
Xerox 560 Computer

Reference Manual

90 30 76A

'xerox Corporation
/701 South Aviation Boulevard
lEI Segundo, California 90245
_213679-4511

© 1974, Xerox Corporation

XEROX

Xerox 560 Computer

Reierence iVianuai

FIRST EDITION

90 30 76A

January 1974

Price: $7.25

Printed in U.S.A.

ii

RELATED PUBLICATIONS

Publication No.

Xerox Symbol/LN, OPS Reference Manua I 90 1790

Xerox Meta-Symbol/LN, OPS Reference Manua I 90 09 52

Xerox Macro-Symbol/LN, OPS Reference Manual 90 1578

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

/,LL SPECIFICATIONS SUBJECT TO CHANGE VI/ITHOUT NOTICE

CONTENTS

1. XEROX 560 COMPUTER SYSTEM Hardware Error Trap 43
Instruction Exception Trap 44

Introduction 1 Power On Trap 44
General Characteristics 1 Power Off Trap 44
Standard and Optional Features 3 Processor Detected Fault Flag 44
General- Purpose Features 3 Register Altered Bit 45
Time-Sharing Features 4
Real-Time Features 5
Multiuse Features 6
Multiprocessor Features 6

Multiprocessor Interlock 6 3. INSTRUCTION REPERTOIRE 47
Multiport Memory System 7
Manual Partitioning Capability 7 Load/Store Instructions 49
Multiprocessor Control Function 7 Analyze/Interpret Instructions 57
Shared Input/Output 7 Fixed-Point Arithmetic Instructions 59

Comparison Instructions 66
Logical Instructions 69
Shift Instructions 70

2. SYSTEM ORGANIZATION 8 Floating-Point Shift 72
Conversion Instructions 73

Processor Clusters 8 Floating-Point Arithmetic Instructions 74
System Control Processor 8 Floating-Point Numbers 75
Bas i c Processor 8 Floating-Point Add and Subtract 76

General Registers 8 Floating-Point Multiply and Divide 78
Memory Control Storage 11 Condition Codes for Floating-Point
Computer Modes 11 Instructions 78
Information Format 12 Decimal Instructions 80
Information Boundaries 13 Packed Decima I Numbers 81
Instruction Register 13 Zoned Decimal Numbers 81

Main Memory 14 Decimal Accumulator 81
A A _______ I 1 __ ~ L ,4 Decimai instruction format ~I IVIO;::IIIVIY Villi

Maintainability and Performance 16 Illegal Digit and Sign Detection 81
Virtual and Real Memory 17 Overflow Detection 82
Types of Addressing 19 Decimal Instruction Nomenclature 82
Memory Address Control 26 Condition Code Settings 82
Program Status Words 28 Byte-String Instructions 86

Centralized Interrupts .30 Push-Down Instructions (Non-Privileged) 96
States of an Interrupt Level 30 Stack Pointer Doubleword (SPD) 96
Dialogue Between the Basic Processor and Push-Down Condition Code Settings 97

the Interrupt System During an Push-Down Instructions (Privi leged) 101
Interrupt-Entering Sequence 32 Status Stack Pointer Doubleword 101

Dialogue During an Interrupt-Exiting Execute/Branch Instructions 106
Sequence 32 Nonallowed Operation Trap During

Physical Organization 32 Execution of Branch Instruction 106
Interrupt Groups 32 Call Instructions 109
Control of the Interrupt System 35 Control Instructions 109
Sing I e- Instruct i on Interrupts 36 Loading the Memory Map 114

Trap System 36 Memory Write Protection Locks 116
Trap Entry Sequence 36 Interruption of MMC 117
Trap Addressing 36 Memory Access Traps by MMC Instruction __ 117
Trap Condition Code 39 Read Direct, Internal Basic Processor
Nonallowed Operation Trap 39 Control (Mode 0) 120
Push- Down Stack Limit Trap 41 Read Direct, Interrupt Control (Mode 1) __ 121
Fixed-Point Overflow Trap 41 Read Direct (Mode 9) 123
Floating-Point Arithmetic Fault Trap 42 Write Direct, Internal Basic Processor
Decimal Arithmetic Fault Trap 42 Control (Mode 0) 123
Watchdog Timer Runout Trap 43 Input/Output Instructions 127
Programmed Trap 43 Overa" Characteristics 127
Call Instruction Trap 43 I/O Status Information 127

iii

4. INPUT/OUTPUT OPERA TIO NS 142 AGURES

External DIO Interface 142 1. A Xerox 560 Computer System 9
Multiplexor Input/Output Processor (MIOP)

Devi ce Controllers 142 2. The Basic Processor 10
Rotating Memory Processor (RMP) 143
Input/Output Processor (lOP) Fundamentals __ 143 3. Information Boundaries 13

Command List 143
Operational IOCD 143 4. Main Memory 15
Control IOCD 146

I/o Operation Phases 148 5. Addressing Logic 18
Preparation Phase 148
Initiation Phase 148 6. Index Displacement Alignment (Real and
Fetching Phase 148 Virtual Addressing Modes) 21
Execution Phase 149
Termination Phase 151 7. Generation of Actual Addresses Indirect,

Virtual Addressing 22

5. OPERATIONAL CONTROL 152 8. Index Displacement Alignment (Real-
Extended Addressing) 23

Externa I Control Subsystem 152
Central ized System Control 152 9. Generation of Effective Virtual Address
Control Console Devices 152 (Indirect Real-Extended Addressing) 24

Control Commands 153
Operator Control Commands 153 10. Operational States of an Interrupt Level 31
Diagnosti c Control Commands 156
Maintenance Control Commands 158 1l. Interrupt Priority Chain 34
System Control Panel 161
Operating Procedures and Information ___ 164 12. Typical 28-Word Portion of Memory Stack

for PSS and P LS 102

6. SYSTEM CONFIGURATION CONTROL 167 13. Formats of I/o Instructions 128

Configuration Control Panel (CCP) 167 14. Bootstrap Loader 155

15.
APPENDIXES

System Control Panel 162

16. Chassis Physical Configuration 168
A. REFERENC E TABLES 173

17. Sample Rows of CCP Switches 168
Standard Symbols and Codes 173
Standard Character Sets 173
Control Codes 173
Special Code Properties 173
Standard 8-Bit Computer Codes (EBCDIC) ___ 174
Standard 7-Bit Communication Codes TABLES

(ANSCII) 174
Standard Symbol-Code Correspondences 175 l. Basic Processor Operating Modes and
Hexadecimal Arithmetic 179 Address i ng Cases 25

Addition Table 179
Multiplication Table 179 2. Interrupt Locations 33
Table of Powers of SixteenlO 180
Table of Powers of Ten16 180 3. Summary of Trap Locations 37

Hexadecimal-Decimal Integer Conversion
Table 181 4. TCC Setting for Instruction Exception

Hexadecimal-Decimal Fraction Conversion Trap X'4D ' 44
Table 187

Table of Powers of Two 191 5. Registers Changed at Time of a Trap Due to
Mathematica I Constants 191 an Operand Access 45

B. GLOSSARY OF SYMBOLIC TERMS 192 6. ANALYZE Table for Operation Codes 57

C. FAULT STATUS REGISTERS 195 7. Floating-Point Number Representation 76

iv

8. Condition Code Settings for Floating-Point 19. Status Response Bits for AIO Instruction 135
Instructions 79

20. I/o Address (AIO Response) 135
9. Status Word 0 119

2l. Event Messages 153
10. Status Word 1 119

22. Diagnostic Control (P-Mode) Commands ___ 157
11. Read Direct Mode 9 Status Word 123

23. Bit Assignments and Description, Processor
12. Chassis Type Assignments 124 Control Word, Register Q30 (X'1 E') ___ 165

13. Description of I/o Instructions 128 24. Bit Assignments, Address Compare
Register Q31 (X'1F') 166

14. I/o Status Information (Register R) 130
25. Functi ons of Processor Cluster Confi gurat ion

15. Device Status Byte (Register R or Ru1) Control Panel Row 169
(SIO, no, and HIO only) 131

26. Functions of Memory Unit Configuration
16. Operational Status Byte (Register Ru1) 132 Control Panel Row 170

17. Status Response Bits for I/o Instructions 133 C-l. Fault Status Registers 195

18. lOP Status Byte 134 C-2. Memory Unit Status Register 196

v

1. XEROX 560 COMPUTER SYSTEM

INTRODUCTION

The Xerox 560 general-purpose, digital, computer system
accommodates a variety of scientific, business, real-time,
and ti me-shar i ng app I i cat ions. A system inc I udes system
control, basic processor, I/O processor, and main memory
(up to 256K words) with two ports. Each major system
element performs asynchronously with respect to other
elements.

The basic system can be readi Iy expanded. Memory access
paths can be increased from the basic two ports to a maxi­
mum of six ports. Input/output capability can be increased
by adding more input/output processors (lOPs), device con­
trollers, and peripheral devices.

The basic processor (BP) has an extensi ve i nstructi on set
that includes floating-point, byte-string, and decimal
instruct ions.

The multiaccess memory units, with interleaving, afford a
high level of system performance. Main memory can be
expanded in 16K word increments to a maximum of 256K
words. Address interleaving may be performed between
memory units of like size. The number of ports to each
memory unit can be expanded to allow independent ac­
cess to memory by up to six II processor clusters" (i. e. ,
functional groups).

Processor clusters are the grouping of two or more functions
(such as a basic processor, an I/O processor, and inter­
faces) on a common bus. Clustering permits processors to
share common faci I iti es, e. g., buses and memory inter­
faces. Therefore, the hardware is I ess redundant, hence
less complex, resulting in more reliability at a lower cost.
There are multiple combinations of functional groups from
which to select.

Existing Sigma 5-9 programs may be run on the system. The
upward compatibility of the comprehensive, modular soft­
ware (assemblers, compi lers, mathematical and uti lity rou­
tines, and application packages) eliminates reprogramming.

Features have been incorporated in this design to enhance
overall system reliability, maintainability, and availability.
Centralized switches for system repartitioning may permit
faulty units, or an entire subsystem, to be isolated for diag­
nosis or repair while the primary system continues operation.
Parity checking is performed on each byte of information
for most system interfaces and internal control signals. Most
fai led instructions are automatically retried, and uninter­
rupted processing continues. The only apparent effect may
be an entry in the error log. In the event an error is irre-
c overabl e, there are error storage reg i sters that return com­
plete data on the fault and the status of the system at
that point.

GENERAL CHARACTERISTICS

The following system features and characteristics permit
efficient operation in general-purpose, multiprocessor,
time-sharing, real-time, and multiuse environments:

• Word-oriented memory (32-bit word plus parity bit
per byte) that can be addressed and altered as byte
(8-bit), halfword (2-byte), word (4-byte), and double­
word (8-byte) quantities.

•

•
•

•

•

•

•

•
•

Memory expandable to 256K words (K = 1024) in mod­
ular units of 16K words each.

Indirect addressing with or without postindexing.

Displacement index registers, automatically self­
adjusting for all data sizes.

Immediate operand instructions for greater storage
efficiency and increased speed.

Four blocks of 16 general-purpose registers for address­
ing, indexing, and accumulating. Multiple registers
permit rapid context switching.

Hardware memory mapping, which virtually eliminates
memory fragmentation and provides dynamic program
relocation.

AA ____ ... ______ ___ J.. __ L~ __ L __ _ ~ ~_L ___ ___ .-.I ! __ r ______ L~ __ _

n II.v., "'= !-'.V."' IIVII 'VI ;'1;"""" ,",II,", II11V111,UIIUII

securi ty and protecti on.

Memory write protection within memory units to prevent
inadvertent destruction of critical areas of memory from
any processor cluster.

Watchdog timer to assure nonstop operation.

Real-time priority interrupt system with automatic iden­
tification and priority assignment, fast response time,
and 14 internal and up to 48 external levels that can
be individually armed, enabled, and triggered by
program control.

• Instructions with long execution times can be interrupted.

• Automatic traps for error or fault conditions, with
masking capability and maximum recoverability, under
program control.

• Power fail-safe for automatic shutdown and resumption
of processing in event of power fai lure.

• Multiple interval timers with a choice of resolutions
for independent ti me bases.

• Privileged instruction logic for program integrity in
multiuse environments.

Xerox 560 Computer System

• Extensive instruction set that includes:

• Byte, halfword, word, and doubleword operations.

• Use of all memory-referencing instructions for
register-to-register operations, with or without
indirect addressing and postindexing, and within
normal instruction format.

• Multiple register operations.

• Fixed-point integer arithmetic operations in half­
word, word, and doubleword modes.

• Immediate operand instructions.

• Floating-point hardware operations in short and
long formats with significance, zero, and normal­
ization control and checking, all under full pro­
gram control.

• Full complement of logical operations (AND, OR,
exclusive OR).

• Comparison operations, including compare between
limits (with I imits in memory or in registers).

• Call instructions that permit up to 64 dynamically
variable, user-defined instructions, and allow a
program access to operating system functions with­
out operating system intervention.

• Decimal hardware operations, including arith­
metic, edit, and pack/unpack.

• Byte-string instructions.

• Push-down stack operations (hardware imple­
mented) of single or multiple words, with auto­
matic I imit checking, for dynamic space alloca­
tion, subroutine communication, and recursive
routine capabi lity.

• Automatic conversion operations, including binary/
BCD and any other weighted-number systems.

• Analyze instruction that facilitates effective
address computation.

• Interpret instruction that increases speed of inter­
pretive programs.

• Shift operations (left and right) of word or double­
word, including logical, circular, arithmetic,
searching shift, and floating-point modes.

• Built-in reliability and maintainability features that
include:

• Extensive error logging. When a fault is detected,
system status and fault information are available
for program retrieval and logging for subsequent
analysis.

2 General Characteristics

• Full parity checking on all data and addresses
communicated in either direction on buses between
memory units and processors, providing fault de­
tection and location capability to permit the
operating system or diagnostic program to quickly
determine a faulty unit.

• Address stop feature that permits operator or main­
tenance personnel to:

Stop on any instruction address.

Stop on any memory reference address.

Stop when any word in a selected page of
memory is referenced.

• Traps that provide for detection of a variety of
fault conditions, designed to enable a high degree
of system recoverab iii ty .

• Partitioning features that enable system reconfig­
uration via a centralized Configuration Control
Panel. Units may be partitioned from the system
by selectively disabling them from buses (assuming
other system facilities can handle the additional
load). Thus, faulty units, processors, devices, or
an alternate system can be isolated from the oper­
ational system to enable diagnosis or repair whi Ie
the primary system continues operation.

• Independently operating I/O system with the following
features:

• Direct input/output (READ DIRECT, WRITE DIRECT
instructions) for transfer of 32-bit words between
the specified general register and an external de­
vice; a 16-bit address is transferred for selection
and control purposes; and each transfer is under
direct program control.

• Up to five independent I/O processor clusters (re­
stricted only by the maximum number of 6 ports).

• Multiplexor I/O processors (MIOPs) (up to 3 per
I/O cluster), each providing for simultaneous op­
eration of up to 16 devices per processor.

• Data chaining for gather-read and scatter-write
operati ons.

• Command chaining for multiple record operations.

• Write lock protect feature within memory unit
for positive protection from all processors storing
into memory.

• Comprehensive modular software that is program com­
patible with Sigma 5-9 computers:

• Expands in capabi I i ty and speed as system grows.

• Operating system: Control Program-Five (CP-V).

• Language processors and utilities and applications
software for both commercial and scientific users.

• Peripheral equipment includes:

• Card equipment: Reading speeds up to 1500 cards
per minute; punching speed of 100 cards per min­
ute; intermixed binary and EBCDIC card codes.

• Line printers: Fully buffered with speeds up to
1250 lines per minute; 132 print positions with
character sets containing 64 or 95 characters.

• Magnetic tape units: 9-track systems, single or
dual density (1600 or 800/1600 BPI), industry­
compatible; high-speed, automatic loading units
operating at 125 inches per second with trans­
fer rates up to 200,000 bytes per second; and
at 75 inches per second with transfer rates up
to 120,000 bytes per second.

• Rapid Access Data (RAD) and disk files: RAD
capacity of 2.9 million bytes, with a transfer
rate of 750,000 bytes per second; disk capa­
cities in increments of 86 mi Ilion bytes (format­
ted) per unit with a transfer rate of 806,000 bytes
per second, and in increments of 49 million bytes
per unit with a transfer rate of 312,500 bytes
per second.

• Keyboard printers: 10 characters per second.

• Data communications equipment: Complete line
of character-oriented, message-oriented, and
procedure-oriented equipment to connect remote
user terminals (including remote batch) to the
computer center via common carrier lines and
local terminals directly.

STANDARD AND OPTIONAL FEATURES

A basic system has the following standard features:

• A basic processor (BP) that includes:

• Full instruction set

• Memory map with access protection

• Register blocks (4)

• Multiplexor Input/Output Processor (MIOP) with:

• 16 subchannels

• 1- or 4-byte interface

• Input/Output Adapter

• Two memory units that include:

• Dual port access

~ Memory write lock protection

• A system control processor that inc I udes:

• Real-time clocks (4)

• Internal interrupts (14)

• Power fail-safe detection

• External Direct Input/Output Interface (DIO)

• External Control Subsystem (ECS)

• System Control Panel (SCP)

• Configuration Control Panel (CCP)

• Local and remote assist facility

• Error detecti on faci I i ti es

• Diagnostics

A system may have the following optional features:

• BP options:

• Up to 48 external priority interrupts (in groups
of 12)

• Memory options:

• Memory expansion up to 256K words

• Up to 4 additional access ports (in sets of 2).

• Input/ Output opti ons:

• Multiple I/O cluster/.

• Up to 3 additional MIOPs, each with 16 sub­
channel s, per cI uster.

• One Input/Output Adapter (for one MIOP)
per cluster.

• One Rotating Memory Processor (RMP) per
cluster.

GENERAL-PURPOSE FEATURES

General-purpose computing applications are characterized
by emphasis on computation and internal data handling.

tThe aggregate of processor clusters is restricted by the max­
imum memory port limitation of 6.

Standard and Optional Features/General-Purpose Features 3

Many operations are performed in floating-point format
and on strings of characters. Other typical characteristics
include decimal arithmetic operations, binary to decimal
number conversion (for printing or display), and high sys­
tem i nput/ output transfer rates.

General-purpose features are described in the following
paragraphs.

Floating-Point Hardware. Both short (32-bit) and long
(64-bit) formats are available in the floating-point in­
structions. Under program control, the user may select
optional zero checking, normalization, floating-point
rounding and significance checking. Significance check­
ing permits use of short floating-point format for high pro­
cessing speed and storage economy and of long floating­
point format when loss of significance is detected.

Decimal Arithmetic Hardware. Decimal arithmetic instruc­
tions operate on up to 31 digits plus sign. This instruction
set includes pack/unpack instructions for converting to/from
the packed format of two digits per byte, and a generalized
edit instruction for zero suppression, check protection, and
formatting, with punctuation to display or print it.

Indirect Addressing. Indirect addressing faci litates table
linkages and permits keeping data sections of a program
separate from procedure sections for ease of maintenance.

Displacement Indexing. Indexing by means of a IIfloating li

displacement permits accessing a desired unit of data with­
out considering its size. The index registers automatically
align themselves appropriately; thus, the same index reg­
ister may be used on arrays with different data sizes. For
example, in a matrix multiplication of any array of full
word, single-precision, fixed-point numbers, the results
may be stored in a second array as double-precision num­
bers, using the same index quantity for both arrays. If an
index register contains the value of k, then the user always
accesses the kth element, whether it is a byte, halfword,
word, or doubleword. Incrementing by various quantities
according ro daro size is nor required; instead, increment­
ing is always by units in a continuous array table regardless
of the size of data element used.

Instruction Set. More than 100 major instructions permit
short, highly optimized programs to be written. These are
rapidly assembled and minimize both program space and
execution time.

Translate Instruction. The Translate instruction permits
rapid translation between any two 8-bit codes; thus, data
from a variety of input sources can be handled and re­
converted easi iy for output.

Conversion Instructions. Two generalized conversion in­
structions provide for bidirectional conversions between
internal binary and any other weighted number system,
including BCD.

4 Time-Sharing Features

Call Instructions. These four instructions permit handling
up to 64 user-defined subroutines, as if they were built-in
machine instructions. Call instructions also gain access to
specified operating system services without requiring its
i nterventi on.

Interpret Instruction. The Interpret instruction simplifies
and speeds interpretive operations such as compilation, thus
reducing space and time requirements for compilers and
other interpretive systems.

Four-Bit Condition Code. Checking results is simplified by
automatically providing information on almost every instruc­
tion execution, including indicators for overflow, under­
flow, zero, minus, and plus, as appropriate, without
requiring an extra instruction execution.

Direct Input/Output (DIO). Direct input/output faci li­
tates in-line program control of asynchronous or special­
purpose devices. This feature permits information to be
transmitted directly to or from general-purpose registers.

Multi lexor Input/Out ut Processor (MIOP). Once initia­
lized, I 0 processors operate independently of the basic
processor, freeing it to provide faster response to system
needs. An MIOP requires minimal interaction with the
basic processor. I/O command doublewords permit both
command chaining and data chaining without intervening
basic processor control. I/o equipment speeds range from
slow rates involving human interaction (teletypewriter, for
example) to transfer rates of rotating memory devices of
over 750,000 bytes per second. Peripheral controllers at­
tached to an MIOP may be operated simultaneously.

Rotating Memory Processor (RMP). An RMP supports up to
15 disk drives, one at a time, permitting large capacity,
high transfer rate files. Dual access (between 2 RMPs) op­
tion is available.

TIME -SHARING FEATURES

Ti me-shari ng is the abi Ii ty of a system to share its tota I
resources among many users at the same time. Each user
may be performing a different task, requiring a different
share of the available resources. Some users may be on­
line in an interactive, IIconversational li mode with the
basic processor while other users may be entering work to
be processed that requires only final output.

Time-sharing features are described in the following
paragraphs.

Rapid Context Saving. When changing from one user to
another, the operating environment can be switched quickly
and easily. Stack-manipulating instructions permit storing
in a push-down stack of 1 to 16 general-purpose registers by
a single instruction. Stack status is updated automatically
and information in the stack can be retrieved when needed

(also, by a single instruction). The current program status
words, which contain the entire description of the current
user's environment and mode of operation, may be stored
anywhere in memory, and new program status words may be
loaded, all with a single instruction.

Multiple Register Blocks. The availability of four blocks
of 16 general-purpose registers improves response time by
reducing the need to store and load register blocks. A
distinct block may be assigned for different functions as
needed; the program status words automatically select the
applicable register block.

User Protection. The slave mode feature restricts each user
to his own set of instructions while reserving to the operat­
ing system certain "privileged" (master mode) instructions
that could destroy another user's program if used incor­
rectly. Also, a memory access - protection feature pre­
vents a user from accessi ng any storage areas other than
those assigned to him. It permits him to access certain areas
for reading only, such as those containing publ ic subrou­
tines, while preventing him from reading, writing, or ac­
cessing instructions in areas set aside for other users.

Storage Management. Main memory is expandable to 256K
(K = 1024) words. To make efficient use of available mem­
ory, the memory map hardware permits storing a user's pro­
gram in fragments as sma II as a page of 512 words, wherever
space is avai lable; yet all fragments appear as a single,
contiguously addressable block of storage at execution time.
The memory map also automatically handles dynamic pro­
gram relocation so that the program appears to be stored in
n dnnrlrlrt"l v.i0}' 0t ~X~ClJt!0!",! t!!'!'!e, e'!e!"! th0~gh it !'!'!cy cc­

tually be stored in a different set of locations each time it
is brought into memory. The memory map provides the
abi I ity to locate any 128K-word virtual program in the basic
processor's logical addressing space. Thus, the system can
always address a virtual memory of 128K words regardless
of physical memory size.

Input/Output Capability. Time-sharing input/output re­
quirements are handled by the same general-purpose input/
output capabi I i ti es descri bed under II Genera I-Purpose
Features".

Nonstop Operation. A "watchdog" timer assures that the
system continues to operate even in case of halts or delays
due to fai lure of special I/O devices. Multiple real-time
clocks with varying resolutions permit independent time
bases for flexible allocation of time slices to each user.

Reliability, Maintainability, Availability. Since time­
sharing systems have many on-line users needing immediate
system response, "downtime" defeats time sharing's primary
purpose. Pool i ng of resources a long wi th fl exi bl e recon­
figuration control ensures a high level of continuous avail­
ability. Configuration controls are provided to switch the
load from one unit to another in the event of a failure with
no loss of functional capability, only capacity. In addi­
tion, a nonworking subset of the total system may be

logically isolated (partitioned) so that maintenance may
proceed on the subset while the remainder of the system
conti nues to operate.

To minimize the effect of transient errors, automatic retry
of fa i led instructions is performed.

REAL-TIME FEATURES

Real-time applications are characterized by a need for:
(1) hardware that provides quick response to an external
environment; (2) speed that is sufficient to keep up with
the real-time process itself; (3) input/output flexibility to
handle a wide variety of data types at different speeds;
and (4) reliabi lity features to minimize irreplaceable lost
time.

Multilevel, Priority Interrupt System. The real-time-
ori ented system provi des rapi d response to external interrupt
levels. Each interrupt is automatically identified and res­
ponded to according to its priority. For further flexibi lity,
each level can be individually disarmed (to discontinue in­
put acceptance) and disabled (to defer responses). Use of
the disarm/disable feature makes programmed dynamic re­
assignment of priorities quick and easy, even while a real­
ti me process is in progress.

Programs involving interrupts from specially designed equip­
ment often require checkout before the equipment is actually
avai lable. To permit simulating this special equipment, any
external interrupt level can be "triggered" by the basic
processor through execution of a single instruction. This
capability is also useful in establishing a modified hierarchy
of responses. For example, in responding to a high-priority
interrupt, after the urgent processing is completed, it may
be desirable to assign a lower priority to the remaining por­
tion so that the interrupt routine is free to respond to other
critical stimul i. The interrupt routine can accomplish this
by triggering a lower-priority level, which processes the
remaining data only after other interrupts have been handled.

READ DIRECT and WRITE DIRECT instructions (described in
Chapter 3) allow the program to completely interrogate,
preserve, and a I ter the conditi on of the interrupt system at
any time and to restore that system at a later time.

Nonstop Operation. When connected to special devices
(on a ready/resume basis), the basic processor may be ex­
cessively delayed if the specific device does not respond
quickly. As in the time-sharing environment, the built-in
watchdog timer assures that the basic processor cannot be
delayed for an excessive length of time.

Real-Time Clocks. Many real-time functions must be timed
to occur at specific instants. Other timing information isalso
needed - for example, elapsed time since a given event, or
the current time of day. The computer system can contain
up to four real-time clocks with varying degrees of resolu-
ti on to meet these needs. These clocks a I so a II ow easy hand­
ling of separate time bases and relative time priorities.

Real-Time Features 5

Rapid Context Switching. When responding to a new set of
interrupt-initiated circumstances, a computer system must
preserve the current operating environment, for continuance
later, whi Ie setting up the new environment. This changing
of environments must be done quickly, with a minimum of
II overhead ll time costs. Anyone of the four blocks of
general-purpose arithmetic registers can, if desired, be as­
signed to a specific environment. All relevant information
about the current environment (instruction address, current
general register block, memory-protection key, etc.) is
kept in the program status words. A single instruction
stores the current program status words anywhere in memory
and loads new ones from memory to establish a new en­
vironment, which includes information identifying a new
block of general-purpose registers. Thus, the system's
operating environment can be preserved and changed com­
pletely through the execution of a single instruction.

Memory Protection. Both foreground (real-time) and back­
ground can run concurrently in the system because a fore­
ground program is protected against destruction by an un­
checked background program. Under operating system
control, the memory access-protection feature prevents
accessing memory for specified combinations of reading,
writing, and instruction acquisition.

Variable Precision Arithmetic. Much of the data encoun­
tered in real-time systems are 16 bits or less. To process
this data efficiently, both halfword and fullword arithmetic
operations are provided. For extended precision, double­
word arithmetic operations are also included.

Direct Input/Output. For handling asynchronous I/O, a
32-bitword can be transferred direct!y between any genera!­
purpose register and external devices.

Reliability, Maintainability, Availability. The capabil­
ities described in the section, II Time-Sharing Features ll

apply equally to the real-time environment.

MULTIUSE FEATURES

As implemented in this system, IImultiuse ll combines two or
more application areas. The real-time application is the
most difficult general computing task because of its severe
requirements. Similarly, another difficult multiuse task is
a time-sharing application that includes one or more real­
time processes. Because the system is designed on a real­
time base, it is qualified for a mixture of applications in a
multiuse environment. Many hardware features that prove
valuable for Certain application areas are equally USeful in
others, although in different ways. This multiple capa­
bility makes the system particularly effective in multi­
use applications.

The major multiuse features are described in the follow­
i ng paragraphs.

6 Multiuse Features/Multiprocessor Features

Priority Interrupt System. In a multiuse environment, many
elements operate simulatneously and asynchronously. Thus,
an efficient priority interrupt system is essential. It allows
the computer system to respond quickly, and in proper or­
der, to the many demands made on it, with attendant im­
provements in resource efficiency.

Quick Response. The many features that combine to pro­
duce a quick-response system (multiple register blocks,
rapid context saving, multiple push-pull operations) benefit
all users because more of the system's resources are readi Iy
avai lable at any instant.

Memory Protection. The memory protection features protect
each user from every other user and guarantee the integrity
of programs essential to critical real-time applications.

Input/Output. Because of the wide range of capacities and
speeds, the I/O system simultaneously satisfies the needs of
many different application areas economically, both in
terms of equipment and programming.

Instruction Set. The comprehensive instruction set provides
the computational and data-handling capabilities required
for widely differing application areasi therefore, each user's
program length and running time is minimized, and the
throughput is maximized.

MULTIPROCESSOR FEATURES

System design readily permits expansion to shared memory
in a multiprocessor system. The system can contain a com­
bination of functional clusters, each of which in turn may
contain multiple processors. The total number of clusters
is restricted to the maximum port limitation of six. All pro­
cessors ina system may share common memory.

The following paragraphs describe the major multiprocessor
features of the system,

MULTIPROCESSOR INTERLOCK

In a multiprocessor system, the basic processors often need
exclusive control of a system resource. This resource may
be a region of memory, a particular peripheral device, or,
in some cases, a specific software process. There isa special
instruction to provide this required multiprocessor interlock.
This special instruction, LOAD AND SET, unconditionally
sets a 11111 bit inthe sign position of the referenced memory
location during the restore cycle of the memory operation.
If this bit had been previously set by another processor, the
interlock is said to be IIset" and the testing program pro­
ceeds to another task. On the other hand, if the sign bit
of the tested location is a zero, the resource is allocated
to the testing processor, and simultaneously the interlock
is set for any other processor.

MULTIPORT MEMORY SYSTEM

The system has growth capabi Ii ty of up to 6 ports per
memory unit. A memory unit may contain 16K or32K words.
This architecture allows flexibility in growth patterns
and provides high memory bandwidth, essential to multi­
proc essor systems.

MANUAL PARTITIONING CAPABILITY

Manual partitioning capabi lity is afforded for all system
units. Thus, besides the primary advantage of increased
throughput, a secondary advantage of a multiprocessor
system is the "fail-soft" abi I ity. Given a duplicate unit,
any unit can be partitioned by selectively disabling it from
the system buses. Depending on the type of fai ling unit,
the system wi II be operable, with some degree of degraded
performance. An alternate processor bus with dual system
capabilities can be provided.

MULTIPROCESSOR CONTROL FUNCTION

A multiprocessor control function is provided on all multi­
processor systems. This function provides these basic features:

1. Control of the External Direct Input/Output bus (Ex­
ternal DIO), used for controlling system maintenance

and special purpose units such as analog to digital
converters.

2. Central control of system partitioning.

3. Centralized interrupt system, providing capability for
the operating system to use interrupts to schedule tasks
independently of the number of basic processors pres­
ent in a system.

4. Processor to processor communication via processor
buses.

SHARED INPUT/OUTPUT

In a multiprocessor system, any basic processor may direct
I/o actions to any I/O processor. Specifically, any basic
processor can issue an SIO, no, TDV, or HIO instruc­
tion to begin, test, or stop any I/O process. However,
the "end-action ll sequence of the I/O process is directed
to one of the basic processors in the system by the System
Control Processor. This feature (accomplished by setting
a pair of configuration control switches) allows dedicating
I/o end-action tasks to a single processor and avoids con­
flict resolution problems.

Multiprocessor Features 7

2. SYSTEM ORGANIZATION

The elements of this computer system include a basic
processor (BP), input/output processors (lOPs), memory, I/o
device controllers, and devices (see Figure 1). The pro­
cessors and interfaces clustered into functional groups, in­
terconnected via buses and controlled from a Configuration
Control Panel and a System Control Processor. Elements
within a processor cluster share an access path for intra­
cluster communications. Thus, the total computer system can
be viewed functionally as a group of program-controlled
processor clusters communicating with each other and a
common memory. Each processor cluster operates asyn­
chronously and semi-independently, automatically over­
lapping the operation of elements within as well as the
operation of other processor clusters for greater speed (when
circumstances permit).

PROCESSOR CLUSTERS

Processors (basic processor and MIOP, for example) are
grouped functionally along with a Memory Interface (MI)
and a Processor Interface (PI) into a processor cluster. El­
ements within a processor cluster share an access path (the
cluster bus) to the Memory Interface, which connects to the
memory system via a memory bus. The Memory Interface
resolves contention problems and controls use of the cluster
bus by the elements in the cluster.

A processor communicates with processors in other processor
clusters through the Processor Interface, which connects di­
rectly to a processor bus. Via the processor bus, any pro­
cessor can communicate with or control any other processor
anywhere in the system configuration.

Note: Although two processor buses are provided, a Pro­
cessor Interface can be connected to one or the
other of the processor buses, but not to both at the
same time.

Within a basic processor-MIOP processor cluster, the basic
processor primari Iy performs overa II contro I and data reduc­
tion tasks whereas the MIOP performs the task associated
with the exchange of digital information between main
memory and selected peripheral devices. The MIOP com­
municates with device controllers via the I/o bus, which
connects to the Controller Interface (CI).

SYSTEM CONTROL PROCESSOR

The System Control Processor performs these primary func­
tions in the overall system:

1 • System control.

2. External Control Subsystem.

8 System Organization

3. Internal and external interrupt processing.

4. External and certain internal direct I/o (DIO) control.

It provides these major interfaces with other parts of the
system:

1. System console interface.

2. System contro I bus interface.

3. Processor bus interface.

4. Interna I and externa I interrupt interfaces.

5. External and certain interna I DIO interfaces.

6. System clock interface.

In addition to these major interfaces it provides paths for
other signals including system reset, 1.024 MHz clock,
power on/power off trap requests, and external real-time
clocks.

Figure 1 shows the interconnection of a System Control Pro­
cessor to processor clusters via a processor bus as well as in­
terconnection to the system console, external Direct Input/
Output (DIO), and external interrupts.

BASIC PROCESSOR

This section describes the organization and operation of the
basic processor in terms of instruction and data formats, in­
formation processing, and program control. The basic pro­
cessor comprises a fast memory and an arithmetic and control
unit as functionally shown in Figure 2.

Note: Functionally associated with the basic processor bUT
physically located elsewhere are a memory map,
memory access protection codes, and memory write
protection codes. Memory control storage for the
memory map and access codes is located in the Mem­
ory Interface, and the memory control storage for
the write protection codes (write locks) is located
in the memory. These functions are described in
"Memory System", later in this chapter.

GENERAL REGISTERS

A fast (integrated circuit) memory consisting of ninety-six
32-bit registers is used within the basic processor. A group
of 24 registers is referred to as a register block; thus, a
basic processor contains four register blocks. A 2-bit con­
trol field (called a register block pointer) in the program
status words (PSWs) selects the register block currently

System
Control
Console

System
Control
Processor

Memory
UnH

Memory
Unit

~~ss;- - - - ---, r
I I Cluster (Basic) 1

I I I
I I

Memory
I

I Interface

I
I

I
I
I
I

Processor
Interface

I
I

I
Processor IBus # 1 I

I I
I I
I I

Memory
Unit

~~-;:- - - - -,
C luster (I/O)

Memory
Interface

Processor
Interface

r---
____ I ~ I I ~

rocessoq BUS 1fT T"2 .--1---,
System I
Control I
Processor I

L_[_J
r- --,
1 System I
I Control I
LC~o~J

External Interrupts

Basic
Processor

MIOP

I I ~
·u

I
I
I
I
I
I
I
I
I

Remote Terminal Console Inputs

DIO Bus

Communications
.-------1 Interface

90 30 76A-l (1/74)

Line
Adapter

Line
Adapter

Comm.
Lines

Comm.
Lines

Device
Controller

Device
Controller

Dual Access Option

o
~

Device
Controller

Figure 1. A Xerox 560 Computer System

RMP

MIOP

Basic Processor 9

FAST MEMORY ARITHMETIC AND CONTROL UNIT

GENERAL REGISTER BLOCK (TYPICAL) INSTRUCTION REGISTER

0~1 ______________ ~

1 :::::::::::::.:.:.:::. ~:~:~:~:~:~:~:~:~:~:~:) .. ~:.'~.:~:.~ .. :~ .. :~.:~: .. ~: .. ::.~.:~:. I
··············· : .. -:.:-:.: .. -:.:-.........:.:.:-......... ,
~~~~~~~~~~~:~~;:~:;:; ~:~:~:~:~:;~~;~~~~~~~~r~~~~~:;:~:;:::::::::::::: ·t~:~r~~~~~ 

I~:-:·:·:·:·:·:·:·:·:·: .-:::::::::::::::::::::::.: .. :::::.:.:.:.:.:.:.:.:-:.:.:.:.:. ::::::::::::::::::::::::::. :::::::::::::::1 
2 {:rrr::r ::::::)~.: ................. :. ::::)):::::::nc:::::::::::::::::::::::::::.:::::: ::::::rt~:l 

3 (:: ::.:.:.::::::::: .. :.:.:::..... .:.:.:.:.:.:.:.. >f>~{:: ::::::::::: :.:.:.:-::::::: :::::;:::: : .. ::: .. : .. :': .. ' .. :.::.' .. :': .. :~.:: .. ' .. ::: .. : .. : ... '.:: .. :: .. 1 I Jf;~;~;;;; Itf}~}::::: ............... :.:.:.:.: .. ,:.:: .. -... -...... ::::::;::::::::: ~ 

4 1::I:::::~::::::I::::::::::::::r::r:::::j:: :::::::;:::;::::::f::t::::::::::::::; :::::::::::::::::::::::::::::::::::1 

5 1::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::1 .::::):r::::::=::::::::::::::::·: ,::::::::::::::I:I:t::tl 

8~1 ______________ ~ 
9 ..... 1 ________ ...... 

1O~1 ______________ ~ 

11 I"--________________ ~ 
12 ~I ________________ ~ 

13 ~I ________ ~ 

14 ~I _________ ..... 

15 

16 Jl ----------------------
171 ~ __________ ...... 

18 I~ ________________ __ 

19 IL... ________ .... 

20 ..... 1 ________ ...... 

21 ..... 1 ________ _ 

Index 
Registers 

o Indirect Access Flag 

o 

III 1111 I Operation Code Field 
1 7 

DID General Register Designator 
8 11 

ITIJ Index Register Designator 
12 14 

Reference Address Field 

111111111 11111111 III 
15 31 ....... --.... Memory 

1 

31-digit 
Decimal 
Accumu­
lator 

Reserved 

PROGRAM STATUS WORDS 

OJ]] Condition Code 
o 3 

I/O Processors I 
I I 

I 
Read/Write Direct 

1 • 
Interrupts 

Mopping • • 
.Access Protection. 

ITO Floating-point Mode Control 
5 7 

o Master/Slave Mode Control 
8 

D Memory Map Control 
9 

[JJ Arithmetic Trap Masks 
1011 

Instruction 
,..,...'T"'"T""'T'"T..,....,~'T"'"T""'I""T"'T'"'T..,....I""""I Address 

Id I I I I I I I I I I I " I I I or 
15 31 Extended 

[ill Write Key 

32 35 

[ill Interrupt Inhibits 

37 39 

OJ Register Block Pointer 
5859 

o Register AI tered 

60 

Displacement 

o Mode Altered Control 

61 

L---..I :: --=---=----=------,1 ~I _--------' 
Figure 2. The Basic Processor 

10 Basic Processor 



available to a program. The register block pointer can be 
changed when the basic processor is in the master mode or 
the master-protected mode. Only the first 16 general reg­
isters of a register block may be used by programs; the last 
e i gh tare reserved. 

Each of the first 16 general registers in a register block is 
identified by a 4-bit code in the range 00002 through 11112 
(0 through 15 in decimal notation, or XIO I through XIF I in 
hexadecimal notation). Any of these 16 registers can be 
used as a fixed-point temporary data storage location, or 
to contain control information such as a data address, count, 
pointer, etc. General registers 1 through 7 can be used 
as index registers and registers 12 through 15 can be used 
as a decimal accumulator capable of containing a decimal 
number of 31 digits plus sign. Registers 12 through 15 are 
always used when a decimal instruction is executed. 

MEMORY CONTROL STORAGE 

The memory control storage for the memory map and the 
associated memory access protection codes are contained 
in the Memory Interface (MI). Memory control storage for 
the 4-bit write locks are contained in the memory units. 
Memory control storage can be modified when the basic 
processor is in the master mode or the master-protected 
mode. 

MEMORY MAP 

Two terms are essential in understanding the memory map­
ping concept: actual (i .e., absolute or real) address and 
vi rtua I address. 

An actual address is used within the memory unit (memory 
address registers) to access a specific, physical memory lo­
cation for storage or retrieval of information as required by 
the execution sequence of an instruction. Actual addresses 
are fixed and are dependent on the wired-in hardware. 

A virtual address refers to a logical location as required by 
an individua I program. Like an actual address, a virtual 
address may designate a location that contains a program 
instruction, an element of data, a data address (indirect 
address), or it may also be an explicit quantity. Normally, 
virtua I addresses are derived from programmer-suppl ied 
labels through an assembly (or compi lation) process followed 
by a loading process. Virtual addresses may also be com­
puted during a program IS execution. Virtual addresses in­
clude all instruction addresses, indirect addresses, and 
addresses used as counts within a stored program, as well as 
those instructions computed by the program. (See "Virtual 
and Real Memory", later in this chapter.) 

Memory mapping transforms virtual addresses as seen by the 
individual program into actual addresses as seen by the 
memory system. Thus, when the memory map is i n effect, 
any program can be broken into 512-word pages and dy­
namically relocated throughout memory in whatever pages 
of space are available. 

When the memory map is not in effect, all virtual address 
values above 1510 are used by the memory as actual ad­
dresses. Virtual addresses 0 through 15 are alwayst used by 
the basic processor as general register addresses rather than 
as memory addresses. For example, if an instruction uses 
virtual address 5 to address the location where a result is 
to be stored, the basic processor stores that result in gen­
eral register 5 in the current register block instead of in 
memory location 5. 

When the basic processor is operating with the memory map 
in effect, virtual addresses 0 through 15 are still used as 
general register addresses. Virtual addresses above 15 are 
transformed into actual addresses by replacing the high­
order portion of the virtual address with a value obtained 
from the memory map. (The memory map address replace­
ment process is described in "Memory Address Control ", 
later in this chapter.) 

MEMORY ACCESS PROTECTION 

When the basic processor is operating with the memory map 
in the slave mode or the master-protected mode, the access 
protection codes determine whether the program may access 
instructions from, read from, or write into specific regions 
of the virtual address continuum (virtual memory). If the 
slave mode or master-protected mode program attempts to 
access a protected region of virtual memory, a trap occurs 
(see "Memory Address Control ", "Virtual and Real Mem­
ory", and "Trap System", later in this chapter). 

MEMORY WRITE PROTECTION 

The memory write-protection feature operates independently 
of access protection and the memory map. The 4-bit write 
lock operates in conjunction with a 4-bit field, called the 
write key, in bits 32-35 of the Program Status Words (PSWs). 
The lock and the key determine whether any program may 
alter any word of main memory. The write key can be 
changed when the basic processor is in the master mode or 
the master-protected mode. (The functions of the write 
lock and key are described in "Memory Address Control II, 
later in this chapter.) 

COMPUTER MODES 

The basic processor operates in one of three modes: master, 
master-protected, or slave. The operation mode is deter­
mined by the setting of three bits (bits 8, 9, and 61) of the 
Program Status Words (PSWs). (See IIProgram Status Words", 
later in this chapter.) Additionally, the basic processor 
operates in a mapped mode or an unmapped mode. 

t Except for the READ DIRECT (RD)/WRITE DIRECT (WD) in­
structionswhich can read from and store into these locations. 

Basic Processor 11 



MASTER MODE 

The master/slave control bit (bit 8 of the PSWs) must con­
tain a zero for the basic processor to operate in master 
mode. In th is mode the basic processor can perform a II of 
its control functions and can modify any part of the system. 
The restrictions upon the basic processor1s operations in this 
mode are those imposed by the write locks on certain pro­
tected parts of memory. It is assumed that there is a res­
ident operating system (operating in the master mode) that 
controls and supports the operation of other programs (which 
may be in the master, master-protected, or slave mode). 

MASTER-PROTECTED MODE 

The master-protected mode of operation provides additional 
protection for programs that operate in the master mode. The 
master-protected mode occurs when the basic processor is 
operating in the master mode with the memory map in effect 
and the mode altered control bit (bit 61 of the PSWs) is on. 
In this mode the memory protection violation trap occurs 
(location X I 40 I

, with CC4 = 1), as it does in all mapped 
slave programs, if a program makes a reference to a virtual 
page to which access is prohibited by the current setting of 
the access protecti on codes. 

SLAVE MODE 

The slave mode of operation is the problem-solving mode 
of the basic processor. In this mode, access protection 
codes apply to the slave mode program if mapping is in ef­
fect, and all IIprivileged II operations are prohibited. Priv­
ileged operations are those relating to input/output and to 
changes in the fundamental control state of the basic pro­
cessor. All privileged operations are performed in the 
master or master-protected mode by a group of privileged 
instructions. Any attempt by a program to execute a priv­
ileged instruction whi Ie the basic processor is in the slave 
mode results in a trap. The master/slave mode control bit 
(bit 8 of the PSWs) can be changed when the basic processor 
is in the master or master-protected mode. Nevertheless, 
a s!aVe mode program can gain direct access to certai!1 ex-
ecutive program operations by means of CALL instructions. 

-The operations avai lable through CALL instructions are es­
tablished by the resident operating system. 

MAPPED MODE 

Although the memory map is located in the Memory Inter­
face (MI), it functions as part of the basic processor. The 
basic processor communicates with memory through the MI. 
Mapping is effective for all the words of real memory, and 
is invoked when bit 9 (MM) of the PSWs contains a one. 
Memory mapping generates real page addresse:s from vir-tual 
addresses. The memory map can be loaded with either 
11-bit real page addresses or 8-bit real page addresses by 
meansofthe MOVE MEMORY CONTROL (MMC) privileged 
instruction (see Chapter 3, "Control Instructions "). Eleven­
bit real page addresses are always provided for in the map, 
thus if 8-bit real page addresses are generated, the three 

12 Basic Processor 

high-order bits contain zeros. The memory map always maps 
17-bit virtual addresses into 20-bit real addresses (see 
IIMemory Address Control II, later in this chapter for a dis­
cussion of how the map is used). 

UNMAPPED MODE 

When the basic processor is operating in the unmapped mode, 
there is a direct one-to-one relationship between the effec­
tive virtual address of each instruction and the actual ad­
dress used to access main memory. (See II Rea I Addressing ll

, 

later in this chapter.) 

INFORMATION FORMAT 

Nomenclature associated with digital information within the 
computer system is based on functional and/or physical at­
tributes. A "word" may be either a 32-bit instruction word 
or a 32-bit data word. 

The bit positions of a word are numbered from 0 through 31 
as follows: 

A word can be divided into two 16-bit parts (halfwords) in 
wh ich the bit positions are numbered from 0 through 15 as 
follows: 

A word can also be divided into four 8-bit parts (bytes) in 
which the bit positions are numbered 0 through 7 as follows: 

Two words can be combined to form a 64-bit element (a 
doubleword) in which the bit positions are numbered 0 
through 63 as follows: 

I : Least Signif~cant word: I 
n " " "I~ ~ '" '" ~ " " ,,1« " " ,,:« " '" "I" ,; ,. ,,' ~ " " "1M,, " " 

In fixed-point binary arithmetic each element of information 
represents nurneiical data as a signed integer (bit 0 repre­
sents the sign, remaining bits represent the magnitude, and 
the binary point is assumed to be just to the right of the 
least significant or righi-most bit). Negative va lues are 
represented in two1s complement form. Other formats re­
quired for floating-point and decimal instructions are de­
scribed in Chapter 3. 



INFORMATION BOUNDARIES 

Basic processor instructions assume that bytes, halfwords, 
and doublewords are located in main memory according to 
the following boundary conventions: 

1. A byte is located in bit positions 0 through 7, 8 
through 15, 16 through 23, and 24 through 31 of a 
word. 

Doubleword 

Word (even address) Word (odd address) 

Halfword 0 Halfword 1 Halfword 0 Halfword 1 

Byte O! Byte 1 Byte 2!Byte 3 Byte 0 !Byte 1 Byte 2!Byte 3 

2. A halfword is located in bit positions 0 through 15 and 
16 through 31 of a word. 

3. A doubleword is located such that bit positions 0 through 
31 are contained within an even-numbered word, and 
bit positions 32 through 63 are contained within the 
next consecutive word (which is odd-numbered). 

Figure 3 illustrates these boundaries. 

Doubleword 

Word (even address) Word (odd address) 

Halfword 0 Halfword 1 Halfword 0 Halfword 1 

Byte O! Byte 1 Byte 2!Byte 3 Byte 0 !Byte 1 Byte 2!Byte 3 

Figure 3. Information Boundaries 

INSTRUCTION REGISTER 

The instruction register contains the instruction the basic 
processor is currently executing. The format and fields of 
the two general types of instructions (memory reference and 
immediate operand) are described below. Specific formats 
for each instruction are given in Chapter 3. 

MEMORY REFERENCE INSTRUCTIONS 

Instructions that make reference to an operand in main mem­
ory may have the following format: 

Bits Description 

o 

1-7 

Indirect addressing. One level of indirect ad­
dressing is performed only if this bit position con­
tains a one. 

Operation code. This 7-bit field contains the code 
that designates the operation to be performed. See 
the inside front and back covers for complete list­
ings of operation codes. 

8-11 R field. For most instructions this 4-bit field des­
ignates one of the first 16 general registers of the 
current register block as an operand source, result 
destination, or both. 

12-14 X field. This 3-bit field designates one of general 
registers 1-7 of the current register block as an 

Bits Description 

12-14 index register. If X contains zero, indexing will 
(cont.) not be performed; hence register 0 cannot be used 

as an index register. (See "Address Modification 
Example: Indexing (Real and Virtual Addressing) ", 
later in this chapter for a description of the 
indexing process.) 

15-31 Reference address. Th i s 17 -b i t fi e I d norma II y con­
tains the reference address of the instruction oper­
and. The reference address is translated into an 
effective virtual address in accordance with the 
addressing type (real, real extended, or virtual) 
and the address modification required (direct! 
indirect or indexing). (See "Memory Reference 
Addresses" later in this chapter.) 

IMMEDIATE OPERAND INSTRUCTIONS 

Immediate operand type instructions are particularly effi­
cient because the required operand is contained within the 
instruction word. Hence, memory reference, indirect ad­
dressing, and indexing are not required. 

Bits 

o 

Description 

Bit position 0 must be coded with a zero. If it 
contains a one, the instruction is interpreted as be­
ing nonexistent. (See "Trap System ", later in this 
chapter. ) 

Bas i c Processor 13 



Bits 

1-7 

8-11 

12-31 

Description 

Operation code. This 7-bit field contains the code 
that designates the operation to be performed. 
When the basic processor encounters any immedi­
ate operand operation, it interprets bits 12-31 of 
the instruction word as an operand. These are the 
immediate operand operation codes: 

Operation 
Code 

X'02 1 

X '21 1 

X '22 1 

X'23 1 

Instruction 
Name 

Load Conditions 
and Floating Con­
trol Immediate 

Add Immediate 

Compare Immediate 

Load Immediate 

Multiply Immediate 

Mnemonic 

LCFI 

AI 

CI 

LI 

MI 

R field. This 4-bit field designates one of the 
first 16 general registers in the current general 
register block. The register may contain another 
operand and/or be designated as the register in 
which the results of the operation are to be 
stored or a ccumu la ted. 

Operand. This 20-bit field contains the immedi­
ate operand. Negative numbers are represented 
in two1s complement form. For arithmetic opera­
tions bit 12 (the sign bit) is extended by duplica­
tion to the left through bit position 0 to form a 
32-bit operand. 

The byte-string instructions (described in Chapter 3) are 
simi lar to immediate-operand instructions in that they can­
not be modified by indexing. Nevertheless, the operand 
field of byte-string instructions contains either a byte 
address displacement or a byte address that is a virtual ad­
dress subject to modification by the memory map. If a 
byte-string instruction has a one in bit position zero, the 
basic processor treats it as a nonexistent instruction (see 
"Trap System ", later in this chapter). 

MAIN MEMORY 

The memory system comprises memory units, memory inter­
faces (MIs), and memory buses. Figure 4 illustrates the re­
lationships among these components. 

The primary technology for main memory is magnetic core. 
The maximum physical storage is 256Kwords. Memory units 
can be interleaved on a two-way interleave basis. Each 
memory unit is provided with a set of starting address 
switches on the Configuration Control Panel (see Chapter 6) 
together with a two-position switch that selects one of two 

14 Main Memory 

possible clock and power sources. Memory units may con­
tain two, four, or six ports, which have a fixed priority 
order for the resolution of contention problems. 

The following sections describe the organization and opera­
tion of the memory system. Also described are the various 
modes and types of addressing, including indexing. 

MEMORY UNIT 

Main memory is divided physically and logically into one 
to eight module assemblies called memory units. Because 
the memory unit is a logical component that contains all the 
functions available in the entire memory, the minimum mem­
ory is one memory unit. The minimum storage capacity per 
memory unit is 16K words; the maximum is 32K words. A 
memory location stores a word of 36 bits; the first 32 bits are 
information and the last 4 are byte parity bits (the latter 
being unavai lable to the program). Each memory unit com­
prises a specific storage capacity, drive and sense circuits, 
a set of operational registers (address, data, and status), a 
set of write lock control registers for 32K words of memory, 
and a timing and control unit. 

CORE MEMORY MODULES 

Core memory modules (CMMs) provide a storage facility of 
standard modules (see Figure 4). 

MEMORY DRIVER 

The memory driver in each memory unit performs all memory 
operations except storage (provided for by the CMMs) and 
the few operations performed by the ports. The major func­
tions of the memory driver are: 

1 • Store address word. 

2. Store data-in and data-out words during memory 
cycles. 

3. Store write locks in special memory (other than CMMs). 

4. Perform parity generation and checking on address and 
memory bus data words, and on core memory module 
words. 

5. Generate and store status words. 

6. Control and time all transfers of address words, data 
words, status words, write locks, and write key among 
the ports, CMM, and the storage registers. 

7. Control and time a!! data, parity, and. control signals 
issued to the memory bus. 

8. Accept one of two or more simultaneous memory re­
quests on the basis of port positional priority and other 
priority status information such as "high priority" and 
"memory reserved ". 



(Maximum 
of eight) 

Core Core Core Core 
Memory Memory Memory Memory 
Modules Modules Modules Modules 
(CMM) (CMM) (CMM) (CMM) 

Memory 
Memory 

Memory 
Memory 

Memory 
Memory 

Memory 
Memory Unit 

Driver 
Unit 

Driver 
Unit 

Driver 
Unit 

Driver 
(MD) (MD) (MD) (MD) 

P P P P P P P P P P P P P P P P P P P P P P P P 
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

Memory Bus 1 

Memory Bus 2 

I - -- --, 
1 

I --- ---I 

1 
I I 

Memory 
, 

L....-- Memory I T ntArfn C-A I Interface - I .---

I I 

I I 
Basic f I 

I--
Processor I I--- RMP I 

I 
<I) 

I ::> 
<I) co ::> 

Processor Pr co Q) ocessor 

2 I Cluster ... I ~ CI uster <I) 

~ :g 
I u I u 

I-- MIOP I I-- MIOP 

I 
I I I I Processor 
I 

Processor 
L-- Interface l..--

Interface I 
I I L ___ --~ L ___ ___ -.J 

To Processor Bus(es) To Processor Bus(es) 

Figure 4. Main Memory 

Main Memory 15 



PORTS AND MEMORY BUSES 

A memory unit may contain two, four, or six ports, which 
have a fixed priority order for the resolution of access con­
tention. Each port allows the memory unit to communicate 
via a memory bus with a different external system (i.e., a 
processor cluster), which communicates with the mem­
ory bus via the Memory Interface (MI) (see Figure 4). Ports 
are numbered from 1 (top priority) to 6 (lowest priority). 
The selection logic is biased to select port 1 (the fast port) 
whenever the memory is quiescent. Thus performance is 
improved for the Memory Interface (MI) connected to that 
port, and hence to the processors connected to that MI. 

A memory reserve function insures proper execution of in­
structions that require guaranteed re-access to a memory 
location before a second processor can access it. 

Each port is equipped with an inhibit function that can 
be activated from the Configuration Control Panel (see 
Chapter 6). 

Other major functions performed by the ports are: 

1. Address recognition. 

2. Address interleaving. 

The memory system is built up by interconnection of identi­
cally numbered ports of all memory units. Each intercon­
necting cable is called a memory bus, which is dedicated 
to a single processor cluster (see Figure 4). 

PORT PRIORITY 

The multi port structure a I lows two simultaneous requests for 
memory to be processed immediately if the requests are 
received on different ports for different memory units, and 
neither memory unit is busy. If a requested memory unit 
is busy or receives simultaneous requests, the memory port 
logic selects the highest priority request first. 

Normally, all ports in a memory unit operate on the fixed 
priority basis (the fast port has the highest priority and the 
highest-numbered normal port the lowest). Thus, if a single 
memory unit simultaneously receives requests on port 2 and 
port 4, port 2 has first access to the memory unit. 

Each port also has associated with it a high-priority line 
which, upon receiving a high-priority request, raises the 
portIs priority above that of all other ports except for any 
higher priority port, which also has a high-priority request 
on its line. 

MEMORY INTERLEAVING 

Memory interleaving is a hardware feature that distributes 
sequential addresses into two independently operating mem­
ory units. Interleaving increases the probabil ity that a pro­
cessor (i. e., basic processor, RMP, or MIOP) can gain 

16 Main Memory 

access to a given memory location without encountering 
interference from another processor that is making sequen­
tia I requests. 

Two memory units of the same size can be two-way inter­
leaved. Both memory units transform an incoming address, 
as follows: 

Size of Each 
Memory Unit 

32K 
16K 

Address Bits 
Interchanged 

16 and 31 
17 and 31 

As a result of the address transformation, even incoming ad­
dresses are assigned to one memory unit and odd incoming 
addresses to the other. Note that the incoming address (un­
transformed) is stored in the status register of the accessed 
unit in each cycle and is available as are other types of dy­
namic status information. (Interleaved memory units have 
two status registers, one in each of the units.) 

MEMORY UNIT STARTING ADDRESS 

Each memory unit is individually identified by starting ad­
dress switches located on the Configuration Control Panel 
(see Chapter 6). These switches define the range of ad­
dresses the memory unit responds to when servicing memory 
requests. All addresses, including the starting address, for 
a given memory unit are the same for all ports in that unit; 
that is, the address of a given word remains the same re­
gardless of the port used to access the word. The starting 
address of a memory uni t must be on a boundary equa I to a 
multiple of the size of the memory unit when two memory 
units (of the same size) are interleaved. The starting ad­
dress of one memory unit must be a multiple of the size of 
the two memory units together; the second memory unit must 
have a starting address higher than that of its companion by 
its own size. Another way to say this is that the starting 
address for the combined units must be on a boundary equal 
to a multiple of the total size of the interleaved assembly. 

MAINTAINABILITY AND PERFORMANCE 

Memory maintainability is enhanced by the following 
features: 

1. Error detection. Each memory unit senses and remem­
bers parity errors in the CMM data as well as parity 
errors in the address word or the memory bus data, port 
selection errors, CMM selection error, and undefined 
operations. This status information is available to di­
agnostic programs to facilitate error localization in 
space and time of occurrence. The memor,' unit senses 
and reports, but does not remember (for diagnostic pur­
poses) a write lock violation. 

2. Modularity. For ease of replacement, the logic and stor­
age circuitry is packaged on modules that are removable 
from backpanelswithoutrequiring cable disconnectiol1s. 



3. Diagnostic logic. Each memory driver module carries 
logic used exclusively for localizing faulty elements 
in that module. The benefit derived from this diagnos­
tic logic depends on such external factors as the ac­
cessibility to a module tester. 

Memory system performance depends on these factors: 

1. Access time of memory unit. 

2. Cycle time of memory unit. 

3. Type of cycle requested. 

4. Number of memory units. 

5. Interleaving. 

6 • Type of port (fast or norma I) selected. 

7. Self or mutual interference between memory requests. 

All these factors characterize not only memory performance 
but a Iso system performance. 

Port access time and cycle time are essential memory speed 
characteristics pertaining to CMM operations. 

1. Port access time. This is the time interval measured 
between the clock pulse that transmits an address word 
from the Memory Interface (MI) to an idle memory unit 
and the clock pulse that translates a memory word from 
the same memory unit to the MI. 

2. Cycle time. Cycle time depends on the operation be­
ing performed and on the sequence of operation. Cycle 
time determines the maximum rate at which a memory 
unit can accept requests. 

VIRTUAL AND REAL MEMORY 

Virtual memory is the address space available to an in­
dividual program. The maximum size of virtual memory is 
128K words, broken into as many as 256 pages of 512 words 
each distributed throughout the available pages of real 
memory. 

Real memory corresponds to the physical memory, and its size 
is equal to the total number of words contained within all 
memory units in the system. The size of real memory ranges 
from a minimum of 16K words to a maximum of 256K words. 

Note: Real memory address space is 1 mi Ilion words. 

MEMORY REFERENCE ADDRESS 

Memory locations 0 through 15 are not normally accessible 
to the programmer because their memory addresses are re­
served as register designators for "register-te-register" op­
erations. Nevertheless an instruction treats any of the 

first 16 registers of the current register block as if it were 
a location in main memory. Furthermore, the register block 
can hold an instruction (or a series of as many as 16 instruc­
tions) for execution just as though the instruction (or instruc­
tions) were in main memory. 

The following terms are used in the various types of address­
ing described in subsequent sections. See also Figure 5, 
which illustrates the control and data flow during address 
generation. 

1. Instruction Address. This is the address of the next 
instruction to be executed. For real, real-extended, 
and virtual addressing the 17-bit instruction address is 
contained within bits 15-31 of the program status words 
(PSWs) • 

2. Reference Address. Th is is the 17 -b i t or 20-b it address 
associated with any instruction (except that in a trap 
or interrupt location that has a 0 in bit position 10). 
For real, real extended, direct, and virtual addressing, 
the reference address is the address contained within 
bits 15-31 of the instruction itself. 

The reference address may be modified by using indirect 
addressing, indexing, and memory mapping. A refer­
ence address becomes an effective virtual address after 
the indirect addressing and/or postindexing (if re­
quired) is performed. 

3. 20-Bit Trap or Interrupt Reference Address. If bit posi­
tion 10 of any instruction in a trap or interrupt location 
contains a 0, bits 12-31 of that instruction are used as 
a 20-b it reference address. Th is 20-b i t reference ad­
dress can be modified only by using indirect address­
ing. This 20-bit reference address cannot be indexed 
or mapped. (See "Interrupt and Trap Entry Addressing", 
later in this chapter.) 

4. Direct Reference Address. If neither indirect address­
ing nor indexing is called for by the instruction (i. e., 
if bit 0 and the X field contain zero), the reference 
address of the instruction (as defined above) becomes 
the effective virtual address. Direct addressing may 
be used during real, virtual, or real extended address­
ing modes, including trap and interrupt operations. Di­
rect addressing during virtual addressing does not pre­
clude memory mapping. 

5. Indirect Reference Address. The 7-bit operation code 
field of the instruction word format provides for as many 
as 128 instruction operation codes, nearly all of which 
can use indirect addressing (except immediate-operand 
and byte-string instructions). If the instruction calls 
for indirect addressing (bit position 0 contains a 1), the 
reference address (as defined above) is used to access a 
word location that contains the direct reference address 
in bit positions 15-31, or bit positions 12-31 for certain 
real extended addressing operations. The indirect ad­
dressing operation is limited to one level, regardless of 
the contents of the word location pointed to by the ref­
erence address field of the instruction. Indirect ad­
dressing occurs before indexing; that is, the 17-bit 

Main Memory 17 



18 Main Memory 

yes 

Add 16-19 bit index to 
17-bit reference address; 
17-19 bit arithmetic. 

Fetch contents of 20-bit 
real address. If write 
operation, trap on write­
protect violation. 

Figure 5. Addressing Logic 

Fetch contents of register. 

Add 20-22 bit index to 
17-bit direct reference 
address or 20-bit indirect 
reference address; 20-22 
bit arithmetic. 

Map to 20-bit real ad­
dress. Trap on access 
protect violation if in 
slave or master-protected 
modes. 



reference address field of the instruction is used to 
obtain a word, and the 17 or 20 low-order bits of the 
word thus obtained effectively replace the initial ref­
erence address field; then indexing is carried out ac­
cording to the operation code of the instruction. See 
Figures 7 and 9, later in this chapter. 

6. Index Reference Address. If indexing is called for in 
the instruction (a value other than zero in bits 12-14 
of the instruction), the direct or indirect reference ad­
dress is modified by addition of the displacement value 
in the general register (index) called for by the instruc­
tion (after scaling the displacement according to the 
instruction type). This final reference address value 
(after indirect addressing, indexing, or both) is defined 
as the effective virtual address of the instruction. In­
dexing after indirect addressing is ,ca lied postindexing. 
See also Figures 7 and 9, later in this chapter. 

7. Displacements. Displacements are the 16- to 22-bit 
values used in index registers and by byte-string in­
structions to generate effective addresses of the appro­
priate size (byte, halfword, word, or doubleword). 

8. Register Address. If any instruction provides a virtual 
address that is a memory reference (i .e., a direct, 
indirect, or indexed reference address) in the range 0 
through 15, the basic processor does not attempt to read 
from or write into main memory locations 0 through 15. 
Instead, the four low-order bits of the reference ad­
dress are used as a general register address and the gen­
era I reg ister correspond i ng to th is address is used as the 
operand location or result destination. Thus, the in­
struction can use any of the first 16 registers in the cur­
renT regisTer biocK as Tne source or an operand, the 
location of a direct address, or the destination of a re­
sult. Such usage is called a "register-to-register" 
operation. 

9. Actual Address. This is the address value actually used 
by the basic processor to access main memory via the 
memory address register (see Figure 5). If the effective 
virtual address is in the range 0 through 15 (X10 through 
X'F ' ), one of the first 16 general registers in the cur­
rent register block is being addressed. If the basic pro­
cessor is operating in the virtual addressing mode, all 
addresses grea ter than 15 (X 1 F I) are transformed (usua IIy 
into addresses in a different memory page) by the mem­
ory map into actual addresses. Contrarily, if the basic 
processor is operating in either real or real extended 
mode, no transformation via the memory map takes place. 

10. Effective Address. The effective address is defined as 
the final virtual address computed for an instruction. 
Note, however, that some instructions do not use the 
effective address as a location reference; instead, the 
effective address is used to control the operation of 
the instruction (as in a shift instruction), to designate 
the address of an input/output device (as in an input/ 
output instruction), or to designate a specific element 
of the system (as in a READ DIRECT or WRITE DIRECT 
instruction) • 

11. Effective Location. An effective location is defined 
as the actual location (in main memory or in the current 
register block) that is to receive the result of a memory­
referencing instruction, and is referenced by means of 
an effective address. Because an effective address 
may be either an actual address or a virtual address, 
when applicable, this definition of an effective loca­
tion assumes the transformation of a virtual address into 
an actual address. 

12. Effective Operand. An effective operand is defined 
as the contents of an actual location (in main memory 
or in the current register block) that is to be used as 
an operand by a memory-referencing instruction, and 
is referred to by means of an effective address. This 
also presupposes the transformation of a virtual address 
into an actual address. 

TYPES OF ADDRESSING 

Except for the special type of addressing performed by some 
interrupt and trap instructi ons, all addressing within the 
computer system is real, real extended, or virtual. 

REAL ADDRESSING 

In real addressing, a one-to-one relationship prevails be­
tween the effective virtual address of each instruction 
and the actual address used to access main memory. Real 
addressing has these characteristics: 

1. Each reference address is a 17-bit word address. 

2. The reference address may be direct or indirect, with 
or without postindexing. 

3. Displacements associated with indexing are automati­
cally aligned, as required, using the full 32-bit contents 
of the index register. The final result is truncated to 
the left of the high-order bit of the original 17-bit ref­
erence address, and the effective real address is a 
16-bit doubleword address, 17-bit word address, 18-bit 
halfword address, or a 19-bit byte address. 

4. If indirect addressing is invoked, the 17-bit reference 
address in the instruction word is used to access the in­
direct address word in memory. The low-order 17 bits 
of this word then replace the reference address of the 
instruction word in the calculations described in (3), 
above. 

5. Memory mapping and memory access protection are 
never invoked. 

6. Memory write protection is automatically invoked. 

7. Leading zeros are automatically appended to the effec­
tive address to generate an actual word address as re­
quired by the main memory. 

Main Memory 19 



8. Real addressing is allowed in master mode and in slave 
mode, and is specified when bit positions 9 and 61 of 
the PSWs both contain zero. 

VIRTUAL ADDRESSING 

Virtual addressing uses the memory map to determine the 
actual address to be associated with a particular reference 
address of each instruction. Virtual addressing differs from 
real addressing in that there is normally no exact relation­
ship between the effective virtual address and the actual 
address. These are the characteristics of virtual addressing: 

1. Each reference address is a 17-bit address. 

2. The reference address may be direct or indirect, with 
or without postindexing. 

3. Displacements associated with indexing are automati­
cally aligned, as required, using the full 32-bit 
contents of the index register. The final result is 
truncated to the left of the high-order bit of the 
original 17-bit reference address, and the effective 
virtual address is a 16-bit doubleword address, 17-bit 
word address, 18-bit halfword address, or a 19-bit byte 
address. 

4. Virtua I memory access protection is always invoked. 
If the access protection code is invalid, the instruction 
aborts and traps to location X'40'. (See "Trap System", 
later in this chapter.) 

5. Memory mapping translates the 8 most significant bits 
of the effective virtual address (the page portion) into 
an l1-bit page address. This page address is concate­
nated with the 9 least significant bits of the reference 
address. The resultant 20-bit word address is the actual 
address used to access memory. This feature permits 
anyone user at any given time to have a virtual mem­
ory of as many as 128K words (256 pages) located 
throughout real (actual) memory comprising as many 
as 256K words (512 pages). Although virtual memory 
may be physically fragmented, it is logically contiguous. 

Note that Sigma 6/7 programs may run on this computer 
system without requiring change to the mapping struc­
ture. The memory map is loaded with 8-bit page ad­
dresses (the 3 high-order bits of the ll-bit real page 
address are reset to zeros). The most significant 8 bits 
of the effective virtual add.-ess are then translated into 
the designated 8-bit page address. 

6. The memory writp.-protedion fp.otlJre is invokp.rl for thE? 

actual address in real memory. 

7. Virtual addressing may be used in all modes (master, 
master-protected, and slave) and is specified when 
bit 9 of the PSWs contains a one. 

20 Main Memory 

ADDRESS MODIFICA nON EXAMPLE: INDEXING 
(REAL AND VIRTUAL ADDRESSING) 

Figure 6 shows how the indexing operation takes place dur­
ing real and virtual addressing operations. The instruction 
is brought from memory and loaded into a 34-bit instruction 
register that initially contains zeros in the two low-order 
bit positions (32 and 33). The displacement value from the 
index register is then aligned with the instruction register 
(as an integer) according to the address type of the instruc­
tion; that is, if it is a byte operation, the low-order bit of 
the displacement is aligned with the least significant bit of 
the 34-bit instruction register (bit position 34). The dis­
placement is then shifted one bit to the left of this position 
for a halfword operation, two bits to the left for a word 
operation, and three bits to the left for a doubleword oper­
ation. An addition process then takes place to develop a 
19-bit address, referred to as the effective address of the 
instruction. High-order bits of the 32-bit displacement are 
ignored in the development of this effective address (i .e., 
the 15 high-order bits are ignored for word operations, the 
25 high-order bits are ignored for shift operations, and the 
16 high-order bits are ignored for doubleword operations). 
The displacement value, however, can cause the effective 
address to be less than the initial reference address (within 
the instruction) if the displacement value contains a suffi­
cient number of high-order 12's (i .e., if the displacement 
value is a negative integer in two's complement form). 

The effective virtual address of an instruction is always a 
19-bit byte address value. This value, however, is auto­
matically adjusted to the information boundary conventions. 
Thus, for halfword operations the low-order bit of the effec­
tive halfword address is zero; for word operations the two 
low-order bits of the effective word address are zeros; and 
for doubleword operations the three low-order bits of the 
effective doubleword address are zeros. 

In a byte operation with no indexing, the effective byte 
is the first byte (byte 0 in bit positions 0-7) of a word lo­
cation; in a halfword operation with no indexing, the ef­
fective halfword is the first halfword (halfword 0 in bit 
positions 0-15) of a word location. A doubleword opera­
tion always involves a word at an even numbered address 
and the word at the next sequential (which is odd numbered) 
word address. Thus, if an odd numbered word location 
is specified for a doubleword operation, the low-order bit of 
the effective address field (bit position 31) is automatically 
forced to zero. This means that in a doubleword operation 
an odd numbered word (reference) address designates the 
same doubleword as the next lower even numbered word 
address. 

In the real addressing mode, the 19-bit effective virtual 
address is concatenated with 3 leading zeros to form a 
22-bit actual address. In the virtual addressing mode, 
the 8 most significant bits of the 19-bit virtual address 
are mapped (using the memory map) into the ll-bit actual 
page address, thus forming a 22-bit actual address. 



Instruction in memory: 

Instruction in instruction register: 

I IIII 
Byte operation indexing 01 ignment: 

Halfword operation indexing 01 ignment: 

Word operation indexing 01 ignment: 

Shift operation indexing alignment: 

Doubleword operation indexing 01 ignment: 

Effect i ve vi rtua I address: 

Figure 5. Index Displacement AI ignment (Real and Virtual Addressing Modes) 

ADDRESS MODIFICA nON EXAMPLE: INDIRECT, 
INDEXED HALFWORD (VIRTUAL ADDRESSING) 

Figure 7 illustrates the address modification and mapping 
process for an indirectly addressed t indexed, halfword op­
eration. As shown, reference address 1 is the content of 
the reference address field in the instruction stored in mem­
ory. The instruction is brought into the instruction register, 
and if the value of the reference address field is greater 
than 15, the memory map converts the 19-bit effective vir­
tual address into a 22-bit actual address. The 17 low-order 
bits of the main memory location pointed to by the actual 
address, labeled reference address 2, then replaces refer­
ence address 1 in the instruction register. The index register 
designated by the X field of the instruction is subsequently 
aligned for incrementing at the halfword-address level. The 
final effective virtual address is formed by the address gen­
erator, and if the value of the reference address is greater 
than 15, the effective virtual address is transformed through 
the memory map into an actual address. The resultant 22-bit 
actual (main memory) address, which automatically contains 
a low-order 0, is then used to access the halfword to be 
used as the operand for the instruction. 

Note that for the real addressing mode, the modifications 
required for indirect, indexed halfword operation are the 
same with one exception: reference address 1 and the final 
effective address are concatenated with three leading zeros 
(as opposed, to being transformed by the memory map). 

REAL-EXTENDED ADDRESSING 

Real-extended addressing is similar to real addressing in that 
a direct relationship exists between the effective virtual ad­
dress of each instruction and the actual address. The func­
tion of real-extended addressing is to foci litate operations 
in a memory system larger than 128K words. 

Note: Instructions and indirect addresses that involve 
real-extended address calculations must themselves 
reside in the first 128K words of memory (or in the 
general registers), although they in turn may ulti­
mately access operands in locations beyond the first 
128K words of memory. 

Main Memory 21 



Instruction in memory: 

Instruction in instruction registers: 

The 8 high-order bits of the reference address are 
replaced with ll-bit page address Z from memory map: 

Actual address of memory location that contains 
the direct address: 

17-bit direct address in memory: 

Indi rect addressing replaces reference address 
with direct address: 

Halfword operation indexing alignment: 

Effective virtual address: 

The 8 high-order bits of the effective address are 
replaced with ll-bit page address N from memory map: 

Final memory address, which is the actual address of 
halfword location containing the effective halfword: 

\. 

,-------~·------~'r~------~~~----~ 
22-bit actual address 

III 

III 

I II I 
1119-bit virtual1halfword address I 
l, I... l, I ... I ... I ... I, I, , , , , " , , , £" 

I" " """ "r\." I I I I I I I I I I VI 
15116 17 18 19120 2122 2312425 26 27128 29 30 31

1
3233 , 

... 

o 1 2 3 4 5 

... I 
1 I 

Figure 7. Generation of Actual Addresses Indirect, Virtual Addressing 

22 Main Memory 



Real-extended addressing is specified when PSWs bit 
location 9 contains zero and PSWs bit location 61 contains 
one. In real-extended addressing, the 17-bit reference 
address in the instruction word is expanded to a 20-bit ref­
erence address by the appendage of 3 bit positions to the 
left of the reference address (see Figure 8). If indexing or 
indirect addressing are not specified in the instruction, 
these 3 bit positions contain zeros. Otherwise, address 
calculations are performed in this manner: If indexing is 
specified (X field in the instruction contains a value other 
than zero), the contents of the specified index register are 
properly al igned with respect to the 17-bit reference ad­
dress according to the general alignment rules. Arithmetic 
on the aligned quantities then takes place using the full 
32-bit contents of the index register. The fina I resul t is 
truncated 3 bits to the left of the original 17-bit reference 
address, these 3 bits having been acquired from the index 
register plus any carry resulting from the addition of the 
17-bit reference address with the index register contents. 

If the instruction specifies indirect addressing (bit position 0 
contains one), the 17-bit reference address is used to ac­
cess an indirect word in memory. The low-order 20 bits of 
the indirect word then replace the 17-bit reference address 
from the instruction. If indexing is also specified, the 

Instruction in memory: 

T~.~~"",,..":~~ .. ~,......I 1-. .. ,......I....I~,..~~ 
'&"11_1111-11_.1 _0./1...., ..... .." _ ..... ""'I....,~..., 

generator: 

Byte operation indexing alignment: 

' ___ 1 ___ - _I 
IIIUCACU 

not indexed 

Halfword operation indexing alignment: 

Word operat!on indexing al ignment: 

Shift operation indexing alignment: 

Doubleword operation indexing alignment: 

20-bit effective address: 

appropriate alignment of the 32-bit contents of the index 
register is then made and the addition operation performed. 
The result is truncated to the left of the 20-bit operand ob­
tained from the indirect address word. 

In real-extended addressing, 20-bit address calculations 
actually encompass 22-, 21-, 20-, and 19-bitcalculations, 
respectively, for byte, halfword, word, and doubleword 
alignments (see Figures 8 and 9). 

The stack pointer doubleword for push-down instructions 
contains a 20-bit word address for the top of stack address 
field, as shown in the following format: 

I I 

Figure 8. Index Displacement Alignment (Real-Extended Addressing) 

Main Memory 23 



Instruction in memory: 

Instruction in instruction register: 

Indi rect reference addresses: 

Contents of indirect reference address: 

Address used if bit 0 = 1: 

Displacement aligned for halfword indexing: 

Final effective address: 

II 
Ir]-o -]]-1-]2-]-3 -]4"']: .... ::-6 -:-]:-]-:I-:-2-f]-:-2 -:3-1-::-4-~-5 -:-2-:-1:-8 -~9-:o--':,lo 0 

Figure 9. Generation of Effective Virtual Address (Indirect Real-Extended Addressing) 

These are the register formats for byte-string instructions: 

Byte-string instruction: 

Register R: 

24 Main Memory 

20-bit signed disp acement, 
sign extended before use 

Register Rul: 

During real-extended addressing memory write protection 
is invoked. 

Table 1 summarizes the addressing characteristics. 



Table 1. Basic Processor Operating Modes and Addressing Cases 

PSW BIT 

MS MM MA Mode and Addressing Characteristics 

0 0 0 Master mode, unmapped, 17-bit calculations, real addressing (128K words, maximum). 

1 0 0 Slave mode, unmapped, 17-bit calculations, real addressing (128K words, maximum). 

0 0 1 Master mode, unmapped, 20-bit calculations, real-extended addressing, 17-bit instruction reference 
address (instructions and indirect words in first 128K words only), indexed and indirect addresses are 
20 bits. 

1 0 1 Slave mode, unmapped, 20-bit calculations, real-extended addressing, 17-bit instruction reference 
address (instructions and indirect words in first 128K words only), indexed and indirect addresses are 
20 bits. 

0 1 0 Master mode, mapped, 17-bit calculations, virtual addressing (128K words, maximum), map to 
1M words, real (Sigma 6/7 map to first 128K words by virtue of loading map with three high-order 
zeros for all pages). 

1 1 - Slave mode, mapped, 17-bit calculations, virtual addressing (128K words, maximum), map to 
1M words, real (Sigma 6/7 map to first 128K words by virtue of loading map with three high-order 
zeros for a II pages). 

0 1 1 Master-protected mode, mapped, 17-bit calculations, virtual addressing (128K words, maximum), 
map to 1 M words, rea I (access protection invoked). 

INTERRUPT AND TRAP ENTRY ADDRESSING 

An instruction residing in an interrupt location (see "Cen­
tralized Interrupt System" later in this chapter! and exe­
cuted asthe directresultof an interruptsequence is defined 
as an interrupt instruction. Both conditions must be true 
simultaneously. Thus an instruction in an interrupt location 
is not an interrupt instruction if it is executed as the result 
of a program branch to the interrupt location under normal 
program control. The only va I id interrupt instructions are 
XPSD, PSS, MTW, MTH, and MTB. 

Similarly, a trap instruction (see "Trap System", later in 
this chapter) is defined as an instruction in a trap location 
executed as a direct result of a trap condition. The only 
valid trap instructions are XPSD and PSS. 

XPSD Address Calculations. Address calculations associ­
ated with XPSD instructions deviate from the standard 
forms. Two basic formats are used in XPSD instructions, 
depending on whether subjective or objective addressing 
is being used. 

Bit 10 of the XPSD instruction is the addressing type (AT) 
designator. In the circumstances described below, it des­
ignates whether the reference address in the XPSD instruc­
tion is to be considered unconditionally as a 20-bit real 
address or whether the current mode of addressing calcula­
tions is to be appl ied to it. 

Format 1: 

Format 2: 

Format 1 is used in these circumstances: 

1. Bit position 10 (AT) of the XPSD contains zero. In this 
forma t the reference address is a 20-b it actua I address 
(i .e., no mapping). Note that this is true regardless 
of whether the instruction is in a trap, interrupt, or 
normal location and independent of the mode (mapped, 
unmapped, real-extended) of the current PSWs. If in­
direct addressing is specified, the indirect word con­
tains a 20-bit address with exactly the same properties. 

2. Bit position 10 (AT) oftheXPSD contains one, theinstruc­
tion is in a trap or interrupt location, the instruction 
is being executed as the result of a trap or interrupt, 
and the current mode of the PSWs is not rea I-extended. 
In this format, the reference address is a 20-bit actual 

Ma i n Memory 25 



address if PSWs bit 9 is zero (no map), or a 20-bit 
virtual address if PSWs bit 9 is one (map). If indirect 
addressing is specified, the indirect word contains a 
20-bit address with exactly the same properties. 

Format 2 is used in all other circumstances, namely: 

1. Bit position 10 (AT) contains a one, and 

a. The XPSD is not being executed as the result of a 
trap or interrupt, or 

b. It is in a trap or interrupt location, is being exe­
cuted as the result of a trap or interrupt, but the 
current mode of the PSWs is real-extended. 

In these cases, all of the normal rules of address calcu­
lations hold, i.e., indirect, index, and map. 

PSS Address Calculations. PUSH STATUS (PSS) address cal­
culations are similar to but simpler than those for the XPSD 
instruction. Two basic formats are used: 

Format 1: 

Format 2: 

Format 1 is used when the PSS is executed in an interrupt or 
trap location as a result of an interrupt or trap sequence. 
No indexing is possible because its designator field is pre­
empted by the reference address. Indirect addressing is per­
mitted with the same constraint against indexing; the indirect 
address word contains a 20-bit real address with precisely 
the same properties as the reference address. In the case 
of a trap instruction, the 20-bit reference address can be 
either a rea! address or IJ virtlJlJ! address IJccordil19 to the 
value in PSWs bit position 9. 

Format 2 is used when the PSS instruction is executed in 
the course of normal program execution. Addressing in this 
case is completely standard, including indexing and indi­
rect addressing. 

During the execution of the PSS instruction the interrupt 
stack pointer is accessed from real memory locations Oand 1. 
The interrupt stack address therein is a real 20-bit address 
with no indexing or mapping used. 

''''V~T\A/, tilTH, and f\.~TB Address Ca!cu!ations. T'vvc bas:c 
formats are used in modify and test instructions: 

Format 1: 

26 Main Memory 

Format 2: 

Format 1 is used when the modify and test instruction is ex-' 
ecuted in an interrupt or trap location as a result of an 
interrupt or trap sequence. When used as an interrupt in­
struction, the MTW, MTH, or MTB instruction uses the 20-bit 
reference address as a rea I address (except counter 4), with­
out indexing or mapping. Interrupt Counter 4 uses the map 
if mapping is called for. Access protect and write lock 
violations are not active. 

When used as a trap instruction, the MTW, MTH, or MTB 
instruction uses the 20-bit address without indexing; if the 
PSWs specify mapping, however, the map is used, with 
bits 12-14 of the address ignored. 

Format 2 is used when the modify and test instruction is ex­
ecuted in the normal course of program execution. Address­
ing in this case is completely standard, including indexing 
and indirect addressing. 

RD and WD Address Calculations. The final output address 
for a READ DIRECT (RD) or a WRITE DIRECT (WD) instruc­
tion is the low-order 16 bits of the effective virtual address. 
If indexing is specified in the instruction, the low-order 
17 bits of the instruction are modified by the indexing op­
eration, and the resultant 17-bit address is truncated to 
16 bits and transmitted as the final address. No mapping 
takes place. 

If indirect addressing is specified in the instruction, the in­
direct address word is generated in the standard manner ac­
cording to the mode bits in the PSWs. Thus mapping will 
occur if it is specified in the PSWs. If indexing is also spec­
ified, the indirect address in the indirect word is modified 
by the indexing operation and the resultant address is trun­
cated to 16 bits and transmitted as the final address. 

MEMORY ADDRESS CONTROL 

Two methods of program control of main memory are the 
memory map and the memory locks. The memory map pro­
vides for dynamic relocation of programs and for access 
protection through inhibitions imposed on slave or master­
protected mode programs. Access protection violations in 
either mode are trapped to location X'40'. The memory 
locks provide memory write protection for all modes of pro­
grams throughout all real memory. The memory locks apply 
to input/output operations as well as basic processor opera­
tions. Th is protection is effective at the page level, is for 
reef addresses, and is cperati'w'c in addition to the protection 
provided virtual addresses at the page level. Memory pro­
tection violations in any mode are trapped to location X'40'. 

Note: A WD instruction used to write into main mem­
ory locations 0 through 31 is not subject to write 
protecti on. 



MEMORY MAPPING AND ACCESS PROTECTION 

The memory map is physically an array of 256 11-bit reg­
isters. The array resides in the Memory Interface (MI) of 
the processor cluster containing the basic processor. Each 
register has an 8-bit address (that corresponds to an 8-bit 
virtual page address) and contains an 11-bit actual page 
address for a specific 512-word page of memory. Mapping 
always transforms a 17-bit virtual address into a 20-bit real 
address. 

The actual page addresses are assigned to pages of virtual 
addresses in this manner: 

Actual page X 
(11 bits) 

Actua I page K 
(11 bits) 

Vi rtua I addresses Vi rtua I addresses 
X' 1O '-X'1 FF' X'200'-X '3FF' 
(virtual page 0) (virtual page 1) 

Actual page N 
(11 bits) 

Vi rtua I addresses 
X' 1 FEOO'-X'1 FFFF' 
(virtual page 255) 

Just prior to a memory reference, the most significant 8 bits 
of a 17-bit virtual address are used as the address of an 
element of the map array. The 11 bits contained within 
that element are then used in conjunction with the low­
order 9 bits of the 17-bit virtual address to produce a 
20-bit actual address. 

Sigma 6/7 compatible mapping is accomplished by loading 
the map with 8-bit address elements (instead of 11-bit ad­
dress elements) via the MOVE TO MEMORY CONTROL 
(MMC) instruction. The 8 bits are stored in the low-order 
8 bits of each map element and the 3 hi~h-order bit posi­
tions are reset to zero. Thus the map wi II a Iways relocate 
to the same address in the first 128K words of real memory 
and be compatible for Sigma 6/7 programs. 

Associated with the memory map feature is another array 
of 256 2-bit registers, also located in the Memory Inter­
face. Each register contains a 2-bit access control code 
for a specific 512-word page of virtual addresses. The 
access-protection code indicates the allowed use or avai 1-
abilityof the corresponding page of virtual memory. Access 
protection applies to all pages of the virtual address space 
of the active program, and is only active when the memory 
map is invoked. 

Vi rtu a I add resses 
X'600 ' -X'7FF' 

Virtual addresses 
X'400'-X'5FF' 

Virtual addresses 
X'200'_X '3FF' 

Virtual addresses 
X'10'-X'1 FF' 
(Virtual page 0) 

Virtual 
addresses 
X' 1 FEOO'­
X' 1 FFFF' 
(virtual 
page 255) 

Virtual 
addresses 
X'1FCOO'­
X' 1FDFF' 

The memory page address and access.-control codes can 
be changed only by use of the privileged MMC instruction 
(see Chapter 3, "Control Instructions). 

Access protection is in effect whenever the memory map is 
in effect (PSWs 9 = 1) and the basic processor is operating 
in the slave mode (PSWs 8 = 1) or in the master-protected 
mode (PSWs 61 = 1). Access protection is not in effect 
when the basic processor is operating in the master mode. 

When the memory map is in effect, all memory references 
used by the program (including instruction addresses) whether 
direct, indirect, or indexed, are referred to as virtual ad­
dresses. Virtual addresses in the range 0 through 15 are 
not used to address main memory; instead the 4 low-order 
bits of the virtual address comprise a general register ad­
dress. If, however, an instruction produces a virtual ad­
dress greater than 15, the 8 high-order bits of the virtua I 
address are used to obtain the appropriate 11-bit actual 
memory page address and 2-bit access control codes. For 
example, if the 8 high-order bits of the virtual address are 
0000 0000, the first page address code and the first access 
control code are used; if the 8 high-order bits of the virtual 
address are 0000 0001, the second page address code and 
the second access control code are used, etc., through the 
256th page address and access control codes. Thus each 
512-word page of virtual addresses is associated with its 
own memory page address and access control codes. 

When the memory map is accessed during a slave mode or 
master-protected mode program, the basic processor deter­
mines whether there are any inhibitions to using the virtual 
address. 

These are the four types of access protection codes: 

00 A slave mode or master-protected mode program 
can write into, read from, or access instructions 
from this page of virtyal address. 

01 A slave mode or master-protected mode program 
cannot write into this page of virtual addresses; 
it can, however, read from or access instructions 
from this page of virtual addresses. 

10 A slave mode or master-protected mode program 
cannot write into or access instructions from this 
page of virtual addresses; it can, however, read 
from this page of virtua I addresses. 

11 A slave mode or master-protected mode program 
is denied any access to this page of virtua I 
addresses. 

If the instruction being executed by the slave or master­
protected program fai Is the foregoing test, the instruction 
is aborted and the basic processor traps to location X'40 ' , 
the "non-allowed operation II trap (see "Trap System", later 
in this chapter). 

Contrarily, if the instruction being executed by the slave 
mode or master-protected mode program passes this test (or 
if the basic processor is operating in the master mode), the 

Main Memory 27 



11-bit page address in the accessed element of the memory 
map array replaces the 8 high-order bits of the virtual ad­
dress to produce the actual address of the main memory lo­
cation to be used by the instruction (20-bit word address 
that is automatically adjusted as required for doubleword, 
halfword, or byte operation). See Figure 7. 

Note: If the 11-bit page address in the accessed element 
of the memory map is all zeros, and an actual ad­
dress is produced that corresponds to a word address 
in the range 0 through 15, when the ll-bit page 
address is combined with the 9 low-order bits of the 
virtual address, the corresponding general register 
in the current register block is not accessed. In 
this one particular instance a word address in the 
range 0 through 15 corresponds to an actual main 
memory location rather than a general register. 

REAL MEMORY WRITE LOCKS 

Additional memory protection, independent of the access 
protection, is provided by a write lock and key technique. 
A 4-bit write protect lock (WL) is provided for each 512-
word page of actual memory. Thus, for the maximum 1M­
word real memory there would be 2048 4-bit write locks. 
Write locks are assigned to pages of actual addresses as 
follows: 

Actual addresses 
X'6oo ' -X'7FF' 

Actual addresses 
X'400' -X'5FF' 

Actual addresses 
X'200'-X'3FF' 

Actual addresses 
O-X'l FF' 
(memory page 0) 

Actual 
addresses 
X'1FEoo'­
X'l FFFF' 
(memory 
page 255) 

Actual 
addresses 
X'1FCOO'­
X' 1FDFF' 

The write protect locks can be changed only by executing 
the privileged instruction MOVE TO MEMORY CONTROL 
(see Chapter 3, "Control Instructions"). 

The write key (a 4-bit field in the PSWs for any operating 
program, or in the command doubleword for I/o operations) 
works in conjunction with the write lock to determine 
whether any program (slave, master-protected, or master 
mode) can write into a specific page of main memory ioca­
tions. The write key and lock control access for writing 
according to these rules: 

1. A lock value of 0000 means that the corresponding 
memory page is unlocked; write access to that page is 
permitted independent of the key value. 

28 Main Memory 

2. A key value of 0000 is a "skeleton II key that will open 
any lock; thus write access to any memory page is per­
mitted independent of its lock value. 

3. A lock value other than 0000 for a memory page per­
mits write access to that page only if the key value 
(other than 0000) is identical to.the lock value. 

Thus a program can write into a given memory page if the 
lock value is 0000, if the key value is 0000, or if the key 
value matches the lock value. 

Note: The memory access protection feature operates dur­
ingvirtualaddressing modes and on virtual addresses, 
whereas the memory write protection feature always 
operates on actua I memory addresses. Thus, if the 
memory access protection feature is invoked (that 
is, if the basic processor is operating in the slave 
mode or the master-protected inode and is usi ng the 
memory map), the access protection codes are ex­
amined when the virtual address is converted into 
an actual address. Then the lock and key are ex­
amined to determine whether the program (master, 
master-protected, or slave mode) is allowed to alter 
the contents of the main memory location correspond­
ing to the final actual address. If an instruction at­
tempts to write into a write-protected memory page, 
the basic processor aborts the instruction, and traps 
to location X 140 1

, the "nonallowed operation" trap 
(see "Trap System ", later in this chapter). If an 
I/O procedure attempts to write into a write­
protected memory page, the write lock violation bit 
in the lOP sta tus byte is set, and can be tested by 
the AIO, TIO, and TDV instructions. 

PROGRAM STATUS WORDS 

The critical control conditions of the basic processor are de­
fined within 64 bits of information collectively referred to 
as the program status words (PSWs). The current PSWs may 
be considered as one 64-bit internal basic processor register, 
although they actually exist as a collection of separate reg­
isters and flip-flops (see Figure 2 appearing earlier in this 
chapter). When stored in memory, the PSWs have the fol­
lowing format: 

They may be optionally followed by an additional two words 
with the following format: 



Designation Function 

CC Condition code. This generalized 4-bit 
code indicates the nature of the results of an 
instruction. The significance of the condition 
code bits depends upon the particular instruc­
tion just executed. After an instruction is 
executed, the BRANCH ON CONDITIONS 
SET (BCS) and BRANCH ON CONDITIONS 
RESET (BCR) instructions can be used singly 
or in combination to test for a particular con­
dition code setting. (These instructions are 
described in Chapter 3, "Execute/Branch 
Instructions") • 

FR 

FS 

FZ 

FN 

In some operations onlya portion of the con­
dition code is involved; thus, the term CC 1 
refers to the first bit of the condition code, 
CC2 to the second bit, and CC3 and CC4, 
respectively, to the third and fourth bits. Any 
program can change the current value of the 
condition code by executing either the LOAD 
CONDITIONS AND FLOATING CONTROL 
IMMEDIATE (LCFI) or the LOAD CONDI­
TIONS AND FLOATING CONTROL (LCF) 
instruction. Any program can store the cur­
rent condition code by executing the STORE 
CONDITIONS AND FLOATING CONTROL 
(STCF) instruction. These instructions are 
described in Chapter 3, ;;Load/~tore 
Instructions" . 

Floating round mode control (see FN below). 

Floating significance mode control (see FN 
below). 

Floating zero mode control (see FN below). 

Floating normalize mode control. The four 
floating-point mode control bits (FR, FS, FZ, 
and FN) control the operation of the basic 
processor with respect to invoking the round­
off mode of floating-point calculations, 
checking floating-point significance, gen­
erating zero results, and normalizing the 
results of floating-point additions and sub­
tractions, respectively. (The floating-point 
mode controls are described in Chapter 3, 
"Floating-Point Instructions".) Any program 
can change the state of the current floating­
point mode controls by executing either the 
LCFI or the LCF instruction. Any program can 
store the current state of the current floating­
point mode controls by executing the STCF 
instruction. 

Designation Function 

MS Master/slave mode control. The basic pro­
cessor is in the master mode when this bit and 
the mode altered bit (bit 61) both contain 
zero; it is in the slave mode when this bit 
contains one. (See MS for a description of 
master-protected mode.) A master mode or 
master-protected mode program can change 
this mode control bit by executing the 
LOAD PROGRAM STATUS WORDS (LPSD), 
EXCHANGE PROGRAM STATUS WORDS 
(XPSD), PUSH STATUS (PSS), or PULL STATUS 
(PLS) instruction. These privi leged instruc­
tions are described in Chapter 3, "Control 
Instructions" • 

MM Memory map control. The memory map is in 
effect when this bit position contains a one. 
A master mode or master-protected mode pro­
gram can change the· memory map control by 
executing an LPSD, XPSD, PSS, or PLS 
instruction. 

DM Decimal mask. The decimal arithmetic trap 
(see "Trap System", later in this chapter) is 
permitted to occur when this bit position con­
tains a one. The conditions that cause a 
decimal arithmetic trap are described in Chap­
ter 3, II Decimal Instructions". The decimal 
trap mask can be changed by a master mode 
or master-protected mode program executing 
the LPSD, XPSD, PSS, or PLS instruction. 

AM Arithmetic mask. The fixed-point arithmetic 
overflow trap is permitted to occur when this 
bit contains one. The instructions that can 
cause fixed-point overflow are described in 
the section "Trap System", later in this chap­
ter. The arithmetic trap mask can be changed 
by a master mode or master-protected mode 
program executing an LPSD, XPSD, PSS, or 
PLS instruction. 

IA 

WK 

CI 

II 

Instruction address. This 17-bit field contains 
the virtual address of the next instruction to 
be executed. 

Write key. This field contains the 4-bit key 
used in conjunction with a write lock in the 
memory write protection feature. A master 
mode or master-protected mode program can 
change the value of the write key by execu­
ting an LPSD, XPSD, PSS, or PLS instruction. 

Counter interrupt group inhibit (see EI, below). 

Input/output interrupt group inhibit (see EI, 
below). 

Main Memory 29 



Designation Function 

EI External interrupt group inhibit. The three 
interrupt group inhibit bits (CI, II, and EI) 
determine whether certain interrupts are al­
lowed to occur. The function of these group 
interrupt inhibits are described in "Central­
i zed Interrupt System ", later in th is chapter. 
A master mode or master-protected mode pro­
gram can change the group interrupt inhibits 
by executing an LPSD, XPSD, PSS, PLS, or 
WRITE DIRECT (WD) instruction. These priv­
ileged instructions are described in Chap­
ter 3, "Control Instructions ". 

RP Register pointer. This 2-bit field selects one 
of the 4 possible blocks of general-purpose 
registers as the current register block. A 
master or master-protected mode program can 
change the register pointer by executing 
LPSD, XPSD, PSS, PLS, or the LOAD REG­
ISTER POINTER (LRP) instruction. LRP is 
described in Chapter 3, under "Control 
Instructions" • 

RA Register altered bit. When a trap occurs, 
this bit is set to one when any general reg­
ister or location in memory has been altered 
in the execution or partial execution of the 
instruction that caused the trap. 

MA Mode altered. This bit is used to invoke both 
the master-protected mode of operation and 
the real-extended addressing mode). Table 1 
detai Is the function of the setting of this bit 
in conjunction with the setting of the MS 
(bit 8)and MM (bit 9) fields. The bits are set 
by an LPSD, XPSD, PSS, or PLS instruction. 

MP Memory protection violation address. If the 
X PSD instruction is being executed in a trap 
routine as a result of a memory protection 
violation and the SP bit in the XPSD is a one, 
the effective virtual address causing the 
violation is stored in the fourth word. This 
storage may be invoked so that memory pro­
tection violations can be recorded. 

CENTRALIZED INTERRUPTS 

The system includes a single, centralized interrupt feature. 
A II int.orrllntc; nr"" t""rrninnt.orl in thQ ,,,darn r .... ntrnl Pr .... _ ........ _ .. _ .... __ ._ ._ ....... _. __ ...... __ ,_._00. __ .... _ ... _ 
cessor. The System Control Processor is described earl ier 
and also in Chapters 5 and 6. 

When a condition that wil I result in an interrupt is sensed, 
a signal is sent to the corresponding interrupt level. If 
that level is "armed", it advances to the waiting state. 

30 Centralized Interrupts 

When all the conditions for acknowledging the interrupt 
have been achieved, the basic processor stops executing 
the current program and executes the instruction in the cor­
responding interrupt location. After the basic processor has 
successfully accessed the interrupt instruction, it advances 
the interrupt level to the active state. The basic processor 
may actually execute many program instructions between 
the time that the interrupt-requesting condition is sensed 
and the time that the actual interrupt acknowledgment oc­
curs. After the interrupt is completely processed, the basic 
processor returns to the interrupted program and resumes its 
execution. 

STATES OF AN INTERRUPT LEVEL 

An interrupt level is mechanized by means of three flip­
flops. Two flip-flops are used to define four mutually ex­
clusive states; disarmed, armed, waiting, and active. The 
third flip-flop provides the disabled/enabled function and 
is independent of the defined state. The various states and 
the conditions of interrupt levels are described in the fol­
lowing paragraphs. Figure 10 conceptually illustrates the 
operational state changes of a typica I interrupt level. 

DISARMED 

When an interrupt level is in the disarmed state, no signal 
is admitted to that interrupt level; that is, the level neither 
accepts nor remembers an interrupt event, nor is any pro­
gram interrupt caused by it at any time. 

Although an interrupt level can change from any state to 
the disarmed state, only a special form of the WRITE DIRECT 
instruction (WD) can cause a disarmed level to change to 
another state. The WD instruction is described in Chap-
ter 3, "Control Instructions ". 

ARMED 

When an interrupt level is in the armed state, it can accept 
and remember an interrupt signal. The receipt of such a sig­
nal advances the interrupt level to the waiting state where 
it remains until it is allowed to advance to the active state. 
A special form of the WD instruction can cause an armed 
level to be advanced directly to the active state. 

A level can change from any state to the armed state. 

WAITING 

For an interrupt level to be in the waiting state, that level 
must have been previously armed and received an interrupt 
signal. The signal may have been generated externally, 
internally, or have resulted from a WD operation. Any 
signals received by an interrupt level already in the waiting 
state are ignored. 



Interrupt 
State FF Configuration 

Disarmed ~ 
i" 

Armed [$ 
III' 

Waiting [$ 

I 

Active ~ 

Level 
Enable 

Source of 
Change Signal 

Basic Processor 

Basic Processor 
or External Signal 

~ 
I 

I--- Bas i c Processor 

Interrupt Timing 

Group Inhibit off 

No higher-priority level active, 
or waiting and enabled 

Figure 10. Operational States of an Interrupt Level 

When an interrupt level is in the waiting state, the follow­
ing conditions must all exist simultaneously before the level 
advances to the active state: 

1. The level must be enabled (i .e., its enable/disable 
fl ip-flop must be set to one). 

2. The group inhibit (CI, II, or El, if applicable) must be 
zero. 

3. No higher-priority interrupt level is in the active 
state, or is in the waiting state, enabled, and not 
inhibited. 

4. The basic processor must be at an interruptible point 
in the execution of a program. 

Note that one or more interrupt levels of higher priority can 
also be in the waiting state if they are disabled, inhibited, 
or both disabled and inhibited. 

Generally, if the enable/disable flip-flop is off (level is 
disabled), the interrupt level can undergo all state changes 
except that of moving from the waiting to the active state 
(see exception case, below). Furthermore, if the interrupt 
level is disabled, it is completely removed from the chain 
that determines the priority of access to the basic processor. 
Thus a disabled interrupt level in the waiting state does not 
prevent an enabled, waiting interrupt level of lower priority 
from moving to the active state. 

Note this exception to the foregoing description: Although 
generally no interrupt level can move from the waiting state 
to the active state unless it is enabled, a specia I form of the 
WD instruction can move a waiting level to the active state 
whether or not the level is enabled. 

ACTIVE 

After the basic processor has successfully accessed the in­
terrupt instruction, then the interrupting level advances to 
the active state. When all the conditions for acknowledg­
ment have been achieved, the interrupt level causes the 

Central ized Interrupts 31 



basic processor to execute the contents of the assigned 
interrupt location as the next instruction. (Interrupt loca­
tions are defined in II Physical Organization ll , later in this 
chapter.) The instruction address portion of the program sta­
tus ~ords (PSWs) remains unchanged unti I the instruction in 
the interrupt location is executed. 

The instruction in the interrupt location must be one of the 
following: XPSD, PSS, MTS, MTH, or MTW. If the execu­
tion of any other instruction in an interrupt location is at­
tempted as the result of an interrupt level advancing to the 
conditions for acknowledgment, an instruction exception 
trap occurs. 

The use of the privileged instruction XPSD or PSS in an in­
terrupt location permits an interrupt-servicing routine to 
save the entire current machine environment. If working 
registers are needed by the routine and additional register 
blocks are avai lable, the contents of the current register 
block can be saved automatically with no time loss. This 
is accomplished by changing the value of the register pointer 
(using the LOAD REGISTER POINTER instruction), which 
results in the assignment of a new block of 24 registers to 
the routine. The instruction LOAD REGISTER POINTER 
(LRP) is described in Chapter 3, IIControl Instructions ll • 

An interrupt level remains in the active state until it is 
cleared (removed from the active state and returned to the 
disarmed or armed state) by the execution of the LPSD, PlS, 
or WD instruction. An interrupt-servicing routine can itself 
be interrupted (whenever a higher priority interrupt level 
meets all the conditions for becoming active) and then con­
tinued (after the higher priority interrupt is cleared). How­
ever, an interrupt-servicing routine cannot be interrupted 
by an interrupt of the same or lower priority as long as the 
higher priority interrupt level remains in the active state. 
Any signals received by an interrupt level in the active 
state are ignored. Norma lIy, the interrupt-servicing rou­
tine clears its interrupt level and transfers program control 
back to the point of interrupt by means of an LPSD instruc­
tion with the same effective address as the XPSD instruc­
tion in the interrupt location. 

DIALOGUE BETWEEN THE BASIC PROCESSOR AND 
THE INTERRUPT SYSTEM DURING AN INTERUPT­

ENTERING SEQUENCE 

When an interrupt level is ready to be moved to the active 
state, a dialogue takes place between the interrupt system 
and the basic processor. This dialogue takes place over the 
processor bus and involves the Processor Interface (PI) asso­
ciated with the processor cluster of which the basic proces­
sor is a member. When the processor bus becomes avai lable 
and the basic processor is ut un interruptible point, the in­
terrupt system transmits the interrupt address to the basic 
processor. It initiates its interrupt actions (i.e., executes 
the instruction in the interrupt location and services the 
interrupt at the appropriate time to avoid race conditions, 
and communicates with the interrupt system with an indi­
cation to move the level to the active state. This latter 

32 Centra I ized Interrupts 

transmission is delayed until the new inhibit states of the 
basic processor are known; these states are transmitted to 
the interrupt system so the latter can record the new basic 
processor status. 

DIALOGUE DURING AN INTERRUPT-EXITING SEQUENCE 

When the basic processor exits an interrupt-servicing rou­
tine, it must notify the interrupt system to move the interrupt 
level associated with that routine from the active state to 
either the armed or disarmed state. To do this it must gain 
access to the processor bus and the interrupt system, either 
of which maybe busy at the time access is requested. When 
communication with the interrupt system is established, the 
basic processor transmits information for setting the level 
state to armed or disarmed, and new inhibit states it has as­
sumed as a result of the exit operation. 

PHYSICAL ORGANIZATION 

Up to 62 interrupt levels are available, each with a unique 
location (see Table 2) assigned in the System Control Pro­
cessor, and with a unique priority. The basic processor can 
selectively arm, enable, or arm and enable any interrupt 
level. The basic processor can also IItriggerll any interrupt 
level (supply a signal at the same physical point where the 
signa I from the externa I source wou Id enter the interrupt 
level). The triggering of an interrupt permits testing spe­
cial systems programs before the special systems equipment 
is available. The basic processor also permits an interrupt­
servicing routine to defer a portion of the processing asso­
ciated with an interrupt level by processing the urgent 
portion of an interrupt-servicing routine, triggering a lower 
priority level (for a routine that handles the less urgent 
part), then clearing the high-priority interrupt level so that 
other interrupts can occur before the deferred interrupt re-
~ ___ ~_ :~ _____ ~~_..J 
~I"'V"~" ,~ 1"" v\.. ........ u. 

INTERRUPT GROUPS 

Interrupt levels are organized in standard group configura­
tions that are connected in a predetermined and fixed pri­
ority chain (see Table 2 and Figure 11). The priority of each 
level within a group is fixed; the first level has the highest 
priority and the last level has the lowest. 

INTERNAL INTERRUPTS 

Standard internal interrupts are provided with the system 
and include all group D levels (interna I override t counter­
equa Is-zero, and I/O). 



Table 2. Interrupt Locations 

Address DIO Address 

PSWs Register 
Group Dec Hex Function Inhibit Group Bit 

82 52 Counter 1 count pulse 16 

Internal 
83 53 Counter 2 count pulse 17 

Override 
84 54 Counter 3 count pulse 18 

(optional) 
85 55 Counter 4 count pulse none 0 19 
86 56 Processor fault 20 
87 57 Memory Fault 21 

112 70 16 
113 71 17 
114 72 18 
115 73 19 
116 74 20 

External 117 75 External group 3 EI 3 21 
Override 118 76 (first 12 levels) 22 

119 77 23 
120 78 24 
121 79 25 
122 7A 26 
123 7B 27 

88 58 Counter 1 zero 22 
Counter- 89 59 Counter 2 zero CI 0 23 
Equals-Zero 90 5A Counter 3 zero 24 

91 5B Counter 4 zero 25 

92 5C Input/Output 26 

I/O 
93 50 Control panel 27 
94 5E Reserved II 0 28 
95 5F Reserved 29 

External 
96 60 16 

Group 2 
Externa I group 2 EI 2 

(optional) 
(first 12 levels) 

107 6B 27 

External 
128 80 16 

Group 4 
External group 4 EI 4 

(optional) 
(first 12 levels) 

139 8B . 27 

External 
144 90 16 

Group 5 
I Externa I group 5 EI 5 

(optional) 
(fi rst 12 leve Is) 

155 9B 27 

Centralized Interrupts 33 



1st Priority 2nd Priority 3rd Priority 

Internal External Counter-
Override Override Equals-Zero 
Interrupts Interrupts Interrupts 

4th Priority 5th Priority 6th Priority 

External External 

I/o Interrupts Group 2 Group 4 
Interrupts Interrupts 

7th Priority 

External 
Group 5 
Interrupts 

Figure 11. Interrupt Priority Chain 

Internal Override Group (Locations X'521 through X'571). 
The six interrupt levels of thi!> group always have the highest 
priority in the system. The four count-pulse interrupt levels 
are triggered by pulses from clock sources. Counter 4 has 
a constant frequency of 500 Hz. Counters 1, 2, and 3 can 
be individua IIy set to any of four manually switchable fre­
quencies - the commercial line frequency, 500 Hz, 2000 Hz, 
or a user-supplied external signal - that may be different 
for each counter. Each of the count pulse interrupt loca­
tions must contain one of the modify and test instructions 
(MTB, MTH, or MTW), an XPSD, or a PSS instruction. 
H/'-_._ l.'- ____ J!C! __ l.! __ f_C .. L _ _ CC __ L! .• _ L .. L_ L_IC ... __ J __ 
VYIII::I1 1111:: IIIUUIII~UIIUIi \UI 1111:: 1::111::~IIVI:: Uyll::, IIUIIVVUIU, UI 

word) causes a zero result, the appropriate counter-equals­
zero interrupt level (see "Counter-Equals-Zero Group") is 
triggered. 

Note: Count pulse interrupt level 4 is a subjective time 
counter with the following special attribute: When 
the instruction in location X '55 1 is executed as the 
result of an interrupt, it must be an MTB, MTH, or 
MTW; otherwise, an instruction exception trap 
(X '40 ') will occur. 

The internal override group also contains a processor fault 
and a memory fault interrupt level. Both locations norma IIy 
contain an XPSD or a PSS instruction. The processor fault 
interrupt level is triggered by a signal when certain fault 
conditions are detected. A POLR instruction must be used 
to reset the fault. The memory fault interrupt level is 

34 Centralized Interrupts 

triggered by a signal that the memory generates when it 
detects certain fault conditions. An LMS instruction must 
be used to reset the fault. (See "Trap System" later in 
this chapter for further information on processor and memory 
faults.) 

Counter-Equals-Zero Group (Locations X 1581 through X '5B ' ). 
Each interrupt I eve lin the counter-equa Is-zero group is as­
sociated with a corresponding count-pulse interrupt level in 
the internal override group. When the execution of a mod-
!c .. __ J L __ L ! __ .L_ •• _L! __ :_ .. L ___ •. _ .. __ •. 1 __ !_j. ___ .. _j. 1 ___ .. : __ 
Ily UIIU IC;)I III;)IIU~IIUII III IIIC ~UUIII-I"UI;)C IIIICIIUI"I IU~UIIUII 

causes a zero result in the effective byte, halfword, or word 
location, the corresponding counter-equals-zero interrupt 
level is triggered. The counter-equals-zero interrupt loca­
tions normally contain an XPSD or a PSS instruction and 
they can be i nh ib i ted or permitted as a group. If bit 37 
(CI) of the current PSW contains a zero, the counter-equals­
zero interrupt levels are allowed to interrupt the program 
being executed. If the CI bit contains a one, the counter­
equals-zero interrupt levels are inhibited from being allowed 
to interrupt the program. These interrupt levels wait until 
the C I bit is reset to zero and then interrupt the program ac­
cording to priority. 

Input/Output Group (Locations X '5C through X '5F'). This 
interrupt group comprises the input/output (I/O) interrupt 
level, the control panel interrupt level, and two levels re­
served for future use. The I/O interrupt level accepts inter­
rupt signa Is from the I/o system. The I/O interrupt location 



is assumed to contain an XPSD or a PSS instruction that 
transfers program control to a routine for servicing all I/o 
interrupts. The I/o routine should contain an ACK NOWL­
EDGE I/o INTERRUPT (AIO) instruction that identifies the 
source and reason for the interrupt. (The AIO instruction is 
discussed in Chapter 3 "Input/Output Instrudions".) 

The control panel interrupt level is activated from the op­
erator1s console. This location normally contains an X PSD 
or a PSS instruction. The operator can thus trigger this in­
terrupt level to initiate a specific routine. 

The interrupt levels in the I/o group can be inhibited or 
permitted by means of bit position 38 (II) of the PSWs. 
If II is reset to zero, interrupt signals affecting the I/o 
group interrupt levels are allowed to interrupt the program 
being executed. If the II bit is set to one, interrupt 
signals in this group are inhibited from interrupting the 
program. 

EXTERNAL INTERRUPTS 

A system can contain 4 optional groups of external inter­
rupt levels. The external override group, group 3, contains 
the first 12 external interrupt levels. External groups 2, 
4, and 5 each contain 12 external interrupt levels. (See 
Table 2 and Figure 11.) External levels may be triggered 
by external sources or via WD instructions, while internal 
levels may be triggered by internal sources or via WD 
instructions. 

All external interrupt levels normally contain XPSD or PSS 
instructions and can be inhibited or permitted by means of 
the setting of bit position 39 (EI) of the program status words. 
If EI contains a zero, external interrupts are allowed to in­
terrupt a program; if EI contains a one, all external inter­
rupts are inhibited from interrupting the program. 

NUMBER OF INTERRUPT GROUPS 

The 14 internal interrupt levels are standard in every system 
and all external levels are optional. The addition of the 
external groups (12 levels per group) raises the number of 
interrupt levels to a maximum of 62. 

CONTROL OF THE INTERRUPT SYSTEM 

The system has two points of interrupt control. One point 
of interrupt control is achieved by means of the interrupt 
inhibit bits (CI, II, and EI) in the program status words (PSWs). 
The basic processor is inhibited from interrupting a program 
if the interrupt inhibit bit for a corresponding class of inter­
rupt levels is set to one, that is, no interrupt level in the 
inhibited group can advance from the waiting state to the 
active state, and the entire group is disabled (removed from 
the interrupt recognition priority chain) • Consequently, a 
waiting, enabled, interrupt level in an inhibited group does 
not prevent a lower priority, waiting, enabled interrupt 

level in an uninhibited group from interrupting the program. 
However, if an interrupt group is inhibited while a level in 
that group is in the active state, no lower priority interrupt 
level can advance to the active state. 

Note also this special case: When the processor detected 
fault (PDF) flag is set to 1 (see "Processor Detected Faults Jl , 
later in this chapter), the processor fault, memory fault, and 
count pulse interrupts are automatica lIy inhibited. 

The second point of interrupt control is at the individual in­
terrupt level. The basic processor can interact with any 
interrupt level by means of special modes of the RD and WD 
instructions (described in Chapter 3, JlControl Instructions Jl ). 
For this purpose, the interrupt levels are organized into the 
following DIO address groups (see last two columns in 
Table 2): 

1. The 14 levels of internal interrupts (internal override 
group, counter-equals-zero group, and I/o group) are 
designated as group code 0 in bits 28-31 of the effec­
tive address of the RD or WD instruction. 

2. The 12 levels of each group of external interrupts are 
designated as group codes 2, 3, 4, and 5. That is, 
external group 2 is designated group code 2, external 
group 3 is designated group code 3, etc. 

3. There is no group code 1. 

The addressing of an individual interrupt level within its 
DIO group of 12 or 14 is accomplished by an assigned selec­
tion bit within the low-order 16-bit positions of the R reg­
ister designated in the RD or WD instruction (see last 
column in Table 2). 

The WD instruction can individually arm, disarm, enable, 
disable, or trigger (move to the active state) any interrupt 
level. The RD instruction can determine which interrupt 
levels within a selected DIO group are in the armed or 
waiting state, waiting or active state, or are enabled. 

TIME OF INTERRUPT OCCURRENCES 

The basic processor permits an interrupt to occur during the 
following time intervals (related to the execution cycle of 
an instruction) provided the SCP basic processor (BP) sta­
tus indicators are either in the RUN or WAIT condition: 

1. Between instructions an interrupt is permitted between 
the completion of any instruction and the initiation of 
the next instruction. 

2. Between instruction initiations an interrupt is also per­
mitted to occur during the execution of the following 
multiple-operand instructions: 

MOVE BYTE STRING (MBS) 

COMPARE BYTE STRING (CBS) 

TRANSLATE BYTE STRING (TBS) 

Centralized Interrupts 35 



TRANSLA TE AND TEST BYTE STRING (TTBS) 

EDIT BYTE STRING (EBS) 

DECIMAL MULTIPLY (OM) 

DECIMAL DIVIDE (DO) 

MOVE TO MEMORY CONTROL (MMC) 

The control and immediate results of these instructions re­
side in registers and memory; thus, the instruction can be 
interrupted between the completion of one iteration (oper­
and execution cycle) and that time (during the next itera­
tion) when a memory location or register is modified. If an 
interrupt occurs during this time, the current iteration is 
aborted and the instruction address portion of the program 
status words (PSWs) remains pointing to the interrupted in­
struction. After the interrupt-servicing routine is comple­
ted, the instruction continues from the point at which it 
was interrupted and does not begin anew. 

SINGLE-INSTRUCTION INTERRUPTS 

A single-instruction interrupt occurs in this situation: an 
interrupt level is activated, the current program is inter­
rupted, the single instruction in the interrupt location is 
executed, the interrupt level is automatically cleared and 
armed, and the interrupted program continues without being 
disturbed or delayed (except for the time required to exe­
cute the single instruction). 

If any of the following instructions is executed in any in­
terrupt location, then the corresponding interrupt is auto­
maticallya single-instruction interrupt: 

MODIFY AND TEST BYTE (MTB) 

MODIFY AND TEST HALFWORD (MTH) 

MODIFY AND TEST WORD (MTW) 

A modify and test instruction modifies the effective byte, 
halfword, or word (as described in Chapter 3, "Fixed-Point 
Arithmetic Instructions") but the current condition code re­
mains unchanged (even if overflow occurs). The effective 
address of a modify and test instruction in an interrupt lo­
cation (except counter 4) is always treated as an actual ad­
dress, regardless of whether the memory map is currently 
being used. Counter 4 uses the mapped location if mapping 
is currentiy invoked (as specified in the PSWs). I he exe­
cution of a modify and test instruction in an interrupt 
location, including mapped and unmapped counter 4, is in­
dependent of the virtual memory access-protection code 
and the real memory write lock; thus, a memory protection 
violation trap cannot occur as the result of overflow caused 
by executing MTH or MTW in an interrupt location. 

36 Trap System 

The execution of a modify and test instruction in an interrupt 
location automatically clears and arms the corresponding in­
terrupt level, allowing the interrupted program to continue. 

When a modify and test instruction is executed in a count­
pulse interrupt location, all of the above conditions apply 
as well as the following: If the resultant value in the ef­
fective location is zero, the corresponding counter-equals­
zero interrupt is triggered. 

TRAP SYSTEM 

A trap is similar to an interrupt in that when a trap condi­
tion occurs, program execution automatically branches to a 
predesignated location. A trap differs from an interrupt in 
that a trap location must contain an XPSD or PSS instruc­
tion. The time of trap occurrence can vary: The instruc­
tion in the trap location can be executed immediately (i .e., 
the current instruction in the program being executed is 
aborted), or when the current instruction has been partially 
executed (i.e., in the case of a long byte-string operation), 
or upon completion of the current instruction. The trap in­
struction is not held in abeyance by higher priority traps, 
whereas interrupts possibly may not be processed before an 
entire sequence of instructions is executed. 

TRAP ENTRY SEQUENCE 

A trap entry sequence begins when the basic processor de­
tects the trap condition and ends when the new program sta­
tus words (PSWs) have successfully replaced the old PSWs. 
Detection of any condition (function) listed in Table 3, 
which summarizes the trap system, results in a trap to a 
unique location in memory. When a trap condition occurs, 
the basic processor sets the trap state. The operation the 
basic processor is currently performing mayor may not be 
carried to compietion, depending on the type of trap and 
the operation being performed. In any event, the program 
instruction is terminated with a trap sequence (branch to the 
appropriate trap location). During this sequence the pro­
gram counter is not advanced; instead, the X PSD instruction 
in the trap location is executed. If any interrupt level is 
ready to move to the active state at the same time an X PSD 
trap instruction is in process, the interrupt acknowledgment 
will not occur until the XPSD trap instruction is completed. 
Should a trap location not contain an XPSD or PSS instruc­
tion, a second trap sequence is immediately invoked (see 
"Instruction Exception Trap" later in this chapter). 

TRAP ADDRESSING 

Trap addressing is described under "Interrupt and Trap Entry 
Addressing", 



Table 3. Summary of Trap Locations 

Locations 
PSWs 

Dec. Hex. Function Mask Bit Time of Occurrence Trap Condi ti on Code 

64 40 Nonallowed operation 

l. Nonexistent None At instruction decode. Set TCC1 t 
instruction 

2. Nonexistent mem- None Prior to memory access. Set TCC2 
ory address 

3. Privi leged instruc- None At instruction decode. Set TCC3 
tion in slave mode 

4. Memory protection None Prior to memory access. Set TCC4 
violation 

5. Write lock violation None Prior to memory access. Set TCC3, TCC4 

65 41 Reserved 

66 42 Push-down stack limit TW, TS At the time of stack limit detection. None 
reached (in stack (The aborted pushdown instruction 

pointer) does not change memory, registers, 
or the condition code.) 

67 43 Fixed-point arithmetic AM For all instructions except DWand None 
overflow DH, trap occurs after completion of 

instruction. For DW and DH, instruc-
tion is aborted with memory, register, 
CC1, CC3, and CC4 unchanged. 

68 44 Floating-point arithme- At detection. 
tic fault 

1. Characteristic None 
{(The floating-point instruction is 

None 
overflow 

aborted without changing any reg-
2. Divide by zero None isters. The condition code is set to None 

3. Significance check FS, FZ, FI\ 
indicate the reason for the trap.) 

None 

69 45 Decimal arithmetic fault DM At detection. (The aborted decima I None 
instruction does not change memory, 
registers, CC3, or CC4.) 

70 46 Watchdog timer runout None At runout. (The PDFtt flag will be Set TCC2 if basic pro-
set.) cessor usi ng processor 

bus; 

set TCC3 if basic pro-
cessor us i ng memory 
bus; and 

set TCC4 if basic pro-
cessor using DIO bus. 

71 47 Programmed trap None Interruptible point reached upon None 
completion of WD. 

tSee "Trap Condition Code ll
, later in this chapter. 

tt See II Processor Detected Fau I ts ", la ter in th i s cha pter . 

T rap System 37 



Table 3. Summary of Trap Locations (cont.) 

Locations 
PSWs 

Dec. Hex. Function Mask Bit Time of Occurrence Trap Condition Code 

72 48 CALLl None At instruction decode. Equal to R field of 
CALL instruction. 

73 49 CALL2 None At instruction decode. Equal to R field of 
CALL instruction. 

74 4A CALL3 None At instruction decode. Equal to R field of 
CALL instruction. 

75 4B CALL4 None At instruction decode. Equal to R field of 
CALL instruction. 

76 4C Hardware error trap None At time of basic processor detec- TCC1, 2, 3 = 0 
tion (the PDFt flag wi II be set). 

TCC4 = 0 if parity 
error on genera I reg-
ister or internal con-
trol register. 

TCC4 = 1 if other 
hardware errors. 

77 4D Instruction exception None (The PDFt flag will be set.) Set TCC3 if MMC con-
trap figuration illegal; 

set TCC = X·C· if trap 
or interrupt sequence 
with illegal instruction; 

set TCC = X·F· if trap 
or interrupt sequence 
and processor detected 
fault; 

set TCC4 if invalid 
register designation 
(odd register on AD, 
SD, FAL, FSL, FML, 
FDL, TBS, TTBS, EBS, 
and register 0 on EBS). 

78 4E Reserved 

79 4F Reserved 

80 50 Power on Interruptible point. 

81 51 Power off Interruptible point. 

tSee IIProcessor Detected Faults ll
, later in this chapter. 

38 Trap System 



TRAP MASKS 

The programmer may mask the four trap conditions described 
below in the program status words (PSWs) or the stack pointer 
doubleword, as appropriate; other traps cannot be masked. 

1. The push-down stack I imit trap is masked within the 
stack pointer doubleword for each individual stack. 

2. The fixed-point overflow trap is masked in bit posi­
tion 11 (AM) of the PSWs. If this bit position contains 
a zero, the trap is allowed to occur; if bit 11 contains 
a zero, the trap is not allowed to occur. AM can be 
masked by operator intervention, or by execution of 
the XPSD, PSS, PLS, or LPSD privileged instructions. 

3. The floating-point significance check trap is masked 
by a combination of the floating significance (FS), 
floating zero (FZ), and floating normalize (FN) mode 
control bits in the PSWs (see IIFloating-Point Arithme­
tic Fault Trapll, later in this chapter). FS, FZ, and 
FN can be set or cleared by the execution of any of 
the following instructions: 

LOAD CONDITIONS AND FLOATING CON­
TROL (LCF) 

LOAD CONDITIONS AND FLOATING CON­
TROL IMMEDIATE (LCFI) 

EXCHANGE PROGRAM STATUS WORDS (XPSD) 

LOAD PROGRAM STATUS WORDS (LPSD) 

PUSH STATUS (PSS) 

PULL STATUS (PLS) 

4. The decimal arithmetic fault trap is masked by bit po­
sition 10 (DM) of the PSWs. If DM contains a one, 
the trap is allowed; if DM contains a zero, the trap is 
not allowed. DM can be masked by execution of 
the X PSD, PSS, PLS, or LPSD privi leged instruction. 

with the condition code bits (CC1-CC4) of the new PSWs 
when loading CC1-CC4. See also IIInstruction Exception 
Trapll later in this chapter for more information on the trap 
condition code. 

NONALLOWED OPERATION TRAP 

The attempt to perform a nonallowed operation always 
causes the basic processor to abort the instruction being ex­
ecuted when the nonallowed operation is detected and to 
immediately execute the XPSD or PSS instruction in trap lo­
cation X140 1• A nonallowed operation cannot be masked. 

NONEXISTENT INSTRUCTION 

Any instruction that is not standard is defined as nonexist­
ent. This includes immediate operand instructions that 
specify indirect addressing (a one in bit 0 of the instruction). 
If a nonexistent instruction is detected, the basic processor 
traps to location X 1401 when the nonexistent instruction is 
decoded. No general registers or memory locations are 
changed; the PSWs point to the instruction trapped. With 
respect to the condition code and instruction address fields 
of the program status words, the operation of the XPSD or 
PSS in location X 140 1 is as follows: 

1. Store the current PSWs. The condition codes stored are 
those that existed at the end of the last instruction 
prior to the nonexistent instruction. 

2. Store the 16 general registers of the current register 
block if instruction in trap location is a PSS. 

3. Load the new PSWs. 

4. Modify the new PSWs. 

a. Set CCl to one. The other condition code bits 
TRAP CONDITION CODE remain unchanged from the values loaded from 

For the push-down stack limit trap, fixed-point overflow 
trap, floating-point fault trap, and decimal fault trap, the 
normal condition code register (CC 1-CC4) is loaded with 
more detai led information about the trap condition just 
before the trap occurs. These condition codes are saved as 
part of the old program status words when the XPSD or PSS 
instruction is executed in response to the trap. 

For the nona I lowed operation trap, watchdog timer runout 
trap, hardware error trap, instruction exception trap, and 
CALL trap, a special register (trap condition codes TCC1-
TCC4) is loaded just before the trap occurs. When the 
X PSD or PSS instruction is executed in response to the trap, 
this register is added to the new program address if bit 9 
(MM) contains a one; TCC 1-TCC4 are also logically ORed 

memory. 

b. If bit position 9 (AI) of the X PSD or PSS instruc­
tion contains a one, the program counter is incre­
men ted by eight. If AI contains a zero, the 
program counter remains unchanged from the value 
loaded from memory. 

NONEXISTENT MEMORY ADDRESS 

Any attempt to access a nonexistent memory address causes 
a trap to location X l 401 at the time of the request for mem­
ory service. A nonexistent memory address condition is 
detected when an actual address is presented to the memory 

T rap System 39 



system. If the basic processor is in the map mode, the 
program address wi II already have been modified by the 
memory map to generate an actual (but nonexistent) ad­
dress. (See Table 5 for possible changes to registers and 
memory locations later in this chapter.) The operation of 
the X PSD or PSS in location X 1401 is as follows: 

1. Store the current PSWs. 

2. Store general registers if PSS. 

3. Load the new PSWs. 

4. Modify the new PSWs. 

a. Set CC2 to one. The other condition code bits 
remain unchanged from the values loaded from 
memory. 

b. If bit position 9 (AI) of the XPSD or PSS instruc­
tion contains a one, the program counter is incre­
mented by four. If AI contains a zero, the program 
counter remains unchanged from the value loaded 
from memory. 

PRIVILEGED INSTRUCTION IN SLAVE MODE 

An attempt to execute a privi leged instruction while the 
basic processor is in the slave mode causes a trap to loca­
tion X'40 ' before the privi leged operation is performed. 
No general registers or memory locations are changed, and 
the PSWs point to the instruction trapped. The operation 
of the XPSD or PSS in trap location X'40 ' is as follows: 

1 • Store the current PSWs. 

2. Store general registers if PSS. 

3. Load the new PS'vVs. 

a. Set CC3 to one. The other condition code bits 
remain unchanged from the values loaded from 
memory. 

b. If bit position 9 (AI) of the XPSD or PSS contains 
a one, the program counter is implemented by two. 
If AI contains a zero, the program counter remains 
unchanged from the values loaded from memory. 

MEMORY PROTECTION VIOLA nON 

A memory protection violation occurs because of a memory 
map access control bit violation (by a program executed 
in slave mode or master-protected mode using the mem­
ory map). When memory protection violation occurs, the 
basic processor aborts execution of the current instruction 

40 Trap System 

without changing protected memory and traps to location 
X'40 I

• Refer to Table 5 for possible changes to registers 
and memory locations. (The virtual page address that caused 
the violation is in the fourth PSW word.) The operation of 
the XPSD or PSS in trap location X'40 1 is as follows: 

1 • Store the current PSWs. 

2. Store general registers if PSS. 

3. Load the new PSWs. 

4. Modify the new PSWs. 

a. Set CC4 to one. The other condition code bits 
remain unchanged from the values loaded from 
memory. 

b. If bit position 9 (AI) of the XPSD or PSS contains 
a one, the program counter is incremented by one. 
If AI contains a zero, the program counter remains 
unchanged from the va lue loaded from memory. 

WRITE LOCK VIOLATION 

A memory write lock violation occurs when an instruction 
(program in master, master-protected, or slave mode) tries 
to alter the contents of a write-protected memory page. If 
a write lock violation occurs, the basic processor aborts ex­
ecution of the current instruction without changing protected 
memory and traps to location X 1401• (Refer to Table 5 for 
possible changes to registers and memory locations.) (The 
virtual page address that caused the violation is the fourth 
PSW word.) The operation of the XPSD or PSS in trap lo­
cation X'40 ' is as follows: 

1 . Store the current PSWs. 

2. Store genera I reg is ters if PSS. 

3. Load the new PSWs. 

4. Modify the new PSWs. 

a. Set CC3 and CC4 to ones. The other condition 
code bits remain unchanged from the values loaded 
from memory. 

b. If bit position 9 (AI) of the X PSD or PSS contains 
a one, the program counter is incremented by 
three. If AI contains a zero, the program counter 
remains unchanged from the value loaded from 
memory. 



PUSH-DOWN STACK LIMIT TRAP 

Push-down stack overflow or underflow can occur during 
execution of any of the following instructions: 

Operation 
Instruction Mnemonic Code 

Push Word PSW X'09 1 

Pull Word PLW XIOS I 

Push Multiple PSM X'OB ' 

Pull Multiple PLM X'OA ' 

Modify Stack Pointer MSP X ' 131 

During the execution of any stack-manipulating instruction 
(see Chapter 3, II Push-down Instructi ons "), the stack is 
either pushed (words added to stack) or pulled (words re­
moved from stack). In either case, the space (5) and words 
(W) fields of the stack pointer doubleword are tested prior 
to moving any words. If execution of the instruction would 
cause the space (5) field to become less than 0 or greater 
than 2 15_1, the instruction is aborted with memory and 
registers unchanged. If TS (bit 32) of the stack pointer 
doubleword is set to 0, the basic processor traps to location 
X'421. If TS is set to 1, the trap is inhibited and the basic 
processor processes the next instruction. If execution of 
the instruction would cause the words (W) field to become 
less than 0 or greater than 215_1, the instruction is aborted 
with memory and registers unchanged. If TW (bit 4S) of 
the stack pointer doubleword is set to 0, the basic processor 
traps to location X'421. If the TW is set to 1, the trap is 
inhibited and the basic processor processes the next instruc­
tion. If trapping is inhibited, CC 1 or CC3 is set to 1 to 
indicate the reason for aborting the instruction. The stack 
pointer doubleword, memory, and registers are modified 
only if the instruction is successfully executed. 

If a push-down instruction traps, the execution of X PSD or 
PSS in trap location X'421 is as follows: 

1. Store the current PSWs. The condition codes that are 
stored are those that existed prior to execution of the 
aborted push-down instruction. 

2. Store general registers if PSS. 

3. Load the new PSWs. The condition code and instruc­
tion address portions of the PSWs remain at the va lue 
loaded from memory. 

FIXED-POINT OVERFLOW TRAP 

Overflow can occur for any of the following instructions: 

Instruction 

Load Absolute Word 

Load Absolute Doubleword 

Mnemonic 

LAW 

LAD 

Operation 
Code 

X'3B ' 

X'1B ' 

Operation 
Instruction Mnemonic Code 

Load Complement Word LCW X'3A ' 

Load Comp lement Doub I eword LCD X' 1A' 

Add Ha Ifword AH X '50 ' 

Subtract Halfword SH X'5S ' 

Divide Halfword DH X'561 

Add Immediate AI X '20 ' 

Add Word AW X'30 ' 

Subtract Word SW Xl3S1 

Divide Word DW X'361 

Add Doubleword AD XllOl 

Subtract Doub leword SD X' 1S1 

Modify and Test Halfword MTH X'531 

Modify and Test Word MTW X'331 

Add Word to Memory AWM X I66 1 

Except for the instructions DIVIDE HALFWORD (DH) and 
DIVIDE WORD (DW), instruction execution is allowed to 
proceed to completion. CC2 is set to 1 and CC3 and CC4 
represent the actual result (0, -, or +) after overflow. 

If the fixed-point arithmetic trap mask (bit 11 of PSWs) is 
a 1, the basic processor traps to location X 1431 instead of 
executing the next instruction in sequence. 

For DWand DH, the instruction execution is aborted with­
out changing any register, and CC2 is set to 1; CC 1, CC3, 
and CC4 remain unchanged from their values at the end of 
the instruction immediately prior to the DW or DH. If the 
fixed-point arithmetic trap mask is a 1, the basic processor 
traps to location X I 431 instead of executing the next instruc­
tion in sequence. 

The execution of XPSD or PSS in trap location X I 431 is as 
follows: 

1. Store the current PSWs. (Store general registers if PSS.) 
If the instruction trapped was any instruction other than 
DW or DH, the stored condition code is interpreted as 
follows: 

CClt CC2 CC3 CC4 Meaning 

_tt 0 0 Result after overflow is zero. 

o 

o 

Result after overflow is 
negative. 

Result after overflow is 
positive. 

tCC1 remains unchanged for instructions LCW, LAW, LCD, 
and LAD. 

tt A hyphen indicates that the condition code bits are not af­
fected by the condition given under the "Meaning II heading. 

Trap System 41 



2. 

CC1 t CC2 CC3 CC4 Meaning 

o No carry out of bit 0 of the 
adder (add and subtract in­
structions only). 

Carry out of bit 0 of the 
adder (add and subtract in­
structions only). 

If the instructi on trapped was a DW or DH, the stored 
condition code is interpreted as follows: 

CC1 CC2 CC3 CC4 Meaning 

tt Overflow 

Load the new PSWs. The condition code and instruc­
tion address portions of the PSWs remain at the value 
loaded from memory. 

FLOATING-POINT ARITHMETIC FAULT TRAP 

Floating-point fault detection is performed after the opera­
tion called for by the instruction code is performed, but 
before any results are loaded into the general registers. 
Thus, a floating-point operation that causes an arithmetic 
fault is not carried to completion in that the original con­
tents of the genera I reg isters are unchanged. 

Instead, the basic processor traps to location X'44 1 with the 
current condition code indicating the reason for the trap. 
A characteristic overflow or an attempt to divide by zero 
always results in a trap condition. A significance check or 
a characteristic underflow results in a trap condition only 
if the floating-point mode controls (FS, FZ, and FN) in the 
current program status words are set to the appropriate state. 

If a floating-point instruction traps, the execution of XPSD 
or PSS in trap location X '44 1 is as follows: 

1. Store the current PSWs. (Store general registers if 
P~~.) If division is attempted with a zero divisor or 
if characteristic overflow occurs, the stored condition 
code is interpreted as follows: 

CCl CC2 CC3 CC4 Meaning 

o 
o 

o 

o 
o 

o 

o 

Zero divisor. 

Characteristic overflow, 
nega t i ve resu I t. 

Characteristic overflow, 
positive result. 

tCCl remains unchanged for instructions LCW, LAW, LCD, 
and LAD. 

ttA hyphen indicates that the condition code bits are not af­
fected by the condition given under the "Meaning ll heading. 

42 Trap System 

If none of the above conditions occurred but charac­
teristic underflow occurs with floating zero mode 
bit (FZ) = 1, the stored condition code is interpreted 
as follows: 

CCl CC2 CC3 CC4 Meaning 

o 

o 

Characteristic underflow, 
negative result. 

Characteristic underflow, 
positive result. 

If none of the above conditions occurred but an addi­
tion or subtraction results in either a zero result (with 
FS = 1 and FN = 0), or a postnormal ization shift of 
more than two hexadecimal places (with FS = 1 and 
FN = 0), the stored condition code is interpreted as 
follows: 

CC1 CC2 CC3 CC4 Meaning 

0 0 0 Zero result of addition or 
subtraction. 

0 0 More than two postnormaliz-
ing shifts, negative result. 

0 0 More than two postnormaliz-
ing shifts, positive result. 

2. Load the new PSWs. The condition code aild instruc­
tion address portions of the PSWs remain at the values 
loaded from memory. 

DECIMAL ARITHMETIC FAULT TRAP 

When either of two decimal fault conditions occurs (see 
Chapter 3, IIDecimal Instructions ll

), the normal sequencing 
of instruction is halted, CCl and CC2 are set according to 
the reason for the fault condition, and CC3, CC4, memory, 
and the decimal acclJrnulator remain unchanged by the in­
struction. If the decimal arithmetic trap mask (bit posi­
tion 10 of PSW1) is a 0, the instruction execution sequence 
continues with the next instruction in sequence at the time 
of fault detection; however, if the decimal arithmetic trap 
mask contains a 1, the basic processortrapstolocationX '45 1 

at the time of fault detection. The following are the fault 
conditions for decimal instructions: 

Instruction Name Mnemonic Fault 

Dec i rna I Load DL I II ega I dig i t 

Decimal Store DS Illegal digit 

Decimal Add DA Overflow, i lIega I 
digit 

Decimal Subtract DS Overflow, illegal 
digit 

Decimal Multiply DM Illegal digit 



Instruction Name Mnemonic Fault 

Decimal Divide DD Overflow, i lIega I 
digit 

Decimal Compare DC Illegal digit 

Decimal Shift DSA Illegal digit 
Arithmetic 

Pack Decimal Digits PACK Illegal digit 

Unpack Decimal Digits UNPK Illegal digit 

Edit Byte String EBS Illegal digit 

The execution of XPSD or PSS in trap location X'451 is as 
follows: 

1 • Store the current PSWs. (Store genera I registers if 
PSS.) The stored condition code is interpreted as 
follows: 

CC 1 CC2 CC3 CC4 Meaning 

o All digits legal and overflow. 

o Illegal digit detected. 

2. Load the new PSWs. The condition code and instruc­
tion address portions of the PSWs remain at the values 
loaded from memory. 

WATCHDOG TIMER RUNOUT TRAP 

The watchdog timer monitors and controls the maximum 
amount of basic processor time each instruction can take. 
The timer is normally in operation at all times and is initial­
ized at the beginning of each instruction. If the instruction 
is not completed by the time the watchdog timer has com­
pleted its count, the instruction is aborted, TCC 1 is set to 0, 
and a trap occurs immediately to location X '46 I

• Additional 
information as to probable cause of delay is provided: 
TCC2 is set if the basic processor was using the processor 
bus, TCC3 is set if the basic processor was using the memory 
bus, TCC4 is set if the basic processor was using the DIO 
bus. The register altered flag of the PSWs is also set if any 
register or main memory location has been changed when 
the trap occurred. 

A watchdog timer runout is considered a basic processor 
fault and the PDF is set. (See "Processor Detected Fault 
Flag", later in this chapter.) 

PROGRAMMED TRAP 

The programmed trap occurs at instruction interruptible 
point. It is set by a WRITE DIRECT (WD). See Chapter 3. 
The basic processor traps to location X 147'. 

CALL INSTRUCTION TRAP 

The four CALL instructions (CAll, CAL2, CAL3, and CAL4) 
cause the basic processor to trap to location X'481 (for 
CAll), X'491 (for CAL2), X'4A' (for CAL3), or X'4B ' (for 
CAL4). Execution of the XPSD or PSS instruction in the 
trap location is as follows: 

1. Store the current PSWs. The stored condition code bits 
are those that existed prior to the CA LL instruction. 

2. Store the general registers in PSS. 

3. Load the new PSWs. 

4. Modify the new PSWs. 

a. The R Field of the CALL instruction is logically 
ORed with the condition code register as loaded 
from memory. 

b. If bit 9 (AI) of X PSD or PSS contains a 1, the R 
field of the CALL instruction is added to the pro­
gram counter. If AI contains a 0, the program 
counter remains unchanged from the value loaded 
from memory. 

Note: Return from a CALL trap wi" be to the trapping 
instruction + 1 • 

HARDWARE ERROR TRAP 

A hardware error trap occurs when either a parity or a se­
quence check fault error is detected by a memory unit, basic 
processor, or any processor communicating with the basic 
processor, resulting in a basic processor trap to location 
X'4C. The Trap Condition Code bits (TCCs) are set to 
X'0001 ' for all hardware fault conditions except general 
register and control register parity errors, where the TCCs 
are set to X 10000 1 . 

To determine which of the possible detectable errors is re­
sponsible for the hardware error trap, the fault status reg­
isters of the various processors in the system must be polled 
with either the POLP or POLR instruction; the memory's 
status register must be read with the LMS instruction. The 
fault status register bit settings for processors and interfaces 
are given in Appendix C, Table C-1. The fault status reg­
ister bit settings for the memory unit are given in Ap­
pendix C, Table C-2. 

If the basic processor detects or receives a report of a hard­
ware error, it attempts automatic retry of the current in­
struction. If retry is unsuccessful, the basic processor traps 
to location X '4C. If retry is successful, the basic processor 
resumes execution of the next instruction in the program, 
the Processor Fault Interrupt (PFI) and the "successful instruc­
tion retryll bit (bit position 11) in the Basic Processor Fault 
Status Register are set to 1. There is automatic instruction 

Trap System 43 



retry only for hardware errors that would otherwise result 
in a basic processor trap to location X I 4C. Automatic in­
struction retry is inhibited if: 

1 • The current instruction is being executed as a trap or 
interrupt instruction; 

2. The Register Altered bit (bit position 60) of the current 
PSWs is set to 1 at the time of detection of the 
hardware error; or 

3. The Retry Inhibit bit (bit position 0) in the basic pro­
cessor control register is set to 1. 

INSTRUCTION EXCEPTION TRAP 

The instruction exception trap occurs whenever the basic 
processor detects a set of operations that are called for in 
an instruction but cannot be executed because of either a 
hardware restriction or a previous event. 

The different conditions that cause the instruction exception 
trap are: 

1. A processor-detected fau It that occurs during the ex­
ecution of an interrupt or trap entry sequence. An 
interrupt or trap entry sequence is defined as the se­
quence of events that consists of: (a) initiating an 
interrupt or trap; (b) accessing the instruction in the 
interrupt or trap location; and (c) executing that in­
struction, including the exchange of the program 
status words, if required. Note that instructions ex­
ecuted as a result of the interrupt or trap location are 
not considered part of the entry sequence. 

2. An illegal instruction is found in the trap (not XPSD or 
PSS) or interrupt (not XPSD, PSS, MTB, MTH, MTW) lo­
cation when executing a trap or interrupt sequence. 

3. Bit positions 12-14 of the MOVE TO MEMORY CON­
TROL (MMC) instruction are interpreted as an illegal 
configuration. This is, any configuration other than 
100, 010, 101, 001, or 011 • 

4. The set of operations, primarily doubleword and byte­
string instructions, that yield an unpredictable result 
when an incorrect register is specified; this type of 
fault is called "invalid register designation II and in­
cludes the following instructions ll

• t 

Register 0 Specified 

Edit Byte String (EBS) 

Odd Register Specified 

Add Doub I ewo rd (A D) 

Subtract Doubleword (SD) 

tliInvalid register designation II faults do not set the PDF 
flag. 

44 Trap System 

Floating Add Long (FAL) 

Floating Subtract Long (FSL) 

Floating Multiply Long (FML) 

Floating Divide Long (FDL) 

Translate Byte String (TBS) 

Translate and Test Byte String (TTBS) 

Edit Byte String (EBS) 

Move to Memory Control (MMC) 

TRAP CONDITION CODE 

The Trap Condition Code (TCC) differentiates between the 
different fault types. Table 4 shows the settings of the TCC 
for the various faults that may be detected during a trap or 
interrupt entry sequence. 

Table 4. TCC Setting for Instruction Exception 
Trap X I4D 1 

Fault Type TCC 

Trap or interrupt sequence and 1 1 1 
pro~essor-detected fault. 

Trap or interrupt sequence with 1 1 0 
invalid instruction. 

MMC configuration invalid. 0 0 1 

Invalid register designation. 0 0 0 

POWER ON TRAP 

1 

0 

0 

1 

Power On causes the basic processor to reset and then trap 
tolocationX I 50 I

• This will occur only following restoration 
of power after an interruption of less than 500 milliseconds. 

POWER OFF TRAP 

Power Off occurs at interruptible point. As source power is 
going off, the basic processor traps to location X 1511 and 
allows sufficient time for storage of information before the 
system becomes inoperable. 

PROCESSOR DETECTED fAULT fL~G 

The Processor Detected Fault (PDF) flag aids in solving a 
multiple error problem. Most traps occur because of a dy­
namic programming consideration (i.e., overflow, attempted 
division by zero, incorrect use of an instruction or address, 
etc.) and recovery is easi Iy handled by another software 



subroutine. However, with certain classes of errors, if a 
second error occurs while the basic processor is attempting 
to recover from the first error, unpredictable results occur. 
Inc I uded in th is c lass of traps are the hardware error trap, 
some cases of the instruction exception trap, and the watch­
dog timer runout trap. Upon the first occurrence of this 
type of trap, the PDF flag is set. 

When the PDF flag is set, the processor fault interrupt, the 
memory fault interrupt, and count pulse interrupts are auto­
matically inhibited. The other interrupts mayor may not 
be inhibited as specified by the program status words, which 
are loaded when the trap entry XPSD or PSS is executed. 
The PDF flag is normally reset by the last instruction of a 
trap routine, which is an LPSD or PLS instruction having 
bit 10 equal to 0 and bit 11 equal to 1. 

If a second PDF is detected before the PDF flag is reset, the 
basic processor "hangs Up" unti I the PDF flag is reset either 
by the operator entering the command for RESET BASIC 
PROCESSOR or RESET SYSTEM on the operator1s console. 

This reset wi II cause the following actions: 

1. The processor fault status register is cleared. 

2. The PDF flag is cleared and the processor fault inter­
rupt generated flag is cleared. 

3. The PSWs are cleared to zero except that the instruc­
tion address is set to location X 1261• 

4. The basic processor will begin execution with the in­
struction contained in location X126 1. 

REGISTER ALTERED BIT 

Complete recoverability after a trap may require that no 
main memory location, no fast memory register, and no 
part (or flags) of the PSWs be changed when the trap occurs. 
If any of these registers or flags are changed, the Register 
Altered bit (60) of the old PSWs is set to 1 and is saved by 
the trap XPSD. 

Changes to CC1-CC4 cause the Register Altered bit to be 
set only if the instruction requires these condition code bits 
as subsequent inputs. 

Traps caused by conditions detected during operand fetch 
and store memory cycles, such as nonexistent memory, ac­
cess protection violation, and memory parity error mayor 
may not leave registers, memory, and PSWs unchanged, de­
pending on when they occur during instruction execution. 
Generally, these traps are recoverable. This is done by 
checking for protection violations and nonexistent memory 
at the beginning of execution in case of a multiple operand 
access instruction, restoring the original register contents 
if execution cannot be completed because of a trap, and 
not loading the first word of the PSWs until a possible trap 
condition due to access of the second word could have been 
detected. Table 5 contains a list of instructions and indi­
cates for these instructions what registers, memory locations, 
and bits of the PSWs, if any, have been changed when a 
trap due to an operand access memory cycle occurs. 

Tabie 5. RegiSTers Changed aT Time or a Trap Due TO an Operand Access 

Instructi ons Changes 

AI, CI, LCFI, LI, MI Immediate type, no operand access. 

CALl-CAL4, SF,S, WAIT, RD, WD, RIO, No operand access. 
POLR, POLP, DSA 

LRA Has operand access but traps are suppressed; register bits and 
condition codes are set instead. 

LB, LCF, LRP, CB No operand store, registers and PSWs unchanged when trap 
LH, LAH, LCH, AH, SH, MH, DH, CH due to operand fetch. CCl-4 may be changed but are not 
LW, LAW, LCW, AW, SW, MW, OW, CW used as input to any of these instructions. 

LD, LAD, LCD, AD, SO, CD, CLM, CLR Registers and memory are preserved, condition codes may be 
EaR, OR, AND, LS, INT, CS changed but are not used as input to these instructions. 
FAS, FSS, FMS, FDS, FAL, FSL, FML, FDL 

AWM, XW, STS, MTB, MTH, MTW Memory will be altered and the Register Altered bit set. 
STB, STCF, 5TH, STW, LAS 

EXU, BCR, BCS If the branch condition is true (always for EXU and BAL) and 
BAL, BDR, BIR a trap occurs due to access of the indirect address or of the 

next (branched to or executed) instruction, the register used 
is left unchanged and the program address saved in the PSWs 
is the address of the branch or execute instruction. 

Trap System 45 



Table 5. Registers Changed at Time of a Trap Due to an Operand Access (cont.) 

Instructions Changes 

MBS, CBS, TBS, TTBS, EBS, MMC Registers and memory may be changed and the Register Altered 
DA, DS, DL, DST, DC, DM, DD, PACK, bit set. 
UNPK, LM, STM, PLM, PSM, STD 

CVA, CVS If a trap occurs, the instruction will be aborted before altering 
registers. CCl-4 may be changed but not used as input to any 
of these instructions. 

XPSD, LPSD, PSS, PLS If a trap occurs due to storing the old PSWs or fetching the 
new PSWs, the instruction is aborted before changing the old 
PSWs. 

SIO, no, TDV, HIO, Ala, RIO If trap occurs, the instruction will be aborted without altering 
condition codes, registers, or memory. 

*ANLZ An indirect ANALYZE instruction executed in the master-
protected mode wi II trap. No registers are altered. 

46 Trap System 



3. INSTRUCTION REPERTOIRE 

This chapter describes the instructions, grouped in the 
following functional classes: 

1. Load anc;! Store 

2. Analyze and Interpret 

3. Fixed-Point Arithmetic 

4. Comparison 

5. Logical 

6. Shift 

7. Conversion 

8. Floating-Point Arithmetic 

9. Decimal 

10. Byte String 

11. Push Down 

12. Execute and Branch 

13. Call 

14. Control (privi leged) 

15. Input/Output (privi leged) 

Instructions are described in the following format: 

MNEMONICQ) INSTRUCTION NAME@ 

(Addressing Type~ Privi leged~ 
Interrupt Actio~) 

Affected® T rap® 

Symbolic Notation@ 

Condition Code Settings@ 

Trap Action@ 

Example@ 

1. MNEMONIC is the code used by Xerox assemblers to 
produce the instruction IS basi c operation code. 

2. INSTRUCTION NAME is the instructionls descriptive 
title. 

3. The instruction IS addressing type is one of the following: 

a. Byte index alignment: the reference address field 
of the instruction {plus the displacement value} 
can be used to address a byte in mai n memory or 
in the current block of general registers. 

b. Halfword index alignment: the reference address 
field of the instruction (plus the displacement 
value) can be used to address a halfword in main 
memory or in the currentblockofgeneral registers. 

c. Word-index alignment: the reference address field 
of the instruction {plus the displacement value} 
can be used to address any word in main memory 
or in the current block of general registers. 

d. Doubleword index alignment: the reference ad­
dress field of the instruction (plus the displacement 
value) can be used to address any doubleword in 
main memory or in the current block of general 
registers. The addressed doubleword is auto­
matically located within doubleword storage 
boundari es. {The low order bit of the reference 
address is ignored. } 

e. Immediate operand: the instruction word contains 
an operand value used as part of the instruction 
execution. If indirect addressing is attempted 
with this type of instruction (i. e., bit 0 of the 
i nstructi on word is a 1), the i nstructi on is treated 
as a nonexistent instruction, and the basi c processor 
unconditionally aborts execution of the instruction 
{at the time of operation code decoding} and traps 
to location X1401, the "nonallowed operation" 
trap. Indexing does not apply to this type of 
instruction. 

f. Immediate displacement: the instruction word 
contains an address displacement used as part of 
the instruction execution. If indirect addressing 
is attempted with this type of instruction, the basic 
processor treats the instruction as a nonexistent in­
struction, and it unconditionally aborts execution 
of the instruction (at the time of operation code 
decoding) and traps to location X140'. Indexing 
does not apply to this type of instruction. 

4. If the instruction is not executable while the basic pro­
cessor is in the slave mode, it is labeled "privileged" 
If execution of a privileged instruction is attempted 
while the basic processor is in the slave mode, it uncon­
ditionally aborts execution of the instruction (at the 
time of operation code decoding) and traps to loca­
tion X1401. 

5. If the instruction can be successfully resumed after 
its execution sequence has been interrupted by an 
interrupt acknowledgment, the instruction is labeled 

Instruction Repertoi re 47 



IIcontinue after interruptll. In the case of the IIcontinue 
after interrupt ll instructions, certain general registers 
contain intermediate results or control information 
that allows the instruction to continue properly. 

6. Instruction format: 

a. Indirect addressing - If bit position 0 of the in­
struction format contains an asterisk (*), the 
instruction can use either indirect or direct 
addressing. If bit position 0 of the instruction 
format contains a 0, the instruction is of the 
immediate operand type, which is treated as a 
nonexistent instruction if indirect addressing is 
attempted (resulting in a trap to location X'40'). 

b. Operation code - The operation code field (bit 
positions 1-7) of the instruction is shown in hexa­
decimal notation. For certain I/O instructions, 
the operation code field is extended and includes 
bit positions 15-17 of the instruction. 

c. R field - If the register address field (bit posi­
tions 8-11) of the instruction format contains the 
character 11 RII, the instruction can specify any 
register in the current block of general registers 
as an operand source, result destination, or both; 
otherwise, the function of this field is determined 
by the instruction. 

d. X field - If the index register address field (bit 
positions 12-14) of the instruction format contains 
the character IIXII, the instruction specifies in­
dexing with anyone of registers 1 through 7 in 
the current block of general registers; otherwise, 
the function of this field is determined by the 
instruction. 

e. Reference address field - Normally, the address 
field (bit positions 15-31) of the instruction for­
mat is used as the reference address value for 
real, real extended, and virtual addresses (see 
Chapter 2). This reference address field is also 
used to oddress I/o systems (see I/o instructions 
later in this chapter and also Chapter 4). For im­
mediate operand instructions, this field is aug­
mented with the contents of the X field, as 
illustrated, to form a 20-bit operand. 

f. Value field - In some fixed-point arithmetic 
instructions, bit positions 12-31 of the instruc­
tion format contain the word "value ll . The 
field is treated as a 20-bit integer, with nega­
tive integers represented in two's complement 
form. 

g. Displacement field - In the byte string instructions 
bit positions 12-31 of the instruction format con­
tain the byte "displacement". In the execution 
of the instruction, this field is used to modify the 
source address of an operand, the destination ad­
dress of a result, or both. 

48 Instruction Repertoire 

h. Reserved fields -In any format diagram that depicts 
system inputs (i. e., instruction, data word), a 
shaded area represents a field that is ignored by 
the bas i c processor (i . e. , the content of the shaded 
field has no effect on instruction execution). It 
should not be used or must be coded with O's to 
preclude conflict with possible future modifications. 

In any format di agram that depi cts system outputs 
(i. e., general register, memory word modified by 
an instruction, or I/O status word), a shaded area 
represents a field whose content is indeterminate 
and must not be used (i. e., masked). 

7. The description ofthe instruction defines the operations 
performed by the basic processor in response to the in­
struction configuration depi cted by the instruction for­
mat diagram. Any instruction configuration that causes an 
unpredictable result is so specified in the description. 

8. All programmable registers and storage areas that can 
be affected by the instruction are listed (symbolically) 
after the word "Affected". The instruction address 
portion of the program status words is considered to be 
affected only if a branch condition can occur as a re­
sult of the instruction execution, since the instruction 
address is incremented by 1 as part of every instruction 
execution. 

9. All trap conditions that may be invoked by the execu­
tion of the instruction are listed after the word "Trap". 
Trap locations are summarized in the section "Trap 
System" in Chapter 2. 

10. The symbolic notation presents the instruction opera­
tion as a series of generalized symbolic statements. 
The symbolic terms used in the notation are defined in 
the Appendix, "Glossary of Symbolic Termsll. 

11. Condition Code settings are given for each instruction 
that affects the condition code. A 0 or a 1 under any 
of columns 1, 2, 3, or 4 indicates that the instruction 
causes a 0 or 1 to be placed in CC1; CC2; CC3 or 
CC4, respectively, for the reasons given. Ifahyphen (-) 
appears in columns 1, 2, 3, or 4, that portion of the 
condition code is not affected. For example, the 
fo 1I0wing condition code settings are given for a com­
parison instruction: 

2 3 4 Result of comparison 

o 0 Equal. 

o Register operand is arithmetically less 
than effecti ve operand. 

o Register operand is or: thmeti ca!!y greate r 
than effective operand. 

The logical product of the two operands 
is nonzero. 

o The logical product (AND) of the two op­
erands is zero. 



CC1 is unchanged by the instruction. CC2 indicates 
whether or not the two operands have lis in corre­
sponding bit positions, regardless of their arithmetic 
relationship. CC3 and CC4 are set according to the 
arithmeti c re lationshi p of the two operands, regard less 
of whether or not the two operands have lis in corre­
sponding bit positions. For example, if the register 
operand is arithmetically less than the effective oper­
and, and the two operands both have lis in at least 
one corresponding bit position, the condition code 
setting for the comparison instruction is: 

234 

o 

The above statements about the condition code are 
valid only if no trap occurs before the successful com­
pletion of the instruction execution cycle. If a trap 
does occur during the instruction execution, the con­
dition code is normally reset to the value it contained 
before the instruction was started and the register 
altered bit (bit 60 in PSWs) is set to 1 if a register has 
been altered. Then the appropriate trap location 
is activated. 

12. Adionstakenbythebasic processor for those trap con­
ditions that may be invoked by the execution of the in­
struction are described. The description includes the 
criteria for the trap condition, any control I ing trap 
mask or inhibit bits, and the action taken by the basic 
processor. 

Nnte~ Tn avnin IJnnpcpc;c;nrv rpnptitinn thp thrpp t .. "n 
~ , -.---------, ---- -_.--- -'--r 

conditions that apply to all instructions (i. e., 
nona"owed operations, parity error, and watch­
dog timer runout) are not described for each 
instruction. 

13. Some instruction descriptions provide one or more ex­
amples to i "ustrate the results of the instruction. 
These examples are intended only to show how the in­
structions operate, and not to demonstrate their full 
capabi lity. Within the examples, hexadecimal nota­
tion is used to represent the contents of general registers 
and storage locations. Condition code settings are 
shown in binary notation. The character "x" is used 
to indicate irrelevant or ignored information. 

Note: In the following text, BP is used as an abbre­
viation for basi c processor. 

LOAD jSTORE INSTRUCTIONS 

The load/store instructions are as follows: 

Instruction Name Mnemonic 

Load Immediate LI 

Load Byte LB 

Instruction Name 

Load Halfword 

Load Word 

Load Doubleword 

Load Complement Halfword 

Load Absolute Halfword 

Load Complement Word 

Load Absolute Word 

Load Complement Doubleword 

Load Absolute Doubleword 

Load Read Address (see "Control 
Instructions" ) 

Load and Set 

Load Memory Status (see "Control 
Instructions ") 

Load Selective 

Load Multiple 

Load Conditions and Floating Control 
Immediate 

Load Conditions and Floating Control 

Load Virtual Address Word 

Exchange Word 

Store Byte 

Store Halfword 

Store Word 

Store Doubleword 

Store Selective 

Store Multiple 

Store Conditions and Floating Control 

Mnemonic 

LH 

LW 

LD 

LCH 

LAH 

LCW 

LAW 

LCD 

LAD 

LRA 

LAS 

LMS 

LS 

LM 

LCFI 

LCF 

LVAW 

XW 

STB 

STH 

STW 

STD 

STS 

STM 

STCF 

The load and store instructions operate with information 
fields of byte, halfword, word, and doubleword lengths. 
Load instructions load the information indicated into one or 
more of the general registers in the current register block. 
Load instructions do not affect the source of information; 
however, nearly all load instructions provide a condition 
code setting that indicates the following information about 

Load/Store Instructions 49 



the contents of the affected genera I register(s) after the 
instruction is successfully completed: 

Condition code settings: 

2 3 4 Result 

o 0 Zero - the result in the affected register(s) 
is all OIS. 

- 0 Negative - register R contains a 1 in bit 
position O. 

o Positive - register R contains a 0 in bit posi­
tion 0, and at least one 1 appears in the 
remainder of the affected register(s) (or 
appeared during execution of the current 
instruction. ) 

- 0 No fixed-point overflow - the result in the 
affected register(s) is arithmetically correct. 

Fixed-point overflow - the result in the af­
fected register(s) is arithmetically incorrect. 

Store instructions affect only that portion of memory stor­
age that corresponds to the length of the information field 
specified by the operation code of the instruction; thus, 
register bytes are stored in memory byte locations, register 
halfwords in memory ha Ifword locations, register words in 
memory word locations, and register doublewords in mem­
ory doubleword locations. Store instructions do not affect 
the contents of the general register specified by the R field 
of the instruction, unless the same register is also specified 
by the effective virtual address of the instruction. 

LI LOAD IMMEDIATE 
(Immedi ate operand) 

LOAD IMMEDIATE extends the sign of the value field (bit 
position 12 of the instruction word) 12 bit positions to the 
left and then loads the 32-bit result into register R. 

Affected: (R), CC3, CC4 

(I)12-31SE-R 

Condition code settings: 

2 3 4 Result in R 

o 0 Zero 

- 0 Negative 

o Positive 

Trap: Nonexistent instruction, 
if bit 0 is a 1. 

If LI is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the BP unconditionally aborts 

50 Load/Store Instructi ons 

execution of the instruction (at the time of operation code 
decoding) and traps to location Xl 40 1 with the contents of 
register R and the condition code unchanged. 

LB LOAD BYTE 
(Byte index alignment) 

LOAD BYTE loads the effecti ve byte into bi t posi ti ons 24-31 
of register R and clears bit positions 0-23 of the register to 
all OIS. 

Affected: (R), CC3, CC4 

EB- R
24

-
31

; 0-R
O

_
23 

Condition code settings: 

2 3 4 Result in R 

o 0 Zero 

o Nonzero 

LH LOAD HALFWORD 
(Halfword index alignment) 

LOAD HALFWORD extends the sign of the effective half­
word 16 bit positions to the left and then loads the 32-bit 
result into register R. 

Affected: (R), CC3, CC4 

EHSE-R 

Condition code settings: 

,., ..... " n __ IL •. n 
L .J "'t "~:'UII III "-

- 0 0 Zero 

- 0 Negative 

0 Positive 

LW LOAD WORD 
(Word index alignment) 

U I 2 

32 I R I X I : Referenc~ address 

LOAD WORD loads the effective word into register R. 

Affected: (R), CC3, CC4 

EW-R 



Condition code settings: 

2 3 4 Result in R 

0 0 Zero 

0 Negative 

0 Positive 

LD LOAD DOUBLEWORD 
(Doubleword index alignment) 

LOAD DOUBLEWORD loads the 32 low-order bits of the 
effective doubleword into register Ru1 and then loads 
the 32 high-order bits of the effective doubleword into 
register R. 

If R is an odd value, the result in register R is the 32 high­
order bits of the effective doubleword. The condition code 
settings are based on the effective doubleword, rather than 
the final result in register R (see example 3, below). 

Affected: (R), (Ru1), CC3, CC4 

ED
32

_
63

Ru1; ED
O

_
31

R 

Condition code settings: 

234 

o 0 Zero 

- 0 Negative 

o Positive 

Example 1, even R field value: 

Before execution After execution 

ED X'0123456789ABCDEF' X'0123456789ABCDEF' 

(R) xxxxxxxx X I 0 12345671 

(Ru1) = xxxxxxxx X'89ABCDEF' 

CC xxxx xxlO 

Example 2, odd R field value: 

Before execution After execution 

ED X'0123456789ABCDEF' X'0123456789ABCDEF' 

(R) xxxxxxxx X'012345671 

CC xxxx xx 10 

Example 3, odd R field value: 

Before execution After execution 

ED X 100000000 1 23456781 XI 00000000 1 23456781 

(R) xxxxxxxx XI 00000000 I 

CC xxxx xx 10 

LCH LOAD COMPLEMENT HALFWORD 
(Halfword index alignment) 

LOAD COMPLEMENT HALFWORD extends the sign of the 
effective halfword 16 bit positions to the left and then loads 
the 32-bit twols complement of the result into register R. 
(Overflow cannot occur. ) 

Affected: (R), CC3, CC4 

{EHSEJ-R 
Condition code settings: 

2 3 4 Result in R 

- 0 0 Zero 

- 0 Negative 

o Positive 

LAH LOAD ABSOLUTE HALFWORD 
(Halfword index alignment) 

If the effective halfword is positive, LOAD ABSOLUTE 
HALFWORD extends the sign of the effective halfword 
16 bit positions to the left and then loads the 32-bit result 
in register R. If the effective halfword is negative, LAH 
extends the sign of the effective halfword 16 bit positions 
to the left and then loads the 32-bit twols complement of 
the result into register R. (Overflow cannot occur.) 

Affected: (R), CC3, CC4 

EHSE - R 

Condition code settings: 

2 3 4 Result in R 

o 0 Zero 

o Nonzero 

Load/Store Instructi ons 51 



LCW LOAD COMPLEMENT WORD 
0/Vord index alignment) 

LOAD COMPLEMENT WORD loads the 32-bit two's com­
plement of the effective word into register R. Fixed-point 
overflow occurs if the effective word is -231 (X'80000000') 
in which case the result in register R is -231 and CC2 is set 
to 1; otherwise, CC2 is reset to O. 

Affected: (R),CC2,CC3,CC4 Trap: Fixed-pointoverflow. 

-EW-R 

Condition code settings: 

2 3 4 Result in R 

- 0 0 0 Zero 

- 0 Negative 

- 0 0 Positive 

- 0 No fixed-point overflow 

o Fixed-point overflow 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43' after execution 
of LOAD COMPLEMENT WORD; otherwise, the BP ex­
ecutes the next instruction in sequence. 

LAW LOAD ABSOLUTE WORD 
0/Vord index alignment) 

If the effective word is positive, LOAD ABSOLUTE WORD 
!oads the effective v.'ord into regi$ter R. If the effective 
word is negative, LAW loads the 32-bit two's complement 
of the effective word into register R. Fixed-point overflow 
occurs if the effective word is -~ 1 (X'80000000'), in 
which case the result in register R is _231 , and CC2 is set 
to 1; otherwise, CC2 is reset to O. 

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow 

IEWI-R 

Condition code settings: 

2 3 4 Resu I tin R 

- 0 0 0 Zero 

0 Nonzero 

- 0 No fixed-point overflow 

0 Fixed-point overflow (sign bit on) 

52 Load/Store Instructions 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43' after execution 
of LOAD ABSOLUTE WORD; otherwise, the BP executes 
the next instruction in sequence. 

LCD LOAD COMPLEMENT DOUBLEWORD 
(Doubleword index alignment) 

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit 
two's complement of the effective doubleword, loads the 
32 low-order bits of the resu It into register Ru 1, and then 
loads the 32 high-order bits of the result into register R. 

If R is an odd value, the result in register R is the 32 high­
order bits of the two's complemented doubleword. The con­
dition code settings are based on the two's complement of 
the effective doubleword, rather than the final result in 
register R. 

Fixed-point overflow occurs if the effective doubleword is 
_~3 (X'8000000000000000'), in which case the result in 
registers Rand Ru1 is _~3 and CC2 is set to 1; otherwise, 
CC2 is reset to O. 

Affected: (R),(Rul),CC2, Trap: Fixed-point overflow 
CC3,CC4 

[-ED]32_63 - Ru1; [-ED] 0-31- R 

Condition code settings: 

2 3 4 Two's complement of effective doubleword 

- 0 0 0 Zero 

- 0 Negative 

- 0 0 Positive 

- 0 No fixed-point overflow 

o Fixed-point overflow 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43' after execution 
of LOAD COMPLEMENT DOUBLEWORD; otherwise, the 
BP executes the next instruction in sequence. 

Example 1, even R field value: 

ED 

(R) 

(Ru 1) 

CC 

Before executi on 

",,,,,.,,"' A t=,""'nn A n""~""r-' 
- /\ VIL..J"t..JU/07t-\O\...LJLr 

xxxxxxxx 

xxxxxxxx 

xxxx 

After execution 

·V"""I')AC:1.70nfl nr"l"'\cr:' 
/\ I VL..J"t.JVI U 7 ,...,1) ..... L..I1..1 

X'FEDCBA98' 

X'765432 1 l' 

xOOl 



Example 2, odd R field value: 

Before execution After execution 

ED X'0123456789ABCDEP X'0123456789ABCDEF' 

(R) xxxxxxxx X'FEDCBA98' 

CC xxxx x001 

LAD LOAD ABSOLUTE DOUBLEWORD 
(Doubleword index alignment) 

If the effective doubleword is positive, LOAD ABSOLUTE 
DOUBLEWORD loads the 32 low-order bits of the effective 
doubleword into register Ru1, and then loads the 32 high­
order bits of the effective doubleword into register R. If R is 
an odd value, the result in register R is the 32 high-order 
bits of the effective doubleword. The condition code set­
tings are based on the effective doubleword, rather than 
the final result in register R. 

If the effective doubleword is negative, LAD forms the 
64-bit two's complement of the effective doubleword, loads 
the 32 low-order bits of the two's complemented double­
word into register Ru 1, and then loads the 32 high-order 
bits of the two's complemented doubleword into register R. 
If R is an odd value, the result in register R is the 32 high­
order bits of the two's complemented doubleword. The con­
dition code settings are based on the two's complement of 
.LL __ CC_ ... - _I II I .1.1 .1,... I I •• 
11'1:: I::1II::~IIVl:: UUUUII::VVUIU, IUHH:::r IrIun rne nnol resulT In 

register R. 

Fixed-point overflow occurs if the effective doubleword is 
-263 (X'8000000000000000'), in which case the result in 
registers Rand Rul is -263 and CC2 is set to 1; otherwise, 
CC2 is reset to O. 

Affected: (R), (Ru 1),CC2, 
CC3,CC4 

Trap: Fixed-point overflow 

IED1
32

_
63 

-Ru1i IEDI
0

_
31

-R 

Condition code settings: 

2 3 4 Absolute value of effective doubleword 

- 0 0 0 Zero 

o Nonzero 

- 0 No fixed-point overflow 

o Fixed-point overflow (sign bit on) 

If CC2 is set to 1 and the fixed-point arithmeti c trap mask 
(AM) is a 1, the BP traps to location X'43' after execution 

of LOAD ABSOLUTE DOUBLEWORDi otherwise, the BP 
executes the next instruction in sequence. 

Example 1, even R field value: 

Before execution After execution 

ED X'0123456789ABCDEF' X'0123456789ABCDEF' 

(R) xxxxxxxx X'01234567' 

(Ru1) = xxxxxxxx X'89ABCDEF' 

CC xxxx xOlO 

Example 2, even R field value: 

Before execution After execution 

ED X' FEDCBA9876543210' X' FEDCBA987654321 0' 

(R) xxxxxxxx X'01234567' 

(Rul) = xxxxxxxx X'89ABCDFO' 

CC xxxx xOlO 

Example 3, odd R field value: 

Before execution After execution 

ED - X'G.23456789ADCDEF X'G.23456789ADCDEF 

(R) xxxxxxxx X'01234567' 

CC xxxx xOlO 

LAS LOAD AND SET 
(Word index alignment) 

LOAD AND SET loads the effective word into R. If 
the effective address is equal to or greater than 16, a 
one is stored in the sign position of the effective loca­
tion. If the effective address is equal to or less than 15 
(effective location is a general register), the sign bit 
remains unchanged. This instruction is used to interlock 
multiple processors from the simultaneous execution of 
certai n secti ons of code or from the si mu I taneous access 
to certain tables. 

Affected: (R), CC3, CC4 

EW-R 

1 -EWO' if EA ~ 16 

Load/Store Instructions 53 



Condition code settings: 

2 3 4 Result in R 

0 0 Zero 

0 Negative 

0 Positive 

Note: Write locks protect memory and traps are not in­
hibited during the execution of LAS. 

LS LOAD SELECTIVE 
(Word index alignment) 

Register Ru 1 contains a 32-bit mask. If R is an even value, 
LOAD SELECTIVE loads the effective word into register R 
in those bit positions selected by a 1 in corresponding bit 
positions of register Ru 1. The contents of register R are not 
affected in those bit positions selected by a 0 in corre­
sponding bit positions of register Rul. 

If R is an odd value, LS logically ANDs the contents of 
register R with the effective word and loads the result into 
register R. If corresponding bit positions of register Rand 
the effective word both contain lis, a 1 remains in reg­
ister R; otherwise, a 0 is placed in the corresponding bit 
position of register R. 

Affected: (R), CC3, CC4 

If R is even, [EWn(Rul)] u [(R)n(Rul)]-R 

If R is odd, EWn(R) - R 

Condition code settings: 

2 3 4 Result in R 

- 0 0 Zero. 

- 0 Bit 0 of register R is a 1. 

OBit 0 of register Ris a 0 andbitpositions 1-31 
of register R contain at least one 1. 

Example 1, even R field value: 

Before execution After execution 

r' ~, - X'01234567 1 X'012345671 
C vv 

(Ru 1) XI FFOOFFOO ' XI FFOOFFOO ' 

(R) xxxxxxxx X'Ol xx45xx ' 

CC xxxx xx 10 

54 Load/Store Instructions 

Example 2, odd R field value: 

Before execution After execution 

EW X'89ABCDEF' X'89ABCDEF' 

(R) XI FOFOFOFO ' X' 80AOCOEO' 

CC xxxx xxOl 

LM LOAD MULTIPLE 
(Word index alignment) 

LOAD MULTIPLE loads a sequential set of words into a se­
quenti a I set of registers, the set of words to be loaded begins 
with the word pointed to by the effective address of LM, 
and the set of registers begins with register R. The set of 
registers is treated modulo 16 (i. e., the next register loaded 
after register 15 is register 0 in the current register block). 

The number of words to be loaded into the general registers 
is determined by the setting of the condition code immedi­
ate�y before the execution of LM. (The desired value of the 
condition code can be set with LCF or LCFI.) An initia I 
value of 0000 for the condition code causes 16 consecutive 
words to be loaded into the register block. 

Affected: (R) to (R-tCC-l) 

(EWL - R; (EWL + 1) - R+ 1), ... , (EWL -tCC-l) - R-tCC-l 

The LM instruction may cause a trap if its operation ex­
tends into a page of memory that is protected by the access 
protection codes. A trap may also occur if the operation 
extends into a nonexistent memory region. 

If the effective virtual address of the LM instruction is in 
the range 0 through 15, then the words to be loaded are 
taken from the general registers rather than from main mem­
nrv Tn thi~ r:n~p thp rp~lIlt~ will hp IInnrpriir:tnhlp if nn\l nf _./. _ ...... - ----- ... - ._-_ .. - ..... -- _ ...... _-.-._-._ .. _ ... ,_. 
the source registers are also used as destination registers. 

LCFI LOAD CONDITIONS AND FLOATING 
CONTROL IMMEDIATE 
(Immedi ate operand) 

If bit position 10 of the instruction word contains a 1, LOAD 
CONDITIONS AND FLOATING CONTROL IMMEDIATE 
loads the contents of bit positions 24 through 27 of the in­
struction word into the condition code; however, if bit 10 
is 0, the condition code is not affected. 

If bit position 11 of the instruction word contains a 1, 
LCFI loads the contents of bit positions 28 through 31 of 
the instruction word into the floating round (FR), floating 



significance (FS), floating zero (FZ), and floating normalize 
(FN) mode control bits, respectively (in the program status 
words); however, if bit 11 is 0, the FR, FS, FZ, and FN 
control bits are not affected. The functions of the floating­
point control bits are described in the section "Floating­
Point Arithmetic Instructions". 

Affected: CC, FR, FS, FZ, FN 

If (1)10 = 1, (1)24-27 -CC 

If (1)10 = 0, CC is not affected. 

Trap: Nonexistent in­
struction, if bit 0 
is a 1. 

If (1)11 = I, (1)28-31 -FR, FR, FS, FZ, FN 

If (1)11 = 0, FR, FS, FZ, and FN not affected. 

Condition code settings, if (1)10 = 1: 

2 3 4 
(1)27 

If LCFI is indirectly addressed, it is treated as a nonexistent 
instruction, in whi ch case the computer unconditiona IIy 
aborts execution of the instruction (at the time of operation 
code decoding) and traps to location X'40 ' with the condi­
tion code unchanged. 

LCF LOAD CONDITIONS AND FLOATING 
CONTROL 
(Byte index aiignment) 

If bit position 10 of the instruction word contains a 1, 
LOAD CONDITIONS AND FLOATING CONTROL loads 
bits 0 through 3 of the effective byte into the condition 
code; however, if bit 10 is 0, the condition code is not 
affected. 

If bit position 11 of the instruction word contains aI, LCF 
loads bits 4 through 7 of the effective byte into the floating 
round (FR), floating significance (FS), floating zero (FZ), 
and floating normalize (FN) mode control bits, respectively; 
however, if bit 11 is 0, the FR, FS, FZ, and FN control 
bits are not affected. The functions of the floating-point 
mode control bits are described in the section "Floating­
Point Arithmetic Instructions". 

Affected: CC , FR, FS , FZ, FN 

If (1)10 = 1, EB
O

_3 -CC 

If (I) 10 = 0, CC not affected 

If (I) 11 = 1, EB 4-7 - FR, FS, FZ, FN 

If (1)11 = 0, FR, FS, FZ, FN not affected 

Condition code settings, if (1)10 = 1: 

2 3 4 
(EB)l 

LVAW LOAD VIRTUAL ADDRESS WORD 
(Word index alignment) 

H 34 I R I X I: Reference;address I 
o 1 2 3 14 5 6 7 6 9 10 11 12 13 14 15 16 17 16 19120 21 22 23 24 25 26 27128 29 30 31 

LOAD VIRTUAL ADDRESS WORD loads bit positions 15-31 
of register R with the effective virtual word address of the 
instruction whi Ie bit positions 0-14 of register R are cleared 
to zero. 

Affected: (R) 

EVA -R15- 31 , O-R
O

_
14 

Note: Condition code is not affected by LVAW. 

xw EXCHANGE WORD 
(Word index alignment) 

EXCHANGE WORD exchanges the contents of register R 

Affected: (R), (EWL), CC3, CC4 

(R)-(EWL) 

Condition code settings: 

2 3 4 Result in R 

0 0 Zero 

- - 0 Negative 

0 Positive 

STB STORE BYTE 
(Byte index alignment) 

H 75 I R I X I: Referenc~ address I 
o 1 2 314 5 6 78 9 1011 12 13 14 15 16 17 18 19120 21222324252627128293031 

STORE BYTE stores the contents of bit positions 24-31 of 
register R into the effective byte location. 

Affected: (EBL) 

(R)24-31 -EBL 

Load/Store Instructions 55 



STH STORE HALFWORD 
(Halfword index alignment) 

STORE HALFWORD stores the contents of bit positions 16-31 
of register R into the effective halfword location. If the 
information in register R exceeds halfword data limits, CC2 
is set to 1; otherwise, CC2 is reset to O. 

Affected: (EHL), CC2 

(R)16-31- EHL 

Condition code settings: 

2 3 4 Information in R 

- 0 (R)0-16 = all O's or all lis. 

(R)0-16 I all O'S or all l'.s. 

STW STORE WORD 
(Word index alignment) 

STORE WORD stores the contents of register R into the ef­
fective word location. 

Affected: (EWL) 

(R) -EWL 

STD STORE DOUBLEWORD 
(Doubleword index alignment) 

STORE DOUBLEWORD stores the contents of register R into 
the 32 high-order bit positions of the effective doubleword 
locati on and then stores the contents of regi ster Ru 1 into 
the 32 low-order bit positions of the effective doubleword 
location. 

Affected: (E D L) 

(R) - EDL
O

_
31

; (RuH - EDL
32

_
63 

Example 1, even R field value: 

Before execution After execution 

(R) X101234567' X101234567' 

(Rul) = X'89ABCDEF' X'89ABCDEF ' 

(ED L):::= xxxxxxxxxxxxxxxx X'Q 1 23456789ABCDEF' 

56 Load/Store Instructions 

Example 2, odd R field value: 

Before execution 

(R) X I 89ABCDEF' 

(E D L) = xxxxxxxxxxxxxxxx 

STS STORE SE LECTNE 
(Word index alignment) 

After execution 

X'89ABCDEF' 

X I 89ABCDEF89ABCDEF' 

Register Rul contains a 32-bit mask. If R is an even value, 
STORE SELECTIVE stores the contents of register R into the 
effective word location in those bit positions selected by 
a 1 in corresponding bit positions of register Rul; the effec­
tive word remains unchanged in those bit positions selected 
by a 0 in corresponding bit positions of register Rul. 

If R is an odd value, STS logically inclusive ORs the con­
tents of register R with the effective word and stores the 
result into the effective word location. The contents of 
register R are not affected. 

Affected: (EWL) 

If R is even, [(R)n(Rul)] u [EWn(Rul)] - EWL 

If R is odd, (R) u EW - EWL 

Example 1, even R field value: 

Before execution 

(R) X'12345678' 

(Ru 1) = X' FOFOFOFO ' 

EW 

(R) 

EW 

STM 

xxxxxxxx 

Before execution 

X'OOFFOOFF' 

X'12345678' 

STORE MULTIPLE 
(Word index alignment) 

After execution 

X'12345678 ' 

X' FOFOFOFO' 

X'lx3x5x7x' 

After execution 

X'OOFFOOFF' 

C' 12FF56FF I 

/*/ 2B I R I X I I Reference address I 
10

1
] 23145 718 9 ]0 11112 13 14'151]6 17 18 19120 21 22 23!24 25 26 27128 29 30 31' 

STORE MULTIPLE stores the contents of a sequential set of 
registers into a sequential set of word locations. The set of 
locations begins with the 10catiol1 pointed to by the effective 
word address of STM, and the set of registers begins with reg­
i ster R. The set of regi sters is treated modu fo 16 (i. e., the 



next sequential register after register 15 is register 0). The 
number of registers to be stored is determined by the value 
of the condition code immedi ate Iy before execution of STM. 
(The condition code can be set to the desired value before 
execution of STM with LCF or LCFI.) An initial value 
of 0000 for the condition code causes 16 general registers 
to be stored. 

Affected: (EWL) to (EWL +CC-1) 

(R)-EWL, (R+1)-EWL+1, ... , (R+CC-1)-EWL+CC-1 

The STM instruction may cause a trap if its operation ex­
tends into a page of memory that is protected by the access 
protection codes or the write locks. A trap may also occur 
if the operation extends into a nonexistent memory region. 

If the effective virtual address of the STM instruction is in 
the range 0 through 15, then the registers indicated by the 
R field of the STM instruction are stored in the general reg­
isters rather than main memory. In this case, the results 
will be unpredictable if any of the source registers are also 
used as destination registers. 

STCF STORE CONDITIONS AND FLOATING 
CONTROL 
(Byte index alignment) 

STORE CONDITIONS AND FLOATING CONTROL stores 
the current condition code and the current value of the 
floating round (FR), floating significance (FS), floating 
zero (FZ), and floating normalize (FN) mode control bits 
of the program status words into the effective byte location 
as fo lIows: 

Affected: (EBL) 

(PSWs)0_7 -EBL 

ANAL YZEjlNTERPRET INSTRUCTIONS 

ANLZ ANALYZE 
(Word index alignment) 

ANALYZE evaluates the effective word as an instruction. 
The ANALYZE instruction always sets the condition codes 
to indicate the addressing type of the analyzed instruction 
(see condition code settings and Table 6). Except when 

Table 6. ANALYZE Table for Operation Codes 

X'n' X'OO'+n X'20'+n X'40'+n X'60'+n 

00 - AI TTBS CBS 

01 - CI TBS tt MBS 
02 LCFI ®tt LI -CD -
03 - MI - EBS 

04 CAll SF ANLZ BDR 

05 CAL2 S CS BIR 
06 CAL3 LAS XW AWM 
07 CAL4 - STS EXU 

08 PLW CYS EOR BCR 
09 PSW CYA tt OR BCS 
OA PLM LM@ LS BAL 
OB PSM STM AND INT 

OC PLS
t LRAt SlOt RDt 

OD psst LMst TIot WDt 

OE LPSDt@tt WAITt TDyt AIOt 

OF XPSDt LRPt HIOt MMC
t 

10 AD SW AH LCF 

11 CD CW CH CB 
12 LD LW LH LB 
13 MSP MTW MTH MTB 

14 - LYAW - STCF 
15 STD STW STH STB 
16 - DW nl-l(A)tt PArI( (ffitt - .. ~ . - -- .. '-.::/ 

17 - MW MH UNPK 

18 SD SW SH DS 
19 CLM CLR - DA 
1A LCD LCW LCH DD 
1B LAD LAW LAH DM 

1C FSL FSS - DSA 
1D FAL FAS - DC 
1E FDL FDS - DL 
1F FML FMS - DST 

tPrivileged instructions. 

tt Decimal value of condition code settings when an-
alyzed instruction calls for direct addressing. If an-
alyzed instruction calls for indirect addressing, add 2 
to the value shown. 

the analyzed instruction is an immediate operand in­
struction, an effective virtual address for the analyzed 
instruction is also calculated and loaded into register R. 

Analyze/Interpret Instructions 57 



The nonexistent instruction, the privi leged instruction 
violation, and the unimplemented instruction trap conditions 
can never occur during execution of the AN LZ instruction. 
However, either the nonexistent memory address condition 
or the memory protection violation trap condition (or both) 
can occur as a result of any memory access initiated by the 
ANLZ instruction. If either of these trap conditions occurs, 
the instruction address stored by an XPSD in trap location 
X'40 ' is always the virtual address of the AN LZ instruction. 

The detai led operation of ANALYZE is as follows: 

1. The contents of the location pointed to by the effective 
virtual address of the AN LZ instruction is obtained. 
This effective word is the instruction to be analyzed. 
From a memory-protection viewpoint, the instruction 
(to be analyzed) is treated as an operand of the ANLZ 
instruction; that is, the analyzed instruction may be 
obtained from any memory area to which the program 
has read access. 

2. If the operation code portion of the effective word 
specifies an immediate-addressing instruction type, the 
condition code is set to indicate the addressing type, 
and instruction execution proceeds to the next in­
struction in sequence after AN LZ. The original con­
tents of register R are not changed when the analyzed 
instruction is of the immediate-addressing type. 

If the operation code portion of the effective word 
specifies a reference-addressing instruction type, the 
condition code is set to indicate the addressing type 
of the analyzed instruction and the effective address 
of the analyzed instruction is computed (using all of 
the normal address computation rules). If bit 0 of the 
effective word is a 1, the contents of the memory lo­
cation specified by bits 15-31 of the effective word 
are obtained and then used as a direct address. The 
nonallowed operation trap (memory protection viola­
tion or nonexistent memory address) can occur as a 
result of the memory access. Indexing is always per­
formed (with an index register in the current register 
block) if bits 12-14 of the analyzed instruction are 
nonzero. During rcc! extended cddrcs5ing, the effec-
tive virtual address of the analyzed "instruction is 
aligned as an integer displacement value and loaded 
into register R, according to the instruction addressing 
type, as follows: 

Byte Addressing: MA=O 

Byte Addressing: MA=l, MM=O 

Halfword Addressing: MA=O 

58 Ana Iyze/lnterpret Instru ctions 

Halfword Addressing: MA=l, MM=O 

Word Addressing: MA=O 

Word Addressing: MA=l, MM=O 

Doubleword Addressing: MA=O 

Doubleword Addressing: MA=l, MM=O 

When the ANALYZE instruction is executed in the master­
protected mode and a trap condition occurs, it traps only 
on an indirect ANALYZE. Otherwise, instead of trapping 
it completes its execution by storing in register R the ad­
dress that would have caused the instruction to trap. Since 
the mode is master-protected, the access protection codes 
wi II apply to the interpretation of addresses. If a slave 
mode program is trapped because an instruction has refer­
enced protected memory, the ANALYZE instruction in the 
master-protected mode can determine which address actually 
caused the trap. 

To aid the interpreting program, when operating in the 
master-protected mode, theANLZinstruction uses bits 1, 2, 
and 3 of register R to indicate which memory access initiated 
by the ANLZ would have trapped. The meaning of the pos­
sible codes in register R(l-3) is as follows: 

R1 R2 R3 Meaning 

o 0 0 Successful generation of the effective virtual 
address of the analyzed instruction. The CCs 
are set to the addressing type of the analyzed 
instruction and R(lO-3l) contain the effective 
virtual address of the analyzed instruction 
aligned as an integer displacement value ac­
cording to the instruction addressing type. 

o 0 The indirect reference of the analyzed instruc-
•• , • I , I I _ . -1- .. • ........ _ Tlon woula nave rrappea oe\,;uu:>e II WU!) elillel 
nonexistent, memory protected, or had a 
parity error. The CCs are set to the address­
ing type of the analyzed instruction and 
R(lO-3l) contain the virtual address of the in­
direct reference of the analyzed instruction 
aligned as a word displacement. 



R 1 R2 R3 Meaning 

o The effective virtual address of the AN LZ 
instruction would have trapped because it was 
either nonexistent, memory protected, or had 
a parity error. The CCs are indeterminate 
since the instruction to be analyzed may not 
have been fetched {nonexistent memory}. 
R(l0-31) contain the effective virtual address 
of the AN LZ instruction aligned as a word 
displacement. 

If no trap condition occurs, ANLZ will execute normally 
and return the effective address of the instruction analyzed. 

Table 6 shows the instruction set as a 4 by 32 matrix {ar­
ranged as a function of the operation code}. This table also 
shows how the instruction set is divided into six groups as 
a function of the addressing type {delineated by heavy 
lines}. For example, if the operation code of the analyzed 
instruction is either X'02 1

, X'20 ' , X'21 1
, X'22 1

, or X'23 1
, 

then CCl is set to 1, CC2 is set to 0, CC3 is set to 0 {when 
analyzed instruction specifies direct addressing}, and CC4 
is set to 1. The decimal equivalent of the condition code 
setting for this group of immediate, word addressing type of 
instructions is shown as a 9 within a circle. The decimal 
equivalents of the condition code settings for the other 
five groups are shown in the same manner. If the analyzed 
instruction calls for indirect addressing, CC3 is always set 
to a 1 and the decimal value of the condition code setting 
shown in Table 6 should be increased by 2. 

Affected: {R}, CC 

r ___ -1·.L~_. ____ 1 ___ .1..1.- __ _ 

,",VIIUIIIUIi .... vuc :>ClllIll:;I:>; 

2 3 4 Instruction addressing type 

0 0 - 0 Byte 

0 0 Immediate, byte 

0 - 0 Halfword 

0 - 0 Word 

0 Immediate, word 

- 0 Doubleword 

- 0 - Direct addressing {EWO = O} 

- Indi rect addressi ng {EWO = 1} 

INT INTERPRET 
(Word index alignment) 

INTERPRET loads bits 0-3 of the effective word into the 
condi ti on code, loads bits 16-31 of the effecti ve word into 
bit positions 16-31 of register Ru1 {and loads OIS into bit 
positions 0-15 of register Rul, loads bits 4-15 of the 

effective word into bit positions 20-31 of register R (and 
clears the remaining bits of register R). If R is an odd value, 
INT loads bits 0-3 of the effective word into the condition 
code, loads bits 16-31 of the effective word into bit posi­
tions 16-31 of register R, and loads OIS into bit posi­
tions 0-15 of register R (bits 4-15 of the effective word are 
ignored in this case). 

Affected: {R}, (Rul), CC 

EW
O

_
3
-CC 

EW
4

_
15 

_R
20

_
31
;0- R

O
-

19 

EW 16-31- Rul 16_31 ;0 _Rul 0_15 

Condition code settings: 

2 3 4 
{EW)l 

Example 1, even R field value: 

Before execution After execution 

EW XI 12345678 1 XI 12345678 1 

(R) xxxxxxxx XI 00000234 1 

(Ru 1) = xxxxxxxx X I 000056 78 1 

CC xxx x 0001 

FIXED-POINT ARITHMETIC INSTRUCTIONS 

The fixed-point arithmetic instructions are: 

Instruction Name Mnemonic 

Add Immedi ate AI 

Add Ha If word AH 

Add Word AW 

Add Doubleword AD 

Subtract Halfword SH 

Subtract Word SW 

Subtract Doubleword SD 

Multiply Immediate MI 

Multiply Halfword MH 

Multiply Word MW 

Di vi de Ha If word DH 

Fixed-Point Arithmetic Instructions 59 



Instruction Name Mnemonic 

Divide Word DW 

Add Word to Memory AWM 

Modify and Test Byte MTB 

Modify and Test Halfword MTH 

Modify and Test Word MTW 

The fixed-point arithmetic instruction set performs binary 
addition, subtraction, multiplication, and division with 
integer operands that may be data, addresses, index values, 
or counts. One operand may be either in the instruction 
word itself or may be in one or two of the current general 
registers; the second operand may be either in main memory 
or in one or two of the current general registers. For most 
of these instructions, both operands may be in the same 
general register, thus permitting the doubling, squaring, 
or clearing the contents of a register by using a reference 
address value equal to the R field value. 

All fixed-point arithmetic instructions provide a condition 
code setting that indicates the following information about 
the result of the operation called for by the instruction: 

Condition code settings: 

o 

2 3 4 Result 

o 

o 0 Zero - the result in the specified general 
register(s) is all zeros. 

o Negative - the instruction has produced a 
fixed-point negative result. 

o Positive - the instruction has produced a 
fixed-point positive result. 

Fixed-point overflow has not occurred during 
execution of an add, subtract, or divide in­
struction, and the result is correct. 

Fixed-point overflow has occurred during 
execution of an add, subtract, or divide in­
struction. For addition and subtraction, the 
incorrect result is loaded into the designated 
register(s). For a divide instruction, the 
designated register(s), and CC1, CC3, and 
CC4 are not affected. 

No carry - for an add or subtract instruction, 
there \,ves no carrl of a l-bit cut of the h:gh-
order (sign) bit position of the result. 

- Carry - for an add or subtract instruction, 
there was a l-bit carry out of the sign bit 
position of the result. (Subtracting zero wi II 
a Iways produce carry. ) 

60 Fixed-Point Arithmetic Instructions 

AI ADD IMMEDIATE 
(Immediate operand) 

The va I ue fi e Id (bi t posi ti ons 12-31 of the i nstructi on word) 
is treated as a 20-bit, two's complement integer. ADD 
IMMEDIATE extends the sign of the value field (bit posi­
tion 12 of the instruction w~rd) 12 bit positions to the left, 
adds the resulting 32-bit value to the contents of register R, 
and loads the sum into register R. 

Affected: (R), CC 

(R) + (I)12-31SE - R 

Condition code settings: 

2 3 4 Result in R 

- 0 0 Zero 

- 0 Negative 

o Positive 

Trap: Fixed-point overflow, 
or nonexi stent i nstruc­
tion if bit 0 is a 1. 

- 0 No fixed-point overflow 

Fixed-point overflow 

o No carry from bit position 0 

- Carry from bit position 0 

If AI is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the BP unconditionally aborts 
execution of the instruction (at the time of operation code 
decoding) and traps to location X'40' with the contents of 
register R and the condition code unchanged. 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43' after loading 
the sum into register R; otherwise, the BP executes the 
next instruction in sequence. 

AH 

o 1 2 

ADD HALFWORD 
(Halfword index alignment) 

ADD HALFWORD extends the sign of the effective halfword 
16 bit positions to the left (to form a 32-bit word in which 
bit positions 0-15 contain the sign of the effective ha!f­
word), adds the 32-bit result to the contents of register R, 
and loads the sum into register R. 

Affected: (R), CC Trap: Fixed-point overflow 

(R)+EHSE-R 



Condition code settings: 

2 3 4 Result in R 

- 0 0 Zero 

- 0 Negative 

0 Positive 

- 0 - No fixed-point overflow 

- - Fixed-point overflow 

o - No carry from bit position 0 

- - - Carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
is 1, the BP traps to location X'43 1 after loading the 
sum into register R; otherwise, the BP executes the next 
instruction in sequence. 

AW ADD WORD 
0Nord index alignment) 

30 
o 1 2 

ADD WORD adds the effective word to the contents of reg­
ister R and loads the sum into reqister R. 

Affected: (R), CC Trap: Fixed-point overflow 

(R) + EW-R 

Condition code settings: 

2 3 4 Result in R 

- - 0 0 Zero 

- 0 Negative 

o Positive 

- 0 - - No fixed-point overflow 

- Fixed-point overflow 

o No carry from bit position 0 

Carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43 1 after loading 
the sum into register R; otherwise, the BP executes the 
next instruction in sequence. 

AD ADD DOUBLEWORD 
(Doubleword index alignment) 

ADD DOUBLEWORD adds the effective doubleword to the 
contents of registers Rand Ru 1 (treated as a single, 64-bit 
register); loads the 32 low-order bits of the sum into reg­
ister Rul and then loads the 32 high-order bits of the sum 
into register R. R must be an even value; if R is an 
odd value, the BP traps with the contents in register R 
unchanged. 

Affected: (R), (Rul), CC 

(R, Ru 1) + ED - R, Ru 1 

Condi tion code settings: 

2 3 4 Result in R, Ru1 

- 0 0 Zero 

o Negative 

o Positive 

Trap: Fixed-point overflow, 
instruction exception 

- 0 - No fixed-point overflow 

- Fixed-point overflow 

o - - - No carry from bit position 0 

- - - Carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43 1 after loading 
the sum into registers Rand Ru1; otherwise, the BP exe­
cutes the next instruction in sequence. 

The R field of the AD instruction must be an even value for 
proper operation of the instruction; if the R field of AD is 
an odd value, the instruction traps to location X'4D ' , 
instruction exception trap. 

Example 1, even R field value: 

Before execution After execution 

ED X'33333333EEEEEEEE' X'33333333EEEEEEEE ' 

(R) X' 11111111 1 X' 444444451 

(Ru 1) X 133333333 I X 1222222211 

CC xxxx 0010 

Fixed-Point Arithmetic Instructions 61 



SH SUBTRACT HALFWORD 
(Halfword index alignment) 

SUBTRACT HALFWORD extends the sign of the effective 
halfword 16 bit positions to the left (to form a 32-bit word 
in which bit positions 0-15 contain the sign of the effec­
tive halfword), forms the two's complement of the resulting 
word, adds the complemented word to the contents of reg­
ister R, and loads the sum into register R. 

Affected: (R), CC 

-EH + (R)-R 
SE 

Condition code settings: 

2 3 4 Resu It in R 

- 0 0 Zero 

- 0 Negative 

o Positive 

Trap: Fixed-point overflow 

- 0 No fixed-point overflow 

- - Fixed-point overflow 

o - No carry from bit position 0 

- - - Carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43' after loading 
the sum into register R; otherwise, the BP executes the 
next instruction in sequence. 

SW SUBTRACT WORD 
0/'Iord index alignment) 

SUBTRACT WORD forms the two's complement of the effec­
tive word, adds that complement to the contents of regis­
ter R, and loads the sum into register R. 

Affected: (R), CC Trap: Fixed-point overflow 

-EW + (R)-R 

Ccnd:ticr: cede sett:ng~: 

2 3 4 Resu I tin R 

- 0 0 Zero 

- 0 Negative 

62 Fixed-Point Arithmetic Instructions 

2 3 4 Result in R 

o Positive 

- 0 No fixed-point overflow 

- Fixed-point overflow 

o - No carry from bit position 0 

- Carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X143' after loading 
the sum into register R; otherwise, the BP executes the 
next instruction in sequence. 

so SUBTRACT DOUBLEWORD 
(Doubleword index alignment) 

SUBTRACT DOUBLEWORD forms the 64-bit two's comple­
ment of the effective doubleword, adds the complemented 
doubleword to the contents of registers Rand Rul (treated 
as a single, 64-bit register), loads the 32 low-order bits of 
the sum into register Rul and loads the 32 high-order bits 
of the sum into register R. 

Affected: (R), (Rul), CC 

-E D + (R, Ru 1) - R, Ru 1 

Condition code settings: 

2 3 4 Result in R, Rul 

- - 0 0 Zero 

- - 0 Negative 

o Positive 

Trap: Fixed-point overflow, 
instruction exception 

- 0 - - No fixed-point overflow 

Fixed-point overflow 

o - - No carry from bit position 0 

- Carry from bit position 0 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43' after the re­
sult is loaded into registers Rand Rul; otherwise, the BP 

The R fie Id of the SD instruction must be an even va lue for 
proper operation of the instruction; if the R fie Id of SD is 
an odd value, the instruction traps to location X'4D', 
instruction exception trap; the contents in register R remain 
unchanged. 



MI MULTIPLY IMMEDIATE 
(Immediate operand) 

The value field (bit positions 12-31 of the instruction word) 
is treated as a 20-bit, twols complement integer. MULTIPLY 
IMMEDIATE extends the sign of the value field (bit posi­
tion 12) of the instruction word 12 bit positions to the left 
and multiplies the resulting 32-bit value by the contents 
of register Ru1, then loads the 32 high-order bits of the 
product into register R, and then loads the 32 low-order 
bits of the product into regi ster Ru 1. 

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a 
64-bit product, the R field of the instruction must be even 
and the multiplicand must be in register R+1. The condi­
tion code settings are based on the 64-bit product formed 
during instruction execution, rather than on the final con­
tents of register R. Overflow cannot occur. 

Affected: (R), (Rul), CC2, 
CC3,CC4 

(Rul) x (I)12-31SE -R,Ru1 

Condition code settings: 

2 3 4 64-bi t product 

- - 0 0 Zero. 

" ~ 1 _ ___ .L-. __ 

- V I"'C~UIIVC. 

o Positive 

Trap: Nonexistent instruc­
tion if bit 0 is a 1. 

o Result is correct, as represented in regis­
ter Ru1. 

Result is not correctly representable in reg­
ister Ru1 alone. 

If MI is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the BP unconditionally aborts 
execution of the instruction (at the time of operation code 
decoding) and traps to location X'40 ' with the contents 
of register R, register Ru1, and the condition code un­
changed; otherwise, the BP executes the next instruction 
in sequence. 

Example 1, even R field value: 

Before execution After execution 

(1)12-31 X '70000 I XI 700001 

(R) xxxxxxxx X I 00007000 I 

(Ru1 ) XI 100010001 X 170000000 I 

CC xxxx x110 

Example 2, odd R field value: 

Before execution After execution 

(I) 12-31 X'01234 1 X'012341 

(R) X'000300021 XI 369C2468 I 

CC xxxx xOlO 

MH MULTIPLY HALFWORD 
(Halfword index alignment) 

H 57 I R I X I: Reference: address I 
o 1 2 3 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31 

MULTIPLY HALFWORD multiplies the contents of bit posi­
tions 16-31 of register R by the effective halfword (with 
both halfwords treated as signed, twols complement inte­
gers) and stores the product in register Ru 1 (overflow cannot 
occur). If R is an even value, the original multiplier 
in register R is preserved, allowing repetitive halfword 
multiplication with a constant multiplier; however, if R is 
an odd value, the product is loaded into the same register. 
Overflow cannot occur. 

Affected: (Rul), CC3, CC4 

(R)16-31 x EH -Ru1 

Condition code settings: 

2 3 4 Result in Ru 1 

- 0 0 Zero 

- 0 Negative 

0 Positive 

Example 1, even R field value: 

Before execution 

EH X'FFFF' 

(R) XI xxxxOOOA I 

(Rul) xxxxxxxx 

CC xxxx 

Example 2, odd R field value: 

Before execution 

EH X'FFFF ' 

(R) XI xxxxOOOA I 

CC xxxx 

After execution 

X'FFFF' 

XI xxxxOOOA I 

X' FFFFFFF61 

xx01 

After execution 

X'FFFF' 

X' FFFFFFF6 1 

xx01 

Fixed-Point Arithmetic Instructions 63 



MW MULTIPLY WORD 
0Nord index alignment) 

MULTIPLY WORD multiplies the contents of register Rul 
by the effective word, loads the 32 high-order bits of 
the product into register R and then loads the 32 low­
order bits of the product into register Rul (overflow cannot 
occur). 

If R is odd value, the result in register R is the 32 low­
order bi ts of the product. Thus, in order to generate a 
64-bit product, the R field of the instruction must be even 
and the multiplicand must be in register R+l. The condi­
tion code settings are based on the 64-bit product formed 
during instruction execution, rather than on the final con­
tents of register R. 

Affected: (R), (Ru 1), CC 

(Ru 1) x EW - R, Ru 1 

Condi ti on code setti ngs: 

2 3 4 64-bi t product 

- - 0 0 Zero. 

o Negative. 

o Positive. 

- 0 Result is correct, as represented in regis­
ter Rul. 

OH 

o 0 Result is not correctly representable in reg­
ister Rul alone. 

D NIDE HALFWORD 
(Halfword index alignment) 

DNIDE HALFWORD divides the contents of register R 
(treated as a 32-bit fixed-point integer) by the effective 
halfword and loads the quotient into register R. If the 
absolute value of the quotient cannot be correctly repre­
sented iii 32 bits, fixed--point oveiflov; OCCUiSi iii ·which 
case CC2 is set to 1 and the contents of register R, and 
CC1, CC3, and CC4 are unchanged. 

Affected: (R), CC2, CC3, CC4 Trap: Fixed-pointoverflow 

Condition code settings: 

2 3 4 Result in R 

- 0 0 a Zero quotient, no overflow. 

- a a Negative quotient, no overflow. 

- 0 o Positive quotient, no overflow. 

- Fixed-point overflow. 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43' with the con­
tents of register R, CC1, CC3, and CC4 unchanged. 

OW DIVIDE WORD 
(Word index alignment) 

DIVIDE WORD divides the contents of registers Rand Ru 1 
(treated as a 64-bit fixed-point integer) by the effective 
word, loads the integer remainder into register R and then 
loads the integer quotient into register Rul. If a nonzero 
remainder occurs, the remainder has the same sign as the 
dividend (original contents of register R). If R is an odd 
value, DW forms a 64-bit register operand by extending 
the sign of the contents of register R 32 bit positions to the 
left, then divides the 64-bit register operand by the effec­
tive word, and loads the quotient into register R. In this 
case, the remainder is lost and only the contents of reg­
ister R are affected. 

If the absolute value of the quotient cannot be correctly 
represented in 32 bits, fixed-point overflow occurs; in 
which case CC2 is set to 1 and the contents of register R, 
register Rul, CC1, CC3, and CC4 remain unchanged; 
otherwise, CC2 is reset to 0, CC3 and CC4 reflect the 
quotient in register Rul, and CCl is unchanged. 

Affected: (R), (Rul), CC2 
CC3, CC4 

Trap: Fixed-point overflow 

(R, Rul) -;- EW- R (remainder), Rul (quotient) 

Condition code settings: 

2 3 4 Resu I tin Ru 1 

- 0 0 a Zero quoti ent, no overflow. 

- a a Negative quotient, no overflow. 

- a a Positive quotient, no overflow. 

Fixed-point overflow. 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(R) -;- EH- R (AM) is a 1, the BP traps to location X'43' with the 

64 Fixed-Point Arithmetic Instructions 



original contents of register R, register Rul, CC1, CC3, 
and CC4 unchangedj otherwise, the BP executes the next 
instruction in sequence. 

AWM ADD WORD TO MEMORyt 

0/Vord index alignment) 

ADD WORD TO MEMORY adds the contents of register R 
to the effective word and stores the sum in the effective 
word location. The sum is stored regardless of whether or 
not overflow occurs. 

Affected: (EWL), CC Trap: Fixed-pointoverflow 

EW + (R) -EWL 

Condition code settings: 

2 3 4 Result in EWL 

- 0 0 Zero 

- 0 Negative 

o Positive 

- 0 No fixed-point overflow 

Fixed-point overflow 

o No cnrrv from hit nnc::itinn n 
I - -- - .- - - .. - -" -

Carry from bit position 0 

If CC2 is set to 1 and fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43 1 after the re­
sult is stored in the effective word locationj otherwise, the 
BP executes the next instruction in sequence. 

MTB MODIFY AND TEST BYTEt 

(Byte index alignment) 

If the value of the R field is nonzero, the high-order bit of 
the R field (bit position 8 of the instruction word) is ex­
tended 4 bit positions to the left, to form a byte with bit 
positions 0-4 of that byte equal to the high-order bit of 

tThis instruction requires two memory references to the same 
location for its execution. To preclude other processors 
from accessing the effective location during this time, the 
memory unit containing the effective location is reserved 
(not accessible to other processors) unti I the instruction is 
completed. 

the R field. This byte is added to the effective byte and 
then (if no memory protection violation occurs) the sum is 
stored in the effective byte location and the condition code 
is set according to the value of the resultant byte. This 
process allows modification of a byte by any number in the 
range -8 through +7, followed by a test. 

If the value of the R field is zero, the effective byte is 
tested for being a zero or nonzero value. The condition 
code is set according to the result of the test, but the 
effective byte is not affected. A memory write-protection 
violation cannot occur in this casej however, a memory 
read-protection violation can occur. 

Affected: CC if (1)8-11/0 
(EBL) and CC if (1)8-11 -10 

If (1)8-11 -10, EB + (1)8-11 SE - EBL and set CC 

If (1)8-11 = 0, test byte and set CC 

Condi ti on code setti ngs: 

2 3 4 Result in EBL 

- 0 0 0 Zero 

- 0 o Nonzero 

o No carry from byte 

- Carry from byte 

!f ~.ATB :!: ~~(!~:..;tcd ;~ (::i'i ;iitCii;';p~ vi !'iup :0CCitiv{t, the 
condition code is not affected and a 20-bit reference ad­
dress is used, as described under "Interrupt and Trap Entry 
Addressing", Chapter 2. 

Note: All "Modify and Test" instructions in interrupt loca­
tions other than Counter 4 use real, or real extended, 
addressing mode. Counter 4 uses virtual addressing 
mode. 

MTH MODIFY AND TEST HALFWORDt 

(Halfword index alignment) 

If the value of the R field is nonzero, the high-order bit 
of the R field (bit position 8 of the instruction word) is ex­
tended 12 bit positions to the left, to form a halfword with 
bit positions 0-11 of that halfword equal to the high-order 
bit of the R field. This halfword is added to the effective 
halfword and then (if no memory protection violation oc­
curs) the sum is stored in the effective halfword location 
and the condition code is set according to the value of the 
resultant halfword. The sum is stored regardless of whether 
or not overflow occurs. This process allows modification of 
a halfword by any number in the range -8 through +7, fol­
lowed by a test. 

Fixed-Point Arithmetic Instructions 65 



If the value of the R field is zero, the effective halfword 
is tested for being a zero, negative, or positive value. 
The condition code is set, according to the result of the 
test, but the effective halfword is not affected. A memory 
write-protection violation cannot occur in this case; how­
ever, a memory read-protection violation can occur. 

Affected: CC if (1)8-11 = 0; Trap: Fixed-pointoverflow 

(EH L) and CC if (1)8-11 10 
If (1)8-11 = 0, test halfword and set CC 

If (1)8-11/0, EH + (I)8-11SE -EHL and set CC 

Condition code settings: 

2 3 4 Result in EH L 

- 0 0 Zero 

- 0 Negative 

0 Positive 

- 0 No fixed-point overflow 

Fixed-point overflow 

o No carry from halfword 

- Carry from halfword 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(AM) is a 1, the BP traps to location X'43 1 after the re­
sult is stored in the effective halfword location; otherwise, 
the BP executes the next instruction in sequence. 

If MTH is executed in an interrupt or trap location, the 
condition code is not affected and a 20-bit reference ad­
dress is used, as described under "Interrupt and Trap Entry 
Addressing", Chapter 2. 

MTW MODIFY AND TEST WORDt 

(Word index alignment) 

If the value of the R field is nonzero, the high-order bit 
of the R field (bit position 8 of the instruction word) is 
extended 28 bit positions to the left, to form a word with 
bit positions 0-27 of that word equal to the high-order bit 

tThis instruction requires two memory references to the same 
location for its execution. To preclude other processors 
from accessing the effective location during this time, the 
memory unit containing the effective location is reserved 
(not accessi bl e to other processors) unti I the i nstructi on is 
completed. 

66 Compari son Instructi ons 

of the R field. This word is added to the effective word 
and then (if no memory protection violation occurs) the 
sum is stored in the effective word location and condition 
code is set according to the value of the resultant word. 
The sum is stored regardless of whether or not overflow 
occurs. This process allows modification of a word by 
any number in the range -8 through +7, followed by 
a test. 

If the value of the R field is zero, the effective word is 
tested for being a zero, negative, or positive value. The 
condition code is set according to the result of the test, 
but the effective word is not affected. A memory write­
protection violation cannot occur in this case; however, 
a memory read-protection violation can occur. 

Affected: CC if (1)8-11 = 0; Trap: Fixed-pointoverflow 

(EWL) and CC if (1)8-11 1 0 

If (1)8-11 = 0, test word and set CC 

If (1)8-11 10, EW + 18-11 SE - EWL and set CC 

Condition code settings: 

2 3 4 Result in EWL 

- 0 0 Zero 

- 0 Negative 

o Positive 

- 0 - - No fixed-point overflow 

- Fixed-point overflow 

o - - No carry from word 

- - - Carry from word 

If CC2 is set to 1 and the fixed-point arithmetic trap mask 
(f1to.A\ :c: n 1 +ho RP +rnnc: +1"'1 Il"'Irn+:l"'ln )(1A.11 nf+or +ho rQ-
\' .. ,,'/ 'v - II ••• - _ •.• -.-.- ' ___ "_" .... - _ .. _ •... _._ 

suit is stored in the effective word location; otherwise, the 
BP executes the next instruction in sequence. 

If MTW is executed in an interrupt or trap location, the 
condition code is not affected and a 20-bit reference ad­
dress is used, as described under "Interrupt and Trap Entry 
Addressing ll

, Chapter 2. 

COMPARISON INSTRUCTIONS 

The compuri:>on in:)ilu~iiulI:) ure: 

Instruction Name Mnemonic 

Compare Immedi ate CI 

Compare Byte CB 



Instruction Name Mnemonic 

Compare Halfword CH 

Compare Word CW 

Compare Doubleword CD 

Compare Selective CS 

Compare With Limits in Register CLR 

Compare With Limits in Memory CLM 

All comparison instructions produce a condition code 
setting which is indicative of the results of the com­
parison, without affecting the effective operand in mem­
ory and without affecting the contents of the designated 
register. 

CI COMPARE IMMEDIATE 
(Immediate operand) 

o 1 

COMPARE IMMEDIATE extends the sign of the value field 
(bi t posi tion 12) of the instruction word 12 bi t posi ti ons to 
the left, compares the 32-bit result with the contents of 
register R (with both operands treated as signed fixed-point 
quantities), and then sets the condition code according to 
rhe resuirs or rhe comparison. 

Affected: CC2, CC3, CC4 

(R) : (I)12-31SE 

Condition code settings: 

Trap: Nonexistent instruc­
tion if bit 0 is a 1. 

2 3 4 Result of Comparison 

- 0 0 Equal. 

- 0 Register value less than immediate value. 

o Register value greater than immediate value. 

- 0 No 1-bits compare, (R) n (1)12-32SE = O. 

One or more 1-bi ts compare, 

(R) n (I) 12-32S E I O. 

If CI is indirectly addressed, it is treated as a nonexistent 
instruction, in which case the basic processor uncondi­
tionally aborts execution of the instruction (at the time of 
operation code decoding) and then traps to location X'40' 
with the condition code unchanged. 

CB COMPARE BYTE 
(Byte index alignment) 

COMPARE BYTE compares the contents of bit positions 24-31 
of register R with the effective byte (with both bytes treated 
as positive integer magnitudes) and sets the condition code 
according to the results of the comparison. 

Affected: CC2, CC3, CC4 

(R)24-31 : EB 

Condition code settings: 

2 3 4 Resu I t of Compari son 

- 0 0 Equal. 

0 Register byte less than effective byte. 

0 Register byte greater than effective byte. 

- 0 No 1-bits compare, (R)24-31 n EB = O. 

CH 

One or more 1-bits compare, 

(R)24-31 n EB I O. 

COMPARE HALFWORD 
(Halfword index alignment) 

COMPARE HALFWORD extends the sign of the effective 
halfword 16 bit positions to the left, then compares the 
resultant 32-bit word with the contents of register R (with 
both words treated as signed, fixed-point quantities) and 
sets the condition code according to the results of the 
comparison. 

Affected: CC2, CC3, CC4 

(R) : EHSE 

Condition code settings: 

2 3 4 Result of Comparison 

- 0 0 Equal. 

- 0 Register word less than effective halfword 
with sign extended. 

o Register word greater than effective halfword 
with sign extended. 

Comparison Instructions 67 



2 3 4 Result of Comparison 

- 0 No I-bits compare, (R) n EHSE = O. 

CW 

One or more I-bits compare, 
(R) n EHSE -I O. 

COMPARE WORD 
(Word index alignment) 

COMPARE WORD compares the contents of register R with 
the effective word, with both words treated as signed fixed­
point quantities, and sets the condition code according to 
the results of the comparison. 

Affected: CC2, CC3, CC4 

(R) : EW 

Condition code settings: 

2 3 4 Result of Comparison 

- 0 0 Equal. 

- 0 Register word less than effective word. 

o Register word greater than effective word. 

- 0 No I-bits compare, (R) n EW = O. 

One or more I-bits compare, (R) n EW -10. 

CD COMPARE DOUBLEWORD 

COMPARE DOUBLEWORD compares the effective double­
word with the contents of registers Rand Rul (with both 
doublewords treated as signed, fixed-point quantities) 
and sets the condition code according to the results of the 
comparison. If the R field of CD is an odd value, CD forms 
a 64-bit register operand (by duplicating the contents of 
register R for both the 32 high-order bits and the 32 low­
order bits) and compares the effective doubleword with the 
64-bit register operand. The condition code settings are 
based on the 64-bit comparison. 

Affected: CC3, CC4 

(R, Run: ED 

68 Comparison Instructions 

Condition code settings: 

2 3 4 Result of Comparison 

- 0 0 Equal. 

- 0 Register doubleword less than effective 
doub I eword. 

o Register doubleword greater than effective 
doubleword. 

CS COMPARE SELECTIVE 

COMPARE SE LECTIVE compares the contents of register R 
with the effective word in only those bit positions selected 
by a I in corresponding bit positions of register Ru I (mask). 
The contents of register R and the effective word are ignored 
in those bit positions designated by a 0 in corresponding bit 
positions of register Rul. The selected contents of register R 
and the effective word are treated as positive integer mag­
nitudes, and the condition code is set according to the re­
sult of the comparison. If the R fieldof CS is an odd value; 
CS compares the contents of register R with the logical 
product (AND) of the effective word and the contents of 
register R. 

Affected: CC3, CC4 

If R is even: (R) n (Rul) : EW n (Rul) 

If R is odd: (R): EW n (R) 

Condi ti on code setti ngs: 

2 3 4 Resu I ts of Compari son under Mask in Ru 1 

- 0 0 Equal. 

- - 0 Register word less than effective word. 

o Register word greater than effective word. 
(if R is even). 

CLR COMPARE WITH LIMITS IN REGISTERS 
(Word index alignment) 

COMPARE WITH LIMITS IN REGISTERS simultaneously 
compares the effective word with the contents of register R 
and with the contents of register Rui (with aii three words 
treated as signed fixed-point quantities), and sets the con­
dition code according to the results of the comparisons. 

Affected: CC 

(R) : EW, (Rul) : EW 



Condition code settings: 

2 3 4 Result of Comparison 

- a a Contents of R equal to effective word. 

a Contents of R less than effective word. 

a Contents of R greater than effective word. 

a a - Contents of Ru 1 equa I to effecti ve word. 

a - Contents of Ru1 less than effective word. 

a - Contents of Ru 1 greater than effective word. 

elM COMPARE WITH LIMITS IN MEMORY 
(Doubleword index alignment) 

COMPARE WITH LIMITS IN MEMORY simultaneously com­
pares the contents of register R with the 32 high-order bits 
of the effective doubleword and with the 32 low-order bits 
of the effective doubleword, with all three words treated 
as 32-bit signed quantities, and sets the condition code 
according to the results of the comparisons. 

Affected: CC 

(R) : ED
O

_
31

; (R) : ED
32

_
63 

Condition code settings: 

2 3 4 Result of Comparison 

- - a a Contents of R equal to most significant word, 
(R) = ED

O
_
31

' 

- 0 Contents of R less than most significant word, 
(R) < ED

O
_
31

' 

a Contents of R greater than most significant 
word, (R) > ED

O
_
31

' 

a a - Contents of R equal to least significant word, 
(R) = ED

32
_
63

. 

a 

a 

- Contents of R less than least significant word, 
(R) < ED

32
_
63

. 

- Contents of R greater than least signifi cant 
word, (R) > ED

32
_
63

. 

LOGICAL INSTRUCTIONS 

All logical operations are performed bit by corresponding 
bit between two operands; one operand is in register Rand 

the other operand is the effective word. The result of the 
logical operation is loaded into register R. 

OR OR WORD 
0Nord index alignment) 

OR WORD logically ORs the effective word into register R. 
If corresponding bits of register R and the effective word 
are both 0, a a remains in register R; otherwise, a 1 is 
placed in the corresponding bit position of register R. The 
effective word is not affected. 

Affected: (R), CC3, CC4 

(R) u EW - R, where a u a = 0, a u 1 = 1, 1 u a = 1, 
1 u 1 = 1 

Condi ti on code setti ngs: 

2 3 4 Result in R 

- 0 0 Zero. 

o Bit 0 of register R is a 1. 

EOR 

o Bit 0 of register R is a a and bit positions 1-31 
of register R contain at least one 1. 

EXCLUSIVE OR WORD 
0Nord index alignment) 

EXCLUSIVE OR WORD logically exclusive ORs the effec­
tive word into register R. If corresponding bits of regis­
ter R and the effective word are different, a 1 is placed in 
the corresponding bit position of register R; if the contents 
of the corresponding bit positions are alike, a a is placed 
in the corresponding bit position of register R. The effec­
tive word is not affected. 

Affected: (R), CC3, CC4 

(R) @ EW-R 

Condition code settings: 

2 3 4 Resu I tin R 

- - 0 a Zero. 

- 0 Bit 0 of register R is a 1. 

o Bit a of register R is a a and bit positions 1-31 
of register R contain at least one 1. 

Logical Instructions 69 



AND AND WORD 
0Nord index alignment) 

AND WORD logically ANDs the effective word into reg­
ister R. If corresponding bits of register R and the effec­
tive word are both 1, a 1 remains in register R; otherwise, 
a 0 is placed in the corresponding bit position of register R. 
The effective word is not affected. 

Affected: (R), CC3, CC4 

(R) n EW-R 

Condition code settings: 

2 3 4 Result in R 

- 0 0 Zero. 

- 0 Bit 0 of register R is a 1. 

OBit 0 of register R is a 0 and bit positions 1-31 
of register R contain at least one 1. 

SHIFT INSTRUCTIONS 

The instruction format for logical, circular, arithmetic, 
and searching shift operations is: 

S SHIFT 
0Nord index alignment) 

If neither indirect addressing nor indexing is called for in 
the instruction SHIFT, bit positions 21-23 of the reference 
address field determine the type, and bit positions 25-31 
determine the direction and amount of the shift. 

If on Iy indirect addressing is called for in the instruction, 
bits 15-31 of the instruction are used to access the indirect 
word and then bits 21-23 and 25-31 of the indirect word 
determine the type, direction, and amount of the shift. 

If only indexing is called for in the instruction, bits 21-23 
of the instruction word determine the type of shift; the 
direction and amount of shift are determined by bits 25-31 
of the instruction plus bits 25-31 of the specified index 
register. 

If both indirect addressing and indexing are called for in 
the instruction, bits 15-31 of the instruction are used to 
access the indirect word and then bits 21-23 of the in­
direct word determine the type of shift; the direction and 

70 Shift Instructions 

amount of the shift are determined by bits 25-31 of the 
indirect word plus bits 25-31 of the specified index register. 

The effective address does not reference memory. Bit 
positions 15-20 and 24 of the effective virtual address are 
ignored. Bit positions 21, 22, and 23 of the effective 
virtual address determine the type of shift, as follows: 

21 22 23 Shift Type 

0 0 0 Logical, single register 

0 0 Logical, double register 

0 0 Circular, single register 

0 Circular, double register 

0 0 Arithmetic, single register 

0 Arithmetic, double register 

0 Searching, single register 

Searching, double register 

Bit positions 25 through 31 of the effective virtual address 
are a shift count that determines the direction and amount 
of the shift. The shift count (C) is treated as a 7-bit 
signed binary integer, with the high-order bit (bit posi­
tion 25) as the sign (negative integers are represented in 
two's complement form). A positive shift count causes a 
left shift of C bit positions. A negative shift count causes 
a right shift of Ici bit positions. The value of C is within 
the range: -64 ~ C ~ +63. 

All double-register shift operations require an even value 
for the R field of the instruction, and treat registers Rand 
Rul as a 64-bit register with the high-order bit (bit posi­
tion 0 of register R) as the sign for the entire register. If 
the R field of SHIFT is an odd value and a double-register 
shift operation is specified, a register doubleword is formed 
by duplicating the contents of register R for both the 
32 high-order bits and the 32 !ov/-order b!ts of the doub!c-
word. The shift operation is then performed and the 
32 high-order bits of the result are loaded into register R. 

Overflow occurs (on left shifts only) whenever the value of 
the sign bit (bit position 0 of register R) changes. At the 
completion of logical left, circular left, arithmetic left, and 
searching left shifts, the condition code is set as follows: 

2 3 4 Result of Shift 

o - Even number of l's shifted off left end of 
register R. 

Odd number of l's shifted off left end of 
register Rt. 

t Not appli cable for searching shift. 



2 3 4 Result of Shift 

- a No overflow on left shift. 

- Overflow on left shift. 

Searching shift terminated with Ra equal to 1. 

At the completion of right shifts, the condition code is set 
as follows: 

2 3 4 

a a 

Logical Shift, Single Register 

If the shift count, C, is positive, the contents of register R 
are shifted left C places, the O's copied into vacated bit 
positions on the right. (Bits shifted past RO are lost.) If C 
is negative, the contents of register R are shifted right Ici 
places, with O's copied into vacated bit positions on the 
left. (Bits shifted past R31 are lost.) 

Affected: (R), CC1, CC2 

Logical Shift, Double Register 

o 1 2 

nr 
£.,J 

If the shift count, C, is positive, the contents of registers 
Rand Ru1 are shifted left C places, with O's copied into 
vacated bit positions on the right. Bits shifted past bit 
position a of register Ru1 are copied into bit position 31 
of register R. (Bits shifted past RO are lost.) If C is nega­
tive, the contents of registers Rand Ru1 are shifted right 
Ici places with O's copied into vacated bit positions on the 
left. Bits shifted past bit position 31 of register Rare 
copied into bit position a of register Ru 1. (Bits shifted 
past Ru 131 are lost.) 

Affected: (R), (Ru1), CC1, CC2 

Circular Shift, Single Register 

If the shift count, C, is positive, the contents of register R 
are shifted left C places. Bits shifted 'past bit position 0 
are copied into bit position 31. (No bits are lost.) If C 
is negative, the contents of register R are shifted right 
lei places. Bits shifted past bit position 31 are copied 
into bit position O. (No bits are lost.) 

Affected: (R), CC1, CC2 

Circular Shift, Double Register 

If the shift count, C, is positive, the contents of registers R 
and Rul are shifted left C places. Bits shifted past bit 
position a of register R are copied into bit position 31 
of reg i ster Ru 1. (No bi ts are lost.) If Cis negati ve, the 
contents of registers Rand Rul are shifted right lei places. 
Bits shifted past bit position 31 of register Ru1 are copied 
into bit position 0 of register R. (No bits are lost.) 

Affected: (R), (Rul), CC1, CC2 

Arithmetic Shift, Single Register 

If the shift count, C, is positive, the contents of register R 
are shifted left C places, with O's copied into vacated bit 
positions on the right. (Bits shifted past RO are lost.) If C 
is negative, the contents of register R are shifted right lei 
places, with the contents of bit position a copied into va­
cated bit positions on the left. (Bits shifted past R31 
are lost.) 

Affected: (R), CC1, CC2 

Arithmetic Shift, Double Register 

If the shift count, C, is positive, the contents of register R 
and Rul are shifted left C places, with O's copied into va­
cated bit positions on the right. Bits shifted past bit posi­
tion a of register Ru1 are copied into bit position 31 of 
register R. (Bits shifted past RO are lost.) If C is negative, 
the contents of registers Rand Ru1 are shifted right Ici 
places, with the contents of bit position a of register R 
copied into vacated bit positions on the left. Bits shifted 
past bit position 31 of register R are copied into bit posi­
tion a of register Ru1. (Bits shifted past Ru131 are lost.) 

Affected: (R), (Rul), CC1, CC2 

Searching Shift, Single Register 

The searching shift is circular in either direction. If the 
shift count, C, is positive, the contents of register Rare 
shifted left C bit positions or unti I a 1 appears in bit posi­
tion O. If C is negative, the contents are shifted right Ici 
positions or unti I a 1 appears in bit position O. When the 
shift is terminated, the remaining count is stored in regis­
ter 1, which is dedicated to the searching shift instruction. 

Shift Instructions 71 



Bits 0-24 of register 1 are cleared and the remaining count 
is loaded into bits 25-31. If the initial contents of bit 0 
is equal to I, then no bits are shifted by the instruction. 
In this case the original count in the instruction is stored 
in register 1. 

Searching shift causing a change in bit position 0 causes 
CC2 to be set to 1. If bit position 0 is not changed during 
a searching shift, CC2 is cleared. CC4 is set to 1 if the 
shift is terminated with a 1 in bit position O. 

Affected: (R), (Rl), CC2, CC4 

Searching Shift, Double Register 

The searching shift is circular in either direction. If the 
shift count, C, is positive, the contents of registers Rand 
Rul are shifted left C bit positions or until a 1 appears in 
bit position 0 of register R. If C is negative, the contents 
are shifted right lei positions or unti I a 1 appears in bit 
position O. When the shift is terminated, the remaining 
count is stored in register I, which is dedicated to the 
searching shift instruction. Bits 0-24 of register 1 are 
cleared and the remaining count is loaded into bits 25-31. 

Searching shift causing a change in bit position 0 causes 
CC2 to be set to 1. If bit position 0 is not changed during 
a searching shift, CC2 is cleared. CC4 is set to 1 if the 
shift is terminated with a 1 in bit position O. 

Affected: (R), (Rul), (Rl), CC2, CC4 

FLOATING-POINT SHIFT 

Floating-point numbers are defined in the IIFloating­
Point Arithmetic Instructions ll section. The format for the 
&I~_": _____ :_,, _L:C" : __ L_ •• _": __ : __ 

IIV,",III'~-tJVlIlI ~'IIII II'~IIU"""VII ,~; 

SF SHIFT FLOATING 
(Word index alignment) 

If direct addressing and no indexing is called for in the in­
struction SHIFT FLOATING, bit position 23 of the reference 
address field determines the type (long or short format) of 
shift, and bit positions 25-31 determine the direction and 
amount of the shift. 

If indirect addressing and no indexing is called for in the 
instruction, bit positions 15-31 of the instruction are used 
to access the indirect word and then bit positions 23 and 
25-31 of the indirect word determine the type, direction, 
and amount of the shift. 

72 Shift Instructions 

If direct addressing and indexing are called for in the 
instruction, bit 23 of the reference address (not affected 
by subsequent indexing) determines the type of shift. 
Bits 25-31 of the reference address plus bits 25-31 of the 
specified indexed register determine the direction and 
amount of the shift. 

If indirect addressing and indexing are called for in the in­
struction, bits 15-31 of the reference address are used to 
access the indirect word. Bit 23 of the indirect word (not 
affected by subsequent indexing) determines the type of 
shift. Bits 25-31 of the indirect address plus bits 25-31 of 
the specified index register determine the direction and 
amount of the shift. 

The shift count, C, in bit positions 25-31 of the effective 
virtual address determines the amount and direction of 
the shift. The shift count is treated as a 7-bit signed 
binary integer, with the high-order bit (bit position 25) as 
the sign (negative integers are represented in two's com­
plement form). 

The absolute value of the shift count determines the number 
of hexadecimal digit positions the floating-point number is 
to be shifted. If the shift count is positive, the floating­
point number is shifted left; if the count is negative, the 
number is shifted right. 

SHIFT FLOATING loads the floating-point number from the 
register(s) specified by the R field of the instruction into a 
set of internal registers. If the number is negative, it 
is twols complemented. A record of the original sign is 
retained. The floating-point number is then separated into 
a characteristic and a fraction, and CCI and CC2 are both 
reset to OIS. 

A positive shift count produces the following left shift 
operations: 

1. If the fraction is normalized (i. e., is less than 1 and 
is equal to or greater than 1/16), or the fraction is 
all OIS, CCl is set to 1. 

,.. 1'1: LL _ r. __ _ L- r-. '.1 -_ II ".... •• rl .-
L. 11 HIt:: IrU~lIon rlt::IU I:> UII V:>, rn~ enflr~ flouflng-polnT 

number is set to all OIS (lltrue ll zero), regardless of the 
sign and the characteristic of the original number. 

3. If the fraction is not normalized, the fraction field is 
shifted 1 hexadecimal digit position (4 bit positions) to 
the left and the characteristic field is decremented 
by 1. Vacated digit positions at the right of the frac­
tion are fi lied with hexadecimal OIS. 

If the characteristic field underflows (i.e., is all lis 
as the result of being decremented), CC2 is set to 1. 
However, if the characteristic field does not under­
fiow, the shift process (shift fraction, and decre­
ment characteristic) continues until the fraction is 
normalized, unti I the characteristic field underflows, 
or unti I the fraction is shifted left C hexadecimal 
digit positions, whichever occurs first. (Any two, 
or all three, of the terminating conditions can occur 
simultaneously. ) 



4. At the completion of the left shift operation, the 
floating-point result is loaded back into the general 
register(s}. If the number was originally negative, the 
twols complement of the resultant number is loaded 
into the general register(s}. 

5. The condition code settings following a floating-point 
left shift are as follows: 

2 3 4 Result 

- - 0 0 "True" zero (all OIS). 

- - 0 Negative. 

o Positive. 

o 0 - - C digits shifted (fraction unnormalized, 
no characteristic underflow). 

- - - Fraction normalized {includes "true" 
zero}. 

- Characteristic underflow. 

A negative shift count produces the following right shift 
operations (again assuming that negative numbers are twols 
complemented before and after the shift operation): 

1. The fraction field is shifted 1 hexadecimal digit posi­
tion to the right and the characteristi c field is incre­
mented by 1. Vacated digit positions at the left are 
fi lied with hexadecimal OIS. 

2. If the characteristic field overflows (i. e., is all OIS as 
the result of being incremented), CC2 is set to 1. 
However, if the characteristic field does not overflow, 
the shift process (shift fraction, and increment char­
acteristic) continues until the characteristic field 
overflows or unti I the fraction is shifted right lei hexa-

"decimal digit positions, whichever occurs first. (Both 
terminating conditions can occur simultaneously.) 

3. If the resultant fraction field is all OIS, the entire 
floating-point number is set to all OIS ("true" zero), 
regardless of the sign and the characteristic of the 
original number. 

4. At the completion of the right shift operation, the 
floating-point result is loaded back into the general 
register(s}. If the number was originally negative, 
the twols complement of the resu Itant number is loaded 
into the general register(s}. 

5. The condition code settings following a floating-point 
right shift are as follows: 

2 3 4 Result 

- 0 0 IITrue ll zero (all zeros). 

- 0 Negative. 

2 3 4 Result 

o Positive. 

o 0 IC/ digits shifted (no characteristic 
overflow). 

o - Characteristi c overflow. 

Floating Shift, Single Register 

The short-format floating-point number in register R is 
shifted according to the rules established above for floating­
point shift operations. 

Affected: (R), CC 

Floating Shift, Double Register 

The long-format floating-point number in registers Rand 
Rul is shifted according to the rules established above for 
floating-point shift operations. (If the R field of the in­
struction word is an odd value, a long-format floating­
point number is generated by duplicating the contents of 
register R, and the 32 high-order bits of the result are 
1 __ ..1_..1 !_ .. ____ !_ .. __ D \ 
Iv\.,n."IIi;;U I"IV 1'II;;~I~11I;;1 n .• I 

Affected: (R), (Ru 1), CC 

CONVERSION INSTRUCTIONS 

The conversion instructions are: 

Instruction Name Mnemonic 

Convert by Addition CVA 

Convert by Subtraction CVS 

These two conversion instructions can be used to accom­
plish bidirectional translation between binary code and any 
other weighted binary code, such as BCD. 

The effective addresses of the instructions CONVERT BY 
ADDITION and CONVERT BY SUBTRACTION each point 
to the starting location of a conversion table of 32 words, 
containing weighted values for each bit position of regis­
ter Rul. The 32 words of the conversion table are con­
sidered to be 32-bit positive quantities, and are referred 

Conversion Instructions 73 



to as conversion values. The intermediate results of these 
instructions are accumulated in internal basic processor 
registers unti I the instruction is completed; the result is 
then loaded into the appropriate general register. Both 
instructions use a counter (n) that is set to 0 at the beginning 
of the instruction execution and is incremented by 1 with 
each iteration, until a total of 32 iterations has been 
performed. 

If a memory parity or protection violation trap occurs dur­
ing the execution of either instruction, the instruction se­
quence is aborted (without having changed the contents of 
register R or Rul) and may be restarted (at the beginning of 
the instruction sequence) after the trap routine is processed. 

eVA CONVERT BY ADDITION 
(yVord index alignment) 

CONVERT BY ADDITION initially clears the internal A reg­
ister and sets an internal counter (n) to O. If bit position n 
of register Rul contains a 1, CVA adds the nth conversion 
value (contents of the word location pointed to by the ef­
fective address plus n) to the contents of the A register, 
accumulates the sum in the A register, and increments n 
by 1. If bit position n of register Ru 1 contains a 0, CVA 
only increments n. If n is less than 32 after being incre­
mented, the next bit position of register Rul is examined, 
and the addition process continues through n equal to 31; 
the resu It is then loaded into register R. If, on any itera­
tion, the sum has exceeded the value 232- 1, CCl is set 
to 1 i otherwise, CCl is reset to O. 

Affected: (R), CC1, CC3, CC4 

O-A,O-n 

If (Rul) =1, then (EWL + n) + (A) -A, n + 1 - n 
n 

If (Run =0. then n + 1-n , 'n ' 

If n < 32, repeat; otherwise, (A) - R and continue to 
next instruction. 

Condition code settings: 

o 

2 3 4 Resu It in R 

- 0 0 Zero. 

- 0 Bit 0 of register R is a 1. 

OBit 0 of register R is a 0 and bit positions 1-31 
of register R contain at least one 1. 

- - Sum is correct (less than ~2). 

- - Sum is greater than 232_1. 

74 Floating-Point Arithmetic Instructions 

evs CONVERT BY SUBTRACTION 
(yVord index alignment) 

CONVERT BY SUBTRACTION loads the internal A register 
with the contents of register R, clears the internal B regis­
ter, and sets an internal counter (n) to O. All conversion 
values are considered to be 32-bit positive quantities. If 
the nth conversion value (the contents of the word location 
pointed to by the effective address plus n) is equal to or 
less than the current contents of the A register, CVS incre­
ments n by 1, adds the two's complement of the nth con­
version value to the contents of the A register, stores the 
sum in the A regi ster, and stores ali n bi t position n of the 
B register. If the nth conversion value is greater than the 
current contents of the A register, CVS only increments n 
by 1. If n is less than 32 after being incremented, the 
next conversion value is compared and the process con­
tinues through n equal to 31; the remainder in the A reg­
ister is loaded into register R, and the converted quantity 
in the B register is loaded into register Ru1. 

Affected: (R), (Rul), CC3, CC4 

(R)-A, O-B, O-n 

If (EWL + n) $ (A) then A - (EWL + n) -A, 

l-B ,n + l-n 
n 

If (EWL + n) > (A) then n + 1- n 

If n < 32, repeat; otherwise, (A) - R, (B) - Ru1 and 
continue to the next instruction. 

Condition code settings: 

2 3 4 Result in Rul 

- 0 0 Zero. 

o Bit 0 of register Ru i is a L 

o BitOofregisterRu1 is a 0 and bit posi­
tions 1-31 of register Ru 1 contain at least 
one 1. 

FLOATING-POINT ARITHMETIC INSTRUCTIONS 

The floating-point arithmetic instructions are: 

Instruction f'~amc ~,~ncmon;c 

Floating Add Short FAS 

Floating Add Long FAL 

Floating Subtract Short FSS 



Instruction Name Mnemonic 

Floating Subtract Long FSL 

Floating Multiply Short FMS 

Floating Multiply Long FML 

Floating Divide Short FDS 

Floating Divide Long FDL 

FLOATING-POINT NUMBERS 

Two number formats are accommodated for floating-point 
arithmetic: short and long. A short-format floating-point 
number consists of a sign (bit 0), a biasedt, base 16 expo­
nent, which is called a characteristic (bits 1-7), and a 
six-digit hexadecimal fraction (bits 8-31). A long-format 
floating-point number consists of a short-format floating­
point number followed by an additional eight hexadecimal 
digits of fractional significance, and occupies a double­
word memory location or an even-odd pair of general 
registers. 

A floating-point number (N) has the following format: 

A floating-point number (N) has the following formal 
definition: 

1. 
C-64 

N = F x 16 where F = 0 or 

-6 
16 s IFI s 1 (short format) or 

-14 
16 S IFI $ 1 {long format) 

and 0 $ C $ 127. 

2. A positive floating-point number with a fraction of 
zero and a characteristic of zero is a "true" zero. 
A positive floating-point number with a fraction of 
zero and a nonzero characteristic is an "abnorma I" 
zero. For floating-point multiplication and division, 
an abnormal zero is treated as a true zero. However, 

t 
The bias value of 4016 is added to the exponent for the 

purpose of making it possible to compare the absolute mag­
nitude of two numbers, i. e., without reference to a sign 
bit. This manipulation effectively removes the sign bit, 
making each characteristic a 7-bit positive number. 

for addition and subtraction, an abnormal zero is 
treated the same as any nonzero operand. 

3. A positive floating-point number is normalized if and 
only if the fraction is contained in the interval 

1/16 $ F < 1 

4. A negative floating-point number is the two1s comple­
ment of its positive representation. 

5. A negative floating-point number is normalized if and 
only if its two1s complement is a normalized positive 
number. 

By this definition, a floating-point number of the form 

1 xxx xxxx 1111 0000 . .• 0000 

is normalized, and a floating-point number of the form 

1 xxx xxxx 0000 0000 . .. 0000 

is illegal and, whenever generated by floating-point in­
structions, is converted to the form 

1 yyy yyyy 1111 0000 . .. 0000 

where yy ... Y is 1 less than xx ... x. Table 7 contains 
examples of floating-point numbers. 

Modes of Operation 

There are four mode control bits that are used to qual ify 
£"1 __ . .L- __ .• .L ____ .I..- _ _ TI _ _ _ __ I. __ L.. I I -.1. __ _ 

IIUUIIII~-PUIIII Upt::IUIIUII:>. 1111::::>1::: IIIUUI::: ,",UIIIIUI Uti:> utI::: 

identified as FR (floating round), FS (floating significance), 
FZ (floating zero), and FN (floating normalize); they are 
contained in bit positions 4, 5, 6, and 7, respectively, of 
the program status words (PSWs4_7). 

The floating-point mode is established by setting the four 
floating-point mode control bits. This can be performed by 
any of the following instructions: 

Instruction Name 

Load Conditions and Floating Control 

Load Conditions and Floating Control 
Immediate 

Load Program Status Words 

Exchange Program Status Words 

Mnemonic 

LCF 

LCFI 

LPSD 

XPSD 

The floating-point mode control bits are stored by execut­
ing either of the following instructions: 

Instruction Name Mnemonic 

Store Conditions and Floating Control STCF 

Exchange Program Status Words XPSD 

Floating-Point Arithmetic Instructions 75 



Table 7. Floating-Point Number Representation 

Short Floating-Point Format 

Dec i rna I Number ± C 

+(16 +63)(1_2-24) 0 111 1111 1111 1111 

+(16+
3

)(5/16) 0 100 0011 0101 0000 

+(16-
3

)(209/256) 0 011 1101 1101 0001 

+(16 -63)(2047/4096) O· 000 0001 0111 1111 

+(16 -64)(1/16) 0 000 0000 0001 0000 

o (called true zero) 0 000 0000 0000 0000 

- (16 -64)( 1/16) 1 111 1111 1111 0000 

-(16 -63)(2047/4096) 1 111 1110 1000 0000 

- (16 -3 )(209/256 ) 1 100 0010 0010 1111 

-(16 +3)(5/16) 1 011 1100 1011 0000 

-(16 +63)(1_224) 1 000 0000 0000 0000 

Special Case 

-(16 e)(l) 1 
-

0000 0000 e 

is changed to 

-(16e+1)(1/16) 1 en 1111 0000 

whenever generated as the result of a floating-point instruction. 

FLOAnNG-POINT ADD AND SUBTRACT 

The floating round (FR), floating normalize (FN), floating 
zero (FZ), and floating significance (FS) mode control 
bits determine the operation of floating-point addition 
and subtraction {if characteristi c overflow does not occur} 
as follows: 

FR Floating round: 

Note: The floating round faci lity is avai lable only in 
the hardware floating-point. In the absence 
of this feature, the floating-point subroutines 
offer only truncation; hence, to guarantee 
hardware and software i denti ca I resu Its, FR 
(bit 4 of PSWs) must be zero. 

76 Floating-Point Arithmetic Instructions 

F Hexadecimal Value 

1111 1111 1111 1111 7F FFFFFF 

0000 0000 0000 0000 43 500000 

0000 0000 0000 0000 3D DlO000 

1111 0000 0000 0000 01 7FFOOO 

0000 0000 0000 0000 00 100000 

0000 0000 0000 0000 00 000000 

0000 0000 0000 0000 FF FOOOOO 

0001 0000 0000 0000 FE 801000 

0000 0000 0000 0000 C2 2FOOOO 

0000 0000 0000 0000 BC BooooO 

0000 0000 0000 0001 80 000001 

0000 0000 0000 0000 

0000 0000 0000 0000 

FR = 0 No rounding specified (truncation). 

FR = 1 The results of additions and subtractions are 
to be rounded. Each value associated with 
the operation (i. e., augend, addend, and 
intermediate result of an add) is extended by 
the hardware to include one guard digit. 
(Short-format values are extended into bit 
positions 32-35 and long-format values are 
extended into bit positions 64-67.) Contents 
of guard digits may be affected during pre­
alignment, computation, or postnormalization. 
Rounding is perfoiiiied by evaluating the gUGid 

digit of the intermediate result after any re­
quired postnormalization. If the value of the 
guard digit is 0-7, the other digits are not 
modified. If the value of the guard digit 
is 8-F, the value contained within the other 
digits is incremented by one. 



The following table shows the possible cases: 

Postnorma I i zati on 

Pre-alignment 
(exponents I) 

Scale 
Answer 
left 

Scale 
Answer 
Right Guard Digit Action 

o o 

o o 

o 

o 

o 

o 

o (Guard digit = 0.) 

Round on guard digit. <D 

o Guard digit left shifted 
into low end of 
register.@ 

o 

o 

Not possible. 

Round on guard digit. <D 

Round on guard digit.<D 

Guard digit left shifted 
into low end of 
register. @ 

Not possible. 

Notes: <DIncrement fraction if guard digit ~ 8. 

<YContents of guard digit become zero on first 
left shift. 

Normally; there is no time penalty for the rounding opera­
tion. However, if the intermediate value is . FFFFFF and 
the guard digit is 8-F after postnormalization, a right 
alignment is done after rounding. (See the example below.) 

Example 

. FFFFFFF 

1.000000 

. 100000 

(intermediate result before rounding) 

(resu I t after roundi ng and truncati ng -
not valid) 

(result after postrounding alignment) 

FN Floating normalize: 

FN = 0 The results of additions and subtractions are 
to be postnormalized. If characteristic under­
flow occurs, if the result is zero, or if more 
than two postnormalization hexadecimal shifts 
are required, the settings for FZ and FS de­
termine the resultant action. If none of the 
above conditions occurs, the condition code 
is set to 0010 if the result is positive, or 
to 0001 if the result is negative. 

FN = 1 Inhibit postnormalization of the result of ad­
ditions and subtractions. The settings of FZ 

FZ 

and FS have no effect on the instruction 
operation. If the result is zero, the result 
is set to "true" zero and the condition code 
is set to 0000. If the result is positive, the 
condition code is set to 0010. If the re­
sult is negative, the condition code is set 
to 0001. 

Floating zero: (applies only if FN = 0) 

FZ = 0 

FZ = 1 

If the final result of en addition or subtrac­
tion operation cannot be expressed in normal­
ized form because of the characteristic being 
reduced below zero, underflow has occurred, 
in which case the result is set equal to "true" 
zero and the condition code is set to 1100. 
(Exception: if a trap results from significance 
checking with FS = 1 and FZ = 0, an under­
flow generated in the process of postnormal­
izing is ignored.) 

Characteristic underflow causes the basic pro­
cessor to trap to location X'441 with the 
contents of the general registers unchanged. 
If the result is positive, the condition code 
is set to 1110. If the result is negative, the 
condition code is set to 1101. 

FS Floating significance: (applies only if FN = 0) 

FS = 0 Inhibit significance trap. If the result of an 
addition or subtraction is zero, the result is 
set equal to "true" zero, the condition code 
is set to 1000, and the basic processor exe­
cutes the next instruction in sequence. If 
more than two hexadecimal places of post­
normalization shifting are required and char­
acteri sti c underflow does not occur, the 
condition code is set to 1010 if the result is 
positive, or to 1001 if the result is negative; 
then, the basi c processor executes the next 
instruction in sequence. (Exception: if 
characteristic underflow occurs with FS = 0, 
FZ determines the resultant action. ) 

FS = 1 The basic processor traps to location X'441 if 
more than two hexadecimal places of post­
normalization shifting are required or if the 
result is zero. The condition code is set 
to 1000 if the result is zero, to 1010 if the 
result is positive, or to 1001 if the result is 
negative; however, the contents of the gen­
era I registers are not changed. (Exception: 
if a trap resu I ts from characteri sti c underflow 
with FZ = 1, the results of significance test­
ing are ignored.) 

Floating-Point Arithmetic Instructions 77 



If characteristic overflow occurs, the basic processor always 
traps to location X'44 1 with the general registers unchanged 
and the condition code set to 0110 if the result is positive, 
or to 0101 if the result is negative. 

FLOATING-POINT MULTIPLY AND DIVIDE 

The floating round (FR) and floating zero (FZ) mode con­
trol bits determine the operation of floating-point multi­
plication and division (if characteristic overflow does not 
occur and division by zero is not attempted) as follows: 

FR Floating round: 

FR = 0 No roundi ng speci fi ed. 

FR = 1 The results of floating multiplication and 
division instructions are to be rounded. For 
multiply or divide operations, a normalized 
product or quotient is produced, appended 
by a guard digit. This wi II be an absolute 
value. 

Note: The example above (under "Floating-Point 
Add and Subtract") is not possible for multiply 
and divide. Therefore, there is never a time 
penalty for rounding. 

FZ Floating zero: 

FZ = 0 If the final result of a multiplication or divi­
sion operation cannot be expressed in normal­
ized form because of the characteristic being 
reduced below zero, underflow has occurred. 
If underflow occurs, the result is set equal to 
"true" zero and the condition code is set to 
1100. If underflow does not occur, the 
condition code is set to 0010 if the result is 
pbsitive, to 0001 if the resulT is negutive, or 

to 0000 if the result is zero. 

FZ = 1 Underflow causes the basic processor to trap 
to location X'44 1 with the contents of the 
general registers unchanged. The condition 
code is set to 1110 if the result is positive, 
or to 1101 if the result is negative. If under­
flow does not occur, the resultant action is 
the same as that for FZ = O. 

If the divisor is zero in a floating-point division; the basic 
processor always traps to location X'44 1 with the general 
registers unchanged and the condition code set to 0100. If 
characteristic overflow occurs, the basic processor always 
traps to location X'44' with the general registers unchanged 
and the condition code set to 0110 if the result is positive, 
or to 0101 if the result is negative. 

78 Floating-Point Arithmeti c Instructions 

CONDITION CODES FOR 
FLOATING-POINT INSTRUCTIONS 

The condition code settings for floating-point instructions 
are summarized in Table 8. The following provisions apply 
to all floating-point instructions: 

1. Undeflow and overflow detection apply to the final 
characteristic, not to any "intermediate" value. 

2. If a floating-point operation results in a trap, the origi­
na� contents of all general registers remain unchanged. 

3. All shifting, truncation, and rounding are performed 
on absolute magnitudes. If the fraction is negative, 
then the two's complement is formed after shifting or 
truncation. 

FAS FLOATING ADD SHORT 
0Nord index alignment) 

The effective word and the contents of register R are loaded 
into a set of internal registers and a low-order hexadecimal 
zero (guard digit) is appended to both fractions, extending 
them to seven hexadecimal digits each. FAS then forms the 
floating-point sum of the two numbers. (See "FR Floating 
round" under "Floating-Point Add and Subtract", if round­
ing applies.) If no floating-point arithmetic fault occurs, 
the sum is loaded into register R as a short-format floating­
point number. 

Affected: (R), CC 

(R) + EW-R 

Trap: Floating-point arith­
metic fault 

FAL FLOATING ADD LONG 
(Doubleword index alignment) 

The effective doubleword and contents of registers Rand Ru1 
are loaded into a set of internal registers. 

The operation of FAL is identical to that of FLOATING 
ADD SHORT (FAS) except that the fractions to be added 
are each 14 hexadecimal digits long, guard digits are ap­
pended to the fractions only if rounding is specified, and R 
must he an even value for correct results. If no flooting­
point arithmetic fault occurs, the sum is loaded into regis­
ters Rand Ru 1 as a long-format floating-point number. 

Affected: (R), (Rul), CC 

(R, Rul) + ED - R, Rul 

Trap: Floating-point arith­
meti c fault, instruc­
tion exception 



Table 8. Condition Code Settings for Floating-Point Instructions 

Condition Code 
1 2 3 4 Meaning If No Trap to Location X'441 Meaning If Trap to Location X'441 Occurs 

0 0 0 0 A x 0, 0/ A, or -A + A <D with FN = 1 ) *@ 

0 0 0 1 N < 0 Normal * 
results 

0 0 1 0 N >0 * 

0 1 0 0 *@ 
Divide by zero ) 

0 1 0 1 * Overflow, N < 0 Always trapped 

0 1 1 0 * Ov~rflow, N >0 

0 0 0 -A +A 
FS=O 

<D[ : 

-A + A<D ) 

0 0 1 N < 0 > 2 P t I FN =0, and N < OJ rs= I, FN=O, os norma - > 2 Postnorma 1- d d 
} "" h"ft no underflow 

0 1 0 N > 0 I ZI ng SIS 
• • • an no un er-

N > 0 Izmg shifts flow with FZ= 1 

1 1 0 0 Underflow wi th FZ = 0 and no trap by FS = 1 <D * 

1 1 0 1 * 

1 1 1 0 * 

Notes: <D Result set to "true" zero 

@ "*" indicates impossible configurations 

® Applies to add and subtract only where FN = 0 

The R field of the FAL instruction must be an even value 
for proper operation of the instruction; if the R field of FAL 
is an odd value, the instruction traps to location X'4D', 
instruction exception trap. 

FSS FLOATING SUBTRACT SHORT 
(Word index alignment) 

The effective word and the contents of register R are loaded 
into a set of internal registers. 

FLOATING SUBTRACT SHORT forms the two1s complement 
of the effective word and then operates identically to 
FLOATING ADD SHORT (FAS). If no floating-point 
arithmetic fault occurs, the difference is loaded into reg­
ister R as a short-format floating-point number. 

Affected: (R), CC 

(R) - EW- R 

Trap: Floating-point arith­
metic fault 

FSL 

Underflow, N < O} 
FZ= 1 

Underflow, N >0 

FLOATING SUBTRACT LONG 
(Doubleword index alignment) 

The effective doubleword and the contents of registers R 
and Ru 1 are loaded into a set of internal registers. 

I FLOATING SUBTRACT LONG forms the two1s comple­
ment of the effective doubleword and then operates iden­
tically to FLOATING ADD LONG (FAL). If no floating­
point arithmetic fault occurs, the difference is loaded into 
registers Rand Ru 1 as a long-format floating-point number. 

Affected: (R), (Ru 1), CC 

(R, Rul) - ED - R, Rul 

Trap: Floating-point arith­
metic fault, instruc­
tion exception 

The R field of the FS L instruction must be an even value for 
proper operation of the instruction; if the R field of FSL is 
an odd value, the instruction traps to location X'4D', 
instruction exception trap. 

Floating-Point Arithmetic Instructions 79 



FMS FLOATING MULTIPLY SHORT 
(yVord index alignment) 

H 3F I R I X I: Referenc~ address I 
o 1 2 314 5 6 7 8 9 10 11 12 13 14 15 16 17 1819120 21 222324252627128293031 

The effective word (multiplier) and the contents of register R 
(multiplicand) are loaded into a set of internal registers, 
and both numbers are then prenormalized (if necessary). A 
normalized 6-digit product is produced, appended by a 
guard digit. If FR equals 1, and the guard digit contains 8 
or greater, the fraction is incremented. If no floating­
point arithmetic fault occurs, the product is loaded into 
register R as a short-format floating-point number. 

Affected: (R), CC 

(R) x EW-R 

Trap: Floating-point arith­
metic fault 

FML FLOATING MULTIPLY LONG 
(Doubleword index alignment) 

The effective doubleword (multiplier) and the contents of 
registers Rand Ru1 (multiplicand) are loaded into a set of 
internal registers. (FLOATING MULTIPLY LONG then 
operates identically to FLOATING MULTIPLY SHORT 
(FMS), except that the operands are each 14 hexadecimal 
digits long. R must be an even value for correct results. 
If no floating-point arithmetic fault occurs, the product is 
loaded into registers Rand Ru1 as a long-format floating­
point number. 

Affected: (R), (Ru1), CC 

(R, Ru1) x ED -R, Rul 

Trap: Floating-point arith­
metic fault, instruc­
tion exception 

The R field of the FML instruction must be an even value 
for proper operation of the instruction; if the R field of 
FML is an odd value, the instruction traps to location X'4D', 
instruction exception trap. 

FOS FLOATING DIVIDE SHORT 
(Word index alignment) 

The effective word (divisor) and the contents of register R 
(dividend) are loaded into a set of internal registers and 
both numbers are then prenormalized (if necessary). A 
normalized 6-digit quotient is produced, appended by a 
guard digit. If FR equals 1, and the guard digit contains 8 
or greater, the fraction is incremented. If no floating­
point arithmetic fault occurs, the quotient is loaded into 
register R as a short-format floating-point number. 

Affected: (R), CC 

(R).;. EW-R 

80 Decimal Instructions 

Trap: Floating-point arith­
metic fault 

FOL FLOATING DNIDE LONG 
(Doubleword index alignment) 

The effective doubleword (divisor) and the contents of 
registers Rand Rul (dividend) are loaded into a set of 
internal registers. FLOATING DIVIDE LONG then oper­
ates identically to FLOATING DIVIDE SHORT (FDS), ex­
cept that the operands are each 14 hexadecimal digits long. 
R must be an even value for correct results. If no floating­
point arithmetic fault occurs, the quotient is loaded into 
registers Rand Ru1 as a long-format floating-point number. 

Affected: (R), (Rul), CC 

(R, Ru1}.;. ED-R, Ru1 

Trap: Floating-point arith­
metic fault, instruc~ 

tion exception 

The R field of the FDL instruction must be an even value 
for proper operation of the instruction; if the R field of FDL 
is an odd value, the instruction traps to location X'4D' 
instruction exception trap. 

DECIMAL INSTRUCTIONS 

The following instructions comprise the decimal instruction 
set: 

Instruction Name 

Decimal Load 

Decimal Store 

Decimal Add 

Decimal Subtract 

Decimal Multiply 

Decimal Divide 

Decimal Compare 

Decimal Shift Arithmetic 

Pack Decimal Digits 

Unpack Decimal Digits 

Edit Byte String (described under 
"Byte-String Instructions") 

Mnemonic 

DL 

DST 

DA 

DS 

DM 

DD 

DC 

DSA 

UNPK 

EBS 



PACKED DECIMAL NUMBERS 

All decimal arithmetic instructions operate on packed 
decimal numbers, each consisting of from 1 to 31 decimal 
digits t (in absolute form) plus a decimal sign. A decimal 
digit is a 4-bit code in the range 0000 through 1001, 
where 0000 = 0, 0001 = 1, 0010 = 2, 0011 = 3, 0100 = 4, 
0101 = 5, 0110 = 6, 0111 = 7, 1000 = 8, and 1001 = 9. 
A positive decimal sign is a 4-bit code of the form: 
101O(X'A'), 1100(X'C'), 111O(X'E'), or 1111 (X'F'). A neg­
ative decimal sign is a 4-bit code of the form: 1011 (X'B'), 
or 1101 (X'D'). However, the decimal sign codes generated 
for the result of a decimal instruction are: 1100 (X'C') for 
positive results, and 1101 (X'D') for negative results. The 
format of packed decimal numbers is: 

For the decimal arithmetic instructions, a packed decimal 
number must occupy an integral number (l through 16) of 
consecutive bytes. Thus, a decimal number must contain an 
odd number of decimal digits, the high-order digit (zero or 
nonzero) of the number must be in bit positions 0-3 of the 
first byte, the decimal sign must be in bit positions 4-7 of 
the last byte, and all decimal digits and the decimal sign 
must be 4-bit codes of the form described above. 

ZONED DECIMAL NUMBERS 

In zoned decimal format, a single decimal digit is contained 
_ •• !.LL!_ L'!L ____ '!L'! ____ ..f "7 _£ __ L __ L __ . _I I -.I. _ ••.• _ 1'\ "") ,. 
VVI'"I" UII t-'V:>IIIVII:> ~-I v, U ur"';, UIIU UII PV:>IIIVII:> v-v v, 

the byte are referred to as the "zone" of the decimal digit. 
A zoned deci ma I number consi sts of from 1 to 31 bytes, with 
the decimal sign appearing as the zone for the last byte, as 
follows: 

The sign format is EBCDIC and the zones are 1111. 

A decimal number can be converted from zoned to packed 
format by means of the instruction PACK DECIMAL DIGITS. 
A decimal number can be converted from packed to zoned 
format by means of the instruction UNPACK DECIMAL 
DIGITS. 

DECIMAL ACCUMULATOR 

All decimal arithmetic instructions imply the use of reg­
isters 12 through 15 of the current register block as the 

t Except EDIT BYTE STRING (EBS), which has no limit on 
the size of numbers. 

decimal accumulator, and registers 12 through 15 are treated 
as a single 16-byte register. The entire decimal accumulator 
is used in every decimal arithmetic instruction. 

DECIMAL INSTRUCTION FORMAT 

The general format of a decimal instruction is as follows: 

The indirect address bit (position 0), the operation code 
(positions 1-7), the index field (12-14), and the reference 
address field (15-31) all have the same functions for the 
decimal instructions as they do for any other byte-addressing 
instruction. However, bit positions 8-11 of the instruction 
word do not refer to a general register; instead, the contents 
of this field (designated by the character II L") designate the 
length, in bytes, of a packed decimal number. (If L = 0, a 
length of 16 bytes is assumed. ) 

ILLEGAL DIGIT AND SIGN DETECTION 

Prior to executing any decimal instruction, the basic pro­
cessor checks a II deci ma I operands for the presence of 
illegal decimal digits or illegal decimal signs. For all dec­
imal arithmetic instructions, an illegal decimal digit is a 
sign code (i. e., in the range X'A' through X'F') that ap­
pears anywhere except in bit positions 4-7 of the least 
significant byte (the sign position) of the packed decimal 
number; an illegal decimal sign is a digit code (i. e., in the 
range XIOI through X'9') that appears in the sign position of 
the packed decimal number. 

For the instructions DECIMAL MULTIPLY and DECIMAL 
DIVIDE, the illegal sign and digit check also includes a 
check for an illegal L field in the instruction. Illegal 
L fields are X'O' and the range X'9' to XI F'. 

For the DECIMAL MULTIPLY instruct~on, only registers R14 
and R15 are checked for illegal digits. The original con­
tents of R12 and R13 are ignored and are presumed to be 
zeros. 

If an illegal digit or sign is detected, the basic processor 
unconditionally aborts the execution of the instruction (at 
the time that the illegal digit or sign is detected), sets 
CC 1 to 1 and resets CC2 to O. If the deci ma I ari thmeti c 
fault trap mask (bit position 10 of the program status words) 
is a 0, the basic processor then executes the next instruc­
tion in sequence; however, if the decimal arithmetic fault 
trap mask is a 1, the basic processor traps to location X'45'. 
In either case, the contents of the decimal accumulator, 
the effective decimal operand, CC3, and CC4 remain 
unchanged. 

Decimal Instructions 81 



OVERFLOW DETECTION 

Arithmetic overflow can occur during execution of the 
following decimal instructions: 

DECIMAL ADD. Overflow occurs when the sum of the 
two decimal numbers exceeds the 31-digit capacity of the 
decimal accumulator (+103 1 -1 to -1031 + 1). 

DECIMAL SUBTRACT. Overflow occurs when the difference 
between the two decimal numbers exceeds the 31-digit 
capacity of the decimal accumulator. 

DECIMAL DIVIDE. Overflow occurs either when the divisor 
is zero, or when the dividend is greater than 14 digits in 
length and the absolute value of the significant digits 
to the left of the 15th digit position (counting from the 
right) is greater than or equal to the absolute value of 
the divisor. 

If arithmetic overflow occu;"s during execution of DECIMAL 
ADD, DECIMAL SUBTRACT, or DECIMAL DIVIDE, the 
basic processor unconditionally aborts execution of the 
instruction (at the time of overflow detection), resets CCl 
to 0, and sets CC2 to 1. Then, if the decimal arithmetic 
fault trap mask (PSWslO) is a 1, the basic processor traps 
to location Xl45 1

; if the decimal arithmetic fault trap mask 
is a 0, the basic processor executes the next instruction in 
sequence. In either case, the contents of the decimal 
accumulator, memory storage, CC3, and CC4 remain 
unchanged. 

DECIMAL INSTRUCTION NOMENCLATURE 

For the purpose of abbreviating the instruction descriptions 
to follow, the symbolic term "DECA" is used to represent 
the decimal accumulator, and the symbolic term "EDO" is 
used to represent the effective decimal operand of the in­
struction. For the instructions DECIMAL LOAD, DECIMAL 
ADD, DECIMAL SUBTRACT, DECIMALMULTIPLY, DECIMAL 
DIVIDE, and DECIMAL COMPARE, the effective decimal 
operand is a packed decimal number that is II L" bytes 
in length, where L is the numeric value of bit posi­
tions 8-11 of the instruction word, and a value of 0 for L 
designates 16 bytes. The effective byte addresses of 
these instructions point to the byte location that contains 
the most significant byte (high-order digits) of the decimal 
number, and the effective byte address plus L-l (where 
L = ° = 16) points to the least significant byte (low-order 
digit and sign) of the decimal number. Thus, for these in­
structions, the effective decimal operand (EDO) is the con­
tents of the byte string that begins with the effective byte 
location, is L bytes in length, and ends with the effective 
byte location plus L-l. 

82 Decimal Instructions 

CONDITION CODE SETTINGS 

All decimal instructions provide condition code settings, 
using CCl to indicate whether or not an illegal digit or 
sign has been detected, and CC2 to indicate whether or 
not overflow has occurred. Most (but not all) of the deci­
mal instructions provide condition code settings, using CC3 
and CC4 to indicate whether the decimal number in the 
decimal accumulator is zero, negative, or positive, as 
follows: 

CC3 CC4 Result in DECA 

o 

o 

DL 

° Zero - the decimal accumulator contains a 
positive or negative decimal sign code in the 
four low-order bit positions; the remainder of 
the decimal accumulator contains all OIS. 

Negative - the decimal accumulator con­
tains a negative decimal sign code in the 
four low-order bit positions; the remainder 
of the decimal accumulator contains at least 
one nonzero decimal digit. 

o Positive - the decimal accumulator contains 
a positive decimal sign code in the four low­
order bit positions; the remainder of the deci­
mal accumulator contains at least one nonzero 
decimal digit. 

DECIMAL LOAD 
(Byte index alignment) 

If no illegal digit or sign is detected in the effective 
decimal operand, DECIMAL LOAD expands the effective 
decimal operand to 16 bytes (31 digits + sign) by appending 
high-order OIS, and then loads the expanded decimal num­
ber into the decimal accumulator. If the result in the 
decimal accumulator is zero! the converted sign remains 
unchanged. 

Affected: (DECA), CC Trap: Decimal arithmetic 

(EBL to EBL + L - 1) - DECA 

Condition code settings: 

2 3 4 Result in DECA 

° - Illegal digit or sign detected, i nstructi on 
aborted 

0 0 0 0 Zero 

I 0 0 0 Negative 
No illegal digit or illegal sign 
detected, instruction completed 

0 0 0 Positive 



DST DECIMAL STORE 
(Byte index alignment) 

If no illegal digit or sign is detected in the decimal 
accumulator, DECIMAL STORE stores the low-order L bytes 
of the decimal accumulator into memory from the effec­
tive byte location to the effective byte location plus L-l. 
If the decimal accumulator contains more significant in­
formation than is actually stored (i. e., at least one non­
zero digit was not stored), CC2 is set to 1; otherwise, CC2 
is reset to O. If the result in memory is zero, the converted 
si gn remains unchanged. 

Affected: (EBL to EBL + L-l), Trap: Decimal arithmetic 
CC1, CC2 

(DECA) low-order bytes - EBL to EBL + L -1 

Condition code settings: 

2 3 4 Result of DST 

o - - Illegal digit or sign detected, instruction 
aborted 

0 0 - All significant in-

1 
formation stored 

No illegal digit or 

0 Some significant illegal sign detected, 

informaTion nor 
J 

instruction completed 

stored 

DA DECIMAL ADD 
(Byte index alignment) 

79 
o 1 2 

If no illegal digit or sign is detected in the effective deci­
mal operand or in the decimal accumulator, DECIMAL ADD 
algebraically adds the decimal number to the contents of 
the decimal accumulator. If the result in the decimal 
accumulator is zero, the resulting sign is forced to the 
positive form. 

Overflow occurs if the sum exceeds the capacity of the 
decimal accumulator (i. e., if the absolute value of the sum 
is equal to or greater than 1031 ), in which case CCl is 
reset to 0, CC2 is set to 1, and the instruction aborted with 
the previous contents of the decimal accumulator, CC3 
and CC4 unchanged. 

Affected: (DECA), CC Trap: Decimal arithmetic 

(DECA) + EDO - DECA 

Condition code settings: 

2 3 

0 

0 

0 0 0 

0 0 0 

0 0 

DS 

4 Result in DECA 

- Illegal digit or 

I si gn detected 
Instruction aborted 

Overflow 

0 Zero 

No illegal digit or sign 
Negative detected, no overflow, 

instruction completed 

0 Positive 

DECIMAL SUBTRACT 
(Byte index alignment) 

If no illegal digit or sign is detected in the effective deci­
mal operand or in the decimal accumulator, DECIMAL 
SUBTRACT algebraically subtracts the decimal number from 
the contents of the decimal accumulator, and then loads 
the difference into the decimal accumulator. If the result 
in the decimal accumulator is zero, the resulting sign is 
forced to the positive form. 

Overflow occurs if the difference exceeds the capacity of 
the decimal accumulator (i. e., if the absolute value of the 
difference is equal to or greater than 1031 ), in which case 
CCl is reset to 0, CC2 is set to 1, and the instruction is 
aborted with the contents of the previous decimal accumu­
lator, CC3 and CC4 unchanged. 

Affected: (DECA), CC Trap: Decimal arithmetic 

(DECA) - EDO -DECA 

Condition code settings: 

o 

0 

0 

0 

2 3 4 Result in DECA 

o 

0 0 

0 0 

0 

- Illegal digit or ) 
si gn detected 

- Overflow 

Instruction aborted 

0 Zero 

No illegal digit or sign 
Negative detected, no overflow, 

instruction completed 

0 Positive 

Decimal Instructions 83 



DM DECIMAL MULTIPLY 
(Byte index alignment, continue after interrupt) 

If no illegal digit or sign is detected in the effective decimal 
operand or decimal accumulator, DECIMAL MULTIPLY 
multiplies the effective decimal operand (multiplicand) by 
the contents of the decimal accumulator registers R14 and 
R15 (multiplier) and then loads the product into the entire 
decimal accumulator. If the result in the decimal accumu­
lator is zero, the resulting sign is forced to the positive form. 

Affected: {DECA}, CC 

(DECA) x EDO - DECA 

Condition code settings: 

2 3 4 Result in DECA 

Trap: Decimal arithmetic 

o Illegal di git or sign detected, instruction 
aborted 

o 0 0 0 Zero J N ·,1 I d· . t . o I ega Igl or sign 
o 0 0 Negative detected, instruction 

O P 
.. completed o 0 oSltlve 

DD DECIMAL DIVIDE 
(Byte index alignment, continue after interrupt) 

If there is no illegal digit or sign in the effective decimal 
operand and if there is at least one decimal sign in the 
decimal accumulator, DECIMAL DIVIDE divides the con­
tents of the decimal accumulator (dividend) by the effec­
tive decimal operand (divisor). Then, if no overflow has 
occurred, the basic processor loads the quotient (15 decimal 
digits plus sign) into the eight low-order bytes of the 
decimal accumulator (registers 14 and 15), and loads the 
remainder (also 15 decimal digits plus sign) into the eight 
high-order bytes of the decimal accumulator (registers 12 
and 13). The sign of the remainder is the same as that of 
the original dividend. If the quotient is zero, the sign of 
the quotient is forced to the positive form. 

Overflow occurs if any of the following conditions are not 
satisfied before the initial execution of DECIMAL DIVIDE: 

1. The divisor must not be zero. 

2. If the length of the dividend is greater than 15 decimal 
digits, the absolute value of the significant digits to 
the left of the 15th digit position (i. e., those digits in 
registers 12 and 13) must be less than the absolute value 
of the divisor. 

Affected: (DECA), CC 

(DECA) .;- EDO - DECA 

84 Decimal Instructions 

Trap: Decimal arithmetic 

Condition code settings: 

2 3 4 Result in DECA 

0 - Illegal digit or 

J 
sign detected 

Instruction aborted 

0 Overflow 

0 0 0 0 Zero quotient 
No illegal digit or 

0 0 0 Negative quotient 
sign detected, no 
overflow, i nstruc-

0 0 0 Positive quotient 
tion completed 

DC DECIMAL COMPARE 
(Byte index alignment) 

If there is no illegal digit or sign in the effective decimal 
operand or in the decimal accumulator, DECIMAL COMPARE 
expands the effective decimal operand to 16 bytes (31 digits 
plus sign) by appending high-order O's, algebraically com­
pares the expanded decimal number to the contents of the 
entire decimal accumulator, and sets CC3 and CC4 accord­
ing to the result of the comparison (a positive zero compares 
equal to a negative zero). 

Affected: CC Trap: Decimal arithmetic 

(DECA) : EDO 

Condition code settings: 

2 3 4 Result of comparison 

o Illegal digit or sign detected, instruction 
aborted 

0 0 0 0 (DECA) equals EDO 1 No i! lega! digit 
0 0 0 (DECA) less than EDO 

) 
or sign detected, 
instruction 

0 0 0 (DECA) greater than completed 
EDO 

DSA DECIMAL SHIFT ARITHMETIC 
(Byte index alignment) 

If no illegal digit or sign is detected in the decimal accu­
mulator, DECIMAL SHIFT ARITHMETIC arithmetically shifts 
the contents of the decimal accumulator (excluding the 
decimal sign), with the direction and amount of the shift 
determined by the effective virtual address of the instruc­
tion. If the result in the decimal accumulator is zero, the 
resulting sign remains unchanged. 



If no indirect addressing or indexing is used with DSA, the 
shift count C is the confents of bit positions 16-31 of the 
instruction word. If on Iy indirect addressing is used with 
DSA, the shift count is the contents of bit positions 16-31 
of the word pointed to by the indirect address in the in­
struction word. If indexing only is used with DSA, the 
shift count is the contents of bit positions 16-31 of the 
instruction word plus the contents of bit positions 14-29 
of the designated index register (bits 0-13, 30, and 31 of 
the index are ignored). If indirect addressing and indexing 
are both used with DSA, the shift count is the sum of the 
contents of bit positions 16-31 of the word pointed to by the 
indirect address and the contents of bit positions 14-29 of 
the designated index register. 

The shift count, C, is treated as a 16-bit signed binary 
integer, with negative integers in two·s complement form. 
If the shift count is positive, the contents of the decimal 
accumulator are shifted left C decimal digit positions; if 
the shift count is negative, the contents of the decimal 
accumulator are shifted right -C decimal digit positions. 
In either case, the decimal sign is not shifted, vacated 
decimal digit positions are fi lied with O·s, and any digits 
shifted out of the decimal accumulator are lost. Although 
the range of possible values for C is 2- 15 $ C $ 215-1. 
a shift count greater than +31 or less than -31 is interpreted 
as a shift count of exactly +31 or -31. 

If any nonzero decimal digit is shifted out of the decimal 
accumulator during a left shift, CC2 is set to 1; otherwise, 
CC2 is reset to O. CC2 is unconditionally reset to 0 at the • 
completion of a right shift. 

Affected: (DECA), CC Trap: Decimal arithmetic 

Condition code settings: 

2 3 4 Result in DECA 

o Illegal digit or sign detected, instruction 
aborted 

o - 0 0 Zero 

o - 0 Negative 

o - 0 Positive 

o 0 Right shift or no non­
zero digit shifted out 
of DECA on left shift 

o One or more nonzero 
digit(s) shifted out of 
DECA on left shift 

No illegal digit 
or sign detected, 
i nstructi on 
completed 

PACK PACK DECIMAL DIGITS 
(Byte index alignment) 

PACK DECIMAL DIGITS converts the effective decimal 
operand (assumed to be in zoned format) into a packed 
decimal number and, if necessary, appends sufficient high­
order O·s to produce a decimal number that is 16 bytes 
(31 decimal digits plus sign) in length. The zone (bits 0-3) 
of the low-order digit of the effective deci mal operand is 
used to select the sign code for the packed decimal number; 
all other zones are ignored in formatting the packed decimal 
number. If no i /legal digit or sign appears in the packed 
decimal number, it is then loaded into the decimal accu­
mulator. If the result in the decimal accumulator is zero, 
the resulting sign remains unchanged. 

The L field of this instruction specifies the length, in bytes, 
of the resultant packed decimal number in the decimal ac­
cumulator; therefore, the length of the effective decimal 
operand is 2L-1 bytes (where L = 0 implies a length of 
31 bytes for the effecti ve deci ma I operand). 

Affected: (DECA), CC Trap: Decimal arithmetic 

packed (EBL to EBL + 2L - 2) -DECA 

Condition code settings: 

2 3 4 Result in DECA 

o - - Illegal digit or sign detected, instruction 
aborted 

o 0 0 0 Zero 

No i /legal digit or sign 
0 0 0 Negative detected, instruction 

completed 

0 0 0 Positive 

Example 1, L = 6: 

Before execution After execution 

EDO X·FOF1F2F3 X·FOF1F2F3 
F4F5F6F7 F4F5F6F7 
F8F9FO· F8F9FO· 

(DECA) xxxxxxxx X·OOOOOOOO 
xxxxxxxx 00000000 
xxxxxxxx 00000123 
xxxxxxxx 4567890C· 

CC xxxx 0010 

Decimal Instructions 85 



ExamEle 2, L = 6: 

Before execution After execution 

EDO X'000938F7 X'000938F7 
E655B483 E655B483 
02F1 BO' 02F1BO' 

(DECA) xxxxxxxx X'ooOOOooO 
xxxxxxxx 00000000 
xxxxxxxx 00000987 
xxxxxxxx 6543210D' 

CC xxxx 0001 

UNPK UNPACK DECIMAL DIGITS 
(Byte index alignment, continue after interrupt) 

If no illegal digit or sign is detected in the decimal accu­
mulator (assumed to be in packed decimal format), UNPACK 
DECIMAL DIGITS converts the contents of the low-order 
L bytes of the decimal accumulator to zoned decimal format 
and stores the result, as a byte string, from the effective 
byte location to the effective byte location plus 2L-2. 
The contents of the four low-order bit positions of the deci­
mal accumulator are used to select the sign code for the 
last digit of the string; for all other digits, the zones are 
1111 (X'F'). The contents of the decimal accumulator re­
main unchanged, and only 2L-l bytes of memory are altered. 
If the decimal accumulator contains more significant infor­
mation than is actually unpacked and stored, CC2 is set to 1; 
otherwise, CC2 is reset to O. If the result in memory is 
zero, the resulting sign remains unchanged. 

Affected: (EBltoEBL+2L-2), Trap: Decimal arithmetic 
CC1, CC2 

zoned (DECA) - EBL to EBL + 2L -2 

Condition code settings: 

2 3 4 Result of UNPK 

o Illegal digit or sign detected, instruction 
aborted 

o 0 - - All significant infor­
mation zoned and 
stored 

o Some signifi cant 
information not 
zoned and stored 

86 Byte-String Instructions 

No illegal digit 
or sign detected, 
instruction 
completed 

Example 1, L = 10: 

Before execution 

(DECA) X'ooOOOOOO 
00000001 
23456789 
0123456D' 

EDO xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxx 

CC xxxx 

Example 2, L = 8: 

(DECA) 

EDO 

Before execution 

X'OOOOOOOO 
23000000 
10001234 
0012345C' 

xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxx 

CC xxxx 

Example 3, L = 4: 

(DECA) 

EDO 

CC 

Before execution 

X '0000 100 1 
00001002 
00001003 
0001004F' 

xxxxxxxx 
xxxxxxxx 

xxxx 

After execution 

X'OOOOOOOO 
00000001 
23456789 
0123456D' 

X'FOFOFOFl 
F2F3F4F5 
F6F7F8F9 
FOF1F2F3 
F4F5D6' 

OOxx 

After execution 

X '00000000 
23000000 
10001234 
OO12345C' 

X'F1FOFOFO 
F1F2F3F4 
FOFOF1 F2 
F3F4C5' 

01xx 

After execution 

X'OOOOlool 
00001002 
00001003 
0001004F' 

X'FOFOFOF1 
FOFOC4' 

Olxx 

BYTE -STRING INSTRUCTIONS 

Five instructions provide for the manipulation of strings of 
consecutive bytes. The byte-string instructions and their 
mnemonic codes ore as f()lI()ws~ 

Instruction Name Mnemonic 

Move Byte String MBS 

Compare Byte String CBS 



Instruction Name Mnemonic 

Translate Byte String TBS 

Trans I ate and Test Byte Stri ng TTBS 

Edit Byte String EBS 

These instructions are in the immediate byte operand class 
and are memory-to-memory operations. These operations 
are under the control of information that must be loaded 
into certain general registers before the instruction is exe­
cuted. Except for the MOVE BYTE STRING instruction, 
which proceeds four bytes at a time under certain condi­
tions, a byte string instruction proceeds one byte at a time 
and may be interrupted after any individual byte operation. 
Upon return, execution resumes from the pointofinterruption. 

The general format for the information in the instruction 
word and in the general registers is as follows: 

Instruction word: 

Contents of register R: 

Contents of register Ru 1 : 

Count 

Desi gnation 

Operation 

R 

Displacement 

Mask/Fill 

Source Address 

Desti nation nrlrlr~~~ 

Function 

The 7-bit operation code of the instruc­
tion. (If any byte-string instruction is 
indirectly addressed, the basi c processor 
traps to location Xl40 1 at the time of op­
eration code decoding. ) 

The 4-bit field that identifies register R 
of the current general register block. 

A 20-bit field that contains a signed 
byte displacement va lue, used to form 
an effective byte address. The displace­
ment value is right-justified in the 20-bit 
field, and negative values are in twols 
complement form. 

An 8-bit field used only with TRANSLATE 
AND TEST BYTE STRING and EDIT BYTE 
STRING. The purpose of this field is 
explained in the detai led discussion of 
the TTBS and EBS instructions. 

A 19-bit field that normally contains the 
byte address of the first (most significant) 

Designation 

Source Address 
(cont. ) 

Count 

Destination 
Address 

Function 

byte of the source byte string operand. 
The effective source address is the source 
address in register R plus the displacement 
value in the instruction word. 

An 8-bit field that contains the true count 
(from 0 to 255) of the number of bytes 
involved in the operation. This field is 
decremented by 1 as each byte in the 
destination byte string is processed. A 
o count means IIno operation ll with re­
spect to the registers and main memory. 

A 19-bit field that contains the byte 
address of the first (most significant) 
byte of the destination byte-string oper­
and. This field is incremented by 1 as 
each byte in the destination byte string 
is processed. 

In any byte-string instruction, any portion of register R 
or Ru1 that is not explicitly defined (i. e., bit posi­
tions 8-12), should be coded with zeros for real and virtual 
addressi ng. 

Since the value Ru1 is obtained by performing a logical 
inclusive OR with the value 0001 and the value of the 
R field of the instruction word, the two control registers 
are Rand R + 1 if R is even. However, if R is an odd value, 
register R contains an address value that functions both as a 
source operand address and as a destination operand address. 
Also, if register 0 is designated in any byte-string instruc-
... ___ 1 _______ .. ~ ___ TnA ... IC"1 ATe A"'I/""'\ TeC"T n'\rre C"TnT"'I"" ____ I 
IIVII \CAvCPI IVI "'\r\I'4"'LJ"'IL r\1'4V IL ... I U,I ........ '\11'4'\,.7 UIIU 

EDIT BYTE STRING), its contents are ignored and a zero 
source address value is obtained. Thus, the following 
three cases exist for most byte-string instructions, depending 
on whether the value of the R field of the instruction word 
is even and nonzero, odd, or zero: 

Case I, R is even and nonzero 

The effective source address is the address in register R plus 
the displacement in the instruction word; the destination 
address is the address in register R + 1, but without the 
displacement added. 

Case II, R is odd 

The effective source address is the address in register R plus 
the displacement in the instruction word; the destination 
address is also the address in register R, but without the 
displacement added. 

Case III, R is zero 

The effective source address is the displacement value in 
the instruction word; the destination address is the address 
in register 1. In this case, the source byte-string operand 
is always a single byte. 

Byte-String Instructions 87 



In the descriptions of the byte-string instructions, the 
following abbreviations and terms are used: 

o Displacement, (1)12-31. 

SA 

ESA 

C 

DA 

SBS 

DBS 

Source address, (R)13-31 

Effecti ve source address, [(R) 13 -31 +(1) 12 -31} 3 -31 

The contents of bit positions 13-31 of register R 
are added (right aligned) to the contents of bit 
posi tions 12-31 of the instruction word; the 19 low­
order bits of the result are used as the effective 
source address. 

Count, (Ru1)0_7 

Destination address, (Ru1)13_31 

Source byte string, the byte' string that begins with 
the byte location pointed to by the 19-bit effec­
tive source address and is C bytes in length (if 
R is 0). 

Destination byte string, the byte string that begins 
with the byte location pointed to by the des-
ti nati on address and is always C bytes in length. 

TRAPS BY BYTE-STRING INSTRUCTIONS 

Byte-string instructions cause a trap if either of the addressed 
byte strings come from memory pages that are protected by 
either access protection or write locks. A trap also occurs 
if elther byte stdng is fully or partly contoi!"'!ed with!!"'! mem­
ory pages that are physically not present. A check for 
these access trap conditions is made prior to initiation of 
any byte relocation or general register change. These tests 
are performed for MOVE BYTE STRING and TRANS LATE 
BYTE STRING. The source and destination locations are 
tested for MOVE BYTE STRING; only the destination lo­
cation is tested for TRANSLATE BYTE STRING, since there 
is no assurance that the translate table wi II be accessed in 
its entirety in the course of execution. If an access pro­
tection violation were to occur in trying to reach a byte in 
the translate table or decimal digit strings during the course 
of execution, then the instruction would trap and result in 
Ci pCii-tiCilly executed condition. However, if the destina­
tion byte string does overlap the translation table, the reg­
isters would be restored in such a manner that the instruction 
could be restarted after the protection violation had been 
corrected. When a trap occurs resulting in a partially 
executed instruction, the Register Altered indi cator wi" 
be set. 

88 Byte-String Instructions 

MBS MOVE BYTE STRING 
(Immediate Displacement, continue after interrupt) 

MOVE BYTE STRING copies the contents of the source byte 
string (left to right) into the destination byte string. The 
previous contents of the destination byte string are de­
stroyed, but the contents of the source byte string are not 
affected unless the destination byte string overlaps the 
source byte string. 

When the destination byte string overlaps the source byte 
string, the resulting destination byte string contains one or 
more repetitions of bytes from the source byte string. Thus, 
if a destination byte string of C bytes begins with the 
kth byte of a source byte string (numbering from 1), the first 
k-1 bytes of the source byte string are duplicated in the 
destination byte string x number of times, where x = C/{k-1). 
For example, if the destination byte string begins with the 
second byte of the source byte string, the first byte of the 
source byte string is duplicated throughout the destination 
byte string. 

If both byte strings begin with the same byte (i. e., k = 1) 
and the R field of MBS is nonzero, the destination byte 
string is read and replaced into the same memory locations. 
However, if both byte strings begin with the same byte and 
the R field of MBS is zero, the first byte of the byte string 
is duplicated throughout the remainder of the byte string 
(see "Case 111", below). 

Affected: (DBS), (R), (Ru1) 

(SBS) -DBS 

If MBS is indirectly addressed, it is treated as a nonexistent 
instruction. The basic processor unconditionally aborts 
execution of the instruction (at the time of operation code 
decoding) and traps to location X'40' with the contents of 
register R and the destination byte string unchanged. See 
"Traps by Byte String Instructions" (in this section) for other 
trap conditions. 

Case I, even, nonzero R fi e Id (Ru 1 =R + 1) 

Contents of register R: 

Contents of register R+1: 

The source byte string begins with the byte location pointed 
to by the source address in register R plus the displacement 
in MBS; the destination byte string begins with the byte lo­
cation pointed to by the destiratior address in register R+l. 



Both byte strings are C bytes in length. When the instruction 
is completed, the destination and source addresses are each 
incremented by C, and C is set to zero. 

Case II, odd R fi e Id (Ru 1 =R) 

Contents of register R: 

The source byte string begins with the byte location pointed 
to by the address in register R plus the displacement in MBS; 
the destination byte string begins with the byte location 
pointed to by the destination address in register R. Both 
byte strings are C bytes in length. When the instruction is 
completed, the destination address is incremented by C, 
and C is set to zero. 

Case III, zero R field (Rul=l) 

Contents of register 1: 

The source byte string consists of a single byte, the con­
tents of the byte location pointed to by the displacement in 
MBS; the destination byte string begins with the byte loca­
tion pointed to by the destination address in register 1 and 
is C bytes in length. In this case, the source byte is dupli­
cated throughout the destination byte string. When the 
instruction is completed, the destination address is incre­
mented by C, and C is set to zero. 

CBS COMPARE BYTE STRING 
{Immediate displacement, continue after interrupt} 

COMPARE BYTE STRING compares, as magnitudes, the 
contents of the source byte string with the contents of 
the destination byte string, byte by corresponding byte, 
beginning with the first byte of each string. The com­
parison continues unti I the specified number of bytes have 
been compared or unti I an inequality is found. When CBS 
is terminated, CC3 and CC4 are set to indicate the resultof 
the last comparison. If the CBS instruction terminates due to 
inequality, the count in register Rul is one greater than the 
number of bytes remaining to be compared; the source ad­
dress in register R and the destination address in register Rul 
indicate the locations of the unequal bytes. 

Affected: {R}, (Rul), CC3, CC4 

(SBS) : (DBS) 

Condition code settings: 

2 3 4 Result of CBS 

- 0 0 Source byte string equals destination byte 
string or initial byte count is equal to zero. 

- 0 Source byte string less than destination byte 
string. 

o Source byte string greater than destination 
byte string. 

If CBS is indirectly addressed, it is treated as a nonexistent 
instruction. The basic processor unconditionally aborts 
execution of the instruction (at the time of operation code 
decoding) and traps to location X'40' with the contents 
of register R and the destination byte string unchanged. 
See "Traps By Byte String Instructions" (in this section) for 
other trap conditions. 

Case I, even, nonzero R field {Rul=R+l} 

Contents of register R: 

Contents of register R+l: 

Ihe source byte string begins with the byte iocatlon pointed 
to by the source address in register R plus the displacement 
in CBS; the destination byte string begins with the byte lo­
cation pointed to by the destination address in register R+l. 
Both byte strings are C bytes in length. 

Case II, odd R field (Ru l=R) 

Contents of register R: 

The source byte string begins with the byte location pointed 
to by the address in register R plus the displacement in CBS; 
the destination byte string begins with the byte location 
pointed to by the destination address in register R. Both 
byte strings are C bytes in length. 

Case III, zero R field (Rul=l) 

Contents of register 1: 

The source byte string consists of a single byte, the con­
tents of the location pointed to by the displacement in CBS; 

Byte-String Instructions 89 



the destination byte string begins with the byte location 
pointed to by the destination address in register 1 and 
is C bytes in length. In this case, the source byte is com­
pared with each byte of the destination byte string unti I an 
inequality is found. 

TBS TRANSLATE BYTE STRING 
(Immediate displacement, continue after interrupt) 

TRANSLATE BYTE STRING replaces each byte of the desti­
nation byte string with a source byte located in a translation 
table. The destination byte string begins with the byte lo­
cation pointed to by the destination address in regi ster Ru 1, 
and is C bytes in length. The translation table consists of 
up to 256 consecutive byte locations, with the first byte 
location of the table pointed to by the displacement in TBS 
plus the source address in register R. A source byte is de­
fined as that which is in the byte location pointed to by the 
19 low-order bits of the sum of the following values. 

1. The displacement in bit positions 12-31 of the TBS 
instruction. 

2. The current contents of bit positions 13-31 of register R 
{source address}. 

3. The numeric value of the current destination byte, the 
8-bit contents of the byte location pointed to by the 
current destination address in bit positions 13-31 of 
register {Ru 1}. 

Affected: (DBS), {Ru 1} Trap: Instruction exception 

translated (DBS) - DBS 

The R field of the TBS instruction must be an even value for 
proper operation of the instruction; if the R field of TBS is 
en odd value, the instruction traps to location X'4D', 
instruction exception trap. 

If TBS is indirectly addressed, it is treated as a nonexistent 
instruction. The basic processor unconditionally aborts 
execution of the instruction (at the time of operation code 
decoding) and traps to location X'40' with the contents of 
register R and the destination byte string unchanged. 

See IITraps By Byte String Instructions" (in this section) for 
other trap conditions. Note that the check for access trap 
conditions is done only for the source byte string. 

Case I, even, nonzero R field (Ru1=R+l) 

Contents of register R: 

90 Byte-String Instructions 

Contents of register R+l: 

The destination byte string begins with the byte location 
pointed to by the destination address in register R + 1 and 
is C bytes in length. The source byte string {translation 
table} begins with the byte location pointed to by the dis­
placement in TBS plus the. source address in register R. 
When the instruction is completed, the destination address 
is incremented by C, C is set to zero, and the source ad­
dress remains unchanged. 

Case II, odd R fi e Id {Ru 1 =R} 

Because of the interruptible nature of TRANSLATE BYTE 
STRING, the instruction traps with the contents of register R 
unchanged when an odd-numbered general register is speci­
fied by the R field of the instruction word. 

Case III, zero R field {Ru1=1} 

Contents of register 1: 

The destination byte string begins with the byte location 
pointed to by the destination address in register 1 and 
is C bytes in length. The source byte string {translation 
table} begins with the location pointed to by the displace­
ment in TBS. When the instruction is completed, the desti­
nation address is incremented by C and C is set to zero. 

TTBS TRANSLATE AND TEST BYTE STRING 
{Immediate displacement, continue after interrupt} 

TRANSLATE AND TEST BYTE STRING compares the mask 
in bit positions 0-7 of register R with source bytes in a byte 
translation table. The destination byte string begins with 
the byte location pointed to by the destination address in 
register Rul, and is C bytes in length. The byte translation 
table and the translation bytes themselves are identi cal to 
that described for the instruction TRANSLATE BYTE STRING. 
The destination byte string is examined (without being 
changed) unti I a translation byte {source byte} is found that 
contains a 1 in any of the bit positions selected by a 1 in 
the mask. When such a translation byte is found, TTBS 
replaces the mask with the logical product (AND) of the 
transiation byte and the mask, and terminates with CC4 
set to 1. 

If the TTBS instruction terminates due to the above condi­
tion, the count (C) in register Rul is one greater than 
the number of bytes remaining to be compared and the 
destination address in register Rul indicates the location 



of the destination byte that caused the instruction to 
terminate. If no translation byte is found that satisfies 
the above condition after the specified number of destina­
tion bytes have been compared, TTBS terminates with CC4 
reset to O. In no case does the TTBS instruction change 
the source byte stri ng. 

Affected: (R), (Rul), CC4 Trap: Instruction exception 

If translated (SBS) n mask I 0, translated (SBS) n mask­
mask and stop 

If translated (SBS) n mask = 0, continue 

Condition code settings: 

2 3 4 Result of TTBS 

- 0 Translation bytes and the mask do not com­
pare ones any place. 

The last translation byte compared with the 
mask contained at least one 1 corresponding 
to a 1 in the mask. 

The R field of the TTBS instruction must be an even value 
for proper operation of the instruction; if the R field of TTBS 
is an odd value, the instruction traps to location Xl 4D I

, 

instruction exception trap. 

If TTBS is indirectly addressed, it is treated as a nonexistent 
Insrrucrion. The basic processor unconciiTionaiiy aborts 
execution of the instruction (at the time of operation code 
decoding) and traps to location XI40 1 with the contents of 
register R and the destination byte string unchanged. 

See IITraps By Byte String Instructions" (in this section) for 
other trap conditions. Note that the check for access trap 
conditions is done only for the source byte string. 

Case I, even, nonzero R field (Rul=R+1) 

Contents of register R: 

Contents of register R+l: 

Count I !: Destination ~ddress I 
o 1 2 314 5 6 7 8 9 10 11112 13 14 15 16 17 18 19120 212223;2425262712829 30 31 

The destination byte string begins with the byte location 
pointed to by the destination address in register R + 1 and 
is C bytes in length. The source byte string (translation 
table) begins with the byte location pointed to by the dis­
placement in TTBS plus the source address in register R. 

Case II, odd R field 

Because of the interruptible nature of TRANS LATE AND 
TEST BYTE STRING the instruction traps with the contents 
of register R unchanged when an odd-numbered general reg­
ister is specified by the R field of the instruction word. 

Case III, zero R field (Rul=1) 

Contents of register 1: 

The destination byte string begins with the byte location 
pointed to by the destination address in register 1 and is 
C bytes in length. The source byte string (translation table) 
begins with the location pointed to by the displacement in 
TTBS. In this case, the instruction automatically provides 
a mask of eight lis. (This is an exception to the general 
rule, used in the other byte-string instructions, the reg­
ister 0 provides all OIS as its contents. ) 

EBS EDIT BYTE STRING 
(Immedi ate displacement, continue after interrupt) 

63 I R I : DisPlacem~nt I 
7 8 9 10 11 12 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31 o 1 2 

EDIT BYTE STRING converts a decimal information field 
from packed decimal format to zoned decimal EBCDIC for­
mat, under control of the editing pattern in the destination 
byte string, and replaces the destination byte string with the 
edited, zoned result. (See "Decimal Instructions", "Packed 
Decimal Numbers", and "Zoned Decimal Numbers" for 
a description of packed and zoned decimal formats.) EBS 
proceeds one byte at a time, starting with the first (most 
significant) byte of the editing pattern, and continues 
unti I all bytes in the editing pattern have been processed. 
The fill character, contained in bit position 0-7 of regis­
ter R, replaces the pattern byte under specifi ed conditions. 
More than one decimal number field can be edited by a 
single EBS instruction if the pattern in memory is, in fact, 
a series of patterns corresponding to a series of number 
fields. In such cases, however, after the EBS instruction is 
completed, the condition code indicates the result of the 
last decimal number field processed and register 1 contains 
the byte address (or the byte address plus 1) of the last sig­
nificance indicator in the edited destination byte string. 
(This allows the insertion of a floating dollar sign, etc., 
with a subsequent instruction. ) 

R must be an even value (excluding 0) for proper operation 
of the instruction; if R is an odd value or equal to zero, the 
basic processor traps to location XI 4D I

, instruction excep­
tion trap, with the contents in register R unchanged. 

Byte-String Instructions 91 



Contents of register R: 

Contents of register R+l: 

The destination byte string is an editing pattern that begins 
in the byte location pointed to by the destination address 
in register R + 1, and is C bytes in length. The decimal 
information field, which must be in packed decimal format, 
begins with the byte location pointed to by the displace­
ment in EBS plus the source address in register R. The deci­
mal information field must contain legal decimal digit and 
sign codes (packed format) and must begin with a decimal 
digit. 

The destination byte string (the editing pattern) may con­
tain any 8-bit codes desired. However, four byte codes 
in the editing pattern have special meanings. These codes 
are as follows: 

Binary value Function Abbrevi ati on 

0010 0000 (X'20 ' ) Digit selector ds 

0010 0001 (X'211) Signifi cance start ss 

0010 0010 (X'221) Field separation fs 

0010 0011 (X'231) Immediate signifi- si 
cance start 

Before executing EBS, the condition code should be set 
t" MOO if tho hi"h ....... ...Io .. ...Ii"a .... f tho ...Io,...;m,.,1 ..... mho .. ;., i ... • _____ •• 1.1- .".~ •• _. __ • _.~ •• _ •••• ____ •••• _ ••• _ ••• ....,_ ..... III 

the left half of a byte, and should be set to 0100 if the 
high-order digit is in the right half of a byte. 

The editing operation performed on each pattern byte of 
the destination byte string is determined by the following 
condi tions: 

1. The pattern byte obtained from the destination byte 
string. 

2. The decimal digit obtained from the decimal number 
field. 

3. The current state of the condition code. 

Depending upon various combinations of these condi­
tions' the instruction EDIT BYTE STRING performs one 

92 Byte-String Instructions 

(and only one) of the following actions with the pattern byte 
and the decimal digit: 

1. The fi II character (contents of bit positions 0-7 of reg­
ister R) or a blank character replaces the byte in the 
destination byte string. 

2. The decimal digit is expanded to zoned decimal format 
'and replaces the pattern byte in the destination byte 
string. 

3. The pattern byte remains unchanged. 

In general, the normal editing process is as follows: 

1. Each byte of the destination byte string is replaced by 
a fi II character until significance is present, either in 
the destination byte string or in the decimal informa­
tion field. Significance is indicated by any of the 
following: 

a. The pattern byte is X' 23 1 (immediate significance 
start), which begins significance with the current 
decimal digit. 

b. The pattern byte is X' 21 1 (significance start), 
which begins significance with the following pat­
tern byte. 

c. The current decimal digit is nonzero, which begins 
signifi cance with the current pattern byte. 

2. After significance is encountered, each pattern byte 
that is X' 20 ' (digit selector), X' 21 1 (significance start), 
X'22 1 (field separator), or X' 23 1 (immediate signifi­
cance start) is replaced by a zoned decimal number 
from the decimal field and all other pattern bytes are 
unchanged. This process continues unti I any of the 
following conditions occurs: 

a. A positive sign is encountered in the decimal field, 
in which case subsequent pattern bytes are re­
placed by blank characters unti I significance is 
again present, unti I a field separator is encoun­
tered, or unti I the destination byte string is entirely 
processed, whichever occurs first. 

b. A negative sign is encountered in the decimal 
field, in which case subsequent pattern bytes are 
unchanged unti I signifi cance is again present, unti I 
a field separator is encountered, or unti I the desti­
nation byte string is entirely processed, whi chever 
occurs fi rst. 

c. A pattern byte of X' 22 1 (field separator) is encoun­
tered, in which case the field separator is replaced 
by a fi II character; subsequent pattern bytes are re­
placed by the fill character until significance is 



again present, unti I a positive or negative sign is 
encountered, or unti I the destination byte string 
is entirely processed, whichever occurs first. 

d. The destination byte string is entirely processed, 
in which case the basic processor executes the 
next instruction in sequence. 

Detai led operation of EDIT BYTE STRING follows. The 
explanation is necessari Iy quite detailed due to the high 
degree of flexibi lity inherent in EBS. Condition code 
settings are made continuously during the editing process 
and these settings help determine how each subsequent pat­
tern byte will be edited. The summary of condition code 
settings given later in this section wi II help clarify the 
following discussion: 

1. If the count in bit position 0-7 of register R+l is a 
nonzero, a pattern byte is obtained from the destina­
tion byte string; if the count in register R+l is 0, 
the basi c processor executes the next instruction in 
sequence. 

2. If the pattern byte is a digit selector (X'20'), a sig­
nificance start (X'211), or immediate significance 
start (X'231), a digit is accessed from the decimal 
information field as follows: 

a. A decimal byte is obtained from the byte location 
pointed to by the displacement in EBS plus the 
source address in register R. 

b. If bits 0-3 of the decimal byte are a sign code, 
the basi c processor auto mati ca lIy aborts executi on 
or EBS ana traps ro iocarion X;45;, wlrh the con­
tents of register R, register R+l, the condition 
code, and the destination byte string unchanged 
from their current contents. 

c. If CC2 is currently set to 0, the digit to be used 
for editing is the left digit (bits 0-3) of the deci­
mal byte; however, if CC2 is currently set to 1, 
the digit to be used is the right digit (bits 4-7) 
of the decimal byte. In either case, CC3 is set 
to 1 if the digit is nonzero. If CC2 is set to 1 
and the right digit (bits 4-7) of the decimal byte 
is a sign code, the basic processor automatically 
aborts execution of EBS and traps to location X'451, 
as described above. 

d. One of the following editing actions is performed: 

Conditions Action 

Pattern byte=SI(X '23 1) Expand digit to zoned 
format, store in pat­
tern byte locati on, 
and set CC4 to 1 (start 
significance). 

Pattern byte=SS(X'21I) 
CC4=1 

Expand digit to zoned 
format and store in 
pattern byte location 

Mark 

Mode 1 

None 

Conditions Action Mark 

Pattern byte=S S (X 1211) (because CC4= 1 means 
CC4=l (cont.) significance already 

encountered}. 

Pattern byte=SS Expand digit to zoned Mode 1 
CC4--o format, store in pat-
nonzero digit tern byte location 

(because nonzero digit 
begins significance), 
and set CC4 to 1. 

Pattern byte=SS Store fi II character in Mode 2 
CC4--o pattern byte location 
digit=O (because significance 

starts with next pat-
tern byte) and set 
CC4 to 1. 

Pattern byte=DS(X'20'} Expand digit to zoned None 
CC4=l format, and store 

digit in pattern byte 
location. 

Pattern byte=DS Expand digit to zoned Mode 1 
CC4=O format, store digit in 
nonzero digit pattern byte location, 

and set CC4 to 1 to 
signal significance. 

Pattern byte=DS Store fi II character in None 
CC4=O pattern byte locati on 
digit=O (because significance 

not encountered yet). 

e. If CC2 is currently reset to 0 and if bits 4-7 of 
the decimal byte are a positive decimal sign code, 
CCl is set to 1, CC4 is reset to 0, and the source 
address in register R is incremented by 1. If CC2 
is currently reset to 0 and if bits 4-7 of the deci­
mal byte are a negative decimal sign code, CCl 
and CC4 are both set to 1, and the source address 
is incremented by 1. Otherwise, CC2 is added 
to the source address and then CC2 is inverted. 

f. If marking is invoked at set d, above, one of the 
two following marking operations are performed: 

Mode 1: Load bits 13-31 of register R+l into bit 
positions 13-31 of register 1; bit posi­
tions 0-12 of register are unpredictable. 

Mode 2: Load bits 13-31 of register R+l into bit 
positions 13-31 of register 1 and then 
increment the contents of register 1 
by 1; bit positions 0-12 of register 1 are 
unpredictable. 

If marking is not applicable (i. e., significance 
has not been encountered), the contents of reg­
ister 1 are not affected. 

Byte-String Instructions 93 



3. 

4. 

5. 

If the pattern byte is a field separator (X'22'), the fill 
character is stored in the pattern byte location. CC1, 
CC3, and CC4 are all reset to O's, and CC2 remains 
unchanged. 

If the pattern byte is not a digit selector, significance 
start, immediate significance start, or field separator, 
one of the following actions are performed: 

Conditions 

CC1=O } 
CC4=O 

CC1=1 } 
CC4=O 

CC4=l 

Action 

Store fill character in pattern byte 
location. 

Store blank character (X'40') in pattern 
byte location. 

None (pattern byte remains unchanged). 

Increment the destination address in regi ster Ru 1 and 
decrement the count in regi ster Ru 1. If the count is 
sti II nonzero, process the next pattern byte as above; 
otherwise, execute the next instruction in sequence. 

Affected: (R),(Ru1) 
(register 1), 
(OBS), CC 

Traps: Nonexistentinstruc­
tion, decimal arith­
metic, instruction 
exception 

edited (SBS) -OBS 

Condition code settings: 

o 

2 3 4 Result of EBS 

- 0 Significance is not present, no sign digit has 
been encountered. 

o Signifi cance is present, no sign digit has been 
encountered. 

- 0 A positive sign has been encountered. 

A negative sign has been encountered. 

- 0 Next digit to be processed is leftdigitofbyte. 

Nextdigit to be processed is rightdigitofbyte. 

- 0 No nonzero digit has been encountered. 

- A nonzero digit has been encountered. 

If EBS is indirectly addressed, it is treated as a nonexistent 
instruction. The basic processor unconditionally aborts 
execution of the instruction (at the time of operation code 
decoding) and traps to location X'40' with the contents of 
register R, register Rul, register 1, the destination byte 
string, and the condition code unchanged. 

The R field of the EBS instruction must be an even value 
(excluding 0) for proper operation of the instruction; if the 

94 Byte-String Instructions 

R field is an odd value or equal to zero, the instruction 
traps to location X'40 ' , instruction exception trap. 

If an i "egal digit or sign is detected in the decimal infor­
mation field, the basic processor unconditionally aborts 
execution of the instruction (at the time the i "egal digit 
or sign is encountered) and traps to location X'45' with the 
contents of register R, register Ru1, register 1, the destina­
tion byte string, and the condition code containing the re­
sults of the last editing operation performed before the 
illegal digit or sign was encountered. 

See "Traps By Byte-String Instructions ll (in this section) 
for other trap conditions. 

In the following examples, the hexadecimal codes for the 
digit selector (X' 20'), the significance start (X'21'), the 
field separation (X'22'), and the immediate significance 
start (X'23') are represented by the character groups ds, 
ss, fs, and si, respectively. Also, the symbol 1:> is used to 
represent the character blank (X'40'). Note that code X'5C' 
represents the * symbol. 

Example 1, before execution: 

The instruction word is 

X '63600000' 

The contents of register 6 are: 

X'5C000100' 

The contents of register 7 are: 

X'OCOO1ooo' 

The contents of the decimal information field beginning at 
byte location X'100' are: 

0000000+ 

The contents of the destination byte string beginning at byte 
location X'lOOO' are: 

ds ds , ds ds ss . ds ds 1:> C R 

The condition code is: 

0000 

Example 1, after execution: 

The instruction word is unchanged. 

The new contents of register 6 are: 

X'5C000104' 



The new contents of register 7 are: 

X'0000100C' 

The contents of the decimal information field are unchanged. 

The new contents of the destination byte string are: 

******.00'b'b'b 

The new condition code is: 

1000 

The contents of register 1 are: 

X'xxx010061 

By subsequent programming, a floating dollar sign can be 
inserted in front of the fi rst si gn ifi cant character of the 
edited byte string by using the contents of register 1, 
minus 1, as the address of the byte location where the 
dollar sign is to be inserted. 

Example 2, before execution: 

The initial conditions are identical to example 1, except 
that the contents of the decimal information field are: 

065432 1-

Example 2, after execution: 

Jhe instruction word and the decimal field are unchanged. 

The new contents of registers 6 and 7 are identical to those 
given for example 1. 

The new contents of the destination byte string are: 

*6,543.21'bCR 

The new condition code is: 

1011 

The new contents of register 1 are: 

X' xxx01001 1 

Example 3, before execution: 

The initial conditions are identical to example 1, except 
that the contents of the decimal field are: 

00 54 32 1+ 

Example 3, after execution: 

The instruction word and the decimal field are unchanged. 

The new contents of registers 6 and 7 are identical to that 
given for example 1. 

The new contents of the destination byte string are: 

***543.21'b'b'b 

The new condition code is: 

1010 

The new contents of register 1 are: 

X1xxxO 1 003 1 

Example 4, before execution: 

The instruction word is: 

XI 63400 1 001 

The contents of register 4 dre: 

X'lB001000 ' 

The contents of register 5 are: 

XI 190020001 

byte location X' l100 ' are: 

06 12 50 0+ 01 23 4+ 03 5-

The contents of the destination byte stri-ng beginning at byte 
location X' 2000' are: -

A ds ds si . ds ds ds fs B ds ds ss . ds ds C fs D 

si ds ds END 

The condition code is: 

0100 

Example 4, after execution: 

The instruction word is unchanged. 

The new contents of register 4 are: 

XI 7BOO 1 0091 

The new contents of register 5 are: 

X'000020191 

The decimal information field is unchanged. 

Byte-String Instructions 95 



The new contents of the destination byte string are: 

# 6 1 2 . 5 0 0 # # # 1 2 . 3 4 f) # # 0 3 5 END 

The new condition code is: 

1011 

The new contents of register 1 are: 

X'xxx02013' 

PUSH-DOWN INSTRUCTIONS (NON-PRIVILEGED) 

The term "push-down processing ll refers to the programming 
technique (used extensively in recursive routines) of storing 
the context of a calculation in memory, proceeding with a 
new set of information, and then activating the previously 
stored information. Typically, this process involves a re­
served area of memory (stack) into which operands are 
pushed (stored) and from which operands are pulled (loaded) 
on a last-in, first-out basis. The basic processor pro­
vides for simplified and efficient programming of push­
down processing by means of the following non-privi leged 
instructions: 

Instruction Name Mnemonic 

Push Word PSW 

Pull Word PLW 

Push Multiple PSM 

Pull Multiple PLM 

Modify Stack Pointer MSP 

~T6r.1C pmNTI=R nnnRI I=wnRn I~PIl\ _ ... _ ..... _ ........ _ .... -----_ .. _ ..... - ,---, 

Each non-privileged push-down instruction operates with 
respect to a memory stack that is defined by a doubleword 
located at effective address of the instruction. This double­
word, referred to as a stack pointer doubleword (SPD), has 
the following structure: 

I ~·I Space count I~I Word count I 
'32 '33 34 35136 37 ;8 39140 41 42 431« 45 46 47148 '49 50 5 d 52 53 54 55156 57 58 59160 61 62 63! 

tFor real extended mode of addressing this is a 20-bit 
field (12-31); for real and virtual addressing modes it is a 
17-bit field (15-31). 

96 Push-Down Instructions (Non-Privi leged) 

Bit positions 15 through 31 of the SPD contain a 17-bit 
address field t that points to the location of the word cur­
rently at the top (highest-numbered address) of the oper­
and stack. In a push operation, the top-of-stack address 
is incremented by 1 and then an operand in a general reg­
ister is pushed (stored) into that location, thus becoming 
the contents of the new top of the stack; the contents of 
the previous top of the stack remain unchanged. In a pull 
operation, the contents of the current top of the stack are 
pulled (loaded) into a general register and then the top­
of-stack address is decremented by 1; the contents of the 
stack remain unchanged. 

Bit positions 33 through 47 of the SPD, referred to as the 
space count, contain a 15-bit count (0 to 32,767) of the 
number of word locations currently avai lable in the region 
of memory allocated to the stack. Bit positions 49 through 63 
of the SPD, referred to as the word count, contain a 15-bit 
count (0 to 32,767) of the number of words currently in the 
stack. In a push operation, the space count is decremented 
by 1 and the word count is incremented by 1; in a pull oper­
ation, the space count is incremented by 1 and the word 
count is decremented by 1. At the beginning of all non­
privi leged push-down instructions, the space count and the 
word count are each tested to determine whether the instruc­
tion would cause either count field to be incremented above 
the upper limit of 215_1 (32,767), or to be decremented 
below the lower limit of O. If execution of the push-down 
instruction would cause either count limit to be exceeded, 
the basic processor unconditionally aborts execution of the 
instruction, with the stack, the stack pointer doubleword, 
and the contents of general registers unchanged. Ordinari Iy, 
the basic processor traps to location X'42' after aborting 
a push-down instruction because of impending stack limit 
overflow or underflow, and with the condition code un­
changed from the value it contained before execution of 
the instruction. 

However, this trap action can be selectively inhibited by 
setting either (or both) of the trap inhibit bits in the SPD 
to 1. 

Bit position 32 of the SPD, referred to as the trap-on-space 
(TS) inhibit bit, determines whether the basic processor wi II 
trap to location X'42' as a result of impending overflow or 
underflow of the space count (SPD33-47)' as follows: 

TS Space count overflow/underflow action 

o If the execution of a pull instruction would cause the 
space count to exceed 215_1, or if the execution of a 
push instruction would cause the space count to be 
less than 0, the basic processor traps to location X'42' 
with the condition code unchanged. 

Instead of trapping to location X'42', the basic pro­
cessor sets CCl to 1 and then executes the next in­
struction in sequence. 

Bit position 48 of the SPD, referred to as the trap-on-word 
('f\N) inhibit bit, determines whether the basic processor 



traps to location X'421 as a result of impending overflow 
or underflow of the word count (SPD 49-63)' as follows: 

TW Word count overflow/underflow action 

o If the execution of a push instruction would cause the 
word count to exceed 215-1, or if the execution of 
a pull instruction would cause the word count to be 
less than 0, the basic processor traps to location X'421 

with the condition code unchanged. 

Instead of trapping to location X'421, the basic pro­
cessor sets CC3 to 1 and then executes the next 
instruction in sequence. 

PUSH-DOWN CONDITION CODE SETTINGS 

If the execution of a push-down instruction is attempted 
and the basic processor traps to location X'421, the condi­
tion code remains unchanged from the value it contained 
immediately before the instruction was executed. 

If the execution of a push-down instruction is attempted and 
the instruction is aborted because of impending stack limit 
overflow or underflow (or both) but the push-down stack 
limit trap is inhibited by one (or both) of the inhibits (TS 
and TW), then, CC 1 or CC3 is set to 1 (or both are set 
to lis) to indicate the reason for aborting the push-down 
instruction, as follows: 

o 

2 3 4 Reason for abort 

- 0 

Impending overflow of word count on a push 
operation or impending underflow of word 
count on a pull operation. The push-down 
stack limit trap was inhibited by the TW 
bit (SPD4S). 

Impending overflow of space count on a pull 
operation or impending underflow of space 
count on a push operation. The push-down 
stack limit trap was inhibited by the TS bit 
(SPDJ2)· 

Impending overflow of word count and under­
flow of space count on a push operation or im­
pending overflow of space count and underflow 
of word count on a pull operation. The push­
down stack limit trap was inhibited by both 
the TW and the TS bits. 

If a push-down instruction is successfully executed, CCl 
and CC3 are reset to 0 at the completion of the instruction. 
Also, CC2 and CC4 are independently set to indi cate 

the current status of the space count and the word count, 
respectively, as follows: 

2 3 4 Status of space and word counts 

- 0 - 0 The current space count and the current word 
count are both greater than zero. 

o The current space count is greater than zero, 
but the current word count is zero, indicating 
that the stack is now empty. If the next oper­
ation on the stack is a pull instruction, the 
instruction wi II be aborted. 

- 0 The current word count is greater than zero, 
but the current space count is zero, indicating 
that the stack is now fu II. If the next opera­
tion on the stack is a push instruction, the 
instruction wi II be aborted. 

If the basic processor does not trap to location XI 421 as a 
result of impending stack limit overflow/underflow, CC2 
and CC4 indicate the status of the space and word counts 
at the termination of the push-down instruction, regardless 
of whether the space and word counts were actually modi­
fied by the instruction. In the following descriptions of 
the push-down instructions, condition code settings given 
are only those that can be produced by the instruction, 
provided that the basic processor does not trap to lo­
cation X1421. 

PSW PUSH WORD 
(Doubleword index alignment) 

PUSH WORD stores the contents of register R into the push­
down stack defined by the stack pointer doubleword lo­
cated at the effective doubleword address of PSW. If the 
push operation can be successfully performed, the instruc­
tion operates as follows: 

1. The current top-of-stack address (SPD 15_31 )t is incre­
mented by 1 to point to the new top-of-stack location. 

2. The contents of register R are stored in the location 
pointed to by the new top-of-stack address. 

t 
For real extended mode of addressing this is a 20-bit 

field (12-31); for real and virtual addressing modes it is 
a 17-bit field (15-31). 

push-I)own Instructions (Non-Privileged) 97 



3. The space count (SPD33-47) is decremented by 1 and 
the word count (SPD49-63) is incremented by 1. 

4. The condition code is set to reflect the new status of 
the space count. 

Affected: (SPD), (TSA+1), CC Trap: Push-down stack limit 

(SPD)15_31 + 1 - SPD 15_31 t 

(R) - (SPD
15

_
31

)t 

(SPD)33_47-1 - SPD33_47 

(SPD) 49-63 + 1 - SPD 49-63 

Condi ti on code setti ngs: 

2 3 4 Result of PSW 

0 0 0 0 Space count is greater 

} 
than O. 

0 0 0 Space count is now O. 

0 0 0 Word count = 215_1 , 
TW = 1. 

0 0 Space count = 0, 
TS = 1. 

0 Space count = 0, word 
count = 0, TS = 1. 

0 Word count = 215_1 , 
space count = 0, 
TW = 1, and TS = 1. 

PLW PULL WORD 
(Doubleword index alignment) 

Instructi on 
completed 

Instruction 
aborted 

08 I R I x I 1 Reference address I 
o 1 2 3 14 5 718 9 10 llL2 13 14'15h6 17 18 19120 21 22 231242526 2712829 JO ) 

PULL WORD loads register R with the word currently at the 
top of the push-down stack defined by the stack pointer 
doubleword located at the effective doubleword address 
of PLW. If the pull operation can be performed successfully, 
the instruction operates as follows: 

1. Register R is loaded with the contents of the loca­
tion pointed to by the current top-of-stack address 
(SPD 15_31)t. 

2. The current top-of-stack address is decremented by 1, 
to point to the new top-of-stack location. 

tFor real extended mode of addressing this is a 20-bit 
field (12-31); for real and virtual addressing modes it is 
a 17-bit field (15-31). 

98 Push-Down Instructions (Non-Privileged) 

3. The space count (SPD33-47) is incremented by 1 and 
the word count (SPD49-63) is decremented by 1. 

4. The condition code is set to reflect the status of the 
new word count. 

Affected: (SPD), (R), CC Trap: Push-down stack limit 

(SPD)15_31- R; (SPD)15_31-1 - SPD 15_31 t 

{SPD)33_47 + 1 - SPD33_4i 

(SPD)49_63-1 -SPD 49-63 

Condition code settings: 

2 3 4 Result of PLW 

0 0 0 0 Word count is greater 
than O. 

0 0 0 Word count is now O. 

0 0 Word count = 0, TW = 1. 

0 Space count = 0, 
word count = 0, TW = 1. 

0 0 0 
15 

Space count = 2 -1, 
TS = 1. 

0 1 
15 

Space count = 2 -1, 
word count = 0, TS = 1, 
and TW = 1. 

PSM PUSH MULTIPLE 
(Doubleword index alignment) 

) 
Instruction 
completed 

Instruction 
aborted 

PUSH MULTIPLE stores the contents of a sequential set of 
general registers into the push-down stack defined by the 
stack pointer doubleword located at the effective double­
word address of PSM. The condition code must contain 
a count of the number of registers to be pushed into the 
stack. (An initial value of 0000 for the condition code 
specifics that ef! 16 genera! registers ere to be pushed 
into the stack.) The registers are treated as a circular set 
(with register 0 following register 15) and the first register 
to be pushed into the stack is register R. The last register 
to be pushed in to the stack is register R + CC -1, and the 
contents of this register become the contents of the new 
top-of-stack location. 



If there is sufficient space in the stack for all of the 
specified registers, PSM operates as follows: 

1. The contents of registers R to R = CC - 1 are stored in 
ascending sequence, beginning with the location 
tion pointed to by the current top-of-stack address 
(SPD15_31)t plus 1 and ending with the current top­
of-stack address plus CC. 

2. The current top-of-stack address is incremented by the 
value of CC, to point to the new top-of-stack location. 

3. The space count (SPD33-47) is decremented by the 
value of CC and the word count is incremented by the 
value of CC. 

4. The condition code is set to reflect the new status of 
the space count. 

Affected: (SPD), (TSA+1) to 
(TSA+CC), CC 

Trap: Push-down stack limit 

(R) - (SPD)15_31 + 1. .. (R+CC-l) - (SPD)t 15-31 + CC 

(SPD)15_31 +CC -SPD15_3 / 

(SPD)33_47-CC -SPD33_47 

(SPD) 49-63 +CC - SPD 49-63 

Condition code settings: 

0 

0 

0 

2 3 4 Result of PSM 

0 0 0 

0 0 

0 0 

0 0 0 

o 0 

0 0 

0 0 

0 

0 

Space count> o. 

Space count = O. 

Word count + CC > 215_1, 
TW = 1. 

Space count < CC, TS = 1. 

Space count < CC, worq 
count = 0, TS = 1. 

Space count < CC, word 
count + CC > 215_1 
TS = 1, and TW = 1. 

Space count = 0, TS = 1. 

Space count = 0, word 
count = 0, TS = 1. 

Space count = 0, word 
count + CC > 215_1, 
TS = 1, and TW = 1. 

Instruction 
completed 

Instructi on 
aborted 

tFor real extended mode of addressing this is a 20-bit 
field (12-31); for real and virtual addressing modes it is a 
17-bit field (15-31). 

If the instruction operation extends into a memory page 
protected either by the access protection codes or write 
locks, the memory protection trap can occur. If the opera­
tion extends into a memory region"that is physically not 
present, the nonexistent memory address trap can occur. 

If the address of the elements within the stack (pointed to 
by the top-of-stack address) is in the range 0 through -15, 
then the registers indi cated by the R field of the PSM in­
struction are stored in the general registers rather than in 
main memory. In this case the results wi II be unpredictable if 
any source registers are also used as destination registers. 

PLM PULL MULTIPLE 
(Doubleword index alignment) 

PULL MULTIPLE loads a sequential set of general registers 
from the push-down stack defined by the stack pointer 
doubleword located at the effective doubleword address of 
PLM. The condition code must contain a count of the num­
ber of words to be pulled from the stack. (An initiaJ value 
of 0000 for the condition code specifies that 16 words are 
to be pulled from the stack.) The registers are treated as a 
circular set (with register 0 following register 15), the first 
register to be loaded from the stack is register R+CC-1, and 
the contents of the current top-of-stack location becomes 
the contents of this register. The last register to be loaded 
is register R. 

If there is a sufficient number of words in the stack to load 
all of the specified registers, PLM operates as toiiows: 

1. Registers R+CC-1 to register R are loaded in descend­
ing sequence, beginning with the contents of the lo­
cation pointed to by the current top-of-stack address 
(SPD15-31)t and ending with the contents of the loca­
tion pointed to by the current top-of-stack address 
minus CC-1. 

2. The current top-of-stack address is decremented by the 
value of CC, to point to the new" top-of-stack location. 

3. The space count (SPD33-47) is incremented by the 
value of CC and the word count is decremented by the 
value of CC. 

4. The condition code is set to reflect the new status of 
the word count. 

Affected: (SPD), (R+CC-l) 
to (R), CC 

((SPDh5_31t-R +CC -1, ... , 

((SPD)15-31 -Icc - 11) - Rt 

(SPD)15-31 - CC- SPD 15-31 t 

(SPD)33-47 + CC - SPD33-47 

(SPD)49-63 - CC - SPD49-63 

Trap: Push-down stack limit 

push-Down Instructions (Non-Privileged) 99 



Condition code settings: 

2 3 

0 0 0 

0 0 0 

0 0 

0 0 

0 

0 

0 0 

o 

o 

4 Result of PLM 

0 Word count> 0 

Word count = 0 

0 Word count < CC, 
TVV = 1 

Word count = 0, 
TVV = 1 

0 Space count = 0, 
word count < CC, 
f\N = 1 

Space count = 0, 
word count = 0, 
TW = 1 

0 
15 

Space count + CC > 2 -1, 
TS = 1 

15 o Space count + CC > 2 -1, 
word count < CC, TS = 1, 
and TW = 1 

15 
Space count + CC > 2 -1, 
word count = 0, TS = 1, 
and TW = 1 

1 
Instruction 
completed 

Instru cti on 
aborted 

If the instruction operation extends into a memory page 
protected either by the access protection codes or write 
locks, the memory protection trap can occur. If the 
operation extends into a memory region that is physically 
not present, the nonexistent memory address trap can 
occur. 

If the address of the elements within the stack (pointed to 
by the top-of-stack address) is in the range 0 through 15, 
then the words to be !o(Jded ore taken from the genera! 
registers rather than from main memory. In this case, the 
results wi II be unpredictable if any of the source registers 
are also used as destination registers. 

MSP MODIFY STACK POINTER 
(Doubleword index alignment) 

MODIFY STACK POINTER modifies the stack pointer 
dcub!e\\'ord, !oceted at the effective doublewoid addiess 
of MSP by the contents of register R. Register R must have 
the following format: 

100 Push-Down Instructions (Non-Privileged) 

Bit positions 16 through 31 of register R are treated as a 
signed integer, with negative integers in two's complement 
form (i. e., a fixed-point halfword). The modifier is alge­
brai ca Ily added to the top-of-stack address, subtracted 
from the space count, and added to the word count in the 
stack pointer doubleword. If, as a resu It of MSP, either 
the space count or the word count would be decreased be­
low 0 or increased above 215_1, the instruction is aborted. 
Then, the basic processor either traps to location X'42' or 
sets the condition code to reflect the reason for aborting, 
depending on the stack limit trap inhibits. 

If the modification of the stack pointer doubleword can be 
successfully performed, MSP operates as follows: 

1. The modifier in register R is algebraically added to the 
current top-of-stack address (SPD15-31)t, to point to 
a new top-of-stack location. (If the modifier is neg­
ative, it is extended to 17 bits by appending a high­
order 1.) 

2. The modifier is algebraically subtracted from the cur­
rent space count (SPD33-47) and the result becomes 
the new space count. 

3. The modifier is algebraically added to the current 
word count (SPD49-63) and the result becomes the new 
word count. 

4. The condition code is set to reflect the new status of 
the new space count and new word count. 

Affected: (SPD), CC Trap: Push-down stack limit 

(SPD)15_31 + (R)16-31SE - SPD 15-31 t 

(SPD)33_47 - (R)16-31 - SPD33_47 

(SPD)49_63 + (R)16_31- SPD 49-63 

Condition code settings: 

2 3 4 Resu!t of MSP 

o 0 0 0 Space count> 0, 
word count > O. 

000 Space count> 0, 
word count = O. 

o 0 0 Space count = 0, 

o o 

word count> O. 

Space count = 0, 
word count = 0, 

,.,.. 1"\ 

mOalTler = v. 

Instruction completed 

tFor real extended mode of addressing this is a 20-bit 
field (12-31); for real and virtual addressing modes it is a 
17-bit fi e Id (15-31). 



If CC1, or CC3, or both CC1 and CC3 are lis after 
!,!xecution of MSP, the instruction was aborted but the push­
down stack limit trap was inhibited by the trap-on-space 
inhibit (SPD32), by the trap-on-word inhibit (SPD48), or 
both. The condition code is set to reflect the reason for 
aborting as follows: 

2 3 4 Status of space and word counts 

- 0 Word count> O. 

Word count = O. 

- 0 - 0 ~ word count + modifier ~ 215
_1. 

- Word count + modifier < 0, and TW = 1 or 
word count + modifier> 215_1, and TW = 1. 

- ·0 Space count> O. 

Space count = O. 

o - 0 ~ space count - modifier < 215
_1. 

- Space count - modifier < 0, and TS = 1 or 
space count - modi fi er > 215-1, and TS = 1. 

PUSH-DOWN INSTRUCTIONS (PRIVILEGED) 

The computer has two privi leged push-down instructions: 
PUSH STATUS (PSS) and PULL STATUS (PLS). These two in­
structions and a Status Stack Pointer Doubleword faci litate 
the storing (pushing) or loading (pulling) of a particular 
environment (contents of 16 general registers end Program 
Status Words) into or out of a memory stack. 

STATUS STACK POINTER DOUBLEWORD 

The Status Stack Pointer Doubleword (SSPD) always resides 
in real memory locations 0 and 1 and is dedicated for PSS 
and PLS instructions. The format of parameters contained 
within the Status Stack Pointer Doubleword are as follows: 

Real Memory Location 0: 

Real Memory Location 1: 

TOP OF STACK ADDRESS 

The Top of Stack Address (TSA) is always a 20-bit real mem­
ory word address and is never mapped. Depending upon 

programming considerations, the initial TSA is a specific 
value either as the result of a Mode 0, WRITE DIRECT 
instruction or as the result of a PSS or PLS instruction, as 
described below. 

During each PSS instruction, the memory stack is accessed 
28 times and the TSA is incremented by 1 before each access. 
The first memory stack location accessed has a relative ad­
dress equal to the initial TSA plus 1, ... , and the 28th mem­
ory stack location accessed has a relative address equal to 
the initial TSA plus 28.. Although 28 memory stack loca­
tions are accessed in an ascending sequence, on Iy 20 loca­
tions (as selected by the hardware) wi II contain the basic 
processor environment. Eight locations (whose contents are 
designated as "indeterminate", in Figure 12) are reserved 
and must not be used. 

For each PLS instruction, access to the memory stack is 
contingent upon the Word Count as described subsequently. 
If access is permitted, the memory stack is accessed 28 times 
and the TSA is decremented by 1 after each access. The 
first memory stack location accessed by a PLS instruction 
has a relative address equal to the initial TSA, the second 
memory stack location accessed has a relative address equal 
to the initial TSA minus 1, ... , and the 28th memory stack 
location accessed has a relative address equal to the initial 
TSA minus 27. Although 28 memory stack locations are 
accessed in a descending sequence, the hardware selects 
and pulls the contents of only 20 locations containing valid 
information, as shown in Figure 12, and loaded into the 
general registers and PSWs ... The contents of eight locations 
designated as indeterminate are ignored. 

If the terminal (last) TSA for a PSS or PLS instruction is 
not modified by a Mode 0 WRITE DIRECT instruction, it 
may be used as the initial TSA for a subsequent PSS or PLS 
instruction. Each PSS instruction causes the memory stack 
to be increased by 28 word locations and each PLS instruc­
tion causes the memory stack to be decreased by 28 word 
locations. The information is pushed and pulled on a last-in, 
first-out basis. 

Note: The PLS instruction is contingent upon the Word 
Count value, as described below. 

SPACE COUNT 

The Space Count field (bit positions 33-47) of the Status 
Stack Pointer Doubleword is a 15-bit counter that may con­
tain a value of 0 through 32,767. Depending upon pro­
gramming considerations, the initial Space Count is a 
specific value either as the result of executing a Mode 0, 
WRITE DIRECT instruction or a PLS or PSS instruction. 

During a PSS instruction, the Space Count is decremented 
by 1 for each word pushed into the memory stack. If the 
Space Count is decremented to a value of zero before a" 
the words have been pushed, the PSS instruction continues 
(i. e., no trapping occurs). The environment is stored into 

Push-Down Instructions (Privileged) 101 



PSS Operations PLS Operations 

initial TSA - - terminal TSA = initial TSA-28 

+1 (RO) -27 

+2 (R 1) -26 

+3 (R2) -25 

+4 (R3) -24 

+5 (R4) -23 

+6 (R5) -22 

+7 (R6) -21 

+8 (R7) -20 

+9 (R8) -19 

+10 (R9) -18 

+11 (R10) -17 

+12 (Rl1 ) -16 

+13 (R12) -15 

+14 (R13) -14 

+15 (R14) -13 

+16 (R15) -12 

+17 -11 

+18 -10 

+19 -9 

+20 -8 

+21 -7 

+22 -6 

+23 -5 

+24 -4 

+25 (PSWl) -3 

+26 (PSW2) -2 

+27 (PSW3) t -1 

initial TSA +28 (PSW4) - initial TSA 

tAs a function of the hardware, the contents of these 8 locations are in­
determinate after a PSS instruction and ignored by a PLS instruction. These 
locations are reserved for future enhancements and must not be used. 

Figure 12. Typical 28-Word Portion of Memory Stack for PSS and PLS 

102 Push-90wn Instructions (Privileged) 



appropriate memory stack locations as specified by the 
TSAi however, subsequent values of the Space Count are 
indeterminate. 

During a PLS instruction, the Space Count is incremented 
by 1 for each word pulled from the memory stack. If the 
Space Count is incremented beyond a value of 32,767, bit 
position 32 is set to 1 (signifying an overflow condition); 
however, the PLS instruction continues (i. e., no trapping 
occurs). 

Note: Once bit position 32 has been set to a 1, it can be 
reset to a 0 only by executing a Mode 0, WRITE 
DIRECT instruction. That is, bit position 32 can 
not be reset to a 0 by the decrementing process per­
formed during a PSS instruction. 

WORD COUNT 

The Word Count field (bit positions 49-63) of the Status 
Stack Pointer Doubleword is a lS-bit counter that may con­
tain a value of 0 through 32,767. Depending upon pro­
gramming considerations, the initial Word Count is a 
specific value either as the result of executing a Mode 0, 
WRITE DIRECT instruction or as the result of executing a 
PSS or PLS instruction. 

During a PSS instruction, the Word Count is incremented 
Ly 1 [V 1- ~uch yvvi"d pu~hcd il.tv th~ iii\:i;;Gr'j ~t~~k. Th~~, 
the terminal Word Count for a PSS instruction exceeds the 
initial Word Count by 28. If the Word Count value 
exceeds 32,767, bit position 48 is set to a 1 (signifying 
that an overflow condition has occurred); however, the 
PSS instruction continues the stacking operation (i. e., no 
trapping occurs). 

If the initial Word Count for a PLS instruction is equal to 
or greater than 28, the Word Count is decremented by 1 for 
each word pulled from the memory stack and the terminal 
Word Count will be 28 less than the initial Word Count. 
Note that if bit position 48 was set to a 1 by a PSS instruc­
tion previously, it can not be reset to a 0 by the decrement­
ing performed during a PLS instruction. 

If the initial Word Count for a PLS instruction is equal to 
zero, the parameters within the Status Stack Pointer Double­
word are neither effective nor affected by the PLS instruc­
tion. However, default PSWs are loaded from real memory 
locations 2 and 3. 

If the initial Word Count for a PLS instruction is less than 28 
and not equal to zero, the other parameters of the Status 
Stack Pointer Doubleword are not effective and none of the 
parameters are affected by the PLS instruction. Instead the 
BP traps to location X'4D ' (instruction exception trap) and 
TCC2 is set. 

PSS PUSH STATUS 

(Doubleword index alignment, privi leged) 

!xl aD 

PUSH STATUS loads new Program Status Words from an ef­
fective doubleword location and stores the current environ­
ment (current Program Status Words and contents of all 
16 general registers) into a memory stack, as defined by the 
Status Stack Pointer Doubleword. Note that the referen~e 
address points to the memory location of the new PSWs. 

The PSS instruction is used for three types of operations: 
as a normal instruction in an ongoing program; as an inter­
rupt instruction; and as a trap instruction. The effective 
address of a PSS instruction is generated in one of the 
following ways: 

PSS - normal instruction (see first instruction diagram) 

When a PSS instruction is encountered in the course of 
execution of normal programs, the effective address is 
generated according to the rules for addressing then in 
effect as described by the currently active PSWs; that is, the 
basic processor is operating in real, real extended, or virtual 
addressing mode. The flags in bit positions 9 and 10 have 
no effect and must be coded as zeros. 

PSS - interrupt instruction (see second instruction diagram) 

A PSS instruction (in an interrupt location) executed as a 
result of an interrupt is called an interrupt instruction. In 
the interrupt execution sequence, the 20-bit reference 
address is always real, independent of the map invoking 
bit in the PSWs. There is no indexing possible since the 
desi gnator fi e ld is preempted by the reference address. 
Indirect addressing is permitted with precisely the same 
constraints. The indirect address word contains a 20-bit 
real address with the same properties as the reference ad­
dress described above. The flags in bit positions 9 and 10 
have no effect and must be coded as zeros. 

PSS - trap instruction (see second instruction diagram) 

A PSS instruction (in a trap location) executed as a resu It 
of a trap entry operation is called a trap instruction. In a 
trap execution sequence, the 20-bit reference address may be 
either a real address or a virtual address according to the 
map invoking bit in the PSWs. There is no indexing pos­
sible since the index field is used for addressing. If indirect 
addressing is specified, the effective address is generated 
according to the rules for addressing then in effect as de­
scribed by the currently active PSWs. Bit positions 9 and 10 
must be coded as zeros. 

Push-Down Instructions (Privileged) 103 



Depending upon the type of addressing, the reference 
address of the PSS instruction is converted into an effective 
virtual doubleword address, as described under "PSS Address 
Calculations", in Chapter 2. Except for the Register Block 
Pointer field (bit positions 56-59) and the interrupt group 
inhibit bits (bit positions 37, 38, and 39), the contents of 
the effective location are always loaded as the new PSWs. 
If the lP flag (bit 8 of the PSS instruction) is a 1, the 
Register Block Pointer of the new PSWs is also loaded. If 
the lP flag is a 0, the old Register Block Pointerisretained. 
The interrupt group inhibit bits of the new PSWs are 1I0Red ll 

with the corresponding bits of the old PSWs. 

The current environment (comprised of 20 words) is stored 
in memory stack locations having the following relative 
addresses: initial TSA+1 through initial TSA+16, initial 
TSA+25, and initial TSA+26. Memory stack locations 
having ref-ative addresses of initial TSA+17 through initial 
TSA+24, initial TSA+27, and initial TSA+28 are reserved 
and the contents are indeterminate. 

The parameters of the Status Stack Pointer Doubleword (as 
contained within working registers) are appropriately mod­
ified to reflect the progress of the PSS instruction and 
conditions of the memory stack (i. e., the TSA and Word 
Count are incremented and the Space Count is decremented 
for each memory word location accessed, as described under 
Status Stack Pointer Doubleword). 

If the Word Count exceeds 32,767 (maximum count for 
bits 49-63) or if the Space Count is reduced to zero before 
the PSS instruction is completed, the stacking operations 
continue unti I 28 words have been pushed (i. e., no trapping 
occurs). When the Word Count exceeds 32,767, bit 48 is 
set to a 1. Attempting to decrement the Space Count below 
zero causes the Space Count to become indeterminate. 

Affected: (PSWs), CC, Memory Stack, Status Stack Pointer 
Doubleword. 

(PSWs) and CC: 

EDO_3-CC; 

ED4-7- FR, FS, FZ, FN; 

ED8-MS; 

ED9-MM; 

ED10-DMi 

ED11-AMi 

ED15-31 -IAi 

ED32-35-WK; 

ED37-39 u CI, II, EI - CI, II, EI 
(Note: "u ll represents inclusive OR. ) 

ED56- 59 - RP on Iy if (I8) = 1 

ED60- RA 

ED61-MA 

104 Push-Down Instructions (Privileged) 

Memory Stack: 

(General Register n) - (initial TSA+(n+l) where n has 
ascending values from 0 through 15. 

PSW1 - (initial TSA+25) 

PSW2 - (initial TSA+26) 

Status Stack Pointer Doubleword: 

TSA+1 - TSA unti I terminal TSA=initial TSA+28i 
Word Count + 1 - Word Count unti I terminal Word 
Count = initial Word Count + 28, (if Word Count> 
32,767, set bit 48 to 1); 

Space Count - 1 - Space Count unti I terminal Space 
Count = initial Space Count - 28 (if Space Count = 0, 
Space Count - 1 is indeterminate). 

PLS PULL STATUS (nonaddressing, privileged) 

PULL STATUS, in conjunction with the Status Stack Pointer 
Doubleword, may cause one or more of the following func­
tions to be performed: 

1. Selectively load a new environment (PSWs and 16 gen­
eral registers) from the memory stack; or, 

2. Selectively load default PSWs from dedicated memory 
locations; and, 

3. Selectively clear and arm or clear and disarm the 
highest priority level currently in the active state. 

If the initial Word Count of Status Stack Pointer Doubleword 
is equal to or greater than 28, a new environment is 
loaded from the memory stack. Twenty eight memory stack 
locations are accessed in a descending sequence, starting 
at a location having an address equal to the initial TSA 
(part of the Status Stack Pointer Doubleword). The hard­
ware selects and loads the contents of 20 memory locations 
into the general registers and as the PSWs (i. e., the con­
tents of locations having relative addresses of initial TSA-2, 
initial TSA-3, and initial TSA-12 through initial TSA-27). 
The contents of 10 memory stack locations (having relative 
addresses equal to initial TSA, initial TSA-l, and initial 
TSA-4 through initial TSA-11) are ignored. 

Portions of the new PSWs are dependent upon the LP flag 
II-Ln\ r~t nlr- I.- 11.1... 
\011 OJ or me fL.) JnsrruclJon as well as me mTerrupT group 
inhibit bits of the old PSWs and the PSWs as pulled from 
the memory stack. If the LP flag is a 1, a new Register 
Block Pointer (as pulled from the memory stack) is loaded 
as part of the new PSWs. If the LP flag is a 0, the old Reg­
ister Block Pointer is retained as the Register Block Pointer 
for the new PSWs. The new interrupt group inhibit bits (CI, 



II, EI) are generated by II ORing" the old CI, II, EI bits 
with the contents of bits 37, 38, and 39 of the PSWs as 
pu II ed from the memory stack. 

The clearing and arming or disarming the highest priority 
interrupt level currently active is dependent upon the 
coding of the CL and AD flags (bit positions 10 and 11, 
respectively) of the PLS instruction. If the CL flag is a 07 

the interrupt level is not affected. If the CL flag fs-a 1 
and the AD flag is a Or the interrupt level is set to the dis­
armed state. If the CL flag is a 1 and the AD flag is a 1r 
the interrupt level is set to the armed state. Note that -if 
the interrupt level is to be modifie~ (CL flag is set to a 1), 
the instruction maybe delayed unti I the interrupt system is 
avai lable. -

Summary description of CL and AD flags and effect on in-­
terrupt level and PDF flag follows: 

Bit Positions 
10 (CL) 

o 

o 

11 (AD) 

o 

o 

Function 

No effect upon interrupt level 
or PDF flag. 

Reset PDF flag 

Clear and disClrm interrupt level 

Clear and arm interrupt level 

If the initial Word Count is zeror default PSWs are loaded -
from real memory locations 2 and 3 and the other parameters 
of the Status Stack Pointer Doubleword are not effective 
and no parameters are affected. 

Portions of the new PSWs (interrupt inhibit group bits and 
the Register Block Pointer) may be selected or generated in 
the following manner: 

If the LP flag (bit 8) of the PSL instruction is a 1r the new 
Register Block Pointer wi II be as obtained from the default 
PSWs. If the LP flag is a 0, the Register Block Pointer of 
the old PSWs is retained as the Register Block Pointer for 
the new PSWs. 

The CI, II, and EI bits of the old PSWs are "ORed II with 
the contents of bit positions 37, 38r and 39 of the default 
PSWs to generate the CI, II, and EI bits of the new PSWs. 

Depending upon the coding of the CL and AD flags (bit 
positions 10 and 11, respectively) of the PLS instruction, 
the highest priority interrupt level currently in the active 
state may be modified. If the CL flag is a 0, the interrupt 
level is not affected. If the CL flag is a 1 and the AD flag 
is a 0, the interrupt level is cleared and placed into the 
disarmed state. If the CL flag is a 1 and the AD flag is 
a 1, the interrupt level is cleared and placed into the 

armed state. Note that if the interrupt_level is to be 
modified (i. e., the CL flag is a 1), the instruction may be 
delayed unti I the interrupt system is avai lab Ie. 

A summary description of the action on the interrupt levei 
as a function of the C1 and AD .flag is as follows: 

Bit Positions 
10 (CL) 

o 

o 

11 (AD) 

o 

o 

Function 

No effect upon interrupt level 
or PDF flag 

Reset PDF flag 

Clear and disarm interrupt level 

Clear and arm interrupt level 

If the initial Word Count within the Status Stack Pointer 
Doubleword is less than 28 cmd not equal to 0, the basic 
processor traps to location X'4D~ (instruction exception 
trap) without loading-any new status or affecting the pa­
rameters of the Status Stack Pointer Doubleword and the 
r-CC2 bit is set to 1. 

Affected: If word count ~ 28, 
(PSWs), CC, 
Status Stack Pointer 
Doubleword 
Interrupt System if 
(1)10=1. 

Traps: Instruction excep­
tion, if word count 
is less than 28 and 
not 0; nonexistent 
instruction if 
bit 0=1. 

If word count = 0, (PSWs), ec, and Inferrupt 
System, if 1(10)=1. 

(PSWs) and CC 

ED
O

_
3 
-CC; 

ED 5-7 - FS, FZ, FN; 

ED
8
-MS; 

-ED
9
-MM; 

ED
lO

- DM; 

ED
11

-AM; 

ED 15-31 - IA; 

ED
32

_
35

-WK 

ED37-39 u CI, II,-EI -CI, II, EI 
(Note: "u" represents inclusive OR. ) 

[D56- 59 - RP only if (1)8= 1 

ED
60

-RA 

ED
61

-MA 

push-Down Instructions (Privi leged) 105 



Note; If the word count ~ 28, the effective doubleword 
(ED) is pulled from memory stack locations (rela­
tive addresses initial TSA-24 and initial TSA+l). 
If the word count=O, the ED is pulled from real 
memory locations 2 and 3. 

Status Stack Pointer Doubleword; (Only if initial Word 
Count ~ 28) 

TSA-1 --TSA until terminal TSA = initial TSA-28; 
Word Count - 1 --Word Count unti I terminal Word 
Count = initial Word Count - 28 (if initial Word Count 
> 32,767, bit 48 not affected); and, 

Space Count + 1 - Space Count untir terminal Space 
Count = initial Space Count + 28 (if Space Count 
> 32,767, then set bit 32 to 1). 

Interrupt System; 

. If (1)10 = 1 and (1)11 = 1, clear and arm interrupt 
level. 

If (1)10 = 1 and (1)11 = 0, clear and disarm interrupt 
level. 

EXECUTE/BRANCHINSTRUCT~NS 

The following instructions can cause the basic processor to 
execute instructions in an order other than that of sequen­
tially ascending instruction addresses: 

Instruction Name Mnemonic 

Execute EXU 

Branch on Conditions Set BCS 

Branch on Conditions Reset BCR 

Branch on Incrementing Register BIR 

Branch on Decrementing Register BDR 

Branch and Link BAL 

The EXECUTE instruction can be used to insert another in­
struction into the program sequence, and the branch in­
structions can be used to alter the program sequence, either 
unconditionally or conditionally. If a branch is uncondi­
tiona! (or conditional and the branch condHion is satisfied), 
the instruction pointed to by the effective address of the 
branch instruction is normally the next instruction to be 
executed. If a branch is conditional and the condition 
for the branch is not satisfied, the next instruction is nor­
mally taken from the next location, in ascending sequence, 
after the branch instruction. 

106 Execute/Branch Instructions 

NONALLOWED OPERATION TRAP DURING EXECUTION 
OF BRANCH -INSTRUCTION 

The next instruction after a branch instruction may reside 
in two possible places: the location following the branch 
instruction or a location designated by the branch instruc­
tion. Either of these two locations may be in a protected 
memory region or in a region that is physically nonexist~nt. 
The executio-n of th~ branch does not cause a trap un less 
the instruction that is actually to follow the branch instruc­
tion is in a protected or nonexistent memory region. Traps 
do not occur because of any anticipation on the part of the 
hardware. 

A nonallowed operation trap condition during execution of 
a branch instruction wi II occur for the following reasons; 

1. The branch instruction -is indirectly addressed~ and the 
branch conditions are satisfied, but the address of the 
location containing the direct address is either non­
existent or unavai lable for read access fo the program 
in the slave mode. 

2. The branch instruction is unconditional (or the branch 
is conditional and the condition for the branch is satis­
fied), but the effective address of the branch instruc­
tion is either nonexistent or unavailable for instruction 
or read access to the program (in slave -or master­
protected mode). 

If either of the above situations occurs, the basic processor 
aborts execution of the branch instruction and executes a 
nonallowed operation trap. 

Prior to the time that an instruction is accessed from mem­
ory for execution, bit positions 15-31 of the program status 
words contain the virtual address of the instruction~ referred 
to as the instruction address. At this time, the basic pro­
cessor traps to location X'40 ' if the actual address of the 
instruction is nonexistent or instruction-access protected. 
If the instruction address is existent and is not instruction­
access protected, the instruction is accessed and the in­
struction address portion of the program status words is 
incremented by 1, so that it now contains the virtual address 
of the next instruction in sequence {referred to as th~ up­
dated instruction address}. 

If a trap condition occurs during the execulion sequence of 
any instruction, the basic proces~r decrements the updated 
instruction address by 1 and then traps to the location as­
signed to the trap condition. If neither a trap condition 
nor a satisfied branch condition occurs during the execution 
of an instruction, the next instruction is accessed from the 
location pointed to by the updated instruction address. If 
a satisfied branch condition occurs during the execution of 
a branch instruction (and no trap condition occurs), the 
next instruction is accessed from the location pointed to by 
the effective address of the branch instruction. 



In the real extended addressing mode, a 20-bit address may 
be used as a branch address via indexing or indirect ad­
dressing. If such a branch address, (A), is beyond the first 
128Kofreal memory, the instruction at (A) will be executed, 
but the next instruction address will be (A+1) in the original 
128K block unless (A) contains a branch instruction. Note 
that with this exception all instructions executed in the 
real extended addressing mode must lie in the first 128K of 
rea I memory. 

EXU EXECUTE 
(word index alignment) 

EXECUTE causes the basic processor to access the instruction 
in the location pointed to by the effective address of EXU 
and execute the subject instruction. The execution of the 
subject instruction, including the processing of trap and 
interrupt conditions, is performed exactly as if the subject 
instruction were initially accessed instead of the EXU in­
struction. If the subject instruction is another EXU, the 
basic processor executes the subject instruction pointed to 
by the effective address of the second EXU as described 
above. Such "chains" of EXECUTE instructions may be of 
any length, and are processed (without affecting the updated 
instruction address) until an instruction other than EXU is 
encountered. After the final subject instruction is executed, 
inc:for"rtit"ln Pypr"tit"ln nrt"lrpp,.lc;. with thp. np.xt instruction in ... _ .. __ .. _-- ----------- r------_· 

sequence after the initial EXU (unless the subject instruc­
tion is an LPSD or XPSD instruction, or is a branch instruc­
tion and the branch condition is satisfied). 

If an interrupt activation occurs between the beginning of 
an EXU instruction (or chain of EXU instructions) and the 
last interruptible point in the subject instruction, the BP 
processes the interrupt-servicing routine for the active 
interrupt level and then returns program control to the EXU 
instruction (or the initial instruction of a chain of EXU 
instructions), which is started anew. Note that a program 
is interruptible after every instruction access, including ac­
cesses made with the EXU instruction, and the interrupt­
ibility of the subject instruction is the same as the normal 
interruptibility for that instruction. 

If a trap condition occurs between the beginning of an EXU 
instruction (or chain of EXU instructions) and the comple­
tion of the subject instruction, the basic processor traps to 
the appropriate trap location. The instruction address stored 
by the XPSD instruction in the trap location is the address 
of the EXU instruction (or the initial instruction of a chain 
of EXU instructions). 

Affected: Determined by 
subject instruction 

T raps: Determined by 
subject instruction 

Condition code settings: Determined by subject instruction. 

BCS BRANCH ON CONDITIONS SET 
(Word index alignment) 

BRANCH ON CONDITIONS SET forms the logical product 
(AND) of the R field of the instruction word and the current 
condition code. If the logical product is nonzero, the 
branch condition is satisfied and instruction execution pro­
ceeds with the instruction pointed to by the effective ad­
dress of the BCS instruction. However, if the logical prod­
uct is zero, the branch condition is unsatisfi ed and instruc­
tion execution then proceeds with the next instruction in 
normal sequence. 

Affected: (lA) if CC n R f 0 

If CC n (1)8_11/0, EVA 15- 31 -IA 

If CC n (1)8-11 = 0, IA not affected 

If the R field of BCS is 0, the next instruction to be exe­
cuted after BCS is always the next instruction in ascending 
sequence, thus effectively producing a "no operation II 
instruction. 

BCR BRANCH ON CONDITIONS RESET 
(Word index alignment) 

BRANCH ON CONDITIONS RESET forms the logical prod­
uct (AND) of the R field of the instruction word and the 
current condition code. If the logical product is zero, the 
branch condition is satisfied and instruction execution then 
proceeds with the instruction pointed to by the effective 
address of the BCR instruction. However, if the logical 
product is nonzero, the branch condition is unsatisfied and 
instruction execution then proceeds with the next instruc­
tion in normal sequence. 

Affected: (IA) if CC n R = 0 

If CC n (1)8-11 = 0, EVA 15_13 - IA 

If CC n (1)8-11 10, IA not affected 

If the R field of BCR is 0, the next instruction to be exe­
cuted after BCR is always the instruction located at the 
effective address of BCR, thus effectively producing a 
"branch unconditionally" instruction. 

Execute/Branch Instructions 107 



BIR BRANCH ON INCREMENTING REGISTER 
(Word index alignment) 

BRANCH ON INCREMENTING REGISTER computes the 
effective virtual address and then increments the contents 
of general register R by 1. If the result is a negative value, 
the branch condition is satisfied and instruction execution 
then proceeds with the instruction pointed to by the effec­
tive address of the BIR instruction. However, if the result 
is zero or a positive va lue, the branch condition is not sat­
isfied and instruction execution proceeds with the next in­
struction in normal sequence. 

Affected: (R),(IA) 

(R) + 1 - R 

If (R)O = 1, EVA 15_31 -IA 

If (R)O = 0, IA not affected 

If the branch condition is satisfied and if the effective ad­
dress of BIR is either unavailable to the program (slave or 
master-protected mode) for instruction access or is non­
existent, the basi c processor aborts execution of the BIR 
instruction and traps to location X'40'. In this case, the 
instruction address stored by the XPSD instruction in loca­
tion X'40' is the virtual address of the aborted BIR instruc­
tion. If the basic processor traps because of instruction 
access protection, register R will contain the value that 
existed just before the BIR execution (i.e., updated instruc­
tion address). If a memory parity error occurs due to the 
accessing of the instruction to which the program is branch­
ing, the basic processor aborts execution of the BIR and 
traps to location X'4C' with register R unchanged. 

BDR BRANCH ON DECREMENTING REGISTER 
(Word index alignment) 

BRANCH ON DECREMENTING REGISTER computes the 
effective virtual address and then decrements the contents 
of general register R by 1. If the result is a positive value, 
the branch condition is satisfied and instruction execution 
then proceeds with the instruction pointed to by the effec­
tive address of the BDR instruction. However, if the result 
is zero or a negative value, the branch condition is unsatis­
fied and instruction execution proceeds with the next in­
struction in normal sequence. 

Affected: (R), (IA) 

(R) - 1 - R 

If (R)O = 0 and (R)1-31 j 0, EVA 15_31 - IA 

If (R)O = 1 and (R) = 0, IA not affected 

108 Execute/Branch Instructions 

If the effective address of BDR is unavailable to the program 
(slave or master-protected mode) for instruction access and 
the branch condition is satisfied, or if the effective address 
of BDR is nonexistent, the basi c processor aborts execution 
of the BDR instruction and traps to location X'40'. In this 
case, the instruction address stored by the XPSD instruction 
in location X'40' is the virtual address of the aborted BDR 
instruction. If the basi c processor traps because of instruc­
tion access protection, register Rwill contain the value that 
existed just before the BDR instruction. If a memory parity 
error occurs due to the accessing of the instruction to whi ch 
the program is branching, the basic processor aborts execu­
tion of the BDR and traps to location X'4C r with register R 
unchanged. 

BAL BRANCH AND LINK 
(Word index alignment) 

BRANCH AND LINK determines the effective virtual ad­
dress, loads the updated instruction address (the virtual ad­
dress of the next instruction in normal sequence after the 
BAL instruction) into bit positions 15-31 of general regis­
ter R, clears bit positions 0-14 of register R to O's and then 
replaces the updated instruction address with the effective 
virtual address. Instruction execution proceeds with the 
instruction pointed to by the effective address of the BAL 
instruction. 

The BAL instruction in real extended addressing will store 
the full address of the next instruction in the specified R 
register. Positions 0-9 of the specified register will be set 
equal to zero. 

Affected: (R), (IA) 

If the effective address of BAL is unavailable to the program 
(slave or master-protected mode) for instruction access and 
the branch condition is satisfied, or if the effective address 
of BAL is nonexistent, the basic processor aborts execution 
ofthe BAL instruction and traps to location X'40' (nonallowed 
operation trap). In this case, the instruction address stored 
by the XPSD instruction in location X'40' is the virtual ad­
dress of the aborted SAL instruction. If the basic processor 
traps because of instruction access protection, register R will 
contain the updated instruction address. If a memory parity 
error occurs due to the accessing of the instruction to which 
the program is branching, the basic processor aborts execu­
tion of the BA L and traps to location X'4C r with register R 
changed to the updated instruction address. 



CAll INSTRUCTIONS 
Each ofthe four CA LL instructions causes the basi c processor 
to trap to a specifi c location for the next instruction in se­
quence. The four CALL instructions, their mnemonics, and 
the locations to wh i ch the basi c processor traps are: 

Instru ct ion Trap 

Name Mnemonic Location 

CALL 1 CAll X'48' 

CALL 2 CAL2 X'49' 

CALL 3 CAL3 X'4A' 

CALL 4 CAL4 X'4B' 

Each ofthese four trap locations must contain an EXCHANGE 
PROG RAM STATUS WORDS (XPSD) instruction. Execution 
of XPSD in the trap location for a CALL instruction is de­
scribed under "Control Instructions, XPSD Exchange Pro­
gram Status Words". If the XPSD instruction is coded with 
bit position 9 set to 1, the next instruction (executed after 
the XPSD) is taken from one of 16 possible locations, as 
designated by the value in the R field of the CALL instruc­
tion. Each of the 16 locations may contqin an instruction 
that causes the basic processor to branch to a specific 
routine; thus, the four CALL instructions can be used to 
enter any of as many as 64 unique routines. 

The effective address of either a direct or indirect CALL 
instruction is not used for a memory reference and, there­
fore, cannot cause a trap. 

CALI CALL 1 
(Word index alignment) 

CALL 1 causes the basi c processor to trap to location X'48'. 

CAL2 CALL 2 
(Word index alignment) 

CAL4 CALL 4 
(Word index al ignment) 

~ 

CALL 4 causes the basic processor to trap to location X'4B'. 

CONTROL INSTRUCTIONS 
The following privileged instructions are used to control the 
basi c operating conditions-of the basic processor: 

Instruction Name Mnemonic 

Load Program Status Words LPSD 

Exchange Program Status Words XPSD 

Load Register Pointer LRP 

Move to Memory Contro I MMC 

Load Real Address LRA 

Load Memory Status LMS 

Wait WAIT 

Read Direct RD 

Write Direct WD 

If execution of any control instruction is attempted while 
the basic processor is in the slave mode (i. e., while bit 8 
of the current program status words is a 1), the basi c pro­
cessor unconditionally traps to location X'40' prior to 
executing the instruction. 

PROGRAM STATUS WORDS 

Program status words have the following structure when 
stored in memory: 

CA LL 2 causes the basi c processor to trap to location X '49'. Bit 

CAL3 CALL 3 
(Word index al ignment) 

CA LL 3 causes the basi c processor to trap to location X '4A '. 

Position 

0-3 

4 

5 

6 

7 

Designation 

CC 

FR 

FS 

FZ 

FN 

Function 

Condition code 

Floating round 

Floating significance mask 

Floating zero mask 

Floating normal ize mask 

Call Instructions/Control Instructions 109 



Bit 
Position Designation. Function 

8 MS Master/slave mode control 

9 MM Memory map mode control 

10 DM Decimal arithmetic trap 
mask 

11 AM Fixed-point arithmetic 
overflow trap mask 

15-31 IA Instruction address 

32-35 WK Write key 

37 CI Counter interrupt group 
inhibit 

38 II I/O interrupt group inhibit 

39 EI External interrupt inhibit 

56-59 RP Reg i ster po inter 

60 RA Register altered 

61 MA Mode altered 

The detailed functions of the various portions of the program 
status words are described in Chapter 2, "Program Status 
Words". 

LPSD LOAD PROGRAM STATUS WORDS 
(Doubleword index alignment, privileged) 

LOAD PROGRAM STATUS WORDS replaces bits o through 39, 
60 and 61 of the current program status words with bits 0 
through 39, 60 and 61 of the effective doubleword. 

Control bits used in the LPSD instruction are: 

Bit 
Position Designation Control Function 

8 LP Load pointer control 

10 Cl Clearing of interrupt level 

11 AD Armed/disarmed state 

The following conditional operations are performed: 

1. If bit position 8 (LP) of LPSD conta ins a 1, bits 56 
through 59 (register pointer) of the current program 
status words are replaced by bits 56 through 59 of the 
effedive doublewOid; if bit 8 of LPSD is u 0, tht=: cu,-­
rent register pointer value remains unchanged. 

2. If bit position 10(CL}of LPSD contains a 1, the highest 
priority interrupt level currently in the active state is 
cleared (i. e., reset to either the armed state or the dis­
armed state); the interrupt level. is armed if bit 11 (AD) 

110 Control Instructions 

of lPSD is a 1, or is disarmed if bit 11 of LPSD is a O. 
If bit 10 of lPSD is a 0, no interrupt level is affected 
in any way, regardless of whether b-it 11 of LPSD is 1 
or O. If bit 10 of the lPSD is a 0 and bit 11 of lPSD 
is 1, the PDF flag is cleared. (Interrupt levels are de­
scribed in detai I in Chapter 2, "Interrupt System". ) 

Bit position 
10 (CL) 11 (AD) Function 

o Clear and disarm interrupt level. 

Clear and arm interrupt level. 

o Clear PDF flag. 

o o No control action. 

3. The PDF flag is normally reset by the last instruction 
of a trap routine, which is an LPSD instruction having 
bit 10 equal to 0 and bit 11 equal to 1. 

These portions of the effective doubleword that correspond 
to undefined fields in the program status words are ignored. 

Affected: (PSWs), interrupt system if (1)10 = 1 

ED
O
_

3 
- CC; ED

5
_

7 
- FS,FX,FN; 

ED -MS' ED - MM· 8 '9 ' 

ED
15

_
31 

- IA; ED
32

_
35 

- WK; 

ED
37

_
39 

- CI, II, EI; if (1)8 = 1, ED
56

_
59 

- RP 

ED60 - RA; ED61 - MA 

u: In = 1 ~ ... ,J In 
"\"10 · .... ·1\··\·'11 = 1 . , C!CCi and aim iiitcirupt 

If (1)10 = 1 and (1)11 = 0, clear and disarm interrupt 

XPSD EXCHANGE PROGRAM STATUS WORDS 
(Doubleword index alignment, privileged) 

EXCHANGE PROGRAM STATUS WORDS stores the cur­
rently active PSWs in the doubleword location addressed by 
the effective address of the XPSD instruction. The follow­
ing doubleword is then accessed from memory and loaded 
into the active PSWs registers. 



The XPSD instruction' is used for three distinct types of 
operations: as a norma I instruction in an ongoing program; 
as an interrupt instruction; and as a trap instruction. 

Control bits used in the XPSD instructions are: 

Bit 
Position 

8 

9 

10 

Designation 

LP 

AI 

AT 

Control 
Function 

Load pointer 
control 

Where used 

All XPSDs 

Address Increment Trap XPSD 

Address i ng type A I I X PS Ds 

The effective address of an XPSD instruction is generated 
in one of the following ways: 

XPSD (normal instruction) 

When an XPSD instruction is encountered in the course of 
execution of normal programs, the AT (bit 10) of the in­
struction determines the type of addressing to be used. 

If AT = 0, the reference address is 20 bits (12-31). Index­
ing is not allowed. Indirect addressing is allowed with the 
same constraints as the reference address. Addressing is 
always real, independent of the current PSWs. 

If AT = 1, the reference address is 17 bits (15-31). Address 
calculations are according to standard addressing rules as 
determined by the current PSWs. Indexing and indirect ad­
dressing are allowed. 

XPSD (interrupt instruction) 

An XPSD instruction (in an interrupt location) executed as 
a result of an interrupt is called an interrupt instruction. 
The type of addressing to be used is determined by the basic 
processor mode and the AT (bit 10) of the instruction. 

In the extended addressing mode (MA = 1 and MM = 0), the 
AT bit is used to determine the type of addressing to be 
used. If AT = 0, the reference address is 20 bits {12-31}. 
Indexing is not allowed. Indirectaddressing is allowed with 
the same constraints as the reference address. Addressing is 
always real, independent of the current PSWs. If AT = 1, 
the reference address is 17 bits (15-31). Address calcula­
tions are according to standard addressing rules as deter­
mined by the current PSWs. Indexing and indirect addressing 
are allowed. 

When the addressing mode is not extended addressing, the 
reference address is 20 bits (l2-31). If AT = 0, indexing· 
is not allowed. Indirect addressing is allowed with the 
same constraints as the reference address. Addressing is 
always real, independent of the current PSWs. If AT = 1, 
the 20-bit reference address is subject to PSWs bit 9, 
as is the contents of the indirect address if indirect is 
specified. 

XPSD (trap instruction) 

An XPSD instruction (in a trap location) executed as a result 
of a trap entry operation is called a trap instruction. Ad­
dressing is the same as for the interrupt XPSD (see above). 

The fol lowing additional operations are performed on the 
new program status words if, and only if I the XPSD is being 
executed as the result of a nonallowed operation (trap to 
location X'40') or a CALL instruction (trap to location X'48', 
X'49', X'4A', or X'4B'): 

1. Nonal lowed operations - the fol lowing additional func­
tions are performed when XPSD is being executed as a 
result of a trap to location X'40': 

a. Nonexistent instruction - if the reason for the trap 
condition is an attempt to execute a nonexistent 
instruction, bit position Oof the new program status 
words (CC 1) is set to 1. Then, if bit 9 (AI) of 
XPSD is a 1, bit positions 15-31 of the new pro­
gram status words (next instruction address) are 
incremented by 8. 

b. Nonexistent memory address - if the reason for the 
trap condition is an attempt to access or write into 
a nonexistent memory region, bit position 1 of the 
new program status words (CC2) is set to 1. Then, 
if bit 9 of XPSD is a 1, the instruction address por­
tion of the new program status words is in cremented 
by 4. 

c. Privileged instruction violation - if the reason for 
the trap condition is an attempt to execute a priv­
ileged instruction while the basic processor is in 
the slave mode, bit position 2 of the new program 
status words (CC3) is set to 1. Then, if bit posi­
tion Oof XPSD is 1, the instruction address portion 
of the new program status words is incremented by 2. 

d. Memory protection violation - ifthe reason for the 
trap condition is an attempt to read from or write 
into a memory region to which the program does 
not have proper access, bit position 3 of the new 
program status words (CC4) is set to 1. Then, if 
bit 9 of XPSD is a 1, the instruction address por­
tion of the new program status words is incremented 
by 1. 

There are certain circumstances under which two 
of the above nonal lowed operations can occur 
simultaneously. The following operation codes 
(including their counterparts) are considered to be 
both nonexistent and privileged: X'QC' and X'OD'. 
If either of these operation codes is used as an in­
struction while the basi c processor is in the slave 
or master-protected mode, CC 1 and CC3 are both 
set to l's; if bit 9 of XPSD is a 1, the instruction 
address portion of the new program status words is 
incremented by 10. If an attempt is made to access 
or write into a memory region that is both nonexist­
ent and prohibited to the program by means of the 

Control Instructions 111 



memory control feature, CC2 and CC4 are both 
set to 1 IS; if bit 9 of XPSD is a 1, the instruction 
address of the new program status words is incre­
mented by 5. 

2. CALL instructions - the following additional functions 
are performed when XPSD is being executed as a re­
sult of a trap to location X'48', X'49' i X'4A', or 
X'4B'. 

a. The R field of the CA LL instruction causing the 
trap is logica"y inclusively ORed into bit posi­
tions 0-3 (CC) of the new PSWs. 

b. If bit position 9 of XPSD contains a 1, the R field 
of the CALL instruction causing the trap is added 
to the instruction address portion of the new PSWs. 

3. Watchdog timer, parity error, or instruction exception 
trap - the following additional functions are performed 
when XPSD is being executed a~ a result of a trap to 
location X'46', X'4C', or X'4D', respectively. 

a. The contents of TCC 1-4 are logically inclusively 
ORed into bit positions 0-3 (CC) of the new PSWs. 

b. If bit position 9 of XPSD contains a 1, the contents 
of TCC 1-4 are added to the instruction address 
portion of the new PSWs. 

If bit position 9 of XPSD contains a 0, the instruction ad­
dress portion of the new PSWs always remains at the value 
established by the second effective doubleword. Bit posi­
tion 9 of XPSD is effective only if the instruction is being 
executed as the result of a nonallowed operation, CALL 
instruction watchdog timer, parity error, or instruction ex­
ception trap. Bit position 9 of XPSD must be coded with a 
o in all other cases; otherwise, the results of the XPSD 
instruction are undefined. 

The current program status words are stored in the doubl e­
word location pointed to by the effective address of XPSD 
in the following form: 

Program Status Words 

The current program status WOrds (as iI hjs~ra~ed above) arE: 
replaced by new program status words as described below. 

1. The effective address of XPSD is incremented by 2 so 
that it points to the next doubleword location. The 
contents of the next doubl eword location are referred 
to as the second effective doubleword, or ED2. 

112 Control Instructions 

2. Bits 0-35, 60, and 61 of the current program status 
words are unconditionally replaced by bits 0-35, 60, 
and610f the secondeffectivedoubleword. The affected 
portions of the program status words are: 

Bit 
Position Designation Function 

0-3 CC Condition code 

4-7 FR,FS,FZ, Floating control 
FN 

8 MS Master/slave mode control 

9 MM Mapping mode control 

10 DM Decimal arithmetic trap mask 

11 AM Fixed-point arithmetic trap mask 

15-31 IA Instruction address (real or virtual) 

32-35 WK Write key 

60 RA Register altered 

61 MA Mode altered 

3. A logical inclusive OR is performed between bits 37 
through 39 of the current program status words and 
bits 37 through 390f the second effective doubleword. 

Bit 
Position Designation Function 

37 CI Counter interrupt inhibit 

38 II I/O interrupt inhibit 

39 EI External interrupt inhibit 

If any (or all) of bits 37, 38, or 39 of the second ef­
fective doubleword are O's, the corresponding bits in 
the current program status words remain unchanged; if 
any (or all) of bits 37, 38, or 39 of the second effec­
tive doubl eword are 1 IS, the corresponding bits in the 
current program status words are set to 1 'so See "In­
terrupt System", Chapter 2, for a detailed discussion 
of the interrupt inhibits. 

4. If bit position 8 (LP) of XPSD contains a 1, bits 58 
and 59 (register pointer) of the current program status 
words are replaced by bits 58 and 59 of the second 
effective doubieword; if bit 8 of XPSD is a 0, the cur­
rent register pointer value remains unchanged. 

Affected: (EDL), (PSWs) 

If (1)10 = 1, trap or interrupt instructions only, effective 
address is subject to current active addressing mode. 



If (I)1O = 0, trap or interrupt instructions only, effective 
address is independent of current active addressing mode. 

PSD - EDL 

ED20_3 -CC; ED24_7 - FR,FS,FZ,FN 

ED2S - MS; ED29 - MM 

ED210 - DM; ED211 - AM; ED 15- 31 - IA 

ED232-35 - WK 

ED237_39 u CI, II, EI - CI, II, EI 

If {I)s = 1, ED256_59 - RP 

If {I)s = 0, RP not affected 

ED260 -RA 

ED261 -MA 

If nonexistent instruction, 1 -CCl then, if (1)9 = 1, 
IA+S-IA 

If nonexistent memory address, 1 - CC2 then, if 
(1)9 = 1, IA + 4 - IA 

If privileged instruction violation, 1 - CC3 then, if 
{I)9 = 1, IA + 2 - IA 

If memory protection violation, 1 - CC4 then, if (1)9 = 1, 
IA + 1 - IA 

If CALL instruction, CC u CALLS_ll - CC then, if 
(I)9 = 1, IA + CALLS_ll - IA 

If (1)9 = 0, IA not affe cted 

If watchdog timer, parity error, or instruction exception 
trap, ED20_3 u TCCl-4 -CCl-4 then, if (1)9= 1, 
IA + TCC 1-4 - IA 

LRP LOA.D REG ISTER POINTER 
(Word index al ignment, privileged) 

Referenc~ address 

LOAD REGISTER POINTER loads bits 24-27 of the effective 
word into the register pointer (RP) portion of the current 
program status words. Bit positions 0 through 23 and 2S 
through 31 of the effective word are ignored, and no other 
portion ofthe program status words is affected. If the LOAD 
REGISTER POINTER instruction attempts to load the register 
pointer with a value that points to a nonexistent block of 
general registers, the basi c processor traps to location X'4D'. 

Affected: RP Trap: Instruction exception 

EW
24

_
27 

- RP 

MOVE TO MEMORY CONTROL INSTRUCTIONS 

The following instructions may be used to sel ectively move 
a string of control words from a control image area to speci­
fied memory control registers: 

Instruction Name Mnemonics 

Move to Memory Control MMC 

Load Map (S-bit format) LMAP 

Load Map ell-bit format) LMAPRE 

Load Protection Code LPC 

Load Locks (2-bit format) LLOCKS 

Load Locks (4-bit format) LLOCKSE 

MMC MOVE TO MEMORY CONTROL 
(Word index alignment, privileged, continue 
after interrupt) 

The MMC instruction may be used to perform any move to 
memory control operation. Depending upon the type and 
format of the control image, the move to memory control 
operation may be performed either by an MMC instruction 
witn a specifi c vaiue in The conTroi fieid (biT position 12- 14.) 
or by a special purpose instruction (i. e., LMAP, LMAPRE, 
LPC, LLOCKS, or LLOCKSE), as shown below: 

Control Field of 
MMC instruction: 
Bit positions 

12 13 14 

0 0 

0 

0 0 

0 0 

0 

Type and format of 
control image to be 
loaded 

Memory write protection 
locks (2-bit format) 

Memory write protection 
locks (4-b it format) 

Access protection 
(always 2-bit format) 

Memory map (S-bit 
format) 

Memory map (ll-bit 
format) 

Alternate 
Instruction 
Mnemonic 

LLOCKS 

LLOCKSE 

LPC 

LMAP 

LMAPRE 

Attempting to execute an MMC instruction with any code 
other than the five shown above causes the instruction to 
trap to location X'4D' (instruction exception trap). 

Control Instructions 113 



Normally, bit positions 15-31 may be ignored insofar as the 
operation of the MMC instruction is concerned. The results 
of the instruction are the same whether MMC is indirectly 
or directly addressed. However,if MMC is indirectly ad­
dressed and the indirect reference address is nonexistent, 
the nona II owed operation trap (location X' 40' ) is activated. 

The R field, which must be coded with an even value, des­
ignates an even-odd pair of general registers (R and Ru1) 
that contain additional control information required by the 
MMC instruction. If the R fi eld is coded with an odd va I ue 
a trap to location X'4D ' (instruction exception trap) occurs. 

Depending upon the type of addressing, the contents of 
register R may be as follows: 

If MA = 0, contents of register Rare: 

If MA = 1 and MM = 0, the contents of register Rare: 

In either case, the Control Image Address is the virtual ad­
dress of a control word within the control image area to be 
loaded into a block of memory control registers, as specified 
by the contents of register Ru 1. 

Depending upon the type of control image being loaded, 
the contents of register Ru 1 may be in one of the following 
three formats: 

For loading memory map image (either a-bit or 11-bit for­
mat), contents of register Ru 1 are: 

For loading 4-bit write lock images, contents of register 
Ru1 are: 

For loading access protection or 2-bit write lock images, 
contents of register Ru 1 are: 

The Count field (bit positions 0-7) specifies the numberof 
words to be loaded from the control image area. If the 
initial word count is zero, a word count of 256 is implied. 

114 Controi Instructions 

The Control Start field (bit positions 15-20, 21, or 22) 
points to the beginning of the memory region controlled by 
the registers to be loaded. The significance of this field 
is different for the 5 modes of MMC operations and is des­
cribed within each mode below. 

Affected: (R),(Ru1), 
memory control 
storage 

T raps: Instruction exception, 
nonallowed operation. 

LOADING THE MEMORY MAP 

CONTROL IMAGE 

Each word of the memory map control image contains either 
four a-bit page addresses or two ll-bit extended page ad­
dresses, as illustrated below: 

Typical memory map control image word (a-bit format): 

Typical memory map control image word (ll-bit format): 

Depending upon the memory map control image format, the 
instruction format is one of the following: 

LMAP LOAD MAP (a-bit format) 

LMAPRE LOAD MAP REAL EXTENDED (ll-bit format) 

Depending upon the type of addressing, the format of regis­
ter R contents is one of the following: 

If MA = 0; 

Map lma~e Address 
I 

If MA = 1 and MM = 0; 



For either memory map format and either type of addressing, 
the contents of register Ru 1 are: 

MEMORY MAP LOADING PROCESS 

The initial map image address (in register R) is the virtual 
address of the first word of the memory map control image. 

The initial count, as contained in register Ru1 specifies the 
word length of the control image to be loaded. A word 
count of 64 (for 8-bit format) or 128 (for 11-bit format) is 
sufficient to load an entire block of 256 memory map con­
trol registers. The memory map control registers are treated 
as a circular set, with the first register following the last; 
thus, a word count greater than 64 (8-bit format) or 128 
(ll-bit format) causes the first registers to be overwritten. 

The initial value of the control start field of register Ru1 
points to the first page (512 words) of virtual addresses that 
are to be controlled by the memory map control image being 
loaded. The memory map control image is loaded into the 
memory map control registers one word at a time. As the 
contents of each word are loaded into either two orfour mem­
ory map control registers, the map image address is incre­
mented by 1, the word count is decremented by 1, and the 
value in the control start field is incremented either byfour 
(if the memory map control image is in the 8-bit format) 
or by two (if the memory map control image is in the 11-bit 
format). The loading process continues until the word count 
is reduced to zero. 

When the load process is completed, the map image address 
of register R contains a value equal to the sum of the initial 
map image address plus the initial word count, the word 
count of register Ru1 has a value of zero, and the control 
start field of register Ru1 contains a value equal to the sum 
of the initial contents plus four or two times the initial 
word count. 

LOADING THE ACCESS PROTECTION CONTROLS 

CONTROL IMAGE 

Each access protection control image word contains sixteen 
2-bit fields; or, the access protection codes for 16 consecu­
tive pages of virtual memory. Thus, the access protection 
control image for 128K word (256 page) virtual memory is 
contained within 16 contiguous memory locations, desig­
nated as the access protection control image area. 

The format of a typi ca I access protection control image 
word is: 

The instruction format for loading the access protection 
code is: 

Depending upon the type of addressing, the format of reg­
ister R contents is one of the following: 

IfMA=O; 
Ac cess Prote ion 

If MA = 1 and MM = 0; 

For either type of addressing, the contents of register Ru1 are: 

ACCESS PROTECTION LOADING PROCESS 

The initial access protection control image address in reg­
ister R is the virtual address of the first word of the access 
protection control image. 

The initial count in register Ru1 specifies the word length of 
thp rnnt .. nl ;rn,.,,.,p tn h., In,.,r1.,r1 A \A/1"\",..1 ,..""n+ "j: 11.. : .... "j:-
---- -----.- • • "--.;;;J- -- -- .--- ..... -_. ~ - •• -.- --_ ••• _ •.• - ........ -. 

fi cient to load the entire block of 256 access protection con­
trol registers. The access protection control registers are 
treated as a circular set, with the first register following the 
last; thus, a word count greater than 16 causes the first-reg­
isters loaded to be overwritten. 

The initial value of the control start field of register Ru 1 
points to the first page (512 words) of virtual addresses that 
are to be controlled by the access protection control image 
being loaded. The access protection control image is loaded 
into the access control registers one word at a time, .. thus 
loading the control registers for 16 consecutive pages with the 
contents of each image word. As each image word is loaded, 
the access protection control imag~ address is incremented 
by 1, the word count is decremented by 1, and the value in 
the control start field is incremented by 4. The lo~ding 
process continues until the word count is reduced to O. 

When the loading process is completed, the parameters con­
tained within registers Rand Ru1 have the following values: 

Access protection 
control image address = initial access protection control 

image address plus the initial word 
count. 

Count = O. 

Control Start = initial contents plus 4 times the 
initial word count. 

Control Instructions 115 



MEMORY WRITE PROTECTION LOCKS 

CONTROL IMAGE 

Each write lock control image word may contain either 
eight 4-bit write lock images or sixteen 2-bit write lock 
images, as illustrated below: 

Typi cal write locks image word {4-bit format}; 

Typical write locks image word {2-bit format}; 

The number of words required to define the memory write 
locks control image is dependent upon the format of the 
write lock images and the number of write lock registers to 
be loaded by a single MMC instruction. {For example, if 
the write lock images are of the 4-bit format and the memory 
system is maximum size (1,024,000 words or 2048 pages) 
with 2048 write lock control registers, the control image 
may be defined by 256 words (i. e., 256 words times 8 write 
lock images per word is equal to 2048 write lock images or 
one write lock image per each write lock control register). 
If the write lock images are of the 2-bit format and the 
memory size is the same, as described above, the control 
image may be defined by 128 words. 

The instruction format for loading 2-bit write lock images is: 

LLOCKS LOAD LOCKS (2-bit format) 

The instruction format for loading 4-bit v:rite !eck imcges is: 

LLOCKSE LOAD LOCKS (4-bit format) 

If MA = 0, the contents of register Rare: 

If MA = 1 and MM =0, the contents of register Rare: 

lock lmag~ Address 
I , , 

116 Control Instructions 

When loading 2-bit write lock images, the contents of 
register Ru1 are: 

When loading 4-bit write lock images, the contents of reg­
ister Ru1 are: 

LOADING PROCESS 

Depending upon the addressing mode of the basi c processor, 
the contents of register R are interpreted as either a 17-bit 
or a 20-bit virtual address of an image word within the 
memory write locks control image area (source of write lock 
images). The initial lock image address points to the first 
image word. After the contents of the image word (either 8 
or 16 write lock images) are loaded into an equivalent num­
ber of write lock registers, the lock image address is incre­
mented by one. Thus, successive image words are accessed 
in an ascending sequence. 

Depending upon the instruction format, the hardware appends 
either one or two low order zeros, as necessary, to convert 
the 9-bit or 10-bit control start field into an 11-bit real _ 
page address. In addition to being the real page address 
of 512 consecutive memory word locations, the value of the 
ll-bit control start field is also the address of the asso~iated 
write lock control register. The value of the control start 
field at the time the image word is accessed is the address 
of the first of either 8 or 16 write lock control registers 
that will be loaded by the write lock images contained 
within one image word. When all of the write lock images 
of a given word have been loaded into either 8 or 16 write 
lock control registers, the val ue of the 9-bit or 10-bit con­
trol start field is incremented by 4. (Note that this is equi­
valent to incrementing the \-'c!ue of the effective l1-bit 
field by a value of either 8 or 16, the number of control 
registers loaded.) 

The count field of register Ru1 specifies the number of image 
words, and indirectly the number of write lock images to be 
loaded. Depending upon the instruction format, each image 
word is interpreted as containing either eight 4-bit write 
lock images or sixteen 2-bit write lock images. In the case 
of 2-bit write lock images, the hardware appends two high 
order zeros to each image as it is loaded into the 4-bit con­
trol register. Thus, the number of write lock control regis­
ters loaded is always either 8 or 16 times the initial value 
of the count field. If the initial valut:: of -the count field 
is zero, it is interpreted to be 256 words. During the load­
ing operation, the count field is decremented by one after 
the contents of each image word are loaded into the appro­
priate number of control registers. The loading operation 
continues until the word count is reduced to zero. At that 
time, the value of the lock image address is equal to its 



initial value plus the initial value word count and the value 
of the 9- or 10-bit control start field is equal to its initial 
value plus 4 times the initial word count. 

The memory write loc~ registers are treated as a circular 
set, with the register for memory addresses X'O'-X'lFF' (first 
page) immediately following the register for memory ad­
dresses X'FFEOO'-X'FFFFF' (last page). Overwriting the 
first registers occurs when 2-bit write lock images are being 
processed and the word count is greater than 128. 

INTERRUPTION -OF MMC 

The execution of MMC can be interrupted after each word 
of the control image has been moved into the specified con­
trol register. Immediately prior to the time that the instruc­
tion in the interrupt ortrap location is executed, the instruc­
tion address portion of the program status words contains the 
virtual address of the MMC instruction, register R contains 
the virtual address of the next word of the control image to 
be locided, and register Ru 1 contains a count of the number 
of control image words remaining to be moved and a value 
pointing to the next memory control register to be loaded. 
After interrupt, the MMC instruction may be resumed from 
the point it was interrupted. 

MEMORY ACCESS TRAPS BY MMC INSTRUCTION 

A trap during execution of the MMC instruction can occur 
if the pages containing the control images are nonexistent 
or are protected in the master-protected mode. The regis­
ters Rand Ru 1 may be a I tered for the above case. If a 
parity error should occur during access of a control image 
word, theMMC instruction will trap with the RegisterAItered 
indicator set indicating that a change has been made to the 
memory control registers. The registers Rand Ru 1 will be 
restored to their initial values, prior to the point at which 
the trap occurred. 

LRA LOAD REAL ADDRESS 
(Word index al ignment, privileged) 

LOAD REAL ADDRESS converts the address portion of the 
effective word into a reaf byte, halfword, word, or double­
word address (as specified by CC 1 and CC2 at the beg inn ing 
of the LRA instruction) and loads that real address and status 
information (as listed below) into register R. Upon comple­
tion of the LRA instruction, additional information pertain­
ing to the LRA instruction or to the real address is provided 
via the condition code. 

Prior to executing an LRA instruction, CC 1 and CC2 must 
be set to an appropriate value (as shown below). 

CCl CC2 Type of real address to be generated 

0 0 Byte (22 bits) 

0 Halfword (21 bits) 

0 Word (20 bits) 

Doubleword (19 bits) 

The effective virtual address for the LRA instruction itself 
may be generated in a normal manner (i. e., indirect ad­
dressing, indexing, and/or mapping, as applicable, may be 
specified and performed) with all standard trapping condi­
tions in effect. 

The address loaded into the R register is dependent upon 
the value of the address portion of the effective word. If the 
address portion of the effective word is equal to or greater 
than 16, it is converted (mapped) into a 19, 20, 21, or 22-bit 
real address, as specified by CC 1 and CC2. 

Note: Converting an effective virtual address into a real 
address by mapping is performed independently of 
the state of the map bit in the current PSWs. 

If the address portion of the effective word is less than 16, 
it is not mapped into a real address. Instead, a 19, 20, 21, 
or 22-bit effective virtual address is generated, as specified 
by CC 1 and CC2. 

In either case a 19, 20, 21, or 22-bit real or effective vir­
tual address is loaded into a corresponding number of low 
order bit positions of the R register (i. e., the least signifi­
cant bit of the address is always loaded into bit position 31 
of register R). Except for bit positions reflecting status in­
formation, all high order bit positions within register Rare 
set to zero. Contents of the various bit positions of regis­
ter R after an LRA instruction are as follows: 

Bits 

0-9 

10-31 

Contents 

Reserved; always set to O. 

Real or effective virtual address. For 21-, 20-, 
and 19-bit addresses, as specified by initial value 
of CC 1 and CC2, bit positions 10, 11, and 12 
will be set to zeros, as required. 

Affected: (R),CC 

Condition code settings: 

2 3 4 Results in R register 

o 0 No abnormal condition. 

- Address in R is real but for a nonexistent 
memory location. 

Control Instructions 117 



2 3 4 Results in R register 

o 0 Address in R is an effective virtual address 
(address of a general register). 

- 0 
o 
1 
1 

Note: Condition code setting 11-- and 1100 
--- may be distinguished in the software 

by examining the address (bits 10-31). 

~1 Access protect code for the page containing 
o the memory location specified by the gener-
1 ated address. 

Note: This instruction requires two memory references to 
the same location for its execution. To preclude 
other processors from accessing the effective loca­
tion during this time, the memory unit containing 
the effective location is reserved (not accessible to 
other processors) until the LRA· instruction is 
completed. 

LMS LOAD MEMORY STATUS 
(Word index al ignment, privileged) 

LOAD MEMORY STATUS is used to determine memory unit 
status and/or to perform diagnostic action on a memory unit. 
The effective address is used to determine the memory unit. 
The condition code setting immediately before execution 
determines the diagnostic action to be performed. The ef­
fective address always references memory even if it is less 
than 16. The condition code can be set to the desired value 
before execution of LMS with the LCF or LCFI instructions. 
RegisTer R is loaded with the result of the action. The 
condition code is set at the conclusion of execution to 
reflect the status of the word loaded (if any). 

Affected: (R),CC T rap: See liT rap System ", 
Chapter 2. 

Initial condition code settings: 

2 3 4 LMS Action 

o 0 0 0 Read and set - causes the same action as the 
LOAD AND SET (LAS) instruction, except for· 
condition code serrmgs. Normai traps are 
allowed including write protect. 

000 Read and inhibit parity - loads the effective 
word into R. If a memory parity error is de­
tected, the memory does not take a "snapshot 11 

or generate a Memory Fau I t Interrupt (MFI). 

118 Control Instructions 

2 3 4 LMS Action 

It does, however, generate the Memory Parity 
Error signal. The basic processor inhibits the 
trap that would·ordinarily occur for the mem­
ory parity error. 

o 0 o Clear memory - stores zero in the memory 
location specified by the address. 

o 0 Reserved. 

o 

o 

o 

o 

o 0 Reserved. 

o Reserved. 

o Read write lock - loads a pair of 4-bit write 
locks into byte 3 of R (bits 24-31) and 0 in all 
other bit positions of R. The write lock stored 
in bits 24-27 is stored in the memory system's 
Write Lock memory at the location correspond­
ing to bits 17-21 of the effective address, 
bit 22=0. The write lock stored in bits 28-31 
corresponds to bits 17-21 of the effective ad­
dress, bit 22=1. 

Write write lock - stores byte 3 of the data 
word sent to memory as a pair of write locks 
in the memory system's Write Lock memory at 
a location corresponding to bits 17-21 of the 
effective address, bit 22= 0 (for data bits 24-27) 
and bits 17-21 ofthe effective address, bit 22=1 
(for data bits 28-31). 

o 0 0 Read status word ot - loads status word 0 into 
R (see Table 9). 

o 0 Reserved. 

o 0 Read status word 1t - loads status word 1 into 
R (see Table 10). 

o Reserved. 

o 0 Read status word 0 and clear. 

o Reserved. 

o Write double error - stores an arbitrary word 
into a specified memory location, with two 
differences compared to a normal Write Word 
instruction: (1) Byte 3 in memory is forced to 
zero; (2) the arbitrary word is stored in memory 
with an intentional wrong parity; on a sUb­
sequent read of that word, the memory issues 
the parity error-signal. 

Reserved. 

Condition code settings after execution. 

t Primarily of diagnostic concern. 



Table 9. Status Word 0 

Field Bits Comments 

0 Reserved 

1 Power status 

2-7 Memory un i t error cod e 

8-9 Memory type 

Ports 10 Port 1 enabled 

11 Port 2 enabled 

12 Port 3 enabled 

13 Port 4 enabled 

14 Port 5 ena bl ed 

15 Port 6 enabled 

16 Port 1 serv iced 

17 Port 2 serviced 

18 Port 3 serviced 

19 Port 4 serviced 

20 Port 5 serviced 

21 Port 6 servi ced 

Memory fau I t 22 0 
types 

23 Uncorrectable memory unit error 

24 Memory module selection error 
,..e: A 1.1. ____ . _____ !L __________ 

Lv /",,\UUIC;:);:) pUllly CliVI 

26 Data in parity error 

27 Write lock parity error 

28 Port selection error 

29 Undefined operation 

30 Control error 

31 Multiple error 

For IIread and inhibit parityll operations, the status of the 
word loaded (if any) is stored in the condition code bits at 
the conclusion of execution as follows: 

CC 1: Memory Parity Error (from memory) 

CC2: Data Bus Check (from CPU) 

CC3: Parity Bit (from memory) 

CC4: 0 

T abl e 10. Status Word 1 

Field Bits Comments 

0 Interleave switch ON 

1-3 Memory un it size: 

000 8K 
001 16K 
010 24K 
011 32K 
100 40K 
101 48K 
110 56K 
111 64K 

4-6 Memory unit number (binary code) 

Starting 7 Starting address bit 12 
Address 

8 Starting address bit 13 

9 Starting address bit 14 

10 Starting address bit 15 

11 Starting address bit 16 

12 Starting_ address bit 17 

13 Starting address bit 18 

14 Reserved 

15-31 Address received, bits 15-31 

WAIT WAIT 
(Word index al ignment, privileged) 

WAIT causes the basic processor to cease all operations until 
an interrupt activation occurs, or until the operator puts 
the basic processor in the IDLE mode and then back to RUN 
(see Chapter 5). The instruction address portion of the PSWs 
is updated before the basic processor begins waiting; there­
fore, while it is waiting, the INSTRUCTION ADDRESS indi­
cators contain the virtual address of the next location in 
ascending sequence after WAIT and the contents in the next 
location are displayed in the DISPLAY indicators on the 
processor control console. If any input/output operations 
are being performed when WAIT is executed, the operations 
proceed to their normal termination. 

When an interrupt activation occurs while the basic pro­
cessor is waiting, it processes the interrupt-servi cing routine. 
Normally, the interrupt-servicing routine begins with an 
XPSD instruction in the interrupt location, and ends with 
an LPSD instruction at the end of the routine. After the 
LPSD instruction is executed, the next instruction to be ex­
ecuted in the interrupted program is the next instruction in 
sequence after the WAIT instruction. If the interrupt is to a 

Control Instructions 119 



single-instruction interrupt location, the instruction in the 
interrupt location is executed and then instruction execution 
proceeds with the next instruction in sequence after the 
WAIT instruction. When the basic processor execution mode 
is changed from RUN mode to IDLE mode and back to RUN 
while the basic processor is waiting, instruction execution 
proceeds with the next instruction in sequence after the 
WAIT instruction. 

Affected: PC 

If WAIT is indirectly addressed and the indirect reference 
address is nonexistent, the nonallowed operation trap to 
location X'40' will not occur. The effective virtual address 
of the WAIT instruction, however, is not used as a memory 
reference (thus does not affect the norma I operation of the 
instruction). 

RD READ DIRECT 
(Word index alignment, privileged) 

The basic processor is capable of directly communicating 
with other elements of the system, as well as performing 
internal control operations, by means of the READ DIRECT / 
WRITE DIRECT (RD/'ND) lines. The RD;WD lines consist of 
16 address lines, 32 data lines, two condition code lines, 
and various control I ines that are connected to various basic 
processor circuits and to special system equipment. 

READ DIRECT causes bits 16 through 31 of the effective 
virtual address to be presented to other elements ofthe sys­
tem on the RD/'ND address lines. Bits 16-31 of the effective 
virtual address identify a specific elementof the system that 
is expected to return information (two condition code bits 
plus a maximum of 32 data bits) to the basic processor. The 
significance and number of data bits returned depend on the 
selected element. If the R field of RD is nonzero, up to 
32 bits of the returned data are loaded into general regis­
ter R; however, if the R field of RD is 0, the returned data 
is ignored and general register a is not changed. Bits CC3 
and CC4 of the condition code are set by the addressed 
element, regardless of the value of the R field. 

Bits 16-19 of the effective virtual address of RD determine 
the mode of the RD instruction, as follows: 

Bit Position 

16 17 18 19 Mode 

a a a a Interna I basi c processor control. 

o a a Interrupt control. 

a a a Xerox testers. 

120 Control Instructions 

16 17 18 19 

a a 

: ] Unass igned. 

Special systems control (for customer use 
with specially designed equipment). 

If bits 16-19 select mode 2 through mode F, CC 1 and CC2 
are set to zero and CC3 and CC4 are set according to the 
state of the two condition code lines from the external 
device. 

READ DIRECT. INTERNAL BASIC PROCESSOR 
CONTROL (MODE 0) 

In this mode, the basic processor is able to read the sense 
switches, the basic processor address, and the interrupt in­
hibit bits of the PSWs as follows: 

READ SENSE SWITCHES 

The following configuration of RD can be used to read the 
four SENSE switches in the System Control Processor: 

If a particular SENSE switch is set, the corresponding bit of 
the condition code is set to 1; if a SENSE switch is zero, 
the corresponding bit of the condition code is set to a (see 
"Read Sense Switches" in Chapter 5). 

In this case, only the condition code is affected. 

READ BASIC PROCESSOR 

The following RD configuration is used to read the basic 
processor's address: 

If the R field is nonzero, the cluster number in which the 
basic processor resides is obtained from the associated pro­
cessor interface and loaded into register R bits 21-23. All 
other bits in the register are cleared to zero. 

Affected: (R) 

Cluster Address - R
21

- 23 

0- RO- 20 and R24- 31 



READ INTERRUPT INHIBITS 

The following configuration of RD can be used to read the 
contents of the interrupt inhibit field: 

If the R field of RD is nonzero, the contents of the interrupt 
inhibit field (bits 37, 38, 39) of the program status words 
are transferred to the least significant 3 bits of the spe­
cified R register (bits 29, 30, 31). The remainder of the R 
register (bits 0-28) is cleared to zeros. 

Affected: (R) 

(PSWs)37_39 - R29- 31 

0- RO- 28 

Note that a copy of the interrupt inhibits is retained in the 
Interrupt Status Register in the Processor Interface associated 
with each basic processor. 

LOAD FROM LOW MAIN MEMORY 

1* I 6C I R I X I~):; 0000Rff~o~~c1~fJ~~~~~~es;~~~ I 
o 1 2 31456718910 11112 13 14';5116 17 18 19120212223124252627128 29 30 31 

The instruction allows reading the contents of real memory 
locations 0-31 (locations 0-15 shadowed by the genera I 
purpose registers). This allows access to the Status Stack 
Pointer Doubleword in locations 0-1 and the default Pro­
gram Status Words (Interrupt Stack is empty) in locations 2-4. 

If the R field is nonzero, the contents of the main memory 
location identified by bits 27-31 are loaded into R. 

Affected: (R) 

EW-R 

READ INTERNAL CONTROL REGISTERS 

The following configuration of RD is used to read the con­
tents of internal control (or Q) registers: 

II I I I i Rtfe[eDOr Ad~fe~s ~ * 6C R X~)~ 0000 0011 }}}t@ Q add 
o 1 2 314 5 6 7 8 9 10 1112 13 14 ';516 17 18 19 ~ 21 22 23 '24--2';"26 27 28 29 30 31 

If the R field of the RD instruction is nonzerO, the contents 
of the internal control register, as specified by the IIQ Ad­
dress" field of the rnstruction (bit positions 27-31), are 

loaded into register R. Although the Q address field permits 
any of 32 addresses to be specified, only the following may 
be used: 

Q Address Contents 

X'lD' 

X'lP 

{
(Bits 0-13) - Reserved 
(Bits 14-31) - "Branch from" Program 

Counter 

{
(Bits 0-7) - Reserved 
(Bits 8-31) - Load Device Address 

All other Q addresses from X'OO' - X'lF' are reserved. 

Affected: (R) 

EW-R 

READ DIRECT, INTERRUPT CONTROL (MODE 1) 

The following configuration of RD is used to control the 
sensing of the various states of the individual interrupt 
levels within the basi c processor interrupt system: 

Bits 28 through 31 of the effective address specify the iden­
tification number of the group of interrupt levels to be con­
trolled by the READ DIRECT instruction. 

The R field of the RD instruction specifies a general register 
that will contain the bits sensed from the individual inter­
rupt levels within a specified group. For external interrupt 
groups, bit position 16 of register R contains the appropriate 
indicator bit for the highest priority (lowest number) inter­
rupt level within the group and bit position 31 of register R 
contains the indi cator bit for the lowest priority interrupt 
level within the group. For assignments in Group X'O', see 
Table 11. Each interrupt level in the designated group is 
sensed according to the function code specified by bits 21 
through 23 of the effective address of RD. The codes and 
their associated functions are as fol lows: 

Code 

001 

010 

Function 

Read Armed or Waiting State. Set to 1 the bits in 
the selected register which correspond to interrupt 
levels in this group that are in either the armed or 
the waiting state. Reset all other bits to zero. 

Read Waiting or Active State. Set to 1 the bits 
in the selected register which correspond to each 
interrupt level in this group that is in either the 
waiting or the active state. Reset all other bits 
to zero. 

100 Read Enabled. Set to 1 the bits in the selected 
register which correspond to each interrupt level 
in this group which is enabled. Reset all other 
bits to zero. 

Control Instructions 121 



READ DIRECT (MODE 9) 

READ CONFIGURATION CONTROL PANEL 

The mode 9 instruction reads the state of the Configuration 
Control Panel for the addressed cluster or unit. Physical 
addresses are assigned at the time of system configuration. 
The returned status to Register R is shown in Tables 11 and 12. 

WD WRITE DIRECT 
0/Vord index alignment, privileged) 

WRITE DIRECT causes bits 16-31 of the effective virtual ad­
dress to be presented to other elements of the system on the 
RD;WD address lines (see READ DIRECT). Bits 16-31 of the 
effective virtual address identify a specific element of the 
system that is to receive control information from the basic 
processor. If the R field of WD is nonzero, the 32-bit con­
tents of register R are transmitted to the specified element 
on the RD;WD data I ines. If the R field of WD is 0,32 O's 
are transmitted to the specified element (instead of the con­
tents of register 0). The specified element may return 
information to set the condition code. 

Bits 16-19 of the effective virtual address determine the 
mode of the WD instruction, as follows: 

16 17 18 19 Mode 

o 0 0 0 Interne! basic processor centro!. 

000 Interrupt control. 

000 Xerox testers. 

o 0 

Unassigned. 

Special systems control (for customer use 
•• I • 'I •• • • • \ wlfn speCIallY aeslgnea equlpmenr). 

If bits 16-19 select mode 2 through mode F, CC 1 and CC2 
are set to zero and CC3 and CC4 are set according to the 
state of the two condition code I ines from the externa I 
device. 

122 Control Instructions 

WRITE DIRECT, INTERNAL BASIC PROCESSOR 
CONTROL (MODE 0) 

LOAD SENSE SWITCHES 

The fol lowing configuration of WD can be used to load the 
sense switches in the System Control Processor: 

If the R field is nonzero, bits 0 through 3 of Register R 
will be loaded into sense switches 1 through 4 in the System 
Control Processor. If the R field is zero, sense switches will 
be reset to zeros. (See the section "System Control Panel" 
in Chapter 5.) 

SET INTERRUPT INHIBITS 

The following configuration of WD can be used to set the 
interrupt inhibits (bit positions 37-39 of the PSWs): 

A logical inclusive OR is performed between bits 29-31 of 
the effective virtual address and bits 37-39 of the PSWs. If 
any (or all) of bits 29-31 of the effective virtual address 
are l's, the corresponding inhibit bits in the PSWs are set 
to l's; the current state of an inhibit bit is not affected if a 
corresponding bit position of the effective virtual address 
contains a O. 

Note that a copy of the Interrupt Inhibits is retained in the 
Interrupt Status Register in the Processor Interface associated 
with each basic processor. 

RESET INTERRUPT INHIBITS 

The following configuration of WD can be used to reset the 
interrupt inhibits: 

If any (or al I) of bits 29-31 of the effective virtual address 
are l's, the corresponding inhibit bits in the PSWs are reset 
to 0'5, the current state of an inhibit bii is not affected if 
a corresponding bit position of the effective virtual address 
contains a O. 

Note that a copy of the Interrupt Inhibits is retained in the 
Interrupt Status Register in the Processor Interface associated 
with each basic processor. 



Table 11. Read Direct Mode 9 Status Word 

RD Status Word 
Bit No. Processor Cluster 1 Memory Unit 1 

00 System Select System Select 

01 Clock Select Clock Select 

02 Processor Cluster Address 22 Unit No. 22 

03 Processor Cluster Address 21 Unit No. 21 

04 Processor Cluster Address 20 Unit No. 2° 

05 BP Enable Port Enable 1 

06 MIOP Enable Port Enable 2 

07 DIO Enable Port Enable 3 

08 Not Assigned Port Enable 4 

09 ALTSEL Port Enable 5 

10 FSELA Port Enable 6 

11 FSELBO Not Assigned 

12 FSELBI Not Assigned 

13 Real Time Clock 1-S0 Interleave Enable 

14 Real Time Clock 1-S 1 Starting Address S 12 

15 Real Time Clock 2-S0 Starting Address S 13 

16 Real Time Clock 2-S 1 Starting Address S 14 

17 Real Time Clock 3-S0 Starting Address S 15 

18 Real Time Clock 3-S 1 Starting Address S 16 

19 Subjective Time Clock -so Starting Address S 17 

20 Subjective Time Clock -S 1 Starting Address S 18 

21 Not Assigned Not Assigned 

22 Not Assigned Not Assigned 

23 Not Assigned Not Assigned 

24 Not Assigned Not Assigned 

25 Not Assigned Not Assigned 

26 Not Assigned Not Assigned 

27 tChassis Type-~ tChassis Type-24 

28 Chassis Type-23 Chassis Type-23 

29 Chassis Type-22 Chassis Type-22 

30 Chassis T ype-2 1 Chassis Type-2 1 

31 Chassis Type-20 Chassis Type-20 

tSee Chassis Type Table. 

Control Instructions 123 



Table 12. Chassis Type Assignments 

Chassis Type 24 23 22 21 20 Configuration Information 

Processor Clusters 1 1 0 0 0 Reserved 

1 1 0 0 1 Reserved 

1 1 0 1 0 Processor Cluster Type 1 

1 1 0 1 1 Reserved 

1 1 1 0 0 Reserved 

1 1 1 0 1 Reserved 

1 1 1 1 0 Reserved 

1 1 1 1 1 Reserved 

Controller Clusters 1 0 0 0 0 Reserved 

1 0 0 0 1 Reserved 

1 0 0 1 0 Reserved 

1 0 0 1 1 Reserved 

1 0 1 0 0 Reserved 

1 0 1 0 1 Reserved 

1 0 1 1 0 Reserved 

1 0 1 1 1 Reserved 

Memory Un its 0 1 0 0 0 Memory Un itT ype 1 

0 1 0 0 1 Reserved 

0 1 0 1 0 Reserved 

0 1 0 1 1 Reserved 

0 1 1 0 0 Reserved 

0 1 1 0 1 Reserved 

0 1 1 1 0 Reserved 

0 1 

I 
1 1 1 Reserved 

Reserved 0 0 0 0 0 Not available 

0 0 0 0 1 Reserved 

0 0 0 1 0 Reserved 

0 0 0 1 1 Reserved 

0 0 1 0 0 Reserved 

0 0 1 0 1 Reserved 

0 0 1 1 0 Reserved 

0 0 1 1 1 Reserved 

124 Control Instructions 



SET ALARM INDICATOR 

The following configuration ofWD is used to set the ALARM 
indicator on the maintenance section of the processor con­
trol panel: 

If the processor is in the RUN mode and the AUDIO switch 
on the maintenance section of the processor control panel 
is in the ON position, a 1000-Hz signal is transmitted to 
the basic processor speaker. The signal may be interrupted 
by changing from RUN mode to IDLE mode, by moving the 
AUDIO switch to the OFF position, or by resetting the 
ALARM indicator. 

RESET ALARM INDICATOR 

The following configuration of WD is used to reset the 
ALARM indicator: 

The ALARM indicator is also reset by either the RESET BP 
or the RESET SYSTEM Command entered from the operator's 
contro I conso Ie. 

TOG G LE PROG RAM-C ONT ROLLED-FREQUENCY 
FLIP-FLOP 

The following configuration of WD is used to set and reset 
the basic processor program-controll ed-frequency (PCF) 
flip-flop: 

The output of the PCF flip-flop is transmitted to the basic 
processor speaker through the AUDIO switch on the main­
tenance section of the System Control Panel. If the PCF 
fl ip-flop is reset when the above configuration of WD is 
executed, the WD instruction sets the PCF flip-flop; if the 
PCF fI ip-flop was previously set, the WD instruction resets 
it. A program can thus generate a desired frequency by 
setting and resetting the PCF flip-flop at the appropriate 
rate. Execution of the above configuration of WD also re­
sets the ALARM indicator. 

LOAD INTERRUPT INHIBITS 

The following configuration of WD can be used to transfer 
the contents of the specified R register (R29-31) to the 
Interrupt Inhibit field (PSWs

37
_

39
). 

Affected: (PSWs
37

_
39

) 

(R29-
31

) - PSWs
37

_
39 

TURN ON MODE ALTERED FLAG 

The following configuration of WD is used to set the Mode 
Altered Flag (PSWs 61) to 1: 

TURN OFF MODE ALTERED FLAG 

The following configuration of WD is used to reset the Mode 
Altered Flag (PSWs 61) to 0: 

STORE IN LOW MAIN MEMORY 

This instruction writes into main memory locations 0-31 
(locations 0-15 shadowed by the general purpose registers 
and reserved locations). This allows storing or changing the 
Status Stack Pointer Doubleword in locations 0-1 and the 
default Program Status Words (Status Stack is empty) in 
locations 2 through 4. . 

If the R field is nonzero, the contents of R are stored in the 
main memory location identified by bits 27-31. 

TRAP TO LOCATION X'47 1 

This instruction causes the basic processors to trap to loca­
tion X'471. 

A line in the Processor Bus is raised by the initiating basic 
processor (or the associated PI). This line, when true, causes 
the basic processors to trap to X' 471 (including the one that 
executes the instruction). 

Control Instructions 125 



WRITE INTO INTERNAL CONTROL REGISTER 

The following configuration of WD is used to write into the 
internal control (or O) registers: 

If the R field is nonzero, the contents of register Rare 
loaded in the control register, as specified by the 110 Ad­
dress ll field (bit positions 27-31) of the WD instruction. 
Except for the four 0 addresses listed below, all other ad­
dresses are reserved: 

o Address Significance 

X'lD' {

(Bits 00-13) - Reserved. 
(Bits 14-31) - Write into the IIBranch From II 
program counter. 

X'lE' {

(Bits 00 through 07) - Reserved. 
(Bits 08 through 3l) - Write into the IILoad 
Device Address ll register. 

If the R field is zero, the specified register is loaded with 
all zeros. 

Affected: (EL) 

(R) - (EL) 

WRITE DIRECT, INTERRUPT CONTROL (MODE 1) 

The following configuration of WD is used to set and reset 
the various states of the individual interrupt levels within 
the basi c processor interrupt system: 

Bits 28-31 of the effective address specify the identifi cation 
number (see Table 11) of the group of interrupt levels to be 
controlled by the WD instruction. 

126 Control Instructions 

The R field of the WD instruction specifies a general register 
that contains the selection bits for the individual interrupt 
levels within the specified group. For external interrupt 
groups, bit 16 of register R contains the selection bit for 
the highest-priority (lowest-numbered) interrupt level within 
the group, and bit 31 of register R contains the selection bit 
for the lowest-priority (highest-numbered) interrupt level 
within the group. For assignments in Group X'O', see Table 11. 

Except for Power on/Power off interrupt levels, which can 
not be disabled, disarmed, or inhibited, each level in the 
designated group is operated on according to the function 
code specified by bits 21-23 of the effective address of WD. 
The codes and their associated functions are as follows: 

Code Function 

000 Setactive all selected levels currently in the armed 
or waiting states. 

001 t Disarm all levels selected by a 1; all levels se­
lected by a 0 are not affected. 

o lOt Arm and enable all levels selected by a 1; all 
levels selected by a 0 are not affected. 

011 t 

100 

101 

110 

Arm and disable all levels selected by a 1; all 
levels selected by a 0 are not affected. 

Enable all levels selected by a 1; all levels selec­
ted by a 0 are not affected. 

Disable all levels selected by a 1; all levels selec­
ted by a 0 are not affected. 

Enable all levels selected by a 1 and disable all 
levels selected by a O. 

111 Trigger all levels selected by a 1. All such levels 
that are currently armed advance to waiting state. 

tThese codes clear the current interrupts! i. e.! remove from 
the active or waiting state all levels selected by a 1 (see 
Figure 12). 



INPUT jOUTPUT INSTRUCTIONS 

The I/o instruction set is comprised of eight instructions, 
as listed below. 

Instruction Name Mnemonic 

Start Input/Output SIO 

Test Input/Output TIO 

Test Device TDY 

Halt Input/Output HIO 

Reset Input/Output RIO 

Poll Processor POLP 

Poll and Reset Processor POLR 

Acknowledge Input/Output Interrupt AIO 

OVERALL CHARACTERISTICS 

All I/o instructions are privi leged and can be performed 
only when the basic processor (BP) is in either the master 
or master-protected mode. If the BP attempts to execute 
an I/o instruction when it is in the slave mode (bit 8 of 
the current PSW is a 1), the instructi on is aborted at the 
timl'> thl'> nnl'>rntinn c-nrll'> is rlpc-nrlprl nnrl thp RP trnns to 10-. - - - - - - - - 1- - - -- - - - - - - - - - - - - - - I 

cation X1401. Programs operating in the slave mode must 
request I/O services from the System Monitor. 

At the end of every I/O instruction, the condition code 
bits represent a summary descri pti on of the resu I ts of the 
I/O operation and conditions within the addressed I/O 
subsystem. Specific condition code settings and meanings 
(unique for each I/O instruction) are contained in the de­
tailed description for each I/O instruction. 

All I/O instructions, except RIO, may request detailed 
I/O status information. The type and amount of I/o status 
information that may be requested is determined by the op­
eration code and the R field of the I/O instruction. The 
R field also designates which general register(s) is to be 
loaded with the requested information. (Refer to I/o Status 
Informati on for further detai Is. ) 

I/O instructions are similar to other word-addressing in­
structions in that bits 15-31 may be modified by indirect 
addressing and/or indexing. However, the final value of 
these bits is not used as an effective virtual address for 
memory reference. Instead, depending upon the I/o in­
struction, these bits are used as an extension to the opera­
tion code field, as an I/O address to select a particular 
I/o subsystem, or they may be reserved. Further detai Is 
of I/o instructions are illustrated in Figure 13 and de­
scribed in Table 13. 

I/O STATUS INFORMATION 

SIO, TIO, TDY, AND HIO INSTRUCTIONS 

If the R field is coded with a 0, no status information is re­
quested nor loaded. If the R field is odd, one word of status 
information is requested to be loaded into register R as spec­
ified by the R field. If the R field is even (not zero), two 
words of status information are requested to be loaded into 
registers Rand Ru 1 . 

The following I/O status information may be loaded into 
register R only when the R field is coded with an even 
(nonzero) value. 

The significance of each bit within register R is described 
in Table 14. 

The following I/O status information may be loaded into 
register R if the R field is odd, or into register Ru 1 if the 
R fi e I dis even and not zero. 

The format of information within the specified general reg­
ister (R or Ru1) is shown below. 

Device Status Byte. These eight bits (0-7) when loaded 
into the specified general register provide status information 
pertaining to the addressed device and device controller or 
lOP. The significance of each bit when requested by an 
SIO, TIO, and HIO instruction is described in Table 15. 
The significance of these bits when requested by a TDY in­
struction is different and is described in the applicable 
peripheral device reference manual. 

Operational Status Byte. Bits 8-15 of the specified gen­
eral register (R or Ru1) indicate either the presence (1) or 
absence (0) of various errors which may have occurred 
during an I/O operation. The significance of the individ­
ual bits within the operational status byte are described 
in Table 16. 

Table 17 is the summary description of the Device Status 
Byte and the Operational Status Byte. 

Byte Count. Bits 16-31 of register Ru1 indicate the num­
ber of bytes that have to be transmitted to or from mem­
ory in the operation called for by the current I/o command 
doubleword. 

RIO INSTRUCTION 

No status information is returned to the general registers 
for an RIO instruction (the R field is ignored). Only con­
dition code bits (CC 1 - CC3) are set to reflect the I/O 
conditions. 

Input/Output Instructions 127 



Mnemonic 

SIO 

TIO 

TDV 

HIO 

RIO 

POlP 

POlR 

AlO 

o 2 3 4 5 6 7

1

8 9 10 11 12 13 '4

1

'5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

1* I Operation Code R X t&o~~ I/o Address I ~~~~~~;:~~:!;;-
~. ~--------------~--------~------~-~~-----~~----------------------------~-ing and/or 

Operation Code 
(Hexadecimal) 

4 

4 

4 

4 

4 

4 

4 

6 

C 

D 

E 

F 

F 

F 

F 

E 

R X 

R x 

R x 

R x 

R x 

R x 

R X 

R x 

o indexing 

15 (2) 17 18 
o 

20 21 
0) 

23 24 27 28 31 

CA UA 
o 000 DCA 
1 DCA DA 
o 000 DCA CA UA 
1 DCA DA 
o 000 DCA CA UA 
1 DCA DA 

000 
o 000 DCA 

CA UA 1 DCA DA 

001 CA 

010 CA 

o 1 1 CA 

00 000 

o Portions of a word format that are shaded represent bits that are reserved (after the I/o address is generated) and 
must be coded with zeros to ensure program compatibility with possible enhancements to software and/or hardware. 

o OCE = operation code field extension; CA = cluster address; UA = unit address; DCA = device controller address; 
DA = device address. 

o To address a single-unit device controller, bit 24 must be a 0; to address a multiunit device controller, bit 24 
must be a 1. 

Figure 13. Formats of I/O Instructions 

Table 13. Description of I/o Instructions 

Bit Applicable Instructions 
Position (Mnemonics) Function and/or Description 

0 A!! I/O instructions If this bit is a 1; bits 15-31 of the initla! Vo instruction are modified by in-
direct addressing. 

1-7 SIO, no, TDY, and AIO For these four instructions, the operation code uniquely defines the I/O oper-
ation that is to be performed. 

HIO, RIO, POLP, and Within bit positions 1-7, these four instructions all have the same operation 
POLR code (X I4F'). The instructions are differentiated by using bits 15, 16, and 17 

as an extension of the operation code field. 

8-11 SIO, no, TDY, and HIO The value of the R field specifies how much status information is requested 
from the addressed I/O subsystem (lOP, device controller, and device) and 
into which general register{s) the status information is to be loaded. If the 
value of the R field is even and not 0, two words of status infol'rTIution OlE: IE:-

quested to be loaded into registers Rand Rul. If the value of the R field is odd, 
one word of status information is requested to be loaded into register R. 

RIO Although the R field is not used by the RIO instruction, the R field may be 
coded with any value as required by the program. 

128 Input/Output Instructions 



Table 13. Description of I/o Instructions (cont.) 

Bit Applicable Instructions 
Position (Mnemonics) 

8- 11 POLP and POLR 
(cont. ) 

12-14 

15-17 

18-31 

AIO 

All I/O instructions 

510, TIO, TDY, and AlO 

HIO, RIO, POLP, and 
POLR 

All I/o instructions 
(except AIO) 

Function and/or Description 

This field specifies which general register (including register 0) is to receive 
processor(MIOP, RMP, BP, MI, PI, or System Control Processor) fault information. 

If the R field is 0, no status information is requested. If the R field is not 0, the 
designated general register is to be loaded with the requested status information. 

The X field may be used to specify indexing. 

After the I/O address is generated, these bits are reserved and must be coded 
with zeros. 

These bits are an extension to the operation code field (bits 1-7) and permit 
each of these instructions to be uniquely defined. 

Note that these bits are subject to modifications due to indirect addressing or 
indexing. The final configuration of these bits must be as shown below: 

HIO = 000 

RIO = 001 

POLP = 010 

POLR = 011 

The I/O address (after any indirect addressing and/or indexing) is contained 
within these bits. Depending upon the I/O instruction, the required I/o 
address may be comprised of (1) a cluster address; (2) a cluster address and a 
uni t addressi (3) a cluster address, a uni t address, and a devi ce controll er 
addressi or (4) a cluster address, a unit address, a device controller address, 
and a device address. 

Subfields of the final I/o address field are described below. 

----- - -------- - - - - -1-- - - - - - - - - - - - - - - - - - - - - - - - - - --

18 

23 

24 

All I/o instructions 
(except Ala) 

These bits constitute the cluster address (CA) and the unit address (UA) field 
of an I/O instruction. Cluster and unit addresses may be assigned in the 
following manner: 

1. The assignment of addresses is mutually exclusive, that is, no two units 
may have the same address. 

2. Bits 18-20 represent a cluster address. 

3. Bits 21-23 represent a unique unit within that cluster. Since all processor 
clusters contain as a minimum a Processor Interface (PI) unit and a memory 
interface (MI) unit, the address (110) 21-23 and (111) 21-23 have been 
preassigned to these units. 

- - - - - - -- - - - - - - - - - - - - - - - - - - -
AlO 

510, TIO, TDY, and HIO 

After the I/o address is generated, these bits are reserved and must be coded 
with zeros. 

If the I/O instruction is addressed to a single-unit device controller, this bit 
must be coded as a O. If the I/O instruction is addressed to a multiunit device 
controller, this bit must be coded as a 1. Note that bit 24 is not considered 
as part of the device controller address. 

Input/Output Instructions 129 



Table 13. Description of I/O Instructions (cont.) 

Bit Applicable Instructions 
Position (Mnemonics) Function and/or Description 

24 RIO, POlP, POlR, and AlO After the I/O address is generated, this bit is reserved and must be coded 
(cont.) with a zero. 

'"--- ~---- - ---- ---------- -------

Bit 

25 

31 

510, TIO, TDV, and HIO If the I/o instruction is addressed to a single-unit device controller (bit 24 
is a D), bits 25-31 represent one of 16 possible device controller addresses 
(X'OO' - X'OF'). There is no need to specify a device address. 

If the I/o instruction is addressed to a multiunit (e. g., magnetic tape) device 
controller (bit 24 is a 1), bits 25-27 represent one of eight possible device 
controller addresses (X'D' - X'7') and bits 28-31 represent one of 16 possible 
device addresses (X'D' - X'FI). 

Device controller addresses assigned to controllers within the same I/O chan­
nel (e. g., MIOP), must be mutually exclusive. Note that bit 24, which must 
be a 0 when addressing a single-unit device controller and a 1 when addressing 
a multiunit device controller, is not considered a part of the decive controller 
addr~ss. Thus, for example, if the device controller address X'D' is assigned 
to a multiunit device controller within an MIOP, no other device controller 
(single or multiunit) within that MIOP may have an address of XIOI. 

-- - - - -- - - - - - - - - - - - - - - - ---
RIO, POlP, POlR, and AIO After the I/o address is generated, these bits are reserved and must be coded 

with zeros. 

Table 14. I/o Status Information (Register R) Table 14. I/o Status Information (Register R) (cont.) 

Bit 
Position Significance Position Significance 

o Reserved
t 

Bus Check Fault (BCF). This bit is set to 1 
if a discrepancy exists between the parity 
error status in the memory unit and the lOP 
when an lOP is performing a main memory 
read cycle. If the error occurs whi Ie access­
ing data then the devi ce halt is controlled 
by the Halt-on-Transmission-Error flag (bit 
position 36 of an I/O command doubleword). 
If the error occurs whi Ie fetching a com­
mand, the operation is terminated immedi­
ately with an "unusual end ll

• 

Control Check Fault (CCF). This bit is set 
to 1 when a parity error occurs during a sub­
channel read operation within the MIOP. 
The operation terminates immediately with 
an "unusual end". 

130 Tnput/Output Instruction<; 

3
tt 

Memory Interface Error (MIE). lOP Halt 
condition is the same as a Bus Check Fault. 

4-12 

13-31 

Reserved
t 

Current Command Doubl eword Address. The 
19 high-order bits of the main memory address 
from which the command doubleword for the 
I/o operation currently being processed by 
the addressed I/O subsystem is fetched. 

tTo ensure program compatibility with possible software 
and/or hardware enhancements, it is recommended that 
reserved bits be treated as indeterminate and not used 
(L e, i masked), 

ttThe lOP unconditionally sets the Processor Fault Indi­
cator (PFI) whenever a Bus Check Fault, Control Check 
Fault, Control Memory Fault, or Memory Interface Error 
occurs. The lOP fault status registerisset with status in­
formation as listed under the POlP or POlR instructions. 



Bit 

Table 15. Device Status Byte (Register R or Rul) 
(510, no, and HIO only) 

Position Significance 

a Interrupt Pending. This bit is set to a 1 if 
the addressed device has requested an inter­
rupt that has not been acknowl edged by the 
BP with an AIO instruction. If this bit is 

1,2 

a 1, the current 510 instruction is not ac­
cepted. Condition code bits are set to re­
flect this action and any requested status 
information is loaded into the designated 
general register(s). 510 instructions wi II not 
be accepted unti I the interrupt pendi ng con­
dition is cleared. 

Normally, before a device can request an 
interrupt, the following conditions must 
prevail: 

1. Appropriate flag(s) (IZC, ICE, and/or 
IUEi bit positions 33, 35, and 37, re­
spectively) within the I/o command 
doubleword must be set to 1. 

2. The flagged event (byte count reduced 
to zero for the IZC flag, "channel end" 
condition for the ICE flag, or "unusual 
end" condition for the IUE flag) must 
occur. 

3. lOP may signal device controller to 
__ ~ __ !_"" ___ .. _" ... :""L_ .. .a. _,,_ ....... :_: __ :_""_ ... _ 
IUI~v IIIICI'VtJl YYIIIIVVI "'''' ...... III1II1.I~ 1'11,,-,"1 

rupt flags, if: 

a. A connection address error is 
detected. 

b. Any error is detected when lOP is 
accessing an IOCD. 

For case a, no interrupt status wi II be 
set in response to an AIO. 

For case b, an IUE signal is sent back 
in response to an AIO. 

An I/O interrupt may also be requested by 
certain devices via M modifier bits within 
the basic order for that device (see Opera­
tional Command Doublewords). 

A BP wi II respond to an interrupt request 
from a particular I/O subsystem if (1) the 
I/O interrupt level (X I 5C') is armed, en­
abled, and not inhibited; and (2) that there 
is no higher priority interrupt level in the 
active or waiting state. 

Device Condition. If bits 1 and 2 are 00 (de­
vice "ready"), all device conditions required 

Table 15. Device Status Byte (Register R or Ru1) 
(510, no, and HIO only) (cont.) 

Bit 
Position 

1,2 
(cont. ) 

3 

Significance 

for proper operation are satisfied. If bits 1 
and 2 are 01 (device "not operational"), the 
addressed device has developed some condi­
tion that wi II not allow it to proceed; in 
either case, operator intervention is usually 
required. If bits 1 and 2 are 10 (device "un­
avai lable"), the device has more than one 
channel of communication available and it is 
engaged in an operation controlled by a con­
troller other than the one specified by the 
I/O address. If bits 1 and 2 are 11 (device 
"busy "), the device has accepted a previous 
510 instruction and is already engaged in an 
I/O operation. 

Device Mode. If this bit is 1, the device is 
in the "automatic" mode; if this bit is a, the 
device is in the "manual" mode and requires 
operator intervention. This bit can be used 
in conjunction with bits 1 and 2 to determine 
the type of action required. For example, 
assume that a card reader is able to operate, 
but no cards are in the hopper. The card 
reader would be in state 000 (device "ready", 
but manual intervention required), where 
the state is indicated by bits 1, 2, and 3 of 
the I/O status response. If the operator sub­
sequently loads the card hopper and presses 
the card reader START switch, the reader 
would advance to state 001 (device "ready" 
and in automatic operation). If the card 
reader is in state 000 when an 510 instruc­
tion is executed, the 510 would be accepted 
by the reader and the reader would advance 
to state 110 (device "busy", but operator in­
tervention required). Should the operator 
then place cards in the hopper and press the 
START switch, the card reader state would 
advance to 111 (device II busy II and in "auto­
matic" mode), and the input operation would 
proceed. Should the card reader subsequently 
become empty (or the operator press the 
STOP switch) and command chaining is being 
used to read a number of cards, the card 
reader would return to state 110. If the card 
reader is in state 001 when an 510 instruc­
tion is executed, the reader advances to 
state 111, and the input operation continues 
as normal. Should the hopper subsequently 
become empty (or should the operator press 
the card reader STOP switch) and command 
chaining is being used to read a number of 
cards, the reader would go to state 110 unti I 
the operator corrected the situation. 

For RMP, this bit is always set to one. 

Input/Output Instructions 131 



Bit 

Table 15. Device Status Byte (Register R or Ru 1) 
(510, no, and HIO only) (cont.) 

Position Significance 

4 

5,6 

7 

Unusual End. If this bit is a 1, the pre­
vious I/o operation terminated in an " un-
usual end". Unusual end conditions occur 
for various reasons that are unique to each 
device (refer to applicable peripheral refer­
ence manual for further details). 

Device Controller or lOP Condition. The 
function of these two bits is dependent upon 
the type of lOP (MIOP or RMP) addressed by 
the I/o instruction. 

MIOP Operations: If bits 5 and 6 are 00 
(device controller "ready"), all device 
controller conditions required for its proper 
operation are satisfied. If bits 5 and 6 
are 01 (device controller "not operational"), 
some condition has developed that does not 
a II ow it to operate properly. Operator i n­
tervention is usually required. If bits 5 
and 6 are 10 {device controller II unavail­
able"}, the device controller is currently 
engaged in an operation controlled by an 
lOP other than the one addressed by the 
I/O instruction. If bits 5 and 6 are 11 
(device controller II busy"), the device con­
troller has accepted a previous 510 instruc­
tion and is currently engaged in performing 
an operation for the addressed lOP. 

RMP Operations: If bits 5 and 6 are 00 
(lOP "ready"), all RMP conditions required 
for its proper operation are satisfied. If 
bits 5 and 6 are 11 (lOP II busy"), the 
lOP has accepted a previous 510 instruc­
tion and is currently engaged in perform­
ing that I/o operation. If bits 5 and 6 
are 01, the lOP is not operational. If 
bits 5 and 6 are 10, the lOP is in an un­
defi ned state. 

Reserved . To ensure program compati bi 1-
ity with possible software and/or hard­
ware enhancements, it is recommended 
that this bit be treated as indeterminate 
and not used (i. e., masked). 

132 Input/Output Instru ctions 

Table 16. Operational Status Byte (Register Ru1) 

Bit 
Position Significance 

8 

9 

Incorrect Length. This bit is set to 1 if an 
incorrect length condition occurred within 
the responding subchannel. An incorrect 
length condition is caused by a IIchannel 
end" (or end of record) condition occurring 
before the device controller has a "count 
done" signal from the lOP (indicating that 
the byte count has been reduced to zero), or 
is caused by the device controller receiving 
a count done signal before channel end (or 
end of record): e. g., count done before 
80 columns have been read from a card. 

When set to a 1, the incorrect length bit, 
by itself, always signifies that an incorrect 
length condition has occurred. If the SIL flag 
(bit 38 of the I/o command doubleword) is 
coded with a 0, the detected incorrect length 
condition is to be interpreted as an error con­
dition. If the SIL flag is coded with a 1, the 
detected. incorrect length condition is to be 
interpreted as a nonerror condition. If an in­
correct length condition is to result in a de­
vice halt, the SIL flag must be coded with 
a 0 and the HTE flag (bit 36 of the I/o com­
mand doubl eword) must be coded wi th a 1. 

Transmission Data Error. This bit is set to 1 
if the device controller or lOP detected a 
parity error or data overrun in the transmit­
tal information. A device halt occurs as a 
result of a transmission data error only if the 
HTE flag of the I/o command doubleword is 
coded with a 1. 

10 Transmission Memory Error. This bit is set to 1 
if a memory parity error was detected during 
a data input/output operation. A device halt 

11 

occurs as a result of a transm:ss:on memory 
error only if the HTE flag of the I/O com­
mand doubleword is coded with a 1. 

Memory Address Error. This bit is set to 1 if 
a nonexistent memory address is detected 
during a chaining operation or a data input/ 
output operation. This bit is cleared during 
a successful 510 or HIO. 

12 lOP Memory Error. This bit is set to 1 if the 
lOP detects a memory parity error while 
fetching a command. The bit is cleared dur-

13 

: ___ ~ .. ___ ~~.c .. 1 C'l" ~_ WI'"' 
, III~ 1.1 ::IU\.o\.oC::I::IIUI ..JJ.V UI IIJ.V. 

lOP Control Error. This bit is set to 1 if the 
lOP detects two successive Transfer in Chan­
nel commands. The bit is cleared during a 
successful 510 or HIO. 



Table 16. Operational Status Byte (Register Ru 1) (cont.) 

Bit 
Position Significance 

14 lOP Halt. This bit is set to 1 Wan error con-
dition is detected which causes the lOP to 
issue a halt order to the addressed I/O de-
vice. Error conditions which may cause 
an lOP halt (independent of the HTE flag 
within the I/O command doubleword) are: 

1. Bus check fault that occurs while fetch-
i ng a command 

2. Control check fault 

3. Memory address error 

4. lOP memory error 

5. lOP control error 

Table 16. Operati onal Status Byte (Register Ru 1) (cont.) 

Bit 
Position 

14 
(cont.) 

Significance 

Error conditions which may cause an lOP halt 
only if the HTE flag is coded with a 1 are: 

1. Bus check fault that occurs while fetch-
ing data 

2. Transmission memory error 

3. Transmission data error 

4. Incorrect length condition occurring 
while the SIL flag is coded with a O. 

An lOP halt condition causes the current 
operation to terminate immediately as an 
II unusua I end ll

• 

15 This bit is set to a 1 if a Write Lock Violation 
(WL V) occurs. 

Table 17. Status Response Bits for I/O Instructions 

Position and State in Register Ru 1 

Device Status Byte Operational Status Byte 
Significance for Significance 

0 1 2 3 4 5
t 

6
t 

7 8 9 10 11 12 13 14 15 SIO, HIO, and no for TDV 

1 - - - - - - - - - - - - - - - interrupt pendi ng T - 0 0 - - - - - - - - - - - - - device ready 
- 0 1 - - - - - - - - - - - - - device not operational 
- i 0 - - - - - - - - - - - - - device unavai iabie I - 1 1 - - - - - - - - - - - - - device busy 

unique to the - - - 0 - - - - - - - - - - - - device manual 
device and - - - 1 - - - - - - - - - - - - device automatic 
the device 

- - - - 1 - - - - - - - - - - - device unusual end controller 
- - - - - 0 0 - - - - - - - - - device controller ready 
- - - - - 0 1 - - - - - - - - - device controller not operational 
- - - - - 1 0 - - - - - - - - - device controller unavailable 
- - - - - 1 1 - - - - - - - - - device controller busy 
- - - - - - - :jI~I::: - - - - - - - - reserved 

- - - - - - - - 1 - - - - - - - incorrect length 
- - - - - - - - - 1 - - - - - - transmission data error 
- - - - - - - - - - 1 - - - - - transmission memory error 
- - - - - - - - - - - 1 - - - - memory address error same as for 

SIO, HIO, 
- - - - - - - - - - - - 1 - - - lOP memory error and no 
- - - - - - - - - - - - - 1 - - lOP control error 

I 
- - - - - - - - - - - - - - 1 - lOP halt 
- - - - - - - - - - - - - - - 1 write lock violation 

tThe significance of bits 5 and 6 when response is from an RMP is as follows: 

Bit 5 . Bit 6 RMP Function -- --
0 0 RMP ready 
0 1 RMP not operational 
1 0 reserved 
1 1 RMP busy 

Input/Output Instructions 133 



POLP and POLR INSTRUCTIONS 

The R field of these two instructions always specifiesa gen­
eral register (including register 0) that may receive up to 
16 bits of fault status information from an addressed BP, 
RMP or MIOP. Each bit indicates the presence (l) or ab­
sence (O) of a specific fault condition within the polled 
processor (as listed in Table C-1). Note that the informa­
tion represented by a particular bit is also dependent upon 
the type of processor polled (e. g., bit 18 may indicate a 
memory parity error in the BP or a control check fault 
within an MIOP). 

AlO INSTRUCTION 

For this instruction, if the R field has a value of 0, no 
status information is requested nor loaded. If the R field 
has a value of X'l' through X'F', the specified register may 
receive one word of I/o information pertaining to an I/O 
interrupt. 

Device and Device Controller Status Byte. Bits 0-7 of the 
status word obtained by an AIO instruction from a respond­
ing I/o subsystem are unique to the device and device 
controller. These bits are described in the applicable pe­
ripheral device reference 'manual. 

lOP Status Byte. Bits 8-15 indicate the presence (1) or 
absence (0) of various operation errors and interrupts that 
may have occurred during an I/O operation. The functions 
of individual bits within the lOP Status Byte are described 
in Table 18. 

Table 19 is a summary description of the Device/Device 
Controller Status Byte and the lOP Status Byte. 

Bits 16-18. These bits of the AIO response are reserved. 
To ensure program compatibility with any enhancements 
(software and/or hardware), it is recommended that these 
bits be treated as indeterminate and not used (i. e., masked). 

Table 18. lOP Status Byte 

Bit 
Position Significance 

8 Incorrect Length. This bit is set to 1 if an 
incorrect length condition occurred within 
the responding subchannel. An incorrect 
length condition is caused by a IIchannel 
end" (or end of record) condition occurring 
before the device controller has a "count 
done" signal from the lOP (indicating that 

134 Input/Output Instructions 

Table 18. lOP Status Byte (cont.) 

Bit 
Position Significance 

8 the byte count has been reduced to zero), or 
(cont.) is caused by the device controller receiving 

a count done signal before channel end (or 
end of record): e. g., count done before 80 
columns have been read from a card. 

9 

10 

11 

12 

When set to a I, the incorrect length bit, by 
itself, always signifies that an "incorrect 
length" condition has occurred. If the SIL 
flag (bit 38 of the I/O command doubleword) 
is coded with a 0, the detected incorrect 
length condition is to be interpreted as an 
error condition. If the SIL flag is coded with 
a 1, the detected incorrect length condition 
is to be interpreted as anonerror condition. 
If an incorrect length condition is to result in 
a device halt, the SIL flag must be coded with 
a 0 and the HTE flag (bit 36 of the I/O com­
mand doubleword) must be coded with a 1. 

Transmission Data Error. This bit is set to 1 
if, since the last accepted SIO instruction 
addressed to this subchannel, the device con­
troller or lOP detected a parity error or data 
overrun in the transmitted information. A 
device halt occurs as a result of a transmission 
data error only if the HTE flag of the I/O 
command doubleword is coded with a 1. 

Zero Byte Count Interrupt. This bit is set to 1 
if the interrupt on zero byte count flag is 1 
and zero byte count is detected. 

Channel End Interrupt. This bit is set to 1 if 
the interrupt at channel end flag is 1 and 
IIchannel end ll is reported by the device to 
the lOP. 

Unusual End Interrupt. This bit is set to 1 if 
the interrupt at unusual end flag is 1 and un­
usual end is reported by the device to the 
lOP, or if the lOP halt is signaled to the de­
vice controller by the lOP. 

13 Write Lock Violation. This bit is set to 1 if 
the memory signaled a Write Lock Violation 
in the course of transmitting information from 
the device to the memory. If the HTE flag 
and the IUE flag are set, the operati on wi II 

I terminate with an "l-'n'-'5'-'0! end". 

14 Reserved. 

15 Reserved. 



Table 19. Status Response Bits for AIO Instruction 

Position and State in Register-R 

Device Status Byte Operational Status Byte 

o 2 3 4 567 8 9 10 11 12 13 14 15 Significance 

I/O Address. Depending upon the type of device con­
troller responding to the AIO instruction, the I/O address 
may be comprised either of a processor address and a single­
unit device controller address or a processor address, a 
multiunit device controller address, and a device address. 
The subfields of the I/O address are described in Table 20. 

Table 20. I/o Address (AIO Response) 

Bit 
Position Significance 

18-20 This field contains the cluster address. 

21-23 This field contains the unit address. 

24-27 This field contains all ones. 

28-31 This field contains the device address. 

SID START INPUT/OUTPUT 
(Word index alignment, privileged) 

Instruction Register 

General Register 0 

unique to the device and 
the device controller 

incorrect length 
transmission data error 
zero byte count interrupt 
channel end interrupt 

unusual end interrupt 
write lock violation 
reserved 
reserved 

START INPUT/OUTPUT performs the following: 

1. Attempts to initiate an input or output operation­
whether an I/O operation is started or not is dependent 
upon conditions within the addressed I/o subsystem 
(see meanings of condition code settings). 

2. Specifies which lOP, channel, device controller, and 
input/output device is to be selected (bits 18-31 of 
the effective virtual address of the instruction word). 

3. Specifies the address of the first command doubleword 
for the subsequent I/O operation (bits 13-31 of gen­
eral register 0). 

4. Specifies how much additional status information is to 
be returned from the I/O system (R field, bits 8-11 of 
instruction word). 

5. Specifies which general registers are to be loaded with 
the requested status information (R field, bits 8-11, of 
instruction word). 

6. Set MIOP in test mode by using device controller ad­
dress X'3P or X'7F'. Note that device controller 
addresses X'3F' and X'7F' are prohibited for normal 
operation. 

General register 0 is temporari Iy dedicated during SIO in­
struction execution and must contain the doubleword mem­
ory address of the first command doubleword specifying the 
operation to be started. The required address information 
must be in general register 0 when the SIO is executed. 

Input/Output Instructions 135 



Status information for an S10 instruction isalways returned 
via condition code bits. Additional information may be 
requested and returned via the general registers as speci­
fied by the R field of the S10 instruction. However, the 
return of the additional information is dependent upon 
conditions encountered within the addressed I/O subsystem 
(see meanings of condition code settings). 

If the R field is coded with a 0, no additional status in­
formation is requested. 

If the R field is coded with an odd value, one word of 
status information is requested to be loaded into register R. 
The format of this information is as follows: 

If the R field is coded with an even (nonzero) value, two 
words of status information are requested. The format of 
information within register Ru1 is as shown above. The 
format of information within register R is as follows: 

These responses provide the program with information nec­
essary to determine the current status of the addressed I/o 
subsystem. The byte count field indicates the number of 
bytes that are to be transmitted to or from memory in the 
operation called for by the current command doubleword. 
The other fields are described in Tables 14-17. 

Affected: (R), (Ru1), CC 

The meaning of the condition code bits during an SIO in­
struction is: 

2 3 4 Meaning 

o 0 0 0 I/O address recognized, S10 accepted, and 
status information in general registers is 
corre~t. 

o 0 o For RMP, I/O address recognized and S10 
accepted; however, status i nformati on in 
general registers may be incorrect. For 
MIOP, not possible. 

o 0 0 I/O address recognized, SIO not accepted 

o 

o 

because device controller or device is busy, 
and status information in general registers is 
correct. 

o For RMP, I/O address recognized, SIO not 
accepted because device controller or device 
is busy, and status information in general 
registers may be incorrect. For MIOP, not 
possible. 

o Processor Interface detected parity error on 
returned status and/or condition code. The 
result of the SIO is indeterminate. 

136 Input/Output Instructions 

2 3 4 Meaning 

o 0 I/o address not recognized, SIO not ac­
cepted, and status information returned to 
general registers is incorrect. 

o No I/O address recognized and SIO aborted 
because an error detected when the lOP at­
tempted to read and transfer the _S10 param­
eters (device/device controller address, R 
field information, and first command double­
word address) from the BP to the lOP via main 
memory. Status information returned to gen­
eral registers is incorrect. 

If CC4 = 1, the MIOP is in test mode and the meaning of 
the condition code during an SIO is: 

2 3 4 Meaning 

o 0 Set test mode is successful. 

o Set test mode is successful, but a Bus Check 
Fault was detected. 

TID TEST INPUT/OUTPUT 
(Word index alignment, privileged) 

TEST INPUT/OUTPUT is used to make an inquiry on the 
status of data transmission. The operation of the selected 
lOP, device controller, and device is not affected, and 
no operations are initiated or terminated by this instruction. 
The responses to no provide the program with the informa­
tion necessary to determine the current status of the device, 
device controller, and lOP, the number of bytes remaining 
to be transmitted into or from main memory in the operation, 
and the present point at which the lOP is operating in the 
command list. 

If the R field of the no instruction is 0, no general 
registers are affected, but the condition code is set. 

If the R field of no is an odd value, the condition code 
is set and the I/o status and byte count are loaded into 
register R as follows: 

If the R field of the no instruction is an even value and 
not 0, the condition code is set, register Ru1 is loaded as 
shown above, and register R is loaded as follows: 

Refer to Tables 14 -17 for functions of individual bits within 
status words. 

Affected: (R), (Ru1), CC 



If CC4 = 0, the MIOP is in a normal mode of operation and 
the meaning of the condition code during a no is: 

2 3 4 Meaning 

000 

o 0 

o 0 

o 

o 

o I/O address recognized, acceptable SIO is 
currently possible, and status information in 
general registers is correct. 

o For RMP, I/O address recognized, acceptable 
SIO is currently possible; however, status 
information in the general registers may be 
incorrect. For MIOP, not possible. 

o I/o address recognized but acceptable SIO 
is not currently possible because device con­
troller or device is busy. Status information 
in general registers is correct. 

o For RMP, I/O address recognized but accept­
able SIO is not currently possible because 
device controller or device is busy; status 
information in general registers may be in­
correct. For MIOP, not possible. 

o Processor Interface detected parity error on 
returned status and/or condition code. The 
result of the no is indeterminate. 

o 0 I/O address not recognized, no not ac­
cepted, and status information returned to 
general registers is incorrect . 

o ..... 1_ T Ir. _...1...1 __________ : __ ...1 __ ...I TTr. _L... __ ~_.J 
.'v 1./ '-' \,oiu ...... C;~ • C,"",~III~vU ..... I.U .... '"" .... ..,va ."""'" 

because an error detected when the lOP at­
tempted to read and transfer the no param­
eters (device/device controller address and 
R field information) from the BP to the lOP via 
main memory. Status information returned to 
general registers is incorrect. 

If CC4 = 1, the MIOP is in the test mode and the meaning 
of the condition code during a no is: 

2 3 4 Meaning 

000 

o 0 

o 0 

o 

o 

Unit is performing an Order Out operation. 

Unit is performing an Order In operation. 

Unit is performing a Data Out operation. 

Parity error detected by Processor Interface 
on returned status and/or condition code. 
The result of the no is indeterminate. 

Unit is performing a Data In operation. 

BCF detected while unit performing a Data 
In operati on. 

TDV TEST DEVICE 
(Word index alignment, privileged) 

TEST DEVICE is used to provide information about a device 
other than that obtainable by means of the no instruction. 
The operation of the selected lOP, device controller, and 
device is not affected, and no operations are initiated or 
terminated. The responses to TDV provide the program with 
information giving details on the condition of the selected 
device, the number of bytes remaining to be transmitted in 
the current operation, and the present point at which the 
lOP is operating in the command list. 

If the R field of the TDV instruction is 0, the condition 
code is set, but no general registers are affected. 

If the R field of TDV is an odd value, the condition code 
is set and the device status and byte count are loaded into 
register R as follows: 

If the value of the R field of TDV is an even value and 
not 0, the condition code is set, register Ru1 is loaded as 
shown above, and register R is loaded as follows: 

D_C __ ~_ ~L... __ ~_I: __ L...I~ ~""r:_L...""r_1 r""&",,ro ... _o .... ,.. ..... ,..1 &,..r 
""'''' 'v "'" "'"t't""""'"~'" t"'" 't""""~' ''', .... "" ... " .. ,-,,--, '''' 

description of Device Status Byte. Refer to Tables 16 and 17 
for functions of other bits within status words. 

Affected: (R), (Ru 1), CC 

If CC4 = 0, the MIOP is in a normal mode of operation and 
the meaning of the condition code during a TDV is: 

2 3 4 Meaning 

o 0 0 0 I/O address recognized, no device-dependent 
condition present, and status information in 
general registers is correct. 

o 0 

o 

o 

o For RMP, I/O address recognized and no 
device-dependent condition present; however, 
status information in general registers may be 
incorrect. For MIOP, not possible. 

o 0 I/O address recognized and device-dependent 
condition is present or device controller is in 
test mode. 

o For RMP, I/o address recognized, device­
dependent condition is present, or device con­
troller is in test mode; but status information 
in the general registers may be incorrect. For 
MIOP, not possible. 

Input/Output Instructions 137 



2 3 4 Meaning 

o o Processor Interface detected parity error on 
returned status and/or condition code. The 
result of the TDY is indeterminate. 

o 0 I/O address not recognized, TDY not ac­
cepted, and status information returned to 
the general registers is incorrect. 

o No I/o address recognized and TDY aborted 
because an error detected when the lOP at­
tempted to read and transfer the TDY param­
eters (device/device controller address and 
R field information) from the BP to the lOP 
via main memory. No status information re­
turned to general registers. 

If CC4 = 1, the MIOP is in the test mode and the meaning 
of the condition code during a TDY is: 

2 3 4 Meaning 

0 0 0 Unit is performing an Order Out operation. 

0 0 Unit is performing an Order In operation. 

0 0 Unit is performing a Data Out operation. 

0 Parity error detected by Processor Interface 
on returned status and/or condition code. The 
result of the TDY is indeterminate. 

0 Unit is performing a Data In operation. 

BCF detected while unit performing a Data 
In operati on. 

HIO HAL T INPUT/OUTPUT 
0/Vord index alignment, t privileged) 

HALT INPUT/OUTPUT causes the addressed device to im­
mediately halt its current operation (perhaps improperly, 
in the case of magnetic tape units, when the device is 
forced to stop at other than an i nterrecord gap). If the 
device is in an interrupt-pending condition, the condition 
is cleared. 

tWhen indexing operation code 4F instructions (HIO; RIO; 
POLP, POLR), the programmer must make certain that the 
summation of the contents of the index register and the I/o 
address (bits 18-31 of the instruction word) does not affect 
bits 15-17. When indirect addressing is used, the contents 
of the indirect address location (bits 15, 16, and 17) must 
specify the desired operation code extension. 

138 Input/Output Instructions 

If the R field of the HIO instruction is 0, the condition 
code is set, but no general registers are affected. 

If the R field is an odd value, the condition code is set 
and the following information is loaded into register R. 

If the R field of HIO is an even value and not 0, the 
condition code is set, register Ru 1 is loaded as shown above, 
and register R contains the following information. 

This information shows the status of the addressed I/O sub­
system at the time of the halt. The byte count field shows 
the number of bytes remaining to be transmitted to or from 
memory. Other fields are described in Table 14-17. 

The HIO instruction must have zeros in bit positions 15, 16, 
and 17 to differentiate it from the RIO, POLP, and POLR 
instructions, which also have X'4F' as an operation code 
(bits 1-7). 

Affected: (R), (Ru1), CC 

If CC4 = 0, the MIOP is in a normal mode of operation 
and the meaning of the condition code during an HIO 
instruction is: 

2 3 4 Meaning 

o 0 0 0 I/O address recognized, HIO accepted, de­
vice controller not busy at time of HIO, 
and status information in general registers is 
correct. 

o 0 0 For R.MP, I/O address recognized, HIO ac= 

o 

o 

cepted, and device controller not busy at time 
of HIO; but status information ingeneral reg­
isters may be correct. For MIOP, not possible. 

o 0 I/O address recognized, HIO accepted, and 
device controller busy at the time of the HIO, 
and status i nformati on is correct. 

o For RMP, I/O address recognized, HIO ac­
cepted, and device controller busy at the time 
of the HIO; but the status information in the 
general registers may be incorrect. For MIOP, 
not pO$5ible. 

o 0 0 Not possible. 

o 0 Processor Interface detected parity error on 
returned status and/or condi ti on code. The 
result of the HIO is indeterminate. 



2 3 4 Meaning 

o 0 I/o address not recognized, HIO not ac­
cepted, and no status i nformati on returned to 
general registers. 

o No I/O address recognized and HIO aborted 
because an error detected when the lOP at­
tempted to read and transfer the HIO param­
eters (device/device controller address and 
R field information) from the BP to the lOP. 
No status information returned to general 
registers. 

If CC4 = 1, the MIOP is in the test mode and the meaning 
of the condition code during an HIO is: 

2 3 4 Meaning 

o 0 0 Unit is performing an Order Out operation. 

o o 

o 0 

o 

o 

Unit is performing an Order In operation. 

Unit is performing a Data Out operation. 

Processor Interface detected parity error on 
returned status and/or condition code. The 
result of the HIO is indeterminate. 

Unit is performing a Data In operation. 

BCF detected while unit performing a Data 
In operati on. 

RF~FT TNPIIT /()IITPIIT 

0N~~d i~de~ '~Iig~~e~i, t privileged) 

RESET INPUT/OUTPUT causes the selected lOP to generate 
an I/O reset signal to all devices attached to it. In addi­
tion to the operation code X'4F', bits 15, 16, and 17 must 
be coded as 001, respectively. 

An RIO instruction resets the selected unit in the same 
manner as ZCRIO on the operator's control console. How­
ever, unlike the control command, the RIO instruction 
resets only the addressed unit and may be controlled by 
the executing program. Since the BP may be addressed as 
an lOP, it wi II accept an RIO instruction that causes the 
BP to reset itself in the same manner as ZCRBP. (Note that 
this procedure is not normal practice.) 

C luster addresses (CA), bit positions 18-20, may have values 
of XIOI_X?I. Cluster addresses X'0'-X '6

1 may be assigned 
to any cluster containing processors (i .e., BP, MIOP, and/ 
or RMP). In a monoprocessor system, cluster address XIO I 

is assi.gned to the c luster containing the basic processor 
(BP). Cluster address X?I is assigned only to the cluster 
containing a system processor. If CA equals X?I I the UA 
field is reserved. Unit addresses (UA), bit positions 21-23, 
may have values of XIOI_X?I. Unit addresses are required 
only if the cluster address is X'0'_X '6 1, (i.e., cluster 

contains either a BP, MIOP, and/or-RMP). Unit addresses 
X 101_X 151 may be assigned to processors within the cluster. 
Unit address X'51 in cluster XIO I is reserved for the BP. Unit 
address X'6

1 is assigned always to the MI and unit address 
X?I is assigned always to the PI for all clusters. 

Status information is returned only in the condition code 
bits. The R field is not used. 

Affected: CC1, CC2, CC3 

Condition code settings are as shown below: 

2 3 4 Meaning 

o 0 0 - I/O address recognized. 

o - I/O address not recognized. 

POLP POLL PROCESSOR 
(Word index alignment, t privileged) 

POLL PROCESSOR causes the addressed unit to return unit 
fau I t status in bi ts 16-31 of reg i ster Rtt. Th i s status i nfor­
mation is unit dependent (see Appendix C, Table C-1). 

In addition to the operation code of X'4F' I bits 15, 16, 
and 17 must be coded as 010, respectively. 

Affected: (R), CC1, CC2, CC~ 

Condition Code settings are as shown below: 

2 3 4 Result of POLP 

o 0 0 - Processor fault interrupt not pending. 

o 0 - Processor fault interrupt pending. 

o ~ Unit address not recognized. 

POLR POLL AND RESET PROCESSOR 
(Word index alignment, t privileged) 

POLL AND RESET PROCESSOR causes the selected unit to 
return unit fault status in bits 16 to 31 of register Rtt and 
resets the unit's fault status register. This status informa­
tion is unit dependent (see Appendix C, Table C-1). 

tSee footnote to HIO instruction. 

ttThis fault status is duplicated in bits 0 to 15 of register R. 

Input/Output Instru ctions 139 



The POLR instruction also resets and clears this unit's 
Processor Fault Interrupt signal and the error status regis­
ter. In addition to the operation code of X'4F', bits 15, 
16, and 17 must be coded as 011 , respectively. 

Affected: (R), CC1, CC2, CC3 

Condition code settings for the POLR instruction are: 

2 3 4 Result of POLR 

o 0 0 - Processor fault interrupt not pending. 

o 

AID 

o - Processor fault interrupt pending. 

o - Unit address not recognized. 

ACKNOWLEDGE INPUT/OUTPUT INTERRUPT 
(Word index alignment, privileged) 

ACKNOWLEDGE INPUT/OUTPUT INTERRUPT is used to 
acknowledge an input/output interrupt and to identify the 
I/O subsystem (processor, device controller, device) that 
is causing the interrupt and why. If more than one I/o 
subsystem has an interrupt pending, only the subsystem 
with the highest priority will respond to the AIO. Bits 18-
23 of the effective virtual address of the AIO instruction 
(normally used to specify the cluster and unit addresses of 
the I/O address field) must be coded 000000 to specify 
the standard I/O system interrupt acknowledgment (other 
codings of these bits are reserved for use with special I/O 
systems). The remainder of the I/o selection code field 
(bit positions 24-31) are not used in the standard I/O in­
terrupt acknowledgment (the address of the interrupt source 
is a part of the response from the standard I/O system to 
the AIO instruction). 

Standard I/O interrupts are program controlled via the con­
trol flags (IZC, ICE, IUE, HTE, and SIL) within the I/o 
command doublewords (lOCOs) that comprise the command 
list for the I/o operation. If a particular flag is coded as 
a 1 and if the corresponding condition occurs within the 
I/O operation, then an I/O interrupt is requested (e. g. , if 
the IZC flag is set to 1 and if the byte count for the I/O 
operation has been decremented to zero, then an I/O 
interrupt is requested by that I/o subsystem to indicate the 
end of that I/O operation; if the IZC flag is coded as a 0, 
no I/O interrupt is requested as a result of the byte count 
bei ng decremented to zero). 

If two or more flags are coded to ClJuse lJn !nterrupt for two 
or more conditions, an interrupt is requested whenever any 
of the IIflagged ll conditions is detected. 

For some conditions (transmission errors, incorrect length), 
two or more flags must be properly coded (see Chapter 4 
for further details on lOCOs). 

140 Input/Output Instructions 

Some error conditi ons (e. g., parity error on reading command 
doubleword) will unconditionally cause an I/O interrupt. 

The various conditions which may result in an I/O inter­
rupt, the coding of the corresponding control flags within 
the lOCO, and the bit position within the status word (re­
turned to register R) that indicates the presence (1) or ab­
sence (0) of that interrupt condition are listed below: 

Condition 

Zero byte count 

Channel end 

T~ansmission memory error 

Write lock violation 

Incorrect length 

Memory address error I 
lOP memory error, 
lOP control error, or 
device connection address 
parity error 

T ransm i ssi on data error 

Unusual end 

lOP halt 

Control Flags 
Coding 

IZC = 1 

ICE = 1 

IUE = 1, HTE = 1 

IUE = 1, HTE = 1 

IUE = 1, HTE = 1 
and SIL = 0 

) (no flag needed) 

IUE=l,HTE=l 

IUE = 1 

IUE = 1 

Status 
Bit Set 

10 

11 

12 

12 

8, 12 

12 

9, 12 

12 

12, 14 

Interrupts may also be requested by certain I/O devices 
when they execute specific orders (e. g., when a magnetic 
tape unit executes a Rewind and Interrupt order). Refer 
to the applicable peripheral reference manual for further 
details. 

When a device interrupt condition occurs, the lOP forwards 
the request to the interrupt system I/o interrupt level. If 
this interrupt level is armed: enabled: and not inhibited; 
the BP eventually acknowledges the interrupt request and 
executes the XPSD instruction in main memory location 
X'5C', which normally leads to the execution of an AIO 
i nstructi on. 

For the purpose of acknowledging standard I/O interrupts, 
the lOPs, device controllers, and devices are connected in 
a preestablished priority sequence that is customer-assigned 
and is independent of the physical locations of the portions 
of the I/o system in a particular installation. 

If the R field of the AIO instruction is 0, the condition code 
;s set but the genera! iegistsi is not affected. 

If the R field of AIO is not 0, the condition code is set and 
register R is loaded with the following information. 



The functions of bits within the DC status byte (which are 
unique to the device and device controller) are described 
in applicable peripheral reference manuals. The functions 
of other bits in the Ala _response word are described in 
Tables 18, 19, and 20. 

The Ala instruction resets the interrupt request signal for 
the I/O subsystem responding to the Ala (i.e., I/O sub­
system identified by bits 19-31 of register R). 

Affected: (R), CC 

If CC4 = 0, the MIOP is operating in a normal mode of 
operation and thecondition code settings for Ala are 
shown below: 

2 3 4 Result of Ala 

o 0 0 0 Normal interrupt recognized and reset. 
Status information in general register is 
correct. 

o 0 0 For RMP, normal interrupt recognized and 
reset; status information in the general reg­
ister may be incorrect. For MIOP, not 
possible. Parity error on returned status 
and/or condition code. The result of the 
Ala is indeterminate. 

o 0 Processor interface detected. 

o 0 0 Unusual condition interrupt recognized and 
reset. Status information in general regis­
Tel is (;orrecT. 

2 3 4 Result of Ala 

o 0 For RMP, unusual condition interrupt recog-
nized and reset; status information in the gen­
eral register may be incorrect. For MIOP, 
not possible. 

1 0 0 0 Interrupt recognized and reset. Status infor­
mation not returned. 

o 0 No I/O device requesting an interrupt and 
no status information returned to the general 
register. 

o Not possible. 

If CC4 = I, the MIOP is in the test mode and the meaning 
of the condition code during an Ala is: 

2 3 4 Meaning 

0 0 0 Unit is performing an Order Out operation. 

0 0 Unit is performing an Order In operation. 

0 0 Unit is performing a Data Out operation. 

0 Parity error detected by Processor Interface. 

0 Unit is performing a Data In operation. 

BCF detected while unit is performing a Data 
in operation. 

Input/Output Instructions 141 



4. INPUT jOUTPUT OPERATIONS 

To accommodate the variety and number of I/o devi ces 
which may be required for scientific and commercial appli­
cations, a Xerox 560 computer system may include the fol­
lowing: External Direct Input/Output (DIO) interface, 
Multiplexor Input/Output Processors (MIOPs), and Rotating 
Memory Processors (RMPs). 

EXTERNAL DlO INTERFACE 

An external DIO interface permits standard and specially 
designed I/O devices to perform I/O operations (normally 
in a real-time environment) that are controlled directly by 
the basic processor (BP). Appropriate control signals and 
up to one word {32 bi ts} of data may be exchanged between 
the BP and an addressed I/O device for each READ DIRECT 
or WRITE DIRECT instruction executed by the BP. 

During a WRITE DIRECT instruction (Mode 2 through F), 
the BP holds the control and data-lines stable until an 
acknowledgment signal is received from the addressed I/O 
device. During a READ DIRECT instruction (Mode 2 
through F), the BP holds the control lines stable until the 
addressed I/o device furnishes the data accompanied with 
an acknowledgment signa/. Any delay encountered in 
receiving the acknowledgment signal, for either READ 
DIRECT or WRITE DIRECT instructions, does not have an 
adverse effect upon I/O operations being performed by 
the MIOP or RMP systems. 

Refer to Xerox publication 90 09 73 {Interface Design 
Manual} for further detai Is pertaining to the external DIO 
interface. Also, refer to appropriate peripheral reference 
manuals for details on control and data signals. 

MULTIPLEXOR INPUT/OUTPUT PROCESSOR (MIOP) 

An MIOP permits standard and commercially available I/O 
devices (e. g., card readers, card punches, magnetic tape 
units, etc.) to be controlled primari Iy by individual I/O 
subchannels within the MIOP and associated device con­
trollers. Depending upon the number of I/o subchannels 
assigned (maximum of 16, as described under II Device Con­
trollers"), an equivalent number of I/O operations may be 
performed si mu I taneously. 

DEVICE CONTROLLERS 

All I/O devices associated with an MIOP are connected 
via an appropriate device controller. Depending upon the 
number and type of I/o devices to be connected, one or 

142 Input/Output Operati ons 

more of the following types of device controllers may be 
connected to an MIOP: 

1. Single-unit device controller {internal or external}. 

2. Multi-unit device controller {internal or external}." 

3. Unit-record controller {internal or external}. 

Generally, an internal device controller is physically con­
nected via the internal I/o interface. 

An external device controller is located remotely to the 
MIOP and may require one or more separate chassis to ac­
commodate it. 

A single-unit device controller {internal or external} is 
specifically designed to control only one I/o device, 
usually a unit-record device such as a card reader, a card 
punch, or a line printer. Characteristics of a single-unit 
device controller are dependent upon the device controlled. 
(Refer to an appropriate peripheral reference manual for 
further information. ) 

A multi -unit device controller (internal or external) is 
specially designed to control more than one I/o device, 
where all the I/O devices are of the same type {e. g., 
magnetic tape units or RADs}. However, only one I/o 
device at a time may be actively involved in a data trans­
fer operation. Characteristics of a multi-unit device con­
troller are dependent upon the I/O devices controlled. For 
example, a multi -unit device controller for magnetic tape 
units may control up to eight units. (Refer to an appropriate 
peripheral reference manual for further information.) 

Unit-record controllers {internal or external} are designed 
to control up to eight unit record type of I/O devi ces (e. g. , 
card readers; card PlJnches; line printers). AI! I/o de­
vices attached to a unit-record controller need not be of 
the same type. All I/o devices attached to a unit-record 
controller may perform separate I/O operations, including 
data transfers, si mu I taneously. 

The number of device controllers, as well as the number of 
I/O devices, that may be connected to an MIOP is depen­
dent upon the following considerations: 

1. The maximum number of I/O subchannels within an 
MIOP is 16. 

2. Each single-unit device controller {internal or external} 
requires one I/o subchannel. 

3. Each multi-unit device controller (internal or external) 
requires one of the first eight subchannels within 
the MIOP. 



4. Each unit-record controller (internal or external) 
requires one I/O subchannel per each unit record de­
vice attached, up to a maximum of eight. 

5. The maximum number of internal device controllers 
within an MIOP is eight (where a unit-record device 
controller is equivalent to one, regardless of the 
number of assigned subchannels). 

6. Any I/O subchannel not assigned to an internal device 
controller may be assigned to an external device con­
troller. Thus, if an MIOP has no internal device con­
troller, all 16 I/O subchannels may be assigned to 
external device controllers. 

ROTATING MEMORY PROCESSOR (RMP) 

Each RMP is a speci_al purpose, single-channel lOP designed 
to enhance high-speed data transfers between main memory 
and anyone of up to eight disk units. Functionally, an 
RMP is comparable to an MIOP, except: (1) at any given 
time, only one disk unit may be selected for a data transfer 
operation, . (2) data transfer rate of disk units are generally 
higher than data transfer rates of I/O devices attached to 
an MIOP, and (3) the device controller function is per­
formed by the RMP, hence disk units are connected directly 
to the RMP rather than via a device controller. (Note: 
Although only one disk unit may be actively transferdng 
data at any given time, the other units may be active in 
performing control functions, e. g., seeking). 

iNPUT jOUTPUT PKOCESSOR liOfij FUNUAMENTAlS 

This section contains general information, programming con­
cepts, and definition of terms pertaining to I/O operations 
performed by Input/Output Processors (i. e., MIOP and 
RMP systems). The large variety of I/O devices which may 
be used with these lOPs precludes a detailed or exhaustive 
description of features which are unique to each device. 
Likewise, a general reference "Refer to an appropriate 
Xerox peripheral reference manual" is made rather than 
citing specific manuals. 

Within this manual, the following terminology is used to 
differentiate the hierarchy of control during an I/o opera­
tion: The BP executes instructions, the lOPs execute com­
mands, and the device controller/device execute orders. 

COMMAND LIST 

Each I/O operation performed by an lOP must be defined 
by a command list. The characteristics and requirements of 
a command list are as follows: 

1. It is normally created by a BP-executed program 
prior to the time that the defined I/o operation is 
initiated. It must reside in main memory when the I/o 
operation is initiated and subsequently executed. 

2. Depending upon various programming considerations, 
the command list may be contained within one or more 
areas of memory and each area may be comprised of 
one or more I/O command doublewords (IOCDs). 

3. Command list continuity between 10CDs relating to the 
same logical record or to the same logical file may be 
specified (see "Data Chain Flag" and "Command Chain 
Flag ll under II Operationa I 10CDs"). Command list 
continuity between portions of a command list located 
in different areas of main memory may be accomplished 
by including a control 10CD within the command list 
(see "Transfer in Channel II under "Control 10CDs"). 

4. Each 10CD is comprised of two words in contiguous 
memory word locations. The first word must be stored 
in an even memory word location and the second word 
must be stored in the next consecutive (odd) memory 
word location. Each IOCD is either an operational 
IOCD or a control IOCD and contains coded parameters 
to define either a complete I/Ooperation or an integral 
portion of an I/Ooperation. (See "Operational IOCD" 
and IIControl IOCD" for further detai Is. ) 

OPERATIONAL lOCO 

An operational IOCD may contain up to five fields of 
parameters, as required, to define either an entire I/o op­
eration or an integral portion of an I/o operation._ The 
general format and description of parameters contained 
within an operational 10CD are as follows: 

ORDER 

This 8-bit field (bit positions 0-7), if required, may be 
coded to specify either an input or an output order that is 
executed by the device controller/device. General coding 
formats and functions of typical I/o orders are listed below: 

Bit Position 
o 1 2 3 4 5 6 7 Order Function 

MMMMMM01 

MMMMMM10 

MMMMMM11 

MMMMO 

MMMM1 

00 

00 

Write 

Read 

Control 

Output operation 

Input operation 

Output control 
information 

Sense Input control information 

Read Input data, in reverse 
Backward sequence 

Rotating Memory Processor (RMP)/Input/Output Processor (lOP) Fundamentals 143 



Orders that are executed by a specific type of device are 
listed and described in the appropriate Xerox peripheral 
equi pment reference manua I. 

When an operational 10CD is fetched by the lOP, the con­
tent of the order field, if required, is loaded into an order 
register within the device controller/device. If two or 
more 10CDs are required to define a logical record (as de­
scribed under "Data Chain Flag"), the order obtained from 
the first 10CD prevai Is for all subsequent 10CDs within that 
logical record and any orders contained within the subsequent 
10CDs are ignored. 

MEMORY BYTE ADDRESS 

This 22-bit field (bit positions 10-31), if required, is 
coded with the initial memory byte address for the I/o op­
eration that wi II be performed when the current 10CD is 
executed. When the 10CD is fetched by the lOP, the con­
tent of the memory byte address field is loaded into a 
memory byte address register within the appropriate I/O 
subchannel of the lOP. Thereafter, the content of the 
memory byte address register is incremented (or decremented 
during Read Backward operations) by one for each byte of 
data or information transmitted, even though access to main 
memory may be inhibited (as described under "Skip Flag") 
or the data is rejected by a memory unit (as described under 
ItWrite Keylt). 

Depending upon the characteristics of the I/O device, the 
content of bit positions 10-31 may either be ignored (e. g., 
HRewind" order for magnetic tape units) or specify memory 
byte locations that contain supplemental control information 
(e. g., starting address for a disk seek operation). Refer to 
an appropriate Xerox peripheral equipment reference man­
ual for further detai Is. 

FLAGS 

Each operational IOCD contains eight control flogs (bif 
positions 32-39). As described below, each control flag 
is coded to specify a particular control function that may 
be performed by the lOP either during or at the end of the 
current 10CD. 

Data Chain Flag (Bit Position 32). Coding of the data chain 
flag is dependent upon the number of 10CDs required to 
defi ne the data transfers for a logi ca I record. If two or 
more 10CDs are required (e. g. , to perform a "gather-write" 
or a "scatter-read It operation), the data chain flag of each 
operational IOCD, except the last 10CD, must be coded as 
a i. The data chain fiag of the iast iOCD or the oniy 
10CD (if the record is defined by a single 10CD) is coded 
as O. If data chaining is specified and no error conditions 
are encountered, the lOP wi II automatically fetch the next 
operational 10CD when the byte count (described later) of 
the current 10CD is reduced to zero. {Note: The lOP may 
also fetch and execute a control 10CD containing a Transfer 

144 Input/Output Processor (IO P) Fundamenta Is 

in Channel command, as described later, before fetching 
the next operational 10CD.) As a result of fetching the 
next operational 10CD, all parameters, except the I/o 
order, are updated and the device controller/device con­
tinue to operate as if the I/o operation were defined by 
a single 10CD (i. e., the data chain operation is transparent 
to the device controller/device). If data chaining is not 
specified, the lOP wi II generate a "count done" signal when 
the byte count of the current 10CD is reduced to zero. The 
"count done ll signal indicates that the lOP has completed 
all data transfers for the current logical record. However, 
as described under II Interrupt on Channel End Flag ll

, the 
I/o order is not completed until the device signals a IIchan­
nel end". 

Interrupt at Zero Byte Count Flag (Bit Position 33). If an 
I/o interrupt is to be requested when the byte count of the 
current 10CD is reduced to zero, the Interrupt at Zero 
Byte Count (IZC) flag must be coded as a 1. If the I/o 
interrupt level within the interrupt system (location XISC') 
is armed, enabled, and not inhibited, the request will be 
processed by the BP in accordance with the priority that 
prevai Is within the interrupt system, the lOPs, and the I/o 
subchannels within an MIOP. The occurrence of an I/o 
interrupt because of a zero byte count condition is reported 
as status information (bit position 10 of register R) when the 
BP executes an AIO instruction (normally part of the I/o 
interrupt handling routine). The I/O interrupt request may 
be processed without interfering with the I/o operation. 
(Note: An I/O interrupt may be requested at "channel end" 
or on "unusual end lt condition, as described later.) 

Command Chain Flag (Bit Position 34). Command chaining 
permits an I/O device to execute a multiple number of 
orders relating to the same I/o operation in a consecutive 
manner (e. g., when reading a multi-record file, the I/o 
device may automatically receive a new Read order upon 
completing the current Read order without the BP execut­
ing another SIO instruction). Command chaining, if re­
quired, is specified by coding the command chain flag as 
a 1 in the 10CD of each record, except the last. 

If command chaining is specified, the lOP wi II fetch the 
next operational 10CD when the devi'ce signals a "channel 
end" unless terminated by an lIunusual end" condition. As 
a result, new parameters are stored in the appropriate 
registers within the I/O subchannel and a new I/O order 
is received by the device controller/device. 

Thus, an lOP wi II automatically access main memory and 
fetch the next operational 10CD if either data chaining or 
command chaining is specified. If data chaining and com­
mand chaining are both specified in the same command 
doubleword, a data chaining operation wi" be performed if 
the byte count is reduced to zero before the devi ce si gna Is 
a "channel end" and a command chaining operation will be 
performed if a "channel end" occurs before the byte count 
is reduced to zero. If neither data chaining or command 
chaining is specified, the I/o operation is completed when 
the device signals a "channel end". Note that command 
chaining is inhibited by "unusual end". 



Interrupt at Channel End (Bit Position 35). An I/o interrupt 
may be requested when the device signals a "channel 
end" (signifying that the current order has been either com­
pleted or terminated) by coding the Interrupt at Channel 
End (ICE) flag as a 1. If the I/O interrupt level within the 
interrupt system (location X'5C) is armed, enabled, and not 
inhibited, the request wi II be processed by the BP in ac­
cordance with the priority that prevai Is within the interrupt 
system, the lOPs, and the I/O subchannels of the MIOP. 
The occurrence of an I/o interrupt because of a "channel 
end" is reported as status info.rmation (bit position 11 of 
register R) when the BP executes an AIO instruction (nor­
mally part of the I/O interrupt-handling routine). The I/o 
interrupt request may be processed without affecting the 
I/o operation. (Note: Specific conditions under which a 
"channel end ll signal may be generated are dependent upon 
the characteristics of the device. Refer to an appropriate 
Xerox peri pheral reference manua I for further detai Is. ) 

Halt on Transmission Error Flag (Bit Position 36). The fol­
lowing errors (or lIunusual end ll condition) may be detected 
by the MIOP when an 10CD is being executed: 

1. Bus check fault (BCF) whi Ie fetching data. 

2. Transmission Data Error (TDE); may also be detected by 
device controller. 

3. Transmission Memory Error (TME). 

4. Write Lock Violation 0NLV), during input operations 
only. 

5. Incorrect length, conditional; see IISuppress Incorrect 
Length Flag". 

6. Memory Interface Error (MIERR) whi Ie fetching data. 

If the HTE flag is coded as a 0, the above errors are recorded 
when detected and reported as status information when the 
BP executed an SIO, TIO, or HIO instruction, but the I/o 
operation is not halted. 

If the HTE flag is coded as a 1, and any error (as listed 
above) is detected, the I/O operation is terminated im­
mediately. The error is also reported as status information 
when the BP executes an SIO, HIO, or TIO instruction. 

The HTE flag must be coded identically in every 10CD as­
sociated with the same logical record. Thus, if data chain­
ing is specified, the HTE flag in the new 10CD must be the 
same as the HTE flag in the previous 10eD. This restriction 
applies to data chaining only, and not to command chaining. 

In addition to the "unusual end ll conditions listed above, 
which may terminate the I/O operation only if the HTE 
flag is coded as a 1, any of the following "unusual end ll 

conditions wi II unconditionally terminate the I/O operation: 

1. Memory Address Error (MAE). 

2. lOP Control Error (IOPCE). 

3. Control Check Error (CCF). 

4. lOP Memory Error (IOPME). 

5. Bus Check Fault (BCF) whi Ie fetching an 10CD. 

6. Memory interface Error (MIE) whi Ie fetching an 10CD. 

Interrupt on Unusual End Flag (Bit Position 37). If an I/o 
Interrupt is to be requested when an "unusual end" condition 
is detected while either fetching or executing an 10CD, 
the Interrupt on Unusual End (IUE) flag must be coded as 
a 1. If the I/O interrupt level within the interrupt system 
(location X'5C) is armed, enabled, and not inhibited, the re­
quest will be processed by the BP in accordance with the 
priority that prevalis within the interrupt system, the lOPs, 
and the I/O subchannels within an MIOP. The occurrence 
of an I/O interrupt because of an "unusual end" condition 
is reported as status i nforma ti on (bi t posi ti on 12 of reg-
ister R) when the BP executes an AIO instruction (normally 
part of an I/o interrupt-handling routine). The I/O inter­
rupt request may be processed wi thout affecti ng the progress 
of the I/O operation. 

If the IUE flag is coded as a 0, an "unusual end" condition 
may be detected but no interrupt will be requested. 

Suppress Incorrect Length Flag (Bit Position 38). An incor­
rect length condition may occur when the specified byte 
count is not equal to a fixed or prescribed byte count for a 
record (e. g., attempting to read more than 80 columns of 
data from a punched card). Specific conditions under which 
an incorrect length signal is generated are dependent upon 
the device. Refer to an appropriate Xerox peripheral equip­
ment reference manua I for further detai Is. 

If the Suppress Incorrect Length (SIL) flag is coded as a ° 
when an incorrect length condition is detected, it is re­
ported as an incorrect length and, depending upon the de­
vice, may be reported as an lIunusual end ll

• If the HTE flag 
is also coded as a 1, the I/o operation is terminated and 
reported as an lIunusual end ll

• 

If the SIL flag is coded as a 1 when an incorrect length con­
dition is detected, it is reported as an incorrect length but 
suppressed as an lIunusual end ll

• Hence, the I/O operation 
is not terminated. 

The presence or absence of an incorrect length condition 
is reported as status information when the BP executes an 
SIO, HIO, AIO, or TIO instruction. 

Skip Flag (Bit Positi on 39). If the Skip (S) flag is coded as 
a 0, it has no effect upon the I/o operation. 

If the S flag is coded as a 1, the lOP is inhibited from ac­
cessing main memory and consequently no data is transferred 
between the main memory and the data buffers of the I/o 
subchannel. All other operations or functions within the 

Input/Output Processor (lOP) Fundamentals 145 



I/o subchannel (i. e., data transfers between the device 
and data buffers, updati ng the memory byte address and 
byte count, and functions as specified by the control flags) 
are performed in a normal manner. 

For input operations, the Skip flag (in conjunction with 
data chaining) provides the capabi lity to selectively read 
portions of a record. 

For output operations, the lOP wi II generate and transmit 
zeros (XIOOI) unti I the byte count is reduced to zero. Thus, 
for example, if the 10CD contains a Punch Binary order, a 
byte count of 120, and the S flag is coded as.a 1, a blank 
card may be punched without accessing main memory 
for data. 

WRITE KEY 

This four-bit field (bit positions 40-43), if required, may 
be coded with an appropriate write key. During input op­
erations and providing the Skip control flag is coded as aD, 
the lOP will access main memory and furnish a memory unit 
with up to four bytes of data or information accompanied 
with a four-bit write key. If the write key matches the 
preassigned write lock for the memory word location ac­
cessed, or if either the key or lock has a value of 0000, 
the memory unit accepts and stores the information. If the 
write key does not match the write lock, and neither the 
key nor the lock has a value of 0000, the memory unit re­
jects the information, does not disturb the previous content, 
and transmits a Write Lock Violation (WLV) signal to the 
lOP. The write key/write lock relationship is compared 
every time a memory word location is accessed for storing 
data or information. (Note: The write key/write lock re­
lationship may change during an input operation when the 
byte address is incremented (or decremented) across a mem­
ory page boundary. ) 

As long as the write key matches the write lock for each 
memory word location accessed, or the value of either the 
lock or the key is 0000, the input operation is performed 
cs specified by the other parameters within this IOCD; or 
the input operation is terminated by an "unusual end" con­
dition which can not be inhibited (i. e., memory address 
error, control check fault, or lOP memory error). 

If the HTE control flag is coded as a 1 when a WLV signal 
is received, the I/O operation is terminated immediately. 
If either the ICE or IUE control flag is coded as a 1, an 
I/O interrupt is requested. 

If the HTE control flag is coded as a ° when a WLV signal 
is received, the I/O operation continues i.n a normal man­
ner, even though the data or information may be rejected 
by a memory unit. 

When the lOP receives a WLV signal, the WLV bit within 
the status information register is set to 1 and remains set 
until a new I/o operation is initiated within this I/O sub­
channel by an SIO instruction. Thus, after the first WLV 
signal has been recorded, subsequent WL.V signals have no 

146 Input/Output Processor (lOP) Fundamentals 

further effect upon the WLV bit. The status of the WLV 
bit is reported when the BP executes an SIO, no, TDV, 
HIO, or AIO instruction. 

The contents of the write key field is not required and may 
be ignoredwhen the write key/write lock memory protection 
feature is not operative (i. e., during any output operation 
or during any input operation, if the Skip control flag of 
the current 10CD is coded as a 1). 

BYTE COUNT 

This 16-bit field (bit positions 48-63), if required, may be 
coded to specify the total number of data or information 
bytes that are to be transmitted by the current 10CD. 
The minimum number of bytes is 1 and the maximum is 
65,356 bytes (16,384 words). When the 10CD is fetched, 
the content of the byte count field is loaded into a byte 
count register within the appropriate I/o subchannel. 
Thereafter, the content of the byte count register is decre­
mented by one for each byte transmitted and then tested 
for a zero byte count condition. (Note: As a consequence 
of decrementing before testing for a zero byte count condi­
tion, an initial byte count value of a is interpreted as 
65,356 bytes.) Unless the I/O operation is terminated 
(e. g., as the result of detecting an "unusual end"), data 
is transmitted until the byte count is reduced to zero. At 
any time, the progress of the I/o operation may be ascer­
tained by evaluating the current byte count which is 
furnished as status information when the BP executes an 
SIO, no, HIO, or TDV instruction. {That is, current byte 
count is equal to the number of bytes remaining to be trans­
mitted and initial byte count minus current byte count is 
equal to the number of bytes transmitted.} When the byte 
count is reduced to zero, the MIOP may perform the fol­
lowing functions: 

1. Transmit a "count done" signal to the device controller/ 
device if data chaining is not specified. 

2. Request an I/o interrupt, if the IZC flag is coded 
as a i. 

3. Fetch the next IOCD, if the data chain flag is coded 
as a 1. 

Depending upon the characteristics of the I/o device, 
certain I/o orders (e. g., Rewind for magnetic tape units) 
may not require a byte count field. In such case, the byte 
count fie Id is ignored. Refer to an appropriate Xerox pe­
ripheral equipment reference manual for further detai Is. 

CONTROL lOCO 

A control IOCD may contain either a Transfer in Channel 
or a Stop command. 



Transfer in Channel. A control lOCO containing a Transfer 
in Channe I command has the fo Ilowi ng format: 

The Transfer in Channel command is executed within the 
lOP and has no direct effect on any of the I/o elements 
external to the addressed lOP. The primary purpose of this 
command is to permit branching within the command list 
(i. e., fetching the next operational lOCO from a pair of 
memory word locations other than the next two consecutive 
word I ocati ons). 

When the lOP executes the Transfer in Channel command, 
it loads the command address register of the appropriate 
I/o subchannel with the contents of bit positions 13-31 
(the "next command doubleword address" field), fetches 
and loads the new operational 10CD into appropriate reg­
isters within the I/O subchannel and order register within 
the device controller/device (unless data chaining is spec­
ified), and then executes the new lOCO. (Bit posi­
tions 8-12 and 32-61 are ignored and should be coded as 
zeros. ) 

If data chaining or command chaining is specified in the 
lOCO preceding the lOCO containing a Transfer in Channel 
command, the chaining flags are not significant to nor 
altered by the Transfer in Channel command. 

When used in conjunction with command chaining, Transfer 
in Channel command faci litates the control of devi ces such 
as unbuffered card punches or unbuffered line printers. For 
example, assume that it is desired to present the same card 
image twelve times to an unbuffered card punch. The punch 
counts the number of times that a record is presented to it 
and automatically generates a "chain modifier" signal when 
twelve rows have been pu·nched. The command address 
register within the I/o subchannel is incremented by two 
by the "chain modifier" signal and the next consecutive 
lOCO within the command list is skipped over (not fetched 
or executed). A command list for punching two cards might 
be as shown in the following example: 

Locations Description of Command 

A, A + 1 Punch row for card 1, command chain. 

A + 2, A + 3 Transfer in Channe I to locati on A. 

A +4, A +5 Punch row for card 2, command chain. 

Locations Oescri pti on of Command 

A +6, A + 7 Transfer in Channel to location A +4. 

A+8,A+9 Stop 

The Transfer in Channel command can be used also in con­
junction with data chaining. As one example, consider 
a situation often encountered in data acquisition applica­
tions, where data is transmitted in extremely long, con­
tiguous streams. In this case, the data can be stored 
alternately in two or more buffer storage areas so that 
computer processing can be carried out on the data in one 
buffer whi Ie additional data is being input into the other 
buffer. The command list for such an application might be 
shown in the following example: 

Locations Oescri pti on of Command 

B, B + 1 Read data, store in buffer 1, data chain. 

B+2, B+3 Store into buffer 2, data chain. 

B+4, B+5 Transfer in Channel to location B. 

If the lOP encounters two successive Transfer in Channel 
commands, an lOP control error (IOPCE) occurs and the 
I/O operation is terminated immediately. An 10PCE is 
reported as status information (bit 13 of register Rul) when 
the BP executes an SIO, HIO, no, or TOV instruction. 

STOP 

A control lOCO with a Stop command has the following 
format: 

The Stop command causes certain devices to stop, generate 
a "channel end II signal, and also request an I/o interrupt 
if bit 0 in the lOCO is coded as a 1. If the I/O interrupt 

Input/Output Processor (lOP) Fundamentals 147 



level within the interrupt system (location X'5C) is armed, 
enabled, and not inhibited, the request wi II be processed 
by the BP in accordance with the priority that prevails 
within the interrupt system, the lOPs, and the I/O sub­
channels within an MIOP. The occurrence of an I/O 
interrupt because of a Stop command is reported as status 
information (bit position 7 of register R) when the BP 
executes an AIO instruction (normally part of an I/O 
handling routine). 

Bi t posi ti ons 1-7 must be coded as zeros. Bi t posi ti ons 8-31 
and 40-63 are ignored; but it is recommended that they also 
be coded as zeros. Bit positions 32-39 are devi ce depen­
dent and must be coded as specified in the appropriate pe­
ripheral reference manual. 

The Stop command is primari Iy used to terminate a command 
chain for an unbuffered device, as illustrated in the first 
example given for the Transfer in Channel command. Note 
that not all devices recognize the Stop order. 

I/O OPERATION PHASES 

This section describes the genera I sequence of events (or 
phases) of any I/O operati on performed by an lOP, the 
function performed by the BP, lOP, and device controller/ 
device during each phase, and a description of each type 
of I/O operation including the applicability of parameters 
that may be contained within a typical operational lOCO. 
For explanation purposes, each I/O operation has five ma­
jor phases: preparation, initiation, fetching, executing, 
and termination phase. Each phase is further described 
below. 

PREPARATION PHASE 

Before an I/O operation may be performed by an lOP, an 
appropriate command list must reside in main memory. 

INITIATION PHASE 

Assuming that an appropriate command list resides in main 
memory, an I/O operation is initiated only if the BP ex­
ecutes an SIO instruction that is accepted by the addressed 
lOP, device controller, and device. The acceptance or 
rejection of an SIO instruction is contingent upon condi­
tions within the addressed lOP, device controller, and 
device and is indicated by the condition codes at the com­
pietion of the SIO instruction. in either case, the BP is 
able to perform other instructions or tasks immediately after 
executing an S10 instruction. (Refer to "SIO" instruction, 
Chapter 3, for further detai Is. ) 

A successfu I 510 i nstructi on causes the addressed devi ce to 
go from the "ready" condition to the "busy" condition. 

148 I/O Operation Phases 

FETCHING PHASE 

Although the services of the BP are not required during 
this phase, the BP may at any time execute either a TIO, 
TDV, or POL instruction without interfering with the I/O 
operation. However, excessive TIOs and TDVs may cause 
a data overrun condition. The BP may also execute either 
an HIO or RIO instruction and stop the I/O operation. (An 
HIO may leave the device in an unpredictable state; an 
RIO resets all controllers and devices on the addressed lOP. ) 
As a result of accepting an SIO instruction, a command ad­
dress register within the I/o subchannel (assigned to con­
trol the addressed device controller/device) is loaded with 
the first command doubleword address, the content of Gen­
eral Register 0 when the 510 instruction is accepted. At 
the appropriate time, as determined by the priority, the 
device controller/device wi II request that the lOP access 
main memory and fetch the first word of the lOCO from an 
even memory word location and increment the command 
address register by one. The disposition of the first word 
is dependent upon the contents of the first word. 

If the order field contains an I/o order for a device 
controller/device, the content of the order field is either 
loaded into an order register within the appropriate device 
controller/device or ignored (if the lOCO is being fetched 
for a data chained operation). If the order is a Read Back­
ward order, a control flag is also set within the lOP which 
allows the memory byte address to be decremented rather 
than incremented during the data transfer. 

For all orders (excluding the Transfer in Channel command, 
described below), the contents of bit positions 10-31 of the 
first word is loaded into a memory byte address register of 
an appropriate I/o subchannel. Depending upon the I/O 
order, as described under "Execution Phase", the content of 
the memory byte address register may be used or ignored. If 
used, it specifies which memory word location is to be ac­
cessed and also the number of bytes of data {or control in­
formation} to be transferred into or out of that location. 

If the order field contains a Transfer in Channel command, 
it is recognized and executed immediately by the lOP. The 
content of bit positions 13=31 (designated as,the IInext com-= 

mand doubleword address" field) is loaded directly into the 
command address register. The Transfer in Channel com­
mand is recognized and executed by the lOP, it is fetched 
and executed as the result of fetching one word (rather than 
two), and it is transparent to the device controller/device 
(that is, it is executed without affecting the continuity of 
an order that is data chained or an I/o operation that is 
command chained). Note: Although bit positions 0-3 
and 8-12 are currently ignored, it is recommended that they 
be coded as zeros. 

Immediately after executing a Transfer in Channel command, 
the iOP wiii automaticaiiy fetch the first word or the next 
lOCO as specified by the contents of the "next command 
doublewordaddress" field. If the order field ofthe next lOCO 
also contains a Transfer in Channel command, the I/o opera­
tion is terminated immediately and the lOP enters a Halt state 
because an lOP control error (IOPCE) occurred (attempting 
to execute two successive Transfer in Channel commands). 



Otherwise, the first word of the next lOCO is fetched and 
loaded as described above, and the second word is fetched 
and loaded as described below. 

Since the Transfer in Channel command permits lOCOs to 
be fetched from nonconsecutive locations, lOCOs contain­
ing Transfer in Channel commands may be included within 
a command list either to achieve command list continuity 
from one segment of a command list to another segment or 
to c?nstruct reiterative loops. 

For all lOCOs, except a control lOCO containing a Trans­
fer in Channel command, the lOP will automatically access 
main memory at the appropriate time, as determined by the 
priority that prevails for accessing main memory, and fetch 
the second word of the lOCO from the next consecutive 
ascending (odd) memory word location of the command list 
and increment the command address register by one. Thus, 
in all cases, after a fetching operation is completed, the 
content of the command address register wi II be an even 
(or doubleword) address. 

The contents of the second word are stored in appropriate 
registers within the I/O subchannel. Depending upon the 
I/o order, as described under IIExecution Phase ll

, the con­
tents of the various fields are either used or ignored. 

In addition to the lOP Control Error (IOPCE), the following 
types of lIunusual end ll conditions may be detected during 
the fetching phase of an I/O operation: Memory Address 
Error (MAE), Control Check Fault (CCF), lOP Memory Error 
(IOPME), Bus Check Fault (BCF), and Memory Interface 
Error (MIE). The detection of any of these errors causes the 
I/O operation to be terminated and if the IUE flag is set to 
a 1, an "unusual end" interrupt is requested. 

EXECUTION PHASE 

Although the services of the BP are not required during 
this phase, the BP may at any time execute either a TIO, 
TDV, or POL instruction without interfering with the I/o 
operation. However, excessive testing may cause a data 
overrun condition. The BP may also execute either an 
HIO or P.IO instruction and stop the I/o operation. After 
the second word of an lOCO is fetched and providing no 
lIunusual end ll condition was detected, the lOCO is executed 
as prescribed by the parameters contained therein. As a 
function of the order and the status of the Skip flag, if 
applicable, an lOCO may be executed in one of five ways, 
as described below: 

1. Certain Control orders (e. g., Stop) may be executed 
by the device whi Ie the lOP monitors the operation in 
accordance with the applicable control flags. Since 
no memory accesses and data (or information) transfers 
occur, the contents of the memory byte address reg­
ister, write key register, and byte count register may 
be ignored. Other Control orders (e. g., Rewind for a 
magnetic tape unit) are listed and described in applic­
able Xerox peripheral equipment reference manuals. 

Depending upon the control function performed, certain 
Control orders may be a part of an I/o operation 
which may be continued after the Control order is 
executed. For example, an I/o operation involving 
a magnetic tape unit may contain a Rewind order to 
reposition the tape prior to reading (or writing) one or 
more records. 

Note: Within the context of the above explanation, 
the Control order is defined to be one that 
does not transfer any information; thus, data 
chaining is precluded within the lOCO con­
taining the Control order; however, command 
chaining may be specified. Control orders that 
involve information transfers when executed 
are described below (see paragraphs 2 and 4). 

2. If the order specifies an input operation (e. g., Read, 
Read Backward, or Sense) and the Skip flag is coded 
as a 0, all parameters of the current lOCO may be 
applicable. As a result of receiving an appropriate 
input order, the devi ce transmits data (Read, or Read 
Backward order) or information from special registers 
(Sense order) into data buffers of the associated I/O 
subchannel within the lOP. 

Depending upon the priority that prevai Is for accessing 
main memory, the lOP accesses a memory word location 
(as specified by the current memory byte address), 
transfers up to four bytes of data or i nformati on from 
the data buffers to a memory unit, provides a write 
key, and increments (or decrements, if Read Backward 
",,.,.10,.' +ho mom",r" h.,+o ,..",1,.1roc:" nn,.l ,.Iorromon+c: +ho _._-'J ... - ... _ ... _., -,.- --_._-- -.. - --_._ ... _ .. -- ----
byte count by one for each byte transferred out of the 
data buffers. 

The write key is evaluated against the preassigned 
write lock for the memory word location accessed. 
If the write key is valid for each memory word loca­
tion accessed, the input operation continues, as des­
cribed above, unti I it is completed or terminated 
by an "unusual end" condition, other than Write Lock 
Violation. If the write key is not valid, the memory 
unit (1) generates and transmits a Write Lock Viola­
tion (WLV) signal to the lOP, (2) rejects the new data, 
and (3) does not disturb the previous contents of the 
memory word location accessed. 

If the write key is invalid for any memory word location 
accessed and the HTE flag is coded as a 1, the input 
operation is terminated immediately upon receipt of a 
WLV signal (see "Termination Phase ll

). 

If the HTE flag is coded as a 0, the memory unit may 
accept or reject the data or information, based on the 
write key/write lock evaluation for each memory word 
location accessed, without affecting the operations 
within the lOP, device controller, or device. The 
input operation continues unti I either completed or 
terminated by an "unusual end" condition, other than 
a Write Lock Violation. 

I/O Operation Phases 149 



Note: Since the same write key prevai Is for the entire 
lOCO and all memory locations within a mem­
ory page are assigned the same write lock, the 
write key/write lock relationship may change 
when the memory byte address is incremented 
(or decremented) across a memory page boundary. 

3. If the order specifies an input operation (e. g., Read, 
Read Backward, or Sense) and the Skip flag is coded 
as a 1, all parameters within the 10CD, except the 
write key, may be applicable. As a result of receiving 
an appropriate input order, the device transmits data 
(Read or Read Backward order) or information from 
special registers (Sense order) into the data buffers 
within the I/o subchannel of the lOP. Because the 
Skip flag is coded as a 1, the lOP can not access main 
memory (the write key may be ignored and a Write Lock 
Violation can not occur). Although the data can not 
be stored in the main memory, the lOP increments the 
memory byte address (except during a Read Backward 
order, when it is decremented) and decrements the byte 
count by one for each byte transferred out of the data 
buffers. The device may continue to transmit data into 
the data buffers and the lOP may continue to update 
the memory byte address and byte count unti I the cur­
rent order is either completed in a normal manner or 
terminated because of an "unusual end" condition 
(other than a Write Lock Violation). 

4. If the order specifies an output operation (e. g., Write 
or Control) and if the Skip flag is coded as a 0, all 
parameters within the 10CD, except the write key, 
may be applicable. When transferring data (Write 
order) or i nformati on (Contro I order) out of mai n 
memory, the write key/write lock checking is not 
performed; hence, the write key may be ignored. 
Likewise, a Write Lock Violation will not occur. For 
an output operation, the lOP wi II access main memory 
(in accordance with the priority that prevai Is for ac­
cessing main memory) and transfer up to four bytes of 
data (or information), as specified by the current mem­
ory byte address, to the data buffers of the appropri ate 
I/O subchannel. The lOP also increments the memory 
byte address and decrements the byte count by one for 
each byte of data transferred. Data is then transferred 
from the data buffers to the devi ceo The lOP may con­
tinue to access main memory, transfer up to four bytes 
of data from main memory to the appropriate data buf­
fers, and update the memory byte address and byte 
count. The devi ce continues to output data unti I the 
order is either completed in a normal manner or ter­
minated because of an lIunusual end" condition. 

5. If the order specifies an output operation (e. g., Write 
or Control) and if the Skip flag is coded as a 1, all 
parameters \A,'itn:r. the current !OCD, except the \¥rite 
key, may be applicable. Because the Skip flag is 
coded as a 1, the lOP can not access main memory for 
any data {or information}. Instead, the lOP generates 
and loads zeros (XIOOI) into the data buffers of the 
appropriate I/O subchannel and increments the memory 
byte address and decrements the byte count by one for 

150 I/O Operation Phases 

each byte loaded. The zeros are then transferred from 
the data buffer to the devi ceo The lOP may continue 
to generate and load zeros into the data buffers and 
update the memory byte address and byte count, ac­
cordingly, and the device may continue to output zeros 
unti I the order is either completed in a normal manner 
or terminated because of an "unusual end ll condition. 

DATA CHAINING 

An order may be continued from the current operational 
10CD to the next operational 10CD, if data chaining is 
specified in the current 10CD. In this case, the lOP wi II 
automatically fetch the next operational 10CD, asdescribed 
under "Fetching Phase", when the byte count of the current 
10CD is reduced to zero. In the process of fetching the 
next operational 10CD, the lOP may fetch and execute a 
control lOCO containing a Transfer in Channel command 
without affecting the continuity of the order. The process 
of fetching and loading the next operational 10CD into the 
control registers of the I/o subchannel is transparent to the 
device. That is, the device continues to operate as if the 
order were defined by a single 10CD. Also, any changes 
in the status of the Skip flag or in the write key from one 
10CD to the next is transparent to the device. The device 
continues to receive zeros, data, or information from the 
data buffers during an output operation, or continues to 
transmit data (or information) into the data buffers regardless 
of whether it is subsequently rejected or stored whi Ie per­
forming an input operation. 

During the execution phase, an I/O interrupt may be re­
quested each time the byte count of an operational 10CD 
is reduced to zero if the Interrupt at Zero Byte Count (IZC) 
flag is coded as a 1. Thus, if data chaining is specified, 
the lOP may request an I/O interrupt without interfering 
with the process of fetching the next operational IOCD. 

If the I/o interrupt level (location XI 5C') within the inter­
rupt system is armed, enabled, and not inhibited, the I/o 
interrupt may be processed by the BP in accordance with 
the priority that prevai Is within the interrupt system, the 
lOPs, and the device controllers connected to the lOP. 

The order may be completed in a normal manner when the 
Data Chain flag of the current IOCD (the last 10CD of a 
logical record) is coded as a O. 

COMMAND CHAINING 

An I/o operation may be continued from the current lOCO 
to the next 10CD if command chaining is specified in the 
current !OCD. Command chaining is commonly specified 
when reading (or writing) consecutive records of data from 
the same file. In which case, the current 10CD must be 
the last lOCO for the current record and the next 10CD 
must be the first 10CD of the next logical record. Although 
the device may execute the same functional order for both 
records, logically, it is equivalent to two separate orders. 



Depending upon the characteristics of the device, command 
chaining may also be used to perform different operations 
on either different but consecutive records or upon the same 
record {e. g., a magnetic tape unit may be programmed to 
alternately read or write consecutive records or to read the 
same record backwards after writing}. Refer to an appro­
priate Xerox peripheral equipment reference manual for 
further detai Is. 

If command chaining is specified, the device controller 
causes the lOP to fetch the next operational lOCO, as de­
scribed under "Fetching Phase", when the device signals 
"channel end" (signifying that it is ready to accept and 
execute another order). In the process of fetching the next 
operational lOCO, the lOP may fetch and execute a con­
trol lOCO containing a Transfer in Channel command with­
out affecting the continuity of the I/O operation {i. e. , 
transparent to the device controller/device}; however, the 
fetching of the next operational lOCO is not transparent 
to the device controller/device. The process of automat­
ically fetching the next operational lOCO because data 
chaining and/or command chaining is specified in the cur­
rent lOCO permits an I/o operation to continue normally 
unti I an lOCO is executed in which both chaining flags 
are coded as zeros (the last lOCO of the last record). 

If data chaining and command chaining are both specified 
within an lOCO, data chaining is performed if the byte 
count of the current lOCO is reduced to zero before the 
device generates "channel end"; command chaining is per­
formed if the device generates "channel end" before the 
byte count is reduced to zero. 

During the execution phase, an I/O interrupt may also be 
requested each time a "channel end" occurs if the Interrupt 
at Channel End {ICE} flag is coded as a 1. Thus, if com­
mand chaining is specified, the lOP may request an I/o 
interrupt without interfering with the process of fetching 
the next operational lOCO. 

TERMINATION PHASE 

An I/O operation may be terminated in one of the following 
manners: 

1. Aborted at any time because the BP executed either 
an HIO or RIO instruction. 

2. Aborted when an unconditional"unusual end" condition 
was detected. 

3. Aborted when a conditional "unusual end" condition 
was detected whi Ie the HTE control flag was coded 
as a 1. 

4. Completed as specified by the command list but with 
an "unusual end" condition. 

5. Completed as specifi ed by the command list. 

6. Aborted whenever a SUPER RESET, SYSTEM RESET, 
or I/o RESET command is entered from the System Con­
trol Console (SCC). 

The progress of an I/O operation, including the termination, 
may be ascertained by evaluating the status information 
returned for I/O instructions, as described in Chapter 3. 
Depending upon programming considerations, these I/O 
instructions may be executed either singly or as part of an 
I/o handling routine and either imperatively at logical 
poi nts of a BP-executed program or on an II as needed ll 

basis when an I/O interrupt is requested by an lOP or de­
vice controller. Normally, an I/o interrupt is requested 
whenever a critical or significant event occurs within any 
I/o subchannel, device controller, or device. Typically, 
an I/O interrupt may be requested when the byte count of 
any lOCO is reduced to zero, whenever any device detects 
a "channel end ll condition, or when the lOP or any device 
controller detects an lIunusual end" condition, providing 
the appropriate control flag (IZC, ICE, and IUE) is coded 
as a 1. 

Note: An I/O interrupt may also be requested by certain 
devices, e. g., a magnetic tape unit may be able 
to execute a Rewind and Interrupt order and other 
devices may request an I/O interrupt when execut­
ing a Stop order in which bit 0 is coded as a 1. 
Refer to an appropriate Xerox peripheral reference 
manual for further detai Is. 

Once an I/O interrupt request has been made by.a device, 
that device, device controller, and I/o subchannel remain 
in an interrupt pending condition unti I the interrupt request 
is acknowledged, reset, or cleared. 

Normally, an I/O interrupt request is acknowledged by 
the BP executing an AIO instruction, as part of an I/O 
interrupt-handling routine; reset by the BP executing either 
an HIO or an RIO instruction; or for certain devices cleared 
automatically, as a function of time. Refer to an appro­
priate Xerox peripheral equipment reference manual for 
further detai Is. ) 

Since a multiple number of I/O interrupt requests may pre­
vail simultaneously {one per each de vi ce controller} and 
all requests are serviced by a common I/O interrupt level 
(location X'5C), the BP normally acknowledges an I/O 
interrupt request based on the priority that prevai Is within 
the interrupt system, the lOPs, and the I/O subchannels 
within an MIOP, if applicable. An interrupt pending con­
dition prevents a new I/O operation from being initiated 
by an SIO instruction on a particular subchannel but does 
not affect the current I/O operation. (That is, if an I/O 
interrupt was requested as the result of a zero byte count or 
II channel end" condition, and data chaining or command 
chaining is specified, the I/O operation may continue as 
specified by the command list.) 

I/O Operation Phases 151 



5. OPERATIONAL CONTROL 

EXTERNAL CONTROL SUBSYSTEM 

The External Control Subsystem (ECS)isa group of elements 
used in this computer system that provide operational and 
diagnostic interfaces to control and maintain system hard­
ware and software. 

CENTRALIZED SYSTEM CONTROL 

In many other computer systems II software-I evel II operator 
interacti ons are transacted through an operator's teletype­
writer console while hardware level interactions are per­
formed through a fixed panel of lamps and switches. In 
contrast, this Xerox computer system consolidates these in­
teractions and controls into a console telecommunications 
device, designated as the System Control Console (Scq. 
Through the SCC, the operator has a siAgle control point 
for all normal system control activities. 

A Remote Diagnostic Interface (RDI) permits the local 
System Control Consol e to be augmented wi th a Remote 
Consol e that may have the some degree of system con­
trol. (Usage of the RDI and Remote Console as a Remote 
Assist feature is described below, under II Remote Console".) 

A System Control Panel (SCP) contains' indicators and basic 
control s that the operator may use duri ng system startup or 
to establ ish connections with the remote location. 

CONTROL CONSOLE DEVICES 

The ECS provides an interface for two local (primary and 
alternate) communications consoles and a data set inter­
face for remote diagnostic connection. Each communi­
cations console must have an EIA RS232 voltage interface 
and format characters in even parity ASCII code with con­
trol protocols of a Model 4691 KSR 35 Keyboard/Printer. 
Allowed communications rates are 10 and 30 characters per 
second. 

PRIMARY CONSOLE 

The primary console always has the functional capabil ity of 
the System Control Console to communicate with software 
through I/O subchannel address X'Ol'. The communications 
rate of the primary console is either 120 characters per 
Second or the same as the alternate end remote consoles 
depending on the setting of the FSELA switch on the Con­
figuration Control Panel (see Chapter 6). If the REMOTE 
CHANNEL switch on the System Control Panel is in the 
SCC position (implying a remote diagnostic connection), 
the remote channel frequency is automatically enforced on 
the primary console. 

152 Operational Control 

REMOTE CHANNEL 

The alternate and remote consoles share the same data paths. 
Both consoles receive the some output; either one of the 
consoles is selected for input by the ALTSEL switch on the 
Configuration Control Panel. The communications rates 
of 10 or 30 characters per second are selected for both con­
soles by the FSELBO and FSELB 1 switches on the Configu­
ration Control Panel. Both consoles may function either 
strictly as I/O devices or as parallel System Control Con­
soles selected by the REMOTE CHANNEL switch on the 
System Control Panel. Description of communications rate 
selection is found in Chapter 6. 

ALTERNATE CONSOLE 

The alternate console normally functions as an output de­
vice residing at I/o subchannel address X'OB'. This con­
sole can create an edited system log, whi Ie the operator's 
console functions at a higher communications rate. (RE­
MOTE CHANNEL and ALTSEL switches are both OFF.) 

If the primary console fai Is, the alternate console may 
function as the System Control Console. In this case, the 
remote console connection is only inhibited by the op­
erator at the data set. (REMOTE CHANNEL switch in 
SCC position; ALTSEL switch in ON position.) 

REMOTE CONSOLE 

Before the remote device can gain access to the Remote 
Diagnostic Interface (RDI), the operator must manually in­
tervene to establish the connection at the data set and the 
System Control Panel. The data set (Bell 103A or equiva­
lent) connection is inhibited while the REMOTE CHANNEL 
switch is in the OFF position. 

The remote console may run on-line diagnostics while the 
rest of the system performs non-maintenance work. In this 
case, the remote console preempts I/O subchannel X'OB' 
and the alternate (local) console creates a log of the on­
line mainentance if not turned off. The remote device 
does not have access to the SCC hardware controls, but 
may enter software-level control information through the 
I/o system (REMOTE CHANNEL switch in I/o position, 
ALTSEL switch in OFF position). 

If the entire system is under the discretionary control of re­
mote maintenance personnel, the operator may connect the 
remote console to the RDI as the System Control Console. 
The remote console is then connected logically in parallel; 
and assumes all the functional capabi lity of the primary con­
sole, and shares I/O subchannel X'Ol'. (Note that con­
ventions must be established to ensure that the primary and 
remote consoles do not generate overlapping input.) The 
remote console communications rate is automatically im­
posed on the primary console and the operator may have to 



change the rate on the primary console to retain parallel 
control. The alternate {local) device creates a log of all 
SCC transactions. The normal (log) output on I/O sub­
channel X'OB' is suspended for the duration of the SCC 
assignment to the remote channel (REMOTE CHANNEL 
switch in SCC position; ALTSEL switch in OFF position). 

CONTROL COMMANDS 

A set of commands and display formats implements operator 
communication with hardware through the System Control 
Console. These hardware-control commands, called II SCC 
Functions ll

, are independent, direct hardware controls as 
distinguished from the software-level operating controls 
activated from the SCC through the normal I/o system. A 
special micro-processor, working independently of the 
BP, senses and controls the execution of SCC functions. 
The flexibility of character-oriented communications equip­
ment and micro-programmed control significantly enhance 
many system operating and diagnostic features. 

The basic command format provides a four-level interlock 
on critical system controls by requiring a correct four­
character sequence to initiate a command action. In ad­
dition, context analysis is provided to assure that com­
mands are executed only in appropriate system states. This 
basic format requires that each command is preceded by the 
IIcontrol-Z II character (control and Z keys depressed simul­
taneously). Note that within this text, the control-Z char­
acter is represented wi th the symbol II ZCII . 

A typical command sequence is to enter IIZC HLTII from the 
SCC. The system responds by printing II (HLT)II on the next 
line of the SCC printout, and forcing the system to halt 
instruction execution and enter the IDLE state. If a com­
mand cannot be executed due to improper syntax or context, 
the system provides an odvisory message following the com­
mand echo indicating the probable source of error. A typi­
cal example of the display format is II(RSY) *EVENT A1*1I, 
indicating that a reset command may not be executed prior 
to halting instruction execution. (Refer to Table 21 for 
a complete listing of event messages.) 

The various control functions that may be exercised from 
the SCC may be generally classified into three categories: 
operator control commands, diagnostic control commands, 
and maintenance control commands. 

OPERATOR CONTROL COMMANDS 

These commands provide controls which an operator normally 
uses to control the computer system. By enteri ng the appro­
priate command the operator may direct the computer system 
to load, run, halt, reset, read/set the sense switches, or 
issue a IIconsole interruptll to the operating software. 

The sense switch control and console interrupt commands 
may interact with the software and are always operative. 
All other SCC functions may be enabled or disabled by 
the SCC FUNCTIONS switch on the SCPo 

Table 21. Event Messages 

Display 

*EVENT 00* 

*EVENT AO* 

*EVENT A1* 

*EVENT A2* 

*EVENT M* 

*EVENT A8* 

*EVENT FO* 

*EVENT Fl* 

*EVENT F4* 

*EVENT F6* 

*EVENT F9* 

Significance 

System Initialization; POWER ON or SUPER RESET. 

c 
Improper syntax for Z format command. 

Command not executed; Improper syntax or system may not be in IDLE mode. 

Command not executed; system not in maintenance mode. 

Command not executed; SCC FUNCTION switch is in DISABLE position. 

Power ride through; recoverable power line fai lure detected; power on trap requested. 

Trap requested occurred; inhibited in P-Mode. 

Basic processor error halt; watchdog timeout reset issued when watchdog timeout alarm bit 
set. (See II Processor Control Word ll

.) 

Basic processor halt; Address Halt. 

Basic processor halt; Processor-Detected Fault (PDF). 

System failed micro-diagnostic test (followed by Single Clock Status Register display of the 
element that fa i led). 

Control Commands 153 



To prevent inadvertent activation from disrupting a running 
system, the SCC FUNCTIONS switch is placed in the 
DISABLE position. 

The following operator control commands are standard fea­
tures of this system: 

Input Display Name of Command 

Zc I (I) Operator's Console 
Interrupt 

Zc SSW (SSW=bbbb) Read Sense Switches 

ZC ss#t (Ss#t =bbbb) Set Sense Swi tches 

ZC LDN####t,tt,ttt (LDN@####t) Load Normal 

ZC RSytt, ttt (RSY) Reset System 

ZC RBptt, ttt (RBP) Reset Basic Processor 

ZC RIOtt, ttt (RIO) Reset I/O System 

ZC HLTtt (HLT) System Halt 

ZC RU Ntt ,ttt (RUN) System Run 

ZCI OPERATOR'S CONSOLE INTERRUPT 

The Operator's Console (or SCC) INTERRUPT command per­
mits the operator to interact with the executing software by 
setting interrupt level X'5D'. If this interrupt level is Armed 
when the INTERRUPT command is entered, the interrupt 
level is advanced to the Waiting state. If the interrupt 
level is already in the Active state or Disarmed, the INTER­
RUPT command has no effect upon the computer system. This 
command is always enabled. 

ZCSSW READ SENSE SWITCHES 

This command causes the status of the sense switches to be 
displayed as part of the command echo. For example, if all 
four sense switches were set to a 1, the console display 
would be II (SSW=1111)1I. The status of the sense switches 
is also displayed by indicators on the System Control Panel. 
The READ SENSE SWITCHES command is always enabled. 

The status of the sense switches may also be read by exe­
cuting a READ DIRECT instruction (see Chapter 3). 

tHexadecimal digits. 

ttscc FUNCTIONS switch of SCP must be in the ENABLE 
position. 

tttSystem must be in the IDLE state. 

154 Control Commands 

zCSS# SET SENSE SWITCHES 

This command causes the sense switches to be set to the 
value specified by the hexadecimal digit in the command 
(#). The new sense switch value is displayed as part of 
the command echo. For example, if the operator enters 
IIZcSS311 the SCC will print II(SS3=O0l1)lI. The new status 
is al~o displayed by indicators on the System Control 
Panel. The SET SENSE SWITCHES command is always 
operative. 

The sense switches may also be set by executing a WRITE 
DIRECT instruction (see Chapter 3). The sense switches 
are initialized to zero during the power on and SUPER 
RESET sequences. Whi Ie the ZcSS# command is active, 
the basic processor is momentarily put in the IDLE state. 
This prevents any conflict between the operator command 
and a WRITE DIRECT instruction. 

Zct.ON#### LOAD NORMAL 

The loading operation is normally accomplished by readying 
the load device and entering the LOAD NORMAL command 
from the System Control Console. The four hexadecimal 
digits (represented as ####) specify the load device address. 
Successful completion of the command is signified by the 
command echo II (LDN@#H##)II. A fai lure in the load 
sequence is indicated by a display of an appropriate error 
message (see Table F- ) following the command echo. The 
LOAD NORMAL command is accepted only when the 
system is in the IDLE state. 

This single command initiates the following sequence: 

1. A series of internal micro-diagnostic tests are con­
ducted to verify the operation of system paths and 
elements used in the loading sequence. Each test is 
preceded by a system reset. If a failure is detected 
during the micro-diagnostic tests, an error message 
II *EVENT F9*1I is generated and followed by a Single 
Clnrk StnhlC: Rp.nic:tp.r dic:nlnv idpntifvinn thp fnilinn ------ -.-.• _- ---.::1----- --'-1----' ----._--,---.;;;, .-.- ._ .... _;;:) 

element. 

2. Upon completion of all micro-diagnostic tests, a sys­
tem reset is issued. 

3. All system memory locations are initial ized to zero. 

4. The basic processor loads a self-diagnostic program in 
memory locations X'lOO' through X'lFF' and loads the 
bootstrap loader (see Figure 14) in memory locations 
X'20' through X'29'. If an error is detected during the 
process, an error message "*EVENT FO*", is generated. 

5. The system is placed in the RUN mode. 

6. The basic processor executes the self-diagnostic pro­
gram, beginning at location X'160'. The processor 
then executes the bootstrap loader, starting at location 
X'26'. If a failure occurs during the processor self­
diagnostic program, the processor enters the WAIT state. 



Location 
(hex) (dec) 

20 32 

21 33 

22 34 

23 35 

24 36 

25 37 

26 38 

27 39 

28 40 

29 41 

Hexadecimal 

020000A8 

o E000058 

22110029 

64100023 

68000028 

OOOO####t 

22000010 

CCOOO025 

CDOOO025 

69COO022 

Symbol ic form 
of instruction 

L1, 1 

BDR,1 

BCR,O 40 

L1,0 

S10,0 *37 

TIO,O *37 

BCS,12 34 

t#### represents four hexadecimal digits that specify 
the load device address as entered by the LOAD 
NORMAL command. 

Figure 14. Bootstrap Loader 

Execution of the bootstrap program causes the following 
actions: 

1. The first record on the selected peripheral is read into 
memrory locations X'2A I through X'3F ' (the previous 
contents of general register 0 are destroyed as a re­
sult of executing the bootstrap program in locations 
X'26 1 through X'29 1

). 

2. After the record has been read, the next instruction 
is taken from location X'2A' {provided that no error 
condition has been detected by the device or the 
(lOP). 

3. When the instruction in location X'2A' is executed, 
the unit device and device controller selected for the 
load operation can accept a new SIO instruction. 

4. Further I/o operations from the load unit may be ac­
complished by coding subsequent I/O instructions to 
indirectly address location X'25 1

• 

Following the successful completion of the load sequence, 
the computer system usually continues execution of the 
loaded program and begins issuing messages to the operator 
via the I/o system to the System Control Console. 

RESET SYSTEM 

The RESET SYSTEM command performs the combined func­
tions of the RESET BASIC PROCESSOR and RESET I/OSYS­
TEM commands, as well as the function described below: 

1. The system control processor bus interface is initialized. 

2. The processor memory bus and processor bus interfaces 
are initialized. 

3. The system memory units are initialized. This process 
does not alter any memory locations. 

4. AI I interrupt levels are reset to the Disarmed and Dis­
abled state. 

5. The system ALARM indicator is cleared. 

This command is accepted only when the system is in the 
IDLE state. 

RESET BASIC PROCESSOR 

The RESET BASIC PROCESSOR command initial izes the basic 
processor by performing the following: 

1. All bits in the Program Status Words, except the in­
struction address, are reset. 

2. The program counter of the BP (register 05) is set to a 
value of X'26 1

• 

3. The Bf' remains in the IlJLt state until allowed to be­
gin execution at location X'26 1

• 

This command is accepted only when the system is in the 
IDLE state. 

Since all memory requests are inhibited during a reset, the 
RESET BASIC PROCESSOR command disrupts any simultan­
eous memory request from the standard I/O system. 

RESET I/o SYSTEM 

When accepted, the RESET I/O SYSTEM command initial­
izes the lOPs and device controllers of the standard I/o 
system. All peripheral devices under control of the system 
are reset to the "ready II condition and all status, interrupt, 
and control indicators in the I/O system are reset. This 
command is accepted only when the system is in the IDLE 
state. The RESET I/o SYSTEM command does not affect 
the External Direct Input/Output (DIO), the BP, or other 
non-input/output system elements. 

zcttL T SYSTEM HALT 

When the HALT command is entered, the BP ceases to 
execute instructions and is forced into the IDLE state; the 
RUN indicator on the System Control Panel is extinguished 

Control Commands 155 



and the IDLE indicator is illuminated. In the IDLE state 
the load commands, the reset commands, and the RUN com­
mand are enabled. The I/O system may continue to perform 
I/o operations initiated prior to the ZCHLT command, even 
though the BP is halted. Note that the processor HALT 
status is not set by the ZCHLT command, but is caused by 
internal processor conditions (see II Processor-Control Word"). 

SYSTEM RUN 

The RUN command is accepted only if the BP is in the 
IDLE state. When the FUN command is accepted, the BP 
is allowed to execute its instruction stream. On the SCP, 
the IDLE indicator is extinguished and the RUN indicator 
is illuminated, subject to the processor control word and 
system status. 

When not in the IDLE state, the system does not accept any 
of the load and reset control commands. Attempti ng to enter 
any load and reset control command while the system is in 
the RUN mode results in an error message being displayed 
on the control console (see Table F- ). 

DIAGNOSTIC CONTROL COMMANDS 

Diagnostic control commands facilitate isolating software 
and hardware problems by providing single-instruction ex­
ecution, as well as permitting read/write access to many 
processor internal control registers and system memory loc­
ations. To perform diagnostic commands, BP instruction 
execution must be interrupted and the ECS control mode 
altered. This is accomplished by the ENTER P-MODE com­
mand (a "CONTROL-P" character generated by depressing 
CONTROL and P keys simultaneously). Once in P-Mode 
the system is forced into the IDLE state and the BP stores 
and fetches data or executes single instructions only upon 
request from the operator through the SCC. 

Note: Within this text the control-P character is repre­
-- sented by the following symbol, pc. 

The diagnostic control (P-Mode) command format differs 
from the basic command format. Hexadecimal digits are 
immediately echoed and stored to be used as data or ad­
dress depending on the following command. The system 
truncates the data stream to eight hexadecimal digits and 
assumes leading zeros if less than eight characters are en­
tered. All non-hexadecimal characters, except basic (ZC) 
format commands, are treated as P-Mode commands. If the 
character is not in the allowed commond set; it is echoed 
followed by a question mark II N?" and no action results. 
Valid commands are echoed; the requested operation is 
then performed and a P-Mode data display of the form 
II P:DDDDDDDD @ AAAAAAAN' is generated on the next 
line of SCC pri ntout. The II pil represents the processor ad­
dress (normally 0); the II D" field (eight hexadecimal digits) 

156 Control Commands 

represents the data in the location specified in the II A" 
field (eight hexadecimal digits). The first hexadecimal 
digit of the A field is XIOI for memory addresses and X'8

1 

for internal register addresses. All valid commands, except 
EXIT P-MODE, produce a display in this format. 

The allowed diagnostic command set is listed in Table 22. 
An example of the resulting printout is shown in the section 
entitled ,rOperating Procedures and Information". 

pC ENTER P-MODE 

The ENTER P-MODE control command is generated by de­
pressing the CONTROL and P keys, simultaneously (pc). 
The system is forced into the IDLE state and the processor 
wi II execute diagnostic control commands entered from the 
System Control Console. The ECS remains in the P-Mode 
until an EXIT P-MODE command (described below) is 
entered or the ZC format commands SYSTEM RUN or LOAD 
NORMAL are entered. Successful entry into the P-Mode 
is indicated by a P-Mode display on the SCC. 

(P-Mode) 
SELECT INTERNAL REGISTER ADDRESSING 

(P-Mode) 
/ SELECT MEMORY ADDRESSING 

These commands specify the storage element whose con­
tents are to be displayed and operated upon with subsequent 
commands. The "/" character following a hexadecimal 
data stream specifies a memory address; the ". II character 
specifies an internal processor control register address. All 
address calculations and memory accesses are subject to 
the write lock keys, address mode, and mapping bits in the 
program status words. 

(P-Mode) 
+ ADD TO SELECTED LOCATION 

The "+" character, following a hexadecimal data stream, 
causes the value of the data to be added to the contents of 
the selected storage element. 

(P-Mode) 
SUBTRACT FROM SELECTED LOCATION 

The "_" character, followi ng a hexadecimal data stream, 
causes the value of the data to be subtracted from the 
contents of the selected storage element. 

(P-Mode) 
M STORE IN SELECTED LOCATION 

The II Mil character, following a hexadecimal data stream, 
causes the data to be stored in the selected storage element. 



Table 22. Diagnostic Control (P-Mode) Commands 

Character Function 

ENTER P-MODE. 

####. .. ## I~ut data or address value (context determined by the succeeding operator. 
# ##. .• ## is any hex digit string). 

SELECT INTERNAL REGISTER ADDRESSING. 

/ SELECT MEMORY ADDRESSING. 

+ ADD TO SELECTED LOCATION. 

SUBTRACT FROM SELECTED LOCATION. 

M STORE IN SELECTED LOCATION. 

L SHIFT LEFT AND DISPLAY. 

R SHIFT RIGHT AND DISPLAY. 

INCREMENT REFERENCED ADDRESS AND DISPLAY. 

RUBOUT 

S 

DISPLAY ADDRESSED LOCATION. 

INSTRUCTION SINGLE STEP. 

G SPECIAL INSTRUCTION SINGLE STEP. 

x EXIT P-MODE. 

(f'-Mode) 
L SHIFT LEFT AND DISPLAY 

This command causes an image of the contents of the pres­
ently selected memory location or Q register to be shifted 
one bit position to the left and then displayed. A zero is 
entered into the least significant bit of the location for 
each L command. 

Actual contents of the memory or Q-register location ref­
erenced by the shift instruction are not altered. 

(P-Mode) 
R SHIFT RIGHT AND DISPLAY 

This command causes an image of the contents of the pres­
ently selected memory location or Q register to be shifted 
one bit position to the right and then displayed. A zero is 
entered into the most significant bit of the memory location 
or Q register for each R command executed. 

Actual contents of the memory or Q register location ref­
erenced by the shift instruction are not altered. 

(P-Mode) 
I INCREMENT REFERENCED ADDRESS AND 

DISPLAY 

This command increments by + 1 the address of the currently 
selected memory location or Q register {as specified by a 

previously executed SELECT MEMORY ADDRESSING or 
SELECT INTERNAL REGISTER ADDRESSING control com­
mand}. The new address and contents are displayed on the 
next line. 

{P-Mode} 
RUB OUT DISPLAY ADDRESSED LOCATION 

This command displays the contents of the currently ad­
dressed memory location or Q register {as specified by 
a previously executed SELECT MEMORY ADDRESSING 
or SELECT INTERNAL REGISTER ADDRESSING control 
command}. 

(P-Mode) 
S INSTRUCTION SINGLE STEP 

This command causes the BP to execute a single instruc­
tion as pointed to by the current contents of the program 
counter. Execution is precisely the same as if the system 
were running continuously. Upon completion, the BP 
returns to the IDLE state. If a trap occurs while the instruc­
tion is being executed, the instruction in the trap location 
is executed before the BP returns to the IDLE state. The 
resultant display shows the next instruction to be executed. 

Condition codes resulti ng from the instruction execution 
are displayed as the second hexadecimal digit of the ad­
dress field. 

Control Commands 157 



(P-Mode) 
G SPECIAL INSTRUCTION SINGLE STEP 

This command permits the contents of register Q5 to be in­
terpreted as the current instruction, and execution by the 
BP proceeds as described for the INSTRUCTION SINGLE 
STEP command. The program counter is incremented by + l. 
This command thus allows any single instruction (contained 
in register Q5) to be executed in lieu of the instruction 
pointed to by the program counter without otherwise dis­
turbing conditions within the system. The resultant display 
shows the next instruction to be executed. 

Condition codes resulting from the instruction execution 
are displayed as the second hexadecimal digit of the ad­
dress field. 

(P-Mode) 
X EXIT P-MODE 

The EXIT P-MODE command terminates the P-Mode within 
the ECS. The BP resumes execution of instructions. If 
no SYSTEM RUN or LOAD NORMAL commands were in ef­
fect before entering the P-Mode, the system remains in the 
IDLE state. 

MAINTENANCE CONTROL COMMANDS 

Maintenance control commands faci I itate isolation and 
analysis of system hardware malfunctions. The 'c~mmands 
are accepted only if the SCC FUNCTIONS switch is in the 
ENABLE position. In addition, most critical maintenance 
controls can be activated only if the MAINT MODE switch 
on the SCP is in the ON position. 

The primary features of the maintenance control commands 
are the provision of system clock control and single clock 
status displays. SturU5 is obtuined ffOffl feud-only regi:5telli 
located in central system elements. These Single Clock Sta­
tus Registers (SCSR) monitor the state of internal hardware 
signals. Each SCSR display is printed on the next line of 
SCC printout in the format II CE:DDDDDDDD CC". The II CEil 
field contains two hexadecimal digits that represent a cluster 
and an element address, respectively. The 8-digit D field 
displays the contents of the register, and the 2-digit II CC" 
field is a modulo 256 clock step counter. This information 
is valid only when the system clock is stopped. 

The following maintenance control commands are included 
as standard features of this computer system: 

Input 

ZCIvW\O 

ZcMM1t 

Display 

(MMO) 

(MM1) 

158 Control Commands 

Name of Command 

CLEAR MM FEATURES 

SET/CLEAR REPEAT CLOCK­
ING MODE 

Input Display Name of Command 

ZC MM2 (MM2) SET/CLEAR CLUSTER 
DISPLAY MODE 

ZC MM3 (MM3) SET/CLEAR P-MODE REPEAT 
MODE 

ZcMM4tt (MM echo SUPER RESET 
interrupted) 

ZcMM5tt (MM5) SET MICRO-DIAGNOSTIC 
LOOP MODE 

ZcMMlt (MM6) INITIATE ELEMENT MICRO-
DIAGNOSTIC 

ZcMMlt (MM7) SET LOW CLOCK MARGINS 

ZcMM8tt (MM8) SET HIGH CLOCK MARGINS 

ZcMM9tt (MM9) SET MEMORY INTERLEAVE 
OVERRIDE 

ZcMMAtt (MM echo SET DISPLAY INHIBIT MODE 
interrupted) 

ZCCLKtt (CLK) SET SINGLE CLOCK MODE 

Ispace' t Ispace l SINGLE-CLOCK STEP 

ZCCNNt (CNN) MUL TIPLE-CLOCK STEP 

ZC KIL (KIL) CLEAR SINGLE CLOCK 
MODE 

ZcE## (EN#) SELECT/DISPLAY SINGLE 
CLOCK STATUS REGISTER 

ZCT (T) SET/CLEAR TRANSPARENT 
TEXT MODE 

ZC LDS#### (LDS@###N) LOAD SPECIAL 

ZC LDT (LDT) MEMORY SET 

SET SINGLE CLOCK MODE 

This command sets the computer system to the II Single Clock 
Mode" by simultaneously stopping all central system clocks, 
except those required by the External Control Subsystem 
and the I/O system. When the system is in the Single 
Clock Mode all control commands may be entered and ex­
ecuted. Operations performed in the Single Clock Mode 
may differ from those performed when the clock is running 

tAil clock controls are inhibited unless the MAINT MODE 
switch is in the ON position. 

ttThese commands are accepted only if the system is in the 
MAINT MODE. 



at its normal rate (e. g., fixed duration control sequences 
may not take effect and diagnostic control commands which 
operate upon BP's registers or memory locations require a large 
numberof clock steps to complete the operation). The RESET 
SYSTEM, RESET I/O, and RESET BASIC PROCESSOR commands 
are effective in Single Clock Mode. When the·Single Clock 
Mode is set, the contents of the currently selected Single 
Clock Status Register are displayed (see SELECT/DISPLAY 
SINGLE CLOCK STATUS REGISTER, ZCE## command). 

If the computer system is currently in the Single Clock 
Mode, ZCCLK command resets the two-digit clock step 
counter to X'OO'. 

The Single Clock Mode may be reset by either a CLEAR 
SINGLE CLOCK MODE, ZCKIL, command or a SUPER 
RESET, ZCMM4, command. 

Note: Entering a SET SINGLE CLOCK MODE command 
when the basic processor is performing normal data pro­
cessing operations may have an adverse effect upon 
I/o operations. To prevent inadvertent entry into 
Single Clock Mode, the ZCCLK command is not ac­
cepted unless the MAINT MODE switch is in the ON 
position. Attempting to enter a ZCCLK command 
when the MAINT MODE switch is in the OFF posi­
tion results in an error message (*EVENT A2*) being 
displayed and no further acti on. 

16 SINGLE-CLOCK STEP 

",I .1 • ...1 ~. I I ll. I • I 
YVrll::lI rill:: :)y!)rl::lII I!) III HII:: .J"I~II:: \..IOCK. IYlOUl::, U !)"~II:: 

space character (depicted as !t5 within this text), without 
a control-Z, is interpreted as a SINGLE-CLOCK STEP 
command. For each space character received from the con­
trol console, the current command or instruction is partially 
executed (one c1ock 's worth of execution for each space 
character) . 

The contents of the currently selected Single Clock Status 
Register are displayed and the clock step counter is incre­
mented by + 1 for each SINGLE-CLOCK STEP. 

zCC## MULTIPLE-CLOCK STEP 

When thesystemisintheSingle Clock Mode, the MULTIPLE­
CLOCK STEP command causes the current instruction or com­
mand to be executed for 1 to 256 clock steps (as specified 
by the two hexadecimal digits 11## .. in this command). The 
ZCOO command causes 256 clocks to be issued. The contents 
of the currently selected Single Clock Status Register are 
displayed. The clock step counter is incremented by the 
number of clock steps specified by this command. 

The MULTIPLE-CLOCK STEP command allows precise step­
ping to a specific point in a micro-program sequence in­
volving a large number of clock steps. 

SELECT/DISPLAY SINGLE CLOCK STATUS 
REGISTER 

This command causes the requested SCSR to be displayed. 
The Ir##lr portion of this command (two hexadecimal digits) 
is stored within the ECS and used as a reference address in 
any command which displays the contents of the currently 
selected Single Clock Status Register. The first hexa­
decimal digit is the cluster address and the second digit is 
the el ement address. 

In addition to being modified by subsequent ZcE## com­
mands, the cluster and element addresses may also be 
changed by the LOAD NORMAL command and the SET 
CLUSTER DISPLAY MODE command. The LOAD NORMAL 
command sets the address to XIOO' and the SET CLUSTER 
DISPLAY MODE command causes the element address to 
be set to a zero following each cluster scan. 

Zct<IL CLEAR SINGLE CLOCK MODE 

When this command is entered, the system clocks are re­
started immediately. The ZCKIL command may be issued 
at any time. If the system is not in the Single Clock Mode, 
the ZCKIL command is ignored. 

z'\1MO CLEAR MM FEATURES 

Upon completion of maintenance operations, the CLEAR 
1.1~A ....... T'lln .. t'" __ . _ •• 1/. .11 ..•. 1.. t'"llnl':'n nl':'t'"["'T' ... 
IYIIYI rLMI UI'l.L.J \,;UlIIIIIUIIU \U!) VVI::II U!) 1111:: .JU"- LI'I. I'I.L.JL I \';UlII-

mand, described below) may be used to restore the system 
to a standard configurati on status. The CLEAR MM 
FEATURES command does the following: 

1. Restores the system clock to its normal frequency. 

2. Clears the "Repeat Clocking Mode" (see ZC MM1 
command). 

3. Clears the "Cluster Display Mode" (see ZCMM2 
command). 

4. c 
Clears the II P-Mode Repeat Mode" (see Z MM3 
command). 

5. Clears the II Micro-diagnostic Repeat Mode" (see 
Z C MM5 command). 

6. C I ears the II Overri de Interl eave Mode" (see ZC MM9 
command). 

7. Clears the II Display Inhibit Modell (see ZC MMA 
command). 

Note that the CLEAR MM FEATURES command does not 
generate any resets (ZCRIO, ZCRSY, or ZCRBP), does not 
clear P-Mode, nor does it clear Single Clock Mode (see 
ZCCLK and ZCKIL commands). 

Control Commands 159 



ZCfJlMl SET/CLEAR REPEAT CLOCKING MODE 

This command may be used either to SET REPEAT CLOCKING 
MODE or to CLEAR REPEAT CLOCKING MODE. When the 
Repeat Clocking Mode is set, system clocks are repeatedly 
issued to the system. 

If the Display Inhibit Mode, as described below, is also 
set, the clock rate during Repeat Clocking Mode is approx­
imately 1600 Hertz. If the Display Inhibit Mode is not set 
(cleared), the clock rate is determined by the communica­
ti ons frequency of the System Control Consol e. 

The amount of information displayed when the Repeat 
Clocking Mode is set is also dependent upon the Cluster 
Display Mode. If the Cluster Display Mode (see ZCMM2 
command) is not set, the contents of the selected Single­
Clock Status Register is displayed after each clock. 

If the Cluster Display Mode is set, the contents of all 
16 SCSRs within a selected cluster are displayed after 
each clock. 

The above display routine is interrupted during a ZC format 
command. This mode is cleared by a CLEAR REPEAT CLOCK 
MODE, ZCMM1, a CLEAR MM FEATURES, ZCMMO, or a 
SUPER RESET, ZCMM4, command. 

Z~M2 SET/CLEAR CLUSTER DISPLAY MODE 

This command may be used either to SET CLUSTER DISPLAY 
MODE or to CLEAR CLUSTER DISPLAY MODE. When 
the Cluster Display Mode is set, any console operation 
which causes the display of a Single-Clock Status Reg­
ister (e. g., ZCCLK, ZCMM 1, ZCEIIII, ZCCIIII, ZCKIL, 
or II~II during Single Clock Mode) will cause the con­
tents of all SCSRs in the selected cluster to be displayed 
in successi on. 

If the Cluster Display Mode is set, it may be reset by a 
CLEAR CLUSTER DISPLAY MODE, ZCMM2, a CLEAR MM 
I::C ATIIOCC' ,CAAAA" ___ C'IIDCD DCCCT ,CAAAAA ______ ..1 
I-L/"'\I VI\L..J, L- IYIIYIV, UI U .JUI LI\ I"L.JLI, L- IYlJvr-r, ~VIIIJIIUIIU. 

Z~M3 SET/CLEAR P-MODE REPEAT MODE 

This command may be used either to SET P-MODE REPEAT 
MODE or to CLEAR P-MODE REPEAT MODE. 

When the P-Mode Repeat Mode is set, any P-Mode func­
tion character (see II Diagnostic Control Commandsll

) en­
tered from the control console is automatically repeated 
following each line of display. The repetition of P-Mode 
functions is haited by entering any character whiie repeti­
tion is active. Repetition is automatically resumed when 
another function is entered. 

The P-Mode Repeat Mode may be reset by a CLEAR P-MODE 
REPEAT MODE, ZCMM3, a CLEAR MM FEATURES, ZCMMO, 
or a SUPER RESET, ZCMN't4, command. 

160 Control Commands 

The P-Mode repeat feature is particularly useful for scan­
ning through sequential memory locations or Q registers 
(using the INCREMENT REFERENCED ADDRESS AND 
DISPLAY command or INSTRUCTION SINGLE STEP com­
mand described under II Diagnostic Control CommandsH

). 

Z~M4 SUPER RESET 

The primary application of the SUPER RESET command is to 
restore the system to a predetermined condition during and 
following maintenance activities. The SUPER RESET com­
mand is accepted and executed only if the MAINT MODE 
switch on the SCP is in the ON position. Entering a SUPER 
RESET command when the system is not in the maintenance 
mode results in an error message without affecting the 
system. 

If a SUPER RESET command is accepted, all reset signals 
(System, I/O, and BP) are issued. In addition, the ECS 
is reset and initialized, and the basic processor executes 
an initializing routine which clears the contents of the 
Q scratchpad prior to executing a normal reset. 

After a SUPER RESET command is executed, the system 
remains in the IDLE state, and the ECS is automatically 
placed in P-Mode. 

Z~M5 SET MICRO-DIAGNOSTIC LOOP MODE 

This command allows maintenance personnel to repetitively 
loop the micro-diagnostic test of a single system element. 
The operator must ensure that the system is in the IDLE state 
prior to entering this command. 

This mode may be cleared by either a SUPER RESET, 
ZCMM4, or a CLEAR MM FEATURES, ZCMMO, command. 

Z~M6 INITIATE ELEMENT MICRO-DIAGNOSTIC 

This command causes a single element micro-diagnostic test 
1._ L_ :_: .. :_1._..1 t: __ LL ___ 1 __ 1._..1 C: __ I_r"I __ LC .. _ .... __ 1 _____ .. 
IV IJI;; 1I1111UII;;U IVI 1111;; ;)I;;II;;~II;;U .JllIl:::Ill;; .... I~".JIUIV;) 1::11::1111::111, 

even if the system is in Single Clock Mode. The operator 
must ensure that the normal preconditions of micro-diagnostic 
test execution provided in the LOAD NORMAL sequence 
are met. This may be accomplished by the following com­
mand sequence: 

CLEAR SINGLE CLOCK MODE (enables clocks for 
reset) 

SYSTEM HALT (system must be in IDLE state) 

RESET SYSTEM (test must be preceded by a system 
reset) 

SELECT/DISPLAY SINGLE CLOCK STAfUS REGlSrEI{ 

SET SINGLE CLOCK MODE 

INITIATE ELEMENT MICRO-DIAGNOSTIC 

SELECT/DISPLAY SINGLE CLOCK STATUS REGISTER 

SINGLE CLOCK STEP (step-through sequence) 



SET LOW CLOCK MARGINS 

This command causes the system clock frequency to be set 
to low margin. The CLOCK MARGIN indicator (see System 
Control Panel) is illuminated. If high and low clock margins 
are both set, an undefi ned i ntermedi ate frequency resu Its. 

The system clock is restored to a normal frequency by either 
a SUPER RESET, ZCMM4, or a CLEAR MM FEATURES, 
ZCMMO, command. The system clock also assumes the nor­
mal level following power on. 

Z~M8 SET HIGH CLOCK MARGINS 

This command causes the system clock frequency to be set 
to high margin. The CLOCK MARGIN indicator (see Sys­
tem Control Panel) is illuminated. If high and low clock 
margins are both set, an undefined intermediate frequency 
results. 

The system clock is restored to a normal level by either a 
CLEAR MM FEATURES, ZCMMO, command or a SUPER RESET, 
ZCMM4, command. The system clock also assumes the nor­
mal level following power on. 

Z~M9 SET MEMORY INTERLEAVE OVERRIDE 

This command inhibits interleaving all memory units and 
is used primarily when running certain memory diagnostic 
programs. It is allowed only when the system is in the 
maintenance mode. The change in the manner in which 
memory is accessed when i nterl eavi nQ is i nh i bi ted versus 
when i-nterleaving is permitted requires that programs be 
reloaded each time the interleave control is changed. 
Note that the SET MEMORY INTERLEAVE OVERRIDE 
command inhibits interleaving all memory units, whereas 
the INTERLEAVE switches of the Configuration Control 
Panel (described in Chapter 6) inhibit interleaving on an 
individual memory unit basis. The INTERLEAVE DISABLE 
indicator on the SCP is illuminated while INTERLEAVE 
OVERRIDE is in effect. 

The SET MEMORY INTERLEAVE OVERRIDE command re­
mains in effect (interleaving is inhibited) unti I either a 
CLEAR MM FEATURES, ZCMMO, ora SUPER RESET, ZCMM4, 
command is executed. Interleaving is automatically en­
abled following a power on/off cycle. 

Z~MA SET/CLEAR DISPLAY INHIBIT MODE 

This command may be used either to SET DISPLAY INHIBIT 
MODE or to CLEAR DISPLAY INHIBIT MODE. When the 
Display Inhibit Mode is set, all data output associated 
with the System Control Console (SCC) function is in­
hibited; however, data output generated by the software 
is not affected. 

The Display Inhibit Mode is normally set to inhibit print­
out during execution of SCC functions which do not require 
a display. 

The Display Inhibit Mode may be cleared by a CLEAR 
DISPLAY INHIBIT MODE, ZCMMA, a CLEAR MM FEA­
TURES, Zc MMO, or a SUPER RESET, ZC MM4, command. 
The Display Inhibit Mode is automatically cleared follow­
ing power on. 

ZCLDS#### LOAD SPECIAL 

The LOAD SPECIAL command is accepted only if the 
system is in the IDLE state. The LOAD SPECIAL command 
is used in situations where all of the functions performed 
by the LOAD NORMAL command are not desired (e. g., 
in loading a postmortem dump sequence). The LOAD 
SPECIAL command causes only the bootstrap loader program 
to be written into memory without diagnostics or memory 
clearing prior to the load. A II10ad device address II, spec­
ified by the hexadecimal digits 11####11 in the command, is 
stored in Q register X I 1 E'. When using the LOAD SPECIAL 
command, the operator must also enter the SYSTEM RESET 
and SYSTEM RUN commands before loading will commence. 

MEMORY SET 

This command causes all memory to be set to the value con­
tained in the BP internal register Q26(X ' 1A'). The com­
mand may be entered only when' the system is in the 
IDLE state. 

ZCT SET/CLEAR TRANSPARENT TEXT MODE 

This command is used either to SET TRANSPARENT TEXT 
MODE or to CLEAR TRANSPARENT TEXT MODE. When 
the Transparent Text Mode is set, software-driven I/O 
from the System Control Console is inhibited, but all 
SCC FUNCTIONS are processed in the normal manner. 
This feature permits the operator to make marginal notes on 
the console printout for logging purposes. If two different 
control consoles are connected in parallel (i. e., remote 
devi ce is connected as a System Control Consol e), the 
Transparent Text Mode permi ts messages to be exchanged 
between the two devices. If the SCC FUNCTIONS switch 
is in the DISABLE position, input data is passed into the I/O 
system regardless of the status of the Transparent Text Mode. 

The Transparent Text Mode may also be cleared by a SUPER 
RESET I ZC MM4, command. 

SYSTEM CONTROL PANEL 

The System Control Panel contains indicators and controls 
which are used primarily when maintenance and/or diag­
nostic activities are performed. The computer operator 
normally monitors certain indicators (as described below) 
to ascertain conditions within the computer system (e. g. , 
status of pri mary power, status of sense swi tches, status of 
BP, and status of ALARM indicators). 

Control Commands 161 



The controls and indicators of the System Control Panel (see 
Figure 15) are functioanlly described below. 

POWER ON 

This alternate-action switch/indicator controls the appli­
cation of power to the system. The indicator is illuminated 
only when the switch has been depressed and power is being 
applied to the system. 

PRIMARY POWER 

This indicator is illuminated whenever PRIMARY power is 
applied to the system. 

POWER FAULT 

This indicator is illuminated only if an abnormal power 
system condition exists. Maintenance action is required 
when the POWER FAULT indicator is lit. 

MAINTENANCE MODE 

This indicator is illuminated when the computer system is 
placed in the maintenance mode as the result of the MAINT 
MODE switch being in the ON position. 

INTERLEAVE DISABLE 

This indicator is illuminated whenever the two-way inter­
leaving feature of the memory system is inhibited: (See SET 
MEMORY INTERLEAVE OVERRIDE command, under" Main­
tenance Control Commands".) 

I'OIYtRON 

I'ItIMARY POWER 

o 

MOOE/FAULT SfNSE SWITCH 

POWER FAULT 

MAINTENANCE 
MODE 

INTERLEAVE 
DISABLE 

CLOCK POWER 
MARGIN MARGIN 

IDLE RUN 

ALARM 

CLOCK MARGIN 

This indicator is illuminated whenever the system clock 
frequency is above or below the normal value (usually as 
a result of maintenance and/or diagnostic activities; see SET 
LOW CLOCK MARGINS and SET HIGH CLOCK MARGINS 
commands, under "Maintenance Control Commands ll

). 

POWER MARGIN 

This indicator is illuminated whenever any power supply 
within the computer system has its low margin switch set. 

SENSE SWITCH 

These four indicators display the status of the four sense 
switches. Each indicator is appropriately marked (1, 2, 
3, 4) and is illuminated only when the corresponding sense 
switch is on. 

ALARM 

This indicator is illuminated whenever the system Alarm 
flip-flog has been set, signifying that a condition has 
occurred which requires the attention of the operator. This 
visual alarm may also be augmented with an audio alarm 
(see ALARM AUDIO, below). 

IDLE 

This indicator is illuminated whenever the BP operations 
have been interrupted by the ECS. When the system is in 
the IDLE state, the BP wi II fetch and store data or execute 
instructions only upon request from the System Control Con­
sole. The BP states (RUN, WAIT, or HALT) are only de­
fined when the BP is executing instructions. 

BP STATUS ~ ALARM AUDIO see FUNCTIONS REMOTE CHANNEL MAINTNtOOE 

WAIT HALT 0 
Off ~\ H,GH /~~~p EN"', ,SAllE 0" 

,ii'" "{ I /0 

@@ @ @ 

S~~~- ----~IEl~~y-----

111..----------------111 
Figure 15. System Control Panel 

162 Control Commands 



BP STATUS AND NO. 

Th i s group of i ndi cators perm i ts the processor address 
(usually 0) and current internal state (RUN, WAIT, or 
HALT) of the BP to be displayed. While executing in­
structions, the BP is normally in the RUN or WAIT state. 
The HALT state is entered only when an address halt occurs, 
the processor disable is on (see II Operating Procedures and 
Information lr

) or an irrecoverable processor fault occurs. 
When the system is in the IDLE state as a result of power 
on, a ZCHLT command, or a pc command, only the processor 
address is lighted and RUN, WAIT, and HALT indicators 
are extinguished. 

ALARM AUDIO 

This 4-position rotary switch controls the connection and 
volume of a loudspeaker, and also permits all indicators 
(except POWER ON and PRIMARY POWER) on the SCP to 
be tested. When this switch is in the OFF position, the 
loudspeaker is disconnected. Note that this switch does 
not inhibit the ALARM indicator. When this switch is in 
the LOW position, the loudspeaker is connected and the 
volume is set to a low level. When this switch is in the 
HIGH position, the loudspeaker is connected and the 
volume is set to a high level. When this switch is held in 
the LAMP TEST position, all back-lighted indicators should 
illuminate, simultaneously. The switch returns to the 
HIGH position when released. 

SCC FUNCTIONS 

This sWitch controis the functionai capabiiities of the Sys­
tem Control Console(s). When this switch is in the ENABLE 
position, the SCC device(s) may perform the various con­
trol functions attributed to a System Control Console. 
Certain control functions require the system to be in the 
IDLE state while others (as described under "Maintenance 
Control Commands") require the MAINT MODE switch to 
be in the ON position. 

When the SCC FUNCTIONS switch is in the DISABLE 
position, the control functions that may be entered from 
the control console (to interact with operating software) 
are limited to the following: 

1. Operator requested interrupt (ZcI), 

2. Read Sense Switches (ZcSSW), 

3. Set Sense Switches (ZcSS#). 

The operator may lock out potentially disruptive control 
commands when the operating software isrunning by setting 
the SCC FUNCTIONS switch to DISABLE. 

REMOTE CHANNEL 

This 3-position rotary switch controls the manner in which 
the alternate and remote consoles may operate. When this 
switch is in the SCC position, the alternate and remote 

consoles may be connected in parallel with the System 
Control Console and may perform the same control func':" 
tions as the local control device. The remote console also 
requires a manual connection through the RD1 data set. 
Note that any restrictions upon the control functions im­
posed upon the local control device by the SCC FUNC­
TIONS switch being in the DISABLE position also apply 
to both consoles. Either the alternate or remote console 
is selected for input by the AL TSEL switch on the Con­
figuration Control Panel (see Chapter 6). 

When the REMOTE CHANNEL switch is in the OFF position, 
the remote device is disconnected from the ECS at the data 
set (if present). The alternate console functions in the I/o 
mode. 

When this switch is in the I/o position, the alternate and 
remote consoles operate strictly as I/O devices communi­
cating with the computer system via lOP subchannel address 
X'OB'. Only one device is selected for input at a time by 
the ALTSEL switch on the Configuration Control Panel 
(see Chapter 6). 

MAINT MODE 

During normal operations, this switch is placed in the OFF 
position. During maintenance and/or diagnostic activies, 
this switch may be placed in the ON position or momentar­
i Iy held in the RESET position (switch automatically returns 
to the ON position when released). In addition to causing 
the MAINTENANCE MODE indicator to become illumi­
nated when piaced in the ON position, the sWitch aiso en­
ables certain hardware controls and allows their associated 
control commands to be entered from the operator's control 
console (see "Maintenance Control Commands"). This 
interlocking feature prevents inadvertent adverse effects 
upon the current program. 

Caution should be exercised in activating RESET, since 
this position (equivalent to the SCC SUPER RESET com­
mand) causes all components of the system to be reset and 
initialized. 

SELECT DISPLAY 

These nine switches, labeled CCP/SCSR and 0 through 7, 
are used to specify the binary address of anyone of up to 
256 Single Clock Status Registers and up to 32 Configura­
tion Status Registers or Read Direct Mode 9 Status Reg­
isters whose content is to be displayed by the 32 binary 
indicators, labeled 0 through 31. 

When the CCP/SCSR switch is in the SCSR position, 
switches 0 through 3 specify the cluster address and 
switches 4 through 7 specify the element address of the 
Single Clock Status Register whose content is to be 
displayed. 

Control Commands 163 



When the CCP/SCSR switch is in the CCP position and 
switch 0 is in the IrO" position, switches 3 through 7 
specify the binary address of the cabinet whose Read Direct 
Mode 9 Status Register is to be displayed by the 32 panel 
indicators. 

When the CCP/SCSR switch IS In the CCP position and 
switch 0 is in the II 111 position, switches3 through 7 specify 
the binary address of the cabinet whose 16-bit Configura­
tion Status Register is to be displayed by the 16 lower-order 
indicators. 

SINGLE CLOCK ENABLE 

This switch stops all central system clocks in the same 
manner as the ZCCLK command. Activating this switch 
when the basic processor is performing normal data processing 
may have an adverse effect on any active I/O operations. 
To prevent inadvertent activation of this control, it is 
disabled unless the MAINT MODE switch is in the ON 
position. 

SINGLE CLOCK STEP 

This switch is active only when in Single Clock Mode or 
when the Single Clock Enable switch is active. When 
active, this switch causes one system clock to be issued 
each time it is placed in the STEP position. The new 
single clock status, as selected by the MODE and SELECT 
switches, may be monitored via the 32 binary indicators 
on the System Control Panel; no display is generated on the 
System Control Console by activation of the SCP Single 
Clock Step switch. 

OPERATING PROCEDURES AND INFORMATION 

This section contains reference information which may be 
required by either the operator or maintenance/diagnostic 
personnel. 

LOAD OPERA nON DETAILS 

The first executed instruction of the bootstrap program (in 
location X'261

) loads general register 0 with the address of 
the first I/O command doubleword (lOCD). The I/o address 
for the SIO instruction in location X'271 is the 13 low-order 
bits of location X'25 1 (which have been set equal to the load 
una address asaresu!tofthe NORMAL lOAD, ZCLDN####, 
command). During execution of the SIO instruction, gen­
eral register 0 points to locations X'20 ' and X'21 1 as the 
first 10CD for the selected device. This IOCD contains 
an order to the selected peripheral device to read 88 (X '58 1

) 

bytes of data into consecutive memory locations beginning 
at word location X'2A' (byte location X'A8 1

). At the end 

164 Control Commands 

of the Read operation, neither data chaining nor command 
chaining is called for in the 10CD. The Suppress Incorrect 
Length (SIL) flag is set to 1 so that an incorrect length in­
dication will not cause a Transmission Error Halt. After the 
SIO instruction has been executed, the basic processor executes 
a no instruction with the same effective address as the SIO 
instruction. The no instruction is coded to accept only 
condition code data from the lOP. The BCS instruction (in 
location X'29 1

) will cause a branch to X'221 (a LOAD 
IMMEDIATE instruction), if either CCl or CC2 is set to 1. 
Execution of the LOAD IMMEDIATE instruction at X'22' 
loads a count of XI 100291 into general register 1. The fol­
lowing BDR instruction at location X'231 uses this as a 
"delay" count before executing the BCR instruction in lo­
cation X'241, which unconditionally branches to the TIO 
instruction in location X'281. In normal operations, CCl is 
reset to 0 and CC2 remains set to 1 unti I the device can 
accept another SIO instruction. At that time, the next 
instruction is taken from location X'2A'. 

If a Transmission Error or equipment malfunction is detected 
by either the device or the lOP, the lOP instructs the 
device to halt and to initiate an II unusual end" interrupt 
signal (as specified by appropriate flags in the IOCD, de­
scribed in Chapter 4). The II unusual end" interrupt will 
be ignored since all interrupt levels have been Disarmed 
and Disabled by the system reset during the load sequence. 
The device will not accept another SIO while the interrupt 
is pending and the BCS instruction in location X'29 1 will 
continue to branch to location X'221. The correct operator 
action at this point is to repeat the NORMAL LOAD, 
ZCLDN####, command. If there is no I/O address recog­
nition of the load unit, the SIO instruction wi II not cause 
any I/O acti on and CC 1 wi II conti nue to be set to 1 by the 
SIO and no instructions causing the BCS instruction to 
branch. 

FETCHING and STORING DATA 

The following examples illustrate how diagnostic control 
(P-Mode) commands may be used to di splay and al ter the 
contents of specified memory locations ond control reg! sters 
within the system. Control commands, as entered from a 
keyboard device functioning as the System Control Con­
sole, are shown in the first column. The resulting printouts 
are shown in the second column. The third column of in­
formation is an explanation of the functions performed by 
the different control commands. 

Input Printout Function 

pc O:DDDDDDDD @ 80000000 Enter P-Mode of 
operations; contents 
of Q n:gister 0 is 
normally displayed. 

100/ 100/ Select and display 
O:DDDDDDDD @ 00000100 contents of memory 

location X'lOO'. 



Input Pri ntout Function appropriate control information to perform maintenance 
or diagnostic functions, such as halting and resetting the 
basic processor, setting address hold, and activating vari­
ous fault detection controls. During normal operations it 
should not be necessary to access this word. The contents 
of the Processor Control Word are not affected by either 
processor or system reset, but are automatically set to zero 
(default condition) during power-on sequencing and by 
the SUPER RESET command. The bit assignments of the 
Processor Control Word (register Q30) are listed and de­
scribed in Table 23. 

5M 5M 
0:00000005 @ 00000100 

Store X15· into the 
currently selected 
memory location. 

I Increment address 
O:DDDDDDDD @ 00000101 of currently selected 

memory I ocati on and 
display. 

Note that all P-Mode accesses are qualified by address map­
ping bits and Write Lock keys in the Program Status Words. 

ADDRESS COMPARE WORD 

PROCESSOR CONTROL WORD The Address Compare Word is located in register Q31 and 
contains parameters defining the type of comparison and 
the desired action (alarm, halt, or none) on detecting an 
address compare. (See Table 24.) 

The Processor Control Word resides in the processor internal 
addressable register, Q30. This register may be loaded with 

Table 23. Bit Assignments and Description, Processor Control Word, Register Q30 (XI lEI} 

Bit 
Position Description 

0 Retry Inhibit: 

If this hit is a 0, the basic processor will automatically retry the instruction which caused the trap to 
location X'4C '; if this bit is a 1, the basic processor is inhibited from retrying the instruction which 
caused the trap to location X'4C ' • 

1 Parity Check Inhibit: 
11" .... L!_ L!.J.. ! ___ f\ _____ !.L ___ L __ L! ____ £ n ____ !_L __ L _______ L! ____ ! ____ LI_-1. !£ LL!_ L!.L ! __ 1 ___ !L ___ L __ I_! __ 
11 1111;) Uti I;) U v, fJUIIIY '-'11~'-'''''III~ VI 1'1. I~~';)I~I IIUIIO>U'-'"VII;) I;) ~IIU"""~"" .. 1111;) ...... I;) U " PUI,'Y '-'""~'-'''''."'~ 

of R register transactions is inhibited. 

2 Watchdog Timer Override: 

If this bit is a 0, the watchdog timer is allowed to count; if this bit is a 1, the watchdog timer is inhib-
ited from counting and the machine will not execute the Watchdog Timer Trap. 

3 Watchdog Timer Alarm: 

If this bit is a 0, the Watchdog Timer Trap is enabled; if this bit is a 1, the Watchdog Timer Trap is 
inhibited. When a timeout occurs, a system reset is generated and the system will run to timeout 
again. This provides a dynamic loop for isolating the cause of the timeout. 

4-5 Reserved {must be coded as zeros}. 

6 Address Hold: 

If this bit is a 0, the address hold is disabled; if this bit is a 1, the program counter is inhibited from 
counting {incrementing} causing the machine to loop on the selected instruction (i. e., when the machine 
is returned to RUN mode, the instruction pointed to by the program counter is executed continuously). 

7 Processor Ha It: 

If this bit is a 0, the processor is allowed to run under the control of system and P-Mode controls; 
If this bit is a 1, the processor is forced into the HALT condition. 

8-15 Reserved. 

16-31 Load device address. 

Control Commands 165 



Table 24. Bit Assignments, Address Compare Register Q31 (X11 FI) 

Bit 
Position Status Significance 

0 1 Selects mapped address comparison. 

0 Selects unmapped address comparison. 

1 1 Selects address comparison during instruction access only. 

0 Selects address comparison for all memory cycles. 

2 1 Selects comparisons only during memory write cycle. 

0 Selects all memory cycle comparisons. 

3 1 Selects page comparisons. 

0 Selects word comparisons. 

4 1 System turns on audible alarm for 220 microseconds each time an Address Compare occurs 
{maximum frequency 1KHz}. 

0 Address match alarm is disabled. 

5 1 The processor is forced into the HALT state when an Address Compare occurs. 

0 Address Halt disabled. 

6-7 - Reserved. 

8-31 - Comparison address field. 

166 Control Commands 



6. SYSTEM CONFIGURATION CONTROL 

Pooled resources along with flexible configuration control 
provide a high degree of continuous availability. If a 
problem occurs in an individual unit of a resource pool, 
the system may allow that unit to be isolated with a loss 
only in capacity but no loss of functional capability, 
assuming there is an additional unit of that type in the 
system that can absorb the added load. Specialized units 
can be duplicated (with all units being normally used, 
where possible) and configuration controls used to divert 
the input from one to the other in the event of a failure. 

Chapter 2 describes the system organization and Chapter 5 
discusses system operational control. This chapter de­
scribes the Configuration Control Panel (CCP), which serves 
as the principal element for controlling and modifying the 
configuration of the system. 

CONFIGURATION CONTROL PANEL (CCP) 

The CCP provides the capability for enabling and disabling 
units in the system. It accomplishes this with centrally 
located manual selection switches used for the following 
functions: 

1. Establish starting addresses for all memory units in the 
system. 

2. Enable or disable memory ports. 

3. Enable or disable individual units and clusters. 

4. Control the power throughout the system. 

The Configuration Control Panel is mounted within the end­
bell assembly at the end of the row of cabinets containing 
the chassis assemblies for the MUs, BP, and other system 
components. On the outer surface of the endbell assembly 
is the System Control Panel (described and illustrated in 
Chapter 5). Access is gained to the CCP by opening the 
hinged endbell assembly (see Figure 16). 

A CCP has six rows of 22 toggle switches and two lamp in­
dicators each. A row may control a memory unit, processor 
cluster, or system control processor. (See Figure 17, and 
Tables 25 and 26.) The active logic assocIated with each 
row of switches and indicators is located within each pro­
cessor cluster or memory unit itself. Above each row is a 
marker strip that identifies the function of each switch. The 

configuration control is designed in a modular manner. As 
the system grows, previously unused rows on the panel can 
be used (up to the panel IS maximum of six), and an addi­
tional panel may be added. Two panels represent the max­
imum configuration for one endbell assembly. 

Note: The Configuration Control Panel does not contain 
--- operational controls as the System Control Panel 

does. The CCP switches are initially positioned 
during system configuration and are not normally 
reposi ti oned duri ng system operati on. 

CONFIGURATION CONTROL STATUS WORD 

A program may read settings of the panel switches, type of 
unit, and options installed. A READ DIRECT (RD) in­
struction using the chassis address of the cluster or unit 
as an address allows the program to determine the con­
figuration status of a particular processor cluster or memory 
unit, for example. (The chassis address assignment repre­
sents the chassis ' physical location relative to the endbell 
assembly.) (See Figure 16.) 

The configuration control status of a panel read by the 
RD instruction is a 32-bit status word consisting of panel 
switch settings and type information. (The RD instruc-
ti on is descri bed in Chapter 3, .. Control Instructi ons" • ) 
The logic for these program provisions resides in each 
unit. 

In addition to reading configuration status information 
via a READ DIRECT (RD) instruction in a program, the 
status information may also be obtained by manual switch 
selection on the System Control Panel; the 32-bit status 
word is displayed on a bank of lamp indicators. (See 
Chapter 5 for a discussion of the System Control Panel 
features. ) 

CONFIGURATION BUS 

The configuration bus connects to each processor cl uster and 
provides a path for the system control processor to select and 
read the switch settings on the CCP for the selected unit via 
an RD instruction. 

System Configuration Control 167 



System Control Panel (SCP) Address 00101 t 

Endbell Assembly Identity Tag 

Chassis B Chassis A Chassis B Chassis A Chassis B Chassis A 

Cabinet 1 Cabinet 2 Cabinet 3 

Direction of System Expansion ----... ~ 

Configuration Control Panel (CCP) 

(Viewed from Module Side) 

tStarting from the endbell as cabinet number 0, the most significant four bits designate physical cabinet number. 
The least significant bit designates the back panel location in the halves of the cabinet. 

POWER POWER SYSTEM CLOCK 
NNORM ON SEL S EL 

Figure 16. Chassis Physical Configuration 

PROCESSOR 
I ADDRESS -, BP MIOP DIO 

ENABLE ENABLE ENABLE 
,-F5EL --, 

AL TSEL FSELA 80 BI 

,------ REAL TIME CLOCK 5EL-----, 

r RTCl --, 
50 51 

,RTC2 --, rRTC3--, 
so 51 50 SI 

r 5TC-, 
50 51 

MeeOOOOOOOOOOOOOOOOOOOOOO 

POWER POWER SYSTEM CLOCK 
.-----PORT ENABlE ----, ~STARTING ADDRESS ------, 

NNORM ON SEL 5EL INTLV 512 513 SI4 SIS 516 517 518 

MUle eOOOOOOOOOOOOOOOOOOOOOO 

• Indicator 

o Switch 

Figure 17. Sample Rows of CCP Switches 

168 Configuration Control Panel (CCP) 



Label 

POWER 
NNORM 

POWER 
ON 

SYSTEM 
SEL 

CLOCK 
SEL 

PROCESSOR 
ADDRESS 

BP 
ENABLE 

MIOP 
ENABLE 

DIO 
ENABLE 

ALTSEL 

FSELA 

FSELBO/FSELBl 

Table 25. Functions of Processor Cluster Configuration Control Panel Row 

Switch/Indicator 

1 indicator 

1 switch 

1 switch 

1 switch 

3 switches 

1 switch 

1 switch 

1 switch 

1 switch 

1 switch 

2 switches 

Function 

Lighted when unit power is shut down due to abnormal operational 
condition. 

When in up or middle position, enables power-on control in the 
unit power supply. (Middle position inhibits the unit reset signal.) 
When in down position, power to unit is off. 

Selects the processor bus to which the processor cluster is to be 
connected (up is processor bus A, down is B). 

Selects the clock source (up, A or down, B) for the unit clock 
subsystem. 

Establishes the logical address of the cluster within a group of 
proc essor clusters. 

Note: The 5-bit chassis location number and not the processor 
address is used in addressing the configuration switches for 
a given unit by the RD instruction directed to the Con­
figuration Control Panel. 

When in down position, inhibits the BP from operating on the 
internal bus. 

When in down position, inhibits the MIOP from operating on the 
i nterna I bus. 

When in down position, inhibits external DIO interface. 

Selects either the remote console (down position) or alternate 
operator1s console (up position) to enter data on the Remote 
Channel Interface. 

Selects communications frequency for the primary operator1s 
console as follows: 

up = same frequency as remote channel 

down = 1200 baud 

Note: The 1200 baud selection is effective only if the REMOTE 
CHANNEL switch on the System Control Panel is not in 
the SCC posi ti on. 

Selects communications frequency for the alternate operator1s 
console and the Remote Diagnostic Interface (Remote Channel) as 
follows: 

BO B1 Rate (baud) - -

0 0 110 

0 1 1200 

1 0 unspecified 

1 1 300 

Configuration Control Panel (CCP) 169 



Table 25. Functions of Processor Cluster Configuration Control Panel Row (cont.) 

Label I Swi tch/Indi cator Function 

REAL-TIME CLOCK SEL 8 switches Four groups (labeled RTC1, RTC2, RTC3, and STC) of 2 switches 
each (labeled SO and S 1), used for selecting the real-time clock 
frequencies; each of the three real-time clock counters and the one 
subjective clock counter may have their frequencies selected by the 
proper combination of the two switches associated with each counter: 

SO Sl Frequency (Hz) - -
0 0 500 

0 1 External real-time clock source 

1 0 2000 

1 1 Power line 

Table 26. Functions of Memory Unit Configuration Control Panel Row 

Label 

POWER 
NNORM 

POWER 
ON 

SYSTEM 
SEL 

CLOCK 
SEL 

UNIT 
ADDRESS 

PORT ENABLE 

INTLV 

Switch/Indicator 

1 indicator 

1 switch 

1 switch 

1 switch 

3 switches 

6 switches 

1 switch 

170 Configuration Control Panel (CCP) 

Function 

Lighted when unit power is shut down due to abnormal operational 
condition. 

When in up or middle position, enables power-on control in the 
unit power supply. (Middle position inhibits the unit reset signal.) 
When in down position, power to unit is off. 

Determines to which central shared resources the reset signal is 
connected. 

Selects which clock the memory shall use; up position selects system 
clock A, down position selects system clock B. 

Establishes the logical address of the unit within a group of memory 
units. 

Down position disables, up enables, corresponding port when setting 
up different configuration in the system. Switch 1 (leftmost) cor­
responds to port 1, etc., and swi tch 6 corresponds to port 6. 

Up position selects interleave addressing mode in each memory unit; 
down position means no interleaving in any memory unit. Only 
two-way interleaving is allowed. The unit interleaved with this 
memory unit must have its interleave switch on and be in the appro­
priate addressing range. The interleave logic operates only for 
memory units with a number corresponding to a power of 2: i. e. , 
16K, 32K words; if other than a power of 2, the interleave signal 
it receives is ignored. Interleaving is permissible only: 

1. Between two memory units of the same size. 

2. Provided the two memory units cover an addressing range that 
is continuous and starts at a multiple of the size of the two 
memory units taken together. 



Label 

STARTING ADDRESS 

Table 26. Functions of Memory Unit Configuration Control Panel Row (cont.) 

Switch/Indicator 

7 switches 

Function 

Used to set the starting addresses of the memory units. From left to 
right the switches are labeled S12, S13, S14, S15, S16, S17, and 
S 18. Using the switches as a 7-position binary field, this allows 
memory to address up to 1 mi Ilion words. 

When the memory system comprises memory units of different sizes, 
some precautions are necessary to prevent false address recognition 
as well as to prevent gaps in the memory range. 

1. If all memory units have sizes that are powers of two, they can 
all be different; they must, however, be assigned in order of 
decreasing size in the address continuum. 

For instance, three memory units can be used in this manner: 

Memory Unit No. Size -- Address Range 

1 64K words o to 64K words 

2 32K words 64 to 96K words 

3 16K words 96 to 112K words 

2. If a memory unit has a size that is not a power of two, it must 
be situated in a memory system that satisfies the following 
rules: 

a. All other memory units must have sizes that are a power 
of two. 

b. The starting address of the non-power-of-two unit must be 
a multiple of the next power of two above the size of that 
unit. 

c. The memory unit whose size is not a power of two must be 
at the upper end of the address range. 

Configuration Control Panel (CCP) 171 





APPENDIX A. REFERENCE TABLES 

This appendix contains the following reference material: 

Title 

Standard Symbo Is and Codes 

Standard 8-Bit Computer Codes (EBCDIC) 

Standard 7-Bit Communication Codes (ANSCII) 

Standard Symbol-Code Correspondences 

Hexadecimal Arithmetic 

Addition Table 
Multiplication Table 
Table of Powers of Sixteen 10 
Table of Powers of Ten16 

Hexadecimal-Decimal Integer Conversion Table 

Hexadecimal-Decimal Fraction Conversion Table 

Table of Powers of Two 

Mathematical Constants 

STANDARD SYMBOLS AND CODES 
The symbol and code standards described in this publ ication 
are applicable to all Xerox computer products, both hard­
ware and software. They may be expanded or altered from 
time to time to meet changing requirements. 

The symbols listed here include two types: graphic symbols 
and control characters. Graphic symbols are displayable 
and printable; control characters are not. Hybrids are SP, 
the symbol for a blank space; and DEL, the delete code, 
which is not considered a control command. 

Three types of code are shown: (1) the 8-bit Xerox Standard 
Computer Code, i.e., the Extended Binary-Coded-Decimal 
Interchange Code (EBCDIC); (2) the 7-bit American National 
Standard Code for Information Interchange (ANSCII); and 
(3) the Xerox standard card code. 

STANDARD CHARACTER SETS 

1. EBCDIC 

57-character set: uppercase letters, numerals, space, 
and & / < > ( ) + I $ * 

% # @ 

63-character set: same as above plus i 
II 

89-character set: same as 63-character set pi us 
I owercasel etters 

2. ANSCII 

? 

64-character set: uppercase letters, numerals, space, 
and "! $ % & () * + , 

/ \ < >? @ [] 
A # 

95-character set: same as above plus lowercase letters 
and { } 

CONTROL CODES 

In addition to the standard character sets I isted above, the 
symbol repertoire includes 37 control codes and the hybrid 
code DEi.. (hybrid code SP is considered part of aii charac­
ter sets). These are I isted in the table titled Standard 
Symbo I-Code Correspondences. 

SPECIAL CODE PROPERTIES 
The following two properties of all standard codes wi" be 
retained for future standard code extensions: 

1. All control codes, and onl y the control codes, have 
their two high-order bits equal to 1100". DEL is not 
considered a control code. 

2. No two graphic EBCDIC codes have their seven low­
order bits equal. 

Appendix A 173 



Hexodecimol .0 1 

Binary 000.0 0001 

.0 0000 NUL OLE 

1 .0001 SOH DCI 

2 0010 STX DC2 

3 0011 ETX DC3 

4 .0100 EaT DC4 

~L 
I'~ 

5 .0101 HT 

I~ 6 .011.0 ACK SYN 

S 7 Dill BEL ETB 

~ 8 1000 EOMIr 
BS 1\-, 

I~ 
9 1001 ENQ EM 

~ 
A 1.010 INAK SUB 

B 1.011 VT ESC 

C 1100 FF FS 

0 11.01 CR GS 

E 111.0 SO RS 

F 1111 SI US 
, 

3 

Decimal 
.0 1 

"rows) (col's.)-

I Binary 
1 

xOOD xOOI 

.0 0000 NUL OLE 

1 0001 SOH DCl 

2 .0.01.0 STX DC2 

3 0011 ETX DC3 

4 .0100 EaT DC4 

5 .0101 ENQ NAK 

'0, 
0 6 .011.0 ACK SYN 

C 
a 7 .0111 BEL ETB u 

'c 8 1000 BS CAN OJ 
Vi 

0 9 1001 HT EM 
QI 

....J LF 
10 1.010 SUB 

Nl 

11 1.011 VT ESC 

12 1100 FF FS 

13 11.01 CR GS 

14 111.0 SO RS 

15 1111 SI US 
, 

174 Appendix A 

STANDARD 8-BIT COMPUTER CODES (EBCDIC) 

Most C" .,. Digits 

2 3 4 5 6 7 8 9 A B C 0 E F 

0010 .0.011 .01.0.0 iQ101 .0110 .0111 
1
1000 1001 1.010 1.011 1100 11.01 111.0 1111 

ds SP & - ~ .0 

ss ~~ ~ / ~ a j \1 A J 1 

fs ~~ ~ W ~ b k s 11 B K S 2 

si ~~ ~ ~ ~ c I t ~ 1 C L T 3 

~~ ~ ~ ~ d m u [ 1 0 M U 4 

;"" "" "~!;~;d' ] 1 e n v E N V 5 

@ ~ f 0 w F a w 6 
'/. '/// 
'// '// '/// 

~ ~ r/0Z W/ g p x G P X 7 

~ ~ ~ ~ h q Y H Q Y 8 

~ ~ ~ ~ i r z I R Z 9 

1-2 ! 
1 

: ~ ~ ~ ~ 
S , ~ ~ ~ ~ 

< * % @ 
'{/// '//// "~i! ~ 

~"""."" ,n/e/d/~ 
( ) I ~ ~ ~ ~ -
+ i > = ~ ~ ~ ~ 

2 ,2 ? II ~ ~ ~ DEL 
, 

STANDARD 7 -BIT COMMUNICATION CODES (ANSCII) 1 

NOTES: 

The characters ,.. \ t ~ [] are ANSCll 
characters that do not appear in any of the 
EBCDIC-based character sets, though they 
are shown in the EBCDIC table. 

The characters ~ I-.appear in the 63- and 
89-character EBCDIC sets but not in either 
of the ANSCIl-based sets. However, Xerox 
software translates the characters 
into ANSCII characters as follows: 

EBCDIC 

l­
I 

ANSCII 

\ (6-0) 

: (7-12) 

- (7-14) 

The EBCDIC control codes in columns .0 
and 1 and their binary representation are 
exactly the same as those in the ANSCll 
table, except for two interchanges: IF /NL 
with NAK, and HT with ENQ. 

4 Characters enclosed in heavy lines are 
included only in the standard 63- and 
89-character EBCDIC sets. 

These characters are included only in the 
standard 89-character EBCDIC set. 

Most Significant Digits 

2 3 4 

xQ1D xDll xl00 

SP .0 @ 

I 5 1 A 

II 2 B 

, 3 C 

S 4 0 

% 5 E 

& 6 F 

I 7 G 

( 8 H 

) 9 I 

* : J 

+ i K 

; < L 

- = M 

> N 

/ ? a 

1\ 

5 6 

x101 xllQ 

P \ 

Q a 

R b 

S c 

T d 

U e 

V f 

W g 

X h 

Y i 

Z j 

[ k 

\ I 

] m 

~" n 

" '0 -. 

7 

xll1 

P 

q 

r 

s 

t 

u 

v 

w 

x 

Y 

z 

1 
I 
I 

~ 

" -
DEL 

, 

1 Most signifioont bit, odded for 8-bit format, is either .0 or even parity. 

Columns .0-1 are control codes. 

Columns 2-5 correspond to the 64-character ANSCII set. 
Columns 2-7 correspond to the 95-character ANSCII set. 

On many current teletypes, the symbol 

is (5-i4i 

is (5-15) 

is ESC or ALTMODE control (7-14) 

and none of the symbols appearing in columns 6-7 are provided. Except for the three 
symbol differences noted above, therefore, such teletypes provide all the characters in 
the 64-character ANSCII set. (The Xerox 7.015 Remote Keybaard Printer provides the 
64-character ANSCII set also, but prints A as 1\.) 



STANDARD SYMBOL-CODE CORRESPONDENCES 

EBCDICt 
ANScntt 

Hex. Dec. Symbol Card Code Meaning Remarks 

00 0 NUL 12-0-9-8-1 0-0 null 00 thro~h 23 and 2F are control codes. 
01 1 SOH 12-9-1 0-1 start of header 
02 2 STX 12-9-2 0-2 start of text 
03 3 ETX 12-9-3 0-3 end of text 
04 4 EOT 12-9-4 0-4 end of transmission 
05 5 HT 12-9-5 0-9 horizontal tab 
06 6 ACK 12-9-6 0-6 acknowledge (positive) 
07 7 BEL 12-9-7 0-7 bell 
08 8 BSorEOM 12-9-8 0-8 backspace or end of message 
09 9 ENQ 12-9-8-1 0-5 enquiry 
OA 10 NAK 12-9-8-2 1-5 negative acknowledge 
OB 11 VT 12-9-8-3 0-11 vertical tab 
OC 12 FF 12-9-8-4 0-12 fonn feed 
OD 13 CR 12-9-8-5 0-13 carriage return 
OE 14 SO 12-9-8-6 0-14 shift out 
OF 15 SI 12-9-8-7 0-15 shift in 

10 16 DLE 12-11-9-8-1 1-0 data link escape 
11 17 DCl 11-9-1 1-1 device control 1 
12 18 DC2 11-9-2 1-2 device control 2 
13 19 DC3 11-9-3 1-3 device control 3 
14 20 DC4 11-9-4 1-4 device control 4 
15 21 LF or NL 11-9-5 0-10 line feed or new line 
16 22 SYN 11-9-6 1-6 sync 
17 23 ETB 11-9-7 1-7 end of transmission block 
18 24 CAN 11-9-8 1-8 cancel 
19 25 EM 11-9-8-1 1-9 end of medium 
lA 26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error. 
lB 27 ESC 11-9-8-3 1-11 escape 
1C 28 FS 11-9-8-4 1-12 fi Ie separator 
lD 29 GS 11-9-8-5 1-13 group separator 
IE 30 RS 11-9-8-6 1-14 record separator 
IF 31 US 11-9-8-7 1-15 unit separator 

20 32 ds 11-0-9-8-1 digit selector 20 through 23 are used with 
21 33 ~~ 0-9- ~ ... :--:&:----- -"---j, E:I"\TT DVTE: ('TDT"I~ IE:D(,\ 

oiII.~t" •• --•• -'W OIIIIYI. ......... a ......... ..,In.al ... "" , ... ..,. .... , 

22 34 fs 0-9-2 field separation instruction - not input/output con-
23 35 si 0-9-3 immediate significance start trol codes. 
24 36 0-9-4 24 through 2E are unassigned. 
25 37 0-9-5 
26 38 0-9-6 
27 39 0-9-7 
28 40 0-9-8 
29 41 0-9-8-1 
2A 42 0-9-8-2 
2B 43 0-9-8-3 
2C 44 0-9-8-4 
2D 45 0-9-8-5 
2E 46 0-9-8-6 
2F 47 0-9-8-7 

30 48 12-11-0-9-8-1 30 through 3F are unassigned. 
31 49 9-1 
32 50 9-2 
33 51 9-3 
34 52 9-4 
35 53 9-5 
36 54 9-6 
37 55 9-7 
38 56 9-8 
39 57 9-8-1 
3A 58 9-8-2 
3B 59 9-8-3 
3C 60 9-8-4 
3D 61 9-8-5 
3E 62 9-8-6 
3F 63 9-8-7 

tHexadecimal and decimal notation. 

ttDecimal notation {column-row}. 

Appendix A 175 



STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

E8CDlCt Symbol Card Code ANscntt 
Meaning Remarks 

Hex. Dec. 

40 64 SP blank 2-0 blank 
41 65 12-0-9-1 41 through 49 wi II not be assigned. 
42 66 12-0-9-2 
43 67 12-0-9-3 
44 68 12-0-9-4 
45 69 12-0-9-5 
46 70 12-0-9-6 
47 71 12-0-9-7 
48 72 12-0-9-8 
49 73 12-8-1 
4A 74 i or ' 12-8-2 6-0 cent or accent grave Accent grave used for left single 
48 75 12-8-3 2-14 period quote. 
4C 76 < 12-8-4 3-12 less tban 
4D 77 ( 12-8-5 2-8 left parenthesis 
4E 78 + 12-8-6 2-11 plus 
4F 79 I or I 12-8-7 7-12 vertical bar or broken bar I 

50 80 & 12 2-6 ampersand 
51 81 12-11-9-1 51 through 59 wi II not be assigned. 
52 82 12-11-9-2 
53 83 12-11-9-3 
54 84 12-11-9-4 
55 85 12-11-9-5 
56 86 12-11-9-6 
57 87 12-11-9-7 
58 88 12-11-9-8 
59 89 11-8-1 
SA 90 ! 11-8-2 2-1 exclamation point 
58 91 S 11-8-3 2-4 dollars 
5C 92 * 11-8-4 2-10 asterisk 
5D 93 ) 11-8-5 2-9 right parenthesis 
5E 94 ; 11-8-6 3-11 semicolon 
SF 95 - or ...., 11-8-7 ~7-14 tilde or logical not 

60 96 - 11 2-13 minus, dash, hyphen 
61 97 / 0-1 2-15 slash 
62 98 11-0-9-2 62 through 69 will not be assigned. 
63 99 11-0-9-3 
64 100 11-0-9-4 
65 101 11-0-9-5 
66 102 11-0-9-6 
67 103 11-0-9-7 
68 104 11-0-9-8 
69 105 0-8-1 
6A 106 ..... 12-11 5-14 circumflex On Model 7015 -.. is" (caret) . 
68 107 , 0-8-3 2-12 comma 
6C we % 0-8-4 2-5 percent 

6D 109 - 0-8-5 5-15 underline Underline is sometimes called "break 
6E 110 > 0-8-6 3-14 greater than character"; may be printed along 
6F 111 ? 0-8-7 3-15 question mark bottom of character line. 

70 112 12-11-0 70 through 79 will not be assigned. 
71 113 12-11-0-9-1 
72 114 12-11-0-9-2 
73 115 12-11-0-9-3 
74 116 12-11-0-9-4 
75 117 12-11-0-9-5 
76 118 12-11-0-9-6 
77 119 12-11-0-9-7 
78 120 12-11-0-9-8 
79 121 8-1 
7A 122 8-2 3-10 colon 
78 123 # 8-3 2-3 number 
7C 124 @ 8-4 4-0 at 

I 
7D 125 I 8-5 2-7 apostrophe (right single quote) 
7E 126 = 8-6 3-13 equals 
7F 127 " 8":'7 2-2 quotation mark 

tHexadecimal and decimal notation. 

ttDecimal notation (column-row). 

176 Appendix A 



STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

EBCDICt 

Hex. Dec. Symbol Card Code ANSelltt Meaning Remarks 

80 128 12-0-8-1 80 is u'lassigned. 
81 129 a 12-0-1 6-1 81-89, "91-99, A2-A9 comprise the 
82 130 b 12-0-2 6-2 lowercase alphabet. Available 
83 131 c 12-0-3 6-3 only in standard 89- and 95-

84 132 d 12-0-4 6-4 character sets. 
85 133 e 12-0-5 6-5 
86 134 f 12-0-6 6-6 
87 135 g 12-0-7 6-7 
88 136 h 12-0-8 6-S 
89 137 i 12-0-9 6-9 
8A 138 12-0-8-2 SA through 90 are unassigned. 
88 139 12-0-8-3 
8C 140 12-O-S-4 
80 141 12-0-8-5 
8E 142 12-0-8-6 
8F 143 12-0-8-7 

90 144 12-11-8-1 
91 145 j 12-11-1 6-10 
92 146 k 12-11-2 6-11 
93 147 I 12-11-3 6-12 
94 148 !TI 12-11-4 6-13 
95 149 n 12-11-5 6-14 
96 150 0 12-11-6 6-15 
97 151 p 12-11-7 7-0 
98 152 q 12-11-8 7-1 
99 153 r 12-11-9 7-2 
9A 154 12-11-8-2 9A through Al are unassigned. 
9B 155 12-11-8-3 
9C 156 12-11-8-4 
9D 157 12-11-8-5 
9E 158 12-11-8-6 
9F 159 12-11-8-7 

AO 160 11-0-8-1 
A1 11.1 11-0-1 
A2 162 s 11-0-2 7-3 
A3 163 t 11-0-3 7-4 
A4 164 u 11-0-4 7-5 
A5 165 v 11-0-5 7-6 
A6 166 w 11-0-6 7-7 
A7 167 x 11-0-7 7-8 
A8 168 y 11-0-8 7-9 
A9 169 z 11-0-9 7-10 
AA 170 11-0-8-2 AA through BO are unassigned. 
AB 171 11-0-8-3 
AC 172 11-0-8-4 
AD 173 11-0-8-5 
AE 174 11-0-8-6 
AF 175 11-0-8-7 

BO 176 12-11-0-8-1 
Bl 177 \ 12-11-0-1 5-12 backs lash 
B2 178 t 12-11-0-2 7-11 left brace 
B3 179 ~ 12-11-0-3 7-13 right brace 
B4 180 [ 12-11-0-4 5-11 left bracket 
B5 181 ] 12-11-0-5 5-13 right bracket 
B6 182 12-11-0-6 B6 through BF are unassigned. 
B7 183 12-11-0-7 
B8 184 12-11-0-8 
B9 185 12-11-0-9 
BA 186 12-11-0-8-2 
BB 187 12-11-0-8-3 
BC 188 12-11-0-8-4 

I 
8D 189 12-11-0-8-5 
BE 190 12-11-0-8-6 
SF 191 12-11-0-8-7 

tHexadecimal and decimal notation. 

tt Decimal notation (column-row). 

Appendix A 177 



STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

EBCDICt SY!""bol Card Code ANscntt Meaning Remarks Hex. Dec. 

CO 192 12-0 CO is unassigned. 
Cl 193 A 12-1 4-1 Cl-C9, Dl-D9, E2-E9 comprise the 
C2 194 B 12-2 4-2 uppercase alphabet. 
C3 195 C 12-3 4-3 
C4 196 D 12-4 4-4 
C5 197 E 12-5 4-5 
C6 198 F 12-6 4-6 
C7 199 G 12-7 4-7 
C8 200 H 12-8 4-8 
C9 201 I 12-9 4-9 
CA 202 12-0-9-8-2 CA through CF will not be assigned. 
CB 203 12-0-9-8-3 
CC 204 12-0-9-8-4 
CD 205 12-0-9-8-5 
CE 206 12-0-9-8-6 
CF 207 12-0-9-8-7 

DO 208 11-0 DO is unassigned. 
Dl 209 J 11-1 4-10 
D2 210 K 11-2 4-11 
D3 211 l 11-3 4-12 
D4 212 M 11-4 4-13 
D5 213 N 11-5 4-14 
D6 214 0 11-6 4-15 
D7 215 P 11-7 5-0 
D8 216 Q 11-8 5-1 
D9 217 R 11-9 5-2 
DA 218 12-11-9-8-2 DA through DF will not be assigned. 
DB 219 12-11-9-8-3 
DC 220 12-11-9-8-4 
DD 221 12-11-9-8-5 
DE 222 12-11-9-8-6 
DF 223 12-11-9-8-7 

EO 224 0-8-2 EO, El are unassigned. 
El 225 11-0-9-1 
E2 226 S 0-2 5-3 
E3 227 T 0-3 5-4 
E4 228 U 0-4 5-5 
E5 229 V 0-5 5-6 
E6 230 W 0-6 5-7 
E7 231 X 0-7 5-8 
E8 232 y 0-8 5-9 
E9 233 Z 0-9 5-10 
EA 234 11-0-9-8-2 EA through EF will not be assigned. 
EB 235 11-0-9-8-3 
EC 236 11-0-9-8-4 
ED 237 11-0-9-8-5 
EE 238 ii-O-9-8-6 
EF 239 11-0-9-8-7 

FO 240 0 0 3-0 
Fl 241 1 1 3-1 
F2 242 2 2 3-2 
F3 243 3 3 3-3 
F4 244 4 4 3-4 
F5 245 5 5 3-5 
F6 246 6 6 3-6 
F7 247 7 7 3-7 
F8 248 8 8 3-8 
F9 249 9 9 3-9 
FA 250 12-11-0-9-8-2 FA through FE will not be assigned. 
FB 251 12-11-0-9-8-3 
FC 252 12-11-0-9-8-4 
FD 253 12-11-0-9-8-5 
FE 254 12-11-0-9-8-6 
FF 255 DEL 12-11-0-9-8-7 delete Special - neither graphic nor con-

trol symbol. 

tHexadecimal and decimal notation. 

ttDecimal notation (column-row). 

178 Appendix A 



HEXADECIMAL ARITHMETIC 

ADDITION TABLE 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

1 02 03 04 05 06 07 08 09 OA OS OC OD OE OF 10 

2 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 

3 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 

4 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 

5 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 

6 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 

7 08 09 OA 08 OC OD OE OF 10 11 12 13 14 15 16 

8 09 OA 08 OC OD OE OF 10 11 12 13 14 15 16 17 

9 OA 08 OC OD OE OF 10 11 12 13 14 15 16 17 18 

A OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19 

B OC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 

C OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 

D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 

E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 

F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 

MULTIPLICATION TABLE 

1 2 3 4 5 6 7 8 9 A B C D E F 

2 04 06 08 OA OC OE 10 12 14 16 18 1A 1C 1E 

3 06 09 OC OF 12 15 18 1B 1E 21 24 27 2A 2D 

4 08 OC 10 14 18 1C 20 24 28 2C 30 34 38 3C 

5 OA OF 14 19 1E 23 28 2D 32 37 3C 41 46 4B 

6 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 

7 OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 

9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 84 

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 

E lC 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 

F lE 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 El 

Appendix A 179 



16 

256 

4 Cfi6 

65 536 

1 048 576 

16 777 216 

268 435 456 

4 294 967 296 

68 719 476 736 

1 Cfi9 511 627 776 

17 592 186 044 416 

281 474 976 710 656 

4 503 599 627 370 496 

72 057 594 037 927 936 

1 152 921 504 606 846 976 

3 

23 

163 

OEO 

8AC7 

180 Appendix A 

2 

17 

E8 

918 

5AF3 

807E 

86F2 

4578 

B6B3 

2304 

A 

64 

3E8 

2710 

86AO 

F 4240 

98 9680 

5F5 El00 

3B9A CAOO 

540B E400 

4876 E800 

04A5 1000 

4E72 AOOO 

107A 4000 

A4C6 8000 

6FCl 0000 

508A 0000 

A764 0000 

89E8 0000 

TABLE OF POWERS OF SIXTEEN II 

n 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.10000 00000 00000 00000 x 10 

0.62500 00000 00000 00000 x 10- 1 

0.39062 50000 00000 00000 x 10-
2 

0.24414 06250 00000 00000 x 10-3 

0.15258 78906 25000 00000 x 10-
4 

0.95367 43164 06250 00000 x 10-
6 

0.59604 64477 53906 25000 x 10-
7 

0.37252 90298 46191 40625 x 10-8 

0.23283 06436 53869 62891 x 10-
9 

0.14551 91522' 83668 51807 x 10-10 

0.90949 47017 72928 23792 x 10-
12 

0.56843 41886 08080 14870 x 10-
13 

0.35527 13678 80050 09294 x 10-
14 

0.22204 46049 25031 30808 x 10-
15 

0.13877 78780 78144 56755 x 10-
16 

0.86736 17379 88403 54721 x 10-
18 

TABLE OF POWERS OF TEN 1& 

o lnOOO 0000 0000 0000 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0.1999 

0.28F5 

0.4 1 89 

0.680B 

0.A7C5 

0.10C6 

0.1 A07 

0.2 AF 3 

0.44B 8 

0.6 OF 3 

O.AFE B 

0.1197 

0.1 C2 5 

9999 

C28F 

374B 

8BAC 

AC47 

9999 

5C28 

C6A7 

710C 

1B47 

F7 AO B5E 0 

F29 A BCAF 

10C4 61 18 

2FAO 9B5A 

7F67 5EF6 

FFOB CB24 

9981 2 DE A 

C268 4976 

0.2 DO 9 370 0 425 7 

0.4 80 E BE 7 B 9058 

0.734A CA5 f 6226 

0.B877 AA32 36A4 

0.1272 

0.1083 

5001 

C94F 

0243 

B602 

999A 

F5C3 x 

EF9E x 

B296 x 

8423 x 

8037 x 

4858 x 

73BF x 

52CC x 

EAOF x 

AAFF x 

1 1 19 x 

81C2 x 

3604 x 

5660 x 

FOAE x 

B449 x 

ABA1 x 

AC35 x 

16-1 

16-2 

16-3 

16-4 

16-4 

_ti 
16 -

16-6 

16-7 

16-8 

16-9 

16-9 

16- 10 

16 -11 

16- 12 

16- 13 

16- 14 

16- 14 

16- 15 



HEXADECRAL-DECIMAL INTEGER CONVERSION TABLE 

The table below provides for direct conversions between hexa- Hexadecimal fractions may be converted to decimal fractions 
decimal integers in the range O-FFF and decimal integers in as follows: 
the range 0-4095. For conversion of larger integers, the 
table values may be added to the following figures: 1. Express the hexadecimal fraction as an integer times 

16 -n, where n is the number of significant hexadecimal 
Hexadecimal Decimal Hexadecima I Decimal places to the right of the hexadecimal point. 

01 000 4096 20000 131 072 O. CA9BF3 16 = CA9 BF316 x 16-6 
02000 8 192 30000 196608 
03000 12288 40000 262 144 2. Find the decimal equivalent of the hexadecimal integer 
04 000 16384 50000 3276SO 
05 000 20480 60000 393216 CA9 BF3

16 
= 13 278 195

10 
06 000 24576 70000 458752 
07000 28672 SO 000 524288 3. Multiply the decimal equivalent by 16-n 

08000 32768 90 000 589824 
09000 36 864 AOooo 655 360 13278 195 
OA 000 40960 SO 000 720896 x 596 046 448 x 10-16 

OB 000 45056 CO 000 786 432 0.79144209610 oe 000 49 152 00000 851 968 
OD 000 53248 EO 000 917 504 Decimal fractions may be converted to hexadecimal fractions 
OE 000 57344 FO 000 983040 by successively multiplying the decimal fraction by 16 10. 
OF 000 61 440 100 000 1 048576 After each multiplication, the integer portion is removeCl to 
10000 65536 200000 2097 152 form a hexadecimal fraction by bui Iding to the right of the 
11 000 69632 300 000 3 145728 hexadecimal point. However, since decimal arithmetic is 
12000 73728 400 000 4 194304 used in this conversion, the integer portion of each product 
13000 77824 500000 52428SO must be converted to hexadecimal numbers. 
14 000 81920 600000 6 291 456 
15000 86 016 700 000 7340032 Example: Convert 0.89510 to its hexadecimal equivalent 
16000 90 112 800 000 8388 608 

0.895 17000 94208 900000 9437 184 
18000 98304 AOO 000 10 485 760 

16 

J ~ 
19000 102400 BOO 000 11 534 336 
lA 000 106 496 COO 000 12582 912 

@.120 IB 000 110592 DOO 000 13631 488 

;;;==-~ lC 000 114688 Eoo 000 14 6SO 064 
ID 000 118784 Foo 000 15 728640 
lE 000 122880 1 000 000 16777216 

0.E51 E16 • @.71~ IF 000 126 976 2000 000 33554432 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 
OBO 0176 0177 0178 0179 01SO 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 

oeo 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 
ODO 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 

Appendix A 181 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A 8 C D E F 

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
180 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
lDO 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
lFO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
280 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 099() 0991 
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

182 Appendix A 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
4BO 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5BO 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

Appendix A 183 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 -3 4 5 6 7 8 9 A 8 C D E F 

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
SAO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

.-

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9DO 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

184 Appendix A 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
AlO 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
ClO 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 

COO 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

Appendix A 185 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

000 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
020 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
050 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
060 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
070 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
090 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
OAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
OBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

OCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
000 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
OEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
OFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
ElO 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

f-------- ~ -,--

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FOO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

186 Appendix A 



HEXADECIMAL·DECIMAL FRACTION CONVERSION TABLE 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 000000 .00000 00000 .40 00 00 00 .25000 00000 .80 000000 .50000 00000 .co 000000 .75000 00000 

.01 000000 .00390 62500 .41 000000 .25390 62500 .81 00 00 00 .50390 62500 .C1 000000 .75390 62500 

.02 000000 .00781 25000 .42 00 00 00 .25781 25000 .82 000000 .50781 25000 .C2 00 00 00 .75781 25000 

.03 000000 .01171 87500 .43 000000 .26171 87500 .83 00 00 00 .51171 87500 .C3 00 00 00 .76171 87500 

.04 000000 .0156250000 .44 000000 .26562 50000 .84 00 00 00 .5156250000 .C4 00 00 00 .7656250000 

.05 000000 .01953 12500 .45 00 00 00 .26953 12500 .85 00 00 00 .51953 12500 .C5 000000 .76953 12500 

.06 00 00 00 .02343 75000 .46 00 00 00 .27343 75000 .86 00 00 00 .5234375000 .C6 000000 .77343 75000 

.07 00 00 00 .02734 37500 .47 000000 .27734 37500 .87 000000 .52734 37500 .C7 00 00 00 .77734 37500 

.08 000000 .03125 00000 .48 000000 .28125 00000 .88 000000 .53125 00000 .C8 00 00 00 .78125 00000 

.09 00 00 00 .03515 62500 .49 000000 .2851562500 .89 000000 .5351562500 .C9 000000 .78515 62500 

.OA 00 00 00 .03906 25000 .4A 00 00 00 .28906 25000 .8A 000000 .53906 25000 .CA 00 00 00 .78906 25000 

.OB 000000 .04296 87500 .4B 00·00 00 .29296 87500 .8B 00 00 00 .5429687500 .CB 00 00 00 .79296 87500 

.DC 000000 .04687 50000 .4C 000000 .29687 50000 .8C 00 00 00 .54687 50000 .CC 000000 .79687 50000 

.00 000000 .05078 12500 .40 00 00 00 .30078 12500 .800000 00 .55078 12500 .CD 00 00 00 .80078 12500 

.OE 000000 .05468 75000 .4E 000000 .30468 75000 .8E 00 00 00 .5546875000 .CE 00 00 00 .80468 75000 

.OF 000000 .05859 37500 .4F 00 00 00 .3085937500 .8F 000000 .5585937500 .CF 00 00 00 .80859 37500 

.10 00 00 00 .06250 00000 .50 000000 .31250 00000 .90 00 00 00 .56250 00000 .DO 00 00 00 .81 250 00000 

.11 000000 .06640 62500 .51 00 00 00 .31640 62500 .91 000000 .56640 62500 .01 000000 .81640 62500 

.12 00 00 00 .07031 25000 .52 000000 .32031 25000 .92 00 00 00 .57031 25000 .02 00 00 00 .82031 25000 

.13 000000 .07421 87500 .53 000000 .32421 87500 .93 000000 .57421 87500 .03 000000 .82421 87500 

.14 000000 .0781250000 .54 000000 .3281250000 .94 00 00 00 .57812 50000 .04 00 00 00 .8281250000 

.15 000000 .08203 12500 .55 000000 .33203 12500 .95 000000 .58203 12500 .05 000000 .83203 12500 

.16 000000 .08593 75000 .56 00 00 00 .33593 75000 .96 00 00 00 .5859375000 .06 00 00 00 .83593 75000 

.17 000000 .08984 37500 .57 000000 .33984 37500 .97 000000 .58984 37500 .07 000000 .83984 37500 

.18 000000 .09375 00000 .58 000000 .34375 00000 .98 000000 .59375 00000 .08 00 00 00 .84375 00000 

.19 000000 .09765 62500 .59 000000 .34765 62500 .99 000000 .59765 62500 .09 000000 .84765 62500 

.IA 000000 .10156 25000 .5A 00 00 00 .35156 25000 .9A 00 00 00 .60156 25000 .DA 00 00 00 .85156 25000 

.IB 000000 .10546 87500 .5B 000000 .35546 87500 .9B 00 00 00 .60546 87500 .DB 00 00 00 .85546 87500 

.1C 000000 .10937 50000 .5C 000000 .35937 50000 .9C 00 00 00 .60937 50000 .DC 00 00 00 .85937 50000 

.10 000000 .11328 12500 .50 000000 .36328 12500 .90 000000 .61328 12500 .0000 00 00 .86328 12500 

.IE 000000 .11718 75000 .5E 000000 .3671875000 .9E 000000 .6171875000 .DE 000000 .8671875000 

.IF 000000 .1210937500 .5F 000000 .3710937500 .9F 000000 .6210937500 .DF 000000 .8710937500 

.20 000000 .1 2500 00000 .60 000000 .37500 00000 .AO 00 00 00 .62500 00000 .EO 000000 .87500 00000 

.21 000000 .12890 62500 .61 000000 .37890 62500 .Al 00 00 00 .62890 62500 .El 00 00 00 .87890 62500 

.22 000000 .13281 25000 .62 00 00 00 .38281 25000 .A2 000000 .63281 25000 .E2 000000 .88281 25000 

.23 000000 .13671 87500 .63 000000 .38671 87500 .A3 00 00 00 .63671 87500 .E3 000000 .88671 87500 
.24 000000 .1406250000 .64 00 00 00 .39062 50000 .A4 00 00 00 .64062 50000 .E4 00 00 00 .8906250000 
.25 000000 .14453 12500 .65 000000 .39453 12500 .A5 00 00 00 .64453 1 2500 .E5 00 00 00 .89453 12500 
.26 000000 · 14843 75000 .66 000000 .39843 75000 .A6 00 00 00 .64843 75000 .E6 00 00 00 .89843 75000 
.27 000000 .1523437500 .67 000000 .40234 37500 .A7 000000 .65234 37500 .E7 00 00 00 .90234 37500 
.28 000000 .15625 00000 .68 000000 .40625 00000 .A8 000000 .65625 00000 .E8 000000 .90625 00000 
.29 00 00 00 .16015 62500 .69 000000 .4101562500 .A9 000000 .66015 62500 .E9 000000 .9101562500 
.2A 000000 · 16406 25000 .6A 000000 .41406 25000 .AA 00 00 00 .66406 25000 .EA 000000 .91406 25000 
.2B 000000 .1679687500 .6B 00 00 00 .41796 87500 .AB 00 00 00 .667% 87500 .EB 000000 .9179687500 
.2C 000000 .17187 50000 .6C 000000 .42187 50000 .AC 00 00 00 .67187 50000 .EC 00 00 00 .92187 50000 
.20 000000 .17578 12500 .60 00 00 00 .42578 12500 .AD 00 00 00 .67578 12500 .ED 000000 .92578 1 2500 
.2E 000000 .1796875000 .6E 000000 .42968 75000 .AE 000000 .67968 75000 .EE 00 00 00 .92968 75000 
.2F 00 00 00 .1835937500 .6F 000000 .43359 37500 .AF 000000 .68359 37500 .EF 000000 .93359 37500 

.30 000000 .1875000000 .70 000000 .43750 00000 .BO 000000 .68750 00000 .FO 000000 .93750 00000 

.31 000000 .1914062500 .71 00 00 00 .44140 62500 .Bl 000000 .6914062500 .FI 00 00 00 .94140 62500 

.32 00 00 00 · 1 953 1 25000 .72 000000 .44531 25000 .B2 000000 .69531 25000 .F2 00 00 00 .94531 25000 

.33 000000 .19921 87500 .73 00 00 00 .44921 87500 .B3 000000 .69921 87500 .F3 00 00 00 .94921 87500 

.34 000000 .20312 50000 .74 00 0000 .45312 50000 .84 00 00 00 .7031 2 50000 .F4 00 00 00 .953 12 50000 

.35 000000 .20703 12500 .75 00 00 00 .45703 12500 .B5 00 00 00 .70703 12500 .F5 00 00 00 .95703 12500 

.36 00 00 00 .2109375000 .76 00 00 00 .46093 75000 .86 00 00 00 .71093 75000 .F6 00 00 00 .9609375000 

.37 000000 .2148437500 .77 00 00 00 .46484 37500 .B7 00 00 00 .71484 37500 .F7 00 00 00 .96484 37500 

.38 00 00 00 .2187500000 .78 00 00 00 .46875 00000 .88 00 00 00 .71875 00000 .F8 00 00 00 .%87500000 

.39 000000 .2226562500 .79 00 00 00 .47265 62500 .B9 00 00 00 .72265 62500 .F9 00 00 00 .97265 62500 

.3A 000000 .22656 25000 .7A 00 00 00 .47656 25000 .BA 00 00 00 .72656 25000 .FA 00 00 00 .97656 25000 

.3B 000000 .23046 87500 .7B 00 00 00 .48046 87500 .BB 00 00 00 .73046 87500 .FB 000000 .98046 87500 

.3C 000000 .23437 50000 .7C 000000 .48437 50000 .BC 000000 .73437 50000 .FC 000000 .98437 50000 

.30 000000 .23828 12500 .70 00 00 00 .48828 12500 .BD 00 00 00 .73828 1 2500 .FD 00 00 00 .98828 1 2500 

.3E 000000 .2421875000 .7E 000000 .4921875000 .BE 00 00 00 .7421875000 .FE 000000 .9921875000 

.3F 00 00 00 .2460937500 .7F 000000 .49609 37500 .BF 000000 .74609 37500 .FF 000000 .99609 37500 

Appendix A 187 



HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.0000 0000 .00000 00000 .00 40 00 00 .00097 65625 .00 80 0000 .0019531250 .00 CO 0000 .00292 96875 

.0001 0000 .00001 52587 .00 41 00 00 .00099 18212 .0081 0000 .0019683837 .00 Cl 0000 .00294 49462 

.0002 0000 .0000305175 .0042 0000 .00100 70800 .00 82 0000 .00198 36425 .00 C2 0000 .00296 02050 

.00 03 0000 .00004 57763 .0043 0000 .00 102 23388 .0083 0000 .00199 89013 .00 C3 0000 .00297 54638 

.00 04 0000 .00006 10351 .00 44 0000 .00103 75976 .0084 00 00 .00201 41601 .00 C4 0000 .00299 07226 

.0005 0000 .00007 62939 .00 45 00 00 .00105 28564 .00 85 0000 .00202 94189 .00 C5 0000 .00300 59814 

.00 06 00 00 .00009 15527 .00 46 00 00 .00106 81152 .0086 0000 .00204 46777 .00 C6 0000 .00302 12402 

.00 07 0000 .0001068115 .00 47 00 00 .00108 33740 .00 87 0000 .00205 99365 .00 C7 0000 .0030364990 

.00 08 0000 .00012 20703 .00 48 00 00 .0010986328 .00 88 0000 .00207 51 953 .00 C8 0000 .00305 17578 

.00 09 0000 .0001373291 .00 49 00 00 .00111 38916 .00 89 0000 .00209 04541 .00 C9 0000 .00306 70166 

.00 OA 00 00 .00015 25878 .00 4A 00 00 .0011291503 .00 8A 00 00 .0021057128 .00 CA 0000 .00308 22753 

.00 08 00 00 .0001678466 .00 4B 00 00 .0011444091 .00 88 0000 .0021209716 .00 C8 0000 .00309 75341 

.00 OC 0000 .0001831054 .00 4C 00 00 .00115 96679 .008C 00 00 .0021362304 .00 CC 0000 .00311 27929 

.00 00 00 00 .0001983642 .00 4D 00 00 .0011749267 .00 8D 00 00 .00215 14892 .00 CD 00 00 .0031280517 

.00 OE 00 00 .00021 36230 .00 4E 00 00 .0011901855 .00 8E 0000 .0021667480 .00 CE 0000 .00314 33105 

.00 OF 00 00 .0002288818 .00 4F 00 00 .00120 54443 .008F 00 00 .00218 20068 .00 CF 0000 .00315 85693 

.00 10 0000 .00024 41406 .0050 0000 .00122 07031 .00 90 00 00 .0021972656 .00 DO 0000 .00317 38281 

.0011 0000 .00025 93994 .00 51 00 00 .0012359619 .00 91 0000 .00221 25244 .00 Dl 0000 .00318 90869 

.00 12 0000 .00027 46582 .00 52 00 00 .00125 12207 .00 92 00 00 .0022277832 .00 D2 0000 .00320 43457 

.00 13 0000 .00028 99169 .0053 00 00 .00 126 64794 .00 93 0000 .00224 30419 .00 D3 0000 .00321 96044 

.00 14 00 00 .00030 51757 .00 54 0000 .00 128 17382 .00 94 00 00 .00225 83007 .00 D4 0000 .00323 48632 

.00 15 0000 .00032 04345 .0055 00 00 .0012969970 .00 95 00 00 .00227 35595 .00 D5 0000 .00325 01 220 

.00 16 0000 .00033 56933 .00 56 0000 .00131 22558 .0096 00 00 .00228 88183 .00 D6 0000 .00326 53808 

.00 17 00 00 .00035 09521 .00 57 00 00 .0013275146 .00 97 00 00 .00230 40771 .00 D7 00 00 .00328 06396 

.00 18 0000 .0003662109 .0058 0000 .00 134 27734 .00 98 0000 .00231 93359 .00 D8 0000 .00329 58984 

.00 19 00 00 .00038 14697 .00 59 0000 .00 135 80322 .00 99 0000 .00233 45947 .00 D9 00 00 .00331 11572 

.00 lA 00 00 .0003967285 .00 5A 00 00 .00137 32910 .00 9A 00 00 .00234 98535 .00 DA 00 00 .0033264160 

.00 18 00 00 .00041 19873 .00 58 00 00 .00138 85498 .00 9B 00 00 .00236 51123 .00 DB 0000 .00334 16748 

.001C 0000 .00042 72460 .00 5C 00 00 .00140 38085 .00 9C 0000 .00238 03710 .00 DC 0000 .00335 69335 

.00 10 00 00 .00044 25048 .00500000 .00141 90673 .00 90 00 00 .00239 56298 .00 DO 00 00 .00337 21923 

.00 IE 00 00 .00045 77636 .00 5E 00 00 .0014343261 .00 9E 00 00 .00241 08886 .00 DE 0000 .00338 74511 

.00 IF 00 00 .00047 30224 .00 5F 00 00 .00144 95849 .00 9F 00 00 .0024261474 .00 DF 0000 .00340 27099 

.00 20 00 00 .00048 82812 .0060 00 00 .00146 48437 .00 AO 0000 .00244 14062 .00 EO 0000 .00341 79687 

.00 21 00 00 .0005035400 .0061 00 00 .00148 01025 .00 Al 00 00 .00245 66650 .00 El 00 00 .00343 32275 

.00 22 00 00 .00051 87988 .00 62 0000 .0014953613 .00 A2 0000 .00247 19238 .00 E2 0000 .00344 84863 

.0023 0000 .00053 40576 .0063 0000 .00151 06201 .00 A3 00 00 .00248 71826 .00 E3 00 00 .00346 37451 

.00 24 00 00 .0005493164 .00 64 00 00 .0015258789 .00 A4 00 00 .00250 24414 .00 E4 0000 .00347 90039 

.0025 0000 .00056 45751 .00 65 00 00 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .0034942626 

.0026 00 00 .00057 98339 .0066 00 00 .00155 63964 .00 A6 00 00 .00253 29589 .00 E6 00 00 .00350 95214 

.0027 0000 .00059 50927 .00 67 0000 .00157 16552 .00 A7 00 00 .00254 82177 .00 E7 0000 .00352 47802 

.0028 00 00 .00061 03515 .00 68 00 00 .0015869140 .00 A8 00 00 .00256 34765 .00 E8 00 00 .00354 00390 

.0029 00 00 .0006256103 .0069 0000 .00160 21728 .00 A9 00 00 .00257 87353 .00 E9 00 00 .00355 52978 

.00 2A 0000 .00064 08691 .00 6A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 0000 .00357 05566 

.002S 0000 .00065 6 i 279 .00 6B 0000 .00i63 26904 .00 AB 0000 .00260 92529 .00 ED 0000 .0035858154 

.002C 0000 .00067 13867 .00 6C 0000 .00164 79492 .00 AC 00 00 .0026245117 .00 EC 0000 .00360 10742 

.002D 0000 .00068 66455 .006D 0000 .00166 32080 .00 AD 0000 .00263 97705 .00 ED 0000 .00361 63330 

.00 2E 00 00 .00070 19042 .00 6E 00 00 .0016784667 .00 AE 00 00 .00265 50292 .00 EE 00 00 .00363 15917 

.002F 0000 .00071 71630 .006F 0000 .00169 37255 .00 AF 0000 .00267 02880 .00 EF 00 00 .00364 68505 

.0030 0000 .00073 24218 .0070 00 00 .00170 89843 .0080 0000 .00268 55468 .00 FO 0000 .00366 21 093 

.0031 0000 .00074 76806 .0071 0000 .00172 42431 .00 81 0000 .00270 08056 .00 Fl 00 00 .0036773681 

.0032 0000 .00076 29394 .0072 0000 .0017395019 .00 B2 0000 .00271 60644 .00 F2 0000 .00369 26269 

.0033 0000 .00077 81982 .0073 0000 .0017547607 .00 B3 00 00 .00273 13232 .00 F3 00 00 .00370 78857 

.0034 00 00 .00079 34570 .0074 0000 .00177 00195 .00 B4 0000 .00274 65820 .00 F4 0000 .00372 31445 

.00 35 00 00 .0008087158 .0075 00 00 .0017852783 .00 B5 0000 .00276 18408 .00 F5 0000 .0037384033 

.0036 0000 .00082 39746 .0076 0000 .0018005371 .0086 0000 .00277 70996 .00 F6 0000 .00375 36621 

.00 37 00 00 .00083 92333 .0077 0000 .00181 57958 .0087 0000 .00279 23583 .00 F7 0000 .0037689208 

.0038 0000 .00085 44921 .0078 0000 .00183 10546 
I 

.00 B8 0000 .0028076171 .00 F8 0000 .00378 41796 
.0039 00 CO .00086 97509 .0079 0000 .00184 63134 .00 B9 0000 .00282 28759 .00 F9 0000 .00379 94384 
.003A 0000 .0008850097 .007A 0000 .00186 15722 .00 BA 0000 .00283 81347 .00 FA 0000 .00381 46972 
.003B 0000 .0009002685 .007B 0000 .0018768310 .00 BB 0000 .00285 33935 .00 FB 0000 .00382 99560 
.003C 0000 .00091 55273 .007C 0000 .0018920898 .00 BC 0000 .00286 86523 .00 FC 0000 .0038452148 
.00 3D 0000 .0009307861 .007D 0000 .00190 73486 .00 BD 0000 .00288 39111 .00 FD 0000 .00386 04736 
.003E 0000 .00094 60449 .007E 0000 .00192 26074 .00 BE 0000 .0028991699 .00 FE 0000 .00387 57324 
.003F 0000 .00096 13037 .007F 0000 .0019378662 .00 BF 0000 .00291 44287 .00 FF 0000 .0038909912 

188 Appendix A 



HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.000000 00 .00000 00000 .000040 00 .00000 38146 .000080 00 .00000 76293 .0000 CO 00 .0000 1 14440 

.000001 00 .00000 00596 .00 00 41 00 .00000 38743 .000081 00 .00000 76889 .0000 Cl 00 .00001 15036 

.000002 00 .00000 01192 .00 00 42 00 .00000 39339 .000082 00 .00000 77486 .00 00 C2 00 .00001 15633 

.000003 00 .00000 01788 .000043 00 .00000 39935 .000083 00 .00000 78082 .00 00 C3 00 .00001 16229 

.00 00 04 00 .00000 02384 .000044 00 .00000 40531 .000084 00 .00000 78678 .0000 C4 00 .00001 16825 

.000005 00 .00000 02980 .000045 00 .00000 41127 .000085 00 .00000 79274 .00 00 C5 00 .00001 17421 

.000006 00 .00000 03576 .00 00 46 00 .00000 41723 .000086 00 .00000 79870 .00 00 C6 00 .00001 18017 

.000007 00 .00000 04172 .000047 00 .00000 42319 .000087 00 .00000 80466 .00 00 C7 00 .00001 18613 

.000008 00 .00000 04768 .00 00 48 00 .00000 42915 .000088 00 .00000 81062 .00 00 C8 00 .00001 19209 

.000009 00 .00000 05364 .00 00 49 00 .00000 43511 .000089 00 .00000 81658 .00 00 C9 00 .00001 19805 

.00 00 OA 00 .00000 05960 .00 00 4A 00 .00000 44107 .00 00 8A 00 .00000 82254 .0000 CA 00 .00001 20401 

.OOOOOB 00 .00000 06556 .00 00 4B 00 .00000 44703 .00008B 00 .00000 82850 .0000 CB 00 .00001 20997 

.OOOOOC 00 .00000 07152 .00 00 4C 00 .00000 45299 .00 00 8C 00 .00000 83446 .0000 CC 00 .00001 21593 

.OOOOOD 00 .00000 07748 .00 00 4D 00 .00000 45895 .00008D 00 .00000 84042 .0000 CD 00 .00001 22189 

.OOOOOE 00 .00000 08344 .00 00 4E 00 .00000 46491 .00 00 8E 00 .00000 84638 .0000 CE 00 .00001 22785 

.0000 OF 00 .00000 08940 .0000 4F 00 .00000 47087 .00008F 00 .00000 85234 .00 00 CF 00 .00001 23381 

.0000 10 00 .00000 09536 .000050 00 .00000 47683 .000090 00 .00000 85830 .0000 DO 00 .00001 23977 

.0000 11 00 .00000 1m32 .00 00 51 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 Dl 00 .00001 24573 

.0000 12 00 .00000 10728 .000052 00 .00000 48875 .000092 00 .00000 87022 .0000 D2 00 .00001 25169 

.0000 13 00 .00000 11324 .000053 00 .00000 49471 .00 00 93 00 .00000 87618 .0000 D3 00 .00001 25765 

.0000 14 00 .00000 11920 .000054 00 .00000 50067 .000094 00 .00000 88214 .0000 D4 00 .00001 26361 

.0000 15 00 .00000 12516 .000055 00 .00000 50663 .00 00 95 00 .00000 88810 .0000 D5 00 .00001 26957 

.000016 00 .00000 13113 .00 00 56 00 .00000 51259 .00 00 96 00 .00000 89406 .0000 D6 00 .0000 1 27553 

.0000 17 00 .00000 13709 .000057 00 .00000 51856 .00 00 97 00 .00000 90003 .00 00 D7 00 .00001 28149 

.000018 00 .00000 14305 .000058 00 .00000 52452 .00 0098 00 .00000 90599 .0000 DB 00 .00001 28746 

.00 0019 00 .00000 14901 .000059 00 .00000 53048 .000099 00 .00000 91195 .0000 D9 00 .00001 29342 

.0000 1A 00 .00000 15497 .00 00 5A 00 .00000 53644 .0000 9A 00 .00000 91791 .00 00 DA 00 .00001 29938 

.0000 1 B 00 .00000 16093 .0000 5B 00 .00000 54240 .00 00 9B 00 .00000 92387 .0000 DB 00 .00001 30534 

.0000 1C 00 .00000 16689 .00 00 5C 00 .00000 54836 .00 00 9C 00 .00000 92983 .0000 DC 00 .00001 31130 

.00001 D 00 .00000 17285 .00 00 5D 00 .00000 55432 .0000 9D 00 .00000 93579 .0000 DD 00 .00001 31726 

.0000 1 E 00 .00000 17881 .00005E 00 .00000 56028 .0000 9E 00 .00000 94175 .00 00 DE 00 .00001 32322 

.0000 IF 00 .00000 18477 .0000 5F 00 .00000 56624 .00009F 00 .00000 94771 .00 00 DF 00 .00001 32918 

.000020 CO .cccce ! 9073 1'\" nn Lr. "" """"" r~""''''''' .wwAO w .VVVUU 95367 .00 00 to OU .UUUOI JJ~ 14 .uv vv uv vv .vvvvv J1 LLV 

.000021 00 .00000 19669 .000061 00 .00000 57816 .0000 Al 00 .00000 95963 .00 00 El 00 .00001 34110 

.000022 00 .00000 20265 .000062 00 .00000 58412 .0000 A2 00 .00000 96559 .00 00 E2 00 .0000 1 34706 

.00 00 23 00 .00000 20861 .000063 00 .00000 59008 .0000 A3 00 .00000 97155 .0000 E3 00 .00001 35302 

.000024 00 .00000 21457 .00 0064 00 .00000 59604 .0000 A4 00 .00000 97751 .0000 E4 00 .00001 35898 

.000025 00 .00000 22053 .00 00 65 00 .00000 60200 .0000 A5 00 .00000 98347 .0000 E5 00 .00001 36494 

.00 0026 00 .00000 22649 .000066 00 .00000 60796 .0000 A6 00 .00000 98943 .0000 E6 00 .00001 37090 

.000027 00 .00000 23245 .000067 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 E7 00 .00001 37686 

.000028 00 .0000023841 .000068 00 .00000 61988 .00 00 A8 00 .00001 00135 .0000 E8 00 .00001 38282 

.000029 00 .00000 24437 .00 00 69 00 .00000 62584 .0000 A9 00 .00001 00731 .0000 E9 00 .0000 1 38878 

.00002A 00 .00000 25033 .0000 6A 00 .00000 63180 .0000 AA 00 .00001 01327 .0000 EA 00 .00001 39474 

.00002B 00 .00000 25629 .00 00 6B 00 .00000 63776 .0000 AB 00 .00001 01923 .0000 EB 00 .00001 40070 

.00002C 00 .00000 26226 .0000 6C 00 .00000 64373 .0000 AC 00 .00001 02519 .0000 EC 00 .00001 40666 

.00 00 2D 00 .00000 26822 .0000 6D 00 .00000 64969 .0000 AD 00 .00001 03116 .00 00 ED 00 .00001 41263 

.00002E 00 .00000 27418 .00006E 00 .00000 65565 .0000 AE 00 .00001 03712 .0000 EE 00 .00001 41859 

.00 00 2F 00 .00000 28014 .00006F 00 .00000 66161 .0000 AF 00 .00001 04308 .00 00 EF 00 .00001 42455 

.000030 00 .00000 28610 .000070 00 .00000 66757 .0000 BO 00 .00001 04904 .0000 FO 00 .00001 43051 

.000031 00 .00000 29206 .00 00 71 00 .00000 67353 .0000 B1 00 .00001 05500 .0000 F1 00 .00001 43647 

.00 00 32 00 .00000 29802 .00 00 72 00 .00000 67949 .0000 B2 00 .00001 06096 .0000 F2 00 .00001 44243 

.000033 00 .00000 30398 .00 00 73 00 .00000 68545 .00 00 B3 00 .00001 06692 .0000 F3 00 .00001 44839 

.000034 00 .00000 30994 .00 00 74 00 .00000 69141 .00 00 B4 00 .00001 07288 .0000 F4 00 .00001 45435 

.000035 00 .00000 31590 .000075 00 .00000 69737 .00 00 B5 00 .00001 07884 .00 00 F5 00 .00001 46031 

.000036 00 .0000032186 .000076 00 .00000 70333 .0000 B6 00 .00001 08480 .0000 F6 00 .00001 46627 

.00 00 37 00 .00000 32782 .000077 00 .00000 70929 .0000 B7 00 .00001 09076 .0000 F7 00 .00001 47223 

.000038 00 .00000 33378 .000078 00 .00000 71525 .00 00 B8 00 .00001 09672 .00 00 F8 00 .00001 47819 

.000039 00 .00000 33974 .000079 00 .00000 72121 .00 00 B9 00 .00001 10268 .00 00 F9 00 .00001 48415 

.00003A 00 .00000 34570 .00007A 00 .00000 72717 .0000 BA 00 .0000 1 10864 .00 00 FA 00 .00001 49011 

.00 00 3B 00 .00000 35166 .00007B 00 .00000 73313 .0000 BB 00 .00001 11460 .00 00 FB 00 .00001 49607 

.00003C 00 .00000 35762 .00007C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 .0000 1 50203 

.0000 3D 00 .00000 36358 .0000 7D 00 .00000 74505 .0000 BD 00 .00001 12652 .0000 FD 00 .00001 50799 

.00003E 00 .00000 36954 .00 00 7E 00 .00000 75101 .0000 BE 00 .0000 1 13248 .0000 FE 00 .00001 51395 

.00003F 00 .00000 37550 .00 00 7F 00 .00000 75697 .0000 BF 00 .00001 13844 .00 00 FF 00 .00001 51991 

Appendix A 189 



HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00000000 .00000 00000 .00000040 .00000 00149 .00000080 .00000 00298 .00 00 00 CO .00000 00447 

.00000001 .00000 00002 .00000041 .00000 00151 .00000081 .00000 00300 .0000 00 Cl .00000 00449 

.00000002 .00000 00004 .00000042 .0000000153 .00000082 .00000 00302 .000000 C2 .00000 00451 

.00000003 .00000 00006 .00000043 .00000 00155 .00000083 .00000 00305 .0000 00 C3 .00000 00454 

.00000004 .00000 00009 .00000044 .00000 00158 .00 00 00 84 .00000 00307 .00 00 00 C4 .00000 00456 

.00000005 .00000 000 11 .00000045 .00000 00160 .0000 00 85 .00000 00309 .000000 C5 .00000 00458 

.00000006 .00000 000 13 .0000 0046 .0000000162 .00 00 00 86 .00000 00311 .00 00 00 C6 .00000 0046 1 

.0000 00 07 .00000 00016 .00000047 .00000 00165 .00 00 00 87 .00000 00314 .000000 C7 .00000 00463 

.00000008 .00000 00018 .00 00 00 48 .00000 00167 .00000088 .00000 00316 .00 00 00 C8 .00000 00465 

.00000009 .00000 00020 .00 00 00 49 .00000 00169 .00000089 .00000 00318 .00 00 00 C9 .00000 00467 

.00 00 00 OA .00000 00023 .0000 00 4A .00000 00 172 .00 00 00 8A .00000 00321 .000000 CA .00000 00470 

.000000 OB .00000 00025 .0000 004B .00000 00174 .00 00 00 8B .00000 00323 .0000 00 CB .00000 00472 

.000000 OC .00000 00027 .00 00 004C .00000 00176 .000000 8C .00000 00325 .00 00 00 CC .00000 00474 

.OOOOOOOD .00000 00030 .00 0000 4D .00000 00179 .0000008D .00000 00328 .00 00 00 CD .00000 00477 

.00 00 OOOE .0000000032 .00 00 004E .0000000181 .000000 8E .00000 00330 .00 00 00 CE .00000 00479 

.000000 OF .00000 00034 .0000004F .00000 00183 .000000 8F .00000 00332 .00 00 00 CF .00000 00481 

.000000 10 .0000000037 .00000050 .00000 00 186 .00000090 .00000 00335 .000000 DO .00000 00484 

.000000 11 .00000 00039 .00000051 .00000 00 188 .00 00 00 91 .00000 00337 .00 00 00 D1 .00000 00486 

.00000012 .00000 00041 .00 00 00 52 .00000 00 190 .00000092 .00000 00339 .000000 D2 .00000 00488 

.000000 13 .00000 00044 .00 00 00 53 .00000 00193 .00000093 .00000 00342 .000000 D3 .00000 00491 

.000000 14 .00000 00046 .00000054 .00000 00195 .00000094 .00000 00344 .00 00 00 D4 .00000 00493 

.00000015 .00000 00048 .00000055 .00000 00197 .000000 95 .00000 00346 .00 00 00 D5 .00000 00495 

.000000 16 .00000 00051 .00000056 .00000 00200 .000000 96 .0000000349 .00 00 00 D6 .00000 00498 

.00000017 .00000 00053 .0000 0057 .00000 00202 .00 000097 .00000 00351 .00 00 00 D7 .00000 00500 

.00000018 .00000 00055 .00 00 00 58 .0000000204 .00000098 .00000 00353 .000000 D8 .00000 00502 

.000000 19 .00000 00058 .00 00 00 59 .00000 00207 .00 00 00 99 .00000 00356 .00 00 00 D9 .00000 00505 

.OOOOOOIA .00000 00060 .00 00 00 5A .00000 00209 .000000 9A .00000 00358 .00 00 00 DA .00000 00507 

.000000 IB .00000 00062 .0000 00 5B .00000 00211 .00 00 00 9B .00000 00360 .00 00 00 DB .00000 00509 

.00 00 00 lC .00000 00065 .00 00 00 5C .00000 00214 .000000 9C .00000 00363 .00 00 00 DC .00000 0051 2 

.000000 ID .00000 00067 .00 00 00 5D .00000 00216 .00 00 00 9D .00000 00365 .00 00 00 DD .00000 00514 

.000000 IE .00000 0006 9 .00 00 00 5E .00000 00218 .00 00 00 9E .00000 00367 .00 00 00 DE .00000 00516 

.000000 IF .00000 00072 .0000005F .00000 00221 .000000 9F .00000 00370 .00 00 00 DF .00000 0051 9 

.00000020 .00000 00074 I .0000 00 60 .00000 00223 .00 00 00 AO .00000 00372 .000000 EO .00000 00521 

.00000021 .00000 00076 .00 00 00 61 .00000 00225 .00 00 00 Al .0000000374 .00 00 00 El .00000 00523 

.000000 22 .00000 00079 .0000 00 62 .00000 00228 .00 00 00 A2 .00000 00377 .00 00 00 E2 .00000 00526 

.0000 00 23 .00000 00081 .00 00 00 63 .00000 00230 .000000 A3 .00000 00379 .00 00 00 E3 .00000 00528 

.00000024 .00000 00083 .00000064 .00000 00232 .00 00 00 A4 .00000 00381 .00 00 00 E4 .00000 00530 

.00000025 .00000 00086 .00000065 .00000 00235 .00 00 00 A5 .00000 00384 .000000 E5 .00000 00533 

.00 000026 .00000 00088 .0000 00 66 .00000 00237 .00 00 00 A6 .00000 00386 .00 00 00 E6 .00000 00535 

.00000027 .00000 00090 .00000067 .00000 00239 .00 00 00 A7 .00000 00388 .000000 E7 .00000 00537 

.00000028 .00000 00093 .00000068 .00000 00242 .00 00 00 A8 .00000 00391 .00 00 00 E8 .00000 00540 

.00000029 .00000 00095 .00 00 00 69 .00000 00244 .00 00 00 A9 .00000 00393 .00 00 00 E9 .00000 00542 

.0000002A . 00000 00097 .000000 Y· . .00000 00246 .00 00 00 A.A, .00000 00395 .000000 EA .00000 00544 

.00 00 00 2B .00000 00 100 .00 00 00 6B .00000 00249 .00 00 00 AB .00000 00398 .000000 EB .00000 00547 

.000000 2C .00000 00102 .00 00 00 6C .00000 00251 .00 00 00 AC .00000 00400 .00 00 00 EC .00000 00549 

.000000 2D .00000 00104 .00 00 006D .00000 00253 .0000 00 AD .00000 00402 .000000 ED .00000 00551 

.0000002E .00000 00107 .0000006E .00000 00256 .00 00 00 AE .00000 00405 .00 00 00 EE .00000 00554 

.0000002F .00000 00109 .0000 00 6F .00000 00258 .000000 AF .00000 00407 .000000 EF .00000 00556 

.00000030 .00000 00 111 .00000070 .00000 00260 .00 00 00 BO .00000 00409 .00 00 00 FO .00000 00558 

.00000031 .00000 00 114 .000000 71 .00000 00263 .00 00 00 Bl .00000 0041 2 .000000 F1 .00000 00561 

.00000032 .00000 00116 .00000072 .00000 00265 .00 00 00 B2 .00000 00414 .000000 F2 .00000 00563 

.00000033 .00000 00 118 .00000073 .00000 00267 .000000 B3 .00000 00416 .00 00 00 F3 .00000 00565 

.00000034 .00000 00121 .00000074 .0000000270 .000000 B4 .00000 0041 9 .00 00 00 F4 .00000 00568 

.00000035 .00000 00123 .00000075 .00000 00272 .00 00 00 B5 .00000 00421 .000000 F5 .00000 00570 

.00000036 .00000 00 1 25 .00000076 .0000000274 .000000 B6 .00000 00423 .0000 00 F6 .0000000572 

.0000 00 37 .00000 00128 .00000077 .00000 00277 .000000 B7 .00000 00426 .00 00 00 F7 .00000 00575 

.00000038 .00000 00130 .00000078 .00000 00279 .00 00 00 B8 .00000 00428 .000000 F8 .00000 00577 

.00000039 .00000 00132 .00000079 .00000 00281 .000000 B9 .00000 00430 .00 00 00 F9 .00000 00579 

.0000003A .00000 00 135 .00 00 00 7A .00000 00284 .00 00 00 BA .00000 00433 .000000 FA .00000 00582 

.0000003B .00000 00137 .00 00 00 7B .00000 00286 .00 00 00 SB .00000 00435 .000000 FB .00000 00584 

.00 0000 3C .00000 00139 .0000007C .00000 00288 .000000 BC .00000 00437 .0000 00 FC .00000 00586 

.000000 3D .00000 00142 .00000070 .00000 00291 .00 00 00 SD .00000 00440 .000000 FD .00000 00589 

.0000003E .00000 00 144 .00 00 00 7E .00000 00293 .000000 BE .00000 00442 .000000 FE .00000 00591 
,00 00 00 3F .00000 00 146 .0000 00 7F .00000 00295 .000000 SF .00000 00444 .000000 FF .00000 00593 

190 Appendix A 



TABLE OF POWERS OF TWO MATHEMATICAL CONSTANTS 

L.!!..L 
1 0 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 

256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 

4096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32768 15 0.000 030 517 578 125 

65 536 16 0.000 015 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837- 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 m 216 24 0.000 000 059 604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 

4 274 YOl 270 ~2 U.UVU uvu uvu 2~2 o:;u ~ 05:i 007 620 7UO 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 

281 474 976 710656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 

I 125899906 842 624 50 0.000 000 000 000 000 888 178 419 700 125232 338 905 334 472 656 25 
2251799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169452667236 328 125 

Constant 

IT- l 

~ 

Inn 

e 
-I 

e 

.Je 
loglO e 

log2 e 

Y 

InY 

.J2 

In2 

logl02 

.JITf 
In 10 

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25 

18014398509 481984 54 0.000 000 000 000 000 055511 151231257827021 181583404541015625 
36 028 797018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5 

72 057 594037 927936 56 0.000 000 000 000 006 013 877 787 807 814 456 755 295 395 851 135 253 906 25 

Decimal Value 

3.14159 26535 89793 

0.31830 98861 83790 

1 .77245 38509 05516 

1.14472 98858 49400 

2.71828 18284 59045 

0.36787 94411 71442 

1.64872 12707 00128 

0.43429 44819 03252 

1 .44269 50408 88963 

0.57721 56649 01533 

-0.54953 93129 81645 

1.41421 35623 73095 

0.69314 71805 59945 

0.30102 99956 63981 

3.16227 76601 68379 

2.30258 40929 94046 

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125 
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 931 953614 188 823 848 962 783813476 562 5 
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 

1 152 921 504 606 846 976 6IJ 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994201 773602 981 120 347 976 684 570 312 5 
4 611.086 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 56IJ 173 988 342 285 156 25 
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 

Hexadecimal Value 

3.243F 6A89 

0.517C C1B7 

I.C5BF 891C 

1.2500 O48F 

2.B7El 5163 

0.5E2D 5809 

I.A612 98E2 

0.6F2D EC55 

1.7154 7653 

0.93C4 67E4 

-0.8CAE 9BCl 

1.6A09 E668 

O.BI72 17F8 

004010 4042 

3.298B 075C 

2.4076 3777 

Appendix A 191 



APPENDIX B. GLOSSARY OF SYMBOLIC TERMS 

Term 

( ) 

n 

u 

@ 

AM 

CC 

CI 

DA 

DBS 

DECA 

DM 

EB 

EBL 

ED 

EDL 

Meaning 

Contents of. 

AND (logical product, where 0 n 0 = 0, 
o n 1 = 0, 1· n 0 = 0, and 1 n 1 = 1). 

OR (logical inclusive OR, where 0 u 0 = 0, 
o u 1 = 1, 1 u 0 = 1, and 1 u 1 = 1) • 

EOR {logical exclusive OR, where 
o @ 0 = 0, 0 @ 1 = 1, 1 @ 0 = 1, 
and 1 @ 1 = 0). 

Fixed-point arithmetic trap mask-bit posi-
t ion 11 of PSWs. If set (= 1 ), bas i c processor 
traps to location X'43' after executing an 
instruction causing fixed-point overflow; if 
not set, basi c processor does not trap. 

Condition code - 4-bit value (bit positions 
labeled CC1, CC2, CC3, and CC4), estab­
lished as part of the execution of most 
instructions. 

Counter interrupt group inhibit - bit posi­
tion 37 of PSWs. If set (=1), all interrupt 
levels within this group are inhibited. 

Destination address-in byte-string instruc­
tions, address of the destination byte string. 

Destination byte string-operand specified 
by byte-string instruction. 

Decimal accumulator - general registers 12, 
13, 14, and 15 in decimal instructions. 

Decimal arithmetic trap mask-bit position 10 
or PS'v'Vs. 'vVnen set (= i), deci rna I aritnmeti c 
fault trap is in effect. 

Effective byte - 8-bit contents of effective 
byte location (EBL). 

Effective byte location - byte location 
pointed to by effective virtual address of an 
instruction for byte operation. 

Effective doubleword - 64-bit contents of 
effective doubleword location (EDL). 

Effective doubieword iocation-doubleword 
location pointed to by effective virtual 
address of an instruction for a doubleword 
operation. If odd-numbered word location 
is specifi ed, low-order bit of effective ad­
dress field (bit position 31) is automatically 

192 Appendix B 

Term 

EDL 
(cont .) 

EDO 

EH 

Meaning 

forced to O. Hence, odd-numbered word 
address (referring to middle of doubleword) 
des ignates same doub I eword as even-numbered 
word address when used for a doub I eword 
operation. 

Effective decimal operand. 

Effective halfword - 16-bit contents of 
effective halfword location, or (EHL). 

EH L Effective halfword location-halfword loca­
tion pointed to by effective virtual address 
of an instruction for halfword operation. 

EI 

ESA 

EVA 

EW 

EWL 

FN 

FR 

FS 

External interrupt group inhibit - bit 
position 39 of PSWs. If set (= 1), all 
interrupt levels within this group are 
inhibited. 

Effective source address - in byte-string 
instructi ons, address of the source byte 
string. 

Effective virtual address - virtual address 
value obtained as result of indirect address­
ing and/or indexing. This address value is 
independent of the program's actual loca­
tion in main memory, and is final address 
value before memory mapping is performed. 

Effective word - 32-bit contents of effective 
word location (EWL). 

Effective word location - word location 
pointed to by effective virtual address of 
an instruction for a word operation. 

Floating normalize mode control-bit posi­
tion 7 of PSWs. If not set, results offloating­
point additions and subtractions are to be 
normalized; if set (=1), results are not 
normalized. 

Floating round mode control-bit position 40f 
PSWs. If set (=1), basic processor rounds 
floating-point results. If not set, results 
are truncated. 

Floating significance mode control-bit posi­
tion 5 of PSWs. If set (=1), basic processor 
traps to location X'44' when more than two 
hexadecimal places of postnormalization 
shifting are required for a floating-point ad­
dition or subtraction; if not set, no signifi­
cance checking is performed. 



Term 

FZ 

IA 

II 

L 

MA 

MM 

MS 

PSWs 

R 

RA 

Ref. 
Add. 

Meaning 

Floating zero mode control-bit position 6 
of the PSWs. If set (=1), basic processor 
traps to location X·44· when either charac­
teristic underflow or zero result occurs for 
a floating-point multiplication or division; 
if not set, characteristic underflow and zero 
resu It are treated as normal conditions. 

Instruction register-internal basic processor 
register that holds instructions obtained from 
memorywhile they are being decoded. 

Instruction address- 17~bit value that defines 
virtual address of instruction immediately 
prior to the time that it is executed. 

I/o interrupt group inhibit - bit position 38 
of the PSWs. If set (=1), all interrupt levels 
within this group are inhibited. 

Numeric value of bits 8-11 of decimal in­
struction word (value of. 0 is 16 bytes). 

Mode altered - bit position 61 of PSWs. 
This bit is set (= 1) during master-protected 
mode of operation and during real extended 
type of addressing. 

Memory map mode control-position 9 of 
PSWs. When set (=1), the memory map is 
in effect. 

Master/slave mode control-bit position 8 
of PSWs. When set (=1), basic processor is 
in slave mode; when not set, basic proces­
sor may be in master or master-protected 
mode as determined by bit 40. 

Program status words - collection of sepa­
rate registers and flip-flops treated as an 
internal basi c processor register to store and 
display criti cal control information. 

General register address value-4-bit con­
tents of bit positions 8-11 (R field) of 
instruction word, also expressedsymbolically 
as (I)8-11. In instruction descri ptions, regis­
ter R is general register (of current register 
block) that corresponds to R fi eld address 
value. 

Register altered - bit position 60 of PSWs. 
When trap occurs, this bit set (= 1) when gen­
eral register or memory location altered in 
execution of instruction causing the trap. 

Reference address - contents of bit posi­
tions 15-31 of instruction word, a 17-bit 
field capable of directly addressing any 

Term 

Ref. 
Add. 
(cont .) 

RP 

Ru1 

SA 

SBS 

SE 

SPD 

TCC 

TS 

TSA 

TW 

Meaning 

general register in current register block 
(by using a value in range 0-15) or any word 
in main memory in address range 16 through 
131,071. This address value is initial ad­
dress value for any subsequent address com­
putations, memory mapping, or both 
computation and mapping. 

Register pointer - bit positions 58 and 59 of 
PSWs; these bits select one of four possible 
register blocks. 

Odd register address value - register Ru1 is 
general register pointed to by value obtained 
by logically ORing 0001 into address for 
register R. Thus, if R field of instruction 
contains even value, Ru 1 = R + 1 and if R 
field contains odd value, Ru1 = R. 

Source address - in byte-string instructions, 
contents of speci fi ed R reg ister. 

Source byte string-operand specified by 
byte string instruction. 

Sign extension - some instructions operate 
on two operands of different lengths; they 
are made equal in length by extending 
sign of shorter operand by required num­
ber of bit positions. For positive operands, 
result of sign extension is high-order O·s 
prefixed TO Tne operano; Tor negative op­
erands, high-order l·s are prefixed to op­
erand. Sign extension process is performed 
after operand accessed from memory and 
before operation called for by instruction 
code is performed. 

Stack pointer doubleword - contains the 
context (TSA, space count, word count, and 
TS, TW inhibit bits) of the push-down 
instructions. 

Trap condition code - 4-bit value (bit 
positions labeled TCC1, TCC2, TCC3, 
and TCC4), established as part of trap 
operations. 

Trap-on-space inhibit bit - conditions push­
down stack limit trap for impending overflow 
or underflow of space count. 

Top-of-stack address - pointer that points 
to highest-numbered address of operand stack 
in push-down instructions. 

Trap-on-word inhibit bit-conditions push­
down stack limit trap for impending over­
flow or underflow of word count. 

Appendix B 193 



Term 

WK 

x 

Meaning 

Write key - bit positions 32, 33, 34, 
and 35 of PSWs; they are evaluated by 
the memory write-protect feature to de­
termine accessibility of real memory by 
current program. 

Index register address value - 3-bit con­
tents of bit positions 12-14 (X field) of 
instruction word. In instruction word, 
if X = 0, no indexing is performed; 

194 Appendix B 

Term 

X 
(cont .) 

Xln l 

Meaning 

if X f 0, indexing is performed (after indirect 
addressing if indirect addressing is called for) 
with general registerX in current registerblock. 

Hexadecimal qualifier - hexadecimal value 
(n) is unsigned string of hexadecimal digits 
(0 through 9 and A through F}surrounded by 
single quotation marks and preceded by the 
qualifier "X" (for example, 7B016 is written 
X?BOI

• 



APPENDIX C. FAULT STATUS REGISTERS 

Table C-1. Fault Status Registers 

Status Registers - Faults Detected By: 

Bit System Control 
Position Basic Processor MIOP RMP MI PI Processor 

0 16 PFI PFI PFI PFI PFI PFI 

1 17 General register Bus Check Fault BCF Mapor access- Cluster bus Parity error on 
parity error (BCF) protect register parity error processor bus 

pari ty error 

2 18 Control register ·Control Check CCF Cluster bus Processor bus Operation 
parity error Fault (CCF) parity error parity error code error 

3 19 Internal basic processor Control Memory CMF Reserved Unrecognized Reserved 
bus pari ty error Fault (CMF) operation code 

4 20 Clusterbus parity error CMF I/o adapter ECE Reserved Reserved Reserved 

5 21 Processor-Detected MIE MIE Cluster bus Reserved Reserved 
Fault flag (PDF) sequence check 

fault 

6 22 Memory parity error Data/order Order Reserved Reserved Reserved 
indicatort typet 

7 23 Memory Interface Out indicatort Order Reserved Multiple error Reserved 
Error (MIE) typet 

8 24 Processor interface Contro I Memory Reserved Reserved Control Memory Reserved 
sequence check Fault (CMF) Fault (CMF) 
fault address bit 0 address bit 0 

9 25 Extended arithmetic CMF Reserved Reserved CMF Reserved 
~'"'_ .. '"' __ '"' _L __ L !'_ .. IL _1.1 I •• 'I address bit 1 ~"""''1'''''''''''' I """v """llv\,,,o~ I \..IV II UUUI t::>:> on I 

10 26 Basi c processor CMF Reserved Reserved CMF Reserved 
sequence check fau It address bit 2 address bit 2 

11 27 Successfu I instruc- CMF Reserved Reserved CMF Reserved 
tion retry address bit 3 address bit 3 

12 28 Control memory parity CMF Reserved Reserved CMF Reserved 
error (BPE module) address bit 4 address bit 4 

13 29 Control memory parity CMF Reserved Reserved CMF Reserved 
error (BPF module) address bit 5 address bit 5 

14 30 Control memory parity CMF Reserved Reserved CMF Reserved 
error (B PG modu Ie) address bit 6 address bit 6 

15 31 Control memory parity CMF Reserved Reserved CMF Reserved 
error (BPH module) address bit 7 address bit 7 

tThis is a 2-bit code indicating type of service call, as follows: 

Bits MIOP RMP -
6 7 Signifi cance Significance 
- -
0 0 Data In Sense 

0 1 Data Out Write 

1 0 Order In Read 

1 1 Order Out Control 

Appendix C 195 



Table C-2. Memory Unit Status Register 

Bit Position Fau Its Detected by Memory Unit: 

0-21 Fau It address snapshot 

22 Reserved 

23 Memory unit parity error 

24 Storage module selection error 

25 Address In parity error 

26 Data In parity error 

27 Write-lock memory storage parity error 

28 Port se I ect i on error 

29 Operation mode undefined 

30 Control sequence check fault error 

31 Multiple error 

196 Appendix C 



XEROX Publication Revision Sheet 

JANUARY, 1974 

CORRECTIONS TO XEROX 560 COMPUTER REFERENCE MANUAL 

PUBLICATION NO. 9030 76A, JANUARY, 1974 

Page 9 should be replaced with the page attached to this revision sheet. Page 10 is a backup page with no change. 
The revision bar in the margin of the page indicates that it is corrected information. 

XEROX@ is a trademark of XEROX CORPORATION. 90 30 76A-l (1/74) 



Y OYf'lV r'f'lrnf'lr<:>til"\n '''' ..... 1_'' --'t-'- .......... _ .. 
701 South Aviation Boulevard 
EI Segundo, California 90245 

Reader Comment Form 
We would appreciate your comments and suggestions for improving this publication. 

" r"~"" I 

}\t:I~UJ\ 

Publ ication No. I Rev. Letter I Tit I e I Current Date 

How did you use this publication? Is the material presented effectively? 

o Learning o Install ing 0 Sales o Fully Covered DWell o Well Organized o Clear Illustrated o Reference o Maintaining 0 Operating 

What is your overall rating of this publication? What is your occupation? 

o Very Good 0 Fair o Very Poor 

o Good o Poor 

Your other comments may be entered here. Please be specific and give page, column, and line number references where 
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form. 

I 

I Your Name & Return Address 

2190(12172) 

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.) 



~taple 

Fold 

Attn: Programming Publications 

Fold 

BUSINESS REPLY MAIL 
No postage stamp necessary if mailed in the United States 

Postage will be paid by 

Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

vU:lfJlt: 

First Class 
Permit No. 229 

EI Segundo, 
California 



701 South Aviation Boulevard 
EI Segundo, California 90245 
213679-4511 

XEROX 

XEROX® is a trademark of XEROX CORPORATION. 


	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	_01
	replyA
	replyB
	xBack

