. This
convention allows a maximum of seven RTOM boards to be defined
on a single 32/70 Series system. Seven RTOM boards will sup­
port 11210 interrupt levels.

FORMAT #3 *ENO

EXAMPLES OF
INITIAL

CONFIGURATION

LOA~E~~iB~

where:

*ENO is the last record of an Initial Configuration load (ICl) deck.
This record signifies the end of the load process.

A device entry:

*OEV04=OEI40100,04

The device entry above specifies the following information:

1. The 32/70 series input/output commands will address the controller
as 0416 •

2. The" ,04" is an optional parameter that specifies that there are
416 devices on the controller. There will be four entries defined
in the Configuration RAM (CR). The input/output commands (t. e., CD
and TO) will address the devices as 416 , 516 , 616 , and 716 .

3. The controller is an "E" class controller.

4. The priority of the Service Interrupt (SI) is 1416 .

8-3

8-4

Assigning a priority to a controller has the following implications:

a. The Transfer Interrupt location for priority 1416 is 10016 ,

b. The Service Interrupt vector location for priority 1416 is 14016 ,

c. The emulation lOCO will be stored at location 70016 ,

d. The interrupt control instructions (1. e., 01, EI, RI, AI, OAI)
will control the interrupt on the controller by addressing
priority 1416 ,

5. The physical address of the controller is 0116 ,

An interrupt entry (RTOM):

*INT28=16

The interrupt entry above specifies the following information:

1. The 32170 Series interrupt control instructions (i.e., 01, EI, RI,
AI, OAI) wi 11 control the interrupt on the RTOM by address i ng
priority 2816 •

2. The number of the RTOM board is 1.

3. The subaddress on the RTOM board is 616 (jumpered logic subaddress
is 9) ..

A sample Initial Configuration load (ICl) Deck is given in Figure 8-1.

EXM1PLE COMMENTS

(SEE NOTE) READ ASCII CARD READER lOCO

*DEV04=OE150400,02 CARTRIDGE DISC WITH TWO PLATTERS

*DEV08=OE160800,04 MOVING-HEAD DISC

*DEVIO=OE181000,04 9-TRACK MAG TAPE

*DEV20=OEIA2000,lO GPMC

*DEV60=OEIE6000,08 ADS

*DEV78=01207800 PRIt1ARY CARD READER

*DEV7A=OO217802 PRIMARY LINE PRINTER

*DEV7E=02237801 PRIMARY TELETYPE

*INTOO=lF POWER FAIL/AUTO RESTART

*INT01=lE SYSTEM OVERRIDE

*INT12=lD MEMORY PARITY TRAP

*INT13=lC CONSOLE INTERRUPT

*INT24=lB NONPRESENT ~1EMORY

*INT25=lA UNDEFINED INSTRUCTION TRAP

*INT26=19 PRIVILEGE VIOLATION

*INT27=18 CALL MONITOR

*INT28=16 REAL-TIME CLOCK

*INT29=17 ARITHMETIC EXCEPTION

* INT2A= 15 EXTERNAL INTERRUPT

*INT28=14 EXTERNAL INTERRUPT
-

*INT2C=13 EXTERNAL INTERRUPT

*INT2D=12 EXTERNAL INTERRUPT

*END lAST CARD

NOTE: THE FIRST RECORD IS DEVICE DEPENDENT AND REPRESENTS TWO
32-81T WORDS, THE FIRST BEING ALL ZEROS AND THE SECOND
A VALID lOCO TO READ THE FOLLOWING RECORDS.

Figure 8-1. System Initial Configuration load (ICl) Deck

8-5/8-6

/'
I

\",

APPENDIX A

INSTRUCTION SET

(FUNCTIONAllY GROUPED)

The 32/70 Series instructions are listed alphabetically by mnemonic code within one of the
following functional groupings:

• Load/Store Instructions
• Branch Instructions
• Compare Instructions
• Logical Instructions
• Register Transfer Instructions
• Shift Operation Instructions
• Bit Manipulation Instructions
• Fixed-Point Arithmetic Instructions
• Floating-Point Arithmetic Instructions
• Control Instructions
• Interrupt Instructions
• Input/Output Instructions
• Memory Management
• Writable Control Storage

Each entry includes the following information:

• Instruction Mnemonic
• Operand Format
• Operation Code
• Instruction Function

The following symbols are used to denote required entries for operand formats:

b
c
d
f
m
n
p
s
v
x
lit

Z

Bit Number In General Register (0-31)
Bit Number In Memory Byte
Destination General Register (0-7)
Function
Memory Address
Channel Or Device Number
Protect Register Number
Source General Register (0-7)
Value of Operand For Immediate, Shift, and Condition Code Instructions
Index Register (1-3)
Indi"rect Addressing
Register Address Field for Special Instructions

Halfword instructions are denoted by # preceding the instruction mnemonic. The halfword instruc­
tions are all interregister (except TRP and TPR) instructions: CALM, WAIT, HALT, and NOP.

A-I

LOAD/STORE INSTRUCTIONS

Operand
Mnemonic Fonnat OJ:! Code Page Instruction Function

LB d.*m.x ACOS 6-10 Load Byte
LO d.*m.x ACOO 6-13 .Load Ooub 1 eword
LH d.*m.x ' ACOO 6-11 Load Halfword
LW d.*m.x ACOO 6-12 Load Word
LF d.*m.x ceoo 6-2S load File
LEA d.*m.x 0000 6-23 Load Effective Address
LEAR d.*m.x SOOO 6-24 Load Effective Address Real
LA d.*m.x 34Q() 6-25 Load Address
LI d •. v . caoo 6-22 Load Inmediate,
LMB d.*m.x BOOS 6-14 Load Masked Byte
Lm d.*m.x BOOO 6-17 Load Masked Ooubleword
LMH d.*m.x BOOO 6-15 Load Masked Halfword
LMW d.*m.x BOOO 6-16 Load Masked Word
LNB d.*m.x 840S 6-1S Load Negative Byte
LNO d.*m.x B400 6-21 Load Negative Ooubleword
LNH d.*m'.x B400 6-19 Load Negative Halfword
LNW d.*m.x B400 6-20 Load Negative Word
STB s,*m,x 040S 6-29 Store Byte
S10 s,*m.x 0400 6-32 Store Ooubleword
STH s.*m,x 0400 6"'30 Store Halfword
STW s,*m,x 0400 6-31 Store Word
STF s,*m,x OCOO 6-37 Store File
S1MB s.*m.x .OSOS 6-33 Store Masked Byte
STMO s.*m.x OSOO 6-36 Store Masked Doubl eword
STMH s,*m.x DSOO 6-34 Store Masked Halfword
S1MW s.*m.x OSOO 6-35 Store Masked Word
2MB *m,x FSOS 6-39 Zero Memory Byte
zm *m.x FSOO 6-42 Zero Memory Doubleword
ZMH *m.x FSOO 6-40 Zero Memory Halfword
ZMW *m.x FSDO 6-41 Zero Memory Word
flZR d OCOO 6-43 Zero Register

MEMORY MANAGEMENT INSTRUCTIONS

Operand
Mnemonic Fonnat OJ;! Code Page Instruction Function

flSEA 0000 6-59 Set Extended Address'ing
flCEA OOOF 6-60 Clear Extended Addressing
LMAP d 2C07 6-61 Load MAP
#TMAPR s.d 2COA 6-62 Transfer MAP to Register

'~

Indicates Halfword Instruction /
* Indicates Indirect Addressing I

I
/

~/
/

).",,' r-"
/

\
''Ii

(

A-2

BRANCH INSTRUCTIONS

Operand
Mnemonic Format 0E Code Page Instruction Function

BCF v,*m,x FOOO 6-73 Branch Condition False
BCT v,*m,x ECOO 6-74 Branch Condition True
BFT *m,x FOOO 6-75 Branch Function True
BIB d,m F400 6-77 Branch After Incrementing Byte
BID d,m F460 6-80 Branch After Incrementing Doubleword
BIH d,m F420 6-78 Branch After Incrementing Halfword
BIW d,m F440 6-79 Branch After Incrementing Word
BL *m,x F880 6-76 Branch and Link
BU *m,x ECOO 6-72 Branch Unconditionally

COMPARE INSTRUCTIONS

Operand
Mnemonic Format 0E Code Page Instruction Function

CAMB d.*m.x 9008 6-83 Compare Arithmetic with Memory Byte
CAMD d.*m.x 9000 6-86 Compare Arithmetic with Memory Doubleword
CAMH d.*m.x 9000 6-84 Compare Arithmetic with Memory Halfword
CAMW d.*m.x 9000 6-85 Compare Arithmetic with Memory Word
#CAR s.d 1000 6-87 Compare Arithmetic with Register
CI d.v C805 6-88 Compare Immediate
CMMB d,*m,x 9408 6-89 Compare Masked with Memory Byte
ctt4D d.*m.x 9400 6-92 Compare Masked with Memory Doubleword
CMMH d.*m,x 9400 6-90 Compare Masked with Memory Halfword
CPft1W d,*m,x 9400 6-91 Compare Masked with Memory Word
ICMR s,d 1400 6-93 Compare Masked with Register

LOGICAL INSTRUCTIONS

Operand
Mnemonic Format 0E Code Page Instruction Function

ANMB d,*m,x 8408 6-95 AND Memory Byte
ANMD d.*m.x 8400 6-98 AND Memory Doublword
ANMH d.*m.x 8400 6-96 AND Memory Halfword
ANMW d,*m,x 8400 6-97 AND Memory Word
IANR s.d 0400 6-99 AND Register and Register
EOMB d.*m,x 8C08 6-106 Exclusive OR Memory Byte
EOMD d,*m,x 8COO 6-109 Exclusive OR Memory Doubleword
EOMH d.*m,x 8COO 6-107 Exclusive OR Memory Halfword
EOMW d,*m.x 8COO 6-108 Exclusive OR Memory Word
IEOR s,d OCOO 6-110 Exclusive OR Register and Register
IEORM s,d OC08 6-111 Exclusive OR Register and Register Masked
ORMB d,*m,x 8808 6-100 OR Memory Byte
ORMD d.*m,x 8800 6-103 OR Memory Doubleword
ORMH d,*m,x 8800 6-101 OR Memory Halfword
ORMW d.*m,x 8800 6-102 OR Memory Word
IORR s,d 0800 6-104 OR Register and Register
IORRM s,d 0808 6-105 OR Register and Register Masked

I Indicates Halfword Instruction
* Indicates Indirect Addressing

A-3

REGISTER TRANSFER INSTRUCTIONS

Operand
Mnemonic Format 0E Code Page Instruction Function

#XCR s,d 2C05 6-55 Exchange Registers
#XCRM s,d 2COD 6-56 Exchange Registers Masked
TPR r,p FB80 6-50 Transfer Protect Register to Register
#TRC s,d 2C03 6-53 Transfer Register Complement
#TRCM s,d 2COB 6-54 Transfer Register

Complement Masked
#TRN s,d 2C04 6-51 Transfer Register Negative
#TRNM s,d 2COC 6-52 Transfer Register Negative Masked
TRP s,p FBOO 6-49 Transfer Register to Protect Register
#TRR s,d 2COO 6-47 Transfer Register to Register
#TRRM s,d 2C08 6-48 Transfer Register to Register Masked
#TRSW s 2800 6-57 Transfer Register to PSWR
#TRSC s,d 2COE 6-46 Transfer Register to Scratchpad
#TSCR s,d 2COF 6-45 Transfer Scratchpad to Register

SHIFT OPERATION INSTRUCTIONS

Operand
Mnemonic Format 0E Code Page Instruction Function

#NOR d,s 6000 6-113 Normalize
#NORD d,s 6400 6-114 Normalize Double
#SCZ d,s 6800 6-115 Shift and Count Zeros
#SLA d,v 6C40 6-116 Shift Left Arithmetic
#SLAD d,v -7840 6-119 Shift Left Arithmetic Double
#SLC d,v 7440 6-118 Shift Left Circular
#SLL d,v 7040 6-117 Shift Left Logical
#SLLD d,v 7C40 6-120 Shift Left Logical Double
#SRA d,v 6COO 6-121 Shift Right Arithmetic
#SRAD d,v 7800 6-124 Shift Right Arithmetic Double
#SRC d,v 7400 6-123 Shift Right Circular
#SRL d,v 7000 6-122 Shift Right Logical
#SRLD d,v 7COO 6-125 Shift Right Logical Double

BIT MANIPULATION INSTRUCTIONS

Operand
Mnemonic Format 0E Code Page Instruction Function

ABM c,*m,x A008 6-132 Add Bit in Memory
#ABR d,b 2000 6-133 Add Bit in Register
SBM c,*m,x 9808 6-128 Set Bit in Memory
#SBR d,b 1800 6-129 Set Bit in Register
TBM c,*m,x M08 6-134 Test Bit in Memory
#TBR d,b 2400 6-135 Test Bit in Register
ZBM c,*m,x 9C08 6-130 Zero Bit in Memory
#ZBR d,b 1COO 6-131 Zero Bit in Register

Indicates Halfword Instruction
* Indicates Indirect Addressing

"

A-4

FIXED-POINT ARITHMETIC INSTRUCTIONS

Operand
Mnemonic Format DE Code Page Instruction Function

ADI d,v C801 6-150 Add Immediate
ADMB d,*m,x B808 6-140 Add Memory Byte
ADMD d,*m,x B800 6-143 Add Memory Doubleword
ADMH d,*m,x B800 6-141 Add Memory Half~ord
ADMW d,*m,x B800 6-142 Add Memory Word
#ADR s,d 3800 6-144 Add Register to Register
#ADRM s,d 3808 6-145 Add Register to Register Masked
ARMB s,*m,x E808 6-146 Add Register to Memory Byte
ARMD s,*m,x E800 6-149 Add Register to Memory Doubleword
ARMH s,*m,x E800 6-147 Add Register to Memory Halfword
ARMW s,*m,x E800 6-148 Add Register to Memory Word
SUI s,v C802 6-157 Subtract Immediate
SUMB d,*m,x BC08 6-151 Subtract Memory Byte
SUMO d,*m,x BCOO 6-154 Subtract Memory Doubleword
SUMH d,*m,x BCOO 6-152 Subtract Memory Halfword
SUMW d,*m,x BCOO 6-153 Subtract Memory Word
#SUR s ,d' 3COO 6-155 Subtract Register from Register
#SURM s,d 3C08 6-156 Subtract Register from Register Masked
MPMH d,*m,x COOO 6-159 Multiply by Memory Halfword
MPMW d,*m,x COOO 6-160 Multiply by Memory Word
#MPR s,d 4000 6-161 Multiply Register by Register
MPI d,v C803 6-162 Multiply Immediate
MPMB d,*m,x C008 6-158 Multiply by Memory Byte
DVI d,v C804 6-167 Divide Immediate
OVMB d,*m,x C408 6-163 Divide by Memory Byte
DVMH d,*m,x C400 6-164 Divide by Memory Halfword
DVMW d,*m,x C400 6-165 Divide by Memory Word
#DVR s,d 4400 6-166 Divide Register by Register
#ES d 0004 6-168 Extend Sign
#RNO d 0005 6-169 Round Register

FLOATING-POINT ARITHMETIC INSTRUCTIONS

Operand
Mnemonic Format 0E Code Page Instruction Format

AOFD d,*m,x E008 6-173 Add Floating-Point Doubleword
ADFW d,*m,x E008 6-172 Add Floating-Point Word
SUFO d,*m,x EOOO 6-175 Subtract Floating-Point Doubleword
SUFW d,*m,x EOOO 6-174 Subtract Floating-Point Word
MPFD d,*m,x E408 6-177 Multiply Floating-Point Doubleword
MPFW d,*m,x E408 6-176 Multiply Floating-Point Word
DVFO d,*m,x E400 6-179 Divide Floating-Point Doubleword
DVFW d,*m,x E400 6-178 Divide Floating-Point Word

Indicates Halfword Instruction
* Indicates Indirect Addressing

A-5

CONTROL INSTRUCTIONS

Operand
Mnemonic Fonnat Oe Code Page Instruction Function

BRI *m,x F900 6-181 Branch and Reset Interrupt
LPSD d.*m,x F980 6-182 load Program Status Doubleword
LPSDCM d.*m.x FA80 6-183 Load Program Status Doubleword and Change Map
#CALM v 3000 6-192 Ca 11 Mon i tor
DAE OOOE 6-198 Disable Arithmetic Exception Trap
EAE 0008 6-197 Enable Arithmetic Exception Trap
EXM *m,x A800 6-187 Execute Memory
EXR s C807 6-185 Execute Register
EXRR s C807 6-186 Execute Register Right
#HAlT 0000 6-188 Halt
#LCS 0003 6-184 load Control Switches
#NOP 0002 6-190 No Operation
RDSTS d 0009 6-195 Read CPU Status Word
SVC IND,CALL# C806 6-193 Supervisor Call
#SIPU OOOA 6-191 Signal IPU
#SETCPU s 2C09 6-194 Set CPU Mode
#WAIT 0001 6-189 Wait

INTERRUPT INSTRUCTIONS

Operand
Mnemonic Fonnat De Code Page Instruction Function

ACI s,v FCn 6-207 Activate Channel Interrupt
AI v FC03 6-204 Activate Interrupt
#BEI 0006 6-211 Block External Interrupts
DACI s.v FC7F 6-210 Deactivate Channel Interrupt
DAI v FC04 6-206 Deactivate Interrupt
DCI s,v FC6F 6-209 Disable Channel Interrupt
01 v FeOl 6-205 Disable Interrupt
ECI s,v FC67 6-208 Enable Channel Interrupt
EI v FCOO 6-202 Enable Interrupt
RI v FC02 6-203 Request Interrupt
#UEI 0007 6-212 Unblock External Interrupts

INPUT/OUTPUT INSTRUCTIONS

Operand
Mnemon ic Fonnat De Code Page Instruction Function

CD n.f FC06 6-216 Command Device
TO n.f FC05 £-217 Test Device
SID s.v FC17 6-218 Start I/O
TIO s.v FC1F 6-219 Test I/O
STPIO s,v FC27 6-220 Stop I/O
RSCHNL s,V FC2F 6-221 Reset Channel
HID s,v FC37 6-222 Halt I/O
GRID s,v FC3F 6-223 Grab Controller
RSCTL s.v FC47 6-224 Reset Controller
ECWCS s.v FC4F 6-225 Enable Channel WCS Load
WCWCS s.v FC5F 6-226 Write Channel WCS

WRITABLE CONTROL STORAGE INSTRUCTIONS

Operand
Mnemonic Fonnat 0(1 Code Page Instruction Function

#WWCS s,d oooe 6-65 Write WCS
#RWCS s,d OOOB 6-66 Read WCS
#JWCS *m.x FAOO 6-67 Jump WCS t i't

'~

Indicates Halfword Instruction
* I od icates Indirect Addressing

A-6

APPENDIXB

HEXADECIMAL-DECIMAL CONVERSION TABLE

The following table contains the necessary information for direct conversion of decimal and hexadecimal numbers
in these ranges:

Hexadecimal Decimal

OOOOOto01FFF 00000o to 008191

To convert a hexadecimal number to a decimal value, locate all but the last digit of the hexadecimal value in the left­
most column of the table, then follow that.line of figures to the ri~t to the column under the last digit of the hexa­
decimal value. At this intersection is the decimal value of the hexadecimal number.

Example: Convert hexadecimal 3EC to decimal.
~

T
o 1 • A

_ _ _ _ _ _ _I __ 011II1II 01110111 OIIlcm

•

Answer = 001004 decimal ______________ , ______1

o

0014:" 001001 01)1007

For decimal to hexadecimal conversion as in the example, first find the decimal value (1004) in the table. then con·
struct the hexadecimal value from the hexadecimal characters above the column and in the left·most column.

For numbers outside the range of the table, add the following values to the table figures:

Hexadecimal Decimal

3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
Aooo 40960
8000 45056
COOO 49152
0000 52248
Eooo 57344
Fooo 61440

B-1

8-2

...,.
000'
aam
CIDO,
CIDO'
0DDt
aaoa
aooc
0000
000£ -

-...,. .. rom31
0II004iI

-0QD064 --000111
000118
00014.
000'10
000116
CIODI91
000100
000114
000100

ODIO 0001!lfi
0011 000271
0012 000188
CI)lJ QOOlO4
00" DDOl1O
0015 OOOl16
0016 CDll$l
0011 OOOJM
001' 000.4
0019 000400 (I),. 000416

001' 000412
OO'C _

0010 QOO464
COllE CIOCMIO

OOIF _"

0020 0005U
CI071 1:IOOS2I
0022 ~4
DOll OOOSOO
0024 000516
0075 91
0018 IXXiOO8
.7 000624
0011 000640
0019 DOO6~

G01A OOO6n
0011 000618
cxnc 000104
0020 ooono
Gmf DOO1J1
oo2F 000752

OOJO
00]1
0031
00)'
003<
00]5

"'lI
"''' "'. "'. "',..
roll
"'X
0030 -00>1'

000'"
000'84
00000o
000II"
000II31 ---""""'* 0009'1
0009>1 _. -0009>6
DOO991
00'00II

00000'
0000"
rom"
000049
00006'
DDOOO'
DOOI11
000'19
OOOl"~

000\61
OOC)I"
000193
000109
ooon~

00024'

0002>7
000.113
000119
000lD'S
000321
000337
000]5'
000369
00038'
00040'
<:004" _,3 _.9 _os
00048' -"
..... 3
roes19
roes ••
000S6' "
.... 93
000009
1lOO615
000Il4'
IlOO6S'
1lOO6'3
","9
OOO'DS
000711
000737
000153

000'19
(0)78S

00080'
000817
000611
0008"
0008 ••
00088'
00089'
00091l
000919
0009"
00096'
000917

DOO993
00'009

raeo Ixn024 OQ102S
OCMI 001010 OD1CMl

00$1 001054 001~1

CIon 001012 00101.)
CIOM oo-cae 001019
0015 001104 ClOt lOS
0I)iI6 001120 Ir.)I III

0011 (1)1136 001131
QC)q OOll!11 OOIIS)

(01, GOt 161 001 16t
DOt... ODIUM 00' 'IS
0C)q 001100 00 1101
GeMe OOt211 001117
_0 (llD1]);' (1111)1

.. aut.... 00'249
aou QDI,.. OiD-'nS

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

000001
0000"
0000"
OOOOSO
000066
..... 1
Q)OO99

001)114

000.30
000'46
000162
000118

000'"
000210
00022'6
00014l

000158
000774
000190
000JC6
OOOl2:?
OOOJ18

000".
000)70
000386
0l»I01 _,e -,.
0004S0 -000482 -
roes ••
~3O OlIOS.,
000061
000578
000594
QlO6'O
QlO626
000641
0006SI
000614
000690
000'06
0001£'2
000'.
000'"

000110
000186
00080'
0008'.
000II34
0008..,
0D0866

00088>

""""'* 000914
OOO9JO
00094.
000961
0009'.
IXlO994
001010

001016
001041
OOl0!l8
COI014
001(190
001106
OOtlll
OOtill
OOll!t4

001110

001116
001101
00111'
0011)01

00'>0<)
00'>06

000003
0000"
oaoolS
"""".
000067
000003
000099
OODIIS
000131
000141
000163
000119

000'"
ooo21}
OOOl27
000243

000~9

00027S
000191
roo3O'
0001l)
000339
OOOlS'
000311
UD038'
000403 _II
00043.
0004 ..
000461
000483
000409

0005'$,.
000563
000579
roes ..
000611
000617
000643
00066.
000615
00069'
000701
000723
000139
000155

000171
000187
000803
000II11
OOOIIlS
0006S'
(lQ)86'
00088l
000899
000915
000931
00094.
OOO!I6J

000979
~

OOton

001027
001043
OOH)61
001015
OOH)91

001101
001123
DOItl'!J
OOllSS
OOH1t
OOlrt1
001203
001119
acl}~

OOI~1

00 116'

000004
000010
ooooll
0000'>1
000060
00008'
000'00
000116
000131

000'"
000'64
000'80
000'96
000212
000111
00014<

000210
00027&
000191
000308
00(3).

0003<0
OOOlS6
000312
COO188 -QlO4lO -,.
0004.1
QlO468
000484
000500

roes"
000532

OC05" --roes!Hl
0006'2
QlO6l1
00Il644
(JO(l6OO

QlO6'6
000602
000'08
00072e

000'40
000'"

000772
000'88
000804
000810
(lQ)836
000661
000868
00088'
0CI0900
0009'1
000932
0009 ..
000964
000980
DOO996
ODIOll

001018

00''''
00'060
00101&
001092
OOIICIJ
oon24
001140
OOIIS6
ootl11
01)11.

00'104
001110
001116
OOI~l

00'''''

ooooos
00001.
000037
00005)
000069 -000101
1XIOf17
OOO'll
000'49
OOO~

00011'
000J91
00021)
000219
00014.

00016.
000271

00029'
000309
000325
0003<.
OOOJS'
000373
000389 -_2.
_37
_5)
00048II -_.
000517
.... 3J
000549
.... 65
0IlQ58.
000613
000611
000645

00066'
0006"
000693
000109
OOO.~

000741
000757

000173
000'89
OOOIIOS
00082.
0006J1
0008"
001869
00088S
W09O'
000917
OOO9J)
000949
00096S

00090'
00099'
001013

000006 ..,..,21
ooooll
oooos.
0000'0
0000II6
000102
000118

000'3<
000 • ..,

000'66
ooot82
000'91
000214
000'30
000246

00026>
000278

00029'
000310
000316
000342
000358
000374
OIlOJIIO
0D040I
000422
000438 _ ..
1W470 _6
COO502

..... 8

.... 34,
000580
000S81
0006'.
000630
000&06
000662
0006'8 -000710
000126
000742
0007 ..

000114
000190
000806
000611
000630
0006'0
000886
000901
0009'8
00093<
0009S0 -000981

000998
001014

00000'
000013
000019
00005.
000071
OOOOG'
000103
0001"
000135
000151
(0)161
000183
000'99
0002 IS
000131
0001<'

000263
000279
ooom
000311
000311
00034'
00035"
OOO31S

00039'
00I)00'
_23
00'l43t
OOOOS.
000471

00048'
000503

......
QlOS35

0005.'
OD0661
ooor..83
QlOS99
0006"
00063'
00064'
000663
000019
00069S
000711
000721
00014]
000159

000715
000191

00080'
00062)
000839
00066.
000671
00088'
00090)

0009"
000935
(10()95'

00096'
000983
000999
001015

001019 0010]0 001031
0010450 001046 001041
OOHJ61 (1)11)62 001063
001017 (lClI018 001079
001093 00")9« 001095
001109 001110 001111
0011250 001116 001111
001141 001141 coni)
00IIS1 DOllSA QOllS9
COHn cxu ". OOl115
OOtl89 00"90 oon91
00IM 001106 00110'
001111 001]21 0011n
(011)1 0011](1 00111'9
OOI1!tl 0017S4 001IY..
arB" 001210 CI)t211

00000o
00001.
000040
000056
oaoon
000088
000'04
000':10
000'"
()(X) 152

000'68
000'84
000200
000216
000232
0002 ..

000114
000280
000196
000312
000318
000,..
ooo,ao
000378
000392
000408
_2'
COO44O
0Il00IS6
ooom
000488
000604

.... :10
ODDS,.
roes'l
0II0S08
000S84
000tl00

0006'.
0006J2
000648
000664
0000lIO
()()()M6

000711
000728

000'"
000760

000716
000792
000800
00061<
000II40
0006S6
000871
00088II
00<1904
000910
000936
(IO()951

""""'"' -001('000
001016

-0a0015
00004.
rooos.
000073
000089
OOO'DS
000121
000137
COOlS)
000189
OOOU15
000:10'
000217
000233
0002 ..

•
000285
00011'
00019'
000)1)

000329
00034.
00036'
000377
00031)
0Il0401I
0Il0425
00004'
OOOOS.
QlO473 -00050S

00062'
000637
000553
000569
000585 _.
000617
000833
000649
00066S

000S8'
0006 ••
000113
000129
000745
000161

000117
000793
000809
000II2.
000II"
0006 ..
000II73
00088. -DOO91.
000937
0009S)
00096.
00098.
(X)lOOI

001011

001032 001033
001048 001049
001064 001055
001(180 001081
001096 001091
001112 OOUI3
001118 001119
001144 oo114S
0011150 001161
001116 0011'11
001192 001193
CX?1108 001209
ODln4 0012~

001240 001241
ODI1!.6 00115;1
001212 001213

..
0000'0
0000,.
000042
000058
oaoo ••
000090
000'06
000122
000'.
00015 ..
000170
000'88
OOO:1O~
000211
000'3<
000150

..

000011
000021
000043
000059
0a001S
QlOO91

000107
000123

000'311
000155
000111
000107
000203
0002'9
fXlO>l!I
0002$'

8

000286 000261
000282 000213
000298 000199
coon. 000315
0003Xtq OOOlJl
000346 OOOJ.f1
000311 00036)
000318 0(A)319

000394 0003115
~10 O(OoUI
000426 000427
000442 000443
0Cl04S8 000 ...
OQ047. 000475
COO490 CXI0481
000Ii06 0005t)7

A

000621
000638
roes ••
roes ••
aoosao
000602
0006'.
00063<
000650
000666
00068~
000698
000114
0001aQ
000146
000162

..
000718
000_
00081'
000826
000141
000858
000II"
000890
000906
OOO9n
000938
0Il090.
000910

00098.
001002
001018

..
OOIOJ.C
00'050
00'_
001082
001(l9O
001114
OOtllO
001146
001163
001118
001194
001210

001226
0012.2
00'158
00'214

roesl)
roes311
0006S •
roes"
aoosa.
_3
0006'9
00063S
000651

00066'
000683
000699
000115
000731
000741

000'.3

•
000119

000'"
000811
000617
000843

""""".
000815

00089'
000907

00091'
0009311
0009SS
0009"
000'."
001003
001019

00'035
001051
001061
001083
00'099
00111S
001131
001141
001113
001119
OOlt~

001111
001217
001243

""N
00121S

c

oaoo'l
000028
000044
000060 ..,.., ..
DDOOOl
0001(.
000124

000'00
000'"
000172 .

000'88
CIClO204
0!l0270
qclO218
000252

c

0002 ..
000114
0003110
000316
000332
COOJ48
000364
000380
000J96
0004'1
QlO428
00044<
000460
000416
000492
000508

c

roes2'
00Il540
roes ..
Otl)'jn
000588
000604
Q)06:1O
W0636
000651
0Il0668 -000''''
000716

000'31
000'"
000'"

c

000760
000796
.... 11
000628
0Il0844
000860
0008 ••
000891
000908
00091.
000940
0009S6
0009'2
000988

00'""
001020

C

ool<llS
GOIDS2

""-0010114
ClUlOO
00111$
001132
oon48
OI)IUW
00ltlO
001196
001112
001121
001144

00':/010
001276

D

oooon
0Il0029
000045
0000&'
000071
000093
OOO.ot
000'15
000141
000157
oo:n73
000'19 -ooon'
000237
0IIImi3

D

000118
ooom
000301
000317
OOOllJ
000349
OOOJlS
00038'
0003II'
QlO403
000429
00044S
000461
«J0411
_93
0IlCl50lI

D

roes~

000541
00055'
aoos7) -000605
00062'
00063'
000653
000660
_S
000701
000111
000133
000149
000765

D

00078'
000791
00Il81J
000811
00084.
00II86'
0006"
00089l -0009~ 000041

0Il090'
(0097)

.000989
00'005
001021

D

001031
OOHJ63

""-00'_
001101
001117
001133
OClt49
(XJ1l65
001181

001'91
001213
00'721
00124$
001281
00121'7

00001:t
000030 -0000II2
0000'. -OOOttl)
CXlO'lI
CXlO'U
000'511
000174
000'10 -000222
CXlO'. -
000270
000218
000302
00031'
0003:M
oool5O
roo166
000382
ooo3t8
0004'.
_30
000446 -QlO4'. _ ..
0005'0

roes2.
000S42
roes ..
~14

000590
000606
000622

0006" -0006'0
0IXl606
000707
0(1)118

000'3<
OOO'sa
000'66

000182
000191
000II ••
000II30 -000862
000II'.
000194
0009'0
0009 ••
000042
0009SI
0009.'

000!190
OO'COI
001021

001031

""-001010

""-001101
DOIH8
001114
001150
0011.
Cln'87
001198
0012'"
0011lO
001241

""262
00121'

_,s
~, -, -_ .. -GOO'" _", _'0 _ .•
_,n
00011' -,
OG0223
0002. --
000211 -, -00031' -00030'
ooolS'
000.3
CXlOJIIe
0004'5
000031 -, _3
uIlO479
0IICl0I5 -"
000521
3 -.s _ ..
000601
0IJI673
000Ii3I -000671

ooooa'
0r0103
00011.
000'30
0r015'
000161

000783

000'"
00Il81O
00IIIl31
000II41
00II863
000079
ooonr.
000911
000921
OOIl!Ml
ooot59
000915

00099'
001001
001023

0011'311

""­auon
aol0l1
001103
00111.
OOIlJl
001151
(»1117
GOlla
ml'.
COUIS
01)'231
OfU,.,
1IO'2f>J

110'."

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont'd)

(J'}S() OQI;,eQ 001]1J1 001}'8]

~, OC)ll96 001]97 001198
CIOSl 001312 001)1] 0(1)14

DOS] QOllJ3 001]19 00IJ)()
00504 (01)4& OO'l.4':J 001)46

CICJS~ CJ(ltJ60 001}61 OOlJ61
CJl'56 (01)11) OCP)71 fl.ll118
()(Y.)7 (01)91 001)9) OOlJq4

fX)S8 001408 001~0') 00:4'0

~9 00'414 001"]5 X"416
()()SA 00' 0 ~l4..tl 001 1
00'.>8 00'4->6 CX)14S1 00:4'509
OOSC 00147;/ 00, .. 1) 00'.'4
0050 001488 001489 00'490
QOI5(OQI'.)()4 001~ OOIS06

ocr..F 00lS20 OD'S]' 001'5072

001]8) 00118.
001.?99 001))0
OOl31S 00'316
001)]1 001]31

001341 001349
001)63 001364
001]19 001)8,0

001:10/.> 00:396
01)1411 001412
00:ot21 00"1ij

001") 0014
OOU!.9 001460
OD141!. 001476

00!491 :xJ1492
ODl~J ool!i£li

OOI'!t23 001'52'*

0017.,
OOl~1

·XlI 31 I

(013))

00114'J
001 J6S
001181
tXl191
0014\)
001419

00'44'>
oo~t.\

ocp.n
(0149)

OC'lSQ9

OO15~

0060 001'5016 OO!S)? 00.538 oolS]9 001540 OOISC'
0061 OOlo;~l 001';1}3 UOl50S4 00IS~S

0062 OCPS6!I OOlS&J OO\5!Q 0015011

0(6) 001~.· OOlSSS 001586 OO!~1

{)()6.1 001600 001601 001002 001£,0)
0065 ()()1616 001611 001618 0016;9

0066 0016J1 0016:3) 00104 0016.J!l
0061 001648 001&49 0016SO OO:~l

006lI 0016&4 0016£'50 001660 00;607
0069 001680 001681 001681 001683
006A 001696 001691 00'_ 00169'9
0068 001]11 00111) oolit4 001115
00f)C 001128 00lij'9 001130 00\131
0060 00".... 001 alj 001146 001141
006£ 001760 001161 001161 001163
006f 001716 001711 001176 eXH119

0010 :xliii] 001193 001794
0011 001_ 001809 001810
0011 001824 OOl8lS 001816
(01) 00l&tO 0018<11 0):8.'
0014 001856 001851 001858
0075 001811 001813 0(H174
0016 001888 001889 001890
(1)71 001904 mlg(b 001906
001' 001910 001921 001922
0019 001916 001931 001938
0014 001962 001~) 0019154
0018 001961 001969 001:170
oore 001984 001t8!> (1)1986
0010 002000 (0201)1 007001
001E OO~16 002011 007018
OD7F 0010]2 0010)) 0020~

o

0010 0020<1
008' OOX)64
ca] OO'lQ8Q

0011) 002096
00II4 002t12
CD!) D021l1
<X'l8e 0021
ore1 007160
0088 002116
0019 002192

OOIJA 007108
0088 002214
(DC 001240

<XJIO 002~

Of 002212
008i 0022111

o

0090 001)04
t::J091 OO:?J ... "'1l

0092 oo2J16
0093 002~}

0094 001368
CIO'Y.I 002~
0096 001_
1JOQ1 0024'6
009II DC2432
0099 002448
IXJ9A 0014~
0098 00;480
009C OC2496
0090 001')11
009E OOl~28

009F 00]<34.

001<l4.
00200'
002C8'
00209'
001113
002119
002 I 4!.
002161
002Dl
(0219)

007209
0021]!)
002241
0021S1
002213
002183

007305
002321
002331
OC2:1!:11
(02)t'}

002J6'!>
CXi2COI
002411
002433
001443
OOHt!I
002481
00;491

002~13

001'>"
00215145

007050
007006
Q(J1~2

007090
002114
0021]0
001146
002162
/x217S
002194
002210
00lne
002;;.2

001""
002174
002110

007)0.
Cl>nn
002338
007,..
002370
001186
002402
002':8
0010"
0024~

002-166
00;481
002-lflS
00lS14

oo25JO

oo'i'J"b

00'1%
001811
001821
001843

OO'~9
OOlS1'!l
001811
001901

001923
0(19)9

00l9SS
001971
001961
002003
002019
0(20)5

00700'
00706'
0070llJ
,.,7099
OCJ211'5
002131

00214'
002163
002119
002195
002711
001227
0(;2243
002]1;9
00221'5
002291

om..,.
002:!21
00lJ3"J

007'"
002371
002187
00240)
OC2ot19
0014~

00]4'51

OCH67
OO]<&C!l

X;4~

OCj~ ~")

oc:~ "31
(Xj::'S41

OC1S~6 OOIS';1
001':)11 001~?]

OO~S8S 001'589
OOi6Qot OO\6()5.

001620 001621
001636 1)():1~7

001(b] 001653
001668 001669

001664 001685
00\100 00110'
0017:6 oo171i

001732 00t13]
OOl1,&8 001149
00116' 00115S
001,., 00118'

001796
OOle!2
00

00''''
00;&60
001816
Qtj:e92

00'900
001924

00'_
001%6
001912

00'088
007004
OC;lcn
007036

0070';7

001068
002'lll<
OC:2:00
00;116

0011»
00;;48
001:&1
0011110
OC219ti

/102112
001128
00224-4

OC.lZ60
QCl;:'76

002291

DOnl8
001114
OC1J.4~

0C1~&

OC!1l7]

Cllh'J88

OC,""
00242')
()j;4)~

OC24!:]

OC:;468
:x:;>~"

oo,~oo

OC]", .~

ac~::2

OCi~0t8

001791
001813
001829
OOU~45

001861
001811
001893

00'909
001125
001941
001951
00;913
CX;:ge9
00;005
002(011
0070]7

OO7OOJ
001069
00108!t
002101
ClO2111
00?133

007'"
002165
OC2181
002191
OC22I)

X7::19
OC:;145
OC]2{;1

00];11
OC~?9]

oc'm
ocr:;;s
O(7)4!

OC]JS7
oo2.1i3
OC2381

OC,"'"
OC]4]I

00,?4),

OC;'('5)

OC:'40
OC]4e5
Xl';.C·
,::£2'.';
X2<OJ]

1;(,.':149

001186
001302
001318
001)34
OOiJSO
00''''
001]6]

00' 398
001414
0014)()

001 6

0014f~

0014'8
00'49"

00ISIO
OO15}b

oot5<'2
001'j56
OO~'j14

OO~S90

00'606
001621
001638
001(64

001670
001686

001702
001118

001134

00'150
001766
001782

001798
OO'S14
001830
001846
O'J1862
QOlti18

00"'9'
001910
001926
OCH942
00'9S8
CXll914

00'990
00>006
002022

""7018

00700<
001070

002tl1.
002102
002118
002134
0021SO
002166
002181
002198
001214

OC:2JO
00}]"6
00:>762
CIC2]18
00.:194

conlo
()(!2326
OO~342 oc,,..
oon:'4
00;),:10

""'­DC'4]]

OO]~:8

OC=4~4

OC 7CL

OCl486
~;C)o

X.'<.,18

OC:<:J.4
oc.;.,s.o

00128'
00 ']0]

001)19

OO'lJ'5
00lJ'il
001357
00138]

00' J99
00141'51
0014)1

001447
0014b)

001419

0014%
001611

001"17

oo~ ~~9

00IS1~

oo~ S"l1
001&01
001613
(It)16J9

OOl6~'5

001&)1

001681

001703
0011)9
0(11)'j

OOlJSI
001767

00t183

001799
00181S
001831
00IS41
00186)

oot879
0018915
0019tl
001921
00194]
001959
OC191S
001991
007007

002013
002039

0070<>.
001071
001081
(0210)

001119
0021)5
0021'501

002167
00218]

001'99
002210::.
oon31
0);>]4]

00:;]63

OO}]19

002:195

001188
0C01)0.4

00')20
00')36
O(;I)S]

oo1J58

DOlle'" ex;,..,.,
001"16
0014]2

001 8
001"&<1

00'480
001496

001512
001528

OO'S'"
OOl~60

OO!~i'6

OOI~92

00'608
00:6,4

001640
001656
001672
001688
0017()4
001710

001136
0011'52
001168
00 1184

00;800

001816
0018)2

00'''''
00''''
001880

00'8'J6
001912

00'978
00'
00'''''
001916
001992
007008
001024
002040

00705.
oo}on
00]1)88

002104

007'7<>
0011)6
0021')}

OO~I58

002184
007700
001116
002232
C102248
002164
007790

0''''''

002]11 001312
00:)11 002328
007}o11) (01)44

00:'351 001J6()
00])7'5 002)76

001)9' 'X7392
OC1401 OC;408
00147) 002"'24
0024)9 oc,2440

OG~4'5~ 0014':16
OC'~471 1)()241]

'JC~487 00]483
oor.o OC':5-G4
OC1')') 002~·n

(0)0;, ~ OC?~:!6

OO;SS) OC1~~~1

o

00']89

00''''''
001311

OO'2'lO
00' XI6
oolJ71
001 JY.I
00 l b4
001)10

00 1 386
00 1 ce;'
00"\6
,1(14)4

001"'~

00 146b

001462
!X'~4';3

00,,,14

001!JJ()

001191 00 ']92 001293
00')00
OOll~

001}41

001351
00131]

001189

00''''''
00'421

00''''31
00'453
OC1469

001301 001:.<)8
00 1)2) 00 1 324

001])1
00: 1'!1]
001)69

001385
00'401
00'417
00 14])

001449
00146S

001481
00149 ~
OO.SI]
001")]9

(01)39 001~

OO'~S 00llS6
001111 00131]
001.187 001388
00140) 0010404
001419 0(l14]'()

001C)5 001436

OO14S1 001"52

OC146' 00 1 468
001.&83 001484 00'''''

001&01 OClot99 001~

1')01501" 001516 oolS11
001533 oo153t 1)01531

0015ot~ OO!t;.46
001')&1 :x)'SE2
001')77 00,518

001593 001594

001609 00161:1
00:01') l:OI6iG
001641 001&41
00:667 OOI~

00.61) 001614

00:689 001690
001705 001106

001721 001122
001137 :))11:'
0017S3 00"'54
001769 001710

COt78S 001186

001801
001811
001833
oot849
0018615
001881
001897

oo19t3
00191'9
001945
ocn961
O(Jl911
001993

00:>009

002025
OOZC4'

001&12
001818
001834

00'850
001866
001881
00'898
001914
0019.10

00'946
00'962
001978

00
0020:0
001076
lO7047

0015041

001563
001':179
001~95

001611
001621
001643
001659
00161'5

ool69t
001107

00172J

001139
001155
001771
001781

00'803
001819
001835
001851
001867
00188]
001899
ool91S
0019]1
00 1 \J41
001963
001979

00''''
002011

007fJ27
OO104J

002057

002013
007089
002105
002121
002131

002153

002169
002185

0027<>'
001111
001133
OCn4g
OC;?]€5
002?81
002291

002058 00'10S9

00131)
0013]9
002:!45
oc;21El
OC]Jn
OO~J9J

OC24C9
OC24.2';

OC2441

~]4S7

C(.247)

~]~1

OC]SC!l
OC;~11

OCiS)7

OCI';';)

002074 00207'50
002090 002091
002106 002101
001122 002~1l

002:38 0021]9
0011'>4 0021!J5

002110 002111
00218:6 002181
002102 002201
001218 DO:l2t~

oon14 0022lS
OOi~'() 0022S1
002166 002267
QII.i218.2 0012!13

OC2298 OCi:'J9

002)14
(01)~

OC7_
00; ~!':]
001:m:l
OC'1:n.4
OC24"J

(1;24;5
OC}442
()".!4L' ... 3

(.(i:'4 7 4

C{.'~4J':"

OCiS':,::'

IX1~;]

Cl(;'~l8

\Xi;:.:, ..

UQ'1J1S
001331
002)4'

rY;i]b)

OG2179
oo;~

QC}41 I

0024]7
cr144)
iJI)]4",9

()(\]4'!I

X?.sJI
'X;')~,

oc:'~n

'.Y :-0;,]9

OC]'jS!I

o

00150&8 001'549

0015&4 OOl!>65
0015<80 OOlse!
001596 001597

001611 001613
001628 001619
001544 00164'5
001660 001661

001616 001671
001692 001693
001708 001]09
001124 0017~

QGI740 001141
001156 0017';7
001112 001113
001788 001789

00'804
001820
001836
0018~2

001868
00lea ...

00'900
001916
001932

00'948
00'_
00'980
OO~gg6

002012

002018
00;044

007060
OOZ07~

00]09]
002108
002114
002!4O

0021!o6
0021 t]

002 ~88
002204
001120
007136
0022S2
oontlB
002;'84
002);)0

002316
0023)2

00''''
(111]64

007380
007396
001"2 om<,.
0024 ... ,

001460
{'C}.]IS

oo2ot97
oc;<)oo
00;,)24

OC]S40
IJG]'SS6

o

0018Q!i.
001821
001837
001853
001869

001885
001901
001911
001933

0019'9
(XH96S
001981
001991
00201)

002019
002045

00706'
00:1011

OOJ093
002109
OO~I1'J

00]141

0071")1
00]1/3

002189
007105
001121
002231
0011'5)
001769
00]18'5
oo]JOI

o

002311
00])))
001349
00])65

002381

007""
00141)
001·U9
001 ... ·5
00]46 1

OO}471
(0749)

""""" OC:'J1!J
OO~.I

00]<)<;7

001194 OOI2r.J
OOTJIO 001)11
001)11 001127
(01).12 go!"!"'J

001 JSI OO'lS9
001314 00137'
OO'l9O 001191

00'406 OOt.o1
001412 0(142)

001438 0014)1

00 1C~ 001455
001470 001411

001,&86 001487
001S02 OQI'joOJ

OOI!>18 oen.519
0015)4 OOl5lS

001'550
OO1S66
001582

00 1 S98
001614
001630
001646

001662
001618

00'_
001110

D0172!

0011"
OO11S8
001714
001790

00''''
ootS22
0018lft
001854
OOU!70

00'_
001902

001918

001934
00

00'_
001982
00'_
002014
002030
007046

002061
001078
002004
101110
001116
0(;]142

0021~

002174

002190
001206
'YJnn
OC21]8
00]254
002170
002]86
002lO2

00'551
001561
OOI~3

001599
001615
0(16)1

001647

oot663
001679
0016~

00IHl
001111
001141

00 17S9
001175
001191

001807
00182J

00'139
001855
0011\7'
001811
00190]
001919
OO19l5
OOIl)S1

001%1

001983
00199')
00101<,
001031

00704'

oo;>(lOJ

004-079
001~-:'

001111
,)0]121
00214)

D021!>i
00211~

002'9'
00770'
(.102221
0022J8
OO21';S
{)O11'1 om,..
00110]

002318 001119
0013)4 tJ01).)S.

001~ 001.151
002)66 001167
002182 cxnlll]
00'2_ 002_
002414 00141S
(024)0 0014.]1
00 • .&46 0014,41
0014E2 002461
OCi.18 002479
OC;<I", (l(J]49S

IXlS10 OO?~11

OC']<j21 00]*)11

002!)42 OO~4~

OCZ~S8 001",::0.

B-3

B-4

• --..... ' C1C1111, -.z _
_J _
ClD" 0DIG4 -­...... ..,..
GoA) CDH'1 -­aDAl 1:m1Ol
~ 002720
GOAl 0027)1
.....c 0112,.2
_0 001'.
ClGAE DOn" GOA' _

aoeo emil,
0011 omt12 a2 _
a, 001 ...
COlI' _ _. -
oc.. DD29'1
COlI' 0021128 ---- -OOIA D02'I76
a. 0cm02
ac OOJOCll
_0 CICX:JOa4
COIlE 001040
COlI' 0D300I

CIDCO 00XI72

OOC' "',..
oat:2 1103104
00Cl ClO311O
IOC4 DOll.
ODCI Gl)J1S2
aoc. 00318
0I:C7 0031104 ooca _

DOC. 00321'
OOCA OOJ2l2
2XI OOll"
aoc:c OOJ2&4
ooco OCJ:l8O
ODC(OOJNe
GCIC' ODJll2

aooo OOJ..J1I _.-
0G02 OOlllO
QU)J OO3J7I
aoo.t 00)312

0IIDt OOJa
~ 00).124
aaol' :JDloMO
oooe .,.,...
... CJCI14l1 000. _

_. 00,...

ODOC iXllilO
:000 'CIOl&3I oao. 007.161
"",,' 00lMI

0IIf0 ..,..
001:1 oo)lQO

CIon 00»1,
oaE] 001111
0014 00 _, OOl8CW

oct. 00'*0
GOl1 OO.3fIIJI
a. Ot)J1Il
a. (0)111

QOlA OOJ]<w
_. 00)'10

ODIC 1XI1'1,
_D (D.)~1

OOl,

." cnm4

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Coot'd)

_.
ooa17 _. ---, ' ..,.13 -00210l
acn72t
0027J1

002'"
002111

002"
00210'

0021111
OO2Ill
002 ...
001 ...
002.1
002"'
002II"
002021

0019<'
002101'
001117
0010U
OOJOOO
OOllm
00304'
00l0I1'

00lIl1J
OOlOOO
003106
00.)12'
0031]1
OO31S)
OOJI.
003115
0031<11
003217
CI031)J 0031_.
OOl1OlS
00)211

0Dl20'
OD131)

00:13>9 OIl.,..
003.1
COlJ"
OOJ:.U
00J4QI
",342S

""344'
00:1467
001413

"'
001006
(:I;li)521

OOJ6Jl
oollSJ
;>Jl!MIi

'10,...
"'lOCI'
'XllGll
ooJ6Jl
oo,..e
00,...
""lOt. -,
1X)11ll
ooJ119
Cl)174~

(XlJ~'1

Cl.'Hl1

OOHU 00-",,, .. ,.

-ooa1l -0021'0
"'0:10
0IInQ 002_
00217. -002''''
002'22

002'"
002'"
002770 ... ,..
00302

00211'
001134
00:mel
002166
002882

OIl""'"
002tU4
OO>flO
002048
0021II2
001011

00""
ooJOIO
003024
OOJ042
OOJOO4l

00301.
003000
003108
003122
0031.
003154
003110

00""
OOl202
0032'a
oon34
0032S0
oonee
003212
ool208
003314

003330
OOll44l
00»42
003311
ooJ,..
0034'0
OOJ02I
00lA42

0034"
0034'_
~
OOl6Cll
DOli21
00,..
00365"
00""0

OIl""'
OOlOCl1
oo3$J,
OO~

OOJ060

"',... "",..2 "",...
00371.
OOJ1lO
00]145

001181
003118
0011"
oolllO

"'16

-0021 .. -an.l1
002Q'

00214'
"'8,. -,
"'10'
00211)
002'"
Oln"1
002187
002I0l

002111
002135
00,..'
0028Ii'
002B8J
002800
001915
001131

00294'
0021103
002'118
00,...
003011
003027
OOJ043
00l0I1.

1IOlC7.
00300'
003107
003'23
003.30

003'"
003111
C03187

003203
0031 ..
oon,.
OOJ2S'
003281
0032113
003201
OOJ31.

00333'
003347
003163
D0337'
003.
003411
003421
00340'
0034 ..
003476
00)401'

00360'
00352;)

003&»
00l5H
003&11

,,.,,..,
OOl803
OOlite
co,.,.
00;851
OOJM7
00_)
001000
QDJ71~

0037]1

003'"
OO)16J
oo11},
(1)J7~

00lI1I

00."

-002Y0
0020M
0021" -002'"
002_
00287'
_2
002''''
00212.
002'40

OIl'''' G027J2

002'" -
002120
OO2IJe
0021$2
002888
002014
002Il00
002118
002ln
00,...
~ -...-
003012
003028
003(M4

00l0f0

00301'
000Il82
003101
003124
00]110

003'"
003171
003188
003104
003220
oon38
003252
OlIn.
003280
003300

00l3'.

003132
00"..
001104
003l1O
OO:'NI
CK).)$!2

00342. -003400
00347'
003402
00l00I
C03624
00"'"
00,. ..
003512

OOlOll ..,...
003020
00>036
003002
OOlMl
00
DOl '00
0031',
CJDJ712
(l)1148
003114

003"'"
003'"
OOlll1

"'21

-002M'
00,..'
anil3
002l12li
002

"'18'
002877
_3
00210t
002125

002'.' ... ,..
00271) -
00212'
00283'
00:!t51
002_
0021l8S
00100'
00291]
0021l3l
002 ...
0029<IS
002II'
00100'
0030', OIl",,"
00304.
COJOOI.

OOJOII
00300.
003'00
003'2S
003'4'
0031S1
OOlT73

003'"
a13206
003221
OOJ2J1
0032S1
00J2It
oou.
OOllO!
ODlJl1

OOJlJ,

00''''
003106
003J1!
OOJJt,

<103>0'3
0034:19
00l4<6
00)08'
003411
003.t83
OOlliOO
OO:lS2S
00lS4'
00,,",
003673

OOlllt
003105
00)12'
00l03'
00""'"
00,...
00 ...
003101
003111
003'113
003748
0037.
003781
003111
OOlitl
00_

-002012 -.... ,.
002830 002 _

0021102
00217,
002710
002121
002742
002151
002714
0027S0 -
alm2
ooa.
002IIS4
001810
002886
002002
1lO29'8
001034 -001016
002912 -OOlO"
00J030
001008
0IXI0II2

00J078
OOlOll4
003110

003'21
003142

003'"
003174
00311'0
00J20e
003222
00:123.
00J2S4
00:3210
00J286
003J07
003318

001J:)4
001350
001368
003.2
001,..
003414
!X'l300
OOJ4.IG
003482
003478
003484
003510
OOJS25
_2
00l05e

OOl<\"

003580
003101
0030:/2
OOllSll
0034164
(0)870
003.6
003702
0031111
OCl114
CIJ)'~

003166
003712
003791
OOll'4
0031:10

-002S&3
002S8I
002631 _ .
002M3
C02678 -002711
002727
(11)2743

002".
002721
002781

00210'

002823
0028lt
002115.
002871
002886
00100.
002II19
1lO29:1S
0010S'
00296'
0010Il
0029IIIl
003015
OOJ03'
00304'
001003

001070
00308S
003111
003121
003143
003'51
003175
003tl'
003201
003223
oo:me
0032S.
003211
003281
003303
00331'

OO3JJS
00335'
00336'
OO3lB.
00lJIlII
003415
00343'
00344'
003463
OOJ47t
00_
0035"
OOJS2I
00154.
OOJSS.
003575

00:J5t.
OOleO'
003623
003830
00385.
003671

00308'
003103
003111
0037~

003151
003761
00]18)

OOJ~~

0031P5
OOll)1

002SI8
002514
002eoo
002&1'
002432
00,...
002e64
002680
002_
002112
002128

002'"
0027CD
002111
0027'2 -
00281<
00,...,
00285.
002112
002188 -002120
001036
0021152
001008
002lI04
OOJOOO
003016
OOJ032
00:1040
00301>4

003010
003006
003112
00312.
003'"
00311'0
003118
0031g.2
003208
003224

003240
ool2S4l
003112
OO:mll
OO3l1M
003l2O

001J38
0037.>2
00JJ68
003J114
OOl4OO
003418
003432 -003464
003480
003406
003512
001518
00154'
003560
003$76

003592
OOl608
00362.

OIl*"
003600
003672

003"
0037G4
003720
003736
003752
00)168
ooJJ,"
003110<
......... ,t'
ooll02

• -00,... ... ~,
om817
OOlO33 ... -002.
an •• ,
0027'3
002121
002745
00271'
002717
0021e3 -
002125

(1:"'''''
00285'
007873
002881
00100S
00292.
001037
0020S1
00296.
00,..5
00300'
003011
001Ol.
OOJ04.
00JC65

003I0Il'
00300'
OO31t3
003'10
003146
003161
003177
003113
003_
003225
003241
003257
003213
003289
003305
003321

003331
003153
awe!!
003J1.
00l40'
003417
003433
003448
00
00348'
00,..,
003~·13

003529
00,...
00l58!
OOJ577

OOJ'S93
00310!1
003625
003641

00315'
003613
00361.
ODJ1OS
003721
003137
003]$3
00)769
OOJ785

003110'
00»1 ~
003133

A

002S10
0025M
002t02
00261'
OOlUl
00261iO
002_
002612 -002114

OO'l':IO
002'"
002762
00:178
002704
0021'0

..
002828 _2
0028511
00281.
002810
002lOe
0029n
0010JI
001054
0021170 -OOlOO2
00301'
00J034
003050
OOlO86

•
003I0Il2
003098
003.,4
003130
003146
003162
00317'
003184
003210
003226
OOJ2'2
amsa
003274
00J2II0
00:1306
003322

003331
003364
003370
00llN
003402
00341'
003434
0034S0
0034M
003482
003408
0035'4
OO:lS30
003&46
003582
003578

A

0035e4
003610
00:1621
00384'
OOJUS
001674
00J6II0
003106
003722
003711
003754
OOJ7J'D
003781
003801
00J81'
OOJl34

•
002S7'
002II' -00261e
002635
002.'
002.7
002tII.
002_
0027t5
002731
CJ)27C7

OO2ISJ
1m'70
002116
002tI11

C0282'
002143 -0028"

002 .. '
001007
0021123
002938
002t65
002171

00218'
00:I003
003019
OOlOlS
00>06'
00301'

8

00310II3
OOlClll
003115
003Ul
OQJ147
003111l

OOJ'1I
003195
003211
003227
003243
00l2SI
0032,.
00321'
003301
003123

0033311
OOlJ06
003311
00lJI'
001403
oo:MII
0034"
oo:w.i!

00348'
003481
003499
003> ..
003531

OIl,..'
OOJS,S3
00357'.t

00351M
0036\1
00362>
003643
00315"
OOJ6,.
00,.·
003.707
003113
OOJ73i
C031~S
(0)771

003111
00380.
0038'"
003IlS

c

002S12 -002_
GOIm -002012
002_ -002_

002'"
002'32 ... , ..
"" ~
002181
.... '2

002128
002800
002876
002882
002lot
002124
002140
002IM
0021112
002II8
001004
00302\)
00J036
003052
00J0I8

c

00",..
DOll00
00]116
OOJ,n

003'"
003114

003'10
003116

OOJ2'1
003228
0032 ..
003280
00327'
00329'
003Jot
D03J24

C

00J340
003356
003312
001_ -OOJQO

0034J1
OOJ4S2
00J468
00_
003500
003516
00lb12
003641
00:1564
00JS80

c

003SllO
003612
00lf28
003644
003600
003116
003682
003''''
011714
003'"
OD37~

003774'
00178'
00)804
00.20
OO.lE

o

002S13 -002105 _.
0021137 --002_
C0270'
on't7
0021»

002'"
002'.
00278'
00270'
002II'3

o

002829
002145
001116'
002877
em89.
002900
00292S

00104'
0010S1
001013
002'"
00:1005
OOJ02'
00303.
OOJOII.
00:10IIII

o

003015
003101
003117
003133
0031.
alll ..
01)3'1'
0031'7
003213
00.221
0032 ..
003261
003271
001103
003300
003J2S

o

00234'
0033S'
003J13
0033IIt
OOl4OS
00342'
003431

00"'3
00
00
OOJSO'
COJ517
OO:lS13
OO:lS ..

0035"
00lSI'

o

00,..'
003613

00362'
003645
00366'
003617
00)69)

003'00
003725
003141
CXll751
QOJnJ
OOJ7h
003liO!>
(0)82'

OOliI'

002S7. -------0112.
00211.
... 734
Ql2710

002'.
0027G
002'"
00lI0''

l'02II:IO -0021182
002811
00"-
0010'0
002121
002,.2
002t58
0021"
002110 -003022
OOJOlt
oo3OS<>
00l0>0

-003'02
001118
0031~

003150
003116
003112
0031.
003114
003230
003246
CIOJ262
003211
0032M
oo33tO
00Jl2I

-003_
003314
003JII0
00_
003422
0034J1
00
003470
00_
00JS02
00351.
OO:lS34
OO:lSSO -OOJSl7

003M8
003614
OOJ6J"1
003646
00.2
OOJIII
00,...
003110
003726
00".1741
00)751
003174
OOJ71C.
0C3806
CI01I21 OIl».

-" _. -_3 -0021"
_7
_>03
CD2".
01127 •
002'"
002m
002>13
002'"
00lI0 ..

""'1
00_'
_3
002II"
002111
002121 _. -001021
0021II'
00300'
COlQ2'
OOJO»
00JQ55

003011

OOD7
003101
00311'
003131

003'5'
OOJUi7

003'13
0031.
(1)3215

0032)1
0032.7
0032e3
00»,.
0032IIi
oonll _.
aiJl4J
0Ii33H
003321
OIJJlI'
00300'
OOJ42,
003431
00,...
(0)47'

00341'
00360.
DOlIS11
OOa,.
00,...
00_7
00_,

003511
DOlIl'
Q03I3'
D03I41
0Dl66)
003611
00,.
003711
003717
003143
003'51
003m
003191

OOliO'
00lt7)
00lIllt

GDJO 00_ GOf' _

GDJZ _'Z
QDFJ ao ..
..... 003100
GOf' 00lt20
GOff OOJlll
GOf' OOlli2
..... 00lIIII
OIIFI 011"­GDJ .. _ -... '. .. C _
_D _
_r _
0IIf' _

0'00
0101

0'02
0'03
0'00
I'.
O'GO
OlD"
O'GO
0'01
O'GA
0'01
a:oc
0'00
Ol.
0'00

o -0DI112
ooo.lI
000'"
000'10
CIDII"

CJOt'" ooozae
001224
/IOIZ40
_251
1XM272
/101_

-JIM
_320
OOOlll

o

0110 DOU~2

0'" aM"
0112 ~
on, OOMGO

0". 001.'1
OilS DDt4JZ
01 '1 OC)M.&I

0'" CJ044M
Dill 001_
01'1 (l)M1I
Ql1. OOISt2
ot.a OOISlI
011e CDI~

0110 004!»1O
0.1' «MS7I

0'" 00«tI2

o
0'10 __

Ot 2' I (1)161.

oln 001640
DIll 00I6M
DIM OCM6')
011\ OOIMI
OIM ODI'CM
0127 CDI,;Mt
0121 01)17.
O'll OOOIY
012. DOt1ll
DID oou .. a'K _
D'JO -.,.
O'ZI _
0'20 _

o

". CIIMIII
O'lt 0D4II0
0131 oo.ee
(Ill .1')
Cilt 1XM928
0'. GOt ...
0' •
01 J' 001'7,
at. DOI9I2
QI. DODI
GIlA D05Ol4
Olla OOSCMO
OIJC OOWM
01]0 DO'2
O'li ~c.a
Ot3f 00510t

HEXADECIMAL·DECIMAL NUMBER CONVERSION TABLE (Cont'd)

00310'
00385'
OOJl'3
00:l1li
OO~

00lf2'
ooll37
003K3
00'"
OOJOn
00400'
aeoon _3 ---_.
-,
0011$3
_'lI
000'0\
01)4'"
•• 77
000'1)
000201
_2n
DlMl'"
OO"2S'
OD4273 --000.
000l2'
CIOU3'

OOU53
000_
/101M _.
0000"
/I0I033
_9
/101
OOMI' 0000I,
_'3
GOOSZ9
/IOI~

/101M'
DOCsn
_1

....."
000Q5 _ ...
00006'
..... '1 -000'06
001721
*737
00","
000711
_715
_,
-" _ 33 -
-_.
00019'
0009'3
000929
001'",
/10196'
DOI91J'
/101991 -005015 _. -,
005013 -oos ••

OO"Z -0031'.
00JI90
003!101
00lI22
003HI
OOlKO
001970
OOl9ll -/I0I011
/I0I030 ---
-oeM I."
_'30
/101 ...
/IOIIU
/101'71
/101.,.
(DUIO
_Z28
004242
_251
001214
_Z!IO
OOOlOl
_m
0003J1

000350
_370
/101_ -/I0I0 ••
000030
»IOSO
/I0IOII -0000.
0045'.
/lOIS»
/I01OOO
/IOI5&Z
_II
/lOIS,.

QlI06'O
000621
...... 2
0001ilil
OCMI'. -­/IOI'GO
000'22
_'11
000,,"
000'70
OlIO'. -_ ..
_30 -
-_2 -0009'.
000930
000_'
000 .. 2
0i0'97,
/101".
0050'0
005011
OOSOOZ -0050'.
ImOOO
OOS'GO

00"1
OOllH
001115
00319'
00390'
00lI2'
0039:11
00l85S
003971

00391' -/I0I011 -_.
..... ' -
-COlt"
000113'
001141'

OOO'U
GOt'7I
_'95
004211
_227
DlM20
GOtZ51
GOt2'5
GOt29'
_307
GOtl21 -
000315
00111)71
GOt:ll' _J " 000035
00005'
00".'
00MI3
0000",
OIMSIS
004531
OOOSO'
_Ml

-" _95

...... "
OOOU,
...... 3 -­GOt6"
000.'
004707
001723
000'311
004'55
00417' .7'7
000l01 -'. _35 ,

-, -. -00191'
00093' '
GOt"3
0049'9
000-
~Dll

00s027
... 003
00'l0!>9
0050 ..
0050t.
00!I07

00 ...
00lII0 _" OOlllZ -00312.
OOlMO
00l9H _72
00lIIII
000020
IIOOOlI
_2 --
GOt'OO
QCM'"
000'32
000'"
GOt ...
_'10 _ ...
OOOZI2
_228
/101_ --001211
/IOIZIZ ---». _300

Q04J&8
004371
_319 -.... 20
_'lI
00005Z _ ..
/10I0IO
_500
004516
_5»
004S01 _ ... ----
...... 'Z
000628 -­..... '. OCM69Z
000101
00172.
_'40 _'M
004172
004'.
/I0I804

..... '0

...... 36
_2

-_ ... -00491'
004912
004_
004_
004_
004_
0050'2
(1)5028

"'00'
0000lO

0050'.
..... Z
""01

-_.
-" 00:1II3
00_
00lIZS _.
003!15'
0031'1
0039ft --,
00403'
_1 ---
00"01
DD4111
004'll _ ...
GOt ...
0041"
004tt7
/101213
GOt229
ODU4,

0042"
001277 ----_m
_30'

GOt3&'
OOUIl ---OCM'21
.... 31
_J ---0CM50'
001517
_Ul
000501
_586
GOtst.
1I005I'

....... 3 -..,.... _.

..... 11
_ell3 _'OIl
_'25
00114,
004757
00111173
004'88
IIM805

1I00I2'
00013'
aousl

-..,.... _to.
Ql)4917
0049]]
/101,..
/101_
/101.,
/10199'
0050'3
OOS"" _S
DO!><le'
005077
005093

""01

00:lII0I -003171
DOlIN
00l9'0
00lI2e
00:lI02
OOll5l

003II'.
00_ -IIOOD22
004011 -/I0I0'0 --
OOC102
0041"
_'30
_'SO _ ..
(Dt'I:a
004'.
COital.
(IOU30
0042 ..
_282
110"2"
000210
001110

.... -CIMlO2

--00&31' ---IIOOO2'l
0000lI -0000'0
_5'l2
0045'1
_530
_5SO
000_
_st2 -
• , .

CIM6lO
004NZ
0041" -001110 _72.
00".2 _1M
0041'1.
/101790
!70010:1
.,...22
004838
00015.

004170
00<902
0001918
004.30
_OSO
/101966
00-.2
00<_
~o, ..
COSOlO
00Sll46
... 06Z
OO!I01,
0050t.
005"0

00 .. ,
OOllll
00lI7t -003011

00lI2'
OOllQ -00lI" _.
0CM0D7
004021
OOOOJl -QOo07I

aoooo'

004103

(1M'"
000'35
004151
(lOt ,,7
0041.3
_'91
110"215
004231
0042.'
GOt2H
00427' -001311
GOt127
_301

--0DI37i
000:11' -,
/I0I023
OOO.JI
004455
/I0I07\

OOMI'
_SOJ
004:51'
/IOIS3!i
_S'
00456'
004stJ --
........
000Il'
004 .. '
004 .. J
004619
004&1S
004111
004127
00410 -,,,
Oo.'*'}'5

00070'
/I0I80'
_23
/IOCIl9 -
_"~ ,
/10190'
COt,'9
000.35
OO-!IS ,
001 .. ,

/l0III3
00-_
Q()IS01S
OCY:tGJI,..
""","3
005079, ..
oml11

00:lII0I
00lIN
OOlllO -CIOlIII2
003!lJW -00lII0
CIOlIIT.
003l9Z ----0000'2 -
_11M
000'10
OOO'lI
Q()I1n

000'"
/101 ...
000200

110"2"
000232
004'"
/IOI2M -­""'291
0001312
_328
""',..

000_
OOU/l
000112 ---0000151
/I0I0'2 -000500
004520
_lI
/IOI!552
/IOISOI
004st. -
...... 'e
0041112
/IOC64I ---006712
000'21 _ ...
004'10
00117'
004792 -0001'. -00086&

_'2 ..,....
/101_
000.20
00-')6
004!1S2
OOC961 :)04".
005000
005016
{JOiSo12

0',."""
QI)';08O

""'"" OOS112

---00319'
003II'
00lI13 -OO:IIOS
00l0II'
003877
OOlIIl ---, -,
Q00073 -
•

_'OS
004121
0I)t1n

004153
_'011
004185
_20'
GeM2.1
ooonl
00u.t9
/101,",
_28'
001.29'
004313
_329
004J4S

000311'
000317
/1013111 -_25 _I -,
.... 73
0000I.
CIMSCII
GOOS2' _37
0045S1
ooose.
/101 ...
oooeo,

•
0001"
OOOIJl
000
004 .. '
001'"
/101'"
004'"
00471'
oonn
00I''ill --000125
QOq.O.

OOOI!>'

,
...... 1 -""'90S
004921
0Gt9Jl
004!1S3
004_

000",
00500'

"""''' 0XJI5021
00S04.
00S06.
0050II'
0050t.
0051'3

..
OOll5O
00 ...
003192
003111
DOJI"
OOJl.
00_
003151
00lt1l
OOl9lO
/I0I0'0
/IOCOle -, -0000'. -..
_'01
004122
/IOI'JIl
ODCl~4

004170
/101'86
_202
004211
""'230
""'250
0047&6
000787
004Z911
Oo.U14
0041lO

"""301

..
OOOJll,
0011318
0043M
0000'0
IION2I
000M2 -.... ,. 1IOM90
004500
000'22
004'JI
_!550
0lM570 --..
_" 004630 -..-0CMeII2 -QOC7I.
0041lO

/101'"
OO-'U
""'71 ..,., ..
.,...'0
000128 .,.,...., -..
0001" -""' ... 01,)4922

00-'38

""'
0049'"
004_
00s002
0050"
"'030

""''''''' 0050«;
0050II2

""'"'" ~11.

00315'
OOJII' _,
003199
003915
00JiI')~

OOlIMl

DIU96'
001170
00_
Q0001I

00002' _3 _.
0000 .. _.
00U01
001123
/101'311
004'55
001111

0041"
00420)
()Qot219

004235
/10115'
00426'
"",28J
00429!1
OD4)I~

0041Jl

00030'

OOOll3
001319 00031.
000011
/I0I02.
_3 -00""
/IOC091

"""".
004'1lJ
_.311 _ ...
00I~11

004'"
000l03

........

..... 35

Il00&6' ,
0001II1 -COU1S
004']1
CIOI&l.,

"""'03
Q0411g

00-'"
000II"

"""'" .,....,

.,..."
",,"",

000901
00497J
"",910

""'''''S
001971

""' ...
;)0';003",
""""35
"""",.

DO!><le'

00""
""""'" OO511S

1IOJI5'
003llla
00'"
00lI00
(1)."
ooJl12
00_
00.­
OOlllO
003091
/I0I0'2 ---_ ..
...... Z

-",.
00II12'
004'00
00415'
004112

000'.
000200
004220
004'36q
004"2
004,..
0042M
004300
004315
_3l2
004J01

0003 ..
004J1O
""'319
001."
004'28 ..,....
""'­..,.. ..
/IOC092
""'SOlI OOt5,.
_SOD
004."
00I~'12

000'" -
c

..... 20

..... lI

'.' ;2

""'­""' ...
004'00
001715

004'» ""' ..
"""' ..
"""80

"""' ..
""""" 000178 ---
.,...'. """",
OOC9Oll
01" ... 914 ""' .. .,
""''''. .lO4112 .,.,. ... -0050Z0

1lO5O"" e.,.",.,
""""" ,.,..,..
...,00
CIO!Jl l i

o

0'"'''' 00_

"" ...
OOJOO'
OOltU
DO .. JJ
00 ...
OOlll'
00l0I' ..,..,,,
/I0I029
QOOCMS

00«»'
CI040n -

o

0001'00
/101'15
001141
OOAtS1
(]t)I!7)

..,.' ..
/IOIlOS
OCM221
OCM211

"""3 """,..
004m
004lO'
(04)0

004333
004lOt

""',..
!.lOt".t

004l9'
/I0I0'3 ..,...,. --..,. .. .
00 ... 17
IIOMtl ..,....
_SZ5
OOCSO'
004SS'
00<573

""". ""....

o

"..."
'1044J'
00«0, -""'""' 00.101
004711

00<1.113
0CA'''9
(DIles

OC.lot'8t
O()I191

"""J """',. """' ...
00006'

o

..,.."
OOillt~)

OOC·'"

""'." ""' .. ,
004!1S]
0049']
~9I9

""'"'" 00S<i11

OOSOJ7

""""3

""""'" ...-
~IOI

~1t1

00_
00:"0
00319.
OOllO2
00)111,
01).)8)1

00
ao.-
003l9Z
OOJlOl
"""' ..
QOo03O

/10I0OI ..,..,.,
""""'" -
CJC)I110

00411.
0041.2

/101'"
00417. ..,..to
004ZOO
0I)C.22

"""38 ""',...
004210
004211
/IOIlOl
ooUI8
OOO,Jo&
000350

004366 ""'.,
000_

0Gt."
..,...:10
004 ...
""' .. ,
000011 ..,... ..
00I~10

"""21
004SO'

""" ... or:>te.l.

"""'90
~

...... 72

""":10
(l.,~.

"' ... '" oc;.l8I
(.l)Iiil'J

OC-'"
!X)I.:J4

004''''
000'"
::o.t •• ,

.,..'. """',.
0040.10 ,.,..'.
()C;oUtS.1

~~I

~
iJ04i'O
(I00I116 ""',..,
OOC'"

..,....,
"""""" .)17./.);·1

1YH',11

""""'.
CI7.IO~O -005'02
0CJiS'"

"" ...
0CllI"
00.'
00lI0J ,
00 •• 00_.
00*'
00lII3
00:l1li
OO4O'S

""""'. -,
..-:J

0000" -
(1)1111

0Dt1;l7
00414]
OOO'SI
_'7\1
004111
_10'
004171
_,JI
_255
OCW211
_78'
_303
0DI11'
_'35
0043&.

004107

00431' --110M ..
OQ44]1 .,.,.....
_ ... 1

110M ..
':.><OM
COtS11
':'OC1j27
_SOl ..,....
.x .. ~~
.::l!"04I5"

00480'

004II23
~l8

")'""~S!l

:J'MI&,'
(l()C.M~

1X~'!)1

tlQ41t.,

r~1)5

00<7\1'
!"IlI'''e7
W-'J'8J
;,(·,'iI
«)ol~'~

{)!\o-.~1'

trlllll41

"""'OJ

...,..,.
i . .I,..,&89S
(XW\IIll

Jl00t921

""' .. , _ ...
.A,.;.j!jr')

_09'
""""'.
OC~Gn

OU':I01f

""""'.
0050"
QD!I,tOJ

OO!, '.

B-5

B-6

0'. ~110
0141 Cllt&U,

GUll ~'Sl

0'.) ~161

0'''' QOIS'"
0'" ~100
0'" 00!.11fi
0'4' ~1l2
Ot. ClD!!148
01. 1XJIS184
01.", 005110
0'.' DOS1M
Ol~ 0050311
0140 DQlS.l18
Oltl (on
014' a.l&O

O'SO
0151
01U
015]

.'04
Gin
O's.
0157
0'51
0'50
01SA
0151
O'IC
0'$0

0'"
0'"

0'80
0151
0182
0113

0'" 0'.
0'"
0111

0'.
0'11
O'IA

0'"
O'IC
0'10
0'1£
01"

o

00537'
00!>102 ..,. ...
DOS.:4 ..,.­....,..
OD5471
00!>S00I
00!>52O
00!>5lt
00!>552
005'-
00!>514
005I0O
0054'.

GOSe32, -00!>18O -DOi712
OOS72S
OD5744
OO!pea
00577'
0QI5.712 -00\814
005140
00\851
005112

0"0 _

0171 QOSg()I

0172 006120
01'l QD5.aJd
0174 0()S952
Oint CJ05.8J6I
0178 ~ ..
enn 006000
onl 00&015
0178 0CIe032
017A 0060II
011. CJCI6O&oI
01 'C 005CJ80
OJ 10 CIDI096
Ol1E 0De112
OIJF 006118

0110 0015144
01,1 OQ&HSO
DIll 006116
0'11 0061~Jl

01'. 006108
0'''' 00611.
0116 006140
Oil' 0061~'
0'" 006271
0'" 001_
Ot.... 006~

0118 t06llO
aile D06l16
OliO 006~1

gleE ODI_
OIl' aoe.4

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Coot'd)

OOSl11
~Il'
tw:Y.tlS)

"""60
"""85
00!>201
()()s'111
()()Ii)lJJ

00514'
~2'5
""'211
OO!>""
Q050313

"""'" ""' ...
OO!>lt.

~3n

005393
00!>400
OD5425
"", .. ,
""' .. ,
0054'3
005_
000S05
OOGS11
005531
00555]
005519
OOOS85
005'"
OOH"

005033
00514 •
005685
00588'
006681
0057'3

"".,'" 005745
005181
005777
006783 -00S815
005141
005157
005113

-0051105
005111
COS931

005"3
..... 9
005_

00Il00'
006017

00003'
006049 -00608'
006081
006113
006129

006'.5
006161
006117
006193

0062011
00621S
00614'
1)()61S7
00621)
006189
00.>10,
006121
C061j1
006J'»)

00636.

006""

OfJIiSIl1
"",,]8

""'I" ()()Ibl70
DOSIS6
..,.202
~1'8 ""',,.
OOS2SO

"""no
"",,.2
00!>298
005114

""'3:10
005,..
OOS362

1lIl6178
00!>394
QOIS410

005'"
005441

"""58
005414
005400
005506
oossn
OO55lt
005 ...
OOS570
005586
00!>002
005411

005834
0051160
005060
005682 -0051U
005130 ... , ..
CJ05.761
005711
00!>'94
005110
00582.
005142
oosa51
oosa1<

-..,.000
(1)5911

""'.lI
005954
005910
006986
000007
OO6CI'
0000"
CI0605C
006066
000002
0000\I8
006114
000130

~I.IS

006161
0061;8
0061g4
006210
006116
0062_42
006158
006214
006]90
OOOJ06
OOEilU
(06)'"

006,..
006)10

006386

00I!J11l
1)()'51)9

~'~5
0I)iS1Jl

005181

00520'
/lO'S2'19
"",no;
005251
005251
DO&283
005199
005315
OO5lJl

005 .. '
005J63

005370
005395
005411
000<121
005"3
005459
00541S
Q05,491
005501
00&523

005'"
005555
006511
005587
00Sfl03

00&6H'

""'835
006eS'
00S60'
"""'3 -005c115
!XJ5731
005747
txXt763
005778
005195
005111
005821
QOS8.O'
005859
oosa,.

0058II'
005001
OD&1:lJ
oosnll
005'"
005171
..,.901
006003
00001'
006C3.
006051
00<1067
006083
006090
006115
006131

006147
00616J
006179

0061"
00621 t
006217
006]"3

006".
00621 ..

""'19'
~X)1

OOflJ])
006))9 006,..
006J"
006]8'

005114

""'·co
ClOS156
ODS 1 12
00'1184
005204
""'220
005236

""'~., ""',..
{)()I&2a4

""'lOCI
0053lf5
OOSlJ2' 005_
005364

OO5J1JO
..,.396
OD5412

005'"
00'1_
00!>480
005476
005492
005508

005'"
005 ...
0055 ..
OOS572
..,.588
005_
005620

005630
00SI52
005_
""'00
005718
005132

"""48
005164
..,.700

""'196
00S8'2
00S828
00S844
00iS8I0
005876

..... 2
005901
OO61iJ2.
005IJ4(J
005972
005 ... -006C20
000036
0000!>2
006068
00000_
000100
006118
006132

006148
006164
006180
0061'36
006212
006118
00IS24C
006160
006216
006>92
OOOJ08
(06)2.

(06)40

0063>6
OQftU2

006"'"

0(Y.,115
00514'
000;15'1
00&17)

""'189
005205
"",m

OOS2J7
005253
""'269
00518.
..,.JO'
005317

""'333
006,..
006365

00531'
""'397
005.'3
OD54'"
005",

""'46'
OD5417
00S493
005509
005.25

005 .. '
005551
C06513
005589
005605
005621

00&'"
00&1"
005'58
0051'.
005190
"",20&
005122

""2l1
00515<
005210

""'2IE
OO5J02
005-318
005334
005360
00536&

005302

""3118
0054'4
005&30
005446
00S<62
006418
005
005510
omS2&
005542

0055S8
005S1<
005590
005606
oosan

0066J7q QO!5.6J8

~6S3 0CJ6654
~669 ~610 --005701 005102
005717 006"e
005133 005734
0057., 005150
ODS 765 005766
00!l1l1 1'J(6782
005791 Ci06198
005813 005814
00S829 005830 005845 _

00S861 005862
00S811 005878

0058II3
0059011
005 ...
005957
005913
005989
005005
006C21
1lO6OJl
oooas3
oooas'
006085
006101
006117
coal]3

006149
006165
006-181
006197
006213
006229
006145
00616t
006]17
00(29)

006309

006'"
006)41
006351
00631)
00630.

005894
005910
CUl926

""'942
005958
OOS97.

""'-00600e
005022
005038

1106Of>'
006C'0
0060B8
006102
006118

0061"

006'50
006166
006182
006198
006214
0062JO
006246
006262
006178
QOE]94
0(6)10

00€J26

00EJ4'
006]58
006314
006390

dl27
(J(JS14J

005 lSi'
005175
005191

00520'
005223
005239, ..
CIOb271
..,.287
OO5J03
005319
005335

""'''' 005367

00!>383
005399
~I!:i

OOS431
0054&1
005463
005479

OD549S
006511
DO!)521
(105.5",)

OO5Sst
~515

0055$1
005607
005623

005639
OOS8OS
005671
..... 7
005103
006119

005'"
00575'
005'"
005783
005199

OOS8'S
005831
005841
00S863
00517.

00S81JS
005911
005927
005943
005959
005915
..,.991
006001
006(2)

006039
0060S5
005011
OO6OBI
006103
006119
006llS

006151
006 167
006183

0061"
00611'
0062'31
00624'
00626'
006279
006195
0(6)11

DOt))?1

OO€)4'

00635'
006315
006]91

005120
0051"
0051"
OOS116
005192-

005208
OOS214
0052&0
00525.
005272
005288
"",)04

005320
005336
005301
005368

OOS184
005400
005416
005432
005
005<80
00S496
006511
005520

005 .. '
00556(1
/lCIS576
Q05.592
005608
00562'

005"0
005656
005672
005688
005704
005720
0051:18
005751

0051"

""'M
00S800
005816
.,.,..32
OOSIl48
00S864
005880

-005912
005920
00594'
005960
005916
005 .. 2
006008
006C24
006040
006056
000012
006008
006104
006120
006136

00&15'2-
0061"
00610-
006200
006216
006231
006248
006164
006280
006"'6
006312
006328
006,..
(06)60

0(6)76

006392

005'29
IlO6t.S
~I&I

OOSl71
OOSl93
005209
005225
005241
00525'
005:213
005289
OO5JO!i
00532'
005331
005363
005369

00538'
OO!>401
00S417
005433
005449
00546>
00548'
005497
005513
QOS529
005545
OOS561
0055'1
005593
OOS609
OOS625

005'"
00S801
~673

..... 9
OOSIOS
OOS12t
005737
OOS7S)
005-769
005785
OOSSOI
005817
005833
0058.9
00S805
005881

005197
OOS913
0059,.
OOS945
OOS96'
()()59'17

OOS993
006009
005025

00604'
0060S1
006013

000l8'
006105
006121
006137

006153
006169
006185
006201
006211
006233
006149
006265

00618'
006191
00€3:3
00631'St
OO€J4';)
006361
006317
006393

005130

005'08
DOS161
COSl1'
DOS 194

005110
005226
00!t2.2

005'58
OOS214
005290
005306
005322
005338
005354
00&310

A

005386
005402
0054.8
OOS"'.
005'50
00S4 ..

OOS'"
00S498
0055'4
0055JO
0055"
005562
0055,18
005594
005610
OOS626

A

005642
OOS .. 8
()()s674

00S690
005106
005712
OOSI38
005754
005170
005186
00S802
005818

00S8"
005850
0058 ..
OOS882

00S898
00591.
005930
005946
OOS962
005978
OOS994
0050'0
006026
006041
006058
00601<
006090
006106
006122
006138

006154
006170
006166
006202
006118
006234
006250
006166
006202
006298
006314
00ti3lQ
(06)4.

006362
006318
OO6J94

005J31
005'41
OOS'63
005179
005195
005111
00522'7
005243
005259
005215

005""
00530'
005313
005330
00!>305
ODS]11

005387
OO5CO'
0054'9
005.35
005451
005461
005483
00!>'99
OOSSI,
005S3'
005 .. ,
005563
oos.579
005595
005611

005627

005643
00S659
OO56'S
00669'
OOS707
()(JS723
005139
005755
0()f)171

005787
00S803
CJC:)!t819
0058J5
..,.SSI
005861
00S883

00S899
005915
005931
005941
..,.963
OQS979

""'9%
OO6C1I
006027
006043
1106Of>.
OO6O'S
006091
006101
006113
006139

006155
006111

006187
006203
006219
006235

""'5'
006161
006283
006299
006315
006331

006'"
006363
OOG179
006)95

c

005'32
005'48
005'"
005'80
0051116
005-2'2
005220
OOS24.
005260
005271
005"'2
005308
OOS32'
005J40
00535ll
005311

c

OOSJ81
00!>CQ4
00(4)0

00506
00&452
0054.
00548'
005500
005516
005532
005548
005564
005S80
005'96
005612
005621

c

IJ0564.I

""'-0056-16
ODS691

""'00
005724
005740
005158
005771

""'88 -005820
00S8:l6
005852
0058"
00S8IJ<I

c

005900
OOS9!6
005931
005 ...
005964
005980
005996
006012
00Il028
00604'
006060
00601.

00609'
006101
0061]4
006140

006156
006171
006184
006204
006120
006236

006"2
006268
00618.
006100
00631~

0063n
006348

006)"
006l8C
006)96

o

00513]
OOSl4g
005165
005181
ODS I,?
CI0621l
005229
00!>2'5
OO5H'
005211
005"'3
005J09
005325
005'"
005J67
0CI531J

o

005_
005405
005421
OD54J1
OD5453
005_

OOS48'
OO5S01
005511
005533
005 .. 9
005565
00558'
005591
00561'
005629

o

OOS'"
OOS66'
005-617
005693
00!>1O!.
005125
DOS7.,

005157
1XI517]
005189
00580S
005821
005831
005853

00S80'
00S885

o

00!>901
005911
005933
005 .. 9
005965

00590'
005997
0060'3
006029
006015
006061
006011
006Il93
0061119
006125
006141

o

006157
006173
006189
006205
006221
006237
006253
006269
006185
00630'
006)17

CI063J3
0063.9
01.16365
00638'
006391

(1)5-11.

005'50
005166
005182
005'08
QOS2'.
005230
005208
0052112
005218
005294
00&310
005316
005 .. 2
005358
00531'

005310 ...­
OD5421
OO5<lt
005.'0
005_
OO5S02
0055'1

005'"
005.50
0055 ..

. 005582
005!M
00561'
005630

005601 ...
005662
005670

0056"
005710
CJOS;'I16
CJ05741
005758
D()S714

005190
00S806
005822
005838

00585'
00S870
00S86.

0CI5902
005918
0059"
005950
005966
..,.982
005998
006014
006030 -006IJ62
00607. -006110
006'26
0061"

006'58
006114
006190
006206
006222
006238
006254
006210
OO62IE
006302
006)111

006'34
(06)50

006366
0061O1
006398

005'36
_'SI
005161
OOS~1l

0051"
oos.'15
01)5,231
0052.,
0052111
0(J§2J'9
005295
00ft3! 1
0053:/1
00Slt3
005359
Clon15

00530'
OO5CO'
1J05423 -005411 '
OO5S01
006519
005'36
00555'
00S56'
005513
005 ...
0056'5
00563'

00S8<'
00S86) ,. -OC)S711
aos111
oos,741

OOS'50
OO!t71S
OOS79'
00S807
00S82J
OOS8Jt
oosass
oosa71 ,

005903
ODSIII
005936

00595'
005161
...... 3
005999
0060"
006031

006<M'
00606.

"""",. -00I1U
006111
006143

Of)f'50
006'75
006t!11
00620)
006n3
006230
006255
006171
0062111
006303
00&-:119

0063l!t 005,.,
006361
005JI3
006_

0'10 _

011' _"
Gla 00I4.n
0'13
0'" -'M 01. __

0'
0117 0015'2
01. 00I5ZI
D •• _

011A CIOI!WIO
D •• _76
Olte 00I&e2
0110 OQMOII

0'. 00162'
a • .,

o

DIAO DIll
alAI DOlIn
01A~ ~

0'A3 _JOt
01A4 C1)1720 D.,.' .7:11 D.,. •• 752
O.A' 0011.
0'''' 00178< O'AI _

aIM 00II"
OtAi <11*32
O'A(_

0'''0 _
O'Al _

0'''' _

0'10 _'2
0'" aI2I 0112 _
0"3 _

0 ... _70
0'" 001II2
01.. 007CXll
D •• ' 001024
0 •• OlI_ o.. ODl_
01'" CI01Ol2
0'" aol~
Glet 007104
OliO 001120
OllE 007'.
01,f OQnN

o

oteO ODn_
O'CI 007'14
01C2 00lX1O
OICl 0072"
OtCt Q07232
ola DO'"
Diet 007* ate, 001_
olea .'2M
alet 001312
OICA 007321
o.el CIOl*
Gtec oo7l1O
O'CO 00731'
D'CE 00'.2
O'C' 007_

o

01DO QD142lt
CtOI GO'.
0102 00'451
0103 (1)'472
010.. 00'.
0101 00750t
01(. 0075020
0107 g:ns.
0101 007&'2
0101 001S6S
010A 0015J14
0101 ClD16CX1
OIOC oo1611i
OtOO 007632
DIDE 00.,...
010f DO'164

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cant'd)

_.
_,,
33 --. _I
0005'3
0005" -_.
00&517
oonll3 -~ _.
_7
0016'3 -­OOIlOS
OOIn.
_737
001153
0017.
001'11 _.
-" 00II'J:l _ . -_. -,
_'3 -__ 5 _. _71
0011!13
00_
00'025
0010..
007017
001073

""'011
001105
0Ct71',
007137
OQ71S3

0011.
0011.
007201
001211
007233

0012"
001216
00721'
007211
001)'3
00lm
001_
007:11'
OD73n
001.3
00'_

001_

CD'''''
ClI'C6'
007473
00'489
OOISOS
007~1
Q07'S37
007~J

00'_
00
0071501
001e"
G07633

00,..'
ClJJI.~

-_ .. -----_ ..
00lI53O
_2
00157. -00IIi'0 -­_2

-oooe" -001101
001722 .,.
00I1S4
001170

001'. -_'1 ...,. --_2 -_ ..
00lI3O --_71 -­ooJlOl0
00102e
001Of2
00'0lIl
001074
00'_
007101
007122
DOllJ8
001lS4

001.70
0071.
00'202
00721'
00'2)0
00'250
00'_
007212
00'218
007114
0073:10
001346
001312
001371
001394
001410

0014""
(1)7442
00'8
007474
007_

00''''''
007522
OD7S»
001S~

001510
00.-
007&02
007611

00'634

""'_ OIl''''

-_ .. -_ . -~
00If"
001515
00153.
001547 -001&71
00&515
GIlOIII
00M21 -
-GIlOI15
000II'
001707
OOIn3
001138
.~
ani
OOIl117 -_II -IlOIlO'
00II6, _3 -
_.s _.
~" 00lI01

ooa"
00II8II5
001Q~1

007021
0070c]
OOiCfl;,
00701'5
00701)1
007101
001'21
007'.
001155

001111
007117
00'203
007211
oo11J1
00725'
007211
00'213
0012!lt
007315
007331
007347
007363
00737'
001_
001"1$

007421
0014043
007459
00147S
00741)1
001507
007!t23
001539
OO15SS
OOTh7'
001587
007"'3
0076tg
007..,.
0071$1
CIUlIl

-_20 -..... 2 ---... " 001532
00I$6I --00II'2
001I2I

-GIlOI1I -008101
00II124
001'00
.154
001772

001'. ---001II2 ---_II
001II32 ---OO6!IM
007012
007028
00'
001000
00101.
IXrnlO2

001'01
007124
007140
007151

oonn
007'.
00T204
001210
00'23f
007252
001211
00128f
00'300
0013\.
00'332
00''''
001*
001310
oar..
007412

001'''''
00'_
00'
00741'
007"92

00'''''
001524
00'
00'556
OD7sn
007'"
007100
007620
0011136
0071$2
007111

-_2'
00143'
..... 3 --00650' _" 006S33

00050f' -00IS8'
00650:
00681:'
00662!i -_.
OOI6n
008eII3
0081011
001125
DOIl.,
0017111
001113
00111' -_.
001&3', --_.
00II11
00IS33
oooat8 --, -,
007013
001_
00l(MS
007061
001071
00'083
001101

001'25
001141
001151

007173
0071fJD
00120Ii
007221
001231
00'253
001211
001211
00130'
007317
001333
0(1)111
00136S
001::'1
001397
001413

007429
007"5
001&61
007471
0014,3
00'_
(1]7525
007541
007557
001573

"'''-00'''''''
0076021
007637

00*3
00'_

-_22
000f3II -00If70
00048II
006502
0016'1
0DII5J4
oosso -0DeII2 -008014 --
• -008071 -0016710

001728
(1)1142
001".
001".
008710 ----_70 --00lI02

oooa •• -006lI&O -000II82 -00101.
001030
001_
007012
00'076
001084
001110
001121
0071.2
001'58

•
00717.
037110
0012111
oo'm
0012:11
007254
001210
0012811
001302
007318

00'334
00'_
007.
007312
001318
00141.

007430

00'406
007462
OD7478
w,*
007510
OQ7~26

007542
0015511
007514 -007_
001622
007638
007'­
CG7I10

_,
_23 _. -00If11
001487
001603 _II -00066.
00658'
006583
006&9\1 _ ..
00U3' _7
00II63
008071 -0017'1
006721
001743
001151
001'71
001711' -, -001838 -00II81' _I -_ .. -008II5'
_7
00II63 -0G1015

00103'
001017
001083
00101'
001_
001111
007127
001'43
007'51

001'75
001181

'lO7201
007223
0012311
001255
00n1'
0012II'
001303
00731.

""'33&
00135'
""':Ill
00'313
001.
007.15

007431
001'"
00''''
001.7,
00'
001S11
007521
007543

00'551
007515
007591
007807
00162J
007631
007
007171

-00If2' --_'2 --:10lI&2O
1I0I53O
00II562 --00IlOO
0080'. --
-..--006112
008128

DOl'" 00II710
oc.l1.i
001112 -00182_ --00II812 --
•

00lI2O -000952 --001000
1I!I1018
001032
0070f8
001ll8f
001010
001_
CI01112
001128

001'"
001'10

•
007118

001'12
001201
00122.
001240
0072Y
001212
007288
00130f
001320
001330
007302
001_
001314
001_
001416

001032
001_
DC'
001_

00'"
001S12
007521
00,.,..
OO'seD
Q07576
001592
007_
001624
00'_
00'1151
007112

--_. _7
00If13 --001&2'
001537 _3 ---00000'
008017
001833 --
• -001II8' _7

00II713
001728

DOl'"
006781
001711
0007113
000lO9

-~ _.
00II61
00II73 --_.
00I1I31
008II53 --00700'
001017
001033
00101'
001015
00101.
001087
CIJ1113

001'28
007145

00111'

•
007117
007'113
001201
001225
001241
001251
001213
0072811
001305
007321
001337
0013&3
001_
001_
001401

007."

00'033
007 .. ,
00'_
001.,
007481
001513
00152e
""',,"5
00154'
007517
001513
001_
00102S
001&4'
001.,
0117173

,.
_.0
_21 _2
...... _" --_22 _:II -DOI6'" -_2
001611 --,. ---00171.

001'30
0011.
001'112
008'71

ace'"
00II'0 -_2 -00II" --,.
0011II22 --_10 -001002
001011
001O:M
0010lO -007012
001011
007114
001'30
001'.
001'02

""'.71
001'"
0072.0
001220
001242
0072Y
007274

""',..
001300
001322
001331
001314
007370
001_
001402
001411

,.
""")0
001 ...
00'_

00'''' 001481
001514
0015JO
.."...
007S12
00"11
001
007110
001.".
001 .. 2
0011151
007614

00If1l --...... 00If1& -,
000007
ooetI23 -006556
008511 _7
000003 _II -_.
_1
oooea3 -Q08,715

00&13'
00II7"
001703
001771 --" 001II21 --, 00II7& _. -
•

001523
_31 -00.7',
001003

0CIl0'.
001035
001QI' -""'013
007la
007111
001131
007147
001.13

•
007.711
001'.
007211
OO1m
007243
001_
001276
007211'
rm301
007323
00'331
001_
007371
001:11'
007403
00741'

001435
00145'
001.7

""'
001.
(I)~15

001531
007547
001513
001.71
00''''
001511
CXl7121
001643
001 ...
0076'"

_'2 ----" --oooe2'
.-.0 -00II12 ---00III3I -

c: --000100
00611'
001'32
001'"
0011"
001110
00171111
00II'2
00E2a ---0011II7. ---

c

00192' --008012 -001_
001020
0010311
00'0152
0010e8
001_
007100
00111'
001'32

001'"
001'"

C

001'10
001'.
007212
001228
0072"
0012010
001210
0072112
001300
0013;1'
001)00

""'-001372
001_
007400
001420

c:

0014311
001452

00'" 001_
001000
001!i16
007Sl2
001541
OO~

00'510
00,...
007&12
00/02!l

007'"
001110
0011"

o

_'1 _21 -_.
-" _3 -GIlOI2S -, _,
13 --.
00.37
00II63

o --001701
00I7t1
001733

000'"
0001.
001'"
0DI71I7
_'3
001I2I -_.
00II811 ---

D -_. _1
ooet13 -001006
0Dm'
001031
001013 -OlIn.
001101
0071\7
001':13
001.48
001'.

o

007'.'
0071"
007213

00122II
001246
001211'
"",m
001,.,
0013011
001321
00734.
001361
001313
001_
001_
00742'

o

007431
001463
00'_
00'.
DC15O'
001517
001."
007548 -001!511'
00,..7
001813
0010211
001&45
001.'
007071

-,. ---00IM7I -00II10 -­_2 -_,. ---001II22 --
00II70 -000702
0001111
0017)0
001760 .,.
001702
00111111
00II" --001II2
00II71 -_10

-_2 -00II814 --001022
0lI1O:II
001064
001070
0010II
001'011
(JD1111
001')0
001'50
001'.

001'82
001'.
0072'4
001230
0012"
00'212
001271
0012IM
0013.0
001328
001342
001.
007314
00'_
001_
001422

""'at
OO'fSO
001470
001_
00'502
Q07~t.

0075)0
001550
0015II
007512
007'"
00781.
007130
001 ... -007171

cat.1 -, --OOIMJI -OOII" ----_. ----
~. --_'1
OOIT.II
00171' -.-. --_II -, _, ---~tt
---liliii7i -, ----_. -OO1'CD
ClD1111
001'.
007111
007117

001183
001_ oon,.
00723' ---007_
IIOntt
001327 --007328
007:11'
007_ -
.....
007_
011747,
001487 -0011" -00116'
_, --am,,...
ott7C31
001 .. , --

B-7

1"0 -Oil' .. -8'" .Utl
.tI) _'M .f'" 1D7,"
8":1 tID".. , ... OOJJ'.
oln CIOJm

't', 00'"
"11 tID_
O'IA CIOJ_

"11 -"IC GIIJI'2
O'ID -o.u GO'''' .1', .. -

•
."0 -81Ft 1101152
Olfl 00'. .,,' -.u. -.,,' _II . .,. -,t" -.". -0'" -O"A -.". a"2
'''C
'''0
'''1 II1II'10
0'" .u.

8-8

HEXADECIMAL·DECIMAL NUMBER CONVERSION TABLE (Coot' d)

• t .. • C D - - -- -- OOJII' GO_ .. ' .. - tID7iI. - -.. ,., .. -- CIOJJaII ODJJO'

_J112
"'JQ3 .. nOl GO'_ GIIJJQI GO'.? -- GIIJ_

.-n'l GD1714 CIOJ'" 0077'. .7717 .. nil .7"1 G07720 CIOJ'ZI GOnn "'12J CIOJ'M _'21
1D7J:M CIOJ'. CIOJJJ' GlJIJJ2 GlJJD CllJJ)O CllJJJI lIOn. GO"'" 1D7JJ1 CllJUI !IOnoo 1D7'" . "n .. Clt774' ., .. GOn .. tlD7710 aons. IIOnsz GO'15J OOJJSt tID'lU tIDJJ5I t1DJJS' .71,. tID,JU CIImu CIOJ,.. OOJJII t1DJ .. 007111 OOJ .. 007711 lIOn,. CIOn" GIIJn, GOnU
oo,.,n OOJJ7I ID7'JI GO'IID 1D7J1' CIIIJJI2 G0778J 00'''' 0077. GO'JIII 1I01J1' IIO'JIII 1101'"
IIO'JlJ 1D7'" 00'" 1101111 1I01J1' IIO'JII 00'''' IIOJIIIO 00110. tID>1112 IIO'IOJ OOJIIM 110'" ao_ _'0 _" IIOJI'2 _'3 GDJ8'4 110"15 11071" 007111 110"" 11011" 111- tlD182'
110"" - 007G' 00'1I2I GO'12I - 110182' G018J2 tlD7133 - 110_ 1D7_ -,
00"" tID"OJ

_ J - - tlDl", GIIJMI CIOJ ... GIIJ ... 00/150 tlD7I5' 1I018IZ tID.iIU
tlDJII' - - -, 1101112 - 110'"

IlO_ IlO_
OD7.7 110_ IIOI11W

IIOII'J 007'7. IIOJl15 CIOJI" -, 007111 CIOJIJI - _. - - 007" 110_
110'. 110_

_.
GO'.' - - - 110_ -, 110_ CIOJ_ - 00,., .. -dO_ GO,.., - 110_ ..,.,." 00711' ODJ'It',J G07'I'. GQTt'. GD7911 tlO7117

110m • - IIOJOn
IlO_ IlO_ - -, 00'1I2I - 110_ G018J' - _3

• t .. • C 0

G01I2' - - GO_
_. - - - _5

GO_ 007107 - -1101.3 IIOJOIt 1IOJ155 GO_ -, 1101_ 1101159 - _. - IIO'IU 00"'" -OOJIII GllJl70 IIOJI" 1I07t7Z CllJI7J -- ..,." 1101171 007177 110717' - 110_ OD7.' - - ""7 - - - 1101 •• 1107112 dOJII3 00'" CllJIII - , _. - - -- - - - - -- _'0 _" _'2
_u

-" _II _ .. - _. _2 _J -- - -- -, -- --- - - - _7 -- -- - _. _2 _3 - -, -- - _. - - -. - -- -, -- -- -- _. - - ._, - - - _.
_Z· _3 -- -, -" -, _. - - - - - - - - - _. - -_7 - - ""00 " "'1G2 ""OJ ""01 ""05 ""05,

CIIIUl •. ,. ... ,,' ... " . CIIII1') ... ". ...". ""20 ""Z' _.n ""Z3 (11112. ""21 ""21 _13' ""32 ""J2 ""30 ""37 _ .• ""00 a.,.
""45 001'.7 II1II'50 001151 II1II'12 _153 001'504· ""Y ""Y 008157

"'" a u 10 II1II1 • II1II •• "' .. 7
_ .• ""JO

_17, ...112 "'''J
II1II'" " • 'JI , . ""12 ""12 n _,,7 _ .• --

,

-GIIJ"O
CI077H
CIOJm
tlDn"
aon,.
"'JIG
110'.
1IOJ122
CIIlIUl

III''''' 007170
oa7IIi
olDl9Q2 ao,.,. -
--OOJII2
110_ _ .. -----_.to
...142 _'II ... " .
_'10

, -IIIIJ,It
CI07721 -aon. _m
.'.,..
111-dO_ .711. tID _

110,." -,
GO,. ..,.'. .. -_.
CIIJ.'
00711D
1107.
_II _. -, --" -.It,21
.... q
.... 15 •. "

I
\

-

A

o

APPENDIX C

HEXADECIMAL CONVERSION TABLE

Converting to hexadecimal may be simplified by using the following table.

To convert (6,2751,0 to hexadecimal. using the table: the table entry closest to, but not greater than,(61275) 10 is
(611841,0. which equals (EFOO1'6 from the table. Subtracting 61,184 from the original number (61275-611841,0
leaves a remainder of (911,0. which equals (58) 16· Therefore, (61275) 10 = (EF5B1'6·

COl'"

• A

C-1/C-2

APPENDIX D

HEXADECIMAL ADDITIONS

In the following Hexadecimal Addition Table,all values represent the result of an addition of a hexadecimal character
from the column across the top and the column down the left side. The result of the addition is found where the two
characters to be added intersect within the table. All values above the slanted line represent the result of an addition
with no carry generated; all those values below the slanted line represent the result of an addition with a carry of one
generated into the next character position of the hexadecimal result.

HEXADECIMAL ADDITION TABLE

0 1 2 3 4 5 6 1 8 9 A B C D E F

1 2 3 4 5 6 1 8 9 A B C 0 E y- O

2 3 4 5 6 1 8 9 A B C 0 E y- O 1

3 4 5 6 7 8 9 A B C 0 E V V"o 1 2

4 5 6 7 8 9 A B C 0 E V 0 1 2 3

5 6 1 8 9 A B C 0 E V /0 1 2 3 4

6 1 8 9 A B C 0 E V Vo 1 2 3 4 5

1 8 9 A B C 0 E V ""'0 1 2 3 4 5 6

8 9 A B C 0 E V Vo 1 2 3 4 5 6 7

9 A B C 0 E V ""'0 1 2 3 4 5 6 7 8

A B C 0 E V Vo t 2 3 4 5 6 7 8 9

B C 0 E V ""'0 1 2 3 4 5 6 7 8 9 A

C 0 E V Vo 1 2 3 4 5 6 7 8 9 A B

0 E V Vo 1 2 3 4 5 6 7 8 9 A B C

E V Vo 1 2 3 4 5 6 7 8 9 A B C 0

F /0 1 2 3 4 5 6 7 8 9 A B C 0 E

0-1/0-2

2t1 "
J 0
2 I
4 2 I 3

18 4
32 5
84 II

121 1

2H 8
512 II

1024 10
21M1 11

4- 12
1"2 13
,.3M 14
327. IS

85538 18
131012 17
2121 .. 11
524_ 111

1041578 20
20117152 21
4184304 22 I.- n

18777 218 24
33554432 25
871011. 21

134217 721 27

218431458 21
5381101112 211

1073741124 30
2141483841 31

421141187. 32
15881134592 33

17 1111l1li184 34
34 359 731 361 35

.7111478738 38
137 4311153 472 37
2741171108_ 31
649755113111 39

1 0119 511 627 778 40
2 199 023 255 552 41
4 3911 041 511 104 42
• 7118 0113 022 2011 43

17 5112 1118 044 418 ..
35 184 372 0B8 832 45
70318 7 .. 177 1114 48

140 737 ... 355 328 47

281474178710
1512 l14li153 421 312 49

1121899108142124 50
2251791813_248 51

4503 111127 370 4118 52
II 007 1111254 740 992 53

11 014 391150114818M 64
31 021 1117 0111183 .. 55

72 0&7 5M 037127131 56
, .. 115 ,.015 855 872 57
_23037115' 7117 .. 58
578_752 303423_ 59

1112121504_841178 10
2 _1M3 00II2138131182 81
4811_ 011427311 11M 12
1 m m 031154 775 &01 13 ..

APPENDIX E

NUMERICAL INFORMATION

2'"

1.0
0.5
0.25
0.125

0.062 5
0.03125
0.015125
0.1107 812 5

0.0031108 25
0.001153 125
0.000 976 512 5
0.000'" 281 25

0.000 2 .. 140 125
0.000 122 070 312 5
0.000 061 035 158 25
0.000 030 517 578 125

0.000 015258 789 062 5
0.000 007 8211 394 531 25
0.000 003 814 897 285125
0.000 001901 348 632 .12 5

TABLE OF POWERS OF TWO

0.000 000953 674 316 406 25
0.000 000 478 837 158 203 125
0.000 000 231418 579 101 5625
0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 175 390 625
0.000 000 0211802 322 317 895 312 5
0.000 000 014 901 181 193847658 25
0.000 000 007 450 580 596 923 821 125

0.000000003 725 290 2118 4619140625
0.00000000186284514923095703125
0.000000000931322 574 615 478 515125
0.0000000004856612173077392578125

O.QOO 000 000 232 830 643 653 669 628 1108 25
O.OOOooooooH6415321826934 814453125
0.000000000058 207 660 913 467 407 226 5625
0.0000000000211103830456733703 613 28125

0.000000000014551915228 366851 806 640 625
0.000 000 000 007275957614 183425903 320 312 5
0.000 000 000 003 637 978 807091 712951 660 156 25
0.000000 000001818989403 645 856 475 830078 125

0.000 000 000 000 909 494 701 772928 237 915 039 062 5
0.000000000000454 747 350866464 11895751953125
0.000 000 000 000 227 373675443232059478759765 625
0.000 000 000 000 113866 837721 616029739 3798828125

0.000 000 000 000 056 643 418 860 808 014 869 689 941 406 25
0.000000 000 000028 421709 430 404 007 434 844 970 703125
0.000000000000014210854 715 202 003 717422 485 351562 5
0.000000000000007105 427357601001858 71124267578125

0.000 000 000 000 003 552 713 678 800 ~ 928 355 821 337880825
0.000 000 000 000 001 778368 B39 400 250 484 817 810888 945 312 5
0.000000000000000 888 178418 700 125 232 331805 334 472 658 25
0.000000000000000444089 209 850 0112 618169 452 661238328125

0.000 000 000 000 000 222 044 804 925 031 308 OM 128 333 818 164 062 5
0.000 000 000 000 000 111 022 302 462 515 654 042383 188 809 082 031 25
0.000000000000000.066511151231257821021181583404541015825
0.000000000000000021155 515 615 821913 510590 191702 210507 8125

0.000000000000000013817 787 801814 458155 295 395 851 135 2531108 25
O.oooooooooooooooQl3lm903901mmOO~925W625~m

0.000000000000000003 488 448 951953814186823848 962183 813 478 582 5
0.000000000 000000001134123475176807 \lIM 411924 481391110813128125

~ooooooooooooooo~~~_WW~~~895~~~125

0.000000000000000000433_888 914 201773602 981 120347978 684 570 3125
0.000 000 000 000 000 000 218 840 434 497 100 866 801 490 560 173988 342 285 156 25
0.000000000000000000 lOll 420 217 248 550443 400 745 380 086 914 171 142578125

E-1/E-2

i

"

16

256

4 CR6

65 536

048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

099 511 627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

152 921 504 606 846 976

3

23

2

17

E8

918

5AF3

807E

86F2

A

64

3E8

2710

86AO

F 4240

98 9680

SFS El00

3B9A CAOO

5408 E400

4876 E800

04A5 1000

4E72 AOOO

107A 4000

A4C6 8000

6FCI 0000

163 4578 5DSA 0000

rn0 &683 A764 0000

SAC7 2304 a9ES 0000

APPENDIX F

TABLf Of POWERS Of SIXTEEN

n

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.10000 00000 00000 00000 x 10

0.62500 00000 00000 00000 x 10- 1

0.39062 50000 00000 00000 x 10-2

0.24414 06250 00000 00000 x 10-3

0.15258 78906 25000 00000 x 10-4

0.95367 43164 06250 00000 x 10-6

0.59604 64477 53906 25000 x 10-7

0.37252 90298 46191 40625 x 10-8

0.23283 06436 53869 62891 x 10-9

0.14551 91522 83668 51807 x 10- 10

0.9CR49 47017 72928 23792 x 10- 12

0.56843 41886 08080 14870 x 10- 13

0.35527 13678 80050 09294 x 10- 14

0.22204 46049 25031 30808 x 10- 15

0.13877 78780 78144 56755 x 10- 16

0.86736 17379 88403 54721 x 10- 18

TABLf OF POWERS OF TEN

o 1~000 0000 0000 0000

1

2

3

4

S

6

7

8

9

10

11

12

13

14

IS

16

17

18

19

0.1999 9999

0.28FS C28F

0.4189 374B

0.680B 8BAC

0.A7CS AC47

0.10C6 F7 AO

0.IA07 F29A

0.2AF310C4

0.44B8 2FAO

0.60F3 7F67

O.AF E 8 F F 0 8

0.1197 9981

0.1(25 C268

:>.2009 3700

O.480E BE7B

0.7J4A CASF

9999

SC28

C6A7

710C

1847

85E 0

BCAF

6118

9BSA

5EF6

CB24

20E A

4976

4257

9058

6226

999A

FSC3

EF9E

B296

8423

8D37

4858

73BF

52CC

E AOF

AAFF

1119

81C2

3604

5660

FOAE

x

]{

x

x

x

x

x

x

x

)(

x

x

x

x

x

0.B877 AA32 36A4 B449 x

0.1272 50Dl D243 ABtd]{

0.ID33 C94F B602 AC3S x

16-1

16-2

16- 3

16-4

16-4

16-5

16-6

16-7

16-8

16-9

16-9

16- 10

16 -11

16- 12

16- 13

16- 14

16- 14

16- 15

F-l/F-2

APPENDIXG

ASCII INTERCHANGE CODE SET WITH CARD PUNCH CODES

Row Col o 2 3 4 5 6 7

Bit Positions
4 0 1-0 0 0 0 0 0 0 0
5 1-rO 0 0 0 1 1 1 1

6 2 0 0 1 1 0 0 1 1

I~ 3 0 1 0 1 0 1 0 1

~ 0 NUL OLE SP 0 @ P P
12'()·9-8·1 12·11·9-8·1 No punch 0 8-4 11·7 8·1 12·11-7

0001 1 SOH OCI ! 1 A a a q
12·9·1 11·9·1 12-8·7 1 12·1 11-8 12'()·1 12·11-8

0010 2 STX DC2 .. 2 B R b r
12·9·2 11·9·2 8·7 2 12·2 11·9 12·0·2 12·11·9

0011 3 ETX OC3 # 3 C S c s
12·9·3 11·9·3 8·3 3 12·3 0·2 12'()·3 11'()'2

0100 4 EaT DC4 $ 4 0 T d t
9·7 9-8-4 11-8·3 4 124 0·3 12'()4 11'()·3

0101 5 ENa NAK % 5 E U e u
0·9-8·5 9-8-5 0-84 5 12·5 04 12·0·5 11'()4

0110 6 ACK SYN & 6 F V f v
0·9-8-6 9·2 12 6 12-6 0·5 12'()-6 11'()'5

0111 7 BEL ETB . 7 G W 9 w
0·9-8·7 0·9-6 8-5 7 12·7 0·6 12-D·7 11'()·6

1000 8 a5 CAN (8 H X h x
11·9-6 11·9-8 12-8-5 8 12-8 0·7 12'()-8 11·0·7

1001 9 HT EM) 9 I Y i y

12·9-5 11·9-8·1 11-8·5 9 12·9 0-8 12.()·9 11·0-8

1010 A LF SUB ; : J Z i z
0·9·5 9-8·7 11-84 8·2 11·1 0·9 12·11·1 tl·()'9

1011 B VT ESC + ; K (k I
12·9-8·3 0·9·7 12·8-6 11·8·6 11·2 12-8·2 12·11·2 12·0

1100 C FF FS L I I
< \ I

12·9-8·4 11·9-84 0-8·3 12-84 11·3 0-8·2 12·11·3 12·11

1101 0 CR GS = M 1 m J
12·9-8·5 11·9-8·5 11 8-6 114 11-8·2 12·114 11'()

1110 E sa RS > N 1\ n -12·9·8·6 11·9-8-6 12-8·3 0-8-6 11·5 11-8·7 12·11·5 t t ·0·1

1111 F 51 US I ? a - 0 DEL
12·9-8·7 11·9-8·7 0·1 0·8·7 11-6 0-8·5 12·11·6 12·9·7

G-l

G-2

Some positions in the ASCII code chart may have a different graphic representation on various devices as:

ASCII

Control Characters:

NUL Null
SOH Start of Heading (CC)
STX Start of Text (CC)
ETX End of Text (CC)
EOT End of Transmission (CC)
ENQ Enquiry (CCI
ACK Acknowledge (CC)
BEL Bell (audible or attention signal)
BS Backspace (FE)
HT Horizontal Tabulation (punch card skip)(FE)
LF Line Feed (FE)
VT Vertical Tabulation (FE)
FF Form Feed (FE)
CR Carriage Return (FE)
SO Shift Out
SI Shift In
OLE Data Link Escape (CC)
DCl Device Control 1
DC2 Device Control 2

lBM029

I

t

>

DC3
DC4
NAK
SYN
ETB
CAN
EM
SS
ESC
FS
GS
RS
US
DEL
SP
(CC)
(FE)
(IS)

Device ControJ 3
Device Control 4 (stop)
Negative Acknowledge (CC)
Synchronous Idle (CC)
End of Transmission Block (CC)
Cancel
End of Medium
Start of Special Sequence
Escape
File Separator (IS)
Group Separator (IS)
Record Separator (IS)
Unit Separator (IS)
Delete
Space (normally nonprinting)
Communication Control
Format Effector
Information Separator

32/70 SERIES INSTRUCTIONS BY OP CODE

~ MNEMONIC DESCRIPTION PAGE ~ MNEMONIC DESCRIPTION ~

0000 HALT HALT 0-188 BODO L'" LOAD MASKED HAlFWORO 6-15
0001 WAIT WAlT 6-189 BODO LMW LOAD MASKED WORD 6-16
0002 NOP NO OPERATION 6-190 BOOO LHD lOAD MASKEll DOUBlEWORO 6-17
0003 LCS LOAD CONTROL SWITCHES 6-184 B008 LHB LOAD MASKED BYTE 6-14
0004 ES EltTENO SIGN 6-168 8400 LN' LOAD NEGATIVE HALf WORD 6-19
0005 '"0 ROUND REGISnR 6-169 8400 LNII LOAD NEGATIVE WORD 6-20
0006 BEl BLOCK EKTERNAl INTERRUPTS 6-210 8400 LNO LOAD NEGATIVE OOUSLEWORD 6-21
0007 UE! UNBLOCK EXTERNAL INTERRUPTS 6-211 840B LNB LOAD NEGATIVE BYTE 6-18
0<108 EAE ENABLE ARITHMETIC EXCEPTION TRAP 6-196 8800 AD'" ADD MEMORY HAlFWORO 6-96
0009 . ROSTS READ CPU STATUS WORD 6-194 B800 ADMW ADD MEMORY WORD 6-97
00'"' SIPU START IPU 6-190A BSOO AoMO ADD MEfIIlRY DOUBlEWORD 6-9B
0000 SEA SET EXTENDED ADDRESSING 6-59 B808 AOMB AOO MEMORY BYTE 6-95
OOOE OAE DISABLE ARITHMETIC EKCEPTION TRAP 6-197 BCOO SUMH SUBTRACT MEMORY HALFWOAD 6-152
OOOF tEA CLEAR EXTENDED ADDRESSING 6-60 BCOO S""" SUBTRACT MEMORY WORD 6-153
0400 ANR AND REGISTER AND REGISTER 6-99 BCOO SUMO SUBTRACT MEMORY DOUBLEWORO 6-154
OSOO ORR OR REGISTER AHD REGISTER 6-104 BC08 SUMB SUBTRACT MEMORY BYTE 6-151
OB08 ORRM OR REGISTER AND REGISTER MASKED 6-105 COOO "PMH MULTIPLY BY MEMORY HALFWORO 6-159
OCOO EOR EXCLUSIVE OR REGISTER AND REGISTER 6-110 COOO MP"" MUL TIPL Y B'I' MEMORY WORD 6-160
DCOO IR ZERO REGISTER 6-43 C008 MPMB MULTIPLY BY MEMORY BYTE 6-158
OC08 EO," EXCLUSIVE OR REGISTER ANO REGISTER MAS~ED 6-111 C400 DVMH DIVIDE BY MEMORY HALFWORD 6-164
1000 CAR COMPARE ARITI'IIETlC WnH REGISTER 6-87 C400 0""," DIVIDE BY MOtOR'I' WORD 6-165
1400 C.R COMPARE MASKED WITH REGISTER 6-93 C408 Dvt<B DIVlOE BY MEMORY BYTE 6-163
lS00 SBR SET BIT IN REGISTER 6-129 C800 Ll LOAD Ilt4EDIATE 6-22
}COO IBR ZERO BIT IN REGISTER 6-130 CS01 AnI ADO n."EDIATE 6-150
2000 ABR ADO BIT IN REGISTER 6-133 CS02 SUI SUBTRACT U'4EOIATE 6-157
2400 TBR TEST BIT IN REGISTER 6-135 CSOl HPI MULTlPt Y IMMEDIATE 6-162
2800 TRSW TRANSFER REGISTER TO PSWR' 6-57 CS04 DVI DIVIDE l""'EDIATE 6-167
2COO TRR TRANSFER REGISTER TO REGISTER 6-47 C805 CI COMPARE ll'tlEOIATE 6-88
2C03 TRC TRANSFER REGISTER COMPLEMENT 6-53 C806 SVC SUPERVISOR CALL 6-192
2C04 TRN TRANSFER REGISTER NEGATIVE 6-51 CS07 ORR EXECUTE REGISTER RIGHT 6-186
2C05 XCR EXCHANGE REGISTERS 6-5S C807 "" EXECUTE REGISTER 6-185
2C07 LMAP LOAD MAP 6-61 CCOO LF LOAD FILE 6-28
2C08 TRRM TRANSFER REGISTER TO REGISTER MASKED 6-48 0000 LEA LOAD EFFECTIVE ADDRESS 6-23
2C09 SETCPU SET CPU MODE 6-193 0400 STH STORE HALFWORD 6-30
2CO~ TMAPR TRANSFER MAP TO REGISTER 6-62 0400 ST. STORE WORD 6-31
2C08 TRCM TRANSFER REGISTER COMPLEMENT MASKED 6-$4 0400 STO STORE OOUBLEWQRO 6-32
2COC TR .. TRANSFER REGISH.R NEGATIVE MASKED 6-52 0408 STB STORE BYTE 6-29
2COD XCRM HCHANGE REGISTERS MASKED 6-56 0800 STMH STOI\E MASKED HALFWORO 6-34
2eOE TRSC TRANSFER REGISTER TO SCRATCHPAD 6-46 0800 STMW STORE MASKED WORD 6-35
2COF TSCR TRANSFER SCRATCHPAD TO REGISTER 6-45 0800 SIMIl STORE MASKED DOUBLEWORD 6-36
3000 CAtM CALL MONITOR 6-191 0808 STMB STORE MASKED BYTE 6-33
1400 LA LOAO AODRESS 6-25 OCOO STF STORE FILE 6-37
3800 AOR ADO REGISTER TO REGISTER 6-144 EOOO SlJFW SUBTRACT flOATING-POINT WORD 6-174
lBOB AD .. ADD REGISTER TO REGISTER MASKED 6-145 EOOO SUFO SUBTRACT FLOATiNG-POINT DOUBLEWORD 6-175
3COO SUR SUBTRACT REGISTER FROM REGISTER 6-155 E008 AOFW ADO flOATING-POINT WORO 6-172
3C08 SURM SUBTRACT REGISTER FROM REGISTER MASKED 6-156 £008 AOFD ADO HOATING-POINT DOUSLEWORD 6-173
4{)00 HPR MULTIPLY REGISTER 8Y REGISTER 6-161 £400 DVFW DIVIDE HOATIMG-POINT WORO 6-178
4400 OUR DIVIDE REGISTER BY REGISTER 6-166 E400 DI/FD DIVIDE FLOATING-POINT OOUBLEWORD 6-179
6000 .. R NORMALIZE 6-113 E408 ",FW MULTIPLY FLOATING-POINT WORD 6-176
6400 NORD NORMALIZE DOUBLE 6-114 E408 MPFO MUL TIPL Y FLOATING-POINT DOUBLEWORO 6-177
6800 SCl SHIFT AND COUNT ZEROS 6-115 ESOO ARMH ADO REGISTER TO MEMORY HALFWORD 6-147
6COO SR. SHIFT RIGHT ARITHMETIC 6-121 E800 ARMW AOD REGISTER TO MEMORY WORD 6-148
6C40 SLA SHIFT LEFT ARITHMETIC 6-116 EBOO ARMO AOD REGISTER TO MEMORY OOUBLEWORO 6-149
7000 SRL SHIFT RIGHT LOGICAL 6-122 EBOB ARM8 ADD REGISTER TO MEMORY BYTE 6-146
7040 SLL SHIfT LEFT LOGICAL 6-117 ECOO au B"RANCH UNCONDITIONALLY 6-72
7400 SRC SHIFT RIGHT CIRCULAR 6-123 ECOO acT BRANCH CONDITION TRUE 6-74
7440 SLC SHIfT LEFT CIRCULAR 6-118 FOOD BCf BRANCH CONDtTIOfri FALSE 6-73
1BOO SRAO SHIFT RIGHT ARITHMETIC DOUBLE 6-124 FOOO 8FT BRANCH FUNCTION TRUE 6~75

7COO SRLO SHIFT RIGHT LOGICAL OOUBLE 6-125 F400 BIB BRANCH AFTER INCREMENTING BYTE 6-77
7C40 SLLD SHIFT LEFT LOGICAL DOUBLE 6-120 F420 BI' BRANCH AFTER INCREMENTING HALFWORO 6-78
SOOO LEAR LOAD EFFECTIVE ADDRESS REAL 6-24 F440 BIW BRANCH AFTER INCREMENTING WORD 6-79
8400 ANMH AND MEMORY HAlf WORD 6-96 F460 BID BRANCH AFTER INCREMENTING OOUBlEWORD 6-80
8400 ANMW AND MEMORY WORD 6-97 F800 IMH ZERO MEMORY HAlFWORO 6-40
8400 ANMO ANO MEI«lRY OOUBLEWORO 6-98 Faoo IMW ZERO MEMORY WORO 6-41
8408 ANMB AND MEMORY BYTE 6-95 F800 IMll ZERO MEMORY OOUSLEWORD 6-42
8800 DR ... OR MEMORY HALFWORO 6-101 F80S IMB ZERO MEMORY' BYlE 6-39
8800 DRMW OR MEMJRY WORD 6-102 F880 BL BRANCH AND LINK 6-76
8800 ORMO OR MEMORY OOUBLEWORO 6-103 F900 BRI BRANCH AND RESET INTERRUPT 6-181
8808 ORMB OR MEMORY BYTE 6-100 F980 LPSO LOAD PROGRAM STATUS OOUBlEWORD 6-182
8COO EOM' EXCLUSIVE OR MEMORY HAlFWORO 6-107 FA80 LPSDCM LOAD PROGRAM STATUS OOUBtEWORO ANO CHANGE MAP 6-183
BCOO EDMW EXCLUSIVE OR MEMORY WORO 6-108 FCOO EI ENABLE INTERRUPT 6-201
BCOO EO"" EXCLUSIVE OR MEP40RY DOuBLEWORO 6-109 FeOl 01 DISABLE INTERRUPT 6-204
8COB EOMS EIICLUSIVE OR MEMORY BYTE 6-106 Fe02 RI REQUEST INTERRUPT 6-202
9000 CAMH COMPARE ARITHMETIC wITH MEMORY HALFWORD 6-84 I'C03 AI ACTIVATE INTERRUPT 6-203
9000 C_ COMPARE ARITHMETIC wITH MEMOR'I WORD 6-85 ~C04 OAI DEACTIVATE INTERRUPT 6-205
9000 CAMl) COMPARE ARITHMETIC wIlli MEMORY OOUBlEWORD 6-86 FCCS TO TEST DEVICE 6-216
9008 CAMB COMPARE ARITHMETIC. wITH MEMORY BYTE 6-83 Fe06 CD COJf4ANO DEVICE 6-215
9400 CMl COMPARE MASKED WITH MEMORY HALf WORD 6-90 FCl7 SIO START I/O 6-217
9400 C_ COMPARE MASKED WITH MEMORY WORD 6-91 FC1F TID TEST I/O 6-218
9400 C>tIO COMPARE MASKED WITH MEMORY OQUBLEWORO 6-92 Fe27 STPIO STOP I/O 6-219
940B "- COMPARE MASKED wITH MEt(lRY BYTE 6-89 FC2F RSCHNl RESET CHANNEL 6-220
9SOB SBM SET BIT IN MEMORY 6-I2B fC37 '10 HALT 1/0 6-2"21
ge08 ZBM ZERO BIT IN MEMORY 6-130 FC3F GRID GRAB CONTROLLER 6-222
"lOB ABM ADO BIT IN. MEMORY 6-132 FC4] RSCTL RESET CONTROLLER 6-223 .
"08 TBH TEST BIT IN MEMORY 6-134 FC4F ECweS ENABLE CHANNEL WCS LOAD 6-224
ABOO EX. EXECUTE MEMORY 6-187 FC5F WCWCS WRITE CHANNEL WCS 6-225
ACOO L" LOAD HALFWORD 6-11 Fe67 Eel ENABLE CHANNEL INTERRUPT 6-207
Aeoo LW LOAD WORD 6-12 FC6F OtI DISABLE CHANNel INTERRUPT 6-208
ACOO LD LOAD DOUBLEWDRD 6-13 FC77 ACI ACTIVATE CHANNEL INTERIIUPT 6-206
'COS LB LOAD BYTE 6-10 FC7F DAei DEACTIVATE CHANNEL INTERRUPT 6-209-

Reader's Comment Form
Date ______ _

Manual Title: ___ ___

Publication Number ___ _

• How do you use this publication?

o As an introduction to the subject.
o Emergency Maintenance.
OOther __ __

• Is the material:

Easytoread? __ ___

Well organi zed? __ _
Complete? ___ ___
We II illustrated? __ _
Accurate ? __ _
Suitab Ie for its intended use? ___________________________________ _

• Please check the items that describe your position:

OCustomer Personnel o Technician o Instructor
o SYSTEMS Personnel o Field Service o Trainee

Yes

o
o
o
o
o
o

No

o
o
o
o
o
o

o Engineer o Operator o Other ___________ _

OSales Representative o Programmer

• Please check specific criticism(s), give page number(sl, and explain below:

OClarification on page(s) ________ _ o Deletion on pagels) _______ _
o Addition on pagels) _______________ _ o Error on pagels) _____________ __

Explanation:

Your Name:

Your Company: __ _

402-02 (4/81)

Printed in USA

May we have your comments?
This publication is one of a series of SYSTEMS Engineering Laboratories technical
documents written to serve each of a wide variety of users. Your completion of the
attached form will aid SYSTEMS in the continued production of complete, easily
referenced material in each of these various technical publications.

Thank You

Fold and Staple for Mailing

BUSINESS'REPLY MAIL

IIIIII
NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

FIRST CLASS PERMIT NO. 2356 FORT LAUDERDALE, FLORIDA

POSTAGE WILL BE PAID BY ADDRESSEE

SYSTEMS Engineering Laboratories
6901 West Sunrise Boulevard
Fort Lauderdale, Florida 33313

Fold and Staple for Mailing

A Subsidiary of GOULD INC.
6901 WEST SUNRISE BLVD., FT. LAUDERDALE, FLORIDA 33313

(

