FACT SHEET - Marine

X2 BMS 12/24

X2 BMS is an upgraded version of MasterLi BMS including IDA balancing and pre-charge of Load relay.

Key Features and Design

- ➤ Developed for lithium Cell Pack consisting of individual 3.2 V LiFePO₄ cells.
- Supports 12 V or 24 V systems, i.e. 4 cells or 8 cells in series.
- Introduces new BMS technologies adopted for systems in yachts: Combines lithium and lead batteries as starter, manage safe charging, intelligent dynamic balancing and new super-safe low voltage protection.
- Protects each individual cell against overvoltage, undervoltage and over / under temperature at different temperature when charging / discharging.
- A Cell Pack can consist of several cells in parallel to increase the capacity. X2 BMS manages up to 1 600 Ah per cell assembled in parallel and connected four in series for 12 V or eight for 24 V.
- Central design and no unprotected cell boards with continuous standby current during winter storage as well as in the event of Low Voltage Protection cut-off.
- ➤ High Performance balancing by Intelligent Dynamic Algorithm (IDA), which manages large cells and optimizes charging.
- BMS Control displays multi-level LED / Buzzer alerts to make it safe to utilize 93-95% of the battery's true capacity.

Notice of Copyright: X2 BMS ® Fact Sheet Copyright © 2021 all rights reserved. No part of this document may be reproduced in any form without the consent of MasterLi AB, Sweden.

System Basics

X2 BMS performs balancing of cells in series, protects and controls battery with external relay and/or direct connection to charge controllers.

Basic protections:

- Over-charging
- Over-discharging
- Over-temperature
- Under-temperature
- > Balancing control the battery cells

Unique features for X2 BMS:

- X2 Technology combines Lithium and lead
- Charge Management System
- Intelligent Dynamic Balancing
- > Dual low voltage protection
- Warning system with LED / Buzzer
- Output to control latching (bi-stable) relay
- Pre-disconnect (AFD) output
- Inbuilt pre-charge for both load and charge relay

System 500+ A includes the following:

> X2 BMS-12/24 Master unit (red)

BMS Control Anodized alu-panel (black)

Fuse Boxes and harness Plastic boxes with ATO fuses and wires to connect BMS and Control

2 pcs Relays 500+ A Gigavac DC-relay. Optional latching (bi-stable) Load Relay

X2 BMS introduces new technologies that enable lithium systems as safe and reliable replacement for traditional lead battery systems.

- 1. The X2 BMS design combines lead and lithium. The "X2" stands for management of two different batteries by combining the start lead battery (or aux) and the lithium battery into one system. This unique feature creates many benefits in yacht installations.
- 2. The new design is compatible with all chargers, thanks to the built in Charge Management System. The CMS will turn off absorption and float charging, which will maximize the life of the lithium battery.
- 3. High performance cell balancing with the new Intelligent Dynamic Algorithm, will keep all cells in balance without absorption nor float charging. (Absorption is extended high voltage for a few hours).
- 4. The new Low Voltage Protection is the safest solution of all existing battery systems.

Safety

X2 BMS meets all high demands that are required for a safe and reliable battery system.

- Low Voltage Protection must never be triggered incorrectly to cause blackout that may incur dangerous situations for the boat and crew.
- Low Voltage Protection must protect in case of no charging during an extended period.
- The battery must be protected from premature aging due to imbalance of cells.

"BMS has the ability to cut-off the power to critical equipment such as navigation and autopilot, but must never do it incorrectly or unexpectedly."

X2 BMS wired to fuse box (4 cells/12 V). Start-up

will perform pre-charge at 5 Ω resistor (green).

"The BMS is there to protect and maximize the lifetime of the battery, but if the system is poor, it could damage battery or chargers."

"Yacht owners require a reliable system that safeguards against blackouts as well as protects the lithium battery and chargers from damage".

Compatible with existing equipment

- Supports existing installations, i.e. 12/24 V equipment for lead batteries.
- Charger with lithium profile or settings for AGM-lead battery can be adapted to the X2 BMS, due to the built in Charge Management System.

- Combined charger / inverter can be adapted to the system.
 - Victron Multi / Quattro can be connected to X2 BMS and wired without interface and CAN.
 - The system can also be adopted with other combined charger/inverter brands.
- > No shunt is required with X2 BMS.
- > Starter and/or Aux batteries are controlled and managed by X2 BMS.

Quality and design

X2 BMS is designed and manufactured according to standards sanctioned by leading responsible authorities, such as: DNV GL AS Maritime (Det Norske Veritas® incl. Germanischer Lloyd) and the American Boat & Yacht Council (ABYC).

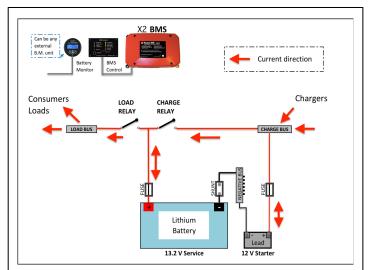
To maximize the life of the battery system, the life of BMS device must match the life of the lithium cells. Quality has been a top priority to achieve maximum life expectancy.

- Manufactured to withstand a marine environment with salt water, humidity and other harsh conditions. BMS and Control are assembled with high-quality electronics, covered with epoxy coating to protect the circuit board. Assembly materials also include stainless steel screws, anodized aluminium and thermoplastic.
- CE certified. Made in Sweden.

Multiple functions to control relays and/or remotes in a dual system

X2 BMS will protect the battery by controlling relays and / or by remote connected to chargers. Since there are many different chargers and consumers in a yacht, the safest system is to protect battery with two relays; one on the load side and another on the charge side.

Load Relay - protects from discharging:


- Low Cell Voltage (LVP)
- High Temperature (HTP > 55° C)
- Isolate Battery during storage

Charge Relay - protects from charging:

- High Cell Voltage (HVP)
- High Charge temperature (> 45° C)
- Low Charge Temperature (< 2° C)</p>
- Isolate Battery during storage

Charge Relay also operates as follows:

- Combine / Isolate as "X2" of lithium and lead battery (starter or aux).
- Disconnect / reconnect according to Charge Management System (CMS).
- Disconnect in event of Low Voltage
 (LVP) and completely isolate the lithium battery.

Multiple functions for the Charge Relay in events of: HVP, Temperature, Combine (X2), Charge Management and LVP.

The Charge Relay control has multiple functions including **X2 technology** and **Charge Management System.**

- When there is no charge, the Charge Relay opens and isolates the two batteries (X2-technology).
- When the Charge Relay is open and charging is switched ON, the relay will close.*
- *) Exception is when the Charge relay will remain open according to the CMS regulation. X2 BMS has a built-in **Charge Management System (CMS)** that does not allow the Charge Relay to close when the lithium battery is full. The advantage of CMS is to obtain maximum life, since the lithium battery should not be FLOAT charged.

Tailor-made outputs for yacht installations to control relays / remotes

X2 BMS is equipped with several tailor-made outputs including a pre-signal, which can be used to operate alternators as well as other controllers with a remote signal. It communicates with Victron Multiplus, Quattro or Phoenix inverter, which connects by single standard wire and a small signal relay.

Maximum current per output; 20 A (peak), enables connection of three DC relays per output and "unlimited" numbers of remotes. (Signal to close a DC relay creates an inrush current of 4 - 7 A).

Five different BMS outputs (@) can be used to control:

	Remote on/off of Loads	@ 1	#5
\triangleright	Remote on/off of Chargers	@ 4 or 3	#10 or #9
\triangleright	Remote on/off of Victron Multi charger/inverter	@ 3 and 1	#9 and #5
\triangleright	Remote on/off of MPPT solar controllers	@ 4 or 3	#10 or #9
\triangleright	Remote on/off of Alternator control	@ 4	#10
\triangleright	Remote on/off of SSR as Victron BP220	@ 5 or 1	#12 or #5
\triangleright	DC Charge Relay 500+ A non-latching	@ 5	#12
\triangleright	DC Load Relay 500+ A non-latching	@ 1	#5
	DC Load Relay 500+ A latching (bi-stable)	@ 2	#6 and #7

Note: #XX is output number at BMS terminal B. The #10 output is a pre-signal of 2 seconds prior charge disconnect of #9 and #12. SSR is a MOSFET-relay that has limited current and power loss at high current.

Monitoring

Charge status monitoring (SOC %) is not built into the X2 BMS, since an external battery monitor is more convenient and accurate. The external battery monitor is excellent for planning when recharging will be required. However, the battery monitor measures the current and makes an estimate of the state of charge (SOC) based on the capacity set in the battery monitor. Most often, the SOC calculation is not entirely true, because the battery monitor has not been synchronized for a while and also because the capacity set is not the same as the true capacity of the lowest cell.

The **BMS Control** has a pre-warning system that makes it safe to utilize 93 – 95% of the lithium battery's true capacity. In event of low voltage, a three-stage Pre-Alarm with duration time of approx. 10 hours yellow LED, 27 minutes red LED and 2 minutes Buzzer.

More information regarding Pre-alarm and Status LEDs in the User Manual on page 12 - 15.

Cell voltage measured in a fair temperature is correct as long as neither charging nor discharging has affected the voltage for the last half hour or so.

BMS Control – condition / action overview

Name	Condition Action BMS Control Action Remote / Re							
Name	Condition		LEI	D - solid		Buzzer	LOAD	CHARGE
Battery ON	Load Relay ON	Battery ON					ON	
Charge Relay	Charge Relay ON		Charge Relay		Temperature		ON	ON
Storage *	All cells 5 V and temp OK during 10 min. *			Storage	Temperature		ON	
Temperature	Battery temperature +2° - +45° C				Temperature		ON	
BMS ON	Power to BMS	BMS ON					ON	

LOW CELL VOLTAGE										
Name Condition			Duration time	Action BMS Control					Action Rem	ote / Relay
ivairie	Condition	Condition		Battery ON		LED - Flashing		Buzzer	LOAD pulse	LOAD
Low Battery Alert	Any cell <	during 10 min.*	10 hours*		Low Voltage					
Low Voltage - Warning 1	Any cell <	during 3 min.**	27 minutes**		Low Voltage	Pre-Alarm				
Low Voltage - Warning 2	Any cell <	during 28 min.	2 minutes	OFF	Low Voltage	Pre-Alarm		2 min.		
Low Voltage Protection 1	Any cell <	during 30 min.							OFF	OFF
Low Voltage - Warning 3	Any cell <	dur. 10 sec.***	50/60 seconds***	OFF	Low Voltage	Pre-Alarm		50 sec.		
Low Voltage Protection 2	Any cell <	during 1 min.							OFF	OFF
Low Voltage Cell Error	Any cell	dur. 10 sec.***	ı				Cell Error	10 sec.		

The duration depends on the discharge rate; 10 hours until Pre-Alarm, refers to e.g. 5 amps discharge @ 400 Ah battery. Ten-minute trip delay filters out occasional voltage drops.

^{*)} The duration depends on the discharge rate; 10 nours and 10 nours a

HIGH CELL VOLTAGE										
Name	Condition	Candinian		Action Remote / Relay						
Name	Condition	,n		LED - Flashing			Buzzer	AFD (pre)	CHARGE	
Unbalanced cells Alert (HV)	Any cell >			High Voltage						
High Voltage Pre-Warning	Any cell >			High Voltage	Pre Alarm		10 sec.			
High Voltage Protect (HVP)	Any cell >		OFF	High Voltage	Pre Alarm			OFF 2 sec	OFF	
High Voltage Cell Error *	Any cell >					Cell Error	10 sec.			
*) 10 seconds trip delay filters o	*) 10 seconds trip delay filters out occasional voltage drops. Note, if Cell Error will be triggered, it's most probably false reading due to fuse or poor wire and									

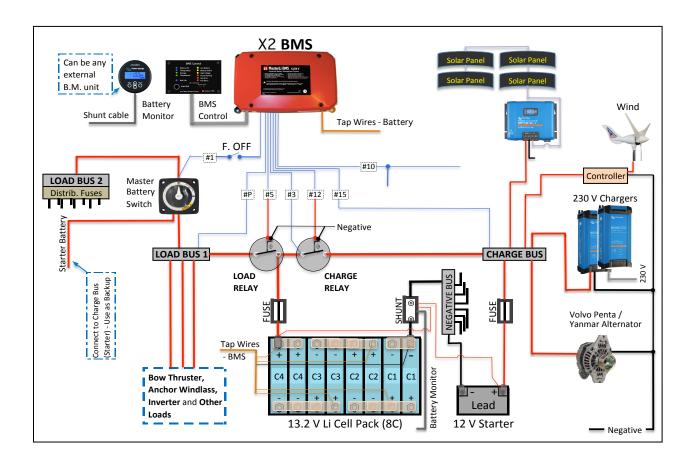
of this reason will not trigger relay/remote action nor balancing. Event of Cell Error require troubleshooting.

BATTERY TEMPERATURE - CHARGING									
Name	Condition		Action BMS Control - LED / Buzzer						
Name	Condition		Charge Relay	rge Relay Temp. LED LED - Flashing				AFD (pre)	CHARGE
Over Temperature Alert	> 43° C and Charging			OFF	Temp Warning	Pre Alarm	10 sec.		
Over Temp. (no charging)	> 43° C								
Over Temperature Protection	> 45° C		OFF	OFF				OFF 2 sec	OFF
Under Temperature Alert	< 4° C and Charging			OFF	Temp Warning	Pre Alarm	10 sec.		
Under Temp. (no charging)	< 4° C								
Under Temperature Protection	< 2° C		OFF	OFF				OFF 2 sec	OFF
	l .	1							

BATTERY TEMPERATURE - DISCHARGING										
Name	n BMS Contr	ol - LED / Buzzer			Action Remote / Relay					
Name	Condition	Battery ON	Charge Relay	Temp. LED	LED - F	lashing	Buzzer	LOAD	CHARGE	
Over Temperature Alert	> 45° C		OFF	OFF						
Over Temperature Alert	> 55° C	OFF*	OFF	OFF	Temp Warning	Pre Alarm	2 min.			
Over Temperature Protection	> 55° C	OFF*	OFF	OFF				OFF - After	Pre-Alarm	
Under Temperature Alert	< 2° C		OFF	OFF						
Under Temperature Protection For example -20° C **			OFF	OFF	See n	ote**				

^{**)} Lithium battery will not be damaged during discharge in freezing degrees and of this reson system has no protection which will cut-off (create blackout)

System schematics


12 V system with common chargers in a yacht (Schematics 12:1)

When equipped with Gigavac (500+ A) contactors, *X2 BMS* will manage bow thruster as well as high power inverters. The Gigavac contactors can handle peak current of 1000 A during max 70 seconds. X2 BMS manages extra contactors (load relays) in parallel for continuous high current installations.

Wind generator and hydro generator works safely in the X2-system since wind/hydro controllers always are powered by starter / aux. When turbine is spinning, wind/hydro controllers must be powered ON (at output connected to a battery), otherwise the controller will break. An isolater must never be used together with Wind / Hydro generator. When X2 BMS is off during winter storage, wind and solar can float charge starter as well as third bow battery (lead).

Please note, different schematics including connection of latching (bi-stable) relay, second starter, bow battery, Balmar alternator, Victron Multi charger/inverter, Mastervolt Combi charger/inverter, different solar controllers, hydro generator, as well as system of 24 V are presented in the User Manual.

Schematic 12:1 Fuse box connections to BMS are excluded in the schematic below.

DATA SHEET X2 BMS - 12/24 V	batterybala	ance	Version 21:1
GENERAL		FUSES (optional external fuse boxes)	
BMS nominal voltage	12 or 24 V	Recommended Cell Balancing fuse	2 A
BMS min - max input voltage	7 - 36 V	Recommended Input Pwr fuse	2 A
Number of cells in series (4S/8S, 2P4S/2P8S, 3P4S/3P8)		Recommended Constant Pwr fuse	2 A
Lithium chemistry (Only)	LiFePO4	Recommended Relay fuse, 12 / 24 V (per contactor)	5/3 A
Shunt required to connect to BMS	No	The commended Heldy Tube, 12 / 24 V (per contactor)	370 K
Needs of DC/DC or external regulation of alternator	No	FIRMVARE settings	
Needs of CAN to control Victron Multi charger/inverter	No	Under Voltage Protection, LVP1 (after 30 min alerts), low	est cell < V
Needs of pre-charge unit for charge or load relay	No	Under Voltage Protection, LVP2 (after 60 sec alerts), lower	
Optional BMS Control with status / alerts	Yes	Over Voltage Protection, HVP (after alerts), highest cell	> V
BMS unit power consumption, average	50 mW	Balance start voltage (at least one cell)	> V
BMS unit stand-by power (when OFF or event of LVP)	0.0 mW	Balance end voltage max (= HVP)	> V
Circuit Board protection for harsh and humid conditions (Balance end voltage min (when normal mode i.e. fine tuning b	palancing) < V
Protection category when BMS unit is wall mounted uprice		Balance end voltage according to IDA (when large unbalance	
BMS dimensions L x W x H	220 x 135 x 44 mm	Battery max temperature; Load relay switch off (after pre	•
Weight	0.32 kg	Battery min temperature; Load relay switch off	None
Trong in	0.02 Ng	Battery max temperature; Charge relay switch off (after p	
BALANCING and MEASUREMENT		Battery min temperature; Charge relay switch off (after p	,
Dual advanced Multicell Monitors of 3rd generation	Yes		
Ultra high Cell voltage resolution	0.1 mV	OUTPUTS Terminal A to BMS CONTROL (5 V, ma	ax 20 mA)
Cell voltage accuracy (measured by dual Multicell Monito		#1-2 Start up activation during 30 seconds after #1-#2 clos	,
Inteligent Dynamic Balancing Algorithm - balancing boos	-,	#3 BMS ON	ou by puon bullon
Alghorithm uses memory of detected unbalance and if no		#4 Load Relay ON	Battery ON
continue balancing when chargers switched off or in floa	•	#5 Charge Relay ON	Charge Allowed
Heatsink on balancing resistors	Yes	#6 Temperature OK (measured on Battery)	+2° - +45° C
Overheat protection by dual temp sensors on circuit boal		#7 Storage OK (only when temperature is OK)	V
High performance balancing algorithm will stop at cell de		#8 High Voltage alert	V
Cell balancing current @3.55 V and 7.15 Ohm resistors	0,50 A	#9 Low Battery alert	V
Recommeded cell capacity, max (nominal Ah)	1 600 Ah	#10 Pre-Alarm before Load / Charge relay open due to	
Recommeded cell capacity, min (nominal Ah)	200 Ah	#11 High Temperature	>+55° C
Temperature acurrancy by thermistor probe at 20° C	+/- 0.2° C	#12 Cell Error	<: V
· · · · · · · · · · · · · · · · · · ·		!	2x 87 dB 2.4 kHz
TEMPERATURE and OPERATION of BMS unit		#14 Negative	
Operating temperature, max	+ 75° C		
Operating temperature, min	- 40° C	OUTPUTS / INPUTS Terminal B	
Storage temperature, max	+40° C	#1 Power IN Connects to Battery Switch, whic	h operates BMS OFF
Storage temperature, min	- 25° C	#2 Negative	
		#3 Aux / Cont Continuous power 12/24 V direct	t from battery
RELAY OPERATION of Contactors, Remotes or S	SRs	#4 Load COM Input voltage to operate: #5, #6	and #7
BMS current limitation of Battery (Load/Charge)	None	#5 Load output Normal Open - closed when disc	charge is allowed
BMS operates external DC relays or remote control directly to Cha	rgers/Loads	#6 Open Load 2 seconds pulse for operating La	atching contactor
DC Relay can be contactor as Gigavac, Kilovac, Blue Sea Syst - a	ll good for 500+ amps	#7 Close Load 6 seconds pulse for operating La	atching contactor
Output signal to close such contactors creates an inrush current of	f 3.5 - 7 A	#8 Charge COM Input voltage to operate: #9, #1	0 and #12
Max inrush current, each output	20 A	#9 Charge NO Closed when charging allowed i.e	e. not HVP and Temp OK
Max continuous current, each output	5 A	#10 Pre-signal (AFD) Will Open 2 seconds pre #9 and	pre #12
Total numbers of outputs to DC relay / Remote	5	#11 CMS / X2 Input from #9 by jumper (= #9 +	#12)
Max DC relays (contactors) in parallel connection, each	output 3	#12 Charge output Closed when charging allowed b	y X2, CMS and by #9
Output DC Relay, Load for non-latching relay / remote	1	#13 Temp sens Input for temperature probe	
Output DC Relay, Load for latching relay (bi-stable) Open/0		#14 Temp sens Input for temperature probe	
Voltage to control Load relay or remote control (Load Com	n) 12 or 24 V	#15 Charge Pwr12 Only for 12V connected to Charge	ge Bus (when use of #12)
Output DC Relay, Charge Protection (HVP and Temp)	1	#16 Charge Pwr24 Only for 24V connected to Charge	ge Bus (when use of #12)
Output DC Relay, X2 combine / CMS	1	NIDUTO T	
Output DC Relay, Charge AFD (pre-disconnect 2 second		INPUTS Terminal C	
Voltage to control Charge relay or Remote control (Com	input) 12 or 24 V	4-Cells socket Connect tap wires to each of four cells	-
		8-Cells socket Connect tap wires to each of eight cell	Is and to battery minus