Xerox 560 Computer

EFROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER(

ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO)
OXEROXEROXEROXEROXEROXEROXERC

OXEROXEROXEROXEROXEROXEROXER

ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO)
\OXEROXEROXEROXEROXEROXEROXER(

ROXEROXEROXEROXEROXEROXEROXETs
EROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE

Xerox Corporation

701 South Aviation Boulevard
fEl Segundo, California 90245
213 679-4511

© 1974, Xerox Corporation

Xerox 560 Computer

Keference manuai

FIRST EDITION
90 30 76A

January 1974

Price: $7.25

Printed in U.S.A.

RELATED PUBLICATIONS

Xerox Symbol/LN, OPS Reference Manual 90 17 90
Xerox Meta-Symbol/LN, OPS Reference Manual 90 09 52
Xerox Mocro-SymboVLN, OPS Reference Manual 90 1578

Manual Content Codes: BP — batch processing, LN — [anguage, OPS — operations, RP — remote processing,
RT — real-time, SM — system management, TS — time=sharing, UT — utilities.

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

XEROX 560 COMPUTER SYSTEM

Introduction

CONTENTS

—

General Characteristics

Standard and Optional Features
General-Purpose Feafures

Time-Sharing Features

Real-Time Features

Multiuse Features

Multiprocessor Features

Multiprocessor Interlock

Multiport Memory System

Manual Partitioning Capability
Multiprocessor Control Function
Shared Input/Qutput

NNNNOONON Ul AW — ~

SYSTEM ORGANIZATION

Processor Clusters

[oe]

System Control Processor
Basic Processor

General Registers

o 00 00

Memory Conirol Storage
Computer Modes

11

Information Format

12

Information Boundaries

13

Instruction Register

13

Main Memory

14

)
14

l‘v‘leﬁiéi'y Uit
Maintainability and Performance
Virtual and Real Memory

16
17

Types of Addressing

19

Memory Address Control

26

Program Status Words

28

Centralized Interrupis

30

States of an Interrupt Level

30

Dialogue Between the Basic Processor and
the Interrupt System During an
Inferrupt-Entering Sequence

Dialogue During an Interrupt~Exiting
Sequence

32

32

Physical Organization

32

32

Interrupt Groups
Control of the Interrupt System
Single=Instruction Interrupts

35

36

Trap System
Trap Entry Sequence

36

Trap Addressing

39

Trap Condition Code
Nonallowed Operation Trap

Push-Down Stack Limit Trap

41

41

Fixed-Point Overflow Trap
Floating=-Point Arithmetic Fault Trap
Decimal Arithmetic Fault Trap

42
42

Watchdog Timer Runout Trap
Programmed Trap

43
43

Call Instruction Trap

43

Load/Store Instructions
Analyze/Interpret Instructions
Fixed=Point Arithmetic Instructions
Comparison Instructions
Logical Instructions
Shift Instructions

Conversion Instructions
Floating—Point Arithmetic Instructions

Decimal Instructions

Byte-String Instructions
Push-Down Instructions (Non=Privileged)

Call Instructions
Control Instructions

Input/Qutput Instructions

Hardware Error Trap

Instruction Exception Trap
Power On Trap

Power Off Trap

Processor Detected Fault Flag
Register Altered Bit

INSTRUCTION REPERTOIRE

Floating=Point Shift

Floating=Point Numbers
Floating~Point Add and Subtract
Floating=-Point Multiply and Divide
Condition Codes for Floating=Point
Instructions

Packed Decimal Numbers

Zoned Decimal Numbers

Decimal Accumulator

Decimai insfruction Formatr

Illegal Digit and Sign Detection
Overflow Detection

Decimal Instruction Nomenclature
Condition Code Settings

Stack Pointer Doubleword (SPD)
Push-Down Condition Code Settings

Push=Down Instructions (Privileged)

Status Stack Pointer Doubleword

Execute/Branch Instructions

Nonallowed Operation Trap During
Execution of Branch Instruction

Loading the Memory Map
Memory Write Profection Locks
Interruption of MMC
Memory Access Traps by MMC Instruction
Read Direct, Internal Basic Processor

Control (Mode 0)
Read Direct, Interrupt Control (Mode 1)
Read Direct (Mode 9)
Write Direct, Internal Basic Processor

Control (Mode 0)

Overall Characteristics
I/O Status Information

43

44
44
44
45

47

49
57
59
66
69
70
72
73
74
75
76
78

78

81
81
81
81
81
82
82
82

96
96
97
101
101
106

106
109
109
114
116
117
117

120
121
123

123
127
127
127

iii

INPUT/QOUTPUT OPERATIONS

External DIO Interface

Multiplexor Input/Qutput Processor (MIOP)
Device Controllers

Rotating Memory Processor (RMP)
Input/Qutput Processor (I0P) Fundamentals
Command List

Operational 10CD
Control IOCD

1/O Operation Phases

Preparation Phase
Initiation Phase

Fetching Phase

Execution Phase

Termination Phase

OPERATIONAL CONTROL

External Control Subsystem

Centralized System Control
Control Console Devices

Control Commands

Operator Control Commands
Diagnostic Control Commands
Maintenance Control Commands
System Control Panel

Operating Procedures and Information

SYSTEM CONFIGURATION CONTROL

Configuration Control Panel (CCP)

APPENDIXES
REFERENCE TABLES

Standard Symbols and Codes

Standard Character Sets

Control Codes

Special Code Properties

Standard 8-Bit Computer Codes (EBCDIC)
Standard 7-Bit Communication Codes
(ANSCII)

Standard Symbol-Code Correspondences

Hexadecimal Arithmetic
Addition Table

Multiplication Table

Table of Powers of Sixteenyq
Table of Powers of Tenyg

Hexadecimal-Decimal Integer Conversion

Table

Hexadecimal~Decimal Fraction Conversion
Table

Table of Powers of Two

Mathematical Constants

GLOSSARY OF SYMBOLIC TERMS

FAULT STATUS REGISTERS

142
142

142
143
143
143
143
146
148
148
148
148
149
151

152

152
152
152
153
153
156
158
161
164

167

167

173

173
173
173
173
174

174
175
179
179
179
180
180

181

187

191
191

192

195

10.

1.

13.

14.

15.

16.

17.

FIGURES

A Xerox 560 Computer System

The Basic Processor

Information Boundaries

Main Memory

Addressing Logic

Index Displacement Alignment (Real and
Virtual Addressing Modes)

Generation of Actual Addresses Indirect,
Virtual Addressing

Index Displacement Alignment (Real-
Extended Addressing)

Generation of Effective Virtual Address
(Indirect Real-Extended Addressing)

Operational States of an Interrupt Level

Interrupt Priority Chain

. Typical 28-Word Portion of Memory Stack

for PSS and PLS

Formats of 1/0O Instructions

Bootstrap Loader

System Control Panel

Chassis Physical Configuration

Sample Rows of CCP Switches

TABLES

Basic Processor Operating Modes and
Addressing Cases

Interrupt Locations

Summary of Trap Locations

TCC Setting for Instruction Exception
Trap X'4D'

Registers Changed at Time of a Trap Due to
an Operand Access

ANALYZE Table for Operation Codes

Floating=Point Number Representation

10

13

15

18

21

22

23

24

31

34

102

128

155

162

168

168

25

33

37

44

45

57

76

Condition Code Settings for Floating=Point
Instructions

Status Word 0

Status Word 1

Read Direct Mode 9 Status Word

Chassis Type Assignments

Description of 1/O Instructions
1/O Status Information (Register R)

Device Status Byte (Register R or Rul)
(SIO, TIO, and HIO only)

Operational Status Byte (Register RuT)
Status Response Bits for 1/O Instructions

IOP Status Byte

79

119

119

123

124

128

130

131

132

133

134

19.
20.
21.
22.

23.

24,

25.

26.

C-1.

C-2. Memory Unit Status Register

Status Response Bits for AIO Instruction

I/O Address (AIO Response)

Event Messages

Diagnostic Control (P-Mode) Commands

Bit Assignments and Description, Processor
Control Word, Register Q30 (X'1E")

Bit Assignments, Address Compare
Register Q31 (X'TF")

Functions of Processor Cluster Configuration
Control Panel Row

Functions of Memory Unit Configuration
Control Panel Row

Fault Status Registers

135

135

153

157

165

166

169

170

195

196

1. XEROX 360 COMPUTER SYSTEM

INTRODUCTION

The Xerox 560 general-purpose, digital, computer system
accommodates a variety of scientific, business, real-time,
and time=sharing applications. A system includes system
control, basic processor, I/O processor, and main memory
(up to 256K words) with two ports. Each major system
element performs asynchronously with respect to other
elements.

The basic system can be readily expanded. Memory access
paths can be increased from the basic two ports to a maxi-
mum of six ports. Input/output capability can be increased
by adding more input/output processors (IOPs), device con-
trollers, and peripheral devices.

The basic processor (BP) has an extensive instruction set
that includes floating=point, byte-string, and decimal
instructions.

The multiaccess memory units, with interleaving, afford a
high level of system performance. Main memory can be
expanded in 16K word increments to a maximum of 256K
words. Address interleaving may be performed between
memory units of like size. The number of ports to each
memory unit can be expanded to allow independent ac-
cess to memory by up to six "processor clusters" (i.e.,
functional groups).

Processor clusters are the grouping of two or more functions
(such as a basic processor, an 1/O processor, and inter-
faces) on a common bus. Clustering permits processors to
share common facilities, e.g., buses and memory inter-
faces. Therefore, the hardware is less redundant, hence
less complex, resulting in more reliability at a lower cost.
There are multiple combinations of functional groups from
which to select.

Existing Sigma 5-9 programs may be run on the system. The
upward compatibility of the comprehensive, modular soft-

ware (assemblers, compilers, mathematical and utility rou=
tines, and application packages) eliminates reprogramming.

Features have been incorporated in this design to enhance
overall system reliability, maintainability, and availability.
Centralized switches for system repartitioning may permit
faulty units, or an entire subsystem, to be isolated for diag-
nosis or repair while the primary system continues operation.
Parity checking is performed on each byte of information
for most system interfaces and internal control signals. Most
failed instructions are automatically retried, and uninter~
rupted processing continues. The only apparent effect may
be an entry in the error log. In the event an error is irre-
coverable, there are error storage registers that return com=
plete data on the fault and the status of the system at
that point.

GENERAL CHARACTERISTICS

The following system features and characteristics permit
efficient operation in general-purpose, multiprocessor,
time-sharing, real-time, and multiuse environments:

Word-oriented memory (32-bit word plus parity bit
per byte) that can be addressed and altered as byte
(8-bit), halfword (2-byte), word (4-byte), and double-
word (8-byte) quantities.

Memory expandable to 256K words (K = 1024) in mod-
ular units of 16K words each.

Indirect addressing with or without postindexing.

Displacement index registers, automatically self-
adjusting for all data sizes.

Immediatfe operand instructions for greater storage
efficiency and increased speed.

Four blocks of 16 general-purpose registers for address-
ing, indexing, and accumulating. Multiple registers
permit rapid context switching.

Hardware memory mapping, which virtually eliminates
memory fragmentation and provides dynamic program
relocation.

LY R oT T Ty Ly PR L T
IVISHIVE Y ULLTID MVITLHIUIE T DYD wHnuLion

security and protection.

Memory write protection within memory unitsto prevent
inadvertent destruction of critical areas of memory from
any processor cluster.

Watchdog timer to assure nonstop operation.

Real-time priority interrupt system with automatic iden-
tification and priority assignment, fast response time,
and 14 internal and up to 48 external levels that can
be individually armed, enabled, and triggered by
program control.

Instructions with long execution times canbe interrupted.
Automatic traps for error or fault conditions, with
masking capability and maximum recoverability, under

program control.

Power fail-safe for automatic shutdown and resumption
of processing in event of power failure.

Multiple interval timers with a choice of resolutions
for independent time bases.

Privileged instruction logic for program integrity in
multiuse environments.

Xerox 560 Computer System 1

Extensive instruction set that includes:

Byte, halfword, word, and doubleword operations.

Use of all memory-referencing instructions for
register-to-register operations, with or without
indirect addressing and postindexing, and within
normal instruction format.

Multiple register operations.

Fixed-point integer arithmetic operations in half-
word, word, and doubleword modes.

Immediate operand instructions.

Floating-point hardware operations in short and
long formats with significance, zero, and normal-
ization control and checking, all under full pro-
gram control.

Full complement of logical operations (AND, OR,
exclusive OR).

Comparison operations, including compare between
limits (with limits in memory or in registers).

Call instructions that permit up to 64 dynamically
variable, user-defined instructions, and allow a
program access to operating system functions with-
out operating system intervention.

Decimal hardware operations, including arith-
metic, edit, and pack/unpack.

Byte—=string instructions.

Push-down stack operations (hardware imple-
mented) of single or multiple words, with auto~
matic limit checking, for dynamic space alloca-
tion, subroutine communication, and recursive
routine capability.

Automatic conversion operations, including binary/
BCD and any other weighted-number systems.

Analyze instruction that facilitates effective
address computation.

Interpret instruction that increases speed of inter-
pretive programs.

Shift operations (left and right) of word or double-
word, including logical, circular, arithmetic,
searching shift, and floating-point modes.

Built=in reliability and maintainability features that
include:

Extensive error logging. When a fault is detected,
system status and fault information are available
for program retrieval and logging for subsequent
analysis.

General Characteristics

e Full parity checking on all data and addresses
communicated in either direction onbuses between
memory units and processors, providing fault de-
tection and location capability to permit the
operating system or diagnostic program to quickly
determine a faulty unit.

e Address stop feature that permits operator or main=-
tenance personnel to:

Stop on any instruction address.
Stop on any memory reference address.

Stop when any word in a selected page of
memory is referenced.

e Traps that provide for defection of a variety of
fault conditions, designed to enable a high degree
of system recoverability.

e Partitioning features that enable system reconfig-
uration via a centralized Configuration Control
Panel. Units may be partitioned from the system
by selectively disabling them from buses (assuming
other system facilities can handle the additional
load). Thus, faulty units, processors, devices, or
an alternate system can be isolated from the oper-
ational system to enable diagnosis or repair while
the primary system continues operation.

Independently operating 1/O system with the following
features:

e Direct input/output (READ DIRECT, WRITE DIRECT
instructions) for iransfer of 32-bit words between
the specified general register and an external de-
vice; a 16-bit address is transferred for selection
and control purposes; and each transfer is under
direct program control.

e Up to five independent 1/O processor clusters (re-
stricted only by the maximum number of 6 ports).

o Multiplexor 1/O processors (MIOPs) (up to 3 per
I/O cluster), each providing for simultaneous op-

eration of up to 16 devices per processor.

e Data chaining for gather-read and scatter-write
operations,

o Command chaining for multiple record operations.
o Write lock protect feature within memory unit
for positive protection from all processors storing

into memory.

Comprehensive modular software that is program com-
patible with Sigma 5-9 computers:

e Expands in capability and speed as system grows.

e Operating system: Control Progrom-Five (CP-V).

e Language processors and utilities and applications
software for both commercial and scientific users.

e Peripheral equipment includes:

e Card equipment: Reading speeds up to 1500 cards
per minute; punching speed of 100 cards per min-
ute; intermixed binary and EBCDIC card codes.

e Line prinfers: Fully buffered with speeds up to
1250 lines per minute; 132 print positions with
character sets containing 64 or 95 characters.

e Magnetic tape units: 9-track systems, single or
dual density (1600 or 800/1600 BPI), industry-
compatible; high-speed, automatic loading units
operating at 125 inches per second with trans-
fer rates up to 200,000 bytes per second; and
at 75 inches per second with transfer rates up
to 120,000 bytes per second.

e Rapid Access Data (RAD) and disk files: RAD
capacity of 2.9 million bytes, with a transfer
rate of 750,000 bytes per second; disk capa-
cities in increments of 86 million bytes (format-
ted) per unit with a fransfer rate of 806, 000 bytes
per second, and in increments of 49 million bytes
per unit with a transfer rate of 312,500 bytes
per second.

e Keyboard printers: 10 characters per second.

e Data communications equipment: Complete line
of character-oriented, message-oriented, and
procedure-oriented equipment to connect remote
user terminals (including remote batch) to the

computer cenfer via common carrier lines and
local terminals directly.

STANDARD AND OPTIONAL FEATURES
A basic system has the following standard features:
e A basic processor (BP) that includes:
e Full instruction set
e Memory map with access protection
e Register blocks (4)
o Multiplexor Input/Qutput Processor (MIOP) with:
o 16 subchannels
e - or 4-byte interface

o Input/Output Adapter

e Two memory units that include:
e Dual port access
® Memory write lock protection
e A system control processor that includes:
e Real-time clocks (4)
o Internal interrupts (14)
o Power fail-safe detection
e External Direct Input/Output Interface (DIQ)
e External Control Subsystem (ECS)
e System Control Panel (SCP)
o Configuration Control Panel (CCP)
e Local and remote assist facility
o Error detection facilities
Diagnostics
A system may have the following optional features:
e BP options:

e Up to 48 external priority interrupis (in groups
of 12)

e Memory options:

e Memory expansion up to 256K words

e Up to 4 additional access ports (in sets of 2).
e Input/Output options:

e Multiple 1/O clusters .

e Up to 3 additional MIOPs, each with 16 sub-
channels, per cluster.

e One Input/Output Adapter (for one MIOP)
per cluster.

e One Rotating Memory Processor (RMP) per
cluster.

GENERAL-PURPOSE FEATURES

General-purpose computing applications are characterized
by emphasis on computation and internal data handling.

f .
The aggregate of processor clusters is restricted by the max-
imum memory port limitation of 6.

Standard and Optional Features/General-Purpose Features 3

Many operations are performed in floating-point format
and on strings of characters. Other typical characteristics
include decimal arithmetic operations, binary to decimal
number conversion (for printing or display), and high sys-
tem input/output transfer rates.

General-purpose features are described in the following
paragraphs.

Floating-Point Hardware. Both short (32-bit) and long
(64-bit) formats are available in the floating-point in-
structions. Under program control, the user may select
optional zero checking, normalization, floating-point
rounding and significance checking. Significance check-
ing permits use of short floating=point format for high pro-
cessing speed and storage economy and of long floating=
point format when loss of significance is detected.

Decimal Arithmetic Hardware. Decimal arithmetic instruc-
tions operate on up to 31 digits plus sign. This instruction
set includes pack/unpack instructions for converting to/from
the packed format of two digits per byte, and a generalized
edit instruction for zero suppression, check protection, and
formatting, with punctuation to display or print it.

Indirect Addressing. Indirect addressing facilitates table
linkages and permits keeping data sections of a program
separate from procedure sections for ease of maintenance.

Displacement Indexing. Indexing by means of a"floating"
displacement permits accessing a desired unit of data with-
out considering its size. The index registers automatically
align themselves appropriately; thus, the same index reg-
ister may be used on arrays with different data sizes. For
example, in a matrix multiplication of any array of full
word, single~precision, fixed-point numbers, the results
may be stored in a second array as double-precision num-
bers, using the same index quantity for both arrays. If an
index register contains the value of k, then the user always
accesses the kth element, whether it is a byte, halfword,
word, or doubleword. Incrementing by various quantities
according fo dafa size is nof required; instead, incremeni-
ing is always by units in a continuous array table regardless
of the size of data element used.

Instruction Set. More than 100 major instructions permit
short, highly optimized programs to be written. These are
rapidly assembled and minimize both program space and
execution time.

Translate Instruction. The Translate instruction permits
rapid translation between any two 8-bit codes; thus, data
from a variety of input sources can be handled and re-
converted easily for output.

Conversion Instructions. Two generalized conversion in-
structions provide for bidirectional conversions between
internal binary and any other weighted number system,
including BCD.

4 Time=Sharing Features

Call Instructions. These four instructions permit handling

up to 64 user-defined subroutines, as if they were built-in
machine instructions. Call instructions also gain access to
specified operating system services without requiring its
intervention.

Interpret Instruction. The Interpret instruction simplifies
and speeds interpretive operations such as compilation, thus
reducing space and time requirements for compilers and
other interpretive systems.

Four-Bit Condition Code. Checking results is simplified by
automatically providing information on almost every instruc-
tion execution, including indicators for overflow, under-
flow, zero, minus, and plus, as appropriate, without
requiring an extra instruction execution.

Direct Input/Qutput (DIO). Direct input/output facili-
tates in-line program control of asynchronous or special-
purpose devices. This feature permits information to be
transmitted directly to or from general=-purpose registers.

Multiplexor Input/Qutput Processor (MIOP), Once initia=
lized, 1/O processors operate independently of the basic
processor, freeing it to provide faster response to system
needs. An MIOP requires minimal interaction with the
basic processor. 1/O command doublewords permit both
command chaining and data chaining without intervening
basic processor control. 1/O equipment speeds range from
slow rates involving human interaction (teletypewriter, for
example) to transfer rates of rotating memory devices of
over 750,000 bytes per second. Peripheral controllers at-
tached to an MIOP may be operated simultaneously.

Rotating Memory Processor (RMP). An RMP supports up to
15 disk drives, one at a time, permitting large capacity,
high transfer rate files. Dual access (between 2 RMPs) op-
tion is available.

TIME-SHARING FEATURES

Time~sharing is the ability of a system to share its total
resources among many users at the same time. Each user
may be performing a different task, requiring a different
share of the available resources. Some users may be on-
line in an interactive, "conversational" mode with the
basic processor while other users may be entering work to
be processed that requires only final output.

Time=sharing features are described in the following
paragraphs.

Rapid Context Saving. When changing from one user to
another, the operating environment can be switched quickly
and easily. Stack-manipulating instructions permit storing
in a push-down stack of 1 to 16 general-purpose registers by
a single instruction. Stack status is updated automatically
and information in the stack can be retrieved when needed

(also, by a single instruction). The current program status
words, which contain the entire description of the current
user's environment and mode of operation, may be stored
anywhere in memory, and new program status words may be
loaded, all with a single instruction.

Multiple Register Blocks. The availability of four blocks
of 16 general-purpose registers improves response time by
reducing the need to store and load register blocks. A
distinct block may be assigned for different functions as
needed; the program status words automatically select the
applicable register block.

User Protection. The slave mode feature restricts each user
to his own set of instructions while reserving to the operat-
ing system certain "privileged" (master mode) instructions
that could destroy another user’s program if used incor=-
rectly. Also, a memory access — protection feature pre-
vents a user from accessing any storage areas other than
those assigned to him. It permits him to access certain areas
for reading only, such as those containing public subrou-
tines, while preventing him from reading, writing, or ac-
cessing instructions in areas set aside for other users.

Storage Management. Main memory is expandable to 256K
(K = 1024) words. To make efficient use of available mem-
ory, the memory map hardware permits storing a user's pro-
gram in fragments as small as a page of 512 words, wherever
space is available; yet all fragments appear as a single,
contiguously addressable block of storage at execution fime.
The memory map also automatically handles dynamic pro-
gram relocation so that the program appears fo be stored in
a standard way at execution time, even though it may ac-
tually be stored in a different set of locations each time it
is brought info memory. The memory map provides the
ability to locate any 128K=-word virtual program in the basic
processor's logical addressing space. Thus, the system can
always address a virtual memory of 128K words regardless

of physical memory size.

Input/Output Capability. Time=sharing input/output re-
quirements are handled by the same general-purpose input/
output capabilities described under "General=Purpose
Features".

Nonstop Operation. A "watchdog" timer assures that the
system continues to operate even in case of halts or delays
due to failure of special 1/O devices. Multiple real-time
clocks with varying resolutions permit independent time
bases for flexible allocation of time slices to each user.

Reliability, Maintainability, Availability. Since time-
sharing systems have many on-line users needing immediate
system response, “downtime" defeats time sharing's primary
purpose. Pooling of resources along with flexible recon-
figuration control ensures a high level of continuous avail-
ability. Configuration controls are provided to switch the
load from one unit to another in the event of a failure with
no loss of functional capability, only capacity. In addi-
tion, a nonworking subset of the total system may be

logically isolated (partitioned) so that maintenance may
proceed on the subset while the remainder of the system
continues to operate.

To minimize the effect of transient errors, automatic refry
of failed instructions is performed.

REAL-TIME FEATURES

Real-time applications are characterized by a need for:
(1) hardware that provides quick response to an external

environment; (2) speed that is sufficient to keep up with
the real-time process itself; (3) input/output flexibility to
handle a wide variety of data types at different speeds;
and (4) reliability features to minimize irreplaceable lost

time,

Multilevel, Priority Interrupt System. The real-time-
oriented system provides rapid response to external interrupt
levels. Each interrupt is automatically identified and res-
ponded to according to its priority. For further flexibility,
each level can be individually disarmed (to discontinue in-
put acceptance) and disabled (to defer responses). Use of
the disarm/disable feature makes programmed dynamic re-
assignment of priorifies quick and easy, even while a real-
time process is in progress.

Programs involving interrupts from specially designed equip-
ment often require checkout before the equipment is actually
available. To permit simulating this special equipment, any
external interrupt level can be "triggered" by the basic
processor through execution of a single instruction. This
capability is also useful in establishing a modified hierarchy
of responses. For example, in responding to a high-priority
interrupt, after the urgent processing is completed, it may
be desirable to assign a lower priority to the remaining por-
tion so that the interrupt routine is free to respond to other
critical stimuli. The interrupt routine can accomplish this
by triggering a lower-priority level, which processes the
remaining data only after other interrupts have been handled.

READ DIRECT and WRITE DIRECT instructions (described in
Chapter 3) allow the program to completely interrogate,
preserve, and alter the condition of the interrupt system at
any time and to restore that system at a later time.

Nonstop Operation. When connected to special devices
(on a ready/resume basis), the basic processor may be ex-
cessively delayed if the specific device does not respond
quickly. As in the time=sharing environment, the built~in
watchdog timer assures that the basic processor cannot be
delayed for an excessive length of fime.

Real-Time Clocks. Many real-time functions must be timed
to occur at specific instants. Other timing informationisalso
needed — for example, elapsed time since a given event, or
the current time of day. The computer system can contain
up to four real-time clocks with varying degrees of resolu-
tion to meet these needs. These clocks also allow easy hand-
ling of separate time bases and relative time priorities.

Real-Time Features 5

Rapid Context Switching. When responding to a new set of
interrupt-initiated circumstances, a computer system must
preserve the current operating environment, for continuance
later, while setting up the new environment. This changing
of environments must be done quickly, with a minimum of
"overhead" time costs. Any one of the four blocks of
general-purpose arithmetic registers can, if desired, be as-
signed to a specific environment. All relevant information
about the current environment (instruction address, current
general register block, memory-protection key, etc.) is
kept in the program status words. A single instruction
stores the current program status words anywhere in memory
and loads new ones from memory to establish a new en-
vironment, which includes information identifying a new
block of general-purpose registers. Thus, the system's
operating environment can be preserved and changed com-
pletely through the execution of a single instruction.

Memory Protection. Both foreground (real-time) and back-
ground can run concurrently in the system because a fore-
ground program is protected against destruction by an un-
checked background program. Under operating system
control, the memory access-protection feature prevents
accessing memory for specified combinations of reading,
writing, and instruction acquisition.

Variable Precision Arithmetic. Much of the data encoun-
tered in real-time systems are 16 bits or less. To process
this data efficiently, both halfword and fullword arithmetic
operations are provided. For extended precision, double-
word arithmetic operations are also included.

Direct Input/Qutput. For handling asynchronous I/0, a
32-bitword can be transferred direct!y between any general~
purpose register and external devices.

Reliability, Maintainability, Availability. The capabil~
ities described in the section, "Time=Sharing Features"
apply equally to the real-time environment.

MULTIUSE FEATURES

As implemented in this system, "multiuse" combines two or
more application areas. The real-time application is the
most difficult general computing task because of its severe
requirements. Similarly, another difficult multiuse task is
a time=-sharing application that includes one or more real-
time processes. Because the system is designed on a real=-
time base, it is qualified for a mixture of applications in a
multiuse environment. Moany hardware features that prove
valuable for certain application areas are equally usefu! in
others, although in different ways. This multiple capa-
bility makes the system particularly effective in multi-
use applications.

The major multiuse features are described in the follow-
ing paragraphs.

6 Multiuse Features/Multiprocessor Features

Priority Interrupt System. In a multiuse environment, many

elements operate simulatneously and asynchronously. Thus,
an efficient priority interrupt system is essential. It allows
the computer system to respond quickly, and in proper or-
der, to the many demands made on it, with attendant im=

provements in resource efficiency.

Quick Response. The many features that combine to pro-
duce a quick-response system (multiple register blocks,
rapid context saving, multiple push-pull operations) benefit
all users because more of the system's resources are readily
available at any instant.

Memory Protection. The memory protection features protect
each user from every other user and guarantee the integrity
of programs essential to critical real-time applications.

Input/Output. Because of the wide range of capacities and
speeds, the I/O system simultaneously satisfies the needs of
many different application areas economically, both in
terms of equipment and programming.

Instruction Set. The comprehensive instruction set provides
the computational and data-handling capabilities required
for widely differing application areas; therefore, each user's
program length and running time is minimized, and the
throughput is maximized.

MULTIPROCESSOR FEATURES

System design readily permits expansion to shared memory
in a multiprocessor system. The system can contain a com~
bination of functional clusters, each of which in turn may
contain multiple processors. The total number of clusters

is restricted to the maximum port limitation of six. All pro-
cessors in a system may share common memory.

The following paragraphs describe the major multiprocessor
features of the system.

MULTIPROCESSOR INTERLOCK

In a multiprocessor system, the basic processors often need
exclusive control of a system resource. This resource may
be a region of memory, a particular peripheral device, or,
in some cases, a specific software process. There isaspecial
instruction to provide this required multiprocessor interlock.
This special instruction, LOAD AND SET, unconditionally
sets a " 1" bit inthe sign position of the referenced memory
location during the restore cycle of the memory operation.
If this bit had been previously set by another processor, the
interlock is said to be "set" and the testing program pro-
ceeds to another task. On the other hand, if the sign bit
of the tested location is a zero, the resource is allocated
to the testing processor, and simultaneously the interlock
is set for any other processor,

MULTIPORT MEMORY SYSTEM

The system has growth capability of up to é ports per
memory unit. A memory unit may contain 16K or 32K words.
This architecture allows flexibility in growth patterns
and provides high memory bandwidth, essential to multi-
processor systems.

MANUAL PARTITIONING CAPABILITY

Manual partitioning capability is afforded for all system
units. Thus, besides the primary advantage of increased
throughput, a secondary advantage of a multiprocessor
system is the "fail-soft" ability. Given a duplicate unit,
any unit can be partitioned by selectively disabling it from
the system buses. Depending on the type of failing unit,
the system will be operable, with some degree of degraded
performance. An alternate processor bus with dual system
capabilities can be provided.

MULTIPROCESSOR CONTROL FUNCTION

A multiprocessor control function is provided on all multi-

processor systems. Thisfunction provides these basic features:

1. Control of the External Direct Input/Output bus (Ex-
ternal DIO), used for controlling system maintenance

and special purpose units such as analog to digital
converters.

2. Central control of system partitioning.

3. Centralized interrupt system, providing capability for
the operating system to use interrupis to schedule tasks
independently of the number of basic processors pres-
ent in a system.

4. Processor to processor communication via processor
buses.

SHARED INPUT/OUTPUT

In a multiprocessor system, any basic processor may direct
I/O actions to any I/O processor. Specifically, any basic
processor can issue an SIO, TIO, TDV, or HIO instruc-
tion to begin, test, or stop any I/O process. However,
the "end-action" sequence of the 1/O process is directed
to one of the basic processors in the system by the System
Control Processor. This feature (accomplished by setting
a pair of configuration control switches) allows dedicating
I/O end-action tasks to a single processor and avoids con-
flict resolution problems.

Multiprocessor Features 7

2. SYSTEM ORGANIZATION

The elements of this computer system include a basic
processor (BP), input/output processors (IOPs), memory, 1/0
device controllers, and devices (see Figure 1). The pro-
cessors and interfaces clustered into functional groups, in-
terconnected via buses and controlled from a Configuration
Control Panel and a System Control Processor. Elements
within a processor cluster share an access path for intra-
cluster communications. Thus, the total computer system can
be viewed functionally as a group of program-controlled
processor clusters communicating with each other and a
common memory. Each processor cluster operates asyn-
chronously and semi-independently, automatically over-
lapping the operation of elements within as well as the
operation of other processor clusters for greater speed (when
circumstances permit).

PROCESSOR CLUSTERS

Processors (basic processor and MIOP, for example) are
grouped functionally along with a Memory Interface (MI)
and a Processor Interface (PI) into a processor cluster. El-
ements within a processor cluster share an access path (the
cluster bus) to the Memory Interface, which connects to the
memory system via a memory bus. The Memory Interface
resolves contention problems and controls use of the cluster
bus by the elements in the cluster.

A processor communicates with processors in other processor
clusters through the Processor Interface, which connects di=
rectly to a processor bus. Via the processor bus, any pro-
cessor can communicate with or control any other processor
anywhere in the system configuration.

Note: Although two processor buses are provided, a Pro-
cessor Interface can be connected to one or the
other of the processor buses, but not to both at the
same time.

Within a basic processor-MIOP processor cluster, the basic
processor primarily performs overall control and data reduc-
tion tasks whereas the MIOP performs the task associated
with the exchange of digital information between main
memory and selected peripheral devices. The MIOP com-
municates with device controllers via the /O bus, which
connects to the Controller Interface (CI).

SYSTEM CONTROL PROCESSOR

The System Control Processor performs these primary func-
tions in the overall system:

1. System control.

2. External Control Subsystem.

8 System Organization

3. Internal and external interrupt processing.
4, External and certain internal direct 1/O (DIO) control.

It provides these major interfaces with other parts of the
system:

1. System console interface.

2. System control bus interface.

3. Processor bus interface.

4. Internal and external interrupt interfaces.

5. External and certain internal DIO interfaces.
6. System clock interface.

In addition to these major interfaces it provides paths for
other signals including system reset, 1.024 MHz clock,
power on/power off trap requests, and external real=time
clocks.

Figure 1 shows the interconnection of a System Control Pro-
cessor o processor clusters via a processor bus as wellas in-
terconnection to the system console, external Direct Input/
Output (DIO), and external interrupts.

BASIC PROCESSOR

This section describes the organization and operation of the
basic processor in terms of instruction and data formats, in-
formation processing, and program control. The basic pro-
cessor comprises a fastmemory and an arithmeticand control
unit as functionally shown in Figure 2.

e: Functionally associated with the basic processor bui
physically located elsewhere are a memory map,

memory access protection codes, and memory write
protection codes. Memory control storage for the

memory map and access codes is located inthe Mem-
ory Interface, and the memory control storage for
the write protection codes (write locks) is located

in the memory. These functions are described in

"Memory System", later in this chapter.

GENERAL REGISTERS

A fast (integrated circuit) memory consisting of ninety=-six
32-bit registers is used within the basic processor. A group
of 24 registers is referred fo as a register block; thus, a
basic processor contains four register blocks. A 2-bit con-
trol field (called a register block pointer) in the program
status words (PSWs) selects the register block currently

Memory Memory Memory
Unit Unit Unit

|plok]r]s PolR[1]s [PlolR]r]s

Memory Bus #1

#
System Memory Bus 72
Control
Console \ . __
'Trocessor 1 ™ | Processor —:
| Cluster (Basic) | | Cluster (1/0) I
| ' I
System | | I [
Control Memory | | Memory I
— Processor | Interface I | Interface |
| |
[I Processor |Bus #] l I
I | |
! o
| Processor | l Processor '
' Interface | [Interface
- |
[« I
| >] l 2 I
e L . =y]
,‘_ I ° rocessor|Bus ¥2 | & |
i E B
—] System | l o Basic | 0 I
1 g:::ter:slor ! | | Processor I RMP
| ' I I |
|- .I..__ d | | l |
|
~ g | I |
| System] | I
1 Control | | L—1 MIOP | MIOP I
C 1
L Comele | | P |
! ,—“ | | [
— External Interrupts l 1/0 ' I I
| | Adapter | l) l
Remote Terminal Console Inputs 1~ .~ I~ _! !_ S S |
DIO Bus L
System System m
Interface Interface p-— -
Device
| Controll
Cord | [Device ontroller
Reader Controller "
a
Line g
Card Device é Printer
Punch 7| Controller o
>
Device Device
Communications Controller Controller
Interface .
-
Line —= Comm.
Adapter [—= Lines - -
W m
Line i Comm. Dual Access Option Dual Access Option
Adapter = |inas
Sl

Figure 1. A Xerox 560 Computer System

90 30 76A-1(1/74) Basic Processor 9

FAST MEMORY

ARITHMETIC AND CONTROL UNIT

GENERAL REGISTER BLOCK (TYPICAL) INSTRUCTION REGISTER
0 |] D Indirect Access Flag
9
D:]:D:[D Operation Code Field
1 7
General Register Designator
8 1
D:D Index Register Designator
12 14
Index Reference Address Field
Registers (LTI
15] Memory
pmm——— G
1/O Processors |
]
Read/Write Direct
Interrupts
. Mapping
Access Protection .
8 | il PROGRAM STATUS WORDS
9 I I I;D:[J, Condition Code
10 |] E[D Floating-point Mode Control
11 |] D Master/Slave Mode Control
8
12 I —IW D Memory Map Control
9
13 r I 31-digit Arithmetic Trap Masks
Decimal TR .
t Accumu- Instruction
14 | Il 1ator ﬁ}ddress
15 31 Extended
15 I L Displacement
Write Key
N
16 | | 2 %
17 l] Interrupt Inhibits
73
18 | l
Register Block Pointer
5859
19 I] > Reserved
Register Altered
20 l I g egister ere
2| | D Mode Altered Control
29 ! J 61
5 |]

10

Basic

Figure 2. The Basic Processor

Processor

available to a program. The register block pointer can be
changed when the basic processor is in the master mode or
the master-protected mode. Only the first 16 general reg-
isters of a register block may be used by programs; the last
eight are reserved.

Each of the first 16 general registers in a register block is
identified by a 4-bit code in the range 00009 through 11119
(0 through 15 in decimal notation, or X'0' through X'F' in
hexadecimal notation). Any of these 16 registers can be
used as a fixed-point femporary data storage location, or
to contain control information suchas a data address, count,
pointer, etc. General registers 1 through 7 can be used
as index registers and registers 12 through 15 can be used
as a decimal accumulator capable of containing a decimal
number of 31 digits plus sign. Registers 12 through 15 are
always used when a decimal instruction is executed.

MEMORY CONTROL STORAGE

The memory control storage for the memory map and the
associated memory access protection codes are contained
in the Memory Interface (MI). Memory conirol storage for
the 4-bit write locks are contained in the memory units.
Memory control storage can be modified when the basic
processor is in the master mode or the master-protected
mode.

MEMORY MAP

Two terms are essential in understanding the memory map-
ping concept: actual (i.e., absolute or real) address and
virtual address.

An actual address is used within the memory unit (memory
address registers) to access a specific, physical memory lo-
cation for storage or retrieval of information as required by
the execution sequence of an instruction. Actual addresses
are fixed and are dependent on the wired-in hardware.

A virtual address refers fo a logical location as required by
an individual program. Like an actual address, a virtual
address may designate a location that contains a program
instruction, an element of data, a data address (indirect
address), or it may also be an explicit quantity. Normally,
virtual addresses are derived from programmer-supplied
labels through an assembly (or compilation) process followed
by a loading process. Virtual addresses may also be com-
puted during a program's execution. Virtual addresses in~
clude all instruction addresses, indirect addresses, and
addresses used as counts within a stored program, as well as
those instructions computed by the program. (See "Virtual
and Real Memory", later in this chapter.)

Memory mapping transforms virtual addresses as seen by the
individual program into actual addresses as seen by the
memory system. Thus, when the memory map is in effect,
any program can be broken into 512-word pages and dy-
namically relocated throughout memory in whatever pages
of space are available.

When the memory map is not in effect, all virtual address
values above 151(are used by the memory as actual ad-
dresses. Virtual addresses O through 15 are clwcysf used by
the basic processor as general register addresses rather than
as memory addresses. For example, if an instruction uses
virtual address 5 to address the location where a result is
to be stored, the basic processor stores that result in gen-
eral register 5 in the current register block instead of in
memory location 5.

When the basic processor is operating with the memory map
in effect, virtual addresses O through 15 are still used as
general register addresses. Virtual addresses above 15 are
transformed into actual addresses by replacing the high-
order portion of the virtual address with a value obtained
from the memory map. (The memory map address replace=
ment process is described in "Memory Address Control",
later in this chapter.)

MEMORY ACCESS PROTECTION

When the basic processor is operating with the memory map
in the slave mode or the master-protected mode, the access
protection codes determine whether the program may access
instructions from, read from, or write into specific regions
of the virtual address continuum (virtual memory). If the
slave mode or master—-protected mode program attempts to
access a protected region of virtual memory, a trap occurs
(see "Memory Address Conirol", "Virtual and Real Mem~
ory", and "Trap System", later in this chapter).

MEMORY WRITE PROTECTION

The memory write=protection feature operates independently
of access protection and the memory map. The 4=bit write
lock operates in conjunction with a 4-bit field, called the
write key, in bits 32-35 of the Program Status Words (PSWs).
The lock and the key determine whether any program may
alter any word of main memory. The write key can be
changed when the basic processor is in the master mode or
the master-protected mode. (The functions of the write
lock and key are described in "Memory Address Control ",
later in this chapter.)

COMPUTER MODES

The basic processor operates in one of three modes: master,
master=protected, or slave. The operation mode is deter-
mined by the setting of three bits (bits 8, 9, and 61) of the
Program Status Words (PSWs). (See "Program Status Words",
later in this chapter.) Additionally, the basic processor
operates in a mapped mode or an unmapped mode.

fExcepf for the READ DIRECT (RD)/WRITE DIRECT (WD) in-

structions which can read from and store into these locations.

Basic Processor 11

MASTER MODE

The master/slave control bit (bit 8 of the PSWs) must con-
tain a zero for the basic processor to operate in master
mode. In this mode the basic processor can perform all of
its control functions and can modify any part of the system.
The restrictions upon the basic processor's operations in this
mode are those imposed by the write locks on certain pro-
tected parts of memory. It is assumed that there is a res=
ident operating system (operating in the master mode) that
controls and supports the operation of other programs (which
may be in the master, master-protected, or slave mode).

MASTER-PROTECTED MODE

The master-protected mode of operation provides additional
protection for programs that operate in the master mode. The
master-protected mode occurs when the basic processor is
operating in the master mode with the memory map in effect
and the mode altered control bit (bit 61 of the PSWs) is on.
In this mode the memory protection violation trap occurs
(location X'40', with CC4 =1), as it does in all mapped
slave programs, if a program makes a reference to a virtual
page to which access is prohibited by the current setting of
the access protection codes.

SLAVE MODE

The slave mode of operation is the problem-solving mode
of the basic processor. In this mode, access protection
codes apply to the slave mode program if mapping is in ef-
fect, and all "privileged" operations are prohibited. Priv-
ileged operations are those relating to input/output and to
changes in the fundamental control state of the basic pro-
cessor. All privileged operations are performed in the
master or master-protected mode by a group of privileged
instructions. Any attempt by a program to execute a priv-
ileged instruction while the basic processor is in the slave
mode results in a trap. The master/slave mode control bit
(bit 8 of the PSWs) can be changed when the basic processor
is in the master or master-protected mode. Nevertheless,
a slave mode program can gain direct access to cerfain ex~
ecutive program operations by means of CALL instructions.
"The operations available through CALL instructions are es-
tablished by the resident operating system.

MAPPED MODE

Although the memory map is located in the Memory Inter-
face (M), it functions as part of the basic processor. The
basic processor communicates with memory through the MI1.
Mapping is effective for all the words of real memory, and
is invoked when bit 9 (MM) of the PSWs contains a one.
Memory mapping generates reai page addresses from virtuai
addresses. The memory map can be loaded with either
11-bit real page addresses or 8-bit real page addresses by
means of the MOVE MEMORY CONTROL (MMC) privileged
instruction (see Chapter 3, "Control Instructions"). Eleven-
bit real page addresses are always provided for in the map,
thus if 8-bit real page addresses are generated, the three

12 Basic Processor

high-order bits contain zeros. The memory map always maps
17-bit virtual addresses into 20-bit real addresses (see
"Memory Address Control”, later in this chapter for a dis-
cussion of how the map is used).

UNMAPPED MODE

When the basic processor is operating in the unmapped mode,
there is a direct one~to~one relationship between the effec-
tive virtual address of each instruction and the actual ad-
dress used o access main memory. (See "Real Addressing",
later in this chapter.)

INFORMATION FORMAT

Nomenclature associated with digital information within the
computer system is based on functional and/or physical at-
tributes. A "word" may be either a 32-bit instruction word
or a 32-bit data word.

The bit positions of a word are numbered from 0 through 31
as follows:

Word

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27i28 29 30 31

A word can be divided into two 16-bit parts (halfwords) in
which the bit positions are numbered from 0 through 15 as
follows:

Halfword 0 Halfword 1

G 1 2 314 5 8 718 5 10 123314 151C 1 2 314 5 6 718 7 30 13112 13 14 15

A word can also be divided into four 8~bit parts (bytes) in
which the bit positions are numbered O through 7 as follows:

Byte O Byte 1 Byte 2 Byte 3

01 2 314 5 6 710 1 2 374 5 6 710 1 2 314 5 & 710 1 2 314 5 6 7

Two words can be combined to form a 64-bit element (a
doubleword) in which the bit positions are numbered O
through 63 as follows:

Most significant word

0 1V 2 314 5 & 718 % 10 N2 13 14 15116 17 18 19120 21 22 23124 25 26 27[28 29 30 31

Least significant word

32 33 34 350136 37 38 39140 41 42 43144 45 46 47148 49 50 51152 53 54 55156 57 58 59160 &1 62 63

In fixed-point binary arithmetic each element of information
represents numerical data as o signed integer (bit C repre-
sents the sign, remaining bits represent the magnitude, and
the binary point is assumed to be just to the right of the
least significant or righimost bit). Negative values are
represented in two's complement form. Other formats re-
quired for floating=point and decimal instructions are de-

scribed in Chapter 3.

INFORMATION BOUNDARIES

Basic processor instructions assume that bytes, halfwords,
and doublewords are located in main memory according fo
the following boundary conventions:

1. A byte is located in bit positions 0 through 7, 8
through 15, 16 through 23, and 24 through 31 of a
word.

2. A halfword is located in bit positions 0 through 15 and
16 through 31 of a word.

3. Adoubleword is located such that bitpositions O through
31 are contained within an even-numbered word, and
bit positions 32 through 63 are contained within the
next consecutive word (which is odd~numbered).

Figure 3 illustrates these boundaries.

Doubleword

Doubleword

Word (even address) Word (odd address)

Word (even address) Word (odd address)

Halfword 0 | Halfword 1 | Halfword 0 | Halfword 1

Halfword 0

Halfword 1 | Halfword 0 | Halfword 1

Byte OlByte 1{Byte 2|Byte 3|Byte O|Byte 1|Byte 2|Byte 3|Byte O|Byte 1|Byte 2|Byte 3|Byte O [Byte 1{Byte 2|Byte 3

Figure 3. Informafion Boundaries

INSTRUCTION REGISTER

The instruction register contains the instruction the basic
processor is currently executing. The format and fields of
the two general types of instructions (memory reference and
immediate operand) are described below. Specific formats
for each instruction are given in Chapter 3.

MEMORY REFERENCE INSTRUCTIONS

Instructions that make reference fo an operand in main mem-
ory may have the following format:

Reference address

*

Operation | R X
Code
0 1 2 3[4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Bits Description

0 Indirect addressing. One level of indirect ad-
dressing is performed only if this bit position con-
tains a one.

1-7 Operation code. This 7-bit field contains the code
that designates the operation to be performed. See
the inside front and back covers for complete list=
ings of operation codes.

8-11 R field. For most instructions this 4-bit field des-
ignates one of the first 16 general registers of the
current register block as an operand source, result
destination, or both.

12-14 X field. This 3-bit field designates one of general
registers 1-7 of the current register block as an

Bits Description

12-14 index register. If X contains zero, indexing will

(cont.) not be performed; hence register 0 cannot be used
as an index register. (See "Address Modification
Example: Indexing (Real and Virtual Addressing)",
later in this chapter for a description of the
indexing process.}

15-31 Reference address. This 17-bit field normally con-
tains the reference address of the instruction oper=
and. The reference address is translated into an
effective virtual address in accordance with the
addressing type (real, real extended, or virtual)
and the address modification required (direct/
indirect or indexing). (See "Memory Reference
Addresses” later in this chapter.)

IMMEDIATE OPERAND INSTRUCTIONS

Immediate operand type instructions are particularly effi-
cient because the required operand is contained within the
instruction word. Hence, memory reference, indirect ad-
dressing, and indexing are not required.

Operation
Code R X Reference address
0 1 2 314 5 6 718 9 10 1112 13 14 15016 17 18 19?20 21 22 23124 25 26 27(28 29 30 31
Bits Description
0 Bit position 0 must be coded with a zero. If it

contains a one, the instruction is interpreted as be-
ing nonexistent. (See "Trap System", later in this

chapter.)

Basic Processor 13

Bits Description

1-7 Operation code. This 7-bit field contains the code
that designates the operation to be performed.
When the basic processor encounters any immedi-
ate operand operation, it interprets bifs 12-31 of
the instruction word as an operand. These are the
immediate operand operation codes:

Operation Instruction
Code Name Mnemonic
X'02 Load Conditions LCFI
and Floating Con-
trol Immediate
X'20' Add Immediate Al
X021 Compare Immediate CI
X'22° Load Immediate LI
X123 Multiply Immediate MI

8-11 R field. This 4-bit field designates one of the
first 16 general registers in the current general
register block. The register may contain another
operand and/or be designated as the register in
which the results of the operation are to be
stored or accumulated.

12-31 Operand. This 20-bit field contains the immedi-
ate operand. Negative numbers are represented
in two's complement form. For arithmetic opera=-
tions bit 12 (the sign bit) is extended by duplica-
tion to the left through bit position 0 to form a
32-bit operand.

The byte=string instructions (described in Chapter 3) are
similar to immediate-operand instructions in that they can-
not be modified by indexing. Nevertheless, the operand
field of byte-string instructions contains either a byte
address displacement or a byte address that is a virtual ad-
dress subject to modification by the memory map. If a
byte=string instruction has a one in bit position zero, the
basic processor treats it as a nonexistent instruction (see
"Trap System", later in this chapter).

MAIN MEMORY

The memory system comprises memory units, memory inter-
faces (MIs), and memory buses. Figure 4 illustrates the re-
lationships among these components.

The primary technology for main memory is magnetic core.
The maximum physical storage is 256K words. Memory units
can be interleaved on a two-way interleave basis. Each
memory unit is provided with a set of starting address
switches on the Configuration Control Panel (see Chapter 6)
together with a two=position switch that selects one of two

14 Main Memory

possible clock and power sources. Memory units may con-
tain two, four, or six ports, which have a fixed priority
order for the resolution of contention problems.

The following sections describe the organization and opera-
tion of the memory system. Also described are the various
modes and types of addressing, including indexing.

MEMORY UNIT

Main memory is divided physically and logically into one
to eight module assemblies called memory units. Because
the memory unit is a logical component that contains all the
functions available in the entire memory, the minimum mem-
ory is one memory unit. The minimum storage capacity per
memory unit is 16K words; the maximum is 32K words. A
memory location stores a word of 36 bits; the first 32 bits are
information and the last 4 are byte parity bits (the latter
being unavailable to the program). Each memory unit com-
prises a specific storage capacity, drive and sense circuits,
a set of operational registers (address, data, and status), a
set of write lock control registers for 32K words of memory,
and a fiming and control unit.

CORE MEMORY MODULES

Core memory modules (CMMs) provide a storage facility of
standard modules (see Figure 4).

MEMORY DRIVER

The memory driver in each memory unit performs all memory
operations except storage (provided for by the CMMs) and
the few operations performed by the ports. The major func~
tions of the memory driver are:

1. Store address word.

2. Store data=in and data-out words during memory
cycles.

3. Store write locks in special memory (other than CMM:s).

4. Perform parity generation and checking on address and
memory bus data words, and on core memory module
words.

5. Generate and store status words.

6. Control and time all transfers of address words, data
words, status words, write locks, and write key among
the ports, CMM, and the storage registers.

7. Control and time all data, parity; and contral signals

issued to the memory bus.

8. Accept one of two or more simultaneous memory re~
quests on the basis of port positional priority and other
priority status information such as "high priority" and
"memory reserved",

(Maximum

of eight) (
Core Core Core Core
Memory Memory Memory Memory
Modules Modules Modules Modules
(CMM) (CMM) (CMM) (CMM)
Memory Memory Memory Memory
Unit Me:mory Unit M?mory Unit Mz?mory Unit y Me.mory
Driver Driver Driver Driver
(MD) (MD) (MD) (MD)
PIP(P|[P|P|P PIP{P|PIP|P P{P| P/ P{P|P P{P{P{P|P|P
112 1314[5]|6 112({3|4]|516 1(2]3]4]|5|6 112(314|5|6
\ L L
Memory Bus 1
Memory Bus 2
=== T T
| ' | |
| Memory | I Memory
I Interface l } Interface
I
I |
| | | |
| Basic [| |
| ¢ | P
rocessor I I
| 4 I a |
@ { Processor I 5 ¢ Processor
I o I Cluster ‘ 3 l Cluster
| & | © |
v |
| MIOP | MIOP
| | |
| ! | |
' Processor I Processor |
Interface I I Interface I
| | | |
I S L ny

To Processor Bus(es) To Processor Bus(es)

Figure 4. Main Memory

Main Memory 15

PORTS AND MEMORY BUSES

A memory unit may contain two, four, or six ports, which
have a fixed priority order for the resolution of access con-
tention. Each port allows the memory unit to communicate
via a memory bus with a different external system (i.e., a
processor cluster), which communicates with the mem-
ory bus via the Memory Interface (MI) (see Figure 4). Ports
are numbered from 1 (top priority) to 6 (lowest priority).
The selection logic is biased to select port 1 (the fast port)
whenever the memory is quiescent. Thus performance is
improved for the Memory Interface (MI) connected to that
port, and hence to the processors connected to that MI.

A memory reserve function insures proper execution of in-
structions that require guaranteed re-access to a memory
location before a second processor can access it.

Each port is equipped with an inhibit function that can
be activated from the Configuration Control Panel (see
Chapter 6).

Other major functions performed by the ports are:
1. Address recognition.
2. Address interleaving.

The memory system is built up by interconnection of identi-
cally numbered ports of all memory units. Each intercon-
necting cable is called a memory bus, which is dedicated
to a single processor cluster (see Figure 4).

PORT PRIORITY

The multiport structure allows two simultaneous requests for
memory to be processed immediately if the requests are
received on different ports for different memory units, and
neither memory unit is busy. If a requested memory unit
is busy or receives simultaneous requests, the memory port
logic selects the highest priority request first.

Normally, all ports in a memory unit operate on the fixed
priority basis (the fast port has the highest priority and the
highest-numbered normal port the lowest). Thus, if a single
memory unit simultaneously receives requests on port 2 and
port 4, port 2 has first access to the memory unit.

Each port also has associated with it a high=priority line
which, upon receiving a high-priority request, raises the
port's priority above that of all other ports except for any
higher priority port, which also has a high-priority request
on its line.

MEMORY INTERLEAVING

Memory interleaving is a hardware feature that distributes
sequential addresses into two independently operating mem-
ory units. Interleaving increases the probability that a pro-
cessor (i.e., basic processor, RMP, or MIOP) can gain

16 Main Memory

access to a given memory location without encountering
interference from another processor that is making sequen-
tial requests.

Two memory units of the same size can be two-way inter-
leaved. Both memory units transform an incoming address,
as follows:

Size of Each Address Bits

Memory Unit Interchanged
32K 16 and 31
16K 17 and 31

As a result of the address transformation, even incoming ad-
dresses are assigned to one memory unit and odd incoming
addresses to the other. Note that the incoming address (un-
transformed) is stored in the status register of the accessed
unit in each cycle and is available as are other types of dy-
namic status information. (Interleaved memory units have
two status registers, one in each of the units.)

MEMORY UNIT STARTING ADDRESS

Each memory unit is individually identified by starting ad-
dress switches located on the Configuration Control Panel
(see Chapter 6). These switches define the range of ad-
dresses the memory unit responds to when servicing memory
requests. All addresses, including the starting address, for
a given memory unit are the same for all ports in that unit;
that is, the address of a given word remains the same re-
gardless of the port used to access the word. The starting
address of a memory unit must be on a boundary equal to a
multiple of the size of the memory unit when two memory
units (of the same size) are interleaved. The starting ad-
dress of one memory unit must be a multiple of the size of
the two memory units together; the second memory unit must
have a starting address higher than that of its companion by
its own size. Another way to say this is that the starting
address for the combined units must be on a boundary equal
to a multiple of the total size of the interleaved assembly.

MAINTAINABILITY AND PERFORMANCE

Memory maintainability is enhanced by the following
features:

1. Error detection. Each memory unit senses and remem-
bers parity errors in the CMM data as well as parity
errors in the address word or the memory bus data, port
selection errors, CMM selection error, and undefined
operations. This status information is available to di-
agnostic programs to facilitate error localization in
space and time of occurrence. The memory unit senses
and reports, but does not remember (for diagnostic pur-
poses) a write lock violation.

2. Modularity. For ease of replacement, the logic and stor-
age circuitry is packaged on modules that are removable
from backpanels without requiring cable disconnections.

3. Diagnostic logic. Each memory driver module carries
logic used exclusively for localizing faulty elements
in that module. The benefit derived from this diagnos=
tic logic depends on such external factors as the ac-
cessibility to a module tester.

Memory system performance depends on these factors:

1. Access fime of memory unit.

2. Cycle time of memory unit.

3. Type of cycle requesied.

4. Number of memory units.

5. [Interleaving.

6. Type of port (fast or normal) selected.

7. Self or mytual interference between memory requests.

All these factors characterize not only memory performance
but also system performance.

Port access time and cycle time are essential memory speed
characteristics pertaining fo CMM operations.

1. Port access time. This is the time interval measured
between the clock pulse that transmits an address word
from the Memory Interface (MI) to an idle memory unit
and the clock pulse that translates a memory word from
the same memory unit to the MI.

2. Cycle time. Cycle time depends on the operation be-
ing performed and on the sequence of operation. Cycle
time determines the maximum rate at which a memory
unit can accept requests.

VIRTUAL AND REAL MEMORY

Virtual memory is the address space available to an in-
dividual program. The maximum size of virtual memory is
128K words, broken into as many as 256 pages of 512 words
each distributed throughout the available pages of real
memory .

Real memory corresponds to the physical memory, and its size
is equal to the fotal number of words contained within all

memory unifs in the system. The size of real memory ranges
from a minimum of 16K words to a maximum of 256K words.

Note: Real memory address space is 1 million words.

MEMORY REFERENCE ADDRESS

Memory locations 0 through 15 are not normally accessible
to the programmer because their memory addresses are re-

served as register designators for "register-to-register" op-
erations. Nevertheless an instruction treats any of the

first 16 registers of the current register block as if it were

a location in main memory. Furthermore, the register block
can hold an instruction (or a series of as many as 16 instruc~
tions) for execution just as though the instruction (or instruc~
tions) were in main memory.

The following terms are used in the various types of address-
ing described in subsequent sections. See also Figure 5,
which illustrates the control and data flow during address
generation.

1. Instruction Address. This is the address of the next
instruction to be executed. For real, real-extended,
and virtual addressing the 17-bit instruction address is
contained within bits 15-31 of the program status words

(PSWs).

2. Reference Address. This is the 17-bit or 20-bit address
associated with any instruction (except that in a trap
or interrupt location that has a 0 in bit position 10).
For real, real extended, direct, and virtual addressing,
the reference address is the address contained within
bits 15-31 of the instruction itself.

The reference address may be modified by using indirect
addressing, indexing, and memory mapping. A refer-
ence address becomes an effective virtual address after
the indirect addressing and/or postindexing (if re-
quired) is performed.

3. 20-Bit Trap or Interrupt Reference Address. If bit posi-
tion 10 of any instruction in a trap or interrupt location
confains a 0, bits 12=31 of that instruction are used as
a 20-bit reference address. This 20-bit reference ad-
dress can be modified only by using indirect address-
ing. This 20-bit reference address cannot be indexed
or mapped. (See "Interrupt and Trap Entry Addressing",
later in this chapter.)

4. Direct Reference Address. If neither indirect address-
ing nor indexing is called for by the instruction (i.e.,
if bit 0 and the X field contain zero), the reference
address of the instruction (as defined above) becomes
the effective virtual address. Direct addressing may
be used during real, virtual, or real extended address-
ing modes, including trap and inferrupt operations. Di~
rect addressing during virtual addressing does not pre-
clude memory mapping.

5. Indirect Reference Address. The 7-bit operation code
field of the instruction word format provides for as many
as 128 instruction operation codes, nearly all of which
can use indirect addressing (except immediate-operand
and byte=string instructions). If the instruction calls
for indirect addressing (bit position 0 contains a 1), the
reference address (as defined above) is used to access a
word location that contains the direct reference address
in bit positions 15-31, or bit positions 12-31 for certain
real extended addressing operations. The indirect ad-
dressing operation is limited to one level, regardless of
the contents of the word location pointed to by the ref-
erence address field of the instruction. Indirect ad-
dressing occurs before indexing; that is, the 17-bit

Main Memory 17

START

yes

Real

yes
extended

Fetch contents of register.

\

Add 16-19 bit index to
17-bit reference address;
17-19 bit arithmetic.

Add 20-22 bit index to
17-bit direct reference
address or 20-bit indirect
reference address; 20-22
bit arithmetic.

G)y——F

!

Fetch contents of register.

Fetch contents of 20-bit
real address. If write

operation, trap on write-
protect violation.

Map to 20-bit real ad-
dress. Trap on access
protect violation if in

slave or master-protected
modes.

Indirect
cycle
?

END

18

Main Memory

Figure 5. Addressing Logic

10.

reference address field of the instruction is used to
obtain a word, and the 17 or 20 low=-order bits of the
word thus obtained effectively replace the initial ref-
erence address field; then indexing is carried out ac-
cording to the operation code of the instruction. See
Figures 7 and 9, later in this chapter.

Index Reference Address. If indexing is called for in
the instruction (a value other than zero in bits 12-14
of the instruction), the direct or indirect reference ad-
dress is modified by addition of the displacement value
in the general register (index) called for by the instruc-
tion (after scaling the displacement according to the
instruction type). This final reference address value
(after indirect addressing, indexing, or both) is defined
as the effective virtual address of the instruction. In-
dexing afterindirect addressing is called postindexing.
See also Figures 7 and 9, later in this chapter.

Displacements. Displacements are the 16— to 22-bit
values used in index registers and by byte=-string in-
structions to generate effective addresses of the appro=-
priate size (byte, halfword, word, or doubleword).

Register Address. If any instruction provides a virtual
address that is a memory reference (i.e., a direct,
indirect, or indexed reference address) in the range 0
through 15, the basic processor does not attempt to read
from or write into main memory locations O through 15.
Instead, the four low=order bits of the reference ad-
dress are used as a general register address and the gen-
eral register correspondingto this address is used as the
operand locafion or result destination. Thus, the in-
struction can use any of the first 16 registers in the cur-
renf regisfer biock as the source of an operand, the
location of a direct address, or the destination of a re-
sult. Such usage is called a "register-to-register"
operation.

Actual Address. This is the address value actually used

by the basic processor to access main memory via the

memory address register (see Figure 5). If the effective
virtual address is in the range 0 through 15 (X'0 through
X'F'), one of the first 16 general registers in the cur~

rent register block is being addressed. If the basic pro-
cessor is operating in the virtual addressing mode, all

addresses greater than 15 (X'F') are transformed (usually
into addresses in a different memory page) by the mem-
ory map into actual addresses. Contrarily, if the basic
processor is operating in either real or real extended

mode, no transformation via the memory map takes place.

Effective Address. The effective address is defined as
the final virtual address computed for an instruction.
Note, however, that some instructions do not use the
effective address as a location reference; instead, the
effective address is used to control the operation of
the instruction (as in a shift instruction), to designate
the address of an input/output device (as in an input/
output instruction), or to designate a specific element
of the system (as in a READ DIRECT or WRITE DIRECT
instruction).

11. Effective Location.

12.

An effective location is defined

as the actual location (in main memory or in the current
register block) that is to receive the result of a memory~-
referencing instruction, and is referenced by means of
an effective address. Because an effective address
may be either an actual address or a virtual address,
when applicable, this definition of an effective loca-
tion assumes the transformation of a virtual address into
an actual address.

Effective Operand. An effective operand is defined

as the contents of an actual location (in main memory
or in the current register block) that is to be used as
an operand by a memory-referencing instruction, and
is referred to by means of an effective address. This
also presupposes the transformation of a virtual address
into an actual address.

TYPES OF ADDRESSING

Except for the special type of addressing performed by some
interrupt and trap instructions, all addressing within the
computer system is real, real extended, or virtual.

REAL ADDRESSING

In real addressing, a one-to-one relationship prevails be-
tween the effective virtual address of each instruction
and the actual address used to access main memory. Real
addressing has these characteristics:

1.

Each reference address is a 17-bit word address.

The reference address may be direct or indirect, with
or without postindexing.

Displacements associated with indexing are automati=-
cally aligned, as required, using the full 32-bit contents
of the index register. The final result is truncated to
the left of the high-order bit of the original 17-bit ref-
erence address, and the effective real address is a
16-bit doubleword address, 17-bit word address, 18=bit
halfword address, or a 19-bit byte address.

If indirect addressing is invoked, the 17-bit reference
address in the instruction word is used to access the in-
direct address word in memory. The low-order 17 bits
of this word then replace the reference address of the
instruction word in the calculations described in (3),
above.

Memory mapping and memory access protection are
never invoked.

Memory wrife protection is automatically invoked.
Leading zeros are automatically appended to the effec-

tive address to generate an actual word address as re=-
quired by the main memory .

Main Memory 19

8. Real addressing is allowed in master mode and in slave
mode, and is specified when bit positions 9 and 61 of
the PSWs both contain zero.

VIRTUAL ADDRESSING

Virtual addressing uses the memory map to determine the
actual address to be associated with a particular reference
address of each instruction. Virtual addressing differs from
real addressing in that there is normally no exact relation=
ship between the effective virtual address and the actual
address. These are the characteristics of virtual addressing:

1. Each reference address is a 17-bit address.

2. The reference address may be direct or indirect, with
or without postindexing.

3. Displacements associated with indexing are automati-
cally aligned, as required, using the full 32-bit
contents of the index register. The final result is
tfruncated to the left of the high-order bit of the
original 17-bit reference address, and the effective
virtual address is a 16=bit doubleword address, 17-bit
word address, 18-bit halfword address, or a 19-bit byte
address.

4. Virtual memory access protection is always invoked.
If the access protection code is invalid, the instruction
aborts and traps to location X'40'. (See "Trap System",
later in this chapter.)

5. Memory mapping translates the 8 most significant bits
of the effective virtual address (the page portion) into
an 11-bit page address. This page address is concate-
nated with the 9 least significant bits of the reference
address. The resultant 20~bit word address is the actual
address used to access memory. This feature permits
any one user at any given time to have a virtual mem-
ory of as many as 128K words (256 pages) located
throughout real (actual) memory comprising as many
as 256K words (512 pages). Although virtual memory
may be physically fragmented, it is logically contiguous.

Note that Sigma 6/7 programs may run on this computer
system without requiring change to the mapping struc-
ture. The memory map is loaded with 8=bit page ad=-
dresses (the 3 high-order bits of the 11-bit real page
address are reset to zeros). The most significant 8 bits
of the effective virtual address are then translated into
the designated 8~bit page address.

6. The memory write-protection fecture is invoked for the
actual address in real memory.

7. Virtual addressing may be used in all modes (master,
master-protected, and slave) and is specified when
bit 9 of the PSWs contains a one.

20 Main Memory

ADDRESS MODIFICATION EXAMPLE: INDEXING
(REAL AND VIRTUAL ADDRESSING)

Figure 6 shows how the indexing operation takes place dur-
ing real and virtual addressing operations. The instruction
is brought from memory and loaded into a 34=bit instruction
register that initially contains zeros in the two low-order
bit positions (32 and 33). The displacement value from the
index register is then aligned with the instruction register
(as an integer) according to the address type of the instruc-
tion; that is, if it is a byte operation, the low-order bit of
the displacement is aligned with the least significant bit of
the 34-bit instruction register (bit position 34). The dis-
placement is then shifted one bit to the left of this position
for a halfword operation, two bits to the left for a word
operation, and three bits to the left for a doubleword oper-
ation. An addition process then takes place to develop a
19-bit address, referred to as the effective address of the
instruction. High-order bits of the 32-bit displacement are
ignored in the development of this effective address (i.e.,
the 15 high-order bits are ignored for word operations, the
25 high-order bits are ignored for shift operations, and the
16 high-order bits are ignored for doubleword operations).
The displacement value, however, can cause the effective
address to be less than the initial reference address (within
the instruction) if the displacement value contains a suffi-
cient number of high-order 15's (i.e., if the displacement
value is a negative integer in two's complement form).

The effective virtual address of an instruction is always a
19-bit byte address value. This value, however, is auto-
matically adjusted to the information boundary conventions.
Thus, for halfword operations the low-order bit of the effec
tive halfword address is zero; for word operations the two
low-order bits of the effective word address are zeros; and
for doubleword operations the three low-order bits of the
effective doubleword address are zeros.

In a byte operation with no indexing, the effective byte

is the first byte (byte O in bit positions 0-7) of a word lo-
cation; in a halfword operation with no indexing, the ef-
fective halfword is the first halfword (halfword 0 in bit
positions 0-15) of a word location. A doubleword opera-
tion always involves a word at an even numbered address
and the word at the nextsequential (which is odd numbered)
word address. Thus, if an odd numbered word location
is specified for a doubleword operation, the low-order bit of
the effective address field (bit position 31) is automatically
forced to zero. This means that in a doubleword operation
an odd numbered word (reference) address designates the
same doubleword as the next lower even numbered word
address.

In the real addressing mode, the 19-bit effective virtual
address is concatenated with 3 leading zeros to form a

22-bit actual address. In the virtual addressing mode,

the 8 most significant bits of the 19-bit virtual address

are mapped (using the memory map) info the 11-bit actual
page address, thus forming a 22-bit actual address.

Instruction in memory: 0 COOF;thon R X Reference address

0 12 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27]26 29 30 31

Operation
o| -P R X
code

0 1 2 3174 5 67718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 313233

Instruction in instruction register: Reference address 00

Byte operation indexing alignment:

19-bit displacement value

13 14 15116 17 18 19120 21 22 23T24 25 26 27128 29 30 31

Halfword operation indexing alignment:

18-bit displacement value 0

1415116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word operation indexing alignment:

17-bit displacement value 0|0

5716 17 18 19120 21 22 23124 25 26 27128 29 30 a1

Shift operation indexing alignment:

Displace-
ment

(=)
o

25 26 27128 29 30 31

Doubléword operation indexing alignment:

16-bit displacement value [0]0i0

Effective virtual address:

6 17 18 19120 21 22 23124 25 26 27128 29 30 31

00 0: 19-bit virtual address value

.]2_13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 32 33

Figure 5. Index Displacement Alignment (Real and Virtual Addressing Modes)

ADDRESS MODIFICATION EXAMPLE: INDIRECT,
INDEXED HALFWORD (VIRTUAL ADDRESSING)

Figure 7 illustrates the address modification and mapping
process for an indirectly addressed, indexed, halfword op-
eration. As shown, reference address 1 is the content of
the reference address field in the instruction stored in mem-
ory. The instruction is brought info the instruction register,
and if the value of the reference address field is greater
than 15, the memory map converts the 19=bit effective vir=
tual address into a 22-bit actual address. The 17 low=-order
bits of the main memory location pointed to by the actual
address, labeled reference address 2, then replaces refer-
ence address 1 in the instruction register. The index register
designated by the X field of the instruction is subsequently
aligned for incrementing at the halfword-address level. The
final effective virtual address is formed by the address gen-
erator, and if the value of the reference address is greater
than 15, the effective virtual address is transformed through
the memory map into an actual address. The resultant 22-bit
actual (main memory) address, which automatically contains
a low=-order 0, is then used to access the halfword to be
used as the operand for the instruction.

Note that for the real addressing mode, the modifications
required for indirect, indexed halfword operation are the
same with one exception: reference address 1 and the final
effective address are concatenated with three leading zeros
(as opposed to being transformed by the memory map).

REAL-EXTENDED ADDRESSING

Real-extended addressing is similar to real addressing in that
a direct relationship exists between the effective virtual ad-
dress of each instruction and the actual address. The func~-
tion of real-extended addressing is to facilitate operations
in a memory system larger than 128K words.

Note: Instructions and indirect addresses that involve
real-extended address calculations must themselves
reside in the first 128K words of memory (or in the
general registers), although they in turn may ulti-
mately access operands in locations beyond the first
128K words of memory.

Main Memory 21

Instruction in memory: 1 LH

Instruction in instruction registers: 1 LH

The 8 high-order bits of the reference address are
replaced with 11-bit page address Z from memory map:

R X Reference address 1
0 1 2 3[4 5 8 718 9 10 11112 13 14 ‘5?16 17 18 19120 21 22 23i?4 25 26 27728 29 20 31
R X Reference address 1
XXXXXXXXYYYyyyyyyy|00
0 Vv 2 314 5 6 718 9 10 N2 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 3233
L J
v
Page Z
222722222222
01 2 314 5 & 718 % 10
— J
v
~ A
r N \

Actual address of memory location that contains
the direct address:

22-bit actual address

Z2ZZZz2ZzZZZZZZYYYYYYVYYY 00

1271314 15176 17 18 19120 21 22 23124 25 26 27123 29 30 21 3233

17-bit direct address in memory:

Reference address 2

0 1V 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 a1

Indirect addressing replaces reference address 1 LH
with direct address:

R

X Reference address 2 00

L B R

g9 1m0mn

(PR R A AN T O TR Y B XL P Z R R T2 R VR Y Y

Halfword operation indexing alignment:

18-bit displacement 0

Effective virtual address:

The 8 high-order bits of the effective address are
replaced with 11-bit page address N from memory map:

Final memory address, which is the actual address of
halfword location containing the effective halfword:

14 15106 17 18 19120 21 22 23124 25 26 27128 29 20 31

Ll9—bit virtual halfword address

kkkkkkkk £ e 6560

L
15716717 18 19120 21 22 23124 25 26 27128 29 3 313233

~— g)
Page N
nnnnnnnnnnn
R R N R R S R
-)
[1]
r lA e ” Al
22-bit actual halfword address
nnnnnnnnnnnf ffffffff|fo

1213 14 15006 17 16 19120 27 22 23124 25 26 27128 29 30 31 32 33

22

Figure 7. Generation of Actual Addresses Indirect, Virtual Addressing

Main Memory

Real-extended addressing is specified when PSWs bit
location 9 contains zero and PSWs bit location 61 contains
one. In real-extended addressing, the 17-bit reference
address in the instruction word is expanded to a 20-bif ref-
erence address by the appendage of 3 bit positions to the
left of the reference address (see Figure 8)." If indexing or
indirect addressing are not specified in the instruction,
these 3 bit positions contain zeros. Otherwise, address
calculations are performed in this manner: If indexing is
specified (X field in the instruction contains a value other
than zero), the contents of the specified index register are
properly aligned with respect to the 17-bit reference ad-
dress according to the general alignment rules. Arithmetic
on the aligned quantities then takes place using the full
32-bit contents of the index register. The final result is
truncated 3 bits to the left of the original 17-bit reference
address, these 3 bits having been acquired from the index
register plus any carry resulting from the addition of the
17-bit reference address with the index register contents.

If the instruction specifies indirect addressing (bit position 0
contains one), the 17-bit reference address is used to ac~
cess an indirect word in memory. The low-order 20 bits of
the indirect word then replace the 17-bit reference address
from the instruction. If indexing is also specified, the

appropriate alignment of the 32-bit contents of the index
register is then made and the addition operation performed.
The result is truncated to the left of the 20-bit operand ob-
tained from the indirect address word.

In real-extended addressing, 20~bit address calculations
actually encompass 22-, 21-, 20-, and 19-bit calculations,
respectively, for byte, halfword, word, and doubleword
alignments (see Figures 8 and 9).

The stack pointer doubleword for push-down instructions
contains a 20-bit word address for the top of stack address
field, as shown in the following format:

Top of stack address

01 2 314 5 6 718 5 1012131415617 18 51200 2 5175 %5158 29 30 31

i
S Space count Wi Word count
32 33 34 35136 37 38 39i40 41 42 4314-4 45 46 47148 49 50 51152 53 54 55i56 57 58 59iél) 61 62 63

.o Operation ’
Instruction in memory: Ol code R X Reference address
0 1 2 3Ta 5 6 708 9 10 N2 13774 15716 17 18 19120 21 22 23[22 25 26 27128 29 30 31

Tnfarmatinm
inrermatic:

<55 iidexed
generator: not indexed

0 Reference address 00

o0

Byte operation indexing alignment:

Halfword operation indexing alignment:

01 2 3l4 56 718 9 IOlllé 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 32 33

| I

22-bit displacement value

; n
TS T s v W B T B Bim T 23;24 25 26 27i28 29 30 31

21-bit displacement value 0

RN RN N A R R AV R A)

Word operation indexing alignment:

20-bit displacement value 0|0

0 1 2 314 5 6 7i8 9 10 1112 13 14 15116 17 18 1912021 22 23124 25 26 27128 29 30 3)

Shift operation indexing alignment:

Displace-
3| ment

Doubleword operation indexing alignment:

20-bit effective address:

22-bit reference address

T3 14 316 T T8 Wi 21 22 23128 25 26 D18 5 3% 3132 B

Figure 8. Index Displacement Alignment (Real~Extended Addressing)

Main Memory 23

Instruction in memory: 1

Instruction in instruction register: 1

LH R X Reference Address
0 1 2 304 5 6 718 9 10 W2 13 14 157176 17 18 19120 21 22 23124 25 26 27128 29 30 31
LH R X \FFFfffeEffffrfefffio0
0 1 2 314 5 6 718 9 10 11012 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 32 33
FEFFFEFFEFEFFFFFFION

Indirect reference addresses:

Contents of indirect reference address:

n
0 111

J ' L
12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Address used if bit 0 = 1:

Displacement aligned for halfword indexing:

Final effective address:

rrrrrrrrrrrrrrrrrrrrrrer

2 314 576 7

T8 9 10 1l

12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

00

rerrrrrrrrrrrrrrrrrrrrr

12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

nh2 13 4 sTie 17 18 19120 21 22 23724 25 26 27128 29 30 21

i0

$ 5555555585555 5S555S55SSS

12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 32 33

Figure 9. Generation of Effective Virtual Address (Indirect Real~Extended Addressing)

These are the register formats for byte-string instructions:

Byte-string instruction:

Register R:

Operation R 20-bit signed displacement,
code sign extended before use
IR B B T S T 1) A SR T M Y BT3RS R - B B F K1 2 ST T P R T

mask/fill

Source byte address (20 bits)

0 1 2 3143 6 7

24

Main Memory

T3 4 13116 17 18 19120 21 22 23124 25 26 27128 27 30 31

Register Rul:

Byte count

0 1 2 314 5 6

During real-extended addressing memory write protection

is invoked.

7

Table 1 summarizes the addressing characteristics.

Destination byte address (20 bits)

111213 14 15176 17 16 19120 21 22 23124 25 26 27128 29 30 31

Table 1. Basic Processor Operating Modes and Addressing Cases

PSW BIT

MS| MM | MA | Mode and Addressing Characteristics

0 0 0 Master mode, unmapped, 17-bit calculations, real addressing (128K words, maximum).

1 0 0 Slave mode, unmapped, 17-bit calculations, real addressing (128K words, maximum).

0 0 1 Master mode, unmapped, 20-bit calculations, real-extended addressing, 17-bit instruction reference
address (instructions and indirect words in first 128K words only), indexed and indirect addresses are
20 bits.

1 0 i Slave mode, unmapped, 20-bit calculations, real-extended addressing, 17-bit instruction reference
address (instructions and indirect words in first 128K words only), indexed and indirect addresses are
20 bits.

0 1 0 Master mode, mapped, 17-bit calculations, virtual addressing (128K words, maximum), map to
1M words, real (Sigma 6/7 map to first 128K words by virtue of loading map with three high-order
zeros for all pages).

1 1 - Slave mode, mapped, 17-bit calculations, virtual addressing (128K words, maximum), map to -
1M words, real (Sigma 6/7 map to first 128K words by virtue of loading map with three high-order
zeros for all pages).

0 1 1 Master-protected mode, mapped, 17-bit calculations, virtual addressing (128K words, maximum),
map to 1M words, real (access protection invoked).

INTERRUPT AND TRAP ENTRY ADDRESSING

An instruction residing in an interrupt location (see "Cen-
tralized Interrupt System" later in this chapter) and exe-
cuted as the directresult of an interruptsequence is defined
as an inferrupt instruction. Both conditions must be true
simultaneously. Thus an instruction in an interrupt location
is not an inferrupt instruction if it is executed as the result
of a program branch to the interrupt location under normal
program control . The only valid interrupt instructions are
XPSD, PSS, MTW, MTH, and MTB.

Similarly, a trap instruction (see "Trap System", later in
this chapter) is defined as an instruction in a trap location
executed as a direct result of a trap condition. The only
valid trap instructions are XPSD and PSS.

XPSD Address Calculations. Address calculations associ~-

ated with XPSD instructions deviate from the standard
forms. Two basic formats are used in XPSD instructions,
depending on whether subjective or objective addressing
is being used.

Bit 10 of the XPSD instruction is the addressing type (AT)
designator. In the circumstances described below, it des-
ignates whether the reference address in the XPSD instruc-
tion is to be considered unconditionally as a 20=bit real
address or whether the current mode of addressing calcula~
tions is fo be applied to it.

Format 1:
Operation [LIA[A(S .

* ference address (20 bits
code |Pl1[1lp| Reference (20 bits)

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 2728 29 30 31

Format 2:

| Operation |[L|A[A/S Ref ad 17 bi
code BilTlpl X eference address (its

0 1 2 314 5 6 718 9 10 nhiz 3 1415116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Format 1 is used in these circumstances:

1. Bit position 10 (AT) of the XPSD contains zero. In this
format the reference address is a 20~bit actual address
(i.e., no mapping). Nofe that this is true regardless
of whether the instruction is in a frap, interrupt, or
normal location and independent of the mode (mapped,
unmapped, real-extended) of the current PSWs. If in-
direct addressing is specified, the indirect word con-
tains a 20-bit address with exactly the same properties.

2. Bitposition 10 (AT) of the XPSD contains one, the instruc—-

tion is in a trap or interrupt location, the instruction
is being executed as the result of a frap or interrupt,
and the current mode of the PSWs is not real-extended.
In this format, the reference address is a 20-bit actual

Main Memory 25

address if PSWs bit 9 is zero (no map), or a 20-bit
virtual address if PSWs bit 9 is one (map). If indirect
addressing is specified, the indirect word contains a
20-bit address with exactly the same properties.

Format 2 is used in all other circumstances, namely:
1. Bit position 10 (AT) contains a one, and

a. The XPSD is not being executed as the result of a
trap or interrupt, or

b. It is in a frap or interrupt location, is being exe=
cuted as the result of a trap or interrupt, but the
current mode of the PSWs is real-extended.

In these cases, all of the normal rules of address calcu-
lations hold, i.e., indirect, index, and map.

PSS Address Calculations. PUSH STATUS (PSS) address cal-
culations are similar to but simpler than those for the XPSD
instruction. Two basic formats are used:

Format 1:

* Op:;gzon I|50 0 Reference address (20 bits)

0 1 2 314 5 6 718 9 10 171112 13 14 15116 17 18 19120 27 22 23724 25 26 27128 29 30 31

Format 2:

* Op:;g;m" :; 0[0|-| X | Reference address (17 bits)

0 1 2 314 5 6 7 B’? 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3l

Format 1 is used whenthe PSS is executed in an interrupt or
trap location as a result of an interrupt or trap sequence.
No indexing is possible because its designator field is pre-
empted by the reference address. Indirect addressing is per-
mitted with the same constraint against indexing; the indirect
address word contains a 20-bit real address with precisely
the same properties as the reference address. In the case
of a trap instruction, the 20=bit reference address can be
either a real address or a virtual address according to the

value in PSWs bit position 9.

Format 2 is used when the PSS instruction is executed in
the course of normal program execution. Addressing in this
case is completely standard, including indexing and indi~-
rect addressing.

During the execution of the PSS instruction the interrupt
stack pointer is accessed from real memory locations Oand 1.
The interrupt stack address therein is a real 20~bit address
with no indexing or mapping used.

MTW, MTH, and MTB Address Calculations. Twe basic
formats are used in modify and test instructions:
Format 1:
Operation
* pcode R Reference address (20 bits)
A R R S N T N E L BT B R RN P R LI M R N Ch r TR T T BT 2

26 Main Memory

Format 2:

* Op;aorg:on R X | Reference address (17 bits)

T 1 2 314 5 6 718 5 10 11172 13 14 15116 1718 19120 31 22 23124 25 26 77128 5 30 31

Format 1 is used when the modify and test instruction is ex-
ecuted in an interrupt or trap location as a result of an
interrupt or trap sequence. When used as an interrupt in-
struction, the MTW, MTH, or MTB instruction uses the 20-bit
reference address as a real address (except counter 4), with-
out indexing or mapping. Interrupt Counter 4 uses the map
if mapping is called for. Access protect and write lock
violations are not active.

When used as a trap instruction, the MTW, MTH, or MTB
instruction uses the 20-bit address without indexing; if the
PSWs specify mapping, however, the map is used, with

bits 12-14 of the address ignored.)

Format 2 is used when the modify and test instruction is ex~
ecuted in the normal course of program execution. Address-
ing in this case is completely standard, including indexing

and indirect addressing.

RD and WD Address Calculations. The final output address

for a READ DIRECT (RD) or a WRITE DIRECT (WD) instruc=-
tion is the low=-order 16 bits of the effective virtual address.
If indexing is specified in the instruction, the low-order
17 bits of the instruction are modified by the indexing op=-
eration, and the resultant 17-bit address is truncated to
16 bits and transmitted as the final address. No mapping
takes place.

If indirect addressing is specified in the instruction, the in-
direct address word is generated in the standard manner ac-
cording fo the mode bits in the PSWs. Thus mapping will
occur if it is specified in the PSWs. If indexing is also spec~
ified, the indirect address in the indirect word is modified
by the indexing operation and the resultant address is trun=
cated to 16 bits and transmitted as the final address.

MEMORY ADDRESS CONTROL

Two methods of program control of main memory are the
memory map and the memory locks. The memory map pro-
vides for dynamic relocation of programs and for access
protection through inhibitions imposed on slave or master-
protected mode programs. Access protection violations in
either mode are trapped fo location X'40'. The memory
locks provide memory write protection for all modes of pro-
grams throughout all real memory. The memory locks apply
to input/output operations as well as basic processor opera-
tions. This protection is effective at the page level, is for
real addresses, and is operative in addition to the protection
provided virtual addresses at the page level. Memory pro-
tection violations in any mode are trapped to location X'40".

Note: A WD instruction used to write into main mem-
ory locations O through 31 is not subject to write
protection.

MEMORY MAPPING AND ACCESS PROTECTION

The memory map is physically an array of 256 11-bit reg-
isters. The array resides in the Memory Interface (MI) of
the processor cluster containing the basic processor. Each
register has an 8-bit address (that corresponds to an 8-bit
virtual page address) and contains an 11-bit actual page
address for a specific 512-word page of memory. Mapping
always transforms a 17-bit virtual address into a 20=bit real
address.

The actual page addresses are assigned to pages of virtual
addresses in this manner:

.|Actual page N
(11 bits)

Actual page X | Actual page K|,
(11 bits) (11 bits)

Virtual addresses
X'"1FEQ0'-X"'T1FFFF!
(virtual page 255)

Virtual addresses Virtual addresses
X'10'-X"1FF' X'200'-X'3FF'
(virtual page 0) (virtual page 1)

Just prior to a memory reference, the most significant 8 bits
of a 17-bit virtual address are used as the address of an
element of the map array. The 11 bits contained within
that element are then used in conjunction with the low-
order 9 bits of the 17-bit virtual address to produce a
20~bit actual address.

Sigma 6/7 compatible mapping is accomplished by loading
the map with 8-bit address elements (instead of 11-bit ad-
dress elements) via the MOVE TO MEMORY CONTROL
(MMC) instruction. The 8 bits are stored in the low-order
8 bits of each map element and the 3 high-order bit posi-

tions are reset to zero. Thus the map will always relocate
to the same address in the first 128K words of real memory

and be compatible for Sigma 6/7 programs.

Associated with the memory map feature is another array
of 256 2-bit registers, also located in the Memory Inter-
face. Each register contains a 2-bit access conirol code
for a specific 512-word page of virtual addresses. The
access-protection code indicates the allowed use or avail-
ability of the corresponding page of virtual memory. Access
protection applies to all pages of the virtual address space
of the active program, and is only active when the memory
map is invoked,

AC | AC [AC | AC [AC (AC | AC
t

Virtual addresses Virtual
X'600'-X'7FF' addresses
Virtual addresses ;(('}EE(F)E'_
X'400'-X'5FF' .
(virtual
Virtual addresses page 255)
X'200'-X'3FF Virtual
Virtual addresses addresses
X'10'-X'"1FF X'1FC00'-
(Virtual page 0) X'1FDFF'

The memory page address and access-control codes can
be changed only by use of the privileged MMC instruction
(see Chapter 3, "Control Instructions).

Access protection is in effect whenever the memory map is
in effect (PSWs 9 = 1) and the basic processor is operating
in the slave mode (PSWs 8 = 1) or in the master-protected
mode (PSWs 61 =1). Access protection is noi in effect
when the basic processor is operating in the master mode.

When the memory map is in effect, all memory references
used by the program (including instruction addresses) whether
direct, indirect, or indexed, are referred to as virtual ad-
dresses. Virtual addresses in the range 0 through 15 are
not used to address main memory; instead the 4 low-order
bits of the virtual address comprise a general register ad-
dress. If, however, an instruction produces a virtual ad~
dress greater than 15, the 8 high-order bits of the virtual
address are used to obtain the appropriate 11-bit actual
memory page address and 2-bit access control codes. For
example, if the 8 high-order bits of the virtual address are
0000 0000, the first page address code and the first access
conirol code are used; if the 8 high-order bits of the virtual
address are 0000 0001, the second page address code and
the second access control code are used, etc., through the
256th page address and access control codes. Thus each
512-word page of virtual addresses is associated with ifs
own memory page address and access control codes.

When the memory map is accessed during a slave mode or
master-protected mode program, the basic processor deter-
mines whether there are any inhibitions to using the virtual
address.

These are the four types of access protection codes:

00 A slave mode or master-protected mode program
can write into, read from, or access instructions
from this page of virtual address.

01 A slave mode or master-protected mode program
cannot write into this page of virtual addresses;
it can, however, read from or access instructions
from this page of virtual addresses.

10 A slave mode or master-protected mode program
cannot write into or access instructions from this
page of virtual addresses; it can, however, read
from this page of virtual addresses.

11 A slave mode or master-protected mode program
is denied any access to this page of virtual
addresses.

If the instruction being executed by the slave or master-
protected program fails the foregoing test, the instruction
is aborted and the basic processor traps to location X'40",
the "non~allowed operation" trap (see "Trap System", later
in this chapter).

Contrarily, if the instruction being executed by the slave

mode or master-protected mode program passes this test (or
if the basic processor is operating in the master mode), the

Main Memory 27

11-bit page address in the accessed element of the memory
map array replaces the 8 high-order bits of the virtual ad=
dress to produce the actual address of the main memory lo-
cation to be used by the instruction (20~bit word address
that is automatically adjusted as required for doubleword,
halfword, or byte operation). See Figure 7.

Note: If the 11-bit page address in the accessed element
of the memory map is all zeros, and an actual ad-
dress is produced that corresponds to a word address
in the range 0 through 15, when the 11-bit page
address is combined with the 9 low=-order bits of the
virtual address, the corresponding general register
in the current register block is not accessed. In
this one particular instance a word address in the
range 0 through 15 corresponds fo an actual main
memory location rather than a general register.

REAL MEMORY WRITE LOCKS

Additional memory protection, independent of the access
protection, is provided by a write lock and key technique.
A 4-bit write protect lock (WL) is provided for each 512-
word page of actual memory. Thus, for the maximum M=
word real memory there would be 2048 4-bit write locks.
Write locks are assigned to pages of actual addresses as
follows:

WL | WL WL WL | WL e WL | WL
! }
Actual addresses Actual
X'600'-X'7FF' addresses
Actual addresses i,“::igg,-
X'400'-X'5FF'
(memory
Actual addresses page 255)
X'200'-X'3FF"
Actual
Actual addresses addresses
0-X'1FF' X'1FC00'-
(memory page 0) X'1FDFF

The write protect locks can be changed only by executing
the privileged instruction MOVE TO MEMORY CONTROL
(see Chapter 3, "Control Instructions").

The write key (a 4-bit field in the PSWs for any operating
program, or in the command doubleword for /O operations)
works in conjunction with the write lock to determine
whether any program (slave, master-protected, or master
mode) can write info a specific page of main memory ioca-
tions. The write key and lock confrol access for writing
according to these rules:

1. A lock value of 0000 means that the corresponding

memory page is unlocked; write access to that page is
permitted independent of the key value.

28 Main Memory

2. A key value of 0000 is a "skeleton" key that will open
any lock; thus write access to any memory page is per-
mitted independent of its lock value.

3. A lock value other than 0000 for a memory page per-
mits write access to that page only if the key value
(other than 0000) is identical to the lock value.

Thus a program can write info a given memory page if the
lock value is 0000, if the key value is 0000, or if the key

value matches the lock value.

Note: The memory access protection feature operates dur-
ing virtual addressing modes and on virtual addresses,
whereas the memory write protection feature always
operates on actual memory addresses. Thus, if the
memory access protection feature is invoked (that
is, if the basic processor is operating in the slave
mode or the master-protected mode and is using the
memory map), the access protection codes are ex-
amined when the virtual address is converted into
an actual address. Then the lock and key are ex-
amined to determine whether the program (master,
master-protected, or slave mode) is allowed to alter
the contents of the main memory location correspond-
ing to the final actual address. If an instruction at-
tempts to write info a write~-protected memory page,
the basic processor aborts the instruction, and traps
to location X'40', the "nonallowed operation" trap
(see "Trap System", later in this chapter). If an
1/O procedure attempts to write into a write-
protected memory page, the write lock violation bit
in the [OP status byte is set, and can be tested by
the AIO, TIO, and TDV instructions.

PROGRAM STATUS WORDS

The critical control conditions of the basic processor are de-
fined within 64 bits of information collectively referred to
as the program status words (PSWs). The current PSWs may
be consideredas one 64-bit internal basic processor register,
although they actually exist as a collection of separate reg-
isters and flip-flops (see Figure 2 appearing earlier in this
chapter). When stored in memory, the PSWs have the fol-
lowing format:

®
FF|F[F[M|MIDIA e,
CC [rs|z|n|s [mmm| "o 1A
T T T 3TE S 6 78 5 10 Nz 1 5116 7 1 BIm 5 2 BB % TR E TS
R
S|C[I1]E R|R M|,
WK 3 Reserved PAlAT %,
g 2
R A B BT BHBDOBBED B TTEH 05155359 5% 57 58P ZaH

They may be optionally followed by an additional two words
with the following format:

Reserved

n ; . (
G0 2 314 3 6 718 9 0 1V[i2 13 14 15016 17 18 19120 20 22 231

MP

32 33 34 35136 37 38 39i40 41 42 43144745 46 47148 49 50 51152 53 54 55136 57 358 59160 61 62 63

Designation

Function

CcC

FR

FS

FZ

FN

Condition code.

This generalized 4-bit
code indicates the nature of the results of an
instruction. The significance of the condition
code bits depends upon the particular insfruc-
tion just executed. After an instruction is
executed, the BRANCH ON CONDITIONS
SET (BCS) and BRANCH ON CONDITIONS
RESET (BCR) instructions can be used singly
or in combination to test for a particular con-
dition code setting. (These instructions are
described in Chapter 3, "Execute/Branch
Instructions").

In some operations only a portion of the con-
dition code is involved; thus, the term CC1
refers to the first bit of the condition code,
CC2 to the second bit, and CC3 and CC4,
respectively, to the third and fourth bits. Any
program can chdange the current value of the
condition code by executing either the LOAD
CONDITIONS AND FLOATING CONTROL
IMMEDIATE (LCFI) or the LOAD CONDI-
TIONS AND FLOATING CONTROL (LCF)
instruction. Any program can store the cur-
rent condition code by executing the STORE
CONDITIONS AND FLOATING CONTROL
(STCF) instruction. These instructions are
described in Chapter 3, “Load/Store
Instructions".

Floating round mode control (see FN below).

Floating significance mode control (see FN
below).

Floating zero mode control (see FN below).

Floating normalize mode control. The four

floating-point mode control bits (FR, FS, FZ,
and FN) control the operation of the basic
processor with respect to invoking the round-
off mode of floating-point calculations,
checking floating=point significance, gen-
erating zero results, and normalizing the
results of floating-point additions and sub-
tractions, respectively. (The floating=point
mode controls are described in Chapter 3,
"Floating=Point Instructions".) Any program
can change the state of the current floating-
point mode controls by executing either the
LCFI or the LCF instruction. Any program can
store the current state of the current floating=
point mode controls by executing the STCF
instruction.

Designation

Function

MS

MM

DM

AM

IA

WK

CI

II

Master/slave mode control. The basic pro~

cessor is in the master mode when this bit and
the mode altered bit (bit 61) both contain
zero; it is in the slave mode when this bit
contains one. (See MS for a description of
master-protected mode.) A master mode or
master—protected mode program can change
this mode control bit by executing the
LOAD PROGRAM STATUS WORDS (LPSD),
EXCHANGE PROGRAM STATUS WORDS
(XPSD), PUSH STATUS (PSS), or PULL STATUS
(PLS) instruction. These privileged instruc~
tions are described in Chapter 3, "Control
Instructions".

Memory map conirol. The memory map is in

Decimal mask.

effect when this bit position contains a one.
A master mode or master-protected mode pro~
gram can change the' memory map control by
executing an LPSD, XPSD, PSS, or PLS
instruction.

The decimal arithmetic trap
(see "Trap System", later in this chapter) is
permitted to occur when this bit position con-
tains a one. The conditions that cause a
decimal arithmetic trap are described in Chap~
ter 3, "Decimal Instructions”. The decimal
trap mask can be changed by a master mode
or master-protected mode program executing
the LPSD, XPSD, PSS, or PLS instruction.

Arithmetic mask. The fixed-point arithmetic

overflow trap is permitted to occur when this
bit contains one. The instructions that can
cause fixed~point overflow are described in
the section "Trap System", later in this chap-
ter. The arithmetic trap mask can be changed
by a master mode or master-protected mode
program executing an LPSD, XPSD, PSS, or
PLS .instruction.

Instruction address. This 17-bit field contains
the virtual address of the next instruction to
be executed.

Write key. This field contains the 4~bit key

used in conjunction with a write lock in the
memory write protection feature. A master
mode or master—-protected mode program can
change the value of the write key by execu~
ting an LPSD, XPSD, PSS, or PLS instruction.

Counter interrupt group inhibif (see EI, below).

Input/output interrupt group inhibit (see El,
below).

Main Memory 29

Designation Function

EI External interrupt group inhibit. The three
interrupt group inhibit bits (CI, 1I, and EI)
determine whether certain interrupts are al-
lowed to occur. The function of these group
interrupt inhibits are described in "Central=-
ized Interrupt System", later in this chapter.
A master mode or master=protected mode pro-
gram can change the group interrupt inhibits
by executing an LPSD, XPSD, PSS, PLS, or
WRITE DIRECT (WD) instruction. These priv-
ileged instructions are described in Chap-
ter 3, "Control Instructions".

RP Register pointer. This 2-bit field selects one
of the 4 possible blocks of general-purpose
registers as the current register block. A
master or master-protected mode program can
change the register pointer by executing
LPSD, XPSD, PSS, PLS, or the LOAD REG-
ISTER POINTER (LRP) instruction. LRP is
described in Chapter 3, under "Control
Instructions".

RA Register altered bit. When a trap occurs,
this bit is set to one when any general reg-
ister or location in memory has been altered
in the execution or partial execution of the
instruction that caused the trap.

MA Mode altered. This bit is used to invoke both
the master-protected mode of operation and
the real-extended addressing mode). Table 1
details the function of the setting of this bit
in conjunction with the setting of the MS
(bit 8)and MM (bit 9) fields. The bits are set
by an LPSD, XPSD, PSS, or PLS instruction.

MP Memory protection violation address. If the
XPSD instruction is being executed in a trap
routine as a result of a memory protection
violation and the SP bit in the XPSD is a one,
the effective virtual address causing the
violation is stored in the fourth word. This
storage may be invoked so that memory pro-
tection violations can be recorded.

CENTRALIZED INTERRUPTS

The system includes a single, centralized interrupt feature.
All interrupts are terminated in the System Control Pro-
cessor. The System Control Processor is described earlier
and also in Chapters 5 and 6.

When a condition that will result in an interrupt is sensed,

a signal is sent to the corresponding inferrupt level. If
that level is "armed", it advances to the waiting state.

30 Centralized Interrupts

When all the conditions for acknowledging the interrupt
have been achieved, the basic processor stops executing
the current program and executes the instruction in the cor-
responding interrupt location. After the basic processor has
successfully accessed the interrupt instruction, it advances
the interrupt level to the active state. The basic processor
may actually execute many program instructions between
the time that the interrupt-requesting condition is sensed
and the time that the actual interrupt acknowledgment oc-
curs. After the interrupt is completely processed, the basic
processor returns to the interrupted program and resumes its
execution.

STATES OF AN INTERRUPT LEVEL

An interrupt level is mechanized by means of three flip-
flops. Two flip=flops are used to define four mutually ex~-
clusive states: disarmed, armed, waiting, and active. The
third flip-flop provides the disabled/enabled function and
is independent of the defined state. The various states and
the conditions of interrupt levels are described in the fol-
lowing paragraphs. Figure 10 conceptually illustrates the
operational state changes of a typical interrupt level.

DISARMED

When an interrupt level is in the disarmed state, no signal
is admitted to that interrupt level; that is, the level neither
accepts nor remembers an interrupt event, nor is any pro-
gram interrupt caused by it at any time.

Although an interrupt level can change from any state to
the disarmed state, only a special form of the WRITE DIRECT
instruction (WD) can cause a disarmed level to change to
another state. The WD instruction is described in Chap-

ter 3, "Control Instructions".

ARMED

When an interrupt level is in the armed state, it can accept
and remember an interrupt signal. The receipt of such a sig-
nal advances the interrupt level to the waiting state where
it remains until it is allowed to advance to the active state.
A special form of the WD instruction can cause an armed
level to be advanced directly to the active state.

A level can change from any state to the armed state.

WAITING

For an interrupt level to be in the waiting state, that level
must have been previously armed and received an inferrupt
signal. The signal may have been generated externally,
internally, or have resulted from a WD operation. Any
signals received by an interrupt level already in the waiting
state are ignored.

Level Source of
Enable Change Signal

Basic Processor

Basic Processor

or External Signal

=

l=—— Basic Processor

Interrupt Timing

Interrupt

State FF Configuration

Disarmed 0o
e

Armed 011
==

Waiting 111
I
I
|
I
|
I
I
|l
I
|

Active 110

R
L=

Group Inhibit off

r_J/

No higher-priority level active,
or waiting and enabled

Figure 10. Operational States of an Interrupt Level

When an interrupt level is in the waiting state, the follow=
ing conditions must all existsimultaneously before the level
advances to the active state:

1. The level must be enabled (i.e., its enable/disable
flip~flop must be set to one).

2. The group inhibit (CI, 1I, or El, if applicable) must be
zero.

3. Nohigher-priority interrupt level is in the active
state, or is in the waiting state, enabled, and not
inhibited.

4. The basic processor must be at an interruptible point
in the execution of a program.

Note that one or more interrupt levels of higher priority can
also be in the waiting state if they are disabled, inhibited,
or both disabled and inhibited.

Generally, if the enable/disable flip~flop is off (level is
disabled), the interrupt level can undergo all state changes
except that of moving from the waiting to the active state
(see exception case, below). Furthermore, if the interrupt
level is disabled, it is completely removed from the chain
that determines the priority of access fo the basic processor.
Thus a disabled interrupt level in the waiting state does not
prevent an enabled, waiting interrupt level of lower priority
from moving to the active state.

Note this exception to the foregoing description: Although

generally no interrupt level can move from the waiting state
to the active state unless it is enabled, a special form of the
WD instruction can move a waiting level to the active state
whether or not the level is enabled.

ACTIVE

After the basic processor has successfully accessed the in-
terrupt instruction, then the interrupting level advances to
the active state. When all the conditions for acknowledg-
ment have been achieved, the interrupt level causes the

Centralized Interrupts 3

basic processor to execute the contents of the assigned
interrupt location as the next instruction. (Interrupt loca-
tions are defined in "Physical Organization”, later in this
chapter.) The instruction address portion of the program sta-
tus words (PSWs) remains unchanged until the instruction in
the interrupt location is executed.

The instruction in the interrupt location must be one of the
following: XPSD, PSS, MTB, MTH, or MTW. If the execu-
tion of any other instruction in an interrupt location is at-
tempted as the result of an interrupt level advancing to the
conditions for acknowledgment, an instruction exception
trap occurs.

The use of the privileged instruction XPSD or PSS in an in-
terrupt location permits an interrupt=servicing routine fo
save the entire current machine environment. If working
registers are needed by the routine and additional register
blocks are available, the contents of the current register
block can be saved automatically with no time loss. This
is accomplished by changing the value of the register pointer
(using the LOAD REGISTER POINTER instruction), which
results in the assignment of a new block of 24 registers to
the routine. The instruction LOAD REGISTER POINTER
(LRP) is described in Chapter 3, "Control Instructions".

An interrupt level remains in the active state until it is
cleared (removed from the active state and returned to the
disarmed or armed state) by the execution of the LPSD, PLS,
or WD instruction. Aninterrupt-servicingroutine can itself
be interrupted (whenever a higher priority interrupt level
meets all the conditions for becoming active) and then con-
tinued (after the higher priority interrupt is cleared). How-
ever, an inferrupt=servicing routine cannot be interrupted
by an interrupt of the same or lower priority as long as the
higher priority interrupt level remains in the active state,
Any signals received by an interrupt level in the active
state are ignored. Normally, the interrupt-servicing rou-
tine clears its interrupt level and transfers program control
back to the point of interrupt by means of an LPSD instruc-
tion with the same effective address as the XPSD instruc-
tion in the interrupt location.

DIALOGUE BETWEEN THE BASIC PROCESSOR AND

THE INTERRUPT SYSTEM DURING AN INTERUPT-
ENTERING SEQUENCE

When an interrupt level is ready to be moved to the active
state, a dialogue takes place between the interrupt system
and the basic processor. This dialogue takes place over the
processor bus and involves the Processor Interface (PI)asso-
ciated with the processor cluster of which the basic proces-
sor is a member. When the processor bus becomes available
and the basic processor is at an interruptible point, the in-
terrupt system transmits the interrupt address to the basic
processor. It initiates its interrupt actions (i.e., executes
the instruction in the interrupt location and services the
interrupt at the appropriate time to avoid race conditions,
and communicates with the interrupt system with an indi-
cation to move the level to the active state. This latter

32 Centralized Interrupts

transmission is delayed until the new inhibit states of the
basic processor are known; these states are transmitted to
the interrupt system so the latter can record the new basic
processor stafus.

DIALOGUE DURING AN INTERRUPT-EXITING SEQUENCE

When the basic processor exits an interrupt=servicing rou-
tine, it must notify the interrupt system to move the interrupt
level associated with that routine from the active state to
either the armed or disarmed state. To do this it must gain
access to the processor bus and the interrupt system, either
of which may be busy at the time access is requested. When
communication with the interrupt system is established, the
basic processor transmits information for setting the level
state to armed or disarmed, and new inhibit states it has as—
sumed as a result of the exit operation.

PHYSICAL ORGANIZATION

Up to 62 interrupt levels are available, each with a unique
location (see Table 2) assigned in the System Control Pro-
cessor, and with a unique priority. The basic processor can
selectively arm, enable, or arm and enable any interrupt
level. The basic processor can also "trigger" any interrupt
level (supply a signal at the same physical point where the
signal from the external source would enter the interrupt
level). The triggering of an interrupt permits testing spe-
cial systems programs before the special systems equipment
is available. The basic processor also permits an interrupt=
servicing routine to defer a portion of the processing asso-
ciated with an interrupt level by processing the urgent
portion of an interrupt=servicing routine, triggering a lower
priority level (for a routine that handles the less urgent
part), then clearing the high-priority interrupt level so that
other interrupts can occur before the deferred interrupt re~

- e T P
i

INTERRUPT GROUPS

Interrupt levels are organized in standard group configura-
tions that are connected in a predetermined and fixed pri-
ority chain (see Table 2 and Figure 11). The priority of each
level within a group is fixed; the first level has the highest
priority and the last level has the lowest.

INTERNAL INTERRUPTS

Standard internal interrupts are provided with the system
and include all group D levels (internal override, counter-
equals-zero, and 1/0).

Table 2. Interrupt Locations

Address DIO Address
PSWs Register
Group Dec Hex Function Inhibit Group Bit
82 52 Counter 1 count pulse 16
Internal 83 53 Counter 2 count pulse 17
Override 84 54 Counter 3 count pulse 18
. 85 55 Counter 4 count pulse none 0 19
(optional) 86 56 Processor fault 20
87 57 Memory Fault 21
112 70 16
113 71 17
114 72 18
115 73 19
116 74 20
External 117 75 External group 3 EI 3 21
Override 118 76 (first 12 levels) 22
119 77 23
120 78 24
121 79 25
122 7A 26
123 7B 27
88 58 Counter 1 zero 22
Counter- 89 59 Counter 2 zero CI 0 23
Equals-Zero 90 5A Counter 3 zero 24
91 5B Counter 4 zero 25
92 5C Input/Output 26
/O 93 5D Control panel 27
94 5E Reserved Il 0 28
95 5F Reserved 29
External 9% 60 16
External group 2 El 2
Group 2 .
(optional) . . (first 12 levels) .
107 6B 27
External 128 80 16
External group 4 EI 4
Group 4 .
(optional) . . (First 12 levels) .
139 8B . 27
External 144 20 16
External group 5 El 5
Group 5 .
(optional) . . (first 12 levels) .
155 9B 27

Centralized Interrupts

33

Ist Priority 2nd Priority

3rd Priority

Internal External Counter~-
Override Override Equals-Zero
Interrupts Interrupts Interrupts
4th Priority 5th Priority 6th Priority
External External
/O Interrupts Group 2 Group 4
Interrupts Interrupts
7th Priority
External
Group 5
Interrupts

Figure 11. Interrupt Priority Chain

Internal Override Group (Locations X'52' through X'57').
The six interrupt levels of this group always have the highest
priority in the system. The four count-pulse interrupt levels
are triggered by pulses from clock sources. Counter 4 has
a constant frequency of 500 Hz. Counters 1, 2, and 3 can
be individually set to any of four manually switchable fre-
quencies — the commercial line frequency, 500 Hz, 2000 Hz,
or a user-supplied external signal — that may be different
for each counter. Each of the count pulse interrupt loca-
tions must contain one of the modify and test instructions
(MTB, MTH, or MTW), an XPSD, or a PSS instruction.

When the modification {of the effective byte, halfword, or
word) causes a zero result, the appropriate counter-equals—
zero interrupt level (see "Counter-Equals-Zero Group") is

triggered.

Note: Count pulse interrupt level 4 is a subjective time
counter with the following special attribute: When
the instruction in location X'55' is executed as the
result of an interrupt, it must be an MTB, MTH, or
MTW; otherwise, an instruction exception trap

(X'40") will occur.

The internal override group also contains a processor fault
and a memory fault interrupt level. Both locations normally
contain an XPSD or a PSS instruction. The processor fault
interrupt level is triggered by a signal when certain fault
conditions are detected. A POLR instruction must be used
to reset the fault. The memory fault interrupt level is

34 Centralized Interrupts

triggered by a signal that the memory generates when it
detects certain fault conditions. An LMS instruction must
be used to reset the fault. (See "Trap System" later in
this chapter for further information on processor and memory
faults.)

Counter-Equals-Zero Group (Locations X'58' through X'58').

Each interrupt level in the counter-equals-zero group is as-
sociated with a corresponding count-pulse interrupt level in
the internal override group. When the execution of a mod-
ify and testinstiuction in the count=pulse interrupt location
causes a zero result in the effective byte, halfword, or word
location, the corresponding counter-equals-zero interrupt
level is triggered. The counter-equals-zero interrupt loca-~
tions normally contain an XPSD or a PSS instruction and
they can be inhibited or permitted as a group. If bit 37
(CI) of the current PSW contains a zero, the counter-equals~
zero interrupt levels are allowed to interrupt the program
being executed. If the CI bit contains a one, the counter-
equals=zero interrupt levels are inhibited frombeingallowed
to interrupt the program. These interrupt levels wait until
the CI bit is reset to zero and then interrupt the program ac~
cording to priority.

Input/Output Group (Locations X'5C' through X'5F'). This
interrupt group comprises the input/output (I/O) interrupt
level, the control panel interrupt level, and two levels re-
served for future use. The I/O interrupt level accepts inter-
rupt signals from the I/Csystem. The I/O interrupt location

is assumed to contain an XPSD or a PSS instruction that
transfers program control fo a routine for servicing all 1/O
interrupts. The /O routine should contain an ACKNOWL-
EDGE 1/O INTERRUPT (AIO) instruction that identifies the
source and reason for the interrupt. (The AIO instruction is
discussed in Chapter 3 "Input/OQutput Instructions".)

The control panel interrupt level is activated from the op-
erator's console. This location normally contains an XPSD
or a PSS instruction. The operator can thus frigger this in—
terrupt level to initiate a specific routine.

The interrupt levels in the 1/O group can be inhibited or
permitted by means of bit position 38 (II) of the PSWs.
If 11 is reset to zero, inferrupt signals affecting the 1/O
group interrupt levels are allowed to interrupt the program
being executed. If the II bit is set to one, interrupt
signals in this group are inhibifed from interrupting the
program.

EXTERNAL INTERRUPTS

A system can contain 4 optional groups of external inter-
rupt levels. The external override group, group 3, contains
the first 12 external interrupt levels. External groups 2,
4, and 5 each contain 12 external interrupt levels. (See
Table 2 and Figure 11.) External levels may be triggered
by external sources or via WD instructions, while internal
levels may be triggered by internal sources or via WD
instructions.

All external interrupt levels normally contain XPSD or PSS
instructions and can be inhibited or permitted by means of
the setting of bit position 3% (EI) of the program status words.
If EI contains a zero, external interrupts are allowed to in-
terrupt a program; if EI contains a one, all external inter-
rupts are inhibited from inferrupting the program.

NUMBER OF INTERRUPT GROUPS

The 14 internal interrupt levels are standard in every system
and all external levels are optional. The addition of the
external groups (12 levels per group) raises the number of
interrupt levels to a maximum of 62.

CONTROL OF THE INTERRUPT SYSTEM

The system has two points of interrupt control. One point
of interrupt control is achieved by means of the interrupt
inhibit bits (CI, I, and EI) in the program status words (PSWs).
The basic processor is inhibited from interrupting a program
if the interrupt inhibit bit for a corresponding class of inter-
rupt levels is set fo one, that is, no inferrupt level in the
inhibited group can advance from the waiting state to the
active state, and the entire group is disabled (removed from
the interrupt recognition priority chain). Consequently, a
waiting, enabled, interrupt level in an inhibited group does
not prevent a lower priority, waiting, enabled inferrupt

level in an uninhibited group from interrupting the program.
However, if an interrupt group is inhibited while a level in
that group is in the active state, no lower priority interrupt
level can advance to the active state.

Note also this special case: When the processor detected
fault (PDF) flag is set to 1 (see "Processor Detected Faults",
later in this chapter), the processor fault, memory fault, and
count pulse interrupts are automatically inhibited.

The second point of inferrupt control is at the individual in=
terrupt level. The basic processor can interact with any
interrupt level by means of special modes of the RD and WD
instructions (described in Chapter 3, "Control Instructions").
For this purpose, the interrupt levels are organized info the
following DIO address groups (see last two columns in

Table 2):

1. The 14 levels of internal interrupts (internal override
group, counter-equals-zero group, and I/O group) are
designated as group code 0 in bits 28-31 of the effec~
tive address of the RD or WD instruction.

2. The 12 levels of each group of external interrupts are
designated as group codes 2, 3, 4, and 5. That is,
external group 2 is designated group code 2, external
group 3 is designated group code 3, efc.

3. There is no group code 1.

The addressing of an individual interrupt level within its
DIO group of 12 or 14 is accomplished by an assigned selec~
tion bit within the low-order 16-bit positions of the R reg-
ister designated in the RD or WD instruction (see last
column in Table 2).

The WD instruction can individually arm, disarm, enable,

disable, or trigger (move fo the active state) any interrupt
level. The RD instruction can determine which interrupt

levels within a selected DIO group are in the armed or
waiting state, waiting or active state, or are enabled.

TIME OF INTERRUPT OCCURRENCES

The basic processor permits an interrupt to occur during the

following time intervals (related to the execution cycle of

an instruction) provided the SCP basic processor (BP) sta-
tus indicators are either in the RUN or WAIT condition:

1. Between instructions an interrupt is permitted between
the completion of any instruction and the initiation of
the next instruction.

2. Between instruction initiations an interrupt is also per~
mitted to occur during the execution of the following
multiple-operand instructions:

MOVE BYTE STRING (MBS)
COMPARE BYTE STRING (CBS)

TRANSLATE BYTE STRING (TBS)

Centralized Interrupts 35

TRANSLATE AND TEST BYTE STRING (TTBS)
EDIT BYTE STRING (EBS)

DECIMAL MULTIPLY (DM)

DECIMAL DIVIDE (DD)

MOVE TO MEMORY CONTROL (MMC)

The control and immediate results of these instructions re~
side in registers and memory; thus, the instruction can be
interrupted between the completion of one iteration (oper-
and execution cycle) and that time (during the next itera-
tion) when a memory location or register. is modified. If an
interrupt occurs during this time, the current iteration is
aborted and the instruction address portion of the program
status words (PSWs) remains pointing to the interrupted in-
struction. After the interrupt-servicing routine is comple-
ted, the instruction continues from the point at which it
was interrupted and does not begin anew.

SINGLE-INSTRUCTION INTERRUPTS

A single=instruction interrupt occurs in this situation: an
interrupt level is activated, the current program is inter-
rupted, the single instruction in the interrupt location is
executed, the interrupt level is automatically cleared and
armed, and the interrupted program continues without being
disturbed or delayed (except for the time required to exe-
cute the single insfruction).

If any of the following instructions is executed in any in-
terrupt location, then the corresponding interrupt is auto-
matically a single-instruction inferrupt:

MODIFY AND TEST BYTE (MTB)
MODIFY AND TEST HALFWORD (MTH)

MODIFY AND TEST WORD (MTW)

A modify and test instruction modifies the effective byte,
halfword, or word (as described in Chapter 3, "Fixed=Point
Arithmetic Instructions") but the current condition code re-
mains unchanged (even if overflow occurs). The effective
address of a modify and test instruction in an interrupt lo-
cation (except counter 4) is always treated as an actual ad=
dress, regardless of whether the memory map is currently
being used. Counter 4 uses the mapped location if mapping
is currentiy invoked (as specified in the PSWs). Ihe exe-
cution of a modify and test instruction in an interrupt
location, including mapped and unmapped counter 4, is in-
dependent of the virtual memory access-protection code
and the real memory write lock; thus, a memory protection
violation trap cannot occur as the result of overflow caused
by executing MTH or MTW in an interrupt location.

36 Trap System

The execution of a modify and test instruction in an interrupt
location automatically clears and arms the corresponding in-
terrupt level, allowing the interrupted program to continue.

When a modify and test instruction is executed in a count-
pulse interrupt location, all of the above conditions apply
as well as the following: If the resultant value in the ef-
fective location is zero, the corresponding counter-equals-
zero interrupt is triggered.

TRAP SYSTEM

A trap is similar to an interrupt in that when a trap condi-
tion occurs, program execution automatically branches to a
predesignated location. A trap differs from an interrupt in
that a trap location must contain an XPSD or PSS instruc~
tion. The time of trap occurrence can vary: The instruc~
tion in the trap location can be executed immediately (i.e.,
the current instruction in the program being executed is
aborted), or when the current instruction has been partially
executed (i.e., in the case of a long byte-string operation),
or upon completion of the current instruction. The trap in-
struction is not held in abeyance by higher priority traps,
whereas interrupts possibly may not be processed before an
entire sequence of instructions is executed.

TRAP ENTRY SEQUENCE

A trap entry sequence begins when the basic processor de-
tects the trap condition and ends when the new program sta-
tus words (PSWs) have successfully replaced the old PSWs.
Detection of any condition (function) listed in Table 3,
which summarizes the trap system, results in a frap to a
unique location in memory. When a trap condition occurs,
the basic processor sefs the trap state. The operation the
basic processor is currently performing may or may not be
carried fo compiefion, depending on the type of frap and
the operation being performed. In any event, the program
instruction is terminated with a trap sequence (branch to the
appropriate trap location). During this sequence the pro-
gram counter is not advanced; instead, the XPSD instruction
in the trap location is executed. If any interrupt level is
ready to move to the active state at the same time an XPSD
trap instruction is in process, the interrupt acknowledgment
will not occur until the XPSD trap instruction is completed.
Should a trap location not contain an XPSD or PSS instruc-
tion, a second trap sequence is immediately invoked (see
"Instruction Exception Trap" later in this chapter).

TRAP ADDRESSING

Trap addressing is described under "Interrupt and Trap Entry
Addressing".

Table 3. Summary of Trap Locations

Locations PSWs
Dec. | Hex.| Function Mask Bit | Time of Occurrence Trap Condition Code
64 40 Nonallowed operation
1. Nonexistent None At instruction decode. Set TCC]t
instruction
2. Nonexistent mem- None Prior o memory access. Set TCC2
ory address
3. Privileged instruc- None At instruction decode. Set TCC3
tion in slave mode
4. Memory protection None Prior to memory access. Set TCC4
violation
5. Write lock violation | None Prior to memory access. Set TCC3, TCC4
65 41 Reserved
66 42 Push-down stack limit W, TS At the time of stack limit detection. None
reached (in stack | (The aborted pushdown instruction
pointer) does not change memory, registers,
or the condition code.)
67 43 Fixed-point arithmetic AM For all instructions except DW and None
overflow DH, trap occurs after completion of
instruction. For DW and DH, instruc~
tion is aborted with memory, register,
CCl1, CC3, and CC4 unchanged.
68 44 Floating=point arithme= At detection.
tic fault
1. Characteristic None {The floating=point instruction is None
overflow . .
aborted without changing any reg-
2. Divide by zero None isters. The condition code is set fo None
3. Significance check FS,FZ,FN indicate the reason for the trap.) None
69 45 Decimal arithmetic fault | DM At detection. (The aborted decimal None
instruction does not change memory,
registers, CC3, or CC4.)
70 46 Watchdog timer runout None At runout. (The PDF! flag will be Set TCC2 if basic pro~
set.) cessor using processor
bus;
set TCC3 if basic pro-
cessor using memory
bus; and
set TCC4 if basic pro-
cessor using DIO bus.
71 47 Programmed trap None Interruptible point reached upon None
completion of WD.

fSee "Trap Condition Code", later in this chapter.

tt . .
See "Processor Detected Faults", later in this chapter.

Trap System 37

Table 3. Summary of Trap Locations (cont.)

Locations

Dec.

Hex.

Function

PSWs
Mask Bit

Time of Occurrence

Trap Condition Code

72

48

CALL

None

At instruction decode.

Equal to R field of
CALL instruction.

73

49

CALL2

None

At instruction decode.

Equal to R field of
CALL instruction.

74

4A

CALL3

None

At instruction decode.

Equal to R field of
CALL instruction.

75

48

CALL4

None

At instruction decode.

Equal to R field of
CALL instruction.

76

4C

Hardware error trap

None

At time of basic processor detec~
tion (the PDF! flag will be set).

TCCl, 2, 3=0
TCC4 =0 if parity

error on general reg~
ister or internal con-
trol register.

TCC4 =1 if other
hardware errors.

4D

Instruction exception
trap

None

(The PDE! flag will be set.)

Set TCC3 if MMC con-
figuration illegal;

set TCC = X'C'" if trap
or interrupt sequence
with illegal instruction;

set TCC = X'F' if trap
or interrupt sequence
and processor detected
fault;

set TCC4 if invalid
register designation
(odd register on AD,
SD, FAL, FSL, FML,
FDL, TBS, TTBS, EBS,
and register 0 on EBS).

78

4E

Reserved

79

4F

Reserved

80

50

Power on

Interruptible point.

81

51

Power off

Interruptible point.

fSee "Processor Detected Faults", later in this chapter.

38

Trap System

TRAP MASKS

The programmer may mask the four trap conditions described
below inthe program status words (PSWs) or the stack pointer
doubleword, as appropriate; other traps cannot be masked.

1. The push-down stack limit trap is masked within the
stack pointer doubleword for each individual stack.

2. The fixed-point overflow trap is masked in bit posi-
tion 11 (AM) of the PSWs. If this bit position contains
a zero, the trap is allowed to occur; if bit 11 contains
a zero, the trap is not allowed to occur. AM can be
masked by operator intervention, or by execution of
the XPSD, PSS, PLS, or LPSD privileged instructions.

3. The floating-point significance check trap is masked
by a combination of the floating significance (FS),
floating zero (FZ), and floating normalize (FN) mode
control bits in the PSWs (see "Floating=Point Arithme-
tic Fault Trap", later in this chapter). FS, FZ, and
FN can be set or cleared by the execution of any of
the following instructions:

LOAD CONDITIONS AND FLOATING CON-
TROL (LCF)

LOAD CONDITIONS AND FLOATING CON-
TROL IMMEDIATE (LCFI)

EXCHANGE PROGRAM STATUS WORDS (XPSD)
LOAD PROGRAM STATUS WORDS (LPSD)

PUSH STATUS (PSS)

PULL STATUS (PLS)

4. The decimal arithmetic fault trap is masked by bit po-
sitfion 10 (DM) of the PSWs, If DM contains a one,
the trap is allowed; if DM contains a zero, the trap is
not allowed. DM can be masked by execution of
the XPSD, PSS, PLS, or LPSD privileged instruction.

TRAP CONDITION CODE

For the push-down stack limit trap, fixed-point overflow
trap, floating-point fault trap, and decimal fault trap, the
normal condition code register (CC1-CC4) is loaded with
more detailed information about the trap condition just
before the trap occurs. These condition codes are saved as
part of the old program status words when the XPSD or PSS
instruction is executed in response to the trap.

For the nonallowed operation trap, watchdog timer runout
trap, hardware error trap, instruction exception trap, and
CALL trap, a special register (trap condition codes TCC1-
TCC4) is loaded just before the trap occurs. When the
XPSD or PSS instruction is executed in response to the trap,
this register is added to the new program address if bit 9
(MM) contains a one; TCC1-TCC4 are also logically ORed

with the condition code bits (CC1-CC4) of the new PSWs
when loading CC1-CC4. See also "Instruction Exception
Trap" later in this chapter for more information on the trap
condition code.

NONALLOWED OPERATION TRAP

The attempt to perform a nonallowed operation always
causes the basic processor to abort the instruction being ex-
ecuted when the nonallowed operation is detected and to
immediately execute the XPSD or PSS instruction in trap lo=
cation X'40'. A nonallowed operation cannot be masked.

NONEXISTENT INSTRUCTION

Any instruction that is not standard is defined as nonexist-
ent, This includes immediate operand instructions that
specify indirect addressing (a one in bit 0 of the instruction).
If a nonexistent instruction is detected, the basic processor
traps to location X'40' when the nonexistent instruction is
decoded. No general registers or memory locations are
changed; the PSWs point to the instruction frapped. With
respect to the condition code and instruction address fields
of the program status words, the operation of the XPSD or
PSS in location X'40' is as follows:

1. Store the current PSWs. The condition codes stored are
those that existed at the end of the last instruction
prior to the nonexistent instruction.

2. Store the 16 géneral registers of the current register
block if instruction in trap location is a PSS.

3. Load the new PSWs.

4. Modify the new PSWs,

a. Set CCl to one. The other condition code bits
remain unchanged from the values loaded from
memory .

b. If bit position 9 (Al) of the XPSD or PSS instruc-
tion contains a one, the program counter is incre-
mented by eight. If Al contains a zero, the
program counter remains unchanged from the value
loaded from memory .

NONEXISTENT MEMORY ADDRESS

Any attempt fo access a nonexistent memory address causes
a trap to location X'40' at the fime of the request for mem-
ory service. A nonexistent memory address condition is
detected when an actual address is presented to the memory

Trap System 39

system. If the basic processor is in the map mode, the
program address will already have been modified by the
memory map to generate an actual (but nonexistent) ad-
dress. (See Table 5 for possible changes to registers and
memory locations later in this chapter.) The operation of
the XPSD or PSS in location X'40' is as follows:

1. Store the current PSWs.
2. Store general registers if PSS.
3. Load the new PSWs.

4. Modify the new PSWs.

a. Set CC2 to one. The other condition code bits
remain unchanged from the values loaded from
memory .

b. If bit position 9 (Al) of the XPSD or PSS instruc-
tion contains a one, the program counter is incre-
mented by four. If Al contains a zero, the program
counter remains unchanged from the value loaded
from memory .

PRIVILEGED INSTRUCTION IN SLAVE MODE

An attempt to execute a privileged instruction while the
basic processor is in the slave mode causes a trap to loca-
tion X'40" before the privileged operation is performed.
No general registers or memory locations are changed, and
the PSWs point to the instruction trapped. The operation
of the XPSD or PSS in trap location X'40' is as follows:

1. Store the current PSWs.

2. Store general registers if PSS.

3. Load the new PSWs.

a. Set CC3toone. The other condition code bits
remain unchanged from the values loaded from
memory .

b. Ifbit position ¢ (Al) of the XPSD or PSS contains
a one, the program counter is implemented by two.
If Al contains a zero, the program counter remains
unchanged from the values loaded from memory.

MEMORY PROTECTION VIOLATION

A memory protection violation occurs because of a memory
map access control bit violation (by a program executed
in slave mode or master-protected mode using the mem-
ory map). When memory protection violation occurs, the
basic processor aborts execution of the current instruction

40 Trap System

without changing protected memory and traps to location
X'40'. Refer to Table 5 for possible changes to registers
and memory locations. (The virtual page address that caused
the violation is in the fourth PSW word.) The operation of
the XPSD or PSS in trap location X'40' is as follows:

1. Store the current PSWs.

2. Store general registers if PSS.

3. Load the new PSWs.

4. Modify the new PSWs.

a. Set CC4 to one. The other condition code bits
remain unchanged from the values loaded from
memory .

b. If bit position 9 (Al) of the XPSD or PSS contains
a one, the program counter is incremented by one.
If Al contains a zero, the program counter remains
unchanged from the value loaded from memory.

WRITE LOCK VIOLATION

A memory write lock violation occurs when an instruction
(program in master, master-protected, or slave mode) tries
to alter the contents of a write-protected memory page. If
a write lock violation occurs, the basic processor aborts ex-
ecution of the current instruction without changing protected
memory and traps to location X'40'. (Refer to Table 5 for
possible changes to registers and memory locations.) (The
virtual page address that caused the violation is the fourth
PSW word.) The operation of the XPSD or PSS in trap lo-
cation X'40' is as follows:

1. Store the current PSWs.

2. Store general registers if PSS.

3. Load the new PSWs.

4. Modify the new PSWs.

a. Set CC3 and CC4 to ones. The other condition
code bits remain unchanged from the values loaded
from memory .

b. If bit position 9 (Al) of the XPSD or PSS contains
a one, the program counter is incremented by
three. If Al contains a zero, the program counter
remains unchanged from the value loaded from
memory .

PUSH-DOWN STACK LIMIT TRAP

Push-down stack overflow or underflow can occur during
execution of any of the following instructions:

Operation
Mnemonic Code

Instruction

Push Word PSW X'09'
Pull Word PLW X'08'
Push Multiple PSM X'0B'
Pull Multiple PLM X'0A'
Modify Stack Pointer MSP X'13

During the execution of any stack-manipulating instruction
(see Chapter 3, "Push-down Instructions"), the stack is
either pushed (words added to stack) or pulled (words re=
moved from stack). In either case, the space (S) and words
(W) fields of the stack pointer doubleword are tested prior
to moving any words. If execution of the instruction would
cause the space (S) field to become less than 0 or greater
than 2191, the instruction is aborted with memory and
registers unchanged. If TS (bit 32) of the stack pointer
doubleword is set to O, the basic processor traps to location
X'42'. If TS is set to 1, the trap is inhibited and the basic
processor processes the next instruction. If execution of
the instruction would cause the words (W) field to become
less than 0 or greater than 219-1, the instruction is aborted
with memory and registers unchanged. If TW (bit 48) of
the stack pointer doubleword is set to 0, the basic processor
traps to location X'42'. If the TW is set to 1, the trap is
inhibited and the basic processor processes the next instruc—
tion. If trapping is inhibited, CC1 or CC3 is sef to 1 to
indicate the reason for aborting the instruction. The stack
pointer doubleword, memory, and registers are modified
only if the instruction is successfully executed.

If a push-down instruction traps, the execution of XPSD or
PSS in trap location X'42' is as follows:

1. Store the current PSWs. The condition codes that are
stored are those that existed prior to execution of the
aborted push-down instruction.

2. Store general registers if PSS.

3. Load the new PSWs. The condition code and instruc-

tion address portions of the PSWs remain at the value
loaded from memory.

FIXED-POINT OVERFLOW TRAP

Overflow can occur for any of the following instructions:

Operation
Instruction Mnemonic Code
Load Absolute Word LAW X'3B’
Load Absolute Doubleword LAD X'1B'

Operation

Instruction Mnemonic Code
Load Complement Word LCW X'3A!
Load Complement Doubleword LCD X'1A!
Add Halfword AH X'50'
Subtract Halfword SH X'58!
Divide Halfword DH X'56"
Add Immediate Al X'20'
Add Word AW X'30
Subtract Word SW X'38!
Divide Word DW X'36'
Add Doubleword AD X'10'
Subtract Doubleword SD X'1g'
Modify and Test Halfword MTH X'53"
Modify and Test Word MTW X'33
Add Word to Memory AWM X'66"

Except for the instructions DIVIDE HALFWORD (DH) and

DIVIDE WORD (DW), instruction execution is allowed to
proceed to completion. CC2 is set to 1 and CC3 and CC4
represent the actual result (0, =, or +) after overflow.

If the fixed=point arithmetic trap mask (bit 11 of PSWs) is
a 1, the basic processor fraps to location X'43' instead of
executing the next instruction in sequence.

For DW and DH, the instruction execution is aborted with-
out changing any register, and CC2 is set to 1; CC1, CC3,
and CC4 remain unchanged from their values at the end of
the instruction immediately prior to the DW or DH. If the
fixed=point arithmetic trap mask is a 1, the basic processor
traps to location X'43' instead of executing the next instruc-
fion in sequence.

The execution of XPSD or PSS in trap location X'43" is as
follows:

1. Store the current PSWs. (Store general registers if PSS.)
If the instruction trapped was any instruction other than
DW or DH, the stored condition code is interpreted as
follows:

cci' cc2 cc3 CC4 Meaning
tt 1 0 0

Result after overflow is zero.

- 1 0 1 Result after overflow is
negative.
- 1 1 0 Result after overflow is

positive.

rCC] remains unchanged for instructions LCW, LAW, LCD,
and LAD.

A hyphen indicates that the condition code bits are not af-
fected by the condition given under the "Meaning" heading.

Trap System 41

cclf cc2 cc3 €C4 Meaning

No carry out of bit 0 of the
adder (add and subtract in-
structions only).

Carry out of bit 0 of the
adder (add and subtract in-
structions only).

If the instruction trapped was a DW or DH, the stored
condition code is interpreted as follows:

CCl CC2 CC3 CC4 Meaning

-t 1 Overflow

2. Load the new PSWs. The condition code and instruc-
tion address portions of the PSWs remain at the value
loaded from memory .

FLOATING-POINT ARITHMETIC FAULT TRAP

Floating-point fault detection is performed after the opera-
tion called for by the instruction code is performed, but

before any results are loaded into the general registers.

Thus, a floating=point operation that causes an arithmetic

fault is not carried to completion in that the original con-

tents of the general registers are unchanged.

Instead, the basic processor traps to location X'44' with the
current condition code indicating the reason for the trap.
A characteristic overflow or an attempt to divide by zero
always results in a trap condition. A significance check or
a characteristic underflow results in a trap condition only
if the floating=point mode controls (FS, FZ, and FN) in the
current program status words are set to the appropriate state.

If a floating=point instruction traps, the execution of XPSD
or PSS in trap location X'44* is as follows:

1. Store the current PSWs. (Store general registers if
PSS.) [If division is attempted with a zero divisor or
if characteristic overflow occurs, the stored condition
code is interpreted as follows:

CC1 CC2 CC3 CC4 Meaning

0 1 0 0 Zero divisor.
1 0 1 Characteristic overflow,
negative result.
0 1 1 0 Characteristic overflow,

positive result.

fCC] remains unchanged for instructions LCW, LAW, LCD,
and LAD.

A hyphen indicates that the condition code bits are not af=
fected by the condition given under the "Meaning" heading.

42 Trap System

If none of the above conditions occurred but charac~
teristic underflow occurs with floating zero mode
bit (FZ) =1, the stored condition code is interpreted
as follows:

CC1 CC2 CC3 CC4 Meaning

1 1 0 1 Characteristic underflow,

negative result.

Characteristic underflow,
positive result.

If none of the above conditions occurred but an addi-
tion or subtraction results in either a zero result (with
FS =1 and FN =0), or a postnormalization shift of
more than two hexadecimal places (with FS =1 and
FN =0), the stored condition code is interpreted as
follows:

CC1 CC2 CC3 CC4 Meaning

1 0 0 0 Zero result of addition or
subtraction.

1 0 0 1 More than two postnormaliz-
ing shifts, negative result.

1 0 1 0 More than two postnormaliz-

ing shifts, positive result.

2. Load the new PSWs. The condition code aid instruc~
tion address portions of the PSWs remain at the values
loaded from memory .

DECIMAL ARITHMETIC FAULT TRAP

When either of two decimal fault conditions occurs (see
Chapter 3, "Decimal Instructions"), the normal sequencing
of instruction is halted, CC1 and CC2 are set according to
the reason for the fault condition, and CC3, CC4, memory,
struction. If the decimal arithmetic trap mask (bit posi-
tion 10 of PSW1) is a 0, the instruction execution sequence
continues with the next instruction in sequence at the time
of fault detection; however, if the decimal arithmetic trap
mask contains a 1, the basic processor traps to location X'45'
at the time of fault detection. The following are the fault
conditions for decimal instructions:

Instruction Name Mnemonic Fault

Decimal Load DL Illegal digit

Decimal Store DS Illegal digit

Decimal Add DA Overflow, illegal
digit

Decimal Subtract DS Overflow, illegal
digit

Decimal Multiply DM Illegal digit

Instruction Name Mnemonic Fault

Decimal Divide DD Overflow, illegal
digit

Decimal Compare DC Illegal digit
Decimal Shift . DSA Illegal digit
Arithmetic

Pack Decimal Digits PACK Illegal digit
Unpack Decimal Digits UNPK Illegal digit

Edit Byte String EBS Illegal digit

The execution of XPSD or PSS in trap location X'45' is as
follows:

1. Store the current PSWs. (Store general registers if
PSS.) The stored condition code is interpreted as

follows:

CCl1 CC2 CC3 CC4 Meaning

0 1 - -
1 0 - -

All digits legal and overflow.
IHegal digit detected.

2. Load the new PSWs. The condition code and instruc-
tion address portions of the PSWs remain at the values
loaded from memory .

WATCHDOG TIMER RUNOUT TRAP

The watchdog timer monitors and controls the maximum
amount of basic processor time each instruction can take.
The timer is normally in operation at all times and is initial=
ized at the beginning of each instruction. If the instruction
is not completed by the time the watchdog timer has com-
pleted its count, the instruction is aborted, TCC1 is set to 0,
and a trap occurs immediately to location X'46'. Additional
information as to probable cause of delay is provided:
TCC2 is set if the basic processor was using the processor
bus, TCC3is set if the basic processor was using the memory
bus, TCC4 is set if the basic processor was using the DIO
bus. The register altered flag of the PSWs is also sef if any
register or main memory location has been changed when
the trap occurred.

A watchdog timer runout is considered a basic processor
fault and the PDF is set. (See "Processor Detected Fault
Flag", later in this chapter.)

PROGRAMMED TRAP

The programmed frap occurs at instruction interruptible
point. It is set by a WRITE DIRECT (WD). See Chapter 3.
The basic processor traps to focation X'47'.

CALL INSTRUCTION TRAP

The four CALL instructions (CAL1, CAL2, CAL3, and CAL4)
cause the basic processor to trap to location X'48' (for
CALTY), X'49' (for CAL2), X'4A" (for CAL3), or X'4B' (for
CAL4). Execution of the XPSD or PSS instruction in the
trap location is as follows:

1. Store the current PSWs. The stored condition code bits
are those that existed prior to the CALL instruction.

2. Store the general registers in PSS.
3. Load the new PSWs.
4. Modify the new PSWs.

a. The R Field of the CALL instruction is logically
ORed with the condition code register as loaded
from memory .

b. If bit 2 (AI) of XPSD or PSS contains a 1, the R
field of the CALL instruction is added to the pro-
gram counter. If Al contains a 0, the program
counter remains unchanged from the value loaded
from memory .

Note: Return from a CALL trap will be to the trapping
instruction + 1.

HARDWARE ERROR TRAP

A hardware error trap occurs when either a parity or a se-
quence check fault error is detected by a memory unit, basic
processor, or any processor communicating with the basic
processor, resulting in a basic processor trap to location
X'4C'. The Trap Condition Code bits (TCCs) are set to
X'0001" for all hardware fault conditions except general
register and control register parity errors, where the TCCs
are set to X'0000'.

To determine which of the possible detectable errors is re-
sponsible for the hardware error trap, the fault status reg-
isters of the various processors in the system must be polled
with either the POLP or POLR instruction; the memory's
status register must be read with the LMS instruction. The
fault status register bit settings for processors and interfaces
are given in Appendix C, Table C~1. The fault status reg-
ister bit settings for the memory unit are given in Ap-
pendix C, Table C-2.

If the basic processor defects or receives a report of a hard=
ware error, it attempts automatic retry of the current in-
struction. If refry is unsuccessful, the basic processor traps
to location X'4C'. If retry is successful, the basic processor
resumes execution of the next instruction in the program,
the Processor Fault Interrupt (PFI)and the "successful instruc-
tion retry" bit (bit position 11) in the Basic Processor Fault
Status Register are set to 1. There is automatic instruction

Trap System 43

retry only for hardware errors that would otherwise result
in a basic processor trap to location X'4C'. Automatic in-
struction retry is inhibited if:

1. The current instruction is being executed as a trap or
interrupt instruction;

2. The Register Altered bit (bit position 60) of the current
PSWs is set to 1 at the time of detection of the
hardware error; or

3. The Retry Inhibit bit (bit position 0) in the basic pro-
cessor control register is set to 1.

INSTRUCTION EXCEPTION TRAP

The instruction exception trap occurs whenever the basic
processor detects a set of operations that are called for in
an instruction but cannot be executed because of either a
hardware restriction or a previous event.

The different conditions that cause the instruction exception
trap are:

1. A processor-detected fault that occurs during the ex-
ecution of an inferrupt or trap entry sequence. An
interrupt or trap entry sequence is defined as the se-
quence of events that consists of: (a) initiating an
interrupt or trap; (b) accessing the instruction in the
interrupt or trap location; and (c) executing that in-
struction, including the exchange of the program
status words, if required. Note that instructions ex-
ecuted as a result of the interrupt or trap location are
not considered part of the entry sequence.

2. Anillegal instruction is found in the trap (not XPSD or

PSS) or interrupt (not XPSD, PSS, MTB, MTH, MTW) lo-

cation when executing a trap or interrupt sequence.

3. Bit positions 12-14 of the MOVE TO MEMORY CON-
TROL (MMC) instruction are interpreted as an illegal
configuration. This is, any configuration other than

100, 010, 101, 001, or O11.

4. The set of operations, primarily doubleword and byte-
string instructions, that yield an unpredictable result
when an incorrect register is specified; this type of
fault is called "invalid register designation” and in-
cludes the following instructions”.t

Register 0 Specified

Edit Byte String (EBS)

Odd Register Specified

Add Doubleword (AD)
Subtract Doubleword (SD)

P invalid register designation" faults do not set the PDF
flag.

44 Trap System

Floating Add Long (FAL)

Floating Subtract Long (FSL)
Floating Multiply Long (FML)
Floating Divide Long (FDL)
Translate Byte String (TBS)

Translate and Test Byte String (TTBS)
Edit Byte String (EBS)

Move to Memory Control (MMC)

TRAP CONDITION CODE

The Trap Condition Code (TCC) differentiates between the
different fault types. Table 4 shows the settings of the TCC
for the various faults that may be detected during a trap or
interrupt entry sequence.

Table 4. TCC Setting for Instruction Exception
Trap X'4D'

Fault Type TCC

Trap or interrupt sequence and 1T 111
processor-detected fault.

Trap or interrupt sequence with 11700
invalid instruction.

MMC configuration invalid. 0010

0001

Invalid register designation.

POWER ON TRAP

Power On causes the basic processor to reset and then trap
to location X'50'. This will occur only following restoration
of power after an interruption of less than 500 milliseconds.

POWER OFF TRAP

Power Off occurs at interruptible point. As source power is
going off, the basic processor traps to location X'51' and
allows sufficient time for storage of information before the
system becomes inoperable.

PROCESSOR DETECTED FAULTFLAG

The Processor Detected Fault (PDF) flag aids in solving a
multiple error problem. Most traps occur because of a dy-
namic programming consideration (i.e., overflow, attempted
division by zero, incorrect use of an instruction or address,
etc.) and recovery is easily handled by another software

subroutine. However, with certain classes of errors, if a
second error occurs while the basic processor is attempting
to recover from the first error, unpredictable results occur.
Included in this class of traps are the hardware error trap,
some cases of the instruction exception trap, and the watch-
dog timer runout trap. Upon the first occurrence of this
type of trap, the PDF flag is set.

When the PDF flag is set, the processor fault interrupt, the
memory fault inferrupt, and count pulse interrupts are auto-
matically inhibited. The other interrupts may or may not
be inhibited as specified by the program status words, which
are loaded when the trap entry XPSD or PSS is executed.
The PDF flag is normally reset by the last instruction of a
trap routine, which is an LPSD or PLS instruction having
bit 10 equal to 0 and bit 11 equal to 1.

If a second PDF is detected before the PDF flag is reset, the
basic processor "hangs up" until the PDF flag is reset either
by the operator entering the command for RESET BASIC
PROCESSOR or RESET SYSTEM on the operator's console.

This reset will cause the following actions:

1. The processor fault status register is cleared.

2. The PDF flag is cleared and the processor fault inter-
rupt generated flag is cleared.

3. The PSWs are cleared to zero except that the instruc~
tion address is set to location X'26'.

4. The basic processor will begin execution with the in-
struction contained in location X'26'.

REGISTER ALTERED BIT

Complete recoverability after a trap may require that no
main memory location, no fast memory register, and no
part (or flags) of the PSWs be changed when the trap occurs.
If any of these registers or flags are changed, the Register
Aliered bit (60) of the old PSWs is set to 1 and is saved by
the trap XPSD.

Changes to CC1-CC4 cause the Register Altered bit to be
set only if the instruction requires these condition code bits
as subsequent inputs.

Traps caused by conditions detected during operand fefch
and store memory cycles, such as nonexistent memory, ac-
cess protection violation, and memory parity error may or
may not leave registers, memory, and PSWs unchanged, de-
pending on when they occur during instruction execution,
Generally, these traps are recoverable. This is done by
checking for protection violations and nonexistent memory
at the beginning of execution in case of a multiple operand
access instruction, restoring the original register contents

if execution cannot be completed because of a trap, and
not loading the first word of the PSWs until a possible trap
condition due to access of the second word could have been
detected. Table 5 contains a list of instructions and indi=-
cates for these instructions what registers, memory locations,
and bits of the PSWs, if any, have been changed when a
trap due to an operand access memory cycle occurs.

abie 5. Registers Changed ai Time of a Trap Due fo an Operand Access

Instructions

Changes

Al, CI, LCFI, LI, MI

Immediate type, no operand access.

CAL1-CAL4, SF, S, WAIT, RD, WD, RIO,
POLR, POLP, DSA

No operand access.

LRA

Has operand access but traps are suppressed; register bits and
condition codes are sef instead.

LB, LCF, LRP, CB
LH, LAH, LCH, AH, SH, MH, DH, CH
LW, LAW, LCW, AW, SW, MW, DW, CW

No operand store, registers and PSWs unchanged when trap
due to operand fetch. CC1-4 may be changed but are not
used as input to any of these instructions.

LD, LAD, LCD, AD, SD, CD, CLM, CLR
EOR, OR, AND, LS, INT, CS
FAS, FSS, FMS, FDS, FAL, FSL, FML, FDL

Registers and memory are preserved, condition codes may be
changed but are not used as input to these instructions.

AWM, XW, STS, MTB, MTH, MTW
STB, STCF, STH, STW, LAS

Memory will be altered and the Register Altered bit set.

EXU, BCR, BCS
BAL, BDR, BIR

If the branch condition is frue (always for EXU and BAL) and
a trap occurs due to access of the indirect address or of the
next (branched to or executed) instruction, the register used
is left unchanged and the program address saved in the PSWs
is the address of the branch or execute instruction.

Trap System

Table 5. Registers Changed at Time of a Trap Due to an Operand Access (cont.)

Instructions

Changes

MBS, CBS, TBS, TTBS, EBS, MMC
DA, DS, DL, DST, DC, DM, DD, PACK,
UNPK, LM, STM, PLM, PSM, STD

Registers and memory may be changed and the Register Altered
bit set.

CVA, CVS

If a trap occurs, the instruction will be aborted before altering
registers. CC1-4 may be changed but not used as input to any
of these instructions.

XPSD, LPSD, PSS, PLS

If a trap occurs due to storing the old PSWs or fetching the
new PSWs, the instruction is aborted before changing the old
PSWs.

SIO, TIO, 1DV, HIO, AIOQ, RIO

If trap occurs, the instruction will be aborted without altering
condition codes, registers, or memory.

*ANLZ

An indirect ANALYZE instruction executed in the master-
protected mode will trap. No registers are altered.

46

Trap System

3. INSTRUCTION REPERTOIRE

This chapter describes the instructions, grouped in the
following functional classes:

1. Lood and Store

2. Analyze and Interpret

3. Fixed-Point Arithmetic

4. Comparison

5. Logical

6. Shift

7. Conversion

8. Floating-Point Arithmetic
9. Decimal

10. Byte Siring

11. Push Down

12. Execute and Branch

13. Call

14. Control (privileged)

15. Input/OQutput (privileged)
Instructions are described in the following format:

MNEMONIC(D INSTRUCTION NAME®

@

(Addressing Type@ Privileged™
Interrupt Action™) ®

*| Operation X | Reference address

0 Code R Operand

G 1 2 314 5 6 718 9 10 N1z 13 14 ISiIé 17 18 19120 21 22 23i24 25 26 27128 29 30 31

Descripﬁon®

AfFecfed Trup@
Symbolic Notc’rion
Condition Code Settings®
Trap Acfion®

Excmple®

1. MNEMONIC is the code used by Xerox assemblers to
produce the instruction's basic operation code.

2. INSTRUCTION NAME is the instruction's descriptive
title.

3. The instruction's addressing type is one of the following:

a. Byte index alignment: the reference address field
of the instruction (plus the displacement value)
can be used to address a byte in main memory or
in the current block of general registers.

b. Halfword index alignment: the reference address
field of the instruction (plus the displacement
value) can be used to address a halfword in main
memory or in the currentblock of general registers.

c. Word-index alignment: the reference address field
of the instruction (plus the displacement value)
can be used to address any word in main memory
or in the current block of general registers.

d. Doubleword index alignment: the reference ad-
dress field of the instruction (plus the displacement
value) can be used to address any doubleword in
main memory or in the current block of general
registers. The addressed doubleword is auto-
matically located within doubleword storage
boundaries. (The low order bit of the reference
address is ignored.)

e. Immediate operand: the instruction word contains
an operand value used as part of the instruction
execution. If indirect addressing is attempted
with this type of instruction (i.e., bit 0 of the
instruction word is a 1), the instruction is treated
as a nonexistent instruction, and the basic processor
unconditionally aborts execution of the instruction
(at the time of operation code decoding) and traps
to location X'40', the "nonallowed operation"
trap. Indexing does not apply to this type of
instruction.

f. Immediate displacement: the instruction word
contains an address displacement used as part of
the instruction execution. If indirect addressing
is attempted with this type of instruction, the basic
processor treatsthe instruction as a nonexistent in-
struction, and it unconditionally aborts execution
of the instruction (at the fime of operation code
decoding) and traps to location X'40'. Indexing
does not apply to this type of instruction.

4. If the instruction is not executable while the basic pro-
cessor is in the slave mode, it is labeled "privileged”
If execution of a privileged instruction is attempted
while the basic processor is in the slave mode, it uncon-
ditionally aborts execution of the instruction (at the
time of operation code decoding) and traps to loca-
tion X'40'.

5. If the instruction can be successfully resumed ofter
its execution sequence has been interrupted by an
interrupt acknowledgment, the instruction is labeled

Instruction Repertoire 47

"continue after interrupt". In the case of the "continue
after interrupt” instructions, certain general registers
confain intermediate results or control information
that allows the instruction to continue properly.

Instruction format:

a. Indirect addressing — If bit position 0 of the in-
struction format contains an asterisk (*), the
insfruction can use either indirect or direct
addressing. If bit position O of the instruction
format contains a 0, the instruction is of the
immediate operand type, which is treated os a
nonexistent instruction if indirect addressing is
attempted (resulting in a trap to location X'40').

b. Operation code —The operation code field (bit
positions 1-7) of the instruction is shown in hexa-
decimal notation. For certain 1/O instructions,
the operation code field is extended and includes
bit positions 15-17 of the instruction,

c. Rfield —If the register address field (bit posi-
tions 8-11) of the instruction format contains the
character "R", the instruction can specify any
register in the current block of general registers
as an operand source, result destination, or both;
otherwise, the function of this field is determined
by the instruction.

d. X field —If the index register address field (bit
positions 12-14) of the instruction format contains
the character "X", the instruction specifies in-
dexing with any one of registers 1 through 7 in
the current block of general registers; otherwise,
the function of this field is determined by the
instruction.

e. Reference address field — Normally, the address
field (bit positions 15-31) of the instruction for-
mat is used as the reference address value for
real, real extended, and virtual addresses (see
Chapter 2). This reference address field is also
later in this chapter and also Chapter 4). For im-
mediate operand instructions, this field is aug-
mented with the contents of the X field, as
illustrated, to form a 20-bit operand.,

f. Value field — In some fixed-point arithmetic
instructions, bit positions 12-31 of the instruc-
tion format contain the word "value". The
field is treated as o 20-bit integer, with nega-
tive integers represented in two's complement
form.

g. Displacement field — In the byte string instructions
bit positions 12-31 of the instruction format con-
tain the byte "displacement”. In the execution
of the instruction, this field is used to modify the
source address of an operand, the destination ad-
dress of a result, or both,

Instruction Repertoire

10.

1.

h. Reservedfields — In any format diagram that depicts
system inputs (i.e., instruction, data word), a
shaded area represents a field that is ignored by
the basic processor (i. e. , the content of the shaded
field has no effect on instruction execution). It
should not be used or must be coded with 0's to
preclude conflict with possible future modifications.

In any format diagram that depicts system outputs
(i.e., general register, memory word modified by
an instruction, or 1/Q status word), a shaded area
represents a field whose content is indeterminate

ond must not be used (i.e., masked).

The description of the instruction definesthe operations
performed by the basic processor in response to the in-
struction configuration depicted by the instruction for-
mat diagram. Any instruction configuration that causes an
unpredictable result is so specified in the description.

All programmable registers and storage areas that can
be affected by the instruction are listed (symbolically)
after the word "Affected". The instruction address
portion of the program status words is considered to be
affected only if a branch condition can occur as a re-
sult of the instruction execution, since the instruction
address is incremented by 1as part of every instruction
execution.

All trap conditions that may be invoked by the execu-
tion of the instruction are listed after the word "Trap".
Trap locations are summarized in the section "Trap
System" in Chapter 2,

The symbolic notation presents the instruction operc-
tion as a series of generalized symbolic statements.
The symbolic terms used in the notation are defined in
the Appendix, "Glossary of Symbolic Terms".

Condition Code settings are given for each instruction
that affects the condition code. A 0 or a 1 under any
of columns 1, 2, 3, or 4 indicates that the instruction
causes a 0 or 1 to be placed in CC1, CC2, CC3 or
CC4, respectively, forthereasonsgiven. If ahyphen (-)
appears in columns 1, 2, 3, or 4, that portion of the
condition code is not offected. For example, the
following condition code settings are given for a com-
parison instruction:

1 2 3 4

Result of comparison

- - 0 0 Equal

Register operand is arithmetically less
than effective operand.

than effective operand.

The logical product of the two operands
is nonzero.

The logical product (AND) of the two op-
erands is zero.

CC1 is unchanged by the instruction. CC2 indicates
whether or not the two operands have 1's in corre-

Instruction Name

Mnemonic

sponding bit positions, regardless of their arithmetic Load Halfword LH
relationship. CC3 and CC4 are set according to the
arithmetic relationship of the two operands, regardless Load Word LW
of whether or not the two operands have 1's in corre-
sponding bit positions., For example, if the register Load Doubleword LD
operand is arithmetically less than the effective oper~
and, and the two operands both have 1's in af least Load Complement Halfword LCH
one corresponding bit position, the condition code
setting for the comparison instruction is: Load Absolute Halfword LAH
1 2 3 4 Load Complement Word LCW
- 1 01 Load Absolute Word LAW
t D d Cb
The dbove statements about the condition code are Load Complement Doublewor L
valnfi only if no frap occurs before the successful com- Load Absolute Doubleword LAD
pletion of the instruction execution cycle. If a trap
d?e.:s occur d.urmg the instruction execuho?, the c.on— Load Read Address (see "Control LRA
dition code is normally reset to the value it contained s
. . . Instructions")
before the instruction was started and the register
altered bit (bit 60 in PSWs) is sef.fo lifa regls're_r has Load and Set LAS
been altered. Then the appropriate frap location
is octivated. Load Memory Status (see "Control LMS
Instructions")
12. Actions taken by the basic processor for those trap con-
ditions that may be invoked by the execution of the in- Load Selective LS
struction are described. The description includes the
criteria for the trap condition, any controlling trap Load Multiple M
mask or inhibit bits, and the action taken by the basic
processor. Load Conditions and Floating Control LCFI
Note: To avnid unnecessary renetition, tha three tran Immediate
conditions that cp|?ly to c:H. instructions (i.e., Load Condifions and Floating Control LCF
nonallowed operations, parity error, and watch-
.dog hm.er runout) are not described for each Load Virtual Address Word LVAW
instruction,
Exchange Word XW
13. Some instruction descriptions provide one or more ex-
amples to illustrate the results of the instruction. Store Byte STB
These examples are intended only to show how the in-
structions operate, and not to demonstrate their full Store Halfword STH
capability, Within the examples, hexadecimal nota-
tion is used fo represent the contents of general registers Store Word STW
and storage locations, Condition code settings are
shown in binary notation. The character “x" is used Store Doubleword STD
to indicate irrelevant or ignored information. .
. . Store Selective STS
Note: In the following text, BP is used as an abbre-
T gk . .
viation for basic processor Store Multiple STM
Store Conditions and Floating Conftrol STCF

LOAD/STORE INSTRUCTIONS

The load and store instructions operate with information
fields of byte, halfword, word, and doubleword lengths.

The load/store instructions are as follows:

Instruction Name Mnemonic Load instructions load the information indicated into one or
more of the general registers in the current register block.

Load Immediate LI Load instructions do not affect the source of information;
however, nearly all load instructions provide a condition

Load Byte LB code setting that indicates the following information about

Load/Store Instructions 49

the contents of the affected general register(s) after the
instruction is successfully completed:

Condition code setftings:

1 2 3 4 Result

- - 0 0 Zero—the result in the affected register(s)
is all O's.

- - 0 1 Negative — register R contains a 1 in bit
position 0,

-~ = 1 0 Positive —register R contains a 0 in bit posi-
tion 0, and at least one 1 appears in the
remainder of the affected register(s) (or
appeared during execution of the current
instruction.)

- 0 - - No fixed-point overflow — the result in the
affected register(s) is arithmetically correct.

- 1 - - Fixed-point overflow —the result in the af-
fected register(s) is arithmetically incorrect.

Store instructions affect only that portion of memory stor-
age that corresponds to the length of the information field
specified by the operation code of the instruction; thus,
register bytes are stored in memory byte locations, register
halfwords in memory halfword locations, register words in
memory word locations, and register doublewords in mem-
ory doubleword locations. Store instructions do not affect
the contents of the general register specified by the R field
of the instruction, unless the same register is also specified
by the effective virtual address of the instruction.

L LOAD IMMEDIATE

(Immediate operand)

0 22 R Value

0 1 2z 314 5 6 718 9 10 1121314 VSiIé 17 18 19120 21 22 23124 25 2627;282930 3

LOAD IMMEDIATE extends the sign of the value field (bit
position 12 of the instruction word) 12 bit positions fo the
left and then loads the 32-bit result into register R.

Affected: (R),CC3,CC4 Trap: Nonexistent instruction,
) — R if bitOisal.
12-31SE

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero
- = 0 1 Negative
- - 1 0 Positive

If L1 is indirectly addressed, it is treated as a nonexistent
instruction, in which case the BP unconditionally aborts

50 Load/Store Instructions

execution of the instruction (at the time of operation code
decoding) and traps to location X'40' with the contents of
register R and the condition code unchanged.

LB LOAD BYTE
(Byte index alignment)

* 72 R X Reference address

0 1 2 314 5 6 718 9 10 nfw2 131415016 17 18 19120 21 22 23124 25 26 27128 29 30 31

LOAD BYTE loads the effective byte into bit positions 24-31
of register R and clears bit positions 0-23 of the register to
all 0's,

Affected: (R),CC3,CC4

EB 0—R

—Rogay 0-23
Condition code setfings:

1 2 3 4 ResultinR

- = 0 0 Zero

- - 1 0 Nonzero

LH LOAD HALFWORD
(Halfword index alignment)

* 52 R X Reference address

0 1 2 314 5 6 718 9 10 111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

LOAD HALFWORD extends the sign of the effective half-
word 16 bit positions fo the left ond then loads the 32-bit
result into register R.

Affected: (R), CC3,CC4

EHSE—>R

Condition code settings:

i 2 3 4 ResuliinR
- -~ 0 0 Zero
- = 0 1 Negative
- - 1 0 Positive
LW LOAD WORD
(Word index alignment)
* 32 R X Reference address

0 1 2 314 5 6 78 9 40 HUIZ I3 14 abble 1/ 18 TN 2y 22 23126 13 20 20038 47 80 3

LOAD WORD loads the effective word into register R,
Affected: (R), CC3,CC4

EW—R

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero

- = 0 1 Negative

- - 1 0 Positive

LD LOAD DOUBLEWORD

(Doubleword index alignment)

* 12 R X Reference address

© 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

LOAD DOUBLEWORD loads the 32 low-order bits of the
effective doubleword into register Rul and then loads
the 32 high-order bits of the effective doubleword into
register R.

If R is an odd value, the result in register R is the 32 high-
order bits of the effective doubleword. The condition code
settings are based on the effective doubleword, rather than

the final result in register R (see example 3, below).

Affected: - (R), (Rul), CC3,CC4

E

Dar63

Rul; ED0_3]—’R

Condition code settings:

1 2 2 4 Effcctive doubleword
- - 0 0 Zero

- = 0 1 Negative

- - 1 0 Positive

Example 1, even R field value:

ED
®)
(Rul)

CcC

Before execution

After execution

X'0123456789ABCDEF!

XXXXXXKXX

XXXXXXXX

XXXX

Example 2, odd R field value:

ED

CcC

Before execution

X'0123456789ABCDEF!

X'01234567"

X'89ABCDEF*

xx10

After execution

X'0123456789ABCDEF!

XXXXXXXX

XXXX

X'0123456789ABCDEF'
X'01234567"

xx10

Example 3, odd R field value:

Before execution After execution

ED = X'0000000012345678" X'0000000012345678"
R) = xxxxxxxx X'00000000'
CC = xxxx xx10
LCH LOAD COMPLEMENT HALFWORD
(Halfword index alignment)
* 5A R X Reference address
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3

LOAD COMPLEMENT HALFWORD extends the sign of the
effective halfword 16 bit positions to the left and then loads
the 32-bit two's complement of the result into register R.
(Overflow cannot occur,)

Affected: (R), CC3,CC4

_[EHSE]—»R

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero

- - 0 1 Negative

- = 1 0 Positive

LAH LOAD ABSOLUTE HALFWORD

(Halfword index alignment)

| 5B R X Reference address

I L L -
0 1 2 3T4a 5 6 718 9 10 1N112 13 14 15116 17 18 19120 27 22 23124 25 26 27128 29 30 31

If the effective halfword is positive, LOAD ABSOLUTE
HALFWORD extends the sign of the effective halfword
16 bit positions to the left and then loads the 32-bit result
in register R. If the effective halfword is negative, LAH
extends the sign of the effective halfword 16 bit positions
to the left and then loads the 32-bit two's complement of
the result into register R. (Overflow cannot occur.)

Affected: (R),CC3,CC4

EHSE —R

Condition code settings:

1 2 3 4 ResultinR

0 0 Zero

- = 1 0 Nonzero

Load/Store Instructions 51

LCW LOAD COMPLEMENT WORD
(Word index alignment)

* 3A R X Reference address

0 1 2 3[4 5 6 7189 10 11112 13 14 35[16 17 18 19120 21 22 23124 25 26 27128 29 30 31

LOAD COMPLEMENT WORD loads the 32-bit two's com-
plement of the effective word into register R, Fixed-point
overflow occurs if the effective word is -231 (X'80000000')
in which case the result in register R is =231 and CC2 is set
to 1; otherwise, CC2 is reset to 0.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-pointoverflow.
-EW —R
Condition code settings:

1 2 3 4 ResultinR

- 0 0 0 Zero

- =~ 0 1 Negative

- 0 1 O Positive

- 0 - - No fixed-point overflow

- 1 0 1 Fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask

(AM) is a 1, the BP traps to location X'43' after execution
of LOAD COMPLEMENT WORD; otherwise, the BP ex-

ecutes the next instruction in sequence.

LAW LOAD ABSOLUTE WORD
(Word index alignment)

* 3B R X Reference address

0V 2 374 5 6 718 9 10 1111213 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 31

If the effective word is positive, LOAD ABSOLUTE WORD
loads the effective word into register R. I the effective
word is negative, LAW loads the 32-bit two's complement
of the effective word into register R. Fixed-point overflow
occurs if the effective word is =231 (X'80000000'), in
which case the result in register R is —231, and CC2 is set
to 1; otherwise, CC2 is reset to 0.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow
[EW| —R

Condition code settings:

1 2 3 4 ResultinR

- 0 0 0 Zero

- - 1 0 Nonzero

- 0 = = No fixed-point overflow

- 1 0 1 Fixed=point overflow (sign bif on)

52 Load/Store Instructions

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the BP traps to location X'43' after execution
of LOAD ABSOLUTE WORD; otherwise, the BP executes

the next instruction in sequence.

LCD LOAD COMPLEMENT DOUBLEWORD
(Doubleword index alignment)

* 1A R X Reference address

0 1 2 314 56 718 9 10 N2 13 14 1?\6 17 18 19720 21 227 23124 25 26 27?28 29 30 3!

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit
two's complement of the effective doubleword, loads the
32 low-order bits of the result into register Rul, and then
loads the 32 high-order bits of the result into register R.

If R is an odd value, the resulf in registerR is the 32 high-
order bits of the two's complemented doubleword. The con-
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
-263 (X'8000000000000000'), in which case the result in
registers R and Rul is =263 and CC2 is set to 1; otherwise,
CC2 is reset to 0.

Affected: (R),(Ru1),CC2,
CC3,CC4

[—ED]32_63 —Rul; [-ED] 0.3 R

Trap: Fixed-point overflow

Condition code settings:

1 2 3 4 Two's complement of effective doubleword

- 0 0 0 Zero

- = 0 1 Negative

- 0 1 O Positive

- 0 - - No fixed-point overflow

- 1 0 1 Fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the BP traps to location X'43' after execution
of LOAD COMPLEMENT DOUBLEWORD; otherwise, the

BP executes the next instruction in sequence.

Example 1, even R field value:

Before execution After execution

ED = X'0123456789ABCDIF' X'1023456789A0CDER
(R) = xxxxxxxx X'FEDCBA®8!

(Rul) = xxxxxxxx X'76543211"

CC = xxxx x001

Example 2, odd R field value:

Before execution After execution

ED = X'0123456789ABCDEF' X'0123456789ABCDEF'
R) = xxxxxxxx X'FEDCBA98'
CC = xxxx %001
LAD LOAD ABSOLUTE DOUBLEWORD
(Doubleword index alignment)
* 1B R X Reference address

0 1 2 314 5 6 718 9 10 nhiz 1314 15116 17 18 19120 21 22 23124 25 26 27128 29 30 21

If the effective doubleword is positive, LOAD ABSOLUTE
DOUBLEWORD loads the 32 low-order bits of the effective
doubleword into register Rul, and then loads the 32 high-
order bits of the effective doublewordinto register R. If R is
an odd value, the result in register R is the 32 high-order
bits of the effective doubleword. The condition code set-
tings are based on the effective doubleword, rather than
the final result in register R.

If the effective doubleword is negative, LAD forms the
64-bit two's complement of the effective doubleword, loads
the 32 low=-order bits of the two's complemented double-
word into register Rul, and then loads the 32 high-order
bits of the two's complemented doubleword into register R.
If Ris an odd value, the result in register R is the 32 high-
order bits of the two's complemented doubleword. The con-
dition code seftings are based on the two's complement of
the effeciive doubleword, raiher ihan ine final resuli in
register R,

Fixed-point overflow occurs if the effective doubleword is
-263 (X'8000000000000000'), in which case the result in

registers R and Rul is -263 and CC2 is set to 1; otherwise,
CC2 is reset to 0.

Affected: (R),(Rul),CC2,
CC3,CC4

Trap: Fixed-point overflow

—Rul; |ED] R

|EDl35 43 0-31

Condition code settings:

1 2 3 4 Absolute value of effective doubleword
- 0 0 0 Zero

- - 1 0 Nonzero

- 0 - - No fixed-point overflow

- 1 0 1 Fixed-point overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the BP traps to location X'43' after execution

of LOAD ABSOLUTE DOUBLEWORD; otherwise, the BP

executes the next instruction in sequence.

Example 1, even R field value:

ED

R)

(Rul) =

CC

Before execution

= X'0123456789ABCDEF!

1]

XXXXKKXXX

XAXXXXXX

= XXXX

Example 2, even R field value:

ED

®)

(Rul) =

CcC

Before execution

= X'FEDCBA9876543210'

= XXXXXXXX

XXXXXXXX

= XXXX

Example 3, odd R field value:

m
<

®)
cc

LAS

Before execution

= XXXXXXXX

= XXXX

LOAD AND SET

(Word index alignment)

After execution

X'0123456789ABCDEF'
X'01234567"
X'89ABCDEF'

x010

After execution

X'FEDCBA9876543210'
X'01234567'
X'89ABCDFO

x010

After execution

R'0123456785ABCDEF
X'01234567'

x010

*

26 R X

Reference address

| - L ' .
0 1772 314 5 6 718 9 10 11112 13 14 15716 17 18 19120 21 22 23124 25 26 27128 25 30 31

LOAD AND SET loads the effective word into R. If
the effective address is equal to or greater than 16, a
one is stored in the sign position of the effective loca-
If the effective address is equal to or less than 15
(effective location is a general register), the sign bit

fion.

remains unchanged.

This instruction is used to interlock

multiple processors from the simultaneous execution of
certain sections of code or from the simultaneous access
fo certain fables.

Affected: (R), CC3,CC4

EW—R

1—EW,, ifEA 216

Load/Store Instructions 53

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero
- - 0 1 Negative

- - 1 0 Positive

Note: Write locks protect memory and traps are not in-
hibited during the execution of LAS.

LS LOAD SELECTIVE
(Word index alignment)

* 4A R X Reference address

01 2 Sid 5 6 718 9 10 1Ni1213 14]5i|6 17 18 19120 21 22 23124 25 26 27128 29 30 31

Register Rul contains a 32-bit mask. If R is an even value,
LOAD SELECTIVE loads the effective word into register R
in those bit positions selected by a 1 in corresponding bit
positions of register Rul. The contents of register R are not
affected in those bit positions selected by a 0 in corre-
sponding bit positions of register Rul,

If R is an odd value, LS logically ANDs the contents of
register R with the effective word and loads the result into
register R, If corresponding bit positions of register R and
the effective word both contain 1's, a 1 remains in reg-
ister R; otherwise, a 0 is placed in the corresponding bit
position of register R,

Affected: (R), CC3,CC4

If R is even, [EWnRu1)]u [R)nRul)] —R

If Ris odd, EWn(R) —=R

Condition code settings:

1 2 3 4 ResultinR

- = 0 0 Zero.
- - 0 1 BitOofregisterRisal.

- - 1 0 BitOofregister Ris a 0 andbitpositions 1-31
of register R contain af least one 1.

Example 1, even R field value:

Before execution After execution

W= X'01234567' X'01234567"

m
<
<

[

(Rul) = X'FFOOFFOO' X'FFOOFF0O0'
R) = xxxxxxxx X'0Txx45xx'
CC = xxxx xx10

54 Load/Store Instructions

Example 2, odd R field value:

Before execution After execution

EW = X'82ABCDEF' X'89ABCDEF'
(R) = X'FOFOFOFO' X'80A0COEOQ!
CC = xxxx xx01
LM LOAD MULTIPLE
(Word index alignment)
* 2A R X Reference address
T 7 2 3145 6 7185 Bz B X Ble T B RN 0D Bins BT EE DN

LOAD MULTIPLE loads a sequential set of words into a se-
quential set of registers, the set of words to be loaded begins
with the word pointed to by the effective address of LM,
and the set of registers begins with register R. The set of
registers is treated modulo 16 (i.e., the next register loaded
after register 15 is register 0 in the current register block).

The number of words to be loaded into the general registers
is determined by the setting of the condition code immedi-
ately before the execution of LM, (The desired value of the
condition code can be set with LCF or LCFL.) An initial
value of 0000 for the condition code causes 16 consecutive
words to be loaded into the register block.

Affected: (R) to (R+CC-1)
(EWL—R; (EWLHT) —=R+1), ..., (EWL+CC-1) — R+CC-1

The LM instruction may cause a trap if its operation ex-
tends into a page of memory that is protected by the access
protection codes. A trap may also occur if the operation
extends into a nonexistent memory region,

If the effective virtual address of the LM instruction is in
the range 0 through 15, then the words to be loaded are
taken from the general registers rather than from main mem-
ary. In this case the results will be unpredictable if any of

the source registers are also used as destination registers.

LCFI LOAD CONDITIONS AND FLOATING
CONTROL IMMEDIATE

(Immediate operand)

FIF|E|F

0 02

RI{S|Z|N

0 2 3?4 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

If bit position 10 of the instruction word contains a 1, LOAD
CONDITIONS AND FLOATING CONTROL IMMEDIATE
loads the contents of bit positions 24 through 27 of the in-
struction word into the condition code; however, if bit 10
is 0, the condition code is not affected.

If bit position 11 of the instruction word contains a 1,
LCFI loads the contents of bit positions 28 through 31 of
the instruction word into the floating round (FR), floating

significance (FS), floating zero (FZ), and floating normalize
(FN) mode control bits, respectively (in the program status
words); however, if bit 11is 0, the FR, FS, FZ, and FN
control bits are not affected. The functions of the floating-
point control bits are described in the section "Floating-
Point Arithmetic Instructions".

Affected: CC,FR,FS,FZ, FN

Trap: Nonexistent in-
struction, if bit 0
isal.

If (I).‘0 =1, (1)24_27_‘CC

If (I)lo =0, CC is not affected.

If (I)” =1, (1)28—31 —FR,FR,FS,FZ,FN
If (I)” =0, FR,FS,FZ, and FN not affected.
Condition code settings, if (I)]0 =1:

1 2 3 4
Myy Mys My Dy

If LCFI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the fime of operation
code decoding) and traps to location X'40' with the condi~
tion code unchanged.

LCF LOAD CONDITIONS AND FLOATING
CONTROL

(Byte index aiignment)

* 70 X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

If bit position 10 of the instruction word contains a 1,
LOAD CONDITIONS AND FLOATING CONTROL loads
bits 0 through 3 of the effective byte into the condition
code; however, if bit 10 is 0, the condition code is not

affected.

If bit position 11 of the instruction word contains a 1, LCF
loads bits 4 through 7 of the effective byte into the floating
round (FR), floating significance (FS), floating zero (FZ),
and floating normalize (FN) mode control bits, respectively;
however, if bit 11is 0, the FR, FS, FZ, and FN conirol
bits are not affected. The functions of the floating=-point
mode control bits are described in the section "Floating-
Point Arithmetic Instructions".

Affected: CC,FR,FS,FZ, FN
If ()= 1, EB,_y —CC

If (=0, CC not affected

D10

If (), =1, 8,

If (), =0, FR,FS, FZ, FN not affected

—=FR, FS,FZ, FN

Condition code settings, if (1)10 =1:

1 2 3 4
), @), €B), (b,

LVAW LOAD VIRTUAL ADDRESS WORD
(Word index alignment)

* 34 R X Reference address

0 1 2 314 5 6 718 9 10 N112 13 14 15116 17 18 19120 27 22 23[24 25 26 27128 25 30 31

LOAD VIRTUAL ADDRESS WORD loads bit positions 15-31
of register R with the effective virtual word address of the
instruction while bit positions 0-14 of register R are cleared
to zero.

Affected: (R)

0—R

EVA—R 5.3, 0-14

Note: Condition code is not affected by LVAW.

XW EXCHANGE WORD
(Word index alignment)

* 46 R X

0 1 2 314 5 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 2324 25726 27128 29 30 31

EXCHANGE WORD exchanges the contents of register R

with tha rantante Af tha affantiva ward lasakian
with the contente of The ettechive wera H .

Reference address

Affected: (R), (EWL), CC3,CC4

(R)—(EWL)

Condition code settings:

1 2 3 4 ResultinR

- = 0 0 Zero

- - 0 1 Negative
- - 1 0 Positive
STB STORE BYTE

(Byte index alignment)

-

* 75 R X Reference address

T Tz 314 5 ¢ 718 7 0Nz 6 141518 7 18 B0 21 22 Bk 05 % 158 5 331

STORE BYTE stores the contents of bit positions 24-31 of
register R into the effective byte location.

Affected: (EBL)

(R)24_3] —EBL

Load/Store Instructions 55

STH STORE HALFWORD
(Halfword index alignment)

* 55 R X Reference address

0 1 2 314 5 6 778 9 10 11§12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

STORE HALFWORD stores the contents of bit positions 16=31
of register R info the effective halfword location. If the
information in register R exceeds halfword data limits, CC2
is set to 1; otherwise, CC2 is reset to 0.

Affected: (EHL), CC2
(R)16—3] —EHL
Condition code settings:

1 2 3 4 Informationin R

-0 - - (R)O_w:clIO'sorall]'s.

-1 - - (R)O_.|67-‘c||0‘sorc||1'_s.

STW STORE WORD
(Word index alignment)

* 35 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 1415116 17 18 19120 21 22 23124 25 26 27i282‘?30 31

STORE WORD stores the contents of register R info the ef-
fective word location.

Affected: (EWL)
(R) — EWL

STD STORE DOUBLEWORD
(Doubleword index alignment)

* 15 R X Reference address

01 2 3la 5 ¢ 718 9 10 nhiz 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

STORE DOUBLEWORD stores the contents of register R into
the 32 high-order bit positions of the effective doubleword
location and then stores the contents of register Rul info
the 32 low=-order bit positions of the effective doubleword
location.

Affected: (EDL)

R) —E (Rul) — EDL

Plo-ar’ 32-63
Example 1, even R field value:

Before execution After execution

R) = X'01234567 X'01234567
(Rul) = X'89ABCDEF X'89ABCDEF'
(EDL) = XXXXXXXXXXXXXXXX X'0123456789ABCDEF!

56 Load/Store Instructions

Example 2, odd R field value:

Before execution After execution

R) = X'8ABCDEF! X'89ABCDEF'

(EDL) = XXXXXXXXXXXXXXXX X'89ABCDEF89ABCDEF!

STS STORE SELECTIVE
(Word index alignment)

* 47 R X Reference address

, .
T T 2 317 5 6 718 T W T A B 78 B0 IR B S B E S o

Register Rul contains a 32-bit mask. If R is an even value,
STORE SELECTIVE stores the contents of register R into the
effective word location in those bit positions selected by

a 1 in corresponding bit positions of register Rul; the effec-
tive word remains unchanged in those bit positions selected
by a 0 in corresponding bit positions of register Rul,

If R is an odd value, STS logically inclusive ORs the con-
tents of register R with the effective word and stores the
result into the effective word location, The contents of
register R are not affected.

Affected: (EWL)

If Ris even, [(R)n(Rul)] u [EWn m)] — EWL

IfRisodd, R) v EW—EWL

Example 1, even R field value:

Before execution After execution

R) = X'12345678' X'12345678'
(Rul) = X'FOFOFOFQ' X'FOFOFQFO’
EW = xxxxxxxx X' 1x3x5x7x'

Example 2, odd R field value:

Before execution After execution

(R) = X'OOFFOOFF' X'00FFOOFF'
EW = X'12345678' C'12FF56FF'
STM STORE MULTIPLE
(Word index alignment)
* 2B R X Reference address
R R A R AR R I RN R S A R F N 2 A A

STORE MULTIPLE stores the contents of a sequential set of
registers into a sequential set of word locations. The set of
locations begins with the location pointed to by the effective
word oddress of STM, and the set of registers begins with reg-
ister R, The set of registers is freated moduio 16 {i.e., the

next sequential register affer register 15 is register 0). The
number of registers to be stored is determined by the value
of the condition code immediately before execution of STM.
(The condition code can be set to the desired value before
execution of STM with LCF or LCF1.) An initial value

of 0000 for the condition code causes 16 general registers
to be stored.

Affected: (EWL) to (EWL+CC-1)

R)—=EWL, (R+1)— EWL+1, . .., R+CC-1)—EWL+CC-1

The STM instruction may cause a trap if its operation ex-

tends into o page of memory that is protected by the access
protection codes or the write locks. A trap may also occur
if the operation extends into a nonexistent memory region.

If the effective virtual address of the STM instruction is in
the range O through 15, then the registers indicated by the
R field of the STM instruction are stored in the general reg-
isters rather than main memory. In this case, the results
will be unpredictable if any of the source registers are also
used as destination registers.

STCF STORE CONDITIONS AND FLOATING
CONTROL
{Byte index alignment)

* 74 X Reference address

01 2 3145 6718 9 10 I'I 12 13 14 15016 17 18 19120 21 22 23]24 25 26 27128 29 30 31

STORE CONDITIONS AND FLOATING CONTROL stores
the current condition code and the current value of the
floating round (FR), floating significance (FS), floating
zero (FZ), and floating normalize (FN) mode control bits
of the program status words into the effective byte location
as follows:

F
CC |k
0 1 2 314

Affected: (EBL)

al -
o N
~| Z

(PSWs),_, —EBL

ANALYZE /INTERPRET INSTRUCTIONS

ANLZ ANALYZE
(Word index alignment)

* 44 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

ANALYZE evaluates the effective word as an instruction.

The ANALYZE instruction always sets the condition codes
to indicate the addressing type of the analyzed instruction
(see condition code settings and Table 6). Except when

Table 6. ANALYZE Table for Operation Codes

X'n' | X'00'+n X'20'+n | X'40'+n | X'60'+n
0 |- Al TTBS CBS
01 | - e TBS | MBS
02 LCFI(® LI - -

03 | — MI - EBS
04 | CALI SF ANLZ | BDR
05 | cAaL2 ~ |s cs BIR
06 | CAL3 LAS XW AWM
07 | CAL4 - STS EXU
08 | PLW Cvs EOR BCR
09 | PSW CVA . | OR BCS
0A | PLM M® LS BAL
0B | PSM STM AND INT
oc | pLst LRA 10" RD'
op | psst Lmst no‘rf wp'!
o | pspf@tt | wartt DV, AlOf .
oF | xpspf LRP! HIO MMC
10 | AD SW AH LCF
n | cp W CH CB
12 | LW LH LB

13 | MSP MTW MTH MTB
14 | - LVAW - STCF
15 | st STW STH STB
1% |- DW pH@'" | pACK @
17 | - MW MH UNPK
18 | sD SW SH DS
19 | cm CIR - DA
1A | LCD LCW LCH DD
1B | LAD LAW LAH DM
1IC | FSL FSS - DSA
1D | FAL FAS - DC
1E | FDL FDS - DL
IF | FML FMS - DST

t . . .
Privileged instructions.

HDecimcxl value of condition code settings when an-
alyzed instruction calls for direct addressing. If an-
alyzed instruction calls for indirect addressing, add 2
to the value shown.

the analyzed instruction is an immediafe operand in-
struction, an effective virtual address for the analyzed
instruction is also calculated and loaded into register R.

Analyze/Interpret Instructions 57

The nonexistent instruction, the privileged instruction
violation, and the unimplemented instruction trap conditions
can never occur during execution of the ANLZ instruction.
However, either the nonexistent memory address condition
or the memory protection violation trap condition (or both)
can occur as a result of any memory access initiated by the
ANLZ instruction. If either of these frap conditions occurs,
the instruction address stored by an XPSD in trap location
X'40' is always the virtual address of the ANLZ instruction.

The detailed operation of ANALYZE is as follows:

1. The contents of the location pointed to by the effective
virtual address of the ANLZ instruction is obtained.
This effective word is the instruction to be analyzed.
From a memory-protection viewpoint, the instruction
{to be analyzed) is treated as an operand of the ANLZ
instruction; that is, the analyzed instruction may be
obtained from any memory area to which the program
has read access.

2. If the operation code portion of the effective word
specifies an immediate~addressing instruction type, the
condition code is set to indicate the addressing type,
and instruction execution proceeds to the next in-
struction in sequence after ANLZ. The original con-
tents of register R are not changed when the analyzed
instruction is of the immediate-addressing type.

If the operation code portion of the effective word
specifies a reference-addressing instruction type, the
condition code is set to indicate the addressing type
of the analyzed instruction and the effective address
of the analyzed instruction is computed (using all of
the normal address computation rules). If bit 0 of the
effective word is a 1, the contents of the memory lo-
cation specified by bits 15-31 of the effective word
are obfained and then used as a direct address. The
nonallowed operation trap (memory protection viola-
tion or nonexistent memory address) can occur as a
result of the memory access. Indexing is always per-
formed (with an index register in the current register
block) if bits 12-14 of the analyzed instruction are

nonzero. During rcal cxtended addressing, the effec-

tive virtual address of the analyzed instruction is
aligned as an integer displacement value and loaded
into register R, according to the instruction addressing
type, as follows:

Byte Addressing: MA=0

trap
infol:
01 2 3 8

19-bit displacement

o

| . N N
13714715116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Byte Addressing: MA=1, MM=0

trop
0linfo
0 7 2 314 5 6 716 9 W NI12 1314 511617 16 19136 27 72 3134 55 % 2126 5 0 31

Halfword Addressing: MA=0

22-bit byte displacement

trap

info
0 7 2 32

(=}

18-bit halfword displacement

4 (5116 17 18 19iZ0 20 72 20 24 25 28 i 26 29 40 &1

58 Analyze/Interpret Instructions

Halfword Addressing: MA=1, MM=0

trap

info
01 2 3

21-bit halfword displacement

NT12 13 14 15116 17 18 19120 21 22 23124 25 26 27228 29 30 31

[=]

Word Addressing: MA=0

" :
i:}g 17-bit word displacement

0 1V 2 314 5 86 718 9 10 11112 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31

Word Addressing: MA=1, MM=0

0 r:‘?g 20-bit word displacement

J
T T 2 314 5 6718 g 10Tz 3 A58 78 BB T Bd 5258 T H o

Doubleword Addressing: MA=0

0 trap 16-bit doubleword
info displacement
0 1 2 3 16 17 18 WIZO 21 22 23'24 25 26 27|28 29 30 3N

Doubleword Addressing: MA=1, MM=0

tra
0 ;nfg 19-bit doubleword displacement

0 1 2 314 5 6 718 9 10 1]”2 13 14 'I5||6 17 18 19120 27 22 23[24‘5 26 27]28 29 30 3

When the ANALYZE instruction is executed in the master-
protected mode and a trap condition occurs, it traps only
on an indirect ANALYZE. Otherwise, instead of trapping
it completes its execution by storing in register R the ad-
dress that would have caused the instruction to trap. Since
the mode is master-protected, the access protection codes
will apply to the interpretation of addresses. If a slave
mode program is trapped because an instruction has refer-
enced protected memory, the ANALYZE instruction in the
master-protected mode can determine which address actually
caused the trap.

To aid the interpreting program, when operating in the
master-protected mode, the ANLZ instruction uses bits 1, 2,
and 3 of register R to indicate which memory accessinitiated
by the ANLZ would have trapped. The meaning of the pos-
sible codes in register R(1-3) is as follows:

RT R2 R3 Meaning

Successful generation of the effective virtual
address of the analyzed instruction. The CCs
are set to the addressing type of the analyzed
instruction and R(10-31) contain the effective
virtual address of the analyzed instruction

aligned as an integer displacement value ac-
cording to the instruction addressing type.

The indirect reference of the analyzed instruc-
fion would have trapped because it wus either
nonexistent, memory protected, or had a
parity error. The CCs are set to the address-
ing type of the analyzed instruction and
R(10-31) contain the virtual address of the in-
direct reference of the analyzed instruction
aligned as o word displacement,

R1 R2 R3 Meaning

The effective virtual address of the ANLZ
instruction would have trapped because it was
either nonexistent, memory protected, or had
a parity error. The CCs are indeterminate
since the instruction to be analyzed may not
have been fetched (nonexistent memory).
R(10-31) contain the effective virtual address
of the ANLZ instruction aligned as a word
displacement.

o 1 1

If no trap condition occurs, ANLZ will execute normally
andreturn the effective address of the instruction analyzed.

Table 6 shows the instruction set as a 4 by 32 matrix (ar-
ranged as a function of the operation code). This table also
shows how the instruction set is divided into six groups as

a function of the addressing type (delineated by heavy
lines). For example, if the operation code of the analyzed
instruction is either X'02', X'20', X'21', X'22', or X'23',
then CC1 is set to 1, CC2 is set to 0, CC3 is set to 0 (when
analyzed instruction specifies direct addressing), and CC4
is set to 1. The decimal equivalent of the condition code
setting for this group of immediate, word addressing type of
instructions is shown as a 9 within a circle. The decimal
equivalents of the condition code settings for the other
five groups are shown in the same manner. If the analyzed
instruction calls for indirect addressing, CC3 is always set
to a 1 and the decimal value of the condition code sefting
shown in Table 6 should be increased by 2.

Affected: (R), CC

V@IS L N S R ¥ L
UL HTUT CUUT STHITIIYST

1 2 3 4 |Instruction addressing type

0 - 0 Byte
0 0 - 1 Immediate, byte
0 1 - 0 Halfword
1 0 - 0 Word
1 0 - Immediate, word
1 1 - 0 Doubleword
- - 0 - Direct oddressing (EWg = 0)
- - 1 - Indirect addressing (EWg = 1)
INT INTERPRET
(Word index alignment)
* 6B R X Reference address

0 1 2 314 5 6 718 9 10 nh2 1314 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31

INTERPRET loads bits 0-3 of the effective word into the
condition code, loads bits 16-31 of the effective word into
bit positions 16-31 of register Rul (and loads 0's into bit
positions 0-15 of register Rul, loads bits 4-15 of the

effective word into bit positions 20-31 of register R (and
clears the remaining bits of register R), If R is anodd value
INT loads bits 0-3 of the effective word into the condition
code, loads bifs 1631 of the effective word into bit posi~
tions 16-31 of register R, and loads 0's into bit posi-
fions 0-15 of register R (bits 4-15 of the effective word are
ignored in this case).

7

Affected: (), (Rul), CC

EW,,_,—CC

EW 0

—Roy-19
0__ Rl

4-15—Ro03y7

EWig-31—Ru 14 3y7

0-15
Condition code settings:

1 2 3 4
EW), EW), EW), (W),

Example 1, even R field value:

Before execution After execution

EW = X'12345678' X'12345678"
R) = xxxxxxxx X'00000234"
Rul) = xooxxxx X'00005678"
CC = xxxx 0001

FIXED-POINT ARITHMETIC INSTRUCTIONS
The fixed=point arithmetic instructions are:

Instruction Name Mnemonic

Add Immediate Al
Add Halfword AH
Add Word AW
Add Doubleword AD
Subtract Halfword SH
Subtract Word SW
Subtract Doubleword SD
Multiply Immediate MI
Multiply Halfword MH
Multiply Word MW
Divide Halfword DH

Fixed-Point Arithmetic Instructions 59

Instruction Name Mnemonic
Divide Word DW

Add Word to Memory AWM
Modify and Test Byte MTB
Modify and Test Halfword MTH
Modify and Test Word MTW

The fixed-point arithmetic instruction set performs binary
addition, subtraction, multiplication, and division with
integer operands that may be data, addresses, index values,
or counts. One operand may be either in the instruction
word itself or may be in one or two of the current general
registers; the second operand may be either in main memory
or in one or two of the current general registers. For most
of these instructions, both operands may be in the same
general register, thus permitting the doubling, squaring,
or clearing the contents of a register by using a reference
address value equal to the R field value,

All fixed-point arithmetic instructions provide a condition
code setting that indicates the following information about
the result of the operation called for by the instruction:

Condition code settings:

1 2 3 4 Result

- = 0 0 Zero—the result in the specified general
register(s) is all zeros.

~ = 0 1 Negative —the instruction has produced a
fixed-point negative result,

- = 1 0 Positive —the instruction has produced a
fixed-point positive result,

- 0 - - Fixed-point overflow has not occurred during
execution of an add, subtract, or divide in-
struction, and the result is correct,

- 1 - - Fixed-point overflow has occurred during
execution of an add, subtract, or divide in-
struction. For addition and subtraction, the
incorrect result is loaded into the designated
register(s). For a divide instruction, the
designated register(s), and CC1, CC3, and
CC4 are not affected.

0 - - - No carry —for an add or subtract instruction,

there waos no carry of o 1-bit out of the high-

order (sign) bit position of the result.

1 - - = Carry —for an add or subtract instruction,
there was a 1-bit carry out of the sign bit
position of the result. (Subtracting zero will
always produce carry.)

60 Fixed-Point Arithmetic Instructions

Al ADD IMMEDIATE
(Immediate operand)

0 20 R Value

0 1 2 314 5 &6 718 9 10 1111213 14 15116 17 18 19120 21 22 2324 25 26 27(28 29 30 31

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. ADD
IMMEDIATE extends the sign of the value field (bit posi-
tion 12 of the instruction word) 12 bit positions fo the left,
adds the resulting 32-bit value to the confents of register R,
and loads the sum info register R.
Affected: (R), CC Trap: Fixed-pointoverflow,
or nonexistent instruc-

(R)+(l)]2_3-ISE—"R tion if bitrOisa 1.

Condition code settings:

1 2 3 4 ResultinR

- = 0 0 Zero
- = 0 1 Negative

- = 1 0 Positive

- 0 - - No fixed-point overflow

- 1 - - Fixed~-point overflow

0 - - - No carry from bit position 0
1 - = = Carry from bit position 0

If Al is indirectly addressed, it is treated as a nonexistent
instruction, in which case the BP unconditionally aborts
execution of the instruction (at the time of operation code
decoding) and traps fo location X'40' with the contents of
register R and the condition code unchanged.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the BP traps to location X'43" after loading
the sum into register R; otherwise, the BP executes the
next instruction in sequence.

AH ADD HALFWORD
(Halfword index alignment)

* 50 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3V

ADD HALFWORD extends the sign of the effective halfword
16 bit positions to the left (to form a 32-bit word in which
bit positions 0-15 contain the sign of the effective half-
word), odds the 32-bit result to the contents of register R,
and loads the sum into register R.

Affected: (R),CC Trap: Fixed-point overflow

(R) + EHSE—>R

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero

- = 0 1 Negative

- = 1 0 Positive

- 0 - - No fixed-point overflow

- 1 = =~ Fixed-point overflow

0 - = = No carry from bit position 0
1 - - =~ Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
is 1, the BP traps to location X'43' after loading the
sum into register R; otherwise, the BP executes the next
instruction in sequence.

AW ADD WORD
(Word index alignment)

* 30 R X Reference address

. . " N
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

ADD WORD adds the effective word to the contents of reg-
ister R and loads the sum into register R.
Affected: (R),CC

Trap: Fixed-point overflow

() + EW—=R

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero
- = 0 1 Negdtive
- - 1 0 Positive

- 0 - - No fixed-point overflow

- 1 - - Fixed-point overflow
0 - - - No carry from bit position 0
1 - - - Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the BP traps to location X'43' after loading
the sum into register R; otherwise, the BP executes the
next instruction in sequence.

AD ADD DOUBLEWORD
(Doubleword index alignment)

* 10 R X Reference address

0 1 2 31475 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 a1

ADD DOUBLEWORD adds the effective doubleword to the
contents of registers R and Rul (treated as a single, 64-bit
register); loads the 32 low-order bits of the sum into reg-
ister Rul and then loads the 32 high-order bits of the sum
into register R. R must be an even value; if R is an
odd value, the BP traps with the contents in register R
unchanged.

Affected: (R), (Rul), CC

Trap: Fixed-pointoverflow,
instruction exception
(R, Rul) + ED —R, Rul

Condition code settings:

1 2 3 4 ResultinR Rul

- = 0 0 Zero

- - 0 1 Negative

- - 1 0 Positive
- 0 - - No fixed-point overflow
- 1 - - Fixed-point overflow

0 - - - No carry from bit position 0

1 - - - Carry from bit position O

If CC2 is set to 1 and the fixed-poinf arithmetic trap mask
(AM) is a 1, the BP traps to location X'43' dofter loading
the sum into registers R and Rul; otherwise, the BP exe-
cutes the next instruction in sequence.

The R field of the AD instruction must be an even value for
proper operation of the instruction; if the R field of AD is
an odd value, the instruction traps to location X'4D',
instruction exception trap.

Example 1, even R field value:

Before execution After execution

ED = X'33333333EEEEEEEE' X'33333333EEEEEEEE'
®) = X7 X'44444445'

(Rul) = X'33333333" X'22222221"

CC = xxxx 0010

Fixed-Point Arithmetic Instructions 61

SH SUBTRACT HALFWORD
(Halfword index alignment)

* 58 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

SUBTRACT HALFWORD extends the sign of the effective
halfword 16 bit positions to the left (fo form a 32-bif word
in which bit positions 0-15 contain the sign of the effec-
tive halfword), forms the two's complement of the resulting
word, adds the complemented word to the contents of reg-
ister R, and loads the sum into register R,

Affected: (R),CC Trap: Fixed-point overflow

-EHS,E + {(R)—R

Condition code seftings:

1 2 3 4 ResultinR

- - 0 0 Zero
- = 0 1 Negative

- - 1 0 Positive

- 0 - -~ No fixed-point overflow
- 1 - - Fixed-point overflow
0 - - - No carry from bit position 0

1 - - =~ Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmefic trap mask
(AM) is a 1, the BP traps to location X'43" after loading
the sum into register R; otherwise, the BP executes the
next instruction in sequence.

SW SUBTRACT WORD
(Word index alignment)

* 38 R X

0 1V 2 314 5 6 718 9 70 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Reference address

SUBTRACT WORD forms the two's complement of the effec-
tive word, adds that complement to the contents of regis-
ter R, and loads the sum into register R.

Affected: (R),CC Trap: Fixed-point overflow
-EW + R) —/R

Cendition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero

-~ = 0 1 Negative

62 Fixed-Point Arithmetic Instructions

1 2 3 4 ResultinR

- - 1 0 Positive

- 0 - - No fixed~point overflow

- 1 - - Fixed-point overflow

0 - = = No carry from bit position 0
1 - = = Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the BP trops to location X'43' after loading
the sum into register R; otherwise, the BP executes the
next instruction in sequence.

SD SUBTRACT DOUBLEWORD

(Doubleword index alignment)

* 18 R X Reference address

0 1 2 314 5 6 718 9 10 1111213 14 15076 17 18 19120 21 22 23124 25 26 27128 29 30 31

SUBTRACT DOUBLEWORD forms the 64-bit two's comple-
ment of the effective doubleword, adds the complemented
doubleword to the contents of registers R and Rul (treated
as a single, 64-bit register), loads the 32 low-order bits of
the sum into register Rul and loads the 32 high-order bits
of the sum into register R.
Affected: (R), (Rul),CC Trap: Fixed-pointoverflow,

instruction exception
-ED + (R, Rul) —R, Rul

Condition code settings:

1 2 3 4 ResultinR, Rul

- - 0 0 Zero
- = 0 T Negative
- =~ 1 0 Positive

- 0 - - No fixed-point overflow

- 1 = - Fixed-point overflow
0 - - - No carry from bit position 0
1 - = = Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the BP traps to location X'43' after the re-
sult is loaded into registers R and Rul; otherwise, the BP
executes the next instruction in sequence.

The R field of the SD instruction must be an even value for
proper operation of the instruction; if the R field of SD is
an odd value, the instruction traps to location X'4D',
instruction exception trap; the contents in register R remain
unchanged.

M MULTIPLY IMMEDIATE
(Immediate operand)

0 23 R Value

0 v 2 304 5 6 718 9 10 nl12 13 14 15116 17 18 19120 21722 23124 25 26 27128 29 30 31

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. MULTIPLY
IMMEDIATE extends the sign of the value field (bit posi-
tion 12) of the instruction word 12 bit positions to the left
and multiplies the resulting 32-bit value by the contents

of register Rul, then loads the 32 high-order bits of the
product into register R, and then loads the 32 low-order
bits of the product info register Rul.

If R is an odd value, the result in register R is the 32 low-
order bits of the product. Thus, in order fo generate a
64-bit product, the R field of the instruction must be even
and the multiplicand must be in register R+1. The condi-
tion code settings are based on the 64-bit product formed
during instruction execution, rather than on the final con-
tents of register R. Overflow cannot occur.

Affected: (R), (Rul), CC2,
CC3,CC4

—R, Rul

Trap: Nonexistent instruc-
tion if bitOisa 1.

Rul) x 5_315¢

Condifion code settings:

1 2 3 4 64-bit product

- - 0 0 Zero.

NI .
nocyunve,

- = 1 0 Positive

- 0 - - Result is correct, as represented in regis-
ter Rul.

- 1 = - Result is not correctly representable in reg-

ister Rul alone.

If MI is indirectly addressed, it is freated as a nonexistent
instruction, in which case the BP unconditionally aborts
execution of the instruction (at the time of operation code
decoding) and fraps to location X'40' with the contents
of register R, register Rul, and the condition code un-
changed; otherwise, the BP executes the next instruction
in sequence.

Example 1, even R field value:

Before execution After execution

(])]2_3] = X'70000' X'70000'

(R) = XXXXXXXX X'00007000'
(Rul) = X'10001000' X'70000000"
CcC = XXXX x110

Example 2, odd R field value:

Before execution After execution

(I).I 231" X'01234* X'01234'
R) = X'00030002' X'369C2468"
CcC = XXXX x010
MH MULTIPLY HALFWORD
(Halfword index alignment)
* 57 R X Reference address
01 Z 314 35 8 718 T 0Nz 1318 BI16 17 18 510 21 22 BIoa 5 %6 D18 H 31

MULTIPLY HALFWORD multiplies the contents of bit posi-
tions 16-31 of register R by the effective halfword (with
both halfwords treated as signed, two's complement inte-
gers) and stores the product in register Rul (overflow cannot
occur). If R is an even value, the original multiplier
in register R is preserved, allowing repetitive halfword
multiplication with a constant multiplier; however, if R is
an odd value, the product is loaded into the same register.
Overflow cannot occur,

Affected: (Rul), CC3,CC4
(R);4_37 X EH—Rul

Condition code settings:

1 2 3 4 ResultinRul

- - 0 0 Zero
- = 0 1 Negative

- = 1 0 Positive

Example 1, even R field value:

Before execution After execution

EH = X'FFFF X'FFFF'

R) = X'xxxx000A' X'xxxx000A'
(Rul) = xxxxxxxx X'FEFFFFF6!
CC = xxxx w01

Example 2, odd R field value:

Before execution After execution

EH = XFFFF' X'FFFF'
R) = X'xxxxQ00A' X'FFFFFFF6'
CC = xxxx xx01

Fixed-Point Arithmetic Instructions 63

MW MULTIPLY WORD
(Word index alignment)

* 37 R X Reference address

T T Z 314 5 6 718 7 BB R BB T B RN 0B As BT BED DD

MULTIPLY WORD multiplies the contents of register Rul
by the effective word, loads the 32 high~order bits of
the product into register R and then loads the 32 low-
order bits of the product info register Rul (overflow cannot
occur),

If R is odd value, the result in register R is the 32 low-
order bits of the product. Thus, in order to generate a
64-bit product, the R field of the instruction must be even
and the multiplicand must be in register R+1. The condi-
tion code settings are based on the é4-bit product formed
during instruction execution, rather than on the final con-
tents of register R,

Affected: (R), (Rul),CC

(Rul) x EW —R, Rul

Condition code seftings:

1 2 3 4 64-bit product

- - 0 0 Zero.
- = 0 1 Negative,
- = 1 0 Positive.

- 0 - =~ Result is correct, as represented in regis-
ter Rul,

- 1 0 O Resultisnot correctly representable in reg-
ister Rul alone,

DH DIVIDE HALFWORD
(Halfword index alignment)

* 56 R X Reference address

0 12 3‘|4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 2% 30 31

DIVIDE HALFWORD divides the contents of register R

(treated as a 32-bit fixed-point integer) by the effective
halfword and loads the quotient into register R, If the
absolute value of the quotient cannot be correctly repre-
combad T D hibe Lilond mtob ool Smaiine. T Lol
UitV 1 W Wi 9, IACWU PUIIII WYSHIUY UNLUIS, 111 wiinen
case CC2 is sef to 1 and the contents of register R, and
CC1, CC3, and CC4 are unchanged.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-pointoverflow

R) + EH—R

64 Fixed=Point Arithmetic Instructions

Condition code settings:

1 2 3 4 ResultinR

- 0 0 0 Zeroquotient, no overflow,
- 0 0 1 Negative quotient, no overflow.
- 0 1 O Positive quotient, no overflow.

- 1 - - Fixed-point overflow,

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the BP traps to location X'43' with the con-
tents of register R, CC1, CC3, and CC4 unchanged.

DW DIVIDE WORD
(Word index alignment)

* 36 R X Reference address

0 1 2 314 5 6 708 9 10 111213 14 151176 17 18 19120 2 22 23124 25 26 27128 29 30 31

DIVIDE WORD divides the contents of registers R and Rul
(treated as a é4-bit fixed-point integer) by the effective
word, loads the integer remainder into register R and then
loads the integer quotient into register Rul. If a nonzero
remainder occurs, the remainder has the same sign as the
dividend (original contents of register R). If Ris an odd
value, DW forms a é4-bit register operand by extending
the sign of the contents of register R 32 bit positions to the
left, then divides the 64-bit register operand by the effec-
tive word, and loads the quotient info register R. In this
case, the remainder is lost and only the contents of reg-
ister R are affected.

If the absolute value of the quotient cannot be correctly
represented in 32 bits, fixed-point overflow occurs; in
which case CC2 is set to 1 and the contents of register R,
register Rul, CCl, CC3, and CC4 remain unchanged;
otherwise, CC2 is reset to 0, CC3 and CC4 reflect the
quotient in register Rul, and CC1 is unchanged.

Affected: (R), (Rul), CC2
CC3,CC4

Trap: Fixed-point overflow

R, Rul) + EW—=R (remainder), Rul (quotient)
Condition code settings:

1 2 3 4 ResultinRul

- 0 0 0 Zero quotient, no overflow.
- 0 0 1 Negative quotient, no overflow,
- 0 1 0 Positive quotient, no overflow.

- 1 - - Fixed-point overflow,

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the BP traps to location X'43' with the

original contents of register R, register Rul, CC1, CC3,
and CC4 unchanged; otherwise, the BP executes the next
instruction in sequence.

AWM ADD WORD TO MEMORY'
(Word index alignment)

-

* 66 R X

01 2 3i4 56 718 9 10 11112 13 14 15116 17 18 19120 21 22 23i24 25 26 27i232930 Kl

Reference address

ADD WORD TO MEMORY adds the contents of register R
to the effective word and stores the sum in the effective
word location. The sum is stored regardless of whether or
not overflow occurs.

Affected: (EWL), CC Trap: Fixed-pointoverflow
EW + (R) — EWL

Condition code settings:

1 2 3 4 ResultinEWL

- - 0 0 Zero
- = 0 1 Negative

- = 1 0 Posifive

- 0 - = No fixed-point overflow

~ 1 = - Fixed-point overflow

0 - - - No carry from hit nosition 0
1 - =~ = Carry from bit position 0

If CC2 is set to 1 and fixed-point arithmetic trap mask
(AM) is a 1, the BP traps to location X'43' after the re-
sult is stored in the effective word location; otherwise, the
BP executes the next instruction in sequence.

MTB MODIFY AND TEST BYTE!
(Byte index alignment)

Reference address

* 73 R X

01 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is ex-
tended 4 bit positions to the left, fo form a byte with bit
positions 0-4 of that byte equal to the high-order bit of

fThis instruction requires two memory references to the some
location for its execution. To preclude other processors
from accessing the effective location during this time, the
memory unit containing the effective location is reserved
(not accessible fo other processors) until the instruction is
completed.

the R field, This byte is added to the effective byte and
then (if no memory protection violation occurs) the sum is
stored in the effective byte location and the condition code
is set according to the value of the resultant byte. This
process allows modification of a byte by any number in the
range -8 through +7, followed by a test.

If the value of the R field is zero, the effective byte is
tested for being a zero or nonzero value. The condition
code is set according to the result of the test, but the
effective byte is not affected. A memory write-protection
violation cannot occur in this case; however, a memory
read-protfection violation can occur.

Affected: CCif (I)g-11 #0
(EBL) and CC if (I)g-11 #0

If (1)8_” #£0, EB + (I)S-HSE—. EBL and set CC

If (])8_” =0, test byte and set CC

Condition code settings:

1 2 3 4 ResultinEBL

- 0 0 0 Zero
- 0 1 0 Nonzero
0 - - - No carry from byte

1 - - - Carry from byte

I MTB ic oxecuted in an interrupt of trap location, the
condition code is not affected and a 20-bit reference ad-
dress is used, as described under "Interrupt and Trap Entry

Addressing", Chapter 2.

Note: All "Modify and Test" instructions in interrupt loca-
tions other than Counter 4 use real, or real extended,
addressing mode. Counter 4 uses virtual addressing
mode.

MTH MODIFY AND TEST HALFWORD'

(Halfword index alignment)

*! 53 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3}

If the value of the R field is nonzero, the high-order bit
of the R field (bit position 8 of the instruction word) is ex-
tended 12 bit positions to the left, to form a halfword with
bit positions 0-11 of that halfword equal fo the high-order
bit of the R field. This halfword is added to the effective
halfword and then (if no memory protection violation oc-
curs) the sum is stored in the effective halfword location
and the condition code is set according to the value of the
resultant halfword. The sum is stored regardless of whether
or not overflow occurs. This process allows modification of
a halfword by any number in the range -8 through +7, fol-
lowed by a test,

Fixed-Point Arithmetic Instructions 65

If the value of the R field is zero, the effective halfword
is tested for being a zero, negative, or positive value.
The condition code is set, according to the result of the
test, but the effective halfword is not offected. A memory
write~protection violation cannotf occur in this case; how=
ever, a memory read-protection violation can occur,

Affected: CC if (g7 = 0;
(EHL) and CC if (I)g-17 # 0

If (INg_11 =0, test halfword and set CC

If (g-171 #0, EH + (I)g_115g —EHL ond set CC

Trap: Fixed-pointoverflow

Condition code settings:

1 2 3 4 ResultinEHL

- - 0 0 Zero

- = 0 1 Negative

- = 1 0 Positive

- 0 - - No fixed-point overflow
- 1 =~ =~ Fixed-point overflow

0 - - - No carry from halfword
1 - - - Carry from halfword

If CC2is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the BP traps to location X'43' ofter the re-
sult is stored in the effective halfword location; otherwise,
the BP executes the next instruction in sequence.

If MTH is executed in an interrupt or trap location, the
condition code is not affected and a 20-bit reference ad-
dress is used, as described under "Interrupt and Trap Entry
Addressing", Chapter 2,

MTW MODIFY AND TEST WORDT
(Word index alignment)

* 33 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

If the value of the R field is nonzero, the high~-order bit
of the R field (bit position 8 of the instruction word) is

extended 28 bit positions to the left, to form a word with
bit positions 0-27 of that word equal to the high-order bit

rThis instruction requires two memory references to the same
location for its execution. To preclude other processors
from accessing the effective location during this time, the
memory unit containing the effective location is reserved
(not accessible to other processors) until the instruction is
completed.

66 Comparison Instructions

of the R field. This word is added to the effective word
and then (if no memory protection violation occurs) the
sum is stored in the effective word location and condition
code is set according fo the value of the resultant word,
The sum is stored regardless of whether or not overflow
occurs, This process allows modification of a word by
any number in the range -8 through +7, followed by

a test,

If the value of the R field is zero, the effective word is
tested for being a zero, negative, or positive value. The
condition code is set according to the result of the test,
but the effective word is not affected. A memory write-
protection violation cannot occur in this case; however,
a memory read-protection violation can occur.

Affected: CCif (I)g-11 = 0;
(EWL) and CC if (I)g_11 A0

If (I)g-11 = 0, test word and set CC

If I)g-11 #0, EW +Ig_115E — EWL and set CC

Trap: Fixed-pointoverflow

Condition code settings:

1 2 3 4 Resultin EWL

- - 0 0 Zero
- = 0 1 Negative

- - 1 0 Positive

- 0 - - No fixed~-point overflow
- 1 - - Fixed-point overflow

0 - - = No carry from word

1 - - - Carry from word

If CC2is set to 1 and the fixed-point arithmetic trap mask
(AMY ic o 1, the BP traps to location X'43' ofter the re-

sult is stored in the effective word location; otherwise, the
BP executes the next instruction in sequence.

If MTW is executed in an interrupt or trap location, the

condition code is not affected and a 20-bit reference ad-

dress is used, as described under "Interrupt and Trap Entry
Addressing", Chapter 2.

COMPARISON INSTRUCTIONS

T A .
ine compurison insirucitons are:

Instruction Name Mnemonic
Compare Immediate ClI
Compare Byte CB

Instruction Name Mnemonic
Compare Halfword CH
Compare Word Ccw
Compare Doubleword CD
Compare Selective (O
Compare With Limits in Register CLR
Compare With Limits in Memory CM

All comparison instructions produce a condition code
setting which is indicative of the resulfs of the com-
parison, without affecting the effective operand in mem-
ory and without affecting the contents of the designated
register.

cl COMPARE IMMEDIATE

(Immediate operand)

0 21 R Value

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

COMPARE IMMEDIATE extends the sign of the value field
(bit position 12) of the instruction word 12 bit positions to
the left, compares the 32-bit result with the contents of
register R (with both operands treated as signed fixed~point
quantities), and then sets the condition code according to
the resuiis of fhe comparison.
Affected: CC2,CC3,CC4 Trap: Nonexistent instruc-
tion if bit O isa 1.

R) = Myo315e
Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Equal
- - 0 1 Register value less than immediate value.
- - 1 0 Register value greater than immediate value.

- 0 - - No 1-bits compare, (R) n (I) 0.

12-325E ~
- 1 = - One or more 1-bits compare,

R)n (15 3956 7 ©-

If Clis indirectly addressed, it is freated as a nonexistent
instruction, in which case the basic processor uncondi~
tionally aborts execution of the instruction (at the time of
operation code decoding) and then traps to location X'40'
with the condition code unchanged.

CB COMPARE BYTE
(Byte index alignment)

* 71 R X Reference address

0 1 2 314 5 ¢ 708 9 1011112 13 14 15116 17 18 19120 21 22 23724 25 26 27128 25 30 31

COMPARE BYTE compares the contents of bit positions 24~31
of register R with the effective byte (with both bytes treated
as positive integer magnitudes) and sets the condition code
according to the results of the comparison.

Affected: CC2, CC3, CC4

R)gg 37+ EB

Condition code settings:

1 2 3 4 Resultof Comparison

- - 0 0 Equal.

- = 0 1 Register byte less than effective byte.

- - 1 0O Register byte greoter than effective byte.
- 0 - - No I-bits compare, (R)24_3] n EB=0.

- 1 - - Oneormore 1-bits compare,

(R)24_3] n EB#0.

CH COMPARE HALFWORD

(Halfword index alignment)

* 51 R X Reference address

: ; . -
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

COMPARE HALFWORD extends the sign of the effective
halfword 16 bit positions to the left, then compares the
resultont 32-bit word with the contents of register R (with

both words treated as signed, fixed-point quantitfies) and

sets the condition code according to the results of the

comparison,

Affected: CC2,CC3,CC4

R) : EHSE

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Equal.

- - 0 1 Register word less than effective halfword
with sign extended,

- - 1 0 Register word greater than effective halfword
with sign extended.

Comparison Instructions 67

1 2 3 4 Result of Comparison

- 0 - =~ No l-bits compare, (R) n EHSE =0.

- 1 =~ = Oneormore 1-bits compare,

(R) n EHSE #0.

cw COMPARE WORD
(Word index alignment)

* 31 R X Reference address

T 7T 31a 3 6718 7 W0 N2 13 14 5118 718 9150 I 23 BT 35 %6 5138 55 30 3

COMPARE WORD compares the contents of register R with
the effective word, with both words treated as signed fixed-
point quantities, and sets the condition code according to
the results of the comparison.

Affected: CC2,CC3,CC4

(R) : EW

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Equal.
- = 0 1 Register word less than effective word.

- - 1 0 Register word greater than effective word.

- 0 - - No 1-bits compare, (R)n EW = 0.

- 1 = - Oneor more 1-bits compare, (R) n EW # 0.
cD COMPARE DOUBLEWORD

* 11 R X Reference address

0 1 2 3 i4 5 6 718 9 10 11112 13 14 liilb 17 18 19120 21 22 23124 25 26 27128 29 30 31

COMPARE DOUBLEWORD compares the effective double-
word with the contents of registers R and Rul (with both
doublewords treated as signed, fixed-point quantities)
ond sets the condition code according to the results of the
comparison. If the R field of CD is an odd value, CD forms
a 64-bit register operand (by duplicating the contents of
register R for both the 32 high-order bits and the 32 low-
order bits) and compares the effective doubleword with the
64-bit register operand. The condition code settings are
based on the 64-bit comparison,

Affected: CC3,CC4

(R,Rul) : ED

68 Comparison Instructions

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Equal.

- = 0 1 Register doubleword less than effective
doubleword.

- - 1 0 Register doubleword greater than effective

doubleword.
cS COMPARE SELECTIVE
* 45 R X Reference address

G 1 2 314 5 6 78 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

COMPARE SELECTIVE compares the contents of register R
with the effective word in only those bit positions selected
by a 1 in corresponding bit positions of register Rul (mask).
The contents of register R and the effective word are ignored
in those bit positions designated by a 0 in corresponding bit
positions of register Rul. The selected contents of register R
and the effective word are treated as positive integer mag-
nitudes, and the condition code is set according to the re=
sult of the comparison. If the R fieldof CS is an odd value;
CS compares the confents of register R with the logical
product (AND) of the effective word ond the contents of
register R,

Affected: CC3,CC4

IfRis even: (R)n (Rul): EW n (Rul)
If Risodd: (R) : EWn (R)

Condition code settings:

1 2 3 4 Results of Comparison under Mask in Rul

- - 0 0 Equal.
- = 0 1 Register word less than effective word.

- - 1 0 Register word greater than effective word.
(if Ris even).

CLR COMPARE WITH LIMITS IN REGISTERS
(Word index alignment)

Reference address

* 39 R X

0 1 2 34 5 6 718 9 10 nhz2 131415116 17 18 19720 21 22 23124 25 26 27128 29 30 3!

COMPARE WITH LIMITS IN REGISTERS simultaneously
compares the effective word with the contents of register R
and with the contenis of register Rui (with aii three words
treated as signed fixed-point quantities), and sets the con=-
dition code cccording to the results of the comparisons.

Affected: CC

(R) : EW, Rul) : EW

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 Contents of R equal to effective word.
- - 0 1 Contentsof R less than effective word.

- = 1 0 Contents of R greater than effective word.

0 0 - - Confentsof Rul equal fo effective word.

0 1 - - Contentsof Rul less than effective word.

1 0 - - Contents of Rul greater than effective word.
CLM COMPARE WITH LIMITS IN MEMORY

(Doubleword index alignment)

—

* 19 R X Reference address

T T 3 374 35 6 718 5 0N B BI6 17 18 BID 5 2 BIAE B TE S DI

COMPARE WITH LIMITS IN MEMORY simultaneously com-
pares the contents of register R with the 32 high-order bits
of the effective doubleword and with the 32 low-order bits
of the effective doubleword, with all three words treated
as 32-bit signed quantities, and sets the condition code
according to the results of the comparisons.

Affected: CC

{R) : ED0—3]; R) : ED32—63

Condifion code settings:

1 2 3 4 Result of Comparison

- = 0 0 Contents of R equal to most significant word,
R) = EDO—SI .

- - 0 1 Contents of R less than most significant word,
(R) < EDO—S]'

- - 1 0 Confents of R greater than most significant
word, (R) > ED

0-31°
0 0 - - Contents of R equal to least significant word,
R) = ED32—63‘
0 1 - - Contents of R less than least significant word,
(R) < ED32-63'
1 0 - -~ Contents of R greater than least significant

word, (R) > ED32-63'

LOGICAL INSTRUCTIONS

All logical operations are performed bit by corresponding
bit between two operands; one operand is in register R and

the other operand is the effective word. The result of the
logical operation is loaded into register R.

OR OR WORD
(Word index alignment)

* 49 R X

01 2 314 576 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Reference address

OR WORD logically ORs the effective word info register R,
If corresponding bits of register R and the effective word
are both 0, a 0 remains in register R; otherwise, a 1 is
placed in the corresponding bit position of register R. The
effective word is not affected.

Affected: (R), CC3,CC4

R) u EW—R, where0u0=0,0ul=1,1u0=1,
Tul=1

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero.
- - 0 1 BitOofregister Risa 1.

- ~ 1 0 Bit O of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

EOR EXCLUSIVE OR WORD
(Word index alignment)

* 48 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 25 27128 29 30 3V

EXCLUSIVE OR WORD logically exclusive ORs the effec-
tive word into register R, If corresponding bits of regis-
ter R and the effective word are different, a 1 is placed in
the corresponding bit position of register R; if the contents
of the corresponding bit positions are alike, a 0 is placed

in the corresponding bit position of register R, The effec-
tive word is not affected.

Affected: (R), CC3,CC4

(R) @ EW—R

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero.
- = 0 1 BitOofregister Risa 1.

- - 1 0 Bit O of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

Logical Instructions 69

AND AND WORD
(Word index alignment)

* 4B R X Reference address

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19720 21 22 23{24 25 25 27128 259 30 31

AND WORD logically ANDs the effective word into reg-
ister R. If corresponding bits of register R and the effec-
tive word are both 1, a 1 remains in register R; otherwise,
a 0 is placed in the corresponding bit position of register R,
The effective word is not affected.

Affected: (R), CC3,CC4

(R) n EW—R

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 Zero.

- - 0 1 BitOofregisterRisal.

- - 1 0 BitOof register Ris a 0 and bit positions 1-31

of register R contain at least one 1.

SHIFT INSTRUCTIONS

The instruction format for logical, circular, arithmetic,
and searching shift operations is:

S SHIFT
(Word index alignment)

amount of the shift are determined by bits 25-31 of the
indirect word plusbits 25-31 of the specified index register.

The effective address does not reference memory. Bit
positions 15-20 and 24 of the effective virtual address are
ignored, Bit positions 21, 22, and 23 of the effective
virtual address determine the type of shift, as follows:

21 22 23 Shift Type

Reference address

* 25 R X

0)23i45678910111213)

If neither indirect addressing nor indexing is called for in
the instruction SHIFT, bit positions 21-23 of the reference
address field determine the type, and bit positions 25-31
determine the direction and amount of the shift.

If only indirect addressing is called for in the instruction,
bits 15-31 of the instruction are used to access the indirect
word and then bits 21-23 and 25-31 of the indirect word
determine the type, direction, and amount of the shift.

If only indexing is called for in the instruction, bits 21-23
of the instruction word determine the type of shift; the

direction and amount of shift are determined by bits 25-31
of the instruction plus bits 25-31 of the specified index
register.

If both indirect addressing ond indexing are called for in
the instruction, bits 15-31 of the instruction are used to
access the indirect word and then bits 21~23 of the in-
direct word determine the type of shift; the direction and

70 Shift Instructions

0 0 O |Logical, single register

0 0 1

Logical, double register

0 1 0 Circular, single register
Circular, double register

1 0 0 Arithmetic, single register
Arithmefic, double register
1 1 0 Searching, single register

1 1 1 Searching, double register

Bit positions 25 through 31 of the effective virtual address
are a shift count that determines the direction and amount
of the shift. The shift count (C) is treated as a 7-bit
signed binary integer, with the high-order bit (bit posi-
tion 25) as the sign (negative integers are represented in
two's complement form). A positive shift count causes a
left shift of C bit positions. A negative shift count causes
a right shift of Ic| bit positions. The value of C is within
the range: -64 < C < 463,

All double-register shift operations require an even value
for the R field of the instruction, and freat registers R and
Rul as a 64-bit register with the high-order bit (bit posi-
tion 0 of register R) as the sign for the entire register. If
the R field of SHIFT is an odd value and a double-register
shift operation is specified, a register doubleword is formed
by duplicating the contents of register R for both the
32 high-crder bits and the 32 low-crder bits of the double-
word., The shift operation is then performed and the

32 high-order bits of the result are loaded into register R.

Overflow occurs (on left shifts only) whenever the value of
the sign bit (bit position 0 of register R) changes. At the
completion of logical left, circular left, arithmetic left, and
searching left shifts, the condition code is set as follows:

1 2 3 4 Resultof Shift

0 - - =~ Even number of 1's shifted off left end of
register R,

1 - - = Odd number of 1's shifted off left end of
register R,

"Not applicable for seerching shift,

1 2 3 4 Result of Shift

- 0 - = Nooverflow on left shift,

- 1 - = Overflow on left shift.

- - = 1 Searching shift terminated with Ry equal to 1.

At the completion of right shifts, the condition code is set
as follows:

1 2 3 4

00 - -

Logical Shift, Single Register

* 25 R X

Circular Shift, Double Register

Referencé_ address
O[TTE] Count

21 22 23124 25 26 27128 29 30 a1

* 25 R X

01 2 3[4 5 6 718 9 10 121314

If the shiff count, C, is positive, the contents of registers R
and Rul are shifted left C places. Bits shifted past bit
position O of register R are copied into bit position 31
of register Rul. (No bits are lost.) If C is negative, the
contents of registers R and Rul are shifted right |C| places.
Bits shifted past bit position 31 of register Rul are copied
into bit position 0 of register R. (No bits are lost.)

Affected: (R), (Rul), CC1,CC2

Arithmetic Shift, Single Register

* 25 R X

R fgrence'__ address

T T 2 314 56 718 5 10 Iz 13 14 15116 7

If the shift count, C, is positive, the contents of register R
are shifted left C places, the 0's copied into vacated bit
positions on the right. (Bits shifted past Ry are lost.) If C
is negative, the contents of register R are shifted right |C]
places, with 0's copied into vacated bit positions on the
left. (Bits shifted past R3q are lost.)

Affected: (R), CC1,CC2

Logical Shift, Double Register

Reference address

-

Aar n
Lo n

0j0[1E3 Count

01 2 3[4 5 6 708 9 100 21 22 23124725 26 2728 29 30 31

If the shift count, C, is positive, the contents of registers
R and Rul are shifted left C places, with 0's copied into
vacated bit positions on the right. Bits shifted past bit
position O of register Rul are copied into bit position 31
of register R. (Bits shifted past Rq are lost.) If C is nega-
tive, the contents of registers R ond Rul are shifted right
ICl places with 0's copied into vacated bit positions on the
left. Bits shifted past bit position 31 of register R are
copied info bit position O of register Rul. (Bits shifted
past Rulzy are lost.)

Affected: (R), Rul), CC1,CC2

Circular Shift, Single Register

Reference address

23 R | X O[1[0F] Count

T 1 2 314 5 6 718 5 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27126 % 30 31

If the shift count, C, is positive, the contents of register R
are shifted left C places. Bits shifted past bit position 0
are copied into bit position 31. (No bits are lost.) If C
is negative, the contents of register R are shifted right
[Cl places. Bits shifted past bit position 31 are copied
info bit position 0. (No bits are lost,)

Affected: (R),CC1,CC2

0 1 2 314 5 ¢ 718 9 10 111213 14 15116 17 18 19120 27722 23724 25 26 27128 29 30 31

If the shift count, C, is positive, the contents of register R
are shifted left C places, with 0's copied into vacated bit
positions on the right. (Bits shifted past Rg are lost.) If C
is negative, the contents of register R are shifted right |C|
places, with the contents of bit position 0 copied into va=
cated bit positions on the left. (Bits shifted past Ry
are lost.)

Affected: (R), CC1,CC2

Arithmetic Shift, Double Register

n r N s
Rererence aaaress

]0]] :?:3:4 Count

122 23124 25 26 2128 25 30 31

* 25 R X

0 1 2 314 5 6 718 9 1011213 1415

If the shift count, C, is positive, the contents of register R
and Rul are shifted left C places, with 0's copied into va-
cated bit positions on the right. Bits shifted past bit posi-
tion O of register Rul are copied into bit position 31 of
register R, (Bits shifted past Rq are lost.) If C is negative,
the contents of registers R and Rul are shifted right |C]|
places, with the contents of bit position 0 of register R
copied into vacated bit positions on the left. Bits shifted
past bit position 31 of register R are copied into bit posi-
tion O of register Rul. (Bits shifted past Rul3y are lost.)

Affected: (R), (Rul), CC1,CC2

Searching Shift, Single Register

Reference address
M1oE] Count

20 21 22 23124 25 26 27128 29 30 31

* 25 R X

0 1 2 3(4 5 6 718 9 10 i1z 13 14

The searching shift is circulor in either direction. If the
shift count, C, is positive, the contents of register R are
shifted left C bit positions or until a 1 appears in bit posi-
tion 0. If C is negative, the contents are shifted right |C|
positions or until a 1 appears in bit position 0. When the
shift is terminated, the remaining count is stored in regis-
ter 1, which is dedicated to the searching shift instruction.

Shift Instructions 71

Bits 0-24 of register 1 are cleared and the remaining count
is loaded info bits 25-31. If the initial contents of bit 0
is equal to 1, then no bits are shifted by the instruction,
In this case the original count in the instruction is stored
in register 1.

Searching shift causing a change in bit position 0 causes
CC2 to be set to 1. If bit position 0 is not changed during

a searching shift, CC2is cleared. CC4 is set to 1 if the
shift is terminated with a 1 in bit position 0.

Affected: (R), (R1), CC2,CC4

Searching Shift, Double Register

R Reference address
2 R | X] Count

0 1 2 314 5 6 718 9 10 112 13 14 15116 17 18 19120 21 22 23l24 25 26 27128 29 30 3

The searching shift is circular in either direction. If the
shift count, C, is positive, the contents of registers R and
Rul are shifted left C bit positions or until a 1 appears in
bit position 0 of register R. If C is negative, the confents
are shifted right |C| positions or until o 1 oppears in bit
position 0. When the shift is terminated, the remaining
count is stored in register 1, which is dedicated to the
searching shift instruction. Bits 0-24 of register 1 are
cleared and the remaining count is loaded info bits 25-31,

Searching shift causing a change in bit position 0 causes
CC2 to be set to 1. If bit position 0 is not changed during
a searching shift, CC2 is cleared. CC4 is set to 1 if the
shift is terminated with a 1 in bit position 0.

Affected: (R), (Rul), (R1), CC2, CC4

FLOATING-POINT SHIFT

Floating-point numbers are defined in the "Floating-
Point Arithmetic Instructions" section. The format for the
£l

PO S RPN JU DN I o N JUOY TSNS I
llUUlIll&"'F\Jllll DINLET FTINTUGIIUNL 13,

SF SHIFT FLOATING
(Word index alignment)

. Reference address
24 R X DE| Count

012 3i4 5 6 718 9 10 1311213 14 15106 17 18 19120 21 22 23124 25 26 27128729 30 31

If direct addressing and no indexing is called for in the in-
struction SHIFT FLOATING, bit position 23 of the reference
address field determines the type (long or short format) of
shift, and bit positions 25-31 determine the direction and
amount of the shift,

If indirect addressing and no indexing is called for in the

instruction, bit positions 15-31 of the instruction are used
to access the indirect word and then bit positions 23 and
25-31 of the indirect word determine the type, direction,

and amount of the shift,

72 Shift Instructions

If direct addressing and indexing are called for in the
instruction, bit 23 of the reference address (not affected
by subsequent indexing) determines the type of shift.
Bits 25-31 of the reference address plus bits 25-31 of the
specified indexed register determine the direction and
amount of the shift,

If indirect addressing and indexing are called for in the in-
struction, bits 15-31 of the reference address are used to
access the indirect word. Bit 23 of the indirect word (not
affected by subsequent indexing) determines the type of
shift. Bits 25-31 of the indirect address plus bits 25-31 of
the specified index register determine the direction and
amount of the shift,

The shift count, C, in bit positions 25-31 of the effective
virtual address determines the amount and direction of
the shift. The shift count is treated as a 7-bit signed
binary integer, with the high-order bit (bit position 25) as
the sign (negative integers are represented in two's com-
plement form).

The absolute value of the shift count determines the number
of hexadecimal digit positions the floating—point number is
to be shifted. If the shift count is positive, the floating=
point number is shifted left; if the count is negative, the
number is shifted right.

SHIFT FLOATING loads the floating=point number from the
register(s) specified by the R field of the instruction info a

set of internal registers. If the number is negative, it

is two's complemented. A record of the original sign is

retained. The floating-point number is then separated into
a characteristic and a fraction, and CC1 and CC2 are both
reset to O's,

A positive shift count produces the following left shift
operations:

1. If the fraction is normalized (i.e., is less than 1 and
is equal to or greater than 1/16), or the fraction is

all 0's, CC1 isset to 1.
[T A ST £o by e U1 AL ul I T .«
1 e racnon riea 15 ait vy, me enrire rlourlng-pomf
number is set to all 0's ("true" zero), regardless of the
sign and the characteristic of the original number.

1

3. If the fraction is not normalized, the fraction field is
shifted 1 hexadecimal digit position (4 bit positions) to
the left and the characteristic field is decremented
by 1. Vacated digit positions at the right of the frac-
tion are filled with hexadecimal 0's.

If the characteristic field underflows (i.e., is all 1's
as the result of being decremented), CC2 is set to 1.
However, if the characteristic field does not under-
fiow, the shift process (shift fraction, and decre-
ment characteristic) continues until the fraction is
normalized, until the characteristic field underflows,
or until the fraction is shifted left C hexadecimal
digit positions, whichever occurs first. (Any two,
or all three, of the terminating conditions can occur
simultaneously.)

4, At the completion of the left shift operation, the
floating-point result is loaded back info the general
register(s). If the number was originally negative, the
two's complement of the resultant number is loaded
into the general register(s).

5. The condition code settings following a floating=point
left shift are as follows:

1 2 3 4 Result

- - 0 0 "True" zero {all 0's).
- =~ 0 1 Negative.
- = 1 0 Positive.

0 0 - - Cdigits shifted (fraction unnormalized,
no characteristic underflow).

1 - - - Fraction normalized (includes "true"
zero).
- 1 = =~ Characteristic underflow.

A negative shift count produces the following right shift
operations {again assuming that negative numbers are two's
complemented before and after the shift operation):

1. The fraction field is shifted 1 hexadecimal digit posi-
tion to the right and the characteristic field is incre-
menfed by 1. Vacated digit positions at the left are
filled with hexadecimal 0's.

2. If the characteristic field overflows (i.e., is all O's as
the result of being incremented), CC2 is set to 1.
However, if the characteristic field does not overflow,
the shift process (shift fraction, and increment char-
acteristic) continues until the characteristic field
_overflows or until the fraction is shifted right |C| hexa-
decimal digit positions, whichever occurs first. (Both
terminating conditions can occur simultaneously.)

3. If the resultont fraction field is all 0's, the enfire
floating=point number is set to all 0's ("true" zero),
regardless of the sign and the characteristic of the
original number,

4. At the completion of the right shift operation, the
floating-point result is loaded back into the general
register(s). If the number was originally negative,
the two's complement of the resultant number is loaded
into the general register(s).

5. The condition code seftings following a floating—point
right shift are as follows:

1 2 3 4 Result

- - 0 0 "True" zero (all zeros).

- = 0 1 Negative.

1 2 3 4 Result

- = 1 0 Positive.

0 0 - - |C|digits shifted (no characteristic
overflow).
0 1 - - Characteristic overflow.

Floating Shift, Single Register

* 24 R X

01 2 3714 5 6 718 9 10 {12 13 14 15116 17 18 19120 21 22

Reference address
10E] Count

23124 25

28 27128 29 30 3T
The short-format floating=point number in register R is

shifted according to the rules established above for floating-
point shift operations.

Affected: (R),CC

Floating Shift, Double Register

* 24 R X

0 1 2 34 5 6 718 9 10 1l12713 74 15016 17 18 19120 21 22 23124 25 26 271\282930 31

The long-format floating-point number in registers R and
Rul is shifted according to the rules established above for
floating=point shift operations. (If the R field of the in-
struction word is an odd value, a long~formai floating-
point number is generated by duplicating the contents of
register R, and the 32 high-order bits of the resulf are

fomdad b o2 . D\
1IGGGCS 10 TSGIdIch n,

Affected: (R), (Rul), CC

CONVERSION INSTRUCTIONS

The conversion instructions are:

Instruction Name Mnemonic
Convert by Addition CVA
Convert by Subtraction CVsS

These two conversion instructions can be used to accom-
plish bidirectional translation between binary code and any
other weighted binary code, such as BCD.

The effective addresses of the instructions CONVERT BY

ADDITION and CONVERT BY SUBTRACTION each point
to the starfing location of a conversion table of 32 words,
containing weighted values for each bit position of regis-
ter Rul. The 32 words of the conversion table are con-
sidered to be 32-bit positive quantities, and are referred

Conversion Instructions 73

to as conversion values. The intermediate results of these
instructions are accumulated in internal basic processor
registers until the instruction is completed; the result is
then loaded into the appropriate general register. Both
instructions use a counter (n) thatis setto 0 at the beginning
of the instruction execution and is incremented by 1 with
each iteration, until a total of 32 iterations has been
performed.

If a memory parity or protection violation trap occurs dur-
ing the execution of either instruction, the instruction se-
quence is aborted (without having changed the contents of
register R or Rul) and may be restarted {at the beginning of

the instruction sequence) after the trap routine is processed.

CVA CONVERT BY ADDITION
(Word index alignment)

* 29 R X Reference address

0 v 2 314 5 6 718 9 10 nhi2 13 14 15776 17 18 19120 21 22 23124 25 26 27728 29 30 31

CONVERT BY ADDITION initially clears the internal A reg-
ister and sets an internal counter (n) to 0. If bit position n
of register Rul contains a 1, CVA adds the nth conversion
value (contents of the word location pointed o by the ef-
fective address plus n) to the contents of the A register,
accumulates the sum in the A register, and increments n
by 1. If bit position n of register Rul contains a 0, CVA
only increments n. If n is less than 32 after being incre-
mented, the next bit position of register Rul is examined,
and the addition process continues through n equal to 31;
the result is then loaded into register R. _If, on any itera-
tion, the sum has exceeded the value 232'], CC1 is set
to 1; otherwise, CC1 is reset to 0,

Affected: (R), CCl1,CC3,CC4

0—A, 0—-n

If (Ru])n =1, then EWL +n) + (A)—A, n+ 1 —=n
If (Rul)n =0, thenn +1—n

If n <32, repeat; otherwise, (A)— R and continue to
next instruction.

Condition code setftings:

1 2 3 4 ResultinR

- - 0 0 Zero.

- - 0 1 BitOofregisterRisal.

- = 1 0 Bit O of register Ris a 0 and bit positions 1-31
of register R contain af leost one 1.

0 - - - Sumis correct (less than 232).

1 - =~ - Sumis greater than 2323,

74 Floating-Point Arithmetic Instructions

CVvs CONVERT BY SUBTRACTION
(Word index alignment)

* 28 R X Reference address

0 17 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

CONVERT BY SUBTRACTION loads the internal A register
with the contents of register R, clears the internal B regis~
ter, and sets an internal counter (n) to 0. All conversion
values are considered to be 32-bit positive quontities. If
the nth conversion value (the contents of the word location
pointed fo by the effective address plus n) is equal to or
less than the current contents of the A register, CVS incre-
ments n by 1, adds the two's complement of the nth con-
version value to the contents of the A register, stores the
sum in the A register, and stores a 1 in bit position n of the
B register. If the nth conversion value is greater than the
current contents of the A register, CVS only increments n
by 1. If n is less than 32 ofter being incremented, the
next conversion value is compared and the process con-
tinues through n equal to 31; the remainder in the A reg-
ister is loaded into register R, and the converted quantity
in the B register is loaded into register Rul.

Affected: (R), Rul), CC3,CC4
R)—A, 0—B, 0—-n
If (EWL +n) < (A) then A - (EWL +n) —A,
1—B ,n+1—n
n
If (EWL +n) > (A) thenn +1—n

If n <32, repeat; otherwise, (A)—R, (B) —=Rul and
continue to the next instruction.

Condition code settings:

1 2 3 4 ResultinRul

- = 0 0 Zero.
- - 0 1 BitOof register Rulisa I.
- = 1 0 BitOof register Rul is a 0 and bit posi-

tions 1-31 of register Rul contain at least
one 1.

FLOATING-POINT ARITHMETIC INSTRUCTIONS

The floating=point arithmetic instructions are:

Instruction Name Mnemonic
Floating Add Short FAS
Floating Add Long FAL
Floating Subtract Short FSS

Instruction Name Mnemonic
Floating Subtract Long FSL
Floating Multiply Short FMS
Floating Multiply Long FML
Floating Divide Short FDS
Floating Divide Long FDL

FLOATING-POINT NUMBERS

Two number formats are accommodated for floating-point
arithmetic: short and long. A short-format floating-point
number consists of a sign (bit 0), a biased®, base 16 expo-
nent, which is called a characteristic (bits 1-7), and a
six-digit hexadecimal fraction (bits 8-31). A long-format
floating-point number consists of a short-format floating-
point number followed by an additional eight hexadecimal
digits of fractional significance, and occupies a double-
word memory location or an even-odd pair of general
registers.

A floating-point number (N) has the following format:

+ Character- .
-| istic (C) Fraction (F)

01 2 3id 5 6 718 9 10 N2 1314 !5i]6 17 18]9iZD 21 22 23i24 25 26 27i28 29 30 31

32 33 34 35136 37 38 39140 41 42 43144 45 46 47148 45 50 51152 53 54 55156 57 58 59160 61 62 63

A floating-point number (N) has the following formal
definition:

1. N=FxMC%4WMmF=Om

]6-6 <|F| <1 (short format) or

g4

1 <|F <1 (long format)

and 0 £C €127,

2. A positive floating~point number with a fraction of
zero and a characteristic of zero is a "true" zero,
A positive floating-point number with a fraction of
zero and a nonzero characteristic is an "abnormal®
zero. For floating-point multiplication and division,
an abnormal zero is treated as a true zero. However,

fThe bias value of 4014 is added to the exponent for the
purpose of making it possible fo compare the absolute mag-
nitude of two numbers, i.e., without reference to a sign

bit. This manipulation effectively removes the sign bit,

making each characteristic a 7-bit positive number.

for addition and subtraction, an abnormal zero is
treated the same as any nonzero operand.

3. A positive floating-point number is normalized if and
only if the fraction is contained in the interval

1/16 <F< 1

4. A negative floating-point number is the two's comple-
ment of its positive representation.

5. A negatfive floating-point number is normalized if and
only if its two's complement is a normalized positive
number,

By this definition, a floating-point number of the form
Ixxx xxxx 1111 0000 ... 0000

is normalized, and a floating-point number of the form

Txxx xxxx 0000 0000 ... 0000

is illegal and, whenever generated by floating-point in-
structions, is converted to the form

lyyy yyyy 1111 0000 ... 0000

where yy ... y is T less than xx ... x. Table 7 contains
examples of floating=point numbers.

Modes of Operation

There are four mode control bits that are used to qualify
flodting-point opeidaiions, These mode Coniiol biis aie
identified as FR (floating round), FS (floating significance),
FZ (floating zero), and FN (floating normalize); they are
contained in bit positions 4, 5, 6, and 7, respectively, of
the program status words (PSWs4_7).

The floating-point mode is established by setting the four
floating~point mode control bits. This can be performed by
any of the following instructions:

Instruction Name Mnemonic
Load Conditions and Floating Control LCF

Load Conditions and Floating Control

Immediate LCFI

Load Program Status Words LPSD
Exchange Program Status Words XPSD

The floating-point mode control bits are stored by execut-
ing either of the following instructions:

Instruction Name Mnemonic
Store Conditions and Floating Control STCF
Exchange Program Status Words XPSD

Floating-Point Arithmetic Instructions 75

Table 7. Floating-Point Number Representation

Short Floating-Point Format
Decimal Number + C F Hexadecimal Value
1631272 0 11 1T MM M Ui N 1 N 7F FRFFFF
+16"3)(5/16) 0O 100 0011 0101 0000 0000 0000 0000 0000 43 500000
+16”3)(209/256) 0 011 1101 1101 0001 0000 0000 0000 0000 3D DI000O
+(16783)(2047/409) 0 000 0001 OI11 1111 1111 0000 0000 0000 Ol 7FFOOO0
+16"%41,16) O 000 0000 0001 0000 0000 0000 0000 0000 00 100000
0 (called true zero) 0 000 0000 0000 0000 0000 0000 0000 0000 00 000000
-06~¢40,16) 1111 1111 1111 0000 0000 0000 0000 0000 FF FOO00O
-(1674%)(2047/4096) 1 111 1110 1000 0000 0001 0000 0000 0000 FE 801000
~(163)(209/256) 1 100 0010 0010 1111 0000 0000 0000 0000 C2 2FO000
~(16™)(5/16) 1 011 1100 1011 0000 0000 0000 0000 0000 BC BOOOOO
(1631274 1 000 0000 0000 0000 0000 0000 0000 0001 80 000001
Special Case
-(16%)(1) 1 e 0000 0000 0000 0000 0000 0000
is changed to
-6 ha/16) 1 e 1111 0000 0000 0000 0000 0000
whenever generated as the result of a floating-point instruction.

FLOATING-POINT ADD AND SUBTRACT FR=0 No rounding specified (truncation).
The floating round (FR), floating normalize (FN), floating FR=1 The results of additions and subtractions are
zero (FZ), and floating significance (FS) mode control to be rounded. Each value associated with
bits determine the operation of floating=point addition the operation (i.e., augend, addend, and
and subtraction (if characteristic overflow does not occur) intermedicte result of an add) is extended by
as follows: the hardware to include one guard digit.

(Short-format values are extended into bit
positions 32-35 and long-format values are
FR Floating round: extended info bit positions 64-67.) Contents
of guard digits may be affected during pre-
alignment, computation, or postnormalization.

Rounding is performed by evaluating the guard

Note: The floating round facility is available only in digit of the intermediate result after any re-
the hardware floating-point. In the absence quired postnormalization. If the value of the
of this feature, the floating=-point subroutines guard digit is 0-7, the other digits are not
offer only truncation; hence, to guarantee modified, If the value of the guard digit
hardware and software identical results, FR is 8~F, the value contained within the other
{(bit 4 of PSWs) must be zero. digifs is incremented by one,

76 Floating=Point Arithmetic Instructions

The following

table shows the possible cases:

Postnormalization

Scale Scale
Pre-alignment Answer Answer
(exponents #) Left Right Guard Digit Action
0 0 0 (Guard digit =0.)
0 0 1 Round on guard digit.
0 1 0 Guard digit left shifted
into low end of
regisfer.®
0 1 1 Not possible.
R O
1 0 0 Round on guard digit.
1 0 1 Round on guard digif.®
1 1 0 Guard digit left shifted
info low end of
regisi’er.@
1 1 1 Not possible.
Notes: Plncrement fraction if guard digit = 8.

@Contents of guard digit become zero on first
left shift.

Normally, there is no time penalty for the rounding opera-
tion. However, if the infermediate value is . FFFFFF and

the guard dig
alignment is d

it is 8-F after postnormalization, a right
one after rounding. (See the example below.)

Example
. FFFFFFE (infermediate result before rounding)
1. 000000 (result after rounding and truncating —
not valid)
. 100000 (result after postrounding alignment)
FN Floating normalize:

FN =0 The results of additions and subtractions are
to be postnormalized. If characteristic under-
flow occurs, if the result is zero, or if more
than two postnormalization hexadecimal shifts
are required, the settings for FZ and FS de-
termine the resultant action. If none of the
above conditions occurs, the condition code
is set to 0010 if the result is positive, or
to 0001 if the result is negative.

FN =1 Inhibit postnormalization of the result of ad-

ditions and subtractions. The seftings of FZ

and FS have no effect on the instruction

operation. If the result is zero, the result
is set to "true" zero and the condition code
is set to 0000. If the result is positive, the
condition code is set to 0010, If the re-
sult is negative, the condition code is set

to 0001.

Floating zero: (applies only if FN = 0)

FZ

FZ=1

"
o

If the final result of cn addition or subtrac-
tion operation cannot be expressed in normal-
ized form because of the characteristic being
reduced below zero, underflow has occurred,
in which case the result is set equal to "true"
zero and the condition code is set to 1100,
(Exception: if a trap results from significance
checking with FS=1 and FZ =0, an under-
flow generated in the process of postnormal -
izing is ignored.)

Characteristic underflow causes the basic pro-
cessor to trap to location X'44' with the
contents of the general registers unchanged.
If the result is positive, the condition code

is set to 1110. If the result is negative, the
condition code is set to 1101,

Floating significance: (applies only if FN = 0)

FS=0

Inhibit significance trap. If the result of an
addition or subtraction is zero, the result is
set equal to "frue" zero, the condition code
is set to 1000, and the basic processor exe-
cutes the next instruction in sequence. If
more than two hexadecimal places of post-
normalization shifting are required and char-
acteristic underflow does not occur, the
condition code is set to 1010 if the result is
positive, or to 1001 if the result is negative;
then, the basic processor executes the next
instruction in sequence. (Exception: if
characteristic underflow occurs with FS =0,
FZ determines the resultant action.)

The basic processor traps to location X'44' if
more than two hexadecimal places of post-
normalization shifting are required or if the
result is zero. The condition code is set
to 1000 if the result is zero, to 1010 if the
result is positive, or to 1001 if the result is
negative; however, the contents of the gen-
eral registers are not changed. (Exception:
if a trap results from characteristic underflow
with FZ = 1, the results of significance test-
ing are ignored.)

Floating=Point Arithmetic Instructions 77

If characteristic overflow occurs, the basic processor always
traps to location X'44' with the general registers unchanged
and the condition code set to 0110 if the result is positive,
or to 0101 if the result is negative.

FLOATING-POINT MULTIPLY AND DIVIDE

The floating round (FR) and floating zero (FZ) mode con-
trol bits determine the operation of floating-point multi-
plication and division (if characteristic overflow does not
occur and division by zero is not attempted) as follows:

FR Floating round:
FR=0 No rounding specified.

FR=1 The results of floating multiplication and
division instructions are to be rounded. For
multiply or divide operations, a normalized
product or quotient is produced, appended
by a guard digit. This will be an absolute
value.

Note: The example above (under "Floating-Point
Add and Subtract") is not possible for multiply
and divide, Therefore, there is never a time
penalty for rounding.

FZ Floating zero:

FZ =0 If the final result of a multiplication or divi-
sion operation cannot be expressed in normal-
ized form because of the characteristic being
reduced below zero, underflow has occurred.
If underflow occurs, the result is set equal to
"true" zero and the condition code is set to
1100. If underflow does not occur, the
condition code is set to 0010 if the result is
positive, fo 0001 if the result is negative, or
to 0000 if the result is zero,

FZ=1 Underflow causes the basic processor to trap
fo location X'44' with the contents of the
general registers unchanged. The condition
code is set to 1110 if the result is positive,
or to 1101 if the result is negative. If under-
flow does not occur, the resultant action is
the some as that for FZ =0,

If the divisor is zero in a floating=point division, the basic
processor always traps to location X'44' with the general
registers unchanged and the condition code set to 0100, If
characteristic overflow occurs, the basic processor always
traps to location X'44' with the general registers unchanged
and the condition code set to 0110 if the result is positive,
or fo 0101 if the result is negative.

78 Floating-Point Arithmetic Instructions

CONDITION CODES FOR
FLOATING-POINT INSTRUCTIONS

The condition code settings for floating-point instructions
are summarized in Table 8. The following provisions apply
to all floating=point instructions:

1. Undeflow and overflow detection apply to the final
characteristic, not to any "intermediate" value.

2. If a floating-point operation results in a trop, the origi-
nal contents of all general registers remain unchanged.

3. All shifting, truncation, and rounding are performed
on absolute magnitudes. If the fraction is negative,
then the two's complement is formed after shifting or
truncation,

FAS FLOATING ADD SHORT
(Word index alignment)

* 3D R X Reference address

01 2 314 5 6 718 9 10 N2 1314 15116 17 18719120 21 22 23124 25 26 27128 29 30 31

The effective word and the contents of register R are loaded
into a set of internal registers and a low-order hexadecimal
zero (guard digit) is appended to both fractions, extending
them to seven hexadecimal digits each. FAS then forms the
floating-point sum of the two numbers. (See "FR Floating
round" under "Floating-Point Add and Subfract”, if round-
ing applies.) If no floating-point arithmetic fault occurs,
the sum is loaded into register R as a short-format floating-
point number,
Affected: (R),CC Trap: Floating=-point arith-
metic fault
(R) + EW —=R

FAL FLOATING ADD LONG

F4 o VRS Y (SR I S PRNPRR | S A ¥
\OURIeWOIa Inuex uliygnmertt)

* 1D R X Reference address

0 1 2 3T4 5 6 718 9 0 nl2 713141506 17 18 19120 21 27 23124 25 26 27128 29 30 a1

The effective doubleword and contents of registers R and Rul
are loaded into a set of internal registers.

The operation of FAL is identical to that of FLOATING
ADD SHORT (FAS) except that the fractions to be added
are each 14 hexadecimal digits long, guard digits are ap-
pended to the fractions only if rounding is specified, and R
must be an even value for correct results. If no floating-
point arithmetic fault occurs, the sum is loaded into regis-
ters R and Rul as a long-format floating-point number.
Affected: (R), (Rul),CC Trap: Floating=-point arith-
metic fault, instruc-
tion exception

R, Rul) + ED — R, Rul

Table 8. Condition Code Settings for Floating-Point Instructions

Condition Code
1T 2 3 4 Meaning If No Trap to Location X'44! Meaning If Trap fo Location X'44' Occurs
0 0 0 O A x0, 0/A, or <A + AQ with FN=1 *@
0 0 0 1 N <0 Normal «
results
0 0 1 O N >0 *
01 0 0 +@ Divide by zero
o 1 0 1 * Overflow, N <0 } Always trapped
0 1 1 o * Ovérflow, N >0
1 0 0 0 -A +A® -A+A
F$=0
@1 0 01 N <0 > 2 Postnormal- FN:%’ ;Td - N<0 > 2 Postnormal - FSd='l, FI\L=0,
izing shifts no undertiow izing shifts and no uncer=
1 0 1 0 N>o0) ! N>0 flow with FZ=1
1 1 0 0 Underflow with FZ=0 and no trap by F5=19 *
1 1 0 1 * Underflow, N <0
FZ=1
T 1 1 0 * Underflow, N >0
Notfes: @ Result set to "true" zero
® "*" indicates impossible configurations
® Applies to add and subtract only where FN=0
The R field of the FAL instruction must be an even value FSL FLOATING SUBTRACT LONG

for proper operation of the instruction; if the R field of FAL
is an odd value, the instruction traps fo location X'4D',
instruction exception trap.

FSS FLOATING SUBTRACT SHORT
(Word index olignmenf)

* 3C R X Reference address

0 1 2 374 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The effective word and the confents of register R are loaded
into a set of internal registers.

FLOATING SUBTRACT SHORT forms the two's complement

of the effective word and then operates identically to

FLOATING ADD SHORT (FAS). If no floating-point

arithmetic fault occurs, the difference is loaded into reg-

ister R as a short~format floating-point number.

Affected: (R),CC Trap: Floating=point arith~
metic fault

(R) - EW—R

(Doubleword index alignment)

* 1C R X Reference address

0 1 2 314 5 6 7018 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The effective doubleword and the contents of registers R
and Rul are loaded info a set of internal registers.

-FLOATING SUBTRACT LONG forms the two's comple~

ment of the effective doubleword and then operates iden-
tically to FLOATING ADD LONG (FAL). If no floating-
point arithmetic fault oceurs, the difference is loaded info
registers R and Rul as a long-format floating-point number.
Affected: (R), (Rul), CC Trap: Floating-point arith-

metic fault, instruc-

(R, Rul) - ED —=R, Rul tion exception

The R field of the FSL instruction must be an even value for
proper operation of the instruction; if the R field of FSL is
an odd value, the instruction traps to location X'4D',
instruction exception trap.

Floating=Point Arithmetic Instructions 79

FMS FLOATING MULTIPLY SHORT
(Word index alignment)

FDL FLOATING DIVIDE LONG

(Doubleword index alignment)

* 3F R X Reference address

* 1E R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 31

The effective word (multiplier) and the contents of register R
(multiplicand) are locded into a set of internal registers,
and both numbers are then prenormalized (if necessary). A
normalized 6-digit product is produced, appended by a
guard digit. If FR equals 1, and the guard digit contains 8
or greater, the fraction is incremented, 1If no floating-
point arithmetic fault occurs, the product is loaded into
register R as a short-format floating-point number.,

Affected: (R), CC
(R) x EW —R

Trap: Floating-point arith-
metic fault

FML FLOATING MULTIPLY LONG

{Doubleword index alignment)

* 1F R X Reference address

0 1 2 314 5 6 718 9 10 17012 13 14 15016 17 18 19120 21 22 2324 25 26 27128 29 30 31

The effective doubleword (multiplier) and the contents of
registers R and Rul (multiplicand) are loaded into o set of
internal registers, (FLOATING MULTIPLY LONG then
operates identically to FLOATING MULTIPLY SHORT
(FMS), except that the operands are each 14 hexadecimal
digits long. R must be an even value for correct results.
If no floating-point arithmetic fault occurs, the product is
loaded info registers R and Rul as a long-format floating-
point number.
Affected: (R), (Rul), CC Trap: Floating-point arith-
metic fault, instruc-
(R, Rul) x ED —=R, Rul tion exception
The R field of the FML instruction must be an even value
for proper operation of the instruction; if the R field of
FML is an odd value, the instruction traps to location X'4D',
instruction exception trap.

FDS FLOATING DIVIDE SHORT
(Word index alignment)

* 3E R X Reference address

0 1 2 34 56 718 9 10 Nz 1314 15016 17 18 19720 21 22 23124 25 26 27128 29 30 31

The effective word (divisor) and the contents of register R
(dividend) are loaded into a set of internal registers and
both numbers are then prenormalized (if necessary). A
normalized 6-digit quotient is produced, appended by a
guard digit. If FR equals 1, and the guard digit contains 8
or greater, the fraction is incremented. If no floating-
point arithmetic fault occurs, the quotient is loaded into
register R as a short-format floating=point number.,

Affected: (R),CC
(R) + EW—R

Trap: Floating=point arith-
metic fault

80 Decimal Instructions

T T I T T e T T UM R R B VR B T R B e s B T B SN

The effective doubleword (divisor) and the contents of
registers R and Rul (dividend) are loaded into a set of
internal registers, FLOATING DIVIDE LONG then oper-
ates identically to FLOATING DIVIDE SHORT (FDS), ex-
cept that the operands are each 14 hexadecimal digits long.
R must be an even value for correct results, If no floating-
point arithmetic fault occurs, the quotient is loaded into
registers R and Rul as a long~format floating~point number,
Affected: (R), (Rul), CC Trap: Floating-point arith-
metic fault, instruc-
(R, Rul) + ED—-=R, Rul tion exception
The R field of the FDL instruction must be an even value
for proper operation of the instruction; if the R field of FDL
is an odd value, the instruction traps to location X'4D'
instruction exception trap.

DECIMAL INSTRUCTIONS

The following instructions comprise the decimal instruction
set:

Instruction Name Mnemonic
Decimal Load DL
Decimal Store DST
Decimal Add DA
Decimal Subtract DS
Decimal Multiply DM
Decimal Divide DD
Decimal Compare DC
Decimal Shift Arithmetic DSA
Pack Decimal Digits PACK
Unpack Decimal Digits UNPK
Edit Byte String (described under EBS

"Byte=String Instructions")

PACKED DECIMAL NUMBERS

All decimal arithmetic instructions operate on packed
decimal numbers, each consisting of from 1 to 31 decimal
digits' (in absolute form) plus o decimal sign. A decimal
digit is a 4-bit code in the range 0000 through 1001,
where 0000 =0, 0001 =1, 0010 =2, 0011 =3, 0100 = 4,
0101 =5, 0110=6, 0111 =7, 1000 =8, ond 1001 = 9.
A positive decimal sign is a 4-bit code of the form:
1010(X'A"), 1100(X'C"), T110(X'E"), or TTTT1(X'F'). A neg-
ative decimal sign is a 4-bit code of the form: T1011(X'B'),
or 1101(X'D'). However, the decimal sign codes generated
for the result of a decimal instruction are: 1100 (X'C') for
positive results, and 1101 (X'D') for negative results. The
format of packed decimal numbers is:
N
digit | digit | digit | digit digit | sign

01 2 314 5 6 710 1 2 314 5 6 7 0 1 2 314 5 6 7

For the decimal arithmetic instructions, a packed decimal
number must occupy an integral number (1 through 16) of
consecutive bytes. Thus, a decimal number must contain an
odd number of decimal digits, the high-order digit (zero or
nonzero) of the number must be in bit positions 0-3 of the
first byte, the decimal sign must be in bit positions 4-7 of
the last byte, and all decimal digits and the decimal sign
must be 4-bit codes of the form described above.

ZONED DECIMAL NUMBERS

In zoned decimal format, a single decimal digit is contained
within bit positions 4-7 of a byte, and bit pusitions 5-3 of
the byte are referred fo as the "zone" of the decimal digit.
A zoned decimal number consists of from 1 to 31 bytes, with
the decimal sign appearing as the zone for the lost byte, as
follows:

—N
zone | digit | zone | digit sign | digit

01 2 3l4 5 6 710 1 2 314 5 6 7 '\' 01 2 314 5 6 7

The sign format is EBCDIC and the zones are 1111,

A decimal number can be converted from zoned to packed
format by means of the instruction PACK DECIMAL DIGITS.
A decimal number can be converted from packed to zoned
format by means of the instruction UNPACK DECIMAL
DIGITS.

DECIMAL ACCUMULATOR

All decimal arithmetic instructions imply the use of reg-
isters 12 through 15 of the current register block as the

tExcep’r EDIT BYTE STRING (EBS), which has no limit on
the size of numbers.

decimal accumulator, and registers 12 through 15 are treated
as a single 16-byte register. The entire decimal accumulator
is used in every decimal arithmetic instruction.

DECIMAL INSTRUCTION FORMAT

The general format of a decimal instruction is as follows:

Operation
* L X Ref
erence addres
code . ess
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The indirect address bit (position 0), the operation code
(positions 1-7), the index field (12-14), and the reference
address field (15-31) all have the same functions for the
decimal instructions as they do for any other byte-addressing
instruction. However, bit positions 8-11 of the instruction
word do not refer to a general register; instead, the contents
of this field (designated by the character "L") designate the
length, in bytes, of a packed decimal number. (If L=0, a
length of 16 bytes is assumed.)

ILLEGAL DIGIT AND SIGN DETECTION

Prior to executing any decimal instruction, the basic pro-
cessor checks all decimal operands for the presence of
illegal decimal digits or illegal decimal signs. For all dec-
imal arithmetic instructions, an illegal decimal digit is a
sign code (i.e., in the range X'A" through X'F') that ap-
pears anywhere except in bit positions 4=7 of the least
significant byte (the sign position) of the packed decimal
number; an illegal decimal sign is a digit code (i.e., in the
range X'0' through X'9') that appears in the sign position of
the packed decimal number.

For the instructions DECIMAL MULTIPLY and DECIMAL

DIVIDE, the illegal sign and digit check also includes a
check for an illegal L field in the instruction. Illegal

L fields are X'0' and the range X'?' to X'F'.

For the DECIMAL MULTIPLY instruction, only registers R14
and R15 are checked for illegal digits. The original con-
tents of R12 and R13 are ignored and are presumed to be
zeros.

If an illegal digit or sign is detected, the basic processor
unconditionally aborts the execution of the instruction (at
the time that the illegal digit or sign is detected), sefs
CC1 to 1 and resets CC2 to 0. If the decimal arithmetic
fault trap mask (bit position 10 of the program status words)
is a 0, the basic processor then executes the next instruc-
tion in sequence; however, if the decimal arithmetic fault
trap mask is a 1, the basic processor traps to location X'45",
In either case, the contents of the decimal accumulator,
the effective decimal operand, CC3, and CC4 remain
unchanged.

Decimal Instructions 81

OVERFLOW DETECTION

Arithmetic overflow can occur during execution of the
following decimal instructions:

DECIMAL ADD. Overflow occurs when the sum of the
two decimal numbers exceeds the 31-digit capacity of the
decimal accumulator (+1031 -1 to -1031 + 1),

DECIMAL SUBTRACT. Overflow occurs when the difference
between the two decimal numbers exceeds the 31-digit
capacity of the decimal accumulator.

DECIMAL DIVIDE. Overflow occurs either when the divisor
is zero, or when the dividend is greater than 14 digits in
length and the absolute value of the significant digits

to the left of the 15th digit position (counting from the
right) is greater than or equal to the absolute value of
the divisor.

If arithmetic overflow occurs during execution of DECIMAL
ADD, DECIMAL SUBTRACT, or DECIMAL DIVIDE, the
basic processor unconditionally aborts execution of the
instruction (at the time of overflow detection), resets CC1
to 0, and sets CC2 to 1. Then, if the decimal arithmetic
fault trap mask (PSWs1g) is a 1, the basic processor traps
to location X'45'; if the decimal arithmetic fault trap mask
is a 0, the basic processor executes the next instruction in
sequence. In either case, the contents of the decimal
accumulator, memory storage, CC3, and CC4 remain
unchanged.

DECIMAL INSTRUCTION NOMENCLATURE

For the purpose of abbreviating the instruction descriptions
to follow, the symbolic term "DECA" is used to represent
the decimal accumulator, and the symbolic term "EDO" is
used to represent the effective decimal operand of the in-
struction. For the instructions DECIMAL LOAD, DECIMAL
ADD, DECIMALSUBTRACT, DECIMALMULTIPLY, DECIMAL
DIVIDE, and DECIMAL COMPARE, the effective decimal
operand is a packed decimal number that is "L" bytes

in length, where L is the numeric value of bit posi~
fions 8-11 of the instruction word, and a value of 0 for L
designates 16 bytes. The effective byte addresses of
these instructions point to the byte location that contains
the most significant byte (high-order digits) of the decimal
number, ond the effective byte address plus L-1 {where
L =0=16) points fo the least significant byte (low-order
digit and sign) of the decimal number. Thus, for these in-
structions, the effective decimal operand (EDO) is the con-
tents of the byte string that begins with the effective byte
location, is L bytes in length, and ends with the effective
byte location plus L-1.

82 Decimal Instructions

CONDITION CODE SETTINGS

All decimal instructions provide condition code settings,
using CC1 to indicate whether or not an illegal digit or
sign has been detected, and CC2 to indicate whether or
not overflow has occurred. Most (but not all) of the deci-
mal instructions provide condition code settings, using CC3
and CC4 to indicate whether the decimal number in the
decimal accumulator is zero, negative, or positive, as
follows:

CC3_CC4 Result in DECA

0 0 Zero — the decimal accumulator contains a
positive or negative decimal sign code in the
four low-order bit positions; the remainder of

the decimal accumulator contains all 0's,

Negative — the decimal accumulator con-
tains o negative decimal sign code in the
four low-order bit positions; the remainder
of the decimal accumulator contains at least
one nonzero decimal digit.

Positive — the decimal accumulator contains

a positive decimal sign code in the four low-

order bit positions; the remainder of the deci~-
mal accumulator contains at least one nonzero
decimal digit.

DL DECIMAL LOAD
(Byte index alignment)

* 7E L X Reference address

0 1 2 34 5 6 718 9 10 1N12 13 1415116 17 18 19120 21 22 23124 25 26 27128 29 30 31

If no illegal digit or sign is defected in the effective
decimal operand, DECIMAL LOAD expands the effective
decimal operand to 16 bytes (31 digits +sign) by appending
high-order 0's, and then loads the expanded decimal num-
ber into the decimal accumulator. If the result in the
decimal accumulator is zero, the converted sign remains
unchanged.

Affected: (DECA), CC

Trap: Decimal arithmetic

(EBL to EBL + L - 1) —~DECA

Condition code settings:

1 2 3 4 Resultin DECA

1 0 -~ ~ [lllegal digit or sign detected, instruction
aborted

0 0 0 0 Zero

No illegal digit or illegal sign

0 0 0 T Negative detected, instruction completed

0 0 1 O Positive

DST DECIMAL STORE
(Byte index alignment)

* 7F L X Reference address

0 1 2 314 5 6 718 9 10 nhiz 131415116 17 18 19120 21 22 23[24 25 26 27128 29 30 31

If no illegal digit or sign is detected in the decimal
accumulator, DECIMAL STORE stores the low-order L bytes
of the decimal accumulator into memory from the effec-
tive byte location to the effective byte location plus L-1.

If the decimal accumulator contains more significant in-
formation than is actually stored (i.e., at least one non-
zero digit was not stored), CC2 is set to 1; otherwise, CC2
is reset fo 0. If the result in memory is zero, the converted
sign remains unchanged.

Affected: (EBL to EBL + L~1), Trap: Decimal arithmetic
CC1,CC2

(DECA) low-order bytes —EBL to EBL + L -1

Condition code settings:

1 2 3 4 Resultof DST

1 0 - - Illegal digit or sign detfected, instruction
aborted
0 0 - - Allsignificant in-

formation stored
No illegal digit or

illegal sign detected,

0 1 - - Some s significant . X
s . . instruction combleted
mrormarion nOT .
stored

DA DECIMAL ADD

(Byte index alignment)

* 79 L X Reference address

0 1 2 314 5 6 7i8 9 10 nl12 13 14 15116 17 18 19120 2v 22 23124 25 26 27128 29 30 31

If no illegal digit or sign is detected in the effective deci-
mal operand or in the decimal accumulator, DECIMAL ADD
algebraically adds the decimal number to the contents of
the decimal accumulator, If the result in the decimal
accumulator is zero, the resulting sign is forced fo the
positive form.

Overflow occurs if the sum exceeds the capacity of the
decimal accumulator (i.e., if the absolute value of the sum
is equal to or greater than 103]), in which case CC1 is
reset to 0, CC2 is set to 1, and the instruction aborted with
the previous contents of the decimal accumulator, CC3

and CC4 unchanged.
Affected: (DECA),CC

Trap: Decimal arithmetic

(DECA) + EDO —DECA

Condition code settings:

1 2 3 4 Resultin DECA

1 0 - - TIllegal digitor
sign defected
Instruction aborted

0 1 - - Overflow

0 0 0 0 Zero

No illegal digit or sign
detected, no overflow,
instruction completed

0 0 0 1 Negative

0 0 1 O Positive

DS DECIMAL SUBTRACT
(Byte index alignment)

* 78 L X Reference address

0 1 2 314 5 6 718 9 10 111121314 1516 1718 19120 21 22 23124 25 26 27128729 30 31

If no illegal digit or sign is detected in the effective deci-
mal operand or in the decimal accumulator, DECIMAL
SUBTRACT algebraically subtracts the decimal number from
the contents of the decimal accumulator, and then loads
the difference into the decimal accumulator. If the result
in the decimal accumulator is zero, the resulting sign is
forced to the positive form.

Overflow occurs if the difference exceeds the capacity of
the decimal accumulator (i.e., if the absolute value of the
difference is equal to or greater than]03]), in which case
CClisreset to 0, CC2is set to 1, and the instruction is
aborted with the contents of the previous decimal accumu-
lator, CC3 and CC4 unchanged.

Affected: (DECA),CC

Trap: Decimal arithmetic

(DECA) — EDO —DECA

Condition code settings:

1 2 3 4 Resultin DECA

1 0 - - Illlegal digitor
sign detected
Instruction aborted

0 1 - - Overflow

0 0 0 0 Zero

No iflegal digit or sign
detected, no overfiow,
instruction completed

0 0 0 1 Negative

0 0 1T O Positive

Decimal Instructions 83

DM DECIMAL MULTIPLY

(Byte index alignment, continue after interrupt)

Condition code settings:

1 2 3 4 Resultin DECA

* 7B L X Reference address

. ,
) T 56 718 7 0T W B T B RR T B RS BT mE o

Ifno illegal digit or sign isdetectedin the effective decimal
operand or decimal accumulator, DECIMAL MULTIPLY
multiplies the effective decimal operand (multiplicand) by
the contents of the decimal accumulator registers R14 and
R15 {(multiplier) and then loads the product into the entire
decimal accumulator. If the result in the decimal accumu-
lator is zero, the resulting sign isforced to the positive form.

Affected: (DECA), CC
(DECA) x EDO —~ DECA

Trap: Decimal arithmetic

Condition code settings:

1 2 3 4 Resultin DECA

1 0 - - |Illegal digit or sign detected, instruction
aborted

0000 Zero No illegal digit or sign

1 Negative detected, instruction
1 0 Positive completed
DD DECIMAL DIVIDE

(Byte index alignment, continue ofter interrupt)

* 7A L X Reference address

T 1 2 3li 3 67187 NN B W BB T B WH T EZBAS 5T HHDA

If there is no illegal digit or sign in the effective decimal
operand and if there is at least one decimal sign in the
decimal accumulator, DECIMAL DIVIDE divides the con-
tents of the decimal accumulator (dividend) by the effec-
tive decimal operand (divisor). Then, if no overflow has
occurred, the basic processor loads the quotient (15 decimal
digits plus sign) into the eight low-order bytes of the
decimal accumulator (registers 14 and 15), and loads the
remainder (also 15 decimal digits plus sign) into the eight
high-order bytes of the decimal accumulator (registers 12
and 13). The sign of the remainder is the same as that of
the original dividend. If the quotient is zero, the sign of
the quotient is forced to the positive form.

Overflow occurs if any of the following conditions are not
satisfied before the initial execution of DECIMAL DIVIDE:

1. The divisor must not be zero.

2. If the length of the dividend is greater than 15 decimal
digits, the absolute value of the significant digits to
the left of the 15th digit position (i.e., those digits in
registers 12 and 13) must be less than the absolute value
of the divisor.

Affected: (DECA),CC
(DECA) + EDO — DECA

Trap: Decimal arithmetic

84 Decimal Instructions

1 0 - =~ lllegal digit or
sign detected Instruction aborted

0 1 - - Overflow

0 0 0 0 Zeroquotient No illegal digit or

sign detected, no
overflow, instruc-
tion completed

0 0 0 1 Negative quotient

0 0 1 O Positive quotient

DC DECIMAL COMPARE
(Byte index alignment)

* 7D L X Reference address

0 1 2 374 5 6 718 9 10 N[1213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

If there is no illegal digit or sign in the effective decimal
operand or in the decimal accumulator, DECIMAL COMPARE
expands the effective decimal operand to 16 bytes (31 digits
plus sign) by appending high-order 0's, algebraically com-
pares the expanded decimal number to the contents of the
entire decimal accumulator, and sets CC3 and CC4 accord~
ing to the result of the comparison (a positive zero compares
equal to a negative zero),

Affected: CC

Trap: Decimal arithmetic
(DECA) : EDO
Condition code settings:

1 2 3 4 Resultof comparison

1 0 - - 1lllegal digit or sign detected, instruction
aborted

0 0 0 0 (DECA) equals EDO]

)

No illegal digit
or sign detected,

0 0 0 1 (DECA) less than EDO

instruction
0 0 1 0 (DECA) greater than completed
EDO
DSA DECIMAL SHIFT ARITHMETIC

(Byte index alignment)

. Reference address
7C X & Count

T 1 2 317 5 6 718 9 10 11112 18 74 15118 17 18 19120 21 22 23124 25 26 2138 5 30 31

If no itiegai digit or sign is detecied in ihe decimai accu-
mulator, DECIMAL SHIFT ARITHMETIC arithmetically shifts
the contents of the decimal accumulator (excluding the
decimal sign), with the direction and amount of the shift
determined by the effective virtual address of the instruc-
tion. If the result in the decimal accumulator is zero, the
resulting sign remains unchanged.

If no indirect addressing or indexing is used with DSA, the
shift count C is the contents of bit positions 16-31 of the
instruction word. If only indirect addressing is used with
DSA, the shift count is the contents of bit positions 16-31
of the word pointed to by the indirect address in the in-
struction word. If indexing only is used with DSA, the
shift count is the contfents of bit positions 16-31 of the
instruction word plus the contents of bit positions 14-29
of the designated index register (bits 0-13, 30, ond 31 of
the index are ignored). If indirect addressing and indexing
are both used with DSA, the shift count is the sum of the
contents of bit positions 16-31 of the word pointed to by the
indirect address and the contents of bit positions 14-29 of
the designated index register.

The shift count, C, is treated as a 16-bit signed binary
integer, with negative integers in two's complement form,
If the shift count is positive, the contents of the decimal
accumulator are shifted left C decimal digit positfions; if
the shiff count is negative, the contents of the decimal
accumulator are shifted right -C decimal digit positions.
In either case, the decimal sign is not shifted, vacated
decimal digit positions are filled with 0's, and any digits
shifted out of the decimal accumulator are lost. Although
the range of possible values for C is 2-15 £C < 215-1,
a shift count greater than +31 or less than =31 is interpreted
as a shift count of exactly +31 or -31.

If any nonzero decimal digit is shifted out of the decimal
accumulator during a left shift, CC2 is set to 1; otherwise,
CC2 is reset to 0. CC2 is unconditionally reset fo 0 at the '
completion of a right shift,

Affected: (DECA),CC

Trap: Decimal arithmetic

Condition code settings:

1 2 3 4 Resultin DECA

1 0 - - Illlegal digit or sign detected, instruction

aborted

0 - 0 0 Zero

0 - 0 1 Negative

0 - 1 0 Positive No illegal digit

or sign detected,
instruction

0 0 - - Right shift or no non- completed

zero digit shifted out
of DECA on left shift

0 1 - - One or more nonzero
digit(s) shifted out of
DECA on left shift J

PACK PACK DECIMAL DIGITS
(Byte index alignment)

|
* 76 L | X Reference address

. | ;
0 7 2 3T4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

PACK DECIMAL DIGITS converts the effective decimal
operand (assumed fo be in zoned format) into a packed
decimal number and, if necessary, appends sufficient high-
order O's to produce a decimal number that is 16 bytes
(31 decimal digits plus sign) in length. The zone (bits 0-3)
of the low-order digit of the effective decimal operand is
used to select the sign code for the packed decimal number;
all other zones are ignored in formatting the packed decimal
number. If no illegal digit or sign appears in the packed
decimal number, it is then loaded info the decimal accu-
mulator. If the result in the decimal accumulator is zero,
the resulting sign remains unchanged.

The L field of this instruction specifies the length, in bytes,
of the resultant packed decimal number in the decimal ac-
cumulator; therefore, the length of the effective decimal
operand is 2L-1 bytes (where L =0 implies a length of
31 bytes for the effective decimal operand).

Affected: (DECA), CC

Trap: Decimal arithmetic

packed (EBL o EBL + 2L - 2) —DECA

Condition code settings:

1 2 3 4 Resultin DECA

I 0 - - Illegal digit or sign detected, instruction
aborted

0 0 0 0 Zero

No illegal digit or sign
detected, instruction
completed

0 0 0 1 Negative

0 0 1 O Positive

Example 1, L= 6:

Before execution After execution

EDO = X'FOF1F2F3 X'FOF1F2F3
FAF5F6F7 F4F5F6F7
FSF9FO' F8F9FO'
{DECA) = xxxxxxxx X'00000000
XXXXXXXX 00000000
XXXKXXXXX 00000123
XXXXXXXX 4567890C"
CC = XXXX 0010

Decimal Instructions 85

Example 2, L= 6:

Before execution After execution

EDO = X'000938F7 X'000938F7
E655B483 E655B483
02F1B0' 02F1B0’

(DECA) = xxxxxxxx X'00000000

XXXHXHKXX 00000000
XXXXXXXXK 00000987
XXXKXXXXXK 6543210D'
CC = XXXX 0001
UNPK UNPACK DECIMAL DIGITS

(Byte index alignment, continue after interrupt)

* 77 L X Reference address

T 1 Z 317 5 ¢ 718 5 Wz B 14 BIE 7 18 9% 21 22 128 528 5138 29 0 3

If no illegal digit or sign is detected in the decimal accu-
mulator (assumed to be in packed decimal format), UNPACK
DECIMAL DIGITS converts the contents of the low-order
L bytes of the decimal accumulator to zoned decimal format
and stores the result, as a byte string, from the effective
byte location to the effective byte location plus 2L-2,
The contents of the four low~order bit positions of the deci-
mal accumulator are used to select the sign code for the
last digit of the string; for all other digits, the zones are
1111 (X'F'). The contents of the decimal accumulaior re-
main unchanged, and only 2L-1 bytes of memory are altered,
If the decimal accumulator contains more significant infor-
mation than is actually unpacked and stored, CC2 is set to 1;
otherwise, CC2isreset to 0. If the result in memory is
zero, the resulting sign remains unchanged.

Affected: (EBLto EBL+2L-2),
CCi1,Cc2

Trap: Decimal arithmetic

zoned (DECA) ——EBL to EBL + 2L -2

Condition code settings:

1 2 3 4 Result of UNPK
1 0 - - lllegal digit or sign detected, instruction
aborted
0 0 - - Allsignificant infor-
mation zoned and No illegal digit
ore or sign defected,
instruction
0 1 - - Some s ignificant completed
information not
zoned and stored)

86 Byte=String Instructions

Example 1, L =10:

(DECA)

EDO

CC

Example 2,

Before execution

After execution

X'00000000
00000001
23456789
0123456D'

HKAXXKXXKXX
XXXXXKXXX
HAXXXKXXX
XXXXXXXX
KXKXXXX

L=8:

(DECA)

EDO

cC

Example 3,

Before execution

X'00000000
00000001
23456789
0123456D'

X'FOFOFOF1
F2F3F4F5
F6F7F8F9
FOFTF2F3
FAF5D6!

00xx

After execution

X'00000000
23000000
10001234
0012345C'

KXXXXKXX
KXXXXXXX
KXXXXXXX

XXXXXX

XXX

L= 4:

(DECA)

EDO

CcC

1l

Before execution

X'00000000
23000000
10001234
0012345C'

X'F1FOFOFO
F1F2F3F4
FOFOF1F2
F3F4C5'

O1xx

After execution

X'00001001
00001002
00001003
0001004F"

KXXXXXXX
KUXXXXXX

X'00001001
00001002
00001003
0001004F'

X'FOFOFOF1
FOFOC4'

Olxx

BYTE-STRING INSTRUCTIONS

Five instructions provide for the manipulation of strings of

consecutive bytes,
mnemonic codes are as follows:

Instruction Name

Move Byte String

Compare Byte String

The byte-string instructions and their

Mnemonic
MBS

CBS

Instruction Name Mnemonic
Translate Byte String TBS
Translate and Test Byte String TTBS

Edit Byte String EBS

These instructions are in the immediate byte operand class
and are memory-to-memory operations. These operations
are under the control of information that must be loaded
into certain general registers before the instruction is exe-
cuted. Except for the MOVE BYTE STRING instruction,
which proceeds four bytes at a time under certain condi-
tions, a byte string instruction proceeds one byte at a time
and may be interrupted after any individual byte operation.
Upon retfurn, execution resumes from the pointofinterruption,

The general format for the information in the instruction
word and in the general registers is as follows:

Instruction word:

Operation
0 coF;e R Displacement

0 1 2 304 5 6 708 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27[28 29 30 31

Contents of register R:

Mask/Fill Source address

07 Z 314 5 6 718 5 10 11112 13 14 15116 17 18 W% = 2223i2425 26 27128 29 30 31

Contents of register Rul:

! Count

0 1 2 314 5 6 718 % 10 1112713 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Destination addresc

Designation Function

The 7-bit operation code of the instruc-
tion. (If any byte-string instruction is
indirectly addressed, the basic processor
traps to location X'40' at the time of op~
eration code decoding.)

Operation

R The 4-bit field that identifies register R
of the current general register block.

A 20-bit field that contains a signed
byte displacement value, used to form

an effective byte address. The displace-
ment value is right-justified in the 20-bit
field, and negative values are in two's
complement form.

Displacement

Mask/Fill An 8-bit fieldused only with TRANSLATE
AND TEST BYTE STRING and EDIT BYTE
STRING. The purpose of this field is
explained in the detailed discussion of
the TTBS and EBS instructions.

Source Address A 19-bit field that normally contains the

byte address of the first (most significant)

Designation Function

Source Address byte of the source byte string operand.

(cont.) The effective source address is the source
address in register R plus the displacement
value in the instruction word.

Count An 8-bit field that contains the true count

(from O to 255) of the number of bytes
involved in the operation. This field is
decremented by 1 as each byte in the
destination byte string is processed. A
0 count means "no operation" with re-
spect fo the registers and main memory.

A 19-bit field that contains the byte
address of the first (most significant)
byte of the destination byte-string oper-
and. This field is incremented by 1 as
each byte in the destination byte string
is processed.

Destination

Address

In any byte-string instruction, any portion of register R
or Rul that is not explicitly defined (i.e., bit posi-
fions 8-12), should be coded with zeros for real and virtual
addressing.

Since the value Rul is obtained by performing a logical
inclusive OR with the value 0001 and the value of the

R field of the instruction word, the two control registers
are R and R+1if Ris even. However, if R is an odd value,
register R contains an address value that functions both as a
source operand address and as a destination operand address.
Also, if register O is designated in any byte-string instruc—

[2 L. TDANICI ATC ANIN TCCT D\/TC CTDINIA,
HHON \SACCPL 10T IRAINOLAITL AIND 101 DL 218N Ung

EDIT BYTE STRING), its contents are ignored and a zero
source address value is obtained. Thus, the following
three cases exist for most byte-string instructions, depending
on whether the value of the R field of the instruction word
is even and nonzero, odd, or zero:

Case 1, R is even and nonzero

The effective source address is the address in register R plus
the displacement in the instruction word; the destination
address is the address in register R + 1, but without the
displacement added.

Case II, Ris odd

The effective source address is the address in register R plus
the displacement in the instruction word; the destination

address is also the address in register R, but without the

displacement added.

Case III, R is zero

The effective source address is the displacement value in
the instruction word; the destination address is the address
in register 1. In this case, the source byte-string operand
is always a single byte.

Byte-String Instructions 87

In the descriptions of the byte-string instructions, the
following abbreviations and terms are used:

D Displacement, (1)12_3].
SA Source address, (R)]3-3]

ESA Effective source address, I:(R)]3_3]+(I)]2_3]]13_3]

The contents of bit positions 13-31 of register R
are added (right aligned) to the contents of bit
positions 12-31 of the instruction word; the 19 low-
order bits of the result are used as the effective
source address.

C Count, (Ru])o_7
DA Destination address, (Ru])]3_3]
SBS Source byte string, the byte string that begins with

the byte location pointed to by the 19-bit effec-
tive source address and is C bytes in length (if
Ris 0).

DBS Destination byte string, the byte string that begins
with the byte location pointed to by the des-
tination address and is always C bytes in length.

TRAPS BY BYTE-STRING INSTRUCTIONS

Byte-string instructions cause a trap if either of the addressed
byte strings come from memory pages that are protected by
either access protection or write locks, A trap also occurs
if either byte string is fully or partly contained within mem-
ory pages that are physically not present. A check for
these access trap conditions is made prior to initiation of
any byte relocation or general register change. These tests
are performed for MOVE BYTE STRING and TRANSLATE
BYTE STRING. The source and destination locations are
tested for MOVE BYTE STRING; only the destination lo~
cation is tested for TRANSLATE BYTE STRING, since there
is no assurance that the translate table will be accessed in
its entirety in the course of execution. If an access pro-
tection violation were to occur in frying to reach a byte in
the translate table or decimal digit strings during the course
of execution, then the instruction would trap and result in
a partially executed condition. However, if the destina-
tion byte string does overlap the translation table, the reg-
isters would be restored in such a manner that the instruction
could be restarted after the protection violation had been
corrected. When a trap occurs resulting in a partfially
executed instruction, the Register Altered indicator will

be set.

88 Byte-String Instructions

MBS MOVE BYTE STRING

(Immediate Displacement, continue afterinterrupt)

0 61 R Displacement

0 7 2 34 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

MOVE BYTE STRING copies the contents of the source byte
string (left to right) into the destination byte string. The
previous contents of the destination byte string are de-
stroyed, but the contents of the source byte string are not
affected unless the destination byte string overlaps the
source byte string.

When the destination byte string overlaps the source byte
string, the resulting destination byte string contains one or
more repetitions of bytes from the source byte string. Thus,
if a destination byte string of C bytes begins with the
kth byte of a source byte string (numbering from 1), the first
k-1 bytes of the source byte string are duplicated in the
destination byte string x number of times, where x = C/(k-1).
For example, if the destination byte string begins with the
second byte of the source byte string, the first byte of the
source byte string is duplicated throughout the destination
byte string.

If both byte strings begin with the same byte (i.e., k=1)

and the R field of MBS is nonzero, the destination byte
string is read and replaced into the same memory locations.
However, if both byte strings begin with the same byte and
the R field of MBS is zero, the first byte of the byte string

is duplicated throughout the remainder of the byte string
(see "Case 111", below).

Affected: (DBS), (R), (Rul)

(SBS) —~DBS

If MBS is indirectly addressed, it is treated as a nonexistent
instruction. The basic processor unconditionally aborts
execution of the instruction (at the time of operation code
decoding) and traps to location X'40' with the contents of
register R and the destination byte string unchanged. See
"Traps by Byte String Instructions" (in this section) for other
trap conditions.

Caose 1, even, nonzero R field Rul=R+1)

Contents of register R:

Source address

8 9 10 1273 145116 17 8 19120 21 22 23124 25 26 27128 29 30 31

Contents of register R+1:

Q)
3
-
J
)
-

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3t

The source byte string begins with the byte location pointed
to by the source address in register R plus the displacement
in MBS; the destination byte string begins with the byte lo-
cation pointed fo by the destination address in register R+1,

Both byte strings are C bytes in length. When the instruction
is completed, the destination and source addresses are each
incremented by C, and C is set to zero.

Case II, odd R field (Rul=R)

Contents of register R:

Count Destination address

01 2 3i4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The source byte string begins with the byte location pointed
to by the address in register R plus the displacement in MBS;
the destination byte string begins with the byte location
pointed to by the destination address in registerR. Both
byte strings are C bytes in length. When the instruction is
completed, the destination address is incremented by C,
and C is sef fo zero.

Cose 111, zero R field (Rul=1)

Contents of register 1:

1
1

Count ! Destination address
i

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The source byte string consists of a single byte, the con-
tents of the byte location pointed to by the displacement in
MBS; the destination byte string begins with the byte loca-
tion pointed to by the destination address in register 1 and
is C bytes in length. In this case, the source byte is dupli-
cated throughout the destination byte string. When the
instruction is completed, the destination address is incre-
mented by C, and C is set to zero.

CBS COMPARE BYTE STRING

(Immediate displacement, continue after interrupt)
0 60 R Displacement
0|23‘456739|011]2]3|4]5i]6l7]3|9i 122 23124 25 27128 29 30 31

COMPARE BYTE STRING compares, as magnitudes, the
contents of the source byte sfring with the confents of
the destination byte string, byte by corresponding byfte,
beginning with the first byte of each string. The com-
parison continues until the specified number of bytes have
been compared or until an inequality is found. When CBS
is terminated, CC3 and CC4 are set to indicate the resultof
the last comparison. If the CBS instruction terminates due to
inequality, the count in register Rul is one greater than the
number of bytes remaining to be compared; the source ad-
dress in register R and the destination address in register Rul
indicate the locations of the unequal bytes,

Affected: (R), (Rul), CC3,CC4

(SBS) : (DBS)

Condition code settings:

1 2 3 4 Resultof CBS

- - 0 O Source byte string equals destination byte
string or initial byte count is equal to zero.

- - 0 1 Source byte string less than destination byte
string.

- - 1 0 Source byte string greater than destination
byte string.

If CBS is indirectly addressed, it is treated as a nonexistent
instruction. The basic processor unconditionally aborts
execution of the instruction (af the time of operation code
decoding) and fraps to location X'40' with the contents
of register R and the destination byte string unchanged.
See "Traps By Byte String Instructions" (in this section) for
other trap conditions.

Case I, even, nonzero R field (Rul=R+1)

Contents of register R:

Source address
CRER G PR RS SR A AV AN R A N A)

Contents of register R+1:

T
Count : Destination address
0 1 2 3[4 5 6 718 ¢ 10 1111213 14 '(5i16 17 18 |9i20 21 22 23;24 25 26 27128 29 30 31

The source byfe siring begins with the byte iocation pointed
to by the source address in register R plus the displacement
in CBS; the destination byte string begins with the byte lo-
cation pointed to by the destination address in register R+1.
Both byte strings are C bytes in length.

Case II, odd R field (Rul=R)

Contents of register R:

[
Count l Destination address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23T24 25 26 27128 29 30 31

The source byte string begins with the byte location pointed
to by the address in register R plus the displacement in CBS;
the destination byte string begins with the byte location
pointed to by the destination address in register R, Both
byte strings are C bytes in length.

Case 111, zero R field Rul=1)

Contents of register 1:

T
Count } Destination address
0 1 2 314 5 & 718 9 10 11112 13 14 15i|6 17 18 19i2€| 21 22 23124 25 26 27128 29 30 31

The source byte string consists of a single byte, the con-
tents of the location pointed to by the displacement in CBS;

Byte-String Instructions 89

the destination byte string begins with the byte location
pointed fo by the destination address in register 1 and
is C bytes in length. In this case, the source byte is com-
pared with each byte of the destination byte string until an
inequality is found.

TBS TRANSLATE BYTE STRING

(Immediate displacement, continue after interrupt)

0 41 R Displacement

0 1 2 314 5 6 718 9 10 nli2713714 1516 17 18 19720 21 22 23724 25 26 27‘2329303\

TRANSLATE BYTE STRING replaces each byte of the desti~
nation byte string with a source byte located in atranslation
table, The destination byte string begins with the byte lo-
cation pointed to by the destination address in register Rul,
and is C bytes in length, The franslation table consists of
up to 256 consecutive byte locations, with the first byte
location of the table pointed to by the displacement in TBS
plus the source address in register R. A source byte is de-
fined as that which is in the byte location pointed to by the
19 low-order bits of the sum of the following values.

1. The displacement in bit positions 12-31 of the TBS
instruction.

2. The current contents of bit positions 13-31 of register R
(source address).

3. The numeric value of the current destination byte, the
8-bit contents of the byte location pointed to by the
current destination address in bit positions 13-31 of
register (Rul).

Affected: (DBS), (Rul) Trap: Instruction exception
translated (DBS) — DBS

The R field of the TBS instruction must be an even value for
proper operation of the instruction; if the R field of TBS is

an add sl tha trnefriinkian Frane ban fammbian Y1 AI‘\I

an oG4 va.ug, nd insiruclicon Waps O aOLGHIoh A Su

instruction excephon trap.

If TBS is indirectly addressed, it is treated as a nonexistent
instruction. The basic processor unconditionally aborts
execution of the instruction (at the time of operation code
decoding) and traps to location X'40" with the contents of
register R and the destination byte string unchanged.

See "Traps By Byte String Instructions™ (in this section) for

other trap conditions. Note that the check for access trap
conditions is done only for the source byte string.

Case 1, even, nonzero R field Rul=R+1)

Contents of register R:

! Source address

C 1| 2z 314 5 6 718 9 10 1112 1> 4 15016 7 18 19120 21 22 £3v24 23 26 27128 29 30 31

90 Byte~String Instructions

Contents of register R+1:

I
Count I Destination address
T 1 Z 383 ¢T3 W e R R B VR E A BB BT BE B

The destination byte string begins with the byte location
pointed to by the destination address in register R + 1 and
is C bytes in length. The source byte string (translation
table) begins with the byte location pointed to by the dis-
plocement in TBS plus the source address in register R.
When the instruction is completed, the destination address
is incremented by C, C is sef to zero, and the source ad~
dress remains unchanged.

Case 11, odd R field (Rul=R)

Because of the interruptible nature of TRANSLATE BYTE
STRING, the instruction traps with the contents of register R
unchanged when an odd-numbered general register is speci-
fied by the R field of the instruction word.

Case 111, zero R field (Rul=1)

Contents of register 1:

|
Count | Destination address
0 1 2 314 5 ¢ 718 9 10 11112 13 14 15]76 17 18 19120 21 22 23124 25 26 27(28 29 30 3!

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and

is C bytes in length. The source byte string (translation
table) begins with the location pointed to by the displace-
ment in TBS. When the instruction is completed, the desti-
nation address is incremented by C and C is set to zero.

TTBS TRANSLATE AND TEST BYTE STRING

(Immediate displacement, continue after interrupt)

0 40 R Displacement

}
01 2 Jil 5 6 718 9 10 M2 13 14715116 17 18 I9i2021 22ﬁi2452627i28293031

TRANSLATE AND TEST BYTE STRING compares the mask
in bit positions 0-7 of register R with source bytes in a byte
translation table. The destination byte string begins with
the byte location pointed to by the destination address in
register Rul, and is C bytes in length. The byte translation
table and the translation bytes themselves are identical to
that described for the instruction TRANSLATE BYTE STRING.
The destination byte string is examined (without being
changed) until a translation byte (source byte) is found that
contains a 1 in any of the bit positions selected by a 1 in
the mask. When such a translation byte is found, TTBS
replaces the mask with the logical product (AND) of the
transiation byte and the mask, and terminates with CC4
set to 1.

If the TTBS instruction terminates due to the above condi-
tion, the count (C) in register Rul is one greater than
the number of bytes remaining to be compared and the
destination address in register Rul indicates the location

of the destination byte that caused the instruction to
terminate, If no translation byte is found that satisfies
the above condition after the specified number of destina-
tion bytes have been compared, TTBS terminates with CC4
reset to 0. In no case does the TTBS instruction change
the source byte string.
Affected: (R), (Rul), CC4

Trap: Instruction exception

If translated (SBS) n mask # 0, translated (SBS) n mask —
mask and stop

If translated (SBS) n mask = 0, continue

Condition code settings:

1 2 3 4 Resultof TTBS

- - = 0 Translation bytes and the mask do not com-
pare ones any place.

- - = 1 The lost translation byte compared with the
mask contained at least one 1 corresponding
to a 1 in the mask.

The R field of the TTBS instruction must be an even value
for proper operation of the instruction; if the R field of TTBS
is an odd value, the instruction traps fo location X'4D',
instruction exception trap.

If TTBS is indirectly addressed, it is treated as a nonexistent
instruction. The basic processor unconditionaiiy aborts
execution of the instruction (at the time of operatfion code
decoding) and traps to location X'40' with the contents of
register R and the destination byte string unchanged.

See "Traps By Byte String Instructions" (in this section) for
other trap conditions. Note that the check for access trap
conditions is done only for the source byte string.

Case 1, even, nonzero R field (Ru1=R+1)

Contenfs of register R:

T
1
Mask } Source address
0 1 2 314 5 6 778 9 10 nl12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Contents of register R+1:

Count Destination address
01 2 3i4 5 6 718 9 10 11213 MTSilé 17 18 19120 21 2223i242526272529303|

The destination byte string begins with the byte location
pointed fo by the destination address in register R + 1 and
is C bytes in length. The source byte string (translation
table) begins with the byte location pointed fo by the dis-
placement in TTBS plus the source address in register R.

Case 11, odd R field

Because of the interruptible nature of TRANSLATE AND
TEST BYTE STRING the instruction traps with the contents
of register R unchanged when an odd-numbered general reg-
ister is specified by the R field of the instruction word.

Case III, zero R field (Rul=1)

Contents of register 1:

Count Destination address

—_— e —_—
0 v 2 3145 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TTBS. In this case, the instruction automatically provides
a mask of eight 1's. (This is an exception to the general
rule, used in the other byte-string instructions, the reg-
ister O provides all 0's as its contents.)

EBS EDIT BYTE STRING

(Immediate displacement, continue after interrupt)

0 63 R Displacement

0 1 2 314 5 6 718 9 10 11z 13 1415016 17 18 19120 21 22 23124 25 26 27128 29 30 31

EDIT BYTE STRING converts a decimal information field
from packed decimal format to zoned decimal EBCDIC for-
mat, under control of the editing pattern in the destination
byte string, and replaces the destination byte string with the
edited, zoned result. (See "Decimal Instructions", "Packed
Decimal Numbers", and "Zoned Decimal Numbers" for

a description of packed and zoned decimal formats.) EBS
proceeds one byte at a time, starting with the first (most
significant) byte of the editing pattern, and continues
until all bytes in the editing pattern have been processed.
The fill character, contained in bit position 0-7 of regis-
ter R, replaces the pattern byte under specified condifions.
More than one decimal number field can be edited by a
single EBS instruction if the pattern in memory is, in fact,
a series of patterns corresponding fo a series of number
fields. In such cases, however, after the EBS instruction is
completed, the condition code indicates the result of the
last decimal number field processed and register 1 contains
the byte address (or the byte address plus 1) of the last sig-
nificance indicafor in the edited destination byte string.
(This allows the insertion of a floating dollar sign, etc.,
with a subsequent instruction.)

R must be an even value (excluding 0) for proper operation

of the instruction; if R is an odd value or equal to zero, the
basic processor traps to location X'4D', instruction excep-

tion trap, with the contents in register R unchanged.

Byte=String Instructions N

Contents of register R:

T
Fill I

Source address

Contents of register R+1:

|
0 1 2 314 5 6 718 9 10 11712 13 14 1516 17 18 19120 21 22 23124 25 26 27128 29 30 3}

Count | Destination address

The destination byte string is an editing pattern that begins
in the byte location pointed to by the destination address
in register R+ 1, and is C bytes in length. The decimal
information field, which must be in packed decimal format,
begins with the byte location pointed to by the displace-
ment in EBS plus the source address in register R. The deci-
mal information field must contain legal decimal digit and

sign codes (packed format) and must begin with a decimal
digit.

The destination byte string (the editing pattern) may con-
tain any 8-bit codes desired. However, four byte codes
in the editing pattern have special meanings. These codes

are as follows:

Binary value Function Abbreviation
0010 0000 (X'20') Digit selector ds
0010 0001 (X'21") Significance start ss
0010 0010 (X'22") Field separation fs
0010 0011 (X'23") Immediate signifi- si

cance starf

Before executing EBS, the condition code should be set

to 0000 if the high—order digit of the decimal number icin

HLORRVAVLVLS 38 |

the left half of a byte, and should be set to 0100 if the
high-order digit is in the right half of a byte.

The editing operation performed on each pattern byte of
the destination byte string is determined by the following
conditions:

1. The pattern byte obtained from the destination byte
string.

2. The decimal digit obtained from the decimal number

e _ 1.1
ey,

3. The current state of the condition code.

Depending upon various combinations of these condi-
tions, the instruction EDIT BYTE STRING performs one

92 Byte=String Instructions

1 ' n L '
01 2 3;4 5 6 718 9 10 Hi|2 13 14 15116 17 18 19120 27 22 23724 25 26 27128 29 30 3)

(and only one) of the following actions with the pattern byte
and the decimal digit:

1.

The fill character (confents of bit positions 0-7 of reg-
ister R) or a blank character replaces the byte in the
destination byte string.

The decimal digit is expanded to zoned decimal format

«and replaces the pattern byte in the destination byte

string.

The pattern byte remains unchanged.

In general, the normal editing process is as follows:

1.

Each byte of the destination byte string is replaced by
a fill character until significance is present, either in
the destination byte string or in the decimal informa-
tion field. Significance is indicated by any of the
following:

a. The pattern byte is X'23' (immediate significance
start), which begins significance with the current
decimal digit.

b. The pattern byte is X'21' (significance start),
which begins significance with the following pat-
tern byte,

c. The current decimal digit is nonzero, which begins
significance with the current pattern byte.

After significance is encountered, each pattern byte
that is X'20' (digit selector), X'21' (significance start),
X'22" (field separatfor), or X'23' (immediate signifi-
cance start) is replaced by a zoned decimal number
from the decimal field and all other pattern bytes are
unchanged. This process continues until any of the
following conditions occurs:

a. A positive sign is encountered in the decimal field,
in which case subsequent pattern bytes are re-
placed by blank characters until significance is
again present, until a field separator is encoun-
tered, or until the destination byte stringisentirely
processed, whichever occurs first,

b. A negative sign is encountered in the decimal
field, in which case subsequent pattern bytes are
unchanged until significance is again present, until
a field separator is encountered, or until the desti~
nation byte string is entirely processed, whichever
occurs first.

c. A pattern byte of X'22' (field separator) is encoun-
tered, in which case the field separator is replaced
by a fill character; subsequent pattern bytes are re-
placed by the fill charocter until significance is

again present, until a positive or negative sign is
encountered, or until the destination byte siring
is entirely processed, whichever occurs first.

d. The destination byte string is entirely processed,
in which case the basic processor executes the
next instruction in sequence.

Detailed operation of EDIT BYTE STRING follows. The
explanation is necessarily quite detailed due to the high
degree of flexibility inherent in EBS. Condition code
settings are made confinuously during the editing process
and these settings help determine how each subsequent pat-
tern byte will be edited. The summary of condition code
settings given later in this section will help clarify the
following discussion:

1. If the count in bit position 0-7 of -register R+] is a
nonzero, a pattern byte is obtained from the destina-
tion byte string; if the count in register R+l is O,
the basic processor executes the next instruction in
sequence,

2. If the pattern byte is a digit selector (X'20'), o sig-
nificance start (X'21'), or immediate significance
start (X'23'), a digit is accessed from the decimal
information field as follows:

a. A decimal byte is obtained from the byte location
pointed to by the displacement in EBS plus the
source address in register R,

b. If bits 0~3 of the decimal byte are a sign code,
the basic processor automatically aborts execution
of EBS and traps 1o iocarion X'45°, with the con-
tents of register R, register R+1, the condition
code, and the destination byte siring unchanged
from their current contents.

c. If CC2is currently set to 0, the digit to be used
for editing is the left digit (bits 0-3) of the deci-
mal byte; however, if CC2 is currently set to 1,
the digif to be used is the right digit (bits 4-7)
of the decimal byte. In either case, CC3 is set
to 1if the digit is nonzero. If CC2 is set to 1
and the right digit (bits 4-7) of the decimal byte
is a sign code, the basic processor automatically
aborts execution of EBS and traps to location X'45',
as described above.

d. One of the following editing actions is performed:
Conditions Action Mark

Pattern byte=SI(X'23') Expand digit to zoned Mode 1
format, store in pat-
tern byte location,
ond set CC4 to 1 (start
significance).

Pattern byte=SS(X'21') Expand digit to zoned None
CC4=1 format and store in
pattern byte location

Conditions Action Mark

Pattern byte=55(X'21') (because CC4=1 means

CC4=1 (cont.) significance already
encountered),

Pattern byte=SS Expand digit to zoned Mode 1

CC4=0 format, store in pat-

nonzero digit tern byte location

(because nonzero digit
begins significance),

and set CC4 to 1.

Pattern byte=SS Store fill character in Mode 2

CC4=0
digit=0

pattern byte location
(because significance
starts with next pat-
tern byte) and set
CC4 to 1.

Pattern byte=DS(X'20') Expand digit fo zoned None

CC4=1 format, and store
digit in pattern byte
location,
Pattern byte=D$S Expand digit to zoned Mode 1
CC4=0 format, store digit in
nonzero digif pattern byte location,
and set CC4 to 1 fo
signal significance.
Pattern byte=DS Store fill character in None
CC4=0 pattern byte location
digit=0 (because significance
not encountered yet).
e. If CC2is currently reset to 0 and if bits 4-7 of
the decimal byte are a positive decimal sign code,
CClis set fo 1, CC4 is reset to 0, and the source
address in register R is incremented by 1. 1f CC2
is currently reset to O and if bits 4-7 of the deci-
mal byte are a negative decimal sign code, CCl
and CC4 are both set to 1, and the source address
is incremented by 1. Otherwise, CC2 is added
to the source address and then CC2 is inverted.
f. If marking is invoked at set d, above, one of the

two following marking operations are performed:

Mode 1: Load bits 13-31 of register R+1 into bit
positions 13-31 of register 1; bit posi-
tions 0-12 of register are unpredictable.

Mode 2: Load bits 13-31 of register R+1 into bit
positions 13-31 of register 1 and then
increment the contents of register 1
by 1; bit positions 0-12 of register 1 are
unpredictable.

If marking is not applicable (i.e., significance
has not been encountered), the contents of reg-
ister 1 are not affected.

e

Byte-String Instructions 93

3. If the pattern byte is a field separator (X'22'), the fill
character is stored in the pattemn byte location. CCl,
CC3, and CC4 are all reset to 0's, and CC2 remains

unchonged.
4. If the pattern byte is not a digit selector, significance
start, immediate significance start, or field separator,

one of the following actions are performed:

Conditions Action

CC1=0 } Store fill character in pattern byte
CC4=0 location.

CCl=1 } Store blank character (X'40') in pattern
CC4=0 byte location,

CC4=1 None (pattern byte remains unchanged).

5. Increment the destination address in register Rul and
decrement the count in register Rul. If the count is
still nonzero, process the next pattern byte as above;
otherwise, execute the next instruction in sequence.

Affected: (R), (Rul)
(register 1),

Traps: Nonexistent instruc-
tion, decimal arith-

(DBS), CC metic, instruction
exception

edited (SBS) —DBS

Condition code settings:

1 2 3 4 Resultof EBS

0 - - 0 Significance is not present, no sign digit has
been encountered.

0 - - 1 Significance is present, no sign digit has been
encountered,

1 - - 0 A positive sign has been encountered.

1 - - 1 A negative sign has been encountered.

- 0 - - Nextdigif to be processed is leftdigitof byte.

- 1 ~ - Nextdigit to be processedis rightdigitofbyte.

- - 0 =~ No nonzero digit has been encountered.

- - 1 = A nonzero digit has been encountered.

If EBS is indirectly addressed, it is treated as a nonexistent
instruction. The basic processor unconditionally aborts
execution of the instruction (at the time of operation code
decoding) and traps to location X'40' with the contents of
register R, register Rul, register 1, the destination byte
string, and the condition code unchanged.

The R field of the EBS instruction must be an even value
(excluding 0) for proper operation of the instruction; if the

94 Byte=String Instructions

R field is an odd value or equal to zero, the insiruction
traps to location X'4D’, instruction exception trap.

If an illegal digit or sign is detected in the decimal infor-
mation field, the basic processor unconditionally aborts
execution of the instruction (at the time the illegal digit

or sign is encountered) and traps to location X'45' with the
contents of register R, register Rul, register 1, the destina-
tion byte string, and the condition code containing the re-
sults of the last editing operation performed before the
illegal digit or sign was encountered.

See "Traps By Byte-String Instructions" (in this section)
for other trap conditions,

In the following examples, the hexadecimal codes for the
digit selector (X'20"), the significance start (X'21'), the
field separation (X'22'), and the immediate significance
start (X'23') are represented by the character groups ds,

ss, fs, ond si, respectively. Also, the symbol b is used to
represent the character blank (X'40'). Note that code X'5C!
represents the * symbol.

Example 1, before execution:

The instruction word is

X'63600000

The contents of register 6 are:

X'5C000100'

The contents of register 7 are:

X'0C001000'

The contents of the decimal information field beginning at
byte location X'100' are:

00 00 00 O+

The contents of the destination byte string beginning at byte
location X'1000' are:

dsds, dsdsss. dsdsb CR

The condition code is:

0000

The instruction word is unchanged.

The new contents of register 6 are:

X'5C000104

The new contents of register 7 are:

X'0000100C*

The contents of the decimal information field are unchanged.

The new contents of the destination byte string are:

******.Oobab‘b

The new condition code is:

1000

The contents of register 1 are:

X'xxx01006'

By subsequent programming, a floating dollar sign can be
inserted in front of the first significant character of the
edited byte string by using the contents of register 1,
minus 1, as the address of the byte location where the
dollar sign is to be inserted.

Example 2, before execution:

The initial conditions are identical to example 1, except
that the contents of the decimal information field are:

06 5432 1~

Example 2, ofter execution:

The instruction word and the decimal field are unchanged.

The new contents of registers 6 and 7 are identical to those
given for example 1.

The new confents of the destination byte string are:

*6,543.21H5CR

The new condition code is:

1011

The new confents of register 1 are:

X'xxx01001"

Example 3, before execution:

The initial conditions are identical fo example 1, except
that the contents of the decimal field are:

00 54 32 1+

Example 3, ofter execution:

The instruction word and the decimal field are unchanged.

The new contents of registers 6 and 7 are identical to that
given for example 1.

The new contents of the destination byte string are:
***"543. 21665

The new condition code is:
1010

The new confents of régisi‘er 1 are:

X'xxx01003"

Example 4, before execution:

The instruction word is:

X'63400106'
The contents of register 4 are:

X'7B001000* -
The contents of register 5 are:

X'19002000"

The contente of the decimal information field beginning ot

byte location X'1100' are:
06 12 50 0+ 01 23 4+ 03 5-

The contents of the destination byte string beginning af byte
location X'2000' are: ‘

Adsdssi. dsdsdsfs Bdsdsss. dsds C fs D
si ds ds END
The condition code is:

0100

Example 4, ofter execution:

The instruction word is unchanged.

The new contents of register 4 are:

X'7B001009"

The new contents of register 5 are:

X'00002019"

The decimal information field is unchanged.

Byte-String Instructions 95

The new contents of the destination byte string are:
fe12.500t##12, 346##035END
The new condition code is:
1011
The new contents of register 1 are:

X'xxx02013"'

PUSH-DOWN INSTRUCTIONS (NON-PRIVILEGED)

The term "push—down processing” refers to the programming
technique (used extensively in recursive routines) of storing
the context of a calculation in memory, proceeding with a
new set of information, and then activating the previously
stored information. Typically, this process involves a re-
served area of memory (stack) info which operands are
pushed (stored) and from which operands are pulled (loaded)
on a last~in, first-out basis. The basic processor pro-
vides for simplified and efficient programming of push-
down processing by means of the following non-privileged
instructions:

Instruction Name Mnemonic
Push Word PSW
Pull Word PLW
Push Multiple PSM
Pull Multiple PLM
" Modify Stack Pointer . MSP

STACK POINTER DOURLEWORN (SPN)
Each non-privileged push-down instruction operates with
respect to a memory stack that is defined by a doubleword
located at effective address of the instruction. This double-
word, referred to as a stack pointer doubleword (SPD), has
the following structure:

Top of stack addresst

[AREIN7 M KV O Y 7 30) 7R T 7 -)

T 1
s Space count w Word count

R A A R R XA R R E A TS

fFor real extended mode of addressing this is a 20-bit
field (12-31); for real and virtual addressing modes it is a
17-bit field (15-31).

96 Push-Down Instructions (Non-Privilege-d)

Bit positions 15 through 31 of the SPD contain a 17-bit
address field! that points to the location of the word cur-
rently at the top (highest-numbered address) of the oper-
and stack. In a push operation, the top-of-stack address
is incremented by 1 and then an operand in a general reg-
ister is pushed (stored) info that location, thus becoming
the contents of the new top of the stack; the contents of
the previous top of the stack remain unchanged. In a pull
operation, the contfents of the current top of the stack are
pulled (loaded) into a general register and then the top-
of~stack address is decremented by 1; the contents of the
stack remain unchanged.

Bit positions 33 through 47 of the SPD, referred to as the
space count, confain a 15-bit count (0 to 32,767) of the
number of word locations currently available in the region
of memory allocated to the stack. Bit positions 49 through 63
of the SPD, referred to as the word count, contain a 15-bit
count (0 to 32,767) of the number of words currently in the
stack. In a push operation, the space count is decremented
by 1 and the word count is incremented by 1; in a pull oper~-
ation, the space count is incremented by 1.and the word
count is decremented by 1. At the beginning of all non-
privileged push-down instructions, the space count and the
word count are each tested to determine whether the instruc-
tion would cause either count field to be incremented above
the upper limit of 215 (32,767), or to be decremented
below the lower limit of 0. If execution of the push-down
instruction would cause either count limit to be exceeded,
the basic processor unconditionally aborts execution of the
instruction, with the stack, the stack pointer doubleword,
and the contents of general registers unchanged. Ordinarily,
the basic processor traps fo location X'42' after aborting

a push-down instruction because of impending stack limit
overflow or underflow, and with the condition code un-
changed from the value it contained before execution of
the instruction.

However, this trap action can be selectively inhibited by
setting either (or both) of the trap inhibit bits in the SPD
to 1.

Bit position 32 of the SPD, referred to as the trap-on=-space
(TS) inhibit bit, determines whether the basic processor will
trap to location X'42' as a result of impending overflow or
underflow of the space count (SPD33_47), as follows:

TS Space count overflow/underflow action

0 If the execution of a pull instruction would cause the
space count to exceed 219-1, or if the execution of a
push instruction would cause the space count to be
less than 0, the basic processor traps to location X'42'
with the condition code unchanged.

1 Instead of trapping to location X'42', the basic pro~
cessor sets CC1 to 1 and then executes the next in-
struction in sequence,

Bit position 48 of the SPD, referred to as the frap-on=-word
(TW) inhibit bit, determines whether the beosic processor

traps to location X'42' as a result of impending overflow
or underflow of the word count (SPD4g_g3), as follows:

TW Word count overflow/underflow action

0 If the execution of a push instruction would cause the
word count to exceed 213-1, or if the execution of
a pull instruction would cause the word count to be
less than 0, the basic processor traps to location X'42!
with the condition code unchanged.

1 Instead of trapping to location X'42', the basic pro-
cessor sefs CC3 to 1 and then executes the next
instruction in sequence.

PUSH-DOWN CONDITION CODE SETTINGS

If the execution of a push-down instruction is attempted
and the basic processor traps to location X'42', the condi-
tion code remains unchanged from the value it contained
immediately before the instruction was executed.

If the execution of a push-down instruction is attempted and
the instruction is aborted because of impending stack limit
overflow or underflow (or both) but the push-down stack
limit trap is inhibited by one (or both) of the inhibits (TS
and TW), then, CC1 or CC3 is set to 1 (or both are set
to 1's) to indicate the reason for aborting the push-down
instruction, as follows:

1 2 3 4 Reason for abort

0 - 1 - Impending overflow of word count on a push
operation or impending underflow of word
count on a pull operation. The push-down
stack limit trap was inhibited by the TW
bit (SPDyg).

1 - 0 - Impending overflow of space count on a pull
operation or impending underflow of space
count on a push operation. The push-down
stack limit frap was inhibited by the TS bit

(SPD32).

1 - 1 - Impending overflow of word count and under-
flow of space count on a push operation or im-
pending overflow of space count and underflow
of word count on a pull operation. The push-
down stack [imit frap was inhibited by both
the TW and the TS bits,

If a push-down instruction is successfully executed, CC1
and CC3 are reset to 0 at the completion of the instruction.
Also, CC2 and CC4 are independently set to indicate

the current status of the space count and the word count,
respectively, as follows:

1 2 3 4 Status of space and word counts

- 0 - 0 The current space count and the current word
count are both greater than zero.

- 0 = 1 The current space count is greater than zero,
but the current word count is zero, indicating
that the stack is now empty. If the next oper-
ation on the stack is a pull instruction, the
instruction will be aborted.

- 1 = 0 The current word count is greater than zero,
but the current space count is zero, indicating
that the stack is now full, If the next opera-
tion on the stack is a push instruction, the
instruction will be aborted.

If the basic processor does not trap to location X'42' as a
result of impending stack limit overflow/underflow, CC2
and CC4 indicate the status of the space and word counts
at the termination of the push—down instruction, regardless
of whether the space and word counts were actually modi-
fied by the instruction. In the following descriptions of
the push-down instructions, condition code settings given
are only those that can be produced by the instruction,
provided that the basic processor does not frap to lo-
cation X'42',

PSW PUSH WORD

(Doubleword index alignment)

* 09 R X Reference address

T T 23T 5678 7 B MZ R U B VB AT E BB S R o5 50

PUSH WORD stores the contents of register R into the push-
down stack defined by the stack pointer doubleword lo-
cated at the effective doubleword address of PSW. If the
push operation can be successfully performed, the instruc-
tion operates as follows:

1. The current top~of-stack address (SPD 5_3])f is incre-
mented by 1 to point fo the new fop-o}—si'clck location.

2. The contents of register R are stored in the location
pointed to by the new fop-of-stack address.

tFor real extended mode of addressing this is a 20-bit
field (12-31); for real and virtual addressing modes it is

a 17-bit field (15-31).

Push-Down Instructions (Non-Privileged) 97

3. The space count (SPD33_47) is decremented by 1 and
the word count (SPD49_g3) is incremented by 1.

4. The condition code is set to reflect the new status of
the space count,

Affected: (SPD), (TSA+1), CC
(SPD)

Trap: Push-down stack limit

+1—35S

15-31 PDysart

(R) —= (SPD, 5_31)*

(PD)y34771 7 SPP33.47

1 —

(PD)go g3 + 17 5PDyg 43

Condition code settings:

1 2 3 4 Resultof PSW

0 0 0 O Space count is greater
than 0. Instruction
completed
0 1T 0 O Space count is now 0.
0 0 1 0O Wordcount= 2]5-1,
™W=1.
1 1T 0 0 Space count=0,
TS=1.
Instruction
1 1 0 1 Space count =0, word aborted
count=0, TS=1.
1 1 1 0 Word count=219-1,
space count =0,
TW=1, and TS =1,

PLW PULL WORD

(Doubleword index alignment)

* 08 R X Reference address

0 1 2 314 5 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

PULL WORD loads register R with the word currently at the
top of the push-down stack defined by the stack pointer
doubleword located at the effective doubleword address

of PLW. If the pulloperation can be performedsuccessfully,
the instruction operates as follows:

1. Regisfer R is loaded with the contents of the loca-
tion pointed to by the current top-of-stack address

(SPDy5-37)".

2. The current top-of-stack address is decremented by 1,
to point to the new top-of-stack location.

tFor real extended mode of addressing this is a 20-bit
field (12-31); for real and virtual addressing modes it is
a 17-bit field (15-31).

98 Push~-Down Instructions (Non-Privileged)

3. The space count (SPD33_47) is incremented by 1 and
the word count (SPDy9_g3) is decremented by 1.

4. The condition code is set to reflect the status of the
new word count.

Affected: (SPD), (R),CC Trap: Push-down stack limit

(SPD)5_g;— Ri (SPD) 1—SP

- t
15-31 D531

(SPD)33_g7 + 17 5PD33_y7i

(SPD)49_g3™1 T 5PDyg 43

Condition code settings:

1 2 3 4 Resultof PLW

0 0 0 O Word count is greater
than 0. Instruction

completed

0 0 0 1 Word count is now 0.
0 0 1T 1 Wordcount=0, TW=1,

0 1T 1 1 Spacecount=0,
word count =0, TW =1,

15 Instruction
1 0 0 0O Space count=2"-1, aborted

TS=1.

1 0 1 1 Space count= 2]5-1,
word count =0, TS =1,
and TW=1,

PSM PUSH MULTIPLE
(Doubleword index alignment)

* (0]} R X Reference address

0 3 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21" 27 23124 25 26 27128 29 30 3\

PUSH MULTIPLE stores the contents of a sequential set of
general registers info the push-down stack defined by the
stack pointer doubleword located at the effective double-
word address of PSM. The condition code must contain
a count of the number of registers to be pushed into the
stack. (An initial value of 0000 for the condition code
specifies that all 16 geners! registers are o be pushed
into the stack.) The registers are treated as a circular set
(with register O following register 15) and the first register
to be pushed into the stack is register R. The last register
to be pushed in to the stack is register R + CC -1, and the
contents of this register become the contents of the new
top-of-stack location,

If there is sufficient space in the stack for all of the
specified registers, PSM operates as follows:

1. The contents of registers R to R = CC - 1 are stored in
ascending sequence, beginning with the location
tion poinfed to by the current top-of=stack address
(5PD~|5_3-|)f plus 1 and ending with the current top-
of-stack address plus CC.

2. The current top-of-stack address is incremented by the
value of CC, to point to the new top-of-stack location.

3. The space count (SPD33_47) is decremented by the
value of CC and the word count is incremented by the
value of CC.

4. The condition code is set to reflect the new status of
the space count.

Affected: (SPD), (TSA+1) to
(TSA+CC), CC

(R) —= (SPD) 1... (R+CC-1) — (SPD)f

Trap: Push-down stack limit

CcC

1531 F 15-31 *

J— t
(OPD);5317CC T 5PPy5.5

(SPD)33_477CC —5PD33_47

(SPD)49_¢37CC—3PDyg 43

Condition code seftings:

1 2 3 4 Result of PSM

t>0.
0 0 0 O Space count >0 Instruction

01 00 Spqce count = 0. Complefed

0 0 1 0 Wordcount +CC >215-1,)
™w=1.

1 0 0 0 Space count<CC, TS=1.

1 0 0 1 Space count<CC, word
count=0, TS=1,

1 0 1 0 Space count <CC, word
count + CC > 2151
TS=1, and TW=1.

Instruction
aborted

1 1 0 0 Spacecount=0, TS=1.

1 1 0 1 Space count =0, word
count=0, TS=1,

1 1T 1 0 Space count =0, word
count + CC > 215-1,
TS=1, and TW =1, J

fFor real extended mode of addressing this is o 20-bit
field (12-31); for real and virtual addressing modes it is o

17-bit field (15-31).

If the instruction operation extends into a memory page
protected either by the access protection codes or write
locks, the memory protection trap can occur, If the opera-
tion extends info a memory region that is physically not
present, the nonexistent memory address trap can occur.

If the address of the elements within the stack (pointed to
by the top-of-stack address) is in the range O through 15,
then the registers indicated by the R field of the PSM in-
struction are stored in the general registers rather than in
main memory. In this case the resultswill be unpredictable if
any source registers are also used as destination registers.

PLM PULL MULTIPLE

(Doubleword index alignment)

* 0B R X Reference address

0 1 2 374 5 6 7018 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

PULL MULTIPLE loads a sequential set of general registers
from the push-down stack defined by the stack pointer
doubleword located at the effective doubleword address of
PLM. - The condition code must contain a count of the num-
ber of words to be pulled from the stack. (An initial value
of 0000 for the condition code specifies that 16 words are
to be pulled from the stack.) The registers are freated as a
circular set (with register 0 following register 15), the first
register to be loaded from the stack is register R+CC-1, and
the contents of the current top-of-stack location becomes
the contents of this register. The last register to be loaded
is register R.

If there is a sufficient rnumber of words in the stack to load
all of the specitied registers, PLM operates as tollows:

1. Registers R+CC~1 to register R are loaded in descend-
ing sequence, beginning with the contents of the lo-
cation pointed to by the current top-of-stack address
(SPD15-31)t and ending with the confents of the loca-
tion pointed to by the current top-of-stack address
minus CC-1,

2. The current top-of-stack address is decremented by the
value of CC, to point to the new- top~of-stack location.

3. The space count (SPD33_47) is incremented by the
value of CC and the word count is decremented by the
value of CC.

4, The condition code is set to reflect the new status of
the word count.

Affected: (SPD), R+CC-1)
to (R), CC

Trap: Push-down stack limit

((SPD)15-31F —R +CC -1,...,
((SPD)15-31 - ICC - 1|) — Rt
(SPD)15-31 - CC—=SPD15-3;"
(SPD)33-47 + CC—5PD33_47
(SPD)49-63 - CC—=5PDg9-63

Push-Down Instructions (Non-Privileged) 99

Condition code settings:

1 2 3 4 Resultof PLM

0 0 0 0 Wordcount>0

Instruction

0 0 0 1 Wordcount=0 completed
0 0 1 0 Wordcount<CC,
TW=1
0 0 1T 1 Wordcount=0,
™W=1
0 1 1 0 Space count=0,
word count < CC,
™W =1
0 1T 1 1 Space count=0,
word count = 0, Instruction
TW=1 aborted
1 0 0 O Space count +CC > 2]5—],

TS=1

15

1 0 1 0 Space count +CC>2"-1,
word count < CC, TS=1,
and TW = 1

15

1 0 1 1 Space count+CC>2 -1,
word count =0, TS=1,
and TW =1

If the instruction operation extends info a memory page
protected either by the access protection codes or write
locks, the memory protection trap can occur, If the
operation extends into a memory region that is physically
not presenf, the nonexistent memory address trap can
occur.

If the address of the elements within the stack (pointed to
by the top-of-stack address) is in the range 0 through 15,
then the words to be loaded are taken from the general
registers rather than from main memory. In this case, the
results will be unpredictable if any of the source registers
are also used as destination registers.

MSP MODIFY STACK POINTER
(Doubleword index alignment)

Bit positions 16 through 31 of register R are treated as a
signed integer, with negative integers in two's complement
form (i.e., a fixed=-point halfword). The modifier is alge-
braically added to the top-of-stack address, subtracted
from the space count, and added fo the word count in the
stack pointer doubleword, If, as a result of MSP, either
the space count or the word count would be decreased be-
low 0 or increased above 215-1, the instruction is aborted.
Then, the basic processor elfher traps to location X'42' or
sets the condition code to reflect the reason for aborting,
depending on the stack limit trap inhibits.

If the modification of the stack pointer doubleword can be
successfully performed, MSP operates as follows:

1. The modifier in register R is algebraically added to the
current top~of-stack address (SPDy5-31)t, to pomf fo
a new top-of-stack location. (If the modifier is neg-
ative, it is extended to 17 bits by appending a high-
order 1.)

2. The modifier is algebraically subtracted from the cur-
rent space count (SPD33-47) and the result becomes
the new space count.

3. The modifier is algebraically added to the current
word count (SPD49.43) and the result becomes the new
word count,

4. The condition code is set to reflect the new status of
the new space count and new word count,

Affected: (SPD), CC Trap: Push-down stack limit

R t
(5PD)y531 + R)43158 ™ 3PPy5.31
(PD)33_g7 = R)yg_31 7 5PP33_47

(SPD) +(R) —SPD

49-63 16-31 49-63

Condition code settings:

1.2 3 4 R

* 13 R X Reference address

0 1 2 374 5 6 718 9 10 11112713 14 15116 17 18 19120 21 2223i24252627i23293]31

MODIFY STACK POINTER modifies the stack pointer

dovkleword, located ot the effective doubleword address

of MSP by fhe contents of register R, Register R must have
the following format:

Modifier

01 2 314 5 6 718 6 0112 D141 TBBHDD BBINE % BT BT

100 Push-Down Instructions (Non-Privileged)

0 0 0 0 Space count>0,
word count > 0.

0 0 0 1 Space count >0,
word count = 0.

Instruction completed

0 1 0 0 Space count=0,
word count > 0.

0 1T 0 1 Space count=0,
word count =0,
modifier = 0, J

fFor real extended mode of addressing this is a 20-bit
field (12-31); for real and virtual addressing modes it is a
17-bit field (15-31),

If CC1, or CC3, or both CC1 and CC3 are 1's after
execution of MSP, the instruction was aborted but the push-
down stack limit trap was inhibited by the trap-on-space
inhibit (SPD39), by the frap-on-word inhibit (SPD4g), or
both. The condition code is set to reflect the reason for
aborting as follows:

1 2 3 4 Status of space and word counts

- - - 0 Word count >0,
- - - 1 Wordcount =0,
- - 0 - 0 < word count + modifier < 2]5-],

- - 1 - Word count + modifier <0, and TW = 1 or
word count + modifier > 219-1, and TW=1.

- ‘0 - = Space count >0,
- 1 - - Space count=0.
: oo 15
0 - - =~ 0 <space count - modifier <2 "-1.

1 - - - Space count - modifier <0, and TS = 1 or
space count - modifier >213-1, and TS = 1.

PUSH-DOWN INSTRUCTIONS (PRIVILEGED)

The computer has two privileged push-down instructions:
PUSH STATUS (PSS) and PULL STATUS (PLS). These twoin-
structions and a Status Stack Pointer Doubleword facilitate
the storing (pushing) or loading (pulling) of a particular
environment (contents of 16 general registers and Program
Status Words) into or out of a memory stack.

STATUS STACK POINTER DOUBLEWORD

The Status Stack Pointer Doubleword (SSPD) always resides
in real memory locations 0 and 1 and is dedicated for PSS
and PLS instructions. The format of parameters contained
within the Status Stack Pointer Doubleword are as follows:

Real Memory Location 0:

Top of Stack Address

8 9 10 11112 13 14 15[16 17 18 19120 27 22 23124 25 26 27i28 29 30 3t

0 1 2 374 5 6

Real Memory Location 1:

Space Count Word Count

B H BB T B HIW 4T 2 DI B % T4 B 50 51157 53 54 551% 57 58 &0 &1 67 &3

TOP OF STACK ADDRESS

The Top of Stack Address (TSA) is always a 20-bit real mem-
ory word address and is never mapped. Depending upon

programming considerations, the initial TSA is a specific
value either as the result of a Mode 0, WRITE DIRECT
instruction or as the result of a PSS or PLS instruction, as
described below.

During each PSS instruction, the memory stack is accessed
28 times and the TSA is incremented by 1 before each access,
The first memory stack location accessed has a relative ad- -
dress equal fo the initial TSA plus 1, ..., and the 28th mem-
ory stack location accessed has a relative address equal to
the initial TSA plus 28. Although 28 memory stack loca-
tions are accessed in an ascending sequence, only 20 [oca-
tions (as selected by the hardware) will contain the basic
processor environment. Eight locations (whose contents are
designated as "indeterminate”, in Figure 12) are reserved
and must not be used.

For each PLS instruction, access to the memory stack is
contingent upon the Word Count as described subsequently.
If access is permitted, the memory stack is accessed 28 times
and the TSA is decremented by 1 after each access. The
first memory stack location accessed by a PLS instruction
has a relative address equal to the initial TSA, the second
memory stack location accessed has a relative address equal
to the initial TSA minus 1,..., and the 28th memory stack
location accessed has a relative address equal to the initial
TSA minus 27. Although 28 memory stack locations are
accessed in a descending sequence, the hardware selects
and pulls the contents of only 20 locations containing valid
information, as shown in Figure 12, and loaded into the
general registers and PSWs, - The contents of eight locations
designated as indeterminate are ignored.

If the terminal (last) TSA for a PSS or PLS instruction is
not modified by a Mode O WRITE DIRECT instruction, it
may be used as the initidl TSA for a subsequent PSS or PLS
instruction. Each PSS instruction causes the memory stack
to be increased by 28 word locations and each PLS instruc-
tion causes the memory stack to be decreased by 28 word
locations. The information is pushed and pulledon alast-in,
first-out basis.

Note: The PLS instruction is contingent upon the Word
Count value, os described below.

SPACE COUNT

The Space Count field (bit positions 33-47) of the Status
Stack Pointer Doubleword is a 15-bit counter that may con-
tain a value of 0 through 32,767, Depending upon pro-
gramming considerations, the initial Space Count is a
specific value either as the result of executing a Mode 0,
WRITE DIRECT instruction or a PLS or PSS instruction.

During a PSS instruction, the Space Count is decremented
by 1 for each word pushed into the memory stack. If the
Space Count is decremented to a value of zero before all
the words have been pushed, the PSS instruction continues
{i.e., no trapping occurs). The environment is stored into

Push-Down Instructions (Privileged) 101

PSS Operations

initial TSA —

+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27

initial TSA +28

(RO)

(R1)

(R2)

(R3)

(R4)

(R5)

(R6)

(R7)

(R8)

(R9)

(R10)

(R11)

(R12)

(R13)

(R14)

(R15)

(PSWi;

(PSW2)

(PSW3)

(PSW4)

PLS Operations

«~— terminal TSA = initial TSA-28
-27
-26
-25
-24
-23
-22
-21
-20
-19
-18
-17
-16
-15
-14
-13
-12
-1
-10
-9
-8
-7

-—— initial TSA

tAs a function of the hardware, the contents of these 8 locations are in-
determinate after a PSS instruction and ignored by a PLS instruction. These
locations are reserved for future enhancements and must not be used.

102

Figure 12. Typical 28-Word Portion of Memory Stack for PSS and PLS

Push-Down Instructions (Privileged)

appropriate memory stack locations as specified by the
TSA; however, subsequent values of the Space Count are
indefterminate.

During a PLS instruction, the Space Count is incremented

by 1 for each word pulled from the memory stack. If the
Space Count is incremented beyond a value of 32,767, bit
position 32 is set to 1 (signifying an overflow condifion);
however, the PLS instruction continues (i.e., no trapping
occurs).

Note: Once bit position 32 has been set to a 1, it can be
reset to a 0 only by executing a Mode 0, WRITE
DIRECT instruction. That is, bit position 32 can
not be reset to a 0 by the decrementing process per-
formed during a PSS instruction.

WORD COUNT

The Word Count field (bit positions 49-63) of the Status
Stack Pointer Doubleword is a 15-bit counter that may con-
tain a value of O through 32,767, Depending upon pro-
gramming considerations, the initial Word Count is a
specific value either as the result of executing a Mode 0,
WRITE DIRECT instruction or as the result of executing a
PSS or PLS instruction.

During a PSS instruction, the Word Count is incremented
by 1 foi cach word pushied into the memory stack. Thug,
the terminal Word Count for a PSS instruction exceeds the
initial Word Count by 28. If the Word Count value
exceeds 32,767, bit position 48 is set to a 1 (signifying
that an overflow condition has occurred); however, the
PSS instruction continues the stacking operation (i.e., no

trapping occurs).

If the initial Word Count for a PLS instruction is equal to
or greatfer than 28, the Word Count is decremented by 1 for
each word pulled from the memory stack and the terminal
Word Count will be 28 less than the initial Word Count.
Note that if bit position 48 was set to a 1 by a PSS instruc-
tion previously, it can not be reset to a 0 by the decrement-
ing performed during a PLS instruction.

If the initial Word Count for a PLS instruction is equal to
zero, the parameters within the Status Stack Pointer Double-
word are neither effective nor aoffected by the PLS instruc-
tion. However, default PSWs are loaded from real memory
locations 2 and 3.

If the initial Word Count for a PLS instruction is less than 28
and not equal to zero, the other parameters of the Status
Stack Pointer Doubleword are not effective and none of the
parameters are affected by the PLS instruction. Instead the
BP traps to location X'4D' (instruction exception trap) and
TCC2 is set.

PSS PUSH STATUS

(Doubleword index alignment, privileged)

X oD Reference address

12 374 5 6 708 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

o

X oD »|0|0

Reference address

1172 13 14 15116 17 16 19120 21 22 23124 25 %6 218 % B 31

0 1 2 3al4 5 6 718 9 10

PUSH STATUS loads new Program Status Words from an ef-
fective doubleword location and stores the current environ-
ment {current Program Status Words and contents of all

16 general registers) info a memory stack, as defined by the
Status Stack Pointer Doubleword. Note that the reference
address points to the memory locafion of the new PSWs.

The PSS instruction is used for three types of operations:
as a normal instruction in an ongoing program; as an inter-
rupt instruction; and as a trap instruction. The effective
address of a PSS instruction is generated in one of the
following ways:

PSS — normal instruction (see first instruction diagram)

When a PSS instruction is encountered in the course of
execution of normal programs, the effective address is
generated according to the rules for addressing then in
effect as described by the currently active PSWs; that is, the
basic processor is operating in real, real extended, or virtual
addressing mode. The flags in bit positions 9 and 10 have
no effect and must be coded as zeros.

PSS — inferrupt instruction (see second instruction diagram)

A PSS instruction (in an interrupt location) executed as a
result of an interrupt is called an interrupt instruction. In
the interrupt execution sequence, the 20-bif reference
address is always real, independent of the map invoking
bit in the PSWs. There is no indexing possible since the
designator field is preempted by the reference address.
Indirect addressing is permitted with precisely the same
constraints, The indirect address word contains a 20-bit
real address with the same properties as the reference ad-
dress described above. The flags in bit positions 9 and 10
have no effect and must be coded as zeros.

PSS — trap instruction (see second instruction diagram)

A PSS instruction (in a trap location) executed as a result

of a trap entry operation is called a trap instruction. In a
trap execution sequence, the 20-bit reference address may be
either a real address or a virtual address according to the
map invoking bit in the PSWs, There is no indexing pos=-
sible since the index field is used for addressing. If indirect
addressing is specified, the effective address is generated
according to the rules for addressing then in effect as de-
scribed by the currently active PSWs, Bit positions 9 and 10
must be coded as zeros.

Push-Down Instructions (Privileged) 103

Depending upon the type of addressing, the reference
address of the PSS instruction is converted into an effective
virtual doubleword address, as described under "PSS Address
Calculations”, in Chapter 2. Except for the Register Block
Pointer field (bit positions 56-59) and the interrupt group
inhibit bits (bit positions 37, 38, and 39), the contents of
the effective location are always loaded as the new PSWs,
If the LP flag (bit 8 of the PSS instruction) is a 1, the
Register Block Pointer of the new PSWs is also loaded. If
the LP flag is a 0, the old Register Block Pointerisretained.
The interrupt group inhibit bits of the new PSWs are "ORed"
with the corresponding bits of the old PSWs.

The current environment (comprised of 20 words) is stored
in memory stack locations having the following relative
addresses: initial TSA+I through initial TSA+16, initial
TSA+25, and initial TSA+26. Memory stack locations
having relative addresses of initial TSA+17 through initial
TSA+24, initial TSA+27, and initial TSA+28 are reserved
and the contents are indeterminate.

The parameters of the Status Stack Pointer Doubleword (as
contained within working registers) are appropriately mod-
ified to reflect the progress of the PSS instruction and
conditions of the memory stack (i.e., the TSA and Word
Count are incremented and the Space Count is decremented
for each memory word location accessed, as described under
Status Stack Pointer Doubleword).

If the Word Count exceeds 32,767 (maximum count for

bits 49-63) or if the Space Count is reduced ta zero before
the PSS instruction is completed, the stacking operations
continue until 28 words have been pushed (i.e., no trapping
occurs). When the Word Count exceeds 32,767, bit 48 is
set to a 1. Attempting to decrement the Space Count below
zero causes the Space Count to become indeterminate.

Affected: (PSWs), CC, Memory Stack, Status Stack Pointer
Doubleword.

(PSWs) and CC:

EDg-3 — CGC;

ED4-7— FR, FS, FZ, FN;
EDg— MS;

EDg—-MM;
EDyp—DM;

ED71 — AM;

ED15-31 —IA;
ED32-35— WK;

ED37-39 u CI, 1I, EI—CI, 11, EI
(Note: "u" represents inclusive OR.)

EDs5g_59 — RP only if (Ig) = 1
EDgo — RA
EDg1 — MA

104 Push-Down Instructions (Privileged)

Memory Stack:

(General Register n) — (initial TSA+(n+1) where n has
ascending values from 0 through 15,

PSW1 — (initial TSA+25)

PSW2 — (initial TSA+26)

Status Stack Pointer Doubleword:

TSA+1 — TSA until terminal TSA=initial TSA+28;
Word Count + 1— Word Count until terminal Word
Count = initial Word Count + 28, (if Word Count >
32,767, set bit 48 to 1);

Space Count - 1— Space Count until terminal Space

Count = initial Space Count - 28 (if Space Count = 0,
Space Count - 1 is indeterminate).

PLS PULL STATUS (nonaddressing, privileged)

ofo oc |

01 2 SJH 56 718 9 0 nhz2 1314 1506 17 18 19120 21 22 23124 25 26 27128 29 30 31

PULL STATUS, in conjunction with the Status Stack Pointer
Doubleword, may cause one or more of the following func-
tions to be performed:

1. Selectively load a new environment (PSWs and 16 gen-
eral registers) from the memory stack; or,

2. Selectively load default PSWs from dedicated memory
locations; and,

3. Selectively clear and arm or clear and disarm the
highest priority level currently in the active state.

If the initial Word Count of Status Stack Pointer Doubleword
is equal to or greater than 28, a new environment is
loaded from the memory stack. Twenty eight memory stack
locations are accessed in a descending sequence, starting

at a location having an address equal to the initial TSA
{part of the Status Stack Pointer Doubleword). The hard-
ware selects and loads the contents of 20 memory locations
into the general registers and os the PSWs (i.e., the con-
tents of locationshaving relative addresses of initial TSA-2,
initial TSA-3, and initial TSA-12 through initial TSA-27),
The contents of 10 memory stack locations (having relative
addresses equal to initial TSA, initial TSA-1, and initial
TSA-4 through initial TSA-11) are ignored.

Portions of the new PSWs are dependent upon the LP flag
{bit 8) of the PLS insiruciion as well as the inferrupi group
inhibit bits of the old PSWs and the PSWs as pulled from
the memory stack. If the LP flag is a 1, a new Register
Block Pointer (as pulled from the memory stack) is loaded
as part of the new PSWs. If the LP flag is a O, the old Reg-
ister Block Pointer is retained as the Register Block Pointer

for the new PSWs. The new interrupt group inhibit bits (CI,

11, EI) are generoréd by "ORing" the old CI, II, EI bits
with the contents of bits 37, 38, and 39 of the PSWs as
pulled from the memory stack.

The clearing and arming or-disarming the highest priority
interrupt level currently active is dependent upon the
coding of the CL and AD flags (bit positions 10 and 11,
respectively) of the PLS instruction. If the CL flag is a 0,
the interrupt level is not affected. If the CL flag isal
and the AD flag is a 0, the interrupt level is set to the dis-
armed state. If the CL flag is a 1 and the AD flagisa 1,
the interrupt level is set to.the armed state. Note that if
the interrupt level is to be modified (CL flag is set to a 1),
the instruction may be delayed until the |ni'errup1' system is
available.

Summary description of CL and AD flags and effecf on in-
terrupt level and PDF flag follows:

Bit Positions

10 (CL) 11 (AD) Function
0 0 No effect upon interrupt level
or PDF flag.
0 1 Reset PDF flag
1 0 Clear and disarm interrupt level
1 1 Clear and arm interrupt level

If the initial Word Count is zero, default PSWs are loaded
from real memory locations 2 and 3 and the other parameters
of the Status Stack Pointer Doubleword are not effective
and no parameters are affected.

Portions of the new PSWs (interrupt inhibit group bits and
the Register Block Pointer) may be selected or generated in
the following manner:

If the LP flag (bit 8) of the PSL instruction is a 1, the new
Register Block Pointer will be as obtained from the default
PSWs. If the LP flag is a 0, the Register Block Pointer of
the old PSWs is retained as the Register Block Pointer for
the new PSWs,

The CI, 1I, and EI bits of the old PSWs are "ORed" with
the contents of bit positions 37, 38, and 39 of the default
PSWs to generate the CI, II, and EI bits of the new PSWs.

Depending upon the coding of the CL and AD flags (bit
positions 10 and 11, respectively) of the PLS instruction,
the highest priority interrupt level currently in the active
state may be modified. If the CL flag is a.0, the interrupt
level is not affected. If the CL flag is a 1 and the AD flag
is a 0, the interrupt level is cleared and placed into the
disarmed state. If the CL flag is a 1 and the AD flag is
a1, the interrupt level is cleared and placed into the

armed state. Note that if the interrupt level is to be
modified (i.e., the CL flag is a 1), the instruction may be
delayed until the interrupt system is available.

A summary description of the action on the interrupt level V
as a function of the CL and AD flag is as follows:

Bit Positions

10 (CL) 11 (AD) Function
0 - 0 No effect upon interrupt level
or PDF flag
0 1 Reset PDF flag
1 0 Clearand ;iiscu"m interrupt level

Clear and arm interrupt level

If the initial Word Count within the Status Stack Pointer
Doubleword is less than 28 and not equal to 0, the basic
processor traps to location X'4D* (insfruction exception
trap) without loading-any new status or affecting the pa-
rameters of the Status Stack Pointer Doubleword and i'he

TCC2 bit is set to 1.

Affected: If word count 228, Traps: Instruction excep-
(PSWs), CC, tion, if word count
Stafus Stack Pointer is less than 28 and
Doubleword not 0; nonexistent
Interrupt System if instruction if

(I)]0=1. bit 0=1.

If word count = 0, (PSWs), CC, and Infeérrupt
System, if I(]O):]'

(PSWs) and CC

ED;_, — FS, FZ, FN;

EDg— MS;

‘E D9 — MM;

EDIO——'DM;

ED] 1 — AM;

EDy551 A

ED32_35 — WK

ED37.39 u CI, II, El —CI, II, EI
(Nofe- "u" represents mclusnve OR.)

56-59

EDéO —RA

EDé] — MA

ED — RP only if (1)8 =1

Push-Down Instructions (Privileged) 105

Note: If the word count = 28, the effective doubleword
(ED) is pulled from memory stack locations (rela-
tive oddresses initial TSA-24 and initial TSA+1),

If the word count=0, the ED is pulled from real
memory locations 2 and 3.

Status Stack Poinfer Doubleword: (Only if initial Word
Count > 28)

TSA-1 —=TSA until terminal TSA = initial TSA-28;
Word Count - 1 —=Word Count until terminal Word
Count = initial Word Count - 28 (if initial Word Count
> 32,767, bit 48 not affected); and,

Space Count + 1 — Space Count until terminal Space
Count = initial Space Count + 28 (if Space Count
> 32,767, then set bit 32 to 1).

Interrupt System:

If(Ijp=10ond (D17 =

level.

1, clear and arm interrupt

If Njo=1and (11 =0, clear and disarm interr].;pt

level.

EXECUTE/BRANCH INSTRUCTIONS

The following instructions can cause the basic processor fo
execute instructions in an order other than that of sequen-
tially ascending instruction addresses:

Instruction Name MnemorTic
Execute _ EXU
Branch on Conditions Set - BCS
Branch on Conditions Reset BCR
Branch on Incrementing Register BIR
Branci'n on Decrementing Register BDR
Branch and Link BAL

The EXECUTE instruction can be used to insert another in-
struction into the progrom sequence, and the branch in-
structions can be used to alter the program sequence, either

unconditionally or conditionally. If a branch is uncondi-
tional (or conditicnal and the bronch condition is sotisfied),
the instruction pointed to by the effective oddress of the
branch instruction is normally the next instruction to be
executed. If a branch is conditional and the condition

for the branch is not satisfied, the next instruction is nor-
mally taken from the next location, in ascending sequence,
after the branch instruction.

106 Execute/Branch Instructions

NONALLOWED OPERATION TRAP DURING EXECUTION
OF BRANCH -INSTRUCTION

The next instruction after a branch instruction may reside

in two possible places: the location following the branch
instruction or a locétion designated by the branch instruc-
tion. Either of these two locations may be in a protected
memory region or in a region that is physically nonexistent.
The execution of the branch does not cause a trap unless

the instruction that is actually to follow the branch instruc-
tion is in a protected or nonexistent memory region. Traps
do not occur because of any cnhc:pahon on the part of the
hardware. :

A nonallowed operation trap condition during execution of
a branch instruction will oecur for the following reasons:

1. The branch instruction is indirectly addressed and the
branch conditions are satisfied, but the address of the
location containing the direct address is either non-
existent or unavailable for read access fo the program
in the slave mode.

2. The branch instruction is unconditional (or the branch
is conditional and the condition for the branch is satis-
fied), but the effective address of the branch instruc-
tion is either nonexistent or unavailable for instruction
or read access to the program (in slave-or master-
protected mode).

If either of the above situations occurs, the basic processor
aborts execution of the branch instruction and executes a
nonallowed operation trap.

Prior to the time that an instruction is accessed from mem-
ory for execution, bit positions 15-31 of the program status
words contain the virtual address of the instruction; referred
to as the instruction address. At this time, the basic pro-
cessor traps to location X'40' if the actual address of the
instruction is nonexistent or instruction-access protected.

If the instruction address is existent and is not instruction-
access protected, the instruction is accessed and the in-
struction address portion of the program status words is
incremented by 1, so that it now contains the virtual address
of ‘the next instruction in sequence (referred to as the up-
dated instruction address)

If o trap condition occurs during the execution sequence of
any instruction, the basic processor decrements the updated
insfruction address by 1 and then traps to the location as- -
signed to the trap condition. If neither a trap condition
nor a sotisfied branch condition occurs during the execution
of an instruction, the next instruction is accessed from the
location pointed to by the updated instruction address. If
a satisfied branch condition occurs during the execution of
a branch instruction (and no trap condition occurs), the
next instruction is accessed from the location pointed to by
the effective address of the branch instruction,

In the real extended addressing mode, a 20-bit address may
be used as a branch address via indexing or indirect ad-
dressing. If such a branch address, (A), is beyond the first
128K of real memory, the instructionat (A) will be executed,
but the next instruction address will be (A+1)in the original
128K block unless (A) contains a branch instruction. Note
that with this exception all instructions executed in the
real extended addressing mode must lie in the first 128K of
real memory.

EXU EXECUTE
(word index alignment)

* 67 X Reference address

O 1 2 314 5 6 7718 ¢ 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

EXECUTE causes the basic processor to access the instruction
in the location pointed to by the effective address of EXU
and execute the subject instruction. The execution of the
subject. instruction, including the processing of trap and
interrupt conditions, is performed exactly as if the subject
instruction were initially accessed instead of the EXU in-
struction. If the subject instruction is another EXU, the
basic processor executes the subject instruction pointed to
by the effective address of the second EXU as described
above. Such "chains" of EXECUTE ‘instructions may be of
any length, and are processed (without affecting the updated
instruction address) until an instruction other than EXU is
encountered. After the final subject instruction is executed,
instruction execution praceeds with the next instruction in
sequence after the initial EXU (unless the subject instruc-
tion is an LPSD or XPSD instruction, or is a branch instruc-
tion and the branch condition is satisfied).

If an interrupt activation occurs between the beginning of
an EXU instruction (or chain of EXU instructions) and the
last interruptible point in the subject instruction, the BP
processes the interrupt-servicing routine for the active
interrupt level and then returns program control to the EXU
instruction (or the initial instruction of a chain of EXU
instructions), which is started anew. Note that a program
is interruptible after every instruction access, including ac-
cesses made with the EXU instruction, and the interrupt-
ibility of the subject instruction is the same as the normal
interruptibility for that instruction.

If a trap condition occurs between the beginning of an EXU
instruction (or chain of EXU instructions) and the comple-

tion of the subject instruction, the basic processor traps to

the appropriate trap location. The instruction address stored
by the XPSD instruction in the trap location is the address
of the EXU instruction (or the initial instruction of a chain

of EXU instructions).

Affected: Determined by
subject instruction

Traps: Determined by
subject instruction

Condition code settings: Determined by subject instruction.

BCS BRANCH ON CONDITIONS SET
(Word index alignment)

* 69 R X Reference address

01 2 3014 5 6 718 9 10 nhi213 14 150116 17 18 19120 21 22 23124 25 26 27128 29 30 37

BRANCH ON CONDITIONS SET forms the logical product
(AND) of the R field of the instruction word and the current
condition code. If the logical product is nonzero, the
branch condition is satisfied and instruction execution pro-
ceeds with the instruction pointed to by the effective ad-
dress of the BCS instruction. However, if the logical prod=-
uct is zero, thebranch condition is unsatisfied and instruc-
tion execution then proceeds with the next instruction in
normal sequence.

Affected: (IA)if CCanR#O

If CCn (Dg_14 #0, EVAy5.37 1A

If CC n (Dg_17 =0, IA not affected

If the R field of BCS is 0, the next instruction to be exe-
cuted after BCS is always the next instruction in ascending

sequence, thus effectively producing a "no operation™
instruction.

BCR BRANCH ON CONDITIONS RESET
(Word index alignment)

* 68 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15[16 17 18 19120 21 22 23124 25 26 27128 29 30 31

BRANCH ON CONDITIONS RESET formsthe logical prod-

uct (AND) of the R field of the instruction word and the
current condition code. If the logical product is zero, the
branch condition is satisfied and instruction execution then
proceeds with the instruction pointed to by the effective
address of the BCR instruction. However, if the logical
product is nonzero, the branch condition is unsatisfied and

instruction execution then proceeds with the next instrue-

tion in normal sequence.

Affected: (IA)ifCCnaR=0

fCCn (1)8_” #0, IA not affected

If the R field of BCR is 0, the next instruction to be exe-
cuted after BCR is always the instruction located at the

effective address of BCR, thus effectively producing a
"branch unconditionally" instruction.

Execute/Branch Instructions 107

BIR BRANCH ON INCREMENTING REGISTER
(Word index alignment)

* 65 R X Reference address

012 3i4 5 6 718 9 1011112 13 14 IR N AN XA A

BRANCH ON INCREMENTING REGISTER computes the
effective virtual address and then increments the contents
of general register R by 1. If the result is a negative value,
the branch condition is satisfied and instruction execution
then proceeds with the instruction pointed to by the effec-
tive address of the BIR instruction. However, if the result
is zero or a positive value, the branch condition is not sat-~
isfied and instruction execution proceeds with the next in-
struction in normal sequence.

Affected: (R),(IA)

(R) +1—R

IfR)g =1, EVA 5.3, —IA
If (R)g =0, IA not affected

If the branch condition is satisfied and if the effective ad-
dress of BIR is either unavailable to the program (slave or
master-protected mode) for instruction access or is non-

existent, the basic processor aborts execution of the BIR
instruction and traps to location X'40'. In this case, the
instruction address stored by the XPSD instruction in loca-
tion X'40' is the virtual address of the aborted BIR instruc-
tion. If the basic processor traps because of instruction

access protection, register R will contain the value that
existed just before the BIR execution (i.e., updated instruc-

tion address). If a memory parity error occurs due to the

accessing of the instruction to whichthe program isbranch-
ing, the basic processor aborts execution of the BIR and
traps to location X'4C' with register R unchanged.

BDR BRANCH ON DECREMENTING REGISTER
(Word index alignment)

* 64 R X Reference address

0 1 2 3i4 5 6 718 9 10 1111213 14 15‘“6 17 18 19120 21 22 23124 25 26 27128 29 30 31

BRANCH ON DECREMENTING REGISTER computes the
effective virtual address and then decrements the contents
of general register R by 1. If the result is a positive value,
the branch condition is satisfied and instruction execution
then proceeds with the instruction pointed to by the effec-
tive address of the BDR instruction. However, if the result
is zero or a negative value, the branch condition is unsatis-
fied and instruction execution proceeds with the next in-
struction in normal sequence.

Affected: (R),(1A)

(Ry-1—R

If (R)g =0 and (R);_3; 70, EVA 5 57 — 1A
If (R)O =1and (R) =0, IA not affected

108 Execute/Branch Instructions

If the effective address of BDR is unavailable to the program
(slave or master-protected mode) for instructionaccess and
the branch condition is satisfied, or if the effective address
of BDR is nonexistent, the basic processor aborts execution
of the BDR instruction and traps to location X'40'. In this
case, the instruction address stored by the XPSD instruction
in location X'40' is the virtual address of the aborted BDR
instruction. If the basic processor traps because of instruc-
tion access protection, register Rwill contain the value that
existed just before the BDR instruction. If a memory parity
error occurs due to the accessing of the instruction to which
the program is branching, the basic processor aborts execu-
tion of the BDR and traps fo location X'4C' with register R
unchanged.

BAL BRANCH AND LINK
(Word index alignment)

* 6A R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

BRANCH AND LINK determines the effective virtual ad=
dress, loads the updated instruction address (the virtual ad-
dress of the next instruction in normal sequence after the
BAL instruction) into bit positions 15-31 of general regis-
ter R, clearsbit positions 0-14 of registerR to 0's and then

replaces the updated instruction address with the effective
virtual address. Instruction execution proceeds with the

instruction pointed to by the effective address of the BAL
instruction.

The BAL instruction in real extended addressing will store
the full address of the next instruction in the specified R
register. Positions 0-9 of the specified register will be set
equal to zero.

Affected: (R),(iA)

IA — Ry5.37: 0 —Ro_14 EVAy5_3; — 1A

If the effective address of BAL is unavailable to the program
(slave or master~protected mode) for instruction access and

the branch condition is satisfied, or if the effective address
of BAL is nonexistent, the basic processor aborts execution
of the BAL instruction and traps to location X'40' (nonallowed
operation trap). In this case, the instruction address stored
by the XPSD instruction in location X'40' is the virtual ad-
dress of the aborted BAL instruction. If the basic processor
traps because of instruction access protection, register Rwill
contain the updated instruction address. If a memory parity
error occurs due fo the accessing of the instruction to which
the program is branching, the basic processor aborts execu-
tion of the BAL and traps to location X'4C* with register R
changed to the updated instruction address.

CALL INSTRUCTIONS

Each of the four CALL instructions causes the basic processor
to trap to a specific location for the next instruction in se-
quence. The four CALL instructions, their mnemonics, and
the locations to which the basic processor traps are:

Instruction) Trap
Name : Mnemonic Location
CALL 1 CAL1 X'48'
CALL 2 CAL2 _ X'49!
CALL 3 CAL3 X14A"
CALL 4 - CAL4 ' X'4B!

Each of these four trap locations must containan EXCHANGE
PROGRAM STATUS WORDS (XPSD) instruction. Execution
of XPSD in the trap location for a CALL instruction is de-
scribed under "Control Instructions, XPSD Exchange Pro-
gram Status Words". If the XPSD instruction is coded with
bit position 9 set fo 1, the next instruction (executed after
the XPSD) is taken from one of 16 possible locations, as
designated by the value in the R field of the CALL instruc-
tion. Each of the 16 locations may contain an instruction
that causes the basic processor to branch to a specific
routine; thus, the four CALL instructions can be used to
enter any of as many as 64 unique routines.

The effective address of either a direct or indirect CALL
instruction is not used for a memory reference and, there-
fore, cannot cause a trap.

CALL CALL1
(Word index alignment)

* 04 R X Reference address

0 1 2 3[4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 2324 25 26 27(28 29 30 31

CALL 1 causes the basic processor to trap to location X'48'.

CAL2 CALL 2
(Word index alignment)

* 05 R X Reference address

0 1 2 314 5 6 718 9 1011112 13 14 15[16 17 18 19120 21 22 2324 25 26 27128 29 30 31

CALL 2 causes the basic processor to trap tolocation X'49'.

CAL3 CALL3
(Word index alignment)

* 06 R X

0 1 2 374 5 6 778 9 10 1h213 14 15716 17 18 19120 21 22 23124 25 26 27128 2% 30 3

Reference address

CALL 3 causes the basic processor totrap to location X'4A'.

CAL4 CALL 4
(Word index alignment)

* 07 R X Reference address

0 1 2 3124 5 6 718 9 10 1111213 14 15176 17 18 15120 21 22 23124 25 26 27128 29 30 31

CALL 4 causes the basic processor to trap to location X'4B',

CONTROL INSTRUCTIONS

The following privileged instructions are used to control the
basic operating conditions of the basic processor:

Instruction Name Mnemonic
Load Program Status Words LPSD
Exchange Program Status Words XPSD
Load Register Pointer k LRP
Move to Memory Control MMC
Load Real Address - - LRA
Load Memory Status) LMS
Wait ~ WATT
Read Direct - - RD

-Wrife Direct WD

If execution of any control instruction is attempted while
the basic processor is in the slave mode (i.e., while bit 8
of the current program status words is a 1), the basic pro-
cessor unconditionally traps to location X'40' prior fo
executing the instruction.

PROGRAM STATUS WORDS

Program status words have the following structure when
stored in memory:

cC |k

01 23

ul om
N
z
«»
zz
z
E4

6 718 9 10 nhi2 13 1415116 17 18 19120 21 22 23i24 25 26 27128 29 30 31

WK RP

32 33 34 35136 37 38 39740 41 42 43144 45 46 47148 49 50 51052 53 54 55[56 57 58 59

IE:siHon Designation Function
0-3 CcC Condition code
4 FR Floating round
5 FS Floating significance mask
6 FZ " Floating zero mask
7 FN Floating normalize mask

Call Instructions/Control Instructions 109

Bit

Position Designatione Function
MS Master/slave mode control
9 MM Memory map mode control
10 DM Decimal arithmetic trap
mask
11 AM Fixed-point arithmetic
overflow trap mask
15-31 1A Instruction address
32-35 WK Write key
37 CI Counter interrupt group
v inhibit
38 Il /O interrupt group inhibit
39 El External interrupt inhibit
56-59 RP Register pointer
60 RA Register altered
61 MA Mode altered

The detailed functions of the various portions of the program
status words are described in Chapter 2, "Program Status
Words".

LPSD LOAD PROGRAM STATUS WORDS

(Doubleword index alignment, privileged)

* OE

0 1 2 314 5 8 7

,..
o>

X Reference address

T3 156 7 T8 BB 2T 2 B B % T H 5 09

LOAD PROGRAM STATUS WORDS replaces bits O through 39,
60 and 61 of the current program status words with bits 0
through 39, 60 and 61 of the effective doubleword.

Control bits used in the LPSD instruction are:

Rit

Position Designation Control Function

8 LP Load pointer control

10 - CL Clearing of interrupt level
1 AD Armed/disarmed state

The following conditional operations are performed:

1. If bit position 8 (LP) of LPSD contains a 1, bits 56
through 59 (register pointer) of the current program
status words are replaced by bits 56 through 59 of the

rent register pointer value remains unchanged.

2. If bit position 10 (CL)of LPSD contains a 1, the highest
priority interrupt level currently in the active state is
cleared (i.e., reset to either the armed state or the dis~
armed state); the interrupt level. is armed if bit 11 (AD)

110 Control Instructions

of LPSD isa 1, or is disarmed if bit 11 of LPSD is a 0.
If bit 10 of LPSD is a 0, no interrupt level is affected
in any way, regardless of whether bit 11 of LPSD is 1
or 0. If bit 10 of the LPSD is a 0 and bit 11 of LPSD
is 1, the PDF flag is cleared. (Interrupt levels are de-
scribed in detail in Chapter 2, "Interrupt System".)

Bit position
10 (CL) 11 (AD)

Function

1 0 Clear and disarm interrupt level.
1 1 Clear and arm interrupt level.

0 1 Clear PDF flag.

0 0 No control action.

3. The PDF flag is normally reset by the last instruction
of a trap routine, which is an LPSD instruction having
bit 10 equal to 0 and bit 11 equal to 1.

These portions of the effective doubleword that correspond
to undefined fields in the program status words are ignored.

Affected: (PSWs), interrupt system if (I)19 =1

ED, 5 — CC; ED; ., —FS,FX,FN;

EDy — MS; EDy — MM;

ED,, — DM; ED, | — AM,

ED15g1 1A EDgp g5 T WK

EDy;_go — CLILEL if (Dg =1, EDg, o —RP
ED, — RA; ED; — MA

If (I)]o =1 and (I)” =1, clear and arm interrupt

If (1)10 =1 and ([)” =0, clear and disarm interrupt

XPSD EXCHANGE PROGRAM STATUS WORDS
(Doubleword index alignment, privileged)

X | Reference address

20-bit reference address
10 11132 13 14 15118 17 18 19120 21 22 23124 25 26 27128 29 30 3}

L
* OF P
8

0 1 2 314 5 6 7

A
I
?

EXCHANGE PROGRAM STATUS WORDS stores the cur-
rently active PSWs in the doubleword location addressed by
the effective address of the XPSD instruction. The follow-
ing doubleword is then accessed from memory and loaded
into the active PSWs registers.

The XPSD instruction is used for three distinct types of
operations: as a normal instruction in an ongoing program;
as an interrupt instruction; and as a trap instruction.

Control bits used in the XPSD instructions are:

Bit Control

Position Designation Function Where used

8 LP Load pointer All XPSDs
control

9 Al Address Increment Trap XPSD

10 AT Addressing type All XPSDs

The effective address of an XPSD instruction is generated
in one of the following ways:

XPSD (normal instruction)

When an XPSD instruction is encountered in the course of
execution of normal programs, the AT (bit 10) of the in-
struction determines the type of addressing to be used.

If AT =0, the reference address is 20 bits (12-31). Index-
ing is not allowed. Indirect addressing is allowed with the
same constraints as the reference address. Addressing is
always real, independent of the current PSWs.

If AT =1, the reference address is 17 bits (15-31). Address
calculations are according to standard addressing rules as
determined by the current PSWs. Indexing and indirect ad-
dressing are allowed.

XPSD (interrupt instruction)

An XPSD instruction (in an interrupt location) executed as
a result of an interrupt is called an interrupt instruction.
The type of addressing to be used is determined by the basic
processor mode and the AT (bit 10) of the instruction.

In the extended addressing mode (MA =1 and MM =0), the
AT bit is used to determine the type of addressing to be
used. If AT =0, the reference address is 20 bits (12-31).
Indexing is notallowed. Indirectaddressing is allowed with
the same constraints as the reference address. Addressing is
always real, independent of the current PSWs. If AT =1,
the reference address is 17 bits (15-31). Address calcula-
fions are according to standard addressing rules as deter-
mined by the current PSWs. Indexing and indirect addressing
are allowed.

When the addressing mode is not extended addressing, the
reference address is 20 bits (12-31). If AT =0, indexing
is not allowed. Indirect addressing is allowed with the
same constraints as the reference address. Addressing is
always real, independent of the current PSWs. If AT =1,
the 20-bit reference address is subject to PSWs bit 9,
as is the contents of the indirect address if indirect is
specified.

XPSD (trap instruction)

An XPSD instruction (in a trap location) executed as a result
of a trap entry operation is called a trap instruction. Ad-
dressing is the same as for the interrupt XPSD (see above).

The following additional operations are performed on the
new program status words if, and only if, the XPSD is being
executed as the result of a nonallowed operation (trap to

_ location X'40") or a CALL instruction (trap to location X'48',

X'49', X'4A", or X'4B'):

1. Nonallowed operations — the following additional func-
tions are performed when XPSD is being executed as a
result of a trap to location X'40';

a. Nonexistent instruction — if the reason for the trap
condition is an attempt to execute a nonexistent
instruction, bit position Oof the new program. status
words (CC1) is set to 1. Then, if bit 9 (Al) of
XPSD isa 1, bit positions 15-31 of the new pro-
gram status words (next instruction address) are
incremented by 8.

b. Nonexistent memory address — if the reason for the
trap condition is an attempt to access or write into
a nonexistent memory region, bit position 1 of the
new program status words (CC2) is set to 1. Then,
if bit 9 of XPSD is a 1, the instruction address por-
tion of the new program status words is incremented

by 4.

c. Privileged instruction violation — if the reason for
the trap condition is an attempt to execute a priv-
ileged instruction while the basic processor is in
the slave mode, bit position 2 of the new program
status words (CC3) isset to 1. Then, if bit posi-
tion Oof XPSD is 1, the instruction address portion
of the new program status words is incremented by 2,

d. Memory protection violation — if the reason for the
trap condition is an attempt to read from or write
into a memory region to which the program does
not have proper access, bit position 3 of the new
program status words (CC4) is set to 1. Then, if
bit 9 of XPSD is a 1, the instruction address por-
tion of the new program status words is incremented
by 1.

There are certain circumstances under which two
of the above nonallowed operations can occur
simultaneously. The following operation codes
(including their counterparts) are considered to be
both nonexistent and privileged: X'0C' and X'0D".
If either of these operation codes is used as an in-
struction while the basic processor is in the slave
or master-protected mode, CC1 and CC3 are both
set to 1's; if bit 9 of XPSD is a 1, the instruction
address portion of the new program status words is
incremented by 10. If an attempt is made to access
or write into a memory region that isboth nonexist-
ent and prohibited to the program by means of the

Control Instructions 1m

memory control feature, CC2 and CC4 are both
set to 1's; if bit 9 of XPSD is a 1, the instruction
address of the new program status words isincre-
mented by 5.

2. CALL instructions — the following additional functions
are performed when XPSD is being executed as a re-
sult of a trap to location X'48', X'49', X'4A', or
X'4B'.

a. The R field of the CALL instruction causing the
trap is logically inclusively ORed into bit posi-
tions 0-3 (CC) of the new PSWs.

b. If bit position 9 of XPSD contains a 1, the R field
of the CALL instruction causing the trap is added
to the instruction address portion of the new PSWs.

3. Watchdog timer, parity error, or instruction exception
trap — the following additional functions are performed
when XPSD is being executed as a result of a trap to
location X'46', X'4C', or X'4D', respectively.

a. The contents of TCC 1-4 are logically inclusively
ORed into bit positions 0-3 (CC) of the new PSWs.

b. If bit position 9 of XPSD contains a 1, the contents
of TCC 1-4 are added to the instruction address
portion of the new PSWs.

If bit position 9 of XPSD contains a 0, the instruction ad-

dress portion of the new PSWs always remains at the value
established by the second effective doubleword. Bit posi-
tion 9 of XPSD is effective only if the instruction is being

executed as the result of a nonallowed operation, CALL

instruction watchdog timer, parity error, or instruction ex-
ception trap. Bit position 9 of XPSD must be coded with a
0 in all other cases; otherwise, the results of the XPSD

instruction are undefined.

The current program status words are stored in the double-
word location pointed to by the effective address of XPSD
in the following form:

Program Status Words

FIF[E[FIMMD
CC R 1A
0 1 2 3 T16 17 18 19120 21 22 23124 25 26 27{28 2% 30 31
R
RP A
32333435“ 56 57 58 59160 61

The

c

PO N IR TR R Rt S,
{as itlustiated above) dre

1. The effective address of XPSD is incremented by 2 so
that it points to the next doubleword location. The
contents of the next doubleword location are referred
to as the second effective doubleword, or ED2.

112 Control Instructions

2. Bits 0-35, 60, and 61 of the current program status
words are unconditionally replaced by bits 0-35, 60,
and 61of the second effective doubleword. The affected
portions of the program status words are:

Bit
Position Designation Function

0-3 cc Condition code
4-7 FR,FS,FZ, Floating control
FN
8 MS Master/slave mode control
9 MM Mapping mode control
10 DM Decimal arithmetic trap mask
11 AM Fixed-point arithmetic trap mask
15-31 1A Instruction address {(real or virtual)
32-35 WK Write key
60 _ RA Register altered
61 MA Mode altered

3. A logical inclusive OR is performed between bits 37
through 39 of the current program status words and
bits 37 through 39 of the second effective doubleword.

IE::sifion Designation Function

37 Cl Counter interrupt inhibit
38 11 I/O interrupt inhibit

39 El External interrupt inhibit

If any (or all) of bits 37, 38, or 39 of the second ef~
fective doubleword are 0's, the corresponding bits in
the current program status words remain unchanged; if
any (or all) of bits 37, 38, or 39 of the second effec-
tive doubleword are 1's, the corresponding bits in the
current program status words are set to 1's. See "In-
terrupt System", Chapter 2, for a detailed discussion
of the interrupt inhibits.

4. Tf bit position 8 (LP) of XPSD contains a 1, bits 58
and 59 (register pointer) of the current program status
words are replaced by bits 58 and 59 of the second
effeciive doubieword; if bif 8 of XPSD is a 0, the cur-
rent register pointer value remains unchanged.

Affected: (EDL),(PSWs)
If (I)jg =1, trap or interrupt instructions only, effective
address is subject to current active addressing mode.

If (1)10 =0, trap or interrupt instructions only, effective
address is independent of current active addressing mode.

PSD — EDL
ED2_3 —-CC; ED24_7 — FR,FS,FZ,FN

ED2g —= MS; ED2; — MM
ED27g — DM; ED2; — AM; EDy5_3) — IA
ED23_35 —= WK

ED23;_so u CI,11, El —= CI,I,EI

If (g =1, ED25,_so —=RP

If (T)g = 0, RP not affected

ED249 —= RA

ED2g) — MA

If nonexistent instruction, 1 —= CC1 then, if (1)9 =1,
IA+8 — A

If nonexistent memory address, 1 — CC2 then, if

Mo =1, IA +4 —IA

If privileged instruction violation, 1 —= CC3 then, if
Mg =1,1A+2 —IA

If memory protection violation, 1 — CC4 then, if (I)g=1,
JA+1 —1A

If CALL instruction, CC u CALLg_;q — CC then, if

If (I)g =0, 1A not affected

If watchdog timer, parity error, or instruction exception
trap, ED20_3 u TCC1-4 — CC1-4 then, if ()9 =1,
A +TCC1-4 —IA :

LRP LOAD REGISTER POINTER
(Word index alignment, privileged)

=l oF

01 2 314 56 7

X Reference address

T12733714.15116 17 18719120 21 22 23124 25 26 27128 29 30 31

8 9 10

LOAD REGISTER POINTER loads bits 24-27 of the effective
word into the register pointer (RP) portion of the current
program status words. Bit positions O through 23 and 28
through 31 of the effective word are ignored, and no other
portion of the program status words is affected. If the LOAD
REGISTER POINTER instruction attempts to load the register
pointer with a value that points to a nonexistent block of
general registers, the basic processor traps to location X'4D'.

Affected: RP Trap: Instruction exception

EW24_27 — RP

MOVE TO MEMORY CONTROL INSTRUCTIONS

The following instructions may be used to selectively move
a string of control words from a control image area to speci-
fied memory conirol registers:

Instruction Name Mnemonics
Move to Memory Control MMC

Load Map (8-bit format) LMAP
Load Map (11-bit format) LMAPRE
Load Protection Code LPC

Load Locks (2-bit format) LLOCKS
Load Locks (4-bit format) LLOCKSE

MMC MOVE TO MEMORY CONTROL
(Word index alignment, privileged, continue
after interrupt)

*6F R | ™,

0 172 34 576718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The MMC instruction may be used to perform any move to
memory control operation. Depending upon the type and
format of the control image, the move to memory control
operation may be performed either by an MMC instruction
with a specific vaiue in the confroi fieid (bit position 12-14)
or by a special purpose instruction (i.e., LMAP, LMAPRE,
LPC, LLOCKS, or LLOCKSE), as shown below:

Control Field of Type and format of Alternate

MMC instruction: control image to be Instruction

Bit positions loaded Mnemonic

12 13 14

0 0 1 Memory write protection ~ LLOCKS
locks (2-bit format)

0 1 1 Memory write protection ~ LLOCKSE
locks (4-bit format)

0 1 0 Access protection LPC
(always 2-bit format)

1 0 0 Memory map (8-bit LMAP
format)

1 0 1 Memory map (11-bit LMAPRE

format)

Attempting to execute an MMC instruction with any code
other than the five shown above causes the instruction to
trap to location X'4D' (instruction exception trap).

Control Instructions 113

Normally, bit positions 15-31 may be ignored insofar as the
operation of the MMC instruction is concerned. The results
of the instruction are the same whether MMC is indirectly
or directly addressed. However, if MMC is indirectly ad-
dressed and the indirect reference address is nonexistent,
the nonallowed operation trap (location X'40") is activated.

The R field, which must be coded with an even value, des-
ignates an even-odd pair of general registers (R and Rul)
that contain additional control information required by the
MMC instruction. If the R field is coded with an odd value
a trap to location X'4D' (instruction exception trap)occurs.

Depending upon the type of addressing, the contents of
register R may be as follows:

If MA =0, contents of register R are:

17-bit control

Image address
0 t 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23{24 25 26 27128 29 30 31

The Control Start field (bit positions 15-20, 21, or 22)
points to the beginning of the memory region controlled by
the registers to be loaded. The significance of this field
is different for the 5 modes of MMC operations and is des-
cribed within each mode below.

Affected: (R),(Rul),
memory control
storage

Traps: Instruction exception,
nonallowed operation.

LOADING THE MEMORY MAP

CONTROL IMAGE
Each word of the memory map control image contains either
four 8-bit page addresses or two 11-bit extended page ad-

dresses, as illustrated below:

Typical memory map control image word (8-bit format):

If MA =1 and MM =0, the contents of register R are: Page Page Page Page
N . Address Address Address Address
07 2 314 5 6 718 9 10 N2 13 1415116 17 18 19120 21 22 23124 25 26 27128 29 30 31

20-bit Control Imdge Address

0 1 2 314 5 6 7018 9 10 11213 1415116 17 18 19120 21 22 23124 25 26 27128 29 30 31

In either case, the Control Image Address is the virtual ad-
dress of a control word within the control image area to be
loaded into a block of memory control registers, as specified
by the contents of register Rul.

Depending upon the type of control image being loaded,
the contents of register Rul may be in one of the following
three formats:

For loading memory map image (either 8-bit or 11-bit for~
mat), contents of register Rul are:

Control Star

BN ALY

Count

01 2 314 5 6 7

For loading 4-bit write lock images, contents of register
Rul are:

——

Control Start

12713 14 15116 17 18 19120 21

Count g
01 2 314 5 6 7

For loading access protection or 2-bit write lock images,
contents of register Rul are:

Control

The Count field (bit positions 0-7) specifies the numberof
words to be loaded from the control image area. If the
initial word count is zero, a word count of 256 is implied.

114 Controi Instructions

Typical memory map control image word (11-bit format):

' Extended
Page Address

!
TSt s vz m e

Extended

Page Address
21 2223124 25 26 27728729 30 41

1617 1819120

Depending upon the memory map control image format, the
instruction format is one of the following:

LMAP LOAD MAP (8-bit format)

0 6F R [1]0]0

0 v 2 314 5 6 718 ¢ 10 11112 13 14 15116 17 18 19120 21 22 23[24 25 26 27128 29 30 31

LMAPRE LOAD MAP REAL EXTENDED (11-bit format)

0 6F R

01 2 314 5 6 718 9 101

Depending upon the type of addressing, the format of regis-
ter R contents is one of the following:

If MA =0;

Map Image Address

2 - " 4
5116 17 18 19120 2122 23124725 26 27128 29 30 31

If MA =1and MM =0;

Map Image Real Extended Address
RO R R RN R R A I

For either memory map format and either type of addressing,
the contents of register Rul are:

Control Start

T6 T 1 1M 21 22 2

Count

0 1 2 3l4 5 67

o

MEMORY MAP LOADING PROCESS

The initial map image address (in register R) is the virtual
address of the first word of the memory map contro! image.

The initial count, as contained in register Rul specifiesthe
word length of the control image to be loaded. A word
count of 64 (for 8-bit format) or 128 (for 11-bit format) is
sufficient to load an entire block of 256 memory map con-

trol registers. The memory map control registers are treated
as a circular set, with the first register following the last;
thus, a word count greater than 64 (8-bit format) or 128
(11-bit format) causes the first registers to be overwritten.

The initial value of the control start field of register Rul
points to the first page (512 words) of virtual addresses that
are to be controlled by the memory map control image being
loaded. The memory map control image is loaded into the
memory map control registers one word at a time. As the
contents of each word are loaded into either two or four mem-
ory map control registers, the map image address is incre-
mented by 1, the word count is decremented by 1, and the
value in the control start field is incremented either by four
(if the memory map control image is in the 8-bit format)
or by two (if the memory map control image is in the 11-bit
format). The loading process continues until the word count
is reduced to zero.

When the load process is completed, the map image address
of register R contains a value equal to the sum of the initial
map image address plus the initial word count, the word
count of register Rul has a value of zero, and the control
start field of register Rul contains a value equal to the sum
of the initial contents plus four or two times the initial
word count.

LOADING THE ACCESS PROTECTION CONTROLS

CONTROL IMAGE

Each access protection control image word contains sixteen
2-bit fields; or, the access protection codes for 16 consecu-
tive pages of virtual memory. Thus, the access protection
control image for 128K word (256 page) virtual memory is
contained within 16 contiguous memory locations, desig-
nated as the access protection control image area.

The format of a typical access protection control image
word is:

AC|AC]AC|AC|AC|AC|AC|ACI|AC|AC|AC|ACIACIACIACIAC

G v 2 374 5 6 7i8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The instruction format for loading the access protection
code is:

0 6F R o

0 1 2 314 5 6 718 9 10 11112 13 14 15116

18 19120 21 22 23]24 25 26 27128 23 30 31

Depending upon the type of addressing, the format of reg-
ister R contents is one of the following:

If MA =0:
Access Protection

Control Image Address

213 14 15116 17 18 19120 21 22 23124 25 28 D128 5 0 3

If MA =1and MM =0;

Access Protection’

Control Image Address

12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

01 2 314 56 718 9 101

For eithertype of addressing, the contents of register Rulare:

l Contro
Count Start

0 1 2 314 5 6 718 9 10 11112 1314 15716 17 18 19120 21 22 23124 25 26 27128 29 30 3

ACCESS PROTECTION LOADING PROCESS

The initial access protection control image address in reg-
ister R is the virtual address of the first word of the access
protection control image.

The initial count in register Rul specifies the word length of
the control image to bhe loaded. A werd count of 14 ic cuf-
ficient to load the entire block of 256 access protection con-
trol registers. The access protection control registers are
treated as a circular set, with the first register following the
last; thus, @ word count greater than 16 causes the first reg-"
isters loaded to be overwritten.

The initial value of the control start field of register Rul

points to the first page (512 words) of virtual aoddresses that

are to be controlled by the access protection control image

being loaded. The access protection control image is loaded
into the access control registers one word at a time, _thus

loading the control registers for 16 consecutive pages with the
contents of each image word. As each image word is loaded,

the access protection control image address is incremented

by 1, the word count is decremented by 1, and the value in

the control start field is incremented by 4. The loading

process continues until the word count is reduced to 0.

When the loading process is completed, the parameters con-
tained within registers R and Rul have the following values:

Access protection

control image address =initial access protection control
image address plus the initial word
count.

Count =0.

Control Start = initial contents plus 4 times the

initial word count.

Control Instructions 115

MEMORY WRITE PROTECTION LOCKS

CONTROL IMAGE
Each write lock control image word may contain either
eight 4-bit write lock images or sixteen 2-brf write lock

images, as illustrated below:

Typical write locks image word (4-bit format);

WL1o| WLT; [WLIo [WLI3 [WL14 [WL15 [WL16 |WL1y

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Typical write locks image word {2-bit format);

WL]OWLI' WL]2 W“3 WL

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 1819120 21 22 23124 25 26 27128 29 30 31

4 WIJs Wl_]6 WI,]7 WLIB Wiig WL

(Wi
WU“ Wl WUBWUM UB

The number of words required to define the memory write

locks control image is dependent upon the format of the

write lock images and the number of write lock registers to
be loaded by a single MMC instruction. (For example, if
the write lock images are of the 4-bit format and the memory
system is maximum size (1,024,000 words or 2048 pages)
with 2048 write lock control registers, the control image
may be defined by 256 words (i.e., 256 words times 8 write
lock images per word is equal to 2048 write lock images or
one write lock image per each write lock control register).
If the write lock images are of the 2-bit format and the
memory size is the same, as described above, the control

image may be defined by 128 words.

The instruction format for loading 2-bit write lock imagesis:

LLOCKS LOAD LOCKS (2-bit format)

0 6F R

R A Y A AN

The ineteiinbinm farmat far landinay A_hit writa lask imaase ie.
The instruction format for locading 4-bit write lock images is:
LLOCKSE LOAD LOCKS (4-bit format)

0 6F R pim

077 312 56 718 7 0 T2 134

If MA =0, the contents of register R are:

Lock Image Address

15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

If MA =1 and MM =0, the contents of register R are:

Lock Image Address

01 2 314 5 6 7208 9 10 12 13127517617 18 19120 21 22 23724 25 26 27:28 2% 30 3!

116 Control Instructions

When loading 2-bit write lock images, the contents of
register Rul are:

Control
tart E
16 17 18 19120 21

Count

0 1 2 3l4 5 6 7

When loading 4-bit write lock images, the contents of reg-
ister Rul are:

Control Start

11112 13 14 15116 17 18 19120 21 72 23124 25 2 27128 29 30 3

Count

o1 2 3745 6 7

LOADING PROCESS

Depending upon the addressing mode of the basic processor,
the contents of register R are interpreted as either a 17-bit
or a 20-bit virtual address of an image word within the
memory write locks control image area (source of write lock
images). The initial lock image address points to the first
image word. After the contents of the image word (either 8
or 16 write lock images) are loaded into an equivalent num-
ber of write lock registers, the lock image address is incre-
mented by one. Thus, successive image words are accessed
in an ascending sequence.

Depending upon the instruction format, the hardware appends
either one or two low order zeros, as necessary, to convert
the 9-bit or 10-bit control start field into an 11-bit real .
page address. In addition to being the real page address
of 512 consecutive memory word locations, the value of the
11-bit control start field is also the address of the associated
write lock control register. The value of the control start
field at the time the image word is accessed is the address
of the first of either 8 or 16 write lock control registers
that will be loaded by the write lock images contained
within one image word. When all of the write lock images
of a given word have been loaded into either 8 or 16 write
lock control registers, the value of the 9-bitor 10-bit con-
trol start field is incremented by 4. (Note that this is equi-

valent to incrementing the value of the effective 11-bit

field by a value of either 8 or 16, the number of control
registers loaded.)

The countfield of register Rul specifies the number of image
words, and indirectly the number of write lock images to be
loaded. Depending upon the instruction format, each image
word is interpreted as containing either -eight 4-bit write
lock images or sixteen 2-bit write lock images. In the case
of 2-bit write lock images, the hardware appends two high
order zeros to each image as it is loaded into the 4-bit con-
trol register. Thus, the number of write lock control regis-
ters loaded is always either 8 or 16 times the initial value
of the count field. If the initial valve of the count field

is zero, it is interpreted to be 256 words. During the load-
ing operation, the count field is decremented by one after
the contents of each image word are loaded into the appro-
priate number of control registers. The loading operation

continues until the word count is reduced to zero. At that
time, the value of the lock image address is equal to its

initial value plus the initial value word count and the value
of the 9- or 10-bit control start field is equal fo its initial
value plus 4 times the initial word count.

The memory write lock registers are treated as a circular
set, with the register for memory addresses X'0'-X"'1FF' (First
" page) immediately following the register for memory ad-
dresses X'FFEOO'-X'FFFFF' (last page). Overwriting the
first registers occurs when 2-bit write lock images are being
processed and the word count is greater than 128,

INTERRUPTION OF MMC

The execution of MMC can be interrupted after each word
of the control image has been moved into the specified con-
trol register. Immediately prior to the time that the instruc-
tion in the interruptor frap location is executed, the instruc-
tion address portion of the program status words contains the
virtual dddress of the MMC instruction, register R contains
the virtual address of the next word of the control image to
be loaded, and register Rul contains a count of the number
of control image words remaining to be moved and a value
pointing to the next memory control register to be loaded.
After interrupt, the MMC instruction may be resumed from
the point it was interrupted.

MEMORY ACCESS TRAPS BY MMC INSTRUCTION

A trap during execution of the MMC instruction can occur
if the pages containing the control images are nonexistent
or are protected in the master-protected mode. The regis-

ters R and Rul may be altered for the above case. If a

parity error should occur during access of a control image
word, the MMC instruction will trap with the Register Altered
indicator set indicating that a change has been made to the
memory control registers. The registers R and Rul will be
restored to their initial values, prior to the point at which
the trap occurred.

LRA LOAD REAL ADDRESS
(Word index alignment, privileged)

* 2C R X _Reference Address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

LOAD REAL ADDRESS converts the address portion of the
effective word into a real byte, halfword, word, or double-
word address (as specified by CC1 and CC2at the beginning
of the LRA instruction)and loads that real address and status
information {(as listed below) into register R. Upon comple-
tion of the LRA instruction, additional information pertain-
ing to the LRA instruction or to the real address is provided
via the condition code.

Prior to executing an LRA instruction, CC1 and CC2 must
be set to an appropriate value (as shown below).

cc1 ccz2. Type of real address to be generated
0 0 Byte (22 bits)

0 1 Halfword (21 bits)

1 0 Word (20 bits)

1 1 Doubleword (19 bits)

The effective virtual address for the LRA instruction itself
may be generated in a normal manner (i.e., indirect ad-
dressing, indexing, and/or mapping, as applicable, may be
specified and performed) with all standard trapping condi-
tions in effect.

The address loaded into the R register is dependent upon
the value of the address portion of the effective word. Ifthe
address portion of the effective word is equal to or greater
than 16, it is converted (mapped) into a 19, 20, 21, or 22-bit
real address, as specified by CC1 and CC2.

Note: Converting an effective virtual address into a real
address by mapping is performed independently of
the state of the map bit in the current PSWs.

If the address portion of the effective word is less than 16,
it is not mapped into a real address. Instead, a 19, 20, 21,
or 22-bit effective virtual address is generated, as specified

by CC1 and CC2.

In either case a 19, 20, 21, or 22-bit real or effective vir-
tual address is loaded info a corresponding number of low
order bit positions of the R register (i.e., the least signifi-
cant bit of the address is always loaded into bit position 31
of register R). Except for bit positions reflecting status in-
formation, all high order bit positions within register R are
set to zero. Contents of the various bit positions of regis-
ter R after an LRA instruction are as follows:

Bits Contents

0-9 Reserved; always set to 0.

10-31 Real or effective virtual address. For 21-, 20-,
and 19-bit addresses, as specified by initial value
of CC1 and CC2, bit positions 10, 11, and 12
will be set to zeros, as required.

Affected: (R),CC
Condition code settings:

1 2 3 4 Resultsin Rregister

0 0 - - No abnormal condition.

1 1 - - Address in R is real but for a nonexistent
memory location.

Control Instructions 117

Results in R register

Address in R is an effective virtual address
(address of a general register).

Note: Condition code setting 11-- and 1100
may be distinguished in the software

by examining the address (bits 10-31).

Access protect code for the page containing
the memory location specified by the gener-
ated address.

1

[}
_—— O O
—_ QO — O

Note: This instruction requires two memory references to
the same location for its execution. To preclude
other processors from accessing the effective loca-
tion during this time, the memory unit containing
the effective location is reserved (not accessible to
other processors) until the LRAinstruction is
completed.

LMS LOAD MEMORY STATUS
(Word index alignment, privileged)
* 2D R X Reference address
T T 31TS 6 718 5 0 iz 1318 516 17 18 W% 21 22 BIHA 5 % HIm B B D

LOAD MEMORY STATUS is used to determine memory unit
status and/or to perform diagnostic action on a memory unit.
The effective address is used to determine the memory unit.
The condition code setting immediately before execution
determines the diagnostic action to be performed. The ef-
fective address always references memory even if it is less
than 16. The condition code can be set to the desired value
before execution of LMS with the LCF or LCFI instructions.
Register R is loaded with the result of
condition code is set at the conclusion of execution to
reflect the status of the word loaded (if any).

. At TLA
i< AChiGi. 1ac

Affected: (R),CC Trap: See "Trap System",

Chapter 2.
Initial condition code settings:

1 2 3 4 LMS Action

0 0 0 O Read and set — causes the same action as the

LOAD AND SET (LAS) instruction, except for

condifion code seftings. INormai fraps are
allowed including write protect.
0 0 0 1 Read and inhibit parity — loads the effective
word into R. If a memory parity error is de-
tected, the memory does not take a "snapshot™"
or generate a Memory Fault Interrupt (MFI).

118 Control Instructions

LMS Action

1

1

1

1

It does, however, generate the Memory Parity
Error signal. The basic processor inhibits the
trop that would ordinarily occur for the mem-

ory parity error.

Clear memory — stores zero in the memory
location specified by the address.

Reserved.
Reserved.
Reserved.

Read write fock — loads a pair of 4-bit write -
locks into byte 3 of R (bits 24-31) and 0 in all
other bit positions of R. The write lock stored
in bits 24-27 is stored in the memory system's
Write Lock memory at the location correspond=
ing to bits 17-21 of the effective address,
bit 22=0. The write lock stored in bits 28-31
corresponds to bits 17-21 of the effective ad-
dress, bit 22=1. .

Write write lock — stores byte 3 of the data
word sent to memory as a pair of write locks
in the memory system's Write Lock memory at.
a location corresponding fo bits 17-21 of the
effective address, bit 22=0 (for data bits 24-27)
and bits 17-21of the effective address, bit 22=1
(for data bits 28-31).

Read status word Of — loads status word 0 into
R (see Table 9).

Reserved.

Read status word 1t — loads status word 1 into
R (see Table 10).

Reserved.
Read status word 0 and clear.
Reserved.

Write double error — stores an arbitrary word
into a specified memory location, with two
differences compared to a normal Write Word
instruction: (1) Byte 3 in memory is forced to
zero; (2) the arbitrary word is stored in memory
with an intentional wrong parity; on a sub-
sequent read of that word, the memory issues
the parity error-signal. ’

Reserved.

Condition code settings after execution.

L . .
Primarily of diagnostic concern.

Table 9. Status Word 0

Field Bits | Comments
0 Reserved
1 Power status

2-7 | Memory unit error code

8-9 | Memory type

Ports 10 Port 1 enabled
11 Port 2 enabled
12 Port 3 enabled
13 Port 4 enabled
14 Port 5 enabled
15 Port 6 enabled
16 Port 1 serviced
17 Port 2 serviced
18 Port 3 serviced
19 Port 4 serviced
20 Port 5 serviced
21 Port 6 serviced

Memory fault | 22 0

types .
P 23 Uncorrectable memory unit error
24 Memory module selection error
La T~ ANV %x .
pavy /U e |Jul lly ciru

26 Data in parity error
27 Write lock parity error
28 Port selection error

29 Undefined operation
30 Control error

31 Multiple error

For "read and inhibit parity" operations, the status of the
word loaded (if any) is stored in the condition code bits at
the conclusion of execution as follows:

CC1: Memory Parity Error (from memory)

CC2: Data Bus Check (from CPU)

CC3: Parity Bit (from memory)

CC4: 0

Table 10. Status Word 1

Field Bits Comments
0 Interleave switch ON
1-3 Memory unit size:
000 8K
001 16K
010 24K
011 32K
100 40K
101 48K
110 56K
111 64K
4-6 Memory unit number (binary code)r
Starting 7 Starting address bit 12
Address Starting address bit 13
Starting address bit 14
10 Starting address bit 15
n Starting address bit 16
12 Starting address bit 17
13 Starting address bit 18
14 Reserved
15-31 Address received, bits 15-31
WAIT WAIT

(Word index alignment, privileged)

* 2E R X Reference address

0 1 2 3145 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 25 27128 29 30 31

WAIT causes the basic processor to cease all operations until
an interrupt activation occurs, or until the operator puts
the basic processor in the IDLE mode and then back to RUN
(see Chapter 5). The instruction address portion of the PSWs
is updated before the basic processor begins waiting; there-
fore, while it is waiting, the INSTRUCTION ADDRESS indi-
cators contain the virtual address of the next location in
ascending sequence after WAIT and the contents in the next
location are displayed in the DISPLAY indicators on the
processor control console. If any input/output operations
are being performed when WAIT is executed, the operations
proceed to their normal termination.

When an interrupt activation occurs while the basic pro-
cessor iswaiting, it processesthe interrupt-servicing routine.
Normally, the interrupt-servicing routine begins with an
XPSD instruction in the interrupt location, and ends with
an LPSD instruction af the end of the routine. After the
LPSD instruction is executed, the next instruction to be ex~
ecuted in the interrupted program is the next instruction in
sequence after the WAIT instruction. If the interrupt is to a

Control Instructions 119

single-instruction interrupt location, the instruction in the
interrupt location is executed and then instruction execution
proceeds with the next instruction in sequence after the
WAIT instruction. When the basic processor execution mode
is changed from RUN mode to IDLE mode and back to RUN
while the basic processor is waiting, instruction execution
proceeds with the next instruction in sequence after the
WAIT instruction.

Affected: PC

If WAIT is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operation trap to
location X'40' will not occur. The effective virtual address
of the WAIT instruction, however, is not used as a memory
reference (thus does not affect the normal operation of the
instruction).

RD READ DIRECT
(Word index alignment, privileged)

Reference address

* 6C R X T Mode Function

0 1 2 314 5 6 718 5 10 11112 13 14 15016 17 18 19120 21 22 23{24 25 26 27128 29 30 31

The basic processor is capable of directly communicating
with other elements of the system, as well as performing
internal control operations, by means of the READ DIRECT/
WRITE DIRECT (RD/WD) lines. The RD/WD lines consist of
16 address lines, 32 data lines, two condition code lines,
and various control linesthat are connected to various basic
processor circuits and to special system equipment.

READ DIRECT causes bits 16 through 31 of the effective
virtual address to be presented to other elements of the sys-
tem on the RD/WD address lines. Bits 16-31 of the effective
virtual address identify a specific element of the system that
is expected to return information (two condition code bits
plus a maximum of 32 data bits) to the basic processor. The
significance and number of data bits returned depend on the
selected element, If the R field of RD is nonzero, up to
32 bits of the returned data are loaded into general regis-

ter R; however, if the R field of RD is O, the returned data

is ignored and general register 0 is not changed. Bits CC3
and CC4 of the condition code are set by the addressed
element, regardless of the value of the R field.

Bits 16-19 of the effective virtual address of RD determine
the mode of the RD instruction, as follows:

Bit Position

16 17 18 19 Mode

0000 Internal basic processor control.
0001 Interrupt control.
0010 Xerox testers.

120 Control Instructions

16 17 18 19 Mode

Unassigned.

Special systems control (for customer use
with specially designed equipment).

If bits 16=19 select mode 2 through mode F, CC1 and CC2
are set to zero and CC3 and CC4 are set according to the
state of the two condition code lines from the external
device.

READ DIRECT, INTERNAL BASIC PROCESSOR
CONTROL (MODE 0)

In this mode, the basic processor is able to read the sense
switches, the basic processor address, and the interrupt in-
hibit bits of the PSWs as follows:

READ SENSE SWITCHES

The following configuration of RD can be used to read the
four SENSE switches in the System Control Processor:

Reference address

& R | X 7770000] 0000 [0000 | 0000

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19020 21 22 23124 25 26 27128 29 30 31

If a particular SENSE switch is set, the corresponding bit of
the condition code is set to 1; if a SENSE switch is zero,
the corresponding bit of the condition code is set to 0 (see
"Read Sense Switches" in Chapter 5).

In this case, only the condition code is affected.

READ BASIC PROCESSOR

The following RD configuration is used to read the basic
processor's address:

Reference address

foooC R | X 10000 | 0000 | 0001 | 0000

0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 27 22 23[24 25 26 27128 29 30 3!

If the R field is nonzero, the cluster number in which the
basic processor resides is obtained from the associated pro-
cessor interface and loaded into register R bits 21-23. All
other bits in the register are cleared to zero.

Affected: (R)

Cluster Address —. R2'|—23

0—Rp_20 9 Roy 3y

READ INTERRUPT INHIBITS

The following configuration of RD can be used to read the
contents of the interrupt inhibit field:

RaFerencé address

* o 6C R | X ET0000] 0000] 0100 | 1000

C 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23[24 25 26 27[28 29 30 31

If the R field of RD is nonzero, the contents of the interrupt
inhibit field (bits 37, 38, 39) of the program status words
are transferred to the least significant 3 bits of the spe-
cified R register (bits 29, 30, 31). The remainder of the R
register (bits 0-28) is cleared to zeros.

Affected: (R)

(PSWs)37 39— Rapo_3;

Note that a copy of the interrupt inhibits is retained in the
Interrupt Status Register in the Processor Interface associated
with each basic processor.

LOAD FROM LOW MAIN MEMORY

Reference address
6C l R X ET0000]| 0001 | rEA

C 1 2 314 5 6 718 9 10 12 13 14}5‘16 17 18 19120 21 22 2324 25 26 27128 29 30 31

*

The instruction allows reading the contents of real memory
locations 0-31 (locations 0-15 shadowed by the general

purpose registers). This allows access to the Status Stack
Pointer Doubleword in locations 0-1 and the default Pro-
gram Status Words (Interrupt Stack is empty) in locations 2-4.

If the R field is nonzero, the contents of the main memory
location identified by bits 27-31 are loaded into R.

Affected: (R)

EW —R

READ INTERNAL CONTROL REGISTERS

The following configuration of RD is used to read the con-
tents of internal control (or Q) registers:

Reference Address
¥ 6C R | X [ET0000 [0011 [Q addr

T 1 Z 314 5 6 718 9 10111216 14 15176 7 18 D122 25 27128 25 30 31

If the R field of the RD instruction is nonzero, the contents
of the internal control register, as specified by the "Q Ad-
dress" field of the instruction (bit positions 27-31), are

loaded into register R. Although the Q address field permits
any of 32 addresses to be specified, only the following may
be used:

Q Address Contents
{(Bifs 0-13) - Reserved
X'"1D! (Bits 14-31) - "Branch from" Program
Counter
X1 {(Bh‘s 0-7) - Reserved
(Bits 8-31) - Load Device Address

All other Q addresses from X'00' - X'1F' are reserved.
Affected: (R)

EW — R

READ DIRECT, INTERRUPT CONTROL (MODE 1)

The following configuration of RD is used to control the
sensing of the various states of the individual interrupt
levels within the basic processor interrupt system:

o 6C R X ET 0001 | 0] cobe | 0000 | crour

0 1 2 374 5 6 778 9 10 111213 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

Bits 28 through 31 of the effective address specify the iden-
tification number of the group of interrupt levels to be con-
trolled by the READ DIRECT instruction.

The R field of the RD instruction specifies a general register
that will contain the bits sensed from the individual inter-
rupt levels within a specified group. For external interrupt
groups, bit position 16 of register R contains the appropriate
indicator bit for the highest priority (lowest number) inter-
rupt leve! within the group and bit position 31 of register R
contains the indicator bit for the lowest priority interrupt
level within the group. For assignments in Group X'0', see
Table 11. Each interrupt level in the designated group is
sensed according fo the function code specified by bits 21
through 23 of the effective address of RD. The codes and
their associated functions are as follows:

Code Function

001 Read Armed or Waiting State. Set to 1 the bits in
the selected register which correspond to interrupt
levels in this group that are in either the armed or
the waiting state. Reset all other bits to zero.

010 Read Waiting or Active State. Set to 1 the bits
in the selected register which correspond to each
interrupt level in this group that is in either the
waiting or the active state. Reset all other bits
to zero.

100 Read Enabled. Set to 1 the bits in the selected
register which correspond fo each interrupt level
in this group which is enabled. Reset all other
bits to zero.

Control Instructions 121

READ DIRECT (MODE 9)

READ CONFIGURATION CONTROL PANEL

Reference address

s R | X E777001 | 0000 [00 i

0 1 2 314 5 6 718 9 10 11112 13 14 15[16 17 18 19120 21 22 23124 25 26 27128 29 30 3)

The mode 9 instruction reads the state of the Configuration
Control Panel for the addressed cluster or unit. Physical
addresses are assigned at the time of system configuration.
The returned status to Register Ris shown inTables 11and 12.

WD WRITE DIRECT
(Word index alignment, privileged)

Reference address
* 6D R X FTMode | Function

0T Z 314 5 6 718 9 10 N11Z 13 12 15116 17 18 19120 21 22 23134 25 26 27128 5 30 31

WRITE DIRECT causes bits 16~31 of the effective virtual ad-
dress to be presented to other elements of the system on the
RD/WD address lines (see READ DIRECT). Bits 16=31 of the
effective virtual address identify a specific element of the
system that is to receive control information from the basic
processor. If the R field of WD is nonzero, the 32-bit con-
tents of register R are transmitted to the specified element
on the RD/WD data lines. If the R field of WD is 0, 32 0's
are transmitted to the specified element (instead of the con-
tents of register 0). The specified element may return
information to set the condition code.

Bits 16-19 of the effective virtual address determine the
mode of the WD instruction, as follows:

16 17 18 19 Mode

0 000 Internal basic precesser contrel.

0 0 01 Interrupt control.

0 010 Xerox testers.

0 0 1 1

. Unassigned.

1110

T 1 11 Special systems control (for customer use

with specially designed equipment}.

If bits 16-19 select mode 2 through mode F, CC1 and CC2
are set to zero and CC3 and CC4 are set according to the
state of the two condition code lines from the external
device. :

122 Control Instructions

WRITE DIRECT, INTERNAL BASIC PROCESSOR
CONTROL (MODE 0)

LOAD SENSE SWITCHES

The following configuration of WD can be used to load the
sense switches in the System Control Processor:

-

N Reference address
6D R | X [2770000 | 0000 [0000 | 0000

T 1 2 314 5 6 718 9 10 131374 15116 17 18 15120 21 22 23124 25 26 27128 29 30 31

If the R field is nonzero, bits 0 through 3 of Register R
will be loaded into sense switches 1 through 4 in the System
Control Processor. If the R field is zero, sense switcheswill

be reset to zeros. (See the section "System Control Panel"
in Chapter 5.)

SET INTERRUPT INHIBITS

The following configuration of WD can be used to set the
interrupt inhibits (bit positions 37-39 of the PSWs):

* _ Reference address
6D R 1 X FT6000 [0000 0011 JolcTIIE

N
0 7 2 314 5 6 718 9 10 j112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

A logical inclusive OR is performed between bits 29-31 of

the effective virtual address and bits 37-39 of the PSWs. If

any (or all) of bits 29-31 of the effective virtual address
are 1's, the corresponding inhibit bits in the PSWs are set

to 1's; the current state of an inhibit bit is not affected if a
corresponding bit position of the effective virtual address

contains a 0.

Note that a copy of the Interrupt Inhibits is retained in the

Interrupt Status Register in the Processor Interface associated
with each basic processor.

RESET INTERRUPT INHIBITS

The following configuration of WD can be used to reset the
interrupt inhibits:

Reference address

0000 [0000 | 0010 Jolcli]E

16 17 18 19120 21 22 23124 25 26 27128 29 30 31

* 6D R X -1
15

0 1 2 314 5 6 718 9 10711112 13 14

If any (or all)- of bits 29-31 of the effective virtual address

are 1's, the corresponding inhibit bits in the PSWs are reset
to O's; the current state of an inhibit bit is not affected if
a corresponding bit position of the effective virtual address
contains a 0.

Note that a copy of the Interrupt Inhibits is retained in the
Interrupt Status Register in the Processor Interface associated
with each basic processor.

Table 11.

Read Direct Mode 9 Status Word

RD Status Word

Bit No. Processor Cluster 1 Memory Unit 1
00 System Select System Select
01 Clock Select Clock Select
02 Processor Cluster Address 22 Unit No. 22
03 Processor Cluster Address 2! Unit No. 21
04 Processor Cluster Address 20 Unit No. 20
05 BP Enable Port Enable 1
06 MIOP Enable Port Enable 2
07 DIO Enable Port Enable 3
08 Not Assigned Port Enable 4
09 ALTSEL Port Enable 5
10 FSELA Port Enable 6
11 FSELBO Not Assigned
12 FSELBI Not Assigned
13 Real Time Clock 1-S0 Interleave Enable
14 Real Time Clock 1-S1 Starting Address S12
15 Real Time Clock 2-50 Starting Address S13
16 Real Time Clock 2-S1 Starting Address S14
17 Real Time Clock 3-S0 Starting Address S15
18 Real Time Clock 3-S1 Starting Address S16
19 Subjective Time Clock ~-SO Starting Address S17
20 Subjective Time Clock -S1 Starting Address S18
21 Not Assigned Not Assigned
22 Not Assigned Not Assigned
23 Not Assigned Not Assigned
24 Not Assigned Not Assigned
25 Not Assigned Not Assigned
26 Not Assigned Not Assigned
27 tChassis Type—24 tChassis Type-24
28 Chassis Type—23 Chassis Type-Z3
29 Chassis Type—22 Chassis Type—Z2
30 Chassis Type-21 Chassis Type-21
31 Chassis Type-20 Chassis Type-2O

fSee Chassis Type Table.

Control Instructions

123

Table 12. Chassis Type Assignments

Chassis Type 24 23 22 21 20 Configuration Information
Processor Clusters 1 1 0 0 0 Reserved

1 1 0 0 1 Reserved

1 1 0 1 0 Processor Cluster Type 1

1 1 0 1 1 Reserved

1 1 1 0 0 Reserved

1 1 1 0 1 Reserved

1 1 1 1 0 Reserved

1 1 1 1 1 Reserved
Controller Clusters 1 0 0 0 Reserved

1 0 0 1 Reserved

1 0 0 1 0 Reserved

1 0 0 1 1 Reserved

1 0 1 0 0 Reserved

1 0 1 0 1 Reserved

1 0 1 1 0 Reserved

1 0 1 1 Reserved
Memory Units 0 1 0 0 Memory Unit Type 1

0 1 0 1 Reserved

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 Reserved

0 1 ! 0 1 Reserved

0 1 1 1 0 Reserved

0 1 1 1 1 Reserved
Reserved 0 0 0 0 0 Not available

0 0 0 0 1 Reserved

0 0 0 1 0 Reserved

0 0 0 1 1 Reserved

0 0 1 0 0 Reserved

0 0 1 0 1 Reserved

0 0 1 1 0 Reserved

0 0 1 1 1 Reserved

124

Control Instructions

SET ALARM INDICATOR

The following configuration of WD is used to set the ALARM
indicator on the maintenance section of the processor con-
trol panel:

Reference address

6D R | X FT5000 [0000 [0100 [0007

01 2 ﬁA 5 6 718 9 10 111213 14 \5I|6 17 18 19120 21 22 23124 25 26 27128 29 30 31

If the processor is in the RUN mode and the AUDIO switch
on the maintenance section of the processor control panel
is in the ON position, a 1000-Hz signal is transmitted to
the basic processor speaker. The signal may be interrupted
by changing from RUN mode to IDLE mode, by moving the
AUDIO switch to the OFF position, or by resefting the
ALARM indicator.

RESET ALARM INDICATOR

The following configuration of WD is used to reset the
ALARM indicator:

ReFerencé address

¥ 6D R X 0000 | 0000 [0100 [0000

T 17 314 5 6 718 5 10 112 13 12 15116 17 18 19120 21 22 D124 25 26 D% 2 D 31

The ALARM indicator is also reset by either the RESET BP
or the RESET SYSTEM Command entered from the operator's
control console.

TOGGLE PROGRAM-CONTROLLED-FREQUENCY
FLIP-FLOP

The following configuration of WD is used to set and resef
the basic processor program-controlled-frequency (PCF)
flip-flop:

Reference address

4D R -1 0000 | 0000 [0100] 0010

0 1 2 314 5 6 718 ¢ 10 1111213 14 ‘|5|16 17 18 19120 21 22 23124 25 26 27128 29 30 31

The output of the PCF flip~flop is transmitted to the basic
processor speaker through the AUDIO switch on the main-
tenance section of the System Control Panel. If the PCF
flip-flop is reset when the above configuration of WD is
executed, the WD instruction sets the PCF flip~flop; if the
PCF flip-flop was previously set, the WD instruction resets
it. A program can thus generate a desired frequency by
setting and resetting the PCF flip-flop at the appropriate
rate. Execution of the above configuration of WD also re-
sets the ALARM indicator.

LOAD INTERRUPT INHIBITS

The following configuration of WD can be used to transfer
the contents of the specified R register (Rpg_31) to the
Interrupt Inhibit field (PSWs37_39).

Referen c‘e address

*
6D R X .1 0000 | 0000 | 0100 | 1000

0 1 2 314 5 6 718 9 10 1112 13 14 1516 17 18 19120 21 22 23124 25 26 27128 29 30 31

Affected: (PSW537_39)

(Rog.gq) — PSWsg7 39

TURN ON MODE ALTERED FLAG

The following configuration of WD is used to set the Mode
Altered Flag (PSWs 61) to 1:

* 6D R X

0 12 3145 6 7189 10n IZ131415116171819120212223|24252627r—293031

TURN OFF MODE ALTERED FLAG

The following configuration of WD is used to reset the Mode
Altered Flag (PSWs 61) to O:

Reference address

*
6D R 1 X FT0000 [0000 | 0100 | 0110

01 2 Th 56 718 9 101N 121314!5—[71718I9|2021222324252627[28293031

STORE IN LOW MAIN MEMORY

Referenc

¥ 6D R | X 10000 [0001

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23]24 25 26 27128 29 30 31

This instruction writes into main memory locations 0-31
(locations 0-15 shadowed by the general purpose registers
and reserved locations). This allows storing or changing the
Status Stack Pointer Doubleword in locations 0-1 and the
default Program Status Words (Status Stack is empty) in
locations 2 through 4.

If the R field is nonzero, the contents of R are stored in the
main memory location identified by bits 27-31.

TRAP TO LOCATION X'47!

=

eference address

*| 6D R | X E15000 | 0000] 0000 | 0070

0 1 2 3[4 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23[24 25 26 27(28 29 30 31

This instruction causes the basic processors to trap to loca-

tion X'47',

A line in the Processor Bus is raised by the initiating basic

processor (or the associated PI). This line, when true, causes
the basic processors to trap to X'47' (including the one that
executes the instruction).

Control Instructions 125

WRITE INTO INTERNAL CONTROL REGISTER

The following configuration of WD is used to write .into the
internal control (or Q) registers:

" Reference address
6D R | X [Qaddr

0 71 2 314 5 6 718 % 10 0213 T4 15116 17 18 19120 27 22 23124 25 26 27128 30 31

If the R field is nonzero, the contents of register R are
loaded in the control register, as specified by the "Q Ad-
dress" field (bit positions 27-31) of the WD instruction.
Except for the four Q addresses listed below, all other ad-
dresses are reserved:

Q Address Significance
(Bits 00-13) - Reserved.

X"1D! (Bits 14-31) - Write into the "Branch From"
program counter.
(Bits 00 through 07) - Reserved.

X'1E! (Bits 08 through 31) - Write into the "Load
Device Address" register.

If the R field is zero, the specified register is loaded with
all zeros.

Affected: (EL)

(R) — (EL)

WRITE DIRECT, INTERRUPT CONTROL (MODE 1)

The following configuration of WD is used to set and reset
the various states of the individual interrupt levels within
the basic processor interrupt system:

Reference address

| ¢b R | X FT500T [0[Code] 0000 |Group

0 1 2 314 5 6 718 9 10 11112 13 14 15016 37 18 19120 21 22 23124 25 26 27128 29 30 31

Bits 28-310f the effective address specify the identification
number (see Table 11) of the group of interrupt levels to be
controlled by the WD instruction.

126 Control Instructions

The R field of the WD instruction specifies a general register
that contains the selection bits for the individual interrupt
levels within the specified group. For external interrupt
groups, bit 16 of register R contains the selection bit for
the highest-priority (lowest-numbered) interrupt level within
the group, and bit 31 of register R contains the selection bit
for the lowest-priority (highest-numbered) interrupt level

within the group. For assignments in Group X'0', see Table 11.

Except for Power on/Power off interrupt levels, which can
not be disabled, disarmed, or inhibited, each level in the
designated group is operated on according to the function
code specified by bits 21-23 of the effective address of WD.
The codes and their associated functions are as follows:

Code Function

000 Setactive all selected levels currently in the armed
or waiting states.

oott Disarm all levels selected by a 1; all levels se-
lected by a 0 are not affected.

o10f Arm and enable all levels selected by a 1; all
levels selected by a 0 are not affected.

o11f Arm and disable all levels selected by a 1; all
levels selected by a 0 are not affected.

100 Enable all levels selected by a 1; all levels selec-
ted by a 0 are not affected.

101 Disable all levels selected by a 1; all levels selec~
ted by a 0 are not affected.

110 Enable all levels selected by a 1 and disable all
levels selected by a 0.

111 Trigger all levels selected by a 1. All such levels
that are currently armed advance to waiting state.

t

These codes clear the current interrupts, i.e., remove from
the active or waiting state all levels selected by a 1 (see
Figure 12),

INPUT/OUTPUT INSTRUCTIONS

The 1/O instruction set is comprised of eight instructions,
as listed below.

Instruction Name Mnemonic
Start Input/Qutput SIO

Test Input/Qutput TIO

Test Device DV

Halt Input/Output “ HIO

Reset Input/Qutput RIO

Poll Processor POLP
Poll .and Reset Processor POLR

Acknowledge Input/Qutput Interrupt AIO

OVERALL CHARACTERISTICS

All I/O instructions are privileged and can be performed
only when the basic processor (BP) is in either the master
or master-protected mode. If the BP attempts to execute
an 1/O instruction when it is in the slave mode (bit 8 of
the current PSW is a 1), the instruction is aborted at the
time the operation cade is decodad and the RP fraps to lo-
cation X'40'. Programs operating in the slave mode must
request 1/O services from the System Monitor.

At the end of every 1/O instruction, the condition code
bits represent a summary description of the results of the
/O operation and conditions within the addressed I/O
subsystem. Specific condition code settings and meanings
(unique for each 1/O instruction) are contained in the de-
tailed description for each 1/O instruction.

All I/O instructions, except RIO, may request defailed
1/O status information. The type and amount of 1/O status
information that may be requested is determined by the op-
eration code and the R field of the 1/O instruction. The

R field also designates which general register(s) is to be
loaded with the requested information. (Refer to1/O Status
Information for further details.)

1/O instructions are similar to other word-addressing in-
structions in that bits 15-31 may be modified by indirect
addressing and/or indexing. However, the final value of
these bits is not used as an effective virtual address for
memory reference. Instead, depending upon the 1/Q in-
struction, these bits are used as an extension to the opera-
tion code field, as an I/O address to select a particular
1/0 subsystem, or they may be reserved. Further details
of 1/0O instructions are illustrated in Figure13 and de-
scribed in Table 13.

1/0 STATUS INFORMATION

SI1O, TIO, TDV, AND HIO INSTRUCTIONS

If the R field is coded with a 0, no status information is re=
quested nor loaded. If the R field is odd, one word of status
information is requested to be loaded into register R as spec-
ified by the R field. If the R field is even (not zero), two
words of status information are requested to be loaded into
registers R and Rul.

The following 1/O status information may be loaded into
register R only when the R field is coded with an even
(nonzero) value.

N e €Y \ Current command
§ FiFIE k doubleword address
01 2 314 5 6 718 9 1011112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The significance of each bit within register R is described
in Table 14.

The following 1/O status information may be loaded into
register R if the R field is odd, or into register Rul if the
R field is even and nof zero.

The format of information within the specified general reg-
ister (R or Rul) is shown below.

Device Operational
Status Byte | Status Byte Byte Count

0 1 2 374 5 6 718 % 10 N2 1314 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Device Status Byte. These eight bits (0-7) when loaded
into the specified general register provide status information
pertaining to the addressed device and device controller or
IOP. The significance of each bit when requested by an
SIO, TIO, and HIO instruction is described in Table 15.
The significance of these bits when requested by a TDV in-
struction is different and is described in the applicable
peripheral device reference manual.

Qperational Status Byte. Bits 8-15 of the specified gen-
eral register (R or Rul) indicate either the presence (1) or
absence (0) of various errors which may have occurred
during an I/O operation. The significance of the individ-
val bits within the operational status byte are described
in Table 16.

Table 17 is the summary description of the Device Status
Byte and the Operational Status Byte.

Byte Count. Bits 16~31 of register Rul indicate the num-
ber of bytes that have to be transmitted to or from mem-
ory in the operation called for by the current I/O command
doubleword.

RIO INSTRUCTION

No status information is returned to the general registers
for an RIO instruction (the R field is ignored). Only con-
dition code bits (CC1 - CC3) are set to reflect the 1/O

conditions.

Input/Output Instructions 127

Mnemonic

SIO
TIO
v
HIO
RIO
POLP
POLR

AIO

0 1 2 3 4 5 6 7.8 9 1011 1213 14,15 3617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

* Operation Code R X Reference Address {:;:Lfln/o ?

* Operation Code R X \\O\C\E\\\\ i\ 1/O Address E:j:;cc': cz;l::::-

| ® o

82::;:?.1&:?& 15 () 17 18 2(@21 23 % 27 28 31

* 4 C. R X \\ CA UA ? %%"A Bﬁ“

I EEEN IRy s ==

2N R TR PR \ IS T e

s 4 F R X 000 | cA ua PS5

* 4 F R X 001 CA UA b\i\\\\\\\\\\\\\\\\\\:

s F R SRR A i o

| 4 F R X 011 CcA UA \\\\\\\

() Portions of a word format that are shaded represent bits that are reserved (after the 1/O address is generated) and
must be coded with zeros to ensure program compatibility with possible enhancements to software and/or hardware.

@ OCE = operation code field extension; CA = cluster address; UA = unit address; DCA = device controller address;
DA = device address.

To address a single-unit device controller, bit 24 must be a 0; to address a multiunit device controller, bit 24
must be a 1.

Figure 13. Formats of 1/O Instructions

Table 13. Description of 1/O Instructions

Bit Applicable Instructions
Position | (Mnemonics) Function and/or Description
0 All I/O instructions If this bit is a] bite 15-31 of the initial]/ﬁ inctruction are modified b
direct addressing.
1-7 SI1IO, TIO, TDV, and AIO For these four instructions, the operation code uniquely defines the /O oper-
ation that is to be performed.
HIO, RIO, POLP, and Within bit positions 1~7, these four instructions all have the same operation
POLR code (X'4F'), The instructions are differentiated by using bits 15, 16, and 17
as an extension of the operation code field.
8-11 SIO, TIO, TDV, and HIO The value of the R field specifies how much status information is requested

from the addressed 1/O subsystem (IOP, device controlier, and device) and
into which general register(s) the status information is to be loaded. If the
value of the R field is even and not 0, two woids of status information are re-
quested to be loaded into registers R and Rul. If the value of the R field is odd,
one word of status information is requested to be loaded into register R.

RIO

Although the R field is not used by the RIO instruction, the R field may be
coded with any value as required by the program.

128 Input/Qutput Instructions

Table 13, Description of I/O Instructions (cont.)

Bit Applicable Instructions
Position | (Mnemonics) Function and/or Description
8-11 POLP and POLR This field specifies which general register (including register 0) is to receive
(cont.) processor (MIOP, RMP, BP, MI, PI, or System Control Processor) fault information.
AIO If the R field is 0, no status information is requested. If the R field is not 0, the
designated general register is to be loaded with the requested status information.
12-14 All 1/O instructions The X field may be used to specify indexing.

15-17 SIO, TIO, TDV, and AIO After the 1/O address is generated, these bits are reserved and must be coded

with zeros.
HIO, RIO, POLP, and These bits are an extension to the operation code field (bits 1-7) and permit
POLR each of these instructions to be uniquely defined.

Note that these bits are subject to modifications due to indirect addressing or
indexing. The final configuration of these bits must be as shown below:

HIO = 000
RIO = 001
POLP = 010
POLR = 011
18-31 All /O instructions The 1/O address (after any indirect addressing and/or indexing) is contained
(except AIQ) within these bits. Depending upon the /O instruction, the required 1/0

address may be comprised of (1) a cluster address; (2) a cluster address and a
unit address; (3) a cluster address, a unit address, and a device controller
address; or (4) a cluster address, a unit address, a device controller address,
and a device address.

Subfields of the final /O address field are described below.

e e e — ——— — . — . e — e e — e e e L e e e e e e —— —

18 All I/O instructions A These bits constitute the cluster address (CA) and the unit address (UA) field
. (except AIO) of an 1I/O instruction. Cluster and unit addresses may be assigned in the
53 fol lowing manner:

1. The assignment of addresses is mutually exclusive, that is, no two units
may have the same address.

2. Bits 18-20 represent a cluster address.

3. Bits 21-23 represent a unique unit within that cluster. Since all processor
clusters contain as a minimum a Processor Interface (PI) unit and a memory
interface (MI) unit, the address (110) 21-23 and (111) 21-23 have been
preassigned to these units.

AIO After the 1/O address is generated, these bits are reserved and must be coded
with zeros.

24 SIO, TIO, TDV, and HIO If the I/O instruction is addressed to a single-unit device controller, this bit
must be coded as a 0. If the 1/O instruction is addressed to a multiunit device
controller, this bit must be coded as a 1. Note that bit 24 is not considered
as part of the device controller address.

Input/Output Instructions 129

Table 13. Description of 1/O Instructions (cont.)

Bit Applicable Instructions
Position | (Mnemonics) Function and/or Description
24 RIO, POLP, POLR, and AIO | After the 1/O address is generated, this bit is reserved and must be coded
(cont.) with a zero.
25 SI1O, TIO, TDV, and HIO If the I/O instruction is addressed to a single-unit device controller (bit 24
: is a 0), bits 25-31 represent one of 16 possible device controller addresses
é] (X'00" - X'0OF'). There is no need to specify a device address.
If the 1/O instruction is addressed to a multiunit (e.g., magnetic tape) device
controller (bit 24 is a 1), bits 25-27 represent one of eight possible device
controller addresses (X'0' - X'7') and bits 28-31 represent one of 16 possible
device addresses (X'0' - X'F').
Device controller addresses assigned to conirollers within the same 1/O chan-
nel (e.g., MIOP), must be mutually exclusive. Note that bit 24, which must
be a 0 when addressing a single-unit device controller and a 1 when addressing
a multiunit device controller, is not considered a part of the decive controller
address. Thus, for example, if the device controller address X'0' is assigned
to a multiunit device controller within an MIOP, no other device controller
(single or multiunit) within that MIOP may have an address of X'0'.
RIO, POLP, POLR, and AIO | After the 1/O address is generated, these bits are reserved and must be coded
with zeros.
Table 14. 1/0 Status Information (Register R) Table 14. 1/O Status Information (Register R) (cont.)
Bit Bit
Position | Significance Position | Significance
0 Reservedr 3t Memory Interface Error (MIE). IOP Halt
' condition is the same as a Bus Check Fault.
TH Bus Check Fault (BCF). This bit is set to 1 4-12 Res.ervedf
if a discrepancy exists between the parity
error status in the memory unit and the IOP 13-31 Current Command Doubleword Address. The
when an IOP is performing a main memory 19 high-order bits of the main memory address
read cycle. If the error occurs while access~ from which the command doubleword for the
ing data then the device halt is controlled 1/O operation currently being processed by
by the Halt-on-Transmission-Error flag (bit the addressed 1/O subsystem is fetched.
position 36 of an I/O command doubleword).
If the error occurs while fetching a com- t o .)
mand, the operation is terminated immedi- To ensure program compahblllty.w3fh possible software
. N " and/or hardware enhancements, it is recommended that
ately with an "unusual end". . . .
reserved bits be treated as indeterminate and not used
(i.e., masked).
t
2 Control Check Fault (CCF). This bit is set ”The IOP unconditionally sets the Processor Fault Indi=-
to 1 when a parity error occurs during a sub- cator (PFI) whenever a Bus Check Fault, Control Check
channel read operation within the MIOP. Fault, Control Memory Fault, or Memory Interface Error
The operation terminates immediately with occurs. The IOP fault status registerisset with status in-
an "unusual end”. formation as listed under the POLP or POLR instructions.
130 Tnput/Qutput Instructions

Table 15. Device Status Byte (Register R or Rul)

(S10, TIO, and HIO only)

Table 15. Device Status Byte (Register R or Rul)

(SIO, TIO, and HIO only) (cont.)

Bit
Position

Significance

Bit
Position

Significance

0

1,2

Interrupt Pending. This bit is set to a 1 if

the addressed device has requested an inter-

rupt that has not been acknowliedged by the
BP with an AIO instruction. If this bit is

a 1, the current SIO instruction is not ac-
cepted. Condition code bifs are set to re-
flect this action and any requested status
information is loaded into the designated
general register(s). SIO instructions will not
be accepied until the interrupt pending con-
dition is cleared.

Normally, before a device can request an
interrupt, the following conditions must
prevaili:

1. Appropriate flag(s) (IZC, ICE, and/or
IUE; bit positions 33, 35, and 37, re-
spectively) within the 1/O command
doubleword must be set to 1.

2. The flagged event (byte count reduced
to zero for the 1ZC flag, "channel end"
condition for the ICE flag, or "“unusual
end" condition for the IUE flag) must
occur.

3. "TOP may signal device coniroller to
......... tmtonr Pk

P DA JU Ny A ¥ Ay
119< IIIICIIUVI YNV L LAY i

rupt flags, if:

a. A connection address error is
detected.

b. Any error is detected when IOP is
accessing an I0CD.

For case a, no interrupt status will be
set in response o an AlO.

For case b, an IUE signal is sent back
in response to an AIO.

An 1/0O interrupt may also be requested by

certain devices via M modifier bits within

the basic order for that device (see Opera-
tional Command Doublewords).

A BP will respond to an interrupt request
from a particular I/O subsystem if (1) the
1/O interrupt level (X'5C') is armed, en-
abled, and not inhibited; and (2) that there
is no higher priority interrupt level in the
active or waiting state.

Device Condition. If bits 1 and 2 are 00 (de-

vice "ready"), all device conditions required

1,2
(cont.)

Device Mode. If this bit is 1, the device is

for proper operation are safisfied. If bits 1
and 2 are 01 (device "not operational), the
addressed device has developed some condi-
tion that will not allow it to proceed; in
either case, operator infervention is usually
required. If bits 1 and 2 are 10 (device "un-
available"), the device has more than one
channel of communication available and it is
engaged in an operation controlled by a con-
troller other than the one specified by the
I/O address. If bits 1 and 2 are 11 (device
"busy "), the device has accepted a previous
SIO instruction and is already engaged in an
I/O operation.

in the "automatic" mode; if this bit is 0, the
device is in the "manual" mode and requires
operator intervention. This bit can be used
in conjunction with bits 1 and 2 to determine
the type of action required. For example,
assume that a card reader is able to operate,
but no cards are in the hopper. The card
reader would be in state 000 (device "ready",
but manual intervention required), where
the state is indicated by bits 1, 2, and 3 of
the 1/O status response. If the operator sub-
sequently loads the card hopper and presses
the card reader START switch, the reader
would advance to state 001 (device "ready"
and in automatic operation). If the card
reader is in state 000 when an SIO insiruc-
tion is executed, the SIO would be accepted
by the reader and the reader would advance
to state 110 (device "busy”, but operator in-
tervention required). Should the operator
then place cards in the hopper and press the
START switch, the card reader state would
advance to 111 (device "busy” and in"auto-
matic" mode), and the input operation would
proceed. Should the card reader subsequently
become empty (or the operator press the
STOP switch) and command chaining is being
used to read a number of cards, the card
reader would return fo state 110. If the card
reader is in state 001 when an SIO instruc-
tion is executed, the reader advances to
state 111, and the input operation continues
as normal. Should the hopper subsequently
become empty (or should the operator press
the card reader STOP switch) and command
chaining is being used to read a number of
cards, the reader would go to state 110 until
the operator corrected the situation.

For RMP, this bit is always set to one.

Input/Output Instructions 131

Table 15. Device Status Byte (Register R or Rul)

(SIO, TIO, and HIO only) (cont.)

Table 16. Operational Status Byte (Register Rul)

Bit

Position

Significance

Bit

Position

Significance

5,6

Unusual End. If this bit is a 1, the pre-
vious 1/O operation terminated in an "un-
usual end". Unusual end conditions occur
for various reasons that are unique to each
device (refer to applicable peripheral refer-
ence manual for further details).

Device Controller or IOP Condition. The

function of these two bits is dependent upon
the type of I0P (MIOP or RMP) addressed by
the 1/O instruction.

MIOP Operations: If bits 5 and 6 are 00

(device controller "ready"), all device
controller conditions required for its proper
operation are satisfied. If bits 5 and 6
are 01 (device controller "not operational"),
some condition has developed that does not
allow it to operate properly. Operator in-
tervention is usually required. If bits 5
and 6 are 10 (device controller "unavail-
able"), the device controller is currently
engaged in an operation controlled by an
IOP other than the one addressed by the
I/O instruction. If bits 5 and & are 11
{device controller "busy"), the device con-
troller has accepted a previous SIO instruc-
tion and is currently engaged in performing
an operation for the addressed IOP.

RMP Operations: If bits 5 and 4 are 00
(IOP “ready"), all RMP conditions required
for its proper operation are satisfied. If
bits 5 and 6 are 11 (IOP "busy"), the
IOP has accepted a previous SIO instruc-
tion and is currently engaged in perform-
ing that 1/O operation. If bits 5 and 6
are 01, the IOP is not operational. If
bits 5 and 6 are 10, the IOP is in an un-
defined state.

Reserved. To ensure program compatibil-

ity with possible software and/or hard-
ware enhancements, it is recommended

that this bit be treated as indeterminate
and not used (i.e., masked).

8

10

11

13

Incorrect Length. This bit is set to 1if an
incorrect length condition occurred within
the responding subchannel. An incorrect
length condition is caused by a "channel
end" (or end of record) condition occurring
before the device controller has a "count
done" signal from the IOP (indicating that
the byte count has been reduced to zero), or
is caused by the device controller receiving
a count done signal before channel end (or
end of record): e.g., count done before
80 columns have been read from a card.

When set to a 1, the incorrect length bit,
by itself, always signifies that an incorrect
length condition has occurred. If the SIL flag
(bit 38 of the /O command doubleword) is
coded with a 0, the detected incorrect length
condition is to be interpreted as an error con-
dition. If the SIL flag is coded with a 1, the
detected incorrect length condition is to be
interpreted as a nonerror condition, If an in-
correct length condition is to result in a de-
vice halt, the SIL flag must be coded with

a 0 and the HTE flag (bit 36 of the 1/O com-
mand doubleword) must be coded with a 1.

Transmission Data Error. This bit is set to 1
if the device controller or IOP detected a
parity error or data overrun in the transmit-
tal information. A device halt occurs as a
result of a transmission data error only if the
HTE flag of the 1/O command doubleword is
coded with a 1.

Transmission Memory Error. This bit is set to 1
if a memory parity error was detected during

a data input/output operation. A device halt
occurs as a result of o transmission memory

error only if the HTE flag of the /O com-
mand doubleword is coded with a 1.

Memory Address Error. This bit is set to 1 if
a nonexistent memory address is detected
during a chaining operation or a data input/
output operation. This bit is cleared during
a successful SIO or HIO.

IOP Memory Error. This bit is set to 1 if the
IOP detects a memory parity error while
fetching a command. The bit is cleared dur-

A i | N o UTA
ing a successful SIC oi HiC.

I0OP Control Error. This bit is set to 1if the
IOP detects two successive Transfer in Chan-
nel commands. The bit is cleared during a

successful SIO or HIO.

132 TInput/Cutput Instructions

Table 16. Operational Status Byte (Register Rul) (cont.) Table 16. Opércfioncl Status Byte (Register Rul) (cont.)

Bit Bit

Position | Significance Position | Significance

14 10P Halt. This bit is set to 1 if an error con= 4 Error conditions which may cause an IOP halt
dition is detected which causes the IOP to (cont.) | only if the HTE flag is coded with a 1 are:

issue a half order to the addressed I/O de-
vice. Error conditions which may cause

an IOP halt (independent of the HTE flag
within the /O command doubleword) are:

1. Bus check fault that occurs while fetch-
ing a command

2. Control check fault
3. Memory address error
4. 1OP memory error

15
5. IOP control error

ing data

3. Transmission data error

"ynusual end".

(WLV) occurs.

1. Bus check fault that occurs while fetch-

2. Transmission memory error

4. Incorrect length condition occurring
while the SIL flag is coded with a 0.

An 10OP halt condition causes the current
operation fo terminate immediately as an

This bit is set to a 1 if a Write Lock Violation

Table 17. Status Response Bits for I/O Instructions

Position and State in Register Rul

Device Status Byte Operational Status Byte
01 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Significance for
SIO, HIOQ, and TIO

I
I e = OO

I —Q —~ O 1
]
]
1
1
1
]
1
1
1
1
1
1
1

interrupt pending
device ready

device not operational
device unavaiiabie
device busy

device manual

device automatic

device unusual end

device controller ready

device control ler not operational
device controller unavailable
device controller busy

reserved

Significance

for TDV

unique to the
device and
the device
control ler

incorrect length
transmission data error
fransmission memory error
memory address error

IOP memory error
IOP control error
IOP halt

write lock violation

same as for
S10, HIO,
and TIO

MThe significance of bits 5 and 6 when response is from an RMP is as fol lows:

Bit 5 Bit 6 RMP Function

0 0 RMP ready

0 1 RMP not operational
1 0 reserved

1 1 RMP busy

Input/Output Instructions 133

POLP and POLR INSTRUCTIONS

The R field of these two instructions always specifiesagen-
eral register (including register 0) that may receive up to
16 bits of fault status information from an addressed BP,
RMP or MIOP. Each bit indicates the presence (1) or ab-
sence (0) of a specific fault condition within the polled
processor (as listed in Table C~1). Note that the informa-
tion represented by a particular bit is also dependent upon
the type of processor polled (e.g., bit 18 may indicate a
memory parity error in the BP or a control check fault
within an MIOP).

AIO INSTRUCTION

For this instruction, if the R field has a value of 0, no
status information is requested nor loaded. If the R field
has a value of X'1* through X'F', the specified register may
receive one word of 1/O information pertaining to an I/O
interrupt,

Table 18, 1QOP Status Byte (cont.)

Bit
Position

Significance

DC and Device IOP IOP 0] DCA

Status Byte | Status Byte

0 1 2 314 5 6 718 9 10 1213 14

Address [1IDCA[DA

8 19720 21 22 23724 25 26 27128 29 30 31

Device and Device Controller Status Byte. Bits 0-7 of the
status word obtained by an AIO instruction from a respond-
ing 1/O subsystem are unique to the device and device
controller. These bits are described in the applicable pe-
ripheral device reference manual.

10OP Status Byte. Bits 8-15 indicate the presence (1) or
absence (0) of various operation errors and interrupts that
may have occurred during an I/O operation. The functions
of individual bits within the IOP Status Byte are described
in Table 18.

Table 19 is a summary description of the Device/Device
Coniroller Status Byte and the IOP Status Byte.

Bits 16-18. These bits of the AlO response are reserved.
To ensure program compatibility with any enhancements
(software and/or hardware), it is recommended that these
bits be treated as indeterminate and not used (i. e. , masked).

Table 18. IOP Status Byte

Bit
Position | Significance
8 Incorrect Length. This bit is set to 1 if an

incorrect length condition cccurred within
the responding subchannel. An incorrect
length condition is caused by a "channel
end" (or end of record) condition occurring
before the device controller has a "count
done" signal from the IOP (indicating that

134 Input/Output Instructions

8

(cont.)

10

the byte count has been reduced to zero), or
is caused by the device controller receiving
a count done signal before channel end (or
end of record): e.g., count done before 80
columns have been read from a card.

When set to a 1, the incorrect length bit, by
itself, always signifies that an "incorrect
length" condition has occurred. If the SIL
flag (bit 38 of the /O command doubleword)
is coded with a 0, the detected incorrect
length condition is to be interpreted as an
error condition. If the SIL flag is coded with
a 1, the detected incorrect length condition
is to be interpreted as a nonerror condition.
If an incorrect length condition is to result in
a device halt, the SIL flag must be coded with
a 0 and the HTE flag (bit 36 of the /O com-
mand doubleword) must be coded with a 1.

Transmission Data Error. This bit is set to 1
if, since the last accepted SIO instruction
addressed to this subchannel, the device con-
troller or IOP detected a parity error or data
overrun in the transmitted information. A
device halt occurs as a result of a transmission
data error only if the HTE flag of the 1/O
command doubleword is coded with a 1.

Zero Byte Count Interrupt. This bit is set to 1

if the interrupt on zero byte count flag is |
and zero byte count is detected.

Channel End Interrupt. This bit is sef to 1 if
the interrupt at channel end flag is 1 and

“channel end" is reported by the device to
the 10OP.

Unusual End Interrupt. This bit is set to 1 if
the interrupt at unusual end flag is 1 and un-
usual end is reported by the device to the
1OP, or if the IOP halt is signaled to the de-
vice controller by the IOP.

Write Lock Violation. This bit is set to 1 if

the memory signaled a Write Lock Violation
in the course of transmitting information from
the device to the memory. If the HTE flag
and the 1UE flag are set, the operation will

Reserved.

Reserved.

Table 19, Status Response Bits for AIO Instruction

Position and State in Register-R

01 2 3 4 5 6 7 8 2 1011 12

Device Status Byte Operational Status Byte

13

14

Significance

unique to the device and
the device controller

incorrect length
fransmission data error
zero byte count interrupt
channel end interrupt

unusual end interrupt
write lock violation
reserved

reserved

1/0O Address. Depending upon the type of device con-
troller responding fo the AIO instruction, the /O address
may be comprised either of aprocessor address and a single-
unit device controller address or a processor address, a
multiunit device controller address, and a device address.

The subfields of the 1/O address are described in Table 20.

Table 20. 1/O Address (AIO Response)

Bit
Position | Significance

18-20 This field contains the cluster address.
21-23 This field contains the unit address.
24-27 This field contains all ones.

28-31 This field contains the device address.

SI0 START INPUT/QUTPUT
(Word index alignment, privileged)

Instruction Register

Reference address

*
4C R | X El 1/O address
01 2 314 35 6 718 9 101111213 141 18 19120 21 22 23124 25 26 27128 29 30 31
General Register 0
0 0|First command doubleword address

01 2 3145 6 778 9 10 11112 13714 151\6 17 18 19120 21 22 23024 25 26 2728 29 30 31

START INPUT/OUTPUT performs the following:

1.

Attempts to initiate an input or output operation —
whether an 1/O operation is started or not is dependent
upon conditions within the addressed I/O subsystem
(see meanings of condition code settings).

Specifies which IOP, channel, device controller, and
input/output device is to be selected (bits 18-31 of
the effective virtual address of the instruction word).

Specifies the address of the first command doubleword
for the subsequent 1/O operation (bits 13-31 of gen-
eral register 0).

Specifies how much additional status information is to
be returned from the 1/O system (R field, bits 8-11 of
instruction word).

Specifies which general registers are to be loaded with
the requested status information (R field, bits 8-11, of
instruction word).

Set MIOP in test mode by using device controller ad-
dress X'3F' or X'7F'. Note that device controller
addresses X'3F' and X'7F' are prohibited for normal
operation,

General register 0 is temporarily dedicated during SIO in-
struction execution and must contain the doubleword mem-
ory address of the first command doubleword specifying the
operation to be started. The required address information
must be in general register 0 when the SIO is executed.

Input/Output Instructions 135

Status information for an SIO instruction isalways returned
via condition code bits. Additional information may be
requested and returned via the general registers as speci-
fied by the R field of the SIO instruction. However, the
return of the additional information is dependent upon
conditions encountered within the addressed 1/O subsystem
(see meanings of condition code settings).

If the R field is coded with a 0, no additional status in-
formation is requested.

If the R field is coded with an odd value, one word of
status information is requested to be loaded into register R.
The format of this information is as follows:

Device Status
Byte

Operational
Status Byte

Byte Count

0 1 2 314 5 6 7

8§ 9 10 11112 13 1415

16 17 18 19120 21 22 23124 25 26 27|L23 29 30 31

If the R field is coded with an even (nonzero) value, two
words of status information are requested. The format of
information within register Rul is as shown above. The
format of information within register R is as follows:

Current command
doubleword address

B
C
F
1

[N E.TaYa)

M
I

E

3

[4 5 6 708 9 10 1112 13141516 17 18 19120 21 22 23124 25 26 27128 29 30 31

These responses provide the program with information nec-
essary to determine the current status of the addressed 1/0O
subsystem. The byte count field indicates the number of
bytes that are to be transmitted to or from memory in the
operation called for by the current command doubleword.
The other fields are described in Tables 14-17

Affected: (R), (Rul), CC

The meaning of the condition code bits during an SIO in-
struction is:

1 2 3 4 Meaning

0 0 0 0 I/O address recognized, SIO accepted, and
status information in general registers is
correct.

0 0 1 0 For RMP, 1/O address recognized and SIO
accepted; however, status information in
general registers may be incorrect. For

MIOP, noft possible.

0 1 0 0 1/O address recognized, SIO not accepted
because device controller or device is busy,
and status information in general registers is
correct.

0 1 1 0 For RMP, 1/O address recognized, SIO not
accepted because device controller or device
is busy, and stafus information in general
registers may be incorrect. For MIOP, not
possible.

1 0 1 0 Processor Interface detected parity error on

returned status and/or condition code. The
result of the SIO is indeterminate.

136 Input/Qutput Instructions

1 2 3 4 Meaning

1 1 0 0 1/O address not recognized, SIO not ac-
cepted, and status information returned to
general registers is incorrect.

1 1 1 0 Nol/O address recognized and SIO aborted
because an error detected when the IOP ai-
tempted to read and transfer the SIO param-
eters (device/device controller address, R
field information, and first command double-
word address) from the BP to the IOP via main
memory. Status information returned to gen-
eral registers is incorrect.

If CC4 =1, the MIOP is in test mode and the meaning of
the condition code during an SIO is:

1 2 3 4 Meaning

1 0 0 1 Settest mode is successful.

1 0 1 1 Settest mode is successful, but a Bus Check
Fault was detected.

TIO TEST INPUT/OUTPUT
(Word index alignment, privileged)

Reference address
1 1/0 address

18 19120 21 22 23124 25 26 27128 25 30 31
TEST INPUT/QUTPUT is used to make an inquiry on the
status of data transmission. The operation of the selected
10P, device controller, and device is not affected, and
no operations are initiated or ferminated by this instruction.
The responses to TIO provide the program withthe informa-
tion necessary to determine the current status of the device,
device controller, and IOP, the number of bytes remaining
to be transmitted into or from main memory in the operation,
and the present point at which the IOP is operating in the
command list.

* 4D R X

0 1 2 3145 6 7F8 9 101111213 14

If the R field of the TIO instruction is 0, no general
registers are affected, but the condition code is set.

If the R field of TIO is an odd value, the condition code
is set and the 1/O status and byte count are loaded into
register R as follows:

Device Status | Operational '
Byte Status Byte Byte Count

0 1 2 3[4 75 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27]28 29 30 31

If the R field of the TIO instruction is an even value and
not 0, the condition code is set, register Rul is loaded as
shown above, and register R is loaded as follows:

Current command

_doubleword address
1274 15776 17 15 19720 21 22 23124 25 26 27128 29 30 31

NERRE
wf Mz

Refer to Tables14 -17 for functions of individual bits within
status words.

Affected: (R), (Rul), CC

If CC4 =0, the MIOP is in a normal mode of operation and
the meaning of the condition code during a TIO is:

1 2 3 4 Meaning

0 0 0 0 1/0 address recognized, acceptable SIO is
currently possible, and status information in
general registers is correct.

0 0 1 0 For RMP, 1/O address recognized, acceptable
SIO is currently possible; however, status
information in the general registers may be
incorrect. For MIOP, not possible.

0 1 0 0 1/O address recognized but acceptable SIO
is not currently possible because device con-
troller or device is busy. Status information
in general registers is correct.

0 1 1 0 For RMP, 1/O address recognized but accept-
able SIO is not currently possible because
device controller or device is busy; status
information in general registers may be in-
correct. For MIOP, not possible.

1 0 1 O Processor Interface detected parity error on
returned status and/or condition code. The
result of the TIO is indeterminate.

1 1 0 0 1/O address not recognized, TIO not ac-
cepted, and status information refurned to
general registers is incorrect.

Nla T/0) ad e emmn b dand TIO ghorscd
L1} l-/ N Gl Coo lc\ouvllll_chl UIIU 12N/ WA

because an error detected when the IOP at-
tempted to read and transfer the TIO param=
eters (device/device controller address and

R field information) from the BP to the IOP via
main memory. Status information refurned to
general registers is incorrect.

-
<«

If CC4 =1, the MIOP is in the test mode and the meaning
of the condition code during a TIO is:

1 2 3 4 Meaning

0 0 0 1 Unitis performing an Order Qut operation.
0 T O 1 Unitisperforming an Order In operation.

1 0 0 1 Unitisperforming a Data Out operation.

1 0 1 1 Parity error detected by Processor Interface

on returned status and/or condition code.
The result of the TIO is indeterminate.

T 1 0 1 Unitis performing a Data In operation.

1 1 1 1 BCF detected while unit performing a Data
In operation.

TDV TEST DEVICE
(Word index alignment, privileged)

_Reference address
¥ 4E R X 1/O address

0 1 2 314 5 6 718 5 10 11112 13 14 15116 17 18 19120 21 22 23124 25 262/ (28 B 30 31

TEST DEVICE is used to provide information about a device
other than that obtainable by means of the TIO instruction.
The operation of the selected IOP, device controller, and
device is not affected, and no operations are initiated or
terminated. The responses to TDV provide the program with
information giving details on the condition of the selected
device, the number of bytes remaining to be transmitted in
the current operation, and the present point at which the
IOP is operating in the command list.

If the R field of the TDV instruction is 0, the condition
code is sef, but no general registers are affected.

If the R field of TDV is an odd value, the condition code
is set and the device status and byte count are loaded into
register R as follows:

Device Status | Operational '
Byte Status Byte Byte Count

01 2 3T4 5 6 718 9 10 nl12 131415176 17 18 19120 21 22 23124 25 26 27[28 29 30 31

If the value of the R field of TDV is an even value and
not 0, the condition code is set, register Rul is loaded as
shown above, and register R is loaded as follows:

Current command
doubleword address |

4 5 6 7]8 9 10 11‘72 13 14 |5|]6 17 18 l9|20 21 22 23124 25 26 27|28 29 30 31

- mOm
L I Iatal

M
I
E
3

0

Bafar 45 the annlizcakle
\WCiTP ¥8 inC Gppilacie

description of Device Status Byte. Refer to Tables 16 and 17
for functions of other bits within status words.

narinharal rafaronss moanual far
peripngra. rererence manva: ol

Affected: (R), (Rul), CC

If CC4 =0, the MIOP is in a normal mode of operation and
the meaning of the condition code during a TDV is:

1 2 3 4 Meaning

0 0 0 0 I/O address recognized, nodevice-dependent
condition present, and status information in
general registers is correct.

0 0 1 0 For RMP, I/O address recognized and no
device-dependent condition present; however,
status information in general registers may be
incorrect. For MIOP, not possible.

0 T 0 0 I1/O address recognized and device-dependent
condition is present or device controller is in
test mode.

0 1T 1 0 For RMP, /0 address recognized, device-
dependent condition is present, or device con-
troller is in test mode; but status information
in the general registers may be incorrect. For

MIOP, not possible.

Input/Output Instructions 137

1 2 3 4 Meaning

1 0 1 0 Processor Interface detected parity error on
returned status and/or condition code. The
result of the TDV is indeterminate.

1 1 0 0 I/O address not recognized, TDV not ac-
cepted, and status information returned to
the general registers is incorrect,

1 1T 1 0 Nol/O address recognized and TDV aborted
because an error detected when the 10P at-
tempted to read and transfer the TDV param-
eters (device/device controller address and
R field information) from the BP to the 10OP
via main memory. No status information re~-
turned to general registers.

If CC4 =1, the MIOP is in the test mode and the meaning
of the condition code during a TDV is:

1 2 3 4 Meaning

0 0 0 1 Unitisperforming an Order Out operation.

0 1 0 1 Unitisperforming an Order In operation.

1 0 0 1 Unitis performing a Data Out operation.

1 0 1 1 Parity error detected by Processor Interface
on returned status and/or conditioncode. The
result of the TDV is indeterminate.

I 1 0 1 Unitisperforming a Data In operation.

T 1 1 1 BCF detected while unit performing a Data

In operation.

HIO HALT INPUT/OUTPUT
(Word index alignment, privileged)

Reference‘ address
o R X [o[o[0] 1/0 address

0 7T 2 314 5 ¢ 718 9 10 N2 13 14 15116 17718 19120 21 22 23124 25 26 27128 29 30 3l

HALT INPUT/OUTPUT causes the addressed device to im-
mediately halt its current operation (perhaps improperly,
in the case of magnetic tape units, when the device is
forced to stop at other than an interrecord gap). If the
device is in an interrupt-pending condition, the condition
is cleared,

fWhen indexing operation code 4F instructions (HIQ, RIO,
POLP, POLR), the programmer must make certain that the
summation of the contents of the index register and the I/O
address (bits 18=31 of the instruction word) does not affect
bits 15-17. When indirect addressing is used, the contents
of the indirect address location (bits 15, 16, and 17) must
specify the desired operation code extension.

138 Input/Output Instructions

If the R field of the HIO instruction is 0, the condition
code is set, but no general registers are affected.

If the R field is an odd value, the condition code is set
and the following information is loaded into register R.

Device Status | Operational
Byte Status Byte Byte Count

0 1 2 314 5 6 7718 9 10 11172 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31

If the R field of HIO is an even value and not 0, the
condition code is set, register Rul is loaded as shown above,
and register R contains the fol lowing information,

Current command

doubleword address
4 5 6 718 9 10 11112 13774 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

ic
1r
1

b B TaTal

M
I
E
3

0

This information shows the status of the addressed 1/O sub-
system at the time of the halt. The byte count field shows
the number of bytes remaining to be transmitted to or from
memory. Other fields are described in Table 14-17.

The HIO instruction must have zeros in bit positions 15, 16,
and 17 to differentiate it from the RIO, POLP, and POLR
instructions, which also have X'4F' as an operation code

(bits 1-7).

Affected: (R), (Rul), CC

If CC4 =0, the MIOP is in a normal mode of operation
and the meaning of the condition code during an HIO
instruction is:

1 2 3 4 Meaning

0 0 0 0 I/O address recognized, HIO accepted, de-
vice controller not busy at time of HIO,
and status information in general registers is
correct.

0 0 1 0 For RMP, 1/0 address recognized, HIO ae-

cepted, and device controller not busy at time

of HIO; but statusinformation ingeneral reg-
isters may be correct. For MIOP, not possible.

0 1 0 0 1/O address recognized, HIO accepted, and
device controller busy at the time of the HIO,
and status information is correct.

0 1 1 0 For RMP, 1/O address recognized, HIO ac~
cepted, and device controller busy at the time
of the HIO; but the status information in the
general registers may be incorrect. For MIOP,
ot possibie.

1 0 0 0 Notpossible.

1 0 1 0 Processor Interface detected parity error on
returned status and/or condition code. The
result of the HIO is indeterminate,

1 2 3 4 Meaning

1 1 0 0 1/O address not recognized, HIO not ac-
cepted, and no status information returned to
general registers.

1 1 1 0 No I/O address recognized and HIO aborted
because an error detected when the IOP at-
tempted to read and transfer the HIO param-
eters (device/device controller address and
R field information) from the BP to the IOP.
No status information returned to general
registers.

If CC4 =1, the MIOP is in the test mode and the meaning
of the condition code during an HIO is:

1 2 3 4 Meaning

0 0 0 1 Unitis performing an Order Out operation.

0 1T 0 1 Unitis performing an Order In operation.

1 0 0 1 Unitisperforming a Data Out operation.

1 0 1 1 Processor Interface detected parity error on
returned status and/or condition code. The
result of the HIO is indeterminate.

1 1T 0 1 Unitis performing a Data In operation.

1 1 1 1 BCF detected while unit performing a Data
In operation.

RIO RESET INPUT/OQUTPUT
(Word index alignment, ! privileged)

" Reference add

4F R | X [oJolicA uA
0 1 2 314 5 & 718 9 10 11112 13 14 15(16 17 18 15120 21 22 23[24 25 26 27[28 29 30 31
RESET INPUT/QUTPUT causes the selected IOP to generate
an 1/O reset signal to all devices attached to it. In addi-
tion to the operation code X'4F', bits 15, 16, and 17 must
be coded as 001, respectively.

An RIO instruction resets the selected unit in the same
manner as Z€RIO on the operator's control console. How-
ever, unlike the control command, the RIO instruction
resets only the addressed unit and may be controlled by
the executing program. Since the BP may be addressed as
an IOP, it will accept an RIO instruction that causes the
BP to reset itself in the same manner as Z°RBP. (Note that
this procedure is not normal practice.)

Cluster addresses (CA), bit positions 18-20, may have values
of X'0'-X'7". Cluster addresses X'0'=-X'6' may be assigned
to any cluster containing processors (i.e., BP, MIOP, and/
or RMP). In a monoprocessor system, cluster address X'0'
is assigned fo the cluster containing the basic processor
(BP). Cluster address X'7' is assigned only to the cluster
containing a system processor. If CA equals X'7', the UA
field is reserved. Unit addresses (UA), bit positions 21-23,
may have values of X'0'=-X'7'. Unit addresses are required
only if the cluster address is X'0'-X'6", (i.e., cluster

contains either a BP, MIOP, and/or-RMP). Unit addresses
X'0'-X'5" may be assigned to processors within the cluster.
Unit address X'5* in cluster X'0' is reserved for the BP. Unit
address X'6' is assigned always to the MI and unit address
X'7" is assigned always to the PI for all clusters.

Status information is returned only in the condition code
bits. The R field is not used.

Affected: CCI1, CC2, CC3

Condition code settings are as shown below:

1 2 3 4 Meaning

0 0 0 - I/O address recognized.

1 1 0 = 1/0 address not recognized.

POLP POLL PROCESSOR
(Word index alignment, " privileged)

Reference address
| AF R | X [o[ifo[cA JUA

01 2 3045 6 718 9 10N]21314]5]]617[819i202]2223

POLL PROCESSOR causes the addressed unit to return unit
fault status in bits 16-31 of register Rtf. This status infor-
mation is unit dependent (see Appendix C, Table C-1).

In addition to the operation code of X'4F', bits 15, 16,
and 17 must be coded as 010, respectively.

Affected: (R), CC1, CC2, CC3

Condition Code settings are as shown below:

1 2 3 4 Resultof POLP

0 0 O - Processor fault interrupt not pending.
0 1 0 - Processor fault interrupt pending.
1 1 0 = Unit address not recognized.

POLR POLL AND RESET PROCESSOR
(Word index alignment, T privileged)

% Reference address

o R | * Prii cATuA -
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23[24
POLL AND RESET PROCESSOR causes the selected unit to
return unit fault status in bits 16 to 31 of register Rtt and
resets the unit's fault status register. This status informa-
tion is unit dependent (see Appendix C, Table C-1).

26 27128 29 30 31

t . .
See footnote to HIO instruction.

M his fault status is duplicated in bits O to 15 of register R.

Input/Output Instructions 139

The POLR instruction also resets and clears this unit's
Processor Fault Interrupt signal and the error status regis-
ter. In addition to the operation code of X'4F', bits 15,
16, and 17 must be coded as 011, respectively.

Affected: (R), CC1, CC2, CC3

Condition code settings for the POLR instruction are:

1 2 3 4 Result of POLR

0 0 0 - Processor fault interrupt not pending.
0 1 0 = Processor fault interrupt pending.
1 1 0 - Unit address not recognized.

AlO ACKNOWLEDGE INPUT/QUTPUT INTERRUPT
(Word index alignment, privileged)

Reference

* 6E R X

0 1 2 3145 6 778 9 10 111121314 15016 17 18 19720 21 22 2324 25 26 27128 29 30 31

ACKNOWLEDGE INPUT/OUTPUT INTERRUPT is used to
acknowledge an input/output interrupt and to identify the
I/O subsystem (processor, device controller, device) that
is causing the interrupt and why. If more than one 1/O
subsystem has an interrupt pending, only the subsystem
with the highest priority will respond to the AIO. Bits 18-
23 of the effective virtual address of the AIO instruction
(normally used fo specify the cluster and unit addresses of
the 1/O address field) must be coded 000000 to specify
the standard 1/O system interrupt acknowledgment (other
codings of these bits are reserved for use with special I/O
systems). The remainder of the 1/O selection code field
(bit positions 24-31) are not used in the standard I/O in-
terrupt acknowledgment (the address of the interrupt source
is a part of the response from the standard 1/Q system to
the AIO instruction).

Standard 1/O interrupts are program controlled via the con-
trol flags (1IZC, ICE, IUE, HTE, and SIL) within the 1/O
command doublewords (I0CDs) that comprise the command
list for the 1/O operation. If a particular flag is coded as
a 1 and if the corresponding condition occurs within the
I/O operation, then an 1/O interrupt is requested (e. g., if
the IZC flag is set to 1 and if the byte count for the /O
operation has been decremented to zero, then an /O
interrupt is requested by that 1/O subsystem to indicate the
end of that 1/O operation; if the IZC flag is coded as a 0,
no 1/O interrupt is requested as a result of the byte count
being decremented to zero).

If two or more flags are coded to cause an interrunt for tweo

or more conditions, an interrupt is requested whenever any
of the "flagged" conditions is detected.

For some conditions (transmission errors, incorrect length),

two or more flags must be properly coded (see Chapter 4
for further details on IOCDs).

140 Input/Output Instructions

Some error conditions (e. g., parity error on reading command
doubleword) will unconditionally cause an 1/O interrupt.

The various conditions which may result in an 1/O inter-
rupt, the coding of the corresponding control flags within

the IOCD, and the bit position within the status word (re=
turned to register R) that indicates the presence (1) or ab-
sence (0) of that interrupt condition are listed below:

Control Flags Status
Condition : Coding Bit Set
Zero byte count IZC =1 10
Channel end ICE=1 11

IUE=1, HTE=1 12

Transmission memory error

IUE=1, HTE=1 12

Write lock violation

IUE=1, HTE=1 8,12
and SIL=0

Incorrect length

Memory address error,
IOP memory error,

10P conirol error, or
device connection address
parity error

(no flog needed) 12

Transmission data error IUE=1, HTE=1 9,12

IUE=1 12

Unusual end
1OP halt IUE=1 12,14

Interrupts may also be requested by certain I/O devices
when they execute specific orders (e.g., when a magnetic
tape unit executes a Rewind and Interrupt order). Refer
to the applicable peripheral reference manual for further
details.

When a device interrupt condition occurs, the IOP forwards
the request to the interrupt system I/O interrupt level. If
this interrupt level is armed, enabled, and not inhibited,
the BP eventually acknowledges the interrupt request and
executes the XPSD instruction in main memory location
X'5C*, which normally leads to the execution of an AIO
instruction.

For the purpose of acknowledging standard 1/O interrupts,
the IOPs, device controllers, and devices are connected in
a preestablished priority sequence that is customer-assigned
and is independent of the physical locations of the portions
of the 1/O system in a particular installation.

If the R field of the AIO instruction is 0, the condition code

is set but the genera! register is not affected.

If the R field of AIO is not 0, the condition code is set and
register R is loaded with the following information.

DC StatusByte| IOP status

; \
BT 2 31 3 & 7 T 117

DC address

3
2% 25 26 118 2% T o0

The functions of bits within the DC status byte (which are
unique to the device and device controller) are described
in applicable peripheral reference manuals. The functions
of other bits in the AIO response word are described in
Tables 18, 19, and 20.

The AILQ instruction resets the interrupt request signal for
the 1/O subsystem responding to the AIO (i.e., 1/O sub-
system identified by bits 19-31 of register R).

Affected: (R), CC

If CC4 =0, the MIOP is operating in a normal mode of
operation and the condition code settings for AIO are
shown below:

1 2 3 4 Result of AIO

0 0 0 O Normal interrupt recognized and reset.
Status information in general register is
correct.

0 0 1 O For RMP, normal interrupt recognized. and
reset; status information in the general reg-
ister may be incorrect. For MIOP, not
possible. Parity error on returned status
and/or condition code. The result of the
AIO is indeterminate.

1 0.1 0 Processor interface detected.
0 1 0 0 Unusual condition interrupt recognized and

reset. Status information in general regis-
fer is correci.

1 2 3 4 Resultof AIO

0 1 1 0 For RMP, unusual condition interrupt recog-
nized and reset; status information in the gen-
eral register may be incorrect. For MIOP,
not possible.

1 0 0 O Interrupt recognized and reset. Status infor~
mation not returned.

1 1 0 0 Nol/O device requesting an interrupt and
no status information returned to the general

register.

1 110 Nofpossible.r

If CC4 =1, the MIOP is in the test mode and the meaning
of the condition code during an AIO is:

1 2 3 4 Meaning

0 0 0 1 Unitis performing an Order Out operation.
0 1 0 1 Unitis performing an Order In operation.

1 0 0 1 Unitis performing a Data Out operation.

1 0 1 1 Parity error detected by Processor Interface.
1 1 0 1 Unitisperforming a Data In operation.

1 1 1 1 BCF detected while unit is performing a Data
in operation.

Input/Output Instructions 141

4. INPUT/OUTPUT OPERATIONS

To accommodate the variety and number of 1/O devices
which may be required for scientific and commercial appli-
cations, a Xerox 560 computer system may include the fol-
lowing: External Direct Input/OQutput (DIO) interface,
Multiplexor Input/Output Processors (MIOPs), and Rotating
Memory Processors (RMPs).

EXTERNAL DIO INTERFACE

An external DIO interface permits standard and specially
designed 1/0 devices to perform 1/O operations (normally
in a real-time environment) that are controlled directly by
the basic processor (BP). Appropriate control signals and
up to one word (32 bits) of data may be exchanged between
the BP and an addressed I/O device for each READ DIRECT
or WRITE DIRECT instruction executed by the BP.

During a WRITE DIRECT instruction (Mode 2 through F),
the BP holds the control and data™ lines stable until an
acknowledgment signal is received from the addressed 1/O
device. During a READ DIRECT instruction (Mode 2
through F), the BP holds the control lines stable until the
addressed 1/O device furnishes the data accompanied with
an acknowledgment signal. Any delay encountered in
receiving the acknowledgment signal, for either READ
DIRECT or WRITE DIRECT instructions, does not have an
adverse effect upon 1/O operations being performed by
the MIOP or RMP systems.

Refer to Xerox publication 90 09 73 (Interface Design
Manual) for further details pertaining fo the external DIO
interface. Also, refer to appropriate peripheral reference
manuals for details on control and data signals.

MULTIPLEXOR INPUT/OUTPUT PROCESSOR (MIOP)

An MIOP permits standard and commercially available 1/O
devices (e.g., card readers, card punches, magnetic tape
units, etc.) to be controlled primarily by individual 1/0
subchannels within the MIOP and associated device con—
trollers. Depending upon the number of I/O subchannels
assigned (maximum of 16, as described under "Device Con-
trollers"), an equivalent number of I/O operations may be
performed simultaneously.

DEVICE CONTROLLERS
All 1/O devices associated with an MIOP are connected

via an appropriate device controller. Depending upon the
number and type of 1/O devices to be connected, one or

142 Input/Qutput Operations

more of the following fypes of device controllers may be
connected to «n MIOP:

1. Single-unit device controller (internal or external).
2. Multi-unit device controller (internal or external).”

3. Unit-record controller (internal or external).

Generally, an internal device controller is physically con-
nected via the internal 1/O interface.

An external device controller is located remotely to the
MIOP and may require one or more separate chassis to ac-
commodate it.

A single-unit device controller (internal or external) is
specifically designed to control only one 1/O device,
usually a unit-record device such as a card reader, a card
punch, or a line printer. Characteristics of a single-unit
device controller are dependent upon the device controlled.
(Refer to an appropriate peripheral reference manual for
further information.)

A multi-unit device controller (internal or external) is
specially designed to control more than one 1/O device,
where all the 1/O devices are of the same type (e.g.,
magnetic tape units or RADs). However, only one I/O
device at a time may be actively involved in a datfa trans-
fer operation. Characteristics of a multi-unit device con-
troller are dependent upon the 1/O devices controlled. For
example, a multi-unit device controller for magnetic tape
units may control up to eight units, (Refertoan appropriate
peripheral reference manual for further information.)

Unit-record controllers (internal or external) are designed
to control up to eight unit record type of 1/O devices (e.g.,
card readers, card punches, line printers). All 1/0 de-
vices attached to a unit-record controller need not be of
the same type. All 1/O devices attached to a unit-record
controller may perform separate 1/O operations, including

data transfers, simultaneously.

The number of device controllers, as well as the number of
1/O devices, that may be connected to an MIOP is depen-
dent upon the following considerations:

1. The maximum number of I/O subchannels within an

MIOP is 16.

2. Each single-unit device controller (internal or external)
requires one 1/O subchannel.

3. Each multi-unit device controller (internal or external)
requires one of the first eight subchannels within

the MIOP,

4. Each unit-record controller (internal or external)
requires one I/O subchannel per each unit record de-
vice attached, up to a maximum of eight.

5, The maximum number of internal device controllers
within an MIOP is eight (where a unit-record device
controller is equivalent to one, regardless of the
number of assigned subchannels).

6. Any 1/O subchannel not assigned to an internal device
controller may be assigned to an external device con-
troller. Thus, if an MIOP has no infernal device con-
troller, all 16 1/O subchannels may be assigned to
external device controllers.

ROTATING MEMORY PROCESSOR (RMP)

Each RMP is a special purpose, single-channel IOP designed
to enhance high-speed data transfers between main memory
and any one of up to eight disk units. Functionally, an
RMP is comparable to an MIOP, except: (1) af any given
time, only one disk unit may be selected for a data transfer
operation, ' (2) data transfer rate of disk units are generally
higher than data transfer rates of 1/O devices attached to
an MIOP, and (3) the device coniroller function is per-
formed by the RMP, hence disk units are connected directly
to the RMP rather than via a device controller. (Note:
Although only one disk unit may be actively transferring
data at any given fime, the other units may be active in
performing control functions, e.g., seeking).

iNPUT/OUTPUT PROCESSUR {IUP) FUNDAMENTALS
This section contains general information, programming con~
cepts, and definition of terms pertaining fo 1/O operations
performed by Input/Output Processors (i.e., MIOP and
RMP systems). The large variety of I/O devices which may
be used with these IOPs precludes a detailed or exhaustive
description of features which are unique to each device.
Likewise, o general reference "Refer to an appropriate
Xerox peripheral reference manual" is made rather than
citing specific manuals.

Within this manual, the following terminology is used to
differentiate the hierarchy of contro! during an 1/O opera-
tion: The BP executes instructions, the IOPs execute com-
mands, and the device controller/device execute orders.

COMMAND LIST

Each I/O operation performed by an IOP must be defined
by a command list. The characteristics and requirements of
a command list are as follows:

1. It is normally created by a BP-executed program
prior to the time that the defined 1/O operation is
initiated, It must reside in main memory when the 1/O
operafion is initiated and subsequently executed.

2. Depending upon various programming considerations,
the command list may be contained within one or more
areas of memory and each area may be comprised of
one or more 1/O command doublewords (IOCDs).

3. Command list continuity between IOCDs relating to the
same logical record or fo the same logical file may be
specified (see "Data Chain Flag" and "Command Chain
Flag" under "Operational IOCDs"), Command list
continuity between portions of a command list located
in different areas of main memory may be accomplished
by including a control IOCD within the command list
(see "Transfer in Channel" under "Control 10CDs").

4. Each IOCD is comprised of two words in contiguous
memory word locations. The first word must be ‘stored
in an even memory word location and the second word
must be stored in the next consecutive (odd) memory
word location. Each IOCD is either an operational -
IOCD or a contfrol IOCD and contains coded parameters

_ to define either a complete 1/Ooperation or anintegral
portion of anl/Ooperation. (See "Operational IOCD"
and "Control IOCD" for further details.)

OPERATIONAL i0CD

An operational IOCD may contain up to five fields of
parameters, as required, to define either an entire I/O op-
eration or an integral portion of an 1/O operation. The
general format and description of parameters contained
within an operational IOCD are as follows:

P

Order 00 Memory Byte Address

01 2 3145 67187 DN BE BT BRH0E SRS BTBS D

Flags WK | 0—0 Byte Count

32 33 34 35136 37 38 3[40 41 42 43144 45 46 47148 49 50 51152 53 54 55156 57 58 59160 61 62 63

ORDER

This 8-bit field (bit positions 0-7), if required, may be

coded to specify either an input or an output order that is
executed by the device controller/device. General coding
formats and functions of typical 1/O orders are listed below:

Bit Position

01234567 Order

Function

MMMMMMOT Write
MMMMMMI10 Read
MMMMMMII

Output operation
Input operation

Output control
information

Control

MMMMO0O 100 Sense

MMMMI1T 100 Read Input data, in reverse
Backward sequence

Input control information

Rotating Memory Processor (RMP)/Input/Output Processor (IOP) Fundamentals 143

Orders that are executed by a specific type of device are
listed and described in the appropriate Xerox peripheral
equipment reference manual.

When an operational 10CD is fetched by the IOP, the con-
tent of the order field, if required, is loaded into an order
register within the device controller/device. If two or
more IOCDs are required to define a logical record (as de-
scribed under "Data Chain Flag"), the order obtained from
the first IOCD prevails for all subsequent IOCDs within that
logical record and any orders contained within the subsequent
IOCDs are ignored.

MEMORY BYTE ADDRESS

This 22-bit field (bit positions 10-31), if required, is
coded with the initial memory byte address for the 1/O op-
eration that will be performed when the current IOCD is
executed. When the IOCD is fetched by the IOP, the con-
tent of the memory byte address field is loaded into a
memory byte address register within the appropriate /O
subchannel of the IOP. Thereafter, the content of the
memory byte address register is incremented (or decremented
during Read Backward operations) by one for each byte of
data or information fransmitted, even though access to main
memory may be inhibited (as described under "Skip Flag")
or the data is rejected by a memory unit (as described under
"Write Key").

Depending upon the characteristics of the 1/O device, the
content of bit positions 10~31 may either be ignored (e.g.,
“Rewind" order for magnetic tape units) or specify memory
byte locations that contain supplemental control information
(e.g., starting address for a disk seek operation). Refer to
an appropriate Xerox peripheral equipment reference man-
val for further details.

1 operational ICCD contains eight conirol flugs {bit
positions 32-39). As described below, each control flag
is coded to specify a particular control function that may
be performed by the 1OP either during or at the end of the

current I0OCD.

Data Chain Flag (Bit Position 32). Coding of the data chain
flag is dependent upon the number of IOCDs required to
define the data transfers for a logical record. If two or
more I0OCDs are required (e.g., fo perform a "gather-write"
or a "scatter-read" operation), the data chain flag of each
operational IOCD, except the last IOCD, must be coded as
a i. The data chain fiag of the iast IOCD or the oniy
IOCD (if the record is defined by a single IOCD) is coded
as 0. If data chaining is specified and no error conditions
are encountered, the IOP will automatically fetch the next
operational IOCD when the byte count (described later) of
the current 10CD is reduced to zero. (Note: The IOP may
also fetch and execute a control IOCD containing a Transfer

144 Input/Qutput Processor (IOP) Fundamentals

in Channel command, os described later, before fetching
the next operational IOCD.) As a result of fetching the
next operational IOCD, all parameters, except the 1/0
order, are updated and the device controller/device con-
tinue to operate as if the I/O operation were defined by

a single IOCD (i.e., the data chain operation is transparent
to the device controller/device). If data chaining is not
specified, the IOP will generate a "count done" signal when
the byte count of the current IOCD is reduced fo zero. The
“count done" signal indicates that the IOP has completed
all data transfers for the current logical record. However,
as described under "Interrupt on Channel End Flag", the
I/O order is not completed until the device signals a"chan-
nel end".

Interrupt at Zero Byte Count Flag (Bit Position 33). If an

I/O interrupt is to be requested when the byte count of the
current IOCD is reduced to zero, the Interrupt at Zero
Byte Count (IZC) flag must be coded as a 1. If the 1/O
interrupt level within the interrupt system (location X'5C")
is armed, enabled, and not inhibited, the request will be
processed by the BP in accordance with the priority that
prevails within the interrupt system, the IOPs, and the 1/O
subchannels within an MIOP. The occurrence of an 1/O
interrupt because of a zero byte count condition is reported
as status information (bit position 10 of register R) when the
BP executes an AIO instruction (normally part of the I/O
interrupt handling routine). The 1/O interrupt request may
be processed without interfering with the 1/O operation.
(Note: An 1/O interrupt may be requested at "channel end"
or on "unusual end" condition, as described later,)

Command Chain Flag (Bit Position 34). Command chaining
permits an I/O device to execute a multiple number of
orders relating to the same 1/O operation in a consecutive
manner (e.g., when reading a multi-record file, the 1/0
device may automatically receive a new Read order upon
completing the current Read order without the BP execut-
ing another SIO instruction). Commoand chaining, if re-
quired, is specified by coding the command chain flag as
a 1 in the IOCD of each record, except the last.

If command chaining is specified, the IOP will fetch the
next operational IOCD when the device signals a "channel
end" unless terminated by an "unusual end" condition. As
a result, new parameters are stored in the appropriate
registers within the 1/0 subchannel and a new 1/O order
is received by the device controller/device.

Thus, an IOP will automatically access main memory and
fetch the next operational 10CD if either data chaining or
command chaining is specified. If data chaining and com-
mand chaining are both specified in the same command
doubleword, a data chaining operation will be performed if
the byte count is reduced to zero before the device signals
a "channel end" and a command chaining operation will be
performed if a "channel end" occurs before the byte count
is reduced to zero. If neither data chaining or command
chaining is specified, the 1/O operation is completed when
the device signals a "channel end". Note that command
chaining is inhibited by "unusual end".

Interrupt at Channel End (Bit Position 35). An 1/O interrupt
may be requested when the device signals a "channel
end" (signifying that the current order has been either com-
pleted or terminated) by coding the Interrupt at Channel
End (ICE) flag as o 1. If the I/O interrupt level within the
interrupt system (location X'5C') is armed, enabled, and not
inhibited, the request will be processed by the BP in ac-
cordance with the priority that prevails within the interrupt
system, the 10OPs, and the 1/O subchannels of the MIOP.
The occurrence of an 1/O interrupt because of a "channel
end" is reporfed as status information (bit position 11 of
register R) when the BP executes an AlO instruction (nor-
mally part of the 1/O interrupt-handling routine). The I/O
interrupt request may be processed without affecting the
/O operation. (Note: Specific conditions under which a
"channel end" signal may be generated are dependent upon
the characteristics of the device. Refer to an appropriate
Xerox peripheral reference manual for further details.)

Halt on Transmission Error Flag (Bit Position 36). The fol-
lowing errors (or "unusual end" condition) may be detected
by the MIOP when an IOCD is being executed:

1. Bus check fault (BCF) while fetching data.

2, Tronsmission Data Error (TDE); may also be detected by
device controller.

3. Transmission Memory Error (TME),

4. Write Lock Violation (WLV), during input operations
only.

5. Incorrect length, conditional; see "Suppress Incorrect
Length Flag".

6. Memory Interface Error (MIERR) while fefching data.

If the HTE flag is coded as a 0, the above errors are recorded
when detected and reported as status information when the
BP executed an SIO, TIO, or HIO instruction, but the I/O
operation is not halted.

If the HTE flag is coded as a 1, and any error (as listed
above) is detected, the 1/O operation is terminated im-
mediately. The error is also reported as status information
when the BP executes an SIQO, HIO, or TIO instruction.

The HTE flag must be coded identically in every IOCD as-

sociated with the same logical record, Thus, if data chain-
ing is specified, the HTE flag in the new IOCD must be the
same as the HTE flag in the previous IOCD, This restriction
applies to data chaining only, andnot to command chaining.

In addition to the "unusual end" conditions listed above,
which may terminate the I/O operation only if the HTE
flag is coded as a 1, any of the following "unusual end"
conditions will unconditionally terminate the 1/O operation:

1. Memory Address Error (MAE).

2. 1OP Control Error (1OPCE).

3. Control Check Error (CCF).
4. 1OP Memory Error (IOPME).
5. Bus Check Fault (BCF) while fetching an IOCD.

6. Memory interface Error (MIE) while fetching an IOCD.

Interrupt on Unusual End Flag (Bit Position 37). If an 1/O
Interrupt is fo be requested when an "unusual end" condition
is detected while either fetching or executing an IOCD,
the Interrupt on Unusual End (IUE) flag must be coded as
a 1. If the /O interrupt level within the interrupt system
(location X'5C') is armed, enabled, and not inhibited, the re~
quest will be processed by the BP in accordance with the
priority that prevalis within the interrupt system, the IOPs,
and the 1/O subchannels within an MIOP. The occurrence
of an I/O interrupt because of an "unusual end" condition
is reported as status information (bit posifion 12 of reg-
ister R) when the BP executes an AIQ instruction (normally
part of an 1/O interrupt-handling routine). The I/O inter-
rupt request may be processed without affecting the progress
of the 1/0 operation.

If the IUE flag is coded as a 0, an "unusual end" condition
may be detected but no interrupt will be requested.

Suppress Incorrect Length Flag (Bit Position 38). An incor-
rect length condition may occur when the specified byte
count is not equal fo a fixed or prescribed byte count for a
record (e.g., attempting to read more than 80 columns of
data from a punched card). Specific conditions under which
an incorrect length signal is generated are dependent upon
the device. Refer to an appropriate Xerox peripheral equip-
ment reference manual for further details.

If the Suppress Incorrect Length (SIL) flag is coded as a O
when an incorrect length condition is detected, it is re-
ported as an incorrect length and, depending upon the de-
vice, may be reported as an "unusual end". If the HTE flag
is also coded as a 1, the 1/O operation is terminated and
reported as an "unusual end",

If the SIL flag is coded as a 1 when an incorrect length con-
dition is detected, it is reported as an incorrect length but
suppressed as an "unusual end". Hence, the 1/O operation
is not terminated.

The presence or absence of an incorrect length condition
is reported as status information when the BP executes an

SIO, HIO, AIQ, or TIO instruction.

Skip Flag (Bit Position 39). If the Skip (S) flag is coded as

a 0, it has no effect upon the 1/O operation.

If the S flag is coded as a 1, the IOP is inhibited from ac-
cessing main memory and consequently no data is transferred
between the main memory and the data buffers of the 1/O
subchannel. All other operations or functions within the

Input/Qutput Processor (IOP) Fundamentals 145

I/O subchannel (i.e., data transfers between the device
and data buffers, updating the memory byte address and
byte count, and functions as specified by the control flags)
are performed in a normal manner.

For input operations, the Skip flag (in conjunction with
data chaining) provides the capability to selectively read
portions of a record.

For output operations, the IOP will generate and transmit
zeros (X'00') until the byte count is reduced to zero. Thus,
for example, if the IOCD contains a Punch Binary order, a
byte count of 120, and the S flag is coded as a 1, a blank
card may be punched without accessing main memory
for data.

WRITE KEY

This four-bit field (bit positions 40-43), if required, may
be coded with an appropriate write key. During input op-
erations and providing the Skip control flag is coded as a0,
the 10P will access main memory and furnish a memory unit
with up to four bytes of data or information accompanied
with a four=bit write key. If the write key matches the
preassigned write lock for-the memory word location ac-
cessed, or if either the key or lock has a value of 0000,
the memory unit accepts and stores the information. If the
write key does not match the write lock, and neither the
key nor the lock has a value of 0000, the memory unit re-
jects the information, does not disturb the previous content,
and transmits a Write Lock Violation (WLV) signal to the
IOP. The write key/write lock relationship is compared
every time a memory word location is accessed for storing
data or information. (Note: The write key/write lock re-
lationship may change during an input operation when the
byte address is incremented (or decremented) across a mem-
ory page boundary.)

As long as the write key matches the write lock for each
memory word location accessed, or the value of either the
lock or the key is 0000, the input operation is performed
as specified by the other parameters within this 10CD; or
the input operation is terminated by an "unusual end" con-
dition which can not be inhibited (i.e., memory address

error, control check fault, or IOP memory error).

If the HTE control flag is coded as a T when a WLV signal
is received, the I/O operation is terminated immediately.
If either the ICE or IUE control flag is coded as a 1, an
1/O interrupt is requested.

If the HTE control flag is coded as a 0 when a WLV signal

is received, the 1/O operation continues in a normal man-
ner, even though the data or information may be rejected

by a memory unit.

When the IOP receives a WLV signal, the WLV bit within
the status information register is set to 1 and remains set
until a new 1/O operation is initiated within this 1/O sub-
channel by an SIO instruction. Thus, after the first WLV
signal has been recorded, subsequent WLV signals hove no

146 Input/Qutput Processor (IOP) Fundamentals

further effect upon the WLV bit. The status of the WLV
bit is reported when the BP executes an SIO, TIO, TDV,
HIO, or AIO instruction.

The contents of the write key field is not required and may
be ignoredwhen the write key/write lock memory protection
feature is not operative (i.e., during any output operation
or during any input operation, if the Skip control flag of
the current IOCD is coded as a 1).

BYTE COUNT

This 16-bit field (bit positions 48-63), if required, may be
coded fto specify the total number of data or information
bytes that are to be transmitted by the current IOCD.
The minimum number of bytes is 1 and the maximum is
65,356 bytes (16,384 words). When the IOCD is fetched,
the content of the byte count field is loaded into a byte
count register within the appropriate 1/O subchannel.
Thereafter, the content of the byte count register is decre-
mented by one for each byte fransmitted and then tested
for a zero byte count condition. (Note: As a consequence
of decrementing before festing for a zero byte count condi-
tion, an initial byte count value of 0 is interpreted as
65,356 bytes.) Unless the 1/O operation is terminated
{e. g., as the result of detecting an "unusual end"), data

is transmitted until the byte count is reduced to zero. At
any time, the progress of the 1/O operation may be ascer-
tained by evaluating the current byte count which is
furnished as status information when the BP executes an
SIO, T1O, HIO, or TDV instruction. (That is, current byte
count is equal to the number of bytes remaining to be trans-
mitted and initial byte count minus current byte count is
equal to the number of bytes transmitted.) When the byte
count is reduced to zero, the MIOP may perform the fol-
lowing functions:

1. Transmit a "count done" signal to the device controller/
device if data chaining is not specified.

2. Request an 1/O interrupt, if the 1ZC flag is coded
asa i,

3. Fetch the next IOCD, if the data chain flag is coded
asal.

Depending upon the characteristics of the 1/0 device,
certain 1/O orders (e.g., Rewind for magnetic tape units)
may not require a byte count field. In such case, the byte
count field is ignored. Refer to an appropriate Xerox pe-
ripheral equipment reference manual for further details,

CONTROL 10CD

A control IOCD may contain either o Transfer in Channel
or a Stop command,

Transfer in Channel. A control IOCD containing a Transfer
in Channel command has the following format:

00001000 \\\\Next command doubleword address

0 1 2 31475 & 718 9 10 nh2 131415116 17 18 19120 21 22 23124 25 26 27128 29 30 31

33 34 35136 37 38 39140 41 42 43144 45 46 47148 49 50 51152 53 54 55156 57 58 59160 61 62

The Transfer in Channel command is executed within the
1OP and has no direct effect on any of the /O elements
external to the addressed IOP. The primary purpose of this
command is to permit branching within the command list
(i.e., fetching the next operational IOCD from a pair of
memory word locations other than the next two consecutive
word locations).

When the IOP executes the Transfer in Channel command,
it loads the command address register of the appropriate
1/O subchannel with the contents of bit positions 13-31
(the "next command doubleword address" field), fetches
and loads the new operational IOCD info appropriate reg-
isters within the 1/O subchannel and order register within
the device controller/device (unless data chaining is spec-
ified), and then executes the new IOCD. (Bit posi-
tions 8-12 and 32-61 are ignored and should be coded as
zeros.)

If data chaining or command chaining is specified in the
IOCD preceding the IOCD containing a Transfer in Channel
command, the chaining flags are not significant to nor
altered by the Transfer in Channel command.

When used in conjunction with command chaining, Transfer
in Channel command facilitates the control of devices such
as unbuffered card punches or unbuffered line printers. For
example, assume that it is desired to present the same card
image twelve times to an unbuffered card punch. The punch
counts the number of times that a record is presented fo it
and automatically generates a "chain modifier" signal when
twelve rows have been punched. The command address
register within the 1/O subchannel is incremented by two
by the "chain modifier" signal and the next consecutive
IOCD within the command list is skipped over (not fetched
or executed). A command list for punching two cards might
be as shown in the following example:

Locations Description of Command

A, A+l Punch row for card 1, command chain.
A+2, A+3 Transfer in Channel to location A,

A+4, A+5

Punch row for card 2, command chain.

Locations Description of Command

A+6, A+7 Transfer in Channel to location A +4,

A+8, A+9 Stop

The Transfer in Channel command can be used also in con-
junction with data chaining. As one example, consider

a situation often encountered in data acquisition applica~
tions, where data is transmitted in extremely long, con-
tiguous streams. In this case, the dafa can be stored
alternately in two or more buffer storage areas so that
computer processing can be carried out on the data in one
buffer while additional data is being input into the other
buffer. The command list for such an application might be
shown in the following example:

Locations Description of Command

B, B+1 Read data, store in buffer 1, data chain,
B+2, B+3 Store into buffer 2, data chain,

B+4, B+5 Transfer in Channel to location B.

If the IOP encounters two successive Transfer in Channel
commands, an IOP control error (IOPCE) occurs and the
1/O operation is terminated immediately. An IOPCE is
reported as status information (bit 13 of register Rul) when
the BP executes an SIO, HIO, TIO, or TDV instruction.

A IS

0 1 2 314 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3!

32 33 34 35136 37 38 39140 41 42 43144 45 46 471

The Stop command causes certain devices to stop, generate
a "channel end" signal, and also request an 1/O interrupt
if bit 0 in the IOCD is coded as a 1, If the 1/O inferrupt

Input/Qutput Processor (IOP) Fundamentals 147

level within the interrupt system (location X'5C') is armed,
encbled, and not inhibited, the request will be processed
by the BP in accordance with the priority that prevails
within the interrupt system, the IOPs, and the 1/O sub-
channels within an MIOP. The occurrence of an 1/O
interrupt because of a Stop command is reported as status
information (bit position 7 of register R) when the BP
executes an AIO instruction (normally part of an 1/0O
handling routine).

Bit positions 1-7 must be coded as zeros. Bit positions 8-31
and 40-63 are ignored; but it is recommended that they also
be coded as zeros, Bit positions 32-39 are device depen-
dent and must be coded as specified in the appropriate pe-
ripheral reference manual,

The Stop command is primarily used to terminate a command
chain for an unbuffered device, as illustrated in the first
example given for the Transfer in Channel command. Note
that not all devices recognize the Stop order.

I/0 OPERATION PHASES

This section describes the general sequence of events (or
phases) of any 1/O operation performed by an 10P, the
function performed by the BP, 10OP, and device controller/
device during each phase, and a description of each type
of 1/O operation including the applicability of parameters
that may be contained within a typical operational 10CD.
For explanation purposes, each 1/O operation has five ma=
jor phases: preparation, initiation, fetching, executing,
and termination phase. Each phase is further described
below.

PREPARATION PHASE

Before an /O operation may be performed by an IOP, an
appropriate command list must reside in main memory.

INITIATION PHASE

Assuming that an appropriate command list resides in main
memory, an I/O operation is initiated only if the BP ex~
ecutes an SIO instruction that isaccepted by the addressed
IOP, device controller, and device. The acceptance or
rejection of an SIO instruction is contingent upon condi-
tions within the addressed IOP, device controller, and
device and is indicated by the condition codes at the com~-
pietion of the SIO instruction. In either case, the BP is
able to perform other instructions or tasks immediately after
executing an SIO instruction, (Refer to "SIO" instruction,
Chapter 3, for further details.)

A successful SIO instruction causes the addressed device to
go from the "ready" condition to the "busy" condition.

148 1/O Operation Phases

FETCHING PHASE

Although the services of the BP are not required during
this phase, the BP may of any time execute either a TIO,
TDV, or POL instruction without interfering with the 1/0
operation. However, excessive TIOs and TDVs may cause
a data overrun condition. The BP may also execute either
an HIO or RIO instruction and stop the I/O operation. (An
HIO may leave the device in an unpredictable state; an
RIO resets all controllers and devices on the addressed IOP.)
As a result of accepting an SIO instruction, a command ad-
dress register within the 1/0O subchannel (assigned to con-
trol the addressed device controller/device) is loaded with
the first command doubleword address, the content of Gen-
eral Register O when the SIO instruction is accepted. At
the appropriate time, as determined by the priority, the
device controller/device will request that the 1OP access
main memory and fetch the first word of the IOCD from an
even memory word location and increment the command
address register by one. The disposition of the first word

is dependent upon the contents of the first word.

If the order field contdins an 1/O order for a device
controller/device, the content of the order field is either
loaded into an order register within the appropriate device
controller/device or ignored (if the IOCD is being fetched
for a data chained operation). If the order is a Read Back-
ward order, a control flag is also set within the IOP which
allows the memory byte address to be decremented rather
than incremented during the data transfer.

For all orders (excluding the Transfer in Channel command,
described below), the contents of bit positions 10-31 of the
first word is loaded into a memory byte address register of
an appropriate 1/O subchannel. Depending upon the 1/0O
order, as described under "Execution Phase", the content of
the memory byte address register may be used or ignored. 1If
used, it specifies which memory word location is to be ac-
cessed and also the number of bytes of data (or control in-
formation) fo be transferred into or out of that location.

If the order field contains a Transfer in Channel command,
it is recognized and executed immediately by the IOP. The
content of bit positions 13=31 {designated as'the "next com~
mand doubleword address" field) is loaded directly into the
command address register, The Transfer in Channel com-
mand is recognized and executed by the 10OP, it is fetched
and executed as the result of fetching one word (rather than
two), and it is transparent to the device controller/device
(that is, it is executed without affecting the continuity of
an order that is data chained or an 1/O operation that is
command chained). Note: Although bit positions 0-3

and 8-12 are currently ignored, it is recommended that they
be coded as zeros.

Immediately after executing a Transfer in Channel command,
the 1OP wiil aufomaticaiiy fetch the first word of the nexi
IOCD as specified by the contents of the "next command
doubleword address" field. If the order field of the next IOCD
also contains a Transfer in Channel command, the 1/0 opera-
tion is terminated immediately and the IOP enters a Half state
because an IOP control error (IOPCE) occurred (attempting
to execute two successive Transfer in Channel commands).

Otherwise, the first word of the next IOCD is fetched and
loaded as described above, and the second word is fetched
and loaded as described below.

Since the Transfer in Channel command permits IOCDs to
be fetched from nonconsecutive locations, IOCDs contain-
ing Transfer in Channel commands may be included within
a command list either fo achieve command list continuity
from one segment of a command list fo another segment or
to construct reiterative loops.

For all IOCDs, except a control IOCD containing a Trans-
fer in Channel command, the IOP will automatically access
main memory at the appropriate time, as determined by the
priority that prevails for accessing main memory, and fetch
the second word of the IOCD from the nexi consecutive
ascending (odd) memory word location of the command list
and increment the command address register by one. Thus,
in all cases, aofter a fetching operation is completed, the
content of the command address register will be an even
(or doubleword) address.

The contents of the second word are stored in appropriate
registers within the 1/O subchannel. Depending upon the
I/O order, as described under "Execution Phase", the con-
tents of the various fields are either used or ignored.

In addition to the IOP Control Error (IOPCE), the following
types of "unusual end" conditions may be detected during
the fetching phase of an 1/O operation: Memory Address
Error (MAE), Control Check Fault (CCF), IOP Memory Error
(IOPME), Bus Check Fault (BCF), and Memory Interface
Error (MIE). The detection of any of these errors causes the
1/O operation to be terminated and if the IUE flag is set fo
a 1, an "unusual end" interrupt is requested.

EXECUTION PHASE

Although the services of the BP are not required during
this phase, the BP may at any time execute either a TIO,
TDV, or POL instruction without interfering with the 1/0O
operation. However, excessive testing may cause a data
overrun condition. The BP may also execute either an
HIO or PIO instruction and stop the 1/O operation. After
the second word of an IOCD is fetched and providing no
"unusual end" condition was detected, the IOCD is executed
as prescribed by the parameters contained therein. As a
function of the order and the status of the Skip flag, if
applicable, an IOCD may be executed in one of five ways,
as described below:

1. Certain Control orders (e.g., Stop) may be executed
by the device while the IOP monitors the operation in
accordance with the applicable control flags. Since
no memory accesses and data (or information) fransfers
occur, the contents of the memory byte address reg-
ister, write key register, and byte count register may
be ignored. Other Control orders (e.g., Rewind for a
magnetic tape unit) are listed and described in applic-
able Xerox peripheral equipment reference manuals.

Depending upon the control function performed, certain
Control orders may be a part of an I/O operation
which may be continued after the Control order is
executed. For example, an 1/O operation involving

a magnetic tape unit may contain a Rewind order to
reposition the tape prior fo reading (or writing) one or
more records.

Note: Within the context of the above explanation,

the Control order is defined to be one that
does not transfer any information; thus, data
chaining is precluded within the IOCD con-
taining the Control order; however, command
chaining may be specified. Control orders that
involve information transfers when executed
are described below (see paragraphs 2 and 4).

If the order specifies an input operation (e.g., Read,
Read Backward, or Sense) and the Skip flag is coded
as a 0, all parameters of the current IOCD may be
applicable. As a result of receiving an appropriate
input order, the device transmits data (Read, or Read
Backward order) or information from special registers
(Sense order) into data buffers of the associated I/O
subchannel within the IOP.

Depending upon the priority that prevails for accessing
main memory, the IOP accesses a memory word location
{os specified by the current memory byte address),
transfers up to four bytes of data or information from
the data buffers to a memory unit, provides a write
key, and increments (or decrements, if Read Backward
byte count by one for each byte transferred out of the
data buffers.

The write key is evaluated against the preassigned
write lock for the memory word location accessed.
If the write key is valid for each memory word loca-
tion accessed, the input operation continues, as des-
cribed above, until it is completed or terminated
by an "unusual end" condition, other than Write Lock
Violation. If the write key is not valid, the memory
unit (1) generates and transmits a Write Lock Viola-
tion (WLV) signal to the IOP, (2) rejects the new dataq,
and (3) does not disturb the previous contents of the
memory word location accessed.

If the write key is invalid for any memory word location
accessed and the HTE flag is coded as a 1, the input
operation is terminated immediately upon receipt of a
WLV signal (see "Termination Phase").

If the HTE flag is coded as a 0, the memory unit may
accept or reject the data or information, based on the
write key/write lock evaluation for each memory word
location accessed, without affecting the operations
within the IOP, device controller, or device. The
input operation continues until either completed or
terminated by an "unusual end" condition, other than
a Write Lock Violation.

1/O Operation Phases 149

150

Note: Since the same write key prevails for the entire
IOCD and all memory locations within a mem=
ory page are assigned the same write lock, the
write key/write lock relationship may change
when the memory byte address is incremented

{or decremented) across a memory page boundary.

If the order specifies an input operation (e.g., Read,
Read Backward, or Sense) and the Skip flag is coded

as a 1, all parameters within the IOCD, except the
write key, may be applicable. As a result of receiving
an appropriate input order, the device transmits data
(Read or Read Backward order) or information from
special registers (Sense order) into the data buffers
within the I/O subchannel of the IOP. Because the
Skip flag is coded as a 1, the IOP can not access main
memory (the write key may be ignored and a Write Lock
Violation can not occur). Although the data can not
be stored in the main memory, the IOP increments the
memory byte address (except during a Read Backward
order, when it is decremented) and decrements the byte
count by one for each byte transferred out of the data
buffers. The device may continue to transmit data info
the data buffers and the 1OP may continue to update
the memory byte address and byte count until the cur-
rent order is either completed in a normal manner or
terminated because of an “unusual end" condition
(other than a Write Lock Violation).

If the order specifies an output operation (e.g., Write
or Control) and if the Skip flag is coded as a 0, all
parameters within the IOCD, except the write key,
may be applicable. When transferring data (Write
order) or information (Control order) out of main
memory, the write key/write lock checking is not
performed; hence, the write key may be ignored.
Likewise, a Write Lock Violation will not occur. For
an output operation, the IOP will access main memory
(in accordance with the priority that prevails for ac-
cessing main memory) and transfer up to four bytes of
data (or information), as specified by the current mem-
ory byte address, to the data buffers of the appropriate
I/O subchannel. The IOP also increments the memory
byte address and decrements the byte count by one for
each byte of data transferred. Data is then transferred
from the data buffers to the device. The IOP may con-
tinue to access main memory, transfer up fo four bytes
of data from main memory to the appropriate data buf-
fers, and update the memory byte address and byte
count. The device continues to output data until the
order is either completed in a normal manner or ter-
minated because of an "unusual end" condition.

If the order specifies an output operation (e.g., Write
or Control) and if the Skip flag is coded as a 1, all

parameters within the current 10OCD, except the write
key, may be applicable. Because the Skip flag is
coded as a 1, the IOP can not access main memory for
any data (or information). Instead, the IOP generates
and loads zeros (X'00') into the data buffers of the
appropriate 1/O subchannel and increments the memory

byte address and decrements the byte count by one for

1/O Operation Phases

each byte loaded. The zeros are then transferred from
the data buffer to the device, The IOP may continue
to generate and load zeros into the data buffers and
update the memory byte address and byte count, ac-
cordingly, and the device may continue to output zeros
until the order is either completed in a normal manner
or terminated because of an "unusual end" condition.

DATA CHAINING

An order may be continued from the current operational
IOCD to the next operational IOCD, if data chaining is
specified in the current IOCD. In this case, the IOP will
automatically fetch the next operational IOCD, asdescribed
under "Fetching Phase", when the byte count of the current
1OCD is reduced to zero. In the process of fetching the
next operational IOCD, the IOP may fetch and execute a
control IOCD containing a Transfer in Channel command
without affecting the continuity of the order. The process
of fetching and loading the next operational 10CD into the
control registers of the 1/O subchannel is transparent to the
device. That is, the device continues to operate as if the
order were defined by a single IOCD. Also, any changes
in the status of the Skip flag or in the write key from one
IOCD to the next is transparent to the device. The device
continues to receive zeros, dota, or information from the
data buffers during an output operation, or continues to
transmit data (or information) info the data buffers regardless
of whether it is subsequently rejected or stored while per-
forming an input operation.

During the execution phase, an 1/O interrupt may be re-
quested each time the byte count of an operational IOCD
is reduced to zero if the Interrupt at Zero Byte Count (1ZC)
flag is coded as a 1. Thus, if data chaining is specified,
the IOP may request an 1/O interrupt without interfering
with the process of fetching the next operational 10CD.

If the 1/O interrupt level (location X'5C') within the inter-
rupt system is armed, enabled, and not inhibited, the 1/0
interrupt may be processed by the BP in accordance with
the priority that prevails within the interrupt system, the
IOPs, and the device controllers connected to the IOP,

The order may be completed in a normal manner when the
Data Chain flag of the current IOCD (the last IOCD of a
logical record) is coded as a 0.

COMMAND CHAINING

An 1/O operation may be continued from the current IOCD
to the next IOCD if command chaining is specified in the

current IOCD, Command chaining is commonly specified
when reading (or writing) consecutive records of data from
the same file. In which case, the current IOCD must be
the last IOCD for the current record and the next IOCD
must be the first IOCD of the next logical record. Although
the device may execute the same functional order for both

records, logically, it is equivalent to two separate orders,

Depending upon the characteristics of the device, command
chaining may also be used to perform different operations
on either different but consecutive records or upon the same
record (e.g., o magnetic tape unit may be programmed to
alternately read or write consecutive records or to read the
same record backwords after writing). Refer to an appro-
priate Xerox peripheral equipment reference manual for
further detoils,

If command chaining is specified, the device controller
causes the IOP to fetch the next operational IOCD, as de-
scribed under "Fetching Phase", when the device signals
"channel end" (signifying that it is ready to accept and
execute another order), In the process of fetching the next
operational 10CD, the IOP may feich and execute a con-
trol IOCD containing o Transfer in Channel command with-
out affecting the continuity of the 1/0O operation (i.e.,
transparent to the device controller/device); however, the
fetching of the next operational 10CD is not transparent

to the device controller/device. The process of automat-
ically fetching the next operational IOCD because data
chaining and/or command chaining is specified in the cur-
rent IOCD permits an I/O operation to continue normally
until an IOCD is executed in which both chaining flags

are coded as zeros (the last IOCD of the lost record).

If data chaining and command chaining are both specified
within an IOCD, data chaining is performed if the byte
count of the current IOCD is reduced to zero before the
device generates "channel end"; command chaining is per-
formed if the device generates "channel end" before the
byte count is reduced to zero.

During the execution phase, an 1/O interrupt may also be
requested each time a “channel end" occurs if the Interrupt
at Channel End (ICE) flag is coded as a 1. Thus, if com-
mand chaining is specified, the IOP may request an 1/O
interrupt without interfering with the process of fetching
the next operational I0CD,

TERMINATION PHASE

An 1/O operation may be terminated in one of the following
manners:

1. Aborted at any time because the BP executed either
an HIO or RIO instruction.

2. Aborted when an unconditional "unusual end" condition
was detected,

3. Aborted when a conditional "unusual end" condition
was detected while the HTE control flag was coded
asal.

4. Completed as specified by the command list but with
an "unusual end" condition.

5. Completed as specified by the command list,

6. Aborted whenever o SUPER RESET, SYSTEM RESET,
or /O RESET command is entered from the System Con-
trol Console (SCC).

The progress of an I/O operation, including the termination,
may be ascertained by evaluating the status information
retumed for 1/QO instructions, as described in Chapter 3,
Depending upon programming considerations, these 1/O
instructions may be executed either singly or as part of an
I/O handling routine and either imperatively at logical
points of a BP-executed program or on an "as needed"
basis when an I/Q interrupt is requested by an IOP or de~-
vice controller. Normally, an 1/O interrupt is requested
whenever a critical or significant event occurs within any
1/0 subchannel, device controller, or device. Typically,
an I/O interrupt may be requested when the byte count of
any IOCD is reduced to zero, whenever any device detects
a "channel end" condition, or when the IOP or any device
controller detects an "unusual end" condition, providing
the appropriate control flag (IZC, ICE, and IUE) is coded
asal.

Note: An I/O interrupt may also be requested by certain
devices, e.g., a magnetic tape unit may be able
to execute a Rewind and Interrupt order and other
devices may request an 1/0 interrupt when execut-
ing a Stop order in which bit 0 is coded as a 1.
Refer to an appropriate Xerox peripheral reference
manual for further details.

Once an 1/O interrupt request has been made by a device,
that device, device controller, and 1/O subchannel remain
in an interrupt pending condition until the interrupt request
is acknowledged, reset, or cleared.

Normally, an I/O interrupt request is acknowledged by
the BP executing an AIO instruction, as part of an I/O
interrupt-handling routine; resetby the BP executing either
an HIO or an RIO instruction; or for certain devices cleared
automatically, as a function of time. Refer to an appro-
priate Xerox peripheral equipment reference manual for
further details.)

Since a multiple number of 1/O interrupt requests may pre-
vail simultaneously (one per each device controller) and
all requests are serviced by a common 1/O interrupt level
(location X'5C'), the BP normally acknowledges an 1/0O
interrupt request based on the priority that prevails within
the inferrupt system, the IOPs, and the 1/O subchannels
within an MIOP, if applicable. An interrupt pending con-
dition prevents a new 1/O operation from being initiated
by an SIO instruction on a particular subchannel but does
not affect the current 1/O operation. (That is, if an I/O
interrupt was requested as the result of a zero byte count or
"channel end" condition, and data chaining or command
chaining is specified, the I/O operation may continue as
specified by the command list.)

I/O Operation Phases 151

9. OPERATIONAL CONTROL

EXTERNAL CONTROL SUBSYSTEM

The External Control Subsystem (ECS)isa group of elements
used in this computer system that provide operational and
diagnostic interfaces to control and maintain system hard-
ware and software.

CENTRALIZED SYSTEM CONTROL

In many other computer systems "software-level" operator
interactions are fransacted through an operator's teletype-
writer console while hardware level interactions are per-
formed through a fixed panel of lamps and switches. In
contrast, this Xerox computer system consolidates these in-
teractions and controls into a console telecommunications
device, designated as the System Control Console (SCC).
Through the SCC, the operator has a single control point
for all normal system control activities.

A Remote Diagnostic Interface (RDI) permits the local
System Control Console to be augmented with a Remote
Console that may have the same degree of system con-
trol. (Usage of the RDI and Remote Console as a Remote
Assist feature is described below, under "Remote Console".)

A System Control Panel (SCP) contains indicators and basic
controls that the operator may use during system startup or
to establish connections with the remote location.

CONTROL CONSOLE DEVICES

The ECS provides an interface for two local (primary and
alternate) communications consoles and a data set inter-
face for remote diagnostic connection. Each communi-
cations console must have on ETA RS232 voltage interface
and format characters in even parity ASCII code with con-
irol protocols of a Model 4691 KSR 35 Keyboard/Printer.
Allowed communications rates are 10 and 30 characters per
second.

PRIMARY CONSOLE

The primary console always has the functional capability of
the System Control Console to communicate with software
through 1/O subchannel address X'01'. The communications
rate of the primary console is either 120 characters per
second or the same as the alternate and remote consoles

" depending on the setting of the FSELA switch on the Con-
figuration Conirol Panel (see Chapter 6). If the REMOTE
CHANNEL switch on the System Control Panel is in the
SCC position (implying a remote diagnostic connection),
the remote channel frequency is automatically enforced on
the primary console.

152 Operational Control

REMOTE CHANNEL

The alternate and remote consoles share the same data paths.
Both consoles receive the same output; either one of the
consoles is selected for input by the ALTSEL switch on the
Configuration Control Panel. The communications rates

of 10 or 30 characters per second are selected for both con-
soles by the FSELBO and FSELB1 switches on the Configu~
ration Control Panel. Both consoles may function either
strictly as 1/O devices or as parallel System Control Con-
soles selected by the REMOTE CHANNEL switch on the
System Control Panel. Description of communications rate
selection is found in Chapter 6.

ALTERNATE CONSOLE

The alternate console normally functions as an output de-
vice residing at 1/O subchannel address X'0B. This con-
sole can create an edited system log, while the operator's
console functions at a higher communications rate, (RE-

MOTE CHANNEL and ALTSEL switches are both OFF.)

If the primary console fails, the alternate console may
function as the System Control Console. In this case, the
remote console connection is only inhibited by the op-
erator at the data set. (REMOTE CHANNEL switch in
SCC position; ALTSEL switch in ON position.)

REMOTE CONSOLE

Before the remote device can gain access to the Remote
Diagnostic Interface (RDI), the operator must manually in-
tervene to establish the connection at the data set and the
System Conirol Panel. The data set (Bell 103A or equiva-
lent) connection is inhibited while the REMOTE CHANNEL
switch is in the OFF position.

The remote console may run on=line diagnostics while the
rest of the system performs non-maintenance work. In this
case, the remote console preempts 1/O subchannel X'0B!
and the alternate (local) console creates a log of the on-
line mainentance if not turned off. The remote device
does not have access to the SCC hardware controls, but
may enter software-level control information through the
/O system (REMOTE CHANNEL switch in 1/O position,
ALTSEL switch in OFF position).

If the entire system is under the discretionary control of re-
mote maintenance personnel, the operator may connect the
remote console to the RDI as the System Control Console.
The remote console is then connected logically in perallel,
and assumes all the functional capability of the primary con-
sole, and shares 1/O subchannel X'01', (Note that con-
ventions must be established to ensure that the primary and
remote consoles do not generate overlapping input.) The
remote console communications rate is automatically im=
posed on the primary console and the operator may have to

change the rate on the primary console to retain paralliel
control. The alternate (local) device creates a log of all
SCC transactions. The normal (log) output on 1/O sub-
channel X'OB' is suspended for the duration of the SCC
assignment to the remote channel (REMOTE CHANNEL
switch in SCC position; ALTSEL switch in OFF position).

CONTROL COMMANDS

A set of commands and display formats implements operator
communication with hardware through the System Control
Console. These hardware-control commands, called "SCC
Functions", are independent, direct hardware controls as
"distinguished from the software-level operating controls
activated from the SCC through the normal 1/O system. A
special micro-processor, working independently of the
BP, senses and controls the execution of SCC functions,
The flexibility of character-oriented communications equip-
ment and micro-programmed control significantly enhance
many system operating and diagnostic features.

The basic command format provides a four-level interlock
on critical system conirols by requiring a correct four-
character sequence to initiate a command action. In ad-
dition, context analysis is provided to assure that com=
mands are executed only in appropriate system states. This
basic format requires that each command is preceded by the
"control-Z" character (control and Z keys depressed simul-
taneously). Note that within this text, the control-Z char-
acter is represented with the symbol "Z",

A typical command sequence is to enter *Z€ HLT" from the
SCC. The system responds by printing " (HLT)" on the next
line of the SCC printout, and forcing the system to halt
instruction execution and enter the IDLE state. If a com-
mand cannot be executed due fo improper syntax or context,
the system provides an advisory message following the com-
mand echo indicating the probable source of error. A typi-
cal example of the display format is "(RSY) *EVENT Al*",
indicating that a reset command may not be executed prior
to halting instruction execution. (Refer to Table 21 for
a complete listing of event messages.)

The various control functions that may be exercised from
the SCC may be generally classified into three categories:
operator control commands, diagnostic control commands,
and maintenance control commands.

OPERATOR CONTROL COMMANDS

These commands provide controls which an operator normally
uses to control the computer system. By entering the appro-
priate command the operator may direct the computer system
to load, run, halt, reset, read/set the sense switches, or
issue a "console interrupt" to the operating software.

The sense switch control and console interrupt commands
may interact with the software and are always operative.
All other SCC functions may be enabled or disabled by
the SCC FUNCTIONS switch on the SCP.

Table 21, Event Messages

Display Significance

EVENT 00 System Initialization; POWER ON or SUPER RESET.

EVENT A0 Improper syntax for Z° format command.

EVENT Al Command not executed; Improper syntax or system may not be in IDLE mode.

EVENT A2 Command not executed; system not in maintenance mode.

EVENT A4 Command not executed; SCC FUNCTION switch is in DISABLE position.

EVENT A8 Power ride through; recoverable power line failure detected; power on trap requested.

EVENT FO Trap requested occurred; inhibited in P-Mode.

EVENT F1 Basic processor error halt; watchdog timeout reset issued when watchdog timeout alarm bit
set. (See "Processor Control Word".)

EVENT F4 Basic processor halt; Address Halt.

EVENT Fé Basic processor halt; Processor-Detected Fault (PDF).

EVENT F9 System failed micro-diagnostic test (followed by Single Clock Status Register display of the
element that failed).

Control Commands

153

To prevent inadvertent activation from disrupting a running
system, the SCC FUNCTIONS switch is placed in the
DISABLE position.

The following operator control commands are standard fea-
tures of this system:

I“LUf DILIW Name of Command

Z°1 0] Operator's Console
Interrupt

Z° ssw (SSW=bbbb) Read Sense Switches

7€ sstt (55#'=bbbb) Set Sense Switches

7€ LDN####HH A (LDN@####r) Load Normal

z° gyt M (RSY) Reset System

yAd RBP”’ it (RBP) Reset Basic Processor
z° riof- (RIO) Reset 1/O System
z° HLT't (HLT) System Halt

z® RuN' T (RUN) System Run

z4 OPERATOR'S CONSOLE INTERRUPT

The Operator's Console (or SCC) INTERRUPT command per-
mits the operator to interact with the executing software by
setting interrupt level X'5D'. If this interrupt level is Armed
when the INTERRUPT command is entered, the interrupt
level is advanced to the Waiting state. If the interrupt
level is already in the Active state or Disarmed, the INTER-
RUPT command has no effect upon the computer system. This
command is always enabled.

2°ssw READ SENSE SWITCHES

This command causes the status of the sense switches to be
displayed as part of the command echo. For example, if all
four sense switches were set to a 1, the console display
would be "(SSW=1111)". The status of the sense switches
is also displayed by indicators on the System Control Panel.
The READ SENSE SWITCHES command is always enabled.

The status of the sense switches may also be read by exe-
cuting a READ DIRECT instruction (see Chapter 3).

rHext::der:imcxl digits.

MSCC FUNCTIONS switch of SCP must be in the ENABLE
position.

m.Sysfem must be in the IDLE state.

154 Control Commands

Z%s4 SET SENSE SWITCHES

This command causes the sense switches to be set to the
value specified by the hexadecimal digit in the command
(*). The new sense switch value is displayed as part of
the command echo. For example, if the operator enters
"Z€SS3" the SCC will print "(SS3=0011)". The new status
is also displayed by indicators on the System Control
Panel. The SET SENSE SWITCHES command is always
operative.

The sense switches may also be set by executing a WRITE
DIRECT instruction (see Chapter 3). The sense switches
are initialized to zero during the power on and SUPER
RESET sequences. While the Z5S# command is active,
the basic processor is momentarily put in the IDLE state,
This prevents any conflict between the operator command
and a WRITE DIRECT instruction.

ZCLDN##HH LOAD NORMAL

The loading operation is normally accomplished by readying
the load device and entering the LOAD NORMAL command
from the System Control Console. The four hexadecimal
digits (represented as ####) specify the load device address.
Successful completion of the command is signified by the
command echo "(LDN@####)1, A failure in the load
sequence is indicated by a display of an appropriate error
message (see Table F-) following the command echo. The
LOAD NORMAL command is accepted only when the
system is in the IDLE state.

This single command initiates the following sequence:

1. A series of internal micro~diagnostic tests are con-
ducted to verify the operation of system paths and
elements used in the loading sequence. Each test is
preceded by a system reset. If a failure is detected
during the micro-diagnostic tests, an error message
"*EVENT F9*" is generated and followed by a Single
Clock Status Register display identifying the failing

element.

2. Upon completion of all micro-diagnostic tests, a sys-
tem reset is issued.

3. All system memory locations are initialized to zero,

4. The basic processor loads a self-diagnostic program in
memory locations X'100' through X'1FF' and loads the
bootstrap loader (see Figure 14) in memory locations
X'20' through X'29', If an error is detected during the
process, an error message "*EVENT FO*", is generated,

5. The system is placed in the RUN mode.

6. The basic processor executes the self-diagnostic pro-
gram, beginning at location X'160'. The processor
then executes the bootstrap loader, starting at location
X'26'. If a failure occurs during the processor self-
diagnostic program, the processor enters the WAIT state,

Symbolic form
of instruction

Location
(hex) (dec) Hexadecimal

20 32 020000A8
21 33 0E000058

2 4 22110029 LI, 1

23 35 64100023 BDR, 1

24 36 68000028 BCR,0 40
25 37 oooo####!

2 38 22000010 L1,0

27 3 CC000025 $10,0 *37
28 40 CD000025 70,0 *37
29 41 69C00022 BCS, 12 34

Thih represents four hexadecimal digits that specify
the load device address as entered by the LOAD
NORMAL command.

Figure 14, Bootstrap Loader

Execution of the bootstrap program causes the following
actions:

1. The first record on the selected peripheral is read into
memrory locations X'2A' through X'3F' (the previous
contents of general register 0 are destroyed as a re-
sult of executing the bootstrap program in locations
X'26' through X'29').

2. After the record has been read, the next instruction
is taken from location X'2A" (provided that no error
condition has been detected by the device or the
(IOP).

3. When the instruction in location X'2A" is executed,
the unit device and device controller selected for the
load operation can accept a new SIO instruction.

4, Further I/O operations from the load unit may be ac-
complished by coding subsequent 1/O instructions to
indirectly address location X'25'.

Following the successful completion of the load sequence,
the computer system usually continues execution of the
loaded program and begins issuing messages to the operator
via the I/O system to the System Control Console.

ZCRSY RESET SYSTEM

The RESET SYSTEM command performs the combined func-
tions of the RESET BASIC PROCESSOR and RESET I/OSYS~
TEM commands, as well as the function described below:

1. The system control processor bus interface is initialized,

2, The processor memory bus and processor bus interfaces
are inifialized.

3. The system memory units are initialized. This process
does not alter any memory locations.

4. All interrupt levels are reset to the Disarmed and Dis-
abled state.

5. The system ALARM indicator is cleared,

This command is accepted only when the system is in the
IDLE state,

Z°RBP RESET BASIC PROCESSOR

The RESET BASIC PROCESSOR command initializes the basic
processor by performing the following:

1. All bits in the Program Status Words, except the in-
struction address, are resef.

2. The program counter of the BP (register Q5) is set to a
value of X'26',

3. The BP remains in the IDLE state until allowed to be-
gin execution at location X'26',

This command is accepted only when the system is in the
IDLE state.

Since all memory requests are inhibited during a reset, the
RESET BASIC PROCESSCR command disrupfs any simultan—
eous memory request from the standard 1/O system,

ZCRi0 RESET I/O SYSTEM

When accepted, the RESET I/O SYSTEM command initial-
izes the IOPs and device controllers of the standard /O
system. All peripheral devices under control of the system
are reset to the "ready" condition and all status, interrupt,
and control indicators in the [/O system are reset, This
command is accepted only when the system is in the IDLE
state. The RESET I/O SYSTEM command does not affect
the External Direct Input/Output (DIO), the BP, or other
non-input/output system elements,

ZOHLT SYSTEM HALT
When the HALT command is entered, the BP ceases to

execute instructions and is forced into the IDLE state; the
RUN indicator on the System Control Panel is extinguished

Control Commands 155

and the IDLE indicator is illuminated. In the IDLE state
the load commands, the reset commands, and the RUN com-
mand are enabled. The I/O system may continue to perform
I/O operations initiated prior to the Z°HLT command, even
though the BP is halted. Note that the processor HALT
status is not set by the ZCHLT command, but is caused by

internal processor condifions (see " Processor-Control Word").

ZCRUN SYSTEM RUN

The RUN command is accepted only if the BP is in the
IDLE state. When the FUN command is accepted, the BP
is allowed to execute its instruction stream. On the SCP,
the IDLE indicator is extinguished and the RUN indicator
is illuminated, subject to the processor control word and
system status.

When not in the IDLE state, the system does not accept any
of the load and reset control commands. Attempting to enter
any load and reset control command while the system is in
the RUN mode results in an error message being displayed
on the control console (see Table F-).

DIAGNOSTIC CONTROL COMMANDS

Diagnostic control commands facilitate isolating software
and hardware problems by providing single-instruction ex-
ecution, as well as permitting read/write access to many
processor internal control registers and system memory loc-
ations. To perform diagnostic commands, BP instruction
execution must be interrupted and the ECS control mode
altered. This is accomplished by the ENTER P-MODE com-
mand (a "CONTROL=P" character generated by depressing
CONTROL and P keys simultaneously). Once in P-Mode
the system is forced into the IDLE state and the BP stores
and fetches data or executes single instructions only upon
request from the operator through the SCC.

Note: Within this text the control-P character is repre-
sented by the following symbol, P€.

The diagnostic control (P~-Mode) command format differs
from the basic command format. Hexadecimal digits are
immediately echoed and stored to be used as data or ad-
dress depending on the following command. The system
truncates the data stream to eight hexadecimal digits and
assumes leading zeros if less than eight characters are en-
tered. All non-hexadecimal characters, except basic (Z€)
format commands, are treated as P-Mode commands. If the
character is not in the allowed command set, it is echoed
followed by a question mark "N?" and no action results.
Valid commands are echoed; the requested operation is
then performed and a P-Mode data display of the form
“P.DDDDDDDD @ AAAAAAAA" is generated on the next
line of SCC printout. The "P" represents the processor ad-
dress (normally 0); the "D" field (eight hexadecimal digits)

156 Control Commands

represents the data in the location specified in the "A"
field (eight hexadecimal digits). The first hexadecimal

digit of the A field is X'0' for memory addresses and X'8'
for internal register addresses. All valid commands, except
EXIT P~MODE, produce a display in this format.

The aliowed diagnostic command set is listed in Table 22,
An example of the resulting printout is shown in the section
entitled "Operating Procedures and Information”.

pe ENTER P-MODE

The ENTER P-MODE control command is generated by de-
pressing the CONTROL and P keys, simultaneously (P€).
The system is forced into the IDLE state and the processor
will execute diagnostic control commands entered from the
System Control Console. The ECS remains in the P-Mode
until an EXIT P-MODE command (described below) is
entered or the Z€ format commands SYSTEM RUN or LOAD
NORMAL are entered. Successful entry into the P~-Mode
is indicated by a P-Mode display on the SCC.

(P-Mode)
SELECT INTERNAL REGISTER ADDRESSING
(P-Mode)
/ SELECT MEMORY ADDRESSING

These commands specify the storage element whose con-
tents are fo be displayed and operated upon with subsequent
commands. The “/" character following a hexadecimal
data stream specifies a memory address; the "." character
specifies an internal processor control register address. All
address calculations and memory accesses are subject to
the write lock keys, address mode, and mapping bits in the
program status words,

(P-Mode)
+ ADD TO SELECTED LOCATION

The "+" character, following a hexadecimal data stream,
causes the value of the data to be added to the contents of
the selected storage element.

(P-Mode)
- SUBTRACT FROM SELECTED LOCATION

The "=" character, following a hexadecimal data stream,
causes the value of the data to be subtracted from the
contents of the selected storage element.

(P-Mode)
M STORE IN SELECTED LOCATION

The "M" character, following a hexadecimal data stream,
causes the data to be stored in the selected storage element,

Table 22. Diagnostic Control (P-Mode) Commands

Character Function
P ENTER P-MODE.
ttt, # Ir;Puf data or address value (context determined by the succeeding operator.
#hrk, #H s any hex digit string).
SELECT INTERNAL REGISTER ADDRESSING.
/ SELECT MEMORY ADDRESSING.
+ ADD TO SELECTED LOCATION.
- SUBTRACT FROM SELECTED LOCATION.
M STORE IN SELECTED LOCATION.
L SHIFT LEFT AND DISPLAY.
R SHIFT RIGHT AND DISPLAY.
I INCREMENT REFERENCED ADDRESS AND DISPLAY.
RUBOUT DISPLAY ADDRESSED LOCATION.
3 INSTRUCTION SINGLE STEP.
G SPECIAL INSTRUCTION SINGLE STEP.
X EXIT P-MODE.
(P-Mode) previously executed SELECT MEMORY ADDRESSING or
L SHIFT LEFT AND DISPLAY SELECT INTERNAL REGISTER ADDRESSING control com-

This command causes an image of the contents of the pres-
ently selected memory location or Q register to be shifted
one bit position to the left and then displayed. A zero is
entered intfo the least significant bit of the location for
each L command.

Actual contents of the memory or Q-register location ref-
erenced by the shift instruction are not altered.

(P-Mode)
R SHIFT RIGHT AND DISPLAY

This command cavuses an image of the contents of the pres-
ently selected memory location or Q register to be shifted
one bit position to the right and then displayed. A zero is
entered into the most significant bit of the memory location
or Q register for each R command executed.

Actual contents of the memory or Q register location ref-
erenced by the shift instruction are not altered.

(P-Mode)
I INCREMENT REFERENCED ADDRESS AND
DISPLAY

This command increments by +1 the address of the currently
selected memory location or Q register (as specified by a

mand). The new address and contents are displayed on the
next line.

(P-Mode)
RUB OUT DISPLAY ADDRESSED LOCATION

This command displays the contents of the currently ad-
dressed memory location or Q register (as specified by
a previously executed SELECT MEMORY ADDRESSING
or SELECT INTERNAL REGISTER ADDRESSING control

command),

(P-Mode)
S INSTRUCTION SINGLE STEP

This command causes the BP fo execute a single instruc-
tion as pointed to by the current contents of the program
counter. Execution is precisely the same as if the system
were running continuously, Upon completion, the BP
returns to the IDLE state. If a trap occurs while the instruc-
tion is being execufed, the instruction in the trap location
is executed before the BP returns to the IDLE state. The
resultant display shows the next instruction to be executed.

Condition codes resulting from the instruction execution

are displayed as the second hexadecimal digit of the ad-
dress field.

Control Commands 157

(P-Mode)
G SPECIAL INSTRUCTION SINGLE STEP

This command permits the contents of register Q5 to be in-
terpreted as the current instruction, and execution by the
BP proceeds as described for the INSTRUCTION SINGLE
STEP command. The program counter is incremented by +1.
This command thus allows any single instruction (contained
in register Q5) to be executed in lieu of the instruction
pointed to by the program counter without otherwise dis-
turbing conditions within the system. The resultant display
shows the next instruction to be executed.

Condition codes resulting from the instruction execution
are displayed as the second hexadecimal digit of the ad-
dress field.

(P-Mode)
X EXIT P-MODE

The EXIT P-MODE command terminates the P-Mode within
the ECS. The BP resumes execution of instructions, If

no SYSTEM RUN or LOAD NORMAL commands were in ef-
fect before entering the P-Mode, the system remains in the
IDLE state.

MAINTENANCE CONTROL COMMANDS

Maintenance control commands facilitate isolation and
analysis of system hardware malfunctions. The ‘commands
are accepted only if the SCC FUNCTIONS switch is in the
ENABLE position. In addition, most critical maintenance
controls can be activated only if the MAINT MODE switch
on the SCP is in the ON position.

The primary features of the maintenance control commands
are the provision of system clock control and single clock
stafus displays. Staius is obtained from read-only regisiers
located in central system elements. These Single Clock Sta-
tus Registers (SCSR) monitor the state of internal hardware
signals. Each SCSR display is printed on the next line of
SCC printout in the format "CE:DDDDDDDD CC". The "CE"
field contains two hexadecimal digits that represent a cluster
and an element address, respectively. The 8-digit D field
displays the contents of the register, and the 2-digit "CC"
field is a@ modulo 256 clock step counter. This information
is valid only when the system clock is stopped.

The following maintenance control commands are included
as standard features of this computer system:

Input Display Name of Command

Z°MMO (MMO) CLEAR MM FEATURES

z°MM1' (MM1) SET/CLEAR REPEAT CLOCK-

ING MODE

158 Control Commands

Input Display Name of Command

Z°MM2 (MM2) SET/CLEAR CLUSTER

DISPLAY MODE
Z°MM3 (MM3) SET/CLEAR P-MODE REPEAT
MODE

(MM echo SUPER RESET
interrupted)
Z°MM5TT (MM5) SET MICRO-DIAGNOSTIC
LOOP MODE

Z°MMé'T (MMé) INITIATE ELEMENT MICRO-
. DIAGNOSTIC

z°MM7T (MM7) SET LOW CLOCK MARGINS

7°mme’t (MM8) SET HIGH CLOCK MARGINS

Z°Mm9™ (MM9) SET MEMORY INTERLEAVE

OVERRIDE

(MM echo SET DISPLAY INHIBIT MODE
interrupted)

z°ck™ (cK) SET SINGLE CLOCK MODE
t tpace' SINGLE-CLOCK STEP
Z°cHt (cth) MULTIPLE-CLOCK STEP

CLEAR SINGLE CLOCK
MODE

Z°KIL (KIL)

Z et (E##) SELECT/DISPLAY SINGLE

CLOCK STATUS REGISTER
z°1) SET/CLEAR TRANSPARENT
TEXT MODE

z°Lpst#tt (LDs@####) LOAD SPECIAL

Z°LDT (LDT) MEMORY SET

Z%CcLK SET SINGLE CLOCK MODE

This command sets the computer system to the "Single Clock
Mode" by simultaneously stopping all central system clocks,
except those required by the External Control Subsystem
and the 1/O system. When the system is in the Single
Clock Mode dall control commands may be entered and ex-
ecuted, Operations performed in the Single Clock Mode
may differ from those performed when the clock is running

i‘All clock controls are inhibited unless the MAINT MODE

switch is in the ON position.

M hese commands are accepted only if the system is in the
MAINT MODE.

at its normal rate (e.g., fixed duration control sequences
may not take effect and diagnostic control commands which
operate upon BP's registers or memory locations require a large
number of clock steps to complete the operation), The RESET
SYSTEM, RESET 1/O, and RESET BASIC PROCESSOR commands
are effective in Single Clock Mode. When the Single Clock
Mode is set, the contents of the currenily selected Single
Clock Status Register are displayed (see SELECT/DISPLAY
SINGLE CLOCK STATUS REGISTER, Z°E## command).

If the computer system is currently in the Single Clock
Mode, Z€CLK command resets the two-digit clock step
counter to X'00'.

The Single Clock Mode may be reset by either a CLEAR
SINGLE CLOCK MODE, Z°KIL, command or a SUPER
RESET, Z°MM4, command.

Note: Entering a SET SINGLE CLOCK MODE command
when the basic processor is performing normal data pro=-
cessing operations may have an adverse effect upon
1/O operations. To prevent inadvertent entry into
Single Clock Mode, the Z°CLK command is not ac-
cepted unless the MAINT MODE switch is in the ON
position. Attempting to enter a ZCLK command
when the MAINT MODE switch is in the OFF posi-
tion results in an error message (*EVENT A2*) being
displayed and no further action.

¥ SINGLE-CLOCK STEP

When ihe system s in e Shlg:e Clock Mode, o single
space character (depicted as B within this text), without
a confrol-Z, is interpreted as a SINGLE-CLOCK STEP
command. For each space character received from the con-
trol console, the current command or instruction is partially
executed (one clock's worth of execution for each space
character).

The contents of the currently selected Single Clock Status
Register are displayed and the clock step counter is incre-
mented by +1 for each SINGLE-CLOCK STEP,

2%cHt MULTIPLE~-CLOCK STEP

When the system isin the Single Clock Mode, the MULTIPLE-
CLOCK STEP command causes the current instruction or com-
mand to be executed for 1 to 256 clock steps (as specified

by the two hexadecimal digits "##" in this command). The
Z€00 command causes 256 clocks to be issued. The contents
of the currently selected Single Clock Status Register are
displayed. The clock step counter is incremented by the
number of clock steps specified by this command.

The MULTIPLE-CLOCK STEP command allows precise step-
ping to a specific point in a micro~program sequence in-
volving a large number of clock steps.

ZCE#H SELECT/DISPLAY SINGLE CLOCK STATUS
REGISTER

This command causes the requested SCSR to be displayed.
The "##* portion of this command (two hexadecimal digits)
is stored within the ECS and used as a reference address in
any command which displays the contents of the currently
selected Single Clock Status Register. The first hexa-
decimal digit is the cluster address and the second digit is
the element address.

In addition to being modified by subsequent Z°ett com-
mands, the cluster and element addresses may also be
changed by the LOAD NORMAL command and the SET
CLUSTER DISPLAY MODE cotamand. The LOAD NORMAL
command sets the address to X'00' and the SET CLUSTER
DISPLAY MODE command causes the element address to
be set to a zero following each cluster scan.

Z%IL CLEAR SINGLE CLOCK MODE

When this command is entered, the system clocks are re-
started immediately. The Z°KIL command may be issued
at any time. If the system is not in the Single Clock Mode,
the ZKIL command is ignored.

Z%mo CLEAR MM FEATURES

Upon completion of maintenance operations, the CLEAR

Addd PP ATIHIDIFC PPN B SN _II __ . _ CLIDED DECOCT -
YUV TR ATUNO CONHHUIK \UD WEI W HIC JUNLMN NIl Comim

mand, described below) may be used to restore the system
to a standard configuration status. The CLEAR MM
FEATURES command does the following:

1. Restores the system clock to its normal frequency.

2. Clears the "Repeat Clocking Mode" (see Z°MM1
command).

3. Clears the "Cluster Display Mode" (see Z°MM2
command).

4. Clears the "P-Mode Repeat Mode" (see Z°MM3

command).

5. Clears the "Micro-diagnostic Repeat Mode" (see
Z°MM5 command).

6. Clears the "Override Interleave Mode" (see Z°MM9

command).

7. Clears the "Display Inhibit Mode" (see Z°MMA
command).

Note that the CLEAR MM FEATURES command does not
generate any resets (Z°RIO, ZCRSY, or Z°RBP), does not
clear P~Mode, nor does it clear Single Clock Mode (see
ZC°CLK and Z°KIL commands).

Control Commands 159

Z%m1 SET/CLEAR REPEAT CLOCKING MODE

This command may be used either to SET REPEAT CLOCKING
MODE or to CLEAR REPEAT CLOCKING MODE. When the
Repeat Clocking Mode is set, system clocks are repeatedly
issued to the system,

If the Display Inhibit Mode, as described below, is also
set, the clock rate during Repeat Clocking Mode is approx-
imately 1600 Hertz. If the Display Inhibit Mode is not set
(cleared), the clock rate is determined by the communica-
tions frequency of the System Control Console.

The amount of information displayed when the Repeat
Clocking Mode is set is also dependent upon the Cluster
Display Mode. If the Cluster Display Mode (see Z°MM2
command) is not set, the contents of the selected Single-
Clock Status Register is displayed after each clock.

If the Cluster Display Mode is set, the contents of all
16 SCSRs within a selected cluster are displayed after
each clock.

The above display routine is interrupted during a Z° format
command. This mode is cleared by a CLEAR REPEAT CLOCK
MODE, Z°MM]1, a CLEAR MM FEATURES, Z¢MMO, or a
SUPER RESET, Z°MM4, command.

Z%Mm2 SET/CLEAR CLUSTER DISPLAY MODE

This command may be used either to SET CLUSTER DISPLAY
MODE or to CLEAR CLUSTER DISPLAY MODE. When
the Cluster Display Mode is set, any console operation
which causes the display of o Single=Clock Status Reg~
ister (e.g., ZSCLK, Z°MMI, ZCE##, z°c##, 7°KIL,

or "J" during Single Clock Mode) will cause the con-
tents of all SCSRs in the selected cluster to be displayed
in succession.

If the Cluster Display Mode is set, it may be reset by a
CLEAR CLUSTER DISPLAY MODE, Z°MM2, a CLEAR MM

FEATURES, ZSMMO, or a SUPER RESET, 7clAvAuv‘r"‘r, command.
ZMM3 SET/CLEAR P-MODE REPEAT MODE

This command may be used either to SET P-MODE REPEAT
MODE or to CLEAR P-MODE REPEAT MODE.

When the P-Mode Repeat Mode is set, any P-Mode func-

tion character (see "Diagnostic Control Commands") en-
tered from the control console is automatically repeated
following each line of display. The repetition of P-Mode
functions is haited by entering any character whiie repefi-
tion is active. Repetition is automatically resumed when

another function is entered.

The P-Mode Repeat Mode may bereset by o CLEAR P-MODE

REPEAT MODE, Z°MM3, a CLEAR MM FEATURES, Z°MMO,
or a SUPER RESET, Z°MM4, command.

160 Control Commands

The P-Mode repeat feature is particularly useful for scan-
ning through sequential memory locations or Q registers
(using the INCREMENT REFERENCED ADDRESS AND

DISPLAY command or INSTRUCTION SINGLE STEP com-
mand described under "Diagnostic Control Commands").

ZMM4 SUPER RESET

The primary application of the SUPER RESET command is to
restore the system to a predetermined condition during and
following maintenance activities. The SUPER RESET com-
mand is accepted and executed only if the MAINT MODE
switch on the SCP is in the ON position. Entering a SUPER
RESET command when the system is not in the maintenance
mode results in an error message without affecting the
system.

If a SUPER RESET command is accepted, all reset signals
(System, 1/O, and BP) are issued, In addition, the ECS
is reset and initialized, and the basic processor executes
an initializing routine which clears the contents of the
Q scratchpad prior to executing @ normal reset.

After a SUPER RESET command is executed, the system
remains in the IDLE state, and the ECS is automatical ly
placed in P=Mode.

Z%N5 SET MICRO-DIAGNOSTIC LOOP MODE

This command allows maintenance personnel to repetitively
loop the micro-diagnostic test of a single system element.
The operator must ensure that the system is in the IDLE state
prior to entering this command.

This mode may be cleared by either « SUPER RESET,
Z°MM4, or a CLEAR MM FEATURES, Z°MMO, command.

ZMM6 INITIATE ELEMENT MICRO-DIAGNOSTIC
This command causes a single element micro-diagnosfic test
to be initiated for the selected Snlylc Clock Status element,

even if the system is in Single Clock Mode. The operator
must ensure that the normal preconditions of micro-diagnostic
test execution provided in the LOAD NORMAL sequence
are met. This may be accomplished by the following com-
mand sequence:

CLEAR SINGLE CLOCK MODE (enables clocks for

reset)
SYSTEM HALT (system must be in IDLE state)

RESET SYSTEM (test must be preceded by a system
reset)

SELECT/DiSPLAY SINGLE CLOCK STATUS REGISTER
SET SINGLE CLOCK MODE

INITIATE ELEMENT MICRO-DIAGNOSTIC
SELECT/DISPLAY SINGLE CLOCK STATUS REGISTER

SINGLE CLOCK STEP (step-through sequence)

Z°Mm1 SET LOW CLOCK MARGINS

This command causes the system clock frequency to be set
to low margin. The CLOCK MARGIN indicator (see System
Control Panel) is illuminated. If high and low clock margins
are both set, an undefined intermediate frequency results,

The system clock is restored to a normal frequency by either
a SUPER RESET, Z°MM4, or a CLEAR MM FEATURES,
Z°MMO, command. The system clock also assumes the nor-
mal level following power on.

Z%ms SET HIGH CLOCK MARGINS

This command causes the system clock frequency to be set
to high margin, The CLOCK MARGIN indicator (see Sys-
tem Control Panel) is illuminated. If high and low clock
margins are both set, an undefined intermediate frequency
results.

The system clock is restored to a normal level by either a
CLEAR MM FEATURES, Z¢MMO, command or a SUPER RESET,
Z°MM4, command. The system clock also assumes the nor-
mal level following power on.

Z°mg SET MEMORY INTERLEAVE OVERRIDE

This command inhibits interleaving all memory units and
is used primarily when running certain memory diagnostic
programs. It is allowed only when the system is in the
maintenance mode. The change in the manner in which
memory is accessed when interleaving is inhibited versus
when interleaving is permitted requires that programs be
reloaded each time the interleave control is changed.
Note that the SET MEMORY INTERLEAVE OVERRIDE
command inhibits interleaving all memory units, whereas
the INTERLEAVE switches of the Configuration Control
Panel (described in Chapter 6) inhibit interleaving on an
individual memory unit basis. The INTERLEAVE DISABLE
indicator on the SCP is illuminated whife INTERLEAVE
OVERRIDE is in effect.

The SET MEMORY INTERLEAVE OVERRIDE command re-
mains in effect (interleaving is inhibited) until either a
CLEAR MM FEATURES, Z¢MMO, or a SUPER RESET, ZMM4,
command is executed. Interleaving is automatically en-
abled following a power on/off cycle.

Z°%MmA SET/CLEAR DISPLAY INHIBIT MODE

This command may be used either to SET DISPLAY INHIBIT
MODE or to CLEAR DISPLAY INHIBIT MODE. When the
Display Inhibit Mode is set, all data output associated
with the System Control Console (SCC) function is in-
hibited; however, data output generated by the software
is not affected.

The Display Inhibit Mode is normally set to inhibit print=
out during execution of SCC functions which do not require
a display.

The Display Inhibit Mode may be cleared by a CLEAR

DISPLAY INHIBIT MODE, Z¢*MMA, a CLEAR MM FEA~

TURES, ZMMO, or a SUPER RESET, Z°MM4, command.

The Display Inhibit Mode is automatically cleared fol low=
ing power on.

ZCLDSHHHt LOAD SPECIAL

The LOAD SPECIAL command is accepted only if the
system is in the IDLE state. The LOAD SPECIAL command
is used in sifuations where all of the functions performed
by the LOAD NORMAL command are not desired (e.g.,
in loading a postmortem dump sequence). The LOAD
SPECIAL command causes only the bootstrap loader program
to be written into memory without diagnostics or memory
clearing prior to the load, A "load device address", spec-
ified by the hexadecimal digits "####" in the command, is
stored in Q register X'"1E', When using the LOAD SPECIAL
command, the operafor must also enter the SYSTEM RESET
and SYSTEM RUN commands before loading will commence,

ZoLoT MEMORY SET

This command causes all memory to be set to the value con-
tained in the BP internal register Q26(X'1A'), The com-
mand may be entered only when the system is in the
IDLE state,

2°r SET/CLEAR TRANSPARENT TEXT MODE

This command is used either to SET TRANSPARENT TEXT
MODE or to CLEAR TRANSPARENT TEXT MODE. When
the Transparent Text Mode is set, software-driven 1/O
from the System Control Console is inhibited, but all
SCC FUNCTIONS are processed in the normal manner.
This feature permits the operator o make marginal notes on
the console printout for logging purposes. If two different
control consoles are connected in parallel (i.e., remote
device is connected as a System Control Console), the
Transparent Text Mode permits messages to be exchanged
between the two devices. If the SCC FUNCTIONS switch
is in the DISABLE position, input data is passed into the /O
systemregardless of the status of the Transparent Text Mode.

The Transpareni Text Mode may also be cleared by a SUPER
RESET, Z°MM4, command.

SYSTEM CONTROL PANEL

The System Control Panel contains indicators and controls
which are used primarily when maintenance and/or diag-
nostic activities are performed. The computer operator
normally monitors certain indicators (as described below)
to ascertain conditions within the computer system (e.g.,
status of primary power, status of sense switches, status of
BP, and status of ALARM indicators).

Control Commands 161

The controls and indicators of the System Control Panel (see
Figure 15) are functioanlly described below.

POWER ON

This alternate-action switch/indicator controls the appli-
cation of power to the system. The indicator is illuminated
only when the switch has been depressed and power is being
applied to the system.

PRIMARY POWER

This indicator is illuminated whenever PRIMARY power is
applied to the system.

POWER FAULT

This indicator is illuminated only if an abnormal power
system condition exists. Maintenance action is required
when the POWER FAULT indicator is lit.

MAINTENANCE MODE

This indicator is illuminated when the computer system is
placed in the maintenance mode as the result of the MAINT
MODE switch being in the ON position.

INTERLEAVE DISABLE

This indicator is illuminated whenever the two-way inter-
leaving feature of the memory system is inhibited. (See SET

MEMORY INTERLEAVE OVERRIDE command, under " Main-

tenance Control Commands".)

CLOCK MARGIN

This indicator is illuminated whenever the system clock
frequency is above or below the normal value (usually as
a result of maintenance and/or diagnostic activities; see SET

LOW CLOCK MARGINS and SET HIGH CLOCK MARGINS

commands, under "Maintenance Control Commands").

POWER MARGIN

This indicator is illuminated whenever any power supply
within the computer system has its low margin switch set.

SENSE SWITCH

These four indicators display the status of the four sense
switches. Each indicator is appropriately marked (1, 2,
3, 4) and is illuminated only when the corresponding sense
switch is on.

ALARM

This indicator is illuminated whenever the system Alarm
flip-flog has been set, signifying that a condition has
occurred which requires the attention of the operator. This
visual alarm may also be augmented with an audio alarm

(see ALARM AUDIO, below).

IDLE

This indicator is illuminated whenever the BP operations
have been interrupted by the ECS. When the system is in
the IDLE state, the BP will fetch and store data or execute
instructions only upon request from the System Control Con=-
sole. The BP states (RUN, WAIT, or HALT) are only de-
fined when the BP is executing instructions,

MARGIN MARGIN
PRIMARY POWER

MODE/FAULT SENSE SWITCH
POWER
on POWER FAULT 1 IDLE RUN

D MAINTENANCE 2
MODE

INTERLEAVE 3
DISABLE

CLOCK POWER ALARM

BP _STATUS NO. ALARM AUDIO SCC FUNCTIONS REMOTE CHANNEL MAINT MODE

g i
o VI

__SINGLE__
CLOCK

WAIT HALT @ ENABLE DISABLE e o

on
\/ LR X

DiSPLAY
SELECT

OCH
ENABLE

O

®# 1 23'4 5 6 718 9 o mh213 41506 178wl n2220

l Oc OCIO co OIG OOOKCO OIO OOOICSOONG COIC:O oo I
24 25 26 27

= | ST 0990 0000

Figure 15, System Control Panel

162 Control Commands

BP STATUS AND NO.

This group of indicators permits the processor address
(usually 0) and current internal state (RUN, WAIT, or
HALT) of the BP to be displayed, While executing in-
structions, the BP is normally in the RUN or WAIT state,
The HALT state isentered only when an address halt occurs,
the processor disable is on (see " Operating Procedures and
Information") or an irrecoverable processor fault occurs.
When the system is in the IDLE state as a result of power
on, a Z°HLT command, or a p¢ command, only the processor
address is lighted and RUN, WAIT, and HALT indicators
are extinguished.

ALARM AUDIO

This 4-position rotary switch controls the connection and
volume of a loudspeaker, and also permits all indicators
(except POWER ON and PRIMARY POWER) on the SCP to
be tested. When this swiich is in the OFF position, the
loudspeaker is disconnected. Note that this switch does
not inhibit the ALARM indicator. When this switch is in
the LOW position, the loudspeaker is connected and the
volume is set to a low level. When this switch is in the
HIGH position, the loudspecker is connected and the
volume is set to a high level. When this switch is held in
the LAMP TEST position, all back-lighted indicators should
illuminate, simultaneously. The switch returns to the
HIGH position when released.

SCC FUNCTIONS

This switch controis the functional capabiliities of the Sys-
tem Control Console(s). When this switch is in the ENABLE
position, the SCC device(s) may perform the various con-
trol functions atiributed to a System Control Console.
Certain control functions require the system to be in the
IDLE state while others (as described under "Maintenance
Control Commands") require the MAINT MODE switch to
be in the ON position.

When the SCC FUNCTIONS switch is in the DISABLE
position, the conirol functions that may be entered from
the control console (to interact with operating software)
are limited to the following:

1. Operator requested interrupt (Z°1),

2. Read Sense Switches (ZCSSW),

3. Set Sense Switches (Z°SS#).

The operator may lock out potentially disruptive control

commands when the operating software isrunning by setting

the SCC FUNCTIONS switch to DISABLE.

REMOTE CHANNEL

This 3-position rotary switch controls the manner in which
the alternate and remote consoles may operate. When this
switch is in the SCC position, the alternate and remote

consoles may be connected in parallel with the System
Control Console and may perform the same control func-
tions as the local control device. The remote console also
requires a manual connection through the RD1 data set.
Note that any restrictions upon the control functions im-
posed upon the local control device by the SCC FUNC-
TIONS switch being in the DISABLE position also apply

to both consoles. Either the alternate or remote console
is selected for input by the ALTSEL switch on the Con-
figuration Confrol Panel (see Chapter 6).

When the REMOTE CHANNEL switch isinthe OFF position,
the remote device is disconnected from the ECS at the data
set (if present). The alternate console functions in the I/O
mode.

When this switch is in the /O position, the alternate and
remote consoles operate strictly as I/O devices communi-
cating with the computer system via IOP subchannel address
X'0OB!. Only one device is selected for input at a time by
the ALTSEL switch on the Configuration Control Panel
(see Chapter 6).

MAINT MODE

During normal operations, this switch is placed in the OFF
position. During maintenance and/or diagnostic activies,
this switch may be placed in the ON position or momentar=-
ily held in the RESET position (switch automatically returns
to the ON position when released). In addition to causing
the MAINTENANCE MODE indicator to become illumi-
nated when placed in the ON position, the switch also en-
ables certain hardware controls and allows their associated
control commands to be entered from the operator's control
console (see "Maintenance Control Commands"). This
interlocking feature prevents inadverfent adverse effects
upon the current program.

Caution should be exercised in activating RESET, since
this position (equivalent to the SCC SUPER RESET com-
mand) causes all components of the system to be reset and
initialized.

SELECT DISPLAY

These nine switches, labeled CCP/SCSR and 0 through 7,
are used to specify the binary address of any one of up to
256 Single Clock Status Registers and up to 32 Configura-
tion Status Registers or Read Direct Mode 9 Status Reg-
isters whose content is to be displayed by the 32 binary

indicators, labeled 0 through 31.

When the CCP/SCSR switch is in the SCSR position,
switches O through 3 specify the cluster address and
switches 4 through 7 specify the element address of ‘the
Single Clock Status Register whose content is to be
displayed.

Control Commands 163

When the CCP/SCSR switch is in the CCP position and
switch O is in the "0" position, switches 3 through 7
specify the binary address of the cabinet whose Read Direct
Mode 9 Status Register is to be displayed by the 32 panel
indicators.

When the CCP/SCSR switch is in the CCP position and
switch O is in the "1" position, switches3 through 7 specify
the binary address of the cabinet whose 16-bit Configura-
tion Status Register istobe displayed by the 16 lower-order
indicators.

SINGLE CLOCK ENABLE

This switch stops all central system clocks in the same
manner as the Z°CLK command. Activating this switch
when the basic processor is performing normal data processing
may have an adverse effect on any active 1/O operations.
To prevent inadvertent activation of this control, it is
disabled unless the MAINT MODE switch is in the ON
position.

SINGLE CLOCK STEP

This switch is active only when in Single Clock Mode or
when the Single Clock Enable switch is active. When
active, this switch causes one system clock to be issued
each time it is placed in the STEP position. The new
single clock status, as selected by the MODE and SELECT
switches, may be monitored via the 32 binary indicators
on the System Control Panel; no display is generated on the
System Control Console by activation of the SCP Single
Clock Step switch.

OPERATING PROCEDURES AND INFORMATION

required by either the operator or maintenance/diagnostic
personnel.

This section contains reference information which may be

LOAD OPERATION DETAILS

The first executed instruction of the bootstrap program (in
location X'26') loads general register 0 with the address of
the first I/O command doubleword (IOCD). The 1/O address
for the SIO instruction in location X'27' is the 13 low-order
bits of location X'25' (which have been set equal to the load
unit address asaresu!t of the NORMAL LOAD, ZCLDN####,
command). During execution of the SIO instruction, gen-
eral register 0 points to locations X'20' and X'21' as the
first IOCD for the selected device. This IOCD contains
an order to the selected peripheral device to read 88 (X'58")
bytes of data into consecutive memory locations beginning
at word location X'2A' (byte location X'A8'). At the end

164 Control Commands

of the Read operation, neither data chaining nor command
chaining is called for in the IOCD. The Suppress Incorrect
Length (SIL) flag is set to 1 so that an incorrect length in-
dication will not cause a Transmission Error Halt. After the
SIO instruction has been executed, the basic processor executes
a TIO instruction with the same effective addressas the SIO
instruction. The TIO instruction is coded to accept only
condition code data from the IOP. The BCS instruction (in
location X'29") will cause a branch to X'22' (a LOAD
IMMEDIATE instruction), if either CC1 or CC2 is set to 1.
Execution of the LOAD IMMEDIATE instruction at X'22'
loads a count of X'10029' into general register 1. The fol-
lowing BDR instruction at location X'23' uses this as a
"delay" count before executing the BCR instruction in lo-
cation X'24', which unconditionally branches to the TIO
instruction in location X'28'. In normal operations, CC1 is
reset to 0 and CC2 remains set to 1 until the device can
accept another SIO instruction. At that time, the next
instruction is taken from location X'2A'.

If a Transmission Error or equipment malfunction is detected
by either the device or the IOP, the IOP instructs the
device to halt and fo initiate an "unusual end" interrupt
signal (as specified by appropriate flags in the IOCD, de-
scribed in Chapter 4). The "unusual end" interrupt will
be ignored since all interrupt levels have been Disarmed
and Disabled by the system reset during the load sequence.
The device will not accept another SIO while the interrupt
is pending and the BCS instruction in location X'29' will
continue to branch to location X'22'. The correct operator
action at this point is to repeat the NORMAL LOAD,
ZCLDN#### command. If there is no I/O address recog-
nition of the load unit, the SIO instruction will not cause
any 1/O action and CC1 will continue to be set to 1 by the
SIO and TIO instructions causing the BCS instruction to
branch.

FETCHING and STORING DATA

The following examples illustrate how diagnostic control
(P-Mode) commands may be used to display and alter the
within the system. Control commands, as entered from a
keyboard device functioning as the System Control Con-
sole, are shown in the first column. The resulting printouts
are shown in the second column. The third column of in-
formation is an explanation of the functions performed by
the different control commands.

Input Printout Function

pe 0:DDDDDDDD @ 80000000 Enter P-Mode of
operations; contents
of Q register 0 is
normally displayed.

100/ 100/ Select and display

0:DDDDDDDD @ 00000100

contents of memory
location X'100',

Input Printout Function appropriate control information to perform maintenance

or diagnostic functions, such as halting and resetting the

5M 5M Store X'5' into the basic processor, setting address hold, and activating vari-
0:00000005 @ 00000100 currently selected ous fault detection controls. During normal operations it
memory location. should not be necessary to access this word. The contents
of the Processor Control Word are not affected by either
1 1 Increment address processor or system reset, but are automatically set to zero
0:DDDDDDDD @ 00000101 of currently selected (default condition) during power-on sequencing and by
memory location and the SUPER RESET command. The bit assignments of the
display. Processor Control Word (register Q30) are listed and de-

scribed in Table 23,

Note that all P-Mode accesses are qualified by address map-

ping bits and

Write Lock keys in the Program Status Words.
. ADDRESS COMPARE WORD

PROCESSOR CONTROL WORD The Address Compare Word is located in register Q31 and

contains parameters defining the type of comparison and
The Processor Control Word resides in the processor internal the desired action (alarm, halt, or none) on detecting an
addressable register, Q30. This register may be loaded with address compare. (See Table 24.)

Table 23, Bit Assignments and Description, Processor Control Word, Register Q30 (X'IE')

Bit

Position Description

0 Retry Inhibit:
If this bit is a 0, the basic processor will automatically retry the instruction which caused the frap to
location X'4C'; if this bit is a 1, the basic processor is inhibited from retrying the instruction which
caused the frap to location X'4C',

1 Parity Check Inhibit:
| Foy N S L RN A 0 WL F U Sy AL DR o » JOU JIP I NEPINPUSOQIE | SO, D Ry [N BRI I O U T PUPE D O R X S
It MWD e 1 G U, Pu"ly \f"CU'\.'IE Vi N lcgl)lcl NItV 12 SIIVITU, 3L 11D Wi 10 v l, Wl'ly AT L—LOY N) |3
of R register transactions is inhibited,

2 Watchdog Timer Override:
If this bit is a 0, the watchdog timer is allowed to count; if this bit is a 1, the watchdog timer is inhib=-
ited from counting and the machine will not execute the Watchdog Timer Trap.

3 Watchdog Timer Alarm:
If this bit is a 0, the Watchdog Timer Trap is enabled; if this bit is a 1, the Watchdog Timer Trap is
inhibited. When a timeout occurs, a system reset is generated and the system will run to timeout
again, This provides a dynamic loop for isolating the cause of the timeout.

4~5 Reserved (must be coded as zeros).

6 Address Hold:
If this bit is a 0, the address hold is disabled; if this bit is a 1, the program counter is inhibited from
counting (incrementing) causing the machine to loop on the selected instruction (i.e., when themachine
is returned fo RUN mode, the instruction pointed to by the program counter is executed continuously).

7 Processor Halt:
If this bit is a 0, the processor is allowed to run under the control of system and P-Mode controls;
If this bit is a 1, the processor is forced into the HALT condition.

8-15 Reserved,

16-31 Load device address.

Control Commands 165

Table 24. Bit Assignments, Address Compare Register Q31 (X'1F')

Bit
Position Status Significance
0 1 Selects mapped address comparison.
0 Selects unmapped address comparison.
1 1 Selects address comparison during instruction access only.
0 Selects address comparison for all memory cycles.
2 1 Selects comparisons only during memory write cycle.
0 Selects all memory cycle comparisons.
3 1 Selects page comparisons.
0 Selects word comparisons.
4 1 System turns on audible alarm for 220 microseconds each fime an Address Compare occurs
(maximum frequency 1KHz).
0 Address match alarm is disabled.
5 1 The processor is forced into the HALT state when an Address Compare occurs.
0 Address Halt disabled.
6-7 - Reserved.
8-31 - Comparison address field.
166 Control Commands

6. SYSTEM CONFIGURATION CONTROL

Pooled resources along with flexible configuration control
provide a high degree of continuous availability. If a
problem occurs in an individual unit of a resource pool,
the system may allow that unit to be isolated with a loss
only in capacity but no loss of functional capability,
assuming there is an additional unit of that type in the
system that can absorb the added load. Specialized units
can be duplicated (with all units being normally used,
where possible) and configuration controls used to divert
the input from one to the other in the event of a failure.

Chapter 2 describes the system organization and Chapter 5
discusses system operational control. This chapter de-
scribes the Configuration Control Panel (CCP), which serves
as the principal element for controlling and modifying the
configuration of the system.

CONFIGURATION CONTROL PANEL (CCP)

The CCP provides the capability for enabling and disabling
units in the system. It accomplishes this with centrally
located manual selection switches used for the following
functions:

1. Establish starting addresses for all memory units in the
system.

2. Enable or disable memory ports.
3. Enable or disable individual units and clusters.
4. Control the power throughout the system.

The Configuration Control Panel is mounted within the end-
bell assembly at the end of the row of cabinets containing
the chassis assemblies for the MUs, BP, and other system
components. On the outer surface of the endbell assembly
is the System Control Panel (described and illustrated in
Chapter 5). Access is gained to the CCP by opening the
hinged endbell assembly (see Figure 16).

A CCP has six rows of 22 toggle switches and two lamp in-
dicators each. A row may control a memory unit, processor
cluster, or system control processor. (See Figure 17, and
Tables 25 and 26.) The active logic associated with each
row of switches and indicators is located within each pro-
cessor cluster or memory unit itself. Above each row is a
marker strip that identifies the function of each switch. The

configuration control is designed in a modular manner. As
the system grows, previously unused rows on the panel can
be used (up to the panel's maximum of six), and an addi-
tional panel may be added. Two panels represent the max-
imum configuration for one endbell assembly.

Note: The Configuration Control Panel does not contain
operational controls as the System Control Panel
does. The CCP switches are initially positioned
during system configuration and are not normally
repositioned during system operation.

CONFIGURATION CONTROL STATUS WORD

A program may read settings of the panel switches, type of
unit, and options installed. A READ DIRECT (RD) in-
struction using the chassis address of the cluster or unit
as an address allows the program to determine the con-
figuration status of a particular processor cluster or memory
unit, for example. (The chassis address assignment repre-
sents the chassis' physical location relative to the endbell
assembly.) (See Figure 16.)

The configuration control status of a panel read by the
RD instruction is a 32-bit status word consisting of panel
switch settings and type information. (The RD instruc-
tion is described in Chapter 3, "Control Instructions".)
The logic for these program pProvisions resides in each
unit.

In addition to reading configuration status information
via a READ DIRECT (RD) instruction in a program, the
status information may also be obtained by manual switch
selection on the System Control Panel; the 32-bit status
word is displayed on a bank of lamp indicators. (See
Chapter 5 for a discussion of the System Control Panel
features.)

CONFIGURATION BUS

The configuration bus connects to each processor cluster and
provides a path for the system control processor to select and
read the switch settings on the CCP for the selected unit via
an RD instruction.

System Configuration Control 167

System Control Panel (SCP) Address 00101F

/— Endbell Assembly /— Identity Tag

Ce] [a] | /l=] [24]

Chassis B | |Chassis A Chassis B | | Chassis A Chassis B | | Chassis A

Cabinet 0 Cabinet 1 Cabinet 2 Cabinet 3

Direction of System Expansion ——————=

Configuration Control Panel (CCP)

(Viewed from Module Side)

fSmrting from the endbell as cabinet number 0, the most significant four bits designate physical cabinet number.
The least significant bit designates the back panel location in the halves of the cabinet.

Figure 16. Chassis Physical Configuration

PROCESSOR [REAL TIME CLOCK SEL———————
POWER POWER SYSTEM CLOCK ’_— ADDRESS 1 e mior DIO —FSEL oo RCl— —Ric2— i Bl n
NNORM ON SEL SEL 2 ENABLE ENABLE ENABLE ALTSEL FSELA 80 stos0 s)

vw@@OOOOOOOOOOOOOOOOOOOOO

— _| PORT ENABLE STARTING ADDRESS E——
r____. _.—l

POWER POWER SYSTEM CLOCK ADDRESS I —

NNORM ON SEL SEL INTLY 512 S13 SK S15 $18 s17 $18

w08 0000000000000000000000

@ Indicator

O Switch

168

Figure 17. Sample Rows of CCP Switches

Configuration Control Panel (CCP)

Table 25, Functions of Processor Cluster Configuration Control Panel Row

Label Switch/Indicator Function

POWER 1 indicator Lighted when unif power is shut down due to abnormal operational

NNORM condition.

POWER 1 switch When in up or middle position, enables power-on control in the

ON unit power supply. (Middle position inhibits the unit reset signal.)
When in down position, power to unit is off.

SYSTEM 1 switch Selects the processor bus to which the processor cluster is fo be

SEL connected (up is processor bus A, down is B).

CLOCK 1 switch Selects the clock source (up, A or down, B) for the unit clock

SEL subsystem.

PROCESSOR 3 switches Establishes the logical address of the cluster within a group of

ADDRESS processor clusters.

Note: The 5-bit chassis location number and not the processor
address is used in addressing the configuration switches for
a given unit by the RD instruction directed to the Con-
figuration Control Panel.

BP 1 switch When in down position, inhibits the BP from operating on the

ENABLE internal bus.

MIOP 1 switch When in down position, inhibits the MIOP from operating on the

ENABLE internal bus.

DIO 1 switch When in down position, inhibits external DIO interface.

ENABLE

ALTSEL 1 switch Selects either the remote console (down position) or alternate
operator's console (up position) to enter data on the Remote
Channel Interface.

FSELA 1 switch Selects communications frequency for the primary operator's
console as follows:

up = same frequency as remote channel

down = 1200 baud

Note: The 1200 baud selection is effective only if the REMOTE
CHANNEL switch on the System Control Panel is not in
the SCC position.

FSELBO/FSELB1 2 switches Selects communications frequency for the alternate operator's
console and the Remote Diagnostic Interface (Remote Channel) as
follows:

BO Bl Rate (baud)
0 0 110

0 1 1200

1 0 unspecified
1 1 300

Configuration Control Panel (CCP) 169

Table 25. Functions of Processor Cluster Configuration Control Panel Row (cont.)

Label

Switch/Indicator

Function

REAL-TIME CLOCK SEL

8 switches

Four groups (labeled RTC1, RTC2, RTC3, and STC) of 2 switches
each (labeled SO and S1), used for selecting the real=time clock
frequencies; each of the three real-time clock counters and the one
subjective clock counter may have their frequencies selected by the
proper combination of the two switches associated with each counter:

SO0 Sl Frequency (Hz)

0 500

1 External real-time clock source
1 0 2000
1 1 Power line

Table 26. Functions of Memory Unit Configuration Control Panel Row

Label Switch/Indicator Function

POWER 1 indicator Lighted when unit power is shut down due to abnormal operational

NNORM condition.

POWER 1 switch When in up or middle position, enables power-on control in the

ON unit power supply. (Middle position inhibits the unit reset signal.)
When in down position, power to unit is off.

SYSTEM 1 switch Determines to which central shared resources the reset signal is

SEL connected.

CLOCK 1 switch Selects which clock the memory shall use; up position selects system

SEL clock A, down position selects system clock B.

UNIT 3 switches Establishes the logical address of the unit within a group of memory

ADDRESS units.

PORT ENABLE 6 switches Down position disables, up enables, corresponding port when setting
up different configuration in the system. Switch 1 (leftmost) cor~
responds to port 1, etc., and switch 6 corresponds fo port 6.

INTLV 1 switch Up position selects interleave addressing mode in each memory unit;

down position means no interleaving in any memory unit. Only
two-way interleaving is allowed. The unit interleaved with this
memory unit must have its interleave switch on and be in the appro~
priate addressing range. The interleave logic operates only for
memory units with a number corresponding to a power of 2: i.e.,
16K, 32K words; if other than a power of 2, the interleave signal

it receives is ignored. Interleaving is permissible only:

1. Between two memory units of the same size.
2. Provided the two memory units cover an addressing range that

is continuous and starts at a multiple of the size of the two
memory units taken together.

170 Configuration Conirol Panel (CCP)

Table 26. Functions of Memory Unit Configuration Control Panel Row (cont.)

Label

Switch/Indicator

Function

STARTING ADDRESS

7 switches

Used to set the starting addresses of the memory units. From left to
right the switches are labeled S12, S13, S14, S15, S16, S17, and
S18. Using the switches as a 7-position binary field, this allows
memory to address up to 1 million words.

When the memory system comprises memory units of different sizes,
some precautions are necessary to prevent false address recognition
as well as to prevent gaps in the memory range.

1. If all memory units have sizes that are powers of two, they can
all be different; they must, however, be assigned in order of

decreasing size in the address continuum.

For instance, three memory units can be used in this manner:

Memory Unit No. Size Address Range
1 64K words 0 to 64K words

32K words 64 to 96K words
16K words 96 to 112K words

2. If a memory unit has a size that is not a power of two, it must
be situated in a memory system that satisfies the following
rules:

a. All other memory units must have sizes that are a power
of two.

b. The starting address of the non-power-of-two unit must be
a multiple of the next power of two above the size of that
unit.

c. The memory unit whose size is not a power of two must be
at the upper end of the address range.

Configuration Control Panel (CCP)

171

APPENDIX A. REFERENCE TABLES

This appendix contains the following reference material :

Title

Standard Symbols and Codes

Standard 8-Bit Computer Codes (EBCDIC)
Standard 7-Bit Communication Codes (ANSCII)
Standard Symbol-Code Correspondences
Hexadecimal Arithmetic

Addition Table
Multiplication Table

Table of Powers of Sixteeniq
Table of Powers of Tenyg

Hexadecimal-Decimal Integer Conversion Table
Hexadecimal-Decimal Fraction Conversion Table
Table of Powers of Two

Mathematical Constants

STANDARD SYMBOLS AND CODES

The symbol and code standards described in this publication
are applicable to all Xerox computer products, both hard-

ware and software. They may be expanded or altered from
time to time to meet changing requirements.

The symbols listed here include two types: graphic symbols
and control characters, Graphic symbols are displayable
and printable; control characters are not, Hybrids are SP,
the symbol for a blank space; and DEL, the delete code,
which is not considered a control command.

Three types of code are shown: (1) the 8-bit Xerox Standard
Computer Code, i.e., the Extended Binary-Coded-Decimal
Interchange Code (EBCDIC); (2) the 7-bit American National
Standard Code for Information Interchange (ANSCII); and
(3) the Xerox standard card code.

STANDARD CHARACTER SETS
1. EBCDIC

57-character set: uppercase letters, numerals, space,
ad & - / . < > () + |1 § ¢
: 0, % t @ v =

63-character set: same as above plus £ ! ?
" -
_

89-character set: same as 63-character set plus
lowercase letters

2. ANSCII
64-character set: uppercase letters, numerals, space,
and 1 " $§ % & ' () * + , -
/NG s = <> 2 @ []
A # -

95-character set: same as above plus lowercase letters
ond { } 1 ~

CONTROL CODES

In addition to the standard character sets listed above, the
symbo! repertoire includes 37 control codes and the hybrid
code DEL (hybrid code 5P is considered part of aii charac-
ter sets). These are listed in the table titled Standard

Symbo|-Code Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all standard codes will be
retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to "00". DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low-
order bits equal.

Appendix A 173

STANDARD 8-BIT COMPUTER CODES (EBCDIC)

Most Significant Digits NOTES:
Hexadecimal 0 1 2 3 4 5 6 7 8 9 A
exodecima 8 ¢ b E F 1 The characters ~ \{ } [] are ANSCII
Binary 0000|0001 | 0010]0011]0100:0101 | 0110|0111 ;1000|1001 [1010 {1011} 11001101 [1110} 1111 characters that do not appear in any of the
| - EBCDIC-based character sets, though they
o | o000 NULIDLE | ds P& _ //é 0 are shown in the EBCDIC table.
v 7/ . 1 2 The characters £ | m appear in the 63- and
1| o SOH|DCT | s %%7/ ;///‘ °] \ A J ! 89-character EBCDIC sets but not in either
1 | of the ANSClI-based sets. However, Xerox
2 | 000 STX |bC2) & %7%% b k N { 8 K s 2 software translates the characters
. 1 into ANSCII characters as follows:
3 | oon ETX |DC3| si ;///‘;//7//////4 el e b lellrt]s
1
4 1 DC4 / / // d D M
0100 EOT | DC (//////é{é Ié mlu | ui4 EBCDIC = ANSCII
LF 24 e 1
R ERKIL HT | L I Will not be assigned] e n v] E N| V|5 y v (6-0)
; mN
2 1
|6 | ono ACK | SYN //,//;//A flo|w Flo|wles | L (7-12)
< -— ~ (7-14)
I om BEL |ETB '///,//////%/// g ip| x G| P|X |7 (
Sl s | 1000 E;zMCAN 7 //// //// h|qly H|Q|Y|s 3 The EBCDIC control codes in columns 0
& 540 2, % and 1 and their binary representation are
7 ry repr
HEARE ENQ| EM ////// // i r z 1 R 4 9 exactly the some as those in the ANSCII
s 2/ 4 I/ 7 7 7 7 table, except for two interchanges: LF/NL
|~ ith NAK, ond HT with ENQ.
A | 1010 NAK| SUB £ /%/A A/ w wi ond HT wi
B 1011 VT | ESC $ R I %7/////// 4 Characters enclosed in heavy lines are
SIS A included only in the standard 63- and
C | 1100 FF | FS <l *|%|@ ¥ Will not be assigned 89-character EBCDIC sets.
//// ;/// ;1// ,////
D | 1noi1 CR| GS () ! //////// 5 These characters are included only in the
= 7 4 7// 2 /V Z tandard 89~character EBCDIC set.
£ | 1m0 so| ks sl > = / / /
s Z A////V% j,
| 2] 0%
Flnm st | us - % 4 7/ DEL
[E——— - ~ '\ - —
3 4 H
Most Significant Digits NOTE
Decimal NOTES:
rows) (col's.) — 0 1 2 3 4|5 6 7
| | Binary 1 <0001 x001 |x010 | x011 x100 <101 | x110 <111 1 Most significant bit, added for 8-bit format, is either 0 or even parity.
o | 0000 NuLlDLEl sP | o @ p N p 2 Columns 0-1 are control codes.
5 3 Columns 2-5 correspond to the 64-character ANSCII set.
! o001 SOH| bct) ! ! AlQ@lela Columns 2-7 correspond to the 95-character ANSCII set.
2 0010 STX | DC2| " 2 B R b r
4 On many current teletypes, the symbol
3 0011 ETX | DC3| # 3 C S c s - R e n
o is 1 {9-14)
4| 010 EOT|DC4| $ | 4 | D | T | d |t s — (5-15)
s oo enalnakl % 1 s e lulels ~ i ESC or ALTMODE control (7-14)
2 F v f and none of the symbols appearing in columns 6-7 are provided. Except for the three
C_) 6 | ono ACKISYN) & 6 v symbol differences noted above, therefore, such teletypes provide all the characters in
§ 21 om BEL |ETB | 7 Glwl|ag w the 64-character ANSCI1 set. (The Xerox 7015 Remote Keyboard Printer provides the
= 64-character ANSCII set also, but prints ~as A.)
5 8| 1000 BS [CAN| (| 8 | H | X | h| x
wy
§ 9 | 1001 HT JEM |) | 91T | Y] iy
"o | 1010 LE Tsus | + 1z =
NL]
11 101 VT [ESC | + ; K { k {
121 100 FF | FS <l L i\ 1 !
13| 1101 cRiGs| -1 =|M[]| m]|}
14| 1m0 SO | RS ST N ~* a |~
151 1 stjus| /] 2| o] _* o |DE

174 Appendix A

STANDARD SYMBOL-CODE CORRESPONDENCES

EBCDIC! H
Aex. | Dec. Symbol Card Code ANSCII Meaning Remarks
00 0 NUL 12-0-9-8-1 0-0 null 00 through 23 and 2F are control codes.
01 1 SOH 12-9-1 0-1 start of header ’
02 2 STX 12-9-2 0-2 start of text
03 3 ETX 12-9-3 0-3 end of fext
04 4 EOT 12-9-4 0-4 end of transmission
05 5 HT 12-9-5 0-9 horizontal tab
06 6 ACK 12-9-%6 0-6 acknowledge (positive)
07 7 BEL 12-9-7 0-7 bell
08 8 BSor EOM 12-9-8 0-8 backspace or end of message
09 9 ENQ 12-9-8-1 0-5 enquiry
0A |10 NAK 12-9-8-2 1-5 negative acknowledge
o8 |1 vT 12-9-8-3 0-11 vertical tab
oc |12 FF 12-9-8-4 0-12 form feed
oD |13 CR 12-9-8-5 0-13 carriage return
OE |14 SO 12-9-8-6 0-14 shift out
OF |15 St 12-9-8-7 0-15 shift in
10 16 DLE 12-11-9-8-1 1-0 data link escape
11 17 DC1 11-9-1 1-1 device control 1
12 (18 DC2 11-9-2 1-2 device control 2
13 |19 DC3 11-9-3 1-3 device control 3
14 |20 DC4 11-9-4 1-4 device control 4
15 |21 LF or NL 11-9-5 0-10 line feed or new line ,
16 |22 SYN 11-9-% 1-6 sync
17 |23 ETB 11-9-7 1-7 end of transmission block
18 |24 CAN 11-9-8 1-8 cancel
19 125 EM 11-9-8-1 1-9 end of medium
1A |26 SuB 11-9-8-2 1-10 substitute Replaces characters with parity error.
1B {27 ESC 11-9-8-3 1-11 escape
1C |28 FS 11-9-8-4 1-12 file separator
1D |29 GS 11-9-8-5 1-13 group separator
1€ |30 RS 11-9-8-6 1-14 record separator
1F |31 uUs 11-9-8-7 1-15 unit separator
20 |32 ds 11-0-9-8-1 digit selector 20 through 23 are used with
21 122 £ 2-9-1 significance start EDIT BYTE STRINC {ERc)
22 (34 fs 0-9-2 field separation instruction — not input/output con-
23 |35 si 0-9-3 immediate significance start trol codes.
24 (36 0-9-4 24 through 2E are unassigned.
25 |37 0-9-5
26 (38 0-9-6
27 |39 0-9-7
28 |40 0-9-8
29 |41 0-9-8-1
2A |42 0-9-8-2
2B |43 0-9-8-3
2C |44 0-9-8-4
2D |45 0-9-8~5
2E | 46 0-9-8-6
2F |47 0-9-8-7
30 |48 12-11-0-9-8-1 30 through 3F are unassigned.
31 49 9-1
32 150 9-2
33 151 9-3
34 |52 9-4
35 |53 9-5
36 |54 9-6
37 |55 9-7
38 {56 9-8
39 |57 9-8-1
3A |58 9-8-2
3B |59 9-8-3
3C |60 9-8-4
3D jé6l 9-8-5
3 {62 9-8-6
3F |63 9-8-7

rHexodecimcil and decimal notation.

tt . .
Decimal notation (column-row).

Appendix A

175

STANDARD SYMBOL-CODE CORRESPONDENCES {cont.)

EBCDIC! Symbol Card Code Ansci' Meaning Remarks
Hex. | Dec.
40 64 SP blank 2-0 blank
41 65 12-0-9-1 41 through 49 will not be assigned.
42 66 12-0-9-2
43 67 12-0-9-3
44 68 12-0-9-4
45 69 12-0-9-5
46 70 12-0-9-6
47 71 12-0-9-7
48 72 12-0-9-8
49 73 12-8-1
4A 74 £ort 12-8-2 -0 cent or accent grave Accent grave used for left single
48 75 . 12-8-3 2-14 period quote.
4C 76 < 12-8-4 3-12 less than
4D 77 (12-8-5 2-8 left parenthesis
4E 78 + 12-8-6 2-11 plus
4F 79 | or | 12-8-7 7-12 vertical bar or broken bar
50 80 & 12 2-6 ampersand
51 81 12-11-9-1 51 through 59 will not be assigned.
52 | 82 12-11-9-2
53 83 12-11-9-3
54 84 12-11-9-4
55 85 12-11-9-5
56 86 12-11-9-6
57 87 12-11-9-7
58 88 12-11-9-8
59 89 11-8-1
5A 90 ! 11-8-2 2-1 exclamation point
58 N S 11-8-3 2-4 dollars
5C 92 * 11-8-4 2-10 asterisk
5D 93) 11-8-5 2-9 right parenthesis
5E 94 ; 11-8-6 3-11 semicolon
5F 95 ~or o 11-8-7 714 tilde or logical not
60 96 - 11 2-1 minus, dash, hyphen
61 97 / 0-1 2-1 slash
62 98 11-0-9-2 62 through 69 will not be assigned.
63 99 11-0-9-3
64 {100 11-0-9-4
65 |101 11-0-9-5
66 102 11-0-9-6
67 103 11-0-9-7
68 104 11-0-9-8
69 105 0-8-1
6A 106 - 12-1 5-14 circumflex On Model 7015 is A (caret).
6B 107 , 0-8-3 2-12 comma
&C 108 % 0-8-4 2-5 percent
6D {109 - 0-8-5 5-15 underline Underline is sometimes called "break
6E |110 > 0-8-6 3-14 greater than character"; may be printed along
6F m ? 0-8-7 -15 question mark bottom of character line.
70 |12 12-11-0 70 through 79 will not be assigned.
71 13 12-11-0-9-1
72 114 12-11-0-9-2
73 115 12-11-0-9-3
74 116 12-11-0-9-4
75 117 12-11-0-9-5
76 118 12-11-0-9-6
77 119 12-11-0-9-7
78 120 12-11-0-9-8
79 121 8-1
7A 1122 : 8-2 3-10 colon
78 [123 4 8-3 2-3 number
7C 124 @ 84 4-0 at
7D [125 ! 8-5 2-7 apostrophe (right single quote)
7E 126 = 8-6 3-13 equals
7F 127 " 8-7 2-2 quotation mark

fHexodet:imcxl and decimal notation.

tt . .

Decimal notation (column-row).

176 Appendix A

STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

t
HE:‘C_D:)CGC. Symbol Card Code Ansci't Meaning Remarks
80 |128 12-0-8-1 80 is unassigned.
81 |129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 |130 b 12-0-2 6-2 lowercase alphabet. Available
83 131 c 12-0-3 6-3 only in standard 89- and 95~
84 132 d 12-0-4 6-4 character sets.
85 133 e 12-0-5 6-5
86 (134 f 12-0-6 6-6
87 |135 g 12-0-7 6~7
88 |136 h 12-0-8 6-8
89 |137 i 12-0-9 6-9
8A |138 12-0-8-2 8A through 90 are unassigned.
8B 139 12-0-8-3
8C |140 12-0-8-4
8D |41 12-0-8-5
8E 142 12-0-8-6
8F |143 12-0-8-7
90 |144 12-11-8-1
91 |145 i 12-11-1 6-10
92 1146 k 12-11-2 6-11
93 147 | 12-11-3 6-12
94 1148 m 12-11-4 6-13
95 149 n 12-11-5 6-14
96 150 o 12-11-6 6-15
97 151 [12-11-7 7-0
98 |[152 q 12-11-8 7-1
99 {153 r 12-11-9 7-2
9A |154 12-11-8-2 9A through Al are unassigned.
98 {155 12-11-8-3
9C (156 12-11-8-4
90 (157 12-11-8-5
9E 158 12-11-8-6
9F 159 12-11-8-7
A0 | 160 11-0-8-1
Al 141 11041
A2 |162 s 11-0-2 7-3
A3 |163 t 11-0-3 7-4
Ad | 164 v 11-0-4 7-5
A5 |165 v 11-0-5 7-6
A6 | 166 w 11-0-6 7-7
A7 |167 X 11-0-7 7-8
A8 |18 y 11-0-8 7-9
A? | 169 z 11-0-9 7-10
AA 170 11-0-8-2 AA through B0 are unassigned.
AB | 171 11-0-8-3
AC 172 11-0-8-4
AD |173 11-0-8-5
AE | 174 11-0-8-6
AF [175 11-0-8-7
BO 176 12-11-0-8-1
Bl (177 \ 12-11-0-1 5-12 backslash
B2 178 { 12-11-0-2 7-11 left brace
B3 [179 } 12-11-0-3 7-13 right brace
B4 |180 12-11-0-4 5-11 left bracket
B5 {181 5 12-11-0-5 5-13 right bracket
B6 |[182 12-11-0-6 B6 through BF are unassigned.
B7 183 12-11-0-7
B8 |184 12-11-0-8
B? |185 12-11-0-9
BA |186 12-11-0-8-2
BB 187 12-11-0-8-3
BC 188 12-11-0-8-4
BD | 189 12-11-0-8~5
BE | 190 12-11-0-8-6
BF 191 12-11-0-8-7

t . . .
Hexadecimal and decimal notation.

t . .
Decimal notation (column-row).

Appendix A

177

STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

Escpict Symbol | Card Code ANSCI' | Meaning Remarks
Hex. | Dec.
Co |192 12-0 CO is unassigned.
cl | 193 A 12-1 4-1 C1-C9, D1-D9, E2-E9 comprise the
C2 | 194 B 12-2 4-2 uppercase alphabet.
C3 | 195 C 12-3 4-3
C4 | 196 D 12-4 4-4
c5 1197 E 12-5 4-5
C6 | 198 F 12-6 4-6
C7 | 199 G 12-7 4-7
c8 | 200 H 12-8 4-8
Cc9 | 201 I 12~9 4-9
CA | 202 12-0-9-8-2 CA through CF will not be assigned.
CB | 203 12-0-9-8-3
CC | 204 12-0-9-8-4
CD | 205 12-0-9-8-5
CE | 206 12-0-9-8-6
CF | 207 12-0-9-8-7
DO | 208 11-0 DO is unassigned.
D1 209 J 11-1 4-10
D2 |210 K 11-2 4-11
D3 | 211 L 11-3 4-12
D4 | 212 M 11-4 4-13
D5 213 N 11-5 4-14
D6 {214 O 11-6 4-15
D7 |215 P 11-7 5-0
D8 | 216 Q 11-8 5-1
D9 | 217 R 11-9 5-2
DA }218 12-11-9-8-2 DA through DF will not be assigned.
DB | 219 12-11-9-8-3
DC | 220 12-11-9-8-4
DD | 221 12-11-9-8-5
DE | 222 12-11-9-8-6
DF 223 12-11-9-8-7
E0O | 224 0-8-2 EQ, E1 are unassigned.
EV {225 11-0-9-1
E2 | 226 S 0-2 5-3
E3 {227 T 0-3 5-4
E4 | 228 u 0-4 5-5
E5 | 229 \ 0-5 5-6
E6 | 230 w 0-6 5-7
E7 | 23] X 0-7 5-8
E8 | 232 Y 0-8 5-9
E9 | 233 Y4 0-9 5-10
EA | 234 11-0-9-8-2 EA through EF will not be assigned.
EB | 235 11-0-9-8-3
EC | 236 11-0-9-8-4
ED | 237 11-0-9-8-5
EE [238 11-0-9-8-6
EF | 239 11-0-9-8-7
FO |240 0 0 3-0
Fl 241] 1 3-1
F2 |[242 2 2 3-2
F3 243 3 3 3-3
F4 244 4 4 3-4
F5 | 245 5 5 3-5
Fé& | 246 6 6 3-6
F7 {247 7 7 3-7
F8 |248 8 8 3-8
F9 | 249 9 9 3-9
FA | 250 12-11-0-9-8-2 FA through FE will not be assigned.
FB 251 12-11-0-9-8-3
FC | 252 12-11-0-9-8-4
FD | 253 12-11-0-9-8-5
FE | 254 12-11-0-9-8-6
FF | 255 DEL 12-11-0-9-8-7 delete Special — neither graphic nor con-
trol symbol.

t . . .
Hexadecimal and decimal notation.

t . .
! Decimal notation (column-row).

178

Appendix A

HEXADECIMAL ARITHMETIC

ADDITION TABLE
0 1 2 3 4 5 6 7 8 9 A B C D E F
1 02 03 04 05 06 07 08 09 0A 0B oc 0D OE OF 10
2 03 04 05 06 07 08 09 0A 0B 0C 0D OE OF 10 1
3 04 05 06 07 08 09 0A 0B oc 0D OE OF 10 11 12
4 05 06 07 08 09 0A 0B 0C 0D OE OF 10 1n 12 13
06 07 08 09 0A 0B oC 0D OE OF 10 11 12 13 14
6 07 08 09 0A 08 0oc oD OE OF 10 11 12 13 14 15
08 09 0A 0B oC oD OE OF 10 11 12 13 14 15 16
8 09 0A 0B . 0D OE OF 10 11 12 13 14 15 16 17
9 0A 0B 0C 0b OF OF 10 n 12 13 14 15 16 17 18
A 0B oc 0b OE OF 10 11 12 13 14 15 16 17 18 19
B L 0D OE OF 10 11 12 13 14 15 16 17 18 19 1A
C 0D OF OF 10 1n 12 13 14 15 16 17 18 19 1A 1B
0E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F 10 1 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
MULTIPLICATION TABLE
1 2 3 4 5 6 7 8 9 A B C D E F
2 04 06 08 0A 0C OE 10 12 14 16 18 1A 1C 1E
3 06 09 oC OF 12 15 18 1B 1E 2] 24 27 2A 2D
4 08 o0OC 10 14 18 1C 20 24 28 2C 30 34 38 3C
0A OF 14 19 1E 23 28 2D 32 37 3C 41 46 4B
6 0oc 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69
10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
A 14 IE 28 32 3C 46 50 5A 64 6E 78 82 8C 96
B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5
C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4
1A 27 34 4] 4E 5B 68 75 82 8F 9C A9 B6 C3
E 1IC 2A 38 46 54 62 70 7E 8C 9A A8 Bé C4 D2
F 1E 2D 3C 48 5A 69 78 87 96 A5 B4 c3 D2 El

Appendix A

179

180

TABLE OF POWERS OF SIXTEEN 4

8 o 16”
] 0 0.10000 00000 00000 00000 x 10
16 1 0.62500 00000 00000 00000 x 10 '
256 2 0.39062 50000 00000 00000 x 1072
4 096 3 024414 06250 00000 00000 x 1075
65 536 4 0.15258 78906 25000 00000 x 10°%
1 048 576 5 0.95367 43164 06250 00000 x 10°°
16 777 216 6 0.59604 64477 53906 25000 x 107
268 435 456 7 037252 90298 46191 40625 x 10°°
4 294 967 296 8 0.23283 06436 53869 62891 x 107
68 719 476 736 9 0.14551 91522° 83668 51807 x 1070
1099 511 627 776 10 0.90949 47017 72928 23792 x 1072
17 592 186 044 416 n 0.56843 41886 08080 14870 x 107 °
281 474 976 710 656 12 035527 13678 80050 09294 x 1074
4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 107 °
72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 107°
1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 107 '°
TABLE OF POWERS OF TEN
10" n 10"
] 0 1.0000 0000 0000 0000
A] 0.1999 9999 9999 999A
64 2 028F5 C28F 5C28 F5C3 x 167
3E8 3 04189 3748 CG6A7 EF9E x 1672
2710 4 0.68DB 8BAC 710C B296 x 16°
1 86A0 5 0.A7C5 ACA7 1847 8423 x 1674
F 4240 6 0.10C6 F7A0 B5ED 8D37 x 6%
98 9680 7 0.1AD7 F29A BCAF 4858 x 16~
5F5 E100 8 02AF3 1DC4 6118 73BF x 167
3B9A CAOO 9 0.44B8 2FA0 9B5A 52CC x 167
2 5408 E400 10 06DF3 7F67 5EF6 EADF x 16°
17 4876 E800 1" 0.AFEB FFOB CB24 AAFF x 167
E8 D4A5 1000 12 01197 9981 2DEA 1119 x 16
918 4E72 A00O 13 0.1C25 C268 4976 81C2 x 160
5AF3 107A 4000 14 02009 370D 4257 3604 x 167"
3 8D7E A4C6 8000 15 0480 BE7B 9D58 566D x 16 2
23 86F2 6FC1 0000 16 0734A CASF 6226 FOAE x 167
163 4578 5D8A 0000 17 0.8877 AA32 36A4 B449 x 16
DEO BG6B3 A764 0000 18 01272 5DD1 D243 ABA1 x 164
8AC7 2304 89E8 0000 19 0.1D83 C94F B6D2 AC35 x 167

Appendix A

HEXADECMAL-DECIMAL INTEGER CONVERSION TABLE

The table below provides for direct conversions between hexa-
decimal integers in the range 0—FFF and decimal integersin
the range 0—4095. For conversion of larger integers, the
table values may be added to the following figures:

Hexadecimal fractions may be converted to decimal fractions
as follows:

1. Express the hexadecimal fraction as an integer times
167", where n is the number of significant hexadecimal

Hexadecimal ~ Decimal Hexadecimal Decimal places to the right of the hexadecimal point.
01 000 4 096 20 000 131 072 0. CA9BF3,4 = CA9 BF3;, x 1676
02 000 8192 30 000 196 608
03 000 12 288 40 000 262 144 2. Find the decimal equivalent of the hexadecimal integer
04 000 16 384 50 000 327 680
05 000 20 480 60 000 393 216 CA9 BF316 = 13278 19510
06 000 24 576 70 000 458752 '
07 000 28 672 80 000 524 288 3. Multiply the decimal equivalent by 16™
08 000 32768 90 000 589 824
09 000 36 864 AQ 000 655 360 13278 195
0A 000 40 960 B0 000 720 8% x 596 046 448 x 10716
0B 000 45 056 C0 000 786 432 0.791 442 09610
0C 000 49 152 DO 000 851 968
0D 000 53 248 E0 000 917 504 Decimal fractions may be converted to hexadecimal fractions
OE 000 57 344 FO 000 983 040 by successively multiplying the decimal fraction by 16]0.
OF 000 61440 100 000 1 048 576 After each multiplication, the integer portion is removed to
10 000 65 536 200 000 2097 152 form a hexadecimal fraction by building to the right of the
11 000 69 632 300 000 3145728 hexadecimal point. However, since decimal arithmetic is
12 000 73728 400 000 4 194 304 used in this conversion, the integer portion of each product
13 000 77 824 500 000 5 242 880 must be converted to hexadecimal numbers.
14 000 81 920 600 000 6 291 456
15 000 86 016 700 000 7 340 032 Example: Convert 0.895(to its hexadecimal equivalent
16 000 90 112 800 000 8 388 608 0.895
17 000 94 208 900 000 9437 184 ' !
18 000 98 304 AQ0 000 10 485 760 ®_§‘320
19 000 102 400 B0OO 000 11 534 336 / o
1A 000 106 496 C00 000 12 582 912 @]-;-g-
1B 000 110 592 D00 000 13 631 488 :
1C 000 114 688 E00000 14 680 064 CTM
1D 000 118 784 FO0000 15728 640 / — D920
1E 000 122 880 1 000 000 16 777 216
IF 000 126 976 2000 000 33 554 432 0.E51E¢™ 720
0 1 2 3 4 5 6 7 8 9 A B C D E F
000 | 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 | 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 | 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 | 0048 0049 0050 0051 0052 0053 0054 0055 005 0057 0058 0059 0060 0061 0062 0063
040 | 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 | 0080 0081 0082 0083 0084 0085 0085 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 | 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 | 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
080 | 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 | 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 015 0157 0158 0159
0AQ | 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0BO | 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 018 0187 0188 0189 0190 0191
0CO | 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0DO | 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEC | 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 | 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

Appendix A 181

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
100 | 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 | 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 | 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
140 | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 | 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 | 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
180 | 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1AO | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1BO | 0432 0433 0434 0435 04356 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1CO | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D0 | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E0 | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1FO | 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
200 | 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 | 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 | 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 | 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 | 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 | 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 | 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 | 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
280 | 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 | 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A0 | 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B0 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C0 | 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D0 | 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E0 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 | 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
300 | 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 | 0784 0785 078 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 | 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 | 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 | 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 | 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 | 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
380 | 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 | 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A0 | 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B0 | 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C0 | 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D0 | 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E0 | 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1018 1019 1020 1021 1022 1023

1017

182

Appendix A

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
400 | 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 | 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 | 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 | 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
440 | 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 | 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 | 1120 1121 1122 N8 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 | 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
480 | 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 | 1168 1169 1170 1171 1172 1173 1174 1175 176 1177 1178 1179 1180 1181 1182 1183
4A0 | 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 | 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 12N 1212 1213 1214 1215
4C0 [1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 | 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 | 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 | 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
500 | 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 | 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 | 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 | 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
540 | 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 | 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 13%0 1391
570 | 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
580 | 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A0 | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B0 | 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5CO | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D0 | 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E0 | 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F0 | 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
600 | 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 | 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 | 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 | 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
640 | 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 | 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 | 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 | 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
680 | 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 | 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A0 | 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B0 [1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C0 | 1728 1729 1730 1731} 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D0 | 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E0 | 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F0 | 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

Appendix A

183

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
700 | 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 | 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 | 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 | 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
740 | 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 | 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 | 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 | 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
780 | 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 | 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A0 | 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B0 | 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7C0 | 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D0 | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E0 | 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
800 | 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 | 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 | 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 | 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
840 | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 | 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 | 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 | 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2187 2190 2191
890 | 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 | 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B0 | 2224 2225 2226 2227 @ 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8CO | 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D0 | 2256 2257 2258 2259 2260 2261 2262 2263 @ 2264 2265 2266 2267 @ 2268 2269 2270 2271
8E0 | 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F0 | 2288 2289 2290 2291 2292 2293 2294 2295 @ 2296 2297 2298 2299 2300 2301 2302 2303
900 | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 | 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
940 | 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 | 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 | 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
980 | 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
OAD | 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B0 | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9CO | 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 | 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
QE0 | 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F0 | 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
184 Appendix A

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
AQ0 | 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al10 | 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 | 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 | 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A40 | 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6D | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A80 | 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAQ | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO | 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
BOO | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 | 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 | 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B40 | 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 289 2892 2893 2894 2895
B50 | 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 | 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 | 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8O | 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
BP0 | 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO | 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO [2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCO | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO | 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO | 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
C00 | 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 | 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 | 3104 3105 3106 3107 3108 3109 3110 3ill 3112 3113 3114 3115 3116 3117 3118 3119
C30 | 3120 3121 3122 3123 3124 3125 3126 31%7 3128 3129 3130 3131 3132 3133 3134 3135
C40 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 | 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 | 3184 3185 318 3187 3188 3189 3190 319 3192 3193 3194 3195 3196 3197 3198 3199
C80 | 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO | 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC0 | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO | 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO | 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

Appendix A

185

186

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
D00 | 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 | 3344 3345 3346 3347 3348 . 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 339
D40 | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 | 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D80 | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAOD | 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DCO | 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO | 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
EOO | 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E10 | 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E40 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 | 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E80 | 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 | 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO | 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECO | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO | 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO | 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 | 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 | 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F40 | 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 | 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 | 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 | 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F80 | 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 | 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FCO | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO | 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Appendix A

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 000000 .00000 00000 .40 000000 .25000 00000 .80 000000 .50000 00000 .C0 000000 .75000 00000
.01 000000 .00390 62500 .41 000000 .25390 62500 .81 000000 .50390 62500 .C1 000000 .75390 62500
.02 000000 .00781 25000 .42 000000 .25781 25000 .82 000000 .50781 25000 .C2 000000 .75781 25000
.03 000000 .01171 87500 43 000000 .26171 87500 .83 000000 .51171 87500 .C3 000000 .76171 87500
.04 000000 .01562 50000 44 000000 .26562 50000 .84 000000 .51562 50000 .C4 000000 .76562 50000
.05 000000 .01953 12500 .45 000000 .26953 12500 .85 000000 .51953 12500 .C5 000000 .76953 12500
.06 000000 .02343 75000 .46 000000 .27343 75000 .86 000000 .52343 75000 .C6 000000 .77343 75000
.07 000000 .02734 37500 .47 000000 .27734 37500 .87 000000 .52734 37500 .C7 000000 .77734 37500
.08 000000 .03125 00000 .48 000000 .28125 00000 .88 000000 .53125 00000 .C8 000000 .78125 00000
.09 000000 .03515 62500 .49 000000 .28515 62500 .89 000000 .53515 62500 .C2 000000 .78515 62500
.0A 000000 .03906 25000 4A 000000 .28906 25000 .8BA 000000 .53906 25000 .CA000000 .78906 25000
.0B 000000 .04296 87500 4B 000000 .29296 87500 .8B 000000 .54296 87500 .CB 000000 .79296 87500
.0C 000000 .04687 50000 .4C 000000 .29687 50000 .8C 000000 .54687 50000 .CC 000000 .79687 50000
.0D 000000 .05078 12500 .4D 000000 .30078 12500 .8D 000000 .55078 12500 .CD0O00000 .80078 12500
.OE 000000 .05468 75000 4E 000000 .30468 75000 .8E 00 0000 .55468 75000 .CE 000000 .80468 75000
.OF 000000 .05859 37500 4F 000000 .30859 37500 .8F 000000 .55859% 37500 .CF 000000 .80859 37500
.10 000000 .06250 00000 .50 000000 .31250 00000 .90 000000 .56250 00000 .DO 000000 .81250 00000
.11 000000 .06640 62500 .51 000000 .31640 62500 .91 000000 .56640 62500 .D1 000000 .81640 62500
.12 000000 .07031 25000 .52 000000 .32031 25000 .92 000000 .57031 25000 .D2 000000 .82031 25000
.13 000000 .07421 87500 .53 000000 .32421 87500 .93 000000 .57421 87500 .D3 000000 .82421 87500
.14 000000 .07812 50000 .54 000000 .32812 50000 .94 000000 .57812 50000 .D4 000000 .82812 50000
.15 000000 .08203 12500 .55 000000 .33203 12500 .95 000000 .58203 12500 .D5 00 00 00 .83203 12500
.16 000000 .08593 75000 .56 000000 .33593 75000 .96 000000 .58593 75000 .D6 000000 .83593 75000
.17 000000 .08984 37500 .57 000000 .33984 37500 .97 000000 .58984 37500 .D7 000000 .83984 37500
.18 000000 .09375 00000 .58 000000 .34375 00000 .98 000000 .59375 00000 .D8 000000 .84375 00000
.19 000000 .09765 62500 59 000000 .34765 62500 .99 000000 .59765 62500 .D9 000000 .84765 62500
.IA 000000 .10156 25000 S5A 000000 .35156 25000 .9A 000000 .60156 25000 .DA00O0000 .85156 25000
.1B 000000 .10546 87500 5B 000000 .35546 87500 .9B 000000 .60546 87500 .DB 000000 .85546 87500
.1C 000000 .10937 50000 .5C 000000 .35937 50000 .9C 000000 .60937 50000 .DC 000000 .85937 50000
.1D 000000 .11328 12500 5D 000000 .36328 12500 .9D 000000 .61328 12500 .ODD0O0 0000 .86328 12500
.IE 000000 .11718 75000 .5E 000000 .36718 75000 .9E 000000 .61718 75000 .DE 00 00 00 .86718 75000
JIF 000000 .12109 37500 .5F 000000 .37109 37500 .9F 000000 .62109 37500 .DF 000000 .87109 37500
.20 000000 .12500 00000 .60 000000 .37500 00000 A0 00 0000 .62500 00000 .E0 000000 .87500 00000
.21 000000 .12890 62500 61 000000 .37890 62500 A1 000000 .62890 62500 .E1 000000 .87890 62500
.22 000000 .13281 25000 .62 000000 .38281 25000 A2 000000 .63281 25000 .E2 000000 .88281 25000
.23 000000 .13671 87500 63 000000 .38671 87500 A3 000000 .63671 87500 .E3 000000 .88671 87500
.24 000000 .14062 50000 .64 000000 .39062 50000 A4 000000 .64062 50000 .E4 000000 .89062 50000
.25 000000 .14453 12500 .65 000000 .39453 12500 A5 000000 .64453 12500 .E5 000000 .89453 12500
.26 000000 .14843 75000 .66 000000 .39843 75000 A6 000000 .64843 75000 .E6 000000 .89843 75000
.27 000000 .15234 37500 .67 000000 .40234 37500 A7 000000 .65234 37500 .E7 000000 .90234 37500
.28 000000 .15625 00000 .68 000000 .40625 00000 A8 0000 00 .65625 00000 .E8 000000 .90625 00000
.29 000000 .16015 62500 .69 000000 .41015 62500 A9 000000 .66015 62500 .E9 000000 .91015 62500
.2A 000000 .16406 25000 .6A 000000 .41406 25000 .AA 0000 00 .66406 25000 .EA 000000 .91406 25000
.2B 000000 .16796 87500 6B 000000 .41795 87500 AB 000000 .66796 87500 .EB 000000 .91796 87500
.2C 00 0000 .17187 50000 .6C 000000 .42187 50000 LACO000000 .67187 50000 .EC 000000 .92187 50000
.2D 000000 .17578 12500 .6D 000000 .42578 12500 .AADO0O0 0000 .67578 12500 .ED 000000 .92578 12500
.2E 000000 .17968 75000 .6E 000000 .42968 75000 AE 000000 .67968 75000 .EE 000000 .92968 75000
.2F 000000 .18359 37500 .6F 000000 .43359 37500 AF 000000 .68359 37500 .EF 000000 .93359 37500
.30 000000 .18750 00000 .70 000000 .43750 00000 .BO 000000 .68750 00000 .FO 000000 .93750 00000
31 000000 .19140 62500 .71 000000 .44140 62500 .B1 000000 .69140 62500 .FI 000000 .94140 62500
.32 000000 .19531 25000 .72 000000 .44531 25000 .B2 000000 .69531 25000 .F2 000000 .94531 25000
.33 000000 .19921 87500 .73 000000 .44921 87500 .B3 000000 .69921 87500 .F3 000000 .94921 87500
.34 000000 .20312 50000 .74 000000 .45312 50000 .B4 000000 .70312 50000 .F4 000000 .95312 50000
.35 000000 .20703 12500 .75 000000 .45703 12500 .B5 00 00 00 .70703 12500 .F5 000000 .95703 12500
.36 000000 .21093 75000 .76 000000 .46093 75000 .B6 000000 .71093 75000 .F6 000000 .96093 75000
.37 000000 .21484 37500 77 000000 .46484 37500 .B7 000000 .71484 37500 .F7 000000 .96484 37500
.38 000000 .21875 00000 .78 000000 .46875 00000 .B8 000000 .71875 00000 .F8 000000 .96875 00000
.39 000000 .22265 62500 79 000000 .47265 62500 .B9 000000 .72265 62500 .F9 000000 .97265 62500
3A 000000 .22656 25000 7A 000000 .47656 25000 .BA 000000 .72656 25000 .FA 000000 .97656 25000
.38 000000 .23046 87500 .7B 000000 .48046 87500 .BB 000000 .73046 87500 .FB 0000 00 .98046 87500
.3C 000000 .23437 50000 .7C 0000 00 .48437 50000 .BC 000000 .73437 50000 .FC 000000 .98437 50000
.3D 000000 .23828 12500 7D 000000 .48828 12500 .BD 000000 .73828 12500 .FD 000000 .98828 12500
.3E 000000 .24218 75000 .7E 000000 .49218 75000 .BE 000000 .74218 75000 .FE 000000 .99218 75000
.3F 000000 .24609 37500 .7F 000000 .49609 37500 .BF 000000 .74609 37500 .FF 000000 .99609 37500

Appendix A 187

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.0000 0000 .00000 00000 0040 0000 .00097 65625 .0080 0000 .00195 31250 .00 CO 0000 .00292 96875
.00 01 0000 .00001 52587 .00 41 0000 .00099 18212 .0081 0000 .00196 83837 .00C1 0000 .00294 49462
.0002 0000 .00003 05175 .0042 0000 .00100 70800 .0082 0000 .00198 36425 .00C2 0000 .00296 02050
.0003 0000 .00004 57763 .0043 0000 .00102 23388 .0083 0000 .00199 89013 .00 C3 0000 .00297 54638
.0004 0000 .00006 10351 .00 44 0000 .00103 75976 .0084 0000 .00201 41601 .00C4 0000 .00299 07225
.0005 0000 .00007 62939 .0045 0000 .00105 28564 .0085 0000 .00202 94189 .00C5 0000 .00300 59814
.0006 0000 .00009 15527 .00 46 0000 .00106 81152 0086 0000 .00204 46777 .00C6 0000 .00302 12402
.0007 0000 .00010 68115 .00 47 0000 .00108 33740 0087 0000 .00205 99365 .00C7 0000 .00303 64990
.00 08 0000 .00012 20703 .0048 0000 .00109 86328 .0088 0000 .00207 51953 .00C8 0000 .00305 17578
.0009 0000 .00013 73291 .0049 0000 .00M11 38916 0089 0000 .00209 04541 .00C9 0000 .00306 70166
.00 0A 0000 .00015 25878 .00 4A 0000 .00112 91503 .00 8A 0000 .00210 57128 .00 CAO000 .00308 22753
.00 0B 0000 .00016 78466 .00 4B 0000 .00114 44091 .0088 0000 .00212 09716 .00 CB 0000 .00309 75341
.000C 0000 .00018 31054 .004C 0000 .00115 96679 .00 8C 0000 .00213 62304 .00CC 0000 .00311 27929
.00 0D 0000 .00019 83642 .00 4D 0000 .00117 49267 008D 0000 .00215 14892 .00CD 0000 .0031280517
.00 0E 0000 .00021 36230 .00 4E 0000 .00119 01855 .00 8E 0000 .00216 47480 .00 CE 0000 .00314 33105
.000F 0000 .00022 88818 .00 4F 00 00 .00120 54443 .008F 0000 .00218 20068 .00 CF 0000 .00315 85693
.00 10 0000 .00024 41406 .0050 0000 .00122 07031 0090 0000 .00219 72656 .00 D0 0000 .00317 38281
0011 0000 .00025 93994 .0051 0000 .00123 59619 .0091 0000 .00221 25244 .00 D1 0000 .00318 90869
.0012 0000 .00027 46582 .0052 0000 .00125 12207 0092 0000 .00222 77832 .00 D2 00 00 .00320 43457
.00 13 0000 .00028 99169 .0053 0000 .00126 64794 .00 93 0000 .00224 30419 .00 D3 0000 .00321 96044
.00 14 0000 .00030 51757 .0054 0000 .00128 17382 .00 94 0000 .00225 83007 .00 D4 0000 .00323 48632
0015 0000 .00032 04345 .0055 0000 .00129 69970 .00 95 0000 .00227 35595 .00 D5 0000 .00325 01220
.0016 0000 .00033 56933 .0056 0000 .00131 22558 0096 0000 .00228 88183 .00 D6 0000 .00326 53808
0017 0000 .00035 09521 0057 0000 .00132 75146 .00 97 0000 .00230 40771 .00 D7 0000 .00328 06396
.00 18 0000 .00036 62109 .0058 0000 .00134 27734 .00 98 0000 .00231 93359 .00 D8 00 00 .00329 58984
.00 19 0000 .00038 14697 .0059 0000 .00135 80322 .00 99 0000 .00233 45947 .00 D9 00 00 .00331 11572
.00 1A 0000 .0003% 47285 .00 5A 0000 .00137 32910 00 9A 0000 .00234 98535 .00 DA 00 0O0 .00332 44160
0018 0000 .00041 19873 .0058 0000 .00138 85498 .0098 0000 .00236 51123 .00 DB 0000 .00334 16748
.00 1C 0000 .00042 72460 .005C 0000 .00140 38085 .009C 0000 .00238 03710 .00 DC 0000 .00335 69335
.00 1D 0000 .00044 25048 005D 0000 .00141 90673 009D 0000 .00239 56298 .00 DD 0000 .00337 21923
.00 1E 0000 .00045 77636 .00 5E 0000 .00143 43261 .00 9E 0000 .00241 08886 .00 DE 00 00 .00338 74511
.00 IF 0000 .00047 30224 .00 5F 0000 .00144 95849 .00 9F 0000 .00242 61474 .00 DF 00 00 .00340 27099
.0020 0000 .00048 82812 0060 0000 .00146 48437 .00 A0 0000 .00244 14062 .00 EO 0000 .00341 79687
.00 21 0000 .00050 35400 0061 0000 .00148 01025 .00 A1 0000 .00245 66650 .O0El 0000 .00343 32275
.00 22 0000 .00051 87988 .0062 0000 .00149 53613 .00 A2 0000 .00247 19238 .00 E2 0000 .00344 84863
.0023 0000 .00053 40576 .0063 0000 .00151 06201 .00 A3 0000 .00248 71826 .00 E3 00 00 .00346 37451
.00 24 0000 .00054 93164 .0064 0000 .00152 58789 .00 A4 0000 .00250 24414 00 E4 0000 .00347 90039
.0025 0000 .00056 45751 .0065 0000 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .00349 42626
.0026 0000 .00057 98339 0066 0000 .00155 63964 .00 A6 0000 .00253 29589 .00 ES6 0000 .00350 95214
.00 27 0000 .00059 50927 0067 0000 .00157 16552 .00 A7 0000 .00254 82177 .00 E7 0000 .00352 47802
.00 28 00 00 .00061 03515 .0068 0000 .00158 69140 .00 A8 0000 .00256 34765 .00 E8 0000 .00354 003%0
.0029 0000 .00062 56103 .0069 0000 .00160 21728 .00 A 0000 .00257 87353 .00 E9 0000 .00355 52978
.00 2A 0000 .00064 08691 .00 6A 0000 .00161 74316 .00 AAOO OO .00259 39941 .00 EA 0000 .00357 05566
.00 2B 0000 .00065 61279 .00 68 0000 .00163 26904 00 AB 0000 .00260 92529 .00 EB 0000 .00358 58154
.002C 0000 .00067 13867 .006C 0000 .00164 79492 00ACO0000 .00262 45117 .00 EC 0000 .00360 10742
.00 2D 0000 .00068 66455 .00 6D 0000 .00166 32080 .00 AD 0000 .00263 97705 .00 ED 0000 .00361 63330
.00 2E 0000 .00070 19042 .00 6E 00 00. .00167 84667 .00 AE 00 00 .00265 50292 .00 EE 0000 .00363 15917
.00 2F 0000 .00071 71630 .00&6F 0000 .00169 37255 .00 AF 0000 .00267 02880 .00 EF 0000 .00364 68505
.0030 0000 .00073 24218 .0070 0000 .00170 89843 .00 BO 0000 .00268 55468 .00 FO 0000 .00366 21093
.0031 0000 .00074 76806 .0071 0000 .00172 42431 .00 B1 0000 .00270 08056 .00 F1 0000 .00367 73681
.00 32 0000 .00076 29394 .0072 0000 .00173 95019 .00 B2 0000 .00271 60644 .00 F2 0000 .00369 26269
.0033 0000 .00077 81982 .0073 0000 .00175 474607 .00B3 0000 .00273 13232 .00 F3 0000 .00370 78857
.0034 0000 .00079 34570 .0074 0000 .00177 00195 .00 B4 0000 .00274 65820 .00 F4 0000 .00372 31445
.0035 0000 .00080 87158 .0075 0000 .00178 52783 .00 B5 0000 .00276 18408 .00 F5 0000 .00373 84033
0036 0000 .00082 39746 .0076 0000 .00180 05371 .00 B6 0000 .00277 70996 .00 F6 0000 .00375 36621
.00 37 0000 .00083 92333 .0077 0000 .00181 57958 .00 B7 0000 .00279 23583 .00 F7 0000 .00376 89208
.0038 0000 .00085 44921 .0078 0000 .00183 10546 .00 B8 0000 .00280 76171 .00 F8 0000 .00378 4179
L0039 0000 00085 97509 0079 0000 .00184 43134 .00 B9 0000 .00282 28759 00 F9 0000 00379 94384
.00 3A 0000 .00088 50097 .00 7A 0000 .00186 15722 .00 BA 0000 .00283 81347 .00 FA 0000 .00381 46972
.00 38 0000 .00090 02685 .007B 0000 .00187 68310 .00 BB 0000 .00285 33935 .00 FB 0000 .00382 99550
.00 3C 0000 .00091 55273 .007C 0000 .00189 20898 .00 BC 0000 .00286 86523 .00 FC 0000 .00384 52148
.00 3D 0000 .00093 07861 .007D 0000 .00190 73486 .00 BD 0000 .00288 39111 .00 FD 0000 .00386 04736
.00 3E 0000 .00094 60449 .007E 0000 .00192 26074 .00 BE 0000 .00289 91699 .00 FE 0000 .00387 57324
.00 3F 0000 .00096 13037 .007F 0000 .00193 78662 .00 BF 0000 .00291 44287 .00 FF 0000 .00389 09912

188 Appendix A

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.000000 00 .00000 00000 .00 00 40 00 .00000 38146 .000080 00 .00000 76293 .00 00 CO 00 .00001 14440
.00 0001 00 .00000 00596 000041 00 .00000 38743 .000081 00 .00000 76889 .0000C1 00 .00001 15036
.00 00 02 00 .00000 01192 .00 00 42 00 .00000 39339 .00 00 82 00 .00000 77486 .0000C2 00 .00001 15633
.000003 00 .00000 01788 .000043 00 .00000 39935 .000083 00 .00000 78082 .0000C3 00 .00001 16229
.000004 00 .00000 02384 .00 00 44 00 .00000 40531 .00 00 84 00 .00000 78678 .0000C4 00 .00001 16825
.000005 00 .00000 02980 .000045 00 .00000 41127 .00 0085 00 .00000 79274 .00 00 C5 00 .00001 17421
.000006 00 .00000 03576 .00 00 46 00 .00000 41723 .000086 00 .00000 79870 .00 00 C6 00 .00001 18017
.000007 00 .00000 04172 .000047 00 .00000 42319 .00 0087 00 .00000 80466 .0000C7 00 .00001 18613
.00 00 08 00 .00000 04768 .00 00 48 00 .00000 42915 .00 0088 00 .00000 81062 .00 00 C8 00 .00001 19209
.000009 00 .00000 05364 .000049 00 .00000 43511 .00 0089 00 .00000 81658 .0000C% 00 .00001 19805
.00 00 0A 00 .00000 05960 .00 00 4A 00 .00000 44107 .00 00 8A 00 .00000 82254 .00 00 CA 00 .00001 20401
.00000B 00 .00000 06556 .00004B 00 .00000 44703 .00 0088 00 .00000 82850 .0000 CB 00 .00001 20997
.00000C 00 .00000 07152 .00 004C 00 .00000 45299 .00 00 8C 00 .00000 83444 .00 00 CC 00 .00001 21593
.00 000D 00 .00000 07748 .00 00 4D 00 .00000 45895 .00 008D 00 .00000 84042 .0000CDO0 .00001 22189
.00 00 0E 00 .00000 08344 .00 00 4E 00 .00000 46491 .00 00 8E 00 .00000 84438 .00 00 CE 00 .00001 22785
.00 00 OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .00 00 8F 00 .00000 85234 .00 00 CF 00 .00001 23381
.000010 00 .00000 09536 .00 0050 00 .00000 47683 .000090 00 .00000 85830 .00 00 DO 00 .00001 23977
.000011 00 .00000 10132 .00 0051 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 D1 00 .00001 24573
.000012 00 .00000 10728 .000052 00 .00000 48875 .00 00 92 00 .00000 87022 .00 00 D2 00 .00001 25169
.0000 13 00 .00000 11324 .00 0053 00 .00000 49471 .00 00 93 00 .00000 87618 .00 00 D3 00 .00001 25765
.0000 14 00 .00000 11920 .00 00 54 00 .00000 50067 .0000 94 00 .00000 88214 .00 00 D4 00 .00001 26361
000015 00 .00000 12516 .000055 00 .00000 50663 000095 00 .00000 88810 .00 00 D5 00 .00001 26957
.000016 00 .00000 13113 .00 0056 00 .00000 51259 .0000 96 00 .00000 89406 .00 00 D6 00 .00001 27553
.000017 00 .00000 13709 .000057 00 .00000 51856 .00 0097 00 .00000 90003 .00 00 D7 00 .00001 28149
.000018 00 .00000 14305 .00 0058 00 .00000 52452 .000098 00 .00000 90599 .00 00 D8 00 .00001 28746
.000019 00 .00000 14901 .00 00 59 00 .00000 53048 .00 00 99 00 .00000 91195 .00 00 D9 00 .00001 29342
.00 00 1A 00 .00000 15497 .00 00 5A 00 .00000 53644 .00 00 %A 00 .00000 91791 .00 00 DA 00 .00001 29938
.0000 1B 00 .00000 16093 .00005B 00 .00000 54240 000098 00 .00000 92387 .00 00 DB 00 .00001 30534
.00001C 00 .00000 16689 .00005C 00 .00000 54836 .00 00 9C 00 .00000 92983 .0000 DC 00 .00001 31130
.0000 1D 00 .00000 17285 .00 00 5D 00 .00000 55432 .00 00 9D 00 .00000 93579 .00 00 DD 00 .00001 31726
.0000 1E 00 .00000 17881 .00 00 5E 00 .00000 56028 .00 00 9E 00 .00000 94175 .00 00 DE 00 .00001 32322
.0000 1F 00 .00000 18477 .00 00 5F 00 .00000 56624 .00 00 9F 00 .00000 94771 .00 00 DF 00 .00001 32918
000020 00 00000 19073 L8 0046C 00 L0000 57220 WO000 A0 00 00000 95367 W0 00ED OU .0VUO! 33514
.00 00 21 00 .00000 19669 .00 00 61 00 .00000 57816 .00 00 A1 00 .00000 95963 .00 00 E1 00 .00001 34110
.000022 00 .00000 20265 .000062 00 .00000 58412 .00 00 A2 00 .00000 96559 .00 00 E2 00 .00001 34706
.000023 00 .00000 20861 .00 0063 00 .00000 59008 .0000 A3 00 .00000 97155 .00 00 E3 00 .00001 35302
.000024 00 .00000 21457 .000064 00 .00000 59604 .00 00 A4 00 .00000 97751 .00 00 E4 00 .00001 35898
.000025 00 .00000 22053 000065 00 .00000 60200 .00 00 A5 00 .00000 98347 .00 00 E5 00 .00001 36494
.000026 00 .00000 22649 .00 0066 00 .00000 60796 .00 00 A6 00 .00000 98943 .00 00 E6 00 .00001 37090
.0000 27 00 .00000 23245 .000067 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 E7 00 .00001 37686
.00 00 28 00 .00000 23841 .00 00 68 00 .00000 61988 .00 00 A8 00 .00001 00135 .00 00 E8 00 .00001 38282
000029 00 .00000 24437 .00 0069 00 .00000 62584 .00 00 A9 00 .00001 00731 .0000 E9 00 .00001 38878
.00 00 2A 00 .00000 25033 .00 00 6A 00 .00000 63180 .00 00 AA 00 .00001 01327 .00 00 EA 00 .00001 39474
.00 00 28 00 .00000 25629 .00 00 6B 00 .00000 63776 .00 00 AB 00 .00001 01923 .00 00 EB 00 .00001 40070
.00 00 2C 00 .00000 26226 .00 00 6C 00 .00000 64373 .00 00 AC 00 .00001 02519 .00 00 EC 00 .00001 40666
.00 002D 00 .00000 26822 .00 00 6D 00 .00000 64969 .00 00 AD0OO .00001 03116 .00 00 ED 00 .00001 41263
.00 00 2E 00 .00000 27418 .00 00 6E 00 .00000 65565 .00 00 AE 00 .00001 03712 .00 00 EE 00 .00001 41859
.00 00 2F 00 .00000 28014 .00 00 6F 00 .00000 66161 .00 00 AF 00 .00001 04308 .00 00 EF 00 .00001 42455
.00 0030 00 .00000 28610 .000070 00 .00000 66757 .00 00 BO 00 .00001 04904 .00 00 FO 00 .00001 43051
.000031 00 .00000 29206 .000071 00 .00000 67353 .00 00 B1 00 .00001 05500 .00 00 F1 00 .00001 43647
.000032 00 .00000 29802 000072 00 .00000 67949 .00 00 B2 00 .00001 06096 .00 00 F2 00 .00001 44243
.0000 33 00 .00000 30398 .000073 00 .00000 68545 000083 00 .00001 06692 .00 00 F3 00 .00001 44839
.00 00 34 00 .00000 30994 .00 0074 00 .00000 69141 .00 00 B4 00 .00001 07288 .00 00 F4 00 .00001 45435
.000035 00 .00000 31590 .000075 00 .00000 69737 .00 0085 00 .00001 07884 .0000F5 00 .00001 46031
.000036 00 .00000 32186 .000076 00 .00000 70333 .00 00 B6 00 .00001 08480 .00 00 F6 00 .00001 46627
.00 00 37 00 .00000 32782 .000077 00 .00000 70929 .00 00 B7 00 .00001 09076 .00 00 F7 00 .00001 47223
.000038 00 .00000 33378 .000078 00 .00000 71525 .00 00 B8 00 .00001 09672 .00 00 F8 00 .00001 47819
.00 00 392 00 .00000 33974 .000079 00 .00000 72121 .00 00 B? 00 .00001 10268 .00 00 F? 00 .00001 48415
.00 00 3A 00 .00000 34570 .00 00 7A 00 .00000 72717 .00 00 BA 00 .00001 10864 .00 00 FA 00 .00001 49011
.00 00 38 00 .00000 35166 .00 0078 00 .00000 73313 .00 00 BB 00 .00001 11460 .00 00 FB 00 .00001 49607
.00 00 3C 00 .00000 35762 .00 007C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 .00001 50203
.00 00 3D 00 .00000 36358 .00007D 00 .00000 74505 .00 00 BD 00 .00001 12652 .00 00 FD 00 .00001 50799
.00 00 3E 00 .00000 36954 .00007E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51395
.00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991

Appendix A 189

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 00 00 .00000 00000 .00 00 00 40 .00000 00149 .00 00 00 80 .00000 00298 .00 0000 CO .00000 00447
.00 00 00 01 .00000 00002 .00 00 00 41 .00000 00151 .00 00 00 81 .00000 00300 .00 00 00 CI .00000 00449
.00 00 00 02 .00000 00004 .00 00 00 42~ .00000 00153 .00 00 00 82 .00000 00302 .00 00 00 C2 .00000 00451
.00 00 00 03 .00000 00006 .00 00 00 43 .00000 00155 .00 00 00 83 .00000 00305 .000000C3 .00000 00454
.00 00 00 04 .00000 00009 .00 00 00 44 .00000 00158 .00 00 00 84 .00000 00307 .00 00 00 C4 .00000 00456
.00 00 00 05 .00000 00011 .00 00 00 45 .00000 00160 .00 00 00 85 .00000 00309 .00 00 00 C5 .00000 00458
.00 00 00 06 .00000 00013 .00 00 00 46 .00000 00162 .00 00 00 86 .00000 00311 .00 00 00 C6 .00000 00461
.00 00 00 07 .00000 00016 .00 00 00 47 .00000 00165 .00 00 00 87 .00000 00314 .00 00 00 C7 .00000 00463
.00 00 00 08 .00000 00018 .00 00 00 48 .00000 00167 .00 00 00 88 .00000 00316 .00 00 00 C8 .00000 00465
.00 00 00 09 .00000 00020 .00 00 00 49 .00000 00169 .00 00 00 89 .00000 00318 .00 00 00 C9 .00000 00467
.00 00 00 0OA .00000 00023 .00 00 00 4A .00000 00172 .00 00 00 8A .00000 00321 .00 00 00 CA .00000 00470
.00 00 00 0B .00000 00025 .00 00 00 4B .00000 00174 .00 0000 8B .00000 00323 .00 00 00 CB .00000 00472
.00 00 00 OC .00000 00027 .00 00 00 4C .00000 00176 .00 00 00 8C .00000 00325 000000 CC .00000 00474
.00 00 00 0D .00000 00030 .00 00 00 4D .00000 00179 .00 00 00 8D .00000 00328 .000000CD .00000 00477
.00 00 00 OE .00000 00032 .00 00 00 4E .00000 00181 .00 00 00 8E .00000 00330 .00 00 00 CE .00000 00479
.00 00 00 OF .00000 00034 .00 00 00 4F .00000 00183 .00 00 00 8F .00000 00332 .00 00 00 CF .00000 00481
.00 0000 10 .00000 00037 .00 00 00 50 .00000 00186 .00 00 00 90 .00000 00335 .00 00 00 DO .00000 00484
.00 000011 .00000 00039 .00 00 00 51 .00000 00188 .00 000091 .00000 00337 .00 00 00 D1 .00000 004846
.000000 12 .00000 00041 .00 00 00 52 .00000 00190 .00 00 00 92 .00000 00339 .00 00 00 D2 .00000 00488
.000000 13 .00000 00044 .00 00 00 53 .00000 00193 .00 00 00 93 .00000 00342 .00 00 00 D3 .00000 00491
.000000 14 .00000 00046 .00 00 00 54 .00000 00195 .00 00 00 94 .00000 00344 .00 00 00 D4 .00000 00493
.00 0000 15 00000 00048 .00 00 00 55 .00000 00197 .00 00 00 95 .00000 00346 .00 00 00 D5 .00000 00495
.00 00 00 16 00000 00051 .00 00 00 56 .00000 00200 .00 00 00 9% .00000 00349 .00 00 00 D6 .00000 00498
.00 00 00 17 00000 00053 .00 00 00 57 .00000 00202 .00 00 00 97 .00000 00351 .00 00 00 D7 .00000 00500
.00 00 00 18 00000 00055 .00 00 00 58 .00000 00204 .00 00 00 98 .00000 00353 .00 00 00 D8 .00000 00502
.000000 19 .00000 00058 .00 00 00 59 .00000 00207 .00 00 00 99 .00000 00356 .00 00 00 D9 .00000 00505
.00 00 00 1A .00000 00060 .00 00 00 5A .00000 00209 .00 00 00 %A .00000 00358 .00 00 00 DA .00000 00507
.000000 1B 00000 00062 .00 00 00 58 .00000 00211 .00 00 00 9B .00000 003560 .00 00 00 DB .00000 00509
.00 0000 1C 00000 00065 .00 00 00 5C .00000 00214 .00 00 00 9C .00000 00363 000000 DC .00000 00512
.000000 1D 00000 00067 .00 00 00 5D .00000 00216 .00 00 00 9D 00000 00365 .000000 DD .00000 00514
.00 00 00 1E 00000 00069 .00 00 00 5E .00000 00218 .00 00 00 9E .00000 00367 .00 00 00 DE .00000 00516
.0000 00 1F 00000 00072 .00 00 00 5F .00000 00221 .00 00 00 9F -00000 00370 .00 00 00 DF .00000 00519
000000 20 .00000 00074 .00 00 00 60 .00000 00223 .00 00 00 AQ .00000 00372 .00 00 00 EQ .00000 0052!
.00 00 00 21 .00000 00076 .00 00 00 61 .00000 00225 .00 00 00 Al .00000 00374 .00 00 00 E .00000 00523
.00 00 00 22 .00000 00079 .00 00 00 62 .00000 00228 .00 00 00 A2 .00000 00377 .00 00 00 E2 .00000 00526
.00 00 00 23 00000 00081 .00 00 00 63 .00000 00230 .00 00 00 A3 .00000 00379 .00 00 00 E3 .00000 00528
.00 00 00 24 .00000 00083 .00 00 00 64 .00000 00232 .00 00 00 A4 .00000 00381 .00 00 00 E4 .00000 00530
.00 00 00 25 .00000 00086 .00 00 00 65 .00000 00235 .00 00 00 A5 .00000 00384 .00 00 00 ES .00000 00533
.00 00 00 26 00000 00088 .00 00 00 66 .00000 00237 .00 00 00 A6 .00000 00386 .00 00 00 ES .00000 00535
.00 00 00 27 00000 00090 .00 00 00 67 .00000 00239 .00 00 00 A7 .00000 00388 .00 00 00 E7 .00000 00537
.00 00 00 28 .00000 00093 .00 00 00 68 .00000 00242 .00 00 00 A8 .00000 00391 .00 00 00 E8 .00000 00540
.00 00 00 29 .00000 00095 .00 00 00 69 .00000 00244 .00 00 00 A9 .00000 00393 .00 00 00 E9 .00000 00542
.00 00 00 24 .00000 00097 .00 00 00 A .00000 00244 000000 A4 00000 00395 .00 0000 £EA .00000 00544
.00 00 00 28 .00000 00100 .00 00 00 6B .00000 00249 .00 00 00 AB .00000 00398 .00 00 00 EB .00000 00547
.00 00 00 2C .00000 00102 .00 00 00 6C .00000 00251 .00 00 00 AC 00000 00400 .00 00 00 EC .00000 00549
.00 00 00 2D .00000 00104 .00 00 00 6D .00000 00253 .00 00 00 AD .00000 00402 .00 00 00 ED .00000 00551
.00 00 00 2E .00000 00107 .00 00 00 6E .00000 00256 .00 00 00 AE .00000 00405 .00 00 00 EE .00000 00554
.00 00 00 2F .00000 00109 .00 00 00 6F 00000 00258 .00 00 00 AF 00000 00407 .00 00 00 EF .00000 00556
.00 00 00 30 .00000 00111 .00 00 00 70 .00000 00260 .00 00 00 80 .00000 00409 .00 00 00 FO .00000 00558
.00 00 00 31 .00000 00114 .00 00 00 71 .00000 00263 .00 00 00 B1 .00000 00412 .00 00 00 F1 .00000 00561
.00 00 00 32 .00000 00116 .00 00 00 72 .00000 00265 .00 00 00 B2 .00000 00414 .00 0000 F2 .00000 00563
.00 00 00 33 .00000 00118 .00 000073 .00000 00267 .00 00 00 B3 .00000 00416 .00 00 00 F3 .00000 00565
.00 00 00 34 .00000 00121 00000074 .00000 00270 .00 00 00 B4 00000 00419 .00 00 00 F4 .00000 00568
.00 00 00 35 .00000 00123 .00 0000 75 .00000 00272 .00 00 00 B5 00000 00421 .00 00 00 F5 .00000 00570
.00 00 00 36 .00000 00125 .00 0000 76 .00000 00274 .00 00 00 B& 00000 00423 .00 00 00 F6 .00000 00572
.00 00 00 37 .00000 00128 .00 00 00 77 .00000 00277 .00 00 00 B7 .00000 00426 .00 00 00 F7 .00000 00575
.00 00 00 38 .00000 00130 .00 00 00 78 .00000 00279 .00 00 00 B8 .00000 00428 .00 00 00 F8 .00000 00577
.00 00 00 39 .00000 00132 .00 00 00 79 .00000 00281 .00 00 00 B9 .00000 00430 .00 00 00 F9 .00000 00579
.00 00 00 3A .00000 00135 .00 00 00 7A .00000 00284 .00 00 00 BA .00000 00433 .00 00 00 FA .00000 00582
.00 00 00 3B .00000 00137 .00 00 00 78 .00000 00286 .00 00 00 BB .00000 00435 .00 00 00 FB .00000 00584
.00 00 00 3C .00000 00139 .00 00 00 7C .00000 00288 .00 00 00 BC .00000 00437 .00 00 00 FC .00000 00586
.00 00 00 3D .00000 00142 .00 00 00 7D .00000 00291 .00 00 00 BD .00000 00440 .00 00 00 FD .00000 00589
.00 00 00 3E .00000 00144 .00 00 00 7E .00000 00293 .00 00 00 BE .00000 00442 .00 00 00 FE .00000 00591
.00 00 00 3F .00000 00146 .00 00 00 7F .00000 00295 .00 00 00 BF .00000 00444 .00 00 00 FF .00000 00593

190 Appendix A

Appendix A

"N 2" Constant Decimal Value Hexodecimal Value
10 10 " 314159 26535 89793 3.243F 6A89
i ; 8’35 ! 0.31830 98861 83790 0.517C C1B7
8 3 0.125 N 1.77245 38509 05516 1.C5BF 891C
6 4 00625 Inw 1.14472 98858 49400 1.250D O48F
2 5 003125 e 271828 18284 59045 2.7E}l 5163
64 6 0015625 1
e s e 0.36787 94411 71442 0.562D 58D9
N3 1.64872 12707 00128 1.A812 98E2
256 8 0.003 906 25
512 9 0.001 953 125 logjge 0.43429 44819 03252 0.6F2D ECS5
1024 10 0.000 976 562 5 logje 1.44269 50408 88963 17154 7653
2048 11 0.000 438 281 25 Y 0.57721 56649 01533 0.93C4 67E4
409 12 0.000 244 140 625 InY -0.54953 93129 81645 -0.8CAE 9BCI
8192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25 N7 1.41421 35623 73095 1.6A09 E668
32768 15 0.000 030 517 578 125 In2 0.69314 71805 59945 0.8172 17F8
65 53 16 0.000 015 258 789 062 5 log,g2 0.30102 99956 63981 0.4D10 4D42
131 072 17 0.000 007 629 394 531 25 NTO 3.16227 76601 68379 3.298B 075C
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5 10 2.30258 40929 94046 2.4D76 3777
1 048 576 20 0.000 000 953 674 316 406 25
2097 152 21 0.000 000 476 837 158 203 125
4194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25
16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5
4 254 567 256 52 0.000 000 GO0 252 530 645 635 865 625 506 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25
68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 00D 001 818 989 403 545 856 475 830 078 125
1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5
17 592 186 044 416 44 0.000 000 00O 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 00D 000 014 210 854 715 202 003 717 422 485 351 562 5
140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
1125 899 906 842 424 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25
18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0,000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5
72 057 594 037 927 93 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0.000 000 000 D00 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
288 230 376 151 711 744 58 0.000 000 000 D00 000 003 469 446 931 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 733 281 25
1152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 41 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4 611.686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

191

APPENDIX B. GLOSSARY OF SYMBOLIC TERMS

Term Meaning Term Meaning
() Contents of. EDL forced to 0. Hence, odd-numbered word
(cont.) address (referring o middle of doubleword)
n AND (logical product, where 0 n 0 =0, designates same doubleword as even-numbered
0nl1=0, 1'n0=0,and 1Tn1=1). word address when used for a doubleword
operation.
Y OR (logical inclusive OR, where0 u 0= 0,
Oul=1,1u0=1and1ul=1). EDO Effective decimal operand.
© EOR (logical exclusive OR, where EH Effective halfword — 16-bit contents of
0©0=0,0@®1=1,100=1, effective halfword location, or (EHL).
and 1@ 1=0).
EHL Effective halfword location—~halfword loca-
AM Fixed-point arithmetic trap mask—bit posi- tion pointed to by effective virtual address
tion 11 of PSWs. If set (=1), basic processor of an instruction for halfword operation.
traps to location X'43' after executing an
instruction causing fixed-point overflow; if EI External interrupt group inhibit — bit
not set, basic processor does not trap. position 39 of PSWs. If set (=1), dll
interrupt levels within this group are
cC Condition code — 4-bit value (bit positions inhibited.
labeled CC1, CC2, CC3, and CC4), estab-
lished as part of the execution of most ESA Effective source address — in byte-string
instructions. instructions, address of the source byte
string.
CI Counter interrupt group inhibit — bit posi-
tion 37 of PSWs. If set (=1), all interrupt EVA Effective virtual address — virtual address
levels within this group are inhibited. value obtained as result of indirect address-
ing and/or indexing. This address value is
DA Destination address—in byte-string instruc- independent of the program's actual loca-
tions, address of thedestination byte string. tion in main memory, and is final address
" value before memory mapping is performed.
DBS Destination byte string—operand specified
by byte-string instruction. EW Effective word — 32-bit contents of effective
word location EWL).
DECA Decimal accumulator — general registers 12,
13, 14, and 15 in decimal instructions. EWL Effective word location — word location
pointed to by effective virtual address of
DM Decimal arithmetic trap mask—bit position 10 an instruction for a word operation.
of PSWs. When sef (=1), decimai arithmefic
fault trap is in effect. FN Floating normalize mode control —bit posi~
tion 7 of PSWs. If not set, results of floating-
EB Effective byte — 8-bit contents of effective point additions and subtractions are to be
byte location (EBL). normalized; if set (=1), results are not
normalized.
EBL Effective byte location — byte location .
pointed to by effective virtual address of an FR Floating round mode control—bit position 4 of
instruction for byte operation. PSWs. If set (=1), besic processor rounds
floating-point results. If not set, results
ED Effective doubleword — 64-bit contents of are truncated.
effective doubleword location (EDL).
FS Floating significance mode control—bit posi-
EDL Effective doubieword iocation—doubleword tion 5 of PSWs. If set (=1), basic processor

location pointed to by effective virtual

address of an instruction for a doubleword
operation. If odd-numbered word location
is specified, low-order bit of effective ad-
dress field (bit position 31) is automatically

traps to location X'44' when more than two
hexadecimal places of postnormalization
shifting are required for a floating-point ad-
dition or subtraction; if not set, no signifi-
cance checking is performed.

192 Appendix B

Term Meaning Term Meaning

FZ Floating zero mode control —bit position 6 Ref. general register in current register block
of the PSWs. If set (=1), basic processor Add. {by using a value in range 0~15) or any word
traps to location X'44' when either charac- (cont.) in main memory in address range 16 through
teristic underflow or zero result occurs for 131,071, This address value is initial ad-
a floating-point multiplication or division; dress value for any subsequent address com-
if not set, characteristic underflow and zero putations, memory mapping, or both
result are treated as normal conditions. computation and mapping.

1 Instruction register—internal basic processor RP Register pointer — bit positions 58 and 59 of
register that holds instructions obtained from PSWs; these bits select one of four possible
memory while they are being decoded. register blocks.

1A Instruction address— 17-bit value that defines Rul QOdd register address value — register Rul is
virtual address of instruction immediately general register pointed to by value obtained
prior to the time that it is executed. by logically ORing 0001 into address for

register R. Thus, if R field of instruction

I I/O interrupt group inhibit — bit position 38 contains even value, Rul =R + 1 and if R
of the PSWs. If set (=1), all interrupt levels field contains odd value, Rul =R.
within this group are inhibited.

SA Source address — in byte-string instructions,

L Numeric value of bits 8~11 of decimal in-~ contents of specified R register.
struction word (value of 0 is 16 bytes).

SBS Source byte string—operand specified by

MA Mode altered — bit position 61 of PSWs. byte string instruction.

This bit is set (=1) during master-protected

mode of operation and during real extended SE Sign extension — some instructions operate

type of addressing. on two operands of different lengths; they
are made equal in length by extending

MM Memory map mode control—position 9 of sign of shorter operand by required num-
PSWs. When set (=1), the memory map is ber of bit positions. For positive operands,
in effect. result of sign extension is high-order O's

prefixed fo fhe operand; for negaiive op~

MS Master/slave mode control —bit position 8 erands, high-order 1's are prefixed to op-
of PSWs. When set (=1), basic processor is erand. Sign extension process is performed
in slave mode; when not set, basic proces- after operand accessed from memory and
sor may be in master or master-protected before operation called for by instruction
mode as determined by bit 40. code is performed.

PSWs Program status words — collection of sepa- SPD Stack pointer doubleword — contains the
rate registers and flip-flops treated as an context (TSA, space count, word count, and
internal basic processor register to store and TS, TW inhibit bits) of the push-down
display critical control information. instructions.

R General register address value—4-bit con- TCC Trap condition code — 4-bit value (bit
tents of bit positions 8-11 R field) of positions labeled TCC1, TCC2, TCC3,
instruction word, also expressedsymbolically and TCC4), established as part of frap
as (I)8-11. Ininstructiondescriptions, regis- operations.
ter R is general register (of current register
block) that corresponds to R field address TS Trap~on-space inhibit bit — conditions push-
value, down stack limit trap for impending overflow

or underflow of space count.

RA Register altered — bit position 60 of PSWs.

When trap occurs, this bit set (=1) when gen- TSA Top-of-stack address — pointer that points
eral register or memory location altered in to highest-numbered address of operand stack
execution of instruction causing the trap. in push-down instructions.

Ref. Reference address — contents of bit posi- ™ Trap-on=-word inhibit bit—conditions push-

Add. tions 15-31 of instruction word, a 17-bit down stack limit trap for impending over-

field capable of directly addressing any

flow or underflow of word count.

Appendix B 193

Term Meaning Term Meaning

WK Write key — bit positions 32, 33, 34, X if X # 0, indexing is performed (after indirect
and 35 of PSWs; they are evaluated by (cont.) addressing if indirect addressing is called for)
the memory write-protect feature to de- with general register X in current registerblock.
termine accessibility of real memory by
current program. X'n' Hexadecimal qualifier — hexadecimal value

(n) is unsigned string of hexadecimal digits

X Index register address value — 3-bit con- (0 through 9 and A through F)surrounded by
tents of bit positions 12-14 (X field) of single quotation marks and preceded by the
instruction word. In instruction word, qualifier "X" (for example, 7B0y4 is written
if X = 0, no indexing is performed; X'7B0'.

194 Appendix B

APPENDIX C. FAULT STATUS REGISTERS

Table C-1.

Fault Status Registers

Status Registers — Faults Detected By:

Bit System Control
Position Basic Processor MIOP RMP MI PI Processor
0 16 PFI PFI PFI PFI PFI PFI
1 17 General register Bus Check Fault | BCF Mapor access~ | Cluster bus Parity error on
parity error {BCF) protect register | parity error processor bus
parity error
2 18 Control register ‘Control Check |CCF Cluster bus Processor bus Operation
parity error Fault (CCF) parity error parity error code error
3 19 Internal basic processor | Control Memory | CMF Reserved Unrecognized Reserved
bus parity error Fault (CMF) operation code
20 | Clusterbus parity error CMF 1/O adapter | ECE Reserved Reserved Reserved
21 Processor-Detected MIE MIE Cluster bus Reserved Reserved
Fault flag (PDF) sequence check
fault
6 22 Memory parity error Data/order Order Reserved Reserved Reserved
indicatort typet
7 23 Memory Interface Out indicator! | Order Reserved Multiple error Reserved
Error (MIE) typef
8 24 Processor interface Control Memory |Reserved | Reserved Control Memory Reserved
sequence check Fault (CMF) Fault (CMF)
fault address bit 0 address bit 0
9 25 Extended arithmetic CMF Reserved | Reserved CMF Reserved
sequence check Tault address DI 1 address bit 1
10 26 Basic processor CMF Reserved | Reserved CMF Reserved
sequence check fault address bit 2 address bit 2
nmn 27 Successful instruc- CMF Reserved | Reserved CMF Reserved
tion retry address bit 3 address bit 3
12 28 Control memory parity CMF Reserved | Reserved CMF Reserved
error (BPE module) address bit 4 address bit 4
13 29 Control memory parity CMF Reserved | Reserved CMF Reserved
error (BPF module) address bit 5 address bit 5
14 30 Control memory parity CMF Reserved | Reserved CMF Reserved
error (BPG module) address bit 6 address bit 6
15 31 Control memory parity CMF Reserved | Reserved CMF Reserved
error (BPH module) address bit 7 address bit 7
MThis is a 2-bit code indicating type of service call, as follows:
Bits MIOP RMP
6 7 Significance Significance
0 0 Data In Sense
0 1 Data Out Write
1 0 Order In Read
1 1 Order Out Control

Appendix C

195

Table C-2. Memory Unit Status Register

Bit Position Faults Detected by Memory Unit:
0-21 Fault address snapshot
22 Reserved
23 Memory unit parity error
24 Storage module selection error
25 Address In parity error
26 Data In parity error
27 Write=lock memory storage parity error
28 Port selection error
29 Operation mode undefined
30 Control sequence check fault error
31 Multiple error

196

Appendix C

XEROX Publication Revision Sheet

JANUARY, 1974

CORRECTIONS TO XEROX 560 COMPUTER REFERENCE MANUAL

PUBLICATION NO. 90 30 76A, JANUARY, 1974

Page 9 should be replaced with the page attached to this revision sheet. Page 10 is a backup page with no change.
The revision bar in the margin of the page indicates that it is corrected information,

XEROX® is a trademark of XEROX CORPORATION. 1 90 30 76A-1(1/74)

South Aviation Boulevard
egundo, California 90245

erox Cornoration
erox Lorporatio

m
n =

Reader Comment Form

\ V4 ' e\ V4

AERUA

We would appreciate your comments and suggestions for improving this publication.

Publication No. Rev. Letter | Title

Current Date

How did you use this publication?

[] Learning D Installing

E] Sales

D Operating

Is the material presented effectively?

D Fully Covered

[weti i1ustrated [[J wen organized [] Clear

D Reference

[] maintaining

l:] Very Good

D Good

What is your overall rating of this publication?

What is your occupation?

D Fair D Very Poor

[___] Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12/72)
Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

Staple Slapie

First Class
Permit No. 229
El Segundo,
California

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

Attn: Programming Publications

XEROX

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511 XEROX® is a trademark of XEROX CORPORATION.

	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	_01
	replyA
	replyB
	xBack

