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Nomenclature

Here the most important notations are gathered in alphabetical order, although each
notation is described in the text when first used.

Greek symbols

αi linear thermal expansion coefficient of the i-th layer
β angle of the curved composite beam
γxy, γxz, γyz shearing strains in Cartesian coordinate-system Oxyz
γrϕ, γϕz, γrz shearing strains in cylindrical coordinate-system Orϕz
εx, εy, εz normal strains in Oxyz
εr, εϕ normal strains in Orϕz
ϑ uniform temperature
ϑ0 reference temperature
Θ angle of the radial distributed line load on curved beams
κi shear correction factor of the i-th layer
Π total potential energy
ρi mass density of the i-th layer
σy, σz normal stresses in Oxyz
σϕ normal stress in Orϕz
τyz shearing stress in Oxyz
τrϕ shearing stress in Orϕz
φi cross-sectional rotation of the i-layer
ϕ tangential coordinate in Orϕz
ωj j-th eigenfrequency of the composite beam

Latin symbols

A cross-section of the whole composite beam
Ai cross-section of the i-th layer
∂A12 common boundary of A1 and A2

bi width of the i-th layer
B spatial domain occupied by the whole composite beam
Bi spatial domain occupied by the i-th layer
∂B12 common boundary surface of B1 and B2

c distance between C1 and C2

ci distance between C and Ci
C origin of the coordinate-system Oxyz, E-weighted centre of the

whole beam cross-section
Ci centre of the i-th layer
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NOMENCLATURE

ex, ey, ez unit vectors of Oxyz
er, eϕ, ez, unit vectors of Orϕz
Ei elastic modulus of the i-th layer
f , fy distributed line load in Oxyz
fr, fϕ distributed line load in Orϕz
F , F̃ , F1, F2 concentrated force as loading
F cr
j j-th buckling load
Gi shear modulus of the i-th layer
hi height of the i-th layer
H Heaviside function
i number of the layer
Ii second moment of area of the i-th layer
k slip modulus
L length of the beam
m distributed bending moment
M total bending moment
M̃ bending moment as loading
Mi internal bending moment in the i-th layer
N total axial force
Ni internal axial force in the i-th layer
Q interlayer shear force
r radial coordinate in Orϕz
ra radial coordinate of the outer boundary of the curved composite

beam
rb radial coordinate of the inner boundary of the curved composite

beam
rc radial coordinate of the common boundary of the layers of the

curved beam
s interlayer slip
Si cross-sectional shear force of the curved composite beam
t time
T uniform temperature change
u displacement field
u horizontal displacement of the cross-section in Oxyz, radial dis-

placement in Orϕz
U strain energy
v vertical displacement of the cross-section in Oxyz, tangential dis-

placement in Orϕz
V cross-sectional shear force
w displacement in z direction
wi displacement of centreline of the i-th layer in z direction
W work of the loading
x horizontal coordinate of the cross-section
y vertical coordinate of the cross-section
z coordinate along the beam in Oxyz, coordinate perpendicular to

the plane of symmetry of the curved beam in Orϕz
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Chapter 1

Introduction

Layered composite structures, especially layered beams are widely applied in building and
bridge engineering since the advantages of the layers made of different elastic materials
can be well married, while their disadvantages can be reduced or eliminated. Therefore it
is very important to understand the mechanical behaviour of the layered composite beams
and the influence of the connection between the layers for the mechanical properties. In
some cases it is assumed that the connection is perfect both in normal and tangential
direction and this assumption provides satisfying results for these problems. The theory
of this kind of composite beams is well developed. However, in a lot of other cases it is
necessary to deviate from this assumption. Namely the beam components are generally
joined to each other by different shear connectors such as nails, studs, screws or rivets.
Because of the elastic deformation of these connectors two phenomena can occur among
the layers. In normal direction the beam components may be divorce and in tangential
direction an interlayer slip can happen. The experiments and measurements have proven
that the effects of these phenomena cannot be neglected in a number of cases. This thesis
is restricted to that problems when the connection is perfect in normal direction (the
divorce of the layers is not allowed) but there is interlayer slip in tangential direction.

One of the most commonly used configuration is shown in Fig. 1.1. This type of
composite beam is widely applied in the bridge industry. Its cross-section consists of a
concrete slab with steel reinforcement and a steel joist. A large amount of studies and
researches, which we are going to outlined in Section 1.1, deal with this configuration
and its mechanical behaviour. Composite structures are also utilized as floor and wall
elements, e.g. timber-concrete elements composed of thin concrete plates attached to wood
studs by means of shear connectors. The common property of these structural elements is
the interlayer slip. Our analyses are not restricted to the above mentioned configurations.
The considered composite beam and the assumptions are going to appear at the start of
each corresponding chapter.

1.1 Literature review
The first analytical works analysing the behaviour of composite beams with weak shear
connection appeared in the 40’s and 50’s [1–3]. The pioneering and most cited work is
definitely paper by Newmark et al. [1]. Their model, which is called the Newmark’s model
in the literature, used the following assumptions (i) the layers have linear elastic mate-
rials, (ii) the layers separately follow the Euler-Bernoulli beam theory, (iii) the vertical
separation of the layers is not allowed. The problem was governed by a linear differen-
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1. CHAPTER. INTRODUCTION

Figure 1.1. Frequently used composite cross-section with interlayer slip.

tial equation of second order in the longitudinal force resisted by the top element, and
the other unknowns were the longitudinal force and the expression for moment along the
beam.

In the late 60’s, Goodman and Popov [4] further developed the Newmark’s model and
extended it for three-layered wood beams with interlayer slip. They deduced a differential
equation of fourth order in the deflection and also contained the expression of the moment
along the beam (the latter one is only unknown in the case of indeterminate beam). They
consider the problem with one concentrated force applied at mid span and two concen-
trated force at third points. Adekola [5] proposed a model which took into account the
vertical separation (it is also called uplift) of the layers and frictional effects. For the com-
putations Adekola applied the finite difference method to solve the problem numerically.
Other researchers further investigated the influence of the uplift [6–8]. They computed
the error caused by neglecting the uplift in the Newmark’s model and determined that
the effect of the uplift can be ignored since the order of this error is a few percent.

Girhammar and Gopu [9] proposed a formulation for the exact first- and second-order
analyses of composite beam-columns with partial shear interaction subjected to transverse
and axial loading. In this study the authors extended the Newmark’s model with taking
into account axial loading. The governing differential equation was of the sixth order in
vertical displacement. Ecsedi and Baksa [10] also deduced the governing equation of the
problem in terms of the slip and the vertical displacement. Previous researches including
the work of Newmark et al. [1] always assumed no axial force on the composite beam.
Girhammar and Pan [11] developed a model for the exact and approximate analysis for
composite beams with interlayer slip subjected to general dynamic load.

Some study dealt with the behaviour of continuous composite beams with interlayer
slip in the linear-elastic range [12–14]. Plum and Horne [12] investigated a two-span
continuous beam subjected to two equal point loads at the centres of the two span. They
proposed closed-form solutions for the deflection, for the longitudinal force in the top
element, for the slip, for the slip strain and for the redundant moment at the internal
support. A two-span and a three-span continuous beam were analysed by Jasim [13].
The two-span continuous beam was subjected to both distributed line load and point
loads at mid-spans, whilst the three-span continuous beam had a point load at the centre
of the internal span. Jasim and Atalla [14] provided a simplified solution to determine
the deflection of a continuous composite beam. However, the formulation can be derived
for the continuous beams based on the Newmark’s model, the computations can easily
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1. CHAPTER. INTRODUCTION

become lengthy and difficult.
Interesting fact that the significant applications of the finite element method (FEM)

for the problem of composite beams with partial shear interaction were carried out around
the millennium, although the behaviour of this type of beams had been investigated for
50 years. The finite element satisfying the least regularity to describe the partial shear
interaction problem is the 8 degrees of freedom (dof) finite element, for which the length-
wise interpolation functions are cubic for the transverse deformation and linear for the
axial deformations defined at the centroids of the top and bottom elements. Application
of this element leads to a curvature locking problem, which causes numerical instabili-
ties for high values of the stiffness of the shear connection [15, 16]. The consequences of
this phenomenon have been described by Prathap and Naganarayanan [17]. The spuri-
ous oscillatory trends that occur in related multi-field problems in engineering numerical
methods have been quantified by Dall’Asta and Zona [18]. Some researchers examined
the possibilities to avoid the locking phenomenon. Dall’Asta and Zona [16, 18] proposed
to introduce further nodes at midspan of the element. A 10dof element was provided by
Daniels and Crisinel [19]. Previously Arizumi, Hamada and Kajita considered a 12dof
finite element in [20]. Dall’Asta, Leoni and Zona further increased the degrees of freedom
to 16 [21, 22]. Salary, Spacone et al. [23, 24] proposed a finite element formulation based
on the force method. Ayoub and Filippou [25, 26] derived displacement-stress mixed el-
ements. Dall’Asta and Zona [27] also considered the possibility of utilizing a three-field
mixed formulation.

Faella et al. [28, 29] developed a stiffness element with 6 dof which are the vertical
displacement, the rotation and the slip at both ends. To obtain the stiffness matrix the
flexibility matrix was inverted for the case of a simply supported beam. The flexibility
coefficients had already been derived by Consenza and Pecce [30]. The determination of
the stiffness matrix based on the Newmark’s model, thus this method is able to provide
the same results as the solution of the governing equation of the partial shear interaction
problem. All the above mentioned study dealt with the problem of composite beams
with interlayer slip in linear-elastic range. In this thesis the problem of the considered
composite beams is also analysed in the linear-elastic range.

Therefore we note that a number of studies investigated the problem of composite
beams with weak shear connection by means of non-linear modelling but in the following
only the significant publications are mentioned. Many researchers further extended the
Newmark’s model taking into account material non-linearities. Several tests have been
carried out on simply supported and continuous beams in order to compare the real
behaviour of the beams with the modelling. Test results have been published in [31–
34]. Some investigators analysed the behaviour of composite beams at ultimate loads
only [35, 36]. Yam and Chapman [37] proposed a modelling method taking into account
material non-linearities based on the Newmark’s model. For the solution of the problem
a step-by-step method of numerical integration was used. They utilized the results in
[38, 39]. The ductility of composite beams was investigated by Rotter and Ansourian
[40, 41]. Ansourian [31] introduced a finite element technique including realistic material
properties for steel and concrete but the solution did not provide a general and robust
technique. Finite difference method was applied in [42, 43]. In these studies the material
non-linearities were assumed only for the shear connectors, the material of the layers
behaved in linear-elastic way. A mixed formulation was derived by Oehlers and Sved [44].
They assumed that the beam layers behaved elastic, whilst the connection was plastic.
Fabbrocino et al. [45] derived a formulation to analyse the behaviour of a simply supported
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1. CHAPTER. INTRODUCTION

composite beam (shown in Fig. 1.1) in the sagging moment region. During the solution
they used the finite difference method. These authors further developed the considered
formulation to extend it to the hogging moment region [46]. They also assumed interlayer
slip between the concrete and the steel reinforcement in the top layer. In [47] the authors
had analysed a continuous beam with the previously developed method, and one year later
they also published a study on the ductility of composite beams in the hogging moment
regions [48].

The composite beams made of a concrete slab combined with a steel joist are the most
frequently used in the bridge and building industry. Amongst these type of composite
beams perhaps the most significant one is shown in Fig. 1.1. It follows that many works
deal with steel-concrete composite beams including the effect of the time-dependent be-
haviour of concrete taking into account the interlayer slip. The thesis is not restricted to
this pair of materials and does not consider the time-dependent behaviour of concrete,
therefore only the most important publications are mentioned in the following. Brad-
ford and Gilbert [49] applied a relaxation solution for the steel joist and the so-called
age-adjusted effective modulus method for the concrete assuming full shear interaction
between the layers. The same authors further developed their model with the influence of
the partial shear interaction in [50, 51]. Tarantino and Dezi [52] proposed a new formu-
lation based on two discretization, one in the time domain and one in the spatial domain
along the beam axis. They used the step-by-step procedure to model the time-dependent
behaviour of concrete. The same authors further developed the previous study for con-
tinuous beams applying the flexibility method [53, 54]. This method was used in [55]
including simplified creep models, such as the age-adjusted effective modulus method, the
effective modulus method and the mean stress method. Few years later Dezi, Leoni and
Tarantino [56] carried out a comparison between their previously published models. They
found that the age-adjusted effective modulus method provided good results under static
actions, while shrinkage effects should be modelled by dint of the mean stress method.
A lot of investigators utilized FEM solutions to describe the time-dependent behaviour
of concrete, e.g. [57–60]. The only closed form solution for the problem of steel-concrete
composite beams was proposed by Mola et al. [61]. They used the flexibility approach
for a simply supported beam with various loading conditions and the behaviour of con-
crete was modelled by the age-adjusted effective modulus method. Numerical models
[62] and stiffness element [29] were also investigated for the problem of time analysis of
steel-concrete composite beams with partial shear interaction.

An excellent thesis was carried out by Ranzi [63] on composite beams with partial
shear interaction. The author utilized and further developed several models mentioned
above. Namely general solution was derived for two- and for m-layered composite beams
with interlayer slip in linear elastic range. Some stiffness elements were also described to
analyse the problem of steel-concrete composite beams. The author summarized several
theories of material non-linearity which were also applied. Finally time analyses were
introduced including the time-dependent behaviour of concrete assuming both full and
partial shear interaction between the layers. The steel-concrete composite beam analysed
by Ranzi had the cross-section shown in Fig. 1.1. The author also provided a detailed
and useful literature review.

Other beam theories were adopted for investigation of composite beams with interlayer
slip as well. The Timoshenko beam theory was used in [64]. Murakami [64] formulated
boundary value problems by means of the principle of virtual work. Combining the
development of finite elements with the Timoshenko beam theory was also analysed in

9



1. CHAPTER. INTRODUCTION

[65–70]. Recently several works have also revealed utilizing higher order beam theories
for the problem of composite beams with partial shear interaction [71–74].

There exist several works in connection with the dynamic analysis of composite beams
with interlayer slip [11, 75–78]. An exact and an approximate analysis of composite
members with partial interaction and subjected to general dynamic loading were presented
by Girhammar and Pan [11]. Adam et al. [75] analysed the flexural vibration of composite
beams with interlayer slip using the Euler-Bernoulli beam theory. The governing sixth-
order initial-boundary value problem was solved by separating the dynamic response in a
quasi-static and in a complementary dynamic response. Heuer and Adam extended the
previous model for composite beams made of piezoelectric materials in [76]. The partial
differential equations and general solutions for the deflection and internal actions and the
pertaining consistent boundary conditions were presented for composite Euler–Bernoulli
members with interlayer slip subjected to general dynamic loading in [77]. Wu et al. [78]
derived the governing differential equations of motion for the partial-interaction composite
members with axial force. All these works neglected the influence of the axial and rotary
inertia.

The elastic stability problems of composite beams with weak shear connection were
also investigated [79–83]. Challamel and Girhammar [79] analysed the lateral-torsional
stability of vertically layered composite beams with interlayer slip based on a variational
approach. An analytical method was presented for the delamination buckling using the
Timoshenko beam theory by Chen and Qiao [80]. Grognec et al. [81] utilized the Tim-
oshenko beam theory as well. Schnabl and Planinc [82] presented a detailed analysis of
the influence of boundary conditions and axial deformation on the critical buckling loads
and the same authors took into account the effect of the transverse shear deformation on
the buckling [83].

Although a lot of papers were published in connection with layered curved beams with
perfect shear connection, only a few works counted the influence of the interlayer slip [84–
86]. For out-of plane deformation and loads the time dependent creep and shrinkage
behaviour of horizontally curved steel-concrete composite beams with partial shear inter-
action were analysed by Liu et al. [84]. Erkmen et al. [85] developed a total Lagrangian
finite element formulation for elastic analysis of steel-concrete curved composite beams.
A three-dimensional finite element model is used to simulate composite steel-concrete
curved beams subjected to combined flexure and torsion [86]. Tan and Uy gave a detailed
description of the torsion induced vertical slip [86].

1.2 Objectives
According to the literature review one can see that a number of investigators dealt with
the static analysis of composite beams with interlayer slip to determine the governing
equation of the problem. In many cases the analysis led to a higher order differential
equation the solution of which is often difficult and cumbersome. Thus it is my

Objective 1 to provide an analytical method for the solution of the governing equation
the application of which is handy and needs less computations. In connection with this
objective I draw up the following items:

• to write the governing equation of the problem in terms of the slip and shear force
function,
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1. CHAPTER. INTRODUCTION

• to deduce the so-called fundamental solutions for the problem by means of both the
Euler-Bernoulli and the Timoshenko beam theory,

• to apply the developed solutions for various beams and boundary conditions and
compare with results derived from other studies and from FEM solution.

The overview of the literature shows the lack of researches in accordance with com-
posite beams with interlayer slip under the action of thermal loading. My

Objective 2 is to take into account the effect of thermal loading with the help of the
following items:

• to derive the governing equation of the problem in terms of the slip and shear force
function using the Euler-Bernoulli beam theory and the Duhamel-Neumann’s law,

• to determine the solution of the governing equation with various boundary condi-
tions,

• to provide formulae for the computation of the stresses.

A very important question is the stability analysis of composite beams with weak shear
connection.

Objective 3 is to analyse the buckling of the composite beams, namely

• I aim to determine the buckling load based on the principle of minimum potential
energy,

• I also intend to deduce the buckling load by dint of exact analysis to compare with
the variational method,

• My further purpose is to give the function of the buckling load in terms of the slip
modulus.

However, there are many studies on vibration analysis of composite beams in relation
to the free flexural vibration, these works neglect the effect of the rotary and axial inertia.
My

Objective 4 consists of the following items:

• to deduce the equations of motion including the d’Alembert forces taking into ac-
count the rotary and axial inertia

• to provide a closed form solution for the eigenfrequencies of the composite beam.

The literature contains a number of researches analysing layered curved composite
beams with perfect shear connection, but there exist only a few works on the effect of the
partial shear interaction. The

Objective 5 of the thesis includes

• developing an analytical method based on the principle of minimum potential energy
to describe the behaviour of curved composite beams with interlayer slip,

• writing a Rayleigh-Betti type reciprocity relation for the considered curved compos-
ite beams.
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Chapter 2

Analytical solutions for two-layered
composite beams with interlayer slip

In this chapter we are going to introduce a novel analytical method for two-layered com-
posite beams with interlayer slip to provide the deflection, the rotation, the slip, the
bending moment, the shear force and the normal force function of the considered beam.
In the first case it is assumed that the beam components separately follow the require-
ments of the Euler-Bernoulli hypothesis, while in the second case the beam components
satisfy the requirements of the Timoshenko beam theory. Each method is based on the
fundamental solutions.

2.1 Fundamental solutions for an Euler-Bernoulli com-
posite beam

This section deals with two-layered beam with interlayer slip giving an analytical solu-
tion for the deflection, the cross-sectional rotation, the slip and the internal forces. The
presented solution is based on the fundamental solutions. The fundamental solutions sat-
isfy all the field equations and their initial values are zero except only one of them. A
linear combination of the fundamental solutions which are fitted to the given loading and
boundary conditions gives the solution of the considered static equilibrium problem.

2.1.1 Governing equations

The considered two-layered composite beam made of linear elastic materials is shown
in Fig. 2.1. The plane yz is the plane of symmetry for the geometrical and material
properties and the loading conditions. The cross-section of the beam component Bi is
Ai (i = 1, 2) and the common boundary surface of B1 and B2 is ∂B12 = ∂A12 × (0, L)
as illustrated in Fig. 2.1. Here, L is the length of the two-layered beam and ∂A12 is the
common boundary of A1 and A2. It is assumed that the connection in normal direction
between B1 and B2 is perfect, but in the displacement it may have jump in axial direction
which is called interlayer slip. The origin O of the rectangular coordinate system Oxyz
coincide the E-weighted centre of the cross-section at z = 0 [10]. The centre of Ai is Ci
(i = 1, 2) and Ei is the Young modulus of the layer Bi. It is known, that

c1 =
∣∣∣−−→CC1

∣∣∣ =
A2E2

〈AE〉c, c2 =
∣∣∣−−→CC2

∣∣∣ =
A1E1

〈AE〉c, (2.1)

12



2. CHAPTER. ANALYTICAL SOLUTIONS FOR TWO-LAYERED COMPOSITE BEAMS
WITH INTERLAYER SLIP

y ey

ez

z

C1

C2

C ≡ O

fy(z)
F̃1 M̃2

y ey

ex

x

C1

C2
C ≡ O

b2

b1

h1

h2

c2

c1

A1

A2

B2

B1

∂A12

L

Figure 2.1. Two-layered beam with imperfect shear connection.

〈AE〉 = A1E1 + A2E2, c = c1 + c2. (2.2)

According to the Euler-Bernoulli beam theory for the displacement field we have

u(x, y, z) = u(x, y, z)ex + v(x, y, z)ey + w(x, y, z)ez, (2.3)

u = 0, v = v(z), w(x, y, z) = wi(z)− ydv

dz
, (x, y, z) ∈ Bi, (i = 1, 2), (2.4)

and the cross-sectional rotation can be computed as

φ = −dv

dz
. (2.5)

Utilising the constitutive equations of elasticity and the Hooke’s law we obtain

σz = Eiεz = Ei

(
dwi
dz
− yd2v

dz2

)
, (x, y, z) ∈ Bi, (i = 1, 2). (2.6)

The analysis is restricted to the case of absent axial forces [1, 9, 10, 64, 87], i.e. N = 0 so
we get

N = N1 +N2 =

∫
A1

σzdA+

∫
A2

σzdA = 0. (2.7)

The interlayer slip s is defined as the difference of the axial displacements of the layers
along the boundary surface ∂B12 [10]

s(x, y, z) = w1(z)− w2(z), (x, y, z) ∈ ∂B12. (2.8)

The interlayer shear force can be written in the next form

Q = ks, (2.9)

where k is the slip modulus which represents the stiffness of the connection [1, 9, 10, 64,
87, 88] The value of the slip modulus can alter from 0 to∞. If the k is equal to 0 (Q = 0)
then there is no connection between the layers in axial direction, and when k =∞ (s = 0)
the connection is perfect. The units of Q and k are

[Q] =
force

length
, [k] =

force

(length)2
. (2.10)
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By means of Eq. (2.6) the internal forces and moments in the layers are defined as

N1 =

∫
A1

σzdA = E1A1

(
dw1

dz
− c1

d2v

dz2

)
, (2.11)

N2 =

∫
A2

σzdA = E2A2

(
dw2

dz
+ c2

d2v

dz2

)
, (2.12)

M1 =

∫
A1

yσzdA = c1E1A1
dw1

dz
− I1E1

d2v

dz2
, (2.13)

M2 =

∫
A2

yσzdA = −c2E2A2
dw2

dz
− I2E2

d2v

dz2
, (2.14)

where ∫
A1

ydA = c1A1,

∫
A2

ydA = −c2A2,

∫
Ai

y2dA = Ii, (i = 1, 2). (2.15)

Eqs. (2.11–2.14) show that the normal stresses acting on cross-section Ai (i = 1, 2) are
equivalent a force-couple system (Ni,Mi) (i = 1, 2) at C [10]. The total normal force and
bending moment are as follows

N = N1 +N2 = E1A1
dw1

dz
+ E2A2

dw2

dz
, (2.16)

M = M1 +M2 = c1E1A1
dw1

dz
− c2E2A2

dw2

dz
− {IE}d2v

dz2
. (2.17)

Here,
{IE} = I1E1 + I2E2. (2.18)

Following the method applied in [10] it can be proven that if N = 0 then we have

dw1

dz
=
A2E2

〈AE〉
ds

dz
=
c1
c

ds

dz
, (2.19)

dw2

dz
= −A1E1

〈AE〉
ds

dz
= −c2

c

ds

dz
. (2.20)

Using of Eqs. (2.16), (2.19) and (2.20) we obtain

N1 = −N2 = 〈AE〉−1
(

ds

dz
− cd2v

dz2

)
, (2.21)

where
〈AE〉−1 =

A1E1A2E2

〈AE〉 . (2.22)

Substitution of Eqs. (2.19), (2.20) into Eq. (2.17) gives

M = c 〈AE〉−1
ds

dz
− {IE}d2v

dz2
. (2.23)

Application of the condition of equilibrium for forces in axial direction of beam component
∆B1 gives [10] (Fig. 2.2)

dN1

dz
−Q = 0. (2.24)
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y
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C

N1

C2

∆B1

z z + ∆z

Q∆z

z x

y

N1 + ∂N1

∂z
∆z

C1

C

C2

A1

Figure 2.2. Horizontal equilibrium of a small beam element ∆B1.

y

C

z z + ∆z

z

M + ∂M
∂z

∆z

V + ∂V
∂z

∆zV

M

fy

∆B1

∆B2

Figure 2.3. Shear force, bending moment and applied vertical load on a small beam element
∆B.

Combination of Eq. (2.24) with Eqs. (2.9) and (2.21) yields

〈AE〉−1
(

d2s

dz2
− cd3v

dz3

)
− ks = 0. (2.25)

Analysing the vertical and rotational equilibrium condition of a small beam element ∆B
we can write two another equilibrium equations [10] (Fig. 2.3) which are as follows

dV

dz
+ fy = 0, (2.26)

dM

dz
− V = 0. (2.27)

By means of Eqs. (2.25) and (2.27) we can formulate the governing equation in terms of
the slip and the shear force function

d2s

dz2
− Ω2s+

c

〈IE〉V = 0, (2.28)

where
〈IE〉 = {IE} − c2 〈AE〉−1 , Ω2 =

k{IE}
〈IE〉 〈AE〉−1

. (2.29)

In order to formulate the possible boundary conditions we consider the virtual work of
the section forces and section moments on a kinematically admissible displacement field

ũi = ṽ (z) ey +
(
w̃i (z) + yφ̃ (z)

)
ez, (x, y, z) ∈ Bi, (i = 1, 2) . (2.30)
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A detailed computation gives

W =

∫
A1

σzw̃1 (z) dA+

∫
A2

σzw̃2 (z) dA+

∫
A

yσzφ̃ (z) dA+

∫
A

τyzṽ (z) dA =

= N1w̃1 +N2w̃2 +Mφ̃+ V ṽ = N1s̃+Mφ̃+ V ṽ,

(2.31)

where
s̃ = w̃1 (z)− w̃2 (z) . (2.32)

From equation (2.31) we obtain the possible combinations of the boundary conditions at
the end cross-section

V or v may be prescribed, (2.33)

N1 or s may be prescribed, (2.34)

M or φ may be prescribed. (2.35)

In this thesis we are going to introduce the boundary conditions according to the above
mentioned formulation.

2.1.2 Fundamental solutions

Following we are going to define the fundamental solutions. The indexes EB refers to the
fundamental solutions belonging to the Euler-Bernoulli beam theory. All fundamental
solutions vEBj = vEBj (z), φEBj = φEBj (z), sEBj = sEBj (z), MEB

j = MEB
j (z), V EB

j = V EB
j (z),

NEB
1j = NEB

1j (z), (j = 1 . . . 7) satisfy Eqs. (2.5), (2.21), (2.23), (2.24), (2.26), (2.27) and
(2.28) with the next initial conditions

vEB1 (0) = 1, φEB1 (0) = sEB1 (0) = MEB
1 (0) = V EB

1 (0) = NEB
11 (0) = 0, (2.36)

φEB2 (0) = 1, vEB2 (0) = sEB2 (0) = MEB
2 (0) = V EB

2 (0) = NEB
12 (0) = 0, (2.37)

sEB3 (0) = 1, vEB3 (0) = φEB3 (0) = MEB
3 (0) = V EB

3 (0) = NEB
13 (0) = 0, (2.38)

MEB
4 (0) = 1, vEB4 (0) = φEB4 (0) = sEB4 (0) = V EB

4 (0) = NEB
14 (0) = 0, (2.39)

V EB
5 (0) = 1, vEB5 (0) = φEB5 (0) = sEB5 (0) = MEB

5 (0) = NEB
15 (0) = 0, (2.40)

NEB
16 (0) = 1, vEB6 (0) = φEB6 (0) = sEB6 (0) = MEB

6 (0) = V EB
6 (0) = 0, (2.41)

From the definitions of the fundamental solution we obtain

vEB1 (z) = 1, φEB1 (z) = sEB1 (z) = MEB
1 (z) = V EB

1 (z) = NEB
11 (z) = 0, 0 ≤ z, (2.42)

vEB2 (z) = −z, φEB2 (z) = 1, sEB2 (z) = MEB
2 (z) = V EB

2 (z) = NEB
12 (z) = 0, 0 ≤ z,

(2.43)

vEB3 (z) =
c 〈AE〉−1
{IE}

(
sinh Ωz

Ω
− z
)
, 0 ≤ z, (2.44a)

φEB3 (z) = −c 〈AE〉−1{IE} (cosh Ωz − 1) , 0 ≤ z, (2.44b)

sEB3 (z) = cosh Ωz, 0 ≤ z, (2.44c)
MEB

3 (z) = 0, 0 ≤ z, (2.44d)
V EB
3 (z) = 0, 0 ≤ z, (2.44e)

NEB
13 (z) =

k

Ω
sinh Ωz, 0 ≤ z, (2.44f)
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vEB4 (z) =
c2 〈AE〉−1

Ω2{IE} 〈IE〉 (1− cosh Ωz)− z2

2{IE} , 0 ≤ z, (2.45a)

φEB4 (z) =
c2 〈AE〉−1

Ω{IE} 〈IE〉 sinh Ωz +
z

{IE} , 0 ≤ z, (2.45b)

sEB4 (z) = − c

Ω 〈IE〉 sinh Ωz, 0 ≤ z, (2.45c)

MEB
4 (z) = 1, 0 ≤ z, (2.45d)

V EB
4 (z) = 0, 0 ≤ z, (2.45e)

NEB
14 (z) = c

〈AE〉−1
{IE} (1− cosh Ωz) , 0 ≤ z, (2.45f)

vEB5 (z) =
c2 〈AE〉−1

Ω2{IE} 〈IE〉

(
sinh Ωz

Ω
− z
)

+
z3

6{IE} , 0 ≤ z, (2.46a)

φEB5 (z) = − c2 〈AE〉−1
Ω2{IE} 〈IE〉 (cosh Ωz − 1)− z2

2{IE} , 0 ≤ z, (2.46b)

sEB5 (z) =
c

Ω2 〈IE〉 (cosh Ωz − 1) , 0 ≤ z, (2.46c)

MEB
5 (z) = −z, 0 ≤ z, (2.46d)

V EB
5 (z) = −1, 0 ≤ z, (2.46e)

NEB
15 (z) =

c 〈AE〉−1
Ω{IE} (Ωz − sinh Ωz) , 0 ≤ z, (2.46f)

vEB6 (z) =
c

Ω2 〈IE〉 (cosh Ωz − 1) , 0 ≤ z, (2.47a)

φEB6 (z) = − c

Ω 〈IE〉 sinh Ωz, 0 ≤ z, (2.47b)

sEB6 (z) =
Ω

k
sinh Ωz, 0 ≤ z, (2.47c)

MEB
6 (z) = 0, 0 ≤ z, (2.47d)

V EB
6 (z) = 0, 0 ≤ z, (2.47e)
NEB

16 (z) = cosh Ωz, 0 ≤ z, (2.47f)

Figure 2.4 illustrates the applied loads for the fundamental solution MEB
4 (0) = 1 and

V EB
5 (z) = −1. For uniformly distributed force shown in Fig. 2.5 the definition of the

fundamental solution is as follows

vEB7 (0) = φEB7 (0) = sEB7 (0) = MEB
7 (0) = V EB

7 (0) = NEB
17 (0) = 0. (2.48)

Under the initial conditions (2.48) the solutions of Eqs. (2.5), (2.21), (2.23), (2.24), (2.26),
(2.27) and (2.28) are
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y y

z z

MEB
4 (0) = 1 MEB

4 (z) V EB
5 (0) = −1 V EB

5 (z) = −1

MEB
5 (z) = −z

Figure 2.4. Illustration of applied load for the fundamental solutions.

y

z

f = 1

Figure 2.5. Uniformly distributed load.

vEB7 (z) =
c2 〈AE〉−1

Ω4{IE} 〈IE〉

(
cosh Ωz − Ω2z2

2
− 1

)
+

z4

24{IE} , 0 ≤ z, (2.49a)

φEB7 (z) = − c2 〈AE〉−1
Ω3{IE} 〈IE〉 (sinh Ωz − Ωz)− z3

6{IE} , 0 ≤ z, (2.49b)

sEB7 (z) =
c

Ω2 〈IE〉

(
sinh Ωz

Ω
− z
)
, 0 ≤ z, (2.49c)

MEB
7 (z) = −z

2

2
, 0 ≤ z, (2.49d)

V EB
7 (z) = −z, 0 ≤ z, (2.49e)

NEB
17 (z) =

c 〈AE〉−1
Ω2{IE}

(
cosh Ωz − Ω2z2

2
− 1

)
, 0 ≤ z. (2.49f)

For intermediate loads such as in the case shown in Fig. 2.6 the fundamental solutions
can be expressed by the application of Heaviside functions

X(z) = F̃1H(z − a1)XEB
5 (z − a1) + M̃2H(z − a2)XEB

4 (z − a2)+
+f3 [H(z − a3)−H(z − a4)]XEB

7 (z − a3), 0 ≤ z ≤ L,
(2.50)

whereXEB
j (z) may be vEBj (z), φEBj (z), sEBj (z),MEB

j (z), V EB
j (z) andNEB

1j (z), (j = 4, 5, 7)
and

H(z − a) =

{
0, if 0 ≤ z < a,

1, if a < z <∞. (2.51)

y

F̃1

z = 0

z = a1 z = a2 z = a3 z = a4

z = L

M̃2

f3

z

Figure 2.6. Intermediate applied loads.
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2.2 Fundamental solutions for a Timoshenko composite
beam

In this section we provide the fundamental solutions for composite beams with weak shear
connection based on the Timoshenko beam theory.

2.2.1 Governing equations

The considered beam is shown in Fig. 2.1. The basic assumptions are the same as in
section 2.1, viz. the cross-section of the beam component Bi is Ai (i = 1, 2) and the
common boundary surface of B1 and B2 is ∂B12 = ∂A12× (0, L) as illustrated in Fig. 2.1.
Here, L is the length of the two-layered beam and ∂A12 is the common boundary of A1

and A2. The axis z is located in the E-weighted centre line of the whole composite beam
[10]. The plane yz is the plane of symmetry for the geometrical and material properties
and loading conditions. The centre of Ai is Ci (i = 1, 2) and C denotes the E-weighted
centre of the whole cross-section A = A1 ∪A2 (Fig. 2.1). In this case Eqs. (2.1) and (2.2)
are valid as well. It is assumed that both beam components follow the requirements of the
Timoshenko beam theory with a common cross-sectional rotation φ = φ(z). According to
this assumption the deformed configuration of the two-layered shear deformable composite
beam with imperfect shear connection can be described by the next displacement field

u = uex + vey + wez, (x, y, z) ∈ B, (2.52)

u = 0, v = v(z), w = wi(z) + yφ(z), (x, y, z) ∈ Bi, (i = 1, 2). (2.53)

In Eq. (2.52) ex, ey and ez are the unit vectors of the coordinate system Oxyz. The
interlayer slip is defined by Eq. (2.8) and Eq. (2.9) represents the interlayer shear force in
this case, too. Application of the strain-displacement relationship of the linearised theory
of elasticity gives [89, 90]

εx = εy = γxy = γxz = 0, (x, y, z) ∈ B, (2.54)

εz =
dwi
dz

+ y
dφ

dz
, γyz =

dv

dz
+ φ, (x, y, z) ∈ Bi, (i = 1, 2), (2.55)

where εx, εy, εz are the normal strains, γxy, γxz, γyz are the shearing strains. From the
Hooke’s law for the normal stress σz we get

σz = Ei

(
dwi
dz

+ y
dφ

dz

)
, (x, y, z) ∈ Bi, (i = 1, 2). (2.56)

The following internal forces and moments are defined

N1 =

∫
A1

σzdA = E1A1

(
dw1

dz
+ c1

dφ

dz

)
, (2.57)

N2 =

∫
A2

σzdA = E2A2

(
dw2

dz
− c2

dφ

dz

)
, (2.58)

M1 =

∫
A1

yσzdA = c1E1A1
dw1

dz
+ E1I1

dφ

dz
, (2.59)
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M2 =

∫
A2

yσzdA = −c2E2A2
dw2

dz
+ E2I2

dφ

dz
, (2.60)

Here, ∫
A1

ydA = c1A1,

∫
A2

ydA = −c2A2,

∫
Ai

y2dA = Ii, (i = 1, 2). (2.61)

The cross-sectional shear force Vi is obtained as

Vi = κiGiAiγyz = κiGiAi

(
dv

dz
+ φ

)
, (i = 1, 2), (2.62)

where Gi is the shear modulus of beam component Bi and κi is the shear factor of cross-
section Ai (i = 1, 2). Eqs. (2.57–2.60) show that the normal stresses acting on cross-section
Ai (i = 1, 2) are equivalent a force-couple system (Ni,Mi) (i = 1, 2) at C [10]. The total
normal force and bending moment are as follows

N = N1 +N2 = E1A1
dw1

dz
+ E2A2

dw2

dz
, (2.63)

M = M1 +M2 = c1E1A1
dw1

dz
− c2E2A2

dw2

dz
+ {IE}dφ

dz
. (2.64)

The meaning of {IE} is defined by Eq. (2.18). The analysis of the shear deformable
composite beam with interlayer slip is restricted to the case of absent axial force, i.e. N =
0. Following the method applied in [10] it can be proven that if N = 0 then we have

dw1

dz
=
A2E2

〈AE〉
ds

dz
=
c1
c

ds

dz
, (2.65)

dw2

dz
= −A1E1

〈AE〉
ds

dz
= −c2

c

ds

dz
, (2.66)

Utilizing of Eqs. (2.57), (2.58) and (2.64–2.66) we obtain

N1 = −N2 = 〈AE〉−1
(

ds

dz
+ c

dφ

dz

)
. (2.67)

The definition of 〈AE〉−1 is represented in Eq. (2.22). Substitution of Eqs. (2.65), (2.66)
into Eq. (2.64) gives

M = c 〈AE〉−1
ds

dz
+ {IE}dφ

dz
. (2.68)

Application of the condition of equilibrium for forces in axial direction of beam component
B1 provides [10] (Fig. 2.2)

dN1

dz
−Q =

dN1

dz
− ks = 〈AE〉−1

(
d2s

dz2
+ c

d2φ

dz2

)
− ks = 0. (2.69)

According to the vertical and rotational equilibrium condition of a small beam element
∆B we can write two another equilibrium equations [10] (Fig. 2.3) which are the same as
in Eqs. (2.26) and (2.27). The total cross-sectional shear force can be described as

V = V1 + V2 = 〈κGA〉
(

dv

dz
+ φ

)
, (2.70)
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where
〈κGA〉 = κ1G1A1 + κ2G2A2. (2.71)

From Eqs. (2.26), (2.27) and (2.68) it follows that

V (z) = c 〈AE〉−1
d2s

dz2
+ {IE}d2φ

dz2
. (2.72)

Application of Eqs. (2.29), (2.69) and (2.72) the governing equation can be written in the
next form

d2s

dz2
− Ω2s+ c

V

〈IE〉 = 0. (2.73)

2.2.2 Fundamental solutions

Here, we provide the fundamental solutions for the case of using Timoshenko beam theory
which is denoted by the indexes T . All fundamental solutions vTj = vTj (z), φTj = φTj (z),
sTj = sTj (z), MT

j = MT
j (z), V T

j = V T
j (z) and NT

1j = NT
1j(z) (j = 1 . . . 7) satisfy Eqs. (2.26),

(2.27), (2.67), (2.68), (2.70) and (2.73) with the next initial conditions

vT1 (0) = 1, φT1 (0) = sT1 (0) = MT
1 (0) = V T

1 (0) = NT
11(0) = 0, (2.74)

φT2 (0) = 1, vT2 (0) = sT2 (0) = MT
2 (0) = V T

2 (0) = NT
12(0) = 0, (2.75)

sT3 (0) = 1, vT3 (0) = φT3 (0) = MT
3 (0) = V T

3 (0) = NT
13(0) = 0, (2.76)

MT
4 (0) = 1, vT4 (0) = φT4 (0) = sT4 (0) = V T

4 (0) = NT
14(0) = 0, (2.77)

V T
5 (0) = 1, vT5 (0) = φT5 (0) = sT5 (0) = MT

5 (0) = NT
15(0) = 0, (2.78)

NT
16(0) = 1, vT6 (0) = φT6 (0) = sT6 (0) = MT

6 (0) = V T
6 (0) = 0, (2.79)

From the derivation of fundamental solutions we can determine that the majority of
the fundamental solutions obtained by using the Euler-Bernoulli and Timoshenko beam
theory are identical except few functions. The fundamental solutions are as follows

vT1 (z) = vEB1 (z), φT1 (z) = φEB1 (z), sT1 (z) = sEB1 (z),

MT
1 (z) = MEB

1 (z), V T
1 (z) = V EB

1 (z), NT
11(z) = NEB

11 (z), 0 ≤ z, (2.80)

vT2 (z) = vEB2 (z), φT2 (z) = φEB2 (z), sT2 (z) = sEB2 (z),

MT
2 (z) = MEB

2 (z), V T
2 (z) = V EB

2 (z), NT
12(z) = NEB

12 (z), 0 ≤ z, (2.81)

vT3 (z) = vEB3 (z), φT3 (z) = φEB3 (z), sT3 (z) = sEB3 (z),

MT
3 (z) = MEB

3 (z), V T
3 (z) = V EB

3 (z), NT
13(z) = NEB

13 (z), 0 ≤ z, (2.82)

vT4 (z) = vEB4 (z), φT4 (z) = φEB4 (z), sT4 (z) = sEB4 (z),

MT
4 (z) = MEB

4 (z), V T
4 (z) = V EB

4 (z), NT
14(z) = NEB

14 (z), 0 ≤ z, (2.83)

vT5 (z) = vEB5 (z)− z

〈κGA〉 , φT5 (z) = φEB5 (z), sT5 (z) = sEB5 (z),

MT
5 (z) = MEB

5 (z), V T
5 (z) = V EB

5 (z), NT
15(z) = NEB

15 (z), 0 ≤ z, (2.84)
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y y

z z

MT
4 (0) = 1 MT

4 (z) V T
5 (0) = −1 V T

5 (z) = −1

MT
5 (z) = −z

Figure 2.7. Illustration of applied load for the fundamental solutions.

vT6 (z) = vEB6 (z), φT6 (z) = φEB6 (z), sT6 (z) = sEB6 (z),

MT
6 (z) = MEB

6 (z), V T
6 (z) = V EB

6 (z), NT
16(z) = NEB

16 (z), 0 ≤ z. (2.85)

Figure 2.7 illustrate the applied loads for the fundamental solution MT
4 (z) = 1 and

V T
5 (z) = −1 which are assigned as in the case using the Euler-Bernoulli beam theory.

For uniformly distributed force shown in Fig. 2.5 the definition of the fundamental solu-
tion is as follows

vT7 (0) = φT7 (0) = sT7 (0) = MT
7 (0) = V T

7 (0) = NT
17(0) = 0. (2.86)

Under the initial conditions (2.86) the fundamental solutions are

vT7 (z) = vEB7 (z)− z2

2 〈κGA〉 , φT7 (z) = φEB7 (z), sT7 (z) = sEB7 (z),

MT
7 (z) = MEB

7 (z), V T
7 (z) = V EB

7 (z), NT
17(z) = NEB

17 (z), 0 ≤ z. (2.87)

For intermediate loads such as in the case shown in Fig. 2.6 the fundamental solutions can
be expressed by the application of Heaviside functions similarly to the case of employing
the Euler-Bernoulli beam theory

X(z) = F̃1H(z − a1)XT
5 (z − a1) + M̃2H(z − a2)XT

4 (z − a2)+
+ f3 [H(z − a3)−H(z − a4)]XT

7 (z − a3), 0 ≤ z ≤ L, (2.88)

where XT
j (z) may be vTj (z), φTj (z), sTj (z), MT

j (z), V T
j (z) and NT

1j(z), (j = 4, 5, 7) and
Eq. (2.51) represents the Heaviside function.

Here we note that we have investigated a Timoshenko composite beam (5) of which
layers have different cross-sectional rotations (φ1 6= φ2).

2.3 Numerical examples

2.3.1 Simply supported composite beam

This example is taken from the paper by Schnabl et al. [69]. The simply supported two-
layered beam with imperfect shear connection and its cross-section are shown in Fig. 2.8.
The following data are used: h1 = 0.2 m, h2 = 0.3 m, b = 0.3 m, L = 2.5 m, E1 =
1.2× 1010 Pa, E2 = 1.2× 1010 Pa, G1 = 8× 108 Pa, G2 = 1.2× 109 Pa, k = 2.43× 106 Pa,
κ1 = κ2 = 5

6
, fy(z) = −f = −50000 N/m. In this case the boundary conditions are as

follows
v(0) = M(0) = N1(0) = 0, (2.89)

v(L) = M(L) = N1(L) = 0, (2.90)
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Figure 2.8. Simply supported composite beam.

It is evident that
V (0) = −fL

2
, (2.91)

and φ(0), s(0) are obtained from Eq. (2.90). Using the Euler-Bernoulli beam theory the
following equations can be derived from the boundary conditions

v(L) = φEB(0)vEB2 (L) + sEB(0)vEB3 (L) +
fL

2
vEB5 (L) + fvEB7 (L) = 0, (2.92)

N1(L) = sEB(0)NEB
13 (L) +

fL

2
NEB

15 (L) + fNEB
17 (L) = 0. (2.93)

By means of the Timoshenko beam theory we obtain similar equations

v(L) = φT (0)vT2 (L) + sT (0)vT3 (L) +
fL

2
vT5 (L) + fvT7 (L) = 0, (2.94)

N1(L) = sT (0)NT
13(L) +

fL

2
NT

15(L) + fNT
17(L) = 0. (2.95)

Substituting the data into Eqs. (2.93) and (2.95) yields a linear equation with one unknown
parameter which is sEB(0) and sT (0). A simple computation gives

sEB(0) = sT (0) = s(0) = −0.00076544 m (2.96)

since the NEB
1j (j = 2, 3, 5, 7) functions are the same as NT

1j (j = 2, 3, 5, 7). From the
Eqs. (2.92) and (2.94) the value of φEB(0) and φT (0) can be received by means of s(0).
However, the functions vEBj and vTj (j = 2, 3, 5, 7) differ from each other we get

φEB(0) = φT (0) = φ(0) = 0.00307252. (2.97)

The solution of the considered boundary value problem can be represented in terms of
fundamental solutions as

X(z) = φ(0)X2(z) + s(0)X3(z)− fL

2
X5(z) + fX7(z),

(X = vEB, φEB, sEB,MEB, V EB, NEB
1 or vT , φT , sT ,MT , V T , NT

1 ).
(2.98)

Figures 2.9, 2.10, 2.11, 2.12, 2.13 and 2.14 illustrate the graphs of deflection, cross-
sectional rotation, slip, bending moment, shear force and axial force in the layer B1,
respectively. We also investigated the considered simply supported beam by means of
FEM to validate our results. For this analysis we used the FEM software Abaqus. The
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Figure 2.9. The deflection functions.

Figure 2.10. The rotation function.

Figure 2.11. The slip functions.
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Figure 2.12. The bending moment function.

Table 2.1. Comparison of deflection and slip.

Paper [69] (FEM) Euler-Bernoulli beam Timoshenko beam FEM (Abaqus)
v
(
L
2

)
−0.00271026 −0.00240005 −0.00270053 −0.00263727

s(0) −0.00077293 −0.00076544 −0.00076544 −0.0007321886

beam was modelled as a plane stress problem with 50000 elements which were 4-node
bilinear plane stress quadrilateral elements (their code is CPS4R in Abaqus). The solu-
tion was convergent, more elements did not provide more accurate results. The deflection
function and the slip function from this FEM analysis are also shown in Fig. 2.9 and
2.11, respectively. Because of the equivalence of the coefficients φEB(0) = φT (0) and
sEB(0) = sT (0) only the deflection functions are different for the Euler-Bernoulli and for
the Timoshenko beam, the other functions are the same in both cases. Comparison of
deflection v(L

2
) and slip s(0) obtained by Schnabl et al. from FEM solution [69], derived

from the fundamental solutions and gained from our FEM analysis is given in Table 2.1

2.3.2 Propped cantilever with concentrated force

The considered two-layered beam with the applied load is shown in Fig. 2.15. The nu-
merical data are as follows: E1 = 2× 1011 Pa, E2 = 6.9× 1010 Pa, G1 = 7.6923× 1010 Pa,
G2 = 2.5862× 1010 Pa, f = 0, F = 5× 105 N. The other data are the same as in Example
2.3.1. In this case the boundary conditions are as follows

v(0) = φ(0) = s(0) = 0, (2.99)

v(L) = M(L) = N1(L) = 0. (2.100)

The unknown initial values MEB(0), VEB(0), N1EB(0) for an Euler-Bernoulli beam and
MT (0), VT (0), N1T (0) for a Timoshenko beam can be computed from boundary conditions
(2.100). By dint of the Euler-Bernoulli beam theory we can formulate the next system of
equation

M(L) = MEB(0)MEB
4 (L) + VEB(0)MEB

5 (L) +N1EB(0)MEB
6 (L) + 0.5FMEB

5 (L/2) = 0,
(2.101)
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Figure 2.13. The shear force function.

Figure 2.14. The axial force function in layer B1.
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Figure 2.15. Propped cantilever with concentrated force.
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v(L) = MEB(0)vEB4 (L) + VEB(0)vEB5 (L)+

+N1EB(0)vEB6 (L) + FvEB5 (L/2) = 0,
(2.102)

N1(L) = MEB(0)NEB
14 (L) + VEB(0)NEB

15 (L)+

+N1EB(0)NEB
16 (L) + FNEB

15 (L/2) = 0.
(2.103)

According to the Timoshenko beam theory the next system of equation is provided

M(L) = MT (0)MT
4 (L) + VT (0)MT

5 (L) +N1T (0)MT
6 (L) + 0.5FMT

5 (L/2) = 0, (2.104)

v(L) = MT (0)vT4 (L) + VT (0)vT5 (L)+

+N1T (0)vT6 (L) + FvT5 (L/2) = 0,
(2.105)

N1(L) = MT (0)NT
14(L) + VT (0)NT

15(L)+

+N1T (0)NT
16(L) + FNT

15(L/2) = 0.
(2.106)

Inserting the data into Eqs. (2.101–2.103) and Eqs. (2.104–2.106) we get the following
results

MEB(0) = 23427.883463 Nm, (2.107)

VEB(0) = 34371.115339 N, (2.108)

N1EB(0) = 0.475863 N, (2.109)

MT (0) = 23260.088641 Nm, (2.110)

VT (0) = 34304.035457 N, (2.111)

N1T (0) = −23.91063 N, (2.112)

With the help of these results the sought functions can be determined

X(z) = MEB(0)X4(z) + VEB(0)X5(z) +N1EB(0)X6(z) + FH

(
z − L

2

)
X5

(
z − L

2

)
,

(X = vEB, φEB, sEB,MEB, V EB, NEB
1 ),

(2.113)

X(z) = MT (0)X4(z) + VT (0)X5(z) +N1T (0)X6(z) + FH

(
z − L

2

)
X5

(
z − L

2

)
,

(X = vT , φT , sT ,MT , V T , NT
1 ).

(2.114)
Figures 2.16, 2.17, 2.18, 2.19, 2.20 and 2.21 represent the deflection, cross-sectional rota-
tion, slip, bending moment, shear force and axial force function in layer B1, respectively.
We investigated this example by means of FEM software Abaqus as well. The parameters
of the analysis were the same as in Example 2.3.1 except the boundary conditions and the
loading. We used the same elements for this case. The deflection and slip functions are
gained from the FEM analysis which are also illustrated in Fig. 2.16 and 2.18. In this case
the functions obtained from the Euler-Bernoulli beam theory are different as the func-
tions won from Timoshenko beam theory. The deflection function from the FEM solution
is in good agreement with the one from the Euler-Bernoulli beam theory. Between the
slip function from FEM and from the fundamental solutions a difference can be observed
which is caused by the elastic deformation of the layers.
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Figure 2.16. The deflection functions.

Figure 2.17. The rotation functions.

Figure 2.18. The slip functions.
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Figure 2.19. The bending moment functions.

Figure 2.20. The shear force functions.

Figure 2.21. The axial force functions in layer B1.
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Chapter 3

The influence of thermal load on the
behaviour of composite beams with
weak shear connection

In this chapter we introduce a novel analytical method for two-layered composite beams
with interlayer slip in order to investigate the behaviour of the considered composite beam
subjected to thermal load. Our aim is to determine the deflection, the rotation, the slip,
the bending moment, the axial force and the shear force function of the beam. Knowing
these functions the normal and shear stresses can be computed as well. The present
analytical method is based on the Euler-Bernoulli beam theory and on the one-dimensional
version of the constitutive equation of linear thermoelasticity (Duhamel-Neumann’s law).
At the end of the chapter two numerical examples illustrate the application of the method.
Some equations which have already appeared in the previous chapter are also written in
the following for the ease of reference.

3.1 Governing equations
The considered two-layered beam configuration is shown in Fig. 3.1. The beam component
Bi has the rectangular cross-section Ai whose dimensions are hi and b (i = 1, 2). The
modulus of elasticity for beam component Bi is Ei and the coefficients of linear thermal
expansion is αi (i = 1, 2). The length of the composite beam is L. The origin O of the
rectangular Cartesian coordinate system Oxyz is the E-weighted centre of the left end
cross-section, so that axis z is the E-weighted centreline of the considered beam. The
mechanical load is represented by f (distributed line load), F̃ (concentrated force) and
M̃ (concentrated moment). A point P in B = B1 ∪B2 is indicated by the position vector−→
OP = r = R + zez = xex + yey + zez, where ex, ey and ez are the unit vectors of
the coordinate system Oxyz. It is known that the position of E-weighted centre of the
cross-section A = A1 ∪ A2 is obtained from next equation [10]

E1

∫
A1

RdA+ E2

∫
A2

RdA = 0. (3.1)

For cross-section shown in Fig. 3.1 we have

c1 =
∣∣∣−−→CC1

∣∣∣ =
A2E2

〈AE〉c, c2 = −
∣∣∣−−→CC2

∣∣∣ = −A1E1

〈AE〉c, (3.2)
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Figure 3.1. The considered two-layered beam.

c =
∣∣∣−−−→C2C1

∣∣∣ = c1 − c2 =
1

2
(h1 + h2) , (3.3)

〈AE〉 = A1E1 + A2E2, (3.4)

y1 = c1 +
1

2
h1, y2 = c2 −

1

2
h2, y12 = c1 −

1

2
h1. (3.5)

In Eqs. (3.2), (3.4) Ai denotes the cross-sectional area of beam component Bi (i = 1, 2)
and the position of the common boundary of A1 and A2 is indicated by y12 (Fig. 3.1).
According to the Euler-Bernoulli hypothesis (kinematic assumption) which is valid for
each homogeneous beam components the deformed configuration is described by the dis-
placement field [10]

u = u (x, y, z) = v(z)ey +

(
wi(z)− ydv

dz

)
ez, (3.6)

where (x, y, z) ∈ Bi, (i = 1, 2). Eq. (3.6) shows that the axial displacement of beam
component Bi (i = 1, 2) is separated into two parts: wi(z) (i = 1, 2) describes the
rigid translation of the cross-section Ai (i = 1, 2) at z and the second part of the axial
displacement of Ai (i = 1, 2) derived from the deflection of cross-section [10]. On the
common boundary of B1 and B2 the axial displacement has jump which is called the
interlayer slip. According to Eq. (3.6) the interlayer slip s = s(z) can be computed as

s(z) = w1(z)− w2(z). (3.7)

Application of the strain-displacement relationships of the linearised theory of elasticity
gives

εx = εy = γxy = γxz = γyz = 0, (x, y, z) ∈ B1 ∪B2, (3.8)

εz =
dwi
dz
− yd2v

dz2
, (x, y, z) ∈ Bi (i = 1, 2). (3.9)

In Eqs. (3.8), (3.9) εx, εy, εz are the normal strains and γxy, γxz, γyz are the shearing
strains. The normal stress σz is computed from the one-dimensional version of Duhamel-
Neumann’s law [91–93]

σz = Ei

(
dwi
dz
− yd2v

dz2
− αiT

)
, (x, y, z) ∈ B1 ∪B2. (3.10)
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Figure 3.2. Normal forces and bending moments.

In Eq. (3.10) T denotes the temperature change. The temperature of the two-layered
composite beam initially is the reference temperature ϑ0. Its temperature is slowly raised
to a constant uniform temperature ϑ = ϑ0 + T , so that the temperature change is T .
According to the linear thermo-elasticity it is assumed that |T | ≤ 200 K so the material
properties can be considered constant. Following we define the next section forces and
moments [10]

N1 =

∫
A1

σzdA = A1E1

(
dw1

dz
− c1

d2v

dz2
− α1T

)
, (3.11)

N2 =

∫
A2

σzdA = A2E2

(
dw2

dz
− c2

d2v

dz2
− α2T

)
, (3.12)

M1 =

∫
A1

yσzdA = A1E1c1

(
dw1

dz
− α1T

)
− E1I1

d2v

dz2
, (3.13)

M2 =

∫
A2

yσzdA = A2E2c2

(
dw2

dz
− α2T

)
− E2I2

d2v

dz2
, (3.14)

where
Ii =

∫
Ai

y2dA, (i = 1, 2). (3.15)

Eqs. (3.11–3.14) show that the normal stresses acting on cross-section Ai (i = 1, 2) are
equivalent to a force-couple system (Ni,Mi) (i = 1, 2) at C. This force-couple system
(Ni,Mi) (i = 1, 2) is illustrated in Fig. 3.2. The interlayer slip s is assumed to be a linear
function of shear force Q transmitted between the two beam components, that is we have
[9]

Q = ks, (3.16)

where k is the slip modulus. In present problem there is no axial force N = N1 +N2, that
is

N = N1 +N2 = A1E1
dw1

dz
+ A2E2

dw2

dz
− 〈AEα〉T = 0. (3.17)

Here,
〈AEα〉 = α1E1A1 + α2E2A2. (3.18)

From Eqs. (3.7) and (3.17) it follows that

dw1

dz
=
A2E2

〈AE〉
ds

dz
+
〈AEα〉
〈AE〉 T, (3.19)
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Figure 3.3. Equilibrium condition in z direction for a small beam element ∆B1.

dw2

dz
= −A1E1

〈AE〉
ds

dz
+
〈AEα〉
〈AE〉 T. (3.20)

A simple computation based on Eqs. (3.11), (3.12) and Eqs. (3.19), (3.20) gives

N1 = 〈AE〉−1
[

ds

dz
− cd2v

dz2
+ (α2 − α1)T

]
, (3.21)

N2 = 〈AE〉−1
[
−ds

dz
+ c

d2v

dz2
+ (α1 − α2)T

]
, (3.22)

where
〈AE〉−1 =

A1E1A2E2

A1E1 + A2E2

. (3.23)

Application of the condition of equilibrium for forces in axial direction to beam component
∆B1 gives (Fig. 3.3)

dN1

dz
−Q =

dN1

dz
− ks = 0. (3.24)

Substitution of Eq. (3.21) into Eq. (3.24) yields

d2s

dz2
− cd3v

dz3
− k

〈AE〉−1
s = 0. (3.25)

It is evident that the bending moment acting on the whole cross-section A = A1 ∪ A2 is
as follows

M = M1 +M2 = c 〈AE〉−1
[

ds

dz
+ (α2 − α1)T

]
− {IE} d2v

dz2
. (3.26)

Here,
{IE} = I1E1 + I2E2. (3.27)

According to Eq. (3.26) we can obtain

V (z) =
dM

dz
= c 〈AE〉−1

d2s

dz2
− {IE} d3v

dz3
. (3.28)

Further manipulation of Eq. (3.28) provides

d3v

dz3
=
c 〈AE〉−1
{IE}

d2s

dz2
− V (z). (3.29)
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Substitution of Eq. (3.29) into Eq. (3.25) we gain

d2s

dz2
− Ω2s+

c

〈IE〉V (z) = 0, (3.30)

where
Ω2 = k

{IE}
〈AE〉−1 〈IE〉

, 〈IE〉 = {IE} − c2 〈AE〉−1 . (3.31)

Taking into account the boundary conditions one can solve the governing differential
equations (3.30) and the slip function can be determined. Substituting the slip function
into the function of bending moment (3.26) the deflection function can be computed as
well.

3.2 Computations of thermal stresses
We assume that the state of stresses of the two-layered composite beam under the action of
thermal load can be characterized by the following stresses σz = σz (y, z), τyz = τyz (y, z),
σy = σy (y, z). The normal stress σz is obtained from Eqs. (3.10), (3.19) and (3.20) as

σz = E1

[
c1
c

ds

dz
− yd2v

dz2
+
c1
c

(α2 − α1)T

]
, (x, y, z) ∈ B1, (3.32)

σz = E2

[
c2
c

ds

dz
− yd2v

dz2
+
c2
c

(α2 − α1)T

]
, (x, y, z) ∈ B2. (3.33)

The shearing stress τyz = τyz (y, z) is computed by the use of equation of equilibrium

∂τyz
∂y

+
∂σz
∂z

= 0, (x, y, z) ∈ B1 ∪B2. (3.34)

A detailed computation yields the next result

τyz = −E2

[
(y − y2)

c2
c

d2s

dz2
− 1

2

(
y2 − y22

) d3v

dz3

]
, (x, y, z) ∈ B2, (3.35)

τyz = −E2

[
(y12 − y2)

c2
c

d2s

dz2
− 1

2

(
y212 − y22

) d3v

dz3

]
−

−E1

[
(y − y12)

c1
c

d2s

dz2
− 1

2

(
y2 − y212

) d3v

dz3

]
, (x, y, z) ∈ B1.

(3.36)

Here, the stress boundary condition

τyz (y2, z) = 0 (3.37)

and the continuity condition of τyz at y = y12

lim
ε→0

[τyz (y12 − ε, z)− τyz (y12 + ε, z)] = 0 (3.38)

are used. To obtain the normal stress σy = σy (y, z) we consider the next equation of
mechanical equilibrium

∂σy
∂y

+
∂τyz
∂z

= 0. (3.39)
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Integration of Eq. (3.39) gives

σy = E2

[(
y2 + y22

2
− yy2

)
c2
c

d3s

dz3
− 1

2

(
y3 + 2y32

3
− y22y

)
d4v

dz4

]
, (x, y, z) ∈ B2, (3.40)

σy = E2

[(
y212 + y22

2
− y12y2

)
c2
c

d3s

dz3
− 1

2

(
y312 + 2y32

3
− y22y12

)
d4v

dz4

]
+

+E1

[(
y2 + y212

2
− yy12

)
c1
c

d3s

dz3
− 1

2

(
y3 + 2y312

3
− y212y

)
d4v

dz4

]
−

−(y − y12)
(
∂τyz
∂z

)
y=y12

(x, y, z) ∈ B1.

(3.41)

Here, we use the stress boundary condition

σy (y2, z) = 0, (3.42)

and stress continuity condition of σy at y = y12

lim
ε→0

[σy (y12 − ε, z)− σy (y12 + ε, z)] = 0. (3.43)

Integration of Eq. (3.34) leads to next equation

τyz (y1, z)− τyz (y2, z) +
∂

∂z

∫ y1

y2

σzdy = 0, (3.44)

that is
τyz (y1, z) = −1

b

∂N

∂z
= 0. (3.45)

By the same method from Eq. (3.39) we obtain

σy (y1, z)− σy (y2, z) +
∂

∂z

∫ y1

y2

τyzdy = 0, (3.46)

that is
σy (y1, z) = −1

b

∂V

∂z
. (3.47)

Eqs. (3.45) and (3.47) show that the stress boundary conditions for τyz and σy at y = y1
are satisfied. In the following we prove that

τyz (y12, z) =
Q(z)

b
=
ks(z)

b
. (3.48)

Starting from Eq. (3.35) we can write

τyz (y12, z) = −E2

[
(y12 − y2)

c2
c

d2s

dz2
− 1

2

(
y212 − y22

) d3v

dz3

]
=

= −E2

[
c2h2
c

d2s

dz2
− c2h2

d3v

dz3

]
= −E2A2

b

c2
c

[
d2s

dz2
− cd3v

dz3

]
=

= −E2A2

b

c2
c

k

〈AE〉−1
s(z) =

E1A1E2A2

〈AE〉 〈AE〉−1
Q(z)

b
=
Q(z)

b
(3.49)

Here, Eqs. (3.2–3.5) and Eqs. (3.25), (3.35) have been used to prove the validity of
Eq. (3.49).

35



3. CHAPTER. THE INFLUENCE OF THERMAL LOAD ON THE BEHAVIOUR OF
COMPOSITE BEAMS WITH WEAK SHEAR CONNECTION

y

z

B1

B2

L

C1

C2

O ≡ C

b

y

x

C1

C

C2

h1

h2

y1
y12

y2

f

Figure 3.4. Simply supported two-layered beam with thermal load and distributed line
load.

3.3 Numerical examples

3.3.1 Simply supported two-layered beam

In this example we consider a simply supported two-layered beam (Fig. 3.4) on which
only a thermal load and a distributed line load act. The following data are used for the
computations: b = 0.03 m, h1 = 0.01 m, h2 = 0.03 m, E1 = 1.22×1011 Pa, E2 = 8×1010 Pa,
L = 1.5 m, α1 = 2.8 × 10−6 1/K, α2 = 1.43 × 10−5 1/K, T = 200 K, k = 60 × 106 Pa,
f = 1000N/m. First of all we are going to determine the slip and the deflection function
of the beam. For the simply supported two-layered beam shown in Fig. 3.4 the following
boundary conditions are valid

v(0) = 0, v(L) = 0, (3.50)

N1(0) = 0, N1(L) = 0, (3.51)
M(0) = 0, M(L) = 0 (3.52)

By the application of the equation of statics we gain

V (z) = fz − fL

2
, (3.53)

M(z) =
fz2

2
− fLz

2
. (3.54)

The function of the bending moment satisfies the boundary conditions (3.52). By means
of Eq. (3.53) the general solution of the differential equation (3.30) can be represented as

s(z) = K1 cosh Ωz +K2 sinh Ωz − c

〈IE〉Ω2

(
fL

2
− fz

)
, (3.55)

where K1 and K2 are constants of integration. Using Eqs. (3.26) and (3.54) we can write

d2v

dz2
=
c 〈AE〉−1
{IE}

[
K1Ω sinh Ωz +K2Ω cosh Ωz +

cf

〈IE〉Ω2
+ (α2 − α1)T

]
+

+
f

2 {IE}
(
Lz − z2

)
. (3.56)
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Figure 3.5. The deflection function.

Figure 3.6. The cross-sectional rotation function.

Integration of Eq. (3.56) with respect to z we get the rotation function according to the
Euler-Bernoulli hypothesis, i.e.

φ(z) = −dv

dz
. (3.57)

Integration of the rotation function with respect to z provides the deflection function. So
we have two further integration constants. By means of the boundary conditions (3.50),
(3.51) and the axial force function (3.21) the integration constants can be obtained. In
this case we get the following functions

v(z) = −c 〈AE〉−1{IE}Ω2

[
cf

〈IE〉Ω2
+ (α2 − α1)T

] [
cosh Ωz − 1− tanh

ΩL

2
sinh Ωz+

+
Ω2

2

(
Lz − z2

)]
+

f

24 {IE}
(
2Lz3 − z4 − L3z

)
, (3.58)

φ(z) =
c 〈AE〉−1
{IE}Ω

[
cf

〈IE〉Ω2
+ (α2 − α1)T

] [
sinh Ωz − Ωz − tanh

ΩL

2
cosh Ωz+

+
ΩL

2

]
− f

24 {IE}
(
6Lz2 − 4z3 − L3

)
, (3.59)
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Figure 3.7. The slip function.

Figure 3.8. The bending moment function.

s(z) =
1

Ω

[
cf

〈IE〉Ω2
+ (α2 − α1)T

](
tanh

ΩL

2
cosh Ωz − sinh Ωz

)
− cf

〈IE〉Ω2

(
1

2
L− z

)
,

(3.60)

N1(z) = − k

Ω2

[
cf

〈IE〉Ω2
+ (α2 − α1)T

] [
cosh Ωz − 1− tanh

ΩL

2
sinh Ωz

]
+

+
c 〈AE〉−1
{IE}

f

2

(
z2 − Lz

)
. (3.61)

The deflection function is shown in Fig. 3.5, the rotation function is illustrated in Fig. 3.6
and in Fig. 3.7 the slip function can be seen. Furthermore Figs. 3.8, 3.9 and 3.10 represent
de bending moment, the cross-sectional shear force and the axial force in the first layer,
respectively. We computed the stresses as well according to Eqs. (3.32), (3.33), (3.35),
(3.36), (3.40) and (3.41) at three cross-sections

(
z = L

2
; z = L

3
; z = L

4

)
. The results are

shown in Figs. 3.11, 3.12 and 3.13. If the thermal load is equal to zero (T = 0), this
method provides the exact solution of the problem when only the distributed line load
acts on the beam. We computed the functions for this case by means of the fundamental
solutions mentioned in the previous chapter, and we gain exactly the same functions from
each method. The deflection functions and the slip functions are illustrated in Figs. 3.14
and 3.15 in this case.
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Figure 3.9. The shear force function.

Figure 3.10. The axial force function.

Figure 3.11. The function of σz.
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Figure 3.12. The function of τyz.

Figure 3.13. The function of σy.

Figure 3.14. The deflection functions in case of T = 0.
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Figure 3.15. The slip functions in case of T = 0.
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Figure 3.16. Two-layered propped cantilever with thermal load and distributed line load.

3.3.2 Two-layered propped cantilever

In this example we consider a two-layered propped cantilever (Fig. 3.16) on which only
a thermal load and a distributed line load act. The following data are used for the
computations: b = 0.01 m, h1 = 0.03 m, h2 = 0.06 m, E1 = 1.22×1011 Pa, E2 = 8×1010 Pa,
L = 1.5 m, α1 = 2.8 × 10−6 1/K, α2 = 1.43 × 10−5 1/K, T = 250 K, k = 60 × 106 Pa,
f = 1000 N/m. The solution method are the same as in the example 3.3.1. For the
propped cantilever we have the following boundary conditions

v(0) = 0, v(L) = 0, (3.62)

φ(0) = 0, s(0) = 0, (3.63)

N1(L) = 0, M(L) = 0, (3.64)

From the equation of statics the shear force function and the bending moment function
can be determined

V (z) = F + f(z − L), (3.65)

M(z) = F (z − L) +
f

2
(z − L)2, (3.66)
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Figure 3.17. The function of the deflection.

Figure 3.18. The function of the cross-sectional rotation.

where F is the unknown reaction force at the roller. The bending moment function
satisfies the boundary condition (3.64)2. Knowing the shear force function we can solve
the governing equation (3.30) to create the slip function

s(z) = K1 sinh Ωz +K2 cosh Ωz +
c

〈IE〉Ω2
(F + fz − fL) . (3.67)

Here, K1 and K2 are constants of integration. Writing Eq. (3.67) into Eq. (3.26) and
using Eq. (3.54) we win

d2v

dz2
=
c 〈AE〉−1
{IE}

[
K1Ω cosh Ωz +K2Ω sinh Ωz +

cf

〈IE〉Ω2
+ (α2 − α1)T

]
−

− F

{IE}(z − L)− f

2 {IE}
(
z2 − 2Lz + L2

)
. (3.68)

Integration of Eq. (3.68) with respect to z leads to the rotation function according to
Eq. (3.57)

φ(z) = −c 〈AE〉−1{IE}

[
K1 sinh Ωz +K2 cosh Ωz +

(
cf

〈IE〉Ω2
+ (α2 − α1)T

)
z

]
+

+
F

{IE}

(
z2

2
− Lz

)
+

f

2 {IE}

(
z3

3
− Lz2 + L2z

)
+K3. (3.69)
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Figure 3.19. The function of the slip.

Figure 3.20. The function of the bending moment.

Further integration provides the deflection function

v(z) =
c 〈AE〉−1
{IE}

[
K1

Ω
cosh Ωz +

K2

Ω
sinh Ωz +

(
cf

〈IE〉Ω2
+ (α2 − α1)T

)
z2

2

]
−

− F

{IE}

(
z3

6
− Lz2

2

)
− f

2 {IE}

(
z4

12
− Lz3

3
+
L2z2

2

)
−K3z +K4. (3.70)

By the application of Eq. (3.21) the axial force function can be computed

N1(z) =
〈AE〉−1
{IE}

{
〈IE〉

[
K1Ω cosh Ωz +K2Ω sinh Ωz +

cf

〈IE〉Ω2
+ (α2 − α1)T

]
−

− cF (z − L)− cf

2

(
z2 − 2Lz − L2

)}
. (3.71)

During the computations of these functions we obtain four unknown constants of inte-
gration (K1;K2;K3;K4) and the unknown reaction (F ) at the roller. Application of the
boundary conditions (3.62), (3.63) and (3.64)1 these unknown can be formulated.

F =
K5

K6

, (3.72)

where
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Figure 3.21. The function of the shear force.

Figure 3.22. The function of the axial force in the first layer.

K5 = f

(
L4Ω3 〈IE〉
8c2 〈AE〉−1

+
ΩL2

2
− L tanh ΩL+

1

Ω
− 1

Ω cosh ΩL

)
+

+ (α2 − α1)T
Ω 〈IE〉
c

(
1− 1

cosh ΩL
− Ω2L2

2

)
, (3.73)

K6 =
L3Ω3 〈IE〉
3c2 〈AE〉−1

+ ΩL− tanh ΩL. (3.74)

Substituting the given data into Eqs. (3.73), (3.74) and (3.72) the reaction force at the
roller is

F = −1370.772652 N (3.75)

By dint of the reaction force the further constants of integration can be formulated as

K1 = − 1

cosh ΩL

[
c

〈IE〉Ω2
(fL− F ) sinh ΩL+

cf

〈IE〉Ω3
+ (α2 − α1)

T

Ω

]
, (3.76)

K2 =
c

〈IE〉Ω2
(fL− F ) , (3.77)

K3 =
c2 〈AE〉−1
{IE} 〈IE〉Ω2

(fL− F ) , (3.78)

K4 = −c 〈AE〉−1{IE}
K1

Ω
. (3.79)
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Figure 3.23. The function of σz.

Figure 3.24. The function of τyz.

According to these results the functions belonging to the propped cantilever are shown in
Figs. 3.17, 3.18, 3.19, 3.20, 3.21 and 3.22. Knowing the deflection function and the slip
function the stress functions can be computed. Figures 3.23, 3.24 and 3.25 illustrate the
normal stress σz, the shear stress τyz and the normal stress σy, respectively, at three cross-
sections

(
z = L

2
; z = L

3
; z = L

4

)
. We consider the case of T = 0 similarly to Example 3.3.1.

The results were derived from the present method and from the fundamental solutions
for Euler-Bernoulli beam according to chapter 2. The results are exactly the same both
cases which are shown in Figs. 3.26 and 3.27.
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Figure 3.25. The function of σy.

Figure 3.26. The function of the deflection in case of T = 0.

Figure 3.27. The function of the slip in case of T = 0.
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Chapter 4

Elastic stability of composite beams
and columns with weak shear
connection

In this chapter we are going to introduce two new analytical methods for the stability
analysis of composite beams and columns with weak shear connection. Each method
is based on the Euler-Bernoulli beam theory. At the end of the chapter two examples
illustrate the application of the methods. Some equations which were mentioned the
previous chapters are repeated in this chapter for the ease of reference.

4.1 Stability analysis by a variational method
An elastic two-layered beam with partial shear interaction is considered. It is assumed
that each layer separately follows the Euler-Bernoulli hypothesis and the load-slip relation
for the flexible shear connection is a linear relationship. In the reference configuration,
the composite beam occupies the 3D region B = A × [0, L] generated by translating its
symmetrical cross-section A along a rectilinear axis, orthogonal to the cross-section. The
cross-section A is divided into two parts A1 and A2, that is A = A1∪A2 and the common
boundary A1 and A2 is denoted by ∂A12. The components B1 and B2 are defined as
Bi = Ai × [0, L], ∂Bi = ∂Ai × [0, L], ∂Ai = ∂A0i ∪ ∂A12, (i = 1, 2) (Fig. 4.1). Here
L is the length of the beam and ∂A0i is the ’outer’ boundary curve of the cross-section
Ai (i = 1, 2) . A point P in B = B ∪ ∂B (∂B = (∂A01 ∪ ∂A02)× [0, L]) is determined
by the position vector r = xex + yey + zez, where x, y, z and ex, ey, ez are referred
to the rectangular coordinate system Oxyz shown in Fig. 4.1. The axis z is located in
the E-weighted centreline of the whole composite beam and the plane yz is the plane of
symmetry for the geometrical and support conditions. The centre of Ai is Ci (i = 1, 2) and
C is the E-weighted centre of the whole cross-section A = A1 ∪A2 (Fig. 4.1). According
to the Euler-Bernoulli beam theory the displacement field u = uex + vey + wez has the
form [10]

u = 0, v = v(z), w = wi(z)− ydv

dz
, (x, y, z) ∈ Bi, (i = 1, 2). (4.1)

By the application of the strain-displacement relationship of elasticity and the Hooke’s
law we get

σz = Ei

(
dwi
dz
− yd2v

dz2

)
, (x, y, z) ∈ Bi, (i = 1, 2). (4.2)
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Figure 4.1. Two-layered beam with weak shear connection.

The other stress components are equal to zero. The interlayer slip in axial direction is
defined on the common boundary of beam components B1 and B2 as the difference of the
axial displacement components [10, 11]

s(z) = w1(z)− w2(z), (x, y, z) ∈ ∂A12 × [0, L]. (4.3)

The interlayer shear force Q is a linear function of the slip s:

Q = ks. (4.4)

Here k is the slip modulus [10, 11]. Our analysis of the composite beam is restricted to
the case of absent axial forces from deflection and slip which means

N = N1 +N2 = 0, Ni =

∫
Ai

σzdA, (i = 1, 2). (4.5)

A detailed computation for N1 gives the next result [10]

N1 = 〈AE〉−1
(

ds

dz
− cd2v

dz2

)
, (4.6)

where
〈AE〉−1 =

A1E1A2E2

A1E1 + A2E2

, c = c1 + c2 (Fig. 4.1). (4.7)

The expression of the bending moment is as follows [10]

M =

∫
A

yσzdA = −{IE}d2v

dz2
+ c 〈AE〉−1

ds

dz
, (4.8)

where
{IE} = I1E1 + I2E2, Ii =

∫
Ai

y2dA, (i = 1, 2). (4.9)

The cross-sectional shear force V = V (z) is obtained as [10, 11]

V (z) =
dM

dz
= −{IE}d3v

dz3
+ c 〈AE〉−1

d2s

dz2
(4.10)
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Denote U the strain energy of the whole composite beam. Starting from the next formulas
[94]

U =
1

2

∫ L

0

(∫
A

σzεzdA

)
dz +

k

2

∫ L

0

s2dz, (4.11)

and Eq. (4.2) we obtain

U =
1

2

∫ L

0

[
{IE}

(
d2v

dz2

)2

+ 2c 〈AE〉−1
d2v

dz2
ds

dz
+ 〈AE〉−1

(
ds

dz

)2

+ ks2

]
dz, (4.12)

and the potential energy of the applied axial force is

W = −F
2

∫ L

0

(
dv

dz

)2

dz. (4.13)

The total potential energy of the composite beam can be written as the sum of the strain
energy and the potential energy of the applied axial force

Π = U +W. (4.14)

The first variation of the total potential energy must be equal to zero according to the
principal of minimum total potential energy

δΠ = 0, (4.15)

so we gain the next form for the considered composite beam

δΠ =

∫ L

0

[
{IE}d2v

dz2
δ

d2v

dz2
+ c 〈AE〉−1

ds

dz
δ

d2v

dz2
+ c 〈AE〉−1

d2v

dz2
δ

ds

dz
+

+ 〈AE〉−1
ds

dz
δ

ds

dz
+ ksδs

]
dz − F

∫ L

0

dv

dz
δ

dv

dz
dz = 0. (4.16)

From this equation the dynamic boundary conditions and the system of the equilibrium
equations can be determined. This latter system of equations is the next

{IE}d4v

dz4
+ c 〈AE〉−1

d3s

dz3
+ F

d2v

dz2
= 0, (4.17)

− c 〈AE〉−1
d3v

dz3
− 〈AE〉−1

d2s

dz2
+ ks = 0, (4.18)

because the variation of the deflection and slip are arbitrary in (0, L).

4.2 Equilibrium method
According to the Euler-Bernoulli beam theory the displacement field can be written in
the next form

u = 0, v = v(z), w̃i(y, z) = − F

〈AE〉z + wi(z)− ydv

dz
, (x, y, z) ∈ Bi, (i = 1, 2),

(4.19)
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Figure 4.2. Free body diagram for axial forces.

where 〈AE〉 = A1E1 + A2E2. Application of the strain-displacement relationship of
elasticity and the Hooke’s law gives

σzi = Eiεi = Ei
dw̃i
dz

= Ei

(
− F

〈AE〉 +
dwi
dz
− yd2v

dz2

)
, (i = 1, 2). (4.20)

The definition of section axial forces provides

Ñi =

∫
Ai

σzidA = −F AiEi
〈AE〉 + AiEi

dwi
dz
− ciAiEi

d2v

dz2
, (i = 1, 2). (4.21)

The mechanical meaning of the first term in the expression of Ñi is as follows (Fig. 4.1)

Fi =
AiEi
〈AE〉F, (i = 1, 2), F = F1 + F2. (4.22)

According to this we have

N1 +N2 = A1E1

(
dw1

dz
− c1

d2v

dz2

)
+ A2E2

(
dw2

dz
+ c2

d2v

dz2

)
= 0. (4.23)

The moment of normal stress σz about axis x is expressed as

M = E1A1c1
dw1

dz
+ E2A2c2

dw2

dz
− {IE}d2v

dz2
, (4.24)

where {IE} is defined by Eq. (4.9). Condition of equilibrium for forces acting in axial
direction on column components B1 and B2 leads to equations (Fig. 4.2)

dÑ1

dz
− k(w1 − w2) = 0, (4.25)

dÑ2

dz
− k(w2 − w1) = 0, (4.26)

where k is the slip modulus. Eqs. (4.25) and (4.26) can be reformulated by the use of
Eq. (4.21)

A1E1
d2w1

dz2
− c1A1E1

d3v

dz3
− k(w1 − w2) = 0, (4.27)
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Figure 4.3. Simply supported composite column with axial load.

A2E2
d2w2

dz2
+ c2A2E2

d3v

dz3
− k(w2 − w1) = 0. (4.28)

In the following we are going to investigate two cases using the variational and the equilib-
rium method. The same composite beam is considered with different boundary conditions
in both cases. At the end of each case numerical examples illustrate the application of
both methods.

4.3 Simply supported beam

4.3.1 Buckling load

In the first case a simply supported column was analysed (Fig. 4.3). First we use the
variational method. Hence we have the next kinematically admissible deflection and slip
function

vj(z) = Vj sin j
π

L
z, sj(z) = Sj cos j

π

L
z, (4.29)

which satisfy the boundary conditions [v(0) = 0, v(L) = 0]. The constant j denotes the
number of the buckling load and L is the length of the beam. Substituting these functions
into the Eqs. (4.17) and (4.18) we obtain the following system of equations[

{IE}
(
j π
L

)2 − F c 〈AE〉−1
(
j π
L

)
c 〈AE〉−1

(
j π
L

)3 〈AE〉−1
(
j π
L

)2
+ k

][
Vj
Sj

]
=

[
0
0

]
. (4.30)

The non trivial solution gives the buckling load, that means the determinant of the coef-
ficients must be equal to zero. Thus we have a closed form for the critical load

F cr
j =

〈IE〉 〈AE〉−1
(
j π
L

)4
+ k{IE}

(
j π
L

)2
〈AE〉−1

(
j π
L

)2
+ k

, (j = 1, 2, . . .), (4.31)
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where 〈IE〉 = {IE} − c2 〈AE〉−1.
Let us consider the equilibrium method for the simply supported beam. We have the

same boundary conditions [v(0) = 0, v(L) = 0]. For simply supported column we have

M(z) = Fv(z). (4.32)

Combination of Eq. (4.8) with Eq. (4.32) provides

E1A1c1
dw1

dz
+ E2A2c2

dw2

dz
− {IE}d2v

dz2
− Fv(z) = 0. (4.33)

We look for the solution of the system of equations (4.27), (4.28), (4.33) which satisfy the
boundary conditions in the form

w1(z) =
∞∑
j=1

W1j cos j
π

L
z, w2(z) =

∞∑
j=1

W2j cos j
π

L
z, v(z) =

∞∑
j=1

Vj sin j
π

L
z. (4.34)

Substitution of Eq. (4.34) into Eqs. (4.27), (4.28) and (4.33) yields the eigenvalue problem

AjXj =

 a11j a12j a13j
a21j a22j a23j
a31j a32j a33j

 W1j

W2j

Vj

 =

 0
0
0

 , (4.35)

where
a11j =

(
j
π

L

)2
A1E1 + k, a12j = −k, a13j = −c1A1E1

(
j
π

L

)3
, (4.36)

a21j = j
π

L
A1E1, a22j = j

π

L
A2E2, a23j = 0, (4.37)

a31j = j
π

L
A1E1c1, a32j = j

π

L
A2E2c2, a33j = F − {IE}

(
j
π

L

)2
, (4.38)

The critical loads depend on the value of j, the buckling load belongs to j = 1 in this
case as well. The following closed formula can be derived from

detAj(F ) = 0 (4.39)

for the critical loads

F cr
j =

〈IE〉 〈AE〉−1
(
j π
L

)4
+ k{IE}

(
j π
L

)2
〈AE〉−1

(
j π
L

)2
+ k

, (j = 1, 2, . . .). (4.40)

We obtain the same closed formula from the equilibrium method as from the variational
method.

4.3.2 Numerical example

We consider the simply supported beam shown in Fig. 4.3. The cross-section of the beam
is illustrated in Fig. 4.4 and the following data are used for the computations. L = 4 m;
E1 = 12× 109 Pa; E2 = 8× 109 Pa; k = 5× 107 Pa; h1 = 0.05 m; h2 = 0.15 m; b1 = 0.3 m;
b2 = 0.05 m. Substituting these data into the formula (4.31) or (4.40) the buckling load
is

F cr
1 = 271.018 kN. (4.41)
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Figure 4.4. The cross-section of the simply supported column.

Figure 4.5. The buckling load in terms of the slip modulus (0 ≤ k ≤ 108).

Figure 4.6. The buckling load in terms of the slip modulus (1011 ≤ k ≤ 1014).
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Figure 4.7. Column with fixed ends.

In an early study Girhammar and Gopu [9] proposed an approximate solution for the
determination of buckling load. They investigated a column with the same cross-section,
data and boundary conditions. Their analysis led to the next result for the first buckling
load

F cr
1 = 270.3 kN. (4.42)

It can be determined that the results are in good agreement. The buckling load in terms
of the slip modulus is shown in Figs. 4.5 and 4.6. If the slip modulus is equal to zero
(there is no connection between the layers), then the buckling load F cr

1 = 92527.54 N.
The functions illustrate as well that while the slip modulus converges to infinity (perfect
connection between the layers) the buckling load approaches the value of the composite
beam having perfect connection.

4.4 Column with fixed ends

4.4.1 Buckling load

In this case a column is analysed which has fixed ends (Fig. 4.7). First we used the
variational method as section 4.3. We must write new kinematically admissible deflection
and slip functions to content the new kinematical boundary conditions. The functions
are as follows

vj(z) = Vj

(
1− cos j

2π

L
z

)
, sj(z) = Sj sin j

2π

L
z. (4.43)

Taking these functions into the Eqs. (4.17), (4.18) a newer system of equation is won[
−{IE}

(
j 2π
L

)2
+ F −c 〈AE〉−1 j 2πL

c 〈AE〉−1
(
j 2π
L

)3 〈AE〉−1
(
j 2π
L

)2
+ k

][
Vj
Sj

]
=

[
0
0

]
. (4.44)
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From this system we can gain another closed form for the buckling load

F cr
j =

〈IE〉 〈AE〉−1
(
j 2π
L

)4
+ k{IE}

(
j 2π
L

)2
〈AE〉−1

(
j 2π
L

)2
+ k

, (j = 1, 2, . . .). (4.45)

Let us consider the equilibrium method. It is evident that the bending momentM = M(z)
in terms of the reactions YL, ML can be expressed as (Fig. 4.7)

M(z) = ML − YL(L− z) + Fv(z). (4.46)

From this equation we get
d2M

dz2
= F

d2v

dz2
. (4.47)

Combination of Eq. (4.24) with Eq. (4.47) provides

E1A1c1
d3w1

dz3
+ E2A2c2

d3w2

dz3
− {IE}d4v

dz4
− F d2v

dz2
= 0. (4.48)

Eqs. (4.27), (4.28) and (4.48) generate a system of linear differential equations for w1 =
w1(z), w2 = w2(z), v = v(z). The associated boundary conditions to Eqs. (4.27), (4.28)
and (4.48) are as follows:

v(0) = v(L) = w1(0) = w2(0) = 0,
dv

dz
= 0 for z = 0 and z = L. (4.49)

We search the solution of boundary value problem formulated by Eqs. (4.27), (4.28), (4.48)
and (4.49) as

w1(z) =
∞∑
j=1

W1j sin
2jπ

L
z, w2(z) =

∞∑
j=1

W2j sin
2jπ

L
z, v(z) =

∞∑
j=1

Vj

(
1− cos

2jπ

L
z

)
.

(4.50)
The functions given by Eq. (4.50) satisfy the boundary conditions (4.49). Substitution
of Eq. (4.50) into Eqs. (4.27), (4.28) and (4.48) we get a linear eigenvalue problem from
which the critical loads can be determined. The eigenvalue problem has the form

AjXj =

 a11j a12j a13j
a21j a22j a23j
a31j a32j a33j

 W1j

W2j

Vj

 =

 0
0
0

 , (4.51)

where

a11j =

(
2jπ

L

)2

A1E1 + k, a12j = −k, a13j = −c1A1E1

(
2jπ

L

)3

, (4.52)

a21j =
2jπ

L
A1E1, a22j =

2jπ

L
A2E2, a23j = 0, (4.53)

a31j =
2jπ

L
A1E1c1, a32j =

2jπ

L
A2E2c2, a33j = F − {IE}

(
2jπ

L

)2

. (4.54)

The following closed formula can be derived from

detAj(F ) = 0 (4.55)

for the critical loads

F cr
j =

〈IE〉 〈AE〉−1
(
j 2π
L

)4
+ k{IE}

(
j 2π
L

)2
〈AE〉−1

(
j 2π
L

)2
+ k

, (j = 1, 2, . . .). (4.56)

Formula (4.56) is exactly the same as Eq. (4.45) which we obtain from the variational
method.
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Figure 4.8. The buckling load in terms of the slip modulus (0 ≤ k ≤ 108).

Figure 4.9. The buckling load in terms of the slip modulus (1011 ≤ k ≤ 1014).

4.4.2 Numerical example

In this example we use the same column as in the case of the simply supported beam.
I.e. we use the data from Example 4.3.2 and the cross-section shown in Fig. 4.4. Inserting
the data into the formula (4.45) or (4.56) the buckling load

F cr
1 = 714.863 kN (4.57)

for the column with fixed ends. The buckling load in terms of the slip modulus is il-
lustrated in Figs. 4.8 and 4.9. If there is no connection between the layers the value of
the buckling load is F cr

1 = 370110.165 N. We can determine the same conclusions as the
Example 4.3.2.
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Chapter 5

Vibration analysis of composite beams
with weak shear connection

In this chapter we deal with an analytical solution for free flexural vibration of a simply
supported two-layered composite beam with interlayer slip if the rotary inertia and the
inertia of longitudinal motion are taken into account. A numerical example illustrates the
application of the method. Some equations which have already appeared in the previous
chapters are repeated as well in the following for the ease of reference.

5.1 Equation of motion and boundary conditions
The considered simply supported two-layered composite beam with interlayer slip is shown
in Fig. 5.1. The beam components occupy the spatial domain Bi = Ai × [0, L] (i = 1, 2)
where Ai (i = 1, 2) means the cross-section of the i-th layer and L is the length of the
beam. The plane yz is the plane of symmetry of the beam, furthermore the plane y = 0,
0 ≤ z ≤ L denotes the common surfaces of the beam components B1 and B2. The elastic
moduli of the beam components B1 and B2 are indicated by E1 and E2. It is assumed
in this case as well that the beam components separately content the requirements of the
Euler-Bernoulli beam theory. Accordingly the displacement components are as follows

u(x, y, z, t) = 0, v = v(z, t), (x, y, z) ∈ B1 ∪B2, (5.1)

w(x, y, z, t) = wi(z, t)− y
∂v

∂z
, (x, y, z) ∈ Bi, (i = 1, 2). (5.2)

In Eqs. (5.1), (5.2) u, v, w are the coordinates of the displacement vector (Fig. 5.1) and
t denotes the time. Application of the kinematic equation of linear elasticity and using
Eqs. (5.1), (5.2) provides [95, 96]

εx = εy = γxy = γxz = γyz = 0, (5.3)

εz =
∂wi
∂z
− y∂

2v

∂z2
, (x, y, z) ∈ Bi, (i = 1, 2). (5.4)

The inner axial force Ni of beam component Bi is

Ni(z, t) =

∫
Ai

σzdA = EiAi

(
∂wi
∂z
− ci

∂2v

∂z2

)
, (i = 1, 2). (5.5)

Here, we applied the Hooke’s law and the next notation
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Figure 5.1. The considered simply supported two-layered composite beam.
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Figure 5.2. Shear force, bending moment, the applied distributed line load and distributed
moment on a small beam element.

ci =
1

Ai

∫
Ai

ydA, (i = 1, 2), (5.6)

and σz represents the normal stress. The bending moment of the whole cross-section can
be formulated as

M =

∫
A1

yσzdA+

∫
A2

yσzdA = c1E1A1
∂w1

∂z
+ c2E2A2

∂w2

∂z
− {IE}∂

2v

∂z2
, (5.7)

where
{IE} = E1

∫
A1

y2dA+ E2

∫
A2

y2dA = E1I1 + E2I2. (5.8)

A ∆B1 ∪ ∆B2 beam element is illustrated in Fig. 5.2 without the axial forces. The
cross-sectional shear force, the applied distributed line load in y direction and the applied
distributed bending moment in x direction are denoted by V = V (z, t), f = f(z, t) and
m = m(z, t), respectively. According to this beam element the following equilibrium
equations can be deduced

∂V

∂z
+ f = 0,

∂M

∂z
− V +m = 0. (5.9)
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Figure 5.3. Axial forces on a small beam element.

From the Eq. (5.9) the shear force can be eliminated. In this way we obtain only one
equilibrium equation instead of the two ones in Eq. (5.9)

∂2M

∂z2
+
∂m

∂z
+ f = 0. (5.10)

The beam elements ∆B1 and ∆B2 assigned by z and z + ∆z coordinates are shown in
Fig. 5.3. Only the axial forces act on these beam elements. The interlayer shear force Q
has the form

Q = k(w1 − w2), (5.11)

where k is the slip modulus. The axial forces n1 and n2 acting on B1 and B2, respectively,
derive from the outer loading. The equilibrium equations in axial direction for beam
component ∆B1 and ∆B2 can be written in the next form

∂N1

∂z
+ n1 − k(w1 − w2) = 0, (5.12)

∂N2

∂z
+ n2 + k(w1 − w2) = 0. (5.13)

In regard to the fact that we analyse the free vibration of the considered composite beam
the function of f = f(z, t), n1 = n1(z, t), n2 = n2(z, t), m = m(z, t) can be deduced from
the d’Alembert inertial forces so we have

f(z, t) = −(ρ1A1 + ρ2A2)
∂2v

∂t2
, (5.14)

n1(z, t) = −ρ1A1
∂2w1

∂t2
+ c1ρ1A1

∂3v

∂z∂t2
, (5.15)

n2(z, t) = −ρ2A2
∂2w2

∂t2
+ c2ρ2A2

∂3v

∂z∂t2
, (5.16)

m(z, t) = −c1ρ1A1
∂2w1

∂t2
− c2ρ2A2

∂2w2

∂t2
+ {ρI} ∂3v

∂z∂t2
. (5.17)

Here, ρ1 and ρ2 mean the mass density of beam component B1 and B2, respectively, and

{ρI} = ρ1I1 + ρ2I2 = ρ1

∫
A1

y2dA+ ρ2

∫
A2

y2dA. (5.18)
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Combination of Eqs. (5.10), (5.12), (5.13) with Eqs. (5.14–5.17) yields the system of
motion equations for the two-layered composite beam with interlayer slip

E1A1
∂2w1

∂z2
− c1E1A1

∂3v

∂z3
− k(w1 − w2)− ρ1A1

∂2w1

∂t2
+ c1ρ1A1

∂3v

∂z∂t2
= 0, (5.19)

E2A2
∂2w2

∂z2
− c2E2A2

∂3v

∂z3
+ k(w1 − w2)− ρ2A2

∂2w2

∂t2
+ c2ρ2A2

∂3v

∂z∂t2
= 0, (5.20)

c1E1A1
∂3w1

∂z3
+ c2E2A2

∂3w2

∂z3
− {IE}∂

4v

∂z4
− c1ρ1A1

∂3w1

∂z∂t2
−

− c2ρ2A2
∂3w2

∂z∂t2
+ {ρI} ∂4v

∂z2∂t2
− (ρ1A1 + ρ2A2)

∂2v

∂t2
= 0. (5.21)

For the simply supported beam the following boundary conditions can be written (Fig. 5.1)

N1(0, t) = N1(L, t) = 0, t > 0, (5.22)

N2(0, t) = N2(L, t) = 0, t > 0, (5.23)

M(0, t) = M(L, t) = 0, t > 0, (5.24)

v(0, t) = v(L, t) = 0, t > 0. (5.25)

We look for the solution of the boundary value problem (5.19–5.25) in the next form

w1(z, t) = W1j cos
jπ

L
z cosωjt, (5.26)

w2(z, t) = W2j cos
jπ

L
z cosωjt, (5.27)

v(z, t) = Vj sin
jπ

L
z cosωjt, (j = 1, 2, . . .). (5.28)

These functions satisfy the boundary conditions (5.22–5.25) for all values of W1j, W2j, Vj.
Substituting the functions into Eqs. (5.19–5.21) the following linear system of equation
can be deduced

CjXj = ω2
jMjXj, (5.29)

where
Xj = [W1j,W2j, Vj]

T , (5.30)

Cj =

 E1A1

(
jπ
L

)2
+ k −k −c1E1A1

(
jπ
L

)3
−k E2A2

(
jπ
L

)2
+ k c2E2A2

(
jπ
L

)3
−c1E1A1

(
jπ
L

)3
c2E2A2

(
jπ
L

)3 {IE}
(
jπ
L

)4
 , (5.31)

Mj =

 ρ1A1 0 −c1ρ1A1
jπ
L

0 ρ2A2 −c2ρ2A2
jπ
L

−c1ρ1A1
jπ
L
−c2ρ2A2

jπ
L
{ρI}

(
jπ
L

)4
+ ρ1A1 + ρ2A2

 . (5.32)

The non trivial solution of Eqs. (5.29) is sought that means

det
(
Cj − ω2

jMj

)
= 0, (j = 1, 2, . . .). (5.33)
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Table 5.1. The eigenfrequencies of the two-layered beam with axial and rotary inertia.
j ωj1 1/s ωj2 1/s ωj3 1/s

1 135.42 2566.01 8403.41
2 539.36 5009.04 16796.21
3 1211.79 7478.84 25191.61
4 2151.61 9955.53 33587.91
5 3357.29 12434.99 41984.87
6 4826.83 14915.86 50382.46
7 6557.84 17397.51 58780.73
8 8547.52 19879.66 67179.78
9 10792.69 22362.14 75579.67
10 13289.8 24844.86 83980.52
15 29407.05 37260.3 126002.35
20 49677.13 51117.82 168062.56
25 62094.53 77704.45 210173.28
30 74512.21 108398.66 252346.16
35 86930.04 142445.76 294592.21
40 99347.98 179150.11 336921.62
45 111765.98 217901.19 379343.58
50 124184.03 258183.26 421866.11
100 248365.55 685328.22 853330.3

From Eq. (5.33) a cubic equation can be formulated for ω2
j (j = 1, 2, . . .) which means

that we have three eigenfrequencies for each value of j. If the axial inertia is neglected
the mass matrix Mj has the form

Mj =

 0 0 0
0 0 0

−c1ρ1A1
jπ
L
−c2ρ2A2

jπ
L
{ρI}

(
jπ
L

)4
+ ρ1A1 + ρ2A2

 . (5.34)

In this case we can obtain a first degree equation of ω2
j from Eq. (5.33) i.e. one eigenfre-

quency is provided for each value of j. In addition when the rotary inertia is also neglected
the mass matrix is simplified further

Mj =

 0 0 0
0 0 0
0 0 ρ1A1 + ρ2A2

 . (5.35)

From Eq. (5.33) a first degree equation is also given in terms of ω2
j , in other words there

is one eigenfrequency for each value of j.
Here we note that we have made a further dynamic analysis for composite beams

with interlayer slip in (5). In that case the considered beam satisfies the requirements of
Timoshenko beam theory and the layers of the beam have different cross-sectional rotation
(φ1 6= φ2).
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Figure 5.4. The cross-section of the composite beam.

Table 5.2. The eigenfrequencies of the two-layered beam neglecting the axial inertia (β)
and neglecting the axial and the rotary inertia (δ).

β δ
j ωj 1/s ωj 1/s

1 135.42 135.44
2 539.35 539.66
3 1211.78 1213.3
4 2151.61 2156.4
5 3357.32 3368.94
6 4826.93 4850.95
7 6558.07 6602.4
8 8547.95 8623.31
9 10793.43 10913.68
10 13290.98 13473.5
15 29413.74 30314.42
20 51139.84 53891.71
25 77759.4 84205.37
30 108513.95 121255.39
35 142660.09 165041.78
40 179514.4 165041.78
45 218478.65 215564.55
50 259048.83 272823.67
100 694606.2 1347274.4
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5.2 Numerical example
The cross-section of the considered beam is shown in Fig. 5.4 and the following data
were applied for the computations of the eigenfrequencies: h1 = 0.02 m; h2 = 0.04 m;
b = 0.03 m; L = 2 m; E1 = 1010 Pa; E2 = 2 × 1011 Pa; k = 106 Pa; ρ1 = 4000 kg/m3;
ρ2 = 7000 kg/m3. First we computed the eigenfrequencies in that case when the rotary
inertia and the axial inertia was taken into account as well. In this case the mass matrix
(5.32) were used in Eq. (5.33). Table 5.1 contains the eigenfrequencies for several values
of j. Neglecting the axial inertia the mass matrix changes for (5.34) in Eq. (5.33). The
eigenfrequencies belonging to this case are collected in the column β in Table 5.2. The
column δ of Table 5.2 shows the eigenfrequencies when the axial and the rotary inertia
are equally neglected, viz. the mass matrix (5.35) were used in Eq. (5.33).
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Chapter 6

Analysis of curved composite beams
with interlayer slip

In this chapter a Rayleigh-Betti type reciprocity relation is derived for two-layered curved
composite beam with imperfect shear connection. The principle of minimum potential
energy is also formulated and its applications are illustrated by numerical examples.

6.1 Governing equations
The curved two-layered composite beam and its cross-section are shown in Fig. 6.1. In
the cylindrical coordinate system Orϕz the curved layer i (i = 1, 2) occupies the space
domain Bi (i = 1, 2)

Bi = {(r, ϕ, z)|(r, z) ∈ Ai, 0 ≤ ϕ ≤ β < 2π} , (i = 1, 2), (6.1)

where Ai is the cross-section of beam component Bi (i = 1, 2) (Fig. 6.1). The common
boundary surface of B1 and B2 is denoted by ∂B12

∂B12 =

{
(r, ϕ, z)|r = rc, 0 ≤ ϕ ≤ β, |z| ≤ b(rc)

2

}
. (6.2)

Here b = b(r) is the thickness of the cross-section (Fig. 6.1). The plane z = 0 is the
plane of symmetry for the whole two-layered curved beam. The connection between the
beam components B1 and B2 on their common boundary surface ∂B12 in radial direction
is perfect, whilst in circumferential direction may be jump in the displacement field. The
possible jump is called the interlayer slip. Denote the unit vectors of the coordinate system
Orϕz er, eϕ and ez. The in-plane deformation of two-layered curved beam is described
by the next displacement field [97]

u = uer + veϕ + wez, (6.3)

u = u(ϕ), w = 0, (r, ϕ, z) ∈ B = B1 ∪B2, (6.4)

v(r, ϕ, z) = rφi(ϕ) +
du

dϕ
, (r, ϕ, z) ∈ Bi, (i = 1, 2). (6.5)

Application of the strain-displacement relationship of the linearised theory of elasticity
gives [90]

εr = εz = γrϕ = γrz = γϕz = 0, (r, ϕ, z) ∈ B, (6.6)
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Figure 6.1. Two-layered curved beam.
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Figure 6.2. Illustration of internal forces and couples.

εϕ =
1

r

(
d2u

dϕ2
+ u

)
+

dφi
dϕ

, (r, ϕ, z) ∈ Bi, (i = 1, 2). (6.7)

The strains provided by Eqs. (6.6) and (6.7) satisfy the requirements of the Euler-Bernoulli
beam theory, only the one normal strain component εϕ is different from zero and all the
shearing strains vanish. From the definition of the interlayer slip s = s(ϕ) it follows that
(Fig. 6.1)

s(ϕ) = rc(φ1(ϕ)− φ2(ϕ)). (6.8)

Denote Q̂ = Q̂(ϕ) the interlayer shear force acting on unit area of the common boundary
surface of B1 and B2 which is rcb2dϕ, since b1 > b2 (Fig. 6.1). Here, we assume that

Q̂(ϕ) = ks(ϕ) = krc(φ1(ϕ)− φ2(ϕ)), (6.9)

where k is the slip modulus and its unit is force/(length)3. The value of the interlayer
shear force on this surface element is

Q(ϕ)dϕ = Q̂(ϕ)rcb2dϕ = kr2cb2 (φ1(ϕ)− φ2(ϕ)) dϕ, (6.10)
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that is
Q(ϕ) = kr2cb2 (φ1(ϕ)− φ2(ϕ)) . (6.11)

According to paper [97] we define the stress resultants, i.e. the normal force, the shearing
force and the stress couple resultant as (Fig. 6.2)

Ni =

∫
Ai

σϕdA, Si =

∫
Ai

τrϕdA, Mi =

∫
Ai

rσϕdA, (i = 1, 2). (6.12)

In Eqs. (6.12) σϕ is the normal stress and τrϕ denotes the shearing stress. The virtual
work W of the section forces and moment on a kinematically admissible displacement
field

û = û(ϕ), ŵ = 0, v̂ = rφ̂i +
dû

dϕ
, (i = 1, 2) (6.13)

can be computed as

W =

∫
A

σϕv̂dA+

∫
A

τrϕûdA = M1φ̂1 +M2φ̂2 +N
dû

dϕ
+ Sû,

N = N1 +N2, S = S1 + S2.

(6.14)

From Eq. (6.14) we obtain the possible combinations of the boundary conditions at the
end cross sections

S = S1 + S2 or u may be prescribed, (6.15)

N = N1 +N2 or
du

dϕ
may be prescribed, (6.16)

M1 or φ1 may be prescribed, (6.17)

M2 or φ2 may be prescribed. (6.18)

The virtual work of the distributed forces fr, f1ϕ and f2ϕ on a small beam element
(Fig. 6.3) can be computed as

dW̃ =

[
frũ+ fϕ

dũ

dϕ
+m1φ̃1 +m2φ̃2

]
dϕ, (6.19)

where
ũ = ũer +

(
rφ̃i +

dũ

dϕ

)
eϕ, (r, ϕ, z) ∈ Bi, (i = 1, 2) (6.20)

is the virtual displacement field and (Fig. 6.3)

fϕ = f1ϕ + f2ϕ, m1 = raf1ϕ, m2 = rbf2ϕ. (6.21)

Equations of equilibrium can be formulated as [97]

dN

dϕ
+ S + fϕ = 0, (6.22)

−N +
dS

dϕ
+ fr = 0, (6.23)

dM1

dϕ
+m1 − q = 0, (6.24)
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∆B2

fr
f1ϕ

f2ϕ

ϕϕ + ∆ϕ

O

Figure 6.3. Virtual work of applied forces acting on a small beam element.

dM2

dϕ
+m2 + q = 0. (6.25)

In Eqs. (6.24–6.25) (Fig. 6.2)

q = K (φ1 − φ2) , K = kr3cb2, (b2 < b1), (6.26)

and we have
N = N1 +N2, S = S1 + S2. (6.27)

6.2 Rayleigh-Betti type reciprocity relation
Let us consider two equilibrium states of a two-layered curved beam with imperfect shear
connection. These equilibrium states are denoted by upper one comma and upper two
comma, respectively. Starting from Eqs. (6.22), (6.23) we can write(

dN ′

dϕ
+ S ′ + f ′ϕ

)
du′′

dϕ
+

(
−N ′ + dS ′

dϕ
+ f ′r

)
u′′ = 0. (6.28)

Integration of Eq. (6.28) gives{
N ′

du′′

dϕ
+ S ′u′′

}β
0

+

∫ β

0

(
f ′ϕ

du′′

dϕ
+ f ′ru

′′
)

dϕ−
∫ β

0

N ′
(

d2u′′

dϕ2
+ u′′

)
dϕ = 0, (6.29)

where the next designation

{F (ϕ)}β0 = F (β)− F (0) (6.30)

is introduced. From Eqs. (6.24), (6.25) it follows that∫ β

0

(
dM ′

1

dϕ
φ′′1 +m′1φ

′′
1 − q′φ′′1 +

dM ′
2

dϕ
φ′′2 +m′2φ

′′
2 + q′φ′′2

)
dϕ =

{M ′
1φ
′′
1 +M ′

2φ
′′
2}β0 +

∫ β

0

(m′1φ
′′
1 +m′2φ

′′
2) dϕ−

−
∫ β

0

[
M ′

1

dφ′′1
dϕ

+M ′
2

dφ′′2
dϕ

+ q′ (φ′′1 − φ′′2)

]
dϕ = 0.

(6.31)
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Let

W12 =

{
N ′

du′′

dϕ
+ S ′u′′ +M ′

1φ
′′
1 +M ′

2φ
′′
2

}β
0

+

∫ β

0

(
f ′ru

′′ + f ′ϕ
du′′

dϕ
+m′1φ

′′
1 +m′2φ

′′
2

)
dϕ

(6.32)
be. The mechanical meaning of W12 is obvious, the work done by the applied forces
and reactions of the first equilibrium state on the displacement field caused by the forces
applied in second equilibrium state. We define the mixed strain energy U12 for the states
1 and 2 as

U12 =

∫ β

0

[
N ′
(

d2u′′

dϕ2
+ u′′

)
+M ′

1

dφ′′1
dϕ

+M ′
2

dφ′′2
dϕ

+ q′ (φ′′1 − φ′′2)

]
dϕ. (6.33)

The combination of Eq. (6.29) with Eq. (6.31) gives

W12 = U12. (6.34)

Application of the Hooke’s law and Eq. (6.7) yields the formula of normal stress σϕ

σϕ = Ei

[
1

r

(
d2u

dϕ2
+ u

)
+

dφi
dϕ

]
, (r, ϕ, z) ∈ Bi, (i = 1, 2), (6.35)

where Ei is the modulus of elasticity for curved layer Bi (i = 1, 2). Combination of
Eqs. (6.12)1,2,3 with Eq. (6.35) gives

Ni =
AiEi
Ri

(
d2u

dϕ2
+ u

)
+ AiEi

dφi
dϕ

, (i = 1, 2), (6.36)

Mi = AiEi

(
d2u

dϕ2
+ u

)
+ riAiEi

dφi
dϕ

, (i = 1, 2). (6.37)

Here,
1

Ri

=
1

Ai

∫
Ai

dA

r
, (i = 1, 2), (6.38)

ri =
1

Ai

∫
Ai

rdA, OCi = ri, (i = 1, 2), (Fig. 6.1). (6.39)

The connection between the normal force N and shear force S is as follows [97]

S = −dN

dϕ
. (6.40)

Combination of Eqs. (6.27)1, (6.36), (6.37) and (6.40) we obtain

N =
AE0

R

(
d2u

dϕ2
+ u

)
+ A1E1

dφ1

dϕ
+ A2E2

dφ2

dϕ
, (6.41)

M = M1 +M2 = AE0

(
d2u

dϕ2
+ u

)
+ r1A1E1

dφ1

dϕ
+ r2A2E2

dφ2

dϕ
, (6.42)

where (Fig. 6.1)

E0 =
A1E1 + A2E2

A
, A = A1 + A2, (6.43)
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AE0

R
= E1

∫
A1

dA

r
+ E2

∫
A2

dA

r
. (6.44)

By the use of Eq. (6.26) and Eqs. (6.37), (6.41) we can reformulate the expression of U12

as

U12 =

∫ β

0

[
AE0

R

(
d2u′

dϕ2
+ u′

)(
d2u′′

dϕ2
+ u′′

)
+ A1E1

(
d2u′′

dϕ2
+ u′′

)
dφ′1
dϕ

+

+A1E1

(
d2u′

dϕ2
+ u′

)
dφ′′1
dϕ

+ A2E2

(
d2u′′

dϕ2
+ u′′

)
dφ′2
dϕ

+ A2E2

(
d2u′

dϕ2
+ u′

)
dφ′′2
dϕ

+

+r1A1E1
dφ′1
dϕ

dφ′′1
dϕ

+ r2A2E2
dφ′2
dϕ

dφ′′2
dϕ

+K (φ′1 − φ′2) (φ′′1 − φ′′2)

]
dϕ.

(6.45)

It is evident
U12 = U21 and U21 = W21, (6.46)

where

W21 =

{
N ′′

du′

dϕ
+ S ′′u′ +M ′′

1 φ
′
1 +M ′′

2 φ
′
2

}β
0

+

∫ β

0

(
f ′′r u

′ + f ′′ϕ
du′

dϕ
+m′′1φ

′
1 +m′′2φ

′
2

)
dϕ.

(6.47)
Comparison of Eq. (6.34) with Eq. (6.46) yields the next Rayleigh-Betti type reciprocity
relation

W12 = W21. (6.48)

If the two equilibrium states are the same, that is

u = u′ = u′′, φ1 = φ′1 = φ′′1, φ2 = φ′2 = φ′′2, . . . , (6.49)

then we have according to Clapeyron’s theorem

U = W, (6.50)

where U is the strain energy of the two-layered composite beam with imperfect shear
connection

U =
1

2

∫ β

0

[
AE0

R

(
d2u

dϕ2
+ u

)2

+ 2A1E1

(
d2u

dϕ2
+ u

)
dφ1

dϕ
+ 2A2E2

(
d2u

dϕ2
+ u

)
dφ2

dϕ
+

+r1A1E1

(
dφ1

dϕ

)2

+ r2A2E2

(
dφ2

dϕ

)2

+K (φ1 − φ2)
2

]
dϕ (6.51)

and W is the work of the applied forces which can be written in the next form

W =
1

2

[{
N

du

dϕ
+ Su+M1φ1 +M2φ2

}β
0

+

∫ β

0

(
fru+ fϕ

du

dϕ
+m1φ1 +m2φ2

)
dϕ

]
.

(6.52)
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6.3 Principle of minimum potential energy

Let ũ = ũ (ϕ), φ̃1 = φ̃1 (ϕ) and φ̃2 = φ̃2 (ϕ) such functions which satisfy the geometric
boundary conditions. The geometric boundary conditions refer to deflection and cross-
sectional rotation. For this field we define the potential energy as [94, 98]

ΠL

(
ũ, φ̃1, φ̃2

)
= U

(
ũ, φ̃1, φ̃2

)
− {virtual

work of the prescribed forces on ũ, φ̃1 and φ̃2

}
.

(6.53)

It can be proven that according to the minimum property of potential energy [94, 98]

ΠL (u, φ1, φ2) ≤ ΠL

(
ũ, φ̃1, φ̃2

)
, (6.54)

where u = u (ϕ), φ1 = φ1 (ϕ) and φ2 = φ2 (ϕ) are the solution of the considered equilib-
rium problem of layered composite beam with weak shear connection. Next, it will be
proven that the equations of equilibrium and force boundary conditions are obtained from
the principle of minimum of potential energy. Let u = u (ϕ), φ1 = φ1 (ϕ), φ2 = φ2 (ϕ) be
the solution of the considered equilibrium problem. The kinematically admissible radial
displacement and cross-sectional rotations can be represented as

ũ = u+ δu, φ̃1 = φ1 + δφ1, φ̃2 = φ2 + δφ2. (6.55)

Here, δu, δφ1 and δφ2 satisfy homogeneous kinematic boundary conditions where u, φ1

or φ2 are prescribed as a boundary condition. Assuming that all the boundary conditions
are force boundary conditions, this means that N (0), N (β), S (0), S (β), M1 (0), M1 (β)
and M2 (0), M2 (β) are prescribed. In this case

Π
(
ũ, φ̃1, φ̃2

)
=

1

2

∫ β

0

[
AE0

R

(
d2ũ

dϕ2
+ ũ

)2

+ 2A1E1

(
d2ũ

dϕ2
+ ũ

)
dφ̃1

dϕ
+

+2A2E2

(
d2ũ

dϕ2
+ ũ

)
dφ̃2

dϕ
+ r1A1E1

(
dφ̃1

dϕ

)2

+ r2A2E2

(
dφ̃2

dϕ

)2

+K
(
φ̃1 − φ̃2

)2 dϕ−

∫ β

0

(
frũ+ fϕ

dũ

dϕ
+m1φ̃1 +m2φ̃2

)
dϕ−

{
N

dũ

dϕ
+ Sũ+M1φ̃1 +M2φ̃2

}β
0

, (6.56)

where the quantities with over-bar are given. By a lengthy, but elementary computation
which includes the application of the integration of parts for

∆ΠL = ΠL (u+ δu, φ1 + δφ1, φ2 + δφ2)− ΠL (u, φ1, φ2) (6.57)

the next result can be derived

∆ΠL = δΠ + U (δu, δφ1, δφ2) , (6.58)

where

δΠ =

∫ β

0

[(
N +

d2N

dϕ2
− fr +

dfϕ
dϕ

)
δu−

(
dM1

dϕ
+m1 − q (φ1 − φ2)

)
δφ1−

−
(

dM2

dϕ
+m2 + q (φ1 − φ2)

)
δφ2

]
dϕ+

{(
N −N

) d

dϕ
δu−

−
(

dN

dϕ
+ fϕ + S

)
δu+

(
M1 −M1

)
δφ1 +

(
M2 −M2

)
δφ2

}β
0

.

(6.59)
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For admissible variation of u, φ1, φ2, which are δu, δφ1 and δφ2 are arbitrary except
where the kinematic boundary conditions are specified. Since with arbitrary admissible
variation of u, φ1, φ2

∆ΠL ≥ 0 (6.60)

according to the principle of minimum of potential energy. From Eq. (6.58) and inequality
relation (6.60) and

U (δu, δφ1, δφ2) ≥ 0 (6.61)

we obtian
δΠ = 0. (6.62)

A detailed form of Eq. (6.62), which can be derived by means of the fundamental lemma
of calculus of variation [99] gives the equations of equilibrium

d2N

dϕ2
+N − fr +

dfϕ
dϕ

= 0, 0 < ϕ < β, (6.63)

dM1

dϕ
+m1 − q (φ1 − φ2) = 0, 0 < ϕ < β, (6.64)

dM2

dϕ
+m2 + q (φ1 − φ2) = 0, 0 < ϕ < β, (6.65)

and boundary conditions

N −N = 0 for ϕ = 0 and ϕ = β, (6.66)

dN

dϕ
+ fϕ + S = 0 for ϕ = 0 and ϕ = β, (6.67)

M1 −M1 = 0 for ϕ = 0 and ϕ = β, (6.68)

M2 −M2 = 0 for ϕ = 0 and ϕ = β, (6.69)

We note, Eq. (6.63) is obtained from Eqs. (6.22), (6.23) with the elimination of S = S (ϕ)
and the validity of boundary condition (6.67) follows from Eq. (6.22). In Eqs. (6.63–6.65)
N , M1, M2, q are given by Eqs. (6.26), (6.37), (6.41) in terms of u, φ1 and φ2.

We have also investigated curved composite beams with interlayer slip in (3). In that
paper the curved composite beam at one of the end cross-sections is fixed and the other
end cross-section is subjected by a concentrated radial load. The study gives solutions for
radial displacements, slips and stresses.

6.4 Numerical examples

6.4.1 A curved composite beam with uniformly distributed radial
load

Both ends of curved two-layered composite beam with flexible shear connection are radi-
ally guided and loaded by uniformly distributed radial forces as shown in Fig. 6.4. The
applied radial load is expressed as

fr (ϕ) = −f
[
H

(
ϕ− β

2
+

Θ

2

)
−H

(
ϕ− β

2
− Θ

2

)]
, (6.70)
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O

ϕ = 0

ϕ = β

ϕ = β/2

f

Θ/2 Θ/2

Figure 6.4. Uniformly loaded curved composite beam.

Figure 6.5. The graph of the radial displacement.

where
0 < Θ ≤ β (6.71)

and H = H(ϕ) is the Heaviside function. In this problem the boundary conditions are as
follows

φ1 (0) = φ1 (β) = φ2 (0) = φ2 (β) = 0, (6.72)

S (0) = S (β) = 0. (6.73)

The minimum of the potential energy is obtained by the application of Ritz method.
Assumed form of the solution is

u (ϕ) = u0 +
∞∑
p=1

up cos
pπ

β
ϕ, (6.74)

φ1 (ϕ) =
∞∑
p=1

φ1p sin
pπ

β
ϕ, φ2 (ϕ) =

∞∑
p=1

φ2p sin
pπ

β
ϕ. (6.75)

72



6. CHAPTER. ANALYSIS OF CURVED COMPOSITE BEAMS WITH INTERLAYER SLIP

Figure 6.6. The graph of φ1 = φ1 (ϕ).

Figure 6.7. The graph of φ2 = φ2 (ϕ).

With arbitrary φ1p (i = 1, 2; p = 1, 2, . . .) the cross-sectional rotations given by Eq. (6.75)
satisfy the geometric boundary conditions formulated in Eq. (6.72). Substitution of
Eqs. (6.74), (6.75) into the expression of potential energy we obtain that

ΠL (u0, up, φ1p, φ2p; p = 1 . . .) =
1

2

AE0

R
βu20 +

β

4

∞∑
p=1

AE0

R

(
1−

(
pπ

β

)2
)2

u2p+

+2A1E1

(
1−

(
pπ

β

)2
)
pπ

β
upφ1p + 2A2E2

(
1−

(
pπ

β

)2
)
pπ

β
upφ2p+

+r1A1E1

(
pπ

β

)2

φ2
1p + r2A2E2

(
pπ

β

)2

φ2
2p +K (φ1p − φ2p)

2

}
+ fu0Θ+

+
∞∑
p=1

fup
β

pπ

[
sin

pπ

2β
(β + Θ)− sin

pπ

2β
(β −Θ)

]
.

(6.76)

The necessary condition of minimum of ΠL as a function of u0, up, φ1p, φ2p (p = 1, 2, . . .)
can be formulated as

∂ΠL

∂u0
= 0,

∂ΠL

∂up
= 0,

∂ΠL

∂φ1p

= 0,
∂ΠL

∂φ2p

= 0, (p = 1, 2 . . .) . (6.77)
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Figure 6.8. The plot of the normal force function.

Figure 6.9. The plot of the shear force function.

From Eq. (6.77) it follows that

u0 = −f R

AE0

Θ

β
(6.78)

and up, φ1p, φ2p are the solution of the following system of linear equations

Mpxp = bp, Mp = [mpij] , xp = [up, φ1p, φ2p]
T , (6.79)

bp = [bp, 0, 0]T , (6.80)

where

mp11 =
AE0

R

(
1−

(
pπ

β

)2
)2

, mp12 = A1E1
pπ

β

(
1−

(
pπ

β

)2
)
,

mp13 = A2E2
pπ

β

(
1−

(
pπ

β

)2
)
,

(6.81)

mp21 = mp12, mp22 = r1A1E1

(
pπ

β

)2

+K, mp23 = −K, (6.82)

mp31 = mp13, mp32 = mp23, mp33 = r2A2E2

(
pπ

β

)2

+K, (6.83)

bp = −2f

pπ

[
sin

pπ

2β
(β + Θ)− sin

pπ

2β
(β −Θ)

]
. (6.84)
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Figure 6.10. The graph of M = M (ϕ).

The next data are used in Example 6.4.1: β = 2π
3
, ra = 0.04 m, rb = 0.02 m, rc = 0.03 m,

b1 = b2 = b = 0.03 m, E1 = 1011 Pa, E2 = 8 × 1010 Pa, k = 80 × 108 Pa/m3, f = 5000 N,
Θ = π

4
. Figs. 6.5, 6.6 and 6.7 show the graphs of deflection and cross-sectional rotation

functions. The normal force as a function of ϕ is shown in Fig. 6.8. The graphs of shear
force function S = S (ϕ) and bending moment function M = M (ϕ) are illustrated in
Figs. 6.9 and 6.10.

6.4.2 A curved composite beam subjected to uniformly distributed
radial load on its total length

In this example we consider the case β = Θ which is shown in Fig. 6.11. Here, the same
data are used as in Example 6.4.1 except Θ

(
Θ = 2π

3

)
. In this case we have from Eq. (6.84)

bp = 0, (p = 1, 2, . . .) . (6.85)

The solution of this problem is as follows

u = −f R

AE0

, φ1 (ϕ) = 0, φ2 (ϕ) = 0, (6.86)

N = −f, S = 0, M = −Rf. (6.87)

6.4.3 Checking the previous examples

In this example we check the exactness of solution of Examples 6.4.1 and 6.4.2 by the
application of Rayleigh-Betti reciprocity relation. The first equilibrium state of the curved
composite beam with deformable shear connection is shown in Fig. 6.4 and the second
equilibrium state is illustrated in Fig. 6.11. In this example

W12 = −
∫ β

0

fr (ϕ) f
R

AE0

dϕ, (6.88)

where fr = fr (ϕ) is given by Eq. (6.70), and

W21 =

∫ β

0

(−f)u (ϕ) dϕ, (6.89)
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ϕ = 0

ϕ = β

f

B1

B2

Figure 6.11. The case of Θ = β.

where u = u (ϕ) is given by Eq. (6.74). A simple computation gives

W12 = 0.00204454608 Nm,

W21 = 0.00204454606 Nm.
(6.90)

6.4.4 A curved composite beam with concentrated radial load

This example deals with the case of concentrated radial load applied at ϕ = β
2
as shown

in Fig. 6.12. The Ritz type solution is based on the assumed forms of radial displacement
and cross-sectional rotations given by Eqs. (6.74) and (6.75). The virtual work of the
concentrated radial force on the radial displacement (6.74) can be computed as

WF = (−F )

[
u0 +

∞∑
p=1

up cos
pπ

2

]
. (6.91)

From the principle of minimum potential energy by the use of expression WF we obtain
that

u0 = −F R

βE0A
, bp = −2F

β
cos

pπ

2
, (p = 1, 2, . . .) . (6.92)

Let F = 5000 N be. The same geometrical and material properties are used to solve
Eq. (6.79) with the new value of bp (p = 1, 2, . . .). The results of the computations
are shown in Figs. 6.13–6.18. The radial displacement and cross-sectional rotations as
functions of ϕ are shown in Figs. 6.13 6.14 and 6.15. The graphs of normal force, shear
force and bending moment are illustrated in Figs. 6.16, 6.17 and 6.18. Here we note,
that the shear force function has a jump at ϕ = β

2
(Fig. 6.17). The small oscillation of

S = S (ϕ) at ϕ = β
2
follows from its representation by „truncated” Fourier series.

6.4.5 Checking the results of the curved beam with concentrated
radial load

By the use of Rayleigh-Betti type reciprocity relation we check the accuracy of the solution
obtained for concentrated radial load. The first equilibrium state of the curved composite
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O

ϕ = 0

ϕ = β F

B1

B2

ϕ = β/2

Figure 6.12. The case of concentrated radial load.

Figure 6.13. The plot of the radial displacement.

Figure 6.14. The plot of φ1 = φ1 (ϕ).
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Figure 6.15. The plot of φ2 = φ2 (ϕ).

Figure 6.16. The graph of normal force function.

Figure 6.17. The graph of the shear force function.
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Figure 6.18. The graph of M = M (ϕ).

beam is shown in Fig. 6.12 and the second equilibrium state is illustrated in Fig. 6.11.
For these equilibrium states we have

W12 = (−F ) (−f)
R

AE0

, (6.93)

W21 = (−f)

∫ β

0

u (ϕ) dϕ, (6.94)

where u = u (ϕ) is obtained in Example 6.4.4. A simple computation gives

W12 = 0.002603196319 Nm,

W21 = 0.002603196318 Nm
(6.95)

according to the proven Rayleigh-Betti type reciprocity relation.

6.4.6 A curved composite beam uniformly loaded by tangential
forces

Figure 6.19 shows a two-layered composite beam with deformable shear connection loaded
by uniform tangential load on its outer cylindrical boundary. The geometrical and material
properties of the considered curved beam is the same as in Example 6.4.1. In paper
(3) the solution of two-layered composite beam with weak shear connection for radial
concentrated load applied at its one of the end cross-section was derived (Fig. 6.20). The
first equilibrium state of the composite curved beam is shown in Fig. 6.19 and the second
equilibrium state of the same curved composite beam is given in Fig. 6.20. Our aim
is to obtain the deflection of the end cross-section of curved beam loaded by uniformly
distributed tangential forces (Fig. 6.19). According to the Rayleigh-Betti theorem we can
write that

W12 = f

∫ β

0

v′′ (ra, ϕ) dϕ =

= f

[
ra

∫ β

0

φ′′1 (ϕ) dϕ+ u′′ (β)

]
,

(6.96)

W21 = −Fu′ (β) . (6.97)
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O

ϕ = β

f

B1B2

ϕ = 0

Figure 6.19. Two-layered curved composite beam uniformly loaded by tangential forces.

O

ϕ = β

F

B1B2

ϕ = 0

Figure 6.20. Two-layered curved composite beam with concentrated radial load.
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From Eqs. (6.96) and (6.97) it follows that

u′ (β) = − f
F

∫ β

0

v′′ (ra, ϕ) dϕ =

= − f
F

[
ra

∫ β

0

φ′′1 (ϕ) dϕ+ u′′ (β)

]
.

(6.98)

Let
f = 1500 N, F = 1000 N (6.99)

be in Eq. (6.98). Other data are given in Example 6.4.1. By these data using the solution
presented for φ′′1 = φ′′1 (ϕ) and u′′ = u′′ (ϕ) in (3) we get

u′ (β) = −0.0000188033149 m. (6.100)
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Summary of the novel results

In this thesis I have dealt with static and dynamic problems of layered composite beams
having not perfect connection. The overview of the literature represents that a lot of
investigators published their works in connection with this topic in the last 60-70 years.
The importance of the topic is well illustrated by the fact that the scientists research
the behaviour of the composite beams with weak shear connection nowadays as well.
According to the publications available in the open literature I have been able to draw
up my objectives and in the following I am going to summarize the novel results of this
thesis.

Statement 1.
I have derived a novel analytical solution to describe the static behaviour of composite
beams with interlayer slip. The governing equation of the problem is written in terms
of the slip and the cross-sectional shear force function. The fundamental solutions for
seven different initial conditions have been deduced by means of both Euler-Bernoulli and
Timoshenko beam theory. With these functions the solution of the governing equation
have become the solution of a linear system of equation. I have presented the methods
in numerical examples with different boundary conditions in order to compare the results
with ones from other publications and from my FEM analysis. The results were in good
agreement.

Statement 2.
I have deduced a new analytical solution for static problem of composite beams with
interlayer slip loaded by mechanical and thermal load as uniform temperature change.
I have provided the governing equation of the problem and have solved it for different
boundary conditions. The thermal stresses have been derived as well. In this case numer-
ical examples also represented the developed method with and without thermal loading.
The same results have been obtained from this method without thermal load as from the
fundamental solutions.

Statement 3.
Two new analytical method have been formulated for the determination of the buckling
load of composite beams with weak shear connection. In the first case closed form so-
lution were derived from a variational method for two composite columns with different
boundary conditions. In the second case I have obtained the same closed forms from
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the equilibrium method for the same two composite columns. Two numerical examples
showed the application of the forms which were in good agreement with the results come
from the literature. I have also provided the function of the buckling load in terms of the
slip modulus for both columns.

Statement 4.
A new analytical solution has been described in connection with the free flexural vibra-
tion of composite beams with weak shear connection. For the analysis I have introduced
the d’Alembert forces. According to the obtained equations of motion three closed form
solutions were provided for the eigenfrequencies of the considered composite beam. The
first solution counts with the effect of the rotary and axial inertia resulting three var-
ious eigenfrequencies, whilst the second one neglected the rotary inertia, the third one
eliminated all the rotary and the axial inertia. The latter two resulted one eigenfrequency.

Statement 5.
A new analytical method has been elaborated for static analysis of uniformly curved com-
posite beams with interlayer slip. Based on the Rayleigh-Betti type reciprocity relation I
have deduced the potential energy of the considered uniformly curved beam. By means of
the principle of minimum potential energy I have also determined the equilibrium equa-
tions and the dynamic boundary conditions. Several numerical examples represented the
applications of the potential energy combining with the Ritz method and for the checking
of this method the Rayleigh-Betti type reciprocity relation were used. These results were
in good agreement.
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Összefoglalás

A disszertációban réteges szerkezetű, részlegesen kapcsolt kompozit rudak statikai és di-
namikai problémáival foglalkoztam. Az irodalmi áttekintés is mutatja, hogy az elmúlt
60-70 évben rengeteg kutató publikálta eredményeit részlegesen kapcsolt kompozit rudak-
kal kapcsolatban, és a téma fontosságát jól illusztrálja, hogy napjainkban is születnek
publikációk a témában. Az irodalmi áttekintés és célkitűzéseim alapján a következőkben
összefoglalom az új tudományos eredményeket.

1. tézis
Új analitikus megoldást vezettem le részlegesen kapcsolt kompozit rudak statikai visel-
kedésének leírására. A probléma alapegyenletét a csúszás- és a nyíróerőfüggvény segít-
ségével írtam fel. Mind az Euler-Bernoulli, mind a Timoshenko rúdmodell segítségével
származtattam az ún. alapmegoldásokat hét különböző kezdeti feltételre. Az alapmegol-
dások segítségével az alapegyenlet megoldása egy lineáris egyenletrendszer megoldásává
válik. Néhány numerikus példán keresztül bemutattam a módszer alkalmazását, az ered-
ményeket pedig összevetettem más publikációkból, illetve az általam elvégzett végeselemes
szimulációból származó eredményekkel, melyek jó egyezést mutattak.

2. tézis
Egy új analitikus módszert írtam fel részlegesen kapcsolt kompozit rudak statikai visel-
kedésének meghatározására, amennyiben a rúdra egyaránt hat mechanikai és hőterhelés
amely egyenletes hőmérsékletváltozást jelent. Megadtam a probléma alapegyenletét és an-
nak megoldását is különböző peremfeltételi előírásokra. A hő okozta feszültségek számítá-
sára szolgáló összefüggéseket is származtattam. Ebben az esetben is numerikus példákban
mutattam be a módszer alkalmazását hőterheléssel és anélkül. A hőterhelés nélküli eset
ugyanazokat a megoldásokat szolgáltatta, amelyeket az alapmegoldások módszere is.

3. tézis
Két új analitikus módszert vezettem le részlegesen kapcsolt kompozit rudak stabilitási
vizsgálatával kapcsolatban. Az első esetben két különböző peremfeltételekkel rendelkező
rúdra is zárt formulát állítottam elő a kritikus teher számítására, melyeket variációs mód-
szer segítségével vezettem le. A második esetben ugyanezen rudakra ugyanazokat a zárt
formulákat kaptam egyensúlyi módszer segítségével. Két számpélda illusztrálja a formu-
lák alkalmazását, az így kapott eredmények pedig jó egyezést mutatnak az irodalomban
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található eredményekkel. Mindkét rúd esetében megadtam a kritikus terhelés csúszási
modulustól való függését is.

4. tézis
Egy új analitikus módszert írtam fel részlegesen kapcsolt kompozit rudak szabad rezgé-
seinek vizsgálatára. Bevezettem a d’Alembert féle inerciaerőket. A nyert mozgásegyenle-
tekből három esetre is zárt formula vezethető le a tekintett kompozit rudak sajátfrek-
venciáinak meghatározására. Az első esetben figyelembe vettem a forgási és az axiális
inercia hatását is, mely 3 különböző sajátfrekvenciát eredményezett. A második esetben
a forgási inerciát, míg a harmadik esetben mind a forgási, mind pedig az axiális inerciát
elhanyagoltam. Ez utóbbi két eset egy-egy sajátfrekvenciát eredményezett.

5. tézis
Egy új analitikus módszert vezettem le körív középvonalú kompozit rudak statikai visel-
kedésének leírására. A Rayleigh-Betti féle felcserélhetőségi tételt felhasználva felírtam a
körív középvonalú kompozit rúdra érvényes potenciális energiát. A potenciális energia mi-
nimuma elvének segítségével levezettem az egyensúlyi egyenleteket és a dinamikai perem-
feltételeket. Néhány példán keresztül bemutattam a potenciális energia minimuma elvén
alapuló megoldást kombinálva a Ritz-módszerrel és az eredményeket a Rayleigh-Betti-féle
felcserélhetőségi tétel segítségével ellenőriztem. Az eredmények jó egyezést mutattak.
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