File No. 5360-36
GC28-6646-7

Systems Reference Library

0S Release 21

IBM System/360 Operating System
Supervisor Services and Macro

Instructions

The title of this manual was formerly IBM System/360
Operating Supervisor Services. The descriptions of the
supervisor macro instructions formerly found in IBM
System/ 360 Operating System Supervisor and Data
Management Macro Instructions, GC28-6647 have been
added.

This manual describes how to use the services of the
supervisor, the macro instructions used to request
these services, and the linkage conventions used by the
control program to provide these services. Included in
the services of the supervisor are program management,
task creation and management, and main-storage
management.

Intended mainly for the programmer coding in
assembler language, this book is a guide to using the
macro instructions described. This book does not
discuss macro instructions used for graphics,
teleprocessing, optical readers, optical
reader-sorters, or magnetic character readers. These
macro instructions are discussed in separate
publications that are listed in the IBM System/360
Bibliography, GA22-6822.

Eighth Edition (September, 1974)

This edition is a publisher's revision of GC28-6646-6,
and incorporates TNL GN27-1419. This edition applies
to 0OS Release 21.7

This publication now contains the descriptions of
the supervisor macro instructions formerly contained in
Supervisor and Data Management Macro Instructions,
GC28-6647. 1In addition, technical changes and
clarifications have been made throughout the book.

The information in the book changes from time to time. Before using
this manual with IBM systems, consult the latest IBM 360 SRL Newsletter,
GN20-0360, for the editions that are current and applicable.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Publications, Department 636, Neighborhood
Road, Kingston, New York, 12401. All comments become the property of
IBM.

© Copyright International Business Machines Corporation 1967, 1968,
1970, 1971, 1972

This book is divided into two parts.
Section I, "Supervisor Services", provides
explanations and aids for using the
facilities available through the supervisor
by means of the macro instructions
described in Section II, "Macro
Instructions"”.

Section I is divided into five topics:
"Program Management," "Task Creation,"
"Task Management,®™ "Program Management
Services," and "Main-Storage Management."

The “Program Management"™ section
describes linkage conventions and ways that
the supervisor can assist you in linking
together the separate pieces of your
program.

The "Task Creation" section describes
how the system creates a task for you, and
how you can create other tasks (under MVT
or under MFT with subtasking). Basically,
it tells how to use the ATTACH macro
instruction.

The "Task Management"™ section deals with
communication among separate tasks and with
synchronization of one task with another.

The "Program Management Services"
section describes several miscellaneous
services that you can use in your programs.
It covers the ENQ and DEQ macro
instructions, timer services, communication
with the operator, abnormal termination and
dumps, and other miscellaneous services.

The "Main-Storage Management®™ section
describes how to acquire and release main
storage, how to share it with other tasks,
and how to specify which way it is to be
divided into hierarchies.

Section II contains the descriptions and
definitions of the supervisor macro
instructions available in the IBM
System/360 Operating System assembler
language. It provides applications
programmers coding the assembler language
with the information necessary to code the
macro instructions. The standard, list,
and execute forms of the macro instructions
are grouped, where applicable, for ease of
reference.

Appendix A describes message routing
procedures for multiple operator consoles.

PREFACE

Use of this book requires a basic
knowledge of the operating system and of
System/360 assembler language. Two books
that contain information about these
subjects are:

IBM System/360 Operating System

Introduction, GC28-6534

Assembler Lanquage, GC28-6514

If you are using the MVT version of the
control program with the time sharing
option (TSO), note that this book also
assumes that you understand how to use TSO.
Specifically, the book assumes that you are
familiar with the concepts discussed in the
following books:

IBM System/360 Operating System

Time Sharing Option Command Language,
GC28-6732, which describes the TSO
command language that a terminal user

- must use to request computing services.

Time Sharing Option Guide, GC28-6698,
which describes the concepts, features,
and capabilities of TSO.

Time Sharing Option Guide to Writing a
Terminal Monitor Program or a Command
Processor, GC28-6764, which describes
the programming features provided for
user-written terminal monitor programs,
command processors, and application
programs.

If you are using the operating system
without TSO, ignore the sections
"Intercepting Abnormal Termination of
Subtasks® and "Time Sharing Option (TSO)
Services."™ Also ignore the TSO, PSB, and
TJID operands of EXTRACT.

In the examples in Section I, the macro
instructions are coded in just enough
detail to make the examples clear. See
Section II for a complete description of
all the operands and options available with
any of the macro instructions discussed
here.

When other IBM manuals are referred to

in the text, only partial titles are given.
Here is a list of the complete titles and

iii

order numbers of all manuals referred to in
the text.

IBM System/360

Model 91 Functional Characteristics,

GA22-6907

Model 195 Functional Characteristics,

GA22-6943

Principles of Operation, GA22-6821

IBM System/360 Operating System

Advanced Checkpoint/Restart, GC28-6708

Job Control Language Reference,
GC28-6704

Linkage Editor and Loader, GC28-6538

Programmer's Guide to Debugging,
GC28-6670

Service Aids, GC28-6719

Storage Estimates, GC28-6551

Data Management Macro Instructions,
GC28-6647

System Programmer's Guide, GC28-6550

IBM Systen/370

iv

Principles of Operation, GA22-7000

SUMMARY OF CHANGES

Following is a list of programming changes that affect the

information in this publication.

Release 20

r 1
a Reason for Change Items Changed or Added !
{ Main Storage Hierarchy ATTACH, GETMAIN, LINK, LOAD, }
| Support |
: Time of Day Clock TIME ;
f II 272 EXTRACT |I
: STAE Improvement STAE :
: DXR Macro Instruction DXR, extended-precision :
l floating-point simulation J
Release 20.1

[Reason for Change Items Changed or Added 1
{ Time Sharing Option (TSO) ATTACH, DETACH, EXTRACT]
i ENQ Macro Instruction Addition of RET=CHNG operand i

Release 21

Reason for Change

Items Changed or Added

Generalized Trace Facility
(GTF)

Multiple—iine WTO Macro
Instruction

i na

GTRACE, use of the facility

WTO

bt e e e e e st —

CONTENTS

SECTION I: SERVICES « ¢« ¢ o o o o o o« o a s « a o o o a s o« « « =« » «» 1
Introduction . ¢ ¢ o o ¢ ¢ o ¢ ¢ o ¢ o 2 o e s o o o s s o o o a o o 1
Types of Services Available ¢ & ¢ ¢ ¢ ¢ o o o a o « « o« =« « « 1
Configurations of the Operating System « ¢ ¢ ¢« ¢ « ¢ « & « o« 2
PROGRAM MANAGEMENT < ¢ ¢ o o o o o o o o o o s o o o s s « o « o s« o 3
Initial Requirements . . . ¢ ¢ o ¢« ¢ ¢ ¢ « o o o o « o« o « o« o« » « o+ 3
Providing an Initial Base Register . . . « ¢ ¢ ¢ ¢ « o« « « « « « « « 3
Saving REgiSters . . o ¢ ¢ ¢ 4 ¢ ¢ ¢ o o o o o o o o o o s o o o « » b

The SAVE Macro Instruction . . ¢ ¢ ¢« ¢« o ¢ ¢ ¢ o ¢ o ¢« o « o« o« o« « 5

Providing @ Save AYEa . « ¢ « « « o « o« o o o o o o a o a o« o« o a « 5
Establishing a Permanent Base Register . . . ¢ ¢« ¢ o o ¢ o o« « o o « 1
Linkage Registers e 4 & s s * o s o 8 e ® s ° e o o o o« 1T
Acquiring the Information in the PARM Field of the EXEC Statement . . 7
Load Module Structure TYPES . « « « o « o o o o o o« o s s s o o o « o« 8
Simple Structure . . .« o ¢ 2 o o o o o s « o s s o o o o s« a s o « &« 9
Planned Overlay Structure « . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ « o o o o o o o« « « 9
DynamicC StrYUCLUXE . o« o o 2 « o o o o 2 a o o a s s o o o« « o« o« o« « « 9
Load Module EXECULiOn « « o o o « o « o o o o o o o o o o o o o« o« « « 9

Passing Control in a Simple Structure « ¢« ¢« &« &« = « « « 10
Passing Control Without Return + ¢ 2o &« 2 o o « 2« o« « « « « « 10
Initial RequirementsS . .« ¢ o o ¢ ¢ o ¢ o o o s o o « « =« o o« « « « 10
Passing CONtrol « ¢ ¢ ¢ ¢ ¢ 4 e 4t e h e e e s e e s e e e e e . .11
Passing Control with Return . . . ¢ ¢ ¢ 4 4o ¢ o ¢ ¢« o o« = o o s o « « 12
Initial RequirementsS . « ¢« o 2 o « o « o o o o o o o o o o « « « « 12
Passing Control . . « o ¢ o ¢ ¢ v 4« e 4 e e 4 o o e o s w = o o & o 12
Analyzing the Return .« ¢ ¢ ¢ ¢ ¢ & ¢ v o o <« o o o o o« o o« « o« « « 14
How Control is Returned . . . & ¢ ¢ o o« ¢ o ¢ 2« « o« o o o o o « « o« o« 15
Return to the Control Program . . e e o e e e = o e o o o 17
Passing Control in a Planned Overlay Structure o o e
Passing Control in a Dynamic Structure . . .
Bringing the Load Module Into Main Storage .
Load Module Location . . . « o o o s @
The Search for the Load Module c o e s e
Using an EXiSting COPY « « o = o o « o o o o o o o o o o o o o« « « 22
Using the LOAD Macro Instruction . ¢ ¢« o« o o o o o « « o o o« o « « 23
Passing Control With Return . . o & ¢ ¢ ¢ 4 ¢ o ¢ o o o o o o o o « « 24
The LINK Macro InsStruction . « ¢ ¢ o o o o o o o o o o o o« o « « o 24
Using the ATTACH Macro Instruction (MFT Without Subtasking) 26
Using CALL or Branch and Link . .« « ¢ ¢ o« ¢ o ¢ o o o o o o« o o« « « 26
How Control is Returned . . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o « »
Passing Control Without Return « .
Passing Control Using a Branch Instruction . . . « « ¢« « ¢ « « o « 29
Using the XCTL Macro Instruction « « . . '

TASK CREATION . ¢ o o ¢ o o o o o o s o a o o o o o« o o « o « « o « « 31
Creating the Task « ¢« ¢ ¢ o ¢ o o o o « s o o o o o a o o o « o « « « 31
Task Priority e e o o o e a4 o e @ e w = s @ & o o o « 32
Priority of the Job Step Task e e e o s o s s e e e o o s o o o o o o 32
Priority of Subtasks . .« « ¢ & ¢ ¢ ¢ o 4 o o o « o o o « « o« o« o« o« « 33

Time S1iCiNg .« o o o o o « o o o o « a s s o o s a o o o« o o« o o« « o« 34
MFT Systems Without Subtasking . .« ¢ « & ¢ ¢ ¢ ¢« ¢ ¢ ¢ o « « o « « « 34
MFT Systems With Subtasking . « ¢ ¢ ¢« ¢ ¢« ¢ e o« « o « o s o o« o « « « 35
MUT SYStEeMS « o o« o « 36

TASK MANAGEMENT « ¢ ¢ ¢ 2 o« « o 37
Task and Subtask Communications . . . « « ¢ o o« o o o 2 « o « « « o« « 38
Task Synchronization . . « ¢ ¢ ¢ ¢ & ¢ ¢ 4 ¢ o ¢« o o o o = « =« « « = 39
Manipulating Task Processing . « « « « « « « « o o s o« « s« o o« « « = 39

vii

PROGRAM MANAGEMENT SERVICES . ¢« ¢« « o o o o o s o o
Additional Entry Points « e o o e o .
Entry Point and Calling Sequence Identlflers . .
Using a Serially Reusable Resource « « « o =«
Naming the RESOUXrcCe .« « « « o « o o o« o« . .
Exclusive and Shared Requests
Processing the Request
Proper Use of ENQ and DEQ . « « ¢ o o o « o o o o o«
Duplicate Requests . . . ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ ¢ o .« .
Releasing Control of the Resource « . . .
Conditional and Unconditional Requests . . « « .« .
Avoiding Interlock &« « &« « o . c o o o =
Obtaining Information From the Task Control Block . .
Timing SEYVICES « ¢« v ¢ o o o o o o « o o o o o o o =

Date and Time of Day« o e e ¢ o o e o o
Timing Services on the IBM System/370 e o e e e o @
Date and Time Of DAY =« « ¢ o ¢ o « « o o o o « o o« «
Interval Timing « « ¢ ¢ ¢ o o ¢« o o o o o o o o o &
Writing to One or More Operator Consoles . . « . . .
Writing to the Programmer « « o .
Writing to the Hard Copy Log . + « « « &
Writing to the System 10g « « « ¢« « « o &
Message Deletion .« « ¢ « o « o o o o o o o o« o o o »
Operator Communication With A Problem Program
Generalized Trace Facility (GTF) Interface
Program Interruption Processing . « .« « « o« o « o o =
Program Interruption Control Area . . « « « « « o o «
Program Interruption Element . . . ¢ . ¢« &« ¢ o « o &
Register Contents . . « ¢« ¢ ¢ o ¢ o ¢ o o o o o o o «
Specifying an Attention Exit Routine
Precise and Imprecise Interruptions
Interruptions in the Models 91 and 195
Decimal Simulation in the Model 912
Extended-Precision Floating-Point Simulation
Extended Precision Division .
Division Process
Arithmetic Exceptions . . .
Calling the Simulator
Designing the EXIT Routine .
Abnormal Condition Handling
Intercepting Abnormal Termination of Tasks
Intercepting Abnormal Termination of Subtasks
The DUMP ¢ ¢ ¢ ¢ ¢ o o o « o o o o« o o o o o a s o «
ABEND and SNAP DUMPS « « « « 2 s o s o o o o « o o
Indicative DUMP « « <« o o & ¢ o o o o o o o o o o o =
Core Image DUMP « « o o « o o s o « o o« o s o o o o =

& s 8 o

MAIN-STORAGE MANAGEMENT . . ¢ ¢ o« «¢ ¢ o o o o o o o &
EXplicit REQUESTS 4 o o o o o o« 2 o « o o o o o o o
Specifying Lengths ¢« ¢ ¢ i ¢ ¢ ¢ ¢ o o o =
Types of Explicit Requests
Subpool Handling (in Mft Systems Wlthout Subtasklng)
Subpool Handling (in MFT Systems with Subtasking) . .
Subpool Handling {(in MVT Systems) . . « « & o o « o «
Main Storage Control . ¢ « ¢ ¢ & o o o o« o«
Subpools in Task Communication « . «
Implicit RequestsS . o ¢« ¢ ¢ o ¢ o o o o o o o »
Load Module Management . « « « « o « o o o =
Reenterable Load Modules . « « « ¢ o o o o o &
Reenterable Macro Instructions . . « « ¢ « o « o &
Nonreenterable Load Modules . . « o o o o o o o & «
Releasing Main Storage . . .« ¢ o & ¢ & o o « o o o «
Storage Hierarchies . . « o ¢ ¢ ¢ o o o c o o s o« o @

viii

e s & s ¢ o

¢ s & o

CHECKPOINT AND RESTART .« o o« 2 2 o o ¢ o o « o o o o = o o o« o o « « 91

SECTION II: MACRO INSTRUCTIONS . o ¢ ¢ « o « o « o« o o s o o« s« o« « « 92
Introduction .« ¢ o 2@ o & o o ¢ o o o o 2 o o o o o o o o a s o o o « 92
Operating System Configurations and Options . « .« « ¢ ¢« ¢ &« « 2 « « « 92
Coding ALdAS .« o ¢ « o o ¢ o o o o o o o o o o o o 2 e s s o o o o o & 93
Writing the Macro Instructions . . . ¢ &+ ¢ ¢ ¢ ¢« ¢ o o o o « « = « « 93
Continuation LiNeS .« ¢ o o o o o o ¢ o o o o o o o o o o« a = « « « o« 94
Additional Macro INStructioOnsS . . . o v 2 o 2 o 2 2 o a s o« o o« « « « 95

STANDARD, LIST, AND EXECUTE FORMS . . v 4« ¢ o « « o s s = o« o o« = » « 96
ABEND -- Abnormally Terminate a Job Step (MFT Without
Subtasking) < . . e o e e o & o e a e o o o o s o o « 97
ABEND -- Abnormally Terminate a Task (MVT, MFT With Subtasking) . 98
ATTACH -- Pass Control to a Program in Another Load Module (MFT
Without Subtasking) e e e o o o o @ e s e o o o e« « 99
ATTACH -- Create a New Task (MFT With Subtasking) e e e o o - o <101
ATTACH -- Create a New Task (MVT) ¢« ¢ ¢« ¢ o « o « « « « 2108
ATTACH == List FOIM « ¢ « o « o o o o « « o o s o« o o o « o« o & 2109

ATTACH —— EXeCUte FOXIM =« 2 2 « 2 o 2 « o« o« o« a o o« o« o o« « « « 2110
CALL -- Pass Control to a Control Section . « « ¢« &« ¢ ¢ o « « « 2112
CALL —— LiSt FOIXTM 2« 2 « o o o o« o o o« o o o s 2 s o« o o« « « « « 2113
CALL -- Execute Form . . e o s e . <114

CHAP -- Change Dispatching Priority (MFT without Subtasking) . <115
CHAP -- Change Dispatching Priority (MVT, MFT With Subtasking) .116
CHKPT -- Take Checkpoint for Restart Within a Job Step 117
CHKPT —- LiSt FOXM . ¢ o o o« o o o o « « o o« o s o o o o « o« « 120

CHKPT -- Execute Form« . . e e e o o o o o o <121
DELETE -- Relinquish Control of a Load Module e e e e o o o o o 2122
DEQ -- Release a Serially Reusable Resource . . « . « . . « . . .123
DEQ —— LisSt FOXM . o« + « =« o o 2 a s o a s s o« « o o o« o« o « « 2125
DEQ -- Execute Form « . e e o s o o <126

DETACH -- Delete a Subtask (MFT Without Subtasking) e o e o o o 127
DETACH -- Delete a Subtask (MFT With Subtasking)128
DETACH -- Delete a Subtask (MVT) <2129
DOM -- Delete Operator Message (Without the Multiple Console

Support (MCS) Option) e s o o o e s e s s o e o o &« <130
DOM —- Delete Operator Message (W1th the Multiple Console

Support (MCS) Option) « ¢ ¢ +¢ ¢ v ¢ ¢ o o o o o o o« « o « « « » +131
DXR -- Divide Extended Register . . . ¢ ¢ ¢ o ¢ o« o « o o o o« « 2132

ENQ -- Request Control of a Serially Reusable Resource133
ENQ == LisSt FOXM =+ 4« +¢ o o« o« o o o o o s o o s s s =« o o « o « 2136
ENQ -- Execute Form e 4 o e o e o o o @ . . o 137

EXTRACT —-- Provide Information From TCB Fields (MFT Without
Subtasking) « o o s o o e e o o . . - o« o . .138
EXTRACT -- Provide Information From TCB Fields (MVT, MFT With
Subtasking) .« « o o ¢ o 4 o 4 o o o o o o o s s o o s o e s o & 2139
EXTRACT -= LiSt FOXM =« o o o o o o s o o o o a o« o o o o« o« « o« <182
EXTRACT -- Execute Form . . . « . « « « . e e o s o o o o 2143
FREEMAIN -- Release Allocated Main Storage (MFT) e o o o o « o <1lU4
FREEMAIN -- Release Allocated Main Storage (MVT)1l46
FREEMAIN ~-- LisSt FOYM . . <« « o o o o o a o o o« o o o o o« o« « o« 148
FREEMAIN -- Execute Form e o s a e o o s o e« o & S1049
GETMAIN -- Allocate Main Storage (MFT) e e o o o e o o o« o« o o <150
GETMAIN -- Allocate Main Storage (MVT) ¢ ¢« ¢ o « « « <« .152
GETMAIN —— LiSt FOXM . o & o o o 2 o « « « o s o« o « a s o« « =« «155

GETMAIN -— ExeCUte FOIXM « « 2 2 o « o o o o « o« s s « o« « « = « 2156
GTRACE —-- Recoxrd Trace Data@ - « o« « o « o = « « s« a = o« « « « « «157
GTRACE —— List FOXmM . +« o o « ¢ o o o o o s o o« s s s s o o« o« » <159
GTRACE -- Execute Form e« o o o o o s a s <160

IDENTIFY -- Add an Entry Point (MFT Without Identify Option) . .161
IDENTIFY -- Add an Entry Point (MFT With Identify Option, MVT). .162
LINK -- Pass Control to a Program in Another Load Module164
LINK —— LiSt FOYM o« « ¢ & ¢ o o o o o o o o s o o o o« o o o« » « 2166

ix

LINK -- Execute Form . . . « o o = « o e e o o « o« o 2167
LOAD -- Bring a Load Module Into Maln Storage e o e o o e = o « <169
POST -- Signal Event Completion < ¢« ¢« ¢« ¢ & ¢ ¢ « « « . 171
RETURN —- Return Control . . . & o ¢ ¢ o ¢ v o o o o o o o « o« 172
SAVE -- Save Register Contents . « . ¢ o ¢ ¢ ¢ o ¢ o o o « « « <173
SEGLD -- Load Overlay Segment and Continue Processing (MFT) . . .174
SEGLD -- Load Overlay Segment and Continue Processing (MVT) . . .175
SEGWT -- Load Overlay Segment and Wait . . ¢« ¢ ¢« ¢ ¢ ¢ o « « « 176
SNAP -- Dump Main Storage and Continue (MPT) « . . .177
SNAP -- Dump Main Storage and Continue (MVT) « . . 179
SNAP —— LiSt FOIM « « o ¢ o o o 2 o o o o o o a a o« « o« « « « « 2181
SNAP -— ExXecute FOIM .« . ¢ o« « ¢ ¢ o o o o o o o o o o o o o« « 182
SPIE -- Specify Program Interruption Exit . . . « . « « « « . . .184
SPIE ——- LiSt FOXM . « o ¢ o o o o o o o o o « o o « o o o o « « «186
SPIE -— EXecute FOXM « « ¢ o o o o o o o o o o o o o o » o« « « +187
STAE -- Specify Task Abnormal EXit . . ¢« ¢ ¢ ¢ ¢ o « o « o« « « 188
STAE —— LiSt FOXM . o « 2 ¢ o o o o 2 o a o o o« o« o o » « o « « #2191
STAE -—- Execute Form « o o o o o o a-e o o 2192
STATUS -- Change Subtask Status (MVT only) . . - .193
STIMER -- Set Interval Timer (MFT Without Interval Tlmer Optlon) 194
STIMER -- Set Interval Timer (MFT With Interval Timer Option) . .195
STIMER -- Set Interval Timer (MVT) . . . ¢ ¢ o « o « o o « o o« 2197
TIME -- Provide Date (MFT Without Timer Option)199
TIME -- Provide Time and Date (MFT With Timer Option, MVT) . . .200
TTIMER -- Test Interval Timer (MFT Without Interval Timer
Option) e o o s e e o s e e o e e o s s o o v e o 2202
TTIMER -- Test Interval Timer (MFT With Interval Timer Option,
MVT) © e o o o e e e a o e o s o o s s o e o o o o o 203
WAIT -- Wait for One or More EventsS . . ¢ o ¢« o o o « o o o « » 204
WAITR -- Wait for One or More Events« «. ¢« « « « « « « . 2205
WEL ——- Write tO LlOg « « o o o o o « o « o o o o« « s o o« o« « o « 2206
WTL —— List FOXM =« « « o« o o o o o s o « s s a s o « o o o o« « 2207
WTL -- Execute Form . . . « o o « o o .« . « o o 208
WTO -- Write to Operator (Wlthout Multlple Console Support) e + 209
WTO -- Write to Operator (With Multiple Console Support)211
WPO —— LisSt FOXM . o o o o o o « o o o « o « o o o o o« « s« o« o« 2213
WPO —— EXECUte FOIM « o o o o « o o o o o o o o o o « o o« « « « o214
WITOR —— Write to Operator With Reply (Without Multiple Console
Support)« o e e e o o o e o o o 4 e o o s o o o 215
WPOR —-- Write to Operator With Reply (With Multiple Console
SUPPOTL) ¢ ¢ ¢ o 4 o o o o o o o o 2 o o o o s o e o o o « o« « 2216
WIOR —— List FOXM . ¢ ¢ o o ¢ o o o o o o o o o« a s o o o o o« « 2217
WIOR == ExXeCUte FOXM =« ¢ o « o o o o o o o o « s o o o o « « =» 2218
XCTL -- Pass Control to a Program in Another Load Module219
XCTL == LisSt FOIM .« v « o« o o « o o o o o o s o o o o o s o o o 221
XCTL =— ExecUte FOXM .« o o o o o o o o o o o o o s « o o o o o 222
APPENDIX A: MESSAGE ROUTING FOR MULTIPLE OPERATOR CONSOLES224
ROUting COAES . v ¢ ¢ 4 o o 2 o o o o o o a o s s o o s s o o o o « 2224
Descriptor Codes e e 4 e o 2 e 2 e e e o o o o o o o o <225
Operands for Use by the\System Programmer . . « o o o« o o o o o o o 226
Summary Of Operands . . « o ¢ ¢ ¢ 4 ¢ o o o o o o o s o s o « o o « <230
INDEX &« + o « o ¢ o o =% o o o « o o o o o a a s o« a s a = o o o o o «235

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

DCB operand

Figure

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

ILLUSTRATIONS

Summary of characteristics and available options
Ccontrol section addressability . . . « « « . . .
Internal entry point addressability e o o o o @
Save area format ¢ ¢ e . . .
Saving a range of registers . . e e e e = e o
Saving registers 5-10, 14, and 15 « e e e e e e
Nonreenterable save area chaining e e e e o e
Reenterable save area chaining
Acquiring PARM field information
Load module characteristics e e e o o o o e o o
Passing control in a simple structure
Passing control with a parameter list o« e o o
Passing control with return e o e s o o o e o o
Passing control with CALL . « ¢ ¢ ¢ ¢ « ¢ o« o o «
Test for normal return ¢ ¢ .+ ¢« « o o .
Return code test using branching table
Establishing a return code & ¢« « ¢ o o« &
Use of the RETURN macro instruction e e e o o
RETURN macro instruction with flag

.
.
s s s e

Search for module, EP or EPLOC operands with DCB=0 or

omitted e e e o e e e o @ e e e e s o o @

Search for module, EP or EPLOC operands with DCB operand

specifying private 1library . . ¢« ¢ ¢ ¢ ¢ ¢ 4 ¢ ¢ ¢ o o o o

Figure
Figure

22.
23.

library .

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figqure
Figure
Figure
Figure
Figure
Figure
75, 85,
Figure
Figure
Figure

24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.
42,
43.
uy4,
45,
46.

and

47.
48.
49.

simulator

Figure
Figure
Figure
Figure
Figure

50.
51.
52.
53.
54.

Search for module using DE operand o«

e o o

. -

Use of the LINK macro instruction with the jOb or llnk

Use of the LINK macro instruction with a private library

Use of the BLDL macro instruction
The LINK macro instruction with a DE operand . .
Misusing control program facilities
Determining partition dispatching priorities .
Task hierarchy . « ¢ ¢« ¢ ¢ ¢ ¢ o o o« o o o « =
Event control block . . « «
ENQ macro instruction processing .
Interliock condition c o o s s e
Two requests for two resources . . . « « « .
One request for two resources « e e e e e e e
Day of year processing . . « .« « ¢« ¢ ¢ ¢ o o . .
Interval timing « « ¢ ¢ o o o o o o o o o o « « «
Writing to the operator . . . « o o s+ e o =
Writing to the operator with a reply e o e o o @

Using WTO and WTOR to write messages to the programmer

Command input buffer contents « . . .
Specifying the GTRACE macro instruction
Program interruption control area
Use of the SPIE Macro Instruction e o e o & o
Program interruption element
Interruption code in the old program status word

Precise interruptions in IBM System/360 Models 65,

91, and System/370 Models 165 and 195
Summary of program interruptions

67,

* o o

Calling the extended-precision floating-point simulator

Return codes from the extended-precision floating-

. e o o o o . o o . . . e e . s e e e e o o e o

Interruption codes returned by the simulator . .
Abnormal condition detection . ¢« « ¢« « ¢ & o o
Use of STAE macro instruction « « .« .
Work area for STAE exit routine« « « « . .
Use of the GETMAIN macro instruction

point

vooaonUnueEsrWN

xi

Figure 55.
Figure 56.

instruction

Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
actions .

Figure 66.
message .

Figure 67.
Figure 68.
Figure 69.
Figure 70.

xii

Main-storage control e ¢ o o s o @
Using the list and the execute forms of the DEQ macro
Summary of characteristics and available options « o =
Continuation CcoOding « « « « ¢ ¢ o o o o o « o o o o o
DEQ macro instruction return codes . . « <« . ¢« ¢ o o .
Location of return codes in main storage
ENQ macro instruction return codes . « « « ¢ ¢ ¢ o o .
Location of return codes in main storage
EXTRACT answer area field order . . . « ¢ ¢ ¢ ¢ o o o &
Program Interruption Control Area . . « . . . « o o o
Routing/descriptor code combinations and resultlng
Maximum 'text' field characters in a multiple-Line WTO
Bit definitions for MSGTYP=Y . . . ¢ o ¢ o ¢ o o o« o« «
MCSFLAG parameterS . ¢ o« o o o « o o o o o o o o o o @
ROUTCDE, DESC, and MSCTYP combinations
Summary Of operands « « « « ¢ ¢ ¢ ¢ o o o e o o e o o

.124
124
<135
.135
141
.185

.209

.212
.227
.228
.229
.230

1.1

SECTION .I: SERVICES

INTRODUCT ION

The supervisor provides the resources that your programs need in such

a way that at any given time, as many resources as possible are in use.
By using certain macro instructions, by specifying certain JCL parame-
ters, and by organizing your program in certain ways, you can direct the
supervisor as it goes about this job. This book tells you how to do it.

TYPES OF SERVICES AVAILABLE

The kinds of services you can request from the supervisor can be

classified as follows:

e Program Management: Most programs are divided into segments. When

these segments are separate load modules, the supervisor can be used
to help them communicate with each other.

The section of this book called "Program Management" discusses save
areas, addressability, and passage of control from one segment of a
program to another.

Task Management: In some configurations of the operating system,
units of work called tasks can compete with each other for
resources.

You can change your program's priority, break it into smaller units
that compete with each other, and obtain certain information about
how your tasks are progressing. The "Task Management®™ and "Task
Creation" sections of this book tell you how.

Main-Storage Management: Frequently, a program needs additional
main storage for a particular requirement, such as for save areas.
You can use main-storage management services to dynamically obtain
additional main storage within your region or partition (an explicit
request), and have the storage returned for other use when you no
longer need it.

When you request the use of a subtask or different load module, via
the appropriate macro instruction, main storage management allocates
space for the requested program (an implicit request) if sufficient
main storage is available.

The services available for obtaining and freeing, and for sharing
main storage among several tasks are described in the "Main Storage
Management"™ section of this book.

Miscellaneous Services: The supervisor has facilities for providing
dumps of main storage, communicating with the operator, handling
abnormal conditions (such as program checks), allocating serially
reusable resources, and timing events. The supervisor also provides
a service for use with the time sharing option (TSO) which allows
you to specify an attention exit routine. These services are dis-
cussed in the "Program Management Services" section.

Section I: Services 1

CONFIGURATIONS OF THE OPERATING SYSTEM

This book covers two major configurations of the operating system:
the operating system that provides multiprogramming with a fixed number
of tasks (MFT), and the operating system that provides multiprogramming
with a variable number of tasks (MVT). Unless otherwise indicated in
the text, the descriptions in this section apply to all configurations
of the operating system; when differences arise because of operating
system options, these differences are explained.

A brief description of the configurations of the operating system is
given in Figure 1. This table does not attempt to cover all of the
options available in the operating system; it only summarizes the
options that affect the material covered in this manual.

r T T 1
| | MET | MVT |
¢ —=——=—i t :
Brief	Priority Scheduler, one	Priority Scheduler, one or
Description	(loxr, optionally, more than	more tasks per job step, 1
jone) task per job step, 1	to 15 jobs processed con-	
	to 15 jobs processed con-	currently
	currently	
t t ¢ {		
Attach	Optional	Standard
L 4 1 d		
¥ 1]] 1		
Identify	Optional	standard
[N i1 1]		
r 1 L) L]		
Timexr	Optional	standard
L 1 4		
1 3 T T 1		
Intexrval Timer	Optional	Standard
k 1 + !		
Multiple	Optional	Optional
Console		
Support I		
b t + !		
Time Sharing	Not Available	Optional
L L L]

Figure 1. Summary of characteristics and available options

2 Supervisor Services

2.5

PROGRAM MANAGEMENT

This section discusses the requirements for designing programs to be
processed by the IBM System/360 Operating System. Included here are the
procedures required when receiving control from the control program, the
program design facilities available, and the conventions established for
use in program management.

This discussion presents the conventions and procedures used by
called and calling programs. Each program given control during the job
step is initially a called program. During the execution of that pro-
gram, the services of another program may be required, at which time the
first program becomes a calling program. For example, the control pro-
gram passes control to program A which is, at that point, a called pro-
gram. During the execution of program A, control is passed to program
B. Program A is now a calling program, program B a called program.
Program B eventually returns control to program A, which eventually
returns control to the control program. This is one of the simpler
cases, of course. Program B could pass control to program C, which
passes control to program D, which returns control to program C, etc.
Each of these programs has the characteristics of either a called or
calling program, regardless of whether it is the first, fifth or twen-
tieth program given control during a job step.

The conventions and requirements that follow are presented in terms

of one called and one calling program; these conventions and require-
ments apply to all called and calling programs in the system.

INITIAL REQUIREMENTS

The following paragraphs discuss the procedures and conventions to be
used when a program receives control from another program. Although the
discussion is presented in terms of receiving control from the control
program, the procedures and conventions apply as well when control is
passed directly from another processing program. If the requirements
presented here are followed in each of the programs used in a job step,
the called program is not affected by the method used to pass control or
by the identity of the program passing control.

PROVIDING AN INITIAL BASE REGISTER

When control is passed to your program from the control program, the
address of the entry point in your program is contained in register 15.
This address can be used to establish an initial base register, as shown
in Figure 2 and Figure 3. In Figure 2, the entry point address is
assumed to be the address of the first byte of the control section; an
internal entry point is assumed in Figure 3. Since register 15 already
contains the entry point address in both examples, no register loading
is required.

.
| PROGNAME CSECT I
| USING #*,15 |

J

Figure 2. Control section addressability

Program Management 3

r
|
| PROGNAME DS OH
| USING *,15
!

e oo

b o et e s g

Figure 3. Internal entry point addressability

SAVING REGISTERS

2.6 The first action your program should take is to save the contents of
the general registers. The contents of any register your program will
modify must be saved, along with the contents of registers 0, 1, 14, and
15. The latter registers may be modified, along with the condition
code, when system macro instructions are used to request data management
OXr supervisor services.

2.7 The general registers are saved in an 18-word area provided by the
control program; the format of this area is shown in Figure 4. When

r T 1
| Word | Contents |
t ¢ 4
| 1 | Used by PL/I language program |
L 4 4
L] 1 |
| 2 | Address of previous save area |
| | (stored by calling program) |
1 i 4
) T R
| 3 | Address of next save area |
| | (stored by current program) |
[IR 4
) L})
| 4 | Register 14 (Return address) |
L 4 4
1) 1
| 5 | Register 15 (Entry Point address) |
b t 4
| 6 | Register 0 |
¢ e 4
| 7 | Register 1 |
b o 4
| 8 | Register 2 |
F o 4
| 9 | Register 3 |
b + {
| 10 | Register 4 |
b { 4
| 11 | Register 5 |
: 4
| 12 | Register 6 |
b S 4
| 13 | Register 7 |
b {
| 14 | Register 8 |
’ t 4
| 15 | Register 9 |
! t 4
| 16 | Register 10 |
F e 4
{ 17 | Register 11 |
b e '
| 18 | Register 12 |
L L]

Figure 4. Save area format

4 Supervisor Services

2.10

control is passed to your program from the control program, the address
of the save area is contained in register 13. As indicated in Figure 2,
the contents of each of the registers must be saved at a predetermined
location within the save area; for example, register 0 is always stored
at word 6 of the save area, register 9 at word 15. The safest procedure
is to save all of the registers; this ensures that later changes to your
program will not result in the modification of the contents of a regist-
er that has not been saved. :

To save the contents of the general registers, a store-multiple
instruction, such as STM 14,12,12(13), can be written. This instruction
places the contents of all the registers except register 13 in the prop-
exr words of the save area. (Saving the contents of register 13 is
covered later.) If the contents of only registers 14, 15, and 0-6 are
to be saved, the instruction would be STM 14,6,12(13).

THE SAVE MACRO INSTRUCTION

The SAVE macro instruction, provided to save you coding time, results
in the instructions necessary to store a designated range of registers.
An example of the use of the SAVE macro instruction is shown in
Figure 5. The registers to be saved are coded in the same order as they
would have been designated had an STM instruction been coded. A further
use of the SAVE macro instruction is shown in Figure 6. The operand T
specifies that the contents of registers 14 and 15 are to be saved in
words 4 and 5 of the save area. The expansion of this SAVE macro
instruction results in the instructions necessary to store registers
5-10, 14, and 15.

When you use the optional identifier name operand, you can code the
SAVE macro instruction only at the entry point of a program. This is
because the code resulting from the macro instruction with this operand
requires that register 15 contain the address of the SAVE macro
instruction.

PROVIDING A SAVE AREA

If any control section in your program is going to pass control to
another control section and receive control back, your program is going
to be a calling program and must provide another save area. Providing a
save area allows the program you call to save registers without regard
to whether it was called by your program, another processing program, oOr
by the control program. If you establish beforehand what registers are
available to the called program or control section, a save area is not
necessary, but this is poor practice unless you are writing very simple
routines.

PROGNAME SAVE (14,12)
USING PROGNAME, 15

o —n sy
TR ——

Figure 5. Saving a range of registers

.
| PROGNAME SAVE (5,10),T

| USING PROGNAME,15
|

L

T —

Figure 6. Saving registers 5-10, 14, and 15

Program Management 5

2.12

Whether or not your program is going to provide a save area, the
address of the save area you used must be saved. You will need this
address to restore the registers before you return to the program that
called your program. If you are not providing a save area, you can keep
the save area address in register 13, or save it in a fullword in your
program. If you are providing another save area, the following proce-
dure should be followed:

e Store the address of the save area you used (that is, the address
passed to you in register 13) in the second word of the new save
area.

e Store the address of the new save area (that is, the address you
will pass in register 13) in the third word of the save area you
used.

The reason for saving both addresses is discussed more fully under the
heading "The Dump.®" Briefly, save the address of the save area you used
so you can find the save area when you need it to restore the registers;
save the address of the new save area so a trace from save area to save
area is possible.

Figure 7 and Figure 8 show two methods of obtaining a new save area
and of saving the save area addresses. In Figure 7, the registers are
stored in the save area provided by the calling program (the control
program). The address of this save area is then saved at the second
word of the new save area, an 18 fullword area established through a DC
instruction. Register 12 (any register could have been used) is loaded
with the address of the previous save area. The address of the new save
area is loaded into registexr 13, then stored at the third word of the
old save area.

In Figure 8, the registers are again stored in the save area provided
by the calling program. The entry point address in register 15 is
loaded into register 5, which is declared as a base register. The con-
tents of register 1 are saved in another register, and a GETMAIN

13) |
| PROGNAME STM 14,12,12(13) |
| USING PROGNAME,15 |
I ST 13, SAVEAREA+4 |
| LR 12,13 |
| LA 13,SAVEAREA |
| ST 13,8(12) |
I .- |
| SAVEAREA DC 18A(0) |
L]

Figure 7. Nonreenterable save area chaining

13 1
| PROGNAME SAVE (14,12) {
1 LR 5,15 [
1 USING PROGNAME,5 |
| LR 3,1 |
1 GETMAIN R,LV=72 |
1 ST 13,4(1) |
| ST 1,8(13) |
[LR 13,1 |
| eee 1
L J

Figure 8. Reenterable save area chaining

6 Supervisor Services

macro instruction is issued. The GETMAIN racro instruction (discussed
in greater detail under the heading "Main Storage Management") requests
the control progranm to allocate 72 bytes of main storage from an area
outside your program, and to return the address of the area in register
1. The addresses of the new and old save areas are saved in the estab-
lished locations, and the address of the new save area is loaded into
register 13.

ESTABLISHING A PERMANENT BASE REGISTER

If your program does not use system macro instructions and does not
pass control to another program, the base register established using the
entry point address in register 15 is adequate. Otherwise, after you
have saved your registers, establish base registers using one or more cf
registers 2-12. Register 15 is used ky koth the control program and
your program for other purposes.

LINKAGE REGISTERS

Registers 0, 1, 13, 14, and 15 are known as the linkage reqgisters,
and are used in an established manner Ly the control program. It is
good practice to use these registers in the same way in your tprograr.

As noted earlier, registers 0, 1, 14, and 15 may ke nmodified when system
macro instructions are used; registers 2-13 remain unchanged.

REGISTERS 0O AND 1: Registers 0 and 1 are used to pass parameters to the
control program or to a called program. The expansion of a system macro
instruction results in instructions required to load a value into
register 0 or 1 or both, or to load the address of a parameter list into
register 1. The control program also uses register 1 to pass parameters
to your program or to the program you call. This is why the contents of
register 1 were loaded into register 3 in Figure 8. For mcre informa-
tion on parameter 1lists see "Passing Control", below.

REGISTER 13: Register 13 contains the address of the save area you have
provided. The control program may use this save area when processing
requests you have made using system macro instructions. A program ycu
call can also use this save area when it issues a SAVE macro
instruction.

REGISTER 14: Register 14 contains the return address of the program
that called you, or an address within the control program to which ycu
are to return when you have completed processing. The expansion of most
system macro instructicns results in an instruction to locad register 14
with the address of your next sequential instruction. A BR 14 instruc-
tion at the end of any program will return control to the calling prc-
gram as long as the contents of register 14 have not been altered.

REGISTER 15: Register 15, as you have seen, contains an entry point
address when control is passed to a program from the control program.
The entry point address should alsc ke contained in register 15 when ycu
pass control to another rrogramw. In addition, the expansions of some
system macro instructions result in the instructions to load into
register 15 the address of a parameter list to ke passed to the control
program. Register 15 is also used to pass a return code to a calling
program.

ACQUIRING THE INFORMATION IN THE PARM FIELL OF THE EXEC STATEMENT

The manner in which the control program passes the information in the
PARM field of your EXEC statement is a good example of how the control
program uses a parameter register to pass information. When control is

Program Management 7

passed to your program from the control program, register 1 contains the
address of a fullwerd on a fullword koundary in your area of main
storage (refer to Figure 9). The high order kit (kit 0) of this word is
set to 1. This is a convention used by the control program to indicate
the last word in a variable-length parameter list; you must use the same
convention when making requests to the control program. The low-order
three bytes of the fullword contain the address of a two-byte length
field on a halfword boundary. The length field contains a binary count
of the number of bytes in the PARM field, which immediately follows the
length field. If the PARM field was omitted in the EXEC statement, the
count is set to zero. To prevent rossikble errors, the count should
always be used as a length attribute in acquiring the information in the
PARM field. 1If your program is not going to use this information imme-
diately, you should load the address from register 1 into cne of regis-
ters 2-12 or store the address in a fullword in your program.

LOAD MODULE STRUCTURE TYPES

Each load module used during a jok step can be designed in one of
three load module structures: simple, planned overlay, or dynamic. A
simple structure does not pass control to any other load modules during
its execution, and is brought into main storage all at one time. A '
planned overlay structure may, if necessary, pass control to other load
modules during its execution, and it is not brought into main storage
all at one time. 1Instead, segments of the load module reuse the same
area of main storage. A dynamic structure is brought into main storage
all at one time, and passes control to other load modules during its
execution. FEach of the load modules to which control is passed can be
one of the three structure types. '

Figure 10 summarizes the characteristics of these locad module
structures.

The following paragraphs cover the advantages and disadvantages of
each type of structure, and discuss the use of each.

Register

! \

4 Bytes
T
1
L
1
4
Full-Word
Boundary
Length Field PARM Field
Tk — e -~ D)
2 Bytes 0 to 100 Bytes
Half-Word
Boundary

Figure 9. Acquiring PARM field information

8 Supervisor Services

| e T - - T 1
| | | Passes Control to Other |
| Structure Type | Loaded All at One Time | Load Modules |
f—=- e e —— . i
| Simple | Yes | No |
b —- 1 - - — -
| Planned Overlay | No | Optional |
I +-—- -—- e i
| Dynamic | Yes | Yes |
[1 e 1 ——— _—

Figure 10. Load mcdule characteristics

SIMPLE STRUCTURE

A simple structure consists of a single load module produced by the
linkage editor. The single load module contains all of the instructiocns
required, and is brought into the wain storage all at one time by the
control program. The simple structure can be the most efficient of the
three structure types because the instructions it uses to pass control
do not require contrcl program intervention. However, when a program is
very large or complex, the main storage area required for the load
module may exceed that which can be reasonably requested. (Main storage
considerations are discussed under the heading "Main Storage
Management.")

PIANNED OVERLAY STRUCTURE

A planned overlay structure consists of a single load module produced
by the linkage editor. The entire load module is not brought into main
storage at once; different segments of the load module use the same area
of main storage. The planned overlay structure, while not as efficient
as a simple structure in terms of execution speed, is more efficient
than a dynamic structure. When using a planned overlay structure, con-
trol program assistance is required to locate and load portions of a
single load module in a library; in a dynamic structure, many load
modules in different libraries may need to be located and loaded in
order to execute an equivalent program.

DYNAMIC STRUCTURE

A dynamic structure requires more than cne load module during execu-
tion. Each load module required can operate as either a simple struc-
ture, a planned overlay structure, or another dynamic structure. The
advantages of a dynamic structure cver a rlanned overlay structure
increase as the program becomes more complex, particularly when the log-
ical path of the program depends on the data being processed. The load
modules required in a dynamic structure are brought into main storage
when required, and can be deleted from main storage when their use is
completed.

LOAD MODULE EXECUTION

Depending on the configuration of the operating system and the macrc
instructions used to pass control, executicn of the load modules is
serial or in parallel. Execution of the load modules is always serial
in an operating system with MFT without suktasking; there is only one
task in the job step. Execution is also serial in an operating system

Program Management 9

10

with MFT with subtasking or MVT, unless an ATTACH macro instruction is
used to create a new task. The new task competes for control indepen-
dently with all other tasks in the system. The load module named in the
ATTACH macro instruction is executed in parallel with the load module
containing the ATTACH macro instruction. The execution of the load
modules is serial within each task.

The following paragraphs discuss passing control for serial execution

of a load module. Creation and management of new tasks is discussed
under the headings "Task Creation" and "Task Management." ‘

PASSING CONTROL IN A SIMPLE STRUCTURE

There are certain procedures to follow when passing control to an
entry point in the same load module. The established conventions to use
when passing control are also discussed. These procedures and conven-
tions provide the framework around which all program interface is built.
Knowledge of the information contained in the section "Addressing --
Program Sectioning and Linking” in the Assembler Language publication is
required.

PASSING CONTROL WITHOUT RETURN

A control section is usually written to perform a specific logical
function within the load module. Therefore, there will be occasions
when control is to be passed to another control section in the same load
module, and no return of control is required. An example of this tyre
of control section is a "housekeepring" routine at the beginning of a
program which estaklishes values, initializes switches, and acquires
buffers for the other control sections in the program. The following
procedures should ke used when passing control without return.

Initial Requirements

Because control will not be returned to this control section, you
must restore the contents of register 14. Register 14 originally con-
tained the address of the location in the calling program (for example,
the control program) to which control is to ke passed when your program
is finished. Since the current control section will not make the return
to the calling program, the return address must ke passed to the comntrol
section that will make the return. In addition, the contents of regis-
ters 2-12 must be unchanged when ycur rrogram eventually returns con-
trol, so these registers must also be restored.

If control were being passed to the next entry point from the control
program, register 15 would contain the entry point address. You should
use register 15 in the same way, so that the called routine remains
independent of which program passed control to it.

Register 1 should be used to pass parameters. A parameter list
should be estaklished, and the address of the list placed in register 1.
The parameter list should consist cf consecutive full words starting on
a fullword boundary, each fullword containing an address to be passed to
the called control section in the three low order kytes of the word.

The high-order bit of the last word should be set to 1 tc indicate the
last word of the list. The syster convention is that the 1list contain
addresses only. (The term "address parameters" is also used in this
publication to describe entries in a parameter list.) You may, of
course, deviate from this convention; however, when you deviate from any

Supervisor Services

system convention, you restrict the use of your programs to those pro-
grammers who are aware of your special conventions.

Since you have reloaded all the necessary registers, the save area
that you used is now available, and can ke reused ky the called control
section. You pass tnhe address of the save area in register 13 just as
it was passed to you. By passing the address of the old save area, you
save the 72 kytes of main storage area required for a second, and unne-
cessary, save area.

Passing Control

The common way to pass control ketween one control section and an
entry point in the same load module is to load register 15 with a V-tyge
address constant for the name of the external entry point, and then to
branch to the address in register 15. The external entry roint must
have been identified using an ENTRY instruction in the called control
section if the entry point is not the same as the control section name.

An example of proper register loading and control transfer is shown
in Figure 11. 1In this example, no new save area is used, so register 13
still contains the address of the old save area. It is also assumed for
this example that the control section will pass the same parameters it
received to the next entry point. First, register 14 is reloaded with
the return address. Next, register 15 is loaded with the address cf the
external entry point NEXT, using the V-tyre address constant at the
location NEXTADDR. Registers 0-12 are relcaded, and control is passed
by a branch instruction using register 15. The control section to which
control is passed contains an ENTRY instruction identifying the entry
point NEXT.

An example of the use of a parameter list is shown in Figure 12.
Early in the routine the contents of register 1 (that is, the address cf
the fullword containing the PARM field address) were stored at the full-
word PARMALCDR. Register 13 is loaded with the address of the o0ld save
area, which had been saved in word 2 of the new save area. The contents
of register 14 are restored, and register 15 is loaded with the entry
point address.

The address of the list of parameters is loaded into register 1.
These parameters include the addresses of two data control blocks (DCEs)
and the original register 1 contents. The high-order bit in the last
address parameter (PARMADDR) is set to 1 using an CR-immediate instruc-
tion. The contents of registers 2-12 are restored. (Since one of these
registers was the Lase register, restoring the registers earlier would
have made the parameter list unaddressakle.) A kranch instruction using
register 15 passes control to entry point NEXT.

r T L]
Program 1	Program 2
...	
L 14,12(13)	CSECT
[L 15,NEXTADDR	ENTRY NEXT
IM 0,12,20(13) (.ee	
{ BR 15-=m=m—==——m >	NEXT SAVE (14,12)
...	ven
NEXTADDR DC V(NEXT)	
IS 4 J	

Figure 11. Passing control in a simple structure

Program Management 11

2.40

r - - 1
| o |
| USING *,12 Establish addressability |
| EARLY ST 1,PARMADDR Save parameter address |
| o |
| L 13,4(13) Reload address of old save area |
| L 14,12(13) Load return address |
| L 15 ,NEXTADDR Load address of next entry point |
| LA 1,PARMLIST Load address of parameter list |
{ o1 PARMADDR,X'80* Turn on last parameter indicator |
| LM 2,12,28(13) Reload remaining registers |
| BR 15 Pass control |
| ce |
| PARMLIST DS 0A |
| DCBADDRS DC A(INDCB) |
| DC A (OUTDCB) |
| PARMADDR DC A(0) |
| NEXTADDR DC V (NEXT) [
b _ 4

Figure 12. Passing control with a parameter list

PASSING CONTROL WITH RETURN

The control program passed control to your program, and your program
will return control when it is through processing. Similarly, contrcl
sections within your program will pass control to other control sec-
tions, and expect to receive control back. An example of this type of
control section is a "monitor" portion of a program; the monitor deter-
mines the order of execution of other control sections based on the tyre
of input data. The following procedures should ke used when passing
control with return.

Initial Requirements

Registers 15 and 1 are used in exactly the same manner as they were
used when control was passed without return. Register 15 contains the
entry point address in the new control section and register 1 is used to
pass a parameter list.

Using the standard convention, register 14 must contain the address
of the location to which control is to ke passed when the called controcl
section completes processing. This time, cf course, it is a location in
the current control section. The address can be the instruction fcllow-
ing the instruction which causes contrcl toc pass, or it can be another
location within the current control section designed to handle all
returns. Registers 2-12 are not involved in the passing of control; the
called control section should not depend on the contents of these regis-
ters in any way.

You should provide a new save area for use by the called control sec-
tion as previously described, and the address of that save area should
be passed in register 13. Note that the same save area can ke reused
after control is returned by the called control section. One new save
area is ordinarily all you will require regardless of the number of con-
trol sections called.

Passing Control

Two standard methods are availakle for passing control to another
control section and providing for return of control. One is merely an
extension of the method used to pass control without a return, and
requires a V-type address constant and a kranch or a branch and link

12 Supervisor Services

2.46

instruction. The other method uses the CALL macro instruction to pro-
vide a parameter list and establish the entry point and return point
addresses. Using either method, the entry point must be identified by
an ENTRY instruction in the called control section if the entry name is
not the same as the control section name. Figure 13 and Figure 14
illustrate the two methods of passing control; in each example, it is
assumed that register 13 already contains the address of a new save
area.

Use of an inline parameter list and an answer area is also illus-
trated in Figure 13. The address of the external entry point is loaded
into register 15 in the usual manner. A branch and link instruction is
then used to branch around the parameter list and to load register 1
with the address of the parameter list. An inline parameter list such
as the one shown in Figure 13 is convenient when you are debugging
because the parameters involved are located in the listing (or the dump)
at the point they are used, instead of at the end of the listing or
dump. Note that the first byte of the last address parameter (ANSWERAD)
is coded with the high-order bit set to 1 to indicate the end of the
list. The area pointed to by the address in the ANSWERAD parameter is
an area to be used by the called control section to pass parameters back
to the calling control section. This is a possible method to use when a
called control section must pass parameters back to the calling control
section. Parameters are passed back in this manner so that no addition-
al registers are involved. The area used in this example is twelve full
words; the size of the area for any specific application depends on the
requirements of the two control sections involved.

The CALL macro instruction in Figure 14 provides the same functions
as the instructions in Figure 13. When the CALL macro instruction is
expanded, the operands cause the following results:

NEXT

A V-type address constant is created for NEXT, and the address is
loaded into register 15.

return address
RETURNPT ... PP
AREA DC 12F'0° Answer area from NEXT

[1
| |
| L 15, NEXTADDR Entry point address in register 15 |
| CNOP 0,4 (
| BAL 1, GOOUT Parameter list address in register 1 |
| PARMLIST DS 0A Start of parameter list |
| DCBADDRS DC A(INDCB) Input dcb address |
| DC A (OUTDCB) Output dcb address |
| ANSWERAD DC B'10000000° Last parameter bit on |
| DC AL3 (AREA) Answer area address |
| NEXTADDR DC V(NEXT) Address of entry point |
| GoouT BALR 14,15 Pass control; register 14 contains |
| |
| |
I |
L J

Figure 13. Passing control with return

CALL NEXT, (INDCB,OUTDCB,AREA) ,VL
RETURNPT ... ees
AREA DC 12F*0°

oo oo ot s oy
e o s s

Figure 14. Passing control with CALL

Program Management 13

2.49

(INDCB,OUTDCB,AREA)
A-type address constants are created for the three parameters coded
within parentheses, and the address of the first A-type address
constant is placed in register 1.

VL
The high order bit of the last A-type address constant is set to 1.

Control is passed to NEXT using a branch and link instruction. The
address of the instruction following the CALL macro instruction is
loaded into register 14 before control is passed.

In addition to the results dgﬁhribed above, the V-type address con-
stant generated by the CALL macro instruction causes the load module
with the entry point NEXT to be automatically edited into the same load
module as the control section containing the CALL macro instruction.
Refer to the Linkage Editor and Loader publication, if you are
interested in finding out more about this service.

The parameter list constructed, from the CALL macro instruction in
Figure 14 contains only A-type address constants. A variation on this
type of parameter list results from the following coding:

CALL NEXT, (INDCB, (6), (7)) ,VL

In the above CALL macro instruction, two of the parameters to be passed
are coded as registers rather than symbolic addresses. The expansion of
this macro instruction again results in a three-word parameter list; in
this example, however, the expansion also contains the instructions
necessary to store the contents of registers 6 and 7 in the second and
third words, respectively, of the parameter list. The high-order bit in
the third word is set to 1 after register 7 is stored. You can specify
as many parameters as you need as address parameters to be passed, and
you can use symbolic addresses or register contents as you see fit.

ANALYZING THE RETURN

When control is returned from the control program after processing a
system macro instruction, the contents of registers 2-13 are unchanged.
When control is returned to your control section from the called control
section, registers 2-14 contain the same information they contained when
control was passed, as long as system conventions are followed. The
called control section has no obligation to restore registers 0 and 1;
so the contents of these registers may or may not have been changed.

When control is returned, register 15 can contain a return code indi-
cating the results of the processing done by the called control section.
If used, the return code should be a multiple of 4, so a branching table
can be used easily, and a return code of 0 should be used to indicate a
normal return. The control program frequently uses this method to ind-
icate the results of the requests you make using system macro instruc-
tions; an example of the type of return codes the control program pro-
vides is shown in the description of the IDENTIFY macro instruction in
the macro instructions section.

The meaning of each of the codes to be returned must be agreed upon
in advance. In some cases, either a "good" or "bad" indication (zero or
nonzero) will be sufficient for you to decide your next action. If this
is true, the code shown in Figure 15 could be used to analyze the
results. Many times, however, the results and the alternatives are more
complicated, and a branching table, such as shown in Figure 16, could be
used to pass control to the proper routine.

14 Supervisor Services

2.56

RETURNPT LTR 15,15 Test return code for zero
BNZ ERRORTN Branch if not zero to error routine

[o o o oy
b e e e el

Figure 15. Test for normal return

impossible situations

| RETURNPT B RETTAB(15) Branch to table using return code
| RETTAB B NORMAL Branch to normal routine

| B COND1 Branch to routine for condition 1
| B COND2 Branch to routine for condition 2
| B GIVEUP Branch to routine to handle

|

|

L

e e e s e e —— e 2l

Figure 16. Return code test using branching table

HOW CONTROL IS RETURNED

In the discussion of the return under the heading "Analyzing the
Return™ it was indicated that the control section returning control must
restore the contents of registers 2-14., Because these are the same
registers reloaded when control is passed without a return, refer to the
discussion under "Passing Control Without Return®™ for detailed informa-
tion and examples. The contents of registers 0 and 1 do not have to be
restored.

Register 15 can contain a return code when control is returned. As
indicated previously, a return code should be a multiple of four with a
return code of zero indicating a normal return. The return codes other
than zero that you use can have any meaning, as long as the control sec-
tion receiving the return codes is aware of that meaning.

The return address is the address originally passed in register 14;
return of control should always be passed to that address. You can
either use a branch instruction such as BR 14, or you can use the RETURN
macro instruction. An example of each method of returning control is
discussed in the following paragraphs.

Figure 17 is a portion of a control section used to analyze input
data cards and to check for an out-of-tolerance condition. Each time an
out-of-tolerance condition is found, in addition to some corrective
action, one is added to the value at the address STATUSBY. After the
last data card is analyzed, this control section returns to the calling
control section, which proceeds based on the number of out-of-tolerance
conditions encountered. The coding shown in Figure 17 causes register
13 to be loaded with the address of the save area this control section
used, then reloads register 14 with the proper return address. The con-
tents of register 15 are set to zero, and the value at the address STA-
TUSBY (the number of errors) is placed in the low-order eight bits of
the register. The contents of register 15 are shifted to the left two
places to make the value a multiple of four. Registers 2-12 are
reloaded, and control is returned to the address in register 14.

The RETURN macro instruction is provided to save coding time. The
expansion of the RETURN macro instruction provides the instructions
necessary to restore a designated range of registers, provide the proper
return code value in register 15, and branch to the address in register
14. 1In addition, the RETURN macro instruction can be used to flag the
save area used by the returning control section; this flag, a byte con-
taining all ones, is placed in the high-order byte of word four of

Program Management 15

the save area after the registers have been restored. The flag indi-
cates that the control section that used the save area has returned to
the calling control section. You will find that the flag is useful when
tracing the flow of your program in a dump. For a complete record of
program flow, a separate save area must be provided by each control sec-
tion each time control is passed. This is usually not done because it
requires too much main storage.

2.58 The contents of register 13 must be restored before the RETURN macro
instruction is issued. The registers to be reloaded should be coded in
the same order as they would have been designated had a load-multiple
(LM) instruction been coded. You can load register 15 with the return
code value before you code the RETURN macro instruction, you can specify
the return code value in the RETURN macro instruction, or you can reload
register 15 from the save area.

2.59 The code shown in Figure 18 provides the same result as the code
shown in Figure 17. Registers 13 and 14 are reloaded, and the proper
value is established in register 15. The RETURN macro instruction
causes registers 2-12 to be reloaded, and control to be passed to the
address in register 14. The save area used is not flagged. The RC=(15)
operand indicates that register 15 already contains the return code
value, and the contents of register 15 are not to be altered.

2.60 Figure 19 illustrates another use of the RETURN macro instruction.
The correct save area address is again established, then the RETURN
macro instruction is issued. In this example, registers 14 and 0-12 are
reloaded, a return code of 8 is placed in register 15, the save area is
flagged, and control is returned. Specifying a return code overrides
the request to restore register 15 even though register 15 is within the
designated range of registers.

r)]

| .ee |

| L 13,4(13) Load address of previous save area |

i L 14,12(13) Load return address i

| SR 15,15 Set register 15 to zero |

i Ic 15,STATUSBY ILoad number of errors |

| SLA 15,2 Set return code to multiple of 4 |

| M 2,12,28(13) Reload registers 2-12 |

| BR 14 Return |

1 |

| STATUSBY DC X'00° |

L i |

Figure 17. Establishing a return code

0 |
| L 13,4(13) Restore save area address |
| L 14,12(13) Return address in register 14 |
| SR 15,15 Zero register 15 |
| Ic 15, STATUSBY Load number of errors |
| S1A 15,2 Set return code to multiple of 4 |
| RETURN (2,12),RC=(15) Reload registers and return |
| |
| STATUSBY DC X'00°' [
L J

Figure 18. Use of the RETURN macro instruction

16 Supervisor Services

2.62

L 13,4(13)
RETURN (14,12),T,RC=8

= — ——
e e e e o

Figure 19. RETURN macro instruction with flag

RETURN TO THE CONTROL PROGRAM

The discussion in the preceding paragraphs has covered passing con-
trol within one load module, and has been based on the assumption that
the load module was brought into main storage because of the program
name specified in the EXEC statement. The control program established
only one task to be performed for the job step. When the logical end of
the program is reached, control is returned to the address passed in
register 14 to the first control section in the program. When the con-
trol program receives control at this point, it terminates the task it
created for the job step, compares the return code in register 15 with
any COND values specified on the JOB and EXEC statements, and determines
whether or not the following job steps, if any, should be executed.

PASSING CONTROL IN A PLANNED OVERLAY STRUCTURE

A complete discussion of the requirements for passing control in an
overlay environment is provided in the Linkage Editor and Loader manual.

PASSING CONTROL IN A DYNAMIC STRUCTURE

The discussion of passing control in a simple structure has provided
the necessary background for the discussion of passing control in a
dynamic structure. Within each load module, control should be passed as
in a simple structure or planned overlay structure. If you can deter-
mine which control sections will make up a load module before you code
the control sections and if they will fit in the main storage available,
you should pass control within the load module without involving the
control program. The macro instructions discussed in this section pro-
vide increased linkage capability, but they require control program
intervention and possibly increased execution time.

BRINGING THE LOAD MODULE INTO MAIN STORAGE

The load module containing the entry point name you specified on the
EXEC statement is automatically brought into main storage by the control
program. Any other load modules you require during your job step are
brought into main storage by the control program as a result of specific
requests for dynamic acquisition; these requests are made through the
use of the LOAD, LINK, ATTACH, or XCTL macro instructions. The follow-
ing paragraphs discuss the proper use of these macro instructions.

LOAD MODULE LOCATION

Initially, each load module that you can obtain dynamically is
located in a library (partitioned data set). This library is the link
library, the job or step library, task library, or a private library.

e The link library is always present and is available to all job steps
of all jobs. The control program provides the necessary data con-
trol block for the library, and logically connects the library to
your program, making the members of the library available to your
program.

Program Management 17

2.67

2.70

18

e The job and step libraries are explicitly established by including
//7JOBLIB and //STEPLIB DD statements in the input stream. The
//30BLIB DD statement is placed immediately after the JOB statement,
while the //STEPLIB DD statement is placed among the DD statements
for a particular job step. The job library is available to all
steps of your job, except those that have step libraries. A step
library is available to a single job step; if there is a job
library, the step library replaces the job library for the step.
For either the job library or the step library, the control program
provides the necessary data control block and issues the OPEN macro
instruction to logically connect the library to your program.

e In systems with MVT, unique task libraries may be established by
using the TASKLIB operand of the ATTACH macro instruction. The
issuer of the ATTACH macro instruction is responsible for providing
the DD statement and opening the data set or sets. If the TASKLIB
operand is omitted, the task library of the attaching task is propa-
gated to the attached task. In the following example, Task A's job
library is LIB1. Task A attaches Task B, specifying TASKLIB=LIB2 on
the ATTACH macro instruction. Task B's task library is therefore
LIB2. When Task B attaches Task C, LIB2 is searched for Task C
before LIB1 or the 1link library. Because Task B did not specify a
unique task library for Task C, its own task library (LIB2) is pro-
pagated to Task C and will be the first library searched when Task C
requests that a module be brought into main storage.

Task A ATTACH EP=B,TASKLIB=LIB2
Task B ATTACH EP=C

e A private library is established by including a DD statement in the
input stream, and is available only to the job step in which it is
defined. You must provide the necessary data control block and
issue the OPEN macro instruction for each data set. You may use
more than one private library by including more than one DD state-
ment and associated data control block.

A library can be a single partitioned data set, or a collection of
such data sets. When it is a collection, you define each data set by a
separate DD statement, but you assign a name only to the statement that
defines the first data set. Thus, a job library consisting of three
partitioned data sets would be defined as follows:

//JOBLIB DD DSNAME=PDS1,---
7/ DD DSNAME=PDS2,---
/7 DD DSNAME=PDS3,---

The three data sets (PDS1, PDS2, PDS3) are processed as one, and are
said to be concatenated. Concatenation and the use of partitioned data
sets are discussed in more detail in the Data Management Serxvices
publication.

Operating systems with MFT or MVT may already have some of the load
modules from the link library in main storage in an area called the
resident reenterable module area (optional in MFT) or the link pack area
(MVT). The contents of these areas are determined at Initial Program
Loading time, and will vary depending on the requirements of your
installation. In an operating system with MVT, the link pack area con-
tains frequently used, reenterable load modules from the link library
along with data management load modules; these load modules can be used
by any job step in any job. When it is started, TSO extends the link
pack area. 1In an operating system with MFT, the resident reenterable
module area can contain user-written modules and the loader, discussed
in the Linkage Editor and Loader publication, and all reenterable gra-
phics subroutine package (GSP) modules.

Supervisor Services

With the exception of those load modules contained in this area,
copies of all of the lcad modules you request are krought into your area
of main storage, and are available to any task in your job step. For
systems with MVT and MFT with subtasking, the portion of your area con-
taining the copies of load modules is called the job pack area.

The Search for the Load Module

In response to your request for a copy of a load module, the contrcl
program searches the job pack area (MVT and MFT with subtasking), the
likraries, and the link pack area (MVT) or the resident reenterakble
module area (MFT). If a copy of the lcad module is found in one of the
rack areas, the control program determines whether or not that copy can
be used, based on criteria discussed under the heading "Using an Exist-
ing Copy." If an existing copy can be used, the search stops. If it
can not be used, the search continues until the module is located in a
library. The load module is then brought into the job pack area.

The order in which the libraries and rack areas are searched derends
on whether the system is MVT or MFT, and upon the operands used in the
macro instruction requesting the load module. The operands that define
the order of the search are the EP, EPLOC, DE, and DCB operands. The EP,
EPLOC, and DE operands are used to specify the name of the entry point
in the load module; you code one of the three every time you use a LINK,
LOAD, XCTL, or ATTACH macro instruction. The DCB operand is used to in-
dicate the address of the data control klock for the library containing
the load module, and is optional. Omitting the DCB operand or using the
DCB operand with an address of zerc srecifies the data control blocks
for the link library, the jok or step library, or the task library.

The following paragrarhs discuss the order cf the search when the
entry point name used is a member name.

The EP and EPLOC operands require the least effort on your part; ycu
provide only the entry point name, and the control program searches for
a load module having that entry point name. Figure 20 shows the order
of the search when EP or EPLOC is coded, and the DCB operand is omitted
or DCB=0 is coded.

r TS mm o TmTe— oo —————— e T - -
| MFT | MVT I
P — oo e 1
| The job pack area, the optional | The jok pack area of the region |
| resident access method area, and | is searched for an available ccry|
| the loaded program list are - - ——

searched, in that order.	The requesting task's task
	library and all the unique task
	likraries of its direct ascen-
	dants are searched.
T T 1	
The resident reenterable load	The step likrary is searched; if
module area is searched	there is no step library, the
(optional).	jok likrary (if any) is searched.
e -=-- -	
The step library or the job	The link pack area is searched.
library (if any) is searched. If	
both libraries are specified, the	
job library is not searched.	
¢ == T + -

| The link library is searched. | The link library is searched. 1
L i ———————————— ——

Figure 20. Search for module, EP or EPLOC operands with DCB=0 or DCB
operand omitted

Program Management 19

When used without the DCB operand, the EP and EPLCC operands provide
the easiest method of requesting a load module from the link, task, job,
or step library. In a system with MVT, the task libraries are searched
before the job or step library, beginning with the task likrary of the
task that issued the request and continuing through the task libraries
of all its ascendents. The job cr ster likrary is then searched, fol-
lowed by thne link library. 1In a system with MFT, the job or step
library is the first searched, followed ky the link library. The data
sets that make up these libraries are searched in the order of their DD
statements.

A job, step, or link library or a data set in one of these libraries
can be used to hold one version of a load module, while another can ke
used to hold another version with the same entry point name. If one
version is in the link library, you can ensure that the other will be
found first by including it in the jok or ster likrary. However, if
both versions are in the job or step library, you wmust define the data
set that contains the version you want tc use kefore that which contains
the other version. For example, if the wanted version is in PDS1 and
the unwanted version is in PDS2, a ster likrary consisting of these data
sets should ke defined as follows:

//STEPLIB DD DSNAME=PDS1,---
// DD DSNAME=PDS2,---

If, however, the first version in the job or stepr library has been pre-
viously loaded and the version in the link likrary or the second version
in the job library is desired, the DCB operand must be coded on the
macro instruction.

This is not the case for task libraries. Extreme cauticn should ke
used when specifying module names in unique task libraries, bkecause
duplicate names may lead to the wrcng module keing given to the task
requesting that the module be brought into main storage. Once a module
has been loaded, the module name is kncwn to all tasks in the region and
a copy of that module will be given to all tasks requesting that that
module name be loaded, regardless cf the requester's task likrary.

If you know that the load module you are requesting is a member of
one of the private libraries, you can still use the EP or EPLOC
operands, this time in conjunction with the DCB operand. = You would spe-
cify the address of the data control block for the private library in
the DCB operand. The order of the search for EP or EPLOC with the DCB
operand is shown in Figure 21.

r - -TT 1
| MFT | MVT |
k +--- i
The partition is searched.	The jok pack area of the region
	is searched for an available
	cogy.
t _ -—4- r— :	
The resident reenterable load	The specified library is
module area is searched	searched.
(optional).	
F - , T 1	
The specified library is { The link pack area is searched.	
searched. t- 4	
	The link library is searched.]
L —_— 1 —d

Figure 21. Search for module, EP or EPLOC operands with DCB operand
specifying private library

20 Supervisor Services

2.81

Searching a job step, or task library slows the retrieval of load
modules from the link library; to sgpeed this retrieval, you should limit
the size of the jok and step libraries. You can best do this by elimin-
ating the job library altogether, and providing step libraries where
required. You can limit each step library to the data sets required by
a single step; some steprs (such as compile) will not require a step
library, and therefore will not require any unnecessary search in retri-
eving modules from the link likrary. For waximur efficiency, you should
define a job library only when a step library would be required for
every step, and every step library would ke the same.

The DE operand requires more work than the EP and EPLOC operands, Lut
it can reduce the amount of time spent searching for a locad module.
Before you can use this operand, ycu must use the BIDL macro instruction
to obtain the directory entry for the module. The directory entry is
part of the library that contains the module.

To save time, the BLDL macro instruction used must obtain directory
entries for more than one entry point name. You specify the names of
the load modules and the address of the data contrcl klock for the
library when using the BLDL macro instruction; the control program
places a copy of the directory entry fcr each entry point name requested
in a designated location in main storage. If no DCB address is given,
the task library, job/step library, and link likrary are searched. If
you specify the link library and the job or step library, the directory
information indicates frcom which library the directory entry was taken.
The directory entry always indicates the exact relative track and block
location of the load module in the library. If the load module is not
located on the library you indicate, a return code is given. You can
then issue another BIDL macro instruction specifying a different
library. For information about the use of load modules by more than one
task, see the description of BLDL in 0S LCata Management Services Guide.

To use the DE operand, you rrovide the address of the directory
entry, and code or omit the DCB operand to indicate the same library
specified in the BLDL macro instruction. The order cf the searxrch when
the DE operand is used is shown in Figure 22 for the link, job, step,
and private libraries.

The preceding discussion of the search is kased on the premise that
the entry point name you specified is the member name. When you are
using an operating system with MFT, the same search results from speci-
fying an alias rather than a member name. When you are using an operat-
ing system that includes MVT, the control program checks if the entry
point name is an alias when the lcad mcdule is found in a library. If
the name is an alias, the control program obtains the corresgonding
member name from the library directory, then searches the link pack and
job pack areas using the member name to determine if a usable copy of
the load module exists in main storage. If a usakle copy does not exist
in a pack area, a new copy is brought into the job pack area. Other-
wise, the existing copy is used, ccnserving main storage and eliminating
the loading time.

As the discussion of the search indicates, you should choose the
operands for the macro instruction that provide the shortest search
time. The search of a-library actually involves a search of the direc-
tory, followed by corying the directory entry into main storage, fol-
lowed Ly loading the load module into main storage. If you know the
location of the load module, you should use the operands in your macro
instruction that eliminate as many of these unnecessary searches as
possible, as indicated in Figure 20, Figure 21, and Figure 22. Examples
of the use of these figures are shown in the discussion of passing
control.

Program Management 21

2.87

The job pack area for the parti- The jck pack area for the region

tion is searched for an avail- is searched for an available ccgy.

r [g T -1
| MFT | MVT i
T . — -
| Directory Entry Indicates Iink Likrary and DCB=0 or LCB Operand |
| Omitted |

----------- -- —mem ey -
| The partition is searched. | The job pack area for the region |
| | is searched for an available copy.|
O -4~ i
The resident reenterable load	The 1link pack area is searched.
module area is searched.	
(optional).	
b - S - -4	
The module is obtained from the	The mcdule is oktained from the
1link library.	link library.
pmmmmmm = e -	
Directory Entry Indicates Job, Steg, or Task Library and DCB=0 or	
DCB Operand Omitted	
F - - -= -1	
I	
I	

T
|
|
able copy. i j
I
|
|
|
1

step library; if there is no library indicated in the direc-
step library, the module is
obtained from the job library.

b
| The module is oktained from the The module is obtained from the
|

| tory entry.

|

DCB Operand Indicates Private library

The jok pack area for the region
is searched for an available cory.

I
b - T
| The job pack area for the parti- |

| tion is searched for an avail- |

| able copy. |

b _— e F I
b
| |

| |

The module is oktained from the The module is obtained from the
specified private 1library. specified private library.

RSP - —_— -

[PR S SN SRR

Figure 22. Search for module using DE operand

Using an Existing Cory

The control program will use a copy of the load module already in the
link pack area or job pack area if the copy can ke used. Whether the,
copy can be used or not depends on the reusability and current status cof
the load module; that is, the locad module attributes, as designated
using linkage editor control statements, and whether or not the load
module has already been used or is in use. The status information is
available to the control program only when you specify the load mcodule
entry point name on an EXEC statement, or when you use ATTACH, LINK, or
XCTL macro instructions to transfer control to the load mocdule. The
control program will protect you from cbtaining an unusakle copy of a
load module as long as you always "formally®" request a copy using these
macro instructions (or the EXEC statement); if you ever pass control in
any other manner (for instance, a branch or a CALL macro instruction),
the control program, because it is not informed, cannot protect you.
Note that attributes can be dynamically changed by using the IDENTIFY
macro instruction (see "Additional Entry Points").

Operating System With MVT: If you are using an operating system with
MVT, all reenterable modules (modules designated as reenterable using
the linkage editor) from any library are completely reusable; only one
copy is ever placed in the link pack area or brought into your job pack
area, and you get immediate control of the load module. If the module
is serially reusable, conly one copy is ever placed in the job pack area;
this copy will ‘always be used for a IOAD macro instructicn. If the cogy

22 Supervisor Services

2.93

is in use, however, and the request is made using a LINK, ATTACH, or
XCTL macro instruction, the task requiring the load module is placed in
a wait condition until the copy is available. A IINK macrc instruction
should not be issued for a serially reusakle lcad module currently in
use for the same task; the task will be abnormally terminated. (This
could occur if an exit routine issued a LINK macro instruction for a
load module in use by the main program.)

If the load module is nonreusakle, a LOAD macro instruction will
always bring in a new copy of the load module; an existing copy is used
only if a LINK, ATTACH, or XCTL macro instruction is issued and the cogy
has not been used previously. Rememker, the control program can deter-
mine if a load module has been used or is in use only if all of your
requests are made using LINK, ATTACH, or XCTL macro instructions.

MET Systems With Subtasking: If you are using an MFT system with suk-

tasking, the LOAD macro instruction enables all tasks in a partition to
share the same copy of a reenterakle mcdule invoked ky a previous LOAL

macro instruction. (A reenterable module in MFT is considered reusakle
only.) If the reenterakle module is again invocked by a LINK, XCTL, cr

ATTACH macro instruction and a previous request is still active, a new

copy of the module will ke brought into main storage.

MFT Systems Without Subtasking: If you are using an operating systemn
with MFT, the macro instruction used tc request the load module alsoc
determines if an existing copy can be used. If a LOAD macro instruction
is issued, an existing copy is always used to satisfy the request,
without regard to the reusability designation or the current status of
the copy. However, if an ATTACH, ILINK, or XCTI macro instruction is
issued, an existing copy is used only if that copy was brought into main
storage as a result of a regquest using a LOAD macro instruction and the
copy is not in use; otherwise, a new copy is brought into the job pack
area.

MFT Systems With the Resident Reenteralkle Module Area Option: If yocu
are using an operating system with the MFT resident reenterakle module
area option, and you request use of a module by issuing an ATTACH, LINK,
LOAD, or XCTL macro instruction, the supervisor will search the resident
reenterakle module area for a copy of the module kefore fetching a new
copy into main storage.

Using the LOAD Macro Instruction

The LOAL macro instruction is used to ensure that a copy of the sge-
cified load module is in main storage in ycur jok pack area if it is not
preloaded into the link pack area. When a LOAL macro instruction is
issued, the control program searches for the lcad module as discussed
previously, and brings a copy of the load module into the job pack area
if required. When the control program returns control, register 0 con-
tains the main storage address of the entry point specified for the
requested load module. Normally, the LOAD macro instruction is used
only for a reenterable or serially reusable load module, since the 1lcad
module is retained even though it is nct in use.

The control program also establishes a "responsibility" count for the
copy, and adds one to the count each time the requirements of a LOAD
macro instruction are satisfied by the same copy. As long as the
responsibility count is not zero, the copy is retained in main storage.

The responsibility ccunt for the cory is lowered ky one when a DELETE
macro instruction is issued during the task which was active when the
LOAD macro instruction was issued. When a task is terminated, the count
is lowered by the number of LOAD macro instructions issued for the cory
when the task was active minus the numker of deletions.

Program Management 23

2.97

2.98

2.100

2.101

When the responsikility count for a copy in a job pack area reaches
zero, the main storage area containing the copy is made available; the
copy is never reused after the responsikility count estaklished by LOAD
macro instructions reaches zero.

Copies of load wodules are not added tc or deleted from the link pack
area; LOAD and DELETE macro instructions issued for load modules already
in the link pack area result in returns indicating successful comple-
tion, however.

PASSING CONTROL WITH RETURN

The LINK macro instruction is used to pass control between load
modules and to provide for return cf ccntrcl. In an operating systen
with MFT without subtasking, the ATTACH macro instruction is executed in
a similar manner to the LINK macro instruction. You can also pass ccn-
trol using kranch or branch and link instructions or the CALL macro
instruction; however, when you pass control in this manner you must prc-
tect against multiple uses of nonreusakle cr serially reusalkle modules.
The following paragraphs discuss the requirements for passing control
with return in each case.

The LINK Macro Instruction

When you use the LINK macro instruction, as far as the logic of your
program is concerned, you are passing control to another lcad module.
Remember, however, that you are requesting the control program to assist
you in passing control. You are actually rassing control to the control
program, using an SVC instruction, and requesting the control program to
find a copy of the load module and pass control to the entry point you
designate. There is some similarity between passing contrcl using a
LINK macro instruction and passing control using a CALL macro instruc-
tion in a simple structure. These similarities are discussed first.

The convention regarding registers 2-12 still applies; the controcl
program does not change the contents of these registers, and the called
load module should restore them before control is returned. You must
provide the address in register 13 of a save area for use ky the called
load module; the control program does not use this save area. You can
pass address parameters in a parameter list to the load module using
register 1; the LINK macro instruction provides the same facility for
constructing this list as the CALL macro instruction. Register 0 is
used by the control program and the contents will be modified.

There is also some difference between passing control using a LINK
macro instruction and passing control using a CALL macro instruction.
When you pass control in a simple structure, register 15 contains the
entry point address and register 14 contains the return point address.
When the called load module gets control, that is still what registers
14 and 15 contain, but when you use the LINK macro instruction, it is
the control program that establishes these addresses. When you code the
LINK macro instructicn, you provide the entry point name and possibly
some library information using the EP, EPLCC, or DE, and DCB operands.
But you have to get this entry point and library information to the con-
trol program. The expansion of the IINK macro instruction does this, Lty
creating a control program parameter list (the information required Ly
the control program) and placing the address of this parametexr list in
register 15. After the control prcgram finds the entry point, it places
the address in register 15.

24 Supervisor Services

2.102

2.103

2.104

2.105

2.106

The return address in your control section is always the instruction
following the LINK; that is not, hcwever, the address that the called
load module receives in register 14. The control program saves the
address of the location in your prcgrar in its own save area, and places
in register 14 the address of a routine within the control program that
will receive control. Because control was passed using the control pro-
gram, return must also be made using the ccntrol program.

The control program establishes a resgonsibility count for a load
module when control is passed using the LINK macro instructicn. This is
a separate responsibility count frcm the count estakblished for LOAD
macro instructions, but it is used in the same manner. The count is
increased by one when a LINK macrc instruction is issued, and decreased
by one when return is made to the control program or when the called
load mcdule issues an XCTL macro instructicn.

Figures 23 and 24 show the coding of a LINK macro instruction used to
pass control to an entry point in a load module. In Figure 23, the 1lcad
module is from the 1link, job, or ster likrary; in Figure 24, the module
is from a private library. Except for the method used to pass contrcl,
this example is similar to Figures 13 and 14. A proklem program para-
meter list containing the addresses INDCB, OUTDCB, and AREA is passed to
the called locad module; the return point is the instruction following
the LINK macro instruction. A V-type address constant is not generated,
because the load module containing the entry point NEXT is not to be
edited intc the calling load module. Note that the EP orerand is choc-
sen, since the search begins with the jok pack area and the appropriate
likrary as shown in Figure 20.

Figures 25 and 26 show the use of the BIDL and LINK macro instruc-
tions to pass control. Assuming ccntrcl is to be passed to an entry
point in a load module from the link library, a BLDL macro instructicn
is issued to bring the directory entry for the memker into main storage.
(Remember, however, that time is saved only if more than one directory
entry is requested in a BLDL macro instruction. Only one is requested
here for simplicity. Time is also saved if the program links to the
load module more than once, using the information in directory entry
each time.)

The first operand of the BLDL macro instruction is a zerc, which
indicates that the directory entry is cn the link or job library. The
second operand is the address in main storage of the list description
field for the directory entry. The first two kytes at LISTADDR indicate
the number of directory entries in the list; the second twc bytes indic-
ate the length of each entry. If the entry is to ke used in a LINK,
LOAD, ATTACH, or XCTL macro instruction, the entry must be 58 bytes in
length. A character constant is estaklished to contain the directory
information to be placed there by the control program as a result of the
BLDL macro instruction. The LINK racrc instruction in Figure 26 can ncw
be written. Note that the DE operand refers to the name field, not the
list description field, of the directory entry.

r == - a
| LINK EP=NEXT,PARAM=(INDCB,OUTDCB,ARER) ,VL=1 |
| RETURNPT ... |
| AREA DC 12F'0°" [
b e e —— - — J

Figure 23. Use of the LINK macrc instruction with the job or 1link
library

Program Management 25

2.107

2.107

2.108

2.109

[————————

OPEN (PVTLIB) |
| “ee |
| IINK EP=NEXT,DCB=PVTLIB,PARAM=(INLCCB,CUTDCB,AREA),VL=1 |
[- |
| PVTLIB DCB DDBNAME=PVTLIRBDD,LSORG=PO,MACRF=(R)]

4

U, e e e e —_—

et b - - -—-1
| BLDL 0,LISTADDR]
| “es |
| Cs 0H List description field: |
| LISTADDR DC H'O1' Numker of 1list entries |
| LC H'58" ILength of each entry |
| NAMEADDR DC CL8 ' NEXT" Memkber name |
| CS 25H Area required for directory information |
| - e e o e e e e i e e e o o . 0 o o e e J

Figure 25. Use of the BLLL macro instruction

| LINK DE=NAMEADDR,DCB=0,PARAM=(INLCCB,OUTDCB,AREA),VL=1
U 3

Figure 26. The LINK macro instruction with a DE operand

- e .
|

Using the ATTACH Macro Instruction (MFT Without Subtasking)

In a system without subtasking, the ATTACH macro instruction performs
exactly the same functions as the LINK macro instruction and should be
used in the same way. 1In a system with subtasking, however, you use the
ATTACH macro instruction to cause parallel execution.

You should use the ATTACH macro instruction only when coding for
upward compatibility with a syster that includes subtasking. There are
two additional operands provided with the ATTACH macro instruction: the
ECB and ETXR operands. When used in an operating system with MVT or
with MFT with subtasking, these orerands provide a means of communica-
tion between tasks from the same job step. Refer to "Task Management"
for a discussion of the ECB and ETXR orerands.

Using CALL or Branch and Link

You can save time by passing control to a load module without using
the control program. Passing control without using the control prcgram
is performed as follows: 1issue a IOAD macro instruction to oktain a
‘copy of the load module, preceded by a BLLDL macro instruction if you can
shorten the search time by using it. The control program returns the
address of the entry point in register 0. Load this address into
register 15. The linkage requirements are the same when passing contrcl
between load modules as when passing control Letween control sections in
the same load module: register 13 must contain a save area address,
register 14 must contain the return point address, and register 1 is
used to pass parameters in a parameter list. A branch instruction, a
branch and link instruction, or a CALL macro instruction can be used to
pass control, using register 15. The return will be made directly to
you.

26 Supervisor Services

2.110

2.111

2.112

2.113

2.114

2.115

2.116

2.117

Note: When control is passed to a load module without using the control
program, you must check the load module attributes and current status of
the copy yourself, and you must check the current status in all succeed-
ing uses of that load module during the job step, even when the control
program is used to pass control.

The reason you have to keep track of the usability of the load module
has been discussed previously: you are not allowing the control program
to determine whether you can use a particular copy of the load module.
The following paragraphs discuss your responsibilities when using load
modules with various attributes. You must always know what the reusabi-
lity attribute of the load module is. If you do not know, you should
not attempt to pass control yourself.

If the load module is reenterable, one copy of the load module is all
that is ever required for a job step. You do not have to determine the
current status of the copy; it can always be used. The best way to pass
control is to use a CALL macro instruction or a branch or branch and
link instruction.

If the load module is serially reusable, one use of the copy must be
completed before the next use begins. If your job step consists of only
one task, preventing simultaneous use of the same copy involves making
sure that the logic of your program does not require a second use of the
same load module before completion of the first use. An exit routine
must not require the use of a serially reusable load module also
required in the main program.

Preventing simultaneous use of the same copy when you have more than
one task in the job step requires more effort on your part. You must
still be sure that the logic of the program for each task does not
require a second use of the same load module before completion of the
first use. You must also be sure that no more than one task requires
the use of the same copy of the load module at one time; the ENQ macro
instruction can be used for this purpose. Properly used, the ENQ macro
instruction prevents the use of a serially reusable resource, in this
case a load module, by more than one task at a time. Refer to "Program
Management Services" for a complete discussion of the ENQ macro instruc-
tion. A conditional ENQ macro instruction can also be used to check for
simultaneous use of a serially reusable resource within one task.

If the load module is nonreusable, each copy can only be used once;
you must be sure that you use a new copy each time you require the load
module. If you are using an operating system with MVT or with MFT with
subtasking, you can ensure that you always get a new copy by using a
LINK macro instruction or by doing as follows:

e Issue a LOAD macro instruction before you pass control.

e Pass control using a branch or a branch and link instruction or a
CALL macro instruction only.

e Issue a DELETE macro instruction as soon as you are through with the
copy -

If you are using an operating system with MFT without subtasking, you
should perform the same three steps indicated above, and also make sure
that you do not require a second use of the load module before comple-
tion of the first use.

HOW CONTROIL_ IS RETURNED

The return of control between load modules is exactly the same as
return of control between two control sections in the same load module.

Program Management 27

2.118

2.118

2.119

2.120

2.121

The program in the load module returning control is responsible for
restoring registers 2-14, possibly establishing a return code in regist-
er 15, and passing control using the address in register 14. The pro-
gram in the load module to which control is returned can expect the con-
tents of registers 2-13 to be unchanged, the contents of register 14 to
be the return point address, and optionally, the contents of register 15
to be a return code. The return of control can be made using a branch
instruction or the RETURN macro instruction. If control was passed
without using the control program, that is all there is to it. However,
if control was originally passed using the control program, the return
of control is to the control program, then to the calling program. The
action taken by the control program is discussed in the following
paragraphs.

When control was passed using a LINK or ATTACH macro instruction, the
responsibility count was increased by one for the copy of the load
module to which control was passed to ensure that the copy would be in
main storage as long as it was required. The return of control indi-
cates to the control program that this use of the copy is completed, so
the responsibility count is decremented by one. If you are using an
operating system with MFT, the main storage area containing the copy is
made available when the responsibility count reaches zero. If you are
using an operating system with MVT, the copy is retained when the
responsibility count reaches zero if all three of the following require-
ments are met:

e The load module attributes are serially reusable or reenterable.

e The count was not reduced to zero because of a DELETE macro
instruction.

e The main storage area is not required for other purposes.

If control was originally passed using an ATTACH macro instruction
(MFT without subtasking), the control program takes the following
action:

e If the ECB operand was specified, the control program posts the
return code in the indicated fullword.

e If the ETXR operand was specified, the control program passes con-
trol to the designated address, using register 15 to contain the
entry point address, and register 14 to contain the return point
address (to the control program). When the exit routine returns
control, the control program passes control to the instruction fol-
lowing the ATTACH macro instruction without modifying the contents
of any register except register 14. Register 15 does not, in this
case, contain the return code.

If the ETXR operand was not specified, or if the LINK macro instruc-
tion was used to pass control, the control program only places the
return point address into register 14, and passes control to that
address. No other register contents are modified.

PASSING CONTROL WITHOUT RETURN

The XCTL macro instruction is used to pass control between load
modules when no return of control is required. You can also pass con-
trol using a branch instruction; however, when you pass control in this
manner, you must protect against multiple uses of non-reusable or seri-
ally reusable modules. The following paragraphs discuss the require-
ments for passing control without return in each case.

28 Supervisor Services

2.122

2.123

2.124

2.125

2.126

2.127

PASSING CONTROL USING A BRANCH INSTRUCTION

The same requirements and procedures for protecting against reuse of
a nonreusable copy of a load module apply when passing control without
return as were stated under "Passing Control With Return." The proce-
dures for passing control are as follows.

A LOAD macro instruction should be issued to obtain a copy of the
load module. The entry point address returned in register 0 is loaded
into register 15. The linkage requirements are the same when passing
control between load modules as when passing control between control
sections in the same load module; register 13 must be reloaded with the
old save area address, then registers 14 and 2-12 restored from that old
save area. Register 1 is used to pass parameters in a parameter list.

A branch instruction is issued to pass control to the address in regist-
er 15.

Mixing branch instructions and XCTL macro instructions is hazardous.
The next topic explains why.

USING THE XCTL MACRO INSTRUCTION

The XCTL macro instruction, in addition to being used to pass con-
trol, is also used to indicate to the control program that this use of
the load module containing the XCTL macro instruction is completed.
Because control is not to be returned, the address of the old save area
must be reloaded into register 13. The return point address must be
loaded into register 14 from the old save area, as must the contents of
registers 2-12. The XCTL macro instruction can be written to request
the loading of registers 2-12, or you can do it yourself. If you
restore all registers yourself, do not use the EP parameter. This
creates an inline parameter list that needs your base register to be
addressable, and your base register is no longer valid. If EP is used,
you must have XCTL restore the base register for you.

When using the XCTL macro instruction, you pass parameters in a para-
meter list, with the address of the list contained in register 1. 1In
this case, however, the parameter list must be established in a portion
of main storage outside the current load module containing the XCTL
macro instruction. This is because the copy of the current load module
may be deleted before the called load module can use the parameters, as
explained in more detail below.

The XCTL macro instruction is similar to the LINK macro instruction
in the method used to pass control: control is passed by way of the
control program using a control program parameter list. The control
program loads a copy of the load module, if necessary, establishes the
entry point address in register 15, saves the address passed in register
14 and replaces it with a new return point address within the control
program, and passes control to the address in register 15. The control
program adds one to the responsibility count for the copy of the load
module to which control is to be passed, and subtracts one from the
responsibility count for the current load module. The current load
module in this case is the load module last given control using the con-
trol program in the performance of the active task. If you have been
passing control between load modules without using the control program,
chances are the responsibility count will be lowered for the wrong load
module copy. And remember, when the responsibility count of a copy
reaches zero, that copy may be deleted, causing unpredictable results if
you try to return control to it.

Program Management 29

2.128

Control Program

\
A
> B Step 1
LOAD B
BALR B
Control |
Program 5 Contro
—— A ! Program
|
Y
BAIR [~—>B C
Step 2
XCTLC
Control
I~ = Program
[
B | : C
|
| I Step 3
| : To routine which
Y | H last issued a LINK
XCTLC [—— RETURN macro instruction.

Figure 27. Misusing control program facilities

2.128 Figure 27 shows how this could happen. Control is given to load
module A, which passes control to load module B (step 1) using a LOAD
macro instruction and a branch and link instruction. Register 14 at
this time contains the address of the instruction following the branch
and link. Load module B then is executed, independent of how control
was passed, and issues an XCTL macro instruction when it is finished
(step 2) to pass control to load module C. The control program, knowing
only of load module A, lowers the responsibility count of A by one,
resulting in its deletion. Load module C is executed and returns to the
address which used to follow the branch and link instruction. Step 3 of
Figure 27 indicates the result.

2.129 Two methods are available for ensuring that the proper responsibility
count is lowered. One way is to always use the control program to pass
control with or without return. The other method is to use only LOAD
and DELETE macro instructions to determine whether or not a copy of a
load module should remain in main storage.

30 Supervisor Services

TASK _CREATION

In any configuration of the operating system, one task is created by
the control program as a result of initiating execution cf the job steg.
In an operating system with MFT without suktasking, only the control
precgram can create tasks; your program cannot create tasks.

In an operating system with MVT or with MFT with subtasking, you can
create additional tasks in your prcgram. If you do not, however, the
job step task is the only task in a job being executed under MVT or
under MFT with subtasking. The benefits of a multiprogramming environ-
ment are still available even with only one task in the job step; work
is still being performed when your task is unakle to use the system
while waiting for an event, such as an input operation, to occur.

The advantage in creating additional tasks within the job step is
that more tasks are competing for control than the task in the job you
are concerned with. When a wait condition occurs in one of your tasks,
it is not necessarily a task from some other jok that gets control. It
may be one of your tasks, a portion of your job.

The general rule is that parallel execution of a jok step (that is,
more than one task in a job step) should be chosen only when a signifi-
cant amount of overlar between two or more tasks can be achieved. The
amount of time taken by the contrcl prcgrar in estaklishing and control-
ling additional tasks, and your increased effort to coordinate the tasks
and provide for communications between them must ke taken into account.

CREATING THE TASK

A new task is created by issuing an ATTACH racro instruction. The
task that is active when the ATTACH macro instruction is issued is the
originating task; the newly created task is the suktask of the originat-
ing task. The subtask competes for control in the same manner as any
other task in the system, on the basis of rriority and the current aki-
lity to use the central processing unit. The address of the task con-
trol block for the subtask is returned in register 1.

1If the ATTACH macro instruction is executed successfully, contrcl is
returned to the user with one of the fcllowing return codes in register
15:

Hexadecimal
code Meaning

00 Indicates successful completion of the ATTACH request.

o4 Indicates that the ATTACH macro instruction was issued in
a STAE exit routine.

08 Indicates that sufficient main storage was not available
to schedule the exit routine as specified ky the STAI
operand. The subtask has not been successfully created.

ocC Indicates that the exit routine or parameter list address
specified in the STAI cperand was invalid. The subtask
has not been successfully created.

10 Indicates that storage for the STAI request is not avail-

able for the propagation of STAIs from the mother to the
daughter task. The subtask has not Leen created.

Task Creation 31

3.10

The entry point in the load module to ke given contrcl when the sub-
task becomes active is specified in the same way as in a LINK macro
instruction, that is, through the use of the EP, EPLOC, DE, and DCB
operands. The use of these operands is discussed in the section titled
"Program Management." Parameters can be passed to the subtask using the
PARAM and VL operands, also descriked in "Program Management." Owner-
ship of subpools is transferred or shared using the GSPV, GSPL, SHSPV,
and SHSPL operands discussed in "Main Storage Management."™ The only
additional orerands are those dealing with the priocrity of the subtask,
the operands that provide for comrmunication ketween tasks, and the TASK-
LIB operand.

The TASKLIB operand is used to specify the address of an crened data
control block (DCB) for a job library to ke searched for the entry point
name of the module being attached and for the subsequent mcdules
accessed by the subtask. If the TASKLIB operand is not specified, the
jok likrary DCB address from the attaching task's TCB is rroragated to
the subtask.

Warning: All modules contained in the job library and task libraries

for a job step should ke uniquely named. If duplicate module names are
contained in these libraries, the results are unpredictatle.

TASK PRIORITY

In a system with MVT or MFT with subtasking, tasks compete for con-
trol on the basis of priority. When a task is created, it is assigned a
priority that can later be revised upward or downward. It is also
assigned a limit to its priority, a value equal to the highest priority
the task can be assigned; this value is called the task's limit pricri-
ty. The task's actual priority, the basis on which it competes for ccn-
trol, is called the task's dispatching priocrity.

A task can change its own dispatching priority but not its own limit
priority. It can change both the dispatching and limit priorities of
its subtasks, but cannot set the limit priority of a subtask higher than
its own limit priority.

PRIORITY OF THE JOB STEP TASK IN MVT

The control program assigns limit and dispatching priorities to a jck
step task using input from parameters in one or more job control lan-
guage statements. However, the limit and dispatching priorities of the
job step task never exceed the dispatching priority of the Initiator.
The limit priority of the jok step task cannot be changed. The follcw-
ing list is in the order of importance assigned to the various methods
of specifying priority. That is, force priority (item 1) is used, if
specified. If force priority is nct specified, DPRTY (item 2) is used,
if specified, etc. The following list contains the calculations per-
formed for user-specified priorities. This may ke overriden by the con-
trol program if the calculation exceeds the LIMIT value sgecified in the
EXEC statement in the Initiator prccedure, or if the calculation exceeds
the dispatching priority of the Initiator (see the paragrarhs following
the list).

1. The installation may specify that all job step tasks assigned to a
particular job class are to have a specified initial disgatching
priority called the force pricrity. See the MVT Guide for a :
description of the force priority operand. 1If a force priority is
specified, the limit and dispatching priorities are calculated as
follows:

(value X 16) + 11

32 Supervisor Services

3.13

This overrides any specifications in items 2, 3, and 4.

2. In MVT, you may specify a dispatching priocrity for the -job ster
using the DPRTY parameter on the EXEC statement for the job step.
See the JCL Reference publication for a description of the DPRTY
parameter. If the DPRTY paraneter is specified, the priorities of
the job step are calculated as follows:

dispatching priority = (valuel X 16) + value2
limit priority = (valuel X 16) + 15

If valuel is not specified, a default of 0 is used.
If value2 is not specified, a default of 11 is used.

This overrides any specification in items 3 or Uu.

3. You may specify the priority for all job step tasks using. the PRTY
parameter in the JOB statement. See the JCIL Reference publication
for a descripticn of the PRTY parameter. If the PRTY parameter is
specified, the priorities of the job step task are calculated as
follows:

dispatching priority = (value X 16) + 11
limit priority = (value X 16) + 15

4. If no priority specification is made in items 1 through 3, the
priority specified in the EXEC statement of the Reader/Interpreter
procedure is used. See the MVT Guide for a description of the sta-
tements used in the Reader/Interpreter procedure. The priorities of
the job step task are calculated as follows:

dispatching priority = (value X 16) + 11
limit priority = (value X 16) + 15

There is one additional parameter used to determine the priorities of
a job step task. The LIMIT parameter in the EXEC statement of the
Initiator procedure allows the installation to specify the maximum limit
and dispatching priorities that can be assigned to a job ster task. See
the MVT Guide for a description of LIMIT parameter in the EXEC statement
for the Initiator procedure. Both the maximum limit and dispatching
priorities are calculated as fcllows:

(value X 16) + 11

If the 1IIMIT parameter is specified and one or both of the calculated
priorities from items 1, 2, 3, or 4 is greater than the priority calcu-
lated using the LIMIT parameter, the priority calculated using the LIMIT
parameter is assigned as the dispatching and/or limit priority that
exceeded the LIMIT priority.

The calculated priorities, determined by items 1, 2, 3, or 4 above
and adjusted to the LIMIT priority as necessary, are compared with the
dispatching priority of the Initiator. The Initiator has a dispatching
priority of 251 and a limit priority of 255 unless they were modified
using the DPRTY parameter on the EXEC card for the Initiator procedure.
If one or koth of the calculated priorities of the job ster task is
greater than the dispatching priority of the Initiator, the dispatching
priority of the Initiator is assigned as the limit and/or disgatching
priority that exceeded the Initiatcr's disgatching priority.

PRIORITY OF THE JOB STEP TASK IN MFT
The limit and initial dispatching priorities of a job ster task are

always the same. These priorities are determined ky the partition in

Task Creation 33

3.17

which the jok step will execute. Figure 28 gives in column 2 ("Highest
Dispatching™) the limit and initial dispatching priority assigned to the
job step task in each rartition.

The job step task can lower its initial dispatching pricrity by use
of the CHAP macro instruction. It can later use this macro instruction
to revise its dispatching priority either upward or downward. Of
course, it can never raise its dispatching priority above its initial
dispatching (limit) priority.

PRIORITY OF SUBTASKS

When a subtask is created, the limit and dispatching priorities of
the subtask are the same as the current limit and dispatching priorities
of the originating task excert when the suktask rriorities are modified
by using the LPMOD and DPMOD operands of the ATTACH racro instruction.
The LPMOD operand specifies the number to ke subtracted from the current
limit priority of the originating task. The result of the subtraction
is assigned as the limit priority cof the new task. The DPMOD operand
specifies the number to ke added to the current dispatching priority of
the originating task. The result cf the addition is assigned as the
dispatching priority of the new task, unless the number is greater than
the limit priority. In that case, the limit priority value is used as
the dispatching priority.

There are no absolute rules for assigning priorities to tasks and
subtasks. Priorities should be assigned on the basis that tasks of
higher priority will be given control when competing with tasks of lower
priority. Tasks with a large number of input/output operations should
be assigned a higher priority than tasks with little input/output
because the tasks with much: input/cutput will ke in a wait condition for
a greater amount of time. The lower priority tasks will be executed
when the higher priority tasks are in a wait condition. When the input/
output oreration has completed, the higher priority tasks will get con-
trol so that the next operation can ke started. 1In addition, if one or
more subtasks must be completed before the originating task can proceed
beyond a certain point, the subtasks that must ke completed should be
assigned a priority which will eliminate as much as possible a long wait
time in the originating task.

Since tasks from other job steps are competing for control, the
priority initially established for the suktasks may be too high or tocc
low to properly process the jok step. To correct this, the priorities
of these tasks can be changed after the tasks have been created by using
the CHAP macro instruction. The EXTRACT macro instruction, discussed
later, can ke used to determine the current dispatching and limit
priorities of the current task and its suktasks. Note that each change
of 16 in limit or dispatching priority is equivalent to a change of cne
in job priority.

The CHAP macro instruction changes the dispatching priority of the
active task or one of its subtasks. By adding a positive or negative
value, the dispatching priority of the active task or a subtask is
changed. The dispatching priority of the active task can be made less
than the dispatching priority of another task waiting for control. If
this occurs, the waiting task would be given control after execution of
the CHAP macro instruction.

The CHAP macro instruction can also be used to increase the limit
priority of any of the active task's subtasks. The active task cannct
change its own limit priority. The dispatching priority of a subtask
can be raised above its own limit priority, but not above the limit of
the originating task. When the dispatching priority of a subtask is

34 Supervisor Services

3.24

raised akove its own limit priority, the suktask's limit priority is
automatically raised to equal its new dispatching priority.

TIME SLICING

Time slicing is an optional feature that allows tasks that are ren-
bers of the "time-slice group" to share controcl of the CPU. When a
member of the time-slice group has been active for a certain length of
time, it is interrupted, and control is given to another memker of the
group. In this way, all member tasks are given equal slices of CPU
time; no task can use the CPU to the exclusicn of all others.

MFT SYSTEMS WITHOUT SUBTASKING

At system generation, your installaticn designates certain contiguous
main storage partitions for time slicing. Your tasks (job steps) are
members of the time-slice grour if your jok is assigned to one of these
partitions. You control partition assignment through the CLASS paramet-
er of your JOB statement.

Task Creation 34.1

MFT SYSTEMS WITH SUBTASKING

Any task or subtask is considered a member of a time-slicing group if
its dispatching priority is within the range of the dispatching priori-
ties assigned to partitions designated for time slicing.

During execution, a task or subtask can use the CHAP macro instric-
tion to designate itself as a member of the time-slicing group if its
limit priority is equal to or greater than the lowest dispatchii:y
priority of the time-slicing group. Also, a parent task car -:e2 the
ATTACH or CHAP macro instructions to designate a subtask as member of
the time-slicing group if the limit priority of the parent task is equal
to or greater than the lowest dispatching priority of the time-slicing
group.

Each partition has a range of eleven dispatching priorities assigned
to it. The range of dispatching priorities for a time-slicing group is
from the highest dispatching priority of the highest priority partition
within the group to the lowest dispatching priority for the lowest
priority partition within the group. The highest and lowest dispatching
priorities of a partition are given in Fiqure 28. The dispatching
priorities indicated in the figure must be decremented by 1 for each of
the following functions that are included in the system:

e System Log
¢ System Management Facility
¢ I/0 Recovery Management Support

If Partitions 6 through 8 were assigned to the time-slicing group, any
task or subtask whose dispatching priority fell within the range 185-153
would be a member of the time-slicing group. If the System Log and Sys-
tem Management Facility functions were included in the system, the range
of time-slicing dispatching priorities would be 183-151.

L3 T T 1
| Partition Number | Highest Dispatching | Lowest Dispatching |
b + } -1
0	251	241
1	240	230
2	229	219
3	218	208
i 4	207	197
5	196	186
] 6	185	175
7	174	164
8 | 163 | 153 |

9 | 152 | 142 |

10 | 141 | 131 i

11 | 130 | 120 |

| 12 | 119 | 109 |
| 13 | 108 | 98 |
14 | 97 | 87 [

15 | 86 | 76 |

16 75 | 65 |

17 64 | 54 |

18 53 | 43 |

19 42 | 32 |

| 20 | 31] 21 |
| 21 | 20 | 10 |
22 9 | 1 |

23-n 0 0 |

L L 4]

Figure 28. Determining partition dispatching priorities

Task Creation 35

3.28

3.29

MVT SYSTEMS

At system generation, your installation designates certain job
priorities for time slicing. Your tasks are members of the time-slicing
group if their dispatching priorities correspond to these job priori-
ties. For example, if job priorities 8 and 9 are designated, tasks are
members of the time-slice group when their dispatching priorities can be
computed as follows:

For job priority 8,

Dispatching Priority (8 x 16) + 11

139

For job priority 9,
Dispatching Priority = (9 x 16) + 11 = 155

In this example, tasks with priorities 139 and 155 are members of the
time slice group. Note that time slicing applies only to ready tasks
with the highest priority; a task with priority 155 would not be inter-
rupted to give control to a task with priority 139.

Time slicing is important chiefly in real-time applications, but it
affects the use of the ATTACH and CHAP macro instructions by all tasks
in the system. These macro instructions determine task priorities, and
therefore determine membership in the time slice group. In using these
macro instructions, you must consider carefully the priorities for which
time slicing is performed at your installation. Using the ATTACH and
the CHAP macro instructions can affect dispatching priorities, as dis-
cussed above.

Consider again the example in which time slicing is performed for job
priorities 8 and 9. If a job step task has an initial dispatching
priority of 139, it is initially a member of the time-slice group. If
it lowers its priority, it is no longer a member of the group; if it
attaches a subtask, the subtask is a member only if it is assigned a
dispatching priority of 139 (the limit priority of the job step task).

If another job step task is assigned an initial dispatching priority
greater than 155, it is not initially a member of the time-slice group.
However, it can create lower priority subtasks that are members of the
time-slice group, and can itself become a member by lowering its own
dispatching prioxrity to 155 or 139. Note that careless use of the
ATTACH and CHAP macro instructions could result in a task's becoming a
member of the time-slice group when time slicing is not actually
intended.

36 Supervisor Services

TASK MANAGEMENT

The task management information in this section is required only for
establishing communications among tasks in the same job step, and there-
fore applies only to operating systems with MVT or with MFT with sub-
tasking. The relationship of tasks in a job step is shown in Figure 29.

The horizontal lines in Figure 29 divide the tasks into various
levels. These levels have no relation to task priorities; they serve
only to separate originating tasks and subtasks. Tasks A, B, Al, A2,
A2a, Bl, and Bla are all subtasks of the job step task; Tasks Al, A2,
and A2a are subtasks of Task A. Tasks A2a and Bla are the lowest level
tasks in the job step. Although Task Bl is at the same level as Tasks
Al and A2, it is not considered a subtask of Task A.

Job
Step
Task
N\
// N\
/s AN
7 N\
Z
% \\
s
/ AN
Task Task
A B
A |
/A |
/ \
/ \ |
% A i
// \ |
\ |
. \ 1
Task Task Task
Al A2 B1
T
| I
! |
|
| [
| |
| |
| I
Task Task
A2a Bla

Figure 29. Task hierarchy

Task Management 37

38

Task A is the originating task for both Tasks Al and A2, and Task A2
is the originating task for Task A2a. A hierarchy of tasks exists
within the job step. Therefore the job step task, Task A, and Task A2
are predecessors of Task A2a, while Task B has no direct relationship to
Task A2a.

All of the tasks in the job step compete independently for control;
if no constraints are provided, the tasks are performed and are ter-
minated asynchronously. However, since each task is performing a por-
tion of the same job step, you will usually require some communication
and constraints between tasks, such as notification of the completion of
subtasks. If termination of a predecessor task is attempted before all
of the subtasks are complete, those subtasks and the predecessor task
are abnormally terminated.

TASK AND SUBTASK COMMUNICATIONS

Two operands, the ECB and ETXR operands, are provided in the ATTACH
macro instruction to assist in communication between a subtask and the
originating task. These operands are used to indicate the normal or
abnormal termination of a subtask to the originating task. If either
the ECB or ETXR operands, or both, are coded in the ATTACH macro
instruction, the task control block of the subtask is not removed from
the system when the subtask is terminated. The originating task must
remove the task control block from the system after termination of the
subtask. This is accomplished by issuing a DETACH macro instruction.
The task control blocks for all subtasks must be removed before the ori-
ginating task can terminate normally.

The ETXR operand specifies the address of an end-of-task exit routine
in the originating task to be given control when subtask being created
is terminated. The end-of-task routine is given control asynchronously
after the subtask has terminated, and must be in main storage when it is
required. After the control program terminates the subtask, the end-of-
task routine specified when the subtask was created is scheduled to be
executed. The routine competes for control on the basis of the priority
of the originating task, and can be given control even though the ori-
ginating task is in the wait condition. When the end-of-task routine
returns control to the control program, the originating task remains in
the wait condition if the event control block has not been posted.

The end-of-task routine can issue an EXTRACT macro instruction speci-
fying the task control block of the terminated subtask. The address of
that task control block is contained in register 1 when the routine is
given control. The EXTRACT macro instruction, discussed under the head-
ing "Obtaining Information From the Task Control Block,"™ can be used to
obtain such information as floating-point register contents and comple-
tion code. Although the DETACH macro instruction does not have to be

e A 3+ +h . : . A
issued in the end-of-task routine, this is a good place for it.

The ECB operand specifies the address of an event control block (dis-
cussed under "Task Synchronization"™) which is posted by the control pro-
gram when the subtask is terminated. After posting, the event control
block contains the completion code specified for the subtask.

If neither the ECB nor ETXR operands are specified in the ATTACH
macro instruction, the task control block for the subtask is removed
from the system when the subtask is terminated. No DETACH macro
instruction is required. Use of the task control block in a CHAP,
EXTRACT, or DETACH macro instruction in this case is risky as is task
termination; since the originating task is not notified of subtask ter-
mination, you may refer to a task control block which has been removed
from the system, which would cause the active task to be abnormally
terminated.

Supervisor Services

TASK SYNCHRONIZATION

Task synchronization requires some planning on your part to determine
what portions of one task are dependent on the completions of portions
of all other tasks. The POST macro instruction is used to signal com-
pletion of an event; the WAIT macro instruction is used to indicate that
a task cannot proceed until one or more events have occurred.

The control block used with both the WAIT and POST macro instructions
is the event control block. An event control block is a fullword on a
fullword boundary and is shown in Figure 30.

An event control block is used when the ECB operand is coded in an
ATTACH macro instruction. 1In this case the control program issues the
POST macro instruction for the event (subtask termination). Either the
return code in register 15 (if the task completed normally) or the com-
pletion code specified in the ABEND macro instruction (if the task was
abnormally terminated) is placed in the event control block as shown in
Figure 30. The originating task can issue a WAIT macro instruction spe-
cifying the event control block; the task will not regain control until
after the event has taken place and the event control block is posted.

When an event control block is originally created, bits 0 and 1 must
be set to zero. An event control block can be reused; if it is reused,
bits 0 and 1 must be set to zero before either the WAIT or POST macro
instruction can be issued. However, if the bits are set to zero before
posting the ECB, any task waiting for that ECB to be posted will remain
in the wait state. When a WAIT macro instruction is issued, bit 0 of
the associated event control block is set to 1. When a POST macro
instruction is issued, bit 1 of the associated event control block is
set to 1, and bit 0 is set to 0.

A WAIT macro instruction can specify more than one event by specify-
ing more than one event control block. Only one WAIT macro instruction
can refer to an event control block at one time, however. If more than
one event control block is specified in a WAIT macro instruction, the
WAIT macro instruction can also specify that all or only some of the
events must occur before the task is taken out of the wait condition.
When a sufficient number of events have taken place (event control
blocks have been posted) to satisfy the number of events indicated in
the WAIT macro instruction, the task is taken out of the wait condition.

MANIPULATING TASK PROCESSING

In MVT systems, you can use the STATUS macro instruction to specify
that a task is or is not to be dispatched by the system.

When you issue the STATUS macro instruction with the START or STOP
operand, the system determines whether the specified subtask of the cur-
rent task or all subtasks of the current task are to be modified. When
you specify START, the stop/start count in the subtask TCB(s) is
decreased and the nondispatchability flags are cleared. When you speci-
fy STOP, the stop/start count in the subtask TCB(s) is increased and the
nondispatchability flags are set. The nondispatchability flags are set
for a task only if the task has no system routine being executed for it.
If a system routine is being executed for the task, the task is made
nondispatchable when it no longer has a system routine being executed
for it.

W | P | completion code

Figure 30. Event control block

Task Management 39

PROGRAM MANAGEMENT SERVICES

The control program provides a set of optional services which are
available to your program through the use of macro instructions. The
following paragraphs discuss each of these services and the way to
obtain them. The proper use of any of these services results in an
improved and more efficient program; the misuse or overuse of the ser-
vices wastes main storage and execution time.

ADDITIONAL ENTRY POINTS

Through the use of linkage editor facilities you can specify as many
as 17 different names (a member name and 16 aliases) and associated
entry points within a load module. It is only through the use of the
member name or the aliases that a copy of the load module can be brought
into main storage. Once a copy has been brought into main storage,
however, additional entry points can be provided for the load module,
subject to the following restrictions:

e The "identify" option must have been included in the operating sys-
tem during system generation (standard in an operating system with
MVT, optional with the other configurations of the operating
system) .

¢ The load module copy to which the entry point is to be added must be
one of the following:

- a copy which satisfied the requirements of a LOAD macro instruc-
tion issued during the same task, or

- the copy of the load module most recently given control through
the control program in performance of the same task.

The entry point is added through the use of the IDENTIFY macro
instruction. An IDENTIFY macro instruction can be issued by any program
in the job step, except by asynchronous exit routines established using
other supervisor macro instructions. A further restriction exists for
an operating system with MFT: an IDENTIFY macro instruction cannot be
issued when the load module is given control at an entry point that was
added by an IDENTIFY macro instruction.

When you use the IDENTIFY macro instruction, you specify the name to
be used to identify the entry point, and the main storage address of the
entry point in the copy of the load module. The address must be within
a copy of a load module that meets the requirements listed above; if it
is not, the entry point will not be added, and you will be given a
return code of 0C (hexadecimal). The name can be any valid symbol of up
to eight characters, and does not have to correspond to a name or symbol
within the load module. The name must not be the same as any other name
used to identify any load module available to the control program; dupl-
icate names would cause errors. The control program checks the names of
all load modules currently in the link pack area and the job pack area
of the job step when you issue an IDENTIFY macro instruction, and pro-
vides a return code of 08 if a duplicate is found. You are responsible
for not duplicating a member name or an alias in any of the libraries
unintentionally.

The added entry point can be used only in an ATTACH macro instruction
when you are using an operating system with MFT, and can be used in an
ATTACH, LINK, LOAD, DELETE, or XCTL macro instruction in an operating

40 Supervisor Services

system with MVT. The added entry point can ke used in the performance
of any task in the job step; if the copy is in the link rack area, the
entry point can be used in the performance of any task in the system.

The added entry point is availakle for as long as the copy is
retained in main storage. Prorer task synchronization is required when
using an added entry point in the performance of a task which has not
directly requested the associated copy of the load module; the load
module may otherwise be deleted before the use is complete. The added
entxry point is treated by the control program as an entry point to a
reenterable load module. You may use the IDENTIFY macro instruction to
dynamically override nonreusable and only-loadable attributes. You must
guard against improper changing of these attrikutes.

ENTRY POINT AND CALLING SEQUENCE IDENTIFIERS

An entry point identifier is a character string of up to 70 charac-
ters which can be specified in a SAVE macrc instruction. The character
string is created as part of the SAVE macro instruction exransion. The
dump program uses the calling sequence identifier and the entry point
identifier as shown in the Programmer's Guide to Debugging in the
explanation of Save Area Trace.

A calling sequence identifier is a 16-kit binary number which can be
specified in a CALL or a LINK macro instruction. When coded in a CALL
or a LINK macro instruction, the calling sequence identifier is located
in the two low-order bytes of the fullword at the return pcint address.
The high-order two bytes of the fullword fcrm a NOP instruction.

USING A SERIAILY REUSABLE RESOURCE

The example of a serially reusakle resocurce already encountered was a
load module that was designated serially reusable. In the discussion of
the serially reusable load module it was emphasized that simultaneous
uses of the load module must be prevented. This is true for any serial-
ly reusable resource when one or more cf the users will modify the
resource.

Consider a data area in main stcrage that is keing used by programs
associated with several tasks of a job step. Some of the users are only
reading records in the data area; since they are not changing the reco-
rds, their use of the data area can ke simultaneous. Other users of the
data area, however, are reading, updating, and replacing recoxds in the
data area. Each of these users must acquire, update, and replace reco-
rds one at a time, not simultaneously. In addition, none of the users
that are only reading the records wish to use a record that another user
is updating, until after the record has been replaced. This illustrates
the manner in which all serially reusakle resources must be used.

For all of the uses of the serially reusable resource made during the
performance of a single task, you must prevent incorrect use of the
resource ycurself. You must make sure that the logic of your program
does not .require the second use of the resource before completion of the
first use. Be especially careful when using a serially reusakle
resource in an exit routine; since exit routines are given control asyn-
chronously from the standpoint of your program logic, the exit routine
could obtain a resource already in use by the main program. For the
uses of the serially reusable resource required ky more than one task,
the ENQ macro instruction is provided to ensure use of the resource in a
serial manner. The ENQ macro instruction cannot ke used to prevent
simultaneous use of the resource within a single task. It can only be
used to test for simultaneous use within one task.

Program Management Services 41

5.16

The ENQ macro instruction requests the control prograr to assign ccn-
trol of a resource to the active task. The control program determines
the current status of the resource, and either grants the request by
returning control to the active task or delays assignment of control by
placing the active task in the wait condition. When the status of the
resource changes so that control can ke given to a waiting task, the
task is taken out of the wait condition and placed in the ready ccndi-
tion. The use of the EN¢ macro instruction is discussed in the follow-
ing paragraphs.

NAMING THE RESOURCE

You represent the resource in the ENQ macro instructicn by two nares,
known as the gnawme and the rname. These names may or may not have any
relation to the actual name of the resource. The control procgram dces
not associate the name with the actual rescurce; it merely processes
requests having the same gname and rname on a first-in, first-out basis.
It is up to you to associate the names with the actual resource. It is
up to all users of the resource to use gname and rname to represent the
same resource. The control program treats requests having different
gname and rname combinations as requests for different resources.
Because the actual resource is not identified Ly the control program, it
is possikle to use the resource without issuing an ENQ macro instructicn
requesting it. If this happens, the contrcl program cannot provide any
protection.

If the resource is used only in the performance of tasks in your jcb
step, you can assign the gname and rname combination. You should, in
this case, code the STEP operand in the ENC macro instructions that
request the resource, indicating that the resource is used only in that
job step. The control program will add the job step identifier to the
rname so that no duplicate gname and rname comkination will ke used
unintentionally in different job steps. If the resource is availakble to
any job step in the system, the gname and rname comkination must be
agreed upon by all users and perhaps published.. The SYSTEM operand
should be coded in each ENQ macro instruction requesting one of these
resources. ‘

When selecting a gname for the resource, do not use SYS as the first

three characters; gnames used by the controcl program start with SYS and
you might accidentally duplicate one of these.

EXCLUSIVE AND SHARED REQUESTS

You can request exclusive or shared control of the resource for a
task by coding either "E"™ or "S", respectively, in the ENQ macro
instruction. If this use of the resource will result in mcdification of
the resource, you must request exclusive ccntrol. If you are requesting
use of a serially reusable load module and passing contrcl yocurself, as
discussed previously, you must request exclusive control, since that
program modifies itself during execution. If you are updating a record
in a data area, you must request exclusive control. If you are only
reading a record, and you will nct change the record, you can request
shared control. In order to protect any user of a serially reusable
resource, all users must request exclusive or shared control on this
basis. When a task is given control of a resource in response to an
exclusive request, nc other task will ke given simultaneous control of
the resource. When a task is given control of a resource in response to
a shared request, control will be given to other tasks simultaneously
only in response to other requests for shared control, never in response
to requests for exclusive control. A request for shared control will
protect against modification of the resource by another task only if the
above rules are followed.

42 Supervisor Services

PROCESSING THE REQUEST

The control program essentially constructs a list for each gname and
rname combination it receives in an ENQ macro instruction, and makes an
entry in the list representing the task which is active when the ENQ
macro instruction is issued. The entry is made in an existing list when
the control program receives a request specifying a gname and rname com-
bination for which a list exists; if no list exists for that gname and
rname combination, a new list is built. The entry representing the task
is placed on the list in the order the request is received by the con-
trol program; the priority of the task has no effect in this case. Con-
trol of the resource is allocated to a task based on two factors:

e The position on the list of the entry representing the task.

e The exclusive control or shared control requirements of the request
which caused the entry to be added to the list.

The control program uses these two factors in determining whether
control of a resource can be allocated to a task, as indicated below.
Figure 31 shows the current status of a list built for a very popular
gname and rname combination. The S or E next to the entry indicates
that the request was for shared or exclusive control, respectively. The
task represented by the first entry on the list is always given control
of the resource, so the task represented by ENTRY 1 (Figure 31, Step 1)
is assigned the resource. The request which established ENTRY 2 was for
exclusive control, so the corresponding task is placed in the wait con-
dition, along with the tasks represented by all the other entries in the
list.

Eventually control of the resource is released for the task repre-
sented by ENTRY 1 and the entry is removed from the list. As shown in.
Figure 31, Step 2, ENTRY 2 is now first on the list, and the correspond-
ing task is assigned control of the resource. Because the request which
established ENTRY 2 was for exclusive control, the tasks represented by
all the other entries in the list are kept in the wait condition.

Figure 31, Step 3 shows the status of the list after control of the
resource is released for the task represented by ENTRY 2. Because ENTRY
3 is now at the top of the list, the task represented by ENTRY 3 is
given control of the resource. ENTRY 3 indicated the resource could be
shared, and, because ENTRY 4 also indicated the resource could be ,
shared, ENTRY 4 is also given control of the resource. In this case,
the task represented by ENTRY 5 will not be given control of the
resource until control has been released for both the tasks represented
by ENTRY 3 and ENTRY 4. The remainder of the list is processed in the
same manner.

r ENTRYT (5) |
ENTRY?2 (E) ENTRY?2 (E)
ENTRY3 (5) ENTRY3 (5) ENTRY3 (5)
ENTRY4 (5) ENTRY4 (S) ENTRY4 (5)
ENTRY5 (E) ENTRY5 E) | ENTRY5 (E)
ENTRY6 (S) ENTRY® (5) ENTRY® (5)
Step 1 Step 2 Step 3

Figure 31. ENQ macro instruction processing

Program Management Services 43

44

The following general rules are used by the control program:

e A task represented by the first entry in the list is always given
control of the resource.

e If the request is for exclusive control, the task is not given con-
trol of the resource until the corresponding entry is the first
entry in the list.

e If the request is for shared control, the task is given control
either when the corresponding entry is first in the list or when all
the entries before it in the list also indicate a shared request.

e If the request is for multiple resources, the task is given control
when all of the entries for an exclusive request are first in the
list and all of the entries for a shared request are either first in
the list or are preceded only by entries for other shared requests.

PROPER USE OF ENQ AND DEQ

Proper use of the ENQ and DEQ macro instructions is required to avoid
duplicate requests, to avoid tying up the resource, and to avoid inter-
locking the system. Guides to proper use are given in the following
paragraphs.

DUPLICATE REQUESTS

A duplicate request occurs when an ENQ macro instruction is issued to
request a resource if a task has already been assigned control of that
resource or if a task is already waiting for that resource. If the
second request results in a second entry on the list, the control pro-
gram recognizes the contradiction and refuses to place the task in the
ready condition (for the first request) and in the wait condition (for
the second request) simultaneously. The second request results in
abnormal termination of the task. You must plan the logic of your pro-
gram to ensure that a second request for a resource is never issued
until control of the resource is released for the first use. Again, be
especially careful when using an ENQ macro instruction in an exit -
routine.

RELEASING CONTROL OF THE RESOURCE

The DEQ macro instruction is used to release control of a serially
reusable resource assigned to a task through the use of an ENQ macro
instruction. The task must be in control of the resource. Control of a
resource cannot be released if the task does not have control. As you
have seen, it is possible for many tasks to be placed in the wait condi-
tion while one task is assigned control of the resource. This may
reduce the amount of work being done by the system. Issue a DEQ macro
instruction as soon as possible to release control of the resource, so
that other tasks can be performed. If you return to the control program
at the end of processing for any task which is still assigned control of
a resource, the resource is released automatically; however, in a system
with MVT, the task is abnormally terminated.

Supervisor Services

5.26

CONDITIONAL AND UNCONDITIONAL REQUESTS

The normal use of the ENQ and DEQ macro instruction is to make uncon-
ditional requests. These are the only requests we have considered to
this point. As you have seen, abnormal termination of the task occurs
when two ENQ macro instructions are issued for the same resource in per-
formance of the same task, without an intervening DEQ macro instruction.
Abnormal termination also occurs if a DEQ macro instruction is issued in
a task that has not been assigned control of the resource. Both of
these abnormal termination conditions can be avoided either by more
careful program design or through the use of the RET operand in the ENQ
or DEQ macro instructions. The RET operand (RET=TEST, RET=USE, RET=CHNG
and RET=HAVE for ENQ, RET=HAVE for DEQ) indicates a conditional request
for control or release of control.

RET=TEST is used to test the status of the list for the corresponding
gname and rname combination. An entry is never made in the list when
RET=TEST is coded. Instead a return code is provided indicating the
status of the list at the time the request was made. A return code of 8
indicates an entry for the same task already exists in the list. A
return code of 4 indicates the task would have been placed in the wait
condition if the request had been unconditional. A return code of 0
indicates the task would have been given immediate control of the
resource if the request had been unconditional. RET=TEST is most useful
when used to determine if the task has already been assigned control of °
the resource. It is less useful when used to determine the current sta-
tus of the list and to take action based on that status. 1In the interv-
al between the time the control program checks the status and the time
the return codes are checked by your program and another ENQ macro
instruction issued, another task could have been made active and the
status of the list could have been changed.

RET=USE indicates to the control program that the active task is to
be assigned control of the resource only if the resource is immediately
available. A return code of 0 indicates that an entry has been made on
the list and the task has been assigned control of the resource. A
return code of 4 indicates that the task would have been placed in the
wait condition if the request had been unconditional; no entry is made
in the list. A return code of 8 indicates an entry for the same task
already exists in the list. RET=USE can be best used when there is
other processing that could be performed without using the resource.
You would not want to wait for the resource as long as there was other
work that you could do.

RET=CHNG indicates to the control program that the caller wishes to
have exclusive control of the resource for which he is already enqueued.
A return code of 0 indicates that the resource is immediately available
and has been assigned to the exclusive control of the caller. Either
the caller was already enqueued with the exclusive attribute, or the
requested change from shared to exclusive was honored. A return code of
4 indicates that the requested change in attribute cannot be honored,
because the caller is currently sharing the resource with another user.
A return code of 8 indicates that the user was not enqueued for the
resource when he requested the attribute change. Although this is an
error condition, control is returned to the user.

RET=HAVE is used in both the ENQ and DEQ macro instructions. An ENQ
macro instruction is processed as a normal request for control unless an
entry for the same task already exists. A return code of 8 indicates an
entry for the same task already exists in the list. A return code of 0
indicates that the task has been assigned control of the resource. A
DEQ macro instruction is processed as a normal request to return control
unless the task does not have control of the resource. A return code of
0 indicates that control of the resource has been released. A return

Program Management Services U5

5.31

code of 8 indicates that the task does not have control of the resource
(although the task may be in the wait condition because of a request for
the resource). RET=HAVE can be used to good advantage in an exit rou-
tine to avoid abnormal termination.

Figures 59 and 60 in Section II summarize the return code meanings
and formats respectively for the RET=HAVE operand of the DEQ macro
instruction.

Figures 61 and 62 in Section II summarize the same items for the RET=
TEST, RET=USE, RET=HAVE, and RET=CHNG operands in the ENQ macro
instruction.

AVOIDING INTERLOCK

An interlock condition arises when two tasks are waiting for each
other to complete, yet neither task can gain access to the resource it
needs to complete processing. An example of an interlock situation is
shown in Figure 32. Task A has exclusive access to resource M, and
higher-priority Task B has exclusive access to resource N. Task B is
placed in a wait condition when it requests exclusive access to resource
M because M is accessible only by Task A. The interlock becomes com-
plete when Task A requests exclusive access to resource N because N is
accessible only by Task B. The same interlock would have developed if
Task B issued a single request for multiple resources M and N prior to
Task A's second request. However, the interlock would not have deve-
loped if both tasks had issued single requests for multiple resources.
Other tasks requiring either of the resources are also in a wait condi-
tion because of the interlock, although in this case they have not con-
tributed to the conditions which caused the interlock.

The above example involving two tasks and two resources is a simple
example of an interlock situation. The example could be expanded to
cover many tasks and many resources. It is imperative that interlock
situations be avoided. The following procedures indicate some ways of
preventing interlock situations:

e Do not request resources that are not immediately required. If you
can use the serially reusable resources one at a time, you should
request them one at a time, and release control for one before requ-
esting control for the next.

* Request shared control as much as possible. If the entries in the
lists shown in Figure 32 had indicated shared requests, there would
have been no interlock. This does not mean you should indicate a
request for shared control when you will modify the resource. It
does mean that you should analyze your requirements for the
resources carefully, and not make requests for exclusive control
when requests for shared control would suffice.

e The ENQ macro instruction can be written to request control of more
than one resource at a time. The requesting program is placed in a
wait state until all of the requested resources are available.

Those resources not being used by any other program immediately
become exclusively available to the waiting program and are unavail-
able to any other programs that may request access to the resource.
For example, instead of coding the two ENQ macro instructions shown
in Figure 33, the one ENQ macro instruction shown in Figure 34 could
be coded. If all requests were made in this manner, it would avoid
the interlock shown in Figure 32. All of the requests for one task
would be processed before any of the requests for the second task.
The DEQ macro instruction should be written in the same manner to
release the entire "set" of resources at once.

46 Supervisor Services

5.39

Task A Task B

ENQ (M,A,E, 8, SYSTEM)

ENQ (M,A,E,8,SYSTEM)

|
|
+
L)
|
+
| ENO (N,B,E,8,SYSTEM)
+
I
%
ENQ (N,B,E,8,SYSTEM) |

o oy —— Y ey o oy

b e v s b e e e e e o

L

Figure 32. Interlock condition

r 1
| ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM) |
| ENQ (NAME3ADD,NAME4ADD,E,10,SYSTEM) |
L 4

Figure 33. Two requests for two resources

r 1
| ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM,NAME3ADD,NAME4ADD,E,10,SYSTEM) |
t 1

Figure 34. One request for two resources

e If the use of one resource always depends on the use of a second
resource, then the pair of resources can be defined as one resource
in the ENQ and DEQ macro instructions. This procedure can be used
for any number of resources that are always used in conjunction.
There would be no protection of the resources if they are also
requested independently, however. The request would always have to
be for the set of resources.

e If there are many users of a group of resources and some of the
users require control of a second resource while retaining control
of the first resource, it is still possible to avoid interlocks. In
this case the order in which control of the resources is requested
should be the same for each user. For instance, if resources A, B
and C are required in the performance of many tasks, the requests
for control should always be made in the order of A, B and C. 1In
this manner an interlock situation will not develop, since requests
for resource A will always precede requests for resource B.

The above is not an exhaustive 1list of the procedures to be used to
avoid an interlock condition. You could also make repeated requests for
control specifying the RET=USE operand, which would prevent the task
from being placed in the wait condition; if no interlock situation was
developing, of course, this would be an unnecessary waste of execution
time. The solution to the interlock problem in all cases requires the
cooperation of all the users of the resources.

OBTAINING INFORMATION FROM THE TASK CONTROL BLOCK

Most of the information available from the task control block is use-
ful primarily in task management. The following paragraphs discuss the
information available and how to obtain it. How you use the information
provided depends on the application of your program.

Program Management Services 47

(81

.41

5.41

5.45

48

The ‘EXTRACT macro instruction is used to obtain information from the
task control block (TCB), the command scheduler control block (CSCB),
and the interruption request block (IRB). The full power of the EXTRACT
macro instruction is available (and needed) only in an operating system
with MVT or MFT with subtasking. However, a limited amount of informa-
tion can be obtained through the use of the EXTRACT macro instruction
with the other configuration of the operating system.

Information can be obtained from the TCB, CSCB, and IRB for the
active task or any of its subtasks. The following information can be
requested:

TCB

e The address of the general and floating point register save areas.
These are the save areas used by the control program when the task
is not active.

e The limit and dispatching priorities of the specified task.

e The completion code if the task has been terminated. If the speci-
fied task has not been terminated, the completion code value is set
to zero.

e The address of the time sharing flags field (TCBTSFLG) and the pro-
tected storage control block (PSCB) from the job step control block
(JSCB). This information can be obtained only when using EXTRACT in
an operating system with the time sharing option (TSO).

CSCB

e The addresses of the task input/output table (TIOT) and of the com-
mand scheduler communications list in the command scheduler control
block (CSCB). (The CSCB is in the system queue area.) These
addresses are the only information provided in response to an
EXTRACT macro instruction when using an operating system with MFT
without subtasking.

IRB

¢ The address of the end-of-task exit routine to be given control
after the specified task is terminated.

You must provide an area into which the control program places the
information you request. If you request the fields GRS, FRS, AETX, PRI,
CMC, and TIOT by coding FIELDS=ALL, the area must be seven fullwords
long. If you request only a portion of the information, the area must
be one fullword in length for each item of information you request. In
a system with the time sharing option (TSO) you can also request the
fields TsO, PSB, and TJID. If you request information other than the
address of the task input/output table when you are using an operating
system with MFT without subtasking, each additional item of information
requested will result in the corresponding fullword in the answer area
being set to zero.

TIMING SERVICES

The timing services available depend on options selected when the
operating system was generated. These options are the time . option,
which provides the ability to request the date and time of day, and the
interval option, which includes the time option functions and also pro-
vides the ability to set, test, and cancel intervals of time. The
interval option is standard in an operating system with MVT; either
option can be selected with the other configurations of the operating
system. If neither of these options was selected, the date is the only

Supervisor Services

timing service provided. In the Model 65 Multiprocessing system, timing
services must only be cbtained thrcugh the use of the supervisor macro
instructions: STIMER, TIME, TTIMER. [LCirect reference to the interval
timer location in a multiprocessing system may produce unpredictable
results.

DATE AND TIME OF DAY

The operator is responsible for initially supplying the correct date
and time of day information, based on a 24-hour clock, for control prc-
gram use. The time of day information is updated every 16.7 millise-
conds for 60 cycle-per-second line frequency, or every 20 milliseconds
for 50 cycle-per-second line frequency. Ycu request the date and time
of day information using the TIME macro instruction. The ccntrol gprc-
gram returns the date in register 1 and the time of day in register 0.

The date is returned in register 1 as packed deciral digits of the
form 00yydddc, where yy are the last two digits of the year and ddd is
the day of the year. C is the sign character hexadecimal F, which
allows the year and day information to be unpacked directly for print-
ing. One procedure used to request the day of the year is shown in
Figure 35.

The time of day is returned in register 0 in the form specified in
the TIME macro instruction. The time of day is returned as an unsigned
32-bit binary number that specifies the elapsed nuwber of either hun-
dredths of a second, if BIN is coded, cr timer units, if TU is coded.
(A timer unit is equal to 26.04166 micro-seconds.) If DEC is coded or
the operand is omitted, the time of day is returned as packed decimal
digits of the form HHMMSSth (hours, minutes, seconds, tenths of a
second, and hundredths of a second). The packed decimal digits can ke
unpacked by changing the "h" value to a zone sign and using an UNPK
instruction or by inserting zones Lketween each decimal digit. If both
the time and interval options have not been selected, the operand is
ignored and the content of register 0 is set to zero.

TIMING SERVICES ON THE IBM SYSTEM/370

In an MFT or MVT system generated fcr System/370 all references to
time of day and date use the time-of-day (TOD) clock. The TOD clock, a
feature of System/370, is a 64-bit binary counter. (For more informa-
tion akout the TOD clock, see IBM System/370 Principles of Ogeration.)
Bit 51 of the counter is equivalent to one microsecond.

The TOD clock is incremented continuously while the power is on; the
clock is not affected ky the syster stcp ccnditions that affect the
interval timer in location 80. The operator normally sets the clock
only after an interrxuption of CPU power has caused the clock to stop and
restoration of power has restarted it. The operator sets the clock
using the SET command with the DATE and CLOCK parameters.

o T i
| TIME . Request date |
| ST 1,ANS Store packed date |
| UNPK DOUBLE,ANS Unpack date for printing |
| .o |
| ANS DS F Fullword for packed date |
| DOUBLE DS D Double word for unpacked date |
[—————— 1

Figure 35. Day of year processing

Program Management Services 49

DATE AND TIME OF DAY

If you use the TIME macro instruction with the BIN, TU, and DEC
operands, the date is returned in register 1 and the time of day is
returned in regsiter 0. With the MIC,address operand, the time of day
is returned as an unsigned 64-bit kinary numker in the area specified Ly
"address." The time of day is returned with bit 51 equivalent to one
microsecond. With the MIC,address operand, register 0 is set to zerxc.

INTERVAL TIMING

A time interval can be estaklished for any task in the job step
through the use of the STIMER macrc instruction, and the time remaining
in the interval can ke tested and canceled through the use of the TTIMER
macro instruction. When you are using an cperating system with MFT
without suktasking, only one time interval can be in effect at any one
time during the job step. With an operating system with MVT or MFT with
suktasking, each task in the job step can have an active time interval.

The time interval can be established ky any one of the following fcur
methods.

e BINTVL - requires an unsigned 32-kit kinary number, the low order
kit having a value of 0.01 second.

e TUINTVL - requires an unsigned 32-bit binary number, the low ocrder
bit having a value of 26.04166 microseconds (1 timer unit).

¢ DINTVL - requires an 8-byte field containing unpacked decimal digits
of the form HHMMSSth (hours, winutes, seconds, tenths and hundredths
of a second, based on a 284-hour clcck).

e TOD - requires an 8-kyte field similar to the field required for
DINTVL. The control program interrrets the time specified as the
time of day at which the interval is tc exgpire.

When you test the time remaining in the interval, the time remaining
is returned as a 32-bit unsigned bkinary number in register 0, the low
order bit having a value of 26.04166 microseconds. If the interval has
already expired, the content of register 0 is set to zero.

When you request a time interval, you also specify the manner in
which the interval is to be decremented, through the use of the TASK,
REAL, or WAIT parameter of the STIMER macro instruction. REAL and WAIT
both indicate that the interval is to ke decremented continuously wheth-
er the associated task is active or not. TASK indicates that the
interval is to be decremented only when the associated task is active.
If REAL or TASK is coded, the task continues to compete with the other
ready tasks for control; if WAIT is coded, the task is placed in the
wait condition until the interval expires, at which time the task is
placed in the ready condition.

When TASK or REAL is designated, the address of a timer completion
exit routine can be specified. This is the first routine to be given
control when the associated task is made active after the completion of
the time interval. (If the address of the exit routine is nct speci-
fied, there is no notification of the completion of the time interval.)
The exit routine must be in main storage when required, and must save
and restore registers and return ccntrol tc the address in register 14.
After control is returned to the control program, control is rassed to
the next instruction in the main program.

50 Supervisor Services

r 1
| oo |
| STIMER TASK,FIXUP,BINTVL=TIME Set time interval |
| Loop ... |
| ™ TIMEXP,X'01' Test if fixup routine entered |
} BC 1,NG Go out of lcop if time interval expired |
{ BXLE 12, 6, LOCP If processing not complete, repeat locg |
| TTIMER CANCEL If locp completes, cancel remaining time |
| .. |
| NG . ee |
| “ee |
| USING FIXUP,15 Provide addressakility |
| FIXUP SAVE (14,12) Save registers |
| oI TIMEXP,X'01' Time interval expired, set switch in loop |
| . |
| RETURN (14,12) Restore registers |
| N |
| TIME DC X'00000200*' Time is 5.12 seconds |
| TIMEXP DC X'00" Timer switch |
Lem U 4

Figure 36. Interval timing

Figure 36 shows the use of a time interval when testing a new lcop in
a program. The STIMER macro instructicn sets a time interval of 5.12°
seconds, to ke decremented only when the task is active, and provides
the address of a routine called FIXUP to be given control when the time
interval expires. The lcop is controlled ky a BXLE instruction.

The loop continues as long as the value in register 12 is less than
or equal to the value in register 6. If the loop completes, the TTIMER
macro instruction causes any time remaining in the interval to be can-
celed; the exit routine is not given control. If, however, the lcog is
still in effect when the time interval expires, control is given to the
exit routine FIXUP. The exit routine saves registers and turns cn the
switch tested in the lcop. The FIXUP routine could also print out a
message indicating that the loop did not complete successfully. Regis-
ters are restored and control is returned to the control program. The
control precgram returns control to the main program and processing ccn-
tinues. When the switch is tested this time, the kranch is taken out of
the loop.

If issued by a timer completion exit routine, a STIMER macro instruc-
tion acts as a NCP instruction only for MFT. An exit routine therefore
cannot be used to set a new time interval for MFT.

If issued by a timer completion exit routine, a STIMER macro instruc-
tion is honored for MVT. However, the STIMER issued from the exit rocu-
tine should not specify that same exit routine. If it does specify the
same exit routine, an infinite loop may occur.

The accuracy of a time interval is affected by two factors: the
resolution of the timer and the "ccmpetiticn™ of other tasks for con-
trol. The resolution of the timer (the time between successive updating
of the timer) is 16.7 milliseconds for 60 cycle rer second line frequen-
cy. An attempt to measure an interval of less than 16.7 milliseconds or
an attempt to time to an accuracy cf greater than 16.7 milliseconds can
lead to erroneocus results.

The priorities of other tasks in the system may also affect the
accuracy of the time interval measurement. If you code REAL or WAIT,
the interval is decremented continuously and may expire when the task is
not active. (This is certain to harren when WAIT is coded.) After the
time interval expires, assuming the task is not in the wait condition
for any other reason, the task is placed in the ready condition and then
competes for control with the other tasks in the system that are also in

Program Management Services 51

the ready condition. The additional time required kefore the task
becomes active will then depend on the relative dispatching priority of
the task.

WRITING TO ONE OR MORE OPERATOR CONSOLES

The WTO and the WIOR macro instructions allow you to write messages
to the operator's conscle and/or tc the system message class data set,
depending on the routing code specified. The WTOR macro instructicn
also allows you to request a reply fror the operator. When Multiple
Console Support (MCS) is included in the system, messages can be sent to
(and replies can be received from) as many as 32 orerator consoles.

There are two basic forms of the WIC macro instruction: the single-
line form, and the multiple-line form. To use the single-line form,
code the single-line message within apostrophes. The message that the
operator receives does not contain these arostrorhes. The message can
include any character that is valid in a character (C-type) LC instruc-
tion, except the new-line control character (hexadecimal value 15). It
is assembled as a variable-length record, which is written automatical-
ly; you do not have to provide a data control klock.

To use the multiple-line form of the macro instruction, code the text
of each line within apostrophes fcllowed ky a line type indicator. Enc-
lose both of these items in one set of parentheses. Up to ten conti-
guous lines . of information may be passed to the operator's console by a
problem program.

The following should be considered when issuing multiple-line WTO
messages:

e Tasks issuing multiple-line WTO messages will not be rclied out
until the multiple-line message is ended.

e Multiple-line WTC messages are not passed to the user-written WTO
exit routine.

¢ When a console switch takes place, unended multiple-line WTO mes-
sages and multiple-line WTO messages in the process of being written
to the original console are nct moved to the new console.

e When the system hard copy log is an active operator's console, only
the hard copy versions of multiple-line messages are written to the
console.

e An active operator's console should ke used as the hard copy log
only in an emergency.

See the macro instructions section for an explanation of the pararme-
ters in the multiple-line form of the WTO macrc instruction.

Routing of the message (in a system with the MCS option) is performed
using the routing codes specified in the WTO macro instruction. At sys-
tem generation, each operator's console in the syster is assigned rout-
ing codes which correspond to the functions that the installation wants
that console to perform. When any of the routing codes assigned to a
message match any of the routing codes assigned to a console, the mes-
sage is sent to that console. For more information about routing codes,
refer to Appendix A. '

Disposition of the message (in a system with the MCS option) is indi-
cated through the descriptor codes specified in the WTO macro instruc-
tion. Descriptor codes functionally classify WTO messages so that they
may be properly presented on, and deleted from, display type devices.

52 Supervisor Services

Each WTO macro instructicn should contain one descriptor code. The
descriptor code is not printed or displayed as part of the message text.
If a descriptor code of cne or two is coded into the WTO macro instruc-
tion, an asterisk (*) is inserted as the first character cf the message.
The asterisk informs the operator that he is required to take some imme-
diate action. If a descriptor code other than one or two is coded, a
blank is inserted as the first character, indicating that no immediate
action is needed. For more information about descriptor codes, refer to
Appendix A.

A sample WTC macro instruction is shown in Figure 37. The routing
code (ROUTCDE) and descriptor code (DESC) keywcrd rarameters are igncred
if the orerating syster does not have the MCS option.

To use the WIOR macro instruction, code the message exactly as desig-
nated in the single-line format of the WIC macro instruction (the WTOR
macro instruction cannot be used to pass multiple-line messages). When
the message is written, the control prcgram adds a two-character message
identifier before the message to associate the reply with the message.
The control program also inserts an asterisk as the first character of
all WTOR messages, thereby informing the operator that immediate acticn
is required. You must, however, indicate the operator response desired.
In addition, you must supply the address of the area in which the con-
trol program is to place the reply, and you must indicate the length of
the reply. You also supply the address of an event control block which
the control program will post after the rerly has keen placed, left-
adjusted, in your designated area. (The use of the event control blcck
is discussed under the heading "Task Management.")

A sample WTOR macro instruction is shown in Figure 38. The routing
code and descriptor code values are ignored if the operating system does
not have the MCS option. The reply is nct necessarily availakle at the
address you specified until a WAIT macro instruction has been issued.

When a WTOR macro instruction is issued to more than one functional
area (where the WTOR has more than one routing code), any console within
those areas has the authority to reply. The first reply received by the
operating system is returned to the issuer of the WTOR, providing the
syntax of the reply is correct. If the syntax of the reply is not

r - - - - 1
| Single-line WTO 'BREAKOFF POINT REACHED. TRACKING COMPLETE', C|
| format ROUTCDE=14 ,DESC=7 |
| |
|Maltiple- WTO ('SUBROUTINES CALLED',C), (*ROUTINE TIMES CALLED',L), cl
|1line format (' SUBQUER ',D), ("ENCUER ',p), Cj
I(LiSt form) ('"WRITER ',D), ("DQUER ',DE), Cc|
| ROUTCDE=(2, 14) ,DESC=(7,8) ,MF=L [
—_ _— U 4

Figure 37. Writing to the operator

{ —————————— ———— e - -=

e |
| XC ECBAD,ECBAD Clear ECR |
| WTOR 'STANDARD OPERATING CONDITICNS? REPLY YES OR NO', Cc |
| REPLY,3,ECBAD, ROUTCLE=(1,15), DESC=7 |
| WAIT ECB=ECBAD |
| .o |
| ECBAD DC F'0"* Event control block |
| REPLY DC C'bbb* Answer area |
| —— J

Figure 38. Writing to the operator with a reply

Program Management Services 53

correct, another reply is accerted. The WTOR is satisfied when the
orerating system moves the reply into the issuer's reply area and posts
the event control block as completed. Each console that received the
original WTOR will alsc receive the accerted reply. The master console
operator may answer any WTOR, even if he did not receive the original
message.

WRITING TO THE PROGRAMMER

The WTO macro instruction (single-line format only) and the WTOR
macro instruction allow you to write messages to the programmer, as well
as to the operator.

At system generation (SYSGEN) time, your installation determines how
many 176-byte system message blocks (SMBs) to allow. You can override
this numker at initial program load (IPL) time; however, the number of
SMBs allowed must range from 1 to 20.

When you submit your job, you can specify the message output class
for your messages by using the MSGCLASS parameter of the JOB statement.
(For a description of the MSGCIASS parameter, refer to the Job Contrcl
Lanquage Reference manual.) All WIO and WTOR messages within the number
of SMBs allowed per job will appear in the designated message output
class. When you exceed the number of allowakle SMBs, no subsequent
user-issued WTP messages will arpear in the message output class.

To write a message to the programmer, you must specify ROUTCDE=11 in
the WTO or the WIOR macrc instruction. If you use routing code 11 alone
or together with other routing codes, the message goes to the wessage
output class, as described above. The message can also go to the
console(s) in the situations described by Figure 39.

r——- eSS g S

|If you specify a routing code of 11 (ROUTCDE=11) |

fo—mmmmmmmmm - v 7= —
|In this macro instruction: |In a system: |Your message goes to the: |
—— -- --- e 1
WTO	[With MCS	Message output class
		consoles designated to
		receive messages with
		ROUTCDE=11
——————————————— t e T —		
WTO	[Without MCS	Message output class
--------------------------- oo + -		
WTOR {Wwith MCS	Message output class	
	Master console [
e -4 e -4		
WTOR	Without MCS	Message output class
	Master Console	

_—— _— i

P S —— i ____{
If, in addition to routing code 11, you specify the aprropriate |
routing code(s) in either a WTO cr a WTOR macro instruction with or |
without MCS, the message appears on the console(s) designated to |
receive the routing code(s). In addition, the message appears in |
the same places as it does when you specify only routing code 11 (as |
shown above), with one excertion. For WTOR with MCS, the message |
goes to the master console only if you specify that conscle's rout- |
ing code. |

J

Figure 39. Using WTIO and WTOR to write messages to the rrogrammer

54 Supervisor Services

5.85

WRITING TO THE HARD COPY LOG

When using an orerating system that has the Multiple Console Support
(MCS) option, you can record information on the hard copy log. Since
the MCS option allows more than one console in a system, an installation
might find it helpful to be able to record all the messages issued by
and to a system. The hard copy log rrcvides a place to collect these
messages, and therefore allows an installation to review system activity
by reviewing message activity.

Since the hard copy log is optional, you should know whether your
system was generated with it. The hard copy log is either an operatcr's
console with output capakility or the system 1log.

To record information on the hard copy log, ycu use the WIO or WTCR
macro instruction. Your installation must have decided which system
functions are to be logged and assigned aprropriate routing codes tc the
hard copy log. The routing codes that you assign to your WTO or WTOR
macro instruction are compared to the routing codes assigned to the log.
If one or more codes match, the message is entered in the log. This
means you do not have to issue a WTI macro instruction to record syster
and problem program information when the same information is going to
the operator. You must, however, know which systew functions the log is
recording and assign an agpropriate routing code to your WTO or WTOR
macro instruction.

For each entry in the hard copy log, koth the time when the message
is received ky the system and the routing codes for the message are
appended to the beginning of the message text. Recording the time that
the message was received, a procedure called time stamping, allows you
to obtain a chronological record of system activity. For a system that
does not have the timer option, the space for time stamping is filled
with zeros.

Whether the hard copy log is the operatcr's console or the system
log, the hard copy log information cannot be confused with other infor-
mation. This is because the hard copy log entries are prefixed with the
time stamp and the routing codes. :

WRITING TO THE SYSTEM LOG

Operating systems with MFT, MVT, or Model 65 Multiprocessing provide
a system log as an ortional feature. The system log consists of two
SYSOUT data sets on which the communication between the creratoxr and the
system is recoxrded. You can use the systerm log ky coding the informa-
tion that you wish to log in the "text" operand of the WTL macro
instruction.

The data set receiving data from the system, user programs, and/or
operators is the primary data set. The data set being written, or wait-
ing to be written, to a system output device is the alternate data set.
The primary data set, the one that is currently oren and receiving
input, is logically connected to two kuffers. The operating system
fills one kuffer and writes it to the primary data set while filling the
other buffer. The alternate data set has keen logically disconnected
from the buffers because it has been filled and must wait to be written
to a system output device. After keing written to a system output
device, the alternate data set can be used again to receive input. When
receiving input, the alternate data set kecomes the primary data set.

When the WTL macro instruction is executed, the system places your
text in one of the buffers and, when the kuffer is full, writes the
buffer onto the system log primary data set. The system writes the text
of your WTL macro instruction on the master console instead of on the
system log if one of the following two conditions exists:

Program Management Services 55

5.90

e The system log is nct surported.

e The system log is supported, but the system log data sets are tem-
porarily inactive kecause koth are full and waiting to be written.

Your installation probably has an cperatcr procedure to follow for both
of the akove conditions.

Although when using the WTL macro instruction you code the wessage
within apostrophes, the written message does nct contain the apos-

-txorhes. The message can include any character that is valid for the

WTL macro instruction and is assemkled and written the same way as the
WTO macro instruction. MCS routing codes and descriptor codes are nct
assigned since they are not needed by the WTL racro instruction.

MESSAGE DELETION

If your system is using an operator console with a cathode ray tube
(CRT) display screen, unnecessary messages can be deleted from the
screen by the programmer.

The orerating system assigns a message identification number to each
WTO and WTIOR message, and returns the message to the program in register
1. The DOM macro instruction uses the identification numker to indicate
which message is to be deleted. The message identification number must
not be confused with the reply identification numker that is assigned to
WTOR replies.

OPERATOR COMMUNICATION WITH A PROBIEM PROGRAM

The orerator can pass information to a problem program by issuing a
STOP or a MODIFY cormand. In order to accept these commands, the pro-
gram must ke set up in the following manner.

An EXTRACT macro instruction is issued tc oktain a pointer to the
communications ECB, which is posted when a STOP or a MODIFY command is
issued, and a pointer to the first command input buffer (CIB) on the CIB
chain for the task:

EXTRACT answer area, FIELDS=COMM
EXTRACT will return the following:

The CIB contains the information srecified on the STOP or the MODIFY
command, as shown in Figure #40. If the job was started from the con-
sole, the CIB pointed to when the EXTRACT macrc instruction is issued
will be the START CIB. If the job was not started from the console, the
address of the first CIB will be zero. If the address of the START CIE
is present, the QEDIT macro instruction should ke used to free this CIB
after any parameters passed in the START command have been examined:

QEDIT ORIGIN=address of pointed to CIB,BLOCK=address of CIB

The CIB counter should then be set to allow CIBs to ke chained and MODI-
FY commands accepted for the job. This is also accorplished by using
the QEDIT macro instruction (the QEDIT macro instruction is described in
the MFT and MVT Guides):

QEDIT ORIGIN=address of pointer to CIB,CIBCTR=n
The value of n is any integer value from 0 to 255. If n is set to zero,

no MODIFY commands will be accepted for the job. STOP commands, howev-
er, will be accepted for the job regardless of the value set for CIBCTR.

56 Supervisor Services

5.95

answer area

r - To———=-= >r -9

| Address of the | | ECB address |

| communicaticn area | =0 jpe—eemmmmmm——o

e 4 | CIB address |

| 4

Hex
r T T T T T T T T S e -
0] |
| Address of Next CIB |
pmmem - T -—- g - -
4 5 | 6 |
| Verkb Code | CIB Length | Reserved |
fm——— L o e 1
8| | A _ |
| Reserved | TSC Terminal ILC |
prmmm ey -1 e 1
c| |D | E , |
| Conscle ID | Reserved | Length of Data Field |
', _________ i 1 i o i i . . e e e o i e e e . o A o et e o o J
10

Variakle length data specified in the command

Verb code X'04*' START
X'40' sTOP
X'44' MCDIFY

Figure 40. Command input tkuffer contents

For the duration of the job, the communications ECB may be waited on
or checked at any time to see if a command has been entered for the grc-
gram. The verb code in the CIB shculd be examined to determine whether
a STOP or a MODIFY command has been entered. After the data in the CIEB
has been processed, a QEDIT macro instruction should be issued to free
the CIB.

The communications ECB will be cleared when the last CIB on the chain
is freed. Care should ke taken if multiple subtasks are examining these
fields. Any CIBs not freed by the task will be unchained by the systen
when the task is terminated. The area addressed ky the pointer obtained
by the EXTRACT macro instruction, the communications ECB, and all CIBEs
are in protected main storage and may not ke altered.

GENERALIZED TRACE FACILITY (GTF) INTERFACE

One of the capabilities of the Generalized Trace Facility (GTF) is
the recording of data originated by application programs. The interxface
between the application programs and GTF is the GTRACE macro instruc-
tion. For a complete discussion of GTF, see the Service Aids
publication.

GTRACE allows from 1 to 256 bytes of data to ke entered in a GTF
buffer and recorded. When the GTRACE macro instruction is executed, GTF
must be active and conditioned to receive application data and to record
this data on an external device; otherwise the data will not be
accepted. - The data to ke traced must be in your partition or region.

Program Management Services 57

5.100

5.101

5.102

Return codes are used to indicate the result of the operation. The
GTRACE macro instructicn is fully descriked in the macro instructions
section.

Recorded data is processed by the edit function of the IMDPRDMP ser-
vice aid. 1If you want more than a hexadecimal dumr of the records, ycu
may prepare formatting routines for use with the IMDPRDMP edit functicn.
Association ketween your recorded data and the formatting routine ky
which it is processed is established by entering a format identifier in
the GTRACE macro instruction. This identifier defines the formatting
routine that is to process the record. The Serxvice Rids rublicaticn
contains a complete discussion of IMDPRDMP.

To use the GTRACE macro instruction, specify the address and the
nunber of ktytes of data to be entered, along with an event identifier.
A unique event identifier may be specified each time the GTRACE macro
instruction is coded. This identifier may be used, for example, in cut-
put record identification. The ortional FID= parameter indicates the
formatting routine to be used by IMDPRDMP in processing the record. 1In
Figure 41, 200 bytes of data, teginning at the address of AREA, are to
be recorded with an event identifier of 37. When the reccrd is edited
and printed by the IMDPRDMP service aid, a routine designated by suffix-
ing the FID value (converted to Hexadecimal) to the characters IMDUSR
will be loaded to process the record. 1In Figure 41, IMDUSR28 is
designated.

r—— _

I I
GTRACE DATA=AREA,ING=200,1ID=37,FID=40 |

|

|

L e e e e e e e e e e e e ¥
Figure 41. Specifying the GTRACE macro instruction

PROGRAM INTERRUPTION PROCESSING

Unusual conditions encountered in a program cause a program interrug-
tion. These conditicns include incorrect cperands and operand specifi-~
cations, as well as exceptional results, and are known generally as Erc-
gram exceptions. For certain exceptions (fixed-point and decimal over-
flow, exponent underflow and significance), interruptions can be dis-
abled by setting the corresponding bits in the program status word to
zero.

When a task becomes active for the first time, all program interrup-
tions that can be disabled are disabled, and a standard ccntrcl rrogran
exit routine, included when the system was generated, is provided. This
control program exit routine is given control when any program interrug-
tions occur, and issues an ABEND mracro instruction specifying task
aknormal termination and requesting a dump. By issuing the SPIE macrc
instruction, you can specify your cwn exit routine to be given control
for one or more types of program exception. The macro instruction sge-
cifies the address of the exit routine to ke given control when speci-
fied program exceptions occur. If the SPIE macro instruction specifies
an exception for which the interrugtion has keen disakled, the control
program enables the interruption when the macro instructiocn is issued.

The SPIE macro instruction can ke issued by any program being
executed in performance of the task. When the task is active, your exit
routine receives control for all interruptions resulting from exceptions
specified in the SPIE macro instruction. For other program interrup-
tions, control is given to the control program exit routine. Each suc-

58 Supervisor Services

5.103

5.104

5.105

5.106

5.107

ceeding SPIE macro instruction completely overrides specifications in
the previous macro instruction.

PROGRAM INTERRUPTION CONTROL AREA

The expansion of each standard cr list form SPIE macro instruction
contains a control program parameter list called the program interrup-
tion control area (PICA). The PICA and ancther control program area
called the program interruption element (PIE) contain the informaticn
that enables the contrecl program tc intercept user-specified program
interruptions. Together, the PIE and the FICA associated with it are
called the "SPIE envirconment." (The PIE is descriked later in this sec-
tion.) The PICA, as shown in Figure 42, contains the new program mask
for the interruption types that can ke disakled, the address of the exit
routine to ke given control when one of the specified interrupticns
occurs, and a code for interrurtion types (exceptions) specified in the
SPIE macro instruction.

The control program maintains a pointer (in the PIE) to the PICA
referred to ky the last SPIE macro instruction executed. This PICA may
have been created by the last SPIE (standard or list form) or may have
keen created previously and referred tc ky the last SPIE (execute form).
Each program that issues a SPIE macro instruction, before returning ccn-
trol to the calling program or passing control to another program by
issuing an XCTL macro instruction, must cause the control prograr to
adjust the SPIE environment to the conditicn that existed or to elimin-
ate the SPIE environment if one did not exist on entry toc the progranm.
When the standard form or execute form of the SPIE macro instruction is
issued, the control program returns the address of the previous PICA in
register 1. If no SPIE environment existed when the program was
entered, the control program returns zeros in register 1.

The effect of the last SPIE macxoc instructicn is canceled by issuing
a SPIE macro instruction with no operands. This action does not reesta-
blish the effect of the previous SPIE; it does create a new PICA that
contains zeros, thus indicating that no user exit routine is to process
interruptions. Any previous SPIE environment may ke reestablished,
regardless of the number or type of subsequent SPIE racro instructicns
issued, by using the execute form cf the SPIE racro instruction specify-
ing the appropriate value that had been returned in register 1 by the
control program. If a PICA address is specified (as opposed to zeros),
the PICA must be still valid (not overlaid). The SPIE environment will
be eliminated by specifying zeros as the PICA address.

Figure 43 shows how to restore a previous PICA. The first SPIE macro
instruction designates an exit routine called FIXUP that is to be given
control if fixed-point overflow occurs. The address returned in regist-
er 1 is stored in the fullword called HCLD. At the end of the prograrm,
the execute form of the SPIE macro instruction is used to restore the
previous PICA.

PROGRAM INTERRUPTION ELEMENT

When the first SPIE macro instruction is executed in performance cf a
task, the control program creates a 32-byte program interruption element
(PIE) in the main storage area assigned to the job step (subrcol 0 in
MVT). Because the PIE is freed when the SPIE environment is eliminated
(ky specifying a PICA address of zero in the execute form of a SPIE
macro instruction), a PIE will alsc ke created whenever a SPIE macro
instruction is issued and no PIE exists. The format of the PIE is shown
in Figure 44.

Program Management Services 59

5.108

5.108 The PICA address in the program interruption element is the address
of the program interrurtion control area used in the last execution of a
SPIE macro instructicon for the task. When control is passed to the rou-
tine indicated in the PICA, the old prograrm status word contains the
interruption code in bits 16-31; these bits can ke tested to determine
the cause of the program interruption. The contents of register 14, 15,
0, 1, and 2 at the time of the interrurtion are stored by the control
program as indicated.

DISPLACEMENT

(Bytes) 0 1 2 3 4 5
]
I Pro- | .
0000 ! gram Exit Routine Address nterruption
N Type
! Mask
l asl

Figure 42. Program Interruption Control Area

[e e e e —— —— — e ——m - -
| SPIE END, (4) Provide exit routine for protection |
I |
| SPIE FIXUP,(8) Provide exit routine for fixed-point overflow |
| ST 1,HOLD Save address returned in register 1 |
| e |
| L 5,HOLD Reload returned address of PICA for first SPIE|
| SPIE MF=(E, (5)) Use execute form and old PICA address |
] |
| HOLD DC F'O" |
b e - -_— -4

Figure 43. Use of the SPIE Macro Instruction

DISPLACEMENT

(Bytes) 0 1 2 3
Reserved PICA Address
4
I
Old Program L (Interruption Codes)
Status Word =~ — —————— ———]
12
16 Register 14
20 Register 15
24 Register 0O
28 Register 1
32 Register 2

Figure 44. Program interruption element

60 Supervisor Services

5.109

5.110

5.111

5.112

REGISTER CONTENTS

When control is passed to the designated exit routine the register
contents are as follows:

¢ Register 0: internal control program information.

e Register 1: address of the program interruption element for the
task that caused the interruption.

e Registers 2-12: same as when the program interruption occurred.

e Register 13: address of the save area for the main program (same as
when the program interruption occurred). The exit routine must not
use this save area.

* Register 14: return address (to the control program).
e Register 15: address of the exit routine.

The exit routine must be in main storage when it is required, and
must return control to the control program using the address passed in
register 14. The contrcl program restcres registers 14, 15, 0, 1, and 2
from the program interruption element after control is returned, but
does not restore the contents of registers 3-13. If a program interrup-
tion occurs when the program interruption exit routine is in control,
the control program exit routine is given control.

To determine which type of interruption occurred, the exit routine
can interrogate bits 28 through 31 of the old program status word (OPSW)
in the program interrurtion element. The routine can then take correc-
tive action or can simply ignore the exceptional condition.

The exit routine can alter the contents of the registers when control
is returned to the interrupted program. For registers 3 through 13, the
routine alters the contents of the actual registers. For registers 14
through 2, the routine alters the contents of the register save area in
the program interruption element. This is because the control program

Program Management Services 60.1

5.113

5.114

5.115

5.116

5.117

5.118

5.119

5.120

reloads these registers from this area when it returns control to the
interrupted program.

The exit routine can also alter the last four bytes of the OPSW in
the program interruption element. By changing the OPSW, the routine can
select any return point in the interrupted program.

The control program returns control to the interrupted program by

loading a PSW constructed from the possibly modified OPSW saved in the
program interruption element.

SPECIFYING AN ATTENTION EXIT ROUTINE

If your system (MVT including Model 65 Multiprocessing only) has the
time sharing option (TSO), you can use the STAX macro instruction to
specify the address of an attention exit routine to gain control when
the terminal user strikes the attention key or when the terminal user
specifies simulated attention. The details about what you should do in
an attention exit routine and how you can use it appear in the Time
Sharing Option Guide to Writing a Terminal Monitoring Program or a Com-—
mand Processor.

PRECISE AND IMPRECISE INTERRUPTIONS

After an interruption, the old program status word contains the
address of the next instruction to be executed in bits #40-63, and the
length of the previous instruction in bits 32 and 33. In System/360
Models 65, 67, 75, 85, and 91, and System/370 Models 165 and 195, howev-
er, the address of the next instruction may not be precise; if the
address 1is not precise, the instruction length code (ILC) in bits 32-33
is set to zero. You should therefore test the instruction length code
for zero before using the next instruction address.

In Models 65-85, imprecise interruptions can result only from protec-
tion and addressing exceptions. 1In the Model 91, imprecise interrup-
tions result from these and eight other types of exceptions. In the
Model 195, imprecise interruptions result from nine other types of
exceptions. Figure 45 summarizes the types of program exceptions that
can result in an imprecise interruption.

Except for the protection exception in the Model 91, any exception
that can result in an imprecise interruption can also result in a pre-
cise interruption. You therefore should not assume that a specific type
of exception will always produce an imprecise interruption. Figure 45
defines the conditions under which interruptions are precise in Models
65-195. Note that interruptions are always precise in systems with
lower model numbers.

INTERRUPTIONS IN THE MODELS 91 AND 195

As shown in Figure 46, the interruption code in the Models 91 and 195
differs for precise and imprecise interruptions. For precise interrup-
tions (as for all interruptions in other models), exceptions are indi-
cated in bits 28-31 of the o0ld program status word. For imprecise
interruptions, bits 28-31 are zero, and exceptions are indicated in bits
16-27.

Before testing the interruption code to determine the cause of an
interruption, you should test the instruction length code to determine
whether the interruption is precise or imprecise. If the instruction
length code is zero, indicating an imprecise interruption, you should
test bits 28-31 of the o0ld program status word to determine whether the
interruption has occurred on a Model 91 or 195. If bits 28-31 are zero,
the interruption has occurred on a Model 91 or 195 and the cause of the

Program Management Services 61

5.121

i Type of Interruption
iPrecise (ILC#0) i Imprecise (ILC=0)
Type of Exception { iModels 65-85 andi ;
| | System/370]
| All Models 1 Model 165 Model 91 ! Model 195
Bits 16—27I28-31|Bits 16-27T28-31 Bits 16-27 '28—31 i Bits 16-27 |28-31
Operation (zero) 0001 ! [
!Privileged Operation (zero) 0010 1 i i j
fExecute (zero) 0011 1 i j
Protection (zero) 0100 | (zero) 0100 1000000000001(zero)ilOOOOOOOOOOO{(zero)i
Addressing (zero) 0101 (zero)* {0101% 0100000000001(zero)'0100000000001(zero)i
Specification (zero) 0110 001000000000i(zero) ' i
Data (zero) 0111 000100000000 (zero)L000100000000§(zero)l
Fixed-Point Overflow (zero) 1000 000010000000 (zero)iOOOOlOOOOOOOI(zero)
Fixed-Point Divide (zero) 1001 000001000000 (zero)i000001000000 (zero)!
Decimal Overflow (zero) 1010 ! ! EOOOOOOOOOOlOI(zero)}
Decimal Divide (zero) |1011 | i E i000000000001 (zero) |
Exponent Overflow (zero) 1100 ! | 1000000100000l(zero)iOOOOOOlOOOOO (zero)
Exponent Underflow (zero) 1101 i 000000010000 (zero)iOOOOOOOlOOOO (zero)
Siginificance (zexo) 1110 | 000000001000 (zero)I000000001000!(zer0)
Floating-point Divide (zero) 1111 000000000100 (zero) 000000000100i(zero)}
1Except Model 651]

Figure 45. Interruption code in the old program status word

interruption is indicated in bits 16-27. If bits 28-31 are not zero,
the interruption has not occurred on a Model 91 or 195, and these bits
themselves indicate the cause of the interruption.

5.121 In the Model 91, there are ten types of program exceptions that can
cause an imprecise interruption; in the Model 195, there are eleven
types. Each is represented by a separate bit in the interruption code
(bits 16-27). After an imprecise interruption, the interruption code
may indicate more than one type of exception. When it does, the indi-
cated exceptions may be due to a single instruction, or to several
instructions whose execution was overlapped. Note that each of the
indicated exceptions may have occurred more than once, and there is no
indication as to which occurred first.

5.122 If you provide an exit routine to handle any of the exceptions that
may result in an imprecise interruption, you should specify all ten such
exceptions in the SPIE macro instruction. When an imprecise interrup-
tion occurs, your exit routine will be entered only if the PICA indi-
cates all of the exceptions that are indicated in the o0ld program status
word. For example, if you provide a routine to handle fixed-point over-
flow, and if you specify only fixed-point overflow in the SPIE macro
instruction, the routine will not be entered if both fixed-point over-
flow and specification exceptions are indicated for the same
interruption.

DECIMAL SIMULATION IN THE MODEL 91

5.123 The instruction set for the model 91 does not include the decimal
instructions AP, CP, DP, MP, SP, and ZAP; each of these instructions

62 Supervisor Services

5.124

5.125

|Models 65-85 and |

T
|
System/370 |
Model 165 Model 91 | Model 195
. T) T . ; T T
Type of Exception i Precise | | Precise
| in | | in
INHIBIT Precise | INHIBIT|
Always |Sometimes|Always |Sometimes|OVERLAP|for Decimal|Always |Sometimes|OVERLAP|
Precise| Precisel|Precise| Precise2| Mode® |Simulation“|Precise| Precise®| Mode3
i 4.
T 1]
Operation X | X] X
il I 4
T T T
Privileged Operation X X X |
Execute X X X
Il
Ll
Protection | X | X
}
v
Addressing | X X X X
i il
T T
Specification X X X { X
1
T
Data X X X | X
}
+
Fixed-point Overflow X | X | X
I
T
Fixed-point Divide X X | X
I
+
Decimal Overflow X X | X
Decimal Divide X X X
Exponent Overflow X X | X
I
T
Exponent Underflow X X I X
}
T
Significance X I X | X
4 Il 1 i I
T T T LI T
Floating-point Divide| X |- | | X | X
1. ' 1 i 1

[N

3 .
|*A protection or addressing exception results in a precise or imprecise interruption, depending on the
|

exception. For details, refer to the Model 195 Functional Characteristics publication.]
L

cause of the exception.
2An addressing or specification exception results in a precise or imprecise interruption, depending on
the cause of the exception. For details, refer to the Model 91 Functional Characteristics
publication.
3The indicated interruptions are precise if the INHIBIT OVERLAP switch is set on the system control
panel.
4The interruption for a protection exception is precise only when simulated by the control program
decimal simulator routine. Interruptions for decimal overflow and decimal divide exceptions occur
only as simulated interruptions; they do not occur if the control program does not include the
decimal simulator routine.
SAn addressing exception results in a precise or imprecise interruption, depending on the cause of the

Figure 46. Precise interruptions in IBM System/360 Models 65, 67, 75,
85, and 91, and Systern/370 Models 165 and 195

causes an operation exception, which results in a precise interruption.
If the decimal simulator routine was specified at system generation, the
control program sirulates the decimal operation. Otherwise, control is
passed to your program interruption exit routine, or to the control pro-
gram exit routine.

Decimal simulation may result in an exceptional condition. When it
does, the control program simulates a precise interruption as indicated
in Figure 46. For decimal overflow, execution is completed and the con-
dition code is set. For other exceptions, execution is sugpressed; the
condition code and the contents of main stcrage remain unchanged. Note
that the control program does not simulate an interruption for decimal
overflow if the interruption is disakled.

EXTENDED-PRECISICON FIOATING-POINT SIMULATION

The 0S/360 Extended-Precision Floating-Point Simulator provides full
extended-precision arithmetic for all CS users. A divide macro instruc-
tion (DXR) is provided for the models that have the extended-precision
floating arithmetic facility and all eight instructions are provided for
the models that do not. Thus, you can use extended-precision floating-
point instructions whether or not your particular machine model has the
extended-precision floating-point facility. To do so, write a program-
interruption-handling exit routine. The exit routine is required:

Program Management Services 63

5.126

5.126

5.127

5.128

1 5.129

5.130

5.131

5.132

5.133

e If your machine rcdel already has the extended-precision floating-
point facility, and you also wish to use the extended-precision
floating-point divide (DXR) macro instruction.

e If your machine rodel does not have the extended-precision floating-
point instructionms, but you wish to use these instructions and the
extended-precision floating-point divide instruction.

To determine if the extended-precision floating-point feature is
installed in your CPU, call the module IEAXPSIM, which returns a pointer
to the appropriate simulator (see "Calling the Simulator," below).

The format of the extended-precision floating-point divide (DXR)
instruction is described in the macro instructions section, and the for-
mats of the other extended-precisicn floating-point instructions are
described in Principles of Operation.

EXTENDED PRECISION DIVISION

To perform extended precision division, use the DXR macro
instruction:

DXR regl,reg2
where regl contains the dividend; reg2 the divisor.

The first operand (the dividend) is divided by the second operand
(the divisor) and is replaced by the normalized quotient. No remainder

is preserved. For a discussion of norralization, refer to the section
Floating Point Arithmetic in Principles of Operaticn.

Division Process

The quotient fraction has 28 hexadecimal digits and is developed such
that it is the largest number for which the absolute value of the prc-
duct of the quotient and the diviscr fractions is either equal to or
less than the absolute value of the adjusted (normalized) dividend frac-
tion. All digits of the dividend and divisor fractions are involved in
the operation; the dividend fraction is extended with low-crder zercs.

The sign of the quotient is determined ky the rules of algebra;
however, if the quotient is made a true zero, its sign is made plus.

Unless the quotient is made a true zero, the characteristic, sign,
and high-order 14 hexadecimal digits of the normalized quotient fraction
replace the high-order part of the first operand. The low-order 14
hexadecimal digits of the gquotient fracticn reglace the high-order part
of the first operand. The low-order 14 hexadecimal digits of the quc-
tient fraction replace the low-order fraction of the first operand. The
lcw-order sign is made equal to the high-order sign, and the low-order
characteristic is made 14 less than the high-order characteristic.
However, when the subtraction of 14 causes the low-order characteristic
to become less than zero, it is made 128 greater than its correct value.
Extended precision arithmetic is further discussed in Princirles of

Operxration.

Arithmetic Exceptions

The following exceptions can occur when using the DXR macro
instruction.

¢ Exponent overflow.

64 Supervisor Services

5.134

5.135

5.136

5.137

5.138

5.139

e Exponent underflow.

e Floating-point divide.

Exponent overflow is recognized when the characteristic of the norma-
lized quotient exceeds 127 and the fraction of the quotient is nct zerc.
The operation is completed by making the high-order characteristic 128
less than the current value. If the low-order characteristic also
exceeds 127, it is decreased by 128. The quotient fraction and sign
remain unchanged. A program interruption for exponent overflow then
occurs.

Exponent underflow is recognized when the characteristic of the nor-
malized quotient is less than zerc and neither operand fraction is =zerc.
If the exponent underflow mask bit is set, the oreration is completed by
making the characteristics of both parts 128 greater than their correct
values. The quotient fraction and sign remain unchanged. A program
interruption for exponent underflow then occurs. If the exponent unde-
rflow mask is zero, a program interrugtion does not occur; instead, the
operation is completed by making both the high-order and lcw-order parts
of the quotient a true zero.

Exponent underflow is not recognized when the low-order characterist-
ic is less than zero and the high-crder characteristic is greater than
or equal to zero. Similarly, exponent underflow is not recognized when
one or both of the operands underflow during prenormalization, but the
quotient can be expressed without encountering underflow.

The floating-point divide exception is recognized when the divisocor
fraction is zero. The operation is sugpressed, and a program interrur-
tion for floating-point divide occurs.

When the dividend fraction is zero, the quotient is made a true zero,
and a possible exponent overflow or underflow is not recognized. A
division of zero by zero, however, causes the operation to be suppressed
and an interruption for floating-pcint divide to occur.

The condition code remains unchanged for all arithmetic exceptions.
Figure 47 describes the rrogram interrupticns that can occur.

r . T T T Tt T 1
|Interruption | |Action |
| Type | Description | Taken |
- S § e e e e e e e e e - -
T
| Operation " |The instruction is not installed. |The operation |
| i |is suppressed. |
| | [|
|Specification|Registers other than 0 or 4 are | The operaticn |
| |specified, or positions 16-23 do not con-|is suppressed |
| |tain zeros. | |
| I
| Exponent | The characteristic of the normalized |The operation |
|Overflow |quotient exceeds 127, and neither operand|is completed. |
| | fraction is zero. | |
| | | I
| Exponent | The characteristic of the normalized |The operaticn |
| Underflow |quotient is less than zero, neither [is completed. |
| |operand fraction is zero, and the | |
| |exponent underflow rask kit is set. | |
| | | |
|Floating- |The divisor fraction is zerc. | The operation |
|Point | |is suppressed. |
|Divide | : | |
[S - i 4

Figure 47. Summary of program interruptions

Program Management Services 65

5.140

CALLING THE SIMULATOR

5.140 - To use the extended-precision floating-point instructions that your
machine model does not have, call the extended-precision floating-point
simulator from a program-interruption-handling exit routine. The simu-
lator is a program that is automatically included in your operating sys-
tem at system generation time. Writing an exit routine to handle pro-
gram interruptions is discussed under "Program Interruption Processing.”

5.141 To use the extended-precision floating-point simulator, specify in
the SPIE macro instruction that your exit routine is to receive control
if an operation exception occurs. In addition, either ycur program,
during initialization, or the exit routine must perform the following
tasks, in this order:

‘e Prepare a parameter list to pass tc IEAXPSIM.

e Pass control to IEAXPSIM, using standard operating system
conventions.

e Prepare a parameter list to pass to the simulator.

e Pass control to the simulator, using standard operating system
conventions.

e Check the code returned by the simulator.
e Perform corrective action if necessary.
5.142 In addition, your program or the exit routine may perform the following
tasks:

e Load the IEAXPSIM module, using the LOAD macro instruction, before
its use.

e Delete the IEAXPSIM module, using the DELETE macro instruction,
after its use.

s Load the simulator, using the LOAD macro instruction, the first time
it is needed.

e Delete the simulator, using the DELETE macro instruction, at the end
of the job steg.
DESIGNING THE EXIT ROUTINE

5.143 The following paragraphs and Figure 48 should help you design ycur
exit routine. (Figure 48 assumes that the initialization procedures
mentioned above are done in the exit routine.)

5.144 The parameter list that you pass tc IEAXPSIM must be pointed to by
register 1 and must contain a pointer to a doubleword area into which
IEAXPSIM will move the name of the simulator module to which you will
pass control.

5.145 The parameter list that you pass to the simulator must be pointed to
by register 1 and must contain the following:

1. A pointer to the PIE.

2. A pointer to the area containing the contents of general registers 0
through 15 at interrupt tirme.

66 Supervisor Services

3. A pointer to a work area.

4. A pointer to a byte that is nonzero if the last bit of the quotient
for a DXR need not be correct.

— . S . T e, - i S i S e S o, o . e, —— e T e S st s e S s, S . . . S S, i S e S . S o S, T s S . i . i S s . atptt, . s .)

|
|
[

r

| USING EXTPRE,15

| EXTPRE STM 3,13,SIMSV+12 Save registers not in PIE

| LR 4,15

| USING EXTPRE, 4 Establish addressability

| DROP 15

| MVC SIMSV(12),20(1) Registers 0-2 from PIE

| MVC SIMSV+56(8) ,12(1) Registers 14-15 from PIE

| ST 14,RET Save return address

| ST 1,PARMB Pointer to PIE

| LA 13,SAVESIM Load save area address

| L 15,SIMADD

| LTR 15,15 Coes SIMALD contain address?
| BNZ TOSIM If so, go directly to simulator
] LINK EP=IEAXPSIM,PARAM=(PARMA)

| LOAD EPLOC=SIMUL Load simulator

| LR 15,0 Put simulator's address in
| register

| ST 0,SIMADD Save address of simulator

| TOSIM LA 1,PARMB Parameter 1list address

| BALR 14,15 Go to simulator

| LTR 15,15 Error or exceptional conditicn?
% . ee

| *HERE THE EXIT ROUTINE SHOULD LETERMINE THE ERROR OR THE

| *EXCEPTIONAL CONDITION THAT OCCURRED IN SIMULATING AND

| *TAKE APPROPRIATE ACTION.

|

| oo

| B ouT

| GOODOUT EQU *

|

| *HERE THE EXIT ROUTINE SHOULD TAKE APPROPRIATE ACTION WHEN

| *NO ERROR OR EXCEPTIONAL CONDITION CCCURRED DURING SIMULATION.
|

| ouT L 14 ,RET

| LM 3,13,SIMSV+12 Restore registers

| BR 14 Return

I

| *WHEN THE EXIT ROUTINE NO LONGER NEEDS THE SIMULATOR,

| *THE ROUTINE SHOULD DELETE IT.

|

| DELETE EPLOC=SIMUL

| cee -

| PARMA DC X'80',AL3 (SIMUL) Pointer to simulator name

| SIMUL Ds D Simulator name

| PARMB Ds F For pointer to PIE

| DC A (SIMSV) Address of register area

] DC A (WORK) Address of work area

| DC X*80°,AL3(ZERO) Divide adjust switch pointer
| ZERO DC X'0* Adjust switch for divide

| WORK DC 50D Work area

| SIMsV Ds 16F Register area

| SIMADD DC F'o" Address of simulator

| RET DS F Return address

| SAVESIM DS 18F Save area

L

Figure 48. cCalling the extended-rrecision floating-point simulator

Program Management Services 67

5.146

5.146

5.147

5.148

5.149

5.150

5.151

5.152

5.153

5.154

5.155

The work area must ke at least 30 doublewords (240 bytes) if your
installation's machine model has the extended-precision floating-point
facility or at least 50 doublewords (400 kytes) if it does not. The
exit routine shown in Figure 48 can be used for either type machine
model because its work area is 50 docuklewcrds.

To obtain the name of the extended-precision floating-pocint simulator
installed in your system, call the mcdule IEAXPSIM, which returns a
pointer to the name of the simulatcr in the doukleword that you provide.
In Figure 48, the doubleword is SINUL.

Before passing control to the simulator, you can use the LOAD macro
instruction to bring the simulator into main storage if it is not alrea-
dy there. The entry point name is specified as the name returned from
IEAXPSIM. After issuing LOAD, you can pass control to the simulator,
using standard calling conventions.

Upon regaining control from the simulator, the exit routine should
check register 15 for one of the two return codes shown in Figure 49.

If the return code was X'FF', the exit routine determines the kind of
error encountered ky the simulator by examining the interruption code in
bits 28-31 of the PSW. Figure 50 shows the possikle settings of the
interruption code. ’

The simulator will adjust the ccndition code in the 0l1d PSW in the
PIE (bits 34-35) to indicate the result of an AXR or SXR macro instruc-
tion. When a program interruption occurs within the simulator while
fetching the argument of the MXD racro instruction, the instruction
address in the PSW in the PIE is restored to its setting at operation-
interrupt time.

The simulator never alters the Program Check Old PSW at location 40.
Its interruption code will be an oreration exception excert for the MXD
macro instruction, When it may be a protection, addressing, or specifi-
cation exception.

The simulator should be deleted by the using program if it was
oktained via the LOAD macro instruction.

If the full simulator (IEAXPALL) is loaded on a CPU that already has
the extended-precision floating-point facility, no aknormal conditions
will result. Only the DXR macro instruction will be simulated. Howev-
er, the simulation of the DXR function is slower than if the IEAXPLXR
were used, since the other extended-precision operations in the divide
algorithm are also simulated.

If IEAXPDXR is loaded on a CPU without the extended-precision
floating-point facility, a 0C1l ABEND will occur when an extended-
precision divide is simulated. In the simulation of the other extended-
precision macro instructions, a return code of X'FF' is passed to the
caller and no simulation is attempted.

---------- T - - I
| Hexadecimal | |
l Code | Meaning }
L
r t == .= = - -=
| 00 | The ogeration was successful. |
| | i
| FF | The operation was not successful, or an exceptional |
| | condition occurred. |
L L P —— 4

Figure 49. Return codes from the extended-precision floating-point
simulator

68 Supervisor Services

5.156

5.157

5.158

T T 1
| Meaning of Interruption | Bits 28-31 |
L 1 4
[3 1)) |
The simulator found that the operation was not an	0001
extended-precision floating-point operation and	
returned control without further processing.	
Protection exception * 3	0100
I	
Addressing exception * 3	0101 i
I -	
Specification exception * 2 3	0110
l	
Exponent overflow exception “	1100
I	
Exponent underflow exception *#	1101
Significance exception ¢	1110
	I
Floating-point divide %	1111
f L 1	
*When the simulator encounters these exceptions, it stops processing	
and returns control to the exit routine.	
2An incorrect extended-precision floating-point register was speci-	
fied, the third byte of the DXR macro instruction was not X'00' or a	
register other than 0 or 4 was specified in the R1 or R2 field of	
the DXR macro instruction.	
3The error occurred during the processing of an MXD macro	
instruction.	
#“The error occurred during simulation.	
L N}

Figure 50. Interruption codes returned by the simulator

ABNORMAL CONDITION HANDLING

It is not possible to provide procedures for all possible conditions
which can occur during the execution of a program. You should, of
course, be sure that you can process all valid data, and that your pro-
gram satisfies all the requirements of the problem. The more general
you make the program, the greater the number of additional routines you
will require to handle special cases. But you will not be able to pro-
vide routines to detect and correct all of the special or abnormal con-
ditions that can occur.

The control program does a great deal of checking for abnormal condi-
tions. A standard program interruption routine is provided to detect
and process errors such as protection violations or addressing errors.
The data management and supervisor routines provide some error checking
facilities to ensure that, based on the information you have provided,

- only valid data is being processed, and that no requests with conflict-

ing requirements have been made. For the abnormal conditions that can
possibly be corrected, control is returned to your program with a return
code indicating the probable source of the error. For conditions that
indicate that further processing would result in degradation of the sys-
tem or destruction of existing data, the control program abnormal ter-
mination routine is given control.

There will be abnormal conditions unique to your program, of course,
that the control program cannot detect. Figure 51 is an example of one
of these. The routine shown in Figure 51 checks a control field in an
input parameter list to determine which function the program is to per-
form. Only characters between 1 and 4 are valid in the control field.
The presence of any other character is invalid, but the routine must be

Program Management Services 69

5.159

5.159

RTN
Yes % >

RT
Yes I >

RT
Yes i >

RTN4

Yes I >

Figure 51. Abnormal condition detection

prepared to detect and handle these characters. The routine should ind-
icate its inability to continue processing by returning control to the
calling program with an error return code. The calling program should
then try to interpret the return code and to recover from the error. If
it cannot do so, the calling program should detach its incomplete sub-
tasks, execute its usual termination procedures, and return control to
its calling program, again with an error return code. This procedure

- may result in termination of all the tasks of a job step; if it does,

the COND parameters of the JOB and EXEC statements may be used to deter-
mine whether or not subsequent job steps should be executed.

An alternative to this procedure is to pass control to the control
program abnormal termination routine by issuing an ABEND macro instruc-
tion. This alternative is simpler, but it offers less opportunity for
error recovery and continued processing unless a STAE macro instruction,
specifying a STAE exit routine address, is issued to override the ABEND.
The abnormal termination facilities available through the use of the
ABEND macro instruction are discussed below; an explanation of the faci-
lity to intercept abnormal termination through the STAE macro instruc-
tion is presented following the ABEND discussion.

70 Supervisor Services

5.160 The position within the job step hierarchy of the task for which the
ABEND macro instruction is issued determines the exact function of the
abnormal termination routine.

5.161 If an ABEND macro instruction is issued when the job step task (the
highest level or only task) is active, or if the STEP operand is coded
in an ABEND macro instruction issued during the performance of any task
in the job step, all the tasks in the job step are terminated. An ABEND
macro instruction (without a STEP operand) that ‘is issued in performance
of any task other than the job step task usually causes only that task
and the subtasks of that task to be abnormally terminated. However, if
the abnormal termination cannot be fulfilled as requested, it may be
necessary for the supervisor to abnormally terminate the job step task.
The most frequent cause of this is that the subtask does not have suffi-
cient main storage for ABEND's processing. ABEND "steals™ main storage
allocated to the job step task and needed by it to continue normal pro-
cessing. The abnormal termination routine works in the same manner
whether it is given control from the control program or a problem
program.

5.162 When a task is abnormally terminated, the control program performs
the following functions:

e Lowers the responsibility counts for the load modules brought into
main storage during the performance of the task.

¢ Releases the main storage subpools owned by the task.
e Cancels the time interval if one had been established for the task.

¢ Issues a CLOSE macro instruction for any data control blocks which
were opened during the performance of the task.

e Purges any outstanding input or output requests.

e Cancels any requests for operator replies made using a WTOR macro
instruction. .

e Cancels any requests for resources made using an ENQ macro
instruction.

5.163 If the job step is not to be terminated, the following action is taken:

e The abnormal termination functions listed above are performed,
starting with the lowest level task, for each of the subtasks of the
task which was active when the ABEND macro instruction was issued.

A DETACH macro instruction is issued by the control program for each
of the subtasks.

e The completion code specified in the ABEND macro instruction is
placed in the task control block of the active task (the task for
which the ABEND macro instruction was issued).

e If the ECB operand was designated in the ATTACH macro instruction
issued to create the active task, the completion code specified in
the ABEND macro instruction is placed in the designated event con-
trol block, and the completion bit is turned on.

e If the ETXR operand was designated in the ATTACH macro instruction
issued to create the active task, the end-of-task exit routine is
scheduled to be given control when the originating task becomes
active.

e If neither the ECB nor ETXR operands were designated when the ATTACH

macro instruction was issued, a DETACH macro instruction is issued
by the control program for the active task.

Program Management Services 71

5.164

5.164

5.165

5.166

5.167

5.168

5.169

5.170

5.171

If the job step is to be terminated, the following action is taken:

e The abnormal termination functions listed above are performed,
starting with the lowest level task, for all tasks in the job step.
All main storage belonging to the job step is released. None of the
end-of-task exit routines are given control.

e The completion code specified in the ABEND macro instruction is
written on the system output device.

e Unless you specify otherwise in your job control statements, the
remaining job steps in the job are skipped. However, the statements
defining these steps are checked for proper syntax.

In any operating system, it is possible to restart a job step that
has been abnormally terminated. Restart can occur either at the begin-
ning of the job step or at an internal checkpoint. A detailed discus-
sion of checkpoint and restart appears in the publication Advanced
Checkpoint/Restart.

INTERCEPTING ABNORMAL: TERMINATION OF TASKS

Abnormal termination of a task can be intercepted through the use of
the STAE macro instruction. When a task that has previously issued a
STAE macro instruction is scheduled for abnormal termination, termina-
tion processing is intercepted and control is returned to the user at
his STAE exit routine address, as specified in the STAE macro instruc-
tion. Within the STAE exit routine, the user can perform pre-
termination functions or diagnose the error. He can also determine
whether abnormal termination should continue for the task, or whether a
STAE retry routine, which would circumvent abnormal termination, should
be scheduled. For further information on scheduling a STAE retry rou-
tine, see the MFT or MVT Guide.

At the time the abnormal termination is scheduled, the STAE exit rou-
tine must be resident. It must either be part of the program issuing
STAE or be brought into storage via the LOAD macro instruction.

The STAE exit routine can contain an ABEND macro instruction, but it
must not contain a STAE or an ATTACH macro instruction.

A single user program can issue more than one STAE macro instruction
with the create (CT) operand. Each issuance makes the previous STAE
environment temporarily inactive. The suspended STAE environment can be
reestablished by canceling the current STAE. Unless it is intended that
the existing STAE environment be saved, it should be canceled prior to
issuing another STAE. Otherwise, main storage will be wasted by STAE
control blocks for inactive STAE environments.

If the user wishes to use the same exit routine for several tasks at
the same time, it must be reenterable. For convenience sake, it is
recommended that all STAE exit routines be reenterable.

The user can cancel (make the previous STAE request active) or over-
lay the current STAE request. The STAE request that is canceled or
overlaid is the one most recently made. If no STAE requests are active
for the task at the time a cancel or overlay is issued, or if the user
attempts to cancel or overlay a STAE request not associated with his
Request Block level of control, he will be informed that his request is
invalid by a return code. A STAE request can be canceled by issuing the
STAE macro instruction with the STAE exit routine address specified as
zero. Overlaying is done by issuing a STAE macro instruction specifying
ov.

72 Supervisor Services

5.172

5.173

5.174

5.175

r R
| <e. |
| STAE EXIT1,CT,PARAM=LISTI1, C |
| XCTL=YES,ASYNCH=YES, c |
| PURGE=QUIESCE Initial STAE request |
I e |
| .o]] |
] LA 5, EXIT2 Put new exit routine address in |
| register 5 |
| STAE (5),0V,PURGE=NONE STRE request for overlay |
| .o |
| LIST1L DC F'O° Parameter list for exit routines |
| DC X'AQ" |
| EXIT1 ECU * : Entry point of first exit routine |
| . |
| ‘ |
| EXIT2 EQU * Entry point of second exit routine |
I . I
I . I
| . |
L e e o e o e ot o 0 e i e i S 2 o e 2 A i o o o i o . e o o e . . o 2 o A < . . o ot 2 i o s ot o o o e . e e o e o 4

Figure 52. Use of STAE macro instruction

When a program issuing STAE retudrns control to a rprevious level via
an SVC 3, all STAE requests issued by that program are canceled. A STAE
request specifying XCTL=YES is not canceled when the STAE user issues an
XCTL macro instruction and the STAE environment is connected to the prc-
gram in control after XCTL. If a rrogram terminates by any means other
than an SVC 3 or a RETURN macro instruction, all STAE requests must ke
canceled by the terminating program before returning control to another
program.

STAE requests issued by a program are queued for that program so that
the last STAE request issued is the active one, that is, it is the one
that causes the STAE exit routine to receive contrcl if the program is
aknormally terminated. If the active STAE request is canceled, the
next-to-the-last STAE request becomes the last and thus the active one.

Figure 52 shows the use of the STAE macro instruction. The STAE
request is initially made specifying a STAE exit routine address (EXIT1)
and parameter list address (LIST1). The XCTL=YES parameter indicates
that this STAE request will not be canceled if the program terminates
via the XCTL macro instruction. The ASYNCH=YES parameter indicates that
asynchronous interruptions will be allowed during STAE exit routine pro-
cessing. The PURGE=QUIESCE parameter indicates that input/output
requests not yet performed are remcved from the system's active inputs/
output queue (purged) but can later be returned to that gqueue
(restored). If PURGE=QUIESCE cannct ke honored ky the system, the
input/output requests are removed from the queue with the halt option
and therefore cannot be restored.

In the second issuance of STAE, the previous STAE request is modified
through the overlay (OV) option. The STAE exit routine address is now
EXIT2, and input/output intervention will now ke kypassed, but the para-
meter list address remains the same. Because the XCTL and ASYNCH
operands were not specified in the STAE macro instruction specifying 0OV,
the default values XCTL=NO and ASYNCH=NO are assigned, replacing the
XCTL=YES and the ASYNCH=YES specified in the previous STAE. Note that
the overlaid STAE macro instruction cannot be reestablished by issuing a
cancel STAE.

Program Management Services 73

5.176

5.176

5.177

5.178

After a STAE macro instruction has keen issued, the register contents

upon return to the user are as follows:

tio
tin
ing

req

Registers 0, 1: Unpredictakle.

Registers 2-13: Same as when STAE was issued.
Register 14: Unpredictable.
Register 15: Completion code.
Hexadecimal
Code Indication
00 Successful completion of creating, overlaying, or

canceling a STAE request.

o4 Nc storage cktainakle for a STAE request.

08 A STAE request to be canceled or overlaid did nct
exist, or a STAE was issued in the user's exit
routine.

ocC Invalid exit routine or parameter list address.

10 Attempt to cancel or overlay another user's STAE
request.

When a program with an active STAE request encounters an ABEND situa-
n, control is passed to the STAE exit routine. ABEND processing ccn-
ues and the STAE exit routine dces not receive control in the follow-
situations:

If the abnormal termination is caused by an operator's CANCEL, jcb
step timer expiration, or the detaching of an incomplete task.

If the terminating task is in must complete status and rrcblem pro-
gram mode. (Putting a task in the must complete status is explained
in the MFT and MVT Guides.)

If the OUTLIMIT is exceeded for SYSOUT.

If an invalid ABEND recursion {(an abnormal condition encountered
during abnormal termination) occurs.

If an abnormal condition is encountered during normal termination.

If the failing task has been in a wait state for more than 30
minutes.

If the STAE macro instruction was issued by a subtask and the mother
task abnormally terminates.

If the exit routine was specified for a suktask, via the STAI
operand of the ATTACH macro instruction, and the mother task abncrm-
ally terminates.

If the aknormal termination is because the task that issued the STAE
still has active subtasks when it returns to the contrcl program via
an SVC 3.

If any other problem arises while the control program is rreparing
to give control to the STAE exit routine.

Before the STAE exit routine receives control, any existing SPIE
uests are canceled and the purge request specified in the STAE macrc

74 Supervisor Services

instruction is fulfilled. The register ccntents uron entry to the STAE
exit routine are as follows:

e Register 0:

Hexadecimal
Code Indication

00 Active I/0 at the time of the ABENL was quiesced
and is restorable.

0y Active I/0 at the time of the ABENL was halted and
is not restorakle.

08 No I/0 was active at the time of the ABEND.

0c No work area was obtained.

10 No I/0 processing was requested.

e Register 1: Address of a 104-byte work area, as shown in

Figure 53.

Registers 2-12: Unpredictable.

e Register 13: Address of a supervisor-provided register save
area.
* Register 14: Return address.
e Register 15: Address of the STAE exit routine.
0 . . System and user
Address of STAE exit routine Flags Y 7
parameter list or O completion codes
8 PSW at time of ABEND
16 Last problem program PSW before ABEND
24

Contents of registers 0-15 at
time of ABEND (64 bytes)

If a problem program issued STAE:

88
96

Name of abnormally terminated program or 0

Address of entry point to abnormally 0
terminated program if ABEND occurred
in program represented by PRB; other-
wise zero

If supervisor program issued STAE:

88

96

Address of request block of
abnormally terminated program 0

Figure 53. Work area for STAE exit routine

Program Management Services 75

5.179

5.179

5.180

5.181

5.182

5.183

Note: Registers 13 and 14, if used by the STAE exit routine, must be
saved and restored prior to returning to the calling program. Standard
subroutine linkage conventions apply.

Bytes 4-7 in Figure 53 are used as follows:

Bit Content Indication
0 1 Durp to be given.
0 0 Dump not to ke given.
1 1 Job step to be terminated.
1 0 Only failing task to be terminated.
2-7 -- Not used.
8-19 -- Systen comgpletion code (racked, unsigned,
hexadecimal).
20-31 - User completion code (hexadecimal).

If main storage was not available for the work area, the register
contents upon entry to the STAE exit rcutine are as follows:

® Register O0: 12 (decimal)

e Register 1: Flags and completion codes (see Figure 53, bytes 4-7
for format).

e Register 2: Address of STAE exit parameter list.
¢ Register 3-13: Unpredictable.
e Register 1i4: Return address.
¢ Register 15: Exit routine address.
Note: If a work area could not be provided by the control program, a

register save area will not be provided either. A save area is never
provided for a retry routine.

Before returning control to the operating system from the STAE exit
routine, the user must put a return code in register 15. The return
code indicates whether ABEND processing is to ke continued for the task
or whether a STAE retry routine should be scheduled. (The details akout
scheduling a STAE retry routine are in the MFT and MVT Guides.)

The return codes to be placed in register 15 are defined as follows:

Hexadecimal
Code Indication

00 No retry routine prcvided.

o4 A STAE retry routine has keen provided and the Request
Block chain should ke purged.

08 A STAE retry routine has keen provided and the Request
Block chain should not be purged. (To be used by rou-
tines in supervisor state only.)

oc A STAI (Subtask ABEND intercept) retry routine has been
provided. :

10 No further STAI processing; ABEND processing is to
continue.

For further information on the ogption of STAE retry, see the MFT or MVT
Guide.

76 Supervisor Services

5.184

5.185

INTERCEPTING ABNORMAL TERMINATION CF SUBTASKS

To provide an exit in your program to intercept abnormal terminaticn
of a subtask, use the STAI (subtask ABENL intercept) operand of the
ATTACH macro instruction you issue to create the subtask. The STAI
request issued for any subtask will ke propagated for all suktasks
further down the tree. For example, Task A attaches Task B and uses the
STAI operand on the ATTACH macro instructicn. When Task B attaches Task
C, the STAI request issued by A will be active for C as well as B. When
a task abnormally terminates, any STAE exit routine specified for it
receives control first. Then any STAI exit routines specified receive
control, beginning with the last sprecified STAI exit routine.

Since more than one subtask may akncrmally terminate at the same
time, the STAI exit routine may be used by more than one task concur-
rently. Therefore, the exit routine must ke reenterakle, or it may fail
during the second entry.

Program Management Services 76.1

5.186

5.187

5.188

5.189

5.190

5.191

5.192

THE DUMP
There are three types of main-storage dumps produced by the operating
system:

e A dump obtained through use of the DUMP operand in the ABEND macro
instruction.

e A dump obtained through use of the SNAP macro instruction.

e A core image dump, produced in the event of a failure by a system
routine.

You can request a dump by using the ABEND or SNAP macro instruction.

You cannot request the core image dump -- it is produced automatically
by the system whenever a failure occurs in a system routine.

ABEND AND SNAP DUMPS

When the dump is requested using an ABEND macro instruction, no
further processing is performed for the active task; use of the SNAP
macro instruction allows the task to continue after the completion of
the dump. The control program generally requests a dump for you when it
issues an ABEND macro instruction.

The data set containing the dump can reside on any device which is
supported by the basic access technique using sequential organization
(BSAM). The dump is placed in the data set described by the DD state-
ment you provide. If a printer is selected the dump is printed immedi-
ately. However, if a direct access or tape device is designated, a
separate job is scheduled to obtain a listing of the dump, and to
release the space on the device.

The format of the dump is shown in the publication Programmer's Guide
to Debugging. The entire dump shown in that publication is provided in
an abnormal termination dump if a DD statement with a ddname of SYSABEND
is provided; only the problem program areas and system control blocks
associated with the problem program are dumped if a DD statement with a
ddname of SYSUDUMP is provided. Use of the SNAP macro instruction
allows you to request only selected portions of the entire dump for any
task in the job step; the format of the portions selected is the same as
the format of the same portions of an abnormal termination dump.

When an abnormal termination dump is requested, the entire dump is
provided for the active task, along with a dump of the control blocks
and save area for each of the higher level tasks which are predecessors
of the active task being terminated and for each of the subtasks of the
active task. The control program dump routine uses the addresses you
stored in words 2 and 3 of each save area to follow the "chain"™ of save
areas provided by each calling program in each task. If an ABEND macro
instruction was issued when task Bl (Figure 29) was active, for example,
a complete dump would be provided for task Bl. The control blocks and
save areas for task B, task Bla, and the job step task would also be
provided in separate dumps.

To get a dump:
¢ You must provide a DD statement for each job step in which a dump is
requested. For an abnormal termination dump, the ddname must be

SYSABEND or SYSUDUMP; for a SNAP macro instruction dump, the ddname
must be any name except SYSABEND or SYSUDUMP. The requirements for

Program Management Services 77

5.193

5.193

5.194

5.195

5.196

5.197

5.198

writing the DD statement are described in the Programmer's Guide to
Debugging.

e To obtain a dump using the SNAP macro instruction, you must provide
a data control block, and issue an OPEN macro instruction for the
data set before any SNAP macro instructions are issued. The data
control block must contain the following parameters: DSORG=PS,
RECFM=VBA, MACRF=(W), BLKSIZE=nnn, and LRECL=125, where nnn is 882
for MFT and either 882 or 1632 for MVT. (The data control block is
discussed in the Data Management Services manual.) If your program
is to be processed by the loader, you should also issue a CLOSE
macro instruction for the SNAP data control block.

¢ Sufficient unused main storage must be available in the area
assigned to the job step to hold the control program dump routine
and, if not already in main storage, the BSAM data management rou-
tines. For an abnormal termination dump, additional main storage is
required for the routines to process the OPEN macro instruction
issued by the control program, and for the trace table. Refer to
the Storage Estimates publication for storage requirements.

INDICATIVE DUMP

In an operating system with MFT, you can obtain an indicative dump,
as shown in the Programmer's Guide to Debugging. This dump is provided
in response to a request for an abnormal termination dump when either
you did not provide a DD statement with the ddname SYSABEND or SYSUDUMP,
or the control program entry for that DD statement was destroyed. The
indicative dump is printed on the system output device. The indicative
dump is not provided in an operating system with MVT.

CORE IMAGE DUMP

If a system routine fails, the system automatically supplies a dump
of main storage. This dump, called the core image dump, provides diag-
nostic information. The system writes the core image dump in the system
data set SYS1.DUMP or in a tape volume at the device designated when the
operating system was initially loaded.

In systems with MFT or MVT, use the IMDPRDMP Serxrvice Aid program to
obtain a printout of the dump. A description of IMDPRDMP and the core
image dump formats appear in the Service Aids publication.

For guidance in using the core image dumps from all configurations of
the operating system, refer to the Programmer's Guide to Debugging.

78 Supervisor Services

6.7

MAIN-STORAGE MANAGEMENT

No matter which configuration of the operating system you are using,
there is a finite amount of main storage available to your job step.
You have a partition (MFT) or region (MVT) of fixed size available to
your job step.

In an operating system with MFT, the main storage available to pro-
blem programs is divided into 1 to 15 fixed partitions. The division is
made during system generation, but the operator can enlarge a partition
by combining it with others. Each partition is associated with one or
more "job classes,™ which can be varied by the operator. On the basis
of job class and priority specified in a JOB statement, a job is
assigned to a partition and scheduled for execution. A job step will be
abnormally terminated if it requires more main storage than is available
in the partition.

In a system with MVT, available main storage is divided into regioms,
which vary in size and number according to the requirements of the job
steps being performed. Job steps are selected for execution according
to job class and priority, and each is assigned a region of the size
specified in a JOB or EXEC statement. If the highest priority job step
requires a larger region than can be made available, its execution is
delayed, and a lower priority job step (one with sufficiently lower
storage requirements) is initiated. After a job step has been
initiated, its region can be extended only if the rollout/rollin option
has been included in the system. (For a description of rollouts/rollin,
refer to the MVT Guide.)

You obtain the use of the main storage area assigned to your job step
through implicit and explicit requests for main storage. The use of a
LINK macro instruction is an implicit request for main storage; the con-
trol program allocates space before bringing the load module into your
job pack area. The use of the GETMAIN macro instruction is an explicit
request for a certain number of bytes of main storage to be allocated to
the active task. In addition to your requests for main storage, requests
are made by the control program and data management routines for areas
to contain some of the control blocks required to manage your tasks.

The following paragraphs discuss some of the techniques that can be
applied for efficient use of the main storage area reserved for your job
step. These techniques apply as well to the data management portions of
your programs. The specific data management main storage allocation
facilities are discussed in Data Management Services; the principles
discussed here provide the background you will need to use these
facilities.

EXPLICIT REQUESTS

Main storage can be explicitly requested for the use of the active
task by issuing a GETMAIN macro instruction. The main storage request
is satisfied by allocating a portion of the main storage area reserved
for the job step to the active task. You cannot use the main storage
area reserved for the job step without first requesting it; if you
attempt to use it without requesting it, the task is abnormally ter-
minated. The main storage area is not set to zero when allocated.

You return control of main storage by issuing a FREEMAIN macro

instruction. This does not release the area from control of the job
step; it only makes the area available to satisfy the requirements of

Main-Storage Management 79

additional requests for any task in the job step. The main storage
assigned to a task is also released for other uses when the task ter-
minates, except as indicated under "Subpool Handling."

SPECIFYING LENGTHS

Main storage areas are always allocated to the task in multiples of
eight bytes and begin on a doubleword boundary. The request for main
storage is given in terms of bytes; if the number specified is not a
multiple of eight, it is rounded to the next higher multiple of eight.
You can make repeated requests for a small number of bytes as you need
the area or you can make one large request to completely satisfy the
requirements of the task. There are two reasons for making one large
request: it is the only way you can be sure of getting contiguous
storage area and, because you only make one request, the amount of con-
trol program overhead is less.

TYPES OF EXPLICIT REQUESTS

There are four methods of explicitly requesting main storage using a
GETMAIN macro instruction. Each of the methods, which are designated by
coding an associated character in the operand field of the GETMAIN macro
instruction, has certain advantages, depending on the requirements of
your program. The last three methods do not produce reenterable code
unless coded in the list and execute forms as indicated in the paragraph
"Implicit Requests." The methods are as follows:

REGISTER TYPE (R): Specifies a request for a single area of main
storage of a specified length. The address of the area is returned in
register 1. This type of request produces reenterable code, because
parameters are passed to the control program in registers, not in a
parameter list..

ELEMENT TYPE (E): Specifies a request for a single area of main storage
of a specified length. The control program places the address of the
allocated area in a fullword you supply.

LIST TYPE (L): Specifies a request for one or more areas of main
storage. You place the length of each area in a list; each list entry
represents a request for one area of main storage. The control program
places the addresses of the allocated areas in consecutive full words in
another list you supply. The addresses are placed in the list in the
same order they were requested. This type of request can be made only
in an operating system with MVT.

VARIABLE TYPE (V): Specifies a request for a single area of main
storage with a length between two values you specify. The control pro-
gram will attempt to allocate the maximum length you specify; if not
enough storage is available to allocate the maximum length, the largest
area with a length between the two values is allocated. The control
program places the address of the area and the length allocated in two
consecutive fullwords you supply.

In addition to the above methods of requesting main storage, you can
designate the request as conditional or unconditional. (A register type
request is always unconditional.) If the request is unconditional and
sufficient main storage is not available to fill the request, the active
task is abnormally terminated. If the request is conditional, however,
and insufficient main storage is available, a return code of four is
provided in register 15; a return code of zero is provided if the requ-
est was satisified. When a conditional list-type request is made, no
main storage is allocated unless all of the requested areas can be
allocated.

80 Supervisor Services

6.15

r 1
| “ee |
| GETMAIN EC,LV=16000,A=ANSWADD, Conditional request for |
| HIARCHY=0 16000 bytes in processor |
| storage |
| LTR 15,15 Test return code |
| BZ PROCEED1 If 16000 bytes allocated, |
| proceed |
| DELETE EP=REENTMOD If not, free main storage |
| GETMAIN VU,LA=SIZES,A=ANSWADD, Try to get smaller |
| HIARCHY=0 amount in processor |
| storage |
| L 4, ANSWADD+4 Load and test allocated |
| length |
| CH 4,MIN If 8000 or more, use |
| procedure 1 i
| BNL PROCEED1 If less than 8000, use |
| procedure 2 |
| PROCEED2 ... |
| PROCEED1 ... |
| MIN DC H*8000" Min. size for procedure 1 |
| SIZES DC F*'4000° Min. size to proceed at |
| ‘ all |
| DC F'16000° Size of area for maximum |
| efficiency |
| ANSWADD DC F'0° Address of allocated area |
| DC F'O* Size of allocated area |
L J

Figure 54. Use of the GETMAIN macro instruction

An example of the use of the GETMAIN macro instruction is shown in
Figure 54. The example assumes a program which operates most efficient-
ly with a work area of 16,000 bytes, with a fair degree of efficiency
with 8000 bytes or more, inefficiently with 4000 to 8000 bytes, and not
at all with less than 4000 bytes. The program uses a reenterable load
module with an entry point name of REENTMOD, and will use it again later
in the program; to save time, the load module was brought into the job
pack area using a LOAD macro instruction so that it would be available
when it was required.

A conditional request for a single element of main storage with a
length of 16000 bytes is requested in Figure 54. The return code in
register 15 is tested to determine if the area was available; if the
return code was zero (the 16,000 bytes were allocated), control is
passed to the processing routine. If sufficient area was not available,
an attempt to obtain more main storage area is made by issuing a DELETE
macro instruction to free the area occupied by the load module REENTMOD.
A second GETMAIN macro instruction is issued, this time an unconditiomnal
request for an area between 4000 and 16000 bytes in length. If the
minimum size is not available, the task is abnormally terminated. If at
least 4000 bytes were available, however, the task can continue. The
size of the area actually allocated is determined and one of the two
procedures (efficient or inefficient) is given control.

SUBPOOL HANDLING (IN MFT SYSTEMS WITHOUT SUBTASKING)

There is only one unnumbered subpool in an operating system with MFT.
In this configuration of the operating system all main storage requests
are satisfied by allocating storage from this unnumbered subpool. If
subpool numbers are specified, the numbers are ignored if they are not
greater than 127 (the greatest number that is valid in a system with
MVT). 1If subpool numbers greater than 127 are specified, the job step
is abnormally terminated.

Main-Storage Management 81

6.20

6.22

SUBPOOL HANDLING (IN MFT SYSTEMS WITH SUBTASKING)

Although subpools are not created in MFT systems, it is convenient to
call the partition itself "subpool 0." That is, all main storage in a
partition is shared by all tasks active in that partition. Main storage
not allocated to any task is called "free storage." "Subpool 240" is
used by the supervisor to enable the sharing of a reenterable program
invoked by a LOAD macro instruction. "Subpool 255" is used by the
supervisor to request storage from the system queue area. User programs
may request main storage from the partition by specifying any subpool
number from 0 to 127 or by specifying no number at all (this provides
compatibility with MVT). User-program implied requests for storage,
initiated when the user executes an ATTACH, LINK, LOAD, or XCTL macro
instruction, are recorded by the supervisor in order for the storage to
be freed during termination.

SUBPOOL HANDLING (IN MVT SYSTEMS)

In an operating system with MVT, subpools of main storage are pro-
vided to assist in main storage management and for communications
between tasks in the same job step. Because the use of subpools
requires some knowledge of how the control program manages main storage,
a discussion of main storage control is presented here.

MAIN STORAGE CONTROL

When the job step is given a region of main storage, all of the
storage area available for your use within that region is unassigned.
Subpools are created only when a GETMAIN macro instruction is issued
designating a subpool number. If no subpool number is designated, the
main storage is allocated from subpool 0, which is created for the job
step by the control program when the job step task is initiated.

Note: If main storage is allocated to a subtask by the user program
while the system is executing in the supervisor state or with a protec-
tion key of 0, no other task should free that main storage. If some
other task does free that main storage, you get unpredictable results.

For purposes of control and main storage protection, the control pro-
gram considers all main storage within the region in terms of 2048-byte
blocks. These blocks are assigned to a subpool, and space within the
blocks is allocated to a task, by the control program when requests for
main storage are made. When there is sufficient unallocated main
storage within any block assigned to the designated subpool to fill a
request, the main storage is allocated to the active task from that
block. If there is insufficient unallocated main storage within any
block assigned to the subpool, a new block (or blocks, depending on the
size of the request) is assigned to the subpool, and the storage is
allocated to the active task. The blocks assigned to a subpool are not
necessarily contiguous unless they are assigned as a result of one requ-
est. Only blocks within the region reserved for the associated job step
can be assigned to a subpool.

Figure 55 is a simplified view of a main-storage region containing
four 2048-byte blocks of storage. All the requests are for main storage
from subpool 0. The first request from some task in the job step is for
504 bytes; the request is satisfied from the block shown as Block A in
the figure. The second request, for 2000 bytes, is too large to be

82 Supervisor Services

satisfied from the unused portion cf Block A, so the control program
assigns the next availakle block, Block B, to subpool 0, and allocates
2000 bytes from Block B to the active task. A third request is then
received, this time for 1000 bytes. There is not sufficient unallccated
area remaining in Block B (blocks are checked in the order last in,
first out), kut there is enough space in Block A, so an additional 1000
bytes are allocated to the task frcm Block A. Because all tasks may
share sukpool 0, Request 1 and Request 3 do not have to be made from the
same task, even though the areas are ccntiguous and from the same 2048-
byte block. Request 4, for 3000 bytes, requires that the control prc-
gram allocate the area from 2 contiguous klocks which were previously
unassigned, Block L and Block C. These blocks are assigned to subpcol
0.

As indicated in the preceding example, it is rossible for one 2048-
byte block in subpcol 0 to contain many small areas allocated to many
different tasks in the job ster, and it is possikle that numerous Llocks
could be split up in this manner. Areas acquired by a task other than
the job step task are not released automatically on task terminaticn.

} Request 1-504 bytes

2048 Block A l Request 3-1000 bytes

Block B Request 2-2000 bytes

N

Block C

Request 4-3000 bytes

Block D

g |

Figure 55. Main-storage control

Main-Storage Managerent 83

Even if FREEMAIN macro instructions were issued for each of the small
areas before a task terminated, the prckakle result would ke that many
small unused areas would exist within each block, while the control rrc-
gram would be continually assigning new. klccks to satisfy new requests.
To avoid this situation, you can define subpools for exclusive use by
individual tasks.

Any subrool can ke used exclusively by a single task or shared by
several tasks. Each time tha. you create a task, you can specify which
sukpools are to ke shared. Unlike other subpools, subpool 0 is shared
Ly a task and its subtask, unless you specify otherwise. When subgrccl 0
is not shared, the contrcl program creates a new sukpool 0 for use by
t..e subtask. As a result, both the task and its subtask can request
storage from subpool 0, but both will not receive storage from the same
2048-byte klock. When the subtask terminates, its main stcrage areas in
subpool 0 are released; since no other tasks share this sukpool, com-
plete 2048-byte blocks are made availakle for reallocation.

When there is a need to share subprocl 0, you can define other sub-
pools for exclusive use by individual tasks. When you first request
storage from a subpoocl other than sukpool 0, the control prcgram assigns
a new 2048-byte block to that subpcol, and allocates storage from that
block. The task that is then active is assigned ownership of the suk-
pool and, therefore, cf the block. When additional requests are made by
the same task for the same subpool, the requests are satisfied by allo-
cating areas from that block and as many additional klocks as are
required. 1If another task is active when a request is made with the
same subpool number, the control program assigns a new block to a new
subpool, allocates storage from the new block, and assigns ownership of
the new subpool to the second task.

A task can specify subpools numkered from 0 to 127. FREEMAIN macro
instructions can be issued to release any sukpool except subrcol 0, thus
releasing complete 2048-byte blocks. When a task terminates, its
unshared subpools are released automatically.

Owning and Sharing: A subpocl is initially owned ky the task that was

active when the subpcol was created. The subprcol can ke shared with
other tasks, and ownership of the subpool can be assigned to other
tasks. Two macro instructions are used in the handling of subpools:

the GETMAIN macro instruction and the ATTACH macro instruction. In the
GETMAIN macro instruction, the SP operand can be written to request
storage from subpools 0 to 127; if this orerand is omitted, subpool 0 is
assumed. The operands that deal with subpcols in the ATTACH macro
instruction are:

e GSPV and GSPL, which give ownership of one or more subgools (other
than subpool 0) to the task being created.

* SHSPV and SHSPL, which share ownership of one or more subpools
(other than subpool 0) with the new subtask.

e SZERO, which determines whether sukpcol 0 is shared with the
suktask.

All of these operands are optional. If they are omitted, no subpools
are given to the subtask, and only subpool 0 is shared.

Creating a Subpool: A new subpool is created whenever any of the
operands described above is written in an ATTACH or a GETMAIN macro
instruction, and that operand specifies a subpcol which is not currently
owned by or shared with the active task. If one of the ATTACH macrc
instruction operands causes the sukpocl to be created, the subpool numk-
exr is entered in the list of subpools owned by the task, but no blocks
are assigned and nc storage is actually allocated. If a GETMAIN macro

84 Supervisor Services

6.30

instructicn results in the creation of a sukpocl, the sukpool number is
assigned tc one or more 2048-byte blocks, and the requested storage is
allocated to the active task. 1In either case, ownership of the subpool
belongs to the active task; if the subpool is created because of an
ATTACH macro instruction, ownership is transferred or retained depending
on the operand used.

Transferring Ownership: An owning task gives ownership of a subpcol tc
a direct subtask by using the GSPV or GSFL operands in the ATTACH macro
instruction issued when that subtask is created. Ownership of a subpool
can be given to any subtask of any task, regardless of the control level
of the two tasks invcolved and regardless of how ownership was obtained.
A subpool cannot be shared with one or more subtasks and then trans-
ferred to another subtask, however; an attempt to do this results in
aknormal termination of the active task. Cwnership of a subpcol can
only be transferred if the active task has ownership; if the active task
is sharing the subpool and an attempt is made to pass ownership to a
subtask, the subtask receives shared ccntrol and the originating task

Main-Storage Management 84.1

6.33

relinquishes the subpool. Once ownership is transferred to a subtask or
relinquished, any subsequent use of that subpool number by the originat-
ing task results in the creation of a new subpool. When a task that has
ownership of one or more subpools terminates, all of the main storage
areas in those subpools are released. Therefore, the task with owner-
ship of a subpool should not terminate until all tasks or subtasks shar-
ing the subpool have completed their use of the subpool.

Sharing a Subpool: Shared use of a subpool can be given to a direct
subtask of any task with ownership or shared control of the subpool.
Shared use is given by specifying the SHSPV and SHSPL operands in the
ATTACH macro instruction issued when the subtask is created. Any task
with ownership or shared control of the subpool can add to or reduce the
size of the subpool through the use of GETMAIN and FREEMAIN macro
instructions. When a task that has shared control of the subpool ter-
minates, the subpool is not affected.

SUBPOOLS IN TASK COMMUNICATION

The advantage of subpools in main storage management is that, by
assigning separate subpools to separate subtasks, the breakdown of main
storage into small fragments is reduced. An additional benefit from the
use of subpools can be realized in task communication. A subpool can be
created for an originating task and all parameters to be passed to the
subtask placed in the subpool. When the subtask is created, the owner-
ship of the subpool can be passed to the subtask. After all parameters
have been acquired by the subtask, a FREEMAIN macro instruction can be
issued, under control of the subtask, to release the subpool main
storage areas. In a similar manner, a second subpool can be created for
the originating task, to be used as an answer area in the performance of
the subtask. When the subtask is created, the subpool ownership would
be shared with the subtask. Before the subtask is terminated, all para-
meters to be passed to the originating task are placed in the subpool
area; when the subtask is terminated, the subpool is not released, and
the originating task can acquire the parameters. After all parameters
have been acquired for the originating task, a FREEMAIN macro instruc-
tion again makes the area available for reuse.

IMPLICIT REQUESTS

You make an implicit request for main storage every time you issue a
LINK, LOAD, ATTACH, or XCTL macro instruction. In addition, you make an
implicit request for main storage when you issue an OPEN macro instruc-
tion for a data set. The data management routines required to process
the data set must be in main storage; the main storage areas used as
buffers may also be allocated. When you make an implicit request for
more main storage than is available, the active task is abnormally ter-
minated. This section discusses some of the techniques you can use to
cut down on the «1ount of main storage required by a job step, and the
assistance given you by the control program.

LOAD MODULE MANAGEMENT

The discussion of program structures indicates the advantages and
disadvantages of each of the three types of program designs; simple,
planned overlay, and dynamic. The program structure you selected was
based on the complexity of the program and the execution time considera-
tions. Once you have selected the program structure, you should plan
efficient use of the main storage area that will be assigned to your job
step. Note that main storage is assigned in 2048-byte blocks for impli-
cit requests made in an operating system with MVT. The size of your
load modules should be planned to take advantage of this method of allo-

Main-Storage Management 85

6.36

6.37

6.38

cation. The maximum size load module that can be brought into main
storage is 524,248 bytes in an operating system with MFT.

REENTERABLE LOAD MODULES

A reenterable load module is designed so that it does not in any way
modify itself during execution. It is "read-only". The advantage of a
reenterable load module is most apparent in an operating system with MVT
or MFT with subtasking; only one copy of the load module is brought into
main storage to satisfy the requirements of any number of tasks in a job
step. This means that even though there are six tasks in the job step
and each task concurrently requires the load module, the only main
storage area requirement is for an area large enough to hold one copy of
the load module (plus a few bytes for control blocks). The same main
storage requirement would apply if the load module were serially reus-
able; however, the load module could not be used by more than one task
at a time.

An additional benefit of a reenterable load module occurs when the
module is placed in the link pack area. In this case not only is time
saved because no loading must be performed, but in addition no main
storage area assigned to the job step is required to hold the load
module. A link pack area exists only in an operating system with MVT.
The contents are established when the operating system is generated and
when the operator performs the initial program loading procedure. Any
reenterable load module from the link library may be placed in the link
pack area. Many of the frequently used data management routines are
also placed in the link pack area. If any of your reenterable load
modules are used frequently or are used by many jobs, it may save con-
siderable time and space to have those load modules placed in the link
pack area.

Because a reenterable module does not modify itself, a damaged copy
of that module can be overlaid with a new copy. Thus reenterable
modules offer greater reliability than nonreenterable modules. When a
module is designated reenterable (or "refreshable"), the Machine-Check
Handler on the Models 65, 85, 155, and 165 automatically loads a fresh
copy of that module if it is damaged.

You can designate a module as refreshable without also designating it
as reenterable. However, the module must actually be reenterable in its
design, because it must not modify itself during execution.

REENTERABLE MACRO INSTRUCTIONS

All of the macro instructions described in the macro instructions
section can be written in reenterable form. From the standpoint of
reenterability, these macro instructions are classified as one of two
types: macro instructions which pass parameters in registers 1 and O,
and macro instructions which pass parameters in a list. The use of the
macro instructions which pass parameters in registers presents little
problem in a reenterable program; when the macro instruction is coded,
the required operand values should be contained in registers. For
example, the POINT macro instruction requires that the dcb address and
block address be coded as follows:

r T Ll 1
| [symboll | POINT | dcb address,block address |
L L

1 J

One method of coding a reenterable program would be to require that both
of these addresses refer to a portion of main storage allocated to the
active task through the use of a GETMAIN macro instruction. The

86 Supervisor Services

6.42

addresses would change for each use of the load module. Therefore, you
would load one of general registers 2-12 with the address, and designate
the appropriate registers when you code the macro instruction. If
register 4 contained the dcb address and register 6 contained the block
address, the POINT macro instruction would be written as follows: POINT
(4), (6).

The macro instructions which pass parameters in a list require the
use of special forms of the macro instruction when used in a reenterable
program. The expansion of the standard form of these macro instructions
results in an in-line parameter list and executable instructions
required to branch around the 1list, to load the address of the list, and
to pass control to the required control program routine. The expansions
of the list and execute forms of the macro instruction simply divide the
functions provided in the standard form expansion: the list form pro-
vides only the parameter list, and the execute form provides executable
instructions to modify the list and pass control. You provide the
instructions to load the address of the list into a register.

The list and execute forms of a macro instruction are used in con-
junction to provide the same services available from the standard form
of the macro instruction. The advantages of using list and execute
forms are as follows:

¢ Any operands which remain constant in every use of the macro
instruction can be coded in the list form. These operands can then
be omitted in each of the execute forms of the macro instruction
which use the list. This can save appreciable coding time and main
storage area when you use a macro instruction many times. (Any
exceptions to this rule are listed in the description of the execute
form of the applicable macro instruction.)

¢ The execute form of the macro instruction can modify any of the
operands previously designated. (Again, there are exceptions to
this rule.)

e The list used by the execute form of the macro instruction can be
located in a portion of main storage assigned to the task through
the use of the GETMAIN macro instruction. This ensures that the
program remains reenterable. '

Figure 56 shows the use of the list and execute forms of a DEQ macro
instruction in a reenterable program. The length of the list con-
structed by the list form of the macro instruction is obtained by sub-
tracting two symbolic addresses; main storage is allocated and the list
is moved into the allocated area. The execute form of the DEQ macro
instruction does not modify any of the operands in the list form. The
list had to be moved to allocated storage because the control program
can store a return code in the list when RET=HAVE is coded. Note that
the code in the routine labeled MOVERTN is valid for lengths up to 255
bytes only. Some macro instructions do produce lists greater than 255
bytes when many operands are coded (for example, OPEN and CLOSE with
many data control blocks, or ENQ and DEQ with many resources), so in
actual practice a length check should be made.

NONREENTERABLE LOAD MODULES

The use of reenterable load modules does not automatically conserve
main storage; in many applications it will actually prove wasteful. If
a load module is not used in many jobs and if it is not employed by more
than one task in a job step, there is no reason to make the load module
reenterable. The allocation of main storage for the purpose of moving
code from the load module to the allocated area is a waste of both time
and main storage when only one task requires the use of the load module.

Main-Storage Management 87

6. 0414

6.45

r) |
| e |
| LA 3, MACNAME Load address of list form |
| A 5,NSIADDR Load address of end of list |
| SR 5.3 Length to be moved in register 5 |
| BAL 14 ,MOVERTN Go to routine to move list |
| DEQ ,MF=(E, (4)) Release allocated resource |
| |
| * The MOVERTN allocates storage from subpool 0 and moves up to 255 |
| * bytes into the allocated area. Register 3 is from address, i
| * register 5 is length. Area address returned in register 4. |
| I
| MOVERTN GETMAIN R,LV=(5), Allocate main storage for list |
i HIARCHY=1 In IBM 2361 Core Storage |
| LR 4,1 Address of area in register 4 |
i BCTR 5,0 Subtract 1 from area length |
| EX 5,MOVEINST Move list to allocated area |
| BR 14 Return |
| MOVEINST MVC 0(1,4),0(3) |
i oo |
| MACNAME DEQ (NAME1,NAME2, 8, SYSTEM) , RET=HAVE,MF=L |
| NSIADDR |
| NAME1 DC CL8'MAJOR' |
| NAME2 DC CL8"' MINOR' |
L i]

Figure 56. Using the list and the execute forms of the DEQ macro
instruction

You may remember that, in an operating system with MVT, the area
occupied by a reenterable or serially reusable load module is not
released automatically when the module returns control to the control
program. {(Refer to "How Control is Returned"™ in the discussion of "Pas-
sing Control in a Dynamic Structure.") In anticipation of future use,
the used copy of the module is retained intact for as long as possible;
its area is available to fill both implicit and explicit requests for
storage, but only after all other available storage has been allocated.
If copies of several modules are retained when they are not needed,
available storage may be fragmented as first the areas between the
modules are allocated, and then the module areas themselves.

To prevent this fragmentation, you should not make a load module
reenterable or serially reusable if reusability is not really important
to the logic of your program. Of course, if reusability is important,
you can issue a LOAD macro instruction to load a reusable module, and
later issue a DELETE macro instruction to release its area. If reusabi-
lity is not important, but you need to execute a module that has been
made reusable, you can make the module temporarily nonreusable by bring-
ing its directory entry into storage, modifying the contents of the
entry, and using the entry to refer to the module. After issuing a BLDL
macro instruction to build a list containing the directory entry, you
need only set the first two bits of the twenty-third byte in the entry
to zero; the module will then be treated as nonreusable when given con-
trol by a LINK, ATTACH, or XCTL macro instruction with a DE operand that
points to the entry. To set the appropriate bits to zero, you can use
an AND-immediate instruction like the following, which could be placed
after the BLDL macro instruction in Example 18:

NI NAMEADDR+22,B'00111111°*

This instruction ensures the nonreusability of the module to which
NAMEADDR refers.

88 Supervisor Services

6.46

6.49

One method of conserving main storage when reusability is not a con-
sideration is to use a planned overlay structure. A complete descrip-
tion of the planned overlay structure is contained in the Linkage Editor

and Loader manual. Briefly, in a planned overlay structure only por-

tions of the load modules are brought into main storage at a time; when
a portion of the load module not in main storage is required, it is
loaded in the area occupied by existing portions of the load module.
While the use of an overlay structure requires more planning on your
part to determine all the portions of a load module required at any one
time, it can result in a considerable saving of storage. A well planned
overlay structure can result in a savings of 50 percent or more over
bringing the entire load module into main storage at once. This does
increase the amount of time spent in bringing in portions of the load
module, however.

It is also possible for you to use an overlay type of approach in the
design of your load module without using the linkage editor by reusing
the areas containing completed routines within a load module. For
example, if your load module consists of three control sections of 2000
bytes each which are always executed sequentially, as soon as control is
passed to the second control section you have 2000 bytes (the size of
the first control section) available to use as a data area. If you
reuse this area, you can save up to 2000 bytes of additional main
storage which would otherwise be allocated using DS instructions or GET-
MAIN macro instructions.

RELEASING MAIN STORAGE

As indicated in Program Management, the control program establishes
two responsibility counts for every load module brought into main
storage in response to your requests for that load module. The respon-
sibility counts are lowered as follows:

e If the load module was requested in a LOAD macro instruction, that
responsibility count is lowered using a DELETE macro instruction.

e If the load module was requested in a LINK, ATTACH, or XCTL macro
instruction, that responsibility count is lowered using an XCTL
macro instruction or by returning control to the control program.

e When a task is terminated, the responsibility counts are lowered by
the number of requests for the load module made in LINK, LOAD,
ATTACH, and XCTL macro instructions during the performance of that
task, minus the number of deletions indicated above.

Except for those modules contained in the link pack area, the main
storage area occupied by a load module is available for reuse when the
responsibility counts reach zero. When you plan your program, you can
design the load modules to give you the best trade-off between execution
time and efficient main storage use. Naturally, if you will use a load
module many times in the course of a job step, you will issue a LOAD
macro instruction to bring it into main storage, and you will not issue
a DELETE macro instruction until all uses of the load module have com-
pleted. In this case it is better to have the load module in main
storage all the time than to bring it in every time you require it.
Conversely, if a load module is used only once during the job step, or
if its uses are widely separated, it will conserve main storage if you
issue a LINK macro instruction to load the module and issue an XCTL from
the module (or return control to the control program) when it has
completed.

There is a minor problem involved in the deletion of load modules
containing data control blocks. An OPEN macro instruction must be

Main-Storage Management 89

6.50

6.53

6.57

issued before the data control block is used, and a CLOSE macro instruc-
tion issued after the use is finished. If you do not issue a CLOSE
macro instruction for the data control block, the control program will
issue one for you when the task is terminated. However, if the load
module containing the data control block has been removed from main
storage, the attempt to issue the CLOSE macro instruction will cause
abnormal termination of the task. You must either issue the CLOSE macro
instruction yourself before deleting the load module, or ensure that the
data control block is still in main storage when the task is terminated.

STORAGE HIERARCHIES

Main storage may be expanded by including IBM 2361 Core Storage in
the system (excluding the Model 65 Multiprocessing System). Main
Storage Hierarchy Support for IBM 2361 Models 1 and 2 divides main
storage into two distinct areas known as hierarchies. In systems inco-
rporating both processor storage and 2361 Core Storage, hierarchy 0 is
assigned to processor storage and hierarchy 1 is assigned to 2361 Core
Storage. The first address in 2361 storage is one higher than the high-
est address in processor storage.

In MFT, storage hierarchy structures are established for partitions
during System Generation, according to user specifications. These
defined structures may be redefined by the operator any time after sys-
tem initialization. A partition may be contained entirely within one
hierarchy, or may consist of one partition segment in hierarchy 0, and
another in hierarchy 1. If 2361 Core Storage is not on line at system
initialization, only partition segments defined in hierarchy 0 are
reserved, and only the amount of storage specified for the hierarchy 0
segment of the partition is allocated.

In MVT, a region storage hierarchy structure is established wvia the
REGION parameter in the job control language JOB and EXEC statements.
If 2361 Core Storage is not on line at system initialization in an MVT
system with Main Storage Hierarchy Support, and a region segment struc-
ture is specified in both hierarchies in the JOB or EXEC statement, the
control program will define two separate region segments (not necessari-
ly contiguous) in processor storage. The region segments will be
addressable as hierarchy 0 and hierarchy 1, each hierarchy being
assigned its respective size as indicated in the REGION parameter of the
JOB or EXEC statement.

Hierarchies 0 and 1 may be specified by the hierarchy parameter
(HIARCHY=) in the ATTACH, DCB, GEMAIN, GETPOOL, LINK, LOAD, and XCTL
macro instructions. If the hierarchy parameter is omitted, requested
storage, if available, is obtained from processor storage.

If a partition or a region is defined entirely in one hierarchy, all
requests for storage will be directed to that hierarchy regardless of
the hierarchy designated by the HIARCHY= parameter.

Figure 54 shows two GETMAIN requests for storage from hierarchy 0.
Figure 56 illustrates the use of a GETMAIN macro instruction in request-
ing storage from hierarchy 1. Requirements for writing macro instruc-
tions with the hierarchy parameter are described in the macro instruc-
tions section.

In using Main Storage Hierarchy support on a Model 50, use caution in
directing programs containing CCWs for direct access devices to be
loaded into hierarchy 1. (Under MFT, this includes readers and wri-
ters.) If this is disregarded, overrun will occur which will degrade
the performance or result in an unrecoverable I/O error.

90 Supervisor Services

CHECKPOINT AND RESTART

The checkpoint/restart description has been deleted from this publi-
cation. The Advanced Checkpoint/Restart manual contains complete infor-
mation for using the facility. The topic, "Using the Restart Facili-
ties™ in the Job Control Language Reference manual contains information

on restart.

Checkpoint and Restart 91

SECTION II: MACRO INSTRUCTIONS

INTRODUCTION

A set of macro instructions is provided by IBM for communicating ser-
vice requests to the control program. These macro instructions are
available only when programming in the assembler language, and are pro-
cessed by the assembler program using macro definitions supplied by IBM
and placed in the macro library when the system was generated.

The processing of the macro instruction by the assembler program
results in a macro expansion, generally consisting of data and execut-
able instructions in the form of assembler language statements. The
data fields are the parameters to be passed to the requested control
program routine; the executable instructions generally consist of a
branch around the data, instructions to load registers, and either a
branch instruction or a supervisor call (SVC) to give control to the
proper program. The exact macro expansion appears as part of the
assembler program output listing.

A listing of a macro definition from the MACLIB can be obtained by

using the utility IEBPTPCH, which is described in the Utilities
publication.

OPERATING SYSTEM CONFIGURATIONS AND OPTIONS

The operation of some macro instructions depends on control program
options. For these macro instructions, either separate descriptions are
provided or the differences are listed within a single description. 1If
no differences are explicitly listed, none exist.

A brief description of the MFT and MVT configurations of the operat-
ing system, along with control program options available in each confi-
guration, is given in Figure 57. This table does not attempt to cover
all of the options available in the operating system; it only summarizes
the options that affect the material in this manual.

r T T 1
| | MFT |MVT |
 — L i 1
Brief	Priority Scheduler, one jPriority Scheduler, one or	
Description { (or, optionally, more than	more tasks per job step, 1	
	one) task per job step, 1	to 15 jobs processed con-
	to 15 jobs processed con-	currently
	currently	
L 1 1 4		
[3 v T 1		
Attach	Optional	Sstandard
I8 4 1 4		
[} T T		
Identify	Optional	standard
3 + + 1		
Timer	Optional	sStandard
L i 1 "		
L) T Ll 1		
Interval Timer	Optional	Standard
b + 4 !		
[Multiple Con-	Optional	Optional
sole Support		
L i	L 4	
r Ll T K		
Time Sharing	Not Available	Optional
L L 1 J

Figure 57. Summary of characteristics and available options

92 Supervisor Macro Instructions

CODING AIDS

The symbols [1, { }, and ,... are used in this puklication to help
define the macro instructions. THESE SYMBCLS ARE NOT COLEL; they act
only to indicate how a macro instructicn may ke written. The specific
meanings of these symbols are given at the bottom of each rage on which
they are used; their general definitions are given Lkelow:

[1] indicates optional operands. The operand enclosed in the brackets
(for example, [VL]) may or may not ke coded, depending on whether
or not the associated option is desired. If the operand is not
coded, any default value is indicated by an underline. If more
than one item is enclosed in krackets (for example,[STEP]), one
or none of the items may ke coded. SYSTEM

{ } indicates that a choice must ke made. One of the operands from the
vertical stack within braces (for example,{YES}) must be coded,
NO
depending on which of the associated services is desired.

¢re.. indicates that more than cne set cf orerands may be designated in
the same macro instruction.

WRITING THE MACRO INSTRUCTIONS

The systerw macro instructions are written in the assemkler language,
and, as such, are sukject to the rules contained in the Assembler Lan-~
guage publication. System macro instructicns, like all assembler lan-
guage instructions, are written in the following format:

T T sTTTT ST 1
| Name | Operation | Operands | Comments |
fro—mo-o- T —— -- + -
symbel	Macro name	None, Or one Or more operands	
or		separated ry ccnmras	
blank			
b L__ S OO, i J

The operands are used to specify the services and options to be per-
formed, and are written according to the following general rules:

e If the selected operand is written in all capital letters (for
example, STEP, DUMP, RET=USE), code the operand exactly as shown.

e If the selected operand is written in lower case letters, substitute
the indicated value, address, cr name.

e If the selected operand is a combination of caprital and lower case
letters separated by an equal sign (fcr example, EP=entry point
name), code the capital letters and egqual sign as shown, then make
the indicated substitution.

e Commas and parentheses are coded exactly as shown, except that a
comma following the last operand coded by the programmer should ke
omitted. The use of commas and garentheses is indicated by brackets
and kraces, exactly as operands.

When substitution is required, the mwethcd cf specifying the operand
depends on the requirements of the control program. The description of
each operand in the standard form indicates how the operand should be
coded, in addition to what is to be coded. The descriptions of the 1list
and execute forms indicate only how the operands should be coded.

Figure 70 summarizes how each operand in each form is to ke coded. The
classifications are as follows:

Section II: Macro Instructions 93

Sym

;.:N’”i f} ;%hegﬂf\
«:36 D’QﬁiﬁDlg ik]

age ang @ﬁ%ma&lé 5 .
; Wﬁ%&n%r%@%nx descript Qi ok
expressien, 1@ aalssaa avlleéed*,-aw; 518 mw

) ﬁlgh order bltﬁ»amst e set; 2 EEC 2 egaster may ke
designated symbollcally cr with an akbsolute expression.
RS ge;aeral registenl o previousity loaded :as dndicated mbove.
vm (jThe register, canbe-designatedonly s (Ehlidisv
—agemaral register 0, previously lcaded as 1ndlcated above.
, = The, register gan he designat ed ionly:c A (@)

o *%Rx\fﬁ.YE}em sd_vamn abiexsyo 30 Fse so0 padl suon dadd o PR
any address that is valid in ap. R¥ntyps Hlnstgpct;gn=€£oi exanple,
LA) may be designated.

A-type

Juj' i i;.JX'I £

o Lim sili
TION%LJI‘}@S;&T R e

he operand field of. a macro ma:rugtmxxrgan beﬁ,com,rme“dl on.qne or
add1t10na1 lines as follows: 1

(ngt- ;blpnk%vands ot ;paxizx ©f the
operand codln 1n(Kc}pgbujnn,waz 5:«& at:h«‘»allgne. 56
i dgefd |
tontlmle.__i;he operand. field. on the. nextg line,. S,tarltlingwln column 16.
All columns to the left of column 16 must be blank.
G enaolIgo Biis B EVYGE Srid £ 2 o bang ; ool TauN 5.8
=Fhe, operand, field, b@l@%&pntﬁrwgw Gam ke ,@dﬂt L orze“of HEWEr WaYS .
The operand field can ke coded through column 71, with no blanks, and
continned:dn coduin, 16;0f; the, nexty kine: orskhe operand £ield can be
cwdruncateds by a ooy where, @ oy normally falksyrwithy atsleast one
blank before column 71, and then continued in column 16 of the next
siuzizdine. AD example, of; s@achz znethodz hqm% mermur@ 2535
: . N it

v

S TWORE

r——=====7~-~-

T - - TT 1
S :J;»,N;amg,m “:A'\;OE@%@@}OI]% *{i opgrand.r.on ous s ;C@HWIIPS ssmmen o || |
=¥o 4 i}if Sl :sﬁﬁ'fﬁ'ﬁi-’x : T oS00 TINTSISgo IS 5 &bt o e ERr s +-4-—4
zisdn s iNéyEi.a:fd;Q?m 2k 5%94&9?33@9 D1, OPERANDZ, WF@AND%@PEWyQ?ERAI | X |
| | N5, OPERANDS: o 25 vi+BBLS IS:ONEiWAY: | 1|L 4|
4 ——
3o Ho@PERANDL,C P@BB& | X4.8
| OPERAND3,.s 3o | X |
PEBALNE!‘ fmm? | |
SPRL A - - 7:"\,. + .AU LJ} # bEA2 T i A 1 __J

%@99;@ 58

doss i b

s T BRS 0
[SAY 9’

9Ug o Supervisor; M@FIQ Ipstructions:sso

ADDITIONAL MACRO INSTRUCTIONS

8.13 The following macro instructions are described in the MFT Guide and
the MVT Gulde'

fpr

IECDSECT JECB o .
»fI”EF‘JFGBN : SHE CORRNAMEC S G0 MROL 3hIGeNs of : £Le

FREEBUF NOTE

FREEDBUF :OPEN E) o
ZFEEEPQQI 'POINT L0 SREUSEY ! RITE o
T) ng 1
- Wf&‘t*ifnq d iTEFmingE? Mcﬁft
STATIN _ -STCOM o] ‘ Loty _ >
ASTATUS 0 LRGSR T TiuEox asTo Losl Ot 7 , cer
*sTxUT@ﬁNvus®?IM‘@U‘= ;
regfAXi sl T@ﬁﬁER@
’STBREAK“” raET -
STCC TPUT
STCLEAR
3%z i
5.¢

96

STANDARD, LIST, AND EXECUTE FORMS

The standard, list, and execute forms of each macro instruction
(where applicable) are grouped for ease of reference. The standard forrwm
of a macro instruction causes operand specifications (if any) to be
indicated Ly parameters passed in registers or in an in-line parameter
list. With the exception of the CALL racrc instruction, the standard
form also causes control to be passed to a control program routine tc
perform the requested function. The option of using an out-of-line
parameter list allows the use of these macro instructions in a reentexr-
able program. The option is requested through the list and execute forms

The list form of the macro instruction is used to provide a parameter
list to be passed either to the contrcl prcgram or to ancther problen
program, depending on the macro instruction. The expansion of the list
form contains no executable code; therefore, registers cannot be used in
the list form.

The execute form of the macro instruction is used in conjunction with
one or two parameter lists established using the list form. The expan-
sion of the execute form provides the executable instructions required
to modify, where possible, the parameter lists and to pass control to
the required program. Only the ATTACH, LINK, and XCTL macro instruc-
tions use two parameter lists; a problem program list, resulting from
the address parameter and VL orerands, and a control program list,
resulting from the remaining operands. The control program list is
required and the problem program list is ortional in these macro
instructions.

An operand value specified in the list form of a macro instruction
remains in effect until changed by the resrecification of the operand in
an execute form of the macro instruction. Any exceptions to this rule
are indicated in the description cf the execute forms of the macro
instruction. This rule does not apply to suborerands of orerands that
are modified such as the PURGE and ASYNCH suboperands of the STAE
operand in the ATTACH macro instruction. Unless otherwise specified,
default values are assigned only when cmitted from the list form, not
the execute form, of a macro instruction.

The SNAP macro instruction can result in a variable length parameterx
list. The length of the parameter list generated by the list form of
the macro instruction must be equal to the maximum length list required
by any execute form which refers tc the list. The maximum length list
can be constructed in one of three ways:

e Code the parameters required fcr the maximum length execute form in
the list form.

e Provide a DS instruction immediately focllowing the list form to
allow for the maximum length parameter list.

* Acquire a maximum length list by using commas in the list form tc
indicate the maximum number of parameters. For example, the STORAGE
operand of the SNAP macro instruction could be coded as STORAGE=
Ceervrrree) to allow for five pairs of addresses. The actual
address would ke provided in the execute form.

The description and definition cf each wacrc instruction and the
allowakle methods of coding each operand are provided with the standard
form. The allowable methods of coding and descriptions of orerands that
are unique with the list and execute forms are provided with the list
and execute forms.

Supervisor Macro Instructions

10.1

10.2

10.3

10. 4

ABEND

ABEND -- Abnormally Terminate a Job Step (MFT Without Subtasking)

The ABEND macro instruction causes the current job step to be abnorm-
ally terminated. The specified completion code is recorded on the sys-
tem output device and a dump is optionally provided. All main storage
areas assigned to the job step are released, and the remaining job steps
in the job are either skipped or executed as specified in their job con-
trol statements.

The ABEND macro instruction is written as shown in the format
description below. The operand in the shaded area is used only in an
operating system with MVT or MFT with subtasking; it is ignored if coded
in an operating system with MFT without subtasking. The operands in the
nonshaded area can be coded with any configuration of the operating
system.

r T 1
| [symboll | ABEND completion code, [DUMP] |
L L J

completion code Sym, Dec Dig, (1-12)
is a maximum of #095. This number is labeled user code on the sys-
tem output device. Using a value greater than 4095 will cause
unpredictable user and/or system completion codes.

DUMP
is written as shown. It is used to request a dump of all main
storage areas assigned to the job step and the control blocks
belonging to the job step. The trace table and nucleus are also
recorded if a //SYSABEND DD statement is provided. Sample abnormal
termination dumps are contained in the Programmer's Guide to Debug-
ging. If this operand is omitted, no dump is provided. A
//SYSABEND or //SYSUDUMP DD statement must be provided to obtain
the dump. If the DD statement is omitted or its specificatioms
destroyed, an indicative dump is provided on the system output
device.

.Section II: Macro Instructions 97

11.1

ABEND

“BEND - Abnormally Termlnate a Task (MVT,r MFT With Subtasklng)
3 eotEall vl LRIIOaGS -
11.1 The ABEND macro 1nstructlon causes the control program to abnormally

terminate the active task and all the subtasks of the active task. The
-mroads SUABEN Bondc 61 nstPustion “cam srégquest ‘pidunp o ekl fdEiistofage areds dnd
~&ye adf é@nﬁf@kﬁﬁiackg.pértafﬁmﬁgiﬂbf“héﬂﬁésk§TEEﬁn§'abﬂ@ﬁmalrfaaeﬁmrnated and
2PEYCHE2 Sawib pdéify PeRdt cthie védEind Sjob st gpiis rtdnbe “@ﬁﬁ@rmaniy“ tdefminated. If
the j@ﬁi%téiﬁ»ta&% wwdmisky tierii fat e@ ior CIf TEle IRBEND AREETO
Hinstruct fon ‘dpeaif £6d Lol Tstep ebRinatiton pithe completisnicode is reco-
rded on the system output device, and the remarnlﬁ@ o i$tdps jin the job
are either sklpped or executed as spec1f1ed 1n thelr job control
Fapgdtiements L awonk @8 ﬁm*?f“W 2i 10r53& i T S |
& Da@ﬂﬁ? ag £

= R is) u«u

TR LT

rré? Hask: '%ehats Wead laerive s wk;en a&ﬁ@menu ma»ar mﬁs’éﬁu@éfmawas issued
is terminated, along with all of the subtasks of thati®détive task.

pree e e e The -completion -coge -is posted‘aswrndlcatedmln~the*comp1etmon code
! i dés’@rﬁpbi*@ﬁ»‘ nofteignoo | G VoD fodmyn)

RN ——— s s o v 070 b s s e s

ot v o 4 e s e i s oo

~ & One end-of-task exit routine is selected to be given control. This
g sRae] *QESsﬁh6‘9X1t routine specified in the ATTACH 2H&€r 6 Cingtriebion €hit
2ild e C#éfeaﬁ@& thdotigdk athavdigsuéd the -ABEND ‘Ma&pg inst ruétion. The exit
L ipouéine il B¢ fgiveRidoNtFol Witén the i§Pgina€ifgtask of the task
for -WEDER thd ABERD MICHEVENSEr 6 sricwas TissuedbBeédmes active.
None of the end-of-task exit routines specified for any subtasks of
the task for which the ABEND macro 1nstruct10n was 1ssﬂéﬁ ‘are d¢ivién
ﬁi;‘ §r$ g@neﬁgi s dzaupax od basay =i Fi B5E asdti :
: ionimon odd Das gsda dof sdid o %avax 2EE BESYS 8p6
1%¢ 3 q?EhéJNBEWD REET 6 ﬁﬁ§trﬁcﬁroﬁ?,s wﬁr€<eﬁuasvfallﬁWQum
Lamyoads slamsd . Dheblvoyxg al Zoome ¥ ! s
~oudsl OF ”‘f”t St MR ”"W"‘L’Z"!—\"fﬁyﬁ‘._{” P e cress
ﬁ| -DSYUBOT Y pi GABBNDT x—\'fv‘ ’“‘abnﬁpléti@n"i@@de, ip :
alsdde oo babivong bl Jeom Sgessliss S mrn TR
anolisnilinsgs a2l 1o bedidimo af ST IERS 7 oady 3l g
11. ¥uglugomplewfon idode Hadbliv m at gmub evid & .hayogympiDec Dig, (1-12)
is a maximum of 4095. Using a value greater thad “H095 will cause
unpredictable user and/or system completion codes. If the job step
is to be terminated, the completion code is recorded as user code
on the system output device. If the job step is not to be ter-
minated, the completion code is placed in the task control block of
the active task, and in the event control block specified in the
ECB operand of the ATTACH macro instruction issued to create the
active task.

e e d

11.5 DUMP
‘ is written as shown. It is used to request a dump of all main

storage areas assigned to the task and all the control blocks per-
taining to the task. If a //SYSABEND DD statement is provided, the
nucleus is also recorded. A sample abnormal termination dump is
contained in Programmer's Guide to Debugging. A separate dump is
provided for each of the tasks being terminated as a result of the
ABEND macro instruction. In addition, a dump of the control blocks
and save areas is provided for each of the higher level tasks that
are direct predecessors of the task being terminated. A //SYSABEND
or a //SYSUDUMP DD statement must be provided; if it is not, the
DUMP operand is ignored. If the operand is omitted or if insuffi-
cient main storage area is available in the region for the abnormal
termination to be performed, no dump is provided.

11.6 STEP
is written as shown. It indicates that the entire job step of the
active task is to be abnormally terminated.

Te9g engupervisor MIGEY Instraetiens

Fea L
ATTACH

ATTACH -- Pass_Control to a Program in Another Load Module (MFT Without
Subtasking) ERTERAGES
L9 ngyr-d
ey Xy
t

'Bg’ phssed to a program
o 'nin iche program is
“storag & ,aygilable. (Refer to
Section I for a discussidn 6f the use of an ex1st1ng copy of a load
Iy , module.) The linkage relationship established is the same asythat¢ ¢
eat ed . by, a. Bﬁl%rlnstrqcthn.{ .gontrol is returned; to,ﬁjzheua.nstructlon

ollgwin
pgggm‘

: led P ¥, orvif €he’spee¢ified entry
p01nt cannot be located, the Job step is abnor‘ﬂiafly tefminated.

12.3 . The standard form of .the ATTACH macro 1nstructlon 1s wrltten as “shdwn
been pf PRECForiat dESCYIpETn belbw ALILtie 137 the
sy 9 eSus o Y "‘;ﬁgstéi:“‘em with MVT.
””’lbc’frﬁe 'E PJ@D“ s’“’ sEa ¢an'4180°Be used in an

he
ASILCIgperating” %YS\teItP ﬁ%t’l‘i“ F Wiifh é%bi&ég (}ng? ‘Howsler; 11 %;he operands in
the shaded area are ignored if éééed T an é“peratln éystem with MFT
<3 w1tk}out subtasking.
559558 40y, gonfiquration

(i ‘%DLE') xf.fb Ta
ik st Yo pedvy
EPLOC—address of nam
DE=address of list entry
ueaxbg@ 3

o snlduox Fixe as
*DCBzdgbxgds&ressﬂ sdi ¥
vLBARAM«&addrzessesj) V:La’ll}

§ I et
L e e s e ——— — —— — — — — —— —— — —— ——— — — —— —— —]

8 EE1e 4
Li‘ £

3l o 50 3 =R Sym
0ad, mady te, te ke given control.
:?; ﬁiﬁﬁ avsn joa .@wb %bfi metR 2ye ponidsyego a8 il
.droggusA-type, (2-12)
is the main storage address of an entry point name. The name must
be padded to the right with blanks to eight bytes, if necessary.

Sectibrii TE:] Naced Instiaectidonst099

12.6

12.6

12.7

12.8

12.9

12.10

12.11

12.12

12.13

ATTACH

DE= A-type (2-12)
is the address of the name field cf a list entry for the entry
point name. The list entry is constructed by a BLDL macro instruc-
tion. The DCB orerand must indicate the same data control klock
used in the BLDL macro instruction.

DCB= A-type (2-12)
is the address of the data control block for the partitioned data
set containing the entry point name. The address of the data con-
trol blocks for the link and jok likraries is designated by speci-
fying an address of zero or by omitting the DCB operand.

PARAM= A-type (2-12)
is one or more address parameters, separated by commas, to be
passed to the called program. Each address is expanded in line tc
a full word on a full word boundary, in the order designated.
Register 1 contains the address of the first parameter when the

" program is given control. (If this orerand is omitted, register 1
is not altered.)

VL=1
can be designated only if PARAM is designated, and should be used
only if the called program can ke passed a variable numker of para-
meters. VL=1 causes the high-order bit of the last address para-
meter to be set to 1; the bit can be checked by the called program
to find the end of the list.

ECB= A-type (2-12)
is the address of a fullword cn a fullword koundary. The contrcl
program indicates normal termination cf the called program by plac-
ing the return code from the called program into the low-order
three kytes of the fullword.

ETXR= A-type (2-12)
is the address of an exit routine to ke given control after normal
termination of the called program. The contents of the registers
when the exit routine is given control are as follows:

Register Contents

0 Control program information.
1 Set to zero.
2-12 Unpredictable.
13 Address of the save area provided
by the control program.
14 Return address (tc controcl procgram).
15 Address of exit routine. :

The exit routine must be in main storage when it is required and
must return control to the control program.

HIARCHY= Dec rig
specifies the storage hierarchy (0 or 1) into which the load module
is to be loaded when a usable copy is not already available in main
storage. If the HIARCHY parameter is not specified, loading will
take place according to the hierarchy specified at Link Edit time.
If tne HIARCHY request can be satisfied, it will override any
hierarchy assignments made during Link Edit time. If the HIARCHY
request cannot be satisfied, the ATTACH macro instruction return an
error code of 04 in register 15. The HIARCHY parameter is ignored
in an operating system that doces not have main storage hierarchy
support.

100 Supervisor Macro Instructions

13.1

13.2

13.3

13.4

13.5

13.6

13.7

ATTACH

ATTACH -- Create a New Task (MFT With Suktasking)

The ATTACH macro instruction causes the contrcl program to create a
new task that will execute asynchrcnocusly in the same partition as the
calling task. The entry point name that is specified must be a member
name or an alias in a directory of a partitioned data set, or have been
specified in an IDENTIFY macro instruction. If the specified entry
point cannot be located, the new subtask is aknormally terminated.

The address of the task control block for the new task is returned in
register 1. The new task is a subtask of the originating task; the cori-
ginating task is the task that was active when the ATTACH macro instruc-
tion was issued. The limit and dispatching priorities of the new task
are the same as those of the originating task unless modified in the
ATTACH macro instruction. The disgatching priority determines whether
the new task participates in time slicing (only if time slicing is
included in the system).

The load module containing the program to be given control is brought
into main storage if a usable copy is not availakle in main storage.
(For further discussions of the use of an existing copy of a load
module, refer to Section I.)

The issuing program can provide an event control klock, in which ter-
mination of the new task is posted, an exit routine to be given control
when the new task is terminated, and a parameter list whose address is
passed in register 1 to the new task.

If the ECB or ETXR operands are coded, a DETACH macro instructicn
must be issued to remove the subtask from the system kefore the program
that issued the ATTACH macro instruction terminates. If the ECB or ETXR
operands are not coded, the subtask will automatically be removed from
the system upon completion of its processing.

Notes:

e The ATTACH macro instruction cannot be issued in a STAE exit
routine.

e The program issuing the ATTACH macro instruction must not terminate
before all of its subtasks have terminated.

e Concatenated SYSIN/SYSOUT Unit Record data sets cannot be processed
(I/0 requests and close requests cannot be issued) frcem a subtask if
the subtask did not originally oren the SYSIN/SYSOUT data set.

The standard form of the ATTACH macro instruction is written as fol-
lows. The operands in the shaded area of the format description are
used only in MVT; they are igncred if coded in any other configuration
of the operating system.

Section II: Macro Instructions 101

13.8

it L; ECB=ech. addz@.zss;ufhmxs—@nﬁa xousi
[,HIARCHY=number]

b e e e o e e e e e e e e e e s e g e e e e e)

e
ToRasd wen
: : s oF I ysiaipsx ai b B
1s the entry point name 1n the load module to be given control.
; < § b ,ﬂj %1 ¢LED
2 £ ‘3’4A:r;|;5y@el (2-12)
ng@@m g@ggname must

; FoLetanis F .vr 'ﬂ;yvf')vvr 9.,l:}

13.10 DE= A-type, (2-12)
is the address of the name field cf a list entry for: &hesentrys. . £1
point name. The list entry is constructed using the BLDL macro

21k TARStructibmizs Thel DOBope randtmuste dndicate dhersameidata control

block used in the BLDL macrc instruction. If theimodule is indi-
cated as being in the job, steg, cor task likrary by the Z byte of

sisalmisd FontheuBLBLLIldstd entryyo£heHATTACH Muskr be el therodpythérsame task as
the BLDL or.imjactask:with’the:sage: chaimofitaskididbraries.

aéka3901@cﬁf joamss 235z s38b bionefd Jinl TUORJIB\MIEYE bedarstsoncd-&ype, (2-12)
¢ 5 wdsi thesmddr ess ﬂfnme dada montredkiogk for the: partitioned data
54 6fs eRU@ontRixHTg the renta vy podmts hewescn Thih address: ofqthe data con-
trol block for either the link or job library is designated by spe-
fod Bying mvza&ﬁmeﬁmﬂis,4garm*pms by omidtd nes the.DeBs @pﬁmnd- V.01
¢ nidgiynasd fewiod sod io e2iys bBebshdzs o4 oi b 1
132025 i!?ﬁﬂAM? wsidde yns i bekon IF b i v oyod t ’igﬁ nE VjﬁgAwﬁype, (2-12)
is one or wore address parameters,“ﬁep§§§QQ*k3axﬁgmmm@1 t@ be
passed to the called program. Each address is expranded in line to
a fullword on a fullword koundary, in the order designated.
Register 1 contains the address of the first parameter when the
program is given control. If this operand is omitted, register 1
is not altered. :

13.13 vVi=1
is written as shown. It can ke designated only if PARAM is desig-
nated, and should ke used only if the called program can be passed
a variable number of parameters. VI=1 causes the high-order bit of
the last address parameter to be set to 1; the kit can ke checked
to find the end of the list.

1102 esipervisor! Magat! Instiructiitns:

ATTACH

13.14 ECB= A-type, (2-12)
is the address of an eventrgontiedy bilwcks te:lerused kyithe control
program to indicate the termination of the new task. The return

code (if the task is terminated ncrrally) or the completion code
Sdfothe taskidis temrinatmi ahn@rm;fya :izs ;a,lscz*@iaceég'in the event

S 2 g SIS : , : SR A~type, (2<12)

1s the address of the end- of task,@x;& rmumane ta bergiven contrcl
after the new task is normally or aknormally terminated. The exit

@ | rowdd ne-d spgd ven: coptidll when theé: ©r iginating: teisks bevomes actiwver

r afitiers thel subtaskidsi ‘ina&ed; and: must &€ in, paintsterage when

reguitedy ¢ If: the: same: rout ine! i simseds for: nates +thamn/ one:subtask,

7 it must: be: reenrerable;-: I thisicperand isbeoded,s s ETACH macro

instruction: masts be 1ssueﬁ&t@rremove sthe! subtask: iram'the syster

Contents

Reglster
s 3 »C@ntrol»progiaMAJnﬁoxmat)xmu 3

Aﬂdtes&‘ of arsa) asre@wm@vadedoby the € ntr@d prograr.
- address (vt@ ther controle: pxogramh ¢

paz=§pe¢1f1es4th@xs¢@rag@ maemarghy :ouor ab LntOvm 1ch§the“AQad module
is to be loaded when a usable copy is not already:availakle in rain
storage. If the HIARCHY rparareter is not specified, loading will
take place according to the hierarchy specified at LimkiBdit tdmel
If the HIARCHY request can be satisfied, it will override any

» i hierarchysassdgnmentsnmaderat-LinkaEdLtotdmei A TES theéT HIARCHY requ-
est cannot be satisfied, the ATTACH macro instrugtiomyreturns an
error code of 04 in register 15. The HIARCHY parameter is igncred

sFsnimusy Joginsan operating: System: thatiftesinotn havelmainostprageé hierarchy

support. Jhadeaimysd svesd adasiiur 210 To Lls siolisd

A3538,01EPMODF s 50 2dse sish Diacoassd FiaU TUGSYENHIRYE DeisaSymgadecs dig, (2-12)
£ ,ﬁ & mdst thesmumbex! tovdes subtracted frofthescutzents1ioiE) priority of
*3&&h&&u&i@ﬁma£img)ﬁash@ﬂcThefxﬁspltaiﬁoﬁhﬁiﬂiﬁd&j@mdozdty of the new
task. If omitted, the current lirit priority of the originating
o nstasksas @@ﬁl@@edp@s the inmitz@rlmrltanoitkheanemutaskx E.¥8
LI aoldosi o usisy ,slubom Dsol s 3o yooo
13.19 DPMOD= Sym, Dec Dig, (2-12)
rewnfic? 2s paisithessignedsnmumbelr denbe dlgebraically addedttebtheézcudfent dist
patching prlorlty of the originating task. The result is assigned
as the dispatching priority of the new task, unless it is greater
than the limit priority of the new task. If the result is greater,
the limit priority is assigned as the dispatching priority. If a
register is designated, a negative nuwber must ke in two's comple-
ment form in the register. If this operand is omitted, the dis-
patching priority assigned is the smaller of either the new task's
limit priority or the originating task's dispatching priority.

SeacbitmrIIant Macred Instiuckions #4303

14.1

14.1

14.2

14.3

14.4

14.5

14.6

ATTACH

ATTACH -- Create a New Task (MVT)

The ATTACH macro instruction causes the contrcl program to create a
new task and indicates the entry pcint in the program to be given con-
trol when the new task becomes active. The entry point name that is
specified must be a member name or an alias in a directory of a parti-
tioned data set, or have been specified in an IDENTIFY macro instruc-
tion. If the specified entry point cannot be located, the new subtask
is abnormally terminated.

The address of the task control block for the new task is returned in
register 1. The new task is a subtask of the originating task; the orxi-
ginating task is the task that was active when the ATTACH macro instruc-
tion was issued. The limit and dispatching priorities of the new task
are the same as those of the originating task unless modified in the
ATTACH macro instruction. The dispatching priority determines whether
or not the new task participates in time slicing (only in a system that
includes the time-slicing option).

The load module containing the program to ke given control is brought
into main storage if a usable copy is not available in main storage.
The issuing program can provide an event control klock, in which ter-
mination of the new task is posted, an exit routine to be given control
when the new task is terminated, and a parameter list whose address is
passed in register 1 to the new task. If the ECB or ETXR operands are
coded, a DETACH macro instruction must be issued to remove the subtask
from the system before the program that issued the ATTACH macro instruc-
tion terminates. If the ECB or ETXR operands are not coded, the subtask
will automatically be removed from the system upon completion of its
processing. The ATTACH macro instruction can also be used to specify
that ownership of main storage sukpcols is to ke assigned to the new
task, or that the subpools are to ke shared by the originating task and
the new task.

Notes:

e The ATTACH macro instruction cannot ke issued in a STAE exit
routine.

e The program issuing the ATTACH macro instruction must not terminate
before all of its subtasks have terminated.

e Concatenated SYSIN/SYSOUT Unit Record data sets cannct be prccessed
(I/0 requests and close requests cannot be issued) from a subtask if
the suktask did not originally open the SYSIN/SYSOUT data set.

For further discussions of time slicing and the use of an existing
copy of a load module, refer to Section I.

The standard form of the ATTACH macro instruction is written as follcws:

104 Supervisor Macro Instructions

14.7

14.8

14.9

14.10

14.11

—_— - s . e o e s e ——— - -

[symboll] ATTACH

EP=syrbol

EPLOC=address of name

DE=address of list entry

{,DCB=dcb address]

[,LPMOD=numker] (,DPMOD=numker]}
[,PARAM=(addresses) [,Vi=1]]

[,ECB=ecb address] [,ETXR=exit routine address]
[,HIARCHY=number]

,GSPV=number ,SHSPV=nurber]
,GSPl—address of list ,SHSPL=address of list

{YES}
[,SZERO=INO f]

.STAI=(exit address(,parameter list addressl])

QUIESCE YES
[, PURGE=< HALT] [,ASYNCH= \NO {1
NONE

[, TASKLIB=dck address]

S — —— —_——d

[rm e — e o s T s S o . e . . e S S . e e i it B . s

| I
[|
I [
I |
I I
I |
I |
! |
! I
I |
| |
| I
| |
I |
[I
I I
I I
[|
| |
| I
| |
I |
| |
1 4

EpP= Sym
is the entry point name in the load module to be given control.

EPLOC= ‘ A-type, (2-12)
is the main storage address of the entry point name. The name must
be padded with blanks to eight Lytes, if necessary.

DE= A-type, (2-12)
is the address of the name field of a list entry for the entry
point name. The list entry is constructed using the BLDL macro
instruction. The DCB operand must indicate the same data contrcl
block used in the BLDL macrc instruction. If the module is indi-
cated as keing in the job, step, or task library by the Z byte cf
the BILDL list entry, the ATTACH must ke either in the same task as
the BLDL or in a task with the same chain of task libraries.

DCB= A-type, (2-12)
is the address of the data control block for the partitioned data
set containing the entry point name described above.

If the DCB= operand is omitted cr if DCB=0 is specified when the

ATTACH macro instruction is issued by the job step task, the data
sets referenced by either the- STEPLIB or JOBLIB DD statement are

first searched for the entry point name. If the entry point name
is not found, the linkflibrary’is searched.

If the DCB= operand is omitted or. lf’HCB~Q”lerpeleled when the
ATTACH macro instruction is 1ésned’by a subtask, the ddta. set(s)
associated with. one or more-data control klocks referenced: prev1ous
ATTACH macro instructions. in the subtasking chain are first
searched for the entry point name. If the entry point name is not
found, the search is continued as if the ATTACH macro instructicn
had been issued by the job step’ task. -

LPMOD= , ' Sym, Dec Dig, (2-12)
is the number to be subtracted from the current limit priority cf
the originating task. The result is the limit priority of the new
task. If omitted, the current limit priority of the criginating
task is assigned as the limit rriority of the new task.

Section II: Macro Instructions 105

14,12
HOATTA

;.A..\,._,‘ e eATTAGH i s 4y AT s D o 41AD sk L At i e I e NV AIY St Sd e ASEE Ga s T4 1wt

14.12 DPMOD= {0 emsir o e , ' Sym, Dec nlgf (2-12)
i is the 51gne§ numbeft-é be srgekrsy égllj added to the current dis-

] patching priority of the orlglnatlng taék. The result is assigned
as the dlspatchlng prreﬁl 0 2w task, unless it is greater

than the Ilﬁiﬁ“pﬁ&bf} y G EERE" ski If theiresult is dreater,
W"Tilhed &é tﬁe‘dhspatchlng prlorlty.i If a

Hho pagigter figs 388 ‘gna :

ment form in the reglsteﬁ. Afﬁhtrfsropeﬁand is oritted, thekdls—

patchlng prlorlty a351gned is the smaller of elther the newitask s
ey N .

14.13 PARAM= s o ? A- type, (2-12)

passed to the called proéﬁaﬁv WEaéhaaedress is expanded in llne to
a fullword on a fullword boundary, in_ the order de51gnated.
~%Xi”Regrstefv SonEding tHE 'addrEss “of 'the first pardmeter when ithe

i program is given control If this operand is omltted regléter 1
i is ﬁ@ altered. 3 § i

:-' g $

i ! i

is written as shown. It can _ be de31gnaﬁed only xf PARAM is idesig-
nated, and should@#be uséed 6haTy if tHe called prodram can be ipassed
b i g ~wpariable number -of ‘parameters: - VL=t “dauses ~thé -high=order bit of
‘ the last address parameter to be set to 1; the bit can be checked
to flnd the end of the list. ; :

BTy fte ¢ o3 ziubon Bsol sdd al smesa Jdoing v

i
|

14.14% VL=1
i

A- type, (2-12)
“theldontr81¥ L

' y - 'Wtﬁé @Wpletlon code
(if the task is termlnated ahnormally) is also placed in the event
RSE D S ‘Gntrol block. If thlS operand is coded, a,DETACH racrc fHstrucs:¥
3 ‘gdded £6 SHRE St cf “héigystem after the

fter’E%EJﬁéﬁf@a§ﬁ fs» o { 6% -abnérr&lly : ‘é&. The exit
e lipdetind 2id gDvEn SEENEFEE whén gHe e&l@iﬂatzng téékhbeeemes active
after the subtask is terminated, and wmust be in main storage when
§9\Jﬁn§qu1red.; If the same routine is used for more than one “§ubtask; - *!
b5 G ok Siugt sBE reénﬁerablé““5Pﬁ»thi%moperané 1sﬁée&éd*b§ ‘ETACH macrc
ins tPUCEFORFMISE BE Podved toirdiicve tie SWHEESH TEPor *Ehe system
after the subtask has been terminated. The contents of the regis-
- ters iwher the '6¥it ro : : "*‘c”htrek~arela§f¥bflows-
JHEST gsds > A
Reégis €8x 411665t ent
YIdgus efd COntrélEp ¥ ,
1 Adér@%§£0f~tﬁe‘%agkwéOﬂ@rél Tce
: termlnated.

HOATTE o - 15 D B Dec Dig
spec1f1es the storage&%&etéwchyi(Qﬂb&«Tfiiﬁt@¢whiéh~thé«load module
is to be loaded when a usable copy is not already available in malnk
£ If the HIARCHY parameter is not specified, 1G481W¢ will-*{
aga: 'éér&fﬁg*Eﬁath@3hﬁ§ﬁﬁ%myﬂ%ﬁﬁbrfﬁ%&QEt 'ﬁk~Ed1t time.

106: ! Supervisor MEcrs st rudtions’w

hlerarchy assignments made Jdur:mg Fasle
request cannot be satisfied, the ATTACH macro 1nstruct10n returns
an error code of 04 in register 15. The HIARCHY operand¥is ignored

14.18 GSPV= ' ’ h “Sym, Dec Dig, (2-12)
is a main storage subpool number. Ownershlp of the spé&cified main
ystoragéusubbpook iiss assa.gned ta sthe™ new'“ ‘aSk"nz Prognams rof the ori-

h I N ASTERRC CH

14.39 PaGSPIsE G080 afdd Jheiiseos P T #“type, (2-12)
is the address of a list of main storage abpool numbers. The
first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a main“§tdrage sub-*#%
pool number. Ownership of each of the specified main storage sub-
pools is assigned to the new task. Programs of the originating

of B »wwasskacamma»:ﬁonger sugéiﬁheiaséwﬁ&ted‘mln sstorage: areds.
IS (IR ASLSS WHIEG A
14.20 SHSPV“ Sym, Dec Dig, (2-12)
is a maln storage subpool number. Programs of both thet@&iginating

< uimy
SRy

P

i SEAEdUOY dIus
14.21 SHSPL= o Eﬂtype, (2-12)
) , is the address of a list of main storage subpool numbers. The
i Dasisgo fivEEsbyte abstHe wbist jcontdinsithe ninber ~of rémai bytes in
the list; each of the following bytes contains aimaincstorage sub-
pool number. Programs of both the originating task and the new
{81-8) ,siyystdsk can use the assom.ated ma1n storage areas. :
Sastdil dof sdd w0l Asold ; :
14352203 SZERO®E baduissa _ f
Jniog vidsoused wumcébéWdther &ubpd@* ‘ - shvdred with the

“»:wﬁ'l“ -«:mug ?éiubta@bsaﬁums “‘gpedlfiﬁe@f-’safbp@@]i [DETO Mﬁn‘sbemsharae&%m specifies

NES }i:sx &ssﬁmed i ﬁlua_s operand is

IS N

FIOD ﬁmmmted.,:f ;mz
j sﬁé i Ponisda g
551 STREAp L8 saa
fwesx doisse ot asiisndr o el b Rags
exit address w—xtype, (2-12)
is the address of the exit routine that receives control when any
> subtask cof the ! M‘nﬁeﬁ—lssulﬁg task vis scheduléed for -abndrmal ter< .
i aimindtion T (ABEND)L wiTHIS exit Jroutine Wil X alscredei vecontrol if
any lower-level subtask of the newly created subtask is schidduled
for abnormal termination and does not successfully recover from the
error. The routine must be in main storage when the 3&ABEND occurs.
(The STAI exit routine performs the same functions f£dx:’a subtask
that .the:SPAE iexXit droutine perfornscfor thesdssding tdsk. See Sec-
tion I for a description of the STAE exit routine.)
ooy dixd HATE2 5 af Dsoesl fsw goldvrasanl ozvem HM 3470 #0
parameter list a&dmsa gJoo gpew Azeddus ol SR ET A-type, (2-12)
is the address of any parameter list that mlght be required by the
14 9lubheSTRI cex it cpdutsime Joi 25w SpsICiE gism Fas i $ A 80

sEoad? Lbastege IATR adr vl bsoilinsge gs <

sl ,_rfi DQUAESCE: =zea3bbs dail 1sdsmeysg 30 salliuoy Fixs od¥ 20
siss dndicates: thatdakl mtstammxemesmm impitit /output operations

will be saved when the specified STAI exit is taken. Then at the

.sidelisve Jend cof the:SPAI Jextt axoutdine Sstlhiermaser wcamcodeifa retdly routine to
handle the outstanding: mputvmwixre@mts:. s:i(See the description
of the STAE macro instruction in the MFT Guide or the MVT Guide for

Section LI I :Macrocins tructiong = 1071

14.25

ATTACH

an explanation of the STAE retry routine.) If the PURGE operand is
not specified, QUIESCE is assumed.

HALT
indicates that all outstanding requests for input/output operations
will not be saved when the STAI exit is taken. A retry routine
should not be scheduled if PURGE=HALT is specified.

NONE
indicates that input/output processing is allowed to continue norm-
ally when the STAI exit is taken.

Note: If the STAI operand is not specified, the PURGE operand is
ignored.

14.25 ASYNCH=

YES
indicates that asynchronous interrupt processing is allowed to
interrupt the processing done by the STAI exit routine.

NO .
indicates that asynchronous interrupt processing is not allowed to
interrupt the processing done by the STAI exit routine. If neither
YES nor NO is coded, NO is assumed.

Note: If the STAI operand is not specified, the ASYNCH operand is
ignored.

14.26 TASKLIB= A-type, (2-12)
is the address of an opened data control block for the job library.
This library, now called a task library, is searched for the entry
point name of the module being attached and for the entry point
names of subsequent modules accessed by the subtask. If the TASK-
LIB operand is not specified, the job library whose data control
block (DCB) address is found in the attaching task's task control
block (TCB) is searched instead. All modules contained in the job
library and task libraries for a job step should be uniquely named;
if duplicate names appear in these libraries, the search results
are unpredictable.

14.27 If the ATTACH macro instruction is executed successfully, control is
returned to the user with one of the following return codes in register
15z

Hex
Code .Meaning
00 Successful completion of the ATTACH request.
ou The ATTACH macro- instruction .was issued in a STAE Exit rou-

tine. The subtask was not credted. . -

08 Sufficient main storage was mnot available to schedule the
exit routine as specified by the STAI operand. The subtask
was not created.

oc The exit routine or parameter list address specified in the
STAI operand was invalid. The subtask was not created.

10 The storage required for the STAI request was not available.
The subtask was not created.

108 Supervisor Macro Instructions

ATTACH - L Form

ATTACH —-- List Form

15.1 Two parameter lists are used in an ATTACH macro instruction: a con-
trol program parameter list and an optional problem program parameter
list. Only the control program parameter list can be constructed in the
list form of the ATTACH macro instruction. Address parameters to be
passed in a parameter list to the problem program can be provided using
the list form of the CALL macro instruction. This parameter list can be
referred to in the execute form of the ATTACH macro instruction.

15.2 The description of the standard form of the ATTACH macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the list form only. The operands in the shaded
area are used in MVT only; they are ignored if coded with MFT. The
LPMOD and DPMOD operands of this format description are used with MVT
and MFT with subtasking. In MFT systems without subtasking, these two
operands are ignored if coded. The operands in the nonshaded area can
be coded with any control program.

15.3 The list form of the ATTACH macro instruction is written as follows:

[symboll ATTACH

EP=symbol
EPLOC=address of name

DE=address of list entry
[,DCB=dcb addressl]

{,ECB=ecb address] [,ETXR=exit routine address]
[, HIARCHY=number]

[, LPMOD=number] [,DPMOD=number]l

[e o e e o e e . . e . S s e e . s e . . e e e . e s
o e e e et e e e e s e e e e e e o
N ——
b e e s s — T — —— — — —— ga— —Gt— —— t— — —— — — —— —]

address
is any address that may be written in an A-type address constant.

number
is any absolute expression valid in the assembler language. ‘

SF=L
indicates the list form of the ATTACH macro instruction.

Section II: Macro Instructions 109

16.1

16.1

16.2

16.3

ATTACH - E Form

ATTACH -- Execute Form

Two parameter lists are used in an ATTACH macro instruction: a con-
trol program parameter list and an optional problem program parameter
list. Either or both of these parameter lists can be remote and can be
referred to and modified by the execute form of the ATTACH macro
instruction. If only one of the parameter lists is remote, operands
that require use of the other parameter list cause that list to be con-
structed in line as part of the macro expansion.

The description of the standard form of the ATTACH macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the execute form only. The operands in the shaded
area are used only with MVT; they are ignored if coded with MFT. The
LPMOD and DPMOD operands of this format description are used with MVT
and MFT systems with subtasking. In MFT systems without subtasking,
these two operands are ignored if coded. The operands in the nonshaded
area can be coded with any control program.

The execute form of the ATTACH macro instruction is written as
follows:

-
[symboll | ATTACH EP=symbol
EPLOC=address of name

DE=address of list entry

[,DCB=dcb address]

[,PARAM= (addresses) [,VL~=111]

[, ECB=ecb address] [,ETXR=exit routine address]
[,HIARCHY=number]

S ———

| [, LPMOD=number] [,DPMOD=number]

,MF=(E,{problem program list address})
’ (1) ;

,SF=(E,{control program list address})
(15)

,MF=(E,{address}),SF=(E,{address})
(1) (15)

(o . S e S . S— i S o — — —— S— — —— — — — — —— — — — —— ——— — — ")

i e s e o G . i e . T AS o G — — —— — a——

o o e e e S e S e B

110 Supervisor Macro Instructions

ATTACH - E Form

16.4 address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi-
cated address. The register may be designated symbolically or with
an absolute expression, and is always coded within parentheses.

16.5 number
is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may be designated symbolically
or with an absolute expression, and is always coded within
parentheses.

16.6 MF=(E,{problem program list address})
' (1)

indicates the execute form of the macro instruction using a remote
problem program parameter list. Any control program parameters
specified are provided in a control program parameter list expanded
in line. If the PARAM operand is also specified, the address para-
meters will be placed on contiguous fullword boundaries, beginning
at the address specified in the MF operand and sequentially over-
laying corresponding fullwords in the existing list. The address
of the problem program parameter list can be coded as described
under "address," or can be loaded into register 1, in which case
MF=(E, (1)) should be coded.

16.7 SF=(E,{control program list address})
(15)

indicates the execute form of the macro instruction using a remote
control program parameter list. Any problem program parameters
specified are provided in a problem program parameter list expanded
in line. The address of the control program parameter list can be
coded as described under "address," or can be loaded into register
15, in which case SF=(E, (15)) should be coded.

16.8 MF=(E,{address}),SF=(E,{address})
(1) (15)
indicates the execute form of the macro instruction using both a
remote problem program parameter list and a remote control program
parameter list. The addresses of the parameter lists are coded or
loaded into registers 1 and 15, as explained above.

Note: If the STAI operand is specified in the execute form but the
PURGE and ASYNCH suboperands are omitted, the control program
assigns the default values QUIESCE and NO respectively. These
default values replace any PURGE and ASYNCH values specified in the
corresponding list form.

Section II: Macro Instructions 111

17.1

17.1

17.2

17.3

17.4

17.5

17.6

17.7

CALL

CALL —-- Pass Control to a Control Section

The CALL macro instruction causes control to be passed to a control
section at a specified entry point, as follows:

e OVERLAY: The overlay segment containing the designated entry point
is brought into main storage if required, and control is passed to
the segment. (15) must not be designated in an exclusive call.
Refer to Linkage Editor and Loader, for details on overlay. The
CALL macro instruction cannot be used in an asynchronous exit
routine.

e NON-OVERLAY: If a symbol is designated, the load module containing
that entry point will be included in the same load module as the
CALL macro instruction by the linkage editor. When the CALL macro
instruction is executed, control is passed to the control section at
the specified entry point. If (15) is designated, the load module
containing the entry point must be in main storage and register 15
must contain the address of the entry point.

The linkage relationship established when control is passed is the
same as that created by a BAL instruction; that is, the issuing program
expects control to be returned. The control program is not involved in
passing control, so the reusability status of the called program must be
maintained by the user.

An address parameter list can be constructed and a calling sequence
identifier can be provided. The standard form of the CALL macro
instruction is written as follows:

r T T L
| [symboll| CALL |(entry point name) [, (address parameters)([,VL]] {
I | l{ (15) } |
| | | [,ID=number] |
L . e i |]
entry point name Sym

is the name of the entry point to be given control; the name is
used in the macro instruction as the operand of a V-type address
constant. If (15) is designated, register 15 must contain the
address of the entry point to be given control.

address parameters A-type, (2-12)
are one or more address parameters, separated by commas, to be
passed to the called program. Each address is expanded, in the
order designated, to a fullword on a fullword boundary. When con-
trol is passed, register 1 contains the address of the first para-
meter. ' If no address parameters are designated, the contents of
register 1 are not changed.

VL
is written as shown. It can be designated only if address parame-
ters are designated. It should be used only when a variable number
of parameters can be passed to the called program. VL causes the
high-order bit of the last address parameter in the macro expansion
to be set to 1; the bit can be checked by the called program to
find the end of the 1list.

ID= Sym, Dec Dig
maximum value is 216-1. The last fullword of the macro expansion
is a NOP instruction containing the ID value in the low-order two
bytes. Register 14 contains the address of the NOP instruction
when the called program is given control.

112 Supervisor Macro Instructions

18.1

18.2

'18.3

CALL - L Form

CALL -- List Form

The list form of the CALL macro instruction is used to construct a
problem program parameter list. This problem program parameter list can
be referred to in the execute form of a CALL, LINK, ATTACH, or XCTL
macro instruction.

The description of the standard form of the CALL macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are completely
optional and which are required in at least one of a pair of list and

.execute forms. The format description below indicates the optional and

required operands in the list form only. The comma before the parenthe-
sis must be coded to indicate the absence of the entry point name
operand, which is not allowed in the 1list form.

The list form of the CALL macro instruction is written as follows:

T I T
| (symboll| CALL |, (address parameters) [,VL],MF=L
Lt i L

b — ol

address
is any address that may be written in an A-type address constant.

MF=1L
indicates the list form of the CALL macro instruction.

Section II: Macro Instructions 113

19.1

19.1

19.2

19.3

CALL - E Form

-Calls == Execute Form

A remote problem program parameter list is referred to and can be
modified by the execute form of the CALL macro instruction.

The description of the standard form of the CALL macro instruction
provides thé explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and

~vequired operands in the execute form only.

The execute form of the CALL macro instruction is written as follows:

[symbol]l CALL {entry point name}[,(address parameters) [,VL1]

(15)

[,ID=number],MF=(E,{problem program list address})
(1)

,.___...__..,
o — e —— e
—
s s s e s s gl

name
is any name valid in the assembler language.

address
is any address that is wvalid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi-
cated address. The register may be designated symbolically or with
an absolute expression, and is always coded within parentheses.

number
is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may be designated symbolically
or with an absolute expression, and is always coded within
parentheses.

MF=(E,{problem program list address})
(1)
indicates the execute form of the macro instruction using a remote
problem program parameter list. If address parameters are also
specified, they will be placed on contiguous fullword boundaries,
beginning at the address specified in the MF operand and sequen-
tially overlaying corresponding fullwords in the existing list.
The address of the problem program parameter list can be coded as
described under address, or can be loaded into register 1, in which
-~ case MF=(E, (1)) should be coded.

114 Supervisor Macro Instructions

20.1

CHAP

CHAP -- Change Dispatching Priority (MFT Without Subtasking)

When used in an operating system with MFT without subtasking, the
CHAP macro instruction results in an effective NOP instruction. The
CHAP macro instruction is used in an operating system with MFT without
subtasking to assure compatability with an operating system with MVT or
MFT with subtasking. The CHAP macro instruction is written as follows:

Section 1II: Macro Instructions 115

21.1

21.1

21.2

21.3

CHAP

CHAP -- Change Dispatching Priority (MVT, MFT With Subtasking)

The CHAP macro instruction changes the dispatching priority of the
task or any of its subtasks. The CHAP macro instruction may also change

the limit priority of a subtask. (See Priority of Subtasks in Section
I.)

Note: The limit priority of the job step task depends on the PRTY para-
meter of the JOB statement and the DPRTY parameter of the EXEC state-
ment. The dispatching priority of any task determines whether or not
the task participates in time slicing (only when the operating system

includes the time-slicing option). For more details, refer to Section
I.

The standard form of the CHAP macro instruction is written as
follows:

priority change value[,tcb location address]
'l§l

r T
| (symboll| CHAP
! !

b e e

e o

priority change value Sym, Dec Dig, (0),(2-12)
is the signed value to be added to the dispatching priority of the
specified task. If the value is negative and contained in a
register, it should be in two‘s complement form.

tcb location address RX-type, (1-12)
specifies the address of a fullword on a fullword boundary contain-
ing the address of a task control block for a subtask of the active
task. If 'S' is coded instead of an address, it indicates that the
priority of the active task is to be changed. 'S' is assumed if
the operand is omitted or if it is coded to specify a zero address.

116 Supervisor Macro Instructions

22.1

22.2

22.3

22.4

22.5

22.6

CHKPT

CHKPT -- Take Checkpoint for Restart Within a Job Step

The CHKPT macro instrucion establishes a checkpoint for the job step.
If the step terminates abnormally, it is automatically restarted from
the checkpoint. On restart, execution resumes with the instruction that
follows the CHKPT macro instruction. If the step again terminates
abnormally (before taking another checkpoint), it is again restarted
from the checkpoint. When several checkpoints are taken, the step is
automatically restarted from the most recent checkpoint.

Automatic restart from a checkpoint is suppressed if:

1. The job step completion code is not one of a set of codes specified
at system generation.

2. The operator does not authorize the restart.

3. The restart definition parameter of the JOB or EXEC statement spe-
cifies no restart (RD=NR) or no checkpoint (RD=NC or RD=RNC).

4. The CANCEL operand appears in the last CHKPT macro instruction
issued before abnormal termination.

Under any of these conditions, automatic checkpoint restart does not
occur. Automatic step restart (restart from the beginning of the job
step) can occur, except under condition 1 or 2, or when the job step was
restarted from a checkpoint prior to abnormal termination. Automatic
step restart is requested through the restart definition parameter of
the JOB or EXEC statement (RD=R or RD=RNC).

When automatic restart is suppressed or unsuccessful, a deferred
restart can be requested by submitting a new job. The new job can spe-
cify restart from the beginning of the job step or from any checkpoint
for which there is an entry in the checkpoint data set.

The checkpoint data set contains the information necessary to restart
the job step from a checkpoint. The control program records this infor-
mation when the CHKPT macro instruction is issued. The macro instruc-
tion refers to the data control block for the data set, which must be on
a magnetic tape or direct access volume. A tape can have standard
labels, nonstandard labels, or no labels.

If the checkpoint data set is not open when the CHKPT macro instruc-
tion is issued, the control program opens the data set and then closes
it after writing the checkpoint entry. If the data set is physically
sequential and is opened by the control program, the checkpoint entry is
written over the previous entry in the data set, unless the DD statement
specifies DISP=MOD. By writing entries alternately into two checkpoint
data sets, it is possible to keep the entries for the two most recent
checkpoints while deleting those for earlier checkpoints.

The data control block for the checkpoint data set must specify:

DSORG=PS or PO, RECFM=U or UT, MACRF=(W), BLKSIZE=nnn, and
DDNAME=any name

where nnn is at least 600 bytes, but not more than 32,760 bytes for mag-
netic tape, and not more than the track length for direct access. (If
the data set is opened by the control program, block size need not be
specified; the device-determined maximum block size is assumed if no
block size is specified.) For seven-track tape, the data control block
must specify TRTCH=C; for direct access, it must specify or imply

Section II: Macro Instructions 117

22.7

22.7

22.8

22.9

22.10

22.11

22.12

22.13

22.14

118

CHKPT

KEYLEN=0. To request chained scheduling, OPTCD=C and NCP=2 must be spe-
cified. With direct access, OPTCD=W can be specified to request validi-
ty checking for write operations, and OPTCD=WC can be specified to com-
bine validity checking and chained scheduling.

The standard form of the CHKPT macro instruction is written as shown
below: ‘

T 1 L]) |

| [(symboll | CHKPT | {dcb address}l}checkid addresé][,checkid lengthﬂ |

| | | \CANCEL ,'s* |

L L L J

dcb address _ A-type, (2-12)
is the address of the data control block for the checkpoint data
set.

checkid address . A-type, (2-12)

is the address of the checkpoint identification field. The con-
tents of the field are used when the job step is to be restarted
from the checkpoint. They are used by the control program in requ-
esting operator authorization for automatic restart, and by the
programmer in requesting deferred restart.

If the next operand specifies the length of the field (checkid
length), or if it is omitted to imply a length of eight bytes, the
field must contain the checkpoint identification when the CHKPT
macro instruction is issued. If the next operand is written as
'S', the identification is generated and placed in the field by the
control program. If both operands are omitted, the control program
generates the identification, but does not make it available to the
problem program. In each case, the identification is written in a
message to the operator.

The control program writes the checkpoint identification as part
of the entry in the checkpoint data set. For a sequential data
set, the identification can be any combination of up to 16 1letters,
digits, printable special characters, and blanks. For a parti-
tioned data set, it must be a valid member name of up to eight let-
ters and digits, starting with a letter. The identification for
each checkpoint should be unique.

If the control program generates the identification, the identi-
fication is eight bytes in length. It consists of the letter C
followed by a seven-digit decimal number. The number is the total
number of checkpoints taken by the job, including the current
checkpoint, checkpoints taken earlier in the job step, and check-
points taken by any previous job steps.

checkid length Sym, Dec Dbig, (2-12)
is the length in bytes of the checkpoint identification field. The
maximum length is 16 bytes when the checkpoint data set is physic-
ally sequential, 8 bytes when it is partitioned. For a partitioned
data set, the field can be longer than the actual identification,
if the unused portion is blank. If the operand is omitted, the
implied length is eight bytes.

The control program supplies the checkpoint identification if
'S' is coded instead of a field length. The implied field length
is eight bytes.

Supervisor Macro Instructions

22.15

22.16

CANCEL
cancels the request for automatic restart from the most recent
checkgpoint. If another checkpoint is taken before abnormal tex-
mination, the job step can be restarted at that checkpoint.

CHKPT

When control is returned, register 15 ccntains one of the following
return codes:

Hex
Code

Meaning

00

o4

08

oc

Successful completion. A valid checkpoint entry was written, or
checkpoint was suppressed in the JOB or EXEC statement (RD=NC or
RD=RNC).

Successful restart. The macro instruction was used earlier tc
take a checkpoint, and the job step has now been restarted from
that checkpoint. If the jok step terminates abnormally befcre
estaklishing ancther checkpcint, the jok step may again be
restarted (automatically) from the same checkpoint.

Unsuccessful completion. No checkpoint entry was written due to
one of the follcwing conditions:

¢ The parameters passed by the CHKPT macro instruction were
invalid.

e The CHKPT macro instruction was issued by an exit routine
(other than a end-ocf-volume exit routine).

e A STIMER macro instruction has keen issued, and the time
interval has not been completed.

* A WTOR racro instruction has keen issued, and the reply has
not been received.

e The checkpoint data set is cn a direct access volume and is
full. Secondary space was allocated but not used. (Secon-
dary space cannot be used fcr a checkpoint data set. Howev-
er, had it not been requested, the jok step would have been
abnormally terminated.) o

e In a system with MVT or MFT with suktasking, the job step
comprises more than one task.

e In a system with MVT, the jok step has keen allocated storage
through the rollout/rollin option.

e A graphics-type DSORG has been found in an open DCB. Grarhic

devices are not supported in Checkpoint/Restart.

Unsuccessful completicn. The checkpoint entry is invalid due to
an uncorrectakle output error, or no entry was written due tc cne
of the following conditions:

e There was no DD statement for the checkpoint data set.
e There was an uncorrectable error in completing input/ocutgut

operations that were begun kefore the CHKPT macro instruction
was issued.

Section II: Macro Instructions 119

120

CHKPT

Hex
Code

Meaning (Cont'd)

10

14

Successful completion with possible error condition. A valid
checkpoint entry was written, kut the task has control of a seri-
ally reusable rescurce. The task will not have control of this
resource if the job ster is restarted from the checkpoint.

Unsuccessful completion. 2An end-of-volume was detected at a
critical point in writing the checkpcint data set tc tape. &2
volume switch did occur, however, and the CHKPT macro instruction
may be reissued immediately to get the entry written on the new
volume. If a programmer-specified checkid was used, it is advis-—
akle to use a new checkid when reissuing CHKPT.

Supervisor Macro Instructions

CHKPT - L Form

CHKPT -- List Form

23.1 The list form of the CHKPT macro instruction is used to ccnstruct a
control program parameter list.

23.2 The description of the standard form of the CHKPT macrc instruction
provides the explanaticn of the functicn of each operand. The descrig-
tion of the standard form also indicates which orerands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description kelcw indicates the optional and
required operands in the list form only. Note that the CANCEL ogerand,
which can be coded in the standard form, cannot ke coded in the list

form.

23.3 The list form of the CHKPT macro instruction is written as follows:
=== T——————" B et s e et g 1
| (symboll | CHKPT | [dcb address], [checkid addressl, checkid length |
| | | +MF=L 'g
L —_ L e e e e e e e e e e e o o e e e e e o i > 2 e e e o e e T e e o o o o i e o e . J
address

is any address that may be written in an A-tyre address constant.

length
is any absolute expression that is valid in the asserbler language.

MF=L
indicates the list form of the CHKPT macro instruction.

Section II: Macro Instructions 120.1

24.1

24.2

24.3

CHKPT - E Form

CHKPT -- Execute Form

A remote control program parameter list is referred to, and can be
modified by, the execute form of the CHKPT macro instruction.

The description of the standard form of the CHKPT macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands for the execute form only. Note that the CANCEL
operand, which can be coded in the standard form, cannot be coded in the
execute form.

The execute form of the CHKPT macro instruction is written as
follows:

r T T 1
| [symboll| CHKPT | [dcb addressl],[checkid address],l?heckid 1engt§] |
| | | 'S’ I
| | | ,MF=(E,{control program list address}) |
| " @ ,'

address
is any address that is valid in an RX-type instruction, or one of
the general registers 2 through 12, previously loaded with the
indicated address. The register may be designated symbolically or
with an absolute expression, and is always coded within
parentheses.

length
is any absolute expression that is valid in the assembler language,
or one of the general registers 2 through 12, previously loaded
with the indicated value. The register may be designated symbolic-
ally or with an absolute expression, and is always coded within
parentheses.

MF=(E,{control program list address})
(1)
indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be coded as described under address, or can be
loaded into register 1, in which case MF=(E, (1)) should be coded.

Section II: Macro Instructions 121

25.1

25.1

25.2

25.3

DELETE

DELETE -- Relinquish Control of a Load Module

The DELETE macro instruction cancels the effect of a single previous
LOAD request for the designated load module by reducing the count of
outstanding LOAD requests by one. If this DELETE macro instruction can-
cels the only outstanding LOAD request for the module, and no other
requirements exist for the module, the main storage area occupied by the
load module is made available for reassignment by the control program.
The name specified in the DELETE macro instruction must be the same name
as that specified in the LOAD macro instruction, which was issued to
bring the load module into main storage; it must be issued in perfor-
mance of the same task as the LOAD macro instruction.

The DELETE macro instruction is written as follows:

r b 1 1
symbol	DELETE	(EP=symbol
		§ EPLOC=address of name
		\DE=address of list entry

L L i 3

EP= Sym
is the entry point name that was used to bring the module into main
storage.

EPLOC= RX-type, (0,2-12)
is the address of the entry point name described above. The name
must be padded with blanks to eight bytes, if necessary.

DE= RX-type, (0,2-12)

is the address of the name field of a list entry for the entry
point name described above, constructed using the BLDL macro
instruction.

When control is returned, register 15 contains a 0 if the operation
was completed successfully. Register 15 contains a 4 if a LOAD macro
instruction was not issued for the task issuing the DELETE macro
instruction or if the number of outstanding LOAD requests had previously
become zero. ’

122 Superxrvisor Macro Instructions

26.1

26.2

26.3

26.4

26.5

26.6

26.7

26.8

DEQ

DEQ -- Release a Serially Reusable Resource

The DEQ macro instruction is used to remove control of one or more
(maximum is 255) serially reusable resources from the active task. It
can also be used to determine whether control of the resource is cur-
rently assigned to or requested for the active task. Register 15 is set
to zero if the request is satisfied.

In a system with MVT, the DEQ macro instruction must be used to
release control of every resource assigned through the use of the ENQ
macro instruction; if normal termination of the task is attempted while
the task still has control of any of the resources assigned through an
ENQ macxo instruction, the task is abnormally terminated. In a system
with either MFT or MVT, an unconditional request to remove control of a
resource from a task that is not in control of the resource results in
abnormal termination of the task.

The standard form of the DEQ macro instruction is written as follows:

LB k)
[symboll | DEQ| (gname address,rname address, [rname lengthl, [STEP],...)
| | SYSTEM

I
| | [,RET=HAVE]
L 4

= o o e)
e e s s e

gname address A-type, (2-12)
is the address in main storage of an eight-character name. Every
program issuing a request for a serially reusable resource must use
the same gname and rname to represent the resource. The name
should not start with SY¥S, so that it will not conflict with system
names. The name must be the same gname previously specified for
the resource in an ENQ macro instruction.

rname address A-type, (2-12)
is the address in main storage of the name used in conjunction with
the gname to represent the resource in a previous ENQ macro
instruction. The name can be qualified and must be from 1 to 255
bytes long.

rname length Sym, Dec Dig, (2-12)
is the length of the rname described above. The length must have
the same value as specified in the previous ENQ macro instruction.
If the operand is omitted, the assembled length of the rname is
used. A value between 1 and 255 can be specified to override the
assembled length, or a value of zero can be specified. If zero is
specified, the length of the rname must be contained in the first
byte at the rname address designated above.

STEP or SYSTEM
is written as shown. The same STEP or SYSTEM option must be desig-
nated as was selected in the ENQ macro instruction issued for the
resource.

RET=HAVE
is written as shown. It specifies that the request for release of
control of all the resources named in the DEQ macro instruction is
to be honored only if the active task has been assigned control of
the resources. If the operand is omitted, the request for release
is unconditional, and the active task is abnormally terminated if
it has not been assigned control of the resources. The results of
conditional requests are indicated by the return codes shown in
Figure 59.

Section II: Macro Instructions 123

26.9

DEQ

w2649 Return codes are provided by the control program only if RET=HAVE is
' designated. If all of the return codes for the resources named in the
DEQ macro instruction are zero, register 15 contains zero. If any of
the return codes are not zero, register 15 contains the address of a
main storage area containing the return codes as shown in Figure 60.
The return codes are placed in the parameter list resulting from the
macro expansion in the same sequence as the resource names in the DEQ
macro instruction. The return codes are shown in Figure 59.

L) L} . 1
| Code | Meaning |
b ¢ !
O	Control of the resource has been released.
4	Control of the resource has been requested for the task, but
	the task has not been assigned control. The task is not
	removed from the wait condition. (This return code could
	result if the DEQ macro instruction is issued within an exit
	routine which was given control because of an interruption.)
I	
8	Control of the resource has not been requested by the active
	task or control has previously been returned.
L L J
Figure 59. DEQ macro instruction return codes

Address Return

Returned in Codes

Register 15 |

|
| 1 2 3 v
v | | |
0 } + + } -
| | | | RC
| | | I 1
12 + i +
i | | | RC
| | | I 2
24 ¢ + + + Return codes are 12 bytes
| | | | RC apart, starting 3 bytes from
| | | | 3 the address in register 15
36 ¢ + t S R
i

5’

L L

| | |
L

Figure 60. Location of return codes in main stbrage

124 Supervisor Macro Instructions

27.1

27.2

27.3

DEQ - L Form

DEQ -- List Form

The list form of the DEQ macro instruction is used to construct a
control program parameter list. Up to 255 resources can be specified in
the DEQ macro instruction; therefore, the number of gname and rname com-
binations in the list form of the DEQ macro instruction must be equal to
the maximum number of gname and rname combinations in any execute form
of the macro instruction.

The description of the standard form of the DEQ macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the list form only.

The list form of the DEQ macro instruction is written as follows:

r T T 1
[symboll	DEQ	({gname addressl, [rname addressl, [rname lengthl,
		[SYSTEM],...) { ,RET=HAVE] , MF=L
		LSTEP
L L L J
address

is any address that may be written in an A-type address constant.

length
is any absolute expression valid in the assembler language.

MF=L
indicates the list form of the DEQ macro instruction.

Section II: Macro Instructions 125

28.1

28.1

28.2

28.3

28.4

28.5

28.6

28.7

DEQ - E Form

DEQ -- Execute Form

A remote control program parameter list is used in, and can be modi-
fied by, the execute form of the DEQ macro instruction. The parameter
list can be generated by the list form of either the DEQ macro instruc-
tion or the ENQ macro instruction.

The description of the standard form of the DEQ macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which operands are required in at least one of the pair of
list and execute forms. The format description below indicates the
optional and required operands in the execute form only.

The execute form of the DEQ macro instruction is written as follows:

r T " T 1
[symboll	DEQ	[([gname addressl], [rname addressl), [rname lengthl,
		[SYSTEM],...)] [RET-HAVE]
		LSTEP + RET=NONE
		s MF=(E {control program list address})]
I | I (1) [
L i R J
address

is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi-
cated address. The register may be designated symbolically or with
an absolute expression, and is always coded within parentheses.

length
is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may be designated symbolically
or with an absolute expression, and is always coded within
parentheses.

RET=NONE
specifies an unconditional request to release control of all of the
resources. The request is processed as though no RET operand had
been coded.

MF=(E,{control program list address})
1)
indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be coded as described under address, or can be
loaded into register 1, in which case MF=(E, (1)) should be coded.

126 Supervisor Macro Instructions

29.1

DETACH

DETACH ~-- Delete a Subtask (MFT Without Subtasking)

When used in an operating system with MFT without subtasking, the
DETACH macro instruction results in an effective NOP instruction. This
assures compatibility with an operating system with MVT or MFT with sub-
tasking. The DETACH macro instruction is written as follows:

;

b
1
ALK

Section II Macro Instructions 127

30.1

30.1

30.2

DETACH

DETACH -- Delete a Subtask (MFT With Subtasking)

The DETACH macro instruction is used to remove from the system a suk-
task created by an ATTACH macrc instruction that specified the ECB or
ETXR operand. Each subtask created in this manner must be removed from
the system before the originating task terminates. Failure to remove
these suktasks causes abnormal termination of originating task and all
of its subtasks. Issuing a DETACH that specifies a subtask created

without the ECB or ETXR operand also causes aknormal termination of the

originating task when the specified subtask has already terminated.
Issuing a DETACH that specifies a subtask that has not terminated causes
termination of that subtask and all of its suktasks. A DETACH macro
instruction can be issued only for subtasks created by the active task.

The DETACH macro instruction is written as follows. The operand in
the shaded area is used only in an operating system with MVT. It is
ignored if coded in an operating system with MFT:

T—
{symboll|
4

T
|

DETACH | tcb location address
4L

[—— -

tcb location address RX-type, (1-12)
is the main storage address of a fullword on a fullword boundary.
The fullword contains the address of the task control klock for the
subtask to ke removed from the system.

128 Supervisor Macro Instructions

31.1

31.2

DETACH

DETACH ~- Delete a Subtask (MVT)

The DETACH macro instruction is used to remove from the system a sub-
task created by an ATTACH macro instruction that specified the ECB or
ETXR operand. Each subtask created in this manner must be removed from
the system before the originating task terminates. Failure to remove
these subtasks causes abnormal termination of originating task and all
of its subtasks. Issuing a DETACH that specifies a subtask created
without the ECB or ETXR operand also causes abnormal termination of the
originating task when the specified subtask has already terminated.
Issuing a DETACH that specifies a subtask that has not terminated causes
termination of that subtask and all of its subtasks. A DETACH macro
instruction can be issued only for subtasks created by the active task.

The DETACH macro instruction is written as follows:

T
{YES
tcb location address [,STAE=|NO 1

S p—

= e w—

T
I |
{symboll| DETACH |
4 L

tcb location address RX-type, (1-12)
is the main storage address of a fullword on a fullword boundary.
The fullword contains the address of the task control block for the
subtask to be removed from the system.

STAE~

YES
indicates that the exit routine specified in a STAE macro instruc-
tion issued by the subtask is to be given control if the subtask is
scheduled for abnormal termination while it is being detached. If
a retry routine is specified by the STAE exit routine, it will not
be given control.

NO
indicates that the exit routine specified in the STAE macro
instruction will not be given control if the subtask is scheduled
for abnormal termination (ABEND) while it is being detached. 1If
neither YES nor NO is specified, NO is assumed.

@

Section II: Macro Instructions 129

32.1

DOM

DOM -- Delete Operator Message (Without the Multiple Console Support
(MCS) Option)

32.1 When used in an operating system without the Multiple Console Support
(MCS) option, the DOM macro instruction results in an effective NOP
instruction. This assures compatibility with an operating system that
has the MCS option. The DOM macro instruction is written as follows:

130 Supervisor Macro Instructions

33.1

33.2

33.3

DOM

DOM -- Delete Operator Message (With the Multiple Console Support (MCS)

Option)

The DOM macro instruction causes the deletion of a message or group
of messages from a display operator console. When a program no longer
requires that a message be displayed, a DOM macro instruction should be
issued to delete the message.

When a WTO or WTOR macro instruction is executed, the operating sys-
tem assigns an identification number to the message. The operating sys-
tem returns the assigned identification number (24 bits and right-
justified) to the issuing program in general register 1. When display
of the message is no longer needed, the DOM macro instruction should be
coded using the identification number that was returned in general
register 1.

The DOM macro instruction is written as follows:

r LD L]
| [symbol] | DOM |{MSG=register } |
| i | \MSGLIST=address |
L 1 1 J
MSG=
specifies a general register from 1 through 12 that contains the
24-bit, right-justified identification number of the message to be
deleted. This operand is used for the deletion of a single mes-
sage. If register 1 is used, the macro expansion is shortened by
two bytes.
MSGLIST=

specifies the address of a list of one or more fullwords, each word
containing a 24-bit, right-justified identification number of a
message to be deleted. A maximum of 60 identification numbers may
be contained in the message list. If more than 60 identification
numbers are contained in the list, the list will be truncated after
the 60th number. The list must begin on a fullword boundary. The
end of the list must be indicated by setting the high order bit of
the last fullword entry to 1. If register 1 is used, the macro
expansion is shortened by four bytes. If any register 2 through 12
is used, the macro expansion is shortened by two bytes.

Section II: Macro Instructions 131

34.1

DXR

DXR -- Divide Extended Register

34.1 The DXR macro instruction is used to divide one extended-precision
floating-point number by another. A detailed description of the divi-

sion process is given in the section on Extended Precision and Rounding
in Principles of Operation.

34.2 To use the DXR macro instruction, the user must have provided a SPIE
Exit routine to process the program exception caused (intentionally) by
the execution of the DXR macro instruction. The SPIE Exit routine is
described in Section I under Extended-Precision Floating-Point

Simulation.
34.3 The DXR macro instruction is written as follows:

r T T 1
[symboll	DXR	regl,reg2
L i L J
regl Sym, Dec Dig

is the register that contains the dividend. The quotient is placed
in this register; the remainder is discarded.

reg2 Sym, Dec Dig
is the register that contains the divisor.

Notes: Following is a. list of limitations that apply to both the
regl and reg2 operands:

¢ Registers 0 and 4 are the only registers that can be specified.
However, the registers can be specified in either order.

e The registers must be specified as decimal digits 0 or 4 or as
symbols that have been equated to these decimal digits.

e The registers are never coded within parentheses.

132 Supervisor Macro Instructions

35.1

35.2

35.3

35.4

35.5

35.6

35.7

ENQ

ENQ -- Request Control of a Serially Reusable Resource

The ENQ macro instruction requests the control program to symbolical-
ly assign control of one or more serially reusable resources to the
active task. Each resource is represented by a unique gname/rname com-
bination. The control program does not correlate the gname/rname combi-
nation with an actual resource. Thus, access to a resource is logical-
ly, not physically restricted. That is, tasks may use a serially reus-
able resource without using the ENQ macro instruction, but in doing so
may jeopardize program reliability.

If any of the resources are not available (that is, have been speci-
fied in an exclusive ENQ request and not specified in a subsequent DEQ
request) and this is an unconditional request, the active task is placed
in a wait condition until all of the requested resources are available.
If the ENQ request is conditional, control is immediately returned to
the active task. Once control of a resource is symbolically assigned to
a task, it remains with that task until one of the programs of that task
issues a DEQ macro instruction specifying the same resource.

The ENQ macro instruction may also be used to determine the status of
a resource; that is, whether the resource is immediately available or in
use, and whether control has been previously requested for the active
task in another ENQ macro instruction.

Issuing an unconditional request for a resource currently allocated
to the active task (by a previous ENQ without an intervening DEQ)
results in abnormal termination of the task. If normal termination of a
task is attempted while the task still has control of any serially reus-
able resources, the task is abnormally terminated.

The standard form of the ENQ macro instruction is written as follows:

r k) LB L)
[symboll	ENQ	(gname address, rname address,[g],[rname lengthl,
		S
		[SYSTEM],...)
		[@]
		I
I		[RET=TEST [
I		
		L.RET=CHNG
L L AL J
gname address A-type, (2-12)
is the address in main storage of an eight-character name. Every
program issuing a request for a serially reusable resource must use
the same gname and rname to represent the resource. The name
should not start with SYS, so that it will not conflict with system
names.
rname address ’ A-type, (2-12)

is the address in main storage of the name used in conjunction with
the gname to represent the resource. The name can be qualified and
must be from 1 to 255 bytes long.

Note: Because the control program does not correlate the gname/
rname combination with the resource, protection against concurrent
use of a serially reusable resource is not provided unless all
tasks use the ENQ function.

Section II: Macro Instructions 133

35.8

35.8

35.9

35.10

35.11

35.12

35.13

ENQ

is written as- shown. It specifies that the request is for exclu-
sive control of the resource. If the operand is omitted, a request
for exclusive control is assumed. If the resource is modified
while under control of the task, the request must be for exclusive
control.

is written as shown. It specifies that the request is for shared
control of the resource. If the resource is not modified while
under control of the task, the request should be for shared
control.

rname length Sym, Dec Dig (2-12)

STEP

is the length of the rname described above. If the operand is
omitted, the assembled length of the rname is used. A value
between 1 and 255 can be specified to override the assembled
length, or a value of zero can be specified. If zero is specified,
the length of the rname must be contained in the first byte at the
rname address designated above.

is written as shown. It specifies that the resource is used only
within the job step of the issuing program, and that a request for
the same gname and rname from a program in another job step denotes
a different resource. This option is assumed if the operand is
omitted.

SYSTEM

‘RET=

is written as shown. It specifies that the resource may be used by
programs of more than one job step, and that requests for the same
gname and rname from programs of other job steps in the system
denote the same resource.

Because SYSTEM and STEP are opposite in meaning, both cannot refer
to the same resource. If two macro instructions specify the same
gname and rname, but one specifies SYSTEM and the other specifies
STEP, they are treated as requests for different resources. Con-
versely, when one resource is used by a single job step and another
is used by several job steps, the same gname and rname can be used
for both.

specifies a conditional request for all of the resources named in
the ENQ macro instruction. If the operand is omitted, the request
is unconditional. The results of a conditional request are indi-
cated by the return codes described in Figure 61; the types of con-
ditional requests are as follows:

TEST - tests the availability status of the resources but does not
request control of the resources.

USE - specifies that control of the resources be assigned to the
active task only if the resources are immediately available.
If any of the resources are not available, the active task
is not placed in a wait condition.

HAVE - specifies that control of the resources is requested only if
a request has not been made previously for the same task.

CHNG

requests a change of the attribute from shared to exclusive
for a resource which is controlled by the active task.

134 Supervisor Macro Instructions

35.14

ENQ

Return codes are provided by the control program only if RET=TEST,
RET=USE, RET=HAVE, or RET=CHNG, is designated; otherwise, return of the
task to the active condition indicates that control of the resource has
been assigned to the task. If all return codes for the resources named
in the ENQ macro instruction are zero, register 15 contains zero. If
any of the return codes are not zero, register 15 contains the address
of a main storage area containing the return codes, as shown in Figure
62. The return codes are placed in the parameter list resulting from
the macro expansion in the same sequence as the resource names in the
ENQ macro instruction. The return codes are shown in Figure 61.

A

r
| Code Meaning

1

v T

| RET=TEST RET=USE i RET=HAVE RET=CHNG

l fl

(Y The resource is Control of the resource has been assigned |Control of the

| immediately |to the active task. resource is now

| available. | assigned exclusively
| | to the active task.

| L T -

| 4 The resource is not immediately available. | -—= Requested attribute

| | |change cannot be

| | fmade at this time.

| L } 4
| 8 A previous request for control of the same resource has been | The active task is |
| made for the same task |not in control of |
| |
L 1

| | the resource.
£ L

Figure 61. ENQ macro instruction return codes

Address Return
Returned in Codes
Register 15 i

24

Return codes are 12 bytes
apart, starting 3 bytes from

I
v
L
T
|
|

12 ¢
I
|
I
[
i the address in register 15
L

e — e

36 }

—_————— e

|

——— e e e

A TN
T T s

Figure 62. Location of return codes in main storage

Section II: Macro Instructions 135

36.1

ENQ - L Form

ENQ -- List Form

36.1 The list form of the ENQ macro instruction is used to construct a
control program parameter list. Any number of resources can be speci-
fied in the ENQ macro instruction; therefore, the number of gname and
rname combinations in the list form of the ENQ macro instruction must be
equal to the maximum number of gname and rname combinations in any
execute form of the macro instruction.

36.2 The description of the standard form of the ENQ macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the list form only.

36.3 The 1list form of the ENQ macro instruction is written as follows:

r T T 1
| isymboll| ENQ | ({lgname address]l, [rname addressl,[E],[rname lengthl, |
I ! | S |
| [| [SYSTEM s+++) [,RET=HAVE],MF=L |
| | | LSTEP +RET=TEST |
| | | +RET=USE I
i | | RET=CHNG |
L 4 1 (]
address

is any address that may be written in an A-type address constant.

length
is any absolute expression valid in the assembler language.

MF=L .
indicates the list form of the ENQ macro instruction.

136 Supervisor Macro Instructions

37.1

37.2

37.3

ENQ - E Form

ENQ -- Execute Form

A remote control program parameter list is used in, and can be modi-
fied by, the execute form of the ENQ macro instruction. The parameter
list can be generated by the list form of the ENQ macro instruction.

The description of the standard form of the ENQ macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which operands are required in at least one of the pair of
list and execute forms. The format description below indicates the
optional and required operands in the execute form only.

The execute form of the ENQ macro instruction is written as follows:

r) L) A |
| [symboll| ENQ | ([(lgname addressl, [rname addressl, [E], [rname lengthl, |
[| | s [
		SYSTEM] ¢oee)] + RET=HAVE
I	LsTEP +RET=TEST	
		+RET=USE
	I +RET=NONE	
		+ RET=CHNG i
		,MF=(E,{control program list address})
		(1)
L 1 1 1
address

is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi-
cated address. The register may be designated symbolically or with
an absolute expression, and is always coded within parentheses.

length
is any aboslute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may be designated symbolically
or with an absolute expression, and is always coded within
parentheses.

RET=NONE
specifies an unconditional request for control of all of the
resources. The request is processed as though no RET operand had
been coded in the list form.

MF=(E,{control program list address})
(1)
indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be coded as described under "address," or can be
loaded into register 1, in which case MF=(E, (1)) should be coded.

Section II: Macro Instructions 137

38.1

38.1

38.2

38.3

138

EXTRACT

EXTRACT -- Provide Information From TCB Fields (MFT Without Subtasking)

The EXTRACT macro instruction causes the control program to provide
the address of the task input-output table for the job step, or the
address of the command scheduler communications list, or both.

The standard form of the EXTRACT macro instruction is written as
shown in the format description below. The operands in the shaded area
of the format description are used only in an operating system with MVT
or MFT with subtasking; they are ignored if coded in an operating system
with MFT without subtasking. The operands in the nonshaded area can be
coded with any configuration of the operating system, although some of
the fields available do not apply to MFT without subtasking.

r T T 1
| [symbol] | EXTRACT |answer area address |
| | | I
| | | FIELDS= (codes) |
L L L J
answer area address A-type, (2-12)
is the main storage address of one or more consecutive fullwords,
starting on a fullword boundary. One fullword is required for each
parameter coded in the FIELDS operand, unless FIELD=(ALL) is coded.
FIELDS=(ALL) requires seven fullwords.
FIELDS=

TIOT or ALL can be coded to obtain the address of the task input-
output table. If TIOT is coded, the address is returned by the
control program, right-adjusted, in the fullword answer area. If
ALL is coded, the address is placed, right-adjusted, in the seventh
fullword.

COMM can also be coded to obtain the address of the command sche-
duler communications area. If COMM is coded with TIOT, the address
is returned in the second fullword. If COMM is coded with ALL, the
address is returned in the eighth fullword. If COMM is coded
without TIOT or ALL, the address is returned in the first fullword.

Note: Additional fields can be obtained when the EXTRACT macro instruc-
tion is used in an operating system with MVT or MFT with subtasking. If
an EXTRACT macro instruction requesting these additional fields is used
in an operating system with MFT without subtasking, an additional full-
word is required in the answer area for each field. The control program
sets each of the additional fullwords to zero.

Supervisor Macro Instructions

39.1

39.2

39.3

39.4

EXTRACT

EXTRACT -- Provide Information From TCB Fields (MVT, MFT With
Subtasking)

The EXTRACT macro instruction causes the control program to provide
information from specified fields of the task control block or a subsi-
diary control block for either the active task or one of its subtasks.
The information is placed in an area provided by the problem program in
the order shown in Figure 63. The standard form of the EXTRACT macro
instruction is written as follows:

k]]
[symbol] | EXTRACT |answer area address[,tcb location addresé],

'l§l

= o e oy
e e e e

I |
| | FIELDS= (codes)
L 4

answer area address A-type, (2-12)
is the address in main storage of one or more consecutive full-
words, starting on a fullword boundary. The number of fullwords
required is the same as the number of fields specified in the
FIELDS operand, unless FIELDS=(ALL) is coded. FIELDS=(ALL)
requires seven fullwords.

tcb location address A-type, (2-12)
specifies the address of a fullword on a fullword boundary contain-
ing the address of a task control block for a subtask of the active
task. If 'S' is coded instead of an address, it indicates that
information is requested from the task control block for the active
task. 'S' is assumed if the operand is omitted or if it is coded
to specify a zero address.

FIELDS=
is one or more of the following sets of characters, written in any
order and separated by commas, which are used to request the asso-
ciated task control block information. The information from the
requested field is returned in the relative order shown in Figure
63; if the information from a field is not requested, the asso-
ciated fullword is omitted. If ALL is specified, the answer area
will include all the fields in Figure 63 from GRS to TIOT, includ-
ing the reserved word. Addresses are always returned in the low-
order three bytes of the fullword, and the high-order byte is set
to zero. Fields for which no address or value has been specified
in the task control block are set to zero.

ALL
requests information from the GRS, FRS, RESERVED, AETX, PRI, CMC,
and TIOT fields.

GRS .
the address of the general register save area used by the control
program to save the general registers (in the order of 0 through
15) when the task is not active.

FRS
the address of the floating point register save area used by the
control program to save the floating point registers (in the order
of 0, 2, 4, 6) when the task is not active.

AETX

the address of the end of task exit routine specified in the ATTACH
macro instruction used to create the task.

Section II: Macro Instructions 139

39.5

39.5

EXTRACT

PRI
the current 1limit (third byte) and dispatching (fourth byte)
priorities of the task. The two high-order bytes are set to zero.

CMC

the task completion code. If the task is not complete, the field
is set to zero.

TIOT
the address of the task input/output table.

COMM
the address of the command scheduler communications list. The list
consists of a pointer to the communications event control block and
a pointer to the command input buffer. The high-order bit of the
last pointer is set to one to indicate the end of the list.

PSB
the address of the protected storage control block (PSCB), which is
extracted from the job step control block (JSCB). This field is
meaningful only for jobs running in a time sharing environment.

TSO
the address of the time sharing flags field in the task control
block (TCB). This field is meaningful only for jobs running in a
time sharing environment.

TJID
the terminal job identifier (TJID) of the task specified in the tcb
location address operand. This field is meaningful only for jobs
running in a time sharing environment.

Note: The user must provide an answer area consisting of conti-
guous fullwords, one for each of the codes specified in the FIELDS
operand, with the exception of the ALL code. If ALL is specified,
the user must provide a 7-word answer area to accommodate the GRS,
FRS, RESERVED, AETX, PRI, CMC and TIOT fields. The ALL code does
not include the COMM, PSB, TSO, and TJID codes.

For example, if FIELDS=(TIOT,GRS,PRI,TSO,PSB,TJID) is coded, a 6-
fullword answer area address is required, and the extracted infor-
mation will appear in the answer area in the same relative order as
shown in Figure 63. (That is, GRS will be returned in the first
word. PRI in the second word, TIOT in the third word, etc.)

If FIELDS=(ALL,TSO,PSB,COMM,TJID) is coded, an 11-word answer area
is required, and the extracted information will appear in the answ-
er area in the relative order shown in Figure 63.

140 Supervisor Macro Instructions

EXTRACT

answer area

address |
v
t 1
| |
GRS | A D DR E S 8 |
| |
L 4
3 1
| |
FRS | A D D R E & S |
| I
t 1
| I
| R E S E R V E D (set to zero) |
I |
[4
|3 B
| |
AETX | A D DURE S S |
| |
.* |
PRI | 00 00 VALUE VALUE |
I I
L 4
| i
CMC | COMPLETION CODE |
| |
R |
L8 L
| |
TIOT | A D DR E S S |
] |
L 4
r R
I |
COMM | A D DR E S s |
| |
¢ |
1 |
TSO | A D DR E S s |
I |
I 4
r a
| [
PSB | A D D R E S8 S |
| |
i i
| I
TJID | V A L U E |
L J

<---1 Byte---> <---1 Byte---> <---1 Byte---> <---1 Byte--->

< 4 bytes >

Figure 63. EXTRACT answer area field order

Section I11: Macro Instructions 141

40.1

EXTRACT - L Form

EXTRACT -- List Foxm

40.1 The list form of the EXTRACT macro instruction is used to construct a
control program parameter list. '

40.2 The description of the standard form of the EXTRACT macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the list form only.

40.3 The list form of the EXTRACT macro instruction is written as follows:

T T
[symboll | EXTRACT | [answer area address][,{tcb location address}]
lsl

= e e e oy
b e s e

| [
[| [, FIELDS= (codes)] ,MF=L
L 41

address
is any address that may be written in an A-type address constant.

codes
are one or more of the sets of characters defined in the descrip-
tion of the standard form of the macro instruction. Each use of
the FIELDS operand in the execute form overrides any previous
codes.

MF=L
indicates the list form of the EXTRACT macro instruction.

142 Supervisor Macro Instructions

41.1

41.2

41.3

EXTRACT - E Form
EXTRACT -- Execute Form

A remote control program parameter list is referred to, and can be
modified by, the execute form of the EXTRACT macro instruction.

The description of the standard form of the EXTRACT macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the execute form only.

The execute form of the EXTRACT macro instruction is written as follows:

r T L] 1
| [symboll { EXTRACT| [answer area address][{,tcb location address|)] i
| I 's* |
| | | [, FIELDS=(codes)] |
i | |,MF=(E,{control program list address}) |
| I | (1) [
L L 1 J
address
is any' address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi-
cated address. The register may be designated symbolically or with
an absolute expression, and is always coded within parentheses.
codes

are one or more of the sets of characters defined in the descrip-
tion of the standard form of the macro instruction. If the FIELDS
operand is used in the execute form, any codes specified in a pre-
vious FIELDS operand are cancelled and must be respecified if
required for this execution of the macro instruction.

MF=(E,{control program list address})

(1)

indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be coded as described under address, or can be
loaded into register 1, in which case MF=(E, (1)) should be coded.

Section II: Macro Instructions 143

42.1

42.1

42.2

42.3

42.4

42.5

42.6

42.7

FREEMAIN

FREEMAIN ~- Release Allocated Main Storage (MFT)

The FREEMAIN macro instruction releases one area of main storage that
had previously been allocated to the job step or subtask as a result of
a GETMAIN macro instruction. The main storage area must start on a dou-
bleword boundary. The requesting task is abnormally terminated if the
specified main storage area does not start on a doubleword boundary, if
the main storage area is not currently allocated to the requesting task,
or if a request is made to release zero bytes.

The control program does not use the main storage area at the address
in register 13 as a save area when processing release requests if R is
coded.

The standard form of the FREEMAIN macro instruction is written as
shown in the format description below. The operands in the shaded area
of the format description are used only in an operating system with MVT.
If they are coded in an operating system with MFT, and are coded
correctly, they are ignored; if they are not coded correctly, the job
step is abnormally terminated. The operands in the nonshaded area can
be coded with any configuration of the operating system.

r T 1 1
| (symbol] | FREEMAIN| (E,LV=number,A=address{ |
| | | | R,LV=(0) ,A=address |
] | | | R,LV=(0) ,A=(1) |
			R,LV=number,A=address
			R,LV=number,A=(1)
		\ v,A=address]	
F L L 4
[Note: only those operand combinations indicated above are valid |
L J
E
(element) written as shown; specifies release of a single area of
allocated main storage, with a length indicated by the LV operand.
The address of the allocated main storage area is provided at the
address indicated in the A operand.
R
(register) written as shown; specifies release of a single area of
allocated main storage, with a length indicated by the LV operand.
The address of the allocated main storage area is provided by the A
operand.)
v
(variable) written as shown; specifies release of a single area of
allocated main storage. The address and length of the main storage
area are provided at the address indicated in the A operand.
Lv= Sym, Dec Dig, (2+12)

is the length, in bytes, of the main storage area being released.
The value should be a multiple of eight; if it is not, the control
program uses the next higher multiple of eight. If R is desig-
nated, LV=(0) may be designated; the low-order three bytes of
register 0 must contain the length. The contents of the high-order
byte are ignored. (With MVT, the high-order byte contains the sub-
pool number.)

144 Supervisor Macro Instructions

42.8

FREEMAIN

with E, or V -- A-type (2-12)
with R -- RX-type (1-12)

is the address of one (if E or R is coded) or two (if V is coded)
consecutive fullwords on a fullword boundary. The first word con-
tains the address of the allocated main storage area. If V is
coded, the second word contains the length of the main storage area
to be released. If R is coded, any of the registers 1 through 12
can be designated, in which case the address of the main storage
area to be released, not the address of the fullword, must pre-
viously have been loaded into the register. The specification of
register 1 saves two bytes in the macro expansion.

Section II: Macro Instructions 145

43.1

43.1

43.2

43.3

43.4

43.5

43.6

43.7

FREEMAIN

FREEMAIN -- Release Allocated Main Storage (MVT)

The FREEMAIN macro instruction releases one or more areas of main
storage, or an entire main storage subpool, previously assigned to the
active task as a result -of a GETMAIN macro instruction. The active task
is abnormally terminated if the specified main storage area does not
start on a doubleword boundary or if the specified area or subpool is
not currently allocated to the active task.

The control program does not use the main storage area at the address
in register 13 as a save area when processing release requests if R is
coded.

The standard form of the FREEMAIN macro instruction is written as
shown in the format description below. The operand combinations in the
shaded area of the format description below must not be used in an
operating system with MFT; the job step would be abnormally terminated..

r T T 1
| [symbol] | FREEMAIN|/E, LV=number |
| | | Ly LA |
| | I\ R.SP= !
i | | \R, SP=(0) |
i	{R,ILV=(0) ,A=address	
		IR, LV=(0) ,A=(1)
i	{ R, LV=number, A=address[, SP=number]	
		1 R, LV=number,A=(1) [,SP=number]
	[\V,A=address [, SP=number]	
¢ L L 4		
Note: only those operand combinations indicated above are valid.		
L J
E
(element) written as shown; specifies release of a single area of
main storage allocated from the subpool indicated by the SP
operand. The length of the main storage area is indicated by the
LV operand; the address of the main storage area is provided at the
address indicated in the A operand.
L
(list) written as shown; specifies release of one or more areas of
main storage from the subpool indicated by the SP operand. The
length of each main storage area is indicated by the values in a
list beginning at the address specified in the LA operand. The
address of each of the main storage areas must be provided in a
corresponding list whose address is specified in the A operand.
All main storage areas must start on a doubleword boundary.
R
(register) written as shown; specifies release of one area of main
storage from the subpool indicated by the SP operand, or specifies
release of the entire supbool indicated by the SP operand. If the
release is not for the entire subpool, the address of the main
storage area is indicated by the A operand. The length of the area
is indicated by the IV operand. The main storage area must start
on a doubleword boundary.
v

(variable) written as shown; specifies release of one area of main
storage from the subpool indic¢ated by the SP operand. The address
and length of the main storage area are provided at the address
specified in the A operand.

146 Supervisor Macro Instructions

‘43.8

43.9

43.10

43.11

Lv=

LA=

Sp=

FREEMAIN

Sym, Dec Dig, (2-12)
is the length, in bytes, of the main storage area being released.
The value should be a multiple of eight; if it is not, the control
program uses the next higher multiple of eight. If R is coded,
LV=(0) may be designated; the high order byte of register 0 must
contain the subpool number, and the low order three bytes must con-
tain the length (in this case, the SP operand is invalid).

with E, L, or V -- A-type, (2-12)
with R -- RX-type, (1-12)

is the main storage address of one or more consecutive fullwords,
starting on a fullword boundary. If the words are within an area
to be released, they must be completely within the area, and must
not begin in the first two words of the first area. If E or R is
designated, one word, which contains the address of the main
storage area to be released, is required. If V is coded, two words
are required; the first word contains the address of the main
storage area to be released, and the second word contains the
length of the area. If L is coded, one word is required for each
main storage area to be released; each word contains the address of
one main storage area. If R is coded, any of the registers 1
through 12 can be designated, in which case the address of the main
storage area, not the address of the fullword, must have previously
been loaded into the register. The specification of register 1
saves two bytes in the macro expansion.

A-type, (2-12)
is the main storage address of one or more consecutive fullwords
starting on a fullword boundary. One word is required for each
main storage area to be released; the high-order bit in the last
word must be set to one to indicate the end of the list. Each word
must contain the required length in the low-order three bytes. The
fullwords in this list must correspond with the fullwords in the
associated list specified in the A operand. If the words are
within an area to be released, they must be completely within the
area, and must not begin in the first two woxrds of the first area.
The words must not overlap the main storage area specified in the A
operand.

Sym, Dec Dig, (0,2-12)
if the SP operand is optional (shown within brackets), it specifies
the subpool number of the main storage area to be released. The
subpool number can be between 0 and 127. If the SP operand is
optional and is omitted, subpool 0 is assumed. If the SP operand
must be coded, it specifies the number of the subpool to be
released, and the valid range is 1 through 127. Subpool 0 cannot
be released. SP=(0) can be designated, in which case the subpool
number must be previously loaded into the high-order byte of
register 0; the three low-order bytes must be set to zero.

Section II: Macro Instructions 147

44.1

44.1

4y.2

44.3

FREEMAIN - L Form

FREEMAIN -- List Form

The list form of the FREEMAIN macro instruction is used to construct
a control program parameter list. The list and execute forms of the
FREEMAIN macro instruction cannot be used with the register (R) type of
the macro instruction.

The description of the standard form of the FREEMAIN macro instruc-
tion provides the explanation of the function of each operand. The
description of the standard form also indicates which operands are tot-
ally optional and which are required in at least one of the pair of list
and execute forms. The format description below indicates the optional
and required operands in the list form only. The operands in the shaded
area of this format description are used only with MVT; they are ignored
if coded with MFT. The L type must not be designated with MFT. The
rest of the operands in the nonshaded area can be coded with any confi-
guration of the operating system.

The list form of the FREEMAIN macro instruction is written as follows:

T T

[symbol] | FREEMAIN]| [E] [,LV=number] [,A=address]
| | L1 [,LA=address] [,A=address] [,SP=number]
| { [V][,A=address]
| | MF=L

L 1
Note: only those operand combinations indicated above are valid.

[o Y e e e
b s b e e e e ek

address
is any address that may be written in an A-type address constant.

number
is any absolute expression valid in the assembler language.

MF=L
indicates the list form of the FREEMAIN macro instruction.

148 Supervisor Macro Instructions

45.1

45.2

45.3

FREEMAIN - E Form

FREEMAIN -- Execute Form

A remote control program parameter list is used in, and can be modi-
fied by, the execute form of the FREEMAIN macro instruction. The para-
meter list can be generated by the list form of either a GETMAIN or a
FREEMAIN macro instruction. The list and execute forms of the FREEMAIN
macro instruction cannot be used with the register (R) type of the macro
instruction.

The description of the standard form of the FREEMAIN macro instruc-
tion provides the explanation of the function of each operand. The
description of the standard form also indicates which operands are tot-
ally optional and which are required in at least one of the pair of list
and execute forms. The format description below indicates the optional
and required operands in the execute form only. The operands in the
shaded area of this format description are used only with MVT; they are
ignored if coded with MFT. The L type must not be designated with MFT.
The rest of the operands in the nonshaded area can be coded with any
configuration of the operating system.

The execute form of the FREEMAIN macro instruction is written as
follows:

r - 1
[symbol]	FREEMAIN	[E][LV=number] [,A=address]
	LI, LA-address][A=address] I, SP—number]	
		V1L, A—address]i%m]
		{MF=(E, {control program list address)}
I	(D	
’ L 1		
Note: only those operand combinations indicated above are valid.		
L 4
address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi-
cated address. The register may be designated symbolically or with
an absolute expression, and is always coded within parentheses.
number

is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may be designated symbolically
or with an absolute expression, and is always coded within
parentheses. :

(1
indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be coded as described under "address,"™ or can be
loaded into register 1, in which case MF=(E, (1)) should be coded.

MF=(E,{control program list address})

Section II: Macro Instructions 149

46.1

4e6.1

46.2

46.3

46.4

46.5

46.6

46.7

GETMAIN

GETMAIN -- Allocate Main Storage (MFT)

The GETMAIN macro instruction is used to allocate an area of main
storage for use by the job step task. The main storage is allocated,
starting with a doubleword boundary, from the main storage area assigned
to the job step. The area is not cleared to zero when allocated. The
length of the area requested must not exceed the length available to the
job step. The main storage area is released when the job step task ter-
minates or through the use of the FREEMAIN macro instruction.

The control program does not use the main storage area at the address
in register 13 as a save area when processing a request, if R is coded.

The standard form of the GETMAIN macro instruction is written as
shown in the format description below. The operands in the shaded area
of the format description are used only in an operating system with MVT.
If they are coded in an operating system with MFT and are coded correct-
ly, they are ignored; if they are not coded correctly, the job step is
abnormally terminated. The operands in the nonshaded area can be coded
with any configuration of the operating system.

| [, EIARCHY=number]

T
[symboll | GETMAIN
[, HIARCHY=number]

+HIARCHY=number]

T
|
|
|
:
| | [,HIARCHY=number]
L iy -

Note: only those operand combinations indicated above are valid

T p——
P—-——-——
R

=

(element) written as shown; specifies a request for a single area
of main storage, with a length indicated by the LV operand. The
address of the allocated main storage area is returned at the
address indicated in the A operand.

(register) written as shown; specifies a request for a single area
of main storage, with a length indicated by the LV operand. The
address of the allocated main storage area is returned in register
1. If R is designated, the requests are unconditional; a request
for more main storage than is available results in abnormal ter-
mination of the job step. If abnormal termination is already in
progress, a return code of 4 is placed in register 15.

(variable) written as shown; specifies a request for a single area
of main storage, with a length to be between the two values located
at the address specified in the LA operand. The address and actual
length of the allocated main storage area are returned by the con-
trol program at the address indicated in the A operand.

(conditional) written as shown; specifies that the request is con-
ditional and that the job step is not to be abnormally terminated
if more main storage area is requested than is available. If the
request is satisfied, register 15 contains return code of zero; if
not satisfied, the return code is four.

150 Supervisor Macro Instructions

46.8

46.9

46.10

46.11

46.12

46.13

GETMAIN

(unconditional) written as shown; specifies that the request is
unconditional. An unconditional request for more main storage than
is available will result in abnormal termination of the job step.
However, if abnormal termination is already in progress, a return
code of 4 will be placed in register 15.

LV= Sym, Dec Dig, (2-12)
is the length, in bytes, of the requested main storage area. The
value should be a multiple of eight; if it is not, the control pro-
gram uses the next higher multiple of eight. If R is coded, LV=(0)
may be designated; the low-order three bytes of register 0 must
contain the length. The contents of the high-order byte are
ignored. (With MVT, the high-order byte contains the subpool
number.)

LA= A-type, (2-12)
is the main storage address of two consecutive fullwords, starting
on a fullword boundary. The first word contains the minimum length
acceptable; the second word contains the maximum length. The
lengths should be multiples of eight; if they are not, the control
program uses the next higher multiple of eight.

A= A-type, (2-12)
is the address of one (if E is coded) or two (if V is coded) conse-
cutive fullwords on a fullword boundary to contain the results of
the request. The control program places the address of the allo-
cated main storage area in the first fullword, and, if V is codeq,
places the length of the main storage area in the second fullword.

HIARCHY= Dec Dig
specifies the number of the hierarchy from which storage is to be
allocated. The number must be 0 to obtain processor storage or 1
to obtain IBM 2361 Core Storage. If the HIARCHY parameter is
omitted, HIARCHY=0 is assumed. The main storage will be allocated
from the requester's partition segment within the specified hierar-
chy. However, if a partition is defined entirely within one
hierarchy and the request specifies the other hierarchy, the requ-
est is defaulted to the hierarchy in which the partition is
located. The HIARCHY operand is ignored if main storage hierarchy
support is not included in the system.

After execution of conditional requests, the return code in the low-
order byte of register 15 is as follows:

Hex

Code Meaning
0 The main storage requested was allocated.
4 No main storage was allocated.

Note: A request for zero bytes or an unconditional request for more
main storage than is available results in abnormal termination of the
job step.

Section II: Macro Instructions 151

47.1

GETMAIN

GETMAIN -- Allocate Main Storage (MVT)

47.1 The GETMAIN macro instruction requests the control program to alloc-
ate one or more areas of main storage to the active task. The main
storage areas are allocated from the specified subpool in the main
storage area assigned to the associated job step. The main storage
areas each begin on a doubleword boundary and are not cleared to zero
when allocated. The total of the lengths specified must not exceed the
length available to the job step. The main storage areas are released
when the task assigned ownership terminates, or through the use of the
FREEMAIN macro instruction.

47.2 The control program does not use the main storage area of the address
in register 13 as a save area when processing release requests, if R is
coded.

47.3 The standard form of the GETMAIN macro instruction is written as

shown in the format description below. The operand combinations in the
shaded area of the format description below must not be used in an
operating system with MFT; the job steps would be abnormally terminated.

(symboll |GETMAIN

EC,ILV=number,A=address [,SP=number] {,HIARCHY=nunber]}
EU, LV=number,A=address [,SP=number] [,HIARCHY=number]

R,LV=number, SP=number [,HIARCHY=num
R,1LV=(0) [, HIARCHY=number]
VC,LA=address,A=address(,SP=number] [,HIARCHY=nunber]
VU,LA=address,A=address [,SP=number] (, HIARCHY=number]l

o e e e e e e e
Ry S p—

o o S o i e o S s, S 2y
R N . pup

Note: only those operand combinations indicated above are valid

47.4 E
(element) written as shown; specifies a request for a single area
of main storage from the subpool indicated by the SP number, having
a length indicated by the LV operand. The address of the allocated
main storage area is returned at the address indicated in the A
operand.

47.5 L
(list) written as shown; specifies a request for one or more areas
of main storage from the subpool indicated by the SP number. The
length of each main storage area is indicated by the values in a
list beginning at the address specified in the LA operand. The
address of each of the main storage areas is returned in a list
beginning at the address specified in the A operand. No main
storage is allocated unless all of the requests in the list can be
satisfied.

47.6 R
(register) written as shown; specifies a request for a single area
of main storage to be allocated from the indicated subpool, and to
have a length indicated by the LV operand. The address of the
allocated main storage area is returned in register 1. If R is
designated, the requests are unconditional; a request for more main
storage than is available results in abnormal termination of the
task.

152 Supervisor Macro Instructions

47.7

47.8

47.9

47.10

47.11

47.12

47.13

47.14

LvV=

LA=

Sp=

GETMAIN

(variable) written as shown; specifies a request for a single area
of main storage to be allocated from the subpool indicated by the
SP number, and to have a length to be between two values at the
address specified in the 1A operand. The address and actual length
of the allocated main storage area are returned by the control pro-
gram at the address indicated in the A operand.

(conditional) written as shown; specifies that the request is con-
ditional and that the task is not to be abnormally terminated if
more main storage is requested than is available. If the request
is satisfied, register 15 contains a return code of zero; if not
satisfied, the return code is four.

(unconditional) written as shown; specifies that the request is
unconditional. An unconditional request for more main storage than
is available will result in abnormal termination of the requesting
task.

Sym, Dec Dig, (2-12)
is the length, in bytes, of the requested main storage area. The
number should be a multiple of eight; if it is not, the control
program uses the next higher multiple of eight. If R is specified,
LV=(0) may be coded; the low-order three bytes of register 0 must
contain the length, and the high-order byte must contain the sub-
pool number.

A-type, (2-12)
is the main storage address of consecutive fullwords starting on a
fullword boundary. Each fullword must contain the required length
in the low-order three bytes, with the high-order byte set to zero.
The lenghts should be multiples of eight; if they are not, the con-
trol program uses the next higher multiple of eight. If V was
coded, two words are required. The first word contains the minimum
length required, the second word contains the maximum length. If L
was coded, one word is required for each main storage area
requested; the high-order bit in the last word must be set to one
to indicate the end of the list. The list must not overlap the
main storage area specified in the A operand.

A-type, (2-12)
is the main storage address of consecutive fullwords, starting on a
fullword boundary. The control program places the address of the
main storage area allocated in the low-order three bytes. If E was
coded, one word is required. If L was coded, one word is required
for each entry in the LA list. If V was coded, two words are
required. The first word contains the address of the main storage
area, and the second word contains the length actually allocated.
The list must not overlap the main storage area specified in the LA
operand.

Sym, Dec Dig, (2-12)
is the number of the subpool from which the main storage area is to
be allocated. The number must be between 0 and 127. If the
operand is omitted, subpool zero is specified.

HIARCHY= Dec Dig

specifies the number of the hierarchy from which storage is to be
allocated. The number must be 0 to obtain processor storage or 1
to obtain IBM 2361 Core Storage. If the HIARCHY parameter is
omitted, HIARCHY=0 will be assumed. The request will be filled

Section II: Macro Instructions 153

47.15

47.15

GETMAIN

from the requester's region part within the specified hierarchy.

If the request is unconditional and is for more main storage than
is available, the task is abnormally terminated. When the uncondi-
tional request cannot be satisfied from the requester's region part
and rollout/rollin is present, an attempt may be made to obtain
storage outside the region part, but within the specified
hierarchy.

Note: If only a single hierarchy region exists, all GETMAIN
requests will be directed to that hierarchy, regardless of any
hierarchy designation in the request. The HIARCHY operand is
ignored in an operating system that does not have main storage
hierarchy support.

After execution of conditional requests, the return code in the low-
order byte of register 15 is as follows:

Meaning

The main storage requested was allocated.

No main storage was allocated.

154 Supervisor Macro Instructions

48.1

48.2

48.3

GETMAIN - L Form

GETMAIN -- List Form

The list form of the GETMAIN macro instruction is used to construct a
control program parameter list. The list and execute forms of the GET-
MAIN macro instructions cannot be used with the register (R) type of the
macro instruction.

The description of the standard form of the GETMAIN macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the list form only. The operands in the shaded
area of this format description are used only with MVT; they are ignored
if coded with MFT. The LC and LU types must not be designated with MFT.
The rest of the operands in the nonshaded area can be coded with any
control program.

The list form of the GETMAIN macro instruction is written as follows:

»

T T T
[sybmoll | GETMAIN| [EC] [,LV=number] ({,A=addressl £
| (EU]1 [,LV=number] [,A=address] [

| | (lLcl [,LA=address] [,A=address]

| | [LU] [,LA=address] [,A=address]

| | Ivc} [,LA=address] [,A=address]
|
|

| (vul [,LA=address] [,A=address])

|
| [,HIARCHY=number] ,MF=L
1 1

Note: only those operand combinations indicated above are valid.

(o e Gyms S e S S S T an.)
S T S —

address
is any address that may be written in an A-type address constant.

nunber
is any absolute expression valid in the assembler language.

MF=L
indicates the list form of the GETMAIN macro instruction.

Section II: Macro Instructions 155

49.1

49.1

49.2

49.3

GETMAIN - E Form

GETMAIN -- Execute Form

A remote control program parameter list is used in, and can be modi-
fied by, the execute form of the GETMAIN macro instruction. The para-
meter list can be generated by the list form of either a GETMAIN or a
FREEMAIN macro instruction. The list and execute forms of the GETMAIN
macro instruction cannot be used with the register (R) type of the macro
instruction. If the GETMAIN macro instruction specifies a remote con-
trol program parameter list created by the list form of a FREEMAIN macro
instruction, the request will be unconditional unless that specification
is replaced by the appropriate conditional operand in the execute form
of the GETMAIN macro instruction.

The description of the standard form of the GETMAIN macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the execute form only. The operands in the shaded
area of this format description are used only with MVT; they are ignored
if coded with MFT. The LC and LU types must not be designated with MFT.
The rest of the operands in the nonshaded area can be coded with any
control program.

The execute form of the GETMAIN macro instruction is written as follows:

r T ¥ < 1
[symbol]	GETMAIN	[(EC] (,LV=number] [,A=address]
		(EU} [,LV=number] [,A=address]
		[ILCY [,LA=address] [,A=address]
		(LUY [,LA=address] [,A=address]
		tvcl [,LA=address] [,A=address]
		(vul [,LA=address] [,A=address]
[{ ,HIARCHY=number]	
		,MF=(E,{control program list address})
	(L I	
* L i %
|Note: only those operand combinations indicated above are valid. |
L J
address
is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi-
cated address. The register may be designated symbolically or with
an absolute expression, and is always coded within parentheses.
number

is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may be designated symbolically
or with an absolute expression, and is always coded within
parentheses.

MF=(E,{control program list address))
1)
indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be coded as described under address, or can be
loaded into register 1, in which case MF=(E, (1)) should be coded.

156 Supervisor Macro Instructions

50.1

50.2

50.3

GTRACE

GTRACE -- Record Trace Data

The GTRACE macro instruction.enables a program to have data originat-
ing with the program recorded by the Generalized Trace Facility (GTF) in
the trace data set identified in the GTF job control statements. The
data set must be in the user's partition or region and may later become
input to an editing function provided by the IMDPRDMP service aid. GTF
must be active and conditioned to accept data originating in a program
issuing GTRACE.

An optional parameter allows specification of a format routine that
is to process the record when the trace output is edited by IMDPRDMP.
(See the Service Aids publication for GTF and IMDPRDMP details). The
GTRACE macro instruction is coded as follows:

r T T
| [symboll | GTRACE| DATA=address, LNG=number ,ID=valuel ,FID=number]
L L 4

e =

DATA= RX-type (2-12)
is the main storage address of the data to be recorded.

LNG= Sym, Dec Dig, (2-12)
is the number of bytes of data to be recorded. Any number from 1
to 256 may be specified.

ID= Sym, Dec Dig
is the identifier to be associated with the record. ID values are
assigned as follows:

0-1023 user events.
1024-4095 reserved.

FID= Sym, Dec Dig, (2-12)
indicates the format routine that is to process the record when the
trace output is edited using IMDPRDMP. FID values are assigned as

follows:
0 entry is to be automatically dumped in hexadecimal.
1-80 user format identifiers.

81-255 reserved.
If the FID parameter is omitted, 0 is assumed.

The format identifier is converted to hexadecimal and, if non-zero,
is appended to the name IMDUSR to form the name of the format rou-
tine which will be used by IMDPRDMP to process the record.

Formatting routines must be available in SYS1.LINKLIB or in a priv-
ate library defined in a JOBLIB or STEPLIB DD statement in the JCL
for IMDPRDMP.

GTRACE Macro Instruction Return Codes: Return codes are placed in
register 15 when control is returned to the program issuing GTRACE.

Hex
Code Meaning
00 Successful completion.
o4 GTF not active or not accepting USR (application program)
entries.
08 The length specified in the LNG parameter is greater than 256.
oc Invalid data address.

Section II: Macro Instructions 157

50.3

GTRACE
14 The value specified in the ID parameter is greater than 1023.
18 Buffers are full, record was not placed in the buffer.
i1c Address of the parameter list is invalid.
10 FID value greater than 255.

158 Supervisor Macro Instructions

51.1

GTRACE

GTRACE -- List Form

The list form of the GTRACE macro instruction constructs a control
program parameter list. The description of the standard form provides
the explanation of the function of each operand. The format description
below indicates the optional and required operands in the list form of
the GTRACE macro instruction.

r T T
| [symbol] |GTRACE| [,DATA=address] [, LNG=number] [, FID=number], MF=L
L 1 L

O

address
is any address that is valid in an RX-type instruction.

number
is any absolute expression valid in the assembler language.

MF=1,
indicates the list form of the macro instruction

The ID parameter is not valid in the 1list form of the macro instruction.

Section II: Macro Instructions 159

52.1

GTRACE
GITRACE -- Execute Form
52.1 The execute form of the GTRACE macro instruction uses the remote con-

trol program parameter list created by the list form of the macro
instruction. The description of the standard form of the macro instruc-
tion provides the explanation of the function of each operand. The for-
mat description following indicates the optional and required operands
for the execute form of the GTRACE macro instruction.

T T
[symboll |GTRACE|ID=valuel,DATA=address] [,LNG=number] {,FID=number],
| | MF=(E, (parameter list address})
| (1-12)
R

[e s s oy
R .

address _
is any address that is wvalid in an RX-type instruction, or one of
the general registers 2 through 12, previously loaded with the
indicated address. The register may be designated symbolically or
with an absolute expression, and is always coded within
parentheses.

number
is any absolute expression that is valid in the assembler language,
or one of the general registers 2 through 12, previously loaded
with the indicated value. The register may be designated symbolic-
ally or within an absolute expression, and is always coded within
parentheses.

value
is any absolute expression valid in the assembler language.

(1-12)
indicates the execute form of the macro instruction using a remote
parameter list. The address of the parameter list can be loaded
into register 1, in which case MF=(E, (1)) should be coded. If the
address is not loaded into register 1, it can be coded as any
address that is valid in an RX-type instruction, or one of the gen-
eral registers 2-12, previously loaded with the address. A regist-
er can be designated symbolically or with an absolute expression,
and is always coded within parentheses.

MF=(E,{parameter list address})

160 Supervisor Macro Instructions

53.1

53.2

ICENTIFY

IDENTIFY -- 2dd an Entry Pcint (MFTI Withcut Identify Cption)

The identify function is an orptional feature cf ar cperating systern
with MFT. If the identify functicr was nct selected wken the operating
system was generated, the use of an ICENTIFY macrc instructicn results
in an effective NCF instructicr tc prcvide compatikility with an operat-
ing system that does include the fincticnm.

The ILENTIFY macrc instructicn is written as fcllcwus:

The contents cf registexr 15 are set tc ze€rc.

.. Secticn II: Macro Instructions 161

54.1

54.1

54.3

54.4

ICENTIFY

IDENIIFY -- RAdd an Entry Pcint (MFT with Identify gptioni NVT)

The ILCENTIFY racrc instruction is used tc add an entry rcint toc a
cory of a lcad module currently in main stcrage. The lcad module cory
nust ke cne cf the fcllcwing:

e A cory that satisfied the requirements cf a ICAD macrc instruction
issued during the performance cf the same task.

e In an MFT system with suktasking, a ccry that satisfied the require-
ments cf a ICAL nacrc instructicn issueé during the performance of
any task within the partition.

¢ The last 1lcad mcdule given ccntrcl, if ccntrcl was passed to the
icad mcdule using a LINK, ATTACH, cr XCTL nacrc instruction.

¢ The first load module of the jcb steg, if it is still in ccntrcl.

e In an MFI systenr with suktaskirg, the first locad module of any task,
if it is still in control.

The ILENTIFY macro instruction way not ke issued by an asynchrcncus
exit routine cr a synchrcncus exit rcutine entered via SYNCH processing;
the rcutine associated with the entry roint is assured tc ke
reenterakle.

e MFT: The ILCENTIFY macro instructicn may nct be issued by a routine
enterec¢ at an added entry point. The added entry pcint can ke used
only in an ATTIACH macrc instructicn.

e MVT: The added entry point car ke use¢ in an ATTACH, IINK, LOCAD,
DEIETE, cr XCTI macrc instruction.

The ICENTIFY macro instruction is written as fcllcws:

[Frm - T - ittt 1
I[symbol]|IEENTIFY|{EP=symhcl },ENTRY=entry point address i
| i | VEPLOC=address cf name |
b Lo—o i e 4
EP= Sym

is the nawe of the entry point. The name dces nct have tc ccrres-
pond to any name cr symkcl in the lcac¢ mcdule, and must not corres-
pcnd to any name, alias, or added entry pcint fcr a 1lcad ncdule in
the link rack area cr the jck pack area cf the jokstep.

EPIOC= RX-tyre, (0,2-12)
is the address cf the entry pcint nare descriked under EF. The
name nmust ke padded to the right with blanks to eight kytes, if
necessary.

ENTRY= RX-type, (1-12)
is the main storage address of the entry pcint being added.

When contrcl is returned, register 15 ccntains one of the follcwing
return codes:

162 Supervisor Macrc Instructicms

Hex
Ccde

IDENTIFY

Mearing

00
o4

08

0c

10

14

Successful completion.
Entry pcint name and address already exist.

Entry pcint nare duplicates the name cf a lcad module currently
in main storage; entry point was nct added.

Entry pcint address is nct within an eligikle load module; entry
pcint was nct added.

Issued Ly an asynchronous exit routine cr by a synchrcncus exit
routine entered via SYNCH; the entry pcint was not added.

An ICENTIFY macro instructicn was previcusly issued using the

sare entry pcint nare kut a differert acdress; this request was
igncred.

Section 1II: Macrc Instructicns 163

55.1

55.1

55.2

55.3

55.4

55.5

55.6

55.7

LINK

IINK -- Fass Ccntrcl tc a Prcgram in Arcthexr Lcad Module

The LINK wmacrc instructicn causes ccntrcl tc ke passed to a specified
entry point; the entry pcint name must ke a menber nare cr an alias in a
directory cf a partiticned data set. (With MVT, the entry roint can Le
an added entry point specified in an ILCENTIFY macrc instructicn.) The
load module ccntairing the rpregram is krcught intc main storage if a
useakle ccpy is not availakle. (See Secticn I fcxr a discussicn cf the
use of an existing ccpy cf the 1lcad rccule.)

The linkage relaticnship estaklished is the same as that created Ly a
ERL instructicn; ccntrcl is returned tc the instructicn fcllcwing the
IINK racrc instructicn after executicn cf the called program. The pro-
klem program cptionally can provide a raraneter list tc be passed tc the
called prograr. If the called prcgram terminates aknormally, or if the
specified entry gpoint cannot ke iocated, the task is akncrrally
terminated.

The standard fcrm cf the LINK racrc instructicn is written as follows:

T T
[synkcll	LINK	(EP=symkol [,LCE=dck address]
		{ EELCC=address cf name
		{ DE=address of 1list entry
		[,PARAM=(addresses)[,Vi=11]
I		
		(,ID=numker](,HIARCHY=nunber]
L —————-1 e e e e e et e e e v e e e = e = o = = o o e e e e o o J
EP= Sym

is the entry point name in the prcgram to be given ccntrcl.

EPLOC= B-type, (2-12)
is the address of the entry pcint name descriked above. The nane
must ke padded with blanks to eight kytes, if necessary.

DE= A-type, (2-12)
is the address of the name field cf a list entry fcr the entry
point name. The list entry is ccmnstructec¢ using the BLDL macro
instructicn. The DCB operand must indicate the sare data ccntzxcl
block used in the ELDL macrc instructicn. If tke module is indi-
cated as keing in the jok, step, cr task likrary by the Z kyte cf
the BILI 1list entry, the IINK racrc instructicn must ke either in
the same task as the BIDL or in a task with the same chain cf task
libraries.

DCB= A-tyre, (2-12)
is the address cf the data ccrtrcl klcck for the partiticned data
set ccntaining the entry point name descriked akove.

If the LCB= orerand is omitted or if LCRB=0 is sgecified when the
LINK macrc instructicn is issued ky the jck ster task, the data
sets referenced ky either the STEPLIE cr JOBLIB DD statement are
first searched fcr the entry pcint name. If the entry point name
is nct fcund, the link likrary is searched.

If the LCB= orerand is omitted or if LCB=0 is specified when the
LINK nmacrc instructicn is issued ky a suktask, the data set(s)
asscciated with one or more data control klccks referenced ty rre-
vious ATTACH macrc instructicrs in the suktasking chain are first
searched for the entry point name. If the entry pcint nawe is nct
fcund, the search is continued as if the LINK macro instruction had
kLeen issued Ly the jok step task.

164 Superviscr Macrc Instructions

55.8

55.9

55.10

55.11

LINK

PARAM= A-type, (2-12)

is one or more address parameters, separated by commas, to be
passed to the called program. Each address is expanded in line to
a fullword on a fullword boundary, in the order designated.
Register 1 contains the address of the first parameter when the
program is given control. (If this operand is omitted, register 1
is not altered.)

ViFl
is written as shown. It can be designated only if PARAM is desig-
nated, and should be used only if the called program can be passed
a veriable number of parameters. VI=1 causes the high-order bit of
the last address parameter to be set to 1; the bit can be checked
to find the end of the list.

ID= Sym, Dec Dig
maximum value is 216-1. The last fullword of the macro expansion
is a NOP instruction containing the ID value in the low-order two
bytes.

HIARCHY= Dec Dig

specifies the storage hierarchy (0 or 1) in which the load module
is to be loaded when a usable copy is not already available in main
storage. If the HIARCHY parameter is missing, loading will take
place according to the hierarchy specified at Link Edit time. If
HIARCHY is specified, it will override any hierarchy assignments
made during linkage editing. The HIARCHY operand is ignored in an
operating system that does not have main storage hierarchy support.

Section II: Macro Instructions 165

56.1

LINK - L Form

LINK -- List Form

56.1 Two parameter lists are used in a LINK macro instruction: a control
program parameter list and an optional problem program parameter list.
Only the control program parameter list can be constructed in the list
form of the LINK macro instruction. Address parameters to be passed in
a parameter list to the problem program can be provided using the list
form of the CALL macro instruction. This parameter list can be referre
to in the execute form of the LINK macro instruction.

56.2 The description of the standard form of the LINK macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the list form only.

d

56.3 The list form of the LINK macro instruction is written as follows:
r T T R}
[symboll	LINK	[EP=symbol {,DCB=dcb address]	
		[EPLoc=address of name]	
			DE=address of list entry
	{ [,HIARCHY=number] ,SF=L		
L L L J

symbol
is any symbol valid in the assembler language.

address
is any address that may be written in an A-type address constant.

SF=L
indicates the list form of the LINK macro instruction.

166 Supervisor Macro Instructions

57.1

57.2

57.3

57.4

57.5

57.6

57.7

57.8

LINK - E Form

LINK -—- Execute Form

Two parameter lists are used in a LINK macro instruction: a control

program parameter list and an optional problem program parameter list.
Either or both of these lists can be remote and can be referred to and
modified by the execute form of the LINK macro instruction. If only one
of the parameter lists is remote, operands that require use of the other
parameter list cause that list to be constructed in line as part of the
macro expansion.

The description of the standard form of the LINK macro instruction

provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are completely
optional and which are required in at least one of a pair of list and
execute forms. The format description below indicates the optional and
required operands in the execute form only.

The execute form of the LINK macro instruction is written as follows:

[= o S e . e i e e G S S S S By

-

%
[¢]
=

] LINK
EPLOC=address of name
DE=address of list entry

{ ,HIARCHY=numberl[,PARAM= (addresses) [,VL=111]

[, ID=number]

[EP=symbol][,DCB=dcb address]

,MF=(E,{problem program list address})
1)
,SF=(E,{control program list address})
(15)

,MF=(E,{address}),SF=(E,{address})
(1) (15)

o e e e]
b s s S—— —— — — —— — — —o—— —at—]

1}
I
|
I
!
I
|
|
|
I
I
|
|
|
|

L

symbol

is any symbol valid in the assembler language.

address

is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi-
cated address. The register may be desighated symbolically or with
an absolute expression, and is always coded within parentheses.

number

is any absolute expression that is valid in the assembler language.

MF=(E,{problem program list address})
(1)

indicates the execute form of the macro instruction using a remote
problem program parameter list. Any control program parameters
specified are provided in a control program parameter list expanded
in line. The address of the problem program parameter list can be
coded as described under address, or can be loaded into register 1,
in which case MF=(E, (1)) should be coded.

SF=(E,{control program list address})

(15)
indicates the execute form of the macro instruction using a remote
control program parameter list. Any problem program parameters
specified are provided in a problem program parameter list expanded

Section 1II: Macro Instructions 167

57.9

LINK - E Form

in line. The address of the control program parameter list can be
coded as described under "address," or can be loaded into register
15, in which case SF=(E, (15)) should be coded.

(&0 (15)
indicates the execute form of the macro instruction using both a
remote problem program parameter list and a remote control program
parameter list. The addresses of the parameter lists are coded or
loaded into registers 1 and 15, as explained above.

57.9 MF=(E,{address}),SF=(E,{address})

168 Supervisor Macro Instructions

58.1

58.2

58.3

58.4

58.5

58.6

58.7

ICAT

ICAD -- Bring a Icad Ncdule Into Main Stcrage

The ICAL racrc instructicn causes the ccntrcl rrcgram to kring the

-lcad mcdule ccntaining the specified entry point irtc main stcrage, if a

usable ccpy is nct availakle in main stcrage. (See Section I for a dis-
cussior cf the use cf an existing copy of the lcad ncdule.) The resgcn-
sikility ccunt fcr the lcad mcdule is increased tky one. Ccntrol is not
passed tc the 1lcad ncdule; instead, the main stcrage address of the
designated entry pcint is returned in register 0. The 1lcad rcdule
remains in main stcrage until the respcnsikility ccunt is reduced to
zexo thrcugh task terminations or through the use cf the LELETE racrc
instructicn.

The entry pcint name in the load module rust ke a nemker name or an
alias in a directory cf a rartiticred data set. In an cgperating systen
with MVT, the name can alsc ke an adde¢ entry gcint specified in an
ICENTIFY macrc instruction. If the specified entry rcint cannct ke
located, the task is akncrmally terminated.

The ICAD macrc instruction is written as fcllcwus:

-------- B T et s |
[synkcl]l	IORLC	(EP=symkcl [,LCE=dck address]
		{ EELCC=address cf ranmne
		(DE=address of list entry
		[,BEIARCHY=numker)
b o i e 1
EpP= Sym
is the entry pcint name in the load mcdule tc ke krcught intc nain
storage.
EPICC= RX-tyre, (0,2-12)

is the main stcrage address cf the entry pcint name descriked
akove. The name wust ke radded with klanks tc eight kytes, if
necessary.

DE= . RX-tyrpe, (0,2-12)
is the address of the name field cf a list entry fcr the entry
peint name. The 1list entry is ccrstructeé ky a PILCI mwacro instruc-
ticn. The LCE cperand must indicate the same data control klock
used in the BIDI nacro instruction. If tke mcdule is indicated as
keing in the jck, ster, cx task likrary ky the Z kyte of the BIDI
list entry, the ICAD macro instructicn must ke either in the same
task as the BILCI cr in a task with the same ckain of task likraries

LCB= RX-tyre, (1-12)
is the address cf the data ccrtrcl klcck fcr the partiticned data
set ccntaining the entry point name described akove.

If the LCB= orerand is omitted or if CCE=0 is sgecified when the
ICAL macrc instruction is issued ky the jck ster task, the data
sets referenced ky either the STEFIIE cr JCELIP LL statement are
first searched fcr the entry gcint nane. If the entry point name
is not found, the link likrary is searched.

If the CCB= operand is cwitted cr if LCBE=0 is specified when the
ICAD macrc instruction is issued ky a subtask, the data set(s)
associated with cre or more data contrcl klccks referenced ky rre-
vious ATTACH macrc instructicrs in the suktasking chain are first
searched for the entry point name. If the entry pcint rname is rct
found, the search is continued as if the ILOAL macro instruction had
Leen issued ky the job step task.

Secticn II: Macrxc Instructicms 169

58.8

LCAD

58.8 BIARCHY= Lec Cig
srecifies the storage hierarchy (0 cr 1) in which the 1lcad mcdule
is to be loaded. If the BIARCHY parameter is nissing, lcading will
take rlace according tc the hierarchy srecified at Iink Edit tire.
If HIARCHY is specified, it %will cverride any hierarchy assignrents
made during linkage editing. The HIARCHY crerand is ignored in an
cperating system that does nct have rain stcrage hierarchy surgcrt.

170 Superviscr Macrc Instructions

59.1

FCeT

POST -- fignal Evert Ccrgleticn

The PCST macrc instruction causes the specified event ccntrcl klcck
(ECB) to be set tc irdicate the cccurxence cf an event. This event
satisfies the requirements of a WRIT wacrc instructicn if this is the
last or cnly event srecified ky the WAIT. If ncre events are awaited,
the WAIT rermains unsatisfied. The kits in the ECE are set as follows:

Bit 0 cf the srecified ECE is set tc O.

Bit 1 cf the specified ECB is set tc 1.

Bits 8 thrcugh 31 are set tc the srecified ccnpleiion code value.

The PCST macrc instructicn is written as fcllcws:

eck address (1-12)
is the address cf an event ccrtrcl klcck regpresenting the event.

ccrpleticn ccde (0,2-12)
value between 0 and 224-1. 1If the ccnpleticn ccde is nct desig-

nated, 0 is assumed.

Secticr 1II: Macro Instructions 171

60.1

60.1

60.2

RETURN

RETURN -~ Return Ccntrcl

The RETURN macrc instruction is used tc return contrcl tc the callirng
prograrx and to sigral ncrmal terrmiraticn cf the returning program. The
return cf ccntrcl is always made ky executing a kranch instruction using
the address in register 14. The RETURN macrc instructicn can ke written
tc restcre a desigrnated range cf registers, prcvide the prcper return
ccde in register 15, and flag the save area used ky the retuxning
prograrn.

The RETUERN macrc instruction is written as follcws:

r T T

| (syrkcll| RETCURN | [(regl[,regZ])][,T][,Pc=nunber] |
|
1

(RC=(15)

regl, reg?2 Dec Dig
is the range cf registers tc ke restcred frcm the save area pointed
tc ty the address in register 13. The registers shculd ke desig-
nated tc cause the lcading cf registers 14, 15, 0 through 12 (in
that crdexr) when used in a INM instructicn. If reg2 is nct desig-
nated, cnly the register designated Ly the regl operand is loaded.
If the crerand is omitted, the contents cf the registers are nct
altered. ©Dc nct ccde regl cr regZz when returning control from a
rrogram interruption exit routine.

T
causes the control program to flag the save area used Ly the
returning gprcgram. A kyte ccrtairing all cnes is placed in the
high-crder kyte of word four cf the save area after the registers
have been lcaded. 1This cperard cannct ke designated when returning
ccntxcl from an exit routine.

RC= Sym, Lec Lig (15)

is the return code to ke passed tc the calling program. The return
cocde shculd have a riximum value cf 4095; it will ke rlaced right-
adjusted in register 15 kefcre return is made. If RC=(15) is
ccded, it indicates that the return ccde has keen previcusly lcaded
into register 15; in this case the ccntents of register 15 are nct
altexred or restored from the save area. (If this cgerand is
oritted, the ccntents cf register 15 are cetermined ky the regl,
reg2 crperands.)

172 Supervisor Macrc Instructicns

61.1

61.2

61.3

61.4

61.5

SAVE

SAVE -- Save Register Contents

The SAVE macro instruction causes the contents of the specified regi-
sters to be stored in the save area at the address contained in register
13. An entry point identifier can optionally be specified. The SAVE
macro instruction should be written only at the entry point of a program
because the code resulting from the macro expansion requires that
register 15 contain the address of the SAVE macro instruction. Do not
use the SAVE macro instruction in a program interruption exit routine.

The SAVE macro instruction is written as follows:

r T T
| [symboll| SAVE | (regll,reg2l),(Tl[,identifier namel
L L L

b e o

regli, reg2 Dec Dig
is the range of registers to be stored in the save area at the
address contained in register 13. The registers should be desig-
nated so they are stored in the order 14, 15, 0 through 12 when
used directly in an STM instruction. The registers are stored in
words U4 through 18 of the save area. If only one register is desi-
gnated, only that register is saved.

specifies that registers 14 and 15 are to be stored in words 4 and
5, respectively, of the save area. If both T and reg2 are desig-
nated and regl is any of registers 14, 15, 0, 1, or 2, all of regi-
sters 14 through the reg2 value are saved.

identifier name
is an identifier to be associated with the SAVE macro instruction.
The name may be up to 70 characters and may be a complex name. If
an asterisk is coded, the identifier is the symbol associated with
the SAVE macro instruction, or, if the name field is blank, the
control section name. If the CSECT instruction name field is
blank, the operand is ignored. Whenever a symbol or an asterisk is
coded, the following macro expansion occurs:

e A count byte, containing the number of characters in the identi-
fier name, is constructed four bytes following the address con-
tained in register 15.

e The character string containing the identifier name is con-

structed, starting at five bytes following the address contained
in register 15.

Section II: Macro Instrﬁctions 173

62.1

SEGLD
SEGLD -- ILoad Overlay Seqment and Continue Processing (MFT)
62.1 When used in an operating system with MFT, the SEGLD macro instruc-

tion results in an effective NOP instruction to assure compatibility
with an operating system with MVT. The SEGLD instruction is written as
follows:

174 Supervisor Macro Instructions

63.1

63.2

SEGLD

SEGLD -- Load Overlay Segment and Continue Processing (MVT)

The SEGLD macro instruction causes the control program to load the
specified segment and any segments in its path that are not part of a
path already in main storage. Control is not passed to the specified
segment, but is returned to the instruction following the SEGLD macro
instruction. Processing is overlapped with the loading of the segment.
Refer to the Linkage Editor and Loader, for details on overlay
operations.

The SEGLD macro instruction cannot be used in an asynchronous exit
routine. The SEGLD macro instruction is written as follows:

r -T T 1
| [symboll| SEGLD | external segment name i
L " 1 1
external segment name Sym

is the name of a control section or an entry point in the required
segment. An exclusive reference is not allowed. The name does not
have to be identified by an EXTRN statement.

Section II: Macro Instructions 175

64.1

64.1

6u4.2

SEGWT

SEGWT —-- Load Overlay Segment and Wait

The SEGWT macro instruction causes the control program to load the
specified segment and any segments in its path that are not part of a
path already in main storage. Control is not passed to the specified
segment; control is not returned to the segment issuing the SEGWT macro
instruction until the requested segment is loaded. Refer to the Linkage
Editor and Ioader, for details on overlay operations. The SEGWT macro
instruction cannot be used in an asynchronous exit routine.

The SEGWT macro instruction is written as follows:

e e ad

r T T
| ([symboll| SEGWT | external segment name
L L L1

external segment name Sym
is the name of a control section or entry point in the required
segment. An exclusive reference is not allowed. The name does not

have to be identified by an EXTRN statement.

176 Supervisor Macro Instructions

65.1

65.2

65.3

65.4

65.5

65.6

65.7

SNAE

SNAP -- LCunp Main Stcrage and Ccntinue (NMFT)

The SNAF macxc instruction causes the ccntrcl rrcgram tc dung scrne cr
all of the main stcrage areas assigned tc the current jok step. Some cr
all cf the ccntrcl precgram fields can alsc ke dunped. The format of the
dump is similar tc the akncrrnal terninaticn dunp skcwn ir the Prcgram-
mer's Guide tc Lekuggirg.

A data set must ke surplied tc ccrntain the cdunp. An open data con-
trcl klcck must ke surpplied for the data set, and nust ccntain the fcl-
lowing orerands:

DSCRG=EFS, RECFN=VRBA,NMACRF=(W) ,ELKSIZE=882,LRECI=125,
and CLNAME=any name kbut SYSARENLC cr SYSULUNME

The standard fcrm cf the SNAP macrc instructicn is written as shown
in the fcrmat descrirtion kelow. The cperand in the shaded area cf the
format descrigticn is used cnly in arn cperating system with NVT; it is
igrored if ccded in an operating system with MFTI. The crerands in the
ncnshaded area can ke ccded with ary ccnfiquraticn cf the operating
syster.

****** L | . 1
(symbcll	SNK2FP	L[CE=dck addressl B=
	[,ID=numkexr] ,SDATA=(ccde fcr ccrtrcl	
		rrcgram klocks)
		[,PDATA=(ccde for rrcklerm prcgram areas)]
		+STCRAGE=(starting adcress, ending address,...)
		(1IST=address of list
[Lo A = J
DCB= A-type, (2-12)

the acdress of the data contrcl klock fcr the data set tc ccntairn

the dung.

iD= Syr, Dec Dig (2-12)

a nurnker ketweer 1 and 255. The runker is printed in the identifi-
caticn heading associated with the dung.

SLATA= .
one tc fcur cf the fcllcwing sets cf characters, written in any
crder and separated ky commas. The characters are used tc reguest
the asscciated ccrtrcl prcgranm infcrmaticn. If the SCAT2 operand
is inccrrectly coded, the control prcgrar assigns the ccde CB.

Code Fields Dunged

ALL All cf the fcllcwirg fields.

NUC A1l of the control program nucleus except the trace
takle.

TRT Trace Takle.

CE Task control klock (TICE), active request klccks (REs),

jck rack area contrcl queue (JPACQ), and main storage
supervisor (NSS) ccntrcl klccks.
Q Igrcred in an cperating system withkout MVT.

PLCATA=
one tc five cf the fcllcwing sets cf characters, written in any
order and separated bty commas. The characters are used to request
the asscciated rroklem prograr informaticn. If the FIAT2R cgerard
is inccrrectly ccded, the ccntrcl rrcgram assigns the code AILIL.

Secticn II: Macrc Instructicns 177

€5.8

65.9

95.10

178

SNAP

Ccde
ALL
ESW
REGS
SA or SRH

JPA cx LPA
or ALIFR

SPLE

STCRAGE=
is one cr ncre pairs cf starting and ending addresses; the areas

defined Ly

Fields Dunged

A1l cf the fcllcwirg fields.

Frcgram Status Word when the SNAP macro instruction was
issued.

Contents of the gereral registers when the SNAP macrc
instruction was issued.

S2 - prcvides linkage infcrmaticn and a kack trace
through save areas. SR is selected if RII is ccded.
SAH - cnly linkage infcrmaticn.

JPA - all main storage assigned tc the jck steg.
(Ciffers in MVT.)

IPA - contents of the resident reenterable lcad mcdule
area. (LCiffers in MVT.)

ALIPA - contents of koth pack areas. RARLLFR is selected
if BIL is ccded.

All wmain storage assigned tc jcb sterg.

(Ciffers in NVT.)

A-type, (2-12)

the starting and ending addresses (inclusive) are dumped

one fullwcrd at a time. If the starting and ending addresses arxe
not fullwcrd nultiples, the addresses are rcunded dcwn or ug,
resrectively, tc a fullword.

The starting and ending addresses must ke in the gpartition within
which the user is orerating. If the addresses are not within the

partiticn,

LIST=

the stcrage area requested is nct durnged.

R-type, (2-12)

the address of a list of starting and ending addresses cf areas tc

ke dunged.

The addresses in the list are treated in the same rann-

ex as the addresses descriked undexr "STICRAGE=." The 1list must

begin cn a
fullwcrd.
address cf

fullwcrd kcundary; each adéress in the list occcupies one
The high-order Lkyte of each word ccntaining the startirng
an area to ke dunmgped must ccntain zeros or that gair

will ke skipred. The high order kit (kit 0) cf the fullwcrd ccn-
taining the last ending address inp the list must ke set to 1.

Ccntrcl is returned te the instruction fcllcwing the SNAP racro

instruction.

When ccntrcl is returned, register 15 ccntains cne cf the

fcllowing return ccdes:

Hex
Ccde

Meaning

00

ou

08

oc

Successful corpletion.

Cata contrxcl klcck was not cpen.

Task contxcl klcck address was rct valid (used cnly with MVT).

Data ccntrcl klcck type was nct ccrrect (CLSORG, RECFM, MACRF,

BLKESIZE,

cx LRECL field).

Supervisor Macrc Instructicns

66.1

 66.2

66.3

66.4

66.5

66.6

66.7

SN2AP

SKAP -- Dumg NMain Stcrage and Continue (NMVT)

The SNAF racrc instructicn causes the ccrntrcl prcgram tc dump some cr
all cf the nain stcrage areas assigned tc a task in the curxrent jck
step. Scre cr all cf the ccntrcl prcgram fields can alsc ke dumped.

The format cf the dunp is similar to the akncrmal terminaticn dunp shcwn
in the publicaticn Prcqgranmer's Guide tc_Lekugging.

A data set must ke surplied tc ccrtain the dungp. An oren data con-
trcl klcck rmust ke supplied for the data set, and must ccntain the fcl-
lowing orerands:

DSCRG=FS, RECFN=VRBR, NACRF= (W) ,ELKSIZF=nnn,LRECL=125,
and LLCNAME=any rame kut SYSABENLC cr SYSULDUNE.

Where the klcck size rrn is either 882 cr 1632 fcr NVT.

The standaxrd fcrm cf the SNAF macrc instructicn is written as follows:

r
| [syrkcll]

CB=dck addressl[,TICB=address] |
,IC=nunker) PSEATA=(ccde fcr control] |

progran klccks) |
[,ELATA=(ccde fcr prcklem prcgram areas)] |
 SICRAGE=(starting address, ernding address,...)] |
[,118T=address cf list |

-

,___"_____
——————

LCE= A-tyre, (2-12)
is the address cf the data ccrtrcl klcck for the data set to con-
tain the dump.

TCE= A-type, (2-12)
srecifies the address of a fullwcrd cn a fullword koundary contain-
ing the address cf the task ccntrcl klcck fcr a task cf the current
jck ster cther than the active task. If critted, or if the full-
wcrd contains zero, the dump is fcr the active task. If a register
is designated, the register can ccntain zerc to indicate the active
task, or can contain the address cf a task ccntxcl klcck fcr a task
other than the active task.

iD= syn, Dec Dig, (2-12)
a nurmker ketween 0 and 255. The nurker is rrinted in the identifi-
caticn heading associated with the dunr. If the numker srecified
is not amcng the numbers 0 tc 255, then it will nct be printed prc-
perly in the identificaticn heading.

SCATA
one tc fcur of the fcllcwing sets cf characters written in any
order and serarated ky cormas. The characters are used to request
the asscciated control program inforration. If the SIATA cgerard
is incocrrectly ccded, the ccntrcl prcgram assigns the code CB.

Ccde Fields Tumped

AILL All of the following fields.

NUC All cf the ccntrcl rrcgram nucleus excert the trace
takle.

TRT Trace tatle.

CB Task ccntrcl klcck (TCR), active request klocks (RBs),

ccntents directory entry (CLE), lcad list elements
(I1Es), extent 1list (XL), data extent klock (DEB), task

Secticn II: MNacro Instructicns 179

66.8

66.8

66.9

66.10

66.11

180

SNAP
ingut/cutgut takle (TIICTI), anc main storage supervisor
(MSS) control bloccks.
Q Queue ccntrcl klccks and queue elements.

EDATA=)
is cne tc five of the following sets cf characters written in any
order ané serarated by ccmmas. The characters are used to request
the asscciated prcoklem gprograr informaticn. If the FLATR crerard
is inccrrectly ccded, the ccrntrcl prcgram assigns the code 2IL.
Ccde Fields Turred
AIL 211 of the following fields.

PSW Prcgran Status wcxd when the SNAF nracrc instructicn was
issued.

REGSE Ccnterts of the general registers when the SNAP macrc
irstructicn was issued.

SA cx SRh SA - provides linkage infcrmaticn and a kack trace
thxrcugh save areas. £A is selected if ALL is coded.
SARH - only linkage inforraticonm.

JEA or LEA JEA - ccntents cf the jck pack area.

or ALLPA LPA - contents cf the link rack area.
ALLIEFR - ccntents cf kcth pack areas, ALLPA is selected
if AIL is coded.

SFLS 211 main stcrage sukrccls (0-127).

STCRAGE= A-tyre, (2-12)
is one cr ncre rairs cf starting and ending addresses; the areas
defined ky the starting and ending addresses (inclusive) are durgped
one fullwcrd at a time. If the starting and ending addresses are
nct fullwcrd nultiples, the addresses are rcunded dcwn or up,
resgectively, tc a fullword.

The starting and ending addresses must ke within the region within
which the user is operating. If the addresses are nct within the
region, the stcrage area requested is nct dunred.

1IsT= R-tyrpe, (2-12)

is the address cf a list of starting and ending addresses cf areas
tc ke dunged. The addresses in the list are treated in the same
manner as the addresses descriked under STORAGE. The list must
begin cn a fullwcrd kcundary; each address in the list cccupies one
fullwcrd. The high-order Lkyte cf the wcrd ccntairing the starting
address cf the area tc ke dumged nust ccntain zercs cr that rpair
will ke skiprped. The high-crder kit (kit 0) cf the fullword con-
taining the last ending address in the list must ke set tc 1.

Contrcl is returmned tc the instxucticn fcllcwing the SNAF macro
instructicn. When ccntrcl is returned, register 15 ccntains cne cf the
fcllowing return ccdes:

Hex
Code Meaning

00 Successful ccnpleticn.

ou Data ccntrcl klock was nct cgen.

08 Task ccntrxol klcck address was not valid.

0C LCata ccntrcl klcck type was nct correct (CSCRG, RECFNM, MACRF,

BIKSIZE, cxr LRECL field).

Supervisor Macrc Instructicns

67.1

67.2

67.3

SNAP - L Form

SNAP -- List Form

The list form of the SNAP macro instruction is used to construct a
control program parameter list. Any number of main storage addreésses
can be specified using the STORAGE operand. Therefore, the number of
starting and ending address pairs in the list form of the SNAP macro
instruction must be equal to the maximum number of addresses specified
in any execute form of the macro instruction, or a DS instruction must
immediately follow the list form to allow for the maximum number of
addresses.

The description of the standard form of the SNAP macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of 1list and
execute forms. The format description below indicates the optional and
required operands in the list form only.

The list form of the SNAP macro instruction is written as follows:

T L] T 1
[symboll	SNAP	[DCB=address][,ID=numberl [, SDATA=(code)]
		[,PDATA=(code)]
1	[,STORAGE=(address,address,...ﬂ ,MF=L I	
		L,LIST=address
L L L 4
address

is any address that may be written in an A-type address constant.
code

is written as indicated in the description of the standard form of

the macro instruction.

number
is any absolute expression valid in the assembler language.

MF=L
indicates the list form of the SNAP macro instruction.

Section II: Macro Instructions 181

68.1

68.1

68.2

68.3

68.4

SNAP - E Form

SNAP -- Execute Form

A remote control program parameter list is referred to and can be
modified by the execute form of the SNAP macro instruction.

If only the DCB, ID, MF, or TCB operands are coded in the execute
form of the macro instruction, the bit settings in the parameter list
corresponding to the SDATA, PDATA, LIST, and STORAGE operands are not
changed. However, if one or more of the SDATA, PDATA, LIST operands are
coded, the bit settings from the previous request are reset, and only
the areas requested in the current macro instruction are dumped.

The description of the standard form of the SNAP macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the execute form only. The operands in the shaded
area of this format description are used only with MVT; they are ignored
if coded with MFT. The operands in the nonshaded area can be coded with
any control program.

The execute form of the SNAP macro instruction is written as follows:

r L) L) 1
(symbol]l	SNAP	[DCB=address][,TCB={ 'se }][,ID=number]
		address
		[,PDATA=codel [,SDATA=codel
		[,STORAGE=(address,address,...)]
		L,LIST=address i
		,MF=(E,{control program list address})
I	(1)	
L L L J
address

is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi-
cated address. The register may be designated symbolically or with
an absolute expression, and is always coded within parentheses.

Isi
is used to specify the task control block of the active task.

number
is any absolute expression that is valid in the assembler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may be designated symbolically
or with an absolute expression, and is always coded within
parentheses.

code

is written as indicated in the description of the standard format
of the macro instruction.

(1)
indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control program
parameter list can be coded as described under "address," or can be
loaded into register 1, in which case MF=(E, (1)) should be coded.

MF=(E,{control program list address})

182 Supervisor Macro Instructions

SN2FP

Note: 2Any values (ccdes cr addresses specified ky the PCATA, LIST,
SDATA, cr STCRRGE operands remain in effect cne cf these crerands
is srecified in the execute fcxr. In this case, all values sgeci-
fied ky thcse orerands in the list fcrm are canceled, and only
those values specified in the execute fcrm rermain in effect.

Secticn IXI: Macro Instructions 183

- 69.1

69.1

69.2

69.3

69.4

69.5

69.6

69.7

184

SPIE

SPIE -- Sgecify Frcgran Interrugticn Exit

The SPIE macrc instructicn is used tc specify tke address of an
interrupticn exit routine and to specify the prcgram interrugticn tyres
that are tc cause the exit rcutine tc ke given ccntrcl. If the rrcgram
interrurticn types specified can ke masked, the corresgonding progran
mask bit in the Prcgram Status Woré is set tc 1.

The effect cf each SPIE racrc irstructicn issued in performance of a

task supersedes the effect of the rrevious SPIE macrc instructicn issued

in performance of the same task. The srecifiec¢ exit routine is given
ccntrol when one of the specified prcgram interrupticns occurs in any
progranr cf the task.

A prograr interrurticr ccntrcl area (EFICR) is created as part of the
expansion cf the SPIE macro instruction. The PICA, shcwr in Figure 64,

contains the exit rcutine address and a ccée indicating the interrugticn

tyres specified in the SFIE macro instructicn. The rrevicus PICA
address is returned in register 1 after executicr cf the SFIE racrc

instructicn; this address can ke used tc restcre the PICA kefore return-
ing ccntrcl. 1If nc SPIE environment exists when the SFIF macrc instruc-

tion is issued, register 1 ccntains zexc when control is returned.

The effect cf the last SPIE macro instructicn issued is canceled ky

issuing a EPIE macrc instructicn with rc crerands. This acticn dces nct

reestaklish the effect cf the previcus SEIE. Tc reestaklish a previcus

SPIE, whethexr cr nct a "cancel™ SFIE has keen issued, an execute fcxm cf

the SPIE macrc instructicn may ke issued srecifying the address of the
arrrcpriate PICA. Ncte that issuing a "cancel®™ SPIE alsc causes the
address of the previcus PICA tc ke returne¢ (see Section I "Frogram
Interrurticn Ccntrcl Area" for other progranming ccnsideraticns).

The standarxd fcrxm cf the SPIE macrc instructicn is written as fcllcws:

- -T T T T T T S T e e ————— e — s -
| (symebcll| SEIE | [interrurticn exit address, (interrupticns)]

b T, A —_— R |
interrupticn exit address ' A-tyre, (2-12)

is the address cf the exit rcutine tc ke civen control after a pro-

gran interrupticn of the type specified in the "interxrugticmns"
operand. :

interrurticns Dec DLig
is cne cxr mcre decimal nurnkexrs, serarated ky commas, indicating the

ccrrespcnding interruption tygpe shown belcw. The interrxupticn
types can be designated in any crder as fcllcws:

¢ Cne cr mcre single numkers, each indicating the ccrresgcnding
Frcgram interrurticn tyrge.

® Cne cr ncre gairs cf decimal numkers, each pair indicating a
range cf ccrresponding interrurticn tyres. The seccnd nurnker
nust be higher than the first. The rair cf numkers must ke

serarated frcm each other ty ccnmas and enclcsed ir an additicn-

al set of rarentheses.

Supervisor Macrc Instructicns

69.8

SPIE

For example, (4,8) indicates interruption types 4 and 8; ((4,8)) indi-

cates interruption types 4 through 8,
types are as follows:

inclusively. The interruption

Number Interruption Type
1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Data
8 Fixed-point overflow (maskable)
9 Fixed-point divide
10 Decimal overflow (maskable)
11 Decimal divide
12 Exponent overflow
13 Exponent underflow (maskable)
14 Significance (maskable)
15 Floating-point divide
Bytes 1 3 2
— T e
r T) | b | |
| 0000 | program | exit routine address | interruption mask |
| | mesk | ! |

Figure 64. Program Interruption Control Area

Section II:

Macro Instructions

185

70.1

70.1

70.2

70.3

SPIE - L Form

SPIE -- List Form

The list form of the SPIE macro instruction is used to construct a
control program parameter list in the form of a program interruption
control area.

The description of the standard form of the SPIE macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the list form only.

The list form of the SPIE macro instruction is written as follows:

r T T R]
| [symboll| SPIE | [interruption exit addressl(, (interruptions)l, MF=L |
L i i J

address
is any address that may be written in an A-type address constant.

interruptions
are one or more decimal digits separated by commas.

MF=1,
indicates the list form of the SPIE macro instruction.

186 Supervisor Macro Instructions

71.1

71.2

71.3

SPIE - E Form

SPIE -- Execute Form

A remcte control prcgram parameter list (rrcgram interrugticn ccntrcl
area) is used in, and can ke mcdified ty, the execute form of the SPIE
racrc instruction. The program interrupticn ccntrcl area can ke
generated ky the list fcrnr cf the SEIE macrc instructicn, cr the address
cf the progran interrurtion ccntrcl area returne¢ in register 1 follow-.
ing a rrevious SPIE macro instruction can ke used. The execute fcrm can
be used tc reestablish a previcusly canceled SPIE ky srecifying that
PICA in the MF orerand. Both the standard and execute fcrns cause the
address of the previcus EICA tc¢ ke returneé in register 1.

The descripticn of the standard fcrm cf the SPIE macrc instruction
provides the exrlaraticn cf the furcticn cf each crerand. The descrig-
ticn cf the standard forn alsc indicates which crerands are totally
optional and which are required in at least cne cf the rair cf list and
execute forms. The fcrmat descripticn kelcw indicates the optional and
required crerands in the execute fcrm cnly. If the address cf a gre-
vious programr interrugticn ccntrcl arez is usecé, only the MF operand
shculd ke cocded.

The execute fcrw cf the SPIE macrc instructicn is written as fcllcws:

-------- b At T ————- Ittt ettt it
[syrbcl]l	SEIE	[intexrurticn exit acdéressl, (interrupticns)]
		,NE=(E,{ccrtrcl Frcgrar list aédress})
		(1)
D S, A e <=4		
address

is any address that is valid in an EX-tyre instructicrn, cr crne cf
general registers 2 thrcugh 1z, previcusly lcaded with the indi-
cated address. The register may lke designated symbclically cxr with
an absclute exrressicn, and is always ccced within rarentheses.

interrugticns
are one cr ncre decimal nurnkers separated ky commas.

MF=(E, ccntrcl prcgram list address)
(1)
indicates the execute form of the macrc instruction using a remote
contrcl rrcgrar parameter list (program irnterrurticn ccntrcl area)d.
The acdress of the ccntrcl prcgram parameter list can ke coded as
descriked under address, or can ke lcaded intc register 1, in which
case NF=(E, (1)) shculd ke ccded.

Secticr II: Nacro Instructions 187

72.1

12.1

72.2

72.3

72.4

72.5

72.6

72.7

72.8

72.9

188

STAE

STRE -- Sgecify Task Akrncrmal Exit

The STAE macrc instructicn enalkles the usexr tc intercept a scheduled
ABENL and tc have ccntrcl returned tc him at a srecified exit xcutimne
address. The STAE racrc instructicrn crerates in kcth prcklem rprogranm
and sugerviscr mcdes.

The STAE macrc instructicn creates a STAE ccntrcl klock (SCR) which
rerresents a STAE environment that remains in effect during the execu-
tion of the rrcgran that issued the STIARE cr until canceled ky a sukse-
quent STAE. Wwhen a RETURN, XCIL, cxr SVC 3 is issued, the system auto-
nmatically cancels the STAE environrent fcr that prcgram, unless XCTII=YES
is coded in the STRE macrc instrxructicn. If XCIL=YES is coded and an
XCTL macrc instructicn is issuved, the STAE envircnment remains in effect
for the rrcgram that receives ccntrcl as a result cf the XCTL macro
instructicn.

When a STAE envircnment is canceled, the last STAE envircnment that
was createé¢ ané nct suksequently cverlayed cr canceled (if any) Lkecores
the current STAE envircnment.

Note that issuirg a ILINK macrc instructicr dces nct cancel the STRE
envircnment and that the user is responsikle fcr canceling the STAE
environment if his prcgram dces nct exit via a RETURN, XCTI, or SVC3.
The user cannct cancel cr overlay a STIRE ccntrcl klcck nct created ty
his own grcgran.

Within the STAE exit routine, the user may perfcrm pre-terwrinaticn
functicns cr diagncse an erxcr. Ugcn corpleticn cf STRE exit rcutine
Frccessing, the usexr can either allcw akrcrrmal terminaticn processing tc
ccntinue fcr the task or request that a STRE retry rcutire ke scheduled
which would circumvent the scheduled REENL. Fcr further explanation of
the facility fcr scheduling a STAE retry rcutine, see the MFT Guide cr
the MVI_Cuigde.

The STAEF exit rcutine cannot ccntain a STARE cr an ATTACH macxc
instructicn. When a STAE retry rcutine is nct tc ke scheduled, the STAE
exit rcutine shculd return with a code of zerc in register 15.

Entry tc a ETAE retry rcutire cancels tke STAE envirornment. If a
STAE retry rcutine causes the task to resume execution, the STAE
environment shculd ke reestaklished frcm within the retry rcutine.
The STAE macrc instructicn is written as fcllcws:

- o e e e o e e = e = ———————— ———— — — o — - - ———— ——— - — -

0 CV
exit address}[,gg][,EAFAH=1ist address]

.
{ |
|

YES QUIESCE)} | |
[,XC'II.={§_C_ }] [,PURGE={HA1T }] |
|

|

[|
|

- 4

NCRNE

——————— e —

exit address . A-type, (2-12)
srecifies the address of a STRE exit rcutine tc ke entered if the
task issuing this nracxc instructicn terminates aknormally. If 0 is
specified, the mcst recent STRE request is carnceled. The address
may be lcaded intc cne c¢f the general registers 2 through 12.

Superviscr Macrc Instructions

72.10

72.11

72.12

72.13

72.14

72.15

STAE

ov
indicates that the parameters passed in this STAE macro instruction
are to overlay the data contained in the previous STAE request. In
the standard form only of the STAE macro instruction, if any of the
parameters XCTL, PURGE, or ASYNCH are not specified, the default
value for the omitted parameter is assigned.

cT
indicates the creation of a new STAE request. If neither OV or CT
is specified, CT is assumed.

PARAM= - A-type, (2-12)
specifies the address of a parameter list containing data to be
used by the STAE exit routine when it is scheduled for execution.
The address may be loaded into one of the general registers 2
through 12.

XCTL=YES
indicates that the STAE macro instruction will not be canceled if
an XCTL macro instruction is issued.

XCTL=NO
indicates that the STAE macro instruction will be canceled if an
XCTL is issued by this program. If neither XCTL=YES or XCTL=NO is
coded, XCTL=NO is assumed.

PURGE=

QUIESCE
indicates that all outstanding requests for input/output (I/0)
operations will be saved when the STAE exit is taken. At the end
of the STAE exit routine, the user can code a retry routine to
handle the outstanding I/0 requests. (See the description of the
STAE macro instruction in the MFT Guide or the MVT Guide for a
description of the STAE retry routine.) If the PURGE operand is
not specified, QUIESCE is assumed. If I/0 cannot be quiesced, then
I/0 is halted (see PURGE=HALT).

HALT
indicates that all outstanding requests for input/output operations
will not be saved when the STAE exit is taken.

NONE
indicates that input/output processing is allowed to continue norm-
ally when the STAE exit is taken.

Notes: If any IBM-supplied access method, except EXCP, is being
used, the PURGE=NONE option is recommended. If this is done, all
control blocks affected by input/output processing may continue to
change during STAE exit routine processing.

If PURGE=NONE is specified and the ABEND was originally scheduled
because of an error in input/output processing, an ABEND recursion
will develop when an input/output interruption occurs, even if the
exit routine is in progress. Thus, it will appear that the exit
routine failed when in reality input/output processing was the
cause of the failure.

Section II: Macro Instructions 189

72.16

STAE
72.16 ASYNCH=

YES
indicates that asynchronous interrupt processing is allowed to

interrupt the processing done by the STAE exit routine. ASYNCH=YES
must be coded if:

e Any supervisor services that require asynchronous interruptions
to complete their normal processing are going to be requested by
the STAE exit routine.

e PURGE=QUIESCE is specified for any access method that requires
asynchronous interruptions to complete normal input/output
processing.

¢ PURGE=NONE is specified and the CHECK macro instruction is
issued in the STAE exit routine for any access method that
requires asynchronous interruptions to complete normal input/
output processing.

Note: If ASYNCH=YES is specified and the ABEND was originally
scheduled because of an error in asynchronous exit handling, an
ABEND recursion will develop when an asynchronous interruption
occurs. Thus, it will appear that the exit routine failed when in
reality asynchronous exit handling was the cause of the failure.

NO
indicates that asynchronous interrupt processing is not allowed to
interrupt the processing done by the STAE exit routine. If the
ASYNCH operand is not specified, NO is assumed.

72.17 ISAM Notes: If ISAM is being used and PURGE=HALT is specified or PURGE=
QUIESCE is specified but I/0 is not restored:

e Only the input/output event on which the purge is done will be post-
ed. Subsequent event control blocks (ECBs) will not be posted.

e The ISAM Check routine will treat purged I/0 as normal I/0.

e Part of the data set may be destroyed if the data set is being
updated or added to when the failure occurred.

72.18 Control is returned to the instruction following the STAE macro
instruction. When control is returned, register 15 contains one of the
following return codes:

Hex
Code Meaning
00 Indicates successful completion of creating, overlaying, or can-
celing a STAE request.
o4 Indicates that STAE was unable to obtain storage for the STAE
request.
08 Indicates that the user was attempting to cancel or overlay a
nonexistent STAE request, or that the user issued an STAE in his
STAE exit routine.
ocC Indicates that the exit routine or parameter list address was
invalid.
10 Indicates that the user was attempting to cancel or overlay a

STAE request of another user.

190 Supervisor Macro Instructions

STAE - L Form

STAE -- List Form

73.1 The list form of the STAE macro instruction is used to construct a
control program parameter list.

73.2 The description of the standard form of the STAE macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the list form only.

73.3 The 1list form of the STAE macro instruction is written as follows:
r T T 1
[symboll	STAE	[exit address]([,PARAM=1list address]
		QUIESCE) {YES
I		
l	NONE	
		+MF=L
L L L —_— 1

address
is any address that may be written in an A-type address constant.

MF=L
indicates the list form of the STAE macro instruction.

Section II: Macro Instructions 191

4.1

74.1

74.2

74.3

STAE - E Form

STAE -- Execute Form

A remote control program parameter list is used in, and can be modi-
fied by, the execute form of the STAE macro instruction. The control
program parameter list can be generated by the list form of the STAE
macro instruction. If the user desires to dynamically change the con-
tents of the remote STAE parameter list, he may do so by coding a new
exit address and/or a new parameter list address. If exit address or
PARAM= is coded, only the associated field in the remote STAE parameter
list will be changed. The other field will remain as it was before the
current STAE request was made.

The description of the standard form of the STAE macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the execute form only.

The execute form of the STAE macro instruction is written as follows:

r T T 1
| | | [0 $ OV I
| [symboll|{ STAE | lexit address]|,CT |[,PARAM=1ist address] |
[I [[
| | | YES |
| | | |,XCTL= I
		NO	
		QUIESCE YES	
			PURGE=q HALT « ASYNCH=
		NONE NO]	
I	I		
i] ,MF=(E,{remote list address})		
		(1)	
L L L J
address

is any address that is wvalid in an RX-type instruction, or one of
the general registers 2 through 12, previously loaded with the

indicated address. The register can be designated symbolically or
as an absolute expression, and is always coded within parentheses.

ov
indicates that the contents of the STAE parameter list will overlay
the existing data in the current STAE request.

CT
indicates that a new STAE request will be created.

MF=(E,{remote list address})
(1)
indicates the execute form of the STAE macro instruction using a
remote parameter list. The address of the remote parameter list
can be loaded into register 1, in which case MF=(E, (1)) should be
coded.

192 Supervisor Macro Instructions

75.1

75.2

75.3

75.4

STATICUS

STATUS -- change Subtask Status (NVTI crly)

The STATUS nmacrc instruction lets the prcklem prcgramner change the

dispatchability status ¢f cne cr all cf his prcgram's suktasks. Cne use

cf the STATUS macrc instruction is to restart suktasks that were storred
when an attenticn exit rcutine was entered.

The STATUS macrc instructicr is used cnly in an NVT environment. It
is igncred when it is issued in MFT.

The STATUS macrc irstructicn is written as fcllcwus:

r
I[symbol]ISTATUS|{START}[,TCE=suttask tck acdress] |

| | | \sToP
L —_———d e e e e e e e e e e e e e o e e ¥

START
indicates that the STOP/START count in the task ccntrcl klcck sge-
cified in the TICB crerand will ke decremented ky 1. If the TCE
cperand is not coded, the STOF/START ccunt is decremerted ky cne in
all the subtask task ccntrcl klccks cf the criginating task. Wher
the STCE/START count in a TCE reaches 0, the nondispatchakility
status, estaklished by a rrevious STATUS macrc instructicn, is
remcved.

STCP
indicates that the STOP/START ccurt in the task control klock sge-
cifie¢ in the TCE operand will ke increrernted ky 1. If the ICB
orerand is nct ccded, the STICE/START ccunt is irncremented ky 1 in
the task contrcl klccks fcr all tre suktasks of the originating
task. Each task rerresented ky a TCE that has a ncrzexc STOP/START
count is nondisgatchakle.

TCB= RX-tyre, (2-12)
specifies the address cf a fullwcrd cn a fullwcrd kcundary ccrntain-
ing the address of the task ccntrcl klcck that is to have its STICE/
START count adjusted. If a register is desigrated, the register
must ccntain the address cf the task control klock. If this
crerand is not specified, the STCE/START ccunt is adjusted in the
task control klccks fcr all the suktasks of tke originating task.

Contrcl is returned to the instruction fcllcwing the STATUS macrc
instructicn. Wwhen ccntrcl is returned, register 15 contains cne cf the
fcllewing return ccdes:

BEex
Code MNeaning
00 Successful
o4 The specified task ccntrol klock dces rct

relong tc a suktask cf the criginating task.
The STATUS macro instructicn was igncred.

Secticn II: Macro Instructions 193

76.1

76.1

STINMER

STIMER —- Set Interval Timer (MFTI withcut Intexval Timer Option)

When used in an cperating systen withcut the interval timer option,
the STIMER macro instruction results in an effective NCP instructicn.
This assures ccrratikility with an cperating system that does include
the timer option. The STIMER macrc instructicn is written as follows:

194 Supervisor Nacrc Instructicns

77.1

77.2

77.3

77.4

77.5

77.6

STINER

STIMER ~- Set Interval Timer (NMFT With Interval Timer Cpticn)

The STINER racro instruction catuses the ccntrcl prcgrar tc set a prc-
grarnmed timer tc a specified time interval (less tkan 24 hours) or to an
interval that will expire at a specified time cf day. The interval is
decremented ccntinucusly. An cpticnal timer ccrmpleticr rcutine is given
ccntrcl after an irnterrupticn caused ky the interval reaching zero; if
nc timer ccrnpletion routine is specified, nc irdicaticr that the time
interval has ccrpleted is prcvided. Orly cne time interval is in effect
at any one time. A second STINER macrc instructicn issued kefcre the
first time interval has keen ccrnpletely decremented overrides the first
interval and exit routine.)

The STIMER nmacrc instructicn is written as shcwn in the fcllcwing
fcrmat descrirticn. The operands in the shaded area of the format
descrirticn functicn in a different ranner wher used with MET than when
used with MVT. 2 ccrrariscn cf the different functicns should ke wrade
if the macrc instructicn is coded for vpwaxrd ccmpatikility. The
crerands in the nonshaded area can ke used with any ccrfiquraticn cf the
operating systen.

r T T 1
| [syorkcll|] STIMER | |
I I I |
I		
	I	
		(,CINTVIL=address
		} (BINTVL=address i
) ,TUINTVI=address
		{ ,/2CC=address
Ao N e 4
REAL

is written as shcwn. It specifies that thLe timer interval is to ke
decremented continuocusly, and if the TOL crerand is coded, the
interval will expire at the indicated time cf day.

TASK
is written as shown. It specifies that the timer irnterval is tc ke
decremented crly when the asscciated task is active.

WAIT
is written as shcwn. It specifies that tlke time intexval is tc ke
decremented ccntinuously, and that the asscciated task is to ke
placed in the wait condition tntil the intexval is ccrpleted.

timer completicn exit address RX~-tyre, (0,2-12)
is the address of the timer ccmpleticn exit rcutine tc ke scheduled
to ke given ccntrcl after ccnpleticn ¢f the specified time intexv-
al. The exit rcutine is given contrcl by means of an interrugticn
of the task that was active when the STIMER macrc instructicn was
issued; the rcutine must ke ir main stcrage when it is required.
The ccntents cf the registers when the exit rcutine is given ccn-
trol are as fcllcws:

Register Contents

0 -1 Contrcl program informaticm.

2 - 12 Ungredictakle.
13 Address of a contrcl prcgram - prcvided save area.
14 Return address (tc the ccntrcl rrcgram).
15 Address of the exit routine.

Secticn II: Macrc Instructicns 195

77.17

STIMER

The exit rcutine is responsikle fcr saving and restcring registers.

77.7 CINTVL= RX-type, (1-12)
is the acdress in main storage of a dcuklewcrd cn a dcukleword
bcundary containing the time intexrval. The time interval is pre-
senteé as unracked decimal digits cf the fcrm:

BHEMNSSth, where:

BE-is hcurs (24-hour clock);
MM is minutes; '
€S is seccnds;
t is tenths cf seccnds; and
h is hundredths of a second.

77.8 BINTVL= RX-type, (1-12)
is the address in main stcrage of a fullwcrd cn a fullword koundary
centaining the time interxrval. The time interval is presented as an
unsigned 32-kit kinary numker; the lcw-crcéer kit has a value of
0.01 seccnd.

77.9 TUINTIVL= - RX-type, (1-12)
is the addéress of a fullword cn a fullwcrd kcundary containing the
time interxval. The time interval is presented as an unsigned 32-
kit tinary nunker; the lcw-crder kit has a value of one timer unit
(26.041€6 wicroseconds).

77.10 TOD= RX-type, (1-12)
is the address cf a doukleword on a dcuklewcrd kcundary containing
the time cf day at which the interval is tc ke ccnpleted. The time
cf day is presented as unracked decimal digits cf the form
HEMMSSth. If TASK is specified, the time cf day is intergreted as
though the LCINTVI cgerand had keer specified.

Nctes: The time interval specified ky a STIMER macxrc instructicn
has nc relation to the time interval sprecified in an EXEC
statenernt.

If issued ky a timer completicn exit xcutine, a STIMER
racrxc instructicn acts as a NCE instruction.

The value srecified must te a valid pcsitive integer
(non-zero).

196 Supervisor Nacre Instructions i -

78.1

78.2

78.3

78.4

78.5

78.6

78.7

STINER

STIMER -- Set Interval Timer (NVT)

The STIMER macro instruction catses the ccntrcl prcgram tc set a prc-
grammed timer tc a srecified time interval (less thkan 24 hours) or tc an
interval that will expire at a specified time c¢f day. The time interval
is asscciated with the task that was active when tlke STIMER macxc
instruction was issued. Only cne time interval is associated with a
task at any one time; therefore, a seccnd STIMNER macrc irstructicn
issued for the sare task cverrides the first time interval.

The time interval is decremented either ccntinucusly cr cnly when the
associated task is active. The STIMER macrc instructicn can ke used tc
request the control gprogram tc rlace the task in the wait condition
until the time interval has keen ccmpletely decremented, ard can sgpecify
a timer conpleticn exit rcutine tc ke given control when the interval
reaches zero.

The STIMER macrc instructicn is written as fcllcws:

I I | - h ettt 1
(symbcl]l	STIMER		RERL [,tinexr ccrpleticn exit address]
		{ TASK [,timrer corpleticn exit address]	
			wRIT
		_	
		(,CINTVL=address	
I) ,BINTVI=address		
) ,TUINTVL=address	
		{ ,ICD=address	
[L 1 e —————— d
REAL
is written as shown. It specifies that the time intexrval is tc ke
decremented ccntirucusly.
TASK
is written as shown. It specifies that the time intexval is tc ke
decrenented crly when the asscciated task is active.
WAIT
is written as shcwrn. It specifies that tke time interval is tc ke
decrerented ccntinuocusly, and that the asscciated task is to ke
placed in the wait condition until the interval is ccrgpleted.
timer completicn exit address RX-tyre, (0,2-12)

is the address of the timer ccrmpleticn exit rcutire tc ke scheduled
to be given ccntrcl after ccnpleticn cf the specified time interv-
al. If this crerand is oritted, nc indicaticn cf the completion cf
the tire interval is provided. Thke exit rcutine has the same dis-
patching gricrity as the active task, and is given control when it
is the highest priority ready task in the system; the rcutire must
be in main stcrage when it is requireé. The contents of the regis-
ters when the exit routine is given ccntrcl are as fcllcws:

Register Ccntents

0 -1 Ccrtrcl prcgram infcrmaticr.

2 - 12 Ungredictakle.
13 Address cf a ccntrcl prcgram - prcocvided save area.
14 Return address (to the ccntrcl rrcgram).
15 Address cf the exit rcutine.

The exit routine is responsible for saving and restcring registers.

Secticn II: Macxc Imnstructicms 197

78.8

78.8

78.9

78.10

78.11

198

STIMER

CINTVL= RX-tyre, (1-12)

is the address in main stcrage cf a dcuklewcrd cn a doukleword
kcundary containing the time interval. The time intexval is fpre-
sented as ungacked decimal digits cf the fcrm:

BHMMESth, where:

BE is hcuxs (24-hcuxr clcck)
MM is minutes

SE is seccnds

t is tenths of a second

h is hundredths cf a seccné

BINTVI= R¥-tyre, (1-12)

is the address in main stcrage cf a fullwcré cn a fullwcrd kcundary
ccntaining the time interval. The time interval is presented as an
unsigned 32-bit kinary nurmker; the lcw-crder kit has a value cf
0.01 seccrnd.

TUINTVI= RX-tyge, (1-12)

ICL=

is the address cf a fullwcrd cn a fullwcrd kcundaxry ccntaining the
time interval. The time interval is rresented as an unsigned 32-

bit binary numker; the low-crder kit has a value cf cne timer unit
(26.04166 micrcseccnds).

RX-tyge, (1-12)
is the address cf a dcuklewcrd cn a dcuklewcrd koundary ccntaining
the time cf day at which the interval is tc ke ccrxpleted. The tine
of day is rresented as unracked decimal digits cf the fcrm
HHMMSSth. If TASK is sgpecified, the time cf day is interpreted as
thcugh the TINIVL orerand had been specified.

Notes: The time interval sgecified ky a STINER macrc instructiorn
has nc relaticn tc the tine intexval specified in an EXEC
staterent.

If issued ky a timer ccrmpleticn exit rcutine, a STIMER
wmacrc instruction will ke hcncred. BHBcwever, the STIMER
issued frcm the exit rcutine shculd nct srecify that same
exit routine. If it dces srecify the same exit routine, an
infinite loop may occur.

The value srecified must ke a valid pcsitive integer
(ncn-zerc).

Supervisor Macrc Instructicns

79.1

79.2

79.3

TIME

TIME -- Provide Date (MFT Without Timer Option)

The TIME macro instruction causes the control program to return the
date in register 1, as packed decimal digits of the form 00 YY DD DF,
where:

YY is the last two digits of the year
DDD is the day of the year
F is a sign character that allows the date to be unpacked and
printed directly

The accuracy of the date information depends upon the accuracy of the
corresponding information entered by the operator.

The TIME macro instruction is written as shown in the format descrip-
tion below. The operands in the shaded area of the format description
are used only in an operating system that includes the timer option;
they are ignored if coded in an operating system that does not include
the timer option.

[symboll TIME

e

r
|
I
I
I

L

[o e o e

Section II: Macro Instructions 199

80.1

80.1

80.2

80.3

80.4

80.5

80.6

80.7

80.8

TIME

TIME

-- Provide Time and Date (MFT With Timer Option, MVT)

The TIME macro insturction causes the control program to return the

date

is returned in register 0.

in register 1. For the DEC, BIN, and TU operands, the time of day
For the MIC,address operand, the time of day

is returned in the specified address, and register 0 is set to zero.
The time of day and date are only as accurate as the corresponding
information entered by the operator.

DATE

TIME

the date is returned in register 1 as packed decimal digits of the
form 00 YY DD DF, where:

YY is the last two digits of the year
DDD is the day of the year
F is a sign character that allows the data to be unpacked and
printed

is the time of day, based on a twenty-four-hour clock, returned in
the form designated by the operand shown below. The operand can be
omitted, in which case DEC is assumed.

The TIME macro instruction is written as follows:

[o —— .

[symboll

TIME DEC
BIN
TU

MIC,address

e e e o o
e e e e e o
PR ——

BIN

TU

MIC

is written as shown. Time of day is returned in register 0 as
packed decimal digits of the form:

HHMMSSth, where:

HH is hours (24 hour clock);
MM is minutes;

SS is seconds:

t is tenths of seconds; and
h is hundredths of seconds.

is written as shown. Time of day is returned in register 0 as an
unsigned 32-bit binary number. The least significant bit is equi-
valent to one hundredth of a second.

is written as shown. Time of day is returned in register 0 as an
unsigned 32-bit binary number. The least significant bit is equi-
valent to 26.04166 microseconds (one timer unit).

is written as shown.

address RX-type, (0,2-12)

is the address of an 8-byte area in storage where the time of day
is returned as an unsigned binary number with bit 51 equivalent to
one microsecond. The MIC,address operand is used only in an MFT or
MVT system that has been generated for the IBM System/370.

200 Supervisor Macro Instructions

TIME

80.9 If the MIC,address operand is specified, register 15 will contain one
of the following return codes when control is returned to the user:

Hex
Code Meaning

00 Successful.

o4 Unsuccessful. The specified address is not valid;

the date is in register 1, register 0 is zero.

Section II: Macro Instructions 201

81.1

TTIMER

TTIMER -- Test Interval Timer (MFT Without Interval Timer Option)

81.1 When used in an operating system without the interval timer option,
the TTIMER macro instruction results in an effective NOP instruction.
This assures compatibility with an operating system that does include
the timer option. The TTIMER macro instruction is written as follows:

202 Supervisor Macro Instructions

82.1

82.2

TTIMER

TTIMER -- Test Interval Timer (MFT With Interval Timer Option, MVT)

The TTIMER macro instruction causes the control program to return in
register 0 the amount of time remaining in a timer interval previously
set by a STIMER macro instruction. The time remaining is returned as an
unsigned 32-bit binary number specifying the numker of timer units (26
micro-second units) remaining in the interval. If a time interval has
not been set, register 0 contains a zero. The TTIMER macro instruction
can also be used to cancel the rermaining time interval.

The TTIMER macro instruction is written as follows:

-T- i - ===

r T
| (symboll| TTIMER | [CANCEL] |
L 4 L

______ ——— - |

CANCEL ‘

is written as shown. It indicates that the remaining time interval
and exit routine, if any, are to ke cancelled. If this operand is

not designated, the unexpired portion of the time interval remains

in effect.

Section II: Macro Instructions 203

83.1

83.1

83.2

83.3

WAIT

WAIT -- Wait for One or More Events

The WAIT macro instruction informs the control program that perfor-
mance of the active task cannot continue until one or more specific
events, each represented by a different event control block, have
occurred. Bit 0 of each event control klock must ke set to zero before
the event control klock is used; the control program takes the follcwing
action:

s For each event that has already occurred (each event control block
already posted), one is subtracted from the number of events.

e If the number of events is zerc ky the time the last event control
block is checked, control is returned to the instruction following
the WAIT macro instruction.

e If the numkex of events is not zero by the time the last event con-
trol block is checked, control is not returned to the issuing prc-
gram until sufficient event ccntrol kiccks are posted to bring the
number to zero. Control is then returned to the instruction follow-
ing the WAIT macro instruction.

A full description of the event control block is presented in the
publication IBM System,360 Orerating System: System Control Blocks.

The WAIT macro instruction is written as follows:

r T -
| [symboll| WAIT | [number of events,]{ECB=address } |

| | | ECBLIST=address
L L N - —— ———d

number of events . Sym, Dec Dig, (0,2-12)
maximum is 255. Zero is an effective NOP instruction; one is
assumed if the operand is omitted. The numker of events must not
exceed the number of event control blocks.

ECB= RX-type, (1-12)
is the address of the event ccntrol klock representing the single
event that must occur before processing can continue. Valid only
if the number of events is one or is omitted.

ECBLIST= RX-type, (1-12)
is the address of a main storage area containing one cr more ccnse-
cutive fullwords on a fullword boundary. Each fullword contains
the address of an event control block; the high-order bit in the
last word must be set to one to indicate the end of the list. The
numker of event control blocks must be equal to or more than the
specified number of events.

Note: If the program issuing the WAIT has a protection key other than
zero, the ECB specified must be in main storage that has the same pro-
tection key, except for the communications ECB.

204 Supervisor Macro Instructions

WAITR

WAITR -- Wait for One or More Events

84.1 The WAITR macro instruction is coded and is executed in exactly the
same manner as the WAIT macro instruction..

Section II: Macro Instructions 205

85.1

WTL

WTL -- Write to Log

85.1 The WTL macro instruction causes a message to be written to the sys-
tem log. The message can include any character that can be used in a
character (C)-type DC statement, and is assembled as a variable-length
record.

85.2 The standard form of the WTL macro instruction is written as follows:

r T L)
| [symboll| WTL | *message’
L L i

s e el

message .
is the message to be written to the system log. The message must
be enclosed in apostrophes, which will not appear in the log. The
message is limited to 126 characters.

206 Supervisor Macro Instructions

86.1

86.2

WIL - L Form

WTL -- List Form

The list form of the WTL macro instruction is used to construct a
control program parameter list. The message operand must be provided in
the list form of the macro instruction. The description of the standard
form of the macro instruction provides the requirements for writing the

message. .

The list form of the WTL macro instruction is written as follows:

b e ol

r T)
| (symboll| WTL | 'message' ,MF=L
L L 1

message :
is any character string valid in a character (C)-type DC

instruction.

MF=1,
indicates the list form of the WTL macro instruction.

Y

P o .
Section II: Macro Instructions 207

87.1

WIL - E Form

WTL -- Execute Form

87.1 A remote control program parameter list is used in the execute form
of the WTL macro instruction. The parameter list can be generated by
the list form of the WTL macro instruction. The message cannot be modi-
fied in the execute form of the macro instruction.

87.2 The execute form of the WTL macro instruction is written as follows:
r T T N]
| [symboll| WTL | MF=(E,{control program list address}) |
1 1 1 ® ,'

ME=(E,{control program list address})
1)

indicates the execute form of the macro instruction using a remote

control program parameter list. The address of the control program
parameter list can be loaded into register 1, in which case MF=(E, (
1)) should be coded. If the address is not loaded into register 1,
it can be coded as any address that is valid in an RX-type instruc-
tion, or one of the general registers 2-12, previously loaded with

the address. A register can be designated symbolically or with an

absolute expression, and is always coded within parentheses.

208 Supervisor Macro Instructions

88.1

88.2

88.3

88.4

88.5

WTO

WTO -- Write to Operator (Without Multiple Console Support)

The WIO macro instruction causes a message to be written to the
operator's console and/or the system message class data set, depending
on the routing and descriptor codes specified.

The standard form of the WTO macro instruction is written as shown
below. The operands in the shaded area of the format description are
used in operating systems that include the Multiple Console Support
(MCS) option; they are ignored if coded in an operating system that does
not include the MCS option, except for routing code 11 which designates
a Write-to-Programmer request (WTP) and descriptor codes 1 and 2.

If a WTO macro instruction is coded with a routing code of 11 in an
operating system that does not include the MCS option, this message will
go to the system message class data set and will not go to the opera-
tor's console. If you want the message to also appear on the operator's
console, code the appropriate routing code (as described in Appendix A)
in addition to routing code 11. Figure 65 illustrates the type of requ-
est resulting from routing and descriptor code requests. Messages that
are prefixed by an asterisk indicate a need for operator action. Requ-
est types in parentheses result when WTP is not functional.

r LE L) 1
| Routing | Descriptor | |
{ Code | Code | Type of Request |
L iR 1 4
L] 1) T a
| 11 | None | WITP with no asterisk (WTO with no asterisk) |
F + ¢ 4
| 11 | 1 or 2 | WTP with no asterisk (WTO with asterisk) i
L 4 4]
r T T ol
| 11, other | None | WTP and WTO with no asterisk (WTO with no |
| | | asterisk) |
b $ ¢ , -~ , —
| 11, other | 1 or 2 | WTP with no asterisk and WTO with asterisk |
| | | (WPO with asterisk) |
b + ¢ ‘ 1
| None | 1or 2 | WTO with asterisk |-
L 4 4 . 4
B T) 4
| None § None | WTO with no asterisk N
L L L J

Figure 65. Routing/descriptor code combinations and resulting actions

Note: The multiple line form of the WTO macro instruction cannot be
used to write messages to the system message class data set (Write-to-
Programmer messages) .

The operands in the nonshaded area can be coded with any configura-
tion of the operating system.

-r

{'message'
] .

[symboll WTO

[o — c— capen "
b oo g e s 0]

o e e e e o

L

message
is the message to be written to the operator's console. The mes-
sage must be enclosed in apostrophes that will not appear on the

Section II: Macro Instructions 209

88.6

WTO

console. It can include any character that can be used in a
character (C-type) DC instruction, except the New Line control
character (punch combination 11-9-5). The maximum message length
is 124 characters (bytes) in a system with MVT, and 120 characters
in a system with MFT. The message is assembled as a variable-
length record.

88.6 (*text'[,line typel)
is used to write a multiple-line message to the operator. The mes-
sage may be up to ten lines long (if more than ten lines are passed
by a program, the system will truncate the message at the end of
the tenth line). This limit does not include the control line
(message IEE932I).

88.7 text

is one line of the multiple-line message to be passed to the opera-
tor. A line consists of a character string enclosed in apostrophes
(the apostrophes will not appear on the operator's console). Any
character valid in a C-type DC instruction may be coded. The maxi-
mum number of characters depends on which line type is specified
and which version of the operatlng system (MFT or MVT) is used (see
Figure 66).

88.8 line type
is an alphabetic indicator defining the type of information con-
tained in the 'text' field of each line of the message:

C .
indicates that the 'text' parameter is the text to be contained
in the control line of the message. The control line normally
contains a message title. C may only be coded for the first line
of a multiple-line message. If this parameter is omitted and
descriptor code 9 is coded, the system will generate a control
line (message IEE932I) containing only a message identification
number.

indicates that the "text' parameter is a label line. Label lines
contain message heading information. If coded, label lines must
either immediately follow the control line or be the first line
of the multiple-line message if there is no control line. Only 2
label lines may be coded per message.

indicates that the 'text' parameter contains the information to
_be conveyed to the operator by the multiple-line message.

DE ’ ,
indicates that the 'text' parameter contains the last line of
information to be passed to the operator.

E
indicates that the previous line of text was the last line of
text to be passed to the operator. The 'text' parameter, if any,
coded with a line type of E is ignored.

210 Supervisor Macro Instructions

89.1

89.2

89.3

89.4

89.5

WTO -~ Write to Operator (With Multiple Console Support)

The WT'O macro instruction causes a message to be written to one or
more operator consoles.

The standard form of the WTO macro instruction is written as follows:

T L T)
		{'message' }
		W('text'({,1line typel),...
(symboll	WTO	[,ROUTCDE= (numberl[,numberl,...)]
		[,DESC=(number{,numberl,...)]
L 1 L J
message

is the message to be written to one or more operator consoles. The
message must be enclosed in apostrophes that will not appear on the
console. It can include any character that can be used in a
character (C-type) DC instruction, except the New Line control
character (punch combination 11-9-5). The maximum message length
is 124 characters (bytes) in a system with MVT, and 120 characters
in a system with MFT. The message is assembled as a variable-
length record.

Note: All WTO messages with a descriptor code of 1 or 2 are action mes-
sages. An asterisk is printed before the first character of an action
message to indicate a need for operator action, but this does not reduce
the maximum length of an action message.

("text'[,line typel)
is used to write a multiple-line message to the operator. The mes-
sage may be up to ten lines long (if more than ten lines are passed
by a program, the system will truncate the message at the end of

the tenth line). This limit does not include the control line
(message IEE932I).

text
is one line of the multiple-line message to be passed to the opera-
tor. A line consists of a character string enclosed in apostrophes
(the apostrophes will not appear on the operator's console). Any
character valid in a C-type DC instruction may be coded. The maxi-
mum number of characters depends on which line type is specified

and which version of the operating system (MFT or MVT) is used (see
Figure 66).

line type
is an alphabetic indicator defining the type of information con-
tained in the ‘'text' field of each line of the message:

C
indicates that the 'text' parameter is the text to be contained
in the control line of the message. The control line normally
contains a message title. C may only be coded for the first line
of a multiple-line message. If this parameter is omitted and
descriptor code 9 is coded, the system will generate a control
line (message IEE932I) containing only a message identification
number. The control line remains static during framing opera-
tions on a display console (provided that the message is dis-
played in an out-of-line display area).

indicates that the 'text' parameter is a label line. ILabel lines
contain message heading information; they remain static during

Section II: Macro Instructions 211

89.6

89.6

89.7

89.8

WTO

framing operations on a display console (provided that the mes-
sage is displayed in an out-of-line display area). Label lines
are optional. If coded, lines must either immediately follow the
control line or be the first line of the multiple-line message if
there is no control line. Only 2 label lines may be coded per
message.

indicates that the 'text' parameter contains the information to
be conveyed to the operator by the multiple-line message. During
framing operations on a display console, the data lines are
paged.

DE
indicates that the 'text' parameter contains the last line of
information to be passed to the operator.

E
indicates that the previous line of text was the last line of
text to be passed to the operator. The 'text' parameter, if any,
coded with a line type of E is ignored.

ROUTCDE= Dec Dig
specifies the routing codes to be assigned to the message. Number
must be a routing code from 1 through 16. Routing codes are
defined in Appendix A. If the ROUTCDE operand is omitted but the
DESC is specified, routing code 2 is assigned.

DESC= Dec Dig
specifies the message descriptor code or codes to be assigned to
the message. Number must be a descriptor code from 1 through 16.
Descriptor codes are defined in Appendix A. If the DESC operand is
omitted, no description code is assigned.

If both the ROUTCDE and DESC parameters are omitted, the routing code
specified in the OLDWTOR operand of the system generation SCHEDULR macro
instruction is assigned. If the OLDWTOR operand is omitted, no routing
code 2 is assigned.

When control is returned, general register 1 contains the identifica-
tion number (24 bits and right-justified) assigned to the message.

Note: The two operands available to the system programmer are MSGTYP
and MCSFLAG. They are discussed in Appendix A.

r T T L]
| Line Type | MFT | MVT |
L + - 4 i
LB T T A
C	31 characters	35 characters
L	71 characters	71 characters
i		
D	71 characters	71 characters
	I	
DE	71 characters	71 characters
t o + !		
Note: L, D, and DE lines displayed on a 2250 display console will be		
truncated to 70 characters.		

L

-4

Figure 66. Maximum ‘'text' field characters in a multiple-Line WTO
; message

212 Supervisor Macro Instructions

90.1

90.2

WTO - L Form

WTO -- List Form

The list form of the WTO macro instruction is used to construct a
control program parameter list. The message operand wust be provided in
the list form of the macro instruction. The description of the standard
form of the macro instruction provides the requirements for writing the
message.

The format description below indicates the opticnal and regquired
operands for the list form. The orerands in the shaded area of the for-
mat description are used with MFT and MVT when those systems include the
Multiple Console Support (MCS) option; they are ignored if ccded withocut
MCS, except routing code 11 in the ROUTCLE orerand which designates a
Write-to-Programmer request and descriptor codes 1 and 2. (See the
standard form of the WTO macro instruction without MCS for a description
of this exception.)

e - e —————— 1
{('text'[,line tyrel),
L] 1]

[symboll WTO

————n
b — e ——
————

message
is a character string valid in a character (C-type) LC instruction.

'text')
is a character string valid in a C-type DC instruction.

line type
is an alphaketic symbol indicating the type of information con-
tained in the ‘text' parameter.

ROUTCDE=
is one or more decimal digits in the range 1 through 16.

DESC=
is one or more decimal digits in the range 1 through 16.

MF=L .
indicates the list form of the WTC macro instructiocn.

Note: Two additional operands availakle to the system programmer
(MSGTYP and MCSFLAG) are discussed in Appendix A.

Section II: Macro Instructicns 213

91.1

91.1

91.2

WTO - E Form

WTO -- Execute Form

A remote control program parameter list is used in the execute form
of the WIO macro instruction. The parameter list can be generated ky
the list form of the WTO macro instruction. The message cannot be modi-
fied in the execute form of the macro instruction.

The execute form of the WTO macro instruction is written as follows:

T
[symboll| WTO MF=(E,{control program list address})

L

(1)

= — —

S ——
T ——

MF(E,{control progran list address\)
(1)

indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control prcgram
parameter list can be locaded into registexr 1, in which case MF=(E, (
1)) should ke coded. If the address is not loaded into register 1,
it can be coded as any address that is valid in an RX-type instruc-
tion, or one of the general registers 2-12, previously locaded with
the address. A register can ke designated symbolically or with an
absolute expression, and is always coded within parentheses.

Note: The remote contrcl program rarameter list specified must be
aligned on a halfword boundary. (The 1list form of the WTO macro
instruction provides this alignment.)

214 Supervisor Macro Instructions

92.1

92.2

92.3

92.4

92.5

92.6

92.7

WICR

WTOR -- Write to Operator With Reprly (Withcut Multiple Console Surpcrt)

The WICR macro instruction causes a message requiring a reply to ke
written to the operator's console, and prcvides the information required
by the control program to return the reply to the issuing program. The
program issuing the WTOR should ensure that an acceptable rerly is
received.

The standard form of the WTOR macro instruction is written as shcwn
below. The operands in the shaded area of the format description are
used in an orerating system that includes the Multiple Ccnsole Support
(MCS) option; they are ignored if coded in an operating system that does
not include the Multiple Console Support ortion, except for routing code
11, which designates a Write-tc-Prcgrammer request. If a WTOR message
is coded with a routing code of 11 in an operating system that does not
include the MCS option, the WTO pocrtion of the message will go tc both
the system message class data set and the operator's console. The
operands in the nonshaded area can be coded with any configuration of
the operating system.

'message’,reply address,length of reply
b ! S y ¥

message
is the message to be written to the operator's conscle. The mes-
sage must be enclosed in apostrorhes, which will not appear on the
console. It can include any character that can be used in a
character (C-type) DC instruction, except the New Line control
character (punch combination 11-9-5). The maxirum message length
is 121 characters {(bytes) in a system with MVT, and 117 characters
in a system with MFT. The message is assembled as a variable-
length record. No requirement exists to pad the message with
blanks.

Note: 'All WTOR messages are action messages. An asterisk is printed
before the first character of an acticn message to indicate a need for
operator action; this does not reduce the maximum length of an action
message.

reply address A-type, (2-12)
is the address in main storage of the area into which the contrcl
program is to place the reply. The rerly is left-justified at this
address.

length of reply } Sym, Dec Dig, (2-12)
is the length in bytes, of the reply message. The maximum reply
length is 121 bytes. -

ecb address A-type, (2-12)

is the address of the event control block to be used by the ccntrol
program to indicate the completion of the reply.

Section II: Macro Instructicns 215

93.1

93.1

93.2

93.3

93.4

93.5

93.6

93.7

93.8

93.8

93.9

93.10

WTOR

WTOR -- Write to Operator With Reply (With Multiple Console Surport)

The WTOR macro instruction causes a message requiring a regly tc ke
written to one or mnore cperator comsoles and the system log, and pro-
vides the information required by the control programn to return the
reply to the issuing program. The rrogram issuing the WTOR should
ensure that an acceptakle reply is received.

The standard form of the WTOR macrc instruction is written as follows:

r T Rl I h |
(symboll	WTOR	'message',reply address,length of reply,
		ecb address{,RCUTCDE= (number{,nunberl,...)]
		[,DESC=(nurber({,nurkerl,...)]
L L 4 - —_— J
message

is the message to be written to the orerator's console. The mes-
sage must be enclosed in apostrophes, which will not arpear on the
console. It can include any character that can be used in a
character (C-type) DC instruction, except the New Line control
character (punch combination 11-9-5). The maximum message length
is 121 characters (bytes) in a system with MVT, and 117 characters
in a system with MFT. The message is assemkled as a variable-length
record. No requirement exists to pad the message with blanks.

Note: All WTOR messages are acticn messages. An asterisk is printed
before the first character of an action message to indicate a need for
operator action; this does not reduce the maximum length of an action
message.

reply address A-type, (2-12)
is the address in main storage of the area into which the contrcl
program is to place the reply. The reply is left-justified at this
address.

length of reply Sym, LCec Dig, (2-12)
is the length, in bytes, of the reply message. The maximum reply
iength is 121 characters.

ecb address A-type, (2-12)
is the address of the event control block to be used by the control
program to indicate the completion of the reply.

ROUTCDE= Dec Dig
specifies the routing codes tc ke assigned to the message. Numwber
must ke a routing code from 1 thrcugh 16. Routing codes are
defined in Appendix A. If the ROUTCDE operand is omitted but the
DESC operand is specified, routing code 2 is assigned.

DESC= Dec Dig
specifies the message descrirtor code or codes to be assigned to
the message. Number must be a descriptor code from 1 through 16.
Descriptor codes are defined in Agpendix A. If the DESC operand is
omitted, no descriptor code is assigned. '

If both the ROUICDE and DESC operands are omitted, the routing code
specified in the OLDWTOR operand of the system generation SCHEDULR macro
instruction is assigned. If the OIDWTCR operand is omitted, routing
code 2 is assigned.

When control is returned, register 1 contains the identificaticn
number (24 bits and right-justified) assigned to the message.

Note: The two operands available to the system progranmer are MSGTYP
and MCSFLAG. They are discussed in Appendix A.

216 Supervisor Macro Instructions

94.1

94.2

94.3

WIOR - L Form

WTOR -- List Form

The list form of the WTOR macro instruction is used to construct a
control program parameter list. The message orperand must ke provided in
the 1list form.

The description of the standard form of the WTCR macro instructiocn
provides the requirements for writing the message and the explanation of
the function of each operand. The description of the standaxd form also
indicates which operands are totally ortional and which are required in
at least one of the pair of list and execute forms. The format descrip-
tion below indicates the optional and required orerands in the list form
only. The operands in the shaded area of the format descrirtion are
used with MFT and MVI when those systems include the Multiple Console
Support (MCS) option; they are ignored if coded with MFT or MVT without
MCS, except routing code 11 in the ROUTCDE operand which designates a
Write-to-Programmer request and descriptor codes 1 and 2. (See the
standard form of the WIOR macro instruction without MCS for a descrip-
tion of this exception.)

The list form of the WTOR macrc instruction is written as follows:

'message', [reply addressl], [length of replyl
feck address]

r
| (symboll| WTOR
I
I

| IS,

b o]
P —— e e

address
is any address that can be written in an A-type address constant.

length
is any absolute expression valid in the assembler language.

message
is a character string valid in a character (C-type) LC instruction.

ROUTCDE=
is one or more decimal digits in the range 1 through 16.

DESC=
is one or more decimal digits in the range 1 through 16.

MF=1,
indicates the list form of the WITOR macro instruction.

Note: Two additional operands (MSGTYP and MCSFLAG) available to the
system programmer are discussed in Arpendix A.

Section II: Macro Instructions 217

95.1

95.1

95.2

95.3

WTOR - E Form

WTOR —-- Execute Form

A remote control program parameter list is used in the execute form
of the WTIOR macro instruction. The parameter list can be generated by
the list form of the WTOR macro instruction.

The description of the standard form of the WTOR macro instruction
provides the explanation of the functicn of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the execute fcrm cnly. The comma before the first
operand is required to indicate the absence of the message orerand,
which is not allowed in the execute form.

The execute form of the WTOR macro instruction is written as follows:

1
| [symboll}] WTOR | ,[reply addressl], [length of replyl,lecb address] |
| | | ,MF=(E,{control program list addressl) |
I |

(1)

______ _ — ——————

address
is any address that is valid in an RX-type instruction, or cne of
general registers 2 through 12, previocusly loaded with the indi-
cated address. The register may be designated symbclically or with
an absolute expression, and is always coded within parentheses.

length
is any absolute expression that is valid in the assemkler language,
or one of general registers 2 through 12, previously loaded with
the indicated value. The register may ke designated symbolically
or with an absolute expression, and is always coded within
parentheses.

MF=(E,{control program list address})
&N
indicates the execute form of the macro instruction using a remote
control program parameter list. The address of the control prcgram
parameter list can be coded as descriked under address, or can be
loaded into register 1, in which case MF=(E, (1)) shculd be coded.

Note: The remote control program parameter list specified must be
aligned on a fullword boundary. (The list form of the WTOR macro
instruction provides this alignment.)

218 Supervisor Macro Instructions

96.1

96.2

96.3

96.4

96.5

96.6

96.7

Page of GC28-6646~6, Issued April 30, 1973 by TNL GN27-1419

XCTL

XCTL -- Pass Control to a Program in Anothexr Load Module

The XCTL macro instruction causes ccntrcl tc ke passed to a specified
entry point; the entry point name must be a member name or an alias in a
directory of a partitioned data set. (With MVT, the entry point can be
an added entry point specified in an IDENTIFY macro instruction.) The
load module containing the program is krought into main storage if a
usable copy is not available. (Refer to Section I for a discussicn of
the use of an existing copy of the load module.)

No return is made to the program issuing the XCTL macro instruction;
the responsibility count for the 1lcad module ccntaining the XCTL macrc
instruction is lowered by one. Registers 2 through 14, the program
interruption control area, and the program mask must be restored tc the
conditions that existed when the lcad module received control kefore the
XCTL macro instruction can be issued. If the specified entry point can-
not be located, the task is abnorrally terminated.

The standard form of the XCTL macro instruction is written as
follows:

D S 3 ettt 1
| (symboll| XCTL | [(regll,reg2l)],(EP=synkbol |
| | | EPLCC=address of namre |
i | | DE=address of list entry |
| (. | I
| | | [,DCB=dcb address] [, HIARCHY=numker] |
L - i e e —— —d
(regl, ireg2l) Dec Dig, A-tyge

is the range of registers fror 2 through 12 to ke restored from the
save area pointed to by register 13. The value of the regl operand
must be less than the value of the reg2 operand. If the reg2
orerand is omitted, only the register specified is loaded; if both
operands are omitted, the contents of the registers are not
altered.

Note: If a base register is to be restored to its criginal con-
tents, use the regl,reg2 operand. Do not change the base register
before the XCTL macro instruction is executed.

EP= Sym
is the entry point name in the program to be given control.

EPLOC= A-type, (2-12)
is the address of the entry point name described above. The name
must be padded with blanks to eight kytes, if necessary.

DE= A-type, (2-12)
is the address of the name field of a list entry for the entry
point name. The list entry is constructed using the BLDL macro
instruction. The DCB operand must indicate the same data contrcl
block used in the BLDL macro instruction. If the module is indi-
cated as being in the job, step, or task library by the Z byte in
the BLDL list entry, the XCTL macro instruction must be either in
the same task as the BLDL or in a task with the same chain of task
libraries.

Section II: Macro Instructions 219

Page of GC28-6646-6, Issued Arril 30, 1973 by TNL GN27-1419

96.8

96.8

96.9

96.10

XCTL

DCB=

A-type, (2-12)
is the address of the data control block for the partitioned data
set containing the entry point name descriked akove.

If the DCB= operand is omitted or if LCB=0 is specified when the
XCTL macro instruction is issued ky the jok step task, the data
sets referenced by either the STEPLIB or JOBLIB DD statement are
first searched for the entry point name. If the entry roint name
is not found, the link library is searched.

If the DCB= operand is omitted oxr if DCB=0 is specified when the
XCTL macro instruction is issued ky a subtask, the data set(s)
associated with one or more data control blocks referenced by pre-
vious ATTACH macro instructions in the subtasking chain are first
searched for the entry point name. If the entry point name is not
found, the search is continued as if the XCTI macroc instructicn had
been issued by the job step task. The DCB must not be defined in
the program issuing the XCTL.

HIARCHY= Dec TLig

Note:
gram

specifies the storage hierarchy (0 or 1) in which the load module
is to be loaded when a usable copy is not already available in rain
storage. If the HIARCHY parameter is missing, loading will take
place according to the hierarchy specified at Link Edit time. If
HIARCHY is specified, it will override any hierarchy assignments
made during linkage editing. The HIARCHY operand is igncred in an
operating system that does not have main storage hierarchy support.

A proklem program parameter list may be passed to the called pro-
by loading its address into register 1. The parameter list must

begin on a fullword boundary. Each fullword in the 1list must have the
high-order byte set to zeros, excert fcr the last fullword, which must

have

the high-order kit set to 1.

220 Supervisor Macro Instructions

97.1

97.2

97.3

XCTL - L Form

XCTL -- List Form

Two parameter lists are used in an XCTL macro instruction: a control
program parameter list and an optional problem program parameter list.
Only the control program parameter list can be constructed in the list
form of the XCTL macro instruction. Address parameters to be passed in
a parameter list to the problem program can be provided using the list
form of the CALL macro instruction. This parameter list can be referred
to in the execute form of the XCTL macro instruction.

The. description of the standard form of the XCTL macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of list and
execute forms. The format description below indicates the optional and
required operands in the list form only.

The list form of the XCTL macro instruction is written as follows:

T T T 1
| [symboll| XCTL | [EP=symbol {,DCB=dcb address] |
| | | | EPLOC=address of name [
		LDE=address of list entry
		[,HIARCHY=number] ,SF=L
L L 1 h
address

is any address that may be written in an A-type address constant.

SF=L
indicates the list form of the XCTL macro instruction.

Section II: Macro Instructions 221

98.1

98.1

98.2

98.3

98.4

98.5

98.6

98.7

XCTL - E Form

XCTL -- Execute Form

Two parameter lists are used in the XCTL macro instruction; a control
program parameter list and an optional problem program parameter list.
Either or both of these parameter lists can be remote and can be
referred to, and modified by, the execute form of the XCTL macro

‘instruction. If only the problem program parameter list is remote,

operands that require the control program parameter list cause that list
to be constructed in line as part of the macro expansion. If only the
control program parameter list is remote, no problem program parameters,
including the regl,reg2 operand, can be specified.

/

The description of the standard form of the XCTL macro instruction
provides the explanation of the function of each operand. The descrip-
tion of the standard form also indicates which operands are totally
optional and which are required in at least one of the pair of 1list and
execute forms. The format description below indicates the optional and
required operands in the execute form only.

The execute form of the XCTL macro instruction is written as follows:

r 1 1 1
(symboll	XCTL	[(regl [,reg2])][,PARAM=(addresses)([,VI=1]]	
		[.EP=symbol	
			,EPLOC=address of name [, DCB=dcb address]
		L.DE=address of 1list entry	
		[,HIARCHY=number]	
		I	
] ,MF=(E,{prob1em program list address})		
		(1) l	
		,SF=(E,{control program list address})	
		(15)	
i	,MF=(E,{address}) ,SF=(E, {address})		
I | | &) (15) |
L L L Jd
address

is any address that is valid in an RX-type instruction, or one of
general registers 2 through 12, previously loaded with the indi-
cated address. The register may be designated symbolically or with
an absolute expression, and is always coded within parentheses.

PARAM= RX~-type, (2-12)
is one or more address parameters, separated by commas, to be
passed to the called program. Each address is expanded to a full-
word on a fullword boundary beginning at the address specified in
the MF operand. Any parameters specified s=quentially overlay the
existing addresses in the specified list. This operand can only be
used if MF=(E, is specified.

Vi=1
causes the high-order bit of the last address parameter to be set
to 1. This operand can only be specified if the PARAM operand is
specified, and should be used only if the called program expects a
var.able number of parameters. If the PARAM operand is specified,
but the VL=1 operand is omitted, the high-order bit of the last
address parameter is set to 0. -

(1)
indicates the execute form of the macro instruction using a remote
problem program parameter list. Any control program parameters

MF=(E,{problem program list address})

222 Supervisor Macro Instructions

XCTL - E Form

specified are provided in a control program parameter list expanded
in line. The address of the problem program parameter list can be
coded as described under "address,"™ or can be loaded into register
1, in which case MF=(E, (1)) should be coded.

(15)
indicates the execute form of the macro instruction using a remote
control program parameter list. No problem program parameters can
be specified. The address of the control program parameter list
can be coded as described under "address," or can be:loaded into
register 15, in which case SF=(E, (15)) should be coded.

98.8 SF=(E,{control program list address))

98.9 MF=(E,{address}),SF=(E,{address)
(1) (15) '}
indicates the execute form of the macro instruction using both a
remote problem program parameter list and a remote control program
parameter list. The addresses of the parameter lists are coded or
loaded into registers 1 and 15, as explained above.

Section II: Macro Instructions 223

224

APPENDIX A: MESSAGE ROUTING FOR MULTIPLE OPERATOR CONSOLES

ROUTING CODES

Routing codes provide the mechanism to route WTO and WTOR messages to
the locations where they are .eeded. They indicate the functional area
or areas to which a message is to be sent. If no routing code is
assigned but a descriptor code is assigned, default is to routing code
g These codes are not printed or displayed as part of the message
text. To use routing codes, the system must have either the MFT or MVT
control program and must have the Multiple Console Support (MCS) option
included at system generation, except when routing code 11 is used to
obtain a Write-to-Programmer message in the message output class.

Routing codes and their definitions are:

Code Description

1 MASTER CONSOLE. This routing code is for messages that must be
sent to the master console because some action is required by the
master console operator, or because the message contains informa-
tion considered critical to the continued operation of the sys-
tem. The number of messages with this attribute should be kept
to a minimum.

2 MASTER CONSOLE INFORMATIONAL. This routing code is for informa-
tional messages to the master console operator. Informational
messages usually require no action from the operator. If they
do, that action should be at the operator's discretion.

3 TAPE POOL. See routing code 4.

4 DIRECT ACCESS POOL. The tape pool and direct access pool routing
codes are for messages that contain instructions for volume
handling in the tape and disk areas. Messages about error condi-
tions which occur as a result of the operation of these devices
may also be assigned one of these routing codes.

5 TAPE LIBRARY. See routing code 6.

6 DISK LIBRARY. The tape library and disk library routing codes
are used for any message that specifies tape library information
or disk library information.

7 UNIT RECORD POOL. This routing code is for messages about prin-
ters, punches, and card readers. The following classes of infor-
mation should be sent to this pool:

e Types of printer chains or trains required.
e Carriage control tapes required.

¢ Types of forms or cards required.

e Error conditions on unit record equipment.

8 TELEPROCESSING CONTROL. This routing code is for messages relat-
ing to teleprocessing.

9 SYSTEM SECURITY. This routing code is for messages of interest
to the system security office (such as password messages).

Supervisor Macro Instructions

10 SYSTEM/ERROR MAINTENANCE. This routing code is used for any mes-
sage indicating system errors or uncorrectable I/0 errors, and
for any message associated with system maintenance.

11 PROGRAMMER INFORMATION. This routing code is for messages of
interest to the programmer. -The message is included in the mes-
sage class for the job and written on the system output device.
Multiple-line messages written using the ('text'[,line typel)
parameter of the WITO macro instruction cannot be passed to the
programmer using routing code 11.

12 EMULATOR INFORMATION. This routing is for messages issued by an
emulator program.

13 USER ROUTING CODE. Available for customer usage.
14 USER ROUTING CODE. Available for customer usage.
15 USER ROUTING CODE. Available for customer usage.

16 RESERVED FOR FUTURE USE.

DESCRIPTOR CODES

Descriptor codes functionally classify WTO and WTOR messages so that
they may be properly presented on all consoles and deleted from display
type consoles. Each WTO and WTOR message should contain one descriptor
code. If no descriptor code is coded in the WTO or WTOR, no descriptor
code is assumed. Descriptor codes 1 through 7 are mutually .exclusive,
and coding more than one descriptor code in a WTO or WTOR macro instruc-
tion makes results unpredictable. These codes are not printed or dis-
played as part of the message text. To use descriptor codes, the system
must have the MFT or MVT control program and must have the Multiple Con-
sole Support (MCS) option included at system generation.

Descriptor codes and their definitions are:

Code Description

1 SYSTEM FAILURE. This descriptor code is for messages that indic-
ate that a catastrophic error has occurred and another IPL of the
system is required.

2 IMMEDIATE ACTION REQUIRED. This descriptor- code is for messages
that request an immediate operator action (completion of the
action is required before a task can proceed). WTO messages with
descriptor code 2 must be deleted by a Delete Operator Message
(DOM) macro instruction when the operator action has been accomp-
lished, or the operator will have to perform the action to delete
the messages. WTOR messages with descriptor code 2 do not
require the DOM macro instruction. The message is automatically
marked as deleteable upon receipt of the corresponding REPLY
command.

3 EVENTUAL ACTION REQUIRED. This descriptor code is for messages
requesting operator action where a task does not await completion
of the action.

4 SYSTEM STATUS. This descriptor code is for messages that indic-

ate the status of the system, such as system task status or a
hardware unit status such as uncorrectable I/0 errors.

/ Appendix A: Message Routing for Multiple Operator Consoles 225

5 IMMEDIATE COMMAND RESPONSE. This descriptor code is for error
and nonerror messages that are written as a direct result of an
operator or system command.

6 JOB STATUS. This descriptor code is for messages that indicate
the status of a job or job step.

7 APPLICATION PROGRAM/PROCESSOR. This descriptor code is for mes-
sages issued by problem programs or by processors executed as
problem programs. This descriptor code is the End-of-Step mes-
sage deletion indicator, and all messages with this code are
deleted when the job step in which they were issued is ter-
minated. This does not apply to a terminating TSO task.

8 OUT-OF-LINE MESSAGE. This descriptor code is used for one mes-
sage or a group of one or more messages that is to be displayed
out of line. If the device support cannot print a message out of
line, the code will be ignored and the message will be printed in
line with other messages.

9 DISPLAY/MONITOR RESPONSE. This descriptor code is used for mes-
sages that are written in response to an operator's request for
information made by means of the DISPLAY or MONITOR command.
Descriptor code 9 also ensures that a control line (message IEE9-
32I) is written for the message. Descriptor code 9 must be spe-
cified if a message ID is needed in the control line of a
multiple-line message. This allows subsequent message deletion.

10-16 Reserved for future use.

OPERANDS FOR USE BY THE SYSTEM PROGRAMMER

The WTO and WTOR macro instructions have two special operands, the
MSGTYP and MCSFLAG operands. These operands should be used only by the
system programmer who is thoroughly familiar with the Multiple Console
Support (MCS) Communications Task, since improper use of these operands
can impede the entire message routing scheme. These operands set flags
to indicate that certain system functions must be performed, or that a
certain type of information is being presented by the WTO or WTOR.

The MSGTYP and MCSFLAG operands may be specified on either the stan-
dard or list form of the WTO and WTOR macro instruction. The standard
form of the WTO macro instruction is shown below.

1
{symboll WTO {('text'[,line type])} .
'message’

[,DESC= (number) } [, ROUTCDE= (number)]

)

|

|

|

|

| N |
| Y |
| [, MSGTYP={ JOBNAMES }] |
| STATUS

| ACTIVE

| [,MCSFLAG= (namel,namel,...)] |
L

P e e e e e e st e e o]

r
|
I
|
I
|
I
|
|
|
|
L

MSGTYP=JOBNAMES or MSGTYP=STATUS
specifies that the message is to be routed to the console which
issued the DISPLAY JOBNAMES or DISPLAY STATUS command, respective-
ly. When the message type is identified by the operating system,
the message will be routed to only those consoles that had
requested the information. Omission of the MSGTYP parameter causes
the message to be routed as specified in the ROUTCDE parameter.

226 Supervisor Macro Instructions

A.8 MSGTYP=ACTIVE
specifies that the multiple-line message is in response to a MON-
ITOR A (MN A) command and should be routed to the console that
issued the command.

A.9 MSGTYP=Y or MSGTYP=N
specifies that two bytes are to be reserved in the WTO or WTOR
macro expansion so that flags can be set to describe what MSGTYP
functions are desired (see Figure 67). Y specifies that two bytes
of zeros are to be included in the macro expansion at displacement
WTO + 4 + the total length of the message text, descriptor code,
and routing code fields. N, or omission of the MSGTYP parameter,
specifies that the two bytes are not needed, and that the message
is to be routed as specified in the ROUTCDE parameter. If an inva-
1lid MSGTYP value is encountered, a value of N is assumed, and a
diagnostic message is produced (severity code of 8).

r B T . 1
| Bit | Meaning |
p=—t 1
| 0 | DISPLAY JOBNAMES |
b=t 1
| 1 | DISPLAY STATUS |
L 4 1
L 3 1] t
| 2-15] Reserved for future system use.|
| | Must be zeros. |
L L J

Figure 67. Bit definitions for MSGTYP=Y

When MSGTYP=Y, the issuer of the WTO or WTOR macro instruction that
contains the MSGTYP information must set the appropriate message
identifier bit in the MSGTYP field of the macro expansion. Prior
to executing the WTO or WTOR SVC (SVC 35), he must also set byte 0
of the MCSFLAG field in the macro expansion to a value of X'10'.
This value indicates that the MSGTYP field is to be used for the
message routing criteria. When the message type is identified by
the system, the message will be routed to all consoles that had
requested that particular type of information. Routing codes, if
present, will be ignored.

A.10 MCSFLAG
specifies that the macro expansion should set bits in the MCSFLAG
field as indicated by each name coded. Names and their correspond-
ing bit settings are shown in Figure 68.

A.11 ROUTCDE, DESC, and MSGTYP parameter combinations are shown in Figure
69. Coding of any one of the four keyword parameters (ROUTCDE, DESC,
MSGTYP, MCSFLAG) causes a new format WTO or WTOR to be generated.

Appendix A: Message Routing for Multiple Operator Consoles 227

A.l1l1

r) R L} . 1
| Name } Bit | Meaning |
b ; 1 : {
| ———- | 0 | Invalid entry. |
L i 4]
[T T 1
| REGO | 1 | Message is to be queued to the console whose 1
| | | source ID is passed in Register 0. |
t + + .
| RESP | 2 | The WTO is an immediate command response. |
1 4 4. [}
LD T 1 3 R}
| ———- | 3 | Invalid entry. |
t L 1 4
| REPLY |) | The WIO macro instruction is a reply to a WTOR |
| | | macro instruction. |
t + + 1
| BRDCST | 5 | Message should be broadcast to all active |
| | | consoles. : |
t + + i
| HRDCPY | 6 | Message queued for hard copy only. This |
| | | operand is invalid with the multiple-line form |
of WTO.
IS — .
| QREGO | 7 | Message is to be queued unconditionally to the |
| | | console whose source ID is passed in Register |
| | | 0. I
L 1 1]
L} T 1 A
NOTIME	8	Time is not appended to the message. This
		operand is invalid with the multiple-line form
i	of WTO.	
t 1 1 {		
-——-	9-12	Invalid entry.
t + 1 4		
NOCPY	13	If the WTO or WTOR macro instruction is issued
		by a program in the supervisor state, the mes-
		sage is not queued for hard copy. Otherwise,
		this parameter is ignored.
t + + 4		
——-	14-15	Invalid entry.
=_ L 4 1l		
Note: 1Invalid specifications are ignored and produce an appro-		
priate error message.		
L]

Figure 68. MCSFLAG parameters

228 Supervisor Macro Instructions

intae |

T T
| | Parameter Coded | Expansion Generates |
{ T T T % T T i | ‘ll
No.{ ROUTICDE | DESC | MSGTYP | NMCSFIAG || ROUTCLE | DESC | MSGTYP | MCSFLaG |
I 4 4] 4 4 4 4
T T T T T T T 1
1 |Specified|Specified| Y | Optional ||Codes Specified|Codes Specified| Zerxos As Specified# |
2	sSpecified	Specified]	N	Optional		Codes Specified	Codes Specified	Field Omitted	As Specified#
3	specified	{Specified	{JOBNAMES	Optional		Codes Specified	Codes Specified	X'8000° As Specified#	
4	Specified	Specified	STATUS	Optional		Codes Specified	Codes Specified	X'4000° As Specified#	
5	specified]Specified	Omitted	Optional		Codes Specified	Codes Specified	Field Omitted	As Specified#	
b 1 + 4 + 34 ————— £ } d									
I T T T T LI} T T 1									
6	Specified	Omitted	Y	. Optional		Codes Specified	Zexos	Zercs As Specified#	
7	Specified	Omitted	N	Optional	[Codes Specified	Zeros	Field Omitted	As Specified#	
8	Specified	Omitted {JOBNAMES	Optional		Codes Specified	Zeros	X*8000°" As Specified#		
9	specified	Omitted	STATUS	Cpticnal		Codes Specified	Zeros	X'4000°"	As Specified#
110	Specified	Omitted	Omitted	Optional		Codes Specified	Zeros	Field Omitted	As Specified#
[N 4 4. + i) {1 ER 4 4 4									
T T T T T T T T 1) a									
11	Omitted	Specified	Y	Omitted*		Routing Ccde 2 [Ccdes Specified	Zeros	X'8000°"	
[12	Omitted	Specified	N	Omitted*		Routing Code 2	Codes Specified	Field Omitted	X*8000°*
13	Omitted	Specified	JOBNAMES	Omitted#*		Routing Ccde 2	Codes Specified	X*8000°"	X'8000" {
[14	Omitted	Specified	STATUS	Omitted*		Routing Code 2	Codes Specified	X'4000°	X'8000"
{115	Omitted	Specified	Omitted	Omitted*		Routing Ccde 2	Ccdes Specified	Field Omitted	X*'8000"
N + 4 + il 44 I 1 4 4									
r T T T T TT T T T hl									
16	Omitted	Specified	Y	REGO/QREGO		Zeros	Codes Specified	Zeros	As specified#
17	omitted	Specified] N	REGO/QREGO]		Zeros	Codes Specified	Field Onitted	As Specified#	
118	Omitted	Specified	JOBNAMES	REGO/QREGO		Zeros	Codes Specified	X*'8000°*	As Specified#
[19	Onitted	Specified	STATUS	REGO/QREGO]	zZeros	Codes Specified	X'4000°	As Specified#	
{20	Omitted	Specified	Omitted	REGO/QREGO		Zeros	Codes Specified	Field Omitted	As Specified#
I 4 4 4 Il + 4 4 4 4									
r T T T - T TT T T T "_“I									
121	Omitted	Omitted	Y	Omitted*		Routing Code 2	Zeros	Zeros	X*8000"
{22	Omitted	Omitted	N	Omitted*		Routing Ccde 2	Zeros	Field Omitted	X'8000"
23	Omitted	Omitted	JOBNAMES	Omitted*		Routing Code 2	Zeros	X*8000"	X*8000"
24	Omitted	Omitted	STATUS	Omitted*		Routing Ccde 2	Zeros	X'4000" { X'8000"	
25	Omitted	Omitted	Omitted	Omitted*		Field Omitted	Field Omitted	Field Omitted	Zeros
b=t t t t + + t t+ --=									
126	Omitted	Omitted	Y	REGO/QREGO]	Zeros	Zercs	Zexcs	As Specified#	
27	Orwitted	Omitted	N	REGO/CREGO		Zeros	Zeros	Field Omitted{As Specified#	
28	Omitted	Omitted	JOBNAMES	REGO/QREGO}	zZeros	Zeros	X'8000°	As Specified#	
29	Omitted	Omitted	STATUS	REGO/QREGO]	Zexros	Zexos	X'4000°"	As Specified#	
30	Omitted	Omitted	Omitted	REGO/QREGO]	Zeros	Zeros	Field Omitted	As Specified#	
1 L L L 4L L i p! 4									
4									
* If an MCSFLAG other than REGO or CREGO is specified, the expansion generates the same fields excerpt									
that the MCSFLAG field contains the MCSFLAG specified and the high-order bit set to 1.									
# High order bit set to 1 to indicate a new format macroc expansion (routing code and descriptor code									
fields exist). {									
L]
Figure 69. ROUTCDE, DESC, and MSCTYP combinations
Message Routing for Multiple Operator Consoles 229

Appendix A:

APPENDIX B:

SUMMARY OF OPERANDS

Figure 70 indicates how each orerand may ke coded in the standard

and, where applicakle, in the list and execute forms of each macro

instruction.

For example, in ATTACH macro instruction the DCB operand

may be coded in the standard (S) fcrm using registers 2-12 or as an A-
type address constant, in the list (1) form as an A-type address ccn-
stant, and in the execute (E) form using registers 2-12 or as an RX-type

address constant.

Only the indicated methods of coding shculd be used.

Abbreviations Used in Figqure 70

Abbreviation
Sym
Dec Dig

Register

RX~-type

A-type

(2-12)

(1)

(0)

Meaning

Any symbol valid in the Assemkler Language.

Any decimal digits, up to the value indicated in
the associated macro instruction description. If
both SYM and DEC DIG are checked, an absolute
expression is also allowed.

A general register, always coded within paren-
theses, as follows:

cne of the general registers 2 through 12, pre-
viously loaded with the right-adjusted value cr
address indicated in the macro instruction
description. The unused high-order bits must te
set to zero. The register may be designated sym-
bolically or with an absolute expression.

general register 1, previously loaded as indi-
cated above. The register can be designated cnly
as (1).

general register 0, previously loaded as indi-
cated above. The register can be designated only
as (0).

Any address that is valid in an RX~-type instruc-
tion (for example, 1A) may be designated.

Any address that may ke written in an A-type
address constant may be designated.

.
|
|
|
|

|Macro
| Instruction

Operands

T -
| Written As

P

Register
T

(2-
12)

Dec RX

(1) (0)

Sym | Dig

type |A-type

ABEND

RSN SR ——

completion code

S S

T R ——

S

S B ——

o — e — —

S

e e e e e it e

o o m — — e

DUMP

|written as

shown

STEP

written as

shown

ATTACH

| ASYNCH=

YES or NO

— e el . i e ks e o e s, b e

DCB=

| DE=
IR

B
{ DPMOD=
L

2]
e
[}
4]
e
5]

— b e

v
| ECB=

w
[c I = I

t
|EP=

2]
!
5]

o e e S e e i s s e Tt e s e S e e e, e GO

EPLOC=

p— - — At — A — — - — - —+

e e e o o e em o e e e

S E

o e e e e e e e s e e]

|
4
T
|
l
L]
|
4L

e e e =

o o o e e

R .

230 sSupervisor Macro Instructions

Figure 70 (part 1 of 5). Summary of operands

231

Summary of Operands

Summary of operands

Appendix B

Figure 70 (part 2 of 5).

III1|IIJ-M.I1I11I|l_l|l1IIl1|l1|.|1||l|-l1|l1|.|1|||1|l_..||l1|.J1Ill1|l1|l1|ll1..|l1|J1ful1||1lj1||1|||.I|J1.I.J1l|J1|||1I||1I|J1I|j_|| —
&
.W._ = 1A « = A X = = =l A
n_n 0w ln &} &} [©] 9] nwin “lw
T||...lm.xT||1T||T|I|T||T|..T|| ot — b — ——— P—t—t—t— - — - — b — =t — > — — b =~ — |
o7
M.W._ BI1MX = = S} [3] 9] [9] w | KA 9] w
o e e e e o e e e e e e e e e e o — = e e e b — o — - — o e o e e o o o e o e e] —_—— e — e = amme o i
~
o 0 0] 1]
—
0]
o H e oo e e e i s o e e e e e e s po e e = o — = f —— = — po — — e e e e e e o e e e e e e e J R o e e e
[~ ~ 2]
] (9] ~ Z 9] [©2] wln
o)A ~ o}
+ o Z
n M o e e e e e o e e e e e e —] o e e o o — o — o = — o e e o o e o e e e e] b — o = e — e = A — o | o e e e]
= |~ | K| <2 <] [oOIl®MIME | ™ =] m =] <) [T I m (I T I I < m a
NN 2 nilw w 9] 2|l w0 w1 wm
~ wn 0 w0 w0] ~ 2] w n 2] Q 0 o} 0 [} wn Q 4] 0 w Q o}
=} S K] S S g
F—te e — e e — e — b — - — o | et — - — et © p—t—d W p—t—t——t—— © —— e — e W | W e —] f— = —= 4
M{iMA1A M <] M 2]
U o 0 0] 23] (2] 2] 2]
O] Al A =] ©] 0 1 [} = o] © Q
[aga] ~ 2z 9] Z
nltuin] (] [+] =] w <] 1] a [+]
o o e e o e e o e e o - U p—t—at—"dA N p—-d U p—rte=ed O p—p—t—e—t——fe— O ——e — e — = —d U D p—ed M p——te—
= 2] 9] (O] o] + + w4 ML P o}
m._ 5] + 1 M| £ 1A + L1 P
] 1 [[} 0 o ord 1] Mo 19} HlH bl 1 9]
4] j=] = IR H 1w) el 1 =
0 2} [e] &2} > kd k] w iz w3zl 3 >
e i e e s e e o B B e e e s i e e o e e e e e e e e e o e e e e e e e e e e e e] 2
Q
3 0]
3 ; 318 g
=] N > ~ M
© @ V] e} o]
] g 14 [] (0] el
[] Qo o1 nilg m b}
& Nk 31 b B1alale g
+ N .m (o] [V Me] =]] Qi |0 %}
a 1] O i ®n T] Iy H .o > o
i i R - RV R giglel” & I
> 0 QW + 0 & T | T] © |~ M W Q T
o mw 1 _F 1l] @ ~ 0 - Q1T |l A | 4 H o m o]]
Il .F] Q N I o ~N O L B G | A &K Q]]] - It =
X P d M Q O by PRI H @M M ~ Q &} 010 m] m g1/ ﬁ. ﬂ n_._u]
SRR RERE SimiBiSinicaidiEioialAlNigidisal gl ididinl s glEialinglols 3
W.. QI iIi"d Al TA TR W 0wl iH >) s> 1 H L 1T [3) ViAKW XA oM Ml lP o m =
— e e e e e e i e e e i e e e e e e e e s e e e e e s e e e b e i e e e e s e e s e e e e e e e o e i s e e i e e e o e e e o e
a
[e]
o
+
Q
=] 2] =}
O ™M & E Q
o = A 2] <
Oown M m M = o]] =
3=t) = = Qo
= - Q Q Q (=] [a] [=] Q
llllll i — e e e e e et e e it i e e — e i it T it et e et oy e o T e e et e b e e e g . et e s e i e e e et e e e e e s e i i et s s s D e e e i et e e e

III]IlIlﬂj_l|..I1|J_l.ln|1|11I|j1|.l1lll1|11.|J_||l1||]_lIj_ll..J1|J1|l_|||J_lll.lllJ1|l1|..l_l|1_llj1luj1l||,_llll_liJ.l..ll.ll1lu|11|l1.|11|u11le||J
o1}
W‘ =t =l = = =) H A =
n_n [47] 9] w w0 2] n 0 9] [47] 2} 2}
lll‘ﬂlfl‘llllTlLTlL b o ——t —— oo e e e — e e —— — po e e e e o e e e e e e > e e e s e s e e e e v
o]
M.w,_ [[Hlw iR <] 2] [&] w1 MA <]
e e oy e e e e e s e e e b e o e o e e o ks o s v e n s b e e e e S e s i e . e e e i e e st i e e s e e e e e —
-~
(=) [97] w0 w &] 0
0 - § §
o a fr o e e e e e — o e e .u o e e e e e e o e e o e e e] e e e e e e e e o o e s e e e e e e e e e e e e e e o
4+
a 4 ~ o7} jon)
(0] 0 sl o 4] o 0
+ Ial ~ M H
+ o 0 [$)
o p——-"t—t—"4—4—- e — b e — - i e et n as mhmats et T T el el iia st afamts st b L e e e iy ey b
Mol M = [)]
= b~ [m] m S il@a R | ©T =] B M = T [S] <] B "]
NN &g 2 %] 9] %} 3 15} [I O] [0}
~ 0 w0 .m w0 \m 2o w0 w0 m m w0 w 0 92 m 0)] w w0 [$2]] 0w
e e e e — e e e — A YN A W | M b—t—d O | W F—tr—t At — e U e — e e — e e e — e — e — - — o
8] (o] [} = =] 3] m =
S 0 0 =] (4] 5]
D 2} %2}] - S]] = [%2] = 9] = = w] 93]
AA 2] Q Q
-2 [~ B = + =4] 9] + &) w w
|||||| e e e D = O p e —— O e e~ e e e e e e e e e e he e e e b e i e o e e = o s o e e e e e e e e e e e]
m._ win el | LA O oo Al A tn il w Hlwnidtan 9] =]
[92] ~ NI] H [0}
k] 0 2 = M = 0 4] M w w]
e al e e R T i al D ke T e e e e S e T e B e e R e b e e i e D e el bl ol
1] .
0 0] 0 ~ ~
T 0] -~ > >
=] [L] >
© ™ M b
M T | T M [e] (o]
0] m Lol S o
jor] 5} 9] © - -
°© 210 Sih o |6 >4 < 1
- -~ e
"I o 1 5 O T~ DI iEgIR BB IEE
T T g 1w MO o1 HE M
g | T] © o] (o] Sgisrgig i Slgrg1 g
T lw 78 EEE 813 il I i f BlEIEIE 1 |
0lo ® g1~ G gy E1E 5% 3) EIE 1818 > o)
- N g m M 2 1A H 2 - - 2 Ll B B B Y] M Rt B B B 1 m Il m
AR AR AR R R AR bR LAV P SIS VR VR AR R E RIS ER VAR VAR AT O
[
18} “ Ol M| A H | W >4 Q1P IH RIS | m [I I > B) O 1€ | ™ M Rl tw Bid i RIiQarntE M
IIIIII e e e e e e e i e gy e e e e e e e g e i et e e e e i e i e e e e e g e e e o s e e g e i e i e e e i e ey e e s e e e e s e e e e e]
[=]
2
+ 2z >
0 G| =] & H
O N M M m [l
M m]
R g 5 o = a &
=H 1A = = <] o] H =
|||||| iy e s S o e e e S e st S e e e D) s et e et sy e T T o et . — i —— — vt e . o o e Y S oy — — —— o —T— — e o — S ol e e e, e ettt gy o e T e e et et e

Summary of operands

Figure 70 (part 3 of 5).

232 Supervisor Macro Instructions

1|11|||ﬂj1lj‘lll_ll|_ll ———— ——— — T —— S — T — " — T — N — T — g —— T — T — Y — O — i — T ———— T — —— T — e — S — e ——
o))
> = = H = = =
+ w]
a_n 0 2] w] [4>] [©2]
Tlll.mv.-rlnTllvli et — e — = — - — b— f——t—t— - — - — f— = — o — - — t—
Q
LAl <3l w0 2] 0 w0 <] &3] 2] = <]] =1
© P
o o e e o e e e e — b e o = e e — ——t = — o o b — - — - — 4 — - — e e e e e e e e e e —t
~
[=] [2] 7] w
~ =] =]
0 (o] o
© u s st almte pta —_————— —_——t—t— — it e e e h.. u o g = e A e e —
o + ~ Q [oN) =
] w - w 5] s Bal Z
PRI - * HolN o
+ o ~ N 0 4} 2z
Bal U = e o = = o e o e e A e e o — V) O pe—ad—d—de—t—aq 0 o e o e — —d —
M ~ — (] [} -
= b~ = m [m o [I I L T L oI - B A I Mg lm o
NN win 1] niwn 3 5] kcJ
~ = 0 [o] o}] Q - 0] 2] [45] (o] o] [©2] 0] 192} e} [4)] ~
e o] (e} S 1M N - < =]
o e e ——te e) e e e e —d 0 —_— (0] P p—dgr—r e — e O O P e ==} () |—eed]
2] 0 m © © = ﬂ
U o 5] 0] [0} 0] g1 E 4]
[O = © 0 wn 0 d w0 2] 1] ~ = =] Q Q
[a)a] w 0} (o} o =4 -2
(9] m a % + 0 L 1P wn =] m
o e e e o o s e o e = ——d e e e e e] U Q p—de—rd— e — = et e = U f— Q M
+ + + © = M N + (o]] (¢]
=] 3] + + M Q (0] +]
>y ~+ 4] 52} B] Al g lwm i n =] Wl - 0 iH 1 »
92} [45] M) N K=)] Q M = =] [
2 kJ 2 0 9] =] M 3 > (S i
B S L .t ST B i i i s s STRe e e o e e e e e e o o e e e e e e e e
0
0
]
Q Q M
] g Lol
4 2|8 :
] +
o 2L o
M (]] a =) "
Q G i~ 5] 1] [] V]
jo] QI N ~ - 1]
(o] &) o~ a o o [=] =] n
9] o o] [} Q (o] 0
1] =] [0} [J] ~ wn 0] o o [J]
V] [o}] -] + + _.M
I Il Mol A = - il [
> > el + - - 4] © <] =] =} Lol [&] I
o] Il [o ITI0 A -l) =] a Q ~ Hl® | jor} F
Q QIO LI + Mo M E. € | < M M M r Q ._1—_
M —t 1} m M joT] o o % V] [} “F 5] 5] F [} [] + (o] m]
F ._n_.. 2] __u.“_ I Q]] m_b] + + il 0 < < m + + k) [E4
(] < Q MR tH IO O - Y] e} XIX 1 0OlaoaiHIAQIA 9] = a Xt > I i
o L] A > (=} a 2]] = 0] O |~ 3] [+9 ~ 3] o [} [} Q (] - =9 1] 2] [el e (¢] (e} =1 < A >
_lllllllll_lllpllltllrll L.ll!l.lll.l'lTIl.l.ILIllrll.lllTI'L.lllrllllTI — ke e e s iy s e o ek e s e e e i — e s s oy e e et iy e
=]
[¢}
o
+
Q
=4 Z
oM ~ (=]
34 2 7 & g 5i6|d = &
m = Q [} M < BiE)2 Ay B
L] [~ [0} 0] 2] 0 0 w0 %]
[b e e e e i et s s s S —— s e — i . . D et s s S it s s s S i e e > e, et by e gy e S e s e e i ot S T T ot it S it et ot S s c——— —— ————— S—— —

233

Summary of operands
Summary of Operands

Arpendix B:

Figure 70 (part 4 of 5).

1I..l1|||||ﬂJ1|JT|J1|I1||_1|J1|J1..|l1|J1.||1|.J_l||11|||1|||1||1||J1|J1II1I|J1I|I.|l1||l1l|J_|||_||lJ1.|J1|||_|||11|IJlI...J1|.I_|.|.jl|J
&
> - = [-
+ 12}
n_n w 5] niln 2]
1|||ﬂ1 e — b — e A — - — o o — - — = — o —m e R AT e e e s sdande ol Sl
jo]]
M.W._ 0 92} w0 0 9] 92} 9] 0w w] <] = M 3] 2] 2]
e A— e e e o e e e e e e o P— T S R Ry 7,1 [/ J VYU SR R, [SN SN S SO SPE S S S S et et
(] [0]
~ 15 =
[« 92} [©2] 0 Qo u
~ o] o] o]
0] ~ .u o
] M —— e e e aleuads adende pleack, BT —_—) e e o e e i e e e e e e e e e e e e e e
@ 1]] 0]
=) 4+ ~ [o] o] Q
[T O] — wnilninlw wiln il & Q
ﬁ mr ~ [[o}
o~ U o] > — p e e e i e e e o aef o e o T R -] O] O e e e e e e o o o e e e e e e e e e
M ~] d ot
= |~ m m m 2] =) o = =)] = <5 <]] =
NN 0 9] n 6] 0 &} 2 0 3 [©2] 0] + + +]
~ Q Q Q 9] [e] o oA - [62] w0 0 0]]
< < L1019 S 23 3
poe e e () =]) e — e e =) N e N e e o ° o e e e © 1.ILTNLT|| .|1T||1T|il||f|illlllw._.11||1
O o; 2] 2] 2] 0 0 ol oA - o =]] =
[1] ©] © Y 0 ©] 1] =
[aga 2] 19} 2] 192} 0 w w w0 .
% =] @ = <] n 0 7] 9]]
o = e e — U = e e — = o o — V o O prage—d O D e cmed U o e e == e s o oo o v o o e e o e e e e e e o e of
R :AERINE: =1E JRE 8
W -] el | -l w >yl o>y > A =
n ol a M bl M =] g [=
= k = 2 k] © ©] 0 0
o e e e e e e e e b e — e e e e e e e e e e e e e e — e —
M
o]
o]
]
4
g n
=] =
8] < a 2 [
M = e} B + >™
[} o =] — ~
Q| H M + M (0] 2] o) N
o] m [e] [J]] > 2] €]
~ Q (]] 9] joi}
[M Q = M 0 (]
2] M g) W o] Y4] M
Q F fae] [e] m._.. I kel (o]]] Il
L) =] Q ,E ._\—_ (7]]] = [1 o] = - ™
° GISHE L TEIEL [Eiglyl 1SITIRI8l,iglaigi%igl, 1] S8
=%] u o m [l F Z N @] ‘m i} = 0 0 mnm. mu (0] ~ o m c o “F m M
@] s} g Z [an) Q O T 2z [os] o] %] 2] jan] 0 7] Ll g1] 2]] 1 ‘F
H o B L)) o] = =} jel < =1 Q Q Q] @] = Q 0] Q 4] o] M (&} " (o] -
0 3] ~ + M (=] 3] =] = © O a = 5] & =] ~ [=] =] H - 9] [+ (= [=] =] = 2] o] Ay
o et i e i e e B B B e S B B e e T I R S L U B e e e e R
[~
o
-~
)
0
=] 92} o [*1
[eJRS] =1 m = [+
M4 [>] M = HH 24 >
g 1B ; HiEE lgle : 5
2H 1w n =) H IR = W W <
llllll ey e e e e e e s e o i i i e e eve el e e e e et ey e 2o dal e e e e s, ey s i e v ety e st el e S o et i S Tt s et it S el e) S e e S e Wt s e, e et vl

Summary of operands

Figure 70 (part 5 of 5).

234 Supervisor Macro Instructions

To help you find the information quickly
and easily, the entries in this index refer
to paragraph numbers rather than to page
numbers. Each paragraph number is composed
of two parts separated by a point. The
first part denotes the chapter number; the
second part denotes the sequential position
of the paragraph within the chapter. For
example, the index entry "writing to the
hard copy log 5.80-84" indicates that the
information can be found in paragraghs 80
through 84 of chapter 5. For your
convenience, the upper left cornexr of every
left-hand page in this book contains the
number of the first paragraph on that page.

Indexes to Systems Reference Library
publications are consolidated in IBM
System/360 Operating System: Systems
Reference Library Master Index, GC28-6644.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

ABEND macro instruction 5.156-192
abnormal condition handling
by 5.156-198
coding in MFT without subtasking 10.1
coding in MVT and MFT with
subtasking 11.1
completion code
interception
by STAE 5.166-183
by STAI 5.184-185
obtaining a dump 5.186-194,10.4,11.5
STEP operand 5.161,11.6
abnormal condition 5.156-192
abnormal termination routine
attempting error recovery
from 5.166-183
detection of 5.157
handling 5.156-198
by ABEND 5.159-161
abnormal termination
interception of 5.166-185
from program interruption
restart after 22.1
routine 5.157
of subtask 5.184-185
of task 5.166-183
additional entry points
in ATTACH 12.1
in IDENTIFY 54.1
in LINK 55.1
in LOAD 58.2
in XCTL 96.1
address parameters

5.163,10.3,11.4

5.157

5.173

5.2-6

2.34

INDEX

ATTACH macro instruction

coding in MFT with subtasking 13.1

coding in MFT without subtasking 12.1

ccding in MVT 14.1

with DETACB 30.1,31.1

ECB ogerand 2.119,4.5-9,5.163,12.10,
13.14,14.15

ETXR operand 2.119-120,4.5-9,5.163,
12.11,13.15,14.16

with IDENTIFY 54.1

STAI operand 5.184,14.23

STAI retry routine 5.183-185

SZERC operand 14.22

base register

initial 2.5

permanent 2.15
BINTVL (kinary interval operand)
kranching takle

example of 2.52

use when passing control with

return 2.52

CALL macro instruction 2.44-49
coding 17.1
creating parameter list for LINK,
ATTACH, and XCTL 18.1
passing control using 2.46-49
results of expansion 2.49
calling program, definition of 2.2
calling sequence identifier 5.8
canceling the current STAE
request 5.171,72.3,72.9
CANCEL orerand
(see also timing serxrvices)
in CHKPT 22.15
in TTIMER 5.54,82.2
CHAP macro instruction
(see also priority)
characteristics, load module
checkpoint and restart 7.1
checkpoint data sets 22.4
defining 22.6
CHKPT macro instruction
CANCEL operand 22.15
return codes 22.16
CLASS parameter of JOB statement with
MFT 3.24
coding aids 8.6
command scheduler cormunications parameter
list address 5.44,39.5
completion code
(see also return code)
in ABEND 5.163,10.3,11.4
in ATTACH 14.27
in event control block
(ECB) 12.10,13.14,14.15

3.20-31,21.1

2.25-27

22.1

Index 235

in POST 59.2

in task control block (TCB) 5.43,11.4
COND ogerand

in EXEC statement 2.61,5.158

in JOB statement 2.61,5.158
conditional requests

from DEQ 5.25-31,26.8

from ENQ 5.25-31,35.13

from GETMAIN 6.14-16,46.7
configurations of the operating

system 1.3-4

control program options 8.5
core image dump 5.196-198,65.1,66.1
core storage (IBM 2361 Core Storage)

(see main storage hierarchy suggort)

DCB operand
in ATTACH 2.74,12.7,13.11,14.10
in LINK 2.74,55.7
in LOAD 2.74,58.7
in XCTL 2.74,96.8
DD statement, SYSABEND or
SYSUDUMP 10.4,11.5
DE operand
in ATTACH 2.74,12.6,13.10,14.9
in LINK 2.74,55.6
in LOAD 2.74,58.6
in XCTL 2.74,96.7
DELETE macro instruction 2.115,25.1
DEQ macro instruction 26.1
proper use of 5.25-39
using the list and execute forms 6.42
DESC operand 5.71
in WIo 88.3,5.71,89.7
in WTOR 93.8
descriptor codes A.3-4
causing an * in the message 5.71,88.3
designing programs, requirements
for 2.1-129
CETACH macro instruction 4.5,4.9,5.163
coding in MFT 30.1
coding in MVT 31.1
DINTVL operand 5.55
in MFT 77.7
in MVT 78.8
dispatching priority 3.10-31
(see also priority)
available in task control block 5.43
changing 3.21,21.1
computing 3.12,3.18
definition of 3.10
DPRTY parameter of EXEC
statement 3.12-13
of partitions 3.27
specifying 13.20,14.12
disposing of the message to the operator
(with MCS) 5.71
DOM macro instruction 5.90,33.1
DPMOD operand 3.18
in MFT 13.19
in MVT 14.12
DUMP 5.186-198
ABEND 5.188-194,10.4,11.5
core image 5.196-198

236

indicative 5.195,10.4
requirements 5.186-198
SNAP 5.188-194
in MFT 65.1
in MVT 66.1
DUMP operand in ABEND 5.188,10.4,11.
DXR racrc instruction 5.125-139,34.1
dynamic structure 2.22,2.27

ECB (see event ccntrol block)
ECB operand
with ATTACH 12.10,13.14,14.15
effect on task termination 5.161
with POST 59.1
with WAIT 83.3
element type (E) explicit request for main
storage 6.11,46.4,47.4
end-of~-task exit routine 5.45
in MFT without subtasking 12.11
in MFT with subtasking 13.15
in MVT 14.16
ENQ macro instruction
ccding 35.1
control program processing of 5.17-21
contrclling load module use 2.114
exclusive control 5.16,35.8
proper use of 5.22-39
requesting control cf a
resource 5.11-16,35.1
restriction on gname
parameter 5.14,35.6
shared control 5.16-39,35.9
testing for simultaneous resource
use 5.11
unconditional request 35.13
entry point identifier
defined 5.7
specified in SAVE macro
instruction 2.10,5.7,61.5
specified in GTRACE macro
instruction 50.2
entry points
added
in ATTACH 12.1,13.1,14.1
ky IDENTIFY 5.3-4,54.1
in LINK 55.1
in LOAD 58.2
.in XCTL 96.1
restrictions for additional 5.5
EP operand 2.74-82
in ATTACH 12.4,13.8,14.7
in DELETE 25.2
in IDENTIFY 54.3
in LINK 55.4
in LOAD 58.4
in XCTL 96.5
EPLOC operand 2.74-82
in ATTACH 12.5,13.9,14.8
in DELETE 25.2
in IDENTIFY 54.3
in LINK 55.5
in LOAD 58.5
in XCTL 96.6
ETXR operand

in ATTACH macro
instruction 12.11,13.15,14.16
use in MFT without subtasking 2.119-120
use in MVT and MFT with
subtasking 4.5-6,5.163
use in termination 5.163
event control block (ECB)
in ATTACH 12.10,13.14,14.15
creation of 4.13
diagram of 4.11
in POST 59.1
rYeusing 4.13
in WAIT 83.1
use with ATTACH, POST, and WAIT
EXEC statement, PARM field 2.21
execute form of macro
instructions 16.40-42,9.3-4
execution, selection of job steps for
exit routines
end-of-task exit routine
(ETXR) 12.11,13.15,14.16
program interruption exit routine
specifying a task aknormal exit
routine 72.1
task abnormal exit routine 72.1
timer completion exit routine 77.6,78.7
explicit requests
for main storage 6.6-32
for a resource 5.16-21
extended-precision floating-roint
simulation 5.125-155
EXTRACT macro instruction
coding in MFT without subtasking 38.1
coding in MVT and MFT with
subtasking 39.1
determining current dispatching
priority 3.20,5.43
determining initial dispatching
priority 5.43
determining limit priority 3.20
requires an answer area 5.46,39.5
used to obtain information from the task
control block 5.43
using FIELDS=ALL 5.46
warning for using task control
block 4.5,4.9

4.10-14
6.2

69.1

FIELDS operand (see EXTRACT)

flag, save area 2.57

FREEMAIN macrc instruction
coding in MFT 42.1
coding in MVT 43.1
releasing subpools 6.32
restriction regarding subpool 0
returning control of main
storage 6.7,6.32

6.24

GETMAIN macro instruction
coding in MFT 46.1
coding in MVT 47.1
creating subpools 6.29
explicit request for main

storage 6.6-32

example 6.15

specifying length of main

storage 6.10-13

types of 6.9-14
GSPL operand of ATTACH 3.7,6.30,14.19
GSPV operand of ATTACH 3.7,6.30,14.18
generalized trace facility (GTF)
GTRACE macro instruction 5.96-99,50.1

return codes 50.3

halting I/0
in ATTACH 14.24
in STAE 72.15
hard copy log 5.80-84
HIARCHY operand 6.54-55
in ATTACH 12.13,13.17,14.17

in GETMAIN 46.12,47.14
in LINK 55.11
in LOAD 58.8

in XCTIL 96.9
hierarchies, main storage
examples using
hierarchy 0 6.15
hierarchy 1 6.23

6.51-57

IDENTIFY macro instruction 54.1
adding entry points 5.3-4
restrictions 5.3
return codes S4.4

identify option 5.2

implicit requests for main storage
ATTACH 6.33,6.45
LINK 6.33,6.45
ILCAD 6.33,6.45
OPEN 6.33
XCTL 6.33,6.45

imprecise interruptions 5.116-122

indicative dumg (MFT) 5.195

instruction length code (ILC)

interlock situation 5.32-39

interrurtions 5.100-122
(see also program interruption

processing)
imprecise 5.116-122
precise 5.116-122
interval timing 5.54-64

5.116

6.2
2.65-70,2.106
2.72-104

job class
jok likrary
job pack area
jok priority
effect on execution
srecifying 3.12-31
job step terminaticn 5.164,11.6

6.3

library
definition of 2.65
job 2.65-70,2.106
link 2.66-106
private 2.69
step 2.67-86

Index

5.96-99

6.33-47

237

limit priority 3.12
(see also priority)
link library 2.66-106
LINK macro instruction
coding 55.1
difference from CALL macro
instruction 2.101
implicit request for main
storage 6.33,6.45
responsibility count 2.103
similarity to CALL macro
instruction 2.100
use in passing control with return
use with BLDL 2.105
use with the jok likrary 2.104
use with the link library 2.104
use with a private library 2.104

2.98-106

2.98

use with a step library 2.104
link pack area (MVT)

contents of 6.U49

placing modules in 6.36

searching 2.73
linkage conventions 2.4-20
linkage registers 2.16-20

entry point register 2.20

parameter registers 2.17

return address register 2.19
save area register 2.18
list form of macro
instructions 6.40-42,9.2-4
list, parameter list creation by CALL 18.1
list type (L) explicit request for main
storage 6.12
LOAD macro instruction
load module
(see also dynamic structure; overlay
structure, planned; simple structure)

2.93-97,58.1

attributes 2.89
characteristics 2.28
copy

finding a usable 2.73-86
using an existing 2.87-92
execution
parallel 2.28
serial 2.28-29
management 6.34-47
nonreusable 2.89
temporarily 6.47
reenterable 6.35-38
serially reusable 2.88
structures 2.22-29
log
hard copy 5.80-84
system 5.85-88
WTL 5.87-88
LPMOD operand in ATTACH 3.18,13.18,14.11

machine-check handler 6.37
macro definition listing 8.3
macro instructions defined

elsewhere 8.13-16
main storage
blocks
assignment 6.9,6.20

238

size 6.22
control 6.20-50
efficient use of 6.5
example of assignment 6.23
fragmentation 6.44-47
hierarchies 6.51-57
management 6.1-57

(see also GETMAIN; FREEMAIN; subpool)
release 6.48-50)
requests

conditional 6.14-16
control program 6.4
explicit, via GETMAIN 6.6,6.15,6.20
implicit 6.4,6.33
unconditional 6.14-16
reuse 6.49
main storage hierarchy surport 6.51-57
hierarchies 6.51
overrun 6.57
use with Model 50 6.57
rasking program interruptions
with SPIE 69.1
raster console operator answering a
WTOR 5.75
ressage deletion 5.89-90
message identifier 5.73,89.9
message output class, specified by MSGCLASS
parameter 5.78
ressages
(see also writing to the operator; WTO;
WTCR)
to the operator
tc the prcgrammer

5.65-75
5.76-79,88.2

Model 65 interruptions 5.116-118
Model 67 interruptions 5.116-118
Model 75 interruptions 5.116-118
Model 85 interruptions 5.116-118
Model 91 interruptions 5.116-122

during decimal simulation 5.123-124

Model 195 interruptions 5.116-122

NODIFY command 5.91-5.94

MSGCLASS parameter of the JOB

statement 5.78

nultiple console support (MCS)
(see descriptor codes; hard cory log;
message deletion; routing codes; system
log)

new line control character, restriction
with WTO 5.66

nonreenterable load modules 6.43-47
nonreusable load modules 2.89,2.115-116

obtaining information from the task control
block 5.40-46

cld rrogram status word (OPSW) 5.111

operator communications 5.91-5.95

crtions, control program 8.5

originating task, definition of 3.5

OV orerand of STAE 5.171

overlap of task execution 3.4

cverlay of a STAE request 5.171

overlay structure, planned

advantages of 6.46

definition of 2.26

passing control in 2.62
overrun, with main storage hierarchy
support 6.57

pack areas (see job pack area; link pack
area)
parallel execution of a jok step,
definition of 3.4
parameter list
with CALL 2.46-49,18.1
handling of 2.38-39
inline 2.45-49
with LINK 2.104,55.8
from PARM field 2.38
with XCTL 2.126,96.10
parameters (see parameter list; linkage
registers)
PARM field 2.21
partitions (MFT) 6.2
passing control
(see also ATTACH; LINK; XCTL)
in a dynamic structure 2.63,2.98-129

loading the module 2.64-~-129
with return 2.36-49
without return 2.31-35

in a planned overlay structure 2.62
in a simple structure 2.30-61
with return 2.40-60
without return 2.31-39
PICA (program interruption control
area) 5.103-108,69.8
PIE (program interruption
element) 5.107-108
planned overlay structure (see overlay
structure, planned)
"POINT macro instruction, in a reenterable
load module 6.39
POST macro instruction 4.10-13,59.1
precise interruptions 5.116-122
priority
assigning 3.10-22,13.19,14.11
changing 3.21-22,21.1
dispatching 3.10-22,5.43
initial dispatching 3.18
limit 3.10,5.43
of partitions 3.25-27
subtask 3.18-122
task 3.10-17
private library
definition of 2.69
searching 2.69-86
program exceptions 5.100
(see also program interruption
processing)
program interruption control area
(pICA) 5.103-108,69.8
program interruption element
(PIE) 5.107-108
program interruption processing 5.100-122
imprecise interruptions 5.116-122
precise interruptions 5.116-122
standard control program exit

routine 5.101
user exit routine 5.101-115
for imprecise interruptions 5.122
register contents when controcl
gained 5.109 ’ ‘
program management 2.1-129
Frograr ranagement services 5.1-198
(see also abnorral conditions;
additional entry points; calling
sequence identifiers; deleting
messages; dump; entry point identifier;
obtaining information from the task
control klock; processing program
interruptions; serially reusable
resources; timing services; writing to
the hard copy log; writing to the
operator; writing to the system log)
protection, of serially reusable
resources 5.9-39

| QEDIT 5.93-5.94
gname ogperand of ENQ, restriction
on 5.14,35.6

read-only load module (see reenterable load
module)
REAL parameter of STIMER 5.57-58,77.3,78.4
reducing main storage required for a job
ster 6.20-32
reenterable load modules 2.118,6.35-38
in MFT with subtasking 2.90
in MVT 2.88-89
reenterakle macro instructions
refreshable load module 6.38
regions (MVT)
controlling 6.3
extending by rollout/rollin 6.3
specifying size on EXEC statement 6.3
specifying size on JOB statement 6.3
register type (R) explicit request for main
storage 6.10,46.5,47.6
registers
(see also base register; linkage
registers; reenterable macro
instructions)
specifying 8.9
releasing main storage 6.48-50
(see also DEQ; FREEMAIN)
rerply, (see WTOR)
resident reenterable module area
resource
conditionally requesting, via
ENQ 5.25,35.13
control 5.13-39
duplicate request for, definition
of 5.23
releasing control of with
DEQ 5.24-39,26.1
request for, causing interlock * 5.32-39
serially reusable 5.9-12
unconditionally requesting, via
ENQ 5.25-31,35.13
responsikility count

6.39-42

2.73,2.92

Index 239

ensuring that the proper one is

lowered 2.128-129
lowering it via the control
program 2.129

lowering it via DELETE 2.129,25.1

with release of main storage 6.48
restart

automatic 22.1

deferred 22.3

RET operand 35.13
RET=CHNG 5.28
RET=HAVE 5.29
RET=TEST 5.26
RET=USE 5.27

return code 2.51-52
and ATTACH 3.6,14.27
from BLDL., 2.83
with branching table 2.52
and COND operand 2.61
in ECB 4.12
with ENQ 5.26~29,35.14
example of use of 2.52
with GETMAIN 6.14,46.13,47.15
with IDENTIFY 5.4,54.4
requirements 2.51
from STAE 5.176,72.18

return of control
of CPU 2.53-61,2.98-129

(see also RETURN)
of main storage
(see FREEMAIN)
of resource
(see DEQ)

RETURN macro instruction
examples of 2.59-60
with simple structure load

module 2.57-60

returning control
responsibility count 2.127-129
using a branch instruction 2.122-124
using the control program 2.117-129
using RETURN macro instruction 2.57-60
when ATTACH was used 2.118-119
when LINK was used 2.118
without using the control

program 2.122-124
returning control in a simple
structure 2.53-61

reusability 2.87-97

rname operand of ENQ 5.13-14,35.7

rollout/rollin 6.3

routing codes (with MCS) 5.70,99.1

routing the message to the operator (with

MCS) 5.65-75

2.57-60,60.1

save area
chaining 2.15,2.18,5.191
description of 2.6-14
flag 2.57,2.59
format 2.7
provision of 2.11-14
register 2.12,2.18
SAVE macro instruction 2.9,61.1
saving registers 2.6-14

240

providing a save area 2.11-14
save area chaining 2.15,2.18,5.91
save area format 2.7

searching for a usable copy of the locad

module 2.73-97
effect of DE operand on 2.82-86
effect of EF operand on 2.76-81

effect of EPLOC operand on 2.76-81
ordexr of search 2.73-92
use of BLDL with DE 2.84
SEGLID macro instruction 63.1
SEGWT macro instruction 64.1
sequence identifier, calling 5.8
serial execution of a load module 2.28-124
serially reusable load mcdule 2.113-120
restriction on using LINK macro
instruction 2.98
using ENQ macro instruction 2.114
serially reusable resource 5.9-12
shared control, (see ENQ macro instruction)
SHSPL operand of ATTACH 3.7,6.28,14.21
(see also main storage management)
SHSPV operand of ATTACH 3.7,6.28,14.20
(see also main storage management)
simple structure 2.25-61
definition of 2.25
passing control with return 2.40-49
passing control without return 2.36-39
returning control 2.53-61 ‘
returning control to the contrcl
Frogram 2.61
simulator, extended-precision
floating-point 5.125-155
SNAP macro instruction 5.188-193
allowing for a variable-length parameter
list 9.5
coding in MFT 65.1
coding in MVT 66.1
SPIE macro instruction
coding 69.1
description 5.101-102
with DXR macro instruction 34.1
example 5.106
program interruption control area
(pICA) 5.103-106,69.8
program interruption element
(PIE) 5.107-108
STAE exit routine 5.166-183
conditions when not executed 5.177
register contents when:control
received 5.178-179
restriction on use of STAE and
ATTACH 5.168
return codes
work area (figure)
STAE macro instruction
canceling current STAE 5.175,72.9
coding 72.1 '
example 5.174
exit routine 5.166-183
intercepting abnormal
termination 5.166~183
OV operand 5.175,72.10
overriding ABEND 5.159
register contents after executicn 5.176

5.178

XCTL operand 5.172,5.174,72.13
STAE retry routine 5.182
STAI operand of ATTACH 5.184,14.23
STAI retry routine 5.185
STATUS macro instruction 4.15-16,75.1
STAX macro instruction 5.115
STEP operand
of ABEND 5.161,11.6
of ENQ 5.14
STIMER macro instruction
canceling during ABEND 5.162
coding 77.1
establishing a time interval for a
task 5.54-64
example 5.59
specifying how to decrement the
interval 5.57
STOP command 5.91-5.94
structure, load module
(see dynamic structure; load module;
overlay structure, planned; simple
structure)
subpool
creation 6.23-25,6.29
exclusive use 6.25-30
handling
by ATTACH 6.28-31
by GETMAIN 6.28-31
MFT with subtasking 6.18
MFT without subtasking 6.17
under MVT 6.19-31
ownership 6.28
restriction on transfer 6.30
sharing 6.28,6.31
in task communication 6.32
subpool 0 6.18,6.23-28
subpool 240 6.18
subpool 255 6.18
subtasking
MFT systems with 3.25-27
MFT systems without 3.24
subtasks
communication among 4.5-9
creating 3.18
definition of 3.5
hierarchy 4.2-4
priority 3.18-22
termination 4.5-9
SYSABEND DD statement
if omitted 5.190
providing 5.190-192
system log
alternate data set defined 5.86
data sets 5.85-86
definition of 5.85
primary data set defined 5.86
using, via WTL macro
instruction 5.87-88
system message blocks (SMBs) 5.77
SYSTEM operand of ENQ 5.14,35.12
SYSUDUMP DD statement
if omitted 5.190
providing 5.190-193
SZERO operand of ATTACH 6.28,14.22

task
communication among 4.5-9
creation 3.1-31
hierarchy 4.1-4
management 4.1-16
priority 3.10-22
signaling task termination 4.5-9
termination 4.5-9
task control block (TCBRB)
address 3.8
completion code in 4.7
obtaining information from 5.40-46
removal from system 4.5 .
subtask for 4.5
warning for using with CHAP, EXTRACT,
DETACH 4.9
task input/output table (TIOT) address in
task control block 5.u44
TASK parameter of STIMER 5.57,77.4,78.5
TCB (see task control block)
TIME macro instruction 5.48-53,80.1
BIN operand 5.53,80.5
DEC operand 80.4
MIC operand 80.7
TU operand 5.53,80.6
time slicing 3.23-31
effect on using ATTACH and CHAP 3.29
in MFT with subtasking 3.25-27
in MFT without subtasking 3.24
in MVT 3.28-31
time stamping for the hard copy log 5.83
timing services
date and time of day 5.u48-50
interval option 5.47
interval timing 5.54-64
example of interval timing 5.59
time option 5.47
TOD (time-of-day clock) 5.51-52
trace facility, generalized 5.96-99
trace, save area 2.12
trace takle 5.194
TTIMER macro instruction
canceling time remaining in a time
interval 5.54,82.2
coding 82.1
testing time remaining in a time
interval 5.54
TUINTVL (timer unit interval) 5.55,78.10

UNPK instruction
example 5.49
use with time option 5.50
use count, (see responsibility count)

variable type (V) explicit request for main
storage 6.13-14,46.6,47.7

wait condition
from ATTACH, LINK, XCTL 2.88
effect of 4.12

Index 241

from ENQ 5.17-31 used to write to the

from STIMER 5.57 Frogrammer 5.76-79,92.2
from WAIT 4.10-14

WAIT macro instruction 4.10-14,83.1

WAIT parameter of STIMER 5.57,77.5,78.6 XCTL macro
writing to the hard copy log 5.80-84 instruction 2.121,2.125-129,96.1
writing to the operator 5.65-75 and directory entries 6.45
using WTO macro instruction 5.65-72 EP, EPLOC, DE operands 2.74
using WTOR macro implied request for storage 6.33
instruction 5.65,5.73-75 in MFT without subtasking 2.91
writing to the programmer 5.76-79 not using with kranch 2.121
writing to the system log 5.85-88 passing control without
WTL macro instruction 5.87-88,85.1 return 2.121-129
WTO macro instruction 5.65-72,88.1,89.1 protecting against unusable copy 2.122
DESC operand 5.72,88.3,89.7 and responsikility count 2.127-129
example 5.72 similarity to LINK 2.127-128
multiple-line form 5.66-69 with main storage hierarchy
ROUTCDE operand 5.72,88.3,89.6 support 6.54

used to write to the hard copy log 5.82 XCTL operand of STAE 5.172,72.13
used to write to the
programmer 5.76-79,88.3

WTOR macro 2361 Core Storage
instruction 5.65,5.73-75,92.1,93.1 hierarchies 6.51
with abnormal termination 5.162 Models 1 and 2 6.51
example 5.74 specifying, in GETMAIN (example) 6.42

used to write to the hard copy log 5.82

242

GC28-6646-7

BV

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

*I3SU] OIOBIN pue xostaxadng SO

"V 'S Tl ur pejumdg

L=9%99-8TOD

O BUjT BUOIY PIO4 1O IND m— e e e e e ——— e . . ——— — —— — — — — —

IBM System/360 Operating System READER'S
Supervisor Services and Macro Instructions COMMENT

Order No. GC28-6646-7 FORM

Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.

How did you use this publication?
O Asan introduction O As a text (student)

O As a reference manual O As a text (instructor)

0O For another purpose (explain)

Please comment on the general usefulness of the book; suggest additions, deletions, and clarifications; list
specific errors and omissions (give page numbers):

What is your occupation?

Number of latest Technical Newsletter (if any) concerning this publication:

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

GC28-6646-7

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

— — — — o QUI"| BUOIY P04 10 JN) cmmm oo o - — -

Fold Fold

First Class l
Permit 40 | |
Armonk |
New York |
|
W—

]] L
Business Reply Mail e ——
No postage stamp necessary if mailed in the U.S.A. T |
|

]
e |
Postage will be paid by: & S :
International Business Machines Corporation |
Department 636 |
Neighborhood Road |
Kingston, New York 12401 |
|
.. a...........‘..............................{

Fold Foid

JISIME

®
International Business Machines Corporation
Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
_821 United Nations Plaza, New York, New York 10017
(International)

'V 'S'Q ul pautag

L-9%99-8209D

*11sU] OIORIN pue J0siazadng SO

