
Systems

GC28-0645-4
File No. S370-39

OS/VS2 TSO
Terminal User's Guide

VS2 Release 3.7

I ncludes Selectable Units:

TSO/VT AM Level 1
System Security Support
TSO/VTAM Level 2

--------- - ---- ---- - ---- - -. -----------,-

VS2.03.813
5752-832
5752-858

Fifth Edition (June, 1978)

-This is a major revision of, and obsoletes, GC28-0645-3 and incorporates changes
released in the following Selectable Unit Newsletters and System Library Supplements:

TSO/VT AM Level 1

System Security Support

TSO /TCAM Level 2

VS2.03.813

5752-832

5752-858

GN28-2651 (dated May 28, 1976)

GC28-0849 (dated May 27, 1977)

GD23~OO44 (dated September 30, 1977)

This revision incorporates OS/VS2 MVS information formerly contained in OS/MVT and

OS/VS2'TSO Terminals, GC28-6762, with supplement GD21-0001.

This edition applies to release 3.7 of OS/VS2 and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Changes are continually
made to the information herein; before using this publication in connection with the
operation of IBM systems, consult the latest System/370 Bibliography, GC20-0001, for the
editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Programming
Systems Publications, Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972,1974,1975,1976

Preface

This publication explains how to use the TSO command language and the
terminals supported by TSO. TSO commands, entered at a terminal, can be
used to perform the following functions:

• Start and end a terminal session.
• Enter and manipulate data.
• Execute programs at the terminal.
• Test a program.
• Write and use command procedures.

This publication is intended as a guide for all TSO users and includes
information specifically for new users. For details on how to code each
command, refer to OS/VSl TSO Command Language Reference.

Organiz.ation

The information in this book is divided into six sections and the
Appendixes. The first three sections contain information that every TSO
user must be familiar with, while Sections IV through VI describe more
complex operations you may wish to perform. Each Appendix discusses one
type of TSO-supported terminal. You need only refer to the Appendix that
describes the terminal you are using.

Section I, "Basic Information for Using TSO," outlines introductory
information for all system users. The section defines the format of TSO
commands, system-provided aids, and the data set naming conventions.

Section II, "Starting and Ending a Terminal Session," provides a sample
terminal session to familiarize new users with TSO. During the sample
session the user logs on to the system, creates a data set, makes changes in
the data, and logs off. The section goes on to discuss in more detail what
was done during the sample session.

Section III, "Entering and Manipulating Data," describes how to use the
EDIT command and its subcommands to create a data set and modify its
contents. The chapter also discusses the. TSO. commands used to rename,
protect, and delete data sets, and to list information about your data sets.

Section IV, "Executing a Program at a Terminal," explains how to compile,
link-edit, and execute a program using TSO commands.

Section V, "Testing a Program at the Terminal," describes how the TEST
command can be used to test a program for proper execution and
programming errors.

Section VI, "Command Procedures," explains how to write and use
command procedures to perform frequently repeated functions. The section
describes the use of built-in functions, control variables, and command
procedure statements, followed by examples of command procedures.

Preface iii

The Appendixes describe the operation and characteristics of the
following TSO-supported terminals:

IBM 2741 Communication Terminal

IBM 1052 Printer-Keyboard

Teletype* Model 33

Teletype* Model 35

IBM 2260 Display Station

IBM 2265 Display Station

IBM 3270 Information Display System

IBM 3767 Communication Terminal

IBM 3770 Data Communication System

Each Appendix includes sections on how to start and end a terminal
session, how to enter data, and how to interrupt operations from the
terminal. (Additional information is also provided for some terminals.)

The examples in this pUblication:

• Assume that you are using an IBM 3270 Display Station and that you
must press the ENTER key to enter data. For information on other
types of terminals see the Appendixes.

• Show the user's input in lowercase letters and the system output in
uppercase letters.

Related Publications

OS/VS2 TSO Command Language Reference, GC28-0646
OS/VS2 Access Method Services, GC26-3841
OS/VS2 JCL, GC28-0692
OS/VS Data Management Services Guide, GC26-3783
OS/VS Linkage Editor and Loader, GC26-3813
OS/VS2 Data Areas, SYB8-0606
OS/VS2 System Programming Library; TSO, GC28-0629
IBM System/370 Principles of Operation, GA22-7000
OS/VS TCAM Concepts and Applications, GC30-2049
OS/VS2 TCAM System Programmer's Guide, TCAM Level 10,
GC30-2051
VTAM Concepts and Planning, GC27-6998
Introduction to VTAM, GC27-6987
OS/VS2 System Programming l,ibrary: VTAM, GC28-0668

See the following publications for more information on IBM 3767 and
IBM 3770 terminals:

IBM 3767 Communication Terminal Operation Guide, GA18-2000
IBM 3770 Data Communication System: System Component, GA27-3097

*Trademark of Teletype Corporation

iv OS/VS2 TSO Tenninal User's Guide

Contents

Summary of Amendments . xi

Introduction

Section I: Basic Information for Using TSO 3
Using a Terminal 3

Entering Information at a Terminal 3
Correcting Typing Errors 3

Using TSO Commands . 3
Positional Operands 4
Keyword Operands . 4
Abbreviating Keyword Operands 4
Delimiters : 5
Subcommands 5
Syntax Notation Conventions 6
When to Enter a Command or Subcommand 7
Line Continuation 7
Comments. 8

Using System-Provided Aids 8
The Attention Interruption 9

Messages 9
Mode Messages. 9
Prompting Messages 10
Canceling Prompting Sequences 11
Informational Messages 11
Broadcast Messages. 11
The HELP Command 12

Explanations of Commands 12
Syntax Interpretation of HELP Information 13
Explanations of Subcommands 13

Using Data Set Naming Conventions 14
Exceptions to Data Set Naming Conventions 15
Specifying Data Set Passwords 16
Partitioned Data Sets '. . . . 16
Data Set Types for the EDIT Command 17

Section II: Starting and Ending a Terminal Session 19
Getting a TSO User Identification. . . . 19
Running a Sample TSO Terminal Session 19

Contacting TSO 19
Entering Data 21
Listing and Saving the Data Set 22
Ending the Edit Function . . . 22
Modifying an Existing Data Set 22

Listing the Catalog. 23
Recalling a Stored Data Set . 23
Deleting a Line of Data 23
Inserting Lines of Data . 23
Replacing a Line of Data 24
Deleting Modified Data 24

Deleting the Data Set and Logging Off 25
Identifying Yourself to the System . 26

User Attributes 26
Logging On 27

Print-Inhibiting Your Password 27
Defining Operational Characteristics 28

Terminal Characteristics. 28
Your User Profile. 28

Receiving and Sending Broadcast Messages 29
Receiving Broadcast Messages 29
Sending Messages. 30

Displaying Session Time Used 31
Ending Your Terminal Session 32

Contents v

Section III: Entering and Manipulating Data
Using the EDIT Command

Entering Data in Input Mode
Entering Subcommands in EDIT Mode
Switching Modes
Functions of EDIT Subcommands
Functions of Other Commands .

Identifying Data Sets
Creating a Data Set
Placing Data into Columns
Finding and Positioning the Current Line Pointer

Finding the Current Line Pointer. .
Positioning the Current Line Pointer

Updating a Data Set
Deleting Data from a Data Set .
Inserting Data in a Data Set .
Replacing Data in a Data Set
Quoted String Notation . .
Renumbering Lines of Data .
Removing Line Numbers

Listing the Contents of a Data Set
Moving or Copying Data within a Data Set

Specifying Data by Line Number. . . .
Specifying Data by Character String Identification

Storing a New Data Set
Creating an Updated Copy of a Data Set
Saving Updates to a Data Set

Ending the EDIT Functions
Renaming a Data Set

Renaming a Member of a Partitioned Data Set
Assigning an Alias to a Member . . .
Renaming Common Qualifiers

Listing Information about Your Data Set
Protecting Your Data Sets
Deleting a Data Set

Section IV: Executing Programs at a Terminal
Allocating a Data Set

Assigning Attributes to a Data Set
Freeing an Allocated Data Set
Creating a Program
Compiling a Program
Link-Editing a Compiled Program .
Executing a Program.
Loading a Program

Section V: Testing a Program at a Terminal
When to Use TEST
Addressing Restrictions
Executing a Program under the Control of TEST
Establishing and Removing Breakpoints within a Program
Displaying Selected Areas of Storage
Changing Instructions, Data Areas, or Register Contents
Forcing Execution of Program Subroutines
Using TEST after a Program ABEND
Determining Data Set Information

Section VI: Using Command Procedures
Creating a Command Procedure
How to Invoke a Command Procedure

Using the Explicit Form of EXEC
Using the Implicit Form of EXEC

Command Procedure Facilities
Terminology
Operators and Expressions . .
Symbolic Variables
Labeling within Command Procedures
Built-In Functions
Determining an Expression's Type
Evaluating an Arithmetic Expression Immediately

vi OS/VS2 TSO Terminal User's Guide

33
33
33
33
34
34
35
35
35
37
38
38
39
41
42
42
45
49
50
51
52
53
54
55
56
57
57
58
59
59
59
60
61
62
62

63
64
67
68
68
69
70
72
74

77
79
81
82
82
83
85
85
86
86

87
87
88
88
88
90
91
91
92
93
94
94
95

Determining an Expression's Length. 95
Defining a Character String for Symbolic Substitution. 95
Defining a Substring for Symbolic Substitution 96
Control Variables 97
User-Oriented Control Variables 99

&SYSUID -- User's Identification 99
&SYSPROC -- LOGON Procedure Name. 99
&SYSPREF -- Data Set Name Prefix. . . 99

Control Variables Related to the Current Command Procedure 99
& LASTCC -- Most Recent Return Code 99
&MAXCC - Highest Return Code. 99
&SYSICMD -- Implicit Execution Member Name . 100
&SYSSCAN -- Symbolic Substitution Rescan Limit 100
&SYSDLM -- Terminal Delimiter 100
&SYSDVAL -- Terminal Parameters 100
&SYSNEST -- Nested Procedure Indicator . . . 100
&SYSPCMD -- Current Primary Command Name 101
&SYSSCMD -- Current Subcommand Name 101

Control Variables Related to the System Environment 101
&SYSDATE - Current Date 101
&SYSTIME -- Current Time 101

Command Procedure Statements 103
Establishing Initial Parameters 104

Use of the PROC Statement 104
Establishing Processing Options 106

Setting the Message Option 107
Setting the Prompt Option . 107
Setting the Display Options 108
Setting the Input Stack Flushing Options 108
Substituting a String for an END Delimiter 109

Assigning Values to Symbolic Variables . . . 110
Assigning a Quantity to a Symbolic Variable 110
Assigning a Character String to a Symbolic Variable 111

Controlling Execution Flow. 111
Unconditional Branching 112
Conditional Statements and Commands. 112
DO-Groups and the DO-WHILE-END Sequence 112
The IF-THEN-ELSE Sequence. . . . 114
The WHEN Command 116

Communicating with the Terminal User . 117
Writing Messages to the Terminal User 118
Requesting Terminal Input 118
Reading Input from the Terminal 120

Performing File Input/Output. . . . 122
Opening a File 123
Reading a Record from an Open File 123
Writing a Record to an Open File . 123
Closing an Open File 124

Executing Nested Command Procedures 124
Establishing Global Symbolic Variables 125
Exiting from a Nested Command Procedure. 127

Establishing Exit Routines " . . 128
Error Exits. 128
Attention Exits 129
Returning Control from an Attention or Error Exit 130

Command Procedure Examples . 130
Example 1 132

PIZZA.CLIST (Part 1 of 2) 132
PIZZA.CLIST (Part 2 of 2) 133

Example 2 135
Sample PROFILE Session 135
PROF Command Procedure 136
SETUP Member 136
'D95MRT2.CLIST(PROFILE)' Command Procedure (Part 1 of 4) 137
'D95MRT2.CLIST(PROFILE)' Command Procedure (Part 2 of 4) 138
'D95MRT2.CLIST(PROFILE)' Command Procedure (Part 3 of 4) 139
'D95MRT2.CLIST(PROFILE)' Command Procedure (Part 4 of 4) 140
'D95MRT2.CLIST(PRINTA)' Command Procedure (Part 1 of 4) 141
'D95MRT2.CLIST(PRINT A)' Command Procedure (Part 2 of 4) 142
'D95MRT2.CLIST(PRINTA)' Command Procedure (Part 3 of 4) 143
'D95MRT2.CLIST(PRINT A)' Command Procedure (Part 4 of 4) 144

Contents vii

'D95MRT2.CNTL(SUBMITP A)'
Example 3

Appendix A: IBM 2741 Communication Terminal
How To Start a TSO Terminal Session

Contacting the Computer
Contacting TCAM
Contacting TSO

How To Enter Data
Correcting Typing Errors

How To Interrupt Operations from the Terminal
The ATTN Key
TSO Responses to an Attention Interruption
Simulated Attention Interruptions
Attention Interruption Levels

How To End a TSO Terminal Session

Appendix B: IBM 1052 Printer-Keyboard
How to Start a TSO Terminal Session

Contacting the Computer
Contacting TCAM
Contacting TSO

How to Enter Data
Correcting Typing Errors

How to Interrupt Operations from the Terminal
The LINE RESET / ATTN Key and the EOT Key
TSO Responses to an Attention Interruption
Simulated Attention Interruptions
Attention Interruptjon Levels

How to End a TSO Terminal Session

Appendix C: Teletype* Model 33 and 35 .

How to Start a TSO Terminal Session
Contacting the Computer
Contacting TCAM
Contacting TSO

How to Enter Data
Correcting Typing Errors

How to Interrupt Operations from the Terminal
TSO Responses to an Attention Interruption
Simulated Attention Interruptions
Attention Interruption Levels

How to End a TSO Terminal Session

Appendix D: IBM 2260 and 2265 Display Stations .
How to Control the Cursor Symbol .
How to Start a TSO Terminal Session
How to Enter Data

Correcting Typing Errors
How to Use the Terminal Command
How to Interrupt Operations from the Terminal

TSO Responses to an Attention Interruption
Attention Interruption Levels

How to Control the Display
Handling a Full Display Screen

How to End a TSO Terminal Session

Appendix E: IBM 3270 Information Display System (Using TSO/TCAM)
How to Control the Cursor Symbol .
How to Start a TSO Terminal Session
How to Enter Data

Entering Data
Correcting Typing Errors
New Line Key
Field Mark Key

How to Use the Terminal Command
How to Interrupt Operations from the Terminal

*Trademark of the Teletype Corporation

viii OS/VS2 TSO Terminal User's Guide

145
146

147
147
147
149
149
150
151
151
153
153
153
154
156

157
158
158
160
160
161
162
162
163
163
164
164
165

167

168
168
168
168
170
170
171
171
171
172
173

175
175
177
178
180
180
181
182
183
184
184
185

187
189
189
190
191
191
191
191
192
192

TSO Responses to an Attention Interruption
Attention Interruption Levels

How to Control the Display
Handling a Full Display Screen

How to End a TSO Terminal Session

Appendix F: IBM 3270 Information Display System (Using TSO/VT AM)
How to Control the Cursor Symbol .
How to Start a TSO Terminal Session
How to Enter Data

Entering Data
Correcting Typing Errors
Clear Key
New Line Key

How to Interrupt Operations from the Terminal
TSO Responses to an Attention Interruption

How to Handle a Full Display Screen
How to End a TSO Terminal Session

Appendix G: IBM 3767 Communication Terminal
How to Start a TSO Terminal Session

Setting the Switches. . .
Contacting the Computer
Contacting TSO

How to Enter Data
Transmitting a Single Line of Data
Transmitting Multiple Lines of Data

Making Corrections
Basic SDLC Corrections.
Buffered SOLC Data Correction ..

How to Interrupt Operations from the Terminal
How to End a TSO Terminal Session

Appendix H: IBM 3770 Data Communication System
How to Start a TSO Terminal Session

Setting the Switches. . .
Contacting the Computer
Contacting TSO

How to Enter Data
Basic SDLC Transmission
Buffered SDLC Transmission
Basic SDLC Data Correction
Buffered SDLC Data Correction

How to Interrupt Operations from the Terminal
How to End a TSO Terminal Session

Index

193
195
196
196
197

199
199
200
201
201
201
202
202
202
202
203
203

205
208
208
208
209
210
210
210
211
211
212
213
214

215
215
215
217
218
218
219
219
219
220
221
222

223

Contents ix

Figures
Figure 1. Descriptive Qualifiers 15
Figure 2. Descriptive Qualifiers Supplied by Default 15
Figure 3. Default Tab Settings 37
Figure 4. How EDIT Subcommands Affect the Current Line Pointer Position 39
Figure 5. Sample Text Data Set for Illustrating the EDIT MOVE/COPY

Function 54
Figure 6. Sample Text Data Set after a Move Operation. 54
Figure 7. Allocating Data Sets for the Assembler 66
Figure 8. Assigning Attributes to a Data Set . . 67
Figure 9. Creating an Assembler Source Program 68
Figure 10. COBOL Compilation 70
Figure 11. Link-Editing and Executing a Program 74
Figure 12. Loading a Program 76
Figure 13. The TEST Subcommands 81
Figure 14. Arithmetic, Comparative, and Logical Operators 92
Figure 15. Built-In Functions 94
Figure 16. Control Variables. 98
Figure 17. Summary of Command Procedure Statement Categories 103
Figure 18. Results of Entering Positional and Keyword Parameters 105
Figure 19. Divergent-Convergent IF-THEN-ELSE Sequence. . . . 115
Figure 20. Divergent IF-THEN-ELSE Sequence with an Unconditional Branch 115
Figure 21. IF Statement without an ELSE Clause 116
Figure 22. Nested Command Procedures 125
Figure 23. Telephone Modem Technique for the IBM 2741 Communication

Terminal. 148
Figure 24. Acoustic Coupler Technique for the IBM 2741 Communication

Terminal. 148
Figure 25. Sign-On Technique for Terminals Attached to an IBM

3704/3705 Communications Controller MTA Line 148
Figure 26. IBM 2741 Communication Terminal Keyboards . . . 152
Figure 27. IBM 1052 Printer-Keyboard Control Panel 157
Figure 28. Proper Switch Settings on the IBM 1052 Printer-Keyboard 157
Figure 29. Telephone Modem Technique for the IBM 1052 Printer-Keyboard 158
Figure 30. Acoustic Coupler Technique for the IBM 1052 Printer-Keyboard 159
Figure 31. Sign-On Technique for Terminals Attached to an IBM 3705

Communications Controller MT A Line . . . 159
Figure 32. Keyboard of the IBM 1052 Printer-Keyboard 159
Figure 33. Teletype Model 33 Keyboard 167
Figure 34. Teletype Model 35 Keyboard 167
Figure 35. IBM 2260 and 2265 Display Screen Control Symbols 175
Figure 36. Keyboards for IBM 2260 and 2265 Display Station . 176
Figure 37. Basic Keyboards for the IBM 3270 Information Display System 188
Figure 38. IBM 3767 Communications Terminal Keyboards. 205
Figure 39. Acoustic Coupler Technique for the IBM 3767 Communication

Terminal. 208
Figure 40. Telephone Modem Technique for the IBM 3767 Communication

Terminal. 208
Figure 41. IBM 3770 Data Communication System Keyboards 216
Figure 42. Acoustic Coupler Technique for the IBM 3770 Data Communication

System 217
Figure 43. Telephone Modem Technique for the IBM 3770 Data Communication

System 217

x OS/VS2 TSO Terminal User's Guide

Summary of Amendments
for GC28-0645-4
OS/VS2 Release 3.7

This publication contains information that was released in

the following Selectable Unit Newsletters and System

Library Supplements:

TSO/VT AM Level I (VS2.03.813) ON28-2651

System Security Support (5752-832)

TSO/VT AM Level 2 (5752-858)

OC28-0849

0023-0044

Section VI: Command Procedures has been rewritten.

Technical changes in this section have not been barred;

therefore, the section should be read in its entirety. Also,

any references to 2741 Communication Terminals and their

use have been changed to 3270 Display Stations.

This publication also contains OS/VS2 MVS information

that was formerly contained in OS/MVT and OS/VSl TSO

Summary of Amendments
for GC28-0645-3
OS/VS2 Release 3.7

Changes have been made throughout this publication to

reflect a Service Update to OS/VS2 Release 3.7. In addition

pertinent technical and editorial changes have been made.

All references to the ITF:BASIC and ITF:PLI Program

Products have been deleted from this manual. As

announced in P73-70, these program products have been

withdrawn and reclassified to programming service

classification "C" effective June 28, 1974.

Terminals, OC28-6762, with supplement 0021-0001. This

information is in Appendixes A through H. Technical

changes in the Appendixes have not been barred; the

Appendixes should be read in their entirety.

Miscellaneous editorial and technical changes have been

made throughout this publication. Significant technical

changes have been made to the following areas:

• "Positioning the Current Line Pointer" in Section III

-- clarify use of the TOP subcommand of EDIT.

• "Ending the EDIT Functions" in Section III -- clarify

use of the END and SAVE subcommands of EDIT.

• "Assigning Attributes to a Data Set" in Section IV -­

clarify use of the A TTRI B command.

Section I: Basic Information for Using TSO

• Line Continuation

Summary of Amendments xi

Summary of Amendments
for GC28-0645-2
OS/VS2 Release 3

The revision of this pUblication for Release 3 has focused

on detail changes to ensure readability and the consistency

of style, expression, hnd point of view. Additionally, the

individual sections if'lc1ude the following new information

and major changes:

Section I: Basic Information for Using TSO

• Abbreviating command and subcommand names
• Using alias names
• Coding TSO comments
• Canceling prompting sequences

Section II: Starting and Ending a Terminal Session

• Getting a TSO User Identification
• Sample terminal session for novice TSO users
• Modified logon procedures
• Print-inhibited passwords
• Sending messages for delayed perusal

xii OS/VS2 TSO Terminal User's Guide

Section III: Entering and Manipulating Data

• Renumbering lines with the new EDIT RENUM
subcommand, and at the time a data set is saved

• Moving and copying data with the new EDIT MOVE
and COPY subcommands

Section V: Testing ~ Program at a Terminal

• Completely rewritten to increase readability and
intelligibility

Section VI: Command Procedures

• Completely new chapter to explain the entire scope
of TSO command procedure capability, as expanded
for Release 3

Introduction

TSO is a time sharing system that lets you use the facilities of a computer
at a terminal. A terminal is a typewriter-like device connected through
telephone or other communication lines to the computer. A terminal can be
at any distance from the computer -- in the same room or in another city.
Because the system processes instructions much faster than you can enter
them through the terminal, it can process input from many terminals at the
same time it is processing work entered in the conventional manner in the
computer room. Due to the speed of the system, however, you will be able
to work almost as though you had exclusive use of the system.

You can tell the system what work you want done by typing in one or
more of the commands that form the TSO command language. The
command language can be used to:

• Enter, store, modify, and retrieve data at the terminal.
• Develop programs written in assembler, FORTRAN, COBOL, PL/I,

or other languages.
• Execute programs.

When you enter a command, the system performs the work requested by
that command and sends messages back to your terminal. Messages tell you
the status of your program and whether the system is ready to accept
another command.

If you fail to include some necessary information with the command, the
system sends you a message prompting you for the required information.
You may then respond by typing in the information requested.

Whenever you are not sure which command to use or how to use a
particular command, you can type HELP. The HELP command provides
you with information about all the other TSO commands.

This manual explains how to perform various functions using the
command language. The manual consists of the following sections:

Section I: Basic Information for Using TSO

Section II: Starting and Ending a Terminal Session

Section III: Entering and Manipulating Data

Section IV: Executing Programs at a Terminal

Section V: Testing a Program at a Terminal

Section VI: Command Procedures

The first three sections must be understood by all system users. Sections
IV through VI describe specific functions that you may wish to perform.

This manual tells you how commands are used to perform the functions
mentioned above. For details on how to enter each command, refer to
OS/VS2 TSO Command Language Reference.

Introduction 1

2 OS/VS2 TSO Terminal User's Guide

Section I: Basic Information for Using TSO

Before using TSO you should know how to use:

• A terminal
• TSO commands
• System-provided aids
• Data set naming conventions

Using a Terminal
A terminal session is relatively simple: a terminal user identifies himself to
the system and then issues commands to request work from the system. As
the session progresses, the terminal user has a variety of aids available,
which he can use if he encounters any difficulties.

Entering In/ormation at a Terminal

All TSO terminals have a typewriter-like keyboard. The features of each
keyboard vary from terminal to terminal; for example, oJ?e terminal may
not have a backspace key, while another may not allow for lowercase
letters. The features of each terminal as they apply to TSO are described in
the appendixes. However, the examples in this book address only the use of
an IBM 3270 Display Station. For details on how to use the 3270, see
Appendixes E and F.

Correcting Typing Errors

If you wish to correct typing errors, you must correct them before you
press the ENTER key. Move the cursor under the error and type the
correct character. To replace a character with a space, move the cursor
under the character and press the space bar.

Using TSO Commands
A command consists of a command name, usually followed by one or more
operands. A command name is typically a familiar English word, that
describes the function of the command; for instance, the RENAME
command changes the name of a data set.

Nearly all TSO commands have abbreviations that you can use in place
of the long English name for the function. These abbreviations save you
entry time at the termina1. In general, these abbreviations are as short as
possible, while still providing uniqueness among them; for example, you
may enter "alloc" instead of "allocate", or "e" instead of "edit". However,
for readability and clarity in this book, all the references to commands and
all examples of their use appear in the long English form.

Section I: Basic Information for Using TSO 3

Operands provide the specific information required for the command to
perform the requested operation. For instance, operands for the RENAME
command identify the data set to be renamed and specify the new name:

RENAME OLDNAME

command name operand-l
(old data-set-name)

NEWNAME

operand-2
(new data-set-name)

Two types of operands are used with the commands: positional and
keyword.

Positional Operands

Positional operands follow the command name in a prescribed sequence. In
the command descriptions within this manual, the positional operands
appear in lowercase characters. A typical positional operand is:

data-set-name

You must replace "data-set-name" with an actual data set name when
you enter the command.

When you want to enter a positional operand that is a list of several
names or values, the list must be within parentheses. The names or values
must not include unmatched right parentheses.

Keyword Operands

Keywords are specific names or symbols that have a particular meaning to
the system. You can include keywords in any order following the positional
operands. In the command descriptions within this book, keywords appear
in uppercase characters. A typical keyword is:

TEXT

In some cases you may specify values with a keyword. You must enter
the value within parentheses following the keyword. The way a typical
keyword with a value appears in this book is:

LINESIZE(integer)

Continuing this example, you would select the number of characters that
you want to appear in a line and substitute that number for the "integer"
when you enter the operand:

LINESIZE(80)

Note: If you enter conflicting keywords, the last keyword entered
overrides the previous ones.

Abbreviating Keyword Operands

You may enter keywords spelled exactly as they are shown, or you may use
an acceptable abbreviation. An acceptable abbreviation is as much of the
keyword as is necessary to distinguish it from the other keywords of the
command or subcommand; for instance, the LISTBC command has four
keywords:

4 OS/VS2 TSO Terminal User's Guide

MAIL NOTICES

NOMAIL NONOTICES

The abbreviations are:

M for MAIL (also MA and MAl)
NOM for NOMAIL (also NOMA and NOMAI)
NOT for NOTICES (also NOTI, NOTIC, and NOTICE)
NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC,

and NONOTICE)

Certain keyword operands may also have synonyms (aliases). Although
these aliases may have shorter forms than the operands they replace, they
are not abbreviations because their form is entirely different. They do,
however, mean the same to TSO as the operands they replace.

An example of a keyword operand and its alias are respectively "file"
and "ddname", either of which is permissible for use with the ALLOCATE
command. Specifying ALLOCATE with either operand produces identical
results. Where aliases are permissible, the syntax descriptions point them
out in OS/VS~ TSO Command Language Reference.

Delimiters

When you type a command, you must separate the command name from
the first operand by one or more blanks. You must separate operands by
one or more blanks or a comma. Using a blank or a comma as a delimiter,
you can type the LISTBC command like this:

LISTBC NOMAIL NONOTICES

or like this:

LISTBC NOMAIL,NONOTICES

or like this:

LISTBC NOMAIL NOTICES

A list of items may be enclosed in parentheses and separated by blanks
or commas, for example:

LISTDS (MYDSA MYDSB,MYDSC)

Subcommands

The work done by some of the commands is divided into individual
operations. Each operation is defined and requested by a subcommand. To
request one of the individual operations, you must first enter the command.
You can then enter a subcommand to specify the particular operation that
you want performed, and you can continue entering subcommands until you
enter the END subcommand.

Section I: Basic Infonnation for Using TSO 5

The commands that have subcommands include EDIT, OUTPUT and
TEST. Some program product commands (such as PLIC) have
subcommands as well.

Syntax Notation Con ventions

The notation used to define the command syntax and format in this
publication is described in the following paragraphs.

\ 6 OS/VS2 TSO Terminal User's Guide

1. The set of symbols listed below is used to define the format but you
should never type them in the actual statement. The special uses of
these symbols are explained in paragraphs 4-8.

hyphen -

underscore

braces {}

brackets []

ellipsis '"

2. You should type uppercase letters, numbers, and the set of symbols
listed below in an actual command exactly as shown in the statement
command syntax.

apostrophe '

asterisk *
comma,

equal sign =

parentheses 0
period.

3. Lowercase letters and symbols that appear in the command syntax
represent variables for which you should substitute specific
information in the actual command.

Example: If "name" appears in the command syntax, you should
substitute a specific value (for example, ALPHA) for the variable
when you enter the command.

4. Hyphens join lowercase words and symbols to form a single variable.

Example: If member-name appears in the command syntax, you should
substitute a specific value (for example, BETA) for the variable in the
actual command.

5. An underscore indicates a default option. If you select an underscored
alternative, you need not specify it when you enter the command
because the system provides it for you by default.

Example: The representation

A
B
C

indicates' that you are to select either A or B or C; however, if you
select B, you need not specify it because it is the default option.

6. Braces group related items, such. as alternatives.

Example: The representation

ALPHA=({~} ,D)

indicates that you must choose one of the items enclosed within the
braces. If you select A, the result is ALPHA=(A,D).

7. Brackets also group related items; however, everything within the
brackets is optional, so that you may omit all bracketed items.

Example: The representation

ALPHA={i] ,D)

indicates that you may choose one of the items enclosed within the
brackets or that you may omit all of the items within the brackets. If
you select only D, you may specify ALPHA=(,D).

8. An ellipsis indicates that the preceding item or group of items can be
entered more than once.

Example: The representation

ALPHA (, BETA •.•]

indicates that ALPHA can appear alone or can be followed by ,BET A
any number of times in succession.

When to Enter a Command or Subcommand

The system lets you know when it is ready to accept a new command by
sending you the message:

READY

The system remains able to receive commands until you enter one of the
commands that have subcommands. The system then accepts only that
command's subcommands until you request a READY message by entering
the END subcommand.

Line Continuation

When it is necessary to continue to the next line, use a plus sign or a minus
sign as the last character of the line being worked on. A plus sign will cause
leading delimiters to be removed from the continued line.

Delimiters affected by the plus sign are blanks, tabs, commas, and the
/*. The plus sign will left-justify a continued line that begins with any of
these delimiters.

The minus sign continues the line without regard to the delimiters
present on the continued line.

Section I: Basic Infonnation for Using TSO 7

Example 1

Continuation using a minus sign:

list (data-set-list) /* this is a list of my -
active data sets */

Example 2

Same example using a plus sign:

list (data-set-list) /* this is a list of my +
active data sets */

Note:

All of the leading blanks in the second example were deleted and the data
was left justified.

Comments

You may insert comments into your TSO command sequences at any place
where a blank would ordinarily appear. Simply start the comments with a
slash-asterisk sequence, like this:

/* This is a comment. TSO ignores it as a command. */

The trailing asterisk-slash sequence is optional unless you follow the
comment with a command on the same line.

Comments may continue from line to line without limit. To continue a
comment to the next line, enter either a plus sign or a minus sign (hyphen)
as a continuation character, and immediately press the ENTER key, like
this:

change 20 ?br?bt /* This comment begins on a command+
line and continues on consecutive following lines­
beginning in column one or following columns */

TSO considers the valid comments field in a line to be in columns 1-72
for fixed-length record formats, or to the end of the line for variable-length
record formats.

Using System-Provided Aids
Several aids are available for your use at the terminal:

8 OS/VS2 TSO Terminal User's Guide

• The attention interruption stops processing so that you can enter a
command.

• The conversational messages guide you at the terminal.
• The HELP command provides information about the commands.

The Attention Interruption

The attention interruption allows you to interrupt processing at any time so
that you can enter a command or subcommand. If you are executing a
program and the program gets in a loop, for instance, you can use the
attention int~rruption to halt execution. As another example, when you are
having data displayed at your terminal and the data that you need .has been
displayed, you may use the attention interruption to stop the displaying
operation instead of waiting until the entire data set has been displayed.

If, after causing an attention interruption, you want to continue with the
interrupted operation, you can do so by pressing the ENTER key before
typing anything else; however, input data that was being typed or output
data that was being displayed at the time of the attention interruption may
be lost. You can also request an attention interruption while at the
command level, enter the TIME command, and then resume the interrupted
operation by pressing the ENTER key.

Note: One output record from the interrupted programs may be displayed
at the terminal after you enter your next command. This is normal for some
programs.

You can use the TERMINAL command to specify particular operating
conditions that the system is to interpret as a request for an attention
interruption. More specifically, you can specify a sequence of characters
that the system is to interpret as a request for an attention interruption. In
addition, you can request the system to pause after a certain number of
seconds of processing time has elapsed or after a certain number of lines of
output have been displayed at your terminal. When the system pauses, you
can enter the sequence of characters that you define as a request for an
attention interruption.

Messages

The conversational messages that TSO issues to your terminal guide you
through your TSO session. There are four categories of messages: mode
messages, prompting messages, informational messages, and broadcast
messages.

Mode Messages

A mode message tells you when the system is ready to accept a new
command or subcommand. When the system is ready to accept a new
command it displays:

READY

When you enter a command that has subcommands and the system is
ready to accept that command's subcommands, it displays the name of the
command, for example:

EDIT

You can then enter the subcommands you want to use. The EDIT
message also appears after each EDIT subcommand has been processed. If
the system has to display any output or other messages as a result of the
previous command or EDIT subcommand, it does so before displaying the

Section I: Basic Infonnation for Using TSO 9

mode message. (The use of mode messages in the EDIT command is
discussed in the section "Entering and Manipulating Data.")

Sometimes you can save a little time by entering two or more commands
in succession without waiting for the intervening READY message. The
system then displays the READY messages in succession after the
commands. If you enter the following commands without waiting for the
intervening mode messages, your display will be:

READY
attrib .. .
allocate .. .
edit ...
READY
READY
EDIT

Unless you are sure that there are no mistakes in your input, you should
wait for a READY message before entering a new command. When the
system detects a mistake, it sends you messages telling you of your mistake,
and then it cancels the remaining commands you have entered. After you
correct the error, you have to reenter the other commands.

Note: Some terminals lock the keyboard after you enter a command, and
therefore you cannot enter commands without waiting for the intervening
READY message. Terminals that do not ordinarily lock the keyboard may
occasionally do so, for example, when all buffers allocated to the terminal
are used.

Prompting Messages

A prompting message tells you that required information is missing, or that
you specified the information incorrectly, and asks you to supply or correct
that information. For example, partitioned-data-set-name is a required
operand of the CALL command; if you enter the CALL command without
that operand the system will prompt you for the data-set-name, and your
display will look like this:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested operand, in this case the
data set name, and by pressing the ENTER key to enter it. If the data set
name is ALPHA.DAT A, you would complete the prompting message as
follows:

ENTER DATA SET NAME­
alpha. data

If you wish, you will receive prompting messages when appropriate;
however, you may also use the PROFILE command to suppress prompting.

If a prompting message ends with a plus sign (+) you can request an
additional message by entering a question mark (?) after READY.
Informational messages have only one second level message, while
prompting messages may have more than one.

to OS/VS2 TSO Terminal User's Guide

To request an additional level of message:

1. Type a question mark (1) in the first position of the line.
2. Press the ENTER key.

level 1 ENTER DATA SET NAME+
level 2 ENTER THE NAME OF A PARTITIONED DATA SET AND

MEMBER THAT CONTAINS THE PROGRAM TO BE
EXECUTED.

If you enter a question mark, and there are no messages to provide
further detail, you receive the following message:

NO INFORMATION AVAILABLE

Canceling a Prompting Sequence

To stop any prompting sequence, enter an attention interruption. Ordinarily,
the entry of the correct information to satisfy the prompting messages
terminates the prompting sequence. However, you may find yourself
occasionally unable to respond to the system's satisfaction, and you would
prefer to get out of the prompting sequence entirely, either to try something
another way, or to re-enter the correct information. Entering the attention
interruption stops the prompting sequence and puts TSO back into a
command or subcommand reception mode.

Informational Messages

An informational message tells you about the status of the system and your
terminal session; for example, an informational message can tell you how
much time you have used. Informational messages do not require a
response.

If an informational message ends with a plus sign (+) you can request an
additional message by entering a question mark (1) after READY.
Informational messages have only one second level message, while
prompting messages may have more than one.

Broadcast Messages

Broadcast messages are messages of general interest to users of the system.
Both the system operator and any user of the system can send broadcast
messages. The system operator can send messages to all users of the system
or to individual users. For example, he may send the following message to
all users:

DO NOT USE TERMINALS # 4,5 AND 6 ON 6/30. THEY ARE
RESERVED FOR DEPARTMENT 791.

You, or any other user, can send messages to other users or to the
system operator. For example, you may send, or receive, the following
message:

DEPARTMENT NO.4672 WILL BE CHANGED TO 4675 STARTING
8/25

A message sent by another user will show his user identification so you
will know who sent you the message.

Section I: Basic Infonnation for Using TSO 11

The HELP Command

The HELP command is available to a terminal user to provide all the
information necessary to use any TSO command. The requested information
is displayed at the user's terminal.

Explanations of Commands

To receive a list and a description of all the TSO commands in the HELP
data set, enter the HELP command as follows:

help

Information about installation-written commands may also be in the
HELP data set, if. your installation's· system prograni1ner chooses to put it
there.

You can also get all the information available on a specific command by
entering that command name as an operand on the HELP command,· as
follows:

help call

If you want to know just the function of a particular command
(DELETE, for instance), enter the HELP command as follows:

help delete function

If you want to know just the syntax of a particular command (TEST, for
instance), enter the HELP command as follows:

help test syntax

If you want to know both the function and the operands of a particular
command (EXEC, for instance), enter the HELP command as follows:

help exec function operands

12 OS/VS2 TSO Tenninal User's Guide

Syntax Interpretation of HELP Information

The syntax notation used to present HELP information at your terminal is
different from the syntax notation used in this publication. Since the HELP
information resides in the SYS 1.HELP data set, it is restricted to characters
that can be represented at your terminal. If you want to use the HELP
command, you should become familiar with the syntax interpretation by
entering the HELP command as follows:

help help
FUNCTION -

THE HELP COMMAND PROVIDES FUNCTION, SYNTAX, AND
OPERAND INFORMATION ON COMMANDS. MESSAGE IDENTIFIER
INFORMATION IS SUPPLIED WHEN AVAILABLE

SYNTAX -
HELP'COMMAND NAME' FUNCTION SYNTAX

OPERANDS('KEYWORD LIST') ALL/
MSGID ('MESSAGE IDENTIFIER LIST')

REQUIRED - NONE
DEFAULTS- ALL IF FUNCTION, SYNTAX, OPERANDS, OR

MSGID NOT SPECIFIED.
ALIAS H
NOTE MSGID CANNOT BE SPECIFIED WITH THE

FUNCTION, SYNTAX, OPERANDS, OR ALL
KEYWORDS.

NOTE 'KEYWORD LIST' IS OPTIONAL WHEN OPERANDS
IS USED.

NOTE IF HELP IS ENTERED WITHOUT ANY OPERANDS A
LIST OF AVAILABLE COMMANDS WITH A SHORT
DESCRIPTION OF EACH WILL BE DISPLAYED.

Syntax Interpretation -
1. USER SUPPLIED VALUES ARE IN APOSTROPHES. TWO SETS OF

APOSTROPHES MEANS THE VALUE SHOULD BE SUPPLIED WITHIN
A SET OF APOSTROPHES.

2. WORDS WITHOUT APOSTROPHES ARE TO BE ENTERED AS SHOWN.
3. COMMAS, PERIODS, PARENTHESES, AND ASTERISKS ARE TO BE

ENTERED AS SHOWN.
4. EXCLUSIVE CHOICES ARE INDICATED BY SLASH (/).
5. MUTUALLY EXCLUSIVE FORMATS ARE SEPARATED BY 'OR'.

Explanations of Sub commands

You can also receive a list of all of a command's applicable subcommands.
To get a list of the subcommands of EDIT, for example, you must first get .
the system to issue the EDIT mode message. The following simulated
display shows how to enter the EDIT command to specify a an existing
data set, and to receive the EDIT message:

READY
edit cmdlang old asrn
EDIT
help

HELP entered without any operands produces a list of subcommands of
EDIT.

Section I: Basic Information for Using TSO 13

Using Data Set Naming Conventions

The name you give a data set should follow the TSO naming conventions.
A TSO data set name normally has three fields:

• Identification qualifier (used to make the data set name unique)
• User-supplied name (optional for a partitioned data set)
• Descriptive qualifier, which has meaning to the TSO commands

When you create a data set you only need to specify the user-supplied
name. The system supplies values for the other two fields. The fields must
be separated by periods. Each field consists of 1-8 alphameric characters
and begins with an alphabetic or national ($, @, and #) character. The
total length of the name, including periods, must not exceed 44 characters.
A typical 4ata set name is:

SMtTH.AC

1
CTS.DA

j
TA

Identification qualifier ------------- _

User-supplied name

Descriptive qualifier

In this example, the identification qualifier is SMITH. The identification
qualifier is either the user identification you specified with the LOGON
command, or a qualifier you assign by using the PROFILE command.

The user-supplied name in this example is ACCTS. The user-supplied
name can be either a single field or several fields separated by periods.

The descriptive qualifier in this data set name is DATA. The possible
descriptive qualifiers are listed in Figure 1. The system determines what the
descriptive qualifier should be from the command being processed and the
contents of the data set. Figure 2 lists the default descriptive qualifiers that
the system supplies when various commands are issued. The system may
also determine the descriptive qualifier from the data set type operand
entered on the EDIT command. See the EDIT command in the TSO
Command Language Reference for a description of the data set type operand.

14 OS/VS2 TSO Terminal User's Guide

Descriptive QuaUfier

ASM

CLIST

CNTL

COBOL

DATA

FORT

LINKLIST

LIST

LOAD

LOADLIST

OBJ

OUTLIST

PLI

TESTLIST

TEXT

VSBASIC

Data Set Contents

Assembler input

TSO commands and subcommands

*JCL and SYSIN for SUBMIT command

American National Standard COBOL statements

Uppercase text

FORTRAN IV (Gl or H) statements and free- or
fixed-format Code and Go FORTRAN statements

Output listing from linkage editor

Listings

Load module

Output listing from loader

Object module

*Output listing from OUTPUT command

PL/I Checkout or PL/I Optimizing compiler statements

Output listing from TEST command

Uppercase and lowercase text

VSBASIC statements

*Refer to Appendix A in OS/VS2 TSO Command Language Reference.

Figure 1. Descriptive QuaUfiers

DESCRIPTIVE QUALIFIERS

Command Input Output Listing

ASM ASM OBJ LIST
CALL LOAD
COBOL COBOL OBJ LIST
CONVERT FORT FORT
EXEC CLIST
FORMAT TEXT LIST
FORT FORT OBJ LIST
LINK OBJ LOAD LINKLIST

LOAD
LOADGO OBJ LOADLIST

LOAD
OUTPUT OUTLIST
RUN ASM

FORT
COBOL

SUBMIT CNTL
TEST OBJ TESTLIST

LOAD

Figure 2. Descriptive QuaUfiers SuppUed by Default

Exceptions to Data Set Naming Conventions

You may specify a fully-qualified name (a name with all three qualifiers) by
enclosing it in apostrophes, for example:

'JONES.PROG1.ASM'

This is necessary when you have to use a data set with an identification
qualifier other than your own user identification. This procedure also

Section I: Basic Information for Using TSO 15

reduces response time because it causes the system to perform fewer
functions.

Any name that does not conform to the naming conventions must be
enclosed in apostrophes. For example, if you have a data set named
RECORDS, with no identification or descriptive qualifiers, enter:

'records'

The system will not append the identification and descriptive qualifiers to
data set names that are enclosed in apostrophes.

You can refer to an existing data set by its user-supplied name and
descriptive qualifier. If your data set is named:

SMITH.PART1.DATA

You may want to specify the data set name as:

partl.data

or you may specify the data set type if you are using the EDIT command:

edit partl old data

Specifying Data Set Passwords

When referencing password-protected data sets, you must specify the
password as part of the data set name or you will be prompted for it.
Separate the password from the data set name by a slash (I) and
optionally, by one or more standard delimiters (tab, blank, or comma).

Partitioned Data Sets

You can also create and edit partitioned data sets. A partitioned data set
consists of one or more data sets called members. You can create and edit
each member separately, giving each one a unique name. Enclose a member
name in parentheses and append it to the right of the fully qualified data
set name. For example, the fully qualified name of member MEMI of the
SMITH.PARTl.DATA data set is:

SMITH.PART1.DATA(MEMl)

You only need to use the user-supplied name and member name to refer
to the member. The system appends the identification and descriptive
qualifiers and moves the member name to the end to form the fully
qualified name. Thus, to refer to member MEMI you can specify:

part 1 (mem 1)

or you might specify

partl.data(meml)

In the second example, the system appends only the identification
qualifier.

The following example uses the EDIT· command to create member ONE
of a partitioned data set named JONES.T42.DATA. The second EDIT
command creates member TWO of JONES.T42.DATA. Note that the

16 OS/VS2 TSO Terminal User's Guide

NEW operand must be specified in both cases. The third EDIT command
specifies that changes are to be made to member ONE (the OLD operand
is the default).

READY
edit t42.data(one) new
INPUT

READY
edit t42.data(two) new
INPUT

READY
edit t42.data(one)
EDIT

Data Set Types for the EDIT Command

After you specify the data set name and the NEW or OLD operand, specify
the data set type. The data set type is an operand that describes the
contents of the data set. The type operand. is one of the sources from which
the system can obtain the descriptive qualifier. (If the descriptive qualifier is
a valid data set type, you may specify the descriptive qualifier as part of the
data set name, rather than giving data set type: specify EDIT MYDS.DATA
instead of EDIT MYDS DATA.) The valid types are:

ASM
CLIST
CNTL
COBOL
DATA
FORTGI
FORTH
GOFORT
PLI
PLIF
TEXT
VSBASIC

Note: Any user data set types, specified at system generation time, are
also valid data. set types.

If the system cannot determine the data set type from other sources, it
prompts you for it.

Section I: Basic Information for Using TSO 17

18 OS/VS2 TSO Tenninal User's Guide

~ -------~~--------------~- ~~ - ---~~-~-~

Section II: Starting and Ending a Terminal Session

This section tells you how to identify yourself to TSO and describes a
sample introductory terminal session that you can perform to get valuable
hands-on experience and easy familiarity with using a terminal. Following
the sample session are discussions of the things you did during the exercise,
plus additional discussions of most commonly encountered terminal
situations. These discussions include descriptions of how you can use TSO
commands to:

• Identify yourself to the system.
• Define operational characteristics of your session.
• Receive and send broadcast messages.
• Display the session time you use.
• End your terminal session.

Getting a TSO User Identification
The first step in becoming a TSO user is to make yourself recognizable to
the system by getting a TSO user identification (userid). You will have to
ask your supervisor to provide you with the exact local procedure for doing
this.

Running a Sample TSO Terminal Session
After getting your userid, you are ready to use an available terminal to
familiarize yourself with the mechanics of a terminal session.

Remember that this description assumes that you are using an IBM 3270
Display Station. Using a different terminal may disclose some minor
operational differences, but basically, this example will work on any TSO
terminal. You may wish to consult the appendixes to pinpoint the
differences and clarify the procedure where necessary.

It will save you time while at the terminal to have previewed the example
and determined what you should expect to do during the session, but you
can run this terminal session without having done so first. It would also be
useful to read the more detailed discussions about conducting a terminal
session that follow this example to broaden your understanding of the
points this example illustrates.

Contacting TSO

To start a TSO terminal session:

1. If power is off:

• Pull out the POWER control knob on the left side panel of the
display screen. The terminal should now be in contact with the
system. If not, special procedures may be necessary. Contact your
system programmer.

• Turn the POWER control knob clockwise to brighten the image or
counterclockwise to darken the image.

Starting and Ending a Terminal Session t 9

If power is on:

• Press the <;LEAR key and then the RESET key. The cursor moves
to the upper left corner of the screen and the INPUT INHIBITED
light goes off.

2. If your terminal is an SDLC (synchronous data link control) 3270,
before you can log on to TSO a SNA (systems network architecture)
session must first be established between the terminal and TCAM.
There are several ways for automatically establishing this session;
your installation should define the method to be used. If your
installation does not automatically establish the SNA session with
TCAM, you must enter the installation-defined character string
required and press the TEST REQ key. For BSC and local 3270s,
perform step 4.

3. If your installation does not start the TSO session in step 2, then step
4 must be performed. Your installation should provide this
information.

4. Enter the LOGON command to identify yourself to TSO. Type the
word LOGON, a space, and your user identification (userid).

5. Transmit the LOGON command to TSO by pressing the ENTER
key; the INPUT INHIBITED light comes on. Wait for TSO to reply
to your LOGON command. TSO may display a preliminary message:

LOGON PROCEEDING

but when you are logged on, TSO displays the message:

READY

and turns the INPUT INHIBITED light off. You can now enter any
command.

As part of the LOGON command (see the LOGON command in
OS/VS2 TSO Command Language Reference), installations may also
require a password, an account number, and a cataloged procedure
name.

First type the word LOGON, a space, and your userid. If a password
is required, type it after the userid, separating the two with a slash
(/). If required, an account number and a cataloged procedure name
follow, separated with spaces or commas.

Example

The userid is MYNUM. The cataloged procedure name is TRYOUTl.
Type:

logon mynum proc(tryoutl)

Press the ENTER key; the INPUT INHIBITED light comes on. Wait for
TSO to display the message READY and to turn the INPUT INHIBITED
light off. You may now enter any command.

Example

The userid is MYSEVEN. The password is AP ASS. The account number is
AN38. Type:

logon myseven/apass acct (an38)

20 OS/VS2 TSO Terminal User's Guide

Press the ENTER key; the INPUT INHIBITED light comes on. Wait for
TSO to display the message READY and to turn the INPUT INHIBITED
light off. You may now enter any command.

Entering Data

Now you are going to use the TSO EDIT command to open a data set and
enter data into it. IE] means press the ENTER key.

Type: edit roster data new m:J
System: INPUT

00010

Your EDIT command just told TSO that you want to open anew,
data-type data' set named "roster." TSO's response is an implicit recognition
that it has opened the data set for you, and an explicit statement that it has
placed the terminal in "input mode" so that you may begin entering data
into "roster." The number 00010 is a "line prompt" to show you where to
begin typing in your data. Now start typing this data where TSO left the
cursor after the line prompt.

Type:

cosman ba csr lisbon yes lID
dockswell br nrm kingston no lID
reed dj bsr clayton yes IiI
stone jl dsh rochester yes I]]

At this point, your listing should look like this:

00010
00020
00030
00040
00050

cosman
dockswell
reed
stone

ba csr
br nrm
dj bsr
jl dsh

lisbon
kingston
clayton
rochester

yes
no
yes
yes

TSO prompted you for line SO as a matter of course, because the system
cannot anticipate when you are going to terminate your data entry. Press
the ENTER key again to signal TSO that you are through entering data.

Type: rn::J

System: EDIT

TSO has acknowledged the extra ENTER as a request for edit mode,
and now you can change your data. Suppose you entered Dockswell's
initials incorrectly. With the CHANGE subcommand, you can correct your
error.

Type: change 20 /br /bt [[)

Sptem: (no response)

Type: list 20 I]]

Sp~m: 00020 DOCKSWELL BT NRM KINGSTON NO

Starting and Ending a Terminal Session 2 t

At this point, you have directed TSO to change Dockswell's initials in
line 20 from "BR" to "BT", and then you had TSO display line 20 at the
terminal.

Listing and Saving the Data Set

To display your entire data set, simply type the EDIT subcommand LIST
(you are still in edit mode).

Type: list [[J

System:

00010
00020
00030
00040
END OF DATA

COSMAN
DOCKS WELL
REED
STONE

BA
BT
DJ
JL

CSR
NRM
BSR
DSH

LISBON
KINGSTON
CLAYTON
ROCHESTER

YES
NO
YES
YES

To save the data set in permanent storage, enter the EDIT SA VE
subcommand.

Type: save llil
System: EDIT

Ending the EDIT Function

At this point, suppose that you wish to terminate work on the data set
named "roster" and move on to some other work. You can end the edit
function for "roster" by entering the EDIT END subcommand.

Type: end [E]

System: READY

Because you previously saved "roster" in permanent storage, TSO tells
you it is ready to accept a new command. However, if you had failed to
save the data set before entering the END subcommand~ TSO would have
given you another chance to save the data set (in case you had forgotten
to) by issuing the message:

NOTHING SAVED
ENTER SAVE OR END-

This second chance that TSO gives you to save your data set permits you to
do away with it if you wish, simply by entering END the second time.

You can also use SAVE as an operand of the END subcommand in
order to save your data set and end the EDIT function in a single command
line by entering:

end save .lli1
In this case, TSO saves your data set before ending the EDIT session.

Modifying an Existing Data Set

At this point you can recall your data set from permanent storage for
additional modification by meanS' of the EDIT command. Suppose, however,
you had several data sets in permanent storage and you wanted to refresh

22 OS/VS2 TSO Terminal User's Guide

your memory about the names by which you stored them. The LISTCA T
command provides you with this capability. When you invoke it, the
command causes the (partially qualified) names of each of your data sets in
permanent storage (which TSO cataloged for you when you saved them) to
be listed.

Listing the Catalog

Now use LISTCAT to list the name of your one stored data set.

Type: listcat iii
S~tmn: IN-CATALOG: (catalog name)

ROSTER. DATA
READY

By displaying the READY message, TSO is prompting you for another
command.

Recalling a Stored Data Set

Recalling the data set with the EDIT command is very similar to creating it
in the first place, but now the data set is "old" rather than "new." Recall it
like this:

Type: edit roster data old (!J

S~tmn: EDIT

With its response, TSO has told you that it has obtained a copy of your
data set and it is now available for you to edit.

Deleting a Line of Data

You can delete a line of data simply by typing its line number, but TSO
does not acknowledge the deletion at the terminal.

Type: 20 IE]

S~tem: (no response)

Type: list 20 lID
S~~m: LINE NUMBER 20 NOT FOUND

When you tried to list line 20 to verify that the deletion took place, TSO
could not find the line because it had already deleted it.

Inserting Lines of Data

You can insert new lines of data by entering the line number and following
it with the data you wish to insert. Now make a new roster entry at
Dockswell's old line position.

Type: 20 henry ra aoh albany no (§]

S~~m: (no response)

Type: list 20 lID
S~~m:00020 HENRY RA AOH ALBANY NO

Starting and Ending a Terminal Session 23

In this example, TSO made the insertion and you listed the new line.

You can also insert new lines of data between existing lines in the data
set by assigning line numbers that fall between the TSO-assigned numbers
(which are in increments of ten, by default).

Type: 35 reed py jsr clayton yes lID
System: (no response)

Type: list 30 40 mJ
System: 00030 REED DJ BSR CLAYTON YES

00035 REED PY JSR CLAYTON YES
00040 STONE JL DSH ROCHESTER YES

This time, you verified the line insertion by directing TSO to list a· range
of lines that included your insertion.

Replacing a Line of Data

You can replace an entire line of data without first having deleted it simply
by entering the line number and following it with the replacement
information. (This function is just like inserting a new line of data, except
that you are specifying a line number where there is already some data, all
of which you will lose.)

Type: 40 smith ra dsh montrose no rn
Type: list I]]

System: 00010 COSMAN BA CSR LISBON YES
00020 HENRY BA AOH ALBANY NO
00030 REED DJ BSR CLAYTON YES
00035 REED PY JSR CLAYTON YES
00040 SMITH RA DSH MONTROSE NO
END OF DATA

By listing your entire data set, you can verify that all the editing that
took place since you recalled a copy from permanent storage has produced
all the desired results. Note that STONE is no longer in the roster, and the
other changes have also been made.

Deleting Modified Data

The simplest way to delete this session's modifications is to end the EDIT
session without explicitly saving them.

Type: end lli1
System: NOTHING SAVED

ENTER SAVE OR END-

Type: end lID
System: READY

Type: listcat llil

24 OS/VS2 TSO Terminal User's Guide

System: IN-CATALOG: catalog name
ROSTER. DATA
READY

Type: edit roster.data old ~

System: EDIT

Type: list lID
System: 00010 COSMAN BA

00020 DOCKSWELLBT
00030 REED DJ
00040 STONE JL
END OF DATA

CSR LI SBON YES
NRM KINGSTON NO
BSR CLAYTON YES
DSH ROCHESTER YES

The data set you just listed is the one you created initially, before you
recalled it for changes. Note that TSO did not save your changes when you
ended the EDIT function without entering SAVE.

Now end the EDIT function again.

Type: end ~

System: READY

Because you used the EDIT function this time only to list the data set
(you made no changes that could be saved), TSO accepted your initial
END entry without prompting you for a SAVE.

Deleting the Data Set and Logging Off

You can explicitly delete one or more data sets from permanent storage by
using the DELETE command. DELETE removes the indicated catalog
entries and frees the permanent storage. It is a good idea to review your
catalog periodically and delete data sets you no longer need.

Now review your catalog entries, delete your data set, and log off.

Type: listcat lID
System: IN-CATALOG: catalog name

ROSTER. DATA
READY

Type: delete roster. data lID
System: READY

Type: listcat UTI

System: ENTRY catalog name. NOT FOUND

Type: logoff m:J

Sys~m: CFT086 LOGGED OFF TSO AT 09:24:10 ON JUNE 26,
1974+

This command sequence has just reviewed your catalog, deleted its entry,
verified the deletion, and terminated your terminal session.

Starting and Ending a Terminal Session 25

Now turn off your terminal to leave it available for the next user. This
concludes your sample terminal session. The remainder of this section
reiterates in greater detail the techniques you just used and discusses many
that you did not.

Identifying Yourself to the System
After you activate the terminal you must use the LOGON command to
identify yourself to the system. You supply, as operands of LOGON, the
user attributes assigned to you by your installation. Your user attributes will
consist of, at the minimum, a userid. The others listed below are optional
unless your installation makes them necessary, in which case, the system
prompts you for them.

• User identification (required) -- the name or code by which the
system knows you

• Password (required if your installation assigns you one) -- a further
identification used for additional security protection

• Account number (optional) -- the account to which your terminal
session is charged

• Procedure name (optional) -- the name of a series of statements that
defines your job to the system

• Performance group (optional) -- the performance group you wish to
use during the session

Your user attributes are in the system together with the attributes of all
other terminal users. When you log on, the system compares the attributes
you specify in the LOGON command to the attributes recorded in your
user profile, to determine if you are an authorized user of the system.

User Attributes

You can have a simple set of attributes, such as the following:

SMITH user identification

LOCK password

79345 account number

P79 procedure name

or a more complex set, such as

user identification

passwords

account numbers

procedure names

The latter set has three passwords (LOCK, SEVEN, and KEY)
associated with your user identification. If you use the password LOCK,
you can have your processing charged only to account 79345 and you can
use only procedure P79. If you use the passworaSEVEN, you can have
your processing charged to either account 79374 or 74325. If you choose
account 79374, you can use either procedure P80 or P8t. If you choose

26 OS/VSl TSO Terminal User's Guide

account 74325, you can use only procedure P82. Another way of using
procedure P82 is to choose password KEY. KEY only has account 74325
and procedure P82 associated with it.

Logging On

The LOGON command tells the system your user identification, password,
account number, procedure name, performance group, and whether you
want the reconnect option. If you want to use procedure P8I, for example,
you must enter:

logon smith/seven acct(79374) proc(p81)

Whenever there is only one account number or procedure name
associated with the user identification and password the system selects it by
default. Account 79345 and procedure P79 are the only account and
procedure associated with password LOCK. Therefore, when you log on
you only need to enter:

logon smith/lock

instead of:

logon smith/lock acct(79345) proc(p79)

If you choose password SEVEN, you must specify which account
number you want. If you select account 74325, you do not have to specify
the procedure because there is only one procedure associated with the
account.

logon smith/seven acct(74325)

If you select account 79374, you must also select a procedure name
because there are two procedures associated with the account. For example,

logon smith/seven acct(79374) proc(p80)

If you choose the password KEY, you do not have to specify the
account number and procedure name because there is only one account
number and one procedure name associated with KEY.

Print-Inhibiting Your Password

Some terminals provide the capability to inhibit the display of data that you
are entering on the keyboard. This print-inhibit feature suppresses a display
of your password, thereby decreasing its exposure to people unauthorized to
know it.

To return to the previous example involving Smith for a moment, initially
Smith could enter:

logon smith

Note that he enters only his userid -- no slash, no password.

Starting and Ending a Terminal Session 27

The system responds with a prompt for the password, which will look
like this:

ENTER PASSWORD FOR SMITH

The system puts the terminal in print-inhibit mode. Then Smith types one
of his authorized passwords. Special care is necessary because the
print-inhibit feature is preventing the characters from being displayed on the
screen, thereby preventing Smith (or anyone else) from checking on the
password entry. Note that, after entering the correct password, the user
may be prompted for other information such as account number and
procedure name.

If Smith makes a mistake in entering his password, the system prompts
him to try again before logging him off as a potentially invalid user.

Defining Operational Characteristics

Operational characteristics include terminal characteristics and a user
profile. Terminal characteristics identify:

• How you can request an attention interruption
• Whether the keyboard is to lock up if you do not enter anything after

a specified number of seconds
• The length of the line that can be displayed at your terminal

Some of the characteristics a user profile identifies are:

• What your character-deletion and line-deletion characters are
• Whether you want to receive prompting messages
• Whether you will accept messages from other terminals

Refer to the PROFILE and TERMINAL commands in OS/VS2 TSO
Command Language Reference for additional information about defining
terminal and user profile characteristics.

Terminal Characteristics

Your installation establishes default terminal characteristics for all the TSO
terminals. If you want to change any of those characteristics for the
duration of your session, you can use the TERMINAL command. After
your session is over, the defaults selected by the installation will again be
valid for that terminal. Assume that 50 is the default for the number of
lines of continuous output that are displayed before you receive an
automatic interruption. You can use the TERMINAL command to request
that 100 lines be displayed before you receive an interruption. When you
log on for your next session at that terminal, 50 lines will again be the
default, provided there has been a logoff prior to the logon. The terminal
characteristics remain the same for a re-Iogon terminal session and assume
the default values with a logoff.

Your User Profile

The system has a user profile for you and when you log on, that profile will
be in effect. If you want to change any item in your profile, you can do so
with the PROFILE command. Any change you make becomes a permanent
part of your profile. Assume that the line-deletion character in your profile
is a percent (%) sign. You could use the PROFILE command to change it

28 OS/VS2 TSO Terminal User's Guide

to a number (#) sign for the current session and subsequent sessions. If you
want to change it back to the original percent sign, you must again use the
PROFILE command.

Receiving and Sending Broadcast Messages

There are two types of broadcast messages you can receive: notices and
mail. Notices are messages that the system operator sends to all users. Mail
consists of messages sent by the operator or another user directly to you.
You can send mail to other users and to the system operator.

Receiving Broadcast Messages

You can use three commands to control which broadcast messages you
receive: LOGON, PROFILE, and LISTBC.

When you log on, broadcast messages sent to all users (notices) and
those intended. only for you (mail) are displayed at your terminal. You can
use the following operands of the LOGON command to prevent display of
either type of message at your terminal:

• NONOTICES suppresses display of broadcast messages intended for
all terminal users .

• NOMAIL suppresses display of broadcast messages intended
specifically for you.

For example, if you enter:

logon smith acct(72411) nomail

you will not receive mail but you will receive all notices that are available at
the time.

NONOTICES and NOMAIL suppress those broadcast messages
outstanding at the time you log on. You will automatically receive any
broadcast messages issued after you log on. You cannot stop the operator
from sending you notices, but you can specify that you do not want to
receive any mail by using the NOINTERCOM operand of the PROFILE
command. If you enter the following commands:

READY
profile nointercom

you request that all available broadcast messages (notices and mail) be
displayed when you log on, but that all mail sent to you after logon be
suppressed throughout your session. (Note that NOINTERCOM can be a
default of your user profile, and therefore you may not have to specify it
with the PROFILE command.)

At any time during your session you can use the LISTBC command to
request that either all available notices for users, or all your mail (or both)
be displayed. If you enter:

listbc

you will get all broadcast messages (notices and mail).

If you enter:

listbc nomail

Starting and Ending a Terminal Session 29

you will get only notices.

If you enter:

listbc nonotices

you will get only your mail.

The notices you get are both the notices available at the time you logged
on and those issued throughout your session. This enables you to see what
notices were available at logon time if you specified NONOTICES in your
LOGON command. (The system operator can delete notices at any time.
Consequently, you will get only those notices he has not deleted.)

Mail messages sent directly to you are automatically deleted by the
system after you receive them. Therefore, the mail you get when you use
the LISTBC command are those messages available at logon time if you
specified NOMAIL in your LOGON command, and those suppressed as a
result of the NOINTERCOM operand of the PROFILE command. After
you use the LISTBC command to see your mail, the NOINTERCOM
operand is still in effect.

If there are no messages available when you use the LISTBC command,
you will receive the following message:

NO BROADCAST MESSAGES

If you want to cancel the effect of the NOINTERCOM operand, enter:

profile intercom

You will receive any mail issued after you enter this command. To obtain
your mail messages issued before you entered INTERCOM, use the
LISTBC command.

Sending Messages

You can use the SEND command to send mail messages to another
terminal user or to a system operator. The SEND command can be used at
any time after you log on, except when you are in the TEST mode.

You can send a mail message to another user only if you know his user
identification. For example, the command:

send 'do not use procedure 245 until notified'­
user(jones,smith)

will send the message enclosed in quotes to the two users whose
identifications are JONES and SMITH.

When you send a message to another user, he will receive it immediately
if he is logged on and is accepting messages. If he is not logged on or is not
accepting messages, you are notified and your message is deleted. Assume
that SMITH is not logged on, JONES is not accepting messages, and
CLARK is both logged on and accepting messages. When you send the
following message:

send 'this is a message' user(smith,jones,clark)

SMITH and JONES do not receive the message, you are notified, and the
message is deleted. CLARK receives the message.

30 OS/VS2 TSO Terminal User's Guide

You can request the system to save your message until the user you sent
it to logs on or decides to accept messages, by using the LOGON operand
of the SEND command. For example, if you enter:

send 'this is a rnessdge' user(smith,jones,clark) logon

SMITH will receive your message when he logs on, JONES will receive it
when he uses the LISTBC command, and CLARK will receive it
immediately.

You can also send a message to a user for his later perusal, even though
he is currently logged on. That user in turn may read your stored message
at his convenience by using the LISTBC command. To store your message,
enter:

send 'this is a message' user(smith) save

Furthermore, you can ensure that a logged-on user receives an important
message, even though his terminal is busy, by entering:

send 'this is a message' user(smith) wait

This message entry causes the system to wait until Smith's terminal is no
longer busy, and can accept the message. It also causes your terminal to
wait until Smith receives the message.

You can send a message to only one operator at a time by identifying
him with a number, for example:

send 'important message' operator(7)

If there is only one operator at your installation, you can omit the
operand by entering:

send 'important message'

If there are several operators and you omit the operand, your message is
sent to the main operator.

Displaying Session Time Used
Use the TIME command to obtain the following information:

• Cumulative CPU time (from logon)
• Cumulative session time (from logon)
• Service units used
• Local time of day
• Today's date

If you wish to enter the TIME command while executing a program or
command, you must first cause an attention interruption. The TIME
command has no effect upon the executing program.

If a TSO command has been executing longer than expected, you can
interrupt it to check its CPU and execution time. Then, depending on your
analysis of the times returned, you can either resume processing from the
point of interruption, or you can cancel the processing of that command.
The following example shows how a LOADGO command was interrupted,
a TIME command was entered successfully, and a null line was entered to
resume the processing of the LOADGO command.

Starting and Ending a T enninal Session 31

READY

loadgo pehtest
I
READY
time
(Your time information is printed here)

READY
(Press the ENTER key)
VALID TYPES FOR DATA SET PEHTEST ARE LOAD AND OBJ
ENTER TYPE-
obj
READY (indicates that LOADGO has completed successfully)

Note: If the user had decided to cancel the processing of LOADGO, he
would only have had to issue another command after the third READY to
cancel LOADGO.

Ending Your Terminal Session

You can end your terminal session in two ways:

• By entering the LOGOFF command to end the session
• By entering the LOGON command to start a new session

The LOGOFF command logically disconnects your terminal from the
system. If LOGOFF HOLD is specified, the terminal remains physically
connected and you can enter a new LOGON command; however, terminal
characteristics established by a TERMINAL command during the previous
session are no longer in effect. A typical logoff follows:

READY
logoff
D58PEH LOGGED OFF TSO AT 15:24:47 on MAY 22, 1973+

The LOGON command terminates your current session and starts a new
one at the same time. A typical logon follows:

READY
logon d58peh/d58paswd 10781525
D58PEH LOGGED OFF TSO AT 10:14:06 ON MAY 23, 1973+
D58PEH LOGON IN PROGRESS AT 10:14:40 ON MAY 23, 1973
READY

Note: In the case of a re-Iogon as shown above, the terminal
characteristics of the old session are carried over into the new session.

32 OS/VS2 TSO Terminal User's Guide

Section III: Entering and Manipulating Data

The processing of data is ail important part of almost all system
applications. Therefore, you should learn how to enter data into the system
and how to modify, store, and retrieve data after it has been entered. A
data set may contain:

• Text used for information storage and retrieval
• A source program
• Data used as input to a program

When you create a data set you must give it a name. The system uses
the name to identify the data set whenever you want to modify or retrieve
it.

Using the EDIT Command
The EDIT command, which is used to enter and manipulate data sets,
operates in either of two modes: input mode or edit mode. When you use
the EDIT command to enter data into a data set, you are using the input
mode. When you use the EDIT command to enter subcommands to
manipulate the data in a data set, you are using the edit mode.

Entering Data in Input Mode

In input mode, you can type a line of data and then enter it into the data
set by pressing the ENTER key. You can continue entering lines of data as
long as EDIT is operating in input mode. If you enter a command or
subcommand while in input mode the system adds it to the data set as input
data. The command or subcommand is taken as data and is not executed.

You can also have the system assign a line number to each line as it is
entered. Line numbers make later operations much easier, since you can
refer to each line by its own number. When you are working with a
line-numbered data set, you can request the system to display the new line
number at the start of each new input line. If the data set does not have
line numbers, you can request that a prompting character be displayed at
the terminal before each line is entered.

After you finish entering data in the data set, you can switch to edit
mode by entering a null line. (Press the ENTER key to enter a null line.)

The system lets you know you are in edit mode by displaying the
following message:

EDIT

Entering Subcommands in Edit Mode

In edit mode you can enter subcommands to point to particular lines of the
data set, to modify or renumber lines, to add and delete lines, or to control
editing of input.

When EDIT is operating in edit mode, it uses an internal indicator called
the current line pointer to keep track of the next line of data to be
processed. The operations you indicate with the subcommands are

Entering and Manipulating Data 33

performed starting at the line indicated by the pointer; for example, the
DELETE subcommand deletes the line indicated by the pointer. After a
subcommand is executed, the system repositions the pointer in accordance
with the subcommand you are using.

You may want to reposition the pointer before a subcommand is
executed. You can do so by using one of two methods: line number editing
or context editing. Line number editing can be used only if your data set
has line numbers. You can specify a line number as an operand of a
subcommand and the system will move the pointer to that line before it
executes the subcommand. Context editing can be used for data sets with
or without line numbers. A set of subcommands UP, DOWN, TOP,
BOTTOM, and FIND allows you to move the pointer up or down a
specified number of lines, or to find a line with a particular series of
characters in it and move the pointer to it. After the pointer is positioned,
you can enter the subcommand that performs the functions required. You
may also use an asterisk in place of a line number in a subcommand to
indicate that you wish to use the current line pointer.

Switching Modes

After you finish editing the data, you can switch to input mode in two
ways:

• Entering the INPUT or INSERT subcommand .
• Entering a null line. (Press the ENTER key to enter a null line.)

The system lets you know you have selected input mode by displaying
the following message:

INPUT

You can terminate the EDIT command at any time by switching to edit
mode (if not already in edit mode) and entering the SAVE parameter on
the END subcommand. The system then displays a READY message, and
you can enter any command you choose.

Note: If you want to enter a blank line in your data set, you must enter a
blank by pressing the space bar, and then press the ENTER key. You can
then enter other lines after the blank line. If you fail to enter a blank and
press only the ENTER key, you are entering a null line which causes EDIT
to switch modes from input mode to edit mode.

Functions 0/ EDIT Subcommands

The remainder of this chapter describes how you can use the subcommands
of EDIT to:

• Identify data sets.
• Create a data set.
• Place data into columns.
• Find and position the current line pointer.
• Update a data set.
• List the contents of a data set.
• Store a new or updated data set.
• Move or copy data within a data set.
• Allocate a data set.

34 OS/VS2 TSO Terminal User's Guide

• Submit a data set for batch execution.
• Send a message.
• End the EDIT functions.

Functions of Other Commands

The following functions described in this chapter are performed with
commands other than EDIT:

• Rename a data set.
• Delete a data set.
• Allocate a data set.
• Free an allocated data set.
• List information about your data sets.

Note: A data set may be allocated by using the ALLOCATE command or
the ALLOCATE subcommand of EDIT.

Identifying Data Sets
Use the EDIT command to specify the name of a data set and whether you
want to create it or edit it. If you indicate that you are going to create a
new data set, the system enters input mode. If you indicate that you are
going to edit an existing data set, the system enters edit mode. For
example, the NEW operand in the following EDIT command specifies that
you are going to create a new data set named ACCTS.DATA; the system
enters input mode.

READY
edit accts.data new
INPUT
00010

In the following example, the OLD operand of the EDIT command
specifies that you want to edit an existing data set named PARTS.TEXT;
the system enters edit mode.

READY
edit parts.text old
EDIT

Creating a Data Set
You request the input mode when you enter one of the following:

• The NEW operand in the EDIT command
• The INPUT subcommand while in edit mode
• The INSERT subcommand with no operands, while in edit mode
• A null line if the system is in edit mode

The system sends you the following message:

INPUT

After this message, the system displays the first line number of your data
set, unless you specified NONUM in the EDIT command. The first line
number printed is 00010. Type the first line of input to the right of the line
number and press the ENTER key to enter it. The system then displays the
second line number, which is 00020, and you may then enter your second
line of input, and so on.

Entering and Manipulating Data 3S

Note: A hyphen at the end of an input line indicates logical continuation
of the line. In input mode, logical continuation is meaningful only if you are
using the syntax checking facility. Whether or not you are syntax checking,
however, the input processor will delete the hyphen from the end of the
line except in a few special instances. The rules governing handling of a
hyphen at the end of a line in input mode are detailed in OS/VSl TSO
Command Language Reference.

When you reach the end of the data you want to enter, press the
ENTER key to enter a null line and the system switches to edit mode, as
the following example illustrates:

READY
edit accts
INPUT
00010
00020
00030
00040

new data

#23942
#32135
#32174
#49213
#52221 00050

00060
EDIT

(null line)

5
21
12
35
50

@2.75
@3.90
@1.80
@7.95
@2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

In the preceding example, the line numbers have the standard increment
of 10. If you prefer a different increment, you can use the INPUT
subcommand to specify another increment. To do this you must first
request a switch to edit mode by entering a null line after you receive the
INPUT message. Then enter the INPUT subcommand specifying the
number of the first line and the size of the increment. After entering the
INPUT subcommand the system switches to input mode and prompts you
with the first line number. For example, to start with line 5 and use
increments of 5, you could use the following sequence:

READY
edit accts new data

(null line)
INPUT
00010
EDIT
input 5 5
INPUT
00005
00010
00015
00020
00025
00030
EDIT

#23942
#32135
#32174
#49213
#52221

(null line)

5
21
12
35
50

@2.75
@3.90
@1 .80
@7.95
@2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

You can create the same data set in edit mode; however, you must enter
the line numbers you wish to use.

READY
edit accts new data
INPUT
00010
EDIT
5
10
15
20
25

(null line)

#23942
#32135
#32174
#49213
#52221

5
21
12
35
50

@2.75
@3.90
@1.80
@7.95
@2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

Note: Requesting an increment larger than one will make it easier to insert
lines in your data set later on.

36 OS/VSl TSO Terminal User's Guide

Placing Data into Columns

If you want the system to place your data into columns, you must establish
logical tab settings with the T ABSET subcommand of the EDIT command
or use the defaults provided by the system. (See the appendix to determine
if your terminal supports tab settings.) If you have established logical tab
settings for your data set, the system will arrange each item in its proper
column whenever you press the TAB key. The maximum number of logical
tab settings that can be defined is ten.

If you do not use the T ABSET subcommand, the default tab settings
used by the system vary with the data set type. The defaults are shown in
Figure 3.

Descriptive Qualifier

ASM

CLIST

CNTL

COBOL

DATA

FORT

PLI

TEXT

VSBASIC

User Defined Qualifier

Default Tab Setting Columns

10,16,31,72

10,20,30,40,50,60

10,20,30,40,50,60

8,12,72

10,20,30,40,50,60

7,72

5,10,15,20,25,30,35,40,45,50

5,10,15,20,30,40

10,15,20,25,30,35,40,45,50,55

10,20,30,40,50,60

Figure 3. Default Tab Settings

If you want to change the default settings or other settings you
previously established, or nullify all tabs, you must use the T ABSET
subcommand. If you want to change the default settings, you will probably
do so before you create the data set. That means you must request edit
mode after you enter the EDIT command, then enter the T ABSET
subcommand and return to the input mode to create the data set. For
example, if you want to create a TEXT data set with the logical tabs at
columns 10, 25, and 35, you can use the following sequence:

READY
edit series new text
INPUT
00010 (null line)
EDIT
tabset on (10 25 35)

(null line)

INPUT
00010

Entering and Manipulating Data 37

If you prefer, you can define tab settings by entering a line containing t's
in positions corresponding to desired tab settings. To establish tab settings
in columns 10,25, and 35 you can use the TABSET subcommand as
follows:

tabset image
123456789tbbbbbbbbbbbbbbtaaaaaaaaat

You must fill the spaces between the t's with blanks or characters other
than t. Do not use the TAB key when entering the IMAGE line, nor the
backspace except as a character-delete character.

If you want to nullify the existing tab settings for the data set, enter the
T ABSET subcommand as follows:

tabset off

Finding and Positioning the Current Line Pointer

Unless you plan to use line numbers for all your editing operations, you
should know how to find and reposition the current line pointer. These
operations are described in the following paragraphs.

Finding the Current Line Pointer

The location of the current line pointer depends on the last subcommand
you entered. If you are editing an old data set, the current line pointer is
positioned at the first line of the data set upon initial entry into edit mode.
Figure 4 shows the location of the pointer at the end of each subcommand.
If you do not remember this information, you can use the LIST
subcommand with the * operand to find the line at which the pointer is
positioned:

list *
THIS IS THE LINE THE CURRENT LINE POINTER IS INDICATING

You can also have the system display the line at which the pointer is
positioned every time the pointer changes as a result of one of the EDIT
subcommands, and each time the CHANGE subcommand makes a
modification to one or more lines. To do this, issue the VERIFY
subcommand as follows:

verify

The VERIFY function is in effect for an EDIT session until you enter it
again with the OFF operand:

verify off

38 OS/VS2 TSO Terminal User's Guide

EDIT Subcommands

ALLOCATE

BOTTOM

CHANGE

COpy

DELETE

DOWN

END

EXEC

FIND

HELP

INPUT

INSERT

Insert/Replace/Delete

LIST

MOVE

PROFILE

RENUM

RUN

SAVE

SCAN

SEND

SUBMIT

TABSET

TOP

UNNUM

UP

VERIFY

Value of the Pointer at Completion of Subcommand

No change

Last line (or line zero for empty data sets)

Last line changed

Last line copied

Line preceding deleted line, if any, else zero

The line n down from where you were at the start of the
subcommand, or the bottom of the data set. (n is the value
of the 'count' parameter.)

No change

No change

Found line, if any, else no change

No change

Last line entered

Last line entered

Inserted or replaced line, or line preceding the deleted line,
if any, or zero.

Last line listed

Last line moved

No change

Same relative record

No change

No change

Last line referred to, if any

No change

No change

No change

Zero value

Same relative record

The line n lines up from where you were at the start of the
subcommand, or the top of the data set. (n is the value of
the 'count' parameter.)

No change

Figure 4. How Edit Subcommands Affect the Current Line Pointer Position

Positioning the Current Line Pointer

You can use the UP, DOWN, TOP, BOTTOM and FIND subcommands to
move the current line pointer.

The UP subcommand moves the pointer a specified number of lines up,
relative to the pointer's current position in your data set. For example, to
move the pointer so that it refers to a line located five lines before the
location it currently refers to, enter:

up 5

Entering and Manipulating Data 39

The DOWN subcommand moves the pointer a. specified number of lines
down, relative to the pointer's current position in your data set. For
example, to move the pointer so that it refers to a line located 12 lines after
the location currently referred to, enter:

down 12

The TOP subcommand is used to change the current line pointer to zero.
After execution, the current line pointer precedes the first line of an
unnumbered data set or the first line of a numbered data set that does not
have a line number of zero. However, if the data set is numbered and
contains a line number zero, the current line pointer points to the line
numbered zero. TOP is often used in combination with the DOWN
subcommand. For example, if you want the pointer to refer to the third line
of your data set, use the following sequence:

top
down 3

The BOTTOM subcommand moves the pointer to the last line of the
data set.

The FIND subcommand moves the pointer to a line that contains a
specified sequence of characters. For example, to move the pointer to the
line that contains PLACED BEFORE ENTRY enter:

find xplaced before entry

The "x" inserted before "placed" is a special delimiter that marks the
beginning of the sequence of characters for which the system has to search.
The special delimiter can be any character other than a number, apostrophe,
semicolon, blank, tab, comma, parenthesis, asterisk, a slash followed by an
asterisk, or one of the characters in the sequence you want to find. The
special delimiter must be next to the first character of the sequence you
want to find. Any blanks inserted between the special delimiter and the first
character are considered to be part of the sequence of characters.

An alternate method for specifying the sequence of characters for FIND
is quoted-string notation. With this method, the specified sequence must
start and end with an apostrophe. If an apostrophe is one of the characters
in the specified sequence, you must enter two apostrophes for the single
apostrophe in the specified sequence. For example, to find the character
sequence:

single 'quote'

using quoted-string notation, enter:

FIND 'single' 'quote'"

If you prefer, you can have the system search for the sequence of
characters starting at the same column of each line. If you want to search
for PLACED BEFORE ENTRY in column seven of each line, for example,
enter:

40 OS/VS2TSO Tenninal User's Guide

find xplaced before entry x 7

or

find 'placed before entry , 7

Notice that the same special delimiter or apostrophe used at the
beginning of the sequence of characters must also precede the column
number.

The FIND subcommand starts looking for the sequence of characters
beginning with the line at which the pointer is located. Therefore, unless
you are sure the characters are in a line following the one indicated by the
pointer, you should use the TOP subcommand to move the pointer to the
beginning of the data set:

top
find xplaced before entry

The following data set illustrates the examples of positioning the current
line pointer. Although this data set has line numbers, they have no bearing
on the examples, which depend rather on relative pointer positions.

00010
00020
00030
00040
00050
00060
00070
00080
00090

TEMPERATURE DATA FOR 7/29/70
HIGHEST, 90 AT 12:30 P.M.
LOWEST, 73 AT 5:40 A.M.
MEAN, 83
NORMAL ON THIS DATE, 77
DEPARTURE FROM NORMAL, +6
HIGHEST TEMPERATURE THIS DATE, 99 IN 1949
LOWEST TEMPERATURE THIS DATE, 59 IN 1914
TEMPERATURE HUMIDITY INDEX, 81

Assume that you do not know the present location of the current line
pointer, and would like to move it to the fifth line (00050). Enter:

top
down 5

To move the pointer from the fifth line (00050) to the third line
(00030), enter:

up 2

To move the pointer to the line that contains (FROM NORMAL) enter:

find xfrom normal

To move the pointer to the last line (00090), enter:

bottom

Updating a Data Set
The subcommands of the EDIT command allow you to update a data set;
that is, they allow you to:

• Delete data from a data set.
• Insert data in a data set.
• Replace data in a data set.
• Move or copy lines within a data set.
• Renumber lines of a data set.
• Remove line numbers from a data set.

The descriptions of these functions follow.

Entering and Manipulating Data 4 t

Deleting Data from a Data Set

If you want to delete only one line of data you do not need a subcommand.
Indicate only the line number or an asterisk. For example, if you want to
delete line 30, enter:

30

To delete the line indicated by the current line pointer, enter:

*
You can also use the DELETE subcommand to perform the same

function:

delete 30

or

delete *
DELETE also allows you to delete more than one consecutive line. To

do so you can specify the line numbers of the first and last lines to be
deleted, or the number of lines to be deleted starting with the line indicated
with the current line pointer. For example, to delete all the lines between
and including lines 15 and 75, enter:

delete 15 75

To delete 12 lines starting with the line indicated by the current line
pointer, enter:

delete * 12

To delete all the lines in your data set, use the TOP and DELETE
subcommands in combination, specifying for DELETE a number of lines
greater than the number of lines in your data set.

top
delete * 99999999

After the system deletes the lines you requested, the current line pointer
points at the line before the first deleted line.

Inserting Data in a Data Set

To insert only one line of data in a line-numbered data set, you do not
need a subcommand; indicate only the line number. In order to prevent
overlaying an existing line of data, refer to an unused line number. (That is,
the new line number should fall between two existing line numbers in the
data set.) Thus, if you want to insert "RECORDED DAILY IN
CENTRAL" as line 22, between lines 20 and 30, enter:

22 recorded daily in central

The characters you want to enter must be separated from the line
number by a single blank or a comma. Any additional blanks or commas
are considered to be part of the input data. You may optionally use the tab
key to separate characters from the line number. (See the appendix to
determine if your terminal supports tab settings.) In this case all blanks,
including the first, resulting from the tab will be part of your input data.

42 OS/VS2 TSO Terminal User's Guide

The number of blanks resulting from the tab is determined by the logical
tab setting. The logical tab setting results from the T ABSET subcommand
or the default tab setting.

To insert one line of data after the current line, use the INSERT
subcommand with the insert-data operand:

list *
TAKE ME OUT
insert to the ballgame

The rules for separating inserted data from the subcommand name are
the same as for separating data from line numbers.

To insert more than one line, use the INSERT or INPUT subcommands.
INPUT or INSERT can be used for data sets with or without line numbers.

Both subcommands have similar functions. However, the INPUT
subcommand starts adding lines immediately after the last line of the data
set or the last line affected by the last input activity. The INSERT
'subcommand inserts data following the location pointed to by the current
line pointer.

Assume that you have the following data set:

A. CARSON
T. DANIELS
C. DICKENS
R. EMERSON
E. FARRELL
C. LEVI
D. MADISON

DEPT A72
DEPT 792
DEPT 981
DEPT 245
DEPT B32
DEPT 229
DEPT D49

To insert three lines after the entry for E. FARRELL and before the
entry for C. LEVI, you must first position the current line pointer at the
fifth line. Your listing would look like this:

EDIT
top
down 5
insert
INPUT
e. glotz
p. henry
h. hill

EDIT

dept 741
dept 333
dept R92

(null line)

You must enter a null line to indicate the end of your input.

Use an asterisk in the INPUT subcommand to indicate that the lines of
input that follow are to be inserted in the location following the current line
pointer. Assume that you have the following data set:

A. CARSON DEPT A72
T. DANIELS DEPT 795
C. DICKENS DEPT 981
R. EMERSON DEPT 245
E. FARRELL DEPT B32
C. LEVI DEPT 229
D. MADISON DEPT D49

Entering and Manipulating Data 43

To insert three lines after the line for E. FARRELL and before the line'
for C. LEVI, your display would look like the following:

EDIT
top
down 5
input *
INPUT
e. glotz dept 741
p. henry dept 333
h. hill dept R92
(null line)
EDIT

Note: After you enter the INSERT or the INPUT subcommand, EDIT
switches to input mode.

If your data set has line numbers, you may use either the INPUT or
INSERT subcommand to insert one or more lines of data between two
existing lines of the data set. You can also indicate a smaller increment for
the new line numbers so that they fit between the line numbers of the
existing lines. Assume you have the following data set:

00010
00020
00030
00040

1932
2579
4798
5344

$1 .50
$1 .39
$1.75
$2.49

To insert three lines between lines 20 and 30, to have the first line
numbered 22, and to increase this number by two in the following lines,
your display would look like this:

EDIT
input 22 2
INPUT
00022
00024
00026
0'0028
EDIT

2795 $0.79
3241 $2.81
4152 $1.79
(null line)

The updated data set would look like this:

00010
00020
00022
00024
00026
00030
00040

1932
2579
2795
3241
4152
4798
5344

$1 .50
$1 .39
$0.79
$2.81
$1 .79
$1.75
$2.49

Another way to insert three lines between lines 20 and 30 is to use the
INSERT subcommand, as follows:

44 OS/VS2 TSO Terminal User's Guide

EDIT
top
down 2
insert
INPUT
00021
00022
00023
00024
EDIT

2795 $0.79
3241 $2.81
4152 $1.79
(null line)

Note: INSERT automatically increases the line numbers by one. The
updated data set would look like this:

00010
00020
00021
00022
00023
00030
00040

1932
2579
2795
3241
4152
4798
5344

$1 .50
$1 .39
$0.79
$2.81
$1 .79
$1 . 75
$2.49

If you do not change the increment, and there is no room for the new
lines, you receive an error message. If you wish, you can renumber the lines
of your data set. This procedure is explained in the paragraph entitled
"Renumbering Lines of Data."

To enter lines at the end of the data set, enter the INPUT subcommand
without operands. If the data set has line numbers you will be prompted
with the line number, for example:

EDIT
input
INPUT
00050
00060
00070
EDIT

6211 $3.95
7199 $0.85
(null line)

Replacing Data in a Data Set

You can replace an entire line or a sequence of characters in a line or a
range of lines.

If you are only replacing one line of data, you do not need a
subcommand. Indicate only the line number or an asterisk; for example, if
you want to replace the contents of line 70 with "SEVERAL REPORTS
WERE MADE", enter:

70 several reports were made

If you want to replace the contents of the line indicated by the current
line pointer, enter:

* several reports were made

The characters you want to enter must be separated from the line
number or the asterisk by a single blank or a comma. The system considers
any additional blanks or commas to be part of the input data. You may
optionally use the tab key to separate characters from the line number or
asterisk. (See the appendix to determine if your terminal supports tab
settings.) In this case all blanks, including the first, resulting from the tab
will be part of your input data. The number of blanks resulting from the
tab is determined by the logical tab setting. The logical tab setting results
from the T ABSET subcommand or the default tab setting.

Entering and Manipulating Data 45

You can also replace lines of data when you use the INPUT
subcommand. If you use the R operand, the lines starting with the line
indicated by the line number or the asterisk are replaced by the lines you
enter. Assume that you have the following data set:

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/15
STAGE 3 9/29

To replace the third and fourth lines, you must first position the current
line pointer at the third line.

EDIT
top
down 2
input * r
INPUT
stage 2 8/21
stage 3 9/15
(null line)
EDIT

Your updated data set would look like this:

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/21
STAGE 3 9/15

In the following example, assume that the data set has line numbers:

00010
00020
00030
00040

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/15
STAGE 3 9/29

To replace lines 30 and 40, your display should look like this:

EDIT
input
INPUT
00030
00040
00050
EDIT

30 r

stage 2 8/21
stage 3 9/15
(null line)

Your updated data set will look like this:

00010
00020
00030
00040

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/21
STAGE 3 9/15

If the data set has line numbers, you can replace a line and insert
additional lines. Assume the same data set:

46 OS/VS2 TSO TenninalUser's Guide

00010
00020
00030
00040

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/15
STAGE 3 9/29

To replace line 30 and insert two lines with a line increment of 2, your
display should look like this:

EDIT
input 30 2 r
INPUT
00030 stage 2 part 1 8/15
00032 stage 2 part 2 8/21
00034 stage 2 part 3 9/15
00036 (null line)
EDIT

Your updated data set will look like this:

00010
00020
00030
00032
00034
00040

COMPLETION
STAGE 1
STAGE 2
STAGE 2
STAGE 2
STAGE 3

SCHEDULE
7/19
PART 1
PART 2
PART 3
9/29

8/15
8/21
9/15

To replace more than one line with a greater number of lines, you can
also use the DELETE subcommand to delete those lines and then use either
INPUT or INSERT to insert the replacement lines. Use this procedure
when the data set does not have line numbers.

Use the CHANGE subcommand to change only part of a line or lines.
For example, to change the characters "DAILY INVENTORY" to
"WEEKLY REPORT" in line 12 of your data set, enter:

change 12 /daily inventory/weekly report/

The "I" placed before the characters to be changed and before the
replacement characters is a special delimiter that marks the beginning of
those sequences of characters. The special delimiter can be any character
other than a number, blank, tab, comma, semicolon, apostrophe,
parenthesis, slash followed by an asterisk, or asterisk. Make sure the
character you select as, a special delimiter does not appear in the sequence
of characters you specify. If you leave blanks between the last character to
be replaced and the special delimiter for the replacement characters, the
system considers the blanks as significant parts of the characters to be
replaced. The special delimiter need not appear at the end of the
replacement characters unless other parameters are to follow.

Instead of using a line number you can use an asterisk. For example, if
the change is to be made to the line indicated by the current line pointer,
enter:

change * xdaily inventoryxweekly reportx

You can also have the system search for a sequence of characters in a
range of lines rather than in only one line. You can indicate the range of
lines by giving the numbers for the first and last lines of the range, or by
indicating the current line pointer and the number of lines you want to have
searched. For example, if the characters "DAILY INVENTORY" appear
somewhere between lines 15 and 19, enter:

change 15 19 !daily inventory!weekly report!

Entering and Manipulating Data 47

If the characters appear within the 10 lines starting with the one
indicated by the current line pointer, enter:

change * 10 ?daily inventory?weekly report?

You can also change the sequence of characters every time it appears
within the range of lines. To do this, specify the ALL operand after the
replacement sequence. You must use the special delimiter to terminate the
replacement string before type "all":

change 15 19 !daily inventory!weekly report! all
or
change * 10 !daily inventory!weekly report! all

If you wish, you can have the system locate a sequence of characters in
a line and display that line up to those characters. You can then type new
characters to complete the line and enter the new line when you press the
ENTER key. Assume that you want to change the characters "TUESDAY"
in the following line:

00015 PARTS DELIVERIES ARE MADE ON TUESDAY

Your display will look as follows:

change 15 /tuesday
00015 PARTS DELIVERIES ARE MADE ON

If the characters you want to change are in the line indicated by the
current line pointer, your display would look like this:

change * /tuesday
00015 PARTS DELIVERIES ARE MADE ON

In either of the two examples above, the cursor would have stopped at
the space where "TUESDAY" originally began, and would have remained
there, awaiting your change to the line. You could, for example, type
"wednesday." and then press the ENTER key. Your display (in the latter
example) would then look like this:

change * /tuesday
00015 PARTS DELIVERIES ARE MADE ON wednesday.

Another way to do the same thing is to request that the system display a
specified number of characters of a given line. Then you can enter the
characters you want to replace the remaining characters in the line. For
example, you can request that the first 26 characters of the line "P ARTS
DELIVERIES ARE MADE ON TUESDAY" be displayed:

change 15 26
00015 PARTS DELIVERIES ARE MADE

You can have the system display the first several characters of a range of
lines. This is particularly useful when you want to change a column in a
table. Assume that you have the following data set:

48 OS/VS2 TSO Terminal User's Guide

00010
00012
00014
00016
00018

ENROLLMENT DATES
P. JONES MAY 15
A. SMITH MAY 31
J. DOE JUNE 7
B. GREEN JUNE 9

JUNE 12
JULY 19
JULY 17
AUGUST 3

If you want to change the data in the last column, which begins in
position 17, enter:

change
00010
00012
00014
00016
00018

10 18 16
ENROLLMENT
P. JONES
A. SMITH
J. DOE
B. GREEN

DATES
MAY 15
MAY 31
JUNE 7
JUNE 9

For each line displayed, the cursor stops at column 17 and you can enter
new data or press the ENTER key to delete the data that was there.

If you want to change the data in the last column and the current line
pointer is at line 10, enter:

change
00010
00012
00014
00016
00018

* 5 16
ENROLLMENT
P. JONES
A. SMITH
J. DOE
B. GREEN

DATES
MAY 15
MAY 31
JUNE 7
JUNE 9

You can insert a sequence of characters at the beginning of the line. For
example, if line 15 of your data set is as follows:

00015 EMPLOYEE ABSENTEEISM

enter:

change 15 //weekly report of /

to obtain:

00015 WEEKLY REPORT OF EMPLOYEE ABSENTEEISM

You can also delete a sequence of characters using the CHANGE
subcommand. To delete WEEKLY from line 15 above, enter:

change 15 /weekly//

to obtain:

00015 REPORT OF EMPLOYEE ABSENTEEISM

Quoted-String Notation

In the previous examples of the CHANGE subcommand of EDIT,
special-delimiter notation specified the character sequences. You may,
however, use an alternate form of notation, the quoted-string notation.
General rules for quoted-string notation are:

• Begin and end each sequence with an apostrophe. (The system will
ignore the apostrophes in its operations on your character sequence.)

• Separate character sequences with a blank.

• Specify two apostrophes in place of one whenever you wish to include
an apostrophe within a character sequence.

For example, to replace WEEKLY with DAILY in the current line, you
can use the special-delimiter notation:

change * /weekly/daily/

Entering and Manipulating Data 49

or the quoted-string notation:

change * 'weekly' 'daily'

To delete DAILY from the current line, you can use:

change * 'daily' "

instead of:

change * /daily//

To insert WEEKLY at the beginning of line 15, you can use:

change 15 " 'weekly'
or

change 15 //weekly/

To replace characters after TUESDAY'S in line 30 of your data set, you
can use the special-delimiter notation:

00030 THIS IS TUESDAY'S CHILD
change 30 /tuesday's/
00030 THIS IS monday's child

or the quoted-string notation:

00030 THIS IS TUESDAY'S CHILD
change 30 'tuesday"s'
00030 THIS IS monday's child

Renumbering Lines 0/ Data

The RENUM subcommand of EDIT assigns line numbers to a data set
without line numbers, or renumbers the lines of a data set with line
numbers. If you enter:

renum

the system assigns new line numbers to all the lines of the data set. The
first line will be assigned the number 10 and subsequent line numbers will
be increased by 10.

You can assign a number to the first line of the data set. For example, if
you want the first line to have number 5, enter the following:

renum 5

The remaining line numbers will be 15, 25, 35, etc.

You can specify an increment other than lOin addition to the number of
the first line. For example, if you want the first line to be number one, and
the remaining line numbers to increase by 3, enter:

renum 1 3

If your data set already has line numbers, you can specify that
renumbering is to start at a given line. You must also specify the new
number for this line (which must be equal to or greater than the old line
number) and the increment. Suppose that starting at line 23 you wish the
new line number to be 25 and the increment to be 5. Enter:

renum 25 5 23

SO OS/VS2 TSO Tenninal User's Guide

The preceding example shows renumbering of all lines following a given
line. You may want to limit the renumbering to a range of lines. You must
specify the new line number (greater than the line prior to the old line
number), the increment to be used, the old line number (first line to be
renumbered), and the end line number (last line to be renumbered). For
example, if you want to renumber lines 25 through 50, assigning line
number 40 to the first renumbered line and using an increment of 2, enter:

renum 40 2 25 50

If you use the RENUM subcommand to renumber your data set, the
renumber increment that you specify is used when you enter the INPUT
subcommand the next time during the edit session. Thus, if the following
sequence occurred:

list
00010 LINE 1 OF DATA
00020 LINE 2 OF DATA
00030 LINE 3 OF DATA
END OF DATA
renum 3 3
input
INPUT
00012 line 4 of data
00015 line 5 of data
00018 (null line)
EDIT

your data set would look like this:

00003 LINE 1 OF DATA
00006 LINE 2 OF DATA
00009 LINE 3 OF DATA
00012 LINE 4 OF DATA
00015 LINE 5 OF DATA

If you want to override the existing line number increment, use the
increment operand on the INPUT subcommand.

The RENUM subcommand capability is also available as an operand of
the SAVE subcommand. This means that you can make any of these line
number changes as you store a new data set or save updates to an old one,
using only a single command line at the terminal. For additional information
about this capability, refer to the section "Storing a New Data Set."

Removing Line Numbers

You can use the UNNUM subcommand of EDIT to remove line numbers
from a numbered data set. To remove the numbers from all the lines in a
data set, enter:

unnum

If the following sequence of terminal activity occurred:

list
00010 LINE 1 OF DATA
00020 LINE 2 OF DATA
00030 LINE 3 OF DATA
END OF DATA
unnum

Entering and Manipulating Data S t

your data set would look like this:

LINE 1 OF DATA
LINE 2 OF DATA
LINE 3 OF DATA

The UNNUM subcommand capability is also available as an operand of
the SAVE subcommand. This means that you can remove a data set's line
numbers as you save it, using only a single command line. Additional
information about this capability is in the section "Storing a New Data
Set."

Listing the Contents of a Data Set
The LIST subcommand of EDIT allows you to display the contents of a
data set at your terminal. To list the entire contents of the data set, enter:

list

To list a group of lines, enter the number of the first and last lines of the
group. For example, to list lines 20 through 110 of the data set, enter:

list 20 110

If your data set does not have line numbers, you can use the current line
pointer and the number of lines to be listed. To list the 20 lines that begin
with the line indicated by the pointer enter:

list * 20

To list only one line, indicate the line number or the current line pointer.
For example, if you wish to list line 22, enter:

list 22

To list the line pointed at by the current line pointer, enter:

list *
You can use the SNUM operand of LIST to suppress listing the line

numbers of a line~numbered data set. (If your data set does not have line
numbers, this operand has no effect.) Any of the following commands
produces a listing of the lines indicated without their line numbers:

list snum
list 20 110 snum
list * 20 snum
list 22 snum
list * snum

The LIST subcommand uses a standard listing format. If you list a
non-line-numbered data set, or a line-numbered data set using the SNUM
operand (to suppress line numbers), the lines displayed will consist of only
the data portion of the records. To list a non-line-numbered data set your
display will look like this:

52 OS/VS2 TSO Terminal User's Guide

list
LINE 1 OF DATA
LINE 2 OF DATA
LINE 3 OF DATA
END OF DATA

If you list a line-numbered data set, the system will suppress up to three
leading zeros in each line number, and separate the line number from the
data with a blank. The line number is displayed to the left of the data. For
example, data with an 8-digit line number would display:

list
00010 LINE 1 OF DATA
00020 LINE 2 OF DATA
00030 LINE 3 OF DATA
END OF DATA

If you are editing a line-numbered COBOL data set, with a six-character
sequence (line number) field, either one or three leading zeros will be
suppressed, depending on the command. For the INPUT subcommand, one
leading zero is suppressed; for the LIST subcommand three leading zeros
are suppressed, as follows:

edit a new cobol
INPUT
00010
00020
00030
00040
EDIT
list

identification division
program-ide calc.
environment division
(null line)

010 IDENTIFICATION DIVISION
020 PROGRAM-ID. CALC.
030 ENVIRONMENT DIVISION
END OF DATA

Moving or Copying Data within a Data Set
You can move or copy any part or all of your data set's content to any
other place within the data set. Copying the data implies that when the
operation is complete, identical data will be in two or more places within
the data set. Moving implies that there will be only a single copy of the
data, but that it will be in a new place.

There are two ways to specify the data you wish to move or copy:

• By line number
• By string identification

If you specify your data by line number, the beginning line number in
your subcommand is the line in your data set where the move or copy
operation is to begin. If you specify your data by string identification, TSO
must search for the string of characters to find the line at which to begin
moving or copying data.

Entering and Manipulating Data 53

Specifying Data by Line Number

Suppose you are working with the text data set in Figure 5.

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110

This data set is a sample to
show you some things about the
way the EDIT command's MOVE
and COpy subcommands work.
It contains eleven lines.

The first five lines are
for moving and copying. The
sixth line is a blank line to show
a convenient place to move data,
and these last lines complete this thought.

Figure 5. Sample Text Data Set for IUustrating the EDIT MOVE/COPY Function

Consider the following sample subcommand for moving a range of
line-numbered data:

move 10 50 60 incr(2)

In this command, the data to move begins with line 10 and ends with
line 50, the place to move this data begins at line 60, and once the data is
in its new place, its line numbers should be in increments of two. (The
default increment is 10.)

The results of entering this subcommand appear in Figure 6.

Because the sample data set already has a line numbered 60, the
subcommand apparently conflicts with the space available in the data set.
TSO resolves this conflict by adding the increment (in this case 2) to line
60, the line specified for the beginning of the new data, and then it inserts
the new lines at the specified increment. In this case, the five moved lines
of data begin at line 62 and extend through line 70. To keep from
overlaying the original line 70, TSO renumbers that line by adding 1. In this
case the newly moved-in line 70 displaces the original line at that position
to line 71.

00060
00062
00064
00066
00068
00070
00071
00080
00090
00100
00110

This data set is a sample to
show you some things about the
way the EDIT commands's MOVE
and COpy subcommands work.
It contains eleven lines.

The first five lines are
for moving and copying. The
sixth line is a null line to show
a convenient place to move data,
and these last lines complete this thought.

Figure 6. Sample Text Data Set after a Move Operation

Note that the beginning line of the data set is now 60, (the blank line)
because the first five data lines are now in positions 62-70. This illustrates
that after a move operation, a data set retains its original number of lines,
although the line numbering is different.

54 OS/VS2 TSO Terminal User's Guide

Lines 10-50 could also be moved using the COpy subcommand;
however, the first data set would retain lines 10-50 as well as adding lines
62-70 as copies of lines 10-50.

You can move or copy a whole data set to precede or follow itself,
simply by specifying its entire range of line numbers. Consider the sample
data set again, with this subcommand:

copy 10 110 120 incr(10)

This subcommand replicates the original data set, starting at line 120.
You could also change the increment of the copied data set at the same
time.

Consider the same data set with this subcommand:

move 10 110 120 incr(10)

This subcommand effectively renumbers the data set. Its new line
numbers are 120-230, and the original line numbers of 10-110 are no
longer in the data set (although they are available for use for future
assignments of data). The RENUM subcommand provides a simpler way to
achieve this result, however.

Specifying Data by Character String Identification

Refer to the sample data set in Figure 5 again and note that line 10
contains the character string "is a sample". To move the first five lines as
in the first example, you could enter:

top
move 'is a sample' 5 60 incr(2)

The MOVE subcommand's operands mean:

is a sample the data to move includes this unique string of characters in its
first line; TSO uses the character string to find the line
containing it. This is the beginning line to be moved.

5 the data to move consists of the five lines beginning with the line that
contains the requested character string

60 the place to move the five lines of data begins at line 60.

incr(2) the moved lines will be in increments of two.

The results of this subcommand are identical to those in the previous
MOVE example, as Figure 6 shows:

1. The data set now begins with line 60, a null line.
2. The original first five lines now occupy line numbers 62, 64, 66, 68,

and 70.
3. The original line numbers 70-110 are now 71-110.
4. The data set's total line count remains the same.

While character string identification of the lines you wish to move or
copy works as just explained for numbered data sets, its primary use is in
editing unnumbered data sets. For editing data sets without line numbers,
the use of this "finding" scheme and relative line counting capability is
necessary.

Entering and Manipulating Data 55

Storing a New Data Set

The data set you create or change remains in the system only until you
finish using the EDIT command and its subcommands. That is, as soon as
you notify the system that you want to use another command and you get a
READY message, the system discards your newly created data set, or your
changes. If you want the system to make your new data set permanent, or
if you want the system to incorporate your changes into the existing data
set, you must use the SAVE subcommand of the EDIT command, or the
SAVE keyword on the END subcommand.

In the following sequence you create a data set named RECORDS and
ask the system to store it as a permanent data set. This example uses the
SAVE keyword on the END subcommand.:

READY
edit records new data
INPUT
00010
00020
00030
00040
EDIT
end save
READY

project 21
project 23
project 39
(null line)

7/10-8/25
7/10-9/12
8/1-9/15

a. jones
p. smith
r. brown

In the following sequence you add a line to the RECORDS data set and
ask the system to make it part of the data set:

edit records old data
EDIT
40 project 42 8/15-9/21
save
EDIT
end
READY

s. green

When you save your data set, you may also make line numbering
changes by adding operands to the SAVE subcommand. You can make any
of the changes ouflined in "Renumbering Lines of Data" by using RENUM
as an operand of SAVE, or you may remove the line numbers entirely by
using UNNUM.

Suppose in the example above you wish to have TSO store the four-line
data set with line numbers beginning with two in increments of three.
Instead of the SAVE subcommand shown, enter:

save * renum (2 3)

The asterisk tells TSO to save and renumber the data set currently being
edited.

S6 OS/VS2 TSO Terminal User's Guide

The next time you list your data set, it will look like this:

00002
00005
00008
00011

project 21 7/10-8/25
project 23 7/10-9/12
project 39 8/1-9/15
project 42 8/15-9/21

a. jones
p. smith
r. brown
s. green

To delete the line numbers as you save the data set, enter:

save * unnum

Note that causing an attention interrupt during SAVE processing when
either the RENUM ot UNNUM operands were specified may cause
undesirable results. It is possible to terminate the entire subcommand or just
the RENUM/UNNUM function, depending on the point in execution at
which the attention interrupt was entered.

Creating an Updated Copy of a Data Set

In some cases you may want to preserve the existing data set intact and
have the system make the changes to a data set that is a copy of the
original data set. To do this you must enter a new data set name for the
copy when you enter the SAVE subcommand. For example, if you want to
keep the RECORDS data set intact, and you want your changes to be
made to a copy of RECORDS named PROJS, use the following sequence:

READY
edit records old data
EDIT
40 project 42 8/15-9/21
save projs
EDIT
end
READY

s. green

Now you have two data sets. The one named RECORDS looks like this:

00010
00020
00030

PROJECT 21 7/10-8/25
PROJECT 23 7/10-9/12
PROJECT 39 8/1-9/15

The data set named PROJS looks like this:

00010
00020
00030
00040

PROJECT 21 7/10-8/25
PROJECT 23 7/10-9/12
PROJECT 39 8/1-9/15
PROJECT 42 8/15-9/21

Saving Updates to a Data Set

A. JONES
P. SMITH
R. BROWN

A. JONES
P. SMITH
R. BI3DWN
s.-. GREEN

You can use the SAVE subcommand whenever you are using the EDIT
command: you can create a data set and save it, you can start making
changes to the data set and once you are satisfied with those ohanges, you
can save them to make them part of the data set. For example, in the
following sequence you create a data set, save it, replace line 30, insert
three lines after line 50, list the data set, delete line 56, renumber the data
set, and save it.

Entering and Manipulating Data 57

READY

edit phones
INPUT

new text

00010
00020
00030
00040
00050
00060
00070
00080
00090
EDIT
save
EDIT
30
input
INPUT
00052
00054
00056
00058
EDIT
list

00010
00020
00030
00040
00050
00052
00054
00056
00060
00070
00080
delete
save
EDIT
end
READY

(null

52 2

(null

56

telephone
j. adams
c. allan
a. bailey
b. crane
e. foster
f. graham
d. murphy

line)

c. alden

1. davis
j. egan
e. foster

line)

TELEPHONE
J. ADAMS
C. ALDEN
A. BAILEY
B. CRANE
L. DAVIS
J. EGAN
E. FOSTER
E. FOSTER
F. GRAHAM
D. MURPHY

* renum

Ending the Edit Functions

listing - sales
1291
2431
3255
4072
1384
2291
9217

2241

4119
6835
1384

LISTING - SALES
1291
2241
3255
4072
4119
6835
1384
1384
2291
9217

dept

DEPT

Use the END subcommand to terminate the operation of the EDIT
command. You can enter the SAVE or NOSA VE operands on the END
subcommand to indicate whether or not you want to save the modified data
set. Note that causing an attention interrupt during the execution of an
END SAVE subcommand may cause undesirable results. It is possible to
terminate the SAVE portion of the operation but the END function may
continue. Nothing would be saved even though the EDIT mode message
may be produced. In this case, subsequent subcommands are ignored
because EDIT has completed its function.

If you have made changes to your data set and have not entered the
SAVE subcommand or the SA VE/NOSA VE operand on the END
subcommand, the system issues a message to respond to this message by
entering the word SAVE, if you want to save the modified data set or
END, if you do not want to save the modifications. (You cannot enter any
operands with SAVE or END at this time.)

After ending EDIT, you will receive the READY message. You can then
enter another command.

58 OS/VS2 TSO Tennmal User's Guide

Renaming a Data Set

The RENAME command allows you to:

• Change the name of a non-VSAM data set. (The Access Method
Services ALTER command changes the name of a VSAM data set or
a non-VSAM data set in a VSAM catalog. For additional information
about ALTER, refer to OS/VS2 Access Method Services.)

• Change the name of a member of a partitioned data set.

• Assign an alias to a member of a partitioned data set.

• Rename common qualifiers.

If your LOGON user identification is SMITH and you have a data set
named SMITH.RECPT.DATA that you want to change to
SMITH.ACCT.DATA, you can do so with any of the following RENAME
commands:

rename 'smith.recpt.data' 'smith.acct.data'
rename recpt.data acct.data
rename recpt acct

Notice that the fully-qualified name must be enclosed in apostrophes.

The simple user-supplied name can be used if you have only one data set
under that name. However, if you have two data sets under the same
user-supplied name, SMITH.RECPT .DAT A and SMITH.RECPT . TEXT ,
you must specify either RECPT.DATA or 'SMITH.RECPT.DATA' in the
RENAME command. If you do not specify the descriptive qualifier, the
system will prompt you for it.

The following examples show how you can use RENAME to change
either the identification qualifier or the descriptive qualifier.

rename 'smith.acct.data' 'jones.acct.data'
rename acct.data acct. text

The following examples show how you can change more than one
qualifier at a time.

rename 'smith.acct.data' 'jones.recpt.text'
rename acct.data recpt.text

Renaming a Member of a Partitioned Data Set

When changing the name of a member of a partitioned data sel, you must
specify the existing data set name and member name along with the new
member name. For example, to change the name of a member of
SMITH.AB79.DATA from INPUT to ENTRY, you can do so with any of
the following commands:

rename 'smith.ab79.data(input)' (entry)
rename ab79.data(input) (entry)
rename ab79(input) (entry)

Assigning an Alias to a Member

Use the ALIAS operand to indicate that the new member name is an alias
and not a replacement. To assign the alias DAILY to member INPUT of

Entering and Manipulating Data 59

SMITH.AB79.DATA, use any of the following:

rename 'smith.ab79.data(input)' (daily) alias
rename ab79.data(input) (daily) alias
rename ab79(input) (daily) alias

After entering this command the member can be referred to as either
SMITH.AB79.DATA(INPUT) or SMITH.AB79.DATA(DAILY).

Renaming Common Qualifiers

Sometimes you may have two or more data set names that are identical in
all but one of their qualifiers. For example, you may have these data sets:

JONES.ALPHA.DATA
JONES.BETA.DATA

or

JONES.ALPHA.DATA
JONES.ALPHA.ASM

or

JONES.ALPHA.DATA
SMITH.ALPHA.DATA

You can use the RENAME command to replace one or both of their
common qualifiers. You may want to change the group:

JONES.ALPHA.DATA
JONES.BETA.DATA

to

JONES.ALPHA.TEXT
JONES.BETA.TEXT

or to

SMITH.ALPHA.DATA
SMITH. BETA. DATA

or to

SMITH.ALPHA.TEXT
SMITH. BETA. TEXT

In order to make the change, replace the dissimilar qualifier with an
asterisk. For example,

jones.*.data

stands for "all data sets whose identification qualifier is JONES and whose
descriptive qualifier is DATA." If your logon identifier is JONES, you can
then enter the RENAME command as follows:

60 OS/VS2 TSO Terminal User's Guide

rename *.data *.text

to change the group

JONES.ALPHA.DATA
JONES.BETA.DATA

to

JONES.ALPHA.TEXT

JONES.BETA.TEXT

Enter the command

rename 'jones.*.data' 'smith.*.data'

to change the group

JONES.ALPHA.DATA
JONES.BETA.DATA

to

SMITH. ALPHA. DATA
SMITH. BETA. DATA

Enter the command

rename 'jones.*.data' 'smith.*.text'

to change the group

JONES.ALPHA.DATA
JONES.BETA.DATA

to

SMITH. ALPHA. TEXT
SMITH.BETA.TEXT

Listing Information about Your Data Sets
To list the names of your data sets and obtain further information about
them, use the LIST ALC, LISTCAT, and LISTDS commands.

LIST ALC lists the data sets presently allocated to you. Other
information is available about these data sets depending on the parameters
you specify.

LISTCAT lists the names of all cataloged data sets that have your user
identification as the high level qualifier. The names of the catalogs
containing these data sets will also be displayed. Using the optional
LISTCAT subparameters will give you information about VSAM data sets
much like LISTDS gives for non-VSAM data sets. Detailed explanations of
LISTCAT definition and output are in the publication, OS/VS2 Access
Method Services.

LISTDS gives you information on specific data sets that are currently
cataloged, allocated, or both. The information you receive, which is
described in detail in OS/VS2 JCL, includes:

• The serial number of the volume on which the data set resides
• The record format, logical record length, and blocksize of the data set
• The data set organization
• Directory information for a member of a partitioned data set

For more information on the LIST ALC and LISTDS commands refer to
OS/VS2 TSO Com,mand Language Reference. LISTCAT is "iscussed in
OS/VS2 Access Method Services.

Entering and Manipulating Data . 61

Protecting Your Data Sets

The PROTECT command protects only non-VSAM data sets; TSO issues
an error message if you attempt to protect a VSAM data set. To protect
VSAM data sets, use the Access Method Services ALTER and DEFINE
commands. Discussions of these commands are in OS/VS2 Access Method
Services.

Deleting a Data Set

Use the Access Method Services DELETE command to delete one or more
data sets, or one or more members of a partitioned data set. DELETE is
discussed in OS/VS2 Access Method Services.

62 OS/VS2 TSO Tenninal User's Guide

Section IV: Executing Programs at a Terminal

You can use the TSO commands to compile, link-edit, and execute (or
compile and load) your source program at the terminal. TSO also allows
you to use other programs, such as utilities, at the terminal. That is, instead
of taking your job to the computing room to run it, you can use the TSO
commands to enter it through your terminal. These commands reduce your
job turnaround time because you get immediate results at the terminal.
Since TSO commands are designed to operate on cataloged data sets, you
should catalog the background data sets created for use with TSO in the
foreground.

You can also use the terminal to submit your job for processing at the
computer in the conventional manner. That is, you can forego the
immediate results at the terminal and either have the results sent to you
from the computer room after your job is executed or obtain them at the
terminal later. Jobs submitted in this manner are called batch jobs.

Most compilers or assemblers that are available under OS/VS2 are also
available from your TSO terminal, for either foreground or background
jobs. In addition to these programs, your installation may have one or more
of the special TSO programs for your use at the terminal. Some of these
programs are:

• Code and Go FORTRAN -- a FORTRAN compiler designed for a
very fast compile-execute sequence at the terminal

• FORTRAN IV (Gl) -- a version of the FORTRAN IV (G) compiler
modified for the terminal environment

• TSO FORTRAN Prompter -- an initialization routine to prompt you
for options and invoke the FORTRAN IV (Gl) Processor

• FORTRAN Interactive Debug -- a tool for dynamic debugging of
FORTRAN programs (used in conjunction with Code and Go
FORTRAN or FORTRAN Gl)

• FORTRAN IV Library (Mod I) -- execution-time routines for use
with either Code-and-Go FORTRAN or FORTRAN IV (Gl)

• Full American National Standard COBOL Version 3 or Version 4
--versions of the American National Standard COBOL compilers with
extensions for the terminal environment

• TSO COBOL Prompter -- an initialization routine to prompt you for
options and invoke the full American National Standard COBOL
Version 3 or 4 Processor

• COBOL Interactive Debug -- a tool for dynamic debugging of
COBOL programs (used in conjunction with ANS COBOL Version 4)

• TSO Assembler Prompter -- an initialization routine to prompt you for
options and invoke the Assembler

• PL/I Optimizing compiler and PL/I Checkout compiler -- both
compilers include the PL/I Prompter, which is an initialization routine
that prompts you for options and invokes the compiler

If your installation has the PL/I Optimizing compiler or the PL/I
Checkout compiler, you can compile and execute PL/I programs under

Executing Programs at a Terminal 63

TSO. These compilers' are program products, and each includes the PL/I
Prompter, which is an initialization routine that checks compiler options,
allocates data sets required by the compiler, and then invokes the compiler.

If your installation has one or more of the TSO program product PL/I
compilers, it will provide you with documentation that explains how to use
them. This section explains how to use only the programs that are standard,
as part ofOS/VS2. The following paragraphs describe how you can:

• Allocate a data set.
• Assign data set attributes.
• Free an allocated data set.
• Create a program.
• Compile your program.
• Link -edit a compiled program.
• Execute a program.
• Load a program.

It is assumed that you are familiar with a programming language. The
options and data set requirements of the compilers, linkage editor, and
loader are summarized in the programmer's guide for the compiler you are
using.

Allocating a Data Set
There are three reasons for allocating data sets with the ALLOCATE
command or the ALLOCATE subcommand of EDIT:

• To allocate data sets required by the program or compiler you intend
to invoke

• To allocate a data set for which special characteristics have been
defined with the ATTRIB" command

• To allocate data sets required by the linkage editor or loader when
you use the CALL command

You should identify the data set requirements for any program that you
intend to invoke. In some cases, compilers have prompters that allocate the
required data sets for you. The documentation for a program or compiler
specifies data set requirements. A data· set with unique characteristics
assigned by the ATTRIB command may be allocated with the USING
operand of the ALLOCATE command.

This section is intended for those users who are going to compile, link
edit, or execute (or load) a program. Knowledge of a programming
language (such as assembler, COBOL, FORTRAN or PL/I) and of the job
control language (JCL) statements required to compile, link-edit, and
execute the program is useful for understanding this section.

The compiler, linkage editor, loader, and your own program require data
sets in order to operate. In an operating system without TSO these data sets
are defined with data definition (DO) JCL statements. In TSO, these data
sets are defined through the EDIT and ALLOCATE commands. You can
use the EDIT command to define and create input data sets. You can use
the ALLOCATE command to define output and work data sets and
libraries, and to allocate the data sets you created with the EDIT command.
This section discusses the ALLOCATE command and the ALLOCATE
subcommand of EDIT.

64 OS/VS2 TSO Tenninal User's Guide

Note: Compilers that have prompters associated with them will allocate
data sets for you. Your installation can tell you if these program product
facilities are available to you. The data sets for the linkage editor and
loader are allocated for you by the LINK and LOADGO commands,
respectively. You only need to allocate them if you invoke the linkage
editor or the loader with the CALL command.

The number of data sets you need is determined by the program
(compiler, linkage editor, loader, or your own program) you are going to
use. (The publications associated with the IBM-supplied programs list the
data set requirements.) The number of data sets you can allocate depends
on the number of data sets assigned to you in your LOGON procedure.
The LOGON procedure defines a series of data sets. Some of these data
sets are fully defined and correspond to data sets that you always need in
your processing. The remaining data sets are left undefined; they are
defined when you define a data set with an ALLOCATE or EDIT
command. (For additional information about defining LOGON procedures
refer to OS/VSl System Programming Library: TSO.)

When you define a data set with the ALLOCATE command or
subcommand, it remains allocated until you use the FREE command or
subcommand to free it, or until you log off. You may allocate a data set to
the terminal by using an asterisk (*) as the data set name.

When you create a data set with the EDIT command, the system uses
one of the undefined data sets in the LOGON procedure to define the data
set. When you save the data set and end the EDIT command, the system
saves the data set, enters its name in the system catalog, and frees the
definition in the LOGON procedure for further use. When you again use
the EDIT command to make changes to the saved data set, the system finds
the data set through the system catalog and uses another of the available
definitions to define the data set. When you end the EDIT command, the
system frees the data set definition. If you want the data set to remain
allocated in your LOGON procedure, you must use the ALLOCATE
command or subcommand.

You can list the data sets allocated to you with the LIST ALC command
(described in "Listing the Names of Your Data Sets").

You can allocate as many data sets as there are available definitions. If
you need more data sets you can free a previously allocated data set with
the FREE command. After you free a data set, you can use the available
definition to allocate another data set with the ALLOCATE command.

If you have to allocate the same data sets every time you log on, you can
have your installation allocate them in the form of fully defined data sets in
the LOGON procedure or you can build a command procedure containing
your ALLOCATE commands and execute that procedure as soon as you
are logged on. In either case you do not have to type the same
ALLOCATE commands every time you log on. (For information about
writing the LOGON procedure, refer to OS/VSl System Programming
Library: TSO.)

Executing Programs at a Terminal 65

The example in Figure 7 illustrates the use of the ALLOCATE command
for allocating the data sets required for an execution of the Assembler. The
assembler requires eight data sets for this compilation. They are:

READY

SYSLIB
SYSUTl
SYSUT2
SYSUT3
SYSPRINT

SYSPUNCH

SYSGO
SYSIN

The macro library (usually SYS1.MACLIB).
Work data set.
Work data set.
Work data set.
Output listing data set. Your terminal
is allocated for this purpose.
Data set for a punched deck of an object
module. It is to be produced on the
standard message output
class. (To change this output class
to a punch output class, see "Freeing
an Allocated Data Set.")
Data set for the object module.
Input source statements to the
assembler. It is entered with the EDIT
command and defined to the
assembler with the ALLOCATE command.

allocate dataset('sys1.maclib') file(syslib) shr
READY
allocate file(sysut1) new block(400) space(400,50)
READY
allocate file(sysut2) new block(400) space(400,50)
READY
allocate file(sysut3) new block(400) space(400,50)
READY
allocate dataset(*) file(sysprint)
READY
allocate file(syspunch) sysout
READY
allocate dataset(prog.obj) file(sysgo) new block(80) space(200,50)
READY
allocate dataset(input.asm) file(sysin) old
READY

Figure 7. Allocating Data Sets for the Assembler

66 OS/VS2 TSO Terminal User's Guide

Assigning Attributes to a Data Set

TSO data set characteristics are called attributes. Generally, you do not
have to be concerned with attributes because TSO assigns them
automatically. In some instances, however, you may want to allocate a data
set with attributes different from those assigned automatically. The
ATTRIB command or subcommand provides a way for you to do this.

The ATTRIB command dynamically assigns DCB and other parameters,
such as retention and expiration dates, to a data set. This allows you to run
existing programs that are dependent upon JCL for specifying certain DCB
parameters.

Use the ATTRIB command to build a list of the attributes that you want
to assign to a data set. Then use the ALLOCATE command, specifying the
name of the attribute list as the value for the USING (attr-list-name)
operand. TSO then assigns the attributes in the list to the data set when it
is allocated.

You may also assign attributes by specifying the filename of a previously
allocated data set as the value for the USING operand on the ALLOCATE
command.

You can refer to the attribute list any number of times during your
terminal session. When you finish using an attribute list, use the FREE
command to delete it from the system.

The attribute list is a null file allocation that other commands can use
and modify. Therefore, it is advisable to allocate data sets requiring the
attribute list before before issuing any subsequent commands such as LINK
or RUN. These commands may cause additional null file allocations.

The operands of the ATTRIB command or subcommand (as discussed in
OS/VSl TSO Command Language Reference) correspond to data control
block (DCB) and other parameters discussed in the following publications:

• OS/VSl JCL
• OS/VSl Data Management Services Guide

Note: Not all DCB parameters can be specified via ATTRffi.

You should understand the purpose of DCB parameters as presented in
these publications before using the A TTRIB command.

The example in Figure 8 illustrates the use of the A TTRIB command. In
this example, the attributes are the logical record length, the block size, and
the expiration date.

attr dcbparms lrecl(24) blksize(96) expdt(72111)
READY
alloc da('attr.show') using(dcbparms) new bl(80) sp(1,1) vol(231400)
READY
free attrlist(dcbparms)

Figure 8. Assigning Attributes to a Data Set

Executing Programs at a Terminal 67

Freeing an Allocated Data Set

To release any data sets allocated to you use the FREE command or
subcommand. You can also use this command to change the output class of
a SYSOUT data set, or to release attribute lists created by the ATTRIB
command.

To free a data set, specify its data set name or its file name (ddname). If
your terminal has been allocated as a data set, you must free it through its
file name. You can use the LIST ALC command to obtain the file names
and data set names of the data sets allocated to you.

The following example frees the data sets allocated in Figure 7. The
output class of the SYSPUNCH and SYSPRINT data sets is changed to B.

free dataset('sys1.maclib' ,prog.obj,input.asm)­
file(sysut1,sysut2,sysut3,sysprint,syspunch) sysout(b)

Creating a Program
To create your source program use the EDIT command as described in the
section "Entering and Manipulating Data."

When you enter the EDIT command you must specify the type operand
or give a descriptive qualifier to the data set n~me. The type (or descriptive
qualifier) tells the system which programming language you are using. If
you are writing a program and JCL statements to be submitted as a
background job, use CNTL as the type or descriptive qualifier.

The EDIT command allows you to specify certain options for your
source program. You can use the SCAN operand to request syntax checking
when the data set type is GOFORT, FORTGI, FORTH, PLIF, or PLI. You
can use the LINE or the LRECL operands to specify the length of the
input line forPL/I source programs. The length of the input line for the
assembler, FORTRAN, and COBOL is 80 characters.

After you create your source program you must use either the SAVE
subcommand or the SAVE keyword on the END subcommand to save the
data set before you end the EDIT command. Your source program is now
ready for compilation.

The example in Figure 9 shows the creation of an assembler source
program.

READY
edit
INPUT

EDIT
end save
READY

prog1 new asm

source program

Figure 9. Creating an Assembler Source Program

68 OS/VS2 TSO Terminal User's Guide

Compiling a Program

If you are using a TSO program product compiler and prompter, you can
ignore this section. The prompter allocates data sets and calls the compiler
for you.

You can use the CALL command to invoke the compiler that will
compile your source program. Before you use the CALL command to
invoke the compiler you must use ALLOCATE commands to allocate all
the data sets required for compilation. The data sets required by your
compiler are described in that program product's user's guide publication.

You must give the data set name of your compiler in the CALL
command by which you invoke it.

In addition to the compiler's data set name, you can enter the compiler
options you desire in the CALL command. These options are those
specified with the PARM parameter of the EXEC statement in JGL. For
example, if you want to use the MAP, NOID, and OPT=2 options of the
FORTRAN H compiler, enter:

READY
call 'sysl.linklib(iekaaOO)' 'map noid opt=2'

Any messages and other output produced by the compiler will be
displayed after the CALL command. Once the compiler completes its
processing you receive the READY message. You can then free any
allocated data sets you no longer need.

Figure 10 shows the commands required to create a COBOL source
program, allocate the eight data sets required for compilation, call the
COBOL compiler, and free all allocated data sets except the one that
contains the compiled program (object module). This procedure assumes
that you are using your user identification as part of all data set names
except SYS1.COBLIB.

Executing Programs at a Terminal 69

READY
edit
INPUT

prog2 new cobol

source program

EDIT
end save
READY
allocate dataset('sysl.coblib') file(syslib) shr
READY
allocate file(sysutl) new block(460) space(700,100)
READY
allocate file(sysut2) new block(460) space(700,100)
READY
allocate file(sysut3) new block(460) space(700,100)
READY
allocate file(sysut4) new block(460) space(700,100)
READY
allocate dataset(*) file(sysprint)
READY
allocate dataset(prog2.obj) file(syslin) new block(80) space(500,100)
READY
allocate dataset(prog2.cobol) file(sysin) old
READY
call 'sysl.1inklib(ikfcblOO)' 'map load nodeck flagw'

COBOL listings and messages

READY
free file(syslib,sysutl,sysut2,sysut3,sysut4,sysprint,sysin)
READY

Figure to. COBOL CompUation

Link-Editing a Compiled Program
The LINK command makes the services of the linkage editor available to
you. The linkage editor processes the compiled program (object module)
and readies it for execution. The processed object module becomes a load
module. Optionally, the link~ge editor can process more than one object
module and/or load module and transform them into a single load module.

In your LINK command you must first list the name or names of the
object modules you want to link-edit. (If you omit the descriptive qualifier
the system assumes OBJ.) After the names of the object modules you
should use the LOAD operand to indicate the name of a member of a
partitioned data set where you want the load module placed. (If you omit
the user-supplied name of the load module data set, the system assumes it
has the same user-supplied name as the object module. If you omit the
descriptive qualifier, the system assumes LOAD. If you omit the member
name, the system assumes TEMPNAME.) For example, if you want to
link-edit the load module in the JONES.PROG2.0BJ data set and place the
resultant load module in member TEMPNAME of the
JONES.PROGl.LOAD data set, enter:

link prog2

70 OS/VS2 TSO Terminal User's Guide

To link-edit the load module in the JONES.PROG2.0BJ data set and
place the resultant load module in member ONE of the
JONES.MODS.LOAD data set, enter:

link prog2 load(mods(one))

The following example shows how to link edit the two object modules in
the SMITH.PGMl.OBJ and SMITH.PGM2.0BJ data sets. The resultant
load module goes into member TEMPNAME of the SMITH.LM.LOAD
data set.

link (pgm1,pgm2) load(lm)

You can control the link-editing process with linkage editor control
statements. These control statements can be in a previously created data
set, or can be introduced through the terminal. You must give the name of
the data set, or an asterisk (indicating that you will introduce the control
statements through the terminal) in the list of input data sets. The following
example shows how to link-edit the object module in the
CARTER.TRAJ.OBJ data set. There are control statements in the
CARTER.CNTL.DATA data set. The load module goes into member
TEMPNAME of CARTER.TRAJ.LOAD.

link (traj,cntl.data)

Using the same example, if you want to introduce the control statements
through your terminal, enter:

link (traj,*)

The system prompts you for the control statements at the appropriate
time. You must follow your last control statement with a null line.

You can also have the linkage editor search a subroutine library to
resolve external references (external references are references to other
modules). The subroutine library is usually one of the language libraries,
and you can specify it with one of the following operands:

Operand

COBLIB
FORTLIB
PLILIB

Subroutine Library

SYS1.COBLIB
SYS1.FORTLIB
SYS1.PLILIB

In addition to, or instead of a language library, you can use the LIB
operand to specify the name of one or more user libraries. The system
searches the libraries in the order you specify.

The following example shows how to link-edit the object module in
JAMES.PRG.OBJ. The load module is placed in
JAMES.PRG.LOAD(TEMPNAME). The libraries SYSl.PLILIB, and
DEPT39.LIB.SUBRT2 are to be searched to resolve external references.

link prg plilib lib('dept39.1ib.subrt2')

Executing Programs at a Terminal 71

The LINK command also lets you specify the linkage editor options.
These options are those specified with the P ARM parameter of the EXEC
statement when you· are running the linkage editor directly under the
operating system rather than through TSO. For example, to use the LET
and XCAL options when the object module in AGNES.RaT.OBJ is
link-edited and placed in AGNES.TBD.LOAD(MOD), enter:

link ret load(tbd(mod» let xcal

Linkage editor listings (specified with the MAP, XREF, and LIST
options) are directed to a data set or to your terminal. You indicate your

. choice with the PRINT operand. The following example shows that the
object module in BILL.PRGM.OBJ is to be link-edited and placed in
BILL.PRGM.LOAD(TEMPNAME). The listing produced by the MAP
option is to be placed in the BILL.LIST .LINKLIST data set.

link prgm map print(list)

Note that if you omit the descriptive qualifier from the print data set name,
the system assumes LINKLIST. If you omit the user-supplied name, it has
the same user-supplied name as the object module. For example, if you
want the listing to go in the BILL.PRGM.LINKLIST data set, enter:

link prgm map print

Using the same example, if you want the listing to be displayed on your
terminal, enter an asterisk in the PRINT operand.

link prgm map print(*)

Error messages appear at the terminal as well as on the print data set
when you specify a data set name instead of an asterisk. If you want the
error messages to appear only on the print data set, enter the NOTERM
operand.

link prgmmap print noterm

Executing a Program

You can use the CALL command to execute your program after it has been
link -edited. You can also use CALL to execute any other program in the
load module form, such as utilities and compilers.

Before you use CALL to execute your program, you can use the EDIT
and ALLOCATE commands to define your data sets. Use EDIT to create
your input data sets, and ALLOCATE to allocate your input, work, and
output data sets.

You must specify the data set name a~d member name of the member
that contains your program in load module form. If you want to execute a
program that resides in DEPTB.PROGS.DAIL Y(NUM3), enter:

call 'deptb.progs.daily(num3)'

72 OS/VS2 TSO Terminal User's Guide

If you omit the descriptive qualifier and member name, the system
assumes LOAD and TEMPNAME, respectively. For example, if your
LOGON identifier is "JONES" and if your program resides in
JONES.LIB.LOAD(MEM2), enter:

call lib(mem2)

If your program resides in JONES.LIB.LOAD(TEMPNAME), enter:

call lib

You can pass parameters to your program if you wrote it in assembler.
These are the parameters you would specify with the P ARM parameter of
the EXEC statement in JCL. For example, if you want to pass the
parameters OPTION1 and OPTIONS to a program that resides in
JONES.ASMPG.LOAD(MEM3), enter:

call asmpg(mem3) 'option1 option5'

Figure 11 shows the commands for link-editing and executing the
COBOL program created and compiled in Figure 10. In Figure 10, the
commands placed the compiled program (object module) in PROG2.0BJ.
After link-editing, the load module is placed in
PROG2.LOAD(TEMPNAME). Your program requires three data sets for
execution. The input data set, INPUT.DATA, is created with the EDIT
command. ALLOCATE commands are used to allocate the input data set, a
work data set, and an output data set. CALL is used to execute your
program. The PROG2.COBOL, PROG2.0BJ, PROG2.LOAD, and
INPUT.DATA data sets are deleted. (The other data sets, allocated in
Figure 10, are automatically deleted because they were not given a data set
name when allocated.) This procedure assumes that you are using your user
identification as part of the data set names.

If your program has an error termination, you can use the facilities of the
TEST command to debug your program.

Executing Programs at a Terminal 73

READY
link prog2 print(*) map

linkage editor messages and listings

READY
edit input. data new
INPUT

EDIT
end save
READY

input data

allocate dataset(input.data) file(input) old
READY
allocate file(work) new block(100) space(300,10)
READY
allocate dataset(*) file(print)
READY
call prog2

output from your program

READY
delete (prog2.* input.data)
READY

Figure 11. Link-Editing and Executing a Program

Loading a Program
The LOADGO command makes the services of the loader available to you.
The loader combines the basic functions of the linkage editor and program
fetch. That is, the loader link-edits and executes your program. Therefore,
the LOADGO command combines the basic functions of the LINK and
CALL commands, without needing to produce a load module. For complete
information on the loader, refer to the publication, OS/VS Linkage Editor
and Loader.

The loader can process and execute a compiled program (object module)
or a link edited program (load module). Optionally, it can combine object
modules and/or load modules and execute them. (If you want to load and
execute a single load module, the CALL command is more efficient.)

Before you use the LOADGO command you can use the EDIT and
ALLOCATE commands to create and allocate any data sets required to
execute your program.

In your LOADGO command you must list the name or names of the
object and load modules you want to load. For example, if you want to
load the object module in JONES.PROG3.0BJ, enter:

loadgo prog3

74 OS/VS2 TSO Terminal User's Guide

To load the object modules in JONES.PROG3.0BJ, JONES.COB.OBJ
and the load module in JONES.COB.LOAD(TWO), enter:

loadgo (prog3 cob.obj cob.load(two))

You can also pass parameters to your program if you wrote it in
assembler. These are the parameters you would specify with the P ARM
parameter of the EXEC statement in JCL. For example, if you want to
pass the parameters OPTIONl and OPTIONS to a compiled program that
resides in JONES.ASMPG.OBJ, enter:

loadgo asrnpg 'option1 option5'

You can have the loader search a subroutine library to resolve external
references. The subroutine library is usually one of the language libraries,
and if so, you can specify it with one of the following operands:

Operand

COBLIB
FORTLIB
PLILIB

Subroutine Library

SYS1.COBLIB
SYS1.FORTLIB
SYS 1.PLILIB

In addition to, or instead of, a language library you use the LIB operand
to specify the name of one or more user libraries. The system searches the
libraries in the order you specify.

The following example shows how to load the object module in
JONES.PRG.OBJ. The libraries SYS1.PLILIB, and DEPT39.LIB.SUBRT2
are to be searched to resolve external references.

loadgo prg plilib lib('dept39.lib.subrt2')

The LOADGO command also lets you specify the loader options. These
options are those specified with the P ARM parameter of the EXEC
statement in JCL. For example, to use the LET and EP(MAIN) options
when the object module in JONES.CIR.OBJ is loaded, enter:

loadgo cir let ep(main)

Loader listings (specified with the MAP option) are directed to a data
set or to your terminal. You indicate your choice with the PRINT operand.
The following example shows that the object module in JONES.PRGM.OBJ
is to be loaded. The listing produced by the MAP option is to be placed in
the JONES.LISTING.LOADLIST data set.

loadgo prgm map print(listing)

Note: If you omit the descriptive qualifier from the print data set name,
the system assumes LOADLIST. If you omit the user-supplied name, the
system assumes it has the same user-supplied name as the object module.
For example, if the listing is to be placed in the JONES.PRGM.LOADLIST
data set, enter:

loadgo prgm map print

Executing Programs at a Terminal 75

Using the same example, if you want the listing to be displayed on your
terminal, enter an asterisk in the PRINT operand.

loadgo prgm map print(*)

Error messages appear at the terminal as w~ll as on the print data set
when you specify a data set name instead of an asterisk. If you want the
error messages to appear only on the print data set, enter the NOTERM
operand; for example,

loadgo prgm map print noterm

Figure 12 shows the commands for loading the COBOL program created
and compiled in Figure 10. The loading operation shown in Figure 12 is the
equivalent of the link-editing and execution shown in Figure 11. The same
data sets required for execution of your program in Figure 11 are also
necessary in this example. The object module resides in PROG2.0BJ. The
loader does not produce a load module, and therefore only
PROG2.COBOL, PROG2.0BJ, and INPUT.DATA are deleted at the end.
This procedure assumes that you are using your user identification as part
of the data set names.

READY
edit input. data new
INPUT

EDIT
end save
READY

input data

allocate dataset(input.data) file(input) old
READY
allocate file(work) new block(100) space(300,10)
READY
allocate dataset(*) file(print)
READY
loadgo prog2 map print(*)

READY
delete
READY

loader listings and output from your program

(prog2.* input.data)

Figure 12. Loading a Program

76 OS/VS2 TSO Tenninal User's Guide

-------- --------,------.--------~------ -.~~.---~.--

Section V: Testing a Program at a Terminal

The operating system provides you with facilities to test your program from
the terminal. They are the test facilities, if any, provided by your compiler,
and the TSO TEST command. The compiler test facilities are described in
the publications associated with the compiler. A brief description of the
TEST command follows.

The TEST command allows you to test a program for proper execution
and to find programming errors. To use TEST effectively, you should be
familiar with the assembler language. If you are using another language, you
can still use the TEST command to obtain information to give to your
installation's system programmer who can help you debug your program.
(You can use the full facilities of the TEST command to debug your
program if yOl;l can correlate the statements in your source program listing
to the resultant assembler language statements in the object listing.) Refer
to OS/VSl TSO Command Language Reference for a complete description of
the facilities of the TEST command.

If you are not an assembler language programmer, your system
programmer will probably provide you with a test procedure. The most
common situation he may provide for occurs when your program is
executing and you receive a message that the program has abnormally
terminated. If you press the ENTER key after the error message and
"READY", the system will take a dump. Your other choices are to enter
any command, or to enter the word 'TEST' with no operands. Your system
programmer may tell you to enter the TEST command and then the LOAD
subcommand with the name of a program that will test your program. For
example, if the name of the program that will test yours is DPTEST, use
the following sequence.

MYPROG ENDED DUE TO ERROR +
?
SYSTEM ABEND CODE OCl
READY
test
TEST
load (dptest)

If the system programmer does not give you the name of a testing
program, he may instruct you to use the TEST command and a set of its
subcommands that display pertinent information about your program. For
example, he could ask you to perform procedures similar to the following
examples.

Testing a Program at a Terminal 77

Example 1

MYPROG ENDED DUE TO ERROR +
READY
test
TEST
listpsw
XRXXXTIE KEY CMWP SPM CC PROG MASK INSTR ADDR
00000111 8 1101 0 00 0000 00067AB8
TEST
where 67ab8.
67AB8. LOCATED AT +38 IN (load-module name.csectname)

UNDER TCB LOCATED AT 660DO.
TEST
list 67ab8.-32n length(32)

Begin testing by entering the TEST command, and then use the
subcommands of TEST to debug your program.

Enter the LISTPSW subcommand to determine the address of the
instruction that failed in your program. You can then enter the last five
characters of the PSW that is listed with the WHERE subcommand, and
the system will provide the location and the program name in which the
ABEND occurred. When you enter LIST in the proceeding manner, the
system displays the 32 bytes of instructions prior to the ABEND.

At this time you may list all the registers in the following manner to aid
you in solving the problem.

list Or:15r

Example 2

If you wish to trace the execution of your program, enter the following:

at +0:+200 (go)
at +32
at +8c
at +10a
go +0

In this case, TEST sets breakpoints at every instruction in your program
between relative addresses 0 and 200 (inclusive), stopping at the first
invalid instruction encountered. Breakpoints set at relative address 32, 8C,
and lOA override the previous settings. The last GO causes the program to
resume execution from the beginning (assuming the first address contains a
valid instruction). Before execution of the instruction at any of the
breakpoint locations, a message appears at the terminal. If the location is
other than 32, 8C, or lOA, execution continues because of the GO
subcommand in the subcommand list of the first AT. Before 32, 8C or lOA
are executed, the associated AT subcommand causes control to return to
the terminal so that you can enter any TEST subcommands before
continuing execution.

Example 3

To supply new values for a range of registers, enter:

o r= (x ' 0' , x ' 0' , x ' 0')

78 OS/VS2 TSO Terminal User's Guide

The values specified would be assigned to register 0, register 1, and
register 2.

Example 4

If you want to display storage at a known relative address enter:

list +34
+34 47FOC220

If you want to display storage and find the absolute address associated
with the relative address, enter:

list +34+0
A0680. 47FOC220

Example 5

To list an area of storage greater than 256 bytes, you must use the
MULTIPLE keyword of the LIST subcommand. For example, to find a
module name that is a DC within the instructions of a module, enter:

list a0680. c 1(256) m(4)

(List the storage beginning at location A0680, translate into printable
characters, for length 4 x 256.)

When To Use TEST

There are ~wo basic situations in which you might want to use the TEST
command:

• To TEST a currently active program .
• To TEST a program not currently being executed.

You may want to TEST a currently executing program either because it
is terminating abnormally, or because you want to check through the
current environment to see that the program is executing properly.

If a program is terminating abnormally, you will receive a diagnostic
message from the terminal monitor program (TMP) and then a READY
message. If you respond with anything but TEST, the system's ABEND
routine abnormally terminates your program. If, however, you issue the
TEST command (and supply no program name), the TEST command
processor gets control, and you can use the TEST subcommands to debug
the defective program.

If you just want to look at the current environment of an executing
program that is not terminating abnormally, enter an attention interruption.
The currently active program remains attached and the TMP responds to
your interruption by issuing a READY message. When you issue the TEST
command (no program name), the currently active program remains in
storage under the control of the TEST command processor. You can then
use the TEST subcommands to examine the current environment.

Note: In the case of both the ABEND and the attention interruption, you
should not enter a program name following the TEST command. If you do,
you wi11lose the current in-storage copy of the program, whereupon TEST
loads a new copy.

Testing a Program at a Terminal 79

Testing a program not currently being executed requires that you enter a
program name along with the TEST command. (There are other optional
operands of the TEST command, but they are not necessary for this
example.) The TEST command processor gets control and loads a copy of
the named program. The program can be a newly written TMP, a command
processor, or an application program.

Programs to be tested in this manner must be link-edited members of
partitioned data sets, or object modules in sequential or partitioned data
sets, loadable by the system's loader program. Testing object modules
requires a special keyword; refer to OS/VSl TSO Command Language
Reference.

While your program is under the control of TEST, you can execute it,
one instruction at a time, investigate or alter its environment at any time,
change instructions or register contents, force entry into various
subroutines, and perform other debugging operations. Note that when
testing code that is executing in an abend recovery environment, results are
unpredictable and TEST may have to terminate unexpectedly.

The following discussion primarily addresses the debugging of newly
written code.

For additional discussion of the TEST command and its operands, see
OS/VSl TSO Command Language Reference. The TEST subcommands are
listed in Figure 13.

80 OS/VS2 TSO Terminal User's Guide

Subcommand Name

= (Assignment)

AT

CALL

COPY

DELETE

DROP

END

EQUATE

FREEMAIN

GETMAIN

GO

HELP

LIST

LISTDCB

LISTDEB

LISTMAP

LISTPSW

LISTTCB

LOAD

OFF

QUALIFY

RUN

WHERE

Function

Assigns values to one or more locations.

Establishes breakpoints at specified locations.

Initiates execution of a program at a specified address.

Moves data fields or addresses.

Deletes a load module.

Removes symbolic addresses from the symbol table.

Terminates all functions of the TEST command.

Adds symbolic address to the symbol table.

Frees a specified number of bytes of real storage.

Acquires a specified number of bytes of real storage for use by
the program being processed.

Restarts a program at the point of interruption or at a specified
address.

Obtain the syntax and function of the TEST subcommands.

Displays the contents of specified areas of real storage or the
contents of specified registers.

Lists the contents of a data control block (DCB). You must
specify the address of the DCB.

Lists the contents of a data extent block (DEB). You must
specify the address of the DEB.

Displays' a storage map of any real storage assigned to a
program.

Displays the program status word (PSW). You may specify the
address of any PSW.

Lists the contents of the task control block (TCB). You may
specify the address of any TCB.

Loads a program into real storage for execution.

Removes breakpoints.

Establishes the starting or base location for symbolic or relative
addresses; resolves external symbols within load modules.

Voids all breakpoints so that a program can execute to
termination.

Displays the absolute address of a symbol or entrypoint, and its
relative location within the CSECT.

Figure 13. The TEST Subcommands

Addressing Restrictions

The TEST command processor can resolve internal and external symbolic
addresses only if these addresses are available to TEST. Within certain
limitations, symbolic addresses are available for both object modules
(processed by the loader) and load modules (fetched by contents
supervision). To ensure availability of symbols, use the EQUATE
subcommand of TEST to define the symbols you intend to use.

External symbols, such as CSECT names, can be available for both
object modules and load modules. Object modules require that the Loader
have enough real storage to build in-storage composite external symbol

Testing a Program at a Terminal 81

dictionary entries. LOAD modules must have been processed by the linkage
editor with the TEST parameter specified, or must have been fetched to
main storage by the TEST command or its LOAD subcommand.

Internal symbols are available only for load modules. You can refer to
most internal symbols in load modules if you specified the TEST parameter
during both assembly and link-editing. Certain internal symbols, however,
are not available. These include the names on EQU, DSECT, L TORO, and
ORG assembler statements, and the symbolic names contained in system
routines that operate in zero protection key.

Symbolic addresses normally cannot be obtained for modules fetched
from data sets that have been concatenated to SYS l.LINKLIB by use of a
link library list in a member of SYS l.P ARMLIB. However, if the TEST
command processor brings these modules into real storage (with the LOAD
subcommand, or as an operand on the TEST command), then the symbolic
addresses within these modules are available to TEST.

If the necessary conditions for symbol processing are not met, you can
use absolute, relative, or register addressing, but you cannot refer to
symbols, unless you have previously defined them with the EQUATE
subcommand of TEST.

Executing a Program under the Control 0/ TEST

Any program, that is a link-edited member of a partitioned data set or an
object module in a sequential or partitioned data set can be executed under
the control of the TEST command processor. Note that TEST is not an
authorized program and cannot be used to test an authorized program. For
additional information on authorized program execution, see OS/VS2 System
Programming Library: TSO.

Issue the command TEST followed by the program name and those
operands of the TEST command that either define the program or are
necessary to its operation. These operands may consist of parameters
necessary to the operation of the program under test, the keyword LOAD
or OBJECT (depending upon whether the program is a load or an object
module), and the keyword CP or NOCP (depending upon whether or not
the program to be tested is a command processor).

Any parameters that you specify in the TEST command are passed to
the named program as a standard operating system parameter list; that is,
when the program under test receives control, register one contains a
pointer to a list of addresses that point to the parameters.

If the program to be tested is a command processor, include the keyword
CP (the default is NOCP). This causes the test routine to create a
command processor parameter list (CPPL), whose address it places into
register 1 before loading the program.

Establishing and Removing Breakpoints within a Program

To establish breakpoints within the program under test, use the AT
subcommand. Then issue the 00 subcommand to begin execution of the
program. To begin executing a newly-loaded program, enter the
subcommand GO; no address is necessary.

82 OS/VS2 TSO Tenninal User's Guide

When the TEST command processor encounters the executing program's
breakpoints, processing temporarily halts, and the message " AT address"
appears at the terminal. You can then examine the executing program, its
registers, and data areas to see whether it has been executing properly.

There are two ways to do this:

• Specify a list of subcommands when you issue the AT subcommand .

• Wait for the TEST command processor to return control to you at the
terminal each time it encounters a breakpoint.

When the TEST command processor encounters a breakpoint, it issues
each of the specified subcommands as though you had entered each of
them at the terminal at that time. The sub commands execute and display
the results of their execution at the terminal. If you specify GO as the last
subcommand, control automatically returns to the program under test at the
point of interruption. Otherwise, control returns to you at the terminal after
the last TEST subcommand completes execution.

If you determine from the information displayed by the subcommands
that your program has executed correctly up to that breakpoint, then issue
the GO subcommand to return control to your program. Your program can
then resume execution at the point of interruption and continue, either to
another breakpoint or to its normal conclusion.

If you choose to establish breakpoints with the AT subcommand without
specifying additional subcommands with it, TEST passes control directly to
your terminal at each breakpoint and awaits your entry of the additional
subcommands. This procedure permits you to check on the progress of your
program's execution, one TEST subcommand at a time.

To remove all previously established breakpoints, issue the OFF
subcommand without an address operand. To remove only specific
breakpoints, or specific ranges of breakpoints, enter their appropriate
addresses, or ranges of addresses, as operands of the OFF subcommand.

Displaying Selected Areas 0/ Storage

Use the various LIST sub commands to display the contents of a specified
area of real storage, registers, or various control blocks at your terminal, or
to write this information to a data set. There are six variations of the LIST
subcommand:

liST
LISTMAP
LISTTCB
LISTDEB
LISTDCB
LISTPSW

LIST: The LIST subcommand displays areas of storage or the contents of
registers. The address required as an operand of the LIST subcommand can
be one address, a list of addresses, or a range of addresses. You may
specify the address as a symbolic address if there is a symbol table that
contains the requested symbolic address. If there is no symbolic address
(the program was not link-edited or did not have a symbol table), you can

Testing a Program at a Tenninal 83

use the EQUATE subcommand to create a symbolic address for any
location within the program, or you can specify the address as a relative
address, an absolute address, or as a register containing an address.

If you use the LIST subcommand to list information found at an address
specified by a symbol contained in a symbol table, the listed information
appears in the character type and the length specified in the symbol table.
You can, however, override the attributes contained in the symbol table by
including attribute operands on the LIST subcommand.

Use the LIST subcommand at any point during the execution of your
program (use the AT subcommand or an attention interruption to stop the
execution of the program) to determine whether data areas and registers
contain proper data. If the data displayed is not what it should be, use the
TEST subcommands to determine why the data is not as expected, or to
modify the data in real storage and continue execution of the program.

LISTMAP: The LISTMAP subcommand displays a map of all real storage
assigned to the program under test. Some of the information in this map is:

• Region size
• Task control block (TCB) address
• Program name, length, and location in real storage
• Active request blocks (RBs), RB types, and the names of the

programs associated with each of the RBs

LISTTCB: The LISTTCB subcommand displays the entire task control
block (TCB) of the program under test, or any fields of that TCB. The
displayed information is formatted, and each field is identified according to
the field names contained in OS/VSl Data Areas.

If you want to display the TCB for the program under test, enter the
subcommand LISTTCB with no address. If you want to display another
TCB on the TCB queue, you must include the address of the TCB as an
operand of the LISTTCB subcommand.

LISTDEB: The LISTDEB subcommand displays the basic section and any
direct access sections of any valid data extent block (DEB), or any fields of
that DEB. The displayed information is formatted according to the field
names of the DEB as contained in OS/VSl Data Areas.

The LISTDEB subcommand requires the address of a DEB as an
operand.

LISTDCB: The LISTDCB subcommand displays the contents of a data
control block (DCB). The information displayed is formatted, and each
field is identified according to the field names of the DCB contained in
OS/VSl Data Areas.

The LISTDCB subcommand requires the address of a DCB as an
operand. If you have created the DCB within the program under test, use
the address of the DCB macro instruction used to create the DCB. You can
also obtain the address of the DCB from the DEBDCBAD field of the
DEB displayed with the LISTDEB subcommand.

LISTPSW: The LISTPSW subcommand displays the current program status
word (PSW) or any of the PSW s. If you issue the subcommand LISTPSW
with no address following the subcommand, the current PSW is displayed at

84 OS/VS2 TSO Terminal User's Guide

your terminal. If you want to display any of the other PSW s at your
terminal, supply the address of the PSW you want to see as an operand of
the LISTPSW subcommand. A list of the permanent real storage locations
of all PSWs can be found in the IBM System/370 Principles of Operation.

Changing Instructions, Data A.reas, or Register Contents

Once you have listed those areas of real storage that help you determine
what has occurred in your program, you can use the assignment function of
the TEST command to make changes within the real storage copy of the
code, or to change the contents of data areas or registers.

Enter the address at which you want the new data entered, a code
indicating the data type, and the new data you want entered at that
address. The address must conform to the address restrictions already
discussed. The new data must be within single quotes. The data type codes
are listed in OS/VS2 TSO Command Language Reference.

One problem that can arise during a debugging session occurs when you
want to replace a section of the program under test but the replacement
code is longer than the section to be replaced. If you type in the beginning
address of the section to be replaced, followed by a portion of code longer
than the segment to be replaced, you will overlay some functional code.
You can solve this problem with the GETMAIN subcommand of TEST.

1. Issue the GETMAIN to obtain a work area in which to build your
replacement segment of code. (The GETMAIN subcommand displays
at your terminal the address of the beginning of the real storage area
it got for you.)

2. Use the assignment of values function of the TEST command to
place a branch instruction to the getmained area at the address in
your program that begins the code you want to replace.

3. Use the assignment function again, this time to build your
newly-written code segment in the getmained area.

You can then use the GO subcommand to restart your program at some
point before the branch. Your program will execute through the branch
instruction, into the new instructions, and branch back into your original
code. Later, you can use the LIST subcommand to display the newly
written code in a form useful to you, enter it into your program with the
TSO EDIT command, and reassemble your module.

Forcing Execution of Program Subroutines

You may need to test your module's response to return codes set by other
modules or, possibly, by unwritten code. To do this type of testing, you can
use the following procedure:

1. Use the AT subcommand to insert a breakpoint in your program at
the point where it passes control to the unwritten code.

2. Use the assignment function of TEST to set register 15 to an
expected return code.

3. Use the GO subcommand to restart your program executing at the
point where it would ordinarily get back control.

Testmg a Program at a Tenninal 85

By using this procedure, you can test your program's response to each
possible return code.

Using TEST after a Program ABEND

If a program running under TSO terminates abnormally (ABEND), a
diagnostic message containing the ABEND code appears at the terminal,
ABEND processing halts, and control returns to either the TMP or TEST.
If the program was running under the control of the TEST command
processor, control returns to TEST and you can immediately begin to use
the TEST subcommands to determine the cause of the error. If the program
was not running under TEST, control returns to the TMP. You can then
enter the TEST command (without a program name), to place the
abnormally terminating program under control of the TEST command
processor.

Issue the WHERE subcommand to determine where the interruption
occurred. The WHERE subcommand displays the current instruction
address at the terminal. If you then enter WHERE followed by that
instruction address, WHERE responds by displaying the program name, the
CSECT name, the offset of the current instruction address within the
CSECT, and the address of the abnormally terminating task's TCB. The
instruction address and the information returned by the WHERE
subcommand pinpoint the point of error.

The LIST subcommand displays the instructions leading up to the error
condition, and the data areas and registers used in those instructions. This
information should be sufficient to determine the cause of the error.

Determining Data Set Information

If you want to investigate the condition of any of your data sets, perform
the following operations:

1. Use the LISTTCB subcommand to display the TCB for the
terminating task.

2. Use the contents of the TCBDEB field as an operand of the
LISTDEB subcommand to gain access to the data extent block queue.

3. Use the contents of the DEBDCBAD field in each of the DEBs in
the DEB queue, or the addresses of any DCB macro instructions
coded within your program, as an operand of the LISTDCB macro
instruction, to list the data control blocks.

These control blocks contain the addresses of other control blocks useful
in the debugging process.

86 OS/VS2 TSO Tenninal User's Guide

Section VI: Using Command Procedures

Command procedures are executable sequences of TSO commands,
subcommands, and command procedure statements. The entire TSO
command language is available to command procedures. Additionally,
command procedure statements, symbolic substitution facilities, control
variables, and built-in functions give command procedures capabilities
similar to those of high-level languages.

The following topics describe how to create and store a command
procedure and how to invoke it. There is also an overview of the command
procedure facilities.

Creating a Command Procedure
To create a command procedure, use the EDIT command to put the
commands, subcommands, and command procedure statements into a data
set. This CLIST (command list) data set may be either sequential or
partitioned. A sequential CLIST data set consists of only one command
procedure, while a partitioned data set may contain more than one
command procedure. When a partitioned data set consists entirely of
command procedures it is called a command procedure library.

The following sample EDIT session shows how to create a sequential
CLIST data set that contains the command procedure named "listpgm"
This command procedure loads and passes control to a program called
"weekly" after allocating three data sets that "weekly" requires.

edit listpgrn clist new

INPUT
00010
00020
00030
00040
00050
00060

allocate dataset(input) file(indata) old

EDIT

allocate dataset(output) block(100) space(300,10) +
file(outdata)
allocate dataset(list) file(print)
call weekly

(null line)

end save

As a result of the END subcommand, TSO stores your data set with the
fully-qualified name of:

userid.LISTPGM.CLIST

The CLIST qualifier identifies the data set as a command procedure.

To create a command procedure library, use EDIT to make the command
procedure a member of a partitioned data set. For example, to create a
partitioned data set named "clistlib" and make the command procedure
named "listpgm" a member of "clistlib", invoke EDIT as follows:

edit clistlib(listpgrn) clist new

Command procedures are stored and cataloged like any other TSO data
sets. Your installation may allocate a partitioned data set to be used as a

Command Procedures 87

central command procedure library. Or you may create your own command
procedure library by making your command procedures members of a
partitioned data set.

How to Invoke a Command Procedure

To invoke a command procedure, use the EXEC command or EXEC
subcommand of EDIT. (Be aware that command procedures executing
under EDIT are in the subcommand environment and, therefore, can
execute only EDIT subcommands and command procedure statements -­
not other commands.)

Use of EXEC (either command or subcommand) can be in one of two
forms:

• Explicit form of EXEC -- enter the word EXEC and the command
procedure's name.

• Implicit form of EXEC -- enter only the command procedure's name.
This will work only for command procedures that are members of a
partitioned data set allocated to a file named SYSPROC.

Using the Explicit Form 0/ EXEC

You can use the explicit form of EXEC to invoke any command procedure.
To do so, enter EXEC followed by the command procedure's name. The
command procedure name can be either the name of a sequential data set
or the. name of a member of a partitioned data set. For example, to execute
a command procedure named "listpgm", which is a sequential CLIST data
set, enter:

exec listpgrn

This command causes TSO to execute the procedure named
"userid.listpgm.clist" .

If the command procedure is a member of a partitioned data set, you
must enter both the data set name and the member name. For example, if
"listpgm" is a member of a partitioned data set named "c1istlib", enter:

exec clistlib(listpgrn)

This command causes TSO to execute the procedure named "listpgm",
which is a member of the partitioned data set named
'userid.CLISTLIB. CLIST.'

Using the Implicit Form 0/ EXEC

You can use the implicit form of EXEC to invoke command procedures
that are members of a partitioned data set allocated with a filename of
SYSPROC. To do so, enter just the procedure name.

Before you implicitly invoke a command procedure, you may want to
ensure that the partitioned data set has a filename of SYSPROC. Assume
the command procedure name is "listpgm" and it is a member of a data set
named "c1istlib". Enter:

listalc status

88 OS/VS2 TSO Terminal User's Guide

.~~~ ..• -.~ -. __ .. __ ._-- --_ .. ~------.---.-.---

This command lists all the names of data sets that you have allocated with
the ALLOCATE command, that were allocated in your LOGON procedure,
and that were temporarily allocated by command processors. If "clistlib"
does not appear in this list with a file name of SYSPROC, allocate it by
entering:

allocate dataset(clistlib.clist) file(sysproc) shr

Allocating the file with a shared disposition allows others to use the
command procedure library concurrently.

You can now invoke the command procedure. Enter:

listpgm

Shortening TSO's Search Time

Ordinarily, wh~n you invoke a command procedure implicitly, °TSO searches
several libraries before it searches the SYSPROC file. It does this to
determine first if the name you entered is a TSO command. You can have
TSO search only the SYSPROC file by prefixing a percent sign (0/0) to the
command procedure name. For example, enter:

%listpgm

Concatenating Data Sets to SYSPROC

You may concatenate data sets and allocate them to the file SYSPROC to
create a command procedure library that spans several data sets. This is
useful if your installation has defined a command procedure library to
which you would like to add a library of your own command procedures.
You could similarly concatenate your library to one or more of someone
else's libraries or concatenate them all to the installation's library.

To concatenate data sets with the ALLOCATE command, enter their
names (separated by delimiters) in the order in which you wish TSO to
concatenate them. The concatenation order establishes the order by which
TSO will search the data sets to find specified command procedures.
Therefore, you should specify the data set you expect to use most
frequently first.

The blocksizes of data sets can affect their concatenation order. Where
blocksizes vary, the system requires that you specify the dataset with the
largest blocksize first. If, for example, you wish to concatenate your private
library to the installation's library so that your library is the first in the
concatenation order, make sure that your library'S blocksize is at least as
large as that of the installation's library. To determine the blocksize of the
installation's library, display its data set attributes with the LISTDS
command.

For example, assume your userid is DS8JSGl and you wish to
concatenate the command procedure libraries whose fully-qualified data set
names are as follows:

D58DEW1.CLISTLIB.CLIST
D58JSG1.CMPRCLIB.CLIST
D95MRT1.PROFLIB.CLIST

Command Procedures 89

The following ALLOCATE command concatenated them in the order listed
and allocates them to file SYSPROC so that command procedures from any
of them may be invoked implicitly:

allocate file(sysproc) dataset('d58dewl.clistlib.clist
cmprclib.clist 'd95mrtl.proflib.clist') shr

The hyphen at the end of the first line indicates that more command
information follows on the next line. The single quotes are necessary
because the names are fully-qualified names. The disposition of SHR
permits concurrent use of the allocated data sets by other users.

Command Procedure Facilities

A command procedure can be basic, consisting only of a series of TSO
commands, or complex, using some or all of the command procedure
facilities. These facilities include built-in functions, which perform
immediate evaluations of character strings; control variables, which contain
information pertinent to the currently executing command procedure; and
command procedure statements, which give the writer of command
procedures the capabilities of a high-level language. These facilities are
described in detail in following topics.

The descriptions of these facilities often refer to expressions, symbolic
variables, and labels. You should understand these terms, as used in
command procedures, before you attempt to use the command procedure
facilities. These terms are defined in the following topics.

90 OS/VS2 TSO Terminal User's Guide

-- ---- - ---- ------------------------------------ ------------------------------------- ---- ------------ -- ----------------------------

Terminology

Throughout this section on command procedures, certain terms are used
extensively. The next topics define expressions, operators, symbolic
variables, and labels, as used in command procedures.

Operators and Expressions

Operators are used in command procedures to specify operations to be
perf ormed on terms in an expression. Expressions are used as parameters
on some command procedure statements.

Operators are in three categories:

• Arithmetic operators, which specify fixed-point arithmetic operations
to be performed on numeric operands. These operators connect whole
numbers, character strings, symbolic variables, control variables, and
built-in functions to form simple expressions.

• Comparative operators, which specify comparison functions to be
performed between two simple expressions, and thereby form
comparative expressions. Comparative expressions are often used to
determine conditional branching within a command procedure. Note
that, to compare character strings, TSO uses the standard EBCDIC
collating sequence.

• Logical operators, which specify a logical connection between two
comparative expressions, and thereby form logical expressions. Logical
expressions are ofter used to determine conditional branching within a
command procedure.

When using expressions in command procedures, you should be aware of
the valid range which a numeric variable can have. This range is -2, 147,
483, 648 (the maximum negative number) to +2, 147, 483, 647 (the
maximum positive number). This range covers values from a minus two to
the 31st power through a plus two to the 31st power minus one.

If a number outside the valid range is entered directly in a command
procedure statement, an error code is issued and evaluation of the statement
terminates. If the result of any arithmetic calculation (even an intermediate
result) is outside the valid range, an error code is issued and, for any
statement other than SET, evaluation of the statement terminates. For a
SET statement, the error code can be ignored and evaluation of the
statement continues if NOFLUSH has been specified in the command
procedure.

Figure 14 lists the operators in the three categories and shows how to
enter them.

Command Procedures 91

For the function: Enter:

Arithmetic Addition +
Subtraction -
Multiplication *
Division I
Exponentiation **(see Note 1)
Remainder II

Comparative Equal = or EQ
Not equal --, = or NE
Less than < or LT
Greater than > orGT
Less than or equal < = or LE
Greater than or equal > = or GE
Not greater than ...,> or NG
Not less than ...,< or NL

Logical And && or AND
Or II or OR

Note 1: Negative exponents are handled as exponents of zero.

Figure 14. Arithmetic, Comparative, and Logical Operators

Symbolic Variables
The term '~symbolic variable" refers to any character string in a command
procedure for which different values may be substituted at different times.
Symbolic variables add flexibility to command procedures by symbolizing
real values that can change during execution of a command procedure.,

Symbolic variables can be used on TSO commands and subcommands,
on certain command procedure statements, as file names for file
input/ output processing, and as global parameters. TSO has predefined a
set of special-purpose symbolic variables; these are control variables and
built-in functions (see "Built-In Functions" and "Control Variables" in this
section). The writer of the command procedure can also define his own
symbolic variables; before he can use them, though, they must appear on
certain command procedure statements (see PROC, READ, READDV AL,
GLOBAL, SET, and OPENFILE statements).

A symbolic variable consists of an ampersand (&) followed by a
maximum of 31 alphameric characters, the first of which is alphabetic. The
real values to be substituted for a symbolic variable are supplied by the
invoker of the command procedure, by the writer of the command
procedure, or by the system.

TSO scans each line in a command procedure and replaces the symbolic
variables with their real values in a process called symbolic substitution. The
real value substituted for a symbolic variable may actually be another
symbolic variable (nested symbolic variables). If there are nested symbolic
variables, the line is scanned more than once until all symbolic variables are
resolved.

The use of double ampersands requires special processing by the
symbolic substitution routine. Each pair of ampersands is replaced by a
single ampersand. This substitution takes place only after all other symbolic
substitution in a line is complete.

92 OS/VS2 TSO Terminal User's Guide

-----~~--.----~-----.----.-----~-----

You can concatenate symbolic variables to modify existing variable
names. For example, symbolic variable & N can be set to a value of 1 and
concatenated to a symbolic variable & DSN:

&'DSN &.N

As the value of & DSN changes during command procedure processing, you
could have the following real values:

ALPHA 1
BETA1
KAPPA 1

You could then reset the value of & DSN and increase & N. You could
then have the following real values:

ALPHA2
BETA2
KAPPA2

This is a useful technique when portions of several character strings are
identical.

Concatenating symbolic variables and character string requires a period
as a delimiter when the symbolic variable name precedes the character
string. For example:

€'DSN.1

No delimiter is required when the character string precedes the symbolic
variable. For example;

ALPHA€.N

Labeling within Command Procedures

Labels are names by which you can identify particular TSO
commands, TSO sub commands , or command procedure statements for
branching purposes. Labels must be one to eight alphameric
characters, the first being alphabetic, and must be unique
names within the command procedure.

To use a label, enter it first in a line, then follow
it immediately with a colon, one or more delimiters
(blanks, commas, or tabs), and the command, subcommand,
or command procedure statement. The following
examples show two valid labels:

target: alloc dataset (input) file(indata) old

here1234: set &.a = €.a+1

Note the following restrictions on the use of labels:

• Labels cannot be used on PROC statements or on ENDDAT A
statements.

• TSO never lists labels even though you may have specified the
CONLIST option on the CONTROL statement.

Command Procedures 93

Built-In Functions

Built-in functions provide the ability to perform certain evaluations of
expressions and character strings. To request a built-in function, specify the
appropriate symbolic variable with an expression or character string on a
command procedure statement. TSO evaluates the expression first, if
necessary, and then performs the requested function. The symbolic variable
is then replaced by the result of performing the built-in function. Note that
the expression is normally another symbolic variable which may have been
set previously in the command procedure.

Figure 15 lists the available built-in functions and a brief explanation of
their use. They are explained in more detail in the following topics.

Symbolic Variable

&DAT ATYPE(expression)

& EVAL(expression)

& LENG TH(expression)

& STR(string)
& SUBSTR(expression
[:expression] ,s!r!ng)

Figure 15. Built-In Functions

Use

To determine if an expression is entirely
numeric.
To determine the result of an arithmetic
expression.
To determine the number of characters in the
result of an evaluated expression.
To use a string of characters as a real value.
To use a portion of a character
string as a real value.

Example 3 in the following topic, "Command Procedure Examples,"
shows the use of the built-in functions & DATA TYPE , & LENGTH,
& STR, and & SUBSTR in a command procedure.

Determining an Expression's Type
Entering the & DAT ATYPE symbolic variable causes the associated built-in
function to determine whether or not the evaluated expression is entirely
numeric. The expression to be evaluated appears within the parentheses
after the symbolic variable:

&datatype(expression)

After evaluating the expression, TSO replaces this variable with either:

• CHAR -- The evaluated expression contains at least one non-numeric
character.

• NUM -- The evaluated expression is entirely numeric.

The following examples show the evaluations of various expressions:

Bullt-In Function Expression

& datatype(alphabet)
& datatype(1234)
& datatype(sys 1. proc1ib)
& datatype(3 *2/ 4)
&datatype(A 1234)

Resulting Evaluation

CHAR
NUM
CHAR
NUM
CHAR

94 OS/VS2 TSO Tenninal User's Guide

Evaluating an Arithmetic Expression Immediately

Entering the & EVAL symbolic variable causes the associated built-in
function to evaluate the indicated arithmetic expression. To indicate that
immediate evaluation is required within a statement, enter:

&eval(expression)

The expression may be any valid arithmetic expression. TSO evaluates it
and places the result in the space represented by & EV AL(expression)
within the statement. During execution of the statement, therefore, a
numeric value replaces & EV AL(expression). For example, consider the
following:

&eval(3+5-2)

The result of evaluating the arithmetic expression within the parentheses is
six. The value "6", therefore, replaces the entire string" & eval(3+5-2)"
during execution of the statement in which the string appears.

Determining an Expression's Length
Entering the & LENGTH symbolic variable causes the associated built-in
function to determine the number of characters in the evaluation of an
indicated expression. To indicate the expression you want evaluated, put it
in parentheses following & LENGTH, ~_s follows:

&length(expression)

The result after performing the built-in function is a numeral representing
the number of characters constituting the evaluated expression.

For example, the numeral replacing & LENGTH in the following except:

&length(1 + 1)

is "1" because, although the evaluation of one plus one is two, that answer
is only one character.

If there are leading zeroes in the expression, they are ignored when
evaluating & LENGTH. The numeral replacing & LENGTH in the
following example is 2:

&LENGTH(00045)

Defining a Character String for .Symbolic Substitution

Entering the & STR symbolic variable causes the associated built-in
function to use the indicated character string as a real value for symbolic
substitution. To use the & STR built-in function, enter:

&str(string)

The string within the parentheses may be any valid expression. Within
this parenthesized expression, nested built-in functions and symbolic
substitution take place. After these operations, however, no further
evaluation is done.

Command Procedures 9S

Consider the following:

&str(1 +1)

Because the & STR built-in function inhibits arithmetic evaluation, the
result of using this built-in function is the character substitution "1 + 1", not
"2" .

Assume that the value of & ONE is 1 and consider this second example:

&str(&one + &one)

The value substituted for this expression is also "1 + 1".

The & STR symbolic variable serves as a "mask" for a syntactically
misleading or invalid expression, thereby permitting the procedure writer to
code his intended expression so that unintentional results will not occur.

Defining a Substring for Symbolic Substitution
Entering the & SUBSTR symbolic variable causes the associated built-in
function to use a part of the indicated string of characters as a real value
during symbolic substitution. When using & SUBSTR, enter the substring
and character string information in parentheses following & SUBSTR. To
designate the substring, indicate numerically where in the character string
the substring of characters is to start and end. This substring can be only
one character or can be the entire character string.

The syntax of the & SUBSTR built-in function is:

&substr(start-expression:end-expression,
character-string)

The information in parentheses may be characters or symbolic variables in
any combination, as long as the final values of "start-expression" and
"end-expression" are numeric values.

Assume you designate the alphabet as a character string and wish to
select a range of letters from it. The most direct way to do this is as
follows:

&substr(2:8,abcdefghijklmnopqrstuvwxyz)

This entry specifies that you wish to use the letters B, C, D, E, F, G,
and H from the alphabet for symbolic substitution.

You could enter the same information with symbolic variables. Assume
that you have assigned the following values to symbolic variables:

• & alphabet contains abcdefghijklmnopqrstuvwxyz
• & range contains 2:8
• & testcond contains abcdefg

If you compared & substr(& range, & alphabet) to & testcond, the result
would show that they are not equal.

96 OS/VS2 TSO Terminal User's Guide

Control Variables

Control variables represent information relevant to the current command
procedure environment and user. Command procedures can access the
information represented by these variables by including the appropriate
symbolic variable in a command procedure statement. TSO replaces the
symbolic variable with the requested information.

A command procedure may explicitly set four of the control variables.
The contents of all the other control variables are the result of TSO's
monitoring of the current command procedure environment. An attempt by
a command procedure to change their contents results in an error.

The control variables can be divided into three categories: user-oriented
variables, variables related to the current command procedure, and variables
related to the system environment. Figure 16 summarizes the control
variables in each category, the information each variable represents, and
whether the information can be modified by the command procedure.

Command Procedures 97

Category Symbolic Information Represented Can be
Variable by the Variable Modified

by the
Procedure

User-oriented & SYSUID Current user's No
identification

& SYSPROC LOGON procedure name No

& SYSPREF Data set name prefix No

Related to the & LASTCC Most recent return Yes
current code
command
procedure

& MAXCC Highest return code Yes

& SYSICMD Implicit execution No
member name

& SYSSCAN Symbolic substitution Yes
rescan limit

& SYSDLM Terminal delimiter No

& SYSDVAL Terminal parameters Yes

& SYSNEST Nested procedure No
indicator

& SYSPCMD Current primary command No
name

& SYSSCMD Current subcommand No
name

Related to the & SYSTIME Current time No
system
environment

& SYSDATE Current date No

Figure 16. Control Variables

98 OS/VS2 TSO Terminal User's Guide

Example 2 in the following topic "Command Procedure Examples"
shows the use of several control variables in a command procedure named
"D95MRT2. CLIST(PROFILE) " .

User-Oriented Control Variables
The user-oriented control variables represent information directly related to
the TSO user who invoked the command procedure. This information is the
user's identification, the LOGON procedure name, and the data set name
prefix.

&:SYSUID -- User's Identification

The & SYSUID control variable contains the userid associated with the
current terminal session. TSO maintains this variable; a command procedure
can access this variable but cannot modify it.

&:SYSPROC -- LOGON Procedure Name

The & SYSPROC control variable contains the procedure name specified
when the current command procedure user logged on to TSO. TSO
maintains this variable; a command procedure can access this variable but
cannot modify it.

&:SYSPREF -- Data Set Name Prefix

The & SYSPREF control variable contains the current data set name prefix,
which the user sets by using the PROFILE command. TSO maintains this
variable; a command procedure can access this variable but cannot modify
it.

Control Variables Related to the Current Command
Procedure

The control variables related to the current command procedure represent
information that pertains to the command procedure currently being
executed. This information includes return codes, command names, and
terminal input.

&:LASTCC -- Most Recent Return Code

The & LASTCC control variable contains the return code from the last
TSO command, TSO subcommand, command procedure statement, or
nested command procedure executed. The command procedure can modify
this control variable.

The return codes from command procedure statements and TSO
commands are listed in OS/VS2 TSO Command Language Reference.

&:MAXCC -- Highest Return Code

The & MAXCC control variable contains the highest return code from a
TSO command, subcommand, or command procedure statement in the
currently executing command procedure, or from a nested command
procedure. The command procedure can modify this control variable.

Command Procedures 99

&SYSICMD -- Implicit Execution Member Name

The & SYSICMD control variable contains the name by which the user
implicitly invoked the currently executing command procedure. If the user
invoked the command procedure explicitly, this variable has a blank value.
TSO maintains this variable; a command procedure can access this variable
but cannot modify it.

The writer of the command procedure can use this variable to determine
by which of several alias names the user invoked the procedure. Each alias
could indicate a different path within a general-purpose command procedure
that provides several related functions.

&SYSSCAN -- Symbolic Substitution Rescan Limit

The & SYSSCAN control variable contains a value limiting the number of
times that the TSO symbolic substitution routine may scan each line iIi
order to substitute values for all the symbolic variables that the line may
contain. The default scan limit is 16. A command procedure may modify
this variable, specifying a value from 0 to 231. A zero limit inhibits all scans,
preventing any substitution of values for symbolic variables.

&SYSDLM -- Terminal Delimiter

The & SYSDLM control variable contains a number that identifies by
position (first, second, third, etc.) the TERMIN delimiter string entered by
a terminal user to return control to the command procedure. TSO maintains
this variable; a command procedure can access this variable but cannot
modify it.

This variable can be used to determine what action should be taken
when the terminal user returns control to the command procedure, based on
the user's choice of the TERMIN delimiter.

&SYSDVAL -- Terminal Parameters

The & SYSDV AL control variable contains either:

• Any parameters the terminal user entered, besides the delimiter, when
he returned control to the command procedure after a TERMIN
statement

• The terminal user's response after a READ statement requests
terminal input

A command procedure may modify the contents of & SYSDV AL. The
initial value of & SYSDV AL is blank, and it remains blank if the user does
not specify any parameter information after the TERMIN delimiter, or if
the user's response to a READ statement is a blank line.

&SYSNEST -- Nested Procedure Indicator

The & SYSNEST control variable contains 'YES' if the currently executing
command procedure is a nested procedure, or 'NO' if it is not. (A nested
procedure is one that was invoked by another command procedure rather
than by the terminal user.) TSO maintains this· control variable; the
command procedure can access this variable but cannot modify it.

100 OS/VS2 TSO Terminal User's Guide

--- .. ---------~~.-----------~~--.~~-.------- --- - --- - -- -- -.----------- --~ -

&SYSPCMD -- Current Primary Command Name

The & SYSPCMD control variable contains the name of the TSO command
that the command procedure has most recently executed. The initial value
of & SYSPCMD is EXEC or, if EXEC was issued as a subcommand of
EDIT, EDIT. TSO maintains this control variable; the command procedure
can access this variable but cannot modify it.

This variable can be used, for example, as an identifier in a message
written from an error exit routine.

&SYSSCMD -- Current Subcommand Name

The & SYSSCMD control variable contains the name of the TSO
subcommand that the command procedure has most recently executed. The
initial value of & SYSSCMD is blank, if the EXEC command .was issued, or
EXEC, if the EXEC subcommand of EDIT was issued. TSO maintains this
control variable; the command procedure can access tis variable but
cannot modify it.

The & SYSSCMD and & SYSPCMD control variables are correlational.
For example, the contents of & SYSPCMD could be "EDIT" and the
contents of & SYSSCMD could be "END". Then the procedure might
execute the CALL command. At this point, the contents of & SYSPCMD
become "CALL" and the contents of & SYSSCMD become blank. The
& SYSSCMD variable is useful as an identifier in a message written from
an error exit routine.

Control Variables Related to the System Environment
Control variables related to the system environment represent information
that is dependent on the current TSO environment. This information is the
time of day and the date.

&SYSDATE -- Current Date

The & SYSDATE control variable contains the current date in the format
mm/dd/yy, where mm is month, dd is day, and yy is year. TSO maintains
this variable; a command procedure can access this variable but cannot
modify it.

&SYSTIME -- Current Time

The & SYSTIME control variable contains the current time of day in the
format hh:mm:ss, where hh is hours, mm is minutes, and ss is seconds. TSO
maintains this variable; a command procedure can access this variable but
cannot modify it.

Command Procedures tOt

102 OS/VS2 TSO Tenninal User's Guide

Command Procedure Statements

Command procedure statements supplement the TSO command language
and can be used in both the command and subcommand environments.
There are four categories of command procedure statements:

• Control statements, which influence execution by naming functions to
be performed, setting processing options, redirecting control, and
altering execution sequence.

• Assignment statements, which assign values to variables.
• Conditional statements, which establish and test conditions in the

sequence of commands and statements to determine the logical flow
of execution.

• File access statements, which open, access, and close QSAM data sets
to give command procedures I/O capability.

Figure 17 summarizes these categories of statements.

Control

ATTN
CONTROL
DAT A-ENDDAT A
ERROR
EXIT
GLOBAL
GOTO
PROC
RETURN
TERMIN
WRITE
WRITENR

Type of Statement:
Assignment Conditional

READ
READDVAL
SET

IF-THEN-ELSE
DO-WHILE-END
(WHEN TSO command)

Figure 17. Summary of Command Procedure Statement Categories

File Access

OPENFILE
GETFILE
PUTFILE
CLOSFILE

The following topics describe the functions that are performed by the
various command procedure statements:

• Establishing initial parameters
• Establishing processing options
• Assigning values to symbolic variables
• Controlling execution flow
• Communicating with the terminal user
• Performing file input and output
• Executing nested command procedures
• Establishing exit routines

Command Procedure Statements 103

Establishing Initial Parameters

Most command procedures use symbolic variables. There are two ways that
real values can be assigned to symbolic variables:

• The writer of the command procedure can assign real values to
symbolic variables by using command procedure statements.

• The writer of the command procedure can require the invoker of the
procedure to supply real values for certain symbolic variables when he
invokes the procedure.

Parameters on the PROC statement identify the symbolic variables for
which the invoker must supply real values. These values cannot be
predetermined by the writer of the command procedure; the invoker must
determine the values before he invokes the procedure. Also, the invoker can
change these values to get different results each time he invokes the
command procedure. For example, these values could be data set names
that are to be used within the command procedure or indications of
optional functions to be performed, such as listing the commands at the
terminal.

There are two types of parameters that can be specified on the PROC
statement:

• Positional parameters, for which the invoker must supply real values.
These must appear in the same order as they appear on the PROC
statement.

• Keyword parameters, which are optional and, if specified, can be in
any order after the positional parameters.

Use 0/ the PROC Statement

You need to code a PROC statement in a command procedure only if the
procedure requires the invoker to supply information. If the PROC
statement is coded, it must be the first statement in the procedure. The
format of the PROC statement is:

proc n [posit 1 ... posi tn] [keyword [([subparameter])]]

The n denotes the number of positional parameters coded on the PROC
statement. This number cannot exceed eight digits. If there are no positional
parameters, n must be O.

Positl ... positn indicates the positional parameters for which the invoker
must supply real values. TSO prompts him for any values he does not enter.
Each positional parameter name cannot exceed 252 alphameric characters
and the first character must be alphabetic.

Keyword indicates an optional symbolic variable for which the invoker
may supply a real value. The keyword name cannot exceed 31 alphameric
characters and the first character must be alphabetic. Keyword parameters
can have a subparameter associated with them. The subparameters can have
a default value to be used if the invoker does not supply a value.

Figure 18 lists the types of parameters that can be specified on a PROC
statement and, for each type, how the writer of the command procedure
would code it on the PROC statement, how the invoker of the procedure
would specify it in the value-list on the EXEC command, and what the
results would be.

104 OS/VS2 TSO Terminal User's Guide

Specified by Specified by invoker
writer of procedure in
of procedure on EXEC value-list

Parameter type PROC statement Result

positional proc 1 dsname mylib.asm Symbolic variable
& dsname has a
real value of
"mylib.asm" .

nothing specified User is prompted;
assume he then
enters "cmdproc.clist";
symbolic variable
& dsname then
has a real value of
"cmdproc.clist" .

keyword without proc 0 list list Symbolic variable & list
subparamet~r has a real value of

"list" .

nothing specified Symbolic variable & list
has a real value of
blanks.

keyword with proc 0 IistO list User is prompted;
subparameter assume he then enters
and no default "all"; symbolic

variable & list then
has a real value of "all".

list(all) Symbolic variable & list
has a real value of
"all".

nothing specified Symbolic variable & list
has a real value of
blanks.

keyword with proc 0 list(none) list User is prompted;
subparameter assume he then enters
and default "all"; symbolic

variable & list then has
a real value of "all".

list(some) Symbolic variable & list
has a real value of
"some".

nothing specified Symbolic variable & list
has a real value of
"none", the default.

Figure 18. Results of Entering Positional and Keyword Parameters

Command Procedure Statements lOS

Note that use of quoted-string notation affects the way a user passes a
dataset name to a command procedure when the substituted data set name
is to be enclosed in single quotes. If a keyword with value is being
substituted, the invoker of the command procedure must:

• Enclose the dataset name in three single quotes on an implicit EXEC
command.

• Enclose the dataset name in six single quotes on an explicit EXEC
command.

For example, assume a command procedure named EXAM has these
statements:

PROC 0 LIB()
ALLOC DA(gLIB.) SHR
END

If the invoker of the command procedure wanted to substitute
'SYS 1.TSO.CLIST' for LIB, then he would code on an explicit EXEC
command:

EXEC EXAM 'LIB("~I "'SYS1.TSO.CLIST' ""')'

On an implicit EXEC command he would code:

EXAM LIB(" 'SYS1.TSO.CLIST"')

By following this procedure, the ALLOC command in the command
procedure would then be:

ALLOC DA('SYS1.TSO.CLIST') SHR

Establishing Processing Options
The CONTROL statement establishes basic processing options to be in
effect during the execution of a command procedure. These options include
whether prompting can be done while the procedure is executing, what type
of displays are desired while the procedure is executing, and whether
informational messages are to be displayed at the terminal. Because the
CONTROL statement can set options for an entire procedure, it is
commonly among the first executable statements in a procedure. You may,
however, reset the options further along in a command procedure by writing
a new CONTROL statement with different operands.

The format for the CONTROL statement is as follows:

control [optionl ... optionN]

All but two of the CONTROL statement's options occur in
mutually-exclusive pairs. When selecting options, you should choose only
one from the pair. The options, described in the following topics, are:

106 OS/VS2 TSO Tenninal User's Guide

MSG/NOMSG
PROMPT/NOPROMPT
LIST/NOLIST
CONLIST/NOCONLIST
SYMLIST/NOSYMLIST
FLUSH/NOFLUSH
MAIN
END(string)

Command procedures without CONTROL statements will execute with
these predefined options: MSG, NOLIST, NOPROMPT, NOCONLIST,
NOSYMLIST, and FLUSH. The user may preset the PROMPT and LIST
options by entering them as keywords on the EXEC command with which
he invokes the procedure; for example:

execmyproc.clist prompt list

There are, however, no default operands on the CONTROL statement.
Entering CONTROL with no operands causes TSO to display only those
options already in effect because they are the predefined set or because of
a previous CONTROL statement with operands.

Note: TSO's symbolic substitution routine does not scan the CONTROL
statement. As a result, CONTROL options may not be in the form of
symbolic variables.

Setting the Message Option

You can request that informational messages from commands or statements
in the procedure be displayed or suppressed. To request message display,
code:

control msg

To suppress this display, code:

control nomsg

TSO has predefined the MSG option for command procedures. If you
want your command procedure to display informational messages, it is
unnecessary for you to specify the MSG option unless you are overriding a
previous NOMSG specification in the same procedure. Note that this option
has no effect on error messages.

Setting the Prompt Option

You can permit a command procedure to prompt the terminal user for
input, or you can prohibit the procedure from doing .so, if it ordinarily has
prompting capability. To permit prompting, code:

control prompt

To prohibit prompting, code:

control noprompt

TSO provides no predefinition for the PROMPT option. You must
explicitly set the prompting environment for any. command procedure with
prompting capability by including a CONTROL PROMPT statement as
shown above. A user can request the PROMPT option by specifying the
PROMPT keyword on the EXEC command when he invokes your
procedure.

Command Procedure Statements 107

Setting the Display Options

You can permit or suppress the display at your terminal of three different
categories: TSO commands and subcommands after symbolic substitution
but before execution; command procedure statements after symbolic
substitution but before execution; TSO commands and subcommands and
command procedure statements before symbolic substitution.

To permit the display of TSO commands and subcommands after
symbolic substitution, code:

control list

To suppress their display, code:

control nolist

TSO provides no predefinition for the LIST option. If you want your
command procedure to display its commands and subcommands at the
terminal prior to execution, it is necessary to include a CONTROL LIST
statement as shown above. A user of a command procedure can request the
LIST option by specifying the LIST keyword on the EXEC command when
he invokes the procedure.

To permit the display of command procedure statements at the terminal
after symbolic substitution but before execution, code:

control conlist

To suppress their display, code:

control noconlist

TSO has predefined the NOCONLIST option for command procedures.
It is unnecessary for you to explicitly suppress the display of command
procedure statements unless you are overriding a previous CONLIST
specification in the same procedure.

To permit the display at your terminal of the TSO commands and
subcommands and command procedure statements before symbolic
substitution, code:

control syrnlist

To suppress their display, code:

control nosyrnlist

TSO has predefined the NOSYMLIST option for command procedures.
It is unnecessary for you to explicitly suppress the display of your command
procedure's executable statements unless you are overriding a previous
SYMLIST specification in the same procedure.

Setting the Input Stack Flushing Options

The input stack is a queue that indicates the source of TSO's next input.
This source can be a terminal or command procedure. When an execution

108 OS/VS2 TSO Terminal User's Guide

~--------.~---~----------~----------.--.~-.- -
--~--~-------~------------~--.~-~-----.•. ---

error occurs, TSO purges this queue (flushes the stack) and gets its next
input from the terminal.

You should prevent TSO from flushing the stack if your command
procedure has an error exit that processes non-zero return codes. In this
case, you would not want to flush the stack so that your command
procedure could continue processing.

There are two ways to control stack flushing: by specifically requesting
or suppressing stack flushing or by designating a command procedure as the
main procedure in the invoker's TSO environment.

To specifically prohibit stack flushing, code:

control noflush

To request stack flushing, code:

control flush

TSO has predefined the FLUSH option for command procedures. You
must use the CONTROL NOFLUSH (or CONTROL MAIN as described
below) statement in any command procedure that has an error exit.
However, for command procedures where you wish TSO to perform stack
flushing normally, it is unnecessary to explicitly specify the FLUSH option
except to override a previous CONTROL statement that specified the
NOFLUSH option.

You can prevent your command procedure from being deleted by stack
flushing requests from the system by designating it as the main procedure in
the invoker's TSO environment. The MAIN option provides the same
function as the NOFLUSH option previously described and also prevents
the attention exit in TSO's terminal monitor program from deleting the
command procedure. To designate the MAIN option, code:

control main

Because the MAIN option performs the same function as the NOFLUSH
option, TSO ignores either FLUSH or NOFLUSH on a CONTROL
statement that also specifies the MAIN option.

Substituting a String for an END Delimiter

You can specify a character string to be used in place of the normal
"END" statement to denote the conclusion of DO-groups. This provides a
way for TSO to distinguish between END commands or subcommands you
may wish to place within DO-groups and the end of the DO-group itself.
To substitute another delimiter for END, code:

control end(string)

The string within the parentheses may be one to four alphameric
characters with the first character alphabetic. For exaJ.!lple, you could code:

control end(stop).

Command Procedure Statements 109

In this case, you could use "STOP" to denote the end of DO-groups in a
procedure, until overridden by a subsequent CONTROL statement.

Assigning Values to Symbolic Variables

The SET statement assigns values to symbolic variables. The values may be
alphabetic or numeric. The SET statement is useful in any situation where
you must assign some specific value to a symbolic variable initially or where
you need to change some already established value.

A simple use of the SET statement is in a loop of instructions. You can
use SET to set the loop control counter initially and also to increase the
counter for each execution of the loop.

To use the SET statement, enter it in the form:

set syrnbolic-variable-narne = expression

The symbolic variable may be a parameter from a PROC statement, a
control variable, or a previously undefined symbolic variable. In any case,
you may enter the symbolic variable with or without its leading ampersand.

Assigning a Quantity to a Symbolic Variable

To assign a quantity to a symbolic variable, set the variable equal to a
number; for example:

set n=5

After this statement executes, the variable & N will have the value of 5
until you change it, regardless of whether or not it had some previous value.

Another way to assign a numeric value to a symbolic variable is to set
the variable equal to some other variable that already has a numeric value.
Consider this sequence:

set n 5
set a = &n

The second SET statement assigns the value of 5 to & A from the
variable & N, whose value you previously set to 5.

You can also set a variable to the result of an arithmetic expression; for
example:

set b = 4 + 5

The variable & B is assigned the value of 9. The arithmetic expression
itself could also incorporate variables; for example:

set n 5
set a &n
set b 4+5
set c = &b * (&a * &n)

To resolve the fourth expression (that is, & b * (& a * & n», TSO uses
the values assigned to the symbolic variables & B, & A, and & Nand
performs the indicated arithmetic operations. In this case, variable & C is
assigned the value 255.

1 to OS/VS2 TSO Terminal User's Guide

The expressions on SET statements may also contain built-in functions.
(See the preceding topic "Built-In Functions.") Assume an arithmetic
expression uses the length of a particular character string as one of its
factors. The representation of this character string is. symbolic so that it can
apply to different character strings (of differing lengths) during the course
of command procedure execution. The & LENGTH built-in function is
performed on the symbolic variable & STRING in the following SET
statement:

set price = 5 * &length(&string)

The variable & PRICE is assigned a value that is five times the length of
the string represented by the variable & STRING.

Assigning a Character String to a Symbolic Variable

To assign a character string to a symbolic variable, substitute the characters
directly; for example:

set alphabet = abcdefghijklmnopqrstuvwxyz

The variable & ALPHABET is assigned a character string value of the
letters A through Z.

You may also use symbolic values that already represent character strings
to make such assignments:

set string harry
set arnold = &string

As a result of these two SET statements, the character string value
represented by the variable & ARNOLD is HARRY.

You can concatenate character string values by entering them
successively without intervening delimiters or operators. Concatenated
strings may also consist of symbolic variables representing character strings.
Note the following examples:

set combo
or

set namel
set name2
set combo

alfred

al
fred
&name1&name2

The resulting value of & COMBO in either case is ALFRED.

Controlling Execution Flow

The execution sequence in a command procedure is controlled by
unconditional branching and by conditional statements and commands.
Unconditional branching is implemented by GOTO statements. Conditional
statements and commands are DO-groups, IF-THEN-ELSE sequences, and
WHEN commands. The following topics describe how to use these types of
unconditional and conditional execution control techniques.

Command Procedure Statements III

Unconditional Branching

The OOTO statement causes an unconditional branch within a command
procedure. Code the statement in one of the following forms:

goto label-name
goto symbolic-variable

The label-name must be a valid label within the command procedure.
The symbolic-variable is one whose value, after symbolic substitution, is a
label within the command procedure.

To use the OOTO statement with a label name, code GOTO followed by
one or more delimiters and a label that identifies a command, subcommand,
or statement within the procedure; for example:

goto that spot

Assuming that the procedure uses a label called THAT SPOT , before or
after the OOTO statement, TSO branches to the command, subcommand,
or statement designated by THATSPPT when the OOTO statement is
executed. After the branch, execution continues with the instruction
identified by the label.

The target of the OOTO statement may also be a symbolic variable that
the procedure has resolved as a label name by symbolic substitution. For
example, assume a variable called & ALIAS has been assigned a value of
THATSPOT, which is a label in the procedure. You enter:

goto &alias

When the command procedure executes this OOTO statement, TSO
branches to the label THATSPOT, as in the previous example.

Conditional Statements and Commands

Conditional execution is controlled by the following techniques:

• DO-groups -- sets of related instructions
• DO-WHILE-END sequences -- sets of related instructions that

execute repeatedly as long as a specified condition exists
• IF-THEN -ELSE sequences -- sets of related instructions that execute

only under certain conditions
• WHEN command -- a TSO command that causes action to be taken

for certain system return codes

DO-Groups and the DO-WHILE-END Sequence

DO-groups consist of commands, subcommands, and command procedure
statements placed between DO and END statements. These groups are to
be executed. consecutively or not at all, depending on the result of a
decision coded previously in the command procedure. Using indentation for
instructions between DO and END provides an easily readable structure;
for example:

112 OS/VS2 TSO Terminal User's Guide

target: do
allocate dataset(&input) file(indata) old
allocate dataset(&list) file(print)

end

The END statement is required. For every DO statement, there must be
a corresponding END statement to denote the end of the DO-group.
DO-WHILE-END. sequences are DO-groups that execute repeatedly. The
number of repetitions depends on conditions established by WHILE.
WHILE, therefore, is a loop control operand. Consider the following
execution loop:

set &counter = 10
do while &counter gt 0

set counter
end

&counter - 1

The variable & COUNTER is a loop counter initially set to a value of
10. WHILE causes a test of the value of this counter each time the
command procedure begins to execute the DO-WHILE-END sequence. As
long as the \ralue of & COUNTER is greater than zero (the test condition,
is true), the procedure executes the sequence, whose last instruction
decreases the counter's value by one. When the counter's value reaches
zero, the test condition is false, the command procedure bypasses the
sequence, and resumes processing at the instruction following the END
statement.

Entering END Commands or Subcommands within DO-Groups: There are
two ways to use END commands or subcommands within DO-groups
without denoting the end of the group to TSO .

. One way is to use a control option to establish a substitute character
string (like "stop") that TSO can recognize as the end of a DO-group
rather than the normal string "end". A description of this control option is
in the preceding description of "Establishing Processing Options".

Another method permits the conclusion of DO-groups with the normal
END statement. To use it, place any necessary END commands that are in
DO-groups between DATA and ENDDATA statements; for example:

set counter = 10
do while &counter gt 0

. (command procedure statements)

data
edit 'd58dew1.datapak.clist' old

(EDIT subcommands)

end
enddata

. (more command procedure statements)

end

Only TSO commands and subcommands can appear within the DATA
and ENDDATA statements. If a command procedure statement is included,
TSO attempts to execute it as a TSO command and the result is an error. If
a command procedure statement that has the same name as a TSO
command or subcommand (for example, END) is included within the
DATA and ENDDATA statements, it is executed as a TSO command or
subcommand.

Command Procedure Statements tt3

Results of Branching into a DO-group: A branch to a labeled statement
within a DO-group (via a GOTO statement) results in the execution of the
labeled statement and all remaining commands, subcommands, and
statements in the group (that is, up to the END statement that denotes the
end of the DO-group).

If the DO-group has a WHILE condition in effect, the command
procedure checks the condition when execution reaches the END statement
and re-executes the entire DO-group each time the WHILE condition is
true.

For example, consider this segment:

set n =
set ans a

goto mid

do while &n le 2
mid: set ans &ans + 2 * &n

set n = &n +1
end

The result of executing the GOTO statement is as follows:

1. & ANS is set to 2; that is, (0 + 2 * 1).

2. & N is increased from 1 to 2.

3. The END statement is reached, and since & N satisfies the WHILE
condition, the DO-group is re-executed.

4. & ANS is set to 6; that is, (2 + 2 * 2).

5. & N is increased from 2 to 3.

6. The END statement is reached and, since the WHILE condition is
now false, the DO-group is not executed again.

The IF-THEN-ELSE Sequence

The IF-THEN-ELSE sequence tests a condition or set of conditions, then
determines the path for further execution based on the results of the test.
The form for using the sequence is:

if logical-expression then action
[else [action]]

The "action" may be any executable command or statement, or a
DO-group. A logical expression consists of comparative expressions
connected by logical operators.

For every IF statement, there must be a THEN on the same line or a
continuation line. The ELSE action, however, is optional. If ELSE is
specified, it cannot be on the same line as IF-THEN.

114 OS/VS2 TSO Terminal User's Guide

Figures 19 - 21 show representations of the three primary ways of
writing IF statements. Figure 19 shows an IF-THEN-ELSE sequence
followed by additional instructions outside the sequence.

-IF < THEN)>-___ •.
ELSE -----".

Figure 19. Divergent-Convergent IF-THEN-ELSE Sequence

This IF-THEN-ELSE sequence would be coded as follows:

if &a + &b ge &c - &d then do

· (an action represented by a DO-group)

end
else do

· (another DO-group, providing ELSE-action)

end

. (command procedure instructions following the
IF-THEN-ELSE sequence)

In this example, the IF statement tests whether the sum of & A and & B
is greater than or equal to the difference of & C and & D. If it is (that is, if
the test for conditions is "true"), the THEN-action is executed. Otherwise,
the procedure executes the ELSE-action. Execution resumes after either
path of processing is complete. Note that THEN is on the same line as IF.

Figure 20 illustrates a type of IF-THEN-ELSE sequence that uses an
unconditional branch.

THEN GOTO~

-IF< ELSE ____ --+_

Figure 20. Divergent IF-THEN-ELSE Sequence with an Unconditional Branch

The following example shows this use of IF-THEN-ELSE:

if &a = &b then goto labe13
else do

· (DO-group providing an alternative to the
· unconditional branch)

end

labe13: ... (a co~and procedure instruction)

In this case, processing takes the unconditional branch only if & A equals
& B. Otherwise, the procedure executes the DO-group and the instructions
that follow it.

Command Procedure Statements 115

Figure 21 shows an IF statement that provides an action (in the THEN
clause) only if the test condition is true. Otherwise, the command procedure
executes the instruction following the IF-THEN-ELSE sequence.

-IF c..k=~ __ T_H_E_N ______ --+.

Figure 21. IF Statement without an ELSE Clause

This IF-THEN-ELSE sequence would be coded as follows:

if &a = &b then do

. (DO-group providing an optional action)

end

In this case, the DO-group constituting the THEN clause executes only if
& A equals & B. Otherwise, the execution sequence is from the IF
statement to the statement following END.

Indenting and Continuing Statement Lines: To help show the structural
relationship among the statements in the IF-THEN-ELSE sequence, you
should use some indentation scheme similar to the one in the previous
examples. This indentation makes your command procedures easier to read.

You can continue an IF statement to successive lines to accommodate
lengthy series of test conditions. To continue a line, enter a plus sign or a
hyphen at the end of the line you wish to continue. Then continue the
statement on the next line, for as many lines as necessary, like this:

if &alpha ng &beta and &beta = &gamroa and­
&delta Ie &epsilon and &epsilon ne &beta and +
&theta ge &iota and &iota eq &alpha +

then ...

This example illustrates an indentation pattern and the use of both kinds
of continuation characters. Note the exact placement of the plus sign. There
is at least one blank between it and the variable preceding it. This blank is
necessary to keep TSO from parsing the end of the second line and the
beginning of the third as AND & THETA, which would make the logical
operator "AND" in the third line unrecognizable.

The WHEN Command

The WHEN command tests the return codes from programs that a
command procedure has invoked by the CALL or LOAD GO command.
When the result of the test is true, the command or subcommand specified
on the WHEN command is executed. When the result is false, execution
proceeds with the next sequential command procedure instruction. In this
way, the WHEN command allows you to insert checkpoints into a
command procedure. These checkpoints can, for example, cause the
procedure to bypass certain processing when program errors make normal
execution unnecessary.

116 OS/VS2 TSO Terminal User's Guide

To use the WHEN command, specify its system return code (SYSRC)
operand, a comparison operator, a numeric value representing a return
code, and a command.

when sysrc(operator integer) command

The following example shows how to code the WHEN command. It
illustrates a command procedure that allocates three data sets, invokes a
program that uses them, and conditionally invokes an alternate procedure
named "checkout" if the return code from the called program equals 8:

allocate dataset(input) file(indata) old
allocate dataset(output) block(100) space(300,10)
allocate dataset(list) file(print)
call weekly
when sysrc(= 8) exec checkout

Another example could end the preceding procedure if "weekly" returns
an error code equal to or greater than 12:

when sysrc(ge 12) end

The END command is the default command for the WHEN command. If
you do not specify any other command after the condition, TSO assumes
that you wish to terminate the command procedure.

The WHEN command will work only in the TSO command environment.
You cannot use it successfully in any command procedure operating in the
subcommand environment. You must also ensure that procedures executed
as nested procedures are invoked in the command environment, if they
contain WHEN commands. (Do not invoke a nested procedure containing
WHEN from a procedure that is using EDIT EXEC, even though the
primary command procedure was invoked by the EXEC command.) The
WHEN command does not support the use of command procedure
statements in place of TSO commands after the statement of return code
test conditions. Note that the IF-THEN-ELSE sequence can make any test
that the WHEN command can make without being subject to the foregoing
restrictions. The IF-THEN-ELSE sequence can operate in the subcommand
environment and make use of command procedure statements as well as the
TSO command language.

Communicating with the Terminal User

WRITE, WRITENR, TERMIN, READ, and READDV AL statements
provide an interactive link between the command procedure and the
terminal user.

WRITE and WRITENR statements issue messages to the terminal user,
perhaps to tell him why he received control and t.o prompt him about what
he is supposed to do. The TERMIN statement causes a command procedure
to pass control to the terminal user. This statement temporarily suspends
procedure execution and also defines the character strings the terminal user
may enter to return control to the command procedure. TERMIN
statements commonly follow WRITE or WRITENR statements. READ and
READDV AL statements read the user's entries into designated 'areas within
the command procedure.

Command Procedure Statements 117

Writing Messages to the Terminal User

Two command procedure statements are available for sending messages
from a command procedure to the terminal:

• WRITE -- displays a message at the terminal and causes the terminal's
display cursor to return to the beginning of a new line after the
message finishes displaying.

• WRITENR -- displays a message at the terminal and causes the
terminal's display cursor to remain where the message stopped
displaying.

To send the messages, use either statement and follow it by one or more
blanks and the text of the message; for example:

write your previous entry was invalid
write do you wish to retry your previous entry?
writenr enter yes or no.

As a result of these statements, the terminal user sees the following
messages at his terminal:

YOUR PREVIOUS ENTRY WAS INVALID
DO YOU WISH TO RETRY YOUR PREVIOUS ENTRY?
ENTER YES OR NO.

The cursor stops after "NO" in the last line to indicate the procedure is
waiting for the user's response.

Requesting Terminal Input

To change the current source of TSO's input from your command
procedure to the terminal, code a TERMIN statement in your procedure in
the following form:

termin [string1] [, string2, ...]

The character strings (STRING 1 and so on) are called delimiters and will
cause control to return to the command procedure when the terminal user
enters anyone of them.

As soon as TSO executes the TERMIN statement, the terminal user
receives control. The user might or might not receive a mode message after
a TERMIN statement is executed. If issued, the mode message might be
READY or the name of the command, capable of accepting subcommands,
under which the command procedure was invoked. The terminal user can
enter TSO commands and subcommands. Normally, control will eventually
return to the commmand procedure.

To issue a TERMIN statement that will let the user return control simply
by entering a null line, code:

termin

However, you should be careful about using this form because some TSO
command processors use null lines as function delimiters (for example,
switching between input and edit modes under EDIT). Make sure your user
is aware of the potential problems involved if you code such a statement,

118 OS/VS2 TSO Terminal User's Guide

perhaps by writing him messages as described in the section "Writing
Messages to the Terminal User."

A better way to code the TERMIN statement is to define one or more
character strings that will terminate user control; for example:

termin stop,error,halt

You can also specify a null line as one of the valid entry termination
strings, but it must be the first string on the TERMIN statement. To do
this, simply precede all the other strings with a comma:

termin ,stop,error,halt

This statement tells TSO that the user means to return control to the
command procedure if he enters either "stop", "error", "halt", or a null
line. The same cautions about using a null line as a delimiter in this way
apply as they did for using a null line as the only delimiter.

Note: The use of the TERMIN statement during a TEST session that is
driven by a command procedure will result in inconsistent operation. It is
advisable, in this situation, to use the READ and WRITE statements.

The TERMIN Statement's Effect on Control Variables

Using the TERMIN statement affects the contents of two command
procedure control variables:

• & SYSDLM -- contains a number that indicates which character string
was entered by the terminal user to return control to the command
procedure

• & SYSDV AL -- contains whatever followed the termination delimiter
in the line that the user entered to return control to the command
procedure

For example, assume a terminal user is in control as a result of this
TERMIN statement:

termin stop,error,halt

Eventually the user enters:

halt this entry period now

As a result, & SYSDLM has a value of 3 to denote that the user chose
"halt"; the third termination delimiter defined on the TERMIN statement,
to relinquish his control. & SYSDVAL contains "this entry period now." If
this user had entered only "halt", & SYSDV AL would have a null value.

Note that there can also be information in & SYSDV AL as a result of a
user's response to a READ statement. A description of these contents· is in
the section "Reading Input from the Terminal."

The contents of & SYSDV AL can consist of meaningful parameter
information from the terminal user. (This assumes that the user knows
enough from prompting messages or other documentation to enter the kind
of information expected.) For example, the user could reply to the previous
TERMIN statement with:

stop dsname=mydata

Command Procedure Statements 119

In this case, the contents of & SYSDV AL become "dsname= mydata" ,
which your command procedure could use as a parameter to influence
further processing.

Reading Input from the Terminal

The READ and READDV AL statements provide two ways for command
procedures to access user input from the terminal. The READ statement
takes information directly from terminal input lines. The READDV AL
statement obtains information from the & SYSDV AL control variable. The
information in & SYSDV AL is a result of a previous READ statement or of
the terminal user entering more than just a TERMIN delimiter in the line
with which he returns control to the command procedure. A command
procedure may also explicitly place a value into & SYSDV AL, independent
of any terminal user response.

Using the READ Statement

The READ statement makes a line of terminal input available to a
command procedure in the form of symbolic variables. You should normally
precede a read statement with one or more WRITE statements to let the
user know that the command procedure is expecting a line of input, and
what sort of input it is expecting.

Normally, READ specifies one or more symbolic variables to receive
information that the user will enter. If no symbolic variables are specified
on READ; the information that the user enters is placed in the control
variable & SYSDV AL. Read is entered in the form:

read [parm1,parm2 ...]

The READ parameters (& PARMI and so forth) are the symbolic
variables whose contents become the positional user entries in response to
the READ statement. Although unnecessary on the READ statement itself,
ampersands must precede the parameter names elsewhere in the procedure,
to indicate that they are symbolic variables. Coding these variables· on the
READ statement defines them so that it is unnecessary to define them
elsewhere in the procedure.

Assume that a message is sent to the terminal user requesting that he
enter four names. The READ statement to read these names could be as
follows:

read a,b,c,d

The user's response to this READ statement could be:

smith,jones,kelly,ingalls,greene

These names are assigned to the symbolic variables on the READ
statement as follows:

120 OS/VS2 TSO Tenninal User's Guide

6a has a value SMITH
6b has a value JONES
6C has a value KELLY
6d has a value INGALLS

Because there is not a fifth parameter on the READ statement, the fifth
name (GREENE) is superfluous information, which the procedure ignores.

READ can also be used without any variables; for example:

read

If the user responded with the same five names, they would all be assigned
to the control variable & SYSDV AL.

The user's response may be a character string, a character string enclosed
in quotes, or a character string enclosed in parentheses.

If the user wants to omit one value from a requested succession, he may
use a double comma or a double apostrophe to denote the omitted value.
For example, assume that a message is sent to the terminal user requesting
that he enter four successive alphabetic characters. The READ statement to
read these characters could be:

read a,b,e,d

The user could respond:

m,n, ,p
or
'm' In' " 'pI

The symbolic variables on the READ statement would then have the
following values:

&a has the value m
&b has the value n
&e has a null value
&d has the value p

You can also use the READ statement to obtain values to assign to
PROC statement keywords that do not already have values assigned (see
the section "Using the PROC Statement.") Suppose a PROC statement
defines & ALPHA as a keyword, but the user does not assign a value to it
when he invokes the procedure. The procedure could check for a value
assignment and, if it found none, could send a message to the terminal user
requesting that he enter a value for & ALPHA and then issue a READ
statement with & ALPHA as a parameter.

Using the READDV AL Statement

The READDV AL statement accesses the contents of the & SYSDV AL
control variable. It is therefore unnecessary to immediately precede the
READDV AL statement with a WRITE statement that requests the terminal
user to enter information (he has entered the information already).

The contents of & SYSDV AL result from a terminal user's response to
two types of requests:

• A READ statement without operands
• A TERMIN statement (the terminal user entered additional

information after the delimiter)

Command Procedure Statements 121

The preceding topics "Using the READ Statement" and "The TERMIN
Statement's Effect on Control Variables" explain these two ways that
terminal entry affects the contents of & SYSDV AL.

To use READDV AL, write it in the form:

readdval parm 1 [, parm2 , parm3 ... J

The READDV AL parameters (& P ARMl and so forth) are symbolic
variables that relate positionally to the character strings in & SYSDV AL. If
there is no parameter on the READDV AL statement, no operation takes
place. Although unnecessary on the READDV AL statement itself,
ampersands must precede the parameter names elsewhere in the procedure,
to indicate that they are symbolic variables.

Suppose the following names are in & SYSDV AL:

smith,jones,kelly

The following statement assigns each name to each specified symbolic
variable, in order, from left to right:

readdval name1,name2,name3

The value of & NAMEl is SMITH, & NAME2 is JONES, and
& NAME 3 is KELLY.

The following statement, however, assigns values only to the names
"smith" and "jones":

readdval name1,name2

The name "kelly" remains unaccessed. The following statement also
reads all three names from & SYSDV AL:

readdval name1,name2,name3,name4

However, the value of & NAME4 is null because there are not enough
character strings in & SYSDV AL to provide a fourth value.

Performing FOe Input/Output
Four statements are available to command procedures for opening, closing,
and accessing the QSAM data sets that command procedures use for file
I/O:

• OPENFILE opens a file previously allocated, either by the TSO
ALLOCATE command or by step allocation, for input, output, or
updating .

• GETFILE reads a record from an open file.
• PUTFILE writes a record to an open file.
• CLOSFILE closes a previously opened file.

To use any of the file accessing statements, enter the statement and the
name of the file you want to use. The same name is used several times
during file I/O processing. The ddname specified on the ALLOCATE
command (for example, INDATA) must also be specified as a symbolic
variable when you open and close the file (for example, & INDATA). To

122 OS!VS2 TSO Terminal User's Guide

read a record from a file or write a record to a file, you must also specify
the filename as a symbolic variable (for example, & INDATA). For read
requests, the symbolic variable will contain the record read from the file.
For write requests, the symbolic variable must contain the record to be
written to the file.

Opening a File

To open a file, code:

openfile filename operand

The filename is a ddname, specified as a symbolic variable, that is
already allocated for your terminal session. The operand may be INPUT,
OUTPUT, or UPDATE; INPUT is the default. The UPDATE operand
indicates that the file can be updated in place; that is, a record written to
'the data set replaces the previously read record.

Assume that you require three files: an input file, an output file, and a
work file. To open them you can code:

openfile myinput
openfile myoutput output
openfile wo~kfile update

Note that the file MYINPUT defaults to an input file, and that the
filenames are symbolic variables.

Reading a Record from an Open File

To read a record from an open file, enter a statement in the form:

getfile filename

The filename is the ddname, specified as a symbolic variable, by which
you allocated and opened the file for your terminal session. The symbolic
variable will contain the record retrieved from the file as a result of the
statement's execution.

Using the file MYINPUT from the previous example, you can read a
record from the input file by coding:

getfile myinput

After execution of that statement, the value represented by the symbolic
variable MYINPUT is the contents of the record obtained from the input
file.

Writing a Record to an Open File

To write a record to a file, enter a statement in the form:

putfile filename

Command Procedure Statements 123

The filename is the ddname, specified as a symbolic variable, by which
you allocated and opened the file for your terminal session. You must first
set the value of the symbolic variable equal to the contents of the record
you wish to place in the output file. Use the SET statement and the name
of your output file; for example:

set &myoutput = this is my output record
putfile myoutput

You must use an assignment statement and the PUTFILE statement in
pairs as shown for each record you wish to write, unless you want the same
record written more than once.

Closing an Open File

To close an open file, write a statement in the form:

closfile filename

This process is merely the reverse of opening a file. To close the three
files opened in the example in the section "OPENFILE-Opening a File,"
code:

closfile myinput
closfile myoutput
closfile workfile

Note that it is not necessary to specify the type of file (input, output, or
update) when you close a file.

Executing Nested Command Procedures

A command procedure may invoke another command procedure, which in
turn may invoke another, and so forth. Such "nested procedures" are useful
for performing hierarchical functions. You can structure a series of nested
levels of command procedures in the same way that you can design complex
programs with main routines and subroutines arranged in a functionally
logically structure.

The command procedure invoked by a user with an EXEC command or
subcommand is the top-level or outer-level procedure in any nested
hierarchy. Procedures invoked by the outer-level procedure are considered
to be nested within it, and they may have lower-level procedures nested
within them. Note that any special options established by a nested
procedure are in effect only when that nested procedure is executing. In
particular, CONTROL statement options and ATTN exits are no longer in
effect after a nested procedure returns to the procedure that called it.

124 OS/VS2 TSO Terminal User's Guide

PROC1

PROC2 PROC3

PROC4

Figure 22. Nested Command Procedures

In Figure 22, PROCI is the outer-level procedure. It invokes PROC2
and PROC3, which are therefore nested within it. PROC2 invokes PROC4,
and PROC4 invokes PROC5. PROC4 is therefore nested within PROC2,
and PROCS within PROC4.

Note that an outer-level procedure with two or more nested procedures
within it must execute each procedure sequentially. For example, in Figure
22, if PROCI invokes PROC2 before PROC3, then PROC4 and PROCS
must execute in nested order before PROC 1 may invoke PROC3. Copies of
the same procedure can be at two or more . levels of a nested hierarchy. This
is because each invocation of a nested procedure causes a new copy of that
procedure to be brought into storage.

Nested procedures in the subcommand environment may execute only
subcommands and command procedure statements. They may not contain
TSO commands. A procedure at any given level determines the execution
environment--command or subcommand--for the procedures nested at all
levels beneath it.

Although the nesting of command procedures provides programming
flexibility, you should evaluate whether a compiled program might be more
efficient for sophisticated implementations of logic. For example, a PL/I
program might be more efficient for a particular application than a complex
command procedure.

Establishing Global Symbolic Variables

Global symbolic variables are variables whose contents are set and
referenced by both an outer-level command procedure and one or more of
its nested procedures.

Command Procedure Statements 125

To establish global symbolic variables, you must first determine the total
number of symbolic variables that must be defined as global. Then code a
GLOBAL statement in each of the command procedures. The order of the
symbolic variables on the outer-level command procedure's GLOBAL
statement determines the order in which they must appear on the other
GLOBAL statements. That is, they are position-dependent.

For example, assume that command procedure PROC I has two nested
procedures, PROC2 and PROC3. Assume that PROC2 references three
variables that are also referenced in PROCI, and PROC3 references those
same three variables plus one additional variable that is referenced in
PROCl. Inthis case, PROCI must have a GLOBAL statement specifying
four symbolic variables:

global var1 var2 var3 var4

If varl, var2, and var3 are the symbolic variables that are also referenced
by PROC2, then PROC2 must have a GLOBAL statement specifying those
three symbolic variables:

global var1 var2 var3

Note that since PROC2 does not reference var4, it does not have to
specify it on the GLOBAL statement.

PROC3 must specify all four symbolic variables on its GLOBAL
statement since it uses all four:

global var1 var2 var3var4

Each of these three procedures could now reference the contents of the
global symbolic variables and data could be passed from one procedure to
another.

In a slightly different situation, assume that PROC3 only uses three of
the symbolic variables from PROC 1, but they are var2, var3, and var4. The
GLOBAL statement in PROC3 must still specify a name for varl because
the variables are position-dependent. However, it can be a "dummy" name
because it is just a place holder. For example:

global dummy var2 var3 var4

In all of the preceding examples, the same symbolic variable names were
used on each of the GLOBAL statements. This is not necessary, however,
because the symbolic variables are position-dependent. For example, you
could specify in PROCI:

global var1 var2 var3 var4

In PROC2, code:

global name 1 name2 name3

In PROC3, code:

global dummy sym1 sym2 sym3

126 OS/VS2 TSO Terminal User's Guide

TSO associates varl with namel and dummy; var2 with name2 and
syml; var3 with name3 and sym2; and var4 with sym3.

Exitin, from a Nested Command Procedure

Three ways to exit from a command procedure are to:

• Exit via an EXIT statement
• Let the control return to the calling procedure at the end of the

nested procedure
• Issue the END command

When you use the EXIT statement to exit from a command procedure,
you can optionally specify a return code to be set in & LASTCC. You can
also specify that control is to be passed back up through the nested
hierarchy as many levels as necessary to reach a level protected from stack
flushing by either a MAIN or NOFLUSH control option. (See the topic
"Setting the Input Stack Flushing Options.")

To cause a nested procedure to return to the procedure from which it
received control (one level upward), without specifying a return code, code:

exit

To return a code when you exit, code:

exit code(expression)

The "expression" may be any expression whose result is numeric.

TSO puts the value specified by the EXIT statement's code expression
into the control variables & LASTCC. In this way, lower-level procedures
can pass back indications of errors encountered during execution.

The following examples show some valid exit code expressions.

1) exit code(4)

2) set & a=4

exit code(& a)

3) set &b=8

exit code(& b+4)

4) set & c=l2

exit code(& c-8)

If you write EXIT without the CODE keyword, the value of & LASTCC
is not changed.

To return control to a level protected from stack flushing by either a
MAIN or NOFLUSH control option, code:

exit quit
or
exit code(expression) quit

Command Procedure Statements 127

If no procedure in the nested hierarchy has either a MAIN or
NOFLUSH option in effect, coding QUIT causes TSO to flush all current
command procedures from the stack and to assume control. When this
happens, TSO writes a READY message at the terminal.

Establishing Exit Routines
The ERROR and ATTN statements provide ways for a command procedure
to define an action that will occur if the command procedure receives,
respectively, a non-zero return code or an attention interruption.

Ordinarily, you would code statements for these exit actions near the
beginning of a command procedure and let them apply to the entire
procedure. You may optionally cancel the actions at any point, letting the
procedure continue without any special exit processing or initializing new
exit actions with subsequent ERROR or ATTN statements.

You may initialize new exit actions as many times as you wish. Each
respecification overrides all previous specifications.

Error Exits

To create an error exit, code:

error action

The operand "action" is any executable statement. It is often a
DO-group that performs some operation specifically tailored to the expected
errors.

For example, a command procedure could specify:

error do

end

. (statements constituting

. an error. exit routine)

The statements within the DO-group starting on the ERROR statement
will execute when the procedure encounters a non-zero return code.

Listing Statements In Error - You can also specify the error statement
without an action operand. In this case when the procedure encounters a
non-zero return code, TSO lists the statement that received an error and
explanatory error messages. If possible, command procedure execution
continues with the next statement after the erroneous one.

Protecting the Error Exit - If you use an error exit, you must prohibit TSO
from flushing the input stack for any reason. Stack flushing removes the
procedure from the system, thereby making error return codes unavailable
to a command procedure. This action nullifies the use of an ERROR
statement. To prevent stack flushing, use either the MAIN or the
NOFLUSH operands on the CONTROL statement, as described in the
section "Controlling Command Procedure Options."

Cancelling the Error Exit - To cancel an error exit, code:

error off

128 OS/VS2 TSO Terminal User's Guide

This entry nullifies any previous error action specification, and the
procedure continues without any special error processing.

Using Control Variables in an Error Exit

This example illustrates the use of control variables in an error exit routine
that checks for various errors.

error -
do

if ~lastcc ge 300 ~~ ~lastcc le 999 then -
do

end

/*procedure execution error codes */
end

if ~syspcmd = free then -
return /* ignore free command errors */

if ~syspcmd = edit then -
do

end

if ~sysscmd = submit then·­
do
write error submitting data set

end

if ~rnaxcc gt 63 then -
exit code(~maxcc)

return

if ~sysnest = yes then -
do

write this procedure may not be nested
exit code(99)

end

Attention Exits

To create an attention exit, code:

attn action

The operand "action" is any executable statement, commonly a
DO-group that constitutes an attention exit routine or some other special
processing that will take place when an attention interruption occurs during
command procedure processing.

For example, a command procedure could issue:

attn do

end

. (statements constituting an attention exit

. routine)

In this case, the DO-group provides the att~ntion exit processing.

Canceling the Attention Exit - To cancel an attention exit, code:

attn off

This entry nullifies any previous attention action specification, and the
procedure continues without any special attention exit processing.

Command Procedure Statements 129

Note that OFF is a default. If you code ATTN with no other action
specification, TSO assumes that you want any attention exit canceled.

Returning Control/rom an Attention or Error Exit

To return control from an exit routine, code:

return

The RETURN statement has no operands. It returns control to the
command procedure statement, command, or subcommand following the
one that either produced the error or received the attention interruption.

The command procedure must issue at least one TSO command or
subcommand (a null command is sufficient) prior to the RETURN
statement in an attention exit. The following example shows an attention
exit that issues a TSO command before issuing the RETURN statement.

attn +
do

end

set &cmd = /* default to null */
write attention exit is in control
if &oktoterminate = yes then +

do
write do you want to terminate? (yes or no)
read &ans

end
else +

if &ans = yes then +
set &cmd = end

write ignoring your attention
&cmd /* the tso command */

return

Command Procedure Examples
The following command procedures illustrate many command procedure
coding techniques, and use many of the facilities available to writers of
command procedures.

The first procedure, "PIZZA", determines each person's share of the tab
after a group trip to the local pizza emporium. It uses symbolic variables to
allow for various individual consumptions of pizza slices and a variety of
beverages. Although it is short, it illustrates a relatively complex degree of
the nesting of symbolic variables.

The second example consists of a series of command procedures that
show how to use command procedures to do programming work. This series
consists of:

• A sample terminal session that uses the PROFILE command
procedure

• The PROF command procedure
• The SETUP command procedure
• The PROFILE command procedure
• The PRINT A command procedure
• The JCL data set edited by PRINT A

130 OSIVSl TSO Terminal User's Guide

Throughout the series, the userid 'D95MRT2' represents a programmer
responsible for maintaining a library of general purpose command
procedures. 'D95PGMR' is the userid of a typical user.

The sample PROFILE session shows how the user generated two jobs to
list two of his data sets by using the PRINTA procedure.

The PROF and SETUP command procedures are maintained by the
typical user in a PDS named 'D95PGMR.CLIST' to make his job of using
the general purpose procedures easier. In the sense that these procedures
are primarily for the typical user's own use, they are 'private' procedures.

The PROFILE and PRINT A command procedures are the general
purpose procedures maintained by the other programmer in the PDS named
'D95MRT2.CLIST'. These procedures are for widespread and general use
by anyone who needs them.

The J CL data set edited by PRINT A is a model that provides the basic
JCL statements necessary to set up for and execute the IEBPTPCH utility
program, which prints the typical user's jobs as shown in the sample
PROFILE session.

The SETUP command procedure provides information that is unique to
the user and his immediate purpose. The user can create multiple setup
members with different parameters, enabling him to specify in advance the
setup for different applications.

The PROF command procedure contains an EXEC command that
invokes PROFILE and a PROC statement that uses a keyword to define a
default setup member. These features enable the user to initiate a
PROFILE session with a minimum of terminal entry. That is, the user need
not enter the fully qualified name of PROFILE, nor explicitly specify a
particular setup member in order to initiate the session. The following entry
is all that is necessary to meet minimum requirements by using a default
setup member:

exec (prof)

In the example PROF command procedure that follows, the default setup
member name is 'SETUP2.' In the remaining example material, this default
is overridden by the use of a setup member named 'SETUP.'

The PROFILE command procedure provides the environment in which
other procedures operate by using the globally known information supplied
through the user's SETUP member, which PROFILE reads by using file
110 statements, instead of executing it as a procedure. PROFILE also
allows the user to alter any of his setup parameters for the life of the
PROFILE session, effectively creating a 'SETUP' command. PROFILE also
changes the last character of the jobnames of the jobs submitted through
PRINT A, to give each job submitted during a PROFILE session a unique
identifier.

The PRINT A command procedure receives control from PROFILE to
prepare the user's jobs for submission according to the setup criteria
established in the user's SETUP member. PRINT A uses these criteria to
edit the model JCL appropriately for a given job to be submitted, using the
IEBPTPCH utility to print the user's data set.

Command Procedure Statements 131

The third example illustrates the use of & DATATYPE, & LENGTH,
& STR, and & SUBSTR built-in functions~ It also shows a technique for
using a left parenthesis as data.

Example 1

PIZZA.CLIST (Part 1 of 2)

00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500
02600
02700
02800
02900
03000
03100
03200
03300
03400
03500
03600
03700
03800
03900
04000
04100
04200
04300
04400
04500
04600
04700

PROC 0 SLICE(33) SODA(35) COFFEE (25) MILK(30)
WRITE SLICES 1 2 3 4 5 6
WRITE
SET RETNUM=l
SET HEAD1=NO DRINK
SET COST1=0
SET HEAD2=1 SODA
SET COST2=&SODA
SET HEAD3=2 SODAS
SET COST3=&SODA*2
SET HEAD4=3 SODAS
SET COST4=&SODA*3
SET HEAD5=1 COFFEE
SET COST5=&COFFEE
SET HEAD6=2 COFFEES
SET COST6=&COFFEE*2
SET HEAD7=3 COFFEES
SET COST7=&COFFEE*3
SET HEAD8=1 MILK
SET COST8=&MILK
SET HEAD9=2 MILKS
SET COST9=&MILK*2
DO WHILE &RETNUM LE 9

SET HEAD=&&HEAD
SET COST=&&COST
SET HEAD=&HEAD&RETNUM
SET COST=&COST&RETNUM
GOTO ROUTINE

RETURN: +
END
WRITE
WRITE
WRITE

/* HEAD
/* COST
/* HEAD
/* COST

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

THE ABOVE PRICES APPLY TO:
SLICE OF PIZZA .&SLICE
A SODA .&SODA
A COFFEE .&COFFEE
A MILK .&MILK

'&HEAD' */
'&COST' */
'&HEAD1' ,'&HEAD2' ••• */
'&COST1', '&COST2' .•. */

WRITE A TIP OF 15% ON THE COST OF THE PIZZA IS ALSO INCLUDED
WRITE
WRITE FOR OTHER DRINK ITEMS, FIGURE RESULTS SEPARATELY
EXIT CODE (0)
ROqTINE: +
SET RETNUM=&RETNUM+1
WRITENR &SUBSTR(1:10,&HEAD
SET N=l

132 OS/VS2 TSO Terminal User's Guide

7 8 9 10

PIZZA.CLIST. (Part 2 of 2)

04800
04805
04900
04910
04920
04930
04940
04950
04960
04970
04980
05000
05100
05200
05300
05400
05500
05600
05700
05800
05900
06000

DO WHILE &N LE 10
1* CALCULATE A 15% TIP TO THE NEAREST CENT *1
SET AMT=&N*&SLICE+&COST+(&N*&SLICE*15)/100
IF (&N*&SLICE*15) 11100> = 50 THEN +

SET AMT=&AMT+1 1* ROUND TO NEAREST CENT *1

1* FOLLOWING ROUTINE ROUNDS EACH PERSON'S BILL TO THE *1
1* NEAREST NICKEL. (IF CENTS=1,2,6 OR 7 ROUND DOWN; *1
1* IF CENTS=3,4,8 OR 9 ROUND UP) */

SET AMT=&STR(&AMT) 1* CONVERT NUMBER TO STRING *1
SET AMT1=&SUBSTR(1:&LENGTH(&STR(&AMT»-2,&AMT)
SET AMT1=&AMT1 1* NUMERIC VALUE OF DOLLARS PORTION *1
SET AMT2=&SUBSTR(&LENGTH(&STR(&AMT»-1,&AMT) 1* DIMES DIGIT *1
IF &SUBSTR (&LENGTH (&STR (&AMT)) , &AMT) LT 8 THEN +

DO 1* IF CENTS DIGIT IS LESS THAN 8 *1
SET AMT2=&AMT2 1* CU~RENT DIMES DIGIT IS OK *1
IF &SUBSTR(&LENGTH(&STR(&AMT» ,&AMT) GT 2 THEN +

SET AMT3=5 1* IF CENTS DIGIT OVER 2, MAKE IT 5 *1
ELSE + '

SET AMT3=0 1* IF CENTS DIGIT 2 OR LESS, MAKE IT 0 *1
06100 END
06200 ELSE 1* (IF CENTS DIGIT IS 8 OR 9) *1 +
06300 DO 1* ROUND TO A VALUE ENDING IN 0 *1
06400 IF &AMT2=9 THEN +
06500 DO 1* IF 90 CENTS OR MORE */
06600 SET AMT2=0 1* RESET DIMES DIGIT TO 0 *1
06700 SET AMT1=&AMT1+1 1* BOOST DOLLAR AMOUNT *1
06800 END
06900 ELSE +
07000 SET AMT2=&AMT2+1 1* IF 8, JUST BOOST DIMES DIGIT *1
07100 SET AMT3=0 1* SET CENTS DIGIT TO 0 *1
07200 END
07300 WRITENR &SUBSTR(&LENGTH(&AMT1)+1:&LENGTH(&AMT1)+4,
07400 SET &N=&N+1
07500 END
07600 WRITE
07700 GOTO RETURN
END OF DATA

&AMT1) .&AMT2&AMT3

Command Procedure Statements 133

exec pizza.clist
SLICES 1

NO DRINK .40
1 SODA .75
2 SODAS 1 .10
3 SODAS 1 .45
1 COFFEE .65
2 COFFEES .90
3 COFFEES 1 .15
1 MILK .70
2 MILKS 1 .00

The "PIZZA" command procedure produces output as shown below.
This output is the result of executing the procedure using all the coded
default values for slice and beverage prices (note that the EXEC command
uses no value list to override the defaults). You could override any or all of
the default values with prices more in keeping with the charges at your local
pizza emporium. When you go out with a group for pizza, you can take the
output from this command to provide a handy reference table for
determining each person's share of the tab.

2 3 4 5 6 7 8 9 10

.75 1 • 15 1 .50 1. 90 2.30 2.65 3.05 3.40 3.80
1 .10 1.50 1. 85 2.25 2.65 3.00 3.40 3.75 4.15
1. 45 1. 85 2.20 2.60 3.00 3.35 3.75 4.10 4.50
1. 80 2.20 2.55 2.95 3.35 3.70 4.10 4.45 4.85
1. 00 1. 40 1. 75 2.15 2.55 2.90 3.30 3.65 4.05
1 .25 1. 65 2.00 2.40 2.80 3.15 3.55 3.90 4.30
1 .50 1. 90 2.25 2.65 3.05 3.40 3.80 4.15 4.55
1. 05 1. 45 1 .80 2.20 2.60 2.95 3.35 3.70 4.10
1 .35 1 .75 2.10 2.50 2.90 3.25 3.65 4.00 4.40

THE ABOVE PRICES APPLY TO:
SLICE OF PIZZA .33
A SODA .35
A COFFEE .25
A MILK .30

A TIP OF 15% ON THE COST OF THE PIZZA IS ALSO INCLUDED

FOR OTHER DRINK ITEMS, FIGURE RESULTS SEPARATELY
READY

134 OS/VS2 TSO Terminal User's Guide

Example 2

Sample PROFILE Session

.
edit 'd95pgmr.clist(private) , clist
EDIT
delete 500
save
EDIT
exec (prof) 'mem(setup) ,
RETURN TO COMMAND MODE BEFORE ISSUING PROFILE.
end
READY
exec (prof) 'mem(setup)'
MACLIB('D95PGMR.MACLIB' 'D95DEPT.MACLIB' 'SYSl.TSO.MACLIB')
MNO(123456) ACCT(999999) CLASS(J) RGN(250K)
JOBCHAR(A) BLDG(705) CUBE (lP2)
READY
setup jobchar f
READY
setup acct 444555
READY
setup maclib ('d22dept.maclib' 'sysl.tso.maclib')
READY
setup list
MACLIB('D22DEPT.MACLIB' 'SYSl.TSO.MACLIB')
MNO(123456) ACCT(444555) CLASS(J) RGN(250K)
JOBCHAR(F) BLDG(705) CUBE (lP2)
READY
printa 'd95pgmr.clist'

* PREPARING JOB D95PGMRF TO BE SUBMITTED AT 09:27:16 *
* JOB D95PGMRF SUBMITTED AT 09:27:46 ON 11/05/74 *

READY
printa JObs.cntl lrecl(80) recfm(fb) dsorg(po)

* PREPARING JOB D95PGMRG TO BE SUBMITTED AT 09:28:52 *
* JOB D95PGMRG SUBMITTED AT 09:29:21 ON 11/05/74 *

setup quit
END OF PROFILE SESSION - RE-PROFILE TO USE AGAIN
READY

Command Procedure Statements 135

PROF Command Procedure

'D95PGMR.CLIST(PROF),
This is the highest level procedure that each user will execute to issue the
PROFILE command procedure.

PROC 0 MEM(SETUP2)
GLOBAL D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
EXEC 'D95MRT2.CLIST(PROFILE) , 'MEM(&MEM)'

SETUP Member

'D95PGMR.CLIST(SETUP)'
This member provides the information unique to each user of the
PROFILE command procedure. It is processed by PROFILE using the
file 110 statements.

~MACLIB ('D95PGMR.MACLIB' 'D95DEPT.MACLIB') /* USER'S MACRO-LIBRARY */
~MACLIB (&MACLIB 'SYSl.TSO.MACLIB') /* CONCATENATION */
~BLDG 705 /* BUILDING */
~CUBE lP2 /* CUBICLE */
~CLASS J /* CLASS FOR SUBMITTED JOBS */
~ACCT 999999 /* ACCOUNT NUMBER */
~JOBCHAR A /* LAST CHARACTER OF NEXT SUBMITTED JOB'S NAME */
~RGN 250K /* REGION SIZE FOR SUBMITTED JOBS */
~MNO 111111 /* USER'S MAN NUMBER */
~LISTDEF /* DISPLAY USER'S SETUP WHEN PROFILE IS ISSUED ~/

Note: The leading blank is necessary in each line of this data set because
of the READDV AL statement used to process the line read by the
GETFILE statement. The blank separates the line number that appears at
the beginning of each of the data set's variable length records from the text
or data that follows, thereby preventing TSO from interpreting the line
number as part of the meaningful content of the line.

136 OS/VS2 TSO Terminal User's Guide

'D95MRT2.CLIST(PROFILE)' Command Procedure (Part 1 of 4)

PROC 0 QUICK MEM(SETUP)
CONTROL MAIN NOMSG
IF &SYSSCMD=EXEC THEN /* IF IN SUBCOMMAND ENVIRONMENT */+

DO
WRITE RETURN TO COMMAND MODE BEFORE ISSUING PROFILE.
EXIT CODE(O)

END
IF &SYSPROC=PROC01 && &QUICK,=QUICK THEN /* NOT USING STEPLIB */+

DO
AL: FREE DA(CLIST 'SYS1.TSO.CLIST' 'D95MRT2.PROCS') FI(SYSPROC)

ERROR +
DO

WRITE RRRR ..•. RING ...• GGGG
WRITE CANNOT ALLOCATE FILE SYSPROC FOR YOU
EXIT CODE (12)

END
ALLOC FI (SYSPROC) DA (CLI'ST 'D95MRT2. PROCS' 'SYSI. TSO. CLIST')
ERROR OFF

END
ELSE +

IF &QUICK,=QUICK THEN /* NOT USING DEFAULT SYSPROC CONCATENATION */+
DO

WRITENR DO YOU WANT TO RE-ALLOC FI(SYSPROC)? (Y OR N)
READ &ANS
IF &ANS=Y THEN +

GOTO AL
END

/* DEFINE GLOBAL VARIABLES */
GLOBAL ACCT JOBCHAR BLDG CUBE MACLIB RGN
GLOBAL GMNO CLASS GMACS GNEST

/* INITIALIZE VARIABLES */
SET GMACS=NO
SET &CMD=&STR(&&CMD) /* SET VALUE OF &CMD TO STRING '&CMD' */
SET &CMD1=SETUP /* CMD TO LIST/CHANGE PROFILE ENVIRONMENT */
SET &CMD2=COMPILE /* CMD TO SUBMIT COMPILE JOB */
SET &CMD3=PRINTA /* CMD TO PRINT A PDS (SEE EX. 3) */
SET &CMD4= /* SLOT FOR FUTURE COMMAND */
SET &CMD5= /* SLOT FOR FUTURE COMMAND */
SET &TAB=&STR(&&TAB)
/* USE READDVAL TO SET &TAB1 TO 'ACCT' ,&TAB2 TO 'JOBCHAR', AND SO ON */
SET &SYSDVAL ACCT JOBCHAR BLDG CUBE MACLIB
READDVAL &TAB1 &TAB2 &TA.B3 &TAB4 &TAB5
SET &SYSDVAL = RGN MNO CLASS LISTDEF QUIT
READDVAL &TAB6 &TAB7 &TAB8 &TAB9 &TAB10
SET &TABN=lO /* SET LENGTH OF SETUP OPTION TABLE */
SET &ERRSAV=O

Command Procedure Statements 137

'D95MRT2.CLIST(PROFILE)' Command Procedure (Part 2 of 4)

ERROR +
DO

WRITE YOUR SETUP MEMBER CANNOT BE FOUND OR READ.
EXIT CODE (12)

END
/* THE USER'S SETUP MEMBER MUST BE IN A DATASET NAMED */
/* 'USERID.CLIST' */
ALLOC FI(SYSDVAL) DA(CLIST(&MEM» SHR
OPENFILE SYSDVAL /* USE &SYSDVAL AS A FILE VARIABLE */
SET EOF=NO /* END OF FILE HAS NOT OCCURRED */
ERROR OFF /* CANCEL PREVIOUS ERROR EXITS */
SET ERRSAV=O

ERROR +
IF &LASTCC=400 THEN /* IF END-OF-FILE */ +

DO
CLOSFILE SYSDVAL /* CLOSE THE QSAM FILE */
FREE FI(SYSDVAL)
SET EOF=YES /* INDICATE END-OF-FILE HAS OCCURRED */
IF &GNEST=YES THEN /* IF PROFILE HAS BEEN RE-ISSUED */ +

DO
WRITE VARIABLES HAVE BEEN RESTORED TO ORIGINAL VALUES.
EXIT CODE (0)

END
SET GNEST=YES /* INDICATE PROFILE HAS BEEN RE-ISSUED */ +
GOTO TERMIN

END
ELSE +
DO /**************** AN ERROR HAS OCCURRED ***************/

IF &LASTCC=&ERRSAV THEN /* RECURRENT ERROR? */ +
DO

WRITE THE SAME ERROR (&LASTCC) RE-OCCURRED - WANT DEBUG MODE?
SET &LASTCC=O /* CLEAR ERROR INDICATION */
READ &ANS
IF &ANS=YES THEN /* IF 'YES' TRACE EXECUTION */ +

CONTROL CONLIST MSG SYMLIST LIST /* SET DEBUG OPTIONS */
ELSE +

IF &ANS=Y THEN /* GET ERROR MESSAGES AND CONTINUE */ +
ERROR

ELSE /*. TURN OFF ALL DEBUGGING OPTIONS */ +
CONTROL NOCONLIST NOMSG NOSYMLIST NOLIST

END
IF &LASTCC>=300 && &LASTCC<=999 THEN +

SET &ERRSAV=&LASTCC /* SAVE CLIST ERROR CODE */
IF &LASTCC=12 THEN +

RETURN /* 12 IS SEVERE ERROR CODE FROM MOST COMMANDS */
END

GOTO TERMIN

138 OS/VS2 TSO Terminal User's Guide

'D95MRT2.CLIST(PROFILE)' Command Procedure (Part 3 of 4)

TOP: CONTROL NOCONLIST NOSYMLIST NOLIST
SET &ERRSA \ 0
TERMIN: +

IF &EOF=NO THEN /* IF NOT FINISHED READING USER'S SETUP FILE */+
DO

GETFILE SYSDVAL /* READ A LOGICAL RECORD FROM USER'S SETUP CLIST */
-- READDVAL Al A2 A3 /* PARSE RECORD SKIPPING THE LINE NUMBER IN Al */

SET SYSDVAL=&STR(&A2 (&A3)) /* SET SECOND OPERAND (A3) IN PARENS */
END

ELSE +
TERMIN &CMDI &CMD2 &CMD3 &CMD4 &CMD5
SET &SYSSCAN=16

IF &SYSDLM>1 THEN /* IF THE DELIMITER IS A JOB */ +
DO

&CMD&SYSDLM &SYSDVAL /* EXECUTE THE SELECTED CLIST TO */
/* SUBMIT A PARTICULAR TYPE OF JOB. */

/**/
/* INCREMENT THE JOB NAME CHARACTER */
/**/

SET &A=ABCDEFGHIJKLMNOPQRSTUVWXYZI234567890A
SET &N=l
DO WHILE &JOBCHAR,=&SUBSTR(&N,&A) /* FIND CURRENT JOBCHAR IN STRING */

SET &N=&N+I
END
SET &JOBCHAR=&SUBSTR(&N+I,&A) /* SET JOBCHAR TO NEXT CHAR IN STRING */

GOTO TOP
END

ELSE /* IF SETUP WAS ENTERED */ +
DO

READDVAL &AI &A2 /* PARSE SETUP OPTION AND ITS VALUE */
SET &NDX=l
DO WHILE &NDX<=&TABN /* NUMBER OF KEYWORDS */

IF &LENGTH (&AI)<=&LENGTH (&TAB&NDX) THEN/* IF LENGTHS OK */ +
IF &SUBSTR(I: &LENGTH (&AI) ,&TAB&NDX)=&AI THEN /* AND KEY MATCH */ +

GOTO LBL&NDX /* GO TO FUNCTION REQUESTED */
SET&NDX=&NDX

SET &NDX=&NDX+I /* INCREMENT INDEX */
END
WRITE UNIDENTIFIABLE KEYWORD &AI ON SETUP
GOTO TOP

Command Procedure Statements 139

'D95MRT2.CLIST(PROFILE)' Command Procedure (Part 4 of 4)

LBLl: /* SETUP ACCT ROUTINE */+
SET &ACCT=&A2
GOTO TOP

LBL2: /* SETUP JOBCHAR ROUTINE */+
SET ·&JOBCHAR= &A2
GOTO TOP

LBL3: /* SETUP BLDG (BUILDING) ROUTINE */+
SET &BLDG=&A2
GOTO TOP

LBL4: /* SETUP CUBE (CUBICLE) ROUTINE */+
SET &CUBE=&A2
GOTO TOP

LBL5: /* SETUP MACLIB ROUTINE .•• A PARENTHESIZED STRING CONTAINING */+
IF &GMACS=YES THEN /* FULLY QUALIFIED MACRO LIBRARY NAMES */+

DO /* SHOULD BE ENTERED. */
FREE DA(&MACLIB) FI(SYSLIB)

IF &A2= THEN /* IF NO MACRO LIBRARIES */+
SET &GMACS=NO

ELSE +
ALLOC DA(&A2) FI(SYSLIB)

END
SET &MACLIB=&A2
GO TO TOP

LBL6: /* SETUP RGN (REGION FOR SUBMITTED JOBS) ROUTINE */+
SET &RGN=&A2
GOTO TOP

LBL7: /* SETUP MNO (MAN/EMPLOYEE NUMBER) ROUTINE */+
SET &GMNO=&A2
GOTO TOP

LBL8: /* SETUP CLASS (JOBCLASS FOR SUBMITTED JOBS) ROUTINE */+
SET &CLASS=&A2
GOTO TOP

LBL9: /* SETUP LIST (LISTDEF) ROUTINE (LISTS PROFILE OPTIONS) */+
WRITE MACLIB(&MACLIB)
WRITE MNO(&GMNO) ACCT(&ACCT) CLASS (&CLASS) RGN(&RGN)
WRITE JOBCHAR(&JOBCHAR) BLDG (&BLDG) CUBE (&CUBE)
GOTO TOP

LBLIO: 1* SETUP QUIT ROUTINE (LEAVES PROFILE ENVIRONMENT) */+
WRITE END OF PROFILE SESSION - RE-PROFILE TO USE AGAIN

END

IF &GMACS=YES THEN +
FREE DA(&MACLIB) FI(SYSLIB)

EXIT CODE (0)

140 OS/VS2 TSO Terminal User's Guide

'D95MRT2.CLIST(PRINT A)' Command Procedure (Part 1 of 4)

PROC 1 DSNAME
MEMBR()
RECFM()
DSORG ()
LRECL ()
JOBCHAR()
BLDG ()
CUBE ()
COPIES ()
ACCT ()
CLASS ()
NONUM

ERROR
DO

DATA
END
ENDATA

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

WRITE PRINT ERROR OCCURRED
EXIT CODE (99) QUIT

END

DATA SET NAME TO BE PRINTED
A LIST OF MEMBERS TO BE PRINTED
RECORD FORMAT TO BE USED
DATA SET ORGANIZATION TO USE
LOGICAL RECORD LENGTH OF RECORDS
JOB CHARACTER TO BE USED
BUILDING LOCATION OF USER
CUBE OF USER
NUMBER OF COPIES DESIRED
USERS ACCOUNT NUMBER (REQ FOR
JOB CLASS TO BE USED
DATASET IS NOT LINE NUMBERED

/* SET UP AN ERROR EXIT
/* DO
/* FOR TSO END STMT

/* END OF LIST OF TSO STMT
- TRY AGAIN (RC=&LASTCC)

BATCH)

CONTROL NOFLUSH /* DO NOT ALLOW FLUSHING

*/+
*/+
*/+
*/+
*/+
*/+
-R/+
*/+
*/+
*/+
*/+
*/

*/+
*/
*/

*/

*/

/***/
/* */
/* SETUP REFERENCE TO GLOBAL PARMS THEN DEFAULT PARAMETERS */
/* */
/***/

GLOBAL &GACCT &GJOBCHAR &GBLDG &GCUBE &G5 &G6 &G7 &GCLASS

IF &RECFM= THEN
SET &RECFM=V

/* IF RECORD FORMAT NOT SPECIFIED
/* SET DEFAULT TO VARIABLE

*/+
*/

DO WHILE &RECFM,=V && &RECFM,=VB /* CHECK FOR VALID RECORD FORMATS
&& &RECFM,=F && &RECFM'=FB /* OF V,VB,F, AND FB

*/+
*/
/ . / IF NOT ANY OF THESE, PROMPT USER

WRITE INVALID RECFM &RECFM - REENTER &STR(-)
READ &RECFM /* READ A NEW RECORD FORMAT AND TRY */

/ END / AGAIN

SET &RECFM=&SUBSTR(l,&RECFM)

IF &LRECL= THEN
IF &RECFM=V THEN

SET &LRECL=255
ELSE

SET &LRECL=80
ELSE

IF &DATATYPE(&LRECL)=CHAR
&LRECL<50 THEN
SET &LRECL=50

/* MAKE &RECFM V OR F FOR USE LATER */

/* IF LRECL IS NULL, DEFAULT TO PROPER */+
/* LRECL FOR RECORD FORMAT */+
/* VARIABLE GETS 255 */
/* OTHERWISE */+
/* FIXED GETS 80 */
/* IF LRECL HAS A VALUE */+
/* CHECK IF NOT NUMERIC */+
/* OR THEN LRECL TOO SMALL */+
/* DEFAULT LRECL TO AT LEAST 50 */

Command Procedure Statements 141

'D95MRT2.CLIST(PRINT A)' Command Procedure (Part 2 of 4)

IF &DSORG= THEN
SET &DSORG=PU

/* IF DSORG NOT SPECIFIED
/* DEFAULT TO PARTITIONED

*/+
*/

DO WHILE &DSORG,=PU && &DSORG,=PS /* CHECK FOR VALID DSORG */
WRITE INVALID DSORG &DSORG - REENTER &STR(-)
READ &DSORG /* GET ANOTHER DSORG AND CHECK IT */

END /* */

/***/
/* */
/* BUILD THE REQUIRED VARIABLES */
/* */
/***/

SET &TAB1=6ACCT /* KEYWORD ACCT SYNTAX LEN=6
SET &TAB2=lJOBCHAR /* KEYWORD JOBCHAR SYNTAX LEN=l
SET &TAB3=OBLDG /* KEYWORD BLDG NOSYNTAX
SET &TAB4=OCUBE /* KEYWORD CUBE NOSYNTAX
SET &TAB5=lCLASS /* KEYWORD CLASS SYNTAX LEN=l
SET &TABN=5 /* NUMBER OF KEYWORDS TO BE CHECKED

SET &A=&STR(&&A) /* FOR VARIABLE RESCAN
SET &G=&STR(&&G) /* FOR VARIABLE RESCAN
SET &TAB=&STR(&&TAB) /* FOR VARIABLE RESCAN
SET &LEN=&STR(&&LEN) /* FOR VARIABLE RESCAN

SET &COUNT=l /* CURRENT COUNT FOR KEYWORD CHECK
DO WHILE &COUNT < = &TABN /* CHECK THI S MANY KEYWORDS

SET &LEN&COUNT=&SUBSTR(l,&TAB&COUNT) /* GET SYNTAX LENGTH
SET &TAB&COUNT=&SUBSTR(2:&LENGTH(&TAB&COUNT) ,&TAB&COUNT) /* GET
SET A&TAB&COUNT=&&&TAB&COUNT /* SET CHECKER
IF &A&TAB&COUNT = THEN/* IF KEYWORD VALUE IS NULL

IF &G&TAB&COUNT THEN/* AND GLOBAL IS NULL ALSO
DO /* PROMPT USER FOR VALUE

WRITE ENTER VALUE FOR &TAB&COUNT &STR(-)
READ &ANS /* GET ANSWER FROM PROMPT
SET &&TAB&COUNT = &ANS /* PLACE ANSWER IN PROPER VARIABLE

END /* CONTINUE
ELSE /* IF GLOBAL PART NOT NULL

SET &&TAB&COUNT &G&TAB&COUNT /* COpy INTO LOCAL VARIABLE

DO WHILE (&LEN&COUNT =0 &&
(&LEN&COUNT,=O &&

&LENGTH(&A&TAB&COUNT)=O) I +
&LENGTH (&A&TAB&COUNTh =&LEN&COUNT)

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

NAM*/
*/
*/+
*/+
*/

*/
*/
*/
*/+
*/

/* CHECK VALUE FOR */

WRITE INVALID &TAB&COUNT
READ &ANS
SET &&TAB&COUNT=&ANS

END
SET &COUNT=&COUNT+1

END

142 OS/VS2 TSO Terminal User's Guide

/* 1) NOSYNTAX - NOT NULL */
/* 2) SYNTAX - EQUAL TO LEN SPECIF */
&A&TAB&COUNT - REENTER &STR(-)

/* PUT ANSWER INTO PROPER VARIABLE */
/* AND CHECK ITS SYNTAX */
/* GO TO NEXT KEYWORD */

'D95MRT2.CLIST(PRINT A)' Command Procedure (Part 3 of 4)

/***/
/* */
/* PREPARE TO EDIT THE MASTER JCL DATA SET */
/* */
/***/

IF &MEMBR,=
DO

&& &DSORG=PS THEN/* IF MEMBER LIST IS NOT NULL FOR PS

WRITE MEMBER LIST IGNORED
SET &MEMBR=

END

/* ISSUE MESSAGE AND SET TO NULL
FOR SEQUENTIAL PROCESSING
/* CLEAR MEMBER LIST

IF &SUBSTR(l,&DSNAME)=' THEN /* IF DSNAME FULLY QUALIFIED
SET &DSNAME=&SUBSTR(2:&LENGTH(&DSNAME)-1,&DSNAME)/* STRIP QUOTES

ELSE /* OTHERWISE
SET &DSNAME=&SYSUID .. &DSNAME/* APPEND USE RID TO DSNAME

IF &COPIES= THEN /* IF COPIES NOT SPECIFIED
SET &COPIES=l /* DEFAULT TO ONE

ELSE /* VALIDATE NUMBER OF COPIES SPEC
DO WHILE &DATATYPE (&COPIES) =CHAR I /* DO WHILE NOT NUMERIC

&COPIES<11&COPIES>16 /* OR OUT OF RANGE
WRITE INVALID NUMBER OF COPIES &COPIES - REENTER &STR(-)
READ &COPIES /* GET A NEW VALUE OF COPIES

END /*
IF &NONUM=NONUM THEN /* NONUM DATASET

DO /* PROCESS NONUM
SET &FLDS=l /* .oNLY ONE FLD IN THIS RECORD
IF &LRECL>100 THEN /* IF LRECL TOO BIG

SET &SIZE=130 /* DEFAULT TO 130
ELSE /* OTHERWISE

SET &SIZE=&LRECL /* SET TO LRECL
SET &RECORD=&STR(RECORD FIELD=(&SIZE»

END

*/+
*/

*/

*/+
*/
*/+
*/
*/+
*/
*/+
*/+
*/

*/
*/
*/+
*/
*/
*/+
*/
*/+
*/

ELSE /* OTHERWISE */+
DO /* PROCESS NUMBERED DATASET */

SET &FLDS=2 /* TWO FIELDS PER RECORD STMT */
IF &LRECL 128 THEN /* IF LRECL TOO BIG */+

SET &SIZE=120 /* DEFAULT SIZE */
ELSE /* OTHERWISE */+

SET &SIZE=&LRECL-8 /* SET SIZE */
IF &RECFM=F THEN /* FOR RECORD FORMAT FIXED */+

DO /* */
SET &LOCA=&LRECL-7 /* START COLUMN FOR SEQ NUMBER */
SET &LOCB=l /* START DATA BYTE */

END /* */
ELSE /* OTHERWISE */+

DO /* */
SET &LOCA=l /* START COLUMN FOR SEQ NUMBER */
SET &LOCB=9 /* START DATA BYTE */

END /* */
SET &RECORD=&STR(RECORD FIELD=(8,&LOCA,,1) ,FIELD={&SIZE,&LOCB,,10»

END /* */
WRITE ***
WRITE * PREPARING JOB &SYSUID&JOBCHAR TO BE SUBMITTED AT &SYSTIME *

Command Procedure Statements 143

'D95MRT2.CLIST(PRINT A)' Command Procedure (Part 4 of 4)

EDIT 'D9SMRT2.CNTL(SUBMITPA)' CNTL OLD
010 //&SYSUID&JOBCHAR JOB '&ACCT,B&BLDG&CUBE,S=l' ,'&SYSUID',
012 // CLASS=&CLASS,MSGLEVEL=l,NOTIFY=&SYSUID
014 zz**
016 ZZ* JOB SUBMITTED AT &SYSTlME ON &SYSDATE ***
020 ZZ**
024 SEND '%%JOB &SYSUID.&JOBCHAR STARTING' U(&SYSUID) WAIT
CHANGE 014 020 ?ZZ?//? ALL
060 //SYSUT1 DD DSN=&DSNAME,DISP=SHR
SET &SYSDVAL=&MEMBR /* PREPARE TO EDIT MEMBER CARDS
READDVAL Al A2 A3 A4 AS A6 A7 A8 A9 A10 All A12 A13 A14 A1S A16 A17
SET &N=l /* SET BEGINNING INDEX TO 1
SET &COUNT=100 /* SET BEGINNING LINE NUMBER
DO WHILE &A&N,= && &N<19 /* DO UNTIL NO MORE

&COUNT MEMBER NAME=&A&N
SET &N=&N+1
SET &COUNT=&COUNT+SO

/* INCREMENT INDEX
/* INCREMENT COUNT

&COUNT &RECORD
SET &COUNT=&COUNT+SO /* INCREMENT LINE NUMBER AGAIN

END
SET &N=&N-1
SET &MSG=
IF &N=O THEN

&COUNT &RECORD

/*
/*
/*
/*

ELSE /*
DO /*

SET &FLDS=&FLDS*&N /*
SET &MSG=&STR(,MAXNAME=&N) /*

END /*

BACK DOWN INDEX
CLEAR MSG VARIABLE
IF NO MEMBER RECORDS

OTHERWISE
SET &FLDS USED
ADJUST NUMBER OF FIELDS
SET NUMBER OF NAMES

080 PRINT TYPORG=&DSORG,MAXFLDS=&FLDS&MSG
090 TITLE ITEM=('DATE=&SYSDATE TIME=&SYSTIME' ,20)
091 TITLE· ITEM=('DATA SET &DSNAME' ,1)
3S ZZOUTPUT MRT COPIES=&COPIES
CHANGE ?ZZ?/*?
CONTROL NOMSG
SUBMIT
CONTROL MSG
WRITE * JOB &SYSUID&JOBCHAR SUBMITTED AT &SYSTIME ON &SYSDATE
WRITE ***
END

144 OS/VS2 TSO Terminal User's Guide

*/
A18
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/+

*/+
*/
*/
*/
*/

*

'D95MRT2.CNTL(SUBMITPA)'

This data set consists of the model J CL edited by the PRINT A command
procedure to produce a job subsequently submitted to the system.

-- JOB CARD INSERT
-- JOB CARD CONT.
//STEPl EXEC PGM=IKJEFTOl
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

-- SEND CARD
/*
//STEP2 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD SYSOUT=(A"MRT) ,DCB=LRECL=l33
--SYSUTl DD INSERT
//SYSIN DD *
/*

Command Procedure Statements 145

146

Example 3

This segment of a command procedure illustrates the use of
& DATATYPE, & LENGTH, & STR, and & SUBSTR built-in functions.

OS/VS2 TSO Tenninal User's Guide

write please enter a number from 1 through 999
read &ans
do while &datatype(&ans)=char or &length(&ans) gt 3

writenr invalid answer &ans - reenter &str(-)
read &ans

end
set &cnt=&substr(&length(&ans),&ans)
write the last digit is a &cnt
set &alphabet = abcdefghijklmnopqrstuvwxyz
write the &cnt letter of the alphabet is -

&substr(&cnt,&alphabet)
write the next five letters are -

&substr(&cnt+1:&cnt+5,&alphabet)
write enter a simple expression (for example, 1+1)
read
write the answer is &eval(&sysdval)
/* If a variable or a string contains any of the */
/* operators, use &str to use them as characters */

if &str(&variable) = &str(*) then +
write variable is an asterisk

/* Use &substr to check a character string */
/* for left parenthesis */
set &=1
do while &i Ie &length(&dsn)

if &substr(&i, &dsn)= &substr(1 , () then goto member
end

Appendix A: IBM 2741 Communication Terminal

The IBM 2741 Communication Terminal resembles a conventional IBM
Selectric ® typewriter mounted on a terminal stand. The 2741, however,
has two controls not found on the typewriter; the Terminal-Mode switch
(labeled COM/LCL) is located on the left side of the terminal stand, and
the Attention key (labeled ATTN) is located on the upper right side of the
keyboard,replacing the INDEX key.

If the COM/LCL switch is set to LCL, the terminal can be used as a
conventional typewriter. To use the 2741 with TSO, set the COM/LCL
switch to COM.

The ATTN key is described in "How to Interrupt Operations from the
Terminal" .

TSO supports three special features available on the 2741:

• The Transmit Interrupt special feature, discussed in "How to Enter
Data"

• The Print Inhibit special feature, discussed in "Contacting TSO"
• The Receive Interrupt special feature, discussed in "How to Interrupt

Operations from the Terminal"

All of these special features are recommended for use with TSO.

This appendix discusses how to:

• Start a TSO terminal session
• Enter data
• Interrupt operations from the terminal
• End a TSO terminal session

How To Start a TSO Terminal Session
Three operations are involved in starting a TSO terminal session:

1. Contacting the computer - that is, establishing a connection
between the terminal and the main computer system

2. Contacting TCAM - that is, identifying your terminal to the proper
TCAM Message Control Program if your terminal is attached to
TCAM through VT AM

3. Contacting TSO - that is, identifying yourself to TSO

Contacting the Computer

A 2741 can be permanently connected to a computer system through a
non-switched (or leased) line, or temporarily connected (like a telephone
connection) through a switched (or dial) line.

If your terminal has a non-switched line:

1. Set the COM/LCL switch to COM.

2. Turn the ON/OFF switch located on the right of the keyboard to
ON. (If the switch is on, turn it off, then on again.) If the keyboard

Appendix A: IBM 2741 Communication Terminal 147

unlocks, the system is ready to receive input data. If the keyboard
does not unlock, the system is not available, and you must try later.

Because of the many types of dial-up devices, procedures for dialing the
CPU cannot be described in detail. Figure 23 shows typical procedures for
terminals connected to the switched line through a telephone data set.
Figure 24 shows typical procedures for terminals using an acoustic coupler.

For more detailed instructions, you should refer to the operating
instructions for the specific type of dialing device being used. If your
terminal connects to the CPU through an IBM 3704/3705 Communications
Controller using the Multiple Terminal Access feature (MTA), you must
sign on by doing the additional steps shown in Figure 25. This sign-on
allows the 3704/3705 to identify the type of terminal you are using.

1. Set the COM/LCL switch to COM.
2. Turn the ON/OFF switch located on the right of the keyboard to ON.
3. Press the TALK button on the telephone modem.
4. Remove the handset from the cradle and dial the system's telephone number.

Your installation should supply the number.
5. Wait for a high-pitched tone. If the number is busy or if there is no answer,

hang up and try again.
6. When you hear the high-pitched tone, push the DATA button. The DATA

light should go on. The keyboard will unlock and the system is ready to receive
input data. If the D AT A light goes off at any time during the terminal session,
you must retry from step 3.

7. Place the handset in the cradle.

Figure 23. Telephone Modem Technique for the IBM 2741 Communication Terminal

1. Set the COM/LCL switch to COM.
2. Turn the ON/OFF switch located on the right of the keyboard to ON.
3. Make sure the acoustic coupler is:

(a) connected to a power supply
(b) turned off
(c) connected to the terminal.

4. Remove the handset from the cradle and dial the system's telephone number.
Your installation should supply the number.

5. Wait for a high-pitched tone. If the number is busy or if there is no answer,
hang up and try again.

6. When you hear the high-pitched tone, place the handset face down in the
coupler box. Make sure the cord is in the slot. Close the lid of the acoustic
coupler and latch it.

7. Turn on the acoustic coupler within 20 seconds of when you hear the
high-pitched tone. The keyboard will unlock and the system is ready to receive
input data.

Figure 24. Acoustic Coupler Technique for the IBM 2741 Communication Terminal

1. When the keyboard unlocks, enter the two characters /" (slash, double
quotes).

2. If an MT A index number.is required in your installation, follow the /" with
the two-digit index number (00, 11, etc.).

3. Press the RETURN key.
If the type element does not move within a few seconds after the carrier returns,
you have signed on successfully and can continue with the procedures for
contacting TSO. If the type element "wiggles" shortly after carrier return, sign-on
was unsuccessful and you should begin again with step 1 of this procedure.

If you delay too long in completing the sign-on message, or if it is entered in
error more times than allowed in your installation, the line connection to the CPU
is automatically broken and you must begin again with step 3 of Figure 23 or 24.

Figure 25. Sign-On Technique for Terminals Attached to an IBM 3704/3705 Communications

Controller MT A Line

148 OS/VS2 TSO Terminal User's Guide

- ----- ----------- - ------------------- ---- -- ------

Contacting TCAM

If your terminal is attached to TCAM through VT AM, you must contact
TCAM as an application of VT AM before contacting TSO. If your terminal
is automatically put in contact with TCAM or is put in contact with TCAM
by the network operator, you need only contact TSO. If you are not put in
contact with TCAM by either of the above mentioned methods, you must
enter an installation-defined character string from your terminal to contact
TCAM. This character string will either be the character string defined in
the VT AM Interpret Table or the OS/VS2 (standard) logon message
consisting of the characters LOGON followed by the name of the TCAM
MCP to be contacted. Contacting TCAM must be a separate operation
from contacting TSO. After you are in contact with TCAM, then contact
TSO.

Contacting TSO

Issue the LOGON command to contact TSO. You have to supply your user
identification number (userid). If you do not supply a userid in your
LOGON command, the system will prompt you for it.

When there are no defaults, TSO prompts you for any missing operands
on the LOGON command. Check with your manager for the defaults at
your installation.

When entering the LOGON command, if more than 28 seconds elapse
between characters, portions of the command may be lost. TSO will prompt
you to re-enter the command.

In some cases, TSO indicates that it is processing your LOGON
command by responding:

LOGON PROCEEDING

but when you are logged on it always types:

READY

The READY message means that you can enter a command. (Note that
TSO responds in uppercase except when it is displaying data defined as
text.)

Some installations will also require:

• A valid password
• An account number (ACCT operand)
• A procedure name (PROC operand)

The procedure name and the account number, if required by your
installation, must be enclosed in parentheses.

If your 2741 has the Print Inhibit special feature, you can enter your
password without having it printed at the terminal. Enter the LOGON
command and your use rid. If your installation requires a password and you
have not supplied it with your LOGON command, TSO types:

ENTER PASSWORD

Appendix A: IBM 2741 Communication Terminal 149

When you type your password, it will be sent to the system, but it will
not be printed as you type. Effectively, the typing element will be
disconnected while you are typing in the password. After you press the
RETURN key to enter the password, the terminal operates in the usual
way, printing each character that is typed.

For a description of the full syntax of the LOGON command, see
OS/VS2 TSO Command Language Reference.

Example

The use rid is MYNUM. The procedure is TRYOUTl. Type

logon mynum proc(tryout1)

and press the RETURN key. (Note that you do not have to type in
uppercase.)

Example

The userid is MYID. The password is APASS. The procedure name is
TSOPROC. Type

logon myid/apass proc(tsoproc)

and press the RETURN key. The userid must be the first operand after the
LOGON command word. The slash must be entered as a delimiter between
the userid and the password. Separate the other operands with a comma or
a space.

How To Enter Data
To enter a line of input into the system, type the line of information and
press the RETURN key. The system does not consider the line of
information complete until the RETURN key is pressed. Consequently, you
can correct typing errors in the line of input anytime before you press the
RETURN key.

A terminal session is a series of interactions between the terminal and
the system. These interactions follow a pattern:

1. The system notifies you that it is ready to accept input by printing
one of the following:

• A message (for example, READY)

• A line number (for example, 00180)

2. Type a line of input and correct any typing errors in the line.

3. Press the RETURN key.

4. When the system is again ready to accept information, the sequence
described in step 1 is repeated.

If your 2741 has the Transmit Interrupt special feature, you can either
wait for the system to supply a message to indicate that it is ready to
accept input, or you can type ahead without waiting for a message. This
special feature also allows the system to interrupt you while you are
entering information. If the system has a high priority message to send to
you, it will interrupt the input operation and print the message.

150 OS/VS2 TSO 1;erminal User's Guide

If your 2741 does not have the Transmit Interrupt special feature, you
must wait for the system to indicate, by unlocking the keyboard, that it is
ready to accept input.

A 2741 used with TSO can have one of three character sets: EBCDIC
(Extended Binary Coded Decimal Interchange Code, Part number
1167963), BCDIC (Binary Coded Decimal Interchange Code, Part number
1167938), or Correspondence (Part number 1167043). Figure 26 shows the
three keyboards associated with the three character sets. The print element
on your terminal will have the last three digits of the part number printed
on the top. A few special characters are interpreted differently from their
keyboard representation. These are:

For Correspondence

± (plus-minus)
] (right bracket)
[(left bracket)

For BCDIC

± (plus-minus)
tI (lozenge)

Correcting Typing Errors

becomes I (or)
becomes > (greater than)
becomes < (less than)

becomes I (or)
becomes.., (not)

Two ways to correct typing errors are:

• Backspace to the error and then retype the line from that point. WheJ1
the line contains the correct information, press the RETURN key to
enter the information into the system.

• Press the ATTN key to delete the entire line. The system
acknowledges that it has deleted the line by printing the characters !D.
The system then advances the paper to accept a new line.

The techniques above are defaults. Other ways to correct typing errors
can be defined with the PROFILE command, which is described in OS/VS2
TSO Command Language Reference.

How To Interrupt Operations from the Terminal
An attention interruption is a signal from your terminal to TSO that you
want to interrupt the operation that is taking place. You can use an
attention interruption to:

• Delete a line of input that you have typed but have not entered into
the system

• Stop the listing of output being sent to your terminal by the system
• Interrupt the command or program that is executing

An attention interruption may be entered by:

• Pressing the ATTN key
• Simulating an attention interruption

Appendix A: IBM 2741 Communication Terminal 15t

EBCDIC Keyboard (Part Number 1167963)

~ nCJ w w IT] mCJ [I]G]o]ITJO IT] ~A~KE
ClR ~GGu008GJDG8w D

[;f]Q[JG0G0GJ0QDJOO
SET [E[J[J0[J8~G0CJCJ[JJ1 ISHIFTI I

I ~ACEBAR I

Correspondence Keyboard (Part Number 1167043)

[;J W ITJ rn CJ OJ rn IT] [I] [J OJ ITJ D [J BACK
::: ·ll:::1 III, AI 11

2

i sl 1
1

3

1

E D ";IR FII~IT ~ I;IY ~ 1,7t ! I; II j 1,9,l",OIP ; II; ~=Ei
SET [E[J[JG8D8G0DDITJI ISHIFTI I

I SPACE BAR I
Figure 26. IBM 2741 Communication Terminal Keyboards

152 OS/VS2 TSO Terminal User's Guide

ON

OFF

ON

OFF

The ATTN Key

The simplest way to enter an attention interruption is to press the ATTN
key. The system replies by printing one of the following responses:

! or !D or ! I

If your 2741 has the Receive Interrupt special feature, the system will
respond to the ATTN key at any time. Without the special feature, the
system will respond to the ATTN key only when input can be entered.

TSO Responses to an Attention Interruption

There are three possible responses to an attention interruption:

!D or ! or ! I

If an attention interruption was entered to delete a line of input that you
have typed but have not entered into the system, TSO responds by printing
!D and advancing the paper to accept a new line of input.

If you enter an attention interruption to stop printing at your terminal or
to stop the execution of a program or command, TSO prints !, advances the
paper to a new line, and prints a message.

If the message is READY, you have interrupted a command. You can
either:

• Enter another command
• Enter a null line by pressing the RETURN key to continue execution

of the interrupted command
• Enter another attention interruption to receive the READY message.

If the message is a command name, you have interrupted a subcommand.
You can either:

• Enter another subcommand
• Enter a null line by pressing the RETURN key to continue execution

of the subcommand
• Enter another attention interruption to receive the READY message.

Simulated Attention Interruptions

Another way to enter an attention interruption is to simulate one. Early in
the terminal session, enter the TERMINAL command. The TERMINAL
command specifies the conditions under which you want a simulated
attention interruption to occur. (See OS/VS2 TSO Command Language
Reference, for a description of the TERMINAL command.)

If your 2741 has both the Transmit Interrupt' special feature and the
Receive Interrupt special feature, you can enter an attention interruption at
any time by pressing the ATTN key. You also can use the TERMINAL
command to specify when you want to enter a simulated attention
interruption.

If your 2741 has neither the Transmit Interrupt nor the Receive Interrupt
special features, you can only use the ATTN key when you can enter a line
of input. Therefore, early in the terminal session, issue a TERMINAL

Appendix A: IBM 2741 Communication Terminal 153

command to specify when TSO is to allow you the opport~nity to request
an attention interruption. This will allow you to enter an attention
interruption by:

• Pressing the ATTN key when you can enter input
• Having previously specified (with the TERMINAL command) that an

opportunity to request an attention interruption is to take place after a
given time interval. For example, assume a 30-second time interval.
The computer would process your command for 30 seconds; if neither
input nor output takes place, TSO will signal that it is ready to accept
an attention interruption by jiggling the print element. You may then
press the ATTN key, enter a character string that you have defined as
the attention interruption indicator, or enter a null line. (To enter a
null line, press the RETURN key without typing anything.) After 30
more seconds of program execution, the sequence will repeat.

• Having previously specified (with the TERMINAL command) that an
attention interruption is to take place after a given number of lines of
output have been printed at the terminal. For example, assume you
have specified a 50 line interval. After 50 consecutive lines of output
have been printed at the terminal, TSO will signal that it is ready to
accept an attention interruption. You may then press the ATTN key,
enter a character string that you have defined as the attention
interruption indicator, or continue by entering a null line. (To enter a
null line, press the RETURN key without typing anything.) You will
have the opportunity to request an attention interruption after every
50th consecutive line of output.

If your 2741 has the Receive Interrupt special feature, but not the
Transmit Interrupt special feature, you can signal an attention interruption
by:

• Pressing the ATTN key at any time.
• Having previously specified (with the TERMINAL command) that an

attention interruption is to take place after a given number of lines of
output have been printed at the terminal. For example, if you have
specified a 50-line interval, after 50 consecutive lines of output have
been printed at the terminal, TSO will signal that it is ready to accept
an attention interruption by jiggling the print element. You may then
enter an attention interruption by pressing the ATTN key, or continue
by entering a null line (pressing the RETURN key). You will have the
opportunity to request an attention interruption after every 50th
consecutive line of output.

Attention Interruption Levels

When TSO indicates that it is ready to accept a simulated attention
interruption, you can press the ATTN key, enter a character string that you
defined in the TERMINAL command, or enter a digit from 1 to 9. Entering
a 1 is the same as entering the simulated attention interruption character
string. If you enter a digit other than 1, you will cause a higher level of
attention interruption.

The following sample of a portion of a terminal session illustrates how to
obtain a higher level of attention interruption.

154 OS/VS2 TSO Terminal User's Guide

Assume you are listing part of a data set using the LIST subcommand of
the EDIT command, and have requested, through the TERMINAL
command, that you be given a chance to request a simulated attention
interruption after every third line of continuous output.

The listing at the terminal would look like this:

list
000010This is the first line of the data set.
000020This is the second line of the data set.
000030This is the third line of the data set.

At this point TSO would indicate that you have the opportunity to cause
a simulated attention interruption.

By Entering a Character String: If you entered the character string defined
in the TERMINAL command (for example SIMA), TSO would print !,
advance the paper one line, and print a message telling you that a
subcommand of EDIT has been interrupted:

sima!
EDIT

At this point, you could enter any subcommand of EDIT, enter a null
line to continue with the listing of the data set, or cause another attention
interruption.

If you then entered the character string for a simulated attention
interruption, or caused another attention interruption by pressing the ATTN
key, TSO would again print the character !, advance the paper, and print a
READY message.

sima!
READY

The READY message means that you can enter any command.

The sequence would look like this:

list
000010This is the first line of the data set.
000020This is the second line of the data set.
000030This is the third line of the data set.
sima!
EDIT
sima!
READY

By Entering a Digit: If, instead of entering the character string for
simulated attention interruption after the third line of the data set, you
enter a 2, TSO would print the character !, advance the paper, and print the
READY message. The sequence would look like this:

list
000010This is the first line of the data set.
000020This is the second line of the data set.
000030This is the third line of the data set.
2 !
READY

Appendix A: IBM 2741 Communication Terminal 155

You could use this facility to stop using a subcommand of EpIT and
start using another command.

Entering a digit in response to an opportunity for a simulated attention
interruption is like entering that many attention interruptions, and letting
the system respond each time.

How to End a TSO Terminal Session
To end a terminal session, enter either:

logoff
or

logon

Logging on ends the present session and automatically starts a new
session. In either case, TSO types:

userid LOGGED OFF TSO AT time ON date

In place of the lowercase letters, TSO prints out information applicable
to the terminal session.

When you are finished, turn the terminal off.

IS6 OS/VS2 TSO Terminal User's Guide

D
u

SET

SYSTEM

§TTEND

UNATTEND

w..STER 'liNTER 1 'I'NTEl2

ON

§:::o §:::o -§ REC REC

OFF HOME HOME

Appendix B: IBM 1052 Printer-Keyboard

TSO supports the IBM 1052 Printer-Keyboard.

Several special features are available with the 1052 Printer-Keyboard.
Those supported by TSO are:

• The Receive Interrupt special feature, discussed in "How to Interrupt
Operations from the Terminal"

• The Transmit Interrupt special feature, discussed in "How to Enter
Data"

• The Auto EOB special feature, discussed in "How to Enter Data"
• The Text Time-Out Suppression special feature, discussed in "How to

Enter Data"

This appendix discusses how to:

• Start a TSO terminal session
• Enter data
• Interrupt operations from the terminal
• End a TSO terminal session

The control panel switches must be set as shown in Figure 28. The
diagram of the 1052 control panel in Figure 27 also shows the correct
switch settings.

KEYIIOA.IO lEAD!. 1 UAOEk2 PUNCH 1 PUNCH 2 STOf'COOE AUTO FILL PUNCH SYSTEM ,CO SYSTEM TEST SINGtECY

§:::o §::o §::o uc §:: SENSE ON §OR~L §OG~M gN~L
ON

§~~:
§OFF § ~ § g:~~ ~

HOME HOME HOME HOM' HOM OFF OFF IIKSP DUP AUTO OFF HOME

IOISTOf'

§~::
HOME

~;~

111111111111111111111111111111111111111 dlllill dill III II dlllllllllllllllllill
o 5 10 15 20 25 30 35 04() 45 50 55 60 65 70 75 80 as 90 95 100 105 110 115 120 125 130

Figure 27. IBM 1052 Printer-Keyboard Control Panel

Switch

SYSTEM
MASTER
PRINTERl
PRINTER2
KEYBOARD
READERl
READER2
PUNCHl
PUNCH2
STOP CODE
AUTO FILL
PUNCH
SYSTEM
EOB
SYSTEM
TEST
SINGLE CY
RDR STOP

Setting

ATTEND
OFF
SEND/REC
HOME
SEND
OFF
OFF
OFF
OFF
OFF
OFF
NORMAL
PROGRAM
AUTO
UP
OFF
OFF
OFF

Figure 28. Proper Switch Settings on the IBM 1052 Printer-Keyboard Control Panel

Appendix B: IBM 1052 Printer-Keyboard 157

How to Start a TSO Terminal Session

Three operations are involved in starting a TSO terminal session:

1. Contacting the computer - that is, establishing a connection
between the terminal and the main computer system.

2. Contacting TCAM - that is, identifying your terminal to the proper
TCAM Message Control Program if your terminal is attached to
TCAM through VTAM.

3. Contacting TSO - that is, identifying yourself to TSO.

Contacting the Computer

A 1052 Printer-Keyboard can be permanently connected to a computer
system through a nonswitched (or leased) line or temporarily connected
(like a telephone connection) through a switched (or dial) line.

If your terminal has a nonswitched line:

1. Set the control panel switches as shown in Figure 28. (The correct
switch settings are also shown in Figure 27).

2. Turn the MAIN POWER switch located on the side of the 1051
Control Unit to ON. The keyboard will unlock and the PROCEED
light will go on. This means the system is ready to receive input data.
If the PROCEED light does not go on, press the REQUEST key. If
the PROCEED light still does not go on, the system is unavailable
and you must try again later.

Because of the many types of dial-up devices, procedures for dialing the
CPU cannot be described in detail. Figure 29 shows typical procedures for
terminals connected to the switched line through a telephone modem.
Figure 30 shows typical procedures for terminals using an acoustic coupler.
For more detailed instructions, you should refer to the operating
instructions for the specific type of dialing device being used. If your
terminal connects to the CPU through an IBM 3705 Communications
Controller using the Multiple Terminal Access feature (MTA), you must
sign on by doing the additional steps shown in Figure 31. This sign-on
allows the 3705 to identify the type of terminal you are using.

1. Set the control panel switches as shown in Figure 28. (The correct switch
settings are also shown in Figure 27.)

2. Turn the MAIN POWER switch located on the side of the 1051 Control Unit
to ON.

3. Press the TALK button on the telephone data set.
4. Remove the handset from the cradle and dial the system's telephone number.

Your installation should supply the number.
5. Wait for a high-pitched tone. If the number is busy or if there is no answer,

hang up and try again.
6. When you hear the high-pitched tone, push the DATA button. The DATA

light should go on. The keyboard will unlock and the PROCEED light will go
on. This means the system is ready to receive input data. If the PROCEED
light does not go on, press the REQUEST key. If the DATA light goes off at
any time during the terminal session, you must retry from step 3.

7. Place the handset in the cradle.

Figure 29. Telephone Modem Technique for the IBM 1052 Printer-Keyboard

158 OS/VS2 TSOTerminal User's Guide

1. Set the control panel switches as shown in Figure 28. (The correct switch
settings are also shown in Figure 27.)

2. Turn the MAIN POWER switch located on the side of the 1051 Control Unit
to ON.

3. Make sure the acoustic coupler is:
(a) connected to a power supply
(b) turned off
(c) connected to the terminal

4. Remove the handset from the cradle and dial the system's telephone number.
Your installation should supply the number.

5. Wait for a high-pitched tone. If the number is busy or if there is no answer,
hang up and try again.

6. When you hear the high-pitched tone, place the handset face down in the
coupler box. Make sure the cord is in the slot. Close the lid of the acoustic
coupler and latch it.

7. Turn on the acoustic coupler within 20 seconds after you hear the high-pitched
tone. The keyboard will unlock and the PROCEED light will go on. This
means the system is ready to receive input data. If the PROCEED light does
not go on, press the REQUEST key.

Figure 30. Acoustic Coupler Technique for the IBM 1052 Printer-Keyboard

1. When the PROCEED light turns on, enter the two characters /" (slash, double
quotes).

2. If an MT A index number is required in your installation, follow the /" with
the two-digit index number (00, 11, etc.)

3. Press the RETURN key.
4. Enter an EOB.
If the type element does not move within a few seconds after the carrier returns,
you have signed on successfully and can continue with the procedures for
contacting TSO. If the type element "wiggles" shortly after carrier return, sign-on
was unsuccessful and you should begin again with step 1 of this procedure.

If you delay too long in completing the sign-on message, or if it is entered in
error more times than allowed in your installation, the line connection to the CPU
is automatically broken and you must begin again with step 3 of· Figure 29 or 30.

Figure 31. Sign-On Technique for Terminals Attached to an IBM 3705 Communications
Controller MT A Line

D

D

D

D

Figure 32. Keyboard of the IBM 1052 Printer-Keyboard

D
I REQUEST I

I RESEND I

Appendix B: IBM 1052 Printer-Keyboard 159

Contacting TCAM

If your terminal is attached to TCAM through VT AM, you must contact
TCAM as an application of VT AM before contacting TSO. If your terminal
is automatically put in contact with TCAM or is put in contact with TCAM
by the network operator, you need only contact TSO. If you are not put in
contact with TCAM by either of the above mentioned methods, you must
enter an installation-defined character string from your terminal to contact
TCAM. This character string will either be the character string defined in
the VTAM Interpret Table or the OS/VS2 (standard) logon message
consisting of the characters LOGON followed by the name of the TCAM
MCP to be contacted. Contacting TeAM must be a separate operation
from contacting TSO. After you are in contact with TCAM, then contact
TSO.

Contacting TSO

Issue the LOGON command to contact TSO. You have to supply your user
identification number(userid). If you do not supply a userid on your
LOGON command, the system will prompt you for it.

When there are no defaults, TSO prompts you for any missing operands
on the LOGON command. Check with your manager for the defaults at
your installation.

In some cases, TSO indicates that it is processing the LOGON command
by responding:

LOGON PROCEEDING

but when you are logged on it always types:

READY

The READY message means that you can enter a command. (Note that
TSO responds in uppercase except when it is displaying data defined as
text.)

Some installations will also require:

• A valid password
• An account number (ACCT operand)
• A procedure name (PROC operand)

The procedure name and the account number, if required by your
installation, must be enclosed in parentheses.

You can enter your password without having it printed at the terminal.
First, ent~r the LOGON command and your userid. If the installation
requires a password and you have not supplied it with your LOGON
command, TSO will prompt you for it:

ENTER PASSWORD-

160 OS/VS2 TSO Terminal User's Guide

When you type your password, it will be sent to the system, but will not
be printed as you type. Effectively, the typing element will be disconnected
while you are typing in the password. After you press the RETURN key to
enter the password, the terminal operates in the usual way, printing each
character that is typed.

For a description of the full syntax of the LOGON command, see
OS/VS2 TSO Command Language Reference.

Example

The userid is MYNUM. The procedure name is TRYOUTl. (If the
PROCEED light is not on, press the REQUEST key.) Type:

logon mynum proc(tryout1)

and press the RETURN key. If the PROCEED light does not go off, hold
down the ALTN CODING key and press the EOB(5) key. (Note that you
do not have to type in uppercase.)

Example

The userid is MYID; the password is AP ASS; the procedure name is
TSOPROC. (If the PROCEED light is not on, press the REQUEST key.)
Type:

logon myid/apass proc(tsoproc)

and press the RETURN key. If the PROCEED light does not go off, hold
down the ALTN CODING key and press the EOB (5) key. The slash must
be entered as a delimiter between the userid and the password. The userid
must be the first operand after the LOGON command word. Separate the
other operands with a comma or a space.

How to Enter Data
To enter a line of input into the system:

1. Make sure that the PROCEED light is on; if it is off, press the
REQUEST key.

2. Type the line of information.

3. Press the RETURN key. If the PROCEED light does not go off, hold
down the ALTN CODING key and press the EOB (5) key.

The system does not consider the line of information complete until the
PROCEED light goes off. Consequently, you can correct typing errors in
the line of input anytime before you press the RETURN key. If you have
the Auto EOB special feature, pressing the RETURN key ends a line; that
is, causes the PROCEED light to go off. If your 1052 Printer-Keyboard
does not have the Auto EOB special feature, that is, if pressing the
RETURN key does not turn off the PROCEED light, hold down the
ALTN CODING key and press the EOB (5) key to end a line.

Appendix B: IBM 1052 Printer-Keyboard 161

A terminal session· is a series of interactions between the terminal and
the system. These interactions follow a pattern:

1. The system notifies you that it is ready to accept input by printing
one of the following:

.A message (for example, READY)

• A line number (for example,00180)

• A prompting character (an underscore, "-", followed by a
backspace)

2. The system then turns on the PROCEED light.

3. Type a line of input and correct any typing errors in the line.

4. Press the RETURN key (or EOB).

5. The system turns off the PROCEED light.

6. When the system is again ready to accept information, the sequence
described in step 1 is repeated.

If your 1052 Printer-Keyboard has the Transmit Interrupt special feature,
you can either "type ahead" without waiting for a message, or you can wait
for the message. You can enter data whenever the PROCEED light is on.

If your 1052 Printer-Keyboard does not have the Text Time-Out
Suppression special feature and no data has been entered for approximately
9 to 18 seconds, the keyboard will lock. You must then wait for TCAM to
poll the terminal before you can enter data. If your 1052 has the Text
Time-Out Suppression special feature, coding the NOTIMEOUT operand
on the TERMINAL command prevents the keyboard from locking,
regardless of the number of seconds that has elapsed without data being
entered.

Correcting Typing Errors

Two ways to correct typing errors are:

• Backspace to the error and then retype the line from that point. When
the line contains the correct information, press the RETURN key (or
EOB) to enter the information into the system.

• Hold down the ALTN CODING key and press the EOT (6) key to
delete the entire line. The system acknowledges that it has deleted the
line by printing the characters !D. The system then advances the paper
to accept a new line.

The above techniques are defaults. Other ways to correct typing errors
can be defined with the PROFILE command, which is described in OS/VSl
TSO Command Language Reference.

How to Interrupt Operations from the Terminal
An attention interruption is a signal from your terminal to TSO that you
want to interrupt the operation that is taking place. You can use an
attention interruption to:

162 OS/VS2 TSO Terminal User's Guide

• Delete a line of input that you have typed but have not entered into
the system

• Stop the listing if output is being sent to your terminal by the system
• Interrupt the command or program that is executing

An attention interruption may be entered by:

• Holding down the ALTN CODING key and pressing the EOT (6)
key

• Pressing the LINE RESET/ATTN key
• Simulating an attention interruption

The LINE RESET/ATTN Key and the EOT Key

The simplest way to cause an attention interruption is to hold down the
ALTN CODING key and press the EOT (6) key when the keyboard is
unlocked. The system replies by printing one of the following responses:

! or !D or ! I

If your 1052 Printer-Keyboard has the Receive Interrupt special feature,
and the keyboard is locked (the PROCEED light is off), you can cause an
attention interruption by pressing the LINE RESET/ATTN key. Make sure
that the PROCEED light is not on (and will not come on if you hit the
REQUEST key).

TSO Responses to an Attention Interruption

There are three possible responses to an attention interruption:

! or !D or ! I

If an attention interruption was entered to delete a line of input which
you have typed but have not entered into the system, TSO responds by
printing !D, advancing the paper to accept a new line of input, and
unlocking the keyboard.

If you cause an attention interruption to stop printing at your terminal or
to stop the execution of a program or command, TSO prints either ! or ! I ,
advances the paper to a new line, and prints a message.

If the message is READY, you have interrupted a command. You can:

• Enter another command
• Enter a null line by pressing the RETURN key to continue execution

of the interrupted command
• Cause another attention interruption to receive the READY message

If the message is a command name, you have interrupted a subcommand.
You can:

• Enter another subcommand of that command
• Enter a null line by pressing the RETURN key to continue execution

of the subcommand
• Cause another attention interruption to receive the READY message

Appendix B: IBM 1052 Printer-Keyboard 163

Simulated Attention Interruptions

Another way to cause an attention interruption is to simulate one. Early in
the terminal session, enter the TERMINAL command. The TERMINAL
command specifies the conditions under which you want a simulated
attention interruption to occur. (See OS/VS2 TSO Command Language
Reference for adescription of the TERMINAL command.)

If your 1052 Printer-Keyboard has the Receive Interrupt special feature,
but not the Transmit Interrupt special feature, you can signal an attention
interruption by:

• Holding down the ALTN CODING key and pressing the EOT (6)
key any time the PROCEED light is on.

• Pressing the LINE RESET/ATTN key when the PROCEED light is
off (and cannot be turned on with the REQUEST key).

• Having previously specified (with the TERMINAL command) that an
attention interruption is to take place after a given number of lines of
output have been printed at the terminal. For example, assume you
have specified a 50-line interval. After 50 consecutive lines of output
have been printed at the terminal, TSO will signal that it is ready to
accept an attention interruption by jiggling the type element. You may
then cause an attention interruption by holding down the AL TN
CODING key and pressing the EOT (6) key or continue processing
by entering a null line (pressing the RETURN key). You will have the
opportunity to request an attention interruption after every 50th
consecutive line of output.

Attention Interruption Levels

When TSO indicates that it is ready to accept a simulated attention
interruption, you can hold down the AL TN CODING key and press the
EOT (6) key, enter a character string that you defined in the TERMINAL
command, or enter a digit from 1 to 9. Entering a 1 is the same as entering
the simulated attention interruption character string. If you enter a digit
other than 1, you will cause a higher level of attention interruption.

The following example of a portion of a terminal session illustrates how
to obtain a higher level of attention interruption.

Assume you are listing part of a data set using the LIST subcommand of
the EDIT command, and have requested, through the TERMINAL
command, that you be given a chance to request a simulated attention
interruption every third line of continuous output.

The listing at the terminal would look like this:

list
000010This is the first line of the data set.
000020This is the second line of the data set.
000030This is the third line of the data set.

At this point TSO would indicate that you have the opportunity to cause
a simulated attention interruption.

164 OS/VS2 TSO Terminal User's Guide

By Entering a Character String: If you entered the character string defined
in the TERMINAL command, (for example, SIMA), TSO would print !,
advance the paper one line, and print a message telling you that a
subcommand of EDIT has been interrupted:

sirna!
EDIT

At this point, you could enter any subcommand of EDIT, enter a null
line to continue with the listing of the data set, or cause another attention
interruption.

If you then entered the character string for a simulated attention
interruption, or caused an attention interruption by holding down the
ALTN CODING key and pressing the EOT (6) key, TSO would again
print the character !, advance the paper. and print a READY message.

sirna!
READY

The READY message means that you can enter any command.

The sequence would like this.

list
000010This is the first line of the data set.
000020This is the second line of the data set.
000030This is the third line of the data set.
sirna!
EDIT
sirna!
READY

By Entering a Digit: If, instead of entering the character string for a
simulated attention interruption after the third line of the data set, you
enter a 2, TSO would print the character !, advance the paper, and print the
READY message. The sequence would look like this:

list
000010This is the first line of the data set.
000020This is the second line of the data set.
000030This is the third line of the data set.
2 !
READY

You could use this facility to stop using a subcommand of EDIT and
start using another command.

Entering a digit in response to an opportunity for a simulated attention
interruption is like entering that many attention interruptions, and letting
the system respond to each one.

How to End a TSO Terminal Session
To end a terminal session, enter either:

logoff
or

logon

Appendix B: IBM 1052 Printer-Keyboard 165

Logging on ends the present session and automatically starts a new
session. In either case, TSO types:

userid LOGGED OFF TSO AT time ON date

In place of the lowercase letters, TSO prints out information applicable
to the terminal session.

When you are finished, turn the MAIN POWER switch to OFF.

166 OS/VS2 TSO Terminal User's Guide

Appendix C: Teletype* Model 33 and 35

TSO supports the Teletype* Model 33 and 35 terminals (see Figure 33 and
Figure 34).

Note: Terminals that are equivalent to those explicitly supported may
also function satisfactorily with TSO. The customer is responsible for
establishing equivalency. IBM assumes no responsibility for the impact
that any changes to IBM-supplied products or programs may have on
such terminals.

This appendix discusses how to:

• Start a TSO terminal session

• Enter data

• Interrupt operations from the terminal

• End a TSO terminal session

PAPER TAPE PUNCH
aRK-RLS REST

0 0 0 0
REl OFF

OUT OF SERV, NORMAL-RESTORE

0 0 CDOCDOCDCDOCDCDQOO® 0 0 1 2 3 4 5 6 7 8 9 0 : - IS

8.SP. ON

~ 8G)Q®@eOG)00CD@@ ESC Q W E R T Y U lOP FEED TURN

TELEPHONE
PAPER TAPE READER

8Q(V®CD®G)00630@88 DIAL

START

[]STOP 8G)QG)QOQ)QOOCD8
ORIG CLR ANS TST lCl BUZ-RlS

FREE

I SPACE I

Figure 33. Teletype* Model 33 Keyboard

r----------,

000000
TO TO TO ROTR HERE BREAK

CAll IN OFF ON ON IS

MOTOR

666000

QQCDCDCDCDOCDCDGOO
8G)Q~Cf)evG)QO@CD@@

8Q®©CDC:VQOCDeO@
80QQQG)G)QOOev8
®I L--__ S_PACE __ --J'®®e

~------------------------~

Figure 34. Teletype* Model 35 Keyboard

*Trademark of Teletype Corporation

000000

BRK-RlS REST

0 0
NORIML-RESTORE

0 ®
~ -

[J
P(5l0 TEL~,~~NE

BUZ-

.000000

Appendix C: Teletype* Model 33 and 3S 167

How to Start a TSO Terminal Session

Three operations are involved in starting a TSO terminal session:

1. Contacting the computer - that is, establishing a connection
between the terminal and the main computer system.

2. Contacting TCAM - that is, identifying your terminal to the proper
TCAM Message Control Program if your terminal is attached to
TCAM through VT AM.

3. Contacting TSO - that is, identifying yourself to TSO.

Contacting the Computer

To make a telephone connection between your Teletype* and the computer:

1. Press the ORIG button to obtain a dial tone. The speaker volume
control is under the keyboard shelf to the right. Make sure that the
volume is high enough for the dial tone to be audible. After you
make a contact, you may turn the volume down.

2. Dial the system's telephone number. Your installation should supply
you with the number.

3. A high-pitched tone indicates the terminal is in contact with the
system.

If you have a Model 35, press the K button on the left side of the
control panel to turn the keyboard on.

If there is no answer or if the number is busy, push the CLR button to
break the connection and try again later.

Contacting TCAM

If your terminal is attached to TCAM through VT AM, you must contact
TCAM as an application of VT AM before contacting TSO. If your terminal
is automatically put in contact with TCAM or is put in contact with TCAM
by the network operator, you need only contact TSO. If you are not put in
contact with TCAM by either of the above mentioned methods you must
enter an installation-defined character string from your terminal to contact
TCAM. This character string will either be the character string defined in
the VT AM Interpret Table or the OS/VS2 (standard) logon message
consisting of the characters LOGON followed by the name of the TeAM
MCP to be contacted. Contacting TCAM must be a separate operation
from contacting TSO. After you are in contact with TCAM, then contact
TSO.

Contacting TSO

Issue the LOGON command to contact TSO. You have to supply your user
identification number (userid). If you do not supply a userid on your
LOGON command, the system will prompt you for it.

*Trademark of Teletype Corporation

168 OS/VS2 TSO Terminal User's Guide

The use rid must be the first operand after the LOGON command. the
slash is used as a delimiter between the use rid and the password. Separate
the other operands with a comma or a space.

TSO prompts you for any missing operands on the LOGON command
when there are no defaults. Check with your manager for the defaults used
by your system.

TSO may type a preliminary message:

LOGON PROCEEDING

but when you are logged on, TSO types the message:

READY

The message READY means that you can enter a command.

For a description of the full syntax of the LOGON command, see
OS/VS2 TSO Command Language Reference.

Some installations also require:

• A valid password
• An account number (ACCT operand)
• A procedure name (PROC operand)

The procedure name and the account number, if required by your
installation, must be enclosed in parentheses.

Example

The use rid is MYNUM. The procedure name is TRYOUTl. Type:

LOGON MYNUM PROC(TRYOUT1)

and press the RETURN key. (Some TSO installations require you to end a
line by holding down the CTRL key and pressing the X-OFF key. Check
with your installation manager to determine your requirements.)

Note: Teletype does not have lowercase letters.

Example

The password is APASS. The userid is MYID. The procedure name is
TSOPROC. Type:

LOGON MYID/APASS PROC(TSOPROC)

and press the RETURN key (or if your installation requires it, hold down
the CTRL key and press the X-OFF key.)

Appendix C: Teletype* Model 33 and 35 169

How to Enter Data

A terminal session is a series of interactions between the terminal and the
system. These interactions follow a pattern:

1. The system notifies you that it is ready to accept input by printing
one of the following:

• A message (for example, READY)

• A line number (for example, 00180)

• A prompting character (a period followed by a carriage return)

The keyboard on a Teletype* cannot be locked. If the system is not
ready to receive input, it will send a character that does not print. This will
cause a noise at the Teletype*, an indication not to enter data. When the
system is ready to accept input, the noise will cease.

2. Type a line of input and correct any typing errors.

3. Press the RETURN key (or if your installation requires it, hold down
the CTRL key and press the X-OFF key).

4. When the system is again ready to accept information, the sequence
described in step 1 is repeated.

To enter a line of input into the system, type the line of information and
press the RETURN key (or hold down the CTRL key and press the
X-OFF key).

The system does not consider the line of information complete until the
RETURN key is pressed (or the CTRLkey is held down and the X-OFF
key is pressed).

Correcting Typing Errors

To correct a typing error of one or more characters, hold down the SHIFT
key and press the Backarrow (-) key. Either a backarrow or an underscore
prints, and the character immediately preceding it in the input line is
deleted. For example, if you mistype TRIAL as

TRISL

hold down the CTRL key, press the backarrow (-) key twice, and type

.... AL

The line then appears as:

TRISL .. -AL

but TSO interprets the line as:

TRIAL

*Trademark of Teletype Corporation

170 OS/VS2 TSO Terminal User's Guide

The techniques above are defaults. Other ways to correct typing errors
can be defined with the PROFILE command, described in OS/VS2 TSO
Command Language Reference.

To delete an entire line, hold down the CTRL key and press the X key.
(If your installation requires you to end a line by holding down the CTRL
key and pressing the X-OFF key, then to delete a line you must hold down
the CTRL key and press the X key, and then press the X-OFF key.)

How to Interrupt Operations from the Terminal
An attention interruption is a signal from your terminal to TSO that you
want to interrupt the operation that is taking place.· Use an attention
interruption to:

• Stop the listing of output being sent to your terminal by the system
• Interrupt the command or program that is executing

There are two ways to signal an attention interruption:

• You can cause an attention interruption by pressing the BREAK key,
then pressing the BRK-RLS key. If you have a Model 35, you then
must press the K key located on the left side of the control panel to
reset,your terminal so that the system can receive your input.

• You can simulate an attention interruption.

When you cause an attention interruption, the system replies by printing

! or ! I

TSO Responses to an Attention Interruption

If you cause an attention interruption to stop printing at your terminal or to
stop the execution of a program or command, TSO prints !, advances the
paper to a new line, and prints a message.

If the message is READY, you have interrupted the execution of a
command. You can either:

• Enter another command
• Continue execution of the interrupted command by entering a null line

(pressing the RETURN key)
• Cause another attention interruption to receive the READY message

If the message is a command name, you have interrupted the execution
of a subcommand. You can either:

• Enter another subcommand of that command
• Continue execution of the subcommand by entering a null line

(pressing the RETURN key)
• Cause another attention interruption to receive the READY message

Simulated Attention Interruptions

Another way to cause an attention interruption is to simulate one. Early in
your terminal session, enter the TERMINAL command. The TERMINAL
command specifies the conditions under which you want a simulated
attention interruption to occur. (For a description of the TERMINAL
command, see OS/VS2 TSO Command Language Reference).

Appendix C: Teletype* Model 33 and 3S 171

You can signal an attention interruption two ways:

1. If your terminal is typing output, you can cause an attention
interruption by pressing the BREAK key then pressing the BRK-RLS
key. If you have a Model 35, you must then press the K key, located
on the left side of the control panel, to reset your terminal so that the
system can receive your input.

2. By having previously specified (with the TERMINAL command) that
an attention interruption is to take place after a given number of lines
of output have been printed at the terminal. For example, assume you
have specified a 50-line interval. When 50 consecutive lines of output
have been printed at the terminal, TSO will signal that it is ready to
accept an attention interruption by jiggling the print element. You can
enter a digit to specify level of attention interruption, a character
string you have defined. as the attention interruption indicator, or
continue execution of the program by entering a null line. You will
have the opportunity to request an attention interruption after every
50th consecutive line of output.

Attention Interruption Levels

When TSO indicates that it is ready to accept a simulated attention
interruption, you can enter either a character string that you defined in the
TERMINAL command, or a digit from 1 to 9. Entering a 1 is the same as
entering the simulated attention interruption character string. If you enter a
digit other than 1, you will cause a higher level of attention interruption.

The following example of a portion of a terminal session illustrates how
to obtain a higher level of attention interruption.

Assume you are listing part of a data set using the LIST subcommand of
the EDIT command, and have requested, through the TERMINAL
command, that you be given a chance to request a simulated attention
interruption every third line of continuous output. The listing at the
terminal would look like this:

LIST
000010THE FIRST LINE OF THE DATA SET.
000020THE SECOND LINE OF THE DATA SET.
000030THE THIRD LINE OF THE DATA SET.

At this point TSO would indicate that you have the opportunity to cause
a simulated attention interruption.

By Entering a Character String: If you enter the character string defined in
the TERMINAL command (for example, SIMA) TSO prints !, advances the
paper one line, and prints a message indicating that a subcommand of EDIT
has been interrupted:

SIMA!
EDIT

At this point, you could enter any subcommand of EDIT, continue with
the listing of the data set by entering a null line, or cause another attention
interruption.

172 OS/VS2 TSO Terminal User's Guide

If you then enter the character string for a simulated attention
interruption, or cause an attention interruption by pressing the BREAK key
and then the BRK-RLS key, TSO again prints the character !, advances the
paper, and prints a READY message

SIMA!
READY

The READY message means that you can enter any command.

The sequence would look like this.

LIST
000010THE FIRST LINE OF THE DATA SET.
000020THE SECOND LINE OF THE DATA SET.
000030THE THIRD LINE OF THE DATA SET.
SIMA!
EDIT
SIMA!
READY

By Entering a Digit: If, instead of entering the character ~tring for a
simulated attention interruption after the third line of the data set, you
enter a 2, TSO prints the character !, advances the paper one line, and
prints the READY message:

LIST
000010THE FIRST LINE OF THE DATA SET.
000020THE SECOND LINE OF THE DATA SET.
000030THE THIRD LINE OF THE DATA SET.
2 !
READY

You can use this facility to stop using a subcommand of EDIT and start
using another command.

Entering a digit in response to an opportunity for a simulated attention
interruption is like entering that many attention interruptions, and letting
the system respond to each one.

How to End a TSO Terminal Session
To end a terminal session enter either:

LOGOFF
or

LOGON

Logging on ends the present session and automatically starts a new
session without disconnecting the terminal from the system. In either case,
TSO types:

userid LOGGED OFF TSO AT time ON date

In place of the lowercase letters, TSO prints information applicable to
your terminal session.

When you are finished, press the CLR button to break the telephone
connection.

Appendix C: Teletype* Model 33 and 35 173

174 OS/VS2 TSO Terminal User's Guide

Appendix D: IBM 2260 and 2265 Display Stations

The IBM 2260 and 2265 Display Stations are visual display devices with
display screens and alphameric keyboards for data entry.

The keyboards resemble IBM Selectric ® typewriter keyboards with
additional control keys that modify and conuol the format and contents of
the display screen. Letters, digits, and special characters can be entered on
a 2260 or 2265 (see Figure 36).

The format of a standard 2260 or 2265 display screen is 12 rows and 80
columns.

This appendix discusses how to:

• Control the cursor symbol
• Start a TSO terminal session
• Enter data
• Use the TERMINAL command
• Interrupt operations from a terminal
• Control the display
• End a TSO terminal session

Figure 35 lists the various screen control symbols on the 2260 and 2265
Display Stations.

Start a Message ~
2265 Nondestructive Cursor
2260 Nondestructive Cursor I
Destructive Cursor
End of Message _
New Line Symbol ~

Figure 35. IBM 2260 and 2265 Display Screen Control Symbols

How to Control the Cursor Symbol
The cursor is the system control symbol that indicates on the display screen
the location of the next input character in a row.

Two kinds of cursors are available with the IBM 2260 and 2265 Display
Stations, the destructive cursor and the nondestructive cursor. (This
appendix assumes that your terminal is a 2265 Display Station with a
nondestructive cursor.) The nondestructive cursor is a standard feature on
the IBM 2265 Display Station and is a recommended special feature on the
IBM 2260 Display Station.

The nondestructive cursor is recommended with TSO and appears
underneath and slightly to the left of a character position. It does not
interfere with a displayed character, but indicates where the next character
entered will go.

The nondestructive cursor does not occupy a character position. When
backspacing to correct an error, you only have to correct the characters in
error.

The destructive cursor occupies a character position and erases any
character in that position; that is, you have to enter any characters you
passed while backspacing.

Appendix D: IBM 2260 and 2265 Display Stations 175

2260 Di splay Station

OJ IT] OJ OJ [IJ [IJ D [JJ [IJ OJ D B
~

GJ Q [J Q Q Q IT] IT] OJ [J I ~;nt I I EnM. I

E""hl [J [J GJ D [J [J [J D [J D New I Swrt I Display Line
Down Up

G [J GJ GJ GJ [J GJ GJ [J D [IJ G
I

S~ce/Erase
Advance I

ENTER DATA SET
PENDING READY

2265 Display Station @ @

OJ IT] IT] IT] 1m IT] D ITJI OJ OJ 0 B
~GJIGJI[JID1[J1[Q1IT]~WI[IJIQ.I~~~

TA, D 0 [J [J GJ GJ [][J 0 [J ~ ~

~ lGJ

c::J [J [J GJ GJ [J GJ GJ D [J D c::J
I SPACEiERASE I XI5VANCE

Figure 36. Keyboards for IBM 2260 and 2265 Display Station

176 OS/VS2 TSO Terminal User's Guide

The user can move the cursor in four directions. To move the cursor:

• Forward - press the SPACE/ERASE/ADVANCE key and do not
hold the SHIFT key down. If the cursor is at the last position in the
row, it will go to the first position on the next row.

• Backward - press the BKSP key. If the cursor is at the first position in
the row, it will go to the last position in the row above.

• Up - press the START/UP key without holding down the SHIFT key.
If the cursor is on the top row, it will move to the corresponding
position on the bottom row.

• Down - press the NEWLINE/DOWN key without holding down the
SHIFT key. If the cursor is on the bottom row, it will move to the
corresponding position on the top row.

How to Start a TSO Terminal Session
An IBM 2260 or 2265 Display Station is permanently connected to a
computer system through a direct (or leased) line. When you turn the
power on at your display station, your terminal is in contact with the
computer system.

The POWER control knob on the IBM 2260 is located on the right side
panel of the display screen. Pull the knob out to turn the power on and
push it in to turn the power off. The same knob controls the intensity of
the display image. Turn the knob clockwise to brighten the image and
counterclockwise to darken the image.

The POWER OFF key on the IBM 2265 Display Station is located on
the front of the display screen unit just to the right of the screen. The
POWER ON key is just below it. The brightness control knob is just above
the two power keys. Turn the brightness control knob clockwise to brighten
the image and counterclockwise to darken the image.

To start a TSO terminal session:

1. Turn the power on at your Display Station.

2. Using the cursor control keys, move the cursor to the upper left
corner of the screen.

After you have positioned the cursor, the top row of your screen should
look like this:

-
3. Hold down the SHIFT key and press the ST ART /UP key. This will

put a Start of Message (.) symbol in the position the cursor occupies
and move the cursor to the right of it.

This is the only time you should press the ST ART key. After you are
logged on, TSO will prompt you for input by displaying a Start of Message
(.) symbol.

The first row of the display should look like this: . -

Appendix D: IBM 2260 and 2265 Display Stations 177

4. Use the LOGON command to identify yourself to TSO. You have to
supply your user identification (userid). Some installations may also
require:

• A valid password
• An account number (ACCT number)
• A procedure name (PROC operand)

Type the word LOGON, a space, and your userid. If a password is
required, type it after the userid, separating the two with a slash. If
required, an account number and a procedure name follow, separated with
spaces or commas.

Example

The userid is MYNUM. The procedure name is TRYOUTl. Type

LOGON MYNUM PROC(TRYOUT1)

Your screen will look like this:

~ LOGON MYNUM PROC(TRYOUT1)-

Press the ENTER key. The display 'will look like this:

LOGON MYNUM PROC(TRYOUT1)~ -
Example

The userid is MYID. The password is APASS. The procedure name is
TSOPROC. Make sure the Start of Message (~) symbol is on the display
screen, then type

LOGON MYID/APASS PROC(TSOPROC)

and press the ENTER key. The display would look like this:

LOGON MYID/APASS PROC(TSOPROC)~

TSO may display a preliminary message:

LOGON PROCEEDING ~

but when you are logged on, TSO displays the message:

READY"

The READY message with the Start of Message (~) symbol means that
you c'an enter any command.

How to Enter Data
A terminal session is a series of interactions between the terminal and the
system. These interactions follow a pattern:

178 OS/VS2 TSO Terminal User's Guide

1. The system notifies you that it is ready to accept input by displaying
either:

• A message (for example, READY)

or

• A line number (for example, 00180) followed by a Start of
Message (~) symbol. The Start of Message (~.) symbol means that
TSO is ready to accept your input.

2. Type a line of input and correct any typing errors.

3. Press the ENTER key.

4. The system locks the keyboard.

5. When the system is again ready to accept information, the sequence
described in step 1 is repeated.

Note that once the system displays the Start of Message (~) symbol, it
will not display any messages until the ENTER key is pressed.

For example, if after receiving the Start of Message (~) symbol you type

THIS IS A LINE OF INPUT

The display would look like this:

~ THIS IS A LINE OF INPUT-

If you press the ENTER key, the display would look like this:

III> THIS IS A LINE OF INPUT-

The cursor (-) is replaced by the End of Message (~) symbol. When
TSO reads the line, it replaces the End of Message (-) symbol with a New
Line (~) symbol unless you have positioned the cursor on the next line by
entering a New Line symboL To enter a New Line (~) symbol, hold down
the SHIFT key and press the NEW LINE/DOWN key, before pressing the
ENTER key.

When you press the ENTER key, TSO receives:

THIS IS A LINE OF INPUT

If you hold down the SHIFT key and press the NEW LINE key instead
of the ENTER key, and type:

AND THIS ALSO IS INPUT -

The display would look like this:

~ THIS IS A LINE OF INPUT ~
AND THIS ALSO IS INPUT-

If you now pres~ the ENTER key, TSO receives two lines:

THIS IS A LINE OF INPUT
AND THIS ALSO IS INPUT

Appendix D: IBM 2260 and 2265 Display Stations 179

If the input you are typing is longer than one row on the display screen,
the data will automatically go onto the next row, but TSO will interpret it
as one line.

If you press the NEW LINE key, any data in a row to the right of a
New Line symbol is not sent to TSO.

A line of input to TSO is the data between a Start of Message (~)
symbol or a New Line (~) symbol, and an End of Message (-) symbol or
a New Line (~) symbol.

Correcting Typing Errors

You can correct a typing error before you press the ENTER key by
backspacing the cursor and retyping. If you want to replace a character by
a space, hold down the SHIFT key and press the
SPACE/ERASE/ ADVANCE key. You should not use the cursor to correct
errors in portions of the display that have already been sent to TSO. Doing
this will correct the display but will have no effect on the information TSO
has already received.

How to Use the Terminal Command
Use the TERMINAL command to specify to TSO:

• The character string to cause an attention interruption (see "How to
Interrupt Operations from the Terminal").

• A time interval in seconds. After this time interval has elapsed without
opportunity for you to enter input, TSO will allow you to cause an
attention interruption (see "How to Interrupt Operations from the
Terminal") .

• The character string to clear the display screen (see "How to Control
the Display").

The options you specify in a TERMINAL command remain in effect
until you issue another TERMINAL command or until the end of a session.
This means that you should enter a TERMINAL command at the beginning
of every TSO session, unless your installation has provided defaults. Your
installation may provide a default TERMINAL command through the
LOGON procedure you name in the LOGON command. Check with your
manager to see what defaults exist for your system.

A TERMINAL command consists of the word TERMINAL which may
be abbreviated TERM, and a series of options called keywords, each
separated by spaces or commas. Among the keyword options are:

t80 OS/VS2 TSO Terminal User's Guide

Keywords
SECONDS(nnnn)

CLEAR(string

INPUT(string)

Functions
Specifies a time interval in seconds. After this number of
seconds(nnnn) has elapsed with neither input allowed nor
output displayed, TSO allows you to cause an attention
interruption to enter the character string that clears the
display screen. Specify a number that is a multiple of 10
and is from 10 to 2250.
Specifies the character string that clears the display screen.
The character string can be up to four characters.
Specifies a character string that causes an attention
interruption. The character string can be up to four
characters.

Example

KLR is the character string that clears the display screen. SIMA is the
character string that causes an attention interruption. The time interval is 30
seconds. Type:

TERM CLEAR(KLR) INPUT(SIMA) SECONDS(30)

TSO responds by displaying:

READY ~

~-

When you receive the Start of Message (.-.) symbol after the READY
message, you can enter any command.

How to Interrupt Operations from the Terminal

An attention interruption is a signal from your terminal to TSO that you
want to interrupt the operation that is taking place. Use an attention
interruption to:

• Stop the display of output by the system at your terminal
• Interrupt the command or program that is executing

You can cause an attention interruption by:
• Entering as the only input in any line, the character string you defined

in the TERMINAL command
• Entering as the only input in any line, the character string you defined

in the TERMINAL command, followed by a digit from one to nine
• Entering a digit to request one or more attention interruptions, when

TSO has given you the opportunity to request an attention
interruption

TSO indicates that you can request an attention interruption by
displaying

*** ~

when

• The display screen is full
• The number of seconds specified in the SECONDS operand of the

TERMINAL command has elapsed without your having the
opportunity to enter input, or without any output being displayed

An attention interruption may be entered by the user at the request of
TSO by:

• Entering the character string specified in the INPUT operand of the
TERMINAL command

• Entering a digit from one to nine

If you do not want to cause an attention interruption, enter a null line
(press the ENTER key).

Appendix D: IBM 2260 and 2265 Display Stations 181

TSO Responses to an Attention Interruption

There are two possible responses to an attention interruption:

I or II

If you cause an attention interruption to stop the display of output at
your terminal or to stop the execution of a program or command, TSO
displays I, and a message.

If the message is READY, you have interrupted the execution of a
command.

After the Start of Message (.) symbol has been displayed, you can:

• Enter another command
• Continue execution of the interrupted command by entering a null line

(pressing the· ENTER key)
• Cause another attention interruption to receive the READY message

If you cause another attention interruption at this point, TSO displays

I

to indicate that your attention interruption was ignored.

If the message is a command name, you have interrupted a subcommand.

After the Start of Message (~) symbol has been displayed, you can:

• Enter another subcommand of that command.
• Continue execution of the subcommand by entering a null line

(pressing the ENTER key). (If you are displaying the contents of a
data set, and enter a null line to continue, a few lines of output may
be lost.)

• Cause another attention interruption to receive the READY message.

The following portion of a sample terminal session shows how to cause
an attention interruption.

Assume you are executing a program called SUMER and you specified
that you wanted the opportunity to cause an attention interruption every 60
seconds. After 60 seconds without output, or without your having the
chance to enter input, (signalled by TSO displaying a Start of Message (~)
symbol), TSO displays

*** ..

to allow you to cause an attention interruption.

At this point, you could enter a null line to continue executing SUMER
or cause an attention interruption by entering the character string you
defined with the INPUT keyword of the TERMINAL command (for
example, SIMA).

If you enter the character string, TSO displays the character I, and on
successive rows, the message READY and a Start of Message (~) symbol:

182 OS/VS2 TSO Terminal User's Guide

***SIMAI~
READY ~ .-

Attention Interruption Levels

When TSO indicates that it is ready to accept an attention interruption, you
can enter the character string that you defined in the TERMINAL
command, or a digit from 1 to 9. Entering a 1 is the same as entering the
simulated attention interruption character string. If you enter a digit other
than 1, you will cause a higher level of attention interruption.

The following sample portion of a terminal session illustrates how to
obtain a higher level of attention interruption.

Assume you are creating a data set using the INPUT subcommand of the
EDIT command. The display at the terminal would look like this:

INPUT ~
00010THE FIRST LINE OF THE DATA SET. ~
00020THE SECOND LINE OF THE DATA SET.~
00030THE THIRD LINE OF THE DATA SET.~
00040 ~-

At this point you want to cause a simulated attention interruption.

By Entering a Character String: If you enter the character string defined in
the TERMINAL command (for example, SIMA), TSO displays I and on
the next row displays a message telling you that you have interrupted a
subcommand of EDIT.

00040 SIMAI~
EDITA

~ -
At this point, you can enter any subcommand of EDIT or cause another

attention interruption.

If you then enter the character string for a simulated attention
interruption, TSO displays the character I and, on successive rows, the
message READY and the Start of Message (~) symbol:

SIMAI~
READY ~ . -

The READY message means that you have caused the highest level of
attention interruption and can enter any command.

The sequence looks like this:

INPUT A
00010THE FIRST LINE OF THE DATA SET.~
00020THE SECOND LINE OF THE DATA SET.~
00030THE THIRD LINE OF THE DATA SET.~
00040SIMAI~
EDIT~
SIMAIA
READY ~ .,..-

Appendix D: IBM 2260 and 2265 Display Stations 183

By Entering a Digit: If, instead of entering only the character string for
simulated attention interruption after the third line of the data set, you
enter the character string followed by a 2, TSO displays the character I.
and on successive rows, the message READY and the Start of Message (.)
symbol:

INPUT Ii
00010THE FIRST LINE OF THE DATA SET.~
00020THE SECOND LINE OF THE DATA SET.~
00030THE THIRD LINE OF THE DATA SET.~
00040SIMA21~
READY"
~-

You can use this facility if you want to stop using a subcommand of
EDIT and start using another command.

If you enter a digit greater than the number of attention interruption
levels, you will cause an attention interruption at the highest level available.

How to Control the Display
You can erase the screen any time you can enter data by entering as the
only input on a line the CLEAR character string you defined in the
TERMINAL command.

After entering the data into the system, the screen may be cleared by
entering the CLEAR character string previously defined in the TERMINAL
command. The cursor controls may be used to erase the material; however,
they are not as efficient as using the CLEAR command.

If you erased the Start of Message symbol:

1. Hold down the SHIFT key and press the START/DOWN key

2. Enter the character string you defined in the TERMINAL command
to clear the display screen.

Handling a Full Display Screen

When output data is displayed on the next to the last row, TSO displays:

on the last row.

When TSO displays this character string, it is about to erase the screen
and is allowing you time to review the contents. You can:

• Enter a null line to allow TSO to erase the screen and continue
operation

• Enter the character string you defined in the TERMINAL command
to cause an attention interruption

• Enter a digit to cause more than one attention interruption.

Note: No matter what you type, after you press the ENTER key, TSO
erases· the display screen.

184 OS/VS2 TSO Terminal User's Guide

Any command or input for a command will be ignored, except for the
attention interruption character string, or a digit.

If the amount of time you specified in the SECONDS operand of the
TERMINAL command has elapsed and TSO displays ***. on the next to
the last row, regardless of your response, TSO will clear the display screen.

If you enter data on the next to last line of the screen (or beyond),
review the contents before you press the ENTER key. After you press the
enter key, TSO will erase the screen and display the contents of this input
at the top of the screen, giving you the chance to review your last input.

How to End a TSO Terminal Session
To end a terminal session, enter either:

LOGOFF
or

LOGON

Logging on ends the present session and automatically starts a new
session. In either case, TSO types:

userid LOGGED OFF TSO AT time ON date

In place of the lowercase letters, TSO displays information applicable to
the terminal session.

Appendix D: IBM 2260 and 2265 Display Stations 185

186 OS/VS2 TSO Terminal User's Guide

Appendix E: IBM 3270 Information Display System (Using TSO/TCAM)

The IBM 3270 Information Display System is a system with display screens
and alphameric keyboards for data entry. The 3270 is permanently
connected to a computer system through a leased line (Remote) or directly
wired to the channel (Local). As a remote, the 3270 is supported in three
ways:

• BSC (binary synchronous communication)
• SDLC (synchronous data link control) -- attached directly to 370x
• SDLC (synchronous data link control) -- attached to 3790 control

unit with 3270 running as a 3270 emulator

The forma~ of a standard 3270 display screen is either 12 rows and 40
columns or 24 rows and 80 columns.

The keyboards resemble IBM Selectric .~ typewriter keyboards with
additional control keys that modify and control the format and contents of
the display screen. Letters, digits, and special characters can be entered on
a 3270 (see Figure 37).

TSO support of the 3270 includes a formatted screen and output data of
higher intensity than input data. (The first line of output data is indented
one position.)

Before you start a TSO terminal session you must know which access
method, TCAM or VT AM, your version of TSO uses to direct the
transmission of data between your terminal and the host computer. Your
system programmer should have this information. This appendix describes
how to use a 3270 under TSO/TCAM. If your 3270 uses TSO/VTAM, go
to Appendix F.

This appendix discusses how to:

• Control the cursor symbol
• Start a TSO terminal session
• Enter data
• Use the TERMINAL command
• Interrupt operations from a terminal
• Control the display
• End a TSO terminal session

Appendix E: IBM 3270 Information Display System (Using TSO/TCAM) 187

0-Typama.ic Keys 0 -Numeric Keys

Typewrlt. Keyboard (EBCDIC) • The ASCII typewriter keyboard which accommodate, both ASCII·A and ASCII-B character
I8t option, ha, four different key" shown above keyboard.

Data Entry Keyboard

Operator ConlDle Keyboard

Figure 37. Basic Keyboards for the IBM 3270 Information Display System

188 OS/VS2 TSO Terminal User's Guide

How to Control the Cursor Symbol

The cursor is the system control symbol (_) that automatically indicates on
the display screen the location of the next input character in a row.

The user can move the cursor in four directions. To move the cursor:

• Forward - press the space bar or the Forward Cursor key (-). If the
cursor is at the last position in a row, it will go to the first position in
the next row.

• Backward - press the Backspace or Backward Cursor key (-). If the
cursor is at the first position in a row it will go to the last position in
the row above.

• Up - press the Up Cursor key (+). If the cursor is on the top row, it
will move to the corresponding position on the bottom row.

• Down - press the Down Cursor key (+). If the cursor is on the bottom
row, it will move to the corresponding position on the top row.

How To Start a TSO Terminal Session
To start a TSO terminal session:

1. If power is off:

• Pull out the POWER control knob on the left side panel of the
display screen. The terminal is now in contact with the system.

• Turn the POWER control knob clockwise to brighten the image or
counterclockwise to darken the image.

If power is on:

• Press the CLEAR key and then the RESET key. The cursor moves
to the upper left corner of the screen and the INPUT INHIBITED
light goes off.

• If you are at a 3270 emulator (3790) and you are not automatically
in contact with TCAM, press the CLEAR key. Logon as a 3790
user. Then invoke function PGM (3270 emulator).

2. If your terminal is an SDLC 3270, before you can log on to TSO a
SNA session must first be established between the terminal and
TCAM. There are several ways for automatically establishing this
session; your installation should define the method to be used. If your
installation does not automatically establish the SNA session with
TCAM, you must enter the installation-defined character string
required and press the TEST REO key. For BSC and local 3270s,
perform step 4.

3. If your installation does not start the TSO session in step 2, then step
4 must be performed. Your installation should provide this
information.

4. Enter the LOGON command to identify yourself to TSO. Type the
word LOGON, a space, and your user identification (userid).

5. Transmit the LOGON command to TSO by pressing the ENTER
key; the INPUT INHIBITED light comes on.

Appendix E: IBM 3270 Information Display System (Using TSO/TCAM) 189

6. Wait for TSO to reply to your LOGON command. TSO may display
a preliminary message:

LOGON PROCEEDING -but when you are logged on, TSO displays the message:

READY -
and turns the INPUT INHIBITED light off. You can now enter any
command.

As part of the LOGON command (see the LOGON command in
OS/VS2 TSO Command Language Reference), installations may also
require a password, an account number, and a cataloged procedure
name.

First type the word LOGON, a space, and your userid. If a password
is required, type it after the userid, separating the two with a slash(/).
If required, an account number and a cataloged procedure name
follow, separated with spaces or commas.

Example

The userid is MYNUM. The cataloged procedure name is TRYOUTI.
Type:

LOGON MYNUM PROC(TRYOUT1)--

Press the ENTER key; the INPUT INHIBITED light comes on. Wait for
TSO to display the message READY and to turn the INPUT INHIBITED
light off. You may now enter any command.

Example

The userid is MY SEVEN . The password is AP ASS. The account number is
AN38. Type:

LOGON MYSEVEN/APASS ACCT(AN38)

Press the ENTER key; the INPUT INHIBITED light comes on. Wait for
TSO to display the message READY and to turn the INPUT INHIBITED
light off. You may now enter any command.

How to Enter Data
TSO accepts one line of input at a time. A line of input is defined as the
data typed after the system turns the INPUT INHIBITED light off and
before the ENTER key is pressed.

If the keyboard locks because of a hardware malfunction, press the
RESET key.

190 OS/VS2 TSO Terminal User's Guide

Entering Data

The system notifies you that it is ready to accept a line of input by
displaying either a message:

READY -or a line number:
00180

and turning the INPUT INHIBITED light off.

Data may now be entered:

.1. Type a line of input. Correct any typing errors (see below).

2. Press the' ENTER key. The INPUT INHIBITED light comes on.

3. Return to step 1 if you desire to enter more input.

Correcting Typing Errors

If you wish to correct typing errors, you must cQrrect them before you
press the ENTER key. Move the cursor under tije error and type the
correct character. To replace a character by a space, move the cursor under
the ~haracter and press the Space bar.

NEWLINE Key

If you want to move the cursor to the first position in the next row, press
the NEW LINE (...) key.

Example

You stop typing, press the NEW LINE key, and begin typing on the next
row.

THIS IS INPUT'"
AND THIS IS ALSO INPUT--

Press the ENTER key; the INPUT INHIBITED light comes on. TSO
receives:

THIS IS INPUTAND THIS IS ALSO INPUT

Note: The 3270 considers the second row a continuation of the first and
does not insert a space when moving the cursor to the second row.

On 3270s with the feature RPQ AB3953, pressing the NEW LINE key
positions the cursor as described above and, in addition, provides the
function of the FIELD MARK key (displays a semicolon at the end of the
line and inserts a FIELD MARK character in the transmitted data).

FIELD MARK Key

The FIELD MARK key may be used to enter multiple commands on a
single line. Command entry should be concluded with depression of the
FIELD MARK key. All commands so entered will be read by TCAM at
one time, and processed by TSO in a manner similar to multiple commands
entered on a break terminal.

Appendix E: IBM 3270 Infonnation Display System (Using TSO/TCAM) 191

How to Use the Terminal Command

Use the TERMINAL command to specify to TSO:

• The character string to clear the display screen (see "How to Control
the Display)"

• The character string to cause an attention interruption (see "How to
Interrupt Operations from the Terminal")

• A time interval, after which TSO will allow you to cause an attention
interruption (see "How to Interrupt Operations from the Terminal")

Enter a TERMINAL command at the beginning of every TSO session,
unless your installation has provided a default TERMINAL command
through the logon procedure (PROC) in the LOGON command. The
options specified in a TERMINAL command remain in effect until the end
of the session or until another TERMINAL command is issued. (See the
TERMINAL command in OS/VS2 TSO Command Language Reference.)

A TERMINAL command consists of the word TERMINAL (or TERM)
and a series of options called keywords, separated by spaces. Among the
keyword options are:

Keywords

SECONDS(nnnn)

C LEAR(string)

INPUT(string)

Example

Functions

Specifies a time interval in seconds. After this number of
seconds (nnnn) has elapsed with neither input allowed nor
output displayed, TSO allows you to cause an attention
interruption or enter the character string that clears the
display screen. Specify a number that is a mUltiple of 10
and is from 10 to 2250.
Specifies the character string that clears the display screen.
The character string can be up to 4 characters. (The
CLEAR key provides the same function.)
Specifies a character string that causes an attention
interruption. The string can be up to 4 characters. (The
PAl key provides the same function.)

KLR is the character string that clears the display screen. SIMA is the
character string that causes an attention interruption. The time interval is 30
seconds. Type:

TERM CLEAR(KLR) INPUT(SIMA) SECONDS(30)

Press the ENTER key; the INPUT INHIBITED light comes on. Wait for
TSO to display the message READY and to turn the INPUT INHIBITED
light off. You can now enter any command.

How to Interrupt Operations from the Terminal
An attention interruption is a signal from your terminal to TSO that you
want to either stop the display of output at your terminal, or interrupt the
command or program that is executing.

An attention interruption may be entered at your own request or in
response to a request by TSO.

An attention interruption may be entered at the user's own request by:

• Pressing the PAl key when the INPUT INHIBITED light is off

192 OS/VS2 TSO Terminal User's Guide

• Entering, as the only input in any line, the character string you
defined in the INPUT operand of the TERMINAL command

• Entering, as the only input in any line, the character string you
defined in the INPUT operand of the TERMINAL command,
followed by a digit from 1 to 9.

TSO indicates that you can request an attention interruption by
displaying

***-

when:

• The display screen is full
• The number of seconds specified in the SECONDS operand of the

TERMINAL command has elapsed without your having the
opportunity to enter input, or without any output being displayed

An attention interruption may be entered by the user at the request of
TSO by:

• Pressing the PAl key when the INPUT INHIBITED light is off
• Entering the character string you specified in the INPUT operand of

the TERMINAL command
• Entering a digit from 1 to 9

TSO Responses to an Attention Interruption
There are two possible responses to an attention interruption:

I or II

If you cause an attention interruption to stop the display of output at
your terminal or to interrupt the execution of a program or command, TSO
displays I, and a message on the next line:

or

I
READY

I
(command)

If the message is READY, you have interrupted the execution of a
command.

After you have interrupted the execution of a command and the INPUT
INHIBITED light goes off, you can:

• Resume execution of the command by entering a null line (pressing
the ENTER key)

• Enter another command

If the message is a command name, you have interrupted a subcommand.

Appendix E: IBM 3270 Information Display System (Using TSO/TCAM) 193

After you have interrupted the execution of a subcommand and the
INPUT INHIBITED light goes off, you can:

• Resume execution of the subcommand by entering a null line (pressing
the ENTER key). (If you were displaying the contents of a data set
and enter a null line to continue, a few lines of output may be lost.)

• Enter another subcommand of that command.

If, after interrupting a command, you enter another attention
interruption, TSO ignores it and displays

II

The following example example shows the responses by TSO to an
attention interruption that was requested by TSO.

Example

You specified 60 seconds in the SECONDS operand of the TERMINAL
command and the time has elapsed without output being displayed or
without your having the opportunity to enter input (indicated by TSO's
turning the INPUT INHIBITED light on). TSO displays

***-

You cause an attention interruption by entering the character string
(SIMA) you defined in the INPUT operand of the TERMINAL command:

*** SIMA-

TSO responds to the attention interruption by displaying the character I,
the message READY, and the cursor on successive lines:

*** SIMA
I
READY

TSO turns the INPUT INHIBITED light off.

Attention Interruption Levels

When TSO indicates that it is ready to accept an attention interruption, you
can press the PAl key, enter a character string that yo'u defined in the
INPUT operand of the TERMINAL command, or enter a digit from 1 to 9.

Entering a 1 is the same as pressing the PAl key or entering the
character string that causes an attention interruption. If you enter a digit
other then 1, you will cause a higher level of attention interruption.

The following sample portion of a . terminal session illustrates how to
obtain a higher level of attention interruption.

194 OS/VS2 TSO Terminal User's Guide

Example

Assume you are creating a data set using the INPUT subcommand of the
EDIT command. The screen displays

INPUT

00010THE FIRST LINE OF THE DATA SET
00020THE SECOND LINE OF THE DATA SET
00030THE THIRD LINE OF THE DATA SET
00040 -

At this point you want to cause an attention interruption be entering a
character string or a digit.

By entering a character string: If you enter the character string (for
example, SIMA) defined in the INPUT operand of the TERMINAL
command, TSO displays I ,and on the next line the message EDIT. The
message EDIT means that you have interrupted a subcommand of that
command.

00040SIMA
I
EDIT

At this point, you can enter any subcommand of EDIT or cause another
interruption.

If you enter the character string (SIMA) for an attention interruption,
TSO displays the character I and on the next line the message READY,
followed by the INPUT INHIBITED light going off.

00040SIMA
I
READY

The message READY means that you have caused the highest level of
attention interruption and can enter any command. The entire session looks
like this:

INPUT
00010THE FIRST LINE OF THE DATA SET
00020THE SECOND LINE OF THE DATA SET
00030THE THIRD LINE OF THE DATA SET
00040SIMA
I
EDIT

SIMA
READY

Appendix E: IBM 3270 Information Display System (Using TSO/TCAM) 195

By entering a digit: If you enter the character string (SIMA) followed by a
2, TSO displays the character I and on the next line the message READY,
followed by the INPUT INHIBITED light going off.

INPUT
00010THE FIRST LINE OF THE DATA SET
00020THE SECOND LINE OF THE DATA SET
00030THE THIRD LINE OF THE DATA SET
00040SIMA2
I
READY

If you enter a digit greater than the number of attention interruption
levels, you will cause an attention interruption at the highest level available.

How to Control the Display
You can clear the display screen any time you can enter data by entering as
the only input on a line the character string you defined in the CLEAR
operand of the TERMINAL command. (The CLEAR key provides the
same function.)

Handling a Full Display Screen

Note: Handling a full screen of data should not be confused with Fullscreen
support for a 3270. Fullscreen support is an optional function available
through TSO. See the OS/VS2 TeAM Programmer's Guide for information
concerning 3270 Fullscreen support.

When output d.ata is displayed on the next to last row, TSO displays
*** - on the last row. In this case, *** means that TSO is about to clear
the display screen and is allowing you time to review the contents. This
"simulated attention" is not provided when operating in full screen mode.
When the simulated attention is displayed, you can:

• Clear the display screen by entering a null line (pressing the ENTER
key)

• Clear the display screen by entering the character string you defined
in the CLEAR operand of the TERMINAL command (the CLEAR
key provides the same function)

• Cause an attention interruption by entering the character string you
defined in the INPUT operand ·of the TERMINAL command (the
PAl key provides the same function)

• Cause more than one attention interruption by entering a digit from 1
to 9
Note: No matter what you type, after you press the ENTER key,
TSO clears the display screen.

If the amount of time you specified in the SECONDS operand of the
TERMINAL command has elapsed and TSO displays *** on the next to
the last row, regardless of your response, TSO will clear the display screen.

If you enter data on either of the last two rows and press the ENTER
key, TSO will clear the display screen and display that input at the top of
the display screen.

196 OS/VS2 TSO Terminal User's Guide

WARNING: Data entered beyond the last row will "wrap" and be
displayed at the top of the screen. If you then press the ENTER key to
clear the screen and display the last two rows of data entered, the data
sent to TSO and displayed on the screen will be invalid. Therefore, do
not wrap the 3270 display screen when entering input.

How to End a TSO Terminal Session
To end a terminal session with TSO, you may either log off or log on.
Logging off ends the terminal session with TSO; logging on ends the
terminal session with TSO and automatically starts a new session with TSO.
If your terminal is supported by TSO ITeAM, your installation can choose
to end the SNA session with TeAM automatically 'when the TSO session
ends. If this is the case, follow the procedure below. If your installation
selects another option, the installation should provide the proper sequence
of commands for logging off.

To end a terminal session, enter either:

LOGOFF -
or

LOGON -

Logging on ends the present TSO session and automatically starts a new
session. In either case, TSO displays:

userid LOGGED OFF TSO AT time ON date

In place of the lowercase letters, TSO displays information applicable to
the terminal session.

Appendix E: IBM 3270 Information Display System (Using TSO/TCAM) 197

t

198 OS/VS2 TSO Terminal User's Guide

Appendix F: IBM 3270 Information Display System (Using TSO/VTAM)

The IBM 3270 Information Display System is a system with display screens
and alphameric keyboards for data entry. The 3270 is permanently
connecte<l; to a computer system through a leased line (Remote) or directly
wired to the channel (Local).

The format of a standard 3270 display screen is either 12 rows and 40
columns or 24 rows and 80 columns.

The keyboards resemble IBM Selectric ® typewriter keyboards with
additional control keys that modify apd control the format and contents of
the display screen. Letters, digits, and special characters can be entered on
a 3270 (see Figure 37).

TSO support of the 3270 includes a formatted screen and output data of
higher intensity than input data. (The first line of output data is indented
one position.)

Before you start a TSO terminal session you must know the following
information, which should be supplied by your system programmer:

• Which access method, TCAM or VT AM, your version of TSO uses to
"direct the transmission of data between your terminal and the host
computer. This appendix describes how to use a 3270 under
TSO/VTAM. If your 3270 uses TSO/TCAM, go to Appendix E.

• Whether your terminal is a SNA (systems network architecture) or
non-SNA 3270.

• The format of your logon command.
• Whether you should use the TSO LOGOFF command or a VT AM

LOGOFF command. If using a VTAM LOGOFF command you must
know its format.

• Which key to press if your installation allows you to log on or off
using one of the program access (P A) or program function (PF) keys.

This appendix discusses how to:

• Control the cursor symbol
• Start a TSO terminal session
• Enter data

Interrupt operations from a terminal
• Handle a full display screen
• End a TSO terminal session

How to Control the Cursor Symbol
The cursor is the system control symbol (-) that automatically indicates on
the display screen the location of the next input character in a row.

The user can move the cursor in four directions. To move the cursor:

• Forward-press the space bar or the Forward Cursor key (.-). If the
cursor is at the last position in a row, it will go to the first position in
the next row.

Appendix F: IBM 3270 Information Display System (Using TSO/VTAM) 199

• Backward-press the Backspace or Backward Cursor key (-). If the
cursor is at the first position in a row it will go to the last position in
the row above.

• Up-press the Up Cursor key (t). If the cursor is on the top row, it
will move to the corresponding position on the bottom row.

• Down-press the Down Cursor key (4). If the cursor is on the bottom
row, it will move to the corresponding position on the top row.

How to Start a TSO Terminal Session
To start a TSO terminal session:

1. If power is off:

• Pull out the POWER control knob on the left side panel of the
display screen. The terminal is now in contact with the system.

• Turn the POWER control knob clockwise to brighten the image or
counterclockwise to darken the image.

If power is on:

• In rapid succession, press the CLEAR key and then the RESET
key. The cursor moves to the upper left corner of the screen and
the INPUT INHIBITED light goes off.

2. Enter a logon command to identify yourself to TSO, unless you are
going to use one of the P A or PF keys in place of typing in a logon
command, in which case you should go to step 3. The logon
command consists of the word LOGON or its installation-defined
substitute, and may be followed by operands containing such
information as a password, account number, and cataloged procedure
name. Your system programmer should tell you the format of the
logon command for your terminal.

3. Transmit the logon command to TSO. If you are typing in the
command:

• Press the ENTER key if your terminal is a non-SNA 3270.

• Press the TEST REQ key if your terminal is a SNA 3270.

If you are using one of the P A or PF keys to logon, press the
appropriate key. In either case, the INPUT INHIBITED light comes
on.

4. Wait for TSO to reply to your logon. TSO displays a preliminary
message:

userid LOGON IN PROGRESS AT time ON date

It might also display:

LOGON PROCEEDING

200 OS/VS2 TSO Terminal User's Guide

When you are logged on, TSO displays the message:

READY

and turns the INPUT INHIBITED light off. You can now enter any
command.

How to Enter Data
You can enter input to TSO one line at a time or multiple lines at a time. A
line of input is defined as the data that is typed at a terminal, followed by
pressing the ENTER key or the FIELD MARK key.

The single-line input technique transmits a line of input data to TSO
(using the ENTER key) as soon as it is typed. The multiple-line technique
accumulates lines of input data (using the FIELD MARK key) in your
3270 terminal buffer and then transmit them together to TSO when the
ENTER key is pressed. "Stacking" lines improves performance by
decreasing the number of transmissions across the communication line to
TSO, thus requiring less processing by TSO.

Entering Data

The system notifies you that it is ready to accept a line of input by
displaying either a message:

READY

or a line number:
00180 -

and turning the INPUT INHIBITED light off.

Data may now be entered:

1. Type a line of input.

2. Correct any typing errors (see "Correcting Typing Errors" below).

3. If this is a single-line operation, press the ENTER key. The INPUT
INHIBITED light comes on and the data is transmitted to TSO.

4. If this is a multiple-line operation, press the FIELD MARK key at
the end of each line except the last. This stacks each line in your
3270 buffer. Press the ENTER key at the end of the last line. The
INPUT INHIBITED light comes on and the entire group of stacked
lines is transmitted to TSO.

5. Return to step 1 if you want to enter more input.

Correcting Typing Errors

If you wish to correct typing errors, you must correct them before you
press the ENTER key. Move the cursor under the error and type the
correct character. To replace a character with a space, move the cursor
under the character and press the Space bar.

Appendix F: IBM 3270 Information Display System (Using TSO/VTAM) 201

CLEAR Key

You can press the CLEAR key to clear the display screen any time you can
enter data. This blanks the screen and positions the cursor at the first
position on line 1.

NEWLINE Key

If you want to move the cursor to the first position in the next row, press
the NEW LINE (..I) key.

Example

You stop typing, press the NEW LINE key, and begin typing on the next
row.

THIS IS' INPUT .,J'

AND THIS IS ALSO INPUT-

Press the ENTER key; the INPUT INHIBITED light comes on. TSO
receives:

THIS IS INPUTAND THIS IS ALSO INPUT

Note: The 3270 considers the second row a continuation of the first and
does not insert a space when moving the cursor to the second row.

On 3270s with the feature RPQ AB3953, pressing the NEW LINE key
positions the cursor as described above and, in addition, provides the
function of the FIELD MARK key (displays a semicolon at the end of the
line and inserts a Field Mark character in the transmitted data).

How to Interrupt Operations from the Terminal
An attention interruption is a signal from your terminal to TSO that you
want to either stop the display of output at your terminal, or interrupt the
command or program that is being executed.

You can enter an attention interruption at any time by pressing the PAl
key. If the keyboard is locked, press the RESET key to unlock it, then
press the PAl key.

TSO Responses to an Attention Interruption

There are two possible responses to an attention interruption:

I or II

If you cause an attention interruption to stop the display of output at
your terminal or to interrupt the execution of a program or command, TSO
displays I, and a message on the next line:

or

202 OS/VS2 TSO Terminal User's Guide

I
READY

I
(command)

If the message is READY, you have interrupted the execution of a
command.

After you have interrupted the execution of a command and the INPUT
INHIBITED light goes off, you can:

• Resume execution of the command by entering a null line (pressing
the ENTER key)

• Enter another command

If the message is a command name, you have interrupted a subcommand.

After you have interrupted the execution of a subcommand and the
INPUT INHIBITED light goes off, you can:

• Resume execution of the subcommand by entering a null line (pressing
the ENTER key). (If you were displaying the contents of a data set
and enter a null line to continue, an indefinite number of output lines
are lost.)

• Enter another subcommand of that command.

If, after interruption a command, you enter another attention
interruption, TSO ignores it and displays

II

How to Handle a Full Display Screen
When TSO sends you output data and the display screen becomes full, you
must clear the screen. A full screen has output data in the next to last row,
and ***- displayed in the last row. The ***- indication from TSO means
that you can review the screen, after which you can do one of the
following:

• Press the ENTER key to clear the screen.
• Press the PAl key to cause an attention interruption that stops

processing of the current command, clears the screen, and allows you
to enter a new command.

If you are sending data to TSO, when you enter data in either of the last
two rows and press the ENTER key, TSO clears the display screen and
displays that input at the top of the screen.

Note: Data entered beyond the last row "wraps" around and is displayed
at the top of the screen. If you then press the ENTER key to clear the
screen and display the last two rows of data entered, the data sent to TSO
and displayed on the screen will be invalid. Therefore, do not wrap the
3270 display screen when entering input.

How to End a TSO Terminal Session
To end a terminal session, either log off or log on. Logging off ends the
terminal session; logging on ends the current terminal session and
automatically starts a new session. (Note: Use the TSO LOGON command,
not one of the VT AM logon commands, to end a terminal session by
logging on.)

Appendix F: IBM 3270 Information Display System (Using TSO/VTAM) 203

To log off:

1. Enter a logoff command, unless you are going to use one of the P A
or PF keys in place of typing in a logoff command, in which case you
should go to step 2. Your system programmer should tell you the
format of the logoff command for your terminal.

2. Transmit the logoff command to TSO. If you are typing in the
command:

• Press the ENTER key if your terminal is a non-SNA 3270 .

• Press the ENTER key (after entering a TSO LOGOFF command)
or the TEST REQ key (after entering a VTAM logoff command) if
your terminal is a SNA 3270.

If you are using one of the P A or PF keys to log off, press the
appropriate key.

Whether you are logging off or logging on, TSO displays:

userid LOGGED OFF TSO AT time ON date

204 OS/VS2 TSO Terminal User's Guide

Appendix G: IBM 3767 Communication Terminal

The IBM 3767 Communication Terminal is a compact, mova~le, desk-top
terminal that looks like a conventional typewriter. Its flexibili~y allows it to
be used as a keyboard-printer for normal secretarial t~ping (ih local mode),
as a 16-digit calculator when the Calculate-Scientific feature is included,
and as a buffered data entry terminal for transmission of data to and from
a remote computer.

TSO supports the 3767 as a data entry terminal in commumicate mode.
The keyboard arrangements supported by TSO are EBCDIC, ASCII,
Correspondence (US only), and Katakana (Japan only). Figure 38 shows
the four keyboards. In addition to the data keys there are funqtion keys,
indicator lights, operating mode switches, and a print position i\ndicator to
aid the operator. The printer is a bidirectional matrix printer.

TSO supports the 3767 terminal in a systems network architecture
(SNA) configuration. TSO uses a telecommunications access method~ either
TCAM or VT AM, to direct the transmission of data over the
communication line between the terminal and the host computer. A 3767
terminal can be permanently connected to a computer network through a
nonswitched (leased) line, or temporarily connected through a switched
(dial-up) line. TCAM supports nonswitched lines only; VT AM supports
both switched and nonswitched lines.

Before you start your TSO terminal session you must know the type and
format of the logon and logoff commands that you should use. Your system
programmer should give you this information.

Appendix G: IBM 3767 Communication Terminal 205

Correspondence

~BCDIC (USA)

Ascn
Figure 38. IBM 3767 Communication Terminal Keyboards. (Part 1 of 2)

206 OS/VS2 TSO Terminal User's Guide

16 Back Spece
34 New Line
39 Alpha Symbol Shift
52 Katakana Symbol Shift
57 Alphanumeric Shift
69 Katakana Shift
7. Space

9 Apostrophe
13 Minus ,. Over Line
15 O1o-on
68 Under Line
66 Comma
66 Katakana Period

Katakana (Japan)

Shift 1 (.'Ii:. n
Alphanumeric

Shift 2 (.jfS:. L~G ~;- I
Alpha Symbol

Shift. (1) 1 Jc -Ii)

KANA Symbol

Shift 3 (1) j.)
KATAKANA

Figure 38. IBM 3767 Communication Terminal Keyboards. (Part 2 of 2)

Appendix G: IBM 3767 Communication Terminal 207

How to Start a TSO Terminal Session

Three operations are involved in starting a TSO terminal session:

1. Setting the switches

2. Contacting the computer

3. Contacting TSO

Setting the Switches

If your terminal has the Security Keylock special feature (located on the
ri~ht side of the terminal), insert the key and turn it to the rear.

The switches are located above the keyboard, on each side of the
alphanumeric 'readout indicator (ANR). TSO requires these initial settings:

• If the Start-Stop Migration Aid feature is installed, set the SDLC-S/S
switch to SDLC. You must set the SDLC-S/S switch before you turn
the power on; after the power is on, changing this switch has no
effect.

• If the Alternate Character Set (EBCDIC/ APL) feature is installed, set
the EBCDIC/ APL switch to EBCDIC.

• If your terminal is connected to the host computer through a
nonswitched line, or through a switched line using a telephone modem,
set the Comm/Local switch to Comm. If your terminal is connected
through a switched line using an acoustic coupler, set the
Comm/Local switch to Local.

• Set the power On/Off switch to On.

The settings for the Auto/Off, Edit/Off, Auto View/Off, and
Data/Talk switches depend on the operation you are performing. These
settings will be given as each operation is discussed below. The rest of the
switches have no required settings for TSO, that is, their use is not
significant to TSO. For a description of each switch, see IBM 3767
Communication Terminal Operator's Guide.

Contacting the Computer

For Nonswitched Lines: Twenty to thirty seconds after you turn the power
On/ Off switch on, the On Line light and the Data Set Ready Light will go
on. This indicates that the terminal is in contact with the host computer. If
the light does not go on, turn the power On/ Off switch off, then on again,
If the On Line light does not go on this time, the system is not available,
and you must try later.

For Switched Lines: Your procedure for dialing the computer depends on
the type of dial-up device that you use. Figure 39 shows typical procedures
for terminals using an acoustic coupler. Figure 40 shows typical procedures
for terminals using a telephone modem. For more detailed instructions, refer
to the operating instructions for your specific type of dialing device.

208 OS/VS2 TSO Terminal User's Guide

1. Make sure the acoustic coupler:
(a) is connected to a power supply
(b) is turned on
(c) is connected to the terminal

2. Set the Comm/Local switch on the terminal to Local.
3. Remove the handset from the cradle and dial the computer's telephone

number. Your installation should supply the number.
4. Wait for a high-pitched tone. If the number is busy or if there is no answer,

hang up and try again.
5. When you hear the high-pitched tone, place the handset face down in the

coupler box. Make sure the cord is in the slot. Close the lid of the acoustic
coupler and latch it.

6. Set the Comm/Local switch to Comm. Now you are ready to contact TSO.

Figure 39. Acoustic Coupler Technique for the IBM 3767 Communication Terminal

1. Press the TALK button on the telephone modem; for terminals in World Trade
countries, set the Data/Talk switch on the terminal to Talk.

2. Remove the handset from the cradle and dial the computer's telephone
number. Your installation should supply the number.

3. Wait for a high-pitched tone. If the number is busy or if there is no answer,
hang up and try again.

4. When you hear the high-pitched tone, push the D AT A button on the telephone
modem; the Data light should go on. For terminals in World Trade countries,
set the Data/Talk switch to Data. The Data Set Ready light on the terminal
goes on.

5. Place the handset in the cradle. Now you are ready to contact TSO.

Note: If the DATA light on the telephone modem goes off at any time during the
terminal session, you must retry from step l.

Figure 40. Telephone Modem Technique for the IBM 3767 Communication Terminal.

Contacting TSO

If your terminal is supported by TeAM, your installation can provide a
LOGON procedure that automatically establishes a SNA session with
TeAM. If this option is selected, enter the TSO LOGON command to
identify yourself to TSO: type the word LOGON, a space, and your user
identification (userid). Then perform steps 3 and 4 below. If this option is
not selected, or if your terminal is not supported by TeAM, use the
following procedure to contact TSO:

1. Press the SYS REQ key. The Proceed light goes on.

2. Enter a logon command to identify yourself to TSO. The logon
command consists of the word LOGON or its installation-defined
substitute, and may be followed by a character string containing such
information as a password, account number, and cataloged procedure
name. Your system programmer should tell you the format of the
logon command for your terminal.

3. Transmit the logon command to TSO by pressing the Return (....) key
and, if the Auto/Off switch is set to Off, the EOM key. The Proceed
light goes off.

4. Wait for tso to reply to your logon command. TSO types a
preliminary message:

userid LOGON IN PROGRESS AT time ON date

Appendix G: IBM 3767 Communication Terminal 209

It might also type:

LOGON PROCEEDING

When you are logged on, TSO types the message:

READY

and turns the Proceed light on. You can now enter any command.

How to Enter Data
When you key in data at the terminal, the data is stored in a buffer until it

. is sent to the host computer. The capacity of the buffer in your terminal
depends on the model and the features attached; buffer capacities range
from 256 to 1024 characters. Your system programmer should give you this
information.

You may choose to fill the buffer before transmitting to the host, or your
may transmit a partially filled buffer. The topics that follow tell (1) how to
transmit a single line of data to the host (2) how to send multiple lines of
data in one transmission.

Transmitting a Single Line of Data

1. Make sure that the Auto/Off switch is set to Auto; if the Edit/Off
switch is on your terminal, set it to Off.

2. Type a line of input. You may type as much as will fit on one line.

3. Correct any typing errors in the line. This is the only time that
corrections can be made before the line is transmitted to TSO in the
host computer.

4. Press the Return (-') key. This transmits the data to TSO, which
starts to process it.

5. If you want to enter more input, return to step 2 after the Proceed
light goes on and the keyboard unlocks.

Transmitting MUltiple Lines of Data

1. Set the Auto/Off switch to the Off position.

2. Type a line of input. You may type as much as will fit on the line.

3. You may correct any typing errors in the line, or you may choose to
make corrections as described later under "Buffered SDLC
Corrections." All corrections must be made before the data is
transmitted to the host.

4. Press the Return (....) key. This stores the line in your terminal's
buffer. When you are storing data in the buffer, any character that is
entered in the last ten positions causes the audible alarm to sound.
Return to step 2 if you want to store more lines in the buffer before
transmitting them to TSO.

210 OS/VS2 TSO Terminal User's Guide

5. Transmit the buffer contents to TSO by either:

• Pressing the EOB key: TSO will hold the data for processing. The
Proceed light stays on and you can enter more data immediately
(step 2). If the buffer becomes full, the Proceed light goes off and
no more data is stored .

• Pressing the EOM key: TSO will begin processing the data. The
Proceed light will go off and then comes on again. If you have
more lines to enter, go back to step 2.

Making Corrections
If your 3767 does not have the Edit/Off switch, only single-line (line
currently being keyed) correction can be done, (see "Basic SDLC Data
Correction," the next topic). If the Edit/Off switch is present, correction of
stored data is referred to as editing. The following paragraphs describe
editing.

If an edited line is shorter than the old line, following data is shifted
ahead. If the edited line becomes longer than the original line, all following
data is shifted back to make room. If editing causes a character to go into
the last ten buffer positions, the alarm does not sound; if editing causes
overflow from the buffer by shifting, the overflow data is lost. (A possible
overflow will be apparent when you advance to the end of the stored data
by pressing PRINT BUFFER. Any data originally keyed in that does not
appear in the printout has been lost.)

Once a Return code (caused by pressing the Return key) has been stored
in a buffer, it cannot be removed or replaced with other data. If you want
to delete or insert one or more complete lines, you must clear the buffer
and key in the entire data block again.

After editing, data transmission begins at the first buffer position and
continues to the position where editing stopped. In order to include all of
the stored data that is to be transmitted, use a print key (PRINT BUFFER,
PRINT LINE, or PRINT CHAR) to advance the editing operation. (See
the topic "Buffered SDLC Corrections.")

Caution: The Auto/Off switch must be set to Off when printing from the
buffer.

Note: The audible alarm will sound if the stored line is longer than 128
characters; it may sound at the end of the last line printed. Neither of these
conditions requires any operator action.

Basic SDLC Corrections

If your 3767 does not have an Edit/Off switch (Buffer with Edit feature),
or if the Auto/Off switch is set to Auto, correction is limited to the current
line.

Appendix G: IBM 3767 Communication Terminal 211

To correct the cur~ent line:

1. If you are using the Auto View/Off switch, set it to Auto View.

2. Repeatedly pre~s the BUFFR BKSP key until either:

a. The vertic~lline on the cut form guide aligns with the first error
character. : or

b. The alphanumeric readout (ANR) indicator displays the first
error position.

3. Advance the form by rotating the platen knob (to avoid
overprinting) .

4. Key in the cotrect data to the end of the line.

To reenter the entire buffer:

1. Press the BUIfFR RTN key. The print head returns to the left
margin, one lihe feed takes place and the alphanumeric readout
(ANR) displays the value of the left margin.

2. Key in the data from the beginning of the data block.

Buffered SDLC Data Correction

Make sure the Edit/Off switch is set to Edit and the Auto/Off switch is set
of Off.

To correct the current line:

1. If you are using the Auto View/Off switch, set it to Auto View.

2. Repeatedly press the BUFFR BKSP key until the vertical line on th~
cut forms guide aligns with the error character, or until the
alphanumeric readout displays the error position. If you backspace
too far, rep~atedly press (or press and hold) the PRINT CHAR key
until the ve~tical line aligns with the proper position, or until the

I

alphanumedc readout shows the desired value.

3. Advance the form by rotating the platen knob if you want to avoid
overprinting.

4. Key in onlYI the corrections.

5. Press the P~INT LINE key if you are doing a character-for-character
correction. if you added or deleted data, you must key in the
remainder qf the line.

6. Continue keying in.

To correct a previous line:

1. Press the BUFFR RTN key to return to the beginning of the buffer.

2. Press the BRINT LINE key once for each line before the error line.

212 OS/VS2 TSO Terminal User's Guide

3. Repeatedly press (or press and hold) the PRINT CHAR key until
you come to the first error position of the error line.

4. Key in only the corrections.

s. Press the PRINT LINE key if you made a character-for-character
correction. If you add or delete data, you must key in the remainder
of the line.

6. Press the Return key to indicate the end of editing for the line.

7. Press the PRINT BUFFR (or PRINT LINE) key to advance the edit
action to the end of the data originally stored.

8. The buffer now contains correct data; continue the operation.

To reenter the entire buffer:

1. Press the BUFFR RTN key. The print head returns to the left
margin, one line feed takes place, and the alphanumeric readout
displays the position of the left margin.

2. Key in the data from the beginning of the data block.

To print the current line:

1. Press the BUFFR LINE RTN key. The carrier returns to the left
margin and a line feed takes place.

2. Press the PRINT LINE key. The contents of the current buffer line
are printed. (Instead of pressing the PRINT LINE key, you can press
and hold the PRINT CHAR key until you get to the end of the line.)

To print any line:

1. Count backward from the current line until you reach the line where
you want to start printing.

2. Press the BUFFR LINE RTN key as many times as you counted in
step 1. The carrier returns to the left margin and a line feed takes
place.

3. Press the PRINT BUFFER key. The contents of the buffer are
printed, from the beginning of the selected to the last position keyed
in.

Instead of pressing the PRINT BUFFR key in step 3, you may press the
PRINT LINE key or press and hold the PRINT CHAR key.

To print the entire buffer:

1. Press the BUFFR RTN key. The carrier returns to the left margin
and a line feed takes place.

2. Press the PRINT BUFFR key. The contents of the buffer are printed
from the beginning.

How to Interrupt Operations from the Terminal
Press the ATTN key (causing an attention interruption) or the CNCL key
to signal TSO that you want to interrupt the operation that is taking place.
The following operations can be interrupted:

• To stop the transmission of input being sent from your terminal to
TSO, press the ATTN key or the CNCL key. (If using buffered
SDLC data transmission, pressing CNCL also causes data entered
since the last time EOM was pressed to be lost.)

Appendix G: IBM 3767 Communication Terminal 213

• To stop the listing of output being sent to your terminal from TSO,
press the ATTN key or the CNCL key.

• To interrupt a command or program that is executing, press the ATTN
key. Pressing ATTN does not affect data at your terminal. It affects
the transmission of data and the execution of a command of program.

The ATTN key and the CNCL key never lock, so you can press them at
any time. After you press the ATTN key, TSO replies by printing the
following response:

You can then proceed with any operation you want to. TSO does not
reply when you press the CNCL key, and you can proceed immediately
with any operation.

If you want to continue with the operation that you interrupted, press
the Return (...) key before typing anything else; however, input data that
was being typed or output data that was being printed at the time of the
interruption may be lost.

How to End a TSO Terminal Session
To end a terminal session with TSO, you may either log off or log on.
Logging of ends the terminal session with TSO; logging on ends the
terminal session with TSO and automatically starts a new session with TSO.
(Note: Use the TSO LOGON command, not one of the SNA logon
commands, to end a terminal session by logging on.)

If your terminal is supported by TSO ITCAM, your installation can
choose to end the SNA session with TCAM automatically when the TSO
session ends. If this is the case, follow the procedure below. If your
installation selects another option, the installation should provide the proper
sequence of commands for logging off.

To log off:

1. Press the SYS REQ key if you are using an SNA logoff command.

2. Enter the logoff command. This command will consist of the word
LOGOFF or its installation-defined substitute. Your system
programmer should tell you the format of the logoff command for
your terminal.

3. Transmit the logoff command to TSO by pressing the Return (...) key.

Whether logging off or logging on, TSO will type:

userid LOGGED OFF TSO AT time ON date

214 OS/VS2 TSO Terminal User's Guide

Appendix H: IBM 3770 Data Communication System

The IBM 3770 Data Communication System is a family of keyboard-printer
terminals and attachable I/O devices (diskette, card reader, card punch,
printer) that permits a variety of terminal configurations and is designed for
a range of data entry, inquiry, remote printing, and card punching
applications. It allows interactive and batch operations.

TSO supports the 3770 as an interactive terminal with EBCDIC or
Katakana (Japan only) keyboards, as shown in Figure 41. In addition to the
data keys there are function keys, indicator lights, 'and operating mode
switches. The 3771, 3773, and 3774 have bidirectional matrix printers. The
3775 has a line printer with a continuously rotating metal belt.

TSO supports the 3770 terminal in a systems network architecture
(SNA) configuration. TSO uses a telecommunications access method, either
VT AM or TCAM, to direct the transmission of data over the
communication line between the terminal and the host computer.

Before you start your TSO terminal session you must know the type and
format of the logon and logoff commands that you should use. Your system
programmer should give you this information.

How to Start a TSO Terminal Session
Three operations are involved in starting a TSO terminal session:

1. Setting the switches

2. Contacting the computer

3. Contacting TSO

Setting the Switches

If your terminal has the Security Keylock special feature, insert the key and
turn it to the Unlock position.

The switches are located on the operator panel and on the auxiliary
operator panel. Set the BSC/SDLC switch to SDLC, then the On/Off
switch to On. (You must set the BSC/SDLC switch before you turn the
Power switch on because the BSC/SDLC switch takes effect during the
power-on sequence; after power is on, changing this switch has no effect.)
F or a description of each switch, see IBM 3770 Data Communication: System
Components.

After a 20-30 second delay following power-on, while terminal
self-testing occurs, the Proceed light will go on indicating that the terminal
is operable.

Appendix H: IBM 3770 Data Communication System 215

EBCDIC

16 Back Space
34 NewLine
39 Alpha Symbol Shift
52 Katakana Symbol Shift
57 Alphanumeric Shift
69 Katakana Shift
74 Space

9 Apostrophe
13 Minus
14 Over Line
15 Cho-on
68 Under Line
65 Comma
66 Katakana Period

Katakana

Figure 41. IBM 3770 Data Communication System Keyboards

216 OS/VS2 TSO Terminal User's Guide

Shift 1 (:fi:. ~/{

Alphanumeric

Shift 2 (i!i:. l~~ ~i I
Alpha Symbol

Shift 4 (1) 1 Jc -~i)
KANA Symbol

Shift 3 (1) t..)
KATAKA~A

Contacting the Computer

A 3770 terminal can be permanently connected to a computer network
through a nonswitched (leased) line, or temporarily connected through a
switched (dial-up) line. TeAM supports leased lines only.

If your terminal uses a nonswitched line, you should already be in
contact with the computer. Twenty to thirty seconds after you turned the
OnlOff switch on, the Proceed light should have gone on and the keyboard
should have unlocked. If this did not happen, turn the OnlOff switch off,
then on again. If the Proceed light does not go on and the keyboard does
not unlock, the system is not available, and you must try later.

If your terminal uses a switched line, your procedure for dialing the
computer depends on the type of dial-up devices you use. Figure 42 shows
typical procedures for terminals using an acoustic coupler. Figure 43 shows
typical procedures for terminals using a telephone data set (modem). For
more detailed instructions, refer to the operating instructions for your
specific type of dialing device.

1. Make sure the acoustic coupler:
(a) is connected to a power supply
(b) is turned on
(c) is connected to the terminal

2. Remove the handset from the cradle and dial the computer's telephone
number. Your installation should supply the number.

3. Wait for a high-pitched tone. If the number is busy or if there is no answer,
hang up and try again.

4. When you hear the high-pitched tone, place the handset face down in the
coupler box. Make sure the cord is in the slot. Close the lid of the acoustic
coupler and latch it.

5. The keyboard unlocks, and the system is ready to receive input data.

Figure 42. Acoustic Coupler Technique for the IBM 3770 Data Communication System

1. Press the TALK button on the telephone modem, if present; otherwise, set the
Talk/Data switch on the terminal to Talk.

2. Remove the handset from the cradle and dial the computer's telephone
number. Your installation should supply the number.

3. Wait for a high-pitched tone. If the number is busy or if there is no answer,
hang up and try again.

4. When you hear the high-pitched tone, push the DATA button on the telephone
modem, if present; otherwise, set the Talk/Data switch on the terminal to
Data. The DATA light should go on. The keyboard unlocks, and the system is
ready to receive input data. If the DATA light goes off at any time during the
terminal session, you must retry from step 1.

5. Place the handset in the cradle.

Figure 43. Telephone Modem Technique for the IBM 3770 Data Communication System

Appendix H: IBM 3770 Data Communication System 217

Contacting TSO

If your terminal is supported by TeAM, your installation can provide a
LOGON procedure that automatically establishes a SNA session with
TeAM. If this option is selected, enter the TSO LOGON command to
identify yourself to TSO: type the word LOGON, a space, and your user
identification (userid). Then perform steps 3 and 4 below. If this option is
not selected, or if your terminal is not supported by TeAM, use the
following procedure to contact TSO:

1. Press the SYS REQ key. The KBD and LINE lights go on.

2. Enter a logon command to identify yourself to TSO. The logon
command consists of the word LOGON or its installation-defined
substitute, and may be followed by a character string containing such
information as a user 10, password, account number, and cataloged
procedure name. Your system programmer should tell you the format
of the logon command for your terminal.

3. Transmit the logon command to TSO by pressing the Return (...) key
and, if the Auto/Off switch is set to Off, the EOM key. The Proceed
light goes off.

4. Wait for TSO to reply to your logon command. TSO types a
preliminary message:

userid LOGON IN PROGRESS AT time ON date

It might also type:

LOGON PROCEEDING

When you are logged on, TSO types the message:

READY

and turns the Proceed light on. You can now enter any command.

How to Enter Data
There are two modes of sending data from your terminal to TSO: basic
SOLe transmission (one line at a time) and buffered SOLe transmission
(multiple lines at a time). Basic mode transmits a line of input data to TSO
as soon as it is typed. Buffered mode accumulates (or "stacks") lines of
input data in your 3770 terminal buffer and then transmits them to TSO.
Stacking lines improves performance by decreasing the number of
transmissions across the communication line to TSO, thus requiring less
processing by TSO.

TSO notifies you that it is ready to accept a line of input by printing a
message (for example, READY), a line number (for example, 00120), or a
character-prompt (for example,-). Data can now be entered.

218 OS/VS2 TSO Terminal User's Guide

Basic SDLC Transmission

To transmit a single line of data do the following:

1. Make sure that your terminal is in auto mode: for 3771 and 3773,
press the CODE and 1 keys; for 3774 and 3775, press the top of the
Auto switch.

2. Type a line of input. You can type as much as will fit on one line.

3. Correct any typing errors in the line.

4. Press the Return ~ key. This transmits the data to TSO, which
starts processing it.

5. If you want to enter more input, return to step 2 after the Proceed
light goes on and the keyboard unlocks.

Note: If the terminal is not in auto mode, data is transmitted automatically
after 256 char'acters are entered, or when the EOB or EOM key is pressed.

Buffered SDLC Transmission

To transmit multiple lines of data do the following:

1. Make sure that your terminal is not in auto mode. If the Auto light is
on for 3771 and 3773, press the CODE and 1 keys: for 3774 and
3775, press the bottom of the Auto switch.

2. Type a line of input. You can type as much as will fit on one line.

3. Correct any typing errors (see "Correcting Typing Errors" below).

4. Press the Return (.,t) key to stack the line in your terminal's buffer.
Return to step 2 if you want to stack more lines in this group.

5. Press the EOB key to transmit the stacked lines to TSO and to have
TSO hold the lines for processing, or press the EOM key to transmit
the stacked lines to TSO and to signal TSO to start processing them.

6. If you want to enter more input, return to step 2 after the Proceed
light goes on and the keyboard unlocks.

Note: The audible alarm sounds each time a character is entered in
the last ten positions of the buffer.

The number of lines you can stack in your buffer (before you press the
EOB or EOM key) dependspn the size of the buffer in your terminal.
Your system programmer sho\lld give you this information.

Basic SDLC Data Correction

Correction is limited to the current line if the Auto/Off switch is set to
Auto.

To correct the current line:

1. For 3771/3/4, repeatedly press the BUFFR BKSP key until the
vertical line on the cut forms guide aligns with the error character.
For 3775, repeatedly press the BUFFR BKSP key until the
print-position indicator aligns with the error character; print-position
lights will go out as you backspace.

Appendix H: IBM 3770 Data Communication System 219

2. Advance the form by rotating the platen knob if you want to avoid
overprinting.

3. Key in the correct character. If you are replacing one incorrect
character with more than one new character, you must reenter the
remainder of the line.

To reenter the line:

1. Press the BUFFR R TN key . The print head returns to the left
margin and one line feed takes place.

2. Key in the line again.

Buffered SDLC Data Correction

Corrections can be made only if the terminal was not in auto mode when
the data was entered. Make sure that your terminal is not in auto mode. If
the Auto light is on: for 3771 and 3773, press the CODE and 1 keys; for
3774 and 3775, press the bottom of the Auto switch.

To correct the current line:

1. Repeatedly press the BUFFR BKSP key until the vertical line on the
cut forms guide (form 3771/3/4) or print-position indicator (for
3775) aligns with the error character. If you backspace too far,
repeatedly press (or press and hold) the PRINT CHAR key until the
proper position is aligned.

2. Advance the form by rotating the platen knob if you want to avoid
overprinting.

3. Key in only the corrections.

4. Press the PRINT LINE key.

5. Continue keying in.

To correct a previous line:

1. Press the BUFFR RTN key to return to the beginning of the buffer.

2. Press the PRINT LINE key once for each line before the error line.

3. Repeatedly press (or press and hold) the PRINT CHAR key until
you come to the first error position of the error line.

4. Key in only the corrections.

5. Press the PRINT LINE key if you made a character-for-character
correction. If you add or delete data, you must key in the remainder
of the line.

6. Press the Return key to indicate the end of editing for the line.

7. Press the PRINT BUFR (or PRINT LINE) key to advance the edit
action to the end of the data originally stored.

8. The buffer now contains correct data; continue the operation.

To reenter the entire buffer:

220 OS/VS2 TSO Terminal User's Guide

1. Press the BUFFR RTN key. The print head returns to the left margin
and one line feed takes place.

2. Key in the data from the beginning of the data block.

To print the current line:

1. Press the BUFFR LINE RTN key. The carrier returns to the left
margin and a line feed takes place.

2. Press the PRINT LINE key. The contents of the current buffer line
are printed. (Instead of pressing the PRINT LINE key, you can press
and hold the PRINT CHAR key.)

To print any line:

1. Count backward from the current line until you reach the line where
you want to start printing.

2. Press the BUFFR LINE RTN key as many times as you counted in
step 1. The carrier returns to the left margin and a line feed takes
place.

3. Press the PRINT BUFFR key, or the PRINT LINE key, or press and
hold the PRINT CHAR key. The contents of the buffer are printed,
from the beginning of the selected line to the last position keyed in.

To print the entire buffer:

1. Press the BUFFR RTN key. The carrier returns to the left margin
and a line feed takes place.

2. Press the PRINT BUFFR key. The contents of the buffer are printed
from the beginning.

How to Interrupt Operations from the Terminal

Press the ATTN key (causing an attention interruption) or the CNCL key
to signal TSO that you want to interrupt the operation that is taking place.
The following operations can be interrupted:

• To stop the transmission of input being sent from your terminal to
TSO, press the CNCL key. (If using buffered SDLC data
transmission, pressing CNCL also causes data entered since the last
time EOM was pressed to be lost.)

• To stop the listing of output being sent to your terminal from TSO,
press the ATTN key or the CNCL key.

• To interrupt a command or program that is executing, press the ATTN
key.

You can press the ATTN key any time that input can be entered. The
CNCL key never locks, so you can press it at any time. After you press the
ATTN key, TSO replies by printing the following response:

You can then proceed with any operation you want to. TSO does not reply
when you press the CNCL key, and you can proceed immediately with any
operation.

If you want to continue with the operation that you interrupted, press
the Return (-) key before typing anything else; however, input data that
was being typed or output data that was being printed at the time of the
interruption may be lost.

Appendix H: IBM 3770 Data Communication System 221

How to End a TSO Terminal Session

To end a terminal session with TSO, you may either log off or log on.
Logging off ends the terminal session with TSO; logging on ends the
terminal session with TSO and automatically starts a new session with TSO.
If your terminal is supported by TSO ITCAM, your installation can choose
to end the SNA session with TCAM automatically when the TSO session
ends. If this is the case, follow the procedure below. If your installation
selects another option, the installation should provide the proper sequence
of commands for logging off.

To log off:

1. Press the SYS REO key if you are using a SNA logoff command.

2. Enter a logoff command. This command will consist of the word
LOGOFF or its installation-defined substitute. Your system
programmer should tell you the format of the logoff command ·for
your terminal.

3. Transmit the logoff command to TSO by pressing the Return (-) key.

Whether logging off or logging on, TSO will type:

userid LOGGED OFF TSO AT time ON date

222 OS/VS2 TSO Terminal User's Guide

&DATATYPE built-in function 94
(see also built-in functions)

& EV AL built-in function 95
(see also built-in functions)

& LASTCC control variable 99
(see also control variables)

&LENGTH built-in function 95
(see also built-in functions)

& MAXCC control variable 99
(see also control variables)

·&STR built-in function 95
(see also built-in functions)

&SUBSTR built-in function 96
(see also built-in functions)

&SYSDATE control variable 101
(see also control variables)

&SYSDLM control variable)00
(see also control variables)

&SYSDVAL control variable 100
(see also control variables)

&SYSICMD control variable 100
(see also control variables)

& SYSNEST control variable 100
(see also control variables)

&SYSPCMD control variable 101
(see also control variables)

&SYSPREF control variable 99
(see also control variables)

&SYSPROC control variable 99
(see also control variables)

& SYSSCAN control variable 100
(see also control variables)

&SYSSCMD control variable 101
(see also control variables)

&SYSTIME control variable 101
(see also control variables)

& SYSUID control variable 99
(see also control variables)

abend
error exit after 128
using TEST command after 86

abbreviating
command names 3
keyword operands 4

account name
Teletype* 169
1052 160
2260/65 178
2741 149
3270 190,200
3767 209
3770 218

account number 26
ACCT operand of LOGON command

T eletype* 169
1052 160
2260/65 178
2741 149
3270 190

acoustic coupler technique
for the IBM 1052 Printer-Keyboard 159
for the IBM 2741 Communication Terminal 148
for the IBM 3767 Communication Terminal 209
for the IBM 3770 Data Communication System 217

action
attention 129

definition 128
error 128
exit 128
if 114

addressing restrictions for testing 81-82
aliases

assigning 59
keyword operands 4

allocating a data set 64-67
AL TN coding key on 1052 161,162,163,164,165
AND logical operator

format 92
purpose 91

arithmetic
expressions 91
operations 91

addition 91
division 91
exponentiation 91
multiplication 91
remainder 91
subtraction 91

operators 92
assigning

an alias name 59
data set attributes 67

Index

assignment statement (see SET-assigning values to variables)
attention exit 129

(see also exit actions and routines)
attention interrupt levels (see attention interruption)
attention interruption 9,129

Teletype* 171
interrupt levels 172
simulated interrupt 171
TSO responses 171

1052 162
EOT key 163
interrupt levels 164
LINE/RESET key 164
simulated interrupt 164
TSO responses 163

2741 151
ATTN key 153
interrupt levels 154
simulated interrupt 153
TSO responses 153

3270 192,202
interrupt levels 194
TSO responses 193,202

3767 213
3770 221

ATTN key
2741 153
3767 213
3770 221

AUTO EOB 161
ATTN - the attention exit

canceling 129
creating 129
relating to DO-groups 129

attributes, assigning to a data set 67

back arrow 170
basic keyboards for the 3270 Information Display System

188
basic SDLC corrections

3767 211
3770 219

Index 223

basic TSO information
commands 3-8
data set naming conventions 14-18
system-provided aids 8-13
terminals 3

branching
controlling (see controlling execution flow and

branching)
into a DO-group 114
relating to labels 93

Break Release Key 171
breakpoints

establishing 82-83
removing 83

BRK key 171
BRK-RLS key 171
broadcast messages 11

receiving 29
buffered SDLC corrections

3767 212
3770 220

built-in functions
(see also individual entries for each function)
&DATATYPE 94
&EVAL 95
&LENGTH 95
&STR 95
&SUBSTR 96
definition of 94
example use of 146

canceling a prompting sequence 11
carriage return on Teletype* 170
changing

data areas 85
instructions 85
line numbers 50-51
register contents 85

character deletion
restrictions on 2260/65 180
Teletype* 170
1052 162
2260/65 180
2741 151

character sets on 2741 151
character string identification 55
CLEAR key 202
CLIST

definition of (see command procedures)
qualifiers 87
sequential data set 87

CLOSFILE - closing an open file 124
CNCL

3767 213
3770 221

COM/LCL switch 147
command name abbreviations 3
command name message after attention interrupt

Teletype* 171
2260/65 182
2741 153
3270 193

command procedures
creating 87
definition of 87
library for 87 (see also library, command procedure)
writing (creating)

PDS member 87
sequential 87

224 OS/VS2 TSO Terminal User's Guide

using 88
comments

continuation of lines 7-8
example of 7-8
format for 7-8
indenting lines

in command procedures 116
use in command procedures 116

common qualifiers, renaming 60
communicating with the terminal user 117 -122

(see also TERMIN-... ;WRITE-... ;READ-...)
comparison operations 91
comparison operators

definition 91
list 92

compiler data set names 69
compilers 63
compiling a program 69
concatenation

of allocations to SYSPROC 89
of expressions and operations 92

conditional execution controlling (see controlling execution
flow and branching)

conditional statements (see DO-groups; IF statement;
WHEN command)

CONLIST - setting the control command display option
predefinition 108
setting 108
suppressing with NOCONLIST 108

contacting TCAM
Teletype* 168
1052 160
2741 149
3270 189

contacting the computer
Teletype* 168
1052

with non-switched line 158
with switched line acoustic coupler 159
with switched line telephone modem 158

2260/65 177
2741 147
3270 189,200
3767 208
3770 217

contacting TSO
(see logging on)

continuing lines of comments (see comments)
continuing statement lines 116
CONTROL - controlling command procedure options

format for 106
method of using 106-110
operands (options) for

(see also the individual operand entries)
CONLIST - NOCONLIST 108
END (string) 109
FLUSH - NOFLUSH 109
LIST - NOLIST 108

~~~ NJ~SG 107 
PROMPT - NOPROMPT 107 
SYMLIST - NOSYMLIST 108 

predefinitions for 106-110 
purpose of 106 
recommended placement 106 
related to symbolic variables 107 

control commands (see command procedure statements) 
control statements (see statement summary, command 

procedure) 



control variables 
(see also individual entries for each variable) 
&LASTCC 99 
&MAXCC 99 
&SYSDATE 101 
&SYSDLM 100 
&SYSDVAL 100 
&SYSICMD 100 
&SYSNEST 100 
&SYSPCMD 101 
&SYSPREF 99 
&SYSPROC 99 
& SYSSCAN 100 
&SYSSCMD 101 
& SYSTIME 101 
&SYSUID 99 
definition of 97 

controlling command procedure options 106 
(see also CONTROL -... ) 

controlling the cursor symbol 
2260/65 175 
3270 189,199 

controlling the display 
2260/65 184 

handling a full display screen 184 
3270 196,203 

handling a full display screen 196,203 
controlling execution flow and branching 

with DO-groups 112 
with DO-WHILE-END sequences 112 
with IF-THEN-ELSE sequences 114 
with WHEN commands 

method of using 116 
restrictions on 116 

copying data 53-57 
(see also moving or copying data) 

correcting typing errors 3 
Teletype* 170 
1052 162 
2260/65 180 
2741 151 
3270 191,201 
3767 211 
3770 219 

correspondence character set 151 
creating 

a data set 35 
a program 68 
an updated copy of a data set 57 

CTRL key 170 
current line pointer 

finding 38-39 
positioning 39-40 

effect of EDIT subcommands 39 

I cursor symbol, controlling 
. 2260/65 175 

3270 189,199 

DATA-ENDDATA 113 
(see also DO-groups) 

data set 
allocation 64 
assigning attributes 67 
creating 21,35 
creating an updated copy 57 
deleting 62 
deleting data from 23,42 
inserting data 42 
modifying an existing 22-25 

naming conventions 14 
partitioned 17 
passwords 17 
protecting 62 
renaming 59 
replacing data 45 
saving 57 
storing a new data set 56 
types 18 
updating 41 

default 
descriptive qualifiers 16 
tab settings 37 

deleting 
data from a data set 23,42 
data sets 25,62 
a line 

Teletype* 171 
1052 162 
2741 151 

modified data 24 
delimiters 5 
descriptive qualifiers 14-15 

supplied by default 15 
display, controlling 

2260/65 184 
handling a full display screen 184 

3270 196,203 
handling a full display screen 196,203 

display screen control symbols, 2260/65 175 
displaying 

command procedure options 107 
session time used 31 
storage areas 83-84 

divergent IF-THEN-ELSE sequence 115 
DO-groups 

branching into, results of 114 
definition of 112 
entering END commands or subcommands within 113 

DO-WHILE-END sequence 
definition of 112 
method of using 112-114 

EDIT 
used to write command procedures 87 
using 33-62 

edit mode 33-34 
EDIT subcommand functions 34 
END command and subcommand 

entering within DO-groups 113 
substituting alternate string for 109 

END (string) - substituting a string for an END delimiter 
(see also DO-groups) 
method of 109 
purpose of 109 
termination of 109 

ENDDATA (see DATA-ENDDATA) 
ending 

a command procedure t 34, 109 
a line of input 

Teletype* 170 
1052, with AUTO EOB special feature 161 
2260/65 179 
2741 150 
3270 191,201 
3767 210 
3770 219 

a terminal session 32 
(see logging off) 

Index 225 



edit functions 22,58 
entering 

data at a terminal 21 ,33 
Teletype 170 
1052 161 
2260/65 178 
2741 150 
3270 190,201 
3767 210 
3770 218 

passwords 16,27 -28 
subcommands 33 

EOB key on 1052 161 
error exit 128 

(see also exit actions and routines) 
ERROR - the error exit 

(see also MAIN option; NOFLUSH option) 
canceling 128 
creating 128 
listing statements in error 128 
protecting 128 
relating to DO-groups 128 

examples of command procedures 
(see also individual entries) 
PIZZA 132 
PRINTA 141 
PROF 136 
PROFILE 137 
SETUP 136 
SUBMITPA 145 

exceptions to data set naming 
conventions 15-16 

EXEC 
as a subcommand of EDIT 88 
explicitly used to invoke procedures 88 
implicitly used to invoke procedures 89 
restrictions in nested procedures 124 

executing 
a command procedure 88 
a program 72 
a program at a terminal 63-76 
a program under TEST 82 

executing one command procedure from another 
(see nested procedures) 

execution flow, controlling (see controlling execution flow 
and branching) 

exit actions and routines 
attention exit 129 

(see also ATTN -... ) 
error exit 128 

(see also ERROR -.. .) 
establishing 128 
returning control from 130 

(see also RETURN -... ) 
types of 128 

EXIT - exiting from a nested command procedure 
returning a code with 127 
to a protected nested level 127 
ways to 127 

exiting from a nested command procedure 127 
(see also EXIT - exiting from a nested command 

procedure) 
explicit execution 

data set naming conventions 88 
method of invoking procedures 88 
used to shorten TSO s search time 89 

explicit use of EXEC (see explicit execution) 
expressions, definitions of 

comparative 91 
logical 91 
simple 91 

226 OS/VS2 TSO Terminal User's Guide 

features of command procedures 
(see also individual feature entries) 
explanation of 90 

FIELD MARK key 191 
file access statements (see CLOSFILE -... ;GETFILE 

-... ;OPENFILE -... ;PUTFILE -... ) 
file input/output 

for command procedures (see performing file 
input/ output) 

finding the current line pointer 38-39 
FLUSH - setting the input stack flushing option 

brief input stack definition 108 
permitting stack flushing 109 
predefinition for 109 
prohibition of with NOFLUSH 109 
related to exit routines 109 

(see also ERROR -... ) 
related to MAIN option 109 

(see also MAIN -... ) 
forcing execution of program subroutines 85 
freeing an allocated data set 68 
full display screen, handling 

2260/65 184 
3270 196,203 

functional features (see features of command procedures) 

GETFILE - getting a record from an open file 
filename as symbolic variable 123 
method of use 123 

GLOBAL - establishing global symbolic variables 
(see also nested procedures) 
format 126 
method of use 126 
purpose 126 

GOTO - unconditional branching 112 

halting data listing at the terminal 
(see attention interruption) 

handling a full display screen 
2260/65 184 
3270 196,203 

HELP command 
command explanations 12 
subcommand explanations 13 
syntax interpretation of 12-13 

identifying 
data sets 35 
yourself to the system 26,19 

IF statement 
action for 114 
IF-THEN-ELSE sequence 114 
logical expression for 114 

divergent sequence (figure) 115 
divergent-convergent sequence (figure) 115 

unconditional branch from 115 
without an ELSE clause (figure) 116 

implicit execution 
advantages of 88 
cautions about 88 
of procedures 88 

implicit use of EXEC (see implicit execution) 
indenting lines of comments (see comments) 
indenting statement lines 116 
informational messages 11 
inhibiting, password printing 27,28 
input inhibited light 20 



input mode 33 
input stack 108,124 

(see also FLUSH -... ;nested procedures) 
input/output 

for command procedures (see performing file 
input/ output) 

I/O (see performing file input/output) 
inserting data in a data set 23,42 
interrupting operaHons from terminals 

(see attention interruption) 
introduction 1 

JCL data set 131 
(see also SUBMITPA) 

K button on Teletype* Model 35 168,171 
keyboard 

Teletype* 
Model 33 167 
Model 35 167 

1052 159 
2260/65 176 
2741 152 
3270 188 
3767 205 
3770 216 

keywords 
abbreviating 4 
aliases for 4 
categories and examples in command procedures 104 

labels 
definition of 93 
format for 93 
how used 93 
restrictions on 93 
where used 93 

levels of attention interrupts (see attention interrupt levels) 
library, command procedure 

concatenating 89 
creating 87 
definition of 87 
explicit execution from 88 
implicit execution from 88 
naming members of 88 

line deletion 42 
Teletype* 171 
1052 162 
2741 151 

line numbers 
assigning 50 
changing (renumbering) 50-51 
moving data with 54 
removing 51,56 
suppressing 52-53 

LINE RESET / ATTN key 163 
LINE/RESET key and the EOT key, 1052 163 
link-editing a compiled program 70 
LIST - setting the list option 

permitting display 108 
predefinition, lack of 108 
related to EXEC command 108 
suppressing with NOLIST 108 

listing 
catalog 23 
data set contents 22,52 
data set information 61 

loading a program 74 
logging off 25,32 

Teletype* 173 
1052 165 
2260/65 185 
2741 156 
3270 197,203 
3767 214 
3770 222 

logging on 20,27 
(see also contacting TSO) 
Teletype* 

messages 169 
prompting 169 
sample commands 169 

1052 
messages 160 
operands 160 
prompting 160 

2260/65 
messages 178 
operands 178 
prompting 178 
sample commands 178 

2741 
messages 149 
operands 149 
prompting 149 
sampling 150 
suppressing printing of password 149 

3270 
messages 189,200 
operands 189,200 
sample commands 190 

3767 
messages 209 
operands 209 

3770 
messages 218 
operands 218 

logical operators 
(see also AND logical operator;and OR logical operator) 
definition 91 
list 92 

MAIN - establishing a command procedure as the main 
procedure 

method of 109 
related to stack flushing 109 

(see also FLUSH -... ) I MAIN POWER switch 158 
messages 

broadcast 11,29 
informational 11 
mode 9 
prompting 10-11 

cancelling 11 
sending 30 

mode 
edit 33-34 
input 33 
messages 9 
switching 34 

modifying an existing data set 22-25 
moving or copying data 53-56 

by character string identification 55 
by line number 54-56 

MSG - setting the message option 
setting 107 

Index 227 



suppressing with NOMSG 107 
multiple attention interrupts (attention interrupt levels) 
Multiple Terminal Access (MTA) Feature 148,158 

naming conventions 14 
nested procedure 

definition of 124 
establishing global symbolic variables for 125 
figure of 125 
flushing and flushing protection 127 

(see also MAIN option; NOFLUSH option) 
lower level 125 
outer level (top level) 125 

NEW LINE key, 3270 191,202 

NOCONLIST 108 
(see also CON LIST -... ) 

NO FLUSH 109 
(see also FLUSH -... ) 

NOLIST 108 
(see also LIST -... ) 

NOMSG 107 
(see also MSG -... ) 

NOSYMLIST 108 
(see also SYMLIST -... ) 

numbering lines of data 50 

O-Key (see backarrow) 
OPEN FILE - opening a file 123 
operands 

abbreviating 4 
control 106 
keyword 4,104 
positional 4,104 

operational characteristics 
defining 28 
terminal characteristics 28 
user profile 28 

operators 
arithmetic 91 
comparison (relational) 91 
logical 91 

OR logical operator 
format 92 
use 91 

PAl key 202 
parameters, symbolic 

establishing on PROC statement 104 
keyword 104 
positional 104 

invoking a command procedure with 105 
on READ statements 120 
on READDVAL statements 121 

partitioned data sets 
as command procedure libraries 87 
creation of 16,87 
definition of 16 
use of 16,87 

password operand of LOGON command 
T eletype* 169 
1052 160 
2260/65 178 
2741 149 
3270 190 

228 OS/VS2 TSO Tenninal User's Guide 

passwords 
print-inhibiting 27-28 
specifying 16 

performance group 26 
performing file input/output 

method of 122 
statements for 

(see also individual statement entries) 
CLOSFILE 124 
GETFILE 123 
OPENFILE 123 
PUTFILE 123 

PIZZA example command procedure 
example output 134 
example statements 132 
purpose 130 

(see also continuation characters) 
positional 

operands 4 
symbolic parameters 104 

positioning the current line pointer 39 
print-inhibiting passwords 27-28,149 
PRINT A command procedure 

example 141 
purpose 131 
use 131 

PROC operand of LOGON command 
Teletype* 169 
1052 160 
2260/65 178 
2741 149 
3270 190 

PROC statement 104 
procedure name 26 
PROCEED light 158,161,209,218 
PROF command procedure 

example 136 
purpose 131 
use 131 

PROFILE command procedure session 
example 137 
purpose 131 
use 131 

program product compilers 63 
PROMPT - setting the prompt option 

permitting prompts 107 
predefinition, lack of 107 
related to EXEC command 107 
suppressing prompts with NOPROMPT 107 

prompting messages 
input 

Teletype* 170 
1052 161 
2741 150 

LOGON 
Teletype* 169 
1052 160 
2741 149 

prompting sequence, canceling 11 
protecting 

command procedures 108,128 
(see also ERROR -... ;FLUSH -... ;MAIN -... ) 

data sets 62 
PUT FILE - putting a record into an open file 

method of use 123 
using with assignment statement 123 

QSAM data sets 122 
(see also performing file input/output) 



qualifiers 
common 60 
descriptive 14-15 

quoted-string notation 

READ 

49,106 

(see also &SYSDVAL; WRITE) 
description of 120 
parameters 120 

as variables 120 
values for 120 

relation to 
&SYSDVAL 120 
READDV AL statement 120 
WRITE statement 120 

using 120 
READ and READDV AL - reading input from the terminal 

120 
(see also READ;READDVAL) 

READDVAL 
(see also READ; &SYSDVAL) 
description of 121 
parameters for 

as variables 121 
values for 121 

relation to 
&SYSDVAL 121 
READ statement 121 

using 121 
READY message 9 

Teletype* 
after attention interrupt 171 
after LOGON 169 

1052 
after attention interrupt 163 
after LOGON 160 

2260/65 
after attention interrupt 182 
after LOGON 178 

2741 
after attention interrupt 153 
after LOGON 149 

3270 
after attention interrupt 193,202 
after LOGON 190,201 

3767 
after LOGON 210 

3770 
after LOGON 218 

Receive Interrupt special feature 
1052 163 
2741 153 

receiving broadcast messages 30 
removing line numbers 51,57 
renaming 

a data set 59 
a partitioned data set member 59 

assigning an alias 59 
common qualifiers 60 

renumbering lines of data 50 
replacing data in a data set 45,24 

I REQUEST key 158,161 
RETURN - returning control from an ... exit 

caution for using 130 
example of 130 
lack of operands 130 
method of 130 

\ 
return key 

1052 161 

2741 
3767 
3770 

150 
209,213 
218,219 

sample TSO terminal session 19-25 
(see also terminal session) 

saving 
a data set 56 
updates to a data set 57,22 

search time, shortening TSO's 89 
SEND command (see sending messages) 
sending messages 

for later perusal 31 
from a command iprocedure 118 
with the SEND command 30-31 

SET - assigning values to variables 110 
assigning charact~r values 111 
assigning numeric! values 110 

SETUP member : 
(see also examples of major command procedures) 
example 136 
purpose 131 
use 131 

sign-on technique forlterminals attached to an IBM 3705 
MTA line 148,159 

simulated attention iriterrupts (see also TERMINAL 
command) 

sign-on procedure 
Teletype* 169 
1052 160 
2741 149 

special-delimiter notation 45-49 
special features 

1052 
Receive Interq'lpt 157,163 
Text Timeout Suppression 157,162 
Transmit Interlrupt 157,162 

2741 
Print Inhibit 147,149 
Receive Interrupt 147,153 
Transmit Interrupt 147,151 

3705 MTA 148,159 
stack 

(see also FLUSH -... ;nested procedures) 
flushing 108,126 
input 108,126 

starting a TSO terminal session 
Teletype* 168 

contacting TeAM 168 
contacting the computer 168 
contacting TSO 168 

1052 158 
contacting TeAM 160 
contacting the computer 158 
contacting TSO 160 

2260/65 177 
2741 147 

contacting TeAM 149 
contacting the. computer 147 
contacting TSO 149 

3270 189,200 . 
3767 208 
3770 215 

statements, command procedure 
categories 103 . 
continuing lines of 116 
definition 103 : 
indenting lines of 116 
labeling 93 

Index 229 



list of 
(see also individual entries for each statement) 
ATTN 129 
CLOSFlLE 124 
CONTROL 106 
DATA-ENDDATA 113 
DO-WHILE-END 112 
ERROR 128 
EXIT 127 
GETFILE 123 
GLOBAL 125 
GOTO 112 
IF-THEN-ELSE 114 
OPENFILE 123 
PROC 104 
PUTFILE 123 
READ 120 
READDVAL 121 
RETURN 130 
SET 110 
TERM IN 118 
WRITE 118 
WRITENR 118 

statement summary, command procedure 103 
statement type definitions, command procedure 

assignment 103 
conditional 103 
control 103 
file access 103 

storing a new data set 22,56 
subcommands 

description 5 
of EDIT 33-34 
of TEST 81 

SUBMITPA data set 145 
(see also examples of command procedures) 

switch 
COM/LCL, on terminal 147 
setting on 1052 157 

symbolic parameter 
implicit definition of 104 
on GLOBAL 126 
on READ and READDVAL 120 
on PROC 104 

symbolic substitution 
controlling <See &SYSSCAN ... ) 
definition 92 
rescan limit (see &SYSSCAN ... ) 
rules for 92 

symbolic variable 
(see also &SYSSCAN -... ) 
defined by symbolic substitution 92 
replacement of 92 

SYMLlST - setting the statement display option 
permitting display 108 
predefinition for 108 
suppres~ing with NOSYMLIST )08 

syntax 
interpretation of HELP 13 
notation conventions 6-7 
terminology for command procedure statements 91 

SYSRC operand of WHEN 117 
system-provided aids, using 8-13 

tah setting 
defaults 37 
with TABSET subcommand 51-52 

telephone modem technique 
for 1052 158 
for 2741 148 

230 OS/VS2 TSO Tenninal User's Guide 

for 3767 209 
for 3770 217 

TERM IN - requesting terminal input 
cautions for use 1 18 
communications use 1 18 
effect on control variables 1 19 

(see also &SYSDLM; &SYSDVAL) 
how to use 118 
null ines with 1 18 

terminal 
characteristics 28,147-222 
entering information 3,147-222 
types 

Teletype* Models 33 and 35 167-174 
IBM 1052 Printer Keyboard 157-166 
IBM 2260/65 Display Stations 175-186 
IBM 2741 Communication Terminal 147-156 
IBM 3270 Information Display System (Using 

TSO/TCAM) 187-198 
IBM 3270 Information Display System (Using 

TSO/VTAM) 199-204 
IBM 3767 Communication Terminal 205-214 
IBM 3770 Data Communication System 215-222 

using 3 
TERMINAL command 

Teletype· 171 
1052 164 
2260/65 181 
2741 153 
3270 192 

terminal mode switch (see COM/LCL switch) 
terminal session 

contacting TSO t 9 
deleting a line of data 23-25,42 
deleting data sets 25,62 
deleting modified data 24 
ending 32 
ending the edit function 22,58 
entering data 21,33-35 
inserting lines of data 23,42-45 
listing and saving the data set 22,52-53,56-57 
listing the catalog 23,61 
logging off 25 
logging on 20,27 
modifying an existing data set 22-25,41-55 
recalling a stored data set 23 
replacing a line of data 24,45-49 
running a ... session 19 
saving the data set 22,56 
setting margins and tabs 37-38 
starting 27 

terminals, introduction 3 
TEST command 77-86 

addressing restrictions 81 
after ABEND 86 
changing instructions, data areas, register contents 85 
displaying areas of storage 83 
establishing and removing breakpoints 82-83 
examples 78-79 
executing a program under control of 82 
subcommands 81 
subroutines, forcing execution 85 
when to use 79 

TEST REQ key 200 
testing a program at a terminal 77-86 
Text-Timeout Suppression special feature 157,162 
TIME command 

after attention interruption 9 
to display session time 31 

time, session 31 



I Transmit Interrupt special feature 
1052 157,162 
2741 147,151 

TSO commands 
introduction to 3 

unconditional branching (GOTO) 
from IF-THEN-ELSE sequences 115 
to label names 112 
to symbolic variables 112 

updating a data set 41-51 
user 

attributes 26 
identification 19,26 
profile 28 

user identification 26 
(see also userid) 

user-supplied name 15 
userid 

description of 26 
getting 19,26 
on LOGOFF message 

Teletype* 173 
1052 166 
2260/65 185 
2741 156 
3270 197 

on LOGON command 
Teletype* 168 
1052 160 
2260/65 178 
2741 149 
3270 189 

value list 105 
VTAM 147,158,168,187,199,215 

waiting for a READY message 9 
WHEN command 

as a conditional technique 116 
restrictions on 116 
SYSRC operand of 116 
using 116 

WRITE and WRITENR - writing messages to the terminal 
user, how to 118 

WRITENR (see WRITE ... ) 
writing command procedure messages 118 

(see also WRITE ... ) 
writing messages to the terminal user 118 

(see also WRITE ... ) 

X-OFF key 169 

Index 231 



232 OS/VS2 TSO Tenninal User's Guide 



$ 
o 
Z 

OSjVS2 TSO Terminal User's Guide 
GC28-064S-4 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. This form may be used to communicate your views about this 
publication. They will be sent to the author's department for whatever review and action, if any, 
is deemed appropriate. 

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted 
information, in any form, for any and all purposes, without obligation of any kind to the sub­
mitter. Your interest is appreciated. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, 
to your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comments are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit ___ _ 

If you wish a reply, give your name and mailing address: 

Please circle the description that most closely describes your occupation. 

(Q) (U) (X) (Y) 

Customer Install System System System 
Mgr. Consult. Analyst Prog. 

(Z) (F) 

Applica. System 
Prog. Oper. 

(I) 

I/O 
Oper. 

(L) 

Term. 
Oper. 

~ 
L::J 

(S) (P) (A) (B) (C) (D) (R) (G) (J) (E) (N) (T) 

IBM System Prog. System System Applica. Dev. Compo System I/O Ed. Cust. Tech. 
Eng. Sys. Analyst Prog. Prog. Prog. Prog. Oper. Oper. Dev. Eng. Staff 

Rep. Rep. Rep. 

Number of latest Newsletter associated with this publication: _____________ _ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, 
an IBM office or representative will be happy to forward your comments.) 



GC28-0645-4 

Reader's Comment Form 

Fold and tape 

Fold and tape 

==.= =® - - ---- ---- ---. ---- - - ----------"_. -

Please Do Not Staple 

II "I 
BUSINESS REPLY MAtL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business Machines Corporation 
Department 058, Building 106-2 
PO Box 390 
Poughkeepsie, New York 12602 

Fold an~ tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

______ ____ - - - ___ - - __ _ 1-

Please Do Not Staple Fold and tape 





GC28-0645-4 

==-= =® - ----- ---- - ---- - - -----.-------- - " -


